diff --git "a/38561/metadata.json" "b/38561/metadata.json" new file mode 100644--- /dev/null +++ "b/38561/metadata.json" @@ -0,0 +1,39542 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "38561", + "quality_score": 0.8984, + "per_segment_quality_scores": [ + { + "start": 66.85, + "end": 72.3, + "probability": 0.9795 + }, + { + "start": 72.44, + "end": 73.48, + "probability": 0.9058 + }, + { + "start": 76.76, + "end": 78.36, + "probability": 0.8711 + }, + { + "start": 78.36, + "end": 79.78, + "probability": 0.7078 + }, + { + "start": 79.84, + "end": 81.43, + "probability": 0.9136 + }, + { + "start": 81.68, + "end": 82.14, + "probability": 0.7979 + }, + { + "start": 82.66, + "end": 84.6, + "probability": 0.9568 + }, + { + "start": 85.46, + "end": 87.4, + "probability": 0.3882 + }, + { + "start": 87.92, + "end": 92.28, + "probability": 0.934 + }, + { + "start": 92.7, + "end": 95.4, + "probability": 0.544 + }, + { + "start": 96.0, + "end": 98.48, + "probability": 0.8658 + }, + { + "start": 99.04, + "end": 103.05, + "probability": 0.9124 + }, + { + "start": 104.32, + "end": 108.88, + "probability": 0.2419 + }, + { + "start": 109.14, + "end": 109.34, + "probability": 0.6817 + }, + { + "start": 110.86, + "end": 113.38, + "probability": 0.9558 + }, + { + "start": 114.14, + "end": 114.2, + "probability": 0.0042 + }, + { + "start": 191.02, + "end": 193.88, + "probability": 0.0722 + }, + { + "start": 194.48, + "end": 196.06, + "probability": 0.0164 + }, + { + "start": 196.06, + "end": 196.66, + "probability": 0.4868 + }, + { + "start": 199.72, + "end": 200.68, + "probability": 0.0729 + }, + { + "start": 202.26, + "end": 203.36, + "probability": 0.7601 + }, + { + "start": 204.14, + "end": 207.14, + "probability": 0.2207 + }, + { + "start": 218.24, + "end": 219.92, + "probability": 0.2275 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.22, + "end": 310.4, + "probability": 0.0901 + }, + { + "start": 310.4, + "end": 310.96, + "probability": 0.0739 + }, + { + "start": 311.04, + "end": 314.92, + "probability": 0.9868 + }, + { + "start": 314.92, + "end": 316.08, + "probability": 0.8138 + }, + { + "start": 316.16, + "end": 316.7, + "probability": 0.7734 + }, + { + "start": 316.78, + "end": 318.92, + "probability": 0.7417 + }, + { + "start": 319.09, + "end": 321.72, + "probability": 0.5982 + }, + { + "start": 322.08, + "end": 324.42, + "probability": 0.9678 + }, + { + "start": 324.54, + "end": 325.48, + "probability": 0.4389 + }, + { + "start": 325.86, + "end": 326.4, + "probability": 0.6518 + }, + { + "start": 326.56, + "end": 329.06, + "probability": 0.9453 + }, + { + "start": 329.06, + "end": 331.0, + "probability": 0.9572 + }, + { + "start": 331.34, + "end": 331.54, + "probability": 0.5996 + }, + { + "start": 331.62, + "end": 333.78, + "probability": 0.8979 + }, + { + "start": 334.14, + "end": 336.64, + "probability": 0.9597 + }, + { + "start": 336.74, + "end": 337.5, + "probability": 0.6117 + }, + { + "start": 337.62, + "end": 340.4, + "probability": 0.7405 + }, + { + "start": 340.56, + "end": 342.56, + "probability": 0.9177 + }, + { + "start": 343.16, + "end": 345.46, + "probability": 0.9922 + }, + { + "start": 345.6, + "end": 349.52, + "probability": 0.9956 + }, + { + "start": 349.84, + "end": 352.32, + "probability": 0.7769 + }, + { + "start": 353.83, + "end": 355.34, + "probability": 0.6156 + }, + { + "start": 355.44, + "end": 356.06, + "probability": 0.994 + }, + { + "start": 356.94, + "end": 357.18, + "probability": 0.8294 + }, + { + "start": 357.24, + "end": 357.72, + "probability": 0.7497 + }, + { + "start": 357.82, + "end": 359.84, + "probability": 0.9617 + }, + { + "start": 359.94, + "end": 361.34, + "probability": 0.999 + }, + { + "start": 362.65, + "end": 364.38, + "probability": 0.8419 + }, + { + "start": 364.54, + "end": 365.54, + "probability": 0.8217 + }, + { + "start": 365.58, + "end": 366.6, + "probability": 0.9905 + }, + { + "start": 367.04, + "end": 368.1, + "probability": 0.6636 + }, + { + "start": 368.48, + "end": 368.64, + "probability": 0.4878 + }, + { + "start": 368.72, + "end": 369.78, + "probability": 0.9187 + }, + { + "start": 369.92, + "end": 370.84, + "probability": 0.7896 + }, + { + "start": 371.1, + "end": 372.62, + "probability": 0.9515 + }, + { + "start": 372.68, + "end": 375.26, + "probability": 0.9716 + }, + { + "start": 375.62, + "end": 377.0, + "probability": 0.717 + }, + { + "start": 377.16, + "end": 381.08, + "probability": 0.5292 + }, + { + "start": 381.76, + "end": 384.82, + "probability": 0.9377 + }, + { + "start": 385.38, + "end": 391.12, + "probability": 0.9912 + }, + { + "start": 391.28, + "end": 392.3, + "probability": 0.9329 + }, + { + "start": 392.48, + "end": 393.04, + "probability": 0.4743 + }, + { + "start": 393.14, + "end": 394.14, + "probability": 0.7643 + }, + { + "start": 394.56, + "end": 395.4, + "probability": 0.8414 + }, + { + "start": 395.68, + "end": 399.48, + "probability": 0.9683 + }, + { + "start": 399.6, + "end": 400.6, + "probability": 0.3443 + }, + { + "start": 400.64, + "end": 402.4, + "probability": 0.5165 + }, + { + "start": 402.48, + "end": 403.8, + "probability": 0.9422 + }, + { + "start": 404.62, + "end": 405.84, + "probability": 0.7592 + }, + { + "start": 405.9, + "end": 407.76, + "probability": 0.9536 + }, + { + "start": 408.14, + "end": 408.38, + "probability": 0.9091 + }, + { + "start": 408.46, + "end": 411.98, + "probability": 0.951 + }, + { + "start": 411.98, + "end": 413.68, + "probability": 0.9897 + }, + { + "start": 414.06, + "end": 417.0, + "probability": 0.958 + }, + { + "start": 417.36, + "end": 419.0, + "probability": 0.9977 + }, + { + "start": 419.12, + "end": 420.96, + "probability": 0.9246 + }, + { + "start": 421.02, + "end": 421.96, + "probability": 0.6471 + }, + { + "start": 421.96, + "end": 425.72, + "probability": 0.7233 + }, + { + "start": 425.84, + "end": 427.7, + "probability": 0.9865 + }, + { + "start": 428.08, + "end": 430.7, + "probability": 0.9947 + }, + { + "start": 431.08, + "end": 432.02, + "probability": 0.968 + }, + { + "start": 432.16, + "end": 433.74, + "probability": 0.816 + }, + { + "start": 434.2, + "end": 435.5, + "probability": 0.3005 + }, + { + "start": 435.5, + "end": 437.68, + "probability": 0.8539 + }, + { + "start": 437.76, + "end": 438.56, + "probability": 0.9163 + }, + { + "start": 438.86, + "end": 439.0, + "probability": 0.6672 + }, + { + "start": 439.1, + "end": 440.66, + "probability": 0.9211 + }, + { + "start": 440.9, + "end": 441.66, + "probability": 0.8777 + }, + { + "start": 441.66, + "end": 443.84, + "probability": 0.9229 + }, + { + "start": 444.62, + "end": 447.4, + "probability": 0.8154 + }, + { + "start": 447.5, + "end": 450.36, + "probability": 0.9958 + }, + { + "start": 450.64, + "end": 452.8, + "probability": 0.928 + }, + { + "start": 453.0, + "end": 455.34, + "probability": 0.9866 + }, + { + "start": 455.8, + "end": 457.38, + "probability": 0.8152 + }, + { + "start": 457.62, + "end": 460.88, + "probability": 0.9652 + }, + { + "start": 461.2, + "end": 462.12, + "probability": 0.8781 + }, + { + "start": 462.46, + "end": 464.86, + "probability": 0.6765 + }, + { + "start": 465.38, + "end": 465.6, + "probability": 0.4498 + }, + { + "start": 465.66, + "end": 471.12, + "probability": 0.9751 + }, + { + "start": 471.12, + "end": 476.64, + "probability": 0.9979 + }, + { + "start": 476.68, + "end": 480.18, + "probability": 0.5489 + }, + { + "start": 480.7, + "end": 482.19, + "probability": 0.9985 + }, + { + "start": 482.8, + "end": 483.42, + "probability": 0.6674 + }, + { + "start": 483.74, + "end": 484.58, + "probability": 0.5242 + }, + { + "start": 484.58, + "end": 487.28, + "probability": 0.7249 + }, + { + "start": 487.36, + "end": 487.84, + "probability": 0.4433 + }, + { + "start": 487.92, + "end": 491.22, + "probability": 0.5244 + }, + { + "start": 491.7, + "end": 491.7, + "probability": 0.1311 + }, + { + "start": 491.7, + "end": 494.52, + "probability": 0.4668 + }, + { + "start": 494.56, + "end": 497.96, + "probability": 0.9877 + }, + { + "start": 498.0, + "end": 501.36, + "probability": 0.9918 + }, + { + "start": 501.46, + "end": 505.14, + "probability": 0.9797 + }, + { + "start": 505.42, + "end": 506.78, + "probability": 0.809 + }, + { + "start": 507.08, + "end": 507.66, + "probability": 0.7434 + }, + { + "start": 507.86, + "end": 508.04, + "probability": 0.2305 + }, + { + "start": 508.18, + "end": 510.22, + "probability": 0.9338 + }, + { + "start": 510.36, + "end": 511.62, + "probability": 0.9198 + }, + { + "start": 511.74, + "end": 512.66, + "probability": 0.98 + }, + { + "start": 513.34, + "end": 514.7, + "probability": 0.9385 + }, + { + "start": 515.0, + "end": 518.78, + "probability": 0.9476 + }, + { + "start": 518.84, + "end": 522.44, + "probability": 0.9877 + }, + { + "start": 522.54, + "end": 526.4, + "probability": 0.7833 + }, + { + "start": 526.58, + "end": 528.92, + "probability": 0.9553 + }, + { + "start": 529.02, + "end": 532.08, + "probability": 0.9224 + }, + { + "start": 532.16, + "end": 532.36, + "probability": 0.634 + }, + { + "start": 532.6, + "end": 534.96, + "probability": 0.9897 + }, + { + "start": 535.06, + "end": 536.4, + "probability": 0.7655 + }, + { + "start": 536.4, + "end": 536.5, + "probability": 0.6281 + }, + { + "start": 536.7, + "end": 537.1, + "probability": 0.4311 + }, + { + "start": 537.18, + "end": 538.54, + "probability": 0.8106 + }, + { + "start": 538.62, + "end": 540.64, + "probability": 0.9436 + }, + { + "start": 541.24, + "end": 542.94, + "probability": 0.8079 + }, + { + "start": 543.32, + "end": 544.7, + "probability": 0.8615 + }, + { + "start": 544.7, + "end": 545.38, + "probability": 0.9894 + }, + { + "start": 545.52, + "end": 546.88, + "probability": 0.7977 + }, + { + "start": 546.96, + "end": 548.18, + "probability": 0.8621 + }, + { + "start": 548.56, + "end": 552.22, + "probability": 0.9839 + }, + { + "start": 554.42, + "end": 555.3, + "probability": 0.9462 + }, + { + "start": 556.02, + "end": 557.08, + "probability": 0.2613 + }, + { + "start": 557.18, + "end": 557.82, + "probability": 0.6012 + }, + { + "start": 558.3, + "end": 561.54, + "probability": 0.9243 + }, + { + "start": 561.64, + "end": 566.14, + "probability": 0.9893 + }, + { + "start": 566.28, + "end": 566.9, + "probability": 0.9056 + }, + { + "start": 571.94, + "end": 574.96, + "probability": 0.7325 + }, + { + "start": 575.56, + "end": 579.52, + "probability": 0.9146 + }, + { + "start": 580.08, + "end": 584.76, + "probability": 0.8413 + }, + { + "start": 584.8, + "end": 586.3, + "probability": 0.774 + }, + { + "start": 588.64, + "end": 590.32, + "probability": 0.8303 + }, + { + "start": 590.92, + "end": 592.88, + "probability": 0.8947 + }, + { + "start": 593.44, + "end": 597.48, + "probability": 0.9227 + }, + { + "start": 597.48, + "end": 600.14, + "probability": 0.9246 + }, + { + "start": 600.36, + "end": 603.1, + "probability": 0.8728 + }, + { + "start": 604.44, + "end": 606.26, + "probability": 0.6316 + }, + { + "start": 608.8, + "end": 612.42, + "probability": 0.5574 + }, + { + "start": 612.56, + "end": 614.06, + "probability": 0.759 + }, + { + "start": 614.28, + "end": 617.75, + "probability": 0.5933 + }, + { + "start": 618.22, + "end": 618.64, + "probability": 0.5578 + }, + { + "start": 618.76, + "end": 620.4, + "probability": 0.9329 + }, + { + "start": 620.5, + "end": 622.18, + "probability": 0.936 + }, + { + "start": 622.32, + "end": 625.04, + "probability": 0.7022 + }, + { + "start": 626.2, + "end": 629.7, + "probability": 0.6407 + }, + { + "start": 630.22, + "end": 633.76, + "probability": 0.5973 + }, + { + "start": 634.28, + "end": 634.94, + "probability": 0.5705 + }, + { + "start": 635.2, + "end": 637.0, + "probability": 0.6803 + }, + { + "start": 637.26, + "end": 638.58, + "probability": 0.5287 + }, + { + "start": 638.76, + "end": 639.56, + "probability": 0.7231 + }, + { + "start": 639.68, + "end": 641.68, + "probability": 0.6226 + }, + { + "start": 641.84, + "end": 644.14, + "probability": 0.9803 + }, + { + "start": 644.76, + "end": 645.92, + "probability": 0.9131 + }, + { + "start": 645.98, + "end": 652.62, + "probability": 0.7751 + }, + { + "start": 652.74, + "end": 656.7, + "probability": 0.9141 + }, + { + "start": 656.98, + "end": 657.42, + "probability": 0.6583 + }, + { + "start": 657.78, + "end": 661.04, + "probability": 0.768 + }, + { + "start": 661.3, + "end": 663.34, + "probability": 0.9516 + }, + { + "start": 663.5, + "end": 668.1, + "probability": 0.7809 + }, + { + "start": 668.6, + "end": 672.32, + "probability": 0.7667 + }, + { + "start": 672.68, + "end": 675.96, + "probability": 0.6546 + }, + { + "start": 676.1, + "end": 677.02, + "probability": 0.7796 + }, + { + "start": 677.1, + "end": 677.9, + "probability": 0.8916 + }, + { + "start": 678.32, + "end": 679.28, + "probability": 0.6483 + }, + { + "start": 679.52, + "end": 683.06, + "probability": 0.8911 + }, + { + "start": 683.06, + "end": 683.3, + "probability": 0.7412 + }, + { + "start": 683.54, + "end": 685.3, + "probability": 0.9685 + }, + { + "start": 685.42, + "end": 686.76, + "probability": 0.8837 + }, + { + "start": 687.32, + "end": 689.32, + "probability": 0.9766 + }, + { + "start": 689.32, + "end": 692.12, + "probability": 0.9839 + }, + { + "start": 692.18, + "end": 695.48, + "probability": 0.9957 + }, + { + "start": 695.59, + "end": 698.0, + "probability": 0.9963 + }, + { + "start": 698.06, + "end": 702.36, + "probability": 0.9717 + }, + { + "start": 702.65, + "end": 706.88, + "probability": 0.7141 + }, + { + "start": 707.42, + "end": 711.21, + "probability": 0.8298 + }, + { + "start": 712.86, + "end": 717.98, + "probability": 0.7556 + }, + { + "start": 718.18, + "end": 720.06, + "probability": 0.9897 + }, + { + "start": 720.14, + "end": 723.82, + "probability": 0.9692 + }, + { + "start": 723.96, + "end": 724.67, + "probability": 0.9941 + }, + { + "start": 724.84, + "end": 726.56, + "probability": 0.9242 + }, + { + "start": 727.34, + "end": 729.22, + "probability": 0.8944 + }, + { + "start": 729.72, + "end": 734.06, + "probability": 0.8654 + }, + { + "start": 734.48, + "end": 736.74, + "probability": 0.8645 + }, + { + "start": 737.22, + "end": 741.76, + "probability": 0.8122 + }, + { + "start": 741.76, + "end": 745.46, + "probability": 0.8552 + }, + { + "start": 745.86, + "end": 746.34, + "probability": 0.8565 + }, + { + "start": 759.72, + "end": 762.72, + "probability": 0.6652 + }, + { + "start": 763.56, + "end": 769.14, + "probability": 0.9917 + }, + { + "start": 770.32, + "end": 774.12, + "probability": 0.9966 + }, + { + "start": 774.26, + "end": 774.68, + "probability": 0.3762 + }, + { + "start": 775.28, + "end": 779.8, + "probability": 0.9978 + }, + { + "start": 780.86, + "end": 782.64, + "probability": 0.9836 + }, + { + "start": 783.76, + "end": 786.54, + "probability": 0.717 + }, + { + "start": 787.1, + "end": 789.96, + "probability": 0.9903 + }, + { + "start": 789.96, + "end": 791.78, + "probability": 0.625 + }, + { + "start": 793.06, + "end": 796.46, + "probability": 0.7207 + }, + { + "start": 797.14, + "end": 800.4, + "probability": 0.9442 + }, + { + "start": 800.85, + "end": 804.12, + "probability": 0.9438 + }, + { + "start": 804.56, + "end": 806.08, + "probability": 0.5408 + }, + { + "start": 806.67, + "end": 811.34, + "probability": 0.8452 + }, + { + "start": 811.48, + "end": 811.76, + "probability": 0.7681 + }, + { + "start": 814.78, + "end": 816.62, + "probability": 0.5471 + }, + { + "start": 817.28, + "end": 821.35, + "probability": 0.7475 + }, + { + "start": 823.7, + "end": 825.04, + "probability": 0.4763 + }, + { + "start": 825.56, + "end": 827.44, + "probability": 0.7095 + }, + { + "start": 827.62, + "end": 828.62, + "probability": 0.4813 + }, + { + "start": 828.62, + "end": 831.16, + "probability": 0.9415 + }, + { + "start": 831.96, + "end": 834.34, + "probability": 0.5936 + }, + { + "start": 835.42, + "end": 838.32, + "probability": 0.9937 + }, + { + "start": 839.66, + "end": 847.12, + "probability": 0.9985 + }, + { + "start": 849.42, + "end": 850.68, + "probability": 0.8458 + }, + { + "start": 850.76, + "end": 853.74, + "probability": 0.663 + }, + { + "start": 853.82, + "end": 857.2, + "probability": 0.981 + }, + { + "start": 857.82, + "end": 861.17, + "probability": 0.986 + }, + { + "start": 862.7, + "end": 864.42, + "probability": 0.4319 + }, + { + "start": 865.9, + "end": 869.02, + "probability": 0.5568 + }, + { + "start": 870.56, + "end": 872.04, + "probability": 0.8096 + }, + { + "start": 872.1, + "end": 874.22, + "probability": 0.9648 + }, + { + "start": 874.34, + "end": 874.9, + "probability": 0.9627 + }, + { + "start": 875.92, + "end": 877.44, + "probability": 0.843 + }, + { + "start": 878.38, + "end": 880.86, + "probability": 0.9735 + }, + { + "start": 882.34, + "end": 883.12, + "probability": 0.8454 + }, + { + "start": 883.6, + "end": 885.52, + "probability": 0.9795 + }, + { + "start": 886.22, + "end": 887.96, + "probability": 0.9969 + }, + { + "start": 889.48, + "end": 890.63, + "probability": 0.9618 + }, + { + "start": 891.48, + "end": 894.08, + "probability": 0.979 + }, + { + "start": 895.44, + "end": 901.12, + "probability": 0.9988 + }, + { + "start": 901.86, + "end": 904.92, + "probability": 0.795 + }, + { + "start": 905.35, + "end": 908.3, + "probability": 0.8947 + }, + { + "start": 911.72, + "end": 915.94, + "probability": 0.8095 + }, + { + "start": 916.58, + "end": 917.7, + "probability": 0.9311 + }, + { + "start": 918.4, + "end": 919.82, + "probability": 0.6928 + }, + { + "start": 921.34, + "end": 923.72, + "probability": 0.6801 + }, + { + "start": 924.42, + "end": 926.34, + "probability": 0.9296 + }, + { + "start": 927.48, + "end": 929.56, + "probability": 0.6382 + }, + { + "start": 930.9, + "end": 937.68, + "probability": 0.9902 + }, + { + "start": 938.28, + "end": 940.9, + "probability": 0.9124 + }, + { + "start": 940.98, + "end": 942.0, + "probability": 0.4527 + }, + { + "start": 942.26, + "end": 942.64, + "probability": 0.7097 + }, + { + "start": 942.78, + "end": 944.82, + "probability": 0.9985 + }, + { + "start": 945.56, + "end": 947.18, + "probability": 0.8396 + }, + { + "start": 949.3, + "end": 951.5, + "probability": 0.8782 + }, + { + "start": 952.38, + "end": 954.82, + "probability": 0.6995 + }, + { + "start": 956.26, + "end": 959.54, + "probability": 0.9563 + }, + { + "start": 961.18, + "end": 962.82, + "probability": 0.9578 + }, + { + "start": 964.0, + "end": 966.86, + "probability": 0.9116 + }, + { + "start": 966.98, + "end": 970.54, + "probability": 0.9658 + }, + { + "start": 971.24, + "end": 971.62, + "probability": 0.7447 + }, + { + "start": 972.28, + "end": 975.44, + "probability": 0.9926 + }, + { + "start": 976.32, + "end": 979.06, + "probability": 0.6701 + }, + { + "start": 980.4, + "end": 980.98, + "probability": 0.5901 + }, + { + "start": 981.56, + "end": 982.96, + "probability": 0.6811 + }, + { + "start": 983.52, + "end": 986.82, + "probability": 0.9669 + }, + { + "start": 987.74, + "end": 992.29, + "probability": 0.7375 + }, + { + "start": 993.78, + "end": 995.24, + "probability": 0.702 + }, + { + "start": 995.88, + "end": 998.5, + "probability": 0.9938 + }, + { + "start": 999.04, + "end": 1005.1, + "probability": 0.7661 + }, + { + "start": 1005.9, + "end": 1007.16, + "probability": 0.9736 + }, + { + "start": 1008.98, + "end": 1011.58, + "probability": 0.554 + }, + { + "start": 1012.24, + "end": 1012.88, + "probability": 0.8779 + }, + { + "start": 1012.96, + "end": 1013.92, + "probability": 0.9467 + }, + { + "start": 1014.04, + "end": 1020.94, + "probability": 0.9793 + }, + { + "start": 1020.94, + "end": 1024.34, + "probability": 0.9769 + }, + { + "start": 1025.2, + "end": 1027.82, + "probability": 0.7422 + }, + { + "start": 1028.8, + "end": 1030.42, + "probability": 0.7393 + }, + { + "start": 1031.08, + "end": 1034.28, + "probability": 0.9151 + }, + { + "start": 1034.92, + "end": 1036.76, + "probability": 0.9584 + }, + { + "start": 1036.82, + "end": 1039.9, + "probability": 0.9989 + }, + { + "start": 1041.44, + "end": 1042.66, + "probability": 0.634 + }, + { + "start": 1043.06, + "end": 1043.98, + "probability": 0.682 + }, + { + "start": 1045.04, + "end": 1047.64, + "probability": 0.7526 + }, + { + "start": 1047.72, + "end": 1048.76, + "probability": 0.9078 + }, + { + "start": 1049.14, + "end": 1056.9, + "probability": 0.9628 + }, + { + "start": 1057.58, + "end": 1059.38, + "probability": 0.7555 + }, + { + "start": 1059.8, + "end": 1063.5, + "probability": 0.4303 + }, + { + "start": 1063.98, + "end": 1065.24, + "probability": 0.7412 + }, + { + "start": 1065.38, + "end": 1067.06, + "probability": 0.7298 + }, + { + "start": 1067.64, + "end": 1070.5, + "probability": 0.971 + }, + { + "start": 1071.36, + "end": 1072.64, + "probability": 0.3888 + }, + { + "start": 1072.7, + "end": 1073.6, + "probability": 0.9968 + }, + { + "start": 1074.4, + "end": 1075.58, + "probability": 0.9453 + }, + { + "start": 1076.26, + "end": 1079.1, + "probability": 0.5235 + }, + { + "start": 1079.52, + "end": 1080.41, + "probability": 0.7163 + }, + { + "start": 1081.2, + "end": 1081.8, + "probability": 0.7408 + }, + { + "start": 1082.9, + "end": 1089.68, + "probability": 0.9966 + }, + { + "start": 1089.68, + "end": 1093.2, + "probability": 0.767 + }, + { + "start": 1093.57, + "end": 1098.9, + "probability": 0.7299 + }, + { + "start": 1098.9, + "end": 1102.02, + "probability": 0.9781 + }, + { + "start": 1102.3, + "end": 1103.64, + "probability": 0.6972 + }, + { + "start": 1103.96, + "end": 1107.5, + "probability": 0.9977 + }, + { + "start": 1107.5, + "end": 1110.68, + "probability": 0.9987 + }, + { + "start": 1111.2, + "end": 1114.64, + "probability": 0.9955 + }, + { + "start": 1114.64, + "end": 1117.68, + "probability": 0.9985 + }, + { + "start": 1117.74, + "end": 1118.28, + "probability": 0.5279 + }, + { + "start": 1118.72, + "end": 1118.96, + "probability": 0.6388 + }, + { + "start": 1119.16, + "end": 1119.68, + "probability": 0.9548 + }, + { + "start": 1119.76, + "end": 1123.84, + "probability": 0.9006 + }, + { + "start": 1123.92, + "end": 1125.58, + "probability": 0.9992 + }, + { + "start": 1126.12, + "end": 1126.56, + "probability": 0.7104 + }, + { + "start": 1127.28, + "end": 1131.9, + "probability": 0.8509 + }, + { + "start": 1131.9, + "end": 1131.9, + "probability": 0.8298 + }, + { + "start": 1131.9, + "end": 1133.64, + "probability": 0.5234 + }, + { + "start": 1135.97, + "end": 1138.82, + "probability": 0.9615 + }, + { + "start": 1139.58, + "end": 1140.26, + "probability": 0.8929 + }, + { + "start": 1140.96, + "end": 1141.66, + "probability": 0.998 + }, + { + "start": 1142.26, + "end": 1144.3, + "probability": 0.9834 + }, + { + "start": 1144.98, + "end": 1148.56, + "probability": 0.9907 + }, + { + "start": 1149.1, + "end": 1150.5, + "probability": 0.8411 + }, + { + "start": 1151.2, + "end": 1154.06, + "probability": 0.933 + }, + { + "start": 1154.88, + "end": 1159.07, + "probability": 0.9705 + }, + { + "start": 1159.42, + "end": 1161.04, + "probability": 0.7383 + }, + { + "start": 1161.1, + "end": 1162.48, + "probability": 0.9902 + }, + { + "start": 1162.58, + "end": 1165.76, + "probability": 0.9884 + }, + { + "start": 1166.36, + "end": 1169.12, + "probability": 0.8027 + }, + { + "start": 1169.66, + "end": 1171.12, + "probability": 0.7983 + }, + { + "start": 1171.28, + "end": 1172.33, + "probability": 0.1354 + }, + { + "start": 1173.18, + "end": 1174.88, + "probability": 0.9496 + }, + { + "start": 1175.06, + "end": 1182.98, + "probability": 0.9722 + }, + { + "start": 1183.44, + "end": 1185.52, + "probability": 0.9296 + }, + { + "start": 1186.74, + "end": 1188.12, + "probability": 0.9927 + }, + { + "start": 1189.34, + "end": 1191.56, + "probability": 0.7377 + }, + { + "start": 1191.84, + "end": 1195.88, + "probability": 0.9561 + }, + { + "start": 1196.3, + "end": 1199.1, + "probability": 0.8436 + }, + { + "start": 1200.94, + "end": 1204.4, + "probability": 0.9365 + }, + { + "start": 1205.06, + "end": 1206.82, + "probability": 0.6682 + }, + { + "start": 1207.54, + "end": 1210.58, + "probability": 0.8771 + }, + { + "start": 1211.2, + "end": 1211.62, + "probability": 0.8429 + }, + { + "start": 1211.72, + "end": 1213.32, + "probability": 0.9608 + }, + { + "start": 1213.8, + "end": 1215.42, + "probability": 0.9816 + }, + { + "start": 1215.48, + "end": 1216.44, + "probability": 0.9617 + }, + { + "start": 1216.6, + "end": 1217.6, + "probability": 0.7744 + }, + { + "start": 1218.24, + "end": 1220.82, + "probability": 0.9431 + }, + { + "start": 1221.28, + "end": 1222.34, + "probability": 0.8772 + }, + { + "start": 1222.38, + "end": 1223.76, + "probability": 0.8123 + }, + { + "start": 1223.96, + "end": 1225.46, + "probability": 0.5572 + }, + { + "start": 1225.54, + "end": 1226.16, + "probability": 0.9751 + }, + { + "start": 1227.6, + "end": 1227.96, + "probability": 0.2954 + }, + { + "start": 1227.96, + "end": 1228.66, + "probability": 0.3072 + }, + { + "start": 1228.8, + "end": 1231.58, + "probability": 0.7028 + }, + { + "start": 1232.3, + "end": 1232.58, + "probability": 0.3285 + }, + { + "start": 1232.94, + "end": 1234.0, + "probability": 0.7708 + }, + { + "start": 1234.28, + "end": 1237.36, + "probability": 0.9233 + }, + { + "start": 1238.42, + "end": 1241.24, + "probability": 0.8452 + }, + { + "start": 1241.9, + "end": 1244.42, + "probability": 0.99 + }, + { + "start": 1245.44, + "end": 1248.17, + "probability": 0.9351 + }, + { + "start": 1248.8, + "end": 1251.12, + "probability": 0.9834 + }, + { + "start": 1251.56, + "end": 1253.5, + "probability": 0.8669 + }, + { + "start": 1253.98, + "end": 1258.8, + "probability": 0.9941 + }, + { + "start": 1259.68, + "end": 1263.16, + "probability": 0.9964 + }, + { + "start": 1263.16, + "end": 1265.94, + "probability": 0.9579 + }, + { + "start": 1266.78, + "end": 1267.74, + "probability": 0.8823 + }, + { + "start": 1268.12, + "end": 1269.1, + "probability": 0.5854 + }, + { + "start": 1270.14, + "end": 1274.94, + "probability": 0.9848 + }, + { + "start": 1275.34, + "end": 1275.38, + "probability": 0.3479 + }, + { + "start": 1275.6, + "end": 1276.1, + "probability": 0.7368 + }, + { + "start": 1276.34, + "end": 1280.28, + "probability": 0.8873 + }, + { + "start": 1280.32, + "end": 1281.82, + "probability": 0.745 + }, + { + "start": 1282.56, + "end": 1284.44, + "probability": 0.9136 + }, + { + "start": 1284.6, + "end": 1287.24, + "probability": 0.7721 + }, + { + "start": 1287.9, + "end": 1291.22, + "probability": 0.969 + }, + { + "start": 1291.74, + "end": 1295.7, + "probability": 0.9875 + }, + { + "start": 1296.58, + "end": 1298.02, + "probability": 0.8676 + }, + { + "start": 1298.26, + "end": 1299.88, + "probability": 0.9666 + }, + { + "start": 1299.98, + "end": 1301.56, + "probability": 0.7304 + }, + { + "start": 1302.2, + "end": 1305.94, + "probability": 0.7357 + }, + { + "start": 1306.18, + "end": 1307.48, + "probability": 0.668 + }, + { + "start": 1308.18, + "end": 1309.42, + "probability": 0.9127 + }, + { + "start": 1309.5, + "end": 1311.38, + "probability": 0.7977 + }, + { + "start": 1311.46, + "end": 1312.78, + "probability": 0.8953 + }, + { + "start": 1313.14, + "end": 1314.96, + "probability": 0.8518 + }, + { + "start": 1314.98, + "end": 1316.08, + "probability": 0.9749 + }, + { + "start": 1316.64, + "end": 1320.26, + "probability": 0.7644 + }, + { + "start": 1320.76, + "end": 1325.44, + "probability": 0.9953 + }, + { + "start": 1325.78, + "end": 1326.22, + "probability": 0.5032 + }, + { + "start": 1326.36, + "end": 1327.18, + "probability": 0.6113 + }, + { + "start": 1327.8, + "end": 1328.16, + "probability": 0.8784 + }, + { + "start": 1328.32, + "end": 1328.62, + "probability": 0.7498 + }, + { + "start": 1328.62, + "end": 1332.44, + "probability": 0.941 + }, + { + "start": 1332.9, + "end": 1335.59, + "probability": 0.9645 + }, + { + "start": 1336.44, + "end": 1338.66, + "probability": 0.9462 + }, + { + "start": 1339.36, + "end": 1341.82, + "probability": 0.9871 + }, + { + "start": 1341.82, + "end": 1344.83, + "probability": 0.9972 + }, + { + "start": 1345.36, + "end": 1347.04, + "probability": 0.6925 + }, + { + "start": 1347.16, + "end": 1347.62, + "probability": 0.5261 + }, + { + "start": 1347.84, + "end": 1348.36, + "probability": 0.8117 + }, + { + "start": 1349.7, + "end": 1352.32, + "probability": 0.9085 + }, + { + "start": 1353.54, + "end": 1356.0, + "probability": 0.6011 + }, + { + "start": 1356.02, + "end": 1356.58, + "probability": 0.9036 + }, + { + "start": 1356.7, + "end": 1356.74, + "probability": 0.4513 + }, + { + "start": 1356.9, + "end": 1357.66, + "probability": 0.965 + }, + { + "start": 1357.8, + "end": 1360.24, + "probability": 0.931 + }, + { + "start": 1372.36, + "end": 1373.68, + "probability": 0.4082 + }, + { + "start": 1374.34, + "end": 1375.66, + "probability": 0.8328 + }, + { + "start": 1376.74, + "end": 1377.84, + "probability": 0.9011 + }, + { + "start": 1377.98, + "end": 1379.82, + "probability": 0.9676 + }, + { + "start": 1380.38, + "end": 1382.28, + "probability": 0.9062 + }, + { + "start": 1382.98, + "end": 1383.86, + "probability": 0.9883 + }, + { + "start": 1384.66, + "end": 1387.06, + "probability": 0.8127 + }, + { + "start": 1388.12, + "end": 1388.74, + "probability": 0.1361 + }, + { + "start": 1389.2, + "end": 1389.46, + "probability": 0.6465 + }, + { + "start": 1389.46, + "end": 1390.18, + "probability": 0.57 + }, + { + "start": 1390.63, + "end": 1396.24, + "probability": 0.972 + }, + { + "start": 1396.44, + "end": 1397.68, + "probability": 0.9512 + }, + { + "start": 1397.96, + "end": 1399.36, + "probability": 0.8569 + }, + { + "start": 1399.46, + "end": 1400.04, + "probability": 0.9643 + }, + { + "start": 1400.46, + "end": 1401.46, + "probability": 0.9865 + }, + { + "start": 1401.54, + "end": 1402.7, + "probability": 0.9019 + }, + { + "start": 1403.24, + "end": 1404.78, + "probability": 0.6675 + }, + { + "start": 1405.3, + "end": 1406.08, + "probability": 0.3798 + }, + { + "start": 1406.92, + "end": 1408.14, + "probability": 0.8923 + }, + { + "start": 1408.68, + "end": 1409.84, + "probability": 0.993 + }, + { + "start": 1410.64, + "end": 1413.82, + "probability": 0.9065 + }, + { + "start": 1414.84, + "end": 1417.6, + "probability": 0.8478 + }, + { + "start": 1418.16, + "end": 1420.88, + "probability": 0.9979 + }, + { + "start": 1421.42, + "end": 1422.48, + "probability": 0.9011 + }, + { + "start": 1423.06, + "end": 1426.22, + "probability": 0.9596 + }, + { + "start": 1426.24, + "end": 1428.82, + "probability": 0.9946 + }, + { + "start": 1428.94, + "end": 1431.5, + "probability": 0.9915 + }, + { + "start": 1432.48, + "end": 1434.54, + "probability": 0.8449 + }, + { + "start": 1434.9, + "end": 1436.82, + "probability": 0.9135 + }, + { + "start": 1444.58, + "end": 1446.3, + "probability": 0.7161 + }, + { + "start": 1446.44, + "end": 1447.96, + "probability": 0.8821 + }, + { + "start": 1447.98, + "end": 1450.0, + "probability": 0.8476 + }, + { + "start": 1450.42, + "end": 1456.54, + "probability": 0.9849 + }, + { + "start": 1456.54, + "end": 1461.4, + "probability": 0.9924 + }, + { + "start": 1461.98, + "end": 1464.56, + "probability": 0.9741 + }, + { + "start": 1465.22, + "end": 1466.28, + "probability": 0.8959 + }, + { + "start": 1466.4, + "end": 1472.18, + "probability": 0.8545 + }, + { + "start": 1472.7, + "end": 1474.5, + "probability": 0.8757 + }, + { + "start": 1474.6, + "end": 1475.82, + "probability": 0.762 + }, + { + "start": 1475.96, + "end": 1482.36, + "probability": 0.9683 + }, + { + "start": 1483.01, + "end": 1490.78, + "probability": 0.7786 + }, + { + "start": 1490.78, + "end": 1495.6, + "probability": 0.9863 + }, + { + "start": 1496.2, + "end": 1498.9, + "probability": 0.8313 + }, + { + "start": 1499.8, + "end": 1503.62, + "probability": 0.9916 + }, + { + "start": 1506.04, + "end": 1512.5, + "probability": 0.9573 + }, + { + "start": 1513.22, + "end": 1514.94, + "probability": 0.8987 + }, + { + "start": 1515.1, + "end": 1519.06, + "probability": 0.99 + }, + { + "start": 1519.06, + "end": 1522.56, + "probability": 0.9937 + }, + { + "start": 1522.92, + "end": 1523.24, + "probability": 0.6986 + }, + { + "start": 1524.16, + "end": 1526.2, + "probability": 0.9602 + }, + { + "start": 1526.2, + "end": 1529.74, + "probability": 0.9983 + }, + { + "start": 1529.98, + "end": 1531.3, + "probability": 0.9731 + }, + { + "start": 1531.6, + "end": 1533.32, + "probability": 0.9475 + }, + { + "start": 1533.76, + "end": 1534.62, + "probability": 0.9541 + }, + { + "start": 1534.98, + "end": 1536.06, + "probability": 0.9956 + }, + { + "start": 1536.2, + "end": 1536.48, + "probability": 0.6901 + }, + { + "start": 1538.2, + "end": 1539.86, + "probability": 0.964 + }, + { + "start": 1540.1, + "end": 1542.62, + "probability": 0.8864 + }, + { + "start": 1543.15, + "end": 1544.68, + "probability": 0.7705 + }, + { + "start": 1545.52, + "end": 1547.44, + "probability": 0.715 + }, + { + "start": 1548.96, + "end": 1549.8, + "probability": 0.8027 + }, + { + "start": 1550.42, + "end": 1550.81, + "probability": 0.9351 + }, + { + "start": 1552.12, + "end": 1553.44, + "probability": 0.6994 + }, + { + "start": 1553.56, + "end": 1557.78, + "probability": 0.9857 + }, + { + "start": 1558.88, + "end": 1561.74, + "probability": 0.6997 + }, + { + "start": 1562.48, + "end": 1563.66, + "probability": 0.9841 + }, + { + "start": 1564.14, + "end": 1567.58, + "probability": 0.8359 + }, + { + "start": 1568.12, + "end": 1569.24, + "probability": 0.7719 + }, + { + "start": 1570.47, + "end": 1574.32, + "probability": 0.4596 + }, + { + "start": 1574.44, + "end": 1574.88, + "probability": 0.2436 + }, + { + "start": 1576.28, + "end": 1576.92, + "probability": 0.3664 + }, + { + "start": 1577.36, + "end": 1582.72, + "probability": 0.9489 + }, + { + "start": 1583.04, + "end": 1586.1, + "probability": 0.9262 + }, + { + "start": 1587.06, + "end": 1587.76, + "probability": 0.6614 + }, + { + "start": 1588.72, + "end": 1589.02, + "probability": 0.5134 + }, + { + "start": 1589.06, + "end": 1590.78, + "probability": 0.7909 + }, + { + "start": 1591.08, + "end": 1593.04, + "probability": 0.7607 + }, + { + "start": 1594.04, + "end": 1596.36, + "probability": 0.9514 + }, + { + "start": 1596.84, + "end": 1601.84, + "probability": 0.95 + }, + { + "start": 1602.04, + "end": 1604.34, + "probability": 0.906 + }, + { + "start": 1604.62, + "end": 1605.44, + "probability": 0.9229 + }, + { + "start": 1606.24, + "end": 1607.86, + "probability": 0.9041 + }, + { + "start": 1609.44, + "end": 1611.96, + "probability": 0.6761 + }, + { + "start": 1612.84, + "end": 1613.74, + "probability": 0.0724 + }, + { + "start": 1613.74, + "end": 1614.2, + "probability": 0.9626 + }, + { + "start": 1615.14, + "end": 1619.0, + "probability": 0.9136 + }, + { + "start": 1619.06, + "end": 1620.34, + "probability": 0.8958 + }, + { + "start": 1620.84, + "end": 1622.54, + "probability": 0.9281 + }, + { + "start": 1622.6, + "end": 1623.55, + "probability": 0.6373 + }, + { + "start": 1624.48, + "end": 1628.56, + "probability": 0.916 + }, + { + "start": 1629.02, + "end": 1631.4, + "probability": 0.9316 + }, + { + "start": 1631.66, + "end": 1632.52, + "probability": 0.6177 + }, + { + "start": 1633.34, + "end": 1634.24, + "probability": 0.853 + }, + { + "start": 1634.32, + "end": 1634.67, + "probability": 0.7664 + }, + { + "start": 1634.88, + "end": 1635.2, + "probability": 0.7011 + }, + { + "start": 1635.22, + "end": 1635.84, + "probability": 0.757 + }, + { + "start": 1636.3, + "end": 1637.5, + "probability": 0.3263 + }, + { + "start": 1637.5, + "end": 1638.14, + "probability": 0.7001 + }, + { + "start": 1638.3, + "end": 1638.66, + "probability": 0.7166 + }, + { + "start": 1638.72, + "end": 1639.29, + "probability": 0.3353 + }, + { + "start": 1640.14, + "end": 1642.38, + "probability": 0.8845 + }, + { + "start": 1642.68, + "end": 1644.06, + "probability": 0.9057 + }, + { + "start": 1644.22, + "end": 1645.6, + "probability": 0.874 + }, + { + "start": 1646.1, + "end": 1648.86, + "probability": 0.8545 + }, + { + "start": 1649.32, + "end": 1650.34, + "probability": 0.6151 + }, + { + "start": 1650.4, + "end": 1650.88, + "probability": 0.6272 + }, + { + "start": 1652.04, + "end": 1653.92, + "probability": 0.9961 + }, + { + "start": 1654.66, + "end": 1657.0, + "probability": 0.4989 + }, + { + "start": 1657.74, + "end": 1660.44, + "probability": 0.9212 + }, + { + "start": 1661.34, + "end": 1663.0, + "probability": 0.9881 + }, + { + "start": 1663.58, + "end": 1665.92, + "probability": 0.9926 + }, + { + "start": 1666.72, + "end": 1669.34, + "probability": 0.72 + }, + { + "start": 1669.52, + "end": 1672.96, + "probability": 0.8366 + }, + { + "start": 1673.56, + "end": 1675.5, + "probability": 0.9406 + }, + { + "start": 1675.86, + "end": 1677.66, + "probability": 0.7984 + }, + { + "start": 1678.74, + "end": 1679.08, + "probability": 0.7866 + }, + { + "start": 1679.26, + "end": 1682.9, + "probability": 0.9793 + }, + { + "start": 1683.58, + "end": 1684.02, + "probability": 0.3467 + }, + { + "start": 1684.16, + "end": 1684.96, + "probability": 0.8943 + }, + { + "start": 1685.02, + "end": 1686.74, + "probability": 0.9463 + }, + { + "start": 1686.82, + "end": 1691.22, + "probability": 0.9133 + }, + { + "start": 1691.78, + "end": 1695.06, + "probability": 0.8247 + }, + { + "start": 1695.1, + "end": 1696.06, + "probability": 0.9755 + }, + { + "start": 1696.48, + "end": 1697.22, + "probability": 0.8978 + }, + { + "start": 1697.48, + "end": 1700.82, + "probability": 0.9113 + }, + { + "start": 1700.82, + "end": 1703.34, + "probability": 0.99 + }, + { + "start": 1703.96, + "end": 1705.92, + "probability": 0.9966 + }, + { + "start": 1706.68, + "end": 1708.7, + "probability": 0.9969 + }, + { + "start": 1708.82, + "end": 1710.0, + "probability": 0.7866 + }, + { + "start": 1710.52, + "end": 1714.2, + "probability": 0.9841 + }, + { + "start": 1714.64, + "end": 1715.76, + "probability": 0.5893 + }, + { + "start": 1716.74, + "end": 1720.68, + "probability": 0.9378 + }, + { + "start": 1721.46, + "end": 1722.16, + "probability": 0.83 + }, + { + "start": 1722.24, + "end": 1723.25, + "probability": 0.8958 + }, + { + "start": 1723.38, + "end": 1725.78, + "probability": 0.9711 + }, + { + "start": 1726.26, + "end": 1729.86, + "probability": 0.993 + }, + { + "start": 1729.86, + "end": 1732.34, + "probability": 0.8883 + }, + { + "start": 1732.82, + "end": 1738.06, + "probability": 0.9494 + }, + { + "start": 1738.2, + "end": 1741.56, + "probability": 0.9172 + }, + { + "start": 1741.64, + "end": 1745.02, + "probability": 0.842 + }, + { + "start": 1745.2, + "end": 1747.86, + "probability": 0.8521 + }, + { + "start": 1748.42, + "end": 1749.14, + "probability": 0.9424 + }, + { + "start": 1749.24, + "end": 1752.72, + "probability": 0.98 + }, + { + "start": 1753.44, + "end": 1755.39, + "probability": 0.9832 + }, + { + "start": 1755.94, + "end": 1756.0, + "probability": 0.6532 + }, + { + "start": 1756.08, + "end": 1757.08, + "probability": 0.6813 + }, + { + "start": 1757.76, + "end": 1761.4, + "probability": 0.992 + }, + { + "start": 1762.02, + "end": 1764.06, + "probability": 0.9844 + }, + { + "start": 1765.7, + "end": 1768.06, + "probability": 0.9829 + }, + { + "start": 1770.08, + "end": 1771.04, + "probability": 0.8279 + }, + { + "start": 1771.4, + "end": 1773.88, + "probability": 0.9807 + }, + { + "start": 1774.38, + "end": 1776.22, + "probability": 0.8363 + }, + { + "start": 1776.98, + "end": 1777.72, + "probability": 0.9352 + }, + { + "start": 1777.82, + "end": 1778.96, + "probability": 0.9678 + }, + { + "start": 1779.66, + "end": 1781.4, + "probability": 0.8782 + }, + { + "start": 1781.84, + "end": 1783.38, + "probability": 0.9926 + }, + { + "start": 1783.68, + "end": 1784.06, + "probability": 0.6387 + }, + { + "start": 1784.2, + "end": 1787.2, + "probability": 0.9564 + }, + { + "start": 1787.58, + "end": 1792.2, + "probability": 0.7807 + }, + { + "start": 1792.74, + "end": 1793.86, + "probability": 0.7067 + }, + { + "start": 1793.98, + "end": 1794.44, + "probability": 0.8537 + }, + { + "start": 1794.52, + "end": 1797.08, + "probability": 0.9539 + }, + { + "start": 1797.16, + "end": 1797.58, + "probability": 0.9038 + }, + { + "start": 1797.7, + "end": 1798.68, + "probability": 0.8719 + }, + { + "start": 1798.72, + "end": 1799.24, + "probability": 0.8218 + }, + { + "start": 1799.3, + "end": 1799.78, + "probability": 0.9318 + }, + { + "start": 1800.7, + "end": 1801.96, + "probability": 0.8848 + }, + { + "start": 1802.15, + "end": 1804.8, + "probability": 0.0191 + }, + { + "start": 1805.12, + "end": 1805.12, + "probability": 0.1251 + }, + { + "start": 1805.12, + "end": 1806.75, + "probability": 0.7731 + }, + { + "start": 1807.38, + "end": 1809.62, + "probability": 0.7832 + }, + { + "start": 1810.16, + "end": 1811.8, + "probability": 0.9786 + }, + { + "start": 1812.68, + "end": 1813.5, + "probability": 0.8512 + }, + { + "start": 1813.54, + "end": 1815.52, + "probability": 0.988 + }, + { + "start": 1816.0, + "end": 1818.88, + "probability": 0.9306 + }, + { + "start": 1819.44, + "end": 1822.18, + "probability": 0.9943 + }, + { + "start": 1822.7, + "end": 1825.38, + "probability": 0.9967 + }, + { + "start": 1825.68, + "end": 1826.78, + "probability": 0.9683 + }, + { + "start": 1827.34, + "end": 1828.06, + "probability": 0.9915 + }, + { + "start": 1828.52, + "end": 1830.36, + "probability": 0.7808 + }, + { + "start": 1830.4, + "end": 1831.3, + "probability": 0.9967 + }, + { + "start": 1831.48, + "end": 1832.52, + "probability": 0.9115 + }, + { + "start": 1833.14, + "end": 1834.26, + "probability": 0.9517 + }, + { + "start": 1834.9, + "end": 1836.68, + "probability": 0.8719 + }, + { + "start": 1837.08, + "end": 1837.54, + "probability": 0.8104 + }, + { + "start": 1837.66, + "end": 1841.32, + "probability": 0.9904 + }, + { + "start": 1841.84, + "end": 1842.84, + "probability": 0.6521 + }, + { + "start": 1842.92, + "end": 1843.14, + "probability": 0.5888 + }, + { + "start": 1843.94, + "end": 1847.3, + "probability": 0.8683 + }, + { + "start": 1847.9, + "end": 1848.94, + "probability": 0.5921 + }, + { + "start": 1849.08, + "end": 1851.6, + "probability": 0.6621 + }, + { + "start": 1851.62, + "end": 1853.42, + "probability": 0.8034 + }, + { + "start": 1853.92, + "end": 1854.62, + "probability": 0.9678 + }, + { + "start": 1856.2, + "end": 1858.66, + "probability": 0.979 + }, + { + "start": 1858.82, + "end": 1862.28, + "probability": 0.989 + }, + { + "start": 1867.28, + "end": 1871.42, + "probability": 0.8369 + }, + { + "start": 1871.42, + "end": 1872.88, + "probability": 0.8364 + }, + { + "start": 1873.42, + "end": 1875.5, + "probability": 0.2088 + }, + { + "start": 1875.8, + "end": 1879.18, + "probability": 0.9743 + }, + { + "start": 1880.34, + "end": 1881.88, + "probability": 0.6052 + }, + { + "start": 1882.1, + "end": 1883.7, + "probability": 0.874 + }, + { + "start": 1891.78, + "end": 1892.78, + "probability": 0.8506 + }, + { + "start": 1895.34, + "end": 1896.78, + "probability": 0.2919 + }, + { + "start": 1896.8, + "end": 1898.3, + "probability": 0.7873 + }, + { + "start": 1903.38, + "end": 1903.84, + "probability": 0.5042 + }, + { + "start": 1904.02, + "end": 1904.86, + "probability": 0.4644 + }, + { + "start": 1906.66, + "end": 1907.54, + "probability": 0.6265 + }, + { + "start": 1909.48, + "end": 1913.88, + "probability": 0.8172 + }, + { + "start": 1914.44, + "end": 1917.44, + "probability": 0.9344 + }, + { + "start": 1918.02, + "end": 1919.82, + "probability": 0.9069 + }, + { + "start": 1920.46, + "end": 1924.32, + "probability": 0.7113 + }, + { + "start": 1924.48, + "end": 1925.9, + "probability": 0.5444 + }, + { + "start": 1926.02, + "end": 1927.54, + "probability": 0.6631 + }, + { + "start": 1927.6, + "end": 1928.33, + "probability": 0.5173 + }, + { + "start": 1929.74, + "end": 1931.78, + "probability": 0.9609 + }, + { + "start": 1932.16, + "end": 1934.6, + "probability": 0.7084 + }, + { + "start": 1935.0, + "end": 1939.62, + "probability": 0.7116 + }, + { + "start": 1940.28, + "end": 1944.76, + "probability": 0.9946 + }, + { + "start": 1945.04, + "end": 1947.38, + "probability": 0.9581 + }, + { + "start": 1947.66, + "end": 1951.82, + "probability": 0.7749 + }, + { + "start": 1952.28, + "end": 1952.5, + "probability": 0.2618 + }, + { + "start": 1952.62, + "end": 1954.0, + "probability": 0.7193 + }, + { + "start": 1954.18, + "end": 1955.22, + "probability": 0.8467 + }, + { + "start": 1955.24, + "end": 1956.12, + "probability": 0.8614 + }, + { + "start": 1956.26, + "end": 1958.6, + "probability": 0.9023 + }, + { + "start": 1958.72, + "end": 1960.24, + "probability": 0.9577 + }, + { + "start": 1960.74, + "end": 1964.48, + "probability": 0.486 + }, + { + "start": 1965.06, + "end": 1967.92, + "probability": 0.8435 + }, + { + "start": 1967.92, + "end": 1970.74, + "probability": 0.8296 + }, + { + "start": 1971.38, + "end": 1976.78, + "probability": 0.6162 + }, + { + "start": 1976.78, + "end": 1976.78, + "probability": 0.2631 + }, + { + "start": 1976.78, + "end": 1976.99, + "probability": 0.6642 + }, + { + "start": 1977.42, + "end": 1978.5, + "probability": 0.7346 + }, + { + "start": 1979.04, + "end": 1979.88, + "probability": 0.3085 + }, + { + "start": 1980.08, + "end": 1980.94, + "probability": 0.7208 + }, + { + "start": 1981.26, + "end": 1981.82, + "probability": 0.6855 + }, + { + "start": 1981.88, + "end": 1983.12, + "probability": 0.7456 + }, + { + "start": 1983.78, + "end": 1985.04, + "probability": 0.6148 + }, + { + "start": 1985.14, + "end": 1987.22, + "probability": 0.9666 + }, + { + "start": 1987.36, + "end": 1988.54, + "probability": 0.5192 + }, + { + "start": 1989.0, + "end": 1994.3, + "probability": 0.9689 + }, + { + "start": 1994.32, + "end": 1996.98, + "probability": 0.9946 + }, + { + "start": 1998.62, + "end": 2000.7, + "probability": 0.9863 + }, + { + "start": 2000.78, + "end": 2004.94, + "probability": 0.7595 + }, + { + "start": 2005.34, + "end": 2008.56, + "probability": 0.7572 + }, + { + "start": 2008.58, + "end": 2011.76, + "probability": 0.9084 + }, + { + "start": 2012.32, + "end": 2013.5, + "probability": 0.8344 + }, + { + "start": 2013.76, + "end": 2016.82, + "probability": 0.6022 + }, + { + "start": 2016.88, + "end": 2019.1, + "probability": 0.6995 + }, + { + "start": 2019.32, + "end": 2022.96, + "probability": 0.9288 + }, + { + "start": 2023.08, + "end": 2023.72, + "probability": 0.7968 + }, + { + "start": 2024.36, + "end": 2025.68, + "probability": 0.588 + }, + { + "start": 2026.18, + "end": 2031.4, + "probability": 0.9238 + }, + { + "start": 2032.6, + "end": 2036.26, + "probability": 0.8917 + }, + { + "start": 2036.48, + "end": 2037.86, + "probability": 0.9524 + }, + { + "start": 2038.3, + "end": 2039.42, + "probability": 0.5744 + }, + { + "start": 2040.26, + "end": 2043.14, + "probability": 0.9857 + }, + { + "start": 2043.76, + "end": 2044.42, + "probability": 0.8163 + }, + { + "start": 2045.04, + "end": 2050.02, + "probability": 0.9635 + }, + { + "start": 2050.14, + "end": 2050.94, + "probability": 0.7412 + }, + { + "start": 2051.28, + "end": 2054.08, + "probability": 0.9634 + }, + { + "start": 2054.42, + "end": 2054.92, + "probability": 0.2983 + }, + { + "start": 2055.3, + "end": 2056.06, + "probability": 0.4482 + }, + { + "start": 2056.12, + "end": 2057.32, + "probability": 0.8622 + }, + { + "start": 2057.46, + "end": 2058.5, + "probability": 0.8765 + }, + { + "start": 2058.54, + "end": 2062.18, + "probability": 0.7068 + }, + { + "start": 2062.38, + "end": 2063.56, + "probability": 0.7759 + }, + { + "start": 2064.14, + "end": 2067.44, + "probability": 0.9079 + }, + { + "start": 2067.92, + "end": 2071.0, + "probability": 0.764 + }, + { + "start": 2071.38, + "end": 2073.84, + "probability": 0.9742 + }, + { + "start": 2074.86, + "end": 2077.6, + "probability": 0.7393 + }, + { + "start": 2078.5, + "end": 2080.88, + "probability": 0.8978 + }, + { + "start": 2081.58, + "end": 2083.14, + "probability": 0.9622 + }, + { + "start": 2084.34, + "end": 2089.08, + "probability": 0.9863 + }, + { + "start": 2089.7, + "end": 2096.54, + "probability": 0.9028 + }, + { + "start": 2096.96, + "end": 2104.7, + "probability": 0.9474 + }, + { + "start": 2105.22, + "end": 2106.64, + "probability": 0.8652 + }, + { + "start": 2107.06, + "end": 2108.62, + "probability": 0.9041 + }, + { + "start": 2109.24, + "end": 2111.84, + "probability": 0.5505 + }, + { + "start": 2112.04, + "end": 2115.84, + "probability": 0.8495 + }, + { + "start": 2116.46, + "end": 2122.96, + "probability": 0.9471 + }, + { + "start": 2123.2, + "end": 2127.34, + "probability": 0.7679 + }, + { + "start": 2127.5, + "end": 2129.07, + "probability": 0.2314 + }, + { + "start": 2129.86, + "end": 2130.12, + "probability": 0.4738 + }, + { + "start": 2130.2, + "end": 2133.16, + "probability": 0.9824 + }, + { + "start": 2133.36, + "end": 2134.5, + "probability": 0.9002 + }, + { + "start": 2134.88, + "end": 2141.16, + "probability": 0.8215 + }, + { + "start": 2141.16, + "end": 2145.62, + "probability": 0.9836 + }, + { + "start": 2145.96, + "end": 2146.5, + "probability": 0.4141 + }, + { + "start": 2146.72, + "end": 2151.4, + "probability": 0.9247 + }, + { + "start": 2151.4, + "end": 2155.8, + "probability": 0.6619 + }, + { + "start": 2155.86, + "end": 2156.25, + "probability": 0.6041 + }, + { + "start": 2156.44, + "end": 2157.5, + "probability": 0.7762 + }, + { + "start": 2158.22, + "end": 2163.36, + "probability": 0.9624 + }, + { + "start": 2163.88, + "end": 2164.86, + "probability": 0.981 + }, + { + "start": 2165.54, + "end": 2166.48, + "probability": 0.8753 + }, + { + "start": 2166.86, + "end": 2172.36, + "probability": 0.5614 + }, + { + "start": 2172.58, + "end": 2174.46, + "probability": 0.9751 + }, + { + "start": 2174.5, + "end": 2174.92, + "probability": 0.7177 + }, + { + "start": 2175.04, + "end": 2175.72, + "probability": 0.0884 + }, + { + "start": 2176.22, + "end": 2177.97, + "probability": 0.9957 + }, + { + "start": 2178.84, + "end": 2181.46, + "probability": 0.8937 + }, + { + "start": 2181.96, + "end": 2183.1, + "probability": 0.7183 + }, + { + "start": 2183.55, + "end": 2191.18, + "probability": 0.5487 + }, + { + "start": 2192.15, + "end": 2194.93, + "probability": 0.6698 + }, + { + "start": 2195.66, + "end": 2196.62, + "probability": 0.3446 + }, + { + "start": 2196.94, + "end": 2201.1, + "probability": 0.9793 + }, + { + "start": 2202.0, + "end": 2202.96, + "probability": 0.8961 + }, + { + "start": 2203.5, + "end": 2204.68, + "probability": 0.9666 + }, + { + "start": 2205.38, + "end": 2206.16, + "probability": 0.5008 + }, + { + "start": 2206.68, + "end": 2207.8, + "probability": 0.5848 + }, + { + "start": 2208.16, + "end": 2210.84, + "probability": 0.7926 + }, + { + "start": 2210.98, + "end": 2211.76, + "probability": 0.3966 + }, + { + "start": 2212.3, + "end": 2213.2, + "probability": 0.3457 + }, + { + "start": 2213.24, + "end": 2216.88, + "probability": 0.9155 + }, + { + "start": 2217.68, + "end": 2220.08, + "probability": 0.6758 + }, + { + "start": 2221.12, + "end": 2222.3, + "probability": 0.5488 + }, + { + "start": 2222.3, + "end": 2223.07, + "probability": 0.878 + }, + { + "start": 2223.24, + "end": 2225.36, + "probability": 0.5311 + }, + { + "start": 2225.92, + "end": 2228.32, + "probability": 0.9567 + }, + { + "start": 2228.92, + "end": 2233.22, + "probability": 0.9503 + }, + { + "start": 2233.22, + "end": 2237.6, + "probability": 0.9971 + }, + { + "start": 2238.24, + "end": 2242.56, + "probability": 0.6191 + }, + { + "start": 2243.2, + "end": 2248.1, + "probability": 0.9821 + }, + { + "start": 2248.36, + "end": 2251.28, + "probability": 0.9946 + }, + { + "start": 2251.36, + "end": 2251.74, + "probability": 0.8911 + }, + { + "start": 2251.96, + "end": 2256.12, + "probability": 0.9844 + }, + { + "start": 2257.0, + "end": 2260.76, + "probability": 0.8441 + }, + { + "start": 2272.34, + "end": 2273.42, + "probability": 0.5987 + }, + { + "start": 2275.44, + "end": 2278.16, + "probability": 0.856 + }, + { + "start": 2278.16, + "end": 2278.16, + "probability": 0.5335 + }, + { + "start": 2284.06, + "end": 2284.06, + "probability": 0.2585 + }, + { + "start": 2285.04, + "end": 2286.54, + "probability": 0.8156 + }, + { + "start": 2307.08, + "end": 2312.24, + "probability": 0.6427 + }, + { + "start": 2312.92, + "end": 2314.6, + "probability": 0.6042 + }, + { + "start": 2315.2, + "end": 2318.12, + "probability": 0.7603 + }, + { + "start": 2319.78, + "end": 2324.3, + "probability": 0.9411 + }, + { + "start": 2325.66, + "end": 2330.18, + "probability": 0.9482 + }, + { + "start": 2331.72, + "end": 2337.58, + "probability": 0.9724 + }, + { + "start": 2338.46, + "end": 2339.62, + "probability": 0.9331 + }, + { + "start": 2340.42, + "end": 2341.38, + "probability": 0.9976 + }, + { + "start": 2342.54, + "end": 2345.7, + "probability": 0.9628 + }, + { + "start": 2346.9, + "end": 2349.7, + "probability": 0.9976 + }, + { + "start": 2350.6, + "end": 2351.9, + "probability": 0.5629 + }, + { + "start": 2352.06, + "end": 2354.86, + "probability": 0.9753 + }, + { + "start": 2355.9, + "end": 2359.02, + "probability": 0.9656 + }, + { + "start": 2360.3, + "end": 2362.08, + "probability": 0.7584 + }, + { + "start": 2364.7, + "end": 2371.82, + "probability": 0.992 + }, + { + "start": 2374.14, + "end": 2374.86, + "probability": 0.9224 + }, + { + "start": 2376.4, + "end": 2379.9, + "probability": 0.9914 + }, + { + "start": 2380.56, + "end": 2381.5, + "probability": 0.9302 + }, + { + "start": 2382.8, + "end": 2388.5, + "probability": 0.9191 + }, + { + "start": 2389.42, + "end": 2394.8, + "probability": 0.9294 + }, + { + "start": 2394.8, + "end": 2399.4, + "probability": 0.9961 + }, + { + "start": 2400.02, + "end": 2401.0, + "probability": 0.5375 + }, + { + "start": 2401.74, + "end": 2401.92, + "probability": 0.2706 + }, + { + "start": 2402.26, + "end": 2404.72, + "probability": 0.8209 + }, + { + "start": 2405.92, + "end": 2406.1, + "probability": 0.5929 + }, + { + "start": 2406.1, + "end": 2406.26, + "probability": 0.4642 + }, + { + "start": 2406.5, + "end": 2407.48, + "probability": 0.5366 + }, + { + "start": 2408.04, + "end": 2408.92, + "probability": 0.5552 + }, + { + "start": 2409.02, + "end": 2410.12, + "probability": 0.3123 + }, + { + "start": 2410.12, + "end": 2411.33, + "probability": 0.466 + }, + { + "start": 2412.34, + "end": 2416.86, + "probability": 0.1183 + }, + { + "start": 2416.98, + "end": 2417.76, + "probability": 0.1648 + }, + { + "start": 2417.76, + "end": 2417.98, + "probability": 0.4165 + }, + { + "start": 2417.98, + "end": 2418.28, + "probability": 0.8089 + }, + { + "start": 2418.42, + "end": 2422.84, + "probability": 0.9916 + }, + { + "start": 2423.84, + "end": 2426.05, + "probability": 0.7944 + }, + { + "start": 2426.36, + "end": 2426.76, + "probability": 0.4662 + }, + { + "start": 2427.0, + "end": 2431.94, + "probability": 0.9811 + }, + { + "start": 2431.94, + "end": 2435.32, + "probability": 0.8618 + }, + { + "start": 2435.38, + "end": 2437.04, + "probability": 0.8499 + }, + { + "start": 2437.64, + "end": 2441.32, + "probability": 0.5318 + }, + { + "start": 2442.02, + "end": 2443.94, + "probability": 0.8438 + }, + { + "start": 2446.65, + "end": 2449.58, + "probability": 0.0294 + }, + { + "start": 2450.44, + "end": 2453.3, + "probability": 0.0048 + }, + { + "start": 2460.52, + "end": 2460.92, + "probability": 0.0031 + }, + { + "start": 2460.92, + "end": 2461.12, + "probability": 0.0365 + }, + { + "start": 2461.12, + "end": 2461.12, + "probability": 0.2118 + }, + { + "start": 2461.12, + "end": 2461.12, + "probability": 0.5412 + }, + { + "start": 2461.12, + "end": 2463.36, + "probability": 0.736 + }, + { + "start": 2463.7, + "end": 2464.84, + "probability": 0.5908 + }, + { + "start": 2464.92, + "end": 2469.24, + "probability": 0.7947 + }, + { + "start": 2469.68, + "end": 2470.62, + "probability": 0.8754 + }, + { + "start": 2471.58, + "end": 2476.02, + "probability": 0.9604 + }, + { + "start": 2476.08, + "end": 2477.34, + "probability": 0.7454 + }, + { + "start": 2477.36, + "end": 2480.42, + "probability": 0.9808 + }, + { + "start": 2481.14, + "end": 2484.04, + "probability": 0.3068 + }, + { + "start": 2485.1, + "end": 2487.58, + "probability": 0.8204 + }, + { + "start": 2488.5, + "end": 2493.94, + "probability": 0.8967 + }, + { + "start": 2494.52, + "end": 2496.06, + "probability": 0.1865 + }, + { + "start": 2496.44, + "end": 2499.39, + "probability": 0.9406 + }, + { + "start": 2500.36, + "end": 2501.52, + "probability": 0.7892 + }, + { + "start": 2504.5, + "end": 2506.74, + "probability": 0.4399 + }, + { + "start": 2507.62, + "end": 2509.18, + "probability": 0.7631 + }, + { + "start": 2510.7, + "end": 2514.22, + "probability": 0.957 + }, + { + "start": 2514.66, + "end": 2516.4, + "probability": 0.7739 + }, + { + "start": 2517.14, + "end": 2517.56, + "probability": 0.4658 + }, + { + "start": 2520.96, + "end": 2522.44, + "probability": 0.8759 + }, + { + "start": 2526.02, + "end": 2526.32, + "probability": 0.4736 + }, + { + "start": 2530.0, + "end": 2531.82, + "probability": 0.5931 + }, + { + "start": 2532.24, + "end": 2532.86, + "probability": 0.6687 + }, + { + "start": 2532.96, + "end": 2534.62, + "probability": 0.7133 + }, + { + "start": 2535.6, + "end": 2538.44, + "probability": 0.9327 + }, + { + "start": 2539.04, + "end": 2540.14, + "probability": 0.8881 + }, + { + "start": 2540.54, + "end": 2541.22, + "probability": 0.9344 + }, + { + "start": 2541.22, + "end": 2544.24, + "probability": 0.85 + }, + { + "start": 2546.02, + "end": 2549.38, + "probability": 0.9757 + }, + { + "start": 2549.54, + "end": 2551.16, + "probability": 0.7856 + }, + { + "start": 2552.22, + "end": 2559.72, + "probability": 0.9924 + }, + { + "start": 2560.3, + "end": 2563.62, + "probability": 0.9903 + }, + { + "start": 2564.68, + "end": 2570.74, + "probability": 0.7675 + }, + { + "start": 2570.86, + "end": 2572.56, + "probability": 0.8095 + }, + { + "start": 2572.62, + "end": 2575.78, + "probability": 0.9022 + }, + { + "start": 2575.86, + "end": 2576.38, + "probability": 0.9153 + }, + { + "start": 2576.48, + "end": 2582.48, + "probability": 0.9512 + }, + { + "start": 2583.58, + "end": 2588.46, + "probability": 0.9668 + }, + { + "start": 2588.58, + "end": 2592.84, + "probability": 0.878 + }, + { + "start": 2593.56, + "end": 2595.68, + "probability": 0.9924 + }, + { + "start": 2595.76, + "end": 2596.26, + "probability": 0.9465 + }, + { + "start": 2596.72, + "end": 2601.42, + "probability": 0.9893 + }, + { + "start": 2602.0, + "end": 2602.62, + "probability": 0.613 + }, + { + "start": 2602.78, + "end": 2605.24, + "probability": 0.9653 + }, + { + "start": 2605.7, + "end": 2606.48, + "probability": 0.8897 + }, + { + "start": 2606.54, + "end": 2610.6, + "probability": 0.9972 + }, + { + "start": 2611.16, + "end": 2616.36, + "probability": 0.9944 + }, + { + "start": 2616.36, + "end": 2623.92, + "probability": 0.9985 + }, + { + "start": 2623.92, + "end": 2628.84, + "probability": 0.8279 + }, + { + "start": 2631.04, + "end": 2636.86, + "probability": 0.996 + }, + { + "start": 2637.72, + "end": 2643.58, + "probability": 0.9971 + }, + { + "start": 2643.58, + "end": 2650.08, + "probability": 0.9985 + }, + { + "start": 2650.78, + "end": 2653.5, + "probability": 0.9862 + }, + { + "start": 2653.5, + "end": 2659.04, + "probability": 0.8648 + }, + { + "start": 2659.58, + "end": 2665.08, + "probability": 0.8218 + }, + { + "start": 2665.22, + "end": 2669.42, + "probability": 0.9642 + }, + { + "start": 2670.76, + "end": 2671.36, + "probability": 0.5701 + }, + { + "start": 2671.54, + "end": 2672.28, + "probability": 0.9508 + }, + { + "start": 2672.42, + "end": 2676.46, + "probability": 0.9785 + }, + { + "start": 2676.92, + "end": 2680.88, + "probability": 0.999 + }, + { + "start": 2681.3, + "end": 2690.8, + "probability": 0.9201 + }, + { + "start": 2690.96, + "end": 2691.8, + "probability": 0.9688 + }, + { + "start": 2692.0, + "end": 2694.76, + "probability": 0.9321 + }, + { + "start": 2695.78, + "end": 2698.62, + "probability": 0.9927 + }, + { + "start": 2699.16, + "end": 2701.92, + "probability": 0.8495 + }, + { + "start": 2702.47, + "end": 2705.26, + "probability": 0.9734 + }, + { + "start": 2705.72, + "end": 2706.46, + "probability": 0.5067 + }, + { + "start": 2707.34, + "end": 2711.08, + "probability": 0.9477 + }, + { + "start": 2711.14, + "end": 2715.18, + "probability": 0.9939 + }, + { + "start": 2715.18, + "end": 2719.4, + "probability": 0.9757 + }, + { + "start": 2719.94, + "end": 2722.48, + "probability": 0.8228 + }, + { + "start": 2722.92, + "end": 2726.38, + "probability": 0.9955 + }, + { + "start": 2726.92, + "end": 2732.0, + "probability": 0.9824 + }, + { + "start": 2732.08, + "end": 2735.78, + "probability": 0.9884 + }, + { + "start": 2736.14, + "end": 2739.4, + "probability": 0.9966 + }, + { + "start": 2739.86, + "end": 2741.99, + "probability": 0.9961 + }, + { + "start": 2742.98, + "end": 2746.28, + "probability": 0.999 + }, + { + "start": 2746.28, + "end": 2748.7, + "probability": 0.998 + }, + { + "start": 2749.34, + "end": 2751.22, + "probability": 0.512 + }, + { + "start": 2751.3, + "end": 2751.9, + "probability": 0.7439 + }, + { + "start": 2752.2, + "end": 2758.44, + "probability": 0.9884 + }, + { + "start": 2758.88, + "end": 2760.1, + "probability": 0.9785 + }, + { + "start": 2761.2, + "end": 2762.06, + "probability": 0.4945 + }, + { + "start": 2762.22, + "end": 2767.36, + "probability": 0.97 + }, + { + "start": 2767.36, + "end": 2771.74, + "probability": 0.9982 + }, + { + "start": 2772.72, + "end": 2777.06, + "probability": 0.9929 + }, + { + "start": 2777.14, + "end": 2782.16, + "probability": 0.9688 + }, + { + "start": 2782.62, + "end": 2784.72, + "probability": 0.8988 + }, + { + "start": 2784.72, + "end": 2787.38, + "probability": 0.9134 + }, + { + "start": 2788.3, + "end": 2790.0, + "probability": 0.6243 + }, + { + "start": 2790.4, + "end": 2792.74, + "probability": 0.9504 + }, + { + "start": 2793.1, + "end": 2797.4, + "probability": 0.9272 + }, + { + "start": 2797.4, + "end": 2802.12, + "probability": 0.9969 + }, + { + "start": 2802.62, + "end": 2805.88, + "probability": 0.9912 + }, + { + "start": 2805.88, + "end": 2809.56, + "probability": 0.9711 + }, + { + "start": 2810.14, + "end": 2815.16, + "probability": 0.935 + }, + { + "start": 2815.16, + "end": 2818.88, + "probability": 0.9893 + }, + { + "start": 2819.54, + "end": 2820.98, + "probability": 0.97 + }, + { + "start": 2821.06, + "end": 2821.52, + "probability": 0.9139 + }, + { + "start": 2821.92, + "end": 2821.98, + "probability": 0.8136 + }, + { + "start": 2822.06, + "end": 2827.1, + "probability": 0.9554 + }, + { + "start": 2828.18, + "end": 2833.24, + "probability": 0.8636 + }, + { + "start": 2833.26, + "end": 2833.92, + "probability": 0.7179 + }, + { + "start": 2834.02, + "end": 2837.54, + "probability": 0.9067 + }, + { + "start": 2837.54, + "end": 2840.72, + "probability": 0.998 + }, + { + "start": 2841.24, + "end": 2844.44, + "probability": 0.9229 + }, + { + "start": 2845.12, + "end": 2849.08, + "probability": 0.9973 + }, + { + "start": 2849.08, + "end": 2852.78, + "probability": 0.9437 + }, + { + "start": 2852.96, + "end": 2856.0, + "probability": 0.9071 + }, + { + "start": 2856.96, + "end": 2860.14, + "probability": 0.8969 + }, + { + "start": 2860.18, + "end": 2861.22, + "probability": 0.8336 + }, + { + "start": 2861.68, + "end": 2862.36, + "probability": 0.7368 + }, + { + "start": 2862.86, + "end": 2864.7, + "probability": 0.9757 + }, + { + "start": 2864.8, + "end": 2866.3, + "probability": 0.9134 + }, + { + "start": 2866.82, + "end": 2870.14, + "probability": 0.991 + }, + { + "start": 2870.54, + "end": 2871.74, + "probability": 0.9414 + }, + { + "start": 2872.02, + "end": 2874.2, + "probability": 0.9333 + }, + { + "start": 2874.82, + "end": 2880.6, + "probability": 0.988 + }, + { + "start": 2882.94, + "end": 2887.08, + "probability": 0.8474 + }, + { + "start": 2887.4, + "end": 2891.3, + "probability": 0.9964 + }, + { + "start": 2891.3, + "end": 2898.76, + "probability": 0.9973 + }, + { + "start": 2899.18, + "end": 2904.44, + "probability": 0.9253 + }, + { + "start": 2904.54, + "end": 2905.1, + "probability": 0.7181 + }, + { + "start": 2905.46, + "end": 2908.78, + "probability": 0.971 + }, + { + "start": 2909.34, + "end": 2911.56, + "probability": 0.9316 + }, + { + "start": 2911.64, + "end": 2912.6, + "probability": 0.8658 + }, + { + "start": 2915.66, + "end": 2916.26, + "probability": 0.5911 + }, + { + "start": 2917.04, + "end": 2924.82, + "probability": 0.928 + }, + { + "start": 2931.43, + "end": 2932.7, + "probability": 0.665 + }, + { + "start": 2934.18, + "end": 2935.86, + "probability": 0.2892 + }, + { + "start": 2938.58, + "end": 2940.5, + "probability": 0.417 + }, + { + "start": 2940.66, + "end": 2941.2, + "probability": 0.6579 + }, + { + "start": 2941.28, + "end": 2943.78, + "probability": 0.6921 + }, + { + "start": 2944.22, + "end": 2947.91, + "probability": 0.9741 + }, + { + "start": 2948.02, + "end": 2952.38, + "probability": 0.9844 + }, + { + "start": 2952.56, + "end": 2956.16, + "probability": 0.9658 + }, + { + "start": 2957.2, + "end": 2957.46, + "probability": 0.7627 + }, + { + "start": 2957.46, + "end": 2965.26, + "probability": 0.9886 + }, + { + "start": 2965.6, + "end": 2971.08, + "probability": 0.9826 + }, + { + "start": 2971.82, + "end": 2977.88, + "probability": 0.9955 + }, + { + "start": 2978.06, + "end": 2981.3, + "probability": 0.6716 + }, + { + "start": 2981.68, + "end": 2983.44, + "probability": 0.9789 + }, + { + "start": 2983.84, + "end": 2987.7, + "probability": 0.8294 + }, + { + "start": 2988.2, + "end": 2993.05, + "probability": 0.9616 + }, + { + "start": 2993.8, + "end": 2998.48, + "probability": 0.7882 + }, + { + "start": 2998.48, + "end": 2998.48, + "probability": 0.4654 + }, + { + "start": 2998.48, + "end": 2999.02, + "probability": 0.379 + }, + { + "start": 2999.28, + "end": 2999.68, + "probability": 0.3098 + }, + { + "start": 2999.76, + "end": 2999.84, + "probability": 0.2749 + }, + { + "start": 2999.88, + "end": 3000.08, + "probability": 0.0557 + }, + { + "start": 3000.08, + "end": 3002.18, + "probability": 0.8236 + }, + { + "start": 3002.3, + "end": 3006.7, + "probability": 0.9653 + }, + { + "start": 3007.18, + "end": 3007.18, + "probability": 0.3013 + }, + { + "start": 3007.18, + "end": 3007.18, + "probability": 0.0627 + }, + { + "start": 3007.18, + "end": 3007.18, + "probability": 0.5503 + }, + { + "start": 3007.18, + "end": 3011.86, + "probability": 0.848 + }, + { + "start": 3011.98, + "end": 3012.44, + "probability": 0.3448 + }, + { + "start": 3012.46, + "end": 3018.82, + "probability": 0.9493 + }, + { + "start": 3019.18, + "end": 3020.66, + "probability": 0.8016 + }, + { + "start": 3020.74, + "end": 3024.24, + "probability": 0.9875 + }, + { + "start": 3024.68, + "end": 3028.24, + "probability": 0.9817 + }, + { + "start": 3028.76, + "end": 3035.46, + "probability": 0.9811 + }, + { + "start": 3035.84, + "end": 3038.52, + "probability": 0.88 + }, + { + "start": 3039.1, + "end": 3045.44, + "probability": 0.987 + }, + { + "start": 3045.96, + "end": 3049.96, + "probability": 0.9974 + }, + { + "start": 3049.96, + "end": 3055.1, + "probability": 0.993 + }, + { + "start": 3055.7, + "end": 3060.2, + "probability": 0.9968 + }, + { + "start": 3060.74, + "end": 3062.14, + "probability": 0.9892 + }, + { + "start": 3062.84, + "end": 3066.34, + "probability": 0.9935 + }, + { + "start": 3066.82, + "end": 3069.6, + "probability": 0.9869 + }, + { + "start": 3069.98, + "end": 3072.82, + "probability": 0.9894 + }, + { + "start": 3073.38, + "end": 3077.52, + "probability": 0.9182 + }, + { + "start": 3077.7, + "end": 3080.52, + "probability": 0.881 + }, + { + "start": 3080.66, + "end": 3082.14, + "probability": 0.9888 + }, + { + "start": 3083.2, + "end": 3085.76, + "probability": 0.9836 + }, + { + "start": 3085.9, + "end": 3091.62, + "probability": 0.9623 + }, + { + "start": 3092.08, + "end": 3095.6, + "probability": 0.9668 + }, + { + "start": 3096.14, + "end": 3102.14, + "probability": 0.9852 + }, + { + "start": 3102.14, + "end": 3107.44, + "probability": 0.8428 + }, + { + "start": 3109.16, + "end": 3111.96, + "probability": 0.8975 + }, + { + "start": 3112.44, + "end": 3112.56, + "probability": 0.6061 + }, + { + "start": 3112.66, + "end": 3117.06, + "probability": 0.9955 + }, + { + "start": 3117.22, + "end": 3119.86, + "probability": 0.9235 + }, + { + "start": 3120.22, + "end": 3123.04, + "probability": 0.9994 + }, + { + "start": 3123.04, + "end": 3126.92, + "probability": 0.992 + }, + { + "start": 3127.42, + "end": 3134.04, + "probability": 0.9935 + }, + { + "start": 3134.48, + "end": 3138.56, + "probability": 0.9946 + }, + { + "start": 3138.56, + "end": 3143.24, + "probability": 0.9987 + }, + { + "start": 3143.82, + "end": 3147.46, + "probability": 0.9326 + }, + { + "start": 3148.0, + "end": 3155.5, + "probability": 0.9875 + }, + { + "start": 3156.1, + "end": 3159.14, + "probability": 0.9779 + }, + { + "start": 