diff --git "a/3871/metadata.json" "b/3871/metadata.json" new file mode 100644--- /dev/null +++ "b/3871/metadata.json" @@ -0,0 +1,146302 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "3871", + "quality_score": 0.8699, + "per_segment_quality_scores": [ + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 238.0, + "end": 238.0, + "probability": 0.0 + }, + { + "start": 262.88, + "end": 263.04, + "probability": 0.0156 + }, + { + "start": 264.32, + "end": 266.8, + "probability": 0.0377 + }, + { + "start": 267.24, + "end": 269.66, + "probability": 0.1452 + }, + { + "start": 269.76, + "end": 272.02, + "probability": 0.2287 + }, + { + "start": 273.61, + "end": 275.57, + "probability": 0.0306 + }, + { + "start": 276.04, + "end": 277.28, + "probability": 0.0983 + }, + { + "start": 277.28, + "end": 278.44, + "probability": 0.1384 + }, + { + "start": 278.66, + "end": 279.56, + "probability": 0.0678 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 363.0, + "end": 363.0, + "probability": 0.0 + }, + { + "start": 364.96, + "end": 368.12, + "probability": 0.6474 + }, + { + "start": 368.64, + "end": 372.54, + "probability": 0.9372 + }, + { + "start": 374.1, + "end": 378.52, + "probability": 0.6345 + }, + { + "start": 379.42, + "end": 380.46, + "probability": 0.8852 + }, + { + "start": 381.56, + "end": 384.02, + "probability": 0.6196 + }, + { + "start": 384.9, + "end": 389.76, + "probability": 0.9961 + }, + { + "start": 390.86, + "end": 391.42, + "probability": 0.6669 + }, + { + "start": 392.18, + "end": 392.86, + "probability": 0.199 + }, + { + "start": 393.68, + "end": 394.46, + "probability": 0.2838 + }, + { + "start": 394.62, + "end": 395.1, + "probability": 0.7519 + }, + { + "start": 395.88, + "end": 398.24, + "probability": 0.2564 + }, + { + "start": 398.96, + "end": 399.76, + "probability": 0.4781 + }, + { + "start": 400.82, + "end": 404.36, + "probability": 0.849 + }, + { + "start": 409.78, + "end": 415.0, + "probability": 0.9688 + }, + { + "start": 415.12, + "end": 415.8, + "probability": 0.5492 + }, + { + "start": 415.8, + "end": 415.8, + "probability": 0.4757 + }, + { + "start": 415.9, + "end": 417.54, + "probability": 0.9108 + }, + { + "start": 418.0, + "end": 422.08, + "probability": 0.8664 + }, + { + "start": 427.4, + "end": 428.36, + "probability": 0.7558 + }, + { + "start": 428.42, + "end": 428.88, + "probability": 0.6431 + }, + { + "start": 429.02, + "end": 430.1, + "probability": 0.7463 + }, + { + "start": 430.6, + "end": 436.66, + "probability": 0.8516 + }, + { + "start": 436.88, + "end": 445.42, + "probability": 0.8567 + }, + { + "start": 446.24, + "end": 450.52, + "probability": 0.9175 + }, + { + "start": 451.06, + "end": 456.48, + "probability": 0.8308 + }, + { + "start": 456.48, + "end": 460.38, + "probability": 0.8761 + }, + { + "start": 460.96, + "end": 463.88, + "probability": 0.9693 + }, + { + "start": 464.44, + "end": 469.62, + "probability": 0.9746 + }, + { + "start": 469.62, + "end": 473.91, + "probability": 0.7996 + }, + { + "start": 475.14, + "end": 477.54, + "probability": 0.9969 + }, + { + "start": 478.06, + "end": 481.18, + "probability": 0.9583 + }, + { + "start": 481.34, + "end": 483.34, + "probability": 0.5 + }, + { + "start": 483.54, + "end": 483.96, + "probability": 0.2798 + }, + { + "start": 484.26, + "end": 488.54, + "probability": 0.9469 + }, + { + "start": 488.96, + "end": 490.58, + "probability": 0.9799 + }, + { + "start": 492.28, + "end": 492.92, + "probability": 0.669 + }, + { + "start": 493.08, + "end": 496.98, + "probability": 0.9243 + }, + { + "start": 498.08, + "end": 503.88, + "probability": 0.981 + }, + { + "start": 504.04, + "end": 505.34, + "probability": 0.8436 + }, + { + "start": 506.12, + "end": 507.1, + "probability": 0.8602 + }, + { + "start": 507.26, + "end": 511.16, + "probability": 0.9924 + }, + { + "start": 511.48, + "end": 513.0, + "probability": 0.9764 + }, + { + "start": 513.06, + "end": 513.68, + "probability": 0.7611 + }, + { + "start": 513.92, + "end": 514.61, + "probability": 0.9424 + }, + { + "start": 515.08, + "end": 517.34, + "probability": 0.8093 + }, + { + "start": 517.66, + "end": 518.4, + "probability": 0.8825 + }, + { + "start": 518.78, + "end": 523.82, + "probability": 0.9689 + }, + { + "start": 524.34, + "end": 527.74, + "probability": 0.9621 + }, + { + "start": 528.34, + "end": 530.32, + "probability": 0.9922 + }, + { + "start": 530.34, + "end": 530.84, + "probability": 0.6185 + }, + { + "start": 530.92, + "end": 532.04, + "probability": 0.7429 + }, + { + "start": 533.04, + "end": 534.93, + "probability": 0.9023 + }, + { + "start": 535.36, + "end": 536.1, + "probability": 0.8141 + }, + { + "start": 536.14, + "end": 539.84, + "probability": 0.9469 + }, + { + "start": 539.94, + "end": 540.5, + "probability": 0.7557 + }, + { + "start": 540.94, + "end": 548.22, + "probability": 0.8682 + }, + { + "start": 548.6, + "end": 553.12, + "probability": 0.9915 + }, + { + "start": 553.36, + "end": 554.26, + "probability": 0.9335 + }, + { + "start": 554.62, + "end": 556.04, + "probability": 0.7912 + }, + { + "start": 556.74, + "end": 560.12, + "probability": 0.8273 + }, + { + "start": 562.7, + "end": 563.04, + "probability": 0.8131 + }, + { + "start": 563.62, + "end": 564.04, + "probability": 0.7355 + }, + { + "start": 571.7, + "end": 573.26, + "probability": 0.4084 + }, + { + "start": 574.16, + "end": 574.52, + "probability": 0.3802 + }, + { + "start": 574.6, + "end": 575.26, + "probability": 0.5083 + }, + { + "start": 575.48, + "end": 576.5, + "probability": 0.8459 + }, + { + "start": 576.78, + "end": 582.14, + "probability": 0.5836 + }, + { + "start": 582.6, + "end": 587.82, + "probability": 0.9473 + }, + { + "start": 588.88, + "end": 592.6, + "probability": 0.9978 + }, + { + "start": 593.52, + "end": 594.28, + "probability": 0.8654 + }, + { + "start": 594.38, + "end": 597.52, + "probability": 0.8728 + }, + { + "start": 598.74, + "end": 601.46, + "probability": 0.9977 + }, + { + "start": 601.46, + "end": 604.96, + "probability": 0.9993 + }, + { + "start": 605.88, + "end": 607.24, + "probability": 0.634 + }, + { + "start": 607.34, + "end": 609.76, + "probability": 0.9951 + }, + { + "start": 610.7, + "end": 613.6, + "probability": 0.9603 + }, + { + "start": 614.74, + "end": 618.94, + "probability": 0.6917 + }, + { + "start": 619.86, + "end": 625.7, + "probability": 0.9486 + }, + { + "start": 626.68, + "end": 629.92, + "probability": 0.7987 + }, + { + "start": 630.1, + "end": 633.4, + "probability": 0.7732 + }, + { + "start": 633.54, + "end": 634.02, + "probability": 0.6489 + }, + { + "start": 634.14, + "end": 635.38, + "probability": 0.709 + }, + { + "start": 635.46, + "end": 636.8, + "probability": 0.8324 + }, + { + "start": 636.88, + "end": 637.54, + "probability": 0.555 + }, + { + "start": 638.86, + "end": 641.26, + "probability": 0.5654 + }, + { + "start": 641.78, + "end": 644.56, + "probability": 0.9274 + }, + { + "start": 645.08, + "end": 645.56, + "probability": 0.7097 + }, + { + "start": 646.12, + "end": 646.5, + "probability": 0.9038 + }, + { + "start": 647.42, + "end": 648.38, + "probability": 0.2823 + }, + { + "start": 649.7, + "end": 651.22, + "probability": 0.503 + }, + { + "start": 651.26, + "end": 652.87, + "probability": 0.8729 + }, + { + "start": 653.0, + "end": 661.16, + "probability": 0.8753 + }, + { + "start": 661.26, + "end": 663.9, + "probability": 0.9976 + }, + { + "start": 665.04, + "end": 668.34, + "probability": 0.9901 + }, + { + "start": 668.46, + "end": 670.04, + "probability": 0.9421 + }, + { + "start": 671.9, + "end": 673.26, + "probability": 0.9468 + }, + { + "start": 674.62, + "end": 675.3, + "probability": 0.7446 + }, + { + "start": 675.96, + "end": 680.36, + "probability": 0.4108 + }, + { + "start": 681.9, + "end": 683.76, + "probability": 0.6149 + }, + { + "start": 684.36, + "end": 690.04, + "probability": 0.8033 + }, + { + "start": 690.28, + "end": 692.6, + "probability": 0.8721 + }, + { + "start": 693.0, + "end": 693.82, + "probability": 0.8469 + }, + { + "start": 693.96, + "end": 696.1, + "probability": 0.7072 + }, + { + "start": 696.16, + "end": 698.3, + "probability": 0.8059 + }, + { + "start": 698.8, + "end": 701.3, + "probability": 0.9946 + }, + { + "start": 701.84, + "end": 703.9, + "probability": 0.7394 + }, + { + "start": 705.28, + "end": 708.56, + "probability": 0.8627 + }, + { + "start": 708.72, + "end": 713.8, + "probability": 0.9937 + }, + { + "start": 714.46, + "end": 717.68, + "probability": 0.9018 + }, + { + "start": 718.04, + "end": 718.8, + "probability": 0.983 + }, + { + "start": 719.68, + "end": 723.2, + "probability": 0.9858 + }, + { + "start": 723.76, + "end": 724.53, + "probability": 0.8477 + }, + { + "start": 724.72, + "end": 727.92, + "probability": 0.9934 + }, + { + "start": 728.92, + "end": 733.32, + "probability": 0.9916 + }, + { + "start": 733.82, + "end": 734.3, + "probability": 0.5439 + }, + { + "start": 734.92, + "end": 736.02, + "probability": 0.9539 + }, + { + "start": 736.62, + "end": 738.84, + "probability": 0.5269 + }, + { + "start": 740.14, + "end": 741.88, + "probability": 0.7406 + }, + { + "start": 742.92, + "end": 748.32, + "probability": 0.6968 + }, + { + "start": 748.34, + "end": 749.1, + "probability": 0.6639 + }, + { + "start": 749.98, + "end": 751.88, + "probability": 0.9006 + }, + { + "start": 753.38, + "end": 755.32, + "probability": 0.9419 + }, + { + "start": 755.6, + "end": 756.14, + "probability": 0.2681 + }, + { + "start": 756.28, + "end": 757.26, + "probability": 0.8465 + }, + { + "start": 757.76, + "end": 759.54, + "probability": 0.9476 + }, + { + "start": 760.16, + "end": 761.72, + "probability": 0.9811 + }, + { + "start": 762.44, + "end": 765.16, + "probability": 0.9766 + }, + { + "start": 765.16, + "end": 769.2, + "probability": 0.8316 + }, + { + "start": 770.48, + "end": 774.46, + "probability": 0.9659 + }, + { + "start": 775.5, + "end": 778.86, + "probability": 0.9976 + }, + { + "start": 779.98, + "end": 783.94, + "probability": 0.9363 + }, + { + "start": 784.68, + "end": 789.04, + "probability": 0.8152 + }, + { + "start": 790.24, + "end": 792.36, + "probability": 0.9922 + }, + { + "start": 793.02, + "end": 795.22, + "probability": 0.8269 + }, + { + "start": 795.78, + "end": 796.54, + "probability": 0.6602 + }, + { + "start": 796.72, + "end": 797.04, + "probability": 0.9122 + }, + { + "start": 797.3, + "end": 798.62, + "probability": 0.8752 + }, + { + "start": 799.12, + "end": 800.12, + "probability": 0.6777 + }, + { + "start": 801.46, + "end": 805.62, + "probability": 0.9156 + }, + { + "start": 806.12, + "end": 806.38, + "probability": 0.671 + }, + { + "start": 806.56, + "end": 806.88, + "probability": 0.767 + }, + { + "start": 807.4, + "end": 809.5, + "probability": 0.7764 + }, + { + "start": 810.26, + "end": 810.48, + "probability": 0.6424 + }, + { + "start": 814.62, + "end": 816.06, + "probability": 0.6512 + }, + { + "start": 816.96, + "end": 817.2, + "probability": 0.2586 + }, + { + "start": 817.3, + "end": 818.08, + "probability": 0.611 + }, + { + "start": 818.2, + "end": 818.94, + "probability": 0.7376 + }, + { + "start": 819.2, + "end": 825.06, + "probability": 0.9609 + }, + { + "start": 827.08, + "end": 832.76, + "probability": 0.9922 + }, + { + "start": 833.38, + "end": 835.94, + "probability": 0.9991 + }, + { + "start": 836.4, + "end": 837.94, + "probability": 0.9886 + }, + { + "start": 838.7, + "end": 845.54, + "probability": 0.9678 + }, + { + "start": 846.12, + "end": 848.02, + "probability": 0.9242 + }, + { + "start": 848.6, + "end": 852.78, + "probability": 0.9932 + }, + { + "start": 853.64, + "end": 858.08, + "probability": 0.998 + }, + { + "start": 858.5, + "end": 861.04, + "probability": 0.9979 + }, + { + "start": 861.56, + "end": 864.64, + "probability": 0.9687 + }, + { + "start": 865.22, + "end": 866.9, + "probability": 0.9971 + }, + { + "start": 868.32, + "end": 869.74, + "probability": 0.9834 + }, + { + "start": 870.18, + "end": 873.38, + "probability": 0.8237 + }, + { + "start": 874.18, + "end": 875.34, + "probability": 0.1805 + }, + { + "start": 878.82, + "end": 882.24, + "probability": 0.5885 + }, + { + "start": 883.16, + "end": 885.98, + "probability": 0.5527 + }, + { + "start": 886.8, + "end": 890.04, + "probability": 0.936 + }, + { + "start": 890.5, + "end": 894.64, + "probability": 0.9309 + }, + { + "start": 894.64, + "end": 899.7, + "probability": 0.758 + }, + { + "start": 899.9, + "end": 900.62, + "probability": 0.8868 + }, + { + "start": 904.52, + "end": 907.62, + "probability": 0.9658 + }, + { + "start": 908.2, + "end": 916.5, + "probability": 0.8085 + }, + { + "start": 917.72, + "end": 923.98, + "probability": 0.6674 + }, + { + "start": 924.08, + "end": 924.52, + "probability": 0.6317 + }, + { + "start": 925.18, + "end": 927.2, + "probability": 0.996 + }, + { + "start": 928.28, + "end": 929.02, + "probability": 0.5774 + }, + { + "start": 929.64, + "end": 930.34, + "probability": 0.7484 + }, + { + "start": 930.98, + "end": 933.86, + "probability": 0.7969 + }, + { + "start": 934.22, + "end": 941.22, + "probability": 0.9476 + }, + { + "start": 941.98, + "end": 942.94, + "probability": 0.0033 + }, + { + "start": 943.18, + "end": 945.92, + "probability": 0.9336 + }, + { + "start": 946.48, + "end": 947.96, + "probability": 0.8148 + }, + { + "start": 948.34, + "end": 948.54, + "probability": 0.3908 + }, + { + "start": 948.64, + "end": 950.48, + "probability": 0.9836 + }, + { + "start": 951.06, + "end": 955.72, + "probability": 0.9424 + }, + { + "start": 955.86, + "end": 956.38, + "probability": 0.8816 + }, + { + "start": 958.02, + "end": 961.48, + "probability": 0.9112 + }, + { + "start": 962.24, + "end": 963.78, + "probability": 0.6378 + }, + { + "start": 964.72, + "end": 965.54, + "probability": 0.5867 + }, + { + "start": 965.76, + "end": 967.0, + "probability": 0.9389 + }, + { + "start": 967.3, + "end": 967.9, + "probability": 0.6971 + }, + { + "start": 968.36, + "end": 969.22, + "probability": 0.7552 + }, + { + "start": 969.26, + "end": 969.94, + "probability": 0.9513 + }, + { + "start": 970.6, + "end": 974.36, + "probability": 0.9927 + }, + { + "start": 975.0, + "end": 977.16, + "probability": 0.7265 + }, + { + "start": 977.36, + "end": 978.64, + "probability": 0.7954 + }, + { + "start": 979.4, + "end": 981.38, + "probability": 0.9753 + }, + { + "start": 982.0, + "end": 985.4, + "probability": 0.9533 + }, + { + "start": 985.94, + "end": 988.0, + "probability": 0.9979 + }, + { + "start": 988.18, + "end": 989.94, + "probability": 0.901 + }, + { + "start": 990.64, + "end": 993.0, + "probability": 0.9294 + }, + { + "start": 994.12, + "end": 997.27, + "probability": 0.9349 + }, + { + "start": 997.76, + "end": 998.28, + "probability": 0.7143 + }, + { + "start": 999.6, + "end": 1002.7, + "probability": 0.9868 + }, + { + "start": 1002.8, + "end": 1006.08, + "probability": 0.9949 + }, + { + "start": 1006.9, + "end": 1007.9, + "probability": 0.7333 + }, + { + "start": 1008.62, + "end": 1011.48, + "probability": 0.9316 + }, + { + "start": 1012.5, + "end": 1016.84, + "probability": 0.9871 + }, + { + "start": 1017.24, + "end": 1018.7, + "probability": 0.7778 + }, + { + "start": 1019.3, + "end": 1021.18, + "probability": 0.9865 + }, + { + "start": 1021.7, + "end": 1023.22, + "probability": 0.68 + }, + { + "start": 1023.56, + "end": 1023.88, + "probability": 0.7219 + }, + { + "start": 1024.5, + "end": 1028.14, + "probability": 0.9319 + }, + { + "start": 1028.14, + "end": 1033.74, + "probability": 0.9873 + }, + { + "start": 1034.34, + "end": 1036.52, + "probability": 0.2178 + }, + { + "start": 1037.4, + "end": 1039.48, + "probability": 0.5925 + }, + { + "start": 1040.1, + "end": 1042.1, + "probability": 0.1286 + }, + { + "start": 1042.76, + "end": 1043.96, + "probability": 0.7528 + }, + { + "start": 1044.06, + "end": 1045.54, + "probability": 0.6338 + }, + { + "start": 1045.84, + "end": 1052.28, + "probability": 0.9845 + }, + { + "start": 1053.04, + "end": 1055.18, + "probability": 0.9846 + }, + { + "start": 1056.46, + "end": 1057.51, + "probability": 0.6689 + }, + { + "start": 1057.78, + "end": 1060.8, + "probability": 0.9648 + }, + { + "start": 1061.22, + "end": 1063.14, + "probability": 0.9453 + }, + { + "start": 1064.02, + "end": 1065.38, + "probability": 0.7688 + }, + { + "start": 1066.34, + "end": 1067.7, + "probability": 0.9507 + }, + { + "start": 1068.56, + "end": 1071.22, + "probability": 0.8818 + }, + { + "start": 1072.04, + "end": 1074.14, + "probability": 0.9504 + }, + { + "start": 1075.04, + "end": 1079.52, + "probability": 0.9761 + }, + { + "start": 1079.52, + "end": 1082.34, + "probability": 0.989 + }, + { + "start": 1083.2, + "end": 1086.24, + "probability": 0.9699 + }, + { + "start": 1086.24, + "end": 1088.2, + "probability": 0.7314 + }, + { + "start": 1089.1, + "end": 1090.12, + "probability": 0.8485 + }, + { + "start": 1091.08, + "end": 1092.06, + "probability": 0.8967 + }, + { + "start": 1092.82, + "end": 1093.68, + "probability": 0.7961 + }, + { + "start": 1094.62, + "end": 1097.46, + "probability": 0.9313 + }, + { + "start": 1098.26, + "end": 1100.44, + "probability": 0.8573 + }, + { + "start": 1101.06, + "end": 1103.02, + "probability": 0.8863 + }, + { + "start": 1103.8, + "end": 1107.14, + "probability": 0.9849 + }, + { + "start": 1108.12, + "end": 1111.24, + "probability": 0.9897 + }, + { + "start": 1111.97, + "end": 1114.17, + "probability": 0.8014 + }, + { + "start": 1115.08, + "end": 1119.88, + "probability": 0.9346 + }, + { + "start": 1119.88, + "end": 1123.32, + "probability": 0.9927 + }, + { + "start": 1123.92, + "end": 1125.78, + "probability": 0.8612 + }, + { + "start": 1126.62, + "end": 1130.61, + "probability": 0.9924 + }, + { + "start": 1131.54, + "end": 1133.52, + "probability": 0.9828 + }, + { + "start": 1134.16, + "end": 1134.3, + "probability": 0.4882 + }, + { + "start": 1134.34, + "end": 1135.54, + "probability": 0.9132 + }, + { + "start": 1135.9, + "end": 1138.12, + "probability": 0.8822 + }, + { + "start": 1138.12, + "end": 1143.06, + "probability": 0.8702 + }, + { + "start": 1143.82, + "end": 1144.86, + "probability": 0.1105 + }, + { + "start": 1144.86, + "end": 1146.34, + "probability": 0.5089 + }, + { + "start": 1146.8, + "end": 1148.42, + "probability": 0.7402 + }, + { + "start": 1149.02, + "end": 1155.32, + "probability": 0.6135 + }, + { + "start": 1163.16, + "end": 1165.26, + "probability": 0.6883 + }, + { + "start": 1165.8, + "end": 1171.12, + "probability": 0.9759 + }, + { + "start": 1171.96, + "end": 1172.9, + "probability": 0.8931 + }, + { + "start": 1172.96, + "end": 1176.66, + "probability": 0.9382 + }, + { + "start": 1177.64, + "end": 1182.24, + "probability": 0.8995 + }, + { + "start": 1182.4, + "end": 1185.2, + "probability": 0.5072 + }, + { + "start": 1185.34, + "end": 1188.43, + "probability": 0.6758 + }, + { + "start": 1188.7, + "end": 1192.64, + "probability": 0.6184 + }, + { + "start": 1192.8, + "end": 1195.18, + "probability": 0.9106 + }, + { + "start": 1195.32, + "end": 1199.36, + "probability": 0.8339 + }, + { + "start": 1199.64, + "end": 1200.82, + "probability": 0.9006 + }, + { + "start": 1201.46, + "end": 1203.04, + "probability": 0.9617 + }, + { + "start": 1203.18, + "end": 1203.7, + "probability": 0.678 + }, + { + "start": 1204.3, + "end": 1205.66, + "probability": 0.4587 + }, + { + "start": 1205.76, + "end": 1206.34, + "probability": 0.7405 + }, + { + "start": 1206.52, + "end": 1207.68, + "probability": 0.7676 + }, + { + "start": 1207.78, + "end": 1209.02, + "probability": 0.896 + }, + { + "start": 1209.56, + "end": 1211.28, + "probability": 0.8405 + }, + { + "start": 1211.66, + "end": 1214.04, + "probability": 0.8457 + }, + { + "start": 1214.62, + "end": 1216.36, + "probability": 0.994 + }, + { + "start": 1217.93, + "end": 1222.34, + "probability": 0.6168 + }, + { + "start": 1222.38, + "end": 1226.14, + "probability": 0.9949 + }, + { + "start": 1227.18, + "end": 1229.06, + "probability": 0.7232 + }, + { + "start": 1229.28, + "end": 1233.38, + "probability": 0.7371 + }, + { + "start": 1234.0, + "end": 1235.0, + "probability": 0.7286 + }, + { + "start": 1235.2, + "end": 1235.5, + "probability": 0.3151 + }, + { + "start": 1235.5, + "end": 1235.74, + "probability": 0.6187 + }, + { + "start": 1236.2, + "end": 1240.66, + "probability": 0.8039 + }, + { + "start": 1241.8, + "end": 1242.48, + "probability": 0.6905 + }, + { + "start": 1242.72, + "end": 1243.68, + "probability": 0.9113 + }, + { + "start": 1243.74, + "end": 1245.18, + "probability": 0.9572 + }, + { + "start": 1245.88, + "end": 1247.8, + "probability": 0.7499 + }, + { + "start": 1248.68, + "end": 1249.78, + "probability": 0.989 + }, + { + "start": 1249.94, + "end": 1250.58, + "probability": 0.9522 + }, + { + "start": 1250.88, + "end": 1252.64, + "probability": 0.8932 + }, + { + "start": 1253.12, + "end": 1254.4, + "probability": 0.8524 + }, + { + "start": 1254.58, + "end": 1256.7, + "probability": 0.9702 + }, + { + "start": 1256.78, + "end": 1257.5, + "probability": 0.9296 + }, + { + "start": 1258.14, + "end": 1260.92, + "probability": 0.7652 + }, + { + "start": 1261.0, + "end": 1261.73, + "probability": 0.6058 + }, + { + "start": 1262.34, + "end": 1263.26, + "probability": 0.879 + }, + { + "start": 1263.42, + "end": 1266.48, + "probability": 0.8946 + }, + { + "start": 1266.68, + "end": 1269.78, + "probability": 0.918 + }, + { + "start": 1270.12, + "end": 1272.06, + "probability": 0.9725 + }, + { + "start": 1272.36, + "end": 1273.22, + "probability": 0.8949 + }, + { + "start": 1273.66, + "end": 1274.74, + "probability": 0.9067 + }, + { + "start": 1275.14, + "end": 1278.18, + "probability": 0.9553 + }, + { + "start": 1278.52, + "end": 1279.92, + "probability": 0.929 + }, + { + "start": 1280.12, + "end": 1282.84, + "probability": 0.9784 + }, + { + "start": 1282.92, + "end": 1283.9, + "probability": 0.9729 + }, + { + "start": 1284.02, + "end": 1287.48, + "probability": 0.9913 + }, + { + "start": 1287.96, + "end": 1290.24, + "probability": 0.8882 + }, + { + "start": 1291.24, + "end": 1292.48, + "probability": 0.9733 + }, + { + "start": 1292.58, + "end": 1295.3, + "probability": 0.8088 + }, + { + "start": 1295.88, + "end": 1296.76, + "probability": 0.7028 + }, + { + "start": 1296.86, + "end": 1297.28, + "probability": 0.9312 + }, + { + "start": 1297.76, + "end": 1297.92, + "probability": 0.534 + }, + { + "start": 1298.38, + "end": 1298.96, + "probability": 0.6199 + }, + { + "start": 1299.04, + "end": 1300.0, + "probability": 0.721 + }, + { + "start": 1300.24, + "end": 1302.94, + "probability": 0.9917 + }, + { + "start": 1303.14, + "end": 1305.32, + "probability": 0.9391 + }, + { + "start": 1305.94, + "end": 1307.12, + "probability": 0.8127 + }, + { + "start": 1308.74, + "end": 1309.88, + "probability": 0.5792 + }, + { + "start": 1310.36, + "end": 1314.14, + "probability": 0.9176 + }, + { + "start": 1317.88, + "end": 1321.8, + "probability": 0.7373 + }, + { + "start": 1322.8, + "end": 1325.04, + "probability": 0.8209 + }, + { + "start": 1326.0, + "end": 1329.4, + "probability": 0.9915 + }, + { + "start": 1329.54, + "end": 1329.86, + "probability": 0.5801 + }, + { + "start": 1330.08, + "end": 1330.62, + "probability": 0.7685 + }, + { + "start": 1331.3, + "end": 1334.16, + "probability": 0.9846 + }, + { + "start": 1334.16, + "end": 1337.42, + "probability": 0.9962 + }, + { + "start": 1338.2, + "end": 1339.38, + "probability": 0.3793 + }, + { + "start": 1339.72, + "end": 1342.26, + "probability": 0.9187 + }, + { + "start": 1342.72, + "end": 1343.6, + "probability": 0.8714 + }, + { + "start": 1343.7, + "end": 1345.48, + "probability": 0.8313 + }, + { + "start": 1346.14, + "end": 1350.98, + "probability": 0.8849 + }, + { + "start": 1351.06, + "end": 1353.06, + "probability": 0.4907 + }, + { + "start": 1353.26, + "end": 1357.14, + "probability": 0.9616 + }, + { + "start": 1357.74, + "end": 1360.8, + "probability": 0.9515 + }, + { + "start": 1360.88, + "end": 1365.2, + "probability": 0.8513 + }, + { + "start": 1365.2, + "end": 1369.1, + "probability": 0.9814 + }, + { + "start": 1369.56, + "end": 1370.32, + "probability": 0.6694 + }, + { + "start": 1370.46, + "end": 1371.36, + "probability": 0.9034 + }, + { + "start": 1371.4, + "end": 1374.86, + "probability": 0.9764 + }, + { + "start": 1375.7, + "end": 1381.34, + "probability": 0.992 + }, + { + "start": 1381.78, + "end": 1386.28, + "probability": 0.9515 + }, + { + "start": 1386.58, + "end": 1386.84, + "probability": 0.5828 + }, + { + "start": 1387.44, + "end": 1388.56, + "probability": 0.8104 + }, + { + "start": 1389.32, + "end": 1390.44, + "probability": 0.7383 + }, + { + "start": 1390.48, + "end": 1394.1, + "probability": 0.981 + }, + { + "start": 1394.34, + "end": 1396.3, + "probability": 0.8219 + }, + { + "start": 1397.06, + "end": 1399.78, + "probability": 0.811 + }, + { + "start": 1400.34, + "end": 1402.08, + "probability": 0.9834 + }, + { + "start": 1402.36, + "end": 1402.88, + "probability": 0.7323 + }, + { + "start": 1403.26, + "end": 1407.62, + "probability": 0.9941 + }, + { + "start": 1407.74, + "end": 1408.58, + "probability": 0.7688 + }, + { + "start": 1409.02, + "end": 1412.2, + "probability": 0.9084 + }, + { + "start": 1412.86, + "end": 1415.18, + "probability": 0.9326 + }, + { + "start": 1415.96, + "end": 1417.52, + "probability": 0.606 + }, + { + "start": 1418.28, + "end": 1418.7, + "probability": 0.2101 + }, + { + "start": 1418.74, + "end": 1418.92, + "probability": 0.2038 + }, + { + "start": 1418.92, + "end": 1420.82, + "probability": 0.7764 + }, + { + "start": 1421.36, + "end": 1425.04, + "probability": 0.5937 + }, + { + "start": 1425.18, + "end": 1425.46, + "probability": 0.8285 + }, + { + "start": 1427.26, + "end": 1427.28, + "probability": 0.1467 + }, + { + "start": 1427.28, + "end": 1427.28, + "probability": 0.0668 + }, + { + "start": 1427.28, + "end": 1430.28, + "probability": 0.6531 + }, + { + "start": 1430.52, + "end": 1433.12, + "probability": 0.9912 + }, + { + "start": 1433.68, + "end": 1434.76, + "probability": 0.6054 + }, + { + "start": 1435.88, + "end": 1439.76, + "probability": 0.8203 + }, + { + "start": 1440.66, + "end": 1443.54, + "probability": 0.9876 + }, + { + "start": 1444.34, + "end": 1446.96, + "probability": 0.9961 + }, + { + "start": 1447.66, + "end": 1451.98, + "probability": 0.9694 + }, + { + "start": 1452.74, + "end": 1454.68, + "probability": 0.9098 + }, + { + "start": 1454.88, + "end": 1456.48, + "probability": 0.985 + }, + { + "start": 1456.94, + "end": 1457.54, + "probability": 0.9647 + }, + { + "start": 1457.62, + "end": 1462.4, + "probability": 0.8157 + }, + { + "start": 1463.34, + "end": 1466.16, + "probability": 0.8987 + }, + { + "start": 1466.84, + "end": 1469.26, + "probability": 0.9579 + }, + { + "start": 1470.24, + "end": 1475.56, + "probability": 0.9922 + }, + { + "start": 1476.7, + "end": 1478.74, + "probability": 0.9721 + }, + { + "start": 1479.76, + "end": 1482.22, + "probability": 0.939 + }, + { + "start": 1482.36, + "end": 1484.44, + "probability": 0.4669 + }, + { + "start": 1485.4, + "end": 1489.24, + "probability": 0.9946 + }, + { + "start": 1490.68, + "end": 1493.92, + "probability": 0.9299 + }, + { + "start": 1494.86, + "end": 1496.56, + "probability": 0.9542 + }, + { + "start": 1497.7, + "end": 1501.16, + "probability": 0.8043 + }, + { + "start": 1502.52, + "end": 1504.32, + "probability": 0.8468 + }, + { + "start": 1505.12, + "end": 1507.6, + "probability": 0.9966 + }, + { + "start": 1508.1, + "end": 1508.76, + "probability": 0.945 + }, + { + "start": 1509.6, + "end": 1511.86, + "probability": 0.9814 + }, + { + "start": 1512.62, + "end": 1515.5, + "probability": 0.9941 + }, + { + "start": 1516.86, + "end": 1517.58, + "probability": 0.7583 + }, + { + "start": 1517.66, + "end": 1518.32, + "probability": 0.9671 + }, + { + "start": 1518.38, + "end": 1519.17, + "probability": 0.864 + }, + { + "start": 1519.3, + "end": 1519.97, + "probability": 0.9238 + }, + { + "start": 1520.92, + "end": 1524.28, + "probability": 0.9894 + }, + { + "start": 1524.4, + "end": 1525.74, + "probability": 0.9863 + }, + { + "start": 1526.16, + "end": 1527.2, + "probability": 0.7693 + }, + { + "start": 1527.26, + "end": 1530.32, + "probability": 0.8541 + }, + { + "start": 1535.28, + "end": 1536.56, + "probability": 0.6901 + }, + { + "start": 1537.4, + "end": 1540.46, + "probability": 0.9772 + }, + { + "start": 1541.26, + "end": 1542.06, + "probability": 0.771 + }, + { + "start": 1542.56, + "end": 1544.66, + "probability": 0.8329 + }, + { + "start": 1544.74, + "end": 1545.36, + "probability": 0.9958 + }, + { + "start": 1546.08, + "end": 1550.24, + "probability": 0.897 + }, + { + "start": 1551.02, + "end": 1552.08, + "probability": 0.798 + }, + { + "start": 1552.81, + "end": 1554.86, + "probability": 0.8309 + }, + { + "start": 1555.4, + "end": 1558.06, + "probability": 0.9948 + }, + { + "start": 1558.88, + "end": 1561.52, + "probability": 0.69 + }, + { + "start": 1561.98, + "end": 1564.5, + "probability": 0.9333 + }, + { + "start": 1565.1, + "end": 1566.8, + "probability": 0.9639 + }, + { + "start": 1566.92, + "end": 1568.16, + "probability": 0.7028 + }, + { + "start": 1568.52, + "end": 1573.84, + "probability": 0.8694 + }, + { + "start": 1574.56, + "end": 1575.3, + "probability": 0.4309 + }, + { + "start": 1575.34, + "end": 1576.12, + "probability": 0.96 + }, + { + "start": 1576.22, + "end": 1576.82, + "probability": 0.6069 + }, + { + "start": 1576.86, + "end": 1578.02, + "probability": 0.7784 + }, + { + "start": 1578.68, + "end": 1579.3, + "probability": 0.5166 + }, + { + "start": 1579.34, + "end": 1583.3, + "probability": 0.9458 + }, + { + "start": 1583.36, + "end": 1585.16, + "probability": 0.3935 + }, + { + "start": 1585.3, + "end": 1585.9, + "probability": 0.868 + }, + { + "start": 1586.36, + "end": 1587.08, + "probability": 0.8849 + }, + { + "start": 1588.02, + "end": 1588.3, + "probability": 0.3921 + }, + { + "start": 1588.4, + "end": 1589.38, + "probability": 0.9053 + }, + { + "start": 1589.68, + "end": 1591.82, + "probability": 0.9095 + }, + { + "start": 1591.88, + "end": 1593.7, + "probability": 0.9765 + }, + { + "start": 1594.1, + "end": 1595.36, + "probability": 0.8545 + }, + { + "start": 1595.42, + "end": 1596.44, + "probability": 0.8798 + }, + { + "start": 1596.5, + "end": 1598.3, + "probability": 0.7919 + }, + { + "start": 1598.84, + "end": 1600.56, + "probability": 0.9644 + }, + { + "start": 1600.94, + "end": 1601.1, + "probability": 0.5991 + }, + { + "start": 1601.14, + "end": 1603.11, + "probability": 0.5596 + }, + { + "start": 1603.72, + "end": 1605.88, + "probability": 0.9158 + }, + { + "start": 1606.26, + "end": 1606.86, + "probability": 0.4086 + }, + { + "start": 1606.88, + "end": 1611.38, + "probability": 0.6873 + }, + { + "start": 1611.7, + "end": 1612.36, + "probability": 0.7221 + }, + { + "start": 1612.56, + "end": 1614.74, + "probability": 0.6639 + }, + { + "start": 1615.54, + "end": 1616.66, + "probability": 0.9364 + }, + { + "start": 1617.22, + "end": 1617.52, + "probability": 0.3301 + }, + { + "start": 1617.76, + "end": 1619.04, + "probability": 0.9022 + }, + { + "start": 1619.36, + "end": 1622.68, + "probability": 0.9586 + }, + { + "start": 1622.8, + "end": 1624.23, + "probability": 0.9443 + }, + { + "start": 1624.96, + "end": 1626.32, + "probability": 0.7811 + }, + { + "start": 1626.32, + "end": 1628.49, + "probability": 0.9016 + }, + { + "start": 1628.58, + "end": 1630.78, + "probability": 0.9741 + }, + { + "start": 1631.44, + "end": 1633.02, + "probability": 0.0036 + }, + { + "start": 1635.6, + "end": 1636.9, + "probability": 0.9578 + }, + { + "start": 1637.0, + "end": 1638.06, + "probability": 0.7419 + }, + { + "start": 1639.4, + "end": 1642.91, + "probability": 0.9854 + }, + { + "start": 1643.86, + "end": 1646.52, + "probability": 0.8404 + }, + { + "start": 1646.52, + "end": 1648.24, + "probability": 0.7404 + }, + { + "start": 1649.4, + "end": 1651.24, + "probability": 0.6643 + }, + { + "start": 1651.36, + "end": 1652.4, + "probability": 0.8328 + }, + { + "start": 1652.82, + "end": 1654.68, + "probability": 0.7456 + }, + { + "start": 1655.14, + "end": 1655.88, + "probability": 0.7312 + }, + { + "start": 1656.14, + "end": 1657.6, + "probability": 0.704 + }, + { + "start": 1657.7, + "end": 1661.52, + "probability": 0.8872 + }, + { + "start": 1662.08, + "end": 1663.46, + "probability": 0.8427 + }, + { + "start": 1663.56, + "end": 1665.14, + "probability": 0.9924 + }, + { + "start": 1665.58, + "end": 1666.46, + "probability": 0.2936 + }, + { + "start": 1666.52, + "end": 1670.62, + "probability": 0.9902 + }, + { + "start": 1671.08, + "end": 1671.62, + "probability": 0.3835 + }, + { + "start": 1671.82, + "end": 1673.86, + "probability": 0.8706 + }, + { + "start": 1674.18, + "end": 1675.58, + "probability": 0.985 + }, + { + "start": 1676.36, + "end": 1678.26, + "probability": 0.5362 + }, + { + "start": 1678.74, + "end": 1682.32, + "probability": 0.5685 + }, + { + "start": 1684.18, + "end": 1685.2, + "probability": 0.8424 + }, + { + "start": 1685.28, + "end": 1689.0, + "probability": 0.9691 + }, + { + "start": 1689.9, + "end": 1692.88, + "probability": 0.9948 + }, + { + "start": 1693.46, + "end": 1694.8, + "probability": 0.7327 + }, + { + "start": 1695.68, + "end": 1698.12, + "probability": 0.9307 + }, + { + "start": 1698.28, + "end": 1701.3, + "probability": 0.6941 + }, + { + "start": 1701.42, + "end": 1702.02, + "probability": 0.2149 + }, + { + "start": 1702.88, + "end": 1703.9, + "probability": 0.6287 + }, + { + "start": 1704.94, + "end": 1706.46, + "probability": 0.8392 + }, + { + "start": 1706.88, + "end": 1710.46, + "probability": 0.9857 + }, + { + "start": 1711.52, + "end": 1712.5, + "probability": 0.8456 + }, + { + "start": 1712.68, + "end": 1714.62, + "probability": 0.9802 + }, + { + "start": 1714.88, + "end": 1715.66, + "probability": 0.2652 + }, + { + "start": 1716.26, + "end": 1720.24, + "probability": 0.8639 + }, + { + "start": 1721.56, + "end": 1724.98, + "probability": 0.605 + }, + { + "start": 1725.02, + "end": 1725.54, + "probability": 0.8487 + }, + { + "start": 1725.6, + "end": 1727.7, + "probability": 0.9097 + }, + { + "start": 1728.32, + "end": 1735.2, + "probability": 0.7563 + }, + { + "start": 1735.82, + "end": 1740.02, + "probability": 0.9937 + }, + { + "start": 1740.76, + "end": 1744.28, + "probability": 0.9331 + }, + { + "start": 1744.98, + "end": 1747.34, + "probability": 0.8881 + }, + { + "start": 1747.9, + "end": 1750.02, + "probability": 0.9893 + }, + { + "start": 1750.34, + "end": 1753.32, + "probability": 0.9622 + }, + { + "start": 1753.5, + "end": 1754.42, + "probability": 0.7854 + }, + { + "start": 1754.54, + "end": 1757.76, + "probability": 0.9972 + }, + { + "start": 1758.2, + "end": 1761.58, + "probability": 0.9864 + }, + { + "start": 1761.86, + "end": 1762.16, + "probability": 0.2601 + }, + { + "start": 1762.44, + "end": 1764.06, + "probability": 0.8364 + }, + { + "start": 1764.52, + "end": 1766.08, + "probability": 0.6589 + }, + { + "start": 1766.81, + "end": 1769.44, + "probability": 0.9819 + }, + { + "start": 1770.0, + "end": 1770.04, + "probability": 0.3944 + }, + { + "start": 1770.04, + "end": 1771.44, + "probability": 0.8604 + }, + { + "start": 1771.9, + "end": 1773.9, + "probability": 0.6884 + }, + { + "start": 1774.32, + "end": 1777.2, + "probability": 0.6646 + }, + { + "start": 1777.34, + "end": 1778.82, + "probability": 0.8287 + }, + { + "start": 1779.28, + "end": 1780.6, + "probability": 0.9634 + }, + { + "start": 1781.48, + "end": 1781.48, + "probability": 0.4476 + }, + { + "start": 1781.48, + "end": 1784.48, + "probability": 0.7541 + }, + { + "start": 1785.52, + "end": 1787.22, + "probability": 0.8112 + }, + { + "start": 1788.04, + "end": 1791.9, + "probability": 0.8367 + }, + { + "start": 1792.6, + "end": 1794.0, + "probability": 0.7917 + }, + { + "start": 1795.06, + "end": 1799.06, + "probability": 0.6603 + }, + { + "start": 1799.84, + "end": 1801.6, + "probability": 0.9695 + }, + { + "start": 1802.58, + "end": 1805.12, + "probability": 0.9403 + }, + { + "start": 1813.82, + "end": 1816.56, + "probability": 0.5372 + }, + { + "start": 1817.36, + "end": 1821.9, + "probability": 0.6902 + }, + { + "start": 1821.94, + "end": 1824.36, + "probability": 0.4545 + }, + { + "start": 1824.68, + "end": 1825.36, + "probability": 0.7761 + }, + { + "start": 1826.28, + "end": 1830.16, + "probability": 0.9561 + }, + { + "start": 1830.7, + "end": 1835.66, + "probability": 0.9783 + }, + { + "start": 1836.22, + "end": 1837.26, + "probability": 0.8449 + }, + { + "start": 1837.98, + "end": 1839.46, + "probability": 0.8929 + }, + { + "start": 1840.04, + "end": 1842.76, + "probability": 0.941 + }, + { + "start": 1843.28, + "end": 1844.38, + "probability": 0.9766 + }, + { + "start": 1844.92, + "end": 1847.84, + "probability": 0.9969 + }, + { + "start": 1848.7, + "end": 1853.78, + "probability": 0.9967 + }, + { + "start": 1854.46, + "end": 1855.08, + "probability": 0.7127 + }, + { + "start": 1855.68, + "end": 1856.64, + "probability": 0.8656 + }, + { + "start": 1857.1, + "end": 1861.6, + "probability": 0.9844 + }, + { + "start": 1862.08, + "end": 1867.42, + "probability": 0.7437 + }, + { + "start": 1867.86, + "end": 1868.4, + "probability": 0.6846 + }, + { + "start": 1868.58, + "end": 1869.14, + "probability": 0.5927 + }, + { + "start": 1869.44, + "end": 1870.88, + "probability": 0.8553 + }, + { + "start": 1877.2, + "end": 1878.84, + "probability": 0.5981 + }, + { + "start": 1879.18, + "end": 1884.86, + "probability": 0.9075 + }, + { + "start": 1885.02, + "end": 1887.06, + "probability": 0.9946 + }, + { + "start": 1887.9, + "end": 1891.25, + "probability": 0.9917 + }, + { + "start": 1892.24, + "end": 1896.4, + "probability": 0.6712 + }, + { + "start": 1897.12, + "end": 1902.44, + "probability": 0.9883 + }, + { + "start": 1902.78, + "end": 1905.78, + "probability": 0.9857 + }, + { + "start": 1906.3, + "end": 1909.2, + "probability": 0.9928 + }, + { + "start": 1909.66, + "end": 1912.02, + "probability": 0.7875 + }, + { + "start": 1912.02, + "end": 1914.68, + "probability": 0.9915 + }, + { + "start": 1915.18, + "end": 1920.12, + "probability": 0.9612 + }, + { + "start": 1920.5, + "end": 1922.46, + "probability": 0.3325 + }, + { + "start": 1922.98, + "end": 1926.74, + "probability": 0.9458 + }, + { + "start": 1927.1, + "end": 1930.12, + "probability": 0.4894 + }, + { + "start": 1931.46, + "end": 1932.1, + "probability": 0.8598 + }, + { + "start": 1933.0, + "end": 1933.6, + "probability": 0.9441 + }, + { + "start": 1934.22, + "end": 1935.52, + "probability": 0.9771 + }, + { + "start": 1935.96, + "end": 1940.36, + "probability": 0.7747 + }, + { + "start": 1940.98, + "end": 1942.4, + "probability": 0.6703 + }, + { + "start": 1943.22, + "end": 1943.32, + "probability": 0.4939 + }, + { + "start": 1943.32, + "end": 1947.74, + "probability": 0.9748 + }, + { + "start": 1947.84, + "end": 1954.72, + "probability": 0.9933 + }, + { + "start": 1954.74, + "end": 1955.6, + "probability": 0.8898 + }, + { + "start": 1956.2, + "end": 1957.96, + "probability": 0.6465 + }, + { + "start": 1958.1, + "end": 1960.52, + "probability": 0.9714 + }, + { + "start": 1960.52, + "end": 1962.7, + "probability": 0.9846 + }, + { + "start": 1962.82, + "end": 1963.24, + "probability": 0.7374 + }, + { + "start": 1963.72, + "end": 1966.18, + "probability": 0.9556 + }, + { + "start": 1967.22, + "end": 1970.2, + "probability": 0.9739 + }, + { + "start": 1970.86, + "end": 1971.84, + "probability": 0.682 + }, + { + "start": 1972.54, + "end": 1978.92, + "probability": 0.9325 + }, + { + "start": 1979.08, + "end": 1982.06, + "probability": 0.9771 + }, + { + "start": 1982.66, + "end": 1987.14, + "probability": 0.9875 + }, + { + "start": 1988.48, + "end": 1989.38, + "probability": 0.8167 + }, + { + "start": 1989.5, + "end": 1990.13, + "probability": 0.507 + }, + { + "start": 1990.93, + "end": 1994.48, + "probability": 0.8673 + }, + { + "start": 1994.92, + "end": 1997.78, + "probability": 0.9896 + }, + { + "start": 1997.86, + "end": 1999.12, + "probability": 0.957 + }, + { + "start": 2000.16, + "end": 2002.54, + "probability": 0.9972 + }, + { + "start": 2002.54, + "end": 2005.11, + "probability": 0.9995 + }, + { + "start": 2005.28, + "end": 2008.54, + "probability": 0.9918 + }, + { + "start": 2010.43, + "end": 2012.78, + "probability": 0.8492 + }, + { + "start": 2013.3, + "end": 2016.84, + "probability": 0.7527 + }, + { + "start": 2017.18, + "end": 2019.1, + "probability": 0.9084 + }, + { + "start": 2019.18, + "end": 2019.95, + "probability": 0.8171 + }, + { + "start": 2020.32, + "end": 2022.92, + "probability": 0.9951 + }, + { + "start": 2022.96, + "end": 2024.62, + "probability": 0.9903 + }, + { + "start": 2025.02, + "end": 2025.48, + "probability": 0.6308 + }, + { + "start": 2025.9, + "end": 2026.44, + "probability": 0.5779 + }, + { + "start": 2026.98, + "end": 2029.5, + "probability": 0.8584 + }, + { + "start": 2029.54, + "end": 2033.64, + "probability": 0.9395 + }, + { + "start": 2035.04, + "end": 2036.72, + "probability": 0.1205 + }, + { + "start": 2037.86, + "end": 2040.66, + "probability": 0.2634 + }, + { + "start": 2042.12, + "end": 2042.12, + "probability": 0.0258 + }, + { + "start": 2042.12, + "end": 2042.12, + "probability": 0.091 + }, + { + "start": 2042.12, + "end": 2044.66, + "probability": 0.7639 + }, + { + "start": 2045.88, + "end": 2049.28, + "probability": 0.9765 + }, + { + "start": 2053.98, + "end": 2054.08, + "probability": 0.0501 + }, + { + "start": 2054.08, + "end": 2054.94, + "probability": 0.3785 + }, + { + "start": 2054.96, + "end": 2056.96, + "probability": 0.6953 + }, + { + "start": 2057.62, + "end": 2059.58, + "probability": 0.992 + }, + { + "start": 2060.0, + "end": 2061.7, + "probability": 0.8413 + }, + { + "start": 2061.84, + "end": 2062.43, + "probability": 0.6891 + }, + { + "start": 2063.1, + "end": 2066.22, + "probability": 0.7959 + }, + { + "start": 2066.34, + "end": 2069.96, + "probability": 0.9873 + }, + { + "start": 2070.56, + "end": 2071.92, + "probability": 0.7948 + }, + { + "start": 2072.46, + "end": 2073.28, + "probability": 0.9543 + }, + { + "start": 2073.44, + "end": 2073.82, + "probability": 0.7284 + }, + { + "start": 2073.9, + "end": 2076.06, + "probability": 0.5252 + }, + { + "start": 2076.54, + "end": 2078.82, + "probability": 0.5735 + }, + { + "start": 2079.08, + "end": 2080.18, + "probability": 0.9819 + }, + { + "start": 2080.64, + "end": 2081.4, + "probability": 0.8784 + }, + { + "start": 2081.42, + "end": 2083.06, + "probability": 0.9835 + }, + { + "start": 2083.54, + "end": 2084.48, + "probability": 0.8442 + }, + { + "start": 2084.86, + "end": 2086.08, + "probability": 0.714 + }, + { + "start": 2086.26, + "end": 2086.48, + "probability": 0.3249 + }, + { + "start": 2086.66, + "end": 2087.2, + "probability": 0.9136 + }, + { + "start": 2087.66, + "end": 2089.94, + "probability": 0.9911 + }, + { + "start": 2089.94, + "end": 2093.12, + "probability": 0.9552 + }, + { + "start": 2093.24, + "end": 2096.16, + "probability": 0.974 + }, + { + "start": 2096.64, + "end": 2097.96, + "probability": 0.9554 + }, + { + "start": 2098.2, + "end": 2100.38, + "probability": 0.985 + }, + { + "start": 2101.1, + "end": 2103.56, + "probability": 0.9877 + }, + { + "start": 2103.98, + "end": 2105.16, + "probability": 0.8621 + }, + { + "start": 2105.6, + "end": 2106.08, + "probability": 0.6652 + }, + { + "start": 2106.88, + "end": 2108.16, + "probability": 0.6396 + }, + { + "start": 2108.76, + "end": 2110.54, + "probability": 0.8807 + }, + { + "start": 2111.26, + "end": 2112.48, + "probability": 0.774 + }, + { + "start": 2113.48, + "end": 2115.44, + "probability": 0.2052 + }, + { + "start": 2115.58, + "end": 2117.08, + "probability": 0.0349 + }, + { + "start": 2117.94, + "end": 2118.8, + "probability": 0.2529 + }, + { + "start": 2118.8, + "end": 2121.16, + "probability": 0.9827 + }, + { + "start": 2121.16, + "end": 2124.88, + "probability": 0.998 + }, + { + "start": 2125.78, + "end": 2132.58, + "probability": 0.9424 + }, + { + "start": 2132.58, + "end": 2136.34, + "probability": 0.9744 + }, + { + "start": 2136.94, + "end": 2138.82, + "probability": 0.8385 + }, + { + "start": 2138.9, + "end": 2141.86, + "probability": 0.9606 + }, + { + "start": 2142.0, + "end": 2143.4, + "probability": 0.9531 + }, + { + "start": 2144.08, + "end": 2149.56, + "probability": 0.9924 + }, + { + "start": 2150.3, + "end": 2151.18, + "probability": 0.871 + }, + { + "start": 2151.26, + "end": 2152.04, + "probability": 0.8211 + }, + { + "start": 2152.14, + "end": 2153.8, + "probability": 0.9023 + }, + { + "start": 2154.44, + "end": 2158.72, + "probability": 0.9733 + }, + { + "start": 2159.32, + "end": 2160.84, + "probability": 0.9512 + }, + { + "start": 2161.3, + "end": 2161.72, + "probability": 0.7588 + }, + { + "start": 2162.2, + "end": 2164.98, + "probability": 0.7399 + }, + { + "start": 2165.68, + "end": 2170.52, + "probability": 0.8923 + }, + { + "start": 2170.72, + "end": 2171.88, + "probability": 0.8701 + }, + { + "start": 2172.48, + "end": 2174.02, + "probability": 0.9531 + }, + { + "start": 2174.08, + "end": 2176.94, + "probability": 0.9619 + }, + { + "start": 2177.54, + "end": 2178.6, + "probability": 0.9224 + }, + { + "start": 2178.94, + "end": 2182.36, + "probability": 0.7764 + }, + { + "start": 2182.98, + "end": 2187.02, + "probability": 0.9791 + }, + { + "start": 2187.7, + "end": 2193.24, + "probability": 0.908 + }, + { + "start": 2193.88, + "end": 2197.84, + "probability": 0.9768 + }, + { + "start": 2198.36, + "end": 2200.74, + "probability": 0.8983 + }, + { + "start": 2201.06, + "end": 2204.56, + "probability": 0.9612 + }, + { + "start": 2205.04, + "end": 2206.92, + "probability": 0.7497 + }, + { + "start": 2207.38, + "end": 2209.28, + "probability": 0.9308 + }, + { + "start": 2210.02, + "end": 2213.34, + "probability": 0.9893 + }, + { + "start": 2214.0, + "end": 2218.98, + "probability": 0.9602 + }, + { + "start": 2219.22, + "end": 2220.02, + "probability": 0.7385 + }, + { + "start": 2220.52, + "end": 2223.24, + "probability": 0.854 + }, + { + "start": 2223.68, + "end": 2225.8, + "probability": 0.8741 + }, + { + "start": 2226.54, + "end": 2229.12, + "probability": 0.5793 + }, + { + "start": 2229.68, + "end": 2229.68, + "probability": 0.5848 + }, + { + "start": 2230.33, + "end": 2232.52, + "probability": 0.9868 + }, + { + "start": 2232.93, + "end": 2233.0, + "probability": 0.2084 + }, + { + "start": 2233.0, + "end": 2237.76, + "probability": 0.9917 + }, + { + "start": 2238.42, + "end": 2242.02, + "probability": 0.9491 + }, + { + "start": 2242.44, + "end": 2243.84, + "probability": 0.8204 + }, + { + "start": 2244.24, + "end": 2245.4, + "probability": 0.9772 + }, + { + "start": 2245.64, + "end": 2248.38, + "probability": 0.9877 + }, + { + "start": 2250.31, + "end": 2254.4, + "probability": 0.383 + }, + { + "start": 2254.78, + "end": 2254.78, + "probability": 0.645 + }, + { + "start": 2255.36, + "end": 2255.64, + "probability": 0.2973 + }, + { + "start": 2255.72, + "end": 2256.7, + "probability": 0.96 + }, + { + "start": 2257.18, + "end": 2259.58, + "probability": 0.5044 + }, + { + "start": 2259.84, + "end": 2260.77, + "probability": 0.7969 + }, + { + "start": 2261.14, + "end": 2262.56, + "probability": 0.7872 + }, + { + "start": 2262.68, + "end": 2263.55, + "probability": 0.7925 + }, + { + "start": 2264.16, + "end": 2265.72, + "probability": 0.7581 + }, + { + "start": 2266.18, + "end": 2268.34, + "probability": 0.6217 + }, + { + "start": 2268.72, + "end": 2269.12, + "probability": 0.3681 + }, + { + "start": 2269.3, + "end": 2270.52, + "probability": 0.6989 + }, + { + "start": 2270.52, + "end": 2270.76, + "probability": 0.687 + }, + { + "start": 2271.2, + "end": 2272.88, + "probability": 0.7862 + }, + { + "start": 2272.96, + "end": 2275.48, + "probability": 0.8877 + }, + { + "start": 2276.3, + "end": 2278.1, + "probability": 0.8864 + }, + { + "start": 2279.0, + "end": 2279.4, + "probability": 0.3168 + }, + { + "start": 2280.64, + "end": 2280.8, + "probability": 0.3337 + }, + { + "start": 2280.8, + "end": 2282.26, + "probability": 0.4785 + }, + { + "start": 2282.46, + "end": 2283.88, + "probability": 0.9895 + }, + { + "start": 2284.06, + "end": 2286.28, + "probability": 0.9409 + }, + { + "start": 2286.8, + "end": 2287.4, + "probability": 0.3067 + }, + { + "start": 2287.54, + "end": 2288.72, + "probability": 0.9814 + }, + { + "start": 2288.86, + "end": 2291.42, + "probability": 0.9978 + }, + { + "start": 2291.82, + "end": 2294.74, + "probability": 0.9155 + }, + { + "start": 2294.82, + "end": 2295.18, + "probability": 0.823 + }, + { + "start": 2295.24, + "end": 2296.44, + "probability": 0.885 + }, + { + "start": 2296.88, + "end": 2299.88, + "probability": 0.9899 + }, + { + "start": 2300.04, + "end": 2301.42, + "probability": 0.9566 + }, + { + "start": 2301.88, + "end": 2302.76, + "probability": 0.8528 + }, + { + "start": 2302.8, + "end": 2304.0, + "probability": 0.7829 + }, + { + "start": 2304.34, + "end": 2307.74, + "probability": 0.9817 + }, + { + "start": 2307.74, + "end": 2312.94, + "probability": 0.92 + }, + { + "start": 2313.04, + "end": 2314.14, + "probability": 0.9535 + }, + { + "start": 2314.52, + "end": 2315.0, + "probability": 0.6118 + }, + { + "start": 2315.24, + "end": 2316.44, + "probability": 0.8864 + }, + { + "start": 2316.96, + "end": 2317.44, + "probability": 0.6999 + }, + { + "start": 2317.48, + "end": 2318.6, + "probability": 0.8666 + }, + { + "start": 2318.76, + "end": 2319.21, + "probability": 0.9468 + }, + { + "start": 2319.92, + "end": 2323.64, + "probability": 0.9583 + }, + { + "start": 2324.06, + "end": 2327.52, + "probability": 0.8465 + }, + { + "start": 2327.98, + "end": 2329.28, + "probability": 0.9834 + }, + { + "start": 2329.72, + "end": 2329.98, + "probability": 0.3504 + }, + { + "start": 2330.38, + "end": 2330.94, + "probability": 0.7087 + }, + { + "start": 2334.18, + "end": 2340.34, + "probability": 0.9081 + }, + { + "start": 2340.74, + "end": 2342.78, + "probability": 0.9104 + }, + { + "start": 2343.28, + "end": 2346.46, + "probability": 0.9212 + }, + { + "start": 2347.04, + "end": 2349.94, + "probability": 0.9083 + }, + { + "start": 2351.22, + "end": 2354.06, + "probability": 0.8014 + }, + { + "start": 2354.62, + "end": 2356.28, + "probability": 0.8842 + }, + { + "start": 2356.84, + "end": 2360.36, + "probability": 0.7887 + }, + { + "start": 2360.36, + "end": 2365.12, + "probability": 0.8209 + }, + { + "start": 2365.56, + "end": 2366.9, + "probability": 0.5061 + }, + { + "start": 2366.96, + "end": 2370.06, + "probability": 0.953 + }, + { + "start": 2370.48, + "end": 2373.2, + "probability": 0.8276 + }, + { + "start": 2373.7, + "end": 2377.18, + "probability": 0.9442 + }, + { + "start": 2377.6, + "end": 2378.36, + "probability": 0.6305 + }, + { + "start": 2405.18, + "end": 2407.56, + "probability": 0.7144 + }, + { + "start": 2408.76, + "end": 2411.02, + "probability": 0.9741 + }, + { + "start": 2411.72, + "end": 2412.84, + "probability": 0.9897 + }, + { + "start": 2413.42, + "end": 2414.1, + "probability": 0.8105 + }, + { + "start": 2415.02, + "end": 2416.34, + "probability": 0.5553 + }, + { + "start": 2417.42, + "end": 2419.12, + "probability": 0.9266 + }, + { + "start": 2419.96, + "end": 2420.82, + "probability": 0.2973 + }, + { + "start": 2420.94, + "end": 2423.98, + "probability": 0.9739 + }, + { + "start": 2424.78, + "end": 2427.88, + "probability": 0.6448 + }, + { + "start": 2428.18, + "end": 2428.84, + "probability": 0.9065 + }, + { + "start": 2429.28, + "end": 2432.0, + "probability": 0.8945 + }, + { + "start": 2432.46, + "end": 2433.3, + "probability": 0.8127 + }, + { + "start": 2433.3, + "end": 2434.84, + "probability": 0.714 + }, + { + "start": 2434.96, + "end": 2436.48, + "probability": 0.6586 + }, + { + "start": 2439.62, + "end": 2442.66, + "probability": 0.5244 + }, + { + "start": 2442.72, + "end": 2442.86, + "probability": 0.061 + }, + { + "start": 2442.86, + "end": 2448.66, + "probability": 0.8708 + }, + { + "start": 2449.04, + "end": 2453.56, + "probability": 0.9758 + }, + { + "start": 2455.68, + "end": 2456.52, + "probability": 0.4316 + }, + { + "start": 2456.82, + "end": 2459.1, + "probability": 0.3393 + }, + { + "start": 2460.32, + "end": 2460.86, + "probability": 0.127 + }, + { + "start": 2462.76, + "end": 2466.62, + "probability": 0.769 + }, + { + "start": 2469.0, + "end": 2474.06, + "probability": 0.8052 + }, + { + "start": 2474.16, + "end": 2476.26, + "probability": 0.9707 + }, + { + "start": 2476.74, + "end": 2478.88, + "probability": 0.5862 + }, + { + "start": 2479.3, + "end": 2480.44, + "probability": 0.1193 + }, + { + "start": 2485.48, + "end": 2486.98, + "probability": 0.7551 + }, + { + "start": 2486.98, + "end": 2492.62, + "probability": 0.7173 + }, + { + "start": 2496.9, + "end": 2500.24, + "probability": 0.9484 + }, + { + "start": 2500.9, + "end": 2502.78, + "probability": 0.6681 + }, + { + "start": 2503.62, + "end": 2505.0, + "probability": 0.7151 + }, + { + "start": 2505.12, + "end": 2507.04, + "probability": 0.9281 + }, + { + "start": 2508.32, + "end": 2512.0, + "probability": 0.9224 + }, + { + "start": 2512.0, + "end": 2515.34, + "probability": 0.3573 + }, + { + "start": 2516.26, + "end": 2523.58, + "probability": 0.8229 + }, + { + "start": 2523.58, + "end": 2528.4, + "probability": 0.9701 + }, + { + "start": 2528.72, + "end": 2532.42, + "probability": 0.7783 + }, + { + "start": 2533.9, + "end": 2536.26, + "probability": 0.9757 + }, + { + "start": 2536.34, + "end": 2540.76, + "probability": 0.9133 + }, + { + "start": 2540.96, + "end": 2543.36, + "probability": 0.8838 + }, + { + "start": 2544.66, + "end": 2545.68, + "probability": 0.5771 + }, + { + "start": 2546.44, + "end": 2547.2, + "probability": 0.5851 + }, + { + "start": 2547.34, + "end": 2552.92, + "probability": 0.9121 + }, + { + "start": 2554.06, + "end": 2557.1, + "probability": 0.9688 + }, + { + "start": 2557.3, + "end": 2562.28, + "probability": 0.7708 + }, + { + "start": 2562.94, + "end": 2563.86, + "probability": 0.7523 + }, + { + "start": 2564.04, + "end": 2568.52, + "probability": 0.8637 + }, + { + "start": 2569.4, + "end": 2573.2, + "probability": 0.8747 + }, + { + "start": 2573.2, + "end": 2575.42, + "probability": 0.9902 + }, + { + "start": 2576.62, + "end": 2578.42, + "probability": 0.9943 + }, + { + "start": 2579.24, + "end": 2581.46, + "probability": 0.9757 + }, + { + "start": 2582.24, + "end": 2586.78, + "probability": 0.9835 + }, + { + "start": 2586.78, + "end": 2590.4, + "probability": 0.9924 + }, + { + "start": 2590.94, + "end": 2593.44, + "probability": 0.9961 + }, + { + "start": 2594.16, + "end": 2598.54, + "probability": 0.883 + }, + { + "start": 2599.52, + "end": 2603.9, + "probability": 0.9951 + }, + { + "start": 2604.72, + "end": 2604.84, + "probability": 0.5914 + }, + { + "start": 2605.0, + "end": 2606.98, + "probability": 0.7484 + }, + { + "start": 2607.24, + "end": 2609.72, + "probability": 0.7374 + }, + { + "start": 2610.14, + "end": 2614.44, + "probability": 0.932 + }, + { + "start": 2614.96, + "end": 2616.74, + "probability": 0.9955 + }, + { + "start": 2617.62, + "end": 2618.66, + "probability": 0.6725 + }, + { + "start": 2619.05, + "end": 2622.46, + "probability": 0.9341 + }, + { + "start": 2622.98, + "end": 2626.64, + "probability": 0.9652 + }, + { + "start": 2626.86, + "end": 2628.2, + "probability": 0.9189 + }, + { + "start": 2628.38, + "end": 2629.24, + "probability": 0.9966 + }, + { + "start": 2630.98, + "end": 2634.92, + "probability": 0.9918 + }, + { + "start": 2636.16, + "end": 2636.52, + "probability": 0.6668 + }, + { + "start": 2640.64, + "end": 2643.12, + "probability": 0.9093 + }, + { + "start": 2643.66, + "end": 2648.78, + "probability": 0.9924 + }, + { + "start": 2649.46, + "end": 2654.66, + "probability": 0.9357 + }, + { + "start": 2654.66, + "end": 2657.64, + "probability": 0.9844 + }, + { + "start": 2658.48, + "end": 2662.46, + "probability": 0.9525 + }, + { + "start": 2663.18, + "end": 2666.88, + "probability": 0.7489 + }, + { + "start": 2667.0, + "end": 2668.78, + "probability": 0.8812 + }, + { + "start": 2668.96, + "end": 2672.42, + "probability": 0.9415 + }, + { + "start": 2673.06, + "end": 2675.32, + "probability": 0.824 + }, + { + "start": 2675.84, + "end": 2676.4, + "probability": 0.4802 + }, + { + "start": 2677.08, + "end": 2679.48, + "probability": 0.697 + }, + { + "start": 2680.04, + "end": 2682.8, + "probability": 0.8101 + }, + { + "start": 2683.54, + "end": 2686.14, + "probability": 0.8717 + }, + { + "start": 2686.14, + "end": 2689.32, + "probability": 0.5994 + }, + { + "start": 2690.26, + "end": 2690.56, + "probability": 0.6199 + }, + { + "start": 2691.4, + "end": 2694.69, + "probability": 0.993 + }, + { + "start": 2695.2, + "end": 2699.18, + "probability": 0.938 + }, + { + "start": 2699.8, + "end": 2707.58, + "probability": 0.9761 + }, + { + "start": 2708.52, + "end": 2708.62, + "probability": 0.2629 + }, + { + "start": 2708.7, + "end": 2710.42, + "probability": 0.8128 + }, + { + "start": 2710.42, + "end": 2714.42, + "probability": 0.6826 + }, + { + "start": 2714.68, + "end": 2721.46, + "probability": 0.9 + }, + { + "start": 2721.66, + "end": 2727.08, + "probability": 0.972 + }, + { + "start": 2727.78, + "end": 2729.18, + "probability": 0.9799 + }, + { + "start": 2729.5, + "end": 2734.12, + "probability": 0.8594 + }, + { + "start": 2734.32, + "end": 2734.72, + "probability": 0.7512 + }, + { + "start": 2735.24, + "end": 2739.38, + "probability": 0.9797 + }, + { + "start": 2739.52, + "end": 2745.88, + "probability": 0.9929 + }, + { + "start": 2747.16, + "end": 2748.86, + "probability": 0.8735 + }, + { + "start": 2749.18, + "end": 2750.08, + "probability": 0.5139 + }, + { + "start": 2750.1, + "end": 2753.08, + "probability": 0.723 + }, + { + "start": 2754.38, + "end": 2763.44, + "probability": 0.9931 + }, + { + "start": 2764.78, + "end": 2768.58, + "probability": 0.8902 + }, + { + "start": 2768.96, + "end": 2771.06, + "probability": 0.8802 + }, + { + "start": 2771.78, + "end": 2774.0, + "probability": 0.9932 + }, + { + "start": 2774.0, + "end": 2777.22, + "probability": 0.9929 + }, + { + "start": 2777.82, + "end": 2781.38, + "probability": 0.9954 + }, + { + "start": 2781.98, + "end": 2785.2, + "probability": 0.999 + }, + { + "start": 2785.84, + "end": 2787.26, + "probability": 0.7163 + }, + { + "start": 2787.36, + "end": 2791.19, + "probability": 0.9961 + }, + { + "start": 2792.98, + "end": 2797.44, + "probability": 0.6834 + }, + { + "start": 2799.56, + "end": 2801.24, + "probability": 0.6699 + }, + { + "start": 2801.56, + "end": 2802.38, + "probability": 0.6462 + }, + { + "start": 2802.48, + "end": 2803.7, + "probability": 0.8872 + }, + { + "start": 2803.74, + "end": 2809.42, + "probability": 0.9468 + }, + { + "start": 2809.42, + "end": 2814.84, + "probability": 0.9887 + }, + { + "start": 2815.54, + "end": 2815.96, + "probability": 0.7383 + }, + { + "start": 2816.58, + "end": 2820.62, + "probability": 0.9771 + }, + { + "start": 2821.7, + "end": 2824.82, + "probability": 0.8586 + }, + { + "start": 2825.22, + "end": 2831.08, + "probability": 0.9759 + }, + { + "start": 2831.18, + "end": 2834.06, + "probability": 0.9818 + }, + { + "start": 2834.14, + "end": 2840.4, + "probability": 0.8627 + }, + { + "start": 2840.4, + "end": 2845.08, + "probability": 0.9814 + }, + { + "start": 2846.64, + "end": 2847.12, + "probability": 0.5419 + }, + { + "start": 2847.16, + "end": 2849.76, + "probability": 0.9848 + }, + { + "start": 2850.12, + "end": 2854.76, + "probability": 0.9831 + }, + { + "start": 2854.76, + "end": 2857.5, + "probability": 0.94 + }, + { + "start": 2858.22, + "end": 2865.86, + "probability": 0.9978 + }, + { + "start": 2866.96, + "end": 2872.3, + "probability": 0.9984 + }, + { + "start": 2872.88, + "end": 2874.56, + "probability": 0.5513 + }, + { + "start": 2875.66, + "end": 2881.68, + "probability": 0.9924 + }, + { + "start": 2881.68, + "end": 2886.24, + "probability": 0.7983 + }, + { + "start": 2886.34, + "end": 2886.6, + "probability": 0.4278 + }, + { + "start": 2886.72, + "end": 2890.18, + "probability": 0.6161 + }, + { + "start": 2890.24, + "end": 2890.7, + "probability": 0.5393 + }, + { + "start": 2890.82, + "end": 2892.82, + "probability": 0.9746 + }, + { + "start": 2893.93, + "end": 2896.96, + "probability": 0.9484 + }, + { + "start": 2897.06, + "end": 2899.12, + "probability": 0.8774 + }, + { + "start": 2899.72, + "end": 2902.8, + "probability": 0.8052 + }, + { + "start": 2902.84, + "end": 2904.7, + "probability": 0.9338 + }, + { + "start": 2905.77, + "end": 2907.2, + "probability": 0.8569 + }, + { + "start": 2907.5, + "end": 2908.67, + "probability": 0.8092 + }, + { + "start": 2909.06, + "end": 2911.12, + "probability": 0.9374 + }, + { + "start": 2911.66, + "end": 2913.3, + "probability": 0.4648 + }, + { + "start": 2914.44, + "end": 2918.48, + "probability": 0.9218 + }, + { + "start": 2918.7, + "end": 2919.08, + "probability": 0.6428 + }, + { + "start": 2919.18, + "end": 2919.64, + "probability": 0.7214 + }, + { + "start": 2920.02, + "end": 2920.4, + "probability": 0.7551 + }, + { + "start": 2920.5, + "end": 2921.22, + "probability": 0.5838 + }, + { + "start": 2929.16, + "end": 2930.5, + "probability": 0.199 + }, + { + "start": 2930.76, + "end": 2935.18, + "probability": 0.7889 + }, + { + "start": 2935.64, + "end": 2936.56, + "probability": 0.1762 + }, + { + "start": 2936.62, + "end": 2937.22, + "probability": 0.7962 + }, + { + "start": 2937.48, + "end": 2937.96, + "probability": 0.9793 + }, + { + "start": 2938.5, + "end": 2939.36, + "probability": 0.6732 + }, + { + "start": 2952.08, + "end": 2953.32, + "probability": 0.0027 + }, + { + "start": 2953.32, + "end": 2953.8, + "probability": 0.3597 + }, + { + "start": 2953.82, + "end": 2957.38, + "probability": 0.9357 + }, + { + "start": 2957.44, + "end": 2958.52, + "probability": 0.6294 + }, + { + "start": 2958.6, + "end": 2962.06, + "probability": 0.9135 + }, + { + "start": 2962.16, + "end": 2964.88, + "probability": 0.8403 + }, + { + "start": 2965.74, + "end": 2967.96, + "probability": 0.6512 + }, + { + "start": 2967.96, + "end": 2968.4, + "probability": 0.5017 + }, + { + "start": 2968.56, + "end": 2969.44, + "probability": 0.6636 + }, + { + "start": 2970.4, + "end": 2971.16, + "probability": 0.4845 + }, + { + "start": 2990.2, + "end": 2993.26, + "probability": 0.5568 + }, + { + "start": 2993.26, + "end": 2995.96, + "probability": 0.7048 + }, + { + "start": 2997.62, + "end": 2999.98, + "probability": 0.0216 + }, + { + "start": 2999.98, + "end": 3000.08, + "probability": 0.0159 + }, + { + "start": 3000.2, + "end": 3003.5, + "probability": 0.0143 + }, + { + "start": 3004.1, + "end": 3004.42, + "probability": 0.013 + }, + { + "start": 3005.08, + "end": 3006.12, + "probability": 0.0544 + }, + { + "start": 3006.26, + "end": 3007.62, + "probability": 0.0925 + }, + { + "start": 3008.6, + "end": 3012.68, + "probability": 0.1 + }, + { + "start": 3017.28, + "end": 3019.96, + "probability": 0.0119 + }, + { + "start": 3021.5, + "end": 3022.01, + "probability": 0.2678 + }, + { + "start": 3034.22, + "end": 3036.52, + "probability": 0.0032 + }, + { + "start": 3038.73, + "end": 3039.76, + "probability": 0.0251 + }, + { + "start": 3040.84, + "end": 3043.02, + "probability": 0.0868 + }, + { + "start": 3043.92, + "end": 3050.05, + "probability": 0.078 + }, + { + "start": 3051.52, + "end": 3052.7, + "probability": 0.1001 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3063.0, + "end": 3063.0, + "probability": 0.0 + }, + { + "start": 3075.7, + "end": 3077.36, + "probability": 0.0293 + }, + { + "start": 3079.68, + "end": 3081.1, + "probability": 0.2898 + }, + { + "start": 3081.28, + "end": 3082.64, + "probability": 0.2323 + }, + { + "start": 3084.18, + "end": 3085.66, + "probability": 0.076 + }, + { + "start": 3085.68, + "end": 3086.1, + "probability": 0.1132 + }, + { + "start": 3086.16, + "end": 3087.02, + "probability": 0.0813 + }, + { + "start": 3087.34, + "end": 3091.58, + "probability": 0.169 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3193.0, + "end": 3193.0, + "probability": 0.0 + }, + { + "start": 3194.28, + "end": 3195.62, + "probability": 0.0728 + }, + { + "start": 3195.62, + "end": 3198.06, + "probability": 0.0189 + }, + { + "start": 3201.84, + "end": 3207.02, + "probability": 0.0476 + }, + { + "start": 3211.52, + "end": 3220.38, + "probability": 0.0576 + }, + { + "start": 3222.07, + "end": 3224.62, + "probability": 0.0225 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3318.0, + "end": 3318.0, + "probability": 0.0 + }, + { + "start": 3328.5, + "end": 3330.93, + "probability": 0.0724 + }, + { + "start": 3332.08, + "end": 3332.94, + "probability": 0.0141 + }, + { + "start": 3333.24, + "end": 3335.32, + "probability": 0.072 + }, + { + "start": 3336.4, + "end": 3337.22, + "probability": 0.0716 + }, + { + "start": 3350.22, + "end": 3350.92, + "probability": 0.0199 + }, + { + "start": 3350.92, + "end": 3353.44, + "probability": 0.0311 + }, + { + "start": 3353.44, + "end": 3357.26, + "probability": 0.1128 + }, + { + "start": 3357.26, + "end": 3358.68, + "probability": 0.0483 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.0, + "end": 3451.0, + "probability": 0.0 + }, + { + "start": 3451.58, + "end": 3453.72, + "probability": 0.5665 + }, + { + "start": 3454.26, + "end": 3456.42, + "probability": 0.7495 + }, + { + "start": 3456.94, + "end": 3457.66, + "probability": 0.4766 + }, + { + "start": 3458.18, + "end": 3460.32, + "probability": 0.5016 + }, + { + "start": 3460.84, + "end": 3462.38, + "probability": 0.9928 + }, + { + "start": 3462.7, + "end": 3465.42, + "probability": 0.8924 + }, + { + "start": 3465.62, + "end": 3466.24, + "probability": 0.4228 + }, + { + "start": 3466.32, + "end": 3468.72, + "probability": 0.8521 + }, + { + "start": 3469.5, + "end": 3476.6, + "probability": 0.75 + }, + { + "start": 3477.68, + "end": 3480.38, + "probability": 0.6145 + }, + { + "start": 3481.14, + "end": 3481.74, + "probability": 0.8641 + }, + { + "start": 3482.44, + "end": 3482.68, + "probability": 0.7965 + }, + { + "start": 3483.14, + "end": 3483.62, + "probability": 0.8239 + }, + { + "start": 3484.0, + "end": 3484.24, + "probability": 0.929 + }, + { + "start": 3488.7, + "end": 3490.64, + "probability": 0.7312 + }, + { + "start": 3491.56, + "end": 3494.74, + "probability": 0.8412 + }, + { + "start": 3495.32, + "end": 3495.82, + "probability": 0.4292 + }, + { + "start": 3496.42, + "end": 3496.56, + "probability": 0.006 + }, + { + "start": 3496.58, + "end": 3500.86, + "probability": 0.9624 + }, + { + "start": 3500.86, + "end": 3504.28, + "probability": 0.5115 + }, + { + "start": 3504.86, + "end": 3506.32, + "probability": 0.9968 + }, + { + "start": 3507.06, + "end": 3509.42, + "probability": 0.9869 + }, + { + "start": 3509.94, + "end": 3511.38, + "probability": 0.259 + }, + { + "start": 3512.34, + "end": 3517.2, + "probability": 0.7589 + }, + { + "start": 3517.74, + "end": 3518.6, + "probability": 0.2616 + }, + { + "start": 3520.14, + "end": 3523.86, + "probability": 0.7449 + }, + { + "start": 3524.36, + "end": 3524.56, + "probability": 0.51 + }, + { + "start": 3524.84, + "end": 3528.02, + "probability": 0.938 + }, + { + "start": 3528.08, + "end": 3531.18, + "probability": 0.9607 + }, + { + "start": 3531.64, + "end": 3535.98, + "probability": 0.9766 + }, + { + "start": 3536.04, + "end": 3537.34, + "probability": 0.9684 + }, + { + "start": 3538.04, + "end": 3539.74, + "probability": 0.9492 + }, + { + "start": 3540.16, + "end": 3545.12, + "probability": 0.9949 + }, + { + "start": 3546.22, + "end": 3548.8, + "probability": 0.9653 + }, + { + "start": 3548.8, + "end": 3551.8, + "probability": 0.9941 + }, + { + "start": 3552.42, + "end": 3553.96, + "probability": 0.7626 + }, + { + "start": 3554.74, + "end": 3555.86, + "probability": 0.9369 + }, + { + "start": 3556.4, + "end": 3558.58, + "probability": 0.6093 + }, + { + "start": 3559.58, + "end": 3561.48, + "probability": 0.8338 + }, + { + "start": 3562.54, + "end": 3564.5, + "probability": 0.7203 + }, + { + "start": 3565.0, + "end": 3566.8, + "probability": 0.8015 + }, + { + "start": 3567.28, + "end": 3571.12, + "probability": 0.849 + }, + { + "start": 3571.32, + "end": 3575.1, + "probability": 0.9123 + }, + { + "start": 3576.34, + "end": 3579.24, + "probability": 0.9583 + }, + { + "start": 3579.94, + "end": 3584.14, + "probability": 0.9042 + }, + { + "start": 3584.54, + "end": 3587.08, + "probability": 0.9468 + }, + { + "start": 3589.34, + "end": 3593.32, + "probability": 0.9764 + }, + { + "start": 3593.72, + "end": 3595.08, + "probability": 0.5674 + }, + { + "start": 3595.52, + "end": 3596.02, + "probability": 0.2553 + }, + { + "start": 3596.02, + "end": 3596.78, + "probability": 0.9635 + }, + { + "start": 3597.84, + "end": 3599.76, + "probability": 0.7586 + }, + { + "start": 3600.88, + "end": 3602.22, + "probability": 0.9062 + }, + { + "start": 3603.08, + "end": 3608.12, + "probability": 0.9972 + }, + { + "start": 3608.58, + "end": 3611.02, + "probability": 0.8383 + }, + { + "start": 3611.02, + "end": 3613.26, + "probability": 0.9916 + }, + { + "start": 3615.18, + "end": 3615.72, + "probability": 0.3469 + }, + { + "start": 3621.36, + "end": 3623.26, + "probability": 0.6602 + }, + { + "start": 3624.98, + "end": 3625.74, + "probability": 0.6537 + }, + { + "start": 3627.54, + "end": 3629.14, + "probability": 0.7748 + }, + { + "start": 3634.2, + "end": 3635.96, + "probability": 0.0023 + }, + { + "start": 3650.22, + "end": 3652.46, + "probability": 0.4009 + }, + { + "start": 3652.52, + "end": 3652.7, + "probability": 0.1764 + }, + { + "start": 3652.82, + "end": 3657.28, + "probability": 0.6602 + }, + { + "start": 3657.9, + "end": 3660.0, + "probability": 0.896 + }, + { + "start": 3660.48, + "end": 3661.2, + "probability": 0.5812 + }, + { + "start": 3661.44, + "end": 3661.54, + "probability": 0.3408 + }, + { + "start": 3674.6, + "end": 3674.88, + "probability": 0.1188 + }, + { + "start": 3676.58, + "end": 3679.68, + "probability": 0.7187 + }, + { + "start": 3680.2, + "end": 3680.89, + "probability": 0.0515 + }, + { + "start": 3681.7, + "end": 3682.28, + "probability": 0.0509 + }, + { + "start": 3683.42, + "end": 3683.62, + "probability": 0.1126 + }, + { + "start": 3685.44, + "end": 3687.78, + "probability": 0.3475 + }, + { + "start": 3687.86, + "end": 3688.16, + "probability": 0.559 + }, + { + "start": 3688.16, + "end": 3693.32, + "probability": 0.7891 + }, + { + "start": 3693.46, + "end": 3694.46, + "probability": 0.1637 + }, + { + "start": 3694.96, + "end": 3696.44, + "probability": 0.4481 + }, + { + "start": 3697.18, + "end": 3698.7, + "probability": 0.9901 + }, + { + "start": 3700.52, + "end": 3701.04, + "probability": 0.8535 + }, + { + "start": 3701.64, + "end": 3707.26, + "probability": 0.9343 + }, + { + "start": 3707.48, + "end": 3710.3, + "probability": 0.7178 + }, + { + "start": 3710.5, + "end": 3714.21, + "probability": 0.8954 + }, + { + "start": 3715.58, + "end": 3716.86, + "probability": 0.7332 + }, + { + "start": 3718.36, + "end": 3720.86, + "probability": 0.1514 + }, + { + "start": 3721.08, + "end": 3721.64, + "probability": 0.0894 + }, + { + "start": 3721.68, + "end": 3723.72, + "probability": 0.6384 + }, + { + "start": 3723.72, + "end": 3725.66, + "probability": 0.018 + }, + { + "start": 3728.36, + "end": 3728.74, + "probability": 0.006 + }, + { + "start": 3732.02, + "end": 3733.22, + "probability": 0.0759 + }, + { + "start": 3734.16, + "end": 3734.6, + "probability": 0.0609 + }, + { + "start": 3738.55, + "end": 3741.72, + "probability": 0.0443 + }, + { + "start": 3745.3, + "end": 3748.3, + "probability": 0.319 + }, + { + "start": 3780.74, + "end": 3783.9, + "probability": 0.8647 + }, + { + "start": 3813.66, + "end": 3813.88, + "probability": 0.4973 + }, + { + "start": 3832.62, + "end": 3835.92, + "probability": 0.0577 + }, + { + "start": 3838.64, + "end": 3842.08, + "probability": 0.0767 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3954.0, + "end": 3954.0, + "probability": 0.0 + }, + { + "start": 3957.09, + "end": 3959.02, + "probability": 0.0208 + }, + { + "start": 3959.02, + "end": 3962.55, + "probability": 0.0584 + }, + { + "start": 3966.36, + "end": 3968.76, + "probability": 0.1367 + }, + { + "start": 3969.31, + "end": 3971.37, + "probability": 0.1045 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.0, + "end": 4084.0, + "probability": 0.0 + }, + { + "start": 4084.68, + "end": 4085.48, + "probability": 0.1305 + }, + { + "start": 4085.48, + "end": 4085.48, + "probability": 0.2774 + }, + { + "start": 4085.48, + "end": 4085.96, + "probability": 0.1192 + }, + { + "start": 4086.06, + "end": 4086.58, + "probability": 0.5255 + }, + { + "start": 4086.58, + "end": 4087.68, + "probability": 0.4998 + }, + { + "start": 4088.22, + "end": 4092.32, + "probability": 0.5798 + }, + { + "start": 4093.36, + "end": 4094.56, + "probability": 0.985 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.0, + "end": 4231.0, + "probability": 0.0 + }, + { + "start": 4231.74, + "end": 4232.16, + "probability": 0.0002 + }, + { + "start": 4232.7, + "end": 4235.22, + "probability": 0.1765 + }, + { + "start": 4236.3, + "end": 4237.32, + "probability": 0.0758 + }, + { + "start": 4246.6, + "end": 4248.68, + "probability": 0.3147 + }, + { + "start": 4251.9, + "end": 4259.14, + "probability": 0.1886 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4392.0, + "end": 4392.0, + "probability": 0.0 + }, + { + "start": 4417.89, + "end": 4421.02, + "probability": 0.0603 + }, + { + "start": 4422.71, + "end": 4424.52, + "probability": 0.1497 + }, + { + "start": 4425.32, + "end": 4427.12, + "probability": 0.0405 + }, + { + "start": 4430.42, + "end": 4431.3, + "probability": 0.0767 + }, + { + "start": 4432.1, + "end": 4433.04, + "probability": 0.0115 + }, + { + "start": 4433.74, + "end": 4433.9, + "probability": 0.1159 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4528.0, + "end": 4528.0, + "probability": 0.0 + }, + { + "start": 4539.31, + "end": 4542.35, + "probability": 0.0243 + }, + { + "start": 4543.0, + "end": 4543.63, + "probability": 0.0968 + }, + { + "start": 4547.22, + "end": 4547.34, + "probability": 0.0176 + }, + { + "start": 4551.43, + "end": 4553.09, + "probability": 0.1123 + }, + { + "start": 4556.67, + "end": 4558.41, + "probability": 0.0162 + }, + { + "start": 4558.85, + "end": 4561.87, + "probability": 0.054 + }, + { + "start": 4562.03, + "end": 4562.09, + "probability": 0.0404 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4659.0, + "end": 4659.0, + "probability": 0.0 + }, + { + "start": 4668.44, + "end": 4673.4, + "probability": 0.2401 + }, + { + "start": 4683.12, + "end": 4685.58, + "probability": 0.1251 + }, + { + "start": 4686.41, + "end": 4687.86, + "probability": 0.1257 + }, + { + "start": 4687.86, + "end": 4689.8, + "probability": 0.0376 + }, + { + "start": 4690.54, + "end": 4693.12, + "probability": 0.0179 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.0, + "end": 4828.0, + "probability": 0.0 + }, + { + "start": 4828.16, + "end": 4831.18, + "probability": 0.0816 + }, + { + "start": 4835.72, + "end": 4839.18, + "probability": 0.1132 + }, + { + "start": 4839.86, + "end": 4841.82, + "probability": 0.2189 + }, + { + "start": 4842.28, + "end": 4842.44, + "probability": 0.0872 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 4962.0, + "end": 4962.0, + "probability": 0.0 + }, + { + "start": 5010.8, + "end": 5011.56, + "probability": 0.0092 + }, + { + "start": 5012.1, + "end": 5017.08, + "probability": 0.1435 + }, + { + "start": 5018.89, + "end": 5020.06, + "probability": 0.05 + }, + { + "start": 5020.06, + "end": 5020.62, + "probability": 0.2836 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5101.8, + "end": 5105.12, + "probability": 0.9561 + }, + { + "start": 5105.12, + "end": 5108.08, + "probability": 0.6071 + }, + { + "start": 5109.3, + "end": 5112.02, + "probability": 0.8485 + }, + { + "start": 5113.9, + "end": 5116.98, + "probability": 0.7927 + }, + { + "start": 5117.44, + "end": 5118.82, + "probability": 0.5566 + }, + { + "start": 5118.98, + "end": 5120.96, + "probability": 0.957 + }, + { + "start": 5122.3, + "end": 5125.98, + "probability": 0.9508 + }, + { + "start": 5126.6, + "end": 5127.82, + "probability": 0.9523 + }, + { + "start": 5129.32, + "end": 5130.66, + "probability": 0.5335 + }, + { + "start": 5130.94, + "end": 5133.06, + "probability": 0.982 + }, + { + "start": 5134.44, + "end": 5134.88, + "probability": 0.4672 + }, + { + "start": 5135.3, + "end": 5135.8, + "probability": 0.5697 + }, + { + "start": 5135.9, + "end": 5139.56, + "probability": 0.933 + }, + { + "start": 5139.72, + "end": 5144.22, + "probability": 0.855 + }, + { + "start": 5144.32, + "end": 5146.5, + "probability": 0.8886 + }, + { + "start": 5147.24, + "end": 5148.32, + "probability": 0.7697 + }, + { + "start": 5148.4, + "end": 5150.32, + "probability": 0.6759 + }, + { + "start": 5150.4, + "end": 5151.76, + "probability": 0.8864 + }, + { + "start": 5151.84, + "end": 5156.2, + "probability": 0.8317 + }, + { + "start": 5156.6, + "end": 5158.18, + "probability": 0.8351 + }, + { + "start": 5158.96, + "end": 5159.38, + "probability": 0.7516 + }, + { + "start": 5160.32, + "end": 5162.86, + "probability": 0.4719 + }, + { + "start": 5162.96, + "end": 5163.76, + "probability": 0.7639 + }, + { + "start": 5164.16, + "end": 5165.68, + "probability": 0.9618 + }, + { + "start": 5166.24, + "end": 5167.46, + "probability": 0.9019 + }, + { + "start": 5168.04, + "end": 5169.18, + "probability": 0.9659 + }, + { + "start": 5169.26, + "end": 5172.44, + "probability": 0.4992 + }, + { + "start": 5173.96, + "end": 5175.92, + "probability": 0.8781 + }, + { + "start": 5175.92, + "end": 5178.72, + "probability": 0.9408 + }, + { + "start": 5179.2, + "end": 5184.08, + "probability": 0.8625 + }, + { + "start": 5185.5, + "end": 5185.8, + "probability": 0.6681 + }, + { + "start": 5185.96, + "end": 5189.6, + "probability": 0.6704 + }, + { + "start": 5190.06, + "end": 5192.58, + "probability": 0.9513 + }, + { + "start": 5193.14, + "end": 5197.32, + "probability": 0.9636 + }, + { + "start": 5198.26, + "end": 5198.88, + "probability": 0.802 + }, + { + "start": 5199.22, + "end": 5200.1, + "probability": 0.672 + }, + { + "start": 5200.24, + "end": 5201.58, + "probability": 0.6228 + }, + { + "start": 5202.1, + "end": 5205.38, + "probability": 0.9626 + }, + { + "start": 5205.8, + "end": 5208.58, + "probability": 0.9487 + }, + { + "start": 5209.3, + "end": 5211.06, + "probability": 0.6289 + }, + { + "start": 5211.58, + "end": 5211.68, + "probability": 0.2172 + }, + { + "start": 5212.58, + "end": 5214.66, + "probability": 0.8695 + }, + { + "start": 5214.74, + "end": 5218.04, + "probability": 0.8545 + }, + { + "start": 5218.74, + "end": 5223.02, + "probability": 0.762 + }, + { + "start": 5223.56, + "end": 5226.28, + "probability": 0.7439 + }, + { + "start": 5227.04, + "end": 5229.66, + "probability": 0.9963 + }, + { + "start": 5230.42, + "end": 5231.52, + "probability": 0.6278 + }, + { + "start": 5231.64, + "end": 5233.0, + "probability": 0.9137 + }, + { + "start": 5233.14, + "end": 5237.2, + "probability": 0.974 + }, + { + "start": 5237.96, + "end": 5238.7, + "probability": 0.4279 + }, + { + "start": 5238.76, + "end": 5245.26, + "probability": 0.9684 + }, + { + "start": 5246.76, + "end": 5251.26, + "probability": 0.678 + }, + { + "start": 5251.3, + "end": 5251.52, + "probability": 0.8336 + }, + { + "start": 5252.38, + "end": 5252.86, + "probability": 0.0478 + }, + { + "start": 5252.86, + "end": 5254.2, + "probability": 0.8806 + }, + { + "start": 5255.2, + "end": 5255.7, + "probability": 0.6721 + }, + { + "start": 5255.94, + "end": 5257.96, + "probability": 0.9167 + }, + { + "start": 5258.64, + "end": 5261.38, + "probability": 0.7532 + }, + { + "start": 5265.5, + "end": 5266.08, + "probability": 0.6409 + }, + { + "start": 5266.98, + "end": 5269.56, + "probability": 0.751 + }, + { + "start": 5269.74, + "end": 5270.37, + "probability": 0.9104 + }, + { + "start": 5271.26, + "end": 5271.7, + "probability": 0.8314 + }, + { + "start": 5280.7, + "end": 5282.16, + "probability": 0.3168 + }, + { + "start": 5295.56, + "end": 5300.04, + "probability": 0.7207 + }, + { + "start": 5301.06, + "end": 5302.28, + "probability": 0.0714 + }, + { + "start": 5302.6, + "end": 5307.84, + "probability": 0.2217 + }, + { + "start": 5307.9, + "end": 5308.82, + "probability": 0.8496 + }, + { + "start": 5310.34, + "end": 5310.62, + "probability": 0.082 + }, + { + "start": 5312.44, + "end": 5313.04, + "probability": 0.1224 + }, + { + "start": 5313.04, + "end": 5313.04, + "probability": 0.0385 + }, + { + "start": 5313.04, + "end": 5315.96, + "probability": 0.1244 + }, + { + "start": 5316.37, + "end": 5318.58, + "probability": 0.4808 + }, + { + "start": 5329.3, + "end": 5331.42, + "probability": 0.0259 + }, + { + "start": 5334.38, + "end": 5336.56, + "probability": 0.0619 + }, + { + "start": 5337.62, + "end": 5338.76, + "probability": 0.0444 + }, + { + "start": 5339.36, + "end": 5342.76, + "probability": 0.106 + }, + { + "start": 5344.3, + "end": 5349.06, + "probability": 0.0273 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.0 + }, + { + "start": 5365.76, + "end": 5369.42, + "probability": 0.7198 + }, + { + "start": 5370.18, + "end": 5371.8, + "probability": 0.9617 + }, + { + "start": 5373.78, + "end": 5374.24, + "probability": 0.8129 + }, + { + "start": 5375.54, + "end": 5379.04, + "probability": 0.4717 + }, + { + "start": 5379.44, + "end": 5380.02, + "probability": 0.7896 + }, + { + "start": 5380.1, + "end": 5380.56, + "probability": 0.8401 + }, + { + "start": 5381.94, + "end": 5383.96, + "probability": 0.6154 + }, + { + "start": 5384.84, + "end": 5387.54, + "probability": 0.7504 + }, + { + "start": 5387.92, + "end": 5391.12, + "probability": 0.9208 + }, + { + "start": 5391.34, + "end": 5392.0, + "probability": 0.3329 + }, + { + "start": 5392.3, + "end": 5394.56, + "probability": 0.9852 + }, + { + "start": 5395.18, + "end": 5398.48, + "probability": 0.7608 + }, + { + "start": 5398.56, + "end": 5399.34, + "probability": 0.7754 + }, + { + "start": 5399.54, + "end": 5401.36, + "probability": 0.9626 + }, + { + "start": 5402.44, + "end": 5403.62, + "probability": 0.6397 + }, + { + "start": 5403.94, + "end": 5404.32, + "probability": 0.8135 + }, + { + "start": 5404.84, + "end": 5405.46, + "probability": 0.9058 + }, + { + "start": 5405.56, + "end": 5406.1, + "probability": 0.9188 + }, + { + "start": 5406.2, + "end": 5407.96, + "probability": 0.946 + }, + { + "start": 5407.96, + "end": 5410.7, + "probability": 0.9912 + }, + { + "start": 5412.52, + "end": 5412.9, + "probability": 0.284 + }, + { + "start": 5413.48, + "end": 5413.74, + "probability": 0.1275 + }, + { + "start": 5413.74, + "end": 5416.62, + "probability": 0.9361 + }, + { + "start": 5416.74, + "end": 5417.64, + "probability": 0.2342 + }, + { + "start": 5417.82, + "end": 5419.82, + "probability": 0.963 + }, + { + "start": 5420.68, + "end": 5422.04, + "probability": 0.9139 + }, + { + "start": 5422.1, + "end": 5422.84, + "probability": 0.8581 + }, + { + "start": 5422.92, + "end": 5424.12, + "probability": 0.8929 + }, + { + "start": 5424.22, + "end": 5425.2, + "probability": 0.7482 + }, + { + "start": 5425.36, + "end": 5426.5, + "probability": 0.7535 + }, + { + "start": 5426.62, + "end": 5427.08, + "probability": 0.9103 + }, + { + "start": 5427.16, + "end": 5428.48, + "probability": 0.6606 + }, + { + "start": 5428.62, + "end": 5429.36, + "probability": 0.6612 + }, + { + "start": 5429.54, + "end": 5430.1, + "probability": 0.7845 + }, + { + "start": 5430.22, + "end": 5432.02, + "probability": 0.8218 + }, + { + "start": 5432.08, + "end": 5432.62, + "probability": 0.3466 + }, + { + "start": 5432.7, + "end": 5433.98, + "probability": 0.5134 + }, + { + "start": 5434.04, + "end": 5436.12, + "probability": 0.8767 + }, + { + "start": 5436.78, + "end": 5437.0, + "probability": 0.6672 + }, + { + "start": 5438.56, + "end": 5439.74, + "probability": 0.0698 + }, + { + "start": 5440.94, + "end": 5444.08, + "probability": 0.7311 + }, + { + "start": 5445.1, + "end": 5446.24, + "probability": 0.6655 + }, + { + "start": 5446.82, + "end": 5450.36, + "probability": 0.856 + }, + { + "start": 5451.08, + "end": 5454.66, + "probability": 0.8053 + }, + { + "start": 5455.24, + "end": 5456.18, + "probability": 0.2221 + }, + { + "start": 5457.67, + "end": 5459.36, + "probability": 0.5813 + }, + { + "start": 5461.88, + "end": 5465.52, + "probability": 0.8877 + }, + { + "start": 5467.76, + "end": 5468.96, + "probability": 0.6059 + }, + { + "start": 5469.02, + "end": 5469.02, + "probability": 0.4774 + }, + { + "start": 5469.02, + "end": 5469.7, + "probability": 0.6607 + }, + { + "start": 5469.72, + "end": 5470.08, + "probability": 0.9296 + }, + { + "start": 5470.14, + "end": 5470.76, + "probability": 0.9238 + }, + { + "start": 5470.82, + "end": 5472.14, + "probability": 0.9823 + }, + { + "start": 5473.36, + "end": 5474.52, + "probability": 0.9604 + }, + { + "start": 5474.6, + "end": 5475.24, + "probability": 0.8303 + }, + { + "start": 5475.26, + "end": 5475.76, + "probability": 0.9863 + }, + { + "start": 5476.8, + "end": 5477.54, + "probability": 0.7764 + }, + { + "start": 5478.6, + "end": 5479.14, + "probability": 0.6586 + }, + { + "start": 5479.51, + "end": 5480.84, + "probability": 0.8896 + }, + { + "start": 5481.46, + "end": 5487.28, + "probability": 0.7366 + }, + { + "start": 5487.36, + "end": 5487.44, + "probability": 0.3182 + }, + { + "start": 5487.44, + "end": 5489.24, + "probability": 0.8823 + }, + { + "start": 5489.4, + "end": 5491.98, + "probability": 0.9338 + }, + { + "start": 5491.98, + "end": 5492.78, + "probability": 0.7729 + }, + { + "start": 5493.56, + "end": 5495.46, + "probability": 0.7384 + }, + { + "start": 5496.48, + "end": 5497.36, + "probability": 0.5813 + }, + { + "start": 5497.5, + "end": 5500.24, + "probability": 0.9879 + }, + { + "start": 5500.24, + "end": 5502.76, + "probability": 0.8083 + }, + { + "start": 5502.92, + "end": 5507.14, + "probability": 0.8396 + }, + { + "start": 5507.64, + "end": 5508.26, + "probability": 0.8939 + }, + { + "start": 5508.7, + "end": 5510.66, + "probability": 0.9482 + }, + { + "start": 5510.66, + "end": 5512.7, + "probability": 0.9982 + }, + { + "start": 5513.92, + "end": 5517.74, + "probability": 0.8013 + }, + { + "start": 5517.94, + "end": 5518.96, + "probability": 0.9136 + }, + { + "start": 5519.1, + "end": 5521.22, + "probability": 0.918 + }, + { + "start": 5521.42, + "end": 5521.72, + "probability": 0.8559 + }, + { + "start": 5522.4, + "end": 5523.16, + "probability": 0.8531 + }, + { + "start": 5523.72, + "end": 5527.28, + "probability": 0.9929 + }, + { + "start": 5527.28, + "end": 5530.28, + "probability": 0.9881 + }, + { + "start": 5531.52, + "end": 5534.04, + "probability": 0.9968 + }, + { + "start": 5534.14, + "end": 5537.5, + "probability": 0.9663 + }, + { + "start": 5538.06, + "end": 5539.86, + "probability": 0.9963 + }, + { + "start": 5539.86, + "end": 5541.5, + "probability": 0.8414 + }, + { + "start": 5541.7, + "end": 5542.7, + "probability": 0.9056 + }, + { + "start": 5543.18, + "end": 5544.62, + "probability": 0.9679 + }, + { + "start": 5545.44, + "end": 5548.46, + "probability": 0.9928 + }, + { + "start": 5548.46, + "end": 5552.04, + "probability": 0.9918 + }, + { + "start": 5552.18, + "end": 5555.78, + "probability": 0.9935 + }, + { + "start": 5556.34, + "end": 5557.46, + "probability": 0.97 + }, + { + "start": 5557.64, + "end": 5560.48, + "probability": 0.9928 + }, + { + "start": 5561.04, + "end": 5563.44, + "probability": 0.8794 + }, + { + "start": 5563.76, + "end": 5565.3, + "probability": 0.9703 + }, + { + "start": 5566.16, + "end": 5566.8, + "probability": 0.9647 + }, + { + "start": 5567.92, + "end": 5568.32, + "probability": 0.4678 + }, + { + "start": 5568.44, + "end": 5571.9, + "probability": 0.9903 + }, + { + "start": 5572.44, + "end": 5574.72, + "probability": 0.949 + }, + { + "start": 5575.1, + "end": 5576.3, + "probability": 0.8957 + }, + { + "start": 5576.58, + "end": 5576.92, + "probability": 0.6906 + }, + { + "start": 5577.32, + "end": 5579.24, + "probability": 0.9639 + }, + { + "start": 5580.46, + "end": 5583.9, + "probability": 0.9025 + }, + { + "start": 5584.58, + "end": 5586.11, + "probability": 0.9662 + }, + { + "start": 5590.22, + "end": 5591.36, + "probability": 0.0218 + }, + { + "start": 5598.78, + "end": 5599.52, + "probability": 0.0041 + }, + { + "start": 5600.16, + "end": 5602.62, + "probability": 0.325 + }, + { + "start": 5603.22, + "end": 5604.82, + "probability": 0.775 + }, + { + "start": 5605.32, + "end": 5605.32, + "probability": 0.0333 + }, + { + "start": 5605.32, + "end": 5606.88, + "probability": 0.0765 + }, + { + "start": 5615.62, + "end": 5617.32, + "probability": 0.2482 + }, + { + "start": 5618.3, + "end": 5618.6, + "probability": 0.8254 + }, + { + "start": 5619.46, + "end": 5620.56, + "probability": 0.4042 + }, + { + "start": 5620.6, + "end": 5622.46, + "probability": 0.7735 + }, + { + "start": 5623.46, + "end": 5628.68, + "probability": 0.8459 + }, + { + "start": 5629.26, + "end": 5633.98, + "probability": 0.4179 + }, + { + "start": 5634.52, + "end": 5637.48, + "probability": 0.955 + }, + { + "start": 5638.9, + "end": 5642.18, + "probability": 0.6302 + }, + { + "start": 5642.9, + "end": 5643.18, + "probability": 0.7894 + }, + { + "start": 5643.52, + "end": 5646.1, + "probability": 0.7489 + }, + { + "start": 5647.0, + "end": 5649.76, + "probability": 0.9816 + }, + { + "start": 5650.46, + "end": 5652.9, + "probability": 0.7762 + }, + { + "start": 5653.62, + "end": 5655.24, + "probability": 0.7065 + }, + { + "start": 5655.24, + "end": 5658.0, + "probability": 0.9788 + }, + { + "start": 5660.9, + "end": 5664.76, + "probability": 0.7328 + }, + { + "start": 5665.68, + "end": 5665.86, + "probability": 0.7118 + }, + { + "start": 5680.4, + "end": 5680.4, + "probability": 0.5067 + }, + { + "start": 5680.42, + "end": 5683.68, + "probability": 0.7668 + }, + { + "start": 5684.28, + "end": 5686.64, + "probability": 0.984 + }, + { + "start": 5687.36, + "end": 5688.54, + "probability": 0.7075 + }, + { + "start": 5689.1, + "end": 5692.92, + "probability": 0.7851 + }, + { + "start": 5693.44, + "end": 5693.72, + "probability": 0.5564 + }, + { + "start": 5693.82, + "end": 5699.68, + "probability": 0.9775 + }, + { + "start": 5700.26, + "end": 5701.16, + "probability": 0.937 + }, + { + "start": 5702.21, + "end": 5706.4, + "probability": 0.6851 + }, + { + "start": 5706.52, + "end": 5708.28, + "probability": 0.8615 + }, + { + "start": 5709.26, + "end": 5710.58, + "probability": 0.0523 + }, + { + "start": 5736.46, + "end": 5739.26, + "probability": 0.4081 + }, + { + "start": 5740.08, + "end": 5740.84, + "probability": 0.3173 + }, + { + "start": 5742.5, + "end": 5744.9, + "probability": 0.8488 + }, + { + "start": 5746.0, + "end": 5749.72, + "probability": 0.7524 + }, + { + "start": 5751.48, + "end": 5755.76, + "probability": 0.983 + }, + { + "start": 5757.32, + "end": 5760.3, + "probability": 0.6099 + }, + { + "start": 5762.04, + "end": 5763.44, + "probability": 0.8618 + }, + { + "start": 5764.2, + "end": 5767.92, + "probability": 0.9818 + }, + { + "start": 5768.68, + "end": 5770.52, + "probability": 0.925 + }, + { + "start": 5771.2, + "end": 5773.08, + "probability": 0.9421 + }, + { + "start": 5773.92, + "end": 5775.34, + "probability": 0.6046 + }, + { + "start": 5776.16, + "end": 5776.78, + "probability": 0.494 + }, + { + "start": 5776.96, + "end": 5777.82, + "probability": 0.9346 + }, + { + "start": 5778.06, + "end": 5779.26, + "probability": 0.9398 + }, + { + "start": 5780.08, + "end": 5783.54, + "probability": 0.6252 + }, + { + "start": 5789.26, + "end": 5791.58, + "probability": 0.8737 + }, + { + "start": 5792.62, + "end": 5793.45, + "probability": 0.2681 + }, + { + "start": 5794.04, + "end": 5794.32, + "probability": 0.1329 + }, + { + "start": 5794.52, + "end": 5795.78, + "probability": 0.555 + }, + { + "start": 5795.84, + "end": 5797.15, + "probability": 0.2829 + }, + { + "start": 5797.44, + "end": 5802.74, + "probability": 0.049 + }, + { + "start": 5803.66, + "end": 5806.04, + "probability": 0.5249 + }, + { + "start": 5806.36, + "end": 5806.46, + "probability": 0.0 + }, + { + "start": 5808.76, + "end": 5812.48, + "probability": 0.255 + }, + { + "start": 5812.48, + "end": 5814.9, + "probability": 0.1222 + }, + { + "start": 5815.18, + "end": 5815.52, + "probability": 0.0483 + }, + { + "start": 5815.64, + "end": 5820.44, + "probability": 0.4315 + }, + { + "start": 5820.96, + "end": 5822.94, + "probability": 0.9113 + }, + { + "start": 5823.38, + "end": 5826.08, + "probability": 0.8081 + }, + { + "start": 5826.76, + "end": 5827.2, + "probability": 0.4824 + }, + { + "start": 5830.5, + "end": 5832.52, + "probability": 0.7201 + }, + { + "start": 5833.16, + "end": 5833.9, + "probability": 0.2622 + }, + { + "start": 5834.38, + "end": 5842.16, + "probability": 0.6854 + }, + { + "start": 5842.22, + "end": 5843.4, + "probability": 0.9214 + }, + { + "start": 5843.86, + "end": 5845.28, + "probability": 0.6261 + }, + { + "start": 5846.05, + "end": 5847.18, + "probability": 0.7778 + }, + { + "start": 5863.16, + "end": 5865.74, + "probability": 0.4846 + }, + { + "start": 5865.8, + "end": 5866.24, + "probability": 0.5327 + }, + { + "start": 5872.34, + "end": 5874.26, + "probability": 0.4529 + }, + { + "start": 5874.64, + "end": 5875.02, + "probability": 0.3263 + }, + { + "start": 5875.32, + "end": 5877.52, + "probability": 0.6304 + }, + { + "start": 5879.86, + "end": 5881.4, + "probability": 0.2624 + }, + { + "start": 5882.32, + "end": 5885.16, + "probability": 0.1807 + }, + { + "start": 5885.95, + "end": 5890.36, + "probability": 0.3809 + }, + { + "start": 5890.84, + "end": 5894.18, + "probability": 0.9829 + }, + { + "start": 5895.24, + "end": 5896.96, + "probability": 0.5896 + }, + { + "start": 5897.06, + "end": 5900.1, + "probability": 0.8287 + }, + { + "start": 5900.1, + "end": 5902.02, + "probability": 0.4994 + }, + { + "start": 5902.16, + "end": 5902.96, + "probability": 0.9268 + }, + { + "start": 5903.88, + "end": 5906.18, + "probability": 0.7792 + }, + { + "start": 5907.22, + "end": 5911.9, + "probability": 0.3918 + }, + { + "start": 5913.46, + "end": 5917.53, + "probability": 0.1007 + }, + { + "start": 5917.74, + "end": 5918.52, + "probability": 0.0154 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6035.0, + "end": 6035.0, + "probability": 0.0 + }, + { + "start": 6040.28, + "end": 6044.94, + "probability": 0.0147 + }, + { + "start": 6045.66, + "end": 6047.26, + "probability": 0.9352 + }, + { + "start": 6048.3, + "end": 6050.2, + "probability": 0.6155 + }, + { + "start": 6050.54, + "end": 6052.16, + "probability": 0.1763 + }, + { + "start": 6052.24, + "end": 6052.54, + "probability": 0.0446 + }, + { + "start": 6052.54, + "end": 6052.91, + "probability": 0.2133 + }, + { + "start": 6054.16, + "end": 6057.04, + "probability": 0.1817 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.0, + "end": 6181.0, + "probability": 0.0 + }, + { + "start": 6181.14, + "end": 6193.3, + "probability": 0.1155 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.0, + "end": 6320.0, + "probability": 0.0 + }, + { + "start": 6320.18, + "end": 6322.12, + "probability": 0.0995 + }, + { + "start": 6322.12, + "end": 6322.12, + "probability": 0.0357 + }, + { + "start": 6322.12, + "end": 6322.12, + "probability": 0.0351 + }, + { + "start": 6322.12, + "end": 6324.48, + "probability": 0.2844 + }, + { + "start": 6327.36, + "end": 6328.98, + "probability": 0.0751 + }, + { + "start": 6329.84, + "end": 6330.54, + "probability": 0.1222 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7555.68, + "end": 7557.18, + "probability": 0.9626 + }, + { + "start": 7558.42, + "end": 7560.52, + "probability": 0.9826 + }, + { + "start": 7560.84, + "end": 7561.92, + "probability": 0.9763 + }, + { + "start": 7562.42, + "end": 7563.3, + "probability": 0.9912 + }, + { + "start": 7564.74, + "end": 7567.78, + "probability": 0.9696 + }, + { + "start": 7568.72, + "end": 7569.3, + "probability": 0.9725 + }, + { + "start": 7570.46, + "end": 7571.24, + "probability": 0.984 + }, + { + "start": 7573.28, + "end": 7574.14, + "probability": 0.7108 + }, + { + "start": 7575.88, + "end": 7577.84, + "probability": 0.9854 + }, + { + "start": 7578.7, + "end": 7581.08, + "probability": 0.9903 + }, + { + "start": 7581.98, + "end": 7585.74, + "probability": 0.9989 + }, + { + "start": 7586.32, + "end": 7586.98, + "probability": 0.9526 + }, + { + "start": 7588.14, + "end": 7588.86, + "probability": 0.5384 + }, + { + "start": 7590.1, + "end": 7591.54, + "probability": 0.4125 + }, + { + "start": 7593.08, + "end": 7593.78, + "probability": 0.961 + }, + { + "start": 7594.48, + "end": 7598.72, + "probability": 0.996 + }, + { + "start": 7598.72, + "end": 7602.62, + "probability": 0.9771 + }, + { + "start": 7603.42, + "end": 7604.56, + "probability": 0.9763 + }, + { + "start": 7605.18, + "end": 7606.64, + "probability": 0.9993 + }, + { + "start": 7608.2, + "end": 7610.22, + "probability": 0.979 + }, + { + "start": 7611.16, + "end": 7614.78, + "probability": 0.9988 + }, + { + "start": 7615.38, + "end": 7617.94, + "probability": 0.8866 + }, + { + "start": 7618.88, + "end": 7625.12, + "probability": 0.9944 + }, + { + "start": 7625.5, + "end": 7625.98, + "probability": 0.7617 + }, + { + "start": 7628.08, + "end": 7631.22, + "probability": 0.967 + }, + { + "start": 7632.18, + "end": 7635.24, + "probability": 0.5237 + }, + { + "start": 7636.2, + "end": 7640.3, + "probability": 0.9738 + }, + { + "start": 7640.82, + "end": 7641.28, + "probability": 0.6993 + }, + { + "start": 7642.06, + "end": 7643.56, + "probability": 0.7752 + }, + { + "start": 7644.12, + "end": 7647.64, + "probability": 0.7424 + }, + { + "start": 7648.68, + "end": 7651.86, + "probability": 0.9614 + }, + { + "start": 7652.4, + "end": 7653.7, + "probability": 0.9725 + }, + { + "start": 7654.26, + "end": 7655.12, + "probability": 0.842 + }, + { + "start": 7656.3, + "end": 7656.94, + "probability": 0.7799 + }, + { + "start": 7657.7, + "end": 7660.04, + "probability": 0.9678 + }, + { + "start": 7660.76, + "end": 7661.6, + "probability": 0.9835 + }, + { + "start": 7662.6, + "end": 7664.28, + "probability": 0.9634 + }, + { + "start": 7664.96, + "end": 7666.58, + "probability": 0.7541 + }, + { + "start": 7667.46, + "end": 7670.46, + "probability": 0.9456 + }, + { + "start": 7671.92, + "end": 7677.02, + "probability": 0.9142 + }, + { + "start": 7677.68, + "end": 7679.62, + "probability": 0.6548 + }, + { + "start": 7680.2, + "end": 7681.72, + "probability": 0.9982 + }, + { + "start": 7682.74, + "end": 7685.68, + "probability": 0.9785 + }, + { + "start": 7686.28, + "end": 7688.06, + "probability": 0.9544 + }, + { + "start": 7689.02, + "end": 7697.38, + "probability": 0.781 + }, + { + "start": 7698.68, + "end": 7699.32, + "probability": 0.6562 + }, + { + "start": 7700.2, + "end": 7702.42, + "probability": 0.9624 + }, + { + "start": 7702.94, + "end": 7705.9, + "probability": 0.9738 + }, + { + "start": 7706.46, + "end": 7709.02, + "probability": 0.8875 + }, + { + "start": 7709.64, + "end": 7710.98, + "probability": 0.8487 + }, + { + "start": 7712.22, + "end": 7713.0, + "probability": 0.5994 + }, + { + "start": 7713.64, + "end": 7715.02, + "probability": 0.7593 + }, + { + "start": 7715.76, + "end": 7718.92, + "probability": 0.9885 + }, + { + "start": 7719.5, + "end": 7721.76, + "probability": 0.9949 + }, + { + "start": 7722.48, + "end": 7726.7, + "probability": 0.9925 + }, + { + "start": 7727.28, + "end": 7727.42, + "probability": 0.0083 + }, + { + "start": 7728.52, + "end": 7730.6, + "probability": 0.9973 + }, + { + "start": 7732.9, + "end": 7733.62, + "probability": 0.7719 + }, + { + "start": 7734.68, + "end": 7735.72, + "probability": 0.9805 + }, + { + "start": 7736.38, + "end": 7738.58, + "probability": 0.9273 + }, + { + "start": 7739.76, + "end": 7743.56, + "probability": 0.8354 + }, + { + "start": 7744.12, + "end": 7745.48, + "probability": 0.9062 + }, + { + "start": 7746.24, + "end": 7750.26, + "probability": 0.989 + }, + { + "start": 7751.42, + "end": 7752.58, + "probability": 0.6078 + }, + { + "start": 7753.18, + "end": 7756.22, + "probability": 0.9875 + }, + { + "start": 7757.3, + "end": 7759.98, + "probability": 0.992 + }, + { + "start": 7761.38, + "end": 7764.8, + "probability": 0.9603 + }, + { + "start": 7765.44, + "end": 7767.58, + "probability": 0.988 + }, + { + "start": 7768.88, + "end": 7770.36, + "probability": 0.6857 + }, + { + "start": 7770.88, + "end": 7773.27, + "probability": 0.7495 + }, + { + "start": 7774.44, + "end": 7778.32, + "probability": 0.7877 + }, + { + "start": 7778.32, + "end": 7782.36, + "probability": 0.9982 + }, + { + "start": 7783.66, + "end": 7785.12, + "probability": 0.983 + }, + { + "start": 7785.86, + "end": 7791.8, + "probability": 0.9927 + }, + { + "start": 7792.56, + "end": 7796.81, + "probability": 0.9559 + }, + { + "start": 7797.76, + "end": 7799.72, + "probability": 0.9856 + }, + { + "start": 7800.32, + "end": 7805.5, + "probability": 0.9757 + }, + { + "start": 7806.1, + "end": 7809.36, + "probability": 0.8503 + }, + { + "start": 7809.92, + "end": 7810.28, + "probability": 0.6265 + }, + { + "start": 7810.44, + "end": 7811.1, + "probability": 0.7529 + }, + { + "start": 7811.6, + "end": 7817.32, + "probability": 0.9578 + }, + { + "start": 7817.9, + "end": 7818.14, + "probability": 0.8934 + }, + { + "start": 7819.8, + "end": 7823.42, + "probability": 0.9474 + }, + { + "start": 7824.1, + "end": 7825.1, + "probability": 0.75 + }, + { + "start": 7826.16, + "end": 7829.2, + "probability": 0.9717 + }, + { + "start": 7829.82, + "end": 7832.12, + "probability": 0.7498 + }, + { + "start": 7832.72, + "end": 7833.62, + "probability": 0.9834 + }, + { + "start": 7834.46, + "end": 7835.18, + "probability": 0.6629 + }, + { + "start": 7836.2, + "end": 7837.56, + "probability": 0.9318 + }, + { + "start": 7838.3, + "end": 7843.2, + "probability": 0.9893 + }, + { + "start": 7844.06, + "end": 7849.12, + "probability": 0.9255 + }, + { + "start": 7849.72, + "end": 7851.46, + "probability": 0.8088 + }, + { + "start": 7852.24, + "end": 7853.98, + "probability": 0.824 + }, + { + "start": 7854.52, + "end": 7856.0, + "probability": 0.9631 + }, + { + "start": 7856.7, + "end": 7858.04, + "probability": 0.9917 + }, + { + "start": 7858.92, + "end": 7866.42, + "probability": 0.8479 + }, + { + "start": 7867.34, + "end": 7869.4, + "probability": 0.964 + }, + { + "start": 7870.46, + "end": 7873.84, + "probability": 0.8846 + }, + { + "start": 7874.2, + "end": 7875.36, + "probability": 0.9118 + }, + { + "start": 7876.04, + "end": 7878.46, + "probability": 0.8281 + }, + { + "start": 7879.06, + "end": 7881.56, + "probability": 0.9253 + }, + { + "start": 7882.2, + "end": 7883.58, + "probability": 0.9701 + }, + { + "start": 7885.06, + "end": 7887.9, + "probability": 0.9849 + }, + { + "start": 7888.44, + "end": 7893.24, + "probability": 0.9271 + }, + { + "start": 7893.84, + "end": 7894.84, + "probability": 0.6806 + }, + { + "start": 7895.42, + "end": 7897.1, + "probability": 0.9572 + }, + { + "start": 7897.66, + "end": 7899.34, + "probability": 0.8702 + }, + { + "start": 7899.98, + "end": 7901.62, + "probability": 0.9606 + }, + { + "start": 7902.42, + "end": 7903.18, + "probability": 0.5059 + }, + { + "start": 7904.0, + "end": 7904.84, + "probability": 0.9232 + }, + { + "start": 7906.06, + "end": 7909.08, + "probability": 0.9325 + }, + { + "start": 7910.38, + "end": 7912.42, + "probability": 0.7278 + }, + { + "start": 7913.78, + "end": 7914.4, + "probability": 0.7484 + }, + { + "start": 7915.02, + "end": 7918.02, + "probability": 0.9284 + }, + { + "start": 7918.5, + "end": 7920.28, + "probability": 0.9912 + }, + { + "start": 7921.26, + "end": 7922.92, + "probability": 0.6868 + }, + { + "start": 7923.3, + "end": 7923.9, + "probability": 0.8451 + }, + { + "start": 7940.4, + "end": 7941.22, + "probability": 0.4373 + }, + { + "start": 7942.4, + "end": 7943.0, + "probability": 0.8625 + }, + { + "start": 7944.14, + "end": 7945.6, + "probability": 0.9683 + }, + { + "start": 7945.88, + "end": 7946.48, + "probability": 0.7931 + }, + { + "start": 7946.68, + "end": 7949.02, + "probability": 0.918 + }, + { + "start": 7949.88, + "end": 7952.04, + "probability": 0.8306 + }, + { + "start": 7953.16, + "end": 7957.6, + "probability": 0.9277 + }, + { + "start": 7957.7, + "end": 7959.6, + "probability": 0.7419 + }, + { + "start": 7960.34, + "end": 7962.64, + "probability": 0.9501 + }, + { + "start": 7963.36, + "end": 7964.72, + "probability": 0.749 + }, + { + "start": 7964.94, + "end": 7966.34, + "probability": 0.7377 + }, + { + "start": 7967.68, + "end": 7970.84, + "probability": 0.9943 + }, + { + "start": 7970.92, + "end": 7971.54, + "probability": 0.7883 + }, + { + "start": 7971.66, + "end": 7973.68, + "probability": 0.9889 + }, + { + "start": 7974.46, + "end": 7976.22, + "probability": 0.9641 + }, + { + "start": 7977.32, + "end": 7982.22, + "probability": 0.9892 + }, + { + "start": 7983.2, + "end": 7986.36, + "probability": 0.8211 + }, + { + "start": 7987.18, + "end": 7991.06, + "probability": 0.9051 + }, + { + "start": 7991.68, + "end": 7993.76, + "probability": 0.9947 + }, + { + "start": 7994.42, + "end": 7998.06, + "probability": 0.9944 + }, + { + "start": 7998.78, + "end": 8003.82, + "probability": 0.9977 + }, + { + "start": 8004.46, + "end": 8005.96, + "probability": 0.8807 + }, + { + "start": 8006.24, + "end": 8008.66, + "probability": 0.9966 + }, + { + "start": 8009.48, + "end": 8012.3, + "probability": 0.9897 + }, + { + "start": 8012.74, + "end": 8013.54, + "probability": 0.9604 + }, + { + "start": 8014.9, + "end": 8018.12, + "probability": 0.9869 + }, + { + "start": 8019.28, + "end": 8022.34, + "probability": 0.8083 + }, + { + "start": 8022.94, + "end": 8023.58, + "probability": 0.8545 + }, + { + "start": 8023.8, + "end": 8024.6, + "probability": 0.537 + }, + { + "start": 8024.72, + "end": 8026.06, + "probability": 0.9696 + }, + { + "start": 8026.2, + "end": 8026.64, + "probability": 0.9702 + }, + { + "start": 8026.8, + "end": 8027.82, + "probability": 0.6903 + }, + { + "start": 8028.42, + "end": 8029.98, + "probability": 0.9929 + }, + { + "start": 8030.94, + "end": 8034.14, + "probability": 0.9785 + }, + { + "start": 8034.26, + "end": 8035.16, + "probability": 0.7888 + }, + { + "start": 8035.76, + "end": 8037.7, + "probability": 0.9789 + }, + { + "start": 8038.28, + "end": 8043.76, + "probability": 0.9967 + }, + { + "start": 8044.64, + "end": 8047.24, + "probability": 0.9475 + }, + { + "start": 8047.98, + "end": 8051.02, + "probability": 0.9894 + }, + { + "start": 8052.02, + "end": 8055.68, + "probability": 0.9798 + }, + { + "start": 8056.62, + "end": 8059.54, + "probability": 0.974 + }, + { + "start": 8060.22, + "end": 8063.82, + "probability": 0.9376 + }, + { + "start": 8064.48, + "end": 8065.28, + "probability": 0.9607 + }, + { + "start": 8065.52, + "end": 8066.0, + "probability": 0.9574 + }, + { + "start": 8066.14, + "end": 8066.72, + "probability": 0.992 + }, + { + "start": 8066.98, + "end": 8067.68, + "probability": 0.9962 + }, + { + "start": 8067.74, + "end": 8069.44, + "probability": 0.9631 + }, + { + "start": 8070.26, + "end": 8073.04, + "probability": 0.9807 + }, + { + "start": 8073.6, + "end": 8075.1, + "probability": 0.9887 + }, + { + "start": 8076.8, + "end": 8080.18, + "probability": 0.963 + }, + { + "start": 8080.36, + "end": 8080.94, + "probability": 0.9629 + }, + { + "start": 8081.0, + "end": 8083.08, + "probability": 0.7585 + }, + { + "start": 8083.26, + "end": 8084.42, + "probability": 0.9845 + }, + { + "start": 8086.1, + "end": 8088.28, + "probability": 0.8267 + }, + { + "start": 8088.38, + "end": 8091.94, + "probability": 0.9879 + }, + { + "start": 8092.8, + "end": 8094.34, + "probability": 0.97 + }, + { + "start": 8094.74, + "end": 8096.44, + "probability": 0.7558 + }, + { + "start": 8096.98, + "end": 8098.16, + "probability": 0.7324 + }, + { + "start": 8099.02, + "end": 8101.5, + "probability": 0.9434 + }, + { + "start": 8102.46, + "end": 8105.92, + "probability": 0.991 + }, + { + "start": 8106.68, + "end": 8110.32, + "probability": 0.9817 + }, + { + "start": 8110.86, + "end": 8113.12, + "probability": 0.9859 + }, + { + "start": 8113.96, + "end": 8116.9, + "probability": 0.9836 + }, + { + "start": 8117.36, + "end": 8119.26, + "probability": 0.9961 + }, + { + "start": 8119.84, + "end": 8122.86, + "probability": 0.9685 + }, + { + "start": 8123.6, + "end": 8127.92, + "probability": 0.9864 + }, + { + "start": 8128.14, + "end": 8130.4, + "probability": 0.9696 + }, + { + "start": 8130.52, + "end": 8132.8, + "probability": 0.9526 + }, + { + "start": 8133.34, + "end": 8136.92, + "probability": 0.9684 + }, + { + "start": 8137.5, + "end": 8139.92, + "probability": 0.8748 + }, + { + "start": 8140.26, + "end": 8140.56, + "probability": 0.8955 + }, + { + "start": 8141.92, + "end": 8144.26, + "probability": 0.9408 + }, + { + "start": 8145.62, + "end": 8148.16, + "probability": 0.8635 + }, + { + "start": 8148.94, + "end": 8151.12, + "probability": 0.9782 + }, + { + "start": 8152.02, + "end": 8154.18, + "probability": 0.9922 + }, + { + "start": 8154.38, + "end": 8155.84, + "probability": 0.7781 + }, + { + "start": 8156.62, + "end": 8160.04, + "probability": 0.9954 + }, + { + "start": 8160.66, + "end": 8163.52, + "probability": 0.9843 + }, + { + "start": 8164.34, + "end": 8167.26, + "probability": 0.967 + }, + { + "start": 8168.02, + "end": 8172.4, + "probability": 0.9805 + }, + { + "start": 8172.72, + "end": 8174.08, + "probability": 0.9785 + }, + { + "start": 8175.0, + "end": 8176.92, + "probability": 0.9987 + }, + { + "start": 8177.62, + "end": 8180.0, + "probability": 0.9878 + }, + { + "start": 8180.6, + "end": 8181.4, + "probability": 0.7224 + }, + { + "start": 8182.02, + "end": 8184.3, + "probability": 0.9489 + }, + { + "start": 8184.42, + "end": 8184.94, + "probability": 0.5413 + }, + { + "start": 8185.18, + "end": 8187.16, + "probability": 0.9768 + }, + { + "start": 8187.88, + "end": 8192.72, + "probability": 0.9766 + }, + { + "start": 8193.7, + "end": 8196.38, + "probability": 0.9875 + }, + { + "start": 8197.14, + "end": 8200.44, + "probability": 0.9893 + }, + { + "start": 8201.3, + "end": 8204.6, + "probability": 0.9951 + }, + { + "start": 8204.7, + "end": 8205.58, + "probability": 0.8313 + }, + { + "start": 8205.72, + "end": 8206.46, + "probability": 0.7843 + }, + { + "start": 8206.54, + "end": 8210.06, + "probability": 0.9701 + }, + { + "start": 8210.7, + "end": 8213.14, + "probability": 0.938 + }, + { + "start": 8213.74, + "end": 8216.22, + "probability": 0.9757 + }, + { + "start": 8216.42, + "end": 8219.86, + "probability": 0.816 + }, + { + "start": 8220.8, + "end": 8224.5, + "probability": 0.9403 + }, + { + "start": 8225.64, + "end": 8226.88, + "probability": 0.7284 + }, + { + "start": 8226.94, + "end": 8230.88, + "probability": 0.9297 + }, + { + "start": 8231.46, + "end": 8233.38, + "probability": 0.8412 + }, + { + "start": 8233.46, + "end": 8236.9, + "probability": 0.9262 + }, + { + "start": 8238.42, + "end": 8242.68, + "probability": 0.9019 + }, + { + "start": 8242.82, + "end": 8246.48, + "probability": 0.9976 + }, + { + "start": 8246.48, + "end": 8249.9, + "probability": 0.9962 + }, + { + "start": 8250.86, + "end": 8254.08, + "probability": 0.9714 + }, + { + "start": 8254.42, + "end": 8258.0, + "probability": 0.9305 + }, + { + "start": 8258.94, + "end": 8262.26, + "probability": 0.9735 + }, + { + "start": 8263.0, + "end": 8267.82, + "probability": 0.9971 + }, + { + "start": 8268.46, + "end": 8271.14, + "probability": 0.9774 + }, + { + "start": 8271.96, + "end": 8274.76, + "probability": 0.9941 + }, + { + "start": 8275.54, + "end": 8277.04, + "probability": 0.7764 + }, + { + "start": 8277.14, + "end": 8280.02, + "probability": 0.982 + }, + { + "start": 8281.0, + "end": 8281.7, + "probability": 0.4268 + }, + { + "start": 8281.9, + "end": 8283.97, + "probability": 0.8997 + }, + { + "start": 8285.24, + "end": 8289.82, + "probability": 0.7585 + }, + { + "start": 8290.1, + "end": 8291.38, + "probability": 0.98 + }, + { + "start": 8292.26, + "end": 8295.6, + "probability": 0.9927 + }, + { + "start": 8296.58, + "end": 8298.94, + "probability": 0.9569 + }, + { + "start": 8299.76, + "end": 8303.09, + "probability": 0.989 + }, + { + "start": 8303.88, + "end": 8306.56, + "probability": 0.986 + }, + { + "start": 8307.38, + "end": 8309.66, + "probability": 0.9958 + }, + { + "start": 8310.58, + "end": 8313.56, + "probability": 0.9818 + }, + { + "start": 8314.12, + "end": 8316.98, + "probability": 0.9663 + }, + { + "start": 8318.4, + "end": 8321.76, + "probability": 0.989 + }, + { + "start": 8322.52, + "end": 8325.36, + "probability": 0.9849 + }, + { + "start": 8325.36, + "end": 8329.44, + "probability": 0.9858 + }, + { + "start": 8329.74, + "end": 8331.38, + "probability": 0.968 + }, + { + "start": 8332.44, + "end": 8339.24, + "probability": 0.9813 + }, + { + "start": 8339.82, + "end": 8342.82, + "probability": 0.9421 + }, + { + "start": 8343.34, + "end": 8344.7, + "probability": 0.9877 + }, + { + "start": 8345.66, + "end": 8349.14, + "probability": 0.873 + }, + { + "start": 8349.14, + "end": 8353.2, + "probability": 0.9995 + }, + { + "start": 8353.3, + "end": 8355.0, + "probability": 0.9968 + }, + { + "start": 8355.56, + "end": 8358.14, + "probability": 0.9995 + }, + { + "start": 8359.46, + "end": 8360.94, + "probability": 0.9683 + }, + { + "start": 8361.6, + "end": 8363.78, + "probability": 0.997 + }, + { + "start": 8364.46, + "end": 8364.8, + "probability": 0.4872 + }, + { + "start": 8365.06, + "end": 8365.4, + "probability": 0.6298 + }, + { + "start": 8365.52, + "end": 8372.3, + "probability": 0.9902 + }, + { + "start": 8372.54, + "end": 8375.44, + "probability": 0.7254 + }, + { + "start": 8375.5, + "end": 8376.06, + "probability": 0.76 + }, + { + "start": 8376.28, + "end": 8379.06, + "probability": 0.9326 + }, + { + "start": 8379.62, + "end": 8381.98, + "probability": 0.9948 + }, + { + "start": 8383.3, + "end": 8387.66, + "probability": 0.9974 + }, + { + "start": 8388.4, + "end": 8392.22, + "probability": 0.903 + }, + { + "start": 8393.0, + "end": 8396.54, + "probability": 0.9738 + }, + { + "start": 8397.28, + "end": 8399.96, + "probability": 0.9246 + }, + { + "start": 8400.14, + "end": 8401.14, + "probability": 0.8927 + }, + { + "start": 8401.74, + "end": 8404.7, + "probability": 0.9544 + }, + { + "start": 8405.38, + "end": 8408.4, + "probability": 0.9675 + }, + { + "start": 8409.32, + "end": 8414.08, + "probability": 0.9844 + }, + { + "start": 8415.02, + "end": 8417.0, + "probability": 0.8779 + }, + { + "start": 8417.62, + "end": 8419.46, + "probability": 0.8558 + }, + { + "start": 8419.54, + "end": 8422.26, + "probability": 0.7446 + }, + { + "start": 8423.1, + "end": 8427.56, + "probability": 0.9324 + }, + { + "start": 8427.68, + "end": 8431.26, + "probability": 0.7336 + }, + { + "start": 8432.0, + "end": 8434.6, + "probability": 0.9429 + }, + { + "start": 8435.22, + "end": 8436.92, + "probability": 0.9978 + }, + { + "start": 8437.5, + "end": 8440.98, + "probability": 0.909 + }, + { + "start": 8441.74, + "end": 8443.9, + "probability": 0.9948 + }, + { + "start": 8443.9, + "end": 8445.94, + "probability": 0.5857 + }, + { + "start": 8446.16, + "end": 8447.7, + "probability": 0.896 + }, + { + "start": 8448.86, + "end": 8452.46, + "probability": 0.8326 + }, + { + "start": 8453.16, + "end": 8457.22, + "probability": 0.7489 + }, + { + "start": 8457.88, + "end": 8459.78, + "probability": 0.8506 + }, + { + "start": 8460.0, + "end": 8460.62, + "probability": 0.6291 + }, + { + "start": 8460.78, + "end": 8461.48, + "probability": 0.795 + }, + { + "start": 8462.28, + "end": 8465.88, + "probability": 0.9822 + }, + { + "start": 8466.42, + "end": 8467.98, + "probability": 0.9871 + }, + { + "start": 8468.7, + "end": 8471.1, + "probability": 0.9838 + }, + { + "start": 8471.16, + "end": 8472.3, + "probability": 0.7293 + }, + { + "start": 8472.48, + "end": 8474.0, + "probability": 0.7542 + }, + { + "start": 8474.62, + "end": 8477.1, + "probability": 0.9559 + }, + { + "start": 8478.62, + "end": 8479.98, + "probability": 0.7548 + }, + { + "start": 8480.78, + "end": 8484.2, + "probability": 0.996 + }, + { + "start": 8484.9, + "end": 8487.98, + "probability": 0.7451 + }, + { + "start": 8488.74, + "end": 8491.76, + "probability": 0.8069 + }, + { + "start": 8492.28, + "end": 8492.86, + "probability": 0.5764 + }, + { + "start": 8493.52, + "end": 8495.26, + "probability": 0.8482 + }, + { + "start": 8495.92, + "end": 8498.24, + "probability": 0.9651 + }, + { + "start": 8498.5, + "end": 8499.68, + "probability": 0.8129 + }, + { + "start": 8500.78, + "end": 8504.0, + "probability": 0.6494 + }, + { + "start": 8504.16, + "end": 8507.36, + "probability": 0.9863 + }, + { + "start": 8507.56, + "end": 8508.24, + "probability": 0.7787 + }, + { + "start": 8508.46, + "end": 8509.18, + "probability": 0.8537 + }, + { + "start": 8509.72, + "end": 8512.7, + "probability": 0.9978 + }, + { + "start": 8512.7, + "end": 8515.8, + "probability": 0.9995 + }, + { + "start": 8518.1, + "end": 8518.94, + "probability": 0.8617 + }, + { + "start": 8519.66, + "end": 8523.14, + "probability": 0.998 + }, + { + "start": 8524.2, + "end": 8526.24, + "probability": 0.8099 + }, + { + "start": 8527.2, + "end": 8528.71, + "probability": 0.7374 + }, + { + "start": 8529.52, + "end": 8531.74, + "probability": 0.9542 + }, + { + "start": 8532.1, + "end": 8535.34, + "probability": 0.9902 + }, + { + "start": 8536.08, + "end": 8538.16, + "probability": 0.9673 + }, + { + "start": 8539.26, + "end": 8541.76, + "probability": 0.9839 + }, + { + "start": 8542.32, + "end": 8544.72, + "probability": 0.9982 + }, + { + "start": 8544.72, + "end": 8547.68, + "probability": 0.9928 + }, + { + "start": 8547.76, + "end": 8548.42, + "probability": 0.881 + }, + { + "start": 8548.56, + "end": 8549.92, + "probability": 0.8869 + }, + { + "start": 8550.44, + "end": 8552.72, + "probability": 0.9963 + }, + { + "start": 8553.72, + "end": 8558.82, + "probability": 0.983 + }, + { + "start": 8558.84, + "end": 8563.38, + "probability": 0.9811 + }, + { + "start": 8564.0, + "end": 8564.2, + "probability": 0.7579 + }, + { + "start": 8564.94, + "end": 8565.64, + "probability": 0.7146 + }, + { + "start": 8565.74, + "end": 8568.72, + "probability": 0.9774 + }, + { + "start": 8569.36, + "end": 8572.64, + "probability": 0.9302 + }, + { + "start": 8579.32, + "end": 8580.98, + "probability": 0.716 + }, + { + "start": 8581.56, + "end": 8583.58, + "probability": 0.8267 + }, + { + "start": 8584.7, + "end": 8585.93, + "probability": 0.9683 + }, + { + "start": 8587.34, + "end": 8588.54, + "probability": 0.9551 + }, + { + "start": 8590.16, + "end": 8590.9, + "probability": 0.8817 + }, + { + "start": 8592.14, + "end": 8592.56, + "probability": 0.8402 + }, + { + "start": 8593.9, + "end": 8594.88, + "probability": 0.7449 + }, + { + "start": 8596.28, + "end": 8600.1, + "probability": 0.7458 + }, + { + "start": 8602.62, + "end": 8603.92, + "probability": 0.2313 + }, + { + "start": 8605.0, + "end": 8606.4, + "probability": 0.5675 + }, + { + "start": 8607.44, + "end": 8609.44, + "probability": 0.748 + }, + { + "start": 8609.9, + "end": 8613.74, + "probability": 0.9719 + }, + { + "start": 8614.28, + "end": 8615.52, + "probability": 0.9943 + }, + { + "start": 8616.4, + "end": 8619.06, + "probability": 0.7826 + }, + { + "start": 8619.16, + "end": 8621.86, + "probability": 0.7375 + }, + { + "start": 8622.5, + "end": 8623.36, + "probability": 0.2976 + }, + { + "start": 8625.42, + "end": 8628.12, + "probability": 0.8197 + }, + { + "start": 8628.42, + "end": 8629.84, + "probability": 0.9652 + }, + { + "start": 8630.5, + "end": 8631.2, + "probability": 0.859 + }, + { + "start": 8631.34, + "end": 8632.52, + "probability": 0.7938 + }, + { + "start": 8633.0, + "end": 8633.7, + "probability": 0.9729 + }, + { + "start": 8635.42, + "end": 8637.88, + "probability": 0.8876 + }, + { + "start": 8639.02, + "end": 8641.52, + "probability": 0.8221 + }, + { + "start": 8641.6, + "end": 8644.92, + "probability": 0.8415 + }, + { + "start": 8645.72, + "end": 8649.76, + "probability": 0.975 + }, + { + "start": 8649.76, + "end": 8654.04, + "probability": 0.924 + }, + { + "start": 8655.6, + "end": 8656.62, + "probability": 0.4464 + }, + { + "start": 8657.16, + "end": 8659.96, + "probability": 0.9814 + }, + { + "start": 8660.48, + "end": 8665.16, + "probability": 0.7879 + }, + { + "start": 8665.78, + "end": 8666.28, + "probability": 0.6656 + }, + { + "start": 8666.66, + "end": 8670.56, + "probability": 0.9811 + }, + { + "start": 8672.72, + "end": 8675.54, + "probability": 0.8518 + }, + { + "start": 8676.06, + "end": 8678.34, + "probability": 0.9937 + }, + { + "start": 8678.9, + "end": 8680.28, + "probability": 0.8884 + }, + { + "start": 8680.72, + "end": 8683.48, + "probability": 0.9094 + }, + { + "start": 8683.74, + "end": 8686.16, + "probability": 0.8669 + }, + { + "start": 8686.88, + "end": 8689.92, + "probability": 0.8535 + }, + { + "start": 8690.1, + "end": 8691.02, + "probability": 0.891 + }, + { + "start": 8691.2, + "end": 8692.94, + "probability": 0.6157 + }, + { + "start": 8693.4, + "end": 8695.26, + "probability": 0.9941 + }, + { + "start": 8696.28, + "end": 8698.51, + "probability": 0.8113 + }, + { + "start": 8699.46, + "end": 8702.88, + "probability": 0.8943 + }, + { + "start": 8703.28, + "end": 8704.54, + "probability": 0.8747 + }, + { + "start": 8705.08, + "end": 8705.8, + "probability": 0.9336 + }, + { + "start": 8706.5, + "end": 8708.96, + "probability": 0.7028 + }, + { + "start": 8709.52, + "end": 8712.54, + "probability": 0.9216 + }, + { + "start": 8713.02, + "end": 8713.94, + "probability": 0.8582 + }, + { + "start": 8714.5, + "end": 8718.14, + "probability": 0.9236 + }, + { + "start": 8720.58, + "end": 8724.44, + "probability": 0.8399 + }, + { + "start": 8724.56, + "end": 8726.66, + "probability": 0.6134 + }, + { + "start": 8727.2, + "end": 8728.3, + "probability": 0.7773 + }, + { + "start": 8728.36, + "end": 8731.3, + "probability": 0.8802 + }, + { + "start": 8732.2, + "end": 8735.04, + "probability": 0.9725 + }, + { + "start": 8735.58, + "end": 8736.6, + "probability": 0.944 + }, + { + "start": 8737.36, + "end": 8739.86, + "probability": 0.93 + }, + { + "start": 8740.42, + "end": 8744.22, + "probability": 0.9891 + }, + { + "start": 8744.22, + "end": 8747.8, + "probability": 0.988 + }, + { + "start": 8748.54, + "end": 8752.5, + "probability": 0.9704 + }, + { + "start": 8752.9, + "end": 8756.86, + "probability": 0.9943 + }, + { + "start": 8757.44, + "end": 8759.04, + "probability": 0.9537 + }, + { + "start": 8759.56, + "end": 8763.1, + "probability": 0.8235 + }, + { + "start": 8763.58, + "end": 8764.04, + "probability": 0.9121 + }, + { + "start": 8765.64, + "end": 8768.64, + "probability": 0.9593 + }, + { + "start": 8768.94, + "end": 8771.77, + "probability": 0.8574 + }, + { + "start": 8772.54, + "end": 8773.33, + "probability": 0.9888 + }, + { + "start": 8773.98, + "end": 8777.62, + "probability": 0.8451 + }, + { + "start": 8778.9, + "end": 8782.76, + "probability": 0.8378 + }, + { + "start": 8782.76, + "end": 8786.46, + "probability": 0.9911 + }, + { + "start": 8787.64, + "end": 8790.4, + "probability": 0.7711 + }, + { + "start": 8790.88, + "end": 8792.4, + "probability": 0.7622 + }, + { + "start": 8793.06, + "end": 8796.54, + "probability": 0.9884 + }, + { + "start": 8797.14, + "end": 8799.1, + "probability": 0.9368 + }, + { + "start": 8799.58, + "end": 8801.32, + "probability": 0.9759 + }, + { + "start": 8801.76, + "end": 8805.22, + "probability": 0.9927 + }, + { + "start": 8805.36, + "end": 8806.28, + "probability": 0.7571 + }, + { + "start": 8806.6, + "end": 8808.2, + "probability": 0.9217 + }, + { + "start": 8808.94, + "end": 8811.52, + "probability": 0.8589 + }, + { + "start": 8812.06, + "end": 8814.5, + "probability": 0.9722 + }, + { + "start": 8815.08, + "end": 8816.74, + "probability": 0.894 + }, + { + "start": 8817.1, + "end": 8819.3, + "probability": 0.7816 + }, + { + "start": 8820.0, + "end": 8820.84, + "probability": 0.5869 + }, + { + "start": 8821.58, + "end": 8822.32, + "probability": 0.6672 + }, + { + "start": 8822.64, + "end": 8826.86, + "probability": 0.9243 + }, + { + "start": 8826.96, + "end": 8829.06, + "probability": 0.5403 + }, + { + "start": 8838.52, + "end": 8841.56, + "probability": 0.9812 + }, + { + "start": 8842.14, + "end": 8845.78, + "probability": 0.4748 + }, + { + "start": 8846.32, + "end": 8846.64, + "probability": 0.7013 + }, + { + "start": 8847.74, + "end": 8849.68, + "probability": 0.5262 + }, + { + "start": 8851.24, + "end": 8854.74, + "probability": 0.7864 + }, + { + "start": 8855.56, + "end": 8856.66, + "probability": 0.9933 + }, + { + "start": 8858.5, + "end": 8861.94, + "probability": 0.3727 + }, + { + "start": 8862.8, + "end": 8864.9, + "probability": 0.8391 + }, + { + "start": 8866.44, + "end": 8866.8, + "probability": 0.7812 + }, + { + "start": 8867.96, + "end": 8869.56, + "probability": 0.8764 + }, + { + "start": 8870.2, + "end": 8872.72, + "probability": 0.8685 + }, + { + "start": 8873.38, + "end": 8873.86, + "probability": 0.9068 + }, + { + "start": 8874.4, + "end": 8876.06, + "probability": 0.9722 + }, + { + "start": 8876.7, + "end": 8877.38, + "probability": 0.566 + }, + { + "start": 8879.28, + "end": 8884.16, + "probability": 0.9897 + }, + { + "start": 8885.32, + "end": 8890.68, + "probability": 0.8594 + }, + { + "start": 8891.46, + "end": 8895.04, + "probability": 0.9924 + }, + { + "start": 8895.8, + "end": 8897.68, + "probability": 0.9958 + }, + { + "start": 8898.06, + "end": 8899.42, + "probability": 0.8387 + }, + { + "start": 8899.46, + "end": 8902.2, + "probability": 0.9679 + }, + { + "start": 8902.92, + "end": 8906.24, + "probability": 0.8629 + }, + { + "start": 8906.94, + "end": 8911.92, + "probability": 0.954 + }, + { + "start": 8912.56, + "end": 8917.42, + "probability": 0.9179 + }, + { + "start": 8918.88, + "end": 8920.36, + "probability": 0.7957 + }, + { + "start": 8920.9, + "end": 8923.24, + "probability": 0.8695 + }, + { + "start": 8924.34, + "end": 8927.06, + "probability": 0.9867 + }, + { + "start": 8927.86, + "end": 8931.2, + "probability": 0.6821 + }, + { + "start": 8932.14, + "end": 8934.14, + "probability": 0.9727 + }, + { + "start": 8934.52, + "end": 8937.22, + "probability": 0.9734 + }, + { + "start": 8937.96, + "end": 8939.5, + "probability": 0.9915 + }, + { + "start": 8939.62, + "end": 8940.14, + "probability": 0.2136 + }, + { + "start": 8940.16, + "end": 8942.1, + "probability": 0.9626 + }, + { + "start": 8942.28, + "end": 8943.38, + "probability": 0.8029 + }, + { + "start": 8944.0, + "end": 8945.06, + "probability": 0.9905 + }, + { + "start": 8946.04, + "end": 8947.92, + "probability": 0.9609 + }, + { + "start": 8948.2, + "end": 8949.58, + "probability": 0.8842 + }, + { + "start": 8949.92, + "end": 8950.94, + "probability": 0.8371 + }, + { + "start": 8951.64, + "end": 8953.78, + "probability": 0.9806 + }, + { + "start": 8953.94, + "end": 8956.24, + "probability": 0.7234 + }, + { + "start": 8956.64, + "end": 8959.34, + "probability": 0.9839 + }, + { + "start": 8959.94, + "end": 8962.29, + "probability": 0.8553 + }, + { + "start": 8962.9, + "end": 8966.68, + "probability": 0.9087 + }, + { + "start": 8966.84, + "end": 8967.32, + "probability": 0.4204 + }, + { + "start": 8967.64, + "end": 8969.94, + "probability": 0.7554 + }, + { + "start": 8970.7, + "end": 8971.72, + "probability": 0.8136 + }, + { + "start": 8972.56, + "end": 8975.9, + "probability": 0.9264 + }, + { + "start": 8976.6, + "end": 8977.96, + "probability": 0.9594 + }, + { + "start": 8979.0, + "end": 8983.54, + "probability": 0.9628 + }, + { + "start": 8983.54, + "end": 8987.7, + "probability": 0.9071 + }, + { + "start": 8988.36, + "end": 8990.9, + "probability": 0.9927 + }, + { + "start": 8992.18, + "end": 8995.14, + "probability": 0.8644 + }, + { + "start": 8995.96, + "end": 9000.64, + "probability": 0.9806 + }, + { + "start": 9001.56, + "end": 9005.04, + "probability": 0.9937 + }, + { + "start": 9005.04, + "end": 9008.48, + "probability": 0.9751 + }, + { + "start": 9009.1, + "end": 9012.6, + "probability": 0.7458 + }, + { + "start": 9013.16, + "end": 9016.52, + "probability": 0.832 + }, + { + "start": 9016.56, + "end": 9016.84, + "probability": 0.8079 + }, + { + "start": 9016.9, + "end": 9017.5, + "probability": 0.9698 + }, + { + "start": 9018.52, + "end": 9021.62, + "probability": 0.9584 + }, + { + "start": 9022.32, + "end": 9030.14, + "probability": 0.9247 + }, + { + "start": 9030.48, + "end": 9031.18, + "probability": 0.6329 + }, + { + "start": 9032.1, + "end": 9033.14, + "probability": 0.9146 + }, + { + "start": 9033.78, + "end": 9037.2, + "probability": 0.9084 + }, + { + "start": 9038.12, + "end": 9043.2, + "probability": 0.994 + }, + { + "start": 9044.06, + "end": 9048.14, + "probability": 0.9856 + }, + { + "start": 9048.56, + "end": 9051.92, + "probability": 0.9863 + }, + { + "start": 9052.08, + "end": 9053.7, + "probability": 0.9277 + }, + { + "start": 9055.5, + "end": 9058.94, + "probability": 0.9722 + }, + { + "start": 9058.94, + "end": 9062.26, + "probability": 0.752 + }, + { + "start": 9063.62, + "end": 9067.6, + "probability": 0.8877 + }, + { + "start": 9067.7, + "end": 9071.92, + "probability": 0.9769 + }, + { + "start": 9072.8, + "end": 9080.42, + "probability": 0.9917 + }, + { + "start": 9081.16, + "end": 9084.62, + "probability": 0.7957 + }, + { + "start": 9085.56, + "end": 9088.46, + "probability": 0.9931 + }, + { + "start": 9089.14, + "end": 9092.16, + "probability": 0.9924 + }, + { + "start": 9092.8, + "end": 9096.82, + "probability": 0.9859 + }, + { + "start": 9097.34, + "end": 9100.62, + "probability": 0.9697 + }, + { + "start": 9101.56, + "end": 9104.02, + "probability": 0.9801 + }, + { + "start": 9104.62, + "end": 9105.18, + "probability": 0.7242 + }, + { + "start": 9105.3, + "end": 9105.9, + "probability": 0.5948 + }, + { + "start": 9106.28, + "end": 9107.38, + "probability": 0.8733 + }, + { + "start": 9107.74, + "end": 9109.18, + "probability": 0.8901 + }, + { + "start": 9109.26, + "end": 9109.8, + "probability": 0.9105 + }, + { + "start": 9109.9, + "end": 9110.96, + "probability": 0.7124 + }, + { + "start": 9111.96, + "end": 9115.04, + "probability": 0.9192 + }, + { + "start": 9115.1, + "end": 9118.32, + "probability": 0.9984 + }, + { + "start": 9118.48, + "end": 9120.3, + "probability": 0.9572 + }, + { + "start": 9121.22, + "end": 9123.5, + "probability": 0.9849 + }, + { + "start": 9124.02, + "end": 9126.4, + "probability": 0.9909 + }, + { + "start": 9127.52, + "end": 9130.36, + "probability": 0.9915 + }, + { + "start": 9130.46, + "end": 9132.62, + "probability": 0.8286 + }, + { + "start": 9133.22, + "end": 9135.58, + "probability": 0.9513 + }, + { + "start": 9137.04, + "end": 9139.33, + "probability": 0.9813 + }, + { + "start": 9139.44, + "end": 9140.98, + "probability": 0.9452 + }, + { + "start": 9141.6, + "end": 9144.6, + "probability": 0.9551 + }, + { + "start": 9145.8, + "end": 9150.52, + "probability": 0.8078 + }, + { + "start": 9151.2, + "end": 9154.04, + "probability": 0.9203 + }, + { + "start": 9154.56, + "end": 9156.16, + "probability": 0.8869 + }, + { + "start": 9156.8, + "end": 9158.42, + "probability": 0.8579 + }, + { + "start": 9159.0, + "end": 9162.72, + "probability": 0.9979 + }, + { + "start": 9162.86, + "end": 9164.66, + "probability": 0.8083 + }, + { + "start": 9165.58, + "end": 9167.92, + "probability": 0.8489 + }, + { + "start": 9167.92, + "end": 9170.72, + "probability": 0.9769 + }, + { + "start": 9171.0, + "end": 9171.5, + "probability": 0.5076 + }, + { + "start": 9171.9, + "end": 9174.6, + "probability": 0.241 + }, + { + "start": 9175.24, + "end": 9179.12, + "probability": 0.9961 + }, + { + "start": 9179.84, + "end": 9184.74, + "probability": 0.9087 + }, + { + "start": 9185.74, + "end": 9188.32, + "probability": 0.9707 + }, + { + "start": 9189.5, + "end": 9191.58, + "probability": 0.998 + }, + { + "start": 9192.34, + "end": 9194.16, + "probability": 0.8555 + }, + { + "start": 9194.92, + "end": 9198.32, + "probability": 0.9707 + }, + { + "start": 9199.46, + "end": 9202.1, + "probability": 0.8745 + }, + { + "start": 9203.06, + "end": 9205.04, + "probability": 0.9829 + }, + { + "start": 9205.62, + "end": 9208.16, + "probability": 0.9329 + }, + { + "start": 9208.96, + "end": 9212.4, + "probability": 0.552 + }, + { + "start": 9213.52, + "end": 9215.72, + "probability": 0.9883 + }, + { + "start": 9216.74, + "end": 9219.8, + "probability": 0.9967 + }, + { + "start": 9221.02, + "end": 9221.72, + "probability": 0.7485 + }, + { + "start": 9221.76, + "end": 9224.89, + "probability": 0.7408 + }, + { + "start": 9225.06, + "end": 9225.7, + "probability": 0.6665 + }, + { + "start": 9225.72, + "end": 9226.92, + "probability": 0.8426 + }, + { + "start": 9227.64, + "end": 9228.3, + "probability": 0.8938 + }, + { + "start": 9228.82, + "end": 9230.82, + "probability": 0.906 + }, + { + "start": 9231.34, + "end": 9234.81, + "probability": 0.9919 + }, + { + "start": 9235.8, + "end": 9239.4, + "probability": 0.781 + }, + { + "start": 9240.18, + "end": 9243.96, + "probability": 0.9854 + }, + { + "start": 9245.12, + "end": 9249.0, + "probability": 0.9556 + }, + { + "start": 9249.74, + "end": 9250.98, + "probability": 0.9863 + }, + { + "start": 9252.26, + "end": 9255.24, + "probability": 0.9441 + }, + { + "start": 9255.36, + "end": 9258.5, + "probability": 0.9885 + }, + { + "start": 9260.24, + "end": 9264.78, + "probability": 0.9219 + }, + { + "start": 9266.54, + "end": 9267.76, + "probability": 0.9674 + }, + { + "start": 9268.82, + "end": 9273.02, + "probability": 0.9789 + }, + { + "start": 9273.78, + "end": 9276.0, + "probability": 0.9762 + }, + { + "start": 9276.0, + "end": 9278.6, + "probability": 0.9664 + }, + { + "start": 9279.6, + "end": 9284.88, + "probability": 0.9895 + }, + { + "start": 9285.3, + "end": 9290.2, + "probability": 0.9766 + }, + { + "start": 9290.72, + "end": 9293.68, + "probability": 0.9888 + }, + { + "start": 9294.28, + "end": 9296.52, + "probability": 0.7479 + }, + { + "start": 9297.36, + "end": 9300.66, + "probability": 0.9584 + }, + { + "start": 9301.44, + "end": 9304.16, + "probability": 0.7397 + }, + { + "start": 9304.32, + "end": 9305.1, + "probability": 0.8841 + }, + { + "start": 9305.44, + "end": 9307.46, + "probability": 0.9827 + }, + { + "start": 9307.98, + "end": 9311.38, + "probability": 0.8552 + }, + { + "start": 9312.66, + "end": 9315.96, + "probability": 0.8949 + }, + { + "start": 9316.76, + "end": 9318.47, + "probability": 0.8711 + }, + { + "start": 9319.38, + "end": 9321.0, + "probability": 0.969 + }, + { + "start": 9321.56, + "end": 9325.22, + "probability": 0.9663 + }, + { + "start": 9326.42, + "end": 9327.14, + "probability": 0.8202 + }, + { + "start": 9327.96, + "end": 9333.0, + "probability": 0.9466 + }, + { + "start": 9333.68, + "end": 9336.76, + "probability": 0.8049 + }, + { + "start": 9338.1, + "end": 9341.38, + "probability": 0.9307 + }, + { + "start": 9341.9, + "end": 9343.42, + "probability": 0.9697 + }, + { + "start": 9344.06, + "end": 9347.46, + "probability": 0.9792 + }, + { + "start": 9348.78, + "end": 9349.6, + "probability": 0.6758 + }, + { + "start": 9350.38, + "end": 9351.1, + "probability": 0.2618 + }, + { + "start": 9352.24, + "end": 9356.04, + "probability": 0.7452 + }, + { + "start": 9356.66, + "end": 9358.12, + "probability": 0.6099 + }, + { + "start": 9358.46, + "end": 9362.1, + "probability": 0.8403 + }, + { + "start": 9362.48, + "end": 9362.9, + "probability": 0.8987 + }, + { + "start": 9363.2, + "end": 9367.0, + "probability": 0.4478 + }, + { + "start": 9367.0, + "end": 9370.84, + "probability": 0.7371 + }, + { + "start": 9371.78, + "end": 9372.54, + "probability": 0.8088 + }, + { + "start": 9373.64, + "end": 9377.9, + "probability": 0.5902 + }, + { + "start": 9379.4, + "end": 9380.12, + "probability": 0.5997 + }, + { + "start": 9380.66, + "end": 9381.34, + "probability": 0.7997 + }, + { + "start": 9382.24, + "end": 9384.58, + "probability": 0.9819 + }, + { + "start": 9386.4, + "end": 9389.26, + "probability": 0.994 + }, + { + "start": 9390.14, + "end": 9390.52, + "probability": 0.9703 + }, + { + "start": 9391.3, + "end": 9392.96, + "probability": 0.9963 + }, + { + "start": 9394.44, + "end": 9395.24, + "probability": 0.3686 + }, + { + "start": 9395.26, + "end": 9398.7, + "probability": 0.9671 + }, + { + "start": 9399.54, + "end": 9400.84, + "probability": 0.9835 + }, + { + "start": 9401.16, + "end": 9403.06, + "probability": 0.9418 + }, + { + "start": 9404.74, + "end": 9406.26, + "probability": 0.7498 + }, + { + "start": 9406.8, + "end": 9407.44, + "probability": 0.4916 + }, + { + "start": 9407.44, + "end": 9408.4, + "probability": 0.9736 + }, + { + "start": 9408.42, + "end": 9408.5, + "probability": 0.4381 + }, + { + "start": 9408.6, + "end": 9411.9, + "probability": 0.8816 + }, + { + "start": 9412.58, + "end": 9419.54, + "probability": 0.9259 + }, + { + "start": 9424.4, + "end": 9425.78, + "probability": 0.4173 + }, + { + "start": 9449.18, + "end": 9450.0, + "probability": 0.4625 + }, + { + "start": 9452.8, + "end": 9454.04, + "probability": 0.9574 + }, + { + "start": 9455.26, + "end": 9457.98, + "probability": 0.5642 + }, + { + "start": 9459.16, + "end": 9462.1, + "probability": 0.8324 + }, + { + "start": 9464.44, + "end": 9466.14, + "probability": 0.9342 + }, + { + "start": 9467.62, + "end": 9467.94, + "probability": 0.7102 + }, + { + "start": 9469.78, + "end": 9474.66, + "probability": 0.939 + }, + { + "start": 9475.4, + "end": 9477.24, + "probability": 0.6618 + }, + { + "start": 9478.24, + "end": 9482.0, + "probability": 0.9922 + }, + { + "start": 9482.92, + "end": 9487.04, + "probability": 0.861 + }, + { + "start": 9488.2, + "end": 9492.9, + "probability": 0.7809 + }, + { + "start": 9493.62, + "end": 9494.12, + "probability": 0.5918 + }, + { + "start": 9494.84, + "end": 9496.74, + "probability": 0.9082 + }, + { + "start": 9497.32, + "end": 9499.2, + "probability": 0.8167 + }, + { + "start": 9500.24, + "end": 9506.72, + "probability": 0.9741 + }, + { + "start": 9508.84, + "end": 9512.68, + "probability": 0.7357 + }, + { + "start": 9514.1, + "end": 9515.42, + "probability": 0.6964 + }, + { + "start": 9516.82, + "end": 9518.34, + "probability": 0.9763 + }, + { + "start": 9519.62, + "end": 9520.44, + "probability": 0.9595 + }, + { + "start": 9521.48, + "end": 9526.6, + "probability": 0.9706 + }, + { + "start": 9530.34, + "end": 9533.01, + "probability": 0.4184 + }, + { + "start": 9534.26, + "end": 9535.78, + "probability": 0.6276 + }, + { + "start": 9536.54, + "end": 9537.26, + "probability": 0.9583 + }, + { + "start": 9538.22, + "end": 9542.08, + "probability": 0.9872 + }, + { + "start": 9544.32, + "end": 9548.22, + "probability": 0.704 + }, + { + "start": 9549.7, + "end": 9553.12, + "probability": 0.9352 + }, + { + "start": 9555.58, + "end": 9559.86, + "probability": 0.8854 + }, + { + "start": 9560.66, + "end": 9562.2, + "probability": 0.7728 + }, + { + "start": 9565.76, + "end": 9570.26, + "probability": 0.9519 + }, + { + "start": 9570.96, + "end": 9574.58, + "probability": 0.6967 + }, + { + "start": 9576.24, + "end": 9580.96, + "probability": 0.7393 + }, + { + "start": 9582.78, + "end": 9584.34, + "probability": 0.7112 + }, + { + "start": 9584.52, + "end": 9586.08, + "probability": 0.6014 + }, + { + "start": 9586.48, + "end": 9588.44, + "probability": 0.9819 + }, + { + "start": 9589.0, + "end": 9591.78, + "probability": 0.9313 + }, + { + "start": 9592.3, + "end": 9593.0, + "probability": 0.9954 + }, + { + "start": 9593.78, + "end": 9596.26, + "probability": 0.864 + }, + { + "start": 9596.9, + "end": 9599.26, + "probability": 0.9727 + }, + { + "start": 9599.88, + "end": 9600.88, + "probability": 0.9839 + }, + { + "start": 9602.8, + "end": 9603.66, + "probability": 0.8053 + }, + { + "start": 9605.04, + "end": 9607.98, + "probability": 0.5671 + }, + { + "start": 9608.74, + "end": 9609.34, + "probability": 0.6768 + }, + { + "start": 9610.66, + "end": 9613.12, + "probability": 0.5137 + }, + { + "start": 9613.22, + "end": 9617.24, + "probability": 0.8759 + }, + { + "start": 9618.52, + "end": 9620.82, + "probability": 0.8591 + }, + { + "start": 9621.08, + "end": 9623.92, + "probability": 0.7549 + }, + { + "start": 9625.32, + "end": 9627.4, + "probability": 0.9201 + }, + { + "start": 9631.07, + "end": 9635.26, + "probability": 0.4936 + }, + { + "start": 9636.02, + "end": 9639.08, + "probability": 0.8703 + }, + { + "start": 9640.0, + "end": 9641.26, + "probability": 0.7076 + }, + { + "start": 9642.72, + "end": 9644.54, + "probability": 0.9211 + }, + { + "start": 9644.66, + "end": 9646.62, + "probability": 0.9622 + }, + { + "start": 9647.4, + "end": 9649.58, + "probability": 0.8799 + }, + { + "start": 9651.04, + "end": 9655.44, + "probability": 0.9831 + }, + { + "start": 9656.48, + "end": 9660.1, + "probability": 0.8626 + }, + { + "start": 9660.24, + "end": 9663.0, + "probability": 0.9724 + }, + { + "start": 9665.24, + "end": 9670.24, + "probability": 0.6424 + }, + { + "start": 9670.74, + "end": 9671.62, + "probability": 0.9508 + }, + { + "start": 9671.76, + "end": 9672.64, + "probability": 0.9966 + }, + { + "start": 9673.26, + "end": 9675.66, + "probability": 0.8464 + }, + { + "start": 9676.26, + "end": 9679.14, + "probability": 0.7783 + }, + { + "start": 9679.22, + "end": 9679.84, + "probability": 0.8442 + }, + { + "start": 9679.9, + "end": 9680.42, + "probability": 0.6471 + }, + { + "start": 9681.14, + "end": 9682.86, + "probability": 0.6676 + }, + { + "start": 9685.08, + "end": 9687.32, + "probability": 0.9924 + }, + { + "start": 9689.98, + "end": 9692.98, + "probability": 0.8379 + }, + { + "start": 9694.56, + "end": 9696.26, + "probability": 0.8506 + }, + { + "start": 9697.08, + "end": 9698.14, + "probability": 0.7855 + }, + { + "start": 9699.06, + "end": 9701.4, + "probability": 0.5752 + }, + { + "start": 9702.38, + "end": 9705.06, + "probability": 0.9224 + }, + { + "start": 9705.58, + "end": 9707.14, + "probability": 0.4997 + }, + { + "start": 9708.18, + "end": 9711.2, + "probability": 0.9419 + }, + { + "start": 9712.02, + "end": 9715.88, + "probability": 0.778 + }, + { + "start": 9717.28, + "end": 9720.78, + "probability": 0.8122 + }, + { + "start": 9721.24, + "end": 9722.77, + "probability": 0.927 + }, + { + "start": 9723.22, + "end": 9724.88, + "probability": 0.9657 + }, + { + "start": 9726.08, + "end": 9731.2, + "probability": 0.795 + }, + { + "start": 9731.2, + "end": 9737.44, + "probability": 0.7891 + }, + { + "start": 9738.18, + "end": 9744.38, + "probability": 0.8025 + }, + { + "start": 9744.58, + "end": 9750.72, + "probability": 0.6613 + }, + { + "start": 9750.78, + "end": 9752.06, + "probability": 0.9214 + }, + { + "start": 9752.26, + "end": 9754.96, + "probability": 0.7832 + }, + { + "start": 9755.2, + "end": 9755.84, + "probability": 0.7672 + }, + { + "start": 9756.7, + "end": 9757.56, + "probability": 0.9844 + }, + { + "start": 9760.14, + "end": 9761.28, + "probability": 0.8464 + }, + { + "start": 9763.66, + "end": 9765.96, + "probability": 0.7874 + }, + { + "start": 9766.9, + "end": 9768.46, + "probability": 0.6219 + }, + { + "start": 9770.09, + "end": 9773.36, + "probability": 0.4183 + }, + { + "start": 9775.2, + "end": 9778.6, + "probability": 0.7294 + }, + { + "start": 9780.2, + "end": 9782.7, + "probability": 0.6656 + }, + { + "start": 9783.6, + "end": 9786.2, + "probability": 0.9857 + }, + { + "start": 9787.42, + "end": 9790.1, + "probability": 0.6882 + }, + { + "start": 9790.1, + "end": 9793.84, + "probability": 0.7013 + }, + { + "start": 9794.42, + "end": 9796.2, + "probability": 0.8634 + }, + { + "start": 9797.24, + "end": 9799.66, + "probability": 0.6731 + }, + { + "start": 9800.82, + "end": 9804.48, + "probability": 0.7898 + }, + { + "start": 9805.0, + "end": 9808.74, + "probability": 0.9684 + }, + { + "start": 9810.26, + "end": 9813.24, + "probability": 0.9819 + }, + { + "start": 9814.38, + "end": 9815.26, + "probability": 0.5904 + }, + { + "start": 9815.36, + "end": 9816.0, + "probability": 0.4883 + }, + { + "start": 9816.24, + "end": 9819.3, + "probability": 0.9703 + }, + { + "start": 9820.18, + "end": 9822.0, + "probability": 0.8752 + }, + { + "start": 9822.34, + "end": 9827.54, + "probability": 0.9665 + }, + { + "start": 9828.24, + "end": 9831.48, + "probability": 0.8509 + }, + { + "start": 9832.16, + "end": 9835.28, + "probability": 0.7413 + }, + { + "start": 9835.44, + "end": 9837.66, + "probability": 0.4211 + }, + { + "start": 9837.72, + "end": 9839.3, + "probability": 0.9163 + }, + { + "start": 9839.46, + "end": 9840.25, + "probability": 0.1441 + }, + { + "start": 9840.46, + "end": 9841.34, + "probability": 0.8224 + }, + { + "start": 9842.18, + "end": 9845.26, + "probability": 0.908 + }, + { + "start": 9846.54, + "end": 9850.8, + "probability": 0.962 + }, + { + "start": 9851.94, + "end": 9854.94, + "probability": 0.3271 + }, + { + "start": 9855.64, + "end": 9861.5, + "probability": 0.9538 + }, + { + "start": 9862.0, + "end": 9864.46, + "probability": 0.9441 + }, + { + "start": 9865.08, + "end": 9873.56, + "probability": 0.8971 + }, + { + "start": 9877.1, + "end": 9879.14, + "probability": 0.7627 + }, + { + "start": 9880.1, + "end": 9882.76, + "probability": 0.8914 + }, + { + "start": 9884.6, + "end": 9886.94, + "probability": 0.949 + }, + { + "start": 9888.42, + "end": 9892.5, + "probability": 0.9934 + }, + { + "start": 9893.42, + "end": 9894.48, + "probability": 0.7413 + }, + { + "start": 9895.18, + "end": 9902.32, + "probability": 0.5558 + }, + { + "start": 9903.1, + "end": 9907.58, + "probability": 0.7037 + }, + { + "start": 9907.84, + "end": 9908.34, + "probability": 0.8933 + }, + { + "start": 9910.48, + "end": 9912.78, + "probability": 0.5536 + }, + { + "start": 9913.64, + "end": 9914.86, + "probability": 0.9582 + }, + { + "start": 9915.54, + "end": 9917.22, + "probability": 0.9939 + }, + { + "start": 9917.8, + "end": 9918.86, + "probability": 0.5697 + }, + { + "start": 9919.58, + "end": 9920.08, + "probability": 0.4025 + }, + { + "start": 9925.82, + "end": 9926.92, + "probability": 0.8273 + }, + { + "start": 9927.02, + "end": 9927.6, + "probability": 0.4072 + }, + { + "start": 9927.72, + "end": 9928.82, + "probability": 0.8912 + }, + { + "start": 9929.66, + "end": 9931.26, + "probability": 0.6518 + }, + { + "start": 9932.38, + "end": 9932.76, + "probability": 0.6457 + }, + { + "start": 9932.86, + "end": 9937.16, + "probability": 0.99 + }, + { + "start": 9937.82, + "end": 9942.84, + "probability": 0.9944 + }, + { + "start": 9944.08, + "end": 9945.58, + "probability": 0.5122 + }, + { + "start": 9945.62, + "end": 9949.46, + "probability": 0.9581 + }, + { + "start": 9950.04, + "end": 9952.78, + "probability": 0.9736 + }, + { + "start": 9954.26, + "end": 9959.02, + "probability": 0.9515 + }, + { + "start": 9959.56, + "end": 9961.4, + "probability": 0.943 + }, + { + "start": 9962.28, + "end": 9965.16, + "probability": 0.8536 + }, + { + "start": 9965.84, + "end": 9966.98, + "probability": 0.9851 + }, + { + "start": 9967.08, + "end": 9969.74, + "probability": 0.6705 + }, + { + "start": 9970.36, + "end": 9970.66, + "probability": 0.7191 + }, + { + "start": 9970.8, + "end": 9973.26, + "probability": 0.8522 + }, + { + "start": 9974.46, + "end": 9975.76, + "probability": 0.9954 + }, + { + "start": 9980.4, + "end": 9985.12, + "probability": 0.9565 + }, + { + "start": 9985.86, + "end": 9988.24, + "probability": 0.0314 + }, + { + "start": 9989.66, + "end": 9991.36, + "probability": 0.7323 + }, + { + "start": 9993.92, + "end": 9994.58, + "probability": 0.4737 + }, + { + "start": 9994.58, + "end": 9995.1, + "probability": 0.6743 + }, + { + "start": 9995.26, + "end": 9999.82, + "probability": 0.1193 + }, + { + "start": 10000.12, + "end": 10002.8, + "probability": 0.8354 + }, + { + "start": 10003.18, + "end": 10008.64, + "probability": 0.9825 + }, + { + "start": 10008.96, + "end": 10012.32, + "probability": 0.4107 + }, + { + "start": 10012.82, + "end": 10016.18, + "probability": 0.8846 + }, + { + "start": 10016.72, + "end": 10017.36, + "probability": 0.5564 + }, + { + "start": 10017.4, + "end": 10017.82, + "probability": 0.3704 + }, + { + "start": 10017.84, + "end": 10018.12, + "probability": 0.7359 + }, + { + "start": 10018.34, + "end": 10018.96, + "probability": 0.9117 + }, + { + "start": 10028.1, + "end": 10029.2, + "probability": 0.0777 + }, + { + "start": 10030.7, + "end": 10032.32, + "probability": 0.2504 + }, + { + "start": 10032.96, + "end": 10034.16, + "probability": 0.3423 + }, + { + "start": 10034.26, + "end": 10037.72, + "probability": 0.981 + }, + { + "start": 10038.52, + "end": 10042.06, + "probability": 0.729 + }, + { + "start": 10042.88, + "end": 10043.72, + "probability": 0.7668 + }, + { + "start": 10044.5, + "end": 10047.0, + "probability": 0.4999 + }, + { + "start": 10047.4, + "end": 10047.76, + "probability": 0.1991 + }, + { + "start": 10048.42, + "end": 10049.12, + "probability": 0.699 + }, + { + "start": 10049.56, + "end": 10051.58, + "probability": 0.9968 + }, + { + "start": 10052.14, + "end": 10052.66, + "probability": 0.7391 + }, + { + "start": 10052.8, + "end": 10053.38, + "probability": 0.5313 + }, + { + "start": 10053.92, + "end": 10056.84, + "probability": 0.8245 + }, + { + "start": 10057.38, + "end": 10081.4, + "probability": 0.4239 + }, + { + "start": 10082.66, + "end": 10082.66, + "probability": 0.0427 + }, + { + "start": 10082.66, + "end": 10082.66, + "probability": 0.0851 + }, + { + "start": 10082.66, + "end": 10083.16, + "probability": 0.2827 + }, + { + "start": 10083.66, + "end": 10085.62, + "probability": 0.6035 + }, + { + "start": 10086.22, + "end": 10093.38, + "probability": 0.9683 + }, + { + "start": 10093.46, + "end": 10093.68, + "probability": 0.6608 + }, + { + "start": 10094.94, + "end": 10097.06, + "probability": 0.7129 + }, + { + "start": 10097.12, + "end": 10098.44, + "probability": 0.9154 + }, + { + "start": 10098.72, + "end": 10102.38, + "probability": 0.995 + }, + { + "start": 10102.98, + "end": 10105.26, + "probability": 0.9448 + }, + { + "start": 10107.16, + "end": 10107.96, + "probability": 0.7133 + }, + { + "start": 10108.4, + "end": 10109.52, + "probability": 0.6786 + }, + { + "start": 10109.66, + "end": 10110.72, + "probability": 0.7818 + }, + { + "start": 10111.28, + "end": 10112.8, + "probability": 0.9653 + }, + { + "start": 10113.52, + "end": 10115.74, + "probability": 0.8297 + }, + { + "start": 10115.92, + "end": 10117.26, + "probability": 0.2841 + }, + { + "start": 10118.02, + "end": 10119.42, + "probability": 0.5541 + }, + { + "start": 10119.52, + "end": 10119.98, + "probability": 0.7124 + }, + { + "start": 10120.5, + "end": 10120.92, + "probability": 0.8303 + }, + { + "start": 10121.48, + "end": 10122.56, + "probability": 0.7017 + }, + { + "start": 10123.3, + "end": 10127.16, + "probability": 0.6405 + }, + { + "start": 10127.7, + "end": 10129.08, + "probability": 0.7797 + }, + { + "start": 10130.76, + "end": 10133.6, + "probability": 0.859 + }, + { + "start": 10134.79, + "end": 10140.84, + "probability": 0.9882 + }, + { + "start": 10141.42, + "end": 10145.48, + "probability": 0.6652 + }, + { + "start": 10146.5, + "end": 10148.86, + "probability": 0.9547 + }, + { + "start": 10150.02, + "end": 10155.6, + "probability": 0.8444 + }, + { + "start": 10158.02, + "end": 10161.46, + "probability": 0.7783 + }, + { + "start": 10161.94, + "end": 10165.16, + "probability": 0.9619 + }, + { + "start": 10165.62, + "end": 10168.74, + "probability": 0.8979 + }, + { + "start": 10170.35, + "end": 10176.8, + "probability": 0.748 + }, + { + "start": 10176.84, + "end": 10179.68, + "probability": 0.7212 + }, + { + "start": 10180.1, + "end": 10181.84, + "probability": 0.995 + }, + { + "start": 10182.44, + "end": 10189.34, + "probability": 0.9212 + }, + { + "start": 10189.86, + "end": 10190.64, + "probability": 0.7824 + }, + { + "start": 10191.58, + "end": 10192.92, + "probability": 0.6879 + }, + { + "start": 10193.28, + "end": 10193.94, + "probability": 0.6265 + }, + { + "start": 10194.4, + "end": 10199.52, + "probability": 0.969 + }, + { + "start": 10199.88, + "end": 10203.19, + "probability": 0.9828 + }, + { + "start": 10206.8, + "end": 10212.54, + "probability": 0.7838 + }, + { + "start": 10213.16, + "end": 10217.3, + "probability": 0.9755 + }, + { + "start": 10218.2, + "end": 10220.98, + "probability": 0.0935 + }, + { + "start": 10221.48, + "end": 10222.9, + "probability": 0.5797 + }, + { + "start": 10224.18, + "end": 10225.4, + "probability": 0.6202 + }, + { + "start": 10226.44, + "end": 10231.64, + "probability": 0.4673 + }, + { + "start": 10231.64, + "end": 10232.14, + "probability": 0.1811 + }, + { + "start": 10232.78, + "end": 10237.3, + "probability": 0.9541 + }, + { + "start": 10237.98, + "end": 10242.78, + "probability": 0.927 + }, + { + "start": 10245.44, + "end": 10245.44, + "probability": 0.2959 + }, + { + "start": 10245.44, + "end": 10246.9, + "probability": 0.5655 + }, + { + "start": 10247.18, + "end": 10248.44, + "probability": 0.7106 + }, + { + "start": 10248.52, + "end": 10249.26, + "probability": 0.6467 + }, + { + "start": 10250.02, + "end": 10252.06, + "probability": 0.8643 + }, + { + "start": 10252.88, + "end": 10255.14, + "probability": 0.9434 + }, + { + "start": 10255.92, + "end": 10257.46, + "probability": 0.9858 + }, + { + "start": 10257.62, + "end": 10257.82, + "probability": 0.6815 + }, + { + "start": 10258.22, + "end": 10258.86, + "probability": 0.7894 + }, + { + "start": 10259.2, + "end": 10260.41, + "probability": 0.9836 + }, + { + "start": 10260.7, + "end": 10264.04, + "probability": 0.905 + }, + { + "start": 10264.54, + "end": 10266.46, + "probability": 0.9542 + }, + { + "start": 10267.08, + "end": 10269.03, + "probability": 0.9929 + }, + { + "start": 10269.44, + "end": 10270.84, + "probability": 0.9136 + }, + { + "start": 10271.26, + "end": 10272.96, + "probability": 0.1909 + }, + { + "start": 10274.6, + "end": 10278.16, + "probability": 0.9349 + }, + { + "start": 10278.94, + "end": 10282.38, + "probability": 0.9889 + }, + { + "start": 10282.72, + "end": 10284.42, + "probability": 0.9854 + }, + { + "start": 10285.24, + "end": 10288.84, + "probability": 0.2784 + }, + { + "start": 10288.96, + "end": 10290.58, + "probability": 0.7522 + }, + { + "start": 10291.26, + "end": 10293.6, + "probability": 0.7528 + }, + { + "start": 10294.04, + "end": 10295.86, + "probability": 0.9637 + }, + { + "start": 10296.66, + "end": 10298.12, + "probability": 0.9602 + }, + { + "start": 10298.22, + "end": 10300.06, + "probability": 0.9863 + }, + { + "start": 10300.08, + "end": 10300.62, + "probability": 0.973 + }, + { + "start": 10300.72, + "end": 10302.66, + "probability": 0.8478 + }, + { + "start": 10303.12, + "end": 10303.9, + "probability": 0.8543 + }, + { + "start": 10304.06, + "end": 10305.32, + "probability": 0.9515 + }, + { + "start": 10305.7, + "end": 10306.36, + "probability": 0.7582 + }, + { + "start": 10306.84, + "end": 10307.22, + "probability": 0.809 + }, + { + "start": 10307.78, + "end": 10310.34, + "probability": 0.9909 + }, + { + "start": 10310.86, + "end": 10312.48, + "probability": 0.9045 + }, + { + "start": 10312.7, + "end": 10315.58, + "probability": 0.8965 + }, + { + "start": 10316.44, + "end": 10318.18, + "probability": 0.9351 + }, + { + "start": 10318.76, + "end": 10320.42, + "probability": 0.828 + }, + { + "start": 10321.26, + "end": 10323.98, + "probability": 0.9635 + }, + { + "start": 10324.4, + "end": 10325.5, + "probability": 0.8241 + }, + { + "start": 10326.08, + "end": 10328.08, + "probability": 0.9902 + }, + { + "start": 10331.02, + "end": 10332.16, + "probability": 0.6481 + }, + { + "start": 10333.04, + "end": 10335.08, + "probability": 0.8651 + }, + { + "start": 10336.32, + "end": 10338.36, + "probability": 0.9257 + }, + { + "start": 10339.17, + "end": 10343.38, + "probability": 0.7752 + }, + { + "start": 10344.28, + "end": 10345.66, + "probability": 0.9254 + }, + { + "start": 10346.02, + "end": 10347.84, + "probability": 0.8318 + }, + { + "start": 10348.26, + "end": 10349.01, + "probability": 0.8393 + }, + { + "start": 10349.44, + "end": 10350.26, + "probability": 0.8194 + }, + { + "start": 10350.68, + "end": 10351.5, + "probability": 0.9575 + }, + { + "start": 10352.28, + "end": 10353.44, + "probability": 0.9951 + }, + { + "start": 10353.6, + "end": 10354.3, + "probability": 0.9814 + }, + { + "start": 10354.74, + "end": 10355.26, + "probability": 0.9329 + }, + { + "start": 10355.36, + "end": 10356.62, + "probability": 0.4644 + }, + { + "start": 10356.68, + "end": 10362.14, + "probability": 0.9192 + }, + { + "start": 10363.16, + "end": 10365.26, + "probability": 0.9095 + }, + { + "start": 10368.31, + "end": 10373.04, + "probability": 0.84 + }, + { + "start": 10373.04, + "end": 10376.36, + "probability": 0.9661 + }, + { + "start": 10376.84, + "end": 10379.58, + "probability": 0.9374 + }, + { + "start": 10380.64, + "end": 10382.06, + "probability": 0.7858 + }, + { + "start": 10382.44, + "end": 10383.32, + "probability": 0.9274 + }, + { + "start": 10383.48, + "end": 10384.22, + "probability": 0.5006 + }, + { + "start": 10385.2, + "end": 10385.46, + "probability": 0.3077 + }, + { + "start": 10387.3, + "end": 10387.68, + "probability": 0.0318 + }, + { + "start": 10388.5, + "end": 10389.1, + "probability": 0.512 + }, + { + "start": 10389.28, + "end": 10390.8, + "probability": 0.9679 + }, + { + "start": 10391.12, + "end": 10392.98, + "probability": 0.9106 + }, + { + "start": 10393.3, + "end": 10394.78, + "probability": 0.8889 + }, + { + "start": 10394.92, + "end": 10396.19, + "probability": 0.7019 + }, + { + "start": 10396.52, + "end": 10398.82, + "probability": 0.6538 + }, + { + "start": 10399.46, + "end": 10401.0, + "probability": 0.9992 + }, + { + "start": 10404.86, + "end": 10408.92, + "probability": 0.8473 + }, + { + "start": 10409.98, + "end": 10410.54, + "probability": 0.7352 + }, + { + "start": 10411.26, + "end": 10414.5, + "probability": 0.9669 + }, + { + "start": 10416.32, + "end": 10416.92, + "probability": 0.5647 + }, + { + "start": 10416.92, + "end": 10417.81, + "probability": 0.886 + }, + { + "start": 10421.52, + "end": 10423.26, + "probability": 0.6111 + }, + { + "start": 10423.9, + "end": 10425.82, + "probability": 0.9668 + }, + { + "start": 10426.52, + "end": 10428.02, + "probability": 0.4847 + }, + { + "start": 10428.7, + "end": 10430.91, + "probability": 0.9761 + }, + { + "start": 10431.02, + "end": 10432.6, + "probability": 0.78 + }, + { + "start": 10433.04, + "end": 10434.62, + "probability": 0.9985 + }, + { + "start": 10434.96, + "end": 10435.62, + "probability": 0.9144 + }, + { + "start": 10436.0, + "end": 10436.78, + "probability": 0.7896 + }, + { + "start": 10437.46, + "end": 10439.1, + "probability": 0.059 + }, + { + "start": 10439.34, + "end": 10442.16, + "probability": 0.7941 + }, + { + "start": 10442.2, + "end": 10443.96, + "probability": 0.9751 + }, + { + "start": 10445.2, + "end": 10447.68, + "probability": 0.8374 + }, + { + "start": 10451.4, + "end": 10452.42, + "probability": 0.8948 + }, + { + "start": 10453.08, + "end": 10455.2, + "probability": 0.9876 + }, + { + "start": 10455.34, + "end": 10456.46, + "probability": 0.9501 + }, + { + "start": 10456.68, + "end": 10459.9, + "probability": 0.9945 + }, + { + "start": 10460.22, + "end": 10463.98, + "probability": 0.988 + }, + { + "start": 10464.98, + "end": 10466.74, + "probability": 0.8117 + }, + { + "start": 10467.4, + "end": 10468.36, + "probability": 0.7522 + }, + { + "start": 10469.76, + "end": 10472.28, + "probability": 0.9858 + }, + { + "start": 10472.9, + "end": 10474.42, + "probability": 0.9722 + }, + { + "start": 10474.84, + "end": 10475.69, + "probability": 0.9473 + }, + { + "start": 10476.22, + "end": 10477.9, + "probability": 0.9844 + }, + { + "start": 10478.34, + "end": 10480.2, + "probability": 0.9731 + }, + { + "start": 10480.3, + "end": 10480.58, + "probability": 0.5887 + }, + { + "start": 10481.06, + "end": 10482.48, + "probability": 0.8634 + }, + { + "start": 10482.64, + "end": 10482.88, + "probability": 0.7266 + }, + { + "start": 10483.48, + "end": 10484.62, + "probability": 0.8193 + }, + { + "start": 10485.34, + "end": 10489.2, + "probability": 0.974 + }, + { + "start": 10489.66, + "end": 10492.5, + "probability": 0.8726 + }, + { + "start": 10493.02, + "end": 10494.06, + "probability": 0.8717 + }, + { + "start": 10494.54, + "end": 10496.5, + "probability": 0.9532 + }, + { + "start": 10496.94, + "end": 10499.32, + "probability": 0.9515 + }, + { + "start": 10499.48, + "end": 10501.94, + "probability": 0.9173 + }, + { + "start": 10502.56, + "end": 10506.9, + "probability": 0.7474 + }, + { + "start": 10507.34, + "end": 10508.7, + "probability": 0.8078 + }, + { + "start": 10509.34, + "end": 10510.3, + "probability": 0.2332 + }, + { + "start": 10511.48, + "end": 10514.66, + "probability": 0.0707 + }, + { + "start": 10518.5, + "end": 10518.64, + "probability": 0.1189 + }, + { + "start": 10521.18, + "end": 10521.98, + "probability": 0.3868 + }, + { + "start": 10522.08, + "end": 10527.39, + "probability": 0.9911 + }, + { + "start": 10528.26, + "end": 10528.69, + "probability": 0.1199 + }, + { + "start": 10529.4, + "end": 10529.96, + "probability": 0.9643 + }, + { + "start": 10530.76, + "end": 10531.98, + "probability": 0.8831 + }, + { + "start": 10534.8, + "end": 10535.88, + "probability": 0.2223 + }, + { + "start": 10536.66, + "end": 10536.68, + "probability": 0.2964 + }, + { + "start": 10536.68, + "end": 10537.72, + "probability": 0.0545 + }, + { + "start": 10538.12, + "end": 10539.7, + "probability": 0.7391 + }, + { + "start": 10539.72, + "end": 10540.54, + "probability": 0.776 + }, + { + "start": 10542.64, + "end": 10545.88, + "probability": 0.9951 + }, + { + "start": 10546.5, + "end": 10548.76, + "probability": 0.741 + }, + { + "start": 10551.19, + "end": 10553.9, + "probability": 0.8791 + }, + { + "start": 10554.32, + "end": 10554.94, + "probability": 0.8893 + }, + { + "start": 10555.44, + "end": 10556.08, + "probability": 0.2942 + }, + { + "start": 10556.26, + "end": 10558.44, + "probability": 0.7577 + }, + { + "start": 10561.23, + "end": 10565.28, + "probability": 0.758 + }, + { + "start": 10567.42, + "end": 10572.76, + "probability": 0.6708 + }, + { + "start": 10573.26, + "end": 10573.88, + "probability": 0.5866 + }, + { + "start": 10574.08, + "end": 10578.32, + "probability": 0.9619 + }, + { + "start": 10578.86, + "end": 10580.06, + "probability": 0.9116 + }, + { + "start": 10580.76, + "end": 10580.86, + "probability": 0.8662 + }, + { + "start": 10580.9, + "end": 10583.1, + "probability": 0.7809 + }, + { + "start": 10583.5, + "end": 10587.7, + "probability": 0.8245 + }, + { + "start": 10588.02, + "end": 10588.94, + "probability": 0.8327 + }, + { + "start": 10589.32, + "end": 10590.34, + "probability": 0.9583 + }, + { + "start": 10591.06, + "end": 10591.84, + "probability": 0.596 + }, + { + "start": 10592.16, + "end": 10594.2, + "probability": 0.9313 + }, + { + "start": 10594.44, + "end": 10596.04, + "probability": 0.8141 + }, + { + "start": 10596.38, + "end": 10597.98, + "probability": 0.9784 + }, + { + "start": 10598.52, + "end": 10601.06, + "probability": 0.9959 + }, + { + "start": 10601.58, + "end": 10602.56, + "probability": 0.4277 + }, + { + "start": 10602.92, + "end": 10604.84, + "probability": 0.4099 + }, + { + "start": 10605.3, + "end": 10608.4, + "probability": 0.6382 + }, + { + "start": 10609.02, + "end": 10609.72, + "probability": 0.6129 + }, + { + "start": 10610.66, + "end": 10610.98, + "probability": 0.5691 + }, + { + "start": 10610.98, + "end": 10610.98, + "probability": 0.6694 + }, + { + "start": 10610.98, + "end": 10612.68, + "probability": 0.8539 + }, + { + "start": 10613.56, + "end": 10614.84, + "probability": 0.9659 + }, + { + "start": 10615.4, + "end": 10617.26, + "probability": 0.8489 + }, + { + "start": 10617.62, + "end": 10620.44, + "probability": 0.9603 + }, + { + "start": 10620.82, + "end": 10623.02, + "probability": 0.9219 + }, + { + "start": 10623.4, + "end": 10624.34, + "probability": 0.8948 + }, + { + "start": 10624.5, + "end": 10628.12, + "probability": 0.9317 + }, + { + "start": 10628.38, + "end": 10629.92, + "probability": 0.8417 + }, + { + "start": 10630.2, + "end": 10631.5, + "probability": 0.9749 + }, + { + "start": 10634.86, + "end": 10639.04, + "probability": 0.9825 + }, + { + "start": 10639.04, + "end": 10644.64, + "probability": 0.6177 + }, + { + "start": 10646.08, + "end": 10647.11, + "probability": 0.3731 + }, + { + "start": 10647.24, + "end": 10648.44, + "probability": 0.5321 + }, + { + "start": 10649.06, + "end": 10650.84, + "probability": 0.9725 + }, + { + "start": 10651.84, + "end": 10653.06, + "probability": 0.6228 + }, + { + "start": 10653.86, + "end": 10657.08, + "probability": 0.5664 + }, + { + "start": 10657.18, + "end": 10657.7, + "probability": 0.3976 + }, + { + "start": 10661.66, + "end": 10662.16, + "probability": 0.418 + }, + { + "start": 10662.24, + "end": 10665.58, + "probability": 0.916 + }, + { + "start": 10667.1, + "end": 10668.3, + "probability": 0.6914 + }, + { + "start": 10668.3, + "end": 10669.4, + "probability": 0.9321 + }, + { + "start": 10669.48, + "end": 10670.88, + "probability": 0.4503 + }, + { + "start": 10671.56, + "end": 10672.86, + "probability": 0.3989 + }, + { + "start": 10673.1, + "end": 10674.52, + "probability": 0.9216 + }, + { + "start": 10674.66, + "end": 10676.88, + "probability": 0.7765 + }, + { + "start": 10679.11, + "end": 10684.2, + "probability": 0.8202 + }, + { + "start": 10685.34, + "end": 10687.66, + "probability": 0.895 + }, + { + "start": 10688.04, + "end": 10689.92, + "probability": 0.2724 + }, + { + "start": 10690.94, + "end": 10690.98, + "probability": 0.0301 + }, + { + "start": 10690.98, + "end": 10692.55, + "probability": 0.4547 + }, + { + "start": 10693.76, + "end": 10695.58, + "probability": 0.8357 + }, + { + "start": 10696.82, + "end": 10698.84, + "probability": 0.6003 + }, + { + "start": 10699.42, + "end": 10700.66, + "probability": 0.5469 + }, + { + "start": 10700.66, + "end": 10702.46, + "probability": 0.7852 + }, + { + "start": 10702.7, + "end": 10703.14, + "probability": 0.789 + }, + { + "start": 10703.96, + "end": 10704.68, + "probability": 0.7904 + }, + { + "start": 10705.8, + "end": 10708.7, + "probability": 0.7374 + }, + { + "start": 10709.44, + "end": 10711.76, + "probability": 0.7514 + }, + { + "start": 10711.88, + "end": 10713.1, + "probability": 0.404 + }, + { + "start": 10713.22, + "end": 10714.98, + "probability": 0.826 + }, + { + "start": 10715.6, + "end": 10718.56, + "probability": 0.9883 + }, + { + "start": 10718.56, + "end": 10721.5, + "probability": 0.8813 + }, + { + "start": 10722.66, + "end": 10723.6, + "probability": 0.5746 + }, + { + "start": 10723.62, + "end": 10725.44, + "probability": 0.8706 + }, + { + "start": 10725.8, + "end": 10726.62, + "probability": 0.8716 + }, + { + "start": 10726.7, + "end": 10727.06, + "probability": 0.8743 + }, + { + "start": 10727.12, + "end": 10729.66, + "probability": 0.9839 + }, + { + "start": 10729.74, + "end": 10731.52, + "probability": 0.806 + }, + { + "start": 10731.96, + "end": 10733.22, + "probability": 0.9961 + }, + { + "start": 10734.14, + "end": 10738.34, + "probability": 0.9966 + }, + { + "start": 10738.48, + "end": 10742.86, + "probability": 0.9717 + }, + { + "start": 10743.42, + "end": 10745.56, + "probability": 0.9546 + }, + { + "start": 10745.7, + "end": 10747.86, + "probability": 0.981 + }, + { + "start": 10748.0, + "end": 10748.16, + "probability": 0.5205 + }, + { + "start": 10748.28, + "end": 10753.08, + "probability": 0.9004 + }, + { + "start": 10753.64, + "end": 10755.88, + "probability": 0.9477 + }, + { + "start": 10756.6, + "end": 10758.3, + "probability": 0.8615 + }, + { + "start": 10758.5, + "end": 10760.08, + "probability": 0.9548 + }, + { + "start": 10761.24, + "end": 10763.54, + "probability": 0.7861 + }, + { + "start": 10763.82, + "end": 10768.72, + "probability": 0.9749 + }, + { + "start": 10769.16, + "end": 10772.18, + "probability": 0.9936 + }, + { + "start": 10773.04, + "end": 10776.72, + "probability": 0.9913 + }, + { + "start": 10777.34, + "end": 10780.08, + "probability": 0.9883 + }, + { + "start": 10780.08, + "end": 10783.3, + "probability": 0.6667 + }, + { + "start": 10783.56, + "end": 10784.74, + "probability": 0.9282 + }, + { + "start": 10785.42, + "end": 10790.7, + "probability": 0.9502 + }, + { + "start": 10791.72, + "end": 10793.5, + "probability": 0.9736 + }, + { + "start": 10793.76, + "end": 10796.74, + "probability": 0.9976 + }, + { + "start": 10796.74, + "end": 10799.5, + "probability": 0.7502 + }, + { + "start": 10799.92, + "end": 10801.56, + "probability": 0.6842 + }, + { + "start": 10801.82, + "end": 10804.64, + "probability": 0.8989 + }, + { + "start": 10805.68, + "end": 10807.66, + "probability": 0.9348 + }, + { + "start": 10808.46, + "end": 10810.68, + "probability": 0.8947 + }, + { + "start": 10811.5, + "end": 10816.18, + "probability": 0.9966 + }, + { + "start": 10816.36, + "end": 10820.84, + "probability": 0.9555 + }, + { + "start": 10820.98, + "end": 10821.3, + "probability": 0.8142 + }, + { + "start": 10822.36, + "end": 10824.68, + "probability": 0.7441 + }, + { + "start": 10825.0, + "end": 10827.0, + "probability": 0.9827 + }, + { + "start": 10828.59, + "end": 10831.38, + "probability": 0.9644 + }, + { + "start": 10833.14, + "end": 10833.94, + "probability": 0.7406 + }, + { + "start": 10834.96, + "end": 10835.24, + "probability": 0.0937 + }, + { + "start": 10838.38, + "end": 10839.32, + "probability": 0.6493 + }, + { + "start": 10840.78, + "end": 10841.86, + "probability": 0.0512 + }, + { + "start": 10846.1, + "end": 10848.36, + "probability": 0.3976 + }, + { + "start": 10849.44, + "end": 10849.96, + "probability": 0.9431 + }, + { + "start": 10852.54, + "end": 10854.02, + "probability": 0.0342 + }, + { + "start": 10854.86, + "end": 10855.26, + "probability": 0.4877 + }, + { + "start": 10858.36, + "end": 10859.92, + "probability": 0.7687 + }, + { + "start": 10861.48, + "end": 10864.4, + "probability": 0.6517 + }, + { + "start": 10865.8, + "end": 10866.71, + "probability": 0.621 + }, + { + "start": 10868.28, + "end": 10871.26, + "probability": 0.9443 + }, + { + "start": 10872.9, + "end": 10874.86, + "probability": 0.8518 + }, + { + "start": 10882.46, + "end": 10883.96, + "probability": 0.7472 + }, + { + "start": 10884.54, + "end": 10885.64, + "probability": 0.9535 + }, + { + "start": 10886.74, + "end": 10887.48, + "probability": 0.4513 + }, + { + "start": 10888.02, + "end": 10889.88, + "probability": 0.7686 + }, + { + "start": 10890.68, + "end": 10892.8, + "probability": 0.8217 + }, + { + "start": 10892.84, + "end": 10893.44, + "probability": 0.9681 + }, + { + "start": 10893.66, + "end": 10894.08, + "probability": 0.7901 + }, + { + "start": 10894.34, + "end": 10894.64, + "probability": 0.1253 + }, + { + "start": 10896.58, + "end": 10900.3, + "probability": 0.71 + }, + { + "start": 10900.98, + "end": 10902.24, + "probability": 0.934 + }, + { + "start": 10902.64, + "end": 10903.36, + "probability": 0.9817 + }, + { + "start": 10903.52, + "end": 10904.08, + "probability": 0.9871 + }, + { + "start": 10904.26, + "end": 10904.8, + "probability": 0.9917 + }, + { + "start": 10905.18, + "end": 10905.54, + "probability": 0.9868 + }, + { + "start": 10906.52, + "end": 10907.14, + "probability": 0.8728 + }, + { + "start": 10907.22, + "end": 10908.44, + "probability": 0.9561 + }, + { + "start": 10918.52, + "end": 10919.36, + "probability": 0.606 + }, + { + "start": 10921.84, + "end": 10923.6, + "probability": 0.6797 + }, + { + "start": 10924.18, + "end": 10924.94, + "probability": 0.5091 + }, + { + "start": 10925.78, + "end": 10931.54, + "probability": 0.9813 + }, + { + "start": 10932.54, + "end": 10932.78, + "probability": 0.6472 + }, + { + "start": 10932.86, + "end": 10933.56, + "probability": 0.6182 + }, + { + "start": 10933.6, + "end": 10934.18, + "probability": 0.8622 + }, + { + "start": 10934.34, + "end": 10936.94, + "probability": 0.9982 + }, + { + "start": 10938.48, + "end": 10939.0, + "probability": 0.7502 + }, + { + "start": 10939.9, + "end": 10944.86, + "probability": 0.9297 + }, + { + "start": 10944.96, + "end": 10945.76, + "probability": 0.9629 + }, + { + "start": 10946.02, + "end": 10946.76, + "probability": 0.8561 + }, + { + "start": 10947.22, + "end": 10950.2, + "probability": 0.9751 + }, + { + "start": 10950.36, + "end": 10952.86, + "probability": 0.7573 + }, + { + "start": 10954.88, + "end": 10955.12, + "probability": 0.5721 + }, + { + "start": 10955.12, + "end": 10955.12, + "probability": 0.1282 + }, + { + "start": 10955.18, + "end": 10956.06, + "probability": 0.4093 + }, + { + "start": 10956.18, + "end": 10957.0, + "probability": 0.5639 + }, + { + "start": 10957.06, + "end": 10959.14, + "probability": 0.6857 + }, + { + "start": 10959.16, + "end": 10959.2, + "probability": 0.4995 + }, + { + "start": 10959.2, + "end": 10959.5, + "probability": 0.4347 + }, + { + "start": 10959.58, + "end": 10960.94, + "probability": 0.6714 + }, + { + "start": 10970.08, + "end": 10970.58, + "probability": 0.611 + }, + { + "start": 10972.52, + "end": 10975.86, + "probability": 0.6407 + }, + { + "start": 10977.28, + "end": 10978.68, + "probability": 0.8241 + }, + { + "start": 10980.56, + "end": 10982.72, + "probability": 0.9534 + }, + { + "start": 10984.42, + "end": 10990.36, + "probability": 0.7221 + }, + { + "start": 10992.3, + "end": 10992.4, + "probability": 0.0459 + }, + { + "start": 10992.4, + "end": 10992.82, + "probability": 0.6733 + }, + { + "start": 10993.74, + "end": 10994.6, + "probability": 0.4274 + }, + { + "start": 10995.0, + "end": 10997.48, + "probability": 0.9875 + }, + { + "start": 10997.68, + "end": 10999.92, + "probability": 0.9287 + }, + { + "start": 11000.96, + "end": 11001.66, + "probability": 0.5431 + }, + { + "start": 11002.44, + "end": 11004.94, + "probability": 0.9835 + }, + { + "start": 11005.6, + "end": 11006.24, + "probability": 0.9695 + }, + { + "start": 11007.5, + "end": 11011.26, + "probability": 0.9927 + }, + { + "start": 11011.58, + "end": 11012.5, + "probability": 0.7149 + }, + { + "start": 11012.5, + "end": 11013.52, + "probability": 0.6515 + }, + { + "start": 11014.44, + "end": 11015.82, + "probability": 0.9585 + }, + { + "start": 11017.72, + "end": 11020.74, + "probability": 0.9986 + }, + { + "start": 11021.7, + "end": 11024.44, + "probability": 0.9891 + }, + { + "start": 11024.5, + "end": 11025.22, + "probability": 0.5035 + }, + { + "start": 11026.62, + "end": 11030.92, + "probability": 0.9653 + }, + { + "start": 11031.88, + "end": 11040.98, + "probability": 0.9902 + }, + { + "start": 11042.08, + "end": 11043.98, + "probability": 0.9954 + }, + { + "start": 11044.68, + "end": 11047.34, + "probability": 0.9057 + }, + { + "start": 11049.22, + "end": 11050.12, + "probability": 0.9795 + }, + { + "start": 11051.66, + "end": 11055.2, + "probability": 0.8704 + }, + { + "start": 11056.2, + "end": 11057.92, + "probability": 0.9263 + }, + { + "start": 11058.44, + "end": 11059.3, + "probability": 0.8309 + }, + { + "start": 11059.62, + "end": 11060.24, + "probability": 0.6152 + }, + { + "start": 11060.96, + "end": 11061.48, + "probability": 0.9411 + }, + { + "start": 11062.38, + "end": 11063.12, + "probability": 0.9472 + }, + { + "start": 11063.68, + "end": 11066.84, + "probability": 0.9397 + }, + { + "start": 11067.36, + "end": 11070.76, + "probability": 0.9969 + }, + { + "start": 11071.76, + "end": 11078.14, + "probability": 0.9956 + }, + { + "start": 11079.46, + "end": 11081.94, + "probability": 0.9206 + }, + { + "start": 11083.8, + "end": 11084.9, + "probability": 0.7876 + }, + { + "start": 11085.84, + "end": 11088.44, + "probability": 0.9977 + }, + { + "start": 11089.56, + "end": 11091.32, + "probability": 0.8841 + }, + { + "start": 11092.12, + "end": 11094.94, + "probability": 0.9585 + }, + { + "start": 11096.06, + "end": 11096.88, + "probability": 0.7842 + }, + { + "start": 11097.56, + "end": 11099.46, + "probability": 0.9821 + }, + { + "start": 11100.68, + "end": 11104.2, + "probability": 0.9706 + }, + { + "start": 11104.9, + "end": 11107.9, + "probability": 0.878 + }, + { + "start": 11108.48, + "end": 11114.32, + "probability": 0.9699 + }, + { + "start": 11114.96, + "end": 11117.22, + "probability": 0.8977 + }, + { + "start": 11117.82, + "end": 11122.04, + "probability": 0.965 + }, + { + "start": 11124.92, + "end": 11127.88, + "probability": 0.9645 + }, + { + "start": 11128.94, + "end": 11133.14, + "probability": 0.9951 + }, + { + "start": 11133.18, + "end": 11135.51, + "probability": 0.9753 + }, + { + "start": 11136.32, + "end": 11138.32, + "probability": 0.9985 + }, + { + "start": 11138.64, + "end": 11139.4, + "probability": 0.6991 + }, + { + "start": 11139.5, + "end": 11139.96, + "probability": 0.6557 + }, + { + "start": 11144.28, + "end": 11145.38, + "probability": 0.9377 + }, + { + "start": 11145.56, + "end": 11149.42, + "probability": 0.9905 + }, + { + "start": 11149.8, + "end": 11151.6, + "probability": 0.9598 + }, + { + "start": 11152.6, + "end": 11153.56, + "probability": 0.9434 + }, + { + "start": 11155.7, + "end": 11157.52, + "probability": 0.9776 + }, + { + "start": 11159.14, + "end": 11160.64, + "probability": 0.6008 + }, + { + "start": 11161.58, + "end": 11162.84, + "probability": 0.4548 + }, + { + "start": 11163.28, + "end": 11165.36, + "probability": 0.7178 + }, + { + "start": 11165.92, + "end": 11167.72, + "probability": 0.8622 + }, + { + "start": 11168.52, + "end": 11175.76, + "probability": 0.9063 + }, + { + "start": 11176.16, + "end": 11179.76, + "probability": 0.8775 + }, + { + "start": 11179.92, + "end": 11179.92, + "probability": 0.0746 + }, + { + "start": 11179.92, + "end": 11179.92, + "probability": 0.2103 + }, + { + "start": 11179.92, + "end": 11179.92, + "probability": 0.0528 + }, + { + "start": 11179.92, + "end": 11180.56, + "probability": 0.443 + }, + { + "start": 11182.28, + "end": 11185.8, + "probability": 0.9466 + }, + { + "start": 11187.92, + "end": 11191.06, + "probability": 0.9578 + }, + { + "start": 11192.2, + "end": 11195.38, + "probability": 0.922 + }, + { + "start": 11196.0, + "end": 11197.94, + "probability": 0.866 + }, + { + "start": 11198.62, + "end": 11204.4, + "probability": 0.984 + }, + { + "start": 11205.48, + "end": 11208.36, + "probability": 0.9562 + }, + { + "start": 11208.36, + "end": 11214.66, + "probability": 0.7069 + }, + { + "start": 11215.14, + "end": 11216.12, + "probability": 0.8671 + }, + { + "start": 11217.18, + "end": 11219.64, + "probability": 0.9415 + }, + { + "start": 11219.64, + "end": 11220.98, + "probability": 0.906 + }, + { + "start": 11221.42, + "end": 11223.33, + "probability": 0.9675 + }, + { + "start": 11223.88, + "end": 11226.72, + "probability": 0.8299 + }, + { + "start": 11227.7, + "end": 11229.0, + "probability": 0.9536 + }, + { + "start": 11230.2, + "end": 11231.78, + "probability": 0.9414 + }, + { + "start": 11232.78, + "end": 11234.88, + "probability": 0.9717 + }, + { + "start": 11235.46, + "end": 11235.94, + "probability": 0.5265 + }, + { + "start": 11236.82, + "end": 11239.78, + "probability": 0.9643 + }, + { + "start": 11240.58, + "end": 11244.24, + "probability": 0.9304 + }, + { + "start": 11245.0, + "end": 11247.16, + "probability": 0.9875 + }, + { + "start": 11247.88, + "end": 11249.78, + "probability": 0.8153 + }, + { + "start": 11249.88, + "end": 11250.84, + "probability": 0.7848 + }, + { + "start": 11251.34, + "end": 11256.1, + "probability": 0.9807 + }, + { + "start": 11256.54, + "end": 11259.64, + "probability": 0.9918 + }, + { + "start": 11260.02, + "end": 11261.54, + "probability": 0.9745 + }, + { + "start": 11261.7, + "end": 11264.32, + "probability": 0.9936 + }, + { + "start": 11265.84, + "end": 11267.84, + "probability": 0.9982 + }, + { + "start": 11268.06, + "end": 11269.4, + "probability": 0.9578 + }, + { + "start": 11269.52, + "end": 11273.64, + "probability": 0.9962 + }, + { + "start": 11273.64, + "end": 11278.0, + "probability": 0.9097 + }, + { + "start": 11279.1, + "end": 11280.18, + "probability": 0.8665 + }, + { + "start": 11281.64, + "end": 11284.38, + "probability": 0.9046 + }, + { + "start": 11284.92, + "end": 11286.44, + "probability": 0.9427 + }, + { + "start": 11286.66, + "end": 11288.7, + "probability": 0.9785 + }, + { + "start": 11290.98, + "end": 11292.6, + "probability": 0.9513 + }, + { + "start": 11293.24, + "end": 11294.68, + "probability": 0.8248 + }, + { + "start": 11295.26, + "end": 11296.36, + "probability": 0.9077 + }, + { + "start": 11297.18, + "end": 11298.25, + "probability": 0.9816 + }, + { + "start": 11298.82, + "end": 11301.8, + "probability": 0.9971 + }, + { + "start": 11303.04, + "end": 11305.18, + "probability": 0.8586 + }, + { + "start": 11305.9, + "end": 11310.52, + "probability": 0.9951 + }, + { + "start": 11310.52, + "end": 11313.54, + "probability": 0.9996 + }, + { + "start": 11314.98, + "end": 11314.98, + "probability": 0.2085 + }, + { + "start": 11315.18, + "end": 11316.06, + "probability": 0.8229 + }, + { + "start": 11316.34, + "end": 11317.68, + "probability": 0.9484 + }, + { + "start": 11317.94, + "end": 11319.42, + "probability": 0.8743 + }, + { + "start": 11320.36, + "end": 11322.42, + "probability": 0.9797 + }, + { + "start": 11323.08, + "end": 11324.86, + "probability": 0.9901 + }, + { + "start": 11326.84, + "end": 11327.94, + "probability": 0.7705 + }, + { + "start": 11328.66, + "end": 11330.28, + "probability": 0.0235 + }, + { + "start": 11332.24, + "end": 11334.52, + "probability": 0.708 + }, + { + "start": 11334.6, + "end": 11335.84, + "probability": 0.9593 + }, + { + "start": 11336.08, + "end": 11337.12, + "probability": 0.6602 + }, + { + "start": 11337.2, + "end": 11339.19, + "probability": 0.9053 + }, + { + "start": 11341.26, + "end": 11344.85, + "probability": 0.9884 + }, + { + "start": 11345.36, + "end": 11347.9, + "probability": 0.9884 + }, + { + "start": 11347.94, + "end": 11348.76, + "probability": 0.7693 + }, + { + "start": 11348.88, + "end": 11350.04, + "probability": 0.8491 + }, + { + "start": 11350.22, + "end": 11352.04, + "probability": 0.895 + }, + { + "start": 11352.44, + "end": 11354.4, + "probability": 0.9808 + }, + { + "start": 11355.1, + "end": 11356.33, + "probability": 0.9838 + }, + { + "start": 11356.68, + "end": 11358.44, + "probability": 0.8183 + }, + { + "start": 11360.88, + "end": 11364.5, + "probability": 0.9282 + }, + { + "start": 11365.58, + "end": 11366.76, + "probability": 0.7307 + }, + { + "start": 11367.62, + "end": 11369.54, + "probability": 0.8456 + }, + { + "start": 11370.08, + "end": 11371.26, + "probability": 0.8865 + }, + { + "start": 11372.0, + "end": 11374.2, + "probability": 0.9535 + }, + { + "start": 11375.02, + "end": 11377.3, + "probability": 0.9114 + }, + { + "start": 11377.68, + "end": 11378.54, + "probability": 0.9463 + }, + { + "start": 11378.82, + "end": 11379.06, + "probability": 0.3593 + }, + { + "start": 11379.18, + "end": 11380.72, + "probability": 0.2776 + }, + { + "start": 11380.96, + "end": 11382.32, + "probability": 0.8599 + }, + { + "start": 11383.28, + "end": 11386.16, + "probability": 0.9943 + }, + { + "start": 11386.32, + "end": 11389.67, + "probability": 0.9168 + }, + { + "start": 11389.82, + "end": 11390.52, + "probability": 0.5715 + }, + { + "start": 11391.06, + "end": 11392.1, + "probability": 0.9399 + }, + { + "start": 11393.42, + "end": 11396.76, + "probability": 0.8807 + }, + { + "start": 11397.92, + "end": 11402.08, + "probability": 0.9675 + }, + { + "start": 11402.08, + "end": 11405.04, + "probability": 0.9954 + }, + { + "start": 11407.36, + "end": 11408.94, + "probability": 0.7742 + }, + { + "start": 11409.68, + "end": 11412.23, + "probability": 0.9468 + }, + { + "start": 11413.72, + "end": 11415.7, + "probability": 0.9641 + }, + { + "start": 11416.28, + "end": 11417.98, + "probability": 0.667 + }, + { + "start": 11418.32, + "end": 11422.47, + "probability": 0.9902 + }, + { + "start": 11423.24, + "end": 11425.66, + "probability": 0.9796 + }, + { + "start": 11425.94, + "end": 11429.59, + "probability": 0.8602 + }, + { + "start": 11431.6, + "end": 11434.74, + "probability": 0.8223 + }, + { + "start": 11435.8, + "end": 11438.66, + "probability": 0.8748 + }, + { + "start": 11441.76, + "end": 11443.34, + "probability": 0.963 + }, + { + "start": 11445.08, + "end": 11446.6, + "probability": 0.8484 + }, + { + "start": 11447.12, + "end": 11447.92, + "probability": 0.8416 + }, + { + "start": 11449.72, + "end": 11450.89, + "probability": 0.9854 + }, + { + "start": 11452.1, + "end": 11452.2, + "probability": 0.5778 + }, + { + "start": 11452.28, + "end": 11452.6, + "probability": 0.8885 + }, + { + "start": 11452.78, + "end": 11453.34, + "probability": 0.9383 + }, + { + "start": 11453.44, + "end": 11455.48, + "probability": 0.988 + }, + { + "start": 11456.22, + "end": 11458.03, + "probability": 0.9897 + }, + { + "start": 11458.38, + "end": 11460.54, + "probability": 0.8392 + }, + { + "start": 11460.82, + "end": 11465.74, + "probability": 0.7422 + }, + { + "start": 11466.28, + "end": 11467.76, + "probability": 0.9675 + }, + { + "start": 11468.28, + "end": 11469.74, + "probability": 0.7365 + }, + { + "start": 11469.96, + "end": 11473.02, + "probability": 0.9619 + }, + { + "start": 11473.74, + "end": 11474.54, + "probability": 0.9335 + }, + { + "start": 11475.98, + "end": 11478.76, + "probability": 0.9976 + }, + { + "start": 11479.72, + "end": 11481.08, + "probability": 0.7821 + }, + { + "start": 11482.06, + "end": 11482.42, + "probability": 0.813 + }, + { + "start": 11483.52, + "end": 11485.56, + "probability": 0.9575 + }, + { + "start": 11486.66, + "end": 11488.15, + "probability": 0.9689 + }, + { + "start": 11489.02, + "end": 11492.02, + "probability": 0.9791 + }, + { + "start": 11492.48, + "end": 11493.12, + "probability": 0.4746 + }, + { + "start": 11493.14, + "end": 11493.58, + "probability": 0.6682 + }, + { + "start": 11493.74, + "end": 11494.18, + "probability": 0.6044 + }, + { + "start": 11494.72, + "end": 11495.4, + "probability": 0.9308 + }, + { + "start": 11496.08, + "end": 11498.8, + "probability": 0.9309 + }, + { + "start": 11499.1, + "end": 11499.62, + "probability": 0.9219 + }, + { + "start": 11500.46, + "end": 11501.56, + "probability": 0.8786 + }, + { + "start": 11502.3, + "end": 11503.66, + "probability": 0.9639 + }, + { + "start": 11504.2, + "end": 11505.38, + "probability": 0.9849 + }, + { + "start": 11505.78, + "end": 11507.2, + "probability": 0.8466 + }, + { + "start": 11507.5, + "end": 11508.76, + "probability": 0.9216 + }, + { + "start": 11508.86, + "end": 11509.76, + "probability": 0.8713 + }, + { + "start": 11518.02, + "end": 11518.92, + "probability": 0.9956 + }, + { + "start": 11519.68, + "end": 11520.92, + "probability": 0.8748 + }, + { + "start": 11521.72, + "end": 11522.2, + "probability": 0.7828 + }, + { + "start": 11522.36, + "end": 11522.52, + "probability": 0.7102 + }, + { + "start": 11522.66, + "end": 11523.43, + "probability": 0.9501 + }, + { + "start": 11523.7, + "end": 11524.26, + "probability": 0.9459 + }, + { + "start": 11524.82, + "end": 11525.44, + "probability": 0.642 + }, + { + "start": 11526.44, + "end": 11527.96, + "probability": 0.9045 + }, + { + "start": 11529.4, + "end": 11529.98, + "probability": 0.5311 + }, + { + "start": 11530.3, + "end": 11532.52, + "probability": 0.9111 + }, + { + "start": 11533.9, + "end": 11534.58, + "probability": 0.5123 + }, + { + "start": 11535.02, + "end": 11535.94, + "probability": 0.8303 + }, + { + "start": 11536.7, + "end": 11537.68, + "probability": 0.7484 + }, + { + "start": 11539.0, + "end": 11543.28, + "probability": 0.9866 + }, + { + "start": 11543.88, + "end": 11544.6, + "probability": 0.8114 + }, + { + "start": 11544.7, + "end": 11545.42, + "probability": 0.9597 + }, + { + "start": 11545.5, + "end": 11546.26, + "probability": 0.7873 + }, + { + "start": 11546.52, + "end": 11547.94, + "probability": 0.9954 + }, + { + "start": 11548.0, + "end": 11549.16, + "probability": 0.991 + }, + { + "start": 11550.22, + "end": 11551.52, + "probability": 0.4332 + }, + { + "start": 11552.38, + "end": 11555.22, + "probability": 0.9995 + }, + { + "start": 11555.22, + "end": 11558.32, + "probability": 0.9692 + }, + { + "start": 11560.66, + "end": 11560.94, + "probability": 0.874 + }, + { + "start": 11561.6, + "end": 11563.04, + "probability": 0.9393 + }, + { + "start": 11563.52, + "end": 11564.1, + "probability": 0.8567 + }, + { + "start": 11564.34, + "end": 11564.76, + "probability": 0.9657 + }, + { + "start": 11566.58, + "end": 11569.66, + "probability": 0.9956 + }, + { + "start": 11569.74, + "end": 11571.24, + "probability": 0.8306 + }, + { + "start": 11572.02, + "end": 11576.16, + "probability": 0.943 + }, + { + "start": 11577.36, + "end": 11580.2, + "probability": 0.7985 + }, + { + "start": 11583.16, + "end": 11584.11, + "probability": 0.9198 + }, + { + "start": 11585.54, + "end": 11588.94, + "probability": 0.9888 + }, + { + "start": 11590.12, + "end": 11591.1, + "probability": 0.894 + }, + { + "start": 11591.38, + "end": 11592.76, + "probability": 0.9409 + }, + { + "start": 11593.24, + "end": 11595.78, + "probability": 0.9884 + }, + { + "start": 11596.06, + "end": 11596.8, + "probability": 0.4979 + }, + { + "start": 11597.08, + "end": 11597.18, + "probability": 0.7861 + }, + { + "start": 11597.82, + "end": 11603.72, + "probability": 0.9536 + }, + { + "start": 11604.08, + "end": 11605.38, + "probability": 0.5712 + }, + { + "start": 11605.42, + "end": 11607.2, + "probability": 0.9658 + }, + { + "start": 11607.3, + "end": 11608.74, + "probability": 0.9561 + }, + { + "start": 11610.16, + "end": 11613.64, + "probability": 0.9556 + }, + { + "start": 11613.86, + "end": 11614.62, + "probability": 0.8979 + }, + { + "start": 11616.04, + "end": 11619.24, + "probability": 0.9915 + }, + { + "start": 11619.32, + "end": 11620.44, + "probability": 0.9567 + }, + { + "start": 11621.48, + "end": 11623.28, + "probability": 0.9234 + }, + { + "start": 11624.04, + "end": 11629.48, + "probability": 0.8761 + }, + { + "start": 11630.46, + "end": 11631.73, + "probability": 0.5018 + }, + { + "start": 11633.62, + "end": 11634.1, + "probability": 0.6876 + }, + { + "start": 11634.42, + "end": 11635.56, + "probability": 0.8319 + }, + { + "start": 11635.82, + "end": 11637.04, + "probability": 0.9474 + }, + { + "start": 11638.52, + "end": 11639.86, + "probability": 0.9978 + }, + { + "start": 11640.82, + "end": 11643.24, + "probability": 0.9966 + }, + { + "start": 11643.32, + "end": 11645.68, + "probability": 0.8555 + }, + { + "start": 11645.76, + "end": 11647.02, + "probability": 0.7686 + }, + { + "start": 11647.72, + "end": 11650.5, + "probability": 0.8362 + }, + { + "start": 11650.56, + "end": 11651.64, + "probability": 0.8857 + }, + { + "start": 11651.76, + "end": 11652.94, + "probability": 0.8587 + }, + { + "start": 11653.54, + "end": 11656.52, + "probability": 0.9204 + }, + { + "start": 11656.9, + "end": 11657.28, + "probability": 0.9564 + }, + { + "start": 11657.28, + "end": 11658.52, + "probability": 0.9888 + }, + { + "start": 11658.96, + "end": 11659.72, + "probability": 0.834 + }, + { + "start": 11659.88, + "end": 11660.68, + "probability": 0.8401 + }, + { + "start": 11660.86, + "end": 11662.8, + "probability": 0.512 + }, + { + "start": 11662.92, + "end": 11664.87, + "probability": 0.9606 + }, + { + "start": 11668.64, + "end": 11669.32, + "probability": 0.8121 + }, + { + "start": 11671.82, + "end": 11674.2, + "probability": 0.9787 + }, + { + "start": 11676.12, + "end": 11679.9, + "probability": 0.9779 + }, + { + "start": 11681.68, + "end": 11682.64, + "probability": 0.9858 + }, + { + "start": 11683.9, + "end": 11685.22, + "probability": 0.9432 + }, + { + "start": 11686.76, + "end": 11689.72, + "probability": 0.998 + }, + { + "start": 11689.88, + "end": 11691.1, + "probability": 0.8257 + }, + { + "start": 11691.74, + "end": 11693.88, + "probability": 0.8299 + }, + { + "start": 11694.58, + "end": 11695.7, + "probability": 0.4981 + }, + { + "start": 11696.46, + "end": 11698.06, + "probability": 0.3754 + }, + { + "start": 11698.06, + "end": 11698.26, + "probability": 0.3337 + }, + { + "start": 11698.26, + "end": 11698.68, + "probability": 0.5611 + }, + { + "start": 11699.22, + "end": 11699.22, + "probability": 0.1374 + }, + { + "start": 11699.22, + "end": 11699.48, + "probability": 0.6685 + }, + { + "start": 11699.52, + "end": 11699.64, + "probability": 0.8389 + }, + { + "start": 11699.74, + "end": 11700.82, + "probability": 0.9909 + }, + { + "start": 11701.2, + "end": 11702.72, + "probability": 0.9211 + }, + { + "start": 11702.96, + "end": 11703.56, + "probability": 0.684 + }, + { + "start": 11704.12, + "end": 11706.64, + "probability": 0.8306 + }, + { + "start": 11707.44, + "end": 11709.66, + "probability": 0.5509 + }, + { + "start": 11709.92, + "end": 11712.36, + "probability": 0.9639 + }, + { + "start": 11712.5, + "end": 11713.18, + "probability": 0.8639 + }, + { + "start": 11713.24, + "end": 11713.86, + "probability": 0.7286 + }, + { + "start": 11713.86, + "end": 11714.38, + "probability": 0.8116 + }, + { + "start": 11714.76, + "end": 11715.7, + "probability": 0.9417 + }, + { + "start": 11715.9, + "end": 11716.58, + "probability": 0.9151 + }, + { + "start": 11716.98, + "end": 11719.62, + "probability": 0.9919 + }, + { + "start": 11719.66, + "end": 11721.44, + "probability": 0.9982 + }, + { + "start": 11723.74, + "end": 11725.98, + "probability": 0.366 + }, + { + "start": 11726.74, + "end": 11728.52, + "probability": 0.998 + }, + { + "start": 11728.6, + "end": 11729.64, + "probability": 0.899 + }, + { + "start": 11729.76, + "end": 11732.02, + "probability": 0.9652 + }, + { + "start": 11732.14, + "end": 11733.12, + "probability": 0.9531 + }, + { + "start": 11733.94, + "end": 11735.54, + "probability": 0.9863 + }, + { + "start": 11736.8, + "end": 11737.66, + "probability": 0.8527 + }, + { + "start": 11737.76, + "end": 11741.96, + "probability": 0.9775 + }, + { + "start": 11743.38, + "end": 11743.9, + "probability": 0.8625 + }, + { + "start": 11744.08, + "end": 11745.34, + "probability": 0.9018 + }, + { + "start": 11745.42, + "end": 11745.7, + "probability": 0.9709 + }, + { + "start": 11746.06, + "end": 11747.02, + "probability": 0.5865 + }, + { + "start": 11747.02, + "end": 11748.28, + "probability": 0.9623 + }, + { + "start": 11750.04, + "end": 11751.52, + "probability": 0.7803 + }, + { + "start": 11752.22, + "end": 11752.9, + "probability": 0.9124 + }, + { + "start": 11753.86, + "end": 11756.08, + "probability": 0.8076 + }, + { + "start": 11756.34, + "end": 11758.78, + "probability": 0.8848 + }, + { + "start": 11762.98, + "end": 11764.16, + "probability": 0.0179 + }, + { + "start": 11765.62, + "end": 11765.82, + "probability": 0.1748 + }, + { + "start": 11766.04, + "end": 11766.04, + "probability": 0.0811 + }, + { + "start": 11766.04, + "end": 11767.26, + "probability": 0.9316 + }, + { + "start": 11767.36, + "end": 11767.76, + "probability": 0.8283 + }, + { + "start": 11767.88, + "end": 11769.41, + "probability": 0.9114 + }, + { + "start": 11770.24, + "end": 11772.36, + "probability": 0.7908 + }, + { + "start": 11774.06, + "end": 11775.68, + "probability": 0.9839 + }, + { + "start": 11775.88, + "end": 11776.78, + "probability": 0.7087 + }, + { + "start": 11777.02, + "end": 11778.06, + "probability": 0.7657 + }, + { + "start": 11779.08, + "end": 11783.04, + "probability": 0.9637 + }, + { + "start": 11783.78, + "end": 11787.88, + "probability": 0.9565 + }, + { + "start": 11788.76, + "end": 11790.86, + "probability": 0.9473 + }, + { + "start": 11793.02, + "end": 11793.58, + "probability": 0.042 + }, + { + "start": 11795.72, + "end": 11798.8, + "probability": 0.9882 + }, + { + "start": 11799.64, + "end": 11802.16, + "probability": 0.7808 + }, + { + "start": 11802.62, + "end": 11807.7, + "probability": 0.9943 + }, + { + "start": 11808.3, + "end": 11809.08, + "probability": 0.7012 + }, + { + "start": 11810.08, + "end": 11811.78, + "probability": 0.9747 + }, + { + "start": 11812.74, + "end": 11814.72, + "probability": 0.8865 + }, + { + "start": 11815.9, + "end": 11817.18, + "probability": 0.7694 + }, + { + "start": 11818.96, + "end": 11819.44, + "probability": 0.7673 + }, + { + "start": 11823.22, + "end": 11825.35, + "probability": 0.7986 + }, + { + "start": 11826.24, + "end": 11827.5, + "probability": 0.6847 + }, + { + "start": 11829.16, + "end": 11833.74, + "probability": 0.9348 + }, + { + "start": 11833.8, + "end": 11837.2, + "probability": 0.9437 + }, + { + "start": 11837.28, + "end": 11837.84, + "probability": 0.8173 + }, + { + "start": 11837.9, + "end": 11839.0, + "probability": 0.9885 + }, + { + "start": 11840.26, + "end": 11841.88, + "probability": 0.8762 + }, + { + "start": 11843.34, + "end": 11844.64, + "probability": 0.9862 + }, + { + "start": 11846.78, + "end": 11847.92, + "probability": 0.9995 + }, + { + "start": 11849.08, + "end": 11850.48, + "probability": 0.6736 + }, + { + "start": 11851.2, + "end": 11854.9, + "probability": 0.9744 + }, + { + "start": 11854.98, + "end": 11856.04, + "probability": 0.6192 + }, + { + "start": 11857.52, + "end": 11858.62, + "probability": 0.8964 + }, + { + "start": 11860.7, + "end": 11863.48, + "probability": 0.9459 + }, + { + "start": 11864.3, + "end": 11865.27, + "probability": 0.9934 + }, + { + "start": 11866.0, + "end": 11867.51, + "probability": 0.0793 + }, + { + "start": 11871.41, + "end": 11873.68, + "probability": 0.4731 + }, + { + "start": 11874.24, + "end": 11875.94, + "probability": 0.8865 + }, + { + "start": 11877.1, + "end": 11878.94, + "probability": 0.9679 + }, + { + "start": 11880.18, + "end": 11884.76, + "probability": 0.9795 + }, + { + "start": 11886.02, + "end": 11889.96, + "probability": 0.9839 + }, + { + "start": 11891.3, + "end": 11895.34, + "probability": 0.9332 + }, + { + "start": 11895.54, + "end": 11896.42, + "probability": 0.6669 + }, + { + "start": 11896.98, + "end": 11901.92, + "probability": 0.9894 + }, + { + "start": 11902.36, + "end": 11905.52, + "probability": 0.9957 + }, + { + "start": 11906.88, + "end": 11907.3, + "probability": 0.7483 + }, + { + "start": 11907.84, + "end": 11908.74, + "probability": 0.9373 + }, + { + "start": 11908.9, + "end": 11909.78, + "probability": 0.7026 + }, + { + "start": 11910.02, + "end": 11911.2, + "probability": 0.833 + }, + { + "start": 11911.82, + "end": 11912.36, + "probability": 0.972 + }, + { + "start": 11912.44, + "end": 11913.92, + "probability": 0.9342 + }, + { + "start": 11914.0, + "end": 11915.28, + "probability": 0.9099 + }, + { + "start": 11915.58, + "end": 11916.66, + "probability": 0.9844 + }, + { + "start": 11917.0, + "end": 11917.6, + "probability": 0.9089 + }, + { + "start": 11917.66, + "end": 11918.3, + "probability": 0.9241 + }, + { + "start": 11918.6, + "end": 11919.14, + "probability": 0.6601 + }, + { + "start": 11919.2, + "end": 11919.7, + "probability": 0.6937 + }, + { + "start": 11919.78, + "end": 11921.04, + "probability": 0.9356 + }, + { + "start": 11921.12, + "end": 11922.56, + "probability": 0.9388 + }, + { + "start": 11924.0, + "end": 11926.42, + "probability": 0.9312 + }, + { + "start": 11927.04, + "end": 11928.42, + "probability": 0.9521 + }, + { + "start": 11929.38, + "end": 11929.72, + "probability": 0.7711 + }, + { + "start": 11930.16, + "end": 11933.98, + "probability": 0.9762 + }, + { + "start": 11935.12, + "end": 11938.7, + "probability": 0.9563 + }, + { + "start": 11939.7, + "end": 11941.1, + "probability": 0.9298 + }, + { + "start": 11942.02, + "end": 11945.02, + "probability": 0.9661 + }, + { + "start": 11945.66, + "end": 11948.98, + "probability": 0.9399 + }, + { + "start": 11950.12, + "end": 11952.76, + "probability": 0.9973 + }, + { + "start": 11953.7, + "end": 11954.3, + "probability": 0.5463 + }, + { + "start": 11955.04, + "end": 11956.78, + "probability": 0.9387 + }, + { + "start": 11958.0, + "end": 11959.39, + "probability": 0.9834 + }, + { + "start": 11959.92, + "end": 11961.52, + "probability": 0.9954 + }, + { + "start": 11962.3, + "end": 11965.92, + "probability": 0.9964 + }, + { + "start": 11966.86, + "end": 11970.06, + "probability": 0.9922 + }, + { + "start": 11970.52, + "end": 11972.68, + "probability": 0.7812 + }, + { + "start": 11976.96, + "end": 11978.0, + "probability": 0.9783 + }, + { + "start": 11979.54, + "end": 11980.56, + "probability": 0.9105 + }, + { + "start": 11980.72, + "end": 11981.02, + "probability": 0.6436 + }, + { + "start": 11981.24, + "end": 11981.42, + "probability": 0.0507 + }, + { + "start": 11981.42, + "end": 11984.36, + "probability": 0.9885 + }, + { + "start": 11985.06, + "end": 11986.24, + "probability": 0.8976 + }, + { + "start": 11987.98, + "end": 11988.98, + "probability": 0.8511 + }, + { + "start": 11989.06, + "end": 11989.36, + "probability": 0.0911 + }, + { + "start": 11991.86, + "end": 11992.32, + "probability": 0.1256 + }, + { + "start": 11993.46, + "end": 11994.3, + "probability": 0.5805 + }, + { + "start": 11995.06, + "end": 11996.86, + "probability": 0.7855 + }, + { + "start": 11997.0, + "end": 11998.58, + "probability": 0.614 + }, + { + "start": 11998.58, + "end": 11999.22, + "probability": 0.3231 + }, + { + "start": 11999.6, + "end": 12000.92, + "probability": 0.9531 + }, + { + "start": 12001.72, + "end": 12002.3, + "probability": 0.4979 + }, + { + "start": 12002.54, + "end": 12003.14, + "probability": 0.509 + }, + { + "start": 12003.86, + "end": 12004.62, + "probability": 0.4462 + }, + { + "start": 12004.76, + "end": 12006.34, + "probability": 0.6095 + }, + { + "start": 12006.44, + "end": 12006.86, + "probability": 0.7273 + }, + { + "start": 12007.28, + "end": 12011.9, + "probability": 0.9513 + }, + { + "start": 12012.8, + "end": 12016.44, + "probability": 0.9935 + }, + { + "start": 12017.06, + "end": 12017.7, + "probability": 0.983 + }, + { + "start": 12018.56, + "end": 12019.74, + "probability": 0.9756 + }, + { + "start": 12020.38, + "end": 12022.74, + "probability": 0.9966 + }, + { + "start": 12022.94, + "end": 12026.24, + "probability": 0.822 + }, + { + "start": 12026.26, + "end": 12028.11, + "probability": 0.8944 + }, + { + "start": 12028.74, + "end": 12032.34, + "probability": 0.9829 + }, + { + "start": 12033.06, + "end": 12034.66, + "probability": 0.9978 + }, + { + "start": 12035.46, + "end": 12038.76, + "probability": 0.9727 + }, + { + "start": 12040.06, + "end": 12041.32, + "probability": 0.972 + }, + { + "start": 12042.02, + "end": 12042.4, + "probability": 0.7474 + }, + { + "start": 12042.74, + "end": 12045.2, + "probability": 0.8625 + }, + { + "start": 12045.32, + "end": 12048.24, + "probability": 0.9412 + }, + { + "start": 12049.44, + "end": 12050.12, + "probability": 0.3585 + }, + { + "start": 12052.02, + "end": 12052.62, + "probability": 0.6194 + }, + { + "start": 12067.18, + "end": 12070.52, + "probability": 0.8185 + }, + { + "start": 12072.7, + "end": 12075.44, + "probability": 0.9546 + }, + { + "start": 12077.02, + "end": 12078.84, + "probability": 0.7572 + }, + { + "start": 12079.81, + "end": 12081.14, + "probability": 0.9294 + }, + { + "start": 12083.06, + "end": 12086.94, + "probability": 0.9956 + }, + { + "start": 12088.14, + "end": 12089.2, + "probability": 0.8342 + }, + { + "start": 12090.42, + "end": 12093.24, + "probability": 0.9417 + }, + { + "start": 12094.22, + "end": 12094.78, + "probability": 0.7248 + }, + { + "start": 12094.86, + "end": 12097.7, + "probability": 0.8457 + }, + { + "start": 12099.9, + "end": 12100.85, + "probability": 0.8338 + }, + { + "start": 12102.7, + "end": 12106.54, + "probability": 0.9629 + }, + { + "start": 12109.76, + "end": 12112.58, + "probability": 0.9001 + }, + { + "start": 12114.46, + "end": 12115.2, + "probability": 0.9701 + }, + { + "start": 12117.1, + "end": 12118.04, + "probability": 0.9809 + }, + { + "start": 12119.76, + "end": 12121.32, + "probability": 0.8416 + }, + { + "start": 12122.54, + "end": 12127.26, + "probability": 0.9712 + }, + { + "start": 12127.98, + "end": 12129.94, + "probability": 0.5164 + }, + { + "start": 12130.86, + "end": 12131.32, + "probability": 0.1328 + }, + { + "start": 12132.12, + "end": 12132.34, + "probability": 0.0724 + }, + { + "start": 12132.36, + "end": 12134.6, + "probability": 0.8055 + }, + { + "start": 12135.82, + "end": 12137.86, + "probability": 0.7843 + }, + { + "start": 12138.72, + "end": 12140.32, + "probability": 0.9887 + }, + { + "start": 12141.66, + "end": 12143.94, + "probability": 0.9954 + }, + { + "start": 12146.22, + "end": 12147.08, + "probability": 0.3359 + }, + { + "start": 12147.76, + "end": 12149.08, + "probability": 0.9541 + }, + { + "start": 12149.14, + "end": 12149.98, + "probability": 0.7583 + }, + { + "start": 12150.42, + "end": 12151.08, + "probability": 0.5305 + }, + { + "start": 12151.16, + "end": 12152.18, + "probability": 0.9658 + }, + { + "start": 12153.98, + "end": 12154.8, + "probability": 0.9842 + }, + { + "start": 12155.74, + "end": 12158.08, + "probability": 0.9927 + }, + { + "start": 12160.6, + "end": 12162.08, + "probability": 0.9587 + }, + { + "start": 12162.08, + "end": 12162.18, + "probability": 0.3924 + }, + { + "start": 12165.04, + "end": 12166.26, + "probability": 0.9796 + }, + { + "start": 12167.92, + "end": 12171.12, + "probability": 0.9512 + }, + { + "start": 12171.58, + "end": 12173.0, + "probability": 0.8024 + }, + { + "start": 12173.46, + "end": 12175.94, + "probability": 0.9517 + }, + { + "start": 12176.2, + "end": 12177.77, + "probability": 0.9643 + }, + { + "start": 12179.86, + "end": 12182.6, + "probability": 0.9925 + }, + { + "start": 12184.84, + "end": 12188.26, + "probability": 0.933 + }, + { + "start": 12188.94, + "end": 12189.82, + "probability": 0.7019 + }, + { + "start": 12193.9, + "end": 12196.7, + "probability": 0.8426 + }, + { + "start": 12199.52, + "end": 12202.4, + "probability": 0.9776 + }, + { + "start": 12202.84, + "end": 12203.14, + "probability": 0.8433 + }, + { + "start": 12203.24, + "end": 12204.02, + "probability": 0.7868 + }, + { + "start": 12204.2, + "end": 12205.9, + "probability": 0.932 + }, + { + "start": 12205.94, + "end": 12206.7, + "probability": 0.8113 + }, + { + "start": 12207.0, + "end": 12208.24, + "probability": 0.9946 + }, + { + "start": 12211.5, + "end": 12214.22, + "probability": 0.998 + }, + { + "start": 12215.38, + "end": 12216.12, + "probability": 0.6604 + }, + { + "start": 12217.38, + "end": 12218.38, + "probability": 0.8302 + }, + { + "start": 12220.42, + "end": 12222.55, + "probability": 0.9626 + }, + { + "start": 12225.72, + "end": 12228.46, + "probability": 0.8727 + }, + { + "start": 12229.38, + "end": 12231.74, + "probability": 0.9704 + }, + { + "start": 12233.56, + "end": 12239.76, + "probability": 0.9743 + }, + { + "start": 12240.6, + "end": 12242.16, + "probability": 0.6936 + }, + { + "start": 12243.86, + "end": 12245.02, + "probability": 0.9626 + }, + { + "start": 12246.78, + "end": 12251.92, + "probability": 0.98 + }, + { + "start": 12252.92, + "end": 12253.8, + "probability": 0.9859 + }, + { + "start": 12255.92, + "end": 12257.94, + "probability": 0.9924 + }, + { + "start": 12258.62, + "end": 12259.82, + "probability": 0.563 + }, + { + "start": 12262.2, + "end": 12263.54, + "probability": 0.9808 + }, + { + "start": 12264.16, + "end": 12265.56, + "probability": 0.9926 + }, + { + "start": 12266.34, + "end": 12269.0, + "probability": 0.9967 + }, + { + "start": 12269.68, + "end": 12274.58, + "probability": 0.9934 + }, + { + "start": 12275.2, + "end": 12276.44, + "probability": 0.6263 + }, + { + "start": 12276.76, + "end": 12277.08, + "probability": 0.7011 + }, + { + "start": 12277.64, + "end": 12278.96, + "probability": 0.65 + }, + { + "start": 12279.52, + "end": 12280.04, + "probability": 0.5616 + }, + { + "start": 12281.06, + "end": 12287.58, + "probability": 0.9819 + }, + { + "start": 12287.92, + "end": 12288.54, + "probability": 0.9661 + }, + { + "start": 12288.84, + "end": 12289.48, + "probability": 0.9921 + }, + { + "start": 12289.72, + "end": 12290.34, + "probability": 0.9914 + }, + { + "start": 12290.56, + "end": 12291.32, + "probability": 0.7239 + }, + { + "start": 12292.52, + "end": 12295.7, + "probability": 0.9824 + }, + { + "start": 12295.7, + "end": 12299.72, + "probability": 0.9868 + }, + { + "start": 12299.94, + "end": 12306.2, + "probability": 0.9933 + }, + { + "start": 12306.78, + "end": 12307.12, + "probability": 0.8356 + }, + { + "start": 12310.12, + "end": 12311.06, + "probability": 0.9835 + }, + { + "start": 12313.72, + "end": 12314.58, + "probability": 0.9276 + }, + { + "start": 12317.16, + "end": 12317.79, + "probability": 0.672 + }, + { + "start": 12318.96, + "end": 12319.36, + "probability": 0.4818 + }, + { + "start": 12320.54, + "end": 12321.76, + "probability": 0.7357 + }, + { + "start": 12323.98, + "end": 12327.98, + "probability": 0.9919 + }, + { + "start": 12328.6, + "end": 12329.22, + "probability": 0.601 + }, + { + "start": 12331.22, + "end": 12331.36, + "probability": 0.4059 + }, + { + "start": 12331.88, + "end": 12332.12, + "probability": 0.5719 + }, + { + "start": 12332.12, + "end": 12332.5, + "probability": 0.6412 + }, + { + "start": 12332.64, + "end": 12333.36, + "probability": 0.7247 + }, + { + "start": 12333.86, + "end": 12335.08, + "probability": 0.8213 + }, + { + "start": 12335.54, + "end": 12338.0, + "probability": 0.906 + }, + { + "start": 12340.2, + "end": 12340.68, + "probability": 0.9515 + }, + { + "start": 12341.18, + "end": 12341.88, + "probability": 0.0884 + }, + { + "start": 12342.76, + "end": 12345.68, + "probability": 0.9565 + }, + { + "start": 12346.78, + "end": 12348.65, + "probability": 0.998 + }, + { + "start": 12349.38, + "end": 12350.54, + "probability": 0.9937 + }, + { + "start": 12351.98, + "end": 12353.2, + "probability": 0.5731 + }, + { + "start": 12353.36, + "end": 12354.84, + "probability": 0.9685 + }, + { + "start": 12355.7, + "end": 12360.3, + "probability": 0.9853 + }, + { + "start": 12361.5, + "end": 12366.08, + "probability": 0.9631 + }, + { + "start": 12366.66, + "end": 12368.3, + "probability": 0.8615 + }, + { + "start": 12368.96, + "end": 12371.02, + "probability": 0.8516 + }, + { + "start": 12372.36, + "end": 12373.68, + "probability": 0.7193 + }, + { + "start": 12374.26, + "end": 12375.22, + "probability": 0.4799 + }, + { + "start": 12375.34, + "end": 12376.08, + "probability": 0.6608 + }, + { + "start": 12376.52, + "end": 12377.56, + "probability": 0.8185 + }, + { + "start": 12378.12, + "end": 12380.57, + "probability": 0.9941 + }, + { + "start": 12381.42, + "end": 12382.6, + "probability": 0.6709 + }, + { + "start": 12383.02, + "end": 12384.34, + "probability": 0.4828 + }, + { + "start": 12384.54, + "end": 12386.12, + "probability": 0.7458 + }, + { + "start": 12386.28, + "end": 12387.42, + "probability": 0.6504 + }, + { + "start": 12387.42, + "end": 12388.68, + "probability": 0.7723 + }, + { + "start": 12388.96, + "end": 12392.42, + "probability": 0.3503 + }, + { + "start": 12393.48, + "end": 12393.78, + "probability": 0.7767 + }, + { + "start": 12394.8, + "end": 12395.06, + "probability": 0.0431 + }, + { + "start": 12397.02, + "end": 12397.5, + "probability": 0.5245 + }, + { + "start": 12399.18, + "end": 12400.16, + "probability": 0.9581 + }, + { + "start": 12402.26, + "end": 12403.3, + "probability": 0.9396 + }, + { + "start": 12406.02, + "end": 12407.24, + "probability": 0.6917 + }, + { + "start": 12409.22, + "end": 12411.92, + "probability": 0.8058 + }, + { + "start": 12413.66, + "end": 12416.0, + "probability": 0.8682 + }, + { + "start": 12417.68, + "end": 12418.96, + "probability": 0.9079 + }, + { + "start": 12420.78, + "end": 12421.96, + "probability": 0.51 + }, + { + "start": 12422.82, + "end": 12423.32, + "probability": 0.9035 + }, + { + "start": 12425.24, + "end": 12426.02, + "probability": 0.9762 + }, + { + "start": 12427.34, + "end": 12428.78, + "probability": 0.8021 + }, + { + "start": 12430.68, + "end": 12431.92, + "probability": 0.9889 + }, + { + "start": 12432.62, + "end": 12433.7, + "probability": 0.7122 + }, + { + "start": 12433.8, + "end": 12434.68, + "probability": 0.7871 + }, + { + "start": 12435.14, + "end": 12439.18, + "probability": 0.9962 + }, + { + "start": 12439.18, + "end": 12442.1, + "probability": 0.9919 + }, + { + "start": 12445.52, + "end": 12446.38, + "probability": 0.9326 + }, + { + "start": 12446.44, + "end": 12447.32, + "probability": 0.719 + }, + { + "start": 12447.36, + "end": 12451.06, + "probability": 0.9276 + }, + { + "start": 12451.06, + "end": 12454.84, + "probability": 0.9927 + }, + { + "start": 12455.38, + "end": 12458.18, + "probability": 0.8599 + }, + { + "start": 12461.94, + "end": 12463.2, + "probability": 0.9031 + }, + { + "start": 12464.52, + "end": 12467.14, + "probability": 0.8932 + }, + { + "start": 12470.1, + "end": 12471.52, + "probability": 0.9722 + }, + { + "start": 12473.08, + "end": 12475.06, + "probability": 0.9736 + }, + { + "start": 12475.26, + "end": 12477.16, + "probability": 0.9873 + }, + { + "start": 12477.92, + "end": 12482.64, + "probability": 0.9245 + }, + { + "start": 12485.3, + "end": 12488.1, + "probability": 0.9045 + }, + { + "start": 12491.54, + "end": 12494.36, + "probability": 0.8394 + }, + { + "start": 12494.62, + "end": 12496.15, + "probability": 0.7491 + }, + { + "start": 12497.04, + "end": 12503.62, + "probability": 0.9917 + }, + { + "start": 12503.94, + "end": 12504.78, + "probability": 0.3557 + }, + { + "start": 12505.22, + "end": 12506.68, + "probability": 0.4782 + }, + { + "start": 12507.88, + "end": 12509.22, + "probability": 0.8679 + }, + { + "start": 12510.72, + "end": 12511.48, + "probability": 0.8655 + }, + { + "start": 12514.48, + "end": 12515.72, + "probability": 0.9982 + }, + { + "start": 12516.64, + "end": 12517.84, + "probability": 0.9518 + }, + { + "start": 12518.72, + "end": 12519.48, + "probability": 0.8831 + }, + { + "start": 12520.08, + "end": 12522.92, + "probability": 0.9617 + }, + { + "start": 12524.42, + "end": 12525.74, + "probability": 0.9897 + }, + { + "start": 12528.6, + "end": 12531.9, + "probability": 0.965 + }, + { + "start": 12533.36, + "end": 12536.88, + "probability": 0.9887 + }, + { + "start": 12539.84, + "end": 12540.88, + "probability": 0.9995 + }, + { + "start": 12543.88, + "end": 12545.1, + "probability": 0.9698 + }, + { + "start": 12548.4, + "end": 12550.0, + "probability": 0.7084 + }, + { + "start": 12551.0, + "end": 12552.94, + "probability": 0.9054 + }, + { + "start": 12553.34, + "end": 12553.98, + "probability": 0.8747 + }, + { + "start": 12554.3, + "end": 12554.92, + "probability": 0.9463 + }, + { + "start": 12555.38, + "end": 12556.94, + "probability": 0.9157 + }, + { + "start": 12557.0, + "end": 12557.96, + "probability": 0.8335 + }, + { + "start": 12558.38, + "end": 12559.26, + "probability": 0.7109 + }, + { + "start": 12559.94, + "end": 12560.64, + "probability": 0.5589 + }, + { + "start": 12561.12, + "end": 12563.92, + "probability": 0.9172 + }, + { + "start": 12565.04, + "end": 12565.8, + "probability": 0.8488 + }, + { + "start": 12570.98, + "end": 12573.76, + "probability": 0.9356 + }, + { + "start": 12575.42, + "end": 12578.08, + "probability": 0.8313 + }, + { + "start": 12579.88, + "end": 12582.58, + "probability": 0.792 + }, + { + "start": 12584.72, + "end": 12586.32, + "probability": 0.5801 + }, + { + "start": 12586.78, + "end": 12588.0, + "probability": 0.896 + }, + { + "start": 12588.28, + "end": 12589.68, + "probability": 0.9956 + }, + { + "start": 12590.22, + "end": 12592.28, + "probability": 0.9946 + }, + { + "start": 12600.06, + "end": 12601.88, + "probability": 0.4994 + }, + { + "start": 12603.0, + "end": 12603.68, + "probability": 0.621 + }, + { + "start": 12605.2, + "end": 12606.1, + "probability": 0.6543 + }, + { + "start": 12607.72, + "end": 12608.58, + "probability": 0.8583 + }, + { + "start": 12609.54, + "end": 12610.64, + "probability": 0.8656 + }, + { + "start": 12611.46, + "end": 12612.66, + "probability": 0.7913 + }, + { + "start": 12615.34, + "end": 12619.94, + "probability": 0.9901 + }, + { + "start": 12620.82, + "end": 12622.36, + "probability": 0.9989 + }, + { + "start": 12623.3, + "end": 12624.02, + "probability": 0.9507 + }, + { + "start": 12626.26, + "end": 12630.2, + "probability": 0.5663 + }, + { + "start": 12630.2, + "end": 12631.3, + "probability": 0.3265 + }, + { + "start": 12631.8, + "end": 12633.94, + "probability": 0.6442 + }, + { + "start": 12634.12, + "end": 12634.9, + "probability": 0.9366 + }, + { + "start": 12635.36, + "end": 12636.0, + "probability": 0.5294 + }, + { + "start": 12636.12, + "end": 12637.03, + "probability": 0.4936 + }, + { + "start": 12639.9, + "end": 12643.12, + "probability": 0.9143 + }, + { + "start": 12643.74, + "end": 12644.76, + "probability": 0.5621 + }, + { + "start": 12646.58, + "end": 12648.87, + "probability": 0.7725 + }, + { + "start": 12650.12, + "end": 12651.34, + "probability": 0.9885 + }, + { + "start": 12652.76, + "end": 12654.74, + "probability": 0.6987 + }, + { + "start": 12656.82, + "end": 12657.58, + "probability": 0.9868 + }, + { + "start": 12659.58, + "end": 12662.7, + "probability": 0.9041 + }, + { + "start": 12665.26, + "end": 12666.22, + "probability": 0.5672 + }, + { + "start": 12670.78, + "end": 12672.08, + "probability": 0.974 + }, + { + "start": 12673.06, + "end": 12673.78, + "probability": 0.5499 + }, + { + "start": 12675.92, + "end": 12680.06, + "probability": 0.9795 + }, + { + "start": 12680.4, + "end": 12681.82, + "probability": 0.6113 + }, + { + "start": 12683.44, + "end": 12684.72, + "probability": 0.9937 + }, + { + "start": 12686.92, + "end": 12687.8, + "probability": 0.7491 + }, + { + "start": 12688.46, + "end": 12689.46, + "probability": 0.7787 + }, + { + "start": 12691.38, + "end": 12692.46, + "probability": 0.842 + }, + { + "start": 12695.78, + "end": 12697.12, + "probability": 0.779 + }, + { + "start": 12700.0, + "end": 12701.16, + "probability": 0.9946 + }, + { + "start": 12702.14, + "end": 12704.52, + "probability": 0.9663 + }, + { + "start": 12706.76, + "end": 12707.44, + "probability": 0.4743 + }, + { + "start": 12707.84, + "end": 12709.02, + "probability": 0.9766 + }, + { + "start": 12710.14, + "end": 12712.72, + "probability": 0.9973 + }, + { + "start": 12713.28, + "end": 12714.62, + "probability": 0.7661 + }, + { + "start": 12715.18, + "end": 12716.22, + "probability": 1.0 + }, + { + "start": 12717.82, + "end": 12719.1, + "probability": 0.8417 + }, + { + "start": 12720.78, + "end": 12721.02, + "probability": 0.8799 + }, + { + "start": 12723.28, + "end": 12726.02, + "probability": 0.9676 + }, + { + "start": 12726.68, + "end": 12728.68, + "probability": 0.9963 + }, + { + "start": 12728.86, + "end": 12730.08, + "probability": 0.994 + }, + { + "start": 12730.56, + "end": 12733.3, + "probability": 0.9181 + }, + { + "start": 12734.22, + "end": 12734.78, + "probability": 0.9637 + }, + { + "start": 12735.9, + "end": 12738.44, + "probability": 0.807 + }, + { + "start": 12739.98, + "end": 12742.64, + "probability": 0.9913 + }, + { + "start": 12743.96, + "end": 12745.56, + "probability": 0.9117 + }, + { + "start": 12748.68, + "end": 12751.38, + "probability": 0.876 + }, + { + "start": 12751.68, + "end": 12755.46, + "probability": 0.9976 + }, + { + "start": 12757.1, + "end": 12757.66, + "probability": 0.6774 + }, + { + "start": 12758.92, + "end": 12763.38, + "probability": 0.9647 + }, + { + "start": 12764.96, + "end": 12767.02, + "probability": 0.7933 + }, + { + "start": 12768.62, + "end": 12769.56, + "probability": 0.0533 + }, + { + "start": 12773.98, + "end": 12776.78, + "probability": 0.8368 + }, + { + "start": 12776.86, + "end": 12778.46, + "probability": 0.979 + }, + { + "start": 12778.82, + "end": 12781.24, + "probability": 0.8462 + }, + { + "start": 12783.8, + "end": 12789.76, + "probability": 0.9969 + }, + { + "start": 12790.44, + "end": 12791.28, + "probability": 0.7501 + }, + { + "start": 12793.0, + "end": 12794.04, + "probability": 0.8879 + }, + { + "start": 12796.2, + "end": 12797.3, + "probability": 0.9597 + }, + { + "start": 12799.16, + "end": 12801.58, + "probability": 0.9812 + }, + { + "start": 12802.04, + "end": 12804.1, + "probability": 0.9475 + }, + { + "start": 12805.64, + "end": 12806.86, + "probability": 0.1728 + }, + { + "start": 12809.08, + "end": 12811.38, + "probability": 0.9324 + }, + { + "start": 12814.0, + "end": 12815.68, + "probability": 0.3848 + }, + { + "start": 12815.86, + "end": 12816.86, + "probability": 0.9164 + }, + { + "start": 12818.04, + "end": 12825.3, + "probability": 0.8951 + }, + { + "start": 12827.08, + "end": 12828.72, + "probability": 0.4807 + }, + { + "start": 12829.72, + "end": 12830.96, + "probability": 0.919 + }, + { + "start": 12832.14, + "end": 12835.14, + "probability": 0.7569 + }, + { + "start": 12837.31, + "end": 12840.96, + "probability": 0.9671 + }, + { + "start": 12841.12, + "end": 12842.45, + "probability": 0.9329 + }, + { + "start": 12842.74, + "end": 12845.69, + "probability": 0.9966 + }, + { + "start": 12846.5, + "end": 12848.17, + "probability": 0.7714 + }, + { + "start": 12849.28, + "end": 12851.16, + "probability": 0.8831 + }, + { + "start": 12852.44, + "end": 12853.12, + "probability": 0.5549 + }, + { + "start": 12854.82, + "end": 12856.92, + "probability": 0.9843 + }, + { + "start": 12858.58, + "end": 12859.9, + "probability": 0.9722 + }, + { + "start": 12860.46, + "end": 12864.54, + "probability": 0.9832 + }, + { + "start": 12866.48, + "end": 12868.88, + "probability": 0.9646 + }, + { + "start": 12869.4, + "end": 12870.56, + "probability": 0.3881 + }, + { + "start": 12871.82, + "end": 12877.38, + "probability": 0.8932 + }, + { + "start": 12878.1, + "end": 12879.14, + "probability": 0.2278 + }, + { + "start": 12880.27, + "end": 12882.33, + "probability": 0.8015 + }, + { + "start": 12882.6, + "end": 12884.4, + "probability": 0.9584 + }, + { + "start": 12885.2, + "end": 12887.16, + "probability": 0.9297 + }, + { + "start": 12887.76, + "end": 12890.68, + "probability": 0.706 + }, + { + "start": 12891.91, + "end": 12895.7, + "probability": 0.7285 + }, + { + "start": 12895.96, + "end": 12898.36, + "probability": 0.9365 + }, + { + "start": 12899.06, + "end": 12899.92, + "probability": 0.7144 + }, + { + "start": 12900.16, + "end": 12901.9, + "probability": 0.9919 + }, + { + "start": 12902.68, + "end": 12903.51, + "probability": 0.4191 + }, + { + "start": 12904.8, + "end": 12905.08, + "probability": 0.0635 + }, + { + "start": 12906.21, + "end": 12907.18, + "probability": 0.9934 + }, + { + "start": 12907.88, + "end": 12908.68, + "probability": 0.9536 + }, + { + "start": 12908.74, + "end": 12908.98, + "probability": 0.4133 + }, + { + "start": 12909.06, + "end": 12909.62, + "probability": 0.6767 + }, + { + "start": 12909.84, + "end": 12910.48, + "probability": 0.5229 + }, + { + "start": 12912.36, + "end": 12913.32, + "probability": 0.9526 + }, + { + "start": 12914.56, + "end": 12920.22, + "probability": 0.9517 + }, + { + "start": 12920.22, + "end": 12925.08, + "probability": 0.9215 + }, + { + "start": 12929.94, + "end": 12931.0, + "probability": 0.8018 + }, + { + "start": 12932.02, + "end": 12933.12, + "probability": 0.9753 + }, + { + "start": 12938.36, + "end": 12940.52, + "probability": 0.9647 + }, + { + "start": 12943.46, + "end": 12945.36, + "probability": 0.958 + }, + { + "start": 12948.24, + "end": 12949.68, + "probability": 0.9902 + }, + { + "start": 12952.14, + "end": 12956.12, + "probability": 0.7776 + }, + { + "start": 12957.48, + "end": 12959.06, + "probability": 0.9465 + }, + { + "start": 12962.62, + "end": 12964.14, + "probability": 0.6538 + }, + { + "start": 12964.6, + "end": 12968.76, + "probability": 0.1577 + }, + { + "start": 12970.06, + "end": 12972.36, + "probability": 0.5323 + }, + { + "start": 12972.5, + "end": 12974.54, + "probability": 0.6023 + }, + { + "start": 12974.7, + "end": 12975.35, + "probability": 0.9695 + }, + { + "start": 12975.68, + "end": 12977.88, + "probability": 0.3366 + }, + { + "start": 12977.92, + "end": 12979.74, + "probability": 0.6253 + }, + { + "start": 12979.98, + "end": 12980.1, + "probability": 0.3821 + }, + { + "start": 12980.1, + "end": 12981.28, + "probability": 0.3087 + }, + { + "start": 12981.28, + "end": 12984.4, + "probability": 0.6741 + }, + { + "start": 12984.86, + "end": 12985.98, + "probability": 0.5014 + }, + { + "start": 12986.7, + "end": 12987.94, + "probability": 0.3012 + }, + { + "start": 12988.32, + "end": 12992.52, + "probability": 0.6228 + }, + { + "start": 12992.88, + "end": 12996.02, + "probability": 0.8578 + }, + { + "start": 12997.14, + "end": 12998.09, + "probability": 0.9424 + }, + { + "start": 12999.02, + "end": 13001.3, + "probability": 0.7544 + }, + { + "start": 13002.26, + "end": 13003.0, + "probability": 0.7373 + }, + { + "start": 13003.08, + "end": 13004.48, + "probability": 0.8402 + }, + { + "start": 13004.52, + "end": 13005.24, + "probability": 0.5929 + }, + { + "start": 13006.1, + "end": 13008.86, + "probability": 0.9758 + }, + { + "start": 13009.6, + "end": 13009.88, + "probability": 0.8951 + }, + { + "start": 13010.42, + "end": 13011.94, + "probability": 0.9773 + }, + { + "start": 13012.06, + "end": 13013.56, + "probability": 0.9127 + }, + { + "start": 13014.34, + "end": 13017.32, + "probability": 0.9284 + }, + { + "start": 13018.56, + "end": 13025.56, + "probability": 0.9537 + }, + { + "start": 13027.56, + "end": 13027.56, + "probability": 0.2916 + }, + { + "start": 13027.56, + "end": 13028.46, + "probability": 0.7883 + }, + { + "start": 13029.46, + "end": 13030.54, + "probability": 0.8507 + }, + { + "start": 13032.58, + "end": 13033.46, + "probability": 0.8051 + }, + { + "start": 13034.08, + "end": 13036.0, + "probability": 0.8817 + }, + { + "start": 13037.72, + "end": 13043.55, + "probability": 0.9479 + }, + { + "start": 13046.72, + "end": 13047.74, + "probability": 0.6166 + }, + { + "start": 13048.36, + "end": 13051.04, + "probability": 0.9875 + }, + { + "start": 13051.76, + "end": 13053.06, + "probability": 0.5284 + }, + { + "start": 13055.04, + "end": 13058.89, + "probability": 0.8959 + }, + { + "start": 13060.8, + "end": 13061.74, + "probability": 0.9183 + }, + { + "start": 13062.74, + "end": 13065.44, + "probability": 0.9468 + }, + { + "start": 13065.62, + "end": 13066.84, + "probability": 0.069 + }, + { + "start": 13068.42, + "end": 13070.94, + "probability": 0.9824 + }, + { + "start": 13071.82, + "end": 13074.04, + "probability": 0.4143 + }, + { + "start": 13074.18, + "end": 13075.34, + "probability": 0.7439 + }, + { + "start": 13075.66, + "end": 13078.68, + "probability": 0.9761 + }, + { + "start": 13079.68, + "end": 13083.1, + "probability": 0.7937 + }, + { + "start": 13083.98, + "end": 13086.82, + "probability": 0.9915 + }, + { + "start": 13087.9, + "end": 13088.44, + "probability": 0.7424 + }, + { + "start": 13090.74, + "end": 13098.42, + "probability": 0.9565 + }, + { + "start": 13100.5, + "end": 13102.18, + "probability": 0.987 + }, + { + "start": 13102.96, + "end": 13105.58, + "probability": 0.9777 + }, + { + "start": 13106.46, + "end": 13107.96, + "probability": 0.9569 + }, + { + "start": 13108.86, + "end": 13110.42, + "probability": 0.7937 + }, + { + "start": 13111.36, + "end": 13112.06, + "probability": 0.9282 + }, + { + "start": 13117.58, + "end": 13119.6, + "probability": 0.825 + }, + { + "start": 13121.96, + "end": 13123.24, + "probability": 0.9904 + }, + { + "start": 13124.3, + "end": 13128.24, + "probability": 0.9412 + }, + { + "start": 13132.52, + "end": 13135.22, + "probability": 0.9841 + }, + { + "start": 13136.12, + "end": 13137.44, + "probability": 0.9893 + }, + { + "start": 13138.1, + "end": 13139.08, + "probability": 0.9412 + }, + { + "start": 13140.64, + "end": 13141.22, + "probability": 0.9548 + }, + { + "start": 13143.2, + "end": 13146.74, + "probability": 0.8801 + }, + { + "start": 13147.72, + "end": 13150.36, + "probability": 0.7236 + }, + { + "start": 13151.02, + "end": 13151.74, + "probability": 0.9123 + }, + { + "start": 13153.18, + "end": 13155.16, + "probability": 0.6887 + }, + { + "start": 13155.46, + "end": 13156.86, + "probability": 0.8796 + }, + { + "start": 13157.1, + "end": 13158.26, + "probability": 0.9197 + }, + { + "start": 13160.56, + "end": 13161.12, + "probability": 0.639 + }, + { + "start": 13161.82, + "end": 13163.8, + "probability": 0.689 + }, + { + "start": 13165.56, + "end": 13166.38, + "probability": 0.6008 + }, + { + "start": 13168.16, + "end": 13169.8, + "probability": 0.9066 + }, + { + "start": 13170.96, + "end": 13172.8, + "probability": 0.4269 + }, + { + "start": 13173.78, + "end": 13174.0, + "probability": 0.0017 + }, + { + "start": 13175.58, + "end": 13175.9, + "probability": 0.0029 + }, + { + "start": 13175.9, + "end": 13175.9, + "probability": 0.6016 + }, + { + "start": 13175.9, + "end": 13177.04, + "probability": 0.3934 + }, + { + "start": 13178.7, + "end": 13181.1, + "probability": 0.7778 + }, + { + "start": 13182.78, + "end": 13184.86, + "probability": 0.998 + }, + { + "start": 13186.9, + "end": 13190.02, + "probability": 0.7786 + }, + { + "start": 13190.14, + "end": 13190.76, + "probability": 0.8138 + }, + { + "start": 13193.12, + "end": 13197.3, + "probability": 0.04 + }, + { + "start": 13197.34, + "end": 13197.34, + "probability": 0.0428 + }, + { + "start": 13197.34, + "end": 13197.34, + "probability": 0.2701 + }, + { + "start": 13197.34, + "end": 13199.7, + "probability": 0.7186 + }, + { + "start": 13200.48, + "end": 13203.66, + "probability": 0.835 + }, + { + "start": 13204.66, + "end": 13206.74, + "probability": 0.9908 + }, + { + "start": 13208.0, + "end": 13208.92, + "probability": 0.9083 + }, + { + "start": 13210.38, + "end": 13210.68, + "probability": 0.8835 + }, + { + "start": 13212.28, + "end": 13216.02, + "probability": 0.9646 + }, + { + "start": 13216.24, + "end": 13217.06, + "probability": 0.6175 + }, + { + "start": 13220.08, + "end": 13220.68, + "probability": 0.7098 + }, + { + "start": 13222.56, + "end": 13223.39, + "probability": 0.9889 + }, + { + "start": 13225.2, + "end": 13226.04, + "probability": 0.9747 + }, + { + "start": 13229.22, + "end": 13233.86, + "probability": 0.9847 + }, + { + "start": 13234.42, + "end": 13235.57, + "probability": 0.7537 + }, + { + "start": 13236.86, + "end": 13238.64, + "probability": 0.9943 + }, + { + "start": 13240.24, + "end": 13242.6, + "probability": 0.8611 + }, + { + "start": 13243.12, + "end": 13243.9, + "probability": 0.7327 + }, + { + "start": 13245.12, + "end": 13246.9, + "probability": 0.4258 + }, + { + "start": 13248.54, + "end": 13249.44, + "probability": 0.6997 + }, + { + "start": 13251.44, + "end": 13253.42, + "probability": 0.8579 + }, + { + "start": 13253.72, + "end": 13257.28, + "probability": 0.3242 + }, + { + "start": 13258.28, + "end": 13260.76, + "probability": 0.8384 + }, + { + "start": 13261.46, + "end": 13262.48, + "probability": 0.8982 + }, + { + "start": 13263.32, + "end": 13265.42, + "probability": 0.5003 + }, + { + "start": 13266.06, + "end": 13267.26, + "probability": 0.9462 + }, + { + "start": 13268.0, + "end": 13269.2, + "probability": 0.8486 + }, + { + "start": 13269.76, + "end": 13272.42, + "probability": 0.9908 + }, + { + "start": 13273.14, + "end": 13273.68, + "probability": 0.9268 + }, + { + "start": 13275.32, + "end": 13278.45, + "probability": 0.969 + }, + { + "start": 13279.78, + "end": 13280.96, + "probability": 0.9456 + }, + { + "start": 13283.26, + "end": 13283.8, + "probability": 0.5272 + }, + { + "start": 13284.46, + "end": 13287.78, + "probability": 0.9897 + }, + { + "start": 13288.96, + "end": 13289.76, + "probability": 0.7491 + }, + { + "start": 13290.4, + "end": 13294.68, + "probability": 0.7968 + }, + { + "start": 13294.76, + "end": 13295.3, + "probability": 0.9146 + }, + { + "start": 13295.32, + "end": 13296.2, + "probability": 0.9102 + }, + { + "start": 13296.86, + "end": 13298.24, + "probability": 0.9938 + }, + { + "start": 13299.04, + "end": 13299.9, + "probability": 0.4478 + }, + { + "start": 13300.32, + "end": 13303.12, + "probability": 0.8172 + }, + { + "start": 13306.7, + "end": 13308.34, + "probability": 0.8518 + }, + { + "start": 13308.62, + "end": 13311.48, + "probability": 0.9773 + }, + { + "start": 13311.82, + "end": 13314.18, + "probability": 0.7058 + }, + { + "start": 13315.3, + "end": 13316.05, + "probability": 0.7551 + }, + { + "start": 13317.14, + "end": 13317.74, + "probability": 0.6833 + }, + { + "start": 13318.06, + "end": 13319.3, + "probability": 0.5216 + }, + { + "start": 13320.44, + "end": 13322.22, + "probability": 0.5631 + }, + { + "start": 13322.36, + "end": 13324.78, + "probability": 0.9832 + }, + { + "start": 13325.36, + "end": 13326.62, + "probability": 0.8924 + }, + { + "start": 13328.52, + "end": 13329.48, + "probability": 0.9905 + }, + { + "start": 13332.26, + "end": 13332.84, + "probability": 0.9641 + }, + { + "start": 13337.7, + "end": 13338.06, + "probability": 0.0318 + }, + { + "start": 13338.84, + "end": 13339.38, + "probability": 0.6569 + }, + { + "start": 13339.38, + "end": 13340.06, + "probability": 0.3719 + }, + { + "start": 13340.18, + "end": 13341.52, + "probability": 0.1411 + }, + { + "start": 13342.5, + "end": 13344.04, + "probability": 0.2585 + }, + { + "start": 13344.32, + "end": 13347.04, + "probability": 0.365 + }, + { + "start": 13348.62, + "end": 13352.44, + "probability": 0.942 + }, + { + "start": 13354.42, + "end": 13358.74, + "probability": 0.9888 + }, + { + "start": 13361.47, + "end": 13361.92, + "probability": 0.087 + }, + { + "start": 13361.92, + "end": 13362.02, + "probability": 0.6586 + }, + { + "start": 13364.98, + "end": 13366.08, + "probability": 0.7934 + }, + { + "start": 13369.24, + "end": 13371.02, + "probability": 0.9827 + }, + { + "start": 13373.88, + "end": 13374.88, + "probability": 0.8378 + }, + { + "start": 13377.18, + "end": 13379.88, + "probability": 0.9575 + }, + { + "start": 13381.82, + "end": 13382.42, + "probability": 0.7635 + }, + { + "start": 13383.96, + "end": 13386.34, + "probability": 0.9653 + }, + { + "start": 13389.78, + "end": 13391.76, + "probability": 0.9724 + }, + { + "start": 13394.14, + "end": 13394.6, + "probability": 0.2885 + }, + { + "start": 13394.84, + "end": 13395.08, + "probability": 0.9251 + }, + { + "start": 13395.5, + "end": 13397.68, + "probability": 0.861 + }, + { + "start": 13399.38, + "end": 13401.32, + "probability": 0.9623 + }, + { + "start": 13403.02, + "end": 13403.56, + "probability": 0.8093 + }, + { + "start": 13403.88, + "end": 13406.4, + "probability": 0.8863 + }, + { + "start": 13406.72, + "end": 13406.98, + "probability": 0.8091 + }, + { + "start": 13407.2, + "end": 13407.8, + "probability": 0.7479 + }, + { + "start": 13407.86, + "end": 13408.22, + "probability": 0.873 + }, + { + "start": 13409.0, + "end": 13410.74, + "probability": 0.9852 + }, + { + "start": 13413.54, + "end": 13414.64, + "probability": 0.96 + }, + { + "start": 13419.18, + "end": 13419.86, + "probability": 0.7803 + }, + { + "start": 13422.72, + "end": 13423.78, + "probability": 0.8092 + }, + { + "start": 13424.98, + "end": 13428.63, + "probability": 0.9789 + }, + { + "start": 13429.9, + "end": 13430.28, + "probability": 0.7847 + }, + { + "start": 13431.04, + "end": 13431.88, + "probability": 0.8887 + }, + { + "start": 13432.82, + "end": 13435.5, + "probability": 0.9818 + }, + { + "start": 13436.3, + "end": 13439.78, + "probability": 0.9692 + }, + { + "start": 13441.56, + "end": 13443.2, + "probability": 0.75 + }, + { + "start": 13444.44, + "end": 13446.2, + "probability": 0.9395 + }, + { + "start": 13447.86, + "end": 13449.9, + "probability": 0.6224 + }, + { + "start": 13450.9, + "end": 13456.34, + "probability": 0.7545 + }, + { + "start": 13456.5, + "end": 13459.38, + "probability": 0.9374 + }, + { + "start": 13459.98, + "end": 13460.54, + "probability": 0.5932 + }, + { + "start": 13464.94, + "end": 13469.42, + "probability": 0.8378 + }, + { + "start": 13470.5, + "end": 13472.78, + "probability": 0.9948 + }, + { + "start": 13473.72, + "end": 13474.48, + "probability": 0.7651 + }, + { + "start": 13475.12, + "end": 13475.78, + "probability": 0.8964 + }, + { + "start": 13477.86, + "end": 13478.78, + "probability": 0.9685 + }, + { + "start": 13481.46, + "end": 13481.96, + "probability": 0.9567 + }, + { + "start": 13484.64, + "end": 13490.18, + "probability": 0.9612 + }, + { + "start": 13491.64, + "end": 13492.08, + "probability": 0.9464 + }, + { + "start": 13493.74, + "end": 13497.02, + "probability": 0.9103 + }, + { + "start": 13497.66, + "end": 13501.34, + "probability": 0.82 + }, + { + "start": 13503.22, + "end": 13504.72, + "probability": 0.9563 + }, + { + "start": 13507.0, + "end": 13507.76, + "probability": 0.9803 + }, + { + "start": 13509.3, + "end": 13511.02, + "probability": 0.9773 + }, + { + "start": 13515.22, + "end": 13519.64, + "probability": 0.8282 + }, + { + "start": 13522.32, + "end": 13525.26, + "probability": 0.9896 + }, + { + "start": 13526.98, + "end": 13528.48, + "probability": 0.9548 + }, + { + "start": 13528.78, + "end": 13530.36, + "probability": 0.8597 + }, + { + "start": 13530.94, + "end": 13532.98, + "probability": 0.981 + }, + { + "start": 13533.26, + "end": 13535.16, + "probability": 0.9037 + }, + { + "start": 13536.94, + "end": 13538.44, + "probability": 0.2613 + }, + { + "start": 13539.18, + "end": 13540.02, + "probability": 0.9253 + }, + { + "start": 13540.16, + "end": 13540.86, + "probability": 0.9266 + }, + { + "start": 13541.26, + "end": 13543.4, + "probability": 0.8759 + }, + { + "start": 13543.64, + "end": 13545.78, + "probability": 0.6761 + }, + { + "start": 13546.44, + "end": 13548.0, + "probability": 0.8331 + }, + { + "start": 13549.98, + "end": 13550.4, + "probability": 0.8898 + }, + { + "start": 13552.18, + "end": 13555.08, + "probability": 0.9963 + }, + { + "start": 13555.56, + "end": 13560.36, + "probability": 0.9726 + }, + { + "start": 13562.72, + "end": 13564.24, + "probability": 0.8923 + }, + { + "start": 13564.42, + "end": 13568.84, + "probability": 0.9156 + }, + { + "start": 13569.64, + "end": 13570.28, + "probability": 0.3262 + }, + { + "start": 13572.82, + "end": 13574.9, + "probability": 0.8133 + }, + { + "start": 13575.0, + "end": 13575.78, + "probability": 0.9868 + }, + { + "start": 13577.16, + "end": 13579.3, + "probability": 0.9604 + }, + { + "start": 13580.42, + "end": 13582.04, + "probability": 0.6664 + }, + { + "start": 13582.94, + "end": 13584.76, + "probability": 0.9624 + }, + { + "start": 13586.72, + "end": 13588.24, + "probability": 0.9822 + }, + { + "start": 13588.56, + "end": 13590.64, + "probability": 0.8547 + }, + { + "start": 13591.0, + "end": 13593.1, + "probability": 0.9318 + }, + { + "start": 13593.18, + "end": 13593.66, + "probability": 0.9147 + }, + { + "start": 13595.46, + "end": 13598.07, + "probability": 0.9891 + }, + { + "start": 13598.28, + "end": 13599.96, + "probability": 0.5521 + }, + { + "start": 13600.9, + "end": 13602.86, + "probability": 0.8503 + }, + { + "start": 13604.12, + "end": 13605.4, + "probability": 0.9948 + }, + { + "start": 13606.75, + "end": 13609.34, + "probability": 0.6627 + }, + { + "start": 13609.7, + "end": 13611.56, + "probability": 0.8906 + }, + { + "start": 13612.28, + "end": 13615.39, + "probability": 0.9974 + }, + { + "start": 13622.18, + "end": 13623.18, + "probability": 0.8132 + }, + { + "start": 13624.06, + "end": 13626.38, + "probability": 0.7739 + }, + { + "start": 13629.58, + "end": 13631.36, + "probability": 0.9468 + }, + { + "start": 13632.58, + "end": 13634.66, + "probability": 0.9763 + }, + { + "start": 13637.86, + "end": 13640.46, + "probability": 0.9125 + }, + { + "start": 13644.48, + "end": 13648.04, + "probability": 0.9902 + }, + { + "start": 13648.44, + "end": 13648.98, + "probability": 0.8113 + }, + { + "start": 13649.66, + "end": 13650.2, + "probability": 0.964 + }, + { + "start": 13651.88, + "end": 13654.1, + "probability": 0.9625 + }, + { + "start": 13654.66, + "end": 13655.44, + "probability": 0.6743 + }, + { + "start": 13656.08, + "end": 13657.02, + "probability": 0.9459 + }, + { + "start": 13658.06, + "end": 13659.74, + "probability": 0.7954 + }, + { + "start": 13661.36, + "end": 13662.02, + "probability": 0.9118 + }, + { + "start": 13662.18, + "end": 13663.72, + "probability": 0.9822 + }, + { + "start": 13663.78, + "end": 13665.06, + "probability": 0.9101 + }, + { + "start": 13667.06, + "end": 13668.3, + "probability": 0.9459 + }, + { + "start": 13670.16, + "end": 13672.68, + "probability": 0.8323 + }, + { + "start": 13673.08, + "end": 13673.76, + "probability": 0.8658 + }, + { + "start": 13675.12, + "end": 13675.44, + "probability": 0.41 + }, + { + "start": 13678.72, + "end": 13680.28, + "probability": 0.8175 + }, + { + "start": 13683.34, + "end": 13689.5, + "probability": 0.7112 + }, + { + "start": 13689.52, + "end": 13691.15, + "probability": 0.9509 + }, + { + "start": 13692.14, + "end": 13694.4, + "probability": 0.9255 + }, + { + "start": 13695.14, + "end": 13696.65, + "probability": 0.9268 + }, + { + "start": 13698.02, + "end": 13698.54, + "probability": 0.9578 + }, + { + "start": 13699.54, + "end": 13705.6, + "probability": 0.9735 + }, + { + "start": 13706.6, + "end": 13708.88, + "probability": 0.9817 + }, + { + "start": 13709.3, + "end": 13710.84, + "probability": 0.9719 + }, + { + "start": 13711.92, + "end": 13712.44, + "probability": 0.8423 + }, + { + "start": 13714.12, + "end": 13714.8, + "probability": 0.7552 + }, + { + "start": 13715.86, + "end": 13716.64, + "probability": 0.8993 + }, + { + "start": 13719.24, + "end": 13719.94, + "probability": 0.9243 + }, + { + "start": 13720.96, + "end": 13721.28, + "probability": 0.2726 + }, + { + "start": 13721.92, + "end": 13724.92, + "probability": 0.9623 + }, + { + "start": 13726.28, + "end": 13730.58, + "probability": 0.922 + }, + { + "start": 13732.74, + "end": 13736.86, + "probability": 0.9147 + }, + { + "start": 13738.4, + "end": 13744.4, + "probability": 0.7433 + }, + { + "start": 13745.48, + "end": 13748.16, + "probability": 0.9033 + }, + { + "start": 13748.96, + "end": 13752.29, + "probability": 0.9738 + }, + { + "start": 13753.64, + "end": 13755.3, + "probability": 0.9989 + }, + { + "start": 13756.0, + "end": 13756.52, + "probability": 0.7474 + }, + { + "start": 13757.84, + "end": 13758.5, + "probability": 0.8107 + }, + { + "start": 13759.14, + "end": 13761.76, + "probability": 0.9473 + }, + { + "start": 13765.11, + "end": 13766.82, + "probability": 0.5238 + }, + { + "start": 13767.66, + "end": 13768.56, + "probability": 0.625 + }, + { + "start": 13769.7, + "end": 13771.16, + "probability": 0.991 + }, + { + "start": 13771.84, + "end": 13772.6, + "probability": 0.1407 + }, + { + "start": 13776.02, + "end": 13779.06, + "probability": 0.8267 + }, + { + "start": 13780.76, + "end": 13782.36, + "probability": 0.873 + }, + { + "start": 13783.06, + "end": 13786.12, + "probability": 0.9844 + }, + { + "start": 13786.22, + "end": 13788.48, + "probability": 0.9191 + }, + { + "start": 13789.58, + "end": 13789.58, + "probability": 0.1322 + }, + { + "start": 13789.58, + "end": 13793.26, + "probability": 0.7128 + }, + { + "start": 13794.66, + "end": 13797.16, + "probability": 0.8098 + }, + { + "start": 13797.96, + "end": 13798.4, + "probability": 0.9383 + }, + { + "start": 13799.74, + "end": 13802.18, + "probability": 0.9827 + }, + { + "start": 13802.2, + "end": 13802.62, + "probability": 0.4293 + }, + { + "start": 13802.62, + "end": 13802.74, + "probability": 0.3745 + }, + { + "start": 13804.66, + "end": 13807.52, + "probability": 0.8584 + }, + { + "start": 13807.6, + "end": 13809.12, + "probability": 0.4193 + }, + { + "start": 13810.62, + "end": 13811.34, + "probability": 0.3633 + }, + { + "start": 13816.7, + "end": 13818.12, + "probability": 0.9306 + }, + { + "start": 13819.8, + "end": 13822.32, + "probability": 0.9406 + }, + { + "start": 13822.98, + "end": 13824.02, + "probability": 0.8218 + }, + { + "start": 13824.72, + "end": 13828.22, + "probability": 0.9893 + }, + { + "start": 13830.2, + "end": 13830.64, + "probability": 0.5462 + }, + { + "start": 13831.94, + "end": 13834.62, + "probability": 0.8888 + }, + { + "start": 13836.36, + "end": 13836.86, + "probability": 0.5079 + }, + { + "start": 13840.4, + "end": 13841.26, + "probability": 0.7537 + }, + { + "start": 13841.82, + "end": 13843.26, + "probability": 0.7908 + }, + { + "start": 13843.92, + "end": 13845.04, + "probability": 0.9635 + }, + { + "start": 13846.34, + "end": 13849.66, + "probability": 0.9524 + }, + { + "start": 13851.78, + "end": 13853.48, + "probability": 0.9949 + }, + { + "start": 13856.5, + "end": 13857.3, + "probability": 0.458 + }, + { + "start": 13862.64, + "end": 13866.74, + "probability": 0.9381 + }, + { + "start": 13867.51, + "end": 13870.16, + "probability": 0.8814 + }, + { + "start": 13871.02, + "end": 13871.64, + "probability": 0.8664 + }, + { + "start": 13872.28, + "end": 13877.87, + "probability": 0.9829 + }, + { + "start": 13878.42, + "end": 13880.38, + "probability": 0.8565 + }, + { + "start": 13881.5, + "end": 13884.66, + "probability": 0.9069 + }, + { + "start": 13886.26, + "end": 13890.78, + "probability": 0.9672 + }, + { + "start": 13891.6, + "end": 13891.62, + "probability": 0.7446 + }, + { + "start": 13895.0, + "end": 13896.58, + "probability": 0.9043 + }, + { + "start": 13896.8, + "end": 13897.78, + "probability": 0.7573 + }, + { + "start": 13897.88, + "end": 13899.08, + "probability": 0.8655 + }, + { + "start": 13900.56, + "end": 13902.6, + "probability": 0.7307 + }, + { + "start": 13904.06, + "end": 13904.98, + "probability": 0.9745 + }, + { + "start": 13905.96, + "end": 13908.3, + "probability": 0.8912 + }, + { + "start": 13910.32, + "end": 13910.68, + "probability": 0.8055 + }, + { + "start": 13912.12, + "end": 13915.28, + "probability": 0.9072 + }, + { + "start": 13916.0, + "end": 13916.8, + "probability": 0.8722 + }, + { + "start": 13918.56, + "end": 13921.88, + "probability": 0.9905 + }, + { + "start": 13924.84, + "end": 13925.14, + "probability": 0.9342 + }, + { + "start": 13927.4, + "end": 13930.68, + "probability": 0.9493 + }, + { + "start": 13932.02, + "end": 13937.54, + "probability": 0.9774 + }, + { + "start": 13937.54, + "end": 13940.28, + "probability": 0.9987 + }, + { + "start": 13940.8, + "end": 13942.37, + "probability": 0.783 + }, + { + "start": 13944.6, + "end": 13946.66, + "probability": 0.9709 + }, + { + "start": 13948.3, + "end": 13950.54, + "probability": 0.9814 + }, + { + "start": 13954.28, + "end": 13954.8, + "probability": 0.9067 + }, + { + "start": 13955.3, + "end": 13955.7, + "probability": 0.9506 + }, + { + "start": 13956.2, + "end": 13958.36, + "probability": 0.9516 + }, + { + "start": 13960.98, + "end": 13964.44, + "probability": 0.8289 + }, + { + "start": 13965.16, + "end": 13966.38, + "probability": 0.8123 + }, + { + "start": 13967.02, + "end": 13972.02, + "probability": 0.9639 + }, + { + "start": 13972.62, + "end": 13973.96, + "probability": 0.7813 + }, + { + "start": 13974.4, + "end": 13978.58, + "probability": 0.8786 + }, + { + "start": 13978.84, + "end": 13982.36, + "probability": 0.9617 + }, + { + "start": 13982.5, + "end": 13983.32, + "probability": 0.5952 + }, + { + "start": 13983.72, + "end": 13985.92, + "probability": 0.8877 + }, + { + "start": 13986.82, + "end": 13989.52, + "probability": 0.9299 + }, + { + "start": 13990.56, + "end": 13993.78, + "probability": 0.8398 + }, + { + "start": 14002.1, + "end": 14004.28, + "probability": 0.4329 + }, + { + "start": 14005.36, + "end": 14009.1, + "probability": 0.9717 + }, + { + "start": 14010.04, + "end": 14012.06, + "probability": 0.8279 + }, + { + "start": 14013.18, + "end": 14016.52, + "probability": 0.989 + }, + { + "start": 14017.98, + "end": 14018.42, + "probability": 0.6581 + }, + { + "start": 14019.46, + "end": 14021.94, + "probability": 0.9307 + }, + { + "start": 14023.14, + "end": 14023.88, + "probability": 0.9935 + }, + { + "start": 14025.52, + "end": 14028.68, + "probability": 0.6622 + }, + { + "start": 14034.52, + "end": 14035.52, + "probability": 0.7956 + }, + { + "start": 14037.4, + "end": 14038.48, + "probability": 0.8777 + }, + { + "start": 14039.26, + "end": 14039.86, + "probability": 0.7172 + }, + { + "start": 14041.22, + "end": 14045.54, + "probability": 0.9875 + }, + { + "start": 14046.48, + "end": 14049.32, + "probability": 0.9388 + }, + { + "start": 14051.02, + "end": 14054.18, + "probability": 0.9741 + }, + { + "start": 14054.36, + "end": 14056.56, + "probability": 0.4925 + }, + { + "start": 14056.82, + "end": 14058.86, + "probability": 0.8292 + }, + { + "start": 14060.48, + "end": 14064.72, + "probability": 0.972 + }, + { + "start": 14067.42, + "end": 14068.66, + "probability": 0.6093 + }, + { + "start": 14068.74, + "end": 14070.27, + "probability": 0.9783 + }, + { + "start": 14070.8, + "end": 14072.32, + "probability": 0.9882 + }, + { + "start": 14073.2, + "end": 14073.64, + "probability": 0.981 + }, + { + "start": 14076.74, + "end": 14078.14, + "probability": 0.9949 + }, + { + "start": 14078.8, + "end": 14080.28, + "probability": 0.9207 + }, + { + "start": 14081.94, + "end": 14083.68, + "probability": 0.4509 + }, + { + "start": 14083.8, + "end": 14084.96, + "probability": 0.9355 + }, + { + "start": 14085.18, + "end": 14086.66, + "probability": 0.9795 + }, + { + "start": 14086.76, + "end": 14089.2, + "probability": 0.876 + }, + { + "start": 14089.28, + "end": 14089.88, + "probability": 0.8761 + }, + { + "start": 14091.44, + "end": 14092.58, + "probability": 0.5569 + }, + { + "start": 14093.04, + "end": 14096.7, + "probability": 0.8369 + }, + { + "start": 14097.74, + "end": 14100.12, + "probability": 0.7997 + }, + { + "start": 14102.6, + "end": 14106.38, + "probability": 0.8293 + }, + { + "start": 14107.32, + "end": 14108.32, + "probability": 0.9961 + }, + { + "start": 14110.3, + "end": 14111.98, + "probability": 0.8738 + }, + { + "start": 14115.0, + "end": 14118.31, + "probability": 0.7826 + }, + { + "start": 14120.04, + "end": 14120.4, + "probability": 0.7336 + }, + { + "start": 14120.96, + "end": 14124.64, + "probability": 0.6162 + }, + { + "start": 14126.18, + "end": 14127.58, + "probability": 0.9381 + }, + { + "start": 14129.18, + "end": 14135.5, + "probability": 0.9905 + }, + { + "start": 14136.1, + "end": 14136.34, + "probability": 0.8793 + }, + { + "start": 14137.96, + "end": 14139.56, + "probability": 0.9108 + }, + { + "start": 14141.22, + "end": 14141.86, + "probability": 0.4941 + }, + { + "start": 14142.44, + "end": 14145.36, + "probability": 0.8222 + }, + { + "start": 14148.34, + "end": 14150.52, + "probability": 0.9897 + }, + { + "start": 14151.24, + "end": 14152.3, + "probability": 0.5308 + }, + { + "start": 14152.88, + "end": 14154.44, + "probability": 0.5355 + }, + { + "start": 14155.3, + "end": 14157.36, + "probability": 0.2548 + }, + { + "start": 14157.8, + "end": 14159.82, + "probability": 0.7015 + }, + { + "start": 14160.88, + "end": 14161.68, + "probability": 0.7568 + }, + { + "start": 14162.46, + "end": 14164.5, + "probability": 0.9701 + }, + { + "start": 14165.06, + "end": 14166.58, + "probability": 0.6697 + }, + { + "start": 14171.02, + "end": 14171.44, + "probability": 0.5793 + }, + { + "start": 14171.96, + "end": 14172.64, + "probability": 0.6365 + }, + { + "start": 14173.22, + "end": 14174.16, + "probability": 0.837 + }, + { + "start": 14176.72, + "end": 14181.64, + "probability": 0.812 + }, + { + "start": 14182.54, + "end": 14183.24, + "probability": 0.8879 + }, + { + "start": 14184.04, + "end": 14187.14, + "probability": 0.968 + }, + { + "start": 14188.34, + "end": 14190.56, + "probability": 0.7196 + }, + { + "start": 14192.0, + "end": 14194.64, + "probability": 0.9232 + }, + { + "start": 14194.76, + "end": 14195.94, + "probability": 0.8916 + }, + { + "start": 14196.5, + "end": 14197.12, + "probability": 0.8727 + }, + { + "start": 14199.16, + "end": 14202.46, + "probability": 0.9903 + }, + { + "start": 14202.52, + "end": 14204.28, + "probability": 0.9987 + }, + { + "start": 14205.16, + "end": 14208.48, + "probability": 0.8695 + }, + { + "start": 14209.3, + "end": 14210.62, + "probability": 0.9814 + }, + { + "start": 14211.74, + "end": 14216.38, + "probability": 0.9918 + }, + { + "start": 14217.32, + "end": 14219.18, + "probability": 0.719 + }, + { + "start": 14219.28, + "end": 14221.5, + "probability": 0.9924 + }, + { + "start": 14224.24, + "end": 14225.06, + "probability": 0.3295 + }, + { + "start": 14225.54, + "end": 14228.92, + "probability": 0.9727 + }, + { + "start": 14228.98, + "end": 14231.78, + "probability": 0.9944 + }, + { + "start": 14232.46, + "end": 14237.28, + "probability": 0.9895 + }, + { + "start": 14237.48, + "end": 14239.5, + "probability": 0.85 + }, + { + "start": 14240.64, + "end": 14243.29, + "probability": 0.6442 + }, + { + "start": 14246.36, + "end": 14246.62, + "probability": 0.925 + }, + { + "start": 14248.06, + "end": 14249.36, + "probability": 0.9926 + }, + { + "start": 14250.36, + "end": 14255.32, + "probability": 0.9788 + }, + { + "start": 14256.44, + "end": 14260.5, + "probability": 0.9818 + }, + { + "start": 14261.96, + "end": 14265.04, + "probability": 0.9926 + }, + { + "start": 14265.5, + "end": 14267.42, + "probability": 0.8095 + }, + { + "start": 14267.5, + "end": 14268.77, + "probability": 0.8092 + }, + { + "start": 14269.54, + "end": 14271.74, + "probability": 0.9897 + }, + { + "start": 14271.8, + "end": 14272.5, + "probability": 0.9076 + }, + { + "start": 14274.98, + "end": 14276.68, + "probability": 0.9497 + }, + { + "start": 14277.68, + "end": 14278.66, + "probability": 0.7846 + }, + { + "start": 14279.64, + "end": 14281.31, + "probability": 0.9988 + }, + { + "start": 14281.94, + "end": 14282.54, + "probability": 0.9954 + }, + { + "start": 14283.5, + "end": 14284.62, + "probability": 0.8889 + }, + { + "start": 14285.38, + "end": 14288.48, + "probability": 0.9992 + }, + { + "start": 14289.02, + "end": 14293.06, + "probability": 0.9978 + }, + { + "start": 14293.3, + "end": 14293.76, + "probability": 0.6039 + }, + { + "start": 14293.78, + "end": 14299.54, + "probability": 0.7508 + }, + { + "start": 14299.96, + "end": 14300.88, + "probability": 0.5582 + }, + { + "start": 14300.88, + "end": 14303.94, + "probability": 0.6187 + }, + { + "start": 14304.04, + "end": 14308.6, + "probability": 0.9756 + }, + { + "start": 14308.78, + "end": 14311.18, + "probability": 0.8325 + }, + { + "start": 14311.3, + "end": 14312.38, + "probability": 0.7629 + }, + { + "start": 14313.42, + "end": 14314.18, + "probability": 0.9247 + }, + { + "start": 14315.48, + "end": 14317.94, + "probability": 0.9902 + }, + { + "start": 14318.44, + "end": 14319.18, + "probability": 0.5044 + }, + { + "start": 14319.24, + "end": 14319.48, + "probability": 0.4012 + }, + { + "start": 14319.64, + "end": 14321.9, + "probability": 0.4083 + }, + { + "start": 14322.26, + "end": 14323.54, + "probability": 0.2753 + }, + { + "start": 14326.0, + "end": 14328.92, + "probability": 0.0999 + }, + { + "start": 14328.92, + "end": 14328.92, + "probability": 0.2001 + }, + { + "start": 14328.92, + "end": 14330.04, + "probability": 0.444 + }, + { + "start": 14332.1, + "end": 14336.94, + "probability": 0.9814 + }, + { + "start": 14337.7, + "end": 14338.48, + "probability": 0.8254 + }, + { + "start": 14339.26, + "end": 14341.56, + "probability": 0.958 + }, + { + "start": 14343.46, + "end": 14344.62, + "probability": 0.7445 + }, + { + "start": 14347.02, + "end": 14350.6, + "probability": 0.9938 + }, + { + "start": 14350.6, + "end": 14354.3, + "probability": 0.9973 + }, + { + "start": 14355.36, + "end": 14355.6, + "probability": 0.6134 + }, + { + "start": 14357.76, + "end": 14360.36, + "probability": 0.9019 + }, + { + "start": 14360.46, + "end": 14363.56, + "probability": 0.8073 + }, + { + "start": 14364.04, + "end": 14364.91, + "probability": 0.7382 + }, + { + "start": 14365.88, + "end": 14367.52, + "probability": 0.8725 + }, + { + "start": 14368.9, + "end": 14370.38, + "probability": 0.7824 + }, + { + "start": 14372.24, + "end": 14374.54, + "probability": 0.8308 + }, + { + "start": 14374.64, + "end": 14377.5, + "probability": 0.8394 + }, + { + "start": 14377.7, + "end": 14383.42, + "probability": 0.9863 + }, + { + "start": 14384.62, + "end": 14386.34, + "probability": 0.9821 + }, + { + "start": 14387.64, + "end": 14389.16, + "probability": 0.9477 + }, + { + "start": 14390.3, + "end": 14391.54, + "probability": 0.9956 + }, + { + "start": 14392.32, + "end": 14393.64, + "probability": 0.5234 + }, + { + "start": 14394.94, + "end": 14396.82, + "probability": 0.9883 + }, + { + "start": 14397.8, + "end": 14399.58, + "probability": 0.8233 + }, + { + "start": 14400.16, + "end": 14402.34, + "probability": 0.9606 + }, + { + "start": 14403.02, + "end": 14403.16, + "probability": 0.0141 + }, + { + "start": 14403.92, + "end": 14404.16, + "probability": 0.3322 + }, + { + "start": 14404.16, + "end": 14407.29, + "probability": 0.5445 + }, + { + "start": 14407.5, + "end": 14410.56, + "probability": 0.9598 + }, + { + "start": 14411.7, + "end": 14414.42, + "probability": 0.8967 + }, + { + "start": 14416.7, + "end": 14417.7, + "probability": 0.987 + }, + { + "start": 14420.34, + "end": 14423.6, + "probability": 0.6799 + }, + { + "start": 14424.0, + "end": 14425.71, + "probability": 0.9985 + }, + { + "start": 14427.3, + "end": 14432.58, + "probability": 0.9692 + }, + { + "start": 14432.68, + "end": 14437.26, + "probability": 0.9057 + }, + { + "start": 14437.58, + "end": 14438.73, + "probability": 0.9585 + }, + { + "start": 14440.3, + "end": 14445.96, + "probability": 0.9639 + }, + { + "start": 14445.96, + "end": 14449.24, + "probability": 0.9813 + }, + { + "start": 14452.16, + "end": 14454.44, + "probability": 0.9414 + }, + { + "start": 14455.28, + "end": 14456.94, + "probability": 0.5656 + }, + { + "start": 14456.96, + "end": 14458.17, + "probability": 0.9552 + }, + { + "start": 14458.58, + "end": 14460.28, + "probability": 0.8237 + }, + { + "start": 14460.68, + "end": 14463.51, + "probability": 0.7947 + }, + { + "start": 14463.68, + "end": 14464.12, + "probability": 0.7477 + }, + { + "start": 14464.12, + "end": 14468.08, + "probability": 0.4834 + }, + { + "start": 14468.38, + "end": 14473.74, + "probability": 0.6115 + }, + { + "start": 14473.95, + "end": 14474.54, + "probability": 0.4677 + }, + { + "start": 14474.94, + "end": 14475.54, + "probability": 0.2303 + }, + { + "start": 14475.74, + "end": 14478.42, + "probability": 0.8451 + }, + { + "start": 14479.26, + "end": 14481.26, + "probability": 0.9712 + }, + { + "start": 14481.9, + "end": 14484.06, + "probability": 0.7684 + }, + { + "start": 14484.92, + "end": 14487.62, + "probability": 0.0921 + }, + { + "start": 14487.62, + "end": 14487.68, + "probability": 0.1155 + }, + { + "start": 14487.92, + "end": 14488.46, + "probability": 0.0777 + }, + { + "start": 14488.5, + "end": 14488.6, + "probability": 0.5328 + }, + { + "start": 14488.6, + "end": 14489.4, + "probability": 0.6264 + }, + { + "start": 14489.46, + "end": 14491.4, + "probability": 0.9196 + }, + { + "start": 14492.38, + "end": 14493.3, + "probability": 0.8972 + }, + { + "start": 14493.34, + "end": 14495.24, + "probability": 0.8858 + }, + { + "start": 14497.16, + "end": 14498.42, + "probability": 0.9466 + }, + { + "start": 14500.58, + "end": 14501.48, + "probability": 0.958 + }, + { + "start": 14502.38, + "end": 14505.3, + "probability": 0.9955 + }, + { + "start": 14505.42, + "end": 14506.81, + "probability": 0.9701 + }, + { + "start": 14507.78, + "end": 14509.86, + "probability": 0.9978 + }, + { + "start": 14511.7, + "end": 14514.3, + "probability": 0.9714 + }, + { + "start": 14515.42, + "end": 14519.02, + "probability": 0.8657 + }, + { + "start": 14520.08, + "end": 14522.22, + "probability": 0.9685 + }, + { + "start": 14522.34, + "end": 14523.86, + "probability": 0.7937 + }, + { + "start": 14524.24, + "end": 14528.9, + "probability": 0.9766 + }, + { + "start": 14529.8, + "end": 14529.94, + "probability": 0.0008 + }, + { + "start": 14532.1, + "end": 14533.14, + "probability": 0.9884 + }, + { + "start": 14534.5, + "end": 14534.78, + "probability": 0.7192 + }, + { + "start": 14535.82, + "end": 14536.32, + "probability": 0.9431 + }, + { + "start": 14538.8, + "end": 14539.22, + "probability": 0.6576 + }, + { + "start": 14539.9, + "end": 14544.8, + "probability": 0.9625 + }, + { + "start": 14544.9, + "end": 14546.44, + "probability": 0.999 + }, + { + "start": 14547.1, + "end": 14547.62, + "probability": 0.7589 + }, + { + "start": 14548.74, + "end": 14551.06, + "probability": 0.8063 + }, + { + "start": 14551.14, + "end": 14551.14, + "probability": 0.4832 + }, + { + "start": 14552.08, + "end": 14552.62, + "probability": 0.5731 + }, + { + "start": 14552.62, + "end": 14552.84, + "probability": 0.7059 + }, + { + "start": 14553.2, + "end": 14553.9, + "probability": 0.5721 + }, + { + "start": 14554.02, + "end": 14554.44, + "probability": 0.5702 + }, + { + "start": 14554.6, + "end": 14555.52, + "probability": 0.5132 + }, + { + "start": 14555.56, + "end": 14555.84, + "probability": 0.3248 + }, + { + "start": 14556.0, + "end": 14557.22, + "probability": 0.9378 + }, + { + "start": 14558.33, + "end": 14560.28, + "probability": 0.5663 + }, + { + "start": 14560.42, + "end": 14561.56, + "probability": 0.8401 + }, + { + "start": 14561.66, + "end": 14562.54, + "probability": 0.4192 + }, + { + "start": 14563.78, + "end": 14565.63, + "probability": 0.528 + }, + { + "start": 14566.54, + "end": 14571.16, + "probability": 0.5895 + }, + { + "start": 14572.56, + "end": 14574.48, + "probability": 0.9968 + }, + { + "start": 14575.8, + "end": 14580.72, + "probability": 0.9462 + }, + { + "start": 14581.38, + "end": 14581.68, + "probability": 0.4736 + }, + { + "start": 14581.68, + "end": 14583.54, + "probability": 0.6923 + }, + { + "start": 14584.72, + "end": 14586.18, + "probability": 0.8699 + }, + { + "start": 14586.58, + "end": 14587.6, + "probability": 0.7782 + }, + { + "start": 14590.28, + "end": 14591.78, + "probability": 0.1857 + }, + { + "start": 14592.16, + "end": 14593.38, + "probability": 0.1303 + }, + { + "start": 14594.7, + "end": 14594.98, + "probability": 0.4979 + }, + { + "start": 14596.06, + "end": 14598.52, + "probability": 0.9931 + }, + { + "start": 14598.62, + "end": 14600.49, + "probability": 0.9277 + }, + { + "start": 14601.88, + "end": 14606.1, + "probability": 0.9975 + }, + { + "start": 14606.18, + "end": 14607.3, + "probability": 0.6668 + }, + { + "start": 14608.42, + "end": 14609.08, + "probability": 0.9404 + }, + { + "start": 14610.76, + "end": 14611.1, + "probability": 0.9253 + }, + { + "start": 14614.32, + "end": 14616.38, + "probability": 0.9603 + }, + { + "start": 14617.3, + "end": 14619.26, + "probability": 0.8982 + }, + { + "start": 14619.34, + "end": 14620.7, + "probability": 0.453 + }, + { + "start": 14620.82, + "end": 14622.76, + "probability": 0.7683 + }, + { + "start": 14622.92, + "end": 14625.24, + "probability": 0.8088 + }, + { + "start": 14626.56, + "end": 14627.9, + "probability": 0.9714 + }, + { + "start": 14628.98, + "end": 14631.08, + "probability": 0.5709 + }, + { + "start": 14631.34, + "end": 14634.21, + "probability": 0.9969 + }, + { + "start": 14634.84, + "end": 14635.58, + "probability": 0.9747 + }, + { + "start": 14636.14, + "end": 14636.94, + "probability": 0.5209 + }, + { + "start": 14637.52, + "end": 14640.66, + "probability": 0.9524 + }, + { + "start": 14641.0, + "end": 14641.48, + "probability": 0.9175 + }, + { + "start": 14641.74, + "end": 14642.84, + "probability": 0.6817 + }, + { + "start": 14643.72, + "end": 14645.12, + "probability": 0.9059 + }, + { + "start": 14645.2, + "end": 14646.56, + "probability": 0.202 + }, + { + "start": 14650.06, + "end": 14651.38, + "probability": 0.5784 + }, + { + "start": 14652.42, + "end": 14654.6, + "probability": 0.7583 + }, + { + "start": 14657.26, + "end": 14658.56, + "probability": 0.4264 + }, + { + "start": 14658.62, + "end": 14659.18, + "probability": 0.6592 + }, + { + "start": 14659.38, + "end": 14661.05, + "probability": 0.5872 + }, + { + "start": 14661.2, + "end": 14663.28, + "probability": 0.9125 + }, + { + "start": 14663.7, + "end": 14665.92, + "probability": 0.6387 + }, + { + "start": 14673.38, + "end": 14674.54, + "probability": 0.6814 + }, + { + "start": 14675.06, + "end": 14676.56, + "probability": 0.813 + }, + { + "start": 14682.18, + "end": 14682.9, + "probability": 0.4738 + }, + { + "start": 14685.08, + "end": 14687.34, + "probability": 0.9762 + }, + { + "start": 14689.56, + "end": 14690.58, + "probability": 0.5202 + }, + { + "start": 14691.0, + "end": 14694.28, + "probability": 0.7798 + }, + { + "start": 14694.8, + "end": 14695.92, + "probability": 0.9664 + }, + { + "start": 14696.18, + "end": 14700.04, + "probability": 0.8172 + }, + { + "start": 14701.66, + "end": 14703.64, + "probability": 0.985 + }, + { + "start": 14704.88, + "end": 14705.86, + "probability": 0.377 + }, + { + "start": 14707.06, + "end": 14708.1, + "probability": 0.9919 + }, + { + "start": 14709.22, + "end": 14713.52, + "probability": 0.9124 + }, + { + "start": 14715.68, + "end": 14716.58, + "probability": 0.6649 + }, + { + "start": 14717.14, + "end": 14719.2, + "probability": 0.6496 + }, + { + "start": 14719.46, + "end": 14720.5, + "probability": 0.6577 + }, + { + "start": 14720.54, + "end": 14722.4, + "probability": 0.7225 + }, + { + "start": 14723.58, + "end": 14726.18, + "probability": 0.9807 + }, + { + "start": 14727.9, + "end": 14728.25, + "probability": 0.4905 + }, + { + "start": 14729.28, + "end": 14735.46, + "probability": 0.97 + }, + { + "start": 14736.3, + "end": 14739.96, + "probability": 0.6691 + }, + { + "start": 14740.9, + "end": 14743.66, + "probability": 0.9938 + }, + { + "start": 14745.42, + "end": 14746.32, + "probability": 0.9954 + }, + { + "start": 14749.1, + "end": 14753.24, + "probability": 0.9635 + }, + { + "start": 14753.36, + "end": 14755.46, + "probability": 0.7776 + }, + { + "start": 14757.34, + "end": 14762.82, + "probability": 0.7441 + }, + { + "start": 14764.58, + "end": 14768.52, + "probability": 0.9804 + }, + { + "start": 14768.62, + "end": 14770.26, + "probability": 0.9696 + }, + { + "start": 14771.74, + "end": 14778.06, + "probability": 0.9681 + }, + { + "start": 14778.82, + "end": 14781.6, + "probability": 0.5951 + }, + { + "start": 14783.72, + "end": 14790.22, + "probability": 0.8911 + }, + { + "start": 14790.46, + "end": 14791.5, + "probability": 0.5893 + }, + { + "start": 14791.54, + "end": 14791.86, + "probability": 0.8253 + }, + { + "start": 14792.8, + "end": 14797.58, + "probability": 0.7047 + }, + { + "start": 14801.22, + "end": 14808.0, + "probability": 0.9091 + }, + { + "start": 14809.7, + "end": 14811.48, + "probability": 0.7821 + }, + { + "start": 14813.12, + "end": 14814.79, + "probability": 0.8242 + }, + { + "start": 14817.2, + "end": 14818.68, + "probability": 0.9117 + }, + { + "start": 14819.18, + "end": 14819.62, + "probability": 0.957 + }, + { + "start": 14820.12, + "end": 14821.52, + "probability": 0.9937 + }, + { + "start": 14822.06, + "end": 14823.38, + "probability": 0.8649 + }, + { + "start": 14824.54, + "end": 14825.26, + "probability": 0.9937 + }, + { + "start": 14825.58, + "end": 14826.1, + "probability": 0.9542 + }, + { + "start": 14826.32, + "end": 14827.82, + "probability": 0.9745 + }, + { + "start": 14827.88, + "end": 14828.56, + "probability": 0.6003 + }, + { + "start": 14828.6, + "end": 14829.26, + "probability": 0.7226 + }, + { + "start": 14833.24, + "end": 14837.6, + "probability": 0.9609 + }, + { + "start": 14839.42, + "end": 14840.96, + "probability": 0.585 + }, + { + "start": 14841.5, + "end": 14844.58, + "probability": 0.9067 + }, + { + "start": 14846.36, + "end": 14847.58, + "probability": 0.5065 + }, + { + "start": 14849.1, + "end": 14851.64, + "probability": 0.9618 + }, + { + "start": 14852.0, + "end": 14854.4, + "probability": 0.8633 + }, + { + "start": 14856.66, + "end": 14859.54, + "probability": 0.923 + }, + { + "start": 14859.62, + "end": 14860.16, + "probability": 0.7306 + }, + { + "start": 14860.34, + "end": 14861.66, + "probability": 0.9779 + }, + { + "start": 14862.2, + "end": 14863.06, + "probability": 0.5107 + }, + { + "start": 14863.64, + "end": 14865.14, + "probability": 0.8088 + }, + { + "start": 14866.4, + "end": 14867.54, + "probability": 0.9346 + }, + { + "start": 14869.88, + "end": 14873.38, + "probability": 0.8205 + }, + { + "start": 14873.48, + "end": 14874.64, + "probability": 0.9781 + }, + { + "start": 14876.78, + "end": 14879.74, + "probability": 0.9969 + }, + { + "start": 14880.86, + "end": 14882.78, + "probability": 0.983 + }, + { + "start": 14883.46, + "end": 14885.92, + "probability": 0.6799 + }, + { + "start": 14886.56, + "end": 14888.52, + "probability": 0.8426 + }, + { + "start": 14890.68, + "end": 14892.92, + "probability": 0.8473 + }, + { + "start": 14892.98, + "end": 14893.72, + "probability": 0.6327 + }, + { + "start": 14894.06, + "end": 14898.62, + "probability": 0.9622 + }, + { + "start": 14900.22, + "end": 14901.86, + "probability": 0.7819 + }, + { + "start": 14902.24, + "end": 14904.26, + "probability": 0.8131 + }, + { + "start": 14904.52, + "end": 14908.12, + "probability": 0.9871 + }, + { + "start": 14908.12, + "end": 14908.42, + "probability": 0.9666 + }, + { + "start": 14909.0, + "end": 14911.34, + "probability": 0.9981 + }, + { + "start": 14912.24, + "end": 14914.68, + "probability": 0.8256 + }, + { + "start": 14918.32, + "end": 14920.72, + "probability": 0.9855 + }, + { + "start": 14921.46, + "end": 14927.76, + "probability": 0.8394 + }, + { + "start": 14929.54, + "end": 14930.48, + "probability": 0.8807 + }, + { + "start": 14932.62, + "end": 14934.94, + "probability": 0.6808 + }, + { + "start": 14935.22, + "end": 14937.54, + "probability": 0.9856 + }, + { + "start": 14941.68, + "end": 14942.24, + "probability": 0.4484 + }, + { + "start": 14945.44, + "end": 14947.72, + "probability": 0.8389 + }, + { + "start": 14947.94, + "end": 14949.94, + "probability": 0.9395 + }, + { + "start": 14950.8, + "end": 14951.96, + "probability": 0.9834 + }, + { + "start": 14952.0, + "end": 14954.38, + "probability": 0.9004 + }, + { + "start": 14956.4, + "end": 14957.2, + "probability": 0.6297 + }, + { + "start": 14958.2, + "end": 14962.96, + "probability": 0.908 + }, + { + "start": 14967.66, + "end": 14969.12, + "probability": 0.8248 + }, + { + "start": 14969.18, + "end": 14970.94, + "probability": 0.8945 + }, + { + "start": 14971.58, + "end": 14975.06, + "probability": 0.8242 + }, + { + "start": 14975.16, + "end": 14977.08, + "probability": 0.7507 + }, + { + "start": 14977.56, + "end": 14980.62, + "probability": 0.9851 + }, + { + "start": 14983.54, + "end": 14987.14, + "probability": 0.6848 + }, + { + "start": 14990.66, + "end": 14993.96, + "probability": 0.9747 + }, + { + "start": 14995.12, + "end": 14998.24, + "probability": 0.9783 + }, + { + "start": 14998.7, + "end": 14999.08, + "probability": 0.3352 + }, + { + "start": 14999.7, + "end": 15001.76, + "probability": 0.8647 + }, + { + "start": 15002.28, + "end": 15003.94, + "probability": 0.9832 + }, + { + "start": 15005.12, + "end": 15006.26, + "probability": 0.8529 + }, + { + "start": 15006.52, + "end": 15009.74, + "probability": 0.7724 + }, + { + "start": 15010.58, + "end": 15012.2, + "probability": 0.6556 + }, + { + "start": 15016.66, + "end": 15018.48, + "probability": 0.9722 + }, + { + "start": 15020.6, + "end": 15021.78, + "probability": 0.8576 + }, + { + "start": 15024.96, + "end": 15027.16, + "probability": 0.0242 + }, + { + "start": 15030.46, + "end": 15031.68, + "probability": 0.7891 + }, + { + "start": 15034.16, + "end": 15037.72, + "probability": 0.7574 + }, + { + "start": 15038.74, + "end": 15040.12, + "probability": 0.9421 + }, + { + "start": 15041.22, + "end": 15042.0, + "probability": 0.9133 + }, + { + "start": 15042.12, + "end": 15044.74, + "probability": 0.9796 + }, + { + "start": 15048.32, + "end": 15051.02, + "probability": 0.9943 + }, + { + "start": 15051.86, + "end": 15056.08, + "probability": 0.9802 + }, + { + "start": 15057.52, + "end": 15059.0, + "probability": 0.7993 + }, + { + "start": 15059.1, + "end": 15060.08, + "probability": 0.6637 + }, + { + "start": 15062.04, + "end": 15062.48, + "probability": 0.7187 + }, + { + "start": 15063.64, + "end": 15065.86, + "probability": 0.9851 + }, + { + "start": 15066.16, + "end": 15067.09, + "probability": 0.5674 + }, + { + "start": 15068.44, + "end": 15071.08, + "probability": 0.7319 + }, + { + "start": 15073.96, + "end": 15075.32, + "probability": 0.8669 + }, + { + "start": 15076.28, + "end": 15077.76, + "probability": 0.7207 + }, + { + "start": 15077.76, + "end": 15080.06, + "probability": 0.9917 + }, + { + "start": 15080.42, + "end": 15082.68, + "probability": 0.6741 + }, + { + "start": 15085.76, + "end": 15088.28, + "probability": 0.9843 + }, + { + "start": 15088.56, + "end": 15090.32, + "probability": 0.9934 + }, + { + "start": 15090.58, + "end": 15091.58, + "probability": 0.914 + }, + { + "start": 15092.52, + "end": 15093.0, + "probability": 0.669 + }, + { + "start": 15094.82, + "end": 15095.8, + "probability": 0.9655 + }, + { + "start": 15097.72, + "end": 15099.8, + "probability": 0.9692 + }, + { + "start": 15101.94, + "end": 15103.36, + "probability": 0.9619 + }, + { + "start": 15104.6, + "end": 15104.86, + "probability": 0.9673 + }, + { + "start": 15108.1, + "end": 15110.34, + "probability": 0.5505 + }, + { + "start": 15110.34, + "end": 15112.3, + "probability": 0.894 + }, + { + "start": 15113.42, + "end": 15116.88, + "probability": 0.9301 + }, + { + "start": 15116.92, + "end": 15118.58, + "probability": 0.734 + }, + { + "start": 15120.86, + "end": 15123.68, + "probability": 0.9836 + }, + { + "start": 15124.96, + "end": 15126.1, + "probability": 0.9608 + }, + { + "start": 15126.22, + "end": 15128.3, + "probability": 0.9912 + }, + { + "start": 15130.1, + "end": 15131.9, + "probability": 0.8115 + }, + { + "start": 15133.8, + "end": 15134.74, + "probability": 0.9854 + }, + { + "start": 15137.3, + "end": 15137.94, + "probability": 0.9437 + }, + { + "start": 15140.36, + "end": 15147.16, + "probability": 0.9766 + }, + { + "start": 15149.8, + "end": 15152.8, + "probability": 0.9784 + }, + { + "start": 15152.8, + "end": 15155.12, + "probability": 0.9938 + }, + { + "start": 15157.14, + "end": 15157.98, + "probability": 0.9819 + }, + { + "start": 15159.94, + "end": 15161.94, + "probability": 0.9668 + }, + { + "start": 15162.9, + "end": 15164.14, + "probability": 0.8732 + }, + { + "start": 15165.32, + "end": 15167.04, + "probability": 0.7861 + }, + { + "start": 15168.54, + "end": 15170.48, + "probability": 0.8974 + }, + { + "start": 15174.48, + "end": 15176.02, + "probability": 0.8896 + }, + { + "start": 15177.74, + "end": 15178.98, + "probability": 0.955 + }, + { + "start": 15181.42, + "end": 15183.14, + "probability": 0.969 + }, + { + "start": 15184.86, + "end": 15188.12, + "probability": 0.9219 + }, + { + "start": 15188.74, + "end": 15189.18, + "probability": 0.7561 + }, + { + "start": 15191.86, + "end": 15194.56, + "probability": 0.9181 + }, + { + "start": 15194.9, + "end": 15195.62, + "probability": 0.0786 + }, + { + "start": 15196.38, + "end": 15197.54, + "probability": 0.5987 + }, + { + "start": 15198.06, + "end": 15199.96, + "probability": 0.6741 + }, + { + "start": 15201.12, + "end": 15204.0, + "probability": 0.9956 + }, + { + "start": 15206.98, + "end": 15208.38, + "probability": 0.9411 + }, + { + "start": 15209.4, + "end": 15211.88, + "probability": 0.8792 + }, + { + "start": 15213.34, + "end": 15215.27, + "probability": 0.8513 + }, + { + "start": 15217.62, + "end": 15218.94, + "probability": 0.8893 + }, + { + "start": 15222.42, + "end": 15224.2, + "probability": 0.9946 + }, + { + "start": 15228.06, + "end": 15231.8, + "probability": 0.9536 + }, + { + "start": 15232.54, + "end": 15233.56, + "probability": 0.7566 + }, + { + "start": 15234.02, + "end": 15234.88, + "probability": 0.8491 + }, + { + "start": 15234.92, + "end": 15236.44, + "probability": 0.993 + }, + { + "start": 15236.5, + "end": 15237.08, + "probability": 0.9922 + }, + { + "start": 15237.34, + "end": 15237.83, + "probability": 0.9614 + }, + { + "start": 15240.72, + "end": 15243.84, + "probability": 0.9707 + }, + { + "start": 15248.4, + "end": 15250.36, + "probability": 0.7979 + }, + { + "start": 15251.18, + "end": 15251.86, + "probability": 0.871 + }, + { + "start": 15255.98, + "end": 15257.22, + "probability": 0.9971 + }, + { + "start": 15260.18, + "end": 15262.24, + "probability": 0.9537 + }, + { + "start": 15263.14, + "end": 15268.02, + "probability": 0.9621 + }, + { + "start": 15269.7, + "end": 15269.72, + "probability": 0.9062 + }, + { + "start": 15273.48, + "end": 15274.22, + "probability": 0.4954 + }, + { + "start": 15274.22, + "end": 15275.47, + "probability": 0.5993 + }, + { + "start": 15275.78, + "end": 15280.5, + "probability": 0.8777 + }, + { + "start": 15285.38, + "end": 15286.14, + "probability": 0.6145 + }, + { + "start": 15287.4, + "end": 15289.06, + "probability": 0.9198 + }, + { + "start": 15289.78, + "end": 15290.47, + "probability": 0.9877 + }, + { + "start": 15291.16, + "end": 15293.0, + "probability": 0.9696 + }, + { + "start": 15294.08, + "end": 15296.6, + "probability": 0.9825 + }, + { + "start": 15297.36, + "end": 15298.78, + "probability": 0.7925 + }, + { + "start": 15300.88, + "end": 15302.96, + "probability": 0.8601 + }, + { + "start": 15304.18, + "end": 15306.78, + "probability": 0.8727 + }, + { + "start": 15308.2, + "end": 15309.32, + "probability": 0.9791 + }, + { + "start": 15309.9, + "end": 15311.62, + "probability": 0.8786 + }, + { + "start": 15313.5, + "end": 15315.9, + "probability": 0.9712 + }, + { + "start": 15317.08, + "end": 15322.68, + "probability": 0.9601 + }, + { + "start": 15328.72, + "end": 15334.04, + "probability": 0.9067 + }, + { + "start": 15334.08, + "end": 15335.08, + "probability": 0.4848 + }, + { + "start": 15337.78, + "end": 15338.36, + "probability": 0.4537 + }, + { + "start": 15339.0, + "end": 15339.36, + "probability": 0.9928 + }, + { + "start": 15340.2, + "end": 15341.1, + "probability": 0.6723 + }, + { + "start": 15341.78, + "end": 15343.5, + "probability": 0.8822 + }, + { + "start": 15346.26, + "end": 15349.12, + "probability": 0.9193 + }, + { + "start": 15351.26, + "end": 15352.6, + "probability": 0.9822 + }, + { + "start": 15353.64, + "end": 15357.36, + "probability": 0.7908 + }, + { + "start": 15360.62, + "end": 15361.72, + "probability": 0.9698 + }, + { + "start": 15365.4, + "end": 15367.78, + "probability": 0.7705 + }, + { + "start": 15367.82, + "end": 15371.86, + "probability": 0.9901 + }, + { + "start": 15372.96, + "end": 15373.18, + "probability": 0.6011 + }, + { + "start": 15378.43, + "end": 15385.24, + "probability": 0.9932 + }, + { + "start": 15385.24, + "end": 15389.74, + "probability": 0.9032 + }, + { + "start": 15389.92, + "end": 15390.78, + "probability": 0.9578 + }, + { + "start": 15391.04, + "end": 15394.36, + "probability": 0.989 + }, + { + "start": 15394.46, + "end": 15398.42, + "probability": 0.9902 + }, + { + "start": 15398.78, + "end": 15402.94, + "probability": 0.76 + }, + { + "start": 15405.58, + "end": 15409.16, + "probability": 0.8276 + }, + { + "start": 15409.54, + "end": 15411.73, + "probability": 0.9568 + }, + { + "start": 15413.02, + "end": 15417.46, + "probability": 0.9948 + }, + { + "start": 15418.25, + "end": 15421.94, + "probability": 0.915 + }, + { + "start": 15422.1, + "end": 15426.7, + "probability": 0.8653 + }, + { + "start": 15429.22, + "end": 15430.82, + "probability": 0.803 + }, + { + "start": 15436.16, + "end": 15438.11, + "probability": 0.9373 + }, + { + "start": 15439.12, + "end": 15439.56, + "probability": 0.6514 + }, + { + "start": 15441.74, + "end": 15443.55, + "probability": 0.9434 + }, + { + "start": 15443.64, + "end": 15445.04, + "probability": 0.7225 + }, + { + "start": 15448.76, + "end": 15452.62, + "probability": 0.9869 + }, + { + "start": 15452.76, + "end": 15454.56, + "probability": 0.875 + }, + { + "start": 15454.74, + "end": 15458.92, + "probability": 0.9648 + }, + { + "start": 15458.98, + "end": 15464.3, + "probability": 0.9258 + }, + { + "start": 15464.38, + "end": 15465.64, + "probability": 0.9829 + }, + { + "start": 15466.2, + "end": 15466.56, + "probability": 0.6048 + }, + { + "start": 15466.7, + "end": 15470.26, + "probability": 0.7946 + }, + { + "start": 15470.5, + "end": 15470.9, + "probability": 0.7758 + }, + { + "start": 15478.1, + "end": 15480.44, + "probability": 0.9684 + }, + { + "start": 15482.88, + "end": 15482.98, + "probability": 0.697 + }, + { + "start": 15483.58, + "end": 15484.78, + "probability": 0.7855 + }, + { + "start": 15488.82, + "end": 15491.24, + "probability": 0.9087 + }, + { + "start": 15491.46, + "end": 15494.32, + "probability": 0.8081 + }, + { + "start": 15494.76, + "end": 15496.42, + "probability": 0.7277 + }, + { + "start": 15500.36, + "end": 15502.98, + "probability": 0.7433 + }, + { + "start": 15504.48, + "end": 15505.44, + "probability": 0.7579 + }, + { + "start": 15506.7, + "end": 15508.76, + "probability": 0.9119 + }, + { + "start": 15510.76, + "end": 15513.62, + "probability": 0.9468 + }, + { + "start": 15513.82, + "end": 15515.26, + "probability": 0.8729 + }, + { + "start": 15516.76, + "end": 15518.7, + "probability": 0.9701 + }, + { + "start": 15519.7, + "end": 15521.31, + "probability": 0.8991 + }, + { + "start": 15522.6, + "end": 15523.66, + "probability": 0.9666 + }, + { + "start": 15525.04, + "end": 15525.22, + "probability": 0.7363 + }, + { + "start": 15526.04, + "end": 15526.24, + "probability": 0.9807 + }, + { + "start": 15527.6, + "end": 15529.44, + "probability": 0.9724 + }, + { + "start": 15530.66, + "end": 15533.72, + "probability": 0.9985 + }, + { + "start": 15534.7, + "end": 15535.84, + "probability": 0.6814 + }, + { + "start": 15535.88, + "end": 15539.06, + "probability": 0.7606 + }, + { + "start": 15539.9, + "end": 15541.66, + "probability": 0.9358 + }, + { + "start": 15544.14, + "end": 15546.72, + "probability": 0.9062 + }, + { + "start": 15546.72, + "end": 15549.68, + "probability": 0.8865 + }, + { + "start": 15550.44, + "end": 15552.18, + "probability": 0.8911 + }, + { + "start": 15553.62, + "end": 15556.12, + "probability": 0.9953 + }, + { + "start": 15556.84, + "end": 15562.06, + "probability": 0.9884 + }, + { + "start": 15562.66, + "end": 15563.38, + "probability": 0.7495 + }, + { + "start": 15566.02, + "end": 15568.52, + "probability": 0.4687 + }, + { + "start": 15569.16, + "end": 15572.44, + "probability": 0.6683 + }, + { + "start": 15575.6, + "end": 15576.88, + "probability": 0.9827 + }, + { + "start": 15577.76, + "end": 15580.4, + "probability": 0.9827 + }, + { + "start": 15581.54, + "end": 15582.5, + "probability": 0.563 + }, + { + "start": 15582.58, + "end": 15583.26, + "probability": 0.7495 + }, + { + "start": 15583.38, + "end": 15584.14, + "probability": 0.8614 + }, + { + "start": 15584.6, + "end": 15585.66, + "probability": 0.8448 + }, + { + "start": 15586.26, + "end": 15589.76, + "probability": 0.9436 + }, + { + "start": 15590.24, + "end": 15593.22, + "probability": 0.9106 + }, + { + "start": 15593.74, + "end": 15594.4, + "probability": 0.9484 + }, + { + "start": 15594.82, + "end": 15595.9, + "probability": 0.9328 + }, + { + "start": 15596.62, + "end": 15597.86, + "probability": 0.967 + }, + { + "start": 15598.54, + "end": 15602.2, + "probability": 0.8138 + }, + { + "start": 15603.0, + "end": 15604.28, + "probability": 0.8408 + }, + { + "start": 15605.72, + "end": 15606.3, + "probability": 0.7963 + }, + { + "start": 15607.54, + "end": 15608.0, + "probability": 0.7836 + }, + { + "start": 15608.78, + "end": 15611.56, + "probability": 0.9843 + }, + { + "start": 15612.0, + "end": 15612.94, + "probability": 0.6458 + }, + { + "start": 15617.6, + "end": 15617.64, + "probability": 0.1493 + }, + { + "start": 15617.64, + "end": 15618.24, + "probability": 0.2609 + }, + { + "start": 15618.24, + "end": 15619.88, + "probability": 0.2238 + }, + { + "start": 15621.18, + "end": 15622.36, + "probability": 0.7214 + }, + { + "start": 15622.44, + "end": 15623.38, + "probability": 0.6054 + }, + { + "start": 15623.48, + "end": 15625.52, + "probability": 0.6134 + }, + { + "start": 15625.6, + "end": 15626.62, + "probability": 0.9047 + }, + { + "start": 15626.9, + "end": 15630.53, + "probability": 0.7119 + }, + { + "start": 15630.92, + "end": 15636.82, + "probability": 0.4272 + }, + { + "start": 15636.82, + "end": 15641.98, + "probability": 0.9167 + }, + { + "start": 15642.83, + "end": 15645.96, + "probability": 0.804 + }, + { + "start": 15646.06, + "end": 15646.84, + "probability": 0.7088 + }, + { + "start": 15647.28, + "end": 15648.56, + "probability": 0.8202 + }, + { + "start": 15648.66, + "end": 15648.94, + "probability": 0.8072 + }, + { + "start": 15649.4, + "end": 15649.88, + "probability": 0.752 + }, + { + "start": 15652.38, + "end": 15652.38, + "probability": 0.2608 + }, + { + "start": 15652.4, + "end": 15653.38, + "probability": 0.6779 + }, + { + "start": 15654.14, + "end": 15656.7, + "probability": 0.797 + }, + { + "start": 15658.24, + "end": 15662.94, + "probability": 0.9087 + }, + { + "start": 15663.62, + "end": 15665.26, + "probability": 0.9893 + }, + { + "start": 15665.48, + "end": 15666.26, + "probability": 0.9506 + }, + { + "start": 15666.52, + "end": 15670.92, + "probability": 0.6654 + }, + { + "start": 15671.76, + "end": 15671.86, + "probability": 0.5109 + }, + { + "start": 15671.9, + "end": 15672.0, + "probability": 0.8512 + }, + { + "start": 15672.1, + "end": 15673.74, + "probability": 0.9393 + }, + { + "start": 15673.78, + "end": 15674.28, + "probability": 0.7782 + }, + { + "start": 15674.48, + "end": 15676.38, + "probability": 0.9761 + }, + { + "start": 15676.88, + "end": 15678.14, + "probability": 0.9302 + }, + { + "start": 15679.84, + "end": 15683.14, + "probability": 0.5943 + }, + { + "start": 15683.68, + "end": 15685.68, + "probability": 0.6663 + }, + { + "start": 15686.48, + "end": 15690.18, + "probability": 0.9471 + }, + { + "start": 15691.1, + "end": 15693.36, + "probability": 0.8599 + }, + { + "start": 15695.16, + "end": 15695.76, + "probability": 0.3467 + }, + { + "start": 15695.82, + "end": 15696.7, + "probability": 0.5471 + }, + { + "start": 15697.12, + "end": 15700.62, + "probability": 0.7993 + }, + { + "start": 15701.2, + "end": 15704.02, + "probability": 0.9163 + }, + { + "start": 15704.1, + "end": 15705.23, + "probability": 0.9277 + }, + { + "start": 15705.94, + "end": 15707.44, + "probability": 0.4845 + }, + { + "start": 15707.5, + "end": 15708.72, + "probability": 0.2957 + }, + { + "start": 15709.0, + "end": 15710.81, + "probability": 0.8211 + }, + { + "start": 15711.8, + "end": 15713.8, + "probability": 0.9746 + }, + { + "start": 15714.74, + "end": 15715.97, + "probability": 0.9374 + }, + { + "start": 15717.13, + "end": 15719.1, + "probability": 0.9053 + }, + { + "start": 15719.24, + "end": 15720.96, + "probability": 0.9855 + }, + { + "start": 15721.84, + "end": 15723.78, + "probability": 0.378 + }, + { + "start": 15724.4, + "end": 15726.02, + "probability": 0.9393 + }, + { + "start": 15726.52, + "end": 15727.34, + "probability": 0.9696 + }, + { + "start": 15727.58, + "end": 15728.38, + "probability": 0.9487 + }, + { + "start": 15729.32, + "end": 15730.38, + "probability": 0.9554 + }, + { + "start": 15730.96, + "end": 15733.46, + "probability": 0.9595 + }, + { + "start": 15733.98, + "end": 15735.74, + "probability": 0.8024 + }, + { + "start": 15735.88, + "end": 15737.38, + "probability": 0.9279 + }, + { + "start": 15738.08, + "end": 15740.92, + "probability": 0.4957 + }, + { + "start": 15741.0, + "end": 15744.72, + "probability": 0.6546 + }, + { + "start": 15745.5, + "end": 15745.94, + "probability": 0.2651 + }, + { + "start": 15747.44, + "end": 15749.1, + "probability": 0.4962 + }, + { + "start": 15749.32, + "end": 15750.8, + "probability": 0.6439 + }, + { + "start": 15750.92, + "end": 15752.04, + "probability": 0.8182 + }, + { + "start": 15753.36, + "end": 15755.12, + "probability": 0.6813 + }, + { + "start": 15756.67, + "end": 15758.26, + "probability": 0.9288 + }, + { + "start": 15759.18, + "end": 15762.92, + "probability": 0.7855 + }, + { + "start": 15763.72, + "end": 15765.46, + "probability": 0.663 + }, + { + "start": 15766.5, + "end": 15767.98, + "probability": 0.9625 + }, + { + "start": 15768.08, + "end": 15769.3, + "probability": 0.9016 + }, + { + "start": 15769.6, + "end": 15771.92, + "probability": 0.9277 + }, + { + "start": 15772.02, + "end": 15772.9, + "probability": 0.8901 + }, + { + "start": 15773.76, + "end": 15774.88, + "probability": 0.7638 + }, + { + "start": 15775.46, + "end": 15778.66, + "probability": 0.6431 + }, + { + "start": 15778.82, + "end": 15779.74, + "probability": 0.7359 + }, + { + "start": 15780.16, + "end": 15781.12, + "probability": 0.7493 + }, + { + "start": 15781.72, + "end": 15784.64, + "probability": 0.9683 + }, + { + "start": 15784.64, + "end": 15786.82, + "probability": 0.9788 + }, + { + "start": 15788.14, + "end": 15790.48, + "probability": 0.5592 + }, + { + "start": 15791.06, + "end": 15793.1, + "probability": 0.7899 + }, + { + "start": 15793.8, + "end": 15794.88, + "probability": 0.9227 + }, + { + "start": 15795.9, + "end": 15797.54, + "probability": 0.4485 + }, + { + "start": 15800.39, + "end": 15802.23, + "probability": 0.7469 + }, + { + "start": 15803.5, + "end": 15807.96, + "probability": 0.7927 + }, + { + "start": 15808.34, + "end": 15811.04, + "probability": 0.5407 + }, + { + "start": 15811.38, + "end": 15813.42, + "probability": 0.9456 + }, + { + "start": 15814.14, + "end": 15815.08, + "probability": 0.7599 + }, + { + "start": 15815.88, + "end": 15816.86, + "probability": 0.6876 + }, + { + "start": 15817.58, + "end": 15821.88, + "probability": 0.6373 + }, + { + "start": 15822.64, + "end": 15823.92, + "probability": 0.8607 + }, + { + "start": 15824.2, + "end": 15824.2, + "probability": 0.6973 + }, + { + "start": 15824.24, + "end": 15824.66, + "probability": 0.1627 + }, + { + "start": 15825.64, + "end": 15828.42, + "probability": 0.8751 + }, + { + "start": 15829.22, + "end": 15831.86, + "probability": 0.9408 + }, + { + "start": 15832.46, + "end": 15833.4, + "probability": 0.6783 + }, + { + "start": 15834.52, + "end": 15837.86, + "probability": 0.9984 + }, + { + "start": 15838.56, + "end": 15839.08, + "probability": 0.8577 + }, + { + "start": 15839.68, + "end": 15841.96, + "probability": 0.9407 + }, + { + "start": 15842.9, + "end": 15848.44, + "probability": 0.8231 + }, + { + "start": 15848.46, + "end": 15849.84, + "probability": 0.6114 + }, + { + "start": 15850.46, + "end": 15854.62, + "probability": 0.9932 + }, + { + "start": 15855.34, + "end": 15857.14, + "probability": 0.9894 + }, + { + "start": 15857.6, + "end": 15858.94, + "probability": 0.966 + }, + { + "start": 15859.26, + "end": 15859.88, + "probability": 0.7196 + }, + { + "start": 15859.94, + "end": 15861.74, + "probability": 0.8978 + }, + { + "start": 15862.14, + "end": 15864.92, + "probability": 0.9891 + }, + { + "start": 15866.82, + "end": 15869.88, + "probability": 0.8312 + }, + { + "start": 15870.3, + "end": 15872.2, + "probability": 0.8995 + }, + { + "start": 15872.76, + "end": 15877.11, + "probability": 0.7034 + }, + { + "start": 15879.18, + "end": 15883.5, + "probability": 0.9228 + }, + { + "start": 15883.58, + "end": 15884.02, + "probability": 0.9551 + }, + { + "start": 15884.08, + "end": 15884.78, + "probability": 0.6647 + }, + { + "start": 15884.88, + "end": 15885.92, + "probability": 0.669 + }, + { + "start": 15886.0, + "end": 15889.42, + "probability": 0.5742 + }, + { + "start": 15890.02, + "end": 15892.04, + "probability": 0.8478 + }, + { + "start": 15892.78, + "end": 15894.46, + "probability": 0.9631 + }, + { + "start": 15894.56, + "end": 15895.78, + "probability": 0.9823 + }, + { + "start": 15896.48, + "end": 15900.22, + "probability": 0.9809 + }, + { + "start": 15900.84, + "end": 15904.46, + "probability": 0.9991 + }, + { + "start": 15905.96, + "end": 15906.9, + "probability": 0.8411 + }, + { + "start": 15908.08, + "end": 15910.86, + "probability": 0.974 + }, + { + "start": 15911.78, + "end": 15913.78, + "probability": 0.7847 + }, + { + "start": 15914.1, + "end": 15915.72, + "probability": 0.9049 + }, + { + "start": 15915.86, + "end": 15922.64, + "probability": 0.8159 + }, + { + "start": 15923.72, + "end": 15924.35, + "probability": 0.8846 + }, + { + "start": 15925.04, + "end": 15926.56, + "probability": 0.8759 + }, + { + "start": 15926.62, + "end": 15929.34, + "probability": 0.8657 + }, + { + "start": 15929.8, + "end": 15934.24, + "probability": 0.7414 + }, + { + "start": 15934.78, + "end": 15935.86, + "probability": 0.956 + }, + { + "start": 15937.02, + "end": 15937.9, + "probability": 0.6238 + }, + { + "start": 15938.2, + "end": 15938.42, + "probability": 0.963 + }, + { + "start": 15939.1, + "end": 15941.88, + "probability": 0.9939 + }, + { + "start": 15942.38, + "end": 15942.86, + "probability": 0.8263 + }, + { + "start": 15943.38, + "end": 15943.54, + "probability": 0.5178 + }, + { + "start": 15944.4, + "end": 15945.26, + "probability": 0.9216 + }, + { + "start": 15945.52, + "end": 15950.3, + "probability": 0.9931 + }, + { + "start": 15959.36, + "end": 15961.38, + "probability": 0.9587 + }, + { + "start": 15967.88, + "end": 15968.98, + "probability": 0.4286 + }, + { + "start": 15972.5, + "end": 15974.34, + "probability": 0.6896 + }, + { + "start": 15974.7, + "end": 15974.76, + "probability": 0.0502 + }, + { + "start": 15974.76, + "end": 15974.9, + "probability": 0.5975 + }, + { + "start": 15975.02, + "end": 15975.04, + "probability": 0.0271 + }, + { + "start": 15979.84, + "end": 15984.22, + "probability": 0.4989 + }, + { + "start": 15984.7, + "end": 15987.72, + "probability": 0.5933 + }, + { + "start": 15987.86, + "end": 15989.48, + "probability": 0.5445 + }, + { + "start": 15989.52, + "end": 15989.6, + "probability": 0.1776 + }, + { + "start": 15990.12, + "end": 15993.3, + "probability": 0.9684 + }, + { + "start": 15994.02, + "end": 15994.82, + "probability": 0.7675 + }, + { + "start": 15996.78, + "end": 15998.8, + "probability": 0.6649 + }, + { + "start": 15998.82, + "end": 16002.92, + "probability": 0.6804 + }, + { + "start": 16003.44, + "end": 16005.64, + "probability": 0.9206 + }, + { + "start": 16006.3, + "end": 16009.0, + "probability": 0.8227 + }, + { + "start": 16009.34, + "end": 16013.1, + "probability": 0.8598 + }, + { + "start": 16013.18, + "end": 16014.37, + "probability": 0.7926 + }, + { + "start": 16015.18, + "end": 16017.56, + "probability": 0.9471 + }, + { + "start": 16019.5, + "end": 16020.6, + "probability": 0.9847 + }, + { + "start": 16021.42, + "end": 16024.6, + "probability": 0.9396 + }, + { + "start": 16024.8, + "end": 16025.46, + "probability": 0.5914 + }, + { + "start": 16025.54, + "end": 16026.1, + "probability": 0.0993 + }, + { + "start": 16026.46, + "end": 16028.86, + "probability": 0.7941 + }, + { + "start": 16029.82, + "end": 16032.64, + "probability": 0.5311 + }, + { + "start": 16033.42, + "end": 16034.62, + "probability": 0.3615 + }, + { + "start": 16035.14, + "end": 16040.1, + "probability": 0.5434 + }, + { + "start": 16040.36, + "end": 16041.34, + "probability": 0.7655 + }, + { + "start": 16042.2, + "end": 16043.28, + "probability": 0.8586 + }, + { + "start": 16043.34, + "end": 16044.66, + "probability": 0.7599 + }, + { + "start": 16045.04, + "end": 16046.2, + "probability": 0.6333 + }, + { + "start": 16046.28, + "end": 16048.86, + "probability": 0.7559 + }, + { + "start": 16048.86, + "end": 16052.94, + "probability": 0.7023 + }, + { + "start": 16053.02, + "end": 16053.94, + "probability": 0.7376 + }, + { + "start": 16054.5, + "end": 16055.3, + "probability": 0.8898 + }, + { + "start": 16055.34, + "end": 16055.94, + "probability": 0.2325 + }, + { + "start": 16055.94, + "end": 16056.8, + "probability": 0.7794 + }, + { + "start": 16056.82, + "end": 16060.14, + "probability": 0.645 + }, + { + "start": 16060.34, + "end": 16061.24, + "probability": 0.6897 + }, + { + "start": 16061.42, + "end": 16064.32, + "probability": 0.9713 + }, + { + "start": 16064.32, + "end": 16067.8, + "probability": 0.7383 + }, + { + "start": 16068.06, + "end": 16069.62, + "probability": 0.7885 + }, + { + "start": 16069.64, + "end": 16071.2, + "probability": 0.614 + }, + { + "start": 16071.54, + "end": 16072.54, + "probability": 0.4587 + }, + { + "start": 16072.74, + "end": 16074.35, + "probability": 0.4653 + }, + { + "start": 16074.5, + "end": 16079.0, + "probability": 0.7033 + }, + { + "start": 16079.0, + "end": 16083.12, + "probability": 0.967 + }, + { + "start": 16083.12, + "end": 16088.18, + "probability": 0.6558 + }, + { + "start": 16088.18, + "end": 16092.66, + "probability": 0.5204 + }, + { + "start": 16092.86, + "end": 16094.28, + "probability": 0.0252 + }, + { + "start": 16094.34, + "end": 16095.43, + "probability": 0.067 + }, + { + "start": 16095.5, + "end": 16095.92, + "probability": 0.1559 + }, + { + "start": 16096.34, + "end": 16097.54, + "probability": 0.6807 + }, + { + "start": 16097.62, + "end": 16099.04, + "probability": 0.9906 + }, + { + "start": 16099.48, + "end": 16101.08, + "probability": 0.7776 + }, + { + "start": 16101.34, + "end": 16103.04, + "probability": 0.7301 + }, + { + "start": 16103.62, + "end": 16105.97, + "probability": 0.9851 + }, + { + "start": 16106.32, + "end": 16108.2, + "probability": 0.9333 + }, + { + "start": 16108.7, + "end": 16111.12, + "probability": 0.8993 + }, + { + "start": 16111.56, + "end": 16113.3, + "probability": 0.8134 + }, + { + "start": 16113.38, + "end": 16114.28, + "probability": 0.9189 + }, + { + "start": 16114.66, + "end": 16116.03, + "probability": 0.9016 + }, + { + "start": 16116.56, + "end": 16118.82, + "probability": 0.9572 + }, + { + "start": 16119.26, + "end": 16120.58, + "probability": 0.9358 + }, + { + "start": 16121.3, + "end": 16126.34, + "probability": 0.948 + }, + { + "start": 16126.58, + "end": 16127.28, + "probability": 0.7019 + }, + { + "start": 16127.82, + "end": 16130.2, + "probability": 0.6492 + }, + { + "start": 16131.04, + "end": 16131.64, + "probability": 0.6661 + }, + { + "start": 16132.4, + "end": 16133.46, + "probability": 0.8052 + }, + { + "start": 16133.6, + "end": 16136.54, + "probability": 0.9193 + }, + { + "start": 16137.16, + "end": 16137.88, + "probability": 0.6688 + }, + { + "start": 16138.28, + "end": 16141.66, + "probability": 0.8062 + }, + { + "start": 16142.4, + "end": 16143.72, + "probability": 0.6179 + }, + { + "start": 16144.4, + "end": 16148.0, + "probability": 0.7266 + }, + { + "start": 16148.08, + "end": 16148.98, + "probability": 0.8675 + }, + { + "start": 16149.7, + "end": 16153.16, + "probability": 0.9629 + }, + { + "start": 16154.14, + "end": 16158.52, + "probability": 0.8122 + }, + { + "start": 16158.52, + "end": 16161.02, + "probability": 0.9189 + }, + { + "start": 16161.56, + "end": 16162.07, + "probability": 0.8398 + }, + { + "start": 16162.84, + "end": 16166.36, + "probability": 0.0375 + }, + { + "start": 16166.36, + "end": 16166.36, + "probability": 0.0191 + }, + { + "start": 16166.36, + "end": 16166.36, + "probability": 0.1289 + }, + { + "start": 16166.36, + "end": 16168.98, + "probability": 0.4114 + }, + { + "start": 16169.06, + "end": 16169.48, + "probability": 0.7611 + }, + { + "start": 16169.96, + "end": 16170.56, + "probability": 0.6653 + }, + { + "start": 16170.56, + "end": 16172.6, + "probability": 0.6069 + }, + { + "start": 16174.58, + "end": 16176.36, + "probability": 0.2996 + }, + { + "start": 16176.68, + "end": 16177.16, + "probability": 0.5329 + }, + { + "start": 16177.54, + "end": 16179.7, + "probability": 0.7487 + }, + { + "start": 16180.1, + "end": 16181.98, + "probability": 0.8531 + }, + { + "start": 16182.1, + "end": 16182.88, + "probability": 0.898 + }, + { + "start": 16183.28, + "end": 16185.28, + "probability": 0.978 + }, + { + "start": 16185.46, + "end": 16186.04, + "probability": 0.6435 + }, + { + "start": 16186.12, + "end": 16187.64, + "probability": 0.7113 + }, + { + "start": 16187.7, + "end": 16188.08, + "probability": 0.9323 + }, + { + "start": 16188.54, + "end": 16189.16, + "probability": 0.8278 + }, + { + "start": 16189.22, + "end": 16191.96, + "probability": 0.9237 + }, + { + "start": 16192.5, + "end": 16196.22, + "probability": 0.8512 + }, + { + "start": 16196.76, + "end": 16197.4, + "probability": 0.9083 + }, + { + "start": 16198.48, + "end": 16198.48, + "probability": 0.0029 + }, + { + "start": 16198.48, + "end": 16199.92, + "probability": 0.9633 + }, + { + "start": 16200.38, + "end": 16201.64, + "probability": 0.2708 + }, + { + "start": 16202.42, + "end": 16204.52, + "probability": 0.6027 + }, + { + "start": 16205.6, + "end": 16208.24, + "probability": 0.4852 + }, + { + "start": 16208.94, + "end": 16209.72, + "probability": 0.8001 + }, + { + "start": 16209.94, + "end": 16211.62, + "probability": 0.8839 + }, + { + "start": 16211.64, + "end": 16214.47, + "probability": 0.9554 + }, + { + "start": 16215.26, + "end": 16216.34, + "probability": 0.9874 + }, + { + "start": 16217.54, + "end": 16222.36, + "probability": 0.7079 + }, + { + "start": 16222.36, + "end": 16225.04, + "probability": 0.9783 + }, + { + "start": 16225.48, + "end": 16226.94, + "probability": 0.9849 + }, + { + "start": 16226.96, + "end": 16228.56, + "probability": 0.9183 + }, + { + "start": 16228.96, + "end": 16229.78, + "probability": 0.8862 + }, + { + "start": 16230.26, + "end": 16230.64, + "probability": 0.31 + }, + { + "start": 16230.76, + "end": 16230.88, + "probability": 0.6299 + }, + { + "start": 16230.96, + "end": 16231.94, + "probability": 0.736 + }, + { + "start": 16235.84, + "end": 16237.38, + "probability": 0.9741 + }, + { + "start": 16237.8, + "end": 16241.9, + "probability": 0.9442 + }, + { + "start": 16242.06, + "end": 16243.44, + "probability": 0.9961 + }, + { + "start": 16244.08, + "end": 16245.82, + "probability": 0.5673 + }, + { + "start": 16245.92, + "end": 16250.3, + "probability": 0.985 + }, + { + "start": 16250.76, + "end": 16251.34, + "probability": 0.7222 + }, + { + "start": 16251.56, + "end": 16254.66, + "probability": 0.6584 + }, + { + "start": 16256.06, + "end": 16258.78, + "probability": 0.3478 + }, + { + "start": 16258.92, + "end": 16261.02, + "probability": 0.9127 + }, + { + "start": 16261.98, + "end": 16263.64, + "probability": 0.893 + }, + { + "start": 16263.8, + "end": 16271.22, + "probability": 0.9879 + }, + { + "start": 16271.4, + "end": 16272.17, + "probability": 0.9956 + }, + { + "start": 16273.44, + "end": 16274.38, + "probability": 0.8371 + }, + { + "start": 16275.44, + "end": 16279.08, + "probability": 0.9845 + }, + { + "start": 16279.74, + "end": 16281.08, + "probability": 0.6173 + }, + { + "start": 16282.04, + "end": 16284.66, + "probability": 0.9842 + }, + { + "start": 16285.48, + "end": 16294.58, + "probability": 0.8135 + }, + { + "start": 16294.62, + "end": 16297.68, + "probability": 0.9808 + }, + { + "start": 16298.38, + "end": 16301.98, + "probability": 0.9325 + }, + { + "start": 16302.04, + "end": 16306.94, + "probability": 0.8817 + }, + { + "start": 16307.6, + "end": 16311.04, + "probability": 0.906 + }, + { + "start": 16311.36, + "end": 16314.5, + "probability": 0.9855 + }, + { + "start": 16315.02, + "end": 16317.2, + "probability": 0.8713 + }, + { + "start": 16317.82, + "end": 16320.86, + "probability": 0.6807 + }, + { + "start": 16321.34, + "end": 16325.76, + "probability": 0.9912 + }, + { + "start": 16326.72, + "end": 16328.0, + "probability": 0.9282 + }, + { + "start": 16328.48, + "end": 16331.92, + "probability": 0.9749 + }, + { + "start": 16332.5, + "end": 16335.62, + "probability": 0.8894 + }, + { + "start": 16336.2, + "end": 16338.58, + "probability": 0.537 + }, + { + "start": 16338.74, + "end": 16341.8, + "probability": 0.9553 + }, + { + "start": 16342.64, + "end": 16344.88, + "probability": 0.9653 + }, + { + "start": 16345.1, + "end": 16346.65, + "probability": 0.7753 + }, + { + "start": 16347.5, + "end": 16348.98, + "probability": 0.5045 + }, + { + "start": 16350.1, + "end": 16351.36, + "probability": 0.1039 + }, + { + "start": 16352.03, + "end": 16360.12, + "probability": 0.5018 + }, + { + "start": 16360.26, + "end": 16360.92, + "probability": 0.5491 + }, + { + "start": 16360.96, + "end": 16361.7, + "probability": 0.8074 + }, + { + "start": 16361.88, + "end": 16362.26, + "probability": 0.8703 + }, + { + "start": 16363.02, + "end": 16369.42, + "probability": 0.9839 + }, + { + "start": 16369.86, + "end": 16370.9, + "probability": 0.4875 + }, + { + "start": 16371.38, + "end": 16373.58, + "probability": 0.9902 + }, + { + "start": 16374.04, + "end": 16374.84, + "probability": 0.9751 + }, + { + "start": 16374.92, + "end": 16377.87, + "probability": 0.9693 + }, + { + "start": 16378.54, + "end": 16382.8, + "probability": 0.9957 + }, + { + "start": 16383.18, + "end": 16383.52, + "probability": 0.9631 + }, + { + "start": 16384.62, + "end": 16385.88, + "probability": 0.7986 + }, + { + "start": 16385.96, + "end": 16390.2, + "probability": 0.6677 + }, + { + "start": 16390.48, + "end": 16393.74, + "probability": 0.9839 + }, + { + "start": 16394.36, + "end": 16395.28, + "probability": 0.8338 + }, + { + "start": 16395.82, + "end": 16397.04, + "probability": 0.4679 + }, + { + "start": 16397.54, + "end": 16398.48, + "probability": 0.8052 + }, + { + "start": 16398.6, + "end": 16403.7, + "probability": 0.9655 + }, + { + "start": 16403.7, + "end": 16406.38, + "probability": 0.9806 + }, + { + "start": 16407.18, + "end": 16408.24, + "probability": 0.7712 + }, + { + "start": 16408.48, + "end": 16413.18, + "probability": 0.9788 + }, + { + "start": 16413.56, + "end": 16414.94, + "probability": 0.7508 + }, + { + "start": 16415.28, + "end": 16418.36, + "probability": 0.9915 + }, + { + "start": 16419.34, + "end": 16423.02, + "probability": 0.9603 + }, + { + "start": 16423.04, + "end": 16423.3, + "probability": 0.495 + }, + { + "start": 16423.8, + "end": 16425.88, + "probability": 0.9906 + }, + { + "start": 16426.34, + "end": 16431.76, + "probability": 0.9676 + }, + { + "start": 16432.28, + "end": 16433.7, + "probability": 0.2589 + }, + { + "start": 16433.82, + "end": 16435.02, + "probability": 0.7636 + }, + { + "start": 16435.52, + "end": 16439.62, + "probability": 0.9035 + }, + { + "start": 16439.76, + "end": 16441.88, + "probability": 0.9801 + }, + { + "start": 16442.36, + "end": 16443.55, + "probability": 0.9907 + }, + { + "start": 16444.5, + "end": 16445.9, + "probability": 0.9983 + }, + { + "start": 16446.56, + "end": 16452.92, + "probability": 0.9954 + }, + { + "start": 16452.92, + "end": 16459.18, + "probability": 0.9775 + }, + { + "start": 16459.58, + "end": 16462.04, + "probability": 0.9799 + }, + { + "start": 16462.58, + "end": 16467.26, + "probability": 0.9663 + }, + { + "start": 16467.26, + "end": 16468.22, + "probability": 0.8197 + }, + { + "start": 16468.58, + "end": 16470.56, + "probability": 0.9891 + }, + { + "start": 16471.28, + "end": 16472.74, + "probability": 0.9004 + }, + { + "start": 16473.1, + "end": 16474.84, + "probability": 0.9028 + }, + { + "start": 16475.54, + "end": 16477.62, + "probability": 0.9911 + }, + { + "start": 16477.62, + "end": 16480.02, + "probability": 0.7119 + }, + { + "start": 16480.6, + "end": 16484.18, + "probability": 0.8768 + }, + { + "start": 16484.18, + "end": 16487.76, + "probability": 0.9518 + }, + { + "start": 16488.26, + "end": 16491.9, + "probability": 0.9629 + }, + { + "start": 16491.9, + "end": 16499.78, + "probability": 0.6439 + }, + { + "start": 16500.12, + "end": 16503.02, + "probability": 0.6856 + }, + { + "start": 16503.58, + "end": 16503.98, + "probability": 0.6816 + }, + { + "start": 16504.3, + "end": 16509.1, + "probability": 0.9789 + }, + { + "start": 16509.68, + "end": 16512.06, + "probability": 0.9989 + }, + { + "start": 16512.84, + "end": 16515.12, + "probability": 0.9923 + }, + { + "start": 16516.0, + "end": 16516.54, + "probability": 0.9326 + }, + { + "start": 16516.66, + "end": 16520.52, + "probability": 0.9536 + }, + { + "start": 16521.04, + "end": 16525.42, + "probability": 0.9824 + }, + { + "start": 16526.46, + "end": 16529.24, + "probability": 0.984 + }, + { + "start": 16529.72, + "end": 16531.98, + "probability": 0.9394 + }, + { + "start": 16532.26, + "end": 16532.98, + "probability": 0.8919 + }, + { + "start": 16533.3, + "end": 16534.42, + "probability": 0.8274 + }, + { + "start": 16534.94, + "end": 16537.96, + "probability": 0.6084 + }, + { + "start": 16538.24, + "end": 16540.98, + "probability": 0.9118 + }, + { + "start": 16540.98, + "end": 16544.32, + "probability": 0.7963 + }, + { + "start": 16544.98, + "end": 16545.58, + "probability": 0.6974 + }, + { + "start": 16545.6, + "end": 16545.74, + "probability": 0.8724 + }, + { + "start": 16545.98, + "end": 16547.68, + "probability": 0.7866 + }, + { + "start": 16548.04, + "end": 16549.64, + "probability": 0.9083 + }, + { + "start": 16550.02, + "end": 16554.64, + "probability": 0.9397 + }, + { + "start": 16555.06, + "end": 16558.26, + "probability": 0.9106 + }, + { + "start": 16558.56, + "end": 16559.02, + "probability": 0.829 + }, + { + "start": 16560.64, + "end": 16563.56, + "probability": 0.9851 + }, + { + "start": 16564.4, + "end": 16565.18, + "probability": 0.8128 + }, + { + "start": 16565.26, + "end": 16565.56, + "probability": 0.8301 + }, + { + "start": 16565.86, + "end": 16568.02, + "probability": 0.3637 + }, + { + "start": 16568.48, + "end": 16570.52, + "probability": 0.8321 + }, + { + "start": 16570.8, + "end": 16571.14, + "probability": 0.2849 + }, + { + "start": 16571.18, + "end": 16573.38, + "probability": 0.766 + }, + { + "start": 16574.12, + "end": 16576.6, + "probability": 0.9336 + }, + { + "start": 16578.24, + "end": 16579.0, + "probability": 0.6885 + }, + { + "start": 16579.08, + "end": 16579.96, + "probability": 0.7709 + }, + { + "start": 16580.06, + "end": 16580.56, + "probability": 0.8537 + }, + { + "start": 16580.66, + "end": 16583.68, + "probability": 0.8137 + }, + { + "start": 16583.68, + "end": 16586.16, + "probability": 0.8213 + }, + { + "start": 16586.66, + "end": 16587.98, + "probability": 0.747 + }, + { + "start": 16588.76, + "end": 16590.62, + "probability": 0.9972 + }, + { + "start": 16590.72, + "end": 16593.2, + "probability": 0.9932 + }, + { + "start": 16594.1, + "end": 16596.82, + "probability": 0.8734 + }, + { + "start": 16596.96, + "end": 16598.18, + "probability": 0.8046 + }, + { + "start": 16598.84, + "end": 16601.7, + "probability": 0.9275 + }, + { + "start": 16602.68, + "end": 16603.12, + "probability": 0.5378 + }, + { + "start": 16603.86, + "end": 16606.08, + "probability": 0.9895 + }, + { + "start": 16606.3, + "end": 16606.72, + "probability": 0.5763 + }, + { + "start": 16606.8, + "end": 16607.24, + "probability": 0.9067 + }, + { + "start": 16607.34, + "end": 16610.06, + "probability": 0.6045 + }, + { + "start": 16610.2, + "end": 16614.12, + "probability": 0.8767 + }, + { + "start": 16614.46, + "end": 16617.52, + "probability": 0.8391 + }, + { + "start": 16617.68, + "end": 16620.76, + "probability": 0.9842 + }, + { + "start": 16621.22, + "end": 16624.5, + "probability": 0.7215 + }, + { + "start": 16624.54, + "end": 16625.98, + "probability": 0.8982 + }, + { + "start": 16626.66, + "end": 16627.36, + "probability": 0.9246 + }, + { + "start": 16627.96, + "end": 16630.0, + "probability": 0.8308 + }, + { + "start": 16630.32, + "end": 16630.86, + "probability": 0.3821 + }, + { + "start": 16632.22, + "end": 16632.62, + "probability": 0.6242 + }, + { + "start": 16632.92, + "end": 16635.04, + "probability": 0.5683 + }, + { + "start": 16635.04, + "end": 16635.48, + "probability": 0.2421 + }, + { + "start": 16639.12, + "end": 16641.02, + "probability": 0.0006 + }, + { + "start": 16642.48, + "end": 16646.74, + "probability": 0.6232 + }, + { + "start": 16647.08, + "end": 16652.48, + "probability": 0.6197 + }, + { + "start": 16653.18, + "end": 16655.58, + "probability": 0.8923 + }, + { + "start": 16655.78, + "end": 16656.08, + "probability": 0.9197 + }, + { + "start": 16656.56, + "end": 16657.14, + "probability": 0.8082 + }, + { + "start": 16659.54, + "end": 16661.76, + "probability": 0.6303 + }, + { + "start": 16663.62, + "end": 16663.86, + "probability": 0.6511 + }, + { + "start": 16666.22, + "end": 16667.44, + "probability": 0.2748 + }, + { + "start": 16675.54, + "end": 16677.18, + "probability": 0.6664 + }, + { + "start": 16679.86, + "end": 16683.6, + "probability": 0.8623 + }, + { + "start": 16684.8, + "end": 16687.52, + "probability": 0.9042 + }, + { + "start": 16688.9, + "end": 16690.16, + "probability": 0.4962 + }, + { + "start": 16691.36, + "end": 16693.04, + "probability": 0.9878 + }, + { + "start": 16694.96, + "end": 16695.64, + "probability": 0.9758 + }, + { + "start": 16696.1, + "end": 16696.98, + "probability": 0.8423 + }, + { + "start": 16697.36, + "end": 16698.5, + "probability": 0.8328 + }, + { + "start": 16698.58, + "end": 16702.9, + "probability": 0.9872 + }, + { + "start": 16703.96, + "end": 16705.42, + "probability": 0.5996 + }, + { + "start": 16706.64, + "end": 16707.96, + "probability": 0.9236 + }, + { + "start": 16709.0, + "end": 16710.16, + "probability": 0.7258 + }, + { + "start": 16710.3, + "end": 16712.71, + "probability": 0.8931 + }, + { + "start": 16712.96, + "end": 16715.84, + "probability": 0.9893 + }, + { + "start": 16715.94, + "end": 16720.84, + "probability": 0.8422 + }, + { + "start": 16720.84, + "end": 16724.54, + "probability": 0.9912 + }, + { + "start": 16726.62, + "end": 16727.38, + "probability": 0.876 + }, + { + "start": 16727.52, + "end": 16728.78, + "probability": 0.7682 + }, + { + "start": 16729.26, + "end": 16731.6, + "probability": 0.7622 + }, + { + "start": 16733.02, + "end": 16733.8, + "probability": 0.9333 + }, + { + "start": 16735.3, + "end": 16736.82, + "probability": 0.9902 + }, + { + "start": 16737.98, + "end": 16738.56, + "probability": 0.9188 + }, + { + "start": 16739.04, + "end": 16744.12, + "probability": 0.8345 + }, + { + "start": 16747.22, + "end": 16748.95, + "probability": 0.9875 + }, + { + "start": 16750.92, + "end": 16754.7, + "probability": 0.8287 + }, + { + "start": 16756.3, + "end": 16759.5, + "probability": 0.9549 + }, + { + "start": 16760.16, + "end": 16761.42, + "probability": 0.9865 + }, + { + "start": 16763.58, + "end": 16769.74, + "probability": 0.9797 + }, + { + "start": 16770.38, + "end": 16771.4, + "probability": 0.9702 + }, + { + "start": 16773.16, + "end": 16774.56, + "probability": 0.9961 + }, + { + "start": 16775.24, + "end": 16775.88, + "probability": 0.6428 + }, + { + "start": 16780.18, + "end": 16780.7, + "probability": 0.9722 + }, + { + "start": 16782.48, + "end": 16783.32, + "probability": 0.7781 + }, + { + "start": 16784.62, + "end": 16785.72, + "probability": 0.9048 + }, + { + "start": 16787.88, + "end": 16788.66, + "probability": 0.7301 + }, + { + "start": 16789.68, + "end": 16791.14, + "probability": 0.9622 + }, + { + "start": 16792.28, + "end": 16795.26, + "probability": 0.9587 + }, + { + "start": 16796.86, + "end": 16797.68, + "probability": 0.7601 + }, + { + "start": 16797.98, + "end": 16802.54, + "probability": 0.9767 + }, + { + "start": 16802.68, + "end": 16808.58, + "probability": 0.9868 + }, + { + "start": 16808.98, + "end": 16811.58, + "probability": 0.9685 + }, + { + "start": 16813.84, + "end": 16814.74, + "probability": 0.9517 + }, + { + "start": 16816.58, + "end": 16817.54, + "probability": 0.8652 + }, + { + "start": 16819.76, + "end": 16823.12, + "probability": 0.9653 + }, + { + "start": 16824.0, + "end": 16824.06, + "probability": 0.6786 + }, + { + "start": 16824.26, + "end": 16824.78, + "probability": 0.7106 + }, + { + "start": 16824.82, + "end": 