3160.24, + "end": 3162.08, + "probability": 0.9632 + }, + { + "start": 3162.22, + "end": 3162.82, + "probability": 0.5297 + }, + { + "start": 3162.9, + "end": 3163.6, + "probability": 0.4098 + }, + { + "start": 3164.24, + "end": 3168.52, + "probability": 0.7256 + }, + { + "start": 3168.52, + "end": 3168.52, + "probability": 0.2839 + }, + { + "start": 3168.76, + "end": 3169.14, + "probability": 0.1625 + }, + { + "start": 3169.16, + "end": 3169.36, + "probability": 0.5668 + }, + { + "start": 3169.38, + "end": 3170.4, + "probability": 0.789 + }, + { + "start": 3171.04, + "end": 3174.74, + "probability": 0.9973 + }, + { + "start": 3175.3, + "end": 3178.88, + "probability": 0.9944 + }, + { + "start": 3179.36, + "end": 3182.14, + "probability": 0.9961 + }, + { + "start": 3184.64, + "end": 3184.74, + "probability": 0.2191 + }, + { + "start": 3184.74, + "end": 3185.36, + "probability": 0.286 + }, + { + "start": 3185.74, + "end": 3191.06, + "probability": 0.9786 + }, + { + "start": 3191.06, + "end": 3191.2, + "probability": 0.299 + }, + { + "start": 3191.2, + "end": 3193.28, + "probability": 0.9263 + }, + { + "start": 3193.64, + "end": 3194.04, + "probability": 0.486 + }, + { + "start": 3194.56, + "end": 3195.08, + "probability": 0.4032 + }, + { + "start": 3195.22, + "end": 3196.64, + "probability": 0.7945 + }, + { + "start": 3197.44, + "end": 3201.02, + "probability": 0.9356 + }, + { + "start": 3201.1, + "end": 3203.92, + "probability": 0.9265 + }, + { + "start": 3204.2, + "end": 3205.9, + "probability": 0.949 + }, + { + "start": 3206.6, + "end": 3208.96, + "probability": 0.7961 + }, + { + "start": 3209.6, + "end": 3210.82, + "probability": 0.9834 + }, + { + "start": 3212.64, + "end": 3213.78, + "probability": 0.5135 + }, + { + "start": 3214.82, + "end": 3216.2, + "probability": 0.5623 + }, + { + "start": 3217.64, + "end": 3221.74, + "probability": 0.9946 + }, + { + "start": 3222.7, + "end": 3224.91, + "probability": 0.9861 + }, + { + "start": 3226.94, + "end": 3229.6, + "probability": 0.9989 + }, + { + "start": 3230.56, + "end": 3232.9, + "probability": 0.8677 + }, + { + "start": 3233.68, + "end": 3234.74, + "probability": 0.9966 + }, + { + "start": 3235.04, + "end": 3235.7, + "probability": 0.321 + }, + { + "start": 3236.04, + "end": 3237.7, + "probability": 0.7555 + }, + { + "start": 3237.72, + "end": 3241.4, + "probability": 0.8217 + }, + { + "start": 3241.54, + "end": 3242.64, + "probability": 0.9363 + }, + { + "start": 3243.74, + "end": 3245.04, + "probability": 0.9735 + }, + { + "start": 3245.82, + "end": 3246.16, + "probability": 0.7927 + }, + { + "start": 3246.26, + "end": 3247.1, + "probability": 0.9447 + }, + { + "start": 3247.18, + "end": 3248.74, + "probability": 0.8426 + }, + { + "start": 3248.88, + "end": 3253.96, + "probability": 0.9286 + }, + { + "start": 3254.02, + "end": 3255.6, + "probability": 0.8804 + }, + { + "start": 3256.4, + "end": 3261.2, + "probability": 0.8307 + }, + { + "start": 3262.24, + "end": 3264.24, + "probability": 0.134 + }, + { + "start": 3264.86, + "end": 3264.86, + "probability": 0.0684 + }, + { + "start": 3264.86, + "end": 3266.81, + "probability": 0.6142 + }, + { + "start": 3267.68, + "end": 3271.08, + "probability": 0.965 + }, + { + "start": 3271.12, + "end": 3272.32, + "probability": 0.9255 + }, + { + "start": 3272.34, + "end": 3273.39, + "probability": 0.1361 + }, + { + "start": 3273.56, + "end": 3275.94, + "probability": 0.9917 + }, + { + "start": 3277.18, + "end": 3278.23, + "probability": 0.6596 + }, + { + "start": 3278.64, + "end": 3280.38, + "probability": 0.4608 + }, + { + "start": 3280.72, + "end": 3286.23, + "probability": 0.9712 + }, + { + "start": 3286.88, + "end": 3287.36, + "probability": 0.0208 + }, + { + "start": 3288.78, + "end": 3291.48, + "probability": 0.4034 + }, + { + "start": 3292.3, + "end": 3294.38, + "probability": 0.6482 + }, + { + "start": 3294.62, + "end": 3294.8, + "probability": 0.5079 + }, + { + "start": 3294.9, + "end": 3295.7, + "probability": 0.3763 + }, + { + "start": 3295.9, + "end": 3300.58, + "probability": 0.0502 + }, + { + "start": 3300.98, + "end": 3302.92, + "probability": 0.8688 + }, + { + "start": 3302.96, + "end": 3307.36, + "probability": 0.7048 + }, + { + "start": 3308.18, + "end": 3310.4, + "probability": 0.9779 + }, + { + "start": 3311.46, + "end": 3311.56, + "probability": 0.7883 + }, + { + "start": 3315.66, + "end": 3315.76, + "probability": 0.3266 + }, + { + "start": 3317.0, + "end": 3319.22, + "probability": 0.5713 + }, + { + "start": 3319.66, + "end": 3320.56, + "probability": 0.2564 + }, + { + "start": 3321.1, + "end": 3323.32, + "probability": 0.2434 + }, + { + "start": 3325.42, + "end": 3328.62, + "probability": 0.5539 + }, + { + "start": 3329.78, + "end": 3331.22, + "probability": 0.1813 + }, + { + "start": 3331.22, + "end": 3331.22, + "probability": 0.8894 + }, + { + "start": 3331.22, + "end": 3336.32, + "probability": 0.9752 + }, + { + "start": 3336.38, + "end": 3336.44, + "probability": 0.158 + }, + { + "start": 3336.44, + "end": 3337.92, + "probability": 0.7709 + }, + { + "start": 3338.94, + "end": 3344.64, + "probability": 0.9801 + }, + { + "start": 3344.64, + "end": 3349.16, + "probability": 0.8009 + }, + { + "start": 3350.8, + "end": 3351.75, + "probability": 0.6072 + }, + { + "start": 3352.18, + "end": 3353.52, + "probability": 0.7965 + }, + { + "start": 3353.52, + "end": 3355.18, + "probability": 0.9932 + }, + { + "start": 3355.18, + "end": 3357.6, + "probability": 0.972 + }, + { + "start": 3358.48, + "end": 3361.56, + "probability": 0.9971 + }, + { + "start": 3362.46, + "end": 3365.64, + "probability": 0.8013 + }, + { + "start": 3365.88, + "end": 3367.78, + "probability": 0.7857 + }, + { + "start": 3367.98, + "end": 3370.16, + "probability": 0.657 + }, + { + "start": 3370.28, + "end": 3376.62, + "probability": 0.9872 + }, + { + "start": 3377.92, + "end": 3380.54, + "probability": 0.9928 + }, + { + "start": 3380.68, + "end": 3382.37, + "probability": 0.0135 + }, + { + "start": 3383.26, + "end": 3383.74, + "probability": 0.9084 + }, + { + "start": 3383.78, + "end": 3387.4, + "probability": 0.9233 + }, + { + "start": 3387.4, + "end": 3392.66, + "probability": 0.8849 + }, + { + "start": 3392.66, + "end": 3399.82, + "probability": 0.9871 + }, + { + "start": 3400.96, + "end": 3402.82, + "probability": 0.7983 + }, + { + "start": 3404.32, + "end": 3409.22, + "probability": 0.6136 + }, + { + "start": 3410.32, + "end": 3414.12, + "probability": 0.9579 + }, + { + "start": 3414.68, + "end": 3417.74, + "probability": 0.8904 + }, + { + "start": 3418.84, + "end": 3419.78, + "probability": 0.8271 + }, + { + "start": 3421.4, + "end": 3425.0, + "probability": 0.9966 + }, + { + "start": 3425.1, + "end": 3430.68, + "probability": 0.961 + }, + { + "start": 3430.68, + "end": 3435.08, + "probability": 0.9886 + }, + { + "start": 3435.64, + "end": 3438.46, + "probability": 0.9817 + }, + { + "start": 3440.54, + "end": 3443.32, + "probability": 0.9297 + }, + { + "start": 3443.32, + "end": 3445.86, + "probability": 0.985 + }, + { + "start": 3446.76, + "end": 3447.82, + "probability": 0.5635 + }, + { + "start": 3450.56, + "end": 3456.0, + "probability": 0.9728 + }, + { + "start": 3456.88, + "end": 3460.58, + "probability": 0.9966 + }, + { + "start": 3461.82, + "end": 3467.72, + "probability": 0.9551 + }, + { + "start": 3468.5, + "end": 3471.04, + "probability": 0.9989 + }, + { + "start": 3472.0, + "end": 3472.76, + "probability": 0.48 + }, + { + "start": 3472.82, + "end": 3474.82, + "probability": 0.7987 + }, + { + "start": 3474.98, + "end": 3478.66, + "probability": 0.7483 + }, + { + "start": 3480.02, + "end": 3480.62, + "probability": 0.9313 + }, + { + "start": 3481.72, + "end": 3487.78, + "probability": 0.9922 + }, + { + "start": 3489.12, + "end": 3494.62, + "probability": 0.96 + }, + { + "start": 3495.18, + "end": 3495.9, + "probability": 0.9578 + }, + { + "start": 3496.6, + "end": 3497.46, + "probability": 0.2503 + }, + { + "start": 3497.46, + "end": 3498.7, + "probability": 0.949 + }, + { + "start": 3499.12, + "end": 3500.14, + "probability": 0.7408 + }, + { + "start": 3500.22, + "end": 3502.3, + "probability": 0.9385 + }, + { + "start": 3502.96, + "end": 3504.72, + "probability": 0.9854 + }, + { + "start": 3505.82, + "end": 3506.32, + "probability": 0.8533 + }, + { + "start": 3507.38, + "end": 3510.24, + "probability": 0.818 + }, + { + "start": 3510.8, + "end": 3516.44, + "probability": 0.9609 + }, + { + "start": 3517.14, + "end": 3518.52, + "probability": 0.9795 + }, + { + "start": 3518.76, + "end": 3520.64, + "probability": 0.9806 + }, + { + "start": 3521.9, + "end": 3524.46, + "probability": 0.7842 + }, + { + "start": 3525.36, + "end": 3527.64, + "probability": 0.986 + }, + { + "start": 3527.64, + "end": 3530.22, + "probability": 0.9564 + }, + { + "start": 3531.34, + "end": 3533.5, + "probability": 0.8913 + }, + { + "start": 3550.44, + "end": 3550.82, + "probability": 0.598 + }, + { + "start": 3552.3, + "end": 3554.18, + "probability": 0.8019 + }, + { + "start": 3555.5, + "end": 3559.69, + "probability": 0.9733 + }, + { + "start": 3560.96, + "end": 3564.96, + "probability": 0.995 + }, + { + "start": 3564.96, + "end": 3565.94, + "probability": 0.6727 + }, + { + "start": 3566.14, + "end": 3567.08, + "probability": 0.5631 + }, + { + "start": 3568.06, + "end": 3571.18, + "probability": 0.9856 + }, + { + "start": 3572.12, + "end": 3573.46, + "probability": 0.9958 + }, + { + "start": 3574.76, + "end": 3576.62, + "probability": 0.8291 + }, + { + "start": 3578.6, + "end": 3581.74, + "probability": 0.9968 + }, + { + "start": 3582.7, + "end": 3586.62, + "probability": 0.9412 + }, + { + "start": 3586.62, + "end": 3589.24, + "probability": 0.9785 + }, + { + "start": 3589.98, + "end": 3592.94, + "probability": 0.7773 + }, + { + "start": 3593.04, + "end": 3594.48, + "probability": 0.6682 + }, + { + "start": 3594.78, + "end": 3596.6, + "probability": 0.7974 + }, + { + "start": 3597.64, + "end": 3598.92, + "probability": 0.9697 + }, + { + "start": 3599.58, + "end": 3600.7, + "probability": 0.6864 + }, + { + "start": 3601.28, + "end": 3604.76, + "probability": 0.9926 + }, + { + "start": 3604.76, + "end": 3607.82, + "probability": 0.9565 + }, + { + "start": 3608.9, + "end": 3611.62, + "probability": 0.8753 + }, + { + "start": 3611.68, + "end": 3615.0, + "probability": 0.9902 + }, + { + "start": 3615.92, + "end": 3618.44, + "probability": 0.9969 + }, + { + "start": 3618.48, + "end": 3621.2, + "probability": 0.9818 + }, + { + "start": 3621.2, + "end": 3623.42, + "probability": 0.6479 + }, + { + "start": 3624.62, + "end": 3630.88, + "probability": 0.919 + }, + { + "start": 3631.44, + "end": 3635.6, + "probability": 0.7517 + }, + { + "start": 3636.02, + "end": 3638.42, + "probability": 0.7384 + }, + { + "start": 3638.96, + "end": 3642.26, + "probability": 0.8772 + }, + { + "start": 3643.26, + "end": 3646.38, + "probability": 0.8804 + }, + { + "start": 3647.2, + "end": 3648.72, + "probability": 0.937 + }, + { + "start": 3649.6, + "end": 3652.62, + "probability": 0.861 + }, + { + "start": 3653.4, + "end": 3653.84, + "probability": 0.455 + }, + { + "start": 3653.86, + "end": 3658.48, + "probability": 0.9546 + }, + { + "start": 3658.96, + "end": 3664.94, + "probability": 0.9706 + }, + { + "start": 3665.02, + "end": 3666.0, + "probability": 0.8119 + }, + { + "start": 3667.02, + "end": 3668.82, + "probability": 0.9278 + }, + { + "start": 3668.9, + "end": 3671.12, + "probability": 0.9819 + }, + { + "start": 3671.72, + "end": 3673.36, + "probability": 0.9941 + }, + { + "start": 3673.46, + "end": 3675.1, + "probability": 0.9852 + }, + { + "start": 3676.2, + "end": 3677.22, + "probability": 0.8091 + }, + { + "start": 3677.36, + "end": 3683.1, + "probability": 0.6689 + }, + { + "start": 3683.1, + "end": 3688.16, + "probability": 0.8943 + }, + { + "start": 3688.32, + "end": 3691.7, + "probability": 0.8523 + }, + { + "start": 3691.9, + "end": 3693.04, + "probability": 0.8742 + }, + { + "start": 3693.54, + "end": 3695.68, + "probability": 0.9395 + }, + { + "start": 3696.0, + "end": 3698.44, + "probability": 0.9882 + }, + { + "start": 3698.92, + "end": 3699.92, + "probability": 0.6759 + }, + { + "start": 3700.68, + "end": 3703.1, + "probability": 0.9287 + }, + { + "start": 3703.32, + "end": 3705.48, + "probability": 0.6649 + }, + { + "start": 3705.84, + "end": 3711.24, + "probability": 0.8872 + }, + { + "start": 3712.1, + "end": 3715.12, + "probability": 0.9734 + }, + { + "start": 3715.7, + "end": 3718.54, + "probability": 0.9874 + }, + { + "start": 3718.74, + "end": 3725.28, + "probability": 0.9586 + }, + { + "start": 3725.3, + "end": 3726.5, + "probability": 0.9512 + }, + { + "start": 3727.12, + "end": 3732.1, + "probability": 0.9872 + }, + { + "start": 3732.42, + "end": 3734.3, + "probability": 0.9918 + }, + { + "start": 3734.4, + "end": 3734.4, + "probability": 0.32 + }, + { + "start": 3734.4, + "end": 3736.0, + "probability": 0.5588 + }, + { + "start": 3736.34, + "end": 3739.04, + "probability": 0.8914 + }, + { + "start": 3739.04, + "end": 3741.96, + "probability": 0.946 + }, + { + "start": 3742.24, + "end": 3742.24, + "probability": 0.1539 + }, + { + "start": 3742.24, + "end": 3745.89, + "probability": 0.9917 + }, + { + "start": 3745.96, + "end": 3746.26, + "probability": 0.3323 + }, + { + "start": 3746.52, + "end": 3746.6, + "probability": 0.3538 + }, + { + "start": 3746.6, + "end": 3747.36, + "probability": 0.8005 + }, + { + "start": 3747.46, + "end": 3748.0, + "probability": 0.8925 + }, + { + "start": 3748.04, + "end": 3750.64, + "probability": 0.96 + }, + { + "start": 3750.72, + "end": 3751.42, + "probability": 0.867 + }, + { + "start": 3751.46, + "end": 3752.88, + "probability": 0.9883 + }, + { + "start": 3753.32, + "end": 3754.58, + "probability": 0.541 + }, + { + "start": 3754.58, + "end": 3756.98, + "probability": 0.6514 + }, + { + "start": 3757.3, + "end": 3762.1, + "probability": 0.9894 + }, + { + "start": 3762.22, + "end": 3764.78, + "probability": 0.9297 + }, + { + "start": 3764.86, + "end": 3765.32, + "probability": 0.8752 + }, + { + "start": 3765.44, + "end": 3768.28, + "probability": 0.6149 + }, + { + "start": 3768.28, + "end": 3769.64, + "probability": 0.3538 + }, + { + "start": 3769.76, + "end": 3771.2, + "probability": 0.9414 + }, + { + "start": 3771.36, + "end": 3773.88, + "probability": 0.9923 + }, + { + "start": 3773.88, + "end": 3776.3, + "probability": 0.7405 + }, + { + "start": 3776.56, + "end": 3778.22, + "probability": 0.8584 + }, + { + "start": 3778.58, + "end": 3779.36, + "probability": 0.469 + }, + { + "start": 3779.5, + "end": 3781.76, + "probability": 0.8896 + }, + { + "start": 3783.42, + "end": 3783.6, + "probability": 0.0158 + }, + { + "start": 3783.6, + "end": 3784.38, + "probability": 0.049 + }, + { + "start": 3784.78, + "end": 3785.66, + "probability": 0.7607 + }, + { + "start": 3785.9, + "end": 3787.72, + "probability": 0.7427 + }, + { + "start": 3787.74, + "end": 3788.86, + "probability": 0.9917 + }, + { + "start": 3788.86, + "end": 3789.14, + "probability": 0.4074 + }, + { + "start": 3789.28, + "end": 3791.02, + "probability": 0.5625 + }, + { + "start": 3791.2, + "end": 3792.92, + "probability": 0.672 + }, + { + "start": 3792.92, + "end": 3794.22, + "probability": 0.5319 + }, + { + "start": 3794.34, + "end": 3797.1, + "probability": 0.7585 + }, + { + "start": 3797.54, + "end": 3799.9, + "probability": 0.9399 + }, + { + "start": 3799.96, + "end": 3800.58, + "probability": 0.4843 + }, + { + "start": 3800.58, + "end": 3801.38, + "probability": 0.5639 + }, + { + "start": 3801.94, + "end": 3803.76, + "probability": 0.792 + }, + { + "start": 3803.8, + "end": 3808.14, + "probability": 0.9619 + }, + { + "start": 3808.18, + "end": 3808.26, + "probability": 0.2243 + }, + { + "start": 3808.36, + "end": 3809.69, + "probability": 0.5347 + }, + { + "start": 3809.96, + "end": 3811.68, + "probability": 0.9802 + }, + { + "start": 3811.8, + "end": 3813.92, + "probability": 0.917 + }, + { + "start": 3815.2, + "end": 3815.72, + "probability": 0.7258 + }, + { + "start": 3815.8, + "end": 3817.32, + "probability": 0.9333 + }, + { + "start": 3820.62, + "end": 3822.46, + "probability": 0.9433 + }, + { + "start": 3836.56, + "end": 3838.2, + "probability": 0.8476 + }, + { + "start": 3838.84, + "end": 3841.16, + "probability": 0.7286 + }, + { + "start": 3841.56, + "end": 3842.66, + "probability": 0.3783 + }, + { + "start": 3843.64, + "end": 3847.58, + "probability": 0.8658 + }, + { + "start": 3849.0, + "end": 3850.88, + "probability": 0.9919 + }, + { + "start": 3852.46, + "end": 3854.44, + "probability": 0.7384 + }, + { + "start": 3856.34, + "end": 3861.36, + "probability": 0.9875 + }, + { + "start": 3862.78, + "end": 3865.72, + "probability": 0.9932 + }, + { + "start": 3866.56, + "end": 3868.78, + "probability": 0.9967 + }, + { + "start": 3870.66, + "end": 3872.76, + "probability": 0.9125 + }, + { + "start": 3872.88, + "end": 3874.13, + "probability": 0.9862 + }, + { + "start": 3877.36, + "end": 3878.12, + "probability": 0.5878 + }, + { + "start": 3878.5, + "end": 3883.66, + "probability": 0.933 + }, + { + "start": 3883.74, + "end": 3885.38, + "probability": 0.9612 + }, + { + "start": 3886.12, + "end": 3887.96, + "probability": 0.9766 + }, + { + "start": 3888.64, + "end": 3890.6, + "probability": 0.943 + }, + { + "start": 3891.44, + "end": 3894.96, + "probability": 0.9785 + }, + { + "start": 3895.94, + "end": 3896.89, + "probability": 0.9042 + }, + { + "start": 3897.62, + "end": 3900.5, + "probability": 0.9706 + }, + { + "start": 3901.02, + "end": 3902.14, + "probability": 0.7554 + }, + { + "start": 3902.8, + "end": 3904.4, + "probability": 0.9883 + }, + { + "start": 3904.92, + "end": 3909.3, + "probability": 0.9891 + }, + { + "start": 3909.64, + "end": 3912.64, + "probability": 0.7329 + }, + { + "start": 3912.76, + "end": 3913.12, + "probability": 0.6113 + }, + { + "start": 3913.58, + "end": 3914.72, + "probability": 0.9721 + }, + { + "start": 3914.88, + "end": 3915.46, + "probability": 0.8093 + }, + { + "start": 3916.42, + "end": 3918.64, + "probability": 0.8418 + }, + { + "start": 3919.4, + "end": 3920.24, + "probability": 0.9448 + }, + { + "start": 3920.68, + "end": 3922.56, + "probability": 0.9868 + }, + { + "start": 3923.32, + "end": 3925.22, + "probability": 0.9755 + }, + { + "start": 3925.92, + "end": 3927.86, + "probability": 0.9973 + }, + { + "start": 3928.34, + "end": 3928.9, + "probability": 0.8449 + }, + { + "start": 3929.2, + "end": 3931.04, + "probability": 0.8759 + }, + { + "start": 3931.68, + "end": 3932.86, + "probability": 0.8056 + }, + { + "start": 3934.16, + "end": 3936.14, + "probability": 0.9097 + }, + { + "start": 3936.82, + "end": 3944.16, + "probability": 0.9851 + }, + { + "start": 3944.54, + "end": 3944.86, + "probability": 0.0107 + }, + { + "start": 3944.9, + "end": 3945.82, + "probability": 0.0449 + }, + { + "start": 3945.88, + "end": 3947.24, + "probability": 0.9648 + }, + { + "start": 3947.26, + "end": 3947.7, + "probability": 0.5758 + }, + { + "start": 3949.04, + "end": 3949.26, + "probability": 0.0305 + }, + { + "start": 3949.26, + "end": 3951.48, + "probability": 0.7816 + }, + { + "start": 3951.84, + "end": 3956.38, + "probability": 0.9061 + }, + { + "start": 3956.88, + "end": 3957.73, + "probability": 0.3869 + }, + { + "start": 3958.04, + "end": 3959.32, + "probability": 0.3966 + }, + { + "start": 3959.88, + "end": 3960.9, + "probability": 0.7704 + }, + { + "start": 3961.98, + "end": 3963.7, + "probability": 0.69 + }, + { + "start": 3963.7, + "end": 3968.72, + "probability": 0.6948 + }, + { + "start": 3970.84, + "end": 3975.36, + "probability": 0.6649 + }, + { + "start": 3975.8, + "end": 3976.18, + "probability": 0.0556 + }, + { + "start": 3976.18, + "end": 3976.68, + "probability": 0.7228 + }, + { + "start": 3976.82, + "end": 3978.34, + "probability": 0.5078 + }, + { + "start": 3978.94, + "end": 3980.26, + "probability": 0.9397 + }, + { + "start": 3980.82, + "end": 3982.18, + "probability": 0.8242 + }, + { + "start": 3982.26, + "end": 3983.42, + "probability": 0.8104 + }, + { + "start": 3984.44, + "end": 3988.34, + "probability": 0.7679 + }, + { + "start": 3989.32, + "end": 3991.8, + "probability": 0.9937 + }, + { + "start": 3991.86, + "end": 3992.84, + "probability": 0.7069 + }, + { + "start": 3992.88, + "end": 3994.32, + "probability": 0.9419 + }, + { + "start": 3994.9, + "end": 3996.94, + "probability": 0.9529 + }, + { + "start": 3998.02, + "end": 4002.42, + "probability": 0.7975 + }, + { + "start": 4002.84, + "end": 4009.04, + "probability": 0.9941 + }, + { + "start": 4009.12, + "end": 4009.84, + "probability": 0.5634 + }, + { + "start": 4012.02, + "end": 4012.72, + "probability": 0.8439 + }, + { + "start": 4012.74, + "end": 4013.62, + "probability": 0.6428 + }, + { + "start": 4013.74, + "end": 4016.94, + "probability": 0.9944 + }, + { + "start": 4017.06, + "end": 4018.44, + "probability": 0.8484 + }, + { + "start": 4019.22, + "end": 4022.18, + "probability": 0.9832 + }, + { + "start": 4023.16, + "end": 4025.76, + "probability": 0.9735 + }, + { + "start": 4025.76, + "end": 4029.84, + "probability": 0.9946 + }, + { + "start": 4030.4, + "end": 4031.32, + "probability": 0.4281 + }, + { + "start": 4031.8, + "end": 4033.46, + "probability": 0.9086 + }, + { + "start": 4033.54, + "end": 4034.58, + "probability": 0.8982 + }, + { + "start": 4034.82, + "end": 4035.66, + "probability": 0.9238 + }, + { + "start": 4036.12, + "end": 4036.28, + "probability": 0.1095 + }, + { + "start": 4036.28, + "end": 4038.0, + "probability": 0.9657 + }, + { + "start": 4038.1, + "end": 4041.62, + "probability": 0.9305 + }, + { + "start": 4042.2, + "end": 4044.81, + "probability": 0.8525 + }, + { + "start": 4044.96, + "end": 4045.54, + "probability": 0.2469 + }, + { + "start": 4045.54, + "end": 4045.54, + "probability": 0.1901 + }, + { + "start": 4045.54, + "end": 4046.14, + "probability": 0.7512 + }, + { + "start": 4046.18, + "end": 4047.06, + "probability": 0.2973 + }, + { + "start": 4047.24, + "end": 4048.42, + "probability": 0.8768 + }, + { + "start": 4049.28, + "end": 4050.94, + "probability": 0.918 + }, + { + "start": 4051.46, + "end": 4052.67, + "probability": 0.7139 + }, + { + "start": 4053.12, + "end": 4053.28, + "probability": 0.506 + }, + { + "start": 4053.36, + "end": 4053.92, + "probability": 0.4402 + }, + { + "start": 4053.94, + "end": 4054.9, + "probability": 0.676 + }, + { + "start": 4054.9, + "end": 4055.0, + "probability": 0.2387 + }, + { + "start": 4055.0, + "end": 4057.34, + "probability": 0.7834 + }, + { + "start": 4058.16, + "end": 4060.14, + "probability": 0.8981 + }, + { + "start": 4060.8, + "end": 4062.18, + "probability": 0.9746 + }, + { + "start": 4062.72, + "end": 4064.32, + "probability": 0.9917 + }, + { + "start": 4064.84, + "end": 4067.64, + "probability": 0.989 + }, + { + "start": 4068.16, + "end": 4068.16, + "probability": 0.4658 + }, + { + "start": 4068.16, + "end": 4069.58, + "probability": 0.6712 + }, + { + "start": 4069.7, + "end": 4074.14, + "probability": 0.9967 + }, + { + "start": 4074.2, + "end": 4076.76, + "probability": 0.9928 + }, + { + "start": 4077.1, + "end": 4079.68, + "probability": 0.9297 + }, + { + "start": 4079.86, + "end": 4082.59, + "probability": 0.9675 + }, + { + "start": 4083.1, + "end": 4083.86, + "probability": 0.461 + }, + { + "start": 4084.32, + "end": 4088.12, + "probability": 0.9871 + }, + { + "start": 4088.8, + "end": 4089.96, + "probability": 0.7178 + }, + { + "start": 4090.04, + "end": 4090.89, + "probability": 0.8865 + }, + { + "start": 4091.3, + "end": 4094.74, + "probability": 0.9336 + }, + { + "start": 4094.94, + "end": 4096.12, + "probability": 0.6074 + }, + { + "start": 4097.22, + "end": 4101.56, + "probability": 0.6371 + }, + { + "start": 4103.18, + "end": 4104.84, + "probability": 0.6747 + }, + { + "start": 4104.88, + "end": 4108.26, + "probability": 0.5692 + }, + { + "start": 4108.26, + "end": 4110.39, + "probability": 0.9515 + }, + { + "start": 4111.28, + "end": 4112.44, + "probability": 0.9709 + }, + { + "start": 4113.54, + "end": 4115.64, + "probability": 0.576 + }, + { + "start": 4115.7, + "end": 4116.42, + "probability": 0.6017 + }, + { + "start": 4116.8, + "end": 4117.68, + "probability": 0.7217 + }, + { + "start": 4119.73, + "end": 4124.17, + "probability": 0.8571 + }, + { + "start": 4125.76, + "end": 4127.92, + "probability": 0.8927 + }, + { + "start": 4128.56, + "end": 4129.38, + "probability": 0.6901 + }, + { + "start": 4130.3, + "end": 4131.0, + "probability": 0.6764 + }, + { + "start": 4131.66, + "end": 4132.92, + "probability": 0.3522 + }, + { + "start": 4133.1, + "end": 4135.2, + "probability": 0.2847 + }, + { + "start": 4135.32, + "end": 4136.22, + "probability": 0.9717 + }, + { + "start": 4137.0, + "end": 4140.42, + "probability": 0.5429 + }, + { + "start": 4146.56, + "end": 4146.64, + "probability": 0.0005 + }, + { + "start": 4155.62, + "end": 4160.26, + "probability": 0.3882 + }, + { + "start": 4161.3, + "end": 4162.4, + "probability": 0.0291 + }, + { + "start": 4162.4, + "end": 4162.82, + "probability": 0.1995 + }, + { + "start": 4162.82, + "end": 4162.82, + "probability": 0.0199 + }, + { + "start": 4162.82, + "end": 4163.98, + "probability": 0.0341 + }, + { + "start": 4163.98, + "end": 4164.54, + "probability": 0.2287 + }, + { + "start": 4183.92, + "end": 4190.36, + "probability": 0.5574 + }, + { + "start": 4191.62, + "end": 4193.58, + "probability": 0.0075 + }, + { + "start": 4194.26, + "end": 4194.62, + "probability": 0.1716 + }, + { + "start": 4194.62, + "end": 4194.62, + "probability": 0.0666 + }, + { + "start": 4194.62, + "end": 4198.88, + "probability": 0.0736 + }, + { + "start": 4205.7, + "end": 4208.88, + "probability": 0.0612 + }, + { + "start": 4209.38, + "end": 4209.58, + "probability": 0.0708 + }, + { + "start": 4209.58, + "end": 4209.58, + "probability": 0.2722 + }, + { + "start": 4209.58, + "end": 4209.58, + "probability": 0.2664 + }, + { + "start": 4209.58, + "end": 4209.6, + "probability": 0.0268 + }, + { + "start": 4209.6, + "end": 4210.06, + "probability": 0.0741 + }, + { + "start": 4211.0, + "end": 4211.0, + "probability": 0.0 + }, + { + "start": 4211.0, + "end": 4211.0, + "probability": 0.0 + }, + { + "start": 4211.0, + "end": 4211.0, + "probability": 0.0 + }, + { + "start": 4211.0, + "end": 4211.0, + "probability": 0.0 + }, + { + "start": 4211.0, + "end": 4211.0, + "probability": 0.0 + }, + { + "start": 4211.0, + "end": 4211.0, + "probability": 0.0 + }, + { + "start": 4211.0, + "end": 4211.0, + "probability": 0.0 + }, + { + "start": 4211.0, + "end": 4211.0, + "probability": 0.0 + }, + { + "start": 4211.26, + "end": 4211.28, + "probability": 0.0514 + }, + { + "start": 4216.24, + "end": 4217.3, + "probability": 0.0025 + }, + { + "start": 4219.42, + "end": 4223.16, + "probability": 0.6631 + }, + { + "start": 4230.26, + "end": 4236.32, + "probability": 0.0113 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.0, + "end": 4337.0, + "probability": 0.0 + }, + { + "start": 4337.2, + "end": 4337.34, + "probability": 0.0193 + }, + { + "start": 4337.64, + "end": 4341.08, + "probability": 0.7194 + }, + { + "start": 4341.48, + "end": 4342.56, + "probability": 0.7417 + }, + { + "start": 4342.7, + "end": 4343.86, + "probability": 0.8989 + }, + { + "start": 4344.34, + "end": 4350.08, + "probability": 0.9784 + }, + { + "start": 4350.76, + "end": 4354.24, + "probability": 0.9621 + }, + { + "start": 4354.4, + "end": 4359.28, + "probability": 0.9963 + }, + { + "start": 4359.32, + "end": 4364.1, + "probability": 0.8703 + }, + { + "start": 4366.04, + "end": 4369.97, + "probability": 0.995 + }, + { + "start": 4370.38, + "end": 4373.96, + "probability": 0.9025 + }, + { + "start": 4374.14, + "end": 4379.46, + "probability": 0.9432 + }, + { + "start": 4380.69, + "end": 4384.54, + "probability": 0.9946 + }, + { + "start": 4384.54, + "end": 4387.51, + "probability": 0.9553 + }, + { + "start": 4388.18, + "end": 4390.22, + "probability": 0.8305 + }, + { + "start": 4390.5, + "end": 4394.08, + "probability": 0.9713 + }, + { + "start": 4394.5, + "end": 4396.76, + "probability": 0.8484 + }, + { + "start": 4396.78, + "end": 4397.42, + "probability": 0.8745 + }, + { + "start": 4397.54, + "end": 4399.0, + "probability": 0.9401 + }, + { + "start": 4399.32, + "end": 4400.6, + "probability": 0.8795 + }, + { + "start": 4400.66, + "end": 4401.22, + "probability": 0.8337 + }, + { + "start": 4401.76, + "end": 4403.66, + "probability": 0.8138 + }, + { + "start": 4403.76, + "end": 4405.36, + "probability": 0.6485 + }, + { + "start": 4407.41, + "end": 4410.14, + "probability": 0.8073 + }, + { + "start": 4410.64, + "end": 4411.86, + "probability": 0.9865 + }, + { + "start": 4415.22, + "end": 4416.52, + "probability": 0.5602 + }, + { + "start": 4421.44, + "end": 4423.46, + "probability": 0.168 + }, + { + "start": 4424.28, + "end": 4426.74, + "probability": 0.7484 + }, + { + "start": 4427.98, + "end": 4430.96, + "probability": 0.9966 + }, + { + "start": 4431.7, + "end": 4433.88, + "probability": 0.9802 + }, + { + "start": 4434.02, + "end": 4435.44, + "probability": 0.5736 + }, + { + "start": 4435.9, + "end": 4436.44, + "probability": 0.4702 + }, + { + "start": 4436.46, + "end": 4437.56, + "probability": 0.7798 + }, + { + "start": 4438.34, + "end": 4438.8, + "probability": 0.7748 + }, + { + "start": 4438.96, + "end": 4441.12, + "probability": 0.9806 + }, + { + "start": 4441.46, + "end": 4443.32, + "probability": 0.9953 + }, + { + "start": 4444.31, + "end": 4446.6, + "probability": 0.9958 + }, + { + "start": 4446.84, + "end": 4448.0, + "probability": 0.9325 + }, + { + "start": 4448.72, + "end": 4450.1, + "probability": 0.7933 + }, + { + "start": 4450.94, + "end": 4454.46, + "probability": 0.7253 + }, + { + "start": 4455.92, + "end": 4459.36, + "probability": 0.8813 + }, + { + "start": 4459.4, + "end": 4462.1, + "probability": 0.8318 + }, + { + "start": 4462.26, + "end": 4465.6, + "probability": 0.9923 + }, + { + "start": 4467.12, + "end": 4470.7, + "probability": 0.4514 + }, + { + "start": 4471.58, + "end": 4474.16, + "probability": 0.7093 + }, + { + "start": 4474.9, + "end": 4475.58, + "probability": 0.9021 + }, + { + "start": 4475.78, + "end": 4476.68, + "probability": 0.9939 + }, + { + "start": 4476.8, + "end": 4478.76, + "probability": 0.9891 + }, + { + "start": 4479.2, + "end": 4484.3, + "probability": 0.9809 + }, + { + "start": 4484.92, + "end": 4485.44, + "probability": 0.6584 + }, + { + "start": 4485.76, + "end": 4486.32, + "probability": 0.6963 + }, + { + "start": 4486.46, + "end": 4486.98, + "probability": 0.9105 + }, + { + "start": 4487.44, + "end": 4488.24, + "probability": 0.7732 + }, + { + "start": 4488.56, + "end": 4489.66, + "probability": 0.954 + }, + { + "start": 4489.74, + "end": 4490.64, + "probability": 0.9671 + }, + { + "start": 4490.66, + "end": 4491.42, + "probability": 0.9445 + }, + { + "start": 4491.64, + "end": 4493.12, + "probability": 0.9585 + }, + { + "start": 4493.6, + "end": 4494.96, + "probability": 0.7995 + }, + { + "start": 4495.04, + "end": 4496.66, + "probability": 0.7472 + }, + { + "start": 4496.7, + "end": 4497.6, + "probability": 0.6881 + }, + { + "start": 4497.68, + "end": 4498.8, + "probability": 0.6616 + }, + { + "start": 4498.84, + "end": 4500.16, + "probability": 0.9626 + }, + { + "start": 4501.5, + "end": 4502.38, + "probability": 0.652 + }, + { + "start": 4502.92, + "end": 4503.98, + "probability": 0.6105 + }, + { + "start": 4504.46, + "end": 4505.64, + "probability": 0.8662 + }, + { + "start": 4506.02, + "end": 4509.3, + "probability": 0.9137 + }, + { + "start": 4509.46, + "end": 4511.04, + "probability": 0.9529 + }, + { + "start": 4511.14, + "end": 4515.22, + "probability": 0.6833 + }, + { + "start": 4515.3, + "end": 4515.66, + "probability": 0.7635 + }, + { + "start": 4515.74, + "end": 4519.56, + "probability": 0.8876 + }, + { + "start": 4520.82, + "end": 4521.66, + "probability": 0.7933 + }, + { + "start": 4522.62, + "end": 4524.45, + "probability": 0.8834 + }, + { + "start": 4525.74, + "end": 4528.26, + "probability": 0.8918 + }, + { + "start": 4528.26, + "end": 4530.8, + "probability": 0.9844 + }, + { + "start": 4532.06, + "end": 4534.08, + "probability": 0.9927 + }, + { + "start": 4534.08, + "end": 4536.46, + "probability": 0.7043 + }, + { + "start": 4536.62, + "end": 4537.62, + "probability": 0.5949 + }, + { + "start": 4538.32, + "end": 4539.02, + "probability": 0.7437 + }, + { + "start": 4539.76, + "end": 4539.86, + "probability": 0.2303 + }, + { + "start": 4539.94, + "end": 4540.78, + "probability": 0.6589 + }, + { + "start": 4541.24, + "end": 4543.6, + "probability": 0.9148 + }, + { + "start": 4544.16, + "end": 4546.12, + "probability": 0.5983 + }, + { + "start": 4546.12, + "end": 4549.18, + "probability": 0.9253 + }, + { + "start": 4550.22, + "end": 4551.36, + "probability": 0.721 + }, + { + "start": 4551.58, + "end": 4554.2, + "probability": 0.6947 + }, + { + "start": 4554.68, + "end": 4554.94, + "probability": 0.2838 + }, + { + "start": 4554.96, + "end": 4555.77, + "probability": 0.9067 + }, + { + "start": 4556.62, + "end": 4558.1, + "probability": 0.9435 + }, + { + "start": 4559.14, + "end": 4561.12, + "probability": 0.9787 + }, + { + "start": 4561.12, + "end": 4563.9, + "probability": 0.9437 + }, + { + "start": 4565.22, + "end": 4569.94, + "probability": 0.9885 + }, + { + "start": 4569.94, + "end": 4574.38, + "probability": 0.9907 + }, + { + "start": 4574.58, + "end": 4578.06, + "probability": 0.9631 + }, + { + "start": 4579.08, + "end": 4582.17, + "probability": 0.6655 + }, + { + "start": 4582.76, + "end": 4584.96, + "probability": 0.9784 + }, + { + "start": 4585.1, + "end": 4587.42, + "probability": 0.9955 + }, + { + "start": 4587.98, + "end": 4590.5, + "probability": 0.9143 + }, + { + "start": 4590.64, + "end": 4594.4, + "probability": 0.9373 + }, + { + "start": 4594.56, + "end": 4595.44, + "probability": 0.8564 + }, + { + "start": 4596.56, + "end": 4598.44, + "probability": 0.9251 + }, + { + "start": 4598.58, + "end": 4602.1, + "probability": 0.9359 + }, + { + "start": 4602.14, + "end": 4607.16, + "probability": 0.8562 + }, + { + "start": 4607.94, + "end": 4608.54, + "probability": 0.6912 + }, + { + "start": 4608.9, + "end": 4611.98, + "probability": 0.941 + }, + { + "start": 4612.96, + "end": 4616.34, + "probability": 0.9841 + }, + { + "start": 4617.08, + "end": 4619.4, + "probability": 0.9509 + }, + { + "start": 4619.94, + "end": 4621.82, + "probability": 0.8107 + }, + { + "start": 4621.94, + "end": 4624.24, + "probability": 0.9545 + }, + { + "start": 4624.24, + "end": 4628.25, + "probability": 0.9959 + }, + { + "start": 4629.2, + "end": 4632.06, + "probability": 0.9946 + }, + { + "start": 4632.38, + "end": 4633.28, + "probability": 0.5118 + }, + { + "start": 4633.4, + "end": 4633.8, + "probability": 0.2422 + }, + { + "start": 4634.32, + "end": 4634.94, + "probability": 0.8733 + }, + { + "start": 4634.98, + "end": 4636.06, + "probability": 0.9404 + }, + { + "start": 4636.26, + "end": 4639.8, + "probability": 0.2859 + }, + { + "start": 4640.52, + "end": 4640.7, + "probability": 0.3376 + }, + { + "start": 4640.98, + "end": 4642.5, + "probability": 0.34 + }, + { + "start": 4642.62, + "end": 4643.84, + "probability": 0.5813 + }, + { + "start": 4644.12, + "end": 4645.08, + "probability": 0.8101 + }, + { + "start": 4645.48, + "end": 4649.11, + "probability": 0.7732 + }, + { + "start": 4649.2, + "end": 4649.84, + "probability": 0.7029 + }, + { + "start": 4649.9, + "end": 4652.06, + "probability": 0.7887 + }, + { + "start": 4652.72, + "end": 4656.48, + "probability": 0.9196 + }, + { + "start": 4657.02, + "end": 4657.52, + "probability": 0.507 + }, + { + "start": 4657.82, + "end": 4659.04, + "probability": 0.679 + }, + { + "start": 4659.16, + "end": 4659.84, + "probability": 0.7031 + }, + { + "start": 4659.84, + "end": 4659.98, + "probability": 0.9127 + }, + { + "start": 4660.54, + "end": 4660.64, + "probability": 0.2443 + }, + { + "start": 4660.96, + "end": 4664.18, + "probability": 0.9603 + }, + { + "start": 4664.74, + "end": 4667.08, + "probability": 0.8866 + }, + { + "start": 4667.4, + "end": 4669.66, + "probability": 0.9605 + }, + { + "start": 4671.78, + "end": 4674.28, + "probability": 0.3112 + }, + { + "start": 4674.42, + "end": 4674.62, + "probability": 0.0535 + }, + { + "start": 4675.0, + "end": 4675.46, + "probability": 0.5827 + }, + { + "start": 4675.72, + "end": 4677.96, + "probability": 0.0672 + }, + { + "start": 4677.96, + "end": 4678.02, + "probability": 0.0125 + }, + { + "start": 4678.36, + "end": 4678.72, + "probability": 0.5537 + }, + { + "start": 4678.98, + "end": 4682.3, + "probability": 0.9015 + }, + { + "start": 4683.6, + "end": 4685.56, + "probability": 0.9606 + }, + { + "start": 4685.66, + "end": 4686.48, + "probability": 0.8362 + }, + { + "start": 4686.58, + "end": 4687.9, + "probability": 0.8104 + }, + { + "start": 4688.54, + "end": 4691.08, + "probability": 0.7399 + }, + { + "start": 4691.68, + "end": 4695.58, + "probability": 0.8723 + }, + { + "start": 4695.66, + "end": 4697.94, + "probability": 0.9071 + }, + { + "start": 4698.16, + "end": 4698.62, + "probability": 0.3336 + }, + { + "start": 4698.72, + "end": 4699.78, + "probability": 0.9893 + }, + { + "start": 4700.6, + "end": 4702.5, + "probability": 0.9868 + }, + { + "start": 4702.64, + "end": 4705.54, + "probability": 0.9919 + }, + { + "start": 4706.12, + "end": 4709.22, + "probability": 0.9814 + }, + { + "start": 4709.28, + "end": 4709.62, + "probability": 0.7457 + }, + { + "start": 4709.7, + "end": 4710.67, + "probability": 0.7486 + }, + { + "start": 4711.06, + "end": 4711.58, + "probability": 0.739 + }, + { + "start": 4711.68, + "end": 4712.44, + "probability": 0.7723 + }, + { + "start": 4712.54, + "end": 4717.26, + "probability": 0.9771 + }, + { + "start": 4717.26, + "end": 4721.9, + "probability": 0.9971 + }, + { + "start": 4722.5, + "end": 4723.36, + "probability": 0.6978 + }, + { + "start": 4723.44, + "end": 4726.74, + "probability": 0.9735 + }, + { + "start": 4726.82, + "end": 4727.46, + "probability": 0.58 + }, + { + "start": 4728.42, + "end": 4730.72, + "probability": 0.9681 + }, + { + "start": 4730.76, + "end": 4733.16, + "probability": 0.92 + }, + { + "start": 4733.48, + "end": 4736.32, + "probability": 0.8789 + }, + { + "start": 4736.46, + "end": 4737.03, + "probability": 0.9192 + }, + { + "start": 4737.14, + "end": 4737.82, + "probability": 0.6368 + }, + { + "start": 4738.06, + "end": 4741.44, + "probability": 0.0755 + }, + { + "start": 4741.44, + "end": 4741.44, + "probability": 0.1884 + }, + { + "start": 4741.44, + "end": 4741.44, + "probability": 0.0927 + }, + { + "start": 4741.44, + "end": 4744.5, + "probability": 0.5619 + }, + { + "start": 4744.68, + "end": 4745.96, + "probability": 0.7427 + }, + { + "start": 4746.04, + "end": 4746.78, + "probability": 0.79 + }, + { + "start": 4747.06, + "end": 4747.76, + "probability": 0.9521 + }, + { + "start": 4748.02, + "end": 4748.62, + "probability": 0.8479 + }, + { + "start": 4748.92, + "end": 4749.44, + "probability": 0.6591 + }, + { + "start": 4749.52, + "end": 4750.44, + "probability": 0.8853 + }, + { + "start": 4750.96, + "end": 4754.04, + "probability": 0.9272 + }, + { + "start": 4754.28, + "end": 4757.42, + "probability": 0.9969 + }, + { + "start": 4757.54, + "end": 4757.89, + "probability": 0.7676 + }, + { + "start": 4758.44, + "end": 4759.42, + "probability": 0.9359 + }, + { + "start": 4759.68, + "end": 4760.56, + "probability": 0.9707 + }, + { + "start": 4760.98, + "end": 4765.9, + "probability": 0.9848 + }, + { + "start": 4766.2, + "end": 4769.59, + "probability": 0.9508 + }, + { + "start": 4771.12, + "end": 4774.56, + "probability": 0.9845 + }, + { + "start": 4774.77, + "end": 4777.96, + "probability": 0.9963 + }, + { + "start": 4778.24, + "end": 4778.62, + "probability": 0.3145 + }, + { + "start": 4778.66, + "end": 4780.34, + "probability": 0.8761 + }, + { + "start": 4780.42, + "end": 4780.62, + "probability": 0.2141 + }, + { + "start": 4781.26, + "end": 4782.24, + "probability": 0.0458 + }, + { + "start": 4782.9, + "end": 4784.62, + "probability": 0.6672 + }, + { + "start": 4784.78, + "end": 4786.74, + "probability": 0.3631 + }, + { + "start": 4786.74, + "end": 4793.4, + "probability": 0.0152 + }, + { + "start": 4793.58, + "end": 4794.54, + "probability": 0.0568 + }, + { + "start": 4794.6, + "end": 4797.2, + "probability": 0.2593 + }, + { + "start": 4797.28, + "end": 4798.74, + "probability": 0.9832 + }, + { + "start": 4798.9, + "end": 4802.46, + "probability": 0.9869 + }, + { + "start": 4802.46, + "end": 4805.44, + "probability": 0.9344 + }, + { + "start": 4805.48, + "end": 4806.67, + "probability": 0.5756 + }, + { + "start": 4807.04, + "end": 4807.04, + "probability": 0.0299 + }, + { + "start": 4807.28, + "end": 4807.48, + "probability": 0.1197 + }, + { + "start": 4807.48, + "end": 4807.86, + "probability": 0.3262 + }, + { + "start": 4807.9, + "end": 4808.5, + "probability": 0.2438 + }, + { + "start": 4808.5, + "end": 4810.22, + "probability": 0.7521 + }, + { + "start": 4810.3, + "end": 4810.68, + "probability": 0.6415 + }, + { + "start": 4810.68, + "end": 4812.1, + "probability": 0.2746 + }, + { + "start": 4812.1, + "end": 4814.82, + "probability": 0.5859 + }, + { + "start": 4814.82, + "end": 4817.4, + "probability": 0.7788 + }, + { + "start": 4817.48, + "end": 4817.56, + "probability": 0.0528 + }, + { + "start": 4817.56, + "end": 4820.02, + "probability": 0.8904 + }, + { + "start": 4820.12, + "end": 4820.22, + "probability": 0.5661 + }, + { + "start": 4820.22, + "end": 4823.26, + "probability": 0.952 + }, + { + "start": 4823.52, + "end": 4824.06, + "probability": 0.3675 + }, + { + "start": 4824.22, + "end": 4824.56, + "probability": 0.5199 + }, + { + "start": 4824.74, + "end": 4826.1, + "probability": 0.714 + }, + { + "start": 4827.04, + "end": 4829.28, + "probability": 0.9699 + }, + { + "start": 4829.82, + "end": 4832.26, + "probability": 0.9507 + }, + { + "start": 4832.32, + "end": 4832.88, + "probability": 0.4718 + }, + { + "start": 4833.08, + "end": 4833.4, + "probability": 0.6895 + }, + { + "start": 4833.46, + "end": 4834.24, + "probability": 0.2854 + }, + { + "start": 4834.4, + "end": 4834.54, + "probability": 0.0454 + }, + { + "start": 4834.54, + "end": 4838.62, + "probability": 0.5244 + }, + { + "start": 4838.62, + "end": 4839.26, + "probability": 0.1015 + }, + { + "start": 4839.34, + "end": 4843.12, + "probability": 0.9414 + }, + { + "start": 4843.74, + "end": 4846.38, + "probability": 0.5883 + }, + { + "start": 4846.94, + "end": 4849.88, + "probability": 0.7161 + }, + { + "start": 4850.06, + "end": 4851.76, + "probability": 0.8324 + }, + { + "start": 4853.16, + "end": 4854.9, + "probability": 0.7395 + }, + { + "start": 4854.96, + "end": 4855.4, + "probability": 0.5489 + }, + { + "start": 4855.44, + "end": 4856.26, + "probability": 0.9651 + }, + { + "start": 4863.92, + "end": 4866.32, + "probability": 0.6397 + }, + { + "start": 4872.04, + "end": 4874.44, + "probability": 0.9599 + }, + { + "start": 4875.1, + "end": 4877.38, + "probability": 0.0429 + }, + { + "start": 4877.38, + "end": 4879.26, + "probability": 0.0042 + }, + { + "start": 4879.96, + "end": 4880.1, + "probability": 0.022 + }, + { + "start": 4880.1, + "end": 4880.1, + "probability": 0.1478 + }, + { + "start": 4880.1, + "end": 4880.1, + "probability": 0.4952 + }, + { + "start": 4880.1, + "end": 4881.06, + "probability": 0.2179 + }, + { + "start": 4881.14, + "end": 4882.12, + "probability": 0.0083 + }, + { + "start": 4882.12, + "end": 4882.96, + "probability": 0.3134 + }, + { + "start": 4885.12, + "end": 4887.18, + "probability": 0.4782 + }, + { + "start": 4888.28, + "end": 4890.84, + "probability": 0.5707 + }, + { + "start": 4891.48, + "end": 4893.34, + "probability": 0.792 + }, + { + "start": 4893.34, + "end": 4896.02, + "probability": 0.8442 + }, + { + "start": 4896.44, + "end": 4897.24, + "probability": 0.7973 + }, + { + "start": 4897.34, + "end": 4899.48, + "probability": 0.9722 + }, + { + "start": 4899.54, + "end": 4903.1, + "probability": 0.9374 + }, + { + "start": 4904.16, + "end": 4905.6, + "probability": 0.7315 + }, + { + "start": 4906.14, + "end": 4907.44, + "probability": 0.9402 + }, + { + "start": 4909.32, + "end": 4912.8, + "probability": 0.9482 + }, + { + "start": 4914.08, + "end": 4916.84, + "probability": 0.9526 + }, + { + "start": 4917.22, + "end": 4920.02, + "probability": 0.8773 + }, + { + "start": 4921.78, + "end": 4924.44, + "probability": 0.8509 + }, + { + "start": 4933.56, + "end": 4937.28, + "probability": 0.5388 + }, + { + "start": 4938.32, + "end": 4942.74, + "probability": 0.9697 + }, + { + "start": 4942.88, + "end": 4945.84, + "probability": 0.9884 + }, + { + "start": 4946.04, + "end": 4946.5, + "probability": 0.946 + }, + { + "start": 4947.02, + "end": 4947.64, + "probability": 0.6879 + }, + { + "start": 4947.74, + "end": 4949.36, + "probability": 0.985 + }, + { + "start": 4949.38, + "end": 4950.64, + "probability": 0.8948 + }, + { + "start": 4951.48, + "end": 4955.26, + "probability": 0.9932 + }, + { + "start": 4955.26, + "end": 4959.08, + "probability": 0.9977 + }, + { + "start": 4959.84, + "end": 4965.54, + "probability": 0.8088 + }, + { + "start": 4966.22, + "end": 4969.26, + "probability": 0.9771 + }, + { + "start": 4969.86, + "end": 4970.64, + "probability": 0.9319 + }, + { + "start": 4970.74, + "end": 4972.72, + "probability": 0.9419 + }, + { + "start": 4972.86, + "end": 4974.62, + "probability": 0.9249 + }, + { + "start": 4974.8, + "end": 4975.6, + "probability": 0.5699 + }, + { + "start": 4975.96, + "end": 4978.66, + "probability": 0.9604 + }, + { + "start": 4979.02, + "end": 4979.34, + "probability": 0.7644 + }, + { + "start": 4979.48, + "end": 4980.0, + "probability": 0.8049 + }, + { + "start": 4980.0, + "end": 4982.38, + "probability": 0.9532 + }, + { + "start": 4982.52, + "end": 4983.42, + "probability": 0.9224 + }, + { + "start": 4983.64, + "end": 4984.26, + "probability": 0.9019 + }, + { + "start": 4984.6, + "end": 4990.9, + "probability": 0.959 + }, + { + "start": 4991.18, + "end": 4992.26, + "probability": 0.9255 + }, + { + "start": 4992.34, + "end": 4993.74, + "probability": 0.9675 + }, + { + "start": 4993.94, + "end": 4995.28, + "probability": 0.9451 + }, + { + "start": 4995.8, + "end": 4997.32, + "probability": 0.9358 + }, + { + "start": 4997.38, + "end": 4999.94, + "probability": 0.9662 + }, + { + "start": 5000.32, + "end": 5003.08, + "probability": 0.9613 + }, + { + "start": 5003.6, + "end": 5010.74, + "probability": 0.8917 + }, + { + "start": 5010.82, + "end": 5011.48, + "probability": 0.8659 + }, + { + "start": 5011.74, + "end": 5014.86, + "probability": 0.8931 + }, + { + "start": 5014.94, + "end": 5019.98, + "probability": 0.9291 + }, + { + "start": 5020.34, + "end": 5023.52, + "probability": 0.4432 + }, + { + "start": 5024.48, + "end": 5026.2, + "probability": 0.111 + }, + { + "start": 5026.42, + "end": 5027.58, + "probability": 0.5346 + }, + { + "start": 5027.74, + "end": 5030.84, + "probability": 0.9775 + }, + { + "start": 5031.1, + "end": 5037.34, + "probability": 0.9933 + }, + { + "start": 5037.48, + "end": 5039.06, + "probability": 0.9566 + }, + { + "start": 5039.4, + "end": 5041.48, + "probability": 0.9596 + }, + { + "start": 5041.6, + "end": 5042.92, + "probability": 0.4903 + }, + { + "start": 5042.92, + "end": 5045.29, + "probability": 0.9145 + }, + { + "start": 5045.44, + "end": 5045.94, + "probability": 0.6566 + }, + { + "start": 5046.34, + "end": 5048.56, + "probability": 0.9906 + }, + { + "start": 5049.14, + "end": 5050.22, + "probability": 0.9878 + }, + { + "start": 5050.4, + "end": 5051.38, + "probability": 0.8745 + }, + { + "start": 5051.78, + "end": 5053.64, + "probability": 0.8819 + }, + { + "start": 5053.78, + "end": 5058.66, + "probability": 0.9519 + }, + { + "start": 5058.66, + "end": 5058.9, + "probability": 0.2513 + }, + { + "start": 5058.9, + "end": 5062.38, + "probability": 0.9136 + }, + { + "start": 5062.46, + "end": 5063.2, + "probability": 0.5639 + }, + { + "start": 5063.36, + "end": 5066.2, + "probability": 0.8286 + }, + { + "start": 5066.26, + "end": 5067.64, + "probability": 0.5057 + }, + { + "start": 5067.8, + "end": 5070.0, + "probability": 0.921 + }, + { + "start": 5070.08, + "end": 5070.86, + "probability": 0.9702 + }, + { + "start": 5071.4, + "end": 5074.96, + "probability": 0.8185 + }, + { + "start": 5083.74, + "end": 5084.92, + "probability": 0.8051 + }, + { + "start": 5084.98, + "end": 5086.9, + "probability": 0.7989 + }, + { + "start": 5088.18, + "end": 5089.48, + "probability": 0.6383 + }, + { + "start": 5090.1, + "end": 5091.04, + "probability": 0.7207 + }, + { + "start": 5093.6, + "end": 5095.4, + "probability": 0.7729 + }, + { + "start": 5095.58, + "end": 5095.88, + "probability": 0.9148 + }, + { + "start": 5097.32, + "end": 5098.42, + "probability": 0.4973 + }, + { + "start": 5099.06, + "end": 5101.18, + "probability": 0.9157 + }, + { + "start": 5101.78, + "end": 5103.08, + "probability": 0.7284 + }, + { + "start": 5103.74, + "end": 5104.6, + "probability": 0.7357 + }, + { + "start": 5105.48, + "end": 5109.92, + "probability": 0.8901 + }, + { + "start": 5109.92, + "end": 5114.84, + "probability": 0.9341 + }, + { + "start": 5115.64, + "end": 5120.66, + "probability": 0.9776 + }, + { + "start": 5121.62, + "end": 5127.02, + "probability": 0.9686 + }, + { + "start": 5127.44, + "end": 5128.24, + "probability": 0.6564 + }, + { + "start": 5128.68, + "end": 5131.7, + "probability": 0.9962 + }, + { + "start": 5132.34, + "end": 5134.92, + "probability": 0.967 + }, + { + "start": 5135.32, + "end": 5138.42, + "probability": 0.677 + }, + { + "start": 5139.04, + "end": 5143.82, + "probability": 0.9689 + }, + { + "start": 5144.62, + "end": 5147.93, + "probability": 0.9097 + }, + { + "start": 5148.66, + "end": 5153.14, + "probability": 0.9961 + }, + { + "start": 5153.7, + "end": 5155.62, + "probability": 0.6719 + }, + { + "start": 5155.9, + "end": 5158.64, + "probability": 0.9123 + }, + { + "start": 5159.0, + "end": 5160.66, + "probability": 0.9321 + }, + { + "start": 5161.2, + "end": 5165.58, + "probability": 0.873 + }, + { + "start": 5166.1, + "end": 5171.32, + "probability": 0.9736 + }, + { + "start": 5171.32, + "end": 5177.82, + "probability": 0.9896 + }, + { + "start": 5178.66, + "end": 5178.98, + "probability": 0.8544 + }, + { + "start": 5179.58, + "end": 5181.02, + "probability": 0.9961 + }, + { + "start": 5181.66, + "end": 5186.3, + "probability": 0.9929 + }, + { + "start": 5186.42, + "end": 5188.6, + "probability": 0.7992 + }, + { + "start": 5189.38, + "end": 5190.96, + "probability": 0.7863 + }, + { + "start": 5191.02, + "end": 5192.0, + "probability": 0.747 + }, + { + "start": 5192.04, + "end": 5194.04, + "probability": 0.8901 + }, + { + "start": 5194.64, + "end": 5199.72, + "probability": 0.982 + }, + { + "start": 5200.78, + "end": 5201.87, + "probability": 0.8121 + }, + { + "start": 5202.44, + "end": 5203.9, + "probability": 0.7391 + }, + { + "start": 5203.9, + "end": 5207.52, + "probability": 0.7068 + }, + { + "start": 5209.32, + "end": 5211.94, + "probability": 0.9771 + }, + { + "start": 5211.98, + "end": 5213.3, + "probability": 0.6941 + }, + { + "start": 5217.14, + "end": 5217.66, + "probability": 0.4286 + }, + { + "start": 5217.76, + "end": 5218.6, + "probability": 0.93 + }, + { + "start": 5221.16, + "end": 5223.18, + "probability": 0.2129 + }, + { + "start": 5223.24, + "end": 5223.92, + "probability": 0.2932 + }, + { + "start": 5225.64, + "end": 5225.78, + "probability": 0.1527 + }, + { + "start": 5234.36, + "end": 5234.7, + "probability": 0.0001 + }, + { + "start": 5234.72, + "end": 5235.18, + "probability": 0.0494 + }, + { + "start": 5235.18, + "end": 5235.18, + "probability": 0.46 + }, + { + "start": 5235.18, + "end": 5235.18, + "probability": 0.7629 + }, + { + "start": 5235.18, + "end": 5237.02, + "probability": 0.7025 + }, + { + "start": 5237.44, + "end": 5239.06, + "probability": 0.6372 + }, + { + "start": 5239.16, + "end": 5241.08, + "probability": 0.9386 + }, + { + "start": 5241.22, + "end": 5242.14, + "probability": 0.7823 + }, + { + "start": 5243.82, + "end": 5247.68, + "probability": 0.9941 + }, + { + "start": 5247.88, + "end": 5250.34, + "probability": 0.9693 + }, + { + "start": 5251.58, + "end": 5254.76, + "probability": 0.9823 + }, + { + "start": 5255.24, + "end": 5256.84, + "probability": 0.9777 + }, + { + "start": 5256.88, + "end": 5257.92, + "probability": 0.6346 + }, + { + "start": 5258.68, + "end": 5260.84, + "probability": 0.5509 + }, + { + "start": 5261.48, + "end": 5261.48, + "probability": 0.2397 + }, + { + "start": 5261.48, + "end": 5265.48, + "probability": 0.9271 + }, + { + "start": 5265.5, + "end": 5268.3, + "probability": 0.7892 + }, + { + "start": 5268.36, + "end": 5270.5, + "probability": 0.9028 + }, + { + "start": 5270.52, + "end": 5271.18, + "probability": 0.5613 + }, + { + "start": 5271.32, + "end": 5271.96, + "probability": 0.6338 + }, + { + "start": 5272.04, + "end": 5272.64, + "probability": 0.6989 + }, + { + "start": 5272.78, + "end": 5273.46, + "probability": 0.8158 + }, + { + "start": 5273.52, + "end": 5274.02, + "probability": 0.9194 + }, + { + "start": 5274.14, + "end": 5274.78, + "probability": 0.8222 + }, + { + "start": 5274.88, + "end": 5275.9, + "probability": 0.5163 + }, + { + "start": 5276.1, + "end": 5276.66, + "probability": 0.989 + }, + { + "start": 5276.78, + "end": 5277.36, + "probability": 0.9727 + }, + { + "start": 5277.5, + "end": 5278.2, + "probability": 0.9287 + }, + { + "start": 5278.26, + "end": 5279.96, + "probability": 0.6887 + }, + { + "start": 5280.32, + "end": 5280.94, + "probability": 0.3708 + }, + { + "start": 5280.98, + "end": 5285.48, + "probability": 0.978 + }, + { + "start": 5285.5, + "end": 5286.24, + "probability": 0.6771 + }, + { + "start": 5288.12, + "end": 5289.78, + "probability": 0.938 + }, + { + "start": 5290.12, + "end": 5292.84, + "probability": 0.9924 + }, + { + "start": 5292.9, + "end": 5293.65, + "probability": 0.8022 + }, + { + "start": 5293.92, + "end": 5295.61, + "probability": 0.9512 + }, + { + "start": 5296.7, + "end": 5299.36, + "probability": 0.9069 + }, + { + "start": 5299.56, + "end": 5301.66, + "probability": 0.9753 + }, + { + "start": 5301.76, + "end": 5303.02, + "probability": 0.9384 + }, + { + "start": 5303.16, + "end": 5304.14, + "probability": 0.8633 + }, + { + "start": 5304.72, + "end": 5305.6, + "probability": 0.8605 + }, + { + "start": 5305.7, + "end": 5306.57, + "probability": 0.9583 + }, + { + "start": 5307.08, + "end": 5309.12, + "probability": 0.8915 + }, + { + "start": 5309.3, + "end": 5311.52, + "probability": 0.5785 + }, + { + "start": 5311.52, + "end": 5313.98, + "probability": 0.8349 + }, + { + "start": 5314.18, + "end": 5316.54, + "probability": 0.9648 + }, + { + "start": 5316.78, + "end": 5321.08, + "probability": 0.8675 + }, + { + "start": 5321.22, + "end": 5324.0, + "probability": 0.6731 + }, + { + "start": 5324.12, + "end": 5324.68, + "probability": 0.5533 + }, + { + "start": 5324.88, + "end": 5327.88, + "probability": 0.9868 + }, + { + "start": 5328.8, + "end": 5331.0, + "probability": 0.9922 + }, + { + "start": 5331.12, + "end": 5331.77, + "probability": 0.828 + }, + { + "start": 5332.52, + "end": 5336.36, + "probability": 0.9072 + }, + { + "start": 5336.42, + "end": 5337.24, + "probability": 0.5014 + }, + { + "start": 5337.32, + "end": 5338.26, + "probability": 0.8743 + }, + { + "start": 5338.42, + "end": 5340.4, + "probability": 0.6312 + }, + { + "start": 5340.5, + "end": 5342.44, + "probability": 0.9587 + }, + { + "start": 5342.88, + "end": 5345.68, + "probability": 0.8094 + }, + { + "start": 5346.28, + "end": 5348.28, + "probability": 0.9939 + }, + { + "start": 5348.28, + "end": 5351.08, + "probability": 0.9677 + }, + { + "start": 5351.26, + "end": 5353.68, + "probability": 0.7742 + }, + { + "start": 5353.82, + "end": 5354.66, + "probability": 0.9171 + }, + { + "start": 5354.8, + "end": 5360.44, + "probability": 0.9894 + }, + { + "start": 5360.78, + "end": 5363.76, + "probability": 0.9863 + }, + { + "start": 5364.22, + "end": 5367.88, + "probability": 0.8559 + }, + { + "start": 5368.48, + "end": 5370.69, + "probability": 0.9899 + }, + { + "start": 5370.94, + "end": 5372.38, + "probability": 0.7735 + }, + { + "start": 5372.4, + "end": 5375.62, + "probability": 0.9669 + }, + { + "start": 5375.76, + "end": 5380.52, + "probability": 0.9322 + }, + { + "start": 5380.66, + "end": 5384.06, + "probability": 0.9956 + }, + { + "start": 5384.1, + "end": 5385.38, + "probability": 0.8798 + }, + { + "start": 5386.4, + "end": 5389.0, + "probability": 0.8451 + }, + { + "start": 5389.3, + "end": 5390.74, + "probability": 0.9839 + }, + { + "start": 5390.8, + "end": 5391.06, + "probability": 0.2951 + }, + { + "start": 5391.18, + "end": 5391.46, + "probability": 0.8925 + }, + { + "start": 5392.18, + "end": 5394.44, + "probability": 0.9667 + }, + { + "start": 5394.52, + "end": 5395.82, + "probability": 0.9116 + }, + { + "start": 5396.54, + "end": 5397.1, + "probability": 0.7334 + }, + { + "start": 5399.7, + "end": 5401.98, + "probability": 0.3838 + }, + { + "start": 5402.06, + "end": 5402.4, + "probability": 0.4117 + }, + { + "start": 5402.4, + "end": 5408.72, + "probability": 0.9935 + }, + { + "start": 5409.34, + "end": 5410.08, + "probability": 0.922 + }, + { + "start": 5410.16, + "end": 5411.14, + "probability": 0.9356 + }, + { + "start": 5411.58, + "end": 5412.92, + "probability": 0.8538 + }, + { + "start": 5413.34, + "end": 5413.98, + "probability": 0.8468 + }, + { + "start": 5414.36, + "end": 5418.69, + "probability": 0.9931 + }, + { + "start": 5419.18, + "end": 5421.58, + "probability": 0.9963 + }, + { + "start": 5422.16, + "end": 5423.0, + "probability": 0.7431 + }, + { + "start": 5423.38, + "end": 5428.26, + "probability": 0.9566 + }, + { + "start": 5428.56, + "end": 5429.06, + "probability": 0.6151 + }, + { + "start": 5430.26, + "end": 5430.61, + "probability": 0.0777 + }, + { + "start": 5431.18, + "end": 5431.58, + "probability": 0.4692 + }, + { + "start": 5431.66, + "end": 5432.42, + "probability": 0.6603 + }, + { + "start": 5432.72, + "end": 5435.96, + "probability": 0.4525 + }, + { + "start": 5435.98, + "end": 5439.96, + "probability": 0.9694 + }, + { + "start": 5439.96, + "end": 5444.98, + "probability": 0.9805 + }, + { + "start": 5446.89, + "end": 5447.07, + "probability": 0.0676 + }, + { + "start": 5448.22, + "end": 5452.86, + "probability": 0.697 + }, + { + "start": 5453.82, + "end": 5456.98, + "probability": 0.699 + }, + { + "start": 5457.22, + "end": 5460.92, + "probability": 0.7955 + }, + { + "start": 5461.24, + "end": 5464.12, + "probability": 0.9788 + }, + { + "start": 5464.86, + "end": 5465.54, + "probability": 0.7877 + }, + { + "start": 5465.94, + "end": 5467.34, + "probability": 0.5844 + }, + { + "start": 5467.34, + "end": 5468.88, + "probability": 0.7722 + }, + { + "start": 5470.46, + "end": 5474.16, + "probability": 0.9571 + }, + { + "start": 5474.26, + "end": 5478.54, + "probability": 0.5058 + }, + { + "start": 5478.76, + "end": 5480.46, + "probability": 0.6664 + }, + { + "start": 5480.5, + "end": 5481.56, + "probability": 0.7632 + }, + { + "start": 5481.8, + "end": 5482.9, + "probability": 0.8536 + }, + { + "start": 5483.16, + "end": 5485.78, + "probability": 0.9961 + }, + { + "start": 5486.06, + "end": 5486.62, + "probability": 0.8679 + }, + { + "start": 5486.94, + "end": 5487.78, + "probability": 0.8772 + }, + { + "start": 5488.06, + "end": 5488.2, + "probability": 0.0161 + }, + { + "start": 5489.08, + "end": 5489.62, + "probability": 0.2908 + }, + { + "start": 5490.28, + "end": 5494.34, + "probability": 0.6896 + }, + { + "start": 5494.4, + "end": 5495.24, + "probability": 0.5674 + }, + { + "start": 5495.48, + "end": 5496.18, + "probability": 0.8077 + }, + { + "start": 5512.04, + "end": 5512.34, + "probability": 0.4803 + }, + { + "start": 5512.56, + "end": 5513.28, + "probability": 0.5444 + }, + { + "start": 5513.28, + "end": 5515.16, + "probability": 0.5778 + }, + { + "start": 5515.6, + "end": 5518.94, + "probability": 0.5015 + }, + { + "start": 5520.44, + "end": 5524.74, + "probability": 0.9199 + }, + { + "start": 5526.32, + "end": 5530.2, + "probability": 0.9089 + }, + { + "start": 5530.5, + "end": 5531.41, + "probability": 0.6771 + }, + { + "start": 5531.7, + "end": 5532.24, + "probability": 0.5875 + }, + { + "start": 5533.2, + "end": 5537.56, + "probability": 0.8567 + }, + { + "start": 5538.5, + "end": 5539.62, + "probability": 0.751 + }, + { + "start": 5540.36, + "end": 5541.46, + "probability": 0.7806 + }, + { + "start": 5542.08, + "end": 5544.18, + "probability": 0.7617 + }, + { + "start": 5544.2, + "end": 5547.12, + "probability": 0.9219 + }, + { + "start": 5547.2, + "end": 5551.26, + "probability": 0.9652 + }, + { + "start": 5552.3, + "end": 5555.94, + "probability": 0.9922 + }, + { + "start": 5557.18, + "end": 5563.72, + "probability": 0.7341 + }, + { + "start": 5563.84, + "end": 5567.52, + "probability": 0.9875 + }, + { + "start": 5568.68, + "end": 5573.38, + "probability": 0.9932 + }, + { + "start": 5573.64, + "end": 5574.5, + "probability": 0.8599 + }, + { + "start": 5574.9, + "end": 5575.72, + "probability": 0.9336 + }, + { + "start": 5576.94, + "end": 5581.2, + "probability": 0.914 + }, + { + "start": 5581.88, + "end": 5592.88, + "probability": 0.9846 + }, + { + "start": 5593.16, + "end": 5593.52, + "probability": 0.9733 + }, + { + "start": 5594.76, + "end": 5598.06, + "probability": 0.9833 + }, + { + "start": 5599.06, + "end": 5605.0, + "probability": 0.9819 + }, + { + "start": 5605.02, + "end": 5609.08, + "probability": 0.9669 + }, + { + "start": 5610.0, + "end": 5610.44, + "probability": 0.5738 + }, + { + "start": 5610.64, + "end": 5612.7, + "probability": 0.8869 + }, + { + "start": 5622.42, + "end": 5624.48, + "probability": 0.6347 + }, + { + "start": 5624.82, + "end": 5624.84, + "probability": 0.6324 + }, + { + "start": 5624.84, + "end": 5631.22, + "probability": 0.9865 + }, + { + "start": 5631.22, + "end": 5637.48, + "probability": 0.9989 + }, + { + "start": 5637.66, + "end": 5639.94, + "probability": 0.8748 + }, + { + "start": 5640.04, + "end": 5640.52, + "probability": 0.0031 + }, + { + "start": 5640.52, + "end": 5640.52, + "probability": 0.0377 + }, + { + "start": 5640.52, + "end": 5642.94, + "probability": 0.7824 + }, + { + "start": 5643.8, + "end": 5644.96, + "probability": 0.0145 + }, + { + "start": 5644.96, + "end": 5647.38, + "probability": 0.6338 + }, + { + "start": 5647.5, + "end": 5647.92, + "probability": 0.8027 + }, + { + "start": 5648.88, + "end": 5648.88, + "probability": 0.0097 + }, + { + "start": 5648.88, + "end": 5653.08, + "probability": 0.8452 + }, + { + "start": 5653.76, + "end": 5654.54, + "probability": 0.7317 + }, + { + "start": 5654.54, + "end": 5656.78, + "probability": 0.9237 + }, + { + "start": 5657.14, + "end": 5660.14, + "probability": 0.3938 + }, + { + "start": 5660.22, + "end": 5661.35, + "probability": 0.9761 + }, + { + "start": 5661.98, + "end": 5661.98, + "probability": 0.09 + }, + { + "start": 5661.98, + "end": 5667.48, + "probability": 0.8453 + }, + { + "start": 5668.08, + "end": 5670.5, + "probability": 0.9834 + }, + { + "start": 5670.6, + "end": 5671.4, + "probability": 0.9709 + }, + { + "start": 5671.48, + "end": 5672.55, + "probability": 0.9731 + }, + { + "start": 5672.78, + "end": 5676.26, + "probability": 0.9553 + }, + { + "start": 5676.26, + "end": 5679.78, + "probability": 0.9599 + }, + { + "start": 5679.82, + "end": 5681.96, + "probability": 0.988 + }, + { + "start": 5682.2, + "end": 5682.2, + "probability": 0.0374 + }, + { + "start": 5682.2, + "end": 5685.04, + "probability": 0.7495 + }, + { + "start": 5685.16, + "end": 5686.24, + "probability": 0.8337 + }, + { + "start": 5686.36, + "end": 5686.92, + "probability": 0.6395 + }, + { + "start": 5688.04, + "end": 5689.92, + "probability": 0.9785 + }, + { + "start": 5690.94, + "end": 5693.18, + "probability": 0.847 + }, + { + "start": 5693.96, + "end": 5694.62, + "probability": 0.6119 + }, + { + "start": 5694.8, + "end": 5696.42, + "probability": 0.96 + }, + { + "start": 5697.24, + "end": 5698.56, + "probability": 0.7178 + }, + { + "start": 5698.8, + "end": 5701.84, + "probability": 0.9966 + }, + { + "start": 5701.98, + "end": 5704.42, + "probability": 0.8088 + }, + { + "start": 5704.6, + "end": 5705.57, + "probability": 0.9517 + }, + { + "start": 5706.14, + "end": 5707.1, + "probability": 0.8953 + }, + { + "start": 5707.52, + "end": 5707.6, + "probability": 0.3805 + }, + { + "start": 5707.6, + "end": 5708.84, + "probability": 0.5613 + }, + { + "start": 5708.98, + "end": 5712.94, + "probability": 0.5674 + }, + { + "start": 5713.24, + "end": 5715.58, + "probability": 0.7848 + }, + { + "start": 5715.88, + "end": 5716.72, + "probability": 0.5158 + }, + { + "start": 5717.12, + "end": 5717.44, + "probability": 0.1188 + }, + { + "start": 5717.44, + "end": 5717.78, + "probability": 0.5257 + }, + { + "start": 5717.9, + "end": 5720.12, + "probability": 0.7946 + }, + { + "start": 5720.3, + "end": 5721.09, + "probability": 0.873 + }, + { + "start": 5721.58, + "end": 5724.98, + "probability": 0.17 + }, + { + "start": 5725.8, + "end": 5726.44, + "probability": 0.231 + }, + { + "start": 5726.6, + "end": 5726.66, + "probability": 0.0299 + }, + { + "start": 5726.66, + "end": 5726.92, + "probability": 0.0826 + }, + { + "start": 5726.92, + "end": 5727.55, + "probability": 0.5698 + }, + { + "start": 5728.22, + "end": 5729.13, + "probability": 0.6313 + }, + { + "start": 5729.66, + "end": 5730.92, + "probability": 0.78 + }, + { + "start": 5731.14, + "end": 5731.66, + "probability": 0.8138 + }, + { + "start": 5731.74, + "end": 5733.18, + "probability": 0.643 + }, + { + "start": 5733.72, + "end": 5733.78, + "probability": 0.0869 + }, + { + "start": 5733.78, + "end": 5733.78, + "probability": 0.2984 + }, + { + "start": 5733.78, + "end": 5737.66, + "probability": 0.8247 + }, + { + "start": 5737.88, + "end": 5741.14, + "probability": 0.6976 + }, + { + "start": 5741.22, + "end": 5742.76, + "probability": 0.5448 + }, + { + "start": 5743.14, + "end": 5744.26, + "probability": 0.5422 + }, + { + "start": 5744.52, + "end": 5746.56, + "probability": 0.7755 + }, + { + "start": 5746.64, + "end": 5747.62, + "probability": 0.3694 + }, + { + "start": 5747.68, + "end": 5748.24, + "probability": 0.8127 + }, + { + "start": 5748.42, + "end": 5749.3, + "probability": 0.8033 + }, + { + "start": 5749.48, + "end": 5751.82, + "probability": 0.2284 + }, + { + "start": 5751.96, + "end": 5756.84, + "probability": 0.2481 + }, + { + "start": 5758.0, + "end": 5759.14, + "probability": 0.0665 + }, + { + "start": 5759.42, + "end": 5759.6, + "probability": 0.3424 + }, + { + "start": 5759.72, + "end": 5760.66, + "probability": 0.5393 + }, + { + "start": 5760.7, + "end": 5761.44, + "probability": 0.522 + }, + { + "start": 5766.26, + "end": 5769.24, + "probability": 0.3966 + }, + { + "start": 5775.36, + "end": 5778.39, + "probability": 0.1136 + }, + { + "start": 5781.19, + "end": 5781.62, + "probability": 0.0578 + }, + { + "start": 5782.0, + "end": 5783.48, + "probability": 0.0247 + }, + { + "start": 5783.48, + "end": 5787.7, + "probability": 0.1541 + }, + { + "start": 5787.82, + "end": 5787.82, + "probability": 0.0134 + }, + { + "start": 5789.68, + "end": 5789.68, + "probability": 0.0004 + }, + { + "start": 5792.24, + "end": 5792.5, + "probability": 0.1466 + }, + { + "start": 5795.5, + "end": 5798.9, + "probability": 0.9614 + }, + { + "start": 5799.63, + "end": 5802.82, + "probability": 0.4426 + }, + { + "start": 5802.88, + "end": 5804.4, + "probability": 0.4852 + }, + { + "start": 5804.52, + "end": 5806.5, + "probability": 0.5344 + }, + { + "start": 5808.58, + "end": 5809.66, + "probability": 0.0099 + }, + { + "start": 5811.12, + "end": 5812.62, + "probability": 0.1646 + }, + { + "start": 5813.32, + "end": 5817.54, + "probability": 0.1015 + }, + { + "start": 5818.74, + "end": 5818.86, + "probability": 0.0259 + }, + { + "start": 5819.42, + "end": 5819.62, + "probability": 0.0619 + }, + { + "start": 5819.62, + "end": 5822.84, + "probability": 0.0768 + }, + { + "start": 5823.76, + "end": 5826.0, + "probability": 0.0072 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5835.66, + "end": 5840.24, + "probability": 0.8049 + }, + { + "start": 5840.58, + "end": 5840.7, + "probability": 0.0167 + }, + { + "start": 5840.7, + "end": 5844.38, + "probability": 0.8866 + }, + { + "start": 5845.62, + "end": 5848.05, + "probability": 0.9945 + }, + { + "start": 5848.74, + "end": 5853.42, + "probability": 0.046 + }, + { + "start": 5855.12, + "end": 5858.28, + "probability": 0.0681 + }, + { + "start": 5858.76, + "end": 5860.0, + "probability": 0.522 + }, + { + "start": 5860.36, + "end": 5861.5, + "probability": 0.786 + }, + { + "start": 5862.41, + "end": 5865.58, + "probability": 0.847 + }, + { + "start": 5868.8, + "end": 5874.1, + "probability": 0.702 + }, + { + "start": 5874.2, + "end": 5874.54, + "probability": 0.8255 + }, + { + "start": 5874.64, + "end": 5875.81, + "probability": 0.6641 + }, + { + "start": 5876.18, + "end": 5877.96, + "probability": 0.9051 + }, + { + "start": 5878.24, + "end": 5879.1, + "probability": 0.8118 + }, + { + "start": 5890.22, + "end": 5890.9, + "probability": 0.1327 + }, + { + "start": 5896.26, + "end": 5899.7, + "probability": 0.5482 + }, + { + "start": 5900.76, + "end": 5901.36, + "probability": 0.6572 + }, + { + "start": 5907.78, + "end": 5908.04, + "probability": 0.6184 + }, + { + "start": 5911.62, + "end": 5915.42, + "probability": 0.0369 + }, + { + "start": 5915.46, + "end": 5915.46, + "probability": 0.434 + }, + { + "start": 5917.06, + "end": 5918.97, + "probability": 0.0905 + }, + { + "start": 5919.84, + "end": 5919.84, + "probability": 0.74 + }, + { + "start": 5927.38, + "end": 5927.38, + "probability": 0.0407 + }, + { + "start": 5927.42, + "end": 5927.84, + "probability": 0.7001 + }, + { + "start": 5928.58, + "end": 5929.64, + "probability": 0.3717 + }, + { + "start": 5930.52, + "end": 5931.52, + "probability": 0.8179 + }, + { + "start": 5933.4, + "end": 5934.64, + "probability": 0.9048 + }, + { + "start": 5935.16, + "end": 5936.22, + "probability": 0.8174 + }, + { + "start": 5936.32, + "end": 5937.18, + "probability": 0.8738 + }, + { + "start": 5937.18, + "end": 5937.76, + "probability": 0.2018 + }, + { + "start": 5937.76, + "end": 5938.78, + "probability": 0.6994 + }, + { + "start": 5941.22, + "end": 5946.84, + "probability": 0.9914 + }, + { + "start": 5948.5, + "end": 5951.4, + "probability": 0.5166 + }, + { + "start": 5951.9, + "end": 5953.76, + "probability": 0.3664 + }, + { + "start": 5953.92, + "end": 5955.22, + "probability": 0.9761 + }, + { + "start": 5956.14, + "end": 5959.44, + "probability": 0.9863 + }, + { + "start": 5960.9, + "end": 5961.6, + "probability": 0.0983 + }, + { + "start": 5963.77, + "end": 5968.64, + "probability": 0.841 + }, + { + "start": 5969.66, + "end": 5973.68, + "probability": 0.8887 + }, + { + "start": 5973.8, + "end": 5977.68, + "probability": 0.9082 + }, + { + "start": 5977.94, + "end": 5987.66, + "probability": 0.9829 + }, + { + "start": 5987.66, + "end": 5995.92, + "probability": 0.9902 + }, + { + "start": 5997.54, + "end": 5999.16, + "probability": 0.9427 + }, + { + "start": 6004.18, + "end": 6006.3, + "probability": 0.6219 + }, + { + "start": 6007.9, + "end": 6013.8, + "probability": 0.988 + }, + { + "start": 6015.36, + "end": 6017.38, + "probability": 0.8863 + }, + { + "start": 6018.94, + "end": 6024.98, + "probability": 0.9478 + }, + { + "start": 6025.48, + "end": 6029.12, + "probability": 0.9951 + }, + { + "start": 6030.2, + "end": 6032.68, + "probability": 0.9949 + }, + { + "start": 6034.16, + "end": 6035.3, + "probability": 0.8947 + }, + { + "start": 6035.92, + "end": 6041.66, + "probability": 0.8145 + }, + { + "start": 6041.66, + "end": 6046.52, + "probability": 0.8574 + }, + { + "start": 6047.86, + "end": 6049.27, + "probability": 0.7346 + }, + { + "start": 6049.56, + "end": 6051.89, + "probability": 0.9681 + }, + { + "start": 6052.94, + "end": 6056.14, + "probability": 0.9952 + }, + { + "start": 6056.26, + "end": 6060.38, + "probability": 0.9717 + }, + { + "start": 6060.62, + "end": 6063.7, + "probability": 0.7887 + }, + { + "start": 6064.16, + "end": 6065.3, + "probability": 0.6309 + }, + { + "start": 6066.04, + "end": 6069.82, + "probability": 0.9722 + }, + { + "start": 6069.92, + "end": 6071.82, + "probability": 0.8978 + }, + { + "start": 6072.2, + "end": 6077.12, + "probability": 0.9917 + }, + { + "start": 6078.02, + "end": 6081.22, + "probability": 0.7313 + }, + { + "start": 6081.84, + "end": 6082.46, + "probability": 0.7736 + }, + { + "start": 6082.52, + "end": 6085.1, + "probability": 0.975 + }, + { + "start": 6085.24, + "end": 6092.7, + "probability": 0.9756 + }, + { + "start": 6093.42, + "end": 6093.92, + "probability": 0.7096 + }, + { + "start": 6094.02, + "end": 6095.96, + "probability": 0.5765 + }, + { + "start": 6096.12, + "end": 6097.8, + "probability": 0.9778 + }, + { + "start": 6098.4, + "end": 6102.44, + "probability": 0.9313 + }, + { + "start": 6102.7, + "end": 6104.38, + "probability": 0.6374 + }, + { + "start": 6105.08, + "end": 6109.52, + "probability": 0.8661 + }, + { + "start": 6109.56, + "end": 6114.84, + "probability": 0.9293 + }, + { + "start": 6114.96, + "end": 6115.74, + "probability": 0.8662 + }, + { + "start": 6115.82, + "end": 6119.7, + "probability": 0.9933 + }, + { + "start": 6119.7, + "end": 6124.18, + "probability": 0.9845 + }, + { + "start": 6124.62, + "end": 6125.66, + "probability": 0.964 + }, + { + "start": 6125.7, + "end": 6126.88, + "probability": 0.8134 + }, + { + "start": 6127.02, + "end": 6131.15, + "probability": 0.9801 + }, + { + "start": 6131.44, + "end": 6135.2, + "probability": 0.9929 + }, + { + "start": 6135.42, + "end": 6138.16, + "probability": 0.9969 + }, + { + "start": 6138.54, + "end": 6138.9, + "probability": 0.5349 + }, + { + "start": 6138.94, + "end": 6142.84, + "probability": 0.7579 + }, + { + "start": 6142.9, + "end": 6147.99, + "probability": 0.9943 + }, + { + "start": 6149.32, + "end": 6150.44, + "probability": 0.6299 + }, + { + "start": 6151.08, + "end": 6155.52, + "probability": 0.9156 + }, + { + "start": 6155.86, + "end": 6158.46, + "probability": 0.8677 + }, + { + "start": 6160.09, + "end": 6163.72, + "probability": 0.8393 + }, + { + "start": 6164.26, + "end": 6165.4, + "probability": 0.943 + }, + { + "start": 6165.5, + "end": 6167.72, + "probability": 0.9229 + }, + { + "start": 6167.8, + "end": 6172.98, + "probability": 0.9547 + }, + { + "start": 6173.14, + "end": 6174.3, + "probability": 0.6172 + }, + { + "start": 6175.48, + "end": 6179.8, + "probability": 0.9194 + }, + { + "start": 6180.5, + "end": 6186.18, + "probability": 0.9272 + }, + { + "start": 6186.38, + "end": 6191.5, + "probability": 0.9784 + }, + { + "start": 6192.04, + "end": 6195.02, + "probability": 0.6733 + }, + { + "start": 6195.1, + "end": 6199.24, + "probability": 0.9494 + }, + { + "start": 6199.58, + "end": 6201.74, + "probability": 0.9786 + }, + { + "start": 6201.78, + "end": 6203.2, + "probability": 0.9793 + }, + { + "start": 6203.66, + "end": 6204.26, + "probability": 0.9766 + }, + { + "start": 6204.7, + "end": 6206.06, + "probability": 0.9536 + }, + { + "start": 6206.36, + "end": 6208.92, + "probability": 0.9966 + }, + { + "start": 6209.9, + "end": 6210.24, + "probability": 0.1289 + }, + { + "start": 6210.36, + "end": 6212.54, + "probability": 0.9113 + }, + { + "start": 6212.98, + "end": 6215.0, + "probability": 0.8856 + }, + { + "start": 6215.2, + "end": 6221.1, + "probability": 0.7279 + }, + { + "start": 6221.66, + "end": 6222.12, + "probability": 0.5347 + }, + { + "start": 6222.34, + "end": 6224.78, + "probability": 0.8066 + }, + { + "start": 6224.92, + "end": 6227.82, + "probability": 0.9743 + }, + { + "start": 6227.9, + "end": 6229.73, + "probability": 0.8172 + }, + { + "start": 6230.66, + "end": 6233.44, + "probability": 0.9783 + }, + { + "start": 6233.6, + "end": 6234.96, + "probability": 0.9976 + }, + { + "start": 6235.04, + "end": 6238.22, + "probability": 0.96 + }, + { + "start": 6238.9, + "end": 6239.62, + "probability": 0.7392 + }, + { + "start": 6241.28, + "end": 6243.5, + "probability": 0.9736 + }, + { + "start": 6243.72, + "end": 6247.68, + "probability": 0.5729 + }, + { + "start": 6247.98, + "end": 6255.38, + "probability": 0.7434 + }, + { + "start": 6256.1, + "end": 6257.0, + "probability": 0.8221 + }, + { + "start": 6257.06, + "end": 6257.98, + "probability": 0.4405 + }, + { + "start": 6258.12, + "end": 6259.44, + "probability": 0.8208 + }, + { + "start": 6259.7, + "end": 6261.52, + "probability": 0.7732 + }, + { + "start": 6262.5, + "end": 6264.54, + "probability": 0.7303 + }, + { + "start": 6265.88, + "end": 6268.28, + "probability": 0.9019 + }, + { + "start": 6268.62, + "end": 6270.0, + "probability": 0.9729 + }, + { + "start": 6271.08, + "end": 6271.84, + "probability": 0.3571 + }, + { + "start": 6272.3, + "end": 6272.56, + "probability": 0.062 + }, + { + "start": 6274.4, + "end": 6276.88, + "probability": 0.8671 + }, + { + "start": 6278.52, + "end": 6281.56, + "probability": 0.9873 + }, + { + "start": 6281.96, + "end": 6284.1, + "probability": 0.9836 + }, + { + "start": 6284.28, + "end": 6285.44, + "probability": 0.8433 + }, + { + "start": 6285.52, + "end": 6287.96, + "probability": 0.8133 + }, + { + "start": 6288.36, + "end": 6288.76, + "probability": 0.6136 + }, + { + "start": 6288.92, + "end": 6291.64, + "probability": 0.731 + }, + { + "start": 6291.74, + "end": 6292.77, + "probability": 0.9069 + }, + { + "start": 6292.88, + "end": 6294.64, + "probability": 0.2267 + }, + { + "start": 6294.64, + "end": 6295.82, + "probability": 0.946 + }, + { + "start": 6296.12, + "end": 6296.66, + "probability": 0.7365 + }, + { + "start": 6296.86, + "end": 6297.26, + "probability": 0.3657 + }, + { + "start": 6297.46, + "end": 6300.4, + "probability": 0.9194 + }, + { + "start": 6300.41, + "end": 6300.95, + "probability": 0.1684 + }, + { + "start": 6302.24, + "end": 6302.94, + "probability": 0.3311 + }, + { + "start": 6302.94, + "end": 6305.12, + "probability": 0.853 + }, + { + "start": 6305.4, + "end": 6307.36, + "probability": 0.6852 + }, + { + "start": 6307.36, + "end": 6311.84, + "probability": 0.868 + }, + { + "start": 6312.82, + "end": 6315.58, + "probability": 0.8916 + }, + { + "start": 6316.38, + "end": 6322.16, + "probability": 0.7706 + }, + { + "start": 6322.3, + "end": 6324.51, + "probability": 0.9954 + }, + { + "start": 6324.8, + "end": 6328.17, + "probability": 0.9885 + }, + { + "start": 6329.76, + "end": 6333.06, + "probability": 0.9045 + }, + { + "start": 6333.56, + "end": 6338.2, + "probability": 0.9281 + }, + { + "start": 6339.34, + "end": 6340.48, + "probability": 0.7051 + }, + { + "start": 6341.28, + "end": 6343.46, + "probability": 0.641 + }, + { + "start": 6343.54, + "end": 6344.46, + "probability": 0.6641 + }, + { + "start": 6344.52, + "end": 6345.54, + "probability": 0.8889 + }, + { + "start": 6345.9, + "end": 6346.78, + "probability": 0.5283 + }, + { + "start": 6347.32, + "end": 6349.62, + "probability": 0.6382 + }, + { + "start": 6350.32, + "end": 6353.84, + "probability": 0.7677 + }, + { + "start": 6354.48, + "end": 6358.1, + "probability": 0.9811 + }, + { + "start": 6358.2, + "end": 6362.56, + "probability": 0.9945 + }, + { + "start": 6362.76, + "end": 6363.7, + "probability": 0.929 + }, + { + "start": 6363.78, + "end": 6364.58, + "probability": 0.9343 + }, + { + "start": 6364.7, + "end": 6367.04, + "probability": 0.8298 + }, + { + "start": 6367.06, + "end": 6368.06, + "probability": 0.9683 + }, + { + "start": 6368.24, + "end": 6368.72, + "probability": 0.6327 + }, + { + "start": 6368.76, + "end": 6371.86, + "probability": 0.9572 + }, + { + "start": 6371.96, + "end": 6372.9, + "probability": 0.7172 + }, + { + "start": 6374.15, + "end": 6380.42, + "probability": 0.9022 + }, + { + "start": 6381.06, + "end": 6383.0, + "probability": 0.5942 + }, + { + "start": 6383.42, + "end": 6384.98, + "probability": 0.9727 + }, + { + "start": 6385.16, + "end": 6386.34, + "probability": 0.9792 + }, + { + "start": 6386.38, + "end": 6387.36, + "probability": 0.8735 + }, + { + "start": 6389.04, + "end": 6390.62, + "probability": 0.2769 + }, + { + "start": 6390.62, + "end": 6393.82, + "probability": 0.7923 + }, + { + "start": 6394.46, + "end": 6396.38, + "probability": 0.9613 + }, + { + "start": 6396.58, + "end": 6397.28, + "probability": 0.8633 + }, + { + "start": 6397.4, + "end": 6397.96, + "probability": 0.5764 + }, + { + "start": 6398.16, + "end": 6400.72, + "probability": 0.9461 + }, + { + "start": 6403.22, + "end": 6405.28, + "probability": 0.3934 + }, + { + "start": 6406.56, + "end": 6408.14, + "probability": 0.5953 + }, + { + "start": 6408.2, + "end": 6408.7, + "probability": 0.2634 + }, + { + "start": 6408.7, + "end": 6410.9, + "probability": 0.1945 + }, + { + "start": 6411.16, + "end": 6411.46, + "probability": 0.7744 + }, + { + "start": 6411.52, + "end": 6417.56, + "probability": 0.8361 + }, + { + "start": 6417.56, + "end": 6424.56, + "probability": 0.9265 + }, + { + "start": 6424.72, + "end": 6430.56, + "probability": 0.989 + }, + { + "start": 6430.62, + "end": 6434.1, + "probability": 0.9899 + }, + { + "start": 6434.44, + "end": 6435.14, + "probability": 0.7405 + }, + { + "start": 6435.42, + "end": 6436.84, + "probability": 0.7272 + }, + { + "start": 6437.24, + "end": 6438.69, + "probability": 0.8683 + }, + { + "start": 6439.34, + "end": 6442.04, + "probability": 0.9941 + }, + { + "start": 6442.2, + "end": 6446.28, + "probability": 0.9966 + }, + { + "start": 6446.48, + "end": 6446.7, + "probability": 0.7175 + }, + { + "start": 6446.78, + "end": 6449.64, + "probability": 0.9907 + }, + { + "start": 6449.94, + "end": 6451.56, + "probability": 0.7862 + }, + { + "start": 6451.76, + "end": 6453.38, + "probability": 0.8551 + }, + { + "start": 6453.66, + "end": 6455.46, + "probability": 0.9888 + }, + { + "start": 6455.56, + "end": 6457.14, + "probability": 0.6789 + }, + { + "start": 6457.52, + "end": 6459.14, + "probability": 0.723 + }, + { + "start": 6459.28, + "end": 6461.84, + "probability": 0.7772 + }, + { + "start": 6462.06, + "end": 6465.36, + "probability": 0.8333 + }, + { + "start": 6466.12, + "end": 6471.55, + "probability": 0.9202 + }, + { + "start": 6473.74, + "end": 6474.18, + "probability": 0.1058 + }, + { + "start": 6474.18, + "end": 6475.18, + "probability": 0.1907 + }, + { + "start": 6475.18, + "end": 6475.18, + "probability": 0.1882 + }, + { + "start": 6475.22, + "end": 6475.65, + "probability": 0.827 + }, + { + "start": 6476.44, + "end": 6478.02, + "probability": 0.4798 + }, + { + "start": 6478.12, + "end": 6479.06, + "probability": 0.6792 + }, + { + "start": 6479.2, + "end": 6481.12, + "probability": 0.9451 + }, + { + "start": 6481.3, + "end": 6483.1, + "probability": 0.9106 + }, + { + "start": 6483.62, + "end": 6487.46, + "probability": 0.8581 + }, + { + "start": 6487.9, + "end": 6492.36, + "probability": 0.9818 + }, + { + "start": 6492.36, + "end": 6496.62, + "probability": 0.9479 + }, + { + "start": 6496.7, + "end": 6498.04, + "probability": 0.7297 + }, + { + "start": 6498.24, + "end": 6499.58, + "probability": 0.9379 + }, + { + "start": 6499.72, + "end": 6501.44, + "probability": 0.7616 + }, + { + "start": 6501.56, + "end": 6502.88, + "probability": 0.859 + }, + { + "start": 6503.64, + "end": 6506.66, + "probability": 0.9429 + }, + { + "start": 6507.5, + "end": 6508.8, + "probability": 0.9806 + }, + { + "start": 6508.82, + "end": 6511.22, + "probability": 0.9894 + }, + { + "start": 6517.07, + "end": 6519.64, + "probability": 0.1269 + }, + { + "start": 6519.64, + "end": 6519.64, + "probability": 0.2143 + }, + { + "start": 6519.64, + "end": 6522.76, + "probability": 0.8977 + }, + { + "start": 6522.76, + "end": 6525.16, + "probability": 0.7404 + }, + { + "start": 6525.5, + "end": 6530.18, + "probability": 0.9717 + }, + { + "start": 6530.32, + "end": 6532.44, + "probability": 0.9502 + }, + { + "start": 6532.76, + "end": 6534.38, + "probability": 0.3294 + }, + { + "start": 6534.54, + "end": 6538.0, + "probability": 0.9711 + }, + { + "start": 6538.06, + "end": 6542.66, + "probability": 0.9718 + }, + { + "start": 6543.32, + "end": 6547.36, + "probability": 0.2297 + }, + { + "start": 6547.36, + "end": 6548.2, + "probability": 0.4971 + }, + { + "start": 6548.5, + "end": 6549.56, + "probability": 0.8491 + }, + { + "start": 6549.72, + "end": 6550.66, + "probability": 0.8317 + }, + { + "start": 6550.74, + "end": 6556.94, + "probability": 0.9692 + }, + { + "start": 6557.14, + "end": 6560.38, + "probability": 0.8719 + }, + { + "start": 6560.82, + "end": 6561.98, + "probability": 0.7753 + }, + { + "start": 6562.24, + "end": 6565.02, + "probability": 0.9884 + }, + { + "start": 6565.32, + "end": 6566.14, + "probability": 0.9468 + }, + { + "start": 6566.94, + "end": 6571.26, + "probability": 0.6211 + }, + { + "start": 6571.38, + "end": 6574.22, + "probability": 0.7434 + }, + { + "start": 6574.8, + "end": 6575.94, + "probability": 0.3196 + }, + { + "start": 6576.04, + "end": 6577.62, + "probability": 0.8284 + }, + { + "start": 6577.72, + "end": 6579.26, + "probability": 0.614 + }, + { + "start": 6579.36, + "end": 6582.08, + "probability": 0.9817 + }, + { + "start": 6582.68, + "end": 6584.6, + "probability": 0.7767 + }, + { + "start": 6584.6, + "end": 6585.08, + "probability": 0.6721 + }, + { + "start": 6585.26, + "end": 6588.82, + "probability": 0.7188 + }, + { + "start": 6588.86, + "end": 6588.92, + "probability": 0.2864 + }, + { + "start": 6588.92, + "end": 6590.24, + "probability": 0.1151 + }, + { + "start": 6590.24, + "end": 6592.44, + "probability": 0.1738 + }, + { + "start": 6593.08, + "end": 6593.28, + "probability": 0.4029 + }, + { + "start": 6593.3, + "end": 6595.36, + "probability": 0.8819 + }, + { + "start": 6595.94, + "end": 6597.64, + "probability": 0.9102 + }, + { + "start": 6598.92, + "end": 6599.02, + "probability": 0.2814 + }, + { + "start": 6600.58, + "end": 6602.76, + "probability": 0.715 + }, + { + "start": 6602.78, + "end": 6603.98, + "probability": 0.8251 + }, + { + "start": 6604.26, + "end": 6605.38, + "probability": 0.965 + }, + { + "start": 6605.86, + "end": 6606.42, + "probability": 0.8131 + }, + { + "start": 6606.48, + "end": 6608.46, + "probability": 0.9518 + }, + { + "start": 6609.14, + "end": 6609.62, + "probability": 0.7311 + }, + { + "start": 6609.68, + "end": 6610.1, + "probability": 0.8815 + }, + { + "start": 6610.12, + "end": 6611.26, + "probability": 0.6885 + }, + { + "start": 6612.34, + "end": 6617.7, + "probability": 0.9865 + }, + { + "start": 6618.4, + "end": 6620.06, + "probability": 0.7497 + }, + { + "start": 6620.12, + "end": 6621.06, + "probability": 0.8675 + }, + { + "start": 6621.32, + "end": 6622.26, + "probability": 0.9055 + }, + { + "start": 6622.36, + "end": 6623.08, + "probability": 0.8524 + }, + { + "start": 6623.34, + "end": 6626.96, + "probability": 0.9135 + }, + { + "start": 6626.96, + "end": 6630.16, + "probability": 0.985 + }, + { + "start": 6631.42, + "end": 6631.96, + "probability": 0.4354 + }, + { + "start": 6632.2, + "end": 6633.0, + "probability": 0.9283 + }, + { + "start": 6638.76, + "end": 6639.78, + "probability": 0.4772 + }, + { + "start": 6640.0, + "end": 6640.78, + "probability": 0.7898 + }, + { + "start": 6640.84, + "end": 6642.13, + "probability": 0.8828 + }, + { + "start": 6644.32, + "end": 6650.44, + "probability": 0.9869 + }, + { + "start": 6650.6, + "end": 6652.3, + "probability": 0.9373 + }, + { + "start": 6653.16, + "end": 6657.76, + "probability": 0.9746 + }, + { + "start": 6657.98, + "end": 6658.88, + "probability": 0.6955 + }, + { + "start": 6659.02, + "end": 6659.38, + "probability": 0.7191 + }, + { + "start": 6659.46, + "end": 6660.08, + "probability": 0.7838 + }, + { + "start": 6660.76, + "end": 6661.64, + "probability": 0.8153 + }, + { + "start": 6662.72, + "end": 6665.98, + "probability": 0.9455 + }, + { + "start": 6666.84, + "end": 6671.96, + "probability": 0.9596 + }, + { + "start": 6672.96, + "end": 6677.56, + "probability": 0.8738 + }, + { + "start": 6678.76, + "end": 6681.64, + "probability": 0.9124 + }, + { + "start": 6682.16, + "end": 6688.76, + "probability": 0.9465 + }, + { + "start": 6689.82, + "end": 6695.62, + "probability": 0.8026 + }, + { + "start": 6696.46, + "end": 6700.5, + "probability": 0.7934 + }, + { + "start": 6701.04, + "end": 6706.56, + "probability": 0.9525 + }, + { + "start": 6707.14, + "end": 6712.1, + "probability": 0.9814 + }, + { + "start": 6713.7, + "end": 6718.24, + "probability": 0.9731 + }, + { + "start": 6718.4, + "end": 6719.48, + "probability": 0.455 + }, + { + "start": 6720.66, + "end": 6722.66, + "probability": 0.9521 + }, + { + "start": 6723.3, + "end": 6726.28, + "probability": 0.9653 + }, + { + "start": 6726.28, + "end": 6730.66, + "probability": 0.9932 + }, + { + "start": 6731.4, + "end": 6734.3, + "probability": 0.6535 + }, + { + "start": 6734.82, + "end": 6736.62, + "probability": 0.9342 + }, + { + "start": 6736.64, + "end": 6739.82, + "probability": 0.837 + }, + { + "start": 6741.28, + "end": 6743.62, + "probability": 0.7768 + }, + { + "start": 6744.96, + "end": 6746.22, + "probability": 0.8623 + }, + { + "start": 6747.18, + "end": 6750.86, + "probability": 0.9965 + }, + { + "start": 6750.86, + "end": 6756.28, + "probability": 0.9985 + }, + { + "start": 6757.7, + "end": 6761.74, + "probability": 0.9859 + }, + { + "start": 6761.74, + "end": 6766.08, + "probability": 0.9946 + }, + { + "start": 6767.0, + "end": 6768.88, + "probability": 0.966 + }, + { + "start": 6769.96, + "end": 6774.56, + "probability": 0.9054 + }, + { + "start": 6775.44, + "end": 6779.64, + "probability": 0.975 + }, + { + "start": 6780.6, + "end": 6783.16, + "probability": 0.6969 + }, + { + "start": 6783.76, + "end": 6786.7, + "probability": 0.9927 + }, + { + "start": 6786.82, + "end": 6791.68, + "probability": 0.9956 + }, + { + "start": 6791.68, + "end": 6796.88, + "probability": 0.9536 + }, + { + "start": 6797.88, + "end": 6801.94, + "probability": 0.7004 + }, + { + "start": 6804.92, + "end": 6809.02, + "probability": 0.9085 + }, + { + "start": 6810.14, + "end": 6810.8, + "probability": 0.5411 + }, + { + "start": 6810.98, + "end": 6814.6, + "probability": 0.796 + }, + { + "start": 6815.06, + "end": 6816.38, + "probability": 0.838 + }, + { + "start": 6817.6, + "end": 6820.46, + "probability": 0.8864 + }, + { + "start": 6820.52, + "end": 6824.58, + "probability": 0.8862 + }, + { + "start": 6825.14, + "end": 6827.14, + "probability": 0.9604 + }, + { + "start": 6827.5, + "end": 6828.74, + "probability": 0.8883 + }, + { + "start": 6829.66, + "end": 6834.0, + "probability": 0.9793 + }, + { + "start": 6834.0, + "end": 6839.86, + "probability": 0.9613 + }, + { + "start": 6840.48, + "end": 6845.12, + "probability": 0.9746 + }, + { + "start": 6845.12, + "end": 6852.14, + "probability": 0.9412 + }, + { + "start": 6852.26, + "end": 6853.5, + "probability": 0.8065 + }, + { + "start": 6854.38, + "end": 6861.82, + "probability": 0.9482 + }, + { + "start": 6864.04, + "end": 6866.18, + "probability": 0.8338 + }, + { + "start": 6866.58, + "end": 6867.8, + "probability": 0.8478 + }, + { + "start": 6867.9, + "end": 6871.7, + "probability": 0.9129 + }, + { + "start": 6871.7, + "end": 6877.42, + "probability": 0.9215 + }, + { + "start": 6877.88, + "end": 6878.36, + "probability": 0.1563 + }, + { + "start": 6879.06, + "end": 6884.12, + "probability": 0.9105 + }, + { + "start": 6884.44, + "end": 6885.38, + "probability": 0.5799 + }, + { + "start": 6885.66, + "end": 6886.6, + "probability": 0.617 + }, + { + "start": 6887.44, + "end": 6890.06, + "probability": 0.9895 + }, + { + "start": 6890.06, + "end": 6893.38, + "probability": 0.787 + }, + { + "start": 6893.64, + "end": 6897.82, + "probability": 0.9932 + }, + { + "start": 6898.3, + "end": 6900.48, + "probability": 0.6813 + }, + { + "start": 6900.72, + "end": 6903.2, + "probability": 0.7102 + }, + { + "start": 6903.3, + "end": 6909.52, + "probability": 0.8516 + }, + { + "start": 6909.52, + "end": 6916.9, + "probability": 0.9335 + }, + { + "start": 6917.08, + "end": 6919.66, + "probability": 0.9473 + }, + { + "start": 6920.32, + "end": 6921.38, + "probability": 0.9504 + }, + { + "start": 6921.5, + "end": 6924.24, + "probability": 0.8376 + }, + { + "start": 6925.14, + "end": 6926.0, + "probability": 0.9626 + }, + { + "start": 6926.1, + "end": 6927.08, + "probability": 0.594 + }, + { + "start": 6927.1, + "end": 6929.08, + "probability": 0.8683 + }, + { + "start": 6929.86, + "end": 6931.1, + "probability": 0.9319 + }, + { + "start": 6931.38, + "end": 6933.98, + "probability": 0.9863 + }, + { + "start": 6935.14, + "end": 6936.38, + "probability": 0.8362 + }, + { + "start": 6936.78, + "end": 6942.72, + "probability": 0.9407 + }, + { + "start": 6942.72, + "end": 6949.1, + "probability": 0.9715 + }, + { + "start": 6949.78, + "end": 6953.02, + "probability": 0.9505 + }, + { + "start": 6953.52, + "end": 6957.5, + "probability": 0.9897 + }, + { + "start": 6957.5, + "end": 6963.42, + "probability": 0.9917 + }, + { + "start": 6963.96, + "end": 6966.2, + "probability": 0.8082 + }, + { + "start": 6966.86, + "end": 6968.06, + "probability": 0.6375 + }, + { + "start": 6968.74, + "end": 6971.2, + "probability": 0.7666 + }, + { + "start": 6971.8, + "end": 6977.32, + "probability": 0.9703 + }, + { + "start": 6977.6, + "end": 6978.24, + "probability": 0.7654 + }, + { + "start": 6978.74, + "end": 6983.58, + "probability": 0.96 + }, + { + "start": 6984.1, + "end": 6988.08, + "probability": 0.947 + }, + { + "start": 6988.76, + "end": 6991.96, + "probability": 0.9692 + }, + { + "start": 6992.64, + "end": 6992.94, + "probability": 0.4257 + }, + { + "start": 6993.06, + "end": 6994.1, + "probability": 0.6732 + }, + { + "start": 6994.48, + "end": 6998.7, + "probability": 0.9573 + }, + { + "start": 6999.22, + "end": 7002.88, + "probability": 0.9662 + }, + { + "start": 7002.88, + "end": 7009.24, + "probability": 0.8138 + }, + { + "start": 7009.64, + "end": 7011.56, + "probability": 0.981 + }, + { + "start": 7012.06, + "end": 7017.08, + "probability": 0.8642 + }, + { + "start": 7017.18, + "end": 7022.44, + "probability": 0.9569 + }, + { + "start": 7022.68, + "end": 7023.5, + "probability": 0.9323 + }, + { + "start": 7023.94, + "end": 7024.76, + "probability": 0.9606 + }, + { + "start": 7025.34, + "end": 7027.56, + "probability": 0.905 + }, + { + "start": 7028.8, + "end": 7029.22, + "probability": 0.8292 + }, + { + "start": 7039.26, + "end": 7040.68, + "probability": 0.6544 + }, + { + "start": 7041.14, + "end": 7042.14, + "probability": 0.6944 + }, + { + "start": 7042.22, + "end": 7043.8, + "probability": 0.7601 + }, + { + "start": 7045.12, + "end": 7047.56, + "probability": 0.4144 + }, + { + "start": 7048.1, + "end": 7048.58, + "probability": 0.9062 + }, + { + "start": 7048.68, + "end": 7055.12, + "probability": 0.8986 + }, + { + "start": 7055.12, + "end": 7061.08, + "probability": 0.7505 + }, + { + "start": 7062.32, + "end": 7064.52, + "probability": 0.5439 + }, + { + "start": 7065.54, + "end": 7067.1, + "probability": 0.7382 + }, + { + "start": 7067.4, + "end": 7071.68, + "probability": 0.8755 + }, + { + "start": 7071.96, + "end": 7076.1, + "probability": 0.9823 + }, + { + "start": 7076.16, + "end": 7077.86, + "probability": 0.6841 + }, + { + "start": 7078.94, + "end": 7084.4, + "probability": 0.9601 + }, + { + "start": 7084.4, + "end": 7088.4, + "probability": 0.9974 + }, + { + "start": 7089.36, + "end": 7091.76, + "probability": 0.7792 + }, + { + "start": 7091.9, + "end": 7093.9, + "probability": 0.8217 + }, + { + "start": 7094.66, + "end": 7095.66, + "probability": 0.9482 + }, + { + "start": 7095.8, + "end": 7100.82, + "probability": 0.9409 + }, + { + "start": 7101.9, + "end": 7105.12, + "probability": 0.9856 + }, + { + "start": 7105.3, + "end": 7107.06, + "probability": 0.9761 + }, + { + "start": 7109.44, + "end": 7112.24, + "probability": 0.7952 + }, + { + "start": 7112.24, + "end": 7115.12, + "probability": 0.937 + }, + { + "start": 7115.88, + "end": 7118.3, + "probability": 0.5669 + }, + { + "start": 7118.44, + "end": 7122.64, + "probability": 0.9873 + }, + { + "start": 7123.84, + "end": 7128.28, + "probability": 0.9164 + }, + { + "start": 7128.28, + "end": 7133.28, + "probability": 0.994 + }, + { + "start": 7134.06, + "end": 7137.24, + "probability": 0.7997 + }, + { + "start": 7137.98, + "end": 7139.94, + "probability": 0.9725 + }, + { + "start": 7140.04, + "end": 7142.7, + "probability": 0.9816 + }, + { + "start": 7143.4, + "end": 7147.44, + "probability": 0.9553 + }, + { + "start": 7148.32, + "end": 7151.86, + "probability": 0.9404 + }, + { + "start": 7152.08, + "end": 7152.36, + "probability": 0.4783 + }, + { + "start": 7152.4, + "end": 7153.14, + "probability": 0.8522 + }, + { + "start": 7153.3, + "end": 7158.06, + "probability": 0.8926 + }, + { + "start": 7158.76, + "end": 7162.98, + "probability": 0.9627 + }, + { + "start": 7163.82, + "end": 7164.44, + "probability": 0.6708 + }, + { + "start": 7164.54, + "end": 7167.9, + "probability": 0.7147 + }, + { + "start": 7168.04, + "end": 7170.36, + "probability": 0.7227 + }, + { + "start": 7171.1, + "end": 7173.86, + "probability": 0.9355 + }, + { + "start": 7173.96, + "end": 7175.5, + "probability": 0.9852 + }, + { + "start": 7176.14, + "end": 7178.7, + "probability": 0.9561 + }, + { + "start": 7178.84, + "end": 7181.66, + "probability": 0.9617 + }, + { + "start": 7181.66, + "end": 7188.24, + "probability": 0.9224 + }, + { + "start": 7189.04, + "end": 7189.94, + "probability": 0.7642 + }, + { + "start": 7189.94, + "end": 7192.92, + "probability": 0.9552 + }, + { + "start": 7193.3, + "end": 7197.32, + "probability": 0.9785 + }, + { + "start": 7198.32, + "end": 7203.22, + "probability": 0.9658 + }, + { + "start": 7203.22, + "end": 7210.72, + "probability": 0.9772 + }, + { + "start": 7211.8, + "end": 7215.04, + "probability": 0.8665 + }, + { + "start": 7215.18, + "end": 7215.58, + "probability": 0.6867 + }, + { + "start": 7216.88, + "end": 7217.96, + "probability": 0.7775 + }, + { + "start": 7218.46, + "end": 7221.18, + "probability": 0.8472 + }, + { + "start": 7222.62, + "end": 7225.6, + "probability": 0.7779 + }, + { + "start": 7226.94, + "end": 7229.7, + "probability": 0.2311 + }, + { + "start": 7229.84, + "end": 7235.68, + "probability": 0.903 + }, + { + "start": 7236.02, + "end": 7236.52, + "probability": 0.5488 + }, + { + "start": 7243.52, + "end": 7243.9, + "probability": 0.6092 + }, + { + "start": 7252.42, + "end": 7252.54, + "probability": 0.0085 + }, + { + "start": 7252.54, + "end": 7252.54, + "probability": 0.0655 + }, + { + "start": 7252.54, + "end": 7253.04, + "probability": 0.1193 + }, + { + "start": 7253.04, + "end": 7253.04, + "probability": 0.0695 + }, + { + "start": 7253.04, + "end": 7255.02, + "probability": 0.4825 + }, + { + "start": 7255.54, + "end": 7257.24, + "probability": 0.9575 + }, + { + "start": 7259.42, + "end": 7262.12, + "probability": 0.7464 + }, + { + "start": 7263.74, + "end": 7266.08, + "probability": 0.8018 + }, + { + "start": 7266.1, + "end": 7267.48, + "probability": 0.8154 + }, + { + "start": 7267.56, + "end": 7269.18, + "probability": 0.8741 + }, + { + "start": 7270.18, + "end": 7272.0, + "probability": 0.9866 + }, + { + "start": 7272.6, + "end": 7275.82, + "probability": 0.8972 + }, + { + "start": 7276.72, + "end": 7278.68, + "probability": 0.8898 + }, + { + "start": 7279.34, + "end": 7281.18, + "probability": 0.6239 + }, + { + "start": 7281.76, + "end": 7285.7, + "probability": 0.647 + }, + { + "start": 7286.1, + "end": 7287.7, + "probability": 0.8866 + }, + { + "start": 7289.62, + "end": 7290.4, + "probability": 0.8824 + }, + { + "start": 7291.06, + "end": 7294.7, + "probability": 0.953 + }, + { + "start": 7295.82, + "end": 7299.1, + "probability": 0.8409 + }, + { + "start": 7299.1, + "end": 7303.88, + "probability": 0.9428 + }, + { + "start": 7304.5, + "end": 7307.46, + "probability": 0.9755 + }, + { + "start": 7308.42, + "end": 7310.0, + "probability": 0.812 + }, + { + "start": 7315.82, + "end": 7319.32, + "probability": 0.7191 + }, + { + "start": 7320.52, + "end": 7323.26, + "probability": 0.9937 + }, + { + "start": 7323.9, + "end": 7330.76, + "probability": 0.9774 + }, + { + "start": 7332.99, + "end": 7339.76, + "probability": 0.9725 + }, + { + "start": 7343.46, + "end": 7349.84, + "probability": 0.9607 + }, + { + "start": 7350.64, + "end": 7356.28, + "probability": 0.7405 + }, + { + "start": 7356.5, + "end": 7357.33, + "probability": 0.9032 + }, + { + "start": 7357.86, + "end": 7358.85, + "probability": 0.9297 + }, + { + "start": 7359.14, + "end": 7364.46, + "probability": 0.913 + }, + { + "start": 7365.52, + "end": 7371.88, + "probability": 0.9905 + }, + { + "start": 7372.84, + "end": 7380.76, + "probability": 0.9923 + }, + { + "start": 7381.22, + "end": 7382.08, + "probability": 0.6952 + }, + { + "start": 7382.14, + "end": 7383.04, + "probability": 0.8492 + }, + { + "start": 7383.22, + "end": 7384.16, + "probability": 0.8083 + }, + { + "start": 7384.52, + "end": 7389.3, + "probability": 0.958 + }, + { + "start": 7389.78, + "end": 7391.42, + "probability": 0.953 + }, + { + "start": 7392.06, + "end": 7395.22, + "probability": 0.8961 + }, + { + "start": 7396.54, + "end": 7401.0, + "probability": 0.995 + }, + { + "start": 7401.0, + "end": 7405.6, + "probability": 0.9912 + }, + { + "start": 7406.4, + "end": 7408.73, + "probability": 0.812 + }, + { + "start": 7409.32, + "end": 7409.88, + "probability": 0.8867 + }, + { + "start": 7410.32, + "end": 7413.38, + "probability": 0.9854 + }, + { + "start": 7413.82, + "end": 7417.04, + "probability": 0.9032 + }, + { + "start": 7417.12, + "end": 7417.3, + "probability": 0.7656 + }, + { + "start": 7417.86, + "end": 7419.84, + "probability": 0.9889 + }, + { + "start": 7420.08, + "end": 7423.18, + "probability": 0.9353 + }, + { + "start": 7423.6, + "end": 7429.9, + "probability": 0.9741 + }, + { + "start": 7430.08, + "end": 7430.96, + "probability": 0.6668 + }, + { + "start": 7431.38, + "end": 7433.12, + "probability": 0.915 + }, + { + "start": 7434.36, + "end": 7440.96, + "probability": 0.98 + }, + { + "start": 7441.72, + "end": 7443.82, + "probability": 0.9797 + }, + { + "start": 7444.26, + "end": 7445.06, + "probability": 0.7321 + }, + { + "start": 7445.14, + "end": 7446.62, + "probability": 0.9829 + }, + { + "start": 7446.68, + "end": 7448.24, + "probability": 0.9692 + }, + { + "start": 7448.44, + "end": 7449.82, + "probability": 0.9536 + }, + { + "start": 7450.12, + "end": 7450.7, + "probability": 0.5924 + }, + { + "start": 7451.28, + "end": 7451.94, + "probability": 0.6353 + }, + { + "start": 7452.06, + "end": 7452.94, + "probability": 0.9814 + }, + { + "start": 7453.14, + "end": 7456.84, + "probability": 0.7697 + }, + { + "start": 7457.02, + "end": 7463.07, + "probability": 0.9224 + }, + { + "start": 7463.76, + "end": 7470.24, + "probability": 0.966 + }, + { + "start": 7470.24, + "end": 7473.04, + "probability": 0.9922 + }, + { + "start": 7473.5, + "end": 7476.76, + "probability": 0.9069 + }, + { + "start": 7477.38, + "end": 7481.28, + "probability": 0.7671 + }, + { + "start": 7482.4, + "end": 7484.18, + "probability": 0.9626 + }, + { + "start": 7484.32, + "end": 7489.42, + "probability": 0.7337 + }, + { + "start": 7489.94, + "end": 7498.2, + "probability": 0.9922 + }, + { + "start": 7498.32, + "end": 7499.96, + "probability": 0.9641 + }, + { + "start": 7500.14, + "end": 7502.42, + "probability": 0.9854 + }, + { + "start": 7502.56, + "end": 7506.94, + "probability": 0.9056 + }, + { + "start": 7507.1, + "end": 7509.0, + "probability": 0.997 + }, + { + "start": 7509.98, + "end": 7513.52, + "probability": 0.7403 + }, + { + "start": 7514.22, + "end": 7519.56, + "probability": 0.9878 + }, + { + "start": 7519.82, + "end": 7527.34, + "probability": 0.958 + }, + { + "start": 7527.62, + "end": 7528.17, + "probability": 0.897 + }, + { + "start": 7529.08, + "end": 7530.46, + "probability": 0.9397 + }, + { + "start": 7530.9, + "end": 7534.32, + "probability": 0.9727 + }, + { + "start": 7534.58, + "end": 7537.9, + "probability": 0.962 + }, + { + "start": 7538.34, + "end": 7540.21, + "probability": 0.8596 + }, + { + "start": 7540.82, + "end": 7545.34, + "probability": 0.9805 + }, + { + "start": 7546.04, + "end": 7550.82, + "probability": 0.885 + }, + { + "start": 7551.46, + "end": 7556.64, + "probability": 0.8906 + }, + { + "start": 7557.76, + "end": 7561.44, + "probability": 0.9606 + }, + { + "start": 7561.78, + "end": 7562.42, + "probability": 0.7909 + }, + { + "start": 7562.96, + "end": 7564.76, + "probability": 0.9732 + }, + { + "start": 7566.5, + "end": 7570.58, + "probability": 0.7499 + }, + { + "start": 7570.72, + "end": 7571.62, + "probability": 0.7227 + }, + { + "start": 7571.98, + "end": 7577.48, + "probability": 0.8791 + }, + { + "start": 7577.92, + "end": 7579.98, + "probability": 0.9222 + }, + { + "start": 7580.18, + "end": 7585.2, + "probability": 0.851 + }, + { + "start": 7585.78, + "end": 7592.28, + "probability": 0.9496 + }, + { + "start": 7592.86, + "end": 7596.86, + "probability": 0.9205 + }, + { + "start": 7597.2, + "end": 7600.72, + "probability": 0.7534 + }, + { + "start": 7600.72, + "end": 7606.24, + "probability": 0.7983 + }, + { + "start": 7606.74, + "end": 7612.52, + "probability": 0.9262 + }, + { + "start": 7612.68, + "end": 7615.88, + "probability": 0.998 + }, + { + "start": 7615.88, + "end": 7618.6, + "probability": 0.9875 + }, + { + "start": 7618.92, + "end": 7626.06, + "probability": 0.9902 + }, + { + "start": 7626.22, + "end": 7633.68, + "probability": 0.7995 + }, + { + "start": 7633.92, + "end": 7637.46, + "probability": 0.9835 + }, + { + "start": 7637.78, + "end": 7639.6, + "probability": 0.9805 + }, + { + "start": 7639.82, + "end": 7642.1, + "probability": 0.8281 + }, + { + "start": 7642.36, + "end": 7644.4, + "probability": 0.5852 + }, + { + "start": 7644.48, + "end": 7645.82, + "probability": 0.5743 + }, + { + "start": 7646.52, + "end": 7652.1, + "probability": 0.7364 + }, + { + "start": 7653.0, + "end": 7660.78, + "probability": 0.9362 + }, + { + "start": 7661.24, + "end": 7663.0, + "probability": 0.9519 + }, + { + "start": 7663.46, + "end": 7664.18, + "probability": 0.8401 + }, + { + "start": 7664.4, + "end": 7671.3, + "probability": 0.9926 + }, + { + "start": 7671.46, + "end": 7680.74, + "probability": 0.817 + }, + { + "start": 7680.84, + "end": 7686.52, + "probability": 0.9758 + }, + { + "start": 7687.54, + "end": 7691.78, + "probability": 0.9809 + }, + { + "start": 7691.78, + "end": 7696.32, + "probability": 0.7812 + }, + { + "start": 7696.66, + "end": 7697.82, + "probability": 0.8475 + }, + { + "start": 7698.22, + "end": 7701.58, + "probability": 0.8669 + }, + { + "start": 7701.66, + "end": 7702.86, + "probability": 0.9646 + }, + { + "start": 7703.34, + "end": 7707.48, + "probability": 0.9829 + }, + { + "start": 7707.48, + "end": 7710.7, + "probability": 0.9892 + }, + { + "start": 7711.78, + "end": 7714.06, + "probability": 0.9766 + }, + { + "start": 7714.36, + "end": 7718.42, + "probability": 0.4666 + }, + { + "start": 7718.68, + "end": 7719.5, + "probability": 0.9699 + }, + { + "start": 7719.58, + "end": 7720.74, + "probability": 0.983 + }, + { + "start": 7721.2, + "end": 7722.44, + "probability": 0.9606 + }, + { + "start": 7722.84, + "end": 7725.4, + "probability": 0.9536 + }, + { + "start": 7726.14, + "end": 7729.16, + "probability": 0.9918 + }, + { + "start": 7729.28, + "end": 7731.02, + "probability": 0.6169 + }, + { + "start": 7732.04, + "end": 7735.92, + "probability": 0.9206 + }, + { + "start": 7736.24, + "end": 7746.76, + "probability": 0.9366 + }, + { + "start": 7746.78, + "end": 7750.02, + "probability": 0.7461 + }, + { + "start": 7750.16, + "end": 7753.46, + "probability": 0.9712 + }, + { + "start": 7754.0, + "end": 7757.04, + "probability": 0.998 + }, + { + "start": 7757.62, + "end": 7760.92, + "probability": 0.9539 + }, + { + "start": 7761.18, + "end": 7768.84, + "probability": 0.9171 + }, + { + "start": 7770.2, + "end": 7775.1, + "probability": 0.9717 + }, + { + "start": 7775.46, + "end": 7778.1, + "probability": 0.8644 + }, + { + "start": 7778.5, + "end": 7779.44, + "probability": 0.8166 + }, + { + "start": 7779.5, + "end": 7783.04, + "probability": 0.7557 + }, + { + "start": 7783.72, + "end": 7789.2, + "probability": 0.852 + }, + { + "start": 7789.58, + "end": 7792.38, + "probability": 0.9904 + }, + { + "start": 7792.42, + "end": 7793.84, + "probability": 0.9663 + }, + { + "start": 7794.4, + "end": 7799.84, + "probability": 0.9669 + }, + { + "start": 7800.04, + "end": 7807.9, + "probability": 0.9689 + }, + { + "start": 7808.4, + "end": 7811.48, + "probability": 0.9447 + }, + { + "start": 7811.48, + "end": 7818.6, + "probability": 0.9823 + }, + { + "start": 7818.76, + "end": 7821.28, + "probability": 0.7919 + }, + { + "start": 7821.6, + "end": 7828.44, + "probability": 0.7923 + }, + { + "start": 7832.92, + "end": 7839.48, + "probability": 0.7512 + }, + { + "start": 7839.56, + "end": 7843.56, + "probability": 0.9948 + }, + { + "start": 7843.66, + "end": 7847.6, + "probability": 0.9963 + }, + { + "start": 7848.08, + "end": 7852.84, + "probability": 0.9834 + }, + { + "start": 7853.18, + "end": 7855.58, + "probability": 0.9814 + }, + { + "start": 7855.92, + "end": 7860.78, + "probability": 0.9653 + }, + { + "start": 7860.84, + "end": 7862.94, + "probability": 0.931 + }, + { + "start": 7863.46, + "end": 7869.26, + "probability": 0.9035 + }, + { + "start": 7870.22, + "end": 7875.2, + "probability": 0.9897 + }, + { + "start": 7875.2, + "end": 7879.48, + "probability": 0.9786 + }, + { + "start": 7879.74, + "end": 7882.08, + "probability": 0.5015 + }, + { + "start": 7882.84, + "end": 7886.3, + "probability": 0.8579 + }, + { + "start": 7887.1, + "end": 7888.28, + "probability": 0.88 + }, + { + "start": 7888.64, + "end": 7889.6, + "probability": 0.5541 + }, + { + "start": 7889.84, + "end": 7890.76, + "probability": 0.8719 + }, + { + "start": 7890.82, + "end": 7891.28, + "probability": 0.9208 + }, + { + "start": 7891.42, + "end": 7891.98, + "probability": 0.6325 + }, + { + "start": 7892.5, + "end": 7896.48, + "probability": 0.9387 + }, + { + "start": 7896.52, + "end": 7897.8, + "probability": 0.4868 + }, + { + "start": 7898.04, + "end": 7903.38, + "probability": 0.9141 + }, + { + "start": 7904.14, + "end": 7905.48, + "probability": 0.5248 + }, + { + "start": 7905.68, + "end": 7911.48, + "probability": 0.7795 + }, + { + "start": 7911.58, + "end": 7913.04, + "probability": 0.8841 + }, + { + "start": 7913.36, + "end": 7918.66, + "probability": 0.8245 + }, + { + "start": 7918.78, + "end": 7922.1, + "probability": 0.9429 + }, + { + "start": 7922.1, + "end": 7927.48, + "probability": 0.9966 + }, + { + "start": 7927.86, + "end": 7930.72, + "probability": 0.7327 + }, + { + "start": 7931.46, + "end": 7936.9, + "probability": 0.5531 + }, + { + "start": 7937.4, + "end": 7941.16, + "probability": 0.9717 + }, + { + "start": 7942.12, + "end": 7942.64, + "probability": 0.5545 + }, + { + "start": 7942.64, + "end": 7943.02, + "probability": 0.8787 + }, + { + "start": 7944.0, + "end": 7946.74, + "probability": 0.8008 + }, + { + "start": 7953.24, + "end": 7954.66, + "probability": 0.8729 + }, + { + "start": 7955.6, + "end": 7957.34, + "probability": 0.9922 + }, + { + "start": 7967.22, + "end": 7968.32, + "probability": 0.4706 + }, + { + "start": 7968.9, + "end": 7969.82, + "probability": 0.7321 + }, + { + "start": 7971.36, + "end": 7978.06, + "probability": 0.9718 + }, + { + "start": 7978.2, + "end": 7981.54, + "probability": 0.9827 + }, + { + "start": 7981.6, + "end": 7985.62, + "probability": 0.9839 + }, + { + "start": 7985.62, + "end": 7991.56, + "probability": 0.9124 + }, + { + "start": 7993.2, + "end": 7996.52, + "probability": 0.967 + }, + { + "start": 7996.52, + "end": 7999.12, + "probability": 0.9953 + }, + { + "start": 8000.34, + "end": 8005.54, + "probability": 0.9963 + }, + { + "start": 8006.7, + "end": 8008.0, + "probability": 0.8855 + }, + { + "start": 8009.6, + "end": 8012.34, + "probability": 0.9147 + }, + { + "start": 8013.22, + "end": 8015.2, + "probability": 0.8087 + }, + { + "start": 8015.56, + "end": 8018.94, + "probability": 0.9899 + }, + { + "start": 8020.6, + "end": 8023.55, + "probability": 0.9926 + }, + { + "start": 8029.66, + "end": 8032.04, + "probability": 0.6816 + }, + { + "start": 8033.1, + "end": 8040.1, + "probability": 0.9809 + }, + { + "start": 8041.7, + "end": 8045.32, + "probability": 0.9935 + }, + { + "start": 8045.32, + "end": 8048.76, + "probability": 0.9861 + }, + { + "start": 8049.68, + "end": 8050.2, + "probability": 0.7141 + }, + { + "start": 8050.32, + "end": 8051.74, + "probability": 0.8128 + }, + { + "start": 8051.8, + "end": 8052.6, + "probability": 0.6576 + }, + { + "start": 8052.64, + "end": 8053.82, + "probability": 0.8088 + }, + { + "start": 8054.44, + "end": 8056.32, + "probability": 0.9148 + }, + { + "start": 8056.96, + "end": 8059.98, + "probability": 0.9813 + }, + { + "start": 8061.14, + "end": 8063.65, + "probability": 0.9203 + }, + { + "start": 8064.92, + "end": 8066.2, + "probability": 0.9944 + }, + { + "start": 8066.74, + "end": 8067.84, + "probability": 0.6118 + }, + { + "start": 8067.88, + "end": 8071.95, + "probability": 0.9812 + }, + { + "start": 8072.06, + "end": 8074.58, + "probability": 0.991 + }, + { + "start": 8076.04, + "end": 8080.24, + "probability": 0.9907 + }, + { + "start": 8080.28, + "end": 8083.7, + "probability": 0.9951 + }, + { + "start": 8085.28, + "end": 8088.28, + "probability": 0.9198 + }, + { + "start": 8088.64, + "end": 8093.18, + "probability": 0.8829 + }, + { + "start": 8093.9, + "end": 8097.04, + "probability": 0.9018 + }, + { + "start": 8097.7, + "end": 8101.4, + "probability": 0.688 + }, + { + "start": 8101.94, + "end": 8106.6, + "probability": 0.9526 + }, + { + "start": 8106.6, + "end": 8110.34, + "probability": 0.9733 + }, + { + "start": 8111.02, + "end": 8117.38, + "probability": 0.998 + }, + { + "start": 8118.18, + "end": 8119.46, + "probability": 0.7735 + }, + { + "start": 8120.0, + "end": 8123.2, + "probability": 0.9663 + }, + { + "start": 8124.04, + "end": 8128.46, + "probability": 0.9666 + }, + { + "start": 8129.38, + "end": 8130.58, + "probability": 0.766 + }, + { + "start": 8130.84, + "end": 8132.06, + "probability": 0.6932 + }, + { + "start": 8133.88, + "end": 8136.04, + "probability": 0.8967 + }, + { + "start": 8136.5, + "end": 8137.38, + "probability": 0.6684 + }, + { + "start": 8137.4, + "end": 8138.46, + "probability": 0.8705 + }, + { + "start": 8141.72, + "end": 8141.82, + "probability": 0.1853 + }, + { + "start": 8153.86, + "end": 8154.5, + "probability": 0.0026 + }, + { + "start": 8155.58, + "end": 8163.54, + "probability": 0.5392 + }, + { + "start": 8165.02, + "end": 8168.39, + "probability": 0.0231 + }, + { + "start": 8169.24, + "end": 8169.7, + "probability": 0.0698 + }, + { + "start": 8169.7, + "end": 8169.7, + "probability": 0.0054 + }, + { + "start": 8169.7, + "end": 8169.7, + "probability": 0.2468 + }, + { + "start": 8169.7, + "end": 8171.57, + "probability": 0.3204 + }, + { + "start": 8171.76, + "end": 8174.76, + "probability": 0.6184 + }, + { + "start": 8175.2, + "end": 8176.72, + "probability": 0.7764 + }, + { + "start": 8177.68, + "end": 8181.34, + "probability": 0.8423 + }, + { + "start": 8188.76, + "end": 8191.42, + "probability": 0.9867 + }, + { + "start": 8193.24, + "end": 8194.14, + "probability": 0.9819 + }, + { + "start": 8196.2, + "end": 8199.14, + "probability": 0.8705 + }, + { + "start": 8199.56, + "end": 8201.9, + "probability": 0.9084 + }, + { + "start": 8202.78, + "end": 8203.98, + "probability": 0.9132 + }, + { + "start": 8209.8, + "end": 8213.26, + "probability": 0.6504 + }, + { + "start": 8214.38, + "end": 8215.0, + "probability": 0.5992 + }, + { + "start": 8215.96, + "end": 8216.1, + "probability": 0.7523 + }, + { + "start": 8216.22, + "end": 8221.06, + "probability": 0.9865 + }, + { + "start": 8221.2, + "end": 8223.12, + "probability": 0.9414 + }, + { + "start": 8224.14, + "end": 8224.4, + "probability": 0.7878 + }, + { + "start": 8224.4, + "end": 8226.06, + "probability": 0.9869 + }, + { + "start": 8226.2, + "end": 8227.78, + "probability": 0.8296 + }, + { + "start": 8228.64, + "end": 8232.62, + "probability": 0.9455 + }, + { + "start": 8233.4, + "end": 8235.22, + "probability": 0.9898 + }, + { + "start": 8235.36, + "end": 8236.72, + "probability": 0.9818 + }, + { + "start": 8237.18, + "end": 8238.62, + "probability": 0.9762 + }, + { + "start": 8238.84, + "end": 8242.74, + "probability": 0.8989 + }, + { + "start": 8242.74, + "end": 8244.08, + "probability": 0.9768 + }, + { + "start": 8245.68, + "end": 8249.38, + "probability": 0.8623 + }, + { + "start": 8250.6, + "end": 8252.84, + "probability": 0.9755 + }, + { + "start": 8253.56, + "end": 8259.86, + "probability": 0.9958 + }, + { + "start": 8260.8, + "end": 8262.65, + "probability": 0.9944 + }, + { + "start": 8263.48, + "end": 8270.3, + "probability": 0.9234 + }, + { + "start": 8270.74, + "end": 8271.24, + "probability": 0.7894 + }, + { + "start": 8271.38, + "end": 8273.26, + "probability": 0.9517 + }, + { + "start": 8273.66, + "end": 8278.26, + "probability": 0.8296 + }, + { + "start": 8278.92, + "end": 8281.5, + "probability": 0.9604 + }, + { + "start": 8281.64, + "end": 8282.4, + "probability": 0.5289 + }, + { + "start": 8283.06, + "end": 8284.94, + "probability": 0.9925 + }, + { + "start": 8285.62, + "end": 8289.08, + "probability": 0.6793 + }, + { + "start": 8289.24, + "end": 8294.5, + "probability": 0.986 + }, + { + "start": 8294.96, + "end": 8298.88, + "probability": 0.997 + }, + { + "start": 8299.68, + "end": 8300.26, + "probability": 0.5556 + }, + { + "start": 8301.7, + "end": 8305.72, + "probability": 0.9374 + }, + { + "start": 8305.88, + "end": 8307.6, + "probability": 0.9897 + }, + { + "start": 8308.58, + "end": 8310.76, + "probability": 0.9934 + }, + { + "start": 8311.38, + "end": 8312.36, + "probability": 0.9769 + }, + { + "start": 8313.02, + "end": 8313.46, + "probability": 0.7412 + }, + { + "start": 8313.62, + "end": 8316.6, + "probability": 0.997 + }, + { + "start": 8316.7, + "end": 8320.92, + "probability": 0.9893 + }, + { + "start": 8321.52, + "end": 8323.54, + "probability": 0.9446 + }, + { + "start": 8324.82, + "end": 8325.82, + "probability": 0.8742 + }, + { + "start": 8325.84, + "end": 8327.98, + "probability": 0.8083 + }, + { + "start": 8328.3, + "end": 8330.22, + "probability": 0.996 + }, + { + "start": 8330.4, + "end": 8331.26, + "probability": 0.7483 + }, + { + "start": 8331.7, + "end": 8332.8, + "probability": 0.9625 + }, + { + "start": 8333.42, + "end": 8335.3, + "probability": 0.9985 + }, + { + "start": 8335.72, + "end": 8337.54, + "probability": 0.9781 + }, + { + "start": 8337.94, + "end": 8339.42, + "probability": 0.9831 + }, + { + "start": 8340.82, + "end": 8342.38, + "probability": 0.95 + }, + { + "start": 8343.1, + "end": 8345.3, + "probability": 0.9032 + }, + { + "start": 8345.92, + "end": 8348.08, + "probability": 0.9982 + }, + { + "start": 8348.26, + "end": 8349.46, + "probability": 0.7272 + }, + { + "start": 8351.04, + "end": 8352.03, + "probability": 0.7569 + }, + { + "start": 8353.02, + "end": 8355.32, + "probability": 0.9753 + }, + { + "start": 8355.38, + "end": 8358.42, + "probability": 0.7937 + }, + { + "start": 8358.66, + "end": 8359.74, + "probability": 0.8306 + }, + { + "start": 8359.96, + "end": 8362.84, + "probability": 0.7064 + }, + { + "start": 8363.34, + "end": 8367.36, + "probability": 0.9772 + }, + { + "start": 8368.12, + "end": 8370.9, + "probability": 0.9814 + }, + { + "start": 8370.9, + "end": 8373.86, + "probability": 0.9979 + }, + { + "start": 8374.26, + "end": 8376.77, + "probability": 0.7512 + }, + { + "start": 8377.04, + "end": 8378.1, + "probability": 0.8182 + }, + { + "start": 8378.44, + "end": 8379.93, + "probability": 0.9897 + }, + { + "start": 8380.1, + "end": 8382.36, + "probability": 0.9715 + }, + { + "start": 8384.08, + "end": 8387.28, + "probability": 0.8225 + }, + { + "start": 8387.77, + "end": 8389.22, + "probability": 0.9561 + }, + { + "start": 8390.98, + "end": 8391.0, + "probability": 0.0294 + }, + { + "start": 8391.0, + "end": 8391.0, + "probability": 0.0511 + }, + { + "start": 8391.0, + "end": 8391.62, + "probability": 0.1267 + }, + { + "start": 8391.64, + "end": 8391.92, + "probability": 0.6586 + }, + { + "start": 8391.94, + "end": 8392.4, + "probability": 0.5555 + }, + { + "start": 8392.7, + "end": 8393.9, + "probability": 0.7411 + }, + { + "start": 8393.9, + "end": 8395.32, + "probability": 0.5434 + }, + { + "start": 8395.44, + "end": 8396.05, + "probability": 0.9725 + }, + { + "start": 8396.68, + "end": 8398.52, + "probability": 0.8657 + }, + { + "start": 8398.58, + "end": 8399.28, + "probability": 0.5403 + }, + { + "start": 8399.34, + "end": 8399.99, + "probability": 0.938 + }, + { + "start": 8400.24, + "end": 8401.64, + "probability": 0.9678 + }, + { + "start": 8401.88, + "end": 8402.4, + "probability": 0.8979 + }, + { + "start": 8402.78, + "end": 8404.24, + "probability": 0.9721 + }, + { + "start": 8404.84, + "end": 8409.5, + "probability": 0.9532 + }, + { + "start": 8409.56, + "end": 8410.14, + "probability": 0.8582 + }, + { + "start": 8410.26, + "end": 8411.5, + "probability": 0.9847 + }, + { + "start": 8412.12, + "end": 8415.72, + "probability": 0.9822 + }, + { + "start": 8416.02, + "end": 8417.82, + "probability": 0.9281 + }, + { + "start": 8418.42, + "end": 8419.22, + "probability": 0.9452 + }, + { + "start": 8420.08, + "end": 8421.04, + "probability": 0.9379 + }, + { + "start": 8421.2, + "end": 8421.8, + "probability": 0.8398 + }, + { + "start": 8422.26, + "end": 8427.24, + "probability": 0.9995 + }, + { + "start": 8427.86, + "end": 8428.86, + "probability": 0.8633 + }, + { + "start": 8429.28, + "end": 8431.28, + "probability": 0.9926 + }, + { + "start": 8431.48, + "end": 8434.32, + "probability": 0.9646 + }, + { + "start": 8434.96, + "end": 8437.52, + "probability": 0.8542 + }, + { + "start": 8438.7, + "end": 8440.42, + "probability": 0.9951 + }, + { + "start": 8440.68, + "end": 8445.84, + "probability": 0.8269 + }, + { + "start": 8446.36, + "end": 8446.74, + "probability": 0.6569 + }, + { + "start": 8446.82, + "end": 8447.5, + "probability": 0.7409 + }, + { + "start": 8447.78, + "end": 8449.52, + "probability": 0.9915 + }, + { + "start": 8449.88, + "end": 8451.1, + "probability": 0.9576 + }, + { + "start": 8451.24, + "end": 8452.9, + "probability": 0.9895 + }, + { + "start": 8453.22, + "end": 8455.46, + "probability": 0.9143 + }, + { + "start": 8455.86, + "end": 8456.2, + "probability": 0.44 + }, + { + "start": 8456.32, + "end": 8456.86, + "probability": 0.8496 + }, + { + "start": 8457.02, + "end": 8459.88, + "probability": 0.9727 + }, + { + "start": 8460.56, + "end": 8461.5, + "probability": 0.9173 + }, + { + "start": 8461.86, + "end": 8463.68, + "probability": 0.9932 + }, + { + "start": 8464.18, + "end": 8468.08, + "probability": 0.9921 + }, + { + "start": 8470.0, + "end": 8471.0, + "probability": 0.8609 + }, + { + "start": 8471.14, + "end": 8471.42, + "probability": 0.9427 + }, + { + "start": 8471.96, + "end": 8473.84, + "probability": 0.9738 + }, + { + "start": 8474.42, + "end": 8476.86, + "probability": 0.9644 + }, + { + "start": 8476.96, + "end": 8479.12, + "probability": 0.9678 + }, + { + "start": 8479.28, + "end": 8479.94, + "probability": 0.9134 + }, + { + "start": 8480.0, + "end": 8480.72, + "probability": 0.9136 + }, + { + "start": 8481.52, + "end": 8485.16, + "probability": 0.9275 + }, + { + "start": 8485.74, + "end": 8488.86, + "probability": 0.9361 + }, + { + "start": 8489.22, + "end": 8491.4, + "probability": 0.9511 + }, + { + "start": 8491.58, + "end": 8494.3, + "probability": 0.9932 + }, + { + "start": 8494.48, + "end": 8496.94, + "probability": 0.998 + }, + { + "start": 8497.36, + "end": 8499.7, + "probability": 0.9941 + }, + { + "start": 8499.7, + "end": 8501.26, + "probability": 0.8282 + }, + { + "start": 8502.24, + "end": 8502.48, + "probability": 0.2538 + }, + { + "start": 8502.54, + "end": 8503.9, + "probability": 0.7572 + }, + { + "start": 8504.77, + "end": 8509.22, + "probability": 0.9361 + }, + { + "start": 8509.22, + "end": 8512.82, + "probability": 0.9582 + }, + { + "start": 8513.08, + "end": 8514.4, + "probability": 0.9838 + }, + { + "start": 8514.78, + "end": 8517.38, + "probability": 0.9719 + }, + { + "start": 8517.7, + "end": 8519.2, + "probability": 0.9597 + }, + { + "start": 8519.3, + "end": 8519.58, + "probability": 0.4924 + }, + { + "start": 8519.66, + "end": 8520.9, + "probability": 0.8153 + }, + { + "start": 8521.26, + "end": 8525.16, + "probability": 0.9893 + }, + { + "start": 8525.5, + "end": 8527.15, + "probability": 0.946 + }, + { + "start": 8527.24, + "end": 8528.32, + "probability": 0.6015 + }, + { + "start": 8528.7, + "end": 8529.52, + "probability": 0.8477 + }, + { + "start": 8529.6, + "end": 8530.46, + "probability": 0.8897 + }, + { + "start": 8530.84, + "end": 8531.48, + "probability": 0.8999 + }, + { + "start": 8531.66, + "end": 8532.38, + "probability": 0.9688 + }, + { + "start": 8532.76, + "end": 8533.24, + "probability": 0.4063 + }, + { + "start": 8533.38, + "end": 8533.62, + "probability": 0.801 + }, + { + "start": 8534.18, + "end": 8536.58, + "probability": 0.9413 + }, + { + "start": 8536.7, + "end": 8537.46, + "probability": 0.9044 + }, + { + "start": 8537.88, + "end": 8542.56, + "probability": 0.9724 + }, + { + "start": 8542.94, + "end": 8544.68, + "probability": 0.9585 + }, + { + "start": 8545.12, + "end": 8546.04, + "probability": 0.8897 + }, + { + "start": 8546.04, + "end": 8548.22, + "probability": 0.6371 + }, + { + "start": 8548.28, + "end": 8548.58, + "probability": 0.8499 + }, + { + "start": 8548.68, + "end": 8550.45, + "probability": 0.9847 + }, + { + "start": 8550.9, + "end": 8553.26, + "probability": 0.9887 + }, + { + "start": 8553.28, + "end": 8553.85, + "probability": 0.7607 + }, + { + "start": 8554.32, + "end": 8556.18, + "probability": 0.7254 + }, + { + "start": 8556.56, + "end": 8556.9, + "probability": 0.5853 + }, + { + "start": 8557.2, + "end": 8560.42, + "probability": 0.9618 + }, + { + "start": 8560.72, + "end": 8563.0, + "probability": 0.8931 + }, + { + "start": 8563.14, + "end": 8566.0, + "probability": 0.9857 + }, + { + "start": 8566.46, + "end": 8567.72, + "probability": 0.7796 + }, + { + "start": 8568.1, + "end": 8568.72, + "probability": 0.5318 + }, + { + "start": 8568.9, + "end": 8569.57, + "probability": 0.9795 + }, + { + "start": 8570.82, + "end": 8576.04, + "probability": 0.9597 + }, + { + "start": 8576.44, + "end": 8577.94, + "probability": 0.8817 + }, + { + "start": 8578.58, + "end": 8583.12, + "probability": 0.9526 + }, + { + "start": 8583.42, + "end": 8585.92, + "probability": 0.7844 + }, + { + "start": 8586.02, + "end": 8586.16, + "probability": 0.4154 + }, + { + "start": 8586.24, + "end": 8586.58, + "probability": 0.8523 + }, + { + "start": 8586.84, + "end": 8587.76, + "probability": 0.8794 + }, + { + "start": 8588.22, + "end": 8589.19, + "probability": 0.9968 + }, + { + "start": 8589.44, + "end": 8591.92, + "probability": 0.9771 + }, + { + "start": 8592.14, + "end": 8593.24, + "probability": 0.9976 + }, + { + "start": 8593.7, + "end": 8594.26, + "probability": 0.534 + }, + { + "start": 8594.28, + "end": 8595.0, + "probability": 0.8927 + }, + { + "start": 8595.32, + "end": 8596.28, + "probability": 0.5295 + }, + { + "start": 8596.46, + "end": 8597.82, + "probability": 0.9868 + }, + { + "start": 8598.04, + "end": 8600.3, + "probability": 0.8818 + }, + { + "start": 8600.92, + "end": 8601.02, + "probability": 0.5107 + }, + { + "start": 8601.14, + "end": 8603.12, + "probability": 0.9184 + }, + { + "start": 8603.4, + "end": 8604.58, + "probability": 0.6347 + }, + { + "start": 8604.66, + "end": 8606.8, + "probability": 0.9799 + }, + { + "start": 8607.12, + "end": 8611.24, + "probability": 0.9779 + }, + { + "start": 8611.24, + "end": 8618.26, + "probability": 0.9788 + }, + { + "start": 8618.7, + "end": 8620.48, + "probability": 0.9884 + }, + { + "start": 8620.58, + "end": 8621.06, + "probability": 0.2762 + }, + { + "start": 8621.14, + "end": 8621.52, + "probability": 0.7437 + }, + { + "start": 8622.08, + "end": 8623.42, + "probability": 0.9883 + }, + { + "start": 8623.58, + "end": 8624.18, + "probability": 0.871 + }, + { + "start": 8624.54, + "end": 8625.18, + "probability": 0.922 + }, + { + "start": 8625.86, + "end": 8628.9, + "probability": 0.9651 + }, + { + "start": 8629.26, + "end": 8634.0, + "probability": 0.9907 + }, + { + "start": 8634.24, + "end": 8635.72, + "probability": 0.964 + }, + { + "start": 8636.56, + "end": 8639.34, + "probability": 0.8178 + }, + { + "start": 8640.52, + "end": 8644.76, + "probability": 0.8841 + }, + { + "start": 8645.04, + "end": 8649.5, + "probability": 0.9762 + }, + { + "start": 8650.56, + "end": 8651.9, + "probability": 0.5432 + }, + { + "start": 8653.7, + "end": 8655.38, + "probability": 0.6534 + }, + { + "start": 8655.46, + "end": 8656.02, + "probability": 0.9437 + }, + { + "start": 8656.18, + "end": 8656.8, + "probability": 0.8853 + }, + { + "start": 8657.18, + "end": 8658.74, + "probability": 0.6002 + }, + { + "start": 8659.1, + "end": 8666.02, + "probability": 0.9807 + }, + { + "start": 8666.1, + "end": 8667.02, + "probability": 0.9833 + }, + { + "start": 8667.1, + "end": 8668.22, + "probability": 0.9635 + }, + { + "start": 8668.28, + "end": 8671.58, + "probability": 0.9979 + }, + { + "start": 8672.14, + "end": 8676.34, + "probability": 0.9782 + }, + { + "start": 8677.12, + "end": 8681.62, + "probability": 0.9769 + }, + { + "start": 8681.76, + "end": 8682.92, + "probability": 0.981 + }, + { + "start": 8682.96, + "end": 8685.24, + "probability": 0.9958 + }, + { + "start": 8685.32, + "end": 8686.92, + "probability": 0.9974 + }, + { + "start": 8686.92, + "end": 8689.1, + "probability": 0.6543 + }, + { + "start": 8689.28, + "end": 8689.9, + "probability": 0.7855 + }, + { + "start": 8690.22, + "end": 8692.94, + "probability": 0.9606 + }, + { + "start": 8693.66, + "end": 8694.52, + "probability": 0.9071 + }, + { + "start": 8695.2, + "end": 8695.8, + "probability": 0.9408 + }, + { + "start": 8695.9, + "end": 8696.6, + "probability": 0.979 + }, + { + "start": 8696.68, + "end": 8698.04, + "probability": 0.9863 + }, + { + "start": 8698.38, + "end": 8698.88, + "probability": 0.7019 + }, + { + "start": 8698.96, + "end": 8699.46, + "probability": 0.554 + }, + { + "start": 8699.46, + "end": 8702.7, + "probability": 0.7993 + }, + { + "start": 8702.7, + "end": 8705.7, + "probability": 0.9814 + }, + { + "start": 8706.08, + "end": 8706.24, + "probability": 0.2643 + }, + { + "start": 8706.4, + "end": 8708.84, + "probability": 0.9844 + }, + { + "start": 8708.9, + "end": 8711.15, + "probability": 0.927 + }, + { + "start": 8711.34, + "end": 8715.98, + "probability": 0.9979 + }, + { + "start": 8716.32, + "end": 8720.68, + "probability": 0.909 + }, + { + "start": 8720.78, + "end": 8722.68, + "probability": 0.8758 + }, + { + "start": 8723.02, + "end": 8724.1, + "probability": 0.9678 + }, + { + "start": 8724.58, + "end": 8726.06, + "probability": 0.9846 + }, + { + "start": 8726.38, + "end": 8731.22, + "probability": 0.9636 + }, + { + "start": 8731.28, + "end": 8732.48, + "probability": 0.8866 + }, + { + "start": 8732.64, + "end": 8734.8, + "probability": 0.9469 + }, + { + "start": 8734.82, + "end": 8736.09, + "probability": 0.937 + }, + { + "start": 8736.52, + "end": 8737.94, + "probability": 0.9915 + }, + { + "start": 8738.02, + "end": 8739.0, + "probability": 0.7637 + }, + { + "start": 8739.1, + "end": 8739.53, + "probability": 0.2686 + }, + { + "start": 8739.9, + "end": 8743.84, + "probability": 0.8861 + }, + { + "start": 8744.22, + "end": 8745.46, + "probability": 0.761 + }, + { + "start": 8745.86, + "end": 8747.64, + "probability": 0.9447 + }, + { + "start": 8747.9, + "end": 8748.92, + "probability": 0.9884 + }, + { + "start": 8749.16, + "end": 8750.66, + "probability": 0.9877 + }, + { + "start": 8750.86, + "end": 8752.06, + "probability": 0.8214 + }, + { + "start": 8752.16, + "end": 8755.06, + "probability": 0.9849 + }, + { + "start": 8755.34, + "end": 8756.19, + "probability": 0.6625 + }, + { + "start": 8756.46, + "end": 8757.58, + "probability": 0.7964 + }, + { + "start": 8757.9, + "end": 8761.06, + "probability": 0.8481 + }, + { + "start": 8761.8, + "end": 8763.06, + "probability": 0.5885 + }, + { + "start": 8771.32, + "end": 8772.2, + "probability": 0.4668 + }, + { + "start": 8772.38, + "end": 8773.42, + "probability": 0.7936 + }, + { + "start": 8773.64, + "end": 8778.74, + "probability": 0.9134 + }, + { + "start": 8778.84, + "end": 8780.16, + "probability": 0.8738 + }, + { + "start": 8781.74, + "end": 8785.72, + "probability": 0.8267 + }, + { + "start": 8786.52, + "end": 8787.42, + "probability": 0.8844 + }, + { + "start": 8791.34, + "end": 8791.54, + "probability": 0.5476 + }, + { + "start": 8791.54, + "end": 8793.7, + "probability": 0.7689 + }, + { + "start": 8794.66, + "end": 8799.66, + "probability": 0.9249 + }, + { + "start": 8799.8, + "end": 8800.32, + "probability": 0.808 + }, + { + "start": 8801.14, + "end": 8802.24, + "probability": 0.9899 + }, + { + "start": 8803.58, + "end": 8806.46, + "probability": 0.9961 + }, + { + "start": 8811.48, + "end": 8814.5, + "probability": 0.9909 + }, + { + "start": 8814.6, + "end": 8816.06, + "probability": 0.9653 + }, + { + "start": 8817.22, + "end": 8819.84, + "probability": 0.8965 + }, + { + "start": 8820.44, + "end": 8821.76, + "probability": 0.9956 + }, + { + "start": 8821.88, + "end": 8825.38, + "probability": 0.9852 + }, + { + "start": 8826.8, + "end": 8827.58, + "probability": 0.757 + }, + { + "start": 8828.7, + "end": 8833.1, + "probability": 0.8148 + }, + { + "start": 8833.16, + "end": 8837.12, + "probability": 0.9712 + }, + { + "start": 8838.78, + "end": 8841.56, + "probability": 0.9877 + }, + { + "start": 8842.62, + "end": 8844.42, + "probability": 0.9757 + }, + { + "start": 8846.02, + "end": 8847.2, + "probability": 0.9916 + }, + { + "start": 8847.28, + "end": 8849.46, + "probability": 0.9807 + }, + { + "start": 8850.12, + "end": 8855.42, + "probability": 0.9463 + }, + { + "start": 8855.9, + "end": 8857.26, + "probability": 0.9959 + }, + { + "start": 8858.02, + "end": 8860.7, + "probability": 0.9781 + }, + { + "start": 8861.08, + "end": 8862.46, + "probability": 0.8755 + }, + { + "start": 8863.46, + "end": 8863.76, + "probability": 0.5126 + }, + { + "start": 8863.82, + "end": 8866.58, + "probability": 0.8309 + }, + { + "start": 8867.24, + "end": 8876.08, + "probability": 0.9949 + }, + { + "start": 8876.6, + "end": 8879.94, + "probability": 0.9985 + }, + { + "start": 8882.68, + "end": 8886.34, + "probability": 0.9944 + }, + { + "start": 8886.34, + "end": 8888.88, + "probability": 0.9982 + }, + { + "start": 8890.44, + "end": 8893.59, + "probability": 0.6641 + }, + { + "start": 8895.74, + "end": 8896.92, + "probability": 0.9489 + }, + { + "start": 8899.22, + "end": 8901.9, + "probability": 0.3434 + }, + { + "start": 8902.0, + "end": 8906.34, + "probability": 0.9958 + }, + { + "start": 8906.36, + "end": 8911.44, + "probability": 0.9985 + }, + { + "start": 8913.86, + "end": 8917.1, + "probability": 0.9512 + }, + { + "start": 8917.14, + "end": 8918.74, + "probability": 0.6789 + }, + { + "start": 8918.78, + "end": 8919.74, + "probability": 0.8311 + }, + { + "start": 8919.82, + "end": 8921.52, + "probability": 0.8275 + }, + { + "start": 8921.62, + "end": 8925.16, + "probability": 0.9728 + }, + { + "start": 8925.62, + "end": 8928.56, + "probability": 0.9668 + }, + { + "start": 8931.68, + "end": 8933.34, + "probability": 0.8117 + }, + { + "start": 8934.08, + "end": 8937.07, + "probability": 0.9794 + }, + { + "start": 8937.64, + "end": 8938.9, + "probability": 0.9904 + }, + { + "start": 8940.16, + "end": 8940.62, + "probability": 0.7817 + }, + { + "start": 8940.78, + "end": 8945.12, + "probability": 0.9541 + }, + { + "start": 8945.12, + "end": 8948.46, + "probability": 0.9854 + }, + { + "start": 8948.46, + "end": 8952.36, + "probability": 0.9963 + }, + { + "start": 8952.82, + "end": 8956.06, + "probability": 0.9955 + }, + { + "start": 8956.18, + "end": 8956.78, + "probability": 0.7203 + }, + { + "start": 8957.34, + "end": 8959.28, + "probability": 0.9126 + }, + { + "start": 8961.08, + "end": 8962.66, + "probability": 0.8548 + }, + { + "start": 8962.92, + "end": 8966.1, + "probability": 0.6609 + }, + { + "start": 8966.1, + "end": 8968.92, + "probability": 0.9292 + }, + { + "start": 8968.98, + "end": 8973.58, + "probability": 0.9974 + }, + { + "start": 8973.58, + "end": 8978.34, + "probability": 0.9935 + }, + { + "start": 8979.44, + "end": 8983.22, + "probability": 0.9942 + }, + { + "start": 8983.3, + "end": 8987.04, + "probability": 0.9917 + }, + { + "start": 8987.18, + "end": 8990.04, + "probability": 0.7227 + }, + { + "start": 8990.66, + "end": 8993.28, + "probability": 0.7933 + }, + { + "start": 8993.28, + "end": 8996.78, + "probability": 0.9327 + }, + { + "start": 8999.26, + "end": 8999.38, + "probability": 0.0001 + }, + { + "start": 9004.2, + "end": 9006.22, + "probability": 0.7873 + }, + { + "start": 9006.84, + "end": 9008.82, + "probability": 0.9893 + }, + { + "start": 9009.24, + "end": 9012.2, + "probability": 0.9744 + }, + { + "start": 9012.8, + "end": 9016.16, + "probability": 0.9969 + }, + { + "start": 9017.08, + "end": 9018.08, + "probability": 0.8912 + }, + { + "start": 9018.7, + "end": 9020.26, + "probability": 0.9967 + }, + { + "start": 9020.54, + "end": 9021.96, + "probability": 0.9097 + }, + { + "start": 9022.02, + "end": 9023.76, + "probability": 0.9512 + }, + { + "start": 9024.54, + "end": 9034.24, + "probability": 0.895 + }, + { + "start": 