16828.44, + "probability": 0.8912 + }, + { + "start": 16828.44, + "end": 16829.54, + "probability": 0.998 + }, + { + "start": 16829.96, + "end": 16831.08, + "probability": 0.9926 + }, + { + "start": 16832.24, + "end": 16835.24, + "probability": 0.9007 + }, + { + "start": 16837.28, + "end": 16839.17, + "probability": 0.9849 + }, + { + "start": 16840.12, + "end": 16841.9, + "probability": 0.7147 + }, + { + "start": 16844.88, + "end": 16845.74, + "probability": 0.9707 + }, + { + "start": 16846.96, + "end": 16850.8, + "probability": 0.8786 + }, + { + "start": 16851.52, + "end": 16852.74, + "probability": 0.7709 + }, + { + "start": 16853.8, + "end": 16855.44, + "probability": 0.8136 + }, + { + "start": 16856.18, + "end": 16857.53, + "probability": 0.9231 + }, + { + "start": 16858.54, + "end": 16860.42, + "probability": 0.9664 + }, + { + "start": 16861.88, + "end": 16863.96, + "probability": 0.8516 + }, + { + "start": 16864.48, + "end": 16865.62, + "probability": 0.7409 + }, + { + "start": 16866.44, + "end": 16867.3, + "probability": 0.9721 + }, + { + "start": 16868.78, + "end": 16869.48, + "probability": 0.6877 + }, + { + "start": 16870.72, + "end": 16871.7, + "probability": 0.5952 + }, + { + "start": 16873.3, + "end": 16874.66, + "probability": 0.8561 + }, + { + "start": 16876.1, + "end": 16878.7, + "probability": 0.8547 + }, + { + "start": 16878.82, + "end": 16880.64, + "probability": 0.9912 + }, + { + "start": 16881.08, + "end": 16882.84, + "probability": 0.9843 + }, + { + "start": 16883.44, + "end": 16884.62, + "probability": 0.9952 + }, + { + "start": 16884.74, + "end": 16887.34, + "probability": 0.5528 + }, + { + "start": 16891.22, + "end": 16891.62, + "probability": 0.5241 + }, + { + "start": 16893.38, + "end": 16893.82, + "probability": 0.7272 + }, + { + "start": 16894.86, + "end": 16898.0, + "probability": 0.995 + }, + { + "start": 16899.3, + "end": 16903.04, + "probability": 0.7462 + }, + { + "start": 16904.8, + "end": 16905.0, + "probability": 0.8004 + }, + { + "start": 16905.72, + "end": 16906.34, + "probability": 0.8964 + }, + { + "start": 16906.46, + "end": 16906.8, + "probability": 0.9422 + }, + { + "start": 16907.2, + "end": 16908.58, + "probability": 0.9785 + }, + { + "start": 16909.28, + "end": 16910.78, + "probability": 0.9085 + }, + { + "start": 16912.12, + "end": 16912.74, + "probability": 0.9692 + }, + { + "start": 16913.98, + "end": 16916.14, + "probability": 0.9911 + }, + { + "start": 16917.94, + "end": 16920.34, + "probability": 0.8286 + }, + { + "start": 16922.56, + "end": 16923.6, + "probability": 0.8332 + }, + { + "start": 16924.96, + "end": 16927.34, + "probability": 0.9957 + }, + { + "start": 16929.0, + "end": 16932.0, + "probability": 0.9783 + }, + { + "start": 16932.12, + "end": 16933.8, + "probability": 0.9977 + }, + { + "start": 16934.72, + "end": 16939.18, + "probability": 0.9972 + }, + { + "start": 16940.64, + "end": 16943.36, + "probability": 0.9666 + }, + { + "start": 16945.88, + "end": 16947.02, + "probability": 0.9153 + }, + { + "start": 16948.64, + "end": 16949.86, + "probability": 0.9814 + }, + { + "start": 16952.46, + "end": 16955.08, + "probability": 0.7632 + }, + { + "start": 16955.3, + "end": 16957.3, + "probability": 0.9349 + }, + { + "start": 16958.7, + "end": 16959.12, + "probability": 0.959 + }, + { + "start": 16959.86, + "end": 16960.4, + "probability": 0.9758 + }, + { + "start": 16961.16, + "end": 16961.46, + "probability": 0.987 + }, + { + "start": 16962.4, + "end": 16963.26, + "probability": 0.7092 + }, + { + "start": 16964.52, + "end": 16965.38, + "probability": 0.8973 + }, + { + "start": 16966.58, + "end": 16970.18, + "probability": 0.873 + }, + { + "start": 16971.62, + "end": 16973.86, + "probability": 0.9237 + }, + { + "start": 16974.52, + "end": 16977.52, + "probability": 0.9483 + }, + { + "start": 16977.6, + "end": 16978.36, + "probability": 0.9749 + }, + { + "start": 16979.66, + "end": 16982.2, + "probability": 0.8726 + }, + { + "start": 16984.28, + "end": 16985.1, + "probability": 0.5336 + }, + { + "start": 16986.62, + "end": 16989.24, + "probability": 0.9592 + }, + { + "start": 16989.92, + "end": 16991.06, + "probability": 0.9139 + }, + { + "start": 16991.06, + "end": 16991.72, + "probability": 0.9435 + }, + { + "start": 16993.16, + "end": 16996.14, + "probability": 0.8062 + }, + { + "start": 16997.18, + "end": 16997.5, + "probability": 0.9673 + }, + { + "start": 16998.04, + "end": 17000.2, + "probability": 0.9941 + }, + { + "start": 17001.7, + "end": 17004.02, + "probability": 0.4886 + }, + { + "start": 17006.4, + "end": 17007.44, + "probability": 0.7865 + }, + { + "start": 17009.24, + "end": 17015.22, + "probability": 0.9915 + }, + { + "start": 17016.16, + "end": 17018.2, + "probability": 0.4196 + }, + { + "start": 17018.62, + "end": 17019.56, + "probability": 0.1665 + }, + { + "start": 17019.6, + "end": 17022.2, + "probability": 0.5259 + }, + { + "start": 17022.26, + "end": 17023.72, + "probability": 0.4562 + }, + { + "start": 17024.2, + "end": 17024.56, + "probability": 0.0013 + }, + { + "start": 17025.69, + "end": 17027.16, + "probability": 0.9895 + }, + { + "start": 17027.28, + "end": 17028.0, + "probability": 0.457 + }, + { + "start": 17028.2, + "end": 17031.26, + "probability": 0.9905 + }, + { + "start": 17032.92, + "end": 17034.5, + "probability": 0.9926 + }, + { + "start": 17035.72, + "end": 17037.42, + "probability": 0.7506 + }, + { + "start": 17037.98, + "end": 17038.54, + "probability": 0.6427 + }, + { + "start": 17038.56, + "end": 17040.74, + "probability": 0.9902 + }, + { + "start": 17042.04, + "end": 17043.62, + "probability": 0.9912 + }, + { + "start": 17045.38, + "end": 17047.92, + "probability": 0.929 + }, + { + "start": 17050.4, + "end": 17051.76, + "probability": 0.7789 + }, + { + "start": 17056.7, + "end": 17058.62, + "probability": 0.5473 + }, + { + "start": 17059.34, + "end": 17059.34, + "probability": 0.0604 + }, + { + "start": 17059.34, + "end": 17063.2, + "probability": 0.6255 + }, + { + "start": 17064.38, + "end": 17065.62, + "probability": 0.9356 + }, + { + "start": 17066.93, + "end": 17068.6, + "probability": 0.9644 + }, + { + "start": 17069.36, + "end": 17076.14, + "probability": 0.6323 + }, + { + "start": 17076.72, + "end": 17078.76, + "probability": 0.9331 + }, + { + "start": 17079.46, + "end": 17083.12, + "probability": 0.619 + }, + { + "start": 17084.06, + "end": 17086.48, + "probability": 0.8844 + }, + { + "start": 17089.16, + "end": 17093.44, + "probability": 0.9617 + }, + { + "start": 17094.56, + "end": 17096.06, + "probability": 0.9818 + }, + { + "start": 17096.12, + "end": 17096.84, + "probability": 0.7768 + }, + { + "start": 17102.68, + "end": 17103.1, + "probability": 0.3037 + }, + { + "start": 17103.1, + "end": 17105.3, + "probability": 0.6324 + }, + { + "start": 17105.3, + "end": 17106.38, + "probability": 0.7301 + }, + { + "start": 17106.76, + "end": 17108.9, + "probability": 0.7545 + }, + { + "start": 17109.04, + "end": 17110.12, + "probability": 0.5866 + }, + { + "start": 17110.28, + "end": 17111.66, + "probability": 0.5637 + }, + { + "start": 17111.78, + "end": 17112.18, + "probability": 0.6219 + }, + { + "start": 17112.52, + "end": 17112.66, + "probability": 0.0117 + }, + { + "start": 17114.0, + "end": 17115.02, + "probability": 0.3943 + }, + { + "start": 17115.02, + "end": 17115.42, + "probability": 0.1216 + }, + { + "start": 17115.74, + "end": 17115.88, + "probability": 0.3197 + }, + { + "start": 17116.18, + "end": 17120.76, + "probability": 0.963 + }, + { + "start": 17122.8, + "end": 17124.92, + "probability": 0.5396 + }, + { + "start": 17125.58, + "end": 17127.6, + "probability": 0.8359 + }, + { + "start": 17128.3, + "end": 17130.0, + "probability": 0.9672 + }, + { + "start": 17130.48, + "end": 17130.8, + "probability": 0.7094 + }, + { + "start": 17130.9, + "end": 17131.64, + "probability": 0.934 + }, + { + "start": 17132.9, + "end": 17133.82, + "probability": 0.7971 + }, + { + "start": 17134.32, + "end": 17135.18, + "probability": 0.8547 + }, + { + "start": 17135.22, + "end": 17135.89, + "probability": 0.9434 + }, + { + "start": 17137.92, + "end": 17139.34, + "probability": 0.9523 + }, + { + "start": 17139.5, + "end": 17142.13, + "probability": 0.7183 + }, + { + "start": 17145.58, + "end": 17146.04, + "probability": 0.6819 + }, + { + "start": 17147.18, + "end": 17147.7, + "probability": 0.9192 + }, + { + "start": 17148.44, + "end": 17151.04, + "probability": 0.9728 + }, + { + "start": 17151.36, + "end": 17152.15, + "probability": 0.7132 + }, + { + "start": 17153.28, + "end": 17156.04, + "probability": 0.994 + }, + { + "start": 17156.42, + "end": 17158.28, + "probability": 0.9977 + }, + { + "start": 17159.7, + "end": 17160.36, + "probability": 0.5161 + }, + { + "start": 17160.72, + "end": 17161.48, + "probability": 0.7779 + }, + { + "start": 17162.24, + "end": 17166.68, + "probability": 0.1252 + }, + { + "start": 17167.68, + "end": 17168.48, + "probability": 0.0332 + }, + { + "start": 17168.48, + "end": 17169.56, + "probability": 0.0453 + }, + { + "start": 17169.6, + "end": 17170.66, + "probability": 0.6527 + }, + { + "start": 17171.92, + "end": 17173.18, + "probability": 0.7284 + }, + { + "start": 17174.34, + "end": 17176.02, + "probability": 0.645 + }, + { + "start": 17176.8, + "end": 17178.36, + "probability": 0.3675 + }, + { + "start": 17179.0, + "end": 17182.4, + "probability": 0.9771 + }, + { + "start": 17183.0, + "end": 17186.04, + "probability": 0.998 + }, + { + "start": 17186.72, + "end": 17190.48, + "probability": 0.9893 + }, + { + "start": 17190.96, + "end": 17191.9, + "probability": 0.8315 + }, + { + "start": 17192.2, + "end": 17192.69, + "probability": 0.9946 + }, + { + "start": 17193.66, + "end": 17196.36, + "probability": 0.9834 + }, + { + "start": 17197.14, + "end": 17197.28, + "probability": 0.865 + }, + { + "start": 17198.84, + "end": 17200.08, + "probability": 0.9716 + }, + { + "start": 17201.12, + "end": 17201.86, + "probability": 0.8506 + }, + { + "start": 17202.26, + "end": 17202.44, + "probability": 0.5202 + }, + { + "start": 17204.33, + "end": 17206.92, + "probability": 0.8068 + }, + { + "start": 17207.6, + "end": 17209.05, + "probability": 0.9837 + }, + { + "start": 17209.86, + "end": 17212.38, + "probability": 0.6762 + }, + { + "start": 17213.86, + "end": 17214.46, + "probability": 0.6732 + }, + { + "start": 17218.98, + "end": 17222.18, + "probability": 0.9696 + }, + { + "start": 17222.34, + "end": 17223.24, + "probability": 0.9341 + }, + { + "start": 17224.0, + "end": 17227.26, + "probability": 0.9708 + }, + { + "start": 17229.14, + "end": 17231.52, + "probability": 0.9799 + }, + { + "start": 17232.54, + "end": 17234.7, + "probability": 0.4367 + }, + { + "start": 17235.82, + "end": 17236.4, + "probability": 0.6679 + }, + { + "start": 17237.22, + "end": 17237.86, + "probability": 0.8183 + }, + { + "start": 17239.86, + "end": 17243.36, + "probability": 0.9666 + }, + { + "start": 17244.62, + "end": 17246.07, + "probability": 0.9955 + }, + { + "start": 17247.0, + "end": 17249.96, + "probability": 0.9742 + }, + { + "start": 17250.02, + "end": 17250.5, + "probability": 0.3511 + }, + { + "start": 17252.14, + "end": 17256.08, + "probability": 0.9775 + }, + { + "start": 17257.32, + "end": 17258.62, + "probability": 0.9835 + }, + { + "start": 17259.5, + "end": 17262.24, + "probability": 0.5069 + }, + { + "start": 17263.46, + "end": 17268.46, + "probability": 0.9978 + }, + { + "start": 17269.94, + "end": 17270.6, + "probability": 0.1871 + }, + { + "start": 17272.48, + "end": 17274.18, + "probability": 0.9392 + }, + { + "start": 17276.06, + "end": 17276.72, + "probability": 0.6167 + }, + { + "start": 17276.76, + "end": 17279.84, + "probability": 0.9437 + }, + { + "start": 17280.48, + "end": 17281.7, + "probability": 0.6763 + }, + { + "start": 17283.42, + "end": 17286.36, + "probability": 0.4408 + }, + { + "start": 17286.79, + "end": 17288.64, + "probability": 0.542 + }, + { + "start": 17288.68, + "end": 17290.2, + "probability": 0.9285 + }, + { + "start": 17291.68, + "end": 17294.04, + "probability": 0.9396 + }, + { + "start": 17295.68, + "end": 17299.32, + "probability": 0.9928 + }, + { + "start": 17300.58, + "end": 17301.58, + "probability": 0.9917 + }, + { + "start": 17303.12, + "end": 17303.86, + "probability": 0.7183 + }, + { + "start": 17305.44, + "end": 17307.24, + "probability": 0.6451 + }, + { + "start": 17308.02, + "end": 17309.34, + "probability": 0.7575 + }, + { + "start": 17310.36, + "end": 17311.12, + "probability": 0.8784 + }, + { + "start": 17311.96, + "end": 17313.58, + "probability": 0.7923 + }, + { + "start": 17314.66, + "end": 17315.76, + "probability": 0.5829 + }, + { + "start": 17316.98, + "end": 17318.74, + "probability": 0.8241 + }, + { + "start": 17319.52, + "end": 17321.28, + "probability": 0.7473 + }, + { + "start": 17321.72, + "end": 17322.94, + "probability": 0.7387 + }, + { + "start": 17323.86, + "end": 17324.7, + "probability": 0.8013 + }, + { + "start": 17325.46, + "end": 17326.98, + "probability": 0.9421 + }, + { + "start": 17328.52, + "end": 17330.32, + "probability": 0.9876 + }, + { + "start": 17332.46, + "end": 17333.22, + "probability": 0.5387 + }, + { + "start": 17335.4, + "end": 17336.86, + "probability": 0.8428 + }, + { + "start": 17340.14, + "end": 17342.52, + "probability": 0.2763 + }, + { + "start": 17342.74, + "end": 17345.36, + "probability": 0.7583 + }, + { + "start": 17348.86, + "end": 17356.2, + "probability": 0.7639 + }, + { + "start": 17356.98, + "end": 17358.6, + "probability": 0.935 + }, + { + "start": 17360.12, + "end": 17360.6, + "probability": 0.4332 + }, + { + "start": 17361.44, + "end": 17362.68, + "probability": 0.9648 + }, + { + "start": 17363.96, + "end": 17365.2, + "probability": 0.9769 + }, + { + "start": 17366.0, + "end": 17367.66, + "probability": 0.9016 + }, + { + "start": 17368.42, + "end": 17370.22, + "probability": 0.9869 + }, + { + "start": 17371.58, + "end": 17373.06, + "probability": 0.9882 + }, + { + "start": 17374.24, + "end": 17376.9, + "probability": 0.9819 + }, + { + "start": 17378.22, + "end": 17380.22, + "probability": 0.7867 + }, + { + "start": 17381.06, + "end": 17381.92, + "probability": 0.7551 + }, + { + "start": 17383.18, + "end": 17384.7, + "probability": 0.9984 + }, + { + "start": 17385.88, + "end": 17389.26, + "probability": 0.996 + }, + { + "start": 17390.36, + "end": 17394.56, + "probability": 0.9956 + }, + { + "start": 17394.56, + "end": 17397.86, + "probability": 0.9751 + }, + { + "start": 17398.46, + "end": 17400.36, + "probability": 0.9795 + }, + { + "start": 17401.08, + "end": 17404.26, + "probability": 0.3781 + }, + { + "start": 17404.5, + "end": 17406.04, + "probability": 0.3872 + }, + { + "start": 17406.44, + "end": 17407.74, + "probability": 0.6081 + }, + { + "start": 17407.74, + "end": 17409.04, + "probability": 0.456 + }, + { + "start": 17409.67, + "end": 17412.12, + "probability": 0.7762 + }, + { + "start": 17412.46, + "end": 17416.04, + "probability": 0.589 + }, + { + "start": 17416.34, + "end": 17417.22, + "probability": 0.3041 + }, + { + "start": 17417.72, + "end": 17419.28, + "probability": 0.5206 + }, + { + "start": 17419.84, + "end": 17420.88, + "probability": 0.8908 + }, + { + "start": 17421.84, + "end": 17424.22, + "probability": 0.8118 + }, + { + "start": 17425.34, + "end": 17426.95, + "probability": 0.9517 + }, + { + "start": 17427.02, + "end": 17428.88, + "probability": 0.9888 + }, + { + "start": 17430.08, + "end": 17431.82, + "probability": 0.6313 + }, + { + "start": 17434.43, + "end": 17437.08, + "probability": 0.6454 + }, + { + "start": 17437.94, + "end": 17440.9, + "probability": 0.915 + }, + { + "start": 17441.26, + "end": 17443.24, + "probability": 0.9645 + }, + { + "start": 17444.0, + "end": 17444.88, + "probability": 0.9158 + }, + { + "start": 17445.84, + "end": 17447.92, + "probability": 0.9292 + }, + { + "start": 17448.74, + "end": 17449.82, + "probability": 0.993 + }, + { + "start": 17450.76, + "end": 17451.7, + "probability": 0.8196 + }, + { + "start": 17453.68, + "end": 17454.7, + "probability": 0.8481 + }, + { + "start": 17455.56, + "end": 17458.24, + "probability": 0.9905 + }, + { + "start": 17459.72, + "end": 17461.24, + "probability": 0.9903 + }, + { + "start": 17462.46, + "end": 17466.5, + "probability": 0.9368 + }, + { + "start": 17467.94, + "end": 17472.72, + "probability": 0.9824 + }, + { + "start": 17473.44, + "end": 17477.14, + "probability": 0.7953 + }, + { + "start": 17478.58, + "end": 17480.68, + "probability": 0.8947 + }, + { + "start": 17481.44, + "end": 17482.36, + "probability": 0.5063 + }, + { + "start": 17482.92, + "end": 17483.72, + "probability": 0.8487 + }, + { + "start": 17484.19, + "end": 17485.97, + "probability": 0.7959 + }, + { + "start": 17487.88, + "end": 17489.24, + "probability": 0.5845 + }, + { + "start": 17489.82, + "end": 17491.58, + "probability": 0.8442 + }, + { + "start": 17492.64, + "end": 17495.02, + "probability": 0.9365 + }, + { + "start": 17496.4, + "end": 17497.1, + "probability": 0.7428 + }, + { + "start": 17498.52, + "end": 17501.44, + "probability": 0.6811 + }, + { + "start": 17502.06, + "end": 17504.0, + "probability": 0.9274 + }, + { + "start": 17504.92, + "end": 17507.2, + "probability": 0.731 + }, + { + "start": 17509.52, + "end": 17510.28, + "probability": 0.6398 + }, + { + "start": 17511.4, + "end": 17513.88, + "probability": 0.8135 + }, + { + "start": 17514.66, + "end": 17517.28, + "probability": 0.9037 + }, + { + "start": 17519.2, + "end": 17520.04, + "probability": 0.6473 + }, + { + "start": 17520.92, + "end": 17524.32, + "probability": 0.9661 + }, + { + "start": 17525.08, + "end": 17528.3, + "probability": 0.9847 + }, + { + "start": 17529.06, + "end": 17529.78, + "probability": 0.5799 + }, + { + "start": 17530.86, + "end": 17533.1, + "probability": 0.8811 + }, + { + "start": 17533.96, + "end": 17535.7, + "probability": 0.9639 + }, + { + "start": 17536.09, + "end": 17538.6, + "probability": 0.7852 + }, + { + "start": 17539.58, + "end": 17540.36, + "probability": 0.8879 + }, + { + "start": 17541.86, + "end": 17545.52, + "probability": 0.814 + }, + { + "start": 17546.42, + "end": 17546.84, + "probability": 0.5169 + }, + { + "start": 17547.32, + "end": 17548.75, + "probability": 0.9541 + }, + { + "start": 17548.94, + "end": 17550.06, + "probability": 0.9559 + }, + { + "start": 17551.42, + "end": 17552.36, + "probability": 0.7313 + }, + { + "start": 17553.84, + "end": 17555.4, + "probability": 0.8039 + }, + { + "start": 17556.42, + "end": 17556.78, + "probability": 0.9473 + }, + { + "start": 17558.42, + "end": 17560.24, + "probability": 0.5725 + }, + { + "start": 17560.42, + "end": 17560.42, + "probability": 0.6553 + }, + { + "start": 17560.94, + "end": 17561.73, + "probability": 0.1156 + }, + { + "start": 17562.1, + "end": 17564.4, + "probability": 0.9901 + }, + { + "start": 17564.88, + "end": 17565.36, + "probability": 0.2615 + }, + { + "start": 17565.46, + "end": 17567.3, + "probability": 0.7924 + }, + { + "start": 17567.62, + "end": 17572.92, + "probability": 0.9568 + }, + { + "start": 17572.92, + "end": 17577.82, + "probability": 0.9805 + }, + { + "start": 17577.84, + "end": 17578.52, + "probability": 0.6099 + }, + { + "start": 17578.7, + "end": 17579.08, + "probability": 0.3749 + }, + { + "start": 17579.18, + "end": 17582.24, + "probability": 0.7016 + }, + { + "start": 17585.14, + "end": 17588.4, + "probability": 0.5943 + }, + { + "start": 17589.4, + "end": 17590.02, + "probability": 0.7715 + }, + { + "start": 17591.78, + "end": 17593.31, + "probability": 0.9331 + }, + { + "start": 17593.42, + "end": 17594.04, + "probability": 0.9352 + }, + { + "start": 17595.7, + "end": 17595.86, + "probability": 0.1496 + }, + { + "start": 17596.04, + "end": 17597.9, + "probability": 0.6463 + }, + { + "start": 17601.48, + "end": 17605.31, + "probability": 0.0629 + }, + { + "start": 17606.62, + "end": 17607.06, + "probability": 0.6841 + }, + { + "start": 17607.18, + "end": 17607.86, + "probability": 0.7983 + }, + { + "start": 17607.96, + "end": 17609.9, + "probability": 0.8848 + }, + { + "start": 17613.06, + "end": 17614.64, + "probability": 0.7704 + }, + { + "start": 17614.98, + "end": 17616.32, + "probability": 0.6363 + }, + { + "start": 17618.12, + "end": 17620.76, + "probability": 0.9312 + }, + { + "start": 17621.36, + "end": 17621.84, + "probability": 0.6345 + }, + { + "start": 17623.16, + "end": 17626.66, + "probability": 0.9946 + }, + { + "start": 17628.36, + "end": 17630.84, + "probability": 0.9796 + }, + { + "start": 17630.9, + "end": 17631.54, + "probability": 0.9733 + }, + { + "start": 17632.36, + "end": 17635.18, + "probability": 0.9785 + }, + { + "start": 17635.92, + "end": 17637.64, + "probability": 0.9881 + }, + { + "start": 17638.0, + "end": 17638.92, + "probability": 0.9644 + }, + { + "start": 17638.98, + "end": 17639.9, + "probability": 0.9766 + }, + { + "start": 17640.0, + "end": 17640.76, + "probability": 0.9989 + }, + { + "start": 17641.76, + "end": 17644.04, + "probability": 0.9797 + }, + { + "start": 17646.28, + "end": 17648.12, + "probability": 0.9974 + }, + { + "start": 17648.8, + "end": 17650.06, + "probability": 0.9565 + }, + { + "start": 17650.76, + "end": 17652.38, + "probability": 0.9014 + }, + { + "start": 17653.18, + "end": 17655.6, + "probability": 0.9865 + }, + { + "start": 17656.49, + "end": 17659.8, + "probability": 0.7949 + }, + { + "start": 17660.32, + "end": 17660.82, + "probability": 0.7671 + }, + { + "start": 17661.4, + "end": 17662.26, + "probability": 0.7581 + }, + { + "start": 17662.44, + "end": 17663.44, + "probability": 0.9264 + }, + { + "start": 17663.92, + "end": 17665.68, + "probability": 0.9966 + }, + { + "start": 17666.08, + "end": 17670.2, + "probability": 0.9911 + }, + { + "start": 17670.34, + "end": 17671.01, + "probability": 0.9815 + }, + { + "start": 17672.76, + "end": 17673.54, + "probability": 0.9819 + }, + { + "start": 17674.5, + "end": 17675.72, + "probability": 0.9147 + }, + { + "start": 17676.62, + "end": 17677.54, + "probability": 0.943 + }, + { + "start": 17677.74, + "end": 17682.32, + "probability": 0.9802 + }, + { + "start": 17682.78, + "end": 17684.44, + "probability": 0.8955 + }, + { + "start": 17684.78, + "end": 17686.96, + "probability": 0.9702 + }, + { + "start": 17687.84, + "end": 17689.92, + "probability": 0.5817 + }, + { + "start": 17691.64, + "end": 17692.53, + "probability": 0.5199 + }, + { + "start": 17694.24, + "end": 17694.9, + "probability": 0.8858 + }, + { + "start": 17699.3, + "end": 17702.62, + "probability": 0.7581 + }, + { + "start": 17702.94, + "end": 17703.52, + "probability": 0.9893 + }, + { + "start": 17705.24, + "end": 17709.98, + "probability": 0.906 + }, + { + "start": 17710.66, + "end": 17714.88, + "probability": 0.979 + }, + { + "start": 17714.99, + "end": 17722.3, + "probability": 0.9836 + }, + { + "start": 17722.42, + "end": 17722.8, + "probability": 0.4163 + }, + { + "start": 17722.88, + "end": 17723.44, + "probability": 0.7809 + }, + { + "start": 17724.08, + "end": 17724.82, + "probability": 0.7332 + }, + { + "start": 17725.38, + "end": 17727.71, + "probability": 0.6289 + }, + { + "start": 17727.82, + "end": 17728.46, + "probability": 0.7982 + }, + { + "start": 17729.12, + "end": 17730.7, + "probability": 0.9068 + }, + { + "start": 17730.86, + "end": 17731.98, + "probability": 0.2031 + }, + { + "start": 17731.98, + "end": 17736.2, + "probability": 0.8323 + }, + { + "start": 17736.28, + "end": 17737.2, + "probability": 0.6326 + }, + { + "start": 17737.38, + "end": 17738.38, + "probability": 0.8779 + }, + { + "start": 17738.52, + "end": 17740.16, + "probability": 0.5449 + }, + { + "start": 17740.55, + "end": 17740.9, + "probability": 0.1129 + }, + { + "start": 17741.04, + "end": 17742.28, + "probability": 0.6372 + }, + { + "start": 17742.36, + "end": 17743.66, + "probability": 0.578 + }, + { + "start": 17743.66, + "end": 17745.34, + "probability": 0.7904 + }, + { + "start": 17745.58, + "end": 17747.9, + "probability": 0.4043 + }, + { + "start": 17748.58, + "end": 17748.7, + "probability": 0.1827 + }, + { + "start": 17748.7, + "end": 17748.7, + "probability": 0.3073 + }, + { + "start": 17748.7, + "end": 17749.82, + "probability": 0.1824 + }, + { + "start": 17749.82, + "end": 17750.42, + "probability": 0.043 + }, + { + "start": 17750.56, + "end": 17753.18, + "probability": 0.6272 + }, + { + "start": 17753.38, + "end": 17761.66, + "probability": 0.9176 + }, + { + "start": 17764.54, + "end": 17765.14, + "probability": 0.3239 + }, + { + "start": 17766.32, + "end": 17766.32, + "probability": 0.0807 + }, + { + "start": 17766.32, + "end": 17767.76, + "probability": 0.9617 + }, + { + "start": 17767.76, + "end": 17769.98, + "probability": 0.738 + }, + { + "start": 17770.26, + "end": 17771.18, + "probability": 0.6547 + }, + { + "start": 17771.3, + "end": 17771.92, + "probability": 0.7897 + }, + { + "start": 17772.76, + "end": 17774.66, + "probability": 0.9946 + }, + { + "start": 17775.22, + "end": 17777.0, + "probability": 0.9922 + }, + { + "start": 17777.52, + "end": 17780.38, + "probability": 0.9883 + }, + { + "start": 17781.42, + "end": 17785.6, + "probability": 0.8866 + }, + { + "start": 17786.3, + "end": 17790.0, + "probability": 0.9932 + }, + { + "start": 17790.62, + "end": 17790.84, + "probability": 0.7307 + }, + { + "start": 17793.32, + "end": 17794.92, + "probability": 0.3759 + }, + { + "start": 17795.46, + "end": 17796.54, + "probability": 0.9052 + }, + { + "start": 17796.6, + "end": 17797.88, + "probability": 0.7283 + }, + { + "start": 17798.3, + "end": 17799.8, + "probability": 0.8902 + }, + { + "start": 17800.0, + "end": 17801.18, + "probability": 0.9395 + }, + { + "start": 17801.56, + "end": 17805.96, + "probability": 0.9985 + }, + { + "start": 17805.96, + "end": 17810.2, + "probability": 0.9113 + }, + { + "start": 17810.36, + "end": 17811.28, + "probability": 0.8877 + }, + { + "start": 17811.7, + "end": 17814.28, + "probability": 0.96 + }, + { + "start": 17815.08, + "end": 17816.64, + "probability": 0.1844 + }, + { + "start": 17816.76, + "end": 17816.76, + "probability": 0.6374 + }, + { + "start": 17816.86, + "end": 17817.96, + "probability": 0.1436 + }, + { + "start": 17840.94, + "end": 17842.56, + "probability": 0.6754 + }, + { + "start": 17843.3, + "end": 17843.76, + "probability": 0.7209 + }, + { + "start": 17844.28, + "end": 17845.39, + "probability": 0.9721 + }, + { + "start": 17845.96, + "end": 17849.6, + "probability": 0.4489 + }, + { + "start": 17851.44, + "end": 17853.06, + "probability": 0.7359 + }, + { + "start": 17854.16, + "end": 17855.32, + "probability": 0.8276 + }, + { + "start": 17866.08, + "end": 17870.04, + "probability": 0.7085 + }, + { + "start": 17871.32, + "end": 17874.68, + "probability": 0.7845 + }, + { + "start": 17876.74, + "end": 17883.58, + "probability": 0.9927 + }, + { + "start": 17887.08, + "end": 17889.55, + "probability": 0.6291 + }, + { + "start": 17892.7, + "end": 17895.46, + "probability": 0.9651 + }, + { + "start": 17899.5, + "end": 17902.8, + "probability": 0.9966 + }, + { + "start": 17904.98, + "end": 17907.12, + "probability": 0.9493 + }, + { + "start": 17909.36, + "end": 17911.14, + "probability": 0.7559 + }, + { + "start": 17912.8, + "end": 17915.94, + "probability": 0.925 + }, + { + "start": 17916.14, + "end": 17917.44, + "probability": 0.8065 + }, + { + "start": 17919.28, + "end": 17924.02, + "probability": 0.9946 + }, + { + "start": 17927.4, + "end": 17929.46, + "probability": 0.9158 + }, + { + "start": 17932.0, + "end": 17932.77, + "probability": 0.999 + }, + { + "start": 17933.42, + "end": 17934.66, + "probability": 0.9399 + }, + { + "start": 17937.86, + "end": 17940.54, + "probability": 0.9976 + }, + { + "start": 17941.08, + "end": 17941.68, + "probability": 0.9929 + }, + { + "start": 17942.22, + "end": 17943.12, + "probability": 0.9834 + }, + { + "start": 17943.52, + "end": 17951.58, + "probability": 0.9927 + }, + { + "start": 17951.8, + "end": 17953.16, + "probability": 0.9774 + }, + { + "start": 17954.2, + "end": 17956.16, + "probability": 0.9785 + }, + { + "start": 17956.76, + "end": 17957.68, + "probability": 0.9142 + }, + { + "start": 17961.8, + "end": 17964.68, + "probability": 0.9705 + }, + { + "start": 17967.4, + "end": 17971.8, + "probability": 0.8838 + }, + { + "start": 17973.26, + "end": 17974.16, + "probability": 0.8917 + }, + { + "start": 17976.48, + "end": 17981.66, + "probability": 0.9688 + }, + { + "start": 17982.62, + "end": 17986.91, + "probability": 0.9811 + }, + { + "start": 17988.4, + "end": 17989.44, + "probability": 0.0284 + }, + { + "start": 17989.44, + "end": 17990.82, + "probability": 0.2609 + }, + { + "start": 17990.86, + "end": 17995.34, + "probability": 0.9952 + }, + { + "start": 17997.22, + "end": 18004.2, + "probability": 0.9275 + }, + { + "start": 18007.3, + "end": 18008.34, + "probability": 0.6257 + }, + { + "start": 18008.44, + "end": 18014.69, + "probability": 0.9175 + }, + { + "start": 18016.88, + "end": 18021.64, + "probability": 0.9852 + }, + { + "start": 18023.48, + "end": 18024.58, + "probability": 0.9465 + }, + { + "start": 18025.56, + "end": 18029.18, + "probability": 0.9924 + }, + { + "start": 18032.92, + "end": 18036.24, + "probability": 0.9004 + }, + { + "start": 18037.72, + "end": 18039.98, + "probability": 0.9536 + }, + { + "start": 18041.12, + "end": 18041.96, + "probability": 0.8755 + }, + { + "start": 18043.56, + "end": 18046.06, + "probability": 0.7194 + }, + { + "start": 18046.9, + "end": 18047.44, + "probability": 0.7877 + }, + { + "start": 18049.3, + "end": 18054.58, + "probability": 0.7671 + }, + { + "start": 18055.14, + "end": 18056.88, + "probability": 0.0499 + }, + { + "start": 18057.24, + "end": 18062.74, + "probability": 0.9594 + }, + { + "start": 18064.24, + "end": 18067.52, + "probability": 0.9222 + }, + { + "start": 18072.32, + "end": 18076.17, + "probability": 0.9683 + }, + { + "start": 18076.92, + "end": 18078.36, + "probability": 0.9977 + }, + { + "start": 18080.62, + "end": 18082.42, + "probability": 0.8716 + }, + { + "start": 18084.34, + "end": 18084.94, + "probability": 0.8954 + }, + { + "start": 18086.16, + "end": 18087.78, + "probability": 0.6777 + }, + { + "start": 18091.5, + "end": 18093.3, + "probability": 0.9976 + }, + { + "start": 18094.02, + "end": 18094.5, + "probability": 0.8675 + }, + { + "start": 18097.14, + "end": 18097.5, + "probability": 0.9319 + }, + { + "start": 18098.96, + "end": 18101.34, + "probability": 0.9485 + }, + { + "start": 18103.64, + "end": 18106.12, + "probability": 0.9479 + }, + { + "start": 18109.72, + "end": 18113.14, + "probability": 0.4796 + }, + { + "start": 18113.58, + "end": 18114.9, + "probability": 0.9404 + }, + { + "start": 18115.18, + "end": 18116.42, + "probability": 0.9717 + }, + { + "start": 18117.08, + "end": 18117.18, + "probability": 0.6907 + }, + { + "start": 18118.18, + "end": 18118.64, + "probability": 0.9158 + }, + { + "start": 18121.0, + "end": 18122.64, + "probability": 0.8682 + }, + { + "start": 18123.46, + "end": 18124.68, + "probability": 0.9893 + }, + { + "start": 18126.54, + "end": 18128.32, + "probability": 0.9811 + }, + { + "start": 18129.6, + "end": 18130.3, + "probability": 0.6073 + }, + { + "start": 18132.72, + "end": 18133.32, + "probability": 0.653 + }, + { + "start": 18135.18, + "end": 18135.8, + "probability": 0.5713 + }, + { + "start": 18136.58, + "end": 18137.64, + "probability": 0.8477 + }, + { + "start": 18139.72, + "end": 18141.32, + "probability": 0.8963 + }, + { + "start": 18144.1, + "end": 18147.44, + "probability": 0.8882 + }, + { + "start": 18147.5, + "end": 18149.54, + "probability": 0.8855 + }, + { + "start": 18151.12, + "end": 18153.14, + "probability": 0.9976 + }, + { + "start": 18154.12, + "end": 18158.5, + "probability": 0.8584 + }, + { + "start": 18159.7, + "end": 18161.2, + "probability": 0.9893 + }, + { + "start": 18162.52, + "end": 18163.3, + "probability": 0.4436 + }, + { + "start": 18164.04, + "end": 18164.72, + "probability": 0.9934 + }, + { + "start": 18167.28, + "end": 18169.68, + "probability": 0.9082 + }, + { + "start": 18170.24, + "end": 18171.98, + "probability": 0.9751 + }, + { + "start": 18176.56, + "end": 18177.64, + "probability": 0.7351 + }, + { + "start": 18179.48, + "end": 18180.66, + "probability": 0.7303 + }, + { + "start": 18183.42, + "end": 18184.16, + "probability": 0.6715 + }, + { + "start": 18186.98, + "end": 18193.11, + "probability": 0.8778 + }, + { + "start": 18194.04, + "end": 18196.72, + "probability": 0.9852 + }, + { + "start": 18198.48, + "end": 18200.98, + "probability": 0.9727 + }, + { + "start": 18201.02, + "end": 18201.99, + "probability": 0.9873 + }, + { + "start": 18205.76, + "end": 18209.26, + "probability": 0.8306 + }, + { + "start": 18209.96, + "end": 18210.84, + "probability": 0.7475 + }, + { + "start": 18212.42, + "end": 18212.62, + "probability": 0.9619 + }, + { + "start": 18213.22, + "end": 18213.42, + "probability": 0.9355 + }, + { + "start": 18215.3, + "end": 18217.84, + "probability": 0.9941 + }, + { + "start": 18220.87, + "end": 18223.7, + "probability": 0.9946 + }, + { + "start": 18224.82, + "end": 18225.84, + "probability": 0.9967 + }, + { + "start": 18226.78, + "end": 18228.18, + "probability": 0.993 + }, + { + "start": 18231.24, + "end": 18233.72, + "probability": 0.6298 + }, + { + "start": 18233.88, + "end": 18235.54, + "probability": 0.6352 + }, + { + "start": 18236.44, + "end": 18236.72, + "probability": 0.8135 + }, + { + "start": 18241.8, + "end": 18243.12, + "probability": 0.6171 + }, + { + "start": 18245.02, + "end": 18247.14, + "probability": 0.9902 + }, + { + "start": 18247.8, + "end": 18252.2, + "probability": 0.9789 + }, + { + "start": 18253.35, + "end": 18257.92, + "probability": 0.8066 + }, + { + "start": 18258.78, + "end": 18259.5, + "probability": 0.9795 + }, + { + "start": 18260.21, + "end": 18266.62, + "probability": 0.9919 + }, + { + "start": 18268.5, + "end": 18270.5, + "probability": 0.938 + }, + { + "start": 18271.88, + "end": 18273.5, + "probability": 0.9692 + }, + { + "start": 18274.78, + "end": 18276.24, + "probability": 0.9579 + }, + { + "start": 18277.3, + "end": 18282.28, + "probability": 0.9761 + }, + { + "start": 18282.9, + "end": 18287.08, + "probability": 0.9964 + }, + { + "start": 18289.94, + "end": 18292.04, + "probability": 0.8593 + }, + { + "start": 18293.68, + "end": 18296.92, + "probability": 0.9277 + }, + { + "start": 18298.3, + "end": 18299.32, + "probability": 0.7545 + }, + { + "start": 18299.86, + "end": 18301.36, + "probability": 0.7707 + }, + { + "start": 18304.75, + "end": 18307.38, + "probability": 0.9614 + }, + { + "start": 18308.82, + "end": 18310.7, + "probability": 0.948 + }, + { + "start": 18311.8, + "end": 18313.04, + "probability": 0.6695 + }, + { + "start": 18313.36, + "end": 18314.78, + "probability": 0.8823 + }, + { + "start": 18317.06, + "end": 18320.6, + "probability": 0.9971 + }, + { + "start": 18320.6, + "end": 18322.6, + "probability": 0.9989 + }, + { + "start": 18323.64, + "end": 18325.38, + "probability": 0.6137 + }, + { + "start": 18326.3, + "end": 18329.5, + "probability": 0.99 + }, + { + "start": 18329.72, + "end": 18333.08, + "probability": 0.9863 + }, + { + "start": 18333.18, + "end": 18334.1, + "probability": 0.9922 + }, + { + "start": 18336.86, + "end": 18338.7, + "probability": 0.5663 + }, + { + "start": 18339.34, + "end": 18339.34, + "probability": 0.1327 + }, + { + "start": 18341.14, + "end": 18342.64, + "probability": 0.7885 + }, + { + "start": 18343.52, + "end": 18344.68, + "probability": 0.9272 + }, + { + "start": 18345.56, + "end": 18346.1, + "probability": 0.9814 + }, + { + "start": 18346.74, + "end": 18348.08, + "probability": 0.8721 + }, + { + "start": 18349.78, + "end": 18350.82, + "probability": 0.7218 + }, + { + "start": 18351.92, + "end": 18352.98, + "probability": 0.3737 + }, + { + "start": 18353.54, + "end": 18358.28, + "probability": 0.9488 + }, + { + "start": 18358.96, + "end": 18363.94, + "probability": 0.969 + }, + { + "start": 18364.64, + "end": 18368.38, + "probability": 0.9962 + }, + { + "start": 18369.08, + "end": 18371.66, + "probability": 0.5313 + }, + { + "start": 18372.84, + "end": 18374.06, + "probability": 0.9072 + }, + { + "start": 18374.82, + "end": 18375.7, + "probability": 0.8073 + }, + { + "start": 18375.8, + "end": 18378.06, + "probability": 0.6604 + }, + { + "start": 18378.44, + "end": 18380.32, + "probability": 0.9922 + }, + { + "start": 18381.16, + "end": 18381.98, + "probability": 0.7669 + }, + { + "start": 18383.44, + "end": 18386.24, + "probability": 0.8398 + }, + { + "start": 18389.94, + "end": 18393.02, + "probability": 0.9761 + }, + { + "start": 18393.96, + "end": 18395.06, + "probability": 0.876 + }, + { + "start": 18396.76, + "end": 18398.82, + "probability": 0.9699 + }, + { + "start": 18400.12, + "end": 18403.68, + "probability": 0.9779 + }, + { + "start": 18404.56, + "end": 18405.84, + "probability": 0.9712 + }, + { + "start": 18407.7, + "end": 18408.28, + "probability": 0.8701 + }, + { + "start": 18409.66, + "end": 18411.84, + "probability": 0.8349 + }, + { + "start": 18412.36, + "end": 18413.14, + "probability": 0.9211 + }, + { + "start": 18414.1, + "end": 18414.4, + "probability": 0.9133 + }, + { + "start": 18415.24, + "end": 18416.54, + "probability": 0.437 + }, + { + "start": 18418.6, + "end": 18423.38, + "probability": 0.9712 + }, + { + "start": 18424.84, + "end": 18426.84, + "probability": 0.9424 + }, + { + "start": 18428.94, + "end": 18433.68, + "probability": 0.9663 + }, + { + "start": 18434.63, + "end": 18437.28, + "probability": 0.3354 + }, + { + "start": 18437.94, + "end": 18442.06, + "probability": 0.9768 + }, + { + "start": 18443.96, + "end": 18445.92, + "probability": 0.999 + }, + { + "start": 18446.48, + "end": 18447.58, + "probability": 0.9858 + }, + { + "start": 18448.06, + "end": 18450.4, + "probability": 0.8842 + }, + { + "start": 18451.28, + "end": 18452.38, + "probability": 0.9719 + }, + { + "start": 18453.18, + "end": 18458.3, + "probability": 0.982 + }, + { + "start": 18458.44, + "end": 18459.18, + "probability": 0.7415 + }, + { + "start": 18460.0, + "end": 18461.0, + "probability": 0.9703 + }, + { + "start": 18461.6, + "end": 18465.38, + "probability": 0.9919 + }, + { + "start": 18467.82, + "end": 18469.02, + "probability": 0.6936 + }, + { + "start": 18469.1, + "end": 18471.48, + "probability": 0.9795 + }, + { + "start": 18471.54, + "end": 18473.5, + "probability": 0.9905 + }, + { + "start": 18477.76, + "end": 18482.74, + "probability": 0.8372 + }, + { + "start": 18484.76, + "end": 18490.02, + "probability": 0.6923 + }, + { + "start": 18492.4, + "end": 18494.48, + "probability": 0.6129 + }, + { + "start": 18495.08, + "end": 18495.5, + "probability": 0.7303 + }, + { + "start": 18497.14, + "end": 18498.32, + "probability": 0.9976 + }, + { + "start": 18499.16, + "end": 18503.76, + "probability": 0.6759 + }, + { + "start": 18506.78, + "end": 18509.54, + "probability": 0.9993 + }, + { + "start": 18511.48, + "end": 18512.12, + "probability": 0.8545 + }, + { + "start": 18514.4, + "end": 18515.12, + "probability": 0.2628 + }, + { + "start": 18515.3, + "end": 18517.4, + "probability": 0.0954 + }, + { + "start": 18517.52, + "end": 18522.6, + "probability": 0.3004 + }, + { + "start": 18525.46, + "end": 18527.08, + "probability": 0.7993 + }, + { + "start": 18528.12, + "end": 18529.74, + "probability": 0.9279 + }, + { + "start": 18530.28, + "end": 18531.58, + "probability": 0.7716 + }, + { + "start": 18532.62, + "end": 18532.92, + "probability": 0.9397 + }, + { + "start": 18534.16, + "end": 18537.06, + "probability": 0.8693 + }, + { + "start": 18538.28, + "end": 18538.86, + "probability": 0.9961 + }, + { + "start": 18539.44, + "end": 18540.24, + "probability": 0.7188 + }, + { + "start": 18540.56, + "end": 18541.5, + "probability": 0.1603 + }, + { + "start": 18542.1, + "end": 18542.66, + "probability": 0.6401 + }, + { + "start": 18545.36, + "end": 18547.14, + "probability": 0.7983 + }, + { + "start": 18547.82, + "end": 18549.42, + "probability": 0.9893 + }, + { + "start": 18551.12, + "end": 18552.84, + "probability": 0.7515 + }, + { + "start": 18554.66, + "end": 18555.98, + "probability": 0.802 + }, + { + "start": 18558.18, + "end": 18564.96, + "probability": 0.7085 + }, + { + "start": 18566.36, + "end": 18568.02, + "probability": 0.6694 + }, + { + "start": 18569.36, + "end": 18572.5, + "probability": 0.9824 + }, + { + "start": 18573.5, + "end": 18574.36, + "probability": 0.9227 + }, + { + "start": 18575.36, + "end": 18577.8, + "probability": 0.9879 + }, + { + "start": 18578.42, + "end": 18579.9, + "probability": 0.7823 + }, + { + "start": 18581.1, + "end": 18582.58, + "probability": 0.7806 + }, + { + "start": 18582.74, + "end": 18584.66, + "probability": 0.9008 + }, + { + "start": 18584.78, + "end": 18585.08, + "probability": 0.3644 + }, + { + "start": 18586.2, + "end": 18589.12, + "probability": 0.9243 + }, + { + "start": 18590.2, + "end": 18591.82, + "probability": 0.9683 + }, + { + "start": 18594.86, + "end": 18595.94, + "probability": 0.8115 + }, + { + "start": 18598.34, + "end": 18599.56, + "probability": 0.9805 + }, + { + "start": 18600.76, + "end": 18601.42, + "probability": 0.621 + }, + { + "start": 18602.44, + "end": 18603.36, + "probability": 0.9746 + }, + { + "start": 18605.04, + "end": 18606.4, + "probability": 0.8831 + }, + { + "start": 18607.8, + "end": 18610.58, + "probability": 0.9793 + }, + { + "start": 18611.66, + "end": 18614.98, + "probability": 0.859 + }, + { + "start": 18617.92, + "end": 18626.96, + "probability": 0.7173 + }, + { + "start": 18629.3, + "end": 18630.54, + "probability": 0.9563 + }, + { + "start": 18631.96, + "end": 18637.12, + "probability": 0.997 + }, + { + "start": 18637.18, + "end": 18639.7, + "probability": 0.9982 + }, + { + "start": 18640.46, + "end": 18641.7, + "probability": 0.9391 + }, + { + "start": 18642.6, + "end": 18643.5, + "probability": 0.705 + }, + { + "start": 18644.06, + "end": 18644.81, + "probability": 0.7925 + }, + { + "start": 18646.18, + "end": 18651.52, + "probability": 0.9259 + }, + { + "start": 18652.46, + "end": 18653.92, + "probability": 0.9825 + }, + { + "start": 18656.08, + "end": 18657.4, + "probability": 0.7695 + }, + { + "start": 18658.64, + "end": 18659.22, + "probability": 0.7433 + }, + { + "start": 18661.06, + "end": 18664.08, + "probability": 0.8723 + }, + { + "start": 18664.64, + "end": 18664.82, + "probability": 0.3973 + }, + { + "start": 18666.16, + "end": 18668.16, + "probability": 0.9932 + }, + { + "start": 18668.3, + "end": 18670.46, + "probability": 0.9895 + }, + { + "start": 18674.51, + "end": 18678.26, + "probability": 0.9895 + }, + { + "start": 18679.12, + "end": 18682.54, + "probability": 0.7833 + }, + { + "start": 18683.86, + "end": 18685.42, + "probability": 0.9876 + }, + { + "start": 18686.32, + "end": 18689.86, + "probability": 0.979 + }, + { + "start": 18690.12, + "end": 18692.0, + "probability": 0.9966 + }, + { + "start": 18692.76, + "end": 18694.9, + "probability": 0.7 + }, + { + "start": 18696.51, + "end": 18702.02, + "probability": 0.9855 + }, + { + "start": 18703.04, + "end": 18703.94, + "probability": 0.8642 + }, + { + "start": 18704.76, + "end": 18706.32, + "probability": 0.9637 + }, + { + "start": 18706.96, + "end": 18709.24, + "probability": 0.8758 + }, + { + "start": 18711.64, + "end": 18713.18, + "probability": 0.8446 + }, + { + "start": 18714.08, + "end": 18717.02, + "probability": 0.7833 + }, + { + "start": 18718.06, + "end": 18719.08, + "probability": 0.5875 + }, + { + "start": 18720.12, + "end": 18722.0, + "probability": 0.8972 + }, + { + "start": 18724.82, + "end": 18728.82, + "probability": 0.9107 + }, + { + "start": 18729.82, + "end": 18731.0, + "probability": 0.8616 + }, + { + "start": 18732.38, + "end": 18735.6, + "probability": 0.9634 + }, + { + "start": 18735.66, + "end": 18736.18, + "probability": 0.6395 + }, + { + "start": 18737.62, + "end": 18739.32, + "probability": 0.9984 + }, + { + "start": 18741.06, + "end": 18743.92, + "probability": 0.9605 + }, + { + "start": 18747.34, + "end": 18750.04, + "probability": 0.963 + }, + { + "start": 18752.08, + "end": 18752.71, + "probability": 0.9995 + }, + { + "start": 18754.36, + "end": 18756.04, + "probability": 0.9955 + }, + { + "start": 18758.54, + "end": 18759.08, + "probability": 0.9337 + }, + { + "start": 18761.12, + "end": 18764.3, + "probability": 0.9933 + }, + { + "start": 18764.3, + "end": 18768.36, + "probability": 0.9959 + }, + { + "start": 18769.36, + "end": 18774.38, + "probability": 0.9956 + }, + { + "start": 18777.24, + "end": 18778.6, + "probability": 0.8096 + }, + { + "start": 18781.5, + "end": 18784.62, + "probability": 0.9992 + }, + { + "start": 18785.64, + "end": 18786.18, + "probability": 0.9885 + }, + { + "start": 18788.1, + "end": 18789.68, + "probability": 0.9824 + }, + { + "start": 18790.86, + "end": 18794.88, + "probability": 0.9915 + }, + { + "start": 18795.24, + "end": 18799.58, + "probability": 0.9913 + }, + { + "start": 18800.58, + "end": 18801.36, + "probability": 0.8635 + }, + { + "start": 18801.92, + "end": 18805.6, + "probability": 0.9863 + }, + { + "start": 18806.22, + "end": 18808.94, + "probability": 0.9972 + }, + { + "start": 18809.24, + "end": 18809.62, + "probability": 0.5745 + }, + { + "start": 18809.86, + "end": 18813.7, + "probability": 0.9345 + }, + { + "start": 18814.16, + "end": 18815.76, + "probability": 0.9985 + }, + { + "start": 18816.44, + "end": 18818.3, + "probability": 0.9771 + }, + { + "start": 18818.38, + "end": 18819.08, + "probability": 0.9889 + }, + { + "start": 18819.46, + "end": 18820.98, + "probability": 0.9907 + }, + { + "start": 18821.32, + "end": 18826.56, + "probability": 0.9848 + }, + { + "start": 18826.92, + "end": 18830.06, + "probability": 0.9932 + }, + { + "start": 18830.62, + "end": 18830.8, + "probability": 0.7891 + }, + { + "start": 18831.66, + "end": 18832.84, + "probability": 0.9423 + }, + { + "start": 18832.9, + "end": 18833.88, + "probability": 0.5025 + }, + { + "start": 18834.04, + "end": 18835.14, + "probability": 0.9946 + }, + { + "start": 18835.26, + "end": 18835.7, + "probability": 0.8713 + }, + { + "start": 18835.96, + "end": 18835.96, + "probability": 0.4497 + }, + { + "start": 18836.52, + "end": 18840.18, + "probability": 0.6979 + }, + { + "start": 18840.32, + "end": 18841.32, + "probability": 0.9966 + }, + { + "start": 18842.08, + "end": 18842.86, + "probability": 0.9504 + }, + { + "start": 18843.62, + "end": 18845.0, + "probability": 0.9453 + }, + { + "start": 18846.44, + "end": 18847.4, + "probability": 0.564 + }, + { + "start": 18849.24, + "end": 18849.78, + "probability": 0.8108 + }, + { + "start": 18850.98, + "end": 18852.28, + "probability": 0.822 + }, + { + "start": 18852.36, + "end": 18852.72, + "probability": 0.5921 + }, + { + "start": 18853.96, + "end": 18855.52, + "probability": 0.1279 + }, + { + "start": 18860.66, + "end": 18861.36, + "probability": 0.0032 + }, + { + "start": 18862.14, + "end": 18863.46, + "probability": 0.9844 + }, + { + "start": 18863.8, + "end": 18864.28, + "probability": 0.7301 + }, + { + "start": 18867.14, + "end": 18868.92, + "probability": 0.5605 + }, + { + "start": 18869.98, + "end": 18872.45, + "probability": 0.6796 + }, + { + "start": 18873.7, + "end": 18875.54, + "probability": 0.8532 + }, + { + "start": 18876.12, + "end": 18877.2, + "probability": 0.9888 + }, + { + "start": 18878.88, + "end": 18884.48, + "probability": 0.9859 + }, + { + "start": 18885.22, + "end": 18890.26, + "probability": 0.9574 + }, + { + "start": 18892.5, + "end": 18896.06, + "probability": 0.7464 + }, + { + "start": 18897.92, + "end": 18899.38, + "probability": 0.7104 + }, + { + "start": 18900.1, + "end": 18904.18, + "probability": 0.9961 + }, + { + "start": 18904.88, + "end": 18906.66, + "probability": 0.887 + }, + { + "start": 18907.34, + "end": 18908.48, + "probability": 0.9316 + }, + { + "start": 18909.38, + "end": 18910.16, + "probability": 0.8198 + }, + { + "start": 18911.46, + "end": 18912.0, + "probability": 0.8657 + }, + { + "start": 18912.52, + "end": 18913.3, + "probability": 0.8462 + }, + { + "start": 18914.3, + "end": 18917.5, + "probability": 0.955 + }, + { + "start": 18917.66, + "end": 18921.8, + "probability": 0.995 + }, + { + "start": 18922.34, + "end": 18923.98, + "probability": 0.9008 + }, + { + "start": 18924.9, + "end": 18925.98, + "probability": 0.8469 + }, + { + "start": 18926.8, + "end": 18933.42, + "probability": 0.9929 + }, + { + "start": 18935.1, + "end": 18936.34, + "probability": 0.4967 + }, + { + "start": 18936.92, + "end": 18938.52, + "probability": 0.7681 + }, + { + "start": 18939.6, + "end": 18941.42, + "probability": 0.9972 + }, + { + "start": 18942.26, + "end": 18943.66, + "probability": 0.6584 + }, + { + "start": 18944.46, + "end": 18946.66, + "probability": 0.7291 + }, + { + "start": 18947.4, + "end": 18949.8, + "probability": 0.6064 + }, + { + "start": 18950.04, + "end": 18950.24, + "probability": 0.6472 + }, + { + "start": 18950.24, + "end": 18951.76, + "probability": 0.5085 + }, + { + "start": 18951.76, + "end": 18952.32, + "probability": 0.7139 + }, + { + "start": 18953.1, + "end": 18953.56, + "probability": 0.7209 + }, + { + "start": 18953.56, + "end": 18954.42, + "probability": 0.4969 + }, + { + "start": 18954.5, + "end": 18954.96, + "probability": 0.1813 + }, + { + "start": 18955.12, + "end": 18957.14, + "probability": 0.853 + }, + { + "start": 18957.82, + "end": 18958.46, + "probability": 0.4268 + }, + { + "start": 18960.32, + "end": 18961.26, + "probability": 0.3747 + }, + { + "start": 18961.3, + "end": 18961.82, + "probability": 0.6948 + }, + { + "start": 18962.38, + "end": 18962.74, + "probability": 0.7955 + }, + { + "start": 18963.5, + "end": 18964.52, + "probability": 0.2766 + }, + { + "start": 18965.24, + "end": 18968.66, + "probability": 0.9279 + }, + { + "start": 18968.98, + "end": 18970.84, + "probability": 0.8061 + }, + { + "start": 18970.84, + "end": 18974.4, + "probability": 0.979 + }, + { + "start": 18975.06, + "end": 18977.72, + "probability": 0.9589 + }, + { + "start": 18978.24, + "end": 18979.92, + "probability": 0.9556 + }, + { + "start": 18981.46, + "end": 18982.82, + "probability": 0.8015 + }, + { + "start": 18983.82, + "end": 18986.66, + "probability": 0.8882 + }, + { + "start": 18986.86, + "end": 18989.58, + "probability": 0.996 + }, + { + "start": 18989.7, + "end": 18994.12, + "probability": 0.8136 + }, + { + "start": 18994.68, + "end": 18995.02, + "probability": 0.9032 + }, + { + "start": 18995.62, + "end": 18996.02, + "probability": 0.8752 + }, + { + "start": 18997.3, + "end": 18998.64, + "probability": 0.8694 + }, + { + "start": 18998.72, + "end": 19000.37, + "probability": 0.8594 + }, + { + "start": 19000.5, + "end": 19001.82, + "probability": 0.5845 + }, + { + "start": 19001.94, + "end": 19006.46, + "probability": 0.9961 + }, + { + "start": 19007.06, + "end": 19008.12, + "probability": 0.9785 + }, + { + "start": 19009.6, + "end": 19011.28, + "probability": 0.4998 + }, + { + "start": 19011.9, + "end": 19013.6, + "probability": 0.9576 + }, + { + "start": 19014.16, + "end": 19017.32, + "probability": 0.9587 + }, + { + "start": 19018.62, + "end": 19018.9, + "probability": 0.5358 + }, + { + "start": 19020.54, + "end": 19021.38, + "probability": 0.7895 + }, + { + "start": 19022.14, + "end": 19022.86, + "probability": 0.9756 + }, + { + "start": 19023.9, + "end": 19025.14, + "probability": 0.9874 + }, + { + "start": 19025.32, + "end": 19026.44, + "probability": 0.9855 + }, + { + "start": 19026.54, + "end": 19027.18, + "probability": 0.885 + }, + { + "start": 19027.9, + "end": 19028.88, + "probability": 0.9956 + }, + { + "start": 19029.02, + "end": 19029.42, + "probability": 0.949 + }, + { + "start": 19029.42, + "end": 19030.12, + "probability": 0.9776 + }, + { + "start": 19030.22, + "end": 19031.04, + "probability": 0.9724 + }, + { + "start": 19031.1, + "end": 19031.86, + "probability": 0.9934 + }, + { + "start": 19032.12, + "end": 19032.96, + "probability": 0.957 + }, + { + "start": 19033.78, + "end": 19034.32, + "probability": 0.9468 + }, + { + "start": 19036.08, + "end": 19037.2, + "probability": 0.8101 + }, + { + "start": 19037.74, + "end": 19038.18, + "probability": 0.5995 + }, + { + "start": 19039.54, + "end": 19039.82, + "probability": 0.5002 + }, + { + "start": 19040.02, + "end": 19042.5, + "probability": 0.97 + }, + { + "start": 19043.62, + "end": 19045.26, + "probability": 0.9939 + }, + { + "start": 19046.8, + "end": 19047.5, + "probability": 0.9944 + }, + { + "start": 19048.16, + "end": 19049.36, + "probability": 0.9805 + }, + { + "start": 19049.88, + "end": 19050.46, + "probability": 0.7928 + }, + { + "start": 19051.32, + "end": 19053.5, + "probability": 0.9912 + }, + { + "start": 19053.76, + "end": 19054.88, + "probability": 0.8882 + }, + { + "start": 19055.5, + "end": 19056.04, + "probability": 0.5634 + }, + { + "start": 19056.96, + "end": 19058.1, + "probability": 0.9162 + }, + { + "start": 19058.68, + "end": 19063.34, + "probability": 0.9642 + }, + { + "start": 19063.94, + "end": 19070.28, + "probability": 0.9782 + }, + { + "start": 19070.28, + "end": 19072.56, + "probability": 0.8679 + }, + { + "start": 19073.24, + "end": 19075.98, + "probability": 0.9344 + }, + { + "start": 19076.44, + "end": 19077.5, + "probability": 0.8175 + }, + { + "start": 19077.72, + "end": 19078.88, + "probability": 0.9761 + }, + { + "start": 19078.94, + "end": 19079.8, + "probability": 0.8966 + }, + { + "start": 19079.82, + "end": 19080.48, + "probability": 0.7751 + }, + { + "start": 19080.92, + "end": 19083.24, + "probability": 0.9902 + }, + { + "start": 19083.42, + "end": 19089.56, + "probability": 0.986 + }, + { + "start": 19091.28, + "end": 19092.98, + "probability": 0.9989 + }, + { + "start": 19093.78, + "end": 19095.78, + "probability": 0.9849 + }, + { + "start": 19095.88, + "end": 19098.12, + "probability": 0.956 + }, + { + "start": 19098.66, + "end": 19098.98, + "probability": 0.5935 + }, + { + "start": 19099.1, + "end": 19099.64, + "probability": 0.867 + }, + { + "start": 19100.06, + "end": 19103.54, + "probability": 0.9851 + }, + { + "start": 19103.98, + "end": 19104.2, + "probability": 0.8948 + }, + { + "start": 19105.22, + "end": 19106.98, + "probability": 0.9725 + }, + { + "start": 19107.36, + "end": 19108.86, + "probability": 0.9935 + }, + { + "start": 19109.26, + "end": 19114.52, + "probability": 0.9697 + }, + { + "start": 19117.32, + "end": 19118.26, + "probability": 0.7441 + }, + { + "start": 19119.64, + "end": 19120.46, + "probability": 0.7804 + }, + { + "start": 19120.58, + "end": 19122.44, + "probability": 0.6599 + }, + { + "start": 19123.64, + "end": 19124.42, + "probability": 0.9517 + }, + { + "start": 19125.88, + "end": 19126.86, + "probability": 0.9204 + }, + { + "start": 19126.96, + "end": 19127.55, + "probability": 0.8967 + }, + { + "start": 19128.06, + "end": 19131.26, + "probability": 0.9004 + }, + { + "start": 19131.58, + "end": 19132.72, + "probability": 0.6954 + }, + { + "start": 19133.62, + "end": 19134.58, + "probability": 0.8395 + }, + { + "start": 19134.76, + "end": 19135.26, + "probability": 0.371 + }, + { + "start": 19135.32, + "end": 19140.92, + "probability": 0.8257 + }, + { + "start": 19141.06, + "end": 19141.6, + "probability": 0.6956 + }, + { + "start": 19141.9, + "end": 19142.52, + "probability": 0.9683 + }, + { + "start": 19142.62, + "end": 19143.86, + "probability": 0.7974 + }, + { + "start": 19145.12, + "end": 19147.53, + "probability": 0.8274 + }, + { + "start": 19148.22, + "end": 19149.22, + "probability": 0.8174 + }, + { + "start": 19149.5, + "end": 19151.46, + "probability": 0.9163 + }, + { + "start": 19152.64, + "end": 19154.12, + "probability": 0.9591 + }, + { + "start": 19154.56, + "end": 19157.02, + "probability": 0.9921 + }, + { + "start": 19158.4, + "end": 19160.14, + "probability": 0.9936 + }, + { + "start": 19160.68, + "end": 19161.34, + "probability": 0.6656 + }, + { + "start": 19161.54, + "end": 19162.33, + "probability": 0.7151 + }, + { + "start": 19162.54, + "end": 19164.04, + "probability": 0.9653 + }, + { + "start": 19164.66, + "end": 19165.06, + "probability": 0.6718 + }, + { + "start": 19166.24, + "end": 19167.24, + "probability": 0.813 + }, + { + "start": 19168.14, + "end": 19168.92, + "probability": 0.7017 + }, + { + "start": 19168.92, + "end": 19169.82, + "probability": 0.5031 + }, + { + "start": 19170.74, + "end": 19171.6, + "probability": 0.5969 + }, + { + "start": 19172.54, + "end": 19174.36, + "probability": 0.7399 + }, + { + "start": 19176.88, + "end": 19177.48, + "probability": 0.4905 + }, + { + "start": 19177.48, + "end": 19177.5, + "probability": 0.0563 + }, + { + "start": 19177.5, + "end": 19177.92, + "probability": 0.1724 + }, + { + "start": 19177.92, + "end": 19179.74, + "probability": 0.6292 + }, + { + "start": 19180.78, + "end": 19181.16, + "probability": 0.3543 + }, + { + "start": 19181.9, + "end": 19183.02, + "probability": 0.8954 + }, + { + "start": 19183.04, + "end": 19184.28, + "probability": 0.9716 + }, + { + "start": 19184.88, + "end": 19185.42, + "probability": 0.1905 + }, + { + "start": 19185.54, + "end": 19189.22, + "probability": 0.6956 + }, + { + "start": 19190.08, + "end": 19191.92, + "probability": 0.9813 + }, + { + "start": 19192.46, + "end": 19192.88, + "probability": 0.9988 + }, + { + "start": 19193.4, + "end": 19196.14, + "probability": 0.9653 + }, + { + "start": 19196.56, + "end": 19197.32, + "probability": 0.8051 + }, + { + "start": 19198.12, + "end": 19198.4, + "probability": 0.928 + }, + { + "start": 19198.76, + "end": 19199.62, + "probability": 0.6738 + }, + { + "start": 19200.0, + "end": 19200.56, + "probability": 0.8931 + }, + { + "start": 19200.74, + "end": 19201.24, + "probability": 0.7908 + }, + { + "start": 19201.42, + "end": 19202.36, + "probability": 0.5703 + }, + { + "start": 19202.5, + "end": 19208.58, + "probability": 0.6729 + }, + { + "start": 19208.76, + "end": 19210.18, + "probability": 0.521 + }, + { + "start": 19210.3, + "end": 19210.72, + "probability": 0.3376 + }, + { + "start": 19210.88, + "end": 19211.28, + "probability": 0.54 + }, + { + "start": 19211.44, + "end": 19212.02, + "probability": 0.0962 + }, + { + "start": 19212.16, + "end": 19213.94, + "probability": 0.7307 + }, + { + "start": 19214.3, + "end": 19214.68, + "probability": 0.0893 + }, + { + "start": 19214.82, + "end": 19215.1, + "probability": 0.5637 + }, + { + "start": 19215.34, + "end": 19215.98, + "probability": 0.0544 + }, + { + "start": 19216.18, + "end": 19219.62, + "probability": 0.8914 + }, + { + "start": 19220.08, + "end": 19220.76, + "probability": 0.0614 + }, + { + "start": 19220.76, + "end": 19221.68, + "probability": 0.4921 + }, + { + "start": 19221.78, + "end": 19223.46, + "probability": 0.9128 + }, + { + "start": 19223.72, + "end": 19224.98, + "probability": 0.84 + }, + { + "start": 19225.9, + "end": 19226.44, + "probability": 0.0277 + }, + { + "start": 19226.72, + "end": 19226.86, + "probability": 0.0071 + }, + { + "start": 19226.86, + "end": 19228.74, + "probability": 0.5496 + }, + { + "start": 19228.76, + "end": 19229.82, + "probability": 0.6079 + }, + { + "start": 19229.88, + "end": 19230.54, + "probability": 0.2756 + }, + { + "start": 19230.58, + "end": 19232.74, + "probability": 0.2791 + }, + { + "start": 19233.12, + "end": 19234.52, + "probability": 0.7343 + }, + { + "start": 19234.52, + "end": 19235.35, + "probability": 0.2296 + }, + { + "start": 19239.44, + "end": 19242.24, + "probability": 0.5871 + }, + { + "start": 19242.68, + "end": 19243.34, + "probability": 0.4796 + }, + { + "start": 19243.66, + "end": 19245.6, + "probability": 0.8243 + }, + { + "start": 19246.16, + "end": 19246.92, + "probability": 0.6985 + }, + { + "start": 19248.04, + "end": 19250.38, + "probability": 0.6799 + }, + { + "start": 19250.48, + "end": 19250.76, + "probability": 0.8271 + }, + { + "start": 19251.02, + "end": 19252.7, + "probability": 0.9407 + }, + { + "start": 19252.78, + "end": 19253.6, + "probability": 0.9204 + }, + { + "start": 19253.72, + "end": 19255.92, + "probability": 0.9175 + }, + { + "start": 19256.2, + "end": 19257.46, + "probability": 0.4843 + }, + { + "start": 19257.7, + "end": 19258.7, + "probability": 0.4426 + }, + { + "start": 19258.82, + "end": 19259.05, + "probability": 0.2282 + }, + { + "start": 19259.9, + "end": 19262.76, + "probability": 0.8305 + }, + { + "start": 19263.32, + "end": 19266.14, + "probability": 0.1975 + }, + { + "start": 19266.22, + "end": 19266.22, + "probability": 0.1402 + }, + { + "start": 19266.3, + "end": 19273.04, + "probability": 0.054 + }, + { + "start": 19273.04, + "end": 19274.96, + "probability": 0.297 + }, + { + "start": 19275.02, + "end": 19276.96, + "probability": 0.9018 + }, + { + "start": 19277.08, + "end": 19279.06, + "probability": 0.8112 + }, + { + "start": 19279.69, + "end": 19284.22, + "probability": 0.8179 + }, + { + "start": 19284.72, + "end": 19287.66, + "probability": 0.8419 + }, + { + "start": 19288.12, + "end": 19290.12, + "probability": 0.2345 + }, + { + "start": 19290.44, + "end": 19292.6, + "probability": 0.2049 + }, + { + "start": 19292.74, + "end": 19294.6, + "probability": 0.505 + }, + { + "start": 19295.56, + "end": 19297.32, + "probability": 0.8727 + }, + { + "start": 19301.88, + "end": 19302.64, + "probability": 0.0998 + }, + { + "start": 19302.64, + "end": 19305.52, + "probability": 0.7804 + }, + { + "start": 19306.56, + "end": 19306.98, + "probability": 0.2947 + }, + { + "start": 19307.76, + "end": 19309.14, + "probability": 0.3064 + }, + { + "start": 19309.78, + "end": 19310.56, + "probability": 0.352 + }, + { + "start": 19310.98, + "end": 19311.84, + "probability": 0.4327 + }, + { + "start": 19312.44, + "end": 19314.6, + "probability": 0.9208 + }, + { + "start": 19314.84, + "end": 19316.56, + "probability": 0.8402 + }, + { + "start": 19317.67, + "end": 19319.04, + "probability": 0.2641 + }, + { + "start": 19319.04, + "end": 19320.63, + "probability": 0.8851 + }, + { + "start": 19321.46, + "end": 19321.56, + "probability": 0.3503 + }, + { + "start": 19321.64, + "end": 19323.28, + "probability": 0.8514 + }, + { + "start": 19323.88, + "end": 19326.94, + "probability": 0.928 + }, + { + "start": 19327.0, + "end": 19330.7, + "probability": 0.9867 + }, + { + "start": 19331.44, + "end": 19331.98, + "probability": 0.0099 + }, + { + "start": 19332.76, + "end": 19334.18, + "probability": 0.7012 + }, + { + "start": 19334.2, + "end": 19338.1, + "probability": 0.6012 + }, + { + "start": 19338.64, + "end": 19339.96, + "probability": 0.0993 + }, + { + "start": 19341.28, + "end": 19343.84, + "probability": 0.7618 + }, + { + "start": 19344.46, + "end": 19348.64, + "probability": 0.0613 + }, + { + "start": 19348.92, + "end": 19349.62, + "probability": 0.4862 + }, + { + "start": 19349.64, + "end": 19351.92, + "probability": 0.6457 + }, + { + "start": 19353.48, + "end": 19355.48, + "probability": 0.5653 + }, + { + "start": 19356.1, + "end": 19356.54, + "probability": 0.6762 + }, + { + "start": 19356.62, + "end": 19358.54, + "probability": 0.8463 + }, + { + "start": 19358.86, + "end": 19360.68, + "probability": 0.806 + }, + { + "start": 19361.24, + "end": 19363.4, + "probability": 0.3375 + }, + { + "start": 19364.42, + "end": 19367.1, + "probability": 0.1794 + }, + { + "start": 19368.52, + "end": 19369.5, + "probability": 0.0313 + }, + { + "start": 19369.78, + "end": 19369.78, + "probability": 0.0267 + }, + { + "start": 19370.08, + "end": 19370.68, + "probability": 0.0338 + }, + { + "start": 19370.8, + "end": 19373.16, + "probability": 0.2894 + }, + { + "start": 19373.46, + "end": 19375.72, + "probability": 0.1439 + }, + { + "start": 19375.72, + "end": 19376.28, + "probability": 0.182 + }, + { + "start": 19378.13, + "end": 19382.48, + "probability": 0.9482 + }, + { + "start": 19383.06, + "end": 19386.02, + "probability": 0.9985 + }, + { + "start": 19386.26, + "end": 19389.98, + "probability": 0.9885 + }, + { + "start": 19389.98, + "end": 19393.52, + "probability": 0.9966 + }, + { + "start": 19393.62, + "end": 19395.18, + "probability": 0.9185 + }, + { + "start": 19395.36, + "end": 19396.78, + "probability": 0.9736 + }, + { + "start": 19396.98, + "end": 19398.72, + "probability": 0.9873 + }, + { + "start": 19398.78, + "end": 19400.74, + "probability": 0.8853 + }, + { + "start": 19401.56, + "end": 19405.32, + "probability": 0.8708 + }, + { + "start": 19406.26, + "end": 19406.78, + "probability": 0.9111 + }, + { + "start": 19407.8, + "end": 19408.3, + "probability": 0.9839 + }, + { + "start": 19408.62, + "end": 19410.74, + "probability": 0.998 + }, + { + "start": 19410.86, + "end": 19414.0, + "probability": 0.9976 + }, + { + "start": 19414.4, + "end": 19416.32, + "probability": 0.9985 + }, + { + "start": 19417.62, + "end": 19418.84, + "probability": 0.0977 + }, + { + "start": 19418.84, + "end": 19422.22, + "probability": 0.0293 + }, + { + "start": 19422.22, + "end": 19423.32, + "probability": 0.1247 + }, + { + "start": 19424.84, + "end": 19424.96, + "probability": 0.0007 + }, + { + "start": 19424.96, + "end": 19424.96, + "probability": 0.1038 + }, + { + "start": 19424.96, + "end": 19426.5, + "probability": 0.1193 + }, + { + "start": 19427.4, + "end": 19427.6, + "probability": 0.2178 + }, + { + "start": 19427.82, + "end": 19429.14, + "probability": 0.9679 + }, + { + "start": 19429.58, + "end": 19430.38, + "probability": 0.8795 + }, + { + "start": 19430.96, + "end": 19436.42, + "probability": 0.9568 + }, + { + "start": 19437.28, + "end": 19438.0, + "probability": 0.8535 + }, + { + "start": 19438.74, + "end": 19439.94, + "probability": 0.8577 + }, + { + "start": 19440.74, + "end": 19444.94, + "probability": 0.8986 + }, + { + "start": 19445.16, + "end": 19446.14, + "probability": 0.874 + }, + { + "start": 19446.44, + "end": 19451.08, + "probability": 0.9627 + }, + { + "start": 19451.56, + "end": 19455.52, + "probability": 0.9839 + }, + { + "start": 19456.48, + "end": 19457.3, + "probability": 0.7488 + }, + { + "start": 19458.0, + "end": 19462.56, + "probability": 0.9621 + }, + { + "start": 19463.14, + "end": 19463.86, + "probability": 0.8242 + }, + { + "start": 19464.76, + "end": 19468.98, + "probability": 0.9987 + }, + { + "start": 19469.9, + "end": 19471.92, + "probability": 0.8947 + }, + { + "start": 19473.26, + "end": 19475.16, + "probability": 0.8191 + }, + { + "start": 19475.92, + "end": 19479.64, + "probability": 0.7632 + }, + { + "start": 19479.88, + "end": 19481.06, + "probability": 0.9741 + }, + { + "start": 19481.46, + "end": 19483.18, + "probability": 0.9951 + }, + { + "start": 19483.56, + "end": 19485.46, + "probability": 0.9634 + }, + { + "start": 19485.76, + "end": 19487.74, + "probability": 0.9725 + }, + { + "start": 19487.92, + "end": 19488.26, + "probability": 0.9172 + }, + { + "start": 19488.34, + "end": 19489.6, + "probability": 0.9224 + }, + { + "start": 19490.0, + "end": 19492.54, + "probability": 0.9975 + }, + { + "start": 19492.96, + "end": 19494.78, + "probability": 0.9138 + }, + { + "start": 19494.82, + "end": 19495.94, + "probability": 0.9781 + }, + { + "start": 19496.1, + "end": 19496.9, + "probability": 0.7789 + }, + { + "start": 19497.34, + "end": 19498.42, + "probability": 0.943 + }, + { + "start": 19499.06, + "end": 19503.4, + "probability": 0.9083 + }, + { + "start": 19504.1, + "end": 19505.94, + "probability": 0.5589 + }, + { + "start": 19506.74, + "end": 19507.48, + "probability": 0.5339 + }, + { + "start": 19508.08, + "end": 19511.56, + "probability": 0.983 + }, + { + "start": 19512.46, + "end": 19512.78, + "probability": 0.9479 + }, + { + "start": 19514.0, + "end": 19514.78, + "probability": 0.9613 + }, + { + "start": 19515.44, + "end": 19516.4, + "probability": 0.9717 + }, + { + "start": 19517.9, + "end": 19519.58, + "probability": 0.9971 + }, + { + "start": 19520.4, + "end": 19521.34, + "probability": 0.7901 + }, + { + "start": 19522.04, + "end": 19525.44, + "probability": 0.9686 + }, + { + "start": 19526.24, + "end": 19526.84, + "probability": 0.8606 + }, + { + "start": 19527.7, + "end": 19528.96, + "probability": 0.9953 + }, + { + "start": 19529.8, + "end": 19531.9, + "probability": 0.9639 + }, + { + "start": 19532.26, + "end": 19535.06, + "probability": 0.8999 + }, + { + "start": 19535.42, + "end": 19535.92, + "probability": 0.62 + }, + { + "start": 19536.2, + "end": 19537.56, + "probability": 0.881 + }, + { + "start": 19537.66, + "end": 19539.88, + "probability": 0.9469 + }, + { + "start": 19540.54, + "end": 19543.5, + "probability": 0.9795 + }, + { + "start": 19543.76, + "end": 19547.34, + "probability": 0.9982 + }, + { + "start": 19548.1, + "end": 19550.48, + "probability": 0.9938 + }, + { + "start": 19550.58, + "end": 19550.86, + "probability": 0.8543 + }, + { + "start": 19552.34, + "end": 19555.38, + "probability": 0.9198 + }, + { + "start": 19556.2, + "end": 19559.62, + "probability": 0.9603 + }, + { + "start": 19560.0, + "end": 19564.48, + "probability": 0.9981 + }, + { + "start": 19564.8, + "end": 19566.82, + "probability": 0.9745 + }, + { + "start": 19567.52, + "end": 19568.48, + "probability": 0.7401 + }, + { + "start": 19569.46, + "end": 19572.2, + "probability": 0.9456 + }, + { + "start": 19573.38, + "end": 19576.24, + "probability": 0.9941 + }, + { + "start": 19576.38, + "end": 19577.29, + "probability": 0.9552 + }, + { + "start": 19578.26, + "end": 19578.26, + "probability": 0.0779 + }, + { + "start": 19578.26, + "end": 19582.28, + "probability": 0.9912 + }, + { + "start": 19584.32, + "end": 19584.58, + "probability": 0.6014 + }, + { + "start": 19584.68, + "end": 19587.86, + "probability": 0.6148 + }, + { + "start": 19587.86, + "end": 19588.5, + "probability": 0.7056 + }, + { + "start": 19588.96, + "end": 19591.06, + "probability": 0.959 + }, + { + "start": 19591.3, + "end": 19591.8, + "probability": 0.4578 + }, + { + "start": 19592.12, + "end": 19594.14, + "probability": 0.9109 + }, + { + "start": 19594.58, + "end": 19595.86, + "probability": 0.994 + }, + { + "start": 19596.62, + "end": 19598.16, + "probability": 0.3954 + }, + { + "start": 19599.34, + "end": 19600.78, + "probability": 0.9808 + }, + { + "start": 19601.0, + "end": 19603.26, + "probability": 0.8862 + }, + { + "start": 19604.84, + "end": 19608.74, + "probability": 0.8278 + }, + { + "start": 19609.78, + "end": 19612.34, + "probability": 0.9866 + }, + { + "start": 19612.44, + "end": 19615.62, + "probability": 0.9873 + }, + { + "start": 19616.38, + "end": 19619.86, + "probability": 0.9944 + }, + { + "start": 19621.22, + "end": 19622.46, + "probability": 0.9233 + }, + { + "start": 19624.26, + "end": 19629.18, + "probability": 0.9396 + }, + { + "start": 19630.3, + "end": 19632.22, + "probability": 0.9561 + }, + { + "start": 19633.36, + "end": 19636.07, + "probability": 0.9781 + }, + { + "start": 19636.86, + "end": 19638.12, + "probability": 0.9771 + }, + { + "start": 19639.3, + "end": 19641.66, + "probability": 0.9856 + }, + { + "start": 19641.72, + "end": 19643.92, + "probability": 0.9667 + }, + { + "start": 19644.0, + "end": 19645.66, + "probability": 0.9906 + }, + { + "start": 19645.74, + "end": 19647.04, + "probability": 0.9421 + }, + { + "start": 19647.52, + "end": 19652.28, + "probability": 0.9961 + }, + { + "start": 19653.3, + "end": 19655.13, + "probability": 0.9951 + }, + { + "start": 19656.2, + "end": 19659.46, + "probability": 0.9851 + }, + { + "start": 19660.76, + "end": 19666.36, + "probability": 0.9971 + }, + { + "start": 19668.05, + "end": 19671.52, + "probability": 0.9961 + }, + { + "start": 19672.0, + "end": 19673.22, + "probability": 0.63 + }, + { + "start": 19673.82, + "end": 19677.76, + "probability": 0.9945 + }, + { + "start": 19677.78, + "end": 19678.94, + "probability": 0.9764 + }, + { + "start": 19679.22, + "end": 19681.46, + "probability": 0.9966 + }, + { + "start": 19681.48, + "end": 19681.87, + "probability": 0.8023 + }, + { + "start": 19682.1, + "end": 19684.24, + "probability": 0.8705 + }, + { + "start": 19684.4, + "end": 19684.64, + "probability": 0.7393 + }, + { + "start": 19684.82, + "end": 19685.48, + "probability": 0.7917 + }, + { + "start": 19685.86, + "end": 19686.28, + "probability": 0.9385 + }, + { + "start": 19687.02, + "end": 19687.51, + "probability": 0.8876 + }, + { + "start": 19688.72, + "end": 19689.5, + "probability": 0.878 + }, + { + "start": 19690.48, + "end": 19691.76, + "probability": 0.9953 + }, + { + "start": 19692.12, + "end": 19694.46, + "probability": 0.9809 + }, + { + "start": 19694.88, + "end": 19696.58, + "probability": 0.9512 + }, + { + "start": 19696.7, + "end": 19697.86, + "probability": 0.6868 + }, + { + "start": 19698.36, + "end": 19700.52, + "probability": 0.6593 + }, + { + "start": 19700.58, + "end": 19701.05, + "probability": 0.951 + }, + { + "start": 19702.2, + "end": 19703.66, + "probability": 0.8117 + }, + { + "start": 19703.96, + "end": 19705.48, + "probability": 0.8327 + }, + { + "start": 19706.42, + "end": 19710.22, + "probability": 0.985 + }, + { + "start": 19710.5, + "end": 19711.44, + "probability": 0.4715 + }, + { + "start": 19711.8, + "end": 19712.88, + "probability": 0.8229 + }, + { + "start": 19712.98, + "end": 19715.44, + "probability": 0.9556 + }, + { + "start": 19715.62, + "end": 19716.82, + "probability": 0.8028 + }, + { + "start": 19717.56, + "end": 19718.82, + "probability": 0.9974 + }, + { + "start": 19720.02, + "end": 19721.77, + "probability": 0.8096 + }, + { + "start": 19722.54, + "end": 19722.66, + "probability": 0.3021 + }, + { + "start": 19722.84, + "end": 19724.28, + "probability": 0.9565 + }, + { + "start": 19725.88, + "end": 19726.34, + "probability": 0.654 + }, + { + "start": 19726.44, + "end": 19727.12, + "probability": 0.7255 + }, + { + "start": 19727.7, + "end": 19730.08, + "probability": 0.8952 + }, + { + "start": 19730.5, + "end": 19732.22, + "probability": 0.9216 + }, + { + "start": 19733.08, + "end": 19734.78, + "probability": 0.9968 + }, + { + "start": 19734.94, + "end": 19735.46, + "probability": 0.448 + }, + { + "start": 19735.56, + "end": 19737.4, + "probability": 0.9976 + }, + { + "start": 19737.64, + "end": 19738.72, + "probability": 0.8552 + }, + { + "start": 19739.12, + "end": 19739.72, + "probability": 0.432 + }, + { + "start": 19740.18, + "end": 19740.86, + "probability": 0.756 + }, + { + "start": 19740.92, + "end": 19742.38, + "probability": 0.9124 + }, + { + "start": 19743.36, + "end": 19744.58, + "probability": 0.9431 + }, + { + "start": 19745.16, + "end": 19745.82, + "probability": 0.8416 + }, + { + "start": 19746.16, + "end": 19749.84, + "probability": 0.73 + }, + { + "start": 19750.42, + "end": 19751.29, + "probability": 0.9846 + }, + { + "start": 19751.82, + "end": 19752.82, + "probability": 0.8695 + }, + { + "start": 19752.98, + "end": 19753.36, + "probability": 0.5089 + }, + { + "start": 19753.5, + "end": 19753.88, + "probability": 0.6436 + }, + { + "start": 19753.98, + "end": 19754.42, + "probability": 0.2989 + }, + { + "start": 19754.76, + "end": 19756.56, + "probability": 0.9919 + }, + { + "start": 19756.66, + "end": 19758.62, + "probability": 0.8943 + }, + { + "start": 19758.72, + "end": 19759.99, + "probability": 0.9985 + }, + { + "start": 19761.26, + "end": 19762.22, + "probability": 0.5546 + }, + { + "start": 19762.72, + "end": 19767.76, + "probability": 0.9557 + }, + { + "start": 19768.22, + "end": 19768.78, + "probability": 0.5982 + }, + { + "start": 19769.58, + "end": 19771.04, + "probability": 0.9976 + }, + { + "start": 19771.28, + "end": 19771.5, + "probability": 0.5456 + }, + { + "start": 19771.86, + "end": 19772.52, + "probability": 0.9874 + }, + { + "start": 19773.74, + "end": 19774.16, + "probability": 0.9915 + }, + { + "start": 19774.97, + "end": 19777.23, + "probability": 0.6133 + }, + { + "start": 19777.28, + "end": 19779.77, + "probability": 0.7997 + }, + { + "start": 19783.28, + "end": 19786.0, + "probability": 0.1804 + }, + { + "start": 19786.0, + "end": 19786.0, + "probability": 0.0832 + }, + { + "start": 19786.0, + "end": 19786.0, + "probability": 0.0149 + }, + { + "start": 19786.0, + "end": 19786.0, + "probability": 0.0094 + }, + { + "start": 19786.0, + "end": 19787.02, + "probability": 0.2463 + }, + { + "start": 19789.06, + "end": 19792.64, + "probability": 0.8477 + }, + { + "start": 19793.1, + "end": 19795.94, + "probability": 0.154 + }, + { + "start": 19795.94, + "end": 19796.31, + "probability": 0.1437 + }, + { + "start": 19796.96, + "end": 19800.1, + "probability": 0.7051 + }, + { + "start": 19800.2, + "end": 19800.56, + "probability": 0.4293 + }, + { + "start": 19800.62, + "end": 19803.52, + "probability": 0.6281 + }, + { + "start": 19803.52, + "end": 19804.89, + "probability": 0.8783 + }, + { + "start": 19805.72, + "end": 19805.96, + "probability": 0.8861 + }, + { + "start": 19806.72, + "end": 19807.86, + "probability": 0.6228 + }, + { + "start": 19808.38, + "end": 19809.16, + "probability": 0.6383 + }, + { + "start": 19809.64, + "end": 19812.5, + "probability": 0.7599 + }, + { + "start": 19813.14, + "end": 19814.4, + "probability": 0.8826 + }, + { + "start": 19814.88, + "end": 19815.62, + "probability": 0.9581 + }, + { + "start": 19816.0, + "end": 19820.16, + "probability": 0.8999 + }, + { + "start": 19820.96, + "end": 19822.08, + "probability": 0.8401 + }, + { + "start": 19822.94, + "end": 19825.0, + "probability": 0.7763 + }, + { + "start": 19825.24, + "end": 19825.7, + "probability": 0.5019 + }, + { + "start": 19825.7, + "end": 19825.7, + "probability": 0.0136 + }, + { + "start": 19825.7, + "end": 19825.98, + "probability": 0.4078 + }, + { + "start": 19826.66, + "end": 19827.52, + "probability": 0.3872 + }, + { + "start": 19829.52, + "end": 19831.92, + "probability": 0.7474 + }, + { + "start": 19832.48, + "end": 19835.12, + "probability": 0.6831 + }, + { + "start": 19836.54, + "end": 19838.12, + "probability": 0.655 + }, + { + "start": 19839.72, + "end": 19840.22, + "probability": 0.8372 + }, + { + "start": 19843.16, + "end": 19847.32, + "probability": 0.6023 + }, + { + "start": 19851.54, + "end": 19855.44, + "probability": 0.0128 + }, + { + "start": 19856.72, + "end": 19857.98, + "probability": 0.372 + }, + { + "start": 19858.86, + "end": 19862.02, + "probability": 0.03 + }, + { + "start": 19863.02, + "end": 19864.92, + "probability": 0.3294 + }, + { + "start": 19865.52, + "end": 19866.88, + "probability": 0.167 + }, + { + "start": 19868.46, + "end": 19872.76, + "probability": 0.079 + }, + { + "start": 19873.6, + "end": 19882.28, + "probability": 0.0812 + }, + { + "start": 19883.8, + "end": 19883.98, + "probability": 0.0011 + }, + { + "start": 19884.74, + "end": 19887.33, + "probability": 0.005 + }, + { + "start": 19887.44, + "end": 19888.48, + "probability": 0.0361 + }, + { + "start": 19889.68, + "end": 19890.8, + "probability": 0.0699 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.0, + "end": 19969.0, + "probability": 0.0 + }, + { + "start": 19969.85, + "end": 19970.21, + "probability": 0.0574 + }, + { + "start": 19971.84, + "end": 19972.68, + "probability": 0.0659 + }, + { + "start": 19972.68, + "end": 19973.12, + "probability": 0.1437 + }, + { + "start": 19974.2, + "end": 19975.48, + "probability": 0.0867 + }, + { + "start": 19977.06, + "end": 19979.12, + "probability": 0.0225 + }, + { + "start": 20104.0, + "end": 20104.0, + "probability": 0.0 + }, + { + "start": 20104.58, + "end": 20107.54, + "probability": 0.0532 + }, + { + "start": 20107.94, + "end": 20112.0, + "probability": 0.329 + }, + { + "start": 20114.53, + "end": 20116.68, + "probability": 0.1529 + }, + { + "start": 20117.36, + "end": 20118.04, + "probability": 0.0511 + }, + { + "start": 20120.82, + "end": 20121.95, + "probability": 0.0148 + }, + { + "start": 20124.74, + "end": 20128.6, + "probability": 0.145 + }, + { + "start": 20129.32, + "end": 20130.9, + "probability": 0.2139 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20242.0, + "end": 20242.0, + "probability": 0.0 + }, + { + "start": 20248.22, + "end": 20249.84, + "probability": 0.1366 + }, + { + "start": 20250.54, + "end": 20251.62, + "probability": 0.0565 + }, + { + "start": 20260.16, + "end": 20263.74, + "probability": 0.0665 + }, + { + "start": 20266.72, + "end": 20267.16, + "probability": 0.0242 + }, + { + "start": 20267.54, + "end": 20269.16, + "probability": 0.0358 + }, + { + "start": 20270.04, + "end": 20273.32, + "probability": 0.2055 + }, + { + "start": 20274.98, + "end": 20276.0, + "probability": 0.0164 + }, + { + "start": 20282.34, + "end": 20284.04, + "probability": 0.1379 + }, + { + "start": 20284.92, + "end": 20285.32, + "probability": 0.0036 + }, + { + "start": 20286.4, + "end": 20288.2, + "probability": 0.0406 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20380.0, + "end": 20380.0, + "probability": 0.0 + }, + { + "start": 20389.8, + "end": 20391.14, + "probability": 0.16 + }, + { + "start": 20391.14, + "end": 20392.26, + "probability": 0.0143 + }, + { + "start": 20395.5, + "end": 20396.86, + "probability": 0.0359 + }, + { + "start": 20397.4, + "end": 20398.3, + "probability": 0.0058 + }, + { + "start": 20401.46, + "end": 20401.77, + "probability": 0.0344 + }, + { + "start": 20401.82, + "end": 20401.82, + "probability": 0.1209 + }, + { + "start": 20402.64, + "end": 20403.32, + "probability": 0.1366 + }, + { + "start": 20403.72, + "end": 20405.72, + "probability": 0.2064 + }, + { + "start": 20406.14, + "end": 20406.98, + "probability": 0.3346 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.0, + "end": 20521.0, + "probability": 0.0 + }, + { + "start": 20521.42, + "end": 20521.56, + "probability": 0.0001 + }, + { + "start": 20522.18, + "end": 20522.18, + "probability": 0.0914 + }, + { + "start": 20522.18, + "end": 20522.18, + "probability": 0.1179 + }, + { + "start": 20522.18, + "end": 20522.18, + "probability": 0.0532 + }, + { + "start": 20522.18, + "end": 20522.18, + "probability": 0.1067 + }, + { + "start": 20522.18, + "end": 20522.7, + "probability": 0.4799 + }, + { + "start": 20523.46, + "end": 20523.54, + "probability": 0.2528 + }, + { + "start": 20524.26, + "end": 20525.18, + "probability": 0.4244 + }, + { + "start": 20526.22, + "end": 20530.98, + "probability": 0.6826 + }, + { + "start": 20531.72, + "end": 20532.18, + "probability": 0.8447 + }, + { + "start": 20532.32, + "end": 20534.32, + "probability": 0.8335 + }, + { + "start": 20535.04, + "end": 20536.7, + "probability": 0.8385 + }, + { + "start": 20537.38, + "end": 20538.1, + "probability": 0.6934 + }, + { + "start": 20538.68, + "end": 20543.08, + "probability": 0.9846 + }, + { + "start": 20543.18, + "end": 20543.76, + "probability": 0.6357 + }, + { + "start": 20544.56, + "end": 20544.94, + "probability": 0.5547 + }, + { + "start": 20545.08, + "end": 20546.28, + "probability": 0.607 + }, + { + "start": 20546.82, + "end": 20551.76, + "probability": 0.9725 + }, + { + "start": 20554.5, + "end": 20556.66, + "probability": 0.4147 + }, + { + "start": 20556.66, + "end": 20559.52, + "probability": 0.9064 + }, + { + "start": 20560.02, + "end": 20561.98, + "probability": 0.5742 + }, + { + "start": 20561.98, + "end": 20562.44, + "probability": 0.3009 + }, + { + "start": 20562.48, + "end": 20563.26, + "probability": 0.136 + }, + { + "start": 20563.32, + "end": 20565.16, + "probability": 0.8863 + }, + { + "start": 20565.54, + "end": 20567.71, + "probability": 0.8716 + }, + { + "start": 20568.88, + "end": 20571.06, + "probability": 0.9424 + }, + { + "start": 20571.58, + "end": 20574.46, + "probability": 0.9653 + }, + { + "start": 20575.3, + "end": 20577.56, + "probability": 0.3804 + }, + { + "start": 20578.18, + "end": 20579.1, + "probability": 0.6078 + }, + { + "start": 20582.25, + "end": 20585.82, + "probability": 0.4838 + }, + { + "start": 20586.52, + "end": 20588.58, + "probability": 0.9523 + }, + { + "start": 20589.38, + "end": 20593.32, + "probability": 0.682 + }, + { + "start": 20594.71, + "end": 20596.56, + "probability": 0.5967 + }, + { + "start": 20596.74, + "end": 20597.62, + "probability": 0.4244 + }, + { + "start": 20597.88, + "end": 20603.96, + "probability": 0.8837 + }, + { + "start": 20604.74, + "end": 20606.68, + "probability": 0.6139 + }, + { + "start": 20606.76, + "end": 20607.06, + "probability": 0.981 + }, + { + "start": 20607.66, + "end": 20608.08, + "probability": 0.6149 + }, + { + "start": 20608.88, + "end": 20609.96, + "probability": 0.7179 + }, + { + "start": 20610.58, + "end": 20613.2, + "probability": 0.1284 + }, + { + "start": 20613.2, + "end": 20613.38, + "probability": 0.0821 + }, + { + "start": 20613.38, + "end": 20616.44, + "probability": 0.286 + }, + { + "start": 20616.84, + "end": 20618.0, + "probability": 0.0549 + }, + { + "start": 20618.0, + "end": 20618.04, + "probability": 0.0736 + }, + { + "start": 20618.04, + "end": 20620.3, + "probability": 0.585 + }, + { + "start": 20620.67, + "end": 20621.68, + "probability": 0.3952 + }, + { + "start": 20622.08, + "end": 20626.08, + "probability": 0.2215 + }, + { + "start": 20626.85, + "end": 20629.1, + "probability": 0.1338 + }, + { + "start": 20629.4, + "end": 20630.7, + "probability": 0.3851 + }, + { + "start": 20630.78, + "end": 20631.98, + "probability": 0.732 + }, + { + "start": 20632.76, + "end": 20633.32, + "probability": 0.3756 + }, + { + "start": 20633.32, + "end": 20634.56, + "probability": 0.2186 + }, + { + "start": 20634.7, + "end": 20636.84, + "probability": 0.9373 + }, + { + "start": 20636.94, + "end": 20637.78, + "probability": 0.8857 + }, + { + "start": 20639.17, + "end": 20640.88, + "probability": 0.8386 + }, + { + "start": 20642.52, + "end": 20645.7, + "probability": 0.5923 + }, + { + "start": 20646.72, + "end": 20649.88, + "probability": 0.643 + }, + { + "start": 20651.08, + "end": 20652.56, + "probability": 0.1953 + }, + { + "start": 20652.56, + "end": 20652.68, + "probability": 0.655 + }, + { + "start": 20653.26, + "end": 20655.06, + "probability": 0.7226 + }, + { + "start": 20657.21, + "end": 20661.4, + "probability": 0.7671 + }, + { + "start": 20661.5, + "end": 20662.16, + "probability": 0.0018 + }, + { + "start": 20662.16, + "end": 20664.53, + "probability": 0.5901 + }, + { + "start": 20665.86, + "end": 20668.44, + "probability": 0.6759 + }, + { + "start": 20668.8, + "end": 20672.06, + "probability": 0.9974 + }, + { + "start": 20672.56, + "end": 20677.16, + "probability": 0.9636 + }, + { + "start": 20677.54, + "end": 20679.38, + "probability": 0.9018 + }, + { + "start": 20680.2, + "end": 20683.02, + "probability": 0.6212 + }, + { + "start": 20683.08, + "end": 20683.64, + "probability": 0.5619 + }, + { + "start": 20684.64, + "end": 20687.7, + "probability": 0.6005 + }, + { + "start": 20687.94, + "end": 20689.52, + "probability": 0.2726 + }, + { + "start": 20689.58, + "end": 20690.96, + "probability": 0.1774 + }, + { + "start": 20691.1, + "end": 20692.2, + "probability": 0.3945 + }, + { + "start": 20692.5, + "end": 20694.72, + "probability": 0.7173 + }, + { + "start": 20695.59, + "end": 20697.4, + "probability": 0.9307 + }, + { + "start": 20698.14, + "end": 20699.44, + "probability": 0.8584 + }, + { + "start": 20700.12, + "end": 20701.6, + "probability": 0.4744 + }, + { + "start": 20702.14, + "end": 20704.3, + "probability": 0.6489 + }, + { + "start": 20704.82, + "end": 20708.62, + "probability": 0.8588 + }, + { + "start": 20709.4, + "end": 20713.64, + "probability": 0.8443 + }, + { + "start": 20714.26, + "end": 20714.82, + "probability": 0.1219 + }, + { + "start": 20716.85, + "end": 20719.37, + "probability": 0.4558 + }, + { + "start": 20719.92, + "end": 20722.34, + "probability": 0.7472 + }, + { + "start": 20730.64, + "end": 20731.24, + "probability": 0.6168 + }, + { + "start": 20731.6, + "end": 20732.92, + "probability": 0.3577 + }, + { + "start": 20732.98, + "end": 20735.26, + "probability": 0.411 + }, + { + "start": 20735.28, + "end": 20736.62, + "probability": 0.7116 + }, + { + "start": 20736.96, + "end": 20737.33, + "probability": 0.9063 + }, + { + "start": 20737.8, + "end": 20739.33, + "probability": 0.5343 + }, + { + "start": 20741.58, + "end": 20742.58, + "probability": 0.6781 + }, + { + "start": 20743.2, + "end": 20746.14, + "probability": 0.6357 + }, + { + "start": 20746.21, + "end": 20754.3, + "probability": 0.8862 + }, + { + "start": 20754.4, + "end": 20758.65, + "probability": 0.7692 + }, + { + "start": 20759.54, + "end": 20761.32, + "probability": 0.7867 + }, + { + "start": 20761.68, + "end": 20764.28, + "probability": 0.8712 + }, + { + "start": 20765.02, + "end": 20765.18, + "probability": 0.0006 + }, + { + "start": 20765.88, + "end": 20768.02, + "probability": 0.7403 + }, + { + "start": 20768.5, + "end": 20769.88, + "probability": 0.9712 + }, + { + "start": 20770.7, + "end": 20772.44, + "probability": 0.8502 + }, + { + "start": 20773.0, + "end": 20774.44, + "probability": 0.6813 + }, + { + "start": 20775.18, + "end": 20778.26, + "probability": 0.695 + }, + { + "start": 20778.42, + "end": 20779.94, + "probability": 0.704 + }, + { + "start": 20780.48, + "end": 20784.5, + "probability": 0.9036 + }, + { + "start": 20785.28, + "end": 20789.5, + "probability": 0.9478 + }, + { + "start": 20790.16, + "end": 20792.7, + "probability": 0.6532 + }, + { + "start": 20793.18, + "end": 20795.6, + "probability": 0.7285 + }, + { + "start": 20795.96, + "end": 20796.56, + "probability": 0.9508 + }, + { + "start": 20797.06, + "end": 20801.2, + "probability": 0.8167 + }, + { + "start": 20801.78, + "end": 20805.4, + "probability": 0.8141 + }, + { + "start": 20805.8, + "end": 20808.58, + "probability": 0.8687 + }, + { + "start": 20808.92, + "end": 20812.86, + "probability": 0.9822 + }, + { + "start": 20813.71, + "end": 20815.4, + "probability": 0.7192 + }, + { + "start": 20815.66, + "end": 20817.12, + "probability": 0.3382 + }, + { + "start": 20818.18, + "end": 20818.82, + "probability": 0.3721 + }, + { + "start": 20818.88, + "end": 20820.22, + "probability": 0.8531 + }, + { + "start": 20820.8, + "end": 20825.6, + "probability": 0.8633 + }, + { + "start": 20825.62, + "end": 20825.78, + "probability": 0.2393 + }, + { + "start": 20825.78, + "end": 20831.48, + "probability": 0.6662 + }, + { + "start": 20832.34, + "end": 20838.3, + "probability": 0.946 + }, + { + "start": 20838.8, + "end": 20842.0, + "probability": 0.5255 + }, + { + "start": 20842.04, + "end": 20843.06, + "probability": 0.2413 + }, + { + "start": 20844.64, + "end": 20849.68, + "probability": 0.499 + }, + { + "start": 20850.12, + "end": 20852.72, + "probability": 0.9214 + }, + { + "start": 20854.0, + "end": 20856.86, + "probability": 0.6537 + }, + { + "start": 20858.14, + "end": 20859.48, + "probability": 0.4571 + }, + { + "start": 20859.48, + "end": 20859.82, + "probability": 0.7483 + }, + { + "start": 20859.9, + "end": 20861.02, + "probability": 0.5874 + }, + { + "start": 20861.02, + "end": 20863.58, + "probability": 0.6588 + }, + { + "start": 20863.86, + "end": 20866.4, + "probability": 0.9199 + }, + { + "start": 20866.42, + "end": 20866.96, + "probability": 0.4925 + }, + { + "start": 20867.04, + "end": 20867.24, + "probability": 0.7759 + }, + { + "start": 20867.24, + "end": 20870.14, + "probability": 0.6062 + }, + { + "start": 20870.4, + "end": 20871.0, + "probability": 0.5151 + }, + { + "start": 20871.1, + "end": 20871.5, + "probability": 0.5493 + }, + { + "start": 20871.52, + "end": 20873.54, + "probability": 0.9982 + }, + { + "start": 20873.64, + "end": 20875.7, + "probability": 0.9357 + }, + { + "start": 20876.0, + "end": 20876.84, + "probability": 0.9067 + }, + { + "start": 20877.18, + "end": 20878.7, + "probability": 0.5137 + }, + { + "start": 20879.58, + "end": 20881.14, + "probability": 0.1225 + }, + { + "start": 20881.14, + "end": 20881.14, + "probability": 0.0085 + }, + { + "start": 20881.14, + "end": 20881.14, + "probability": 0.0352 + }, + { + "start": 20881.14, + "end": 20881.74, + "probability": 0.6907 + }, + { + "start": 20882.12, + "end": 20884.74, + "probability": 0.6314 + }, + { + "start": 20886.28, + "end": 20888.0, + "probability": 0.8757 + }, + { + "start": 20888.74, + "end": 20890.56, + "probability": 0.8141 + }, + { + "start": 20891.76, + "end": 20891.94, + "probability": 0.1402 + }, + { + "start": 20891.94, + "end": 20893.34, + "probability": 0.3346 + }, + { + "start": 20894.08, + "end": 20894.76, + "probability": 0.4932 + }, + { + "start": 20895.02, + "end": 20896.86, + "probability": 0.3174 + }, + { + "start": 20897.08, + "end": 20897.3, + "probability": 0.5479 + }, + { + "start": 20897.4, + "end": 20902.28, + "probability": 0.4921 + }, + { + "start": 20903.56, + "end": 20906.08, + "probability": 0.7976 + }, + { + "start": 20906.1, + "end": 20906.68, + "probability": 0.7079 + }, + { + "start": 20907.22, + "end": 20908.12, + "probability": 0.9073 + }, + { + "start": 20908.48, + "end": 20908.84, + "probability": 0.6985 + }, + { + "start": 20909.62, + "end": 20910.36, + "probability": 0.7983 + }, + { + "start": 20910.56, + "end": 20911.16, + "probability": 0.7036 + }, + { + "start": 20911.28, + "end": 20913.92, + "probability": 0.8322 + }, + { + "start": 20914.54, + "end": 20919.28, + "probability": 0.5288 + }, + { + "start": 20919.92, + "end": 20923.02, + "probability": 0.6147 + }, + { + "start": 20923.1, + "end": 20925.46, + "probability": 0.7586 + }, + { + "start": 20925.88, + "end": 20927.72, + "probability": 0.6662 + }, + { + "start": 20929.42, + "end": 20931.52, + "probability": 0.9744 + }, + { + "start": 20931.52, + "end": 20933.76, + "probability": 0.9487 + }, + { + "start": 20934.35, + "end": 20936.18, + "probability": 0.4538 + }, + { + "start": 20936.28, + "end": 20937.0, + "probability": 0.7941 + }, + { + "start": 20937.38, + "end": 20938.94, + "probability": 0.9819 + }, + { + "start": 20939.38, + "end": 20939.96, + "probability": 0.621 + }, + { + "start": 20940.2, + "end": 20941.48, + "probability": 0.814 + }, + { + "start": 20941.58, + "end": 20942.72, + "probability": 0.9774 + }, + { + "start": 20942.88, + "end": 20944.08, + "probability": 0.891 + }, + { + "start": 20944.28, + "end": 20947.88, + "probability": 0.8398 + }, + { + "start": 20948.14, + "end": 20950.44, + "probability": 0.95 + }, + { + "start": 20952.14, + "end": 20954.78, + "probability": 0.6304 + }, + { + "start": 20955.7, + "end": 20957.2, + "probability": 0.8264 + }, + { + "start": 20957.52, + "end": 20958.54, + "probability": 0.5618 + }, + { + "start": 20958.92, + "end": 20963.06, + "probability": 0.8542 + }, + { + "start": 20963.66, + "end": 20965.18, + "probability": 0.8782 + }, + { + "start": 20965.92, + "end": 20967.0, + "probability": 0.8997 + }, + { + "start": 20967.2, + "end": 20969.52, + "probability": 0.933 + }, + { + "start": 20969.86, + "end": 20971.72, + "probability": 0.9983 + }, + { + "start": 20972.04, + "end": 20973.98, + "probability": 0.9739 + }, + { + "start": 20974.32, + "end": 20975.76, + "probability": 0.793 + }, + { + "start": 20976.14, + "end": 20977.76, + "probability": 0.8968 + }, + { + "start": 20978.18, + "end": 20980.04, + "probability": 0.5468 + }, + { + "start": 20980.74, + "end": 20984.22, + "probability": 0.494 + }, + { + "start": 20984.64, + "end": 20985.66, + "probability": 0.8842 + }, + { + "start": 20986.3, + "end": 20987.82, + "probability": 0.8134 + }, + { + "start": 20989.04, + "end": 20992.06, + "probability": 0.7985 + }, + { + "start": 20992.36, + "end": 20995.66, + "probability": 0.9072 + }, + { + "start": 20995.88, + "end": 20996.94, + "probability": 0.9773 + }, + { + "start": 20997.06, + "end": 20998.06, + "probability": 0.6926 + }, + { + "start": 20998.08, + "end": 21001.76, + "probability": 0.8879 + }, + { + "start": 21002.58, + "end": 21003.16, + "probability": 0.8376 + }, + { + "start": 21003.9, + "end": 21007.3, + "probability": 0.9778 + }, + { + "start": 21008.22, + "end": 21010.46, + "probability": 0.7948 + }, + { + "start": 21012.08, + "end": 21014.34, + "probability": 0.9836 + }, + { + "start": 21015.42, + "end": 21019.88, + "probability": 0.9508 + }, + { + "start": 21020.56, + "end": 21021.89, + "probability": 0.5253 + }, + { + "start": 21022.54, + "end": 21023.64, + "probability": 0.8745 + }, + { + "start": 21024.04, + "end": 21025.26, + "probability": 0.9506 + }, + { + "start": 21025.68, + "end": 21026.8, + "probability": 0.9326 + }, + { + "start": 21027.18, + "end": 21027.85, + "probability": 0.9243 + }, + { + "start": 21029.04, + "end": 21030.58, + "probability": 0.9174 + }, + { + "start": 21031.42, + "end": 21032.54, + "probability": 0.99 + }, + { + "start": 21033.4, + "end": 21033.82, + "probability": 0.8738 + }, + { + "start": 21034.58, + "end": 21035.6, + "probability": 0.7855 + }, + { + "start": 21036.86, + "end": 21039.78, + "probability": 0.7217 + }, + { + "start": 21040.32, + "end": 21044.96, + "probability": 0.8819 + }, + { + "start": 21045.7, + "end": 21048.5, + "probability": 0.6843 + }, + { + "start": 21048.5, + "end": 21050.76, + "probability": 0.9941 + }, + { + "start": 21051.44, + "end": 21053.72, + "probability": 0.8442 + }, + { + "start": 21054.28, + "end": 21055.06, + "probability": 0.7104 + }, + { + "start": 21055.18, + "end": 21055.84, + "probability": 0.8342 + }, + { + "start": 21056.22, + "end": 21059.98, + "probability": 0.9253 + }, + { + "start": 21060.38, + "end": 21062.28, + "probability": 0.7015 + }, + { + "start": 21062.74, + "end": 21063.26, + "probability": 0.7183 + }, + { + "start": 21063.76, + "end": 21064.78, + "probability": 0.8833 + }, + { + "start": 21064.8, + "end": 21065.28, + "probability": 0.4487 + }, + { + "start": 21065.28, + "end": 21066.26, + "probability": 0.8555 + }, + { + "start": 21066.54, + "end": 21067.46, + "probability": 0.9685 + }, + { + "start": 21067.82, + "end": 21069.09, + "probability": 0.8848 + }, + { + "start": 21069.6, + "end": 21072.9, + "probability": 0.9245 + }, + { + "start": 21073.78, + "end": 21076.16, + "probability": 0.9497 + }, + { + "start": 21076.52, + "end": 21077.64, + "probability": 0.9702 + }, + { + "start": 21078.0, + "end": 21078.98, + "probability": 0.7979 + }, + { + "start": 21079.08, + "end": 21080.86, + "probability": 0.7589 + }, + { + "start": 21081.08, + "end": 21085.48, + "probability": 0.8396 + }, + { + "start": 21085.9, + "end": 21087.18, + "probability": 0.6113 + }, + { + "start": 21087.22, + "end": 21088.22, + "probability": 0.9161 + }, + { + "start": 21088.42, + "end": 21089.78, + "probability": 0.6166 + }, + { + "start": 21089.92, + "end": 21090.78, + "probability": 0.7386 + }, + { + "start": 21091.24, + "end": 21093.24, + "probability": 0.8801 + }, + { + "start": 21093.7, + "end": 21095.24, + "probability": 0.9133 + }, + { + "start": 21095.4, + "end": 21096.06, + "probability": 0.9983 + }, + { + "start": 21096.68, + "end": 21100.3, + "probability": 0.8716 + }, + { + "start": 21100.64, + "end": 21103.1, + "probability": 0.9656 + }, + { + "start": 21103.18, + "end": 21103.66, + "probability": 0.5887 + }, + { + "start": 21103.96, + "end": 21105.92, + "probability": 0.9365 + }, + { + "start": 21106.1, + "end": 21106.98, + "probability": 0.7498 + }, + { + "start": 21107.22, + "end": 21108.22, + "probability": 0.4392 + }, + { + "start": 21108.48, + "end": 21110.52, + "probability": 0.9793 + }, + { + "start": 21111.14, + "end": 21112.58, + "probability": 0.7939 + }, + { + "start": 21112.82, + "end": 21114.56, + "probability": 0.8705 + }, + { + "start": 21114.64, + "end": 21118.3, + "probability": 0.9358 + }, + { + "start": 21118.9, + "end": 21121.02, + "probability": 0.921 + }, + { + "start": 21121.44, + "end": 21121.44, + "probability": 0.2755 + }, + { + "start": 21121.44, + "end": 21122.7, + "probability": 0.8279 + }, + { + "start": 21124.27, + "end": 21126.0, + "probability": 0.7866 + }, + { + "start": 21126.04, + "end": 21126.72, + "probability": 0.9357 + }, + { + "start": 21126.88, + "end": 21130.54, + "probability": 0.9644 + }, + { + "start": 21131.08, + "end": 21132.32, + "probability": 0.9906 + }, + { + "start": 21132.88, + "end": 21134.26, + "probability": 0.5962 + }, + { + "start": 21134.58, + "end": 21135.78, + "probability": 0.8705 + }, + { + "start": 21136.32, + "end": 21137.8, + "probability": 0.8429 + }, + { + "start": 21138.08, + "end": 21138.78, + "probability": 0.949 + }, + { + "start": 21139.14, + "end": 21143.56, + "probability": 0.9429 + }, + { + "start": 21143.9, + "end": 21144.28, + "probability": 0.3711 + }, + { + "start": 21144.54, + "end": 21146.53, + "probability": 0.9269 + }, + { + "start": 21146.7, + "end": 21148.18, + "probability": 0.9781 + }, + { + "start": 21148.18, + "end": 21149.76, + "probability": 0.6976 + }, + { + "start": 21150.2, + "end": 21152.28, + "probability": 0.9404 + }, + { + "start": 21152.6, + "end": 21153.6, + "probability": 0.9041 + }, + { + "start": 21154.02, + "end": 21155.48, + "probability": 0.8058 + }, + { + "start": 21156.1, + "end": 21157.42, + "probability": 0.6554 + }, + { + "start": 21157.84, + "end": 21158.72, + "probability": 0.8688 + }, + { + "start": 21159.18, + "end": 21160.98, + "probability": 0.9838 + }, + { + "start": 21161.32, + "end": 21163.2, + "probability": 0.9636 + }, + { + "start": 21163.5, + "end": 21163.7, + "probability": 0.4993 + }, + { + "start": 21163.7, + "end": 21166.1, + "probability": 0.5825 + }, + { + "start": 21166.1, + "end": 21168.88, + "probability": 0.8218 + }, + { + "start": 21169.22, + "end": 21169.84, + "probability": 0.5071 + }, + { + "start": 21170.3, + "end": 21172.08, + "probability": 0.7574 + }, + { + "start": 21172.2, + "end": 21172.2, + "probability": 0.1904 + }, + { + "start": 21172.2, + "end": 21173.74, + "probability": 0.8498 + }, + { + "start": 21173.74, + "end": 21174.22, + "probability": 0.9547 + }, + { + "start": 21174.26, + "end": 21175.27, + "probability": 0.7042 + }, + { + "start": 21176.18, + "end": 21177.12, + "probability": 0.7349 + }, + { + "start": 21178.58, + "end": 21179.14, + "probability": 0.8221 + }, + { + "start": 21180.18, + "end": 21182.42, + "probability": 0.8889 + }, + { + "start": 21183.02, + "end": 21184.5, + "probability": 0.7596 + }, + { + "start": 21185.74, + "end": 21187.07, + "probability": 0.4795 + }, + { + "start": 21187.6, + "end": 21188.58, + "probability": 0.7828 + }, + { + "start": 21188.94, + "end": 21189.48, + "probability": 0.8138 + }, + { + "start": 21190.12, + "end": 21190.72, + "probability": 0.7048 + }, + { + "start": 21191.73, + "end": 21195.22, + "probability": 0.7179 + }, + { + "start": 21196.0, + "end": 21198.64, + "probability": 0.9032 + }, + { + "start": 21199.22, + "end": 21202.14, + "probability": 0.5964 + }, + { + "start": 21205.4, + "end": 21207.32, + "probability": 0.69 + }, + { + "start": 21207.82, + "end": 21212.88, + "probability": 0.6752 + }, + { + "start": 21213.42, + "end": 21216.14, + "probability": 0.9557 + }, + { + "start": 21217.46, + "end": 21219.76, + "probability": 0.4535 + }, + { + "start": 21220.1, + "end": 21222.68, + "probability": 0.9731 + }, + { + "start": 21223.78, + "end": 21225.14, + "probability": 0.7747 + }, + { + "start": 21225.32, + "end": 21226.42, + "probability": 0.7498 + }, + { + "start": 21227.46, + "end": 21228.86, + "probability": 0.7571 + }, + { + "start": 21229.46, + "end": 21231.22, + "probability": 0.8814 + }, + { + "start": 21231.28, + "end": 21231.48, + "probability": 0.2993 + }, + { + "start": 21232.14, + "end": 21232.56, + "probability": 0.7441 + }, + { + "start": 21233.54, + "end": 21234.25, + "probability": 0.4446 + }, + { + "start": 21234.82, + "end": 21237.0, + "probability": 0.855 + }, + { + "start": 21237.74, + "end": 21239.38, + "probability": 0.9584 + }, + { + "start": 21239.72, + "end": 21240.88, + "probability": 0.966 + }, + { + "start": 21241.32, + "end": 21244.14, + "probability": 0.7604 + }, + { + "start": 21244.78, + "end": 21246.34, + "probability": 0.9985 + }, + { + "start": 21247.22, + "end": 21250.78, + "probability": 0.999 + }, + { + "start": 21251.3, + "end": 21254.16, + "probability": 0.9785 + }, + { + "start": 21254.16, + "end": 21256.84, + "probability": 0.9805 + }, + { + "start": 21257.78, + "end": 21261.34, + "probability": 0.799 + }, + { + "start": 21261.82, + "end": 21265.28, + "probability": 0.9678 + }, + { + "start": 21265.96, + "end": 21267.46, + "probability": 0.9788 + }, + { + "start": 21267.98, + "end": 21270.86, + "probability": 0.9949 + }, + { + "start": 21271.4, + "end": 21275.22, + "probability": 0.7878 + }, + { + "start": 21275.52, + "end": 21278.18, + "probability": 0.95 + }, + { + "start": 21278.46, + "end": 21278.76, + "probability": 0.7456 + }, + { + "start": 21279.1, + "end": 21280.32, + "probability": 0.2246 + }, + { + "start": 21280.7, + "end": 21282.84, + "probability": 0.4955 + }, + { + "start": 21283.96, + "end": 21285.5, + "probability": 0.699 + }, + { + "start": 21286.3, + "end": 21287.61, + "probability": 0.9421 + }, + { + "start": 21288.42, + "end": 21289.52, + "probability": 0.9569 + }, + { + "start": 21290.32, + "end": 21291.12, + "probability": 0.9513 + }, + { + "start": 21293.4, + "end": 21294.77, + "probability": 0.9313 + }, + { + "start": 21296.22, + "end": 21296.74, + "probability": 0.9697 + }, + { + "start": 21297.44, + "end": 21299.44, + "probability": 0.6717 + }, + { + "start": 21299.64, + "end": 21301.5, + "probability": 0.958 + }, + { + "start": 21302.04, + "end": 21303.02, + "probability": 0.5318 + }, + { + "start": 21303.5, + "end": 21303.88, + "probability": 0.7607 + }, + { + "start": 21304.76, + "end": 21305.62, + "probability": 0.5565 + }, + { + "start": 21312.3, + "end": 21316.96, + "probability": 0.6428 + }, + { + "start": 21317.14, + "end": 21318.96, + "probability": 0.7485 + }, + { + "start": 21319.66, + "end": 21322.98, + "probability": 0.3497 + }, + { + "start": 21323.74, + "end": 21325.92, + "probability": 0.764 + }, + { + "start": 21326.94, + "end": 21328.1, + "probability": 0.505 + }, + { + "start": 21328.44, + "end": 21329.61, + "probability": 0.3506 + }, + { + "start": 21330.62, + "end": 21331.28, + "probability": 0.7823 + }, + { + "start": 21331.42, + "end": 21332.52, + "probability": 0.0629 + }, + { + "start": 21332.68, + "end": 21333.25, + "probability": 0.8011 + }, + { + "start": 21334.48, + "end": 21336.38, + "probability": 0.5429 + }, + { + "start": 21337.78, + "end": 21338.58, + "probability": 0.9634 + }, + { + "start": 21340.42, + "end": 21340.98, + "probability": 0.5858 + }, + { + "start": 21342.9, + "end": 21344.92, + "probability": 0.6801 + }, + { + "start": 21346.95, + "end": 21351.2, + "probability": 0.9851 + }, + { + "start": 21352.76, + "end": 21355.12, + "probability": 0.9958 + }, + { + "start": 21356.06, + "end": 21357.92, + "probability": 0.9454 + }, + { + "start": 21359.46, + "end": 21362.32, + "probability": 0.9224 + }, + { + "start": 21362.9, + "end": 21367.28, + "probability": 0.7872 + }, + { + "start": 21367.92, + "end": 21369.12, + "probability": 0.9709 + }, + { + "start": 21369.42, + "end": 21373.84, + "probability": 0.9941 + }, + { + "start": 21375.42, + "end": 21379.44, + "probability": 0.9801 + }, + { + "start": 21380.42, + "end": 21383.78, + "probability": 0.7302 + }, + { + "start": 21384.9, + "end": 21387.86, + "probability": 0.8468 + }, + { + "start": 21388.42, + "end": 21390.8, + "probability": 0.5927 + }, + { + "start": 21391.83, + "end": 21393.38, + "probability": 0.8354 + }, + { + "start": 21394.58, + "end": 21396.72, + "probability": 0.6721 + }, + { + "start": 21397.36, + "end": 21398.86, + "probability": 0.9826 + }, + { + "start": 21398.98, + "end": 21399.14, + "probability": 0.6628 + }, + { + "start": 21399.6, + "end": 21403.8, + "probability": 0.9846 + }, + { + "start": 21404.52, + "end": 21405.14, + "probability": 0.5273 + }, + { + "start": 21405.34, + "end": 21406.8, + "probability": 0.9769 + }, + { + "start": 21407.24, + "end": 21408.68, + "probability": 0.8831 + }, + { + "start": 21410.0, + "end": 21410.48, + "probability": 0.8483 + }, + { + "start": 21411.24, + "end": 21411.72, + "probability": 0.5716 + }, + { + "start": 21412.1, + "end": 21412.59, + "probability": 0.7393 + }, + { + "start": 21414.73, + "end": 21421.74, + "probability": 0.9946 + }, + { + "start": 21422.5, + "end": 21424.58, + "probability": 0.1547 + }, + { + "start": 21425.24, + "end": 21426.28, + "probability": 0.9012 + }, + { + "start": 21426.74, + "end": 21434.76, + "probability": 0.9961 + }, + { + "start": 21435.28, + "end": 21436.38, + "probability": 0.9604 + }, + { + "start": 21437.02, + "end": 21440.3, + "probability": 0.9895 + }, + { + "start": 21440.86, + "end": 21443.98, + "probability": 0.8745 + }, + { + "start": 21444.4, + "end": 21445.9, + "probability": 0.9574 + }, + { + "start": 21446.06, + "end": 21449.55, + "probability": 0.7928 + }, + { + "start": 21450.28, + "end": 21454.42, + "probability": 0.9876 + }, + { + "start": 21455.2, + "end": 21455.82, + "probability": 0.6899 + }, + { + "start": 21455.86, + "end": 21459.02, + "probability": 0.9941 + }, + { + "start": 21459.88, + "end": 21464.36, + "probability": 0.5761 + }, + { + "start": 21465.0, + "end": 21466.8, + "probability": 0.9928 + }, + { + "start": 21466.98, + "end": 21468.76, + "probability": 0.9545 + }, + { + "start": 21469.32, + "end": 21471.52, + "probability": 0.9975 + }, + { + "start": 21472.04, + "end": 21473.58, + "probability": 0.8966 + }, + { + "start": 21474.32, + "end": 21477.6, + "probability": 0.9628 + }, + { + "start": 21478.36, + "end": 21479.74, + "probability": 0.9509 + }, + { + "start": 21479.8, + "end": 21481.4, + "probability": 0.9666 + }, + { + "start": 21482.16, + "end": 21483.54, + "probability": 0.5707 + }, + { + "start": 21484.4, + "end": 21485.04, + "probability": 0.245 + }, + { + "start": 21485.12, + "end": 21486.72, + "probability": 0.6084 + }, + { + "start": 21488.86, + "end": 21491.36, + "probability": 0.9878 + }, + { + "start": 21491.36, + "end": 21492.24, + "probability": 0.9194 + }, + { + "start": 21492.78, + "end": 21496.86, + "probability": 0.896 + }, + { + "start": 21497.68, + "end": 21498.57, + "probability": 0.8677 + }, + { + "start": 21500.34, + "end": 21506.48, + "probability": 0.9941 + }, + { + "start": 21507.12, + "end": 21509.24, + "probability": 0.8724 + }, + { + "start": 21509.58, + "end": 21512.64, + "probability": 0.9663 + }, + { + "start": 21513.48, + "end": 21515.78, + "probability": 0.9247 + }, + { + "start": 21516.36, + "end": 21519.64, + "probability": 0.9697 + }, + { + "start": 21520.1, + "end": 21521.52, + "probability": 0.3971 + }, + { + "start": 21521.62, + "end": 21525.82, + "probability": 0.865 + }, + { + "start": 21526.9, + "end": 21528.78, + "probability": 0.8158 + }, + { + "start": 21529.02, + "end": 21534.2, + "probability": 0.9827 + }, + { + "start": 21534.2, + "end": 21538.97, + "probability": 0.9985 + }, + { + "start": 21539.44, + "end": 21541.22, + "probability": 0.7626 + }, + { + "start": 21541.34, + "end": 21543.36, + "probability": 0.1723 + }, + { + "start": 21543.36, + "end": 21545.48, + "probability": 0.2434 + }, + { + "start": 21545.66, + "end": 21549.24, + "probability": 0.9347 + }, + { + "start": 21549.8, + "end": 21552.46, + "probability": 0.9144 + }, + { + "start": 21553.42, + "end": 21554.44, + "probability": 0.7112 + }, + { + "start": 21555.08, + "end": 21556.52, + "probability": 0.8142 + }, + { + "start": 21556.9, + "end": 21560.14, + "probability": 0.9702 + }, + { + "start": 21560.2, + "end": 21561.18, + "probability": 0.9483 + }, + { + "start": 21561.22, + "end": 21563.08, + "probability": 0.9753 + }, + { + "start": 21563.2, + "end": 21563.48, + "probability": 0.9734 + }, + { + "start": 21563.52, + "end": 21570.0, + "probability": 0.9172 + }, + { + "start": 21570.5, + "end": 21572.74, + "probability": 0.978 + }, + { + "start": 21573.0, + "end": 21574.54, + "probability": 0.6313 + }, + { + "start": 21574.62, + "end": 21575.44, + "probability": 0.7535 + }, + { + "start": 21575.46, + "end": 21576.08, + "probability": 0.4918 + }, + { + "start": 21576.1, + "end": 21577.36, + "probability": 0.8895 + }, + { + "start": 21578.06, + "end": 21579.32, + "probability": 0.6538 + }, + { + "start": 21580.54, + "end": 21583.7, + "probability": 0.9884 + }, + { + "start": 21584.26, + "end": 21585.5, + "probability": 0.999 + }, + { + "start": 21585.94, + "end": 21589.78, + "probability": 0.9927 + }, + { + "start": 21590.94, + "end": 21596.2, + "probability": 0.9478 + }, + { + "start": 21596.66, + "end": 21599.48, + "probability": 0.7324 + }, + { + "start": 21599.72, + "end": 21600.44, + "probability": 0.8984 + }, + { + "start": 21600.98, + "end": 21601.7, + "probability": 0.7567 + }, + { + "start": 21601.8, + "end": 21602.35, + "probability": 0.681 + }, + { + "start": 21603.02, + "end": 21603.74, + "probability": 0.5385 + }, + { + "start": 21603.96, + "end": 21604.84, + "probability": 0.567 + }, + { + "start": 21604.92, + "end": 21609.34, + "probability": 0.9857 + }, + { + "start": 21609.44, + "end": 21609.54, + "probability": 0.4816 + }, + { + "start": 21609.92, + "end": 21610.18, + "probability": 0.8175 + }, + { + "start": 21610.7, + "end": 21611.48, + "probability": 0.8328 + }, + { + "start": 21611.64, + "end": 21613.71, + "probability": 0.5162 + }, + { + "start": 21613.96, + "end": 21615.32, + "probability": 0.9486 + }, + { + "start": 21615.32, + "end": 21619.76, + "probability": 0.957 + }, + { + "start": 21620.44, + "end": 21628.04, + "probability": 0.9785 + }, + { + "start": 21628.04, + "end": 21632.98, + "probability": 0.8331 + }, + { + "start": 21633.06, + "end": 21633.06, + "probability": 0.0756 + }, + { + "start": 21633.08, + "end": 21634.02, + "probability": 0.8981 + }, + { + "start": 21634.08, + "end": 21636.08, + "probability": 0.5003 + }, + { + "start": 21636.48, + "end": 21638.88, + "probability": 0.792 + }, + { + "start": 21640.08, + "end": 21642.6, + "probability": 0.9755 + }, + { + "start": 21642.7, + "end": 21644.62, + "probability": 0.9623 + }, + { + "start": 21644.86, + "end": 21649.4, + "probability": 0.9761 + }, + { + "start": 21649.74, + "end": 21651.12, + "probability": 0.939 + }, + { + "start": 21652.02, + "end": 21652.88, + "probability": 0.6882 + }, + { + "start": 21652.98, + "end": 21653.16, + "probability": 0.5208 + }, + { + "start": 21653.26, + "end": 21653.86, + "probability": 0.5164 + }, + { + "start": 21653.9, + "end": 21658.22, + "probability": 0.8639 + }, + { + "start": 21658.42, + "end": 21659.94, + "probability": 0.6986 + }, + { + "start": 21660.02, + "end": 21661.66, + "probability": 0.9954 + }, + { + "start": 21662.02, + "end": 21663.38, + "probability": 0.9827 + }, + { + "start": 21664.38, + "end": 21665.06, + "probability": 0.4326 + }, + { + "start": 21665.16, + "end": 21666.64, + "probability": 0.9873 + }, + { + "start": 21666.8, + "end": 21667.65, + "probability": 0.5727 + }, + { + "start": 21668.0, + "end": 21670.4, + "probability": 0.9054 + }, + { + "start": 21671.04, + "end": 21675.14, + "probability": 0.8726 + }, + { + "start": 21675.42, + "end": 21679.02, + "probability": 0.9763 + }, + { + "start": 21679.3, + "end": 21681.34, + "probability": 0.9595 + }, + { + "start": 21681.84, + "end": 21682.26, + "probability": 0.8733 + }, + { + "start": 21682.42, + "end": 21683.12, + "probability": 0.9729 + }, + { + "start": 21683.2, + "end": 21686.48, + "probability": 0.9332 + }, + { + "start": 21686.56, + "end": 21687.7, + "probability": 0.7684 + }, + { + "start": 21688.14, + "end": 21689.26, + "probability": 0.7856 + }, + { + "start": 21689.68, + "end": 21692.58, + "probability": 0.9967 + }, + { + "start": 21692.58, + "end": 21693.6, + "probability": 0.9645 + }, + { + "start": 21693.62, + "end": 21695.34, + "probability": 0.9858 + }, + { + "start": 21695.46, + "end": 21701.74, + "probability": 0.8069 + }, + { + "start": 21702.46, + "end": 21707.58, + "probability": 0.7766 + }, + { + "start": 21707.58, + "end": 21712.9, + "probability": 0.8931 + }, + { + "start": 21713.37, + "end": 21715.84, + "probability": 0.9917 + }, + { + "start": 21715.92, + "end": 21716.06, + "probability": 0.3538 + }, + { + "start": 21716.5, + "end": 21717.7, + "probability": 0.554 + }, + { + "start": 21718.46, + "end": 21719.8, + "probability": 0.9324 + }, + { + "start": 21719.92, + "end": 21722.2, + "probability": 0.944 + }, + { + "start": 21723.33, + "end": 21728.08, + "probability": 0.9661 + }, + { + "start": 21728.42, + "end": 21728.89, + "probability": 0.4802 + }, + { + "start": 21729.48, + "end": 21730.48, + "probability": 0.5879 + }, + { + "start": 21730.58, + "end": 21735.26, + "probability": 0.6353 + }, + { + "start": 21735.84, + "end": 21740.62, + "probability": 0.8867 + }, + { + "start": 21741.32, + "end": 21743.46, + "probability": 0.95 + }, + { + "start": 21743.62, + "end": 21744.72, + "probability": 0.9265 + }, + { + "start": 21744.9, + "end": 21745.55, + "probability": 0.7361 + }, + { + "start": 21745.86, + "end": 21748.34, + "probability": 0.9858 + }, + { + "start": 21748.34, + "end": 21751.66, + "probability": 0.9956 + }, + { + "start": 21752.16, + "end": 21754.62, + "probability": 0.9881 + }, + { + "start": 21754.74, + "end": 21755.38, + "probability": 0.4458 + }, + { + "start": 21755.46, + "end": 21757.14, + "probability": 0.8882 + }, + { + "start": 21757.54, + "end": 21761.58, + "probability": 0.928 + }, + { + "start": 21762.2, + "end": 21764.26, + "probability": 0.9708 + }, + { + "start": 21764.46, + "end": 21766.6, + "probability": 0.9906 + }, + { + "start": 21766.74, + "end": 21768.9, + "probability": 0.8523 + }, + { + "start": 21768.94, + "end": 21770.02, + "probability": 0.9978 + }, + { + "start": 21770.02, + "end": 21771.22, + "probability": 0.974 + }, + { + "start": 21771.76, + "end": 21773.08, + "probability": 0.797 + }, + { + "start": 21773.18, + "end": 21775.32, + "probability": 0.5116 + }, + { + "start": 21775.72, + "end": 21777.48, + "probability": 0.6032 + }, + { + "start": 21778.46, + "end": 21778.81, + "probability": 0.7495 + }, + { + "start": 21780.6, + "end": 21782.48, + "probability": 0.7328 + }, + { + "start": 21783.68, + "end": 21787.61, + "probability": 0.9954 + }, + { + "start": 21788.62, + "end": 21790.92, + "probability": 0.7655 + }, + { + "start": 21791.88, + "end": 21793.92, + "probability": 0.9855 + }, + { + "start": 21794.0, + "end": 21794.68, + "probability": 0.9122 + }, + { + "start": 21794.76, + "end": 21795.42, + "probability": 0.864 + }, + { + "start": 21795.74, + "end": 21796.36, + "probability": 0.8119 + }, + { + "start": 21796.68, + "end": 21797.3, + "probability": 0.9331 + }, + { + "start": 21798.14, + "end": 21801.74, + "probability": 0.9107 + }, + { + "start": 21801.94, + "end": 21802.58, + "probability": 0.7652 + }, + { + "start": 21802.88, + "end": 21806.65, + "probability": 0.9901 + }, + { + "start": 21807.56, + "end": 21811.06, + "probability": 0.9097 + }, + { + "start": 21811.22, + "end": 21812.2, + "probability": 0.8228 + }, + { + "start": 21812.73, + "end": 21815.86, + "probability": 0.6958 + }, + { + "start": 21815.86, + "end": 21820.84, + "probability": 0.9219 + }, + { + "start": 21821.46, + "end": 21822.24, + "probability": 0.913 + }, + { + "start": 21823.14, + "end": 21824.38, + "probability": 0.9092 + }, + { + "start": 21825.24, + "end": 21829.1, + "probability": 0.6383 + }, + { + "start": 21829.34, + "end": 21831.68, + "probability": 0.6228 + }, + { + "start": 21832.24, + "end": 21834.1, + "probability": 0.7088 + }, + { + "start": 21835.02, + "end": 21836.4, + "probability": 0.8095 + }, + { + "start": 21836.5, + "end": 21839.08, + "probability": 0.9995 + }, + { + "start": 21839.36, + "end": 21841.33, + "probability": 0.9942 + }, + { + "start": 21841.66, + "end": 21842.24, + "probability": 0.7287 + }, + { + "start": 21842.3, + "end": 21843.76, + "probability": 0.9368 + }, + { + "start": 21844.0, + "end": 21845.09, + "probability": 0.9683 + }, + { + "start": 21846.36, + "end": 21847.74, + "probability": 0.756 + }, + { + "start": 21850.44, + "end": 21853.52, + "probability": 0.1329 + }, + { + "start": 21853.52, + "end": 21854.76, + "probability": 0.7377 + }, + { + "start": 21855.04, + "end": 21855.93, + "probability": 0.9398 + }, + { + "start": 21856.38, + "end": 21858.6, + "probability": 0.9858 + }, + { + "start": 21858.68, + "end": 21860.58, + "probability": 0.6117 + }, + { + "start": 21860.76, + "end": 21861.22, + "probability": 0.7388 + }, + { + "start": 21861.7, + "end": 21865.42, + "probability": 0.9187 + }, + { + "start": 21866.44, + "end": 21869.3, + "probability": 0.8582 + }, + { + "start": 21869.94, + "end": 21871.14, + "probability": 0.96 + }, + { + "start": 21871.64, + "end": 21872.04, + "probability": 0.7974 + }, + { + "start": 21872.16, + "end": 21872.91, + "probability": 0.8096 + }, + { + "start": 21873.64, + "end": 21879.6, + "probability": 0.9916 + }, + { + "start": 21881.72, + "end": 21887.16, + "probability": 0.9398 + }, + { + "start": 21889.1, + "end": 21890.51, + "probability": 0.9136 + }, + { + "start": 21891.24, + "end": 21893.74, + "probability": 0.9752 + }, + { + "start": 21894.42, + "end": 21895.3, + "probability": 0.9779 + }, + { + "start": 21896.54, + "end": 21899.86, + "probability": 0.9656 + }, + { + "start": 21900.62, + "end": 21904.82, + "probability": 0.856 + }, + { + "start": 21905.32, + "end": 21905.92, + "probability": 0.7054 + }, + { + "start": 21906.54, + "end": 21909.0, + "probability": 0.8099 + }, + { + "start": 21909.54, + "end": 21911.4, + "probability": 0.9403 + }, + { + "start": 21911.64, + "end": 21914.72, + "probability": 0.776 + }, + { + "start": 21914.72, + "end": 21916.48, + "probability": 0.6617 + }, + { + "start": 21916.96, + "end": 21920.04, + "probability": 0.8922 + }, + { + "start": 21920.56, + "end": 21921.64, + "probability": 0.6182 + }, + { + "start": 21922.18, + "end": 21923.3, + "probability": 0.6829 + }, + { + "start": 21923.82, + "end": 21924.7, + "probability": 0.6695 + }, + { + "start": 21925.36, + "end": 21927.34, + "probability": 0.8408 + }, + { + "start": 21927.42, + "end": 21929.66, + "probability": 0.9868 + }, + { + "start": 21929.94, + "end": 21930.98, + "probability": 0.5329 + }, + { + "start": 21931.08, + "end": 21932.58, + "probability": 0.9983 + }, + { + "start": 21933.24, + "end": 21936.08, + "probability": 0.7979 + }, + { + "start": 21936.62, + "end": 21937.5, + "probability": 0.9646 + }, + { + "start": 21938.42, + "end": 21938.95, + "probability": 0.856 + }, + { + "start": 21939.68, + "end": 21942.06, + "probability": 0.9552 + }, + { + "start": 21942.16, + "end": 21944.4, + "probability": 0.8988 + }, + { + "start": 21944.9, + "end": 21950.5, + "probability": 0.979 + }, + { + "start": 21951.34, + "end": 21955.48, + "probability": 0.8779 + }, + { + "start": 21956.92, + "end": 21962.32, + "probability": 0.9841 + }, + { + "start": 21962.56, + "end": 21968.1, + "probability": 0.9787 + }, + { + "start": 21968.26, + "end": 21968.6, + "probability": 0.3386 + }, + { + "start": 21968.84, + "end": 21970.38, + "probability": 0.896 + }, + { + "start": 21970.38, + "end": 21970.76, + "probability": 0.8111 + }, + { + "start": 21971.18, + "end": 21972.28, + "probability": 0.8699 + }, + { + "start": 21972.72, + "end": 21973.4, + "probability": 0.9567 + }, + { + "start": 21973.54, + "end": 21974.26, + "probability": 0.8797 + }, + { + "start": 21974.94, + "end": 21977.52, + "probability": 0.9431 + }, + { + "start": 21978.38, + "end": 21980.08, + "probability": 0.6025 + }, + { + "start": 21980.24, + "end": 21983.24, + "probability": 0.9238 + }, + { + "start": 21983.3, + "end": 21984.22, + "probability": 0.8499 + }, + { + "start": 21984.6, + "end": 21986.34, + "probability": 0.8733 + }, + { + "start": 21986.6, + "end": 21991.06, + "probability": 0.81 + }, + { + "start": 21991.58, + "end": 21994.24, + "probability": 0.5858 + }, + { + "start": 21994.65, + "end": 21996.14, + "probability": 0.8198 + }, + { + "start": 21996.52, + "end": 22000.32, + "probability": 0.9282 + }, + { + "start": 22000.6, + "end": 22003.42, + "probability": 0.8633 + }, + { + "start": 22003.42, + "end": 22005.54, + "probability": 0.5444 + }, + { + "start": 22005.82, + "end": 22010.22, + "probability": 0.9963 + }, + { + "start": 22010.22, + "end": 22013.38, + "probability": 0.9009 + }, + { + "start": 22014.32, + "end": 22015.48, + "probability": 0.7905 + }, + { + "start": 22015.68, + "end": 22021.44, + "probability": 0.6914 + }, + { + "start": 22021.54, + "end": 22023.62, + "probability": 0.9917 + }, + { + "start": 22023.72, + "end": 22025.28, + "probability": 0.8896 + }, + { + "start": 22025.74, + "end": 22028.44, + "probability": 0.9501 + }, + { + "start": 22029.1, + "end": 22029.58, + "probability": 0.8273 + }, + { + "start": 22030.66, + "end": 22034.42, + "probability": 0.9944 + }, + { + "start": 22035.1, + "end": 22040.22, + "probability": 0.9702 + }, + { + "start": 22040.5, + "end": 22043.26, + "probability": 0.9824 + }, + { + "start": 22043.94, + "end": 22049.14, + "probability": 0.9893 + }, + { + "start": 22049.5, + "end": 22050.68, + "probability": 0.8147 + }, + { + "start": 22051.2, + "end": 22056.4, + "probability": 0.6681 + }, + { + "start": 22056.56, + "end": 22060.1, + "probability": 0.9522 + }, + { + "start": 22062.11, + "end": 22067.2, + "probability": 0.8169 + }, + { + "start": 22068.83, + "end": 22072.78, + "probability": 0.9728 + }, + { + "start": 22073.42, + "end": 22074.42, + "probability": 0.8844 + }, + { + "start": 22074.54, + "end": 22076.36, + "probability": 0.9874 + }, + { + "start": 22077.5, + "end": 22079.16, + "probability": 0.9429 + }, + { + "start": 22079.24, + "end": 22080.9, + "probability": 0.8695 + }, + { + "start": 22081.06, + "end": 22082.18, + "probability": 0.7694 + }, + { + "start": 22082.96, + "end": 22085.64, + "probability": 0.7401 + }, + { + "start": 22086.56, + "end": 22091.06, + "probability": 0.9829 + }, + { + "start": 22091.94, + "end": 22093.01, + "probability": 0.9416 + }, + { + "start": 22093.48, + "end": 22095.35, + "probability": 0.9028 + }, + { + "start": 22095.72, + "end": 22097.76, + "probability": 0.9882 + }, + { + "start": 22098.3, + "end": 22098.86, + "probability": 0.6393 + }, + { + "start": 22099.44, + "end": 22105.5, + "probability": 0.7822 + }, + { + "start": 22105.76, + "end": 22106.66, + "probability": 0.1454 + }, + { + "start": 22107.26, + "end": 22108.4, + "probability": 0.9148 + }, + { + "start": 22108.52, + "end": 22113.6, + "probability": 0.951 + }, + { + "start": 22114.7, + "end": 22116.34, + "probability": 0.8533 + }, + { + "start": 22118.34, + "end": 22121.92, + "probability": 0.726 + }, + { + "start": 22125.37, + "end": 22127.3, + "probability": 0.9434 + }, + { + "start": 22128.48, + "end": 22131.14, + "probability": 0.9727 + }, + { + "start": 22132.34, + "end": 22134.16, + "probability": 0.7618 + }, + { + "start": 22134.22, + "end": 22137.87, + "probability": 0.9235 + }, + { + "start": 22138.78, + "end": 22142.7, + "probability": 0.8142 + }, + { + "start": 22143.38, + "end": 22147.74, + "probability": 0.8945 + }, + { + "start": 22147.98, + "end": 22148.42, + "probability": 0.8223 + }, + { + "start": 22148.98, + "end": 22151.02, + "probability": 0.6962 + }, + { + "start": 22151.7, + "end": 22152.68, + "probability": 0.7654 + }, + { + "start": 22152.86, + "end": 22160.36, + "probability": 0.7152 + }, + { + "start": 22161.78, + "end": 22164.32, + "probability": 0.9752 + }, + { + "start": 22164.9, + "end": 22168.2, + "probability": 0.9288 + }, + { + "start": 22168.8, + "end": 22176.66, + "probability": 0.9484 + }, + { + "start": 22177.5, + "end": 22177.74, + "probability": 0.6683 + }, + { + "start": 22177.84, + "end": 22180.5, + "probability": 0.9602 + }, + { + "start": 22180.94, + "end": 22184.46, + "probability": 0.6794 + }, + { + "start": 22184.94, + "end": 22188.68, + "probability": 0.9005 + }, + { + "start": 22189.44, + "end": 22193.78, + "probability": 0.9834 + }, + { + "start": 22194.14, + "end": 22195.04, + "probability": 0.8531 + }, + { + "start": 22195.2, + "end": 22196.25, + "probability": 0.9412 + }, + { + "start": 22197.24, + "end": 22200.92, + "probability": 0.9965 + }, + { + "start": 22201.52, + "end": 22205.3, + "probability": 0.9071 + }, + { + "start": 22205.46, + "end": 22210.36, + "probability": 0.8497 + }, + { + "start": 22210.48, + "end": 22213.04, + "probability": 0.9934 + }, + { + "start": 22213.42, + "end": 22213.66, + "probability": 0.5015 + }, + { + "start": 22216.8, + "end": 22218.4, + "probability": 0.8264 + }, + { + "start": 22218.82, + "end": 22220.3, + "probability": 0.9897 + }, + { + "start": 22220.66, + "end": 22223.22, + "probability": 0.6911 + }, + { + "start": 22223.22, + "end": 22225.18, + "probability": 0.7861 + }, + { + "start": 22225.82, + "end": 22228.76, + "probability": 0.9407 + }, + { + "start": 22228.9, + "end": 22229.98, + "probability": 0.7791 + }, + { + "start": 22230.14, + "end": 22230.82, + "probability": 0.9052 + }, + { + "start": 22231.0, + "end": 22231.42, + "probability": 0.4562 + }, + { + "start": 22231.5, + "end": 22231.84, + "probability": 0.5629 + }, + { + "start": 22233.32, + "end": 22233.86, + "probability": 0.6287 + }, + { + "start": 22234.24, + "end": 22236.52, + "probability": 0.0125 + }, + { + "start": 22236.6, + "end": 22236.88, + "probability": 0.5381 + }, + { + "start": 22236.96, + "end": 22237.28, + "probability": 0.772 + }, + { + "start": 22237.38, + "end": 22238.12, + "probability": 0.6834 + }, + { + "start": 22238.3, + "end": 22243.32, + "probability": 0.9417 + }, + { + "start": 22243.34, + "end": 22244.18, + "probability": 0.39 + }, + { + "start": 22244.24, + "end": 22245.0, + "probability": 0.5265 + }, + { + "start": 22246.16, + "end": 22248.48, + "probability": 0.7892 + }, + { + "start": 22248.64, + "end": 22250.24, + "probability": 0.4887 + }, + { + "start": 22250.26, + "end": 22251.0, + "probability": 0.6801 + }, + { + "start": 22253.14, + "end": 22257.76, + "probability": 0.9873 + }, + { + "start": 22258.6, + "end": 22259.28, + "probability": 0.5469 + }, + { + "start": 22259.86, + "end": 22268.72, + "probability": 0.9906 + }, + { + "start": 22269.42, + "end": 22272.64, + "probability": 0.6494 + }, + { + "start": 22273.74, + "end": 22274.34, + "probability": 0.506 + }, + { + "start": 22274.52, + "end": 22276.82, + "probability": 0.98 + }, + { + "start": 22277.2, + "end": 22278.86, + "probability": 0.8084 + }, + { + "start": 22278.98, + "end": 22279.14, + "probability": 0.701 + }, + { + "start": 22280.05, + "end": 22282.88, + "probability": 0.7216 + }, + { + "start": 22284.06, + "end": 22286.26, + "probability": 0.7994 + }, + { + "start": 22302.0, + "end": 22302.18, + "probability": 0.2353 + }, + { + "start": 22302.24, + "end": 22305.54, + "probability": 0.6959 + }, + { + "start": 22308.4, + "end": 22314.78, + "probability": 0.7894 + }, + { + "start": 22316.1, + "end": 22324.34, + "probability": 0.9604 + }, + { + "start": 22326.56, + "end": 22329.58, + "probability": 0.9666 + }, + { + "start": 22330.3, + "end": 22336.1, + "probability": 0.8547 + }, + { + "start": 22337.02, + "end": 22339.06, + "probability": 0.9878 + }, + { + "start": 22340.56, + "end": 22350.96, + "probability": 0.9712 + }, + { + "start": 22352.58, + "end": 22355.32, + "probability": 0.7949 + }, + { + "start": 22355.86, + "end": 22357.38, + "probability": 0.8582 + }, + { + "start": 22357.5, + "end": 22360.58, + "probability": 0.978 + }, + { + "start": 22363.16, + "end": 22369.26, + "probability": 0.8949 + }, + { + "start": 22369.26, + "end": 22372.96, + "probability": 0.998 + }, + { + "start": 22373.98, + "end": 22374.86, + "probability": 0.8716 + }, + { + "start": 22375.58, + "end": 22376.44, + "probability": 0.9897 + }, + { + "start": 22377.02, + "end": 22377.51, + "probability": 0.8237 + }, + { + "start": 22378.82, + "end": 22382.88, + "probability": 0.9345 + }, + { + "start": 22383.92, + "end": 22387.68, + "probability": 0.9682 + }, + { + "start": 22389.96, + "end": 22394.56, + "probability": 0.8223 + }, + { + "start": 22395.48, + "end": 22396.9, + "probability": 0.932 + }, + { + "start": 22398.98, + "end": 22401.8, + "probability": 0.992 + }, + { + "start": 22402.66, + "end": 22405.58, + "probability": 0.7626 + }, + { + "start": 22405.7, + "end": 22408.28, + "probability": 0.9956 + }, + { + "start": 22409.98, + "end": 22414.78, + "probability": 0.9948 + }, + { + "start": 22415.32, + "end": 22418.24, + "probability": 0.9752 + }, + { + "start": 22419.84, + "end": 22421.68, + "probability": 0.9938 + }, + { + "start": 22422.38, + "end": 22425.28, + "probability": 0.9465 + }, + { + "start": 22426.54, + "end": 22429.3, + "probability": 0.9861 + }, + { + "start": 22429.86, + "end": 22431.6, + "probability": 0.8466 + }, + { + "start": 22433.5, + "end": 22440.44, + "probability": 0.9784 + }, + { + "start": 22442.12, + "end": 22444.98, + "probability": 0.9943 + }, + { + "start": 22446.76, + "end": 22447.32, + "probability": 0.4911 + }, + { + "start": 22448.66, + "end": 22450.94, + "probability": 0.8941 + }, + { + "start": 22452.06, + "end": 22458.66, + "probability": 0.9817 + }, + { + "start": 22459.98, + "end": 22461.5, + "probability": 0.881 + }, + { + "start": 22462.16, + "end": 22464.48, + "probability": 0.9889 + }, + { + "start": 22466.9, + "end": 22474.0, + "probability": 0.9056 + }, + { + "start": 22474.56, + "end": 22475.72, + "probability": 0.7693 + }, + { + "start": 22476.92, + "end": 22481.06, + "probability": 0.8784 + }, + { + "start": 22481.82, + "end": 22483.26, + "probability": 0.9458 + }, + { + "start": 22484.88, + "end": 22489.68, + "probability": 0.9879 + }, + { + "start": 22490.24, + "end": 22491.22, + "probability": 0.9963 + }, + { + "start": 22492.32, + "end": 22494.52, + "probability": 0.9165 + }, + { + "start": 22495.88, + "end": 22498.4, + "probability": 0.9944 + }, + { + "start": 22498.88, + "end": 22503.98, + "probability": 0.9815 + }, + { + "start": 22504.4, + "end": 22506.26, + "probability": 0.8751 + }, + { + "start": 22506.6, + "end": 22508.48, + "probability": 0.7462 + }, + { + "start": 22509.06, + "end": 22511.06, + "probability": 0.7705 + }, + { + "start": 22511.18, + "end": 22512.44, + "probability": 0.6856 + }, + { + "start": 22513.06, + "end": 22516.8, + "probability": 0.9691 + }, + { + "start": 22517.88, + "end": 22525.06, + "probability": 0.8998 + }, + { + "start": 22525.92, + "end": 22533.2, + "probability": 0.9872 + }, + { + "start": 22535.08, + "end": 22538.5, + "probability": 0.8917 + }, + { + "start": 22539.2, + "end": 22546.52, + "probability": 0.984 + }, + { + "start": 22548.9, + "end": 22550.52, + "probability": 0.9972 + }, + { + "start": 22551.52, + "end": 22553.1, + "probability": 0.989 + }, + { + "start": 22553.92, + "end": 22556.1, + "probability": 0.6761 + }, + { + "start": 22557.14, + "end": 22562.08, + "probability": 0.9384 + }, + { + "start": 22562.18, + "end": 22563.28, + "probability": 0.9371 + }, + { + "start": 22564.42, + "end": 22567.42, + "probability": 0.9751 + }, + { + "start": 22567.98, + "end": 22573.48, + "probability": 0.9979 + }, + { + "start": 22573.63, + "end": 22576.25, + "probability": 0.9899 + }, + { + "start": 22576.94, + "end": 22579.32, + "probability": 0.9994 + }, + { + "start": 22580.48, + "end": 22584.94, + "probability": 0.926 + }, + { + "start": 22585.16, + "end": 22585.38, + "probability": 0.8114 + }, + { + "start": 22585.5, + "end": 22586.67, + "probability": 0.9956 + }, + { + "start": 22586.82, + "end": 22587.28, + "probability": 0.7142 + }, + { + "start": 22587.4, + "end": 22589.74, + "probability": 0.9055 + }, + { + "start": 22590.56, + "end": 22593.9, + "probability": 0.9941 + }, + { + "start": 22594.44, + "end": 22596.32, + "probability": 0.9979 + }, + { + "start": 22596.72, + "end": 22598.26, + "probability": 0.8572 + }, + { + "start": 22598.36, + "end": 22599.2, + "probability": 0.8123 + }, + { + "start": 22599.7, + "end": 22605.94, + "probability": 0.9415 + }, + { + "start": 22606.34, + "end": 22612.8, + "probability": 0.9932 + }, + { + "start": 22612.8, + "end": 22618.64, + "probability": 0.9922 + }, + { + "start": 22619.1, + "end": 22620.3, + "probability": 0.8753 + }, + { + "start": 22620.86, + "end": 22623.98, + "probability": 0.7505 + }, + { + "start": 22624.52, + "end": 22625.32, + "probability": 0.9879 + }, + { + "start": 22625.9, + "end": 22626.36, + "probability": 0.8577 + }, + { + "start": 22628.98, + "end": 22629.18, + "probability": 0.5054 + }, + { + "start": 22630.4, + "end": 22635.6, + "probability": 0.9876 + }, + { + "start": 22636.7, + "end": 22637.64, + "probability": 0.7579 + }, + { + "start": 22638.36, + "end": 22639.04, + "probability": 0.6226 + }, + { + "start": 22642.02, + "end": 22645.4, + "probability": 0.961 + }, + { + "start": 22646.24, + "end": 22646.42, + "probability": 0.4628 + }, + { + "start": 22647.06, + "end": 22649.16, + "probability": 0.8718 + }, + { + "start": 22650.8, + "end": 22652.58, + "probability": 0.9671 + }, + { + "start": 22653.14, + "end": 22656.0, + "probability": 0.9742 + }, + { + "start": 22656.68, + "end": 22659.88, + "probability": 0.9683 + }, + { + "start": 22660.34, + "end": 22662.46, + "probability": 0.8233 + }, + { + "start": 22664.26, + "end": 22665.94, + "probability": 0.8645 + }, + { + "start": 22666.02, + "end": 22670.28, + "probability": 0.5969 + }, + { + "start": 22670.28, + "end": 22670.4, + "probability": 0.1877 + }, + { + "start": 22670.96, + "end": 22671.24, + "probability": 0.4648 + }, + { + "start": 22671.48, + "end": 22675.08, + "probability": 0.8137 + }, + { + "start": 22675.94, + "end": 22679.72, + "probability": 0.9809 + }, + { + "start": 22679.84, + "end": 22682.7, + "probability": 0.9944 + }, + { + "start": 22682.7, + "end": 22687.3, + "probability": 0.9603 + }, + { + "start": 22687.6, + "end": 22690.28, + "probability": 0.9956 + }, + { + "start": 22690.64, + "end": 22693.62, + "probability": 0.9621 + }, + { + "start": 22693.9, + "end": 22694.78, + "probability": 0.9512 + }, + { + "start": 22694.88, + "end": 22695.62, + "probability": 0.8205 + }, + { + "start": 22695.88, + "end": 22702.94, + "probability": 0.8057 + }, + { + "start": 22703.46, + "end": 22706.86, + "probability": 0.9937 + }, + { + "start": 22707.34, + "end": 22708.42, + "probability": 0.9036 + }, + { + "start": 22708.88, + "end": 22709.64, + "probability": 0.8232 + }, + { + "start": 22710.54, + "end": 22712.94, + "probability": 0.9924 + }, + { + "start": 22713.06, + "end": 22717.16, + "probability": 0.8696 + }, + { + "start": 22717.16, + "end": 22721.9, + "probability": 0.9815 + }, + { + "start": 22723.34, + "end": 22724.82, + "probability": 0.4137 + }, + { + "start": 22725.45, + "end": 22729.14, + "probability": 0.995 + }, + { + "start": 22731.06, + "end": 22732.74, + "probability": 0.9176 + }, + { + "start": 22733.74, + "end": 22734.1, + "probability": 0.7247 + }, + { + "start": 22734.16, + "end": 22734.74, + "probability": 0.7345 + }, + { + "start": 22734.82, + "end": 22737.26, + "probability": 0.9076 + }, + { + "start": 22738.12, + "end": 22738.93, + "probability": 0.9937 + }, + { + "start": 22739.81, + "end": 22741.58, + "probability": 0.4247 + }, + { + "start": 22741.64, + "end": 22745.06, + "probability": 0.9688 + }, + { + "start": 22746.8, + "end": 22748.04, + "probability": 0.6526 + }, + { + "start": 22748.08, + "end": 22750.44, + "probability": 0.5037 + }, + { + "start": 22750.52, + "end": 22751.64, + "probability": 0.9 + }, + { + "start": 22752.5, + "end": 22753.38, + "probability": 0.6541 + }, + { + "start": 22755.28, + "end": 22755.94, + "probability": 0.7764 + }, + { + "start": 22756.0, + "end": 22760.22, + "probability": 0.9447 + }, + { + "start": 22760.22, + "end": 22765.6, + "probability": 0.994 + }, + { + "start": 22765.66, + "end": 22766.26, + "probability": 0.6076 + }, + { + "start": 22767.5, + "end": 22767.64, + "probability": 0.3731 + }, + { + "start": 22767.78, + "end": 22771.0, + "probability": 0.8377 + }, + { + "start": 22771.2, + "end": 22771.36, + "probability": 0.7832 + }, + { + "start": 22771.78, + "end": 22773.74, + "probability": 0.8887 + }, + { + "start": 22773.96, + "end": 22775.84, + "probability": 0.9893 + }, + { + "start": 22775.9, + "end": 22776.38, + "probability": 0.6287 + }, + { + "start": 22776.9, + "end": 22778.02, + "probability": 0.9137 + }, + { + "start": 22778.24, + "end": 22780.58, + "probability": 0.4961 + }, + { + "start": 22780.66, + "end": 22782.0, + "probability": 0.3401 + }, + { + "start": 22782.18, + "end": 22783.96, + "probability": 0.5296 + }, + { + "start": 22784.06, + "end": 22785.66, + "probability": 0.695 + }, + { + "start": 22785.7, + "end": 22786.36, + "probability": 0.8894 + }, + { + "start": 22786.86, + "end": 22792.62, + "probability": 0.9322 + }, + { + "start": 22793.96, + "end": 22796.36, + "probability": 0.7109 + }, + { + "start": 22797.2, + "end": 22799.42, + "probability": 0.9978 + }, + { + "start": 22801.42, + "end": 22805.48, + "probability": 0.7659 + }, + { + "start": 22806.04, + "end": 22808.94, + "probability": 0.8812 + }, + { + "start": 22808.98, + "end": 22809.76, + "probability": 0.9051 + }, + { + "start": 22810.32, + "end": 22810.56, + "probability": 0.6506 + }, + { + "start": 22812.52, + "end": 22818.2, + "probability": 0.9651 + }, + { + "start": 22819.02, + "end": 22822.16, + "probability": 0.9964 + }, + { + "start": 22822.72, + "end": 22825.52, + "probability": 0.9951 + }, + { + "start": 22827.0, + "end": 22827.74, + "probability": 0.9825 + }, + { + "start": 22828.74, + "end": 22832.65, + "probability": 0.9889 + }, + { + "start": 22833.2, + "end": 22835.42, + "probability": 0.9951 + }, + { + "start": 22835.5, + "end": 22835.99, + "probability": 0.4664 + }, + { + "start": 22836.48, + "end": 22839.4, + "probability": 0.9302 + }, + { + "start": 22840.34, + "end": 22841.84, + "probability": 0.7897 + }, + { + "start": 22842.4, + "end": 22842.4, + "probability": 0.6893 + }, + { + "start": 22842.4, + "end": 22844.92, + "probability": 0.998 + }, + { + "start": 22847.68, + "end": 22852.14, + "probability": 0.9826 + }, + { + "start": 22853.1, + "end": 22856.46, + "probability": 0.9843 + }, + { + "start": 22857.66, + "end": 22857.88, + "probability": 0.7673 + }, + { + "start": 22858.1, + "end": 22863.58, + "probability": 0.9294 + }, + { + "start": 22863.98, + "end": 22865.64, + "probability": 0.9473 + }, + { + "start": 22865.78, + "end": 22867.12, + "probability": 0.9038 + }, + { + "start": 22867.44, + "end": 22872.5, + "probability": 0.8477 + }, + { + "start": 22873.94, + "end": 22878.12, + "probability": 0.9919 + }, + { + "start": 22878.8, + "end": 22881.08, + "probability": 0.9974 + }, + { + "start": 22881.8, + "end": 22883.34, + "probability": 0.9958 + }, + { + "start": 22884.42, + "end": 22888.54, + "probability": 0.9484 + }, + { + "start": 22888.92, + "end": 22890.26, + "probability": 0.8887 + }, + { + "start": 22891.36, + "end": 22893.59, + "probability": 0.9951 + }, + { + "start": 22893.92, + "end": 22896.22, + "probability": 0.9742 + }, + { + "start": 22897.78, + "end": 22905.08, + "probability": 0.981 + }, + { + "start": 22906.0, + "end": 22907.2, + "probability": 0.9513 + }, + { + "start": 22908.16, + "end": 22912.5, + "probability": 0.993 + }, + { + "start": 22913.46, + "end": 22916.28, + "probability": 0.9357 + }, + { + "start": 22917.48, + "end": 22919.36, + "probability": 0.8568 + }, + { + "start": 22919.5, + "end": 22924.14, + "probability": 0.983 + }, + { + "start": 22925.4, + "end": 22928.04, + "probability": 0.9902 + }, + { + "start": 22928.88, + "end": 22931.72, + "probability": 0.5189 + }, + { + "start": 22932.16, + "end": 22935.16, + "probability": 0.6674 + }, + { + "start": 22935.36, + "end": 22939.16, + "probability": 0.8484 + }, + { + "start": 22939.16, + "end": 22940.96, + "probability": 0.7825 + }, + { + "start": 22941.02, + "end": 22942.16, + "probability": 0.8739 + }, + { + "start": 22942.46, + "end": 22942.82, + "probability": 0.4785 + }, + { + "start": 22942.88, + "end": 22944.1, + "probability": 0.7782 + }, + { + "start": 22945.63, + "end": 22949.94, + "probability": 0.7596 + }, + { + "start": 22950.48, + "end": 22950.98, + "probability": 0.3537 + }, + { + "start": 22951.44, + "end": 22951.86, + "probability": 0.8908 + }, + { + "start": 22952.56, + "end": 22953.43, + "probability": 0.5695 + }, + { + "start": 22954.36, + "end": 22956.34, + "probability": 0.8785 + }, + { + "start": 22956.62, + "end": 22960.06, + "probability": 0.9565 + }, + { + "start": 22960.84, + "end": 22966.54, + "probability": 0.9926 + }, + { + "start": 22967.12, + "end": 22968.66, + "probability": 0.9874 + }, + { + "start": 22969.08, + "end": 22971.54, + "probability": 0.9946 + }, + { + "start": 22971.54, + "end": 22974.44, + "probability": 0.9976 + }, + { + "start": 22975.96, + "end": 22976.94, + "probability": 0.6382 + }, + { + "start": 22977.84, + "end": 22980.72, + "probability": 0.9756 + }, + { + "start": 22981.36, + "end": 22981.78, + "probability": 0.67 + }, + { + "start": 22982.44, + "end": 22985.92, + "probability": 0.9854 + }, + { + "start": 22987.18, + "end": 22991.88, + "probability": 0.9919 + }, + { + "start": 22991.88, + "end": 22996.98, + "probability": 0.9974 + }, + { + "start": 22997.9, + "end": 23000.36, + "probability": 0.8238 + }, + { + "start": 23001.86, + "end": 23004.48, + "probability": 0.9731 + }, + { + "start": 23004.75, + "end": 23009.82, + "probability": 0.9923 + }, + { + "start": 23010.0, + "end": 23012.13, + "probability": 0.9948 + }, + { + "start": 23015.44, + "end": 23016.77, + "probability": 0.8147 + }, + { + "start": 23019.0, + "end": 23020.8, + "probability": 0.9906 + }, + { + "start": 23021.98, + "end": 23025.68, + "probability": 0.9929 + }, + { + "start": 23027.28, + "end": 23028.04, + "probability": 0.9362 + }, + { + "start": 23029.32, + "end": 23032.32, + "probability": 0.9946 + }, + { + "start": 23033.38, + "end": 23036.19, + "probability": 0.9954 + }, + { + "start": 23036.92, + "end": 23039.82, + "probability": 0.9761 + }, + { + "start": 23039.94, + "end": 23040.26, + "probability": 0.5332 + }, + { + "start": 23041.2, + "end": 23043.2, + "probability": 0.9242 + }, + { + "start": 23043.38, + "end": 23047.39, + "probability": 0.9542 + }, + { + "start": 23047.46, + "end": 23052.08, + "probability": 0.967 + }, + { + "start": 23052.38, + "end": 23055.02, + "probability": 0.9954 + }, + { + "start": 23055.4, + "end": 23057.26, + "probability": 0.8766 + }, + { + "start": 23058.92, + "end": 23063.3, + "probability": 0.9587 + }, + { + "start": 23063.94, + "end": 23067.86, + "probability": 0.9752 + }, + { + "start": 23069.42, + "end": 23072.12, + "probability": 0.9827 + }, + { + "start": 23072.58, + "end": 23074.64, + "probability": 0.9429 + }, + { + "start": 23076.78, + "end": 23078.0, + "probability": 0.9774 + }, + { + "start": 23078.62, + "end": 23081.08, + "probability": 0.8492 + }, + { + "start": 23081.94, + "end": 23090.18, + "probability": 0.9926 + }, + { + "start": 23091.6, + "end": 23099.5, + "probability": 0.9844 + }, + { + "start": 23099.5, + "end": 23101.24, + "probability": 0.8172 + }, + { + "start": 23101.8, + "end": 23102.88, + "probability": 0.8838 + }, + { + "start": 23104.6, + "end": 23105.32, + "probability": 0.8372 + }, + { + "start": 23108.24, + "end": 23109.22, + "probability": 0.8356 + }, + { + "start": 23112.44, + "end": 23113.66, + "probability": 0.9052 + }, + { + "start": 23114.06, + "end": 23121.65, + "probability": 0.9771 + }, + { + "start": 23122.38, + "end": 23123.18, + "probability": 0.8789 + }, + { + "start": 23123.8, + "end": 23126.04, + "probability": 0.9891 + }, + { + "start": 23127.2, + "end": 23129.76, + "probability": 0.9953 + }, + { + "start": 23130.78, + "end": 23134.42, + "probability": 0.8244 + }, + { + "start": 23134.54, + "end": 23134.96, + "probability": 0.9011 + }, + { + "start": 23135.96, + "end": 23139.86, + "probability": 0.9229 + }, + { + "start": 23139.92, + "end": 23140.4, + "probability": 0.581 + }, + { + "start": 23140.96, + "end": 23142.72, + "probability": 0.9966 + }, + { + "start": 23142.8, + "end": 23147.08, + "probability": 0.8427 + }, + { + "start": 23147.46, + "end": 23149.96, + "probability": 0.9977 + }, + { + "start": 23151.76, + "end": 23157.8, + "probability": 0.9668 + }, + { + "start": 23157.94, + "end": 23159.34, + "probability": 0.9856 + }, + { + "start": 23159.48, + "end": 23161.1, + "probability": 0.9502 + }, + { + "start": 23161.54, + "end": 23164.04, + "probability": 0.896 + }, + { + "start": 23164.74, + "end": 23165.74, + "probability": 0.9961 + }, + { + "start": 23166.7, + "end": 23167.28, + "probability": 0.844 + }, + { + "start": 23168.8, + "end": 23170.01, + "probability": 0.9976 + }, + { + "start": 23171.16, + "end": 23173.74, + "probability": 0.9724 + }, + { + "start": 23173.88, + "end": 23174.3, + "probability": 0.9457 + }, + { + "start": 23175.48, + "end": 23176.16, + "probability": 0.9852 + }, + { + "start": 23176.24, + "end": 23176.98, + "probability": 0.8912 + }, + { + "start": 23177.16, + "end": 23178.72, + "probability": 0.8419 + }, + { + "start": 23178.86, + "end": 23179.98, + "probability": 0.9854 + }, + { + "start": 23180.28, + "end": 23181.12, + "probability": 0.955 + }, + { + "start": 23181.56, + "end": 23185.06, + "probability": 0.7564 + }, + { + "start": 23185.22, + "end": 23185.56, + "probability": 0.7881 + }, + { + "start": 23186.38, + "end": 23189.5, + "probability": 0.9971 + }, + { + "start": 23189.5, + "end": 23191.8, + "probability": 0.9776 + }, + { + "start": 23192.52, + "end": 23194.53, + "probability": 0.9895 + }, + { + "start": 23195.96, + "end": 23198.68, + "probability": 0.9969 + }, + { + "start": 23198.68, + "end": 23201.98, + "probability": 0.9992 + }, + { + "start": 23202.76, + "end": 23206.42, + "probability": 0.8966 + }, + { + "start": 23207.16, + "end": 23211.12, + "probability": 0.9946 + }, + { + "start": 23211.12, + "end": 23213.5, + "probability": 0.9983 + }, + { + "start": 23214.26, + "end": 23216.77, + "probability": 0.999 + }, + { + "start": 23216.88, + "end": 23219.84, + "probability": 0.916 + }, + { + "start": 23220.48, + "end": 23221.26, + "probability": 0.9126 + }, + { + "start": 23222.54, + "end": 23222.94, + "probability": 0.4982 + }, + { + "start": 23224.24, + "end": 23228.86, + "probability": 0.9533 + }, + { + "start": 23229.92, + "end": 23230.74, + "probability": 0.971 + }, + { + "start": 23231.86, + "end": 23238.92, + "probability": 0.9834 + }, + { + "start": 23239.4, + "end": 23242.66, + "probability": 0.9123 + }, + { + "start": 23243.84, + "end": 23249.34, + "probability": 0.9951 + }, + { + "start": 23250.14, + "end": 23250.36, + "probability": 0.7925 + }, + { + "start": 23251.62, + "end": 23253.08, + "probability": 0.5496 + }, + { + "start": 23254.26, + "end": 23254.92, + "probability": 0.3803 + }, + { + "start": 23256.22, + "end": 23258.96, + "probability": 0.9396 + }, + { + "start": 23262.98, + "end": 23265.96, + "probability": 0.314 + }, + { + "start": 23268.62, + "end": 23269.8, + "probability": 0.7928 + }, + { + "start": 23275.22, + "end": 23277.02, + "probability": 0.5946 + }, + { + "start": 23277.26, + "end": 23278.3, + "probability": 0.5593 + }, + { + "start": 23281.97, + "end": 23285.78, + "probability": 0.3557 + }, + { + "start": 23285.86, + "end": 23288.08, + "probability": 0.8691 + }, + { + "start": 23289.04, + "end": 23292.6, + "probability": 0.7455 + }, + { + "start": 23293.94, + "end": 23297.82, + "probability": 0.8869 + }, + { + "start": 23298.0, + "end": 23303.64, + "probability": 0.8616 + }, + { + "start": 23304.48, + "end": 23305.28, + "probability": 0.002 + }, + { + "start": 23306.14, + "end": 23306.34, + "probability": 0.1739 + }, + { + "start": 23306.34, + "end": 23306.34, + "probability": 0.0329 + }, + { + "start": 23310.48, + "end": 23314.34, + "probability": 0.63 + }, + { + "start": 23314.36, + "end": 23318.9, + "probability": 0.7169 + }, + { + "start": 23319.76, + "end": 23320.72, + "probability": 0.5286 + }, + { + "start": 23321.86, + "end": 23323.48, + "probability": 0.3465 + }, + { + "start": 23324.48, + "end": 23329.04, + "probability": 0.9652 + }, + { + "start": 23329.98, + "end": 23335.22, + "probability": 0.8186 + }, + { + "start": 23335.96, + "end": 23339.1, + "probability": 0.465 + }, + { + "start": 23340.17, + "end": 23341.28, + "probability": 0.9663 + }, + { + "start": 23343.48, + "end": 23346.46, + "probability": 0.9775 + }, + { + "start": 23347.24, + "end": 23349.12, + "probability": 0.7449 + }, + { + "start": 23350.87, + "end": 23354.88, + "probability": 0.9941 + }, + { + "start": 23354.88, + "end": 23358.5, + "probability": 0.8441 + }, + { + "start": 23359.46, + "end": 23363.94, + "probability": 0.8447 + }, + { + "start": 23364.98, + "end": 23366.1, + "probability": 0.9473 + }, + { + "start": 23368.53, + "end": 23372.22, + "probability": 0.9959 + }, + { + "start": 23372.74, + "end": 23375.74, + "probability": 0.9259 + }, + { + "start": 23376.56, + "end": 23381.36, + "probability": 0.9337 + }, + { + "start": 23381.88, + "end": 23382.74, + "probability": 0.999 + }, + { + "start": 23383.44, + "end": 23389.06, + "probability": 0.9981 + }, + { + "start": 23389.68, + "end": 23390.74, + "probability": 0.9432 + }, + { + "start": 23390.9, + "end": 23391.5, + "probability": 0.8066 + }, + { + "start": 23392.86, + "end": 23395.24, + "probability": 0.9958 + }, + { + "start": 23396.3, + "end": 23400.02, + "probability": 0.9382 + }, + { + "start": 23400.92, + "end": 23402.28, + "probability": 0.9978 + }, + { + "start": 23403.1, + "end": 23405.13, + "probability": 0.9424 + }, + { + "start": 23405.92, + "end": 23407.52, + "probability": 0.943 + }, + { + "start": 23408.28, + "end": 23408.64, + "probability": 0.7895 + }, + { + "start": 23409.2, + "end": 23411.46, + "probability": 0.9707 + }, + { + "start": 23412.84, + "end": 23413.34, + "probability": 0.4741 + }, + { + "start": 23413.52, + "end": 23413.88, + "probability": 0.9498 + }, + { + "start": 23414.64, + "end": 23415.5, + "probability": 0.6001 + }, + { + "start": 23415.82, + "end": 23419.28, + "probability": 0.926 + }, + { + "start": 23420.4, + "end": 23421.08, + "probability": 0.6411 + }, + { + "start": 23421.18, + "end": 23424.08, + "probability": 0.6957 + }, + { + "start": 23424.36, + "end": 23424.92, + "probability": 0.7776 + }, + { + "start": 23425.28, + "end": 23425.54, + "probability": 0.7891 + }, + { + "start": 23425.7, + "end": 23425.94, + "probability": 0.6676 + }, + { + "start": 23426.54, + "end": 23427.72, + "probability": 0.5748 + }, + { + "start": 23429.64, + "end": 23434.0, + "probability": 0.7932 + }, + { + "start": 23435.7, + "end": 23438.36, + "probability": 0.981 + }, + { + "start": 23440.58, + "end": 23448.78, + "probability": 0.988 + }, + { + "start": 23449.0, + "end": 23449.51, + "probability": 0.7134 + }, + { + "start": 23449.78, + "end": 23450.4, + "probability": 0.8146 + }, + { + "start": 23451.16, + "end": 23452.5, + "probability": 0.9028 + }, + { + "start": 23453.0, + "end": 23453.49, + "probability": 0.7449 + }, + { + "start": 23453.7, + "end": 23454.52, + "probability": 0.7276 + }, + { + "start": 23455.66, + "end": 23457.0, + "probability": 0.5091 + }, + { + "start": 23458.38, + "end": 23460.12, + "probability": 0.9255 + }, + { + "start": 23462.34, + "end": 23462.92, + "probability": 0.6389 + }, + { + "start": 23463.16, + "end": 23465.38, + "probability": 0.9917 + }, + { + "start": 23465.64, + "end": 23465.96, + "probability": 0.6773 + }, + { + "start": 23466.78, + "end": 23468.36, + "probability": 0.9059 + }, + { + "start": 23469.94, + "end": 23470.2, + "probability": 0.7097 + }, + { + "start": 23471.48, + "end": 23472.14, + "probability": 0.3552 + }, + { + "start": 23473.03, + "end": 23475.84, + "probability": 0.8129 + }, + { + "start": 23476.06, + "end": 23481.66, + "probability": 0.7144 + }, + { + "start": 23484.21, + "end": 23484.98, + "probability": 0.4957 + }, + { + "start": 23485.62, + "end": 23489.08, + "probability": 0.9382 + }, + { + "start": 23492.86, + "end": 23495.82, + "probability": 0.9779 + }, + { + "start": 23496.0, + "end": 23497.52, + "probability": 0.7259 + }, + { + "start": 23498.38, + "end": 23499.86, + "probability": 0.7215 + }, + { + "start": 23499.94, + "end": 23500.94, + "probability": 0.6433 + }, + { + "start": 23502.34, + "end": 23506.54, + "probability": 0.9018 + }, + { + "start": 23507.72, + "end": 23509.86, + "probability": 0.9984 + }, + { + "start": 23510.84, + "end": 23512.55, + "probability": 0.8049 + }, + { + "start": 23515.66, + "end": 23516.02, + "probability": 0.9714 + }, + { + "start": 23516.82, + "end": 23517.82, + "probability": 0.7924 + }, + { + "start": 23519.1, + "end": 23519.53, + "probability": 0.7853 + }, + { + "start": 23521.26, + "end": 23522.84, + "probability": 0.5735 + }, + { + "start": 23523.42, + "end": 23526.62, + "probability": 0.9904 + }, + { + "start": 23527.98, + "end": 23528.36, + "probability": 0.5089 + }, + { + "start": 23528.36, + "end": 23529.56, + "probability": 0.8036 + }, + { + "start": 23531.72, + "end": 23532.56, + "probability": 0.5436 + }, + { + "start": 23533.62, + "end": 23540.26, + "probability": 0.894 + }, + { + "start": 23540.4, + "end": 23543.44, + "probability": 0.9256 + }, + { + "start": 23546.48, + "end": 23547.6, + "probability": 0.9224 + }, + { + "start": 23548.94, + "end": 23554.98, + "probability": 0.8945 + }, + { + "start": 23555.38, + "end": 23556.4, + "probability": 0.5779 + }, + { + "start": 23557.8, + "end": 23559.54, + "probability": 0.9846 + }, + { + "start": 23560.28, + "end": 23561.54, + "probability": 0.8569 + }, + { + "start": 23563.1, + "end": 23564.38, + "probability": 0.7207 + }, + { + "start": 23564.92, + "end": 23567.3, + "probability": 0.9927 + }, + { + "start": 23567.98, + "end": 23568.86, + "probability": 0.8324 + }, + { + "start": 23569.46, + "end": 23570.78, + "probability": 0.9939 + }, + { + "start": 23571.56, + "end": 23572.86, + "probability": 0.8794 + }, + { + "start": 23573.36, + "end": 23576.84, + "probability": 0.8721 + }, + { + "start": 23578.08, + "end": 23580.76, + "probability": 0.7977 + }, + { + "start": 23581.04, + "end": 23581.16, + "probability": 0.5061 + }, + { + "start": 23584.56, + "end": 23585.2, + "probability": 0.2926 + }, + { + "start": 23585.73, + "end": 23587.8, + "probability": 0.9132 + }, + { + "start": 23587.86, + "end": 23590.96, + "probability": 0.9884 + }, + { + "start": 23591.0, + "end": 23592.12, + "probability": 0.7367 + }, + { + "start": 23592.64, + "end": 23595.54, + "probability": 0.9927 + }, + { + "start": 23596.02, + "end": 23597.98, + "probability": 0.9458 + }, + { + "start": 23599.14, + "end": 23600.16, + "probability": 0.7211 + }, + { + "start": 23601.86, + "end": 23602.74, + "probability": 0.3606 + }, + { + "start": 23602.88, + "end": 23604.58, + "probability": 0.5975 + }, + { + "start": 23605.24, + "end": 23608.66, + "probability": 0.8748 + }, + { + "start": 23609.36, + "end": 23612.52, + "probability": 0.9654 + }, + { + "start": 23613.38, + "end": 23614.7, + "probability": 0.6168 + }, + { + "start": 23616.34, + "end": 23616.96, + "probability": 0.9251 + }, + { + "start": 23618.4, + "end": 23618.6, + "probability": 0.6245 + }, + { + "start": 23619.22, + "end": 23620.18, + "probability": 0.8484 + }, + { + "start": 23621.54, + "end": 23623.14, + "probability": 0.9761 + }, + { + "start": 23623.2, + "end": 23625.76, + "probability": 0.9022 + }, + { + "start": 23627.06, + "end": 23628.98, + "probability": 0.9973 + }, + { + "start": 23628.98, + "end": 23631.86, + "probability": 0.9296 + }, + { + "start": 23632.68, + "end": 23634.14, + "probability": 0.9678 + }, + { + "start": 23636.16, + "end": 23637.02, + "probability": 0.6875 + }, + { + "start": 23637.74, + "end": 23639.94, + "probability": 0.7678 + }, + { + "start": 23640.58, + "end": 23642.06, + "probability": 0.7229 + }, + { + "start": 23643.06, + "end": 23643.54, + "probability": 0.785 + }, + { + "start": 23644.12, + "end": 23644.46, + "probability": 0.7712 + }, + { + "start": 23646.02, + "end": 23649.68, + "probability": 0.8438 + }, + { + "start": 23650.66, + "end": 23651.94, + "probability": 0.9963 + }, + { + "start": 23652.78, + "end": 23658.2, + "probability": 0.9584 + }, + { + "start": 23658.58, + "end": 23660.22, + "probability": 0.8994 + }, + { + "start": 23661.45, + "end": 23664.1, + "probability": 0.9869 + }, + { + "start": 23666.54, + "end": 23673.54, + "probability": 0.8216 + }, + { + "start": 23674.38, + "end": 23677.34, + "probability": 0.9867 + }, + { + "start": 23678.24, + "end": 23684.6, + "probability": 0.8255 + }, + { + "start": 23685.8, + "end": 23691.44, + "probability": 0.9662 + }, + { + "start": 23693.38, + "end": 23695.26, + "probability": 0.7537 + }, + { + "start": 23696.52, + "end": 23699.5, + "probability": 0.7387 + }, + { + "start": 23699.62, + "end": 23704.72, + "probability": 0.8374 + }, + { + "start": 23704.86, + "end": 23706.16, + "probability": 0.7759 + }, + { + "start": 23707.98, + "end": 23712.64, + "probability": 0.9619 + }, + { + "start": 23717.19, + "end": 23718.39, + "probability": 0.0089 + }, + { + "start": 23720.44, + "end": 23722.94, + "probability": 0.3071 + }, + { + "start": 23725.28, + "end": 23726.58, + "probability": 0.2117 + }, + { + "start": 23728.1, + "end": 23734.72, + "probability": 0.1376 + }, + { + "start": 23735.02, + "end": 23735.52, + "probability": 0.1633 + }, + { + "start": 23736.14, + "end": 23740.8, + "probability": 0.3422 + }, + { + "start": 23751.04, + "end": 23751.6, + "probability": 0.0164 + }, + { + "start": 23752.22, + "end": 23754.7, + "probability": 0.6609 + }, + { + "start": 23754.82, + "end": 23754.96, + "probability": 0.1675 + }, + { + "start": 23757.34, + "end": 23762.5, + "probability": 0.7353 + }, + { + "start": 23762.66, + "end": 23765.12, + "probability": 0.9255 + }, + { + "start": 23766.02, + "end": 23771.26, + "probability": 0.9723 + }, + { + "start": 23771.38, + "end": 23776.7, + "probability": 0.9868 + }, + { + "start": 23777.34, + "end": 23779.78, + "probability": 0.781 + }, + { + "start": 23780.46, + "end": 23783.46, + "probability": 0.9905 + }, + { + "start": 23783.62, + "end": 23787.14, + "probability": 0.9901 + }, + { + "start": 23787.26, + "end": 23788.36, + "probability": 0.88 + }, + { + "start": 23789.22, + "end": 23795.67, + "probability": 0.7858 + }, + { + "start": 23797.06, + "end": 23799.58, + "probability": 0.9972 + }, + { + "start": 23800.48, + "end": 23804.64, + "probability": 0.8428 + }, + { + "start": 23804.66, + "end": 23806.26, + "probability": 0.5152 + }, + { + "start": 23806.26, + "end": 23807.42, + "probability": 0.871 + }, + { + "start": 23810.8, + "end": 23812.02, + "probability": 0.346 + }, + { + "start": 23812.74, + "end": 23813.08, + "probability": 0.3799 + }, + { + "start": 23813.24, + "end": 23816.82, + "probability": 0.6702 + }, + { + "start": 23817.5, + "end": 23817.6, + "probability": 0.5771 + }, + { + "start": 23817.86, + "end": 23819.32, + "probability": 0.8931 + }, + { + "start": 23819.44, + "end": 23820.68, + "probability": 0.7922 + }, + { + "start": 23820.8, + "end": 23821.48, + "probability": 0.8677 + }, + { + "start": 23823.94, + "end": 23825.44, + "probability": 0.8346 + }, + { + "start": 23825.98, + "end": 23826.56, + "probability": 0.7235 + }, + { + "start": 23838.98, + "end": 23840.58, + "probability": 0.2543 + }, + { + "start": 23840.66, + "end": 23841.84, + "probability": 0.6741 + }, + { + "start": 23842.62, + "end": 23843.9, + "probability": 0.743 + }, + { + "start": 23844.64, + "end": 23850.64, + "probability": 0.8515 + }, + { + "start": 23850.64, + "end": 23855.7, + "probability": 0.9824 + }, + { + "start": 23855.76, + "end": 23857.16, + "probability": 0.9854 + }, + { + "start": 23857.18, + "end": 23859.84, + "probability": 0.9872 + }, + { + "start": 23860.42, + "end": 23862.08, + "probability": 0.6622 + }, + { + "start": 23862.22, + "end": 23862.48, + "probability": 0.6067 + }, + { + "start": 23862.52, + "end": 23863.36, + "probability": 0.7582 + }, + { + "start": 23863.86, + "end": 23868.88, + "probability": 0.9911 + }, + { + "start": 23869.36, + "end": 23873.9, + "probability": 0.9991 + }, + { + "start": 23874.44, + "end": 23876.74, + "probability": 0.9666 + }, + { + "start": 23877.3, + "end": 23880.12, + "probability": 0.8734 + }, + { + "start": 23881.0, + "end": 23883.92, + "probability": 0.9363 + }, + { + "start": 23885.42, + "end": 23887.64, + "probability": 0.9905 + }, + { + "start": 23888.9, + "end": 23890.68, + "probability": 0.9945 + }, + { + "start": 23891.98, + "end": 23894.3, + "probability": 0.8538 + }, + { + "start": 23896.52, + "end": 23902.22, + "probability": 0.8427 + }, + { + "start": 23902.78, + "end": 23905.38, + "probability": 0.7494 + }, + { + "start": 23906.28, + "end": 23909.86, + "probability": 0.9542 + }, + { + "start": 23910.74, + "end": 23912.62, + "probability": 0.8031 + }, + { + "start": 23913.24, + "end": 23920.2, + "probability": 0.9817 + }, + { + "start": 23920.34, + "end": 23920.88, + "probability": 0.7681 + }, + { + "start": 23921.32, + "end": 23922.3, + "probability": 0.8691 + }, + { + "start": 23923.68, + "end": 23927.7, + "probability": 0.9892 + }, + { + "start": 23927.7, + "end": 23931.06, + "probability": 0.9839 + }, + { + "start": 23931.46, + "end": 23932.36, + "probability": 0.7854 + }, + { + "start": 23932.42, + "end": 23934.3, + "probability": 0.9897 + }, + { + "start": 23934.44, + "end": 23935.22, + "probability": 0.9517 + }, + { + "start": 23936.58, + "end": 23940.46, + "probability": 0.9961 + }, + { + "start": 23941.74, + "end": 23944.02, + "probability": 0.811 + }, + { + "start": 23944.56, + "end": 23947.18, + "probability": 0.9165 + }, + { + "start": 23947.88, + "end": 23949.42, + "probability": 0.9883 + }, + { + "start": 23949.96, + "end": 23951.36, + "probability": 0.9633 + }, + { + "start": 23951.74, + "end": 23955.68, + "probability": 0.9927 + }, + { + "start": 23956.26, + "end": 23959.02, + "probability": 0.9702 + }, + { + "start": 23960.18, + "end": 23963.68, + "probability": 0.9736 + }, + { + "start": 23963.68, + "end": 23966.94, + "probability": 0.999 + }, + { + "start": 23968.23, + "end": 23970.44, + "probability": 0.8418 + }, + { + "start": 23971.08, + "end": 23972.32, + "probability": 0.9905 + }, + { + "start": 23973.38, + "end": 23975.92, + "probability": 0.9635 + }, + { + "start": 23976.5, + "end": 23978.36, + "probability": 0.9136 + }, + { + "start": 23978.88, + "end": 23983.52, + "probability": 0.9559 + }, + { + "start": 23983.52, + "end": 23988.14, + "probability": 0.9946 + }, + { + "start": 23988.7, + "end": 23994.26, + "probability": 0.7715 + }, + { + "start": 23994.32, + "end": 23995.36, + "probability": 0.9404 + }, + { + "start": 23995.54, + "end": 23996.29, + "probability": 0.8945 + }, + { + "start": 23997.32, + "end": 24000.24, + "probability": 0.916 + }, + { + "start": 24000.3, + "end": 24002.4, + "probability": 0.9612 + }, + { + "start": 24002.48, + "end": 24007.68, + "probability": 0.9712 + }, + { + "start": 24008.24, + "end": 24008.26, + "probability": 0.689 + }, + { + "start": 24008.9, + "end": 24013.68, + "probability": 0.9952 + }, + { + "start": 24013.72, + "end": 24016.86, + "probability": 0.9996 + }, + { + "start": 24017.0, + "end": 24022.1, + "probability": 0.9783 + }, + { + "start": 24023.28, + "end": 24025.14, + "probability": 0.7883 + }, + { + "start": 24026.5, + "end": 24033.24, + "probability": 0.9779 + }, + { + "start": 24034.6, + "end": 24037.88, + "probability": 0.6088 + }, + { + "start": 24039.02, + "end": 24041.14, + "probability": 0.923 + }, + { + "start": 24041.76, + "end": 24044.72, + "probability": 0.9834 + }, + { + "start": 24045.52, + "end": 24049.02, + "probability": 0.9416 + }, + { + "start": 24049.8, + "end": 24051.0, + "probability": 0.7162 + }, + { + "start": 24051.52, + "end": 24055.14, + "probability": 0.8755 + }, + { + "start": 24055.78, + "end": 24059.46, + "probability": 0.9482 + }, + { + "start": 24060.56, + "end": 24061.66, + "probability": 0.8539 + }, + { + "start": 24062.66, + "end": 24063.4, + "probability": 0.8751 + }, + { + "start": 24064.02, + "end": 24065.04, + "probability": 0.8102 + }, + { + "start": 24065.6, + "end": 24066.66, + "probability": 0.8823 + }, + { + "start": 24067.76, + "end": 24069.32, + "probability": 0.7065 + }, + { + "start": 24069.52, + "end": 24069.8, + "probability": 0.6846 + }, + { + "start": 24069.8, + "end": 24073.62, + "probability": 0.7396 + }, + { + "start": 24073.62, + "end": 24078.44, + "probability": 0.7481 + }, + { + "start": 24080.6, + "end": 24086.18, + "probability": 0.9907 + }, + { + "start": 24087.28, + "end": 24090.94, + "probability": 0.9997 + }, + { + "start": 24092.41, + "end": 24095.16, + "probability": 0.9893 + }, + { + "start": 24095.78, + "end": 24098.34, + "probability": 0.8741 + }, + { + "start": 24099.26, + "end": 24101.12, + "probability": 0.8706 + }, + { + "start": 24101.7, + "end": 24102.56, + "probability": 0.9948 + }, + { + "start": 24103.38, + "end": 24105.6, + "probability": 0.9982 + }, + { + "start": 24107.24, + "end": 24110.86, + "probability": 0.924 + }, + { + "start": 24111.42, + "end": 24113.68, + "probability": 0.9588 + }, + { + "start": 24114.72, + "end": 24118.3, + "probability": 0.6941 + }, + { + "start": 24118.66, + "end": 24120.14, + "probability": 0.9774 + }, + { + "start": 24120.74, + "end": 24123.44, + "probability": 0.9417 + }, + { + "start": 24123.54, + "end": 24125.52, + "probability": 0.9917 + }, + { + "start": 24126.48, + "end": 24128.54, + "probability": 0.8118 + }, + { + "start": 24128.78, + "end": 24133.56, + "probability": 0.7823 + }, + { + "start": 24133.68, + "end": 24135.26, + "probability": 0.9858 + }, + { + "start": 24135.34, + "end": 24136.5, + "probability": 0.8701 + }, + { + "start": 24136.98, + "end": 24140.96, + "probability": 0.8602 + }, + { + "start": 24142.22, + "end": 24145.92, + "probability": 0.8491 + }, + { + "start": 24148.54, + "end": 24150.04, + "probability": 0.9848 + }, + { + "start": 24150.78, + "end": 24152.06, + "probability": 0.8911 + }, + { + "start": 24152.62, + "end": 24152.88, + "probability": 0.5795 + }, + { + "start": 24153.74, + "end": 24154.04, + "probability": 0.4386 + }, + { + "start": 24154.6, + "end": 24155.36, + "probability": 0.8239 + }, + { + "start": 24157.86, + "end": 24159.3, + "probability": 0.9576 + }, + { + "start": 24160.02, + "end": 24163.42, + "probability": 0.9522 + }, + { + "start": 24164.7, + "end": 24169.82, + "probability": 0.8905 + }, + { + "start": 24170.1, + "end": 24174.3, + "probability": 0.9523 + }, + { + "start": 24176.05, + "end": 24177.84, + "probability": 0.9214 + }, + { + "start": 24178.22, + "end": 24179.18, + "probability": 0.8147 + }, + { + "start": 24180.56, + "end": 24183.84, + "probability": 0.968 + }, + { + "start": 24183.92, + "end": 24186.12, + "probability": 0.9704 + }, + { + "start": 24186.34, + "end": 24189.08, + "probability": 0.9829 + }, + { + "start": 24190.1, + "end": 24191.56, + "probability": 0.8137 + }, + { + "start": 24194.53, + "end": 24199.96, + "probability": 0.9958 + }, + { + "start": 24200.14, + "end": 24202.32, + "probability": 0.9019 + }, + { + "start": 24202.42, + "end": 24203.52, + "probability": 0.8289 + }, + { + "start": 24203.86, + "end": 24207.85, + "probability": 0.8789 + }, + { + "start": 24208.88, + "end": 24209.7, + "probability": 0.6934 + }, + { + "start": 24209.78, + "end": 24213.54, + "probability": 0.769 + }, + { + "start": 24214.92, + "end": 24217.06, + "probability": 0.8887 + }, + { + "start": 24219.52, + "end": 24227.72, + "probability": 0.9634 + }, + { + "start": 24229.84, + "end": 24233.5, + "probability": 0.9058 + }, + { + "start": 24233.98, + "end": 24234.9, + "probability": 0.8268 + }, + { + "start": 24236.02, + "end": 24240.04, + "probability": 0.9679 + }, + { + "start": 24240.18, + "end": 24244.32, + "probability": 0.7597 + }, + { + "start": 24246.2, + "end": 24249.48, + "probability": 0.9791 + }, + { + "start": 24250.16, + "end": 24254.78, + "probability": 0.9587 + }, + { + "start": 24254.86, + "end": 24257.34, + "probability": 0.8606 + }, + { + "start": 24257.96, + "end": 24260.26, + "probability": 0.8335 + }, + { + "start": 24261.0, + "end": 24262.52, + "probability": 0.7853 + }, + { + "start": 24263.1, + "end": 24266.3, + "probability": 0.9795 + }, + { + "start": 24266.32, + "end": 24267.74, + "probability": 0.9843 + }, + { + "start": 24268.74, + "end": 24270.7, + "probability": 0.892 + }, + { + "start": 24272.33, + "end": 24275.8, + "probability": 0.7957 + }, + { + "start": 24276.4, + "end": 24277.52, + "probability": 0.9854 + }, + { + "start": 24279.32, + "end": 24281.6, + "probability": 0.9773 + }, + { + "start": 24282.5, + "end": 24282.94, + "probability": 0.8082 + }, + { + "start": 24284.08, + "end": 24285.98, + "probability": 0.7982 + }, + { + "start": 24286.94, + "end": 24288.72, + "probability": 0.4647 + }, + { + "start": 24289.76, + "end": 24294.02, + "probability": 0.9401 + }, + { + "start": 24294.16, + "end": 24295.8, + "probability": 0.7867 + }, + { + "start": 24296.44, + "end": 24297.56, + "probability": 0.9148 + }, + { + "start": 24298.34, + "end": 24304.48, + "probability": 0.9344 + }, + { + "start": 24306.88, + "end": 24312.44, + "probability": 0.9011 + }, + { + "start": 24312.78, + "end": 24313.48, + "probability": 0.5356 + }, + { + "start": 24314.44, + "end": 24318.32, + "probability": 0.9951 + }, + { + "start": 24318.78, + "end": 24322.62, + "probability": 0.9521 + }, + { + "start": 24323.0, + "end": 24327.62, + "probability": 0.9748 + }, + { + "start": 24329.12, + "end": 24331.34, + "probability": 0.9762 + }, + { + "start": 24331.34, + "end": 24333.8, + "probability": 0.9094 + }, + { + "start": 24335.01, + "end": 24338.88, + "probability": 0.991 + }, + { + "start": 24339.02, + "end": 24342.36, + "probability": 0.7289 + }, + { + "start": 24343.52, + "end": 24346.96, + "probability": 0.9406 + }, + { + "start": 24347.1, + "end": 24350.68, + "probability": 0.988 + }, + { + "start": 24351.68, + "end": 24353.8, + "probability": 0.8788 + }, + { + "start": 24355.02, + "end": 24357.02, + "probability": 0.9614 + }, + { + "start": 24357.6, + "end": 24361.48, + "probability": 0.9968 + }, + { + "start": 24362.32, + "end": 24362.52, + "probability": 0.9911 + }, + { + "start": 24363.66, + "end": 24365.32, + "probability": 0.8713 + }, + { + "start": 24366.26, + "end": 24368.62, + "probability": 0.9511 + }, + { + "start": 24369.5, + "end": 24373.98, + "probability": 0.8599 + }, + { + "start": 24374.18, + "end": 24374.58, + "probability": 0.9694 + }, + { + "start": 24375.22, + "end": 24377.98, + "probability": 0.9976 + }, + { + "start": 24379.22, + "end": 24381.42, + "probability": 0.8326 + }, + { + "start": 24382.6, + "end": 24386.18, + "probability": 0.9473 + }, + { + "start": 24387.8, + "end": 24391.22, + "probability": 0.7613 + }, + { + "start": 24391.9, + "end": 24396.62, + "probability": 0.8987 + }, + { + "start": 24398.0, + "end": 24402.84, + "probability": 0.9086 + }, + { + "start": 24404.08, + "end": 24408.18, + "probability": 0.9863 + }, + { + "start": 24408.88, + "end": 24411.98, + "probability": 0.9906 + }, + { + "start": 24412.74, + "end": 24417.4, + "probability": 0.9653 + }, + { + "start": 24417.98, + "end": 24420.46, + "probability": 0.9486 + }, + { + "start": 24420.98, + "end": 24421.84, + "probability": 0.947 + }, + { + "start": 24422.84, + "end": 24425.46, + "probability": 0.9401 + }, + { + "start": 24425.56, + "end": 24428.32, + "probability": 0.8152 + }, + { + "start": 24428.9, + "end": 24429.67, + "probability": 0.4939 + }, + { + "start": 24430.62, + "end": 24433.98, + "probability": 0.691 + }, + { + "start": 24434.76, + "end": 24438.72, + "probability": 0.9978 + }, + { + "start": 24438.96, + "end": 24441.18, + "probability": 0.7955 + }, + { + "start": 24442.18, + "end": 24447.38, + "probability": 0.8031 + }, + { + "start": 24448.54, + "end": 24452.08, + "probability": 0.9932 + }, + { + "start": 24453.08, + "end": 24455.2, + "probability": 0.9331 + }, + { + "start": 24455.28, + "end": 24457.6, + "probability": 0.9981 + }, + { + "start": 24458.56, + "end": 24461.18, + "probability": 0.9354 + }, + { + "start": 24461.74, + "end": 24462.5, + "probability": 0.7572 + }, + { + "start": 24462.66, + "end": 24466.76, + "probability": 0.9953 + }, + { + "start": 24466.76, + "end": 24471.92, + "probability": 0.9927 + }, + { + "start": 24474.3, + "end": 24474.88, + "probability": 0.0234 + }, + { + "start": 24475.76, + "end": 24475.84, + "probability": 0.0201 + }, + { + "start": 24475.84, + "end": 24476.0, + "probability": 0.004 + }, + { + "start": 24476.0, + "end": 24476.46, + "probability": 0.4631 + }, + { + "start": 24477.18, + "end": 24478.16, + "probability": 0.5326 + }, + { + "start": 24478.82, + "end": 24481.3, + "probability": 0.9845 + }, + { + "start": 24481.36, + "end": 24482.0, + "probability": 0.8105 + }, + { + "start": 24482.08, + "end": 24482.74, + "probability": 0.4796 + }, + { + "start": 24482.74, + "end": 24483.16, + "probability": 0.4514 + }, + { + "start": 24484.98, + "end": 24488.96, + "probability": 0.8595 + }, + { + "start": 24489.02, + "end": 24490.1, + "probability": 0.9867 + }, + { + "start": 24490.2, + "end": 24494.02, + "probability": 0.9835 + }, + { + "start": 24494.22, + "end": 24494.72, + "probability": 0.8007 + }, + { + "start": 24494.78, + "end": 24496.74, + "probability": 0.9722 + }, + { + "start": 24497.4, + "end": 24499.88, + "probability": 0.7683 + }, + { + "start": 24500.5, + "end": 24502.3, + "probability": 0.8025 + }, + { + "start": 24502.82, + "end": 24504.24, + "probability": 0.9835 + }, + { + "start": 24504.38, + "end": 24504.74, + "probability": 0.9304 + }, + { + "start": 24505.42, + "end": 24505.94, + "probability": 0.9334 + }, + { + "start": 24506.1, + "end": 24507.32, + "probability": 0.8503 + }, + { + "start": 24507.76, + "end": 24509.08, + "probability": 0.9911 + }, + { + "start": 24509.14, + "end": 24510.34, + "probability": 0.9834 + }, + { + "start": 24510.62, + "end": 24512.56, + "probability": 0.8569 + }, + { + "start": 24512.7, + "end": 24513.72, + "probability": 0.6827 + }, + { + "start": 24513.84, + "end": 24514.42, + "probability": 0.4931 + }, + { + "start": 24514.52, + "end": 24515.06, + "probability": 0.9103 + }, + { + "start": 24515.1, + "end": 24516.8, + "probability": 0.9197 + }, + { + "start": 24517.18, + "end": 24517.4, + "probability": 0.7947 + }, + { + "start": 24518.74, + "end": 24522.92, + "probability": 0.837 + }, + { + "start": 24523.52, + "end": 24524.18, + "probability": 0.9492 + }, + { + "start": 24525.0, + "end": 24526.74, + "probability": 0.9873 + }, + { + "start": 24527.04, + "end": 24527.61, + "probability": 0.8035 + }, + { + "start": 24528.12, + "end": 24528.56, + "probability": 0.5685 + }, + { + "start": 24528.58, + "end": 24530.42, + "probability": 0.9464 + }, + { + "start": 24530.5, + "end": 24531.02, + "probability": 0.7351 + }, + { + "start": 24531.54, + "end": 24532.76, + "probability": 0.9854 + }, + { + "start": 24533.42, + "end": 24533.78, + "probability": 0.8252 + }, + { + "start": 24534.6, + "end": 24536.2, + "probability": 0.9299 + }, + { + "start": 24536.24, + "end": 24536.96, + "probability": 0.9888 + }, + { + "start": 24537.82, + "end": 24538.59, + "probability": 0.6272 + }, + { + "start": 24538.84, + "end": 24542.82, + "probability": 0.9354 + }, + { + "start": 24543.68, + "end": 24544.0, + "probability": 0.8682 + }, + { + "start": 24544.22, + "end": 24546.7, + "probability": 0.9879 + }, + { + "start": 24546.8, + "end": 24547.72, + "probability": 0.9649 + }, + { + "start": 24547.76, + "end": 24549.3, + "probability": 0.587 + }, + { + "start": 24549.5, + "end": 24551.94, + "probability": 0.9506 + }, + { + "start": 24552.06, + "end": 24552.8, + "probability": 0.8687 + }, + { + "start": 24553.52, + "end": 24554.4, + "probability": 0.8247 + }, + { + "start": 24554.84, + "end": 24554.84, + "probability": 0.5181 + }, + { + "start": 24554.84, + "end": 24556.7, + "probability": 0.7582 + }, + { + "start": 24556.82, + "end": 24558.24, + "probability": 0.9417 + }, + { + "start": 24558.74, + "end": 24560.08, + "probability": 0.5838 + }, + { + "start": 24560.66, + "end": 24562.78, + "probability": 0.7805 + }, + { + "start": 24562.84, + "end": 24563.94, + "probability": 0.1736 + }, + { + "start": 24564.2, + "end": 24564.86, + "probability": 0.6153 + }, + { + "start": 24565.54, + "end": 24566.74, + "probability": 0.461 + }, + { + "start": 24566.74, + "end": 24570.36, + "probability": 0.8189 + }, + { + "start": 24570.4, + "end": 24572.82, + "probability": 0.884 + }, + { + "start": 24573.58, + "end": 24574.78, + "probability": 0.7972 + }, + { + "start": 24574.94, + "end": 24576.22, + "probability": 0.3867 + }, + { + "start": 24576.6, + "end": 24579.02, + "probability": 0.8936 + }, + { + "start": 24579.34, + "end": 24580.74, + "probability": 0.3817 + }, + { + "start": 24580.93, + "end": 24583.27, + "probability": 0.2814 + }, + { + "start": 24583.72, + "end": 24584.22, + "probability": 0.7658 + }, + { + "start": 24585.04, + "end": 24585.86, + "probability": 0.7805 + }, + { + "start": 24585.96, + "end": 24586.89, + "probability": 0.8237 + }, + { + "start": 24587.2, + "end": 24590.9, + "probability": 0.8368 + }, + { + "start": 24590.94, + "end": 24593.42, + "probability": 0.9871 + }, + { + "start": 24593.58, + "end": 24594.08, + "probability": 0.162 + }, + { + "start": 24594.18, + "end": 24594.82, + "probability": 0.6612 + }, + { + "start": 24595.14, + "end": 24597.44, + "probability": 0.8514 + }, + { + "start": 24597.58, + "end": 24599.6, + "probability": 0.6786 + }, + { + "start": 24599.66, + "end": 24600.41, + "probability": 0.9293 + }, + { + "start": 24600.64, + "end": 24601.23, + "probability": 0.9485 + }, + { + "start": 24602.1, + "end": 24605.4, + "probability": 0.4169 + }, + { + "start": 24605.48, + "end": 24607.28, + "probability": 0.6621 + }, + { + "start": 24607.78, + "end": 24608.96, + "probability": 0.0819 + }, + { + "start": 24609.72, + "end": 24611.96, + "probability": 0.2231 + }, + { + "start": 24612.06, + "end": 24613.48, + "probability": 0.6075 + }, + { + "start": 24614.08, + "end": 24615.0, + "probability": 0.9083 + }, + { + "start": 24615.14, + "end": 24617.02, + "probability": 0.9436 + }, + { + "start": 24617.44, + "end": 24618.04, + "probability": 0.7742 + }, + { + "start": 24618.72, + "end": 24619.58, + "probability": 0.0278 + }, + { + "start": 24619.94, + "end": 24620.3, + "probability": 0.1925 + }, + { + "start": 24620.48, + "end": 24621.58, + "probability": 0.5074 + }, + { + "start": 24621.6, + "end": 24625.34, + "probability": 0.4867 + }, + { + "start": 24625.4, + "end": 24626.78, + "probability": 0.5947 + }, + { + "start": 24626.8, + "end": 24628.72, + "probability": 0.9678 + }, + { + "start": 24628.94, + "end": 24630.78, + "probability": 0.3982 + }, + { + "start": 24631.0, + "end": 24631.74, + "probability": 0.5094 + }, + { + "start": 24632.04, + "end": 24633.22, + "probability": 0.8545 + }, + { + "start": 24633.82, + "end": 24635.24, + "probability": 0.5424 + }, + { + "start": 24636.34, + "end": 24639.04, + "probability": 0.8293 + }, + { + "start": 24639.12, + "end": 24640.92, + "probability": 0.9785 + }, + { + "start": 24641.06, + "end": 24642.52, + "probability": 0.0566 + }, + { + "start": 24643.14, + "end": 24643.98, + "probability": 0.9707 + }, + { + "start": 24644.08, + "end": 24644.7, + "probability": 0.8371 + }, + { + "start": 24644.86, + "end": 24647.68, + "probability": 0.7249 + }, + { + "start": 24647.84, + "end": 24650.58, + "probability": 0.8599 + }, + { + "start": 24650.64, + "end": 24653.7, + "probability": 0.5674 + }, + { + "start": 24653.7, + "end": 24657.0, + "probability": 0.8946 + }, + { + "start": 24657.74, + "end": 24658.73, + "probability": 0.3936 + }, + { + "start": 24662.12, + "end": 24667.68, + "probability": 0.7922 + }, + { + "start": 24667.9, + "end": 24668.8, + "probability": 0.7091 + }, + { + "start": 24668.92, + "end": 24673.4, + "probability": 0.5721 + }, + { + "start": 24673.54, + "end": 24676.56, + "probability": 0.6951 + }, + { + "start": 24676.66, + "end": 24677.0, + "probability": 0.1546 + }, + { + "start": 24677.0, + "end": 24677.0, + "probability": 0.152 + }, + { + "start": 24677.0, + "end": 24678.68, + "probability": 0.5969 + }, + { + "start": 24678.8, + "end": 24684.6, + "probability": 0.8473 + }, + { + "start": 24684.84, + "end": 24685.74, + "probability": 0.2122 + }, + { + "start": 24685.94, + "end": 24690.16, + "probability": 0.7774 + }, + { + "start": 24690.36, + "end": 24692.11, + "probability": 0.4345 + }, + { + "start": 24693.04, + "end": 24695.28, + "probability": 0.5541 + }, + { + "start": 24695.46, + "end": 24696.34, + "probability": 0.5765 + }, + { + "start": 24696.96, + "end": 24697.44, + "probability": 0.361 + }, + { + "start": 24698.6, + "end": 24701.32, + "probability": 0.1698 + }, + { + "start": 24701.58, + "end": 24702.64, + "probability": 0.9279 + }, + { + "start": 24702.88, + "end": 24703.78, + "probability": 0.4711 + }, + { + "start": 24704.12, + "end": 24704.56, + "probability": 0.9461 + }, + { + "start": 24705.14, + "end": 24705.98, + "probability": 0.7635 + }, + { + "start": 24706.14, + "end": 24706.36, + "probability": 0.8567 + }, + { + "start": 24706.44, + "end": 24711.34, + "probability": 0.9139 + }, + { + "start": 24712.24, + "end": 24715.31, + "probability": 0.9478 + }, + { + "start": 24715.52, + "end": 24717.18, + "probability": 0.9478 + }, + { + "start": 24717.18, + "end": 24718.22, + "probability": 0.5096 + }, + { + "start": 24719.7, + "end": 24723.06, + "probability": 0.8866 + }, + { + "start": 24723.44, + "end": 24725.73, + "probability": 0.973 + }, + { + "start": 24726.1, + "end": 24728.92, + "probability": 0.9956 + }, + { + "start": 24729.36, + "end": 24731.28, + "probability": 0.9507 + }, + { + "start": 24731.38, + "end": 24732.22, + "probability": 0.9204 + }, + { + "start": 24732.98, + "end": 24737.28, + "probability": 0.4098 + }, + { + "start": 24738.84, + "end": 24741.94, + "probability": 0.9051 + }, + { + "start": 24742.6, + "end": 24745.46, + "probability": 0.9225 + }, + { + "start": 24746.06, + "end": 24750.62, + "probability": 0.9715 + }, + { + "start": 24750.68, + "end": 24751.92, + "probability": 0.8909 + }, + { + "start": 24752.3, + "end": 24753.68, + "probability": 0.8521 + }, + { + "start": 24755.08, + "end": 24757.04, + "probability": 0.8263 + }, + { + "start": 24757.7, + "end": 24759.4, + "probability": 0.8308 + }, + { + "start": 24760.0, + "end": 24765.0, + "probability": 0.9647 + }, + { + "start": 24765.36, + "end": 24766.41, + "probability": 0.625 + }, + { + "start": 24766.7, + "end": 24769.48, + "probability": 0.9412 + }, + { + "start": 24770.3, + "end": 24780.5, + "probability": 0.5568 + }, + { + "start": 24780.68, + "end": 24782.4, + "probability": 0.6569 + }, + { + "start": 24782.6, + "end": 24782.88, + "probability": 0.6632 + }, + { + "start": 24783.06, + "end": 24783.26, + "probability": 0.8381 + }, + { + "start": 24783.56, + "end": 24783.78, + "probability": 0.7032 + }, + { + "start": 24783.92, + "end": 24784.6, + "probability": 0.6229 + }, + { + "start": 24784.68, + "end": 24786.4, + "probability": 0.9353 + }, + { + "start": 24786.6, + "end": 24789.44, + "probability": 0.8559 + }, + { + "start": 24789.52, + "end": 24793.4, + "probability": 0.782 + }, + { + "start": 24793.46, + "end": 24794.3, + "probability": 0.2107 + }, + { + "start": 24794.3, + "end": 24796.18, + "probability": 0.9502 + }, + { + "start": 24796.26, + "end": 24800.74, + "probability": 0.3884 + }, + { + "start": 24800.98, + "end": 24801.94, + "probability": 0.1764 + }, + { + "start": 24803.49, + "end": 24805.8, + "probability": 0.6857 + }, + { + "start": 24805.9, + "end": 24807.64, + "probability": 0.7576 + }, + { + "start": 24807.8, + "end": 24807.8, + "probability": 0.4208 + }, + { + "start": 24807.8, + "end": 24811.64, + "probability": 0.6307 + }, + { + "start": 24812.26, + "end": 24813.36, + "probability": 0.7331 + }, + { + "start": 24813.46, + "end": 24814.12, + "probability": 0.731 + }, + { + "start": 24814.44, + "end": 24815.36, + "probability": 0.7427 + }, + { + "start": 24815.48, + "end": 24815.88, + "probability": 0.5684 + }, + { + "start": 24815.98, + "end": 24816.58, + "probability": 0.8495 + }, + { + "start": 24816.58, + "end": 24819.02, + "probability": 0.2845 + }, + { + "start": 24819.12, + "end": 24822.56, + "probability": 0.5919 + }, + { + "start": 24822.62, + "end": 24826.38, + "probability": 0.1028 + }, + { + "start": 24827.08, + "end": 24829.0, + "probability": 0.3473 + }, + { + "start": 24829.34, + "end": 24832.7, + "probability": 0.7856 + }, + { + "start": 24832.7, + "end": 24835.32, + "probability": 0.9921 + }, + { + "start": 24836.52, + "end": 24838.28, + "probability": 0.9106 + }, + { + "start": 24838.56, + "end": 24839.98, + "probability": 0.9612 + }, + { + "start": 24840.78, + "end": 24842.3, + "probability": 0.5883 + }, + { + "start": 24842.72, + "end": 24844.1, + "probability": 0.766 + }, + { + "start": 24844.56, + "end": 24847.76, + "probability": 0.9758 + }, + { + "start": 24847.86, + "end": 24848.54, + "probability": 0.8433 + }, + { + "start": 24848.68, + "end": 24849.8, + "probability": 0.7708 + }, + { + "start": 24849.98, + "end": 24852.34, + "probability": 0.7775 + }, + { + "start": 24852.48, + "end": 24856.5, + "probability": 0.9594 + }, + { + "start": 24860.46, + "end": 24860.56, + "probability": 0.3593 + }, + { + "start": 24860.82, + "end": 24862.8, + "probability": 0.9665 + }, + { + "start": 24862.94, + "end": 24864.16, + "probability": 0.8988 + }, + { + "start": 24864.28, + "end": 24864.54, + "probability": 0.3724 + }, + { + "start": 24864.66, + "end": 24865.08, + "probability": 0.1704 + }, + { + "start": 24865.08, + "end": 24866.6, + "probability": 0.9766 + }, + { + "start": 24866.68, + "end": 24868.66, + "probability": 0.8962 + }, + { + "start": 24869.28, + "end": 24870.47, + "probability": 0.9468 + }, + { + "start": 24870.98, + "end": 24871.61, + "probability": 0.6007 + }, + { + "start": 24871.84, + "end": 24872.85, + "probability": 0.5703 + }, + { + "start": 24873.2, + "end": 24874.04, + "probability": 0.9724 + }, + { + "start": 24874.12, + "end": 24874.8, + "probability": 0.95 + }, + { + "start": 24875.0, + "end": 24875.1, + "probability": 0.9324 + }, + { + "start": 24875.38, + "end": 24876.04, + "probability": 0.9282 + }, + { + "start": 24876.1, + "end": 24877.26, + "probability": 0.6003 + }, + { + "start": 24877.3, + "end": 24878.04, + "probability": 0.8911 + }, + { + "start": 24878.24, + "end": 24881.44, + "probability": 0.7165 + }, + { + "start": 24881.62, + "end": 24883.24, + "probability": 0.9945 + }, + { + "start": 24884.74, + "end": 24889.16, + "probability": 0.9922 + }, + { + "start": 24889.22, + "end": 24890.32, + "probability": 0.9377 + }, + { + "start": 24890.52, + "end": 24891.98, + "probability": 0.67 + }, + { + "start": 24892.62, + "end": 24898.36, + "probability": 0.9807 + }, + { + "start": 24898.76, + "end": 24899.98, + "probability": 0.5604 + }, + { + "start": 24900.2, + "end": 24900.88, + "probability": 0.7958 + }, + { + "start": 24901.4, + "end": 24904.04, + "probability": 0.8955 + }, + { + "start": 24904.66, + "end": 24907.32, + "probability": 0.9293 + }, + { + "start": 24907.64, + "end": 24908.6, + "probability": 0.8772 + }, + { + "start": 24908.92, + "end": 24911.6, + "probability": 0.9864 + }, + { + "start": 24912.12, + "end": 24913.66, + "probability": 0.9383 + }, + { + "start": 24913.92, + "end": 24914.8, + "probability": 0.9349 + }, + { + "start": 24914.98, + "end": 24916.1, + "probability": 0.7388 + }, + { + "start": 24916.64, + "end": 24919.6, + "probability": 0.9517 + }, + { + "start": 24920.2, + "end": 24921.82, + "probability": 0.9013 + }, + { + "start": 24921.9, + "end": 24923.7, + "probability": 0.9799 + }, + { + "start": 24923.76, + "end": 24925.66, + "probability": 0.9969 + }, + { + "start": 24925.74, + "end": 24927.22, + "probability": 0.7332 + }, + { + "start": 24927.54, + "end": 24927.92, + "probability": 0.9674 + }, + { + "start": 24928.08, + "end": 24928.56, + "probability": 0.7476 + }, + { + "start": 24928.68, + "end": 24929.98, + "probability": 0.9878 + }, + { + "start": 24930.36, + "end": 24931.26, + "probability": 0.6783 + }, + { + "start": 24932.2, + "end": 24935.82, + "probability": 0.987 + }, + { + "start": 24935.82, + "end": 24939.94, + "probability": 0.9845 + }, + { + "start": 24940.58, + "end": 24942.98, + "probability": 0.9727 + }, + { + "start": 24944.14, + "end": 24944.86, + "probability": 0.6154 + }, + { + "start": 24945.54, + "end": 24945.96, + "probability": 0.8485 + }, + { + "start": 24946.16, + "end": 24947.32, + "probability": 0.8788 + }, + { + "start": 24947.46, + "end": 24948.1, + "probability": 0.6853 + }, + { + "start": 24948.1, + "end": 24948.96, + "probability": 0.8284 + }, + { + "start": 24948.96, + "end": 24950.28, + "probability": 0.9529 + }, + { + "start": 24950.36, + "end": 24951.12, + "probability": 0.8109 + }, + { + "start": 24951.4, + "end": 24951.88, + "probability": 0.9161 + }, + { + "start": 24952.24, + "end": 24952.64, + "probability": 0.4771 + }, + { + "start": 24952.7, + "end": 24953.0, + "probability": 0.9524 + }, + { + "start": 24953.0, + "end": 24954.32, + "probability": 0.6397 + }, + { + "start": 24954.32, + "end": 24955.42, + "probability": 0.9425 + }, + { + "start": 24955.56, + "end": 24956.28, + "probability": 0.7412 + }, + { + "start": 24956.36, + "end": 24956.76, + "probability": 0.3049 + }, + { + "start": 24957.12, + "end": 24958.04, + "probability": 0.305 + }, + { + "start": 24958.46, + "end": 24967.76, + "probability": 0.9762 + }, + { + "start": 24968.08, + "end": 24971.6, + "probability": 0.8316 + }, + { + "start": 24972.08, + "end": 24972.34, + "probability": 0.7016 + }, + { + "start": 24972.76, + "end": 24973.39, + "probability": 0.4404 + }, + { + "start": 24974.62, + "end": 24976.34, + "probability": 0.5114 + }, + { + "start": 24979.2, + "end": 24980.42, + "probability": 0.3208 + }, + { + "start": 24989.9, + "end": 24991.58, + "probability": 0.7868 + }, + { + "start": 24994.3, + "end": 24996.46, + "probability": 0.4497 + }, + { + "start": 24999.42, + "end": 25000.32, + "probability": 0.1655 + }, + { + "start": 25001.62, + "end": 25001.83, + "probability": 0.7387 + }, + { + "start": 25002.48, + "end": 25003.28, + "probability": 0.8504 + }, + { + "start": 25003.43, + "end": 25004.96, + "probability": 0.589 + }, + { + "start": 25005.1, + "end": 25007.09, + "probability": 0.7496 + }, + { + "start": 25007.84, + "end": 25008.38, + "probability": 0.7154 + }, + { + "start": 25008.46, + "end": 25008.9, + "probability": 0.5705 + }, + { + "start": 25009.0, + "end": 25011.36, + "probability": 0.7498 + }, + { + "start": 25011.54, + "end": 25012.52, + "probability": 0.4614 + }, + { + "start": 25012.64, + "end": 25013.86, + "probability": 0.6722 + }, + { + "start": 25014.28, + "end": 25014.88, + "probability": 0.5309 + }, + { + "start": 25020.4, + "end": 25023.16, + "probability": 0.791 + }, + { + "start": 25023.34, + "end": 25026.3, + "probability": 0.523 + }, + { + "start": 25026.58, + "end": 25027.62, + "probability": 0.9321 + }, + { + "start": 25027.96, + "end": 25029.7, + "probability": 0.8043 + }, + { + "start": 25030.34, + "end": 25030.34, + "probability": 0.1972 + }, + { + "start": 25031.12, + "end": 25032.48, + "probability": 0.9755 + }, + { + "start": 25033.32, + "end": 25035.0, + "probability": 0.6213 + }, + { + "start": 25036.88, + "end": 25037.38, + "probability": 0.9067 + }, + { + "start": 25040.48, + "end": 25042.0, + "probability": 0.8399 + }, + { + "start": 25044.92, + "end": 25048.9, + "probability": 0.9485 + }, + { + "start": 25050.59, + "end": 25052.38, + "probability": 0.7791 + }, + { + "start": 25053.54, + "end": 25054.98, + "probability": 0.3643 + }, + { + "start": 25054.98, + "end": 25058.2, + "probability": 0.671 + }, + { + "start": 25060.5, + "end": 25062.48, + "probability": 0.6233 + }, + { + "start": 25067.44, + "end": 25070.18, + "probability": 0.9489 + }, + { + "start": 25072.2, + "end": 25075.42, + "probability": 0.9581 + }, + { + "start": 25077.1, + "end": 25079.1, + "probability": 0.9922 + }, + { + "start": 25081.1, + "end": 25083.8, + "probability": 0.9722 + }, + { + "start": 25086.96, + "end": 25090.22, + "probability": 0.9926 + }, + { + "start": 25090.36, + "end": 25092.76, + "probability": 0.979 + }, + { + "start": 25094.94, + "end": 25096.08, + "probability": 0.9819 + }, + { + "start": 25098.36, + "end": 25099.04, + "probability": 0.7496 + }, + { + "start": 25100.76, + "end": 25101.72, + "probability": 0.7 + }, + { + "start": 25103.04, + "end": 25105.52, + "probability": 0.8711 + }, + { + "start": 25107.56, + "end": 25108.34, + "probability": 0.9656 + }, + { + "start": 25110.18, + "end": 25111.28, + "probability": 0.8223 + }, + { + "start": 25111.28, + "end": 25115.3, + "probability": 0.7539 + }, + { + "start": 25117.04, + "end": 25118.48, + "probability": 0.9472 + }, + { + "start": 25120.1, + "end": 25122.22, + "probability": 0.995 + }, + { + "start": 25123.08, + "end": 25124.76, + "probability": 0.8266 + }, + { + "start": 25127.16, + "end": 25129.22, + "probability": 0.8607 + }, + { + "start": 25129.36, + "end": 25130.14, + "probability": 0.7214 + }, + { + "start": 25130.26, + "end": 25131.36, + "probability": 0.7788 + }, + { + "start": 25131.9, + "end": 25134.46, + "probability": 0.8607 + }, + { + "start": 25136.21, + "end": 25138.46, + "probability": 0.9893 + }, + { + "start": 25138.62, + "end": 25142.49, + "probability": 0.9468 + }, + { + "start": 25142.64, + "end": 25142.64, + "probability": 0.0749 + }, + { + "start": 25142.64, + "end": 25145.0, + "probability": 0.8768 + }, + { + "start": 25145.42, + "end": 25145.72, + "probability": 0.0059 + }, + { + "start": 25148.26, + "end": 25150.34, + "probability": 0.6535 + }, + { + "start": 25150.48, + "end": 25155.1, + "probability": 0.9492 + }, + { + "start": 25155.2, + "end": 25156.48, + "probability": 0.7624 + }, + { + "start": 25156.62, + "end": 25160.43, + "probability": 0.4774 + }, + { + "start": 25160.92, + "end": 25160.92, + "probability": 0.1111 + }, + { + "start": 25161.0, + "end": 25162.54, + "probability": 0.8235 + }, + { + "start": 25162.7, + "end": 25163.72, + "probability": 0.6541 + }, + { + "start": 25164.32, + "end": 25166.44, + "probability": 0.951 + }, + { + "start": 25166.54, + "end": 25167.7, + "probability": 0.6173 + }, + { + "start": 25167.9, + "end": 25170.66, + "probability": 0.8647 + }, + { + "start": 25170.66, + "end": 25173.24, + "probability": 0.824 + }, + { + "start": 25174.64, + "end": 25176.26, + "probability": 0.9116 + }, + { + "start": 25176.64, + "end": 25178.24, + "probability": 0.4444 + }, + { + "start": 25178.4, + "end": 25180.54, + "probability": 0.0612 + }, + { + "start": 25181.1, + "end": 25184.96, + "probability": 0.9846 + }, + { + "start": 25185.32, + "end": 25186.2, + "probability": 0.2666 + }, + { + "start": 25187.12, + "end": 25190.42, + "probability": 0.9922 + }, + { + "start": 25192.32, + "end": 25194.98, + "probability": 0.9971 + }, + { + "start": 25196.42, + "end": 25201.7, + "probability": 0.9846 + }, + { + "start": 25203.0, + "end": 25205.3, + "probability": 0.9722 + }, + { + "start": 25207.52, + "end": 25211.54, + "probability": 0.9926 + }, + { + "start": 25213.12, + "end": 25214.3, + "probability": 0.4424 + }, + { + "start": 25215.13, + "end": 25220.52, + "probability": 0.9756 + }, + { + "start": 25220.66, + "end": 25223.42, + "probability": 0.9803 + }, + { + "start": 25223.56, + "end": 25224.62, + "probability": 0.9385 + }, + { + "start": 25225.66, + "end": 25226.28, + "probability": 0.442 + }, + { + "start": 25227.7, + "end": 25230.76, + "probability": 0.9663 + }, + { + "start": 25232.3, + "end": 25236.52, + "probability": 0.9732 + }, + { + "start": 25237.84, + "end": 25238.98, + "probability": 0.9608 + }, + { + "start": 25239.76, + "end": 25241.7, + "probability": 0.9828 + }, + { + "start": 25241.92, + "end": 25243.06, + "probability": 0.8272 + }, + { + "start": 25243.12, + "end": 25244.28, + "probability": 0.7184 + }, + { + "start": 25244.86, + "end": 25248.26, + "probability": 0.9849 + }, + { + "start": 25249.02, + "end": 25251.6, + "probability": 0.9951 + }, + { + "start": 25252.88, + "end": 25256.18, + "probability": 0.9841 + }, + { + "start": 25258.8, + "end": 25260.3, + "probability": 0.6281 + }, + { + "start": 25260.3, + "end": 25261.72, + "probability": 0.2759 + }, + { + "start": 25262.24, + "end": 25264.42, + "probability": 0.7268 + }, + { + "start": 25265.68, + "end": 25266.38, + "probability": 0.7585 + }, + { + "start": 25266.48, + "end": 25266.82, + "probability": 0.621 + }, + { + "start": 25267.12, + "end": 25267.24, + "probability": 0.2293 + }, + { + "start": 25267.42, + "end": 25270.15, + "probability": 0.5018 + }, + { + "start": 25272.3, + "end": 25272.78, + "probability": 0.6166 + }, + { + "start": 25272.94, + "end": 25273.76, + "probability": 0.3353 + }, + { + "start": 25273.9, + "end": 25274.18, + "probability": 0.0244 + }, + { + "start": 25274.18, + "end": 25276.2, + "probability": 0.941 + }, + { + "start": 25276.28, + "end": 25278.62, + "probability": 0.6883 + }, + { + "start": 25279.9, + "end": 25283.96, + "probability": 0.8024 + }, + { + "start": 25284.08, + "end": 25284.88, + "probability": 0.3538 + }, + { + "start": 25285.14, + "end": 25285.74, + "probability": 0.3117 + }, + { + "start": 25285.78, + "end": 25286.79, + "probability": 0.8203 + }, + { + "start": 25287.2, + "end": 25287.54, + "probability": 0.8637 + }, + { + "start": 25291.46, + "end": 25297.78, + "probability": 0.9434 + }, + { + "start": 25297.8, + "end": 25298.6, + "probability": 0.832 + }, + { + "start": 25299.58, + "end": 25300.14, + "probability": 0.525 + }, + { + "start": 25301.16, + "end": 25305.1, + "probability": 0.6561 + }, + { + "start": 25308.2, + "end": 25311.02, + "probability": 0.7022 + }, + { + "start": 25312.38, + "end": 25314.44, + "probability": 0.9146 + }, + { + "start": 25315.7, + "end": 25318.74, + "probability": 0.9513 + }, + { + "start": 25318.78, + "end": 25319.84, + "probability": 0.9366 + }, + { + "start": 25321.58, + "end": 25324.88, + "probability": 0.8945 + }, + { + "start": 25324.96, + "end": 25327.38, + "probability": 0.9963 + }, + { + "start": 25329.55, + "end": 25334.64, + "probability": 0.7115 + }, + { + "start": 25334.66, + "end": 25338.34, + "probability": 0.9303 + }, + { + "start": 25338.5, + "end": 25340.02, + "probability": 0.8604 + }, + { + "start": 25340.04, + "end": 25341.52, + "probability": 0.2919 + }, + { + "start": 25342.28, + "end": 25344.74, + "probability": 0.9943 + }, + { + "start": 25347.04, + "end": 25347.62, + "probability": 0.7378 + }, + { + "start": 25348.14, + "end": 25351.46, + "probability": 0.9951 + }, + { + "start": 25352.34, + "end": 25354.26, + "probability": 0.9626 + }, + { + "start": 25356.24, + "end": 25360.64, + "probability": 0.9881 + }, + { + "start": 25362.38, + "end": 25365.06, + "probability": 0.7354 + }, + { + "start": 25365.78, + "end": 25366.32, + "probability": 0.6427 + }, + { + "start": 25366.36, + "end": 25368.7, + "probability": 0.8 + }, + { + "start": 25369.06, + "end": 25370.58, + "probability": 0.96 + }, + { + "start": 25371.54, + "end": 25372.58, + "probability": 0.9324 + }, + { + "start": 25373.16, + "end": 25375.98, + "probability": 0.9902 + }, + { + "start": 25377.34, + "end": 25378.0, + "probability": 0.7755 + }, + { + "start": 25378.24, + "end": 25382.84, + "probability": 0.9795 + }, + { + "start": 25383.32, + "end": 25383.95, + "probability": 0.464 + }, + { + "start": 25384.26, + "end": 25384.98, + "probability": 0.6362 + }, + { + "start": 25387.82, + "end": 25388.54, + "probability": 0.6887 + }, + { + "start": 25389.28, + "end": 25392.34, + "probability": 0.9557 + }, + { + "start": 25393.28, + "end": 25395.0, + "probability": 0.8495 + }, + { + "start": 25395.64, + "end": 25396.8, + "probability": 0.9568 + }, + { + "start": 25398.48, + "end": 25399.1, + "probability": 0.9985 + }, + { + "start": 25400.9, + "end": 25402.92, + "probability": 0.991 + }, + { + "start": 25404.06, + "end": 25404.94, + "probability": 0.9421 + }, + { + "start": 25406.86, + "end": 25407.7, + "probability": 0.9673 + }, + { + "start": 25408.34, + "end": 25414.1, + "probability": 0.9989 + }, + { + "start": 25417.02, + "end": 25419.28, + "probability": 0.9121 + }, + { + "start": 25423.82, + "end": 25423.82, + "probability": 0.8687 + }, + { + "start": 25425.96, + "end": 25427.8, + "probability": 0.9583 + }, + { + "start": 25428.8, + "end": 25432.18, + "probability": 0.6514 + }, + { + "start": 25433.02, + "end": 25434.68, + "probability": 0.8746 + }, + { + "start": 25435.3, + "end": 25438.12, + "probability": 0.9932 + }, + { + "start": 25440.74, + "end": 25441.72, + "probability": 0.5752 + }, + { + "start": 25443.5, + "end": 25444.9, + "probability": 0.937 + }, + { + "start": 25446.54, + "end": 25449.66, + "probability": 0.9928 + }, + { + "start": 25451.04, + "end": 25452.8, + "probability": 0.7412 + }, + { + "start": 25455.26, + "end": 25456.18, + "probability": 0.8336 + }, + { + "start": 25458.58, + "end": 25460.12, + "probability": 0.9946 + }, + { + "start": 25461.12, + "end": 25464.34, + "probability": 0.759 + }, + { + "start": 25464.66, + "end": 25468.4, + "probability": 0.8066 + }, + { + "start": 25469.08, + "end": 25470.28, + "probability": 0.7982 + }, + { + "start": 25470.54, + "end": 25471.4, + "probability": 0.8015 + }, + { + "start": 25473.84, + "end": 25474.4, + "probability": 0.8421 + }, + { + "start": 25475.22, + "end": 25475.98, + "probability": 0.9393 + }, + { + "start": 25478.78, + "end": 25479.58, + "probability": 0.9738 + }, + { + "start": 25480.46, + "end": 25480.86, + "probability": 0.6751 + }, + { + "start": 25482.22, + "end": 25485.78, + "probability": 0.9619 + }, + { + "start": 25486.04, + "end": 25487.96, + "probability": 0.9879 + }, + { + "start": 25489.6, + "end": 25491.5, + "probability": 0.9725 + }, + { + "start": 25493.36, + "end": 25495.04, + "probability": 0.8208 + }, + { + "start": 25496.02, + "end": 25496.8, + "probability": 0.7391 + }, + { + "start": 25497.7, + "end": 25498.68, + "probability": 0.9668 + }, + { + "start": 25498.82, + "end": 25499.88, + "probability": 0.9888 + }, + { + "start": 25500.6, + "end": 25503.68, + "probability": 0.9219 + }, + { + "start": 25506.52, + "end": 25507.4, + "probability": 0.5762 + }, + { + "start": 25508.46, + "end": 25509.38, + "probability": 0.8219 + }, + { + "start": 25509.88, + "end": 25512.36, + "probability": 0.9824 + }, + { + "start": 25513.3, + "end": 25514.14, + "probability": 0.7647 + }, + { + "start": 25515.66, + "end": 25517.5, + "probability": 0.9795 + }, + { + "start": 25517.62, + "end": 25519.04, + "probability": 0.99 + }, + { + "start": 25519.74, + "end": 25520.64, + "probability": 0.9832 + }, + { + "start": 25521.76, + "end": 25522.94, + "probability": 0.4223 + }, + { + "start": 25523.56, + "end": 25524.42, + "probability": 0.8036 + }, + { + "start": 25525.08, + "end": 25526.62, + "probability": 0.9434 + }, + { + "start": 25527.84, + "end": 25531.66, + "probability": 0.9152 + }, + { + "start": 25532.82, + "end": 25534.08, + "probability": 0.6442 + }, + { + "start": 25535.74, + "end": 25538.2, + "probability": 0.7013 + }, + { + "start": 25539.96, + "end": 25541.16, + "probability": 0.9745 + }, + { + "start": 25544.14, + "end": 25544.99, + "probability": 0.9541 + }, + { + "start": 25545.32, + "end": 25546.32, + "probability": 0.9858 + }, + { + "start": 25547.2, + "end": 25547.2, + "probability": 0.1169 + }, + { + "start": 25547.2, + "end": 25547.66, + "probability": 0.5811 + }, + { + "start": 25547.94, + "end": 25548.94, + "probability": 0.9858 + }, + { + "start": 25548.94, + "end": 25551.44, + "probability": 0.5938 + }, + { + "start": 25551.44, + "end": 25551.86, + "probability": 0.3083 + }, + { + "start": 25552.1, + "end": 25552.4, + "probability": 0.5955 + }, + { + "start": 25552.5, + "end": 25552.88, + "probability": 0.2863 + }, + { + "start": 25552.92, + "end": 25553.34, + "probability": 0.0013 + }, + { + "start": 25553.6, + "end": 25555.18, + "probability": 0.6016 + }, + { + "start": 25556.0, + "end": 25556.74, + "probability": 0.9454 + }, + { + "start": 25556.8, + "end": 25557.46, + "probability": 0.2923 + }, + { + "start": 25558.52, + "end": 25559.04, + "probability": 0.0942 + }, + { + "start": 25559.04, + "end": 25559.56, + "probability": 0.2113 + }, + { + "start": 25563.46, + "end": 25566.78, + "probability": 0.7227 + }, + { + "start": 25567.48, + "end": 25569.6, + "probability": 0.9502 + }, + { + "start": 25571.32, + "end": 25572.66, + "probability": 0.8909 + }, + { + "start": 25574.4, + "end": 25577.36, + "probability": 0.9956 + }, + { + "start": 25577.78, + "end": 25581.8, + "probability": 0.7226 + }, + { + "start": 25581.8, + "end": 25581.9, + "probability": 0.3538 + }, + { + "start": 25582.22, + "end": 25582.4, + "probability": 0.6545 + }, + { + "start": 25583.08, + "end": 25584.68, + "probability": 0.1494 + }, + { + "start": 25584.68, + "end": 25585.62, + "probability": 0.5277 + }, + { + "start": 25585.78, + "end": 25586.46, + "probability": 0.6336 + }, + { + "start": 25586.66, + "end": 25588.0, + "probability": 0.7647 + }, + { + "start": 25589.4, + "end": 25590.7, + "probability": 0.9889 + }, + { + "start": 25591.64, + "end": 25592.86, + "probability": 0.9944 + }, + { + "start": 25593.06, + "end": 25597.06, + "probability": 0.9473 + }, + { + "start": 25597.64, + "end": 25600.54, + "probability": 0.8324 + }, + { + "start": 25600.54, + "end": 25601.84, + "probability": 0.8644 + }, + { + "start": 25602.56, + "end": 25604.22, + "probability": 0.9702 + }, + { + "start": 25604.24, + "end": 25605.03, + "probability": 0.072 + }, + { + "start": 25605.66, + "end": 25608.36, + "probability": 0.7602 + }, + { + "start": 25609.3, + "end": 25613.1, + "probability": 0.5984 + }, + { + "start": 25613.32, + "end": 25614.58, + "probability": 0.6632 + }, + { + "start": 25614.7, + "end": 25615.29, + "probability": 0.3642 + }, + { + "start": 25616.3, + "end": 25618.18, + "probability": 0.6711 + }, + { + "start": 25618.4, + "end": 25619.35, + "probability": 0.3894 + }, + { + "start": 25619.74, + "end": 25620.88, + "probability": 0.7866 + }, + { + "start": 25620.88, + "end": 25622.32, + "probability": 0.0658 + }, + { + "start": 25623.46, + "end": 25623.82, + "probability": 0.6036 + }, + { + "start": 25624.38, + "end": 25626.96, + "probability": 0.7186 + }, + { + "start": 25627.12, + "end": 25629.68, + "probability": 0.5225 + }, + { + "start": 25630.86, + "end": 25632.64, + "probability": 0.5013 + }, + { + "start": 25633.88, + "end": 25637.5, + "probability": 0.4582 + }, + { + "start": 25637.94, + "end": 25639.04, + "probability": 0.6011 + }, + { + "start": 25639.4, + "end": 25641.05, + "probability": 0.171 + }, + { + "start": 25641.76, + "end": 25645.44, + "probability": 0.3917 + }, + { + "start": 25645.6, + "end": 25647.78, + "probability": 0.708 + }, + { + "start": 25648.28, + "end": 25649.08, + "probability": 0.6923 + }, + { + "start": 25649.66, + "end": 25651.22, + "probability": 0.4032 + }, + { + "start": 25651.48, + "end": 25652.1, + "probability": 0.1921 + }, + { + "start": 25652.98, + "end": 25654.73, + "probability": 0.5501 + }, + { + "start": 25655.12, + "end": 25656.03, + "probability": 0.3701 + }, + { + "start": 25656.32, + "end": 25657.74, + "probability": 0.127 + }, + { + "start": 25658.04, + "end": 25659.74, + "probability": 0.3427 + }, + { + "start": 25661.04, + "end": 25661.2, + "probability": 0.1407 + }, + { + "start": 25661.2, + "end": 25661.2, + "probability": 0.1006 + }, + { + "start": 25661.2, + "end": 25661.96, + "probability": 0.2345 + }, + { + "start": 25662.26, + "end": 25662.86, + "probability": 0.2828 + }, + { + "start": 25663.0, + "end": 25664.82, + "probability": 0.3176 + }, + { + "start": 25664.82, + "end": 25666.3, + "probability": 0.3622 + }, + { + "start": 25666.52, + "end": 25667.47, + "probability": 0.8175 + }, + { + "start": 25668.08, + "end": 25669.64, + "probability": 0.5145 + }, + { + "start": 25669.82, + "end": 25672.46, + "probability": 0.3735 + }, + { + "start": 25672.58, + "end": 25673.52, + "probability": 0.779 + }, + { + "start": 25674.12, + "end": 25674.7, + "probability": 0.6843 + }, + { + "start": 25675.02, + "end": 25675.88, + "probability": 0.6404 + }, + { + "start": 25675.98, + "end": 25676.52, + "probability": 0.0217 + }, + { + "start": 25676.74, + "end": 25676.83, + "probability": 0.2574 + }, + { + "start": 25677.4, + "end": 25679.9, + "probability": 0.7108 + }, + { + "start": 25680.62, + "end": 25683.04, + "probability": 0.7996 + }, + { + "start": 25683.46, + "end": 25685.9, + "probability": 0.9297 + }, + { + "start": 25687.82, + "end": 25688.44, + "probability": 0.0821 + }, + { + "start": 25689.58, + "end": 25690.04, + "probability": 0.4362 + }, + { + "start": 25690.2, + "end": 25691.61, + "probability": 0.8433 + }, + { + "start": 25691.82, + "end": 25692.26, + "probability": 0.4492 + }, + { + "start": 25692.78, + "end": 25693.08, + "probability": 0.7539 + }, + { + "start": 25694.52, + "end": 25694.98, + "probability": 0.5394 + }, + { + "start": 25695.08, + "end": 25695.68, + "probability": 0.4143 + }, + { + "start": 25695.9, + "end": 25698.34, + "probability": 0.5755 + }, + { + "start": 25698.42, + "end": 25699.07, + "probability": 0.3631 + }, + { + "start": 25699.18, + "end": 25703.56, + "probability": 0.4401 + }, + { + "start": 25703.91, + "end": 25704.99, + "probability": 0.8115 + }, + { + "start": 25705.88, + "end": 25708.16, + "probability": 0.7455 + }, + { + "start": 25708.26, + "end": 25710.32, + "probability": 0.7387 + }, + { + "start": 25710.58, + "end": 25713.08, + "probability": 0.7974 + }, + { + "start": 25713.22, + "end": 25713.66, + "probability": 0.1246 + }, + { + "start": 25714.18, + "end": 25716.86, + "probability": 0.9216 + }, + { + "start": 25717.02, + "end": 25717.43, + "probability": 0.3096 + }, + { + "start": 25717.96, + "end": 25718.76, + "probability": 0.7058 + }, + { + "start": 25719.26, + "end": 25719.72, + "probability": 0.5474 + }, + { + "start": 25720.05, + "end": 25722.0, + "probability": 0.5558 + }, + { + "start": 25723.04, + "end": 25725.0, + "probability": 0.8423 + }, + { + "start": 25725.63, + "end": 25728.21, + "probability": 0.5366 + }, + { + "start": 25728.82, + "end": 25729.34, + "probability": 0.5161 + }, + { + "start": 25731.0, + "end": 25731.64, + "probability": 0.477 + }, + { + "start": 25734.06, + "end": 25735.14, + "probability": 0.6639 + }, + { + "start": 25735.66, + "end": 25737.52, + "probability": 0.8522 + }, + { + "start": 25738.84, + "end": 25741.08, + "probability": 0.9904 + }, + { + "start": 25744.14, + "end": 25746.1, + "probability": 0.9263 + }, + { + "start": 25747.42, + "end": 25748.5, + "probability": 0.9993 + }, + { + "start": 25749.06, + "end": 25750.18, + "probability": 0.9942 + }, + { + "start": 25751.22, + "end": 25751.7, + "probability": 0.5464 + }, + { + "start": 25751.8, + "end": 25752.7, + "probability": 0.6571 + }, + { + "start": 25752.8, + "end": 25754.0, + "probability": 0.7639 + }, + { + "start": 25755.6, + "end": 25758.46, + "probability": 0.9926 + }, + { + "start": 25760.62, + "end": 25761.38, + "probability": 0.2771 + }, + { + "start": 25765.34, + "end": 25768.44, + "probability": 0.9578 + }, + { + "start": 25769.52, + "end": 25770.56, + "probability": 0.9637 + }, + { + "start": 25771.14, + "end": 25771.62, + "probability": 0.5759 + }, + { + "start": 25772.24, + "end": 25772.56, + "probability": 0.6521 + }, + { + "start": 25773.18, + "end": 25773.4, + "probability": 0.7372 + }, + { + "start": 25775.44, + "end": 25777.04, + "probability": 0.999 + }, + { + "start": 25777.56, + "end": 25778.84, + "probability": 0.9376 + }, + { + "start": 25779.24, + "end": 25780.08, + "probability": 0.9636 + }, + { + "start": 25781.56, + "end": 25783.78, + "probability": 0.856 + }, + { + "start": 25784.5, + "end": 25786.88, + "probability": 0.9309 + }, + { + "start": 25788.0, + "end": 25788.66, + "probability": 0.6113 + }, + { + "start": 25791.01, + "end": 25792.84, + "probability": 0.9603 + }, + { + "start": 25793.86, + "end": 25794.58, + "probability": 0.6789 + }, + { + "start": 25795.36, + "end": 25798.2, + "probability": 0.9888 + }, + { + "start": 25800.1, + "end": 25801.24, + "probability": 0.9565 + }, + { + "start": 25801.36, + "end": 25803.44, + "probability": 0.9924 + }, + { + "start": 25805.38, + "end": 25805.9, + "probability": 0.1903 + }, + { + "start": 25806.0, + "end": 25808.82, + "probability": 0.9014 + }, + { + "start": 25809.62, + "end": 25815.02, + "probability": 0.8494 + }, + { + "start": 25815.88, + "end": 25817.14, + "probability": 0.8595 + }, + { + "start": 25818.56, + "end": 25821.5, + "probability": 0.9031 + }, + { + "start": 25821.84, + "end": 25824.34, + "probability": 0.9871 + }, + { + "start": 25826.46, + "end": 25831.22, + "probability": 0.6343 + }, + { + "start": 25831.68, + "end": 25833.78, + "probability": 0.7769 + }, + { + "start": 25833.98, + "end": 25837.6, + "probability": 0.6941 + }, + { + "start": 25837.66, + "end": 25838.0, + "probability": 0.6948 + }, + { + "start": 25839.18, + "end": 25843.54, + "probability": 0.9658 + }, + { + "start": 25844.77, + "end": 25851.4, + "probability": 0.9993 + }, + { + "start": 25851.92, + "end": 25855.16, + "probability": 0.986 + }, + { + "start": 25855.16, + "end": 25858.02, + "probability": 0.9782 + }, + { + "start": 25859.38, + "end": 25859.76, + "probability": 0.7318 + }, + { + "start": 25860.46, + "end": 25864.56, + "probability": 0.6792 + }, + { + "start": 25865.18, + "end": 25865.78, + "probability": 0.7438 + }, + { + "start": 25866.3, + "end": 25869.7, + "probability": 0.9749 + }, + { + "start": 25869.7, + "end": 25872.46, + "probability": 0.9868 + }, + { + "start": 25872.84, + "end": 25873.36, + "probability": 0.7865 + }, + { + "start": 25874.74, + "end": 25878.04, + "probability": 0.9687 + }, + { + "start": 25878.92, + "end": 25881.08, + "probability": 0.9517 + }, + { + "start": 25881.18, + "end": 25883.49, + "probability": 0.7588 + }, + { + "start": 25883.76, + "end": 25886.04, + "probability": 0.6205 + }, + { + "start": 25888.48, + "end": 25889.52, + "probability": 0.9644 + }, + { + "start": 25890.6, + "end": 25892.08, + "probability": 0.8865 + }, + { + "start": 25893.42, + "end": 25894.22, + "probability": 0.4908 + }, + { + "start": 25894.52, + "end": 25897.06, + "probability": 0.737 + }, + { + "start": 25898.26, + "end": 25899.44, + "probability": 0.9935 + }, + { + "start": 25900.64, + "end": 25901.78, + "probability": 0.7609 + }, + { + "start": 25903.34, + "end": 25903.82, + "probability": 0.4635 + }, + { + "start": 25903.92, + "end": 25904.02, + "probability": 0.4225 + }, + { + "start": 25904.06, + "end": 25904.46, + "probability": 0.5132 + }, + { + "start": 25904.48, + "end": 25906.32, + "probability": 0.9528 + }, + { + "start": 25906.32, + "end": 25906.42, + "probability": 0.6285 + }, + { + "start": 25908.76, + "end": 25909.94, + "probability": 0.9772 + }, + { + "start": 25910.94, + "end": 25911.76, + "probability": 0.9819 + }, + { + "start": 25913.32, + "end": 25913.7, + "probability": 0.1508 + }, + { + "start": 25913.84, + "end": 25918.38, + "probability": 0.7404 + }, + { + "start": 25919.65, + "end": 25921.72, + "probability": 0.9424 + }, + { + "start": 25922.52, + "end": 25922.52, + "probability": 0.1068 + }, + { + "start": 25922.52, + "end": 25924.64, + "probability": 0.9957 + }, + { + "start": 25925.06, + "end": 25926.28, + "probability": 0.996 + }, + { + "start": 25928.42, + "end": 25931.16, + "probability": 0.176 + }, + { + "start": 25931.26, + "end": 25932.44, + "probability": 0.8459 + }, + { + "start": 25933.52, + "end": 25934.02, + "probability": 0.9921 + }, + { + "start": 25935.06, + "end": 25937.94, + "probability": 0.9603 + }, + { + "start": 25939.1, + "end": 25939.92, + "probability": 0.9841 + }, + { + "start": 25940.76, + "end": 25942.42, + "probability": 0.9336 + }, + { + "start": 25943.48, + "end": 25948.04, + "probability": 0.9385 + }, + { + "start": 25948.64, + "end": 25952.06, + "probability": 0.9946 + }, + { + "start": 25952.76, + "end": 25957.46, + "probability": 0.9791 + }, + { + "start": 25958.64, + "end": 25959.52, + "probability": 0.7034 + }, + { + "start": 25959.66, + "end": 25963.7, + "probability": 0.9683 + }, + { + "start": 25964.46, + "end": 25967.32, + "probability": 0.9896 + }, + { + "start": 25967.84, + "end": 25970.14, + "probability": 0.9363 + }, + { + "start": 25970.76, + "end": 25972.56, + "probability": 0.9073 + }, + { + "start": 25972.84, + "end": 25976.16, + "probability": 0.9907 + }, + { + "start": 25976.72, + "end": 25977.44, + "probability": 0.9679 + }, + { + "start": 25978.08, + "end": 25981.16, + "probability": 0.9659 + }, + { + "start": 25981.3, + "end": 25985.3, + "probability": 0.9915 + }, + { + "start": 25985.6, + "end": 25985.84, + "probability": 0.6802 + }, + { + "start": 25987.88, + "end": 25987.88, + "probability": 0.2786 + }, + { + "start": 25987.88, + "end": 25991.26, + "probability": 0.6456 + }, + { + "start": 25992.56, + "end": 25993.04, + "probability": 0.8505 + }, + { + "start": 25994.24, + "end": 25996.96, + "probability": 0.8234 + }, + { + "start": 26004.9, + "end": 26005.7, + "probability": 0.7419 + }, + { + "start": 26027.3, + "end": 26028.94, + "probability": 0.733 + }, + { + "start": 26029.8, + "end": 26030.52, + "probability": 0.6852 + }, + { + "start": 26040.94, + "end": 26042.06, + "probability": 0.6212 + }, + { + "start": 26042.86, + "end": 26050.06, + "probability": 0.8753 + }, + { + "start": 26051.42, + "end": 26054.22, + "probability": 0.989 + }, + { + "start": 26058.68, + "end": 26061.62, + "probability": 0.8957 + }, + { + "start": 26062.68, + "end": 26069.02, + "probability": 0.983 + }, + { + "start": 26070.06, + "end": 26071.5, + "probability": 0.7757 + }, + { + "start": 26072.68, + "end": 26073.52, + "probability": 0.8119 + }, + { + "start": 26074.96, + "end": 26076.78, + "probability": 0.8457 + }, + { + "start": 26077.98, + "end": 26079.72, + "probability": 0.6083 + }, + { + "start": 26080.94, + "end": 26081.58, + "probability": 0.7622 + }, + { + "start": 26081.94, + "end": 26086.96, + "probability": 0.9784 + }, + { + "start": 26087.68, + "end": 26088.98, + "probability": 0.9526 + }, + { + "start": 26089.56, + "end": 26091.68, + "probability": 0.8438 + }, + { + "start": 26092.26, + "end": 26093.48, + "probability": 0.9565 + }, + { + "start": 26094.14, + "end": 26096.76, + "probability": 0.9587 + }, + { + "start": 26098.28, + "end": 26103.54, + "probability": 0.8317 + }, + { + "start": 26108.04, + "end": 26111.34, + "probability": 0.6457 + }, + { + "start": 26113.18, + "end": 26115.98, + "probability": 0.9589 + }, + { + "start": 26117.26, + "end": 26119.4, + "probability": 0.7568 + }, + { + "start": 26120.4, + "end": 26123.2, + "probability": 0.9695 + }, + { + "start": 26123.8, + "end": 26125.82, + "probability": 0.9171 + }, + { + "start": 26127.26, + "end": 26128.76, + "probability": 0.8704 + }, + { + "start": 26129.64, + "end": 26135.16, + "probability": 0.893 + }, + { + "start": 26135.22, + "end": 26135.94, + "probability": 0.8822 + }, + { + "start": 26136.6, + "end": 26140.64, + "probability": 0.9933 + }, + { + "start": 26140.7, + "end": 26143.04, + "probability": 0.9757 + }, + { + "start": 26144.06, + "end": 26150.54, + "probability": 0.7785 + }, + { + "start": 26151.72, + "end": 26154.96, + "probability": 0.9963 + }, + { + "start": 26155.14, + "end": 26158.54, + "probability": 0.9908 + }, + { + "start": 26161.88, + "end": 26163.58, + "probability": 0.9962 + }, + { + "start": 26164.18, + "end": 26165.24, + "probability": 0.8618 + }, + { + "start": 26165.92, + "end": 26172.08, + "probability": 0.9583 + }, + { + "start": 26172.58, + "end": 26179.76, + "probability": 0.9897 + }, + { + "start": 26180.8, + "end": 26184.16, + "probability": 0.9611 + }, + { + "start": 26185.0, + "end": 26187.8, + "probability": 0.989 + }, + { + "start": 26188.76, + "end": 26190.1, + "probability": 0.8067 + }, + { + "start": 26191.12, + "end": 26193.36, + "probability": 0.9931 + }, + { + "start": 26194.16, + "end": 26195.94, + "probability": 0.9466 + }, + { + "start": 26197.02, + "end": 26204.62, + "probability": 0.9653 + }, + { + "start": 26204.72, + "end": 26205.56, + "probability": 0.5917 + }, + { + "start": 26206.66, + "end": 26210.78, + "probability": 0.9456 + }, + { + "start": 26211.68, + "end": 26215.95, + "probability": 0.8256 + }, + { + "start": 26217.32, + "end": 26223.92, + "probability": 0.9975 + }, + { + "start": 26223.98, + "end": 26230.62, + "probability": 0.9729 + }, + { + "start": 26231.54, + "end": 26234.09, + "probability": 0.9845 + }, + { + "start": 26234.94, + "end": 26239.92, + "probability": 0.9724 + }, + { + "start": 26240.28, + "end": 26243.12, + "probability": 0.9541 + }, + { + "start": 26243.84, + "end": 26244.96, + "probability": 0.878 + }, + { + "start": 26245.46, + "end": 26249.68, + "probability": 0.9946 + }, + { + "start": 26250.08, + "end": 26251.36, + "probability": 0.1284 + }, + { + "start": 26251.36, + "end": 26251.36, + "probability": 0.1317 + }, + { + "start": 26251.36, + "end": 26253.6, + "probability": 0.0149 + }, + { + "start": 26253.6, + "end": 26253.96, + "probability": 0.5773 + }, + { + "start": 26254.18, + "end": 26254.32, + "probability": 0.7192 + }, + { + "start": 26254.38, + "end": 26254.46, + "probability": 0.6995 + }, + { + "start": 26254.46, + "end": 26254.46, + "probability": 0.2277 + }, + { + "start": 26254.46, + "end": 26256.74, + "probability": 0.2718 + }, + { + "start": 26260.02, + "end": 26260.24, + "probability": 0.1779 + }, + { + "start": 26260.24, + "end": 26260.24, + "probability": 0.0885 + }, + { + "start": 26260.24, + "end": 26260.24, + "probability": 0.05 + }, + { + "start": 26260.24, + "end": 26261.48, + "probability": 0.3797 + }, + { + "start": 26262.02, + "end": 26262.84, + "probability": 0.1994 + }, + { + "start": 26262.96, + "end": 26264.28, + "probability": 0.4941 + }, + { + "start": 26264.28, + "end": 26264.96, + "probability": 0.0373 + }, + { + "start": 26267.58, + "end": 26269.92, + "probability": 0.2968 + }, + { + "start": 26269.92, + "end": 26270.14, + "probability": 0.0285 + }, + { + "start": 26270.14, + "end": 26270.14, + "probability": 0.0388 + }, + { + "start": 26270.14, + "end": 26270.14, + "probability": 0.0466 + }, + { + "start": 26270.14, + "end": 26270.14, + "probability": 0.0163 + }, + { + "start": 26270.14, + "end": 26270.14, + "probability": 0.1747 + }, + { + "start": 26270.14, + "end": 26271.08, + "probability": 0.0473 + }, + { + "start": 26271.78, + "end": 26273.58, + "probability": 0.8687 + }, + { + "start": 26274.92, + "end": 26277.74, + "probability": 0.2334 + }, + { + "start": 26279.54, + "end": 26279.82, + "probability": 0.2382 + }, + { + "start": 26279.82, + "end": 26279.82, + "probability": 0.0299 + }, + { + "start": 26279.82, + "end": 26282.32, + "probability": 0.9814 + }, + { + "start": 26283.44, + "end": 26284.0, + "probability": 0.0284 + }, + { + "start": 26284.0, + "end": 26284.0, + "probability": 0.2464 + }, + { + "start": 26284.0, + "end": 26286.36, + "probability": 0.6571 + }, + { + "start": 26286.98, + "end": 26286.98, + "probability": 0.0919 + }, + { + "start": 26286.98, + "end": 26286.98, + "probability": 0.4383 + }, + { + "start": 26286.98, + "end": 26288.26, + "probability": 0.6179 + }, + { + "start": 26288.54, + "end": 26289.62, + "probability": 0.6441 + }, + { + "start": 26289.74, + "end": 26290.8, + "probability": 0.2264 + }, + { + "start": 26290.8, + "end": 26292.49, + "probability": 0.344 + }, + { + "start": 26293.16, + "end": 26293.66, + "probability": 0.4683 + }, + { + "start": 26293.7, + "end": 26294.42, + "probability": 0.5094 + }, + { + "start": 26295.02, + "end": 26295.14, + "probability": 0.1047 + }, + { + "start": 26295.14, + "end": 26298.64, + "probability": 0.7359 + }, + { + "start": 26298.9, + "end": 26298.94, + "probability": 0.2796 + }, + { + "start": 26298.94, + "end": 26301.78, + "probability": 0.5685 + }, + { + "start": 26301.86, + "end": 26303.24, + "probability": 0.9984 + }, + { + "start": 26303.66, + "end": 26305.16, + "probability": 0.6306 + }, + { + "start": 26305.2, + "end": 26306.28, + "probability": 0.0899 + }, + { + "start": 26306.76, + "end": 26308.26, + "probability": 0.1303 + }, + { + "start": 26309.88, + "end": 26310.1, + "probability": 0.1646 + }, + { + "start": 26311.29, + "end": 26315.58, + "probability": 0.7932 + }, + { + "start": 26316.66, + "end": 26318.36, + "probability": 0.9888 + }, + { + "start": 26319.78, + "end": 26323.3, + "probability": 0.966 + }, + { + "start": 26324.12, + "end": 26325.32, + "probability": 0.9489 + }, + { + "start": 26326.08, + "end": 26328.34, + "probability": 0.9013 + }, + { + "start": 26329.04, + "end": 26333.56, + "probability": 0.9985 + }, + { + "start": 26333.6, + "end": 26334.76, + "probability": 0.7999 + }, + { + "start": 26334.94, + "end": 26336.52, + "probability": 0.7161 + }, + { + "start": 26337.06, + "end": 26338.16, + "probability": 0.9696 + }, + { + "start": 26339.88, + "end": 26340.47, + "probability": 0.5716 + }, + { + "start": 26341.22, + "end": 26341.44, + "probability": 0.7434 + }, + { + "start": 26341.54, + "end": 26344.88, + "probability": 0.9825 + }, + { + "start": 26346.14, + "end": 26348.88, + "probability": 0.8995 + }, + { + "start": 26349.72, + "end": 26354.38, + "probability": 0.9725 + }, + { + "start": 26354.98, + "end": 26355.62, + "probability": 0.6246 + }, + { + "start": 26355.62, + "end": 26357.04, + "probability": 0.7443 + }, + { + "start": 26357.22, + "end": 26359.44, + "probability": 0.9716 + }, + { + "start": 26359.86, + "end": 26362.83, + "probability": 0.9901 + }, + { + "start": 26363.48, + "end": 26364.8, + "probability": 0.7067 + }, + { + "start": 26365.22, + "end": 26372.2, + "probability": 0.9575 + }, + { + "start": 26373.16, + "end": 26374.08, + "probability": 0.8021 + }, + { + "start": 26374.96, + "end": 26376.86, + "probability": 0.6613 + }, + { + "start": 26378.04, + "end": 26384.2, + "probability": 0.9868 + }, + { + "start": 26384.52, + "end": 26386.56, + "probability": 0.0426 + }, + { + "start": 26386.56, + "end": 26389.42, + "probability": 0.7624 + }, + { + "start": 26389.42, + "end": 26395.06, + "probability": 0.8667 + }, + { + "start": 26395.24, + "end": 26395.54, + "probability": 0.7094 + }, + { + "start": 26396.78, + "end": 26399.86, + "probability": 0.8683 + }, + { + "start": 26400.74, + "end": 26405.44, + "probability": 0.9038 + }, + { + "start": 26406.12, + "end": 26406.58, + "probability": 0.98 + }, + { + "start": 26408.14, + "end": 26413.06, + "probability": 0.9759 + }, + { + "start": 26413.12, + "end": 26414.54, + "probability": 0.7634 + }, + { + "start": 26414.9, + "end": 26415.84, + "probability": 0.5143 + }, + { + "start": 26415.84, + "end": 26416.61, + "probability": 0.9099 + }, + { + "start": 26416.76, + "end": 26416.76, + "probability": 0.2863 + }, + { + "start": 26416.76, + "end": 26416.76, + "probability": 0.5469 + }, + { + "start": 26416.76, + "end": 26416.76, + "probability": 0.0792 + }, + { + "start": 26416.76, + "end": 26419.54, + "probability": 0.939 + }, + { + "start": 26420.24, + "end": 26422.24, + "probability": 0.9855 + }, + { + "start": 26422.44, + "end": 26423.92, + "probability": 0.9248 + }, + { + "start": 26425.82, + "end": 26430.76, + "probability": 0.8529 + }, + { + "start": 26431.56, + "end": 26432.9, + "probability": 0.9312 + }, + { + "start": 26434.15, + "end": 26436.94, + "probability": 0.72 + }, + { + "start": 26437.98, + "end": 26439.24, + "probability": 0.8738 + }, + { + "start": 26440.2, + "end": 26441.6, + "probability": 0.863 + }, + { + "start": 26442.58, + "end": 26444.14, + "probability": 0.7921 + }, + { + "start": 26444.68, + "end": 26445.76, + "probability": 0.5438 + }, + { + "start": 26446.84, + "end": 26447.34, + "probability": 0.3284 + }, + { + "start": 26449.08, + "end": 26450.76, + "probability": 0.9678 + }, + { + "start": 26450.98, + "end": 26451.88, + "probability": 0.1669 + }, + { + "start": 26452.36, + "end": 26454.8, + "probability": 0.9934 + }, + { + "start": 26456.26, + "end": 26458.88, + "probability": 0.9632 + }, + { + "start": 26460.02, + "end": 26463.67, + "probability": 0.8128 + }, + { + "start": 26463.72, + "end": 26465.96, + "probability": 0.0584 + }, + { + "start": 26467.06, + "end": 26467.55, + "probability": 0.5052 + }, + { + "start": 26467.84, + "end": 26470.09, + "probability": 0.9612 + }, + { + "start": 26470.34, + "end": 26471.08, + "probability": 0.6751 + }, + { + "start": 26471.12, + "end": 26473.3, + "probability": 0.1109 + }, + { + "start": 26474.6, + "end": 26476.46, + "probability": 0.8066 + }, + { + "start": 26476.98, + "end": 26476.98, + "probability": 0.6769 + }, + { + "start": 26476.98, + "end": 26478.24, + "probability": 0.6969 + }, + { + "start": 26478.66, + "end": 26480.38, + "probability": 0.8411 + }, + { + "start": 26480.7, + "end": 26483.22, + "probability": 0.9941 + }, + { + "start": 26483.22, + "end": 26485.76, + "probability": 0.8726 + }, + { + "start": 26485.84, + "end": 26488.8, + "probability": 0.9608 + }, + { + "start": 26489.22, + "end": 26491.69, + "probability": 0.4633 + }, + { + "start": 26492.32, + "end": 26496.22, + "probability": 0.955 + }, + { + "start": 26497.4, + "end": 26502.56, + "probability": 0.1161 + }, + { + "start": 26502.66, + "end": 26503.16, + "probability": 0.359 + }, + { + "start": 26503.48, + "end": 26507.66, + "probability": 0.578 + }, + { + "start": 26507.66, + "end": 26514.6, + "probability": 0.6748 + }, + { + "start": 26515.2, + "end": 26517.72, + "probability": 0.8712 + }, + { + "start": 26519.1, + "end": 26523.08, + "probability": 0.8802 + }, + { + "start": 26523.16, + "end": 26527.06, + "probability": 0.9771 + }, + { + "start": 26528.3, + "end": 26530.2, + "probability": 0.9684 + }, + { + "start": 26531.08, + "end": 26536.26, + "probability": 0.9987 + }, + { + "start": 26536.66, + "end": 26541.52, + "probability": 0.96 + }, + { + "start": 26542.04, + "end": 26545.36, + "probability": 0.9966 + }, + { + "start": 26546.3, + "end": 26549.06, + "probability": 0.9661 + }, + { + "start": 26549.72, + "end": 26555.18, + "probability": 0.8047 + }, + { + "start": 26555.62, + "end": 26557.47, + "probability": 0.9116 + }, + { + "start": 26558.32, + "end": 26561.22, + "probability": 0.8943 + }, + { + "start": 26561.32, + "end": 26563.9, + "probability": 0.9941 + }, + { + "start": 26564.66, + "end": 26566.83, + "probability": 0.9988 + }, + { + "start": 26567.4, + "end": 26570.32, + "probability": 0.9936 + }, + { + "start": 26570.56, + "end": 26573.16, + "probability": 0.9198 + }, + { + "start": 26573.94, + "end": 26574.44, + "probability": 0.6073 + }, + { + "start": 26575.06, + "end": 26579.14, + "probability": 0.9586 + }, + { + "start": 26579.82, + "end": 26584.8, + "probability": 0.928 + }, + { + "start": 26585.28, + "end": 26587.18, + "probability": 0.705 + }, + { + "start": 26588.87, + "end": 26592.78, + "probability": 0.8221 + }, + { + "start": 26593.46, + "end": 26597.16, + "probability": 0.918 + }, + { + "start": 26597.44, + "end": 26599.32, + "probability": 0.9824 + }, + { + "start": 26601.12, + "end": 26604.36, + "probability": 0.9915 + }, + { + "start": 26604.7, + "end": 26606.06, + "probability": 0.9322 + }, + { + "start": 26607.9, + "end": 26608.62, + "probability": 0.2799 + }, + { + "start": 26608.62, + "end": 26609.94, + "probability": 0.863 + }, + { + "start": 26610.78, + "end": 26611.22, + "probability": 0.9781 + }, + { + "start": 26612.1, + "end": 26614.26, + "probability": 0.9888 + }, + { + "start": 26615.58, + "end": 26617.02, + "probability": 0.9626 + }, + { + "start": 26617.7, + "end": 26619.9, + "probability": 0.7585 + }, + { + "start": 26620.4, + "end": 26624.4, + "probability": 0.9907 + }, + { + "start": 26624.54, + "end": 26626.32, + "probability": 0.8348 + }, + { + "start": 26627.04, + "end": 26629.92, + "probability": 0.7798 + }, + { + "start": 26631.04, + "end": 26634.0, + "probability": 0.9839 + }, + { + "start": 26634.64, + "end": 26635.54, + "probability": 0.9216 + }, + { + "start": 26636.3, + "end": 26639.82, + "probability": 0.9724 + }, + { + "start": 26640.48, + "end": 26644.74, + "probability": 0.9922 + }, + { + "start": 26645.6, + "end": 26646.86, + "probability": 0.9966 + }, + { + "start": 26647.44, + "end": 26650.48, + "probability": 0.7429 + }, + { + "start": 26651.14, + "end": 26652.6, + "probability": 0.9854 + }, + { + "start": 26653.3, + "end": 26660.7, + "probability": 0.9482 + }, + { + "start": 26660.9, + "end": 26661.66, + "probability": 0.7053 + }, + { + "start": 26661.84, + "end": 26664.86, + "probability": 0.9233 + }, + { + "start": 26666.0, + "end": 26666.94, + "probability": 0.8376 + }, + { + "start": 26667.68, + "end": 26669.54, + "probability": 0.9101 + }, + { + "start": 26669.88, + "end": 26676.84, + "probability": 0.7918 + }, + { + "start": 26677.18, + "end": 26681.62, + "probability": 0.9919 + }, + { + "start": 26682.32, + "end": 26686.92, + "probability": 0.9941 + }, + { + "start": 26687.62, + "end": 26689.5, + "probability": 0.9979 + }, + { + "start": 26690.18, + "end": 26694.9, + "probability": 0.9945 + }, + { + "start": 26696.06, + "end": 26700.14, + "probability": 0.9736 + }, + { + "start": 26701.12, + "end": 26704.56, + "probability": 0.9203 + }, + { + "start": 26705.88, + "end": 26707.02, + "probability": 0.5906 + }, + { + "start": 26707.8, + "end": 26709.92, + "probability": 0.691 + }, + { + "start": 26710.46, + "end": 26711.86, + "probability": 0.7466 + }, + { + "start": 26712.52, + "end": 26716.58, + "probability": 0.8125 + }, + { + "start": 26717.34, + "end": 26719.94, + "probability": 0.9883 + }, + { + "start": 26719.94, + "end": 26724.4, + "probability": 0.95 + }, + { + "start": 26725.18, + "end": 26728.86, + "probability": 0.9036 + }, + { + "start": 26729.8, + "end": 26732.2, + "probability": 0.9965 + }, + { + "start": 26735.73, + "end": 26740.26, + "probability": 0.9967 + }, + { + "start": 26741.12, + "end": 26742.7, + "probability": 0.8952 + }, + { + "start": 26743.76, + "end": 26747.24, + "probability": 0.9787 + }, + { + "start": 26748.24, + "end": 26749.4, + "probability": 0.9468 + }, + { + "start": 26751.66, + "end": 26756.86, + "probability": 0.9595 + }, + { + "start": 26758.76, + "end": 26763.14, + "probability": 0.7977 + }, + { + "start": 26764.36, + "end": 26765.58, + "probability": 0.6324 + }, + { + "start": 26766.24, + "end": 26768.38, + "probability": 0.9993 + }, + { + "start": 26769.24, + "end": 26770.22, + "probability": 0.9951 + }, + { + "start": 26771.8, + "end": 26774.66, + "probability": 0.7841 + }, + { + "start": 26776.26, + "end": 26777.72, + "probability": 0.4848 + }, + { + "start": 26777.98, + "end": 26778.96, + "probability": 0.8811 + }, + { + "start": 26779.36, + "end": 26781.94, + "probability": 0.9762 + }, + { + "start": 26783.5, + "end": 26788.0, + "probability": 0.9858 + }, + { + "start": 26788.1, + "end": 26791.24, + "probability": 0.7636 + }, + { + "start": 26792.48, + "end": 26796.34, + "probability": 0.8595 + }, + { + "start": 26797.02, + "end": 26798.46, + "probability": 0.6959 + }, + { + "start": 26799.26, + "end": 26803.88, + "probability": 0.9948 + }, + { + "start": 26804.4, + "end": 26806.8, + "probability": 0.8999 + }, + { + "start": 26807.32, + "end": 26809.02, + "probability": 0.9263 + }, + { + "start": 26809.64, + "end": 26810.3, + "probability": 0.5416 + }, + { + "start": 26810.86, + "end": 26816.2, + "probability": 0.9806 + }, + { + "start": 26816.98, + "end": 26823.22, + "probability": 0.9792 + }, + { + "start": 26823.8, + "end": 26827.86, + "probability": 0.9903 + }, + { + "start": 26827.92, + "end": 26831.58, + "probability": 0.9988 + }, + { + "start": 26832.98, + "end": 26835.72, + "probability": 0.8926 + }, + { + "start": 26836.38, + "end": 26841.5, + "probability": 0.9893 + }, + { + "start": 26841.96, + "end": 26846.82, + "probability": 0.9841 + }, + { + "start": 26847.78, + "end": 26850.32, + "probability": 0.6193 + }, + { + "start": 26850.86, + "end": 26857.42, + "probability": 0.9884 + }, + { + "start": 26858.06, + "end": 26859.0, + "probability": 0.6653 + }, + { + "start": 26859.56, + "end": 26862.84, + "probability": 0.9777 + }, + { + "start": 26864.4, + "end": 26864.9, + "probability": 0.7841 + }, + { + "start": 26865.46, + "end": 26866.72, + "probability": 0.9783 + }, + { + "start": 26867.1, + "end": 26868.24, + "probability": 0.9958 + }, + { + "start": 26869.44, + "end": 26870.08, + "probability": 0.7488 + }, + { + "start": 26870.6, + "end": 26871.84, + "probability": 0.8776 + }, + { + "start": 26871.9, + "end": 26873.82, + "probability": 0.9844 + }, + { + "start": 26874.32, + "end": 26875.24, + "probability": 0.889 + }, + { + "start": 26876.36, + "end": 26881.14, + "probability": 0.9851 + }, + { + "start": 26882.62, + "end": 26884.26, + "probability": 0.9924 + }, + { + "start": 26885.82, + "end": 26887.84, + "probability": 0.9478 + }, + { + "start": 26888.12, + "end": 26889.48, + "probability": 0.7037 + }, + { + "start": 26890.14, + "end": 26891.02, + "probability": 0.7514 + }, + { + "start": 26891.88, + "end": 26893.56, + "probability": 0.9104 + }, + { + "start": 26894.12, + "end": 26896.14, + "probability": 0.8049 + }, + { + "start": 26896.88, + "end": 26898.32, + "probability": 0.8186 + }, + { + "start": 26899.12, + "end": 26904.54, + "probability": 0.9852 + }, + { + "start": 26905.42, + "end": 26907.46, + "probability": 0.6661 + }, + { + "start": 26908.74, + "end": 26909.4, + "probability": 0.8413 + }, + { + "start": 26910.06, + "end": 26911.8, + "probability": 0.7048 + }, + { + "start": 26912.98, + "end": 26915.28, + "probability": 0.9779 + }, + { + "start": 26915.9, + "end": 26921.08, + "probability": 0.9588 + }, + { + "start": 26921.76, + "end": 26922.46, + "probability": 0.9903 + }, + { + "start": 26923.28, + "end": 26925.12, + "probability": 0.9847 + }, + { + "start": 26925.98, + "end": 26926.48, + "probability": 0.6463 + }, + { + "start": 26926.66, + "end": 26928.4, + "probability": 0.7498 + }, + { + "start": 26928.66, + "end": 26933.46, + "probability": 0.9201 + }, + { + "start": 26933.52, + "end": 26938.56, + "probability": 0.9889 + }, + { + "start": 26939.56, + "end": 26944.18, + "probability": 0.9106 + }, + { + "start": 26945.06, + "end": 26946.2, + "probability": 0.4811 + }, + { + "start": 26947.04, + "end": 26948.0, + "probability": 0.9084 + }, + { + "start": 26948.86, + "end": 26950.24, + "probability": 0.4822 + }, + { + "start": 26950.32, + "end": 26951.74, + "probability": 0.9932 + }, + { + "start": 26952.18, + "end": 26954.64, + "probability": 0.4232 + }, + { + "start": 26954.9, + "end": 26955.52, + "probability": 0.6697 + }, + { + "start": 26956.16, + "end": 26957.28, + "probability": 0.5337 + }, + { + "start": 26957.6, + "end": 26959.44, + "probability": 0.7718 + }, + { + "start": 26960.11, + "end": 26961.3, + "probability": 0.2165 + }, + { + "start": 26961.6, + "end": 26962.48, + "probability": 0.4438 + }, + { + "start": 26962.7, + "end": 26964.9, + "probability": 0.6868 + }, + { + "start": 26965.68, + "end": 26966.24, + "probability": 0.2995 + }, + { + "start": 26966.34, + "end": 26966.48, + "probability": 0.2057 + }, + { + "start": 26966.48, + "end": 26967.5, + "probability": 0.7036 + }, + { + "start": 26967.64, + "end": 26968.48, + "probability": 0.8765 + }, + { + "start": 26969.2, + "end": 26970.34, + "probability": 0.8542 + }, + { + "start": 26970.96, + "end": 26972.04, + "probability": 0.7838 + }, + { + "start": 26973.54, + "end": 26974.7, + "probability": 0.9397 + }, + { + "start": 26974.84, + "end": 26975.32, + "probability": 0.8483 + }, + { + "start": 26975.46, + "end": 26976.62, + "probability": 0.9922 + }, + { + "start": 26977.2, + "end": 26978.1, + "probability": 0.9959 + }, + { + "start": 26978.68, + "end": 26978.92, + "probability": 0.6311 + }, + { + "start": 26978.98, + "end": 26984.14, + "probability": 0.9849 + }, + { + "start": 26984.6, + "end": 26985.42, + "probability": 0.8747 + }, + { + "start": 26986.14, + "end": 26988.32, + "probability": 0.8242 + }, + { + "start": 26989.14, + "end": 26990.26, + "probability": 0.8381 + }, + { + "start": 26990.32, + "end": 26994.72, + "probability": 0.9618 + }, + { + "start": 26995.38, + "end": 26997.82, + "probability": 0.9471 + }, + { + "start": 26998.56, + "end": 26999.94, + "probability": 0.6315 + }, + { + "start": 27000.34, + "end": 27001.62, + "probability": 0.6196 + }, + { + "start": 27001.82, + "end": 27003.78, + "probability": 0.7144 + }, + { + "start": 27004.32, + "end": 27009.62, + "probability": 0.9512 + }, + { + "start": 27009.94, + "end": 27012.26, + "probability": 0.9827 + }, + { + "start": 27013.06, + "end": 27018.7, + "probability": 0.1219 + }, + { + "start": 27018.96, + "end": 27023.42, + "probability": 0.9032 + }, + { + "start": 27023.96, + "end": 27024.45, + "probability": 0.912 + }, + { + "start": 27025.58, + "end": 27026.32, + "probability": 0.859 + }, + { + "start": 27027.22, + "end": 27028.52, + "probability": 0.9556 + }, + { + "start": 27029.68, + "end": 27031.02, + "probability": 0.9895 + }, + { + "start": 27031.24, + "end": 27032.52, + "probability": 0.9311 + }, + { + "start": 27032.66, + "end": 27033.94, + "probability": 0.989 + }, + { + "start": 27034.5, + "end": 27035.56, + "probability": 0.9827 + }, + { + "start": 27035.84, + "end": 27037.48, + "probability": 0.9233 + }, + { + "start": 27038.5, + "end": 27040.56, + "probability": 0.9709 + }, + { + "start": 27041.16, + "end": 27046.74, + "probability": 0.8783 + }, + { + "start": 27046.98, + "end": 27048.24, + "probability": 0.9552 + }, + { + "start": 27048.42, + "end": 27049.22, + "probability": 0.7539 + }, + { + "start": 27049.6, + "end": 27050.44, + "probability": 0.8431 + }, + { + "start": 27050.76, + "end": 27052.28, + "probability": 0.9814 + }, + { + "start": 27052.4, + "end": 27054.26, + "probability": 0.937 + }, + { + "start": 27054.38, + "end": 27054.9, + "probability": 0.7479 + }, + { + "start": 27056.14, + "end": 27067.54, + "probability": 0.9327 + }, + { + "start": 27068.06, + "end": 27073.32, + "probability": 0.9404 + }, + { + "start": 27073.8, + "end": 27075.1, + "probability": 0.9246 + }, + { + "start": 27075.28, + "end": 27077.86, + "probability": 0.9888 + }, + { + "start": 27079.22, + "end": 27080.46, + "probability": 0.8547 + }, + { + "start": 27080.56, + "end": 27084.38, + "probability": 0.8235 + }, + { + "start": 27084.38, + "end": 27087.92, + "probability": 0.9012 + }, + { + "start": 27088.22, + "end": 27089.48, + "probability": 0.1031 + }, + { + "start": 27092.44, + "end": 27096.14, + "probability": 0.9243 + }, + { + "start": 27096.18, + "end": 27097.76, + "probability": 0.9291 + }, + { + "start": 27098.96, + "end": 27099.45, + "probability": 0.2395 + }, + { + "start": 27100.2, + "end": 27101.36, + "probability": 0.5002 + }, + { + "start": 27102.16, + "end": 27103.46, + "probability": 0.8877 + }, + { + "start": 27104.18, + "end": 27105.7, + "probability": 0.6959 + }, + { + "start": 27106.5, + "end": 27110.34, + "probability": 0.9699 + }, + { + "start": 27110.88, + "end": 27114.94, + "probability": 0.9875 + }, + { + "start": 27115.66, + "end": 27116.34, + "probability": 0.5098 + }, + { + "start": 27117.06, + "end": 27120.94, + "probability": 0.7924 + }, + { + "start": 27121.1, + "end": 27121.1, + "probability": 0.2928 + }, + { + "start": 27121.1, + "end": 27121.1, + "probability": 0.014 + }, + { + "start": 27121.1, + "end": 27121.1, + "probability": 0.4249 + }, + { + "start": 27121.1, + "end": 27125.82, + "probability": 0.7295 + }, + { + "start": 27126.2, + "end": 27127.16, + "probability": 0.76 + }, + { + "start": 27127.46, + "end": 27129.04, + "probability": 0.9621 + }, + { + "start": 27129.16, + "end": 27129.58, + "probability": 0.6901 + }, + { + "start": 27129.62, + "end": 27130.42, + "probability": 0.9417 + }, + { + "start": 27130.9, + "end": 27133.76, + "probability": 0.5978 + }, + { + "start": 27134.14, + "end": 27135.42, + "probability": 0.4917 + }, + { + "start": 27135.74, + "end": 27140.24, + "probability": 0.9025 + }, + { + "start": 27140.34, + "end": 27142.4, + "probability": 0.9177 + }, + { + "start": 27142.9, + "end": 27143.66, + "probability": 0.2925 + }, + { + "start": 27144.52, + "end": 27145.04, + "probability": 0.0276 + }, + { + "start": 27145.04, + "end": 27145.75, + "probability": 0.2739 + }, + { + "start": 27146.2, + "end": 27148.9, + "probability": 0.1777 + }, + { + "start": 27149.08, + "end": 27150.2, + "probability": 0.6513 + }, + { + "start": 27150.78, + "end": 27153.12, + "probability": 0.5479 + }, + { + "start": 27154.02, + "end": 27154.92, + "probability": 0.6431 + }, + { + "start": 27154.98, + "end": 27158.16, + "probability": 0.5588 + }, + { + "start": 27158.66, + "end": 27163.3, + "probability": 0.9934 + }, + { + "start": 27163.42, + "end": 27168.12, + "probability": 0.9878 + }, + { + "start": 27168.5, + "end": 27171.28, + "probability": 0.8007 + }, + { + "start": 27171.38, + "end": 27173.04, + "probability": 0.5572 + }, + { + "start": 27173.32, + "end": 27174.88, + "probability": 0.0957 + }, + { + "start": 27180.48, + "end": 27182.4, + "probability": 0.0931 + }, + { + "start": 27182.4, + "end": 27182.4, + "probability": 0.0357 + }, + { + "start": 27182.4, + "end": 27182.4, + "probability": 0.0119 + }, + { + "start": 27182.4, + "end": 27187.98, + "probability": 0.6316 + }, + { + "start": 27188.64, + "end": 27190.26, + "probability": 0.1726 + }, + { + "start": 27190.48, + "end": 27191.64, + "probability": 0.8652 + }, + { + "start": 27192.02, + "end": 27192.84, + "probability": 0.6322 + }, + { + "start": 27193.42, + "end": 27196.08, + "probability": 0.4229 + }, + { + "start": 27196.2, + "end": 27198.52, + "probability": 0.5215 + }, + { + "start": 27198.68, + "end": 27200.46, + "probability": 0.729 + }, + { + "start": 27201.66, + "end": 27202.48, + "probability": 0.9228 + }, + { + "start": 27203.58, + "end": 27204.38, + "probability": 0.8346 + }, + { + "start": 27205.32, + "end": 27210.12, + "probability": 0.627 + }, + { + "start": 27210.64, + "end": 27212.48, + "probability": 0.5938 + }, + { + "start": 27213.1, + "end": 27214.28, + "probability": 0.7466 + }, + { + "start": 27214.86, + "end": 27217.42, + "probability": 0.4736 + }, + { + "start": 27217.64, + "end": 27219.56, + "probability": 0.9893 + }, + { + "start": 27219.56, + "end": 27220.18, + "probability": 0.7505 + }, + { + "start": 27220.8, + "end": 27221.68, + "probability": 0.8235 + }, + { + "start": 27221.68, + "end": 27224.46, + "probability": 0.7916 + }, + { + "start": 27224.66, + "end": 27226.5, + "probability": 0.8915 + }, + { + "start": 27227.8, + "end": 27228.75, + "probability": 0.9539 + }, + { + "start": 27229.26, + "end": 27232.98, + "probability": 0.9941 + }, + { + "start": 27233.34, + "end": 27235.74, + "probability": 0.6965 + }, + { + "start": 27236.3, + "end": 27244.72, + "probability": 0.9834 + }, + { + "start": 27246.56, + "end": 27249.02, + "probability": 0.8893 + }, + { + "start": 27249.36, + "end": 27251.95, + "probability": 0.993 + }, + { + "start": 27253.18, + "end": 27256.54, + "probability": 0.9921 + }, + { + "start": 27257.94, + "end": 27259.98, + "probability": 0.8599 + }, + { + "start": 27260.28, + "end": 27261.08, + "probability": 0.9888 + }, + { + "start": 27261.74, + "end": 27262.9, + "probability": 0.9875 + }, + { + "start": 27263.36, + "end": 27265.0, + "probability": 0.9926 + }, + { + "start": 27265.24, + "end": 27266.84, + "probability": 0.9502 + }, + { + "start": 27267.4, + "end": 27268.84, + "probability": 0.9627 + }, + { + "start": 27269.74, + "end": 27274.22, + "probability": 0.9343 + }, + { + "start": 27274.96, + "end": 27276.78, + "probability": 0.7525 + }, + { + "start": 27278.08, + "end": 27279.4, + "probability": 0.7935 + }, + { + "start": 27279.9, + "end": 27281.3, + "probability": 0.8928 + }, + { + "start": 27281.72, + "end": 27283.08, + "probability": 0.8791 + }, + { + "start": 27283.46, + "end": 27284.38, + "probability": 0.3929 + }, + { + "start": 27284.88, + "end": 27287.06, + "probability": 0.8784 + }, + { + "start": 27287.66, + "end": 27293.12, + "probability": 0.9935 + }, + { + "start": 27294.3, + "end": 27299.32, + "probability": 0.7629 + }, + { + "start": 27299.88, + "end": 27302.08, + "probability": 0.9836 + }, + { + "start": 27302.52, + "end": 27304.42, + "probability": 0.6135 + }, + { + "start": 27304.42, + "end": 27308.04, + "probability": 0.9797 + }, + { + "start": 27308.66, + "end": 27310.3, + "probability": 0.991 + }, + { + "start": 27312.54, + "end": 27315.42, + "probability": 0.8525 + }, + { + "start": 27316.06, + "end": 27316.88, + "probability": 0.9572 + }, + { + "start": 27317.28, + "end": 27317.8, + "probability": 0.8826 + }, + { + "start": 27318.2, + "end": 27321.06, + "probability": 0.7353 + }, + { + "start": 27321.44, + "end": 27323.04, + "probability": 0.9805 + }, + { + "start": 27324.96, + "end": 27326.68, + "probability": 0.6252 + }, + { + "start": 27327.36, + "end": 27328.52, + "probability": 0.1269 + }, + { + "start": 27328.62, + "end": 27329.83, + "probability": 0.3821 + }, + { + "start": 27330.66, + "end": 27332.14, + "probability": 0.7734 + }, + { + "start": 27332.86, + "end": 27334.42, + "probability": 0.9112 + }, + { + "start": 27335.06, + "end": 27340.14, + "probability": 0.9366 + }, + { + "start": 27341.26, + "end": 27342.6, + "probability": 0.9906 + }, + { + "start": 27343.61, + "end": 27344.38, + "probability": 0.1984 + }, + { + "start": 27344.38, + "end": 27345.72, + "probability": 0.4379 + }, + { + "start": 27346.24, + "end": 27351.24, + "probability": 0.9867 + }, + { + "start": 27351.24, + "end": 27356.28, + "probability": 0.9745 + }, + { + "start": 27357.54, + "end": 27361.16, + "probability": 0.9451 + }, + { + "start": 27362.14, + "end": 27363.52, + "probability": 0.7872 + }, + { + "start": 27363.94, + "end": 27367.02, + "probability": 0.934 + }, + { + "start": 27367.5, + "end": 27372.62, + "probability": 0.9739 + }, + { + "start": 27373.26, + "end": 27379.1, + "probability": 0.9842 + }, + { + "start": 27379.1, + "end": 27385.92, + "probability": 0.973 + }, + { + "start": 27386.8, + "end": 27387.22, + "probability": 0.6042 + }, + { + "start": 27388.88, + "end": 27390.68, + "probability": 0.742 + }, + { + "start": 27391.52, + "end": 27393.7, + "probability": 0.6705 + }, + { + "start": 27400.25, + "end": 27400.84, + "probability": 0.3418 + }, + { + "start": 27401.1, + "end": 27402.42, + "probability": 0.2945 + }, + { + "start": 27404.16, + "end": 27405.64, + "probability": 0.7376 + }, + { + "start": 27406.58, + "end": 27409.18, + "probability": 0.6646 + }, + { + "start": 27409.88, + "end": 27411.88, + "probability": 0.74 + }, + { + "start": 27411.98, + "end": 27412.94, + "probability": 0.6753 + }, + { + "start": 27413.66, + "end": 27416.85, + "probability": 0.952 + }, + { + "start": 27417.18, + "end": 27421.16, + "probability": 0.9309 + }, + { + "start": 27421.74, + "end": 27426.34, + "probability": 0.7636 + }, + { + "start": 27426.98, + "end": 27429.08, + "probability": 0.9442 + }, + { + "start": 27429.54, + "end": 27429.76, + "probability": 0.5477 + }, + { + "start": 27431.4, + "end": 27431.92, + "probability": 0.7392 + }, + { + "start": 27433.48, + "end": 27438.72, + "probability": 0.8141 + }, + { + "start": 27439.02, + "end": 27439.24, + "probability": 0.486 + }, + { + "start": 27439.84, + "end": 27440.18, + "probability": 0.6782 + }, + { + "start": 27441.08, + "end": 27442.8, + "probability": 0.8359 + }, + { + "start": 27443.34, + "end": 27444.06, + "probability": 0.9856 + }, + { + "start": 27444.16, + "end": 27444.84, + "probability": 0.6942 + }, + { + "start": 27445.16, + "end": 27449.84, + "probability": 0.6595 + }, + { + "start": 27451.76, + "end": 27453.44, + "probability": 0.7402 + }, + { + "start": 27453.52, + "end": 27454.38, + "probability": 0.7068 + }, + { + "start": 27454.5, + "end": 27455.52, + "probability": 0.618 + }, + { + "start": 27455.62, + "end": 27456.9, + "probability": 0.1952 + }, + { + "start": 27457.84, + "end": 27460.98, + "probability": 0.9251 + }, + { + "start": 27461.02, + "end": 27461.72, + "probability": 0.5717 + }, + { + "start": 27462.0, + "end": 27462.28, + "probability": 0.3527 + }, + { + "start": 27462.32, + "end": 27462.98, + "probability": 0.0606 + }, + { + "start": 27463.06, + "end": 27463.9, + "probability": 0.3186 + }, + { + "start": 27464.32, + "end": 27465.4, + "probability": 0.4066 + }, + { + "start": 27466.04, + "end": 27470.74, + "probability": 0.6206 + }, + { + "start": 27472.12, + "end": 27473.3, + "probability": 0.6642 + }, + { + "start": 27473.76, + "end": 27475.44, + "probability": 0.8116 + }, + { + "start": 27475.62, + "end": 27478.62, + "probability": 0.8633 + }, + { + "start": 27478.68, + "end": 27479.64, + "probability": 0.9417 + }, + { + "start": 27481.18, + "end": 27482.5, + "probability": 0.721 + }, + { + "start": 27483.66, + "end": 27487.86, + "probability": 0.9243 + }, + { + "start": 27487.9, + "end": 27488.7, + "probability": 0.3352 + }, + { + "start": 27489.28, + "end": 27492.48, + "probability": 0.9758 + }, + { + "start": 27492.6, + "end": 27497.26, + "probability": 0.7554 + }, + { + "start": 27499.22, + "end": 27501.66, + "probability": 0.5935 + }, + { + "start": 27502.92, + "end": 27504.52, + "probability": 0.9852 + }, + { + "start": 27505.2, + "end": 27505.36, + "probability": 0.983 + }, + { + "start": 27506.2, + "end": 27510.62, + "probability": 0.9142 + }, + { + "start": 27511.68, + "end": 27515.34, + "probability": 0.98 + }, + { + "start": 27516.56, + "end": 27516.66, + "probability": 0.8298 + }, + { + "start": 27517.64, + "end": 27524.38, + "probability": 0.9906 + }, + { + "start": 27525.74, + "end": 27525.88, + "probability": 0.3443 + }, + { + "start": 27525.96, + "end": 27531.74, + "probability": 0.981 + }, + { + "start": 27531.84, + "end": 27538.94, + "probability": 0.9258 + }, + { + "start": 27539.06, + "end": 27540.14, + "probability": 0.5796 + }, + { + "start": 27540.26, + "end": 27541.54, + "probability": 0.8345 + }, + { + "start": 27542.16, + "end": 27544.26, + "probability": 0.9694 + }, + { + "start": 27545.88, + "end": 27551.66, + "probability": 0.9939 + }, + { + "start": 27552.68, + "end": 27555.54, + "probability": 0.8589 + }, + { + "start": 27557.36, + "end": 27559.56, + "probability": 0.8659 + }, + { + "start": 27561.46, + "end": 27562.14, + "probability": 0.8685 + }, + { + "start": 27562.84, + "end": 27565.04, + "probability": 0.9598 + }, + { + "start": 27566.32, + "end": 27569.12, + "probability": 0.8655 + }, + { + "start": 27569.6, + "end": 27570.36, + "probability": 0.8275 + }, + { + "start": 27570.88, + "end": 27571.06, + "probability": 0.7058 + }, + { + "start": 27571.56, + "end": 27572.16, + "probability": 0.8313 + }, + { + "start": 27573.16, + "end": 27574.03, + "probability": 0.6812 + }, + { + "start": 27575.72, + "end": 27577.88, + "probability": 0.4973 + }, + { + "start": 27578.74, + "end": 27579.5, + "probability": 0.6466 + }, + { + "start": 27580.52, + "end": 27581.04, + "probability": 0.8085 + }, + { + "start": 27581.14, + "end": 27581.76, + "probability": 0.548 + }, + { + "start": 27581.84, + "end": 27582.76, + "probability": 0.5906 + }, + { + "start": 27583.38, + "end": 27585.51, + "probability": 0.9629 + }, + { + "start": 27587.64, + "end": 27591.02, + "probability": 0.9238 + }, + { + "start": 27591.18, + "end": 27596.6, + "probability": 0.664 + }, + { + "start": 27597.28, + "end": 27600.06, + "probability": 0.5544 + }, + { + "start": 27600.7, + "end": 27601.46, + "probability": 0.7128 + }, + { + "start": 27601.68, + "end": 27605.1, + "probability": 0.3981 + }, + { + "start": 27605.1, + "end": 27605.1, + "probability": 0.1207 + }, + { + "start": 27605.1, + "end": 27605.99, + "probability": 0.3877 + }, + { + "start": 27606.5, + "end": 27607.9, + "probability": 0.9622 + }, + { + "start": 27608.32, + "end": 27615.12, + "probability": 0.9107 + }, + { + "start": 27616.26, + "end": 27616.5, + "probability": 0.9132 + }, + { + "start": 27616.82, + "end": 27620.4, + "probability": 0.9269 + }, + { + "start": 27621.18, + "end": 27621.5, + "probability": 0.7984 + }, + { + "start": 27621.7, + "end": 27622.67, + "probability": 0.3348 + }, + { + "start": 27623.12, + "end": 27628.14, + "probability": 0.8737 + }, + { + "start": 27628.72, + "end": 27629.46, + "probability": 0.7325 + }, + { + "start": 27630.3, + "end": 27635.68, + "probability": 0.9552 + }, + { + "start": 27635.96, + "end": 27636.78, + "probability": 0.8548 + }, + { + "start": 27637.0, + "end": 27638.4, + "probability": 0.5423 + }, + { + "start": 27638.72, + "end": 27640.7, + "probability": 0.7992 + }, + { + "start": 27641.66, + "end": 27646.02, + "probability": 0.769 + }, + { + "start": 27646.6, + "end": 27649.65, + "probability": 0.8785 + }, + { + "start": 27650.38, + "end": 27652.32, + "probability": 0.762 + }, + { + "start": 27653.8, + "end": 27655.72, + "probability": 0.6116 + }, + { + "start": 27655.82, + "end": 27656.38, + "probability": 0.783 + }, + { + "start": 27656.56, + "end": 27659.16, + "probability": 0.8021 + }, + { + "start": 27661.34, + "end": 27663.8, + "probability": 0.4674 + }, + { + "start": 27665.14, + "end": 27665.58, + "probability": 0.6759 + }, + { + "start": 27666.38, + "end": 27667.2, + "probability": 0.5843 + }, + { + "start": 27667.88, + "end": 27669.6, + "probability": 0.9084 + }, + { + "start": 27670.16, + "end": 27670.68, + "probability": 0.9702 + }, + { + "start": 27671.62, + "end": 27675.3, + "probability": 0.9331 + }, + { + "start": 27676.22, + "end": 27677.52, + "probability": 0.8719 + }, + { + "start": 27678.56, + "end": 27682.5, + "probability": 0.7158 + }, + { + "start": 27682.9, + "end": 27683.6, + "probability": 0.4492 + }, + { + "start": 27684.24, + "end": 27687.32, + "probability": 0.6031 + }, + { + "start": 27687.54, + "end": 27687.94, + "probability": 0.3645 + }, + { + "start": 27687.94, + "end": 27688.34, + "probability": 0.7694 + }, + { + "start": 27688.52, + "end": 27691.7, + "probability": 0.9626 + }, + { + "start": 27692.52, + "end": 27698.0, + "probability": 0.9804 + }, + { + "start": 27699.26, + "end": 27699.26, + "probability": 0.226 + }, + { + "start": 27700.04, + "end": 27703.32, + "probability": 0.9651 + }, + { + "start": 27703.96, + "end": 27707.14, + "probability": 0.8398 + }, + { + "start": 27707.76, + "end": 27709.88, + "probability": 0.99 + }, + { + "start": 27712.34, + "end": 27715.06, + "probability": 0.8659 + }, + { + "start": 27716.16, + "end": 27721.1, + "probability": 0.8371 + }, + { + "start": 27721.8, + "end": 27723.06, + "probability": 0.7616 + }, + { + "start": 27725.22, + "end": 27728.8, + "probability": 0.9526 + }, + { + "start": 27730.18, + "end": 27735.84, + "probability": 0.3019 + }, + { + "start": 27736.7, + "end": 27739.1, + "probability": 0.4834 + }, + { + "start": 27740.92, + "end": 27743.76, + "probability": 0.8335 + }, + { + "start": 27744.52, + "end": 27746.06, + "probability": 0.6066 + }, + { + "start": 27747.28, + "end": 27749.86, + "probability": 0.7787 + }, + { + "start": 27751.79, + "end": 27756.18, + "probability": 0.9106 + }, + { + "start": 27756.76, + "end": 27758.04, + "probability": 0.9812 + }, + { + "start": 27758.68, + "end": 27759.88, + "probability": 0.8343 + }, + { + "start": 27761.26, + "end": 27764.62, + "probability": 0.972 + }, + { + "start": 27765.06, + "end": 27765.88, + "probability": 0.6875 + }, + { + "start": 27767.8, + "end": 27768.6, + "probability": 0.5426 + }, + { + "start": 27769.56, + "end": 27772.12, + "probability": 0.9985 + }, + { + "start": 27773.18, + "end": 27776.5, + "probability": 0.8799 + }, + { + "start": 27777.14, + "end": 27785.08, + "probability": 0.968 + }, + { + "start": 27786.36, + "end": 27791.62, + "probability": 0.8479 + }, + { + "start": 27791.78, + "end": 27793.6, + "probability": 0.4676 + }, + { + "start": 27794.96, + "end": 27799.87, + "probability": 0.8334 + }, + { + "start": 27802.04, + "end": 27804.66, + "probability": 0.4826 + }, + { + "start": 27805.08, + "end": 27806.66, + "probability": 0.931 + }, + { + "start": 27807.2, + "end": 27815.1, + "probability": 0.9295 + }, + { + "start": 27815.68, + "end": 27816.42, + "probability": 0.9871 + }, + { + "start": 27817.32, + "end": 27820.21, + "probability": 0.7682 + }, + { + "start": 27820.98, + "end": 27821.94, + "probability": 0.9497 + }, + { + "start": 27822.52, + "end": 27827.02, + "probability": 0.9319 + }, + { + "start": 27827.7, + "end": 27832.92, + "probability": 0.9586 + }, + { + "start": 27834.04, + "end": 27834.88, + "probability": 0.4916 + }, + { + "start": 27834.92, + "end": 27835.82, + "probability": 0.7646 + }, + { + "start": 27835.94, + "end": 27836.5, + "probability": 0.8119 + }, + { + "start": 27836.88, + "end": 27837.72, + "probability": 0.9966 + }, + { + "start": 27839.3, + "end": 27839.9, + "probability": 0.3682 + }, + { + "start": 27841.6, + "end": 27846.12, + "probability": 0.9871 + }, + { + "start": 27846.12, + "end": 27848.72, + "probability": 0.8486 + }, + { + "start": 27849.24, + "end": 27851.4, + "probability": 0.7977 + }, + { + "start": 27852.44, + "end": 27854.7, + "probability": 0.8579 + }, + { + "start": 27855.54, + "end": 27859.0, + "probability": 0.9073 + }, + { + "start": 27860.42, + "end": 27862.9, + "probability": 0.9138 + }, + { + "start": 27863.9, + "end": 27867.74, + "probability": 0.9734 + }, + { + "start": 27867.74, + "end": 27870.9, + "probability": 0.9934 + }, + { + "start": 27871.62, + "end": 27872.52, + "probability": 0.9799 + }, + { + "start": 27875.24, + "end": 27879.32, + "probability": 0.9092 + }, + { + "start": 27879.44, + "end": 27882.3, + "probability": 0.5699 + }, + { + "start": 27883.04, + "end": 27883.4, + "probability": 0.8874 + }, + { + "start": 27884.82, + "end": 27885.12, + "probability": 0.9829 + }, + { + "start": 27886.5, + "end": 27887.5, + "probability": 0.9414 + }, + { + "start": 27888.24, + "end": 27890.34, + "probability": 0.8684 + }, + { + "start": 27892.28, + "end": 27894.44, + "probability": 0.9121 + }, + { + "start": 27894.96, + "end": 27897.82, + "probability": 0.9231 + }, + { + "start": 27898.52, + "end": 27899.04, + "probability": 0.9683 + }, + { + "start": 27899.56, + "end": 27902.72, + "probability": 0.9328 + }, + { + "start": 27904.72, + "end": 27911.96, + "probability": 0.9573 + }, + { + "start": 27912.5, + "end": 27913.84, + "probability": 0.8577 + }, + { + "start": 27914.26, + "end": 27917.04, + "probability": 0.9786 + }, + { + "start": 27917.2, + "end": 27921.4, + "probability": 0.8026 + }, + { + "start": 27922.6, + "end": 27924.52, + "probability": 0.7339 + }, + { + "start": 27924.72, + "end": 27925.34, + "probability": 0.6343 + }, + { + "start": 27926.18, + "end": 27928.16, + "probability": 0.9403 + }, + { + "start": 27930.07, + "end": 27932.5, + "probability": 0.7303 + }, + { + "start": 27932.68, + "end": 27932.88, + "probability": 0.2621 + }, + { + "start": 27934.28, + "end": 27936.26, + "probability": 0.5889 + }, + { + "start": 27937.2, + "end": 27939.94, + "probability": 0.6984 + }, + { + "start": 27940.76, + "end": 27945.38, + "probability": 0.6851 + }, + { + "start": 27946.99, + "end": 27949.66, + "probability": 0.382 + }, + { + "start": 27949.66, + "end": 27951.2, + "probability": 0.3958 + }, + { + "start": 27951.5, + "end": 27957.76, + "probability": 0.8522 + }, + { + "start": 27958.28, + "end": 27959.5, + "probability": 0.771 + }, + { + "start": 27960.28, + "end": 27961.02, + "probability": 0.9966 + }, + { + "start": 27961.92, + "end": 27965.84, + "probability": 0.6392 + }, + { + "start": 27966.3, + "end": 27969.84, + "probability": 0.9668 + }, + { + "start": 27970.36, + "end": 27973.74, + "probability": 0.9839 + }, + { + "start": 27974.3, + "end": 27976.22, + "probability": 0.9961 + }, + { + "start": 27977.34, + "end": 27979.16, + "probability": 0.9974 + }, + { + "start": 27980.08, + "end": 27983.44, + "probability": 0.5016 + }, + { + "start": 27985.32, + "end": 27987.8, + "probability": 0.7698 + }, + { + "start": 27988.68, + "end": 27991.18, + "probability": 0.7319 + }, + { + "start": 27992.44, + "end": 27997.28, + "probability": 0.7153 + }, + { + "start": 27997.9, + "end": 27999.34, + "probability": 0.8885 + }, + { + "start": 27999.98, + "end": 28006.18, + "probability": 0.8102 + }, + { + "start": 28009.21, + "end": 28010.72, + "probability": 0.7019 + }, + { + "start": 28010.98, + "end": 28012.2, + "probability": 0.7869 + }, + { + "start": 28012.28, + "end": 28012.84, + "probability": 0.93 + }, + { + "start": 28013.12, + "end": 28015.7, + "probability": 0.9338 + }, + { + "start": 28016.7, + "end": 28018.28, + "probability": 0.4899 + }, + { + "start": 28018.88, + "end": 28021.84, + "probability": 0.7785 + }, + { + "start": 28022.24, + "end": 28026.72, + "probability": 0.9425 + }, + { + "start": 28028.38, + "end": 28031.46, + "probability": 0.5848 + }, + { + "start": 28032.16, + "end": 28033.02, + "probability": 0.8115 + }, + { + "start": 28034.32, + "end": 28036.68, + "probability": 0.7224 + }, + { + "start": 28037.4, + "end": 28040.78, + "probability": 0.7233 + }, + { + "start": 28040.78, + "end": 28045.26, + "probability": 0.9713 + }, + { + "start": 28045.7, + "end": 28046.22, + "probability": 0.96 + }, + { + "start": 28046.78, + "end": 28047.52, + "probability": 0.3683 + }, + { + "start": 28048.16, + "end": 28050.18, + "probability": 0.8006 + }, + { + "start": 28050.82, + "end": 28053.72, + "probability": 0.8931 + }, + { + "start": 28054.46, + "end": 28061.78, + "probability": 0.9896 + }, + { + "start": 28063.5, + "end": 28069.56, + "probability": 0.6123 + }, + { + "start": 28070.74, + "end": 28073.64, + "probability": 0.6217 + }, + { + "start": 28073.66, + "end": 28074.02, + "probability": 0.7158 + }, + { + "start": 28074.5, + "end": 28076.3, + "probability": 0.3411 + }, + { + "start": 28076.46, + "end": 28076.81, + "probability": 0.5532 + }, + { + "start": 28077.6, + "end": 28082.7, + "probability": 0.8594 + }, + { + "start": 28082.9, + "end": 28084.44, + "probability": 0.8795 + }, + { + "start": 28086.36, + "end": 28089.24, + "probability": 0.8553 + }, + { + "start": 28092.23, + "end": 28096.12, + "probability": 0.7446 + }, + { + "start": 28097.48, + "end": 28099.0, + "probability": 0.8461 + }, + { + "start": 28099.74, + "end": 28100.39, + "probability": 0.7651 + }, + { + "start": 28101.93, + "end": 28103.84, + "probability": 0.5998 + }, + { + "start": 28105.06, + "end": 28106.8, + "probability": 0.936 + }, + { + "start": 28107.34, + "end": 28111.38, + "probability": 0.671 + }, + { + "start": 28112.2, + "end": 28113.54, + "probability": 0.678 + }, + { + "start": 28115.0, + "end": 28116.54, + "probability": 0.0004 + }, + { + "start": 28117.16, + "end": 28117.84, + "probability": 0.9694 + }, + { + "start": 28118.52, + "end": 28122.18, + "probability": 0.8971 + }, + { + "start": 28122.82, + "end": 28124.82, + "probability": 0.9966 + }, + { + "start": 28125.5, + "end": 28130.24, + "probability": 0.9963 + }, + { + "start": 28131.52, + "end": 28137.96, + "probability": 0.9908 + }, + { + "start": 28140.16, + "end": 28141.4, + "probability": 0.8339 + }, + { + "start": 28142.22, + "end": 28142.74, + "probability": 0.9032 + }, + { + "start": 28143.64, + "end": 28144.84, + "probability": 0.9734 + }, + { + "start": 28147.32, + "end": 28149.74, + "probability": 0.8906 + }, + { + "start": 28150.78, + "end": 28154.46, + "probability": 0.8157 + }, + { + "start": 28155.54, + "end": 28159.0, + "probability": 0.9949 + }, + { + "start": 28159.6, + "end": 28162.66, + "probability": 0.9213 + }, + { + "start": 28162.76, + "end": 28163.32, + "probability": 0.8663 + }, + { + "start": 28164.1, + "end": 28167.76, + "probability": 0.8077 + }, + { + "start": 28168.26, + "end": 28170.88, + "probability": 0.9821 + }, + { + "start": 28172.38, + "end": 28176.88, + "probability": 0.9763 + }, + { + "start": 28177.7, + "end": 28178.36, + "probability": 0.6119 + }, + { + "start": 28179.38, + "end": 28183.24, + "probability": 0.9815 + }, + { + "start": 28184.42, + "end": 28185.02, + "probability": 0.5253 + }, + { + "start": 28185.74, + "end": 28188.76, + "probability": 0.6863 + }, + { + "start": 28189.97, + "end": 28192.06, + "probability": 0.9616 + }, + { + "start": 28192.2, + "end": 28192.6, + "probability": 0.6145 + }, + { + "start": 28193.1, + "end": 28197.18, + "probability": 0.8935 + }, + { + "start": 28197.28, + "end": 28197.86, + "probability": 0.8969 + }, + { + "start": 28199.9, + "end": 28200.44, + "probability": 0.8734 + }, + { + "start": 28200.88, + "end": 28201.54, + "probability": 0.9152 + }, + { + "start": 28201.78, + "end": 28209.2, + "probability": 0.7502 + }, + { + "start": 28210.04, + "end": 28211.0, + "probability": 0.2323 + }, + { + "start": 28211.7, + "end": 28213.68, + "probability": 0.8032 + }, + { + "start": 28215.99, + "end": 28218.64, + "probability": 0.4064 + }, + { + "start": 28220.02, + "end": 28220.88, + "probability": 0.7747 + }, + { + "start": 28221.4, + "end": 28227.12, + "probability": 0.8938 + }, + { + "start": 28227.7, + "end": 28228.1, + "probability": 0.6349 + }, + { + "start": 28228.16, + "end": 28232.96, + "probability": 0.9581 + }, + { + "start": 28233.7, + "end": 28237.4, + "probability": 0.9777 + }, + { + "start": 28238.32, + "end": 28240.16, + "probability": 0.4858 + }, + { + "start": 28240.28, + "end": 28242.88, + "probability": 0.8292 + }, + { + "start": 28244.6, + "end": 28245.56, + "probability": 0.0278 + }, + { + "start": 28245.56, + "end": 28248.06, + "probability": 0.292 + }, + { + "start": 28248.44, + "end": 28253.8, + "probability": 0.1857 + }, + { + "start": 28255.06, + "end": 28255.06, + "probability": 0.0465 + }, + { + "start": 28255.06, + "end": 28256.1, + "probability": 0.5321 + }, + { + "start": 28256.16, + "end": 28258.76, + "probability": 0.8866 + }, + { + "start": 28259.64, + "end": 28260.7, + "probability": 0.8906 + }, + { + "start": 28261.26, + "end": 28265.35, + "probability": 0.8589 + }, + { + "start": 28266.76, + "end": 28274.96, + "probability": 0.9666 + }, + { + "start": 28275.66, + "end": 28277.26, + "probability": 0.532 + }, + { + "start": 28278.24, + "end": 28280.08, + "probability": 0.8595 + }, + { + "start": 28280.78, + "end": 28281.56, + "probability": 0.9263 + }, + { + "start": 28282.26, + "end": 28285.18, + "probability": 0.9541 + }, + { + "start": 28286.18, + "end": 28287.2, + "probability": 0.9941 + }, + { + "start": 28287.74, + "end": 28290.94, + "probability": 0.8793 + }, + { + "start": 28291.04, + "end": 28293.08, + "probability": 0.5086 + }, + { + "start": 28294.26, + "end": 28295.16, + "probability": 0.8986 + }, + { + "start": 28295.86, + "end": 28296.18, + "probability": 0.819 + }, + { + "start": 28296.32, + "end": 28301.3, + "probability": 0.826 + }, + { + "start": 28301.38, + "end": 28302.72, + "probability": 0.7349 + }, + { + "start": 28302.94, + "end": 28308.16, + "probability": 0.4411 + }, + { + "start": 28309.65, + "end": 28310.82, + "probability": 0.5462 + }, + { + "start": 28313.1, + "end": 28319.36, + "probability": 0.8547 + }, + { + "start": 28319.92, + "end": 28320.56, + "probability": 0.8979 + }, + { + "start": 28322.2, + "end": 28325.78, + "probability": 0.9929 + }, + { + "start": 28326.54, + "end": 28327.14, + "probability": 0.9775 + }, + { + "start": 28328.96, + "end": 28330.38, + "probability": 0.9443 + }, + { + "start": 28331.6, + "end": 28335.12, + "probability": 0.9123 + }, + { + "start": 28336.56, + "end": 28337.34, + "probability": 0.9553 + }, + { + "start": 28337.62, + "end": 28343.5, + "probability": 0.9154 + }, + { + "start": 28344.54, + "end": 28351.3, + "probability": 0.7464 + }, + { + "start": 28351.92, + "end": 28354.72, + "probability": 0.7198 + }, + { + "start": 28355.82, + "end": 28358.42, + "probability": 0.9803 + }, + { + "start": 28359.28, + "end": 28363.68, + "probability": 0.9955 + }, + { + "start": 28364.38, + "end": 28365.08, + "probability": 0.0748 + }, + { + "start": 28365.72, + "end": 28370.46, + "probability": 0.7606 + }, + { + "start": 28371.44, + "end": 28372.98, + "probability": 0.6153 + }, + { + "start": 28373.57, + "end": 28376.54, + "probability": 0.6581 + }, + { + "start": 28378.78, + "end": 28379.98, + "probability": 0.7488 + }, + { + "start": 28381.59, + "end": 28384.14, + "probability": 0.9812 + }, + { + "start": 28385.44, + "end": 28387.04, + "probability": 0.7468 + }, + { + "start": 28387.82, + "end": 28392.56, + "probability": 0.9202 + }, + { + "start": 28394.24, + "end": 28395.24, + "probability": 0.8823 + }, + { + "start": 28396.26, + "end": 28398.14, + "probability": 0.7494 + }, + { + "start": 28399.54, + "end": 28400.3, + "probability": 0.9916 + }, + { + "start": 28400.5, + "end": 28406.94, + "probability": 0.9877 + }, + { + "start": 28408.52, + "end": 28409.56, + "probability": 0.766 + }, + { + "start": 28412.5, + "end": 28414.32, + "probability": 0.8569 + }, + { + "start": 28415.2, + "end": 28416.42, + "probability": 0.9736 + }, + { + "start": 28416.96, + "end": 28417.96, + "probability": 0.9321 + }, + { + "start": 28418.7, + "end": 28420.52, + "probability": 0.9668 + }, + { + "start": 28421.52, + "end": 28423.6, + "probability": 0.7738 + }, + { + "start": 28424.46, + "end": 28425.96, + "probability": 0.998 + }, + { + "start": 28426.76, + "end": 28429.24, + "probability": 0.9811 + }, + { + "start": 28430.34, + "end": 28432.06, + "probability": 0.9583 + }, + { + "start": 28432.46, + "end": 28433.5, + "probability": 0.6695 + }, + { + "start": 28433.7, + "end": 28434.86, + "probability": 0.4114 + }, + { + "start": 28436.42, + "end": 28441.26, + "probability": 0.9167 + }, + { + "start": 28441.84, + "end": 28445.72, + "probability": 0.9843 + }, + { + "start": 28446.3, + "end": 28447.54, + "probability": 0.9757 + }, + { + "start": 28448.94, + "end": 28449.5, + "probability": 0.7333 + }, + { + "start": 28449.78, + "end": 28450.2, + "probability": 0.8387 + }, + { + "start": 28450.36, + "end": 28453.8, + "probability": 0.889 + }, + { + "start": 28455.4, + "end": 28458.58, + "probability": 0.9814 + }, + { + "start": 28459.18, + "end": 28460.36, + "probability": 0.7444 + }, + { + "start": 28462.02, + "end": 28467.4, + "probability": 0.9601 + }, + { + "start": 28468.16, + "end": 28471.38, + "probability": 0.8862 + }, + { + "start": 28472.54, + "end": 28474.22, + "probability": 0.8906 + }, + { + "start": 28475.48, + "end": 28477.28, + "probability": 0.9216 + }, + { + "start": 28477.84, + "end": 28478.36, + "probability": 0.4804 + }, + { + "start": 28479.1, + "end": 28483.26, + "probability": 0.8225 + }, + { + "start": 28484.04, + "end": 28484.78, + "probability": 0.4785 + }, + { + "start": 28485.32, + "end": 28487.02, + "probability": 0.6619 + }, + { + "start": 28487.68, + "end": 28489.14, + "probability": 0.738 + }, + { + "start": 28489.68, + "end": 28490.48, + "probability": 0.8287 + }, + { + "start": 28491.26, + "end": 28492.92, + "probability": 0.6233 + }, + { + "start": 28493.58, + "end": 28494.14, + "probability": 0.0415 + }, + { + "start": 28495.1, + "end": 28498.98, + "probability": 0.9325 + }, + { + "start": 28499.84, + "end": 28504.4, + "probability": 0.7129 + }, + { + "start": 28504.86, + "end": 28506.76, + "probability": 0.9037 + }, + { + "start": 28507.87, + "end": 28511.62, + "probability": 0.9968 + }, + { + "start": 28513.54, + "end": 28515.56, + "probability": 0.8946 + }, + { + "start": 28516.15, + "end": 28518.48, + "probability": 0.8877 + }, + { + "start": 28518.56, + "end": 28520.0, + "probability": 0.8154 + }, + { + "start": 28520.42, + "end": 28527.34, + "probability": 0.979 + }, + { + "start": 28527.78, + "end": 28528.44, + "probability": 0.9942 + }, + { + "start": 28531.2, + "end": 28536.0, + "probability": 0.9526 + }, + { + "start": 28536.46, + "end": 28539.98, + "probability": 0.7963 + }, + { + "start": 28541.04, + "end": 28542.68, + "probability": 0.8662 + }, + { + "start": 28543.0, + "end": 28545.46, + "probability": 0.9836 + }, + { + "start": 28545.88, + "end": 28549.95, + "probability": 0.9877 + }, + { + "start": 28550.74, + "end": 28551.52, + "probability": 0.6864 + }, + { + "start": 28552.26, + "end": 28553.74, + "probability": 0.7242 + }, + { + "start": 28554.12, + "end": 28559.22, + "probability": 0.7271 + }, + { + "start": 28559.3, + "end": 28560.4, + "probability": 0.7346 + }, + { + "start": 28560.86, + "end": 28563.08, + "probability": 0.9805 + }, + { + "start": 28563.62, + "end": 28564.5, + "probability": 0.5687 + }, + { + "start": 28565.7, + "end": 28566.35, + "probability": 0.3936 + }, + { + "start": 28568.82, + "end": 28570.86, + "probability": 0.9686 + }, + { + "start": 28571.46, + "end": 28574.82, + "probability": 0.9248 + }, + { + "start": 28576.32, + "end": 28578.7, + "probability": 0.4668 + }, + { + "start": 28579.24, + "end": 28580.44, + "probability": 0.82 + }, + { + "start": 28581.2, + "end": 28584.98, + "probability": 0.9385 + }, + { + "start": 28585.4, + "end": 28586.6, + "probability": 0.7536 + }, + { + "start": 28588.02, + "end": 28590.06, + "probability": 0.8348 + }, + { + "start": 28590.62, + "end": 28590.96, + "probability": 0.872 + }, + { + "start": 28592.5, + "end": 28592.98, + "probability": 0.5315 + }, + { + "start": 28593.04, + "end": 28598.12, + "probability": 0.9006 + }, + { + "start": 28599.66, + "end": 28603.52, + "probability": 0.823 + }, + { + "start": 28603.96, + "end": 28604.38, + "probability": 0.1335 + }, + { + "start": 28604.54, + "end": 28606.66, + "probability": 0.6565 + }, + { + "start": 28607.38, + "end": 28609.04, + "probability": 0.9535 + }, + { + "start": 28609.62, + "end": 28610.62, + "probability": 0.8493 + }, + { + "start": 28612.66, + "end": 28619.9, + "probability": 0.7788 + }, + { + "start": 28621.24, + "end": 28627.54, + "probability": 0.9749 + }, + { + "start": 28627.68, + "end": 28628.14, + "probability": 0.7905 + }, + { + "start": 28628.76, + "end": 28630.98, + "probability": 0.9338 + }, + { + "start": 28633.0, + "end": 28633.0, + "probability": 0.0384 + }, + { + "start": 28633.0, + "end": 28634.1, + "probability": 0.6075 + }, + { + "start": 28634.6, + "end": 28635.9, + "probability": 0.7618 + }, + { + "start": 28636.24, + "end": 28637.62, + "probability": 0.978 + }, + { + "start": 28638.26, + "end": 28639.88, + "probability": 0.6674 + }, + { + "start": 28641.14, + "end": 28643.74, + "probability": 0.7847 + }, + { + "start": 28644.36, + "end": 28648.48, + "probability": 0.9695 + }, + { + "start": 28649.66, + "end": 28650.0, + "probability": 0.3337 + }, + { + "start": 28650.84, + "end": 28652.86, + "probability": 0.509 + }, + { + "start": 28653.8, + "end": 28655.14, + "probability": 0.7539 + }, + { + "start": 28655.84, + "end": 28657.87, + "probability": 0.5887 + }, + { + "start": 28659.18, + "end": 28662.54, + "probability": 0.7976 + }, + { + "start": 28663.2, + "end": 28665.14, + "probability": 0.7676 + }, + { + "start": 28665.64, + "end": 28666.66, + "probability": 0.8582 + }, + { + "start": 28667.04, + "end": 28667.38, + "probability": 0.6324 + }, + { + "start": 28667.44, + "end": 28667.76, + "probability": 0.1714 + }, + { + "start": 28668.64, + "end": 28669.12, + "probability": 0.6639 + }, + { + "start": 28670.92, + "end": 28674.46, + "probability": 0.8173 + }, + { + "start": 28675.38, + "end": 28676.16, + "probability": 0.9203 + }, + { + "start": 28676.96, + "end": 28677.32, + "probability": 0.4034 + }, + { + "start": 28678.0, + "end": 28679.52, + "probability": 0.7546 + }, + { + "start": 28679.88, + "end": 28683.5, + "probability": 0.9033 + }, + { + "start": 28683.62, + "end": 28684.4, + "probability": 0.7571 + }, + { + "start": 28685.42, + "end": 28686.77, + "probability": 0.6841 + }, + { + "start": 28688.5, + "end": 28689.98, + "probability": 0.8748 + }, + { + "start": 28690.36, + "end": 28692.78, + "probability": 0.9559 + }, + { + "start": 28693.78, + "end": 28701.46, + "probability": 0.9514 + }, + { + "start": 28702.58, + "end": 28705.44, + "probability": 0.9066 + }, + { + "start": 28705.66, + "end": 28707.41, + "probability": 0.7134 + }, + { + "start": 28707.48, + "end": 28709.18, + "probability": 0.8828 + }, + { + "start": 28709.62, + "end": 28711.28, + "probability": 0.9709 + }, + { + "start": 28711.32, + "end": 28712.0, + "probability": 0.4848 + }, + { + "start": 28712.0, + "end": 28712.1, + "probability": 0.3355 + }, + { + "start": 28712.18, + "end": 28713.64, + "probability": 0.7036 + }, + { + "start": 28714.14, + "end": 28715.86, + "probability": 0.6028 + }, + { + "start": 28716.04, + "end": 28716.92, + "probability": 0.6627 + }, + { + "start": 28717.14, + "end": 28718.6, + "probability": 0.8816 + }, + { + "start": 28720.71, + "end": 28724.5, + "probability": 0.7696 + }, + { + "start": 28724.56, + "end": 28726.54, + "probability": 0.5921 + }, + { + "start": 28728.1, + "end": 28730.9, + "probability": 0.6741 + }, + { + "start": 28731.52, + "end": 28734.34, + "probability": 0.8517 + }, + { + "start": 28735.1, + "end": 28737.54, + "probability": 0.6234 + }, + { + "start": 28738.6, + "end": 28743.82, + "probability": 0.7304 + }, + { + "start": 28745.06, + "end": 28746.74, + "probability": 0.5692 + }, + { + "start": 28747.32, + "end": 28751.34, + "probability": 0.9278 + }, + { + "start": 28752.4, + "end": 28757.14, + "probability": 0.9321 + }, + { + "start": 28757.48, + "end": 28760.08, + "probability": 0.8799 + }, + { + "start": 28760.84, + "end": 28762.04, + "probability": 0.7435 + }, + { + "start": 28762.74, + "end": 28765.18, + "probability": 0.5464 + }, + { + "start": 28767.14, + "end": 28767.36, + "probability": 0.8677 + }, + { + "start": 28768.8, + "end": 28770.04, + "probability": 0.7571 + }, + { + "start": 28771.26, + "end": 28773.24, + "probability": 0.6931 + }, + { + "start": 28774.06, + "end": 28776.16, + "probability": 0.1415 + }, + { + "start": 28777.16, + "end": 28777.8, + "probability": 0.2207 + }, + { + "start": 28800.25, + "end": 28802.14, + "probability": 0.6309 + }, + { + "start": 28803.82, + "end": 28810.22, + "probability": 0.9886 + }, + { + "start": 28811.24, + "end": 28815.34, + "probability": 0.975 + }, + { + "start": 28816.28, + "end": 28819.66, + "probability": 0.9893 + }, + { + "start": 28821.34, + "end": 28825.7, + "probability": 0.9248 + }, + { + "start": 28826.35, + "end": 28830.68, + "probability": 0.9995 + }, + { + "start": 28831.64, + "end": 28834.3, + "probability": 0.9873 + }, + { + "start": 28835.9, + "end": 28837.62, + "probability": 0.8785 + }, + { + "start": 28838.3, + "end": 28845.28, + "probability": 0.9845 + }, + { + "start": 28846.28, + "end": 28847.98, + "probability": 0.8102 + }, + { + "start": 28849.2, + "end": 28852.36, + "probability": 0.9614 + }, + { + "start": 28853.06, + "end": 28854.54, + "probability": 0.9896 + }, + { + "start": 28856.7, + "end": 28859.8, + "probability": 0.9989 + }, + { + "start": 28861.98, + "end": 28863.6, + "probability": 0.2786 + }, + { + "start": 28866.54, + "end": 28872.04, + "probability": 0.9665 + }, + { + "start": 28872.04, + "end": 28876.12, + "probability": 0.8795 + }, + { + "start": 28876.88, + "end": 28877.84, + "probability": 0.9409 + }, + { + "start": 28878.0, + "end": 28878.96, + "probability": 0.9646 + }, + { + "start": 28879.2, + "end": 28881.56, + "probability": 0.9487 + }, + { + "start": 28881.6, + "end": 28886.44, + "probability": 0.9809 + }, + { + "start": 28887.88, + "end": 28889.53, + "probability": 0.9939 + }, + { + "start": 28889.98, + "end": 28891.08, + "probability": 0.7366 + }, + { + "start": 28891.32, + "end": 28897.14, + "probability": 0.9639 + }, + { + "start": 28898.56, + "end": 28898.92, + "probability": 0.6674 + }, + { + "start": 28899.82, + "end": 28903.9, + "probability": 0.9649 + }, + { + "start": 28906.22, + "end": 28908.02, + "probability": 0.904 + }, + { + "start": 28908.88, + "end": 28909.72, + "probability": 0.6544 + }, + { + "start": 28911.9, + "end": 28913.42, + "probability": 0.9785 + }, + { + "start": 28914.62, + "end": 28915.14, + "probability": 0.9537 + }, + { + "start": 28915.68, + "end": 28918.72, + "probability": 0.9188 + }, + { + "start": 28919.56, + "end": 28922.22, + "probability": 0.9473 + }, + { + "start": 28923.12, + "end": 28924.6, + "probability": 0.986 + }, + { + "start": 28925.56, + "end": 28926.16, + "probability": 0.9993 + }, + { + "start": 28926.7, + "end": 28930.5, + "probability": 0.9921 + }, + { + "start": 28931.42, + "end": 28936.36, + "probability": 0.8265 + }, + { + "start": 28937.2, + "end": 28939.22, + "probability": 0.8134 + }, + { + "start": 28940.2, + "end": 28942.48, + "probability": 0.8566 + }, + { + "start": 28943.0, + "end": 28945.96, + "probability": 0.9662 + }, + { + "start": 28948.74, + "end": 28949.2, + "probability": 0.6405 + }, + { + "start": 28949.94, + "end": 28952.8, + "probability": 0.9802 + }, + { + "start": 28953.42, + "end": 28954.64, + "probability": 0.9865 + }, + { + "start": 28956.08, + "end": 28956.82, + "probability": 0.8776 + }, + { + "start": 28957.66, + "end": 28959.4, + "probability": 0.9932 + }, + { + "start": 28960.24, + "end": 28961.12, + "probability": 0.8995 + }, + { + "start": 28962.84, + "end": 28963.98, + "probability": 0.7525 + }, + { + "start": 28964.74, + "end": 28966.81, + "probability": 0.9604 + }, + { + "start": 28967.98, + "end": 28970.08, + "probability": 0.9846 + }, + { + "start": 28970.74, + "end": 28973.28, + "probability": 0.9865 + }, + { + "start": 28974.52, + "end": 28976.16, + "probability": 0.9993 + }, + { + "start": 28977.28, + "end": 28979.34, + "probability": 0.9837 + }, + { + "start": 28980.38, + "end": 28982.52, + "probability": 0.98 + }, + { + "start": 28983.2, + "end": 28984.34, + "probability": 0.9634 + }, + { + "start": 28984.86, + "end": 28985.66, + "probability": 0.9536 + }, + { + "start": 28986.78, + "end": 28989.14, + "probability": 0.9623 + }, + { + "start": 28990.38, + "end": 28992.02, + "probability": 0.9779 + }, + { + "start": 28994.14, + "end": 28997.46, + "probability": 0.9804 + }, + { + "start": 28998.46, + "end": 29002.9, + "probability": 0.9827 + }, + { + "start": 29004.38, + "end": 29006.68, + "probability": 0.9983 + }, + { + "start": 29007.72, + "end": 29008.78, + "probability": 0.6961 + }, + { + "start": 29009.44, + "end": 29010.48, + "probability": 0.9607 + }, + { + "start": 29012.02, + "end": 29013.28, + "probability": 0.9429 + }, + { + "start": 29014.22, + "end": 29015.51, + "probability": 0.9961 + }, + { + "start": 29016.24, + "end": 29019.06, + "probability": 0.8865 + }, + { + "start": 29020.08, + "end": 29021.42, + "probability": 0.9798 + }, + { + "start": 29022.44, + "end": 29023.1, + "probability": 0.7472 + }, + { + "start": 29023.32, + "end": 29025.78, + "probability": 0.8211 + }, + { + "start": 29026.44, + "end": 29028.59, + "probability": 0.9898 + }, + { + "start": 29032.21, + "end": 29034.4, + "probability": 0.853 + }, + { + "start": 29035.28, + "end": 29039.9, + "probability": 0.848 + }, + { + "start": 29040.3, + "end": 29041.14, + "probability": 0.6445 + }, + { + "start": 29042.7, + "end": 29042.78, + "probability": 0.3653 + }, + { + "start": 29044.11, + "end": 29049.38, + "probability": 0.6958 + }, + { + "start": 29049.38, + "end": 29051.04, + "probability": 0.8525 + }, + { + "start": 29051.48, + "end": 29051.58, + "probability": 0.3203 + }, + { + "start": 29052.48, + "end": 29053.08, + "probability": 0.1915 + }, + { + "start": 29053.22, + "end": 29056.16, + "probability": 0.8633 + }, + { + "start": 29056.16, + "end": 29059.08, + "probability": 0.9976 + }, + { + "start": 29059.1, + "end": 29060.2, + "probability": 0.9456 + }, + { + "start": 29060.62, + "end": 29061.08, + "probability": 0.5547 + }, + { + "start": 29061.12, + "end": 29065.44, + "probability": 0.998 + }, + { + "start": 29065.58, + "end": 29067.62, + "probability": 0.9624 + }, + { + "start": 29068.72, + "end": 29072.34, + "probability": 0.8908 + }, + { + "start": 29074.64, + "end": 29075.8, + "probability": 0.7587 + }, + { + "start": 29077.54, + "end": 29079.22, + "probability": 0.9919 + }, + { + "start": 29079.54, + "end": 29082.36, + "probability": 0.7467 + }, + { + "start": 29083.58, + "end": 29084.02, + "probability": 0.8209 + }, + { + "start": 29084.08, + "end": 29084.2, + "probability": 0.9896 + }, + { + "start": 29084.28, + "end": 29088.42, + "probability": 0.9727 + }, + { + "start": 29089.8, + "end": 29091.82, + "probability": 0.9903 + }, + { + "start": 29092.5, + "end": 29096.42, + "probability": 0.8943 + }, + { + "start": 29097.22, + "end": 29097.36, + "probability": 0.6219 + }, + { + "start": 29097.48, + "end": 29099.06, + "probability": 0.729 + }, + { + "start": 29099.48, + "end": 29100.06, + "probability": 0.8557 + }, + { + "start": 29101.42, + "end": 29104.16, + "probability": 0.8408 + }, + { + "start": 29105.26, + "end": 29105.88, + "probability": 0.625 + }, + { + "start": 29106.72, + "end": 29109.92, + "probability": 0.9978 + }, + { + "start": 29110.5, + "end": 29111.6, + "probability": 0.9704 + }, + { + "start": 29111.84, + "end": 29112.4, + "probability": 0.6258 + }, + { + "start": 29112.48, + "end": 29114.08, + "probability": 0.9978 + }, + { + "start": 29115.73, + "end": 29119.18, + "probability": 0.9922 + }, + { + "start": 29120.92, + "end": 29122.1, + "probability": 0.1036 + }, + { + "start": 29122.16, + "end": 29122.75, + "probability": 0.9747 + }, + { + "start": 29122.8, + "end": 29125.12, + "probability": 0.8403 + }, + { + "start": 29125.26, + "end": 29125.5, + "probability": 0.599 + }, + { + "start": 29126.64, + "end": 29126.98, + "probability": 0.4676 + }, + { + "start": 29128.24, + "end": 29129.96, + "probability": 0.8142 + }, + { + "start": 29130.1, + "end": 29134.62, + "probability": 0.9808 + }, + { + "start": 29134.86, + "end": 29137.2, + "probability": 0.9993 + }, + { + "start": 29137.38, + "end": 29138.48, + "probability": 0.97 + }, + { + "start": 29138.56, + "end": 29139.08, + "probability": 0.642 + }, + { + "start": 29139.34, + "end": 29140.66, + "probability": 0.977 + }, + { + "start": 29141.98, + "end": 29148.6, + "probability": 0.9901 + }, + { + "start": 29148.72, + "end": 29150.26, + "probability": 0.994 + }, + { + "start": 29151.32, + "end": 29153.22, + "probability": 0.7549 + }, + { + "start": 29154.76, + "end": 29157.66, + "probability": 0.9066 + }, + { + "start": 29158.22, + "end": 29163.1, + "probability": 0.9689 + }, + { + "start": 29164.24, + "end": 29165.32, + "probability": 0.9988 + }, + { + "start": 29165.88, + "end": 29169.7, + "probability": 0.9995 + }, + { + "start": 29170.44, + "end": 29174.54, + "probability": 0.9937 + }, + { + "start": 29174.88, + "end": 29177.5, + "probability": 0.9259 + }, + { + "start": 29178.08, + "end": 29179.6, + "probability": 0.9821 + }, + { + "start": 29181.64, + "end": 29184.3, + "probability": 0.9959 + }, + { + "start": 29185.6, + "end": 29190.28, + "probability": 0.8762 + }, + { + "start": 29191.2, + "end": 29195.46, + "probability": 0.9941 + }, + { + "start": 29196.32, + "end": 29198.66, + "probability": 0.9924 + }, + { + "start": 29199.48, + "end": 29201.26, + "probability": 0.9702 + }, + { + "start": 29201.92, + "end": 29204.56, + "probability": 0.6883 + }, + { + "start": 29205.36, + "end": 29206.26, + "probability": 0.5499 + }, + { + "start": 29207.0, + "end": 29208.12, + "probability": 0.9865 + }, + { + "start": 29208.84, + "end": 29210.56, + "probability": 0.9756 + }, + { + "start": 29210.98, + "end": 29212.28, + "probability": 0.9705 + }, + { + "start": 29212.84, + "end": 29213.24, + "probability": 0.9828 + }, + { + "start": 29213.82, + "end": 29214.96, + "probability": 0.9927 + }, + { + "start": 29215.62, + "end": 29216.54, + "probability": 0.8427 + }, + { + "start": 29217.08, + "end": 29219.54, + "probability": 0.9979 + }, + { + "start": 29221.62, + "end": 29225.68, + "probability": 0.9843 + }, + { + "start": 29225.8, + "end": 29226.24, + "probability": 0.6977 + }, + { + "start": 29227.7, + "end": 29230.28, + "probability": 0.9837 + }, + { + "start": 29231.0, + "end": 29234.32, + "probability": 0.992 + }, + { + "start": 29234.82, + "end": 29240.32, + "probability": 0.9845 + }, + { + "start": 29240.66, + "end": 29241.08, + "probability": 0.8209 + }, + { + "start": 29242.28, + "end": 29245.42, + "probability": 0.9654 + }, + { + "start": 29246.82, + "end": 29252.22, + "probability": 0.881 + }, + { + "start": 29253.38, + "end": 29258.78, + "probability": 0.9666 + }, + { + "start": 29261.78, + "end": 29263.46, + "probability": 0.8239 + }, + { + "start": 29264.68, + "end": 29270.72, + "probability": 0.9951 + }, + { + "start": 29271.56, + "end": 29274.14, + "probability": 0.9956 + }, + { + "start": 29275.58, + "end": 29277.6, + "probability": 0.9895 + }, + { + "start": 29278.52, + "end": 29282.54, + "probability": 0.9938 + }, + { + "start": 29282.54, + "end": 29286.94, + "probability": 0.9389 + }, + { + "start": 29287.6, + "end": 29290.18, + "probability": 0.9724 + }, + { + "start": 29291.3, + "end": 29292.2, + "probability": 0.7092 + }, + { + "start": 29293.06, + "end": 29299.34, + "probability": 0.9846 + }, + { + "start": 29300.3, + "end": 29302.3, + "probability": 0.9919 + }, + { + "start": 29302.44, + "end": 29302.94, + "probability": 0.8505 + }, + { + "start": 29304.16, + "end": 29305.37, + "probability": 0.786 + }, + { + "start": 29306.42, + "end": 29307.08, + "probability": 0.9845 + }, + { + "start": 29308.28, + "end": 29311.28, + "probability": 0.9954 + }, + { + "start": 29311.28, + "end": 29315.1, + "probability": 0.8774 + }, + { + "start": 29316.12, + "end": 29317.94, + "probability": 0.9974 + }, + { + "start": 29318.66, + "end": 29321.88, + "probability": 0.7863 + }, + { + "start": 29322.38, + "end": 29324.58, + "probability": 0.9674 + }, + { + "start": 29325.0, + "end": 29326.94, + "probability": 0.9926 + }, + { + "start": 29327.98, + "end": 29328.84, + "probability": 0.7152 + }, + { + "start": 29330.02, + "end": 29335.57, + "probability": 0.9553 + }, + { + "start": 29337.14, + "end": 29342.58, + "probability": 0.885 + }, + { + "start": 29342.98, + "end": 29343.82, + "probability": 0.9756 + }, + { + "start": 29344.0, + "end": 29345.62, + "probability": 0.9109 + }, + { + "start": 29346.14, + "end": 29347.14, + "probability": 0.8276 + }, + { + "start": 29347.94, + "end": 29351.4, + "probability": 0.7954 + }, + { + "start": 29352.1, + "end": 29358.36, + "probability": 0.9812 + }, + { + "start": 29358.5, + "end": 29359.56, + "probability": 0.9985 + }, + { + "start": 29360.18, + "end": 29364.72, + "probability": 0.9778 + }, + { + "start": 29364.82, + "end": 29369.3, + "probability": 0.9941 + }, + { + "start": 29369.3, + "end": 29369.46, + "probability": 0.6926 + }, + { + "start": 29370.88, + "end": 29371.04, + "probability": 0.3923 + }, + { + "start": 29371.18, + "end": 29374.58, + "probability": 0.8119 + }, + { + "start": 29375.8, + "end": 29376.36, + "probability": 0.8649 + }, + { + "start": 29377.14, + "end": 29380.22, + "probability": 0.9186 + }, + { + "start": 29380.9, + "end": 29383.0, + "probability": 0.956 + }, + { + "start": 29384.48, + "end": 29387.22, + "probability": 0.9857 + }, + { + "start": 29387.92, + "end": 29390.74, + "probability": 0.9512 + }, + { + "start": 29391.74, + "end": 29392.9, + "probability": 0.0715 + }, + { + "start": 29392.9, + "end": 29393.16, + "probability": 0.0505 + }, + { + "start": 29393.16, + "end": 29394.32, + "probability": 0.0618 + }, + { + "start": 29394.54, + "end": 29395.72, + "probability": 0.8301 + }, + { + "start": 29396.26, + "end": 29397.51, + "probability": 0.9814 + }, + { + "start": 29398.08, + "end": 29400.83, + "probability": 0.9947 + }, + { + "start": 29401.82, + "end": 29404.02, + "probability": 0.8632 + }, + { + "start": 29404.56, + "end": 29405.6, + "probability": 0.9615 + }, + { + "start": 29405.84, + "end": 29409.14, + "probability": 0.9416 + }, + { + "start": 29410.42, + "end": 29411.9, + "probability": 0.9947 + }, + { + "start": 29412.44, + "end": 29414.04, + "probability": 0.9764 + }, + { + "start": 29414.96, + "end": 29418.22, + "probability": 0.7578 + }, + { + "start": 29419.42, + "end": 29422.06, + "probability": 0.9932 + }, + { + "start": 29423.06, + "end": 29425.16, + "probability": 0.9694 + }, + { + "start": 29425.36, + "end": 29429.42, + "probability": 0.9717 + }, + { + "start": 29429.98, + "end": 29430.99, + "probability": 0.8967 + }, + { + "start": 29431.82, + "end": 29434.22, + "probability": 0.9762 + }, + { + "start": 29435.7, + "end": 29438.32, + "probability": 0.9605 + }, + { + "start": 29438.38, + "end": 29439.4, + "probability": 0.9221 + }, + { + "start": 29439.54, + "end": 29440.18, + "probability": 0.9854 + }, + { + "start": 29440.62, + "end": 29442.08, + "probability": 0.9943 + }, + { + "start": 29443.48, + "end": 29445.82, + "probability": 0.9868 + }, + { + "start": 29445.98, + "end": 29447.24, + "probability": 0.9643 + }, + { + "start": 29447.78, + "end": 29448.74, + "probability": 0.5283 + }, + { + "start": 29448.8, + "end": 29449.16, + "probability": 0.7257 + }, + { + "start": 29449.46, + "end": 29450.22, + "probability": 0.9823 + }, + { + "start": 29451.8, + "end": 29454.24, + "probability": 0.8382 + }, + { + "start": 29455.02, + "end": 29456.6, + "probability": 0.993 + }, + { + "start": 29457.24, + "end": 29465.38, + "probability": 0.9952 + }, + { + "start": 29466.12, + "end": 29468.78, + "probability": 0.8911 + }, + { + "start": 29469.4, + "end": 29471.22, + "probability": 0.9995 + }, + { + "start": 29471.92, + "end": 29474.5, + "probability": 0.9985 + }, + { + "start": 29475.7, + "end": 29479.86, + "probability": 0.9945 + }, + { + "start": 29486.08, + "end": 29488.44, + "probability": 0.9616 + }, + { + "start": 29493.38, + "end": 29499.74, + "probability": 0.9941 + }, + { + "start": 29500.14, + "end": 29502.54, + "probability": 0.7416 + }, + { + "start": 29503.06, + "end": 29504.22, + "probability": 0.9806 + }, + { + "start": 29505.48, + "end": 29509.22, + "probability": 0.9985 + }, + { + "start": 29509.32, + "end": 29510.98, + "probability": 0.9951 + }, + { + "start": 29512.6, + "end": 29518.16, + "probability": 0.9586 + }, + { + "start": 29520.37, + "end": 29525.66, + "probability": 0.9979 + }, + { + "start": 29525.78, + "end": 29528.42, + "probability": 0.9807 + }, + { + "start": 29529.85, + "end": 29538.04, + "probability": 0.9928 + }, + { + "start": 29538.44, + "end": 29539.04, + "probability": 0.6526 + }, + { + "start": 29544.14, + "end": 29548.42, + "probability": 0.9948 + }, + { + "start": 29548.94, + "end": 29550.81, + "probability": 0.9296 + }, + { + "start": 29552.3, + "end": 29554.48, + "probability": 0.8677 + }, + { + "start": 29556.8, + "end": 29559.06, + "probability": 0.9688 + }, + { + "start": 29559.88, + "end": 29568.54, + "probability": 0.9945 + }, + { + "start": 29569.64, + "end": 29570.28, + "probability": 0.6778 + }, + { + "start": 29570.28, + "end": 29571.73, + "probability": 0.9029 + }, + { + "start": 29572.98, + "end": 29575.56, + "probability": 0.9626 + }, + { + "start": 29576.74, + "end": 29576.74, + "probability": 0.4127 + }, + { + "start": 29577.38, + "end": 29579.72, + "probability": 0.908 + }, + { + "start": 29580.38, + "end": 29585.45, + "probability": 0.9832 + }, + { + "start": 29586.02, + "end": 29588.16, + "probability": 0.8802 + }, + { + "start": 29590.93, + "end": 29594.28, + "probability": 0.8711 + }, + { + "start": 29595.68, + "end": 29598.84, + "probability": 0.8774 + }, + { + "start": 29602.48, + "end": 29605.82, + "probability": 0.9924 + }, + { + "start": 29606.26, + "end": 29611.3, + "probability": 0.9954 + }, + { + "start": 29612.4, + "end": 29617.06, + "probability": 0.9928 + }, + { + "start": 29618.06, + "end": 29620.91, + "probability": 0.9465 + }, + { + "start": 29621.58, + "end": 29622.5, + "probability": 0.9518 + }, + { + "start": 29623.66, + "end": 29626.24, + "probability": 0.9985 + }, + { + "start": 29628.24, + "end": 29628.86, + "probability": 0.7498 + }, + { + "start": 29630.5, + "end": 29636.38, + "probability": 0.9674 + }, + { + "start": 29637.0, + "end": 29641.58, + "probability": 0.9884 + }, + { + "start": 29642.46, + "end": 29643.24, + "probability": 0.9098 + }, + { + "start": 29645.5, + "end": 29647.0, + "probability": 0.9478 + }, + { + "start": 29647.86, + "end": 29648.36, + "probability": 0.5733 + }, + { + "start": 29649.32, + "end": 29651.78, + "probability": 0.8412 + }, + { + "start": 29652.92, + "end": 29654.52, + "probability": 0.8414 + }, + { + "start": 29655.74, + "end": 29656.5, + "probability": 0.9263 + }, + { + "start": 29659.18, + "end": 29662.66, + "probability": 0.9966 + }, + { + "start": 29663.58, + "end": 29668.52, + "probability": 0.9458 + }, + { + "start": 29669.18, + "end": 29675.36, + "probability": 0.9762 + }, + { + "start": 29675.66, + "end": 29676.56, + "probability": 0.8426 + }, + { + "start": 29677.16, + "end": 29679.12, + "probability": 0.8561 + }, + { + "start": 29681.04, + "end": 29684.68, + "probability": 0.9504 + }, + { + "start": 29684.8, + "end": 29686.14, + "probability": 0.8426 + }, + { + "start": 29686.76, + "end": 29687.42, + "probability": 0.9609 + }, + { + "start": 29688.14, + "end": 29689.36, + "probability": 0.9959 + }, + { + "start": 29690.18, + "end": 29691.84, + "probability": 0.8492 + }, + { + "start": 29692.74, + "end": 29693.82, + "probability": 0.9759 + }, + { + "start": 29693.92, + "end": 29698.06, + "probability": 0.9901 + }, + { + "start": 29698.96, + "end": 29699.6, + "probability": 0.787 + }, + { + "start": 29700.98, + "end": 29704.08, + "probability": 0.981 + }, + { + "start": 29705.2, + "end": 29707.46, + "probability": 0.9972 + }, + { + "start": 29708.38, + "end": 29710.6, + "probability": 0.8993 + }, + { + "start": 29711.44, + "end": 29713.4, + "probability": 0.9904 + }, + { + "start": 29714.22, + "end": 29715.28, + "probability": 0.9905 + }, + { + "start": 29715.86, + "end": 29721.7, + "probability": 0.9805 + }, + { + "start": 29723.26, + "end": 29730.44, + "probability": 0.9871 + }, + { + "start": 29730.98, + "end": 29731.8, + "probability": 0.7432 + }, + { + "start": 29732.54, + "end": 29734.5, + "probability": 0.9871 + }, + { + "start": 29736.08, + "end": 29738.62, + "probability": 0.9925 + }, + { + "start": 29739.74, + "end": 29743.94, + "probability": 0.9814 + }, + { + "start": 29744.62, + "end": 29748.3, + "probability": 0.9912 + }, + { + "start": 29749.96, + "end": 29751.62, + "probability": 0.9992 + }, + { + "start": 29753.0, + "end": 29755.66, + "probability": 0.8597 + }, + { + "start": 29756.66, + "end": 29758.14, + "probability": 0.6949 + }, + { + "start": 29758.88, + "end": 29760.8, + "probability": 0.9985 + }, + { + "start": 29761.4, + "end": 29761.9, + "probability": 0.9965 + }, + { + "start": 29762.92, + "end": 29764.9, + "probability": 0.9988 + }, + { + "start": 29765.34, + "end": 29765.78, + "probability": 0.7659 + }, + { + "start": 29767.56, + "end": 29769.46, + "probability": 0.789 + }, + { + "start": 29769.98, + "end": 29770.5, + "probability": 0.6177 + }, + { + "start": 29771.24, + "end": 29772.74, + "probability": 0.9291 + }, + { + "start": 29773.42, + "end": 29773.98, + "probability": 0.7176 + }, + { + "start": 29774.42, + "end": 29774.92, + "probability": 0.5977 + }, + { + "start": 29775.66, + "end": 29776.3, + "probability": 0.8872 + }, + { + "start": 29784.2, + "end": 29784.68, + "probability": 0.6784 + }, + { + "start": 29785.86, + "end": 29786.76, + "probability": 0.53 + }, + { + "start": 29788.26, + "end": 29789.06, + "probability": 0.759 + }, + { + "start": 29793.12, + "end": 29797.62, + "probability": 0.8158 + }, + { + "start": 29797.78, + "end": 29798.54, + "probability": 0.3896 + }, + { + "start": 29798.68, + "end": 29799.74, + "probability": 0.9946 + }, + { + "start": 29800.66, + "end": 29801.92, + "probability": 0.9275 + }, + { + "start": 29803.5, + "end": 29807.14, + "probability": 0.7986 + }, + { + "start": 29808.08, + "end": 29809.73, + "probability": 0.8995 + }, + { + "start": 29811.68, + "end": 29814.76, + "probability": 0.9915 + }, + { + "start": 29815.22, + "end": 29817.03, + "probability": 0.3858 + }, + { + "start": 29818.56, + "end": 29820.36, + "probability": 0.928 + }, + { + "start": 29821.66, + "end": 29822.26, + "probability": 0.816 + }, + { + "start": 29822.32, + "end": 29822.5, + "probability": 0.9582 + }, + { + "start": 29822.52, + "end": 29825.84, + "probability": 0.9455 + }, + { + "start": 29826.64, + "end": 29828.16, + "probability": 0.9663 + }, + { + "start": 29828.6, + "end": 29837.34, + "probability": 0.835 + }, + { + "start": 29838.32, + "end": 29841.48, + "probability": 0.9844 + }, + { + "start": 29841.64, + "end": 29843.06, + "probability": 0.9816 + }, + { + "start": 29843.42, + "end": 29844.28, + "probability": 0.8379 + }, + { + "start": 29844.38, + "end": 29847.72, + "probability": 0.8705 + }, + { + "start": 29847.84, + "end": 29848.44, + "probability": 0.3251 + }, + { + "start": 29849.14, + "end": 29855.62, + "probability": 0.841 + }, + { + "start": 29855.84, + "end": 29857.96, + "probability": 0.9718 + }, + { + "start": 29858.98, + "end": 29862.26, + "probability": 0.6731 + }, + { + "start": 29862.46, + "end": 29864.22, + "probability": 0.6851 + }, + { + "start": 29864.64, + "end": 29865.82, + "probability": 0.5958 + }, + { + "start": 29865.96, + "end": 29868.42, + "probability": 0.9587 + }, + { + "start": 29870.16, + "end": 29870.96, + "probability": 0.8692 + }, + { + "start": 29872.38, + "end": 29874.64, + "probability": 0.9346 + }, + { + "start": 29874.86, + "end": 29879.4, + "probability": 0.2261 + }, + { + "start": 29880.32, + "end": 29880.88, + "probability": 0.621 + }, + { + "start": 29881.3, + "end": 29881.82, + "probability": 0.9055 + }, + { + "start": 29884.48, + "end": 29888.58, + "probability": 0.7178 + }, + { + "start": 29889.68, + "end": 29893.06, + "probability": 0.9996 + }, + { + "start": 29893.2, + "end": 29894.71, + "probability": 0.7102 + }, + { + "start": 29895.8, + "end": 29896.23, + "probability": 0.8916 + }, + { + "start": 29896.84, + "end": 29897.29, + "probability": 0.9009 + }, + { + "start": 29897.84, + "end": 29899.16, + "probability": 0.9533 + }, + { + "start": 29899.24, + "end": 29901.35, + "probability": 0.9966 + }, + { + "start": 29901.78, + "end": 29903.64, + "probability": 0.9993 + }, + { + "start": 29903.8, + "end": 29904.47, + "probability": 0.0195 + }, + { + "start": 29905.38, + "end": 29906.28, + "probability": 0.8466 + }, + { + "start": 29908.29, + "end": 29914.2, + "probability": 0.7769 + }, + { + "start": 29915.32, + "end": 29918.48, + "probability": 0.9152 + }, + { + "start": 29919.36, + "end": 29919.98, + "probability": 0.9941 + }, + { + "start": 29921.54, + "end": 29922.36, + "probability": 0.9384 + }, + { + "start": 29926.08, + "end": 29929.42, + "probability": 0.4298 + }, + { + "start": 29930.88, + "end": 29934.76, + "probability": 0.9858 + }, + { + "start": 29934.96, + "end": 29939.8, + "probability": 0.6545 + }, + { + "start": 29940.48, + "end": 29943.56, + "probability": 0.9636 + }, + { + "start": 29943.64, + "end": 29944.9, + "probability": 0.976 + }, + { + "start": 29947.1, + "end": 29949.22, + "probability": 0.6486 + }, + { + "start": 29949.48, + "end": 29951.98, + "probability": 0.7467 + }, + { + "start": 29952.2, + "end": 29954.1, + "probability": 0.7808 + }, + { + "start": 29954.2, + "end": 29955.18, + "probability": 0.922 + }, + { + "start": 29955.5, + "end": 29956.52, + "probability": 0.8056 + }, + { + "start": 29956.66, + "end": 29957.06, + "probability": 0.7288 + }, + { + "start": 29957.83, + "end": 29961.6, + "probability": 0.9897 + }, + { + "start": 29961.74, + "end": 29962.3, + "probability": 0.6096 + }, + { + "start": 29963.66, + "end": 29966.6, + "probability": 0.9882 + }, + { + "start": 29966.68, + "end": 29967.64, + "probability": 0.9283 + }, + { + "start": 29968.06, + "end": 29968.66, + "probability": 0.9271 + }, + { + "start": 29968.66, + "end": 29972.1, + "probability": 0.9463 + }, + { + "start": 29973.48, + "end": 29975.1, + "probability": 0.8423 + }, + { + "start": 29977.96, + "end": 29979.42, + "probability": 0.9384 + }, + { + "start": 29980.8, + "end": 29982.66, + "probability": 0.7139 + }, + { + "start": 29983.18, + "end": 29984.46, + "probability": 0.9575 + }, + { + "start": 29986.52, + "end": 29988.92, + "probability": 0.9125 + }, + { + "start": 29990.24, + "end": 29990.9, + "probability": 0.8986 + }, + { + "start": 29991.28, + "end": 29993.86, + "probability": 0.9925 + }, + { + "start": 29994.0, + "end": 29996.6, + "probability": 0.6553 + }, + { + "start": 29998.24, + "end": 29999.24, + "probability": 0.1703 + }, + { + "start": 30000.16, + "end": 30002.06, + "probability": 0.6172 + }, + { + "start": 30002.82, + "end": 30005.02, + "probability": 0.8221 + }, + { + "start": 30006.4, + "end": 30011.24, + "probability": 0.9616 + }, + { + "start": 30012.0, + "end": 30012.7, + "probability": 0.6329 + }, + { + "start": 30014.34, + "end": 30015.54, + "probability": 0.0523 + }, + { + "start": 30015.54, + "end": 30015.54, + "probability": 0.0508 + }, + { + "start": 30015.54, + "end": 30015.54, + "probability": 0.1442 + }, + { + "start": 30015.54, + "end": 30015.54, + "probability": 0.2017 + }, + { + "start": 30015.54, + "end": 30018.44, + "probability": 0.8431 + }, + { + "start": 30020.64, + "end": 30023.74, + "probability": 0.9197 + }, + { + "start": 30025.88, + "end": 30027.6, + "probability": 0.5407 + }, + { + "start": 30028.14, + "end": 30029.11, + "probability": 0.8999 + }, + { + "start": 30032.08, + "end": 30033.84, + "probability": 0.334 + }, + { + "start": 30034.8, + "end": 30035.46, + "probability": 0.1547 + }, + { + "start": 30035.46, + "end": 30036.2, + "probability": 0.1494 + }, + { + "start": 30037.32, + "end": 30040.4, + "probability": 0.8303 + }, + { + "start": 30042.44, + "end": 30046.66, + "probability": 0.9455 + }, + { + "start": 30047.38, + "end": 30051.5, + "probability": 0.9864 + }, + { + "start": 30052.6, + "end": 30053.16, + "probability": 0.9236 + }, + { + "start": 30054.9, + "end": 30057.84, + "probability": 0.7565 + }, + { + "start": 30057.86, + "end": 30058.98, + "probability": 0.8111 + }, + { + "start": 30059.04, + "end": 30059.46, + "probability": 0.4895 + }, + { + "start": 30059.5, + "end": 30060.4, + "probability": 0.9898 + }, + { + "start": 30060.46, + "end": 30061.56, + "probability": 0.9259 + }, + { + "start": 30061.92, + "end": 30062.44, + "probability": 0.7742 + }, + { + "start": 30063.18, + "end": 30064.12, + "probability": 0.6102 + }, + { + "start": 30065.3, + "end": 30069.06, + "probability": 0.992 + }, + { + "start": 30070.46, + "end": 30071.5, + "probability": 0.9687 + }, + { + "start": 30073.54, + "end": 30074.44, + "probability": 0.9295 + }, + { + "start": 30075.44, + "end": 30079.5, + "probability": 0.9886 + }, + { + "start": 30080.76, + "end": 30085.02, + "probability": 0.9861 + }, + { + "start": 30085.64, + "end": 30088.82, + "probability": 0.986 + }, + { + "start": 30089.26, + "end": 30092.78, + "probability": 0.9958 + }, + { + "start": 30094.38, + "end": 30095.99, + "probability": 0.9079 + }, + { + "start": 30096.54, + "end": 30097.04, + "probability": 0.6725 + }, + { + "start": 30097.32, + "end": 30098.7, + "probability": 0.8467 + }, + { + "start": 30098.8, + "end": 30099.3, + "probability": 0.6268 + }, + { + "start": 30101.18, + "end": 30101.72, + "probability": 0.324 + }, + { + "start": 30102.26, + "end": 30105.06, + "probability": 0.9907 + }, + { + "start": 30106.04, + "end": 30107.76, + "probability": 0.9284 + }, + { + "start": 30109.86, + "end": 30112.04, + "probability": 0.9264 + }, + { + "start": 30113.82, + "end": 30117.66, + "probability": 0.9819 + }, + { + "start": 30119.1, + "end": 30120.36, + "probability": 0.9616 + }, + { + "start": 30120.44, + "end": 30123.0, + "probability": 0.9043 + }, + { + "start": 30124.16, + "end": 30124.46, + "probability": 0.8862 + }, + { + "start": 30126.04, + "end": 30126.9, + "probability": 0.7908 + }, + { + "start": 30128.12, + "end": 30129.66, + "probability": 0.6683 + }, + { + "start": 30130.56, + "end": 30131.74, + "probability": 0.8111 + }, + { + "start": 30132.74, + "end": 30134.86, + "probability": 0.979 + }, + { + "start": 30135.52, + "end": 30136.76, + "probability": 0.5195 + }, + { + "start": 30137.42, + "end": 30138.32, + "probability": 0.6622 + }, + { + "start": 30138.76, + "end": 30139.32, + "probability": 0.3771 + }, + { + "start": 30139.32, + "end": 30140.34, + "probability": 0.7939 + }, + { + "start": 30140.44, + "end": 30140.58, + "probability": 0.4552 + }, + { + "start": 30140.58, + "end": 30142.42, + "probability": 0.8017 + }, + { + "start": 30143.12, + "end": 30146.88, + "probability": 0.7935 + }, + { + "start": 30147.22, + "end": 30148.92, + "probability": 0.7079 + }, + { + "start": 30148.92, + "end": 30150.14, + "probability": 0.6748 + }, + { + "start": 30150.24, + "end": 30151.04, + "probability": 0.8068 + }, + { + "start": 30152.52, + "end": 30153.44, + "probability": 0.9888 + }, + { + "start": 30154.28, + "end": 30157.28, + "probability": 0.6302 + }, + { + "start": 30157.36, + "end": 30158.32, + "probability": 0.7986 + }, + { + "start": 30158.76, + "end": 30159.94, + "probability": 0.9658 + }, + { + "start": 30160.5, + "end": 30160.94, + "probability": 0.9548 + }, + { + "start": 30161.58, + "end": 30162.96, + "probability": 0.7378 + }, + { + "start": 30163.14, + "end": 30163.66, + "probability": 0.7202 + }, + { + "start": 30165.14, + "end": 30166.62, + "probability": 0.7903 + }, + { + "start": 30167.18, + "end": 30171.1, + "probability": 0.9946 + }, + { + "start": 30171.18, + "end": 30171.8, + "probability": 0.9922 + }, + { + "start": 30171.86, + "end": 30172.7, + "probability": 0.7257 + }, + { + "start": 30173.32, + "end": 30174.28, + "probability": 0.5999 + }, + { + "start": 30175.46, + "end": 30175.69, + "probability": 0.6608 + }, + { + "start": 30177.24, + "end": 30178.48, + "probability": 0.8234 + }, + { + "start": 30178.56, + "end": 30181.8, + "probability": 0.9079 + }, + { + "start": 30182.1, + "end": 30182.9, + "probability": 0.9937 + }, + { + "start": 30183.24, + "end": 30187.08, + "probability": 0.9546 + }, + { + "start": 30187.12, + "end": 30187.81, + "probability": 0.5302 + }, + { + "start": 30189.46, + "end": 30192.9, + "probability": 0.7817 + }, + { + "start": 30193.18, + "end": 30194.32, + "probability": 0.7176 + }, + { + "start": 30195.32, + "end": 30195.88, + "probability": 0.9174 + }, + { + "start": 30196.76, + "end": 30200.62, + "probability": 0.895 + }, + { + "start": 30201.3, + "end": 30202.4, + "probability": 0.8625 + }, + { + "start": 30202.86, + "end": 30203.86, + "probability": 0.9257 + }, + { + "start": 30204.4, + "end": 30204.74, + "probability": 0.9878 + }, + { + "start": 30206.6, + "end": 30208.7, + "probability": 0.9473 + }, + { + "start": 30209.34, + "end": 30210.42, + "probability": 0.8896 + }, + { + "start": 30211.92, + "end": 30212.66, + "probability": 0.8001 + }, + { + "start": 30213.84, + "end": 30216.36, + "probability": 0.9223 + }, + { + "start": 30218.0, + "end": 30219.82, + "probability": 0.9872 + }, + { + "start": 30220.2, + "end": 30222.1, + "probability": 0.843 + }, + { + "start": 30225.6, + "end": 30228.08, + "probability": 0.9824 + }, + { + "start": 30228.16, + "end": 30229.56, + "probability": 0.666 + }, + { + "start": 30230.46, + "end": 30232.08, + "probability": 0.7417 + }, + { + "start": 30232.18, + "end": 30233.1, + "probability": 0.8636 + }, + { + "start": 30234.0, + "end": 30235.54, + "probability": 0.8261 + }, + { + "start": 30236.98, + "end": 30240.5, + "probability": 0.9967 + }, + { + "start": 30240.54, + "end": 30241.2, + "probability": 0.7539 + }, + { + "start": 30242.04, + "end": 30243.37, + "probability": 0.9159 + }, + { + "start": 30243.64, + "end": 30244.34, + "probability": 0.8648 + }, + { + "start": 30244.58, + "end": 30245.5, + "probability": 0.9263 + }, + { + "start": 30246.7, + "end": 30250.3, + "probability": 0.9609 + }, + { + "start": 30250.34, + "end": 30250.6, + "probability": 0.7957 + }, + { + "start": 30251.12, + "end": 30252.52, + "probability": 0.7995 + }, + { + "start": 30253.8, + "end": 30254.84, + "probability": 0.6411 + }, + { + "start": 30255.76, + "end": 30258.12, + "probability": 0.7836 + }, + { + "start": 30259.94, + "end": 30260.96, + "probability": 0.8623 + }, + { + "start": 30264.22, + "end": 30264.66, + "probability": 0.5733 + }, + { + "start": 30264.74, + "end": 30264.98, + "probability": 0.9514 + }, + { + "start": 30265.0, + "end": 30266.24, + "probability": 0.9955 + }, + { + "start": 30266.42, + "end": 30267.2, + "probability": 0.9832 + }, + { + "start": 30269.1, + "end": 30270.46, + "probability": 0.9585 + }, + { + "start": 30272.1, + "end": 30275.16, + "probability": 0.6589 + }, + { + "start": 30275.34, + "end": 30276.16, + "probability": 0.8075 + }, + { + "start": 30277.4, + "end": 30279.12, + "probability": 0.8501 + }, + { + "start": 30279.4, + "end": 30280.8, + "probability": 0.6695 + }, + { + "start": 30280.8, + "end": 30282.74, + "probability": 0.6749 + }, + { + "start": 30282.86, + "end": 30285.86, + "probability": 0.6193 + }, + { + "start": 30287.58, + "end": 30292.66, + "probability": 0.7344 + }, + { + "start": 30293.56, + "end": 30295.38, + "probability": 0.6746 + }, + { + "start": 30296.62, + "end": 30296.86, + "probability": 0.7996 + }, + { + "start": 30298.02, + "end": 30298.56, + "probability": 0.7494 + }, + { + "start": 30298.58, + "end": 30299.02, + "probability": 0.8676 + }, + { + "start": 30299.04, + "end": 30301.0, + "probability": 0.8878 + }, + { + "start": 30302.04, + "end": 30305.3, + "probability": 0.9737 + }, + { + "start": 30305.38, + "end": 30305.9, + "probability": 0.5639 + }, + { + "start": 30306.3, + "end": 30308.9, + "probability": 0.9512 + }, + { + "start": 30309.52, + "end": 30311.41, + "probability": 0.4056 + }, + { + "start": 30312.88, + "end": 30313.53, + "probability": 0.9451 + }, + { + "start": 30314.68, + "end": 30316.52, + "probability": 0.7375 + }, + { + "start": 30316.62, + "end": 30318.04, + "probability": 0.9938 + }, + { + "start": 30318.9, + "end": 30319.6, + "probability": 0.6012 + }, + { + "start": 30320.82, + "end": 30323.56, + "probability": 0.8657 + }, + { + "start": 30323.9, + "end": 30325.56, + "probability": 0.9864 + }, + { + "start": 30326.4, + "end": 30329.28, + "probability": 0.56 + }, + { + "start": 30329.54, + "end": 30329.78, + "probability": 0.7292 + }, + { + "start": 30329.86, + "end": 30333.02, + "probability": 0.9454 + }, + { + "start": 30333.08, + "end": 30333.57, + "probability": 0.3241 + }, + { + "start": 30334.16, + "end": 30336.04, + "probability": 0.7087 + }, + { + "start": 30337.06, + "end": 30338.9, + "probability": 0.9572 + }, + { + "start": 30340.58, + "end": 30341.8, + "probability": 0.3801 + }, + { + "start": 30341.84, + "end": 30342.71, + "probability": 0.8166 + }, + { + "start": 30343.1, + "end": 30343.72, + "probability": 0.8593 + }, + { + "start": 30344.2, + "end": 30348.02, + "probability": 0.8735 + }, + { + "start": 30348.34, + "end": 30349.64, + "probability": 0.5732 + }, + { + "start": 30350.84, + "end": 30353.88, + "probability": 0.9868 + }, + { + "start": 30354.36, + "end": 30357.54, + "probability": 0.8347 + }, + { + "start": 30357.76, + "end": 30359.04, + "probability": 0.9025 + }, + { + "start": 30359.28, + "end": 30359.52, + "probability": 0.7258 + }, + { + "start": 30359.82, + "end": 30361.1, + "probability": 0.7194 + }, + { + "start": 30363.08, + "end": 30366.2, + "probability": 0.8579 + }, + { + "start": 30366.4, + "end": 30367.56, + "probability": 0.9042 + }, + { + "start": 30368.78, + "end": 30370.2, + "probability": 0.8524 + }, + { + "start": 30370.46, + "end": 30372.82, + "probability": 0.9359 + }, + { + "start": 30372.94, + "end": 30373.34, + "probability": 0.9804 + }, + { + "start": 30373.92, + "end": 30377.78, + "probability": 0.073 + }, + { + "start": 30378.46, + "end": 30378.78, + "probability": 0.5713 + }, + { + "start": 30379.24, + "end": 30380.66, + "probability": 0.8822 + }, + { + "start": 30381.4, + "end": 30384.0, + "probability": 0.8554 + }, + { + "start": 30385.1, + "end": 30385.12, + "probability": 0.1178 + }, + { + "start": 30386.25, + "end": 30390.54, + "probability": 0.6482 + }, + { + "start": 30390.62, + "end": 30392.84, + "probability": 0.7681 + }, + { + "start": 30392.84, + "end": 30394.02, + "probability": 0.8053 + }, + { + "start": 30394.06, + "end": 30396.66, + "probability": 0.6535 + }, + { + "start": 30396.74, + "end": 30398.14, + "probability": 0.8502 + }, + { + "start": 30398.16, + "end": 30400.54, + "probability": 0.9935 + }, + { + "start": 30400.56, + "end": 30401.36, + "probability": 0.9041 + }, + { + "start": 30404.08, + "end": 30405.9, + "probability": 0.6232 + }, + { + "start": 30405.9, + "end": 30407.51, + "probability": 0.7449 + }, + { + "start": 30408.08, + "end": 30409.9, + "probability": 0.4996 + }, + { + "start": 30411.32, + "end": 30412.76, + "probability": 0.6683 + }, + { + "start": 30413.18, + "end": 30414.04, + "probability": 0.8802 + }, + { + "start": 30414.8, + "end": 30417.12, + "probability": 0.9755 + }, + { + "start": 30417.94, + "end": 30418.74, + "probability": 0.8632 + }, + { + "start": 30419.02, + "end": 30421.16, + "probability": 0.9941 + }, + { + "start": 30421.68, + "end": 30424.26, + "probability": 0.9341 + }, + { + "start": 30425.32, + "end": 30426.48, + "probability": 0.6594 + }, + { + "start": 30426.5, + "end": 30427.6, + "probability": 0.9084 + }, + { + "start": 30428.2, + "end": 30428.74, + "probability": 0.6725 + }, + { + "start": 30428.96, + "end": 30429.8, + "probability": 0.9609 + }, + { + "start": 30429.96, + "end": 30433.14, + "probability": 0.8892 + }, + { + "start": 30433.54, + "end": 30434.44, + "probability": 0.6022 + }, + { + "start": 30434.64, + "end": 30435.02, + "probability": 0.926 + }, + { + "start": 30435.78, + "end": 30439.24, + "probability": 0.9351 + }, + { + "start": 30439.86, + "end": 30446.42, + "probability": 0.877 + }, + { + "start": 30448.26, + "end": 30455.8, + "probability": 0.6954 + }, + { + "start": 30456.24, + "end": 30457.2, + "probability": 0.8581 + }, + { + "start": 30458.12, + "end": 30461.72, + "probability": 0.8314 + }, + { + "start": 30461.98, + "end": 30462.18, + "probability": 0.9221 + }, + { + "start": 30462.28, + "end": 30463.16, + "probability": 0.9673 + }, + { + "start": 30463.16, + "end": 30463.7, + "probability": 0.9147 + }, + { + "start": 30463.84, + "end": 30464.28, + "probability": 0.9657 + }, + { + "start": 30464.4, + "end": 30465.34, + "probability": 0.663 + }, + { + "start": 30465.64, + "end": 30466.6, + "probability": 0.7631 + }, + { + "start": 30466.72, + "end": 30467.46, + "probability": 0.9898 + }, + { + "start": 30467.6, + "end": 30467.92, + "probability": 0.6517 + }, + { + "start": 30467.92, + "end": 30469.08, + "probability": 0.7028 + }, + { + "start": 30469.34, + "end": 30470.14, + "probability": 0.7917 + }, + { + "start": 30471.7, + "end": 30472.76, + "probability": 0.2246 + }, + { + "start": 30473.32, + "end": 30476.44, + "probability": 0.9434 + }, + { + "start": 30476.48, + "end": 30479.3, + "probability": 0.9249 + }, + { + "start": 30480.08, + "end": 30480.82, + "probability": 0.9679 + }, + { + "start": 30481.34, + "end": 30482.24, + "probability": 0.9855 + }, + { + "start": 30482.88, + "end": 30483.68, + "probability": 0.9431 + }, + { + "start": 30483.82, + "end": 30484.06, + "probability": 0.9423 + }, + { + "start": 30485.0, + "end": 30487.38, + "probability": 0.9958 + }, + { + "start": 30488.3, + "end": 30489.18, + "probability": 0.544 + }, + { + "start": 30489.24, + "end": 30489.54, + "probability": 0.7927 + }, + { + "start": 30490.4, + "end": 30492.64, + "probability": 0.9062 + }, + { + "start": 30494.52, + "end": 30499.22, + "probability": 0.9048 + }, + { + "start": 30499.94, + "end": 30501.08, + "probability": 0.9691 + }, + { + "start": 30502.44, + "end": 30504.34, + "probability": 0.8209 + }, + { + "start": 30505.28, + "end": 30507.44, + "probability": 0.7765 + }, + { + "start": 30507.44, + "end": 30509.52, + "probability": 0.9264 + }, + { + "start": 30510.32, + "end": 30512.32, + "probability": 0.9535 + }, + { + "start": 30513.2, + "end": 30513.99, + "probability": 0.9829 + }, + { + "start": 30514.7, + "end": 30517.78, + "probability": 0.805 + }, + { + "start": 30518.18, + "end": 30520.49, + "probability": 0.9394 + }, + { + "start": 30520.64, + "end": 30521.0, + "probability": 0.6068 + }, + { + "start": 30521.54, + "end": 30522.36, + "probability": 0.9458 + }, + { + "start": 30523.4, + "end": 30525.06, + "probability": 0.9905 + }, + { + "start": 30525.78, + "end": 30526.64, + "probability": 0.7724 + }, + { + "start": 30526.8, + "end": 30530.9, + "probability": 0.9807 + }, + { + "start": 30531.6, + "end": 30534.63, + "probability": 0.998 + }, + { + "start": 30536.28, + "end": 30538.1, + "probability": 0.8052 + }, + { + "start": 30539.72, + "end": 30541.92, + "probability": 0.9929 + }, + { + "start": 30542.14, + "end": 30543.6, + "probability": 0.9751 + }, + { + "start": 30544.0, + "end": 30545.08, + "probability": 0.9347 + }, + { + "start": 30545.9, + "end": 30547.84, + "probability": 0.9482 + }, + { + "start": 30547.88, + "end": 30550.14, + "probability": 0.957 + }, + { + "start": 30550.8, + "end": 30551.76, + "probability": 0.9028 + }, + { + "start": 30552.52, + "end": 30553.54, + "probability": 0.948 + }, + { + "start": 30554.0, + "end": 30554.52, + "probability": 0.7783 + }, + { + "start": 30555.32, + "end": 30557.08, + "probability": 0.8964 + }, + { + "start": 30557.08, + "end": 30558.68, + "probability": 0.5425 + }, + { + "start": 30559.6, + "end": 30562.64, + "probability": 0.6675 + }, + { + "start": 30563.28, + "end": 30565.22, + "probability": 0.7844 + }, + { + "start": 30565.48, + "end": 30567.04, + "probability": 0.8588 + }, + { + "start": 30568.28, + "end": 30570.28, + "probability": 0.5173 + }, + { + "start": 30570.82, + "end": 30575.16, + "probability": 0.9933 + }, + { + "start": 30576.46, + "end": 30579.22, + "probability": 0.7307 + }, + { + "start": 30579.54, + "end": 30580.58, + "probability": 0.9585 + }, + { + "start": 30582.5, + "end": 30584.62, + "probability": 0.8506 + }, + { + "start": 30584.82, + "end": 30585.68, + "probability": 0.702 + }, + { + "start": 30586.46, + "end": 30589.18, + "probability": 0.9154 + }, + { + "start": 30589.64, + "end": 30591.39, + "probability": 0.6944 + }, + { + "start": 30592.24, + "end": 30594.42, + "probability": 0.9878 + }, + { + "start": 30595.38, + "end": 30596.12, + "probability": 0.9078 + }, + { + "start": 30597.28, + "end": 30598.02, + "probability": 0.6773 + }, + { + "start": 30599.8, + "end": 30601.66, + "probability": 0.9756 + }, + { + "start": 30602.22, + "end": 30604.5, + "probability": 0.9514 + }, + { + "start": 30605.14, + "end": 30607.34, + "probability": 0.5386 + }, + { + "start": 30607.34, + "end": 30608.9, + "probability": 0.5925 + }, + { + "start": 30609.6, + "end": 30611.06, + "probability": 0.9548 + }, + { + "start": 30611.56, + "end": 30612.7, + "probability": 0.937 + }, + { + "start": 30612.8, + "end": 30613.66, + "probability": 0.8173 + }, + { + "start": 30615.06, + "end": 30616.18, + "probability": 0.8377 + }, + { + "start": 30619.46, + "end": 30621.34, + "probability": 0.9492 + }, + { + "start": 30622.52, + "end": 30624.42, + "probability": 0.8215 + }, + { + "start": 30626.48, + "end": 30628.8, + "probability": 0.9638 + }, + { + "start": 30629.46, + "end": 30630.94, + "probability": 0.9609 + }, + { + "start": 30630.94, + "end": 30633.12, + "probability": 0.9569 + }, + { + "start": 30633.86, + "end": 30636.68, + "probability": 0.6913 + }, + { + "start": 30636.68, + "end": 30637.06, + "probability": 0.4649 + }, + { + "start": 30637.12, + "end": 30638.6, + "probability": 0.4675 + }, + { + "start": 30638.68, + "end": 30641.32, + "probability": 0.6831 + }, + { + "start": 30641.38, + "end": 30644.0, + "probability": 0.6908 + }, + { + "start": 30644.14, + "end": 30644.62, + "probability": 0.8408 + }, + { + "start": 30650.68, + "end": 30652.46, + "probability": 0.7143 + }, + { + "start": 30654.3, + "end": 30655.4, + "probability": 0.8523 + }, + { + "start": 30657.16, + "end": 30657.84, + "probability": 0.854 + }, + { + "start": 30658.68, + "end": 30661.08, + "probability": 0.9768 + }, + { + "start": 30662.9, + "end": 30664.06, + "probability": 0.9721 + }, + { + "start": 30664.5, + "end": 30667.4, + "probability": 0.9314 + }, + { + "start": 30667.48, + "end": 30668.94, + "probability": 0.9595 + }, + { + "start": 30669.8, + "end": 30671.16, + "probability": 0.991 + }, + { + "start": 30671.18, + "end": 30671.58, + "probability": 0.9 + }, + { + "start": 30672.84, + "end": 30673.28, + "probability": 0.8984 + }, + { + "start": 30674.82, + "end": 30678.48, + "probability": 0.9458 + }, + { + "start": 30678.86, + "end": 30679.9, + "probability": 0.7454 + }, + { + "start": 30681.02, + "end": 30682.72, + "probability": 0.9688 + }, + { + "start": 30683.82, + "end": 30685.36, + "probability": 0.9191 + }, + { + "start": 30685.72, + "end": 30687.36, + "probability": 0.9865 + }, + { + "start": 30688.5, + "end": 30689.46, + "probability": 0.8848 + }, + { + "start": 30691.04, + "end": 30692.24, + "probability": 0.9064 + }, + { + "start": 30694.22, + "end": 30696.02, + "probability": 0.8921 + }, + { + "start": 30696.22, + "end": 30697.56, + "probability": 0.8924 + }, + { + "start": 30697.9, + "end": 30699.3, + "probability": 0.9738 + }, + { + "start": 30700.18, + "end": 30704.12, + "probability": 0.9855 + }, + { + "start": 30705.36, + "end": 30706.27, + "probability": 0.7913 + }, + { + "start": 30707.32, + "end": 30709.08, + "probability": 0.8974 + }, + { + "start": 30709.56, + "end": 30712.64, + "probability": 0.9602 + }, + { + "start": 30714.9, + "end": 30717.0, + "probability": 0.0554 + }, + { + "start": 30717.0, + "end": 30717.0, + "probability": 0.3881 + }, + { + "start": 30717.36, + "end": 30720.82, + "probability": 0.9042 + }, + { + "start": 30720.9, + "end": 30721.74, + "probability": 0.3173 + }, + { + "start": 30722.32, + "end": 30725.52, + "probability": 0.6558 + }, + { + "start": 30728.03, + "end": 30732.26, + "probability": 0.5417 + }, + { + "start": 30732.38, + "end": 30734.23, + "probability": 0.6699 + }, + { + "start": 30736.27, + "end": 30740.51, + "probability": 0.7383 + }, + { + "start": 30742.62, + "end": 30743.46, + "probability": 0.9617 + }, + { + "start": 30744.12, + "end": 30744.3, + "probability": 0.7415 + }, + { + "start": 30745.04, + "end": 30752.46, + "probability": 0.8834 + }, + { + "start": 30753.28, + "end": 30756.54, + "probability": 0.5677 + }, + { + "start": 30757.38, + "end": 30761.46, + "probability": 0.2451 + }, + { + "start": 30761.6, + "end": 30763.88, + "probability": 0.9152 + }, + { + "start": 30763.94, + "end": 30767.01, + "probability": 0.9858 + }, + { + "start": 30768.04, + "end": 30770.14, + "probability": 0.8857 + }, + { + "start": 30771.5, + "end": 30773.15, + "probability": 0.5822 + }, + { + "start": 30773.66, + "end": 30774.3, + "probability": 0.432 + }, + { + "start": 30774.42, + "end": 30775.32, + "probability": 0.7855 + }, + { + "start": 30776.12, + "end": 30776.86, + "probability": 0.0415 + }, + { + "start": 30776.94, + "end": 30779.92, + "probability": 0.7966 + }, + { + "start": 30780.84, + "end": 30782.38, + "probability": 0.6738 + }, + { + "start": 30782.86, + "end": 30784.8, + "probability": 0.8605 + }, + { + "start": 30785.36, + "end": 30786.34, + "probability": 0.8179 + }, + { + "start": 30786.46, + "end": 30787.18, + "probability": 0.9839 + }, + { + "start": 30787.7, + "end": 30790.66, + "probability": 0.7062 + }, + { + "start": 30790.72, + "end": 30791.07, + "probability": 0.0202 + }, + { + "start": 30791.8, + "end": 30792.34, + "probability": 0.5612 + }, + { + "start": 30792.48, + "end": 30796.04, + "probability": 0.9595 + }, + { + "start": 30796.04, + "end": 30799.14, + "probability": 0.956 + }, + { + "start": 30800.14, + "end": 30801.76, + "probability": 0.9347 + }, + { + "start": 30802.64, + "end": 30802.78, + "probability": 0.0833 + }, + { + "start": 30803.76, + "end": 30805.74, + "probability": 0.56 + }, + { + "start": 30806.44, + "end": 30807.84, + "probability": 0.9128 + }, + { + "start": 30808.72, + "end": 30811.82, + "probability": 0.75 + }, + { + "start": 30812.36, + "end": 30814.66, + "probability": 0.8823 + }, + { + "start": 30815.26, + "end": 30817.12, + "probability": 0.8677 + }, + { + "start": 30817.22, + "end": 30818.68, + "probability": 0.9844 + }, + { + "start": 30819.06, + "end": 30820.96, + "probability": 0.9858 + }, + { + "start": 30821.44, + "end": 30822.96, + "probability": 0.96 + }, + { + "start": 30823.0, + "end": 30824.05, + "probability": 0.9949 + }, + { + "start": 30824.48, + "end": 30826.13, + "probability": 0.7908 + }, + { + "start": 30827.76, + "end": 30828.52, + "probability": 0.5448 + }, + { + "start": 30829.62, + "end": 30831.04, + "probability": 0.8365 + }, + { + "start": 30832.64, + "end": 30834.3, + "probability": 0.9694 + }, + { + "start": 30834.36, + "end": 30835.2, + "probability": 0.7526 + }, + { + "start": 30836.78, + "end": 30838.24, + "probability": 0.7573 + }, + { + "start": 30839.26, + "end": 30842.1, + "probability": 0.9531 + }, + { + "start": 30843.04, + "end": 30844.42, + "probability": 0.3894 + }, + { + "start": 30845.38, + "end": 30846.14, + "probability": 0.5139 + }, + { + "start": 30846.58, + "end": 30847.52, + "probability": 0.8232 + }, + { + "start": 30847.68, + "end": 30848.42, + "probability": 0.6035 + }, + { + "start": 30848.48, + "end": 30851.08, + "probability": 0.7583 + }, + { + "start": 30851.86, + "end": 30856.74, + "probability": 0.9351 + }, + { + "start": 30856.74, + "end": 30860.56, + "probability": 0.9961 + }, + { + "start": 30861.2, + "end": 30862.48, + "probability": 0.6359 + }, + { + "start": 30863.46, + "end": 30865.96, + "probability": 0.9314 + }, + { + "start": 30866.88, + "end": 30870.5, + "probability": 0.978 + }, + { + "start": 30872.32, + "end": 30873.75, + "probability": 0.9751 + }, + { + "start": 30875.66, + "end": 30878.82, + "probability": 0.9478 + }, + { + "start": 30880.04, + "end": 30885.16, + "probability": 0.9067 + }, + { + "start": 30888.48, + "end": 30890.22, + "probability": 0.4741 + }, + { + "start": 30890.46, + "end": 30891.36, + "probability": 0.6862 + }, + { + "start": 30891.99, + "end": 30894.9, + "probability": 0.1979 + }, + { + "start": 30895.02, + "end": 30896.76, + "probability": 0.5996 + }, + { + "start": 30898.12, + "end": 30899.66, + "probability": 0.4781 + }, + { + "start": 30899.84, + "end": 30903.49, + "probability": 0.8636 + }, + { + "start": 30904.11, + "end": 30908.7, + "probability": 0.9895 + }, + { + "start": 30909.22, + "end": 30913.26, + "probability": 0.9698 + }, + { + "start": 30913.44, + "end": 30915.32, + "probability": 0.8123 + }, + { + "start": 30916.42, + "end": 30916.42, + "probability": 0.4991 + }, + { + "start": 30916.84, + "end": 30918.58, + "probability": 0.6022 + }, + { + "start": 30919.8, + "end": 30920.92, + "probability": 0.6616 + }, + { + "start": 30921.58, + "end": 30924.08, + "probability": 0.7397 + }, + { + "start": 30926.04, + "end": 30927.72, + "probability": 0.8371 + }, + { + "start": 30928.36, + "end": 30930.42, + "probability": 0.4036 + }, + { + "start": 30931.6, + "end": 30934.56, + "probability": 0.795 + }, + { + "start": 30934.84, + "end": 30934.88, + "probability": 0.0841 + }, + { + "start": 30934.94, + "end": 30935.14, + "probability": 0.773 + }, + { + "start": 30935.2, + "end": 30936.36, + "probability": 0.9698 + }, + { + "start": 30936.78, + "end": 30938.44, + "probability": 0.9954 + }, + { + "start": 30939.1, + "end": 30940.34, + "probability": 0.8524 + }, + { + "start": 30940.82, + "end": 30942.42, + "probability": 0.9899 + }, + { + "start": 30942.56, + "end": 30944.92, + "probability": 0.9563 + }, + { + "start": 30945.0, + "end": 30949.94, + "probability": 0.8901 + }, + { + "start": 30950.68, + "end": 30951.74, + "probability": 0.537 + }, + { + "start": 30952.76, + "end": 30955.24, + "probability": 0.7269 + }, + { + "start": 30955.98, + "end": 30956.74, + "probability": 0.9834 + }, + { + "start": 30957.82, + "end": 30959.12, + "probability": 0.8086 + }, + { + "start": 30960.42, + "end": 30963.58, + "probability": 0.7968 + }, + { + "start": 30963.68, + "end": 30964.5, + "probability": 0.8356 + }, + { + "start": 30964.64, + "end": 30965.0, + "probability": 0.4435 + }, + { + "start": 30966.18, + "end": 30967.48, + "probability": 0.8802 + }, + { + "start": 30967.52, + "end": 30969.0, + "probability": 0.9675 + }, + { + "start": 30970.28, + "end": 30971.46, + "probability": 0.5187 + }, + { + "start": 30972.72, + "end": 30974.06, + "probability": 0.8822 + }, + { + "start": 30974.6, + "end": 30977.4, + "probability": 0.8559 + }, + { + "start": 30977.52, + "end": 30979.22, + "probability": 0.7568 + }, + { + "start": 30979.62, + "end": 30981.44, + "probability": 0.8251 + }, + { + "start": 30981.74, + "end": 30983.35, + "probability": 0.9017 + }, + { + "start": 30984.6, + "end": 30986.44, + "probability": 0.9276 + }, + { + "start": 30987.24, + "end": 30987.38, + "probability": 0.564 + }, + { + "start": 30987.48, + "end": 30989.22, + "probability": 0.4936 + }, + { + "start": 30989.24, + "end": 30990.42, + "probability": 0.5167 + }, + { + "start": 30991.14, + "end": 30993.2, + "probability": 0.951 + }, + { + "start": 30993.46, + "end": 30994.48, + "probability": 0.7352 + }, + { + "start": 30994.86, + "end": 30997.36, + "probability": 0.901 + }, + { + "start": 30998.5, + "end": 31001.09, + "probability": 0.9622 + }, + { + "start": 31001.36, + "end": 31001.84, + "probability": 0.8754 + }, + { + "start": 31001.98, + "end": 31003.08, + "probability": 0.8629 + }, + { + "start": 31003.86, + "end": 31005.24, + "probability": 0.9754 + }, + { + "start": 31005.32, + "end": 31006.56, + "probability": 0.885 + }, + { + "start": 31006.66, + "end": 31008.02, + "probability": 0.821 + }, + { + "start": 31008.3, + "end": 31011.2, + "probability": 0.9855 + }, + { + "start": 31011.5, + "end": 31013.99, + "probability": 0.5689 + }, + { + "start": 31014.4, + "end": 31016.56, + "probability": 0.9276 + }, + { + "start": 31017.88, + "end": 31019.68, + "probability": 0.7814 + }, + { + "start": 31019.78, + "end": 31021.08, + "probability": 0.8698 + }, + { + "start": 31021.21, + "end": 31021.72, + "probability": 0.8084 + }, + { + "start": 31023.14, + "end": 31024.19, + "probability": 0.7334 + }, + { + "start": 31025.32, + "end": 31028.78, + "probability": 0.9782 + }, + { + "start": 31030.1, + "end": 31032.76, + "probability": 0.9772 + }, + { + "start": 31033.4, + "end": 31035.86, + "probability": 0.9918 + }, + { + "start": 31036.5, + "end": 31037.84, + "probability": 0.4731 + }, + { + "start": 31037.9, + "end": 31040.46, + "probability": 0.7956 + }, + { + "start": 31041.04, + "end": 31042.72, + "probability": 0.95 + }, + { + "start": 31044.08, + "end": 31045.6, + "probability": 0.5555 + }, + { + "start": 31046.5, + "end": 31051.42, + "probability": 0.7876 + }, + { + "start": 31051.98, + "end": 31053.83, + "probability": 0.6814 + }, + { + "start": 31054.38, + "end": 31054.96, + "probability": 0.6353 + }, + { + "start": 31055.08, + "end": 31056.72, + "probability": 0.6011 + }, + { + "start": 31057.02, + "end": 31057.9, + "probability": 0.7199 + }, + { + "start": 31058.3, + "end": 31059.98, + "probability": 0.7911 + }, + { + "start": 31060.8, + "end": 31061.71, + "probability": 0.9379 + }, + { + "start": 31062.24, + "end": 31065.86, + "probability": 0.9829 + }, + { + "start": 31066.14, + "end": 31066.38, + "probability": 0.7357 + }, + { + "start": 31067.86, + "end": 31069.94, + "probability": 0.3497 + }, + { + "start": 31070.92, + "end": 31073.86, + "probability": 0.4627 + }, + { + "start": 31074.49, + "end": 31079.34, + "probability": 0.2457 + }, + { + "start": 31079.42, + "end": 31080.16, + "probability": 0.7261 + }, + { + "start": 31081.52, + "end": 31084.3, + "probability": 0.3128 + }, + { + "start": 31085.24, + "end": 31088.3, + "probability": 0.0911 + }, + { + "start": 31113.64, + "end": 31115.18, + "probability": 0.7083 + }, + { + "start": 31115.4, + "end": 31119.0, + "probability": 0.9988 + }, + { + "start": 31119.34, + "end": 31119.34, + "probability": 0.5662 + }, + { + "start": 31119.34, + "end": 31121.53, + "probability": 0.4133 + }, + { + "start": 31123.12, + "end": 31124.82, + "probability": 0.9557 + }, + { + "start": 31126.74, + "end": 31129.24, + "probability": 0.9469 + }, + { + "start": 31129.44, + "end": 31129.9, + "probability": 0.7979 + }, + { + "start": 31129.94, + "end": 31130.44, + "probability": 0.9647 + }, + { + "start": 31130.6, + "end": 31131.28, + "probability": 0.931 + }, + { + "start": 31131.52, + "end": 31133.6, + "probability": 0.9306 + }, + { + "start": 31134.4, + "end": 31136.94, + "probability": 0.9404 + }, + { + "start": 31138.0, + "end": 31143.72, + "probability": 0.6093 + }, + { + "start": 31144.26, + "end": 31150.62, + "probability": 0.9785 + }, + { + "start": 31150.92, + "end": 31152.28, + "probability": 0.6729 + }, + { + "start": 31153.52, + "end": 31155.02, + "probability": 0.7494 + }, + { + "start": 31155.92, + "end": 31157.26, + "probability": 0.1131 + }, + { + "start": 31159.54, + "end": 31160.88, + "probability": 0.6642 + }, + { + "start": 31162.66, + "end": 31164.22, + "probability": 0.6802 + }, + { + "start": 31164.88, + "end": 31167.58, + "probability": 0.9415 + }, + { + "start": 31167.64, + "end": 31168.73, + "probability": 0.8459 + }, + { + "start": 31170.18, + "end": 31172.28, + "probability": 0.791 + }, + { + "start": 31173.68, + "end": 31174.98, + "probability": 0.7342 + }, + { + "start": 31176.28, + "end": 31177.18, + "probability": 0.6718 + }, + { + "start": 31177.4, + "end": 31179.46, + "probability": 0.7199 + }, + { + "start": 31179.62, + "end": 31181.9, + "probability": 0.9642 + }, + { + "start": 31182.14, + "end": 31183.9, + "probability": 0.8676 + }, + { + "start": 31184.48, + "end": 31189.0, + "probability": 0.9795 + }, + { + "start": 31189.0, + "end": 31193.52, + "probability": 0.995 + }, + { + "start": 31194.66, + "end": 31197.56, + "probability": 0.6995 + }, + { + "start": 31197.78, + "end": 31200.06, + "probability": 0.9817 + }, + { + "start": 31200.38, + "end": 31202.45, + "probability": 0.9988 + }, + { + "start": 31203.26, + "end": 31206.46, + "probability": 0.9972 + }, + { + "start": 31206.98, + "end": 31209.34, + "probability": 0.8417 + }, + { + "start": 31209.62, + "end": 31212.35, + "probability": 0.9619 + }, + { + "start": 31212.56, + "end": 31214.92, + "probability": 0.9634 + }, + { + "start": 31216.14, + "end": 31218.98, + "probability": 0.9749 + }, + { + "start": 31219.94, + "end": 31223.72, + "probability": 0.9979 + }, + { + "start": 31224.75, + "end": 31231.86, + "probability": 0.9741 + }, + { + "start": 31231.98, + "end": 31235.52, + "probability": 0.992 + }, + { + "start": 31235.74, + "end": 31238.16, + "probability": 0.9982 + }, + { + "start": 31238.84, + "end": 31239.04, + "probability": 0.25 + }, + { + "start": 31239.62, + "end": 31242.86, + "probability": 0.8407 + }, + { + "start": 31243.46, + "end": 31244.24, + "probability": 0.8865 + }, + { + "start": 31245.16, + "end": 31245.86, + "probability": 0.9835 + }, + { + "start": 31247.06, + "end": 31249.56, + "probability": 0.653 + }, + { + "start": 31250.22, + "end": 31255.02, + "probability": 0.9468 + }, + { + "start": 31255.94, + "end": 31261.3, + "probability": 0.6241 + }, + { + "start": 31262.16, + "end": 31263.6, + "probability": 0.8392 + }, + { + "start": 31264.3, + "end": 31267.54, + "probability": 0.9312 + }, + { + "start": 31268.22, + "end": 31270.62, + "probability": 0.9515 + }, + { + "start": 31272.14, + "end": 31275.52, + "probability": 0.9765 + }, + { + "start": 31275.64, + "end": 31278.6, + "probability": 0.9908 + }, + { + "start": 31278.72, + "end": 31280.7, + "probability": 0.9899 + }, + { + "start": 31280.82, + "end": 31283.02, + "probability": 0.9765 + }, + { + "start": 31283.56, + "end": 31284.66, + "probability": 0.9155 + }, + { + "start": 31284.82, + "end": 31285.42, + "probability": 0.9341 + }, + { + "start": 31285.56, + "end": 31286.9, + "probability": 0.8684 + }, + { + "start": 31287.3, + "end": 31288.6, + "probability": 0.9896 + }, + { + "start": 31288.82, + "end": 31291.8, + "probability": 0.7337 + }, + { + "start": 31291.96, + "end": 31298.06, + "probability": 0.9854 + }, + { + "start": 31298.06, + "end": 31304.14, + "probability": 0.9897 + }, + { + "start": 31305.34, + "end": 31307.02, + "probability": 0.9365 + }, + { + "start": 31307.52, + "end": 31309.98, + "probability": 0.7735 + }, + { + "start": 31310.32, + "end": 31311.4, + "probability": 0.7094 + }, + { + "start": 31311.98, + "end": 31313.06, + "probability": 0.6745 + }, + { + "start": 31313.06, + "end": 31313.82, + "probability": 0.5925 + }, + { + "start": 31313.88, + "end": 31314.02, + "probability": 0.3301 + }, + { + "start": 31314.7, + "end": 31318.86, + "probability": 0.998 + }, + { + "start": 31319.0, + "end": 31324.32, + "probability": 0.9923 + }, + { + "start": 31324.74, + "end": 31326.99, + "probability": 0.6118 + }, + { + "start": 31328.14, + "end": 31334.58, + "probability": 0.6661 + }, + { + "start": 31334.58, + "end": 31336.84, + "probability": 0.5632 + }, + { + "start": 31337.54, + "end": 31340.9, + "probability": 0.8923 + }, + { + "start": 31341.48, + "end": 31341.9, + "probability": 0.5218 + }, + { + "start": 31343.0, + "end": 31346.38, + "probability": 0.8082 + }, + { + "start": 31346.5, + "end": 31348.17, + "probability": 0.9545 + }, + { + "start": 31349.72, + "end": 31352.94, + "probability": 0.9686 + }, + { + "start": 31353.46, + "end": 31354.08, + "probability": 0.6272 + }, + { + "start": 31354.62, + "end": 31355.62, + "probability": 0.6869 + }, + { + "start": 31356.34, + "end": 31358.22, + "probability": 0.9092 + }, + { + "start": 31359.02, + "end": 31363.72, + "probability": 0.9736 + }, + { + "start": 31364.96, + "end": 31367.0, + "probability": 0.953 + }, + { + "start": 31367.44, + "end": 31370.32, + "probability": 0.9802 + }, + { + "start": 31370.46, + "end": 31374.48, + "probability": 0.9875 + }, + { + "start": 31374.98, + "end": 31378.24, + "probability": 0.9983 + }, + { + "start": 31378.46, + "end": 31382.78, + "probability": 0.9622 + }, + { + "start": 31383.92, + "end": 31386.04, + "probability": 0.9894 + }, + { + "start": 31387.72, + "end": 31388.9, + "probability": 0.7079 + }, + { + "start": 31391.56, + "end": 31393.0, + "probability": 0.3864 + }, + { + "start": 31393.74, + "end": 31395.56, + "probability": 0.786 + }, + { + "start": 31397.1, + "end": 31399.36, + "probability": 0.6925 + }, + { + "start": 31400.3, + "end": 31400.74, + "probability": 0.7235 + }, + { + "start": 31400.8, + "end": 31401.52, + "probability": 0.9501 + }, + { + "start": 31401.56, + "end": 31403.24, + "probability": 0.9203 + }, + { + "start": 31403.42, + "end": 31404.44, + "probability": 0.9124 + }, + { + "start": 31405.52, + "end": 31407.12, + "probability": 0.6417 + }, + { + "start": 31409.06, + "end": 31410.78, + "probability": 0.8018 + }, + { + "start": 31411.1, + "end": 31415.32, + "probability": 0.7806 + }, + { + "start": 31416.46, + "end": 31417.7, + "probability": 0.7781 + }, + { + "start": 31417.86, + "end": 31420.54, + "probability": 0.9677 + }, + { + "start": 31420.68, + "end": 31423.4, + "probability": 0.8746 + }, + { + "start": 31423.98, + "end": 31426.08, + "probability": 0.9048 + }, + { + "start": 31426.64, + "end": 31428.36, + "probability": 0.9681 + }, + { + "start": 31428.5, + "end": 31430.18, + "probability": 0.9507 + }, + { + "start": 31430.9, + "end": 31431.34, + "probability": 0.9033 + }, + { + "start": 31432.06, + "end": 31434.7, + "probability": 0.9607 + }, + { + "start": 31435.44, + "end": 31437.04, + "probability": 0.9292 + }, + { + "start": 31437.18, + "end": 31437.9, + "probability": 0.989 + }, + { + "start": 31438.74, + "end": 31439.85, + "probability": 0.9971 + }, + { + "start": 31441.0, + "end": 31441.7, + "probability": 0.6602 + }, + { + "start": 31442.1, + "end": 31443.08, + "probability": 0.8653 + }, + { + "start": 31443.32, + "end": 31445.12, + "probability": 0.6235 + }, + { + "start": 31445.24, + "end": 31446.28, + "probability": 0.8033 + }, + { + "start": 31446.48, + "end": 31447.33, + "probability": 0.9446 + }, + { + "start": 31447.68, + "end": 31449.12, + "probability": 0.9871 + }, + { + "start": 31449.94, + "end": 31451.16, + "probability": 0.6701 + }, + { + "start": 31451.44, + "end": 31451.84, + "probability": 0.8712 + }, + { + "start": 31451.96, + "end": 31452.54, + "probability": 0.8618 + }, + { + "start": 31452.6, + "end": 31453.26, + "probability": 0.9628 + }, + { + "start": 31453.32, + "end": 31453.86, + "probability": 0.9705 + }, + { + "start": 31453.9, + "end": 31455.0, + "probability": 0.9069 + }, + { + "start": 31455.4, + "end": 31456.94, + "probability": 0.9557 + }, + { + "start": 31458.14, + "end": 31459.92, + "probability": 0.9567 + }, + { + "start": 31460.72, + "end": 31461.52, + "probability": 0.792 + }, + { + "start": 31463.72, + "end": 31471.78, + "probability": 0.9386 + }, + { + "start": 31472.58, + "end": 31474.8, + "probability": 0.9123 + }, + { + "start": 31475.46, + "end": 31477.72, + "probability": 0.9773 + }, + { + "start": 31477.82, + "end": 31482.72, + "probability": 0.998 + }, + { + "start": 31483.44, + "end": 31486.92, + "probability": 0.8129 + }, + { + "start": 31487.8, + "end": 31490.61, + "probability": 0.7503 + }, + { + "start": 31491.1, + "end": 31491.76, + "probability": 0.776 + }, + { + "start": 31492.28, + "end": 31497.16, + "probability": 0.9536 + }, + { + "start": 31497.16, + "end": 31499.26, + "probability": 0.6405 + }, + { + "start": 31499.88, + "end": 31504.0, + "probability": 0.9829 + }, + { + "start": 31504.66, + "end": 31510.92, + "probability": 0.9969 + }, + { + "start": 31511.42, + "end": 31517.86, + "probability": 0.9819 + }, + { + "start": 31517.94, + "end": 31518.98, + "probability": 0.8413 + }, + { + "start": 31519.14, + "end": 31520.26, + "probability": 0.9365 + }, + { + "start": 31520.38, + "end": 31521.34, + "probability": 0.9596 + }, + { + "start": 31521.52, + "end": 31522.44, + "probability": 0.9502 + }, + { + "start": 31523.04, + "end": 31524.72, + "probability": 0.9551 + }, + { + "start": 31525.3, + "end": 31527.1, + "probability": 0.9824 + }, + { + "start": 31527.36, + "end": 31528.24, + "probability": 0.6002 + }, + { + "start": 31528.38, + "end": 31529.04, + "probability": 0.9687 + }, + { + "start": 31529.44, + "end": 31529.88, + "probability": 0.91 + }, + { + "start": 31529.96, + "end": 31532.88, + "probability": 0.997 + }, + { + "start": 31533.26, + "end": 31535.72, + "probability": 0.9974 + }, + { + "start": 31536.38, + "end": 31537.37, + "probability": 0.2228 + }, + { + "start": 31538.34, + "end": 31539.46, + "probability": 0.765 + }, + { + "start": 31539.62, + "end": 31543.92, + "probability": 0.9368 + }, + { + "start": 31543.92, + "end": 31547.24, + "probability": 0.9901 + }, + { + "start": 31547.38, + "end": 31547.48, + "probability": 0.8672 + }, + { + "start": 31548.26, + "end": 31549.56, + "probability": 0.8226 + }, + { + "start": 31549.62, + "end": 31554.18, + "probability": 0.7756 + }, + { + "start": 31554.64, + "end": 31559.06, + "probability": 0.9904 + }, + { + "start": 31559.7, + "end": 31564.18, + "probability": 0.9757 + }, + { + "start": 31564.94, + "end": 31568.46, + "probability": 0.7879 + }, + { + "start": 31568.92, + "end": 31573.87, + "probability": 0.7758 + }, + { + "start": 31574.44, + "end": 31579.1, + "probability": 0.845 + }, + { + "start": 31579.52, + "end": 31582.28, + "probability": 0.9103 + }, + { + "start": 31582.5, + "end": 31583.56, + "probability": 0.8896 + }, + { + "start": 31583.66, + "end": 31585.84, + "probability": 0.9888 + }, + { + "start": 31585.84, + "end": 31590.62, + "probability": 0.9323 + }, + { + "start": 31591.78, + "end": 31592.4, + "probability": 0.5815 + }, + { + "start": 31593.12, + "end": 31596.7, + "probability": 0.9523 + }, + { + "start": 31596.86, + "end": 31601.18, + "probability": 0.9912 + }, + { + "start": 31601.74, + "end": 31604.48, + "probability": 0.9587 + }, + { + "start": 31605.58, + "end": 31607.78, + "probability": 0.9283 + }, + { + "start": 31608.22, + "end": 31610.3, + "probability": 0.9968 + }, + { + "start": 31611.42, + "end": 31615.76, + "probability": 0.9685 + }, + { + "start": 31616.46, + "end": 31622.04, + "probability": 0.9552 + }, + { + "start": 31622.62, + "end": 31625.98, + "probability": 0.9768 + }, + { + "start": 31626.92, + "end": 31632.98, + "probability": 0.9728 + }, + { + "start": 31633.96, + "end": 31641.02, + "probability": 0.9617 + }, + { + "start": 31641.24, + "end": 31642.44, + "probability": 0.7959 + }, + { + "start": 31643.1, + "end": 31646.86, + "probability": 0.9697 + }, + { + "start": 31647.04, + "end": 31649.88, + "probability": 0.8784 + }, + { + "start": 31650.85, + "end": 31652.64, + "probability": 0.8585 + }, + { + "start": 31653.12, + "end": 31655.32, + "probability": 0.9963 + }, + { + "start": 31655.78, + "end": 31658.82, + "probability": 0.9966 + }, + { + "start": 31659.1, + "end": 31661.86, + "probability": 0.9951 + }, + { + "start": 31662.0, + "end": 31662.8, + "probability": 0.896 + }, + { + "start": 31662.9, + "end": 31667.74, + "probability": 0.9252 + }, + { + "start": 31668.0, + "end": 31672.14, + "probability": 0.6925 + }, + { + "start": 31672.8, + "end": 31674.76, + "probability": 0.9976 + }, + { + "start": 31675.86, + "end": 31677.08, + "probability": 0.7022 + }, + { + "start": 31677.8, + "end": 31679.72, + "probability": 0.9689 + }, + { + "start": 31680.96, + "end": 31683.78, + "probability": 0.6967 + }, + { + "start": 31684.24, + "end": 31686.68, + "probability": 0.7886 + }, + { + "start": 31687.26, + "end": 31693.24, + "probability": 0.9114 + }, + { + "start": 31693.28, + "end": 31696.68, + "probability": 0.9221 + }, + { + "start": 31697.0, + "end": 31699.3, + "probability": 0.9946 + }, + { + "start": 31700.5, + "end": 31707.16, + "probability": 0.9401 + }, + { + "start": 31707.86, + "end": 31711.2, + "probability": 0.7765 + }, + { + "start": 31711.4, + "end": 31712.1, + "probability": 0.9443 + }, + { + "start": 31712.46, + "end": 31715.98, + "probability": 0.9719 + }, + { + "start": 31716.42, + "end": 31721.68, + "probability": 0.9941 + }, + { + "start": 31722.2, + "end": 31725.56, + "probability": 0.9912 + }, + { + "start": 31726.08, + "end": 31729.35, + "probability": 0.9837 + }, + { + "start": 31729.88, + "end": 31730.72, + "probability": 0.8919 + }, + { + "start": 31731.34, + "end": 31732.18, + "probability": 0.8448 + }, + { + "start": 31732.6, + "end": 31735.0, + "probability": 0.9589 + }, + { + "start": 31735.96, + "end": 31740.22, + "probability": 0.6673 + }, + { + "start": 31740.66, + "end": 31743.36, + "probability": 0.9915 + }, + { + "start": 31743.68, + "end": 31744.91, + "probability": 0.9178 + }, + { + "start": 31745.36, + "end": 31750.34, + "probability": 0.9318 + }, + { + "start": 31750.86, + "end": 31752.26, + "probability": 0.9712 + }, + { + "start": 31753.42, + "end": 31754.8, + "probability": 0.9186 + }, + { + "start": 31755.36, + "end": 31759.4, + "probability": 0.9907 + }, + { + "start": 31760.78, + "end": 31767.02, + "probability": 0.9585 + }, + { + "start": 31767.02, + "end": 31772.27, + "probability": 0.972 + }, + { + "start": 31774.12, + "end": 31776.45, + "probability": 0.9923 + }, + { + "start": 31776.8, + "end": 31778.95, + "probability": 0.9971 + }, + { + "start": 31779.62, + "end": 31782.02, + "probability": 0.9753 + }, + { + "start": 31782.08, + "end": 31783.46, + "probability": 0.9744 + }, + { + "start": 31784.12, + "end": 31787.22, + "probability": 0.5466 + }, + { + "start": 31789.28, + "end": 31792.42, + "probability": 0.9819 + }, + { + "start": 31792.92, + "end": 31796.58, + "probability": 0.9984 + }, + { + "start": 31799.4, + "end": 31803.78, + "probability": 0.7037 + }, + { + "start": 31807.0, + "end": 31807.1, + "probability": 0.1507 + }, + { + "start": 31812.2, + "end": 31813.22, + "probability": 0.5851 + }, + { + "start": 31815.82, + "end": 31817.66, + "probability": 0.7813 + }, + { + "start": 31817.94, + "end": 31824.3, + "probability": 0.9926 + }, + { + "start": 31825.58, + "end": 31828.94, + "probability": 0.989 + }, + { + "start": 31828.94, + "end": 31831.64, + "probability": 0.9924 + }, + { + "start": 31832.52, + "end": 31836.12, + "probability": 0.9943 + }, + { + "start": 31837.56, + "end": 31842.78, + "probability": 0.9988 + }, + { + "start": 31843.58, + "end": 31848.76, + "probability": 0.9967 + }, + { + "start": 31850.04, + "end": 31852.02, + "probability": 0.9853 + }, + { + "start": 31852.18, + "end": 31855.82, + "probability": 0.9888 + }, + { + "start": 31857.28, + "end": 31860.18, + "probability": 0.9523 + }, + { + "start": 31860.8, + "end": 31863.21, + "probability": 0.9834 + }, + { + "start": 31863.48, + "end": 31866.64, + "probability": 0.9186 + }, + { + "start": 31866.68, + "end": 31869.96, + "probability": 0.917 + }, + { + "start": 31870.48, + "end": 31872.06, + "probability": 0.9795 + }, + { + "start": 31872.16, + "end": 31873.58, + "probability": 0.9208 + }, + { + "start": 31873.96, + "end": 31874.68, + "probability": 0.8602 + }, + { + "start": 31874.74, + "end": 31875.94, + "probability": 0.9762 + }, + { + "start": 31876.02, + "end": 31877.12, + "probability": 0.9787 + }, + { + "start": 31878.18, + "end": 31881.24, + "probability": 0.9547 + }, + { + "start": 31881.34, + "end": 31882.44, + "probability": 0.6843 + }, + { + "start": 31883.04, + "end": 31886.2, + "probability": 0.9137 + }, + { + "start": 31886.64, + "end": 31888.3, + "probability": 0.9805 + }, + { + "start": 31888.48, + "end": 31890.06, + "probability": 0.6522 + }, + { + "start": 31890.48, + "end": 31895.78, + "probability": 0.9026 + }, + { + "start": 31896.66, + "end": 31901.7, + "probability": 0.8342 + }, + { + "start": 31902.86, + "end": 31909.24, + "probability": 0.9863 + }, + { + "start": 31910.12, + "end": 31911.18, + "probability": 0.9364 + }, + { + "start": 31911.58, + "end": 31913.34, + "probability": 0.9808 + }, + { + "start": 31913.94, + "end": 31918.34, + "probability": 0.9795 + }, + { + "start": 31918.46, + "end": 31919.84, + "probability": 0.959 + }, + { + "start": 31920.9, + "end": 31924.5, + "probability": 0.7785 + }, + { + "start": 31925.78, + "end": 31928.98, + "probability": 0.9777 + }, + { + "start": 31930.1, + "end": 31933.26, + "probability": 0.9439 + }, + { + "start": 31933.5, + "end": 31934.53, + "probability": 0.9308 + }, + { + "start": 31935.22, + "end": 31939.28, + "probability": 0.9942 + }, + { + "start": 31940.1, + "end": 31943.1, + "probability": 0.9359 + }, + { + "start": 31943.68, + "end": 31944.68, + "probability": 0.9763 + }, + { + "start": 31945.74, + "end": 31946.98, + "probability": 0.854 + }, + { + "start": 31947.56, + "end": 31948.66, + "probability": 0.8763 + }, + { + "start": 31948.76, + "end": 31949.68, + "probability": 0.8946 + }, + { + "start": 31949.68, + "end": 31952.12, + "probability": 0.764 + }, + { + "start": 31952.76, + "end": 31955.68, + "probability": 0.9237 + }, + { + "start": 31956.52, + "end": 31957.66, + "probability": 0.9954 + }, + { + "start": 31958.68, + "end": 31958.92, + "probability": 0.2999 + }, + { + "start": 31959.16, + "end": 31961.54, + "probability": 0.9822 + }, + { + "start": 31962.22, + "end": 31965.18, + "probability": 0.9895 + }, + { + "start": 31965.84, + "end": 31968.6, + "probability": 0.9663 + }, + { + "start": 31969.16, + "end": 31970.78, + "probability": 0.98 + }, + { + "start": 31971.5, + "end": 31972.74, + "probability": 0.6797 + }, + { + "start": 31973.54, + "end": 31975.96, + "probability": 0.9813 + }, + { + "start": 31977.08, + "end": 31978.72, + "probability": 0.8101 + }, + { + "start": 31979.48, + "end": 31981.22, + "probability": 0.9959 + }, + { + "start": 31982.32, + "end": 31985.44, + "probability": 0.9119 + }, + { + "start": 31985.88, + "end": 31989.02, + "probability": 0.9885 + }, + { + "start": 31989.3, + "end": 31990.36, + "probability": 0.9625 + }, + { + "start": 31991.02, + "end": 31991.86, + "probability": 0.716 + }, + { + "start": 31992.86, + "end": 31996.38, + "probability": 0.9877 + }, + { + "start": 31997.28, + "end": 31999.28, + "probability": 0.971 + }, + { + "start": 32000.14, + "end": 32002.7, + "probability": 0.9952 + }, + { + "start": 32002.78, + "end": 32004.68, + "probability": 0.7949 + }, + { + "start": 32005.06, + "end": 32009.06, + "probability": 0.9973 + }, + { + "start": 32009.86, + "end": 32011.06, + "probability": 0.921 + }, + { + "start": 32011.58, + "end": 32013.22, + "probability": 0.9761 + }, + { + "start": 32013.9, + "end": 32014.52, + "probability": 0.7443 + }, + { + "start": 32014.98, + "end": 32016.93, + "probability": 0.9868 + }, + { + "start": 32017.2, + "end": 32019.21, + "probability": 0.8931 + }, + { + "start": 32019.78, + "end": 32022.74, + "probability": 0.9189 + }, + { + "start": 32024.46, + "end": 32024.87, + "probability": 0.834 + }, + { + "start": 32025.78, + "end": 32026.78, + "probability": 0.8838 + }, + { + "start": 32029.9, + "end": 32035.24, + "probability": 0.6676 + }, + { + "start": 32036.22, + "end": 32038.14, + "probability": 0.7998 + }, + { + "start": 32038.8, + "end": 32040.34, + "probability": 0.8916 + }, + { + "start": 32040.78, + "end": 32043.2, + "probability": 0.8929 + }, + { + "start": 32043.88, + "end": 32044.12, + "probability": 0.564 + }, + { + "start": 32044.82, + "end": 32047.08, + "probability": 0.9008 + }, + { + "start": 32048.0, + "end": 32052.14, + "probability": 0.7679 + }, + { + "start": 32052.28, + "end": 32055.12, + "probability": 0.7867 + }, + { + "start": 32056.68, + "end": 32057.44, + "probability": 0.2603 + }, + { + "start": 32057.44, + "end": 32057.92, + "probability": 0.1632 + }, + { + "start": 32058.5, + "end": 32059.58, + "probability": 0.2281 + }, + { + "start": 32065.54, + "end": 32065.98, + "probability": 0.0202 + }, + { + "start": 32065.98, + "end": 32066.41, + "probability": 0.0175 + }, + { + "start": 32067.38, + "end": 32068.62, + "probability": 0.0737 + }, + { + "start": 32109.64, + "end": 32117.34, + "probability": 0.9982 + }, + { + "start": 32119.36, + "end": 32121.22, + "probability": 0.9565 + }, + { + "start": 32121.96, + "end": 32127.42, + "probability": 0.76 + }, + { + "start": 32129.44, + "end": 32131.15, + "probability": 0.9949 + }, + { + "start": 32132.9, + "end": 32136.36, + "probability": 0.675 + }, + { + "start": 32138.22, + "end": 32139.72, + "probability": 0.9836 + }, + { + "start": 32143.2, + "end": 32146.72, + "probability": 0.8556 + }, + { + "start": 32148.8, + "end": 32152.78, + "probability": 0.7852 + }, + { + "start": 32153.94, + "end": 32156.1, + "probability": 0.7606 + }, + { + "start": 32158.36, + "end": 32161.54, + "probability": 0.9662 + }, + { + "start": 32164.1, + "end": 32171.84, + "probability": 0.7002 + }, + { + "start": 32172.58, + "end": 32177.46, + "probability": 0.7408 + }, + { + "start": 32178.3, + "end": 32180.3, + "probability": 0.9943 + }, + { + "start": 32181.9, + "end": 32184.96, + "probability": 0.9865 + }, + { + "start": 32186.76, + "end": 32190.87, + "probability": 0.8119 + }, + { + "start": 32192.56, + "end": 32194.62, + "probability": 0.4175 + }, + { + "start": 32199.2, + "end": 32201.06, + "probability": 0.9117 + }, + { + "start": 32201.18, + "end": 32205.86, + "probability": 0.9897 + }, + { + "start": 32207.94, + "end": 32215.68, + "probability": 0.9009 + }, + { + "start": 32215.82, + "end": 32217.42, + "probability": 0.9517 + }, + { + "start": 32217.5, + "end": 32221.56, + "probability": 0.905 + }, + { + "start": 32222.72, + "end": 32227.08, + "probability": 0.76 + }, + { + "start": 32228.02, + "end": 32235.44, + "probability": 0.9814 + }, + { + "start": 32235.92, + "end": 32236.56, + "probability": 0.8309 + }, + { + "start": 32237.26, + "end": 32242.14, + "probability": 0.9268 + }, + { + "start": 32242.52, + "end": 32245.56, + "probability": 0.8749 + }, + { + "start": 32245.72, + "end": 32247.34, + "probability": 0.5341 + }, + { + "start": 32247.86, + "end": 32251.14, + "probability": 0.9721 + }, + { + "start": 32252.36, + "end": 32254.28, + "probability": 0.8571 + }, + { + "start": 32254.48, + "end": 32259.48, + "probability": 0.8335 + }, + { + "start": 32259.66, + "end": 32264.54, + "probability": 0.9832 + }, + { + "start": 32265.92, + "end": 32269.6, + "probability": 0.8929 + }, + { + "start": 32270.24, + "end": 32277.06, + "probability": 0.9431 + }, + { + "start": 32277.64, + "end": 32283.76, + "probability": 0.8802 + }, + { + "start": 32284.64, + "end": 32292.82, + "probability": 0.9858 + }, + { + "start": 32293.58, + "end": 32295.0, + "probability": 0.9819 + }, + { + "start": 32296.06, + "end": 32298.88, + "probability": 0.734 + }, + { + "start": 32300.0, + "end": 32302.8, + "probability": 0.9508 + }, + { + "start": 32303.41, + "end": 32310.56, + "probability": 0.9705 + }, + { + "start": 32315.7, + "end": 32321.8, + "probability": 0.991 + }, + { + "start": 32322.64, + "end": 32329.14, + "probability": 0.9979 + }, + { + "start": 32330.28, + "end": 32334.46, + "probability": 0.8702 + }, + { + "start": 32334.64, + "end": 32336.74, + "probability": 0.9784 + }, + { + "start": 32337.92, + "end": 32339.96, + "probability": 0.978 + }, + { + "start": 32340.9, + "end": 32341.52, + "probability": 0.6466 + }, + { + "start": 32342.6, + "end": 32345.56, + "probability": 0.9776 + }, + { + "start": 32345.64, + "end": 32348.04, + "probability": 0.898 + }, + { + "start": 32349.12, + "end": 32352.46, + "probability": 0.8673 + }, + { + "start": 32354.4, + "end": 32354.98, + "probability": 0.6195 + }, + { + "start": 32356.22, + "end": 32359.96, + "probability": 0.7063 + }, + { + "start": 32360.52, + "end": 32361.36, + "probability": 0.8828 + }, + { + "start": 32362.04, + "end": 32365.64, + "probability": 0.9973 + }, + { + "start": 32367.3, + "end": 32371.72, + "probability": 0.879 + }, + { + "start": 32371.84, + "end": 32373.66, + "probability": 0.9747 + }, + { + "start": 32374.44, + "end": 32377.64, + "probability": 0.9803 + }, + { + "start": 32377.74, + "end": 32379.24, + "probability": 0.9775 + }, + { + "start": 32381.26, + "end": 32387.22, + "probability": 0.9807 + }, + { + "start": 32388.62, + "end": 32391.8, + "probability": 0.8812 + }, + { + "start": 32392.76, + "end": 32393.36, + "probability": 0.9568 + }, + { + "start": 32394.94, + "end": 32395.32, + "probability": 0.8435 + }, + { + "start": 32396.4, + "end": 32398.66, + "probability": 0.9376 + }, + { + "start": 32399.62, + "end": 32401.46, + "probability": 0.9393 + }, + { + "start": 32401.84, + "end": 32402.99, + "probability": 0.9858 + }, + { + "start": 32403.74, + "end": 32405.18, + "probability": 0.9997 + }, + { + "start": 32405.74, + "end": 32408.96, + "probability": 0.9989 + }, + { + "start": 32409.22, + "end": 32409.68, + "probability": 0.6849 + }, + { + "start": 32409.8, + "end": 32410.84, + "probability": 0.4509 + }, + { + "start": 32411.38, + "end": 32411.98, + "probability": 0.9836 + }, + { + "start": 32412.64, + "end": 32413.84, + "probability": 0.6479 + }, + { + "start": 32416.12, + "end": 32420.12, + "probability": 0.8752 + }, + { + "start": 32420.68, + "end": 32423.47, + "probability": 0.9865 + }, + { + "start": 32425.0, + "end": 32425.36, + "probability": 0.9302 + }, + { + "start": 32426.06, + "end": 32428.8, + "probability": 0.7982 + }, + { + "start": 32430.12, + "end": 32431.6, + "probability": 0.7056 + }, + { + "start": 32432.24, + "end": 32435.92, + "probability": 0.9855 + }, + { + "start": 32436.76, + "end": 32438.04, + "probability": 0.9985 + }, + { + "start": 32438.66, + "end": 32441.16, + "probability": 0.8538 + }, + { + "start": 32442.32, + "end": 32444.04, + "probability": 0.9449 + }, + { + "start": 32444.3, + "end": 32446.58, + "probability": 0.9902 + }, + { + "start": 32447.16, + "end": 32448.22, + "probability": 0.9822 + }, + { + "start": 32448.86, + "end": 32450.22, + "probability": 0.8606 + }, + { + "start": 32452.1, + "end": 32457.16, + "probability": 0.996 + }, + { + "start": 32457.72, + "end": 32463.16, + "probability": 0.9814 + }, + { + "start": 32463.16, + "end": 32466.38, + "probability": 0.9885 + }, + { + "start": 32466.78, + "end": 32469.2, + "probability": 0.9829 + }, + { + "start": 32469.76, + "end": 32470.92, + "probability": 0.9828 + }, + { + "start": 32471.18, + "end": 32475.02, + "probability": 0.9142 + }, + { + "start": 32475.1, + "end": 32475.9, + "probability": 0.7842 + }, + { + "start": 32476.14, + "end": 32477.58, + "probability": 0.8625 + }, + { + "start": 32478.66, + "end": 32480.08, + "probability": 0.9602 + }, + { + "start": 32480.2, + "end": 32480.92, + "probability": 0.9489 + }, + { + "start": 32481.35, + "end": 32486.02, + "probability": 0.9606 + }, + { + "start": 32487.04, + "end": 32487.74, + "probability": 0.9941 + }, + { + "start": 32488.36, + "end": 32490.4, + "probability": 0.9749 + }, + { + "start": 32490.58, + "end": 32494.57, + "probability": 0.8828 + }, + { + "start": 32495.2, + "end": 32497.98, + "probability": 0.9892 + }, + { + "start": 32500.16, + "end": 32501.32, + "probability": 0.9927 + }, + { + "start": 32502.12, + "end": 32502.8, + "probability": 0.758 + }, + { + "start": 32504.46, + "end": 32508.86, + "probability": 0.9686 + }, + { + "start": 32508.94, + "end": 32510.16, + "probability": 0.934 + }, + { + "start": 32510.76, + "end": 32516.58, + "probability": 0.9855 + }, + { + "start": 32516.98, + "end": 32519.69, + "probability": 0.903 + }, + { + "start": 32521.14, + "end": 32522.85, + "probability": 0.8624 + }, + { + "start": 32523.16, + "end": 32525.4, + "probability": 0.9548 + }, + { + "start": 32525.44, + "end": 32530.88, + "probability": 0.9681 + }, + { + "start": 32531.4, + "end": 32531.86, + "probability": 0.5511 + }, + { + "start": 32531.96, + "end": 32537.46, + "probability": 0.8547 + }, + { + "start": 32537.46, + "end": 32545.4, + "probability": 0.99 + }, + { + "start": 32547.12, + "end": 32547.64, + "probability": 0.932 + }, + { + "start": 32548.56, + "end": 32550.56, + "probability": 0.9969 + }, + { + "start": 32552.24, + "end": 32554.98, + "probability": 0.9612 + }, + { + "start": 32555.06, + "end": 32557.9, + "probability": 0.9405 + }, + { + "start": 32558.1, + "end": 32559.92, + "probability": 0.9602 + }, + { + "start": 32561.78, + "end": 32563.46, + "probability": 0.9485 + }, + { + "start": 32564.94, + "end": 32565.04, + "probability": 0.7783 + }, + { + "start": 32565.34, + "end": 32571.8, + "probability": 0.9481 + }, + { + "start": 32574.34, + "end": 32574.9, + "probability": 0.9867 + }, + { + "start": 32576.66, + "end": 32582.64, + "probability": 0.9202 + }, + { + "start": 32582.74, + "end": 32584.02, + "probability": 0.6683 + }, + { + "start": 32585.08, + "end": 32591.86, + "probability": 0.8053 + }, + { + "start": 32592.86, + "end": 32593.48, + "probability": 0.775 + }, + { + "start": 32596.22, + "end": 32602.99, + "probability": 0.5706 + }, + { + "start": 32604.46, + "end": 32606.76, + "probability": 0.9673 + }, + { + "start": 32607.4, + "end": 32608.64, + "probability": 0.9977 + }, + { + "start": 32609.66, + "end": 32610.26, + "probability": 0.8149 + }, + { + "start": 32611.9, + "end": 32614.94, + "probability": 0.955 + }, + { + "start": 32615.62, + "end": 32615.86, + "probability": 0.4349 + }, + { + "start": 32616.6, + "end": 32618.66, + "probability": 0.9667 + }, + { + "start": 32620.38, + "end": 32622.8, + "probability": 0.9792 + }, + { + "start": 32623.06, + "end": 32623.84, + "probability": 0.8115 + }, + { + "start": 32623.94, + "end": 32626.14, + "probability": 0.9724 + }, + { + "start": 32627.16, + "end": 32630.36, + "probability": 0.9575 + }, + { + "start": 32631.22, + "end": 32635.62, + "probability": 0.9946 + }, + { + "start": 32636.52, + "end": 32637.54, + "probability": 0.8983 + }, + { + "start": 32638.38, + "end": 32642.98, + "probability": 0.9945 + }, + { + "start": 32643.42, + "end": 32644.1, + "probability": 0.7906 + }, + { + "start": 32644.28, + "end": 32648.12, + "probability": 0.8628 + }, + { + "start": 32649.14, + "end": 32651.22, + "probability": 0.9939 + }, + { + "start": 32652.7, + "end": 32655.28, + "probability": 0.9614 + }, + { + "start": 32657.3, + "end": 32659.44, + "probability": 0.9473 + }, + { + "start": 32662.82, + "end": 32664.2, + "probability": 0.9839 + }, + { + "start": 32664.38, + "end": 32665.62, + "probability": 0.6777 + }, + { + "start": 32665.92, + "end": 32669.8, + "probability": 0.905 + }, + { + "start": 32670.9, + "end": 32673.84, + "probability": 0.7985 + }, + { + "start": 32674.68, + "end": 32677.92, + "probability": 0.5057 + }, + { + "start": 32678.54, + "end": 32681.58, + "probability": 0.9985 + }, + { + "start": 32682.34, + "end": 32683.62, + "probability": 0.9829 + }, + { + "start": 32684.26, + "end": 32687.68, + "probability": 0.9946 + }, + { + "start": 32688.46, + "end": 32693.1, + "probability": 0.9965 + }, + { + "start": 32693.1, + "end": 32697.86, + "probability": 0.9595 + }, + { + "start": 32698.88, + "end": 32701.28, + "probability": 0.7715 + }, + { + "start": 32701.62, + "end": 32702.27, + "probability": 0.665 + }, + { + "start": 32703.6, + "end": 32704.94, + "probability": 0.5724 + }, + { + "start": 32705.62, + "end": 32707.32, + "probability": 0.8256 + }, + { + "start": 32708.12, + "end": 32708.94, + "probability": 0.9449 + }, + { + "start": 32711.16, + "end": 32713.36, + "probability": 0.9211 + }, + { + "start": 32714.02, + "end": 32715.02, + "probability": 0.9634 + }, + { + "start": 32715.62, + "end": 32716.36, + "probability": 0.832 + }, + { + "start": 32716.98, + "end": 32717.28, + "probability": 0.8101 + }, + { + "start": 32718.66, + "end": 32720.82, + "probability": 0.9904 + }, + { + "start": 32721.18, + "end": 32721.42, + "probability": 0.4726 + }, + { + "start": 32721.54, + "end": 32722.6, + "probability": 0.956 + }, + { + "start": 32724.54, + "end": 32726.04, + "probability": 0.9606 + }, + { + "start": 32726.88, + "end": 32727.86, + "probability": 0.8854 + }, + { + "start": 32728.68, + "end": 32729.41, + "probability": 0.9954 + }, + { + "start": 32731.2, + "end": 32736.34, + "probability": 0.9897 + }, + { + "start": 32737.32, + "end": 32741.52, + "probability": 0.9487 + }, + { + "start": 32742.1, + "end": 32744.62, + "probability": 0.7148 + }, + { + "start": 32745.46, + "end": 32747.96, + "probability": 0.9646 + }, + { + "start": 32748.06, + "end": 32749.16, + "probability": 0.7471 + }, + { + "start": 32750.36, + "end": 32755.78, + "probability": 0.8779 + }, + { + "start": 32757.18, + "end": 32759.86, + "probability": 0.9491 + }, + { + "start": 32761.23, + "end": 32767.18, + "probability": 0.6231 + }, + { + "start": 32767.54, + "end": 32768.36, + "probability": 0.7994 + }, + { + "start": 32768.6, + "end": 32770.3, + "probability": 0.7721 + }, + { + "start": 32770.74, + "end": 32771.88, + "probability": 0.9635 + }, + { + "start": 32774.64, + "end": 32775.58, + "probability": 0.9932 + }, + { + "start": 32776.18, + "end": 32777.08, + "probability": 0.9988 + }, + { + "start": 32778.16, + "end": 32778.7, + "probability": 0.7527 + }, + { + "start": 32779.36, + "end": 32781.16, + "probability": 0.8752 + }, + { + "start": 32781.16, + "end": 32781.72, + "probability": 0.556 + }, + { + "start": 32782.68, + "end": 32783.94, + "probability": 0.9884 + }, + { + "start": 32784.56, + "end": 32785.04, + "probability": 0.8625 + }, + { + "start": 32785.66, + "end": 32786.73, + "probability": 0.9977 + }, + { + "start": 32788.26, + "end": 32789.5, + "probability": 0.9782 + }, + { + "start": 32792.38, + "end": 32796.32, + "probability": 0.9941 + }, + { + "start": 32799.22, + "end": 32800.16, + "probability": 0.498 + }, + { + "start": 32801.02, + "end": 32801.94, + "probability": 0.3672 + }, + { + "start": 32802.86, + "end": 32806.74, + "probability": 0.9895 + }, + { + "start": 32807.47, + "end": 32810.08, + "probability": 0.9725 + }, + { + "start": 32811.14, + "end": 32816.1, + "probability": 0.9762 + }, + { + "start": 32816.88, + "end": 32820.24, + "probability": 0.8965 + }, + { + "start": 32821.38, + "end": 32823.9, + "probability": 0.9222 + }, + { + "start": 32827.38, + "end": 32829.0, + "probability": 0.727 + }, + { + "start": 32829.1, + "end": 32831.62, + "probability": 0.7214 + }, + { + "start": 32832.56, + "end": 32834.97, + "probability": 0.717 + }, + { + "start": 32835.74, + "end": 32839.58, + "probability": 0.9881 + }, + { + "start": 32840.45, + "end": 32842.76, + "probability": 0.9818 + }, + { + "start": 32844.02, + "end": 32845.32, + "probability": 0.8811 + }, + { + "start": 32845.96, + "end": 32846.44, + "probability": 0.9537 + }, + { + "start": 32846.52, + "end": 32850.58, + "probability": 0.9551 + }, + { + "start": 32851.74, + "end": 32854.7, + "probability": 0.7888 + }, + { + "start": 32854.96, + "end": 32857.94, + "probability": 0.6583 + }, + { + "start": 32858.34, + "end": 32858.92, + "probability": 0.5002 + }, + { + "start": 32862.24, + "end": 32864.3, + "probability": 0.7945 + }, + { + "start": 32866.3, + "end": 32867.98, + "probability": 0.8389 + }, + { + "start": 32869.6, + "end": 32871.68, + "probability": 0.7743 + }, + { + "start": 32871.74, + "end": 32872.38, + "probability": 0.9751 + }, + { + "start": 32872.54, + "end": 32874.96, + "probability": 0.9968 + }, + { + "start": 32876.98, + "end": 32878.64, + "probability": 0.9315 + }, + { + "start": 32879.68, + "end": 32880.32, + "probability": 0.5365 + }, + { + "start": 32881.74, + "end": 32884.1, + "probability": 0.9902 + }, + { + "start": 32884.86, + "end": 32888.7, + "probability": 0.9866 + }, + { + "start": 32889.32, + "end": 32890.84, + "probability": 0.4782 + }, + { + "start": 32891.84, + "end": 32896.84, + "probability": 0.9106 + }, + { + "start": 32898.48, + "end": 32901.94, + "probability": 0.9084 + }, + { + "start": 32907.76, + "end": 32909.14, + "probability": 0.7782 + }, + { + "start": 32910.4, + "end": 32912.94, + "probability": 0.9843 + }, + { + "start": 32913.46, + "end": 32915.4, + "probability": 0.9249 + }, + { + "start": 32917.0, + "end": 32925.32, + "probability": 0.9182 + }, + { + "start": 32925.42, + "end": 32926.84, + "probability": 0.97 + }, + { + "start": 32927.78, + "end": 32929.66, + "probability": 0.978 + }, + { + "start": 32929.78, + "end": 32932.42, + "probability": 0.9795 + }, + { + "start": 32932.54, + "end": 32933.94, + "probability": 0.8428 + }, + { + "start": 32934.21, + "end": 32935.64, + "probability": 0.938 + }, + { + "start": 32935.68, + "end": 32936.5, + "probability": 0.8705 + }, + { + "start": 32936.52, + "end": 32938.58, + "probability": 0.9897 + }, + { + "start": 32943.48, + "end": 32944.38, + "probability": 0.023 + }, + { + "start": 32944.38, + "end": 32944.38, + "probability": 0.0066 + }, + { + "start": 32946.16, + "end": 32955.92, + "probability": 0.0619 + }, + { + "start": 32956.08, + "end": 32957.46, + "probability": 0.7834 + }, + { + "start": 32963.14, + "end": 32964.32, + "probability": 0.4618 + }, + { + "start": 32964.64, + "end": 32970.14, + "probability": 0.603 + }, + { + "start": 32970.78, + "end": 32974.72, + "probability": 0.8447 + }, + { + "start": 32975.38, + "end": 32980.42, + "probability": 0.9702 + }, + { + "start": 32980.98, + "end": 32983.64, + "probability": 0.8325 + }, + { + "start": 32984.6, + "end": 32989.76, + "probability": 0.5009 + }, + { + "start": 32989.86, + "end": 32992.58, + "probability": 0.7761 + }, + { + "start": 32992.66, + "end": 32993.0, + "probability": 0.7923 + }, + { + "start": 32993.1, + "end": 32993.92, + "probability": 0.9751 + }, + { + "start": 32994.2, + "end": 32997.02, + "probability": 0.8628 + }, + { + "start": 32997.44, + "end": 32998.08, + "probability": 0.9413 + }, + { + "start": 32998.44, + "end": 32999.38, + "probability": 0.6769 + }, + { + "start": 33003.04, + "end": 33005.18, + "probability": 0.9919 + }, + { + "start": 33005.28, + "end": 33006.1, + "probability": 0.5853 + }, + { + "start": 33006.24, + "end": 33007.22, + "probability": 0.9816 + }, + { + "start": 33007.88, + "end": 33008.48, + "probability": 0.9364 + }, + { + "start": 33008.54, + "end": 33012.84, + "probability": 0.9971 + }, + { + "start": 33013.4, + "end": 33021.36, + "probability": 0.9868 + }, + { + "start": 33022.02, + "end": 33029.34, + "probability": 0.9966 + }, + { + "start": 33029.44, + "end": 33030.2, + "probability": 0.801 + }, + { + "start": 33030.76, + "end": 33035.12, + "probability": 0.981 + }, + { + "start": 33035.72, + "end": 33036.48, + "probability": 0.8255 + }, + { + "start": 33037.47, + "end": 33041.7, + "probability": 0.9536 + }, + { + "start": 33044.73, + "end": 33047.46, + "probability": 0.9836 + }, + { + "start": 33047.74, + "end": 33050.44, + "probability": 0.9634 + }, + { + "start": 33053.64, + "end": 33055.52, + "probability": 0.8646 + }, + { + "start": 33056.16, + "end": 33056.44, + "probability": 0.7068 + }, + { + "start": 33056.7, + "end": 33057.28, + "probability": 0.8534 + }, + { + "start": 33057.38, + "end": 33061.72, + "probability": 0.9423 + }, + { + "start": 33062.92, + "end": 33065.68, + "probability": 0.742 + }, + { + "start": 33066.3, + "end": 33066.58, + "probability": 0.9868 + }, + { + "start": 33067.26, + "end": 33072.24, + "probability": 0.9186 + }, + { + "start": 33074.28, + "end": 33079.84, + "probability": 0.6568 + }, + { + "start": 33080.94, + "end": 33084.86, + "probability": 0.5716 + }, + { + "start": 33085.62, + "end": 33092.5, + "probability": 0.6345 + }, + { + "start": 33092.56, + "end": 33094.72, + "probability": 0.7631 + }, + { + "start": 33095.56, + "end": 33100.18, + "probability": 0.8595 + }, + { + "start": 33100.78, + "end": 33101.3, + "probability": 0.7163 + }, + { + "start": 33101.88, + "end": 33102.96, + "probability": 0.8579 + }, + { + "start": 33104.02, + "end": 33105.18, + "probability": 0.9674 + }, + { + "start": 33105.78, + "end": 33110.6, + "probability": 0.9819 + }, + { + "start": 33111.48, + "end": 33112.46, + "probability": 0.6378 + }, + { + "start": 33112.84, + "end": 33115.7, + "probability": 0.8517 + }, + { + "start": 33115.78, + "end": 33117.82, + "probability": 0.9174 + }, + { + "start": 33117.96, + "end": 33119.22, + "probability": 0.998 + }, + { + "start": 33119.84, + "end": 33121.3, + "probability": 0.8999 + }, + { + "start": 33123.28, + "end": 33124.94, + "probability": 0.9935 + }, + { + "start": 33125.46, + "end": 33126.7, + "probability": 0.6008 + }, + { + "start": 33126.7, + "end": 33128.28, + "probability": 0.6707 + }, + { + "start": 33128.38, + "end": 33129.79, + "probability": 0.9033 + }, + { + "start": 33130.7, + "end": 33134.26, + "probability": 0.9456 + }, + { + "start": 33135.06, + "end": 33141.76, + "probability": 0.7447 + }, + { + "start": 33141.76, + "end": 33149.06, + "probability": 0.847 + }, + { + "start": 33153.76, + "end": 33157.28, + "probability": 0.9953 + }, + { + "start": 33157.34, + "end": 33158.48, + "probability": 0.8291 + }, + { + "start": 33159.7, + "end": 33159.9, + "probability": 0.7367 + }, + { + "start": 33160.98, + "end": 33163.04, + "probability": 0.8052 + }, + { + "start": 33164.16, + "end": 33164.4, + "probability": 0.9419 + }, + { + "start": 33164.98, + "end": 33165.34, + "probability": 0.9995 + }, + { + "start": 33165.86, + "end": 33166.54, + "probability": 0.885 + }, + { + "start": 33167.14, + "end": 33168.36, + "probability": 0.8189 + }, + { + "start": 33169.18, + "end": 33172.48, + "probability": 0.8931 + }, + { + "start": 33181.4, + "end": 33183.06, + "probability": 0.1692 + }, + { + "start": 33186.98, + "end": 33188.98, + "probability": 0.7298 + }, + { + "start": 33190.02, + "end": 33191.34, + "probability": 0.8718 + }, + { + "start": 33192.66, + "end": 33194.76, + "probability": 0.9803 + }, + { + "start": 33196.48, + "end": 33198.16, + "probability": 0.7421 + }, + { + "start": 33199.22, + "end": 33206.32, + "probability": 0.9729 + }, + { + "start": 33207.46, + "end": 33208.8, + "probability": 0.9731 + }, + { + "start": 33209.5, + "end": 33211.24, + "probability": 0.8246 + }, + { + "start": 33211.96, + "end": 33213.68, + "probability": 0.8724 + }, + { + "start": 33214.62, + "end": 33222.2, + "probability": 0.9854 + }, + { + "start": 33222.52, + "end": 33226.36, + "probability": 0.9969 + }, + { + "start": 33227.38, + "end": 33233.04, + "probability": 0.9561 + }, + { + "start": 33234.82, + "end": 33236.32, + "probability": 0.8109 + }, + { + "start": 33236.42, + "end": 33239.54, + "probability": 0.8481 + }, + { + "start": 33240.24, + "end": 33242.09, + "probability": 0.9463 + }, + { + "start": 33242.96, + "end": 33243.7, + "probability": 0.2738 + }, + { + "start": 33243.72, + "end": 33245.2, + "probability": 0.6177 + }, + { + "start": 33245.32, + "end": 33250.42, + "probability": 0.7364 + }, + { + "start": 33251.54, + "end": 33251.92, + "probability": 0.2899 + }, + { + "start": 33252.56, + "end": 33259.8, + "probability": 0.2717 + }, + { + "start": 33259.8, + "end": 33263.88, + "probability": 0.5595 + }, + { + "start": 33265.06, + "end": 33266.88, + "probability": 0.0029 + }, + { + "start": 33267.46, + "end": 33267.88, + "probability": 0.1944 + }, + { + "start": 33269.12, + "end": 33273.6, + "probability": 0.3804 + }, + { + "start": 33273.6, + "end": 33274.08, + "probability": 0.3774 + }, + { + "start": 33274.46, + "end": 33275.48, + "probability": 0.5163 + }, + { + "start": 33275.5, + "end": 33281.66, + "probability": 0.8721 + }, + { + "start": 33282.58, + "end": 33283.82, + "probability": 0.9832 + }, + { + "start": 33284.36, + "end": 33285.48, + "probability": 0.9972 + }, + { + "start": 33286.22, + "end": 33288.3, + "probability": 0.7385 + }, + { + "start": 33289.48, + "end": 33291.9, + "probability": 0.9351 + }, + { + "start": 33292.0, + "end": 33293.69, + "probability": 0.881 + }, + { + "start": 33294.44, + "end": 33296.36, + "probability": 0.9852 + }, + { + "start": 33297.02, + "end": 33303.08, + "probability": 0.9703 + }, + { + "start": 33303.12, + "end": 33310.64, + "probability": 0.9987 + }, + { + "start": 33311.26, + "end": 33315.8, + "probability": 0.9805 + }, + { + "start": 33316.46, + "end": 33319.26, + "probability": 0.983 + }, + { + "start": 33320.3, + "end": 33324.2, + "probability": 0.993 + }, + { + "start": 33324.76, + "end": 33324.86, + "probability": 0.9865 + }, + { + "start": 33327.06, + "end": 33328.96, + "probability": 0.9599 + }, + { + "start": 33329.72, + "end": 33332.04, + "probability": 0.9954 + }, + { + "start": 33332.84, + "end": 33337.26, + "probability": 0.9887 + }, + { + "start": 33338.22, + "end": 33341.82, + "probability": 0.9191 + }, + { + "start": 33342.7, + "end": 33345.04, + "probability": 0.9938 + }, + { + "start": 33345.92, + "end": 33348.66, + "probability": 0.9867 + }, + { + "start": 33349.28, + "end": 33351.85, + "probability": 0.7515 + }, + { + "start": 33353.38, + "end": 33356.06, + "probability": 0.9945 + }, + { + "start": 33356.62, + "end": 33357.48, + "probability": 0.7397 + }, + { + "start": 33357.66, + "end": 33359.76, + "probability": 0.7917 + }, + { + "start": 33360.4, + "end": 33361.38, + "probability": 0.6914 + }, + { + "start": 33361.42, + "end": 33365.92, + "probability": 0.9875 + }, + { + "start": 33366.52, + "end": 33371.28, + "probability": 0.9873 + }, + { + "start": 33371.46, + "end": 33372.62, + "probability": 0.5799 + }, + { + "start": 33373.08, + "end": 33380.34, + "probability": 0.9963 + }, + { + "start": 33380.54, + "end": 33382.58, + "probability": 0.6239 + }, + { + "start": 33382.88, + "end": 33385.52, + "probability": 0.9131 + }, + { + "start": 33385.7, + "end": 33390.88, + "probability": 0.9836 + }, + { + "start": 33390.88, + "end": 33397.7, + "probability": 0.8047 + }, + { + "start": 33398.36, + "end": 33405.38, + "probability": 0.8639 + }, + { + "start": 33406.18, + "end": 33407.8, + "probability": 0.7496 + }, + { + "start": 33408.04, + "end": 33412.72, + "probability": 0.9984 + }, + { + "start": 33412.78, + "end": 33418.8, + "probability": 0.9985 + }, + { + "start": 33418.8, + "end": 33424.98, + "probability": 0.9296 + }, + { + "start": 33425.78, + "end": 33429.78, + "probability": 0.9946 + }, + { + "start": 33430.32, + "end": 33434.22, + "probability": 0.9624 + }, + { + "start": 33434.4, + "end": 33438.98, + "probability": 0.9443 + }, + { + "start": 33440.16, + "end": 33442.3, + "probability": 0.7443 + }, + { + "start": 33442.46, + "end": 33443.58, + "probability": 0.854 + }, + { + "start": 33443.78, + "end": 33449.58, + "probability": 0.9797 + }, + { + "start": 33450.34, + "end": 33453.48, + "probability": 0.6416 + }, + { + "start": 33454.1, + "end": 33456.54, + "probability": 0.9962 + }, + { + "start": 33457.02, + "end": 33458.16, + "probability": 0.921 + }, + { + "start": 33458.28, + "end": 33458.63, + "probability": 0.9403 + }, + { + "start": 33459.9, + "end": 33463.8, + "probability": 0.9932 + }, + { + "start": 33463.8, + "end": 33468.18, + "probability": 0.9734 + }, + { + "start": 33468.82, + "end": 33473.34, + "probability": 0.9384 + }, + { + "start": 33474.0, + "end": 33475.54, + "probability": 0.8176 + }, + { + "start": 33476.18, + "end": 33478.8, + "probability": 0.8551 + }, + { + "start": 33479.32, + "end": 33482.72, + "probability": 0.9658 + }, + { + "start": 33483.34, + "end": 33487.2, + "probability": 0.866 + }, + { + "start": 33487.88, + "end": 33489.26, + "probability": 0.8093 + }, + { + "start": 33489.9, + "end": 33492.42, + "probability": 0.847 + }, + { + "start": 33493.3, + "end": 33494.94, + "probability": 0.3026 + }, + { + "start": 33495.62, + "end": 33498.56, + "probability": 0.8597 + }, + { + "start": 33499.68, + "end": 33502.86, + "probability": 0.7755 + }, + { + "start": 33503.02, + "end": 33505.45, + "probability": 0.9841 + }, + { + "start": 33506.06, + "end": 33509.38, + "probability": 0.6513 + }, + { + "start": 33509.98, + "end": 33512.96, + "probability": 0.915 + }, + { + "start": 33513.48, + "end": 33516.04, + "probability": 0.8725 + }, + { + "start": 33516.76, + "end": 33519.16, + "probability": 0.9434 + }, + { + "start": 33520.06, + "end": 33524.94, + "probability": 0.9985 + }, + { + "start": 33526.18, + "end": 33528.14, + "probability": 0.9871 + }, + { + "start": 33528.76, + "end": 33530.08, + "probability": 0.919 + }, + { + "start": 33530.18, + "end": 33536.04, + "probability": 0.99 + }, + { + "start": 33536.26, + "end": 33536.84, + "probability": 0.7827 + }, + { + "start": 33537.54, + "end": 33538.2, + "probability": 0.9129 + }, + { + "start": 33539.3, + "end": 33541.51, + "probability": 0.9532 + }, + { + "start": 33542.76, + "end": 33543.96, + "probability": 0.7309 + }, + { + "start": 33544.1, + "end": 33549.28, + "probability": 0.9968 + }, + { + "start": 33549.94, + "end": 33553.08, + "probability": 0.9923 + }, + { + "start": 33553.46, + "end": 33555.12, + "probability": 0.9521 + }, + { + "start": 33555.26, + "end": 33559.24, + "probability": 0.8604 + }, + { + "start": 33559.86, + "end": 33565.22, + "probability": 0.9932 + }, + { + "start": 33565.22, + "end": 33570.84, + "probability": 0.873 + }, + { + "start": 33572.74, + "end": 33579.54, + "probability": 0.9593 + }, + { + "start": 33579.88, + "end": 33581.1, + "probability": 0.4654 + }, + { + "start": 33581.36, + "end": 33584.92, + "probability": 0.96 + }, + { + "start": 33585.42, + "end": 33589.62, + "probability": 0.9935 + }, + { + "start": 33590.24, + "end": 33590.82, + "probability": 0.844 + }, + { + "start": 33591.52, + "end": 33594.1, + "probability": 0.985 + }, + { + "start": 33595.44, + "end": 33599.96, + "probability": 0.9902 + }, + { + "start": 33600.58, + "end": 33602.3, + "probability": 0.8317 + }, + { + "start": 33605.21, + "end": 33610.06, + "probability": 0.9876 + }, + { + "start": 33610.54, + "end": 33612.06, + "probability": 0.9197 + }, + { + "start": 33612.84, + "end": 33615.04, + "probability": 0.9931 + }, + { + "start": 33615.5, + "end": 33616.74, + "probability": 0.3624 + }, + { + "start": 33618.3, + "end": 33620.74, + "probability": 0.9541 + }, + { + "start": 33620.74, + "end": 33624.34, + "probability": 0.9785 + }, + { + "start": 33624.92, + "end": 33626.14, + "probability": 0.7952 + }, + { + "start": 33626.28, + "end": 33627.58, + "probability": 0.568 + }, + { + "start": 33628.12, + "end": 33629.56, + "probability": 0.9695 + }, + { + "start": 33629.7, + "end": 33632.38, + "probability": 0.9524 + }, + { + "start": 33633.3, + "end": 33637.76, + "probability": 0.9873 + }, + { + "start": 33638.08, + "end": 33643.6, + "probability": 0.9209 + }, + { + "start": 33644.22, + "end": 33655.06, + "probability": 0.9679 + }, + { + "start": 33655.7, + "end": 33657.05, + "probability": 0.8701 + }, + { + "start": 33657.18, + "end": 33660.6, + "probability": 0.9924 + }, + { + "start": 33661.14, + "end": 33663.18, + "probability": 0.997 + }, + { + "start": 33663.74, + "end": 33665.6, + "probability": 0.9996 + }, + { + "start": 33668.18, + "end": 33670.56, + "probability": 0.9468 + }, + { + "start": 33671.56, + "end": 33675.04, + "probability": 0.9476 + }, + { + "start": 33675.54, + "end": 33677.34, + "probability": 0.923 + }, + { + "start": 33677.42, + "end": 33681.36, + "probability": 0.9965 + }, + { + "start": 33681.46, + "end": 33682.84, + "probability": 0.8813 + }, + { + "start": 33683.68, + "end": 33686.08, + "probability": 0.978 + }, + { + "start": 33686.12, + "end": 33689.5, + "probability": 0.8667 + }, + { + "start": 33689.66, + "end": 33693.25, + "probability": 0.9622 + }, + { + "start": 33694.54, + "end": 33698.02, + "probability": 0.9445 + }, + { + "start": 33698.86, + "end": 33702.04, + "probability": 0.9927 + }, + { + "start": 33702.9, + "end": 33704.6, + "probability": 0.7858 + }, + { + "start": 33706.0, + "end": 33708.54, + "probability": 0.9862 + }, + { + "start": 33709.28, + "end": 33713.9, + "probability": 0.8584 + }, + { + "start": 33714.6, + "end": 33717.12, + "probability": 0.9959 + }, + { + "start": 33717.78, + "end": 33720.8, + "probability": 0.9858 + }, + { + "start": 33721.2, + "end": 33723.56, + "probability": 0.9922 + }, + { + "start": 33724.18, + "end": 33727.54, + "probability": 0.8894 + }, + { + "start": 33728.26, + "end": 33730.56, + "probability": 0.9576 + }, + { + "start": 33731.62, + "end": 33734.08, + "probability": 0.6685 + }, + { + "start": 33735.12, + "end": 33738.42, + "probability": 0.9847 + }, + { + "start": 33739.16, + "end": 33742.34, + "probability": 0.8514 + }, + { + "start": 33743.56, + "end": 33745.34, + "probability": 0.7486 + }, + { + "start": 33746.02, + "end": 33750.98, + "probability": 0.4177 + }, + { + "start": 33751.36, + "end": 33751.36, + "probability": 0.1555 + }, + { + "start": 33751.36, + "end": 33755.14, + "probability": 0.909 + }, + { + "start": 33755.14, + "end": 33755.84, + "probability": 0.4724 + }, + { + "start": 33755.96, + "end": 33758.14, + "probability": 0.1027 + }, + { + "start": 33759.56, + "end": 33760.86, + "probability": 0.3292 + }, + { + "start": 33760.86, + "end": 33761.34, + "probability": 0.0797 + }, + { + "start": 33761.46, + "end": 33763.82, + "probability": 0.4359 + }, + { + "start": 33764.08, + "end": 33766.01, + "probability": 0.8098 + }, + { + "start": 33766.22, + "end": 33769.6, + "probability": 0.5685 + }, + { + "start": 33769.64, + "end": 33772.4, + "probability": 0.936 + }, + { + "start": 33772.4, + "end": 33774.86, + "probability": 0.6904 + }, + { + "start": 33774.86, + "end": 33775.9, + "probability": 0.1808 + }, + { + "start": 33776.02, + "end": 33777.88, + "probability": 0.9045 + }, + { + "start": 33778.06, + "end": 33780.3, + "probability": 0.9777 + }, + { + "start": 33780.48, + "end": 33781.18, + "probability": 0.6795 + }, + { + "start": 33791.0, + "end": 33791.6, + "probability": 0.1178 + }, + { + "start": 33791.6, + "end": 33792.04, + "probability": 0.0039 + }, + { + "start": 33792.16, + "end": 33794.88, + "probability": 0.1414 + }, + { + "start": 33795.66, + "end": 33796.28, + "probability": 0.1027 + }, + { + "start": 33796.28, + "end": 33796.28, + "probability": 0.0228 + }, + { + "start": 33796.28, + "end": 33799.72, + "probability": 0.5324 + }, + { + "start": 33800.12, + "end": 33801.2, + "probability": 0.8621 + }, + { + "start": 33801.6, + "end": 33803.12, + "probability": 0.9937 + }, + { + "start": 33803.64, + "end": 33804.16, + "probability": 0.9399 + }, + { + "start": 33807.74, + "end": 33815.36, + "probability": 0.9539 + }, + { + "start": 33816.48, + "end": 33819.18, + "probability": 0.9959 + }, + { + "start": 33820.12, + "end": 33822.26, + "probability": 0.9974 + }, + { + "start": 33822.78, + "end": 33823.04, + "probability": 0.5482 + }, + { + "start": 33823.66, + "end": 33824.14, + "probability": 0.9952 + }, + { + "start": 33825.66, + "end": 33826.32, + "probability": 0.8165 + }, + { + "start": 33827.06, + "end": 33831.48, + "probability": 0.972 + }, + { + "start": 33833.98, + "end": 33835.2, + "probability": 0.4287 + }, + { + "start": 33835.98, + "end": 33842.5, + "probability": 0.9456 + }, + { + "start": 33842.92, + "end": 33843.22, + "probability": 0.5127 + }, + { + "start": 33844.1, + "end": 33845.24, + "probability": 0.9919 + }, + { + "start": 33845.86, + "end": 33847.18, + "probability": 0.9721 + }, + { + "start": 33847.8, + "end": 33849.3, + "probability": 0.7767 + }, + { + "start": 33849.58, + "end": 33852.03, + "probability": 0.9497 + }, + { + "start": 33852.72, + "end": 33856.0, + "probability": 0.4258 + }, + { + "start": 33856.54, + "end": 33857.16, + "probability": 0.6167 + }, + { + "start": 33857.82, + "end": 33859.64, + "probability": 0.8267 + }, + { + "start": 33860.52, + "end": 33862.14, + "probability": 0.9703 + }, + { + "start": 33862.66, + "end": 33864.92, + "probability": 0.8322 + }, + { + "start": 33865.76, + "end": 33866.6, + "probability": 0.8734 + }, + { + "start": 33867.82, + "end": 33872.02, + "probability": 0.9724 + }, + { + "start": 33872.22, + "end": 33875.84, + "probability": 0.7391 + }, + { + "start": 33875.94, + "end": 33880.46, + "probability": 0.9978 + }, + { + "start": 33881.02, + "end": 33881.36, + "probability": 0.8296 + }, + { + "start": 33882.08, + "end": 33885.78, + "probability": 0.8645 + }, + { + "start": 33887.28, + "end": 33887.67, + "probability": 0.9673 + }, + { + "start": 33888.52, + "end": 33890.5, + "probability": 0.6396 + }, + { + "start": 33890.58, + "end": 33891.54, + "probability": 0.6451 + }, + { + "start": 33891.78, + "end": 33894.85, + "probability": 0.7912 + }, + { + "start": 33895.44, + "end": 33900.68, + "probability": 0.9818 + }, + { + "start": 33901.01, + "end": 33909.48, + "probability": 0.9252 + }, + { + "start": 33910.02, + "end": 33911.22, + "probability": 0.8765 + }, + { + "start": 33912.42, + "end": 33914.66, + "probability": 0.9984 + }, + { + "start": 33915.48, + "end": 33917.42, + "probability": 0.742 + }, + { + "start": 33917.6, + "end": 33921.64, + "probability": 0.8966 + }, + { + "start": 33922.42, + "end": 33923.8, + "probability": 0.97 + }, + { + "start": 33923.94, + "end": 33924.72, + "probability": 0.6588 + }, + { + "start": 33924.8, + "end": 33926.46, + "probability": 0.9643 + }, + { + "start": 33926.94, + "end": 33932.35, + "probability": 0.9907 + }, + { + "start": 33932.9, + "end": 33939.64, + "probability": 0.991 + }, + { + "start": 33940.42, + "end": 33947.44, + "probability": 0.9927 + }, + { + "start": 33947.88, + "end": 33951.44, + "probability": 0.8295 + }, + { + "start": 33951.8, + "end": 33952.24, + "probability": 0.7034 + }, + { + "start": 33952.76, + "end": 33953.32, + "probability": 0.7061 + }, + { + "start": 33954.78, + "end": 33956.06, + "probability": 0.6759 + }, + { + "start": 33957.2, + "end": 33958.84, + "probability": 0.9481 + }, + { + "start": 33960.04, + "end": 33962.82, + "probability": 0.6908 + }, + { + "start": 33963.6, + "end": 33969.54, + "probability": 0.9629 + }, + { + "start": 33969.54, + "end": 33973.74, + "probability": 0.9963 + }, + { + "start": 33974.46, + "end": 33977.1, + "probability": 0.976 + }, + { + "start": 33977.8, + "end": 33980.58, + "probability": 0.5011 + }, + { + "start": 33980.72, + "end": 33984.86, + "probability": 0.9474 + }, + { + "start": 33984.92, + "end": 33989.08, + "probability": 0.7478 + }, + { + "start": 33989.08, + "end": 33993.84, + "probability": 0.7549 + }, + { + "start": 33994.28, + "end": 34000.68, + "probability": 0.8568 + }, + { + "start": 34001.36, + "end": 34007.86, + "probability": 0.9746 + }, + { + "start": 34008.16, + "end": 34009.38, + "probability": 0.8901 + }, + { + "start": 34009.72, + "end": 34012.9, + "probability": 0.9437 + }, + { + "start": 34016.2, + "end": 34020.1, + "probability": 0.7526 + }, + { + "start": 34021.1, + "end": 34022.02, + "probability": 0.926 + }, + { + "start": 34022.23, + "end": 34025.3, + "probability": 0.9904 + }, + { + "start": 34025.3, + "end": 34029.02, + "probability": 0.9464 + }, + { + "start": 34029.58, + "end": 34032.5, + "probability": 0.801 + }, + { + "start": 34033.1, + "end": 34033.76, + "probability": 0.6246 + }, + { + "start": 34035.76, + "end": 34037.36, + "probability": 0.6434 + }, + { + "start": 34038.0, + "end": 34043.18, + "probability": 0.99 + }, + { + "start": 34043.18, + "end": 34052.6, + "probability": 0.981 + }, + { + "start": 34053.52, + "end": 34054.7, + "probability": 0.8307 + }, + { + "start": 34055.6, + "end": 34056.76, + "probability": 0.4878 + }, + { + "start": 34057.64, + "end": 34058.88, + "probability": 0.8232 + }, + { + "start": 34059.06, + "end": 34061.18, + "probability": 0.952 + }, + { + "start": 34061.34, + "end": 34063.38, + "probability": 0.9442 + }, + { + "start": 34065.04, + "end": 34067.0, + "probability": 0.9536 + }, + { + "start": 34067.78, + "end": 34069.46, + "probability": 0.9463 + }, + { + "start": 34070.26, + "end": 34072.42, + "probability": 0.7363 + }, + { + "start": 34073.64, + "end": 34076.52, + "probability": 0.8337 + }, + { + "start": 34077.94, + "end": 34079.74, + "probability": 0.9953 + }, + { + "start": 34080.9, + "end": 34086.02, + "probability": 0.9304 + }, + { + "start": 34086.82, + "end": 34088.76, + "probability": 0.9976 + }, + { + "start": 34089.82, + "end": 34092.5, + "probability": 0.9873 + }, + { + "start": 34093.02, + "end": 34098.92, + "probability": 0.9614 + }, + { + "start": 34099.32, + "end": 34102.68, + "probability": 0.9944 + }, + { + "start": 34102.8, + "end": 34105.24, + "probability": 0.5121 + }, + { + "start": 34105.36, + "end": 34106.4, + "probability": 0.9888 + }, + { + "start": 34106.5, + "end": 34109.44, + "probability": 0.9918 + }, + { + "start": 34109.98, + "end": 34114.78, + "probability": 0.9849 + }, + { + "start": 34115.64, + "end": 34118.46, + "probability": 0.9679 + }, + { + "start": 34119.38, + "end": 34120.35, + "probability": 0.9995 + }, + { + "start": 34120.98, + "end": 34121.84, + "probability": 0.771 + }, + { + "start": 34123.26, + "end": 34126.4, + "probability": 0.0134 + }, + { + "start": 34127.96, + "end": 34130.52, + "probability": 0.3152 + }, + { + "start": 34130.68, + "end": 34131.68, + "probability": 0.2861 + }, + { + "start": 34131.76, + "end": 34138.56, + "probability": 0.9771 + }, + { + "start": 34139.26, + "end": 34142.28, + "probability": 0.894 + }, + { + "start": 34143.22, + "end": 34146.66, + "probability": 0.6584 + }, + { + "start": 34147.18, + "end": 34151.82, + "probability": 0.9504 + }, + { + "start": 34152.52, + "end": 34153.84, + "probability": 0.9683 + }, + { + "start": 34155.16, + "end": 34158.42, + "probability": 0.995 + }, + { + "start": 34158.96, + "end": 34160.0, + "probability": 0.7798 + }, + { + "start": 34161.06, + "end": 34164.56, + "probability": 0.8888 + }, + { + "start": 34164.74, + "end": 34167.36, + "probability": 0.9771 + }, + { + "start": 34167.5, + "end": 34171.26, + "probability": 0.8837 + }, + { + "start": 34171.7, + "end": 34172.84, + "probability": 0.9119 + }, + { + "start": 34172.88, + "end": 34174.8, + "probability": 0.9598 + }, + { + "start": 34175.88, + "end": 34177.54, + "probability": 0.8517 + }, + { + "start": 34178.46, + "end": 34179.48, + "probability": 0.9795 + }, + { + "start": 34185.2, + "end": 34187.9, + "probability": 0.8921 + }, + { + "start": 34188.42, + "end": 34189.2, + "probability": 0.7561 + }, + { + "start": 34192.56, + "end": 34193.56, + "probability": 0.0862 + }, + { + "start": 34195.0, + "end": 34195.76, + "probability": 0.3143 + }, + { + "start": 34196.0, + "end": 34196.28, + "probability": 0.3905 + }, + { + "start": 34197.04, + "end": 34197.6, + "probability": 0.6255 + }, + { + "start": 34197.7, + "end": 34202.24, + "probability": 0.9942 + }, + { + "start": 34202.98, + "end": 34207.4, + "probability": 0.998 + }, + { + "start": 34208.08, + "end": 34209.38, + "probability": 0.9968 + }, + { + "start": 34209.5, + "end": 34210.04, + "probability": 0.9277 + }, + { + "start": 34210.42, + "end": 34211.18, + "probability": 0.8605 + }, + { + "start": 34211.38, + "end": 34212.98, + "probability": 0.8457 + }, + { + "start": 34214.12, + "end": 34216.78, + "probability": 0.9118 + }, + { + "start": 34216.94, + "end": 34219.84, + "probability": 0.9525 + }, + { + "start": 34220.7, + "end": 34221.82, + "probability": 0.7594 + }, + { + "start": 34222.54, + "end": 34223.06, + "probability": 0.3736 + }, + { + "start": 34223.44, + "end": 34224.24, + "probability": 0.8948 + }, + { + "start": 34224.92, + "end": 34226.4, + "probability": 0.986 + }, + { + "start": 34227.36, + "end": 34230.16, + "probability": 0.9767 + }, + { + "start": 34231.22, + "end": 34233.48, + "probability": 0.938 + }, + { + "start": 34233.56, + "end": 34240.56, + "probability": 0.9742 + }, + { + "start": 34240.56, + "end": 34244.78, + "probability": 0.9739 + }, + { + "start": 34245.5, + "end": 34250.54, + "probability": 0.9881 + }, + { + "start": 34251.18, + "end": 34252.14, + "probability": 0.7678 + }, + { + "start": 34252.32, + "end": 34253.22, + "probability": 0.9834 + }, + { + "start": 34253.26, + "end": 34254.32, + "probability": 0.98 + }, + { + "start": 34255.62, + "end": 34261.98, + "probability": 0.9983 + }, + { + "start": 34262.7, + "end": 34266.88, + "probability": 0.693 + }, + { + "start": 34266.98, + "end": 34275.46, + "probability": 0.8766 + }, + { + "start": 34276.24, + "end": 34278.48, + "probability": 0.9765 + }, + { + "start": 34279.02, + "end": 34281.06, + "probability": 0.999 + }, + { + "start": 34282.22, + "end": 34287.06, + "probability": 0.8755 + }, + { + "start": 34287.14, + "end": 34287.74, + "probability": 0.7034 + }, + { + "start": 34288.18, + "end": 34290.78, + "probability": 0.8927 + }, + { + "start": 34290.84, + "end": 34294.8, + "probability": 0.8984 + }, + { + "start": 34295.0, + "end": 34296.08, + "probability": 0.9236 + }, + { + "start": 34296.7, + "end": 34297.59, + "probability": 0.9746 + }, + { + "start": 34297.78, + "end": 34300.78, + "probability": 0.9575 + }, + { + "start": 34301.02, + "end": 34302.94, + "probability": 0.9971 + }, + { + "start": 34303.1, + "end": 34303.7, + "probability": 0.7491 + }, + { + "start": 34304.04, + "end": 34308.62, + "probability": 0.9699 + }, + { + "start": 34308.62, + "end": 34312.5, + "probability": 0.973 + }, + { + "start": 34313.28, + "end": 34316.08, + "probability": 0.9517 + }, + { + "start": 34316.24, + "end": 34320.23, + "probability": 0.9963 + }, + { + "start": 34320.54, + "end": 34321.56, + "probability": 0.9214 + }, + { + "start": 34322.22, + "end": 34323.82, + "probability": 0.9707 + }, + { + "start": 34324.8, + "end": 34328.7, + "probability": 0.9425 + }, + { + "start": 34330.22, + "end": 34331.02, + "probability": 0.9686 + }, + { + "start": 34331.64, + "end": 34334.02, + "probability": 0.9934 + }, + { + "start": 34335.12, + "end": 34335.96, + "probability": 0.9175 + }, + { + "start": 34336.38, + "end": 34336.38, + "probability": 0.0889 + }, + { + "start": 34336.38, + "end": 34336.54, + "probability": 0.2393 + }, + { + "start": 34336.58, + "end": 34336.68, + "probability": 0.5128 + }, + { + "start": 34337.64, + "end": 34338.26, + "probability": 0.7699 + }, + { + "start": 34338.52, + "end": 34342.58, + "probability": 0.2968 + }, + { + "start": 34343.0, + "end": 34343.42, + "probability": 0.5111 + }, + { + "start": 34343.52, + "end": 34345.52, + "probability": 0.8192 + }, + { + "start": 34346.44, + "end": 34347.22, + "probability": 0.659 + }, + { + "start": 34347.36, + "end": 34351.16, + "probability": 0.9592 + }, + { + "start": 34352.16, + "end": 34355.04, + "probability": 0.4649 + }, + { + "start": 34355.56, + "end": 34357.72, + "probability": 0.9925 + }, + { + "start": 34358.52, + "end": 34359.04, + "probability": 0.1838 + }, + { + "start": 34361.12, + "end": 34361.14, + "probability": 0.0717 + }, + { + "start": 34361.14, + "end": 34361.14, + "probability": 0.277 + }, + { + "start": 34361.14, + "end": 34362.58, + "probability": 0.408 + }, + { + "start": 34363.0, + "end": 34366.25, + "probability": 0.2122 + }, + { + "start": 34366.88, + "end": 34372.2, + "probability": 0.7952 + }, + { + "start": 34372.86, + "end": 34373.63, + "probability": 0.9148 + }, + { + "start": 34374.56, + "end": 34376.68, + "probability": 0.9116 + }, + { + "start": 34378.12, + "end": 34378.8, + "probability": 0.5228 + }, + { + "start": 34379.86, + "end": 34380.58, + "probability": 0.9756 + }, + { + "start": 34381.46, + "end": 34387.82, + "probability": 0.9751 + }, + { + "start": 34388.52, + "end": 34389.64, + "probability": 0.9807 + }, + { + "start": 34390.36, + "end": 34392.22, + "probability": 0.9053 + }, + { + "start": 34392.94, + "end": 34393.74, + "probability": 0.9031 + }, + { + "start": 34394.36, + "end": 34396.5, + "probability": 0.9885 + }, + { + "start": 34397.62, + "end": 34400.76, + "probability": 0.9775 + }, + { + "start": 34400.94, + "end": 34402.32, + "probability": 0.6923 + }, + { + "start": 34403.5, + "end": 34403.56, + "probability": 0.1324 + }, + { + "start": 34403.56, + "end": 34404.84, + "probability": 0.8255 + }, + { + "start": 34405.12, + "end": 34406.0, + "probability": 0.906 + }, + { + "start": 34406.08, + "end": 34407.72, + "probability": 0.9524 + }, + { + "start": 34408.54, + "end": 34412.44, + "probability": 0.8957 + }, + { + "start": 34413.78, + "end": 34416.48, + "probability": 0.9983 + }, + { + "start": 34417.36, + "end": 34419.06, + "probability": 0.9897 + }, + { + "start": 34420.06, + "end": 34423.28, + "probability": 0.9756 + }, + { + "start": 34424.36, + "end": 34425.14, + "probability": 0.8554 + }, + { + "start": 34425.78, + "end": 34429.0, + "probability": 0.9435 + }, + { + "start": 34430.16, + "end": 34430.22, + "probability": 0.1316 + }, + { + "start": 34430.22, + "end": 34430.71, + "probability": 0.9312 + }, + { + "start": 34432.74, + "end": 34435.02, + "probability": 0.3178 + }, + { + "start": 34435.18, + "end": 34435.54, + "probability": 0.1293 + }, + { + "start": 34437.84, + "end": 34437.9, + "probability": 0.0202 + }, + { + "start": 34437.9, + "end": 34439.5, + "probability": 0.6301 + }, + { + "start": 34440.34, + "end": 34440.92, + "probability": 0.6175 + }, + { + "start": 34441.62, + "end": 34443.46, + "probability": 0.8717 + }, + { + "start": 34443.78, + "end": 34444.17, + "probability": 0.5504 + }, + { + "start": 34445.06, + "end": 34451.96, + "probability": 0.9903 + }, + { + "start": 34452.42, + "end": 34453.4, + "probability": 0.8239 + }, + { + "start": 34453.64, + "end": 34455.24, + "probability": 0.5064 + }, + { + "start": 34455.32, + "end": 34456.72, + "probability": 0.795 + }, + { + "start": 34456.82, + "end": 34457.56, + "probability": 0.7394 + }, + { + "start": 34457.88, + "end": 34458.58, + "probability": 0.7118 + }, + { + "start": 34460.71, + "end": 34461.62, + "probability": 0.0703 + }, + { + "start": 34466.02, + "end": 34466.38, + "probability": 0.0023 + }, + { + "start": 34467.12, + "end": 34467.14, + "probability": 0.2061 + }, + { + "start": 34467.14, + "end": 34468.8, + "probability": 0.1713 + }, + { + "start": 34469.44, + "end": 34471.24, + "probability": 0.24 + }, + { + "start": 34472.02, + "end": 34472.86, + "probability": 0.6338 + }, + { + "start": 34473.0, + "end": 34473.41, + "probability": 0.4299 + }, + { + "start": 34473.76, + "end": 34475.04, + "probability": 0.3103 + }, + { + "start": 34475.12, + "end": 34476.6, + "probability": 0.4709 + }, + { + "start": 34476.76, + "end": 34477.56, + "probability": 0.8179 + }, + { + "start": 34478.58, + "end": 34479.44, + "probability": 0.1779 + }, + { + "start": 34480.86, + "end": 34481.7, + "probability": 0.7466 + }, + { + "start": 34481.82, + "end": 34482.04, + "probability": 0.4059 + }, + { + "start": 34482.08, + "end": 34486.96, + "probability": 0.8749 + }, + { + "start": 34486.96, + "end": 34487.36, + "probability": 0.0887 + }, + { + "start": 34489.96, + "end": 34494.74, + "probability": 0.537 + }, + { + "start": 34494.9, + "end": 34496.84, + "probability": 0.6699 + }, + { + "start": 34497.88, + "end": 34499.56, + "probability": 0.2209 + }, + { + "start": 34499.62, + "end": 34503.66, + "probability": 0.3559 + }, + { + "start": 34503.98, + "end": 34507.06, + "probability": 0.1868 + }, + { + "start": 34507.32, + "end": 34507.54, + "probability": 0.0395 + }, + { + "start": 34507.54, + "end": 34507.54, + "probability": 0.0326 + }, + { + "start": 34507.54, + "end": 34507.54, + "probability": 0.1694 + }, + { + "start": 34507.54, + "end": 34507.54, + "probability": 0.1612 + }, + { + "start": 34507.54, + "end": 34509.02, + "probability": 0.5354 + }, + { + "start": 34509.22, + "end": 34510.6, + "probability": 0.1274 + }, + { + "start": 34510.84, + "end": 34512.51, + "probability": 0.0609 + }, + { + "start": 34514.44, + "end": 34515.34, + "probability": 0.5344 + }, + { + "start": 34515.54, + "end": 34516.32, + "probability": 0.6902 + }, + { + "start": 34517.36, + "end": 34519.72, + "probability": 0.0943 + }, + { + "start": 34520.0, + "end": 34525.34, + "probability": 0.2049 + }, + { + "start": 34526.02, + "end": 34531.42, + "probability": 0.9821 + }, + { + "start": 34531.5, + "end": 34534.4, + "probability": 0.9672 + }, + { + "start": 34534.5, + "end": 34535.58, + "probability": 0.9706 + }, + { + "start": 34535.88, + "end": 34536.88, + "probability": 0.5094 + }, + { + "start": 34536.94, + "end": 34540.92, + "probability": 0.2948 + }, + { + "start": 34540.92, + "end": 34543.1, + "probability": 0.9289 + }, + { + "start": 34543.58, + "end": 34544.28, + "probability": 0.9963 + }, + { + "start": 34545.14, + "end": 34545.42, + "probability": 0.5808 + }, + { + "start": 34545.42, + "end": 34549.58, + "probability": 0.9213 + }, + { + "start": 34550.2, + "end": 34554.26, + "probability": 0.9885 + }, + { + "start": 34554.6, + "end": 34559.22, + "probability": 0.9927 + }, + { + "start": 34559.88, + "end": 34562.6, + "probability": 0.7769 + }, + { + "start": 34563.62, + "end": 34564.51, + "probability": 0.9951 + }, + { + "start": 34565.04, + "end": 34566.09, + "probability": 0.0292 + }, + { + "start": 34567.48, + "end": 34568.04, + "probability": 0.0349 + }, + { + "start": 34568.46, + "end": 34570.1, + "probability": 0.2647 + }, + { + "start": 34570.24, + "end": 34573.46, + "probability": 0.9263 + }, + { + "start": 34573.46, + "end": 34574.08, + "probability": 0.7452 + }, + { + "start": 34574.14, + "end": 34574.58, + "probability": 0.8647 + }, + { + "start": 34574.58, + "end": 34575.66, + "probability": 0.9956 + }, + { + "start": 34576.2, + "end": 34581.0, + "probability": 0.9905 + }, + { + "start": 34581.46, + "end": 34583.58, + "probability": 0.487 + }, + { + "start": 34583.64, + "end": 34585.16, + "probability": 0.6975 + }, + { + "start": 34585.66, + "end": 34586.3, + "probability": 0.9299 + }, + { + "start": 34587.6, + "end": 34588.32, + "probability": 0.2607 + }, + { + "start": 34588.88, + "end": 34589.82, + "probability": 0.4194 + }, + { + "start": 34589.88, + "end": 34591.5, + "probability": 0.4678 + }, + { + "start": 34593.62, + "end": 34596.62, + "probability": 0.615 + }, + { + "start": 34596.78, + "end": 34598.02, + "probability": 0.2338 + }, + { + "start": 34598.54, + "end": 34598.86, + "probability": 0.7829 + }, + { + "start": 34598.86, + "end": 34602.24, + "probability": 0.9366 + }, + { + "start": 34602.66, + "end": 34604.56, + "probability": 0.9714 + }, + { + "start": 34604.82, + "end": 34606.62, + "probability": 0.8672 + }, + { + "start": 34607.1, + "end": 34608.01, + "probability": 0.9072 + }, + { + "start": 34609.32, + "end": 34609.98, + "probability": 0.4867 + }, + { + "start": 34610.66, + "end": 34611.08, + "probability": 0.9332 + }, + { + "start": 34612.06, + "end": 34613.26, + "probability": 0.9873 + }, + { + "start": 34614.5, + "end": 34615.96, + "probability": 0.9912 + }, + { + "start": 34616.68, + "end": 34617.89, + "probability": 0.9932 + }, + { + "start": 34617.98, + "end": 34618.8, + "probability": 0.9052 + }, + { + "start": 34618.86, + "end": 34619.4, + "probability": 0.936 + }, + { + "start": 34620.2, + "end": 34624.0, + "probability": 0.8462 + }, + { + "start": 34624.76, + "end": 34627.18, + "probability": 0.9937 + }, + { + "start": 34627.18, + "end": 34630.46, + "probability": 0.9985 + }, + { + "start": 34631.02, + "end": 34633.46, + "probability": 0.4061 + }, + { + "start": 34634.58, + "end": 34637.86, + "probability": 0.9974 + }, + { + "start": 34637.86, + "end": 34643.1, + "probability": 0.9477 + }, + { + "start": 34643.2, + "end": 34649.26, + "probability": 0.8128 + }, + { + "start": 34650.08, + "end": 34651.7, + "probability": 0.8376 + }, + { + "start": 34651.84, + "end": 34652.02, + "probability": 0.5429 + }, + { + "start": 34652.44, + "end": 34654.62, + "probability": 0.8477 + }, + { + "start": 34654.72, + "end": 34655.48, + "probability": 0.7601 + }, + { + "start": 34656.2, + "end": 34657.38, + "probability": 0.6708 + }, + { + "start": 34657.5, + "end": 34659.48, + "probability": 0.8175 + }, + { + "start": 34660.54, + "end": 34661.93, + "probability": 0.9972 + }, + { + "start": 34662.24, + "end": 34664.48, + "probability": 0.9446 + }, + { + "start": 34664.94, + "end": 34666.34, + "probability": 0.8141 + }, + { + "start": 34667.02, + "end": 34667.24, + "probability": 0.9646 + }, + { + "start": 34669.92, + "end": 34671.06, + "probability": 0.9966 + }, + { + "start": 34671.92, + "end": 34673.88, + "probability": 0.4263 + }, + { + "start": 34675.1, + "end": 34678.7, + "probability": 0.7525 + }, + { + "start": 34679.48, + "end": 34682.51, + "probability": 0.9878 + }, + { + "start": 34683.18, + "end": 34686.16, + "probability": 0.9904 + }, + { + "start": 34686.3, + "end": 34687.06, + "probability": 0.8916 + }, + { + "start": 34687.48, + "end": 34688.08, + "probability": 0.4555 + }, + { + "start": 34688.2, + "end": 34688.86, + "probability": 0.6821 + }, + { + "start": 34689.32, + "end": 34690.31, + "probability": 0.9985 + }, + { + "start": 34692.4, + "end": 34693.25, + "probability": 0.9985 + }, + { + "start": 34693.34, + "end": 34696.14, + "probability": 0.9873 + }, + { + "start": 34696.14, + "end": 34699.02, + "probability": 0.8235 + }, + { + "start": 34703.06, + "end": 34705.18, + "probability": 0.1122 + }, + { + "start": 34705.18, + "end": 34705.34, + "probability": 0.2403 + }, + { + "start": 34705.96, + "end": 34707.24, + "probability": 0.6188 + }, + { + "start": 34709.24, + "end": 34710.54, + "probability": 0.8549 + }, + { + "start": 34711.9, + "end": 34714.18, + "probability": 0.9888 + }, + { + "start": 34715.22, + "end": 34718.28, + "probability": 0.7657 + }, + { + "start": 34719.08, + "end": 34722.52, + "probability": 0.6745 + }, + { + "start": 34722.92, + "end": 34723.96, + "probability": 0.938 + }, + { + "start": 34724.69, + "end": 34731.86, + "probability": 0.9983 + }, + { + "start": 34732.1, + "end": 34732.82, + "probability": 0.9431 + }, + { + "start": 34733.58, + "end": 34735.1, + "probability": 0.8341 + }, + { + "start": 34736.26, + "end": 34737.12, + "probability": 0.999 + }, + { + "start": 34737.62, + "end": 34739.78, + "probability": 0.9241 + }, + { + "start": 34740.52, + "end": 34742.16, + "probability": 0.6949 + }, + { + "start": 34743.36, + "end": 34744.88, + "probability": 0.478 + }, + { + "start": 34745.36, + "end": 34748.24, + "probability": 0.1676 + }, + { + "start": 34748.52, + "end": 34748.74, + "probability": 0.1021 + }, + { + "start": 34748.82, + "end": 34751.5, + "probability": 0.5096 + }, + { + "start": 34753.06, + "end": 34758.5, + "probability": 0.7785 + }, + { + "start": 34759.5, + "end": 34762.26, + "probability": 0.8706 + }, + { + "start": 34763.36, + "end": 34764.54, + "probability": 0.4983 + }, + { + "start": 34766.22, + "end": 34771.36, + "probability": 0.9583 + }, + { + "start": 34772.58, + "end": 34773.82, + "probability": 0.9471 + }, + { + "start": 34775.82, + "end": 34776.48, + "probability": 0.7732 + }, + { + "start": 34777.16, + "end": 34779.34, + "probability": 0.9865 + }, + { + "start": 34779.92, + "end": 34783.02, + "probability": 0.7998 + }, + { + "start": 34783.88, + "end": 34787.46, + "probability": 0.8334 + }, + { + "start": 34788.02, + "end": 34790.16, + "probability": 0.9507 + }, + { + "start": 34791.48, + "end": 34792.9, + "probability": 0.7819 + }, + { + "start": 34793.28, + "end": 34794.26, + "probability": 0.0165 + }, + { + "start": 34794.46, + "end": 34797.05, + "probability": 0.7471 + }, + { + "start": 34797.3, + "end": 34799.18, + "probability": 0.4149 + }, + { + "start": 34799.8, + "end": 34800.44, + "probability": 0.5686 + }, + { + "start": 34801.0, + "end": 34804.8, + "probability": 0.9885 + }, + { + "start": 34805.46, + "end": 34808.28, + "probability": 0.7728 + }, + { + "start": 34808.68, + "end": 34809.74, + "probability": 0.7848 + }, + { + "start": 34809.86, + "end": 34811.02, + "probability": 0.8793 + }, + { + "start": 34811.06, + "end": 34812.62, + "probability": 0.9966 + }, + { + "start": 34812.94, + "end": 34813.82, + "probability": 0.8869 + }, + { + "start": 34814.08, + "end": 34815.54, + "probability": 0.1481 + }, + { + "start": 34815.76, + "end": 34816.5, + "probability": 0.2052 + }, + { + "start": 34817.32, + "end": 34817.69, + "probability": 0.115 + }, + { + "start": 34819.1, + "end": 34821.78, + "probability": 0.0918 + }, + { + "start": 34821.96, + "end": 34821.96, + "probability": 0.047 + }, + { + "start": 34821.96, + "end": 34823.08, + "probability": 0.6437 + }, + { + "start": 34826.12, + "end": 34826.72, + "probability": 0.4591 + }, + { + "start": 34827.13, + "end": 34827.6, + "probability": 0.5723 + }, + { + "start": 34827.78, + "end": 34829.0, + "probability": 0.2219 + }, + { + "start": 34829.0, + "end": 34829.44, + "probability": 0.4332 + }, + { + "start": 34829.84, + "end": 34830.7, + "probability": 0.3179 + }, + { + "start": 34830.92, + "end": 34831.76, + "probability": 0.5317 + }, + { + "start": 34832.0, + "end": 34834.9, + "probability": 0.6636 + }, + { + "start": 34834.9, + "end": 34836.84, + "probability": 0.4042 + }, + { + "start": 34837.13, + "end": 34837.78, + "probability": 0.003 + }, + { + "start": 34837.78, + "end": 34839.16, + "probability": 0.1355 + }, + { + "start": 34839.24, + "end": 34841.26, + "probability": 0.1979 + }, + { + "start": 34841.6, + "end": 34844.7, + "probability": 0.9022 + }, + { + "start": 34844.74, + "end": 34845.88, + "probability": 0.8919 + }, + { + "start": 34845.98, + "end": 34846.3, + "probability": 0.8852 + }, + { + "start": 34846.54, + "end": 34846.7, + "probability": 0.578 + }, + { + "start": 34847.58, + "end": 34848.86, + "probability": 0.6484 + }, + { + "start": 34849.63, + "end": 34853.18, + "probability": 0.6653 + }, + { + "start": 34854.06, + "end": 34856.0, + "probability": 0.7489 + }, + { + "start": 34856.76, + "end": 34858.62, + "probability": 0.8033 + }, + { + "start": 34859.66, + "end": 34861.24, + "probability": 0.9225 + }, + { + "start": 34861.34, + "end": 34861.78, + "probability": 0.4487 + }, + { + "start": 34862.4, + "end": 34862.72, + "probability": 0.4923 + }, + { + "start": 34862.82, + "end": 34865.52, + "probability": 0.7304 + }, + { + "start": 34866.4, + "end": 34867.14, + "probability": 0.1821 + }, + { + "start": 34868.23, + "end": 34871.14, + "probability": 0.8154 + }, + { + "start": 34871.26, + "end": 34874.3, + "probability": 0.9113 + }, + { + "start": 34875.86, + "end": 34877.8, + "probability": 0.9685 + }, + { + "start": 34878.52, + "end": 34879.64, + "probability": 0.978 + }, + { + "start": 34879.68, + "end": 34881.18, + "probability": 0.9694 + }, + { + "start": 34881.2, + "end": 34884.14, + "probability": 0.9984 + }, + { + "start": 34884.24, + "end": 34885.32, + "probability": 0.9399 + }, + { + "start": 34885.88, + "end": 34887.08, + "probability": 0.9929 + }, + { + "start": 34887.96, + "end": 34890.14, + "probability": 0.9551 + }, + { + "start": 34890.76, + "end": 34893.12, + "probability": 0.9561 + }, + { + "start": 34893.68, + "end": 34894.64, + "probability": 0.7721 + }, + { + "start": 34894.7, + "end": 34899.46, + "probability": 0.9922 + }, + { + "start": 34899.96, + "end": 34904.36, + "probability": 0.9775 + }, + { + "start": 34905.22, + "end": 34909.98, + "probability": 0.9713 + }, + { + "start": 34910.42, + "end": 34911.46, + "probability": 0.8528 + }, + { + "start": 34911.72, + "end": 34914.68, + "probability": 0.1251 + }, + { + "start": 34915.02, + "end": 34915.88, + "probability": 0.3873 + }, + { + "start": 34916.28, + "end": 34918.35, + "probability": 0.772 + }, + { + "start": 34918.8, + "end": 34919.08, + "probability": 0.623 + }, + { + "start": 34919.08, + "end": 34920.5, + "probability": 0.7119 + }, + { + "start": 34920.72, + "end": 34923.8, + "probability": 0.9565 + }, + { + "start": 34924.28, + "end": 34924.76, + "probability": 0.4905 + }, + { + "start": 34925.58, + "end": 34926.5, + "probability": 0.9382 + }, + { + "start": 34927.56, + "end": 34930.22, + "probability": 0.9274 + }, + { + "start": 34931.22, + "end": 34932.23, + "probability": 0.9932 + }, + { + "start": 34933.56, + "end": 34935.0, + "probability": 0.9976 + }, + { + "start": 34936.24, + "end": 34938.24, + "probability": 0.9172 + }, + { + "start": 34939.06, + "end": 34941.84, + "probability": 0.9478 + }, + { + "start": 34942.83, + "end": 34947.07, + "probability": 0.7192 + }, + { + "start": 34949.6, + "end": 34954.1, + "probability": 0.9844 + }, + { + "start": 34955.12, + "end": 34957.26, + "probability": 0.1429 + }, + { + "start": 34958.6, + "end": 34961.84, + "probability": 0.9788 + }, + { + "start": 34962.88, + "end": 34965.3, + "probability": 0.914 + }, + { + "start": 34966.12, + "end": 34966.88, + "probability": 0.7064 + }, + { + "start": 34967.54, + "end": 34968.46, + "probability": 0.8472 + }, + { + "start": 34968.56, + "end": 34969.3, + "probability": 0.9059 + }, + { + "start": 34969.38, + "end": 34971.66, + "probability": 0.7301 + }, + { + "start": 34971.9, + "end": 34974.23, + "probability": 0.8187 + }, + { + "start": 34975.04, + "end": 34977.32, + "probability": 0.6783 + }, + { + "start": 34978.72, + "end": 34980.34, + "probability": 0.9952 + }, + { + "start": 34981.02, + "end": 34981.94, + "probability": 0.5833 + }, + { + "start": 34983.16, + "end": 34983.5, + "probability": 0.7367 + }, + { + "start": 34984.34, + "end": 34985.4, + "probability": 0.9995 + }, + { + "start": 34986.28, + "end": 34987.58, + "probability": 0.9882 + }, + { + "start": 34988.56, + "end": 34991.66, + "probability": 0.9407 + }, + { + "start": 34992.2, + "end": 34995.0, + "probability": 0.9907 + }, + { + "start": 34995.96, + "end": 34998.18, + "probability": 0.7732 + }, + { + "start": 34998.72, + "end": 35000.2, + "probability": 0.5697 + }, + { + "start": 35001.1, + "end": 35002.61, + "probability": 0.9844 + }, + { + "start": 35004.24, + "end": 35004.8, + "probability": 0.2626 + }, + { + "start": 35005.12, + "end": 35005.16, + "probability": 0.3826 + }, + { + "start": 35005.16, + "end": 35007.04, + "probability": 0.6619 + }, + { + "start": 35007.32, + "end": 35013.06, + "probability": 0.8385 + }, + { + "start": 35013.66, + "end": 35014.42, + "probability": 0.98 + }, + { + "start": 35015.92, + "end": 35016.38, + "probability": 0.8588 + }, + { + "start": 35016.9, + "end": 35020.88, + "probability": 0.8961 + }, + { + "start": 35022.1, + "end": 35025.32, + "probability": 0.5179 + }, + { + "start": 35025.6, + "end": 35028.58, + "probability": 0.855 + }, + { + "start": 35028.66, + "end": 35030.24, + "probability": 0.7759 + }, + { + "start": 35032.06, + "end": 35032.96, + "probability": 0.91 + }, + { + "start": 35056.26, + "end": 35057.32, + "probability": 0.6493 + }, + { + "start": 35057.32, + "end": 35062.08, + "probability": 0.5853 + }, + { + "start": 35062.78, + "end": 35063.4, + "probability": 0.8479 + }, + { + "start": 35064.66, + "end": 35065.84, + "probability": 0.2948 + }, + { + "start": 35065.94, + "end": 35066.18, + "probability": 0.6511 + }, + { + "start": 35067.18, + "end": 35068.56, + "probability": 0.7461 + }, + { + "start": 35074.45, + "end": 35076.52, + "probability": 0.9656 + }, + { + "start": 35076.56, + "end": 35077.74, + "probability": 0.9412 + }, + { + "start": 35077.88, + "end": 35079.92, + "probability": 0.6418 + }, + { + "start": 35079.92, + "end": 35080.5, + "probability": 0.6268 + }, + { + "start": 35081.44, + "end": 35082.8, + "probability": 0.5203 + }, + { + "start": 35083.96, + "end": 35083.96, + "probability": 0.1176 + }, + { + "start": 35083.96, + "end": 35086.08, + "probability": 0.0439 + }, + { + "start": 35086.08, + "end": 35087.29, + "probability": 0.6586 + }, + { + "start": 35090.42, + "end": 35092.22, + "probability": 0.774 + }, + { + "start": 35092.44, + "end": 35093.46, + "probability": 0.8078 + }, + { + "start": 35093.48, + "end": 35094.28, + "probability": 0.6998 + }, + { + "start": 35094.34, + "end": 35096.0, + "probability": 0.8559 + }, + { + "start": 35096.12, + "end": 35099.46, + "probability": 0.9928 + }, + { + "start": 35100.9, + "end": 35101.24, + "probability": 0.7045 + }, + { + "start": 35102.16, + "end": 35104.86, + "probability": 0.9257 + }, + { + "start": 35105.26, + "end": 35105.76, + "probability": 0.5927 + }, + { + "start": 35105.8, + "end": 35107.42, + "probability": 0.9351 + }, + { + "start": 35109.1, + "end": 35113.88, + "probability": 0.9745 + }, + { + "start": 35115.02, + "end": 35116.78, + "probability": 0.8593 + }, + { + "start": 35117.14, + "end": 35119.79, + "probability": 0.9556 + }, + { + "start": 35120.54, + "end": 35120.94, + "probability": 0.3394 + }, + { + "start": 35120.98, + "end": 35121.58, + "probability": 0.8002 + }, + { + "start": 35121.7, + "end": 35123.58, + "probability": 0.7218 + }, + { + "start": 35124.46, + "end": 35126.34, + "probability": 0.9801 + }, + { + "start": 35126.48, + "end": 35127.42, + "probability": 0.7604 + }, + { + "start": 35128.54, + "end": 35130.26, + "probability": 0.998 + }, + { + "start": 35131.46, + "end": 35136.08, + "probability": 0.9916 + }, + { + "start": 35137.56, + "end": 35140.58, + "probability": 0.9231 + }, + { + "start": 35142.03, + "end": 35143.56, + "probability": 0.7471 + }, + { + "start": 35143.66, + "end": 35144.5, + "probability": 0.9359 + }, + { + "start": 35145.14, + "end": 35145.46, + "probability": 0.135 + }, + { + "start": 35145.46, + "end": 35147.52, + "probability": 0.8169 + }, + { + "start": 35147.58, + "end": 35149.98, + "probability": 0.8047 + }, + { + "start": 35150.92, + "end": 35151.96, + "probability": 0.8555 + }, + { + "start": 35152.64, + "end": 35153.58, + "probability": 0.6555 + }, + { + "start": 35153.68, + "end": 35153.92, + "probability": 0.9119 + }, + { + "start": 35154.08, + "end": 35155.78, + "probability": 0.7683 + }, + { + "start": 35155.82, + "end": 35156.36, + "probability": 0.8733 + }, + { + "start": 35156.44, + "end": 35157.94, + "probability": 0.9539 + }, + { + "start": 35158.82, + "end": 35162.92, + "probability": 0.9152 + }, + { + "start": 35163.04, + "end": 35163.96, + "probability": 0.9976 + }, + { + "start": 35165.14, + "end": 35166.51, + "probability": 0.9946 + }, + { + "start": 35167.28, + "end": 35167.77, + "probability": 0.9344 + }, + { + "start": 35167.96, + "end": 35169.9, + "probability": 0.9854 + }, + { + "start": 35170.24, + "end": 35170.94, + "probability": 0.9821 + }, + { + "start": 35175.0, + "end": 35175.48, + "probability": 0.1152 + }, + { + "start": 35175.48, + "end": 35176.66, + "probability": 0.2319 + }, + { + "start": 35177.9, + "end": 35178.2, + "probability": 0.1187 + }, + { + "start": 35178.2, + "end": 35178.44, + "probability": 0.214 + }, + { + "start": 35179.5, + "end": 35181.88, + "probability": 0.9696 + }, + { + "start": 35182.24, + "end": 35183.74, + "probability": 0.7271 + }, + { + "start": 35184.88, + "end": 35185.62, + "probability": 0.9976 + }, + { + "start": 35185.92, + "end": 35188.44, + "probability": 0.7356 + }, + { + "start": 35188.66, + "end": 35190.5, + "probability": 0.8953 + }, + { + "start": 35192.62, + "end": 35196.26, + "probability": 0.7506 + }, + { + "start": 35197.66, + "end": 35200.1, + "probability": 0.6623 + }, + { + "start": 35201.02, + "end": 35205.76, + "probability": 0.8436 + }, + { + "start": 35205.9, + "end": 35209.56, + "probability": 0.9543 + }, + { + "start": 35209.76, + "end": 35210.02, + "probability": 0.8825 + }, + { + "start": 35210.8, + "end": 35211.62, + "probability": 0.7791 + }, + { + "start": 35211.8, + "end": 35213.32, + "probability": 0.8335 + }, + { + "start": 35213.56, + "end": 35214.92, + "probability": 0.9868 + }, + { + "start": 35215.04, + "end": 35216.87, + "probability": 0.916 + }, + { + "start": 35218.26, + "end": 35221.16, + "probability": 0.9985 + }, + { + "start": 35222.6, + "end": 35227.4, + "probability": 0.9515 + }, + { + "start": 35227.94, + "end": 35229.42, + "probability": 0.9705 + }, + { + "start": 35230.86, + "end": 35232.8, + "probability": 0.7497 + }, + { + "start": 35233.38, + "end": 35233.38, + "probability": 0.4323 + }, + { + "start": 35233.38, + "end": 35234.18, + "probability": 0.7974 + }, + { + "start": 35234.68, + "end": 35237.38, + "probability": 0.9893 + }, + { + "start": 35238.3, + "end": 35242.38, + "probability": 0.9447 + }, + { + "start": 35242.58, + "end": 35243.3, + "probability": 0.716 + }, + { + "start": 35243.34, + "end": 35244.42, + "probability": 0.9084 + }, + { + "start": 35244.52, + "end": 35245.17, + "probability": 0.7509 + }, + { + "start": 35246.16, + "end": 35248.6, + "probability": 0.9843 + }, + { + "start": 35249.08, + "end": 35249.8, + "probability": 0.9041 + }, + { + "start": 35250.0, + "end": 35252.4, + "probability": 0.7916 + }, + { + "start": 35253.44, + "end": 35255.56, + "probability": 0.7997 + }, + { + "start": 35256.58, + "end": 35259.34, + "probability": 0.6355 + }, + { + "start": 35259.96, + "end": 35260.68, + "probability": 0.5459 + }, + { + "start": 35261.46, + "end": 35263.48, + "probability": 0.9693 + }, + { + "start": 35264.54, + "end": 35266.52, + "probability": 0.9932 + }, + { + "start": 35267.58, + "end": 35270.14, + "probability": 0.9695 + }, + { + "start": 35270.24, + "end": 35271.76, + "probability": 0.7192 + }, + { + "start": 35272.48, + "end": 35274.48, + "probability": 0.9048 + }, + { + "start": 35275.51, + "end": 35277.7, + "probability": 0.8556 + }, + { + "start": 35278.08, + "end": 35279.52, + "probability": 0.9426 + }, + { + "start": 35280.8, + "end": 35283.3, + "probability": 0.9954 + }, + { + "start": 35284.2, + "end": 35285.58, + "probability": 0.9781 + }, + { + "start": 35286.3, + "end": 35290.08, + "probability": 0.7661 + }, + { + "start": 35290.34, + "end": 35292.92, + "probability": 0.877 + }, + { + "start": 35293.5, + "end": 35293.76, + "probability": 0.6808 + }, + { + "start": 35293.88, + "end": 35296.72, + "probability": 0.9589 + }, + { + "start": 35297.38, + "end": 35298.76, + "probability": 0.934 + }, + { + "start": 35299.86, + "end": 35301.42, + "probability": 0.9908 + }, + { + "start": 35301.52, + "end": 35302.62, + "probability": 0.937 + }, + { + "start": 35302.74, + "end": 35302.9, + "probability": 0.9192 + }, + { + "start": 35304.08, + "end": 35306.1, + "probability": 0.9953 + }, + { + "start": 35307.2, + "end": 35309.48, + "probability": 0.7627 + }, + { + "start": 35310.2, + "end": 35312.7, + "probability": 0.9931 + }, + { + "start": 35313.52, + "end": 35315.36, + "probability": 0.9705 + }, + { + "start": 35315.48, + "end": 35316.76, + "probability": 0.9843 + }, + { + "start": 35317.86, + "end": 35318.71, + "probability": 0.9976 + }, + { + "start": 35319.44, + "end": 35321.04, + "probability": 0.9674 + }, + { + "start": 35322.04, + "end": 35323.38, + "probability": 0.9575 + }, + { + "start": 35323.42, + "end": 35327.02, + "probability": 0.9689 + }, + { + "start": 35328.0, + "end": 35328.96, + "probability": 0.9192 + }, + { + "start": 35330.22, + "end": 35333.38, + "probability": 0.9854 + }, + { + "start": 35333.4, + "end": 35333.7, + "probability": 0.8389 + }, + { + "start": 35334.54, + "end": 35339.1, + "probability": 0.9973 + }, + { + "start": 35340.08, + "end": 35342.02, + "probability": 0.9585 + }, + { + "start": 35342.24, + "end": 35344.12, + "probability": 0.9692 + }, + { + "start": 35345.0, + "end": 35347.38, + "probability": 0.9492 + }, + { + "start": 35349.1, + "end": 35354.86, + "probability": 0.9957 + }, + { + "start": 35355.66, + "end": 35357.32, + "probability": 0.9979 + }, + { + "start": 35357.38, + "end": 35359.12, + "probability": 0.9734 + }, + { + "start": 35359.86, + "end": 35361.04, + "probability": 0.834 + }, + { + "start": 35361.12, + "end": 35362.9, + "probability": 0.7174 + }, + { + "start": 35364.18, + "end": 35364.54, + "probability": 0.6231 + }, + { + "start": 35364.62, + "end": 35365.4, + "probability": 0.9129 + }, + { + "start": 35365.56, + "end": 35366.48, + "probability": 0.8799 + }, + { + "start": 35366.58, + "end": 35369.08, + "probability": 0.9722 + }, + { + "start": 35369.12, + "end": 35369.78, + "probability": 0.7745 + }, + { + "start": 35370.58, + "end": 35372.06, + "probability": 0.8182 + }, + { + "start": 35373.42, + "end": 35375.46, + "probability": 0.6474 + }, + { + "start": 35375.6, + "end": 35375.78, + "probability": 0.3848 + }, + { + "start": 35375.78, + "end": 35376.93, + "probability": 0.9043 + }, + { + "start": 35377.4, + "end": 35378.8, + "probability": 0.6207 + }, + { + "start": 35378.88, + "end": 35380.88, + "probability": 0.7236 + }, + { + "start": 35381.46, + "end": 35382.36, + "probability": 0.7362 + }, + { + "start": 35383.56, + "end": 35385.82, + "probability": 0.8141 + }, + { + "start": 35385.9, + "end": 35386.92, + "probability": 0.9368 + }, + { + "start": 35387.46, + "end": 35388.28, + "probability": 0.7964 + }, + { + "start": 35389.88, + "end": 35390.32, + "probability": 0.1887 + }, + { + "start": 35390.32, + "end": 35390.74, + "probability": 0.7548 + }, + { + "start": 35390.84, + "end": 35393.62, + "probability": 0.9142 + }, + { + "start": 35393.64, + "end": 35394.06, + "probability": 0.9114 + }, + { + "start": 35394.14, + "end": 35399.26, + "probability": 0.9702 + }, + { + "start": 35399.26, + "end": 35403.62, + "probability": 0.9424 + }, + { + "start": 35404.16, + "end": 35406.98, + "probability": 0.9188 + }, + { + "start": 35407.4, + "end": 35409.34, + "probability": 0.8713 + }, + { + "start": 35409.84, + "end": 35411.18, + "probability": 0.711 + }, + { + "start": 35411.3, + "end": 35411.94, + "probability": 0.8075 + }, + { + "start": 35412.66, + "end": 35413.94, + "probability": 0.8668 + }, + { + "start": 35414.0, + "end": 35414.42, + "probability": 0.8006 + }, + { + "start": 35414.84, + "end": 35415.4, + "probability": 0.7937 + }, + { + "start": 35415.74, + "end": 35416.32, + "probability": 0.8862 + }, + { + "start": 35417.52, + "end": 35418.94, + "probability": 0.8442 + }, + { + "start": 35419.96, + "end": 35421.12, + "probability": 0.9927 + }, + { + "start": 35421.18, + "end": 35422.78, + "probability": 0.8578 + }, + { + "start": 35423.38, + "end": 35424.96, + "probability": 0.9742 + }, + { + "start": 35425.6, + "end": 35427.6, + "probability": 0.845 + }, + { + "start": 35428.38, + "end": 35430.18, + "probability": 0.9644 + }, + { + "start": 35430.94, + "end": 35433.28, + "probability": 0.8046 + }, + { + "start": 35434.38, + "end": 35436.19, + "probability": 0.8911 + }, + { + "start": 35437.56, + "end": 35438.29, + "probability": 0.9248 + }, + { + "start": 35438.82, + "end": 35439.34, + "probability": 0.9829 + }, + { + "start": 35439.92, + "end": 35440.66, + "probability": 0.9879 + }, + { + "start": 35441.06, + "end": 35444.5, + "probability": 0.8472 + }, + { + "start": 35444.59, + "end": 35447.06, + "probability": 0.8013 + }, + { + "start": 35448.36, + "end": 35450.2, + "probability": 0.9905 + }, + { + "start": 35450.5, + "end": 35451.18, + "probability": 0.5778 + }, + { + "start": 35451.34, + "end": 35453.2, + "probability": 0.7473 + }, + { + "start": 35453.28, + "end": 35453.58, + "probability": 0.2302 + }, + { + "start": 35454.38, + "end": 35455.9, + "probability": 0.9491 + }, + { + "start": 35456.0, + "end": 35458.16, + "probability": 0.9758 + }, + { + "start": 35459.42, + "end": 35463.26, + "probability": 0.9114 + }, + { + "start": 35463.78, + "end": 35464.82, + "probability": 0.7771 + }, + { + "start": 35464.9, + "end": 35466.94, + "probability": 0.9922 + }, + { + "start": 35466.94, + "end": 35470.02, + "probability": 0.9333 + }, + { + "start": 35470.36, + "end": 35472.25, + "probability": 0.9376 + }, + { + "start": 35475.28, + "end": 35475.96, + "probability": 0.6969 + }, + { + "start": 35476.1, + "end": 35476.58, + "probability": 0.7609 + }, + { + "start": 35476.58, + "end": 35478.02, + "probability": 0.7213 + }, + { + "start": 35478.36, + "end": 35479.34, + "probability": 0.6635 + }, + { + "start": 35479.68, + "end": 35481.72, + "probability": 0.7251 + }, + { + "start": 35482.74, + "end": 35484.9, + "probability": 0.9937 + }, + { + "start": 35486.34, + "end": 35487.22, + "probability": 0.9319 + }, + { + "start": 35487.4, + "end": 35487.56, + "probability": 0.724 + }, + { + "start": 35487.66, + "end": 35490.68, + "probability": 0.7747 + }, + { + "start": 35490.72, + "end": 35491.34, + "probability": 0.9803 + }, + { + "start": 35491.44, + "end": 35492.38, + "probability": 0.6552 + }, + { + "start": 35492.54, + "end": 35494.34, + "probability": 0.9481 + }, + { + "start": 35494.52, + "end": 35495.02, + "probability": 0.912 + }, + { + "start": 35495.4, + "end": 35495.92, + "probability": 0.8406 + }, + { + "start": 35496.54, + "end": 35497.08, + "probability": 0.4469 + }, + { + "start": 35497.68, + "end": 35499.76, + "probability": 0.995 + }, + { + "start": 35500.2, + "end": 35501.82, + "probability": 0.6638 + }, + { + "start": 35502.86, + "end": 35504.32, + "probability": 0.6746 + }, + { + "start": 35504.34, + "end": 35506.21, + "probability": 0.8417 + }, + { + "start": 35507.44, + "end": 35510.32, + "probability": 0.9334 + }, + { + "start": 35511.44, + "end": 35512.44, + "probability": 0.5774 + }, + { + "start": 35512.52, + "end": 35515.38, + "probability": 0.988 + }, + { + "start": 35515.58, + "end": 35515.82, + "probability": 0.7097 + }, + { + "start": 35515.92, + "end": 35517.76, + "probability": 0.976 + }, + { + "start": 35517.94, + "end": 35520.06, + "probability": 0.8507 + }, + { + "start": 35520.64, + "end": 35522.5, + "probability": 0.8316 + }, + { + "start": 35523.44, + "end": 35527.66, + "probability": 0.9623 + }, + { + "start": 35527.74, + "end": 35531.22, + "probability": 0.9805 + }, + { + "start": 35532.18, + "end": 35533.4, + "probability": 0.9602 + }, + { + "start": 35534.1, + "end": 35539.3, + "probability": 0.999 + }, + { + "start": 35539.3, + "end": 35542.34, + "probability": 0.9992 + }, + { + "start": 35543.8, + "end": 35547.1, + "probability": 0.9979 + }, + { + "start": 35547.74, + "end": 35548.72, + "probability": 0.9167 + }, + { + "start": 35550.0, + "end": 35555.66, + "probability": 0.9724 + }, + { + "start": 35557.46, + "end": 35559.56, + "probability": 0.8583 + }, + { + "start": 35560.42, + "end": 35562.63, + "probability": 0.9832 + }, + { + "start": 35562.86, + "end": 35564.02, + "probability": 0.9971 + }, + { + "start": 35565.14, + "end": 35565.78, + "probability": 0.8434 + }, + { + "start": 35565.88, + "end": 35568.3, + "probability": 0.9639 + }, + { + "start": 35569.38, + "end": 35571.67, + "probability": 0.9315 + }, + { + "start": 35571.78, + "end": 35572.74, + "probability": 0.7034 + }, + { + "start": 35573.66, + "end": 35574.53, + "probability": 0.7007 + }, + { + "start": 35574.94, + "end": 35576.48, + "probability": 0.1982 + }, + { + "start": 35577.52, + "end": 35579.7, + "probability": 0.9828 + }, + { + "start": 35579.92, + "end": 35580.52, + "probability": 0.9927 + }, + { + "start": 35581.58, + "end": 35584.28, + "probability": 0.7372 + }, + { + "start": 35585.02, + "end": 35585.6, + "probability": 0.6906 + }, + { + "start": 35585.7, + "end": 35588.14, + "probability": 0.2908 + }, + { + "start": 35589.38, + "end": 35591.68, + "probability": 0.6832 + }, + { + "start": 35592.5, + "end": 35592.68, + "probability": 0.1699 + }, + { + "start": 35594.02, + "end": 35594.16, + "probability": 0.05 + }, + { + "start": 35594.16, + "end": 35594.16, + "probability": 0.1659 + }, + { + "start": 35594.16, + "end": 35594.16, + "probability": 0.072 + }, + { + "start": 35594.16, + "end": 35595.28, + "probability": 0.2487 + }, + { + "start": 35595.28, + "end": 35596.96, + "probability": 0.0568 + }, + { + "start": 35597.72, + "end": 35601.86, + "probability": 0.9233 + }, + { + "start": 35602.12, + "end": 35603.46, + "probability": 0.67 + }, + { + "start": 35604.3, + "end": 35604.42, + "probability": 0.4601 + }, + { + "start": 35604.54, + "end": 35608.16, + "probability": 0.7165 + }, + { + "start": 35608.34, + "end": 35609.39, + "probability": 0.936 + }, + { + "start": 35610.38, + "end": 35611.62, + "probability": 0.8375 + }, + { + "start": 35611.9, + "end": 35612.02, + "probability": 0.645 + }, + { + "start": 35612.24, + "end": 35613.44, + "probability": 0.8772 + }, + { + "start": 35615.06, + "end": 35616.02, + "probability": 0.9946 + }, + { + "start": 35616.26, + "end": 35620.49, + "probability": 0.6341 + }, + { + "start": 35622.32, + "end": 35625.14, + "probability": 0.9683 + }, + { + "start": 35626.9, + "end": 35627.24, + "probability": 0.7999 + }, + { + "start": 35628.0, + "end": 35631.48, + "probability": 0.9465 + }, + { + "start": 35631.54, + "end": 35632.04, + "probability": 0.9751 + }, + { + "start": 35632.5, + "end": 35633.13, + "probability": 0.7022 + }, + { + "start": 35633.34, + "end": 35634.04, + "probability": 0.992 + }, + { + "start": 35635.04, + "end": 35637.72, + "probability": 0.9751 + }, + { + "start": 35637.76, + "end": 35638.08, + "probability": 0.8216 + }, + { + "start": 35638.7, + "end": 35644.36, + "probability": 0.8167 + }, + { + "start": 35644.66, + "end": 35647.24, + "probability": 0.9204 + }, + { + "start": 35649.3, + "end": 35651.04, + "probability": 0.82 + }, + { + "start": 35651.32, + "end": 35652.6, + "probability": 0.806 + }, + { + "start": 35652.68, + "end": 35653.06, + "probability": 0.7723 + }, + { + "start": 35653.24, + "end": 35654.44, + "probability": 0.9886 + }, + { + "start": 35654.6, + "end": 35656.82, + "probability": 0.7856 + }, + { + "start": 35658.5, + "end": 35660.68, + "probability": 0.9751 + }, + { + "start": 35660.99, + "end": 35661.48, + "probability": 0.9468 + }, + { + "start": 35662.18, + "end": 35664.3, + "probability": 0.7492 + }, + { + "start": 35665.04, + "end": 35666.92, + "probability": 0.9702 + }, + { + "start": 35667.44, + "end": 35672.08, + "probability": 0.9666 + }, + { + "start": 35672.74, + "end": 35675.86, + "probability": 0.9832 + }, + { + "start": 35676.6, + "end": 35676.82, + "probability": 0.853 + }, + { + "start": 35678.28, + "end": 35680.04, + "probability": 0.9006 + }, + { + "start": 35680.2, + "end": 35685.76, + "probability": 0.8835 + }, + { + "start": 35685.9, + "end": 35686.46, + "probability": 0.6539 + }, + { + "start": 35687.3, + "end": 35688.24, + "probability": 0.6985 + }, + { + "start": 35689.34, + "end": 35690.22, + "probability": 0.7863 + }, + { + "start": 35690.3, + "end": 35692.08, + "probability": 0.996 + }, + { + "start": 35692.4, + "end": 35694.0, + "probability": 0.9077 + }, + { + "start": 35694.58, + "end": 35694.84, + "probability": 0.6063 + }, + { + "start": 35695.85, + "end": 35697.14, + "probability": 0.9182 + }, + { + "start": 35697.48, + "end": 35700.6, + "probability": 0.8068 + }, + { + "start": 35701.4, + "end": 35701.7, + "probability": 0.552 + }, + { + "start": 35702.62, + "end": 35704.2, + "probability": 0.9731 + }, + { + "start": 35704.32, + "end": 35707.46, + "probability": 0.8309 + }, + { + "start": 35708.42, + "end": 35710.38, + "probability": 0.516 + }, + { + "start": 35710.92, + "end": 35712.56, + "probability": 0.9183 + }, + { + "start": 35712.66, + "end": 35714.71, + "probability": 0.6472 + }, + { + "start": 35715.4, + "end": 35716.0, + "probability": 0.7149 + }, + { + "start": 35716.1, + "end": 35716.54, + "probability": 0.7246 + }, + { + "start": 35716.7, + "end": 35717.18, + "probability": 0.4648 + }, + { + "start": 35717.2, + "end": 35717.3, + "probability": 0.9617 + }, + { + "start": 35717.86, + "end": 35719.14, + "probability": 0.8192 + }, + { + "start": 35720.24, + "end": 35721.08, + "probability": 0.9292 + }, + { + "start": 35722.3, + "end": 35723.2, + "probability": 0.5911 + }, + { + "start": 35724.02, + "end": 35725.42, + "probability": 0.9344 + }, + { + "start": 35725.56, + "end": 35725.72, + "probability": 0.6205 + }, + { + "start": 35725.9, + "end": 35730.84, + "probability": 0.9875 + }, + { + "start": 35731.32, + "end": 35733.94, + "probability": 0.5807 + }, + { + "start": 35734.78, + "end": 35735.16, + "probability": 0.7932 + }, + { + "start": 35736.18, + "end": 35738.34, + "probability": 0.8911 + }, + { + "start": 35739.18, + "end": 35740.42, + "probability": 0.6806 + }, + { + "start": 35741.36, + "end": 35743.38, + "probability": 0.856 + }, + { + "start": 35745.14, + "end": 35746.56, + "probability": 0.9648 + }, + { + "start": 35746.62, + "end": 35749.29, + "probability": 0.9856 + }, + { + "start": 35749.34, + "end": 35749.82, + "probability": 0.4971 + }, + { + "start": 35751.08, + "end": 35753.36, + "probability": 0.9172 + }, + { + "start": 35753.48, + "end": 35754.2, + "probability": 0.8208 + }, + { + "start": 35754.4, + "end": 35755.0, + "probability": 0.4856 + }, + { + "start": 35755.58, + "end": 35757.32, + "probability": 0.6756 + }, + { + "start": 35758.12, + "end": 35759.04, + "probability": 0.0392 + }, + { + "start": 35759.04, + "end": 35760.18, + "probability": 0.9456 + }, + { + "start": 35760.18, + "end": 35761.5, + "probability": 0.4461 + }, + { + "start": 35761.64, + "end": 35763.0, + "probability": 0.6232 + }, + { + "start": 35763.18, + "end": 35764.06, + "probability": 0.1932 + }, + { + "start": 35764.06, + "end": 35768.36, + "probability": 0.911 + }, + { + "start": 35769.84, + "end": 35772.02, + "probability": 0.992 + }, + { + "start": 35772.16, + "end": 35772.24, + "probability": 0.3555 + }, + { + "start": 35772.6, + "end": 35772.76, + "probability": 0.224 + }, + { + "start": 35772.76, + "end": 35773.66, + "probability": 0.4353 + }, + { + "start": 35773.88, + "end": 35774.36, + "probability": 0.4133 + }, + { + "start": 35775.18, + "end": 35777.2, + "probability": 0.8088 + }, + { + "start": 35777.32, + "end": 35777.84, + "probability": 0.7373 + }, + { + "start": 35778.16, + "end": 35778.98, + "probability": 0.9649 + }, + { + "start": 35779.98, + "end": 35783.12, + "probability": 0.9901 + }, + { + "start": 35783.26, + "end": 35784.44, + "probability": 0.8838 + }, + { + "start": 35785.62, + "end": 35786.78, + "probability": 0.835 + }, + { + "start": 35787.88, + "end": 35791.7, + "probability": 0.8188 + }, + { + "start": 35793.06, + "end": 35794.36, + "probability": 0.7063 + }, + { + "start": 35794.48, + "end": 35794.66, + "probability": 0.7815 + }, + { + "start": 35794.74, + "end": 35796.2, + "probability": 0.8616 + }, + { + "start": 35796.34, + "end": 35796.88, + "probability": 0.7546 + }, + { + "start": 35798.0, + "end": 35802.34, + "probability": 0.7429 + }, + { + "start": 35803.02, + "end": 35804.06, + "probability": 0.9054 + }, + { + "start": 35805.02, + "end": 35806.06, + "probability": 0.8332 + }, + { + "start": 35807.14, + "end": 35808.3, + "probability": 0.9666 + }, + { + "start": 35810.52, + "end": 35812.66, + "probability": 0.989 + }, + { + "start": 35813.36, + "end": 35816.42, + "probability": 0.9783 + }, + { + "start": 35816.42, + "end": 35820.36, + "probability": 0.9955 + }, + { + "start": 35820.36, + "end": 35820.64, + "probability": 0.7538 + }, + { + "start": 35820.68, + "end": 35821.16, + "probability": 0.8565 + }, + { + "start": 35821.22, + "end": 35821.46, + "probability": 0.7675 + }, + { + "start": 35821.54, + "end": 35822.94, + "probability": 0.9912 + }, + { + "start": 35823.82, + "end": 35825.55, + "probability": 0.9787 + }, + { + "start": 35826.68, + "end": 35828.8, + "probability": 0.9911 + }, + { + "start": 35828.8, + "end": 35830.94, + "probability": 0.9812 + }, + { + "start": 35831.48, + "end": 35832.86, + "probability": 0.8849 + }, + { + "start": 35833.38, + "end": 35834.66, + "probability": 0.9307 + }, + { + "start": 35835.02, + "end": 35839.16, + "probability": 0.8315 + }, + { + "start": 35839.52, + "end": 35840.84, + "probability": 0.9651 + }, + { + "start": 35841.28, + "end": 35843.28, + "probability": 0.9655 + }, + { + "start": 35843.84, + "end": 35846.96, + "probability": 0.8261 + }, + { + "start": 35847.82, + "end": 35850.78, + "probability": 0.9428 + }, + { + "start": 35850.84, + "end": 35852.14, + "probability": 0.993 + }, + { + "start": 35853.26, + "end": 35853.68, + "probability": 0.4472 + }, + { + "start": 35854.04, + "end": 35856.19, + "probability": 0.601 + }, + { + "start": 35856.32, + "end": 35857.04, + "probability": 0.7474 + }, + { + "start": 35857.58, + "end": 35858.58, + "probability": 0.9522 + }, + { + "start": 35859.86, + "end": 35862.7, + "probability": 0.9878 + }, + { + "start": 35864.26, + "end": 35866.08, + "probability": 0.633 + }, + { + "start": 35866.16, + "end": 35866.84, + "probability": 0.3421 + }, + { + "start": 35866.9, + "end": 35871.24, + "probability": 0.9453 + }, + { + "start": 35871.38, + "end": 35873.6, + "probability": 0.9756 + }, + { + "start": 35874.82, + "end": 35876.88, + "probability": 0.9856 + }, + { + "start": 35876.96, + "end": 35878.46, + "probability": 0.9287 + }, + { + "start": 35879.06, + "end": 35879.28, + "probability": 0.275 + }, + { + "start": 35879.86, + "end": 35880.52, + "probability": 0.6801 + }, + { + "start": 35880.64, + "end": 35881.5, + "probability": 0.9236 + }, + { + "start": 35881.72, + "end": 35883.68, + "probability": 0.8037 + }, + { + "start": 35883.8, + "end": 35885.24, + "probability": 0.9437 + }, + { + "start": 35885.32, + "end": 35886.21, + "probability": 0.5222 + }, + { + "start": 35887.2, + "end": 35888.78, + "probability": 0.8936 + }, + { + "start": 35888.86, + "end": 35889.64, + "probability": 0.5798 + }, + { + "start": 35890.2, + "end": 35891.54, + "probability": 0.7577 + }, + { + "start": 35891.64, + "end": 35894.76, + "probability": 0.9465 + }, + { + "start": 35896.2, + "end": 35898.22, + "probability": 0.9728 + }, + { + "start": 35898.32, + "end": 35902.32, + "probability": 0.9865 + }, + { + "start": 35903.3, + "end": 35907.52, + "probability": 0.9927 + }, + { + "start": 35907.68, + "end": 35911.12, + "probability": 0.9888 + }, + { + "start": 35911.28, + "end": 35912.54, + "probability": 0.8931 + }, + { + "start": 35914.0, + "end": 35915.14, + "probability": 0.8611 + }, + { + "start": 35915.98, + "end": 35917.82, + "probability": 0.6976 + }, + { + "start": 35918.46, + "end": 35922.7, + "probability": 0.9799 + }, + { + "start": 35923.16, + "end": 35924.49, + "probability": 0.9071 + }, + { + "start": 35925.16, + "end": 35926.36, + "probability": 0.8943 + }, + { + "start": 35927.82, + "end": 35928.8, + "probability": 0.7683 + }, + { + "start": 35928.82, + "end": 35931.74, + "probability": 0.9293 + }, + { + "start": 35931.74, + "end": 35934.72, + "probability": 0.6939 + }, + { + "start": 35935.6, + "end": 35936.14, + "probability": 0.8822 + }, + { + "start": 35936.62, + "end": 35937.74, + "probability": 0.9892 + }, + { + "start": 35939.08, + "end": 35940.37, + "probability": 0.9784 + }, + { + "start": 35940.56, + "end": 35941.3, + "probability": 0.9877 + }, + { + "start": 35942.54, + "end": 35942.76, + "probability": 0.795 + }, + { + "start": 35942.9, + "end": 35943.08, + "probability": 0.5321 + }, + { + "start": 35943.14, + "end": 35943.92, + "probability": 0.5534 + }, + { + "start": 35944.04, + "end": 35944.94, + "probability": 0.9464 + }, + { + "start": 35945.62, + "end": 35947.12, + "probability": 0.9738 + }, + { + "start": 35947.98, + "end": 35949.2, + "probability": 0.869 + }, + { + "start": 35949.92, + "end": 35950.54, + "probability": 0.9155 + }, + { + "start": 35951.18, + "end": 35955.1, + "probability": 0.9714 + }, + { + "start": 35955.9, + "end": 35957.38, + "probability": 0.9031 + }, + { + "start": 35958.64, + "end": 35960.97, + "probability": 0.9919 + }, + { + "start": 35961.16, + "end": 35962.18, + "probability": 0.9751 + }, + { + "start": 35962.5, + "end": 35964.9, + "probability": 0.7993 + }, + { + "start": 35965.46, + "end": 35967.22, + "probability": 0.9956 + }, + { + "start": 35967.38, + "end": 35969.54, + "probability": 0.954 + }, + { + "start": 35971.0, + "end": 35971.96, + "probability": 0.9426 + }, + { + "start": 35972.08, + "end": 35972.36, + "probability": 0.8359 + }, + { + "start": 35972.4, + "end": 35974.62, + "probability": 0.7757 + }, + { + "start": 35975.0, + "end": 35976.62, + "probability": 0.7333 + }, + { + "start": 35976.84, + "end": 35977.76, + "probability": 0.5088 + }, + { + "start": 35978.28, + "end": 35978.5, + "probability": 0.8611 + }, + { + "start": 35978.58, + "end": 35979.32, + "probability": 0.5308 + }, + { + "start": 35979.44, + "end": 35981.2, + "probability": 0.9619 + }, + { + "start": 35981.78, + "end": 35984.24, + "probability": 0.9765 + }, + { + "start": 35984.9, + "end": 35986.3, + "probability": 0.9606 + }, + { + "start": 35987.3, + "end": 35988.82, + "probability": 0.5671 + }, + { + "start": 35988.94, + "end": 35989.0, + "probability": 0.0293 + }, + { + "start": 35989.0, + "end": 35990.62, + "probability": 0.5268 + }, + { + "start": 35991.32, + "end": 35992.26, + "probability": 0.7068 + }, + { + "start": 35992.6, + "end": 35993.84, + "probability": 0.8129 + }, + { + "start": 35993.96, + "end": 35997.38, + "probability": 0.8862 + }, + { + "start": 35998.0, + "end": 36000.72, + "probability": 0.9637 + }, + { + "start": 36001.26, + "end": 36003.6, + "probability": 0.9679 + }, + { + "start": 36004.52, + "end": 36005.24, + "probability": 0.6567 + }, + { + "start": 36005.32, + "end": 36006.7, + "probability": 0.9106 + }, + { + "start": 36007.18, + "end": 36007.86, + "probability": 0.8916 + }, + { + "start": 36008.84, + "end": 36009.46, + "probability": 0.3401 + }, + { + "start": 36010.62, + "end": 36012.06, + "probability": 0.9556 + }, + { + "start": 36012.6, + "end": 36015.02, + "probability": 0.7329 + }, + { + "start": 36015.88, + "end": 36019.06, + "probability": 0.9924 + }, + { + "start": 36019.76, + "end": 36024.56, + "probability": 0.8635 + }, + { + "start": 36024.9, + "end": 36025.66, + "probability": 0.5211 + }, + { + "start": 36025.66, + "end": 36026.02, + "probability": 0.6682 + }, + { + "start": 36026.9, + "end": 36029.18, + "probability": 0.7947 + }, + { + "start": 36029.8, + "end": 36032.2, + "probability": 0.7017 + }, + { + "start": 36032.26, + "end": 36032.82, + "probability": 0.677 + }, + { + "start": 36032.98, + "end": 36033.12, + "probability": 0.752 + }, + { + "start": 36033.26, + "end": 36034.6, + "probability": 0.9895 + }, + { + "start": 36035.08, + "end": 36035.7, + "probability": 0.9296 + }, + { + "start": 36035.94, + "end": 36036.46, + "probability": 0.7152 + }, + { + "start": 36036.46, + "end": 36038.06, + "probability": 0.8625 + }, + { + "start": 36038.72, + "end": 36039.62, + "probability": 0.6172 + }, + { + "start": 36040.76, + "end": 36042.2, + "probability": 0.7395 + }, + { + "start": 36042.3, + "end": 36046.08, + "probability": 0.8389 + }, + { + "start": 36046.5, + "end": 36047.12, + "probability": 0.8256 + }, + { + "start": 36047.26, + "end": 36047.88, + "probability": 0.9038 + }, + { + "start": 36048.3, + "end": 36049.54, + "probability": 0.9813 + }, + { + "start": 36050.34, + "end": 36051.82, + "probability": 0.9968 + }, + { + "start": 36052.44, + "end": 36055.5, + "probability": 0.9971 + }, + { + "start": 36055.5, + "end": 36060.18, + "probability": 0.859 + }, + { + "start": 36060.24, + "end": 36062.26, + "probability": 0.1687 + }, + { + "start": 36062.98, + "end": 36063.62, + "probability": 0.9717 + }, + { + "start": 36064.42, + "end": 36067.6, + "probability": 0.8849 + }, + { + "start": 36068.3, + "end": 36070.8, + "probability": 0.5189 + }, + { + "start": 36072.32, + "end": 36072.74, + "probability": 0.4638 + }, + { + "start": 36072.8, + "end": 36073.44, + "probability": 0.7227 + }, + { + "start": 36073.56, + "end": 36073.92, + "probability": 0.6143 + }, + { + "start": 36074.06, + "end": 36074.58, + "probability": 0.7767 + }, + { + "start": 36074.96, + "end": 36075.98, + "probability": 0.8755 + }, + { + "start": 36076.06, + "end": 36077.52, + "probability": 0.9817 + }, + { + "start": 36079.46, + "end": 36080.46, + "probability": 0.9866 + }, + { + "start": 36080.54, + "end": 36082.24, + "probability": 0.7826 + }, + { + "start": 36082.36, + "end": 36084.52, + "probability": 0.9736 + }, + { + "start": 36087.68, + "end": 36088.8, + "probability": 0.0827 + }, + { + "start": 36088.8, + "end": 36092.94, + "probability": 0.9442 + }, + { + "start": 36093.7, + "end": 36096.44, + "probability": 0.7369 + }, + { + "start": 36097.48, + "end": 36099.94, + "probability": 0.9917 + }, + { + "start": 36100.06, + "end": 36102.76, + "probability": 0.8595 + }, + { + "start": 36103.46, + "end": 36103.88, + "probability": 0.8302 + }, + { + "start": 36104.04, + "end": 36104.34, + "probability": 0.7373 + }, + { + "start": 36104.46, + "end": 36105.86, + "probability": 0.6923 + }, + { + "start": 36106.78, + "end": 36109.14, + "probability": 0.8813 + }, + { + "start": 36109.62, + "end": 36110.5, + "probability": 0.6453 + }, + { + "start": 36111.38, + "end": 36112.64, + "probability": 0.7335 + }, + { + "start": 36112.86, + "end": 36113.64, + "probability": 0.9293 + }, + { + "start": 36113.92, + "end": 36115.22, + "probability": 0.9659 + }, + { + "start": 36115.34, + "end": 36116.54, + "probability": 0.8262 + }, + { + "start": 36117.2, + "end": 36119.26, + "probability": 0.5375 + }, + { + "start": 36121.8, + "end": 36122.44, + "probability": 0.017 + }, + { + "start": 36122.44, + "end": 36123.2, + "probability": 0.4773 + }, + { + "start": 36123.4, + "end": 36126.42, + "probability": 0.9657 + }, + { + "start": 36127.46, + "end": 36129.26, + "probability": 0.9893 + }, + { + "start": 36129.4, + "end": 36130.46, + "probability": 0.9944 + }, + { + "start": 36130.6, + "end": 36134.32, + "probability": 0.9839 + }, + { + "start": 36135.06, + "end": 36137.24, + "probability": 0.9897 + }, + { + "start": 36138.12, + "end": 36139.84, + "probability": 0.9997 + }, + { + "start": 36140.46, + "end": 36142.28, + "probability": 0.6685 + }, + { + "start": 36143.82, + "end": 36147.56, + "probability": 0.9816 + }, + { + "start": 36148.22, + "end": 36149.04, + "probability": 0.7716 + }, + { + "start": 36149.86, + "end": 36151.36, + "probability": 0.8288 + }, + { + "start": 36152.38, + "end": 36156.3, + "probability": 0.9606 + }, + { + "start": 36156.7, + "end": 36157.28, + "probability": 0.6035 + }, + { + "start": 36157.8, + "end": 36158.72, + "probability": 0.9749 + }, + { + "start": 36159.7, + "end": 36162.82, + "probability": 0.9697 + }, + { + "start": 36162.9, + "end": 36164.0, + "probability": 0.8347 + }, + { + "start": 36164.6, + "end": 36167.56, + "probability": 0.9158 + }, + { + "start": 36167.94, + "end": 36169.34, + "probability": 0.9214 + }, + { + "start": 36170.04, + "end": 36171.68, + "probability": 0.8079 + }, + { + "start": 36171.76, + "end": 36173.3, + "probability": 0.8396 + }, + { + "start": 36173.62, + "end": 36174.74, + "probability": 0.9226 + }, + { + "start": 36175.16, + "end": 36178.44, + "probability": 0.9717 + }, + { + "start": 36179.46, + "end": 36180.72, + "probability": 0.9659 + }, + { + "start": 36180.78, + "end": 36181.02, + "probability": 0.8711 + }, + { + "start": 36181.18, + "end": 36182.52, + "probability": 0.994 + }, + { + "start": 36182.6, + "end": 36183.14, + "probability": 0.4886 + }, + { + "start": 36183.66, + "end": 36189.12, + "probability": 0.9755 + }, + { + "start": 36189.78, + "end": 36190.16, + "probability": 0.6315 + }, + { + "start": 36190.72, + "end": 36191.56, + "probability": 0.8765 + }, + { + "start": 36192.22, + "end": 36193.7, + "probability": 0.8318 + }, + { + "start": 36193.78, + "end": 36194.68, + "probability": 0.7442 + }, + { + "start": 36194.76, + "end": 36198.19, + "probability": 0.9878 + }, + { + "start": 36199.1, + "end": 36201.34, + "probability": 0.9276 + }, + { + "start": 36201.38, + "end": 36202.03, + "probability": 0.9297 + }, + { + "start": 36203.36, + "end": 36205.84, + "probability": 0.982 + }, + { + "start": 36206.04, + "end": 36206.52, + "probability": 0.4804 + }, + { + "start": 36206.62, + "end": 36208.6, + "probability": 0.4382 + }, + { + "start": 36209.6, + "end": 36211.02, + "probability": 0.6638 + }, + { + "start": 36211.1, + "end": 36211.94, + "probability": 0.7828 + }, + { + "start": 36211.98, + "end": 36212.72, + "probability": 0.9387 + }, + { + "start": 36213.02, + "end": 36213.56, + "probability": 0.9806 + }, + { + "start": 36213.6, + "end": 36214.42, + "probability": 0.8163 + }, + { + "start": 36214.96, + "end": 36215.58, + "probability": 0.6333 + }, + { + "start": 36216.28, + "end": 36218.56, + "probability": 0.9896 + }, + { + "start": 36218.62, + "end": 36219.2, + "probability": 0.9294 + }, + { + "start": 36219.54, + "end": 36221.7, + "probability": 0.9543 + }, + { + "start": 36222.02, + "end": 36224.86, + "probability": 0.9731 + }, + { + "start": 36225.14, + "end": 36226.0, + "probability": 0.7519 + }, + { + "start": 36226.2, + "end": 36226.46, + "probability": 0.7448 + }, + { + "start": 36226.92, + "end": 36228.34, + "probability": 0.9821 + }, + { + "start": 36229.74, + "end": 36235.38, + "probability": 0.9243 + }, + { + "start": 36236.44, + "end": 36238.18, + "probability": 0.9858 + }, + { + "start": 36238.18, + "end": 36241.3, + "probability": 0.986 + }, + { + "start": 36241.3, + "end": 36241.74, + "probability": 0.4686 + }, + { + "start": 36241.8, + "end": 36242.0, + "probability": 0.6888 + }, + { + "start": 36242.1, + "end": 36244.94, + "probability": 0.942 + }, + { + "start": 36245.56, + "end": 36246.8, + "probability": 0.9447 + }, + { + "start": 36246.92, + "end": 36249.96, + "probability": 0.9941 + }, + { + "start": 36250.94, + "end": 36252.36, + "probability": 0.7685 + }, + { + "start": 36252.9, + "end": 36254.26, + "probability": 0.775 + }, + { + "start": 36266.82, + "end": 36268.14, + "probability": 0.4539 + }, + { + "start": 36268.16, + "end": 36269.04, + "probability": 0.0519 + }, + { + "start": 36269.46, + "end": 36272.92, + "probability": 0.0411 + }, + { + "start": 36273.34, + "end": 36275.34, + "probability": 0.3187 + }, + { + "start": 36275.48, + "end": 36277.55, + "probability": 0.1147 + }, + { + "start": 36282.14, + "end": 36285.86, + "probability": 0.5777 + }, + { + "start": 36289.3, + "end": 36291.44, + "probability": 0.1066 + }, + { + "start": 36292.38, + "end": 36293.5, + "probability": 0.0455 + }, + { + "start": 36293.5, + "end": 36294.62, + "probability": 0.0321 + }, + { + "start": 36294.62, + "end": 36296.24, + "probability": 0.0415 + }, + { + "start": 36304.88, + "end": 36305.06, + "probability": 0.0006 + }, + { + "start": 36305.06, + "end": 36305.06, + "probability": 0.0408 + }, + { + "start": 36305.06, + "end": 36305.06, + "probability": 0.0169 + }, + { + "start": 36305.06, + "end": 36306.32, + "probability": 0.4407 + }, + { + "start": 36306.76, + "end": 36308.6, + "probability": 0.5008 + }, + { + "start": 36312.3, + "end": 36312.3, + "probability": 0.0841 + }, + { + "start": 36312.3, + "end": 36312.3, + "probability": 0.2586 + }, + { + "start": 36312.3, + "end": 36312.3, + "probability": 0.1269 + }, + { + "start": 36312.3, + "end": 36312.3, + "probability": 0.1711 + }, + { + "start": 36312.3, + "end": 36312.3, + "probability": 0.2533 + }, + { + "start": 36312.3, + "end": 36312.3, + "probability": 0.3712 + }, + { + "start": 36312.3, + "end": 36312.3, + "probability": 0.1326 + }, + { + "start": 36312.3, + "end": 36314.7, + "probability": 0.3284 + }, + { + "start": 36317.14, + "end": 36318.9, + "probability": 0.26 + }, + { + "start": 36319.36, + "end": 36323.38, + "probability": 0.9782 + }, + { + "start": 36326.38, + "end": 36329.78, + "probability": 0.9558 + }, + { + "start": 36332.34, + "end": 36335.64, + "probability": 0.9865 + }, + { + "start": 36337.34, + "end": 36341.22, + "probability": 0.9963 + }, + { + "start": 36342.2, + "end": 36345.36, + "probability": 0.9983 + }, + { + "start": 36346.46, + "end": 36349.08, + "probability": 0.9624 + }, + { + "start": 36350.74, + "end": 36351.54, + "probability": 0.86 + }, + { + "start": 36353.66, + "end": 36355.0, + "probability": 0.9661 + }, + { + "start": 36356.0, + "end": 36361.32, + "probability": 0.9968 + }, + { + "start": 36364.04, + "end": 36371.32, + "probability": 0.9966 + }, + { + "start": 36373.04, + "end": 36375.36, + "probability": 0.9912 + }, + { + "start": 36376.22, + "end": 36378.2, + "probability": 0.9956 + }, + { + "start": 36378.6, + "end": 36378.6, + "probability": 0.0001 + }, + { + "start": 36381.08, + "end": 36383.74, + "probability": 0.998 + }, + { + "start": 36385.14, + "end": 36385.92, + "probability": 0.3566 + }, + { + "start": 36387.06, + "end": 36388.68, + "probability": 0.9921 + }, + { + "start": 36389.62, + "end": 36390.52, + "probability": 0.7089 + }, + { + "start": 36391.78, + "end": 36394.45, + "probability": 0.9966 + }, + { + "start": 36396.2, + "end": 36399.42, + "probability": 0.911 + }, + { + "start": 36399.76, + "end": 36400.76, + "probability": 0.7989 + }, + { + "start": 36400.82, + "end": 36401.76, + "probability": 0.9361 + }, + { + "start": 36403.12, + "end": 36408.84, + "probability": 0.8831 + }, + { + "start": 36409.6, + "end": 36409.94, + "probability": 0.0059 + }, + { + "start": 36410.46, + "end": 36411.36, + "probability": 0.7906 + }, + { + "start": 36412.78, + "end": 36416.32, + "probability": 0.9833 + }, + { + "start": 36417.78, + "end": 36419.2, + "probability": 0.9333 + }, + { + "start": 36420.86, + "end": 36423.02, + "probability": 0.8792 + }, + { + "start": 36423.3, + "end": 36424.66, + "probability": 0.2512 + }, + { + "start": 36425.22, + "end": 36430.7, + "probability": 0.9971 + }, + { + "start": 36431.32, + "end": 36431.78, + "probability": 0.7214 + }, + { + "start": 36433.56, + "end": 36434.7, + "probability": 0.125 + }, + { + "start": 36435.46, + "end": 36436.52, + "probability": 