9034.32, + "end": 9035.0, + "probability": 0.5319 + }, + { + "start": 9035.28, + "end": 9035.79, + "probability": 0.8945 + }, + { + "start": 9036.56, + "end": 9040.48, + "probability": 0.9829 + }, + { + "start": 9041.04, + "end": 9041.88, + "probability": 0.9971 + }, + { + "start": 9044.9, + "end": 9045.94, + "probability": 0.8321 + }, + { + "start": 9046.78, + "end": 9047.42, + "probability": 0.6783 + }, + { + "start": 9048.08, + "end": 9049.56, + "probability": 0.8454 + }, + { + "start": 9051.81, + "end": 9054.86, + "probability": 0.9951 + }, + { + "start": 9055.9, + "end": 9060.62, + "probability": 0.8143 + }, + { + "start": 9061.36, + "end": 9061.98, + "probability": 0.3463 + }, + { + "start": 9062.04, + "end": 9062.62, + "probability": 0.7223 + }, + { + "start": 9067.76, + "end": 9068.96, + "probability": 0.9382 + }, + { + "start": 9078.56, + "end": 9078.76, + "probability": 0.0307 + }, + { + "start": 9078.76, + "end": 9078.76, + "probability": 0.0294 + }, + { + "start": 9078.76, + "end": 9078.76, + "probability": 0.0551 + }, + { + "start": 9078.76, + "end": 9078.76, + "probability": 0.4725 + }, + { + "start": 9078.76, + "end": 9080.78, + "probability": 0.6919 + }, + { + "start": 9081.4, + "end": 9082.34, + "probability": 0.9419 + }, + { + "start": 9083.62, + "end": 9085.72, + "probability": 0.9593 + }, + { + "start": 9085.78, + "end": 9087.22, + "probability": 0.6378 + }, + { + "start": 9087.32, + "end": 9087.86, + "probability": 0.8499 + }, + { + "start": 9093.14, + "end": 9096.1, + "probability": 0.7292 + }, + { + "start": 9101.9, + "end": 9102.36, + "probability": 0.532 + }, + { + "start": 9102.62, + "end": 9103.6, + "probability": 0.5144 + }, + { + "start": 9103.9, + "end": 9104.42, + "probability": 0.7747 + }, + { + "start": 9104.48, + "end": 9105.66, + "probability": 0.8221 + }, + { + "start": 9105.72, + "end": 9107.58, + "probability": 0.8268 + }, + { + "start": 9108.26, + "end": 9110.02, + "probability": 0.7178 + }, + { + "start": 9110.16, + "end": 9112.98, + "probability": 0.9615 + }, + { + "start": 9112.98, + "end": 9117.56, + "probability": 0.9688 + }, + { + "start": 9118.1, + "end": 9119.02, + "probability": 0.4858 + }, + { + "start": 9119.1, + "end": 9120.12, + "probability": 0.8509 + }, + { + "start": 9120.24, + "end": 9121.8, + "probability": 0.9839 + }, + { + "start": 9121.86, + "end": 9124.58, + "probability": 0.9371 + }, + { + "start": 9125.14, + "end": 9129.82, + "probability": 0.9389 + }, + { + "start": 9129.94, + "end": 9131.84, + "probability": 0.925 + }, + { + "start": 9131.88, + "end": 9133.04, + "probability": 0.9906 + }, + { + "start": 9133.12, + "end": 9133.76, + "probability": 0.9761 + }, + { + "start": 9133.86, + "end": 9134.96, + "probability": 0.788 + }, + { + "start": 9135.36, + "end": 9137.42, + "probability": 0.784 + }, + { + "start": 9137.52, + "end": 9138.6, + "probability": 0.6474 + }, + { + "start": 9138.74, + "end": 9139.86, + "probability": 0.9358 + }, + { + "start": 9140.46, + "end": 9142.46, + "probability": 0.9459 + }, + { + "start": 9142.8, + "end": 9143.58, + "probability": 0.9924 + }, + { + "start": 9143.66, + "end": 9144.46, + "probability": 0.9361 + }, + { + "start": 9144.58, + "end": 9146.96, + "probability": 0.8766 + }, + { + "start": 9147.18, + "end": 9147.38, + "probability": 0.8571 + }, + { + "start": 9148.36, + "end": 9149.22, + "probability": 0.8893 + }, + { + "start": 9150.48, + "end": 9154.7, + "probability": 0.8015 + }, + { + "start": 9155.6, + "end": 9156.5, + "probability": 0.6827 + }, + { + "start": 9156.54, + "end": 9158.72, + "probability": 0.7981 + }, + { + "start": 9158.78, + "end": 9159.98, + "probability": 0.9985 + }, + { + "start": 9161.46, + "end": 9164.08, + "probability": 0.3925 + }, + { + "start": 9164.1, + "end": 9167.8, + "probability": 0.7542 + }, + { + "start": 9168.18, + "end": 9170.62, + "probability": 0.881 + }, + { + "start": 9171.76, + "end": 9174.42, + "probability": 0.2822 + }, + { + "start": 9174.88, + "end": 9176.7, + "probability": 0.6229 + }, + { + "start": 9177.02, + "end": 9182.12, + "probability": 0.9874 + }, + { + "start": 9182.3, + "end": 9186.82, + "probability": 0.9568 + }, + { + "start": 9187.36, + "end": 9189.9, + "probability": 0.9985 + }, + { + "start": 9190.68, + "end": 9191.46, + "probability": 0.1759 + }, + { + "start": 9191.46, + "end": 9193.38, + "probability": 0.7513 + }, + { + "start": 9193.48, + "end": 9194.32, + "probability": 0.8019 + }, + { + "start": 9198.34, + "end": 9200.58, + "probability": 0.2468 + }, + { + "start": 9200.68, + "end": 9201.52, + "probability": 0.7289 + }, + { + "start": 9201.56, + "end": 9203.34, + "probability": 0.9297 + }, + { + "start": 9203.4, + "end": 9203.92, + "probability": 0.5774 + }, + { + "start": 9204.58, + "end": 9205.2, + "probability": 0.7407 + }, + { + "start": 9206.0, + "end": 9210.64, + "probability": 0.8409 + }, + { + "start": 9211.34, + "end": 9215.58, + "probability": 0.8811 + }, + { + "start": 9216.5, + "end": 9219.98, + "probability": 0.9003 + }, + { + "start": 9220.38, + "end": 9225.24, + "probability": 0.6922 + }, + { + "start": 9225.34, + "end": 9227.47, + "probability": 0.9942 + }, + { + "start": 9228.22, + "end": 9231.48, + "probability": 0.9959 + }, + { + "start": 9231.92, + "end": 9234.42, + "probability": 0.9879 + }, + { + "start": 9235.1, + "end": 9236.82, + "probability": 0.7421 + }, + { + "start": 9236.94, + "end": 9240.72, + "probability": 0.9717 + }, + { + "start": 9241.7, + "end": 9244.52, + "probability": 0.9409 + }, + { + "start": 9245.28, + "end": 9250.82, + "probability": 0.9935 + }, + { + "start": 9250.82, + "end": 9255.36, + "probability": 0.9973 + }, + { + "start": 9255.94, + "end": 9258.24, + "probability": 0.8886 + }, + { + "start": 9258.98, + "end": 9259.53, + "probability": 0.9502 + }, + { + "start": 9260.24, + "end": 9260.92, + "probability": 0.7352 + }, + { + "start": 9261.04, + "end": 9262.62, + "probability": 0.939 + }, + { + "start": 9263.16, + "end": 9265.12, + "probability": 0.9589 + }, + { + "start": 9265.68, + "end": 9269.76, + "probability": 0.9774 + }, + { + "start": 9270.36, + "end": 9274.88, + "probability": 0.9883 + }, + { + "start": 9275.38, + "end": 9278.74, + "probability": 0.9979 + }, + { + "start": 9278.82, + "end": 9280.92, + "probability": 0.9747 + }, + { + "start": 9281.18, + "end": 9282.7, + "probability": 0.9824 + }, + { + "start": 9283.52, + "end": 9285.9, + "probability": 0.9957 + }, + { + "start": 9286.22, + "end": 9287.16, + "probability": 0.9795 + }, + { + "start": 9287.56, + "end": 9289.46, + "probability": 0.9963 + }, + { + "start": 9290.5, + "end": 9291.24, + "probability": 0.8974 + }, + { + "start": 9291.42, + "end": 9292.38, + "probability": 0.9028 + }, + { + "start": 9292.8, + "end": 9297.96, + "probability": 0.9856 + }, + { + "start": 9298.36, + "end": 9300.71, + "probability": 0.9688 + }, + { + "start": 9301.24, + "end": 9304.22, + "probability": 0.9908 + }, + { + "start": 9304.68, + "end": 9306.5, + "probability": 0.8376 + }, + { + "start": 9306.96, + "end": 9309.08, + "probability": 0.9818 + }, + { + "start": 9309.98, + "end": 9312.26, + "probability": 0.8484 + }, + { + "start": 9312.7, + "end": 9313.58, + "probability": 0.7254 + }, + { + "start": 9313.8, + "end": 9314.42, + "probability": 0.4815 + }, + { + "start": 9314.6, + "end": 9317.78, + "probability": 0.8703 + }, + { + "start": 9317.84, + "end": 9318.96, + "probability": 0.7959 + }, + { + "start": 9319.04, + "end": 9320.84, + "probability": 0.7707 + }, + { + "start": 9320.98, + "end": 9322.84, + "probability": 0.8674 + }, + { + "start": 9323.5, + "end": 9324.54, + "probability": 0.5017 + }, + { + "start": 9324.74, + "end": 9326.5, + "probability": 0.9306 + }, + { + "start": 9326.68, + "end": 9328.16, + "probability": 0.7557 + }, + { + "start": 9328.42, + "end": 9330.63, + "probability": 0.9774 + }, + { + "start": 9332.68, + "end": 9335.56, + "probability": 0.9599 + }, + { + "start": 9335.66, + "end": 9336.96, + "probability": 0.8838 + }, + { + "start": 9337.46, + "end": 9339.78, + "probability": 0.9746 + }, + { + "start": 9339.78, + "end": 9343.86, + "probability": 0.9097 + }, + { + "start": 9344.5, + "end": 9348.26, + "probability": 0.9909 + }, + { + "start": 9348.66, + "end": 9349.78, + "probability": 0.7508 + }, + { + "start": 9349.92, + "end": 9351.34, + "probability": 0.9967 + }, + { + "start": 9352.24, + "end": 9354.96, + "probability": 0.9927 + }, + { + "start": 9356.12, + "end": 9358.62, + "probability": 0.7612 + }, + { + "start": 9358.78, + "end": 9359.88, + "probability": 0.9794 + }, + { + "start": 9360.36, + "end": 9361.2, + "probability": 0.9232 + }, + { + "start": 9361.4, + "end": 9363.3, + "probability": 0.7507 + }, + { + "start": 9363.74, + "end": 9364.82, + "probability": 0.9934 + }, + { + "start": 9364.88, + "end": 9366.24, + "probability": 0.9649 + }, + { + "start": 9366.88, + "end": 9370.14, + "probability": 0.9958 + }, + { + "start": 9370.14, + "end": 9374.16, + "probability": 0.9709 + }, + { + "start": 9374.54, + "end": 9377.78, + "probability": 0.9889 + }, + { + "start": 9378.26, + "end": 9379.5, + "probability": 0.8337 + }, + { + "start": 9379.66, + "end": 9379.82, + "probability": 0.9663 + }, + { + "start": 9380.8, + "end": 9382.46, + "probability": 0.6112 + }, + { + "start": 9384.53, + "end": 9387.01, + "probability": 0.9834 + }, + { + "start": 9387.58, + "end": 9388.04, + "probability": 0.6298 + }, + { + "start": 9388.84, + "end": 9395.24, + "probability": 0.9972 + }, + { + "start": 9395.96, + "end": 9397.6, + "probability": 0.8556 + }, + { + "start": 9397.94, + "end": 9402.7, + "probability": 0.9297 + }, + { + "start": 9403.88, + "end": 9406.0, + "probability": 0.8784 + }, + { + "start": 9406.2, + "end": 9408.44, + "probability": 0.8314 + }, + { + "start": 9409.04, + "end": 9411.0, + "probability": 0.9978 + }, + { + "start": 9411.26, + "end": 9412.56, + "probability": 0.9611 + }, + { + "start": 9413.68, + "end": 9416.36, + "probability": 0.9884 + }, + { + "start": 9417.54, + "end": 9421.4, + "probability": 0.9573 + }, + { + "start": 9421.8, + "end": 9422.92, + "probability": 0.7172 + }, + { + "start": 9423.36, + "end": 9426.0, + "probability": 0.9709 + }, + { + "start": 9426.68, + "end": 9428.18, + "probability": 0.995 + }, + { + "start": 9428.3, + "end": 9431.86, + "probability": 0.6128 + }, + { + "start": 9431.86, + "end": 9435.36, + "probability": 0.5596 + }, + { + "start": 9436.32, + "end": 9440.42, + "probability": 0.921 + }, + { + "start": 9441.28, + "end": 9442.84, + "probability": 0.6983 + }, + { + "start": 9442.96, + "end": 9444.02, + "probability": 0.975 + }, + { + "start": 9444.84, + "end": 9445.88, + "probability": 0.5897 + }, + { + "start": 9447.44, + "end": 9450.24, + "probability": 0.9536 + }, + { + "start": 9450.9, + "end": 9453.98, + "probability": 0.9553 + }, + { + "start": 9454.24, + "end": 9456.2, + "probability": 0.8639 + }, + { + "start": 9456.54, + "end": 9457.9, + "probability": 0.9679 + }, + { + "start": 9457.94, + "end": 9458.64, + "probability": 0.8155 + }, + { + "start": 9459.08, + "end": 9462.36, + "probability": 0.7576 + }, + { + "start": 9462.7, + "end": 9464.04, + "probability": 0.6052 + }, + { + "start": 9464.2, + "end": 9465.9, + "probability": 0.9833 + }, + { + "start": 9466.24, + "end": 9467.58, + "probability": 0.9705 + }, + { + "start": 9467.7, + "end": 9469.62, + "probability": 0.9973 + }, + { + "start": 9470.0, + "end": 9472.34, + "probability": 0.9943 + }, + { + "start": 9473.2, + "end": 9473.74, + "probability": 0.985 + }, + { + "start": 9476.24, + "end": 9478.76, + "probability": 0.8882 + }, + { + "start": 9479.14, + "end": 9481.42, + "probability": 0.9832 + }, + { + "start": 9481.84, + "end": 9483.3, + "probability": 0.9534 + }, + { + "start": 9483.96, + "end": 9487.46, + "probability": 0.9978 + }, + { + "start": 9488.58, + "end": 9491.64, + "probability": 0.7776 + }, + { + "start": 9492.14, + "end": 9495.09, + "probability": 0.8475 + }, + { + "start": 9495.9, + "end": 9496.62, + "probability": 0.5601 + }, + { + "start": 9496.66, + "end": 9497.66, + "probability": 0.647 + }, + { + "start": 9497.72, + "end": 9500.42, + "probability": 0.9684 + }, + { + "start": 9500.64, + "end": 9501.14, + "probability": 0.8196 + }, + { + "start": 9502.8, + "end": 9503.44, + "probability": 0.6154 + }, + { + "start": 9503.48, + "end": 9507.12, + "probability": 0.8828 + }, + { + "start": 9507.58, + "end": 9507.92, + "probability": 0.8223 + }, + { + "start": 9522.5, + "end": 9524.0, + "probability": 0.4281 + }, + { + "start": 9525.16, + "end": 9527.26, + "probability": 0.8649 + }, + { + "start": 9529.02, + "end": 9530.4, + "probability": 0.8998 + }, + { + "start": 9531.44, + "end": 9535.2, + "probability": 0.9871 + }, + { + "start": 9535.88, + "end": 9544.66, + "probability": 0.9709 + }, + { + "start": 9544.66, + "end": 9551.2, + "probability": 0.9963 + }, + { + "start": 9551.78, + "end": 9553.18, + "probability": 0.8337 + }, + { + "start": 9553.88, + "end": 9555.96, + "probability": 0.7978 + }, + { + "start": 9556.6, + "end": 9562.2, + "probability": 0.9826 + }, + { + "start": 9562.76, + "end": 9566.3, + "probability": 0.9907 + }, + { + "start": 9566.3, + "end": 9569.98, + "probability": 0.9951 + }, + { + "start": 9571.3, + "end": 9574.32, + "probability": 0.9697 + }, + { + "start": 9574.88, + "end": 9576.96, + "probability": 0.9788 + }, + { + "start": 9578.02, + "end": 9579.94, + "probability": 0.4595 + }, + { + "start": 9580.9, + "end": 9582.47, + "probability": 0.6275 + }, + { + "start": 9583.38, + "end": 9589.1, + "probability": 0.9544 + }, + { + "start": 9589.62, + "end": 9592.48, + "probability": 0.9639 + }, + { + "start": 9593.52, + "end": 9598.36, + "probability": 0.9601 + }, + { + "start": 9598.72, + "end": 9601.96, + "probability": 0.9858 + }, + { + "start": 9602.8, + "end": 9606.96, + "probability": 0.9604 + }, + { + "start": 9607.64, + "end": 9612.04, + "probability": 0.9977 + }, + { + "start": 9612.64, + "end": 9616.44, + "probability": 0.9952 + }, + { + "start": 9616.6, + "end": 9616.86, + "probability": 0.8018 + }, + { + "start": 9617.46, + "end": 9618.04, + "probability": 0.6915 + }, + { + "start": 9618.16, + "end": 9619.3, + "probability": 0.8843 + }, + { + "start": 9621.02, + "end": 9623.78, + "probability": 0.9526 + }, + { + "start": 9624.3, + "end": 9627.43, + "probability": 0.6259 + }, + { + "start": 9629.26, + "end": 9634.02, + "probability": 0.4225 + }, + { + "start": 9634.82, + "end": 9635.84, + "probability": 0.88 + }, + { + "start": 9636.56, + "end": 9637.1, + "probability": 0.4407 + }, + { + "start": 9637.68, + "end": 9640.86, + "probability": 0.2456 + }, + { + "start": 9649.26, + "end": 9651.1, + "probability": 0.1662 + }, + { + "start": 9655.02, + "end": 9658.62, + "probability": 0.138 + }, + { + "start": 9659.3, + "end": 9661.88, + "probability": 0.5309 + }, + { + "start": 9661.96, + "end": 9662.94, + "probability": 0.0593 + }, + { + "start": 9664.42, + "end": 9664.96, + "probability": 0.0121 + }, + { + "start": 9664.96, + "end": 9665.24, + "probability": 0.069 + }, + { + "start": 9665.24, + "end": 9665.28, + "probability": 0.1601 + }, + { + "start": 9665.28, + "end": 9666.3, + "probability": 0.1388 + }, + { + "start": 9668.18, + "end": 9669.08, + "probability": 0.1134 + }, + { + "start": 9669.76, + "end": 9673.02, + "probability": 0.1582 + }, + { + "start": 9675.96, + "end": 9677.92, + "probability": 0.1216 + }, + { + "start": 9677.92, + "end": 9678.32, + "probability": 0.1524 + }, + { + "start": 9678.32, + "end": 9678.32, + "probability": 0.009 + }, + { + "start": 9678.32, + "end": 9678.32, + "probability": 0.3122 + }, + { + "start": 9678.32, + "end": 9678.74, + "probability": 0.2672 + }, + { + "start": 9678.74, + "end": 9681.38, + "probability": 0.1477 + }, + { + "start": 9682.78, + "end": 9689.52, + "probability": 0.0556 + }, + { + "start": 9690.32, + "end": 9692.08, + "probability": 0.0308 + }, + { + "start": 9692.54, + "end": 9695.42, + "probability": 0.1949 + }, + { + "start": 9696.64, + "end": 9698.68, + "probability": 0.0441 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.0, + "end": 9721.0, + "probability": 0.0 + }, + { + "start": 9721.08, + "end": 9721.16, + "probability": 0.0299 + }, + { + "start": 9721.16, + "end": 9721.16, + "probability": 0.1065 + }, + { + "start": 9721.16, + "end": 9721.16, + "probability": 0.0398 + }, + { + "start": 9721.16, + "end": 9721.16, + "probability": 0.2555 + }, + { + "start": 9721.16, + "end": 9721.16, + "probability": 0.0284 + }, + { + "start": 9721.16, + "end": 9722.56, + "probability": 0.4653 + }, + { + "start": 9722.98, + "end": 9724.28, + "probability": 0.8057 + }, + { + "start": 9724.3, + "end": 9724.72, + "probability": 0.0267 + }, + { + "start": 9725.56, + "end": 9727.28, + "probability": 0.7431 + }, + { + "start": 9728.5, + "end": 9732.62, + "probability": 0.9517 + }, + { + "start": 9733.24, + "end": 9735.04, + "probability": 0.9859 + }, + { + "start": 9735.86, + "end": 9735.96, + "probability": 0.8315 + }, + { + "start": 9737.61, + "end": 9738.31, + "probability": 0.3961 + }, + { + "start": 9739.4, + "end": 9741.9, + "probability": 0.9241 + }, + { + "start": 9742.06, + "end": 9742.56, + "probability": 0.5873 + }, + { + "start": 9743.34, + "end": 9746.8, + "probability": 0.899 + }, + { + "start": 9747.94, + "end": 9751.68, + "probability": 0.7477 + }, + { + "start": 9751.84, + "end": 9753.98, + "probability": 0.7622 + }, + { + "start": 9754.44, + "end": 9756.92, + "probability": 0.9912 + }, + { + "start": 9757.26, + "end": 9759.48, + "probability": 0.6591 + }, + { + "start": 9759.48, + "end": 9763.96, + "probability": 0.96 + }, + { + "start": 9764.46, + "end": 9766.93, + "probability": 0.9826 + }, + { + "start": 9767.74, + "end": 9768.82, + "probability": 0.8029 + }, + { + "start": 9768.94, + "end": 9770.1, + "probability": 0.9769 + }, + { + "start": 9770.24, + "end": 9770.8, + "probability": 0.3912 + }, + { + "start": 9771.38, + "end": 9771.76, + "probability": 0.8411 + }, + { + "start": 9771.86, + "end": 9774.1, + "probability": 0.938 + }, + { + "start": 9774.38, + "end": 9777.36, + "probability": 0.8677 + }, + { + "start": 9777.36, + "end": 9780.96, + "probability": 0.5742 + }, + { + "start": 9781.32, + "end": 9781.88, + "probability": 0.6509 + }, + { + "start": 9782.36, + "end": 9782.86, + "probability": 0.9074 + }, + { + "start": 9782.94, + "end": 9788.66, + "probability": 0.877 + }, + { + "start": 9789.18, + "end": 9790.16, + "probability": 0.5312 + }, + { + "start": 9790.76, + "end": 9791.4, + "probability": 0.8281 + }, + { + "start": 9791.54, + "end": 9793.51, + "probability": 0.9324 + }, + { + "start": 9793.68, + "end": 9795.06, + "probability": 0.911 + }, + { + "start": 9795.66, + "end": 9798.34, + "probability": 0.5325 + }, + { + "start": 9798.48, + "end": 9801.26, + "probability": 0.8322 + }, + { + "start": 9801.38, + "end": 9801.38, + "probability": 0.1047 + }, + { + "start": 9801.38, + "end": 9804.24, + "probability": 0.5119 + }, + { + "start": 9804.38, + "end": 9804.9, + "probability": 0.5416 + }, + { + "start": 9805.42, + "end": 9805.78, + "probability": 0.3567 + }, + { + "start": 9806.44, + "end": 9808.32, + "probability": 0.8051 + }, + { + "start": 9808.8, + "end": 9810.42, + "probability": 0.723 + }, + { + "start": 9810.88, + "end": 9815.34, + "probability": 0.9827 + }, + { + "start": 9815.8, + "end": 9816.48, + "probability": 0.9922 + }, + { + "start": 9817.9, + "end": 9820.0, + "probability": 0.6817 + }, + { + "start": 9820.1, + "end": 9821.04, + "probability": 0.8324 + }, + { + "start": 9821.62, + "end": 9824.02, + "probability": 0.8887 + }, + { + "start": 9824.34, + "end": 9827.48, + "probability": 0.7521 + }, + { + "start": 9828.22, + "end": 9829.64, + "probability": 0.2918 + }, + { + "start": 9829.88, + "end": 9829.88, + "probability": 0.1872 + }, + { + "start": 9829.88, + "end": 9834.96, + "probability": 0.6895 + }, + { + "start": 9835.6, + "end": 9837.2, + "probability": 0.8632 + }, + { + "start": 9837.86, + "end": 9838.7, + "probability": 0.7324 + }, + { + "start": 9838.9, + "end": 9839.74, + "probability": 0.9468 + }, + { + "start": 9840.28, + "end": 9841.44, + "probability": 0.8178 + }, + { + "start": 9842.0, + "end": 9843.1, + "probability": 0.9922 + }, + { + "start": 9843.58, + "end": 9847.8, + "probability": 0.9838 + }, + { + "start": 9848.1, + "end": 9850.04, + "probability": 0.6627 + }, + { + "start": 9850.28, + "end": 9853.92, + "probability": 0.9631 + }, + { + "start": 9854.54, + "end": 9856.1, + "probability": 0.9128 + }, + { + "start": 9857.0, + "end": 9857.76, + "probability": 0.3148 + }, + { + "start": 9857.86, + "end": 9858.54, + "probability": 0.5382 + }, + { + "start": 9859.38, + "end": 9859.84, + "probability": 0.8843 + }, + { + "start": 9859.9, + "end": 9861.02, + "probability": 0.9642 + }, + { + "start": 9861.12, + "end": 9861.74, + "probability": 0.9531 + }, + { + "start": 9862.5, + "end": 9864.08, + "probability": 0.9813 + }, + { + "start": 9864.72, + "end": 9865.1, + "probability": 0.8446 + }, + { + "start": 9865.12, + "end": 9869.92, + "probability": 0.7501 + }, + { + "start": 9869.96, + "end": 9870.4, + "probability": 0.9924 + }, + { + "start": 9871.0, + "end": 9872.86, + "probability": 0.9562 + }, + { + "start": 9873.62, + "end": 9875.84, + "probability": 0.7207 + }, + { + "start": 9876.06, + "end": 9877.98, + "probability": 0.9811 + }, + { + "start": 9879.14, + "end": 9881.8, + "probability": 0.9143 + }, + { + "start": 9882.34, + "end": 9883.92, + "probability": 0.9939 + }, + { + "start": 9883.92, + "end": 9887.92, + "probability": 0.9967 + }, + { + "start": 9888.4, + "end": 9889.46, + "probability": 0.7717 + }, + { + "start": 9890.06, + "end": 9890.84, + "probability": 0.4884 + }, + { + "start": 9892.02, + "end": 9894.82, + "probability": 0.9779 + }, + { + "start": 9896.08, + "end": 9898.66, + "probability": 0.9915 + }, + { + "start": 9898.66, + "end": 9902.04, + "probability": 0.98 + }, + { + "start": 9902.14, + "end": 9903.49, + "probability": 0.9443 + }, + { + "start": 9903.76, + "end": 9905.58, + "probability": 0.9983 + }, + { + "start": 9906.46, + "end": 9911.06, + "probability": 0.8992 + }, + { + "start": 9912.06, + "end": 9913.86, + "probability": 0.5525 + }, + { + "start": 9914.52, + "end": 9915.74, + "probability": 0.9912 + }, + { + "start": 9916.04, + "end": 9919.2, + "probability": 0.9563 + }, + { + "start": 9919.9, + "end": 9921.28, + "probability": 0.5967 + }, + { + "start": 9922.16, + "end": 9923.42, + "probability": 0.5517 + }, + { + "start": 9924.1, + "end": 9924.96, + "probability": 0.5425 + }, + { + "start": 9925.1, + "end": 9925.46, + "probability": 0.9744 + }, + { + "start": 9926.54, + "end": 9929.15, + "probability": 0.6906 + }, + { + "start": 9930.06, + "end": 9933.26, + "probability": 0.9861 + }, + { + "start": 9933.34, + "end": 9935.92, + "probability": 0.747 + }, + { + "start": 9936.52, + "end": 9938.04, + "probability": 0.8579 + }, + { + "start": 9938.64, + "end": 9940.26, + "probability": 0.9628 + }, + { + "start": 9940.44, + "end": 9943.7, + "probability": 0.9277 + }, + { + "start": 9944.58, + "end": 9947.06, + "probability": 0.9147 + }, + { + "start": 9947.98, + "end": 9949.52, + "probability": 0.8624 + }, + { + "start": 9950.1, + "end": 9951.7, + "probability": 0.7537 + }, + { + "start": 9951.76, + "end": 9952.22, + "probability": 0.9005 + }, + { + "start": 9952.9, + "end": 9954.7, + "probability": 0.9794 + }, + { + "start": 9955.4, + "end": 9956.88, + "probability": 0.7671 + }, + { + "start": 9957.28, + "end": 9957.79, + "probability": 0.8553 + }, + { + "start": 9957.88, + "end": 9958.04, + "probability": 0.369 + }, + { + "start": 9958.12, + "end": 9960.84, + "probability": 0.6663 + }, + { + "start": 9960.84, + "end": 9963.48, + "probability": 0.7256 + }, + { + "start": 9964.04, + "end": 9968.18, + "probability": 0.6513 + }, + { + "start": 9968.34, + "end": 9968.62, + "probability": 0.6212 + }, + { + "start": 9968.66, + "end": 9969.12, + "probability": 0.7377 + }, + { + "start": 9969.24, + "end": 9970.72, + "probability": 0.9746 + }, + { + "start": 9972.57, + "end": 9974.04, + "probability": 0.3532 + }, + { + "start": 9974.04, + "end": 9974.04, + "probability": 0.0792 + }, + { + "start": 9974.04, + "end": 9974.04, + "probability": 0.0754 + }, + { + "start": 9974.04, + "end": 9974.58, + "probability": 0.1108 + }, + { + "start": 9974.7, + "end": 9975.36, + "probability": 0.7824 + }, + { + "start": 9975.8, + "end": 9976.47, + "probability": 0.7334 + }, + { + "start": 9976.88, + "end": 9979.11, + "probability": 0.3487 + }, + { + "start": 9979.64, + "end": 9981.86, + "probability": 0.6749 + }, + { + "start": 9982.44, + "end": 9985.1, + "probability": 0.9012 + }, + { + "start": 9985.46, + "end": 9985.84, + "probability": 0.6975 + }, + { + "start": 9986.62, + "end": 9988.74, + "probability": 0.9244 + }, + { + "start": 9989.48, + "end": 9991.26, + "probability": 0.9536 + }, + { + "start": 9991.74, + "end": 9992.66, + "probability": 0.5881 + }, + { + "start": 9993.12, + "end": 9993.77, + "probability": 0.7897 + }, + { + "start": 9994.14, + "end": 9995.74, + "probability": 0.6101 + }, + { + "start": 9996.09, + "end": 9997.42, + "probability": 0.8574 + }, + { + "start": 9998.16, + "end": 9999.69, + "probability": 0.7109 + }, + { + "start": 10000.04, + "end": 10002.18, + "probability": 0.9231 + }, + { + "start": 10002.76, + "end": 10003.82, + "probability": 0.8091 + }, + { + "start": 10003.88, + "end": 10005.58, + "probability": 0.8826 + }, + { + "start": 10005.76, + "end": 10008.17, + "probability": 0.7474 + }, + { + "start": 10008.82, + "end": 10010.02, + "probability": 0.5452 + }, + { + "start": 10010.1, + "end": 10011.94, + "probability": 0.4194 + }, + { + "start": 10012.08, + "end": 10013.98, + "probability": 0.7695 + }, + { + "start": 10014.18, + "end": 10015.17, + "probability": 0.6332 + }, + { + "start": 10015.5, + "end": 10016.44, + "probability": 0.7572 + }, + { + "start": 10017.04, + "end": 10017.64, + "probability": 0.2892 + }, + { + "start": 10018.14, + "end": 10020.9, + "probability": 0.8486 + }, + { + "start": 10021.46, + "end": 10022.48, + "probability": 0.7675 + }, + { + "start": 10022.58, + "end": 10027.43, + "probability": 0.7517 + }, + { + "start": 10027.76, + "end": 10027.82, + "probability": 0.6816 + }, + { + "start": 10027.82, + "end": 10028.26, + "probability": 0.4405 + }, + { + "start": 10028.44, + "end": 10031.52, + "probability": 0.9052 + }, + { + "start": 10031.66, + "end": 10032.06, + "probability": 0.7047 + }, + { + "start": 10032.42, + "end": 10038.62, + "probability": 0.9961 + }, + { + "start": 10039.1, + "end": 10040.68, + "probability": 0.9567 + }, + { + "start": 10040.78, + "end": 10043.0, + "probability": 0.6788 + }, + { + "start": 10043.54, + "end": 10047.3, + "probability": 0.7037 + }, + { + "start": 10047.84, + "end": 10050.46, + "probability": 0.8271 + }, + { + "start": 10050.6, + "end": 10052.1, + "probability": 0.9932 + }, + { + "start": 10052.5, + "end": 10053.04, + "probability": 0.721 + }, + { + "start": 10053.14, + "end": 10056.2, + "probability": 0.9231 + }, + { + "start": 10056.2, + "end": 10058.8, + "probability": 0.9971 + }, + { + "start": 10059.82, + "end": 10061.74, + "probability": 0.2925 + }, + { + "start": 10065.14, + "end": 10065.36, + "probability": 0.0977 + }, + { + "start": 10065.36, + "end": 10065.36, + "probability": 0.1612 + }, + { + "start": 10065.36, + "end": 10066.62, + "probability": 0.2368 + }, + { + "start": 10067.18, + "end": 10069.67, + "probability": 0.4283 + }, + { + "start": 10070.28, + "end": 10072.5, + "probability": 0.7617 + }, + { + "start": 10072.56, + "end": 10073.3, + "probability": 0.9076 + }, + { + "start": 10074.09, + "end": 10077.5, + "probability": 0.9655 + }, + { + "start": 10077.52, + "end": 10079.96, + "probability": 0.7886 + }, + { + "start": 10080.42, + "end": 10080.94, + "probability": 0.4772 + }, + { + "start": 10081.28, + "end": 10081.86, + "probability": 0.4754 + }, + { + "start": 10082.24, + "end": 10083.56, + "probability": 0.7351 + }, + { + "start": 10084.02, + "end": 10086.28, + "probability": 0.7867 + }, + { + "start": 10086.8, + "end": 10090.3, + "probability": 0.6706 + }, + { + "start": 10090.66, + "end": 10091.74, + "probability": 0.7357 + }, + { + "start": 10091.8, + "end": 10093.02, + "probability": 0.9597 + }, + { + "start": 10093.14, + "end": 10094.64, + "probability": 0.8242 + }, + { + "start": 10095.34, + "end": 10095.62, + "probability": 0.5474 + }, + { + "start": 10095.74, + "end": 10099.1, + "probability": 0.966 + }, + { + "start": 10099.76, + "end": 10103.56, + "probability": 0.6645 + }, + { + "start": 10103.56, + "end": 10105.76, + "probability": 0.5861 + }, + { + "start": 10105.78, + "end": 10107.3, + "probability": 0.4492 + }, + { + "start": 10107.38, + "end": 10109.4, + "probability": 0.9797 + }, + { + "start": 10110.02, + "end": 10111.06, + "probability": 0.9973 + }, + { + "start": 10111.14, + "end": 10112.08, + "probability": 0.9272 + }, + { + "start": 10113.38, + "end": 10115.2, + "probability": 0.7501 + }, + { + "start": 10115.5, + "end": 10117.86, + "probability": 0.9509 + }, + { + "start": 10117.98, + "end": 10118.26, + "probability": 0.8824 + }, + { + "start": 10120.22, + "end": 10122.54, + "probability": 0.9941 + }, + { + "start": 10123.44, + "end": 10124.46, + "probability": 0.2879 + }, + { + "start": 10124.74, + "end": 10128.3, + "probability": 0.9084 + }, + { + "start": 10128.96, + "end": 10130.51, + "probability": 0.7872 + }, + { + "start": 10132.34, + "end": 10135.3, + "probability": 0.9574 + }, + { + "start": 10135.38, + "end": 10136.09, + "probability": 0.9792 + }, + { + "start": 10141.02, + "end": 10141.96, + "probability": 0.6044 + }, + { + "start": 10142.94, + "end": 10143.34, + "probability": 0.6611 + }, + { + "start": 10152.8, + "end": 10154.62, + "probability": 0.5124 + }, + { + "start": 10155.14, + "end": 10156.18, + "probability": 0.7872 + }, + { + "start": 10156.9, + "end": 10157.22, + "probability": 0.7104 + }, + { + "start": 10157.82, + "end": 10159.68, + "probability": 0.969 + }, + { + "start": 10160.34, + "end": 10165.32, + "probability": 0.984 + }, + { + "start": 10165.84, + "end": 10168.2, + "probability": 0.9822 + }, + { + "start": 10168.36, + "end": 10168.9, + "probability": 0.9263 + }, + { + "start": 10169.96, + "end": 10170.62, + "probability": 0.599 + }, + { + "start": 10170.8, + "end": 10173.19, + "probability": 0.5729 + }, + { + "start": 10173.76, + "end": 10175.16, + "probability": 0.8611 + }, + { + "start": 10175.24, + "end": 10177.3, + "probability": 0.9944 + }, + { + "start": 10177.78, + "end": 10179.9, + "probability": 0.8465 + }, + { + "start": 10197.43, + "end": 10200.18, + "probability": 0.1787 + }, + { + "start": 10200.18, + "end": 10200.5, + "probability": 0.0243 + }, + { + "start": 10200.58, + "end": 10201.26, + "probability": 0.0377 + }, + { + "start": 10201.29, + "end": 10202.92, + "probability": 0.191 + }, + { + "start": 10207.04, + "end": 10209.8, + "probability": 0.5789 + }, + { + "start": 10215.82, + "end": 10217.28, + "probability": 0.7588 + }, + { + "start": 10218.0, + "end": 10219.38, + "probability": 0.0774 + }, + { + "start": 10219.38, + "end": 10220.96, + "probability": 0.0666 + }, + { + "start": 10220.96, + "end": 10221.58, + "probability": 0.1784 + }, + { + "start": 10224.88, + "end": 10226.44, + "probability": 0.1919 + }, + { + "start": 10228.38, + "end": 10230.34, + "probability": 0.0215 + }, + { + "start": 10230.46, + "end": 10230.58, + "probability": 0.0005 + }, + { + "start": 10237.62, + "end": 10238.64, + "probability": 0.0131 + }, + { + "start": 10239.44, + "end": 10241.14, + "probability": 0.0266 + }, + { + "start": 10244.48, + "end": 10249.58, + "probability": 0.0786 + }, + { + "start": 10267.16, + "end": 10267.9, + "probability": 0.0155 + }, + { + "start": 10267.9, + "end": 10268.0, + "probability": 0.0015 + }, + { + "start": 10271.32, + "end": 10274.28, + "probability": 0.039 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.0, + "end": 10369.0, + "probability": 0.0 + }, + { + "start": 10369.34, + "end": 10370.88, + "probability": 0.3922 + }, + { + "start": 10371.52, + "end": 10376.0, + "probability": 0.9788 + }, + { + "start": 10376.0, + "end": 10379.38, + "probability": 0.9958 + }, + { + "start": 10380.5, + "end": 10384.9, + "probability": 0.9976 + }, + { + "start": 10384.9, + "end": 10390.98, + "probability": 0.9712 + }, + { + "start": 10391.78, + "end": 10397.48, + "probability": 0.9236 + }, + { + "start": 10398.44, + "end": 10399.82, + "probability": 0.9771 + }, + { + "start": 10400.38, + "end": 10403.3, + "probability": 0.9887 + }, + { + "start": 10404.4, + "end": 10408.34, + "probability": 0.9902 + }, + { + "start": 10408.6, + "end": 10413.6, + "probability": 0.9763 + }, + { + "start": 10414.88, + "end": 10420.48, + "probability": 0.9951 + }, + { + "start": 10420.48, + "end": 10424.92, + "probability": 0.9901 + }, + { + "start": 10425.18, + "end": 10428.48, + "probability": 0.8491 + }, + { + "start": 10429.42, + "end": 10435.66, + "probability": 0.8912 + }, + { + "start": 10436.94, + "end": 10437.94, + "probability": 0.6984 + }, + { + "start": 10438.46, + "end": 10441.74, + "probability": 0.7781 + }, + { + "start": 10442.22, + "end": 10446.6, + "probability": 0.9633 + }, + { + "start": 10446.6, + "end": 10451.06, + "probability": 0.9922 + }, + { + "start": 10452.04, + "end": 10453.52, + "probability": 0.8573 + }, + { + "start": 10454.38, + "end": 10458.24, + "probability": 0.975 + }, + { + "start": 10459.5, + "end": 10468.24, + "probability": 0.7803 + }, + { + "start": 10469.34, + "end": 10470.64, + "probability": 0.9642 + }, + { + "start": 10470.86, + "end": 10474.68, + "probability": 0.731 + }, + { + "start": 10474.68, + "end": 10478.1, + "probability": 0.9756 + }, + { + "start": 10479.28, + "end": 10480.04, + "probability": 0.8562 + }, + { + "start": 10480.7, + "end": 10481.52, + "probability": 0.419 + }, + { + "start": 10482.02, + "end": 10483.8, + "probability": 0.9303 + }, + { + "start": 10484.16, + "end": 10491.04, + "probability": 0.9146 + }, + { + "start": 10492.02, + "end": 10493.2, + "probability": 0.8304 + }, + { + "start": 10494.7, + "end": 10500.28, + "probability": 0.7878 + }, + { + "start": 10501.12, + "end": 10506.56, + "probability": 0.9888 + }, + { + "start": 10507.82, + "end": 10509.42, + "probability": 0.7426 + }, + { + "start": 10509.6, + "end": 10513.31, + "probability": 0.9619 + }, + { + "start": 10513.72, + "end": 10517.76, + "probability": 0.9896 + }, + { + "start": 10518.34, + "end": 10521.27, + "probability": 0.9598 + }, + { + "start": 10521.88, + "end": 10525.48, + "probability": 0.8218 + }, + { + "start": 10525.6, + "end": 10528.84, + "probability": 0.9949 + }, + { + "start": 10529.66, + "end": 10532.98, + "probability": 0.9636 + }, + { + "start": 10533.06, + "end": 10537.3, + "probability": 0.9955 + }, + { + "start": 10537.72, + "end": 10543.24, + "probability": 0.9915 + }, + { + "start": 10543.24, + "end": 10549.18, + "probability": 0.9666 + }, + { + "start": 10550.1, + "end": 10550.98, + "probability": 0.8136 + }, + { + "start": 10551.56, + "end": 10553.14, + "probability": 0.8666 + }, + { + "start": 10553.88, + "end": 10556.82, + "probability": 0.9976 + }, + { + "start": 10557.08, + "end": 10561.16, + "probability": 0.9964 + }, + { + "start": 10562.2, + "end": 10564.2, + "probability": 0.8585 + }, + { + "start": 10564.92, + "end": 10565.72, + "probability": 0.9254 + }, + { + "start": 10566.44, + "end": 10567.64, + "probability": 0.9992 + }, + { + "start": 10569.0, + "end": 10574.1, + "probability": 0.923 + }, + { + "start": 10574.62, + "end": 10576.42, + "probability": 0.9753 + }, + { + "start": 10579.32, + "end": 10579.92, + "probability": 0.7118 + }, + { + "start": 10580.52, + "end": 10581.74, + "probability": 0.9866 + }, + { + "start": 10582.1, + "end": 10586.82, + "probability": 0.9892 + }, + { + "start": 10588.18, + "end": 10588.96, + "probability": 0.8478 + }, + { + "start": 10589.16, + "end": 10595.08, + "probability": 0.9331 + }, + { + "start": 10595.08, + "end": 10600.06, + "probability": 0.9928 + }, + { + "start": 10601.32, + "end": 10605.18, + "probability": 0.9432 + }, + { + "start": 10605.66, + "end": 10611.62, + "probability": 0.9876 + }, + { + "start": 10613.08, + "end": 10621.12, + "probability": 0.9963 + }, + { + "start": 10621.7, + "end": 10625.58, + "probability": 0.967 + }, + { + "start": 10626.6, + "end": 10628.26, + "probability": 0.9989 + }, + { + "start": 10629.66, + "end": 10632.36, + "probability": 0.9987 + }, + { + "start": 10633.34, + "end": 10638.06, + "probability": 0.9902 + }, + { + "start": 10638.06, + "end": 10645.5, + "probability": 0.9932 + }, + { + "start": 10646.64, + "end": 10647.0, + "probability": 0.6043 + }, + { + "start": 10647.2, + "end": 10649.86, + "probability": 0.9746 + }, + { + "start": 10649.86, + "end": 10654.8, + "probability": 0.9648 + }, + { + "start": 10655.02, + "end": 10655.86, + "probability": 0.9115 + }, + { + "start": 10656.36, + "end": 10660.86, + "probability": 0.9918 + }, + { + "start": 10661.2, + "end": 10661.6, + "probability": 0.7852 + }, + { + "start": 10663.32, + "end": 10664.12, + "probability": 0.1461 + }, + { + "start": 10664.12, + "end": 10664.12, + "probability": 0.1008 + }, + { + "start": 10664.12, + "end": 10664.72, + "probability": 0.7096 + }, + { + "start": 10665.44, + "end": 10667.96, + "probability": 0.3728 + }, + { + "start": 10668.06, + "end": 10669.3, + "probability": 0.9529 + }, + { + "start": 10673.0, + "end": 10674.38, + "probability": 0.5979 + }, + { + "start": 10674.48, + "end": 10676.1, + "probability": 0.9763 + }, + { + "start": 10676.34, + "end": 10678.5, + "probability": 0.8582 + }, + { + "start": 10679.2, + "end": 10681.16, + "probability": 0.9668 + }, + { + "start": 10681.2, + "end": 10684.62, + "probability": 0.8676 + }, + { + "start": 10684.8, + "end": 10686.98, + "probability": 0.9079 + }, + { + "start": 10687.06, + "end": 10687.66, + "probability": 0.6736 + }, + { + "start": 10688.22, + "end": 10689.18, + "probability": 0.7546 + }, + { + "start": 10689.74, + "end": 10693.04, + "probability": 0.8539 + }, + { + "start": 10693.2, + "end": 10693.78, + "probability": 0.8873 + }, + { + "start": 10694.22, + "end": 10696.08, + "probability": 0.7266 + }, + { + "start": 10696.36, + "end": 10699.26, + "probability": 0.8963 + }, + { + "start": 10699.58, + "end": 10702.78, + "probability": 0.9201 + }, + { + "start": 10703.32, + "end": 10705.96, + "probability": 0.9635 + }, + { + "start": 10705.96, + "end": 10707.8, + "probability": 0.6619 + }, + { + "start": 10708.2, + "end": 10710.26, + "probability": 0.8901 + }, + { + "start": 10710.38, + "end": 10713.12, + "probability": 0.9818 + }, + { + "start": 10714.12, + "end": 10715.64, + "probability": 0.008 + }, + { + "start": 10716.44, + "end": 10717.16, + "probability": 0.6172 + }, + { + "start": 10717.46, + "end": 10718.62, + "probability": 0.7499 + }, + { + "start": 10718.8, + "end": 10719.84, + "probability": 0.711 + }, + { + "start": 10720.1, + "end": 10725.36, + "probability": 0.9634 + }, + { + "start": 10725.36, + "end": 10725.58, + "probability": 0.2285 + }, + { + "start": 10725.58, + "end": 10725.62, + "probability": 0.021 + }, + { + "start": 10725.62, + "end": 10726.48, + "probability": 0.6298 + }, + { + "start": 10726.86, + "end": 10729.88, + "probability": 0.8733 + }, + { + "start": 10730.42, + "end": 10732.78, + "probability": 0.68 + }, + { + "start": 10732.88, + "end": 10736.96, + "probability": 0.914 + }, + { + "start": 10737.34, + "end": 10743.7, + "probability": 0.9507 + }, + { + "start": 10743.74, + "end": 10745.14, + "probability": 0.7368 + }, + { + "start": 10745.52, + "end": 10745.52, + "probability": 0.3851 + }, + { + "start": 10745.6, + "end": 10746.72, + "probability": 0.9923 + }, + { + "start": 10746.84, + "end": 10748.86, + "probability": 0.9816 + }, + { + "start": 10749.22, + "end": 10753.7, + "probability": 0.9033 + }, + { + "start": 10754.3, + "end": 10755.22, + "probability": 0.9109 + }, + { + "start": 10755.52, + "end": 10756.88, + "probability": 0.9119 + }, + { + "start": 10757.24, + "end": 10758.14, + "probability": 0.4727 + }, + { + "start": 10758.42, + "end": 10761.14, + "probability": 0.9956 + }, + { + "start": 10761.14, + "end": 10764.42, + "probability": 0.9893 + }, + { + "start": 10764.78, + "end": 10766.68, + "probability": 0.9484 + }, + { + "start": 10767.08, + "end": 10767.64, + "probability": 0.4098 + }, + { + "start": 10768.2, + "end": 10771.42, + "probability": 0.9179 + }, + { + "start": 10771.46, + "end": 10773.35, + "probability": 0.8086 + }, + { + "start": 10773.66, + "end": 10774.07, + "probability": 0.4083 + }, + { + "start": 10774.36, + "end": 10775.94, + "probability": 0.4354 + }, + { + "start": 10775.96, + "end": 10777.06, + "probability": 0.562 + }, + { + "start": 10777.14, + "end": 10778.39, + "probability": 0.3297 + }, + { + "start": 10778.56, + "end": 10778.96, + "probability": 0.4039 + }, + { + "start": 10779.92, + "end": 10779.92, + "probability": 0.0905 + }, + { + "start": 10779.92, + "end": 10779.92, + "probability": 0.3746 + }, + { + "start": 10779.92, + "end": 10781.38, + "probability": 0.6 + }, + { + "start": 10781.74, + "end": 10783.4, + "probability": 0.8283 + }, + { + "start": 10783.46, + "end": 10783.96, + "probability": 0.4693 + }, + { + "start": 10784.38, + "end": 10785.22, + "probability": 0.3995 + }, + { + "start": 10785.62, + "end": 10788.42, + "probability": 0.9404 + }, + { + "start": 10788.76, + "end": 10788.94, + "probability": 0.6431 + }, + { + "start": 10788.94, + "end": 10789.0, + "probability": 0.4648 + }, + { + "start": 10789.16, + "end": 10790.46, + "probability": 0.8208 + }, + { + "start": 10790.88, + "end": 10791.86, + "probability": 0.97 + }, + { + "start": 10792.04, + "end": 10793.44, + "probability": 0.6411 + }, + { + "start": 10793.6, + "end": 10795.88, + "probability": 0.9573 + }, + { + "start": 10796.48, + "end": 10798.26, + "probability": 0.942 + }, + { + "start": 10800.26, + "end": 10803.5, + "probability": 0.7418 + }, + { + "start": 10803.62, + "end": 10805.0, + "probability": 0.9159 + }, + { + "start": 10805.1, + "end": 10805.94, + "probability": 0.9409 + }, + { + "start": 10806.06, + "end": 10808.08, + "probability": 0.7839 + }, + { + "start": 10808.6, + "end": 10809.98, + "probability": 0.8448 + }, + { + "start": 10810.56, + "end": 10810.94, + "probability": 0.5632 + }, + { + "start": 10811.06, + "end": 10817.32, + "probability": 0.9105 + }, + { + "start": 10817.72, + "end": 10821.3, + "probability": 0.9561 + }, + { + "start": 10821.48, + "end": 10822.68, + "probability": 0.9022 + }, + { + "start": 10823.22, + "end": 10828.85, + "probability": 0.8549 + }, + { + "start": 10830.22, + "end": 10833.6, + "probability": 0.83 + }, + { + "start": 10833.98, + "end": 10838.16, + "probability": 0.9848 + }, + { + "start": 10838.62, + "end": 10840.66, + "probability": 0.955 + }, + { + "start": 10841.34, + "end": 10842.62, + "probability": 0.9307 + }, + { + "start": 10842.76, + "end": 10844.48, + "probability": 0.9691 + }, + { + "start": 10844.56, + "end": 10845.26, + "probability": 0.6977 + }, + { + "start": 10846.34, + "end": 10847.06, + "probability": 0.6931 + }, + { + "start": 10847.26, + "end": 10847.93, + "probability": 0.875 + }, + { + "start": 10848.88, + "end": 10850.26, + "probability": 0.9728 + }, + { + "start": 10850.42, + "end": 10852.02, + "probability": 0.9884 + }, + { + "start": 10852.14, + "end": 10853.38, + "probability": 0.695 + }, + { + "start": 10853.84, + "end": 10855.26, + "probability": 0.9946 + }, + { + "start": 10855.36, + "end": 10856.64, + "probability": 0.7013 + }, + { + "start": 10856.78, + "end": 10859.1, + "probability": 0.6144 + }, + { + "start": 10859.56, + "end": 10862.22, + "probability": 0.9914 + }, + { + "start": 10862.9, + "end": 10865.46, + "probability": 0.9968 + }, + { + "start": 10865.98, + "end": 10871.3, + "probability": 0.9987 + }, + { + "start": 10871.3, + "end": 10875.74, + "probability": 0.9956 + }, + { + "start": 10875.76, + "end": 10881.1, + "probability": 0.9718 + }, + { + "start": 10881.36, + "end": 10882.4, + "probability": 0.9064 + }, + { + "start": 10882.52, + "end": 10885.5, + "probability": 0.9126 + }, + { + "start": 10885.56, + "end": 10886.54, + "probability": 0.9732 + }, + { + "start": 10887.04, + "end": 10891.0, + "probability": 0.9956 + }, + { + "start": 10891.98, + "end": 10893.4, + "probability": 0.367 + }, + { + "start": 10893.5, + "end": 10896.88, + "probability": 0.9473 + }, + { + "start": 10897.06, + "end": 10897.94, + "probability": 0.5623 + }, + { + "start": 10898.26, + "end": 10899.03, + "probability": 0.5513 + }, + { + "start": 10899.52, + "end": 10900.32, + "probability": 0.4528 + }, + { + "start": 10900.92, + "end": 10904.28, + "probability": 0.8469 + }, + { + "start": 10904.36, + "end": 10905.93, + "probability": 0.9447 + }, + { + "start": 10906.18, + "end": 10907.22, + "probability": 0.4883 + }, + { + "start": 10908.24, + "end": 10909.08, + "probability": 0.5278 + }, + { + "start": 10910.2, + "end": 10913.18, + "probability": 0.7643 + }, + { + "start": 10921.3, + "end": 10922.74, + "probability": 0.1817 + }, + { + "start": 10932.24, + "end": 10932.32, + "probability": 0.2523 + }, + { + "start": 10932.7, + "end": 10935.6, + "probability": 0.0597 + }, + { + "start": 10935.74, + "end": 10935.78, + "probability": 0.5462 + }, + { + "start": 10935.78, + "end": 10935.78, + "probability": 0.7138 + }, + { + "start": 10935.78, + "end": 10938.94, + "probability": 0.7501 + }, + { + "start": 10939.12, + "end": 10943.74, + "probability": 0.7937 + }, + { + "start": 10944.32, + "end": 10949.22, + "probability": 0.9595 + }, + { + "start": 10950.24, + "end": 10951.7, + "probability": 0.7026 + }, + { + "start": 10952.7, + "end": 10956.88, + "probability": 0.9698 + }, + { + "start": 10956.94, + "end": 10959.56, + "probability": 0.9956 + }, + { + "start": 10960.48, + "end": 10961.76, + "probability": 0.7538 + }, + { + "start": 10963.06, + "end": 10964.12, + "probability": 0.406 + }, + { + "start": 10964.2, + "end": 10964.94, + "probability": 0.4623 + }, + { + "start": 10964.94, + "end": 10965.5, + "probability": 0.4724 + }, + { + "start": 10970.56, + "end": 10974.18, + "probability": 0.145 + }, + { + "start": 10987.02, + "end": 10987.28, + "probability": 0.2924 + }, + { + "start": 10987.28, + "end": 10987.28, + "probability": 0.0468 + }, + { + "start": 10987.28, + "end": 10987.28, + "probability": 0.4213 + }, + { + "start": 10987.28, + "end": 10987.28, + "probability": 0.0694 + }, + { + "start": 10987.28, + "end": 10987.48, + "probability": 0.1336 + }, + { + "start": 10987.64, + "end": 10987.96, + "probability": 0.2521 + }, + { + "start": 10988.1, + "end": 10988.74, + "probability": 0.4715 + }, + { + "start": 10988.74, + "end": 10989.3, + "probability": 0.7593 + }, + { + "start": 10989.58, + "end": 10990.66, + "probability": 0.818 + }, + { + "start": 10991.3, + "end": 10991.44, + "probability": 0.1156 + }, + { + "start": 10993.62, + "end": 10995.0, + "probability": 0.4542 + }, + { + "start": 10995.12, + "end": 10998.04, + "probability": 0.7293 + }, + { + "start": 10998.56, + "end": 11000.26, + "probability": 0.7356 + }, + { + "start": 11001.32, + "end": 11002.1, + "probability": 0.9196 + }, + { + "start": 11002.82, + "end": 11006.12, + "probability": 0.911 + }, + { + "start": 11012.91, + "end": 11017.44, + "probability": 0.9954 + }, + { + "start": 11017.54, + "end": 11018.53, + "probability": 0.7271 + }, + { + "start": 11018.88, + "end": 11020.34, + "probability": 0.9251 + }, + { + "start": 11020.88, + "end": 11023.52, + "probability": 0.9413 + }, + { + "start": 11025.54, + "end": 11026.64, + "probability": 0.8969 + }, + { + "start": 11028.7, + "end": 11030.02, + "probability": 0.7746 + }, + { + "start": 11030.12, + "end": 11031.16, + "probability": 0.5269 + }, + { + "start": 11031.22, + "end": 11033.17, + "probability": 0.8058 + }, + { + "start": 11033.36, + "end": 11033.56, + "probability": 0.7047 + }, + { + "start": 11033.56, + "end": 11034.0, + "probability": 0.4707 + }, + { + "start": 11034.72, + "end": 11038.42, + "probability": 0.8616 + }, + { + "start": 11038.76, + "end": 11042.44, + "probability": 0.8755 + }, + { + "start": 11043.0, + "end": 11046.54, + "probability": 0.1198 + }, + { + "start": 11058.88, + "end": 11059.18, + "probability": 0.3272 + }, + { + "start": 11059.22, + "end": 11059.42, + "probability": 0.753 + }, + { + "start": 11059.42, + "end": 11063.24, + "probability": 0.9755 + }, + { + "start": 11063.28, + "end": 11065.12, + "probability": 0.8857 + }, + { + "start": 11065.74, + "end": 11067.9, + "probability": 0.979 + }, + { + "start": 11068.54, + "end": 11071.0, + "probability": 0.722 + }, + { + "start": 11071.04, + "end": 11072.12, + "probability": 0.686 + }, + { + "start": 11073.22, + "end": 11075.8, + "probability": 0.105 + }, + { + "start": 11075.92, + "end": 11077.64, + "probability": 0.9507 + }, + { + "start": 11077.86, + "end": 11078.22, + "probability": 0.8587 + }, + { + "start": 11082.54, + "end": 11083.88, + "probability": 0.7289 + }, + { + "start": 11083.9, + "end": 11085.18, + "probability": 0.8827 + }, + { + "start": 11085.4, + "end": 11086.72, + "probability": 0.8084 + }, + { + "start": 11087.22, + "end": 11088.4, + "probability": 0.6541 + }, + { + "start": 11088.48, + "end": 11089.56, + "probability": 0.8267 + }, + { + "start": 11089.62, + "end": 11094.8, + "probability": 0.8864 + }, + { + "start": 11095.34, + "end": 11099.14, + "probability": 0.9912 + }, + { + "start": 11099.76, + "end": 11102.78, + "probability": 0.9558 + }, + { + "start": 11102.82, + "end": 11104.16, + "probability": 0.998 + }, + { + "start": 11104.98, + "end": 11106.14, + "probability": 0.7307 + }, + { + "start": 11106.18, + "end": 11111.32, + "probability": 0.9635 + }, + { + "start": 11111.38, + "end": 11112.84, + "probability": 0.955 + }, + { + "start": 11113.6, + "end": 11120.2, + "probability": 0.8482 + }, + { + "start": 11120.44, + "end": 11123.04, + "probability": 0.9756 + }, + { + "start": 11124.04, + "end": 11127.2, + "probability": 0.9034 + }, + { + "start": 11127.82, + "end": 11130.1, + "probability": 0.9839 + }, + { + "start": 11130.68, + "end": 11133.74, + "probability": 0.9116 + }, + { + "start": 11133.84, + "end": 11135.36, + "probability": 0.8271 + }, + { + "start": 11135.64, + "end": 11136.71, + "probability": 0.9009 + }, + { + "start": 11137.48, + "end": 11137.86, + "probability": 0.6402 + }, + { + "start": 11138.04, + "end": 11143.0, + "probability": 0.9899 + }, + { + "start": 11143.0, + "end": 11148.72, + "probability": 0.9883 + }, + { + "start": 11150.02, + "end": 11151.56, + "probability": 0.9614 + }, + { + "start": 11152.2, + "end": 11154.5, + "probability": 0.892 + }, + { + "start": 11155.42, + "end": 11158.48, + "probability": 0.9946 + }, + { + "start": 11159.26, + "end": 11162.62, + "probability": 0.8173 + }, + { + "start": 11163.46, + "end": 11167.06, + "probability": 0.8442 + }, + { + "start": 11167.16, + "end": 11168.1, + "probability": 0.9565 + }, + { + "start": 11168.24, + "end": 11169.82, + "probability": 0.6652 + }, + { + "start": 11170.24, + "end": 11173.9, + "probability": 0.9656 + }, + { + "start": 11174.5, + "end": 11179.14, + "probability": 0.9176 + }, + { + "start": 11179.82, + "end": 11184.02, + "probability": 0.9943 + }, + { + "start": 11185.17, + "end": 11189.16, + "probability": 0.994 + }, + { + "start": 11189.3, + "end": 11189.54, + "probability": 0.7319 + }, + { + "start": 11190.64, + "end": 11191.8, + "probability": 0.5109 + }, + { + "start": 11192.04, + "end": 11194.94, + "probability": 0.8767 + }, + { + "start": 11195.6, + "end": 11196.62, + "probability": 0.8627 + }, + { + "start": 11201.1, + "end": 11202.7, + "probability": 0.6921 + }, + { + "start": 11203.32, + "end": 11205.26, + "probability": 0.9375 + }, + { + "start": 11205.28, + "end": 11206.88, + "probability": 0.8756 + }, + { + "start": 11208.84, + "end": 11209.68, + "probability": 0.9636 + }, + { + "start": 11210.08, + "end": 11215.56, + "probability": 0.995 + }, + { + "start": 11215.56, + "end": 11218.94, + "probability": 0.9954 + }, + { + "start": 11219.76, + "end": 11223.86, + "probability": 0.9998 + }, + { + "start": 11223.86, + "end": 11228.52, + "probability": 0.9924 + }, + { + "start": 11229.44, + "end": 11231.58, + "probability": 0.8974 + }, + { + "start": 11232.1, + "end": 11237.62, + "probability": 0.9721 + }, + { + "start": 11238.0, + "end": 11240.62, + "probability": 0.8523 + }, + { + "start": 11241.76, + "end": 11243.36, + "probability": 0.7707 + }, + { + "start": 11244.2, + "end": 11246.12, + "probability": 0.9901 + }, + { + "start": 11247.16, + "end": 11248.86, + "probability": 0.7779 + }, + { + "start": 11248.96, + "end": 11251.98, + "probability": 0.8945 + }, + { + "start": 11251.98, + "end": 11257.34, + "probability": 0.9568 + }, + { + "start": 11257.34, + "end": 11260.98, + "probability": 0.8794 + }, + { + "start": 11261.6, + "end": 11264.48, + "probability": 0.8569 + }, + { + "start": 11265.2, + "end": 11269.26, + "probability": 0.9824 + }, + { + "start": 11269.26, + "end": 11274.54, + "probability": 0.9779 + }, + { + "start": 11274.82, + "end": 11277.16, + "probability": 0.6225 + }, + { + "start": 11278.02, + "end": 11279.82, + "probability": 0.7751 + }, + { + "start": 11281.6, + "end": 11284.1, + "probability": 0.8931 + }, + { + "start": 11284.7, + "end": 11287.1, + "probability": 0.9745 + }, + { + "start": 11287.24, + "end": 11290.12, + "probability": 0.7761 + }, + { + "start": 11290.84, + "end": 11293.14, + "probability": 0.9973 + }, + { + "start": 11293.14, + "end": 11295.7, + "probability": 0.9969 + }, + { + "start": 11296.42, + "end": 11298.64, + "probability": 0.8413 + }, + { + "start": 11298.64, + "end": 11301.1, + "probability": 0.9865 + }, + { + "start": 11301.76, + "end": 11305.34, + "probability": 0.991 + }, + { + "start": 11305.4, + "end": 11310.1, + "probability": 0.9956 + }, + { + "start": 11310.52, + "end": 11311.4, + "probability": 0.9538 + }, + { + "start": 11311.64, + "end": 11314.72, + "probability": 0.8018 + }, + { + "start": 11315.54, + "end": 11316.5, + "probability": 0.7614 + }, + { + "start": 11316.58, + "end": 11318.88, + "probability": 0.7835 + }, + { + "start": 11320.16, + "end": 11322.26, + "probability": 0.4722 + }, + { + "start": 11322.3, + "end": 11324.58, + "probability": 0.9189 + }, + { + "start": 11330.39, + "end": 11332.32, + "probability": 0.621 + }, + { + "start": 11332.36, + "end": 11333.98, + "probability": 0.6626 + }, + { + "start": 11333.98, + "end": 11334.8, + "probability": 0.2907 + }, + { + "start": 11353.28, + "end": 11355.78, + "probability": 0.8028 + }, + { + "start": 11359.3, + "end": 11362.16, + "probability": 0.0312 + }, + { + "start": 11362.16, + "end": 11365.88, + "probability": 0.4138 + }, + { + "start": 11368.36, + "end": 11368.46, + "probability": 0.0123 + }, + { + "start": 11369.4, + "end": 11376.22, + "probability": 0.0444 + }, + { + "start": 11376.22, + "end": 11377.5, + "probability": 0.0357 + }, + { + "start": 11381.54, + "end": 11389.02, + "probability": 0.0449 + }, + { + "start": 11390.22, + "end": 11390.22, + "probability": 0.1327 + }, + { + "start": 11390.22, + "end": 11390.28, + "probability": 0.0089 + }, + { + "start": 11390.28, + "end": 11390.28, + "probability": 0.0991 + }, + { + "start": 11390.28, + "end": 11390.28, + "probability": 0.0533 + }, + { + "start": 11390.28, + "end": 11390.28, + "probability": 0.0188 + }, + { + "start": 11390.28, + "end": 11391.12, + "probability": 0.2548 + }, + { + "start": 11393.22, + "end": 11393.9, + "probability": 0.2252 + }, + { + "start": 11393.9, + "end": 11393.9, + "probability": 0.0341 + }, + { + "start": 11393.9, + "end": 11396.57, + "probability": 0.7374 + }, + { + "start": 11398.5, + "end": 11400.98, + "probability": 0.3047 + }, + { + "start": 11401.72, + "end": 11402.58, + "probability": 0.7949 + }, + { + "start": 11409.4, + "end": 11410.04, + "probability": 0.8016 + }, + { + "start": 11415.98, + "end": 11416.68, + "probability": 0.5517 + }, + { + "start": 11416.74, + "end": 11417.76, + "probability": 0.7352 + }, + { + "start": 11417.94, + "end": 11418.46, + "probability": 0.8013 + }, + { + "start": 11418.48, + "end": 11420.24, + "probability": 0.7469 + }, + { + "start": 11422.07, + "end": 11429.26, + "probability": 0.994 + }, + { + "start": 11429.38, + "end": 11430.64, + "probability": 0.9835 + }, + { + "start": 11431.66, + "end": 11434.74, + "probability": 0.79 + }, + { + "start": 11435.26, + "end": 11437.42, + "probability": 0.992 + }, + { + "start": 11438.06, + "end": 11442.54, + "probability": 0.7872 + }, + { + "start": 11442.76, + "end": 11447.04, + "probability": 0.955 + }, + { + "start": 11447.92, + "end": 11452.82, + "probability": 0.9333 + }, + { + "start": 11453.24, + "end": 11455.48, + "probability": 0.7367 + }, + { + "start": 11456.3, + "end": 11460.22, + "probability": 0.9926 + }, + { + "start": 11460.6, + "end": 11464.88, + "probability": 0.8042 + }, + { + "start": 11465.54, + "end": 11469.62, + "probability": 0.9964 + }, + { + "start": 11469.7, + "end": 11473.24, + "probability": 0.9919 + }, + { + "start": 11473.64, + "end": 11474.06, + "probability": 0.5504 + }, + { + "start": 11474.16, + "end": 11476.08, + "probability": 0.91 + }, + { + "start": 11477.06, + "end": 11479.3, + "probability": 0.4933 + }, + { + "start": 11481.02, + "end": 11481.66, + "probability": 0.8802 + }, + { + "start": 11484.64, + "end": 11485.74, + "probability": 0.7828 + }, + { + "start": 11490.42, + "end": 11490.98, + "probability": 0.6242 + }, + { + "start": 11491.08, + "end": 11491.64, + "probability": 0.8264 + }, + { + "start": 11493.38, + "end": 11494.62, + "probability": 0.8638 + }, + { + "start": 11495.42, + "end": 11497.1, + "probability": 0.9733 + }, + { + "start": 11498.04, + "end": 11498.38, + "probability": 0.2395 + }, + { + "start": 11508.58, + "end": 11514.16, + "probability": 0.0534 + }, + { + "start": 11514.16, + "end": 11516.08, + "probability": 0.5135 + }, + { + "start": 11516.6, + "end": 11521.96, + "probability": 0.4612 + }, + { + "start": 11522.94, + "end": 11525.04, + "probability": 0.056 + }, + { + "start": 11526.16, + "end": 11527.28, + "probability": 0.0455 + }, + { + "start": 11527.46, + "end": 11528.2, + "probability": 0.0564 + }, + { + "start": 11528.48, + "end": 11528.68, + "probability": 0.0187 + }, + { + "start": 11531.12, + "end": 11531.42, + "probability": 0.0223 + }, + { + "start": 11533.1, + "end": 11533.66, + "probability": 0.2593 + }, + { + "start": 11535.2, + "end": 11538.12, + "probability": 0.0544 + }, + { + "start": 11541.66, + "end": 11542.74, + "probability": 0.1101 + }, + { + "start": 11542.74, + "end": 11544.0, + "probability": 0.3104 + }, + { + "start": 11544.02, + "end": 11545.62, + "probability": 0.2017 + }, + { + "start": 11547.52, + "end": 11548.06, + "probability": 0.0768 + }, + { + "start": 11566.76, + "end": 11568.76, + "probability": 0.0897 + }, + { + "start": 11571.56, + "end": 11572.24, + "probability": 0.2883 + }, + { + "start": 11573.98, + "end": 11574.0, + "probability": 0.0155 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.048 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.2009 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.2642 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.0 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.0 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.0 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.0 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.0 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.0 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.0 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.0 + }, + { + "start": 11574.0, + "end": 11574.0, + "probability": 0.0 + }, + { + "start": 11580.1, + "end": 11580.82, + "probability": 0.996 + }, + { + "start": 11581.36, + "end": 11582.66, + "probability": 0.7996 + }, + { + "start": 11583.0, + "end": 11583.36, + "probability": 0.9517 + }, + { + "start": 11584.54, + "end": 11585.5, + "probability": 0.9712 + }, + { + "start": 11586.86, + "end": 11587.92, + "probability": 0.8893 + }, + { + "start": 11589.34, + "end": 11590.16, + "probability": 0.9277 + }, + { + "start": 11590.22, + "end": 11590.86, + "probability": 0.9706 + }, + { + "start": 11591.04, + "end": 11591.5, + "probability": 0.832 + }, + { + "start": 11591.72, + "end": 11593.34, + "probability": 0.9666 + }, + { + "start": 11594.5, + "end": 11596.1, + "probability": 0.579 + }, + { + "start": 11596.82, + "end": 11597.92, + "probability": 0.9403 + }, + { + "start": 11603.4, + "end": 11604.6, + "probability": 0.0244 + }, + { + "start": 11604.6, + "end": 11606.0, + "probability": 0.7645 + }, + { + "start": 11607.04, + "end": 11607.92, + "probability": 0.751 + }, + { + "start": 11608.88, + "end": 11612.04, + "probability": 0.9384 + }, + { + "start": 11612.8, + "end": 11613.44, + "probability": 0.9478 + }, + { + "start": 11614.62, + "end": 11615.54, + "probability": 0.9767 + }, + { + "start": 11616.5, + "end": 11618.62, + "probability": 0.7706 + }, + { + "start": 11619.46, + "end": 11620.2, + "probability": 0.4966 + }, + { + "start": 11621.08, + "end": 11623.62, + "probability": 0.9607 + }, + { + "start": 11624.42, + "end": 11628.5, + "probability": 0.9757 + }, + { + "start": 11629.32, + "end": 11630.64, + "probability": 0.9595 + }, + { + "start": 11631.46, + "end": 11632.26, + "probability": 0.9499 + }, + { + "start": 11633.0, + "end": 11634.54, + "probability": 0.9692 + }, + { + "start": 11634.96, + "end": 11636.26, + "probability": 0.7882 + }, + { + "start": 11637.02, + "end": 11640.8, + "probability": 0.9268 + }, + { + "start": 11641.38, + "end": 11642.46, + "probability": 0.7867 + }, + { + "start": 11643.08, + "end": 11643.96, + "probability": 0.9628 + }, + { + "start": 11644.82, + "end": 11646.88, + "probability": 0.7522 + }, + { + "start": 11647.54, + "end": 11648.42, + "probability": 0.9335 + }, + { + "start": 11649.18, + "end": 11650.46, + "probability": 0.7969 + }, + { + "start": 11651.04, + "end": 11652.66, + "probability": 0.9844 + }, + { + "start": 11653.22, + "end": 11657.0, + "probability": 0.876 + }, + { + "start": 11657.54, + "end": 11658.8, + "probability": 0.7878 + }, + { + "start": 11662.5, + "end": 11663.08, + "probability": 0.5126 + }, + { + "start": 11664.06, + "end": 11664.06, + "probability": 0.181 + }, + { + "start": 11664.06, + "end": 11666.78, + "probability": 0.8471 + }, + { + "start": 11667.34, + "end": 11668.16, + "probability": 0.3704 + }, + { + "start": 11668.26, + "end": 11671.3, + "probability": 0.9956 + }, + { + "start": 11671.86, + "end": 11672.72, + "probability": 0.8688 + }, + { + "start": 11673.24, + "end": 11677.32, + "probability": 0.9966 + }, + { + "start": 11677.32, + "end": 11681.38, + "probability": 0.9292 + }, + { + "start": 11682.18, + "end": 11686.72, + "probability": 0.9973 + }, + { + "start": 11687.4, + "end": 11689.5, + "probability": 0.7891 + }, + { + "start": 11689.74, + "end": 11690.08, + "probability": 0.834 + }, + { + "start": 11692.6, + "end": 11693.76, + "probability": 0.4792 + }, + { + "start": 11694.38, + "end": 11698.12, + "probability": 0.7856 + }, + { + "start": 11698.24, + "end": 11699.8, + "probability": 0.8668 + }, + { + "start": 11699.88, + "end": 11701.54, + "probability": 0.6221 + }, + { + "start": 11701.62, + "end": 11704.12, + "probability": 0.939 + }, + { + "start": 11705.96, + "end": 11708.26, + "probability": 0.2162 + }, + { + "start": 11715.24, + "end": 11716.62, + "probability": 0.0121 + }, + { + "start": 11721.05, + "end": 11724.86, + "probability": 0.9331 + }, + { + "start": 11727.29, + "end": 11728.12, + "probability": 0.0253 + }, + { + "start": 11728.12, + "end": 11730.58, + "probability": 0.1638 + }, + { + "start": 11730.58, + "end": 11731.34, + "probability": 0.0682 + }, + { + "start": 11731.42, + "end": 11731.86, + "probability": 0.3086 + }, + { + "start": 11731.86, + "end": 11731.86, + "probability": 0.0364 + }, + { + "start": 11731.86, + "end": 11731.86, + "probability": 0.0433 + }, + { + "start": 11731.86, + "end": 11732.34, + "probability": 0.3041 + }, + { + "start": 11732.84, + "end": 11734.2, + "probability": 0.6885 + }, + { + "start": 11734.9, + "end": 11734.9, + "probability": 0.4387 + }, + { + "start": 11734.9, + "end": 11738.32, + "probability": 0.9765 + }, + { + "start": 11740.88, + "end": 11742.66, + "probability": 0.9289 + }, + { + "start": 11742.98, + "end": 11746.9, + "probability": 0.8499 + }, + { + "start": 11751.64, + "end": 11754.98, + "probability": 0.7605 + }, + { + "start": 11755.81, + "end": 11758.12, + "probability": 0.9364 + }, + { + "start": 11758.2, + "end": 11761.82, + "probability": 0.9749 + }, + { + "start": 11761.92, + "end": 11762.88, + "probability": 0.7887 + }, + { + "start": 11763.88, + "end": 11765.86, + "probability": 0.9492 + }, + { + "start": 11766.9, + "end": 11768.8, + "probability": 0.5442 + }, + { + "start": 11768.8, + "end": 11769.14, + "probability": 0.9236 + }, + { + "start": 11773.04, + "end": 11773.14, + "probability": 0.7415 + }, + { + "start": 11778.96, + "end": 11781.38, + "probability": 0.7646 + }, + { + "start": 11782.3, + "end": 11782.88, + "probability": 0.8239 + }, + { + "start": 11783.4, + "end": 11784.72, + "probability": 0.0698 + }, + { + "start": 11786.43, + "end": 11790.6, + "probability": 0.9717 + }, + { + "start": 11792.82, + "end": 11795.12, + "probability": 0.9604 + }, + { + "start": 11796.16, + "end": 11797.64, + "probability": 0.1888 + }, + { + "start": 11799.96, + "end": 11800.8, + "probability": 0.0025 + }, + { + "start": 11800.8, + "end": 11800.8, + "probability": 0.1173 + }, + { + "start": 11800.8, + "end": 11801.38, + "probability": 0.5539 + }, + { + "start": 11801.5, + "end": 11801.5, + "probability": 0.0643 + }, + { + "start": 11801.54, + "end": 11802.3, + "probability": 0.7976 + }, + { + "start": 11802.4, + "end": 11805.66, + "probability": 0.9702 + }, + { + "start": 11805.98, + "end": 11807.52, + "probability": 0.8116 + }, + { + "start": 11807.88, + "end": 11808.7, + "probability": 0.1839 + }, + { + "start": 11808.76, + "end": 11812.92, + "probability": 0.8856 + }, + { + "start": 11813.36, + "end": 11816.04, + "probability": 0.6747 + }, + { + "start": 11816.88, + "end": 11820.24, + "probability": 0.9817 + }, + { + "start": 11820.38, + "end": 11824.4, + "probability": 0.9785 + }, + { + "start": 11824.48, + "end": 11826.78, + "probability": 0.98 + }, + { + "start": 11826.86, + "end": 11826.86, + "probability": 0.3914 + }, + { + "start": 11827.06, + "end": 11827.16, + "probability": 0.5176 + }, + { + "start": 11827.18, + "end": 11827.78, + "probability": 0.539 + }, + { + "start": 11827.88, + "end": 11828.22, + "probability": 0.4702 + }, + { + "start": 11828.22, + "end": 11828.36, + "probability": 0.3151 + }, + { + "start": 11828.36, + "end": 11828.36, + "probability": 0.4047 + }, + { + "start": 11828.36, + "end": 11828.36, + "probability": 0.2587 + }, + { + "start": 11828.36, + "end": 11828.98, + "probability": 0.055 + }, + { + "start": 11829.22, + "end": 11829.48, + "probability": 0.7049 + }, + { + "start": 11829.48, + "end": 11831.54, + "probability": 0.8755 + }, + { + "start": 11831.62, + "end": 11831.62, + "probability": 0.4172 + }, + { + "start": 11831.62, + "end": 11833.88, + "probability": 0.7231 + }, + { + "start": 11834.14, + "end": 11834.76, + "probability": 0.4712 + }, + { + "start": 11835.5, + "end": 11837.8, + "probability": 0.6013 + }, + { + "start": 11839.6, + "end": 11841.9, + "probability": 0.998 + }, + { + "start": 11843.2, + "end": 11845.52, + "probability": 0.8991 + }, + { + "start": 11847.08, + "end": 11853.48, + "probability": 0.9639 + }, + { + "start": 11855.48, + "end": 11860.08, + "probability": 0.7397 + }, + { + "start": 11862.16, + "end": 11865.9, + "probability": 0.6918 + }, + { + "start": 11867.28, + "end": 11869.18, + "probability": 0.9663 + }, + { + "start": 11870.24, + "end": 11871.66, + "probability": 0.924 + }, + { + "start": 11874.25, + "end": 11876.3, + "probability": 0.9814 + }, + { + "start": 11879.78, + "end": 11884.06, + "probability": 0.7935 + }, + { + "start": 11884.1, + "end": 11888.24, + "probability": 0.9766 + }, + { + "start": 11889.22, + "end": 11890.17, + "probability": 0.8051 + }, + { + "start": 11892.32, + "end": 11898.44, + "probability": 0.9893 + }, + { + "start": 11900.72, + "end": 11901.8, + "probability": 0.9981 + }, + { + "start": 11903.74, + "end": 11908.14, + "probability": 0.9824 + }, + { + "start": 11910.28, + "end": 11912.9, + "probability": 0.9616 + }, + { + "start": 11914.42, + "end": 11915.02, + "probability": 0.7461 + }, + { + "start": 11915.98, + "end": 11917.28, + "probability": 0.8759 + }, + { + "start": 11919.06, + "end": 11920.06, + "probability": 0.8759 + }, + { + "start": 11921.18, + "end": 11922.3, + "probability": 0.7772 + }, + { + "start": 11923.68, + "end": 11924.86, + "probability": 0.9806 + }, + { + "start": 11925.66, + "end": 11927.12, + "probability": 0.9952 + }, + { + "start": 11929.9, + "end": 11930.63, + "probability": 0.9916 + }, + { + "start": 11931.82, + "end": 11932.45, + "probability": 0.9825 + }, + { + "start": 11934.5, + "end": 11935.51, + "probability": 0.9909 + }, + { + "start": 11936.0, + "end": 11939.12, + "probability": 0.998 + }, + { + "start": 11939.26, + "end": 11942.9, + "probability": 0.9441 + }, + { + "start": 11944.98, + "end": 11947.3, + "probability": 0.9675 + }, + { + "start": 11947.82, + "end": 11949.08, + "probability": 0.7143 + }, + { + "start": 11950.16, + "end": 11960.4, + "probability": 0.9451 + }, + { + "start": 11962.16, + "end": 11969.26, + "probability": 0.9923 + }, + { + "start": 11970.7, + "end": 11976.84, + "probability": 0.9829 + }, + { + "start": 11980.62, + "end": 11982.28, + "probability": 0.6471 + }, + { + "start": 11982.42, + "end": 11984.14, + "probability": 0.8172 + }, + { + "start": 11984.54, + "end": 11985.36, + "probability": 0.9521 + }, + { + "start": 11985.48, + "end": 11986.72, + "probability": 0.9893 + }, + { + "start": 11987.3, + "end": 11987.96, + "probability": 0.7687 + }, + { + "start": 11989.88, + "end": 11991.78, + "probability": 0.8362 + }, + { + "start": 11993.8, + "end": 11995.57, + "probability": 0.7625 + }, + { + "start": 11996.44, + "end": 11997.07, + "probability": 0.3561 + }, + { + "start": 11999.38, + "end": 12000.12, + "probability": 0.3557 + }, + { + "start": 12001.22, + "end": 12003.98, + "probability": 0.9893 + }, + { + "start": 12004.88, + "end": 12005.5, + "probability": 0.9948 + }, + { + "start": 12006.68, + "end": 12007.86, + "probability": 0.9933 + }, + { + "start": 12009.32, + "end": 12009.72, + "probability": 0.8917 + }, + { + "start": 12009.84, + "end": 12010.76, + "probability": 0.8583 + }, + { + "start": 12011.06, + "end": 12013.26, + "probability": 0.9851 + }, + { + "start": 12014.68, + "end": 12016.78, + "probability": 0.8114 + }, + { + "start": 12018.5, + "end": 12020.32, + "probability": 0.9369 + }, + { + "start": 12020.34, + "end": 12021.58, + "probability": 0.9812 + }, + { + "start": 12021.72, + "end": 12022.54, + "probability": 0.8444 + }, + { + "start": 12022.7, + "end": 12027.62, + "probability": 0.9341 + }, + { + "start": 12029.14, + "end": 12030.26, + "probability": 0.9922 + }, + { + "start": 12030.64, + "end": 12033.54, + "probability": 0.9965 + }, + { + "start": 12036.96, + "end": 12039.64, + "probability": 0.9802 + }, + { + "start": 12040.52, + "end": 12041.74, + "probability": 0.7448 + }, + { + "start": 12042.18, + "end": 12042.66, + "probability": 0.4439 + }, + { + "start": 12042.94, + "end": 12046.6, + "probability": 0.9207 + }, + { + "start": 12048.06, + "end": 12050.86, + "probability": 0.9801 + }, + { + "start": 12052.0, + "end": 12058.26, + "probability": 0.9048 + }, + { + "start": 12058.78, + "end": 12063.62, + "probability": 0.9508 + }, + { + "start": 12064.24, + "end": 12065.44, + "probability": 0.521 + }, + { + "start": 12066.3, + "end": 12068.16, + "probability": 0.7158 + }, + { + "start": 12068.92, + "end": 12069.56, + "probability": 0.841 + }, + { + "start": 12069.62, + "end": 12069.92, + "probability": 0.8386 + }, + { + "start": 12069.94, + "end": 12072.02, + "probability": 0.9761 + }, + { + "start": 12074.4, + "end": 12076.18, + "probability": 0.5523 + }, + { + "start": 12077.44, + "end": 12078.52, + "probability": 0.9575 + }, + { + "start": 12079.14, + "end": 12081.08, + "probability": 0.9467 + }, + { + "start": 12081.54, + "end": 12088.32, + "probability": 0.9878 + }, + { + "start": 12088.84, + "end": 12090.58, + "probability": 0.4709 + }, + { + "start": 12090.72, + "end": 12091.38, + "probability": 0.9722 + }, + { + "start": 12091.48, + "end": 12094.58, + "probability": 0.9341 + }, + { + "start": 12095.4, + "end": 12097.04, + "probability": 0.9373 + }, + { + "start": 12097.8, + "end": 12098.22, + "probability": 0.5876 + }, + { + "start": 12098.22, + "end": 12100.1, + "probability": 0.9405 + }, + { + "start": 12103.64, + "end": 12106.96, + "probability": 0.8633 + }, + { + "start": 12107.02, + "end": 12112.08, + "probability": 0.9986 + }, + { + "start": 12112.16, + "end": 12112.32, + "probability": 0.7312 + }, + { + "start": 12112.46, + "end": 12113.6, + "probability": 0.9799 + }, + { + "start": 12115.42, + "end": 12117.24, + "probability": 0.9814 + }, + { + "start": 12117.52, + "end": 12119.48, + "probability": 0.9619 + }, + { + "start": 12119.56, + "end": 12121.1, + "probability": 0.765 + }, + { + "start": 12122.46, + "end": 12123.38, + "probability": 0.5984 + }, + { + "start": 12124.38, + "end": 12127.71, + "probability": 0.9855 + }, + { + "start": 12129.78, + "end": 12133.06, + "probability": 0.9668 + }, + { + "start": 12134.04, + "end": 12138.26, + "probability": 0.8987 + }, + { + "start": 12140.76, + "end": 12141.88, + "probability": 0.678 + }, + { + "start": 12142.66, + "end": 12148.82, + "probability": 0.788 + }, + { + "start": 12150.08, + "end": 12153.36, + "probability": 0.9674 + }, + { + "start": 12155.12, + "end": 12157.6, + "probability": 0.9839 + }, + { + "start": 12157.88, + "end": 12158.84, + "probability": 0.8306 + }, + { + "start": 12159.18, + "end": 12160.5, + "probability": 0.8599 + }, + { + "start": 12163.36, + "end": 12165.86, + "probability": 0.9963 + }, + { + "start": 12167.92, + "end": 12168.84, + "probability": 0.9023 + }, + { + "start": 12170.52, + "end": 12173.64, + "probability": 0.9912 + }, + { + "start": 12173.76, + "end": 12174.68, + "probability": 0.7944 + }, + { + "start": 12175.86, + "end": 12180.38, + "probability": 0.9884 + }, + { + "start": 12182.86, + "end": 12184.72, + "probability": 0.9944 + }, + { + "start": 12184.72, + "end": 12187.12, + "probability": 0.994 + }, + { + "start": 12187.96, + "end": 12191.34, + "probability": 0.9619 + }, + { + "start": 12192.64, + "end": 12195.4, + "probability": 0.9289 + }, + { + "start": 12196.08, + "end": 12197.4, + "probability": 0.99 + }, + { + "start": 12198.44, + "end": 12199.48, + "probability": 0.9637 + }, + { + "start": 12200.32, + "end": 12202.54, + "probability": 0.9692 + }, + { + "start": 12202.8, + "end": 12203.69, + "probability": 0.7869 + }, + { + "start": 12204.56, + "end": 12207.48, + "probability": 0.9839 + }, + { + "start": 12208.44, + "end": 12209.82, + "probability": 0.9896 + }, + { + "start": 12211.52, + "end": 12212.48, + "probability": 0.8873 + }, + { + "start": 12213.72, + "end": 12215.08, + "probability": 0.9821 + }, + { + "start": 12215.22, + "end": 12216.08, + "probability": 0.863 + }, + { + "start": 12216.14, + "end": 12217.3, + "probability": 0.9788 + }, + { + "start": 12217.9, + "end": 12218.24, + "probability": 0.9755 + }, + { + "start": 12219.08, + "end": 12222.2, + "probability": 0.9775 + }, + { + "start": 12222.68, + "end": 12224.3, + "probability": 0.8923 + }, + { + "start": 12224.96, + "end": 12226.08, + "probability": 0.486 + }, + { + "start": 12226.76, + "end": 12230.6, + "probability": 0.9741 + }, + { + "start": 12231.34, + "end": 12234.0, + "probability": 0.986 + }, + { + "start": 12234.0, + "end": 12237.58, + "probability": 0.9979 + }, + { + "start": 12237.76, + "end": 12239.12, + "probability": 0.7867 + }, + { + "start": 12239.32, + "end": 12240.0, + "probability": 0.4986 + }, + { + "start": 12241.7, + "end": 12242.96, + "probability": 0.8328 + }, + { + "start": 12243.64, + "end": 12247.42, + "probability": 0.9779 + }, + { + "start": 12247.42, + "end": 12251.62, + "probability": 0.9592 + }, + { + "start": 12253.68, + "end": 12255.28, + "probability": 0.972 + }, + { + "start": 12255.92, + "end": 12256.86, + "probability": 0.9528 + }, + { + "start": 12256.96, + "end": 12262.6, + "probability": 0.984 + }, + { + "start": 12262.72, + "end": 12264.16, + "probability": 0.9969 + }, + { + "start": 12265.18, + "end": 12265.92, + "probability": 0.9248 + }, + { + "start": 12265.96, + "end": 12267.4, + "probability": 0.9766 + }, + { + "start": 12267.48, + "end": 12267.82, + "probability": 0.8761 + }, + { + "start": 12267.86, + "end": 12268.4, + "probability": 0.9138 + }, + { + "start": 12268.74, + "end": 12268.98, + "probability": 0.2546 + }, + { + "start": 12269.06, + "end": 12269.36, + "probability": 0.7301 + }, + { + "start": 12269.46, + "end": 12269.94, + "probability": 0.8992 + }, + { + "start": 12270.0, + "end": 12271.48, + "probability": 0.9535 + }, + { + "start": 12272.2, + "end": 12273.54, + "probability": 0.9631 + }, + { + "start": 12273.7, + "end": 12277.04, + "probability": 0.9716 + }, + { + "start": 12278.06, + "end": 12278.64, + "probability": 0.9636 + }, + { + "start": 12278.68, + "end": 12279.52, + "probability": 0.9233 + }, + { + "start": 12279.7, + "end": 12280.0, + "probability": 0.8418 + }, + { + "start": 12280.1, + "end": 12281.7, + "probability": 0.9766 + }, + { + "start": 12281.8, + "end": 12282.24, + "probability": 0.8082 + }, + { + "start": 12282.3, + "end": 12283.45, + "probability": 0.7662 + }, + { + "start": 12284.5, + "end": 12289.86, + "probability": 0.9854 + }, + { + "start": 12289.92, + "end": 12291.14, + "probability": 0.9877 + }, + { + "start": 12291.98, + "end": 12293.02, + "probability": 0.8845 + }, + { + "start": 12293.26, + "end": 12298.88, + "probability": 0.9944 + }, + { + "start": 12298.98, + "end": 12300.78, + "probability": 0.9792 + }, + { + "start": 12300.86, + "end": 12303.06, + "probability": 0.9919 + }, + { + "start": 12303.12, + "end": 12304.68, + "probability": 0.9509 + }, + { + "start": 12304.68, + "end": 12306.18, + "probability": 0.7407 + }, + { + "start": 12306.56, + "end": 12308.3, + "probability": 0.9985 + }, + { + "start": 12308.48, + "end": 12310.22, + "probability": 0.9733 + }, + { + "start": 12310.82, + "end": 12313.22, + "probability": 0.924 + }, + { + "start": 12313.78, + "end": 12315.28, + "probability": 0.9855 + }, + { + "start": 12316.84, + "end": 12318.64, + "probability": 0.7517 + }, + { + "start": 12318.64, + "end": 12322.2, + "probability": 0.9966 + }, + { + "start": 12322.24, + "end": 12322.32, + "probability": 0.6831 + }, + { + "start": 12322.48, + "end": 12322.82, + "probability": 0.6569 + }, + { + "start": 12322.94, + "end": 12325.98, + "probability": 0.9803 + }, + { + "start": 12326.32, + "end": 12327.2, + "probability": 0.9372 + }, + { + "start": 12327.76, + "end": 12328.76, + "probability": 0.8718 + }, + { + "start": 12329.54, + "end": 12331.86, + "probability": 0.981 + }, + { + "start": 12332.86, + "end": 12334.38, + "probability": 0.986 + }, + { + "start": 12334.54, + "end": 12334.88, + "probability": 0.7665 + }, + { + "start": 12334.94, + "end": 12338.92, + "probability": 0.9443 + }, + { + "start": 12340.02, + "end": 12341.34, + "probability": 0.9735 + }, + { + "start": 12341.52, + "end": 12345.62, + "probability": 0.9494 + }, + { + "start": 12345.86, + "end": 12348.86, + "probability": 0.998 + }, + { + "start": 12349.06, + "end": 12349.42, + "probability": 0.9247 + }, + { + "start": 12349.8, + "end": 12353.24, + "probability": 0.9228 + }, + { + "start": 12354.36, + "end": 12356.8, + "probability": 0.9805 + }, + { + "start": 12357.4, + "end": 12362.08, + "probability": 0.8537 + }, + { + "start": 12362.12, + "end": 12364.04, + "probability": 0.9458 + }, + { + "start": 12364.36, + "end": 12365.06, + "probability": 0.8121 + }, + { + "start": 12366.36, + "end": 12367.86, + "probability": 0.9811 + }, + { + "start": 12368.4, + "end": 12373.82, + "probability": 0.9981 + }, + { + "start": 12373.82, + "end": 12376.32, + "probability": 0.571 + }, + { + "start": 12376.4, + "end": 12377.04, + "probability": 0.4402 + }, + { + "start": 12378.12, + "end": 12380.24, + "probability": 0.8774 + }, + { + "start": 12381.84, + "end": 12384.1, + "probability": 0.8589 + }, + { + "start": 12384.96, + "end": 12386.74, + "probability": 0.78 + }, + { + "start": 12387.42, + "end": 12390.18, + "probability": 0.9788 + }, + { + "start": 12390.82, + "end": 12392.76, + "probability": 0.9716 + }, + { + "start": 12393.56, + "end": 12394.28, + "probability": 0.7068 + }, + { + "start": 12394.94, + "end": 12398.0, + "probability": 0.9829 + }, + { + "start": 12398.3, + "end": 12399.32, + "probability": 0.9952 + }, + { + "start": 12400.04, + "end": 12403.76, + "probability": 0.9985 + }, + { + "start": 12404.1, + "end": 12404.73, + "probability": 0.7013 + }, + { + "start": 12405.46, + "end": 12407.43, + "probability": 0.8662 + }, + { + "start": 12408.66, + "end": 12412.72, + "probability": 0.9822 + }, + { + "start": 12412.94, + "end": 12413.38, + "probability": 0.8281 + }, + { + "start": 12414.12, + "end": 12416.3, + "probability": 0.9686 + }, + { + "start": 12416.54, + "end": 12417.58, + "probability": 0.8275 + }, + { + "start": 12418.16, + "end": 12422.66, + "probability": 0.9326 + }, + { + "start": 12423.44, + "end": 12424.06, + "probability": 0.9334 + }, + { + "start": 12425.2, + "end": 12426.78, + "probability": 0.9504 + }, + { + "start": 12427.52, + "end": 12431.26, + "probability": 0.9084 + }, + { + "start": 12431.26, + "end": 12433.3, + "probability": 0.8977 + }, + { + "start": 12433.74, + "end": 12434.84, + "probability": 0.6064 + }, + { + "start": 12435.44, + "end": 12436.16, + "probability": 0.9486 + }, + { + "start": 12436.56, + "end": 12437.19, + "probability": 0.9666 + }, + { + "start": 12437.92, + "end": 12438.5, + "probability": 0.9241 + }, + { + "start": 12438.92, + "end": 12442.14, + "probability": 0.9786 + }, + { + "start": 12442.7, + "end": 12444.24, + "probability": 0.9351 + }, + { + "start": 12444.46, + "end": 12449.04, + "probability": 0.9642 + }, + { + "start": 12449.62, + "end": 12450.16, + "probability": 0.5036 + }, + { + "start": 12450.36, + "end": 12451.84, + "probability": 0.7408 + }, + { + "start": 12451.98, + "end": 12454.8, + "probability": 0.8859 + }, + { + "start": 12467.32, + "end": 12467.32, + "probability": 0.1651 + }, + { + "start": 12467.32, + "end": 12467.32, + "probability": 0.1859 + }, + { + "start": 12475.6, + "end": 12476.84, + "probability": 0.5441 + }, + { + "start": 12477.72, + "end": 12479.1, + "probability": 0.8447 + }, + { + "start": 12479.8, + "end": 12483.3, + "probability": 0.9948 + }, + { + "start": 12484.5, + "end": 12489.14, + "probability": 0.996 + }, + { + "start": 12491.06, + "end": 12493.26, + "probability": 0.9889 + }, + { + "start": 12494.32, + "end": 12499.78, + "probability": 0.9954 + }, + { + "start": 12500.46, + "end": 12504.7, + "probability": 0.9912 + }, + { + "start": 12506.16, + "end": 12509.36, + "probability": 0.9584 + }, + { + "start": 12510.4, + "end": 12512.4, + "probability": 0.9615 + }, + { + "start": 12513.06, + "end": 12514.82, + "probability": 0.9193 + }, + { + "start": 12515.64, + "end": 12520.2, + "probability": 0.9932 + }, + { + "start": 12520.2, + "end": 12527.4, + "probability": 0.9963 + }, + { + "start": 12528.8, + "end": 12531.06, + "probability": 0.9912 + }, + { + "start": 12532.9, + "end": 12538.64, + "probability": 0.9871 + }, + { + "start": 12540.48, + "end": 12547.46, + "probability": 0.9107 + }, + { + "start": 12548.26, + "end": 12549.64, + "probability": 0.6836 + }, + { + "start": 12550.58, + "end": 12552.94, + "probability": 0.9033 + }, + { + "start": 12554.48, + "end": 12555.41, + "probability": 0.9351 + }, + { + "start": 12556.44, + "end": 12559.26, + "probability": 0.9722 + }, + { + "start": 12562.18, + "end": 12564.48, + "probability": 0.9904 + }, + { + "start": 12565.38, + "end": 12570.5, + "probability": 0.9967 + }, + { + "start": 12571.34, + "end": 12572.3, + "probability": 0.6816 + }, + { + "start": 12573.72, + "end": 12575.66, + "probability": 0.9507 + }, + { + "start": 12577.06, + "end": 12582.16, + "probability": 0.9045 + }, + { + "start": 12583.92, + "end": 12587.86, + "probability": 0.9968 + }, + { + "start": 12587.86, + "end": 12591.6, + "probability": 0.9731 + }, + { + "start": 12592.96, + "end": 12598.88, + "probability": 0.9969 + }, + { + "start": 12600.48, + "end": 12601.02, + "probability": 0.7571 + }, + { + "start": 12601.7, + "end": 12603.0, + "probability": 0.9505 + }, + { + "start": 12605.58, + "end": 12613.48, + "probability": 0.982 + }, + { + "start": 12614.92, + "end": 12617.26, + "probability": 0.9954 + }, + { + "start": 12618.18, + "end": 12622.96, + "probability": 0.998 + }, + { + "start": 12623.06, + "end": 12623.66, + "probability": 0.8357 + }, + { + "start": 12624.94, + "end": 12628.08, + "probability": 0.9718 + }, + { + "start": 12629.76, + "end": 12631.01, + "probability": 0.9883 + }, + { + "start": 12631.56, + "end": 12632.66, + "probability": 0.6354 + }, + { + "start": 12632.92, + "end": 12634.04, + "probability": 0.5272 + }, + { + "start": 12634.04, + "end": 12634.52, + "probability": 0.8309 + }, + { + "start": 12634.64, + "end": 12636.74, + "probability": 0.9044 + }, + { + "start": 12638.1, + "end": 12640.5, + "probability": 0.9843 + }, + { + "start": 12641.96, + "end": 12645.64, + "probability": 0.9365 + }, + { + "start": 12646.02, + "end": 12647.64, + "probability": 0.9945 + }, + { + "start": 12647.74, + "end": 12648.7, + "probability": 0.926 + }, + { + "start": 12648.82, + "end": 12649.74, + "probability": 0.7994 + }, + { + "start": 12650.48, + "end": 12654.84, + "probability": 0.9901 + }, + { + "start": 12655.5, + "end": 12660.9, + "probability": 0.9916 + }, + { + "start": 12661.6, + "end": 12662.76, + "probability": 0.6923 + }, + { + "start": 12664.52, + "end": 12667.26, + "probability": 0.8859 + }, + { + "start": 12669.92, + "end": 12674.4, + "probability": 0.9941 + }, + { + "start": 12675.46, + "end": 12683.26, + "probability": 0.9958 + }, + { + "start": 12684.04, + "end": 12687.64, + "probability": 0.8921 + }, + { + "start": 12689.02, + "end": 12693.56, + "probability": 0.9878 + }, + { + "start": 12694.88, + "end": 12697.04, + "probability": 0.6681 + }, + { + "start": 12698.12, + "end": 12699.34, + "probability": 0.7104 + }, + { + "start": 12700.5, + "end": 12702.54, + "probability": 0.8811 + }, + { + "start": 12703.42, + "end": 12703.72, + "probability": 0.8621 + }, + { + "start": 12703.72, + "end": 12706.66, + "probability": 0.9966 + }, + { + "start": 12707.22, + "end": 12709.9, + "probability": 0.9943 + }, + { + "start": 12711.58, + "end": 12712.68, + "probability": 0.5864 + }, + { + "start": 12712.74, + "end": 12715.48, + "probability": 0.8644 + }, + { + "start": 12716.24, + "end": 12718.74, + "probability": 0.7862 + }, + { + "start": 12719.44, + "end": 12724.4, + "probability": 0.973 + }, + { + "start": 12725.12, + "end": 12728.44, + "probability": 0.9751 + }, + { + "start": 12729.22, + "end": 12736.94, + "probability": 0.9893 + }, + { + "start": 12737.4, + "end": 12739.5, + "probability": 0.9956 + }, + { + "start": 12739.78, + "end": 12740.48, + "probability": 0.9956 + }, + { + "start": 12740.7, + "end": 12741.56, + "probability": 0.9678 + }, + { + "start": 12742.64, + "end": 12743.94, + "probability": 0.8905 + }, + { + "start": 12744.9, + "end": 12749.2, + "probability": 0.9988 + }, + { + "start": 12750.91, + "end": 12751.42, + "probability": 0.1831 + }, + { + "start": 12751.42, + "end": 12752.58, + "probability": 0.6158 + }, + { + "start": 12752.68, + "end": 12754.38, + "probability": 0.7388 + }, + { + "start": 12755.66, + "end": 12758.42, + "probability": 0.8853 + }, + { + "start": 12758.72, + "end": 12765.02, + "probability": 0.9819 + }, + { + "start": 12765.68, + "end": 12770.2, + "probability": 0.8521 + }, + { + "start": 12770.96, + "end": 12773.68, + "probability": 0.8835 + }, + { + "start": 12775.24, + "end": 12778.98, + "probability": 0.9934 + }, + { + "start": 12779.08, + "end": 12779.54, + "probability": 0.5913 + }, + { + "start": 12779.6, + "end": 12780.9, + "probability": 0.9688 + }, + { + "start": 12780.9, + "end": 12781.96, + "probability": 0.9914 + }, + { + "start": 12782.02, + "end": 12783.07, + "probability": 0.9821 + }, + { + "start": 12783.68, + "end": 12786.84, + "probability": 0.9025 + }, + { + "start": 12787.26, + "end": 12790.7, + "probability": 0.9954 + }, + { + "start": 12791.12, + "end": 12793.7, + "probability": 0.9908 + }, + { + "start": 12794.18, + "end": 12800.9, + "probability": 0.9888 + }, + { + "start": 12802.12, + "end": 12803.32, + "probability": 0.5912 + }, + { + "start": 12803.36, + "end": 12805.52, + "probability": 0.8057 + }, + { + "start": 12813.84, + "end": 12813.84, + "probability": 0.4903 + }, + { + "start": 12813.84, + "end": 12813.84, + "probability": 0.1701 + }, + { + "start": 12813.84, + "end": 12813.84, + "probability": 0.1897 + }, + { + "start": 12813.84, + "end": 12813.84, + "probability": 0.3053 + }, + { + "start": 12813.84, + "end": 12813.88, + "probability": 0.2529 + }, + { + "start": 12813.88, + "end": 12813.88, + "probability": 0.0408 + }, + { + "start": 12813.88, + "end": 12813.9, + "probability": 0.2994 + }, + { + "start": 12833.36, + "end": 12835.52, + "probability": 0.4065 + }, + { + "start": 12850.12, + "end": 12851.04, + "probability": 0.3694 + }, + { + "start": 12853.28, + "end": 12855.77, + "probability": 0.7292 + }, + { + "start": 12857.86, + "end": 12861.76, + "probability": 0.8962 + }, + { + "start": 12865.72, + "end": 12867.62, + "probability": 0.6736 + }, + { + "start": 12869.98, + "end": 12871.18, + "probability": 0.9976 + }, + { + "start": 12873.18, + "end": 12875.18, + "probability": 0.7675 + }, + { + "start": 12877.04, + "end": 12877.84, + "probability": 0.3788 + }, + { + "start": 12879.74, + "end": 12881.36, + "probability": 0.9972 + }, + { + "start": 12882.02, + "end": 12883.04, + "probability": 0.9319 + }, + { + "start": 12885.1, + "end": 12885.86, + "probability": 0.9441 + }, + { + "start": 12888.48, + "end": 12889.9, + "probability": 0.7526 + }, + { + "start": 12890.56, + "end": 12894.78, + "probability": 0.9842 + }, + { + "start": 12896.52, + "end": 12897.2, + "probability": 0.7158 + }, + { + "start": 12898.82, + "end": 12902.42, + "probability": 0.7703 + }, + { + "start": 12904.66, + "end": 12905.18, + "probability": 0.7798 + }, + { + "start": 12906.24, + "end": 12907.1, + "probability": 0.9795 + }, + { + "start": 12908.6, + "end": 12911.38, + "probability": 0.8591 + }, + { + "start": 12912.86, + "end": 12914.74, + "probability": 0.9793 + }, + { + "start": 12914.9, + "end": 12918.18, + "probability": 0.9759 + }, + { + "start": 12919.48, + "end": 12923.18, + "probability": 0.7726 + }, + { + "start": 12924.28, + "end": 12928.74, + "probability": 0.9091 + }, + { + "start": 12929.28, + "end": 12931.64, + "probability": 0.9106 + }, + { + "start": 12932.96, + "end": 12933.88, + "probability": 0.6633 + }, + { + "start": 12934.4, + "end": 12937.78, + "probability": 0.9844 + }, + { + "start": 12939.12, + "end": 12941.12, + "probability": 0.9224 + }, + { + "start": 12943.42, + "end": 12945.1, + "probability": 0.9426 + }, + { + "start": 12945.66, + "end": 12946.46, + "probability": 0.9903 + }, + { + "start": 12947.7, + "end": 12949.2, + "probability": 0.8949 + }, + { + "start": 12949.94, + "end": 12951.28, + "probability": 0.9933 + }, + { + "start": 12951.96, + "end": 12954.04, + "probability": 0.7879 + }, + { + "start": 12957.06, + "end": 12959.84, + "probability": 0.7265 + }, + { + "start": 12961.52, + "end": 12963.04, + "probability": 0.9579 + }, + { + "start": 12964.54, + "end": 12966.14, + "probability": 0.9262 + }, + { + "start": 12967.56, + "end": 12969.87, + "probability": 0.7496 + }, + { + "start": 12971.18, + "end": 12972.78, + "probability": 0.7407 + }, + { + "start": 12973.64, + "end": 12974.5, + "probability": 0.766 + }, + { + "start": 12975.94, + "end": 12977.52, + "probability": 0.8347 + }, + { + "start": 12978.62, + "end": 12978.9, + "probability": 0.9668 + }, + { + "start": 12979.64, + "end": 12980.72, + "probability": 0.6704 + }, + { + "start": 12981.46, + "end": 12986.32, + "probability": 0.984 + }, + { + "start": 12988.72, + "end": 12989.82, + "probability": 0.8163 + }, + { + "start": 12993.3, + "end": 12999.32, + "probability": 0.999 + }, + { + "start": 13000.1, + "end": 13001.58, + "probability": 0.8583 + }, + { + "start": 13003.2, + "end": 13008.62, + "probability": 0.9824 + }, + { + "start": 13009.58, + "end": 13011.54, + "probability": 0.96 + }, + { + "start": 13013.32, + "end": 13014.72, + "probability": 0.8394 + }, + { + "start": 13015.5, + "end": 13017.56, + "probability": 0.9914 + }, + { + "start": 13018.56, + "end": 13023.58, + "probability": 0.7281 + }, + { + "start": 13027.38, + "end": 13031.16, + "probability": 0.9863 + }, + { + "start": 13032.44, + "end": 13034.54, + "probability": 0.9893 + }, + { + "start": 13035.62, + "end": 13037.46, + "probability": 0.9976 + }, + { + "start": 13038.38, + "end": 13039.24, + "probability": 0.9727 + }, + { + "start": 13040.1, + "end": 13042.32, + "probability": 0.9419 + }, + { + "start": 13043.48, + "end": 13047.28, + "probability": 0.9964 + }, + { + "start": 13047.7, + "end": 13049.52, + "probability": 0.9927 + }, + { + "start": 13051.56, + "end": 13055.08, + "probability": 0.957 + }, + { + "start": 13055.68, + "end": 13057.0, + "probability": 0.9096 + }, + { + "start": 13058.5, + "end": 13061.24, + "probability": 0.9743 + }, + { + "start": 13062.92, + "end": 13066.26, + "probability": 0.991 + }, + { + "start": 13066.58, + "end": 13067.52, + "probability": 0.6345 + }, + { + "start": 13067.82, + "end": 13069.52, + "probability": 0.9382 + }, + { + "start": 13069.52, + "end": 13073.02, + "probability": 0.9897 + }, + { + "start": 13074.04, + "end": 13074.94, + "probability": 0.6933 + }, + { + "start": 13075.66, + "end": 13076.24, + "probability": 0.0924 + }, + { + "start": 13076.51, + "end": 13078.73, + "probability": 0.3179 + }, + { + "start": 13079.08, + "end": 13082.2, + "probability": 0.6988 + }, + { + "start": 13082.56, + "end": 13089.4, + "probability": 0.9851 + }, + { + "start": 13089.48, + "end": 13089.92, + "probability": 0.1327 + }, + { + "start": 13089.92, + "end": 13093.72, + "probability": 0.8828 + }, + { + "start": 13093.82, + "end": 13097.98, + "probability": 0.9729 + }, + { + "start": 13098.86, + "end": 13098.86, + "probability": 0.0479 + }, + { + "start": 13098.86, + "end": 13099.86, + "probability": 0.8144 + }, + { + "start": 13100.04, + "end": 13100.11, + "probability": 0.1259 + }, + { + "start": 13100.88, + "end": 13103.94, + "probability": 0.9839 + }, + { + "start": 13104.08, + "end": 13105.22, + "probability": 0.095 + }, + { + "start": 13105.5, + "end": 13109.46, + "probability": 0.6488 + }, + { + "start": 13110.56, + "end": 13111.2, + "probability": 0.118 + }, + { + "start": 13111.82, + "end": 13111.9, + "probability": 0.0097 + }, + { + "start": 13111.9, + "end": 13111.9, + "probability": 0.1042 + }, + { + "start": 13111.9, + "end": 13116.88, + "probability": 0.5858 + }, + { + "start": 13116.96, + "end": 13119.28, + "probability": 0.5233 + }, + { + "start": 13119.7, + "end": 13124.42, + "probability": 0.9447 + }, + { + "start": 13124.92, + "end": 13126.5, + "probability": 0.9276 + }, + { + "start": 13126.82, + "end": 13129.12, + "probability": 0.954 + }, + { + "start": 13130.34, + "end": 13133.34, + "probability": 0.9963 + }, + { + "start": 13133.34, + "end": 13138.1, + "probability": 0.9955 + }, + { + "start": 13138.82, + "end": 13141.37, + "probability": 0.9985 + }, + { + "start": 13142.5, + "end": 13146.0, + "probability": 0.9959 + }, + { + "start": 13146.62, + "end": 13148.26, + "probability": 0.9207 + }, + { + "start": 13148.88, + "end": 13151.24, + "probability": 0.9136 + }, + { + "start": 13151.92, + "end": 13153.75, + "probability": 0.0498 + }, + { + "start": 13154.1, + "end": 13156.68, + "probability": 0.2606 + }, + { + "start": 13156.68, + "end": 13157.04, + "probability": 0.9174 + }, + { + "start": 13157.12, + "end": 13159.12, + "probability": 0.9927 + }, + { + "start": 13159.32, + "end": 13160.38, + "probability": 0.3896 + }, + { + "start": 13160.82, + "end": 13165.86, + "probability": 0.9812 + }, + { + "start": 13165.86, + "end": 13171.36, + "probability": 0.9747 + }, + { + "start": 13171.86, + "end": 13172.98, + "probability": 0.9989 + }, + { + "start": 13173.72, + "end": 13173.72, + "probability": 0.3836 + }, + { + "start": 13173.76, + "end": 13176.42, + "probability": 0.5934 + }, + { + "start": 13177.04, + "end": 13177.16, + "probability": 0.6328 + }, + { + "start": 13177.86, + "end": 13178.48, + "probability": 0.4298 + }, + { + "start": 13179.28, + "end": 13180.0, + "probability": 0.1323 + }, + { + "start": 13180.0, + "end": 13180.3, + "probability": 0.2986 + }, + { + "start": 13181.46, + "end": 13182.56, + "probability": 0.4919 + }, + { + "start": 13183.02, + "end": 13184.04, + "probability": 0.3516 + }, + { + "start": 13184.58, + "end": 13185.46, + "probability": 0.594 + }, + { + "start": 13185.46, + "end": 13185.7, + "probability": 0.5591 + }, + { + "start": 13185.84, + "end": 13186.05, + "probability": 0.2004 + }, + { + "start": 13186.38, + "end": 13186.88, + "probability": 0.1913 + }, + { + "start": 13186.94, + "end": 13189.42, + "probability": 0.8314 + }, + { + "start": 13190.59, + "end": 13193.69, + "probability": 0.9941 + }, + { + "start": 13194.68, + "end": 13196.34, + "probability": 0.9971 + }, + { + "start": 13196.6, + "end": 13196.96, + "probability": 0.7321 + }, + { + "start": 13197.12, + "end": 13198.16, + "probability": 0.9063 + }, + { + "start": 13198.24, + "end": 13198.7, + "probability": 0.8405 + }, + { + "start": 13198.78, + "end": 13203.42, + "probability": 0.8527 + }, + { + "start": 13203.5, + "end": 13209.28, + "probability": 0.9978 + }, + { + "start": 13209.94, + "end": 13210.8, + "probability": 0.8151 + }, + { + "start": 13211.1, + "end": 13212.4, + "probability": 0.8452 + }, + { + "start": 13212.56, + "end": 13218.5, + "probability": 0.993 + }, + { + "start": 13218.52, + "end": 13219.64, + "probability": 0.9055 + }, + { + "start": 13221.58, + "end": 13226.62, + "probability": 0.9508 + }, + { + "start": 13227.38, + "end": 13231.1, + "probability": 0.9742 + }, + { + "start": 13231.98, + "end": 13235.12, + "probability": 0.9937 + }, + { + "start": 13235.12, + "end": 13238.58, + "probability": 0.9964 + }, + { + "start": 13239.42, + "end": 13244.46, + "probability": 0.995 + }, + { + "start": 13244.46, + "end": 13244.72, + "probability": 0.6185 + }, + { + "start": 13245.36, + "end": 13245.84, + "probability": 0.79 + }, + { + "start": 13246.68, + "end": 13248.98, + "probability": 0.8974 + }, + { + "start": 13249.74, + "end": 13250.62, + "probability": 0.9798 + }, + { + "start": 13251.3, + "end": 13251.58, + "probability": 0.496 + }, + { + "start": 13252.48, + "end": 13255.52, + "probability": 0.8389 + }, + { + "start": 13256.1, + "end": 13256.86, + "probability": 0.7708 + }, + { + "start": 13257.44, + "end": 13258.41, + "probability": 0.5169 + }, + { + "start": 13259.0, + "end": 13261.94, + "probability": 0.99 + }, + { + "start": 13262.46, + "end": 13262.68, + "probability": 0.6967 + }, + { + "start": 13264.02, + "end": 13265.15, + "probability": 0.5203 + }, + { + "start": 13265.24, + "end": 13267.96, + "probability": 0.9338 + }, + { + "start": 13276.98, + "end": 13278.02, + "probability": 0.7803 + }, + { + "start": 13292.46, + "end": 13293.02, + "probability": 0.6928 + }, + { + "start": 13294.58, + "end": 13295.42, + "probability": 0.8852 + }, + { + "start": 13296.08, + "end": 13297.28, + "probability": 0.7491 + }, + { + "start": 13298.68, + "end": 13303.7, + "probability": 0.9095 + }, + { + "start": 13305.0, + "end": 13310.16, + "probability": 0.9331 + }, + { + "start": 13311.2, + "end": 13315.46, + "probability": 0.9806 + }, + { + "start": 13317.46, + "end": 13320.12, + "probability": 0.861 + }, + { + "start": 13320.72, + "end": 13323.76, + "probability": 0.8322 + }, + { + "start": 13324.0, + "end": 13325.77, + "probability": 0.9731 + }, + { + "start": 13329.38, + "end": 13333.44, + "probability": 0.9683 + }, + { + "start": 13336.3, + "end": 13337.2, + "probability": 0.9143 + }, + { + "start": 13337.88, + "end": 13339.79, + "probability": 0.9736 + }, + { + "start": 13340.78, + "end": 13344.89, + "probability": 0.98 + }, + { + "start": 13345.84, + "end": 13349.54, + "probability": 0.9671 + }, + { + "start": 13350.1, + "end": 13351.54, + "probability": 0.9886 + }, + { + "start": 13352.16, + "end": 13353.94, + "probability": 0.9629 + }, + { + "start": 13354.74, + "end": 13356.36, + "probability": 0.9891 + }, + { + "start": 13356.82, + "end": 13358.54, + "probability": 0.9658 + }, + { + "start": 13358.98, + "end": 13361.4, + "probability": 0.9958 + }, + { + "start": 13363.06, + "end": 13368.04, + "probability": 0.6815 + }, + { + "start": 13371.5, + "end": 13375.02, + "probability": 0.9941 + }, + { + "start": 13375.94, + "end": 13376.28, + "probability": 0.1787 + }, + { + "start": 13376.6, + "end": 13378.4, + "probability": 0.8252 + }, + { + "start": 13379.64, + "end": 13386.3, + "probability": 0.9881 + }, + { + "start": 13386.3, + "end": 13392.96, + "probability": 0.9259 + }, + { + "start": 13394.32, + "end": 13400.52, + "probability": 0.9901 + }, + { + "start": 13401.58, + "end": 13407.04, + "probability": 0.9976 + }, + { + "start": 13407.76, + "end": 13414.78, + "probability": 0.9956 + }, + { + "start": 13415.78, + "end": 13419.36, + "probability": 0.9744 + }, + { + "start": 13419.98, + "end": 13422.06, + "probability": 0.2547 + }, + { + "start": 13422.94, + "end": 13424.46, + "probability": 0.0093 + }, + { + "start": 13425.16, + "end": 13425.66, + "probability": 0.008 + }, + { + "start": 13425.66, + "end": 13425.88, + "probability": 0.0352 + }, + { + "start": 13425.88, + "end": 13427.68, + "probability": 0.8564 + }, + { + "start": 13429.0, + "end": 13430.32, + "probability": 0.8664 + }, + { + "start": 13432.26, + "end": 13434.46, + "probability": 0.9872 + }, + { + "start": 13435.76, + "end": 13441.46, + "probability": 0.8063 + }, + { + "start": 13443.06, + "end": 13445.44, + "probability": 0.991 + }, + { + "start": 13446.24, + "end": 13447.76, + "probability": 0.9984 + }, + { + "start": 13448.62, + "end": 13452.36, + "probability": 0.9988 + }, + { + "start": 13453.26, + "end": 13456.38, + "probability": 0.8901 + }, + { + "start": 13458.48, + "end": 13460.96, + "probability": 0.8611 + }, + { + "start": 13462.6, + "end": 13463.5, + "probability": 0.9243 + }, + { + "start": 13464.68, + "end": 13466.34, + "probability": 0.5276 + }, + { + "start": 13466.68, + "end": 13467.13, + "probability": 0.9127 + }, + { + "start": 13467.94, + "end": 13469.5, + "probability": 0.9785 + }, + { + "start": 13471.0, + "end": 13472.34, + "probability": 0.9774 + }, + { + "start": 13473.18, + "end": 13477.9, + "probability": 0.9533 + }, + { + "start": 13477.9, + "end": 13482.92, + "probability": 0.9695 + }, + { + "start": 13485.86, + "end": 13486.14, + "probability": 0.022 + }, + { + "start": 13486.14, + "end": 13487.82, + "probability": 0.893 + }, + { + "start": 13489.28, + "end": 13492.12, + "probability": 0.9896 + }, + { + "start": 13492.7, + "end": 13499.96, + "probability": 0.8428 + }, + { + "start": 13500.98, + "end": 13508.76, + "probability": 0.9935 + }, + { + "start": 13508.82, + "end": 13510.82, + "probability": 0.9624 + }, + { + "start": 13511.32, + "end": 13514.16, + "probability": 0.9819 + }, + { + "start": 13515.52, + "end": 13518.92, + "probability": 0.9325 + }, + { + "start": 13519.48, + "end": 13523.48, + "probability": 0.9035 + }, + { + "start": 13524.2, + "end": 13526.88, + "probability": 0.8696 + }, + { + "start": 13527.66, + "end": 13528.84, + "probability": 0.3994 + }, + { + "start": 13530.46, + "end": 13536.18, + "probability": 0.8749 + }, + { + "start": 13536.8, + "end": 13543.32, + "probability": 0.9468 + }, + { + "start": 13543.74, + "end": 13549.24, + "probability": 0.989 + }, + { + "start": 13551.02, + "end": 13554.88, + "probability": 0.9356 + }, + { + "start": 13556.38, + "end": 13556.96, + "probability": 0.5352 + }, + { + "start": 13557.58, + "end": 13558.82, + "probability": 0.8413 + }, + { + "start": 13559.22, + "end": 13561.42, + "probability": 0.9619 + }, + { + "start": 13561.58, + "end": 13565.38, + "probability": 0.9901 + }, + { + "start": 13565.86, + "end": 13567.32, + "probability": 0.9423 + }, + { + "start": 13567.44, + "end": 13570.04, + "probability": 0.9801 + }, + { + "start": 13570.5, + "end": 13572.55, + "probability": 0.9478 + }, + { + "start": 13573.9, + "end": 13579.22, + "probability": 0.9645 + }, + { + "start": 13580.96, + "end": 13586.82, + "probability": 0.991 + }, + { + "start": 13587.42, + "end": 13591.74, + "probability": 0.9321 + }, + { + "start": 13593.44, + "end": 13595.62, + "probability": 0.7122 + }, + { + "start": 13596.52, + "end": 13597.96, + "probability": 0.9378 + }, + { + "start": 13598.42, + "end": 13600.23, + "probability": 0.9912 + }, + { + "start": 13600.42, + "end": 13601.08, + "probability": 0.7879 + }, + { + "start": 13601.78, + "end": 13602.84, + "probability": 0.993 + }, + { + "start": 13604.14, + "end": 13606.82, + "probability": 0.996 + }, + { + "start": 13607.64, + "end": 13610.26, + "probability": 0.8497 + }, + { + "start": 13611.34, + "end": 13619.12, + "probability": 0.9912 + }, + { + "start": 13619.12, + "end": 13625.6, + "probability": 0.9954 + }, + { + "start": 13625.76, + "end": 13628.96, + "probability": 0.8843 + }, + { + "start": 13629.68, + "end": 13633.98, + "probability": 0.9647 + }, + { + "start": 13635.76, + "end": 13637.38, + "probability": 0.8814 + }, + { + "start": 13638.46, + "end": 13642.66, + "probability": 0.9922 + }, + { + "start": 13642.9, + "end": 13643.46, + "probability": 0.8661 + }, + { + "start": 13645.36, + "end": 13650.92, + "probability": 0.8191 + }, + { + "start": 13652.96, + "end": 13654.53, + "probability": 0.6368 + }, + { + "start": 13667.76, + "end": 13667.76, + "probability": 0.0644 + }, + { + "start": 13667.76, + "end": 13667.76, + "probability": 0.0763 + }, + { + "start": 13667.76, + "end": 13667.76, + "probability": 0.0121 + }, + { + "start": 13667.76, + "end": 13667.76, + "probability": 0.1567 + }, + { + "start": 13667.78, + "end": 13667.8, + "probability": 0.065 + }, + { + "start": 13680.56, + "end": 13690.4, + "probability": 0.785 + }, + { + "start": 13690.56, + "end": 13692.48, + "probability": 0.8783 + }, + { + "start": 13693.5, + "end": 13695.68, + "probability": 0.7023 + }, + { + "start": 13695.94, + "end": 13697.34, + "probability": 0.8361 + }, + { + "start": 13697.44, + "end": 13699.32, + "probability": 0.8474 + }, + { + "start": 13700.38, + "end": 13703.2, + "probability": 0.931 + }, + { + "start": 13703.22, + "end": 13708.08, + "probability": 0.8894 + }, + { + "start": 13709.04, + "end": 13710.4, + "probability": 0.8826 + }, + { + "start": 13715.32, + "end": 13717.94, + "probability": 0.9877 + }, + { + "start": 13718.88, + "end": 13720.8, + "probability": 0.7921 + }, + { + "start": 13721.8, + "end": 13729.14, + "probability": 0.9817 + }, + { + "start": 13730.08, + "end": 13731.92, + "probability": 0.823 + }, + { + "start": 13732.98, + "end": 13738.08, + "probability": 0.7303 + }, + { + "start": 13739.48, + "end": 13740.44, + "probability": 0.9956 + }, + { + "start": 13744.36, + "end": 13750.06, + "probability": 0.8572 + }, + { + "start": 13750.9, + "end": 13754.24, + "probability": 0.7452 + }, + { + "start": 13755.62, + "end": 13758.26, + "probability": 0.8642 + }, + { + "start": 13759.22, + "end": 13760.8, + "probability": 0.9877 + }, + { + "start": 13760.98, + "end": 13765.26, + "probability": 0.9742 + }, + { + "start": 13765.92, + "end": 13771.98, + "probability": 0.9811 + }, + { + "start": 13772.2, + "end": 13772.97, + "probability": 0.9281 + }, + { + "start": 13775.0, + "end": 13780.72, + "probability": 0.9733 + }, + { + "start": 13781.56, + "end": 13783.6, + "probability": 0.6611 + }, + { + "start": 13785.5, + "end": 13790.3, + "probability": 0.9982 + }, + { + "start": 13790.3, + "end": 13794.22, + "probability": 0.9679 + }, + { + "start": 13798.96, + "end": 13801.0, + "probability": 0.7637 + }, + { + "start": 13801.64, + "end": 13806.0, + "probability": 0.6561 + }, + { + "start": 13807.12, + "end": 13809.56, + "probability": 0.9904 + }, + { + "start": 13810.66, + "end": 13811.76, + "probability": 0.9814 + }, + { + "start": 13813.64, + "end": 13816.54, + "probability": 0.5 + }, + { + "start": 13817.54, + "end": 13819.7, + "probability": 0.5589 + }, + { + "start": 13820.46, + "end": 13824.36, + "probability": 0.7723 + }, + { + "start": 13825.18, + "end": 13829.92, + "probability": 0.9878 + }, + { + "start": 13830.88, + "end": 13832.94, + "probability": 0.9546 + }, + { + "start": 13833.72, + "end": 13838.62, + "probability": 0.7598 + }, + { + "start": 13839.69, + "end": 13841.93, + "probability": 0.5006 + }, + { + "start": 13843.28, + "end": 13847.16, + "probability": 0.9042 + }, + { + "start": 13847.36, + "end": 13848.52, + "probability": 0.9536 + }, + { + "start": 13848.64, + "end": 13851.56, + "probability": 0.9138 + }, + { + "start": 13851.8, + "end": 13854.94, + "probability": 0.8623 + }, + { + "start": 13855.52, + "end": 13860.06, + "probability": 0.982 + }, + { + "start": 13861.08, + "end": 13861.76, + "probability": 0.6778 + }, + { + "start": 13863.42, + "end": 13867.94, + "probability": 0.9108 + }, + { + "start": 13867.94, + "end": 13873.7, + "probability": 0.9473 + }, + { + "start": 13873.92, + "end": 13875.3, + "probability": 0.8578 + }, + { + "start": 13876.3, + "end": 13877.76, + "probability": 0.5814 + }, + { + "start": 13878.54, + "end": 13879.72, + "probability": 0.8113 + }, + { + "start": 13880.5, + "end": 13884.14, + "probability": 0.9412 + }, + { + "start": 13885.14, + "end": 13885.94, + "probability": 0.9458 + }, + { + "start": 13886.52, + "end": 13890.04, + "probability": 0.9948 + }, + { + "start": 13892.84, + "end": 13895.96, + "probability": 0.7432 + }, + { + "start": 13897.68, + "end": 13902.18, + "probability": 0.9088 + }, + { + "start": 13903.1, + "end": 13906.1, + "probability": 0.9066 + }, + { + "start": 13907.14, + "end": 13908.96, + "probability": 0.8682 + }, + { + "start": 13910.2, + "end": 13915.82, + "probability": 0.9739 + }, + { + "start": 13916.24, + "end": 13921.02, + "probability": 0.9976 + }, + { + "start": 13922.92, + "end": 13929.6, + "probability": 0.8254 + }, + { + "start": 13930.22, + "end": 13931.73, + "probability": 0.9628 + }, + { + "start": 13932.56, + "end": 13935.8, + "probability": 0.9923 + }, + { + "start": 13937.16, + "end": 13941.66, + "probability": 0.9904 + }, + { + "start": 13943.06, + "end": 13944.88, + "probability": 0.8138 + }, + { + "start": 13945.32, + "end": 13946.9, + "probability": 0.7219 + }, + { + "start": 13947.02, + "end": 13952.64, + "probability": 0.9186 + }, + { + "start": 13952.64, + "end": 13956.96, + "probability": 0.7439 + }, + { + "start": 13957.98, + "end": 13962.92, + "probability": 0.9949 + }, + { + "start": 13963.86, + "end": 13966.87, + "probability": 0.8862 + }, + { + "start": 13967.76, + "end": 13969.92, + "probability": 0.7975 + }, + { + "start": 13970.46, + "end": 13972.98, + "probability": 0.81 + }, + { + "start": 13973.6, + "end": 13977.12, + "probability": 0.8291 + }, + { + "start": 13978.26, + "end": 13980.88, + "probability": 0.6937 + }, + { + "start": 13981.5, + "end": 13982.42, + "probability": 0.8374 + }, + { + "start": 13983.44, + "end": 13985.06, + "probability": 0.9349 + }, + { + "start": 13985.64, + "end": 13986.46, + "probability": 0.7569 + }, + { + "start": 13986.56, + "end": 13986.88, + "probability": 0.8881 + }, + { + "start": 13987.22, + "end": 13988.06, + "probability": 0.7438 + }, + { + "start": 13989.54, + "end": 13992.38, + "probability": 0.6344 + }, + { + "start": 13992.44, + "end": 13992.6, + "probability": 0.9505 + }, + { + "start": 14020.22, + "end": 14022.22, + "probability": 0.6075 + }, + { + "start": 14023.62, + "end": 14029.68, + "probability": 0.8958 + }, + { + "start": 14030.48, + "end": 14034.32, + "probability": 0.9674 + }, + { + "start": 14035.78, + "end": 14039.9, + "probability": 0.9873 + }, + { + "start": 14040.6, + "end": 14041.3, + "probability": 0.6683 + }, + { + "start": 14043.5, + "end": 14049.1, + "probability": 0.964 + }, + { + "start": 14049.1, + "end": 14052.52, + "probability": 0.8877 + }, + { + "start": 14053.92, + "end": 14054.8, + "probability": 0.9758 + }, + { + "start": 14055.1, + "end": 14056.22, + "probability": 0.9677 + }, + { + "start": 14059.92, + "end": 14061.18, + "probability": 0.2072 + }, + { + "start": 14062.1, + "end": 14064.72, + "probability": 0.8912 + }, + { + "start": 14065.58, + "end": 14071.94, + "probability": 0.825 + }, + { + "start": 14072.78, + "end": 14074.98, + "probability": 0.8751 + }, + { + "start": 14075.84, + "end": 14080.06, + "probability": 0.8407 + }, + { + "start": 14080.48, + "end": 14081.04, + "probability": 0.1516 + }, + { + "start": 14081.9, + "end": 14082.7, + "probability": 0.9198 + }, + { + "start": 14083.2, + "end": 14083.74, + "probability": 0.9312 + }, + { + "start": 14084.32, + "end": 14085.5, + "probability": 0.9814 + }, + { + "start": 14086.5, + "end": 14087.49, + "probability": 0.8618 + }, + { + "start": 14088.02, + "end": 14089.48, + "probability": 0.7567 + }, + { + "start": 14090.0, + "end": 14091.68, + "probability": 0.9373 + }, + { + "start": 14092.26, + "end": 14095.66, + "probability": 0.7238 + }, + { + "start": 14096.3, + "end": 14098.22, + "probability": 0.7974 + }, + { + "start": 14099.44, + "end": 14103.14, + "probability": 0.7368 + }, + { + "start": 14103.78, + "end": 14106.64, + "probability": 0.954 + }, + { + "start": 14107.58, + "end": 14110.84, + "probability": 0.995 + }, + { + "start": 14111.38, + "end": 14113.28, + "probability": 0.9569 + }, + { + "start": 14114.0, + "end": 14114.96, + "probability": 0.7515 + }, + { + "start": 14115.66, + "end": 14117.5, + "probability": 0.9189 + }, + { + "start": 14118.34, + "end": 14119.42, + "probability": 0.4411 + }, + { + "start": 14119.74, + "end": 14123.04, + "probability": 0.9902 + }, + { + "start": 14124.02, + "end": 14124.84, + "probability": 0.979 + }, + { + "start": 14126.3, + "end": 14131.34, + "probability": 0.9702 + }, + { + "start": 14133.68, + "end": 14136.24, + "probability": 0.8154 + }, + { + "start": 14136.24, + "end": 14136.24, + "probability": 0.0414 + }, + { + "start": 14136.24, + "end": 14138.1, + "probability": 0.3164 + }, + { + "start": 14139.48, + "end": 14141.5, + "probability": 0.7016 + }, + { + "start": 14142.28, + "end": 14143.14, + "probability": 0.9619 + }, + { + "start": 14144.68, + "end": 14145.56, + "probability": 0.7711 + }, + { + "start": 14146.74, + "end": 14154.62, + "probability": 0.9858 + }, + { + "start": 14155.76, + "end": 14156.26, + "probability": 0.5753 + }, + { + "start": 14157.22, + "end": 14159.86, + "probability": 0.7872 + }, + { + "start": 14160.68, + "end": 14161.62, + "probability": 0.5237 + }, + { + "start": 14162.26, + "end": 14163.24, + "probability": 0.9814 + }, + { + "start": 14164.36, + "end": 14169.46, + "probability": 0.9852 + }, + { + "start": 14169.76, + "end": 14171.96, + "probability": 0.9847 + }, + { + "start": 14172.82, + "end": 14174.2, + "probability": 0.9902 + }, + { + "start": 14175.34, + "end": 14178.36, + "probability": 0.7826 + }, + { + "start": 14178.72, + "end": 14179.4, + "probability": 0.8464 + }, + { + "start": 14180.56, + "end": 14182.86, + "probability": 0.9945 + }, + { + "start": 14183.64, + "end": 14184.48, + "probability": 0.8266 + }, + { + "start": 14185.46, + "end": 14191.02, + "probability": 0.9967 + }, + { + "start": 14191.06, + "end": 14191.57, + "probability": 0.9526 + }, + { + "start": 14193.02, + "end": 14195.4, + "probability": 0.7083 + }, + { + "start": 14196.16, + "end": 14200.5, + "probability": 0.9519 + }, + { + "start": 14201.12, + "end": 14202.84, + "probability": 0.8391 + }, + { + "start": 14203.84, + "end": 14210.12, + "probability": 0.9484 + }, + { + "start": 14210.94, + "end": 14212.86, + "probability": 0.7979 + }, + { + "start": 14213.38, + "end": 14217.94, + "probability": 0.9839 + }, + { + "start": 14218.6, + "end": 14218.7, + "probability": 0.7844 + }, + { + "start": 14218.78, + "end": 14220.08, + "probability": 0.8624 + }, + { + "start": 14220.58, + "end": 14221.68, + "probability": 0.9849 + }, + { + "start": 14221.84, + "end": 14223.0, + "probability": 0.9503 + }, + { + "start": 14223.14, + "end": 14224.44, + "probability": 0.9504 + }, + { + "start": 14224.7, + "end": 14225.8, + "probability": 0.8138 + }, + { + "start": 14226.12, + "end": 14226.92, + "probability": 0.7585 + }, + { + "start": 14227.68, + "end": 14229.16, + "probability": 0.979 + }, + { + "start": 14230.98, + "end": 14231.38, + "probability": 0.4355 + }, + { + "start": 14231.48, + "end": 14232.04, + "probability": 0.6502 + }, + { + "start": 14232.2, + "end": 14233.43, + "probability": 0.9731 + }, + { + "start": 14234.94, + "end": 14237.72, + "probability": 0.795 + }, + { + "start": 14239.04, + "end": 14244.39, + "probability": 0.9545 + }, + { + "start": 14245.0, + "end": 14248.1, + "probability": 0.9434 + }, + { + "start": 14248.66, + "end": 14248.7, + "probability": 0.0435 + }, + { + "start": 14248.7, + "end": 14249.66, + "probability": 0.8131 + }, + { + "start": 14249.72, + "end": 14252.02, + "probability": 0.4952 + }, + { + "start": 14252.02, + "end": 14252.56, + "probability": 0.2533 + }, + { + "start": 14252.86, + "end": 14254.44, + "probability": 0.7895 + }, + { + "start": 14254.74, + "end": 14254.84, + "probability": 0.0077 + }, + { + "start": 14254.84, + "end": 14257.01, + "probability": 0.785 + }, + { + "start": 14257.78, + "end": 14260.26, + "probability": 0.2403 + }, + { + "start": 14260.96, + "end": 14264.62, + "probability": 0.9332 + }, + { + "start": 14265.64, + "end": 14267.56, + "probability": 0.9896 + }, + { + "start": 14267.68, + "end": 14268.38, + "probability": 0.9236 + }, + { + "start": 14269.28, + "end": 14271.8, + "probability": 0.707 + }, + { + "start": 14272.9, + "end": 14281.88, + "probability": 0.7246 + }, + { + "start": 14282.38, + "end": 14284.28, + "probability": 0.4422 + }, + { + "start": 14284.98, + "end": 14286.9, + "probability": 0.562 + }, + { + "start": 14287.8, + "end": 14289.18, + "probability": 0.6856 + }, + { + "start": 14289.26, + "end": 14291.77, + "probability": 0.969 + }, + { + "start": 14292.34, + "end": 14292.92, + "probability": 0.7041 + }, + { + "start": 14293.0, + "end": 14294.16, + "probability": 0.8021 + }, + { + "start": 14294.48, + "end": 14300.88, + "probability": 0.9443 + }, + { + "start": 14302.16, + "end": 14305.06, + "probability": 0.9985 + }, + { + "start": 14306.3, + "end": 14310.17, + "probability": 0.9958 + }, + { + "start": 14311.08, + "end": 14312.54, + "probability": 0.9563 + }, + { + "start": 14312.92, + "end": 14313.52, + "probability": 0.9863 + }, + { + "start": 14314.36, + "end": 14315.47, + "probability": 0.8477 + }, + { + "start": 14315.72, + "end": 14316.32, + "probability": 0.9554 + }, + { + "start": 14316.98, + "end": 14319.02, + "probability": 0.8691 + }, + { + "start": 14319.3, + "end": 14320.52, + "probability": 0.8203 + }, + { + "start": 14320.74, + "end": 14320.74, + "probability": 0.0419 + }, + { + "start": 14320.74, + "end": 14320.74, + "probability": 0.1687 + }, + { + "start": 14320.74, + "end": 14321.7, + "probability": 0.6493 + }, + { + "start": 14322.54, + "end": 14325.08, + "probability": 0.9631 + }, + { + "start": 14325.32, + "end": 14329.7, + "probability": 0.9268 + }, + { + "start": 14330.26, + "end": 14334.36, + "probability": 0.8947 + }, + { + "start": 14334.6, + "end": 14334.72, + "probability": 0.1184 + }, + { + "start": 14334.78, + "end": 14336.64, + "probability": 0.9921 + }, + { + "start": 14337.62, + "end": 14340.1, + "probability": 0.917 + }, + { + "start": 14340.68, + "end": 14342.21, + "probability": 0.979 + }, + { + "start": 14343.34, + "end": 14346.68, + "probability": 0.9958 + }, + { + "start": 14346.88, + "end": 14347.88, + "probability": 0.9886 + }, + { + "start": 14348.26, + "end": 14349.56, + "probability": 0.6863 + }, + { + "start": 14349.96, + "end": 14350.74, + "probability": 0.7008 + }, + { + "start": 14350.86, + "end": 14354.28, + "probability": 0.9228 + }, + { + "start": 14354.98, + "end": 14357.84, + "probability": 0.9441 + }, + { + "start": 14358.28, + "end": 14362.56, + "probability": 0.9299 + }, + { + "start": 14362.64, + "end": 14363.96, + "probability": 0.886 + }, + { + "start": 14364.36, + "end": 14366.04, + "probability": 0.7998 + }, + { + "start": 14367.26, + "end": 14367.42, + "probability": 0.6184 + }, + { + "start": 14367.52, + "end": 14371.0, + "probability": 0.7687 + }, + { + "start": 14371.6, + "end": 14374.4, + "probability": 0.9812 + }, + { + "start": 14374.52, + "end": 14374.82, + "probability": 0.9779 + }, + { + "start": 14375.3, + "end": 14378.76, + "probability": 0.9913 + }, + { + "start": 14379.08, + "end": 14380.26, + "probability": 0.7832 + }, + { + "start": 14380.46, + "end": 14382.16, + "probability": 0.6495 + }, + { + "start": 14382.7, + "end": 14386.6, + "probability": 0.9497 + }, + { + "start": 14386.62, + "end": 14388.8, + "probability": 0.9784 + }, + { + "start": 14389.46, + "end": 14389.48, + "probability": 0.4285 + }, + { + "start": 14389.48, + "end": 14390.62, + "probability": 0.7339 + }, + { + "start": 14391.08, + "end": 14392.72, + "probability": 0.8917 + }, + { + "start": 14393.22, + "end": 14396.0, + "probability": 0.8534 + }, + { + "start": 14396.48, + "end": 14398.24, + "probability": 0.883 + }, + { + "start": 14399.28, + "end": 14401.4, + "probability": 0.9408 + }, + { + "start": 14401.6, + "end": 14402.84, + "probability": 0.8751 + }, + { + "start": 14403.52, + "end": 14407.68, + "probability": 0.6884 + }, + { + "start": 14407.98, + "end": 14410.0, + "probability": 0.7832 + }, + { + "start": 14410.22, + "end": 14410.3, + "probability": 0.5096 + }, + { + "start": 14410.32, + "end": 14412.4, + "probability": 0.6884 + }, + { + "start": 14412.72, + "end": 14414.48, + "probability": 0.8492 + }, + { + "start": 14414.84, + "end": 14418.52, + "probability": 0.9689 + }, + { + "start": 14418.82, + "end": 14424.46, + "probability": 0.83 + }, + { + "start": 14424.8, + "end": 14426.04, + "probability": 0.9023 + }, + { + "start": 14426.28, + "end": 14428.18, + "probability": 0.9484 + }, + { + "start": 14428.22, + "end": 14428.71, + "probability": 0.5471 + }, + { + "start": 14429.36, + "end": 14432.44, + "probability": 0.7293 + }, + { + "start": 14439.36, + "end": 14439.46, + "probability": 0.5057 + }, + { + "start": 14440.58, + "end": 14443.22, + "probability": 0.8088 + }, + { + "start": 14444.64, + "end": 14450.08, + "probability": 0.9855 + }, + { + "start": 14451.2, + "end": 14455.5, + "probability": 0.9161 + }, + { + "start": 14457.86, + "end": 14458.52, + "probability": 0.6445 + }, + { + "start": 14459.06, + "end": 14463.12, + "probability": 0.8378 + }, + { + "start": 14463.78, + "end": 14467.26, + "probability": 0.9614 + }, + { + "start": 14467.26, + "end": 14470.82, + "probability": 0.9877 + }, + { + "start": 14471.82, + "end": 14472.0, + "probability": 0.234 + }, + { + "start": 14472.34, + "end": 14476.02, + "probability": 0.979 + }, + { + "start": 14476.02, + "end": 14481.08, + "probability": 0.9755 + }, + { + "start": 14482.04, + "end": 14484.74, + "probability": 0.7581 + }, + { + "start": 14485.42, + "end": 14488.18, + "probability": 0.9576 + }, + { + "start": 14488.8, + "end": 14491.74, + "probability": 0.9722 + }, + { + "start": 14492.5, + "end": 14492.8, + "probability": 0.0001 + }, + { + "start": 14493.64, + "end": 14493.96, + "probability": 0.014 + }, + { + "start": 14493.96, + "end": 14494.7, + "probability": 0.1074 + }, + { + "start": 14494.86, + "end": 14496.3, + "probability": 0.7144 + }, + { + "start": 14496.36, + "end": 14498.44, + "probability": 0.8979 + }, + { + "start": 14498.92, + "end": 14499.86, + "probability": 0.7913 + }, + { + "start": 14499.86, + "end": 14500.86, + "probability": 0.8007 + }, + { + "start": 14502.32, + "end": 14507.1, + "probability": 0.5928 + }, + { + "start": 14507.78, + "end": 14511.02, + "probability": 0.5941 + }, + { + "start": 14513.07, + "end": 14514.82, + "probability": 0.0862 + }, + { + "start": 14514.82, + "end": 14514.82, + "probability": 0.1186 + }, + { + "start": 14514.82, + "end": 14516.42, + "probability": 0.4179 + }, + { + "start": 14516.44, + "end": 14517.34, + "probability": 0.488 + }, + { + "start": 14517.34, + "end": 14517.41, + "probability": 0.0859 + }, + { + "start": 14518.04, + "end": 14520.36, + "probability": 0.6701 + }, + { + "start": 14520.4, + "end": 14522.08, + "probability": 0.6378 + }, + { + "start": 14522.68, + "end": 14525.12, + "probability": 0.3191 + }, + { + "start": 14526.46, + "end": 14526.46, + "probability": 0.1352 + }, + { + "start": 14526.46, + "end": 14529.62, + "probability": 0.4168 + }, + { + "start": 14529.8, + "end": 14531.26, + "probability": 0.8647 + }, + { + "start": 14531.5, + "end": 14534.48, + "probability": 0.3254 + }, + { + "start": 14534.54, + "end": 14536.24, + "probability": 0.8944 + }, + { + "start": 14536.6, + "end": 14536.6, + "probability": 0.0643 + }, + { + "start": 14536.6, + "end": 14537.7, + "probability": 0.1752 + }, + { + "start": 14538.4, + "end": 14541.42, + "probability": 0.8503 + }, + { + "start": 14542.58, + "end": 14542.58, + "probability": 0.0006 + }, + { + "start": 14542.58, + "end": 14543.35, + "probability": 0.2537 + }, + { + "start": 14543.78, + "end": 14544.34, + "probability": 0.6201 + }, + { + "start": 14544.34, + "end": 14545.66, + "probability": 0.6559 + }, + { + "start": 14546.02, + "end": 14555.1, + "probability": 0.8058 + }, + { + "start": 14555.14, + "end": 14556.78, + "probability": 0.5593 + }, + { + "start": 14556.9, + "end": 14557.98, + "probability": 0.7174 + }, + { + "start": 14558.5, + "end": 14558.5, + "probability": 0.0233 + }, + { + "start": 14558.52, + "end": 14558.52, + "probability": 0.4359 + }, + { + "start": 14558.52, + "end": 14559.46, + "probability": 0.4971 + }, + { + "start": 14559.58, + "end": 14562.3, + "probability": 0.9243 + }, + { + "start": 14562.42, + "end": 14563.88, + "probability": 0.8269 + }, + { + "start": 14564.78, + "end": 14566.32, + "probability": 0.7139 + }, + { + "start": 14566.32, + "end": 14567.54, + "probability": 0.4127 + }, + { + "start": 14567.54, + "end": 14568.2, + "probability": 0.7516 + }, + { + "start": 14568.28, + "end": 14568.4, + "probability": 0.7043 + }, + { + "start": 14568.46, + "end": 14569.06, + "probability": 0.5301 + }, + { + "start": 14569.36, + "end": 14571.2, + "probability": 0.704 + }, + { + "start": 14571.2, + "end": 14571.96, + "probability": 0.4792 + }, + { + "start": 14571.98, + "end": 14572.06, + "probability": 0.4355 + }, + { + "start": 14572.06, + "end": 14572.84, + "probability": 0.3376 + }, + { + "start": 14572.84, + "end": 14574.82, + "probability": 0.9688 + }, + { + "start": 14575.02, + "end": 14577.54, + "probability": 0.916 + }, + { + "start": 14577.78, + "end": 14578.91, + "probability": 0.1978 + }, + { + "start": 14578.94, + "end": 14579.18, + "probability": 0.1602 + }, + { + "start": 14579.18, + "end": 14579.58, + "probability": 0.4262 + }, + { + "start": 14579.66, + "end": 14581.94, + "probability": 0.8875 + }, + { + "start": 14581.98, + "end": 14583.26, + "probability": 0.9536 + }, + { + "start": 14583.36, + "end": 14583.76, + "probability": 0.7143 + }, + { + "start": 14583.92, + "end": 14584.46, + "probability": 0.4382 + }, + { + "start": 14584.46, + "end": 14586.75, + "probability": 0.9557 + }, + { + "start": 14587.06, + "end": 14589.56, + "probability": 0.9369 + }, + { + "start": 14589.88, + "end": 14590.4, + "probability": 0.5948 + }, + { + "start": 14590.56, + "end": 14590.74, + "probability": 0.7209 + }, + { + "start": 14590.74, + "end": 14591.24, + "probability": 0.5509 + }, + { + "start": 14591.34, + "end": 14591.66, + "probability": 0.3378 + }, + { + "start": 14591.7, + "end": 14593.08, + "probability": 0.7151 + }, + { + "start": 14593.08, + "end": 14596.14, + "probability": 0.4755 + }, + { + "start": 14609.32, + "end": 14613.2, + "probability": 0.0639 + }, + { + "start": 14613.2, + "end": 14613.3, + "probability": 0.5796 + }, + { + "start": 14613.3, + "end": 14614.18, + "probability": 0.1564 + }, + { + "start": 14614.24, + "end": 14615.68, + "probability": 0.2753 + }, + { + "start": 14616.38, + "end": 14618.06, + "probability": 0.3487 + }, + { + "start": 14620.68, + "end": 14621.96, + "probability": 0.0253 + }, + { + "start": 14622.76, + "end": 14623.12, + "probability": 0.0329 + }, + { + "start": 14624.56, + "end": 14626.28, + "probability": 0.1589 + }, + { + "start": 14650.6, + "end": 14652.18, + "probability": 0.095 + }, + { + "start": 14654.18, + "end": 14658.16, + "probability": 0.0673 + }, + { + "start": 14658.16, + "end": 14660.28, + "probability": 0.0756 + }, + { + "start": 14660.4, + "end": 14663.8, + "probability": 0.2524 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14700.0, + "end": 14700.0, + "probability": 0.0 + }, + { + "start": 14716.4, + "end": 14717.62, + "probability": 0.0512 + }, + { + "start": 14720.78, + "end": 14721.24, + "probability": 0.0801 + }, + { + "start": 14722.8, + "end": 14724.82, + "probability": 0.0177 + }, + { + "start": 14724.82, + "end": 14725.38, + "probability": 0.0464 + }, + { + "start": 14727.82, + "end": 14729.86, + "probability": 0.0156 + }, + { + "start": 14748.68, + "end": 14749.52, + "probability": 0.0652 + }, + { + "start": 14751.77, + "end": 14754.18, + "probability": 0.0455 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.0, + "end": 14822.0, + "probability": 0.0 + }, + { + "start": 14822.14, + "end": 14822.56, + "probability": 0.2553 + }, + { + "start": 14822.56, + "end": 14823.36, + "probability": 0.2527 + }, + { + "start": 14823.52, + "end": 14824.57, + "probability": 0.4854 + }, + { + "start": 14825.06, + "end": 14827.42, + "probability": 0.983 + }, + { + "start": 14828.44, + "end": 14829.14, + "probability": 0.0359 + }, + { + "start": 14831.1, + "end": 14835.0, + "probability": 0.9077 + }, + { + "start": 14835.38, + "end": 14836.2, + "probability": 0.9189 + }, + { + "start": 14836.56, + "end": 14838.5, + "probability": 0.9956 + }, + { + "start": 14839.44, + "end": 14841.44, + "probability": 0.4964 + }, + { + "start": 14842.2, + "end": 14842.5, + "probability": 0.6388 + }, + { + "start": 14843.24, + "end": 14845.4, + "probability": 0.9982 + }, + { + "start": 14846.56, + "end": 14851.66, + "probability": 0.9251 + }, + { + "start": 14852.86, + "end": 14855.12, + "probability": 0.9767 + }, + { + "start": 14856.66, + "end": 14857.22, + "probability": 0.7356 + }, + { + "start": 14857.96, + "end": 14858.8, + "probability": 0.9209 + }, + { + "start": 14859.5, + "end": 14861.54, + "probability": 0.7852 + }, + { + "start": 14863.1, + "end": 14866.22, + "probability": 0.7927 + }, + { + "start": 14866.3, + "end": 14869.72, + "probability": 0.9812 + }, + { + "start": 14870.22, + "end": 14874.86, + "probability": 0.7721 + }, + { + "start": 14876.0, + "end": 14877.44, + "probability": 0.7903 + }, + { + "start": 14877.5, + "end": 14878.62, + "probability": 0.7043 + }, + { + "start": 14878.94, + "end": 14879.58, + "probability": 0.8702 + }, + { + "start": 14880.88, + "end": 14883.98, + "probability": 0.84 + }, + { + "start": 14884.1, + "end": 14886.76, + "probability": 0.9634 + }, + { + "start": 14887.28, + "end": 14889.58, + "probability": 0.9172 + }, + { + "start": 14890.42, + "end": 14891.04, + "probability": 0.8461 + }, + { + "start": 14892.58, + "end": 14895.52, + "probability": 0.9738 + }, + { + "start": 14897.04, + "end": 14899.22, + "probability": 0.8345 + }, + { + "start": 14900.76, + "end": 14906.3, + "probability": 0.5734 + }, + { + "start": 14907.28, + "end": 14910.92, + "probability": 0.65 + }, + { + "start": 14911.9, + "end": 14913.92, + "probability": 0.9445 + }, + { + "start": 14914.22, + "end": 14918.72, + "probability": 0.9121 + }, + { + "start": 14921.2, + "end": 14921.52, + "probability": 0.1678 + }, + { + "start": 14921.58, + "end": 14922.36, + "probability": 0.1138 + }, + { + "start": 14922.54, + "end": 14927.08, + "probability": 0.7459 + }, + { + "start": 14927.3, + "end": 14927.54, + "probability": 0.1888 + }, + { + "start": 14927.64, + "end": 14930.12, + "probability": 0.8762 + }, + { + "start": 14930.12, + "end": 14932.24, + "probability": 0.823 + }, + { + "start": 14932.7, + "end": 14932.7, + "probability": 0.0314 + }, + { + "start": 14933.76, + "end": 14934.34, + "probability": 0.0439 + }, + { + "start": 14934.34, + "end": 14934.78, + "probability": 0.4445 + }, + { + "start": 14934.78, + "end": 14936.08, + "probability": 0.5354 + }, + { + "start": 14936.2, + "end": 14939.34, + "probability": 0.8195 + }, + { + "start": 14940.0, + "end": 14941.24, + "probability": 0.5334 + }, + { + "start": 14941.76, + "end": 14942.38, + "probability": 0.029 + }, + { + "start": 14942.68, + "end": 14943.98, + "probability": 0.4371 + }, + { + "start": 14944.56, + "end": 14947.58, + "probability": 0.6698 + }, + { + "start": 14947.58, + "end": 14949.08, + "probability": 0.7513 + }, + { + "start": 14949.08, + "end": 14950.3, + "probability": 0.6626 + }, + { + "start": 14950.3, + "end": 14951.76, + "probability": 0.8073 + }, + { + "start": 14951.9, + "end": 14952.1, + "probability": 0.0134 + }, + { + "start": 14952.1, + "end": 14956.32, + "probability": 0.9634 + }, + { + "start": 14958.0, + "end": 14962.32, + "probability": 0.8778 + }, + { + "start": 14963.02, + "end": 14963.54, + "probability": 0.5621 + }, + { + "start": 14963.64, + "end": 14963.7, + "probability": 0.2333 + }, + { + "start": 14963.7, + "end": 14964.15, + "probability": 0.3742 + }, + { + "start": 14965.52, + "end": 14966.56, + "probability": 0.5149 + }, + { + "start": 14966.56, + "end": 14967.72, + "probability": 0.5947 + }, + { + "start": 14967.78, + "end": 14969.26, + "probability": 0.5818 + }, + { + "start": 14970.04, + "end": 14970.6, + "probability": 0.0943 + }, + { + "start": 14970.82, + "end": 14971.28, + "probability": 0.2637 + }, + { + "start": 14971.28, + "end": 14971.9, + "probability": 0.7227 + }, + { + "start": 14972.0, + "end": 14972.0, + "probability": 0.0176 + }, + { + "start": 14972.0, + "end": 14977.4, + "probability": 0.8439 + }, + { + "start": 14977.52, + "end": 14979.24, + "probability": 0.7715 + }, + { + "start": 14979.66, + "end": 14980.4, + "probability": 0.7014 + }, + { + "start": 14980.68, + "end": 14982.86, + "probability": 0.9722 + }, + { + "start": 14982.98, + "end": 14983.22, + "probability": 0.4973 + }, + { + "start": 14983.3, + "end": 14986.25, + "probability": 0.9923 + }, + { + "start": 14987.48, + "end": 14989.5, + "probability": 0.6718 + }, + { + "start": 14989.72, + "end": 14990.14, + "probability": 0.2587 + }, + { + "start": 14990.38, + "end": 14993.38, + "probability": 0.4894 + }, + { + "start": 14994.06, + "end": 14995.48, + "probability": 0.3087 + }, + { + "start": 14995.5, + "end": 14995.5, + "probability": 0.0041 + }, + { + "start": 14998.24, + "end": 15000.24, + "probability": 0.3233 + }, + { + "start": 15000.24, + "end": 15000.24, + "probability": 0.6217 + }, + { + "start": 15000.36, + "end": 15002.3, + "probability": 0.2205 + }, + { + "start": 15002.84, + "end": 15002.84, + "probability": 0.6606 + }, + { + "start": 15002.84, + "end": 15002.84, + "probability": 0.278 + }, + { + "start": 15002.94, + "end": 15004.86, + "probability": 0.4288 + }, + { + "start": 15005.8, + "end": 15005.92, + "probability": 0.0488 + }, + { + "start": 15005.92, + "end": 15006.55, + "probability": 0.544 + }, + { + "start": 15007.54, + "end": 15008.46, + "probability": 0.5742 + }, + { + "start": 15009.52, + "end": 15011.4, + "probability": 0.6064 + }, + { + "start": 15012.38, + "end": 15012.72, + "probability": 0.0489 + }, + { + "start": 15012.72, + "end": 15015.24, + "probability": 0.0202 + }, + { + "start": 15015.24, + "end": 15016.82, + "probability": 0.0375 + }, + { + "start": 15016.82, + "end": 15017.52, + "probability": 0.0254 + }, + { + "start": 15018.32, + "end": 15019.5, + "probability": 0.3491 + }, + { + "start": 15019.5, + "end": 15019.99, + "probability": 0.1874 + }, + { + "start": 15021.18, + "end": 15022.34, + "probability": 0.1637 + }, + { + "start": 15022.5, + "end": 15024.94, + "probability": 0.7297 + }, + { + "start": 15025.06, + "end": 15026.11, + "probability": 0.8771 + }, + { + "start": 15026.72, + "end": 15032.62, + "probability": 0.3245 + }, + { + "start": 15032.68, + "end": 15033.27, + "probability": 0.5226 + }, + { + "start": 15033.9, + "end": 15034.18, + "probability": 0.0628 + }, + { + "start": 15034.78, + "end": 15036.42, + "probability": 0.4657 + }, + { + "start": 15037.14, + "end": 15038.3, + "probability": 0.8759 + }, + { + "start": 15038.52, + "end": 15040.84, + "probability": 0.879 + }, + { + "start": 15041.6, + "end": 15043.72, + "probability": 0.7168 + }, + { + "start": 15043.83, + "end": 15044.5, + "probability": 0.9011 + }, + { + "start": 15045.62, + "end": 15047.12, + "probability": 0.8475 + }, + { + "start": 15047.86, + "end": 15050.66, + "probability": 0.9196 + }, + { + "start": 15051.3, + "end": 15052.14, + "probability": 0.9108 + }, + { + "start": 15053.22, + "end": 15055.14, + "probability": 0.965 + }, + { + "start": 15055.96, + "end": 15057.96, + "probability": 0.8026 + }, + { + "start": 15058.5, + "end": 15064.78, + "probability": 0.8904 + }, + { + "start": 