0.1241 + }, + { + "start": 36437.72, + "end": 36439.24, + "probability": 0.7885 + }, + { + "start": 36439.56, + "end": 36440.32, + "probability": 0.7589 + }, + { + "start": 36440.44, + "end": 36442.38, + "probability": 0.8827 + }, + { + "start": 36442.52, + "end": 36443.7, + "probability": 0.0913 + }, + { + "start": 36443.96, + "end": 36444.66, + "probability": 0.6753 + }, + { + "start": 36445.38, + "end": 36446.53, + "probability": 0.9968 + }, + { + "start": 36446.74, + "end": 36449.44, + "probability": 0.9951 + }, + { + "start": 36449.44, + "end": 36453.38, + "probability": 0.6446 + }, + { + "start": 36454.82, + "end": 36458.82, + "probability": 0.9829 + }, + { + "start": 36458.88, + "end": 36459.38, + "probability": 0.6039 + }, + { + "start": 36459.6, + "end": 36460.9, + "probability": 0.8363 + }, + { + "start": 36462.78, + "end": 36466.66, + "probability": 0.3237 + }, + { + "start": 36467.58, + "end": 36468.08, + "probability": 0.2613 + }, + { + "start": 36468.22, + "end": 36470.78, + "probability": 0.6939 + }, + { + "start": 36470.84, + "end": 36471.4, + "probability": 0.4658 + }, + { + "start": 36471.76, + "end": 36473.7, + "probability": 0.9383 + }, + { + "start": 36474.26, + "end": 36476.66, + "probability": 0.9067 + }, + { + "start": 36477.38, + "end": 36479.4, + "probability": 0.9836 + }, + { + "start": 36479.6, + "end": 36482.1, + "probability": 0.7007 + }, + { + "start": 36482.64, + "end": 36487.18, + "probability": 0.9569 + }, + { + "start": 36488.16, + "end": 36491.47, + "probability": 0.9967 + }, + { + "start": 36492.48, + "end": 36493.82, + "probability": 0.77 + }, + { + "start": 36494.06, + "end": 36495.1, + "probability": 0.9396 + }, + { + "start": 36495.46, + "end": 36499.36, + "probability": 0.9075 + }, + { + "start": 36502.41, + "end": 36504.28, + "probability": 0.3878 + }, + { + "start": 36505.26, + "end": 36505.58, + "probability": 0.3977 + }, + { + "start": 36506.06, + "end": 36506.62, + "probability": 0.8768 + }, + { + "start": 36506.66, + "end": 36509.76, + "probability": 0.8576 + }, + { + "start": 36511.16, + "end": 36511.86, + "probability": 0.1293 + }, + { + "start": 36512.1, + "end": 36517.76, + "probability": 0.8579 + }, + { + "start": 36518.86, + "end": 36520.88, + "probability": 0.5777 + }, + { + "start": 36521.5, + "end": 36523.46, + "probability": 0.7142 + }, + { + "start": 36523.62, + "end": 36525.0, + "probability": 0.5201 + }, + { + "start": 36525.06, + "end": 36529.92, + "probability": 0.4287 + }, + { + "start": 36530.76, + "end": 36531.66, + "probability": 0.6599 + }, + { + "start": 36532.96, + "end": 36536.06, + "probability": 0.4811 + }, + { + "start": 36537.22, + "end": 36541.84, + "probability": 0.8481 + }, + { + "start": 36542.94, + "end": 36543.32, + "probability": 0.9238 + }, + { + "start": 36544.4, + "end": 36545.78, + "probability": 0.9933 + }, + { + "start": 36547.94, + "end": 36549.34, + "probability": 0.9782 + }, + { + "start": 36550.36, + "end": 36551.8, + "probability": 0.9932 + }, + { + "start": 36552.72, + "end": 36554.14, + "probability": 0.8225 + }, + { + "start": 36554.58, + "end": 36555.86, + "probability": 0.9312 + }, + { + "start": 36556.24, + "end": 36559.42, + "probability": 0.9869 + }, + { + "start": 36560.88, + "end": 36565.5, + "probability": 0.98 + }, + { + "start": 36566.46, + "end": 36568.22, + "probability": 0.9935 + }, + { + "start": 36570.2, + "end": 36572.38, + "probability": 0.9943 + }, + { + "start": 36573.02, + "end": 36574.46, + "probability": 0.8818 + }, + { + "start": 36575.46, + "end": 36581.8, + "probability": 0.7842 + }, + { + "start": 36582.9, + "end": 36585.7, + "probability": 0.9883 + }, + { + "start": 36588.26, + "end": 36590.8, + "probability": 0.9836 + }, + { + "start": 36591.92, + "end": 36593.56, + "probability": 0.0263 + }, + { + "start": 36594.98, + "end": 36595.22, + "probability": 0.077 + }, + { + "start": 36596.3, + "end": 36597.76, + "probability": 0.5599 + }, + { + "start": 36599.06, + "end": 36600.56, + "probability": 0.3393 + }, + { + "start": 36601.02, + "end": 36602.7, + "probability": 0.7805 + }, + { + "start": 36602.76, + "end": 36604.32, + "probability": 0.6946 + }, + { + "start": 36604.78, + "end": 36605.34, + "probability": 0.4006 + }, + { + "start": 36605.36, + "end": 36606.74, + "probability": 0.3689 + }, + { + "start": 36606.9, + "end": 36608.54, + "probability": 0.7705 + }, + { + "start": 36608.66, + "end": 36609.94, + "probability": 0.8873 + }, + { + "start": 36610.02, + "end": 36612.97, + "probability": 0.7858 + }, + { + "start": 36613.6, + "end": 36615.82, + "probability": 0.9736 + }, + { + "start": 36616.98, + "end": 36621.22, + "probability": 0.1233 + }, + { + "start": 36622.18, + "end": 36624.68, + "probability": 0.6817 + }, + { + "start": 36624.78, + "end": 36627.3, + "probability": 0.6897 + }, + { + "start": 36628.38, + "end": 36635.7, + "probability": 0.9463 + }, + { + "start": 36635.7, + "end": 36644.7, + "probability": 0.9922 + }, + { + "start": 36645.5, + "end": 36649.91, + "probability": 0.954 + }, + { + "start": 36652.49, + "end": 36657.91, + "probability": 0.9344 + }, + { + "start": 36659.11, + "end": 36660.85, + "probability": 0.7861 + }, + { + "start": 36661.53, + "end": 36662.83, + "probability": 0.7334 + }, + { + "start": 36663.73, + "end": 36665.95, + "probability": 0.9958 + }, + { + "start": 36666.53, + "end": 36668.35, + "probability": 0.9444 + }, + { + "start": 36668.67, + "end": 36670.82, + "probability": 0.9956 + }, + { + "start": 36671.55, + "end": 36675.77, + "probability": 0.9482 + }, + { + "start": 36676.39, + "end": 36678.83, + "probability": 0.9924 + }, + { + "start": 36679.31, + "end": 36679.89, + "probability": 0.143 + }, + { + "start": 36684.29, + "end": 36688.55, + "probability": 0.1254 + }, + { + "start": 36688.55, + "end": 36689.23, + "probability": 0.2283 + }, + { + "start": 36693.71, + "end": 36695.15, + "probability": 0.1025 + }, + { + "start": 36697.83, + "end": 36701.87, + "probability": 0.0402 + }, + { + "start": 36702.25, + "end": 36702.99, + "probability": 0.2312 + }, + { + "start": 36704.49, + "end": 36706.49, + "probability": 0.0054 + }, + { + "start": 36715.47, + "end": 36718.29, + "probability": 0.0464 + }, + { + "start": 36719.17, + "end": 36720.57, + "probability": 0.1808 + }, + { + "start": 36721.05, + "end": 36722.29, + "probability": 0.2261 + }, + { + "start": 36723.03, + "end": 36724.33, + "probability": 0.1716 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.0, + "end": 36781.0, + "probability": 0.0 + }, + { + "start": 36781.2, + "end": 36781.86, + "probability": 0.1642 + }, + { + "start": 36793.96, + "end": 36794.3, + "probability": 0.0273 + }, + { + "start": 36795.8, + "end": 36796.88, + "probability": 0.3787 + }, + { + "start": 36797.04, + "end": 36798.48, + "probability": 0.1476 + }, + { + "start": 36799.16, + "end": 36799.84, + "probability": 0.0178 + }, + { + "start": 36800.62, + "end": 36800.82, + "probability": 0.1309 + }, + { + "start": 36800.82, + "end": 36800.88, + "probability": 0.1888 + }, + { + "start": 36800.88, + "end": 36803.18, + "probability": 0.1359 + }, + { + "start": 36803.38, + "end": 36805.14, + "probability": 0.5178 + }, + { + "start": 36805.2, + "end": 36807.56, + "probability": 0.9854 + }, + { + "start": 36809.22, + "end": 36810.92, + "probability": 0.5302 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36907.0, + "end": 36907.0, + "probability": 0.0 + }, + { + "start": 36908.72, + "end": 36908.72, + "probability": 0.0502 + }, + { + "start": 36908.72, + "end": 36908.72, + "probability": 0.0065 + }, + { + "start": 36908.72, + "end": 36908.72, + "probability": 0.1353 + }, + { + "start": 36908.72, + "end": 36909.94, + "probability": 0.3032 + }, + { + "start": 36912.76, + "end": 36917.88, + "probability": 0.9463 + }, + { + "start": 36918.8, + "end": 36920.64, + "probability": 0.627 + }, + { + "start": 36920.8, + "end": 36922.08, + "probability": 0.985 + }, + { + "start": 36922.82, + "end": 36923.92, + "probability": 0.9805 + }, + { + "start": 36924.58, + "end": 36927.36, + "probability": 0.975 + }, + { + "start": 36927.88, + "end": 36929.1, + "probability": 0.888 + }, + { + "start": 36930.06, + "end": 36930.92, + "probability": 0.8802 + }, + { + "start": 36932.16, + "end": 36934.42, + "probability": 0.9893 + }, + { + "start": 36935.72, + "end": 36939.18, + "probability": 0.9883 + }, + { + "start": 36939.46, + "end": 36940.14, + "probability": 0.5606 + }, + { + "start": 36940.2, + "end": 36940.74, + "probability": 0.9616 + }, + { + "start": 36941.18, + "end": 36946.0, + "probability": 0.8661 + }, + { + "start": 36946.78, + "end": 36947.74, + "probability": 0.8063 + }, + { + "start": 36949.56, + "end": 36950.8, + "probability": 0.9917 + }, + { + "start": 36951.83, + "end": 36955.2, + "probability": 0.9858 + }, + { + "start": 36955.38, + "end": 36956.24, + "probability": 0.625 + }, + { + "start": 36956.34, + "end": 36957.92, + "probability": 0.9795 + }, + { + "start": 36958.18, + "end": 36960.84, + "probability": 0.9792 + }, + { + "start": 36961.78, + "end": 36964.3, + "probability": 0.9838 + }, + { + "start": 36966.02, + "end": 36967.18, + "probability": 0.9558 + }, + { + "start": 36968.39, + "end": 36972.58, + "probability": 0.9966 + }, + { + "start": 36973.38, + "end": 36978.26, + "probability": 0.9255 + }, + { + "start": 36978.84, + "end": 36979.94, + "probability": 0.3567 + }, + { + "start": 36981.32, + "end": 36982.66, + "probability": 0.672 + }, + { + "start": 36983.44, + "end": 36984.94, + "probability": 0.9961 + }, + { + "start": 36984.98, + "end": 36987.84, + "probability": 0.6445 + }, + { + "start": 36988.42, + "end": 36992.38, + "probability": 0.5396 + }, + { + "start": 36993.0, + "end": 36996.64, + "probability": 0.8491 + }, + { + "start": 36997.64, + "end": 36998.34, + "probability": 0.6187 + }, + { + "start": 36999.36, + "end": 37000.66, + "probability": 0.8774 + }, + { + "start": 37001.62, + "end": 37006.29, + "probability": 0.9874 + }, + { + "start": 37006.46, + "end": 37008.74, + "probability": 0.9965 + }, + { + "start": 37009.42, + "end": 37012.34, + "probability": 0.8569 + }, + { + "start": 37012.86, + "end": 37013.44, + "probability": 0.9706 + }, + { + "start": 37014.62, + "end": 37016.02, + "probability": 0.9224 + }, + { + "start": 37016.8, + "end": 37017.5, + "probability": 0.3945 + }, + { + "start": 37018.34, + "end": 37023.16, + "probability": 0.9869 + }, + { + "start": 37023.78, + "end": 37028.22, + "probability": 0.988 + }, + { + "start": 37029.58, + "end": 37030.36, + "probability": 0.4422 + }, + { + "start": 37031.62, + "end": 37032.9, + "probability": 0.7326 + }, + { + "start": 37033.3, + "end": 37035.04, + "probability": 0.9187 + }, + { + "start": 37036.64, + "end": 37040.12, + "probability": 0.9971 + }, + { + "start": 37041.92, + "end": 37046.14, + "probability": 0.944 + }, + { + "start": 37048.1, + "end": 37053.18, + "probability": 0.9608 + }, + { + "start": 37054.04, + "end": 37054.74, + "probability": 0.9427 + }, + { + "start": 37055.34, + "end": 37057.6, + "probability": 0.6075 + }, + { + "start": 37059.82, + "end": 37061.86, + "probability": 0.7066 + }, + { + "start": 37062.44, + "end": 37068.22, + "probability": 0.9923 + }, + { + "start": 37069.76, + "end": 37071.08, + "probability": 0.7058 + }, + { + "start": 37071.32, + "end": 37071.42, + "probability": 0.5942 + }, + { + "start": 37071.8, + "end": 37072.58, + "probability": 0.7508 + }, + { + "start": 37073.04, + "end": 37074.22, + "probability": 0.9805 + }, + { + "start": 37074.42, + "end": 37075.34, + "probability": 0.9062 + }, + { + "start": 37076.16, + "end": 37078.1, + "probability": 0.983 + }, + { + "start": 37079.9, + "end": 37081.08, + "probability": 0.9702 + }, + { + "start": 37082.58, + "end": 37083.44, + "probability": 0.9766 + }, + { + "start": 37083.62, + "end": 37083.96, + "probability": 0.9449 + }, + { + "start": 37086.24, + "end": 37087.48, + "probability": 0.9581 + }, + { + "start": 37088.48, + "end": 37090.98, + "probability": 0.9881 + }, + { + "start": 37092.08, + "end": 37095.66, + "probability": 0.9975 + }, + { + "start": 37096.0, + "end": 37096.7, + "probability": 0.6157 + }, + { + "start": 37097.76, + "end": 37101.84, + "probability": 0.9448 + }, + { + "start": 37103.36, + "end": 37104.28, + "probability": 0.6962 + }, + { + "start": 37106.76, + "end": 37111.42, + "probability": 0.9182 + }, + { + "start": 37111.88, + "end": 37114.82, + "probability": 0.9861 + }, + { + "start": 37115.24, + "end": 37117.62, + "probability": 0.9639 + }, + { + "start": 37118.34, + "end": 37121.04, + "probability": 0.9911 + }, + { + "start": 37122.34, + "end": 37124.3, + "probability": 0.7867 + }, + { + "start": 37124.98, + "end": 37126.0, + "probability": 0.9579 + }, + { + "start": 37127.08, + "end": 37129.74, + "probability": 0.7317 + }, + { + "start": 37130.72, + "end": 37131.54, + "probability": 0.7971 + }, + { + "start": 37132.68, + "end": 37134.58, + "probability": 0.9724 + }, + { + "start": 37135.52, + "end": 37142.24, + "probability": 0.641 + }, + { + "start": 37142.44, + "end": 37146.14, + "probability": 0.6323 + }, + { + "start": 37147.04, + "end": 37147.96, + "probability": 0.8395 + }, + { + "start": 37149.04, + "end": 37150.26, + "probability": 0.8271 + }, + { + "start": 37151.18, + "end": 37151.82, + "probability": 0.9667 + }, + { + "start": 37152.66, + "end": 37153.42, + "probability": 0.7916 + }, + { + "start": 37155.2, + "end": 37156.54, + "probability": 0.9707 + }, + { + "start": 37160.22, + "end": 37162.7, + "probability": 0.6905 + }, + { + "start": 37163.22, + "end": 37164.1, + "probability": 0.945 + }, + { + "start": 37164.92, + "end": 37167.56, + "probability": 0.7655 + }, + { + "start": 37168.2, + "end": 37169.56, + "probability": 0.7077 + }, + { + "start": 37170.74, + "end": 37174.42, + "probability": 0.991 + }, + { + "start": 37175.58, + "end": 37177.76, + "probability": 0.9726 + }, + { + "start": 37180.26, + "end": 37182.98, + "probability": 0.9932 + }, + { + "start": 37184.36, + "end": 37185.48, + "probability": 0.9896 + }, + { + "start": 37186.06, + "end": 37188.76, + "probability": 0.9886 + }, + { + "start": 37189.52, + "end": 37190.56, + "probability": 0.7526 + }, + { + "start": 37191.78, + "end": 37193.24, + "probability": 0.8049 + }, + { + "start": 37193.78, + "end": 37194.46, + "probability": 0.828 + }, + { + "start": 37195.16, + "end": 37200.7, + "probability": 0.9742 + }, + { + "start": 37201.32, + "end": 37204.0, + "probability": 0.9966 + }, + { + "start": 37204.32, + "end": 37207.56, + "probability": 0.9966 + }, + { + "start": 37208.1, + "end": 37211.28, + "probability": 0.8936 + }, + { + "start": 37212.42, + "end": 37213.52, + "probability": 0.8975 + }, + { + "start": 37214.4, + "end": 37215.5, + "probability": 0.947 + }, + { + "start": 37216.98, + "end": 37221.54, + "probability": 0.9844 + }, + { + "start": 37224.12, + "end": 37225.38, + "probability": 0.9973 + }, + { + "start": 37226.26, + "end": 37232.0, + "probability": 0.9971 + }, + { + "start": 37232.94, + "end": 37234.68, + "probability": 0.7839 + }, + { + "start": 37235.08, + "end": 37238.46, + "probability": 0.9788 + }, + { + "start": 37239.3, + "end": 37241.13, + "probability": 0.9552 + }, + { + "start": 37242.78, + "end": 37246.86, + "probability": 0.9888 + }, + { + "start": 37247.92, + "end": 37248.32, + "probability": 0.5829 + }, + { + "start": 37250.0, + "end": 37251.86, + "probability": 0.9449 + }, + { + "start": 37253.4, + "end": 37255.68, + "probability": 0.9639 + }, + { + "start": 37258.36, + "end": 37260.3, + "probability": 0.9489 + }, + { + "start": 37261.22, + "end": 37262.9, + "probability": 0.3603 + }, + { + "start": 37266.16, + "end": 37266.96, + "probability": 0.458 + }, + { + "start": 37267.58, + "end": 37269.86, + "probability": 0.6175 + }, + { + "start": 37270.22, + "end": 37271.64, + "probability": 0.8372 + }, + { + "start": 37272.3, + "end": 37276.76, + "probability": 0.9727 + }, + { + "start": 37278.6, + "end": 37279.2, + "probability": 0.7335 + }, + { + "start": 37279.94, + "end": 37280.72, + "probability": 0.8233 + }, + { + "start": 37282.72, + "end": 37286.1, + "probability": 0.9056 + }, + { + "start": 37287.1, + "end": 37287.86, + "probability": 0.503 + }, + { + "start": 37288.46, + "end": 37289.58, + "probability": 0.8768 + }, + { + "start": 37289.76, + "end": 37292.08, + "probability": 0.9227 + }, + { + "start": 37293.72, + "end": 37294.42, + "probability": 0.8465 + }, + { + "start": 37295.32, + "end": 37296.49, + "probability": 0.9495 + }, + { + "start": 37298.36, + "end": 37299.58, + "probability": 0.8349 + }, + { + "start": 37300.24, + "end": 37302.94, + "probability": 0.9922 + }, + { + "start": 37304.42, + "end": 37305.96, + "probability": 0.9277 + }, + { + "start": 37306.42, + "end": 37307.03, + "probability": 0.9553 + }, + { + "start": 37307.24, + "end": 37308.48, + "probability": 0.9909 + }, + { + "start": 37309.1, + "end": 37312.62, + "probability": 0.8295 + }, + { + "start": 37313.4, + "end": 37314.48, + "probability": 0.9733 + }, + { + "start": 37316.0, + "end": 37317.18, + "probability": 0.6413 + }, + { + "start": 37317.56, + "end": 37318.74, + "probability": 0.649 + }, + { + "start": 37319.7, + "end": 37321.5, + "probability": 0.8525 + }, + { + "start": 37321.9, + "end": 37325.66, + "probability": 0.9812 + }, + { + "start": 37326.26, + "end": 37328.38, + "probability": 0.9963 + }, + { + "start": 37328.58, + "end": 37329.3, + "probability": 0.7134 + }, + { + "start": 37329.92, + "end": 37332.42, + "probability": 0.9409 + }, + { + "start": 37333.0, + "end": 37333.84, + "probability": 0.913 + }, + { + "start": 37334.4, + "end": 37336.7, + "probability": 0.0127 + }, + { + "start": 37336.82, + "end": 37337.93, + "probability": 0.3921 + }, + { + "start": 37339.88, + "end": 37341.36, + "probability": 0.9617 + }, + { + "start": 37341.66, + "end": 37342.86, + "probability": 0.717 + }, + { + "start": 37343.64, + "end": 37347.06, + "probability": 0.9219 + }, + { + "start": 37347.64, + "end": 37349.7, + "probability": 0.9453 + }, + { + "start": 37351.06, + "end": 37352.26, + "probability": 0.6523 + }, + { + "start": 37353.12, + "end": 37355.66, + "probability": 0.8994 + }, + { + "start": 37356.24, + "end": 37357.96, + "probability": 0.7833 + }, + { + "start": 37358.8, + "end": 37359.94, + "probability": 0.928 + }, + { + "start": 37360.8, + "end": 37362.29, + "probability": 0.9861 + }, + { + "start": 37362.6, + "end": 37362.96, + "probability": 0.5583 + }, + { + "start": 37363.08, + "end": 37363.64, + "probability": 0.9007 + }, + { + "start": 37364.12, + "end": 37366.73, + "probability": 0.9946 + }, + { + "start": 37368.0, + "end": 37370.78, + "probability": 0.9914 + }, + { + "start": 37371.66, + "end": 37373.46, + "probability": 0.8989 + }, + { + "start": 37374.38, + "end": 37376.32, + "probability": 0.8027 + }, + { + "start": 37377.1, + "end": 37379.64, + "probability": 0.9588 + }, + { + "start": 37380.6, + "end": 37385.82, + "probability": 0.9683 + }, + { + "start": 37386.34, + "end": 37387.16, + "probability": 0.5615 + }, + { + "start": 37387.62, + "end": 37391.92, + "probability": 0.9975 + }, + { + "start": 37392.58, + "end": 37392.84, + "probability": 0.4815 + }, + { + "start": 37393.52, + "end": 37394.1, + "probability": 0.644 + }, + { + "start": 37394.3, + "end": 37396.6, + "probability": 0.9116 + }, + { + "start": 37396.64, + "end": 37397.42, + "probability": 0.744 + }, + { + "start": 37398.0, + "end": 37399.04, + "probability": 0.8882 + }, + { + "start": 37400.9, + "end": 37401.54, + "probability": 0.6785 + }, + { + "start": 37402.28, + "end": 37403.6, + "probability": 0.8403 + }, + { + "start": 37409.28, + "end": 37410.08, + "probability": 0.8394 + }, + { + "start": 37410.66, + "end": 37411.86, + "probability": 0.8941 + }, + { + "start": 37412.8, + "end": 37413.9, + "probability": 0.6195 + }, + { + "start": 37414.48, + "end": 37415.56, + "probability": 0.5037 + }, + { + "start": 37415.56, + "end": 37417.44, + "probability": 0.7448 + }, + { + "start": 37419.0, + "end": 37424.16, + "probability": 0.9893 + }, + { + "start": 37425.12, + "end": 37429.88, + "probability": 0.9132 + }, + { + "start": 37429.88, + "end": 37432.44, + "probability": 0.992 + }, + { + "start": 37433.8, + "end": 37437.14, + "probability": 0.9752 + }, + { + "start": 37437.8, + "end": 37440.32, + "probability": 0.8837 + }, + { + "start": 37441.4, + "end": 37446.22, + "probability": 0.7802 + }, + { + "start": 37446.32, + "end": 37447.14, + "probability": 0.6643 + }, + { + "start": 37448.42, + "end": 37450.04, + "probability": 0.1892 + }, + { + "start": 37451.0, + "end": 37451.34, + "probability": 0.4339 + }, + { + "start": 37452.1, + "end": 37452.2, + "probability": 0.3022 + }, + { + "start": 37452.34, + "end": 37453.34, + "probability": 0.6072 + }, + { + "start": 37453.98, + "end": 37456.98, + "probability": 0.911 + }, + { + "start": 37457.9, + "end": 37461.54, + "probability": 0.9895 + }, + { + "start": 37462.4, + "end": 37464.46, + "probability": 0.9463 + }, + { + "start": 37465.84, + "end": 37466.76, + "probability": 0.9808 + }, + { + "start": 37468.78, + "end": 37470.72, + "probability": 0.8929 + }, + { + "start": 37471.4, + "end": 37472.66, + "probability": 0.841 + }, + { + "start": 37473.34, + "end": 37474.04, + "probability": 0.5911 + }, + { + "start": 37475.04, + "end": 37476.62, + "probability": 0.9448 + }, + { + "start": 37477.78, + "end": 37478.5, + "probability": 0.927 + }, + { + "start": 37479.38, + "end": 37480.22, + "probability": 0.9956 + }, + { + "start": 37481.04, + "end": 37484.72, + "probability": 0.7169 + }, + { + "start": 37485.5, + "end": 37488.84, + "probability": 0.9099 + }, + { + "start": 37489.36, + "end": 37491.88, + "probability": 0.977 + }, + { + "start": 37492.54, + "end": 37494.14, + "probability": 0.6747 + }, + { + "start": 37495.24, + "end": 37497.5, + "probability": 0.9976 + }, + { + "start": 37497.76, + "end": 37498.4, + "probability": 0.9393 + }, + { + "start": 37498.52, + "end": 37499.24, + "probability": 0.6626 + }, + { + "start": 37499.75, + "end": 37502.58, + "probability": 0.944 + }, + { + "start": 37503.34, + "end": 37505.84, + "probability": 0.7419 + }, + { + "start": 37506.72, + "end": 37507.38, + "probability": 0.8533 + }, + { + "start": 37507.42, + "end": 37509.8, + "probability": 0.6693 + }, + { + "start": 37510.88, + "end": 37514.18, + "probability": 0.9033 + }, + { + "start": 37514.76, + "end": 37516.9, + "probability": 0.9698 + }, + { + "start": 37517.72, + "end": 37518.86, + "probability": 0.778 + }, + { + "start": 37519.64, + "end": 37520.78, + "probability": 0.2013 + }, + { + "start": 37521.12, + "end": 37523.52, + "probability": 0.4873 + }, + { + "start": 37523.74, + "end": 37525.72, + "probability": 0.6272 + }, + { + "start": 37526.28, + "end": 37528.7, + "probability": 0.9604 + }, + { + "start": 37529.04, + "end": 37535.42, + "probability": 0.898 + }, + { + "start": 37535.66, + "end": 37537.14, + "probability": 0.8933 + }, + { + "start": 37537.3, + "end": 37541.34, + "probability": 0.9343 + }, + { + "start": 37541.44, + "end": 37543.22, + "probability": 0.9864 + }, + { + "start": 37543.62, + "end": 37546.22, + "probability": 0.8137 + }, + { + "start": 37546.82, + "end": 37548.9, + "probability": 0.9247 + }, + { + "start": 37549.76, + "end": 37551.14, + "probability": 0.6988 + }, + { + "start": 37551.74, + "end": 37554.12, + "probability": 0.7007 + }, + { + "start": 37554.34, + "end": 37560.08, + "probability": 0.9605 + }, + { + "start": 37563.8, + "end": 37563.8, + "probability": 0.0691 + }, + { + "start": 37563.8, + "end": 37563.8, + "probability": 0.1525 + }, + { + "start": 37563.8, + "end": 37563.8, + "probability": 0.0265 + }, + { + "start": 37563.8, + "end": 37571.36, + "probability": 0.5487 + }, + { + "start": 37571.68, + "end": 37572.44, + "probability": 0.8206 + }, + { + "start": 37572.48, + "end": 37574.05, + "probability": 0.8348 + }, + { + "start": 37576.6, + "end": 37576.6, + "probability": 0.1405 + }, + { + "start": 37576.6, + "end": 37579.36, + "probability": 0.7916 + }, + { + "start": 37579.74, + "end": 37581.44, + "probability": 0.8197 + }, + { + "start": 37581.98, + "end": 37582.72, + "probability": 0.7046 + }, + { + "start": 37582.74, + "end": 37584.8, + "probability": 0.7367 + }, + { + "start": 37584.98, + "end": 37588.2, + "probability": 0.7395 + }, + { + "start": 37588.68, + "end": 37593.34, + "probability": 0.5995 + }, + { + "start": 37593.34, + "end": 37593.68, + "probability": 0.7631 + }, + { + "start": 37595.72, + "end": 37600.52, + "probability": 0.9318 + }, + { + "start": 37601.76, + "end": 37603.5, + "probability": 0.8001 + }, + { + "start": 37604.48, + "end": 37607.5, + "probability": 0.9285 + }, + { + "start": 37608.2, + "end": 37610.12, + "probability": 0.5278 + }, + { + "start": 37611.0, + "end": 37612.2, + "probability": 0.7112 + }, + { + "start": 37612.86, + "end": 37615.2, + "probability": 0.9756 + }, + { + "start": 37615.8, + "end": 37616.66, + "probability": 0.9556 + }, + { + "start": 37617.28, + "end": 37618.48, + "probability": 0.6957 + }, + { + "start": 37619.3, + "end": 37621.36, + "probability": 0.9346 + }, + { + "start": 37622.28, + "end": 37623.08, + "probability": 0.9107 + }, + { + "start": 37623.76, + "end": 37626.78, + "probability": 0.9274 + }, + { + "start": 37627.56, + "end": 37628.44, + "probability": 0.8048 + }, + { + "start": 37629.18, + "end": 37636.03, + "probability": 0.9313 + }, + { + "start": 37637.64, + "end": 37645.06, + "probability": 0.8404 + }, + { + "start": 37645.86, + "end": 37647.06, + "probability": 0.8641 + }, + { + "start": 37651.05, + "end": 37654.52, + "probability": 0.6238 + }, + { + "start": 37654.84, + "end": 37655.14, + "probability": 0.5342 + }, + { + "start": 37655.9, + "end": 37658.34, + "probability": 0.9086 + }, + { + "start": 37658.84, + "end": 37659.08, + "probability": 0.9508 + }, + { + "start": 37659.96, + "end": 37663.76, + "probability": 0.8662 + }, + { + "start": 37665.46, + "end": 37666.25, + "probability": 0.8086 + }, + { + "start": 37667.24, + "end": 37668.08, + "probability": 0.0687 + }, + { + "start": 37669.14, + "end": 37670.7, + "probability": 0.8293 + }, + { + "start": 37670.7, + "end": 37672.58, + "probability": 0.5 + }, + { + "start": 37672.66, + "end": 37674.82, + "probability": 0.948 + }, + { + "start": 37675.62, + "end": 37676.76, + "probability": 0.8924 + }, + { + "start": 37677.68, + "end": 37679.22, + "probability": 0.8557 + }, + { + "start": 37679.84, + "end": 37681.36, + "probability": 0.8835 + }, + { + "start": 37682.7, + "end": 37684.68, + "probability": 0.6877 + }, + { + "start": 37685.26, + "end": 37686.54, + "probability": 0.7878 + }, + { + "start": 37687.28, + "end": 37688.94, + "probability": 0.9876 + }, + { + "start": 37689.56, + "end": 37693.66, + "probability": 0.8706 + }, + { + "start": 37694.58, + "end": 37697.0, + "probability": 0.8881 + }, + { + "start": 37697.14, + "end": 37698.76, + "probability": 0.7517 + }, + { + "start": 37699.4, + "end": 37700.58, + "probability": 0.9841 + }, + { + "start": 37702.2, + "end": 37703.64, + "probability": 0.6835 + }, + { + "start": 37704.34, + "end": 37707.28, + "probability": 0.9915 + }, + { + "start": 37707.92, + "end": 37709.8, + "probability": 0.6187 + }, + { + "start": 37710.48, + "end": 37716.12, + "probability": 0.9343 + }, + { + "start": 37716.26, + "end": 37717.22, + "probability": 0.9538 + }, + { + "start": 37719.18, + "end": 37721.1, + "probability": 0.9494 + }, + { + "start": 37723.1, + "end": 37725.46, + "probability": 0.7592 + }, + { + "start": 37726.74, + "end": 37727.09, + "probability": 0.8137 + }, + { + "start": 37728.56, + "end": 37730.1, + "probability": 0.6744 + }, + { + "start": 37730.2, + "end": 37730.96, + "probability": 0.5263 + }, + { + "start": 37731.02, + "end": 37733.56, + "probability": 0.8179 + }, + { + "start": 37733.68, + "end": 37734.46, + "probability": 0.5889 + }, + { + "start": 37735.66, + "end": 37740.04, + "probability": 0.727 + }, + { + "start": 37741.04, + "end": 37742.38, + "probability": 0.8389 + }, + { + "start": 37742.9, + "end": 37743.62, + "probability": 0.8921 + }, + { + "start": 37743.82, + "end": 37744.24, + "probability": 0.875 + }, + { + "start": 37747.36, + "end": 37750.7, + "probability": 0.9858 + }, + { + "start": 37751.42, + "end": 37755.84, + "probability": 0.6592 + }, + { + "start": 37756.42, + "end": 37756.68, + "probability": 0.7681 + }, + { + "start": 37756.76, + "end": 37757.54, + "probability": 0.938 + }, + { + "start": 37757.56, + "end": 37757.78, + "probability": 0.7278 + }, + { + "start": 37757.78, + "end": 37758.86, + "probability": 0.9512 + }, + { + "start": 37762.13, + "end": 37763.18, + "probability": 0.092 + }, + { + "start": 37763.18, + "end": 37763.18, + "probability": 0.1107 + }, + { + "start": 37763.18, + "end": 37763.36, + "probability": 0.2898 + }, + { + "start": 37763.74, + "end": 37765.62, + "probability": 0.8672 + }, + { + "start": 37766.4, + "end": 37767.72, + "probability": 0.7219 + }, + { + "start": 37768.24, + "end": 37769.22, + "probability": 0.7893 + }, + { + "start": 37770.34, + "end": 37771.8, + "probability": 0.959 + }, + { + "start": 37771.96, + "end": 37775.21, + "probability": 0.8143 + }, + { + "start": 37775.5, + "end": 37777.74, + "probability": 0.4138 + }, + { + "start": 37778.3, + "end": 37778.9, + "probability": 0.8431 + }, + { + "start": 37779.96, + "end": 37781.8, + "probability": 0.883 + }, + { + "start": 37782.4, + "end": 37784.56, + "probability": 0.7316 + }, + { + "start": 37785.24, + "end": 37787.28, + "probability": 0.6149 + }, + { + "start": 37787.8, + "end": 37789.6, + "probability": 0.8345 + }, + { + "start": 37790.2, + "end": 37790.68, + "probability": 0.7405 + }, + { + "start": 37790.82, + "end": 37794.1, + "probability": 0.5624 + }, + { + "start": 37794.8, + "end": 37797.5, + "probability": 0.9327 + }, + { + "start": 37798.08, + "end": 37799.28, + "probability": 0.9307 + }, + { + "start": 37799.86, + "end": 37802.42, + "probability": 0.93 + }, + { + "start": 37803.66, + "end": 37805.24, + "probability": 0.8382 + }, + { + "start": 37805.82, + "end": 37807.09, + "probability": 0.8234 + }, + { + "start": 37807.66, + "end": 37809.64, + "probability": 0.9173 + }, + { + "start": 37809.98, + "end": 37810.68, + "probability": 0.2633 + }, + { + "start": 37813.03, + "end": 37816.44, + "probability": 0.9768 + }, + { + "start": 37817.58, + "end": 37821.58, + "probability": 0.7592 + }, + { + "start": 37822.86, + "end": 37824.0, + "probability": 0.4615 + }, + { + "start": 37824.0, + "end": 37825.94, + "probability": 0.7943 + }, + { + "start": 37826.32, + "end": 37831.08, + "probability": 0.8959 + }, + { + "start": 37831.78, + "end": 37832.66, + "probability": 0.5724 + }, + { + "start": 37833.16, + "end": 37834.96, + "probability": 0.9722 + }, + { + "start": 37835.76, + "end": 37836.3, + "probability": 0.8613 + }, + { + "start": 37837.4, + "end": 37840.48, + "probability": 0.9617 + }, + { + "start": 37842.04, + "end": 37843.04, + "probability": 0.8282 + }, + { + "start": 37844.04, + "end": 37848.02, + "probability": 0.9868 + }, + { + "start": 37851.76, + "end": 37852.48, + "probability": 0.6486 + }, + { + "start": 37853.04, + "end": 37855.38, + "probability": 0.9379 + }, + { + "start": 37857.26, + "end": 37859.28, + "probability": 0.8428 + }, + { + "start": 37860.38, + "end": 37864.98, + "probability": 0.5769 + }, + { + "start": 37865.6, + "end": 37868.28, + "probability": 0.8506 + }, + { + "start": 37868.7, + "end": 37870.14, + "probability": 0.9828 + }, + { + "start": 37870.74, + "end": 37872.64, + "probability": 0.9865 + }, + { + "start": 37873.02, + "end": 37873.6, + "probability": 0.3426 + }, + { + "start": 37874.32, + "end": 37876.14, + "probability": 0.9844 + }, + { + "start": 37877.22, + "end": 37878.38, + "probability": 0.9637 + }, + { + "start": 37879.3, + "end": 37880.75, + "probability": 0.9885 + }, + { + "start": 37881.16, + "end": 37885.34, + "probability": 0.5443 + }, + { + "start": 37885.34, + "end": 37886.1, + "probability": 0.5896 + }, + { + "start": 37886.68, + "end": 37887.46, + "probability": 0.6415 + }, + { + "start": 37888.06, + "end": 37889.16, + "probability": 0.9976 + }, + { + "start": 37889.88, + "end": 37890.28, + "probability": 0.9821 + }, + { + "start": 37890.42, + "end": 37891.24, + "probability": 0.8665 + }, + { + "start": 37891.56, + "end": 37892.12, + "probability": 0.9635 + }, + { + "start": 37892.44, + "end": 37892.94, + "probability": 0.8121 + }, + { + "start": 37893.26, + "end": 37894.14, + "probability": 0.8529 + }, + { + "start": 37894.22, + "end": 37895.38, + "probability": 0.863 + }, + { + "start": 37895.86, + "end": 37896.25, + "probability": 0.8872 + }, + { + "start": 37898.0, + "end": 37899.61, + "probability": 0.9969 + }, + { + "start": 37901.66, + "end": 37903.16, + "probability": 0.2491 + }, + { + "start": 37904.04, + "end": 37905.9, + "probability": 0.0898 + }, + { + "start": 37906.62, + "end": 37909.0, + "probability": 0.2359 + }, + { + "start": 37910.71, + "end": 37915.04, + "probability": 0.8804 + }, + { + "start": 37919.02, + "end": 37922.18, + "probability": 0.1886 + }, + { + "start": 37922.7, + "end": 37925.06, + "probability": 0.7591 + }, + { + "start": 37926.04, + "end": 37929.48, + "probability": 0.7234 + }, + { + "start": 37929.94, + "end": 37937.64, + "probability": 0.8567 + }, + { + "start": 37938.82, + "end": 37941.22, + "probability": 0.5005 + }, + { + "start": 37942.12, + "end": 37945.88, + "probability": 0.9661 + }, + { + "start": 37947.48, + "end": 37950.02, + "probability": 0.8975 + }, + { + "start": 37950.44, + "end": 37952.04, + "probability": 0.8418 + }, + { + "start": 37952.62, + "end": 37956.74, + "probability": 0.8623 + }, + { + "start": 37959.24, + "end": 37960.32, + "probability": 0.9839 + }, + { + "start": 37961.02, + "end": 37961.32, + "probability": 0.7092 + }, + { + "start": 37961.84, + "end": 37963.44, + "probability": 0.9961 + }, + { + "start": 37964.46, + "end": 37965.22, + "probability": 0.7492 + }, + { + "start": 37965.98, + "end": 37967.62, + "probability": 0.9983 + }, + { + "start": 37968.28, + "end": 37969.7, + "probability": 0.8034 + }, + { + "start": 37970.84, + "end": 37972.3, + "probability": 0.9597 + }, + { + "start": 37973.18, + "end": 37974.34, + "probability": 0.8661 + }, + { + "start": 37975.08, + "end": 37976.4, + "probability": 0.9587 + }, + { + "start": 37977.36, + "end": 37977.7, + "probability": 0.8064 + }, + { + "start": 37978.3, + "end": 37978.74, + "probability": 0.7145 + }, + { + "start": 37980.3, + "end": 37986.64, + "probability": 0.9679 + }, + { + "start": 37987.24, + "end": 37989.82, + "probability": 0.3642 + }, + { + "start": 37990.74, + "end": 37994.72, + "probability": 0.9824 + }, + { + "start": 37995.9, + "end": 37997.67, + "probability": 0.9849 + }, + { + "start": 37998.8, + "end": 37999.66, + "probability": 0.7798 + }, + { + "start": 38000.76, + "end": 38002.68, + "probability": 0.7913 + }, + { + "start": 38004.26, + "end": 38007.86, + "probability": 0.9041 + }, + { + "start": 38007.86, + "end": 38011.44, + "probability": 0.8356 + }, + { + "start": 38012.12, + "end": 38013.82, + "probability": 0.9094 + }, + { + "start": 38014.76, + "end": 38015.46, + "probability": 0.7438 + }, + { + "start": 38017.42, + "end": 38019.5, + "probability": 0.7677 + }, + { + "start": 38020.28, + "end": 38021.3, + "probability": 0.8693 + }, + { + "start": 38021.88, + "end": 38022.66, + "probability": 0.7227 + }, + { + "start": 38023.34, + "end": 38024.56, + "probability": 0.4805 + }, + { + "start": 38025.1, + "end": 38027.74, + "probability": 0.9447 + }, + { + "start": 38027.8, + "end": 38028.3, + "probability": 0.7036 + }, + { + "start": 38028.64, + "end": 38029.54, + "probability": 0.5511 + }, + { + "start": 38030.18, + "end": 38032.92, + "probability": 0.9104 + }, + { + "start": 38033.52, + "end": 38035.12, + "probability": 0.9466 + }, + { + "start": 38035.54, + "end": 38036.22, + "probability": 0.7532 + }, + { + "start": 38036.54, + "end": 38038.54, + "probability": 0.9257 + }, + { + "start": 38038.62, + "end": 38039.56, + "probability": 0.9709 + }, + { + "start": 38040.4, + "end": 38043.06, + "probability": 0.8489 + }, + { + "start": 38043.78, + "end": 38045.34, + "probability": 0.8991 + }, + { + "start": 38045.94, + "end": 38049.18, + "probability": 0.9504 + }, + { + "start": 38050.64, + "end": 38053.38, + "probability": 0.9912 + }, + { + "start": 38053.38, + "end": 38057.44, + "probability": 0.9868 + }, + { + "start": 38058.04, + "end": 38060.24, + "probability": 0.7364 + }, + { + "start": 38060.9, + "end": 38065.18, + "probability": 0.9899 + }, + { + "start": 38066.24, + "end": 38068.97, + "probability": 0.7958 + }, + { + "start": 38069.56, + "end": 38073.18, + "probability": 0.5824 + }, + { + "start": 38073.54, + "end": 38075.78, + "probability": 0.9591 + }, + { + "start": 38075.78, + "end": 38078.42, + "probability": 0.9258 + }, + { + "start": 38079.42, + "end": 38080.76, + "probability": 0.7144 + }, + { + "start": 38081.58, + "end": 38085.46, + "probability": 0.9031 + }, + { + "start": 38086.76, + "end": 38088.92, + "probability": 0.9988 + }, + { + "start": 38089.56, + "end": 38093.24, + "probability": 0.9949 + }, + { + "start": 38094.08, + "end": 38097.02, + "probability": 0.9956 + }, + { + "start": 38097.84, + "end": 38100.6, + "probability": 0.6934 + }, + { + "start": 38101.32, + "end": 38103.86, + "probability": 0.6171 + }, + { + "start": 38104.38, + "end": 38106.34, + "probability": 0.8243 + }, + { + "start": 38106.98, + "end": 38108.74, + "probability": 0.8797 + }, + { + "start": 38109.7, + "end": 38113.64, + "probability": 0.7513 + }, + { + "start": 38114.28, + "end": 38115.64, + "probability": 0.5253 + }, + { + "start": 38115.68, + "end": 38116.97, + "probability": 0.8804 + }, + { + "start": 38117.52, + "end": 38118.88, + "probability": 0.7817 + }, + { + "start": 38119.52, + "end": 38122.78, + "probability": 0.7075 + }, + { + "start": 38122.84, + "end": 38124.94, + "probability": 0.9915 + }, + { + "start": 38126.0, + "end": 38127.98, + "probability": 0.3188 + }, + { + "start": 38128.0, + "end": 38129.06, + "probability": 0.3156 + }, + { + "start": 38129.28, + "end": 38132.74, + "probability": 0.3683 + }, + { + "start": 38133.66, + "end": 38135.0, + "probability": 0.7611 + }, + { + "start": 38136.9, + "end": 38141.12, + "probability": 0.8843 + }, + { + "start": 38141.82, + "end": 38146.24, + "probability": 0.4982 + }, + { + "start": 38146.98, + "end": 38148.26, + "probability": 0.8716 + }, + { + "start": 38148.84, + "end": 38151.78, + "probability": 0.9039 + }, + { + "start": 38152.18, + "end": 38155.96, + "probability": 0.8835 + }, + { + "start": 38159.24, + "end": 38160.11, + "probability": 0.5996 + }, + { + "start": 38160.86, + "end": 38163.24, + "probability": 0.5813 + }, + { + "start": 38163.56, + "end": 38164.96, + "probability": 0.7553 + }, + { + "start": 38165.7, + "end": 38166.7, + "probability": 0.1059 + }, + { + "start": 38166.86, + "end": 38167.56, + "probability": 0.4853 + }, + { + "start": 38167.82, + "end": 38169.3, + "probability": 0.2533 + }, + { + "start": 38169.46, + "end": 38170.92, + "probability": 0.3306 + }, + { + "start": 38171.48, + "end": 38173.44, + "probability": 0.4275 + }, + { + "start": 38173.82, + "end": 38176.08, + "probability": 0.748 + }, + { + "start": 38176.62, + "end": 38177.06, + "probability": 0.626 + }, + { + "start": 38177.2, + "end": 38178.51, + "probability": 0.8432 + }, + { + "start": 38179.16, + "end": 38180.78, + "probability": 0.7968 + }, + { + "start": 38181.82, + "end": 38183.3, + "probability": 0.6772 + }, + { + "start": 38183.68, + "end": 38184.5, + "probability": 0.9922 + }, + { + "start": 38184.56, + "end": 38185.66, + "probability": 0.6406 + }, + { + "start": 38185.86, + "end": 38189.0, + "probability": 0.5673 + }, + { + "start": 38189.56, + "end": 38192.2, + "probability": 0.8997 + }, + { + "start": 38192.56, + "end": 38195.64, + "probability": 0.6778 + }, + { + "start": 38196.02, + "end": 38197.48, + "probability": 0.8491 + }, + { + "start": 38197.84, + "end": 38199.0, + "probability": 0.8338 + }, + { + "start": 38199.12, + "end": 38199.89, + "probability": 0.9115 + }, + { + "start": 38200.38, + "end": 38202.66, + "probability": 0.7671 + }, + { + "start": 38202.92, + "end": 38203.76, + "probability": 0.8838 + }, + { + "start": 38203.98, + "end": 38205.72, + "probability": 0.9274 + }, + { + "start": 38205.8, + "end": 38208.12, + "probability": 0.4417 + }, + { + "start": 38208.96, + "end": 38209.84, + "probability": 0.7698 + }, + { + "start": 38210.44, + "end": 38212.74, + "probability": 0.7948 + }, + { + "start": 38212.82, + "end": 38215.46, + "probability": 0.8123 + }, + { + "start": 38215.9, + "end": 38216.42, + "probability": 0.9303 + }, + { + "start": 38216.6, + "end": 38217.94, + "probability": 0.6671 + }, + { + "start": 38218.08, + "end": 38218.74, + "probability": 0.632 + }, + { + "start": 38219.22, + "end": 38221.94, + "probability": 0.9845 + }, + { + "start": 38222.32, + "end": 38223.36, + "probability": 0.8058 + }, + { + "start": 38225.96, + "end": 38226.74, + "probability": 0.8846 + }, + { + "start": 38229.04, + "end": 38233.82, + "probability": 0.8032 + }, + { + "start": 38234.58, + "end": 38236.92, + "probability": 0.979 + }, + { + "start": 38238.46, + "end": 38239.78, + "probability": 0.9733 + }, + { + "start": 38240.56, + "end": 38243.38, + "probability": 0.9728 + }, + { + "start": 38244.86, + "end": 38245.98, + "probability": 0.9456 + }, + { + "start": 38246.76, + "end": 38247.76, + "probability": 0.2189 + }, + { + "start": 38248.42, + "end": 38249.4, + "probability": 0.6923 + }, + { + "start": 38249.78, + "end": 38253.62, + "probability": 0.8639 + }, + { + "start": 38254.36, + "end": 38255.66, + "probability": 0.7025 + }, + { + "start": 38256.88, + "end": 38259.48, + "probability": 0.7819 + }, + { + "start": 38260.24, + "end": 38261.44, + "probability": 0.981 + }, + { + "start": 38262.06, + "end": 38263.84, + "probability": 0.7922 + }, + { + "start": 38265.26, + "end": 38267.12, + "probability": 0.9087 + }, + { + "start": 38268.02, + "end": 38270.34, + "probability": 0.7448 + }, + { + "start": 38271.26, + "end": 38274.22, + "probability": 0.6979 + }, + { + "start": 38275.12, + "end": 38276.46, + "probability": 0.9722 + }, + { + "start": 38277.66, + "end": 38278.12, + "probability": 0.4462 + }, + { + "start": 38279.08, + "end": 38279.7, + "probability": 0.9021 + }, + { + "start": 38280.88, + "end": 38284.8, + "probability": 0.7186 + }, + { + "start": 38286.02, + "end": 38288.06, + "probability": 0.4129 + }, + { + "start": 38288.6, + "end": 38289.16, + "probability": 0.9698 + }, + { + "start": 38290.6, + "end": 38292.0, + "probability": 0.7842 + }, + { + "start": 38294.52, + "end": 38296.0, + "probability": 0.8272 + }, + { + "start": 38296.52, + "end": 38297.04, + "probability": 0.8154 + }, + { + "start": 38298.46, + "end": 38300.98, + "probability": 0.7201 + }, + { + "start": 38301.54, + "end": 38303.9, + "probability": 0.4988 + }, + { + "start": 38304.18, + "end": 38309.06, + "probability": 0.7998 + }, + { + "start": 38311.2, + "end": 38311.68, + "probability": 0.5763 + }, + { + "start": 38312.78, + "end": 38315.66, + "probability": 0.7721 + }, + { + "start": 38316.9, + "end": 38318.76, + "probability": 0.8948 + }, + { + "start": 38320.36, + "end": 38323.76, + "probability": 0.5621 + }, + { + "start": 38323.84, + "end": 38324.44, + "probability": 0.8846 + }, + { + "start": 38324.68, + "end": 38325.54, + "probability": 0.7604 + }, + { + "start": 38326.08, + "end": 38328.0, + "probability": 0.8364 + }, + { + "start": 38328.62, + "end": 38331.32, + "probability": 0.9578 + }, + { + "start": 38331.68, + "end": 38334.5, + "probability": 0.9631 + }, + { + "start": 38335.48, + "end": 38337.56, + "probability": 0.6765 + }, + { + "start": 38338.58, + "end": 38339.2, + "probability": 0.8695 + }, + { + "start": 38340.26, + "end": 38341.52, + "probability": 0.812 + }, + { + "start": 38342.12, + "end": 38344.3, + "probability": 0.9254 + }, + { + "start": 38346.96, + "end": 38347.92, + "probability": 0.9508 + }, + { + "start": 38348.0, + "end": 38350.5, + "probability": 0.7757 + }, + { + "start": 38350.6, + "end": 38351.16, + "probability": 0.6012 + }, + { + "start": 38351.86, + "end": 38352.82, + "probability": 0.8711 + }, + { + "start": 38353.4, + "end": 38355.86, + "probability": 0.979 + }, + { + "start": 38356.52, + "end": 38361.4, + "probability": 0.8892 + }, + { + "start": 38363.74, + "end": 38366.26, + "probability": 0.9056 + }, + { + "start": 38367.78, + "end": 38370.34, + "probability": 0.7191 + }, + { + "start": 38371.8, + "end": 38373.96, + "probability": 0.9819 + }, + { + "start": 38374.66, + "end": 38376.98, + "probability": 0.8955 + }, + { + "start": 38378.18, + "end": 38380.3, + "probability": 0.7628 + }, + { + "start": 38380.98, + "end": 38386.7, + "probability": 0.8722 + }, + { + "start": 38388.26, + "end": 38389.67, + "probability": 0.8678 + }, + { + "start": 38391.08, + "end": 38391.26, + "probability": 0.5874 + }, + { + "start": 38391.9, + "end": 38393.88, + "probability": 0.6312 + }, + { + "start": 38393.92, + "end": 38394.02, + "probability": 0.8122 + }, + { + "start": 38394.44, + "end": 38397.98, + "probability": 0.8904 + }, + { + "start": 38398.34, + "end": 38402.12, + "probability": 0.9007 + }, + { + "start": 38403.44, + "end": 38404.28, + "probability": 0.6008 + }, + { + "start": 38404.34, + "end": 38405.96, + "probability": 0.7344 + }, + { + "start": 38406.6, + "end": 38409.36, + "probability": 0.6985 + }, + { + "start": 38409.7, + "end": 38411.06, + "probability": 0.4936 + }, + { + "start": 38411.4, + "end": 38412.44, + "probability": 0.8508 + }, + { + "start": 38414.1, + "end": 38416.5, + "probability": 0.6879 + }, + { + "start": 38417.96, + "end": 38418.18, + "probability": 0.0883 + }, + { + "start": 38418.2, + "end": 38421.96, + "probability": 0.8438 + }, + { + "start": 38423.18, + "end": 38424.78, + "probability": 0.8814 + }, + { + "start": 38426.32, + "end": 38430.96, + "probability": 0.986 + }, + { + "start": 38431.1, + "end": 38432.02, + "probability": 0.8223 + }, + { + "start": 38434.52, + "end": 38436.82, + "probability": 0.8912 + }, + { + "start": 38438.55, + "end": 38441.38, + "probability": 0.7473 + }, + { + "start": 38442.68, + "end": 38443.86, + "probability": 0.6379 + }, + { + "start": 38444.26, + "end": 38448.84, + "probability": 0.8493 + }, + { + "start": 38450.04, + "end": 38451.22, + "probability": 0.991 + }, + { + "start": 38452.32, + "end": 38453.2, + "probability": 0.8203 + }, + { + "start": 38456.94, + "end": 38458.16, + "probability": 0.7434 + }, + { + "start": 38460.14, + "end": 38464.74, + "probability": 0.7651 + }, + { + "start": 38467.57, + "end": 38469.6, + "probability": 0.9406 + }, + { + "start": 38470.62, + "end": 38472.88, + "probability": 0.9512 + }, + { + "start": 38474.02, + "end": 38474.94, + "probability": 0.9753 + }, + { + "start": 38475.76, + "end": 38477.92, + "probability": 0.7953 + }, + { + "start": 38479.04, + "end": 38481.98, + "probability": 0.9843 + }, + { + "start": 38483.22, + "end": 38485.4, + "probability": 0.9945 + }, + { + "start": 38488.32, + "end": 38488.8, + "probability": 0.3354 + }, + { + "start": 38490.14, + "end": 38492.08, + "probability": 0.8586 + }, + { + "start": 38492.8, + "end": 38494.0, + "probability": 0.6289 + }, + { + "start": 38494.66, + "end": 38498.06, + "probability": 0.994 + }, + { + "start": 38498.78, + "end": 38500.26, + "probability": 0.9963 + }, + { + "start": 38501.0, + "end": 38501.82, + "probability": 0.9062 + }, + { + "start": 38502.48, + "end": 38503.22, + "probability": 0.7661 + }, + { + "start": 38503.8, + "end": 38505.26, + "probability": 0.7466 + }, + { + "start": 38506.38, + "end": 38506.9, + "probability": 0.6873 + }, + { + "start": 38507.78, + "end": 38508.9, + "probability": 0.6376 + }, + { + "start": 38509.78, + "end": 38511.96, + "probability": 0.9709 + }, + { + "start": 38513.64, + "end": 38514.72, + "probability": 0.6763 + }, + { + "start": 38516.46, + "end": 38517.34, + "probability": 0.9893 + }, + { + "start": 38519.14, + "end": 38519.9, + "probability": 0.9843 + }, + { + "start": 38521.4, + "end": 38522.28, + "probability": 0.8141 + }, + { + "start": 38522.92, + "end": 38523.76, + "probability": 0.6563 + }, + { + "start": 38524.88, + "end": 38525.76, + "probability": 0.9591 + }, + { + "start": 38527.12, + "end": 38528.3, + "probability": 0.792 + }, + { + "start": 38529.88, + "end": 38531.82, + "probability": 0.9647 + }, + { + "start": 38532.62, + "end": 38533.62, + "probability": 0.4639 + }, + { + "start": 38534.76, + "end": 38536.7, + "probability": 0.3835 + }, + { + "start": 38537.46, + "end": 38538.66, + "probability": 0.7547 + }, + { + "start": 38539.04, + "end": 38540.36, + "probability": 0.7263 + }, + { + "start": 38540.88, + "end": 38543.14, + "probability": 0.6245 + }, + { + "start": 38544.26, + "end": 38546.0, + "probability": 0.5094 + }, + { + "start": 38546.66, + "end": 38548.42, + "probability": 0.98 + }, + { + "start": 38548.94, + "end": 38551.16, + "probability": 0.9546 + }, + { + "start": 38551.84, + "end": 38552.86, + "probability": 0.7019 + }, + { + "start": 38554.3, + "end": 38555.46, + "probability": 0.7969 + }, + { + "start": 38556.54, + "end": 38560.42, + "probability": 0.7851 + }, + { + "start": 38563.88, + "end": 38564.54, + "probability": 0.7466 + }, + { + "start": 38565.04, + "end": 38568.64, + "probability": 0.9957 + }, + { + "start": 38573.4, + "end": 38574.54, + "probability": 0.681 + }, + { + "start": 38575.2, + "end": 38576.78, + "probability": 0.8666 + }, + { + "start": 38577.4, + "end": 38579.86, + "probability": 0.8901 + }, + { + "start": 38584.16, + "end": 38587.1, + "probability": 0.979 + }, + { + "start": 38587.82, + "end": 38590.22, + "probability": 0.8947 + }, + { + "start": 38590.64, + "end": 38592.35, + "probability": 0.45 + }, + { + "start": 38594.18, + "end": 38598.4, + "probability": 0.1802 + }, + { + "start": 38598.94, + "end": 38599.54, + "probability": 0.0855 + }, + { + "start": 38602.34, + "end": 38603.26, + "probability": 0.1109 + }, + { + "start": 38604.04, + "end": 38607.26, + "probability": 0.0997 + }, + { + "start": 38607.62, + "end": 38608.98, + "probability": 0.3045 + }, + { + "start": 38609.24, + "end": 38611.1, + "probability": 0.3239 + }, + { + "start": 38611.38, + "end": 38612.16, + "probability": 0.8204 + }, + { + "start": 38612.24, + "end": 38613.62, + "probability": 0.7138 + }, + { + "start": 38614.02, + "end": 38616.18, + "probability": 0.3572 + }, + { + "start": 38621.02, + "end": 38624.84, + "probability": 0.7887 + }, + { + "start": 38625.04, + "end": 38625.58, + "probability": 0.4252 + }, + { + "start": 38626.03, + "end": 38628.6, + "probability": 0.144 + }, + { + "start": 38629.41, + "end": 38629.9, + "probability": 0.1842 + }, + { + "start": 38630.38, + "end": 38633.26, + "probability": 0.1416 + }, + { + "start": 38633.58, + "end": 38635.18, + "probability": 0.0794 + }, + { + "start": 38635.4, + "end": 38635.62, + "probability": 0.2888 + }, + { + "start": 38635.96, + "end": 38640.72, + "probability": 0.7349 + }, + { + "start": 38640.88, + "end": 38640.9, + "probability": 0.2646 + }, + { + "start": 38641.02, + "end": 38642.02, + "probability": 0.1956 + }, + { + "start": 38642.58, + "end": 38646.7, + "probability": 0.108 + }, + { + "start": 38646.88, + "end": 38648.3, + "probability": 0.0482 + }, + { + "start": 38648.54, + "end": 38652.12, + "probability": 0.0632 + }, + { + "start": 38652.72, + "end": 38653.02, + "probability": 0.2377 + }, + { + "start": 38653.74, + "end": 38654.24, + "probability": 0.849 + }, + { + "start": 38684.0, + "end": 38684.0, + "probability": 0.0 + }, + { + "start": 38684.0, + "end": 38684.0, + "probability": 0.0 + }, + { + "start": 38684.0, + "end": 38684.0, + "probability": 0.0 + }, + { + "start": 38684.0, + "end": 38684.0, + "probability": 0.0 + }, + { + "start": 38684.0, + "end": 38684.0, + "probability": 0.0 + }, + { + "start": 38684.0, + "end": 38684.0, + "probability": 0.0 + }, + { + "start": 38684.0, + "end": 38684.0, + "probability": 0.0 + }, + { + "start": 38684.0, + "end": 38684.0, + "probability": 0.0 + }, + { + "start": 38684.0, + "end": 38684.0, + "probability": 0.0 + }, + { + "start": 38684.18, + "end": 38686.68, + "probability": 0.095 + }, + { + "start": 38686.68, + "end": 38686.68, + "probability": 0.1041 + }, + { + "start": 38686.68, + "end": 38687.88, + "probability": 0.658 + }, + { + "start": 38688.74, + "end": 38689.89, + "probability": 0.0212 + }, + { + "start": 38690.58, + "end": 38691.26, + "probability": 0.6384 + }, + { + "start": 38692.45, + "end": 38693.8, + "probability": 0.42 + }, + { + "start": 38694.3, + "end": 38700.5, + "probability": 0.8949 + }, + { + "start": 38700.98, + "end": 38702.68, + "probability": 0.762 + }, + { + "start": 38703.44, + "end": 38704.24, + "probability": 0.0059 + }, + { + "start": 38704.62, + "end": 38706.68, + "probability": 0.7896 + }, + { + "start": 38706.72, + "end": 38710.82, + "probability": 0.9896 + }, + { + "start": 38712.42, + "end": 38716.94, + "probability": 0.7744 + }, + { + "start": 38718.28, + "end": 38722.72, + "probability": 0.9816 + }, + { + "start": 38722.76, + "end": 38723.51, + "probability": 0.8325 + }, + { + "start": 38724.2, + "end": 38725.48, + "probability": 0.7775 + }, + { + "start": 38726.0, + "end": 38726.84, + "probability": 0.978 + }, + { + "start": 38726.9, + "end": 38727.78, + "probability": 0.5694 + }, + { + "start": 38727.84, + "end": 38731.18, + "probability": 0.9861 + }, + { + "start": 38732.04, + "end": 38732.48, + "probability": 0.3735 + }, + { + "start": 38732.9, + "end": 38739.88, + "probability": 0.9736 + }, + { + "start": 38740.22, + "end": 38740.9, + "probability": 0.639 + }, + { + "start": 38741.84, + "end": 38741.84, + "probability": 0.0874 + }, + { + "start": 38743.92, + "end": 38745.95, + "probability": 0.1188 + }, + { + "start": 38746.64, + "end": 38748.62, + "probability": 0.8953 + }, + { + "start": 38749.48, + "end": 38751.03, + "probability": 0.9006 + }, + { + "start": 38752.44, + "end": 38753.08, + "probability": 0.4008 + }, + { + "start": 38753.08, + "end": 38753.74, + "probability": 0.4096 + }, + { + "start": 38754.32, + "end": 38757.4, + "probability": 0.9849 + }, + { + "start": 38757.76, + "end": 38758.46, + "probability": 0.8862 + }, + { + "start": 38759.24, + "end": 38760.3, + "probability": 0.9232 + }, + { + "start": 38760.4, + "end": 38761.0, + "probability": 0.3855 + }, + { + "start": 38761.08, + "end": 38761.54, + "probability": 0.2017 + }, + { + "start": 38761.74, + "end": 38765.22, + "probability": 0.1821 + }, + { + "start": 38765.22, + "end": 38766.22, + "probability": 0.4151 + }, + { + "start": 38766.66, + "end": 38767.34, + "probability": 0.5668 + }, + { + "start": 38767.7, + "end": 38768.52, + "probability": 0.4697 + }, + { + "start": 38768.68, + "end": 38770.66, + "probability": 0.1295 + }, + { + "start": 38771.34, + "end": 38775.74, + "probability": 0.1146 + }, + { + "start": 38776.38, + "end": 38779.62, + "probability": 0.6163 + }, + { + "start": 38779.98, + "end": 38782.09, + "probability": 0.6476 + }, + { + "start": 38782.46, + "end": 38783.42, + "probability": 0.6896 + }, + { + "start": 38783.54, + "end": 38789.34, + "probability": 0.8722 + }, + { + "start": 38789.34, + "end": 38793.2, + "probability": 0.572 + }, + { + "start": 38793.42, + "end": 38795.66, + "probability": 0.0554 + }, + { + "start": 38796.58, + "end": 38803.28, + "probability": 0.7434 + }, + { + "start": 38803.76, + "end": 38806.86, + "probability": 0.5072 + }, + { + "start": 38807.08, + "end": 38810.57, + "probability": 0.9961 + }, + { + "start": 38811.68, + "end": 38814.08, + "probability": 0.9661 + }, + { + "start": 38814.82, + "end": 38814.82, + "probability": 0.7842 + }, + { + "start": 38817.04, + "end": 38819.84, + "probability": 0.9322 + }, + { + "start": 38820.2, + "end": 38822.74, + "probability": 0.6302 + }, + { + "start": 38823.12, + "end": 38824.14, + "probability": 0.9387 + }, + { + "start": 38824.42, + "end": 38825.34, + "probability": 0.7038 + }, + { + "start": 38825.6, + "end": 38829.44, + "probability": 0.8416 + }, + { + "start": 38830.02, + "end": 38834.34, + "probability": 0.6752 + }, + { + "start": 38835.32, + "end": 38837.06, + "probability": 0.8047 + }, + { + "start": 38837.68, + "end": 38840.52, + "probability": 0.7385 + }, + { + "start": 38840.98, + "end": 38843.4, + "probability": 0.8649 + }, + { + "start": 38844.12, + "end": 38845.76, + "probability": 0.9328 + }, + { + "start": 38846.9, + "end": 38849.06, + "probability": 0.9932 + }, + { + "start": 38852.36, + "end": 38858.78, + "probability": 0.9868 + }, + { + "start": 38859.9, + "end": 38860.4, + "probability": 0.6027 + }, + { + "start": 38861.14, + "end": 38864.22, + "probability": 0.498 + }, + { + "start": 38864.88, + "end": 38865.5, + "probability": 0.4693 + }, + { + "start": 38865.74, + "end": 38867.6, + "probability": 0.4461 + }, + { + "start": 38867.6, + "end": 38869.76, + "probability": 0.916 + }, + { + "start": 38870.22, + "end": 38872.66, + "probability": 0.7515 + }, + { + "start": 38872.8, + "end": 38873.96, + "probability": 0.5376 + }, + { + "start": 38874.2, + "end": 38876.13, + "probability": 0.848 + }, + { + "start": 38876.54, + "end": 38877.36, + "probability": 0.1555 + }, + { + "start": 38877.52, + "end": 38880.7, + "probability": 0.4222 + }, + { + "start": 38880.78, + "end": 38882.4, + "probability": 0.8889 + }, + { + "start": 38882.6, + "end": 38883.18, + "probability": 0.469 + }, + { + "start": 38885.08, + "end": 38886.06, + "probability": 0.1188 + }, + { + "start": 38886.06, + "end": 38886.86, + "probability": 0.4642 + }, + { + "start": 38887.18, + "end": 38888.86, + "probability": 0.0679 + }, + { + "start": 38889.04, + "end": 38890.57, + "probability": 0.1258 + }, + { + "start": 38894.18, + "end": 38898.2, + "probability": 0.6753 + }, + { + "start": 38898.32, + "end": 38900.62, + "probability": 0.5472 + }, + { + "start": 38900.96, + "end": 38902.84, + "probability": 0.4454 + }, + { + "start": 38903.32, + "end": 38904.08, + "probability": 0.5519 + }, + { + "start": 38904.54, + "end": 38909.74, + "probability": 0.1123 + }, + { + "start": 38909.78, + "end": 38910.46, + "probability": 0.2466 + }, + { + "start": 38910.78, + "end": 38914.24, + "probability": 0.8994 + }, + { + "start": 38914.88, + "end": 38917.76, + "probability": 0.6737 + }, + { + "start": 38917.76, + "end": 38922.2, + "probability": 0.3769 + }, + { + "start": 38922.6, + "end": 38926.24, + "probability": 0.2918 + }, + { + "start": 38926.24, + "end": 38927.24, + "probability": 0.4551 + }, + { + "start": 38927.28, + "end": 38928.04, + "probability": 0.5991 + }, + { + "start": 38928.28, + "end": 38932.82, + "probability": 0.7815 + }, + { + "start": 38933.74, + "end": 38935.18, + "probability": 0.4463 + }, + { + "start": 38937.6, + "end": 38939.98, + "probability": 0.7576 + }, + { + "start": 38942.25, + "end": 38943.22, + "probability": 0.388 + }, + { + "start": 38943.44, + "end": 38946.04, + "probability": 0.4288 + }, + { + "start": 38949.74, + "end": 38951.4, + "probability": 0.9647 + }, + { + "start": 38952.26, + "end": 38953.42, + "probability": 0.9773 + }, + { + "start": 38954.1, + "end": 38954.92, + "probability": 0.7205 + }, + { + "start": 38955.62, + "end": 38956.78, + "probability": 0.947 + }, + { + "start": 38958.48, + "end": 38960.96, + "probability": 0.678 + }, + { + "start": 38962.02, + "end": 38962.6, + "probability": 0.9456 + }, + { + "start": 38962.74, + "end": 38965.88, + "probability": 0.5674 + }, + { + "start": 38966.44, + "end": 38969.28, + "probability": 0.8174 + }, + { + "start": 38970.14, + "end": 38973.62, + "probability": 0.7308 + }, + { + "start": 38973.64, + "end": 38974.5, + "probability": 0.4317 + }, + { + "start": 38975.36, + "end": 38976.46, + "probability": 0.2084 + }, + { + "start": 38977.48, + "end": 38980.46, + "probability": 0.1472 + }, + { + "start": 38980.7, + "end": 38982.04, + "probability": 0.3037 + }, + { + "start": 38982.44, + "end": 38984.2, + "probability": 0.0369 + }, + { + "start": 38984.2, + "end": 38984.64, + "probability": 0.3058 + }, + { + "start": 38985.48, + "end": 38987.06, + "probability": 0.3299 + }, + { + "start": 38987.26, + "end": 38987.66, + "probability": 0.2602 + }, + { + "start": 38987.96, + "end": 38990.1, + "probability": 0.1035 + }, + { + "start": 38991.1, + "end": 38991.2, + "probability": 0.4755 + }, + { + "start": 38994.34, + "end": 39000.12, + "probability": 0.4766 + }, + { + "start": 39000.16, + "end": 39002.26, + "probability": 0.442 + }, + { + "start": 39002.6, + "end": 39003.12, + "probability": 0.4058 + }, + { + "start": 39003.42, + "end": 39007.34, + "probability": 0.7013 + }, + { + "start": 39007.94, + "end": 39010.26, + "probability": 0.9664 + }, + { + "start": 39010.48, + "end": 39010.98, + "probability": 0.6795 + }, + { + "start": 39011.38, + "end": 39012.66, + "probability": 0.76 + }, + { + "start": 39012.72, + "end": 39015.98, + "probability": 0.9707 + }, + { + "start": 39016.0, + "end": 39016.94, + "probability": 0.7251 + }, + { + "start": 39017.14, + "end": 39020.28, + "probability": 0.958 + }, + { + "start": 39021.08, + "end": 39024.2, + "probability": 0.6861 + }, + { + "start": 39024.48, + "end": 39028.32, + "probability": 0.6278 + }, + { + "start": 39028.7, + "end": 39029.42, + "probability": 0.7836 + }, + { + "start": 39029.94, + "end": 39030.96, + "probability": 0.4765 + }, + { + "start": 39031.08, + "end": 39032.16, + "probability": 0.6962 + }, + { + "start": 39032.3, + "end": 39032.9, + "probability": 0.9221 + }, + { + "start": 39033.1, + "end": 39034.8, + "probability": 0.9479 + }, + { + "start": 39035.4, + "end": 39037.46, + "probability": 0.7817 + }, + { + "start": 39038.02, + "end": 39041.86, + "probability": 0.9863 + }, + { + "start": 39043.64, + "end": 39043.72, + "probability": 0.0007 + }, + { + "start": 39045.08, + "end": 39047.22, + "probability": 0.7142 + }, + { + "start": 39047.3, + "end": 39048.22, + "probability": 0.9294 + }, + { + "start": 39048.68, + "end": 39050.15, + "probability": 0.8394 + }, + { + "start": 39050.5, + "end": 39051.86, + "probability": 0.5938 + }, + { + "start": 39052.4, + "end": 39055.1, + "probability": 0.5778 + }, + { + "start": 39055.46, + "end": 39057.15, + "probability": 0.8979 + }, + { + "start": 39058.14, + "end": 39059.16, + "probability": 0.9745 + }, + { + "start": 39059.46, + "end": 39061.7, + "probability": 0.9759 + }, + { + "start": 39062.02, + "end": 39065.16, + "probability": 0.9844 + }, + { + "start": 39065.46, + "end": 39069.86, + "probability": 0.4951 + }, + { + "start": 39072.02, + "end": 39074.82, + "probability": 0.7146 + }, + { + "start": 39075.12, + "end": 39075.64, + "probability": 0.7985 + }, + { + "start": 39077.46, + "end": 39078.1, + "probability": 0.6019 + }, + { + "start": 39079.46, + "end": 39082.2, + "probability": 0.7925 + }, + { + "start": 39083.26, + "end": 39087.42, + "probability": 0.5383 + }, + { + "start": 39088.26, + "end": 39092.64, + "probability": 0.7634 + }, + { + "start": 39094.24, + "end": 39095.6, + "probability": 0.757 + }, + { + "start": 39096.26, + "end": 39097.04, + "probability": 0.6507 + }, + { + "start": 39097.7, + "end": 39101.68, + "probability": 0.6617 + }, + { + "start": 39101.86, + "end": 39102.8, + "probability": 0.0121 + }, + { + "start": 39103.44, + "end": 39106.0, + "probability": 0.8295 + }, + { + "start": 39106.44, + "end": 39108.9, + "probability": 0.9709 + }, + { + "start": 39109.62, + "end": 39110.04, + "probability": 0.9106 + }, + { + "start": 39110.64, + "end": 39112.76, + "probability": 0.98 + }, + { + "start": 39113.46, + "end": 39114.78, + "probability": 0.8461 + }, + { + "start": 39115.88, + "end": 39121.58, + "probability": 0.9321 + }, + { + "start": 39122.6, + "end": 39123.3, + "probability": 0.9932 + }, + { + "start": 39123.98, + "end": 39126.03, + "probability": 0.9298 + }, + { + "start": 39126.54, + "end": 39128.68, + "probability": 0.9858 + }, + { + "start": 39129.28, + "end": 39132.86, + "probability": 0.753 + }, + { + "start": 39133.82, + "end": 39134.5, + "probability": 0.8163 + }, + { + "start": 39137.28, + "end": 39140.18, + "probability": 0.613 + }, + { + "start": 39140.86, + "end": 39141.6, + "probability": 0.7823 + }, + { + "start": 39142.4, + "end": 39143.21, + "probability": 0.6968 + }, + { + "start": 39146.02, + "end": 39149.4, + "probability": 0.7694 + }, + { + "start": 39149.5, + "end": 39149.98, + "probability": 0.6033 + }, + { + "start": 39150.22, + "end": 39152.54, + "probability": 0.856 + }, + { + "start": 39155.98, + "end": 39158.0, + "probability": 0.2408 + }, + { + "start": 39159.46, + "end": 39161.28, + "probability": 0.8832 + }, + { + "start": 39161.8, + "end": 39164.02, + "probability": 0.9976 + }, + { + "start": 39166.42, + "end": 39168.42, + "probability": 0.8286 + }, + { + "start": 39168.84, + "end": 39171.68, + "probability": 0.8348 + }, + { + "start": 39172.46, + "end": 39175.74, + "probability": 0.9937 + }, + { + "start": 39176.6, + "end": 39181.12, + "probability": 0.9819 + }, + { + "start": 39182.06, + "end": 39185.88, + "probability": 0.6735 + }, + { + "start": 39186.64, + "end": 39188.46, + "probability": 0.9821 + }, + { + "start": 39189.14, + "end": 39192.94, + "probability": 0.9663 + }, + { + "start": 39193.56, + "end": 39194.13, + "probability": 0.8371 + }, + { + "start": 39196.94, + "end": 39198.62, + "probability": 0.6047 + }, + { + "start": 39199.36, + "end": 39200.4, + "probability": 0.8299 + }, + { + "start": 39201.32, + "end": 39203.7, + "probability": 0.9308 + }, + { + "start": 39204.66, + "end": 39207.0, + "probability": 0.855 + }, + { + "start": 39208.52, + "end": 39210.78, + "probability": 0.7083 + }, + { + "start": 39211.34, + "end": 39214.12, + "probability": 0.9714 + }, + { + "start": 39214.94, + "end": 39219.12, + "probability": 0.9743 + }, + { + "start": 39220.04, + "end": 39222.52, + "probability": 0.9229 + }, + { + "start": 39223.16, + "end": 39223.7, + "probability": 0.6652 + }, + { + "start": 39224.34, + "end": 39226.1, + "probability": 0.8273 + }, + { + "start": 39226.4, + "end": 39228.0, + "probability": 0.7038 + }, + { + "start": 39228.68, + "end": 39230.02, + "probability": 0.817 + }, + { + "start": 39230.9, + "end": 39231.44, + "probability": 0.9749 + }, + { + "start": 39231.58, + "end": 39232.8, + "probability": 0.7956 + }, + { + "start": 39232.92, + "end": 39233.78, + "probability": 0.7376 + }, + { + "start": 39235.26, + "end": 39238.54, + "probability": 0.6656 + }, + { + "start": 39240.08, + "end": 39241.72, + "probability": 0.7511 + }, + { + "start": 39242.6, + "end": 39245.66, + "probability": 0.9112 + }, + { + "start": 39246.24, + "end": 39248.32, + "probability": 0.9177 + }, + { + "start": 39248.82, + "end": 39250.94, + "probability": 0.8434 + }, + { + "start": 39251.08, + "end": 39254.42, + "probability": 0.6449 + }, + { + "start": 39255.2, + "end": 39259.96, + "probability": 0.6466 + }, + { + "start": 39260.7, + "end": 39263.52, + "probability": 0.9495 + }, + { + "start": 39265.84, + "end": 39267.9, + "probability": 0.7162 + }, + { + "start": 39268.38, + "end": 39269.02, + "probability": 0.9569 + }, + { + "start": 39269.14, + "end": 39273.19, + "probability": 0.9812 + }, + { + "start": 39275.0, + "end": 39278.5, + "probability": 0.9178 + }, + { + "start": 39278.96, + "end": 39280.36, + "probability": 0.9659 + }, + { + "start": 39280.7, + "end": 39283.1, + "probability": 0.9722 + }, + { + "start": 39283.52, + "end": 39284.7, + "probability": 0.9092 + }, + { + "start": 39285.04, + "end": 39286.22, + "probability": 0.8723 + }, + { + "start": 39287.74, + "end": 39289.08, + "probability": 0.5834 + }, + { + "start": 39290.12, + "end": 39291.31, + "probability": 0.8495 + }, + { + "start": 39292.46, + "end": 39293.66, + "probability": 0.999 + }, + { + "start": 39293.96, + "end": 39294.76, + "probability": 0.7555 + }, + { + "start": 39295.64, + "end": 39298.12, + "probability": 0.3273 + }, + { + "start": 39298.66, + "end": 39300.7, + "probability": 0.9765 + }, + { + "start": 39301.5, + "end": 39302.24, + "probability": 0.6063 + }, + { + "start": 39302.3, + "end": 39307.0, + "probability": 0.8452 + }, + { + "start": 39307.6, + "end": 39311.8, + "probability": 0.3371 + }, + { + "start": 39311.94, + "end": 39314.56, + "probability": 0.7114 + }, + { + "start": 39314.92, + "end": 39315.9, + "probability": 0.8298 + }, + { + "start": 39316.48, + "end": 39321.36, + "probability": 0.752 + }, + { + "start": 39321.98, + "end": 39322.66, + "probability": 0.3704 + }, + { + "start": 39322.86, + "end": 39324.04, + "probability": 0.6126 + }, + { + "start": 39324.46, + "end": 39325.89, + "probability": 0.8345 + }, + { + "start": 39326.42, + "end": 39327.52, + "probability": 0.8824 + }, + { + "start": 39327.68, + "end": 39328.3, + "probability": 0.5823 + }, + { + "start": 39328.72, + "end": 39332.32, + "probability": 0.9398 + }, + { + "start": 39333.46, + "end": 39335.3, + "probability": 0.8982 + }, + { + "start": 39335.48, + "end": 39339.3, + "probability": 0.4686 + }, + { + "start": 39339.6, + "end": 39342.06, + "probability": 0.6372 + }, + { + "start": 39342.06, + "end": 39342.58, + "probability": 0.3124 + }, + { + "start": 39343.24, + "end": 39344.52, + "probability": 0.0093 + }, + { + "start": 39345.1, + "end": 39345.44, + "probability": 0.519 + }, + { + "start": 39345.54, + "end": 39346.5, + "probability": 0.9033 + }, + { + "start": 39346.98, + "end": 39349.06, + "probability": 0.6565 + }, + { + "start": 39349.08, + "end": 39350.56, + "probability": 0.9362 + }, + { + "start": 39350.9, + "end": 39350.96, + "probability": 0.0002 + }, + { + "start": 39351.58, + "end": 39353.87, + "probability": 0.7725 + }, + { + "start": 39354.02, + "end": 39358.9, + "probability": 0.4034 + }, + { + "start": 39358.9, + "end": 39361.22, + "probability": 0.0372 + }, + { + "start": 39364.02, + "end": 39366.88, + "probability": 0.0658 + }, + { + "start": 39367.18, + "end": 39368.36, + "probability": 0.2193 + }, + { + "start": 39368.84, + "end": 39370.48, + "probability": 0.3427 + }, + { + "start": 39371.48, + "end": 39372.18, + "probability": 0.2597 + }, + { + "start": 39372.62, + "end": 39373.92, + "probability": 0.5027 + }, + { + "start": 39374.62, + "end": 39377.66, + "probability": 0.7012 + }, + { + "start": 39378.12, + "end": 39383.9, + "probability": 0.4378 + }, + { + "start": 39384.14, + "end": 39384.32, + "probability": 0.1364 + }, + { + "start": 39384.82, + "end": 39384.82, + "probability": 0.1086 + }, + { + "start": 39385.64, + "end": 39387.17, + "probability": 0.427 + }, + { + "start": 39394.84, + "end": 39396.32, + "probability": 0.3698 + }, + { + "start": 39398.99, + "end": 39403.0, + "probability": 0.7203 + }, + { + "start": 39403.46, + "end": 39411.16, + "probability": 0.8343 + }, + { + "start": 39412.16, + "end": 39414.24, + "probability": 0.5696 + }, + { + "start": 39414.6, + "end": 39419.26, + "probability": 0.9818 + }, + { + "start": 39420.14, + "end": 39420.49, + "probability": 0.9312 + }, + { + "start": 39421.5, + "end": 39423.4, + "probability": 0.9662 + }, + { + "start": 39423.8, + "end": 39426.26, + "probability": 0.8885 + }, + { + "start": 39427.72, + "end": 39428.3, + "probability": 0.0013 + }, + { + "start": 39429.62, + "end": 39434.98, + "probability": 0.1665 + }, + { + "start": 39434.98, + "end": 39438.22, + "probability": 0.6607 + }, + { + "start": 39438.26, + "end": 39438.9, + "probability": 0.9782 + }, + { + "start": 39439.44, + "end": 39440.27, + "probability": 0.98 + }, + { + "start": 39440.34, + "end": 39440.86, + "probability": 0.8745 + }, + { + "start": 39441.44, + "end": 39442.04, + "probability": 0.7106 + }, + { + "start": 39442.04, + "end": 39444.16, + "probability": 0.4979 + }, + { + "start": 39445.12, + "end": 39447.28, + "probability": 0.6563 + }, + { + "start": 39447.72, + "end": 39448.89, + "probability": 0.019 + }, + { + "start": 39450.64, + "end": 39452.82, + "probability": 0.5196 + }, + { + "start": 39453.7, + "end": 39456.98, + "probability": 0.592 + }, + { + "start": 39461.56, + "end": 39466.9, + "probability": 0.7202 + }, + { + "start": 39467.18, + "end": 39467.95, + "probability": 0.4976 + }, + { + "start": 39468.94, + "end": 39471.8, + "probability": 0.7238 + }, + { + "start": 39471.92, + "end": 39473.5, + "probability": 0.3023 + }, + { + "start": 39473.76, + "end": 39474.42, + "probability": 0.4758 + }, + { + "start": 39474.46, + "end": 39475.2, + "probability": 0.4156 + }, + { + "start": 39475.4, + "end": 39476.44, + "probability": 0.5946 + }, + { + "start": 39477.2, + "end": 39478.04, + "probability": 0.4822 + }, + { + "start": 39478.44, + "end": 39479.64, + "probability": 0.4689 + }, + { + "start": 39480.2, + "end": 39480.82, + "probability": 0.6201 + }, + { + "start": 39481.4, + "end": 39482.0, + "probability": 0.4109 + }, + { + "start": 39482.02, + "end": 39483.11, + "probability": 0.2924 + }, + { + "start": 39483.62, + "end": 39486.84, + "probability": 0.6539 + }, + { + "start": 39487.16, + "end": 39489.8, + "probability": 0.804 + }, + { + "start": 39489.96, + "end": 39491.08, + "probability": 0.2299 + }, + { + "start": 39491.12, + "end": 39497.1, + "probability": 0.0427 + }, + { + "start": 39498.56, + "end": 39499.52, + "probability": 0.4274 + }, + { + "start": 39499.66, + "end": 39503.66, + "probability": 0.7 + }, + { + "start": 39504.86, + "end": 39508.72, + "probability": 0.5401 + }, + { + "start": 39509.38, + "end": 39510.98, + "probability": 0.0269 + }, + { + "start": 39515.6, + "end": 39519.26, + "probability": 0.7767 + }, + { + "start": 39527.17, + "end": 39529.1, + "probability": 0.6322 + }, + { + "start": 39529.76, + "end": 39530.54, + "probability": 0.5232 + }, + { + "start": 39534.19, + "end": 39538.53, + "probability": 0.1427 + }, + { + "start": 39539.8, + "end": 39539.98, + "probability": 0.284 + }, + { + "start": 39540.32, + "end": 39541.28, + "probability": 0.5822 + }, + { + "start": 39541.74, + "end": 39543.9, + "probability": 0.4607 + }, + { + "start": 39544.54, + "end": 39546.6, + "probability": 0.4455 + }, + { + "start": 39546.72, + "end": 39550.14, + "probability": 0.1088 + }, + { + "start": 39551.94, + "end": 39553.68, + "probability": 0.0172 + }, + { + "start": 39554.12, + "end": 39557.34, + "probability": 0.4425 + }, + { + "start": 39557.86, + "end": 39557.86, + "probability": 0.6399 + }, + { + "start": 39558.64, + "end": 39560.02, + "probability": 0.6347 + }, + { + "start": 39560.12, + "end": 39562.04, + "probability": 0.2984 + }, + { + "start": 39562.26, + "end": 39567.32, + "probability": 0.5405 + }, + { + "start": 39567.9, + "end": 39569.3, + "probability": 0.6648 + }, + { + "start": 39569.42, + "end": 39572.26, + "probability": 0.9576 + }, + { + "start": 39572.58, + "end": 39576.92, + "probability": 0.1669 + }, + { + "start": 39577.32, + "end": 39581.08, + "probability": 0.5636 + }, + { + "start": 39581.7, + "end": 39581.86, + "probability": 0.7515 + }, + { + "start": 39582.86, + "end": 39584.0, + "probability": 0.5441 + }, + { + "start": 39584.4, + "end": 39585.65, + "probability": 0.538 + }, + { + "start": 39589.86, + "end": 39592.56, + "probability": 0.9961 + }, + { + "start": 39600.7, + "end": 39601.52, + "probability": 0.0786 + }, + { + "start": 39601.68, + "end": 39606.28, + "probability": 0.6359 + }, + { + "start": 39608.32, + "end": 39613.2, + "probability": 0.8129 + }, + { + "start": 39613.98, + "end": 39614.38, + "probability": 0.6066 + }, + { + "start": 39614.56, + "end": 39615.56, + "probability": 0.8197 + }, + { + "start": 39616.5, + "end": 39618.9, + "probability": 0.5707 + }, + { + "start": 39618.98, + "end": 39621.52, + "probability": 0.7804 + }, + { + "start": 39621.66, + "end": 39623.38, + "probability": 0.471 + }, + { + "start": 39623.54, + "end": 39624.31, + "probability": 0.937 + }, + { + "start": 39624.68, + "end": 39625.9, + "probability": 0.6516 + }, + { + "start": 39626.28, + "end": 39626.9, + "probability": 0.5339 + }, + { + "start": 39626.94, + "end": 39628.06, + "probability": 0.7637 + }, + { + "start": 39628.22, + "end": 39630.18, + "probability": 0.7427 + }, + { + "start": 39630.78, + "end": 39635.58, + "probability": 0.9753 + }, + { + "start": 39635.76, + "end": 39636.78, + "probability": 0.8459 + }, + { + "start": 39636.86, + "end": 39637.84, + "probability": 0.7499 + }, + { + "start": 39638.06, + "end": 39641.94, + "probability": 0.6862 + }, + { + "start": 39642.28, + "end": 39649.08, + "probability": 0.4496 + }, + { + "start": 39649.26, + "end": 39651.28, + "probability": 0.4955 + }, + { + "start": 39651.84, + "end": 39653.32, + "probability": 0.917 + }, + { + "start": 39653.78, + "end": 39654.58, + "probability": 0.874 + }, + { + "start": 39654.64, + "end": 39655.48, + "probability": 0.4741 + }, + { + "start": 39656.12, + "end": 39656.22, + "probability": 0.1754 + }, + { + "start": 39657.42, + "end": 39658.54, + "probability": 0.8327 + }, + { + "start": 39659.4, + "end": 39662.74, + "probability": 0.758 + }, + { + "start": 39666.02, + "end": 39669.74, + "probability": 0.9544 + }, + { + "start": 39671.46, + "end": 39673.76, + "probability": 0.9608 + }, + { + "start": 39675.26, + "end": 39679.18, + "probability": 0.3056 + }, + { + "start": 39680.46, + "end": 39682.02, + "probability": 0.9726 + }, + { + "start": 39682.88, + "end": 39684.12, + "probability": 0.8153 + }, + { + "start": 39685.24, + "end": 39688.28, + "probability": 0.9312 + }, + { + "start": 39689.68, + "end": 39690.58, + "probability": 0.9969 + }, + { + "start": 39693.88, + "end": 39695.44, + "probability": 0.7836 + }, + { + "start": 39696.06, + "end": 39698.86, + "probability": 0.7754 + }, + { + "start": 39699.94, + "end": 39701.14, + "probability": 0.8008 + }, + { + "start": 39702.16, + "end": 39702.76, + "probability": 0.1686 + }, + { + "start": 39702.9, + "end": 39702.9, + "probability": 0.0244 + }, + { + "start": 39702.9, + "end": 39705.32, + "probability": 0.4491 + }, + { + "start": 39706.08, + "end": 39709.88, + "probability": 0.7937 + }, + { + "start": 39709.94, + "end": 39713.16, + "probability": 0.9778 + }, + { + "start": 39713.56, + "end": 39714.14, + "probability": 0.2697 + }, + { + "start": 39714.28, + "end": 39714.9, + "probability": 0.718 + }, + { + "start": 39715.5, + "end": 39718.64, + "probability": 0.7464 + }, + { + "start": 39720.26, + "end": 39724.22, + "probability": 0.8966 + }, + { + "start": 39724.56, + "end": 39726.28, + "probability": 0.8309 + }, + { + "start": 39726.98, + "end": 39730.08, + "probability": 0.4155 + }, + { + "start": 39730.08, + "end": 39732.68, + "probability": 0.1749 + }, + { + "start": 39733.64, + "end": 39737.56, + "probability": 0.6334 + }, + { + "start": 39737.7, + "end": 39740.26, + "probability": 0.6004 + }, + { + "start": 39740.46, + "end": 39742.38, + "probability": 0.6741 + }, + { + "start": 39742.54, + "end": 39743.83, + "probability": 0.6857 + }, + { + "start": 39743.98, + "end": 39746.45, + "probability": 0.2068 + }, + { + "start": 39747.08, + "end": 39749.96, + "probability": 0.3473 + }, + { + "start": 39755.1, + "end": 39758.06, + "probability": 0.1221 + }, + { + "start": 39758.06, + "end": 39758.2, + "probability": 0.0785 + }, + { + "start": 39760.22, + "end": 39767.18, + "probability": 0.4328 + }, + { + "start": 39772.56, + "end": 39775.3, + "probability": 0.3571 + }, + { + "start": 39777.1, + "end": 39779.22, + "probability": 0.0625 + }, + { + "start": 39779.54, + "end": 39781.04, + "probability": 0.1608 + }, + { + "start": 39781.68, + "end": 39784.49, + "probability": 0.1766 + }, + { + "start": 39784.76, + "end": 39787.65, + "probability": 0.4899 + }, + { + "start": 39788.46, + "end": 39790.6, + "probability": 0.441 + }, + { + "start": 39792.05, + "end": 39796.27, + "probability": 0.5723 + }, + { + "start": 39796.78, + "end": 39797.76, + "probability": 0.6727 + }, + { + "start": 39798.06, + "end": 39798.65, + "probability": 0.247 + }, + { + "start": 39798.76, + "end": 39801.08, + "probability": 0.5429 + }, + { + "start": 39801.96, + "end": 39804.4, + "probability": 0.9329 + }, + { + "start": 39805.72, + "end": 39807.78, + "probability": 0.5957 + }, + { + "start": 39807.98, + "end": 39810.16, + "probability": 0.7724 + }, + { + "start": 39810.66, + "end": 39813.82, + "probability": 0.7514 + }, + { + "start": 39814.66, + "end": 39816.52, + "probability": 0.9072 + }, + { + "start": 39817.76, + "end": 39818.88, + "probability": 0.8271 + }, + { + "start": 39819.46, + "end": 39820.36, + "probability": 0.8103 + }, + { + "start": 39821.22, + "end": 39829.94, + "probability": 0.9787 + }, + { + "start": 39831.26, + "end": 39834.44, + "probability": 0.743 + }, + { + "start": 39834.78, + "end": 39834.88, + "probability": 0.0443 + }, + { + "start": 39835.04, + "end": 39836.56, + "probability": 0.3074 + }, + { + "start": 39837.08, + "end": 39839.42, + "probability": 0.7556 + }, + { + "start": 39841.58, + "end": 39846.66, + "probability": 0.9771 + }, + { + "start": 39847.64, + "end": 39848.36, + "probability": 0.9438 + }, + { + "start": 39849.24, + "end": 39852.94, + "probability": 0.9736 + }, + { + "start": 39853.54, + "end": 39855.54, + "probability": 0.9927 + }, + { + "start": 39856.12, + "end": 39856.78, + "probability": 0.9432 + }, + { + "start": 39857.32, + "end": 39857.98, + "probability": 0.5208 + }, + { + "start": 39858.76, + "end": 39859.66, + "probability": 0.7857 + }, + { + "start": 39859.94, + "end": 39860.72, + "probability": 0.9722 + }, + { + "start": 39861.34, + "end": 39862.28, + "probability": 0.1157 + }, + { + "start": 39862.28, + "end": 39863.66, + "probability": 0.6526 + }, + { + "start": 39867.12, + "end": 39868.66, + "probability": 0.5032 + }, + { + "start": 39870.4, + "end": 39874.3, + "probability": 0.6686 + }, + { + "start": 39875.82, + "end": 39879.76, + "probability": 0.7219 + }, + { + "start": 39881.14, + "end": 39882.26, + "probability": 0.473 + }, + { + "start": 39882.6, + "end": 39886.26, + "probability": 0.4924 + }, + { + "start": 39887.86, + "end": 39891.12, + "probability": 0.7363 + }, + { + "start": 39891.66, + "end": 39893.28, + "probability": 0.7314 + }, + { + "start": 39894.34, + "end": 39896.88, + "probability": 0.863 + }, + { + "start": 39898.84, + "end": 39900.74, + "probability": 0.8927 + }, + { + "start": 39901.96, + "end": 39902.5, + "probability": 0.6744 + }, + { + "start": 39903.08, + "end": 39907.64, + "probability": 0.575 + }, + { + "start": 39907.8, + "end": 39911.34, + "probability": 0.6187 + }, + { + "start": 39911.8, + "end": 39914.5, + "probability": 0.7577 + }, + { + "start": 39914.62, + "end": 39916.4, + "probability": 0.6854 + }, + { + "start": 39918.73, + "end": 39920.16, + "probability": 0.2361 + }, + { + "start": 39920.16, + "end": 39921.8, + "probability": 0.4631 + }, + { + "start": 39921.92, + "end": 39927.26, + "probability": 0.4462 + }, + { + "start": 39927.44, + "end": 39930.75, + "probability": 0.8799 + }, + { + "start": 39930.8, + "end": 39932.48, + "probability": 0.9967 + }, + { + "start": 39933.1, + "end": 39937.76, + "probability": 0.5454 + }, + { + "start": 39938.16, + "end": 39943.28, + "probability": 0.5849 + }, + { + "start": 39943.38, + "end": 39946.94, + "probability": 0.9486 + }, + { + "start": 39947.9, + "end": 39948.86, + "probability": 0.7094 + }, + { + "start": 39949.0, + "end": 39949.78, + "probability": 0.4513 + }, + { + "start": 39949.78, + "end": 39955.86, + "probability": 0.7868 + }, + { + "start": 39956.04, + "end": 39956.82, + "probability": 0.8747 + }, + { + "start": 39957.26, + "end": 39961.26, + "probability": 0.812 + }, + { + "start": 39961.62, + "end": 39962.42, + "probability": 0.7898 + }, + { + "start": 39962.96, + "end": 39963.66, + "probability": 0.7395 + }, + { + "start": 39964.48, + "end": 39966.76, + "probability": 0.7591 + }, + { + "start": 39967.4, + "end": 39969.18, + "probability": 0.8717 + }, + { + "start": 39971.48, + "end": 39975.28, + "probability": 0.8043 + }, + { + "start": 39975.84, + "end": 39977.34, + "probability": 0.5742 + }, + { + "start": 39980.64, + "end": 39982.52, + "probability": 0.8657 + }, + { + "start": 39983.06, + "end": 39984.84, + "probability": 0.661 + }, + { + "start": 39985.68, + "end": 39989.48, + "probability": 0.891 + }, + { + "start": 39990.32, + "end": 39991.62, + "probability": 0.655 + }, + { + "start": 39992.4, + "end": 39993.6, + "probability": 0.7546 + }, + { + "start": 39994.24, + "end": 39997.64, + "probability": 0.801 + }, + { + "start": 39998.58, + "end": 40000.18, + "probability": 0.9708 + }, + { + "start": 40001.3, + "end": 40001.98, + "probability": 0.3713 + }, + { + "start": 40002.75, + "end": 40004.3, + "probability": 0.6886 + }, + { + "start": 40005.1, + "end": 40007.26, + "probability": 0.9099 + }, + { + "start": 40007.86, + "end": 40010.74, + "probability": 0.9619 + }, + { + "start": 40012.28, + "end": 40016.06, + "probability": 0.5503 + }, + { + "start": 40017.12, + "end": 40019.88, + "probability": 0.9604 + }, + { + "start": 40021.56, + "end": 40022.52, + "probability": 0.5384 + }, + { + "start": 40023.42, + "end": 40025.62, + "probability": 0.937 + }, + { + "start": 40026.54, + "end": 40030.96, + "probability": 0.9531 + }, + { + "start": 40032.16, + "end": 40035.88, + "probability": 0.9957 + }, + { + "start": 40036.66, + "end": 40038.48, + "probability": 0.7925 + }, + { + "start": 40039.9, + "end": 40042.3, + "probability": 0.9945 + }, + { + "start": 40044.12, + "end": 40045.14, + "probability": 0.7981 + }, + { + "start": 40046.54, + "end": 40047.86, + "probability": 0.554 + }, + { + "start": 40048.08, + "end": 40050.4, + "probability": 0.661 + }, + { + "start": 40050.84, + "end": 40053.44, + "probability": 0.9519 + }, + { + "start": 40054.48, + "end": 40055.88, + "probability": 0.4941 + }, + { + "start": 40055.94, + "end": 40058.02, + "probability": 0.7015 + }, + { + "start": 40058.94, + "end": 40061.2, + "probability": 0.9105 + }, + { + "start": 40062.0, + "end": 40064.18, + "probability": 0.9761 + }, + { + "start": 40064.66, + "end": 40066.58, + "probability": 0.6616 + }, + { + "start": 40068.04, + "end": 40071.2, + "probability": 0.6904 + }, + { + "start": 40072.1, + "end": 40073.02, + "probability": 0.5901 + }, + { + "start": 40073.74, + "end": 40074.64, + "probability": 0.6838 + }, + { + "start": 40075.32, + "end": 40075.98, + "probability": 0.4413 + }, + { + "start": 40076.02, + "end": 40077.09, + "probability": 0.8584 + }, + { + "start": 40077.24, + "end": 40078.42, + "probability": 0.8135 + }, + { + "start": 40078.72, + "end": 40079.22, + "probability": 0.6988 + }, + { + "start": 40079.42, + "end": 40080.75, + "probability": 0.2925 + }, + { + "start": 40080.92, + "end": 40083.74, + "probability": 0.5471 + }, + { + "start": 40084.0, + "end": 40085.22, + "probability": 0.7592 + }, + { + "start": 40086.08, + "end": 40092.84, + "probability": 0.8334 + }, + { + "start": 40094.22, + "end": 40097.3, + "probability": 0.5005 + }, + { + "start": 40097.3, + "end": 40101.36, + "probability": 0.22 + }, + { + "start": 40101.88, + "end": 40102.52, + "probability": 0.7982 + }, + { + "start": 40103.06, + "end": 40104.68, + "probability": 0.9762 + }, + { + "start": 40105.46, + "end": 40108.44, + "probability": 0.0098 + }, + { + "start": 40109.44, + "end": 40111.12, + "probability": 0.0382 + }, + { + "start": 40111.7, + "end": 40111.76, + "probability": 0.0115 + }, + { + "start": 40111.76, + "end": 40113.64, + "probability": 0.0909 + }, + { + "start": 40113.7, + "end": 40114.62, + "probability": 0.4229 + }, + { + "start": 40114.64, + "end": 40115.35, + "probability": 0.4956 + }, + { + "start": 40115.56, + "end": 40116.69, + "probability": 0.4549 + }, + { + "start": 40121.92, + "end": 40124.18, + "probability": 0.2272 + }, + { + "start": 40126.74, + "end": 40132.74, + "probability": 0.2576 + }, + { + "start": 40133.62, + "end": 40136.78, + "probability": 0.7812 + }, + { + "start": 40138.34, + "end": 40140.26, + "probability": 0.9326 + }, + { + "start": 40142.3, + "end": 40144.02, + "probability": 0.8616 + }, + { + "start": 40144.96, + "end": 40146.7, + "probability": 0.9691 + }, + { + "start": 40146.8, + "end": 40148.92, + "probability": 0.7569 + }, + { + "start": 40149.46, + "end": 40153.46, + "probability": 0.6161 + }, + { + "start": 40153.78, + "end": 40155.56, + "probability": 0.7518 + }, + { + "start": 40156.24, + "end": 40157.12, + "probability": 0.7174 + }, + { + "start": 40157.5, + "end": 40158.84, + "probability": 0.9746 + }, + { + "start": 40159.02, + "end": 40161.44, + "probability": 0.7283 + }, + { + "start": 40161.78, + "end": 40164.32, + "probability": 0.8931 + }, + { + "start": 40164.48, + "end": 40168.5, + "probability": 0.8769 + }, + { + "start": 40170.12, + "end": 40175.06, + "probability": 0.9079 + }, + { + "start": 40176.44, + "end": 40177.84, + "probability": 0.9021 + }, + { + "start": 40178.46, + "end": 40181.04, + "probability": 0.9429 + }, + { + "start": 40181.66, + "end": 40182.08, + "probability": 0.9194 + }, + { + "start": 40182.16, + "end": 40182.98, + "probability": 0.8098 + }, + { + "start": 40184.01, + "end": 40185.44, + "probability": 0.1821 + }, + { + "start": 40185.44, + "end": 40186.18, + "probability": 0.4183 + }, + { + "start": 40188.32, + "end": 40189.81, + "probability": 0.8752 + }, + { + "start": 40190.18, + "end": 40190.18, + "probability": 0.0723 + }, + { + "start": 40193.0, + "end": 40197.16, + "probability": 0.8977 + }, + { + "start": 40197.68, + "end": 40198.56, + "probability": 0.8679 + }, + { + "start": 40199.22, + "end": 40202.3, + "probability": 0.2795 + }, + { + "start": 40203.94, + "end": 40209.8, + "probability": 0.759 + }, + { + "start": 40213.06, + "end": 40213.64, + "probability": 0.273 + }, + { + "start": 40215.92, + "end": 40217.74, + "probability": 0.6006 + }, + { + "start": 40219.24, + "end": 40221.92, + "probability": 0.7271 + }, + { + "start": 40222.82, + "end": 40224.02, + "probability": 0.8818 + }, + { + "start": 40224.74, + "end": 40228.5, + "probability": 0.5041 + }, + { + "start": 40228.88, + "end": 40230.94, + "probability": 0.9908 + }, + { + "start": 40231.26, + "end": 40232.24, + "probability": 0.9922 + }, + { + "start": 40232.88, + "end": 40233.48, + "probability": 0.4557 + }, + { + "start": 40233.76, + "end": 40236.44, + "probability": 0.374 + }, + { + "start": 40239.08, + "end": 40241.6, + "probability": 0.4163 + }, + { + "start": 40241.82, + "end": 40243.94, + "probability": 0.7195 + }, + { + "start": 40244.3, + "end": 40248.84, + "probability": 0.9223 + }, + { + "start": 40249.3, + "end": 40250.34, + "probability": 0.9425 + }, + { + "start": 40250.66, + "end": 40252.28, + "probability": 0.9591 + }, + { + "start": 40252.68, + "end": 40254.1, + "probability": 0.9209 + }, + { + "start": 40254.4, + "end": 40257.12, + "probability": 0.3798 + }, + { + "start": 40257.4, + "end": 40260.04, + "probability": 0.8508 + }, + { + "start": 40260.56, + "end": 40261.92, + "probability": 0.9064 + }, + { + "start": 40262.3, + "end": 40263.48, + "probability": 0.5753 + }, + { + "start": 40263.82, + "end": 40264.92, + "probability": 0.9266 + }, + { + "start": 40265.02, + "end": 40266.08, + "probability": 0.9509 + }, + { + "start": 40266.22, + "end": 40267.4, + "probability": 0.6918 + }, + { + "start": 40268.0, + "end": 40271.94, + "probability": 0.9712 + }, + { + "start": 40272.28, + "end": 40274.58, + "probability": 0.8689 + }, + { + "start": 40275.48, + "end": 40279.72, + "probability": 0.9154 + }, + { + "start": 40280.12, + "end": 40281.04, + "probability": 0.6595 + }, + { + "start": 40281.16, + "end": 40283.06, + "probability": 0.9473 + }, + { + "start": 40287.02, + "end": 40289.42, + "probability": 0.6503 + }, + { + "start": 40290.15, + "end": 40291.62, + "probability": 0.595 + }, + { + "start": 40292.24, + "end": 40296.48, + "probability": 0.5845 + }, + { + "start": 40297.46, + "end": 40299.44, + "probability": 0.5747 + }, + { + "start": 40303.06, + "end": 40304.22, + "probability": 0.8976 + }, + { + "start": 40305.46, + "end": 40305.82, + "probability": 0.2538 + }, + { + "start": 40305.82, + "end": 40307.56, + "probability": 0.7637 + }, + { + "start": 40308.18, + "end": 40309.24, + "probability": 0.3519 + }, + { + "start": 40309.44, + "end": 40309.52, + "probability": 0.5541 + }, + { + "start": 40309.52, + "end": 40312.06, + "probability": 0.6034 + }, + { + "start": 40312.06, + "end": 40313.8, + "probability": 0.4712 + }, + { + "start": 40315.34, + "end": 40316.36, + "probability": 0.8649 + }, + { + "start": 40317.74, + "end": 40319.16, + "probability": 0.6757 + }, + { + "start": 40319.9, + "end": 40321.2, + "probability": 0.8038 + }, + { + "start": 40321.96, + "end": 40323.18, + "probability": 0.7262 + }, + { + "start": 40323.84, + "end": 40326.62, + "probability": 0.9235 + }, + { + "start": 40327.48, + "end": 40330.24, + "probability": 0.9277 + }, + { + "start": 40330.74, + "end": 40331.24, + "probability": 0.9186 + }, + { + "start": 40331.62, + "end": 40332.68, + "probability": 0.8094 + }, + { + "start": 40333.12, + "end": 40334.14, + "probability": 0.4364 + }, + { + "start": 40334.28, + "end": 40336.44, + "probability": 0.4417 + }, + { + "start": 40337.3, + "end": 40338.06, + "probability": 0.2582 + }, + { + "start": 40338.74, + "end": 40339.52, + "probability": 0.4134 + }, + { + "start": 40340.51, + "end": 40342.56, + "probability": 0.8384 + }, + { + "start": 40342.64, + "end": 40345.6, + "probability": 0.6285 + }, + { + "start": 40345.68, + "end": 40347.5, + "probability": 0.9358 + }, + { + "start": 40348.34, + "end": 40348.76, + "probability": 0.5163 + }, + { + "start": 40350.23, + "end": 40354.74, + "probability": 0.3288 + }, + { + "start": 40354.86, + "end": 40354.86, + "probability": 0.0535 + }, + { + "start": 40355.36, + "end": 40355.82, + "probability": 0.3794 + }, + { + "start": 40356.0, + "end": 40356.52, + "probability": 0.4582 + }, + { + "start": 40356.58, + "end": 40357.73, + "probability": 0.293 + }, + { + "start": 40358.24, + "end": 40358.24, + "probability": 0.2619 + }, + { + "start": 40358.4, + "end": 40359.8, + "probability": 0.35 + }, + { + "start": 40359.92, + "end": 40361.12, + "probability": 0.2686 + }, + { + "start": 40361.44, + "end": 40361.54, + "probability": 0.1245 + }, + { + "start": 40361.6, + "end": 40362.28, + "probability": 0.1131 + }, + { + "start": 40362.8, + "end": 40364.79, + "probability": 0.4824 + }, + { + "start": 40372.94, + "end": 40374.4, + "probability": 0.3961 + }, + { + "start": 40375.24, + "end": 40379.02, + "probability": 0.2471 + }, + { + "start": 40379.22, + "end": 40383.66, + "probability": 0.6572 + }, + { + "start": 40384.48, + "end": 40388.4, + "probability": 0.818 + }, + { + "start": 40388.9, + "end": 40389.52, + "probability": 0.7358 + }, + { + "start": 40389.84, + "end": 40394.14, + "probability": 0.9756 + }, + { + "start": 40394.14, + "end": 40397.12, + "probability": 0.6037 + }, + { + "start": 40397.68, + "end": 40398.74, + "probability": 0.4201 + }, + { + "start": 40399.0, + "end": 40400.02, + "probability": 0.7133 + }, + { + "start": 40400.48, + "end": 40401.64, + "probability": 0.9689 + }, + { + "start": 40405.74, + "end": 40412.7, + "probability": 0.6994 + }, + { + "start": 40413.44, + "end": 40414.12, + "probability": 0.981 + }, + { + "start": 40415.58, + "end": 40417.28, + "probability": 0.3391 + }, + { + "start": 40418.54, + "end": 40422.04, + "probability": 0.8224 + }, + { + "start": 40430.59, + "end": 40432.78, + "probability": 0.9648 + }, + { + "start": 40434.35, + "end": 40439.62, + "probability": 0.74 + }, + { + "start": 40440.3, + "end": 40442.92, + "probability": 0.8864 + }, + { + "start": 40443.22, + "end": 40447.24, + "probability": 0.535 + }, + { + "start": 40449.25, + "end": 40452.7, + "probability": 0.724 + }, + { + "start": 40453.12, + "end": 40455.04, + "probability": 0.8049 + }, + { + "start": 40455.56, + "end": 40457.14, + "probability": 0.5152 + }, + { + "start": 40457.22, + "end": 40459.82, + "probability": 0.2737 + }, + { + "start": 40461.93, + "end": 40464.2, + "probability": 0.9856 + }, + { + "start": 40465.12, + "end": 40467.68, + "probability": 0.756 + }, + { + "start": 40468.7, + "end": 40469.34, + "probability": 0.8741 + }, + { + "start": 40469.86, + "end": 40476.26, + "probability": 0.9236 + }, + { + "start": 40476.92, + "end": 40483.96, + "probability": 0.5261 + }, + { + "start": 40483.96, + "end": 40485.54, + "probability": 0.6947 + }, + { + "start": 40486.4, + "end": 40490.62, + "probability": 0.8448 + }, + { + "start": 40491.46, + "end": 40495.52, + "probability": 0.8975 + }, + { + "start": 40496.3, + "end": 40498.0, + "probability": 0.3638 + }, + { + "start": 40499.04, + "end": 40499.76, + "probability": 0.9322 + }, + { + "start": 40500.92, + "end": 40502.0, + "probability": 0.7744 + }, + { + "start": 40502.8, + "end": 40505.32, + "probability": 0.7164 + }, + { + "start": 40505.63, + "end": 40507.81, + "probability": 0.7212 + }, + { + "start": 40508.02, + "end": 40509.96, + "probability": 0.3385 + }, + { + "start": 40512.03, + "end": 40517.5, + "probability": 0.4482 + }, + { + "start": 40518.26, + "end": 40520.76, + "probability": 0.2634 + }, + { + "start": 40521.44, + "end": 40522.27, + "probability": 0.5537 + }, + { + "start": 40523.66, + "end": 40524.82, + "probability": 0.8765 + }, + { + "start": 40526.9, + "end": 40528.98, + "probability": 0.4967 + }, + { + "start": 40530.76, + "end": 40531.7, + "probability": 0.9033 + }, + { + "start": 40532.74, + "end": 40535.28, + "probability": 0.995 + }, + { + "start": 40536.22, + "end": 40542.58, + "probability": 0.6286 + }, + { + "start": 40543.6, + "end": 40545.74, + "probability": 0.3997 + }, + { + "start": 40547.52, + "end": 40548.4, + "probability": 0.7038 + }, + { + "start": 40549.26, + "end": 40553.48, + "probability": 0.8717 + }, + { + "start": 40553.92, + "end": 40555.1, + "probability": 0.5285 + }, + { + "start": 40555.16, + "end": 40556.24, + "probability": 0.7049 + }, + { + "start": 40556.66, + "end": 40558.54, + "probability": 0.6149 + }, + { + "start": 40559.78, + "end": 40563.22, + "probability": 0.7187 + }, + { + "start": 40563.72, + "end": 40567.12, + "probability": 0.4564 + }, + { + "start": 40567.84, + "end": 40568.92, + "probability": 0.626 + }, + { + "start": 40569.0, + "end": 40572.14, + "probability": 0.9802 + }, + { + "start": 40572.5, + "end": 40573.14, + "probability": 0.1737 + }, + { + "start": 40573.36, + "end": 40574.78, + "probability": 0.0481 + }, + { + "start": 40574.9, + "end": 40575.34, + "probability": 0.1455 + }, + { + "start": 40575.62, + "end": 40580.12, + "probability": 0.1453 + }, + { + "start": 40582.05, + "end": 40583.86, + "probability": 0.0395 + }, + { + "start": 40583.86, + "end": 40583.86, + "probability": 0.0105 + }, + { + "start": 40586.0, + "end": 40588.78, + "probability": 0.1425 + }, + { + "start": 40589.63, + "end": 40593.94, + "probability": 0.1175 + }, + { + "start": 40594.48, + "end": 40597.55, + "probability": 0.3832 + }, + { + "start": 40602.48, + "end": 40607.14, + "probability": 0.9191 + }, + { + "start": 40607.92, + "end": 40609.32, + "probability": 0.6926 + }, + { + "start": 40611.44, + "end": 40612.64, + "probability": 0.7171 + }, + { + "start": 40614.58, + "end": 40617.18, + "probability": 0.5907 + }, + { + "start": 40617.78, + "end": 40622.14, + "probability": 0.9809 + }, + { + "start": 40622.58, + "end": 40623.38, + "probability": 0.9891 + }, + { + "start": 40623.74, + "end": 40624.28, + "probability": 0.8578 + }, + { + "start": 40624.68, + "end": 40626.86, + "probability": 0.6536 + }, + { + "start": 40627.36, + "end": 40628.38, + "probability": 0.8706 + }, + { + "start": 40629.23, + "end": 40639.52, + "probability": 0.8615 + }, + { + "start": 40640.48, + "end": 40643.64, + "probability": 0.5606 + }, + { + "start": 40644.76, + "end": 40646.19, + "probability": 0.5072 + }, + { + "start": 40648.46, + "end": 40653.08, + "probability": 0.8881 + }, + { + "start": 40653.68, + "end": 40655.6, + "probability": 0.9928 + }, + { + "start": 40656.68, + "end": 40658.18, + "probability": 0.7047 + }, + { + "start": 40658.9, + "end": 40662.28, + "probability": 0.9303 + }, + { + "start": 40662.98, + "end": 40665.92, + "probability": 0.4242 + }, + { + "start": 40667.12, + "end": 40667.18, + "probability": 0.099 + }, + { + "start": 40667.18, + "end": 40669.1, + "probability": 0.9906 + }, + { + "start": 40669.98, + "end": 40670.93, + "probability": 0.9889 + }, + { + "start": 40671.78, + "end": 40672.76, + "probability": 0.907 + }, + { + "start": 40673.06, + "end": 40678.56, + "probability": 0.938 + }, + { + "start": 40678.92, + "end": 40681.7, + "probability": 0.8829 + }, + { + "start": 40683.3, + "end": 40684.94, + "probability": 0.3049 + }, + { + "start": 40685.28, + "end": 40688.72, + "probability": 0.4585 + }, + { + "start": 40688.84, + "end": 40690.32, + "probability": 0.4232 + }, + { + "start": 40693.83, + "end": 40698.98, + "probability": 0.9729 + }, + { + "start": 40699.36, + "end": 40700.32, + "probability": 0.2939 + }, + { + "start": 40700.88, + "end": 40705.57, + "probability": 0.4537 + }, + { + "start": 40706.66, + "end": 40707.72, + "probability": 0.6853 + }, + { + "start": 40708.42, + "end": 40709.57, + "probability": 0.5773 + }, + { + "start": 40710.26, + "end": 40712.34, + "probability": 0.8179 + }, + { + "start": 40712.92, + "end": 40714.94, + "probability": 0.9868 + }, + { + "start": 40715.3, + "end": 40716.78, + "probability": 0.8818 + }, + { + "start": 40717.06, + "end": 40718.84, + "probability": 0.9814 + }, + { + "start": 40720.02, + "end": 40723.54, + "probability": 0.7333 + }, + { + "start": 40724.5, + "end": 40725.32, + "probability": 0.9834 + }, + { + "start": 40725.38, + "end": 40727.26, + "probability": 0.8711 + }, + { + "start": 40728.08, + "end": 40728.86, + "probability": 0.6395 + }, + { + "start": 40730.12, + "end": 40731.22, + "probability": 0.7742 + }, + { + "start": 40732.28, + "end": 40734.28, + "probability": 0.8643 + }, + { + "start": 40734.86, + "end": 40736.02, + "probability": 0.9331 + }, + { + "start": 40736.5, + "end": 40737.58, + "probability": 0.9474 + }, + { + "start": 40738.9, + "end": 40742.66, + "probability": 0.7229 + }, + { + "start": 40743.58, + "end": 40744.12, + "probability": 0.7628 + }, + { + "start": 40744.64, + "end": 40745.44, + "probability": 0.9731 + }, + { + "start": 40747.32, + "end": 40748.18, + "probability": 0.8813 + }, + { + "start": 40748.82, + "end": 40752.63, + "probability": 0.4314 + }, + { + "start": 40753.14, + "end": 40753.14, + "probability": 0.0008 + }, + { + "start": 40755.54, + "end": 40756.62, + "probability": 0.1328 + }, + { + "start": 40760.24, + "end": 40764.62, + "probability": 0.9119 + }, + { + "start": 40766.36, + "end": 40770.1, + "probability": 0.625 + }, + { + "start": 40770.1, + "end": 40771.4, + "probability": 0.5855 + }, + { + "start": 40771.4, + "end": 40772.44, + "probability": 0.848 + }, + { + "start": 40773.5, + "end": 40774.14, + "probability": 0.6931 + }, + { + "start": 40775.9, + "end": 40776.86, + "probability": 0.2167 + }, + { + "start": 40777.44, + "end": 40780.44, + "probability": 0.2967 + }, + { + "start": 40780.52, + "end": 40783.06, + "probability": 0.9969 + }, + { + "start": 40784.8, + "end": 40787.22, + "probability": 0.8545 + }, + { + "start": 40787.96, + "end": 40788.62, + "probability": 0.9396 + }, + { + "start": 40788.74, + "end": 40790.0, + "probability": 0.8295 + }, + { + "start": 40790.06, + "end": 40790.8, + "probability": 0.9271 + }, + { + "start": 40790.82, + "end": 40792.32, + "probability": 0.7103 + }, + { + "start": 40793.3, + "end": 40797.68, + "probability": 0.8175 + }, + { + "start": 40797.74, + "end": 40800.56, + "probability": 0.5361 + }, + { + "start": 40801.98, + "end": 40803.1, + "probability": 0.7852 + }, + { + "start": 40804.34, + "end": 40806.54, + "probability": 0.3413 + }, + { + "start": 40807.7, + "end": 40809.12, + "probability": 0.6355 + }, + { + "start": 40809.2, + "end": 40809.81, + "probability": 0.6612 + }, + { + "start": 40810.0, + "end": 40813.66, + "probability": 0.8432 + }, + { + "start": 40815.46, + "end": 40819.7, + "probability": 0.5075 + }, + { + "start": 40820.1, + "end": 40821.52, + "probability": 0.7864 + }, + { + "start": 40822.64, + "end": 40825.16, + "probability": 0.4981 + }, + { + "start": 40825.3, + "end": 40825.56, + "probability": 0.0554 + }, + { + "start": 40826.54, + "end": 40827.68, + "probability": 0.8621 + }, + { + "start": 40828.4, + "end": 40830.58, + "probability": 0.9568 + }, + { + "start": 40832.12, + "end": 40836.72, + "probability": 0.6885 + }, + { + "start": 40838.36, + "end": 40840.86, + "probability": 0.8179 + }, + { + "start": 40841.2, + "end": 40842.96, + "probability": 0.9073 + }, + { + "start": 40843.58, + "end": 40845.96, + "probability": 0.6037 + }, + { + "start": 40848.1, + "end": 40849.5, + "probability": 0.7888 + }, + { + "start": 40850.24, + "end": 40853.24, + "probability": 0.9896 + }, + { + "start": 40854.12, + "end": 40854.78, + "probability": 0.7572 + }, + { + "start": 40860.44, + "end": 40861.14, + "probability": 0.5199 + }, + { + "start": 40866.4, + "end": 40868.84, + "probability": 0.8872 + }, + { + "start": 40869.96, + "end": 40874.3, + "probability": 0.8926 + }, + { + "start": 40881.5, + "end": 40882.58, + "probability": 0.6903 + }, + { + "start": 40883.7, + "end": 40884.64, + "probability": 0.9683 + }, + { + "start": 40885.74, + "end": 40887.32, + "probability": 0.9253 + }, + { + "start": 40888.0, + "end": 40889.28, + "probability": 0.7854 + }, + { + "start": 40890.18, + "end": 40893.38, + "probability": 0.8853 + }, + { + "start": 40894.08, + "end": 40898.46, + "probability": 0.9095 + }, + { + "start": 40899.64, + "end": 40900.1, + "probability": 0.6524 + }, + { + "start": 40901.4, + "end": 40903.04, + "probability": 0.9922 + }, + { + "start": 40912.12, + "end": 40914.3, + "probability": 0.7665 + }, + { + "start": 40917.12, + "end": 40917.5, + "probability": 0.88 + }, + { + "start": 40918.18, + "end": 40918.9, + "probability": 0.9946 + }, + { + "start": 40920.64, + "end": 40922.46, + "probability": 0.9845 + }, + { + "start": 40923.0, + "end": 40923.68, + "probability": 0.9031 + }, + { + "start": 40925.76, + "end": 40928.28, + "probability": 0.9919 + }, + { + "start": 40930.04, + "end": 40932.18, + "probability": 0.6746 + }, + { + "start": 40933.86, + "end": 40934.78, + "probability": 0.8616 + }, + { + "start": 40936.08, + "end": 40939.02, + "probability": 0.8268 + }, + { + "start": 40940.12, + "end": 40940.62, + "probability": 0.5533 + }, + { + "start": 40941.58, + "end": 40945.28, + "probability": 0.9906 + }, + { + "start": 40946.04, + "end": 40947.8, + "probability": 0.5252 + }, + { + "start": 40948.34, + "end": 40948.98, + "probability": 0.5799 + }, + { + "start": 40949.94, + "end": 40951.76, + "probability": 0.9856 + }, + { + "start": 40952.34, + "end": 40953.36, + "probability": 0.7969 + }, + { + "start": 40953.86, + "end": 40954.42, + "probability": 0.9385 + }, + { + "start": 40955.36, + "end": 40956.82, + "probability": 0.844 + }, + { + "start": 40957.82, + "end": 40958.9, + "probability": 0.991 + }, + { + "start": 40960.76, + "end": 40961.42, + "probability": 0.871 + }, + { + "start": 40963.26, + "end": 40964.62, + "probability": 0.8848 + }, + { + "start": 40964.74, + "end": 40965.82, + "probability": 0.9286 + }, + { + "start": 40966.26, + "end": 40967.17, + "probability": 0.9186 + }, + { + "start": 40967.46, + "end": 40968.6, + "probability": 0.8741 + }, + { + "start": 40970.24, + "end": 40972.48, + "probability": 0.8457 + }, + { + "start": 40972.88, + "end": 40973.64, + "probability": 0.9951 + }, + { + "start": 40974.82, + "end": 40975.74, + "probability": 0.5483 + }, + { + "start": 40977.22, + "end": 40977.97, + "probability": 0.9409 + }, + { + "start": 40978.9, + "end": 40980.38, + "probability": 0.9679 + }, + { + "start": 40981.44, + "end": 40983.96, + "probability": 0.9883 + }, + { + "start": 40988.96, + "end": 40991.36, + "probability": 0.6032 + }, + { + "start": 40991.66, + "end": 40992.72, + "probability": 0.7903 + }, + { + "start": 40992.82, + "end": 40995.1, + "probability": 0.9449 + }, + { + "start": 40995.32, + "end": 40996.48, + "probability": 0.7475 + }, + { + "start": 40997.48, + "end": 41000.28, + "probability": 0.8877 + }, + { + "start": 41000.98, + "end": 41003.02, + "probability": 0.2917 + }, + { + "start": 41004.24, + "end": 41006.96, + "probability": 0.851 + }, + { + "start": 41008.42, + "end": 41009.0, + "probability": 0.8546 + }, + { + "start": 41010.4, + "end": 41011.1, + "probability": 0.8988 + }, + { + "start": 41011.66, + "end": 41013.5, + "probability": 0.8578 + }, + { + "start": 41014.4, + "end": 41015.15, + "probability": 0.7099 + }, + { + "start": 41016.08, + "end": 41017.16, + "probability": 0.5676 + }, + { + "start": 41018.68, + "end": 41019.32, + "probability": 0.7331 + }, + { + "start": 41021.74, + "end": 41022.9, + "probability": 0.7384 + }, + { + "start": 41023.1, + "end": 41023.62, + "probability": 0.377 + }, + { + "start": 41023.92, + "end": 41024.6, + "probability": 0.6918 + }, + { + "start": 41025.08, + "end": 41030.16, + "probability": 0.1153 + }, + { + "start": 41031.94, + "end": 41035.12, + "probability": 0.7519 + }, + { + "start": 41035.18, + "end": 41037.28, + "probability": 0.9095 + }, + { + "start": 41038.12, + "end": 41039.64, + "probability": 0.0049 + }, + { + "start": 41042.6, + "end": 41045.16, + "probability": 0.9624 + }, + { + "start": 41046.5, + "end": 41052.0, + "probability": 0.1492 + }, + { + "start": 41052.22, + "end": 41054.04, + "probability": 0.2347 + }, + { + "start": 41054.3, + "end": 41057.3, + "probability": 0.3642 + }, + { + "start": 41059.04, + "end": 41061.56, + "probability": 0.0914 + }, + { + "start": 41064.4, + "end": 41065.56, + "probability": 0.6387 + }, + { + "start": 41071.26, + "end": 41074.98, + "probability": 0.9858 + }, + { + "start": 41077.18, + "end": 41078.66, + "probability": 0.9709 + }, + { + "start": 41080.96, + "end": 41084.24, + "probability": 0.8047 + }, + { + "start": 41085.2, + "end": 41088.16, + "probability": 0.9581 + }, + { + "start": 41088.7, + "end": 41092.42, + "probability": 0.4448 + }, + { + "start": 41093.4, + "end": 41094.78, + "probability": 0.217 + }, + { + "start": 41094.94, + "end": 41098.19, + "probability": 0.2786 + }, + { + "start": 41099.84, + "end": 41101.9, + "probability": 0.4931 + }, + { + "start": 41103.82, + "end": 41104.93, + "probability": 0.5158 + }, + { + "start": 41106.06, + "end": 41107.2, + "probability": 0.0484 + }, + { + "start": 41109.38, + "end": 41111.04, + "probability": 0.0993 + }, + { + "start": 41111.28, + "end": 41113.98, + "probability": 0.0232 + }, + { + "start": 41113.98, + "end": 41115.4, + "probability": 0.4546 + }, + { + "start": 41116.14, + "end": 41116.62, + "probability": 0.7525 + }, + { + "start": 41117.56, + "end": 41119.16, + "probability": 0.9954 + }, + { + "start": 41120.14, + "end": 41121.6, + "probability": 0.6963 + }, + { + "start": 41122.2, + "end": 41123.72, + "probability": 0.9224 + }, + { + "start": 41124.34, + "end": 41124.78, + "probability": 0.1 + }, + { + "start": 41125.52, + "end": 41126.36, + "probability": 0.0812 + }, + { + "start": 41126.36, + "end": 41126.36, + "probability": 0.0753 + }, + { + "start": 41126.36, + "end": 41127.6, + "probability": 0.3551 + }, + { + "start": 41131.04, + "end": 41134.46, + "probability": 0.6876 + }, + { + "start": 41137.18, + "end": 41139.8, + "probability": 0.9863 + }, + { + "start": 41139.92, + "end": 41141.4, + "probability": 0.9775 + }, + { + "start": 41142.38, + "end": 41144.46, + "probability": 0.9846 + }, + { + "start": 41145.5, + "end": 41146.42, + "probability": 0.7984 + }, + { + "start": 41147.84, + "end": 41153.5, + "probability": 0.7584 + }, + { + "start": 41153.7, + "end": 41154.88, + "probability": 0.7287 + }, + { + "start": 41155.12, + "end": 41156.96, + "probability": 0.8001 + }, + { + "start": 41157.04, + "end": 41160.32, + "probability": 0.6739 + }, + { + "start": 41163.76, + "end": 41165.43, + "probability": 0.3455 + }, + { + "start": 41165.78, + "end": 41166.57, + "probability": 0.751 + }, + { + "start": 41167.56, + "end": 41170.22, + "probability": 0.8872 + }, + { + "start": 41170.82, + "end": 41174.58, + "probability": 0.9956 + }, + { + "start": 41175.08, + "end": 41179.42, + "probability": 0.8295 + }, + { + "start": 41180.32, + "end": 41181.27, + "probability": 0.9968 + }, + { + "start": 41181.94, + "end": 41184.8, + "probability": 0.9961 + }, + { + "start": 41185.58, + "end": 41186.46, + "probability": 0.7107 + }, + { + "start": 41187.02, + "end": 41189.52, + "probability": 0.8802 + }, + { + "start": 41189.9, + "end": 41191.12, + "probability": 0.9624 + }, + { + "start": 41191.98, + "end": 41196.04, + "probability": 0.9742 + }, + { + "start": 41196.72, + "end": 41201.7, + "probability": 0.9816 + }, + { + "start": 41201.8, + "end": 41202.98, + "probability": 0.5551 + }, + { + "start": 41203.28, + "end": 41204.78, + "probability": 0.5538 + }, + { + "start": 41205.26, + "end": 41207.66, + "probability": 0.4336 + }, + { + "start": 41207.7, + "end": 41212.02, + "probability": 0.7079 + }, + { + "start": 41212.62, + "end": 41213.4, + "probability": 0.7344 + }, + { + "start": 41214.08, + "end": 41216.16, + "probability": 0.7154 + }, + { + "start": 41216.46, + "end": 41218.2, + "probability": 0.8392 + }, + { + "start": 41219.12, + "end": 41220.34, + "probability": 0.9167 + }, + { + "start": 41221.08, + "end": 41222.18, + "probability": 0.9155 + }, + { + "start": 41230.96, + "end": 41233.0, + "probability": 0.5961 + }, + { + "start": 41239.72, + "end": 41240.08, + "probability": 0.7076 + }, + { + "start": 41247.08, + "end": 41248.56, + "probability": 0.5326 + }, + { + "start": 41248.64, + "end": 41250.96, + "probability": 0.8398 + }, + { + "start": 41251.36, + "end": 41255.04, + "probability": 0.4868 + }, + { + "start": 41256.38, + "end": 41257.02, + "probability": 0.5146 + }, + { + "start": 41257.16, + "end": 41257.56, + "probability": 0.9008 + }, + { + "start": 41257.62, + "end": 41259.6, + "probability": 0.9893 + }, + { + "start": 41260.78, + "end": 41261.22, + "probability": 0.1532 + }, + { + "start": 41261.32, + "end": 41261.54, + "probability": 0.2779 + }, + { + "start": 41261.66, + "end": 41263.6, + "probability": 0.985 + }, + { + "start": 41264.9, + "end": 41268.58, + "probability": 0.9754 + }, + { + "start": 41268.8, + "end": 41271.18, + "probability": 0.9282 + }, + { + "start": 41272.04, + "end": 41273.78, + "probability": 0.5548 + }, + { + "start": 41274.8, + "end": 41275.98, + "probability": 0.8788 + }, + { + "start": 41277.5, + "end": 41279.52, + "probability": 0.7359 + }, + { + "start": 41280.36, + "end": 41281.88, + "probability": 0.9755 + }, + { + "start": 41282.56, + "end": 41284.84, + "probability": 0.9634 + }, + { + "start": 41285.22, + "end": 41285.74, + "probability": 0.6667 + }, + { + "start": 41287.64, + "end": 41290.32, + "probability": 0.991 + }, + { + "start": 41291.82, + "end": 41293.8, + "probability": 0.9564 + }, + { + "start": 41294.52, + "end": 41294.9, + "probability": 0.8757 + }, + { + "start": 41295.16, + "end": 41295.52, + "probability": 0.8145 + }, + { + "start": 41295.86, + "end": 41296.9, + "probability": 0.9271 + }, + { + "start": 41297.26, + "end": 41299.67, + "probability": 0.9102 + }, + { + "start": 41302.08, + "end": 41304.2, + "probability": 0.9141 + }, + { + "start": 41305.6, + "end": 41310.6, + "probability": 0.8814 + }, + { + "start": 41311.86, + "end": 41315.16, + "probability": 0.9972 + }, + { + "start": 41315.26, + "end": 41315.88, + "probability": 0.5657 + }, + { + "start": 41315.98, + "end": 41317.08, + "probability": 0.803 + }, + { + "start": 41318.02, + "end": 41320.6, + "probability": 0.8382 + }, + { + "start": 41321.22, + "end": 41325.5, + "probability": 0.9907 + }, + { + "start": 41326.74, + "end": 41328.58, + "probability": 0.9569 + }, + { + "start": 41328.66, + "end": 41330.22, + "probability": 0.9937 + }, + { + "start": 41331.48, + "end": 41332.68, + "probability": 0.9822 + }, + { + "start": 41333.06, + "end": 41333.68, + "probability": 0.6663 + }, + { + "start": 41333.82, + "end": 41334.48, + "probability": 0.5793 + }, + { + "start": 41334.58, + "end": 41335.81, + "probability": 0.6577 + }, + { + "start": 41336.62, + "end": 41337.48, + "probability": 0.9237 + }, + { + "start": 41338.48, + "end": 41338.6, + "probability": 0.2638 + }, + { + "start": 41338.7, + "end": 41340.48, + "probability": 0.9331 + }, + { + "start": 41340.64, + "end": 41346.56, + "probability": 0.8205 + }, + { + "start": 41347.56, + "end": 41349.28, + "probability": 0.561 + }, + { + "start": 41349.76, + "end": 41351.56, + "probability": 0.9551 + }, + { + "start": 41354.44, + "end": 41355.8, + "probability": 0.7136 + }, + { + "start": 41356.52, + "end": 41358.92, + "probability": 0.9834 + }, + { + "start": 41359.72, + "end": 41360.14, + "probability": 0.5864 + }, + { + "start": 41360.68, + "end": 41362.75, + "probability": 0.9528 + }, + { + "start": 41364.28, + "end": 41366.96, + "probability": 0.9048 + }, + { + "start": 41367.96, + "end": 41368.96, + "probability": 0.8868 + }, + { + "start": 41369.86, + "end": 41370.35, + "probability": 0.9951 + }, + { + "start": 41371.72, + "end": 41371.98, + "probability": 0.8579 + }, + { + "start": 41372.62, + "end": 41374.5, + "probability": 0.9945 + }, + { + "start": 41374.66, + "end": 41378.38, + "probability": 0.986 + }, + { + "start": 41379.32, + "end": 41381.0, + "probability": 0.948 + }, + { + "start": 41381.06, + "end": 41383.38, + "probability": 0.9984 + }, + { + "start": 41383.38, + "end": 41387.08, + "probability": 0.9707 + }, + { + "start": 41387.22, + "end": 41388.28, + "probability": 0.9668 + }, + { + "start": 41389.34, + "end": 41390.59, + "probability": 0.8385 + }, + { + "start": 41392.04, + "end": 41394.48, + "probability": 0.9667 + }, + { + "start": 41395.64, + "end": 41398.46, + "probability": 0.9573 + }, + { + "start": 41399.7, + "end": 41401.06, + "probability": 0.5785 + }, + { + "start": 41402.44, + "end": 41404.26, + "probability": 0.9644 + }, + { + "start": 41407.01, + "end": 41408.84, + "probability": 0.7071 + }, + { + "start": 41409.08, + "end": 41409.5, + "probability": 0.5795 + }, + { + "start": 41409.8, + "end": 41411.86, + "probability": 0.6604 + }, + { + "start": 41411.86, + "end": 41412.86, + "probability": 0.5429 + }, + { + "start": 41414.28, + "end": 41416.08, + "probability": 0.1988 + }, + { + "start": 41416.72, + "end": 41418.38, + "probability": 0.3561 + }, + { + "start": 41420.45, + "end": 41424.16, + "probability": 0.4495 + }, + { + "start": 41424.22, + "end": 41426.66, + "probability": 0.3176 + }, + { + "start": 41427.34, + "end": 41432.17, + "probability": 0.9871 + }, + { + "start": 41433.16, + "end": 41434.32, + "probability": 0.6256 + }, + { + "start": 41435.32, + "end": 41437.26, + "probability": 0.8907 + }, + { + "start": 41438.32, + "end": 41441.34, + "probability": 0.9922 + }, + { + "start": 41441.58, + "end": 41443.34, + "probability": 0.8678 + }, + { + "start": 41444.52, + "end": 41448.22, + "probability": 0.9938 + }, + { + "start": 41448.96, + "end": 41450.88, + "probability": 0.9841 + }, + { + "start": 41451.6, + "end": 41452.21, + "probability": 0.9036 + }, + { + "start": 41452.54, + "end": 41454.12, + "probability": 0.9856 + }, + { + "start": 41454.12, + "end": 41456.01, + "probability": 0.3644 + }, + { + "start": 41459.36, + "end": 41459.44, + "probability": 0.4329 + }, + { + "start": 41459.7, + "end": 41462.56, + "probability": 0.9945 + }, + { + "start": 41463.08, + "end": 41463.64, + "probability": 0.3087 + }, + { + "start": 41463.7, + "end": 41464.46, + "probability": 0.8011 + }, + { + "start": 41465.04, + "end": 41468.06, + "probability": 0.7001 + }, + { + "start": 41468.06, + "end": 41469.3, + "probability": 0.6341 + }, + { + "start": 41470.34, + "end": 41471.06, + "probability": 0.4949 + }, + { + "start": 41473.7, + "end": 41477.7, + "probability": 0.9976 + }, + { + "start": 41477.96, + "end": 41478.88, + "probability": 0.9508 + }, + { + "start": 41478.98, + "end": 41482.1, + "probability": 0.8068 + }, + { + "start": 41482.86, + "end": 41484.42, + "probability": 0.9897 + }, + { + "start": 41485.56, + "end": 41490.18, + "probability": 0.6388 + }, + { + "start": 41491.52, + "end": 41492.64, + "probability": 0.7526 + }, + { + "start": 41494.48, + "end": 41495.46, + "probability": 0.8208 + }, + { + "start": 41496.82, + "end": 41498.06, + "probability": 0.8901 + }, + { + "start": 41499.74, + "end": 41500.87, + "probability": 0.8335 + }, + { + "start": 41501.02, + "end": 41501.4, + "probability": 0.3911 + }, + { + "start": 41502.28, + "end": 41503.84, + "probability": 0.7095 + }, + { + "start": 41505.0, + "end": 41507.48, + "probability": 0.5498 + }, + { + "start": 41508.5, + "end": 41509.48, + "probability": 0.7658 + }, + { + "start": 41511.44, + "end": 41516.8, + "probability": 0.7339 + }, + { + "start": 41516.92, + "end": 41517.86, + "probability": 0.7133 + }, + { + "start": 41519.28, + "end": 41521.32, + "probability": 0.8782 + }, + { + "start": 41521.4, + "end": 41522.72, + "probability": 0.6689 + }, + { + "start": 41522.88, + "end": 41525.38, + "probability": 0.783 + }, + { + "start": 41526.12, + "end": 41529.28, + "probability": 0.7953 + }, + { + "start": 41530.1, + "end": 41530.76, + "probability": 0.6393 + }, + { + "start": 41531.14, + "end": 41531.14, + "probability": 0.9233 + }, + { + "start": 41532.04, + "end": 41533.02, + "probability": 0.7516 + }, + { + "start": 41533.26, + "end": 41534.2, + "probability": 0.7576 + }, + { + "start": 41536.46, + "end": 41537.64, + "probability": 0.8798 + }, + { + "start": 41537.76, + "end": 41539.04, + "probability": 0.4858 + }, + { + "start": 41539.14, + "end": 41540.22, + "probability": 0.9966 + }, + { + "start": 41541.08, + "end": 41543.24, + "probability": 0.6132 + }, + { + "start": 41544.0, + "end": 41545.24, + "probability": 0.9772 + }, + { + "start": 41545.24, + "end": 41545.6, + "probability": 0.9378 + }, + { + "start": 41546.14, + "end": 41546.94, + "probability": 0.8811 + }, + { + "start": 41547.32, + "end": 41549.02, + "probability": 0.9268 + }, + { + "start": 41549.96, + "end": 41552.22, + "probability": 0.8478 + }, + { + "start": 41552.28, + "end": 41552.62, + "probability": 0.4138 + }, + { + "start": 41552.72, + "end": 41553.34, + "probability": 0.7721 + }, + { + "start": 41553.96, + "end": 41555.22, + "probability": 0.9142 + }, + { + "start": 41555.3, + "end": 41555.74, + "probability": 0.8188 + }, + { + "start": 41555.92, + "end": 41556.3, + "probability": 0.5181 + }, + { + "start": 41556.32, + "end": 41558.46, + "probability": 0.9219 + }, + { + "start": 41558.6, + "end": 41559.16, + "probability": 0.6004 + }, + { + "start": 41559.34, + "end": 41560.48, + "probability": 0.9862 + }, + { + "start": 41561.06, + "end": 41564.08, + "probability": 0.9702 + }, + { + "start": 41564.92, + "end": 41567.73, + "probability": 0.9727 + }, + { + "start": 41568.94, + "end": 41572.36, + "probability": 0.9706 + }, + { + "start": 41572.58, + "end": 41573.24, + "probability": 0.651 + }, + { + "start": 41573.38, + "end": 41573.58, + "probability": 0.7472 + }, + { + "start": 41574.38, + "end": 41576.18, + "probability": 0.6029 + }, + { + "start": 41577.14, + "end": 41580.55, + "probability": 0.7169 + }, + { + "start": 41581.5, + "end": 41585.71, + "probability": 0.7093 + }, + { + "start": 41586.74, + "end": 41589.44, + "probability": 0.9374 + }, + { + "start": 41590.66, + "end": 41593.78, + "probability": 0.7142 + }, + { + "start": 41594.12, + "end": 41596.26, + "probability": 0.9031 + }, + { + "start": 41596.82, + "end": 41599.26, + "probability": 0.7113 + }, + { + "start": 41600.37, + "end": 41603.16, + "probability": 0.9805 + }, + { + "start": 41603.22, + "end": 41604.22, + "probability": 0.873 + }, + { + "start": 41605.0, + "end": 41606.42, + "probability": 0.9867 + }, + { + "start": 41608.34, + "end": 41611.16, + "probability": 0.9717 + }, + { + "start": 41611.16, + "end": 41614.7, + "probability": 0.7592 + }, + { + "start": 41616.02, + "end": 41618.92, + "probability": 0.993 + }, + { + "start": 41619.1, + "end": 41619.36, + "probability": 0.826 + }, + { + "start": 41619.52, + "end": 41620.0, + "probability": 0.8483 + }, + { + "start": 41620.18, + "end": 41620.38, + "probability": 0.4574 + }, + { + "start": 41620.88, + "end": 41622.62, + "probability": 0.9919 + }, + { + "start": 41623.2, + "end": 41623.92, + "probability": 0.9484 + }, + { + "start": 41624.56, + "end": 41626.16, + "probability": 0.9737 + }, + { + "start": 41628.2, + "end": 41628.46, + "probability": 0.6971 + }, + { + "start": 41629.24, + "end": 41632.82, + "probability": 0.9219 + }, + { + "start": 41633.18, + "end": 41634.31, + "probability": 0.8392 + }, + { + "start": 41634.86, + "end": 41636.62, + "probability": 0.8946 + }, + { + "start": 41637.7, + "end": 41639.94, + "probability": 0.7648 + }, + { + "start": 41640.62, + "end": 41642.36, + "probability": 0.8621 + }, + { + "start": 41642.52, + "end": 41644.74, + "probability": 0.7814 + }, + { + "start": 41645.52, + "end": 41648.5, + "probability": 0.9679 + }, + { + "start": 41649.58, + "end": 41650.68, + "probability": 0.9589 + }, + { + "start": 41650.94, + "end": 41654.88, + "probability": 0.9356 + }, + { + "start": 41655.02, + "end": 41657.42, + "probability": 0.9676 + }, + { + "start": 41658.14, + "end": 41660.76, + "probability": 0.9434 + }, + { + "start": 41661.54, + "end": 41665.14, + "probability": 0.9697 + }, + { + "start": 41666.26, + "end": 41667.4, + "probability": 0.9653 + }, + { + "start": 41667.44, + "end": 41669.46, + "probability": 0.9512 + }, + { + "start": 41670.2, + "end": 41672.06, + "probability": 0.9386 + }, + { + "start": 41672.74, + "end": 41676.32, + "probability": 0.5869 + }, + { + "start": 41677.44, + "end": 41679.6, + "probability": 0.8821 + }, + { + "start": 41680.48, + "end": 41680.48, + "probability": 0.9814 + }, + { + "start": 41681.12, + "end": 41683.94, + "probability": 0.894 + }, + { + "start": 41684.44, + "end": 41684.54, + "probability": 0.3737 + }, + { + "start": 41684.54, + "end": 41686.58, + "probability": 0.7759 + }, + { + "start": 41687.06, + "end": 41688.06, + "probability": 0.8022 + }, + { + "start": 41690.08, + "end": 41690.34, + "probability": 0.012 + }, + { + "start": 41690.34, + "end": 41690.34, + "probability": 0.0356 + }, + { + "start": 41690.34, + "end": 41690.34, + "probability": 0.0968 + }, + { + "start": 41690.34, + "end": 41691.15, + "probability": 0.4645 + }, + { + "start": 41692.28, + "end": 41693.56, + "probability": 0.5579 + }, + { + "start": 41693.94, + "end": 41695.66, + "probability": 0.9419 + }, + { + "start": 41696.74, + "end": 41697.08, + "probability": 0.7057 + }, + { + "start": 41697.14, + "end": 41698.34, + "probability": 0.9035 + }, + { + "start": 41698.42, + "end": 41699.08, + "probability": 0.7805 + }, + { + "start": 41699.98, + "end": 41702.36, + "probability": 0.9917 + }, + { + "start": 41703.06, + "end": 41706.2, + "probability": 0.9398 + }, + { + "start": 41706.3, + "end": 41707.5, + "probability": 0.5075 + }, + { + "start": 41708.22, + "end": 41708.77, + "probability": 0.807 + }, + { + "start": 41709.12, + "end": 41709.56, + "probability": 0.9791 + }, + { + "start": 41709.96, + "end": 41711.18, + "probability": 0.9226 + }, + { + "start": 41711.26, + "end": 41712.72, + "probability": 0.7888 + }, + { + "start": 41713.66, + "end": 41716.0, + "probability": 0.6628 + }, + { + "start": 41716.36, + "end": 41718.12, + "probability": 0.5703 + }, + { + "start": 41718.8, + "end": 41721.96, + "probability": 0.7113 + }, + { + "start": 41723.24, + "end": 41726.52, + "probability": 0.7596 + }, + { + "start": 41727.46, + "end": 41728.61, + "probability": 0.9863 + }, + { + "start": 41729.3, + "end": 41732.1, + "probability": 0.913 + }, + { + "start": 41732.48, + "end": 41732.66, + "probability": 0.8142 + }, + { + "start": 41732.74, + "end": 41734.44, + "probability": 0.8976 + }, + { + "start": 41734.8, + "end": 41736.94, + "probability": 0.9889 + }, + { + "start": 41737.24, + "end": 41737.64, + "probability": 0.9709 + }, + { + "start": 41738.62, + "end": 41738.72, + "probability": 0.8323 + }, + { + "start": 41738.84, + "end": 41739.28, + "probability": 0.8976 + }, + { + "start": 41739.38, + "end": 41739.78, + "probability": 0.7996 + }, + { + "start": 41739.9, + "end": 41741.5, + "probability": 0.9675 + }, + { + "start": 41742.36, + "end": 41742.74, + "probability": 0.9585 + }, + { + "start": 41743.26, + "end": 41745.74, + "probability": 0.8926 + }, + { + "start": 41745.82, + "end": 41746.58, + "probability": 0.8716 + }, + { + "start": 41746.68, + "end": 41749.4, + "probability": 0.7785 + }, + { + "start": 41749.44, + "end": 41750.36, + "probability": 0.853 + }, + { + "start": 41750.94, + "end": 41751.6, + "probability": 0.8758 + }, + { + "start": 41752.64, + "end": 41754.9, + "probability": 0.955 + }, + { + "start": 41755.14, + "end": 41756.32, + "probability": 0.9636 + }, + { + "start": 41756.74, + "end": 41758.08, + "probability": 0.968 + }, + { + "start": 41758.56, + "end": 41758.66, + "probability": 0.5259 + }, + { + "start": 41759.14, + "end": 41761.46, + "probability": 0.8665 + }, + { + "start": 41762.14, + "end": 41763.8, + "probability": 0.8242 + }, + { + "start": 41764.5, + "end": 41767.22, + "probability": 0.9894 + }, + { + "start": 41767.32, + "end": 41769.25, + "probability": 0.8664 + }, + { + "start": 41769.38, + "end": 41770.76, + "probability": 0.808 + }, + { + "start": 41771.56, + "end": 41772.22, + "probability": 0.8602 + }, + { + "start": 41773.08, + "end": 41774.76, + "probability": 0.9871 + }, + { + "start": 41774.8, + "end": 41778.58, + "probability": 0.8976 + }, + { + "start": 41779.7, + "end": 41782.9, + "probability": 0.9829 + }, + { + "start": 41783.14, + "end": 41786.36, + "probability": 0.7008 + }, + { + "start": 41786.86, + "end": 41787.34, + "probability": 0.7957 + }, + { + "start": 41787.78, + "end": 41789.54, + "probability": 0.8862 + }, + { + "start": 41790.04, + "end": 41791.98, + "probability": 0.9474 + }, + { + "start": 41792.28, + "end": 41793.88, + "probability": 0.8209 + }, + { + "start": 41794.58, + "end": 41796.36, + "probability": 0.8198 + }, + { + "start": 41797.44, + "end": 41797.72, + "probability": 0.4714 + }, + { + "start": 41798.6, + "end": 41799.96, + "probability": 0.942 + }, + { + "start": 41800.32, + "end": 41800.7, + "probability": 0.7497 + }, + { + "start": 41801.08, + "end": 41802.26, + "probability": 0.6047 + }, + { + "start": 41803.26, + "end": 41804.52, + "probability": 0.9782 + }, + { + "start": 41805.04, + "end": 41806.58, + "probability": 0.813 + }, + { + "start": 41807.12, + "end": 41811.38, + "probability": 0.9819 + }, + { + "start": 41811.68, + "end": 41813.08, + "probability": 0.9601 + }, + { + "start": 41813.9, + "end": 41814.76, + "probability": 0.8621 + }, + { + "start": 41815.3, + "end": 41816.68, + "probability": 0.8914 + }, + { + "start": 41817.4, + "end": 41820.28, + "probability": 0.8833 + }, + { + "start": 41821.1, + "end": 41823.44, + "probability": 0.8066 + }, + { + "start": 41823.72, + "end": 41823.92, + "probability": 0.981 + }, + { + "start": 41824.82, + "end": 41828.7, + "probability": 0.8074 + }, + { + "start": 41828.84, + "end": 41829.9, + "probability": 0.7926 + }, + { + "start": 41830.56, + "end": 41833.3, + "probability": 0.7429 + }, + { + "start": 41834.3, + "end": 41835.96, + "probability": 0.9012 + }, + { + "start": 41836.74, + "end": 41837.18, + "probability": 0.5792 + }, + { + "start": 41837.28, + "end": 41838.52, + "probability": 0.9932 + }, + { + "start": 41838.58, + "end": 41839.88, + "probability": 0.9954 + }, + { + "start": 41840.7, + "end": 41840.96, + "probability": 0.7297 + }, + { + "start": 41841.36, + "end": 41843.02, + "probability": 0.5354 + }, + { + "start": 41843.58, + "end": 41845.58, + "probability": 0.9662 + }, + { + "start": 41846.38, + "end": 41848.14, + "probability": 0.7689 + }, + { + "start": 41849.08, + "end": 41849.64, + "probability": 0.6845 + }, + { + "start": 41849.76, + "end": 41852.1, + "probability": 0.8445 + }, + { + "start": 41852.14, + "end": 41852.38, + "probability": 0.8517 + }, + { + "start": 41852.98, + "end": 41856.48, + "probability": 0.9661 + }, + { + "start": 41857.88, + "end": 41861.26, + "probability": 0.7764 + }, + { + "start": 41861.54, + "end": 41864.54, + "probability": 0.879 + }, + { + "start": 41864.54, + "end": 41867.38, + "probability": 0.8106 + }, + { + "start": 41868.12, + "end": 41870.72, + "probability": 0.7424 + }, + { + "start": 41871.52, + "end": 41871.98, + "probability": 0.4069 + }, + { + "start": 41872.14, + "end": 41874.84, + "probability": 0.8663 + }, + { + "start": 41874.84, + "end": 41877.68, + "probability": 0.9371 + }, + { + "start": 41879.06, + "end": 41881.58, + "probability": 0.9668 + }, + { + "start": 41882.86, + "end": 41885.0, + "probability": 0.9985 + }, + { + "start": 41885.52, + "end": 41890.14, + "probability": 0.9652 + }, + { + "start": 41891.28, + "end": 41893.48, + "probability": 0.8275 + }, + { + "start": 41893.52, + "end": 41894.9, + "probability": 0.7592 + }, + { + "start": 41895.32, + "end": 41896.44, + "probability": 0.6185 + }, + { + "start": 41898.84, + "end": 41902.28, + "probability": 0.6558 + }, + { + "start": 41902.9, + "end": 41904.1, + "probability": 0.9169 + }, + { + "start": 41904.66, + "end": 41905.96, + "probability": 0.9718 + }, + { + "start": 41907.02, + "end": 41908.66, + "probability": 0.817 + }, + { + "start": 41908.72, + "end": 41910.34, + "probability": 0.9889 + }, + { + "start": 41910.54, + "end": 41912.02, + "probability": 0.804 + }, + { + "start": 41912.78, + "end": 41914.86, + "probability": 0.9878 + }, + { + "start": 41915.64, + "end": 41918.39, + "probability": 0.7496 + }, + { + "start": 41918.56, + "end": 41919.04, + "probability": 0.8826 + }, + { + "start": 41919.08, + "end": 41920.76, + "probability": 0.9849 + }, + { + "start": 41921.22, + "end": 41921.99, + "probability": 0.5142 + }, + { + "start": 41922.08, + "end": 41925.38, + "probability": 0.9937 + }, + { + "start": 41926.16, + "end": 41927.26, + "probability": 0.8071 + }, + { + "start": 41927.4, + "end": 41928.28, + "probability": 0.967 + }, + { + "start": 41928.5, + "end": 41930.6, + "probability": 0.925 + }, + { + "start": 41931.18, + "end": 41932.71, + "probability": 0.5291 + }, + { + "start": 41933.62, + "end": 41933.92, + "probability": 0.2725 + }, + { + "start": 41933.92, + "end": 41934.66, + "probability": 0.4202 + }, + { + "start": 41934.8, + "end": 41937.0, + "probability": 0.4095 + }, + { + "start": 41937.54, + "end": 41940.74, + "probability": 0.991 + }, + { + "start": 41940.74, + "end": 41944.54, + "probability": 0.8676 + }, + { + "start": 41945.24, + "end": 41950.36, + "probability": 0.8995 + }, + { + "start": 41950.92, + "end": 41952.12, + "probability": 0.6747 + }, + { + "start": 41952.3, + "end": 41952.56, + "probability": 0.758 + }, + { + "start": 41953.08, + "end": 41958.72, + "probability": 0.9821 + }, + { + "start": 41959.2, + "end": 41961.22, + "probability": 0.6619 + }, + { + "start": 41961.96, + "end": 41964.52, + "probability": 0.8918 + }, + { + "start": 41965.56, + "end": 41966.78, + "probability": 0.6598 + }, + { + "start": 41967.18, + "end": 41968.32, + "probability": 0.7827 + }, + { + "start": 41968.82, + "end": 41973.34, + "probability": 0.9968 + }, + { + "start": 41974.3, + "end": 41975.1, + "probability": 0.9044 + }, + { + "start": 41975.74, + "end": 41976.98, + "probability": 0.702 + }, + { + "start": 41977.16, + "end": 41978.44, + "probability": 0.9737 + }, + { + "start": 41979.44, + "end": 41981.6, + "probability": 0.7348 + }, + { + "start": 41983.22, + "end": 41983.82, + "probability": 0.6256 + }, + { + "start": 41984.84, + "end": 41986.3, + "probability": 0.8653 + }, + { + "start": 41986.44, + "end": 41988.44, + "probability": 0.9575 + }, + { + "start": 41989.04, + "end": 41989.3, + "probability": 0.5919 + }, + { + "start": 41989.4, + "end": 41991.02, + "probability": 0.9214 + }, + { + "start": 41991.06, + "end": 41991.54, + "probability": 0.3617 + }, + { + "start": 41991.66, + "end": 41992.64, + "probability": 0.9771 + }, + { + "start": 41993.52, + "end": 41995.68, + "probability": 0.9867 + }, + { + "start": 41995.76, + "end": 41997.94, + "probability": 0.7511 + }, + { + "start": 41998.12, + "end": 41998.46, + "probability": 0.5636 + }, + { + "start": 41998.46, + "end": 41998.96, + "probability": 0.4398 + }, + { + "start": 41998.96, + "end": 42000.22, + "probability": 0.7417 + }, + { + "start": 42001.12, + "end": 42004.35, + "probability": 0.9822 + }, + { + "start": 42005.12, + "end": 42006.22, + "probability": 0.9182 + }, + { + "start": 42006.46, + "end": 42010.62, + "probability": 0.3988 + }, + { + "start": 42010.9, + "end": 42012.02, + "probability": 0.9565 + }, + { + "start": 42012.5, + "end": 42013.22, + "probability": 0.9865 + }, + { + "start": 42013.48, + "end": 42016.3, + "probability": 0.6084 + }, + { + "start": 42016.4, + "end": 42017.36, + "probability": 0.9277 + }, + { + "start": 42017.9, + "end": 42020.34, + "probability": 0.6609 + }, + { + "start": 42021.4, + "end": 42022.5, + "probability": 0.8239 + }, + { + "start": 42023.7, + "end": 42024.64, + "probability": 0.8926 + }, + { + "start": 42025.36, + "end": 42026.42, + "probability": 0.8229 + }, + { + "start": 42027.08, + "end": 42030.56, + "probability": 0.9181 + }, + { + "start": 42031.48, + "end": 42037.58, + "probability": 0.9324 + }, + { + "start": 42037.64, + "end": 42039.1, + "probability": 0.9797 + }, + { + "start": 42039.7, + "end": 42042.48, + "probability": 0.978 + }, + { + "start": 42043.06, + "end": 42046.64, + "probability": 0.9952 + }, + { + "start": 42048.36, + "end": 42051.76, + "probability": 0.9945 + }, + { + "start": 42052.36, + "end": 42054.18, + "probability": 0.9268 + }, + { + "start": 42054.9, + "end": 42059.0, + "probability": 0.9484 + }, + { + "start": 42060.14, + "end": 42061.72, + "probability": 0.9868 + }, + { + "start": 42062.52, + "end": 42063.48, + "probability": 0.9756 + }, + { + "start": 42064.24, + "end": 42065.46, + "probability": 0.9844 + }, + { + "start": 42066.56, + "end": 42067.54, + "probability": 0.9434 + }, + { + "start": 42069.04, + "end": 42072.58, + "probability": 0.9935 + }, + { + "start": 42073.18, + "end": 42074.28, + "probability": 0.7707 + }, + { + "start": 42074.46, + "end": 42076.92, + "probability": 0.9923 + }, + { + "start": 42077.5, + "end": 42079.88, + "probability": 0.9374 + }, + { + "start": 42080.0, + "end": 42081.54, + "probability": 0.9902 + }, + { + "start": 42081.88, + "end": 42083.98, + "probability": 0.9719 + }, + { + "start": 42085.5, + "end": 42086.5, + "probability": 0.7889 + }, + { + "start": 42086.62, + "end": 42086.72, + "probability": 0.8539 + }, + { + "start": 42087.5, + "end": 42090.48, + "probability": 0.9849 + }, + { + "start": 42091.14, + "end": 42094.1, + "probability": 0.9937 + }, + { + "start": 42094.48, + "end": 42096.98, + "probability": 0.9985 + }, + { + "start": 42098.75, + "end": 42101.82, + "probability": 0.9707 + }, + { + "start": 42102.14, + "end": 42103.64, + "probability": 0.9849 + }, + { + "start": 42104.36, + "end": 42108.65, + "probability": 0.9857 + }, + { + "start": 42109.26, + "end": 42112.92, + "probability": 0.9915 + }, + { + "start": 42115.04, + "end": 42117.48, + "probability": 0.9925 + }, + { + "start": 42118.44, + "end": 42119.0, + "probability": 0.8406 + }, + { + "start": 42119.18, + "end": 42121.34, + "probability": 0.7842 + }, + { + "start": 42122.18, + "end": 42123.76, + "probability": 0.9941 + }, + { + "start": 42124.06, + "end": 42124.86, + "probability": 0.6241 + }, + { + "start": 42125.34, + "end": 42126.96, + "probability": 0.9977 + }, + { + "start": 42128.22, + "end": 42129.6, + "probability": 0.934 + }, + { + "start": 42130.54, + "end": 42132.1, + "probability": 0.9966 + }, + { + "start": 42133.14, + "end": 42134.08, + "probability": 0.39 + }, + { + "start": 42134.72, + "end": 42137.28, + "probability": 0.9099 + }, + { + "start": 42137.3, + "end": 42137.58, + "probability": 0.8466 + }, + { + "start": 42137.58, + "end": 42138.48, + "probability": 0.8282 + }, + { + "start": 42139.44, + "end": 42141.12, + "probability": 0.856 + }, + { + "start": 42142.02, + "end": 42145.88, + "probability": 0.9894 + }, + { + "start": 42146.22, + "end": 42148.32, + "probability": 0.9126 + }, + { + "start": 42148.98, + "end": 42151.32, + "probability": 0.9364 + }, + { + "start": 42152.62, + "end": 42153.64, + "probability": 0.9717 + }, + { + "start": 42154.2, + "end": 42154.52, + "probability": 0.0465 + }, + { + "start": 42154.72, + "end": 42157.0, + "probability": 0.9995 + }, + { + "start": 42157.68, + "end": 42157.78, + "probability": 0.3403 + }, + { + "start": 42157.82, + "end": 42160.24, + "probability": 0.999 + }, + { + "start": 42160.24, + "end": 42162.5, + "probability": 0.8411 + }, + { + "start": 42162.56, + "end": 42164.98, + "probability": 0.5368 + }, + { + "start": 42165.06, + "end": 42165.32, + "probability": 0.8652 + }, + { + "start": 42165.64, + "end": 42166.04, + "probability": 0.907 + }, + { + "start": 42166.18, + "end": 42168.38, + "probability": 0.8846 + }, + { + "start": 42168.84, + "end": 42169.1, + "probability": 0.9285 + }, + { + "start": 42169.16, + "end": 42169.68, + "probability": 0.8875 + }, + { + "start": 42170.12, + "end": 42171.4, + "probability": 0.9015 + }, + { + "start": 42171.8, + "end": 42175.66, + "probability": 0.8906 + }, + { + "start": 42176.1, + "end": 42176.18, + "probability": 0.1424 + }, + { + "start": 42176.34, + "end": 42177.72, + "probability": 0.9917 + }, + { + "start": 42178.68, + "end": 42181.4, + "probability": 0.9954 + }, + { + "start": 42181.4, + "end": 42183.6, + "probability": 0.9964 + }, + { + "start": 42184.44, + "end": 42184.76, + "probability": 0.3161 + }, + { + "start": 42184.9, + "end": 42189.22, + "probability": 0.9893 + }, + { + "start": 42190.2, + "end": 42190.78, + "probability": 0.5519 + }, + { + "start": 42190.82, + "end": 42191.68, + "probability": 0.9326 + }, + { + "start": 42191.82, + "end": 42194.53, + "probability": 0.9939 + }, + { + "start": 42195.66, + "end": 42196.76, + "probability": 0.6652 + }, + { + "start": 42196.8, + "end": 42199.7, + "probability": 0.9839 + }, + { + "start": 42200.92, + "end": 42203.98, + "probability": 0.8515 + }, + { + "start": 42204.82, + "end": 42207.06, + "probability": 0.891 + }, + { + "start": 42207.68, + "end": 42210.14, + "probability": 0.9598 + }, + { + "start": 42211.02, + "end": 42211.46, + "probability": 0.3967 + }, + { + "start": 42211.68, + "end": 42214.24, + "probability": 0.9976 + }, + { + "start": 42214.88, + "end": 42216.18, + "probability": 0.8027 + }, + { + "start": 42216.84, + "end": 42217.41, + "probability": 0.6178 + }, + { + "start": 42217.74, + "end": 42217.96, + "probability": 0.5934 + }, + { + "start": 42218.06, + "end": 42218.82, + "probability": 0.5745 + }, + { + "start": 42219.14, + "end": 42219.78, + "probability": 0.9692 + }, + { + "start": 42220.28, + "end": 42224.6, + "probability": 0.971 + }, + { + "start": 42224.74, + "end": 42226.3, + "probability": 0.7985 + }, + { + "start": 42227.6, + "end": 42229.78, + "probability": 0.9474 + }, + { + "start": 42230.68, + "end": 42233.22, + "probability": 0.6883 + }, + { + "start": 42233.22, + "end": 42237.84, + "probability": 0.8721 + }, + { + "start": 42240.14, + "end": 42241.04, + "probability": 0.4841 + }, + { + "start": 42241.78, + "end": 42244.3, + "probability": 0.9867 + }, + { + "start": 42245.24, + "end": 42245.78, + "probability": 0.5437 + }, + { + "start": 42246.08, + "end": 42246.84, + "probability": 0.9694 + }, + { + "start": 42247.24, + "end": 42249.36, + "probability": 0.9941 + }, + { + "start": 42249.96, + "end": 42251.97, + "probability": 0.9406 + }, + { + "start": 42252.98, + "end": 42256.0, + "probability": 0.9446 + }, + { + "start": 42256.7, + "end": 42257.92, + "probability": 0.7676 + }, + { + "start": 42259.68, + "end": 42264.58, + "probability": 0.5779 + }, + { + "start": 42265.18, + "end": 42265.82, + "probability": 0.6347 + }, + { + "start": 42265.94, + "end": 42267.42, + "probability": 0.9436 + }, + { + "start": 42268.44, + "end": 42271.62, + "probability": 0.9827 + }, + { + "start": 42271.62, + "end": 42274.06, + "probability": 0.8481 + }, + { + "start": 42274.6, + "end": 42275.78, + "probability": 0.9886 + }, + { + "start": 42276.91, + "end": 42279.14, + "probability": 0.8013 + }, + { + "start": 42279.74, + "end": 42281.4, + "probability": 0.6742 + }, + { + "start": 42282.24, + "end": 42285.0, + "probability": 0.9965 + }, + { + "start": 42285.54, + "end": 42288.98, + "probability": 0.7351 + }, + { + "start": 42289.56, + "end": 42291.36, + "probability": 0.8746 + }, + { + "start": 42291.96, + "end": 42293.82, + "probability": 0.7374 + }, + { + "start": 42294.1, + "end": 42295.62, + "probability": 0.9575 + }, + { + "start": 42296.06, + "end": 42298.22, + "probability": 0.8123 + }, + { + "start": 42298.68, + "end": 42299.72, + "probability": 0.9578 + }, + { + "start": 42300.34, + "end": 42302.06, + "probability": 0.6383 + }, + { + "start": 42302.18, + "end": 42303.06, + "probability": 0.9536 + }, + { + "start": 42303.64, + "end": 42305.56, + "probability": 0.9868 + }, + { + "start": 42305.98, + "end": 42307.36, + "probability": 0.996 + }, + { + "start": 42308.4, + "end": 42309.48, + "probability": 0.9487 + }, + { + "start": 42310.14, + "end": 42313.4, + "probability": 0.9204 + }, + { + "start": 42314.72, + "end": 42316.86, + "probability": 0.9814 + }, + { + "start": 42317.18, + "end": 42319.5, + "probability": 0.9988 + }, + { + "start": 42319.56, + "end": 42319.82, + "probability": 0.7068 + }, + { + "start": 42320.1, + "end": 42322.18, + "probability": 0.6089 + }, + { + "start": 42322.28, + "end": 42323.46, + "probability": 0.6794 + }, + { + "start": 42324.72, + "end": 42325.38, + "probability": 0.7578 + }, + { + "start": 42326.84, + "end": 42328.12, + "probability": 0.4357 + }, + { + "start": 42330.5, + "end": 42330.8, + "probability": 0.5508 + }, + { + "start": 42336.48, + "end": 42339.64, + "probability": 0.31 + }, + { + "start": 42339.72, + "end": 42340.52, + "probability": 0.9612 + }, + { + "start": 42341.28, + "end": 42343.56, + "probability": 0.9863 + }, + { + "start": 42344.5, + "end": 42350.08, + "probability": 0.7135 + }, + { + "start": 42350.46, + "end": 42350.96, + "probability": 0.1399 + }, + { + "start": 42351.32, + "end": 42352.12, + "probability": 0.1896 + }, + { + "start": 42352.12, + "end": 42354.48, + "probability": 0.4269 + }, + { + "start": 42354.48, + "end": 42355.66, + "probability": 0.8843 + }, + { + "start": 42355.8, + "end": 42356.3, + "probability": 0.2708 + }, + { + "start": 42356.4, + "end": 42359.04, + "probability": 0.745 + }, + { + "start": 42359.56, + "end": 42361.92, + "probability": 0.754 + }, + { + "start": 42362.56, + "end": 42364.54, + "probability": 0.7499 + }, + { + "start": 42364.62, + "end": 42366.16, + "probability": 0.7968 + }, + { + "start": 42367.32, + "end": 42373.4, + "probability": 0.7456 + }, + { + "start": 42374.46, + "end": 42377.9, + "probability": 0.9654 + }, + { + "start": 42378.48, + "end": 42379.8, + "probability": 0.9963 + }, + { + "start": 42379.88, + "end": 42381.88, + "probability": 0.8682 + }, + { + "start": 42382.54, + "end": 42383.12, + "probability": 0.8594 + }, + { + "start": 42383.16, + "end": 42385.4, + "probability": 0.8161 + }, + { + "start": 42385.68, + "end": 42387.64, + "probability": 0.7718 + }, + { + "start": 42387.96, + "end": 42390.74, + "probability": 0.9881 + }, + { + "start": 42390.98, + "end": 42393.42, + "probability": 0.8784 + }, + { + "start": 42393.96, + "end": 42394.52, + "probability": 0.9023 + }, + { + "start": 42395.04, + "end": 42396.25, + "probability": 0.8761 + }, + { + "start": 42396.68, + "end": 42399.8, + "probability": 0.9956 + }, + { + "start": 42400.0, + "end": 42400.7, + "probability": 0.9762 + }, + { + "start": 42402.22, + "end": 42404.26, + "probability": 0.9762 + }, + { + "start": 42405.3, + "end": 42407.28, + "probability": 0.9039 + }, + { + "start": 42408.0, + "end": 42409.34, + "probability": 0.9962 + }, + { + "start": 42409.64, + "end": 42410.5, + "probability": 0.9191 + }, + { + "start": 42410.56, + "end": 42411.6, + "probability": 0.9514 + }, + { + "start": 42412.7, + "end": 42413.48, + "probability": 0.8548 + }, + { + "start": 42414.02, + "end": 42417.69, + "probability": 0.6922 + }, + { + "start": 42418.6, + "end": 42418.96, + "probability": 0.4847 + }, + { + "start": 42419.06, + "end": 42420.16, + "probability": 0.5648 + }, + { + "start": 42420.28, + "end": 42422.38, + "probability": 0.9581 + }, + { + "start": 42423.18, + "end": 42425.32, + "probability": 0.8037 + }, + { + "start": 42426.06, + "end": 42427.8, + "probability": 0.9692 + }, + { + "start": 42431.76, + "end": 42432.36, + "probability": 0.3954 + }, + { + "start": 42432.92, + "end": 42434.2, + "probability": 0.8001 + }, + { + "start": 42434.26, + "end": 42434.3, + "probability": 0.0488 + }, + { + "start": 42434.3, + "end": 42437.26, + "probability": 0.8202 + }, + { + "start": 42438.18, + "end": 42441.16, + "probability": 0.6806 + }, + { + "start": 42441.88, + "end": 42444.22, + "probability": 0.7315 + }, + { + "start": 42444.84, + "end": 42449.5, + "probability": 0.7501 + }, + { + "start": 42450.32, + "end": 42451.78, + "probability": 0.9009 + }, + { + "start": 42452.4, + "end": 42453.3, + "probability": 0.8956 + }, + { + "start": 42453.9, + "end": 42457.76, + "probability": 0.9875 + }, + { + "start": 42458.2, + "end": 42459.31, + "probability": 0.9897 + }, + { + "start": 42459.72, + "end": 42461.14, + "probability": 0.9827 + }, + { + "start": 42461.46, + "end": 42462.12, + "probability": 0.8403 + }, + { + "start": 42462.24, + "end": 42462.7, + "probability": 0.8534 + }, + { + "start": 42463.7, + "end": 42464.76, + "probability": 0.9888 + }, + { + "start": 42465.52, + "end": 42469.92, + "probability": 0.9854 + }, + { + "start": 42470.32, + "end": 42471.58, + "probability": 0.9099 + }, + { + "start": 42471.64, + "end": 42472.6, + "probability": 0.7181 + }, + { + "start": 42473.04, + "end": 42475.16, + "probability": 0.9404 + }, + { + "start": 42475.34, + "end": 42479.78, + "probability": 0.6705 + }, + { + "start": 42480.74, + "end": 42486.36, + "probability": 0.9565 + }, + { + "start": 42486.48, + "end": 42486.7, + "probability": 0.3703 + }, + { + "start": 42486.74, + "end": 42486.94, + "probability": 0.8185 + }, + { + "start": 42486.94, + "end": 42488.12, + "probability": 0.9315 + }, + { + "start": 42489.22, + "end": 42489.3, + "probability": 0.3872 + }, + { + "start": 42489.4, + "end": 42491.08, + "probability": 0.4471 + }, + { + "start": 42491.18, + "end": 42492.86, + "probability": 0.6506 + }, + { + "start": 42494.26, + "end": 42497.54, + "probability": 0.9969 + }, + { + "start": 42498.82, + "end": 42501.06, + "probability": 0.9658 + }, + { + "start": 42502.0, + "end": 42504.4, + "probability": 0.9791 + }, + { + "start": 42505.16, + "end": 42506.6, + "probability": 0.9871 + }, + { + "start": 42507.1, + "end": 42510.2, + "probability": 0.5674 + }, + { + "start": 42510.52, + "end": 42510.82, + "probability": 0.1952 + }, + { + "start": 42512.02, + "end": 42513.1, + "probability": 0.9899 + }, + { + "start": 42514.12, + "end": 42516.3, + "probability": 0.9785 + }, + { + "start": 42516.8, + "end": 42519.12, + "probability": 0.7958 + }, + { + "start": 42521.62, + "end": 42523.7, + "probability": 0.5197 + }, + { + "start": 42524.52, + "end": 42526.5, + "probability": 0.986 + }, + { + "start": 42527.2, + "end": 42528.86, + "probability": 0.9835 + }, + { + "start": 42529.74, + "end": 42530.74, + "probability": 0.467 + }, + { + "start": 42531.24, + "end": 42532.33, + "probability": 0.9733 + }, + { + "start": 42532.9, + "end": 42534.12, + "probability": 0.8826 + }, + { + "start": 42535.34, + "end": 42540.94, + "probability": 0.9147 + }, + { + "start": 42544.98, + "end": 42547.7, + "probability": 0.4899 + }, + { + "start": 42550.84, + "end": 42556.28, + "probability": 0.9983 + }, + { + "start": 42556.74, + "end": 42557.32, + "probability": 0.9479 + }, + { + "start": 42558.34, + "end": 42561.92, + "probability": 0.9692 + }, + { + "start": 42562.58, + "end": 42563.08, + "probability": 0.5223 + }, + { + "start": 42563.44, + "end": 42564.18, + "probability": 0.9963 + }, + { + "start": 42564.24, + "end": 42568.22, + "probability": 0.9976 + }, + { + "start": 42569.14, + "end": 42570.46, + "probability": 0.645 + }, + { + "start": 42572.02, + "end": 42574.86, + "probability": 0.3852 + }, + { + "start": 42579.36, + "end": 42580.32, + "probability": 0.3584 + }, + { + "start": 42580.88, + "end": 42583.02, + "probability": 0.376 + }, + { + "start": 42583.6, + "end": 42584.92, + "probability": 0.2875 + }, + { + "start": 42585.04, + "end": 42586.18, + "probability": 0.6109 + }, + { + "start": 42587.86, + "end": 42588.7, + "probability": 0.9276 + }, + { + "start": 42588.82, + "end": 42590.0, + "probability": 0.7146 + }, + { + "start": 42591.54, + "end": 42592.04, + "probability": 0.7949 + }, + { + "start": 42593.52, + "end": 42594.04, + "probability": 0.8655 + }, + { + "start": 42594.38, + "end": 42595.98, + "probability": 0.7319 + }, + { + "start": 42597.34, + "end": 42598.02, + "probability": 0.9839 + }, + { + "start": 42598.34, + "end": 42599.26, + "probability": 0.8213 + }, + { + "start": 42599.48, + "end": 42602.44, + "probability": 0.944 + }, + { + "start": 42602.64, + "end": 42605.36, + "probability": 0.9852 + }, + { + "start": 42606.44, + "end": 42607.56, + "probability": 0.8425 + }, + { + "start": 42608.88, + "end": 42611.64, + "probability": 0.9878 + }, + { + "start": 42612.4, + "end": 42614.08, + "probability": 0.6764 + }, + { + "start": 42614.84, + "end": 42620.42, + "probability": 0.915 + }, + { + "start": 42621.16, + "end": 42626.1, + "probability": 0.8896 + }, + { + "start": 42626.18, + "end": 42627.12, + "probability": 0.8687 + }, + { + "start": 42628.14, + "end": 42628.7, + "probability": 0.7001 + }, + { + "start": 42628.78, + "end": 42629.4, + "probability": 0.8506 + }, + { + "start": 42629.5, + "end": 42629.93, + "probability": 0.9287 + }, + { + "start": 42630.08, + "end": 42631.14, + "probability": 0.7883 + }, + { + "start": 42631.62, + "end": 42635.1, + "probability": 0.9846 + }, + { + "start": 42635.68, + "end": 42636.42, + "probability": 0.939 + }, + { + "start": 42636.98, + "end": 42638.6, + "probability": 0.9896 + }, + { + "start": 42639.52, + "end": 42641.82, + "probability": 0.9059 + }, + { + "start": 42642.36, + "end": 42643.84, + "probability": 0.998 + }, + { + "start": 42644.68, + "end": 42647.46, + "probability": 0.9884 + }, + { + "start": 42648.36, + "end": 42649.72, + "probability": 0.943 + }, + { + "start": 42650.72, + "end": 42652.68, + "probability": 0.987 + }, + { + "start": 42654.02, + "end": 42655.2, + "probability": 0.999 + }, + { + "start": 42656.56, + "end": 42658.14, + "probability": 0.8248 + }, + { + "start": 42659.08, + "end": 42661.46, + "probability": 0.7464 + }, + { + "start": 42661.62, + "end": 42662.9, + "probability": 0.9164 + }, + { + "start": 42662.94, + "end": 42663.98, + "probability": 0.8595 + }, + { + "start": 42664.32, + "end": 42665.0, + "probability": 0.4225 + }, + { + "start": 42665.16, + "end": 42665.68, + "probability": 0.889 + }, + { + "start": 42666.26, + "end": 42668.98, + "probability": 0.9334 + }, + { + "start": 42669.9, + "end": 42670.75, + "probability": 0.9375 + }, + { + "start": 42671.52, + "end": 42676.02, + "probability": 0.9872 + }, + { + "start": 42676.02, + "end": 42678.56, + "probability": 0.9801 + }, + { + "start": 42679.02, + "end": 42679.68, + "probability": 0.9344 + }, + { + "start": 42680.5, + "end": 42681.32, + "probability": 0.9565 + }, + { + "start": 42681.48, + "end": 42682.12, + "probability": 0.8506 + }, + { + "start": 42682.34, + "end": 42683.14, + "probability": 0.8747 + }, + { + "start": 42684.12, + "end": 42687.22, + "probability": 0.7016 + }, + { + "start": 42687.92, + "end": 42689.36, + "probability": 0.5454 + }, + { + "start": 42690.86, + "end": 42692.38, + "probability": 0.9282 + }, + { + "start": 42693.0, + "end": 42695.34, + "probability": 0.9961 + }, + { + "start": 42696.66, + "end": 42697.38, + "probability": 0.3483 + }, + { + "start": 42697.7, + "end": 42698.08, + "probability": 0.7275 + }, + { + "start": 42698.14, + "end": 42700.58, + "probability": 0.8729 + }, + { + "start": 42700.72, + "end": 42702.24, + "probability": 0.8556 + }, + { + "start": 42702.76, + "end": 42703.38, + "probability": 0.7297 + }, + { + "start": 42703.52, + "end": 42704.92, + "probability": 0.5554 + }, + { + "start": 42706.44, + "end": 42708.24, + "probability": 0.9361 + }, + { + "start": 42708.24, + "end": 42710.92, + "probability": 0.8993 + }, + { + "start": 42711.86, + "end": 42714.12, + "probability": 0.9075 + }, + { + "start": 42715.38, + "end": 42717.38, + "probability": 0.9932 + }, + { + "start": 42718.22, + "end": 42720.66, + "probability": 0.7432 + }, + { + "start": 42722.51, + "end": 42723.24, + "probability": 0.9951 + }, + { + "start": 42723.44, + "end": 42727.06, + "probability": 0.7043 + }, + { + "start": 42727.74, + "end": 42728.68, + "probability": 0.106 + }, + { + "start": 42728.72, + "end": 42729.24, + "probability": 0.0979 + }, + { + "start": 42729.38, + "end": 42729.4, + "probability": 0.345 + }, + { + "start": 42729.4, + "end": 42729.42, + "probability": 0.2054 + }, + { + "start": 42729.42, + "end": 42730.0, + "probability": 0.6476 + }, + { + "start": 42730.16, + "end": 42732.22, + "probability": 0.8606 + }, + { + "start": 42733.4, + "end": 42736.82, + "probability": 0.9519 + }, + { + "start": 42737.68, + "end": 42740.6, + "probability": 0.9934 + }, + { + "start": 42741.3, + "end": 42743.02, + "probability": 0.7477 + }, + { + "start": 42743.24, + "end": 42743.63, + "probability": 0.5165 + }, + { + "start": 42743.8, + "end": 42745.0, + "probability": 0.8022 + }, + { + "start": 42745.06, + "end": 42749.06, + "probability": 0.7061 + }, + { + "start": 42749.06, + "end": 42749.82, + "probability": 0.3853 + }, + { + "start": 42750.14, + "end": 42751.02, + "probability": 0.4132 + }, + { + "start": 42751.58, + "end": 42752.44, + "probability": 0.9571 + }, + { + "start": 42753.38, + "end": 42753.78, + "probability": 0.836 + }, + { + "start": 42755.18, + "end": 42756.71, + "probability": 0.9961 + }, + { + "start": 42758.22, + "end": 42763.14, + "probability": 0.9856 + }, + { + "start": 42764.14, + "end": 42766.26, + "probability": 0.8933 + }, + { + "start": 42767.28, + "end": 42769.14, + "probability": 0.9852 + }, + { + "start": 42769.86, + "end": 42771.34, + "probability": 0.7316 + }, + { + "start": 42771.44, + "end": 42773.66, + "probability": 0.993 + }, + { + "start": 42774.5, + "end": 42775.38, + "probability": 0.9837 + }, + { + "start": 42776.32, + "end": 42778.12, + "probability": 0.7674 + }, + { + "start": 42778.64, + "end": 42781.26, + "probability": 0.7326 + }, + { + "start": 42781.5, + "end": 42782.8, + "probability": 0.7061 + }, + { + "start": 42782.82, + "end": 42783.56, + "probability": 0.8627 + }, + { + "start": 42783.7, + "end": 42784.84, + "probability": 0.9004 + }, + { + "start": 42784.9, + "end": 42785.44, + "probability": 0.6525 + }, + { + "start": 42785.6, + "end": 42790.22, + "probability": 0.9591 + }, + { + "start": 42790.92, + "end": 42792.78, + "probability": 0.9857 + }, + { + "start": 42793.68, + "end": 42797.54, + "probability": 0.6504 + }, + { + "start": 42797.64, + "end": 42800.36, + "probability": 0.9324 + }, + { + "start": 42801.94, + "end": 42802.94, + "probability": 0.8291 + }, + { + "start": 42803.04, + "end": 42804.88, + "probability": 0.7406 + }, + { + "start": 42806.92, + "end": 42808.64, + "probability": 0.681 + }, + { + "start": 42809.3, + "end": 42811.1, + "probability": 0.9575 + }, + { + "start": 42813.6, + "end": 42814.4, + "probability": 0.7382 + }, + { + "start": 42814.5, + "end": 42815.54, + "probability": 0.9722 + }, + { + "start": 42815.6, + "end": 42816.44, + "probability": 0.989 + }, + { + "start": 42816.82, + "end": 42820.36, + "probability": 0.8009 + }, + { + "start": 42820.72, + "end": 42822.4, + "probability": 0.9968 + }, + { + "start": 42822.4, + "end": 42824.52, + "probability": 0.7499 + }, + { + "start": 42825.26, + "end": 42826.57, + "probability": 0.9969 + }, + { + "start": 42828.36, + "end": 42829.32, + "probability": 0.6478 + }, + { + "start": 42830.6, + "end": 42831.47, + "probability": 0.8865 + }, + { + "start": 42833.12, + "end": 42834.14, + "probability": 0.8786 + }, + { + "start": 42835.0, + "end": 42835.7, + "probability": 0.7221 + }, + { + "start": 42836.84, + "end": 42838.2, + "probability": 0.6683 + }, + { + "start": 42838.5, + "end": 42842.16, + "probability": 0.137 + }, + { + "start": 42845.28, + "end": 42847.16, + "probability": 0.7562 + }, + { + "start": 42847.6, + "end": 42850.2, + "probability": 0.9718 + }, + { + "start": 42850.3, + "end": 42850.95, + "probability": 0.9967 + }, + { + "start": 42851.78, + "end": 42853.34, + "probability": 0.9712 + }, + { + "start": 42854.06, + "end": 42855.91, + "probability": 0.9834 + }, + { + "start": 42856.48, + "end": 42860.74, + "probability": 0.97 + }, + { + "start": 42861.78, + "end": 42864.12, + "probability": 0.9927 + }, + { + "start": 42864.12, + "end": 42865.14, + "probability": 0.9355 + }, + { + "start": 42865.5, + "end": 42866.66, + "probability": 0.9733 + }, + { + "start": 42867.46, + "end": 42868.66, + "probability": 0.9803 + }, + { + "start": 42869.86, + "end": 42871.6, + "probability": 0.8976 + }, + { + "start": 42873.62, + "end": 42876.84, + "probability": 0.7082 + }, + { + "start": 42879.84, + "end": 42883.32, + "probability": 0.9986 + }, + { + "start": 42883.66, + "end": 42883.96, + "probability": 0.7324 + }, + { + "start": 42884.04, + "end": 42888.82, + "probability": 0.7839 + }, + { + "start": 42889.74, + "end": 42890.86, + "probability": 0.9742 + }, + { + "start": 42892.4, + "end": 42894.34, + "probability": 0.9959 + }, + { + "start": 42894.34, + "end": 42898.56, + "probability": 0.7582 + }, + { + "start": 42899.2, + "end": 42900.46, + "probability": 0.8417 + }, + { + "start": 42900.98, + "end": 42903.32, + "probability": 0.9958 + }, + { + "start": 42903.56, + "end": 42904.24, + "probability": 0.8777 + }, + { + "start": 42904.32, + "end": 42905.22, + "probability": 0.9922 + }, + { + "start": 42906.18, + "end": 42906.68, + "probability": 0.7131 + }, + { + "start": 42908.24, + "end": 42908.98, + "probability": 0.7084 + }, + { + "start": 42912.16, + "end": 42914.96, + "probability": 0.9974 + }, + { + "start": 42916.34, + "end": 42917.52, + "probability": 0.8554 + }, + { + "start": 42918.96, + "end": 42921.4, + "probability": 0.9566 + }, + { + "start": 42921.48, + "end": 42922.67, + "probability": 0.8643 + }, + { + "start": 42923.42, + "end": 42924.14, + "probability": 0.6862 + }, + { + "start": 42924.96, + "end": 42926.94, + "probability": 0.8595 + }, + { + "start": 42927.92, + "end": 42929.42, + "probability": 0.8489 + }, + { + "start": 42929.42, + "end": 42929.52, + "probability": 0.7526 + }, + { + "start": 42929.56, + "end": 42931.36, + "probability": 0.5067 + }, + { + "start": 42931.92, + "end": 42933.1, + "probability": 0.9956 + }, + { + "start": 42933.92, + "end": 42935.14, + "probability": 0.9977 + }, + { + "start": 42935.82, + "end": 42936.32, + "probability": 0.8938 + }, + { + "start": 42938.26, + "end": 42940.28, + "probability": 0.6177 + }, + { + "start": 42941.22, + "end": 42943.04, + "probability": 0.9496 + }, + { + "start": 42943.78, + "end": 42945.42, + "probability": 0.9743 + }, + { + "start": 42945.52, + "end": 42948.97, + "probability": 0.5278 + }, + { + "start": 42949.66, + "end": 42950.4, + "probability": 0.0856 + }, + { + "start": 42950.4, + "end": 42952.44, + "probability": 0.5207 + }, + { + "start": 42952.92, + "end": 42954.3, + "probability": 0.6532 + }, + { + "start": 42955.1, + "end": 42957.96, + "probability": 0.8716 + }, + { + "start": 42958.1, + "end": 42959.0, + "probability": 0.7942 + }, + { + "start": 42959.96, + "end": 42962.16, + "probability": 0.7914 + }, + { + "start": 42962.98, + "end": 42966.84, + "probability": 0.9966 + }, + { + "start": 42967.09, + "end": 42969.66, + "probability": 0.9458 + }, + { + "start": 42970.7, + "end": 42972.1, + "probability": 0.8771 + }, + { + "start": 42972.8, + "end": 42977.06, + "probability": 0.7779 + }, + { + "start": 42977.9, + "end": 42980.02, + "probability": 0.9627 + }, + { + "start": 42980.12, + "end": 42981.22, + "probability": 0.8103 + }, + { + "start": 42981.94, + "end": 42983.62, + "probability": 0.9932 + }, + { + "start": 42983.72, + "end": 42986.98, + "probability": 0.9694 + }, + { + "start": 42986.98, + "end": 42990.08, + "probability": 0.9883 + }, + { + "start": 42991.16, + "end": 42992.5, + "probability": 0.9797 + }, + { + "start": 42993.64, + "end": 42995.34, + "probability": 0.9956 + }, + { + "start": 42997.1, + "end": 43001.98, + "probability": 0.8291 + }, + { + "start": 43003.48, + "end": 43006.08, + "probability": 0.9731 + }, + { + "start": 43006.72, + "end": 43007.64, + "probability": 0.6255 + }, + { + "start": 43008.24, + "end": 43010.6, + "probability": 0.9045 + }, + { + "start": 43011.64, + "end": 43012.98, + "probability": 0.9365 + }, + { + "start": 43013.16, + "end": 43017.56, + "probability": 0.6004 + }, + { + "start": 43017.56, + "end": 43019.3, + "probability": 0.7701 + }, + { + "start": 43020.58, + "end": 43023.7, + "probability": 0.6711 + }, + { + "start": 43024.64, + "end": 43028.04, + "probability": 0.997 + }, + { + "start": 43028.98, + "end": 43030.54, + "probability": 0.9471 + }, + { + "start": 43030.74, + "end": 43031.28, + "probability": 0.7086 + }, + { + "start": 43032.58, + "end": 43033.08, + "probability": 0.4856 + }, + { + "start": 43033.1, + "end": 43035.76, + "probability": 0.974 + }, + { + "start": 43035.9, + "end": 43037.18, + "probability": 0.9321 + }, + { + "start": 43037.92, + "end": 43040.52, + "probability": 0.998 + }, + { + "start": 43040.62, + "end": 43041.02, + "probability": 0.4992 + }, + { + "start": 43041.1, + "end": 43043.34, + "probability": 0.5573 + }, + { + "start": 43044.8, + "end": 43046.3, + "probability": 0.8796 + }, + { + "start": 43047.38, + "end": 43049.65, + "probability": 0.968 + }, + { + "start": 43052.12, + "end": 43053.94, + "probability": 0.9901 + }, + { + "start": 43054.08, + "end": 43054.76, + "probability": 0.9614 + }, + { + "start": 43055.2, + "end": 43057.44, + "probability": 0.9856 + }, + { + "start": 43058.16, + "end": 43059.52, + "probability": 0.9984 + }, + { + "start": 43061.54, + "end": 43064.32, + "probability": 0.9843 + }, + { + "start": 43066.18, + "end": 43069.74, + "probability": 0.9808 + }, + { + "start": 43071.3, + "end": 43074.24, + "probability": 0.5545 + }, + { + "start": 43074.42, + "end": 43075.62, + "probability": 0.5958 + }, + { + "start": 43076.54, + "end": 43077.64, + "probability": 0.7995 + }, + { + "start": 43078.44, + "end": 43079.72, + "probability": 0.9899 + }, + { + "start": 43080.54, + "end": 43082.43, + "probability": 0.983 + }, + { + "start": 43082.68, + "end": 43083.98, + "probability": 0.9781 + }, + { + "start": 43084.44, + "end": 43085.7, + "probability": 0.9771 + }, + { + "start": 43087.5, + "end": 43088.18, + "probability": 0.8861 + }, + { + "start": 43089.04, + "end": 43089.9, + "probability": 0.9602 + }, + { + "start": 43091.1, + "end": 43093.16, + "probability": 0.9884 + }, + { + "start": 43094.3, + "end": 43096.1, + "probability": 0.9661 + }, + { + "start": 43097.88, + "end": 43099.12, + "probability": 0.7194 + }, + { + "start": 43099.62, + "end": 43101.52, + "probability": 0.9963 + }, + { + "start": 43103.58, + "end": 43106.48, + "probability": 0.916 + }, + { + "start": 43107.68, + "end": 43109.84, + "probability": 0.7583 + }, + { + "start": 43111.2, + "end": 43114.1, + "probability": 0.9976 + }, + { + "start": 43114.8, + "end": 43116.0, + "probability": 0.9451 + }, + { + "start": 43117.76, + "end": 43118.74, + "probability": 0.9183 + }, + { + "start": 43119.52, + "end": 43120.48, + "probability": 0.906 + }, + { + "start": 43121.08, + "end": 43121.96, + "probability": 0.4116 + }, + { + "start": 43123.7, + "end": 43129.78, + "probability": 0.9835 + }, + { + "start": 43130.92, + "end": 43133.06, + "probability": 0.9785 + }, + { + "start": 43136.26, + "end": 43140.34, + "probability": 0.9691 + }, + { + "start": 43141.1, + "end": 43143.06, + "probability": 0.9489 + }, + { + "start": 43144.7, + "end": 43148.14, + "probability": 0.9308 + }, + { + "start": 43150.54, + "end": 43151.6, + "probability": 0.9832 + }, + { + "start": 43154.08, + "end": 43156.2, + "probability": 0.9696 + }, + { + "start": 43156.32, + "end": 43157.12, + "probability": 0.5997 + }, + { + "start": 43162.47, + "end": 43167.06, + "probability": 0.4901 + }, + { + "start": 43167.2, + "end": 43169.78, + "probability": 0.3509 + }, + { + "start": 43169.9, + "end": 43171.2, + "probability": 0.6644 + }, + { + "start": 43172.74, + "end": 43174.76, + "probability": 0.552 + }, + { + "start": 43174.84, + "end": 43178.0, + "probability": 0.3407 + }, + { + "start": 43178.7, + "end": 43179.68, + "probability": 0.357 + }, + { + "start": 43180.62, + "end": 43182.42, + "probability": 0.7343 + }, + { + "start": 43182.6, + "end": 43184.36, + "probability": 0.9445 + }, + { + "start": 43188.2, + "end": 43189.94, + "probability": 0.821 + }, + { + "start": 43190.04, + "end": 43191.34, + "probability": 0.7371 + }, + { + "start": 43201.08, + "end": 43202.17, + "probability": 0.8184 + }, + { + "start": 43202.79, + "end": 43206.66, + "probability": 0.8032 + }, + { + "start": 43207.44, + "end": 43210.38, + "probability": 0.9581 + }, + { + "start": 43211.16, + "end": 43213.44, + "probability": 0.793 + }, + { + "start": 43213.62, + "end": 43214.02, + "probability": 0.7878 + }, + { + "start": 43214.38, + "end": 43219.64, + "probability": 0.9727 + }, + { + "start": 43220.3, + "end": 43221.54, + "probability": 0.8582 + }, + { + "start": 43222.46, + "end": 43224.74, + "probability": 0.8452 + }, + { + "start": 43224.74, + "end": 43226.79, + "probability": 0.7612 + }, + { + "start": 43227.9, + "end": 43231.04, + "probability": 0.7527 + }, + { + "start": 43231.88, + "end": 43234.08, + "probability": 0.8914 + }, + { + "start": 43234.68, + "end": 43235.74, + "probability": 0.6452 + }, + { + "start": 43236.26, + "end": 43238.92, + "probability": 0.9907 + }, + { + "start": 43238.92, + "end": 43242.12, + "probability": 0.9978 + }, + { + "start": 43242.94, + "end": 43243.92, + "probability": 0.6494 + }, + { + "start": 43244.12, + "end": 43244.9, + "probability": 0.8063 + }, + { + "start": 43247.06, + "end": 43248.56, + "probability": 0.9202 + }, + { + "start": 43248.72, + "end": 43249.06, + "probability": 0.9736 + }, + { + "start": 43250.08, + "end": 43250.64, + "probability": 0.9275 + }, + { + "start": 43250.92, + "end": 43252.22, + "probability": 0.9107 + }, + { + "start": 43252.26, + "end": 43255.16, + "probability": 0.9507 + }, + { + "start": 43255.64, + "end": 43257.96, + "probability": 0.9897 + }, + { + "start": 43259.66, + "end": 43259.9, + "probability": 0.6035 + }, + { + "start": 43260.02, + "end": 43264.24, + "probability": 0.9631 + }, + { + "start": 43265.56, + "end": 43269.98, + "probability": 0.9901 + }, + { + "start": 43270.36, + "end": 43271.72, + "probability": 0.9868 + }, + { + "start": 43272.78, + "end": 43274.96, + "probability": 0.6558 + }, + { + "start": 43277.2, + "end": 43278.76, + "probability": 0.7482 + }, + { + "start": 43279.28, + "end": 43280.56, + "probability": 0.9937 + }, + { + "start": 43281.72, + "end": 43282.16, + "probability": 0.7044 + }, + { + "start": 43283.06, + "end": 43283.7, + "probability": 0.9895 + }, + { + "start": 43284.54, + "end": 43285.14, + "probability": 0.9857 + }, + { + "start": 43286.74, + "end": 43287.85, + "probability": 0.9698 + }, + { + "start": 43289.16, + "end": 43289.26, + "probability": 0.5759 + }, + { + "start": 43289.32, + "end": 43291.84, + "probability": 0.8848 + }, + { + "start": 43292.84, + "end": 43293.94, + "probability": 0.8727 + }, + { + "start": 43294.6, + "end": 43295.22, + "probability": 0.7921 + }, + { + "start": 43296.1, + "end": 43297.18, + "probability": 0.9574 + }, + { + "start": 43297.82, + "end": 43300.7, + "probability": 0.9268 + }, + { + "start": 43301.16, + "end": 43303.86, + "probability": 0.9401 + }, + { + "start": 43304.4, + "end": 43307.58, + "probability": 0.9979 + }, + { + "start": 43307.58, + "end": 43310.46, + "probability": 0.9942 + }, + { + "start": 43312.26, + "end": 43313.85, + "probability": 0.9148 + }, + { + "start": 43314.4, + "end": 43314.68, + "probability": 0.9849 + }, + { + "start": 43315.02, + "end": 43315.28, + "probability": 0.7244 + }, + { + "start": 43315.7, + "end": 43317.48, + "probability": 0.9858 + }, + { + "start": 43318.06, + "end": 43320.06, + "probability": 0.9834 + }, + { + "start": 43320.54, + "end": 43322.35, + "probability": 0.9648 + }, + { + "start": 43323.08, + "end": 43324.0, + "probability": 0.8608 + }, + { + "start": 43324.16, + "end": 43324.59, + "probability": 0.9456 + }, + { + "start": 43324.94, + "end": 43326.28, + "probability": 0.9535 + }, + { + "start": 43327.3, + "end": 43328.94, + "probability": 0.9015 + }, + { + "start": 43329.68, + "end": 43330.78, + "probability": 0.9838 + }, + { + "start": 43330.82, + "end": 43333.92, + "probability": 0.9451 + }, + { + "start": 43335.14, + "end": 43336.48, + "probability": 0.9102 + }, + { + "start": 43337.82, + "end": 43339.14, + "probability": 0.7634 + }, + { + "start": 43340.16, + "end": 43341.55, + "probability": 0.9825 + }, + { + "start": 43343.3, + "end": 43343.46, + "probability": 0.5579 + }, + { + "start": 43344.18, + "end": 43347.08, + "probability": 0.8648 + }, + { + "start": 43350.58, + "end": 43351.78, + "probability": 0.9958 + }, + { + "start": 43352.3, + "end": 43357.36, + "probability": 0.7582 + }, + { + "start": 43358.72, + "end": 43359.98, + "probability": 0.9192 + }, + { + "start": 43361.34, + "end": 43364.22, + "probability": 0.7403 + }, + { + "start": 43364.74, + "end": 43366.2, + "probability": 0.7454 + }, + { + "start": 43368.68, + "end": 43372.02, + "probability": 0.901 + }, + { + "start": 43372.16, + "end": 43372.48, + "probability": 0.772 + }, + { + "start": 43373.76, + "end": 43376.14, + "probability": 0.9769 + }, + { + "start": 43376.88, + "end": 43378.56, + "probability": 0.9408 + }, + { + "start": 43380.7, + "end": 43382.22, + "probability": 0.7721 + }, + { + "start": 43382.41, + "end": 43384.44, + "probability": 0.993 + }, + { + "start": 43384.54, + "end": 43384.84, + "probability": 0.528 + }, + { + "start": 43386.78, + "end": 43387.04, + "probability": 0.0186 + }, + { + "start": 43387.04, + "end": 43388.1, + "probability": 0.66 + }, + { + "start": 43388.32, + "end": 43390.98, + "probability": 0.7764 + }, + { + "start": 43391.0, + "end": 43395.0, + "probability": 0.3546 + }, + { + "start": 43396.68, + "end": 43399.44, + "probability": 0.8304 + }, + { + "start": 43401.0, + "end": 43402.56, + "probability": 0.8134 + }, + { + "start": 43402.56, + "end": 43408.02, + "probability": 0.9734 + }, + { + "start": 43408.36, + "end": 43409.12, + "probability": 0.6873 + }, + { + "start": 43410.32, + "end": 43413.9, + "probability": 0.8418 + }, + { + "start": 43414.7, + "end": 43415.8, + "probability": 0.7255 + }, + { + "start": 43417.16, + "end": 43418.82, + "probability": 0.8143 + }, + { + "start": 43419.84, + "end": 43423.76, + "probability": 0.9159 + }, + { + "start": 43425.3, + "end": 43426.82, + "probability": 0.9478 + }, + { + "start": 43427.3, + "end": 43428.62, + "probability": 0.9016 + }, + { + "start": 43429.46, + "end": 43430.26, + "probability": 0.781 + }, + { + "start": 43430.84, + "end": 43431.52, + "probability": 0.7637 + }, + { + "start": 43432.08, + "end": 43434.2, + "probability": 0.9767 + }, + { + "start": 43435.4, + "end": 43436.42, + "probability": 0.9907 + }, + { + "start": 43437.22, + "end": 43438.16, + "probability": 0.7525 + }, + { + "start": 43445.76, + "end": 43445.76, + "probability": 0.801 + }, + { + "start": 43446.48, + "end": 43450.68, + "probability": 0.9251 + }, + { + "start": 43452.69, + "end": 43460.38, + "probability": 0.9792 + }, + { + "start": 43461.14, + "end": 43462.0, + "probability": 0.9683 + }, + { + "start": 43463.6, + "end": 43464.58, + "probability": 0.9246 + }, + { + "start": 43464.68, + "end": 43468.98, + "probability": 0.9609 + }, + { + "start": 43470.16, + "end": 43474.0, + "probability": 0.979 + }, + { + "start": 43475.28, + "end": 43478.16, + "probability": 0.73 + }, + { + "start": 43478.7, + "end": 43483.76, + "probability": 0.7109 + }, + { + "start": 43484.03, + "end": 43487.52, + "probability": 0.5566 + }, + { + "start": 43488.28, + "end": 43491.78, + "probability": 0.9291 + }, + { + "start": 43492.3, + "end": 43494.3, + "probability": 0.9904 + }, + { + "start": 43495.06, + "end": 43497.14, + "probability": 0.9817 + }, + { + "start": 43497.22, + "end": 43497.84, + "probability": 0.7504 + }, + { + "start": 43497.88, + "end": 43498.54, + "probability": 0.9098 + }, + { + "start": 43499.12, + "end": 43500.28, + "probability": 0.8999 + }, + { + "start": 43500.52, + "end": 43501.7, + "probability": 0.9966 + }, + { + "start": 43503.58, + "end": 43504.48, + "probability": 0.9875 + }, + { + "start": 43505.26, + "end": 43505.94, + "probability": 0.942 + }, + { + "start": 43507.74, + "end": 43508.84, + "probability": 0.9801 + }, + { + "start": 43509.7, + "end": 43510.9, + "probability": 0.9769 + }, + { + "start": 43512.04, + "end": 43514.96, + "probability": 0.9251 + }, + { + "start": 43515.16, + "end": 43516.83, + "probability": 0.9917 + }, + { + "start": 43517.66, + "end": 43519.42, + "probability": 0.9438 + }, + { + "start": 43520.3, + "end": 43521.68, + "probability": 0.9958 + }, + { + "start": 43521.76, + "end": 43524.56, + "probability": 0.991 + }, + { + "start": 43526.78, + "end": 43527.7, + "probability": 0.7909 + }, + { + "start": 43527.74, + "end": 43530.04, + "probability": 0.7935 + }, + { + "start": 43531.1, + "end": 43532.8, + "probability": 0.8936 + }, + { + "start": 43533.46, + "end": 43533.7, + "probability": 0.5791 + }, + { + "start": 43534.74, + "end": 43536.58, + "probability": 0.7645 + }, + { + "start": 43537.68, + "end": 43541.66, + "probability": 0.999 + }, + { + "start": 43541.66, + "end": 43544.62, + "probability": 0.9937 + }, + { + "start": 43545.56, + "end": 43546.42, + "probability": 0.7159 + }, + { + "start": 43547.82, + "end": 43548.46, + "probability": 0.9437 + }, + { + "start": 43549.02, + "end": 43550.49, + "probability": 0.6864 + }, + { + "start": 43551.36, + "end": 43551.99, + "probability": 0.9607 + }, + { + "start": 43552.78, + "end": 43553.9, + "probability": 0.9371 + }, + { + "start": 43555.02, + "end": 43557.34, + "probability": 0.9966 + }, + { + "start": 43558.18, + "end": 43560.06, + "probability": 0.978 + }, + { + "start": 43560.48, + "end": 43564.4, + "probability": 0.9884 + }, + { + "start": 43565.22, + "end": 43566.72, + "probability": 0.8677 + }, + { + "start": 43568.14, + "end": 43570.1, + "probability": 0.7896 + }, + { + "start": 43571.16, + "end": 43572.42, + "probability": 0.9727 + }, + { + "start": 43574.18, + "end": 43576.74, + "probability": 0.9771 + }, + { + "start": 43577.34, + "end": 43577.52, + "probability": 0.8921 + }, + { + "start": 43578.62, + "end": 43579.76, + "probability": 0.6902 + }, + { + "start": 43580.48, + "end": 43581.8, + "probability": 0.7814 + }, + { + "start": 43583.0, + "end": 43583.9, + "probability": 0.9612 + }, + { + "start": 43584.94, + "end": 43587.94, + "probability": 0.9814 + }, + { + "start": 43588.02, + "end": 43588.6, + "probability": 0.5743 + }, + { + "start": 43589.68, + "end": 43590.86, + "probability": 0.9596 + }, + { + "start": 43592.02, + "end": 43592.92, + "probability": 0.9287 + }, + { + "start": 43594.0, + "end": 43595.02, + "probability": 0.8966 + }, + { + "start": 43596.98, + "end": 43601.78, + "probability": 0.985 + }, + { + "start": 43602.6, + "end": 43604.42, + "probability": 0.9955 + }, + { + "start": 43605.36, + "end": 43606.02, + "probability": 0.7574 + }, + { + "start": 43606.42, + "end": 43612.5, + "probability": 0.9176 + }, + { + "start": 43613.2, + "end": 43615.4, + "probability": 0.9749 + }, + { + "start": 43616.88, + "end": 43620.3, + "probability": 0.9759 + }, + { + "start": 43621.48, + "end": 43622.28, + "probability": 0.9736 + }, + { + "start": 43623.26, + "end": 43626.44, + "probability": 0.9985 + }, + { + "start": 43627.36, + "end": 43630.49, + "probability": 0.7832 + }, + { + "start": 43632.78, + "end": 43633.38, + "probability": 0.9562 + }, + { + "start": 43634.38, + "end": 43636.84, + "probability": 0.9966 + }, + { + "start": 43636.9, + "end": 43640.14, + "probability": 0.988 + }, + { + "start": 43640.32, + "end": 43642.84, + "probability": 0.9985 + }, + { + "start": 43644.2, + "end": 43645.92, + "probability": 0.9484 + }, + { + "start": 43647.24, + "end": 43648.67, + "probability": 0.8891 + }, + { + "start": 43649.74, + "end": 43650.56, + "probability": 0.6942 + }, + { + "start": 43651.22, + "end": 43652.29, + "probability": 0.9644 + }, + { + "start": 43653.76, + "end": 43655.62, + "probability": 0.8469 + }, + { + "start": 43657.06, + "end": 43658.98, + "probability": 0.9663 + }, + { + "start": 43659.84, + "end": 43662.48, + "probability": 0.9785 + }, + { + "start": 43663.38, + "end": 43666.46, + "probability": 0.8777 + }, + { + "start": 43667.08, + "end": 43668.5, + "probability": 0.917 + }, + { + "start": 43668.94, + "end": 43671.94, + "probability": 0.9466 + }, + { + "start": 43674.0, + "end": 43674.54, + "probability": 0.9018 + }, + { + "start": 43675.74, + "end": 43676.36, + "probability": 0.944 + }, + { + "start": 43677.62, + "end": 43678.94, + "probability": 0.7853 + }, + { + "start": 43679.86, + "end": 43680.58, + "probability": 0.9859 + }, + { + "start": 43681.1, + "end": 43681.72, + "probability": 0.9918 + }, + { + "start": 43683.54, + "end": 43684.54, + "probability": 0.9971 + }, + { + "start": 43686.34, + "end": 43695.0, + "probability": 0.7484 + }, + { + "start": 43696.6, + "end": 43697.28, + "probability": 0.9215 + }, + { + "start": 43697.9, + "end": 43699.0, + "probability": 0.9329 + }, + { + "start": 43700.74, + "end": 43702.08, + "probability": 0.9902 + }, + { + "start": 43702.14, + "end": 43704.88, + "probability": 0.9677 + }, + { + "start": 43706.02, + "end": 43711.66, + "probability": 0.9964 + }, + { + "start": 43712.66, + "end": 43713.94, + "probability": 0.9966 + }, + { + "start": 43715.06, + "end": 43716.9, + "probability": 0.9414 + }, + { + "start": 43717.7, + "end": 43721.5, + "probability": 0.9554 + }, + { + "start": 43722.64, + "end": 43727.62, + "probability": 0.9929 + }, + { + "start": 43730.42, + "end": 43731.21, + "probability": 0.9551 + }, + { + "start": 43732.58, + "end": 43733.98, + "probability": 0.9614 + }, + { + "start": 43735.0, + "end": 43736.92, + "probability": 0.9662 + }, + { + "start": 43737.92, + "end": 43739.96, + "probability": 0.9454 + }, + { + "start": 43740.9, + "end": 43742.74, + "probability": 0.8601 + }, + { + "start": 43746.72, + "end": 43749.41, + "probability": 0.9727 + }, + { + "start": 43750.58, + "end": 43751.36, + "probability": 0.89 + }, + { + "start": 43752.86, + "end": 43755.64, + "probability": 0.705 + }, + { + "start": 43757.1, + "end": 43758.12, + "probability": 0.9845 + }, + { + "start": 43758.86, + "end": 43762.76, + "probability": 0.8409 + }, + { + "start": 43763.52, + "end": 43766.54, + "probability": 0.9867 + }, + { + "start": 43767.56, + "end": 43768.4, + "probability": 0.9679 + }, + { + "start": 43769.52, + "end": 43771.84, + "probability": 0.9878 + }, + { + "start": 43773.7, + "end": 43777.38, + "probability": 0.9777 + }, + { + "start": 43778.7, + "end": 43779.32, + "probability": 0.9623 + }, + { + "start": 43779.42, + "end": 43781.16, + "probability": 0.8944 + }, + { + "start": 43781.56, + "end": 43783.38, + "probability": 0.7428 + }, + { + "start": 43783.9, + "end": 43784.66, + "probability": 0.9601 + }, + { + "start": 43785.68, + "end": 43789.64, + "probability": 0.9957 + }, + { + "start": 43791.4, + "end": 43792.93, + "probability": 0.9214 + }, + { + "start": 43793.1, + "end": 43793.98, + "probability": 0.5958 + }, + { + "start": 43795.32, + "end": 43799.1, + "probability": 0.8492 + }, + { + "start": 43800.58, + "end": 43805.0, + "probability": 0.9922 + }, + { + "start": 43806.54, + "end": 43809.68, + "probability": 0.9155 + }, + { + "start": 43810.82, + "end": 43811.38, + "probability": 0.9676 + }, + { + "start": 43812.36, + "end": 43813.14, + "probability": 0.8371 + }, + { + "start": 43814.2, + "end": 43814.6, + "probability": 0.4864 + }, + { + "start": 43816.14, + "end": 43818.08, + "probability": 0.9875 + }, + { + "start": 43818.88, + "end": 43820.17, + "probability": 0.9737 + }, + { + "start": 43821.52, + "end": 43824.2, + "probability": 0.9788 + }, + { + "start": 43825.74, + "end": 43829.14, + "probability": 0.9641 + }, + { + "start": 43831.04, + "end": 43832.4, + "probability": 0.9976 + }, + { + "start": 43835.18, + "end": 43835.7, + "probability": 0.4048 + }, + { + "start": 43837.58, + "end": 43839.5, + "probability": 0.9854 + }, + { + "start": 43840.76, + "end": 43841.7, + "probability": 0.9252 + }, + { + "start": 43842.24, + "end": 43843.0, + "probability": 0.8743 + }, + { + "start": 43843.8, + "end": 43844.76, + "probability": 0.7615 + }, + { + "start": 43845.84, + "end": 43848.28, + "probability": 0.6723 + }, + { + "start": 43849.52, + "end": 43850.56, + "probability": 0.8467 + }, + { + "start": 43851.84, + "end": 43852.68, + "probability": 0.9909 + }, + { + "start": 43853.46, + "end": 43854.3, + "probability": 0.7532 + }, + { + "start": 43855.58, + "end": 43858.1, + "probability": 0.7704 + }, + { + "start": 43859.22, + "end": 43860.42, + "probability": 0.6737 + }, + { + "start": 43860.54, + "end": 43862.0, + "probability": 0.9993 + }, + { + "start": 43862.16, + "end": 43864.2, + "probability": 0.9839 + }, + { + "start": 43866.1, + "end": 43867.46, + "probability": 0.9971 + }, + { + "start": 43868.5, + "end": 43869.98, + "probability": 0.995 + }, + { + "start": 43870.54, + "end": 43872.24, + "probability": 0.9937 + }, + { + "start": 43872.82, + "end": 43874.9, + "probability": 0.9082 + }, + { + "start": 43875.48, + "end": 43876.01, + "probability": 0.5735 + }, + { + "start": 43877.06, + "end": 43877.94, + "probability": 0.8107 + }, + { + "start": 43878.6, + "end": 43880.16, + "probability": 0.9277 + }, + { + "start": 43882.8, + "end": 43884.39, + "probability": 0.9924 + }, + { + "start": 43885.12, + "end": 43887.36, + "probability": 0.9869 + }, + { + "start": 43888.38, + "end": 43893.7, + "probability": 0.9661 + }, + { + "start": 43895.98, + "end": 43896.86, + "probability": 0.7711 + }, + { + "start": 43898.76, + "end": 43901.0, + "probability": 0.9967 + }, + { + "start": 43901.64, + "end": 43903.02, + "probability": 0.6141 + }, + { + "start": 43904.54, + "end": 43905.52, + "probability": 0.7774 + }, + { + "start": 43907.35, + "end": 43908.94, + "probability": 0.9941 + }, + { + "start": 43909.72, + "end": 43910.42, + "probability": 0.8581 + }, + { + "start": 43911.1, + "end": 43914.3, + "probability": 0.9853 + }, + { + "start": 43916.36, + "end": 43917.66, + "probability": 0.9846 + }, + { + "start": 43918.3, + "end": 43920.46, + "probability": 0.9875 + }, + { + "start": 43921.18, + "end": 43922.04, + "probability": 0.7554 + }, + { + "start": 43922.52, + "end": 43923.62, + "probability": 0.9976 + }, + { + "start": 43924.22, + "end": 43925.92, + "probability": 0.9984 + }, + { + "start": 43926.0, + "end": 43926.63, + "probability": 0.9033 + }, + { + "start": 43927.52, + "end": 43930.34, + "probability": 0.9509 + }, + { + "start": 43931.1, + "end": 43932.26, + "probability": 0.6157 + }, + { + "start": 43932.42, + "end": 43933.08, + "probability": 0.4779 + }, + { + "start": 43933.18, + "end": 43935.23, + "probability": 0.9663 + }, + { + "start": 43935.52, + "end": 43936.68, + "probability": 0.9591 + }, + { + "start": 43937.22, + "end": 43942.48, + "probability": 0.7773 + }, + { + "start": 43942.62, + "end": 43943.06, + "probability": 0.838 + }, + { + "start": 43943.18, + "end": 43943.66, + "probability": 0.667 + }, + { + "start": 43943.74, + "end": 43944.42, + "probability": 0.9658 + }, + { + "start": 43946.42, + "end": 43947.34, + "probability": 0.4439 + }, + { + "start": 43948.0, + "end": 43948.02, + "probability": 0.0066 + }, + { + "start": 43948.02, + "end": 43949.32, + "probability": 0.9607 + }, + { + "start": 43949.7, + "end": 43950.95, + "probability": 0.8148 + }, + { + "start": 43951.76, + "end": 43952.34, + "probability": 0.733 + }, + { + "start": 43953.32, + "end": 43954.74, + "probability": 0.9535 + }, + { + "start": 43955.62, + "end": 43956.94, + "probability": 0.9684 + }, + { + "start": 43957.36, + "end": 43960.04, + "probability": 0.9324 + }, + { + "start": 43960.24, + "end": 43961.32, + "probability": 0.977 + }, + { + "start": 43961.92, + "end": 43963.48, + "probability": 0.628 + }, + { + "start": 43965.0, + "end": 43966.36, + "probability": 0.9946 + }, + { + "start": 43967.4, + "end": 43969.1, + "probability": 0.8857 + }, + { + "start": 43977.44, + "end": 43978.61, + "probability": 0.7106 + }, + { + "start": 43980.78, + "end": 43986.16, + "probability": 0.9824 + }, + { + "start": 43987.36, + "end": 43989.38, + "probability": 0.7745 + }, + { + "start": 43990.82, + "end": 43992.2, + "probability": 0.9891 + }, + { + "start": 43994.0, + "end": 43995.78, + "probability": 0.9639 + }, + { + "start": 43997.34, + "end": 43998.38, + "probability": 0.9639 + }, + { + "start": 43999.24, + "end": 44000.84, + "probability": 0.9919 + }, + { + "start": 44002.66, + "end": 44005.22, + "probability": 0.9926 + }, + { + "start": 44005.72, + "end": 44006.58, + "probability": 0.8408 + }, + { + "start": 44007.96, + "end": 44008.82, + "probability": 0.9026 + }, + { + "start": 44010.42, + "end": 44013.64, + "probability": 0.9906 + }, + { + "start": 44013.7, + "end": 44014.77, + "probability": 0.6517 + }, + { + "start": 44016.76, + "end": 44018.65, + "probability": 0.7613 + }, + { + "start": 44019.28, + "end": 44021.36, + "probability": 0.9768 + }, + { + "start": 44022.1, + "end": 44022.9, + "probability": 0.8713 + }, + { + "start": 44024.66, + "end": 44028.18, + "probability": 0.931 + }, + { + "start": 44029.1, + "end": 44032.62, + "probability": 0.979 + }, + { + "start": 44034.12, + "end": 44035.78, + "probability": 0.6901 + }, + { + "start": 44037.0, + "end": 44038.54, + "probability": 0.7714 + }, + { + "start": 44038.88, + "end": 44040.18, + "probability": 0.9963 + }, + { + "start": 44041.42, + "end": 44044.0, + "probability": 0.9854 + }, + { + "start": 44045.3, + "end": 44046.34, + "probability": 0.9816 + }, + { + "start": 44048.88, + "end": 44049.44, + "probability": 0.7614 + }, + { + "start": 44050.84, + "end": 44051.92, + "probability": 0.7446 + }, + { + "start": 44053.06, + "end": 44056.73, + "probability": 0.7492 + }, + { + "start": 44059.38, + "end": 44060.82, + "probability": 0.8879 + }, + { + "start": 44061.66, + "end": 44062.68, + "probability": 0.9204 + }, + { + "start": 44064.82, + "end": 44065.66, + "probability": 0.9995 + }, + { + "start": 44067.28, + "end": 44069.18, + "probability": 0.9983 + }, + { + "start": 44072.4, + "end": 44072.94, + "probability": 0.5022 + }, + { + "start": 44075.2, + "end": 44075.74, + "probability": 0.9077 + }, + { + "start": 44075.84, + "end": 44077.2, + "probability": 0.9767 + }, + { + "start": 44077.32, + "end": 44079.68, + "probability": 0.9341 + }, + { + "start": 44079.7, + "end": 44081.02, + "probability": 0.9925 + }, + { + "start": 44082.2, + "end": 44087.0, + "probability": 0.9854 + }, + { + "start": 44088.42, + "end": 44090.3, + "probability": 0.8472 + }, + { + "start": 44092.16, + "end": 44095.02, + "probability": 0.9925 + }, + { + "start": 44095.9, + "end": 44097.08, + "probability": 0.9997 + }, + { + "start": 44098.56, + "end": 44101.6, + "probability": 0.9972 + }, + { + "start": 44102.02, + "end": 44103.04, + "probability": 0.9921 + }, + { + "start": 44105.96, + "end": 44110.7, + "probability": 0.9908 + }, + { + "start": 44111.38, + "end": 44115.72, + "probability": 0.981 + }, + { + "start": 44117.3, + "end": 44118.52, + "probability": 0.9712 + }, + { + "start": 44121.02, + "end": 44122.7, + "probability": 0.996 + }, + { + "start": 44125.96, + "end": 44126.76, + "probability": 0.8386 + }, + { + "start": 44128.22, + "end": 44128.86, + "probability": 0.3107 + }, + { + "start": 44130.04, + "end": 44132.66, + "probability": 0.957 + }, + { + "start": 44134.14, + "end": 44135.04, + "probability": 0.9272 + }, + { + "start": 44136.72, + "end": 44138.4, + "probability": 0.9358 + }, + { + "start": 44139.54, + "end": 44144.16, + "probability": 0.9659 + }, + { + "start": 44145.7, + "end": 44146.94, + "probability": 0.7002 + }, + { + "start": 44147.9, + "end": 44150.91, + "probability": 0.9395 + }, + { + "start": 44152.7, + "end": 44154.38, + "probability": 0.9604 + }, + { + "start": 44157.52, + "end": 44157.89, + "probability": 0.9575 + }, + { + "start": 44159.06, + "end": 44161.42, + "probability": 0.981 + }, + { + "start": 44162.26, + "end": 44163.4, + "probability": 0.7988 + }, + { + "start": 44164.2, + "end": 44166.04, + "probability": 0.9622 + }, + { + "start": 44166.86, + "end": 44169.02, + "probability": 0.9983 + }, + { + "start": 44169.88, + "end": 44171.03, + "probability": 0.9974 + }, + { + "start": 44171.54, + "end": 44172.92, + "probability": 0.9989 + }, + { + "start": 44173.9, + "end": 44175.16, + "probability": 0.9106 + }, + { + "start": 44176.04, + "end": 44177.94, + "probability": 0.8848 + }, + { + "start": 44179.4, + "end": 44179.88, + "probability": 0.8137 + }, + { + "start": 44180.84, + "end": 44182.3, + "probability": 0.6846 + }, + { + "start": 44182.7, + "end": 44184.47, + "probability": 0.9323 + }, + { + "start": 44187.58, + "end": 44189.68, + "probability": 0.854 + }, + { + "start": 44192.06, + "end": 44193.48, + "probability": 0.9919 + }, + { + "start": 44195.7, + "end": 44202.84, + "probability": 0.998 + }, + { + "start": 44207.86, + "end": 44208.68, + "probability": 0.6192 + }, + { + "start": 44212.0, + "end": 44214.5, + "probability": 0.8555 + }, + { + "start": 44215.44, + "end": 44217.08, + "probability": 0.895 + }, + { + "start": 44217.48, + "end": 44218.78, + "probability": 0.9281 + }, + { + "start": 44219.78, + "end": 44221.54, + "probability": 0.9812 + }, + { + "start": 44222.32, + "end": 44222.8, + "probability": 0.7934 + }, + { + "start": 44224.9, + "end": 44226.98, + "probability": 0.919 + }, + { + "start": 44227.4, + "end": 44228.26, + "probability": 0.1003 + }, + { + "start": 44228.62, + "end": 44233.4, + "probability": 0.4887 + }, + { + "start": 44237.22, + "end": 44237.98, + "probability": 0.0866 + }, + { + "start": 44238.76, + "end": 44240.92, + "probability": 0.7209 + }, + { + "start": 44243.04, + "end": 44245.09, + "probability": 0.9563 + }, + { + "start": 44248.22, + "end": 44253.86, + "probability": 0.9668 + }, + { + "start": 44257.66, + "end": 44262.3, + "probability": 0.8862 + }, + { + "start": 44263.28, + "end": 44265.38, + "probability": 0.9385 + }, + { + "start": 44265.38, + "end": 44267.74, + "probability": 0.9932 + }, + { + "start": 44268.24, + "end": 44271.24, + "probability": 0.6403 + }, + { + "start": 44272.22, + "end": 44275.32, + "probability": 0.693 + }, + { + "start": 44277.06, + "end": 44278.16, + "probability": 0.7309 + }, + { + "start": 44278.7, + "end": 44281.08, + "probability": 0.7834 + }, + { + "start": 44282.24, + "end": 44283.1, + "probability": 0.9653 + }, + { + "start": 44283.96, + "end": 44289.48, + "probability": 0.9854 + }, + { + "start": 44292.64, + "end": 44293.32, + "probability": 0.9819 + }, + { + "start": 44294.66, + "end": 44295.1, + "probability": 0.8643 + }, + { + "start": 44297.18, + "end": 44298.12, + "probability": 0.8334 + }, + { + "start": 44298.92, + "end": 44301.12, + "probability": 0.6819 + }, + { + "start": 44302.16, + "end": 44302.84, + "probability": 0.3998 + }, + { + "start": 44304.02, + "end": 44307.16, + "probability": 0.9953 + }, + { + "start": 44308.76, + "end": 44309.73, + "probability": 0.838 + }, + { + "start": 44310.48, + "end": 44313.12, + "probability": 0.8843 + }, + { + "start": 44313.18, + "end": 44316.4, + "probability": 0.9733 + }, + { + "start": 44316.78, + "end": 44317.36, + "probability": 0.5724 + }, + { + "start": 44318.14, + "end": 44320.48, + "probability": 0.8213 + }, + { + "start": 44322.34, + "end": 44323.42, + "probability": 0.995 + }, + { + "start": 44326.52, + "end": 44326.98, + "probability": 0.5915 + }, + { + "start": 44327.5, + "end": 44329.2, + "probability": 0.7785 + }, + { + "start": 44329.7, + "end": 44331.56, + "probability": 0.9743 + }, + { + "start": 44332.76, + "end": 44334.88, + "probability": 0.9116 + }, + { + "start": 44335.62, + "end": 44336.44, + "probability": 0.8971 + }, + { + "start": 44337.42, + "end": 44338.76, + "probability": 0.9874 + }, + { + "start": 44340.28, + "end": 44341.26, + "probability": 0.4513 + }, + { + "start": 44341.26, + "end": 44341.66, + "probability": 0.8124 + }, + { + "start": 44341.76, + "end": 44342.9, + "probability": 0.976 + }, + { + "start": 44343.38, + "end": 44345.08, + "probability": 0.9888 + }, + { + "start": 44345.88, + "end": 44346.4, + "probability": 0.5161 + }, + { + "start": 44347.24, + "end": 44349.86, + "probability": 0.8976 + }, + { + "start": 44351.36, + "end": 44352.86, + "probability": 0.9679 + }, + { + "start": 44354.54, + "end": 44356.67, + "probability": 0.9111 + }, + { + "start": 44357.54, + "end": 44358.04, + "probability": 0.8022 + }, + { + "start": 44358.12, + "end": 44358.36, + "probability": 0.6189 + }, + { + "start": 44358.54, + "end": 44360.96, + "probability": 0.7948 + }, + { + "start": 44361.54, + "end": 44364.16, + "probability": 0.9457 + }, + { + "start": 44366.5, + "end": 44368.42, + "probability": 0.9939 + }, + { + "start": 44370.46, + "end": 44371.02, + "probability": 0.4213 + }, + { + "start": 44371.12, + "end": 44371.26, + "probability": 0.8346 + }, + { + "start": 44371.7, + "end": 44372.94, + "probability": 0.8584 + }, + { + "start": 44373.02, + "end": 44374.44, + "probability": 0.9004 + }, + { + "start": 44375.22, + "end": 44375.84, + "probability": 0.7067 + }, + { + "start": 44376.48, + "end": 44377.82, + "probability": 0.9897 + }, + { + "start": 44378.44, + "end": 44379.56, + "probability": 0.9917 + }, + { + "start": 44381.62, + "end": 44385.16, + "probability": 0.999 + }, + { + "start": 44387.01, + "end": 44388.16, + "probability": 0.9891 + }, + { + "start": 44388.96, + "end": 44389.76, + "probability": 0.9845 + }, + { + "start": 44390.52, + "end": 44393.07, + "probability": 0.9891 + }, + { + "start": 44394.4, + "end": 44395.5, + "probability": 0.9683 + }, + { + "start": 44395.88, + "end": 44396.76, + "probability": 0.9985 + }, + { + "start": 44397.84, + "end": 44400.28, + "probability": 0.8232 + }, + { + "start": 44402.46, + "end": 44403.74, + "probability": 0.9985 + }, + { + "start": 44405.34, + "end": 44411.84, + "probability": 0.9462 + }, + { + "start": 44412.86, + "end": 44414.24, + "probability": 0.9177 + }, + { + "start": 44415.3, + "end": 44416.84, + "probability": 0.8418 + }, + { + "start": 44418.28, + "end": 44420.18, + "probability": 0.9863 + }, + { + "start": 44420.72, + "end": 44422.76, + "probability": 0.7137 + }, + { + "start": 44423.72, + "end": 44426.32, + "probability": 0.9893 + }, + { + "start": 44426.72, + "end": 44427.88, + "probability": 0.9962 + }, + { + "start": 44427.98, + "end": 44428.48, + "probability": 0.9844 + }, + { + "start": 44430.54, + "end": 44431.46, + "probability": 0.8214 + }, + { + "start": 44432.36, + "end": 44433.87, + "probability": 0.9601 + }, + { + "start": 44434.74, + "end": 44439.7, + "probability": 0.9595 + }, + { + "start": 44441.38, + "end": 44443.22, + "probability": 0.9773 + }, + { + "start": 44444.88, + "end": 44447.48, + "probability": 0.9969 + }, + { + "start": 44449.22, + "end": 44451.66, + "probability": 0.5367 + }, + { + "start": 44453.12, + "end": 44453.14, + "probability": 0.1547 + }, + { + "start": 44453.14, + "end": 44455.78, + "probability": 0.8285 + }, + { + "start": 44455.94, + "end": 44456.96, + "probability": 0.5541 + }, + { + "start": 44457.78, + "end": 44459.08, + "probability": 0.8701 + }, + { + "start": 44459.86, + "end": 44462.78, + "probability": 0.949 + }, + { + "start": 44469.6, + "end": 44471.54, + "probability": 0.9543 + }, + { + "start": 44473.7, + "end": 44474.9, + "probability": 0.926 + }, + { + "start": 44477.84, + "end": 44479.9, + "probability": 0.9749 + }, + { + "start": 44480.88, + "end": 44482.84, + "probability": 0.8906 + }, + { + "start": 44484.02, + "end": 44485.14, + "probability": 0.9319 + }, + { + "start": 44486.5, + "end": 44488.1, + "probability": 0.9946 + }, + { + "start": 44488.6, + "end": 44489.72, + "probability": 0.9915 + }, + { + "start": 44490.32, + "end": 44491.35, + "probability": 0.9877 + }, + { + "start": 44492.04, + "end": 44492.93, + "probability": 0.9888 + }, + { + "start": 44494.4, + "end": 44495.11, + "probability": 0.9712 + }, + { + "start": 44495.3, + "end": 44497.8, + "probability": 0.9897 + }, + { + "start": 44498.96, + "end": 44501.78, + "probability": 0.9786 + }, + { + "start": 44502.86, + "end": 44505.65, + "probability": 0.9988 + }, + { + "start": 44506.46, + "end": 44507.4, + "probability": 0.7696 + }, + { + "start": 44507.52, + "end": 44508.64, + "probability": 0.9619 + }, + { + "start": 44508.72, + "end": 44512.16, + "probability": 0.9811 + }, + { + "start": 44512.16, + "end": 44515.5, + "probability": 0.9935 + }, + { + "start": 44518.6, + "end": 44520.36, + "probability": 0.8757 + }, + { + "start": 44521.26, + "end": 44522.41, + "probability": 0.668 + }, + { + "start": 44522.84, + "end": 44525.92, + "probability": 0.7558 + }, + { + "start": 44526.12, + "end": 44527.62, + "probability": 0.9961 + }, + { + "start": 44528.84, + "end": 44530.3, + "probability": 0.5591 + }, + { + "start": 44531.34, + "end": 44532.7, + "probability": 0.9915 + }, + { + "start": 44535.08, + "end": 44537.5, + "probability": 0.9622 + }, + { + "start": 44537.62, + "end": 44539.3, + "probability": 0.7498 + }, + { + "start": 44540.42, + "end": 44542.32, + "probability": 0.8791 + }, + { + "start": 44543.06, + "end": 44543.9, + "probability": 0.4175 + }, + { + "start": 44545.18, + "end": 44546.7, + "probability": 0.5249 + }, + { + "start": 44547.92, + "end": 44550.72, + "probability": 0.9206 + }, + { + "start": 44552.96, + "end": 44553.88, + "probability": 0.9417 + }, + { + "start": 44554.3, + "end": 44555.6, + "probability": 0.8218 + }, + { + "start": 44555.66, + "end": 44556.64, + "probability": 0.9233 + }, + { + "start": 44556.8, + "end": 44557.66, + "probability": 0.7093 + }, + { + "start": 44559.46, + "end": 44561.25, + "probability": 0.9692 + }, + { + "start": 44562.42, + "end": 44563.68, + "probability": 0.9116 + }, + { + "start": 44564.48, + "end": 44565.29, + "probability": 0.8097 + }, + { + "start": 44566.92, + "end": 44568.18, + "probability": 0.9742 + }, + { + "start": 44570.3, + "end": 44572.42, + "probability": 0.9919 + }, + { + "start": 44572.5, + "end": 44572.58, + "probability": 0.8129 + }, + { + "start": 44572.7, + "end": 44573.92, + "probability": 0.9338 + }, + { + "start": 44575.68, + "end": 44576.42, + "probability": 0.8257 + }, + { + "start": 44577.24, + "end": 44580.06, + "probability": 0.9111 + }, + { + "start": 44580.72, + "end": 44581.06, + "probability": 0.5384 + }, + { + "start": 44582.42, + "end": 44582.84, + "probability": 0.9456 + }, + { + "start": 44584.04, + "end": 44584.64, + "probability": 0.9617 + }, + { + "start": 44586.88, + "end": 44587.76, + "probability": 0.9562 + }, + { + "start": 44589.08, + "end": 44593.86, + "probability": 0.973 + }, + { + "start": 44595.04, + "end": 44595.7, + "probability": 0.8821 + }, + { + "start": 44597.0, + "end": 44599.06, + "probability": 0.9968 + }, + { + "start": 44599.64, + "end": 44601.14, + "probability": 0.9612 + }, + { + "start": 44601.88, + "end": 44603.32, + "probability": 0.7175 + }, + { + "start": 44604.18, + "end": 44606.82, + "probability": 0.9697 + }, + { + "start": 44606.98, + "end": 44607.2, + "probability": 0.6489 + }, + { + "start": 44607.84, + "end": 44608.52, + "probability": 0.9683 + }, + { + "start": 44609.46, + "end": 44614.46, + "probability": 0.9976 + }, + { + "start": 44614.46, + "end": 44619.72, + "probability": 0.9897 + }, + { + "start": 44619.88, + "end": 44620.5, + "probability": 0.1395 + }, + { + "start": 44620.62, + "end": 44623.11, + "probability": 0.9891 + }, + { + "start": 44624.16, + "end": 44625.64, + "probability": 0.917 + }, + { + "start": 44625.72, + "end": 44627.54, + "probability": 0.8658 + }, + { + "start": 44628.54, + "end": 44630.2, + "probability": 0.7806 + }, + { + "start": 44631.86, + "end": 44632.14, + "probability": 0.7938 + }, + { + "start": 44632.24, + "end": 44636.44, + "probability": 0.9717 + }, + { + "start": 44636.44, + "end": 44638.2, + "probability": 0.9219 + }, + { + "start": 44639.24, + "end": 44640.48, + "probability": 0.9028 + }, + { + "start": 44641.6, + "end": 44643.14, + "probability": 0.9995 + }, + { + "start": 44644.6, + "end": 44646.6, + "probability": 0.9655 + }, + { + "start": 44646.7, + "end": 44648.27, + "probability": 0.9354 + }, + { + "start": 44649.3, + "end": 44650.12, + "probability": 0.9829 + }, + { + "start": 44651.5, + "end": 44652.54, + "probability": 0.9233 + }, + { + "start": 44653.94, + "end": 44655.16, + "probability": 0.9858 + }, + { + "start": 44655.98, + "end": 44658.88, + "probability": 0.8767 + }, + { + "start": 44662.88, + "end": 44664.38, + "probability": 0.9979 + }, + { + "start": 44665.42, + "end": 44666.52, + "probability": 0.9332 + }, + { + "start": 44668.02, + "end": 44671.26, + "probability": 0.9453 + }, + { + "start": 44672.76, + "end": 44676.18, + "probability": 0.9995 + }, + { + "start": 44678.86, + "end": 44680.3, + "probability": 0.7213 + }, + { + "start": 44681.14, + "end": 44682.68, + "probability": 0.9976 + }, + { + "start": 44682.8, + "end": 44684.32, + "probability": 0.9937 + }, + { + "start": 44685.04, + "end": 44688.03, + "probability": 0.9703 + }, + { + "start": 44689.6, + "end": 44690.43, + "probability": 0.9961 + }, + { + "start": 44693.66, + "end": 44696.16, + "probability": 0.9927 + }, + { + "start": 44696.96, + "end": 44700.08, + "probability": 0.9983 + }, + { + "start": 44700.8, + "end": 44702.48, + "probability": 0.999 + }, + { + "start": 44704.62, + "end": 44706.2, + "probability": 0.8234 + }, + { + "start": 44708.0, + "end": 44709.9, + "probability": 0.9946 + }, + { + "start": 44711.2, + "end": 44714.58, + "probability": 0.9874 + }, + { + "start": 44714.58, + "end": 44719.2, + "probability": 0.9782 + }, + { + "start": 44721.24, + "end": 44722.4, + "probability": 0.7644 + }, + { + "start": 44724.4, + "end": 44726.56, + "probability": 0.9985 + }, + { + "start": 44728.08, + "end": 44730.06, + "probability": 0.9995 + }, + { + "start": 44731.86, + "end": 44733.18, + "probability": 0.7814 + }, + { + "start": 44734.24, + "end": 44735.34, + "probability": 0.9863 + }, + { + "start": 44739.64, + "end": 44739.94, + "probability": 0.8102 + }, + { + "start": 44741.67, + "end": 44747.2, + "probability": 0.7656 + }, + { + "start": 44748.22, + "end": 44749.36, + "probability": 0.8746 + }, + { + "start": 44749.92, + "end": 44751.78, + "probability": 0.8861 + }, + { + "start": 44751.96, + "end": 44752.76, + "probability": 0.957 + }, + { + "start": 44752.84, + "end": 44753.5, + "probability": 0.8488 + }, + { + "start": 44755.22, + "end": 44756.22, + "probability": 0.9951 + }, + { + "start": 44757.94, + "end": 44759.15, + "probability": 0.9331 + }, + { + "start": 44760.1, + "end": 44762.0, + "probability": 0.986 + }, + { + "start": 44762.34, + "end": 44764.16, + "probability": 0.9507 + }, + { + "start": 44764.8, + "end": 44765.08, + "probability": 0.694 + }, + { + "start": 44766.02, + "end": 44768.16, + "probability": 0.9344 + }, + { + "start": 44768.46, + "end": 44771.72, + "probability": 0.9617 + }, + { + "start": 44771.74, + "end": 44773.76, + "probability": 0.8688 + }, + { + "start": 44774.44, + "end": 44778.92, + "probability": 0.9983 + }, + { + "start": 44780.2, + "end": 44781.04, + "probability": 0.9897 + }, + { + "start": 44781.5, + "end": 44782.68, + "probability": 0.7917 + }, + { + "start": 44782.7, + "end": 44785.68, + "probability": 0.975 + }, + { + "start": 44787.32, + "end": 44788.93, + "probability": 0.9849 + }, + { + "start": 44791.02, + "end": 44792.98, + "probability": 0.9427 + }, + { + "start": 44794.06, + "end": 44795.23, + "probability": 0.9619 + }, + { + "start": 44796.82, + "end": 44797.98, + "probability": 0.8555 + }, + { + "start": 44799.42, + "end": 44799.91, + "probability": 0.7034 + }, + { + "start": 44801.24, + "end": 44801.96, + "probability": 0.8107 + }, + { + "start": 44803.3, + "end": 44804.42, + "probability": 0.9199 + }, + { + "start": 44805.88, + "end": 44809.14, + "probability": 0.9886 + }, + { + "start": 44809.22, + "end": 44811.34, + "probability": 0.9661 + }, + { + "start": 44813.94, + "end": 44814.53, + "probability": 0.5857 + }, + { + "start": 44816.0, + "end": 44816.62, + "probability": 0.6369 + }, + { + "start": 44818.08, + "end": 44820.24, + "probability": 0.9967 + }, + { + "start": 44821.34, + "end": 44822.45, + "probability": 0.8929 + }, + { + "start": 44822.64, + "end": 44824.46, + "probability": 0.8779 + }, + { + "start": 44824.46, + "end": 44826.62, + "probability": 0.9937 + }, + { + "start": 44827.24, + "end": 44827.96, + "probability": 0.7062 + }, + { + "start": 44828.08, + "end": 44830.6, + "probability": 0.9551 + }, + { + "start": 44830.68, + "end": 44831.52, + "probability": 0.9596 + }, + { + "start": 44833.02, + "end": 44834.34, + "probability": 0.9946 + }, + { + "start": 44835.5, + "end": 44836.44, + "probability": 0.9729 + }, + { + "start": 44837.42, + "end": 44839.66, + "probability": 0.9902 + }, + { + "start": 44839.92, + "end": 44841.84, + "probability": 0.9963 + }, + { + "start": 44843.12, + "end": 44844.52, + "probability": 0.8917 + }, + { + "start": 44845.54, + "end": 44847.18, + "probability": 0.9048 + }, + { + "start": 44848.56, + "end": 44851.42, + "probability": 0.9945 + }, + { + "start": 44851.88, + "end": 44854.16, + "probability": 0.9979 + }, + { + "start": 44854.92, + "end": 44857.54, + "probability": 0.9922 + }, + { + "start": 44857.54, + "end": 44861.22, + "probability": 0.828 + }, + { + "start": 44862.56, + "end": 44863.33, + "probability": 0.501 + }, + { + "start": 44864.04, + "end": 44864.82, + "probability": 0.7583 + }, + { + "start": 44865.46, + "end": 44866.94, + "probability": 0.951 + }, + { + "start": 44867.62, + "end": 44869.28, + "probability": 0.999 + }, + { + "start": 44869.8, + "end": 44871.1, + "probability": 0.9756 + }, + { + "start": 44872.42, + "end": 44873.24, + "probability": 0.9942 + }, + { + "start": 44873.4, + "end": 44874.1, + "probability": 0.5258 + }, + { + "start": 44874.82, + "end": 44878.24, + "probability": 0.9727 + }, + { + "start": 44879.52, + "end": 44881.02, + "probability": 0.8798 + }, + { + "start": 44881.22, + "end": 44884.34, + "probability": 0.6895 + }, + { + "start": 44885.74, + "end": 44886.82, + "probability": 0.7308 + }, + { + "start": 44888.5, + "end": 44890.48, + "probability": 0.6777 + }, + { + "start": 44892.99, + "end": 44895.4, + "probability": 0.8015 + }, + { + "start": 44895.96, + "end": 44897.39, + "probability": 0.9771 + }, + { + "start": 44899.3, + "end": 44902.36, + "probability": 0.9499 + }, + { + "start": 44902.86, + "end": 44904.24, + "probability": 0.9968 + }, + { + "start": 44904.82, + "end": 44905.85, + "probability": 0.9548 + }, + { + "start": 44907.58, + "end": 44909.62, + "probability": 0.9644 + }, + { + "start": 44910.38, + "end": 44912.32, + "probability": 0.9924 + }, + { + "start": 44913.2, + "end": 44913.64, + "probability": 0.3983 + }, + { + "start": 44913.68, + "end": 44914.72, + "probability": 0.9717 + }, + { + "start": 44916.14, + "end": 44919.58, + "probability": 0.9785 + }, + { + "start": 44921.48, + "end": 44922.94, + "probability": 0.908 + }, + { + "start": 44923.02, + "end": 44924.63, + "probability": 0.9297 + }, + { + "start": 44925.86, + "end": 44926.78, + "probability": 0.79 + }, + { + "start": 44927.8, + "end": 44928.72, + "probability": 0.9315 + }, + { + "start": 44929.24, + "end": 44930.6, + "probability": 0.9681 + }, + { + "start": 44931.82, + "end": 44932.76, + "probability": 0.8214 + }, + { + "start": 44932.92, + "end": 44933.58, + "probability": 0.4909 + }, + { + "start": 44933.58, + "end": 44934.66, + "probability": 0.7214 + }, + { + "start": 44936.22, + "end": 44938.68, + "probability": 0.9602 + }, + { + "start": 44939.66, + "end": 44940.62, + "probability": 0.9486 + }, + { + "start": 44943.33, + "end": 44944.28, + "probability": 0.6935 + }, + { + "start": 44944.62, + "end": 44946.5, + "probability": 0.8095 + }, + { + "start": 44946.68, + "end": 44949.47, + "probability": 0.73 + }, + { + "start": 44950.46, + "end": 44951.92, + "probability": 0.8057 + }, + { + "start": 44952.4, + "end": 44953.96, + "probability": 0.9841 + }, + { + "start": 44954.74, + "end": 44955.82, + "probability": 0.9273 + }, + { + "start": 44957.44, + "end": 44958.64, + "probability": 0.619 + }, + { + "start": 44959.48, + "end": 44960.88, + "probability": 0.936 + }, + { + "start": 44961.2, + "end": 44962.34, + "probability": 0.6821 + }, + { + "start": 44963.3, + "end": 44965.37, + "probability": 0.655 + }, + { + "start": 44966.2, + "end": 44967.34, + "probability": 0.9714 + }, + { + "start": 44967.46, + "end": 44968.96, + "probability": 0.9477 + }, + { + "start": 44970.44, + "end": 44972.11, + "probability": 0.9604 + }, + { + "start": 44973.32, + "end": 44975.34, + "probability": 0.647 + }, + { + "start": 44976.26, + "end": 44977.6, + "probability": 0.6248 + }, + { + "start": 44978.22, + "end": 44982.04, + "probability": 0.9054 + }, + { + "start": 44983.56, + "end": 44984.05, + "probability": 0.8528 + }, + { + "start": 44985.08, + "end": 44987.1, + "probability": 0.8949 + }, + { + "start": 44987.6, + "end": 44990.28, + "probability": 0.9281 + }, + { + "start": 44991.14, + "end": 44993.4, + "probability": 0.994 + }, + { + "start": 44993.54, + "end": 44993.82, + "probability": 0.9985 + }, + { + "start": 44994.78, + "end": 44997.52, + "probability": 0.9935 + }, + { + "start": 44998.48, + "end": 44999.31, + "probability": 0.9956 + }, + { + "start": 44999.52, + "end": 45000.52, + "probability": 0.9856 + }, + { + "start": 45001.98, + "end": 45002.6, + "probability": 0.2574 + }, + { + "start": 45003.64, + "end": 45005.08, + "probability": 0.9531 + }, + { + "start": 45005.84, + "end": 45006.2, + "probability": 0.6931 + }, + { + "start": 45007.08, + "end": 45010.52, + "probability": 0.9354 + }, + { + "start": 45010.56, + "end": 45011.32, + "probability": 0.625 + }, + { + "start": 45012.18, + "end": 45013.24, + "probability": 0.9861 + }, + { + "start": 45015.12, + "end": 45016.54, + "probability": 0.5075 + }, + { + "start": 45016.6, + "end": 45017.08, + "probability": 0.9033 + }, + { + "start": 45017.5, + "end": 45018.82, + "probability": 0.9889 + }, + { + "start": 45019.28, + "end": 45020.96, + "probability": 0.9838 + }, + { + "start": 45022.08, + "end": 45023.86, + "probability": 0.9079 + }, + { + "start": 45023.92, + "end": 45025.3, + "probability": 0.8825 + }, + { + "start": 45026.4, + "end": 45030.54, + "probability": 0.995 + }, + { + "start": 45031.34, + "end": 45032.0, + "probability": 0.7666 + }, + { + "start": 45032.36, + "end": 45033.46, + "probability": 0.9557 + }, + { + "start": 45033.88, + "end": 45037.96, + "probability": 0.844 + }, + { + "start": 45039.04, + "end": 45040.6, + "probability": 0.9954 + }, + { + "start": 45049.7, + "end": 45051.74, + "probability": 0.9909 + }, + { + "start": 45053.84, + "end": 45055.5, + "probability": 0.9906 + }, + { + "start": 45056.54, + "end": 45057.64, + "probability": 0.7776 + }, + { + "start": 45059.32, + "end": 45059.82, + "probability": 0.9006 + }, + { + "start": 45060.91, + "end": 45062.44, + "probability": 0.5085 + }, + { + "start": 45063.76, + "end": 45067.7, + "probability": 0.708 + }, + { + "start": 45068.86, + "end": 45071.48, + "probability": 0.8537 + }, + { + "start": 45072.12, + "end": 45073.44, + "probability": 0.85 + }, + { + "start": 45073.64, + "end": 45075.2, + "probability": 0.954 + }, + { + "start": 45075.56, + "end": 45080.9, + "probability": 0.8052 + }, + { + "start": 45081.4, + "end": 45086.06, + "probability": 0.9895 + }, + { + "start": 45086.06, + "end": 45090.3, + "probability": 0.9859 + }, + { + "start": 45090.76, + "end": 45091.6, + "probability": 0.6695 + }, + { + "start": 45092.28, + "end": 45095.44, + "probability": 0.9966 + }, + { + "start": 45101.48, + "end": 45104.98, + "probability": 0.9897 + }, + { + "start": 45105.76, + "end": 45107.7, + "probability": 0.9984 + }, + { + "start": 45108.34, + "end": 45110.28, + "probability": 0.9899 + }, + { + "start": 45110.36, + "end": 45112.86, + "probability": 0.9751 + }, + { + "start": 45118.62, + "end": 45122.16, + "probability": 0.5463 + }, + { + "start": 45124.62, + "end": 45127.52, + "probability": 0.998 + }, + { + "start": 45128.52, + "end": 45130.2, + "probability": 0.9925 + }, + { + "start": 45131.34, + "end": 45132.52, + "probability": 0.9017 + }, + { + "start": 45132.8, + "end": 45134.66, + "probability": 0.9909 + }, + { + "start": 45135.52, + "end": 45138.28, + "probability": 0.9917 + }, + { + "start": 45138.38, + "end": 45138.74, + "probability": 0.8242 + }, + { + "start": 45138.78, + "end": 45141.0, + "probability": 0.9945 + }, + { + "start": 45141.52, + "end": 45145.68, + "probability": 0.9927 + }, + { + "start": 45147.82, + "end": 45151.1, + "probability": 0.9238 + }, + { + "start": 45151.76, + "end": 45151.96, + "probability": 0.3193 + }, + { + "start": 45152.88, + "end": 45154.64, + "probability": 0.7171 + }, + { + "start": 45155.26, + "end": 45157.38, + "probability": 0.976 + }, + { + "start": 45157.96, + "end": 45159.76, + "probability": 0.8709 + }, + { + "start": 45160.62, + "end": 45161.66, + "probability": 0.9525 + }, + { + "start": 45162.04, + "end": 45167.66, + "probability": 0.9158 + }, + { + "start": 45169.46, + "end": 45173.5, + "probability": 0.8294 + }, + { + "start": 45173.88, + "end": 45175.0, + "probability": 0.9829 + }, + { + "start": 45176.58, + "end": 45177.9, + "probability": 0.8747 + }, + { + "start": 45178.68, + "end": 45180.36, + "probability": 0.9165 + }, + { + "start": 45181.92, + "end": 45185.02, + "probability": 0.9961 + }, + { + "start": 45197.61, + "end": 45197.96, + "probability": 0.7648 + }, + { + "start": 45197.96, + "end": 45197.96, + "probability": 0.0897 + }, + { + "start": 45197.96, + "end": 45199.6, + "probability": 0.0792 + }, + { + "start": 45200.3, + "end": 45200.96, + "probability": 0.6349 + }, + { + "start": 45201.48, + "end": 45202.6, + "probability": 0.5034 + }, + { + "start": 45203.14, + "end": 45204.2, + "probability": 0.5218 + }, + { + "start": 45205.24, + "end": 45208.74, + "probability": 0.8303 + }, + { + "start": 45209.36, + "end": 45211.8, + "probability": 0.9473 + }, + { + "start": 45211.88, + "end": 45212.75, + "probability": 0.9932 + }, + { + "start": 45213.56, + "end": 45216.74, + "probability": 0.9901 + }, + { + "start": 45216.74, + "end": 45220.42, + "probability": 0.9971 + }, + { + "start": 45220.96, + "end": 45227.02, + "probability": 0.9852 + }, + { + "start": 45227.67, + "end": 45232.5, + "probability": 0.7609 + }, + { + "start": 45233.5, + "end": 45233.92, + "probability": 0.6326 + }, + { + "start": 45234.24, + "end": 45238.9, + "probability": 0.9929 + }, + { + "start": 45238.9, + "end": 45242.18, + "probability": 0.9974 + }, + { + "start": 45242.54, + "end": 45245.6, + "probability": 0.9876 + }, + { + "start": 45246.72, + "end": 45247.86, + "probability": 0.6316 + }, + { + "start": 45249.58, + "end": 45251.3, + "probability": 0.8146 + }, + { + "start": 45251.86, + "end": 45253.54, + "probability": 0.9409 + }, + { + "start": 45254.3, + "end": 45255.76, + "probability": 0.5568 + }, + { + "start": 45255.82, + "end": 45257.86, + "probability": 0.894 + }, + { + "start": 45257.98, + "end": 45261.62, + "probability": 0.9994 + }, + { + "start": 45262.18, + "end": 45265.4, + "probability": 0.8495 + }, + { + "start": 45266.54, + "end": 45268.8, + "probability": 0.782 + }, + { + "start": 45269.08, + "end": 45274.16, + "probability": 0.9909 + }, + { + "start": 45274.7, + "end": 45276.38, + "probability": 0.9847 + }, + { + "start": 45280.92, + "end": 45282.45, + "probability": 0.5014 + }, + { + "start": 45282.56, + "end": 45283.96, + "probability": 0.8818 + }, + { + "start": 45284.58, + "end": 45285.94, + "probability": 0.7915 + }, + { + "start": 45286.82, + "end": 45287.74, + "probability": 0.7372 + }, + { + "start": 45288.56, + "end": 45290.0, + "probability": 0.0854 + }, + { + "start": 45290.78, + "end": 45292.36, + "probability": 0.6521 + }, + { + "start": 45293.0, + "end": 45294.02, + "probability": 0.7093 + }, + { + "start": 45295.67, + "end": 45300.42, + "probability": 0.6073 + }, + { + "start": 45302.06, + "end": 45306.14, + "probability": 0.627 + }, + { + "start": 45306.18, + "end": 45308.1, + "probability": 0.704 + }, + { + "start": 45308.56, + "end": 45312.26, + "probability": 0.8846 + }, + { + "start": 45312.3, + "end": 45313.94, + "probability": 0.6719 + }, + { + "start": 45315.2, + "end": 45318.46, + "probability": 0.6384 + }, + { + "start": 45318.76, + "end": 45320.56, + "probability": 0.9258 + }, + { + "start": 45320.64, + "end": 45322.14, + "probability": 0.9572 + }, + { + "start": 45322.44, + "end": 45324.56, + "probability": 0.9084 + }, + { + "start": 45325.24, + "end": 45325.4, + "probability": 0.6435 + }, + { + "start": 45325.46, + "end": 45330.11, + "probability": 0.9925 + }, + { + "start": 45332.8, + "end": 45334.64, + "probability": 0.994 + }, + { + "start": 45335.62, + "end": 45336.5, + "probability": 0.7152 + }, + { + "start": 45337.5, + "end": 45340.74, + "probability": 0.9912 + }, + { + "start": 45341.06, + "end": 45341.82, + "probability": 0.8347 + }, + { + "start": 45342.18, + "end": 45343.14, + "probability": 0.343 + }, + { + "start": 45343.7, + "end": 45344.85, + "probability": 0.701 + }, + { + "start": 45345.16, + "end": 45347.24, + "probability": 0.9692 + }, + { + "start": 45347.82, + "end": 45349.9, + "probability": 0.9754 + }, + { + "start": 45350.34, + "end": 45352.32, + "probability": 0.9157 + }, + { + "start": 45353.14, + "end": 45355.64, + "probability": 0.8839 + }, + { + "start": 45356.3, + "end": 45358.24, + "probability": 0.6815 + }, + { + "start": 45358.82, + "end": 45359.94, + "probability": 0.7343 + }, + { + "start": 45361.28, + "end": 45362.72, + "probability": 0.8877 + }, + { + "start": 45363.9, + "end": 45364.74, + "probability": 0.8499 + }, + { + "start": 45366.62, + "end": 45368.27, + "probability": 0.957 + }, + { + "start": 45369.42, + "end": 45371.0, + "probability": 0.872 + }, + { + "start": 45371.22, + "end": 45372.16, + "probability": 0.9445 + }, + { + "start": 45372.22, + "end": 45372.98, + "probability": 0.9698 + }, + { + "start": 45373.94, + "end": 45374.6, + "probability": 0.9698 + }, + { + "start": 45375.22, + "end": 45376.06, + "probability": 0.9038 + }, + { + "start": 45376.56, + "end": 45378.38, + "probability": 0.97 + }, + { + "start": 45379.24, + "end": 45380.1, + "probability": 0.9023 + }, + { + "start": 45380.86, + "end": 45381.64, + "probability": 0.7338 + }, + { + "start": 45394.66, + "end": 45395.84, + "probability": 0.1818 + }, + { + "start": 45395.84, + "end": 45395.84, + "probability": 0.02 + }, + { + "start": 45395.84, + "end": 45397.32, + "probability": 0.1799 + }, + { + "start": 45398.02, + "end": 45399.64, + "probability": 0.5717 + }, + { + "start": 45400.94, + "end": 45405.26, + "probability": 0.9961 + }, + { + "start": 45406.42, + "end": 45406.9, + "probability": 0.821 + }, + { + "start": 45408.0, + "end": 45408.22, + "probability": 0.5964 + }, + { + "start": 45408.98, + "end": 45409.68, + "probability": 0.9436 + }, + { + "start": 45410.34, + "end": 45415.56, + "probability": 0.983 + }, + { + "start": 45416.0, + "end": 45417.18, + "probability": 0.1119 + }, + { + "start": 45417.62, + "end": 45421.06, + "probability": 0.8722 + }, + { + "start": 45422.46, + "end": 45424.06, + "probability": 0.9875 + }, + { + "start": 45425.66, + "end": 45427.61, + "probability": 0.9849 + }, + { + "start": 45430.12, + "end": 45432.92, + "probability": 0.9661 + }, + { + "start": 45433.94, + "end": 45434.9, + "probability": 0.9706 + }, + { + "start": 45437.26, + "end": 45438.34, + "probability": 0.9512 + }, + { + "start": 45438.86, + "end": 45440.1, + "probability": 0.9886 + }, + { + "start": 45440.8, + "end": 45442.29, + "probability": 0.998 + }, + { + "start": 45444.56, + "end": 45448.22, + "probability": 0.8096 + }, + { + "start": 45449.02, + "end": 45449.88, + "probability": 0.8434 + }, + { + "start": 45451.24, + "end": 45453.44, + "probability": 0.9678 + }, + { + "start": 45454.76, + "end": 45458.64, + "probability": 0.2449 + }, + { + "start": 45458.64, + "end": 45458.64, + "probability": 0.3337 + }, + { + "start": 45458.64, + "end": 45459.38, + "probability": 0.8379 + }, + { + "start": 45459.54, + "end": 45460.79, + "probability": 0.8775 + }, + { + "start": 45461.46, + "end": 45463.32, + "probability": 0.9424 + }, + { + "start": 45463.54, + "end": 45465.0, + "probability": 0.9261 + }, + { + "start": 45465.34, + "end": 45466.41, + "probability": 0.8779 + }, + { + "start": 45466.68, + "end": 45469.36, + "probability": 0.6286 + }, + { + "start": 45469.58, + "end": 45472.85, + "probability": 0.7694 + }, + { + "start": 45473.68, + "end": 45476.04, + "probability": 0.8697 + }, + { + "start": 45476.2, + "end": 45479.92, + "probability": 0.6024 + }, + { + "start": 45480.86, + "end": 45481.44, + "probability": 0.5962 + }, + { + "start": 45483.28, + "end": 45487.18, + "probability": 0.4493 + }, + { + "start": 45488.12, + "end": 45491.96, + "probability": 0.3526 + }, + { + "start": 45493.62, + "end": 45495.58, + "probability": 0.7667 + }, + { + "start": 45496.84, + "end": 45497.16, + "probability": 0.3571 + }, + { + "start": 45497.16, + "end": 45499.3, + "probability": 0.7667 + }, + { + "start": 45500.28, + "end": 45501.82, + "probability": 0.7803 + }, + { + "start": 45502.24, + "end": 45504.06, + "probability": 0.9717 + }, + { + "start": 45504.3, + "end": 45504.98, + "probability": 0.255 + }, + { + "start": 45504.98, + "end": 45507.14, + "probability": 0.4178 + }, + { + "start": 45508.47, + "end": 45510.02, + "probability": 0.5134 + }, + { + "start": 45510.92, + "end": 45511.32, + "probability": 0.5206 + }, + { + "start": 45512.28, + "end": 45514.22, + "probability": 0.8627 + }, + { + "start": 45514.36, + "end": 45518.3, + "probability": 0.9664 + }, + { + "start": 45521.72, + "end": 45524.34, + "probability": 0.6565 + }, + { + "start": 45525.18, + "end": 45526.89, + "probability": 0.9936 + }, + { + "start": 45528.12, + "end": 45529.92, + "probability": 0.7405 + }, + { + "start": 45530.0, + "end": 45530.14, + "probability": 0.1281 + }, + { + "start": 45531.84, + "end": 45534.02, + "probability": 0.9648 + }, + { + "start": 45535.98, + "end": 45538.7, + "probability": 0.9906 + }, + { + "start": 45539.28, + "end": 45541.18, + "probability": 0.9803 + }, + { + "start": 45541.18, + "end": 45543.26, + "probability": 0.9829 + }, + { + "start": 45543.84, + "end": 45545.56, + "probability": 0.9971 + }, + { + "start": 45546.32, + "end": 45549.34, + "probability": 0.9953 + }, + { + "start": 45550.14, + "end": 45553.04, + "probability": 0.9939 + }, + { + "start": 45553.72, + "end": 45555.2, + "probability": 0.997 + }, + { + "start": 45555.24, + "end": 45556.66, + "probability": 0.9863 + }, + { + "start": 45557.56, + "end": 45559.76, + "probability": 0.9409 + }, + { + "start": 45560.9, + "end": 45561.74, + "probability": 0.9714 + }, + { + "start": 45563.84, + "end": 45567.76, + "probability": 0.9855 + }, + { + "start": 45568.86, + "end": 45570.58, + "probability": 0.8901 + }, + { + "start": 45572.1, + "end": 45574.09, + "probability": 0.9768 + }, + { + "start": 45575.08, + "end": 45576.84, + "probability": 0.9917 + }, + { + "start": 45578.64, + "end": 45580.64, + "probability": 0.9181 + }, + { + "start": 45581.16, + "end": 45584.32, + "probability": 0.9701 + }, + { + "start": 45585.44, + "end": 45586.82, + "probability": 0.6834 + }, + { + "start": 45587.06, + "end": 45588.42, + "probability": 0.8795 + }, + { + "start": 45589.4, + "end": 45589.98, + "probability": 0.7275 + }, + { + "start": 45590.42, + "end": 45591.22, + "probability": 0.4001 + }, + { + "start": 45592.3, + "end": 45593.86, + "probability": 0.9966 + }, + { + "start": 45595.12, + "end": 45596.78, + "probability": 0.999 + }, + { + "start": 45597.64, + "end": 45598.25, + "probability": 0.9514 + }, + { + "start": 45600.06, + "end": 45600.72, + "probability": 0.9935 + }, + { + "start": 45601.78, + "end": 45605.78, + "probability": 0.6501 + }, + { + "start": 45606.38, + "end": 45608.84, + "probability": 0.8583 + }, + { + "start": 45611.44, + "end": 45612.62, + "probability": 0.6768 + }, + { + "start": 45613.66, + "end": 45615.08, + "probability": 0.9801 + }, + { + "start": 45616.56, + "end": 45619.2, + "probability": 0.9368 + }, + { + "start": 45619.92, + "end": 45620.64, + "probability": 0.9933 + }, + { + "start": 45621.42, + "end": 45622.74, + "probability": 0.968 + }, + { + "start": 45623.8, + "end": 45625.7, + "probability": 0.981 + }, + { + "start": 45627.98, + "end": 45629.14, + "probability": 0.8695 + }, + { + "start": 45631.0, + "end": 45632.68, + "probability": 0.9853 + }, + { + "start": 45633.38, + "end": 45634.94, + "probability": 0.9951 + }, + { + "start": 45636.0, + "end": 45637.06, + "probability": 0.9626 + }, + { + "start": 45638.86, + "end": 45640.3, + "probability": 0.8716 + }, + { + "start": 45642.8, + "end": 45648.46, + "probability": 0.6204 + }, + { + "start": 45649.62, + "end": 45650.8, + "probability": 0.9753 + }, + { + "start": 45651.84, + "end": 45654.88, + "probability": 0.9977 + }, + { + "start": 45656.36, + "end": 45660.92, + "probability": 0.7328 + }, + { + "start": 45662.06, + "end": 45664.29, + "probability": 0.6787 + }, + { + "start": 45664.46, + "end": 45666.54, + "probability": 0.9412 + }, + { + "start": 45671.43, + "end": 45672.57, + "probability": 0.6141 + }, + { + "start": 45674.24, + "end": 45676.86, + "probability": 0.7431 + }, + { + "start": 45677.74, + "end": 45679.52, + "probability": 0.8616 + }, + { + "start": 45680.12, + "end": 45683.04, + "probability": 0.8944 + }, + { + "start": 45683.72, + "end": 45684.88, + "probability": 0.8302 + }, + { + "start": 45685.44, + "end": 45686.41, + "probability": 0.6329 + }, + { + "start": 45687.56, + "end": 45688.28, + "probability": 0.8604 + }, + { + "start": 45689.48, + "end": 45690.67, + "probability": 0.8961 + }, + { + "start": 45692.4, + "end": 45694.37, + "probability": 0.954 + }, + { + "start": 45695.54, + "end": 45696.48, + "probability": 0.6927 + }, + { + "start": 45698.94, + "end": 45699.28, + "probability": 0.873 + }, + { + "start": 45700.26, + "end": 45701.48, + "probability": 0.941 + }, + { + "start": 45701.58, + "end": 45702.44, + "probability": 0.998 + }, + { + "start": 45704.2, + "end": 45705.54, + "probability": 0.953 + }, + { + "start": 45706.76, + "end": 45707.96, + "probability": 0.7155 + }, + { + "start": 45708.92, + "end": 45710.36, + "probability": 0.6666 + }, + { + "start": 45712.52, + "end": 45717.08, + "probability": 0.9972 + }, + { + "start": 45718.92, + "end": 45720.26, + "probability": 0.7407 + }, + { + "start": 45721.38, + "end": 45724.28, + "probability": 0.9956 + }, + { + "start": 45726.46, + "end": 45726.9, + "probability": 0.5767 + }, + { + "start": 45728.72, + "end": 45730.28, + "probability": 0.9974 + }, + { + "start": 45730.92, + "end": 45737.44, + "probability": 0.9976 + }, + { + "start": 45738.5, + "end": 45741.04, + "probability": 0.9953 + }, + { + "start": 45742.02, + "end": 45742.78, + "probability": 0.9206 + }, + { + "start": 45744.14, + "end": 45746.24, + "probability": 0.8801 + }, + { + "start": 45747.92, + "end": 45749.88, + "probability": 0.7094 + }, + { + "start": 45750.42, + "end": 45751.8, + "probability": 0.9667 + }, + { + "start": 45752.52, + "end": 45753.66, + "probability": 0.635 + }, + { + "start": 45755.22, + "end": 45758.24, + "probability": 0.7156 + }, + { + "start": 45759.44, + "end": 45761.46, + "probability": 0.8033 + }, + { + "start": 45762.22, + "end": 45764.78, + "probability": 0.9753 + }, + { + "start": 45766.0, + "end": 45767.78, + "probability": 0.9993 + }, + { + "start": 45768.82, + "end": 45769.22, + "probability": 0.9301 + }, + { + "start": 45769.88, + "end": 45771.42, + "probability": 0.4688 + }, + { + "start": 45772.04, + "end": 45773.86, + "probability": 0.8142 + }, + { + "start": 45774.02, + "end": 45775.52, + "probability": 0.9004 + }, + { + "start": 45776.33, + "end": 45779.64, + "probability": 0.7447 + }, + { + "start": 45780.3, + "end": 45781.2, + "probability": 0.7319 + }, + { + "start": 45782.02, + "end": 45782.54, + "probability": 0.9522 + }, + { + "start": 45783.08, + "end": 45784.74, + "probability": 0.6958 + }, + { + "start": 45784.86, + "end": 45785.42, + "probability": 0.796 + }, + { + "start": 45786.3, + "end": 45788.06, + "probability": 0.8283 + }, + { + "start": 45789.14, + "end": 45791.12, + "probability": 0.466 + }, + { + "start": 45791.68, + "end": 45792.88, + "probability": 0.606 + }, + { + "start": 45793.08, + "end": 45793.72, + "probability": 0.2712 + }, + { + "start": 45793.72, + "end": 45794.68, + "probability": 0.4847 + }, + { + "start": 45796.88, + "end": 45797.38, + "probability": 0.7165 + }, + { + "start": 45798.12, + "end": 45800.12, + "probability": 0.2734 + }, + { + "start": 45800.88, + "end": 45802.36, + "probability": 0.73 + }, + { + "start": 45806.48, + "end": 45809.08, + "probability": 0.304 + }, + { + "start": 45809.14, + "end": 45811.78, + "probability": 0.8867 + }, + { + "start": 45812.96, + "end": 45814.04, + "probability": 0.9916 + }, + { + "start": 45814.64, + "end": 45815.82, + "probability": 0.9984 + }, + { + "start": 45816.78, + "end": 45820.56, + "probability": 0.9677 + }, + { + "start": 45821.44, + "end": 45822.3, + "probability": 0.9634 + }, + { + "start": 45823.56, + "end": 45824.76, + "probability": 0.9888 + }, + { + "start": 45825.16, + "end": 45826.21, + "probability": 0.988 + }, + { + "start": 45827.02, + "end": 45828.05, + "probability": 0.7375 + }, + { + "start": 45828.34, + "end": 45828.9, + "probability": 0.8596 + }, + { + "start": 45830.2, + "end": 45832.1, + "probability": 0.9893 + }, + { + "start": 45833.02, + "end": 45833.89, + "probability": 0.9897 + }, + { + "start": 45834.66, + "end": 45835.2, + "probability": 0.9565 + }, + { + "start": 45836.26, + "end": 45837.12, + "probability": 0.9775 + }, + { + "start": 45837.82, + "end": 45838.37, + "probability": 0.9854 + }, + { + "start": 45839.18, + "end": 45841.5, + "probability": 0.9962 + }, + { + "start": 45842.06, + "end": 45844.0, + "probability": 0.9779 + }, + { + "start": 45844.56, + "end": 45846.42, + "probability": 0.991 + }, + { + "start": 45847.0, + "end": 45848.52, + "probability": 0.7606 + }, + { + "start": 45848.94, + "end": 45850.94, + "probability": 0.976 + }, + { + "start": 45852.08, + "end": 45853.83, + "probability": 0.9897 + }, + { + "start": 45854.92, + "end": 45856.32, + "probability": 0.9912 + }, + { + "start": 45857.34, + "end": 45859.04, + "probability": 0.97 + }, + { + "start": 45860.22, + "end": 45861.4, + "probability": 0.8994 + }, + { + "start": 45862.5, + "end": 45866.22, + "probability": 0.9822 + }, + { + "start": 45867.1, + "end": 45868.94, + "probability": 0.7329 + }, + { + "start": 45869.6, + "end": 45871.02, + "probability": 0.855 + }, + { + "start": 45871.7, + "end": 45872.64, + "probability": 0.6903 + }, + { + "start": 45874.26, + "end": 45875.3, + "probability": 0.9623 + }, + { + "start": 45877.49, + "end": 45880.2, + "probability": 0.738 + }, + { + "start": 45881.06, + "end": 45881.54, + "probability": 0.7449 + }, + { + "start": 45885.1, + "end": 45886.97, + "probability": 0.6448 + }, + { + "start": 45887.18, + "end": 45889.28, + "probability": 0.9089 + }, + { + "start": 45889.94, + "end": 45890.75, + "probability": 0.9941 + }, + { + "start": 45891.1, + "end": 45892.44, + "probability": 0.9951 + }, + { + "start": 45892.76, + "end": 45894.46, + "probability": 0.8157 + }, + { + "start": 45894.78, + "end": 45895.26, + "probability": 0.9687 + }, + { + "start": 45895.84, + "end": 45896.48, + "probability": 0.1991 + }, + { + "start": 45896.48, + "end": 45898.76, + "probability": 0.6344 + }, + { + "start": 45900.32, + "end": 45902.32, + "probability": 0.9646 + }, + { + "start": 45904.76, + "end": 45905.44, + "probability": 0.896 + }, + { + "start": 45907.42, + "end": 45909.96, + "probability": 0.9704 + }, + { + "start": 45911.88, + "end": 45916.58, + "probability": 0.9528 + }, + { + "start": 45916.58, + "end": 45920.96, + "probability": 0.9858 + }, + { + "start": 45922.02, + "end": 45923.4, + "probability": 0.9782 + }, + { + "start": 45923.94, + "end": 45925.02, + "probability": 0.826 + }, + { + "start": 45927.74, + "end": 45928.34, + "probability": 0.9182 + }, + { + "start": 45929.42, + "end": 45931.52, + "probability": 0.9904 + }, + { + "start": 45934.68, + "end": 45937.96, + "probability": 0.7907 + }, + { + "start": 45939.6, + "end": 45941.84, + "probability": 0.9946 + }, + { + "start": 45942.82, + "end": 45945.48, + "probability": 0.9967 + }, + { + "start": 45947.5, + "end": 45948.94, + "probability": 0.6859 + }, + { + "start": 45949.78, + "end": 45951.84, + "probability": 0.9923 + }, + { + "start": 45953.16, + "end": 45954.38, + "probability": 0.9105 + }, + { + "start": 45955.86, + "end": 45958.32, + "probability": 0.9951 + }, + { + "start": 45959.7, + "end": 45962.64, + "probability": 0.99 + }, + { + "start": 45962.83, + "end": 45965.98, + "probability": 0.9764 + }, + { + "start": 45966.36, + "end": 45967.03, + "probability": 0.9585 + }, + { + "start": 45968.2, + "end": 45969.28, + "probability": 0.8337 + }, + { + "start": 45969.9, + "end": 45970.96, + "probability": 0.7805 + }, + { + "start": 45971.06, + "end": 45972.44, + "probability": 0.9766 + }, + { + "start": 45973.0, + "end": 45976.62, + "probability": 0.9676 + }, + { + "start": 45979.02, + "end": 45979.84, + "probability": 0.8082 + }, + { + "start": 45980.86, + "end": 45983.38, + "probability": 0.9551 + }, + { + "start": 45984.44, + "end": 45986.14, + "probability": 0.9656 + }, + { + "start": 45986.66, + "end": 45988.9, + "probability": 0.9704 + }, + { + "start": 45991.14, + "end": 45992.9, + "probability": 0.8745 + }, + { + "start": 45993.62, + "end": 45996.1, + "probability": 0.9957 + }, + { + "start": 45998.76, + "end": 46000.22, + "probability": 0.829 + }, + { + "start": 46000.82, + "end": 46006.56, + "probability": 0.9569 + }, + { + "start": 46007.48, + "end": 46008.8, + "probability": 0.958 + }, + { + "start": 46010.02, + "end": 46012.24, + "probability": 0.9597 + }, + { + "start": 46016.36, + "end": 46016.94, + "probability": 0.673 + }, + { + "start": 46018.08, + "end": 46021.53, + "probability": 0.687 + }, + { + "start": 46023.9, + "end": 46025.52, + "probability": 0.9739 + }, + { + "start": 46026.9, + "end": 46028.36, + "probability": 0.7492 + }, + { + "start": 46028.88, + "end": 46029.88, + "probability": 0.9432 + }, + { + "start": 46031.28, + "end": 46032.77, + "probability": 0.917 + }, + { + "start": 46033.7, + "end": 46035.4, + "probability": 0.9111 + }, + { + "start": 46037.14, + "end": 46040.48, + "probability": 0.9346 + }, + { + "start": 46041.2, + "end": 46043.34, + "probability": 0.9968 + }, + { + "start": 46045.14, + "end": 46046.35, + "probability": 0.8718 + }, + { + "start": 46047.24, + "end": 46049.18, + "probability": 0.8606 + }, + { + "start": 46050.36, + "end": 46055.02, + "probability": 0.9885 + }, + { + "start": 46055.34, + "end": 46059.06, + "probability": 0.911 + }, + { + "start": 46059.38, + "end": 46059.7, + "probability": 0.7496 + }, + { + "start": 46060.12, + "end": 46061.54, + "probability": 0.7878 + }, + { + "start": 46063.22, + "end": 46065.22, + "probability": 0.995 + }, + { + "start": 46067.32, + "end": 46070.38, + "probability": 0.8814 + }, + { + "start": 46071.96, + "end": 46073.18, + "probability": 0.008 + }, + { + "start": 46074.74, + "end": 46078.46, + "probability": 0.0519 + }, + { + "start": 46079.2, + "end": 46079.74, + "probability": 0.0616 + }, + { + "start": 46096.22, + "end": 46096.84, + "probability": 0.328 + }, + { + "start": 46099.54, + "end": 46099.94, + "probability": 0.3574 + }, + { + "start": 46101.74, + "end": 46102.84, + "probability": 0.6567 + }, + { + "start": 46103.76, + "end": 46104.4, + "probability": 0.8142 + }, + { + "start": 46106.8, + "end": 46109.26, + "probability": 0.9387 + }, + { + "start": 46110.4, + "end": 46113.12, + "probability": 0.9173 + }, + { + "start": 46114.72, + "end": 46115.0, + "probability": 0.6865 + }, + { + "start": 46115.08, + "end": 46118.18, + "probability": 0.8746 + }, + { + "start": 46119.92, + "end": 46124.34, + "probability": 0.9891 + }, + { + "start": 46127.9, + "end": 46130.12, + "probability": 0.891 + }, + { + "start": 46131.5, + "end": 46132.3, + "probability": 0.7749 + }, + { + "start": 46132.36, + "end": 46133.0, + "probability": 0.6068 + }, + { + "start": 46133.0, + "end": 46135.74, + "probability": 0.9744 + }, + { + "start": 46138.26, + "end": 46139.16, + "probability": 0.8557 + }, + { + "start": 46140.16, + "end": 46141.26, + "probability": 0.9998 + }, + { + "start": 46142.68, + "end": 46143.32, + "probability": 0.8133 + }, + { + "start": 46146.7, + "end": 46147.32, + "probability": 0.9998 + }, + { + "start": 46147.86, + "end": 46148.66, + "probability": 0.7932 + }, + { + "start": 46149.46, + "end": 46153.3, + "probability": 0.9948 + }, + { + "start": 46156.5, + "end": 46159.34, + "probability": 0.5983 + }, + { + "start": 46161.11, + "end": 46167.06, + "probability": 0.8084 + }, + { + "start": 46169.48, + "end": 46171.42, + "probability": 0.713 + }, + { + "start": 46171.82, + "end": 46173.22, + "probability": 0.9865 + }, + { + "start": 46174.32, + "end": 46174.9, + "probability": 0.6464 + }, + { + "start": 46176.26, + "end": 46177.34, + "probability": 0.8334 + }, + { + "start": 46178.82, + "end": 46182.64, + "probability": 0.994 + }, + { + "start": 46183.88, + "end": 46185.3, + "probability": 0.8555 + }, + { + "start": 46187.26, + "end": 46188.94, + "probability": 0.9644 + }, + { + "start": 46189.08, + "end": 46190.64, + "probability": 0.9956 + }, + { + "start": 46190.68, + "end": 46191.38, + "probability": 0.9774 + }, + { + "start": 46193.1, + "end": 46195.07, + "probability": 0.6646 + }, + { + "start": 46195.2, + "end": 46196.82, + "probability": 0.8809 + }, + { + "start": 46197.88, + "end": 46199.18, + "probability": 0.9771 + }, + { + "start": 46199.38, + "end": 46201.52, + "probability": 0.9656 + }, + { + "start": 46203.28, + "end": 46207.86, + "probability": 0.9553 + }, + { + "start": 46208.58, + "end": 46210.0, + "probability": 0.9419 + }, + { + "start": 46211.28, + "end": 46213.76, + "probability": 0.7474 + }, + { + "start": 46216.24, + "end": 46218.4, + "probability": 0.9966 + }, + { + "start": 46219.34, + "end": 46220.21, + "probability": 0.9752 + }, + { + "start": 46220.86, + "end": 46223.36, + "probability": 0.7973 + }, + { + "start": 46223.98, + "end": 46224.82, + "probability": 0.9985 + }, + { + "start": 46226.8, + "end": 46229.6, + "probability": 0.4652 + }, + { + "start": 46230.2, + "end": 46232.1, + "probability": 0.6705 + }, + { + "start": 46232.96, + "end": 46234.56, + "probability": 0.8435 + }, + { + "start": 46235.74, + "end": 46238.5, + "probability": 0.8541 + }, + { + "start": 46240.34, + "end": 46241.36, + "probability": 0.5165 + }, + { + "start": 46242.28, + "end": 46243.04, + "probability": 0.9134 + }, + { + "start": 46243.24, + "end": 46243.65, + "probability": 0.9639 + }, + { + "start": 46243.96, + "end": 46245.24, + "probability": 0.9482 + }, + { + "start": 46245.94, + "end": 46248.92, + "probability": 0.9795 + }, + { + "start": 46250.1, + "end": 46251.48, + "probability": 0.9644 + }, + { + "start": 46252.72, + "end": 46255.9, + "probability": 0.7444 + }, + { + "start": 46258.1, + "end": 46264.86, + "probability": 0.9347 + }, + { + "start": 46265.64, + "end": 46268.52, + "probability": 0.6368 + }, + { + "start": 46270.02, + "end": 46270.62, + "probability": 0.4341 + }, + { + "start": 46273.26, + "end": 46276.26, + "probability": 0.9895 + }, + { + "start": 46278.54, + "end": 46279.64, + "probability": 0.79 + }, + { + "start": 46280.16, + "end": 46281.5, + "probability": 0.9839 + }, + { + "start": 46282.38, + "end": 46285.34, + "probability": 0.9621 + }, + { + "start": 46287.56, + "end": 46291.46, + "probability": 0.969 + }, + { + "start": 46291.6, + "end": 46293.64, + "probability": 0.9739 + }, + { + "start": 46293.7, + "end": 46295.06, + "probability": 0.9506 + }, + { + "start": 46296.08, + "end": 46297.14, + "probability": 0.5565 + }, + { + "start": 46298.14, + "end": 46301.06, + "probability": 0.971 + }, + { + "start": 46301.44, + "end": 46303.4, + "probability": 0.9919 + }, + { + "start": 46305.28, + "end": 46306.48, + "probability": 0.9865 + }, + { + "start": 46309.42, + "end": 46320.88, + "probability": 0.6645 + }, + { + "start": 46321.04, + "end": 46321.52, + "probability": 0.8146 + }, + { + "start": 46323.48, + "end": 46324.52, + "probability": 0.9346 + }, + { + "start": 46324.8, + "end": 46328.1, + "probability": 0.8938 + }, + { + "start": 46328.36, + "end": 46329.82, + "probability": 0.9857 + }, + { + "start": 46332.58, + "end": 46335.34, + "probability": 0.8847 + }, + { + "start": 46336.64, + "end": 46339.1, + "probability": 0.989 + }, + { + "start": 46340.34, + "end": 46342.06, + "probability": 0.9919 + }, + { + "start": 46344.4, + "end": 46347.12, + "probability": 0.7939 + }, + { + "start": 46348.68, + "end": 46349.14, + "probability": 0.655 + }, + { + "start": 46350.74, + "end": 46353.04, + "probability": 0.988 + }, + { + "start": 46353.44, + "end": 46354.56, + "probability": 0.8259 + }, + { + "start": 46356.23, + "end": 46357.56, + "probability": 0.9939 + }, + { + "start": 46357.7, + "end": 46361.9, + "probability": 0.89 + }, + { + "start": 46362.84, + "end": 46364.4, + "probability": 0.7863 + }, + { + "start": 46365.16, + "end": 46366.16, + "probability": 0.8809 + }, + { + "start": 46366.34, + "end": 46367.93, + "probability": 0.7726 + }, + { + "start": 46368.58, + "end": 46369.56, + "probability": 0.8124 + }, + { + "start": 46370.24, + "end": 46372.64, + "probability": 0.8577 + }, + { + "start": 46374.28, + "end": 46375.54, + "probability": 0.998 + }, + { + "start": 46377.22, + "end": 46378.76, + "probability": 0.9993 + }, + { + "start": 46380.26, + "end": 46385.08, + "probability": 0.7774 + }, + { + "start": 46386.4, + "end": 46388.16, + "probability": 0.8941 + }, + { + "start": 46388.2, + "end": 46389.96, + "probability": 0.7958 + }, + { + "start": 46391.94, + "end": 46393.16, + "probability": 0.7295 + }, + { + "start": 46393.38, + "end": 46395.6, + "probability": 0.6118 + }, + { + "start": 46396.86, + "end": 46397.2, + "probability": 0.5093 + }, + { + "start": 46399.04, + "end": 46399.84, + "probability": 0.502 + }, + { + "start": 46401.3, + "end": 46403.38, + "probability": 0.9639 + }, + { + "start": 46404.6, + "end": 46406.5, + "probability": 0.9061 + }, + { + "start": 46407.34, + "end": 46408.16, + "probability": 0.7333 + }, + { + "start": 46409.1, + "end": 46410.86, + "probability": 0.9927 + }, + { + "start": 46410.92, + "end": 46412.42, + "probability": 0.6945 + }, + { + "start": 46413.1, + "end": 46414.48, + "probability": 0.9081 + }, + { + "start": 46415.5, + "end": 46416.4, + "probability": 0.909 + }, + { + "start": 46417.46, + "end": 46420.4, + "probability": 0.9969 + }, + { + "start": 46420.5, + "end": 46421.24, + "probability": 0.7343 + }, + { + "start": 46422.0, + "end": 46423.92, + "probability": 0.6703 + }, + { + "start": 46425.56, + "end": 46427.8, + "probability": 0.9626 + }, + { + "start": 46429.22, + "end": 46429.98, + "probability": 0.4632 + }, + { + "start": 46430.68, + "end": 46431.5, + "probability": 0.942 + }, + { + "start": 46432.2, + "end": 46432.84, + "probability": 0.8035 + }, + { + "start": 46434.34, + "end": 46439.32, + "probability": 0.8476 + }, + { + "start": 46442.68, + "end": 46446.58, + "probability": 0.9841 + }, + { + "start": 46447.82, + "end": 46450.54, + "probability": 0.9444 + }, + { + "start": 46450.54, + "end": 46451.38, + "probability": 0.8596 + }, + { + "start": 46454.16, + "end": 46455.04, + "probability": 0.8214 + }, + { + "start": 46455.46, + "end": 46462.2, + "probability": 0.8973 + }, + { + "start": 46463.4, + "end": 46465.98, + "probability": 0.6434 + }, + { + "start": 46468.14, + "end": 46469.82, + "probability": 0.7197 + }, + { + "start": 46470.88, + "end": 46471.91, + "probability": 0.9868 + }, + { + "start": 46474.16, + "end": 46477.86, + "probability": 0.9844 + }, + { + "start": 46479.72, + "end": 46480.44, + "probability": 0.8325 + }, + { + "start": 46482.62, + "end": 46483.44, + "probability": 0.7968 + }, + { + "start": 46484.54, + "end": 46485.84, + "probability": 0.9013 + }, + { + "start": 46486.48, + "end": 46488.22, + "probability": 0.9971 + }, + { + "start": 46490.46, + "end": 46491.6, + "probability": 0.9386 + }, + { + "start": 46494.04, + "end": 46494.84, + "probability": 0.5075 + }, + { + "start": 46494.86, + "end": 46495.98, + "probability": 0.8639 + }, + { + "start": 46496.02, + "end": 46496.9, + "probability": 0.8711 + }, + { + "start": 46499.32, + "end": 46503.0, + "probability": 0.6557 + }, + { + "start": 46504.28, + "end": 46505.24, + "probability": 0.7522 + }, + { + "start": 46507.44, + "end": 46510.8, + "probability": 0.6237 + }, + { + "start": 46511.9, + "end": 46514.77, + "probability": 0.9246 + }, + { + "start": 46517.38, + "end": 46518.82, + "probability": 0.7605 + }, + { + "start": 46520.05, + "end": 46522.58, + "probability": 0.514 + }, + { + "start": 46523.88, + "end": 46524.96, + "probability": 0.6064 + }, + { + "start": 46526.32, + "end": 46531.14, + "probability": 0.9586 + }, + { + "start": 46535.08, + "end": 46541.04, + "probability": 0.988 + }, + { + "start": 46541.38, + "end": 46543.78, + "probability": 0.8562 + }, + { + "start": 46546.5, + "end": 46546.6, + "probability": 0.7379 + }, + { + "start": 46547.22, + "end": 46548.04, + "probability": 0.8724 + }, + { + "start": 46549.06, + "end": 46552.66, + "probability": 0.821 + }, + { + "start": 46555.32, + "end": 46557.74, + "probability": 0.8797 + }, + { + "start": 46558.78, + "end": 46562.06, + "probability": 0.8667 + }, + { + "start": 46562.64, + "end": 46564.06, + "probability": 0.369 + }, + { + "start": 46564.7, + "end": 46566.76, + "probability": 0.6283 + }, + { + "start": 46567.44, + "end": 46570.58, + "probability": 0.6736 + }, + { + "start": 46570.94, + "end": 46572.0, + "probability": 0.8591 + }, + { + "start": 46572.08, + "end": 46573.22, + "probability": 0.9856 + }, + { + "start": 46574.34, + "end": 46576.36, + "probability": 0.5493 + }, + { + "start": 46577.22, + "end": 46578.45, + "probability": 0.9854 + }, + { + "start": 46579.66, + "end": 46580.74, + "probability": 0.8048 + }, + { + "start": 46581.54, + "end": 46586.16, + "probability": 0.9295 + }, + { + "start": 46587.16, + "end": 46588.66, + "probability": 0.6413 + }, + { + "start": 46590.02, + "end": 46590.98, + "probability": 0.8272 + }, + { + "start": 46591.36, + "end": 46593.58, + "probability": 0.9064 + }, + { + "start": 46594.84, + "end": 46595.86, + "probability": 0.9978 + }, + { + "start": 46597.64, + "end": 46598.58, + "probability": 0.6041 + }, + { + "start": 46599.76, + "end": 46600.78, + "probability": 0.9544 + }, + { + "start": 46602.14, + "end": 46604.06, + "probability": 0.9384 + }, + { + "start": 46605.92, + "end": 46608.68, + "probability": 0.98 + }, + { + "start": 46611.1, + "end": 46612.58, + "probability": 0.9027 + }, + { + "start": 46614.64, + "end": 46616.7, + "probability": 0.976 + }, + { + "start": 46619.44, + "end": 46620.76, + "probability": 0.677 + }, + { + "start": 46622.36, + "end": 46624.6, + "probability": 0.869 + }, + { + "start": 46626.52, + "end": 46629.05, + "probability": 0.996 + }, + { + "start": 46634.06, + "end": 46635.88, + "probability": 0.5923 + }, + { + "start": 46637.04, + "end": 46637.97, + "probability": 0.5605 + }, + { + "start": 46641.64, + "end": 46646.28, + "probability": 0.9241 + }, + { + "start": 46647.0, + "end": 46647.72, + "probability": 0.669 + }, + { + "start": 46649.82, + "end": 46650.4, + "probability": 0.4924 + }, + { + "start": 46651.92, + "end": 46652.6, + "probability": 0.6986 + }, + { + "start": 46652.96, + "end": 46653.54, + "probability": 0.9557 + }, + { + "start": 46657.56, + "end": 46661.88, + "probability": 0.9201 + }, + { + "start": 46662.52, + "end": 46663.22, + "probability": 0.4589 + }, + { + "start": 46663.82, + "end": 46664.3, + "probability": 0.9559 + }, + { + "start": 46665.06, + "end": 46668.14, + "probability": 0.9032 + }, + { + "start": 46668.22, + "end": 46669.08, + "probability": 0.8047 + }, + { + "start": 46669.16, + "end": 46669.8, + "probability": 0.6634 + }, + { + "start": 46670.5, + "end": 46671.52, + "probability": 0.9045 + }, + { + "start": 46672.6, + "end": 46673.64, + "probability": 0.9349 + }, + { + "start": 46674.74, + "end": 46676.32, + "probability": 0.8312 + }, + { + "start": 46678.06, + "end": 46678.84, + "probability": 0.8726 + }, + { + "start": 46680.34, + "end": 46680.76, + "probability": 0.9789 + }, + { + "start": 46681.6, + "end": 46682.3, + "probability": 0.9484 + }, + { + "start": 46683.44, + "end": 46684.86, + "probability": 0.988 + }, + { + "start": 46685.94, + "end": 46690.46, + "probability": 0.9619 + }, + { + "start": 46690.96, + "end": 46692.5, + "probability": 0.0899 + }, + { + "start": 46693.12, + "end": 46693.42, + "probability": 0.4605 + }, + { + "start": 46696.58, + "end": 46698.6, + "probability": 0.8052 + }, + { + "start": 46699.56, + "end": 46701.8, + "probability": 0.9395 + }, + { + "start": 46703.82, + "end": 46706.78, + "probability": 0.7188 + }, + { + "start": 46707.92, + "end": 46708.46, + "probability": 0.9526 + }, + { + "start": 46709.44, + "end": 46709.86, + "probability": 0.7652 + }, + { + "start": 46710.44, + "end": 46711.42, + "probability": 0.9995 + }, + { + "start": 46712.38, + "end": 46713.18, + "probability": 0.6179 + }, + { + "start": 46713.88, + "end": 46717.0, + "probability": 0.8834 + }, + { + "start": 46717.98, + "end": 46718.18, + "probability": 0.9884 + }, + { + "start": 46720.64, + "end": 46721.64, + "probability": 0.9764 + }, + { + "start": 46723.06, + "end": 46724.48, + "probability": 0.606 + }, + { + "start": 46727.32, + "end": 46730.04, + "probability": 0.9868 + }, + { + "start": 46730.62, + "end": 46731.42, + "probability": 0.7749 + }, + { + "start": 46733.4, + "end": 46733.64, + "probability": 0.6555 + }, + { + "start": 46735.05, + "end": 46738.42, + "probability": 0.8046 + }, + { + "start": 46739.44, + "end": 46740.76, + "probability": 0.8962 + }, + { + "start": 46742.04, + "end": 46744.76, + "probability": 0.9271 + }, + { + "start": 46746.64, + "end": 46747.94, + "probability": 0.8494 + }, + { + "start": 46748.56, + "end": 46749.46, + "probability": 0.8712 + }, + { + "start": 46750.08, + "end": 46753.0, + "probability": 0.9544 + }, + { + "start": 46755.14, + "end": 46757.74, + "probability": 0.91 + }, + { + "start": 46759.96, + "end": 46762.02, + "probability": 0.6655 + }, + { + "start": 46763.68, + "end": 46767.5, + "probability": 0.3308 + }, + { + "start": 46769.36, + "end": 46771.66, + "probability": 0.7211 + }, + { + "start": 46772.98, + "end": 46777.12, + "probability": 0.8046 + }, + { + "start": 46777.86, + "end": 46778.68, + "probability": 0.9869 + }, + { + "start": 46779.88, + "end": 46780.3, + "probability": 0.4655 + }, + { + "start": 46781.86, + "end": 46783.86, + "probability": 0.9727 + }, + { + "start": 46784.64, + "end": 46787.28, + "probability": 0.897 + }, + { + "start": 46788.3, + "end": 46790.64, + "probability": 0.9968 + }, + { + "start": 46791.92, + "end": 46793.92, + "probability": 0.8416 + }, + { + "start": 46795.1, + "end": 46799.46, + "probability": 0.9762 + }, + { + "start": 46801.66, + "end": 46802.56, + "probability": 0.614 + }, + { + "start": 46803.58, + "end": 46805.11, + "probability": 0.4335 + }, + { + "start": 46807.24, + "end": 46809.02, + "probability": 0.8036 + }, + { + "start": 46809.88, + "end": 46811.28, + "probability": 0.9938 + }, + { + "start": 46811.84, + "end": 46812.78, + "probability": 0.7537 + }, + { + "start": 46814.44, + "end": 46816.7, + "probability": 0.7754 + }, + { + "start": 46817.28, + "end": 46817.66, + "probability": 0.6323 + }, + { + "start": 46818.48, + "end": 46820.7, + "probability": 0.8819 + }, + { + "start": 46821.82, + "end": 46822.52, + "probability": 0.8393 + }, + { + "start": 46823.16, + "end": 46825.7, + "probability": 0.9918 + }, + { + "start": 46826.52, + "end": 46828.12, + "probability": 0.7124 + }, + { + "start": 46829.32, + "end": 46830.88, + "probability": 0.7294 + }, + { + "start": 46832.32, + "end": 46838.84, + "probability": 0.944 + }, + { + "start": 46839.12, + "end": 46842.44, + "probability": 0.7256 + }, + { + "start": 46844.38, + "end": 46846.46, + "probability": 0.9102 + }, + { + "start": 46848.72, + "end": 46849.68, + "probability": 0.7629 + }, + { + "start": 46850.96, + "end": 46851.22, + "probability": 0.9273 + }, + { + "start": 46852.98, + "end": 46853.4, + "probability": 0.961 + }, + { + "start": 46854.26, + "end": 46855.86, + "probability": 0.9237 + }, + { + "start": 46857.04, + "end": 46858.86, + "probability": 0.8821 + }, + { + "start": 46859.78, + "end": 46860.56, + "probability": 0.5465 + }, + { + "start": 46861.62, + "end": 46862.7, + "probability": 0.6969 + }, + { + "start": 46863.38, + "end": 46866.4, + "probability": 0.9731 + }, + { + "start": 46867.44, + "end": 46868.86, + "probability": 0.7388 + }, + { + "start": 46870.08, + "end": 46873.4, + "probability": 0.9832 + }, + { + "start": 46875.34, + "end": 46879.16, + "probability": 0.979 + }, + { + "start": 46880.78, + "end": 46882.38, + "probability": 0.7288 + }, + { + "start": 46882.78, + "end": 46885.72, + "probability": 0.936 + }, + { + "start": 46885.8, + "end": 46886.34, + "probability": 0.7398 + }, + { + "start": 46886.5, + "end": 46886.82, + "probability": 0.6667 + }, + { + "start": 46888.42, + "end": 46889.26, + "probability": 0.8519 + }, + { + "start": 46891.54, + "end": 46892.62, + "probability": 0.7095 + }, + { + "start": 46893.44, + "end": 46895.68, + "probability": 0.8189 + }, + { + "start": 46897.66, + "end": 46898.36, + "probability": 0.7929 + }, + { + "start": 46901.34, + "end": 46902.12, + "probability": 0.7147 + }, + { + "start": 46902.96, + "end": 46904.34, + "probability": 0.9757 + }, + { + "start": 46905.96, + "end": 46907.02, + "probability": 0.3551 + }, + { + "start": 46908.32, + "end": 46909.56, + "probability": 0.9891 + }, + { + "start": 46911.96, + "end": 46913.1, + "probability": 0.6572 + }, + { + "start": 46915.84, + "end": 46918.78, + "probability": 0.7354 + }, + { + "start": 46919.06, + "end": 46920.92, + "probability": 0.9136 + }, + { + "start": 46921.64, + "end": 46925.32, + "probability": 0.8198 + }, + { + "start": 46928.34, + "end": 46931.0, + "probability": 0.9808 + }, + { + "start": 46932.32, + "end": 46934.02, + "probability": 0.6691 + }, + { + "start": 46934.66, + "end": 46936.8, + "probability": 0.8671 + }, + { + "start": 46938.14, + "end": 46939.8, + "probability": 0.6423 + }, + { + "start": 46942.02, + "end": 46944.66, + "probability": 0.8527 + }, + { + "start": 46946.26, + "end": 46946.78, + "probability": 0.8485 + }, + { + "start": 46949.48, + "end": 46950.76, + "probability": 0.9949 + }, + { + "start": 46953.1, + "end": 46953.64, + "probability": 0.8016 + }, + { + "start": 46955.06, + "end": 46955.7, + "probability": 0.8688 + }, + { + "start": 46957.46, + "end": 46959.96, + "probability": 0.7516 + }, + { + "start": 46960.92, + "end": 46961.28, + "probability": 0.6973 + }, + { + "start": 46963.24, + "end": 46963.78, + "probability": 0.7885 + }, + { + "start": 46966.74, + "end": 46967.16, + "probability": 0.908 + }, + { + "start": 46968.96, + "end": 46969.62, + "probability": 0.8596 + }, + { + "start": 46971.56, + "end": 46972.59, + "probability": 0.8658 + }, + { + "start": 46975.2, + "end": 46976.22, + "probability": 0.9937 + }, + { + "start": 46978.86, + "end": 46981.7, + "probability": 0.9526 + }, + { + "start": 46984.9, + "end": 46985.32, + "probability": 0.326 + }, + { + "start": 46988.98, + "end": 46989.5, + "probability": 0.626 + }, + { + "start": 46995.18, + "end": 46998.5, + "probability": 0.9827 + }, + { + "start": 46999.9, + "end": 47001.98, + "probability": 0.9976 + }, + { + "start": 47004.14, + "end": 47006.1, + "probability": 0.989 + }, + { + "start": 47007.28, + "end": 47011.76, + "probability": 0.576 + }, + { + "start": 47013.06, + "end": 47014.58, + "probability": 0.8767 + }, + { + "start": 47017.0, + "end": 47019.56, + "probability": 0.9333 + }, + { + "start": 47022.0, + "end": 47026.12, + "probability": 0.8667 + }, + { + "start": 47027.22, + "end": 47028.76, + "probability": 0.9967 + }, + { + "start": 47032.62, + "end": 47035.84, + "probability": 0.9939 + }, + { + "start": 47037.94, + "end": 47040.82, + "probability": 0.971 + }, + { + "start": 47042.6, + "end": 47046.9, + "probability": 0.9771 + }, + { + "start": 47049.12, + "end": 47050.58, + "probability": 0.9715 + }, + { + "start": 47052.06, + "end": 47053.42, + "probability": 0.9417 + }, + { + "start": 47055.42, + "end": 47057.12, + "probability": 0.7881 + }, + { + "start": 47058.88, + "end": 47061.16, + "probability": 0.9537 + }, + { + "start": 47062.0, + "end": 47062.62, + "probability": 0.6475 + }, + { + "start": 47065.14, + "end": 47065.4, + "probability": 0.7737 + }, + { + "start": 47066.08, + "end": 47068.7, + "probability": 0.8116 + }, + { + "start": 47068.74, + "end": 47070.04, + "probability": 0.6805 + }, + { + "start": 47071.26, + "end": 47073.08, + "probability": 0.7087 + }, + { + "start": 47075.8, + "end": 47077.7, + "probability": 0.9966 + }, + { + "start": 47079.22, + "end": 47081.1, + "probability": 0.9976 + }, + { + "start": 47082.0, + "end": 47084.0, + "probability": 0.8836 + }, + { + "start": 47084.96, + "end": 47086.62, + "probability": 0.9988 + }, + { + "start": 47090.62, + "end": 47092.56, + "probability": 0.7905 + }, + { + "start": 47095.18, + "end": 47098.34, + "probability": 0.7698 + }, + { + "start": 47101.86, + "end": 47103.26, + "probability": 0.6129 + }, + { + "start": 47105.8, + "end": 47107.36, + "probability": 0.9995 + }, + { + "start": 47108.82, + "end": 47110.88, + "probability": 0.9908 + }, + { + "start": 47112.76, + "end": 47115.14, + "probability": 0.9946 + }, + { + "start": 47115.7, + "end": 47116.46, + "probability": 0.908 + }, + { + "start": 47118.52, + "end": 47120.5, + "probability": 0.823 + }, + { + "start": 47122.18, + "end": 47123.84, + "probability": 0.7435 + }, + { + "start": 47126.24, + "end": 47128.7, + "probability": 0.8816 + }, + { + "start": 47129.74, + "end": 47130.66, + "probability": 0.8274 + }, + { + "start": 47133.24, + "end": 47134.04, + "probability": 0.554 + }, + { + "start": 47137.04, + "end": 47140.68, + "probability": 0.9947 + }, + { + "start": 47143.58, + "end": 47146.26, + "probability": 0.7403 + }, + { + "start": 47147.26, + "end": 47148.12, + "probability": 0.9 + }, + { + "start": 47152.14, + "end": 47152.14, + "probability": 0.9507 + }, + { + "start": 47153.74, + "end": 47154.84, + "probability": 0.7623 + }, + { + "start": 47156.56, + "end": 47162.52, + "probability": 0.9171 + }, + { + "start": 47163.04, + "end": 47163.74, + "probability": 0.9525 + }, + { + "start": 47165.16, + "end": 47166.16, + "probability": 0.6103 + }, + { + "start": 47168.32, + "end": 47169.54, + "probability": 0.7859 + }, + { + "start": 47170.98, + "end": 47173.94, + "probability": 0.7858 + }, + { + "start": 47174.88, + "end": 47178.38, + "probability": 0.9526 + }, + { + "start": 47179.92, + "end": 47181.22, + "probability": 0.8975 + }, + { + "start": 47184.12, + "end": 47187.48, + "probability": 0.9939 + }, + { + "start": 47189.22, + "end": 47191.9, + "probability": 0.8933 + }, + { + "start": 47192.78, + "end": 47195.58, + "probability": 0.8779 + }, + { + "start": 47195.7, + "end": 47196.48, + "probability": 0.9718 + }, + { + "start": 47197.84, + "end": 47198.32, + "probability": 0.7657 + }, + { + "start": 47199.76, + "end": 47201.56, + "probability": 0.5056 + }, + { + "start": 47204.16, + "end": 47204.76, + "probability": 0.8395 + }, + { + "start": 47206.06, + "end": 47207.32, + "probability": 0.995 + }, + { + "start": 47208.24, + "end": 47211.2, + "probability": 0.578 + }, + { + "start": 47212.72, + "end": 47214.46, + "probability": 0.7799 + }, + { + "start": 47215.92, + "end": 47216.86, + "probability": 0.708 + }, + { + "start": 47219.24, + "end": 47222.56, + "probability": 0.926 + }, + { + "start": 47224.84, + "end": 47226.85, + "probability": 0.7394 + }, + { + "start": 47228.36, + "end": 47228.76, + "probability": 0.4828 + }, + { + "start": 47228.98, + "end": 47232.14, + "probability": 0.9937 + }, + { + "start": 47235.58, + "end": 47236.26, + "probability": 0.6214 + }, + { + "start": 47237.76, + "end": 47238.3, + "probability": 0.9586 + }, + { + "start": 47238.9, + "end": 47244.18, + "probability": 0.9762 + }, + { + "start": 47246.32, + "end": 47247.34, + "probability": 0.7412 + }, + { + "start": 47248.42, + "end": 47251.1, + "probability": 0.956 + }, + { + "start": 47252.24, + "end": 47254.32, + "probability": 0.9465 + }, + { + "start": 47255.3, + "end": 47256.44, + "probability": 0.943 + }, + { + "start": 47257.2, + "end": 47257.54, + "probability": 0.9463 + }, + { + "start": 47259.34, + "end": 47260.18, + "probability": 0.9817 + }, + { + "start": 47261.26, + "end": 47262.3, + "probability": 0.9092 + }, + { + "start": 47267.18, + "end": 47268.22, + "probability": 0.6655 + }, + { + "start": 47270.38, + "end": 47273.94, + "probability": 0.9577 + }, + { + "start": 47274.06, + "end": 47275.32, + "probability": 0.6917 + }, + { + "start": 47276.46, + "end": 47277.88, + "probability": 0.878 + }, + { + "start": 47278.64, + "end": 47281.84, + "probability": 0.7746 + }, + { + "start": 47282.9, + "end": 47285.58, + "probability": 0.9646 + }, + { + "start": 47286.08, + "end": 47287.44, + "probability": 0.8736 + }, + { + "start": 47288.2, + "end": 47289.68, + "probability": 0.7819 + }, + { + "start": 47290.3, + "end": 47292.66, + "probability": 0.9817 + }, + { + "start": 47292.74, + "end": 47293.6, + "probability": 0.7448 + }, + { + "start": 47294.3, + "end": 47296.84, + "probability": 0.8289 + }, + { + "start": 47297.34, + "end": 47300.55, + "probability": 0.9922 + }, + { + "start": 47301.58, + "end": 47301.58, + "probability": 0.3894 + }, + { + "start": 47301.82, + "end": 47302.1, + "probability": 0.901 + }, + { + "start": 47302.66, + "end": 47303.48, + "probability": 0.9351 + }, + { + "start": 47303.86, + "end": 47304.64, + "probability": 0.9718 + }, + { + "start": 47305.0, + "end": 47308.84, + "probability": 0.9698 + }, + { + "start": 47308.92, + "end": 47313.42, + "probability": 0.7446 + }, + { + "start": 47314.22, + "end": 47315.06, + "probability": 0.6551 + }, + { + "start": 47315.54, + "end": 47315.94, + "probability": 0.5649 + }, + { + "start": 47316.1, + "end": 47316.75, + "probability": 0.0768 + }, + { + "start": 47317.36, + "end": 47318.0, + "probability": 0.7458 + }, + { + "start": 47318.84, + "end": 47321.12, + "probability": 0.8801 + }, + { + "start": 47321.3, + "end": 47323.44, + "probability": 0.6666 + }, + { + "start": 47324.4, + "end": 47327.26, + "probability": 0.7702 + }, + { + "start": 47328.84, + "end": 47330.54, + "probability": 0.8209 + }, + { + "start": 47331.06, + "end": 47331.66, + "probability": 0.9829 + }, + { + "start": 47332.12, + "end": 47332.97, + "probability": 0.7556 + }, + { + "start": 47333.16, + "end": 47333.92, + "probability": 0.8399 + }, + { + "start": 47338.46, + "end": 47338.88, + "probability": 0.7858 + }, + { + "start": 47340.34, + "end": 47342.02, + "probability": 0.9884 + }, + { + "start": 47343.5, + "end": 47344.32, + "probability": 0.7119 + }, + { + "start": 47345.52, + "end": 47348.12, + "probability": 0.8411 + }, + { + "start": 47350.62, + "end": 47352.18, + "probability": 0.8586 + }, + { + "start": 47353.7, + "end": 47354.24, + "probability": 0.9493 + }, + { + "start": 47355.34, + "end": 47357.12, + "probability": 0.575 + }, + { + "start": 47358.36, + "end": 47361.82, + "probability": 0.952 + }, + { + "start": 47363.32, + "end": 47365.98, + "probability": 0.9888 + }, + { + "start": 47367.82, + "end": 47369.14, + "probability": 0.9663 + }, + { + "start": 47371.46, + "end": 47376.64, + "probability": 0.8325 + }, + { + "start": 47377.32, + "end": 47380.4, + "probability": 0.7947 + }, + { + "start": 47381.62, + "end": 47381.86, + "probability": 0.7446 + }, + { + "start": 47384.58, + "end": 47385.78, + "probability": 0.9971 + }, + { + "start": 47386.54, + "end": 47389.84, + "probability": 0.8244 + }, + { + "start": 47391.1, + "end": 47397.3, + "probability": 0.9667 + }, + { + "start": 47398.54, + "end": 47400.32, + "probability": 0.9954 + }, + { + "start": 47403.74, + "end": 47404.3, + "probability": 0.9251 + }, + { + "start": 47405.7, + "end": 47406.97, + "probability": 0.9806 + }, + { + "start": 47408.4, + "end": 47409.6, + "probability": 0.8812 + }, + { + "start": 47411.42, + "end": 47415.26, + "probability": 0.8844 + }, + { + "start": 47417.64, + "end": 47420.26, + "probability": 0.7022 + }, + { + "start": 47421.02, + "end": 47422.86, + "probability": 0.948 + }, + { + "start": 47424.32, + "end": 47427.02, + "probability": 0.9929 + }, + { + "start": 47428.6, + "end": 47429.86, + "probability": 0.991 + }, + { + "start": 47431.76, + "end": 47433.92, + "probability": 0.8207 + }, + { + "start": 47434.82, + "end": 47435.73, + "probability": 0.8667 + }, + { + "start": 47435.86, + "end": 47436.34, + "probability": 0.9421 + }, + { + "start": 47436.44, + "end": 47437.74, + "probability": 0.8418 + }, + { + "start": 47437.84, + "end": 47438.48, + "probability": 0.4532 + }, + { + "start": 47438.79, + "end": 47440.46, + "probability": 0.9797 + }, + { + "start": 47440.68, + "end": 47441.24, + "probability": 0.7685 + }, + { + "start": 47442.58, + "end": 47443.58, + "probability": 0.9048 + }, + { + "start": 47444.38, + "end": 47444.54, + "probability": 0.9536 + }, + { + "start": 47445.48, + "end": 47446.46, + "probability": 0.8973 + }, + { + "start": 47448.08, + "end": 47449.54, + "probability": 0.8416 + }, + { + "start": 47450.22, + "end": 47450.9, + "probability": 0.9374 + }, + { + "start": 47452.8, + "end": 47454.58, + "probability": 0.9131 + }, + { + "start": 47455.32, + "end": 47458.67, + "probability": 0.9868 + }, + { + "start": 47461.12, + "end": 47462.2, + "probability": 0.7804 + }, + { + "start": 47464.44, + "end": 47468.34, + "probability": 0.9578 + }, + { + "start": 47469.12, + "end": 47470.88, + "probability": 0.9409 + }, + { + "start": 47471.32, + "end": 47472.0, + "probability": 0.3294 + }, + { + "start": 47472.18, + "end": 47472.98, + "probability": 0.8227 + }, + { + "start": 47473.32, + "end": 47476.04, + "probability": 0.923 + }, + { + "start": 47476.58, + "end": 47478.5, + "probability": 0.9918 + }, + { + "start": 47479.62, + "end": 47482.82, + "probability": 0.9971 + }, + { + "start": 47482.9, + "end": 47483.82, + "probability": 0.9435 + }, + { + "start": 47485.24, + "end": 47486.5, + "probability": 0.8216 + }, + { + "start": 47486.58, + "end": 47487.18, + "probability": 0.6933 + }, + { + "start": 47487.38, + "end": 47487.8, + "probability": 0.9481 + }, + { + "start": 47488.14, + "end": 47488.88, + "probability": 0.8361 + }, + { + "start": 47489.22, + "end": 47489.42, + "probability": 0.8915 + }, + { + "start": 47492.9, + "end": 47493.46, + "probability": 0.965 + }, + { + "start": 47494.9, + "end": 47495.72, + "probability": 0.957 + }, + { + "start": 47497.04, + "end": 47497.28, + "probability": 0.4242 + }, + { + "start": 47497.36, + "end": 47497.82, + "probability": 0.9066 + }, + { + "start": 47497.94, + "end": 47499.72, + "probability": 0.7838 + }, + { + "start": 47499.8, + "end": 47500.5, + "probability": 0.4669 + }, + { + "start": 47501.18, + "end": 47502.02, + "probability": 0.8805 + }, + { + "start": 47503.04, + "end": 47504.26, + "probability": 0.8297 + }, + { + "start": 47504.9, + "end": 47508.14, + "probability": 0.9814 + }, + { + "start": 47508.44, + "end": 47512.44, + "probability": 0.9927 + }, + { + "start": 47513.58, + "end": 47515.2, + "probability": 0.6923 + }, + { + "start": 47516.18, + "end": 47517.4, + "probability": 0.7521 + }, + { + "start": 47518.34, + "end": 47519.6, + "probability": 0.913 + }, + { + "start": 47519.82, + "end": 47520.58, + "probability": 0.9575 + }, + { + "start": 47521.05, + "end": 47523.48, + "probability": 0.989 + }, + { + "start": 47523.56, + "end": 47524.2, + "probability": 0.9917 + }, + { + "start": 47524.8, + "end": 47525.4, + "probability": 0.7585 + }, + { + "start": 47527.4, + "end": 47528.24, + "probability": 0.9932 + }, + { + "start": 47528.32, + "end": 47530.0, + "probability": 0.7437 + }, + { + "start": 47530.08, + "end": 47530.28, + "probability": 0.5633 + }, + { + "start": 47530.4, + "end": 47530.5, + "probability": 0.6296 + }, + { + "start": 47530.68, + "end": 47531.52, + "probability": 0.4515 + }, + { + "start": 47533.3, + "end": 47538.1, + "probability": 0.9866 + }, + { + "start": 47539.18, + "end": 47540.26, + "probability": 0.9043 + }, + { + "start": 47541.06, + "end": 47542.04, + "probability": 0.989 + }, + { + "start": 47543.18, + "end": 47544.15, + "probability": 0.9917 + }, + { + "start": 47545.4, + "end": 47548.7, + "probability": 0.6815 + }, + { + "start": 47550.04, + "end": 47551.75, + "probability": 0.7648 + }, + { + "start": 47552.16, + "end": 47554.02, + "probability": 0.9224 + }, + { + "start": 47555.6, + "end": 47557.5, + "probability": 0.7906 + }, + { + "start": 47559.86, + "end": 47560.62, + "probability": 0.5961 + }, + { + "start": 47561.36, + "end": 47563.06, + "probability": 0.8694 + }, + { + "start": 47564.18, + "end": 47565.61, + "probability": 0.9472 + }, + { + "start": 47566.92, + "end": 47569.14, + "probability": 0.972 + }, + { + "start": 47569.68, + "end": 47572.86, + "probability": 0.7961 + }, + { + "start": 47574.48, + "end": 47579.38, + "probability": 0.933 + }, + { + "start": 47581.04, + "end": 47583.92, + "probability": 0.9661 + }, + { + "start": 47584.4, + "end": 47585.66, + "probability": 0.7128 + }, + { + "start": 47586.6, + "end": 47587.42, + "probability": 0.771 + }, + { + "start": 47589.68, + "end": 47591.38, + "probability": 0.7474 + }, + { + "start": 47591.46, + "end": 47593.0, + "probability": 0.4795 + }, + { + "start": 47593.0, + "end": 47594.36, + "probability": 0.9827 + }, + { + "start": 47596.14, + "end": 47597.18, + "probability": 0.854 + }, + { + "start": 47599.42, + "end": 47602.27, + "probability": 0.8873 + }, + { + "start": 47605.36, + "end": 47606.64, + "probability": 0.7099 + }, + { + "start": 47608.16, + "end": 47609.72, + "probability": 0.5827 + }, + { + "start": 47610.66, + "end": 47612.24, + "probability": 0.6665 + }, + { + "start": 47613.28, + "end": 47617.32, + "probability": 0.879 + }, + { + "start": 47618.34, + "end": 47619.88, + "probability": 0.7931 + }, + { + "start": 47620.1, + "end": 47620.82, + "probability": 0.5362 + }, + { + "start": 47621.64, + "end": 47622.9, + "probability": 0.7299 + }, + { + "start": 47623.44, + "end": 47626.2, + "probability": 0.9523 + }, + { + "start": 47627.4, + "end": 47628.6, + "probability": 0.9194 + }, + { + "start": 47630.16, + "end": 47631.32, + "probability": 0.8974 + }, + { + "start": 47632.5, + "end": 47633.3, + "probability": 0.6792 + }, + { + "start": 47633.46, + "end": 47633.94, + "probability": 0.7829 + }, + { + "start": 47635.92, + "end": 47636.48, + "probability": 0.9019 + }, + { + "start": 47638.02, + "end": 47638.82, + "probability": 0.9872 + }, + { + "start": 47639.54, + "end": 47642.94, + "probability": 0.9427 + }, + { + "start": 47643.32, + "end": 47645.28, + "probability": 0.7261 + }, + { + "start": 47645.48, + "end": 47646.38, + "probability": 0.85 + }, + { + "start": 47646.38, + "end": 47646.94, + "probability": 0.6701 + }, + { + "start": 47647.04, + "end": 47650.98, + "probability": 0.9169 + }, + { + "start": 47651.82, + "end": 47653.18, + "probability": 0.74 + }, + { + "start": 47653.26, + "end": 47654.24, + "probability": 0.6894 + }, + { + "start": 47659.74, + "end": 47660.96, + "probability": 0.9176 + }, + { + "start": 47662.68, + "end": 47663.36, + "probability": 0.9702 + }, + { + "start": 47666.02, + "end": 47667.32, + "probability": 0.8887 + }, + { + "start": 47668.32, + "end": 47669.62, + "probability": 0.8746 + }, + { + "start": 47670.42, + "end": 47670.82, + "probability": 0.6455 + }, + { + "start": 47671.66, + "end": 47678.72, + "probability": 0.926 + }, + { + "start": 47680.54, + "end": 47682.85, + "probability": 0.825 + }, + { + "start": 47684.42, + "end": 47687.6, + "probability": 0.9969 + }, + { + "start": 47689.78, + "end": 47690.44, + "probability": 0.2312 + }, + { + "start": 47693.54, + "end": 47694.42, + "probability": 0.4878 + }, + { + "start": 47695.0, + "end": 47695.88, + "probability": 0.4644 + }, + { + "start": 47698.3, + "end": 47701.34, + "probability": 0.922 + }, + { + "start": 47702.22, + "end": 47703.69, + "probability": 0.999 + }, + { + "start": 47706.72, + "end": 47708.04, + "probability": 0.999 + }, + { + "start": 47708.66, + "end": 47709.62, + "probability": 0.3734 + }, + { + "start": 47710.76, + "end": 47712.34, + "probability": 0.9069 + }, + { + "start": 47713.88, + "end": 47714.36, + "probability": 0.0486 + }, + { + "start": 47715.02, + "end": 47717.7, + "probability": 0.8746 + }, + { + "start": 47718.38, + "end": 47722.78, + "probability": 0.9873 + }, + { + "start": 47724.26, + "end": 47726.9, + "probability": 0.9279 + }, + { + "start": 47728.58, + "end": 47729.66, + "probability": 0.6706 + }, + { + "start": 47730.94, + "end": 47732.02, + "probability": 0.8399 + }, + { + "start": 47733.72, + "end": 47734.7, + "probability": 0.8294 + }, + { + "start": 47735.7, + "end": 47736.6, + "probability": 0.79 + }, + { + "start": 47737.62, + "end": 47739.7, + "probability": 0.7616 + }, + { + "start": 47740.34, + "end": 47741.26, + "probability": 0.6225 + }, + { + "start": 47741.86, + "end": 47743.46, + "probability": 0.8924 + }, + { + "start": 47743.68, + "end": 47745.16, + "probability": 0.9945 + }, + { + "start": 47747.24, + "end": 47749.66, + "probability": 0.8825 + }, + { + "start": 47751.8, + "end": 47752.38, + "probability": 0.5269 + }, + { + "start": 47752.94, + "end": 47754.08, + "probability": 0.9158 + }, + { + "start": 47754.96, + "end": 47755.38, + "probability": 0.7818 + }, + { + "start": 47755.52, + "end": 47756.06, + "probability": 0.8848 + }, + { + "start": 47756.1, + "end": 47758.92, + "probability": 0.8971 + }, + { + "start": 47760.6, + "end": 47761.76, + "probability": 0.9531 + }, + { + "start": 47762.86, + "end": 47765.08, + "probability": 0.9888 + }, + { + "start": 47766.38, + "end": 47768.34, + "probability": 0.8687 + }, + { + "start": 47768.88, + "end": 47769.26, + "probability": 0.6861 + }, + { + "start": 47769.38, + "end": 47770.04, + "probability": 0.9764 + }, + { + "start": 47770.1, + "end": 47770.76, + "probability": 0.7917 + }, + { + "start": 47771.74, + "end": 47776.3, + "probability": 0.9676 + }, + { + "start": 47778.2, + "end": 47780.01, + "probability": 0.8451 + }, + { + "start": 47781.36, + "end": 47782.26, + "probability": 0.9818 + }, + { + "start": 47786.18, + "end": 47787.72, + "probability": 0.8819 + }, + { + "start": 47791.02, + "end": 47791.88, + "probability": 0.8603 + }, + { + "start": 47793.36, + "end": 47793.58, + "probability": 0.4999 + }, + { + "start": 47798.35, + "end": 47799.38, + "probability": 0.7194 + }, + { + "start": 47800.56, + "end": 47800.86, + "probability": 0.6541 + }, + { + "start": 47802.54, + "end": 47804.24, + "probability": 0.9433 + }, + { + "start": 47806.08, + "end": 47807.36, + "probability": 0.9487 + }, + { + "start": 47808.4, + "end": 47809.7, + "probability": 0.9802 + }, + { + "start": 47811.22, + "end": 47812.54, + "probability": 0.8885 + }, + { + "start": 47813.66, + "end": 47815.84, + "probability": 0.9395 + }, + { + "start": 47817.24, + "end": 47817.64, + "probability": 0.9788 + }, + { + "start": 47818.68, + "end": 47819.1, + "probability": 0.7927 + }, + { + "start": 47819.66, + "end": 47820.96, + "probability": 0.9875 + }, + { + "start": 47823.82, + "end": 47823.92, + "probability": 0.4038 + }, + { + "start": 47825.12, + "end": 47825.72, + "probability": 0.9923 + }, + { + "start": 47828.12, + "end": 47828.74, + "probability": 0.4624 + }, + { + "start": 47830.28, + "end": 47832.16, + "probability": 0.9954 + }, + { + "start": 47833.6, + "end": 47834.42, + "probability": 0.9611 + }, + { + "start": 47835.78, + "end": 47839.45, + "probability": 0.9956 + }, + { + "start": 47842.0, + "end": 47844.84, + "probability": 0.9439 + }, + { + "start": 47845.62, + "end": 47846.79, + "probability": 0.5754 + }, + { + "start": 47847.8, + "end": 47848.28, + "probability": 0.5229 + }, + { + "start": 47852.2, + "end": 47853.4, + "probability": 0.8901 + }, + { + "start": 47854.56, + "end": 47855.7, + "probability": 0.8226 + }, + { + "start": 47856.5, + "end": 47856.72, + "probability": 0.213 + }, + { + "start": 47857.3, + "end": 47858.34, + "probability": 0.6007 + }, + { + "start": 47859.82, + "end": 47860.64, + "probability": 0.6441 + }, + { + "start": 47862.14, + "end": 47864.3, + "probability": 0.7411 + }, + { + "start": 47865.5, + "end": 47866.58, + "probability": 0.9675 + }, + { + "start": 47869.3, + "end": 47871.0, + "probability": 0.9949 + }, + { + "start": 47873.12, + "end": 47874.76, + "probability": 0.9832 + }, + { + "start": 47875.82, + "end": 47876.9, + "probability": 0.7381 + }, + { + "start": 47877.02, + "end": 47878.24, + "probability": 0.5186 + }, + { + "start": 47878.3, + "end": 47879.86, + "probability": 0.9983 + }, + { + "start": 47879.9, + "end": 47881.46, + "probability": 0.9601 + }, + { + "start": 47882.4, + "end": 47883.58, + "probability": 0.969 + }, + { + "start": 47885.48, + "end": 47886.18, + "probability": 0.7627 + }, + { + "start": 47888.5, + "end": 47889.26, + "probability": 0.7305 + }, + { + "start": 47892.06, + "end": 47894.5, + "probability": 0.9724 + }, + { + "start": 47894.94, + "end": 47897.08, + "probability": 0.803 + }, + { + "start": 47900.28, + "end": 47902.88, + "probability": 0.9521 + }, + { + "start": 47903.64, + "end": 47906.51, + "probability": 0.9955 + }, + { + "start": 47907.74, + "end": 47909.1, + "probability": 0.9988 + }, + { + "start": 47910.14, + "end": 47911.9, + "probability": 0.9926 + }, + { + "start": 47912.82, + "end": 47913.74, + "probability": 0.9963 + }, + { + "start": 47915.08, + "end": 47916.4, + "probability": 0.8527 + }, + { + "start": 47918.18, + "end": 47919.32, + "probability": 0.8058 + }, + { + "start": 47920.24, + "end": 47921.52, + "probability": 0.7721 + }, + { + "start": 47923.86, + "end": 47925.59, + "probability": 0.9945 + }, + { + "start": 47925.76, + "end": 47927.26, + "probability": 0.9502 + }, + { + "start": 47928.38, + "end": 47928.92, + "probability": 0.5031 + }, + { + "start": 47929.6, + "end": 47930.66, + "probability": 0.8325 + }, + { + "start": 47932.46, + "end": 47935.52, + "probability": 0.9741 + }, + { + "start": 47936.74, + "end": 47937.28, + "probability": 0.8963 + }, + { + "start": 47939.0, + "end": 47942.56, + "probability": 0.7193 + }, + { + "start": 47945.38, + "end": 47946.38, + "probability": 0.8831 + }, + { + "start": 47947.8, + "end": 47948.58, + "probability": 0.5246 + }, + { + "start": 47949.48, + "end": 47949.66, + "probability": 0.9372 + }, + { + "start": 47954.28, + "end": 47957.28, + "probability": 0.9011 + }, + { + "start": 47957.28, + "end": 47960.96, + "probability": 0.6582 + }, + { + "start": 47961.94, + "end": 47962.24, + "probability": 0.7658 + }, + { + "start": 47963.26, + "end": 47963.58, + "probability": 0.7589 + }, + { + "start": 47965.38, + "end": 47967.1, + "probability": 0.8148 + }, + { + "start": 47967.1, + "end": 47967.24, + "probability": 0.7126 + }, + { + "start": 47968.26, + "end": 47970.66, + "probability": 0.527 + }, + { + "start": 47973.52, + "end": 47976.68, + "probability": 0.761 + }, + { + "start": 47977.34, + "end": 47978.11, + "probability": 0.4951 + }, + { + "start": 47979.18, + "end": 47982.86, + "probability": 0.9871 + }, + { + "start": 47984.66, + "end": 47985.24, + "probability": 0.4273 + }, + { + "start": 47986.02, + "end": 47986.94, + "probability": 0.6274 + }, + { + "start": 47987.1, + "end": 47990.94, + "probability": 0.9714 + }, + { + "start": 47991.46, + "end": 47991.76, + "probability": 0.5207 + }, + { + "start": 47994.12, + "end": 47996.25, + "probability": 0.8879 + }, + { + "start": 47998.2, + "end": 48000.22, + "probability": 0.5239 + }, + { + "start": 48000.5, + "end": 48001.22, + "probability": 0.6679 + }, + { + "start": 48001.38, + "end": 48004.22, + "probability": 0.683 + }, + { + "start": 48005.58, + "end": 48007.32, + "probability": 0.9524 + }, + { + "start": 48008.32, + "end": 48009.74, + "probability": 0.9716 + }, + { + "start": 48012.52, + "end": 48015.26, + "probability": 0.8115 + }, + { + "start": 48015.78, + "end": 48017.86, + "probability": 0.9181 + }, + { + "start": 48018.0, + "end": 48019.1, + "probability": 0.3826 + }, + { + "start": 48020.54, + "end": 48022.3, + "probability": 0.8611 + }, + { + "start": 48025.16, + "end": 48025.86, + "probability": 0.6962 + }, + { + "start": 48026.54, + "end": 48032.28, + "probability": 0.753 + }, + { + "start": 48033.16, + "end": 48036.46, + "probability": 0.7144 + }, + { + "start": 48038.18, + "end": 48041.4, + "probability": 0.9869 + }, + { + "start": 48041.88, + "end": 48042.74, + "probability": 0.5007 + }, + { + "start": 48042.88, + "end": 48042.98, + "probability": 0.2793 + }, + { + "start": 48043.4, + "end": 48044.46, + "probability": 0.8901 + }, + { + "start": 48045.72, + "end": 48046.24, + "probability": 0.803 + }, + { + "start": 48046.36, + "end": 48047.3, + "probability": 0.9718 + }, + { + "start": 48047.46, + "end": 48048.46, + "probability": 0.9131 + }, + { + "start": 48050.8, + "end": 48052.62, + "probability": 0.9232 + }, + { + "start": 48053.02, + "end": 48053.84, + "probability": 0.9329 + }, + { + "start": 48054.04, + "end": 48055.08, + "probability": 0.9956 + }, + { + "start": 48055.94, + "end": 48057.12, + "probability": 0.9933 + }, + { + "start": 48058.36, + "end": 48062.4, + "probability": 0.793 + }, + { + "start": 48063.34, + "end": 48064.1, + "probability": 0.8798 + }, + { + "start": 48066.2, + "end": 48067.01, + "probability": 0.9202 + }, + { + "start": 48068.84, + "end": 48069.24, + "probability": 0.9539 + }, + { + "start": 48070.8, + "end": 48073.3, + "probability": 0.8428 + }, + { + "start": 48074.24, + "end": 48074.68, + "probability": 0.9531 + }, + { + "start": 48075.52, + "end": 48076.72, + "probability": 0.9819 + }, + { + "start": 48077.86, + "end": 48080.28, + "probability": 0.9707 + }, + { + "start": 48083.28, + "end": 48083.78, + "probability": 0.8834 + }, + { + "start": 48085.38, + "end": 48088.38, + "probability": 0.7738 + }, + { + "start": 48089.34, + "end": 48090.0, + "probability": 0.7368 + }, + { + "start": 48091.54, + "end": 48093.16, + "probability": 0.9443 + }, + { + "start": 48093.8, + "end": 48095.9, + "probability": 0.8026 + }, + { + "start": 48097.36, + "end": 48100.5, + "probability": 0.9949 + }, + { + "start": 48102.1, + "end": 48105.08, + "probability": 0.8385 + }, + { + "start": 48106.9, + "end": 48107.42, + "probability": 0.8267 + }, + { + "start": 48107.6, + "end": 48110.0, + "probability": 0.4702 + }, + { + "start": 48110.06, + "end": 48110.36, + "probability": 0.0279 + }, + { + "start": 48111.0, + "end": 48113.06, + "probability": 0.8914 + }, + { + "start": 48115.04, + "end": 48117.18, + "probability": 0.9517 + }, + { + "start": 48117.9, + "end": 48119.54, + "probability": 0.9951 + }, + { + "start": 48121.94, + "end": 48122.4, + "probability": 0.4613 + }, + { + "start": 48122.98, + "end": 48125.66, + "probability": 0.6804 + }, + { + "start": 48125.76, + "end": 48128.3, + "probability": 0.9835 + }, + { + "start": 48129.64, + "end": 48131.24, + "probability": 0.8306 + }, + { + "start": 48132.7, + "end": 48134.26, + "probability": 0.9722 + }, + { + "start": 48134.32, + "end": 48135.46, + "probability": 0.5137 + }, + { + "start": 48135.48, + "end": 48135.88, + "probability": 0.7613 + }, + { + "start": 48142.84, + "end": 48143.96, + "probability": 0.2568 + }, + { + "start": 48144.34, + "end": 48146.96, + "probability": 0.2757 + }, + { + "start": 48148.34, + "end": 48148.9, + "probability": 0.3184 + }, + { + "start": 48149.36, + "end": 48149.52, + "probability": 0.2661 + }, + { + "start": 48150.68, + "end": 48151.94, + "probability": 0.9897 + }, + { + "start": 48153.26, + "end": 48155.9, + "probability": 0.7826 + }, + { + "start": 48158.74, + "end": 48159.98, + "probability": 0.3863 + }, + { + "start": 48160.08, + "end": 48161.53, + "probability": 0.7431 + }, + { + "start": 48161.84, + "end": 48162.34, + "probability": 0.6622 + }, + { + "start": 48162.38, + "end": 48163.26, + "probability": 0.6296 + }, + { + "start": 48164.38, + "end": 48170.32, + "probability": 0.99 + }, + { + "start": 48171.26, + "end": 48173.56, + "probability": 0.9246 + }, + { + "start": 48174.66, + "end": 48176.02, + "probability": 0.9059 + }, + { + "start": 48176.8, + "end": 48177.3, + "probability": 0.8672 + }, + { + "start": 48177.92, + "end": 48179.12, + "probability": 0.7503 + }, + { + "start": 48180.14, + "end": 48184.8, + "probability": 0.62 + }, + { + "start": 48185.12, + "end": 48186.7, + "probability": 0.8809 + }, + { + "start": 48186.82, + "end": 48189.66, + "probability": 0.9954 + }, + { + "start": 48190.56, + "end": 48192.72, + "probability": 0.9685 + }, + { + "start": 48194.78, + "end": 48195.94, + "probability": 0.8436 + }, + { + "start": 48196.02, + "end": 48196.44, + "probability": 0.8282 + }, + { + "start": 48196.54, + "end": 48199.14, + "probability": 0.8486 + }, + { + "start": 48199.96, + "end": 48202.24, + "probability": 0.8587 + }, + { + "start": 48204.44, + "end": 48205.56, + "probability": 0.9685 + }, + { + "start": 48206.28, + "end": 48208.24, + "probability": 0.4042 + }, + { + "start": 48209.26, + "end": 48209.68, + "probability": 0.755 + }, + { + "start": 48211.02, + "end": 48212.82, + "probability": 0.8095 + }, + { + "start": 48213.8, + "end": 48217.0, + "probability": 0.8312 + }, + { + "start": 48217.94, + "end": 48219.04, + "probability": 0.8547 + }, + { + "start": 48220.32, + "end": 48223.26, + "probability": 0.9817 + }, + { + "start": 48223.82, + "end": 48224.86, + "probability": 0.6703 + }, + { + "start": 48225.86, + "end": 48228.78, + "probability": 0.8879 + }, + { + "start": 48228.92, + "end": 48229.74, + "probability": 0.9424 + }, + { + "start": 48231.16, + "end": 48233.12, + "probability": 0.8413 + }, + { + "start": 48233.5, + "end": 48236.39, + "probability": 0.9591 + }, + { + "start": 48237.04, + "end": 48237.48, + "probability": 0.2996 + }, + { + "start": 48237.54, + "end": 48240.22, + "probability": 0.9062 + }, + { + "start": 48240.22, + "end": 48242.96, + "probability": 0.7889 + }, + { + "start": 48244.06, + "end": 48247.12, + "probability": 0.661 + }, + { + "start": 48249.25, + "end": 48251.12, + "probability": 0.8755 + }, + { + "start": 48251.76, + "end": 48253.95, + "probability": 0.9935 + }, + { + "start": 48254.96, + "end": 48255.98, + "probability": 0.9695 + }, + { + "start": 48256.26, + "end": 48257.46, + "probability": 0.996 + }, + { + "start": 48258.72, + "end": 48262.1, + "probability": 0.9047 + }, + { + "start": 48262.82, + "end": 48264.72, + "probability": 0.9861 + }, + { + "start": 48264.92, + "end": 48265.5, + "probability": 0.9779 + }, + { + "start": 48266.62, + "end": 48270.4, + "probability": 0.8028 + }, + { + "start": 48271.48, + "end": 48272.33, + "probability": 0.7654 + }, + { + "start": 48273.68, + "end": 48275.44, + "probability": 0.9724 + }, + { + "start": 48276.7, + "end": 48278.44, + "probability": 0.3339 + }, + { + "start": 48279.5, + "end": 48280.94, + "probability": 0.989 + }, + { + "start": 48282.08, + "end": 48285.48, + "probability": 0.9666 + }, + { + "start": 48287.18, + "end": 48290.4, + "probability": 0.9604 + }, + { + "start": 48290.7, + "end": 48291.44, + "probability": 0.5799 + }, + { + "start": 48292.66, + "end": 48292.9, + "probability": 0.8495 + }, + { + "start": 48293.14, + "end": 48294.06, + "probability": 0.7563 + }, + { + "start": 48294.3, + "end": 48296.98, + "probability": 0.72 + }, + { + "start": 48297.6, + "end": 48300.42, + "probability": 0.8588 + }, + { + "start": 48300.98, + "end": 48302.23, + "probability": 0.8704 + }, + { + "start": 48302.76, + "end": 48304.0, + "probability": 0.9855 + }, + { + "start": 48304.6, + "end": 48306.72, + "probability": 0.9803 + }, + { + "start": 48307.04, + "end": 48308.08, + "probability": 0.9728 + }, + { + "start": 48308.9, + "end": 48311.68, + "probability": 0.9147 + }, + { + "start": 48312.5, + "end": 48313.18, + "probability": 0.7233 + }, + { + "start": 48313.68, + "end": 48314.5, + "probability": 0.9834 + }, + { + "start": 48314.58, + "end": 48315.06, + "probability": 0.8621 + }, + { + "start": 48315.4, + "end": 48316.22, + "probability": 0.8566 + }, + { + "start": 48317.14, + "end": 48317.98, + "probability": 0.9758 + }, + { + "start": 48318.02, + "end": 48319.1, + "probability": 0.9568 + }, + { + "start": 48320.54, + "end": 48321.28, + "probability": 0.8209 + }, + { + "start": 48321.46, + "end": 48322.8, + "probability": 0.704 + }, + { + "start": 48322.86, + "end": 48323.22, + "probability": 0.5765 + }, + { + "start": 48323.46, + "end": 48325.36, + "probability": 0.9702 + }, + { + "start": 48327.2, + "end": 48329.74, + "probability": 0.9897 + }, + { + "start": 48330.38, + "end": 48332.54, + "probability": 0.9443 + }, + { + "start": 48334.54, + "end": 48335.1, + "probability": 0.7411 + }, + { + "start": 48335.88, + "end": 48337.62, + "probability": 0.8719 + }, + { + "start": 48337.68, + "end": 48338.32, + "probability": 0.7013 + }, + { + "start": 48338.68, + "end": 48339.42, + "probability": 0.9702 + }, + { + "start": 48340.14, + "end": 48340.74, + "probability": 0.6875 + }, + { + "start": 48341.58, + "end": 48343.2, + "probability": 0.8196 + }, + { + "start": 48343.32, + "end": 48343.68, + "probability": 0.8142 + }, + { + "start": 48344.02, + "end": 48344.84, + "probability": 0.9475 + }, + { + "start": 48345.32, + "end": 48346.06, + "probability": 0.4174 + }, + { + "start": 48346.26, + "end": 48347.41, + "probability": 0.9316 + }, + { + "start": 48349.42, + "end": 48353.86, + "probability": 0.9804 + }, + { + "start": 48354.7, + "end": 48357.47, + "probability": 0.945 + }, + { + "start": 48357.92, + "end": 48361.88, + "probability": 0.8955 + }, + { + "start": 48361.9, + "end": 48363.68, + "probability": 0.9973 + }, + { + "start": 48365.74, + "end": 48368.68, + "probability": 0.6318 + }, + { + "start": 48369.52, + "end": 48370.52, + "probability": 0.5942 + }, + { + "start": 48370.64, + "end": 48371.56, + "probability": 0.9907 + }, + { + "start": 48371.82, + "end": 48373.17, + "probability": 0.5536 + }, + { + "start": 48373.18, + "end": 48374.06, + "probability": 0.8274 + }, + { + "start": 48376.16, + "end": 48380.14, + "probability": 0.9845 + }, + { + "start": 48380.86, + "end": 48382.78, + "probability": 0.9472 + }, + { + "start": 48386.38, + "end": 48388.08, + "probability": 0.7331 + }, + { + "start": 48391.22, + "end": 48392.36, + "probability": 0.8459 + }, + { + "start": 48393.14, + "end": 48393.68, + "probability": 0.9064 + }, + { + "start": 48394.52, + "end": 48395.43, + "probability": 0.9932 + }, + { + "start": 48396.7, + "end": 48398.76, + "probability": 0.5129 + }, + { + "start": 48398.94, + "end": 48399.46, + "probability": 0.7295 + }, + { + "start": 48400.18, + "end": 48403.1, + "probability": 0.9979 + }, + { + "start": 48405.94, + "end": 48406.22, + "probability": 0.9708 + }, + { + "start": 48407.48, + "end": 48409.11, + "probability": 0.9897 + }, + { + "start": 48410.18, + "end": 48413.04, + "probability": 0.9565 + }, + { + "start": 48413.58, + "end": 48414.3, + "probability": 0.8747 + }, + { + "start": 48414.44, + "end": 48415.94, + "probability": 0.9611 + }, + { + "start": 48415.98, + "end": 48418.66, + "probability": 0.9533 + }, + { + "start": 48419.7, + "end": 48421.8, + "probability": 0.9948 + }, + { + "start": 48421.9, + "end": 48423.02, + "probability": 0.8887 + }, + { + "start": 48423.12, + "end": 48425.42, + "probability": 0.9424 + }, + { + "start": 48426.2, + "end": 48427.36, + "probability": 0.696 + }, + { + "start": 48427.6, + "end": 48429.7, + "probability": 0.4152 + }, + { + "start": 48429.9, + "end": 48430.2, + "probability": 0.7625 + }, + { + "start": 48437.64, + "end": 48437.64, + "probability": 0.1139 + }, + { + "start": 48437.64, + "end": 48437.64, + "probability": 0.0587 + }, + { + "start": 48437.64, + "end": 48437.64, + "probability": 0.0762 + }, + { + "start": 48437.64, + "end": 48437.92, + "probability": 0.0757 + }, + { + "start": 48437.92, + "end": 48437.98, + "probability": 0.0315 + }, + { + "start": 48463.24, + "end": 48465.04, + "probability": 0.3995 + }, + { + "start": 48465.34, + "end": 48465.56, + "probability": 0.8116 + }, + { + "start": 48466.64, + "end": 48469.38, + "probability": 0.9581 + }, + { + "start": 48469.94, + "end": 48470.9, + "probability": 0.9687 + }, + { + "start": 48471.78, + "end": 48473.82, + "probability": 0.8438 + }, + { + "start": 48474.8, + "end": 48475.84, + "probability": 0.8962 + }, + { + "start": 48476.98, + "end": 48478.14, + "probability": 0.7731 + }, + { + "start": 48479.04, + "end": 48482.08, + "probability": 0.7221 + }, + { + "start": 48482.54, + "end": 48483.8, + "probability": 0.9993 + }, + { + "start": 48484.72, + "end": 48488.8, + "probability": 0.9726 + }, + { + "start": 48490.26, + "end": 48493.04, + "probability": 0.9766 + }, + { + "start": 48493.18, + "end": 48493.98, + "probability": 0.9822 + }, + { + "start": 48494.64, + "end": 48496.38, + "probability": 0.8124 + }, + { + "start": 48496.44, + "end": 48498.48, + "probability": 0.5736 + }, + { + "start": 48499.04, + "end": 48499.26, + "probability": 0.8968 + }, + { + "start": 48501.08, + "end": 48503.12, + "probability": 0.9917 + }, + { + "start": 48503.66, + "end": 48503.98, + "probability": 0.8586 + }, + { + "start": 48504.64, + "end": 48508.02, + "probability": 0.886 + }, + { + "start": 48508.54, + "end": 48509.54, + "probability": 0.9952 + }, + { + "start": 48510.18, + "end": 48511.54, + "probability": 0.7597 + }, + { + "start": 48512.48, + "end": 48515.78, + "probability": 0.9048 + }, + { + "start": 48516.76, + "end": 48519.24, + "probability": 0.9263 + }, + { + "start": 48519.94, + "end": 48520.82, + "probability": 0.8831 + }, + { + "start": 48521.46, + "end": 48523.63, + "probability": 0.9595 + }, + { + "start": 48525.4, + "end": 48525.5, + "probability": 0.7399 + }, + { + "start": 48525.98, + "end": 48526.52, + "probability": 0.5914 + }, + { + "start": 48527.72, + "end": 48528.82, + "probability": 0.7466 + }, + { + "start": 48529.06, + "end": 48530.68, + "probability": 0.4359 + }, + { + "start": 48531.16, + "end": 48532.18, + "probability": 0.9307 + }, + { + "start": 48532.34, + "end": 48533.12, + "probability": 0.7231 + }, + { + "start": 48533.12, + "end": 48533.62, + "probability": 0.5659 + }, + { + "start": 48533.68, + "end": 48533.94, + "probability": 0.6304 + }, + { + "start": 48534.18, + "end": 48536.11, + "probability": 0.6294 + }, + { + "start": 48537.68, + "end": 48540.02, + "probability": 0.5799 + }, + { + "start": 48540.54, + "end": 48543.84, + "probability": 0.9678 + }, + { + "start": 48544.16, + "end": 48544.54, + "probability": 0.7615 + }, + { + "start": 48545.42, + "end": 48547.0, + "probability": 0.9065 + }, + { + "start": 48547.84, + "end": 48549.8, + "probability": 0.835 + }, + { + "start": 48550.78, + "end": 48554.01, + "probability": 0.8037 + }, + { + "start": 48554.52, + "end": 48555.3, + "probability": 0.648 + }, + { + "start": 48555.54, + "end": 48556.56, + "probability": 0.8646 + }, + { + "start": 48556.58, + "end": 48558.25, + "probability": 0.3724 + }, + { + "start": 48559.22, + "end": 48561.02, + "probability": 0.2599 + }, + { + "start": 48561.34, + "end": 48562.4, + "probability": 0.8949 + }, + { + "start": 48562.9, + "end": 48563.52, + "probability": 0.913 + }, + { + "start": 48564.08, + "end": 48564.9, + "probability": 0.8172 + }, + { + "start": 48565.4, + "end": 48566.02, + "probability": 0.5925 + }, + { + "start": 48566.06, + "end": 48568.21, + "probability": 0.8055 + }, + { + "start": 48570.68, + "end": 48571.38, + "probability": 0.7603 + }, + { + "start": 48574.66, + "end": 48577.24, + "probability": 0.8055 + }, + { + "start": 48578.48, + "end": 48580.44, + "probability": 0.8074 + }, + { + "start": 48581.34, + "end": 48583.76, + "probability": 0.8709 + }, + { + "start": 48585.16, + "end": 48589.34, + "probability": 0.9814 + }, + { + "start": 48589.62, + "end": 48591.22, + "probability": 0.5024 + }, + { + "start": 48592.16, + "end": 48592.9, + "probability": 0.368 + }, + { + "start": 48594.16, + "end": 48595.22, + "probability": 0.9941 + }, + { + "start": 48597.04, + "end": 48600.02, + "probability": 0.7238 + }, + { + "start": 48602.42, + "end": 48605.46, + "probability": 0.9902 + }, + { + "start": 48605.56, + "end": 48606.06, + "probability": 0.7813 + }, + { + "start": 48606.9, + "end": 48608.7, + "probability": 0.9929 + }, + { + "start": 48609.82, + "end": 48613.66, + "probability": 0.7085 + }, + { + "start": 48614.5, + "end": 48615.04, + "probability": 0.4054 + }, + { + "start": 48615.6, + "end": 48617.95, + "probability": 0.9766 + }, + { + "start": 48618.42, + "end": 48619.2, + "probability": 0.9067 + }, + { + "start": 48619.82, + "end": 48620.82, + "probability": 0.8687 + }, + { + "start": 48621.64, + "end": 48622.68, + "probability": 0.9664 + }, + { + "start": 48623.2, + "end": 48626.6, + "probability": 0.9819 + }, + { + "start": 48627.2, + "end": 48628.42, + "probability": 0.9245 + }, + { + "start": 48629.26, + "end": 48632.1, + "probability": 0.991 + }, + { + "start": 48632.3, + "end": 48633.6, + "probability": 0.9077 + }, + { + "start": 48634.5, + "end": 48636.5, + "probability": 0.8643 + }, + { + "start": 48636.58, + "end": 48637.24, + "probability": 0.8839 + }, + { + "start": 48637.52, + "end": 48639.52, + "probability": 0.8595 + }, + { + "start": 48640.04, + "end": 48640.94, + "probability": 0.562 + }, + { + "start": 48641.14, + "end": 48641.58, + "probability": 0.84 + }, + { + "start": 48642.32, + "end": 48643.56, + "probability": 0.8041 + }, + { + "start": 48644.64, + "end": 48646.38, + "probability": 0.6974 + }, + { + "start": 48646.46, + "end": 48647.6, + "probability": 0.8583 + }, + { + "start": 48648.1, + "end": 48649.59, + "probability": 0.9316 + }, + { + "start": 48650.56, + "end": 48654.04, + "probability": 0.6713 + }, + { + "start": 48654.58, + "end": 48654.9, + "probability": 0.8228 + }, + { + "start": 48657.16, + "end": 48658.6, + "probability": 0.8369 + }, + { + "start": 48660.68, + "end": 48661.86, + "probability": 0.9608 + }, + { + "start": 48663.48, + "end": 48664.31, + "probability": 0.8804 + }, + { + "start": 48665.04, + "end": 48665.94, + "probability": 0.9817 + }, + { + "start": 48666.62, + "end": 48669.94, + "probability": 0.9976 + }, + { + "start": 48671.1, + "end": 48672.54, + "probability": 0.6417 + }, + { + "start": 48673.45, + "end": 48675.6, + "probability": 0.9948 + }, + { + "start": 48675.6, + "end": 48677.68, + "probability": 0.9982 + }, + { + "start": 48680.04, + "end": 48683.7, + "probability": 0.9943 + }, + { + "start": 48683.72, + "end": 48684.44, + "probability": 0.6073 + }, + { + "start": 48685.32, + "end": 48689.42, + "probability": 0.9559 + }, + { + "start": 48690.3, + "end": 48694.14, + "probability": 0.8665 + }, + { + "start": 48694.94, + "end": 48696.26, + "probability": 0.8738 + }, + { + "start": 48697.1, + "end": 48698.5, + "probability": 0.9138 + }, + { + "start": 48699.28, + "end": 48700.41, + "probability": 0.8539 + }, + { + "start": 48700.88, + "end": 48704.28, + "probability": 0.947 + }, + { + "start": 48704.92, + "end": 48708.88, + "probability": 0.9714 + }, + { + "start": 48709.08, + "end": 48711.6, + "probability": 0.9277 + }, + { + "start": 48713.62, + "end": 48714.46, + "probability": 0.6504 + }, + { + "start": 48716.06, + "end": 48717.18, + "probability": 0.7296 + }, + { + "start": 48717.9, + "end": 48718.38, + "probability": 0.5663 + }, + { + "start": 48720.88, + "end": 48725.1, + "probability": 0.923 + }, + { + "start": 48726.04, + "end": 48727.32, + "probability": 0.6772 + }, + { + "start": 48729.34, + "end": 48730.28, + "probability": 0.7241 + }, + { + "start": 48730.84, + "end": 48731.04, + "probability": 0.7766 + }, + { + "start": 48733.24, + "end": 48734.64, + "probability": 0.6175 + }, + { + "start": 48735.96, + "end": 48738.3, + "probability": 0.7648 + }, + { + "start": 48738.92, + "end": 48741.76, + "probability": 0.8597 + }, + { + "start": 48743.06, + "end": 48743.44, + "probability": 0.6398 + }, + { + "start": 48744.08, + "end": 48746.76, + "probability": 0.4685 + }, + { + "start": 48747.76, + "end": 48749.96, + "probability": 0.8542 + }, + { + "start": 48750.5, + "end": 48751.63, + "probability": 0.7964 + }, + { + "start": 48754.86, + "end": 48756.56, + "probability": 0.9521 + }, + { + "start": 48758.1, + "end": 48759.22, + "probability": 0.9983 + }, + { + "start": 48760.83, + "end": 48761.88, + "probability": 0.9749 + }, + { + "start": 48763.06, + "end": 48763.6, + "probability": 0.9603 + }, + { + "start": 48764.34, + "end": 48765.66, + "probability": 0.6715 + }, + { + "start": 48767.0, + "end": 48768.54, + "probability": 0.7155 + }, + { + "start": 48768.66, + "end": 48769.8, + "probability": 0.4267 + }, + { + "start": 48770.28, + "end": 48774.06, + "probability": 0.752 + }, + { + "start": 48774.54, + "end": 48775.82, + "probability": 0.9801 + }, + { + "start": 48775.92, + "end": 48777.22, + "probability": 0.983 + }, + { + "start": 48779.16, + "end": 48779.78, + "probability": 0.4307 + }, + { + "start": 48780.86, + "end": 48781.5, + "probability": 0.6945 + }, + { + "start": 48781.68, + "end": 48783.69, + "probability": 0.8689 + }, + { + "start": 48784.32, + "end": 48784.96, + "probability": 0.9273 + }, + { + "start": 48785.22, + "end": 48786.0, + "probability": 0.9696 + }, + { + "start": 48787.9, + "end": 48790.12, + "probability": 0.6408 + }, + { + "start": 48792.6, + "end": 48794.04, + "probability": 0.6946 + }, + { + "start": 48795.28, + "end": 48797.0, + "probability": 0.8153 + }, + { + "start": 48797.24, + "end": 48798.12, + "probability": 0.7255 + }, + { + "start": 48798.74, + "end": 48799.97, + "probability": 0.9871 + }, + { + "start": 48802.78, + "end": 48803.4, + "probability": 0.9421 + }, + { + "start": 48804.04, + "end": 48807.48, + "probability": 0.8576 + }, + { + "start": 48808.26, + "end": 48809.24, + "probability": 0.8423 + }, + { + "start": 48810.24, + "end": 48811.46, + "probability": 0.9602 + }, + { + "start": 48813.58, + "end": 48816.16, + "probability": 0.8852 + }, + { + "start": 48816.98, + "end": 48820.06, + "probability": 0.9744 + }, + { + "start": 48820.86, + "end": 48822.9, + "probability": 0.998 + }, + { + "start": 48824.84, + "end": 48825.96, + "probability": 0.9409 + }, + { + "start": 48826.44, + "end": 48827.28, + "probability": 0.9961 + }, + { + "start": 48828.8, + "end": 48830.76, + "probability": 0.9626 + }, + { + "start": 48831.12, + "end": 48831.92, + "probability": 0.8766 + }, + { + "start": 48832.1, + "end": 48835.32, + "probability": 0.8206 + }, + { + "start": 48836.36, + "end": 48837.36, + "probability": 0.9956 + }, + { + "start": 48837.88, + "end": 48838.54, + "probability": 0.9117 + }, + { + "start": 48839.52, + "end": 48840.78, + "probability": 0.9833 + }, + { + "start": 48841.78, + "end": 48844.56, + "probability": 0.751 + }, + { + "start": 48845.12, + "end": 48845.64, + "probability": 0.8475 + }, + { + "start": 48846.18, + "end": 48846.9, + "probability": 0.6019 + }, + { + "start": 48847.74, + "end": 48851.12, + "probability": 0.9935 + }, + { + "start": 48852.74, + "end": 48855.96, + "probability": 0.8729 + }, + { + "start": 48857.08, + "end": 48857.62, + "probability": 0.7994 + }, + { + "start": 48859.5, + "end": 48860.46, + "probability": 0.9863 + }, + { + "start": 48861.96, + "end": 48865.28, + "probability": 0.899 + }, + { + "start": 48866.54, + "end": 48867.78, + "probability": 0.8999 + }, + { + "start": 48868.94, + "end": 48870.32, + "probability": 0.8769 + }, + { + "start": 48872.18, + "end": 48873.17, + "probability": 0.9603 + }, + { + "start": 48874.06, + "end": 48876.92, + "probability": 0.9258 + }, + { + "start": 48876.92, + "end": 48880.56, + "probability": 0.9688 + }, + { + "start": 48881.04, + "end": 48882.16, + "probability": 0.7157 + }, + { + "start": 48883.18, + "end": 48884.18, + "probability": 0.907 + }, + { + "start": 48884.74, + "end": 48887.56, + "probability": 0.8739 + }, + { + "start": 48888.34, + "end": 48888.66, + "probability": 0.6714 + }, + { + "start": 48889.56, + "end": 48890.4, + "probability": 0.9776 + }, + { + "start": 48890.94, + "end": 48891.82, + "probability": 0.917 + }, + { + "start": 48892.52, + "end": 48893.1, + "probability": 0.8237 + }, + { + "start": 48893.22, + "end": 48894.22, + "probability": 0.9725 + }, + { + "start": 48894.74, + "end": 48895.4, + "probability": 0.9585 + }, + { + "start": 48896.94, + "end": 48899.98, + "probability": 0.9938 + }, + { + "start": 48900.04, + "end": 48900.48, + "probability": 0.9336 + }, + { + "start": 48900.56, + "end": 48902.3, + "probability": 0.9439 + }, + { + "start": 48902.6, + "end": 48904.91, + "probability": 0.9355 + }, + { + "start": 48906.6, + "end": 48909.72, + "probability": 0.6675 + }, + { + "start": 48910.38, + "end": 48910.56, + "probability": 0.6791 + }, + { + "start": 48912.18, + "end": 48915.7, + "probability": 0.8982 + }, + { + "start": 48919.04, + "end": 48920.9, + "probability": 0.6708 + }, + { + "start": 48921.5, + "end": 48922.38, + "probability": 0.6229 + }, + { + "start": 48922.38, + "end": 48925.96, + "probability": 0.9248 + }, + { + "start": 48926.98, + "end": 48928.14, + "probability": 0.608 + }, + { + "start": 48928.52, + "end": 48929.62, + "probability": 0.8068 + }, + { + "start": 48929.68, + "end": 48930.74, + "probability": 0.9875 + }, + { + "start": 48930.82, + "end": 48931.55, + "probability": 0.9937 + }, + { + "start": 48931.82, + "end": 48932.52, + "probability": 0.9752 + }, + { + "start": 48932.58, + "end": 48933.7, + "probability": 0.8982 + }, + { + "start": 48933.78, + "end": 48933.98, + "probability": 0.5526 + }, + { + "start": 48936.22, + "end": 48938.98, + "probability": 0.9169 + }, + { + "start": 48939.56, + "end": 48940.68, + "probability": 0.7364 + }, + { + "start": 48944.65, + "end": 48946.26, + "probability": 0.9915 + }, + { + "start": 48946.58, + "end": 48947.2, + "probability": 0.716 + }, + { + "start": 48947.38, + "end": 48949.08, + "probability": 0.951 + }, + { + "start": 48950.4, + "end": 48950.84, + "probability": 0.9273 + }, + { + "start": 48951.56, + "end": 48956.64, + "probability": 0.9939 + }, + { + "start": 48958.88, + "end": 48959.89, + "probability": 0.8936 + }, + { + "start": 48960.16, + "end": 48961.04, + "probability": 0.7366 + }, + { + "start": 48961.32, + "end": 48962.26, + "probability": 0.7677 + }, + { + "start": 48963.38, + "end": 48964.8, + "probability": 0.6744 + }, + { + "start": 48966.1, + "end": 48966.54, + "probability": 0.8206 + }, + { + "start": 48968.44, + "end": 48969.12, + "probability": 0.8668 + }, + { + "start": 48970.94, + "end": 48973.0, + "probability": 0.9286 + }, + { + "start": 48975.02, + "end": 48978.1, + "probability": 0.9707 + }, + { + "start": 48978.94, + "end": 48980.07, + "probability": 0.9824 + }, + { + "start": 48980.22, + "end": 48982.57, + "probability": 0.9956 + }, + { + "start": 48983.5, + "end": 48984.4, + "probability": 0.9902 + }, + { + "start": 48984.82, + "end": 48988.18, + "probability": 0.9519 + }, + { + "start": 48989.74, + "end": 48994.36, + "probability": 0.9972 + }, + { + "start": 48995.0, + "end": 48996.54, + "probability": 0.9989 + }, + { + "start": 48997.18, + "end": 48999.18, + "probability": 0.9144 + }, + { + "start": 49000.88, + "end": 49003.08, + "probability": 0.9976 + }, + { + "start": 49004.5, + "end": 49006.5, + "probability": 0.921 + }, + { + "start": 49008.54, + "end": 49009.65, + "probability": 0.8323 + }, + { + "start": 49009.76, + "end": 49010.91, + "probability": 0.9502 + }, + { + "start": 49015.92, + "end": 49017.17, + "probability": 0.9797 + }, + { + "start": 49018.2, + "end": 49020.86, + "probability": 0.99 + }, + { + "start": 49021.78, + "end": 49024.0, + "probability": 0.991 + }, + { + "start": 49024.14, + "end": 49026.62, + "probability": 0.8877 + }, + { + "start": 49027.86, + "end": 49029.22, + "probability": 0.988 + }, + { + "start": 49029.28, + "end": 49031.8, + "probability": 0.7511 + }, + { + "start": 49032.46, + "end": 49034.06, + "probability": 0.9269 + }, + { + "start": 49034.86, + "end": 49038.48, + "probability": 0.6678 + }, + { + "start": 49038.54, + "end": 49039.46, + "probability": 0.8536 + }, + { + "start": 49040.7, + "end": 49043.42, + "probability": 0.9792 + }, + { + "start": 49043.42, + "end": 49044.28, + "probability": 0.7653 + }, + { + "start": 49046.46, + "end": 49047.92, + "probability": 0.903 + }, + { + "start": 49049.42, + "end": 49050.74, + "probability": 0.9908 + }, + { + "start": 49051.84, + "end": 49052.3, + "probability": 0.8545 + }, + { + "start": 49052.96, + "end": 49055.82, + "probability": 0.922 + }, + { + "start": 49057.32, + "end": 49058.76, + "probability": 0.8558 + }, + { + "start": 49058.88, + "end": 49060.44, + "probability": 0.6007 + }, + { + "start": 49060.66, + "end": 49064.26, + "probability": 0.9165 + }, + { + "start": 49065.48, + "end": 49066.26, + "probability": 0.7914 + }, + { + "start": 49066.98, + "end": 49067.76, + "probability": 0.8322 + }, + { + "start": 49068.56, + "end": 49069.4, + "probability": 0.569 + }, + { + "start": 49069.8, + "end": 49071.46, + "probability": 0.508 + }, + { + "start": 49071.96, + "end": 49075.88, + "probability": 0.6444 + }, + { + "start": 49075.94, + "end": 49076.14, + "probability": 0.7704 + }, + { + "start": 49077.54, + "end": 49078.76, + "probability": 0.8294 + }, + { + "start": 49080.9, + "end": 49081.74, + "probability": 0.5185 + }, + { + "start": 49081.84, + "end": 49084.58, + "probability": 0.9833 + }, + { + "start": 49086.28, + "end": 49087.17, + "probability": 0.9951 + }, + { + "start": 49087.84, + "end": 49090.46, + "probability": 0.8557 + }, + { + "start": 49093.4, + "end": 49094.32, + "probability": 0.937 + }, + { + "start": 49095.7, + "end": 49097.38, + "probability": 0.911 + }, + { + "start": 49098.22, + "end": 49100.22, + "probability": 0.8342 + }, + { + "start": 49100.28, + "end": 49101.0, + "probability": 0.7279 + }, + { + "start": 49101.22, + "end": 49102.0, + "probability": 0.6409 + }, + { + "start": 49102.84, + "end": 49103.52, + "probability": 0.1973 + }, + { + "start": 49104.4, + "end": 49105.36, + "probability": 0.8427 + }, + { + "start": 49106.18, + "end": 49106.58, + "probability": 0.5449 + }, + { + "start": 49108.5, + "end": 49109.24, + "probability": 0.8506 + }, + { + "start": 49111.4, + "end": 49112.76, + "probability": 0.856 + }, + { + "start": 