15064.78, + "end": 15065.82, + "probability": 0.6268 + }, + { + "start": 15065.92, + "end": 15067.54, + "probability": 0.1939 + }, + { + "start": 15067.72, + "end": 15069.04, + "probability": 0.0399 + }, + { + "start": 15069.44, + "end": 15070.06, + "probability": 0.0611 + }, + { + "start": 15071.02, + "end": 15073.26, + "probability": 0.0075 + }, + { + "start": 15073.92, + "end": 15073.92, + "probability": 0.1092 + }, + { + "start": 15073.92, + "end": 15075.44, + "probability": 0.6274 + }, + { + "start": 15075.62, + "end": 15077.68, + "probability": 0.9008 + }, + { + "start": 15077.7, + "end": 15082.06, + "probability": 0.9527 + }, + { + "start": 15082.44, + "end": 15084.8, + "probability": 0.5002 + }, + { + "start": 15085.24, + "end": 15085.24, + "probability": 0.6965 + }, + { + "start": 15085.24, + "end": 15086.06, + "probability": 0.7214 + }, + { + "start": 15086.14, + "end": 15086.55, + "probability": 0.9596 + }, + { + "start": 15087.32, + "end": 15088.18, + "probability": 0.7133 + }, + { + "start": 15088.58, + "end": 15089.44, + "probability": 0.6444 + }, + { + "start": 15089.52, + "end": 15089.74, + "probability": 0.4123 + }, + { + "start": 15089.82, + "end": 15092.04, + "probability": 0.7442 + }, + { + "start": 15092.06, + "end": 15092.44, + "probability": 0.3413 + }, + { + "start": 15092.46, + "end": 15094.22, + "probability": 0.7776 + }, + { + "start": 15094.46, + "end": 15094.76, + "probability": 0.7296 + }, + { + "start": 15094.82, + "end": 15095.74, + "probability": 0.9677 + }, + { + "start": 15096.16, + "end": 15097.42, + "probability": 0.7535 + }, + { + "start": 15098.36, + "end": 15100.52, + "probability": 0.9852 + }, + { + "start": 15101.04, + "end": 15101.24, + "probability": 0.8226 + }, + { + "start": 15101.84, + "end": 15104.22, + "probability": 0.6944 + }, + { + "start": 15104.86, + "end": 15105.58, + "probability": 0.2531 + }, + { + "start": 15106.08, + "end": 15108.68, + "probability": 0.7716 + }, + { + "start": 15108.98, + "end": 15113.86, + "probability": 0.9866 + }, + { + "start": 15113.86, + "end": 15119.56, + "probability": 0.8088 + }, + { + "start": 15119.8, + "end": 15120.78, + "probability": 0.9971 + }, + { + "start": 15121.64, + "end": 15123.28, + "probability": 0.5326 + }, + { + "start": 15123.36, + "end": 15124.82, + "probability": 0.7306 + }, + { + "start": 15125.26, + "end": 15127.28, + "probability": 0.9065 + }, + { + "start": 15127.76, + "end": 15131.12, + "probability": 0.7129 + }, + { + "start": 15131.38, + "end": 15135.14, + "probability": 0.9863 + }, + { + "start": 15135.54, + "end": 15136.7, + "probability": 0.8506 + }, + { + "start": 15137.24, + "end": 15138.82, + "probability": 0.8671 + }, + { + "start": 15139.22, + "end": 15140.44, + "probability": 0.9062 + }, + { + "start": 15140.94, + "end": 15142.8, + "probability": 0.9225 + }, + { + "start": 15143.18, + "end": 15143.86, + "probability": 0.821 + }, + { + "start": 15144.9, + "end": 15148.02, + "probability": 0.8607 + }, + { + "start": 15149.6, + "end": 15154.96, + "probability": 0.9073 + }, + { + "start": 15155.86, + "end": 15156.68, + "probability": 0.6144 + }, + { + "start": 15157.26, + "end": 15160.66, + "probability": 0.8477 + }, + { + "start": 15161.08, + "end": 15162.24, + "probability": 0.7448 + }, + { + "start": 15162.86, + "end": 15163.86, + "probability": 0.7963 + }, + { + "start": 15164.4, + "end": 15164.98, + "probability": 0.957 + }, + { + "start": 15165.0, + "end": 15165.0, + "probability": 0.0 + }, + { + "start": 15166.08, + "end": 15168.02, + "probability": 0.7445 + }, + { + "start": 15168.36, + "end": 15169.74, + "probability": 0.9854 + }, + { + "start": 15170.52, + "end": 15171.48, + "probability": 0.9791 + }, + { + "start": 15171.96, + "end": 15175.5, + "probability": 0.8442 + }, + { + "start": 15176.08, + "end": 15179.46, + "probability": 0.7988 + }, + { + "start": 15181.92, + "end": 15182.98, + "probability": 0.7095 + }, + { + "start": 15183.58, + "end": 15184.38, + "probability": 0.948 + }, + { + "start": 15185.68, + "end": 15186.28, + "probability": 0.7536 + }, + { + "start": 15186.6, + "end": 15188.68, + "probability": 0.7156 + }, + { + "start": 15188.76, + "end": 15189.84, + "probability": 0.5841 + }, + { + "start": 15190.46, + "end": 15192.68, + "probability": 0.612 + }, + { + "start": 15193.1, + "end": 15195.1, + "probability": 0.9264 + }, + { + "start": 15195.96, + "end": 15197.38, + "probability": 0.8338 + }, + { + "start": 15198.2, + "end": 15199.48, + "probability": 0.8635 + }, + { + "start": 15199.66, + "end": 15200.46, + "probability": 0.9431 + }, + { + "start": 15200.78, + "end": 15202.6, + "probability": 0.9376 + }, + { + "start": 15202.94, + "end": 15203.64, + "probability": 0.669 + }, + { + "start": 15204.04, + "end": 15206.82, + "probability": 0.923 + }, + { + "start": 15207.18, + "end": 15208.54, + "probability": 0.9345 + }, + { + "start": 15209.9, + "end": 15210.9, + "probability": 0.9805 + }, + { + "start": 15211.56, + "end": 15213.04, + "probability": 0.9568 + }, + { + "start": 15213.84, + "end": 15218.84, + "probability": 0.8645 + }, + { + "start": 15219.58, + "end": 15221.48, + "probability": 0.8367 + }, + { + "start": 15222.04, + "end": 15224.7, + "probability": 0.6636 + }, + { + "start": 15225.62, + "end": 15226.62, + "probability": 0.6978 + }, + { + "start": 15226.98, + "end": 15230.19, + "probability": 0.8695 + }, + { + "start": 15230.78, + "end": 15233.9, + "probability": 0.9061 + }, + { + "start": 15234.62, + "end": 15236.08, + "probability": 0.86 + }, + { + "start": 15236.9, + "end": 15238.74, + "probability": 0.6531 + }, + { + "start": 15239.12, + "end": 15242.7, + "probability": 0.6597 + }, + { + "start": 15243.16, + "end": 15243.94, + "probability": 0.9337 + }, + { + "start": 15244.46, + "end": 15245.16, + "probability": 0.9163 + }, + { + "start": 15245.62, + "end": 15247.08, + "probability": 0.9036 + }, + { + "start": 15247.6, + "end": 15250.18, + "probability": 0.5918 + }, + { + "start": 15250.8, + "end": 15253.54, + "probability": 0.9707 + }, + { + "start": 15253.91, + "end": 15254.14, + "probability": 0.0753 + }, + { + "start": 15254.14, + "end": 15255.35, + "probability": 0.3376 + }, + { + "start": 15255.8, + "end": 15259.36, + "probability": 0.9386 + }, + { + "start": 15259.56, + "end": 15262.38, + "probability": 0.9655 + }, + { + "start": 15262.66, + "end": 15266.5, + "probability": 0.9641 + }, + { + "start": 15266.98, + "end": 15267.66, + "probability": 0.2779 + }, + { + "start": 15267.82, + "end": 15269.07, + "probability": 0.8806 + }, + { + "start": 15269.4, + "end": 15270.74, + "probability": 0.6932 + }, + { + "start": 15271.18, + "end": 15272.76, + "probability": 0.8579 + }, + { + "start": 15273.14, + "end": 15274.04, + "probability": 0.8475 + }, + { + "start": 15274.38, + "end": 15275.5, + "probability": 0.878 + }, + { + "start": 15275.56, + "end": 15278.24, + "probability": 0.8475 + }, + { + "start": 15278.46, + "end": 15280.45, + "probability": 0.9899 + }, + { + "start": 15280.7, + "end": 15281.76, + "probability": 0.9607 + }, + { + "start": 15282.26, + "end": 15282.56, + "probability": 0.9099 + }, + { + "start": 15286.66, + "end": 15288.9, + "probability": 0.2444 + }, + { + "start": 15288.98, + "end": 15289.14, + "probability": 0.4042 + }, + { + "start": 15289.28, + "end": 15290.7, + "probability": 0.5144 + }, + { + "start": 15291.56, + "end": 15293.02, + "probability": 0.6261 + }, + { + "start": 15293.18, + "end": 15293.92, + "probability": 0.103 + }, + { + "start": 15293.92, + "end": 15294.12, + "probability": 0.2427 + }, + { + "start": 15294.12, + "end": 15294.26, + "probability": 0.4904 + }, + { + "start": 15294.26, + "end": 15295.52, + "probability": 0.3733 + }, + { + "start": 15295.72, + "end": 15296.46, + "probability": 0.552 + }, + { + "start": 15296.54, + "end": 15299.98, + "probability": 0.5828 + }, + { + "start": 15300.24, + "end": 15301.52, + "probability": 0.2416 + }, + { + "start": 15301.56, + "end": 15301.93, + "probability": 0.3541 + }, + { + "start": 15302.54, + "end": 15304.88, + "probability": 0.4835 + }, + { + "start": 15305.36, + "end": 15307.78, + "probability": 0.5384 + }, + { + "start": 15307.9, + "end": 15311.44, + "probability": 0.7522 + }, + { + "start": 15311.78, + "end": 15311.78, + "probability": 0.155 + }, + { + "start": 15311.78, + "end": 15312.94, + "probability": 0.6988 + }, + { + "start": 15313.32, + "end": 15316.3, + "probability": 0.866 + }, + { + "start": 15316.36, + "end": 15318.24, + "probability": 0.8192 + }, + { + "start": 15320.59, + "end": 15321.46, + "probability": 0.0718 + }, + { + "start": 15321.46, + "end": 15322.76, + "probability": 0.2791 + }, + { + "start": 15323.14, + "end": 15323.76, + "probability": 0.3171 + }, + { + "start": 15324.0, + "end": 15325.7, + "probability": 0.8812 + }, + { + "start": 15325.7, + "end": 15327.54, + "probability": 0.3169 + }, + { + "start": 15327.64, + "end": 15329.04, + "probability": 0.9063 + }, + { + "start": 15329.94, + "end": 15331.64, + "probability": 0.1963 + }, + { + "start": 15331.64, + "end": 15333.12, + "probability": 0.1181 + }, + { + "start": 15333.22, + "end": 15334.22, + "probability": 0.1012 + }, + { + "start": 15334.8, + "end": 15334.8, + "probability": 0.4143 + }, + { + "start": 15334.8, + "end": 15336.58, + "probability": 0.4234 + }, + { + "start": 15336.84, + "end": 15339.46, + "probability": 0.7913 + }, + { + "start": 15339.46, + "end": 15340.28, + "probability": 0.7627 + }, + { + "start": 15340.38, + "end": 15342.26, + "probability": 0.7554 + }, + { + "start": 15342.34, + "end": 15342.72, + "probability": 0.6707 + }, + { + "start": 15342.74, + "end": 15346.1, + "probability": 0.4198 + }, + { + "start": 15346.14, + "end": 15346.2, + "probability": 0.5181 + }, + { + "start": 15346.2, + "end": 15346.9, + "probability": 0.6497 + }, + { + "start": 15346.92, + "end": 15347.3, + "probability": 0.752 + }, + { + "start": 15347.84, + "end": 15348.9, + "probability": 0.5505 + }, + { + "start": 15348.9, + "end": 15349.94, + "probability": 0.2277 + }, + { + "start": 15350.06, + "end": 15350.22, + "probability": 0.0532 + }, + { + "start": 15350.3, + "end": 15352.04, + "probability": 0.4576 + }, + { + "start": 15352.32, + "end": 15352.5, + "probability": 0.0724 + }, + { + "start": 15352.5, + "end": 15353.84, + "probability": 0.3375 + }, + { + "start": 15354.16, + "end": 15355.5, + "probability": 0.0715 + }, + { + "start": 15355.98, + "end": 15358.3, + "probability": 0.7683 + }, + { + "start": 15358.88, + "end": 15359.88, + "probability": 0.4264 + }, + { + "start": 15360.86, + "end": 15361.5, + "probability": 0.4444 + }, + { + "start": 15361.5, + "end": 15364.14, + "probability": 0.9233 + }, + { + "start": 15364.42, + "end": 15365.34, + "probability": 0.784 + }, + { + "start": 15365.5, + "end": 15367.66, + "probability": 0.9194 + }, + { + "start": 15367.78, + "end": 15370.26, + "probability": 0.6624 + }, + { + "start": 15370.28, + "end": 15373.1, + "probability": 0.5396 + }, + { + "start": 15373.38, + "end": 15373.82, + "probability": 0.3063 + }, + { + "start": 15374.3, + "end": 15375.18, + "probability": 0.5234 + }, + { + "start": 15375.22, + "end": 15376.48, + "probability": 0.3619 + }, + { + "start": 15376.54, + "end": 15377.2, + "probability": 0.882 + }, + { + "start": 15377.32, + "end": 15380.18, + "probability": 0.7539 + }, + { + "start": 15382.32, + "end": 15384.88, + "probability": 0.9074 + }, + { + "start": 15385.5, + "end": 15386.96, + "probability": 0.9961 + }, + { + "start": 15388.76, + "end": 15391.46, + "probability": 0.9894 + }, + { + "start": 15392.02, + "end": 15394.4, + "probability": 0.9889 + }, + { + "start": 15395.52, + "end": 15399.76, + "probability": 0.9984 + }, + { + "start": 15401.54, + "end": 15404.26, + "probability": 0.7698 + }, + { + "start": 15405.68, + "end": 15407.36, + "probability": 0.9939 + }, + { + "start": 15408.82, + "end": 15412.88, + "probability": 0.9923 + }, + { + "start": 15414.38, + "end": 15418.92, + "probability": 0.9095 + }, + { + "start": 15419.18, + "end": 15422.6, + "probability": 0.6897 + }, + { + "start": 15423.3, + "end": 15427.64, + "probability": 0.9966 + }, + { + "start": 15428.1, + "end": 15428.48, + "probability": 0.8426 + }, + { + "start": 15430.2, + "end": 15430.48, + "probability": 0.1811 + }, + { + "start": 15430.48, + "end": 15431.02, + "probability": 0.0048 + }, + { + "start": 15431.32, + "end": 15434.6, + "probability": 0.8287 + }, + { + "start": 15434.82, + "end": 15435.02, + "probability": 0.1168 + }, + { + "start": 15435.34, + "end": 15436.1, + "probability": 0.5864 + }, + { + "start": 15436.12, + "end": 15437.18, + "probability": 0.9635 + }, + { + "start": 15437.36, + "end": 15439.2, + "probability": 0.9849 + }, + { + "start": 15439.26, + "end": 15439.72, + "probability": 0.5827 + }, + { + "start": 15439.78, + "end": 15440.86, + "probability": 0.6925 + }, + { + "start": 15440.86, + "end": 15440.86, + "probability": 0.6872 + }, + { + "start": 15440.94, + "end": 15442.13, + "probability": 0.9692 + }, + { + "start": 15442.38, + "end": 15442.75, + "probability": 0.5765 + }, + { + "start": 15442.84, + "end": 15443.36, + "probability": 0.1222 + }, + { + "start": 15443.36, + "end": 15444.32, + "probability": 0.6337 + }, + { + "start": 15444.36, + "end": 15445.48, + "probability": 0.9985 + }, + { + "start": 15445.6, + "end": 15446.02, + "probability": 0.0835 + }, + { + "start": 15446.18, + "end": 15448.92, + "probability": 0.7786 + }, + { + "start": 15449.56, + "end": 15451.46, + "probability": 0.903 + }, + { + "start": 15451.56, + "end": 15451.74, + "probability": 0.193 + }, + { + "start": 15451.74, + "end": 15452.22, + "probability": 0.2476 + }, + { + "start": 15452.32, + "end": 15454.84, + "probability": 0.8128 + }, + { + "start": 15455.36, + "end": 15458.5, + "probability": 0.9899 + }, + { + "start": 15459.08, + "end": 15460.18, + "probability": 0.7828 + }, + { + "start": 15460.24, + "end": 15460.6, + "probability": 0.8138 + }, + { + "start": 15460.76, + "end": 15461.44, + "probability": 0.7679 + }, + { + "start": 15461.48, + "end": 15463.6, + "probability": 0.863 + }, + { + "start": 15463.64, + "end": 15466.98, + "probability": 0.967 + }, + { + "start": 15467.64, + "end": 15468.42, + "probability": 0.6952 + }, + { + "start": 15468.76, + "end": 15469.46, + "probability": 0.8355 + }, + { + "start": 15469.5, + "end": 15470.48, + "probability": 0.8761 + }, + { + "start": 15470.56, + "end": 15470.96, + "probability": 0.0953 + }, + { + "start": 15470.98, + "end": 15472.14, + "probability": 0.8566 + }, + { + "start": 15472.86, + "end": 15473.06, + "probability": 0.3988 + }, + { + "start": 15473.06, + "end": 15475.06, + "probability": 0.8797 + }, + { + "start": 15475.08, + "end": 15477.52, + "probability": 0.0296 + }, + { + "start": 15477.52, + "end": 15478.52, + "probability": 0.7349 + }, + { + "start": 15479.16, + "end": 15479.16, + "probability": 0.1329 + }, + { + "start": 15479.16, + "end": 15479.16, + "probability": 0.0934 + }, + { + "start": 15479.16, + "end": 15479.16, + "probability": 0.6687 + }, + { + "start": 15479.16, + "end": 15480.14, + "probability": 0.8732 + }, + { + "start": 15480.4, + "end": 15481.74, + "probability": 0.8999 + }, + { + "start": 15482.37, + "end": 15485.5, + "probability": 0.9836 + }, + { + "start": 15486.64, + "end": 15491.6, + "probability": 0.8703 + }, + { + "start": 15491.84, + "end": 15493.86, + "probability": 0.9927 + }, + { + "start": 15495.0, + "end": 15495.74, + "probability": 0.9951 + }, + { + "start": 15495.74, + "end": 15497.4, + "probability": 0.9985 + }, + { + "start": 15498.16, + "end": 15499.52, + "probability": 0.9709 + }, + { + "start": 15500.24, + "end": 15504.01, + "probability": 0.9761 + }, + { + "start": 15504.31, + "end": 15508.18, + "probability": 0.9441 + }, + { + "start": 15508.26, + "end": 15510.4, + "probability": 0.8382 + }, + { + "start": 15510.64, + "end": 15511.78, + "probability": 0.8341 + }, + { + "start": 15512.54, + "end": 15514.67, + "probability": 0.927 + }, + { + "start": 15514.82, + "end": 15515.56, + "probability": 0.3885 + }, + { + "start": 15516.4, + "end": 15517.58, + "probability": 0.8696 + }, + { + "start": 15517.94, + "end": 15518.77, + "probability": 0.0525 + }, + { + "start": 15519.04, + "end": 15520.98, + "probability": 0.2917 + }, + { + "start": 15520.98, + "end": 15523.82, + "probability": 0.1888 + }, + { + "start": 15524.5, + "end": 15525.58, + "probability": 0.8171 + }, + { + "start": 15526.2, + "end": 15530.14, + "probability": 0.7939 + }, + { + "start": 15530.28, + "end": 15531.16, + "probability": 0.9282 + }, + { + "start": 15532.28, + "end": 15532.74, + "probability": 0.4922 + }, + { + "start": 15532.74, + "end": 15536.0, + "probability": 0.8552 + }, + { + "start": 15536.72, + "end": 15539.28, + "probability": 0.8638 + }, + { + "start": 15539.4, + "end": 15542.78, + "probability": 0.9785 + }, + { + "start": 15543.5, + "end": 15545.26, + "probability": 0.9939 + }, + { + "start": 15545.82, + "end": 15548.58, + "probability": 0.9983 + }, + { + "start": 15549.16, + "end": 15551.44, + "probability": 0.9862 + }, + { + "start": 15551.74, + "end": 15553.94, + "probability": 0.9808 + }, + { + "start": 15553.94, + "end": 15559.6, + "probability": 0.6239 + }, + { + "start": 15560.6, + "end": 15562.11, + "probability": 0.9893 + }, + { + "start": 15562.8, + "end": 15563.48, + "probability": 0.2161 + }, + { + "start": 15563.48, + "end": 15565.84, + "probability": 0.9497 + }, + { + "start": 15566.34, + "end": 15566.34, + "probability": 0.259 + }, + { + "start": 15566.34, + "end": 15566.58, + "probability": 0.2512 + }, + { + "start": 15566.85, + "end": 15566.94, + "probability": 0.5616 + }, + { + "start": 15567.02, + "end": 15570.0, + "probability": 0.4999 + }, + { + "start": 15570.04, + "end": 15571.54, + "probability": 0.5786 + }, + { + "start": 15571.88, + "end": 15573.66, + "probability": 0.4424 + }, + { + "start": 15573.72, + "end": 15578.54, + "probability": 0.9775 + }, + { + "start": 15578.88, + "end": 15585.48, + "probability": 0.9722 + }, + { + "start": 15585.86, + "end": 15587.74, + "probability": 0.7432 + }, + { + "start": 15588.08, + "end": 15588.87, + "probability": 0.9924 + }, + { + "start": 15589.52, + "end": 15589.94, + "probability": 0.5404 + }, + { + "start": 15590.4, + "end": 15595.68, + "probability": 0.9834 + }, + { + "start": 15595.9, + "end": 15596.52, + "probability": 0.9204 + }, + { + "start": 15597.0, + "end": 15600.34, + "probability": 0.9863 + }, + { + "start": 15600.94, + "end": 15604.08, + "probability": 0.9974 + }, + { + "start": 15604.08, + "end": 15606.18, + "probability": 0.9994 + }, + { + "start": 15606.88, + "end": 15608.1, + "probability": 0.9639 + }, + { + "start": 15608.36, + "end": 15609.34, + "probability": 0.9409 + }, + { + "start": 15609.38, + "end": 15612.96, + "probability": 0.899 + }, + { + "start": 15613.67, + "end": 15614.02, + "probability": 0.3416 + }, + { + "start": 15614.02, + "end": 15614.02, + "probability": 0.4526 + }, + { + "start": 15614.08, + "end": 15614.5, + "probability": 0.4108 + }, + { + "start": 15614.52, + "end": 15614.73, + "probability": 0.6831 + }, + { + "start": 15615.18, + "end": 15615.96, + "probability": 0.5295 + }, + { + "start": 15616.12, + "end": 15619.48, + "probability": 0.8381 + }, + { + "start": 15619.9, + "end": 15622.3, + "probability": 0.9735 + }, + { + "start": 15622.34, + "end": 15622.84, + "probability": 0.0478 + }, + { + "start": 15622.84, + "end": 15625.52, + "probability": 0.9823 + }, + { + "start": 15625.52, + "end": 15626.08, + "probability": 0.569 + }, + { + "start": 15627.52, + "end": 15628.66, + "probability": 0.6973 + }, + { + "start": 15629.14, + "end": 15629.14, + "probability": 0.1678 + }, + { + "start": 15629.14, + "end": 15630.16, + "probability": 0.2192 + }, + { + "start": 15630.4, + "end": 15631.28, + "probability": 0.6366 + }, + { + "start": 15631.28, + "end": 15632.54, + "probability": 0.0192 + }, + { + "start": 15632.86, + "end": 15634.54, + "probability": 0.5344 + }, + { + "start": 15636.62, + "end": 15637.76, + "probability": 0.4567 + }, + { + "start": 15637.92, + "end": 15639.26, + "probability": 0.4673 + }, + { + "start": 15639.66, + "end": 15639.74, + "probability": 0.039 + }, + { + "start": 15639.74, + "end": 15640.0, + "probability": 0.1672 + }, + { + "start": 15640.42, + "end": 15640.84, + "probability": 0.0887 + }, + { + "start": 15642.18, + "end": 15642.46, + "probability": 0.5276 + }, + { + "start": 15642.56, + "end": 15643.62, + "probability": 0.9934 + }, + { + "start": 15643.68, + "end": 15644.52, + "probability": 0.6262 + }, + { + "start": 15644.56, + "end": 15645.72, + "probability": 0.2254 + }, + { + "start": 15645.96, + "end": 15648.46, + "probability": 0.0628 + }, + { + "start": 15648.8, + "end": 15649.58, + "probability": 0.1304 + }, + { + "start": 15649.58, + "end": 15650.5, + "probability": 0.7505 + }, + { + "start": 15651.12, + "end": 15651.98, + "probability": 0.3245 + }, + { + "start": 15651.98, + "end": 15654.5, + "probability": 0.8373 + }, + { + "start": 15654.56, + "end": 15656.72, + "probability": 0.8056 + }, + { + "start": 15657.18, + "end": 15659.68, + "probability": 0.8533 + }, + { + "start": 15660.4, + "end": 15661.36, + "probability": 0.9119 + }, + { + "start": 15661.46, + "end": 15664.24, + "probability": 0.999 + }, + { + "start": 15665.04, + "end": 15669.34, + "probability": 0.8145 + }, + { + "start": 15669.34, + "end": 15669.98, + "probability": 0.5334 + }, + { + "start": 15670.68, + "end": 15670.86, + "probability": 0.2747 + }, + { + "start": 15670.86, + "end": 15673.9, + "probability": 0.9895 + }, + { + "start": 15674.36, + "end": 15676.98, + "probability": 0.9036 + }, + { + "start": 15677.62, + "end": 15680.34, + "probability": 0.9081 + }, + { + "start": 15680.66, + "end": 15683.62, + "probability": 0.9531 + }, + { + "start": 15684.52, + "end": 15686.02, + "probability": 0.7766 + }, + { + "start": 15686.34, + "end": 15688.08, + "probability": 0.9797 + }, + { + "start": 15688.34, + "end": 15690.48, + "probability": 0.9926 + }, + { + "start": 15690.48, + "end": 15692.68, + "probability": 0.6812 + }, + { + "start": 15693.28, + "end": 15693.34, + "probability": 0.2641 + }, + { + "start": 15693.34, + "end": 15695.22, + "probability": 0.8434 + }, + { + "start": 15695.38, + "end": 15695.7, + "probability": 0.5343 + }, + { + "start": 15696.04, + "end": 15697.32, + "probability": 0.2671 + }, + { + "start": 15697.48, + "end": 15697.48, + "probability": 0.2891 + }, + { + "start": 15697.48, + "end": 15699.38, + "probability": 0.4794 + }, + { + "start": 15699.82, + "end": 15703.14, + "probability": 0.6726 + }, + { + "start": 15705.54, + "end": 15709.88, + "probability": 0.5717 + }, + { + "start": 15711.82, + "end": 15712.98, + "probability": 0.8607 + }, + { + "start": 15713.98, + "end": 15716.04, + "probability": 0.7443 + }, + { + "start": 15726.82, + "end": 15727.52, + "probability": 0.4998 + }, + { + "start": 15727.52, + "end": 15727.64, + "probability": 0.4603 + }, + { + "start": 15731.82, + "end": 15733.72, + "probability": 0.7195 + }, + { + "start": 15735.2, + "end": 15739.82, + "probability": 0.7542 + }, + { + "start": 15740.74, + "end": 15744.08, + "probability": 0.959 + }, + { + "start": 15746.72, + "end": 15747.38, + "probability": 0.7133 + }, + { + "start": 15748.46, + "end": 15751.02, + "probability": 0.976 + }, + { + "start": 15751.94, + "end": 15753.38, + "probability": 0.7505 + }, + { + "start": 15754.62, + "end": 15755.52, + "probability": 0.5136 + }, + { + "start": 15755.54, + "end": 15760.44, + "probability": 0.995 + }, + { + "start": 15761.98, + "end": 15763.3, + "probability": 0.8478 + }, + { + "start": 15763.44, + "end": 15764.56, + "probability": 0.9728 + }, + { + "start": 15764.68, + "end": 15768.35, + "probability": 0.9412 + }, + { + "start": 15768.46, + "end": 15773.38, + "probability": 0.5393 + }, + { + "start": 15773.44, + "end": 15775.2, + "probability": 0.748 + }, + { + "start": 15776.32, + "end": 15777.92, + "probability": 0.9712 + }, + { + "start": 15779.62, + "end": 15782.4, + "probability": 0.9438 + }, + { + "start": 15783.4, + "end": 15785.44, + "probability": 0.896 + }, + { + "start": 15786.32, + "end": 15789.98, + "probability": 0.9922 + }, + { + "start": 15790.0, + "end": 15790.0, + "probability": 0.0 + }, + { + "start": 15792.78, + "end": 15794.64, + "probability": 0.7046 + }, + { + "start": 15795.38, + "end": 15797.32, + "probability": 0.9392 + }, + { + "start": 15798.08, + "end": 15801.56, + "probability": 0.9858 + }, + { + "start": 15802.92, + "end": 15805.86, + "probability": 0.899 + }, + { + "start": 15807.16, + "end": 15808.62, + "probability": 0.9629 + }, + { + "start": 15808.72, + "end": 15810.62, + "probability": 0.9795 + }, + { + "start": 15811.8, + "end": 15813.75, + "probability": 0.7526 + }, + { + "start": 15814.34, + "end": 15816.04, + "probability": 0.9498 + }, + { + "start": 15816.76, + "end": 15820.26, + "probability": 0.9607 + }, + { + "start": 15821.6, + "end": 15825.28, + "probability": 0.9635 + }, + { + "start": 15825.34, + "end": 15826.86, + "probability": 0.9937 + }, + { + "start": 15827.78, + "end": 15829.0, + "probability": 0.9688 + }, + { + "start": 15829.74, + "end": 15830.72, + "probability": 0.9929 + }, + { + "start": 15832.74, + "end": 15833.48, + "probability": 0.9963 + }, + { + "start": 15834.48, + "end": 15835.34, + "probability": 0.6715 + }, + { + "start": 15836.6, + "end": 15838.97, + "probability": 0.9888 + }, + { + "start": 15840.0, + "end": 15840.8, + "probability": 0.7233 + }, + { + "start": 15840.96, + "end": 15842.16, + "probability": 0.9204 + }, + { + "start": 15842.4, + "end": 15843.1, + "probability": 0.837 + }, + { + "start": 15843.16, + "end": 15844.26, + "probability": 0.9084 + }, + { + "start": 15844.82, + "end": 15849.44, + "probability": 0.9583 + }, + { + "start": 15851.24, + "end": 15852.68, + "probability": 0.9856 + }, + { + "start": 15853.48, + "end": 15855.42, + "probability": 0.9941 + }, + { + "start": 15857.74, + "end": 15859.56, + "probability": 0.9802 + }, + { + "start": 15859.62, + "end": 15861.69, + "probability": 0.8663 + }, + { + "start": 15862.64, + "end": 15863.54, + "probability": 0.8693 + }, + { + "start": 15863.72, + "end": 15865.46, + "probability": 0.9604 + }, + { + "start": 15865.98, + "end": 15866.94, + "probability": 0.9154 + }, + { + "start": 15867.04, + "end": 15871.68, + "probability": 0.9508 + }, + { + "start": 15872.34, + "end": 15873.86, + "probability": 0.9783 + }, + { + "start": 15874.66, + "end": 15875.43, + "probability": 0.6682 + }, + { + "start": 15876.5, + "end": 15881.94, + "probability": 0.9332 + }, + { + "start": 15883.32, + "end": 15885.7, + "probability": 0.8868 + }, + { + "start": 15886.68, + "end": 15887.85, + "probability": 0.9639 + }, + { + "start": 15889.36, + "end": 15891.31, + "probability": 0.9701 + }, + { + "start": 15892.12, + "end": 15893.56, + "probability": 0.9552 + }, + { + "start": 15894.04, + "end": 15896.12, + "probability": 0.9895 + }, + { + "start": 15896.88, + "end": 15898.28, + "probability": 0.6274 + }, + { + "start": 15899.12, + "end": 15900.92, + "probability": 0.77 + }, + { + "start": 15901.02, + "end": 15904.24, + "probability": 0.9951 + }, + { + "start": 15906.12, + "end": 15907.16, + "probability": 0.7066 + }, + { + "start": 15908.7, + "end": 15911.22, + "probability": 0.851 + }, + { + "start": 15912.2, + "end": 15913.26, + "probability": 0.9666 + }, + { + "start": 15913.3, + "end": 15914.0, + "probability": 0.9822 + }, + { + "start": 15914.02, + "end": 15915.02, + "probability": 0.9952 + }, + { + "start": 15916.1, + "end": 15917.5, + "probability": 0.5998 + }, + { + "start": 15918.7, + "end": 15920.77, + "probability": 0.7637 + }, + { + "start": 15922.3, + "end": 15924.42, + "probability": 0.7371 + }, + { + "start": 15925.22, + "end": 15928.14, + "probability": 0.9519 + }, + { + "start": 15929.18, + "end": 15931.68, + "probability": 0.8899 + }, + { + "start": 15932.34, + "end": 15933.58, + "probability": 0.6336 + }, + { + "start": 15934.82, + "end": 15936.34, + "probability": 0.8266 + }, + { + "start": 15937.36, + "end": 15938.78, + "probability": 0.813 + }, + { + "start": 15939.54, + "end": 15939.54, + "probability": 0.0434 + }, + { + "start": 15939.76, + "end": 15940.26, + "probability": 0.2883 + }, + { + "start": 15940.3, + "end": 15942.67, + "probability": 0.6766 + }, + { + "start": 15942.92, + "end": 15945.26, + "probability": 0.4128 + }, + { + "start": 15945.26, + "end": 15946.5, + "probability": 0.2135 + }, + { + "start": 15946.5, + "end": 15947.1, + "probability": 0.0817 + }, + { + "start": 15947.22, + "end": 15949.26, + "probability": 0.785 + }, + { + "start": 15949.34, + "end": 15950.98, + "probability": 0.9456 + }, + { + "start": 15951.3, + "end": 15952.02, + "probability": 0.7148 + }, + { + "start": 15952.16, + "end": 15953.8, + "probability": 0.8498 + }, + { + "start": 15954.62, + "end": 15956.1, + "probability": 0.9197 + }, + { + "start": 15956.12, + "end": 15956.8, + "probability": 0.9387 + }, + { + "start": 15957.42, + "end": 15961.16, + "probability": 0.8418 + }, + { + "start": 15961.22, + "end": 15961.76, + "probability": 0.33 + }, + { + "start": 15962.42, + "end": 15964.58, + "probability": 0.7092 + }, + { + "start": 15965.12, + "end": 15965.74, + "probability": 0.7278 + }, + { + "start": 15966.34, + "end": 15967.48, + "probability": 0.8781 + }, + { + "start": 15967.56, + "end": 15968.68, + "probability": 0.9473 + }, + { + "start": 15969.68, + "end": 15970.66, + "probability": 0.9692 + }, + { + "start": 15970.7, + "end": 15975.0, + "probability": 0.9824 + }, + { + "start": 15975.54, + "end": 15977.14, + "probability": 0.9952 + }, + { + "start": 15977.62, + "end": 15979.38, + "probability": 0.9728 + }, + { + "start": 15980.42, + "end": 15981.98, + "probability": 0.9846 + }, + { + "start": 15983.3, + "end": 15984.42, + "probability": 0.9634 + }, + { + "start": 15984.56, + "end": 15987.29, + "probability": 0.9392 + }, + { + "start": 15987.74, + "end": 15988.78, + "probability": 0.998 + }, + { + "start": 15989.22, + "end": 15989.97, + "probability": 0.9937 + }, + { + "start": 15992.26, + "end": 15995.26, + "probability": 0.7529 + }, + { + "start": 15995.84, + "end": 15996.9, + "probability": 0.9958 + }, + { + "start": 15997.74, + "end": 16002.22, + "probability": 0.9925 + }, + { + "start": 16002.66, + "end": 16003.45, + "probability": 0.9971 + }, + { + "start": 16003.84, + "end": 16004.35, + "probability": 0.9958 + }, + { + "start": 16004.74, + "end": 16005.3, + "probability": 0.9976 + }, + { + "start": 16006.08, + "end": 16007.11, + "probability": 0.9974 + }, + { + "start": 16008.3, + "end": 16012.18, + "probability": 0.9032 + }, + { + "start": 16012.24, + "end": 16013.34, + "probability": 0.6653 + }, + { + "start": 16013.64, + "end": 16015.26, + "probability": 0.9504 + }, + { + "start": 16016.18, + "end": 16016.78, + "probability": 0.8004 + }, + { + "start": 16018.08, + "end": 16020.04, + "probability": 0.8994 + }, + { + "start": 16021.89, + "end": 16024.1, + "probability": 0.6636 + }, + { + "start": 16024.6, + "end": 16025.21, + "probability": 0.8338 + }, + { + "start": 16025.4, + "end": 16027.98, + "probability": 0.7918 + }, + { + "start": 16029.76, + "end": 16031.95, + "probability": 0.8691 + }, + { + "start": 16032.62, + "end": 16034.38, + "probability": 0.7905 + }, + { + "start": 16035.94, + "end": 16039.62, + "probability": 0.9707 + }, + { + "start": 16039.96, + "end": 16040.31, + "probability": 0.814 + }, + { + "start": 16040.42, + "end": 16041.18, + "probability": 0.8102 + }, + { + "start": 16041.24, + "end": 16042.29, + "probability": 0.9854 + }, + { + "start": 16042.62, + "end": 16043.52, + "probability": 0.7535 + }, + { + "start": 16043.78, + "end": 16044.28, + "probability": 0.3679 + }, + { + "start": 16044.58, + "end": 16045.04, + "probability": 0.3973 + }, + { + "start": 16045.1, + "end": 16046.18, + "probability": 0.6016 + }, + { + "start": 16046.3, + "end": 16047.42, + "probability": 0.9062 + }, + { + "start": 16048.08, + "end": 16055.88, + "probability": 0.9666 + }, + { + "start": 16055.88, + "end": 16061.92, + "probability": 0.9954 + }, + { + "start": 16062.22, + "end": 16064.18, + "probability": 0.9727 + }, + { + "start": 16064.24, + "end": 16064.7, + "probability": 0.7545 + }, + { + "start": 16066.78, + "end": 16068.76, + "probability": 0.7531 + }, + { + "start": 16070.36, + "end": 16071.46, + "probability": 0.8233 + }, + { + "start": 16071.9, + "end": 16076.4, + "probability": 0.9114 + }, + { + "start": 16077.16, + "end": 16079.88, + "probability": 0.9645 + }, + { + "start": 16082.24, + "end": 16082.98, + "probability": 0.6593 + }, + { + "start": 16086.94, + "end": 16088.88, + "probability": 0.9012 + }, + { + "start": 16089.12, + "end": 16090.2, + "probability": 0.8016 + }, + { + "start": 16090.82, + "end": 16095.66, + "probability": 0.9866 + }, + { + "start": 16096.3, + "end": 16100.1, + "probability": 0.9931 + }, + { + "start": 16100.32, + "end": 16102.8, + "probability": 0.9736 + }, + { + "start": 16102.86, + "end": 16103.8, + "probability": 0.7321 + }, + { + "start": 16105.02, + "end": 16105.58, + "probability": 0.9293 + }, + { + "start": 16106.56, + "end": 16107.96, + "probability": 0.9176 + }, + { + "start": 16109.02, + "end": 16112.26, + "probability": 0.9591 + }, + { + "start": 16112.48, + "end": 16114.42, + "probability": 0.9818 + }, + { + "start": 16114.58, + "end": 16115.48, + "probability": 0.9237 + }, + { + "start": 16116.34, + "end": 16119.72, + "probability": 0.986 + }, + { + "start": 16120.84, + "end": 16123.06, + "probability": 0.9683 + }, + { + "start": 16123.48, + "end": 16124.0, + "probability": 0.8629 + }, + { + "start": 16138.0, + "end": 16138.0, + "probability": 0.101 + }, + { + "start": 16138.0, + "end": 16139.34, + "probability": 0.6852 + }, + { + "start": 16139.76, + "end": 16142.76, + "probability": 0.9508 + }, + { + "start": 16143.56, + "end": 16145.04, + "probability": 0.8933 + }, + { + "start": 16148.08, + "end": 16148.8, + "probability": 0.9124 + }, + { + "start": 16150.02, + "end": 16151.4, + "probability": 0.9819 + }, + { + "start": 16151.72, + "end": 16153.7, + "probability": 0.9499 + }, + { + "start": 16154.16, + "end": 16157.0, + "probability": 0.9658 + }, + { + "start": 16157.56, + "end": 16161.5, + "probability": 0.5412 + }, + { + "start": 16162.38, + "end": 16163.92, + "probability": 0.854 + }, + { + "start": 16165.66, + "end": 16167.04, + "probability": 0.9357 + }, + { + "start": 16167.98, + "end": 16169.6, + "probability": 0.7953 + }, + { + "start": 16171.1, + "end": 16173.42, + "probability": 0.9256 + }, + { + "start": 16174.56, + "end": 16177.14, + "probability": 0.9315 + }, + { + "start": 16178.02, + "end": 16180.18, + "probability": 0.9653 + }, + { + "start": 16181.28, + "end": 16183.32, + "probability": 0.9953 + }, + { + "start": 16183.86, + "end": 16188.24, + "probability": 0.9657 + }, + { + "start": 16189.46, + "end": 16196.2, + "probability": 0.9629 + }, + { + "start": 16196.2, + "end": 16203.04, + "probability": 0.9944 + }, + { + "start": 16203.64, + "end": 16206.14, + "probability": 0.9196 + }, + { + "start": 16206.7, + "end": 16208.72, + "probability": 0.7736 + }, + { + "start": 16209.48, + "end": 16217.36, + "probability": 0.75 + }, + { + "start": 16217.98, + "end": 16220.24, + "probability": 0.4179 + }, + { + "start": 16220.92, + "end": 16222.48, + "probability": 0.8875 + }, + { + "start": 16222.68, + "end": 16225.98, + "probability": 0.9686 + }, + { + "start": 16226.66, + "end": 16227.16, + "probability": 0.8944 + }, + { + "start": 16227.22, + "end": 16228.32, + "probability": 0.3999 + }, + { + "start": 16228.38, + "end": 16234.68, + "probability": 0.7944 + }, + { + "start": 16236.0, + "end": 16242.58, + "probability": 0.9912 + }, + { + "start": 16242.72, + "end": 16244.3, + "probability": 0.8009 + }, + { + "start": 16246.08, + "end": 16254.8, + "probability": 0.9834 + }, + { + "start": 16256.06, + "end": 16259.54, + "probability": 0.8965 + }, + { + "start": 16261.62, + "end": 16263.96, + "probability": 0.8118 + }, + { + "start": 16265.42, + "end": 16268.68, + "probability": 0.6118 + }, + { + "start": 16268.68, + "end": 16273.32, + "probability": 0.8062 + }, + { + "start": 16274.14, + "end": 16278.22, + "probability": 0.7261 + }, + { + "start": 16278.9, + "end": 16279.64, + "probability": 0.6279 + }, + { + "start": 16279.82, + "end": 16280.54, + "probability": 0.9803 + }, + { + "start": 16282.2, + "end": 16283.62, + "probability": 0.6852 + }, + { + "start": 16284.84, + "end": 16290.86, + "probability": 0.9833 + }, + { + "start": 16291.36, + "end": 16292.62, + "probability": 0.7048 + }, + { + "start": 16292.86, + "end": 16293.7, + "probability": 0.7217 + }, + { + "start": 16294.82, + "end": 16296.22, + "probability": 0.9771 + }, + { + "start": 16298.18, + "end": 16301.92, + "probability": 0.9504 + }, + { + "start": 16304.2, + "end": 16310.78, + "probability": 0.9882 + }, + { + "start": 16311.96, + "end": 16315.02, + "probability": 0.7189 + }, + { + "start": 16316.0, + "end": 16320.48, + "probability": 0.9089 + }, + { + "start": 16320.58, + "end": 16320.96, + "probability": 0.4924 + }, + { + "start": 16321.08, + "end": 16325.96, + "probability": 0.9871 + }, + { + "start": 16326.64, + "end": 16332.3, + "probability": 0.8468 + }, + { + "start": 16332.92, + "end": 16334.16, + "probability": 0.9492 + }, + { + "start": 16336.1, + "end": 16337.88, + "probability": 0.8495 + }, + { + "start": 16338.6, + "end": 16340.24, + "probability": 0.8699 + }, + { + "start": 16341.18, + "end": 16344.38, + "probability": 0.9537 + }, + { + "start": 16347.67, + "end": 16351.88, + "probability": 0.9399 + }, + { + "start": 16352.68, + "end": 16354.92, + "probability": 0.907 + }, + { + "start": 16355.7, + "end": 16357.18, + "probability": 0.7668 + }, + { + "start": 16357.92, + "end": 16359.3, + "probability": 0.9675 + }, + { + "start": 16360.0, + "end": 16360.66, + "probability": 0.9463 + }, + { + "start": 16361.73, + "end": 16370.2, + "probability": 0.951 + }, + { + "start": 16370.84, + "end": 16371.78, + "probability": 0.9176 + }, + { + "start": 16372.6, + "end": 16374.8, + "probability": 0.9729 + }, + { + "start": 16376.62, + "end": 16380.08, + "probability": 0.8932 + }, + { + "start": 16381.78, + "end": 16390.88, + "probability": 0.9619 + }, + { + "start": 16392.6, + "end": 16394.4, + "probability": 0.4473 + }, + { + "start": 16395.08, + "end": 16396.28, + "probability": 0.7414 + }, + { + "start": 16396.84, + "end": 16397.54, + "probability": 0.8625 + }, + { + "start": 16398.34, + "end": 16401.28, + "probability": 0.9375 + }, + { + "start": 16401.7, + "end": 16406.82, + "probability": 0.8853 + }, + { + "start": 16408.32, + "end": 16413.3, + "probability": 0.9698 + }, + { + "start": 16414.38, + "end": 16417.13, + "probability": 0.8916 + }, + { + "start": 16417.82, + "end": 16422.06, + "probability": 0.9043 + }, + { + "start": 16422.14, + "end": 16422.98, + "probability": 0.5837 + }, + { + "start": 16423.04, + "end": 16424.72, + "probability": 0.8209 + }, + { + "start": 16426.38, + "end": 16430.26, + "probability": 0.8386 + }, + { + "start": 16430.74, + "end": 16433.38, + "probability": 0.9927 + }, + { + "start": 16434.34, + "end": 16437.5, + "probability": 0.7999 + }, + { + "start": 16437.78, + "end": 16438.62, + "probability": 0.771 + }, + { + "start": 16439.68, + "end": 16444.04, + "probability": 0.8384 + }, + { + "start": 16445.36, + "end": 16448.78, + "probability": 0.7642 + }, + { + "start": 16449.78, + "end": 16451.5, + "probability": 0.7598 + }, + { + "start": 16452.5, + "end": 16454.44, + "probability": 0.9808 + }, + { + "start": 16455.08, + "end": 16458.72, + "probability": 0.9708 + }, + { + "start": 16459.4, + "end": 16461.32, + "probability": 0.9259 + }, + { + "start": 16462.24, + "end": 16463.68, + "probability": 0.596 + }, + { + "start": 16463.86, + "end": 16465.24, + "probability": 0.7589 + }, + { + "start": 16466.06, + "end": 16469.24, + "probability": 0.8253 + }, + { + "start": 16469.76, + "end": 16471.02, + "probability": 0.9506 + }, + { + "start": 16471.52, + "end": 16474.04, + "probability": 0.6547 + }, + { + "start": 16474.38, + "end": 16474.72, + "probability": 0.4096 + }, + { + "start": 16475.06, + "end": 16477.44, + "probability": 0.7826 + }, + { + "start": 16477.86, + "end": 16480.62, + "probability": 0.7604 + }, + { + "start": 16483.88, + "end": 16486.96, + "probability": 0.6418 + }, + { + "start": 16487.0, + "end": 16487.24, + "probability": 0.717 + }, + { + "start": 16487.44, + "end": 16487.98, + "probability": 0.9194 + }, + { + "start": 16488.4, + "end": 16494.96, + "probability": 0.9679 + }, + { + "start": 16495.2, + "end": 16500.86, + "probability": 0.8216 + }, + { + "start": 16501.2, + "end": 16505.08, + "probability": 0.9863 + }, + { + "start": 16505.08, + "end": 16510.16, + "probability": 0.9964 + }, + { + "start": 16510.52, + "end": 16512.08, + "probability": 0.9489 + }, + { + "start": 16512.38, + "end": 16518.64, + "probability": 0.9739 + }, + { + "start": 16518.78, + "end": 16519.62, + "probability": 0.4802 + }, + { + "start": 16519.9, + "end": 16520.5, + "probability": 0.5149 + }, + { + "start": 16521.14, + "end": 16522.88, + "probability": 0.7681 + }, + { + "start": 16525.7, + "end": 16526.42, + "probability": 0.5978 + }, + { + "start": 16528.96, + "end": 16530.84, + "probability": 0.9687 + }, + { + "start": 16534.18, + "end": 16535.36, + "probability": 0.1026 + }, + { + "start": 16545.3, + "end": 16547.28, + "probability": 0.1573 + }, + { + "start": 16547.28, + "end": 16547.42, + "probability": 0.26 + }, + { + "start": 16547.66, + "end": 16548.91, + "probability": 0.0116 + }, + { + "start": 16564.86, + "end": 16566.86, + "probability": 0.3958 + }, + { + "start": 16567.82, + "end": 16571.52, + "probability": 0.856 + }, + { + "start": 16573.64, + "end": 16577.28, + "probability": 0.9869 + }, + { + "start": 16577.66, + "end": 16579.18, + "probability": 0.901 + }, + { + "start": 16579.78, + "end": 16581.12, + "probability": 0.9051 + }, + { + "start": 16582.46, + "end": 16587.98, + "probability": 0.9969 + }, + { + "start": 16587.98, + "end": 16594.92, + "probability": 0.9949 + }, + { + "start": 16595.6, + "end": 16600.52, + "probability": 0.9961 + }, + { + "start": 16601.28, + "end": 16606.0, + "probability": 0.988 + }, + { + "start": 16606.0, + "end": 16608.6, + "probability": 0.9854 + }, + { + "start": 16608.78, + "end": 16609.44, + "probability": 0.8108 + }, + { + "start": 16610.02, + "end": 16612.24, + "probability": 0.8145 + }, + { + "start": 16613.24, + "end": 16616.56, + "probability": 0.9849 + }, + { + "start": 16617.98, + "end": 16620.71, + "probability": 0.9884 + }, + { + "start": 16621.2, + "end": 16622.94, + "probability": 0.9673 + }, + { + "start": 16623.24, + "end": 16624.92, + "probability": 0.8572 + }, + { + "start": 16625.7, + "end": 16629.16, + "probability": 0.9957 + }, + { + "start": 16629.42, + "end": 16633.08, + "probability": 0.96 + }, + { + "start": 16633.7, + "end": 16639.36, + "probability": 0.958 + }, + { + "start": 16639.36, + "end": 16647.12, + "probability": 0.8493 + }, + { + "start": 16648.14, + "end": 16649.52, + "probability": 0.938 + }, + { + "start": 16650.8, + "end": 16654.96, + "probability": 0.9958 + }, + { + "start": 16654.96, + "end": 16657.72, + "probability": 0.9933 + }, + { + "start": 16657.84, + "end": 16658.1, + "probability": 0.7198 + }, + { + "start": 16659.46, + "end": 16662.06, + "probability": 0.9489 + }, + { + "start": 16662.72, + "end": 16665.23, + "probability": 0.9969 + }, + { + "start": 16665.96, + "end": 16666.8, + "probability": 0.7251 + }, + { + "start": 16666.96, + "end": 16667.64, + "probability": 0.5221 + }, + { + "start": 16667.68, + "end": 16668.9, + "probability": 0.9347 + }, + { + "start": 16669.58, + "end": 16672.82, + "probability": 0.8911 + }, + { + "start": 16673.44, + "end": 16676.2, + "probability": 0.873 + }, + { + "start": 16676.2, + "end": 16679.6, + "probability": 0.9434 + }, + { + "start": 16680.6, + "end": 16684.66, + "probability": 0.9939 + }, + { + "start": 16684.76, + "end": 16685.88, + "probability": 0.8435 + }, + { + "start": 16686.88, + "end": 16688.08, + "probability": 0.9363 + }, + { + "start": 16688.2, + "end": 16691.42, + "probability": 0.9787 + }, + { + "start": 16692.22, + "end": 16692.78, + "probability": 0.9186 + }, + { + "start": 16692.8, + "end": 16697.46, + "probability": 0.9696 + }, + { + "start": 16698.12, + "end": 16700.12, + "probability": 0.9983 + }, + { + "start": 16700.48, + "end": 16701.4, + "probability": 0.5359 + }, + { + "start": 16701.56, + "end": 16704.24, + "probability": 0.8108 + }, + { + "start": 16704.3, + "end": 16705.68, + "probability": 0.6236 + }, + { + "start": 16706.48, + "end": 16711.9, + "probability": 0.8707 + }, + { + "start": 16711.9, + "end": 16718.32, + "probability": 0.9925 + }, + { + "start": 16718.46, + "end": 16719.7, + "probability": 0.8159 + }, + { + "start": 16719.78, + "end": 16721.1, + "probability": 0.7982 + }, + { + "start": 16721.48, + "end": 16721.78, + "probability": 0.469 + }, + { + "start": 16721.9, + "end": 16725.92, + "probability": 0.8716 + }, + { + "start": 16727.24, + "end": 16730.06, + "probability": 0.987 + }, + { + "start": 16730.06, + "end": 16733.48, + "probability": 0.9945 + }, + { + "start": 16734.24, + "end": 16736.3, + "probability": 0.8182 + }, + { + "start": 16737.0, + "end": 16737.77, + "probability": 0.9902 + }, + { + "start": 16738.66, + "end": 16741.42, + "probability": 0.962 + }, + { + "start": 16742.08, + "end": 16746.88, + "probability": 0.9964 + }, + { + "start": 16747.44, + "end": 16748.2, + "probability": 0.6527 + }, + { + "start": 16748.52, + "end": 16751.74, + "probability": 0.9521 + }, + { + "start": 16751.76, + "end": 16751.98, + "probability": 0.3856 + }, + { + "start": 16751.98, + "end": 16753.42, + "probability": 0.7474 + }, + { + "start": 16754.02, + "end": 16755.02, + "probability": 0.9463 + }, + { + "start": 16755.84, + "end": 16760.32, + "probability": 0.9888 + }, + { + "start": 16760.48, + "end": 16762.0, + "probability": 0.9317 + }, + { + "start": 16762.74, + "end": 16764.24, + "probability": 0.5925 + }, + { + "start": 16764.36, + "end": 16765.2, + "probability": 0.8195 + }, + { + "start": 16765.32, + "end": 16765.8, + "probability": 0.7938 + }, + { + "start": 16765.8, + "end": 16766.46, + "probability": 0.6793 + }, + { + "start": 16767.2, + "end": 16768.06, + "probability": 0.7124 + }, + { + "start": 16768.62, + "end": 16769.36, + "probability": 0.4954 + }, + { + "start": 16769.5, + "end": 16770.52, + "probability": 0.9246 + }, + { + "start": 16770.6, + "end": 16772.1, + "probability": 0.8042 + }, + { + "start": 16772.44, + "end": 16775.64, + "probability": 0.9706 + }, + { + "start": 16775.96, + "end": 16780.82, + "probability": 0.9484 + }, + { + "start": 16780.82, + "end": 16785.84, + "probability": 0.9687 + }, + { + "start": 16786.04, + "end": 16786.62, + "probability": 0.393 + }, + { + "start": 16786.82, + "end": 16788.5, + "probability": 0.6386 + }, + { + "start": 16788.5, + "end": 16792.26, + "probability": 0.7512 + }, + { + "start": 16792.8, + "end": 16793.98, + "probability": 0.9673 + }, + { + "start": 16794.9, + "end": 16795.54, + "probability": 0.8237 + }, + { + "start": 16796.3, + "end": 16798.58, + "probability": 0.942 + }, + { + "start": 16799.28, + "end": 16800.68, + "probability": 0.7863 + }, + { + "start": 16800.68, + "end": 16802.36, + "probability": 0.541 + }, + { + "start": 16802.52, + "end": 16804.34, + "probability": 0.5168 + }, + { + "start": 16804.52, + "end": 16807.57, + "probability": 0.7477 + }, + { + "start": 16808.26, + "end": 16809.85, + "probability": 0.5404 + }, + { + "start": 16810.3, + "end": 16812.32, + "probability": 0.2766 + }, + { + "start": 16812.66, + "end": 16815.78, + "probability": 0.9639 + }, + { + "start": 16815.84, + "end": 16817.46, + "probability": 0.9322 + }, + { + "start": 16817.66, + "end": 16817.84, + "probability": 0.7755 + }, + { + "start": 16818.1, + "end": 16818.36, + "probability": 0.6824 + }, + { + "start": 16818.44, + "end": 16819.6, + "probability": 0.5332 + }, + { + "start": 16819.7, + "end": 16821.52, + "probability": 0.5606 + }, + { + "start": 16822.34, + "end": 16823.24, + "probability": 0.6912 + }, + { + "start": 16823.34, + "end": 16824.4, + "probability": 0.7147 + }, + { + "start": 16824.44, + "end": 16826.36, + "probability": 0.891 + }, + { + "start": 16826.88, + "end": 16831.34, + "probability": 0.9357 + }, + { + "start": 16835.72, + "end": 16840.54, + "probability": 0.149 + }, + { + "start": 16840.88, + "end": 16841.58, + "probability": 0.7511 + }, + { + "start": 16841.78, + "end": 16845.88, + "probability": 0.5434 + }, + { + "start": 16845.88, + "end": 16850.02, + "probability": 0.1125 + }, + { + "start": 16853.6, + "end": 16853.98, + "probability": 0.1047 + }, + { + "start": 16853.98, + "end": 16854.94, + "probability": 0.3314 + }, + { + "start": 16855.24, + "end": 16858.32, + "probability": 0.6829 + }, + { + "start": 16858.9, + "end": 16859.02, + "probability": 0.1395 + }, + { + "start": 16860.12, + "end": 16860.12, + "probability": 0.0375 + }, + { + "start": 16860.12, + "end": 16860.2, + "probability": 0.1549 + }, + { + "start": 16860.2, + "end": 16860.66, + "probability": 0.5326 + }, + { + "start": 16861.08, + "end": 16863.14, + "probability": 0.4942 + }, + { + "start": 16864.92, + "end": 16865.84, + "probability": 0.4664 + }, + { + "start": 16866.68, + "end": 16867.82, + "probability": 0.6142 + }, + { + "start": 16869.86, + "end": 16870.56, + "probability": 0.2943 + }, + { + "start": 16870.92, + "end": 16872.1, + "probability": 0.7625 + }, + { + "start": 16881.84, + "end": 16881.88, + "probability": 0.8161 + }, + { + "start": 16881.88, + "end": 16882.5, + "probability": 0.8456 + }, + { + "start": 16887.3, + "end": 16889.14, + "probability": 0.576 + }, + { + "start": 16890.44, + "end": 16892.22, + "probability": 0.8357 + }, + { + "start": 16893.5, + "end": 16893.97, + "probability": 0.9705 + }, + { + "start": 16896.6, + "end": 16898.88, + "probability": 0.6806 + }, + { + "start": 16899.6, + "end": 16905.72, + "probability": 0.6999 + }, + { + "start": 16906.5, + "end": 16910.7, + "probability": 0.9596 + }, + { + "start": 16911.98, + "end": 16914.1, + "probability": 0.9899 + }, + { + "start": 16914.96, + "end": 16918.26, + "probability": 0.971 + }, + { + "start": 16920.0, + "end": 16922.8, + "probability": 0.9802 + }, + { + "start": 16925.06, + "end": 16926.12, + "probability": 0.6318 + }, + { + "start": 16927.56, + "end": 16931.6, + "probability": 0.8862 + }, + { + "start": 16932.88, + "end": 16933.94, + "probability": 0.9714 + }, + { + "start": 16934.64, + "end": 16938.54, + "probability": 0.9985 + }, + { + "start": 16939.22, + "end": 16942.7, + "probability": 0.9778 + }, + { + "start": 16944.14, + "end": 16950.12, + "probability": 0.9861 + }, + { + "start": 16951.62, + "end": 16959.08, + "probability": 0.9954 + }, + { + "start": 16960.18, + "end": 16963.62, + "probability": 0.9899 + }, + { + "start": 16963.81, + "end": 16967.0, + "probability": 0.9997 + }, + { + "start": 16967.6, + "end": 16972.0, + "probability": 0.8833 + }, + { + "start": 16972.68, + "end": 16973.46, + "probability": 0.7272 + }, + { + "start": 16974.08, + "end": 16974.86, + "probability": 0.9691 + }, + { + "start": 16975.46, + "end": 16978.84, + "probability": 0.9966 + }, + { + "start": 16979.54, + "end": 16981.96, + "probability": 0.8393 + }, + { + "start": 16982.76, + "end": 16986.74, + "probability": 0.9722 + }, + { + "start": 16987.28, + "end": 16990.72, + "probability": 0.9914 + }, + { + "start": 16991.86, + "end": 16996.54, + "probability": 0.9985 + }, + { + "start": 16996.54, + "end": 17000.64, + "probability": 0.9657 + }, + { + "start": 17002.02, + "end": 17002.4, + "probability": 0.458 + }, + { + "start": 17002.46, + "end": 17002.78, + "probability": 0.6741 + }, + { + "start": 17002.86, + "end": 17005.21, + "probability": 0.7453 + }, + { + "start": 17006.1, + "end": 17007.24, + "probability": 0.655 + }, + { + "start": 17010.08, + "end": 17014.5, + "probability": 0.9861 + }, + { + "start": 17014.56, + "end": 17017.16, + "probability": 0.9838 + }, + { + "start": 17017.66, + "end": 17018.38, + "probability": 0.6506 + }, + { + "start": 17018.84, + "end": 17019.46, + "probability": 0.9125 + }, + { + "start": 17020.48, + "end": 17021.76, + "probability": 0.9129 + }, + { + "start": 17022.46, + "end": 17023.66, + "probability": 0.9901 + }, + { + "start": 17023.98, + "end": 17027.34, + "probability": 0.9492 + }, + { + "start": 17028.12, + "end": 17030.86, + "probability": 0.9437 + }, + { + "start": 17031.06, + "end": 17037.32, + "probability": 0.9987 + }, + { + "start": 17038.44, + "end": 17043.34, + "probability": 0.9846 + }, + { + "start": 17043.34, + "end": 17049.08, + "probability": 0.999 + }, + { + "start": 17049.08, + "end": 17056.32, + "probability": 0.9973 + }, + { + "start": 17058.74, + "end": 17062.6, + "probability": 0.9849 + }, + { + "start": 17062.82, + "end": 17063.58, + "probability": 0.9303 + }, + { + "start": 17064.12, + "end": 17064.7, + "probability": 0.9221 + }, + { + "start": 17065.1, + "end": 17068.0, + "probability": 0.9969 + }, + { + "start": 17068.28, + "end": 17072.3, + "probability": 0.9988 + }, + { + "start": 17072.68, + "end": 17073.16, + "probability": 0.4881 + }, + { + "start": 17074.6, + "end": 17074.88, + "probability": 0.4927 + }, + { + "start": 17075.06, + "end": 17076.06, + "probability": 0.6011 + }, + { + "start": 17076.8, + "end": 17078.76, + "probability": 0.9956 + }, + { + "start": 17082.48, + "end": 17084.06, + "probability": 0.998 + }, + { + "start": 17084.76, + "end": 17086.18, + "probability": 0.978 + }, + { + "start": 17086.88, + "end": 17093.04, + "probability": 0.9968 + }, + { + "start": 17093.04, + "end": 17096.26, + "probability": 0.9988 + }, + { + "start": 17096.84, + "end": 17100.76, + "probability": 0.9976 + }, + { + "start": 17100.96, + "end": 17101.9, + "probability": 0.7722 + }, + { + "start": 17102.2, + "end": 17102.3, + "probability": 0.3899 + }, + { + "start": 17102.54, + "end": 17103.66, + "probability": 0.8059 + }, + { + "start": 17103.98, + "end": 17104.08, + "probability": 0.853 + }, + { + "start": 17104.58, + "end": 17105.59, + "probability": 0.586 + }, + { + "start": 17106.12, + "end": 17108.36, + "probability": 0.7642 + }, + { + "start": 17109.02, + "end": 17111.2, + "probability": 0.7181 + }, + { + "start": 17111.28, + "end": 17113.14, + "probability": 0.9583 + }, + { + "start": 17135.48, + "end": 17136.48, + "probability": 0.4123 + }, + { + "start": 17136.48, + "end": 17138.63, + "probability": 0.8404 + }, + { + "start": 17140.5, + "end": 17141.1, + "probability": 0.9372 + }, + { + "start": 17144.02, + "end": 17145.22, + "probability": 0.7875 + }, + { + "start": 17146.74, + "end": 17147.54, + "probability": 0.7391 + }, + { + "start": 17150.7, + "end": 17156.04, + "probability": 0.8193 + }, + { + "start": 17157.12, + "end": 17161.96, + "probability": 0.9905 + }, + { + "start": 17162.96, + "end": 17167.72, + "probability": 0.9513 + }, + { + "start": 17169.62, + "end": 17171.48, + "probability": 0.8961 + }, + { + "start": 17171.86, + "end": 17174.52, + "probability": 0.9707 + }, + { + "start": 17175.78, + "end": 17178.6, + "probability": 0.9137 + }, + { + "start": 17178.8, + "end": 17181.66, + "probability": 0.9877 + }, + { + "start": 17183.46, + "end": 17187.08, + "probability": 0.8806 + }, + { + "start": 17189.24, + "end": 17192.68, + "probability": 0.9781 + }, + { + "start": 17193.92, + "end": 17198.1, + "probability": 0.979 + }, + { + "start": 17200.14, + "end": 17203.64, + "probability": 0.8235 + }, + { + "start": 17204.8, + "end": 17207.6, + "probability": 0.88 + }, + { + "start": 17208.86, + "end": 17211.86, + "probability": 0.9865 + }, + { + "start": 17213.08, + "end": 17216.74, + "probability": 0.9953 + }, + { + "start": 17217.88, + "end": 17221.96, + "probability": 0.8502 + }, + { + "start": 17222.5, + "end": 17223.22, + "probability": 0.9644 + }, + { + "start": 17224.3, + "end": 17226.68, + "probability": 0.9658 + }, + { + "start": 17227.46, + "end": 17229.32, + "probability": 0.9927 + }, + { + "start": 17230.34, + "end": 17232.24, + "probability": 0.8552 + }, + { + "start": 17233.36, + "end": 17234.36, + "probability": 0.9 + }, + { + "start": 17235.64, + "end": 17237.86, + "probability": 0.6926 + }, + { + "start": 17238.96, + "end": 17243.35, + "probability": 0.9694 + }, + { + "start": 17244.18, + "end": 17246.26, + "probability": 0.9979 + }, + { + "start": 17247.58, + "end": 17249.6, + "probability": 0.9693 + }, + { + "start": 17250.46, + "end": 17253.72, + "probability": 0.9862 + }, + { + "start": 17254.38, + "end": 17257.4, + "probability": 0.989 + }, + { + "start": 17260.5, + "end": 17262.5, + "probability": 0.7674 + }, + { + "start": 17263.66, + "end": 17267.84, + "probability": 0.9535 + }, + { + "start": 17267.9, + "end": 17271.08, + "probability": 0.9886 + }, + { + "start": 17272.52, + "end": 17273.78, + "probability": 0.9891 + }, + { + "start": 17275.28, + "end": 17277.12, + "probability": 0.9885 + }, + { + "start": 17278.38, + "end": 17279.88, + "probability": 0.8849 + }, + { + "start": 17280.04, + "end": 17280.82, + "probability": 0.297 + }, + { + "start": 17280.92, + "end": 17283.24, + "probability": 0.9729 + }, + { + "start": 17283.9, + "end": 17285.48, + "probability": 0.7274 + }, + { + "start": 17287.18, + "end": 17289.24, + "probability": 0.9967 + }, + { + "start": 17289.5, + "end": 17294.36, + "probability": 0.8903 + }, + { + "start": 17294.66, + "end": 17295.02, + "probability": 0.9915 + }, + { + "start": 17295.54, + "end": 17297.04, + "probability": 0.7872 + }, + { + "start": 17298.1, + "end": 17298.82, + "probability": 0.8383 + }, + { + "start": 17300.92, + "end": 17303.11, + "probability": 0.032 + }, + { + "start": 17304.04, + "end": 17304.64, + "probability": 0.2529 + }, + { + "start": 17304.72, + "end": 17306.46, + "probability": 0.8558 + }, + { + "start": 17306.46, + "end": 17307.86, + "probability": 0.8853 + }, + { + "start": 17307.92, + "end": 17308.76, + "probability": 0.9692 + }, + { + "start": 17308.84, + "end": 17310.12, + "probability": 0.9162 + }, + { + "start": 17310.2, + "end": 17311.18, + "probability": 0.981 + }, + { + "start": 17311.22, + "end": 17313.08, + "probability": 0.9978 + }, + { + "start": 17313.64, + "end": 17315.24, + "probability": 0.9906 + }, + { + "start": 17316.34, + "end": 17316.68, + "probability": 0.2509 + }, + { + "start": 17319.42, + "end": 17321.06, + "probability": 0.6326 + }, + { + "start": 17321.34, + "end": 17322.58, + "probability": 0.4481 + }, + { + "start": 17323.64, + "end": 17324.86, + "probability": 0.6122 + }, + { + "start": 17324.98, + "end": 17327.1, + "probability": 0.9311 + }, + { + "start": 17327.1, + "end": 17327.2, + "probability": 0.0968 + }, + { + "start": 17328.58, + "end": 17328.6, + "probability": 0.1217 + }, + { + "start": 17329.32, + "end": 17330.22, + "probability": 0.9272 + }, + { + "start": 17330.4, + "end": 17330.96, + "probability": 0.8555 + }, + { + "start": 17331.66, + "end": 17334.92, + "probability": 0.9482 + }, + { + "start": 17334.92, + "end": 17335.72, + "probability": 0.7815 + }, + { + "start": 17336.1, + "end": 17337.88, + "probability": 0.7001 + }, + { + "start": 17338.74, + "end": 17344.54, + "probability": 0.9988 + }, + { + "start": 17344.92, + "end": 17345.6, + "probability": 0.4438 + }, + { + "start": 17345.78, + "end": 17346.44, + "probability": 0.7592 + }, + { + "start": 17346.5, + "end": 17347.27, + "probability": 0.6604 + }, + { + "start": 17347.98, + "end": 17351.44, + "probability": 0.9032 + }, + { + "start": 17352.46, + "end": 17356.42, + "probability": 0.8525 + }, + { + "start": 17357.52, + "end": 17358.64, + "probability": 0.7528 + }, + { + "start": 17358.76, + "end": 17361.54, + "probability": 0.6663 + }, + { + "start": 17362.66, + "end": 17365.82, + "probability": 0.9716 + }, + { + "start": 17366.12, + "end": 17367.76, + "probability": 0.822 + }, + { + "start": 17369.24, + "end": 17371.78, + "probability": 0.9189 + }, + { + "start": 17372.28, + "end": 17374.22, + "probability": 0.8333 + }, + { + "start": 17378.12, + "end": 17379.0, + "probability": 0.3463 + }, + { + "start": 17379.04, + "end": 17379.2, + "probability": 0.4737 + }, + { + "start": 17379.2, + "end": 17379.28, + "probability": 0.3492 + }, + { + "start": 17379.28, + "end": 17382.36, + "probability": 0.6333 + }, + { + "start": 17382.44, + "end": 17382.76, + "probability": 0.4353 + }, + { + "start": 17382.98, + "end": 17383.56, + "probability": 0.4736 + }, + { + "start": 17384.1, + "end": 17386.92, + "probability": 0.5573 + }, + { + "start": 17402.34, + "end": 17402.34, + "probability": 0.06 + }, + { + "start": 17402.34, + "end": 17402.34, + "probability": 0.1889 + }, + { + "start": 17402.34, + "end": 17402.36, + "probability": 0.1812 + }, + { + "start": 17402.36, + "end": 17402.36, + "probability": 0.1741 + }, + { + "start": 17402.36, + "end": 17402.38, + "probability": 0.1013 + }, + { + "start": 17402.38, + "end": 17402.46, + "probability": 0.0217 + }, + { + "start": 17442.72, + "end": 17443.74, + "probability": 0.1387 + }, + { + "start": 17447.3, + "end": 17448.76, + "probability": 0.6669 + }, + { + "start": 17451.2, + "end": 17452.24, + "probability": 0.9963 + }, + { + "start": 17455.64, + "end": 17456.06, + "probability": 0.6973 + }, + { + "start": 17457.62, + "end": 17459.88, + "probability": 0.9773 + }, + { + "start": 17461.84, + "end": 17462.64, + "probability": 0.7995 + }, + { + "start": 17463.72, + "end": 17466.14, + "probability": 0.999 + }, + { + "start": 17468.22, + "end": 17469.6, + "probability": 0.9426 + }, + { + "start": 17470.92, + "end": 17472.84, + "probability": 0.9723 + }, + { + "start": 17473.42, + "end": 17474.14, + "probability": 0.9375 + }, + { + "start": 17477.32, + "end": 17478.1, + "probability": 0.6671 + }, + { + "start": 17480.88, + "end": 17482.2, + "probability": 0.9949 + }, + { + "start": 17484.12, + "end": 17486.08, + "probability": 0.9984 + }, + { + "start": 17488.42, + "end": 17490.82, + "probability": 0.9912 + }, + { + "start": 17491.78, + "end": 17493.7, + "probability": 0.9766 + }, + { + "start": 17494.9, + "end": 17496.0, + "probability": 0.9867 + }, + { + "start": 17497.3, + "end": 17505.74, + "probability": 0.9569 + }, + { + "start": 17507.68, + "end": 17509.56, + "probability": 0.8168 + }, + { + "start": 17511.92, + "end": 17513.88, + "probability": 0.9913 + }, + { + "start": 17515.68, + "end": 17519.74, + "probability": 0.8926 + }, + { + "start": 17521.72, + "end": 17524.36, + "probability": 0.8655 + }, + { + "start": 17525.66, + "end": 17528.02, + "probability": 0.9888 + }, + { + "start": 17531.64, + "end": 17533.74, + "probability": 0.9998 + }, + { + "start": 17536.08, + "end": 17537.32, + "probability": 0.9913 + }, + { + "start": 17538.82, + "end": 17540.62, + "probability": 0.9808 + }, + { + "start": 17545.48, + "end": 17546.8, + "probability": 0.998 + }, + { + "start": 17548.36, + "end": 17556.8, + "probability": 0.9922 + }, + { + "start": 17557.82, + "end": 17557.84, + "probability": 0.0023 + }, + { + "start": 17558.36, + "end": 17560.84, + "probability": 0.9332 + }, + { + "start": 17562.92, + "end": 17563.64, + "probability": 0.7583 + }, + { + "start": 17564.34, + "end": 17566.96, + "probability": 0.9937 + }, + { + "start": 17568.38, + "end": 17570.12, + "probability": 0.9949 + }, + { + "start": 17575.64, + "end": 17576.98, + "probability": 0.7005 + }, + { + "start": 17580.74, + "end": 17582.48, + "probability": 0.9303 + }, + { + "start": 17583.2, + "end": 17583.9, + "probability": 0.7982 + }, + { + "start": 17586.14, + "end": 17587.53, + "probability": 0.9931 + }, + { + "start": 17590.4, + "end": 17591.92, + "probability": 0.8049 + }, + { + "start": 17593.2, + "end": 17595.24, + "probability": 0.9937 + }, + { + "start": 17598.02, + "end": 17599.5, + "probability": 0.7182 + }, + { + "start": 17600.8, + "end": 17603.44, + "probability": 0.9922 + }, + { + "start": 17605.16, + "end": 17607.78, + "probability": 0.9565 + }, + { + "start": 17610.02, + "end": 17613.04, + "probability": 0.8047 + }, + { + "start": 17614.06, + "end": 17618.02, + "probability": 0.9917 + }, + { + "start": 17619.32, + "end": 17625.86, + "probability": 0.9492 + }, + { + "start": 17628.12, + "end": 17631.62, + "probability": 0.9716 + }, + { + "start": 17631.74, + "end": 17637.0, + "probability": 0.9949 + }, + { + "start": 17637.94, + "end": 17641.48, + "probability": 0.9205 + }, + { + "start": 17641.92, + "end": 17642.48, + "probability": 0.5964 + }, + { + "start": 17642.7, + "end": 17644.26, + "probability": 0.4396 + }, + { + "start": 17644.28, + "end": 17650.66, + "probability": 0.1771 + }, + { + "start": 17650.66, + "end": 17650.66, + "probability": 0.2123 + }, + { + "start": 17650.66, + "end": 17650.66, + "probability": 0.0413 + }, + { + "start": 17650.66, + "end": 17651.56, + "probability": 0.1614 + }, + { + "start": 17654.16, + "end": 17659.46, + "probability": 0.6676 + }, + { + "start": 17660.84, + "end": 17662.32, + "probability": 0.6534 + }, + { + "start": 17664.14, + "end": 17664.46, + "probability": 0.5079 + }, + { + "start": 17664.58, + "end": 17668.68, + "probability": 0.9515 + }, + { + "start": 17670.36, + "end": 17671.94, + "probability": 0.8369 + }, + { + "start": 17673.06, + "end": 17675.6, + "probability": 0.9812 + }, + { + "start": 17675.96, + "end": 17676.76, + "probability": 0.6795 + }, + { + "start": 17676.98, + "end": 17678.65, + "probability": 0.9734 + }, + { + "start": 17679.5, + "end": 17682.46, + "probability": 0.9969 + }, + { + "start": 17683.38, + "end": 17684.26, + "probability": 0.3451 + }, + { + "start": 17685.12, + "end": 17688.24, + "probability": 0.8984 + }, + { + "start": 17688.94, + "end": 17691.2, + "probability": 0.7998 + }, + { + "start": 17693.34, + "end": 17695.0, + "probability": 0.8278 + }, + { + "start": 17695.98, + "end": 17701.44, + "probability": 0.9928 + }, + { + "start": 17701.82, + "end": 17703.49, + "probability": 0.9797 + }, + { + "start": 17704.28, + "end": 17708.04, + "probability": 0.9836 + }, + { + "start": 17709.26, + "end": 17709.64, + "probability": 0.4327 + }, + { + "start": 17709.98, + "end": 17711.96, + "probability": 0.8085 + }, + { + "start": 17712.04, + "end": 17713.02, + "probability": 0.6697 + }, + { + "start": 17713.1, + "end": 17715.0, + "probability": 0.8972 + }, + { + "start": 17715.52, + "end": 17717.8, + "probability": 0.8054 + }, + { + "start": 17718.8, + "end": 17723.66, + "probability": 0.9954 + }, + { + "start": 17724.7, + "end": 17728.48, + "probability": 0.9548 + }, + { + "start": 17729.3, + "end": 17733.24, + "probability": 0.957 + }, + { + "start": 17734.92, + "end": 17738.92, + "probability": 0.9814 + }, + { + "start": 17738.92, + "end": 17742.24, + "probability": 0.939 + }, + { + "start": 17743.88, + "end": 17745.32, + "probability": 0.9302 + }, + { + "start": 17745.38, + "end": 17746.42, + "probability": 0.8315 + }, + { + "start": 17747.14, + "end": 17747.46, + "probability": 0.5241 + }, + { + "start": 17747.46, + "end": 17749.02, + "probability": 0.7017 + }, + { + "start": 17749.44, + "end": 17749.88, + "probability": 0.736 + }, + { + "start": 17750.38, + "end": 17751.1, + "probability": 0.928 + }, + { + "start": 17751.92, + "end": 17753.78, + "probability": 0.8676 + }, + { + "start": 17754.54, + "end": 17755.7, + "probability": 0.3237 + }, + { + "start": 17756.16, + "end": 17757.16, + "probability": 0.2559 + }, + { + "start": 17757.2, + "end": 17761.16, + "probability": 0.2982 + }, + { + "start": 17761.58, + "end": 17763.37, + "probability": 0.03 + }, + { + "start": 17770.16, + "end": 17771.68, + "probability": 0.251 + }, + { + "start": 17772.4, + "end": 17773.52, + "probability": 0.1571 + }, + { + "start": 17774.44, + "end": 17775.3, + "probability": 0.6944 + }, + { + "start": 17776.82, + "end": 17780.18, + "probability": 0.8086 + }, + { + "start": 17780.83, + "end": 17783.48, + "probability": 0.9368 + }, + { + "start": 17783.62, + "end": 17788.12, + "probability": 0.9829 + }, + { + "start": 17788.12, + "end": 17792.66, + "probability": 0.9937 + }, + { + "start": 17792.68, + "end": 17795.06, + "probability": 0.9944 + }, + { + "start": 17795.86, + "end": 17800.02, + "probability": 0.9824 + }, + { + "start": 17800.64, + "end": 17802.48, + "probability": 0.889 + }, + { + "start": 17802.6, + "end": 17803.56, + "probability": 0.9943 + }, + { + "start": 17804.46, + "end": 17805.32, + "probability": 0.985 + }, + { + "start": 17807.04, + "end": 17809.32, + "probability": 0.4599 + }, + { + "start": 17809.8, + "end": 17810.72, + "probability": 0.8011 + }, + { + "start": 17812.3, + "end": 17812.58, + "probability": 0.2255 + }, + { + "start": 17812.82, + "end": 17816.36, + "probability": 0.9878 + }, + { + "start": 17816.48, + "end": 17816.96, + "probability": 0.555 + }, + { + "start": 17817.04, + "end": 17819.36, + "probability": 0.9849 + }, + { + "start": 17819.5, + "end": 17823.34, + "probability": 0.9243 + }, + { + "start": 17823.88, + "end": 17827.28, + "probability": 0.9552 + }, + { + "start": 17828.24, + "end": 17832.08, + "probability": 0.9877 + }, + { + "start": 17832.56, + "end": 17834.18, + "probability": 0.9864 + }, + { + "start": 17834.42, + "end": 17838.14, + "probability": 0.9411 + }, + { + "start": 17838.2, + "end": 17838.92, + "probability": 0.7772 + }, + { + "start": 17839.64, + "end": 17841.24, + "probability": 0.982 + }, + { + "start": 17841.34, + "end": 17842.58, + "probability": 0.9452 + }, + { + "start": 17842.92, + "end": 17846.14, + "probability": 0.9561 + }, + { + "start": 17846.68, + "end": 17854.52, + "probability": 0.9472 + }, + { + "start": 17854.58, + "end": 17857.06, + "probability": 0.8924 + }, + { + "start": 17857.16, + "end": 17862.16, + "probability": 0.8979 + }, + { + "start": 17862.98, + "end": 17863.96, + "probability": 0.7867 + }, + { + "start": 17864.88, + "end": 17869.3, + "probability": 0.9964 + }, + { + "start": 17869.98, + "end": 17873.96, + "probability": 0.995 + }, + { + "start": 17875.38, + "end": 17876.38, + "probability": 0.9943 + }, + { + "start": 17877.62, + "end": 17878.58, + "probability": 0.8944 + }, + { + "start": 17879.02, + "end": 17882.36, + "probability": 0.9901 + }, + { + "start": 17882.48, + "end": 17884.96, + "probability": 0.976 + }, + { + "start": 17885.04, + "end": 17888.58, + "probability": 0.9795 + }, + { + "start": 17889.12, + "end": 17893.06, + "probability": 0.9372 + }, + { + "start": 17893.76, + "end": 17896.42, + "probability": 0.9957 + }, + { + "start": 17896.78, + "end": 17897.36, + "probability": 0.5645 + }, + { + "start": 17897.44, + "end": 17900.25, + "probability": 0.8381 + }, + { + "start": 17900.78, + "end": 17902.78, + "probability": 0.9819 + }, + { + "start": 17903.06, + "end": 17906.62, + "probability": 0.9802 + }, + { + "start": 17906.62, + "end": 17910.48, + "probability": 0.994 + }, + { + "start": 17910.56, + "end": 17913.16, + "probability": 0.9834 + }, + { + "start": 17913.42, + "end": 17917.04, + "probability": 0.992 + }, + { + "start": 17917.58, + "end": 17917.92, + "probability": 0.8445 + }, + { + "start": 17918.8, + "end": 17921.9, + "probability": 0.762 + }, + { + "start": 17921.9, + "end": 17923.2, + "probability": 0.7086 + }, + { + "start": 17924.14, + "end": 17925.84, + "probability": 0.219 + }, + { + "start": 17928.53, + "end": 17931.56, + "probability": 0.8936 + }, + { + "start": 17932.74, + "end": 17934.1, + "probability": 0.2395 + }, + { + "start": 17937.88, + "end": 17938.28, + "probability": 0.0173 + }, + { + "start": 17959.6, + "end": 17959.7, + "probability": 0.1634 + }, + { + "start": 17960.54, + "end": 17964.06, + "probability": 0.1294 + }, + { + "start": 17966.2, + "end": 17967.78, + "probability": 0.6848 + }, + { + "start": 17969.58, + "end": 17972.84, + "probability": 0.9926 + }, + { + "start": 17972.84, + "end": 17976.6, + "probability": 0.9944 + }, + { + "start": 17977.44, + "end": 17979.26, + "probability": 0.712 + }, + { + "start": 17980.46, + "end": 17981.78, + "probability": 0.5319 + }, + { + "start": 17981.9, + "end": 17982.52, + "probability": 0.9159 + }, + { + "start": 17982.9, + "end": 17983.28, + "probability": 0.3648 + }, + { + "start": 17983.66, + "end": 17984.62, + "probability": 0.8238 + }, + { + "start": 17984.92, + "end": 17990.8, + "probability": 0.6875 + }, + { + "start": 17991.86, + "end": 17993.4, + "probability": 0.8789 + }, + { + "start": 17993.56, + "end": 17996.46, + "probability": 0.9392 + }, + { + "start": 17996.46, + "end": 17999.06, + "probability": 0.931 + }, + { + "start": 17999.94, + "end": 18004.24, + "probability": 0.9806 + }, + { + "start": 18004.32, + "end": 18005.14, + "probability": 0.7975 + }, + { + "start": 18005.88, + "end": 18006.8, + "probability": 0.7073 + }, + { + "start": 18007.54, + "end": 18013.34, + "probability": 0.982 + }, + { + "start": 18014.5, + "end": 18019.5, + "probability": 0.9969 + }, + { + "start": 18019.5, + "end": 18023.36, + "probability": 0.9455 + }, + { + "start": 18026.3, + "end": 18029.48, + "probability": 0.9979 + }, + { + "start": 18029.76, + "end": 18030.68, + "probability": 0.9527 + }, + { + "start": 18030.82, + "end": 18031.64, + "probability": 0.9823 + }, + { + "start": 18032.58, + "end": 18038.2, + "probability": 0.9868 + }, + { + "start": 18038.78, + "end": 18039.48, + "probability": 0.8303 + }, + { + "start": 18039.98, + "end": 18040.98, + "probability": 0.9797 + }, + { + "start": 18041.48, + "end": 18042.16, + "probability": 0.9129 + }, + { + "start": 18042.36, + "end": 18044.54, + "probability": 0.9904 + }, + { + "start": 18046.0, + "end": 18047.88, + "probability": 0.6978 + }, + { + "start": 18048.3, + "end": 18048.78, + "probability": 0.5225 + }, + { + "start": 18048.88, + "end": 18050.66, + "probability": 0.9746 + }, + { + "start": 18050.96, + "end": 18051.86, + "probability": 0.859 + }, + { + "start": 18051.92, + "end": 18054.98, + "probability": 0.9751 + }, + { + "start": 18055.98, + "end": 18058.32, + "probability": 0.9915 + }, + { + "start": 18059.26, + "end": 18062.76, + "probability": 0.9852 + }, + { + "start": 18062.76, + "end": 18066.48, + "probability": 0.9958 + }, + { + "start": 18067.44, + "end": 18067.98, + "probability": 0.9466 + }, + { + "start": 18068.18, + "end": 18069.8, + "probability": 0.8948 + }, + { + "start": 18070.04, + "end": 18072.32, + "probability": 0.9497 + }, + { + "start": 18073.28, + "end": 18075.9, + "probability": 0.954 + }, + { + "start": 18076.32, + "end": 18079.6, + "probability": 0.9934 + }, + { + "start": 18080.36, + "end": 18082.98, + "probability": 0.9034 + }, + { + "start": 18083.52, + "end": 18087.0, + "probability": 0.9775 + }, + { + "start": 18087.14, + "end": 18087.74, + "probability": 0.6354 + }, + { + "start": 18088.24, + "end": 18091.9, + "probability": 0.972 + }, + { + "start": 18091.9, + "end": 18095.04, + "probability": 0.9758 + }, + { + "start": 18096.12, + "end": 18099.42, + "probability": 0.8442 + }, + { + "start": 18100.68, + "end": 18103.3, + "probability": 0.9827 + }, + { + "start": 18104.56, + "end": 18107.12, + "probability": 0.8443 + }, + { + "start": 18107.36, + "end": 18110.54, + "probability": 0.9608 + }, + { + "start": 18110.56, + "end": 18111.8, + "probability": 0.6759 + }, + { + "start": 18112.36, + "end": 18115.1, + "probability": 0.9292 + }, + { + "start": 18115.46, + "end": 18120.06, + "probability": 0.8412 + }, + { + "start": 18120.12, + "end": 18120.82, + "probability": 0.7218 + }, + { + "start": 18121.68, + "end": 18126.88, + "probability": 0.9824 + }, + { + "start": 18133.56, + "end": 18138.0, + "probability": 0.8577 + }, + { + "start": 18138.72, + "end": 18142.78, + "probability": 0.9735 + }, + { + "start": 18143.38, + "end": 18146.44, + "probability": 0.8824 + }, + { + "start": 18147.08, + "end": 18150.5, + "probability": 0.9897 + }, + { + "start": 18151.14, + "end": 18156.84, + "probability": 0.9807 + }, + { + "start": 18157.38, + "end": 18160.02, + "probability": 0.7372 + }, + { + "start": 18162.24, + "end": 18166.2, + "probability": 0.9653 + }, + { + "start": 18167.14, + "end": 18169.98, + "probability": 0.9912 + }, + { + "start": 18171.14, + "end": 18172.8, + "probability": 0.9344 + }, + { + "start": 18174.02, + "end": 18174.68, + "probability": 0.4121 + }, + { + "start": 18175.02, + "end": 18175.96, + "probability": 0.8276 + }, + { + "start": 18176.36, + "end": 18177.28, + "probability": 0.88 + }, + { + "start": 18177.46, + "end": 18178.38, + "probability": 0.8455 + }, + { + "start": 18178.68, + "end": 18180.24, + "probability": 0.9769 + }, + { + "start": 18180.94, + "end": 18183.96, + "probability": 0.9553 + }, + { + "start": 18184.6, + "end": 18188.06, + "probability": 0.9848 + }, + { + "start": 18188.46, + "end": 18194.28, + "probability": 0.9636 + }, + { + "start": 18194.96, + "end": 18198.74, + "probability": 0.9932 + }, + { + "start": 18199.3, + "end": 18200.36, + "probability": 0.4446 + }, + { + "start": 18200.92, + "end": 18202.1, + "probability": 0.8821 + }, + { + "start": 18202.66, + "end": 18205.34, + "probability": 0.9383 + }, + { + "start": 18205.96, + "end": 18208.98, + "probability": 0.972 + }, + { + "start": 18210.04, + "end": 18211.56, + "probability": 0.998 + }, + { + "start": 18211.8, + "end": 18214.12, + "probability": 0.9978 + }, + { + "start": 18214.99, + "end": 18218.58, + "probability": 0.6942 + }, + { + "start": 18219.3, + "end": 18223.8, + "probability": 0.9761 + }, + { + "start": 18223.8, + "end": 18228.94, + "probability": 0.9646 + }, + { + "start": 18229.08, + "end": 18229.88, + "probability": 0.7886 + }, + { + "start": 18229.94, + "end": 18232.7, + "probability": 0.8678 + }, + { + "start": 18232.86, + "end": 18235.18, + "probability": 0.8811 + }, + { + "start": 18236.25, + "end": 18239.38, + "probability": 0.9951 + }, + { + "start": 18239.94, + "end": 18242.26, + "probability": 0.997 + }, + { + "start": 18242.42, + "end": 18243.26, + "probability": 0.6072 + }, + { + "start": 18243.7, + "end": 18244.96, + "probability": 0.9095 + }, + { + "start": 18245.12, + "end": 18250.54, + "probability": 0.9884 + }, + { + "start": 18251.04, + "end": 18251.9, + "probability": 0.8244 + }, + { + "start": 18252.3, + "end": 18254.82, + "probability": 0.9706 + }, + { + "start": 18255.14, + "end": 18256.54, + "probability": 0.8955 + }, + { + "start": 18256.78, + "end": 18260.0, + "probability": 0.916 + }, + { + "start": 18260.06, + "end": 18261.49, + "probability": 0.8596 + }, + { + "start": 18262.02, + "end": 18262.53, + "probability": 0.0812 + }, + { + "start": 18262.92, + "end": 18263.36, + "probability": 0.3709 + }, + { + "start": 18263.38, + "end": 18265.18, + "probability": 0.8397 + }, + { + "start": 18265.18, + "end": 18268.38, + "probability": 0.8683 + }, + { + "start": 18268.38, + "end": 18269.64, + "probability": 0.5006 + }, + { + "start": 18269.72, + "end": 18270.5, + "probability": 0.9409 + }, + { + "start": 18270.92, + "end": 18271.86, + "probability": 0.7928 + }, + { + "start": 18272.38, + "end": 18272.68, + "probability": 0.5148 + }, + { + "start": 18273.28, + "end": 18277.26, + "probability": 0.9648 + }, + { + "start": 18277.8, + "end": 18279.58, + "probability": 0.6582 + }, + { + "start": 18279.66, + "end": 18280.57, + "probability": 0.8564 + }, + { + "start": 18280.96, + "end": 18281.88, + "probability": 0.8838 + }, + { + "start": 18281.94, + "end": 18285.74, + "probability": 0.945 + }, + { + "start": 18285.78, + "end": 18286.6, + "probability": 0.6706 + }, + { + "start": 18286.64, + "end": 18287.76, + "probability": 0.9248 + }, + { + "start": 18288.02, + "end": 18291.46, + "probability": 0.9342 + }, + { + "start": 18291.54, + "end": 18293.94, + "probability": 0.9946 + }, + { + "start": 18294.2, + "end": 18295.9, + "probability": 0.9456 + }, + { + "start": 18296.3, + "end": 18298.22, + "probability": 0.9717 + }, + { + "start": 18298.3, + "end": 18298.6, + "probability": 0.8412 + }, + { + "start": 18299.72, + "end": 18300.52, + "probability": 0.4743 + }, + { + "start": 18300.88, + "end": 18304.02, + "probability": 0.9202 + }, + { + "start": 18315.58, + "end": 18317.54, + "probability": 0.841 + }, + { + "start": 18318.06, + "end": 18319.74, + "probability": 0.9209 + }, + { + "start": 18323.2, + "end": 18324.34, + "probability": 0.7941 + }, + { + "start": 18325.44, + "end": 18326.64, + "probability": 0.9391 + }, + { + "start": 18327.62, + "end": 18328.78, + "probability": 0.6363 + }, + { + "start": 18330.08, + "end": 18336.28, + "probability": 0.9433 + }, + { + "start": 18337.34, + "end": 18340.68, + "probability": 0.9772 + }, + { + "start": 18341.8, + "end": 18343.78, + "probability": 0.7391 + }, + { + "start": 18345.16, + "end": 18347.74, + "probability": 0.5951 + }, + { + "start": 18347.96, + "end": 18350.4, + "probability": 0.7575 + }, + { + "start": 18350.78, + "end": 18352.2, + "probability": 0.9198 + }, + { + "start": 18352.9, + "end": 18354.78, + "probability": 0.9846 + }, + { + "start": 18356.14, + "end": 18361.24, + "probability": 0.9072 + }, + { + "start": 18362.06, + "end": 18364.7, + "probability": 0.9507 + }, + { + "start": 18365.76, + "end": 18373.78, + "probability": 0.985 + }, + { + "start": 18374.44, + "end": 18377.74, + "probability": 0.9834 + }, + { + "start": 18378.6, + "end": 18380.02, + "probability": 0.9119 + }, + { + "start": 18380.68, + "end": 18381.7, + "probability": 0.9793 + }, + { + "start": 18381.84, + "end": 18386.48, + "probability": 0.9312 + }, + { + "start": 18387.38, + "end": 18391.16, + "probability": 0.8626 + }, + { + "start": 18392.22, + "end": 18396.4, + "probability": 0.9618 + }, + { + "start": 18397.02, + "end": 18399.58, + "probability": 0.9872 + }, + { + "start": 18400.2, + "end": 18402.46, + "probability": 0.8178 + }, + { + "start": 18403.24, + "end": 18404.84, + "probability": 0.9849 + }, + { + "start": 18405.94, + "end": 18406.68, + "probability": 0.9286 + }, + { + "start": 18407.06, + "end": 18412.02, + "probability": 0.9869 + }, + { + "start": 18413.18, + "end": 18415.68, + "probability": 0.9331 + }, + { + "start": 18416.46, + "end": 18418.7, + "probability": 0.9883 + }, + { + "start": 18418.84, + "end": 18420.85, + "probability": 0.9803 + }, + { + "start": 18421.52, + "end": 18422.68, + "probability": 0.8291 + }, + { + "start": 18423.64, + "end": 18429.0, + "probability": 0.993 + }, + { + "start": 18429.98, + "end": 18437.66, + "probability": 0.9683 + }, + { + "start": 18438.04, + "end": 18439.76, + "probability": 0.6992 + }, + { + "start": 18440.26, + "end": 18442.78, + "probability": 0.9409 + }, + { + "start": 18443.76, + "end": 18448.14, + "probability": 0.7969 + }, + { + "start": 18448.86, + "end": 18452.82, + "probability": 0.9689 + }, + { + "start": 18453.88, + "end": 18457.38, + "probability": 0.9851 + }, + { + "start": 18458.0, + "end": 18459.58, + "probability": 0.9172 + }, + { + "start": 18460.4, + "end": 18465.7, + "probability": 0.9513 + }, + { + "start": 18466.52, + "end": 18470.12, + "probability": 0.8923 + }, + { + "start": 18470.84, + "end": 18476.22, + "probability": 0.9969 + }, + { + "start": 18476.92, + "end": 18480.74, + "probability": 0.9963 + }, + { + "start": 18481.8, + "end": 18484.3, + "probability": 0.9961 + }, + { + "start": 18484.98, + "end": 18486.1, + "probability": 0.982 + }, + { + "start": 18486.2, + "end": 18491.42, + "probability": 0.9576 + }, + { + "start": 18492.34, + "end": 18493.14, + "probability": 0.5944 + }, + { + "start": 18493.76, + "end": 18494.58, + "probability": 0.9176 + }, + { + "start": 18494.64, + "end": 18497.76, + "probability": 0.9845 + }, + { + "start": 18497.86, + "end": 18498.96, + "probability": 0.7688 + }, + { + "start": 18499.54, + "end": 18502.3, + "probability": 0.9158 + }, + { + "start": 18502.86, + "end": 18505.04, + "probability": 0.9966 + }, + { + "start": 18505.6, + "end": 18506.2, + "probability": 0.9155 + }, + { + "start": 18507.46, + "end": 18510.24, + "probability": 0.9506 + }, + { + "start": 18510.92, + "end": 18515.6, + "probability": 0.9902 + }, + { + "start": 18516.14, + "end": 18518.66, + "probability": 0.9847 + }, + { + "start": 18519.42, + "end": 18521.66, + "probability": 0.9983 + }, + { + "start": 18522.7, + "end": 18525.0, + "probability": 0.9883 + }, + { + "start": 18526.16, + "end": 18530.62, + "probability": 0.937 + }, + { + "start": 18531.22, + "end": 18533.08, + "probability": 0.7402 + }, + { + "start": 18533.96, + "end": 18538.02, + "probability": 0.9692 + }, + { + "start": 18538.82, + "end": 18541.26, + "probability": 0.9983 + }, + { + "start": 18542.02, + "end": 18543.68, + "probability": 0.9238 + }, + { + "start": 18544.76, + "end": 18551.88, + "probability": 0.9747 + }, + { + "start": 18552.36, + "end": 18552.88, + "probability": 0.9586 + }, + { + "start": 18553.08, + "end": 18554.4, + "probability": 0.7348 + }, + { + "start": 18555.3, + "end": 18557.76, + "probability": 0.9325 + }, + { + "start": 18559.42, + "end": 18566.08, + "probability": 0.9873 + }, + { + "start": 18567.54, + "end": 18569.22, + "probability": 0.9576 + }, + { + "start": 18570.04, + "end": 18572.36, + "probability": 0.9952 + }, + { + "start": 18573.0, + "end": 18574.48, + "probability": 0.9943 + }, + { + "start": 18575.28, + "end": 18579.26, + "probability": 0.9964 + }, + { + "start": 18579.86, + "end": 18585.68, + "probability": 0.9914 + }, + { + "start": 18586.32, + "end": 18589.04, + "probability": 0.9821 + }, + { + "start": 18589.78, + "end": 18595.68, + "probability": 0.9838 + }, + { + "start": 18596.62, + "end": 18599.08, + "probability": 0.9634 + }, + { + "start": 18599.98, + "end": 18602.1, + "probability": 0.9849 + }, + { + "start": 18602.9, + "end": 18607.06, + "probability": 0.9901 + }, + { + "start": 18608.74, + "end": 18611.12, + "probability": 0.9185 + }, + { + "start": 18611.74, + "end": 18614.14, + "probability": 0.9963 + }, + { + "start": 18614.78, + "end": 18616.14, + "probability": 0.9851 + }, + { + "start": 18616.98, + "end": 18620.38, + "probability": 0.999 + }, + { + "start": 18620.38, + "end": 18625.56, + "probability": 0.9875 + }, + { + "start": 18626.6, + "end": 18627.52, + "probability": 0.9229 + }, + { + "start": 18628.04, + "end": 18631.74, + "probability": 0.8371 + }, + { + "start": 18632.48, + "end": 18638.26, + "probability": 0.7663 + }, + { + "start": 18639.08, + "end": 18640.94, + "probability": 0.7884 + }, + { + "start": 18641.44, + "end": 18643.36, + "probability": 0.9932 + }, + { + "start": 18644.12, + "end": 18645.74, + "probability": 0.9579 + }, + { + "start": 18646.36, + "end": 18653.18, + "probability": 0.9964 + }, + { + "start": 18653.82, + "end": 18660.1, + "probability": 0.9989 + }, + { + "start": 18660.74, + "end": 18664.38, + "probability": 0.9829 + }, + { + "start": 18664.5, + "end": 18666.72, + "probability": 0.8674 + }, + { + "start": 18667.56, + "end": 18669.22, + "probability": 0.8341 + }, + { + "start": 18669.78, + "end": 18671.31, + "probability": 0.9948 + }, + { + "start": 18671.92, + "end": 18674.1, + "probability": 0.9652 + }, + { + "start": 18674.68, + "end": 18676.8, + "probability": 0.9711 + }, + { + "start": 18677.1, + "end": 18682.04, + "probability": 0.9871 + }, + { + "start": 18682.72, + "end": 18687.34, + "probability": 0.9855 + }, + { + "start": 18687.42, + "end": 18688.24, + "probability": 0.1938 + }, + { + "start": 18688.28, + "end": 18690.04, + "probability": 0.9922 + }, + { + "start": 18690.92, + "end": 18692.2, + "probability": 0.7498 + }, + { + "start": 18692.76, + "end": 18694.74, + "probability": 0.9437 + }, + { + "start": 18695.36, + "end": 18695.76, + "probability": 0.4632 + }, + { + "start": 18695.76, + "end": 18696.9, + "probability": 0.9549 + }, + { + "start": 18697.26, + "end": 18700.04, + "probability": 0.9901 + }, + { + "start": 18700.16, + "end": 18701.14, + "probability": 0.9761 + }, + { + "start": 18701.58, + "end": 18704.86, + "probability": 0.9398 + }, + { + "start": 18705.48, + "end": 18709.92, + "probability": 0.9751 + }, + { + "start": 18710.28, + "end": 18712.26, + "probability": 0.9516 + }, + { + "start": 18713.0, + "end": 18713.26, + "probability": 0.671 + }, + { + "start": 18715.12, + "end": 18717.48, + "probability": 0.8423 + }, + { + "start": 18717.54, + "end": 18721.16, + "probability": 0.903 + }, + { + "start": 18722.06, + "end": 18725.06, + "probability": 0.7529 + }, + { + "start": 18734.66, + "end": 18738.0, + "probability": 0.6749 + }, + { + "start": 18741.28, + "end": 18741.87, + "probability": 0.6577 + }, + { + "start": 18743.08, + "end": 18744.16, + "probability": 0.9618 + }, + { + "start": 18744.86, + "end": 18745.84, + "probability": 0.8975 + }, + { + "start": 18746.94, + "end": 18749.0, + "probability": 0.9473 + }, + { + "start": 18751.02, + "end": 18752.0, + "probability": 0.8078 + }, + { + "start": 18754.76, + "end": 18756.0, + "probability": 0.7935 + }, + { + "start": 18757.6, + "end": 18762.2, + "probability": 0.991 + }, + { + "start": 18764.08, + "end": 18769.6, + "probability": 0.986 + }, + { + "start": 18770.96, + "end": 18776.58, + "probability": 0.9916 + }, + { + "start": 18777.94, + "end": 18783.5, + "probability": 0.9492 + }, + { + "start": 18784.22, + "end": 18784.82, + "probability": 0.4541 + }, + { + "start": 18785.9, + "end": 18787.42, + "probability": 0.6572 + }, + { + "start": 18788.44, + "end": 18793.08, + "probability": 0.9947 + }, + { + "start": 18793.36, + "end": 18794.5, + "probability": 0.9869 + }, + { + "start": 18796.64, + "end": 18797.56, + "probability": 0.998 + }, + { + "start": 18801.32, + "end": 18802.92, + "probability": 0.9619 + }, + { + "start": 18803.64, + "end": 18805.36, + "probability": 0.5892 + }, + { + "start": 18807.3, + "end": 18809.71, + "probability": 0.9666 + }, + { + "start": 18811.9, + "end": 18813.54, + "probability": 0.88 + }, + { + "start": 18816.06, + "end": 18818.52, + "probability": 0.9298 + }, + { + "start": 18820.28, + "end": 18821.86, + "probability": 0.8428 + }, + { + "start": 18823.5, + "end": 18824.82, + "probability": 0.9841 + }, + { + "start": 18825.26, + "end": 18826.87, + "probability": 0.9912 + }, + { + "start": 18829.0, + "end": 18829.92, + "probability": 0.7059 + }, + { + "start": 18832.1, + "end": 18834.64, + "probability": 0.7666 + }, + { + "start": 18835.52, + "end": 18836.56, + "probability": 0.8939 + }, + { + "start": 18837.8, + "end": 18844.2, + "probability": 0.98 + }, + { + "start": 18845.48, + "end": 18848.44, + "probability": 0.9886 + }, + { + "start": 18850.84, + "end": 18853.58, + "probability": 0.6766 + }, + { + "start": 18854.58, + "end": 18856.44, + "probability": 0.9036 + }, + { + "start": 18858.6, + "end": 18859.84, + "probability": 0.9305 + }, + { + "start": 18860.8, + "end": 18862.22, + "probability": 0.999 + }, + { + "start": 18863.92, + "end": 18865.13, + "probability": 0.7421 + }, + { + "start": 18867.34, + "end": 18869.96, + "probability": 0.9555 + }, + { + "start": 18871.06, + "end": 18872.98, + "probability": 0.8141 + }, + { + "start": 18873.6, + "end": 18875.02, + "probability": 0.9204 + }, + { + "start": 18876.26, + "end": 18876.9, + "probability": 0.871 + }, + { + "start": 18878.7, + "end": 18883.94, + "probability": 0.9956 + }, + { + "start": 18884.0, + "end": 18886.77, + "probability": 0.9969 + }, + { + "start": 18887.56, + "end": 18888.74, + "probability": 0.6317 + }, + { + "start": 18889.54, + "end": 18893.02, + "probability": 0.8424 + }, + { + "start": 18893.68, + "end": 18894.52, + "probability": 0.9888 + }, + { + "start": 18896.12, + "end": 18898.86, + "probability": 0.9871 + }, + { + "start": 18898.86, + "end": 18901.26, + "probability": 0.7628 + }, + { + "start": 18902.14, + "end": 18903.96, + "probability": 0.9862 + }, + { + "start": 18904.08, + "end": 18906.66, + "probability": 0.9473 + }, + { + "start": 18906.76, + "end": 18908.18, + "probability": 0.9763 + }, + { + "start": 18909.08, + "end": 18912.48, + "probability": 0.9907 + }, + { + "start": 18913.06, + "end": 18914.64, + "probability": 0.8626 + }, + { + "start": 18916.16, + "end": 18917.06, + "probability": 0.8657 + }, + { + "start": 18917.16, + "end": 18919.54, + "probability": 0.9143 + }, + { + "start": 18919.68, + "end": 18920.36, + "probability": 0.8902 + }, + { + "start": 18921.3, + "end": 18923.56, + "probability": 0.7612 + }, + { + "start": 18924.48, + "end": 18924.6, + "probability": 0.9485 + }, + { + "start": 18926.2, + "end": 18927.68, + "probability": 0.4709 + }, + { + "start": 18928.66, + "end": 18930.32, + "probability": 0.8325 + }, + { + "start": 18931.0, + "end": 18933.04, + "probability": 0.7641 + }, + { + "start": 18933.96, + "end": 18935.22, + "probability": 0.6588 + }, + { + "start": 18935.48, + "end": 18936.4, + "probability": 0.696 + }, + { + "start": 18936.72, + "end": 18942.06, + "probability": 0.9866 + }, + { + "start": 18942.8, + "end": 18945.36, + "probability": 0.9783 + }, + { + "start": 18946.3, + "end": 18947.86, + "probability": 0.6948 + }, + { + "start": 18948.0, + "end": 18953.14, + "probability": 0.9949 + }, + { + "start": 18954.24, + "end": 18955.48, + "probability": 0.8443 + }, + { + "start": 18956.64, + "end": 18958.12, + "probability": 0.9927 + }, + { + "start": 18958.38, + "end": 18959.2, + "probability": 0.2069 + }, + { + "start": 18960.58, + "end": 18961.4, + "probability": 0.9317 + }, + { + "start": 18963.36, + "end": 18966.28, + "probability": 0.6868 + }, + { + "start": 18969.0, + "end": 18972.48, + "probability": 0.9681 + }, + { + "start": 18972.68, + "end": 18976.76, + "probability": 0.8835 + }, + { + "start": 18978.52, + "end": 18981.14, + "probability": 0.7869 + }, + { + "start": 18981.82, + "end": 18982.94, + "probability": 0.997 + }, + { + "start": 18983.08, + "end": 18984.94, + "probability": 0.8999 + }, + { + "start": 18984.98, + "end": 18987.34, + "probability": 0.9979 + }, + { + "start": 18989.6, + "end": 18991.16, + "probability": 0.9531 + }, + { + "start": 18991.2, + "end": 18993.36, + "probability": 0.9681 + }, + { + "start": 18994.76, + "end": 18995.78, + "probability": 0.9969 + }, + { + "start": 18996.52, + "end": 18997.96, + "probability": 0.949 + }, + { + "start": 18998.16, + "end": 18999.78, + "probability": 0.9858 + }, + { + "start": 19000.5, + "end": 19001.5, + "probability": 0.6227 + }, + { + "start": 19002.46, + "end": 19004.14, + "probability": 0.9903 + }, + { + "start": 19004.98, + "end": 19007.08, + "probability": 0.9203 + }, + { + "start": 19007.62, + "end": 19008.98, + "probability": 0.8083 + }, + { + "start": 19010.26, + "end": 19015.88, + "probability": 0.9746 + }, + { + "start": 19016.28, + "end": 19018.68, + "probability": 0.9779 + }, + { + "start": 19019.26, + "end": 19020.22, + "probability": 0.9011 + }, + { + "start": 19021.22, + "end": 19023.86, + "probability": 0.928 + }, + { + "start": 19024.28, + "end": 19029.2, + "probability": 0.8884 + }, + { + "start": 19029.48, + "end": 19029.96, + "probability": 0.4227 + }, + { + "start": 19031.98, + "end": 19032.76, + "probability": 0.9468 + }, + { + "start": 19033.88, + "end": 19036.52, + "probability": 0.8789 + }, + { + "start": 19036.66, + "end": 19038.3, + "probability": 0.9575 + }, + { + "start": 19038.58, + "end": 19039.52, + "probability": 0.9588 + }, + { + "start": 19040.0, + "end": 19040.52, + "probability": 0.9773 + }, + { + "start": 19040.54, + "end": 19043.8, + "probability": 0.9785 + }, + { + "start": 19044.28, + "end": 19045.98, + "probability": 0.7578 + }, + { + "start": 19046.44, + "end": 19046.7, + "probability": 0.4365 + }, + { + "start": 19046.72, + "end": 19048.84, + "probability": 0.827 + }, + { + "start": 19049.4, + "end": 19052.02, + "probability": 0.9848 + }, + { + "start": 19052.48, + "end": 19053.08, + "probability": 0.5309 + }, + { + "start": 19054.38, + "end": 19057.18, + "probability": 0.9748 + }, + { + "start": 19057.74, + "end": 19058.32, + "probability": 0.6139 + }, + { + "start": 19059.58, + "end": 19060.16, + "probability": 0.4285 + }, + { + "start": 19060.16, + "end": 19061.4, + "probability": 0.6122 + }, + { + "start": 19061.9, + "end": 19063.52, + "probability": 0.3901 + }, + { + "start": 19064.0, + "end": 19064.81, + "probability": 0.9409 + }, + { + "start": 19065.38, + "end": 19068.94, + "probability": 0.6737 + }, + { + "start": 19068.94, + "end": 19072.72, + "probability": 0.563 + }, + { + "start": 19073.6, + "end": 19078.0, + "probability": 0.9771 + }, + { + "start": 19079.14, + "end": 19081.06, + "probability": 0.7074 + }, + { + "start": 19081.46, + "end": 19082.24, + "probability": 0.5622 + }, + { + "start": 19082.24, + "end": 19083.51, + "probability": 0.8196 + }, + { + "start": 19084.04, + "end": 19085.18, + "probability": 0.7656 + }, + { + "start": 19085.9, + "end": 19089.76, + "probability": 0.7366 + }, + { + "start": 19089.96, + "end": 19092.38, + "probability": 0.7896 + }, + { + "start": 19093.22, + "end": 19098.08, + "probability": 0.788 + }, + { + "start": 19110.44, + "end": 19112.46, + "probability": 0.4549 + }, + { + "start": 19114.2, + "end": 19115.9, + "probability": 0.6651 + }, + { + "start": 19119.34, + "end": 19123.42, + "probability": 0.9974 + }, + { + "start": 19125.66, + "end": 19125.94, + "probability": 0.968 + }, + { + "start": 19126.98, + "end": 19131.3, + "probability": 0.9943 + }, + { + "start": 19131.42, + "end": 19137.96, + "probability": 0.9994 + }, + { + "start": 19139.38, + "end": 19142.38, + "probability": 0.994 + }, + { + "start": 19143.36, + "end": 19144.71, + "probability": 0.9619 + }, + { + "start": 19145.68, + "end": 19147.92, + "probability": 0.8938 + }, + { + "start": 19148.86, + "end": 19150.48, + "probability": 0.9747 + }, + { + "start": 19152.92, + "end": 19154.38, + "probability": 0.8503 + }, + { + "start": 19155.12, + "end": 19158.38, + "probability": 0.9664 + }, + { + "start": 19159.92, + "end": 19162.6, + "probability": 0.9976 + }, + { + "start": 19164.84, + "end": 19167.6, + "probability": 0.9761 + }, + { + "start": 19168.64, + "end": 19169.58, + "probability": 0.5897 + }, + { + "start": 19171.16, + "end": 19172.16, + "probability": 0.6681 + }, + { + "start": 19172.26, + "end": 19175.58, + "probability": 0.9888 + }, + { + "start": 19176.76, + "end": 19179.46, + "probability": 0.9957 + }, + { + "start": 19180.6, + "end": 19181.46, + "probability": 0.9275 + }, + { + "start": 19182.88, + "end": 19185.42, + "probability": 0.9973 + }, + { + "start": 19186.46, + "end": 19189.2, + "probability": 0.8976 + }, + { + "start": 19190.46, + "end": 19192.0, + "probability": 0.9993 + }, + { + "start": 19193.46, + "end": 19195.6, + "probability": 0.9507 + }, + { + "start": 19196.44, + "end": 19197.9, + "probability": 0.9407 + }, + { + "start": 19199.34, + "end": 19205.8, + "probability": 0.915 + }, + { + "start": 19207.28, + "end": 19211.47, + "probability": 0.9954 + }, + { + "start": 19211.86, + "end": 19214.46, + "probability": 0.9812 + }, + { + "start": 19215.82, + "end": 19222.26, + "probability": 0.9054 + }, + { + "start": 19222.26, + "end": 19224.98, + "probability": 0.9509 + }, + { + "start": 19226.08, + "end": 19228.62, + "probability": 0.9758 + }, + { + "start": 19229.68, + "end": 19233.0, + "probability": 0.9986 + }, + { + "start": 19233.0, + "end": 19237.06, + "probability": 0.6921 + }, + { + "start": 19237.3, + "end": 19238.34, + "probability": 0.6865 + }, + { + "start": 19239.82, + "end": 19242.62, + "probability": 0.6877 + }, + { + "start": 19243.84, + "end": 19248.3, + "probability": 0.8881 + }, + { + "start": 19249.0, + "end": 19250.06, + "probability": 0.7371 + }, + { + "start": 19251.22, + "end": 19256.4, + "probability": 0.9038 + }, + { + "start": 19258.44, + "end": 19263.9, + "probability": 0.9939 + }, + { + "start": 19264.58, + "end": 19265.76, + "probability": 0.5789 + }, + { + "start": 19266.72, + "end": 19268.9, + "probability": 0.9919 + }, + { + "start": 19270.0, + "end": 19273.94, + "probability": 0.9978 + }, + { + "start": 19275.28, + "end": 19276.4, + "probability": 0.7664 + }, + { + "start": 19277.7, + "end": 19278.86, + "probability": 0.8477 + }, + { + "start": 19279.1, + "end": 19283.28, + "probability": 0.8174 + }, + { + "start": 19283.44, + "end": 19284.5, + "probability": 0.9401 + }, + { + "start": 19286.02, + "end": 19288.0, + "probability": 0.9125 + }, + { + "start": 19289.06, + "end": 19292.84, + "probability": 0.9943 + }, + { + "start": 19296.78, + "end": 19299.16, + "probability": 0.96 + }, + { + "start": 19301.92, + "end": 19304.26, + "probability": 0.7774 + }, + { + "start": 19305.68, + "end": 19307.02, + "probability": 0.8152 + }, + { + "start": 19307.72, + "end": 19308.56, + "probability": 0.861 + }, + { + "start": 19309.12, + "end": 19311.2, + "probability": 0.9622 + }, + { + "start": 19312.84, + "end": 19314.52, + "probability": 0.9482 + }, + { + "start": 19315.46, + "end": 19318.58, + "probability": 0.9624 + }, + { + "start": 19319.78, + "end": 19326.12, + "probability": 0.9987 + }, + { + "start": 19329.28, + "end": 19330.56, + "probability": 0.7516 + }, + { + "start": 19331.42, + "end": 19335.08, + "probability": 0.9376 + }, + { + "start": 19335.78, + "end": 19342.14, + "probability": 0.9325 + }, + { + "start": 19342.96, + "end": 19344.78, + "probability": 0.6736 + }, + { + "start": 19345.58, + "end": 19347.44, + "probability": 0.7554 + }, + { + "start": 19348.34, + "end": 19350.62, + "probability": 0.8642 + }, + { + "start": 19353.08, + "end": 19354.9, + "probability": 0.9829 + }, + { + "start": 19355.44, + "end": 19359.36, + "probability": 0.9057 + }, + { + "start": 19360.24, + "end": 19361.58, + "probability": 0.6115 + }, + { + "start": 19362.88, + "end": 19366.14, + "probability": 0.9932 + }, + { + "start": 19366.48, + "end": 19369.61, + "probability": 0.8942 + }, + { + "start": 19371.06, + "end": 19373.92, + "probability": 0.9994 + }, + { + "start": 19376.5, + "end": 19379.34, + "probability": 0.7935 + }, + { + "start": 19380.04, + "end": 19382.52, + "probability": 0.9993 + }, + { + "start": 19385.2, + "end": 19388.98, + "probability": 0.9988 + }, + { + "start": 19390.64, + "end": 19395.58, + "probability": 0.9956 + }, + { + "start": 19396.86, + "end": 19399.0, + "probability": 0.9126 + }, + { + "start": 19399.58, + "end": 19400.14, + "probability": 0.816 + }, + { + "start": 19402.96, + "end": 19406.06, + "probability": 0.9961 + }, + { + "start": 19407.46, + "end": 19407.94, + "probability": 0.7313 + }, + { + "start": 19408.92, + "end": 19410.48, + "probability": 0.9526 + }, + { + "start": 19411.9, + "end": 19412.5, + "probability": 0.8585 + }, + { + "start": 19413.54, + "end": 19415.3, + "probability": 0.9803 + }, + { + "start": 19416.34, + "end": 19421.08, + "probability": 0.9392 + }, + { + "start": 19422.48, + "end": 19425.36, + "probability": 0.6424 + }, + { + "start": 19425.94, + "end": 19428.24, + "probability": 0.8174 + }, + { + "start": 19431.18, + "end": 19433.58, + "probability": 0.7704 + }, + { + "start": 19434.18, + "end": 19434.85, + "probability": 0.71 + }, + { + "start": 19436.48, + "end": 19437.56, + "probability": 0.9976 + }, + { + "start": 19439.7, + "end": 19442.14, + "probability": 0.9548 + }, + { + "start": 19444.52, + "end": 19445.08, + "probability": 0.9912 + }, + { + "start": 19446.62, + "end": 19451.36, + "probability": 0.9777 + }, + { + "start": 19453.34, + "end": 19456.6, + "probability": 0.8991 + }, + { + "start": 19456.72, + "end": 19457.46, + "probability": 0.465 + }, + { + "start": 19458.04, + "end": 19463.74, + "probability": 0.9956 + }, + { + "start": 19464.04, + "end": 19464.86, + "probability": 0.7345 + }, + { + "start": 19464.96, + "end": 19467.2, + "probability": 0.9883 + }, + { + "start": 19469.64, + "end": 19471.38, + "probability": 0.9945 + }, + { + "start": 19471.96, + "end": 19474.84, + "probability": 0.9702 + }, + { + "start": 19474.84, + "end": 19478.26, + "probability": 0.9973 + }, + { + "start": 19479.04, + "end": 19484.18, + "probability": 0.9051 + }, + { + "start": 19486.8, + "end": 19490.94, + "probability": 0.9976 + }, + { + "start": 19492.28, + "end": 19497.4, + "probability": 0.8821 + }, + { + "start": 19498.96, + "end": 19501.36, + "probability": 0.9966 + }, + { + "start": 19503.5, + "end": 19505.41, + "probability": 0.9922 + }, + { + "start": 19507.6, + "end": 19510.02, + "probability": 0.9202 + }, + { + "start": 19511.42, + "end": 19511.86, + "probability": 0.8276 + }, + { + "start": 19514.62, + "end": 19519.54, + "probability": 0.9607 + }, + { + "start": 19520.2, + "end": 19521.14, + "probability": 0.877 + }, + { + "start": 19521.98, + "end": 19525.32, + "probability": 0.9961 + }, + { + "start": 19526.28, + "end": 19526.9, + "probability": 0.8027 + }, + { + "start": 19529.36, + "end": 19529.82, + "probability": 0.9676 + }, + { + "start": 19532.36, + "end": 19536.19, + "probability": 0.9985 + }, + { + "start": 19538.48, + "end": 19542.56, + "probability": 0.9496 + }, + { + "start": 19543.48, + "end": 19545.44, + "probability": 0.9634 + }, + { + "start": 19546.76, + "end": 19550.12, + "probability": 0.9765 + }, + { + "start": 19551.12, + "end": 19554.72, + "probability": 0.9905 + }, + { + "start": 19555.8, + "end": 19560.76, + "probability": 0.9905 + }, + { + "start": 19561.84, + "end": 19564.72, + "probability": 0.9971 + }, + { + "start": 19566.24, + "end": 19568.46, + "probability": 0.9066 + }, + { + "start": 19571.44, + "end": 19572.02, + "probability": 0.9313 + }, + { + "start": 19574.76, + "end": 19575.64, + "probability": 0.6066 + }, + { + "start": 19575.76, + "end": 19576.22, + "probability": 0.4736 + }, + { + "start": 19576.62, + "end": 19578.34, + "probability": 0.2877 + }, + { + "start": 19579.44, + "end": 19581.96, + "probability": 0.886 + }, + { + "start": 19583.12, + "end": 19584.02, + "probability": 0.6805 + }, + { + "start": 19586.2, + "end": 19588.0, + "probability": 0.9138 + }, + { + "start": 19589.48, + "end": 19593.08, + "probability": 0.9775 + }, + { + "start": 19595.04, + "end": 19598.64, + "probability": 0.9951 + }, + { + "start": 19599.62, + "end": 19601.32, + "probability": 0.9618 + }, + { + "start": 19606.06, + "end": 19607.6, + "probability": 0.7523 + }, + { + "start": 19609.34, + "end": 19614.36, + "probability": 0.9969 + }, + { + "start": 19617.22, + "end": 19618.02, + "probability": 0.9515 + }, + { + "start": 19623.34, + "end": 19624.14, + "probability": 0.8293 + }, + { + "start": 19625.18, + "end": 19626.46, + "probability": 0.8076 + }, + { + "start": 19627.96, + "end": 19629.4, + "probability": 0.9722 + }, + { + "start": 19629.92, + "end": 19632.8, + "probability": 0.9953 + }, + { + "start": 19633.9, + "end": 19635.65, + "probability": 0.999 + }, + { + "start": 19637.04, + "end": 19639.58, + "probability": 0.5811 + }, + { + "start": 19639.72, + "end": 19640.98, + "probability": 0.9482 + }, + { + "start": 19641.18, + "end": 19641.38, + "probability": 0.8431 + }, + { + "start": 19645.3, + "end": 19646.06, + "probability": 0.8603 + }, + { + "start": 19647.7, + "end": 19650.12, + "probability": 0.9735 + }, + { + "start": 19651.34, + "end": 19654.62, + "probability": 0.9958 + }, + { + "start": 19655.5, + "end": 19658.76, + "probability": 0.8873 + }, + { + "start": 19659.66, + "end": 19662.06, + "probability": 0.9126 + }, + { + "start": 19664.34, + "end": 19666.04, + "probability": 0.9773 + }, + { + "start": 19668.24, + "end": 19668.9, + "probability": 0.9471 + }, + { + "start": 19669.64, + "end": 19671.56, + "probability": 0.9827 + }, + { + "start": 19673.64, + "end": 19676.82, + "probability": 0.9615 + }, + { + "start": 19679.26, + "end": 19679.86, + "probability": 0.8452 + }, + { + "start": 19680.06, + "end": 19681.1, + "probability": 0.9228 + }, + { + "start": 19681.24, + "end": 19682.76, + "probability": 0.9348 + }, + { + "start": 19682.86, + "end": 19684.02, + "probability": 0.964 + }, + { + "start": 19685.42, + "end": 19689.29, + "probability": 0.9025 + }, + { + "start": 19689.62, + "end": 19691.08, + "probability": 0.837 + }, + { + "start": 19691.22, + "end": 19691.78, + "probability": 0.7909 + }, + { + "start": 19692.62, + "end": 19694.28, + "probability": 0.8825 + }, + { + "start": 19694.38, + "end": 19695.4, + "probability": 0.8742 + }, + { + "start": 19695.84, + "end": 19697.56, + "probability": 0.9836 + }, + { + "start": 19698.94, + "end": 19699.84, + "probability": 0.7391 + }, + { + "start": 19701.24, + "end": 19704.38, + "probability": 0.9531 + }, + { + "start": 19705.96, + "end": 19708.62, + "probability": 0.826 + }, + { + "start": 19709.62, + "end": 19712.38, + "probability": 0.9931 + }, + { + "start": 19713.32, + "end": 19715.6, + "probability": 0.9753 + }, + { + "start": 19717.26, + "end": 19719.31, + "probability": 0.7107 + }, + { + "start": 19723.66, + "end": 19724.66, + "probability": 0.9263 + }, + { + "start": 19727.24, + "end": 19729.74, + "probability": 0.7666 + }, + { + "start": 19731.0, + "end": 19734.08, + "probability": 0.9961 + }, + { + "start": 19735.5, + "end": 19736.5, + "probability": 0.6923 + }, + { + "start": 19737.78, + "end": 19740.48, + "probability": 0.9159 + }, + { + "start": 19740.6, + "end": 19741.92, + "probability": 0.9249 + }, + { + "start": 19742.7, + "end": 19744.96, + "probability": 0.9917 + }, + { + "start": 19746.36, + "end": 19750.2, + "probability": 0.9984 + }, + { + "start": 19750.2, + "end": 19753.82, + "probability": 0.9982 + }, + { + "start": 19754.72, + "end": 19756.04, + "probability": 0.6491 + }, + { + "start": 19756.16, + "end": 19756.86, + "probability": 0.9305 + }, + { + "start": 19757.92, + "end": 19760.28, + "probability": 0.9197 + }, + { + "start": 19761.38, + "end": 19764.1, + "probability": 0.9928 + }, + { + "start": 19764.94, + "end": 19766.04, + "probability": 0.9841 + }, + { + "start": 19766.14, + "end": 19766.92, + "probability": 0.7776 + }, + { + "start": 19767.0, + "end": 19769.54, + "probability": 0.9846 + }, + { + "start": 19772.22, + "end": 19773.04, + "probability": 0.9587 + }, + { + "start": 19775.4, + "end": 19776.02, + "probability": 0.2868 + }, + { + "start": 19776.68, + "end": 19777.62, + "probability": 0.8457 + }, + { + "start": 19778.84, + "end": 19781.64, + "probability": 0.9159 + }, + { + "start": 19783.4, + "end": 19783.78, + "probability": 0.5842 + }, + { + "start": 19783.96, + "end": 19784.6, + "probability": 0.9437 + }, + { + "start": 19784.9, + "end": 19786.72, + "probability": 0.9657 + }, + { + "start": 19786.78, + "end": 19788.08, + "probability": 0.9675 + }, + { + "start": 19789.66, + "end": 19793.5, + "probability": 0.9631 + }, + { + "start": 19794.36, + "end": 19796.36, + "probability": 0.8756 + }, + { + "start": 19798.0, + "end": 19799.5, + "probability": 0.9258 + }, + { + "start": 19800.94, + "end": 19801.68, + "probability": 0.8053 + }, + { + "start": 19803.7, + "end": 19806.0, + "probability": 0.9871 + }, + { + "start": 19808.0, + "end": 19809.32, + "probability": 0.7906 + }, + { + "start": 19811.16, + "end": 19813.1, + "probability": 0.967 + }, + { + "start": 19814.32, + "end": 19817.28, + "probability": 0.9792 + }, + { + "start": 19818.08, + "end": 19819.44, + "probability": 0.8101 + }, + { + "start": 19820.46, + "end": 19821.02, + "probability": 0.9453 + }, + { + "start": 19822.22, + "end": 19822.76, + "probability": 0.9862 + }, + { + "start": 19823.36, + "end": 19823.9, + "probability": 0.9902 + }, + { + "start": 19824.56, + "end": 19825.1, + "probability": 0.5625 + }, + { + "start": 19826.62, + "end": 19827.72, + "probability": 0.9937 + }, + { + "start": 19832.04, + "end": 19832.56, + "probability": 0.6727 + }, + { + "start": 19834.94, + "end": 19838.72, + "probability": 0.8847 + }, + { + "start": 19839.38, + "end": 19842.48, + "probability": 0.9839 + }, + { + "start": 19842.92, + "end": 19844.84, + "probability": 0.9989 + }, + { + "start": 19846.14, + "end": 19848.1, + "probability": 0.9536 + }, + { + "start": 19849.9, + "end": 19850.66, + "probability": 0.5805 + }, + { + "start": 19852.8, + "end": 19855.76, + "probability": 0.9904 + }, + { + "start": 19856.66, + "end": 19859.86, + "probability": 0.838 + }, + { + "start": 19860.16, + "end": 19861.74, + "probability": 0.835 + }, + { + "start": 19861.96, + "end": 19862.28, + "probability": 0.8047 + }, + { + "start": 19863.74, + "end": 19864.82, + "probability": 0.4887 + }, + { + "start": 19866.34, + "end": 19867.84, + "probability": 0.9703 + }, + { + "start": 19869.1, + "end": 19870.4, + "probability": 0.988 + }, + { + "start": 19871.66, + "end": 19873.68, + "probability": 0.9382 + }, + { + "start": 19874.38, + "end": 19876.82, + "probability": 0.9931 + }, + { + "start": 19878.06, + "end": 19880.02, + "probability": 0.9956 + }, + { + "start": 19880.9, + "end": 19883.62, + "probability": 0.8941 + }, + { + "start": 19885.54, + "end": 19894.98, + "probability": 0.9696 + }, + { + "start": 19896.12, + "end": 19897.58, + "probability": 0.9963 + }, + { + "start": 19898.72, + "end": 19902.58, + "probability": 0.9909 + }, + { + "start": 19903.76, + "end": 19905.52, + "probability": 0.9987 + }, + { + "start": 19906.86, + "end": 19908.62, + "probability": 0.9982 + }, + { + "start": 19910.14, + "end": 19910.94, + "probability": 0.863 + }, + { + "start": 19911.9, + "end": 19914.07, + "probability": 0.9092 + }, + { + "start": 19914.4, + "end": 19915.84, + "probability": 0.9528 + }, + { + "start": 19916.76, + "end": 19920.06, + "probability": 0.9921 + }, + { + "start": 19922.56, + "end": 19924.64, + "probability": 0.866 + }, + { + "start": 19925.32, + "end": 19927.16, + "probability": 0.7322 + }, + { + "start": 19928.44, + "end": 19928.64, + "probability": 0.5009 + }, + { + "start": 19929.64, + "end": 19931.98, + "probability": 0.9694 + }, + { + "start": 19932.2, + "end": 19933.52, + "probability": 0.7584 + }, + { + "start": 19933.7, + "end": 19934.44, + "probability": 0.8235 + }, + { + "start": 19935.42, + "end": 19940.66, + "probability": 0.9901 + }, + { + "start": 19941.76, + "end": 19942.76, + "probability": 0.7945 + }, + { + "start": 19943.84, + "end": 19946.36, + "probability": 0.8916 + }, + { + "start": 19947.34, + "end": 19949.27, + "probability": 0.7562 + }, + { + "start": 19953.82, + "end": 19956.68, + "probability": 0.9954 + }, + { + "start": 19958.96, + "end": 19960.18, + "probability": 0.9846 + }, + { + "start": 19960.74, + "end": 19961.98, + "probability": 0.9648 + }, + { + "start": 19964.02, + "end": 19965.36, + "probability": 0.9917 + }, + { + "start": 19966.68, + "end": 19968.06, + "probability": 0.9866 + }, + { + "start": 19970.16, + "end": 19974.6, + "probability": 0.9373 + }, + { + "start": 19976.04, + "end": 19983.38, + "probability": 0.9141 + }, + { + "start": 19983.76, + "end": 19985.04, + "probability": 0.8501 + }, + { + "start": 19986.64, + "end": 19992.7, + "probability": 0.9235 + }, + { + "start": 19996.22, + "end": 19999.14, + "probability": 0.866 + }, + { + "start": 19999.24, + "end": 20000.56, + "probability": 0.9383 + }, + { + "start": 20000.92, + "end": 20002.52, + "probability": 0.9873 + }, + { + "start": 20003.84, + "end": 20007.09, + "probability": 0.989 + }, + { + "start": 20008.58, + "end": 20010.06, + "probability": 0.9304 + }, + { + "start": 20013.14, + "end": 20017.56, + "probability": 0.9956 + }, + { + "start": 20018.1, + "end": 20020.24, + "probability": 0.8981 + }, + { + "start": 20022.64, + "end": 20024.6, + "probability": 0.8206 + }, + { + "start": 20024.68, + "end": 20026.46, + "probability": 0.9915 + }, + { + "start": 20027.04, + "end": 20029.75, + "probability": 0.9993 + }, + { + "start": 20029.9, + "end": 20031.12, + "probability": 0.9994 + }, + { + "start": 20031.2, + "end": 20032.38, + "probability": 0.7419 + }, + { + "start": 20032.44, + "end": 20035.86, + "probability": 0.9865 + }, + { + "start": 20037.2, + "end": 20039.04, + "probability": 0.6213 + }, + { + "start": 20042.36, + "end": 20043.38, + "probability": 0.8069 + }, + { + "start": 20043.52, + "end": 20046.34, + "probability": 0.8662 + }, + { + "start": 20046.4, + "end": 20048.01, + "probability": 0.9724 + }, + { + "start": 20048.52, + "end": 20049.0, + "probability": 0.8759 + }, + { + "start": 20049.68, + "end": 20051.6, + "probability": 0.9705 + }, + { + "start": 20052.52, + "end": 20054.12, + "probability": 0.6845 + }, + { + "start": 20054.24, + "end": 20054.54, + "probability": 0.8292 + }, + { + "start": 20054.64, + "end": 20056.24, + "probability": 0.9633 + }, + { + "start": 20057.34, + "end": 20058.74, + "probability": 0.7384 + }, + { + "start": 20059.4, + "end": 20060.54, + "probability": 0.9762 + }, + { + "start": 20061.16, + "end": 20062.06, + "probability": 0.9921 + }, + { + "start": 20062.18, + "end": 20062.76, + "probability": 0.907 + }, + { + "start": 20062.8, + "end": 20063.7, + "probability": 0.9732 + }, + { + "start": 20064.0, + "end": 20065.36, + "probability": 0.4817 + }, + { + "start": 20066.8, + "end": 20069.74, + "probability": 0.9988 + }, + { + "start": 20071.34, + "end": 20075.82, + "probability": 0.9827 + }, + { + "start": 20076.16, + "end": 20077.8, + "probability": 0.994 + }, + { + "start": 20078.42, + "end": 20079.42, + "probability": 0.9182 + }, + { + "start": 20080.6, + "end": 20083.38, + "probability": 0.8897 + }, + { + "start": 20084.56, + "end": 20085.68, + "probability": 0.7892 + }, + { + "start": 20087.5, + "end": 20090.03, + "probability": 0.9966 + }, + { + "start": 20090.84, + "end": 20091.72, + "probability": 0.8015 + }, + { + "start": 20091.88, + "end": 20092.4, + "probability": 0.8418 + }, + { + "start": 20092.58, + "end": 20094.0, + "probability": 0.9128 + }, + { + "start": 20095.34, + "end": 20099.18, + "probability": 0.9771 + }, + { + "start": 20100.28, + "end": 20102.2, + "probability": 0.9705 + }, + { + "start": 20103.02, + "end": 20109.94, + "probability": 0.6997 + }, + { + "start": 20111.22, + "end": 20112.18, + "probability": 0.9253 + }, + { + "start": 20113.34, + "end": 20114.38, + "probability": 0.9272 + }, + { + "start": 20115.98, + "end": 20117.12, + "probability": 0.9798 + }, + { + "start": 20117.94, + "end": 20122.34, + "probability": 0.9778 + }, + { + "start": 20123.24, + "end": 20124.94, + "probability": 0.9972 + }, + { + "start": 20127.87, + "end": 20129.52, + "probability": 0.6883 + }, + { + "start": 20129.54, + "end": 20131.14, + "probability": 0.9668 + }, + { + "start": 20132.68, + "end": 20134.0, + "probability": 0.6877 + }, + { + "start": 20135.3, + "end": 20136.48, + "probability": 0.915 + }, + { + "start": 20138.4, + "end": 20140.22, + "probability": 0.8037 + }, + { + "start": 20140.38, + "end": 20142.48, + "probability": 0.8733 + }, + { + "start": 20143.46, + "end": 20145.78, + "probability": 0.6582 + }, + { + "start": 20148.92, + "end": 20149.94, + "probability": 0.9724 + }, + { + "start": 20150.82, + "end": 20151.54, + "probability": 0.6762 + }, + { + "start": 20152.96, + "end": 20155.58, + "probability": 0.938 + }, + { + "start": 20155.74, + "end": 20157.17, + "probability": 0.981 + }, + { + "start": 20158.72, + "end": 20159.76, + "probability": 0.8424 + }, + { + "start": 20160.12, + "end": 20161.34, + "probability": 0.9637 + }, + { + "start": 20161.42, + "end": 20162.4, + "probability": 0.8277 + }, + { + "start": 20163.16, + "end": 20163.66, + "probability": 0.4382 + }, + { + "start": 20164.62, + "end": 20165.26, + "probability": 0.8184 + }, + { + "start": 20167.3, + "end": 20170.64, + "probability": 0.8839 + }, + { + "start": 20170.68, + "end": 20172.2, + "probability": 0.76 + }, + { + "start": 20172.3, + "end": 20173.2, + "probability": 0.9697 + }, + { + "start": 20174.2, + "end": 20176.66, + "probability": 0.9889 + }, + { + "start": 20180.48, + "end": 20187.06, + "probability": 0.9437 + }, + { + "start": 20187.66, + "end": 20191.16, + "probability": 0.8857 + }, + { + "start": 20192.18, + "end": 20193.16, + "probability": 0.7992 + }, + { + "start": 20194.14, + "end": 20195.34, + "probability": 0.9683 + }, + { + "start": 20196.64, + "end": 20198.46, + "probability": 0.9867 + }, + { + "start": 20198.66, + "end": 20200.02, + "probability": 0.9092 + }, + { + "start": 20200.1, + "end": 20200.96, + "probability": 0.9731 + }, + { + "start": 20201.36, + "end": 20203.3, + "probability": 0.9937 + }, + { + "start": 20203.48, + "end": 20205.3, + "probability": 0.9336 + }, + { + "start": 20206.16, + "end": 20210.16, + "probability": 0.9875 + }, + { + "start": 20210.16, + "end": 20214.14, + "probability": 0.9919 + }, + { + "start": 20217.4, + "end": 20218.16, + "probability": 0.7847 + }, + { + "start": 20219.76, + "end": 20222.28, + "probability": 0.9969 + }, + { + "start": 20223.18, + "end": 20225.94, + "probability": 0.9411 + }, + { + "start": 20226.84, + "end": 20228.68, + "probability": 0.8537 + }, + { + "start": 20229.0, + "end": 20230.68, + "probability": 0.985 + }, + { + "start": 20233.06, + "end": 20237.98, + "probability": 0.982 + }, + { + "start": 20237.98, + "end": 20241.92, + "probability": 0.9961 + }, + { + "start": 20242.86, + "end": 20243.52, + "probability": 0.6787 + }, + { + "start": 20246.08, + "end": 20247.78, + "probability": 0.9961 + }, + { + "start": 20248.66, + "end": 20251.84, + "probability": 0.8023 + }, + { + "start": 20252.54, + "end": 20257.32, + "probability": 0.9751 + }, + { + "start": 20258.02, + "end": 20259.68, + "probability": 0.9511 + }, + { + "start": 20260.94, + "end": 20265.48, + "probability": 0.9841 + }, + { + "start": 20265.48, + "end": 20269.22, + "probability": 0.9988 + }, + { + "start": 20269.9, + "end": 20270.72, + "probability": 0.6814 + }, + { + "start": 20271.84, + "end": 20273.9, + "probability": 0.9511 + }, + { + "start": 20275.5, + "end": 20277.76, + "probability": 0.9954 + }, + { + "start": 20277.96, + "end": 20278.96, + "probability": 0.9557 + }, + { + "start": 20279.82, + "end": 20281.08, + "probability": 0.9897 + }, + { + "start": 20282.22, + "end": 20284.96, + "probability": 0.9167 + }, + { + "start": 20286.3, + "end": 20288.42, + "probability": 0.9952 + }, + { + "start": 20290.2, + "end": 20298.28, + "probability": 0.9744 + }, + { + "start": 20299.8, + "end": 20304.08, + "probability": 0.9854 + }, + { + "start": 20304.18, + "end": 20304.68, + "probability": 0.8658 + }, + { + "start": 20304.8, + "end": 20307.38, + "probability": 0.9723 + }, + { + "start": 20308.56, + "end": 20311.56, + "probability": 0.6761 + }, + { + "start": 20313.92, + "end": 20315.54, + "probability": 0.8864 + }, + { + "start": 20316.54, + "end": 20320.0, + "probability": 0.9902 + }, + { + "start": 20320.56, + "end": 20321.92, + "probability": 0.8779 + }, + { + "start": 20322.6, + "end": 20324.38, + "probability": 0.7575 + }, + { + "start": 20325.44, + "end": 20331.3, + "probability": 0.9753 + }, + { + "start": 20331.44, + "end": 20332.54, + "probability": 0.7026 + }, + { + "start": 20333.8, + "end": 20337.1, + "probability": 0.9951 + }, + { + "start": 20337.64, + "end": 20338.72, + "probability": 0.8633 + }, + { + "start": 20341.14, + "end": 20344.34, + "probability": 0.978 + }, + { + "start": 20345.6, + "end": 20346.8, + "probability": 0.9163 + }, + { + "start": 20348.42, + "end": 20353.14, + "probability": 0.9415 + }, + { + "start": 20353.74, + "end": 20354.72, + "probability": 0.7623 + }, + { + "start": 20355.62, + "end": 20358.38, + "probability": 0.9866 + }, + { + "start": 20358.56, + "end": 20360.46, + "probability": 0.8923 + }, + { + "start": 20361.36, + "end": 20362.4, + "probability": 0.99 + }, + { + "start": 20364.28, + "end": 20368.56, + "probability": 0.9843 + }, + { + "start": 20369.08, + "end": 20370.38, + "probability": 0.7804 + }, + { + "start": 20371.68, + "end": 20374.2, + "probability": 0.9709 + }, + { + "start": 20375.56, + "end": 20379.38, + "probability": 0.9937 + }, + { + "start": 20380.34, + "end": 20383.12, + "probability": 0.9715 + }, + { + "start": 20383.9, + "end": 20386.44, + "probability": 0.7641 + }, + { + "start": 20387.98, + "end": 20396.1, + "probability": 0.9896 + }, + { + "start": 20396.68, + "end": 20397.94, + "probability": 0.8001 + }, + { + "start": 20398.22, + "end": 20400.38, + "probability": 0.7498 + }, + { + "start": 20402.22, + "end": 20404.16, + "probability": 0.9746 + }, + { + "start": 20405.06, + "end": 20407.12, + "probability": 0.9467 + }, + { + "start": 20408.68, + "end": 20411.78, + "probability": 0.8783 + }, + { + "start": 20412.78, + "end": 20416.84, + "probability": 0.998 + }, + { + "start": 20418.02, + "end": 20420.94, + "probability": 0.9097 + }, + { + "start": 20422.22, + "end": 20423.24, + "probability": 0.9209 + }, + { + "start": 20424.62, + "end": 20429.68, + "probability": 0.9823 + }, + { + "start": 20430.54, + "end": 20432.14, + "probability": 0.7924 + }, + { + "start": 20432.7, + "end": 20435.38, + "probability": 0.9258 + }, + { + "start": 20437.72, + "end": 20441.34, + "probability": 0.9953 + }, + { + "start": 20441.46, + "end": 20442.84, + "probability": 0.9399 + }, + { + "start": 20442.96, + "end": 20443.64, + "probability": 0.9293 + }, + { + "start": 20444.74, + "end": 20447.4, + "probability": 0.996 + }, + { + "start": 20448.1, + "end": 20449.38, + "probability": 0.9957 + }, + { + "start": 20449.86, + "end": 20450.94, + "probability": 0.9113 + }, + { + "start": 20451.32, + "end": 20451.68, + "probability": 0.9391 + }, + { + "start": 20451.82, + "end": 20452.26, + "probability": 0.9337 + }, + { + "start": 20452.3, + "end": 20454.42, + "probability": 0.9605 + }, + { + "start": 20454.62, + "end": 20455.72, + "probability": 0.8464 + }, + { + "start": 20456.38, + "end": 20463.5, + "probability": 0.8595 + }, + { + "start": 20464.26, + "end": 20466.1, + "probability": 0.906 + }, + { + "start": 20467.32, + "end": 20469.0, + "probability": 0.7957 + }, + { + "start": 20470.48, + "end": 20472.04, + "probability": 0.7499 + }, + { + "start": 20472.74, + "end": 20474.58, + "probability": 0.8679 + }, + { + "start": 20477.4, + "end": 20478.78, + "probability": 0.9065 + }, + { + "start": 20479.36, + "end": 20480.28, + "probability": 0.9451 + }, + { + "start": 20480.5, + "end": 20482.74, + "probability": 0.7393 + }, + { + "start": 20482.84, + "end": 20484.08, + "probability": 0.9722 + }, + { + "start": 20484.64, + "end": 20486.72, + "probability": 0.6676 + }, + { + "start": 20487.6, + "end": 20489.88, + "probability": 0.8769 + }, + { + "start": 20490.76, + "end": 20495.22, + "probability": 0.9923 + }, + { + "start": 20495.92, + "end": 20496.9, + "probability": 0.9233 + }, + { + "start": 20497.59, + "end": 20503.68, + "probability": 0.9739 + }, + { + "start": 20504.44, + "end": 20508.52, + "probability": 0.9905 + }, + { + "start": 20509.26, + "end": 20514.28, + "probability": 0.9554 + }, + { + "start": 20514.72, + "end": 20515.18, + "probability": 0.8035 + }, + { + "start": 20515.82, + "end": 20518.22, + "probability": 0.928 + }, + { + "start": 20518.84, + "end": 20521.94, + "probability": 0.9225 + }, + { + "start": 20522.44, + "end": 20526.06, + "probability": 0.9386 + }, + { + "start": 20526.16, + "end": 20528.78, + "probability": 0.8467 + }, + { + "start": 20529.34, + "end": 20532.54, + "probability": 0.9983 + }, + { + "start": 20533.26, + "end": 20536.4, + "probability": 0.0506 + }, + { + "start": 20538.0, + "end": 20542.8, + "probability": 0.0159 + }, + { + "start": 20545.6, + "end": 20546.12, + "probability": 0.1193 + }, + { + "start": 20547.18, + "end": 20549.18, + "probability": 0.0618 + }, + { + "start": 20551.4, + "end": 20553.74, + "probability": 0.3528 + }, + { + "start": 20553.9, + "end": 20553.9, + "probability": 0.1018 + }, + { + "start": 20553.9, + "end": 20556.12, + "probability": 0.7972 + }, + { + "start": 20556.3, + "end": 20558.4, + "probability": 0.7057 + }, + { + "start": 20558.42, + "end": 20559.6, + "probability": 0.4402 + }, + { + "start": 20560.38, + "end": 20564.36, + "probability": 0.4253 + }, + { + "start": 20564.38, + "end": 20568.06, + "probability": 0.7659 + }, + { + "start": 20569.12, + "end": 20570.2, + "probability": 0.8744 + }, + { + "start": 20570.94, + "end": 20573.04, + "probability": 0.9448 + }, + { + "start": 20573.62, + "end": 20576.1, + "probability": 0.9633 + }, + { + "start": 20577.0, + "end": 20578.3, + "probability": 0.8277 + }, + { + "start": 20578.64, + "end": 20579.58, + "probability": 0.8994 + }, + { + "start": 20579.7, + "end": 20582.5, + "probability": 0.4621 + }, + { + "start": 20582.5, + "end": 20583.66, + "probability": 0.5616 + }, + { + "start": 20585.96, + "end": 20589.58, + "probability": 0.9566 + }, + { + "start": 20590.38, + "end": 20591.58, + "probability": 0.9634 + }, + { + "start": 20592.36, + "end": 20593.26, + "probability": 0.913 + }, + { + "start": 20594.12, + "end": 20598.38, + "probability": 0.9476 + }, + { + "start": 20599.48, + "end": 20600.76, + "probability": 0.9235 + }, + { + "start": 20600.94, + "end": 20601.56, + "probability": 0.824 + }, + { + "start": 20601.68, + "end": 20603.9, + "probability": 0.8352 + }, + { + "start": 20604.46, + "end": 20607.78, + "probability": 0.9513 + }, + { + "start": 20608.4, + "end": 20609.12, + "probability": 0.5039 + }, + { + "start": 20609.7, + "end": 20611.78, + "probability": 0.9693 + }, + { + "start": 20613.0, + "end": 20615.14, + "probability": 0.9726 + }, + { + "start": 20615.76, + "end": 20617.04, + "probability": 0.8835 + }, + { + "start": 20617.54, + "end": 20619.26, + "probability": 0.9645 + }, + { + "start": 20619.9, + "end": 20620.28, + "probability": 0.4373 + }, + { + "start": 20620.58, + "end": 20621.62, + "probability": 0.9162 + }, + { + "start": 20621.7, + "end": 20622.18, + "probability": 0.8685 + }, + { + "start": 20622.28, + "end": 20625.46, + "probability": 0.8115 + }, + { + "start": 20625.78, + "end": 20627.66, + "probability": 0.4181 + }, + { + "start": 20628.66, + "end": 20631.18, + "probability": 0.9956 + }, + { + "start": 20632.22, + "end": 20635.28, + "probability": 0.9941 + }, + { + "start": 20635.66, + "end": 20636.7, + "probability": 0.6379 + }, + { + "start": 20637.4, + "end": 20642.74, + "probability": 0.9304 + }, + { + "start": 20642.92, + "end": 20644.66, + "probability": 0.626 + }, + { + "start": 20644.8, + "end": 20645.32, + "probability": 0.7019 + }, + { + "start": 20646.04, + "end": 20646.62, + "probability": 0.6803 + }, + { + "start": 20647.26, + "end": 20650.94, + "probability": 0.9866 + }, + { + "start": 20652.02, + "end": 20652.9, + "probability": 0.97 + }, + { + "start": 20654.2, + "end": 20654.42, + "probability": 0.3046 + }, + { + "start": 20654.46, + "end": 20659.12, + "probability": 0.9912 + }, + { + "start": 20659.78, + "end": 20661.96, + "probability": 0.9885 + }, + { + "start": 20662.06, + "end": 20663.56, + "probability": 0.9492 + }, + { + "start": 20664.38, + "end": 20667.36, + "probability": 0.998 + }, + { + "start": 20668.16, + "end": 20669.78, + "probability": 0.982 + }, + { + "start": 20670.32, + "end": 20673.06, + "probability": 0.9513 + }, + { + "start": 20673.06, + "end": 20675.62, + "probability": 0.9797 + }, + { + "start": 20676.2, + "end": 20679.22, + "probability": 0.827 + }, + { + "start": 20679.34, + "end": 20680.2, + "probability": 0.7536 + }, + { + "start": 20680.88, + "end": 20681.84, + "probability": 0.9789 + }, + { + "start": 20682.5, + "end": 20684.78, + "probability": 0.9222 + }, + { + "start": 20685.64, + "end": 20686.26, + "probability": 0.9019 + }, + { + "start": 20687.18, + "end": 20691.36, + "probability": 0.9908 + }, + { + "start": 20691.88, + "end": 20694.02, + "probability": 0.9958 + }, + { + "start": 20694.26, + "end": 20695.22, + "probability": 0.6453 + }, + { + "start": 20695.92, + "end": 20698.0, + "probability": 0.5672 + }, + { + "start": 20698.24, + "end": 20701.74, + "probability": 0.9927 + }, + { + "start": 20703.16, + "end": 20703.52, + "probability": 0.6461 + }, + { + "start": 20705.36, + "end": 20706.94, + "probability": 0.8451 + }, + { + "start": 20708.96, + "end": 20710.24, + "probability": 0.857 + }, + { + "start": 20710.62, + "end": 20715.08, + "probability": 0.7842 + }, + { + "start": 20715.74, + "end": 20719.98, + "probability": 0.9737 + }, + { + "start": 20721.49, + "end": 20728.74, + "probability": 0.6606 + }, + { + "start": 20729.42, + "end": 20732.74, + "probability": 0.592 + }, + { + "start": 20733.38, + "end": 20735.19, + "probability": 0.7527 + }, + { + "start": 20736.26, + "end": 20741.82, + "probability": 0.9878 + }, + { + "start": 20742.38, + "end": 20744.98, + "probability": 0.8959 + }, + { + "start": 20745.64, + "end": 20752.32, + "probability": 0.9832 + }, + { + "start": 20752.32, + "end": 20755.84, + "probability": 0.9807 + }, + { + "start": 20756.26, + "end": 20758.62, + "probability": 0.5224 + }, + { + "start": 20759.42, + "end": 20760.36, + "probability": 0.6187 + }, + { + "start": 20760.74, + "end": 20762.04, + "probability": 0.9548 + }, + { + "start": 20762.6, + "end": 20764.5, + "probability": 0.8997 + }, + { + "start": 20764.58, + "end": 20767.48, + "probability": 0.9572 + }, + { + "start": 20770.48, + "end": 20774.88, + "probability": 0.9944 + }, + { + "start": 20775.56, + "end": 20782.96, + "probability": 0.9736 + }, + { + "start": 20783.4, + "end": 20785.17, + "probability": 0.9795 + }, + { + "start": 20786.22, + "end": 20789.06, + "probability": 0.4974 + }, + { + "start": 20789.06, + "end": 20789.24, + "probability": 0.5089 + }, + { + "start": 20790.04, + "end": 20791.42, + "probability": 0.7683 + }, + { + "start": 20791.5, + "end": 20794.08, + "probability": 0.6917 + }, + { + "start": 20797.1, + "end": 20799.14, + "probability": 0.9826 + }, + { + "start": 20799.14, + "end": 20802.74, + "probability": 0.9494 + }, + { + "start": 20804.2, + "end": 20809.98, + "probability": 0.9499 + }, + { + "start": 20809.98, + "end": 20814.82, + "probability": 0.9647 + }, + { + "start": 20816.82, + "end": 20819.5, + "probability": 0.8982 + }, + { + "start": 20820.36, + "end": 20823.12, + "probability": 0.8266 + }, + { + "start": 20824.22, + "end": 20827.04, + "probability": 0.9974 + }, + { + "start": 20828.06, + "end": 20830.0, + "probability": 0.7912 + }, + { + "start": 20832.52, + "end": 20833.16, + "probability": 0.9679 + }, + { + "start": 20834.12, + "end": 20837.66, + "probability": 0.9624 + }, + { + "start": 20837.78, + "end": 20839.68, + "probability": 0.925 + }, + { + "start": 20840.36, + "end": 20843.27, + "probability": 0.7036 + }, + { + "start": 20844.42, + "end": 20846.0, + "probability": 0.7918 + }, + { + "start": 20847.14, + "end": 20850.76, + "probability": 0.797 + }, + { + "start": 20851.7, + "end": 20853.7, + "probability": 0.8195 + }, + { + "start": 20854.64, + "end": 20856.16, + "probability": 0.9897 + }, + { + "start": 20856.84, + "end": 20859.84, + "probability": 0.8397 + }, + { + "start": 20860.38, + "end": 20862.08, + "probability": 0.6341 + }, + { + "start": 20862.7, + "end": 20864.14, + "probability": 0.7291 + }, + { + "start": 20864.38, + "end": 20867.94, + "probability": 0.8829 + }, + { + "start": 20868.68, + "end": 20873.0, + "probability": 0.9752 + }, + { + "start": 20873.7, + "end": 20875.76, + "probability": 0.8394 + }, + { + "start": 20876.34, + "end": 20876.74, + "probability": 0.8981 + }, + { + "start": 20876.86, + "end": 20881.44, + "probability": 0.9969 + }, + { + "start": 20882.74, + "end": 20884.68, + "probability": 0.8176 + }, + { + "start": 20885.68, + "end": 20889.16, + "probability": 0.9921 + }, + { + "start": 20889.92, + "end": 20891.0, + "probability": 0.8315 + }, + { + "start": 20891.84, + "end": 20892.86, + "probability": 0.5606 + }, + { + "start": 20894.38, + "end": 20895.32, + "probability": 0.3277 + }, + { + "start": 20896.02, + "end": 20896.82, + "probability": 0.6989 + }, + { + "start": 20897.6, + "end": 20899.1, + "probability": 0.8018 + }, + { + "start": 20899.66, + "end": 20902.44, + "probability": 0.987 + }, + { + "start": 20902.96, + "end": 20905.0, + "probability": 0.8217 + }, + { + "start": 20905.54, + "end": 20907.34, + "probability": 0.7583 + }, + { + "start": 20907.74, + "end": 20909.62, + "probability": 0.9396 + }, + { + "start": 20910.82, + "end": 20916.28, + "probability": 0.9889 + }, + { + "start": 20917.18, + "end": 20919.6, + "probability": 0.9201 + }, + { + "start": 20920.38, + "end": 20922.1, + "probability": 0.9487 + }, + { + "start": 20922.52, + "end": 20926.7, + "probability": 0.9135 + }, + { + "start": 20926.7, + "end": 20932.56, + "probability": 0.9861 + }, + { + "start": 20932.9, + "end": 20933.72, + "probability": 0.9613 + }, + { + "start": 20933.84, + "end": 20934.64, + "probability": 0.8853 + }, + { + "start": 20936.3, + "end": 20937.3, + "probability": 0.6976 + }, + { + "start": 20937.46, + "end": 20938.3, + "probability": 0.364 + }, + { + "start": 20938.52, + "end": 20940.2, + "probability": 0.7921 + }, + { + "start": 20941.78, + "end": 20949.06, + "probability": 0.9818 + }, + { + "start": 20949.24, + "end": 20951.96, + "probability": 0.6626 + }, + { + "start": 20953.7, + "end": 20955.12, + "probability": 0.9763 + }, + { + "start": 20955.88, + "end": 20960.1, + "probability": 0.751 + }, + { + "start": 20960.1, + "end": 20963.74, + "probability": 0.9932 + }, + { + "start": 20965.44, + "end": 20969.78, + "probability": 0.992 + }, + { + "start": 20970.46, + "end": 20972.46, + "probability": 0.9089 + }, + { + "start": 20973.14, + "end": 20976.42, + "probability": 0.9854 + }, + { + "start": 20977.08, + "end": 20981.82, + "probability": 0.788 + }, + { + "start": 20982.52, + "end": 20984.54, + "probability": 0.8653 + }, + { + "start": 20985.52, + "end": 20988.96, + "probability": 0.8651 + }, + { + "start": 20990.22, + "end": 20990.42, + "probability": 0.6461 + }, + { + "start": 20994.78, + "end": 20997.72, + "probability": 0.9779 + }, + { + "start": 20998.68, + "end": 21000.28, + "probability": 0.8136 + }, + { + "start": 21001.5, + "end": 21002.88, + "probability": 0.7834 + }, + { + "start": 21003.04, + "end": 21005.06, + "probability": 0.4942 + }, + { + "start": 21006.3, + "end": 21008.44, + "probability": 0.3896 + }, + { + "start": 21008.44, + "end": 21009.46, + "probability": 0.0541 + }, + { + "start": 21011.3, + "end": 21011.46, + "probability": 0.5895 + }, + { + "start": 21011.86, + "end": 21012.92, + "probability": 0.9858 + }, + { + "start": 21014.66, + "end": 21016.16, + "probability": 0.084 + }, + { + "start": 21016.46, + "end": 21019.42, + "probability": 0.9417 + }, + { + "start": 21020.2, + "end": 21022.36, + "probability": 0.8403 + }, + { + "start": 21037.76, + "end": 21037.76, + "probability": 0.1305 + }, + { + "start": 21037.76, + "end": 21039.84, + "probability": 0.6009 + }, + { + "start": 21040.04, + "end": 21042.38, + "probability": 0.5454 + }, + { + "start": 21043.16, + "end": 21047.62, + "probability": 0.2787 + }, + { + "start": 21048.7, + "end": 21048.8, + "probability": 0.2239 + }, + { + "start": 21052.22, + "end": 21054.7, + "probability": 0.0675 + }, + { + "start": 21057.68, + "end": 21057.68, + "probability": 0.0565 + }, + { + "start": 21057.68, + "end": 21057.68, + "probability": 0.0742 + }, + { + "start": 21057.68, + "end": 21059.36, + "probability": 0.7286 + }, + { + "start": 21075.06, + "end": 21079.42, + "probability": 0.6656 + }, + { + "start": 21080.9, + "end": 21082.7, + "probability": 0.9132 + }, + { + "start": 21084.44, + "end": 21089.34, + "probability": 0.979 + }, + { + "start": 21091.88, + "end": 21100.06, + "probability": 0.9933 + }, + { + "start": 21100.64, + "end": 21103.22, + "probability": 0.9954 + }, + { + "start": 21104.18, + "end": 21106.1, + "probability": 0.9826 + }, + { + "start": 21107.24, + "end": 21110.96, + "probability": 0.9875 + }, + { + "start": 21111.72, + "end": 21112.88, + "probability": 0.9027 + }, + { + "start": 21112.98, + "end": 21113.74, + "probability": 0.7512 + }, + { + "start": 21114.06, + "end": 21115.51, + "probability": 0.9318 + }, + { + "start": 21116.52, + "end": 21118.0, + "probability": 0.7178 + }, + { + "start": 21121.0, + "end": 21123.42, + "probability": 0.9644 + }, + { + "start": 21124.22, + "end": 21125.94, + "probability": 0.9195 + }, + { + "start": 21127.02, + "end": 21129.78, + "probability": 0.6291 + }, + { + "start": 21130.42, + "end": 21132.88, + "probability": 0.9849 + }, + { + "start": 21133.92, + "end": 21136.9, + "probability": 0.7322 + }, + { + "start": 21137.9, + "end": 21142.05, + "probability": 0.9008 + }, + { + "start": 21142.84, + "end": 21144.24, + "probability": 0.785 + }, + { + "start": 21144.32, + "end": 21145.26, + "probability": 0.747 + }, + { + "start": 21147.12, + "end": 21151.78, + "probability": 0.9963 + }, + { + "start": 21152.86, + "end": 21153.96, + "probability": 0.8596 + }, + { + "start": 21154.98, + "end": 21156.0, + "probability": 0.9613 + }, + { + "start": 21157.14, + "end": 21161.16, + "probability": 0.9822 + }, + { + "start": 21162.34, + "end": 21163.4, + "probability": 0.9346 + }, + { + "start": 21164.96, + "end": 21167.52, + "probability": 0.9988 + }, + { + "start": 21168.46, + "end": 21171.18, + "probability": 0.9912 + }, + { + "start": 21172.52, + "end": 21174.52, + "probability": 0.8848 + }, + { + "start": 21176.04, + "end": 21178.9, + "probability": 0.7684 + }, + { + "start": 21180.32, + "end": 21184.82, + "probability": 0.8433 + }, + { + "start": 21186.6, + "end": 21187.94, + "probability": 0.9823 + }, + { + "start": 21188.04, + "end": 21189.02, + "probability": 0.6285 + }, + { + "start": 21189.16, + "end": 21190.02, + "probability": 0.9364 + }, + { + "start": 21190.08, + "end": 21192.5, + "probability": 0.9917 + }, + { + "start": 21193.26, + "end": 21194.98, + "probability": 0.8945 + }, + { + "start": 21196.12, + "end": 21200.36, + "probability": 0.9847 + }, + { + "start": 21200.36, + "end": 21204.02, + "probability": 0.999 + }, + { + "start": 21205.4, + "end": 21206.94, + "probability": 0.8617 + }, + { + "start": 21207.64, + "end": 21211.1, + "probability": 0.9578 + }, + { + "start": 21212.12, + "end": 21215.06, + "probability": 0.9939 + }, + { + "start": 21215.78, + "end": 21217.28, + "probability": 0.9926 + }, + { + "start": 21217.96, + "end": 21218.96, + "probability": 0.9995 + }, + { + "start": 21219.6, + "end": 21219.94, + "probability": 0.8209 + }, + { + "start": 21220.72, + "end": 21223.82, + "probability": 0.9967 + }, + { + "start": 21224.4, + "end": 21226.04, + "probability": 0.9313 + }, + { + "start": 21227.26, + "end": 21227.84, + "probability": 0.4147 + }, + { + "start": 21227.94, + "end": 21232.02, + "probability": 0.899 + }, + { + "start": 21234.46, + "end": 21236.14, + "probability": 0.9949 + }, + { + "start": 21237.22, + "end": 21240.8, + "probability": 0.9883 + }, + { + "start": 21240.86, + "end": 21241.84, + "probability": 0.8643 + }, + { + "start": 21243.02, + "end": 21243.98, + "probability": 0.7484 + }, + { + "start": 21245.34, + "end": 21247.78, + "probability": 0.9933 + }, + { + "start": 21248.74, + "end": 21253.58, + "probability": 0.999 + }, + { + "start": 21253.58, + "end": 21259.8, + "probability": 0.9407 + }, + { + "start": 21262.32, + "end": 21264.02, + "probability": 0.4518 + }, + { + "start": 21264.4, + "end": 21267.5, + "probability": 0.8829 + }, + { + "start": 21267.64, + "end": 21268.64, + "probability": 0.8416 + }, + { + "start": 21269.82, + "end": 21270.98, + "probability": 0.604 + }, + { + "start": 21271.1, + "end": 21273.26, + "probability": 0.951 + }, + { + "start": 21274.78, + "end": 21277.08, + "probability": 0.9827 + }, + { + "start": 21277.84, + "end": 21281.5, + "probability": 0.9669 + }, + { + "start": 21282.16, + "end": 21283.4, + "probability": 0.8877 + }, + { + "start": 21283.88, + "end": 21286.74, + "probability": 0.9987 + }, + { + "start": 21287.62, + "end": 21289.88, + "probability": 0.9913 + }, + { + "start": 21290.84, + "end": 21297.32, + "probability": 0.9989 + }, + { + "start": 21298.46, + "end": 21299.74, + "probability": 0.9015 + }, + { + "start": 21301.18, + "end": 21304.2, + "probability": 0.2359 + }, + { + "start": 21304.2, + "end": 21304.71, + "probability": 0.2993 + }, + { + "start": 21306.24, + "end": 21308.5, + "probability": 0.9175 + }, + { + "start": 21309.42, + "end": 21311.3, + "probability": 0.8857 + }, + { + "start": 21312.3, + "end": 21312.68, + "probability": 0.8948 + }, + { + "start": 21313.6, + "end": 21314.42, + "probability": 0.9731 + }, + { + "start": 21315.2, + "end": 21318.56, + "probability": 0.9915 + }, + { + "start": 21319.36, + "end": 21326.46, + "probability": 0.9924 + }, + { + "start": 21327.2, + "end": 21330.58, + "probability": 0.9921 + }, + { + "start": 21331.24, + "end": 21336.29, + "probability": 0.9958 + }, + { + "start": 21337.96, + "end": 21342.18, + "probability": 0.999 + }, + { + "start": 21342.26, + "end": 21342.68, + "probability": 0.7519 + }, + { + "start": 21343.36, + "end": 21345.36, + "probability": 0.8472 + }, + { + "start": 21345.68, + "end": 21348.66, + "probability": 0.9968 + }, + { + "start": 21349.3, + "end": 21353.54, + "probability": 0.7585 + }, + { + "start": 21354.38, + "end": 21360.64, + "probability": 0.9943 + }, + { + "start": 21360.78, + "end": 21363.08, + "probability": 0.9929 + }, + { + "start": 21363.72, + "end": 21367.52, + "probability": 0.9958 + }, + { + "start": 21368.1, + "end": 21374.01, + "probability": 0.9683 + }, + { + "start": 21374.02, + "end": 21376.76, + "probability": 0.9976 + }, + { + "start": 21376.82, + "end": 21377.49, + "probability": 0.9946 + }, + { + "start": 21378.5, + "end": 21383.08, + "probability": 0.959 + }, + { + "start": 21383.74, + "end": 21387.9, + "probability": 0.9754 + }, + { + "start": 21390.28, + "end": 21393.14, + "probability": 0.9179 + }, + { + "start": 21393.8, + "end": 21397.1, + "probability": 0.3091 + }, + { + "start": 21397.44, + "end": 21398.32, + "probability": 0.6689 + }, + { + "start": 21398.44, + "end": 21398.54, + "probability": 0.8469 + }, + { + "start": 21401.6, + "end": 21402.04, + "probability": 0.2417 + }, + { + "start": 21414.58, + "end": 21414.72, + "probability": 0.3022 + }, + { + "start": 21414.72, + "end": 21416.36, + "probability": 0.507 + }, + { + "start": 21416.72, + "end": 21419.46, + "probability": 0.9109 + }, + { + "start": 21421.58, + "end": 21423.48, + "probability": 0.3569 + }, + { + "start": 21427.38, + "end": 21427.56, + "probability": 0.0763 + }, + { + "start": 21427.56, + "end": 21430.2, + "probability": 0.7039 + }, + { + "start": 21430.64, + "end": 21431.26, + "probability": 0.3658 + }, + { + "start": 21431.28, + "end": 21432.9, + "probability": 0.7447 + }, + { + "start": 21437.48, + "end": 21440.18, + "probability": 0.9259 + }, + { + "start": 21440.86, + "end": 21441.84, + "probability": 0.9897 + }, + { + "start": 21446.3, + "end": 21447.14, + "probability": 0.5188 + }, + { + "start": 21447.18, + "end": 21447.96, + "probability": 0.9113 + }, + { + "start": 21448.36, + "end": 21450.56, + "probability": 0.7096 + }, + { + "start": 21456.52, + "end": 21457.94, + "probability": 0.5925 + }, + { + "start": 21459.06, + "end": 21460.94, + "probability": 0.736 + }, + { + "start": 21461.14, + "end": 21461.8, + "probability": 0.9501 + }, + { + "start": 21462.46, + "end": 21462.68, + "probability": 0.0861 + }, + { + "start": 21462.82, + "end": 21464.84, + "probability": 0.7955 + }, + { + "start": 21464.96, + "end": 21466.38, + "probability": 0.7051 + }, + { + "start": 21466.4, + "end": 21468.42, + "probability": 0.9586 + }, + { + "start": 21469.66, + "end": 21469.76, + "probability": 0.0295 + }, + { + "start": 21470.3, + "end": 21470.84, + "probability": 0.1407 + }, + { + "start": 21470.98, + "end": 21472.28, + "probability": 0.6852 + }, + { + "start": 21472.92, + "end": 21474.54, + "probability": 0.9883 + }, + { + "start": 21475.32, + "end": 21476.82, + "probability": 0.6586 + }, + { + "start": 21476.84, + "end": 21477.46, + "probability": 0.9547 + }, + { + "start": 21478.6, + "end": 21481.86, + "probability": 0.9843 + }, + { + "start": 21481.94, + "end": 21487.42, + "probability": 0.9492 + }, + { + "start": 21487.44, + "end": 21488.84, + "probability": 0.5053 + }, + { + "start": 21488.9, + "end": 21489.32, + "probability": 0.7314 + }, + { + "start": 21490.29, + "end": 21494.66, + "probability": 0.9642 + }, + { + "start": 21495.2, + "end": 21499.56, + "probability": 0.9968 + }, + { + "start": 21499.8, + "end": 21500.72, + "probability": 0.8989 + }, + { + "start": 21501.18, + "end": 21502.3, + "probability": 0.7533 + }, + { + "start": 21502.82, + "end": 21504.06, + "probability": 0.9989 + }, + { + "start": 21504.62, + "end": 21505.85, + "probability": 0.9927 + }, + { + "start": 21506.32, + "end": 21506.32, + "probability": 0.0001 + }, + { + "start": 21507.3, + "end": 21509.06, + "probability": 0.0861 + }, + { + "start": 21511.28, + "end": 21512.06, + "probability": 0.0039 + }, + { + "start": 21512.66, + "end": 21515.16, + "probability": 0.7568 + }, + { + "start": 21515.24, + "end": 21517.82, + "probability": 0.5738 + }, + { + "start": 21518.2, + "end": 21519.28, + "probability": 0.7997 + }, + { + "start": 21519.7, + "end": 21520.32, + "probability": 0.6991 + }, + { + "start": 21520.32, + "end": 21522.62, + "probability": 0.7087 + }, + { + "start": 21522.62, + "end": 21525.44, + "probability": 0.6264 + }, + { + "start": 21525.66, + "end": 21529.94, + "probability": 0.9938 + }, + { + "start": 21530.56, + "end": 21531.74, + "probability": 0.5902 + }, + { + "start": 21532.86, + "end": 21533.7, + "probability": 0.6658 + }, + { + "start": 21533.92, + "end": 21540.2, + "probability": 0.9888 + }, + { + "start": 21541.58, + "end": 21545.08, + "probability": 0.9015 + }, + { + "start": 21546.24, + "end": 21549.66, + "probability": 0.5894 + }, + { + "start": 21550.36, + "end": 21554.58, + "probability": 0.8797 + }, + { + "start": 21554.58, + "end": 21557.94, + "probability": 0.9961 + }, + { + "start": 21558.44, + "end": 21562.66, + "probability": 0.9904 + }, + { + "start": 21563.32, + "end": 21568.48, + "probability": 0.979 + }, + { + "start": 21568.48, + "end": 21572.54, + "probability": 0.9941 + }, + { + "start": 21573.14, + "end": 21580.8, + "probability": 0.9814 + }, + { + "start": 21581.8, + "end": 21584.34, + "probability": 0.6533 + }, + { + "start": 21584.4, + "end": 21588.24, + "probability": 0.8919 + }, + { + "start": 21588.24, + "end": 21591.52, + "probability": 0.9678 + }, + { + "start": 21591.66, + "end": 21592.44, + "probability": 0.6699 + }, + { + "start": 21592.88, + "end": 21594.44, + "probability": 0.7976 + }, + { + "start": 21595.04, + "end": 21601.48, + "probability": 0.9541 + }, + { + "start": 21601.88, + "end": 21605.36, + "probability": 0.9957 + }, + { + "start": 21605.36, + "end": 21609.74, + "probability": 0.9603 + }, + { + "start": 21610.12, + "end": 21612.88, + "probability": 0.9982 + }, + { + "start": 21613.2, + "end": 21615.79, + "probability": 0.9995 + }, + { + "start": 21616.28, + "end": 21621.78, + "probability": 0.9799 + }, + { + "start": 21621.78, + "end": 21628.3, + "probability": 0.9985 + }, + { + "start": 21628.98, + "end": 21632.66, + "probability": 0.9976 + }, + { + "start": 21632.76, + "end": 21637.71, + "probability": 0.9993 + }, + { + "start": 21638.0, + "end": 21640.4, + "probability": 0.9497 + }, + { + "start": 21641.76, + "end": 21643.28, + "probability": 0.709 + }, + { + "start": 21644.4, + "end": 21652.78, + "probability": 0.6998 + }, + { + "start": 21652.94, + "end": 21653.92, + "probability": 0.8309 + }, + { + "start": 21654.58, + "end": 21656.76, + "probability": 0.8654 + }, + { + "start": 21657.04, + "end": 21659.18, + "probability": 0.8988 + }, + { + "start": 21659.64, + "end": 21661.6, + "probability": 0.9643 + }, + { + "start": 21662.88, + "end": 21665.08, + "probability": 0.9759 + }, + { + "start": 21665.62, + "end": 21667.86, + "probability": 0.9907 + }, + { + "start": 21668.56, + "end": 21672.9, + "probability": 0.998 + }, + { + "start": 21673.48, + "end": 21676.72, + "probability": 0.9089 + }, + { + "start": 21677.44, + "end": 21680.79, + "probability": 0.9959 + }, + { + "start": 21681.24, + "end": 21684.88, + "probability": 0.9685 + }, + { + "start": 21685.6, + "end": 21688.46, + "probability": 0.8756 + }, + { + "start": 21688.98, + "end": 21689.82, + "probability": 0.755 + }, + { + "start": 21690.44, + "end": 21692.36, + "probability": 0.9174 + }, + { + "start": 21693.56, + "end": 21696.18, + "probability": 0.8397 + }, + { + "start": 21696.7, + "end": 21698.7, + "probability": 0.9927 + }, + { + "start": 21699.3, + "end": 21699.96, + "probability": 0.8987 + }, + { + "start": 21700.84, + "end": 21703.49, + "probability": 0.9664 + }, + { + "start": 21704.3, + "end": 21707.08, + "probability": 0.7927 + }, + { + "start": 21707.32, + "end": 21710.18, + "probability": 0.7578 + }, + { + "start": 21710.22, + "end": 21710.32, + "probability": 0.8859 + }, + { + "start": 21711.7, + "end": 21713.5, + "probability": 0.4024 + }, + { + "start": 21721.98, + "end": 21723.48, + "probability": 0.1098 + }, + { + "start": 21723.52, + "end": 21723.56, + "probability": 0.0758 + }, + { + "start": 21723.64, + "end": 21723.64, + "probability": 0.0707 + }, + { + "start": 21723.64, + "end": 21725.88, + "probability": 0.1486 + }, + { + "start": 21726.4, + "end": 21728.76, + "probability": 0.2028 + }, + { + "start": 21729.9, + "end": 21732.78, + "probability": 0.113 + }, + { + "start": 21732.84, + "end": 21732.84, + "probability": 0.0137 + }, + { + "start": 21732.9, + "end": 21732.9, + "probability": 0.3165 + }, + { + "start": 21732.9, + "end": 21733.26, + "probability": 0.6087 + }, + { + "start": 21733.34, + "end": 21733.58, + "probability": 0.8062 + }, + { + "start": 21733.7, + "end": 21739.54, + "probability": 0.7799 + }, + { + "start": 21739.7, + "end": 21741.07, + "probability": 0.9967 + }, + { + "start": 21741.32, + "end": 21743.84, + "probability": 0.6114 + }, + { + "start": 21744.54, + "end": 21749.24, + "probability": 0.9343 + }, + { + "start": 21749.9, + "end": 21754.92, + "probability": 0.9971 + }, + { + "start": 21754.92, + "end": 21760.08, + "probability": 0.9884 + }, + { + "start": 21760.66, + "end": 21765.04, + "probability": 0.9033 + }, + { + "start": 21766.32, + "end": 21768.38, + "probability": 0.9414 + }, + { + "start": 21768.44, + "end": 21771.56, + "probability": 0.9656 + }, + { + "start": 21774.54, + "end": 21777.72, + "probability": 0.7793 + }, + { + "start": 21778.14, + "end": 21779.5, + "probability": 0.8038 + }, + { + "start": 21779.8, + "end": 21780.2, + "probability": 0.483 + }, + { + "start": 21780.44, + "end": 21783.44, + "probability": 0.8997 + }, + { + "start": 21783.46, + "end": 21785.34, + "probability": 0.8613 + }, + { + "start": 21785.92, + "end": 21787.74, + "probability": 0.8032 + }, + { + "start": 21787.78, + "end": 21789.64, + "probability": 0.9868 + }, + { + "start": 21789.76, + "end": 21790.24, + "probability": 0.3113 + }, + { + "start": 21790.24, + "end": 21790.36, + "probability": 0.1194 + }, + { + "start": 21790.36, + "end": 21795.66, + "probability": 0.9922 + }, + { + "start": 21795.68, + "end": 21799.66, + "probability": 0.9136 + }, + { + "start": 21799.66, + "end": 21802.02, + "probability": 0.95 + }, + { + "start": 21802.57, + "end": 21803.85, + "probability": 0.4992 + }, + { + "start": 21804.88, + "end": 21809.5, + "probability": 0.7022 + }, + { + "start": 21809.94, + "end": 21811.88, + "probability": 0.5816 + }, + { + "start": 21812.22, + "end": 21812.68, + "probability": 0.3411 + }, + { + "start": 21812.68, + "end": 21813.11, + "probability": 0.246 + }, + { + "start": 21813.56, + "end": 21816.42, + "probability": 0.9805 + }, + { + "start": 21816.42, + "end": 21817.77, + "probability": 0.8949 + }, + { + "start": 21818.02, + "end": 21818.86, + "probability": 0.7027 + }, + { + "start": 21819.02, + "end": 21819.5, + "probability": 0.6868 + }, + { + "start": 21820.15, + "end": 21822.6, + "probability": 0.9874 + }, + { + "start": 21823.1, + "end": 21825.28, + "probability": 0.7512 + }, + { + "start": 21825.36, + "end": 21827.52, + "probability": 0.96 + }, + { + "start": 21828.66, + "end": 21831.46, + "probability": 0.619 + }, + { + "start": 21832.0, + "end": 21832.72, + "probability": 0.8175 + }, + { + "start": 21834.25, + "end": 21835.69, + "probability": 0.7891 + }, + { + "start": 21835.84, + "end": 21835.98, + "probability": 0.5281 + }, + { + "start": 21836.24, + "end": 21836.8, + "probability": 0.2213 + }, + { + "start": 21836.92, + "end": 21841.19, + "probability": 0.9814 + }, + { + "start": 21841.24, + "end": 21843.4, + "probability": 0.8412 + }, + { + "start": 21845.64, + "end": 21846.74, + "probability": 0.4982 + }, + { + "start": 21848.94, + "end": 21849.5, + "probability": 0.0042 + }, + { + "start": 21849.54, + "end": 21849.74, + "probability": 0.0478 + }, + { + "start": 21849.74, + "end": 21849.74, + "probability": 0.035 + }, + { + "start": 21849.74, + "end": 21849.74, + "probability": 0.0954 + }, + { + "start": 21849.74, + "end": 21854.36, + "probability": 0.46 + }, + { + "start": 21855.7, + "end": 21858.52, + "probability": 0.4032 + }, + { + "start": 21858.52, + "end": 21859.29, + "probability": 0.3872 + }, + { + "start": 21859.8, + "end": 21863.88, + "probability": 0.8666 + }, + { + "start": 21864.42, + "end": 21866.68, + "probability": 0.6389 + }, + { + "start": 21866.72, + "end": 21867.42, + "probability": 0.4335 + }, + { + "start": 21868.44, + "end": 21869.74, + "probability": 0.7611 + }, + { + "start": 21871.76, + "end": 21871.86, + "probability": 0.1532 + }, + { + "start": 21871.86, + "end": 21872.86, + "probability": 0.8523 + }, + { + "start": 21873.1, + "end": 21874.58, + "probability": 0.4091 + }, + { + "start": 21876.16, + "end": 21877.54, + "probability": 0.9657 + }, + { + "start": 21878.0, + "end": 21882.9, + "probability": 0.95 + }, + { + "start": 21882.9, + "end": 21884.02, + "probability": 0.8838 + }, + { + "start": 21884.1, + "end": 21884.34, + "probability": 0.88 + }, + { + "start": 21884.8, + "end": 21886.22, + "probability": 0.8143 + }, + { + "start": 21886.3, + "end": 21887.68, + "probability": 0.9189 + }, + { + "start": 21887.76, + "end": 21889.88, + "probability": 0.939 + }, + { + "start": 21889.88, + "end": 21893.28, + "probability": 0.914 + }, + { + "start": 21894.38, + "end": 21897.74, + "probability": 0.6158 + }, + { + "start": 21897.78, + "end": 21898.7, + "probability": 0.6699 + }, + { + "start": 21901.52, + "end": 21901.72, + "probability": 0.5855 + }, + { + "start": 21911.52, + "end": 21912.24, + "probability": 0.0635 + }, + { + "start": 21912.78, + "end": 21913.59, + "probability": 0.1742 + }, + { + "start": 21916.3, + "end": 21917.35, + "probability": 0.052 + }, + { + "start": 21922.21, + "end": 21925.06, + "probability": 0.0624 + }, + { + "start": 21925.06, + "end": 21926.18, + "probability": 0.0158 + }, + { + "start": 21927.2, + "end": 21928.26, + "probability": 0.1236 + }, + { + "start": 21928.84, + "end": 21932.82, + "probability": 0.4536 + }, + { + "start": 21934.76, + "end": 21937.04, + "probability": 0.0313 + }, + { + "start": 21937.56, + "end": 21942.54, + "probability": 0.939 + }, + { + "start": 21943.12, + "end": 21945.68, + "probability": 0.9811 + }, + { + "start": 21946.2, + "end": 21946.98, + "probability": 0.1439 + }, + { + "start": 21949.0, + "end": 21951.68, + "probability": 0.8357 + }, + { + "start": 21951.68, + "end": 21954.92, + "probability": 0.9857 + }, + { + "start": 21956.26, + "end": 21958.88, + "probability": 0.5514 + }, + { + "start": 21959.08, + "end": 21962.06, + "probability": 0.9342 + }, + { + "start": 21963.04, + "end": 21965.86, + "probability": 0.9725 + }, + { + "start": 21965.86, + "end": 21969.16, + "probability": 0.8232 + }, + { + "start": 21969.94, + "end": 21975.2, + "probability": 0.9692 + }, + { + "start": 21977.3, + "end": 21981.24, + "probability": 0.8276 + }, + { + "start": 21981.4, + "end": 21984.84, + "probability": 0.88 + }, + { + "start": 21985.74, + "end": 21989.8, + "probability": 0.9866 + }, + { + "start": 21990.62, + "end": 21992.84, + "probability": 0.8342 + }, + { + "start": 21994.42, + "end": 21995.41, + "probability": 0.554 + }, + { + "start": 21996.28, + "end": 21996.78, + "probability": 0.0111 + }, + { + "start": 21996.84, + "end": 21998.44, + "probability": 0.6206 + }, + { + "start": 21999.64, + "end": 21999.84, + "probability": 0.5568 + }, + { + "start": 21999.94, + "end": 22001.36, + "probability": 0.9328 + }, + { + "start": 22002.3, + "end": 22002.48, + "probability": 0.4371 + }, + { + "start": 22002.74, + "end": 22006.4, + "probability": 0.4987 + }, + { + "start": 22006.62, + "end": 22007.68, + "probability": 0.8114 + }, + { + "start": 22008.6, + "end": 22009.04, + "probability": 0.4299 + }, + { + "start": 22009.4, + "end": 22010.38, + "probability": 0.5978 + }, + { + "start": 22012.12, + "end": 22012.56, + "probability": 0.2814 + }, + { + "start": 22012.56, + "end": 22013.62, + "probability": 0.9211 + }, + { + "start": 22015.8, + "end": 22016.04, + "probability": 0.206 + }, + { + "start": 22016.24, + "end": 22017.88, + "probability": 0.9686 + }, + { + "start": 22018.92, + "end": 22019.18, + "probability": 0.4396 + }, + { + "start": 22019.34, + "end": 22021.18, + "probability": 0.9751 + }, + { + "start": 22022.22, + "end": 22022.42, + "probability": 0.5674 + }, + { + "start": 22022.66, + "end": 22027.34, + "probability": 0.9889 + }, + { + "start": 22027.34, + "end": 22031.08, + "probability": 0.8017 + }, + { + "start": 22032.84, + "end": 22033.58, + "probability": 0.8631 + }, + { + "start": 22033.64, + "end": 22034.86, + "probability": 0.6654 + }, + { + "start": 22035.0, + "end": 22036.62, + "probability": 0.7915 + }, + { + "start": 22038.76, + "end": 22042.7, + "probability": 0.9377 + }, + { + "start": 22043.0, + "end": 22043.42, + "probability": 0.5159 + }, + { + "start": 22043.6, + "end": 22045.06, + "probability": 0.923 + }, + { + "start": 22045.52, + "end": 22048.46, + "probability": 0.6335 + }, + { + "start": 22048.86, + "end": 22050.3, + "probability": 0.9415 + }, + { + "start": 22052.06, + "end": 22054.52, + "probability": 0.9766 + }, + { + "start": 22055.4, + "end": 22060.44, + "probability": 0.9961 + }, + { + "start": 22061.3, + "end": 22063.12, + "probability": 0.9614 + }, + { + "start": 22064.38, + "end": 22068.04, + "probability": 0.9867 + }, + { + "start": 22068.84, + "end": 22073.72, + "probability": 0.858 + }, + { + "start": 22074.84, + "end": 22078.7, + "probability": 0.9951 + }, + { + "start": 22079.98, + "end": 22082.78, + "probability": 0.8734 + }, + { + "start": 22083.8, + "end": 22085.84, + "probability": 0.9834 + }, + { + "start": 22086.48, + "end": 22087.68, + "probability": 0.989 + }, + { + "start": 22088.2, + "end": 22092.22, + "probability": 0.9895 + }, + { + "start": 22093.24, + "end": 22096.26, + "probability": 0.949 + }, + { + "start": 22096.66, + "end": 22097.65, + "probability": 0.937 + }, + { + "start": 22098.48, + "end": 22100.24, + "probability": 0.8975 + }, + { + "start": 22100.82, + "end": 22102.14, + "probability": 0.9013 + }, + { + "start": 22104.54, + "end": 22108.14, + "probability": 0.8689 + }, + { + "start": 22109.96, + "end": 22113.06, + "probability": 0.9194 + }, + { + "start": 22113.06, + "end": 22116.56, + "probability": 0.9976 + }, + { + "start": 22117.38, + "end": 22119.36, + "probability": 0.7815 + }, + { + "start": 22120.5, + "end": 22121.84, + "probability": 0.9159 + }, + { + "start": 22123.54, + "end": 22125.94, + "probability": 0.9175 + }, + { + "start": 22126.76, + "end": 22129.78, + "probability": 0.9927 + }, + { + "start": 22130.4, + "end": 22131.92, + "probability": 0.9814 + }, + { + "start": 22132.78, + "end": 22135.0, + "probability": 0.8008 + }, + { + "start": 22135.68, + "end": 22142.42, + "probability": 0.9719 + }, + { + "start": 22143.14, + "end": 22144.58, + "probability": 0.7277 + }, + { + "start": 22145.24, + "end": 22150.5, + "probability": 0.9727 + }, + { + "start": 22150.9, + "end": 22157.98, + "probability": 0.8013 + }, + { + "start": 22158.4, + "end": 22159.04, + "probability": 0.7515 + }, + { + "start": 22160.28, + "end": 22162.22, + "probability": 0.6544 + }, + { + "start": 22163.12, + "end": 22163.84, + "probability": 0.9476 + }, + { + "start": 22166.3, + "end": 22168.38, + "probability": 0.8336 + }, + { + "start": 22173.66, + "end": 22179.06, + "probability": 0.8647 + }, + { + "start": 22179.06, + "end": 22181.84, + "probability": 0.9256 + }, + { + "start": 22182.92, + "end": 22185.68, + "probability": 0.9706 + }, + { + "start": 22186.8, + "end": 22192.76, + "probability": 0.9526 + }, + { + "start": 22195.3, + "end": 22196.7, + "probability": 0.8415 + }, + { + "start": 22197.36, + "end": 22202.16, + "probability": 0.8788 + }, + { + "start": 22203.68, + "end": 22208.34, + "probability": 0.9721 + }, + { + "start": 22210.66, + "end": 22215.58, + "probability": 0.8783 + }, + { + "start": 22215.58, + "end": 22220.06, + "probability": 0.9871 + }, + { + "start": 22221.2, + "end": 22224.88, + "probability": 0.9933 + }, + { + "start": 22226.38, + "end": 22229.74, + "probability": 0.8653 + }, + { + "start": 22230.5, + "end": 22232.88, + "probability": 0.9686 + }, + { + "start": 22234.56, + "end": 22236.3, + "probability": 0.9897 + }, + { + "start": 22236.72, + "end": 22240.36, + "probability": 0.9101 + }, + { + "start": 22241.2, + "end": 22244.58, + "probability": 0.8904 + }, + { + "start": 22244.68, + "end": 22248.52, + "probability": 0.9418 + }, + { + "start": 22249.08, + "end": 22249.66, + "probability": 0.5582 + }, + { + "start": 22250.78, + "end": 22253.7, + "probability": 0.7211 + }, + { + "start": 22253.7, + "end": 22257.56, + "probability": 0.9972 + }, + { + "start": 22258.7, + "end": 22263.94, + "probability": 0.9784 + }, + { + "start": 22265.18, + "end": 22268.76, + "probability": 0.9989 + }, + { + "start": 22270.02, + "end": 22271.0, + "probability": 0.7007 + }, + { + "start": 22271.16, + "end": 22273.12, + "probability": 0.956 + }, + { + "start": 22273.34, + "end": 22276.44, + "probability": 0.9413 + }, + { + "start": 22276.98, + "end": 22278.9, + "probability": 0.913 + }, + { + "start": 22279.34, + "end": 22280.51, + "probability": 0.901 + }, + { + "start": 22281.28, + "end": 22284.7, + "probability": 0.997 + }, + { + "start": 22285.38, + "end": 22290.04, + "probability": 0.9953 + }, + { + "start": 22290.86, + "end": 22292.94, + "probability": 0.9287 + }, + { + "start": 22293.76, + "end": 22297.78, + "probability": 0.9271 + }, + { + "start": 22298.54, + "end": 22300.8, + "probability": 0.9576 + }, + { + "start": 22300.88, + "end": 22302.08, + "probability": 0.9904 + }, + { + "start": 22302.68, + "end": 22304.96, + "probability": 0.7958 + }, + { + "start": 22305.76, + "end": 22310.88, + "probability": 0.9634 + }, + { + "start": 22310.98, + "end": 22315.56, + "probability": 0.9988 + }, + { + "start": 22316.16, + "end": 22319.12, + "probability": 0.9977 + }, + { + "start": 22320.1, + "end": 22324.56, + "probability": 0.9477 + }, + { + "start": 22326.1, + "end": 22329.38, + "probability": 0.9603 + }, + { + "start": 22329.98, + "end": 22330.72, + "probability": 0.6401 + }, + { + "start": 22330.8, + "end": 22334.98, + "probability": 0.8721 + }, + { + "start": 22335.54, + "end": 22338.98, + "probability": 0.9707 + }, + { + "start": 22339.64, + "end": 22343.74, + "probability": 0.9851 + }, + { + "start": 22344.9, + "end": 22347.82, + "probability": 0.959 + }, + { + "start": 22348.9, + "end": 22352.42, + "probability": 0.8162 + }, + { + "start": 22353.52, + "end": 22354.96, + "probability": 0.9966 + }, + { + "start": 22355.06, + "end": 22359.96, + "probability": 0.9197 + }, + { + "start": 22361.78, + "end": 22364.46, + "probability": 0.8318 + }, + { + "start": 22364.9, + "end": 22368.9, + "probability": 0.9285 + }, + { + "start": 22369.78, + "end": 22371.82, + "probability": 0.7608 + }, + { + "start": 22372.3, + "end": 22374.62, + "probability": 0.9906 + }, + { + "start": 22375.1, + "end": 22378.42, + "probability": 0.8999 + }, + { + "start": 22378.42, + "end": 22383.88, + "probability": 0.8621 + }, + { + "start": 22385.96, + "end": 22389.62, + "probability": 0.9163 + }, + { + "start": 22390.2, + "end": 22395.36, + "probability": 0.8111 + }, + { + "start": 22395.98, + "end": 22397.74, + "probability": 0.9753 + }, + { + "start": 22398.16, + "end": 22400.16, + "probability": 0.5959 + }, + { + "start": 22401.52, + "end": 22404.5, + "probability": 0.9892 + }, + { + "start": 22405.42, + "end": 22408.96, + "probability": 0.7457 + }, + { + "start": 22409.72, + "end": 22416.1, + "probability": 0.967 + }, + { + "start": 22416.98, + "end": 22420.14, + "probability": 0.892 + }, + { + "start": 22421.06, + "end": 22421.92, + "probability": 0.483 + }, + { + "start": 22423.72, + "end": 22425.26, + "probability": 0.8227 + }, + { + "start": 22425.6, + "end": 22429.04, + "probability": 0.7262 + }, + { + "start": 22429.56, + "end": 22432.32, + "probability": 0.9268 + }, + { + "start": 22434.12, + "end": 22435.8, + "probability": 0.9503 + }, + { + "start": 22436.02, + "end": 22436.9, + "probability": 0.6222 + }, + { + "start": 22437.02, + "end": 22439.84, + "probability": 0.8416 + }, + { + "start": 22440.96, + "end": 22443.32, + "probability": 0.9614 + }, + { + "start": 22444.18, + "end": 22446.28, + "probability": 0.9435 + }, + { + "start": 22446.9, + "end": 22447.66, + "probability": 0.967 + }, + { + "start": 22449.18, + "end": 22451.56, + "probability": 0.9979 + }, + { + "start": 22453.4, + "end": 22457.8, + "probability": 0.9634 + }, + { + "start": 22458.5, + "end": 22459.84, + "probability": 0.9769 + }, + { + "start": 22460.32, + "end": 22464.18, + "probability": 0.9957 + }, + { + "start": 22464.18, + "end": 22468.14, + "probability": 0.7046 + }, + { + "start": 22468.32, + "end": 22468.52, + "probability": 0.772 + }, + { + "start": 22471.82, + "end": 22474.68, + "probability": 0.9912 + }, + { + "start": 22475.2, + "end": 22478.22, + "probability": 0.7491 + }, + { + "start": 22493.52, + "end": 22494.68, + "probability": 0.4361 + }, + { + "start": 22494.76, + "end": 22495.76, + "probability": 0.6684 + }, + { + "start": 22495.9, + "end": 22498.44, + "probability": 0.8083 + }, + { + "start": 22498.54, + "end": 22500.28, + "probability": 0.887 + }, + { + "start": 22500.36, + "end": 22500.82, + "probability": 0.7841 + }, + { + "start": 22501.08, + "end": 22504.7, + "probability": 0.8076 + }, + { + "start": 22505.68, + "end": 22508.55, + "probability": 0.8149 + }, + { + "start": 22509.1, + "end": 22510.2, + "probability": 0.9634 + }, + { + "start": 22510.4, + "end": 22511.62, + "probability": 0.7224 + }, + { + "start": 22511.88, + "end": 22512.2, + "probability": 0.5157 + }, + { + "start": 22512.2, + "end": 22513.94, + "probability": 0.6943 + }, + { + "start": 22513.96, + "end": 22515.18, + "probability": 0.93 + }, + { + "start": 22515.8, + "end": 22518.48, + "probability": 0.9473 + }, + { + "start": 22518.76, + "end": 22520.22, + "probability": 0.922 + }, + { + "start": 22521.08, + "end": 22522.94, + "probability": 0.3935 + }, + { + "start": 22523.76, + "end": 22524.48, + "probability": 0.8147 + }, + { + "start": 22525.44, + "end": 22529.18, + "probability": 0.7651 + }, + { + "start": 22529.84, + "end": 22532.82, + "probability": 0.8963 + }, + { + "start": 22534.28, + "end": 22538.12, + "probability": 0.4034 + }, + { + "start": 22538.72, + "end": 22541.78, + "probability": 0.5914 + }, + { + "start": 22542.14, + "end": 22544.92, + "probability": 0.9507 + }, + { + "start": 22545.56, + "end": 22549.32, + "probability": 0.8961 + }, + { + "start": 22551.06, + "end": 22552.08, + "probability": 0.8418 + }, + { + "start": 22553.5, + "end": 22553.5, + "probability": 0.2036 + }, + { + "start": 22553.96, + "end": 22554.96, + "probability": 0.941 + }, + { + "start": 22555.14, + "end": 22557.25, + "probability": 0.6478 + }, + { + "start": 22558.74, + "end": 22558.82, + "probability": 0.0047 + }, + { + "start": 22558.82, + "end": 22560.2, + "probability": 0.2383 + }, + { + "start": 22560.64, + "end": 22560.98, + "probability": 0.4707 + }, + { + "start": 22561.02, + "end": 22562.24, + "probability": 0.8026 + }, + { + "start": 22562.6, + "end": 22563.38, + "probability": 0.0184 + }, + { + "start": 22563.82, + "end": 22564.56, + "probability": 0.9272 + }, + { + "start": 22564.6, + "end": 22568.93, + "probability": 0.8816 + }, + { + "start": 22569.16, + "end": 22573.76, + "probability": 0.995 + }, + { + "start": 22573.92, + "end": 22574.34, + "probability": 0.4609 + }, + { + "start": 22574.4, + "end": 22576.1, + "probability": 0.8862 + }, + { + "start": 22576.74, + "end": 22581.05, + "probability": 0.8271 + }, + { + "start": 22581.76, + "end": 22584.16, + "probability": 0.937 + }, + { + "start": 22584.86, + "end": 22584.96, + "probability": 0.271 + }, + { + "start": 22586.18, + "end": 22588.06, + "probability": 0.9133 + }, + { + "start": 22588.16, + "end": 22592.38, + "probability": 0.9907 + }, + { + "start": 22592.52, + "end": 22594.02, + "probability": 0.7348 + }, + { + "start": 22594.9, + "end": 22595.96, + "probability": 0.7345 + }, + { + "start": 22596.56, + "end": 22597.4, + "probability": 0.6564 + }, + { + "start": 22597.5, + "end": 22597.98, + "probability": 0.2417 + }, + { + "start": 22598.18, + "end": 22598.78, + "probability": 0.728 + }, + { + "start": 22600.8, + "end": 22601.5, + "probability": 0.5038 + }, + { + "start": 22602.06, + "end": 22603.58, + "probability": 0.8536 + }, + { + "start": 22611.42, + "end": 22614.96, + "probability": 0.5056 + }, + { + "start": 22617.18, + "end": 22617.5, + "probability": 0.047 + }, + { + "start": 22617.5, + "end": 22617.5, + "probability": 0.1208 + }, + { + "start": 22617.5, + "end": 22619.58, + "probability": 0.1246 + }, + { + "start": 22619.58, + "end": 22619.58, + "probability": 0.0753 + }, + { + "start": 22619.58, + "end": 22621.22, + "probability": 0.4544 + }, + { + "start": 22621.9, + "end": 22624.58, + "probability": 0.6692 + }, + { + "start": 22625.64, + "end": 22629.54, + "probability": 0.7881 + }, + { + "start": 22630.5, + "end": 22633.26, + "probability": 0.8967 + }, + { + "start": 22633.92, + "end": 22637.46, + "probability": 0.618 + }, + { + "start": 22637.96, + "end": 22640.99, + "probability": 0.746 + }, + { + "start": 22642.6, + "end": 22644.32, + "probability": 0.5702 + }, + { + "start": 22644.44, + "end": 22645.18, + "probability": 0.6525 + }, + { + "start": 22647.34, + "end": 22650.35, + "probability": 0.8687 + }, + { + "start": 22653.48, + "end": 22654.84, + "probability": 0.7778 + }, + { + "start": 22655.8, + "end": 22657.24, + "probability": 0.6675 + }, + { + "start": 22657.78, + "end": 22658.82, + "probability": 0.9097 + }, + { + "start": 22659.34, + "end": 22660.3, + "probability": 0.7064 + }, + { + "start": 22660.4, + "end": 22661.22, + "probability": 0.599 + }, + { + "start": 22663.26, + "end": 22663.86, + "probability": 0.1815 + }, + { + "start": 22663.9, + "end": 22667.27, + "probability": 0.457 + }, + { + "start": 22668.46, + "end": 22670.1, + "probability": 0.9958 + }, + { + "start": 22670.74, + "end": 22671.4, + "probability": 0.9962 + }, + { + "start": 22672.14, + "end": 22674.02, + "probability": 0.5154 + }, + { + "start": 22674.6, + "end": 22682.96, + "probability": 0.9734 + }, + { + "start": 22684.68, + "end": 22687.58, + "probability": 0.9905 + }, + { + "start": 22687.68, + "end": 22691.08, + "probability": 0.6406 + }, + { + "start": 22691.68, + "end": 22692.82, + "probability": 0.6896 + }, + { + "start": 22692.92, + "end": 22695.66, + "probability": 0.9157 + }, + { + "start": 22695.66, + "end": 22700.0, + "probability": 0.8179 + }, + { + "start": 22700.0, + "end": 22701.64, + "probability": 0.111 + }, + { + "start": 22702.14, + "end": 22703.24, + "probability": 0.7235 + }, + { + "start": 22704.36, + "end": 22708.64, + "probability": 0.9784 + }, + { + "start": 22709.08, + "end": 22713.56, + "probability": 0.903 + }, + { + "start": 22715.4, + "end": 22716.54, + "probability": 0.376 + }, + { + "start": 22718.32, + "end": 22719.48, + "probability": 0.4977 + }, + { + "start": 22719.48, + "end": 22719.48, + "probability": 0.5107 + }, + { + "start": 22719.48, + "end": 22721.64, + "probability": 0.3643 + }, + { + "start": 22721.7, + "end": 22722.34, + "probability": 0.2944 + }, + { + "start": 22722.7, + "end": 22724.08, + "probability": 0.8322 + }, + { + "start": 22725.1, + "end": 22726.2, + "probability": 0.7874 + }, + { + "start": 22726.46, + "end": 22727.7, + "probability": 0.382 + }, + { + "start": 22727.98, + "end": 22728.68, + "probability": 0.1013 + }, + { + "start": 22729.34, + "end": 22729.44, + "probability": 0.2096 + }, + { + "start": 22731.12, + "end": 22732.85, + "probability": 0.8533 + }, + { + "start": 22735.34, + "end": 22737.14, + "probability": 0.4092 + }, + { + "start": 22737.24, + "end": 22737.5, + "probability": 0.9169 + }, + { + "start": 22737.6, + "end": 22741.22, + "probability": 0.8699 + }, + { + "start": 22741.42, + "end": 22742.28, + "probability": 0.2385 + }, + { + "start": 22743.3, + "end": 22744.08, + "probability": 0.8423 + }, + { + "start": 22744.08, + "end": 22744.62, + "probability": 0.9606 + }, + { + "start": 22745.08, + "end": 22748.76, + "probability": 0.9981 + }, + { + "start": 22749.12, + "end": 22750.64, + "probability": 0.8062 + }, + { + "start": 22750.68, + "end": 22751.62, + "probability": 0.9934 + }, + { + "start": 22751.94, + "end": 22752.08, + "probability": 0.631 + }, + { + "start": 22752.1, + "end": 22752.36, + "probability": 0.4086 + }, + { + "start": 22752.48, + "end": 22752.78, + "probability": 0.5068 + }, + { + "start": 22752.78, + "end": 22755.33, + "probability": 0.8982 + }, + { + "start": 22756.72, + "end": 22758.7, + "probability": 0.95 + }, + { + "start": 22758.92, + "end": 22759.96, + "probability": 0.7041 + }, + { + "start": 22760.24, + "end": 22760.9, + "probability": 0.778 + }, + { + "start": 22760.9, + "end": 22762.04, + "probability": 0.9603 + }, + { + "start": 22762.14, + "end": 22762.3, + "probability": 0.6838 + }, + { + "start": 22762.4, + "end": 22762.8, + "probability": 0.8578 + }, + { + "start": 22762.86, + "end": 22766.3, + "probability": 0.9327 + }, + { + "start": 22766.36, + "end": 22767.88, + "probability": 0.8679 + }, + { + "start": 22768.36, + "end": 22768.58, + "probability": 0.1729 + }, + { + "start": 22768.62, + "end": 22768.98, + "probability": 0.8537 + }, + { + "start": 22768.98, + "end": 22769.78, + "probability": 0.7037 + }, + { + "start": 22769.82, + "end": 22771.96, + "probability": 0.7754 + }, + { + "start": 22772.28, + "end": 22773.18, + "probability": 0.9659 + }, + { + "start": 22773.26, + "end": 22775.44, + "probability": 0.8574 + }, + { + "start": 22775.5, + "end": 22776.24, + "probability": 0.6552 + }, + { + "start": 22776.3, + "end": 22777.08, + "probability": 0.833 + }, + { + "start": 22777.24, + "end": 22778.06, + "probability": 0.7967 + }, + { + "start": 22778.26, + "end": 22778.26, + "probability": 0.1226 + }, + { + "start": 22778.26, + "end": 22779.54, + "probability": 0.7594 + }, + { + "start": 22779.54, + "end": 22781.8, + "probability": 0.9886 + }, + { + "start": 22782.14, + "end": 22783.18, + "probability": 0.8145 + }, + { + "start": 22783.28, + "end": 22784.38, + "probability": 0.9021 + }, + { + "start": 22784.9, + "end": 22786.68, + "probability": 0.9874 + }, + { + "start": 22786.98, + "end": 22789.68, + "probability": 0.9469 + }, + { + "start": 22789.68, + "end": 22792.5, + "probability": 0.9879 + }, + { + "start": 22792.76, + "end": 22795.48, + "probability": 0.9266 + }, + { + "start": 22795.48, + "end": 22797.7, + "probability": 0.9062 + }, + { + "start": 22797.76, + "end": 22800.22, + "probability": 0.9931 + }, + { + "start": 22800.66, + "end": 22801.8, + "probability": 0.6359 + }, + { + "start": 22801.9, + "end": 22804.62, + "probability": 0.9246 + }, + { + "start": 22804.62, + "end": 22805.52, + "probability": 0.3213 + }, + { + "start": 22805.54, + "end": 22805.54, + "probability": 0.3348 + }, + { + "start": 22805.54, + "end": 22806.06, + "probability": 0.8286 + }, + { + "start": 22806.14, + "end": 22809.56, + "probability": 0.8245 + }, + { + "start": 22809.72, + "end": 22810.18, + "probability": 0.3609 + }, + { + "start": 22810.18, + "end": 22810.6, + "probability": 0.037 + }, + { + "start": 22810.68, + "end": 22812.38, + "probability": 0.8914 + }, + { + "start": 22812.54, + "end": 22814.26, + "probability": 0.6539 + }, + { + "start": 22814.52, + "end": 22815.24, + "probability": 0.7277 + }, + { + "start": 22815.68, + "end": 22815.78, + "probability": 0.4931 + }, + { + "start": 22816.38, + "end": 22817.6, + "probability": 0.8107 + }, + { + "start": 22818.14, + "end": 22821.46, + "probability": 0.8357 + }, + { + "start": 22821.58, + "end": 22825.82, + "probability": 0.9854 + }, + { + "start": 22825.9, + "end": 22827.0, + "probability": 0.9862 + }, + { + "start": 22827.08, + "end": 22827.9, + "probability": 0.714 + }, + { + "start": 22828.36, + "end": 22830.66, + "probability": 0.9865 + }, + { + "start": 22830.66, + "end": 22833.48, + "probability": 0.9829 + }, + { + "start": 22833.76, + "end": 22835.96, + "probability": 0.9707 + }, + { + "start": 22835.96, + "end": 22839.0, + "probability": 0.9953 + }, + { + "start": 22839.14, + "end": 22842.86, + "probability": 0.9967 + }, + { + "start": 22842.88, + "end": 22844.3, + "probability": 0.6589 + }, + { + "start": 22844.7, + "end": 22845.62, + "probability": 0.2619 + }, + { + "start": 22845.66, + "end": 22848.04, + "probability": 0.9955 + }, + { + "start": 22848.1, + "end": 22850.46, + "probability": 0.989 + }, + { + "start": 22851.06, + "end": 22852.66, + "probability": 0.993 + }, + { + "start": 22853.1, + "end": 22858.02, + "probability": 0.969 + }, + { + "start": 22858.6, + "end": 22861.34, + "probability": 0.6768 + }, + { + "start": 22863.74, + "end": 22864.52, + "probability": 0.0932 + }, + { + "start": 22864.52, + "end": 22864.52, + "probability": 0.1168 + }, + { + "start": 22864.52, + "end": 22866.94, + "probability": 0.6037 + }, + { + "start": 22867.04, + "end": 22871.14, + "probability": 0.9937 + }, + { + "start": 22871.5, + "end": 22874.56, + "probability": 0.9322 + }, + { + "start": 22874.64, + "end": 22876.18, + "probability": 0.8449 + }, + { + "start": 22876.56, + "end": 22877.58, + "probability": 0.9932 + }, + { + "start": 22877.58, + "end": 22882.28, + "probability": 0.9181 + }, + { + "start": 22882.66, + "end": 22883.34, + "probability": 0.7455 + }, + { + "start": 22883.64, + "end": 22885.04, + "probability": 0.9902 + }, + { + "start": 22885.22, + "end": 22886.18, + "probability": 0.9788 + }, + { + "start": 22886.24, + "end": 22887.46, + "probability": 0.9632 + }, + { + "start": 22888.2, + "end": 22892.12, + "probability": 0.8647 + }, + { + "start": 22893.24, + "end": 22898.32, + "probability": 0.6637 + }, + { + "start": 22899.14, + "end": 22900.4, + "probability": 0.9539 + }, + { + "start": 22901.2, + "end": 22902.84, + "probability": 0.8914 + }, + { + "start": 22903.02, + "end": 22904.1, + "probability": 0.3737 + }, + { + "start": 22904.16, + "end": 22904.74, + "probability": 0.3802 + }, + { + "start": 22904.96, + "end": 22906.54, + "probability": 0.9578 + }, + { + "start": 22906.62, + "end": 22908.44, + "probability": 0.9435 + }, + { + "start": 22908.6, + "end": 22913.16, + "probability": 0.9091 + }, + { + "start": 22914.06, + "end": 22915.48, + "probability": 0.9041 + }, + { + "start": 22916.34, + "end": 22916.8, + "probability": 0.4244 + }, + { + "start": 22916.86, + "end": 22919.84, + "probability": 0.9799 + }, + { + "start": 22920.04, + "end": 22921.36, + "probability": 0.8873 + }, + { + "start": 22921.62, + "end": 22922.54, + "probability": 0.7214 + }, + { + "start": 22922.84, + "end": 22923.78, + "probability": 0.3075 + }, + { + "start": 22924.14, + "end": 22925.26, + "probability": 0.237 + }, + { + "start": 22925.42, + "end": 22926.7, + "probability": 0.5387 + }, + { + "start": 22927.42, + "end": 22930.76, + "probability": 0.9499 + }, + { + "start": 22930.98, + "end": 22933.48, + "probability": 0.8625 + }, + { + "start": 22933.56, + "end": 22934.88, + "probability": 0.6786 + }, + { + "start": 22935.04, + "end": 22938.14, + "probability": 0.9897 + }, + { + "start": 22938.22, + "end": 22939.02, + "probability": 0.7901 + }, + { + "start": 22939.68, + "end": 22941.96, + "probability": 0.6747 + }, + { + "start": 22942.08, + "end": 22944.52, + "probability": 0.9487 + }, + { + "start": 22945.86, + "end": 22949.56, + "probability": 0.9402 + }, + { + "start": 22950.56, + "end": 22957.16, + "probability": 0.8219 + }, + { + "start": 22957.3, + "end": 22958.2, + "probability": 0.9912 + }, + { + "start": 22958.58, + "end": 22958.86, + "probability": 0.3975 + }, + { + "start": 22958.94, + "end": 22962.16, + "probability": 0.5603 + }, + { + "start": 22962.64, + "end": 22965.26, + "probability": 0.96 + }, + { + "start": 22965.44, + "end": 22966.87, + "probability": 0.7414 + }, + { + "start": 22967.54, + "end": 22968.22, + "probability": 0.8385 + }, + { + "start": 22968.42, + "end": 22970.14, + "probability": 0.9224 + }, + { + "start": 22970.24, + "end": 22971.06, + "probability": 0.9531 + }, + { + "start": 22971.1, + "end": 22972.89, + "probability": 0.9087 + }, + { + "start": 22973.2, + "end": 22976.26, + "probability": 0.9807 + }, + { + "start": 22976.4, + "end": 22978.5, + "probability": 0.9912 + }, + { + "start": 22978.54, + "end": 22980.68, + "probability": 0.7453 + }, + { + "start": 22980.76, + "end": 22983.72, + "probability": 0.9963 + }, + { + "start": 22984.44, + "end": 22988.08, + "probability": 0.9573 + }, + { + "start": 22988.66, + "end": 22990.18, + "probability": 0.2143 + }, + { + "start": 22990.34, + "end": 22990.54, + "probability": 0.2348 + }, + { + "start": 22990.54, + "end": 22991.12, + "probability": 0.7979 + }, + { + "start": 22991.52, + "end": 22994.34, + "probability": 0.9963 + }, + { + "start": 22995.12, + "end": 22996.72, + "probability": 0.697 + }, + { + "start": 22996.76, + "end": 22996.9, + "probability": 0.621 + }, + { + "start": 22996.98, + "end": 22997.18, + "probability": 0.8008 + }, + { + "start": 22997.28, + "end": 22998.38, + "probability": 0.7839 + }, + { + "start": 22999.74, + "end": 23002.44, + "probability": 0.998 + }, + { + "start": 23002.64, + "end": 23005.98, + "probability": 0.7585 + }, + { + "start": 23006.62, + "end": 23010.12, + "probability": 0.8682 + }, + { + "start": 23010.66, + "end": 23014.16, + "probability": 0.9756 + }, + { + "start": 23014.42, + "end": 23016.4, + "probability": 0.9805 + }, + { + "start": 23016.94, + "end": 23019.36, + "probability": 0.8317 + }, + { + "start": 23019.64, + "end": 23022.46, + "probability": 0.9142 + }, + { + "start": 23022.58, + "end": 23023.04, + "probability": 0.6605 + }, + { + "start": 23023.7, + "end": 23023.74, + "probability": 0.0741 + }, + { + "start": 23023.74, + "end": 23023.9, + "probability": 0.0171 + }, + { + "start": 23023.9, + "end": 23025.76, + "probability": 0.8231 + }, + { + "start": 23025.84, + "end": 23028.92, + "probability": 0.8444 + }, + { + "start": 23028.92, + "end": 23034.16, + "probability": 0.9424 + }, + { + "start": 23034.18, + "end": 23034.38, + "probability": 0.6496 + }, + { + "start": 23034.44, + "end": 23037.12, + "probability": 0.9696 + }, + { + "start": 23037.2, + "end": 23037.9, + "probability": 0.4958 + }, + { + "start": 23038.12, + "end": 23038.84, + "probability": 0.7308 + }, + { + "start": 23039.06, + "end": 23039.06, + "probability": 0.3687 + }, + { + "start": 23039.12, + "end": 23040.52, + "probability": 0.8864 + }, + { + "start": 23040.52, + "end": 23044.04, + "probability": 0.9883 + }, + { + "start": 23044.04, + "end": 23048.24, + "probability": 0.9599 + }, + { + "start": 23048.32, + "end": 23051.78, + "probability": 0.9985 + }, + { + "start": 23051.78, + "end": 23054.52, + "probability": 0.9794 + }, + { + "start": 23054.64, + "end": 23055.14, + "probability": 0.2553 + }, + { + "start": 23055.14, + "end": 23056.24, + "probability": 0.8178 + }, + { + "start": 23056.58, + "end": 23060.16, + "probability": 0.5121 + }, + { + "start": 23060.3, + "end": 23063.82, + "probability": 0.0335 + }, + { + "start": 23063.82, + "end": 23063.86, + "probability": 0.1161 + }, + { + "start": 23063.98, + "end": 23064.2, + "probability": 0.0197 + }, + { + "start": 23065.78, + "end": 23066.86, + "probability": 0.0176 + }, + { + "start": 23066.88, + "end": 23068.2, + "probability": 0.0573 + }, + { + "start": 23069.02, + "end": 23069.4, + "probability": 0.0975 + }, + { + "start": 23069.4, + "end": 23069.4, + "probability": 0.2691 + }, + { + "start": 23069.4, + "end": 23070.1, + "probability": 0.0866 + }, + { + "start": 23070.34, + "end": 23072.04, + "probability": 0.7693 + }, + { + "start": 23072.08, + "end": 23073.04, + "probability": 0.8149 + }, + { + "start": 23073.2, + "end": 23073.66, + "probability": 0.5709 + }, + { + "start": 23073.82, + "end": 23074.28, + "probability": 0.4365 + }, + { + "start": 23074.94, + "end": 23077.62, + "probability": 0.9937 + }, + { + "start": 23077.62, + "end": 23079.74, + "probability": 0.9989 + }, + { + "start": 23080.0, + "end": 23080.78, + "probability": 0.8843 + }, + { + "start": 23080.94, + "end": 23082.34, + "probability": 0.9168 + }, + { + "start": 23082.54, + "end": 23082.6, + "probability": 0.1347 + }, + { + "start": 23082.68, + "end": 23085.48, + "probability": 0.9586 + }, + { + "start": 23085.66, + "end": 23087.06, + "probability": 0.992 + }, + { + "start": 23087.16, + "end": 23087.3, + "probability": 0.8291 + }, + { + "start": 23087.44, + "end": 23089.36, + "probability": 0.9979 + }, + { + "start": 23089.78, + "end": 23092.4, + "probability": 0.9971 + }, + { + "start": 23092.74, + "end": 23093.76, + "probability": 0.9814 + }, + { + "start": 23094.18, + "end": 23094.92, + "probability": 0.7194 + }, + { + "start": 23095.04, + "end": 23096.32, + "probability": 0.9221 + }, + { + "start": 23096.5, + "end": 23098.24, + "probability": 0.9941 + }, + { + "start": 23098.24, + "end": 23101.32, + "probability": 0.9958 + }, + { + "start": 23101.58, + "end": 23101.64, + "probability": 0.2576 + }, + { + "start": 23101.7, + "end": 23102.38, + "probability": 0.743 + }, + { + "start": 23102.4, + "end": 23102.4, + "probability": 0.3152 + }, + { + "start": 23102.4, + "end": 23102.72, + "probability": 0.8519 + }, + { + "start": 23102.74, + "end": 23105.32, + "probability": 0.9677 + }, + { + "start": 23105.86, + "end": 23108.02, + "probability": 0.993 + }, + { + "start": 23108.74, + "end": 23114.38, + "probability": 0.957 + }, + { + "start": 23114.98, + "end": 23117.22, + "probability": 0.9056 + }, + { + "start": 23117.46, + "end": 23118.52, + "probability": 0.5149 + }, + { + "start": 23118.7, + "end": 23119.54, + "probability": 0.5818 + }, + { + "start": 23120.12, + "end": 23120.28, + "probability": 0.4192 + }, + { + "start": 23120.5, + "end": 23123.38, + "probability": 0.9542 + }, + { + "start": 23123.54, + "end": 23126.32, + "probability": 0.76 + }, + { + "start": 23126.36, + "end": 23126.72, + "probability": 0.7908 + }, + { + "start": 23126.84, + "end": 23127.98, + "probability": 0.7751 + }, + { + "start": 23128.0, + "end": 23129.68, + "probability": 0.6156 + }, + { + "start": 23130.04, + "end": 23132.86, + "probability": 0.9458 + }, + { + "start": 23133.04, + "end": 23133.48, + "probability": 0.5503 + }, + { + "start": 23133.7, + "end": 23134.98, + "probability": 0.8254 + }, + { + "start": 23135.16, + "end": 23136.08, + "probability": 0.5153 + }, + { + "start": 23136.12, + "end": 23136.32, + "probability": 0.1008 + }, + { + "start": 23136.32, + "end": 23139.52, + "probability": 0.8047 + }, + { + "start": 23139.52, + "end": 23141.78, + "probability": 0.9957 + }, + { + "start": 23141.78, + "end": 23143.8, + "probability": 0.9833 + }, + { + "start": 23144.06, + "end": 23144.22, + "probability": 0.6923 + }, + { + "start": 23144.94, + "end": 23146.74, + "probability": 0.9123 + }, + { + "start": 23146.88, + "end": 23148.54, + "probability": 0.8074 + }, + { + "start": 23150.0, + "end": 23154.49, + "probability": 0.994 + }, + { + "start": 23155.7, + "end": 23157.9, + "probability": 0.9536 + }, + { + "start": 23159.16, + "end": 23162.86, + "probability": 0.9878 + }, + { + "start": 23164.04, + "end": 23166.18, + "probability": 0.7786 + }, + { + "start": 23169.56, + "end": 23169.64, + "probability": 0.1236 + }, + { + "start": 23169.64, + "end": 23169.64, + "probability": 0.1441 + }, + { + "start": 23169.64, + "end": 23174.21, + "probability": 0.9583 + }, + { + "start": 23174.98, + "end": 23176.92, + "probability": 0.5715 + }, + { + "start": 23177.5, + "end": 23184.84, + "probability": 0.9758 + }, + { + "start": 23185.42, + "end": 23187.6, + "probability": 0.582 + }, + { + "start": 23187.6, + "end": 23193.14, + "probability": 0.9202 + }, + { + "start": 23193.74, + "end": 23197.04, + "probability": 0.6273 + }, + { + "start": 23197.12, + "end": 23197.26, + "probability": 0.4355 + }, + { + "start": 23197.82, + "end": 23199.22, + "probability": 0.7839 + }, + { + "start": 23200.72, + "end": 23201.32, + "probability": 0.2403 + }, + { + "start": 23201.36, + "end": 23204.4, + "probability": 0.981 + }, + { + "start": 23204.62, + "end": 23211.94, + "probability": 0.8033 + }, + { + "start": 23212.1, + "end": 23212.88, + "probability": 0.7142 + }, + { + "start": 23214.52, + "end": 23216.5, + "probability": 0.8735 + }, + { + "start": 23216.52, + "end": 23217.93, + "probability": 0.9767 + }, + { + "start": 23218.48, + "end": 23218.54, + "probability": 0.451 + }, + { + "start": 23218.54, + "end": 23219.46, + "probability": 0.5853 + }, + { + "start": 23220.72, + "end": 23221.49, + "probability": 0.4877 + }, + { + "start": 23224.42, + "end": 23226.86, + "probability": 0.998 + }, + { + "start": 23226.86, + "end": 23231.21, + "probability": 0.9373 + }, + { + "start": 23232.3, + "end": 23236.0, + "probability": 0.5289 + }, + { + "start": 23236.5, + "end": 23239.54, + "probability": 0.9153 + }, + { + "start": 23240.5, + "end": 23243.48, + "probability": 0.9385 + }, + { + "start": 23243.52, + "end": 23246.98, + "probability": 0.9023 + }, + { + "start": 23248.26, + "end": 23250.26, + "probability": 0.6506 + }, + { + "start": 23250.82, + "end": 23252.02, + "probability": 0.9419 + }, + { + "start": 23252.66, + "end": 23257.68, + "probability": 0.6878 + }, + { + "start": 23258.26, + "end": 23260.34, + "probability": 0.7863 + }, + { + "start": 23260.98, + "end": 23263.9, + "probability": 0.7666 + }, + { + "start": 23265.34, + "end": 23267.2, + "probability": 0.9382 + }, + { + "start": 23267.9, + "end": 23270.8, + "probability": 0.7737 + }, + { + "start": 23271.72, + "end": 23273.08, + "probability": 0.6325 + }, + { + "start": 23274.72, + "end": 23276.04, + "probability": 0.7645 + }, + { + "start": 23276.78, + "end": 23277.94, + "probability": 0.9084 + }, + { + "start": 23277.96, + "end": 23279.1, + "probability": 0.9263 + }, + { + "start": 23279.14, + "end": 23280.82, + "probability": 0.7074 + }, + { + "start": 23281.3, + "end": 23281.74, + "probability": 0.1262 + }, + { + "start": 23282.24, + "end": 23283.24, + "probability": 0.6501 + }, + { + "start": 23283.3, + "end": 23285.02, + "probability": 0.3054 + }, + { + "start": 23286.42, + "end": 23287.36, + "probability": 0.5466 + }, + { + "start": 23287.72, + "end": 23289.42, + "probability": 0.9347 + }, + { + "start": 23289.9, + "end": 23291.0, + "probability": 0.733 + }, + { + "start": 23292.1, + "end": 23294.63, + "probability": 0.4627 + }, + { + "start": 23295.06, + "end": 23296.22, + "probability": 0.8087 + }, + { + "start": 23296.4, + "end": 23299.9, + "probability": 0.9701 + }, + { + "start": 23300.22, + "end": 23300.74, + "probability": 0.9639 + }, + { + "start": 23301.38, + "end": 23304.24, + "probability": 0.6059 + }, + { + "start": 23304.46, + "end": 23305.18, + "probability": 0.779 + }, + { + "start": 23305.62, + "end": 23308.2, + "probability": 0.6295 + }, + { + "start": 23309.14, + "end": 23310.83, + "probability": 0.4065 + }, + { + "start": 23312.06, + "end": 23315.04, + "probability": 0.7677 + }, + { + "start": 23315.98, + "end": 23317.0, + "probability": 0.9219 + }, + { + "start": 23317.22, + "end": 23319.62, + "probability": 0.7697 + }, + { + "start": 23320.3, + "end": 23324.74, + "probability": 0.9935 + }, + { + "start": 23325.56, + "end": 23330.0, + "probability": 0.9688 + }, + { + "start": 23330.0, + "end": 23334.0, + "probability": 0.9128 + }, + { + "start": 23334.76, + "end": 23337.2, + "probability": 0.9899 + }, + { + "start": 23337.92, + "end": 23340.42, + "probability": 0.9785 + }, + { + "start": 23341.12, + "end": 23343.8, + "probability": 0.9539 + }, + { + "start": 23344.72, + "end": 23348.6, + "probability": 0.9135 + }, + { + "start": 23349.36, + "end": 23350.46, + "probability": 0.6674 + }, + { + "start": 23350.88, + "end": 23352.82, + "probability": 0.9797 + }, + { + "start": 23353.12, + "end": 23357.18, + "probability": 0.6724 + }, + { + "start": 23357.22, + "end": 23359.88, + "probability": 0.9873 + }, + { + "start": 23360.84, + "end": 23363.8, + "probability": 0.9779 + }, + { + "start": 23364.52, + "end": 23369.63, + "probability": 0.9658 + }, + { + "start": 23370.16, + "end": 23373.14, + "probability": 0.9992 + }, + { + "start": 23375.02, + "end": 23377.78, + "probability": 0.8272 + }, + { + "start": 23377.86, + "end": 23382.64, + "probability": 0.9908 + }, + { + "start": 23384.22, + "end": 23391.0, + "probability": 0.9106 + }, + { + "start": 23391.06, + "end": 23392.18, + "probability": 0.7637 + }, + { + "start": 23392.64, + "end": 23398.18, + "probability": 0.9743 + }, + { + "start": 23398.78, + "end": 23401.02, + "probability": 0.93 + }, + { + "start": 23402.12, + "end": 23404.5, + "probability": 0.8152 + }, + { + "start": 23405.86, + "end": 23406.4, + "probability": 0.3984 + }, + { + "start": 23407.4, + "end": 23410.78, + "probability": 0.9613 + }, + { + "start": 23411.44, + "end": 23414.94, + "probability": 0.8799 + }, + { + "start": 23415.72, + "end": 23417.14, + "probability": 0.4369 + }, + { + "start": 23417.3, + "end": 23419.28, + "probability": 0.9763 + }, + { + "start": 23419.92, + "end": 23421.27, + "probability": 0.6834 + }, + { + "start": 23421.98, + "end": 23422.8, + "probability": 0.5292 + }, + { + "start": 23422.94, + "end": 23425.1, + "probability": 0.9617 + }, + { + "start": 23426.22, + "end": 23429.38, + "probability": 0.9574 + }, + { + "start": 23429.82, + "end": 23430.22, + "probability": 0.7722 + }, + { + "start": 23430.4, + "end": 23434.2, + "probability": 0.9969 + }, + { + "start": 23435.08, + "end": 23438.68, + "probability": 0.8206 + }, + { + "start": 23438.88, + "end": 23441.3, + "probability": 0.8214 + }, + { + "start": 23441.68, + "end": 23444.43, + "probability": 0.9058 + }, + { + "start": 23445.46, + "end": 23450.0, + "probability": 0.9955 + }, + { + "start": 23450.9, + "end": 23453.2, + "probability": 0.7896 + }, + { + "start": 23454.25, + "end": 23458.96, + "probability": 0.8096 + }, + { + "start": 23459.42, + "end": 23461.4, + "probability": 0.8785 + }, + { + "start": 23461.74, + "end": 23461.94, + "probability": 0.6901 + }, + { + "start": 23462.22, + "end": 23463.54, + "probability": 0.82 + }, + { + "start": 23464.02, + "end": 23471.42, + "probability": 0.7549 + }, + { + "start": 23471.68, + "end": 23473.12, + "probability": 0.6862 + }, + { + "start": 23473.18, + "end": 23473.99, + "probability": 0.8135 + }, + { + "start": 23474.48, + "end": 23476.12, + "probability": 0.9639 + }, + { + "start": 23476.28, + "end": 23480.02, + "probability": 0.9893 + }, + { + "start": 23480.52, + "end": 23483.0, + "probability": 0.9644 + }, + { + "start": 23483.76, + "end": 23484.76, + "probability": 0.6705 + }, + { + "start": 23485.16, + "end": 23487.38, + "probability": 0.9723 + }, + { + "start": 23487.38, + "end": 23491.34, + "probability": 0.7758 + }, + { + "start": 23491.46, + "end": 23491.76, + "probability": 0.7174 + }, + { + "start": 23491.76, + "end": 23495.62, + "probability": 0.9539 + }, + { + "start": 23495.8, + "end": 23496.86, + "probability": 0.6587 + }, + { + "start": 23497.56, + "end": 23497.74, + "probability": 0.3126 + }, + { + "start": 23499.26, + "end": 23500.62, + "probability": 0.5474 + }, + { + "start": 23501.14, + "end": 23503.2, + "probability": 0.9723 + }, + { + "start": 23503.88, + "end": 23505.48, + "probability": 0.9634 + }, + { + "start": 23505.7, + "end": 23506.1, + "probability": 0.4892 + }, + { + "start": 23506.14, + "end": 23508.74, + "probability": 0.8717 + }, + { + "start": 23509.3, + "end": 23510.83, + "probability": 0.9199 + }, + { + "start": 23511.56, + "end": 23514.23, + "probability": 0.5242 + }, + { + "start": 23514.34, + "end": 23517.76, + "probability": 0.8109 + }, + { + "start": 23518.26, + "end": 23520.84, + "probability": 0.9202 + }, + { + "start": 23521.28, + "end": 23521.36, + "probability": 0.4151 + }, + { + "start": 23521.48, + "end": 23523.0, + "probability": 0.8516 + }, + { + "start": 23523.14, + "end": 23524.82, + "probability": 0.7999 + }, + { + "start": 23525.52, + "end": 23529.18, + "probability": 0.9978 + }, + { + "start": 23529.8, + "end": 23531.08, + "probability": 0.891 + }, + { + "start": 23531.62, + "end": 23533.06, + "probability": 0.959 + }, + { + "start": 23533.62, + "end": 23534.56, + "probability": 0.7568 + }, + { + "start": 23535.54, + "end": 23537.58, + "probability": 0.9861 + }, + { + "start": 23538.88, + "end": 23543.36, + "probability": 0.9752 + }, + { + "start": 23543.42, + "end": 23545.7, + "probability": 0.6006 + }, + { + "start": 23546.64, + "end": 23547.64, + "probability": 0.7314 + }, + { + "start": 23548.02, + "end": 23548.14, + "probability": 0.3889 + }, + { + "start": 23548.28, + "end": 23550.16, + "probability": 0.9955 + }, + { + "start": 23550.56, + "end": 23551.48, + "probability": 0.5887 + }, + { + "start": 23552.12, + "end": 23554.42, + "probability": 0.9854 + }, + { + "start": 23554.92, + "end": 23559.32, + "probability": 0.9585 + }, + { + "start": 23559.32, + "end": 23563.08, + "probability": 0.9966 + }, + { + "start": 23563.72, + "end": 23565.31, + "probability": 0.7728 + }, + { + "start": 23565.98, + "end": 23567.8, + "probability": 0.8969 + }, + { + "start": 23568.48, + "end": 23569.9, + "probability": 0.6121 + }, + { + "start": 23570.86, + "end": 23571.96, + "probability": 0.97 + }, + { + "start": 23572.76, + "end": 23573.5, + "probability": 0.6328 + }, + { + "start": 23574.3, + "end": 23575.37, + "probability": 0.9463 + }, + { + "start": 23575.98, + "end": 23580.0, + "probability": 0.9919 + }, + { + "start": 23580.46, + "end": 23580.8, + "probability": 0.3053 + }, + { + "start": 23581.06, + "end": 23583.02, + "probability": 0.9828 + }, + { + "start": 23583.54, + "end": 23587.07, + "probability": 0.9456 + }, + { + "start": 23589.0, + "end": 23589.78, + "probability": 0.4549 + }, + { + "start": 23590.7, + "end": 23591.92, + "probability": 0.6259 + }, + { + "start": 23592.82, + "end": 23596.58, + "probability": 0.9876 + }, + { + "start": 23597.48, + "end": 23599.4, + "probability": 0.757 + }, + { + "start": 23599.42, + "end": 23601.3, + "probability": 0.8043 + }, + { + "start": 23601.9, + "end": 23602.14, + "probability": 0.8207 + }, + { + "start": 23604.42, + "end": 23606.98, + "probability": 0.8926 + }, + { + "start": 23607.14, + "end": 23611.34, + "probability": 0.8962 + }, + { + "start": 23611.42, + "end": 23612.1, + "probability": 0.7308 + }, + { + "start": 23612.28, + "end": 23615.08, + "probability": 0.9345 + }, + { + "start": 23615.5, + "end": 23618.88, + "probability": 0.6736 + }, + { + "start": 23619.68, + "end": 23620.48, + "probability": 0.9884 + }, + { + "start": 23621.12, + "end": 23625.92, + "probability": 0.9911 + }, + { + "start": 23625.92, + "end": 23630.9, + "probability": 0.9895 + }, + { + "start": 23631.6, + "end": 23631.86, + "probability": 0.4937 + }, + { + "start": 23632.04, + "end": 23633.34, + "probability": 0.7263 + }, + { + "start": 23633.4, + "end": 23635.18, + "probability": 0.6846 + }, + { + "start": 23635.18, + "end": 23635.29, + "probability": 0.5541 + }, + { + "start": 23636.1, + "end": 23637.38, + "probability": 0.9958 + }, + { + "start": 23637.58, + "end": 23638.5, + "probability": 0.9883 + }, + { + "start": 23638.62, + "end": 23639.22, + "probability": 0.7014 + }, + { + "start": 23639.68, + "end": 23641.86, + "probability": 0.646 + }, + { + "start": 23642.08, + "end": 23645.1, + "probability": 0.8227 + }, + { + "start": 23645.22, + "end": 23647.16, + "probability": 0.7584 + }, + { + "start": 23647.82, + "end": 23651.7, + "probability": 0.9226 + }, + { + "start": 23652.1, + "end": 23656.58, + "probability": 0.9913 + }, + { + "start": 23657.12, + "end": 23659.58, + "probability": 0.9871 + }, + { + "start": 23660.42, + "end": 23661.68, + "probability": 0.9082 + }, + { + "start": 23661.84, + "end": 23664.72, + "probability": 0.9382 + }, + { + "start": 23665.18, + "end": 23672.26, + "probability": 0.9944 + }, + { + "start": 23672.26, + "end": 23677.58, + "probability": 0.8937 + }, + { + "start": 23678.16, + "end": 23680.82, + "probability": 0.7369 + }, + { + "start": 23681.46, + "end": 23683.74, + "probability": 0.8436 + }, + { + "start": 23684.24, + "end": 23684.34, + "probability": 0.9375 + }, + { + "start": 23684.48, + "end": 23684.6, + "probability": 0.6234 + }, + { + "start": 23684.68, + "end": 23685.62, + "probability": 0.9604 + }, + { + "start": 23685.7, + "end": 23686.62, + "probability": 0.964 + }, + { + "start": 23687.7, + "end": 23689.6, + "probability": 0.9863 + }, + { + "start": 23689.72, + "end": 23691.26, + "probability": 0.9925 + }, + { + "start": 23691.34, + "end": 23692.5, + "probability": 0.9808 + }, + { + "start": 23693.2, + "end": 23694.38, + "probability": 0.9482 + }, + { + "start": 23694.54, + "end": 23695.64, + "probability": 0.6664 + }, + { + "start": 23696.34, + "end": 23697.96, + "probability": 0.7729 + }, + { + "start": 23698.7, + "end": 23699.2, + "probability": 0.8914 + }, + { + "start": 23699.9, + "end": 23703.98, + "probability": 0.9521 + }, + { + "start": 23705.02, + "end": 23705.2, + "probability": 0.7698 + }, + { + "start": 23705.24, + "end": 23710.6, + "probability": 0.9977 + }, + { + "start": 23710.7, + "end": 23710.79, + "probability": 0.9209 + }, + { + "start": 23711.04, + "end": 23711.9, + "probability": 0.5629 + }, + { + "start": 23711.94, + "end": 23713.18, + "probability": 0.671 + }, + { + "start": 23713.66, + "end": 23717.92, + "probability": 0.7546 + }, + { + "start": 23718.02, + "end": 23719.72, + "probability": 0.8512 + }, + { + "start": 23721.1, + "end": 23727.12, + "probability": 0.919 + }, + { + "start": 23727.12, + "end": 23727.5, + "probability": 0.5835 + }, + { + "start": 23727.58, + "end": 23729.92, + "probability": 0.9104 + }, + { + "start": 23730.18, + "end": 23732.32, + "probability": 0.9016 + }, + { + "start": 23733.0, + "end": 23735.3, + "probability": 0.9963 + }, + { + "start": 23735.78, + "end": 23737.74, + "probability": 0.5007 + }, + { + "start": 23738.32, + "end": 23740.22, + "probability": 0.8148 + }, + { + "start": 23740.78, + "end": 23743.02, + "probability": 0.7854 + }, + { + "start": 23743.9, + "end": 23746.24, + "probability": 0.858 + }, + { + "start": 23746.4, + "end": 23746.56, + "probability": 0.7 + }, + { + "start": 23747.16, + "end": 23750.44, + "probability": 0.9595 + }, + { + "start": 23751.0, + "end": 23752.16, + "probability": 0.4558 + }, + { + "start": 23752.3, + "end": 23756.58, + "probability": 0.9599 + }, + { + "start": 23757.42, + "end": 23757.46, + "probability": 0.004 + } + ], + "segments_count": 7905, + "words_count": 39765, + "avg_words_per_segment": 5.0304, + "avg_segment_duration": 2.1742, + "avg_words_per_minute": 100.2849, + "plenum_id": "38561", + "duration": 23791.21, + "title": null, + "plenum_date": "2014-07-09" +} \ No newline at end of file