49114.12, + "end": 49115.26, + "probability": 0.8677 + }, + { + "start": 49116.28, + "end": 49119.0, + "probability": 0.905 + }, + { + "start": 49119.26, + "end": 49120.94, + "probability": 0.8664 + }, + { + "start": 49122.38, + "end": 49123.68, + "probability": 0.8548 + }, + { + "start": 49126.06, + "end": 49126.56, + "probability": 0.9556 + }, + { + "start": 49127.58, + "end": 49131.24, + "probability": 0.7946 + }, + { + "start": 49131.68, + "end": 49132.82, + "probability": 0.9922 + }, + { + "start": 49133.2, + "end": 49134.47, + "probability": 0.7673 + }, + { + "start": 49135.86, + "end": 49136.84, + "probability": 0.8029 + }, + { + "start": 49137.44, + "end": 49139.36, + "probability": 0.9738 + }, + { + "start": 49139.44, + "end": 49141.34, + "probability": 0.9814 + }, + { + "start": 49145.36, + "end": 49145.88, + "probability": 0.8502 + }, + { + "start": 49146.78, + "end": 49148.66, + "probability": 0.6317 + }, + { + "start": 49149.72, + "end": 49150.71, + "probability": 0.7714 + }, + { + "start": 49153.04, + "end": 49154.14, + "probability": 0.4294 + }, + { + "start": 49154.24, + "end": 49157.3, + "probability": 0.9587 + }, + { + "start": 49157.62, + "end": 49162.04, + "probability": 0.9473 + }, + { + "start": 49163.56, + "end": 49167.84, + "probability": 0.9727 + }, + { + "start": 49169.58, + "end": 49172.4, + "probability": 0.9746 + }, + { + "start": 49172.48, + "end": 49173.92, + "probability": 0.991 + }, + { + "start": 49174.0, + "end": 49174.41, + "probability": 0.9166 + }, + { + "start": 49175.26, + "end": 49177.56, + "probability": 0.9635 + }, + { + "start": 49178.16, + "end": 49180.84, + "probability": 0.9881 + }, + { + "start": 49181.34, + "end": 49181.76, + "probability": 0.7994 + }, + { + "start": 49181.92, + "end": 49184.02, + "probability": 0.9471 + }, + { + "start": 49184.12, + "end": 49184.5, + "probability": 0.958 + }, + { + "start": 49186.68, + "end": 49188.66, + "probability": 0.9914 + }, + { + "start": 49189.26, + "end": 49189.88, + "probability": 0.9299 + }, + { + "start": 49191.2, + "end": 49191.44, + "probability": 0.9639 + }, + { + "start": 49193.14, + "end": 49194.42, + "probability": 0.9763 + }, + { + "start": 49195.5, + "end": 49196.11, + "probability": 0.8429 + }, + { + "start": 49197.12, + "end": 49199.16, + "probability": 0.8828 + }, + { + "start": 49199.36, + "end": 49199.8, + "probability": 0.9321 + }, + { + "start": 49201.04, + "end": 49203.51, + "probability": 0.9912 + }, + { + "start": 49204.64, + "end": 49206.16, + "probability": 0.99 + }, + { + "start": 49206.54, + "end": 49208.66, + "probability": 0.6511 + }, + { + "start": 49209.06, + "end": 49209.94, + "probability": 0.8905 + }, + { + "start": 49210.06, + "end": 49210.55, + "probability": 0.9888 + }, + { + "start": 49210.88, + "end": 49211.66, + "probability": 0.912 + }, + { + "start": 49212.5, + "end": 49215.18, + "probability": 0.9082 + }, + { + "start": 49215.34, + "end": 49216.08, + "probability": 0.8547 + }, + { + "start": 49218.06, + "end": 49219.18, + "probability": 0.9912 + }, + { + "start": 49219.32, + "end": 49222.4, + "probability": 0.9959 + }, + { + "start": 49223.04, + "end": 49224.37, + "probability": 0.9659 + }, + { + "start": 49224.56, + "end": 49225.1, + "probability": 0.5165 + }, + { + "start": 49225.16, + "end": 49226.48, + "probability": 0.8911 + }, + { + "start": 49227.18, + "end": 49230.06, + "probability": 0.6721 + }, + { + "start": 49230.78, + "end": 49233.48, + "probability": 0.7857 + }, + { + "start": 49233.48, + "end": 49235.32, + "probability": 0.7946 + }, + { + "start": 49236.68, + "end": 49238.1, + "probability": 0.8418 + }, + { + "start": 49238.18, + "end": 49238.96, + "probability": 0.4236 + }, + { + "start": 49239.08, + "end": 49239.92, + "probability": 0.9388 + }, + { + "start": 49239.98, + "end": 49240.74, + "probability": 0.9364 + }, + { + "start": 49241.34, + "end": 49241.9, + "probability": 0.6643 + }, + { + "start": 49243.02, + "end": 49244.05, + "probability": 0.6387 + }, + { + "start": 49245.24, + "end": 49246.14, + "probability": 0.9473 + }, + { + "start": 49246.86, + "end": 49247.52, + "probability": 0.5199 + }, + { + "start": 49247.56, + "end": 49248.44, + "probability": 0.7397 + }, + { + "start": 49248.58, + "end": 49249.92, + "probability": 0.5781 + }, + { + "start": 49249.98, + "end": 49251.24, + "probability": 0.6667 + }, + { + "start": 49252.14, + "end": 49253.12, + "probability": 0.8719 + }, + { + "start": 49255.32, + "end": 49255.98, + "probability": 0.5573 + }, + { + "start": 49257.44, + "end": 49260.98, + "probability": 0.7734 + }, + { + "start": 49261.62, + "end": 49262.59, + "probability": 0.6623 + }, + { + "start": 49264.28, + "end": 49267.86, + "probability": 0.9978 + }, + { + "start": 49267.94, + "end": 49268.58, + "probability": 0.8511 + }, + { + "start": 49270.2, + "end": 49271.84, + "probability": 0.8879 + }, + { + "start": 49272.54, + "end": 49275.68, + "probability": 0.9882 + }, + { + "start": 49278.06, + "end": 49278.66, + "probability": 0.8377 + }, + { + "start": 49278.84, + "end": 49279.54, + "probability": 0.9922 + }, + { + "start": 49279.68, + "end": 49282.0, + "probability": 0.7561 + }, + { + "start": 49283.98, + "end": 49287.04, + "probability": 0.8174 + }, + { + "start": 49289.19, + "end": 49292.62, + "probability": 0.9653 + }, + { + "start": 49292.74, + "end": 49295.2, + "probability": 0.9823 + }, + { + "start": 49295.52, + "end": 49296.9, + "probability": 0.9639 + }, + { + "start": 49296.98, + "end": 49298.22, + "probability": 0.7312 + }, + { + "start": 49298.7, + "end": 49300.24, + "probability": 0.9912 + }, + { + "start": 49300.84, + "end": 49304.86, + "probability": 0.8828 + }, + { + "start": 49306.1, + "end": 49307.22, + "probability": 0.9951 + }, + { + "start": 49307.44, + "end": 49308.5, + "probability": 0.5289 + }, + { + "start": 49311.32, + "end": 49312.29, + "probability": 0.9247 + }, + { + "start": 49312.92, + "end": 49314.63, + "probability": 0.981 + }, + { + "start": 49315.64, + "end": 49317.64, + "probability": 0.9994 + }, + { + "start": 49318.74, + "end": 49320.0, + "probability": 0.8835 + }, + { + "start": 49320.8, + "end": 49321.61, + "probability": 0.7603 + }, + { + "start": 49322.98, + "end": 49324.48, + "probability": 0.8781 + }, + { + "start": 49325.32, + "end": 49325.68, + "probability": 0.7121 + }, + { + "start": 49327.04, + "end": 49328.1, + "probability": 0.9668 + }, + { + "start": 49328.6, + "end": 49330.36, + "probability": 0.7488 + }, + { + "start": 49331.94, + "end": 49334.62, + "probability": 0.8603 + }, + { + "start": 49335.58, + "end": 49336.76, + "probability": 0.8309 + }, + { + "start": 49337.3, + "end": 49339.64, + "probability": 0.9685 + }, + { + "start": 49340.18, + "end": 49340.64, + "probability": 0.9715 + }, + { + "start": 49344.3, + "end": 49345.5, + "probability": 0.946 + }, + { + "start": 49346.04, + "end": 49348.02, + "probability": 0.7398 + }, + { + "start": 49349.46, + "end": 49350.68, + "probability": 0.9474 + }, + { + "start": 49351.02, + "end": 49355.64, + "probability": 0.9012 + }, + { + "start": 49357.7, + "end": 49359.86, + "probability": 0.6982 + }, + { + "start": 49360.7, + "end": 49363.1, + "probability": 0.7106 + }, + { + "start": 49365.74, + "end": 49365.9, + "probability": 0.2234 + }, + { + "start": 49366.06, + "end": 49366.82, + "probability": 0.7722 + }, + { + "start": 49368.3, + "end": 49368.88, + "probability": 0.8883 + }, + { + "start": 49369.26, + "end": 49370.14, + "probability": 0.8438 + }, + { + "start": 49372.34, + "end": 49373.5, + "probability": 0.7507 + }, + { + "start": 49373.68, + "end": 49374.76, + "probability": 0.911 + }, + { + "start": 49374.88, + "end": 49375.78, + "probability": 0.4625 + }, + { + "start": 49377.3, + "end": 49377.98, + "probability": 0.8018 + }, + { + "start": 49378.92, + "end": 49380.38, + "probability": 0.6921 + }, + { + "start": 49380.44, + "end": 49381.64, + "probability": 0.7227 + }, + { + "start": 49381.66, + "end": 49383.14, + "probability": 0.8301 + }, + { + "start": 49385.18, + "end": 49386.06, + "probability": 0.8888 + }, + { + "start": 49387.54, + "end": 49388.58, + "probability": 0.7138 + }, + { + "start": 49389.48, + "end": 49390.68, + "probability": 0.8884 + }, + { + "start": 49391.66, + "end": 49392.56, + "probability": 0.8964 + }, + { + "start": 49393.58, + "end": 49395.22, + "probability": 0.9679 + }, + { + "start": 49396.12, + "end": 49397.89, + "probability": 0.9753 + }, + { + "start": 49398.42, + "end": 49400.42, + "probability": 0.7494 + }, + { + "start": 49401.4, + "end": 49402.66, + "probability": 0.8236 + }, + { + "start": 49403.88, + "end": 49405.76, + "probability": 0.9746 + }, + { + "start": 49406.58, + "end": 49408.05, + "probability": 0.7776 + }, + { + "start": 49409.88, + "end": 49412.24, + "probability": 0.9631 + }, + { + "start": 49413.4, + "end": 49414.06, + "probability": 0.6167 + }, + { + "start": 49414.74, + "end": 49416.48, + "probability": 0.67 + }, + { + "start": 49417.0, + "end": 49418.26, + "probability": 0.7614 + }, + { + "start": 49418.96, + "end": 49419.88, + "probability": 0.8771 + }, + { + "start": 49420.64, + "end": 49422.09, + "probability": 0.9935 + }, + { + "start": 49423.92, + "end": 49426.08, + "probability": 0.9745 + }, + { + "start": 49427.04, + "end": 49428.3, + "probability": 0.995 + }, + { + "start": 49429.34, + "end": 49430.52, + "probability": 0.8966 + }, + { + "start": 49431.36, + "end": 49434.27, + "probability": 0.6376 + }, + { + "start": 49437.72, + "end": 49439.74, + "probability": 0.9321 + }, + { + "start": 49440.48, + "end": 49441.64, + "probability": 0.8245 + }, + { + "start": 49442.48, + "end": 49443.34, + "probability": 0.8435 + }, + { + "start": 49444.0, + "end": 49446.6, + "probability": 0.8254 + }, + { + "start": 49448.3, + "end": 49449.4, + "probability": 0.864 + }, + { + "start": 49450.28, + "end": 49451.3, + "probability": 0.6933 + }, + { + "start": 49452.34, + "end": 49453.06, + "probability": 0.7736 + }, + { + "start": 49455.02, + "end": 49459.78, + "probability": 0.8596 + }, + { + "start": 49464.06, + "end": 49466.92, + "probability": 0.8773 + }, + { + "start": 49469.08, + "end": 49473.12, + "probability": 0.9194 + }, + { + "start": 49474.88, + "end": 49476.24, + "probability": 0.7661 + }, + { + "start": 49477.62, + "end": 49479.08, + "probability": 0.8704 + }, + { + "start": 49479.68, + "end": 49483.06, + "probability": 0.7203 + }, + { + "start": 49483.48, + "end": 49484.58, + "probability": 0.9697 + }, + { + "start": 49485.02, + "end": 49485.66, + "probability": 0.8322 + }, + { + "start": 49486.28, + "end": 49488.54, + "probability": 0.9023 + }, + { + "start": 49490.26, + "end": 49490.86, + "probability": 0.2679 + }, + { + "start": 49491.48, + "end": 49492.62, + "probability": 0.6627 + }, + { + "start": 49493.26, + "end": 49496.24, + "probability": 0.8359 + }, + { + "start": 49498.78, + "end": 49498.78, + "probability": 0.0042 + }, + { + "start": 49498.78, + "end": 49499.92, + "probability": 0.9701 + }, + { + "start": 49499.98, + "end": 49500.6, + "probability": 0.6862 + }, + { + "start": 49500.68, + "end": 49501.1, + "probability": 0.6414 + }, + { + "start": 49503.83, + "end": 49507.06, + "probability": 0.669 + }, + { + "start": 49507.12, + "end": 49507.32, + "probability": 0.3105 + }, + { + "start": 49507.32, + "end": 49508.52, + "probability": 0.8336 + }, + { + "start": 49509.08, + "end": 49510.46, + "probability": 0.6855 + }, + { + "start": 49511.46, + "end": 49512.32, + "probability": 0.8192 + }, + { + "start": 49512.44, + "end": 49513.1, + "probability": 0.8333 + }, + { + "start": 49513.9, + "end": 49515.76, + "probability": 0.671 + }, + { + "start": 49516.83, + "end": 49520.08, + "probability": 0.729 + }, + { + "start": 49520.78, + "end": 49521.89, + "probability": 0.9165 + }, + { + "start": 49521.94, + "end": 49522.58, + "probability": 0.5538 + }, + { + "start": 49523.3, + "end": 49525.54, + "probability": 0.7788 + }, + { + "start": 49526.46, + "end": 49527.43, + "probability": 0.7261 + }, + { + "start": 49528.04, + "end": 49528.26, + "probability": 0.3574 + }, + { + "start": 49529.94, + "end": 49531.54, + "probability": 0.9243 + }, + { + "start": 49532.08, + "end": 49533.88, + "probability": 0.5821 + }, + { + "start": 49535.56, + "end": 49537.72, + "probability": 0.8416 + }, + { + "start": 49539.04, + "end": 49539.68, + "probability": 0.489 + }, + { + "start": 49541.4, + "end": 49543.56, + "probability": 0.695 + }, + { + "start": 49544.4, + "end": 49548.12, + "probability": 0.9539 + }, + { + "start": 49549.62, + "end": 49549.86, + "probability": 0.1753 + }, + { + "start": 49550.42, + "end": 49550.9, + "probability": 0.7071 + }, + { + "start": 49552.38, + "end": 49552.98, + "probability": 0.9821 + }, + { + "start": 49553.68, + "end": 49554.42, + "probability": 0.7937 + }, + { + "start": 49555.24, + "end": 49555.82, + "probability": 0.8897 + }, + { + "start": 49556.4, + "end": 49557.06, + "probability": 0.8369 + }, + { + "start": 49557.14, + "end": 49557.94, + "probability": 0.5514 + }, + { + "start": 49557.94, + "end": 49559.22, + "probability": 0.2307 + }, + { + "start": 49559.5, + "end": 49560.74, + "probability": 0.514 + }, + { + "start": 49560.94, + "end": 49561.32, + "probability": 0.8917 + }, + { + "start": 49562.58, + "end": 49565.33, + "probability": 0.885 + }, + { + "start": 49565.94, + "end": 49566.24, + "probability": 0.4893 + }, + { + "start": 49567.46, + "end": 49568.89, + "probability": 0.6884 + }, + { + "start": 49570.7, + "end": 49571.06, + "probability": 0.5438 + }, + { + "start": 49571.38, + "end": 49571.48, + "probability": 0.6812 + }, + { + "start": 49571.84, + "end": 49572.24, + "probability": 0.3326 + }, + { + "start": 49572.34, + "end": 49572.5, + "probability": 0.371 + }, + { + "start": 49572.7, + "end": 49575.86, + "probability": 0.828 + }, + { + "start": 49576.1, + "end": 49576.26, + "probability": 0.9264 + }, + { + "start": 49576.74, + "end": 49577.24, + "probability": 0.8771 + }, + { + "start": 49578.16, + "end": 49578.68, + "probability": 0.5298 + }, + { + "start": 49580.44, + "end": 49582.16, + "probability": 0.7136 + }, + { + "start": 49582.4, + "end": 49584.74, + "probability": 0.8296 + }, + { + "start": 49585.52, + "end": 49586.6, + "probability": 0.9846 + }, + { + "start": 49587.36, + "end": 49588.67, + "probability": 0.9371 + }, + { + "start": 49590.3, + "end": 49591.92, + "probability": 0.8495 + }, + { + "start": 49592.02, + "end": 49594.18, + "probability": 0.8749 + }, + { + "start": 49594.58, + "end": 49595.1, + "probability": 0.6309 + }, + { + "start": 49596.26, + "end": 49599.86, + "probability": 0.7893 + }, + { + "start": 49600.54, + "end": 49601.58, + "probability": 0.5145 + }, + { + "start": 49601.66, + "end": 49602.54, + "probability": 0.7688 + }, + { + "start": 49602.7, + "end": 49603.74, + "probability": 0.4973 + }, + { + "start": 49604.5, + "end": 49607.62, + "probability": 0.939 + }, + { + "start": 49608.48, + "end": 49610.42, + "probability": 0.982 + }, + { + "start": 49610.42, + "end": 49612.46, + "probability": 0.8773 + }, + { + "start": 49613.02, + "end": 49617.64, + "probability": 0.7964 + }, + { + "start": 49619.8, + "end": 49621.26, + "probability": 0.8214 + }, + { + "start": 49622.3, + "end": 49623.8, + "probability": 0.8017 + }, + { + "start": 49625.04, + "end": 49626.32, + "probability": 0.9144 + }, + { + "start": 49627.3, + "end": 49628.01, + "probability": 0.3035 + }, + { + "start": 49629.52, + "end": 49631.36, + "probability": 0.7512 + }, + { + "start": 49631.62, + "end": 49631.62, + "probability": 0.0102 + }, + { + "start": 49633.66, + "end": 49635.4, + "probability": 0.6968 + }, + { + "start": 49636.56, + "end": 49639.22, + "probability": 0.9572 + }, + { + "start": 49640.74, + "end": 49641.1, + "probability": 0.0928 + }, + { + "start": 49641.82, + "end": 49643.78, + "probability": 0.8842 + }, + { + "start": 49644.62, + "end": 49647.72, + "probability": 0.9899 + }, + { + "start": 49649.02, + "end": 49650.22, + "probability": 0.9364 + }, + { + "start": 49651.78, + "end": 49652.94, + "probability": 0.6757 + }, + { + "start": 49654.4, + "end": 49658.12, + "probability": 0.9862 + }, + { + "start": 49659.62, + "end": 49660.98, + "probability": 0.921 + }, + { + "start": 49663.48, + "end": 49665.94, + "probability": 0.8555 + }, + { + "start": 49666.12, + "end": 49668.4, + "probability": 0.9881 + }, + { + "start": 49668.42, + "end": 49669.28, + "probability": 0.7751 + }, + { + "start": 49669.96, + "end": 49670.88, + "probability": 0.9796 + }, + { + "start": 49671.7, + "end": 49671.94, + "probability": 0.7344 + }, + { + "start": 49672.7, + "end": 49673.28, + "probability": 0.6686 + }, + { + "start": 49674.28, + "end": 49675.55, + "probability": 0.499 + }, + { + "start": 49676.92, + "end": 49678.54, + "probability": 0.8483 + }, + { + "start": 49680.92, + "end": 49682.84, + "probability": 0.9261 + }, + { + "start": 49684.66, + "end": 49685.84, + "probability": 0.7992 + }, + { + "start": 49686.88, + "end": 49688.68, + "probability": 0.9035 + }, + { + "start": 49690.72, + "end": 49692.76, + "probability": 0.912 + }, + { + "start": 49693.62, + "end": 49695.36, + "probability": 0.8866 + }, + { + "start": 49696.86, + "end": 49698.28, + "probability": 0.6158 + }, + { + "start": 49698.46, + "end": 49704.84, + "probability": 0.7268 + }, + { + "start": 49704.92, + "end": 49707.86, + "probability": 0.9827 + }, + { + "start": 49708.58, + "end": 49712.6, + "probability": 0.9747 + }, + { + "start": 49712.72, + "end": 49713.5, + "probability": 0.5263 + }, + { + "start": 49713.72, + "end": 49714.82, + "probability": 0.8295 + }, + { + "start": 49715.76, + "end": 49716.66, + "probability": 0.5654 + }, + { + "start": 49717.92, + "end": 49719.24, + "probability": 0.9621 + }, + { + "start": 49720.12, + "end": 49721.08, + "probability": 0.9699 + }, + { + "start": 49722.36, + "end": 49723.66, + "probability": 0.939 + }, + { + "start": 49724.74, + "end": 49726.48, + "probability": 0.9706 + }, + { + "start": 49727.12, + "end": 49728.36, + "probability": 0.8455 + }, + { + "start": 49729.28, + "end": 49729.6, + "probability": 0.7974 + }, + { + "start": 49731.6, + "end": 49733.54, + "probability": 0.9961 + }, + { + "start": 49733.82, + "end": 49737.68, + "probability": 0.9879 + }, + { + "start": 49737.86, + "end": 49739.36, + "probability": 0.7056 + }, + { + "start": 49740.34, + "end": 49743.42, + "probability": 0.8501 + }, + { + "start": 49744.78, + "end": 49746.62, + "probability": 0.5732 + }, + { + "start": 49746.8, + "end": 49747.3, + "probability": 0.5688 + }, + { + "start": 49747.68, + "end": 49748.18, + "probability": 0.8762 + }, + { + "start": 49748.56, + "end": 49749.48, + "probability": 0.8416 + }, + { + "start": 49750.52, + "end": 49752.26, + "probability": 0.9132 + }, + { + "start": 49753.42, + "end": 49755.28, + "probability": 0.9719 + }, + { + "start": 49755.5, + "end": 49756.44, + "probability": 0.6893 + }, + { + "start": 49757.52, + "end": 49758.62, + "probability": 0.8533 + }, + { + "start": 49759.68, + "end": 49762.03, + "probability": 0.8122 + }, + { + "start": 49763.22, + "end": 49764.64, + "probability": 0.4989 + }, + { + "start": 49765.08, + "end": 49766.54, + "probability": 0.9012 + }, + { + "start": 49768.9, + "end": 49769.0, + "probability": 0.5029 + }, + { + "start": 49769.0, + "end": 49769.46, + "probability": 0.7411 + }, + { + "start": 49769.6, + "end": 49770.51, + "probability": 0.9987 + }, + { + "start": 49770.62, + "end": 49771.72, + "probability": 0.9865 + }, + { + "start": 49771.92, + "end": 49772.74, + "probability": 0.953 + }, + { + "start": 49772.9, + "end": 49773.58, + "probability": 0.8803 + }, + { + "start": 49773.72, + "end": 49774.78, + "probability": 0.8799 + }, + { + "start": 49775.74, + "end": 49779.0, + "probability": 0.9785 + }, + { + "start": 49780.64, + "end": 49781.22, + "probability": 0.9338 + }, + { + "start": 49782.3, + "end": 49782.92, + "probability": 0.9984 + }, + { + "start": 49783.5, + "end": 49784.62, + "probability": 0.9575 + }, + { + "start": 49785.52, + "end": 49788.28, + "probability": 0.9782 + }, + { + "start": 49789.74, + "end": 49790.28, + "probability": 0.6318 + }, + { + "start": 49791.54, + "end": 49794.46, + "probability": 0.9818 + }, + { + "start": 49795.14, + "end": 49800.06, + "probability": 0.8948 + }, + { + "start": 49801.12, + "end": 49802.24, + "probability": 0.9662 + }, + { + "start": 49803.68, + "end": 49804.24, + "probability": 0.6697 + }, + { + "start": 49805.26, + "end": 49808.26, + "probability": 0.8814 + }, + { + "start": 49809.3, + "end": 49810.0, + "probability": 0.6941 + }, + { + "start": 49811.48, + "end": 49813.48, + "probability": 0.8972 + }, + { + "start": 49814.7, + "end": 49815.38, + "probability": 0.9065 + }, + { + "start": 49816.12, + "end": 49818.6, + "probability": 0.8491 + }, + { + "start": 49821.1, + "end": 49822.58, + "probability": 0.9836 + }, + { + "start": 49823.98, + "end": 49828.32, + "probability": 0.9991 + }, + { + "start": 49829.08, + "end": 49829.46, + "probability": 0.7548 + }, + { + "start": 49830.02, + "end": 49830.98, + "probability": 0.9113 + }, + { + "start": 49832.04, + "end": 49834.88, + "probability": 0.7401 + }, + { + "start": 49834.88, + "end": 49836.32, + "probability": 0.6562 + }, + { + "start": 49836.45, + "end": 49838.5, + "probability": 0.9889 + }, + { + "start": 49839.1, + "end": 49840.4, + "probability": 0.9558 + }, + { + "start": 49841.74, + "end": 49842.44, + "probability": 0.9337 + }, + { + "start": 49843.7, + "end": 49845.34, + "probability": 0.9941 + }, + { + "start": 49846.34, + "end": 49847.72, + "probability": 0.9948 + }, + { + "start": 49849.12, + "end": 49851.1, + "probability": 0.9863 + }, + { + "start": 49851.18, + "end": 49851.8, + "probability": 0.9663 + }, + { + "start": 49852.38, + "end": 49854.2, + "probability": 0.9774 + }, + { + "start": 49854.72, + "end": 49856.28, + "probability": 0.9777 + }, + { + "start": 49859.0, + "end": 49862.42, + "probability": 0.989 + }, + { + "start": 49863.06, + "end": 49865.2, + "probability": 0.9754 + }, + { + "start": 49866.14, + "end": 49866.3, + "probability": 0.5 + }, + { + "start": 49866.46, + "end": 49871.85, + "probability": 0.9062 + }, + { + "start": 49872.84, + "end": 49875.0, + "probability": 0.7079 + }, + { + "start": 49876.34, + "end": 49878.39, + "probability": 0.9983 + }, + { + "start": 49879.76, + "end": 49880.52, + "probability": 0.9084 + }, + { + "start": 49881.34, + "end": 49883.36, + "probability": 0.989 + }, + { + "start": 49884.88, + "end": 49888.08, + "probability": 0.9752 + }, + { + "start": 49889.1, + "end": 49890.58, + "probability": 0.9298 + }, + { + "start": 49892.44, + "end": 49893.35, + "probability": 0.8179 + }, + { + "start": 49894.9, + "end": 49896.48, + "probability": 0.9824 + }, + { + "start": 49897.34, + "end": 49897.76, + "probability": 0.4614 + }, + { + "start": 49898.26, + "end": 49899.66, + "probability": 0.9934 + }, + { + "start": 49899.74, + "end": 49901.66, + "probability": 0.9972 + }, + { + "start": 49902.98, + "end": 49903.9, + "probability": 0.8181 + }, + { + "start": 49904.72, + "end": 49905.28, + "probability": 0.7187 + }, + { + "start": 49910.8, + "end": 49911.34, + "probability": 0.1104 + }, + { + "start": 49913.64, + "end": 49913.8, + "probability": 0.0455 + }, + { + "start": 49913.8, + "end": 49914.38, + "probability": 0.3712 + }, + { + "start": 49915.26, + "end": 49917.32, + "probability": 0.9984 + }, + { + "start": 49918.48, + "end": 49920.9, + "probability": 0.7153 + }, + { + "start": 49922.44, + "end": 49924.54, + "probability": 0.9871 + }, + { + "start": 49925.56, + "end": 49926.69, + "probability": 0.8958 + }, + { + "start": 49927.88, + "end": 49928.14, + "probability": 0.9252 + }, + { + "start": 49929.68, + "end": 49935.94, + "probability": 0.9565 + }, + { + "start": 49936.56, + "end": 49937.14, + "probability": 0.6606 + }, + { + "start": 49938.82, + "end": 49941.24, + "probability": 0.9805 + }, + { + "start": 49941.86, + "end": 49943.7, + "probability": 0.9303 + }, + { + "start": 49944.7, + "end": 49947.04, + "probability": 0.8053 + }, + { + "start": 49947.18, + "end": 49947.44, + "probability": 0.9612 + }, + { + "start": 49948.08, + "end": 49951.12, + "probability": 0.4016 + }, + { + "start": 49951.12, + "end": 49953.62, + "probability": 0.7686 + }, + { + "start": 49954.56, + "end": 49956.38, + "probability": 0.8752 + }, + { + "start": 49956.82, + "end": 49959.62, + "probability": 0.9529 + }, + { + "start": 49961.18, + "end": 49963.52, + "probability": 0.7543 + }, + { + "start": 49964.2, + "end": 49964.78, + "probability": 0.5019 + }, + { + "start": 49965.52, + "end": 49965.82, + "probability": 0.5582 + }, + { + "start": 49966.6, + "end": 49967.98, + "probability": 0.6143 + }, + { + "start": 49968.76, + "end": 49969.92, + "probability": 0.76 + }, + { + "start": 49970.82, + "end": 49973.1, + "probability": 0.9995 + }, + { + "start": 49975.02, + "end": 49978.5, + "probability": 0.9458 + }, + { + "start": 49979.98, + "end": 49984.1, + "probability": 0.7707 + }, + { + "start": 49985.74, + "end": 49986.4, + "probability": 0.8269 + }, + { + "start": 49987.44, + "end": 49989.36, + "probability": 0.9111 + }, + { + "start": 49990.48, + "end": 49992.24, + "probability": 0.9541 + }, + { + "start": 49994.1, + "end": 49999.38, + "probability": 0.9932 + }, + { + "start": 49999.92, + "end": 50002.08, + "probability": 0.8328 + }, + { + "start": 50002.74, + "end": 50004.18, + "probability": 0.9281 + }, + { + "start": 50005.2, + "end": 50005.98, + "probability": 0.6124 + }, + { + "start": 50008.2, + "end": 50009.86, + "probability": 0.9546 + }, + { + "start": 50010.38, + "end": 50010.74, + "probability": 0.417 + }, + { + "start": 50010.76, + "end": 50012.48, + "probability": 0.7025 + }, + { + "start": 50013.36, + "end": 50014.43, + "probability": 0.9966 + }, + { + "start": 50015.72, + "end": 50016.82, + "probability": 0.9902 + }, + { + "start": 50018.16, + "end": 50019.62, + "probability": 0.7442 + }, + { + "start": 50020.18, + "end": 50020.61, + "probability": 0.9839 + }, + { + "start": 50022.72, + "end": 50025.82, + "probability": 0.9966 + }, + { + "start": 50026.8, + "end": 50028.08, + "probability": 0.9601 + }, + { + "start": 50030.58, + "end": 50032.43, + "probability": 0.98 + }, + { + "start": 50034.76, + "end": 50037.02, + "probability": 0.5178 + }, + { + "start": 50039.02, + "end": 50041.36, + "probability": 0.9834 + }, + { + "start": 50043.42, + "end": 50045.92, + "probability": 0.963 + }, + { + "start": 50046.74, + "end": 50049.44, + "probability": 0.7259 + }, + { + "start": 50050.92, + "end": 50054.06, + "probability": 0.4524 + }, + { + "start": 50055.04, + "end": 50057.56, + "probability": 0.9088 + }, + { + "start": 50058.28, + "end": 50062.86, + "probability": 0.8893 + }, + { + "start": 50063.66, + "end": 50066.38, + "probability": 0.6501 + }, + { + "start": 50067.06, + "end": 50068.21, + "probability": 0.746 + }, + { + "start": 50068.48, + "end": 50071.26, + "probability": 0.9508 + }, + { + "start": 50072.08, + "end": 50074.93, + "probability": 0.9815 + }, + { + "start": 50076.72, + "end": 50080.26, + "probability": 0.8011 + }, + { + "start": 50081.32, + "end": 50085.0, + "probability": 0.7585 + }, + { + "start": 50085.24, + "end": 50085.52, + "probability": 0.1322 + }, + { + "start": 50086.12, + "end": 50086.82, + "probability": 0.8502 + }, + { + "start": 50086.92, + "end": 50087.82, + "probability": 0.8981 + }, + { + "start": 50087.92, + "end": 50088.24, + "probability": 0.3566 + }, + { + "start": 50088.44, + "end": 50090.48, + "probability": 0.986 + }, + { + "start": 50092.2, + "end": 50093.29, + "probability": 0.9542 + }, + { + "start": 50093.84, + "end": 50095.58, + "probability": 0.8608 + }, + { + "start": 50095.88, + "end": 50099.76, + "probability": 0.9719 + }, + { + "start": 50101.12, + "end": 50102.44, + "probability": 0.9382 + }, + { + "start": 50103.52, + "end": 50104.35, + "probability": 0.7495 + }, + { + "start": 50104.76, + "end": 50104.9, + "probability": 0.6126 + }, + { + "start": 50105.0, + "end": 50105.95, + "probability": 0.9455 + }, + { + "start": 50106.76, + "end": 50107.52, + "probability": 0.8735 + }, + { + "start": 50108.32, + "end": 50109.64, + "probability": 0.8152 + }, + { + "start": 50111.0, + "end": 50113.52, + "probability": 0.9544 + }, + { + "start": 50114.42, + "end": 50115.34, + "probability": 0.623 + }, + { + "start": 50115.36, + "end": 50116.99, + "probability": 0.9152 + }, + { + "start": 50118.14, + "end": 50120.67, + "probability": 0.9516 + }, + { + "start": 50121.52, + "end": 50124.44, + "probability": 0.8478 + }, + { + "start": 50124.54, + "end": 50125.72, + "probability": 0.8069 + }, + { + "start": 50127.58, + "end": 50128.82, + "probability": 0.98 + }, + { + "start": 50128.9, + "end": 50129.72, + "probability": 0.7509 + }, + { + "start": 50130.26, + "end": 50132.12, + "probability": 0.7589 + }, + { + "start": 50132.5, + "end": 50133.84, + "probability": 0.8981 + }, + { + "start": 50134.1, + "end": 50134.75, + "probability": 0.8135 + }, + { + "start": 50135.8, + "end": 50137.08, + "probability": 0.641 + }, + { + "start": 50137.3, + "end": 50140.12, + "probability": 0.9583 + }, + { + "start": 50141.44, + "end": 50145.29, + "probability": 0.6517 + }, + { + "start": 50146.68, + "end": 50150.74, + "probability": 0.8912 + }, + { + "start": 50150.74, + "end": 50154.96, + "probability": 0.967 + }, + { + "start": 50155.54, + "end": 50156.08, + "probability": 0.8956 + }, + { + "start": 50158.51, + "end": 50159.16, + "probability": 0.1003 + }, + { + "start": 50159.16, + "end": 50159.5, + "probability": 0.0865 + }, + { + "start": 50160.0, + "end": 50161.02, + "probability": 0.9702 + }, + { + "start": 50162.74, + "end": 50165.42, + "probability": 0.6917 + }, + { + "start": 50165.88, + "end": 50169.46, + "probability": 0.9801 + }, + { + "start": 50170.62, + "end": 50172.34, + "probability": 0.9842 + }, + { + "start": 50174.32, + "end": 50175.62, + "probability": 0.9968 + }, + { + "start": 50176.2, + "end": 50177.0, + "probability": 0.8377 + }, + { + "start": 50177.52, + "end": 50179.12, + "probability": 0.9773 + }, + { + "start": 50179.78, + "end": 50180.58, + "probability": 0.8965 + }, + { + "start": 50181.2, + "end": 50182.08, + "probability": 0.9371 + }, + { + "start": 50183.24, + "end": 50186.22, + "probability": 0.9896 + }, + { + "start": 50186.74, + "end": 50189.62, + "probability": 0.9841 + }, + { + "start": 50191.18, + "end": 50195.16, + "probability": 0.9154 + }, + { + "start": 50196.32, + "end": 50197.32, + "probability": 0.9487 + }, + { + "start": 50197.46, + "end": 50198.68, + "probability": 0.9871 + }, + { + "start": 50198.84, + "end": 50200.38, + "probability": 0.9105 + }, + { + "start": 50200.38, + "end": 50202.06, + "probability": 0.9921 + }, + { + "start": 50202.54, + "end": 50205.74, + "probability": 0.9775 + }, + { + "start": 50206.56, + "end": 50207.76, + "probability": 0.7759 + }, + { + "start": 50208.3, + "end": 50210.72, + "probability": 0.6643 + }, + { + "start": 50210.72, + "end": 50213.9, + "probability": 0.9837 + }, + { + "start": 50214.18, + "end": 50215.36, + "probability": 0.9634 + }, + { + "start": 50216.96, + "end": 50217.4, + "probability": 0.8375 + }, + { + "start": 50219.16, + "end": 50222.19, + "probability": 0.8704 + }, + { + "start": 50222.92, + "end": 50224.04, + "probability": 0.4761 + }, + { + "start": 50224.2, + "end": 50227.62, + "probability": 0.7974 + }, + { + "start": 50228.7, + "end": 50229.36, + "probability": 0.9263 + }, + { + "start": 50230.72, + "end": 50231.44, + "probability": 0.8518 + }, + { + "start": 50232.86, + "end": 50233.92, + "probability": 0.8237 + }, + { + "start": 50235.04, + "end": 50235.52, + "probability": 0.9507 + }, + { + "start": 50236.48, + "end": 50237.7, + "probability": 0.7987 + }, + { + "start": 50238.42, + "end": 50239.18, + "probability": 0.6693 + }, + { + "start": 50240.32, + "end": 50242.34, + "probability": 0.8738 + }, + { + "start": 50244.36, + "end": 50249.07, + "probability": 0.8722 + }, + { + "start": 50251.46, + "end": 50252.82, + "probability": 0.6455 + }, + { + "start": 50254.22, + "end": 50254.8, + "probability": 0.4858 + }, + { + "start": 50256.18, + "end": 50257.0, + "probability": 0.5363 + }, + { + "start": 50257.3, + "end": 50257.54, + "probability": 0.7302 + }, + { + "start": 50257.62, + "end": 50257.86, + "probability": 0.7205 + }, + { + "start": 50258.22, + "end": 50259.44, + "probability": 0.9845 + }, + { + "start": 50260.5, + "end": 50260.88, + "probability": 0.9586 + }, + { + "start": 50261.68, + "end": 50262.96, + "probability": 0.991 + }, + { + "start": 50263.9, + "end": 50265.14, + "probability": 0.7573 + }, + { + "start": 50265.96, + "end": 50267.1, + "probability": 0.9451 + }, + { + "start": 50267.64, + "end": 50270.36, + "probability": 0.9119 + }, + { + "start": 50274.86, + "end": 50275.26, + "probability": 0.5935 + }, + { + "start": 50275.34, + "end": 50275.8, + "probability": 0.9393 + }, + { + "start": 50277.38, + "end": 50280.18, + "probability": 0.6107 + }, + { + "start": 50283.7, + "end": 50286.04, + "probability": 0.9964 + }, + { + "start": 50286.86, + "end": 50288.26, + "probability": 0.8743 + }, + { + "start": 50288.68, + "end": 50289.78, + "probability": 0.0935 + }, + { + "start": 50290.32, + "end": 50294.06, + "probability": 0.9785 + }, + { + "start": 50294.42, + "end": 50296.36, + "probability": 0.7765 + }, + { + "start": 50296.88, + "end": 50297.36, + "probability": 0.9925 + }, + { + "start": 50298.28, + "end": 50299.78, + "probability": 0.7856 + }, + { + "start": 50299.78, + "end": 50302.68, + "probability": 0.7481 + }, + { + "start": 50302.72, + "end": 50304.08, + "probability": 0.8663 + }, + { + "start": 50304.26, + "end": 50304.72, + "probability": 0.853 + }, + { + "start": 50306.34, + "end": 50307.66, + "probability": 0.4768 + }, + { + "start": 50308.76, + "end": 50312.0, + "probability": 0.5294 + }, + { + "start": 50312.54, + "end": 50312.82, + "probability": 0.5574 + }, + { + "start": 50314.58, + "end": 50316.33, + "probability": 0.9169 + }, + { + "start": 50317.52, + "end": 50319.49, + "probability": 0.8091 + }, + { + "start": 50320.22, + "end": 50323.28, + "probability": 0.874 + }, + { + "start": 50323.4, + "end": 50324.56, + "probability": 0.9009 + }, + { + "start": 50325.31, + "end": 50327.74, + "probability": 0.9541 + }, + { + "start": 50328.22, + "end": 50332.46, + "probability": 0.9235 + }, + { + "start": 50334.04, + "end": 50335.28, + "probability": 0.8035 + }, + { + "start": 50336.54, + "end": 50337.96, + "probability": 0.8462 + }, + { + "start": 50339.32, + "end": 50341.1, + "probability": 0.7637 + }, + { + "start": 50341.48, + "end": 50343.28, + "probability": 0.5161 + }, + { + "start": 50343.8, + "end": 50345.42, + "probability": 0.799 + }, + { + "start": 50346.06, + "end": 50346.5, + "probability": 0.727 + }, + { + "start": 50346.58, + "end": 50348.5, + "probability": 0.8473 + }, + { + "start": 50349.8, + "end": 50350.96, + "probability": 0.8021 + }, + { + "start": 50352.18, + "end": 50353.08, + "probability": 0.9839 + }, + { + "start": 50355.02, + "end": 50355.72, + "probability": 0.93 + }, + { + "start": 50356.38, + "end": 50357.3, + "probability": 0.8283 + }, + { + "start": 50357.86, + "end": 50359.46, + "probability": 0.4118 + }, + { + "start": 50359.56, + "end": 50359.88, + "probability": 0.9186 + }, + { + "start": 50361.12, + "end": 50362.66, + "probability": 0.8105 + }, + { + "start": 50364.32, + "end": 50366.3, + "probability": 0.8842 + }, + { + "start": 50368.5, + "end": 50369.44, + "probability": 0.8731 + }, + { + "start": 50371.06, + "end": 50372.5, + "probability": 0.9976 + }, + { + "start": 50372.8, + "end": 50374.78, + "probability": 0.6199 + }, + { + "start": 50376.2, + "end": 50376.3, + "probability": 0.5398 + }, + { + "start": 50377.02, + "end": 50379.44, + "probability": 0.9596 + }, + { + "start": 50380.14, + "end": 50382.56, + "probability": 0.915 + }, + { + "start": 50383.16, + "end": 50384.34, + "probability": 0.5095 + }, + { + "start": 50385.78, + "end": 50388.92, + "probability": 0.8292 + }, + { + "start": 50390.58, + "end": 50393.78, + "probability": 0.6723 + }, + { + "start": 50394.38, + "end": 50395.62, + "probability": 0.9175 + }, + { + "start": 50397.06, + "end": 50397.24, + "probability": 0.9682 + }, + { + "start": 50398.5, + "end": 50399.94, + "probability": 0.9872 + }, + { + "start": 50400.4, + "end": 50401.64, + "probability": 0.9946 + }, + { + "start": 50402.5, + "end": 50402.88, + "probability": 0.4974 + }, + { + "start": 50403.64, + "end": 50405.62, + "probability": 0.9245 + }, + { + "start": 50406.48, + "end": 50408.96, + "probability": 0.9892 + }, + { + "start": 50410.8, + "end": 50411.28, + "probability": 0.5475 + }, + { + "start": 50411.48, + "end": 50412.95, + "probability": 0.6934 + }, + { + "start": 50413.02, + "end": 50413.58, + "probability": 0.8633 + }, + { + "start": 50416.48, + "end": 50416.96, + "probability": 0.8833 + }, + { + "start": 50421.36, + "end": 50421.68, + "probability": 0.894 + }, + { + "start": 50423.99, + "end": 50427.06, + "probability": 0.9296 + }, + { + "start": 50428.72, + "end": 50431.16, + "probability": 0.2501 + }, + { + "start": 50431.24, + "end": 50433.04, + "probability": 0.4957 + }, + { + "start": 50433.6, + "end": 50434.06, + "probability": 0.1024 + }, + { + "start": 50434.16, + "end": 50435.54, + "probability": 0.9866 + }, + { + "start": 50436.44, + "end": 50438.46, + "probability": 0.6783 + }, + { + "start": 50438.64, + "end": 50439.5, + "probability": 0.6426 + }, + { + "start": 50440.02, + "end": 50440.36, + "probability": 0.4344 + }, + { + "start": 50440.4, + "end": 50442.2, + "probability": 0.837 + }, + { + "start": 50445.12, + "end": 50447.28, + "probability": 0.9188 + }, + { + "start": 50448.28, + "end": 50449.92, + "probability": 0.9885 + }, + { + "start": 50450.8, + "end": 50451.98, + "probability": 0.624 + }, + { + "start": 50452.96, + "end": 50454.74, + "probability": 0.7946 + }, + { + "start": 50454.82, + "end": 50455.38, + "probability": 0.9316 + }, + { + "start": 50455.86, + "end": 50457.48, + "probability": 0.5193 + }, + { + "start": 50457.84, + "end": 50459.16, + "probability": 0.6887 + }, + { + "start": 50459.66, + "end": 50461.06, + "probability": 0.9292 + }, + { + "start": 50461.08, + "end": 50461.54, + "probability": 0.8251 + }, + { + "start": 50462.58, + "end": 50465.2, + "probability": 0.5754 + }, + { + "start": 50465.24, + "end": 50465.72, + "probability": 0.7848 + }, + { + "start": 50466.5, + "end": 50467.12, + "probability": 0.6055 + }, + { + "start": 50467.26, + "end": 50469.82, + "probability": 0.9576 + }, + { + "start": 50470.56, + "end": 50471.84, + "probability": 0.9289 + }, + { + "start": 50472.88, + "end": 50475.32, + "probability": 0.8462 + }, + { + "start": 50476.26, + "end": 50476.46, + "probability": 0.6127 + }, + { + "start": 50477.8, + "end": 50478.32, + "probability": 0.3392 + }, + { + "start": 50478.5, + "end": 50479.82, + "probability": 0.6349 + }, + { + "start": 50480.66, + "end": 50482.22, + "probability": 0.5647 + }, + { + "start": 50483.58, + "end": 50485.86, + "probability": 0.9224 + }, + { + "start": 50486.3, + "end": 50487.44, + "probability": 0.6342 + }, + { + "start": 50488.12, + "end": 50488.19, + "probability": 0.0235 + }, + { + "start": 50489.52, + "end": 50490.2, + "probability": 0.2333 + }, + { + "start": 50491.14, + "end": 50494.04, + "probability": 0.9509 + }, + { + "start": 50494.42, + "end": 50494.7, + "probability": 0.8623 + }, + { + "start": 50494.96, + "end": 50496.38, + "probability": 0.9253 + }, + { + "start": 50497.8, + "end": 50500.28, + "probability": 0.5891 + }, + { + "start": 50500.66, + "end": 50501.28, + "probability": 0.9891 + }, + { + "start": 50502.0, + "end": 50504.12, + "probability": 0.839 + }, + { + "start": 50504.8, + "end": 50506.0, + "probability": 0.8755 + }, + { + "start": 50506.2, + "end": 50506.78, + "probability": 0.8996 + }, + { + "start": 50508.8, + "end": 50510.1, + "probability": 0.875 + }, + { + "start": 50510.26, + "end": 50511.84, + "probability": 0.8885 + }, + { + "start": 50515.96, + "end": 50518.74, + "probability": 0.7662 + }, + { + "start": 50518.98, + "end": 50520.6, + "probability": 0.6878 + }, + { + "start": 50521.1, + "end": 50522.02, + "probability": 0.7056 + }, + { + "start": 50522.06, + "end": 50523.66, + "probability": 0.4938 + }, + { + "start": 50524.68, + "end": 50526.54, + "probability": 0.7668 + }, + { + "start": 50527.18, + "end": 50529.09, + "probability": 0.6112 + }, + { + "start": 50529.24, + "end": 50530.18, + "probability": 0.6384 + }, + { + "start": 50530.38, + "end": 50531.88, + "probability": 0.6939 + }, + { + "start": 50532.52, + "end": 50534.2, + "probability": 0.9608 + }, + { + "start": 50534.26, + "end": 50536.3, + "probability": 0.961 + }, + { + "start": 50536.68, + "end": 50538.08, + "probability": 0.9184 + }, + { + "start": 50538.98, + "end": 50540.0, + "probability": 0.6237 + }, + { + "start": 50540.1, + "end": 50541.15, + "probability": 0.7004 + }, + { + "start": 50542.2, + "end": 50544.46, + "probability": 0.4917 + }, + { + "start": 50544.6, + "end": 50545.38, + "probability": 0.6712 + }, + { + "start": 50545.46, + "end": 50546.94, + "probability": 0.6504 + }, + { + "start": 50547.58, + "end": 50549.62, + "probability": 0.5367 + }, + { + "start": 50550.44, + "end": 50551.08, + "probability": 0.2692 + }, + { + "start": 50552.04, + "end": 50553.56, + "probability": 0.89 + }, + { + "start": 50555.0, + "end": 50556.48, + "probability": 0.8361 + }, + { + "start": 50556.6, + "end": 50557.24, + "probability": 0.6387 + }, + { + "start": 50557.84, + "end": 50559.68, + "probability": 0.7266 + }, + { + "start": 50560.54, + "end": 50561.61, + "probability": 0.9786 + }, + { + "start": 50562.2, + "end": 50562.3, + "probability": 0.4975 + }, + { + "start": 50562.78, + "end": 50563.26, + "probability": 0.963 + }, + { + "start": 50564.54, + "end": 50565.8, + "probability": 0.5084 + }, + { + "start": 50566.46, + "end": 50569.72, + "probability": 0.6796 + }, + { + "start": 50571.74, + "end": 50571.9, + "probability": 0.7948 + }, + { + "start": 50572.44, + "end": 50574.3, + "probability": 0.9897 + }, + { + "start": 50574.84, + "end": 50576.4, + "probability": 0.6659 + }, + { + "start": 50576.94, + "end": 50578.58, + "probability": 0.9241 + }, + { + "start": 50579.32, + "end": 50581.66, + "probability": 0.503 + }, + { + "start": 50582.78, + "end": 50585.46, + "probability": 0.8511 + }, + { + "start": 50588.04, + "end": 50588.34, + "probability": 0.7013 + }, + { + "start": 50588.86, + "end": 50591.08, + "probability": 0.4705 + }, + { + "start": 50592.36, + "end": 50592.96, + "probability": 0.8361 + }, + { + "start": 50594.3, + "end": 50595.78, + "probability": 0.9912 + }, + { + "start": 50609.44, + "end": 50610.38, + "probability": 0.0953 + }, + { + "start": 50610.38, + "end": 50610.38, + "probability": 0.0339 + }, + { + "start": 50610.38, + "end": 50610.45, + "probability": 0.263 + }, + { + "start": 50611.62, + "end": 50612.42, + "probability": 0.5018 + }, + { + "start": 50612.56, + "end": 50613.38, + "probability": 0.3905 + }, + { + "start": 50613.84, + "end": 50614.28, + "probability": 0.434 + }, + { + "start": 50614.58, + "end": 50615.2, + "probability": 0.5083 + }, + { + "start": 50616.42, + "end": 50620.04, + "probability": 0.4496 + }, + { + "start": 50621.64, + "end": 50622.1, + "probability": 0.7072 + }, + { + "start": 50622.16, + "end": 50622.64, + "probability": 0.2927 + }, + { + "start": 50622.64, + "end": 50622.8, + "probability": 0.9027 + }, + { + "start": 50622.94, + "end": 50624.28, + "probability": 0.7083 + }, + { + "start": 50625.78, + "end": 50627.98, + "probability": 0.8956 + }, + { + "start": 50628.72, + "end": 50634.2, + "probability": 0.7062 + }, + { + "start": 50634.28, + "end": 50636.02, + "probability": 0.7622 + }, + { + "start": 50636.84, + "end": 50638.96, + "probability": 0.9585 + }, + { + "start": 50640.26, + "end": 50640.52, + "probability": 0.6495 + }, + { + "start": 50641.42, + "end": 50642.08, + "probability": 0.9795 + }, + { + "start": 50643.68, + "end": 50645.04, + "probability": 0.7444 + }, + { + "start": 50645.98, + "end": 50646.66, + "probability": 0.9763 + }, + { + "start": 50646.72, + "end": 50650.02, + "probability": 0.8845 + }, + { + "start": 50651.28, + "end": 50651.8, + "probability": 0.6899 + }, + { + "start": 50652.92, + "end": 50654.64, + "probability": 0.9195 + }, + { + "start": 50656.36, + "end": 50661.0, + "probability": 0.6575 + }, + { + "start": 50662.44, + "end": 50663.24, + "probability": 0.4866 + }, + { + "start": 50665.32, + "end": 50667.2, + "probability": 0.9324 + }, + { + "start": 50668.62, + "end": 50672.38, + "probability": 0.9743 + }, + { + "start": 50673.14, + "end": 50673.76, + "probability": 0.9762 + }, + { + "start": 50675.38, + "end": 50676.7, + "probability": 0.8087 + }, + { + "start": 50678.02, + "end": 50678.26, + "probability": 0.9911 + }, + { + "start": 50681.51, + "end": 50682.46, + "probability": 0.092 + }, + { + "start": 50682.46, + "end": 50683.74, + "probability": 0.7797 + }, + { + "start": 50683.8, + "end": 50684.59, + "probability": 0.886 + }, + { + "start": 50684.78, + "end": 50686.96, + "probability": 0.7288 + }, + { + "start": 50687.3, + "end": 50688.66, + "probability": 0.769 + }, + { + "start": 50688.92, + "end": 50690.16, + "probability": 0.9154 + }, + { + "start": 50691.34, + "end": 50693.1, + "probability": 0.9227 + }, + { + "start": 50694.28, + "end": 50694.84, + "probability": 0.9061 + }, + { + "start": 50695.48, + "end": 50696.57, + "probability": 0.9608 + }, + { + "start": 50697.38, + "end": 50701.1, + "probability": 0.9959 + }, + { + "start": 50703.4, + "end": 50704.04, + "probability": 0.8617 + }, + { + "start": 50705.64, + "end": 50706.8, + "probability": 0.8793 + }, + { + "start": 50706.86, + "end": 50708.43, + "probability": 0.7391 + }, + { + "start": 50710.48, + "end": 50714.02, + "probability": 0.7679 + }, + { + "start": 50715.22, + "end": 50716.71, + "probability": 0.9154 + }, + { + "start": 50717.04, + "end": 50718.07, + "probability": 0.9873 + }, + { + "start": 50718.46, + "end": 50719.3, + "probability": 0.8948 + }, + { + "start": 50719.42, + "end": 50720.1, + "probability": 0.8127 + }, + { + "start": 50721.14, + "end": 50723.84, + "probability": 0.5552 + }, + { + "start": 50723.96, + "end": 50724.76, + "probability": 0.6519 + }, + { + "start": 50726.24, + "end": 50727.34, + "probability": 0.9307 + }, + { + "start": 50728.8, + "end": 50731.82, + "probability": 0.9619 + }, + { + "start": 50735.32, + "end": 50737.7, + "probability": 0.9875 + }, + { + "start": 50739.92, + "end": 50744.7, + "probability": 0.9033 + }, + { + "start": 50744.88, + "end": 50745.48, + "probability": 0.9397 + }, + { + "start": 50747.42, + "end": 50751.58, + "probability": 0.957 + }, + { + "start": 50751.94, + "end": 50754.05, + "probability": 0.9768 + }, + { + "start": 50754.2, + "end": 50755.38, + "probability": 0.8401 + }, + { + "start": 50756.84, + "end": 50757.04, + "probability": 0.9432 + }, + { + "start": 50758.44, + "end": 50760.68, + "probability": 0.6567 + }, + { + "start": 50763.44, + "end": 50766.22, + "probability": 0.6429 + }, + { + "start": 50766.96, + "end": 50770.28, + "probability": 0.9801 + }, + { + "start": 50770.88, + "end": 50771.56, + "probability": 0.5454 + }, + { + "start": 50773.04, + "end": 50773.96, + "probability": 0.9923 + }, + { + "start": 50775.42, + "end": 50777.14, + "probability": 0.5856 + }, + { + "start": 50778.46, + "end": 50778.76, + "probability": 0.8941 + }, + { + "start": 50778.76, + "end": 50780.54, + "probability": 0.9549 + }, + { + "start": 50780.72, + "end": 50781.3, + "probability": 0.4959 + }, + { + "start": 50782.9, + "end": 50783.98, + "probability": 0.9272 + }, + { + "start": 50784.08, + "end": 50784.8, + "probability": 0.9897 + }, + { + "start": 50785.9, + "end": 50787.96, + "probability": 0.9115 + }, + { + "start": 50789.9, + "end": 50790.0, + "probability": 0.8158 + }, + { + "start": 50790.98, + "end": 50792.08, + "probability": 0.9632 + }, + { + "start": 50792.62, + "end": 50793.72, + "probability": 0.9278 + }, + { + "start": 50794.0, + "end": 50794.46, + "probability": 0.5441 + }, + { + "start": 50794.6, + "end": 50795.0, + "probability": 0.8948 + }, + { + "start": 50795.16, + "end": 50795.76, + "probability": 0.8211 + }, + { + "start": 50795.86, + "end": 50798.3, + "probability": 0.9587 + }, + { + "start": 50798.42, + "end": 50801.06, + "probability": 0.791 + }, + { + "start": 50802.26, + "end": 50804.52, + "probability": 0.6937 + }, + { + "start": 50804.58, + "end": 50804.94, + "probability": 0.7435 + }, + { + "start": 50805.18, + "end": 50806.06, + "probability": 0.7536 + }, + { + "start": 50807.3, + "end": 50808.4, + "probability": 0.9787 + }, + { + "start": 50809.04, + "end": 50814.12, + "probability": 0.7382 + }, + { + "start": 50815.1, + "end": 50815.64, + "probability": 0.8 + }, + { + "start": 50815.84, + "end": 50816.02, + "probability": 0.7587 + }, + { + "start": 50816.1, + "end": 50816.62, + "probability": 0.9711 + }, + { + "start": 50816.96, + "end": 50817.58, + "probability": 0.8523 + }, + { + "start": 50819.02, + "end": 50820.6, + "probability": 0.7132 + }, + { + "start": 50821.5, + "end": 50823.5, + "probability": 0.766 + }, + { + "start": 50824.38, + "end": 50826.44, + "probability": 0.9862 + }, + { + "start": 50827.0, + "end": 50827.1, + "probability": 0.8457 + }, + { + "start": 50827.56, + "end": 50828.14, + "probability": 0.6091 + }, + { + "start": 50828.24, + "end": 50828.45, + "probability": 0.136 + }, + { + "start": 50828.82, + "end": 50829.12, + "probability": 0.3694 + }, + { + "start": 50829.18, + "end": 50830.0, + "probability": 0.9692 + }, + { + "start": 50830.7, + "end": 50832.85, + "probability": 0.8412 + }, + { + "start": 50833.48, + "end": 50834.9, + "probability": 0.9108 + }, + { + "start": 50836.1, + "end": 50836.56, + "probability": 0.9819 + }, + { + "start": 50836.9, + "end": 50839.4, + "probability": 0.8809 + }, + { + "start": 50842.32, + "end": 50843.0, + "probability": 0.7288 + }, + { + "start": 50843.22, + "end": 50845.06, + "probability": 0.8418 + }, + { + "start": 50845.46, + "end": 50845.96, + "probability": 0.6742 + }, + { + "start": 50847.24, + "end": 50850.2, + "probability": 0.6658 + }, + { + "start": 50851.92, + "end": 50852.44, + "probability": 0.8937 + }, + { + "start": 50854.22, + "end": 50854.94, + "probability": 0.7883 + }, + { + "start": 50856.38, + "end": 50857.45, + "probability": 0.4916 + }, + { + "start": 50858.96, + "end": 50861.42, + "probability": 0.8244 + }, + { + "start": 50861.58, + "end": 50862.5, + "probability": 0.8696 + }, + { + "start": 50863.68, + "end": 50865.08, + "probability": 0.7139 + }, + { + "start": 50865.76, + "end": 50867.54, + "probability": 0.9878 + }, + { + "start": 50868.82, + "end": 50869.46, + "probability": 0.8027 + }, + { + "start": 50870.34, + "end": 50871.08, + "probability": 0.8087 + }, + { + "start": 50871.68, + "end": 50873.64, + "probability": 0.7368 + }, + { + "start": 50874.28, + "end": 50876.52, + "probability": 0.7146 + }, + { + "start": 50876.56, + "end": 50877.52, + "probability": 0.7053 + }, + { + "start": 50877.58, + "end": 50882.32, + "probability": 0.9465 + }, + { + "start": 50882.32, + "end": 50882.86, + "probability": 0.939 + }, + { + "start": 50883.8, + "end": 50887.0, + "probability": 0.8642 + }, + { + "start": 50888.22, + "end": 50888.98, + "probability": 0.7944 + }, + { + "start": 50891.74, + "end": 50892.44, + "probability": 0.5854 + }, + { + "start": 50894.0, + "end": 50894.6, + "probability": 0.8663 + }, + { + "start": 50896.74, + "end": 50900.18, + "probability": 0.8309 + }, + { + "start": 50902.3, + "end": 50903.4, + "probability": 0.7357 + }, + { + "start": 50906.06, + "end": 50907.4, + "probability": 0.9089 + }, + { + "start": 50907.64, + "end": 50908.5, + "probability": 0.9585 + }, + { + "start": 50909.7, + "end": 50910.66, + "probability": 0.6768 + }, + { + "start": 50910.8, + "end": 50917.68, + "probability": 0.6641 + }, + { + "start": 50918.7, + "end": 50920.42, + "probability": 0.6934 + }, + { + "start": 50920.76, + "end": 50923.06, + "probability": 0.9909 + }, + { + "start": 50923.78, + "end": 50926.52, + "probability": 0.7534 + }, + { + "start": 50927.16, + "end": 50928.04, + "probability": 0.7651 + }, + { + "start": 50929.32, + "end": 50929.58, + "probability": 0.3026 + }, + { + "start": 50931.02, + "end": 50932.52, + "probability": 0.9079 + }, + { + "start": 50934.92, + "end": 50936.38, + "probability": 0.7128 + }, + { + "start": 50938.14, + "end": 50939.64, + "probability": 0.7819 + }, + { + "start": 50939.78, + "end": 50940.14, + "probability": 0.9157 + }, + { + "start": 50940.96, + "end": 50941.18, + "probability": 0.8355 + }, + { + "start": 50942.4, + "end": 50943.23, + "probability": 0.8182 + }, + { + "start": 50945.44, + "end": 50947.0, + "probability": 0.5625 + }, + { + "start": 50947.08, + "end": 50948.1, + "probability": 0.6506 + }, + { + "start": 50948.2, + "end": 50948.49, + "probability": 0.3691 + }, + { + "start": 50948.82, + "end": 50949.68, + "probability": 0.8991 + }, + { + "start": 50950.0, + "end": 50952.0, + "probability": 0.9038 + }, + { + "start": 50952.96, + "end": 50953.42, + "probability": 0.9502 + }, + { + "start": 50954.32, + "end": 50954.58, + "probability": 0.9272 + }, + { + "start": 50955.74, + "end": 50956.79, + "probability": 0.7804 + }, + { + "start": 50957.78, + "end": 50958.6, + "probability": 0.9531 + }, + { + "start": 50959.92, + "end": 50960.9, + "probability": 0.7331 + }, + { + "start": 50963.24, + "end": 50964.6, + "probability": 0.9708 + }, + { + "start": 50965.18, + "end": 50966.44, + "probability": 0.9893 + }, + { + "start": 50966.58, + "end": 50967.5, + "probability": 0.9184 + }, + { + "start": 50969.72, + "end": 50971.52, + "probability": 0.7538 + }, + { + "start": 50972.32, + "end": 50973.66, + "probability": 0.7004 + }, + { + "start": 50974.52, + "end": 50975.9, + "probability": 0.9038 + }, + { + "start": 50976.7, + "end": 50977.4, + "probability": 0.9829 + }, + { + "start": 50977.54, + "end": 50980.28, + "probability": 0.5474 + }, + { + "start": 50980.56, + "end": 50981.04, + "probability": 0.8589 + }, + { + "start": 50983.06, + "end": 50983.58, + "probability": 0.3831 + }, + { + "start": 50983.58, + "end": 50983.94, + "probability": 0.9481 + }, + { + "start": 50986.36, + "end": 50987.34, + "probability": 0.4033 + }, + { + "start": 50989.36, + "end": 50990.3, + "probability": 0.5487 + }, + { + "start": 50991.12, + "end": 50991.88, + "probability": 0.887 + }, + { + "start": 50992.2, + "end": 50993.84, + "probability": 0.6854 + }, + { + "start": 50994.86, + "end": 50997.46, + "probability": 0.6654 + }, + { + "start": 50997.46, + "end": 50999.99, + "probability": 0.604 + }, + { + "start": 51000.94, + "end": 51004.02, + "probability": 0.5655 + }, + { + "start": 51005.58, + "end": 51008.45, + "probability": 0.892 + }, + { + "start": 51008.8, + "end": 51011.84, + "probability": 0.8652 + }, + { + "start": 51011.96, + "end": 51012.46, + "probability": 0.6912 + }, + { + "start": 51012.74, + "end": 51014.24, + "probability": 0.9277 + }, + { + "start": 51014.52, + "end": 51015.5, + "probability": 0.9949 + }, + { + "start": 51016.26, + "end": 51016.68, + "probability": 0.0634 + }, + { + "start": 51016.68, + "end": 51016.84, + "probability": 0.2173 + }, + { + "start": 51016.96, + "end": 51017.16, + "probability": 0.5631 + }, + { + "start": 51017.38, + "end": 51018.64, + "probability": 0.9712 + }, + { + "start": 51019.28, + "end": 51020.68, + "probability": 0.7067 + }, + { + "start": 51021.16, + "end": 51022.33, + "probability": 0.9359 + }, + { + "start": 51023.22, + "end": 51025.56, + "probability": 0.9448 + }, + { + "start": 51028.04, + "end": 51030.26, + "probability": 0.8448 + }, + { + "start": 51032.3, + "end": 51033.92, + "probability": 0.8927 + }, + { + "start": 51034.7, + "end": 51035.96, + "probability": 0.9553 + }, + { + "start": 51036.78, + "end": 51037.9, + "probability": 0.9623 + }, + { + "start": 51038.52, + "end": 51039.16, + "probability": 0.8638 + }, + { + "start": 51040.2, + "end": 51040.8, + "probability": 0.9288 + }, + { + "start": 51041.32, + "end": 51044.06, + "probability": 0.9547 + }, + { + "start": 51045.0, + "end": 51046.16, + "probability": 0.9905 + }, + { + "start": 51046.84, + "end": 51049.34, + "probability": 0.9598 + }, + { + "start": 51051.08, + "end": 51053.04, + "probability": 0.995 + }, + { + "start": 51055.78, + "end": 51056.62, + "probability": 0.9565 + }, + { + "start": 51056.76, + "end": 51057.3, + "probability": 0.8177 + }, + { + "start": 51061.28, + "end": 51061.98, + "probability": 0.0083 + }, + { + "start": 51062.16, + "end": 51062.64, + "probability": 0.6787 + }, + { + "start": 51064.04, + "end": 51064.44, + "probability": 0.7174 + }, + { + "start": 51066.34, + "end": 51069.17, + "probability": 0.9437 + }, + { + "start": 51071.2, + "end": 51071.92, + "probability": 0.9204 + }, + { + "start": 51074.28, + "end": 51074.72, + "probability": 0.8484 + }, + { + "start": 51076.54, + "end": 51077.52, + "probability": 0.8589 + }, + { + "start": 51077.94, + "end": 51078.84, + "probability": 0.9982 + }, + { + "start": 51080.34, + "end": 51081.46, + "probability": 0.678 + }, + { + "start": 51082.08, + "end": 51084.72, + "probability": 0.9248 + }, + { + "start": 51085.34, + "end": 51086.0, + "probability": 0.9941 + }, + { + "start": 51087.24, + "end": 51087.89, + "probability": 0.9812 + }, + { + "start": 51089.12, + "end": 51089.88, + "probability": 0.7474 + }, + { + "start": 51091.0, + "end": 51092.24, + "probability": 0.8052 + }, + { + "start": 51093.88, + "end": 51095.71, + "probability": 0.9675 + }, + { + "start": 51097.68, + "end": 51099.0, + "probability": 0.9728 + }, + { + "start": 51099.68, + "end": 51100.49, + "probability": 0.9814 + }, + { + "start": 51100.66, + "end": 51100.96, + "probability": 0.9543 + }, + { + "start": 51101.08, + "end": 51101.38, + "probability": 0.9005 + }, + { + "start": 51101.48, + "end": 51101.92, + "probability": 0.9604 + }, + { + "start": 51104.92, + "end": 51105.9, + "probability": 0.8599 + }, + { + "start": 51108.06, + "end": 51109.2, + "probability": 0.5987 + }, + { + "start": 51110.14, + "end": 51110.94, + "probability": 0.9792 + }, + { + "start": 51111.0, + "end": 51112.68, + "probability": 0.9958 + }, + { + "start": 51112.98, + "end": 51113.94, + "probability": 0.8682 + }, + { + "start": 51114.88, + "end": 51115.74, + "probability": 0.7103 + }, + { + "start": 51117.76, + "end": 51118.72, + "probability": 0.8805 + }, + { + "start": 51121.0, + "end": 51121.6, + "probability": 0.8554 + }, + { + "start": 51122.78, + "end": 51123.83, + "probability": 0.8506 + }, + { + "start": 51125.04, + "end": 51127.0, + "probability": 0.9307 + }, + { + "start": 51127.96, + "end": 51129.6, + "probability": 0.9315 + }, + { + "start": 51131.44, + "end": 51132.3, + "probability": 0.9702 + }, + { + "start": 51134.42, + "end": 51134.9, + "probability": 0.4357 + }, + { + "start": 51137.58, + "end": 51138.54, + "probability": 0.7613 + }, + { + "start": 51139.16, + "end": 51139.54, + "probability": 0.6828 + }, + { + "start": 51140.46, + "end": 51141.34, + "probability": 0.9927 + }, + { + "start": 51143.94, + "end": 51148.9, + "probability": 0.9955 + }, + { + "start": 51149.36, + "end": 51150.64, + "probability": 0.9825 + }, + { + "start": 51153.24, + "end": 51155.62, + "probability": 0.9556 + }, + { + "start": 51158.4, + "end": 51159.52, + "probability": 0.9444 + }, + { + "start": 51161.48, + "end": 51164.94, + "probability": 0.8499 + }, + { + "start": 51166.2, + "end": 51166.92, + "probability": 0.6913 + }, + { + "start": 51169.96, + "end": 51170.6, + "probability": 0.497 + }, + { + "start": 51171.7, + "end": 51174.88, + "probability": 0.8814 + }, + { + "start": 51175.0, + "end": 51176.33, + "probability": 0.9426 + }, + { + "start": 51177.56, + "end": 51179.12, + "probability": 0.5106 + }, + { + "start": 51179.78, + "end": 51180.16, + "probability": 0.6109 + }, + { + "start": 51180.72, + "end": 51182.06, + "probability": 0.962 + }, + { + "start": 51183.62, + "end": 51185.5, + "probability": 0.8741 + }, + { + "start": 51185.7, + "end": 51186.94, + "probability": 0.7653 + }, + { + "start": 51187.5, + "end": 51188.23, + "probability": 0.9502 + }, + { + "start": 51188.62, + "end": 51189.3, + "probability": 0.9841 + }, + { + "start": 51190.06, + "end": 51190.61, + "probability": 0.9861 + }, + { + "start": 51192.2, + "end": 51193.66, + "probability": 0.9958 + }, + { + "start": 51194.68, + "end": 51197.56, + "probability": 0.6689 + }, + { + "start": 51197.58, + "end": 51199.84, + "probability": 0.9924 + }, + { + "start": 51199.96, + "end": 51204.1, + "probability": 0.9825 + }, + { + "start": 51204.3, + "end": 51205.04, + "probability": 0.6558 + }, + { + "start": 51207.02, + "end": 51209.48, + "probability": 0.9429 + }, + { + "start": 51211.08, + "end": 51211.68, + "probability": 0.9624 + }, + { + "start": 51213.76, + "end": 51216.12, + "probability": 0.9941 + }, + { + "start": 51217.8, + "end": 51219.04, + "probability": 0.993 + }, + { + "start": 51220.88, + "end": 51223.4, + "probability": 0.9967 + }, + { + "start": 51224.14, + "end": 51224.52, + "probability": 0.6202 + }, + { + "start": 51227.12, + "end": 51229.86, + "probability": 0.9976 + }, + { + "start": 51231.1, + "end": 51231.76, + "probability": 0.8164 + }, + { + "start": 51233.4, + "end": 51234.58, + "probability": 0.8455 + }, + { + "start": 51237.3, + "end": 51238.88, + "probability": 0.8205 + }, + { + "start": 51238.92, + "end": 51239.58, + "probability": 0.7721 + }, + { + "start": 51239.64, + "end": 51240.7, + "probability": 0.9597 + }, + { + "start": 51241.56, + "end": 51242.8, + "probability": 0.8989 + }, + { + "start": 51244.0, + "end": 51244.54, + "probability": 0.6292 + }, + { + "start": 51245.08, + "end": 51246.34, + "probability": 0.8677 + }, + { + "start": 51248.31, + "end": 51249.1, + "probability": 0.3235 + }, + { + "start": 51249.14, + "end": 51251.58, + "probability": 0.9432 + }, + { + "start": 51252.86, + "end": 51255.56, + "probability": 0.9595 + }, + { + "start": 51257.02, + "end": 51257.99, + "probability": 0.9792 + }, + { + "start": 51258.5, + "end": 51259.42, + "probability": 0.9764 + }, + { + "start": 51260.26, + "end": 51261.06, + "probability": 0.6057 + }, + { + "start": 51264.42, + "end": 51269.28, + "probability": 0.8748 + }, + { + "start": 51271.04, + "end": 51272.32, + "probability": 0.9329 + }, + { + "start": 51273.84, + "end": 51277.64, + "probability": 0.9507 + }, + { + "start": 51278.7, + "end": 51279.68, + "probability": 0.5692 + }, + { + "start": 51279.76, + "end": 51281.7, + "probability": 0.9309 + }, + { + "start": 51282.86, + "end": 51286.36, + "probability": 0.9771 + }, + { + "start": 51287.28, + "end": 51288.5, + "probability": 0.9964 + }, + { + "start": 51290.12, + "end": 51290.72, + "probability": 0.5839 + }, + { + "start": 51290.76, + "end": 51292.68, + "probability": 0.8609 + }, + { + "start": 51294.22, + "end": 51295.88, + "probability": 0.9807 + }, + { + "start": 51296.7, + "end": 51297.44, + "probability": 0.9468 + }, + { + "start": 51298.62, + "end": 51300.52, + "probability": 0.9265 + }, + { + "start": 51300.52, + "end": 51302.66, + "probability": 0.6614 + }, + { + "start": 51304.04, + "end": 51304.98, + "probability": 0.7322 + }, + { + "start": 51306.48, + "end": 51307.12, + "probability": 0.9253 + }, + { + "start": 51308.92, + "end": 51309.58, + "probability": 0.76 + }, + { + "start": 51310.4, + "end": 51311.44, + "probability": 0.9252 + }, + { + "start": 51311.94, + "end": 51312.86, + "probability": 0.7465 + }, + { + "start": 51315.48, + "end": 51317.2, + "probability": 0.584 + }, + { + "start": 51318.96, + "end": 51320.8, + "probability": 0.7591 + }, + { + "start": 51321.42, + "end": 51323.78, + "probability": 0.8043 + }, + { + "start": 51325.64, + "end": 51326.2, + "probability": 0.8269 + }, + { + "start": 51327.74, + "end": 51328.06, + "probability": 0.6336 + }, + { + "start": 51331.28, + "end": 51332.28, + "probability": 0.9111 + }, + { + "start": 51334.12, + "end": 51335.52, + "probability": 0.8986 + }, + { + "start": 51335.8, + "end": 51336.44, + "probability": 0.9287 + }, + { + "start": 51337.74, + "end": 51338.28, + "probability": 0.9389 + }, + { + "start": 51339.22, + "end": 51339.82, + "probability": 0.891 + }, + { + "start": 51341.88, + "end": 51343.1, + "probability": 0.9 + }, + { + "start": 51344.44, + "end": 51347.89, + "probability": 0.9394 + }, + { + "start": 51349.4, + "end": 51351.38, + "probability": 0.9952 + }, + { + "start": 51352.82, + "end": 51353.5, + "probability": 0.7382 + }, + { + "start": 51353.6, + "end": 51355.34, + "probability": 0.9014 + }, + { + "start": 51356.46, + "end": 51357.2, + "probability": 0.6724 + }, + { + "start": 51359.78, + "end": 51362.68, + "probability": 0.9956 + }, + { + "start": 51363.6, + "end": 51364.78, + "probability": 0.9475 + }, + { + "start": 51366.52, + "end": 51368.58, + "probability": 0.9693 + }, + { + "start": 51370.26, + "end": 51371.53, + "probability": 0.9971 + }, + { + "start": 51374.08, + "end": 51375.18, + "probability": 0.6399 + }, + { + "start": 51376.48, + "end": 51376.74, + "probability": 0.6662 + }, + { + "start": 51378.78, + "end": 51380.86, + "probability": 0.9539 + }, + { + "start": 51381.28, + "end": 51382.8, + "probability": 0.8419 + }, + { + "start": 51384.54, + "end": 51385.64, + "probability": 0.9673 + }, + { + "start": 51386.28, + "end": 51390.26, + "probability": 0.9805 + }, + { + "start": 51391.78, + "end": 51396.89, + "probability": 0.8996 + }, + { + "start": 51398.52, + "end": 51398.62, + "probability": 0.0164 + }, + { + "start": 51398.62, + "end": 51398.62, + "probability": 0.0618 + }, + { + "start": 51398.62, + "end": 51399.78, + "probability": 0.5293 + }, + { + "start": 51400.58, + "end": 51401.5, + "probability": 0.8027 + }, + { + "start": 51403.24, + "end": 51403.58, + "probability": 0.8037 + }, + { + "start": 51404.52, + "end": 51404.72, + "probability": 0.6624 + }, + { + "start": 51405.28, + "end": 51405.52, + "probability": 0.9551 + }, + { + "start": 51406.46, + "end": 51407.24, + "probability": 0.8662 + }, + { + "start": 51408.48, + "end": 51409.88, + "probability": 0.7381 + }, + { + "start": 51410.32, + "end": 51411.02, + "probability": 0.9184 + }, + { + "start": 51411.88, + "end": 51412.66, + "probability": 0.4839 + }, + { + "start": 51412.78, + "end": 51413.63, + "probability": 0.9885 + }, + { + "start": 51414.9, + "end": 51415.96, + "probability": 0.9746 + }, + { + "start": 51419.5, + "end": 51420.14, + "probability": 0.6811 + }, + { + "start": 51421.3, + "end": 51427.96, + "probability": 0.923 + }, + { + "start": 51429.78, + "end": 51430.82, + "probability": 0.9941 + }, + { + "start": 51431.7, + "end": 51434.18, + "probability": 0.8404 + }, + { + "start": 51434.98, + "end": 51436.64, + "probability": 0.6813 + }, + { + "start": 51439.76, + "end": 51441.69, + "probability": 0.9442 + }, + { + "start": 51443.14, + "end": 51443.5, + "probability": 0.8236 + }, + { + "start": 51444.18, + "end": 51446.86, + "probability": 0.769 + }, + { + "start": 51446.86, + "end": 51448.1, + "probability": 0.6659 + }, + { + "start": 51448.7, + "end": 51450.66, + "probability": 0.6406 + }, + { + "start": 51450.74, + "end": 51451.82, + "probability": 0.5539 + }, + { + "start": 51452.2, + "end": 51452.94, + "probability": 0.9552 + }, + { + "start": 51453.1, + "end": 51454.52, + "probability": 0.9297 + }, + { + "start": 51455.68, + "end": 51459.22, + "probability": 0.6794 + }, + { + "start": 51460.0, + "end": 51460.89, + "probability": 0.5955 + }, + { + "start": 51461.66, + "end": 51463.58, + "probability": 0.8623 + }, + { + "start": 51466.62, + "end": 51472.18, + "probability": 0.7405 + }, + { + "start": 51472.54, + "end": 51474.14, + "probability": 0.6773 + }, + { + "start": 51476.43, + "end": 51479.48, + "probability": 0.9968 + }, + { + "start": 51481.1, + "end": 51482.99, + "probability": 0.9633 + }, + { + "start": 51486.0, + "end": 51487.28, + "probability": 0.8644 + }, + { + "start": 51487.86, + "end": 51488.12, + "probability": 0.8442 + }, + { + "start": 51489.06, + "end": 51489.42, + "probability": 0.1992 + }, + { + "start": 51490.96, + "end": 51491.56, + "probability": 0.7185 + }, + { + "start": 51493.0, + "end": 51494.52, + "probability": 0.9746 + }, + { + "start": 51495.82, + "end": 51496.68, + "probability": 0.6762 + }, + { + "start": 51497.64, + "end": 51498.98, + "probability": 0.7855 + }, + { + "start": 51500.34, + "end": 51500.75, + "probability": 0.8326 + }, + { + "start": 51501.96, + "end": 51502.48, + "probability": 0.6001 + }, + { + "start": 51503.12, + "end": 51503.84, + "probability": 0.8662 + }, + { + "start": 51504.6, + "end": 51506.86, + "probability": 0.8217 + }, + { + "start": 51508.04, + "end": 51510.82, + "probability": 0.5271 + }, + { + "start": 51511.12, + "end": 51512.82, + "probability": 0.6228 + }, + { + "start": 51513.28, + "end": 51514.5, + "probability": 0.866 + }, + { + "start": 51515.4, + "end": 51516.9, + "probability": 0.9003 + }, + { + "start": 51517.98, + "end": 51518.64, + "probability": 0.9565 + }, + { + "start": 51521.72, + "end": 51523.66, + "probability": 0.9868 + }, + { + "start": 51525.32, + "end": 51526.5, + "probability": 0.722 + }, + { + "start": 51529.3, + "end": 51529.3, + "probability": 0.491 + }, + { + "start": 51529.54, + "end": 51530.72, + "probability": 0.694 + }, + { + "start": 51530.8, + "end": 51532.04, + "probability": 0.9917 + }, + { + "start": 51535.54, + "end": 51536.92, + "probability": 0.8897 + }, + { + "start": 51537.92, + "end": 51538.88, + "probability": 0.9897 + }, + { + "start": 51541.62, + "end": 51543.9, + "probability": 0.9912 + }, + { + "start": 51544.0, + "end": 51544.86, + "probability": 0.8133 + }, + { + "start": 51545.46, + "end": 51547.24, + "probability": 0.596 + }, + { + "start": 51549.56, + "end": 51550.92, + "probability": 0.8174 + }, + { + "start": 51553.16, + "end": 51555.58, + "probability": 0.9272 + }, + { + "start": 51557.26, + "end": 51560.16, + "probability": 0.4963 + }, + { + "start": 51561.28, + "end": 51562.34, + "probability": 0.7408 + }, + { + "start": 51563.41, + "end": 51564.94, + "probability": 0.5878 + }, + { + "start": 51565.26, + "end": 51566.36, + "probability": 0.6379 + }, + { + "start": 51566.94, + "end": 51567.78, + "probability": 0.0168 + }, + { + "start": 51567.78, + "end": 51569.3, + "probability": 0.7407 + }, + { + "start": 51569.32, + "end": 51570.02, + "probability": 0.5565 + }, + { + "start": 51570.06, + "end": 51571.72, + "probability": 0.7454 + }, + { + "start": 51573.08, + "end": 51573.67, + "probability": 0.943 + }, + { + "start": 51574.4, + "end": 51576.24, + "probability": 0.9131 + }, + { + "start": 51577.02, + "end": 51578.24, + "probability": 0.6582 + }, + { + "start": 51578.28, + "end": 51578.76, + "probability": 0.7063 + }, + { + "start": 51578.82, + "end": 51579.8, + "probability": 0.7698 + }, + { + "start": 51579.84, + "end": 51580.14, + "probability": 0.7657 + }, + { + "start": 51595.06, + "end": 51595.5, + "probability": 0.0209 + }, + { + "start": 51595.5, + "end": 51595.5, + "probability": 0.0175 + }, + { + "start": 51595.5, + "end": 51595.5, + "probability": 0.1119 + }, + { + "start": 51595.5, + "end": 51595.5, + "probability": 0.1237 + }, + { + "start": 51595.5, + "end": 51595.5, + "probability": 0.1559 + }, + { + "start": 51595.5, + "end": 51597.7, + "probability": 0.4954 + }, + { + "start": 51599.42, + "end": 51601.26, + "probability": 0.5912 + }, + { + "start": 51601.9, + "end": 51604.34, + "probability": 0.424 + }, + { + "start": 51604.88, + "end": 51608.06, + "probability": 0.7889 + }, + { + "start": 51609.02, + "end": 51611.14, + "probability": 0.8469 + }, + { + "start": 51612.42, + "end": 51613.56, + "probability": 0.993 + }, + { + "start": 51615.76, + "end": 51618.88, + "probability": 0.9904 + }, + { + "start": 51620.08, + "end": 51621.4, + "probability": 0.9951 + }, + { + "start": 51621.82, + "end": 51622.28, + "probability": 0.7543 + }, + { + "start": 51623.9, + "end": 51627.12, + "probability": 0.9873 + }, + { + "start": 51627.16, + "end": 51627.36, + "probability": 0.7956 + }, + { + "start": 51628.98, + "end": 51633.74, + "probability": 0.8828 + }, + { + "start": 51634.62, + "end": 51637.68, + "probability": 0.9712 + }, + { + "start": 51637.78, + "end": 51640.02, + "probability": 0.9447 + }, + { + "start": 51640.74, + "end": 51641.86, + "probability": 0.9066 + }, + { + "start": 51641.94, + "end": 51643.23, + "probability": 0.9049 + }, + { + "start": 51644.06, + "end": 51646.68, + "probability": 0.9775 + }, + { + "start": 51647.36, + "end": 51648.18, + "probability": 0.936 + }, + { + "start": 51648.62, + "end": 51650.6, + "probability": 0.9929 + }, + { + "start": 51651.44, + "end": 51651.76, + "probability": 0.4736 + }, + { + "start": 51652.1, + "end": 51653.66, + "probability": 0.6884 + }, + { + "start": 51653.74, + "end": 51655.82, + "probability": 0.9431 + }, + { + "start": 51656.42, + "end": 51657.08, + "probability": 0.831 + }, + { + "start": 51657.28, + "end": 51657.7, + "probability": 0.9373 + }, + { + "start": 51658.68, + "end": 51659.06, + "probability": 0.9397 + }, + { + "start": 51659.62, + "end": 51660.32, + "probability": 0.4259 + }, + { + "start": 51662.1, + "end": 51663.53, + "probability": 0.6578 + }, + { + "start": 51663.9, + "end": 51664.48, + "probability": 0.3612 + }, + { + "start": 51665.16, + "end": 51668.88, + "probability": 0.8877 + }, + { + "start": 51678.64, + "end": 51679.14, + "probability": 0.0635 + }, + { + "start": 51679.14, + "end": 51679.18, + "probability": 0.2398 + }, + { + "start": 51679.18, + "end": 51679.2, + "probability": 0.0166 + }, + { + "start": 51686.38, + "end": 51686.94, + "probability": 0.0533 + }, + { + "start": 51689.08, + "end": 51689.44, + "probability": 0.0072 + }, + { + "start": 51690.62, + "end": 51690.72, + "probability": 0.3294 + }, + { + "start": 51722.0, + "end": 51727.66, + "probability": 0.7458 + }, + { + "start": 51728.64, + "end": 51729.94, + "probability": 0.9789 + }, + { + "start": 51731.1, + "end": 51733.41, + "probability": 0.7546 + }, + { + "start": 51734.3, + "end": 51734.98, + "probability": 0.4286 + }, + { + "start": 51735.34, + "end": 51742.76, + "probability": 0.8671 + }, + { + "start": 51743.9, + "end": 51746.32, + "probability": 0.9279 + }, + { + "start": 51746.62, + "end": 51747.72, + "probability": 0.9013 + }, + { + "start": 51748.52, + "end": 51751.92, + "probability": 0.9556 + }, + { + "start": 51752.58, + "end": 51754.84, + "probability": 0.9927 + }, + { + "start": 51755.24, + "end": 51755.98, + "probability": 0.5428 + }, + { + "start": 51756.76, + "end": 51759.14, + "probability": 0.9967 + }, + { + "start": 51759.9, + "end": 51760.82, + "probability": 0.8676 + }, + { + "start": 51761.56, + "end": 51762.6, + "probability": 0.9832 + }, + { + "start": 51763.22, + "end": 51765.62, + "probability": 0.9624 + }, + { + "start": 51766.36, + "end": 51770.0, + "probability": 0.9949 + }, + { + "start": 51770.1, + "end": 51771.78, + "probability": 0.6738 + }, + { + "start": 51772.78, + "end": 51774.98, + "probability": 0.7244 + }, + { + "start": 51775.52, + "end": 51777.1, + "probability": 0.8979 + }, + { + "start": 51777.76, + "end": 51778.74, + "probability": 0.9584 + }, + { + "start": 51779.44, + "end": 51780.54, + "probability": 0.9656 + }, + { + "start": 51781.16, + "end": 51782.28, + "probability": 0.9557 + }, + { + "start": 51782.74, + "end": 51786.44, + "probability": 0.9946 + }, + { + "start": 51787.1, + "end": 51789.02, + "probability": 0.8876 + }, + { + "start": 51789.58, + "end": 51791.56, + "probability": 0.9969 + }, + { + "start": 51792.0, + "end": 51794.36, + "probability": 0.9966 + }, + { + "start": 51794.9, + "end": 51795.96, + "probability": 0.9282 + }, + { + "start": 51796.04, + "end": 51799.36, + "probability": 0.99 + }, + { + "start": 51799.54, + "end": 51802.64, + "probability": 0.899 + }, + { + "start": 51803.02, + "end": 51803.6, + "probability": 0.8379 + }, + { + "start": 51804.58, + "end": 51806.4, + "probability": 0.978 + }, + { + "start": 51806.86, + "end": 51808.3, + "probability": 0.9874 + }, + { + "start": 51809.04, + "end": 51812.12, + "probability": 0.7362 + }, + { + "start": 51812.86, + "end": 51813.98, + "probability": 0.7018 + }, + { + "start": 51814.22, + "end": 51817.92, + "probability": 0.971 + }, + { + "start": 51818.52, + "end": 51820.76, + "probability": 0.7564 + }, + { + "start": 51821.18, + "end": 51821.9, + "probability": 0.9583 + }, + { + "start": 51822.26, + "end": 51823.36, + "probability": 0.6406 + }, + { + "start": 51823.96, + "end": 51824.58, + "probability": 0.7573 + }, + { + "start": 51825.1, + "end": 51826.76, + "probability": 0.7833 + }, + { + "start": 51826.88, + "end": 51827.86, + "probability": 0.9609 + }, + { + "start": 51828.7, + "end": 51829.36, + "probability": 0.5907 + }, + { + "start": 51829.4, + "end": 51830.28, + "probability": 0.5365 + }, + { + "start": 51830.68, + "end": 51831.6, + "probability": 0.8959 + }, + { + "start": 51831.68, + "end": 51834.66, + "probability": 0.9969 + }, + { + "start": 51834.74, + "end": 51836.06, + "probability": 0.9873 + }, + { + "start": 51836.14, + "end": 51836.62, + "probability": 0.7389 + }, + { + "start": 51837.24, + "end": 51837.84, + "probability": 0.6229 + }, + { + "start": 51838.76, + "end": 51841.0, + "probability": 0.9897 + }, + { + "start": 51841.48, + "end": 51842.52, + "probability": 0.9836 + }, + { + "start": 51843.14, + "end": 51846.3, + "probability": 0.9794 + }, + { + "start": 51847.08, + "end": 51847.77, + "probability": 0.9792 + }, + { + "start": 51848.16, + "end": 51849.24, + "probability": 0.7336 + }, + { + "start": 51849.26, + "end": 51852.76, + "probability": 0.9871 + }, + { + "start": 51853.32, + "end": 51854.28, + "probability": 0.7911 + }, + { + "start": 51854.88, + "end": 51856.0, + "probability": 0.9923 + }, + { + "start": 51856.9, + "end": 51858.48, + "probability": 0.7714 + }, + { + "start": 51859.56, + "end": 51863.7, + "probability": 0.9909 + }, + { + "start": 51864.66, + "end": 51868.46, + "probability": 0.9128 + }, + { + "start": 51868.72, + "end": 51870.22, + "probability": 0.957 + }, + { + "start": 51871.06, + "end": 51872.2, + "probability": 0.8694 + }, + { + "start": 51872.72, + "end": 51878.92, + "probability": 0.9508 + }, + { + "start": 51879.21, + "end": 51881.7, + "probability": 0.9726 + }, + { + "start": 51881.74, + "end": 51881.94, + "probability": 0.7975 + }, + { + "start": 51882.42, + "end": 51884.76, + "probability": 0.9917 + }, + { + "start": 51885.14, + "end": 51887.86, + "probability": 0.9726 + }, + { + "start": 51889.8, + "end": 51891.12, + "probability": 0.5337 + }, + { + "start": 51891.16, + "end": 51892.46, + "probability": 0.8049 + }, + { + "start": 51892.84, + "end": 51895.12, + "probability": 0.8755 + }, + { + "start": 51896.34, + "end": 51900.76, + "probability": 0.8688 + }, + { + "start": 51900.76, + "end": 51906.72, + "probability": 0.972 + }, + { + "start": 51907.48, + "end": 51907.7, + "probability": 0.9104 + }, + { + "start": 51908.74, + "end": 51909.62, + "probability": 0.5833 + }, + { + "start": 51910.46, + "end": 51912.88, + "probability": 0.9723 + }, + { + "start": 51913.52, + "end": 51914.98, + "probability": 0.9799 + }, + { + "start": 51915.72, + "end": 51918.48, + "probability": 0.644 + }, + { + "start": 51918.58, + "end": 51921.96, + "probability": 0.799 + }, + { + "start": 51922.32, + "end": 51926.94, + "probability": 0.8624 + }, + { + "start": 51927.64, + "end": 51928.77, + "probability": 0.9985 + }, + { + "start": 51930.1, + "end": 51934.12, + "probability": 0.978 + }, + { + "start": 51934.72, + "end": 51935.78, + "probability": 0.9985 + }, + { + "start": 51936.28, + "end": 51937.74, + "probability": 0.9971 + }, + { + "start": 51938.5, + "end": 51940.58, + "probability": 0.9766 + }, + { + "start": 51941.22, + "end": 51941.75, + "probability": 0.7657 + }, + { + "start": 51944.65, + "end": 51946.42, + "probability": 0.8454 + }, + { + "start": 51946.5, + "end": 51947.0, + "probability": 0.9464 + }, + { + "start": 51947.76, + "end": 51951.04, + "probability": 0.9613 + }, + { + "start": 51951.84, + "end": 51952.68, + "probability": 0.9857 + }, + { + "start": 51953.86, + "end": 51954.6, + "probability": 0.7162 + }, + { + "start": 51954.7, + "end": 51955.62, + "probability": 0.9928 + }, + { + "start": 51955.84, + "end": 51956.4, + "probability": 0.7449 + }, + { + "start": 51956.72, + "end": 51958.44, + "probability": 0.9591 + }, + { + "start": 51959.58, + "end": 51959.94, + "probability": 0.9091 + }, + { + "start": 51960.2, + "end": 51962.98, + "probability": 0.9556 + }, + { + "start": 51963.32, + "end": 51965.86, + "probability": 0.9224 + }, + { + "start": 51967.44, + "end": 51970.48, + "probability": 0.9934 + }, + { + "start": 51971.16, + "end": 51972.75, + "probability": 0.8922 + }, + { + "start": 51973.44, + "end": 51974.68, + "probability": 0.9064 + }, + { + "start": 51975.2, + "end": 51975.76, + "probability": 0.3956 + }, + { + "start": 51975.82, + "end": 51977.72, + "probability": 0.9917 + }, + { + "start": 51978.24, + "end": 51979.56, + "probability": 0.7861 + }, + { + "start": 51980.46, + "end": 51981.62, + "probability": 0.6853 + }, + { + "start": 51981.86, + "end": 51982.9, + "probability": 0.8361 + }, + { + "start": 51983.38, + "end": 51984.8, + "probability": 0.9987 + }, + { + "start": 51984.88, + "end": 51988.94, + "probability": 0.999 + }, + { + "start": 51989.42, + "end": 51990.14, + "probability": 0.8627 + }, + { + "start": 51990.66, + "end": 51991.2, + "probability": 0.5503 + }, + { + "start": 51991.56, + "end": 51992.5, + "probability": 0.9026 + }, + { + "start": 51993.04, + "end": 51994.9, + "probability": 0.7547 + }, + { + "start": 51995.72, + "end": 51996.34, + "probability": 0.9377 + }, + { + "start": 51997.0, + "end": 51998.54, + "probability": 0.9287 + }, + { + "start": 51999.08, + "end": 52000.66, + "probability": 0.916 + }, + { + "start": 52000.68, + "end": 52000.8, + "probability": 0.1391 + }, + { + "start": 52000.8, + "end": 52001.2, + "probability": 0.8408 + }, + { + "start": 52001.3, + "end": 52002.12, + "probability": 0.6812 + }, + { + "start": 52002.22, + "end": 52003.28, + "probability": 0.4254 + }, + { + "start": 52003.48, + "end": 52004.12, + "probability": 0.3668 + }, + { + "start": 52004.12, + "end": 52004.3, + "probability": 0.6261 + }, + { + "start": 52004.46, + "end": 52006.94, + "probability": 0.8889 + }, + { + "start": 52007.76, + "end": 52012.38, + "probability": 0.8887 + }, + { + "start": 52012.96, + "end": 52014.12, + "probability": 0.6145 + }, + { + "start": 52014.9, + "end": 52017.32, + "probability": 0.9016 + }, + { + "start": 52017.76, + "end": 52019.56, + "probability": 0.7573 + }, + { + "start": 52019.64, + "end": 52020.81, + "probability": 0.0152 + }, + { + "start": 52021.46, + "end": 52023.66, + "probability": 0.9449 + }, + { + "start": 52025.04, + "end": 52029.82, + "probability": 0.9814 + }, + { + "start": 52030.34, + "end": 52031.2, + "probability": 0.6812 + }, + { + "start": 52031.9, + "end": 52035.24, + "probability": 0.9628 + }, + { + "start": 52035.7, + "end": 52037.84, + "probability": 0.7957 + }, + { + "start": 52038.42, + "end": 52038.8, + "probability": 0.1721 + }, + { + "start": 52040.7, + "end": 52043.52, + "probability": 0.9661 + }, + { + "start": 52044.38, + "end": 52045.78, + "probability": 0.9989 + }, + { + "start": 52046.54, + "end": 52050.62, + "probability": 0.9636 + }, + { + "start": 52051.38, + "end": 52052.34, + "probability": 0.9075 + }, + { + "start": 52053.0, + "end": 52054.5, + "probability": 0.9851 + }, + { + "start": 52055.12, + "end": 52056.26, + "probability": 0.7472 + }, + { + "start": 52056.76, + "end": 52058.8, + "probability": 0.867 + }, + { + "start": 52059.58, + "end": 52061.02, + "probability": 0.998 + }, + { + "start": 52061.78, + "end": 52063.8, + "probability": 0.7952 + }, + { + "start": 52065.48, + "end": 52068.62, + "probability": 0.9157 + }, + { + "start": 52073.1, + "end": 52075.38, + "probability": 0.8173 + }, + { + "start": 52077.54, + "end": 52078.69, + "probability": 0.8021 + }, + { + "start": 52079.86, + "end": 52080.2, + "probability": 0.5908 + }, + { + "start": 52080.92, + "end": 52083.18, + "probability": 0.9525 + }, + { + "start": 52084.2, + "end": 52087.7, + "probability": 0.8524 + }, + { + "start": 52088.3, + "end": 52088.66, + "probability": 0.739 + }, + { + "start": 52088.74, + "end": 52089.65, + "probability": 0.9956 + }, + { + "start": 52090.0, + "end": 52091.48, + "probability": 0.9967 + }, + { + "start": 52091.64, + "end": 52095.1, + "probability": 0.9821 + }, + { + "start": 52096.08, + "end": 52097.16, + "probability": 0.8544 + }, + { + "start": 52097.7, + "end": 52099.24, + "probability": 0.8167 + }, + { + "start": 52100.04, + "end": 52101.58, + "probability": 0.9361 + }, + { + "start": 52102.22, + "end": 52102.7, + "probability": 0.5356 + }, + { + "start": 52103.3, + "end": 52103.52, + "probability": 0.4763 + }, + { + "start": 52103.7, + "end": 52109.62, + "probability": 0.9797 + }, + { + "start": 52110.1, + "end": 52113.66, + "probability": 0.9942 + }, + { + "start": 52114.24, + "end": 52116.84, + "probability": 0.9642 + }, + { + "start": 52117.46, + "end": 52118.78, + "probability": 0.7283 + }, + { + "start": 52119.14, + "end": 52121.58, + "probability": 0.9966 + }, + { + "start": 52122.6, + "end": 52123.18, + "probability": 0.9191 + }, + { + "start": 52123.76, + "end": 52129.48, + "probability": 0.9659 + }, + { + "start": 52129.48, + "end": 52134.08, + "probability": 0.9991 + }, + { + "start": 52135.62, + "end": 52141.08, + "probability": 0.9579 + }, + { + "start": 52141.66, + "end": 52144.18, + "probability": 0.7319 + }, + { + "start": 52144.96, + "end": 52145.96, + "probability": 0.998 + }, + { + "start": 52147.28, + "end": 52149.88, + "probability": 0.9742 + }, + { + "start": 52150.0, + "end": 52150.64, + "probability": 0.7514 + }, + { + "start": 52150.74, + "end": 52151.48, + "probability": 0.8153 + }, + { + "start": 52151.58, + "end": 52153.5, + "probability": 0.9872 + }, + { + "start": 52154.16, + "end": 52158.08, + "probability": 0.9917 + }, + { + "start": 52158.98, + "end": 52163.06, + "probability": 0.8614 + }, + { + "start": 52164.32, + "end": 52165.6, + "probability": 0.5057 + }, + { + "start": 52165.76, + "end": 52171.24, + "probability": 0.906 + }, + { + "start": 52171.66, + "end": 52173.66, + "probability": 0.9814 + }, + { + "start": 52174.02, + "end": 52175.23, + "probability": 0.7473 + }, + { + "start": 52175.82, + "end": 52177.96, + "probability": 0.994 + }, + { + "start": 52179.63, + "end": 52182.82, + "probability": 0.7392 + }, + { + "start": 52183.3, + "end": 52186.32, + "probability": 0.9921 + }, + { + "start": 52186.7, + "end": 52188.04, + "probability": 0.9576 + }, + { + "start": 52188.5, + "end": 52191.98, + "probability": 0.9168 + }, + { + "start": 52192.12, + "end": 52194.76, + "probability": 0.9679 + }, + { + "start": 52195.12, + "end": 52196.12, + "probability": 0.7869 + }, + { + "start": 52196.54, + "end": 52200.92, + "probability": 0.9804 + }, + { + "start": 52201.3, + "end": 52202.94, + "probability": 0.7125 + }, + { + "start": 52203.86, + "end": 52204.36, + "probability": 0.911 + }, + { + "start": 52205.02, + "end": 52208.04, + "probability": 0.9589 + }, + { + "start": 52208.7, + "end": 52215.2, + "probability": 0.9735 + }, + { + "start": 52215.38, + "end": 52215.56, + "probability": 0.6786 + }, + { + "start": 52216.38, + "end": 52217.87, + "probability": 0.877 + }, + { + "start": 52218.92, + "end": 52219.86, + "probability": 0.9816 + }, + { + "start": 52221.47, + "end": 52224.98, + "probability": 0.9355 + }, + { + "start": 52225.54, + "end": 52226.08, + "probability": 0.915 + }, + { + "start": 52226.14, + "end": 52227.78, + "probability": 0.9222 + }, + { + "start": 52228.14, + "end": 52231.84, + "probability": 0.988 + }, + { + "start": 52231.84, + "end": 52236.62, + "probability": 0.9985 + }, + { + "start": 52237.02, + "end": 52241.64, + "probability": 0.9945 + }, + { + "start": 52241.98, + "end": 52243.94, + "probability": 0.8893 + }, + { + "start": 52246.1, + "end": 52246.8, + "probability": 0.4978 + }, + { + "start": 52247.16, + "end": 52252.16, + "probability": 0.9964 + }, + { + "start": 52252.6, + "end": 52254.5, + "probability": 0.9981 + }, + { + "start": 52255.48, + "end": 52256.43, + "probability": 0.9819 + }, + { + "start": 52257.08, + "end": 52258.32, + "probability": 0.9579 + }, + { + "start": 52258.7, + "end": 52259.38, + "probability": 0.983 + }, + { + "start": 52259.7, + "end": 52260.32, + "probability": 0.9359 + }, + { + "start": 52260.44, + "end": 52261.7, + "probability": 0.967 + }, + { + "start": 52262.26, + "end": 52262.72, + "probability": 0.4965 + }, + { + "start": 52263.42, + "end": 52264.14, + "probability": 0.866 + }, + { + "start": 52264.94, + "end": 52265.78, + "probability": 0.9204 + }, + { + "start": 52266.58, + "end": 52267.52, + "probability": 0.8603 + }, + { + "start": 52269.16, + "end": 52269.64, + "probability": 0.9453 + }, + { + "start": 52270.48, + "end": 52270.54, + "probability": 0.0065 + }, + { + "start": 52270.54, + "end": 52272.2, + "probability": 0.6929 + }, + { + "start": 52273.12, + "end": 52275.44, + "probability": 0.8472 + }, + { + "start": 52275.9, + "end": 52279.02, + "probability": 0.8736 + }, + { + "start": 52279.3, + "end": 52283.02, + "probability": 0.9042 + }, + { + "start": 52283.7, + "end": 52284.54, + "probability": 0.834 + }, + { + "start": 52285.18, + "end": 52286.44, + "probability": 0.7983 + }, + { + "start": 52287.1, + "end": 52288.41, + "probability": 0.9363 + }, + { + "start": 52289.08, + "end": 52292.2, + "probability": 0.9026 + }, + { + "start": 52292.72, + "end": 52293.72, + "probability": 0.8562 + }, + { + "start": 52294.26, + "end": 52295.34, + "probability": 0.9821 + }, + { + "start": 52296.02, + "end": 52296.26, + "probability": 0.6788 + }, + { + "start": 52296.78, + "end": 52301.02, + "probability": 0.8979 + }, + { + "start": 52301.56, + "end": 52306.66, + "probability": 0.9199 + }, + { + "start": 52307.26, + "end": 52308.92, + "probability": 0.6077 + }, + { + "start": 52309.7, + "end": 52310.82, + "probability": 0.8221 + }, + { + "start": 52311.28, + "end": 52312.22, + "probability": 0.9676 + }, + { + "start": 52312.3, + "end": 52317.48, + "probability": 0.9949 + }, + { + "start": 52317.88, + "end": 52318.82, + "probability": 0.9279 + }, + { + "start": 52319.6, + "end": 52320.52, + "probability": 0.7943 + }, + { + "start": 52321.76, + "end": 52323.84, + "probability": 0.9757 + }, + { + "start": 52324.7, + "end": 52325.16, + "probability": 0.9891 + }, + { + "start": 52327.29, + "end": 52331.88, + "probability": 0.9441 + }, + { + "start": 52332.06, + "end": 52334.8, + "probability": 0.8544 + }, + { + "start": 52336.2, + "end": 52336.78, + "probability": 0.8641 + }, + { + "start": 52337.06, + "end": 52340.48, + "probability": 0.8955 + }, + { + "start": 52340.48, + "end": 52342.58, + "probability": 0.9949 + }, + { + "start": 52342.74, + "end": 52343.56, + "probability": 0.9208 + }, + { + "start": 52344.04, + "end": 52346.22, + "probability": 0.9687 + }, + { + "start": 52347.1, + "end": 52350.34, + "probability": 0.8121 + }, + { + "start": 52351.1, + "end": 52351.98, + "probability": 0.8339 + }, + { + "start": 52353.3, + "end": 52358.64, + "probability": 0.9954 + }, + { + "start": 52361.62, + "end": 52362.28, + "probability": 0.6218 + }, + { + "start": 52363.3, + "end": 52364.34, + "probability": 0.9897 + }, + { + "start": 52364.44, + "end": 52365.97, + "probability": 0.9343 + }, + { + "start": 52366.54, + "end": 52370.14, + "probability": 0.984 + }, + { + "start": 52370.74, + "end": 52374.02, + "probability": 0.9916 + }, + { + "start": 52374.04, + "end": 52377.5, + "probability": 0.9872 + }, + { + "start": 52379.02, + "end": 52379.7, + "probability": 0.4816 + }, + { + "start": 52380.78, + "end": 52383.78, + "probability": 0.907 + }, + { + "start": 52384.44, + "end": 52386.44, + "probability": 0.9827 + }, + { + "start": 52387.06, + "end": 52387.6, + "probability": 0.8718 + }, + { + "start": 52387.8, + "end": 52389.43, + "probability": 0.9934 + }, + { + "start": 52389.54, + "end": 52394.68, + "probability": 0.9055 + }, + { + "start": 52395.84, + "end": 52401.6, + "probability": 0.865 + }, + { + "start": 52402.64, + "end": 52406.06, + "probability": 0.9799 + }, + { + "start": 52406.3, + "end": 52408.36, + "probability": 0.7924 + }, + { + "start": 52408.9, + "end": 52409.38, + "probability": 0.8765 + }, + { + "start": 52409.64, + "end": 52412.36, + "probability": 0.9523 + }, + { + "start": 52412.82, + "end": 52415.46, + "probability": 0.7163 + }, + { + "start": 52415.7, + "end": 52418.22, + "probability": 0.5107 + }, + { + "start": 52418.62, + "end": 52419.46, + "probability": 0.9612 + }, + { + "start": 52419.56, + "end": 52420.25, + "probability": 0.9863 + }, + { + "start": 52420.64, + "end": 52421.26, + "probability": 0.7646 + }, + { + "start": 52421.86, + "end": 52422.52, + "probability": 0.4955 + }, + { + "start": 52423.14, + "end": 52423.66, + "probability": 0.5342 + }, + { + "start": 52423.84, + "end": 52424.86, + "probability": 0.6563 + }, + { + "start": 52425.52, + "end": 52429.72, + "probability": 0.9708 + }, + { + "start": 52430.42, + "end": 52431.52, + "probability": 0.8447 + }, + { + "start": 52431.66, + "end": 52436.04, + "probability": 0.9452 + }, + { + "start": 52436.56, + "end": 52437.2, + "probability": 0.6629 + }, + { + "start": 52437.72, + "end": 52439.38, + "probability": 0.8384 + }, + { + "start": 52439.58, + "end": 52442.22, + "probability": 0.9635 + }, + { + "start": 52444.22, + "end": 52444.82, + "probability": 0.9006 + }, + { + "start": 52445.14, + "end": 52445.96, + "probability": 0.8527 + }, + { + "start": 52446.08, + "end": 52448.51, + "probability": 0.9824 + }, + { + "start": 52449.0, + "end": 52449.92, + "probability": 0.9776 + }, + { + "start": 52449.94, + "end": 52451.96, + "probability": 0.9954 + }, + { + "start": 52452.64, + "end": 52454.35, + "probability": 0.9966 + }, + { + "start": 52455.44, + "end": 52455.62, + "probability": 0.9634 + }, + { + "start": 52456.36, + "end": 52457.08, + "probability": 0.953 + }, + { + "start": 52457.78, + "end": 52458.79, + "probability": 0.9936 + }, + { + "start": 52459.44, + "end": 52461.46, + "probability": 0.959 + }, + { + "start": 52461.84, + "end": 52463.11, + "probability": 0.998 + }, + { + "start": 52463.74, + "end": 52464.82, + "probability": 0.9968 + }, + { + "start": 52466.0, + "end": 52467.14, + "probability": 0.9985 + }, + { + "start": 52468.92, + "end": 52472.14, + "probability": 0.9406 + }, + { + "start": 52472.74, + "end": 52473.22, + "probability": 0.4097 + }, + { + "start": 52473.28, + "end": 52476.82, + "probability": 0.9893 + }, + { + "start": 52477.16, + "end": 52481.04, + "probability": 0.9636 + }, + { + "start": 52481.16, + "end": 52483.26, + "probability": 0.9937 + }, + { + "start": 52483.72, + "end": 52484.54, + "probability": 0.6214 + }, + { + "start": 52484.94, + "end": 52488.48, + "probability": 0.6772 + }, + { + "start": 52489.0, + "end": 52489.46, + "probability": 0.7528 + }, + { + "start": 52490.28, + "end": 52492.62, + "probability": 0.9712 + }, + { + "start": 52492.78, + "end": 52496.54, + "probability": 0.8843 + }, + { + "start": 52496.54, + "end": 52497.04, + "probability": 0.4981 + }, + { + "start": 52498.44, + "end": 52502.02, + "probability": 0.9536 + }, + { + "start": 52502.92, + "end": 52506.32, + "probability": 0.7224 + }, + { + "start": 52507.56, + "end": 52509.44, + "probability": 0.792 + }, + { + "start": 52510.66, + "end": 52515.4, + "probability": 0.7596 + }, + { + "start": 52517.39, + "end": 52519.54, + "probability": 0.7214 + }, + { + "start": 52519.84, + "end": 52525.88, + "probability": 0.8187 + }, + { + "start": 52526.42, + "end": 52527.12, + "probability": 0.3144 + }, + { + "start": 52527.64, + "end": 52530.32, + "probability": 0.9972 + }, + { + "start": 52531.02, + "end": 52533.36, + "probability": 0.9451 + }, + { + "start": 52534.04, + "end": 52535.97, + "probability": 0.8322 + }, + { + "start": 52537.09, + "end": 52538.39, + "probability": 0.7331 + }, + { + "start": 52540.46, + "end": 52542.7, + "probability": 0.9237 + }, + { + "start": 52543.56, + "end": 52543.9, + "probability": 0.9787 + }, + { + "start": 52545.42, + "end": 52549.94, + "probability": 0.985 + }, + { + "start": 52550.64, + "end": 52553.7, + "probability": 0.9971 + }, + { + "start": 52554.68, + "end": 52559.88, + "probability": 0.9983 + }, + { + "start": 52559.98, + "end": 52561.52, + "probability": 0.9893 + }, + { + "start": 52562.14, + "end": 52563.24, + "probability": 0.9968 + }, + { + "start": 52563.92, + "end": 52564.94, + "probability": 0.8324 + }, + { + "start": 52565.64, + "end": 52568.24, + "probability": 0.9023 + }, + { + "start": 52568.84, + "end": 52573.54, + "probability": 0.9532 + }, + { + "start": 52574.48, + "end": 52575.58, + "probability": 0.8522 + }, + { + "start": 52575.76, + "end": 52576.64, + "probability": 0.8252 + }, + { + "start": 52577.06, + "end": 52577.98, + "probability": 0.8235 + }, + { + "start": 52578.88, + "end": 52579.77, + "probability": 0.9029 + }, + { + "start": 52580.54, + "end": 52583.32, + "probability": 0.9629 + }, + { + "start": 52583.86, + "end": 52585.5, + "probability": 0.9274 + }, + { + "start": 52587.58, + "end": 52588.26, + "probability": 0.8267 + }, + { + "start": 52588.28, + "end": 52588.56, + "probability": 0.9493 + }, + { + "start": 52588.62, + "end": 52589.5, + "probability": 0.803 + }, + { + "start": 52589.58, + "end": 52592.44, + "probability": 0.9493 + }, + { + "start": 52594.12, + "end": 52596.64, + "probability": 0.84 + }, + { + "start": 52596.74, + "end": 52600.52, + "probability": 0.9749 + }, + { + "start": 52600.9, + "end": 52603.12, + "probability": 0.9834 + }, + { + "start": 52603.78, + "end": 52604.68, + "probability": 0.5201 + }, + { + "start": 52605.24, + "end": 52606.64, + "probability": 0.8684 + }, + { + "start": 52607.4, + "end": 52610.4, + "probability": 0.9658 + }, + { + "start": 52610.98, + "end": 52611.9, + "probability": 0.9727 + }, + { + "start": 52611.98, + "end": 52614.8, + "probability": 0.9926 + }, + { + "start": 52615.68, + "end": 52616.82, + "probability": 0.9787 + }, + { + "start": 52618.02, + "end": 52618.04, + "probability": 0.9702 + }, + { + "start": 52620.88, + "end": 52621.46, + "probability": 0.9766 + }, + { + "start": 52622.3, + "end": 52622.66, + "probability": 0.8402 + }, + { + "start": 52622.76, + "end": 52626.14, + "probability": 0.9497 + }, + { + "start": 52626.46, + "end": 52628.14, + "probability": 0.72 + }, + { + "start": 52629.24, + "end": 52630.1, + "probability": 0.9108 + }, + { + "start": 52631.74, + "end": 52632.84, + "probability": 0.9622 + }, + { + "start": 52633.02, + "end": 52636.82, + "probability": 0.9612 + }, + { + "start": 52637.26, + "end": 52639.18, + "probability": 0.6313 + }, + { + "start": 52640.28, + "end": 52641.28, + "probability": 0.7359 + }, + { + "start": 52641.44, + "end": 52642.52, + "probability": 0.9303 + }, + { + "start": 52642.62, + "end": 52644.92, + "probability": 0.9757 + }, + { + "start": 52644.92, + "end": 52647.34, + "probability": 0.9855 + }, + { + "start": 52648.08, + "end": 52653.0, + "probability": 0.9048 + }, + { + "start": 52653.62, + "end": 52654.48, + "probability": 0.77 + }, + { + "start": 52655.1, + "end": 52655.54, + "probability": 0.9373 + }, + { + "start": 52656.46, + "end": 52658.34, + "probability": 0.7169 + }, + { + "start": 52658.92, + "end": 52660.62, + "probability": 0.9076 + }, + { + "start": 52661.14, + "end": 52662.88, + "probability": 0.8772 + }, + { + "start": 52663.56, + "end": 52664.29, + "probability": 0.8805 + }, + { + "start": 52664.56, + "end": 52667.1, + "probability": 0.9606 + }, + { + "start": 52667.48, + "end": 52668.64, + "probability": 0.9871 + }, + { + "start": 52669.26, + "end": 52671.82, + "probability": 0.9956 + }, + { + "start": 52672.34, + "end": 52673.3, + "probability": 0.9963 + }, + { + "start": 52673.64, + "end": 52677.44, + "probability": 0.9944 + }, + { + "start": 52677.94, + "end": 52679.8, + "probability": 0.8606 + }, + { + "start": 52680.74, + "end": 52684.7, + "probability": 0.9937 + }, + { + "start": 52685.32, + "end": 52685.95, + "probability": 0.7702 + }, + { + "start": 52687.22, + "end": 52689.68, + "probability": 0.9856 + }, + { + "start": 52693.14, + "end": 52695.22, + "probability": 0.4077 + }, + { + "start": 52695.84, + "end": 52695.84, + "probability": 0.1916 + }, + { + "start": 52696.1, + "end": 52698.54, + "probability": 0.7544 + }, + { + "start": 52699.08, + "end": 52702.14, + "probability": 0.9899 + }, + { + "start": 52703.24, + "end": 52708.64, + "probability": 0.6725 + }, + { + "start": 52709.54, + "end": 52710.28, + "probability": 0.8655 + }, + { + "start": 52710.28, + "end": 52712.1, + "probability": 0.9609 + }, + { + "start": 52712.28, + "end": 52714.16, + "probability": 0.3635 + }, + { + "start": 52714.64, + "end": 52716.24, + "probability": 0.9716 + }, + { + "start": 52716.3, + "end": 52718.34, + "probability": 0.9359 + }, + { + "start": 52719.46, + "end": 52723.46, + "probability": 0.9773 + }, + { + "start": 52723.9, + "end": 52724.56, + "probability": 0.8194 + }, + { + "start": 52725.3, + "end": 52727.38, + "probability": 0.466 + }, + { + "start": 52728.1, + "end": 52729.94, + "probability": 0.771 + }, + { + "start": 52730.78, + "end": 52731.64, + "probability": 0.8428 + }, + { + "start": 52732.66, + "end": 52734.56, + "probability": 0.5898 + }, + { + "start": 52735.34, + "end": 52741.24, + "probability": 0.8345 + }, + { + "start": 52741.36, + "end": 52746.18, + "probability": 0.9904 + }, + { + "start": 52746.24, + "end": 52747.1, + "probability": 0.9924 + }, + { + "start": 52747.16, + "end": 52747.98, + "probability": 0.7944 + }, + { + "start": 52748.48, + "end": 52749.36, + "probability": 0.8638 + }, + { + "start": 52750.28, + "end": 52751.2, + "probability": 0.5681 + }, + { + "start": 52751.32, + "end": 52751.76, + "probability": 0.9409 + }, + { + "start": 52751.8, + "end": 52752.96, + "probability": 0.9375 + }, + { + "start": 52753.8, + "end": 52754.94, + "probability": 0.9003 + }, + { + "start": 52756.62, + "end": 52758.08, + "probability": 0.88 + }, + { + "start": 52758.32, + "end": 52759.04, + "probability": 0.8976 + }, + { + "start": 52759.82, + "end": 52764.64, + "probability": 0.9985 + }, + { + "start": 52764.7, + "end": 52765.44, + "probability": 0.7922 + }, + { + "start": 52766.08, + "end": 52766.7, + "probability": 0.8031 + }, + { + "start": 52766.76, + "end": 52768.24, + "probability": 0.9894 + }, + { + "start": 52768.7, + "end": 52770.84, + "probability": 0.9912 + }, + { + "start": 52771.26, + "end": 52772.68, + "probability": 0.5287 + }, + { + "start": 52774.02, + "end": 52774.8, + "probability": 0.8043 + }, + { + "start": 52775.7, + "end": 52777.9, + "probability": 0.8909 + }, + { + "start": 52778.86, + "end": 52779.68, + "probability": 0.8399 + }, + { + "start": 52781.16, + "end": 52784.84, + "probability": 0.9452 + }, + { + "start": 52785.0, + "end": 52786.36, + "probability": 0.9778 + }, + { + "start": 52786.38, + "end": 52786.52, + "probability": 0.7656 + }, + { + "start": 52786.68, + "end": 52787.95, + "probability": 0.9976 + }, + { + "start": 52788.84, + "end": 52790.2, + "probability": 0.9769 + }, + { + "start": 52790.76, + "end": 52793.94, + "probability": 0.9008 + }, + { + "start": 52794.34, + "end": 52796.38, + "probability": 0.9917 + }, + { + "start": 52797.2, + "end": 52800.94, + "probability": 0.9956 + }, + { + "start": 52801.76, + "end": 52804.76, + "probability": 0.9902 + }, + { + "start": 52805.32, + "end": 52808.34, + "probability": 0.8253 + }, + { + "start": 52808.9, + "end": 52811.56, + "probability": 0.9178 + }, + { + "start": 52811.96, + "end": 52817.08, + "probability": 0.9521 + }, + { + "start": 52817.18, + "end": 52817.74, + "probability": 0.7264 + }, + { + "start": 52818.08, + "end": 52818.78, + "probability": 0.9677 + }, + { + "start": 52819.16, + "end": 52819.98, + "probability": 0.9389 + }, + { + "start": 52823.37, + "end": 52823.7, + "probability": 0.2741 + }, + { + "start": 52823.7, + "end": 52824.46, + "probability": 0.4643 + }, + { + "start": 52824.86, + "end": 52829.94, + "probability": 0.9722 + }, + { + "start": 52830.46, + "end": 52835.2, + "probability": 0.9917 + }, + { + "start": 52835.33, + "end": 52838.52, + "probability": 0.9783 + }, + { + "start": 52839.5, + "end": 52840.69, + "probability": 0.9282 + }, + { + "start": 52840.88, + "end": 52843.7, + "probability": 0.77 + }, + { + "start": 52844.94, + "end": 52844.96, + "probability": 0.6543 + }, + { + "start": 52845.62, + "end": 52846.56, + "probability": 0.998 + }, + { + "start": 52847.88, + "end": 52849.84, + "probability": 0.9826 + }, + { + "start": 52850.72, + "end": 52852.08, + "probability": 0.8282 + }, + { + "start": 52852.86, + "end": 52854.88, + "probability": 0.9517 + }, + { + "start": 52855.36, + "end": 52856.36, + "probability": 0.881 + }, + { + "start": 52857.18, + "end": 52859.47, + "probability": 0.9881 + }, + { + "start": 52860.18, + "end": 52862.28, + "probability": 0.9684 + }, + { + "start": 52862.5, + "end": 52864.18, + "probability": 0.9496 + }, + { + "start": 52865.64, + "end": 52866.26, + "probability": 0.8242 + }, + { + "start": 52867.06, + "end": 52867.46, + "probability": 0.8679 + }, + { + "start": 52872.32, + "end": 52873.26, + "probability": 0.8121 + }, + { + "start": 52874.08, + "end": 52874.8, + "probability": 0.8978 + }, + { + "start": 52876.02, + "end": 52876.82, + "probability": 0.9184 + }, + { + "start": 52880.1, + "end": 52882.36, + "probability": 0.9979 + }, + { + "start": 52885.38, + "end": 52885.38, + "probability": 0.0439 + }, + { + "start": 52885.38, + "end": 52889.84, + "probability": 0.9751 + }, + { + "start": 52891.48, + "end": 52893.1, + "probability": 0.7113 + }, + { + "start": 52894.04, + "end": 52895.68, + "probability": 0.523 + }, + { + "start": 52895.92, + "end": 52898.18, + "probability": 0.9429 + }, + { + "start": 52898.74, + "end": 52899.36, + "probability": 0.5644 + }, + { + "start": 52899.44, + "end": 52902.34, + "probability": 0.9956 + }, + { + "start": 52902.98, + "end": 52906.4, + "probability": 0.9688 + }, + { + "start": 52907.08, + "end": 52908.14, + "probability": 0.9265 + }, + { + "start": 52908.7, + "end": 52912.76, + "probability": 0.9922 + }, + { + "start": 52913.16, + "end": 52913.92, + "probability": 0.9937 + }, + { + "start": 52916.0, + "end": 52916.54, + "probability": 0.3696 + }, + { + "start": 52917.6, + "end": 52918.8, + "probability": 0.9805 + }, + { + "start": 52919.0, + "end": 52920.44, + "probability": 0.7083 + }, + { + "start": 52920.56, + "end": 52921.3, + "probability": 0.7614 + }, + { + "start": 52921.68, + "end": 52922.4, + "probability": 0.7962 + }, + { + "start": 52923.12, + "end": 52925.47, + "probability": 0.8958 + }, + { + "start": 52928.36, + "end": 52930.16, + "probability": 0.8743 + }, + { + "start": 52930.7, + "end": 52931.44, + "probability": 0.894 + }, + { + "start": 52931.56, + "end": 52933.58, + "probability": 0.9577 + }, + { + "start": 52933.72, + "end": 52936.82, + "probability": 0.9661 + }, + { + "start": 52937.56, + "end": 52940.32, + "probability": 0.9702 + }, + { + "start": 52941.6, + "end": 52943.56, + "probability": 0.7109 + }, + { + "start": 52946.96, + "end": 52949.02, + "probability": 0.1044 + }, + { + "start": 52949.02, + "end": 52949.02, + "probability": 0.0257 + }, + { + "start": 52949.33, + "end": 52954.52, + "probability": 0.6396 + }, + { + "start": 52955.48, + "end": 52957.08, + "probability": 0.9116 + }, + { + "start": 52958.52, + "end": 52964.14, + "probability": 0.8022 + }, + { + "start": 52964.26, + "end": 52964.64, + "probability": 0.2761 + }, + { + "start": 52964.76, + "end": 52967.86, + "probability": 0.9611 + }, + { + "start": 52968.26, + "end": 52969.45, + "probability": 0.5833 + }, + { + "start": 52969.78, + "end": 52970.54, + "probability": 0.6444 + }, + { + "start": 52971.24, + "end": 52971.46, + "probability": 0.5243 + }, + { + "start": 52972.26, + "end": 52974.3, + "probability": 0.9883 + }, + { + "start": 52974.78, + "end": 52976.44, + "probability": 0.9894 + }, + { + "start": 52978.94, + "end": 52981.4, + "probability": 0.9741 + }, + { + "start": 52981.52, + "end": 52981.96, + "probability": 0.6098 + }, + { + "start": 52982.3, + "end": 52984.02, + "probability": 0.7904 + }, + { + "start": 52984.78, + "end": 52986.5, + "probability": 0.9944 + }, + { + "start": 52986.72, + "end": 52988.5, + "probability": 0.8932 + }, + { + "start": 52988.68, + "end": 52989.25, + "probability": 0.8267 + }, + { + "start": 52990.8, + "end": 52992.76, + "probability": 0.6932 + }, + { + "start": 52992.9, + "end": 52994.44, + "probability": 0.9849 + }, + { + "start": 52994.88, + "end": 52995.94, + "probability": 0.9869 + }, + { + "start": 52996.0, + "end": 52997.1, + "probability": 0.9404 + }, + { + "start": 52997.78, + "end": 53000.02, + "probability": 0.9094 + }, + { + "start": 53000.6, + "end": 53003.06, + "probability": 0.9878 + }, + { + "start": 53003.78, + "end": 53004.28, + "probability": 0.4902 + }, + { + "start": 53004.38, + "end": 53007.18, + "probability": 0.9707 + }, + { + "start": 53009.67, + "end": 53012.22, + "probability": 0.9963 + }, + { + "start": 53012.66, + "end": 53013.34, + "probability": 0.9116 + }, + { + "start": 53013.42, + "end": 53015.9, + "probability": 0.9734 + }, + { + "start": 53016.16, + "end": 53018.02, + "probability": 0.9595 + }, + { + "start": 53019.5, + "end": 53020.18, + "probability": 0.6864 + }, + { + "start": 53021.24, + "end": 53023.28, + "probability": 0.9326 + }, + { + "start": 53023.5, + "end": 53024.9, + "probability": 0.9559 + }, + { + "start": 53025.28, + "end": 53025.72, + "probability": 0.7051 + }, + { + "start": 53025.78, + "end": 53026.46, + "probability": 0.5156 + }, + { + "start": 53026.5, + "end": 53028.78, + "probability": 0.6672 + }, + { + "start": 53029.24, + "end": 53034.08, + "probability": 0.9918 + }, + { + "start": 53035.0, + "end": 53035.76, + "probability": 0.3036 + }, + { + "start": 53036.5, + "end": 53038.9, + "probability": 0.7262 + }, + { + "start": 53039.52, + "end": 53040.84, + "probability": 0.9961 + }, + { + "start": 53041.06, + "end": 53043.88, + "probability": 0.5726 + }, + { + "start": 53044.28, + "end": 53044.92, + "probability": 0.7004 + }, + { + "start": 53045.28, + "end": 53046.12, + "probability": 0.7016 + }, + { + "start": 53047.24, + "end": 53048.48, + "probability": 0.6176 + }, + { + "start": 53048.54, + "end": 53050.22, + "probability": 0.9373 + }, + { + "start": 53050.38, + "end": 53052.56, + "probability": 0.9871 + }, + { + "start": 53053.28, + "end": 53056.6, + "probability": 0.994 + }, + { + "start": 53056.88, + "end": 53057.36, + "probability": 0.8745 + }, + { + "start": 53057.78, + "end": 53058.48, + "probability": 0.6562 + }, + { + "start": 53058.6, + "end": 53061.18, + "probability": 0.9928 + }, + { + "start": 53061.48, + "end": 53063.23, + "probability": 0.9924 + }, + { + "start": 53063.7, + "end": 53065.1, + "probability": 0.9939 + }, + { + "start": 53065.64, + "end": 53067.04, + "probability": 0.6722 + }, + { + "start": 53067.81, + "end": 53071.2, + "probability": 0.9045 + }, + { + "start": 53072.2, + "end": 53073.3, + "probability": 0.6538 + }, + { + "start": 53073.36, + "end": 53074.62, + "probability": 0.9181 + }, + { + "start": 53074.76, + "end": 53077.34, + "probability": 0.9728 + }, + { + "start": 53077.8, + "end": 53078.65, + "probability": 0.9849 + }, + { + "start": 53079.8, + "end": 53081.9, + "probability": 0.9919 + }, + { + "start": 53084.5, + "end": 53086.82, + "probability": 0.9403 + }, + { + "start": 53087.0, + "end": 53090.7, + "probability": 0.9976 + }, + { + "start": 53091.1, + "end": 53092.52, + "probability": 0.9931 + }, + { + "start": 53093.12, + "end": 53095.94, + "probability": 0.9914 + }, + { + "start": 53096.48, + "end": 53100.06, + "probability": 0.752 + }, + { + "start": 53100.3, + "end": 53101.49, + "probability": 0.446 + }, + { + "start": 53101.84, + "end": 53102.3, + "probability": 0.7639 + }, + { + "start": 53102.36, + "end": 53103.48, + "probability": 0.9528 + }, + { + "start": 53103.92, + "end": 53104.31, + "probability": 0.6235 + }, + { + "start": 53104.7, + "end": 53105.68, + "probability": 0.5747 + }, + { + "start": 53106.46, + "end": 53110.44, + "probability": 0.8261 + }, + { + "start": 53111.02, + "end": 53111.94, + "probability": 0.7443 + }, + { + "start": 53112.94, + "end": 53113.54, + "probability": 0.9329 + }, + { + "start": 53113.58, + "end": 53117.36, + "probability": 0.8721 + }, + { + "start": 53117.82, + "end": 53118.52, + "probability": 0.7825 + }, + { + "start": 53118.68, + "end": 53118.86, + "probability": 0.8746 + }, + { + "start": 53118.92, + "end": 53119.6, + "probability": 0.9225 + }, + { + "start": 53120.24, + "end": 53122.04, + "probability": 0.9148 + }, + { + "start": 53122.5, + "end": 53123.66, + "probability": 0.8294 + }, + { + "start": 53124.26, + "end": 53124.92, + "probability": 0.7705 + }, + { + "start": 53125.18, + "end": 53126.86, + "probability": 0.6892 + }, + { + "start": 53126.86, + "end": 53128.48, + "probability": 0.9558 + }, + { + "start": 53128.84, + "end": 53131.11, + "probability": 0.9878 + }, + { + "start": 53131.4, + "end": 53132.16, + "probability": 0.8772 + }, + { + "start": 53133.51, + "end": 53134.78, + "probability": 0.7983 + }, + { + "start": 53135.82, + "end": 53140.52, + "probability": 0.9756 + }, + { + "start": 53140.52, + "end": 53143.8, + "probability": 0.9963 + }, + { + "start": 53143.8, + "end": 53148.08, + "probability": 0.998 + }, + { + "start": 53148.68, + "end": 53152.6, + "probability": 0.9828 + }, + { + "start": 53153.16, + "end": 53154.24, + "probability": 0.742 + }, + { + "start": 53154.96, + "end": 53157.52, + "probability": 0.9894 + }, + { + "start": 53158.04, + "end": 53160.86, + "probability": 0.9722 + }, + { + "start": 53161.92, + "end": 53165.98, + "probability": 0.9268 + }, + { + "start": 53166.3, + "end": 53167.46, + "probability": 0.9677 + }, + { + "start": 53168.14, + "end": 53169.52, + "probability": 0.8645 + }, + { + "start": 53169.64, + "end": 53173.68, + "probability": 0.9934 + }, + { + "start": 53174.56, + "end": 53177.66, + "probability": 0.9964 + }, + { + "start": 53178.04, + "end": 53181.76, + "probability": 0.756 + }, + { + "start": 53182.6, + "end": 53183.62, + "probability": 0.9501 + }, + { + "start": 53184.94, + "end": 53187.68, + "probability": 0.8723 + }, + { + "start": 53188.04, + "end": 53191.0, + "probability": 0.8999 + }, + { + "start": 53191.58, + "end": 53193.3, + "probability": 0.9237 + }, + { + "start": 53193.84, + "end": 53195.02, + "probability": 0.9517 + }, + { + "start": 53195.52, + "end": 53197.76, + "probability": 0.7566 + }, + { + "start": 53198.44, + "end": 53200.98, + "probability": 0.9969 + }, + { + "start": 53201.26, + "end": 53201.82, + "probability": 0.5867 + }, + { + "start": 53202.68, + "end": 53203.24, + "probability": 0.9025 + }, + { + "start": 53203.98, + "end": 53205.58, + "probability": 0.9935 + }, + { + "start": 53206.52, + "end": 53207.82, + "probability": 0.9139 + }, + { + "start": 53208.3, + "end": 53213.02, + "probability": 0.9888 + }, + { + "start": 53213.86, + "end": 53214.62, + "probability": 0.709 + }, + { + "start": 53215.38, + "end": 53221.38, + "probability": 0.9781 + }, + { + "start": 53221.52, + "end": 53222.86, + "probability": 0.8515 + }, + { + "start": 53223.4, + "end": 53225.52, + "probability": 0.84 + }, + { + "start": 53227.08, + "end": 53231.94, + "probability": 0.9791 + }, + { + "start": 53235.32, + "end": 53237.64, + "probability": 0.9948 + }, + { + "start": 53238.36, + "end": 53240.8, + "probability": 0.8154 + }, + { + "start": 53241.34, + "end": 53244.36, + "probability": 0.9956 + }, + { + "start": 53244.88, + "end": 53246.04, + "probability": 0.9888 + }, + { + "start": 53246.58, + "end": 53247.62, + "probability": 0.7016 + }, + { + "start": 53248.3, + "end": 53251.12, + "probability": 0.9705 + }, + { + "start": 53251.5, + "end": 53252.08, + "probability": 0.9768 + }, + { + "start": 53252.2, + "end": 53252.78, + "probability": 0.9283 + }, + { + "start": 53253.64, + "end": 53255.08, + "probability": 0.9983 + }, + { + "start": 53255.78, + "end": 53258.18, + "probability": 0.8917 + }, + { + "start": 53258.54, + "end": 53260.9, + "probability": 0.9868 + }, + { + "start": 53261.28, + "end": 53265.44, + "probability": 0.9712 + }, + { + "start": 53266.06, + "end": 53267.72, + "probability": 0.9929 + }, + { + "start": 53270.02, + "end": 53271.6, + "probability": 0.8683 + }, + { + "start": 53272.58, + "end": 53273.74, + "probability": 0.9223 + }, + { + "start": 53274.28, + "end": 53278.86, + "probability": 0.9901 + }, + { + "start": 53279.2, + "end": 53281.72, + "probability": 0.9884 + }, + { + "start": 53282.46, + "end": 53284.24, + "probability": 0.9951 + }, + { + "start": 53284.78, + "end": 53286.78, + "probability": 0.9387 + }, + { + "start": 53287.44, + "end": 53289.38, + "probability": 0.8667 + }, + { + "start": 53290.66, + "end": 53293.68, + "probability": 0.8477 + }, + { + "start": 53294.56, + "end": 53297.64, + "probability": 0.9946 + }, + { + "start": 53297.74, + "end": 53299.33, + "probability": 0.8574 + }, + { + "start": 53299.62, + "end": 53302.9, + "probability": 0.9913 + }, + { + "start": 53303.36, + "end": 53303.66, + "probability": 0.2727 + }, + { + "start": 53304.06, + "end": 53306.14, + "probability": 0.9442 + }, + { + "start": 53306.74, + "end": 53308.36, + "probability": 0.9868 + }, + { + "start": 53308.72, + "end": 53309.92, + "probability": 0.9269 + }, + { + "start": 53310.02, + "end": 53311.02, + "probability": 0.9834 + }, + { + "start": 53311.98, + "end": 53313.77, + "probability": 0.9653 + }, + { + "start": 53314.5, + "end": 53315.54, + "probability": 0.8593 + }, + { + "start": 53317.22, + "end": 53321.2, + "probability": 0.9908 + }, + { + "start": 53322.72, + "end": 53323.14, + "probability": 0.7791 + }, + { + "start": 53323.26, + "end": 53323.78, + "probability": 0.7119 + }, + { + "start": 53323.92, + "end": 53324.54, + "probability": 0.7255 + }, + { + "start": 53324.58, + "end": 53325.34, + "probability": 0.7915 + }, + { + "start": 53326.6, + "end": 53327.82, + "probability": 0.9931 + }, + { + "start": 53329.5, + "end": 53329.5, + "probability": 0.1501 + }, + { + "start": 53329.5, + "end": 53330.0, + "probability": 0.4583 + }, + { + "start": 53330.66, + "end": 53330.96, + "probability": 0.423 + }, + { + "start": 53332.24, + "end": 53335.08, + "probability": 0.9261 + }, + { + "start": 53335.6, + "end": 53338.42, + "probability": 0.9783 + }, + { + "start": 53338.68, + "end": 53341.26, + "probability": 0.9957 + }, + { + "start": 53341.5, + "end": 53341.7, + "probability": 0.5833 + }, + { + "start": 53341.96, + "end": 53344.12, + "probability": 0.9854 + }, + { + "start": 53344.4, + "end": 53345.6, + "probability": 0.9204 + }, + { + "start": 53345.96, + "end": 53346.22, + "probability": 0.6496 + }, + { + "start": 53346.42, + "end": 53347.2, + "probability": 0.5944 + }, + { + "start": 53348.24, + "end": 53349.78, + "probability": 0.7749 + }, + { + "start": 53350.84, + "end": 53351.36, + "probability": 0.4635 + }, + { + "start": 53351.96, + "end": 53353.7, + "probability": 0.8726 + }, + { + "start": 53353.92, + "end": 53354.47, + "probability": 0.8779 + }, + { + "start": 53354.72, + "end": 53357.9, + "probability": 0.9912 + }, + { + "start": 53358.02, + "end": 53359.45, + "probability": 0.9567 + }, + { + "start": 53360.86, + "end": 53362.34, + "probability": 0.5852 + }, + { + "start": 53363.16, + "end": 53363.23, + "probability": 0.0024 + }, + { + "start": 53364.02, + "end": 53366.76, + "probability": 0.9858 + }, + { + "start": 53366.9, + "end": 53367.67, + "probability": 0.6552 + }, + { + "start": 53367.98, + "end": 53371.18, + "probability": 0.9247 + }, + { + "start": 53371.42, + "end": 53372.1, + "probability": 0.905 + }, + { + "start": 53372.36, + "end": 53372.7, + "probability": 0.949 + }, + { + "start": 53373.18, + "end": 53373.86, + "probability": 0.7271 + }, + { + "start": 53374.2, + "end": 53376.94, + "probability": 0.998 + }, + { + "start": 53378.34, + "end": 53380.78, + "probability": 0.9956 + }, + { + "start": 53381.2, + "end": 53381.5, + "probability": 0.4779 + }, + { + "start": 53381.78, + "end": 53383.12, + "probability": 0.9064 + }, + { + "start": 53383.18, + "end": 53385.24, + "probability": 0.7765 + }, + { + "start": 53385.46, + "end": 53387.86, + "probability": 0.8776 + }, + { + "start": 53388.5, + "end": 53389.19, + "probability": 0.4576 + }, + { + "start": 53389.8, + "end": 53389.84, + "probability": 0.7465 + }, + { + "start": 53389.94, + "end": 53390.5, + "probability": 0.583 + }, + { + "start": 53390.66, + "end": 53391.1, + "probability": 0.7881 + }, + { + "start": 53391.4, + "end": 53395.5, + "probability": 0.9801 + }, + { + "start": 53396.28, + "end": 53398.78, + "probability": 0.993 + }, + { + "start": 53398.78, + "end": 53402.64, + "probability": 0.8412 + }, + { + "start": 53402.74, + "end": 53404.68, + "probability": 0.9898 + }, + { + "start": 53405.08, + "end": 53407.66, + "probability": 0.9871 + }, + { + "start": 53407.86, + "end": 53408.44, + "probability": 0.8258 + }, + { + "start": 53408.82, + "end": 53411.74, + "probability": 0.9933 + }, + { + "start": 53411.82, + "end": 53414.18, + "probability": 0.9259 + }, + { + "start": 53415.18, + "end": 53419.92, + "probability": 0.9966 + }, + { + "start": 53419.92, + "end": 53421.21, + "probability": 0.8823 + }, + { + "start": 53421.8, + "end": 53424.06, + "probability": 0.7278 + }, + { + "start": 53424.22, + "end": 53425.96, + "probability": 0.7084 + }, + { + "start": 53426.48, + "end": 53430.38, + "probability": 0.9602 + }, + { + "start": 53430.82, + "end": 53431.54, + "probability": 0.8001 + }, + { + "start": 53431.98, + "end": 53433.22, + "probability": 0.9065 + }, + { + "start": 53433.36, + "end": 53436.88, + "probability": 0.7671 + }, + { + "start": 53437.26, + "end": 53437.36, + "probability": 0.6949 + }, + { + "start": 53438.0, + "end": 53438.88, + "probability": 0.4243 + }, + { + "start": 53439.74, + "end": 53445.02, + "probability": 0.9893 + }, + { + "start": 53445.3, + "end": 53445.94, + "probability": 0.1311 + }, + { + "start": 53445.94, + "end": 53446.84, + "probability": 0.6931 + }, + { + "start": 53447.1, + "end": 53449.84, + "probability": 0.9888 + }, + { + "start": 53450.2, + "end": 53451.62, + "probability": 0.9972 + }, + { + "start": 53451.62, + "end": 53454.6, + "probability": 0.9966 + }, + { + "start": 53455.28, + "end": 53460.88, + "probability": 0.9758 + }, + { + "start": 53461.78, + "end": 53465.64, + "probability": 0.9752 + }, + { + "start": 53465.7, + "end": 53466.92, + "probability": 0.807 + }, + { + "start": 53467.24, + "end": 53468.88, + "probability": 0.9946 + }, + { + "start": 53470.52, + "end": 53472.52, + "probability": 0.984 + }, + { + "start": 53473.42, + "end": 53475.74, + "probability": 0.9917 + }, + { + "start": 53476.18, + "end": 53478.52, + "probability": 0.9922 + }, + { + "start": 53479.98, + "end": 53480.86, + "probability": 0.8796 + }, + { + "start": 53481.08, + "end": 53484.88, + "probability": 0.8014 + }, + { + "start": 53484.94, + "end": 53486.08, + "probability": 0.6833 + }, + { + "start": 53486.4, + "end": 53487.6, + "probability": 0.9082 + }, + { + "start": 53488.06, + "end": 53491.94, + "probability": 0.8214 + }, + { + "start": 53492.18, + "end": 53496.34, + "probability": 0.6668 + }, + { + "start": 53497.1, + "end": 53497.92, + "probability": 0.8888 + }, + { + "start": 53498.06, + "end": 53499.63, + "probability": 0.9875 + }, + { + "start": 53499.82, + "end": 53502.29, + "probability": 0.9773 + }, + { + "start": 53503.08, + "end": 53507.5, + "probability": 0.9044 + }, + { + "start": 53507.94, + "end": 53508.82, + "probability": 0.8613 + }, + { + "start": 53509.44, + "end": 53511.9, + "probability": 0.4748 + }, + { + "start": 53512.7, + "end": 53516.6, + "probability": 0.9509 + }, + { + "start": 53516.7, + "end": 53517.98, + "probability": 0.9683 + }, + { + "start": 53521.08, + "end": 53524.36, + "probability": 0.9683 + }, + { + "start": 53525.34, + "end": 53525.88, + "probability": 0.9551 + }, + { + "start": 53527.64, + "end": 53530.2, + "probability": 0.8908 + }, + { + "start": 53530.32, + "end": 53530.92, + "probability": 0.8731 + }, + { + "start": 53531.06, + "end": 53531.64, + "probability": 0.9504 + }, + { + "start": 53532.12, + "end": 53533.96, + "probability": 0.9915 + }, + { + "start": 53534.3, + "end": 53536.18, + "probability": 0.4859 + }, + { + "start": 53536.54, + "end": 53537.42, + "probability": 0.9258 + }, + { + "start": 53537.5, + "end": 53541.42, + "probability": 0.831 + }, + { + "start": 53542.54, + "end": 53543.68, + "probability": 0.8758 + }, + { + "start": 53545.32, + "end": 53548.36, + "probability": 0.9462 + }, + { + "start": 53548.78, + "end": 53550.96, + "probability": 0.7899 + }, + { + "start": 53551.34, + "end": 53552.8, + "probability": 0.7884 + }, + { + "start": 53553.63, + "end": 53555.72, + "probability": 0.5288 + }, + { + "start": 53555.74, + "end": 53557.18, + "probability": 0.9086 + }, + { + "start": 53557.28, + "end": 53557.28, + "probability": 0.3628 + }, + { + "start": 53557.28, + "end": 53557.28, + "probability": 0.4189 + }, + { + "start": 53557.28, + "end": 53557.42, + "probability": 0.6219 + }, + { + "start": 53557.46, + "end": 53558.76, + "probability": 0.5895 + }, + { + "start": 53559.22, + "end": 53560.22, + "probability": 0.579 + }, + { + "start": 53560.38, + "end": 53561.26, + "probability": 0.7054 + }, + { + "start": 53561.7, + "end": 53562.94, + "probability": 0.9941 + }, + { + "start": 53563.16, + "end": 53564.2, + "probability": 0.9752 + }, + { + "start": 53565.02, + "end": 53565.5, + "probability": 0.2083 + }, + { + "start": 53566.0, + "end": 53566.36, + "probability": 0.9465 + }, + { + "start": 53566.7, + "end": 53568.6, + "probability": 0.8356 + }, + { + "start": 53568.6, + "end": 53569.42, + "probability": 0.8398 + }, + { + "start": 53569.94, + "end": 53571.84, + "probability": 0.7851 + }, + { + "start": 53573.32, + "end": 53576.66, + "probability": 0.7959 + }, + { + "start": 53576.82, + "end": 53577.4, + "probability": 0.8284 + }, + { + "start": 53577.48, + "end": 53578.04, + "probability": 0.5737 + }, + { + "start": 53578.3, + "end": 53584.16, + "probability": 0.9849 + }, + { + "start": 53584.8, + "end": 53585.96, + "probability": 0.8414 + }, + { + "start": 53586.5, + "end": 53588.44, + "probability": 0.9978 + }, + { + "start": 53589.5, + "end": 53590.82, + "probability": 0.9539 + }, + { + "start": 53591.14, + "end": 53593.18, + "probability": 0.8031 + }, + { + "start": 53593.82, + "end": 53596.1, + "probability": 0.9449 + }, + { + "start": 53596.46, + "end": 53600.88, + "probability": 0.9611 + }, + { + "start": 53601.56, + "end": 53604.28, + "probability": 0.9801 + }, + { + "start": 53604.38, + "end": 53605.4, + "probability": 0.8633 + }, + { + "start": 53605.76, + "end": 53606.6, + "probability": 0.8312 + }, + { + "start": 53606.68, + "end": 53607.68, + "probability": 0.9317 + }, + { + "start": 53608.1, + "end": 53609.0, + "probability": 0.674 + }, + { + "start": 53609.44, + "end": 53612.66, + "probability": 0.9658 + }, + { + "start": 53613.62, + "end": 53615.74, + "probability": 0.9444 + }, + { + "start": 53617.96, + "end": 53620.08, + "probability": 0.9414 + }, + { + "start": 53620.18, + "end": 53622.24, + "probability": 0.775 + }, + { + "start": 53623.1, + "end": 53626.36, + "probability": 0.4386 + }, + { + "start": 53627.12, + "end": 53628.96, + "probability": 0.9725 + }, + { + "start": 53629.02, + "end": 53630.66, + "probability": 0.9183 + }, + { + "start": 53631.08, + "end": 53631.98, + "probability": 0.8326 + }, + { + "start": 53632.08, + "end": 53632.92, + "probability": 0.9657 + }, + { + "start": 53633.6, + "end": 53634.28, + "probability": 0.9532 + }, + { + "start": 53634.6, + "end": 53635.29, + "probability": 0.9819 + }, + { + "start": 53635.86, + "end": 53636.86, + "probability": 0.8629 + }, + { + "start": 53637.12, + "end": 53640.44, + "probability": 0.9963 + }, + { + "start": 53640.86, + "end": 53641.88, + "probability": 0.9592 + }, + { + "start": 53642.26, + "end": 53643.3, + "probability": 0.9917 + }, + { + "start": 53643.78, + "end": 53645.32, + "probability": 0.9802 + }, + { + "start": 53645.52, + "end": 53646.18, + "probability": 0.9632 + }, + { + "start": 53646.52, + "end": 53648.22, + "probability": 0.947 + }, + { + "start": 53648.68, + "end": 53649.69, + "probability": 0.9819 + }, + { + "start": 53650.14, + "end": 53652.78, + "probability": 0.9752 + }, + { + "start": 53653.66, + "end": 53654.09, + "probability": 0.5779 + }, + { + "start": 53656.0, + "end": 53660.18, + "probability": 0.9465 + }, + { + "start": 53661.22, + "end": 53662.86, + "probability": 0.9847 + }, + { + "start": 53664.04, + "end": 53664.36, + "probability": 0.7193 + }, + { + "start": 53665.76, + "end": 53667.92, + "probability": 0.9767 + }, + { + "start": 53668.52, + "end": 53672.96, + "probability": 0.9543 + }, + { + "start": 53673.12, + "end": 53675.24, + "probability": 0.9952 + }, + { + "start": 53675.36, + "end": 53676.74, + "probability": 0.955 + }, + { + "start": 53677.2, + "end": 53677.98, + "probability": 0.8688 + }, + { + "start": 53678.54, + "end": 53678.86, + "probability": 0.6628 + }, + { + "start": 53679.64, + "end": 53681.02, + "probability": 0.8819 + }, + { + "start": 53681.14, + "end": 53683.74, + "probability": 0.9927 + }, + { + "start": 53684.42, + "end": 53689.12, + "probability": 0.9709 + }, + { + "start": 53690.02, + "end": 53692.06, + "probability": 0.9849 + }, + { + "start": 53692.4, + "end": 53693.48, + "probability": 0.8141 + }, + { + "start": 53693.84, + "end": 53694.1, + "probability": 0.7646 + }, + { + "start": 53694.58, + "end": 53695.06, + "probability": 0.684 + }, + { + "start": 53696.44, + "end": 53699.06, + "probability": 0.998 + }, + { + "start": 53700.49, + "end": 53703.7, + "probability": 0.9974 + }, + { + "start": 53703.72, + "end": 53704.78, + "probability": 0.9919 + }, + { + "start": 53705.28, + "end": 53706.42, + "probability": 0.9575 + }, + { + "start": 53707.44, + "end": 53710.42, + "probability": 0.6881 + }, + { + "start": 53711.02, + "end": 53712.83, + "probability": 0.98 + }, + { + "start": 53713.56, + "end": 53715.34, + "probability": 0.7351 + }, + { + "start": 53716.78, + "end": 53717.76, + "probability": 0.9888 + }, + { + "start": 53718.18, + "end": 53719.36, + "probability": 0.8832 + }, + { + "start": 53719.7, + "end": 53723.56, + "probability": 0.8484 + }, + { + "start": 53726.46, + "end": 53727.32, + "probability": 0.9432 + }, + { + "start": 53728.02, + "end": 53729.44, + "probability": 0.8444 + }, + { + "start": 53730.16, + "end": 53732.1, + "probability": 0.8979 + }, + { + "start": 53732.1, + "end": 53732.46, + "probability": 0.6306 + }, + { + "start": 53732.76, + "end": 53733.18, + "probability": 0.8211 + }, + { + "start": 53733.32, + "end": 53737.62, + "probability": 0.908 + }, + { + "start": 53738.18, + "end": 53738.95, + "probability": 0.0253 + }, + { + "start": 53739.76, + "end": 53746.12, + "probability": 0.6257 + }, + { + "start": 53746.54, + "end": 53747.52, + "probability": 0.9014 + }, + { + "start": 53747.92, + "end": 53749.02, + "probability": 0.8522 + }, + { + "start": 53749.38, + "end": 53756.7, + "probability": 0.6628 + }, + { + "start": 53757.54, + "end": 53758.2, + "probability": 0.8933 + }, + { + "start": 53758.78, + "end": 53761.5, + "probability": 0.5691 + }, + { + "start": 53761.64, + "end": 53762.34, + "probability": 0.4765 + }, + { + "start": 53764.52, + "end": 53766.84, + "probability": 0.5756 + }, + { + "start": 53766.86, + "end": 53767.88, + "probability": 0.7601 + }, + { + "start": 53768.36, + "end": 53770.76, + "probability": 0.783 + }, + { + "start": 53770.82, + "end": 53771.94, + "probability": 0.6898 + }, + { + "start": 53772.46, + "end": 53778.3, + "probability": 0.7699 + }, + { + "start": 53778.82, + "end": 53781.34, + "probability": 0.8287 + }, + { + "start": 53781.46, + "end": 53784.96, + "probability": 0.7888 + }, + { + "start": 53786.04, + "end": 53786.92, + "probability": 0.6942 + }, + { + "start": 53786.96, + "end": 53788.42, + "probability": 0.8243 + }, + { + "start": 53789.11, + "end": 53789.98, + "probability": 0.6702 + }, + { + "start": 53789.98, + "end": 53793.9, + "probability": 0.9694 + }, + { + "start": 53794.66, + "end": 53794.84, + "probability": 0.5858 + }, + { + "start": 53795.54, + "end": 53797.3, + "probability": 0.6012 + }, + { + "start": 53797.3, + "end": 53798.66, + "probability": 0.7776 + }, + { + "start": 53799.18, + "end": 53800.78, + "probability": 0.6631 + }, + { + "start": 53802.82, + "end": 53804.34, + "probability": 0.8746 + }, + { + "start": 53806.08, + "end": 53806.96, + "probability": 0.4619 + }, + { + "start": 53807.88, + "end": 53807.9, + "probability": 0.894 + }, + { + "start": 53808.6, + "end": 53810.28, + "probability": 0.6367 + }, + { + "start": 53810.4, + "end": 53810.4, + "probability": 0.0054 + }, + { + "start": 53810.94, + "end": 53811.88, + "probability": 0.9489 + }, + { + "start": 53814.14, + "end": 53816.84, + "probability": 0.7915 + }, + { + "start": 53818.53, + "end": 53820.64, + "probability": 0.6917 + }, + { + "start": 53823.26, + "end": 53826.46, + "probability": 0.6311 + }, + { + "start": 53826.68, + "end": 53826.94, + "probability": 0.3309 + }, + { + "start": 53826.94, + "end": 53827.84, + "probability": 0.9953 + }, + { + "start": 53827.86, + "end": 53829.16, + "probability": 0.8303 + }, + { + "start": 53829.3, + "end": 53831.56, + "probability": 0.9243 + }, + { + "start": 53831.68, + "end": 53832.64, + "probability": 0.3969 + }, + { + "start": 53832.64, + "end": 53832.76, + "probability": 0.3234 + }, + { + "start": 53832.96, + "end": 53835.82, + "probability": 0.632 + }, + { + "start": 53835.96, + "end": 53836.34, + "probability": 0.287 + }, + { + "start": 53836.58, + "end": 53839.24, + "probability": 0.82 + }, + { + "start": 53839.32, + "end": 53839.96, + "probability": 0.6555 + }, + { + "start": 53840.3, + "end": 53840.7, + "probability": 0.7949 + }, + { + "start": 53840.82, + "end": 53842.26, + "probability": 0.3881 + }, + { + "start": 53842.26, + "end": 53843.8, + "probability": 0.7976 + }, + { + "start": 53844.18, + "end": 53846.48, + "probability": 0.9333 + }, + { + "start": 53847.0, + "end": 53847.63, + "probability": 0.3909 + }, + { + "start": 53848.04, + "end": 53848.18, + "probability": 0.0164 + }, + { + "start": 53848.4, + "end": 53852.54, + "probability": 0.6587 + }, + { + "start": 53853.22, + "end": 53855.18, + "probability": 0.6457 + }, + { + "start": 53856.02, + "end": 53856.7, + "probability": 0.6148 + }, + { + "start": 53856.7, + "end": 53860.08, + "probability": 0.8746 + }, + { + "start": 53860.5, + "end": 53861.12, + "probability": 0.7481 + }, + { + "start": 53861.42, + "end": 53861.82, + "probability": 0.7221 + }, + { + "start": 53862.38, + "end": 53862.82, + "probability": 0.7668 + }, + { + "start": 53863.48, + "end": 53866.9, + "probability": 0.7595 + }, + { + "start": 53866.9, + "end": 53867.84, + "probability": 0.7886 + }, + { + "start": 53869.81, + "end": 53873.82, + "probability": 0.994 + }, + { + "start": 53875.16, + "end": 53881.16, + "probability": 0.8005 + }, + { + "start": 53883.4, + "end": 53890.08, + "probability": 0.7198 + }, + { + "start": 53890.2, + "end": 53892.3, + "probability": 0.9925 + }, + { + "start": 53892.9, + "end": 53893.42, + "probability": 0.8638 + }, + { + "start": 53893.92, + "end": 53896.62, + "probability": 0.9927 + }, + { + "start": 53896.76, + "end": 53897.88, + "probability": 0.4199 + }, + { + "start": 53897.94, + "end": 53901.28, + "probability": 0.5621 + }, + { + "start": 53901.84, + "end": 53902.8, + "probability": 0.8776 + }, + { + "start": 53903.08, + "end": 53904.86, + "probability": 0.9839 + }, + { + "start": 53905.54, + "end": 53907.82, + "probability": 0.8498 + }, + { + "start": 53907.98, + "end": 53909.86, + "probability": 0.7228 + }, + { + "start": 53910.52, + "end": 53915.42, + "probability": 0.8853 + }, + { + "start": 53915.42, + "end": 53918.92, + "probability": 0.9927 + }, + { + "start": 53919.28, + "end": 53921.3, + "probability": 0.6019 + }, + { + "start": 53921.6, + "end": 53926.0, + "probability": 0.4791 + }, + { + "start": 53926.04, + "end": 53926.76, + "probability": 0.7774 + }, + { + "start": 53926.8, + "end": 53927.15, + "probability": 0.7218 + }, + { + "start": 53927.54, + "end": 53928.69, + "probability": 0.3461 + }, + { + "start": 53929.44, + "end": 53931.0, + "probability": 0.6509 + }, + { + "start": 53931.0, + "end": 53933.57, + "probability": 0.2797 + }, + { + "start": 53933.96, + "end": 53934.06, + "probability": 0.0902 + }, + { + "start": 53934.56, + "end": 53934.84, + "probability": 0.5303 + }, + { + "start": 53935.28, + "end": 53935.9, + "probability": 0.6814 + }, + { + "start": 53936.08, + "end": 53937.88, + "probability": 0.4939 + }, + { + "start": 53937.92, + "end": 53938.58, + "probability": 0.7408 + }, + { + "start": 53938.64, + "end": 53940.99, + "probability": 0.927 + }, + { + "start": 53941.74, + "end": 53942.44, + "probability": 0.8857 + }, + { + "start": 53942.84, + "end": 53943.3, + "probability": 0.9487 + }, + { + "start": 53943.9, + "end": 53945.3, + "probability": 0.9631 + }, + { + "start": 53945.38, + "end": 53949.14, + "probability": 0.9987 + }, + { + "start": 53949.54, + "end": 53951.18, + "probability": 0.5516 + }, + { + "start": 53951.58, + "end": 53951.92, + "probability": 0.7993 + }, + { + "start": 53951.94, + "end": 53952.94, + "probability": 0.9605 + }, + { + "start": 53953.4, + "end": 53954.52, + "probability": 0.9868 + }, + { + "start": 53954.86, + "end": 53955.22, + "probability": 0.7372 + }, + { + "start": 53955.64, + "end": 53958.96, + "probability": 0.9627 + }, + { + "start": 53959.27, + "end": 53962.02, + "probability": 0.8278 + }, + { + "start": 53962.68, + "end": 53963.19, + "probability": 0.9575 + }, + { + "start": 53963.8, + "end": 53964.36, + "probability": 0.9228 + }, + { + "start": 53964.74, + "end": 53969.02, + "probability": 0.9873 + }, + { + "start": 53969.08, + "end": 53969.88, + "probability": 0.7249 + }, + { + "start": 53970.18, + "end": 53970.88, + "probability": 0.8826 + }, + { + "start": 53971.38, + "end": 53975.56, + "probability": 0.8082 + }, + { + "start": 53975.98, + "end": 53976.32, + "probability": 0.7649 + }, + { + "start": 53976.84, + "end": 53977.74, + "probability": 0.9126 + }, + { + "start": 53978.4, + "end": 53978.81, + "probability": 0.5251 + }, + { + "start": 53979.16, + "end": 53980.86, + "probability": 0.956 + }, + { + "start": 53980.92, + "end": 53982.76, + "probability": 0.9746 + }, + { + "start": 53983.08, + "end": 53988.3, + "probability": 0.7942 + }, + { + "start": 53988.62, + "end": 53989.64, + "probability": 0.4721 + }, + { + "start": 53989.72, + "end": 53990.96, + "probability": 0.9082 + }, + { + "start": 53991.32, + "end": 53991.8, + "probability": 0.6665 + }, + { + "start": 53991.9, + "end": 53993.68, + "probability": 0.8225 + }, + { + "start": 53994.04, + "end": 53995.29, + "probability": 0.9747 + }, + { + "start": 53995.74, + "end": 54000.92, + "probability": 0.9905 + }, + { + "start": 54001.08, + "end": 54001.73, + "probability": 0.9955 + }, + { + "start": 54002.02, + "end": 54002.98, + "probability": 0.99 + }, + { + "start": 54003.64, + "end": 54004.76, + "probability": 0.8802 + }, + { + "start": 54005.08, + "end": 54006.7, + "probability": 0.989 + }, + { + "start": 54007.2, + "end": 54007.97, + "probability": 0.6587 + }, + { + "start": 54008.16, + "end": 54010.16, + "probability": 0.9765 + }, + { + "start": 54010.22, + "end": 54011.84, + "probability": 0.9794 + }, + { + "start": 54012.14, + "end": 54012.78, + "probability": 0.9777 + }, + { + "start": 54013.36, + "end": 54015.17, + "probability": 0.9764 + }, + { + "start": 54016.26, + "end": 54019.08, + "probability": 0.8887 + }, + { + "start": 54019.2, + "end": 54020.98, + "probability": 0.8232 + }, + { + "start": 54022.97, + "end": 54025.52, + "probability": 0.6556 + }, + { + "start": 54025.58, + "end": 54031.16, + "probability": 0.9839 + }, + { + "start": 54031.48, + "end": 54032.24, + "probability": 0.9106 + }, + { + "start": 54032.7, + "end": 54033.05, + "probability": 0.709 + }, + { + "start": 54034.02, + "end": 54035.2, + "probability": 0.7767 + }, + { + "start": 54036.04, + "end": 54037.21, + "probability": 0.9397 + }, + { + "start": 54037.62, + "end": 54040.48, + "probability": 0.957 + }, + { + "start": 54040.84, + "end": 54041.9, + "probability": 0.9244 + }, + { + "start": 54042.6, + "end": 54043.9, + "probability": 0.9854 + }, + { + "start": 54044.24, + "end": 54048.1, + "probability": 0.9806 + }, + { + "start": 54048.34, + "end": 54049.08, + "probability": 0.8994 + }, + { + "start": 54049.68, + "end": 54051.68, + "probability": 0.9865 + }, + { + "start": 54052.22, + "end": 54054.18, + "probability": 0.8728 + }, + { + "start": 54054.88, + "end": 54056.46, + "probability": 0.8667 + }, + { + "start": 54056.68, + "end": 54058.92, + "probability": 0.9529 + }, + { + "start": 54059.32, + "end": 54060.86, + "probability": 0.8669 + }, + { + "start": 54061.62, + "end": 54063.88, + "probability": 0.9669 + }, + { + "start": 54063.9, + "end": 54064.4, + "probability": 0.507 + }, + { + "start": 54064.4, + "end": 54066.52, + "probability": 0.362 + }, + { + "start": 54067.24, + "end": 54068.04, + "probability": 0.8671 + }, + { + "start": 54068.04, + "end": 54069.3, + "probability": 0.8523 + }, + { + "start": 54070.06, + "end": 54071.48, + "probability": 0.8444 + }, + { + "start": 54071.72, + "end": 54072.2, + "probability": 0.7456 + }, + { + "start": 54072.82, + "end": 54074.48, + "probability": 0.5401 + }, + { + "start": 54075.26, + "end": 54077.54, + "probability": 0.7098 + }, + { + "start": 54078.38, + "end": 54079.68, + "probability": 0.9578 + }, + { + "start": 54080.42, + "end": 54086.88, + "probability": 0.9873 + }, + { + "start": 54087.34, + "end": 54090.42, + "probability": 0.6628 + }, + { + "start": 54091.24, + "end": 54094.06, + "probability": 0.9609 + }, + { + "start": 54094.1, + "end": 54095.24, + "probability": 0.7758 + }, + { + "start": 54095.3, + "end": 54096.91, + "probability": 0.9897 + }, + { + "start": 54097.48, + "end": 54098.32, + "probability": 0.9799 + }, + { + "start": 54098.46, + "end": 54098.56, + "probability": 0.0006 + }, + { + "start": 54103.94, + "end": 54105.48, + "probability": 0.1591 + }, + { + "start": 54105.48, + "end": 54108.08, + "probability": 0.5788 + }, + { + "start": 54110.08, + "end": 54110.48, + "probability": 0.0619 + }, + { + "start": 54111.96, + "end": 54112.06, + "probability": 0.8853 + }, + { + "start": 54112.88, + "end": 54114.42, + "probability": 0.3754 + }, + { + "start": 54115.92, + "end": 54118.6, + "probability": 0.9876 + }, + { + "start": 54119.66, + "end": 54120.02, + "probability": 0.8703 + }, + { + "start": 54123.44, + "end": 54123.99, + "probability": 0.1335 + }, + { + "start": 54129.02, + "end": 54130.06, + "probability": 0.5805 + }, + { + "start": 54131.22, + "end": 54131.24, + "probability": 0.0863 + }, + { + "start": 54131.24, + "end": 54132.53, + "probability": 0.8345 + }, + { + "start": 54133.14, + "end": 54135.6, + "probability": 0.8158 + }, + { + "start": 54137.22, + "end": 54139.96, + "probability": 0.9951 + }, + { + "start": 54142.4, + "end": 54142.64, + "probability": 0.4303 + }, + { + "start": 54142.64, + "end": 54142.64, + "probability": 0.0988 + }, + { + "start": 54142.64, + "end": 54145.62, + "probability": 0.772 + }, + { + "start": 54148.6, + "end": 54149.06, + "probability": 0.758 + }, + { + "start": 54149.76, + "end": 54150.48, + "probability": 0.7902 + }, + { + "start": 54150.86, + "end": 54152.18, + "probability": 0.9331 + }, + { + "start": 54152.32, + "end": 54154.4, + "probability": 0.9546 + }, + { + "start": 54154.66, + "end": 54158.18, + "probability": 0.9314 + }, + { + "start": 54158.38, + "end": 54162.78, + "probability": 0.5837 + }, + { + "start": 54163.3, + "end": 54163.42, + "probability": 0.084 + }, + { + "start": 54163.42, + "end": 54163.42, + "probability": 0.0684 + }, + { + "start": 54163.42, + "end": 54163.52, + "probability": 0.2526 + }, + { + "start": 54163.62, + "end": 54164.78, + "probability": 0.9563 + }, + { + "start": 54165.66, + "end": 54167.54, + "probability": 0.9572 + }, + { + "start": 54167.96, + "end": 54168.77, + "probability": 0.9966 + }, + { + "start": 54169.78, + "end": 54172.2, + "probability": 0.9575 + }, + { + "start": 54172.74, + "end": 54174.92, + "probability": 0.9526 + }, + { + "start": 54175.72, + "end": 54176.56, + "probability": 0.9396 + }, + { + "start": 54177.2, + "end": 54177.84, + "probability": 0.4496 + }, + { + "start": 54180.92, + "end": 54181.98, + "probability": 0.2678 + }, + { + "start": 54182.22, + "end": 54188.92, + "probability": 0.6498 + }, + { + "start": 54190.97, + "end": 54193.5, + "probability": 0.4986 + }, + { + "start": 54199.84, + "end": 54200.28, + "probability": 0.0027 + }, + { + "start": 54201.31, + "end": 54206.66, + "probability": 0.9051 + }, + { + "start": 54207.34, + "end": 54212.6, + "probability": 0.9692 + }, + { + "start": 54213.68, + "end": 54217.1, + "probability": 0.9186 + }, + { + "start": 54217.82, + "end": 54218.46, + "probability": 0.4016 + }, + { + "start": 54218.46, + "end": 54219.14, + "probability": 0.7051 + }, + { + "start": 54219.62, + "end": 54222.6, + "probability": 0.9957 + }, + { + "start": 54222.98, + "end": 54226.48, + "probability": 0.9804 + }, + { + "start": 54227.04, + "end": 54228.62, + "probability": 0.7558 + }, + { + "start": 54230.02, + "end": 54232.28, + "probability": 0.9972 + }, + { + "start": 54233.84, + "end": 54234.64, + "probability": 0.7536 + }, + { + "start": 54236.18, + "end": 54237.18, + "probability": 0.8443 + }, + { + "start": 54238.68, + "end": 54243.16, + "probability": 0.9891 + }, + { + "start": 54247.38, + "end": 54249.38, + "probability": 0.9352 + }, + { + "start": 54250.04, + "end": 54254.62, + "probability": 0.9899 + }, + { + "start": 54255.26, + "end": 54257.1, + "probability": 0.8657 + }, + { + "start": 54258.38, + "end": 54259.73, + "probability": 0.925 + }, + { + "start": 54261.64, + "end": 54263.18, + "probability": 0.9873 + }, + { + "start": 54264.34, + "end": 54265.46, + "probability": 0.8959 + }, + { + "start": 54266.58, + "end": 54268.9, + "probability": 0.9861 + }, + { + "start": 54270.14, + "end": 54271.88, + "probability": 0.9904 + }, + { + "start": 54271.98, + "end": 54274.2, + "probability": 0.9797 + }, + { + "start": 54275.06, + "end": 54277.24, + "probability": 0.779 + }, + { + "start": 54277.88, + "end": 54280.8, + "probability": 0.6118 + }, + { + "start": 54281.52, + "end": 54282.45, + "probability": 0.9576 + }, + { + "start": 54283.2, + "end": 54284.86, + "probability": 0.9038 + }, + { + "start": 54284.92, + "end": 54290.62, + "probability": 0.9967 + }, + { + "start": 54291.34, + "end": 54291.86, + "probability": 0.4155 + }, + { + "start": 54292.02, + "end": 54292.9, + "probability": 0.9354 + }, + { + "start": 54292.94, + "end": 54294.12, + "probability": 0.9702 + }, + { + "start": 54294.58, + "end": 54296.58, + "probability": 0.8885 + }, + { + "start": 54297.04, + "end": 54299.96, + "probability": 0.861 + }, + { + "start": 54300.24, + "end": 54301.5, + "probability": 0.8919 + }, + { + "start": 54302.3, + "end": 54303.64, + "probability": 0.6939 + }, + { + "start": 54305.43, + "end": 54307.18, + "probability": 0.9631 + }, + { + "start": 54307.36, + "end": 54308.0, + "probability": 0.6691 + }, + { + "start": 54308.62, + "end": 54311.2, + "probability": 0.8238 + }, + { + "start": 54311.26, + "end": 54313.5, + "probability": 0.9959 + }, + { + "start": 54314.06, + "end": 54316.22, + "probability": 0.944 + }, + { + "start": 54316.36, + "end": 54317.26, + "probability": 0.2052 + }, + { + "start": 54317.96, + "end": 54320.54, + "probability": 0.9912 + }, + { + "start": 54321.18, + "end": 54322.86, + "probability": 0.9984 + }, + { + "start": 54323.66, + "end": 54326.02, + "probability": 0.9545 + }, + { + "start": 54326.6, + "end": 54327.78, + "probability": 0.9687 + }, + { + "start": 54327.86, + "end": 54331.7, + "probability": 0.8955 + }, + { + "start": 54331.76, + "end": 54334.2, + "probability": 0.9976 + }, + { + "start": 54335.15, + "end": 54340.06, + "probability": 0.9785 + }, + { + "start": 54341.54, + "end": 54343.26, + "probability": 0.9626 + }, + { + "start": 54344.0, + "end": 54346.08, + "probability": 0.9241 + }, + { + "start": 54347.26, + "end": 54349.54, + "probability": 0.6423 + }, + { + "start": 54349.94, + "end": 54352.0, + "probability": 0.8699 + }, + { + "start": 54352.62, + "end": 54354.52, + "probability": 0.9671 + }, + { + "start": 54355.36, + "end": 54356.16, + "probability": 0.5224 + }, + { + "start": 54356.9, + "end": 54360.02, + "probability": 0.8374 + }, + { + "start": 54360.16, + "end": 54361.42, + "probability": 0.8754 + }, + { + "start": 54361.5, + "end": 54365.9, + "probability": 0.9434 + }, + { + "start": 54366.34, + "end": 54367.76, + "probability": 0.9934 + }, + { + "start": 54368.34, + "end": 54371.76, + "probability": 0.7786 + }, + { + "start": 54371.88, + "end": 54376.92, + "probability": 0.8341 + }, + { + "start": 54378.12, + "end": 54379.7, + "probability": 0.9777 + }, + { + "start": 54379.96, + "end": 54382.42, + "probability": 0.9801 + }, + { + "start": 54383.06, + "end": 54384.0, + "probability": 0.7522 + }, + { + "start": 54384.7, + "end": 54385.56, + "probability": 0.5954 + }, + { + "start": 54385.94, + "end": 54387.18, + "probability": 0.8809 + }, + { + "start": 54387.24, + "end": 54390.46, + "probability": 0.9025 + }, + { + "start": 54390.98, + "end": 54392.32, + "probability": 0.9856 + }, + { + "start": 54392.9, + "end": 54394.34, + "probability": 0.9894 + }, + { + "start": 54394.66, + "end": 54395.18, + "probability": 0.9856 + }, + { + "start": 54395.24, + "end": 54396.04, + "probability": 0.7372 + }, + { + "start": 54396.32, + "end": 54398.2, + "probability": 0.9974 + }, + { + "start": 54399.76, + "end": 54402.14, + "probability": 0.9928 + }, + { + "start": 54402.34, + "end": 54403.54, + "probability": 0.9914 + }, + { + "start": 54404.16, + "end": 54405.08, + "probability": 0.6074 + }, + { + "start": 54405.6, + "end": 54406.2, + "probability": 0.9337 + }, + { + "start": 54408.14, + "end": 54409.1, + "probability": 0.9866 + }, + { + "start": 54409.86, + "end": 54410.56, + "probability": 0.7981 + }, + { + "start": 54412.19, + "end": 54417.9, + "probability": 0.7888 + }, + { + "start": 54418.8, + "end": 54424.74, + "probability": 0.9958 + }, + { + "start": 54425.14, + "end": 54426.88, + "probability": 0.9956 + }, + { + "start": 54427.3, + "end": 54432.14, + "probability": 0.9674 + }, + { + "start": 54432.74, + "end": 54435.29, + "probability": 0.9682 + }, + { + "start": 54436.48, + "end": 54439.14, + "probability": 0.959 + }, + { + "start": 54439.84, + "end": 54442.44, + "probability": 0.9489 + }, + { + "start": 54442.58, + "end": 54445.5, + "probability": 0.8333 + }, + { + "start": 54446.16, + "end": 54446.6, + "probability": 0.6303 + }, + { + "start": 54447.26, + "end": 54447.86, + "probability": 0.7483 + }, + { + "start": 54448.96, + "end": 54451.7, + "probability": 0.991 + }, + { + "start": 54451.8, + "end": 54452.26, + "probability": 0.974 + }, + { + "start": 54452.36, + "end": 54453.02, + "probability": 0.7549 + }, + { + "start": 54453.8, + "end": 54455.88, + "probability": 0.9907 + }, + { + "start": 54456.52, + "end": 54458.76, + "probability": 0.9907 + }, + { + "start": 54459.3, + "end": 54461.88, + "probability": 0.9993 + }, + { + "start": 54462.56, + "end": 54465.6, + "probability": 0.9743 + }, + { + "start": 54465.96, + "end": 54470.46, + "probability": 0.9977 + }, + { + "start": 54471.0, + "end": 54474.96, + "probability": 0.9917 + }, + { + "start": 54474.96, + "end": 54478.96, + "probability": 0.9444 + }, + { + "start": 54479.1, + "end": 54480.1, + "probability": 0.6851 + }, + { + "start": 54480.14, + "end": 54481.16, + "probability": 0.8021 + }, + { + "start": 54481.69, + "end": 54485.44, + "probability": 0.7668 + }, + { + "start": 54485.74, + "end": 54487.88, + "probability": 0.9972 + }, + { + "start": 54488.34, + "end": 54491.35, + "probability": 0.9904 + }, + { + "start": 54492.4, + "end": 54493.56, + "probability": 0.9814 + }, + { + "start": 54494.66, + "end": 54496.8, + "probability": 0.5856 + }, + { + "start": 54496.88, + "end": 54497.58, + "probability": 0.5864 + }, + { + "start": 54497.9, + "end": 54501.2, + "probability": 0.8639 + }, + { + "start": 54501.98, + "end": 54503.54, + "probability": 0.718 + }, + { + "start": 54503.6, + "end": 54504.62, + "probability": 0.916 + }, + { + "start": 54505.1, + "end": 54506.8, + "probability": 0.6758 + }, + { + "start": 54507.06, + "end": 54508.26, + "probability": 0.9426 + }, + { + "start": 54508.58, + "end": 54512.68, + "probability": 0.854 + }, + { + "start": 54512.74, + "end": 54514.3, + "probability": 0.3561 + }, + { + "start": 54514.36, + "end": 54515.01, + "probability": 0.8965 + }, + { + "start": 54515.96, + "end": 54518.92, + "probability": 0.8546 + }, + { + "start": 54519.62, + "end": 54524.82, + "probability": 0.9863 + }, + { + "start": 54524.82, + "end": 54528.48, + "probability": 0.9912 + }, + { + "start": 54529.48, + "end": 54530.94, + "probability": 0.8027 + }, + { + "start": 54531.92, + "end": 54534.28, + "probability": 0.9944 + }, + { + "start": 54534.94, + "end": 54538.9, + "probability": 0.8019 + }, + { + "start": 54539.34, + "end": 54542.12, + "probability": 0.9643 + }, + { + "start": 54542.54, + "end": 54545.42, + "probability": 0.9716 + }, + { + "start": 54545.78, + "end": 54551.8, + "probability": 0.9421 + }, + { + "start": 54552.04, + "end": 54553.08, + "probability": 0.7739 + }, + { + "start": 54554.02, + "end": 54555.58, + "probability": 0.9105 + }, + { + "start": 54556.94, + "end": 54559.4, + "probability": 0.8805 + }, + { + "start": 54559.44, + "end": 54560.41, + "probability": 0.907 + }, + { + "start": 54562.42, + "end": 54564.64, + "probability": 0.6636 + }, + { + "start": 54564.72, + "end": 54565.68, + "probability": 0.9982 + }, + { + "start": 54565.88, + "end": 54569.74, + "probability": 0.9954 + }, + { + "start": 54570.76, + "end": 54573.06, + "probability": 0.9567 + }, + { + "start": 54573.68, + "end": 54573.88, + "probability": 0.7563 + }, + { + "start": 54574.5, + "end": 54576.44, + "probability": 0.5591 + }, + { + "start": 54577.02, + "end": 54578.04, + "probability": 0.9037 + }, + { + "start": 54578.16, + "end": 54579.14, + "probability": 0.9897 + }, + { + "start": 54579.72, + "end": 54580.58, + "probability": 0.9867 + }, + { + "start": 54581.58, + "end": 54583.28, + "probability": 0.9942 + }, + { + "start": 54583.84, + "end": 54586.42, + "probability": 0.9198 + }, + { + "start": 54586.96, + "end": 54587.18, + "probability": 0.6721 + }, + { + "start": 54587.7, + "end": 54588.48, + "probability": 0.9751 + }, + { + "start": 54589.18, + "end": 54590.54, + "probability": 0.9531 + }, + { + "start": 54591.08, + "end": 54592.74, + "probability": 0.9829 + }, + { + "start": 54593.28, + "end": 54596.26, + "probability": 0.9529 + }, + { + "start": 54596.48, + "end": 54599.94, + "probability": 0.9429 + }, + { + "start": 54600.06, + "end": 54600.76, + "probability": 0.6786 + }, + { + "start": 54600.88, + "end": 54601.77, + "probability": 0.6792 + }, + { + "start": 54602.32, + "end": 54603.26, + "probability": 0.6984 + }, + { + "start": 54603.36, + "end": 54604.66, + "probability": 0.9851 + }, + { + "start": 54605.02, + "end": 54606.3, + "probability": 0.9924 + }, + { + "start": 54606.61, + "end": 54608.26, + "probability": 0.9559 + }, + { + "start": 54608.28, + "end": 54609.12, + "probability": 0.8338 + }, + { + "start": 54611.02, + "end": 54611.4, + "probability": 0.2775 + }, + { + "start": 54612.28, + "end": 54613.36, + "probability": 0.7481 + }, + { + "start": 54613.68, + "end": 54617.72, + "probability": 0.9916 + }, + { + "start": 54618.6, + "end": 54619.5, + "probability": 0.8987 + }, + { + "start": 54620.48, + "end": 54622.0, + "probability": 0.9895 + }, + { + "start": 54622.44, + "end": 54623.2, + "probability": 0.946 + }, + { + "start": 54623.72, + "end": 54626.3, + "probability": 0.7759 + }, + { + "start": 54626.84, + "end": 54628.54, + "probability": 0.7256 + }, + { + "start": 54628.56, + "end": 54631.88, + "probability": 0.989 + }, + { + "start": 54632.36, + "end": 54633.8, + "probability": 0.7888 + }, + { + "start": 54634.52, + "end": 54636.66, + "probability": 0.9863 + }, + { + "start": 54637.38, + "end": 54638.5, + "probability": 0.9881 + }, + { + "start": 54641.68, + "end": 54642.4, + "probability": 0.6959 + }, + { + "start": 54642.4, + "end": 54643.12, + "probability": 0.4708 + }, + { + "start": 54643.64, + "end": 54647.04, + "probability": 0.9884 + }, + { + "start": 54647.62, + "end": 54649.24, + "probability": 0.9932 + }, + { + "start": 54650.16, + "end": 54651.36, + "probability": 0.9593 + }, + { + "start": 54651.84, + "end": 54653.34, + "probability": 0.9065 + }, + { + "start": 54653.86, + "end": 54654.88, + "probability": 0.3852 + }, + { + "start": 54654.96, + "end": 54658.6, + "probability": 0.9839 + }, + { + "start": 54658.68, + "end": 54659.22, + "probability": 0.7527 + }, + { + "start": 54659.58, + "end": 54661.5, + "probability": 0.8201 + }, + { + "start": 54661.58, + "end": 54664.67, + "probability": 0.96 + }, + { + "start": 54665.54, + "end": 54667.44, + "probability": 0.9508 + }, + { + "start": 54668.66, + "end": 54669.14, + "probability": 0.7101 + }, + { + "start": 54669.72, + "end": 54674.28, + "probability": 0.998 + }, + { + "start": 54674.74, + "end": 54676.7, + "probability": 0.9643 + }, + { + "start": 54677.92, + "end": 54679.38, + "probability": 0.5803 + }, + { + "start": 54680.82, + "end": 54682.88, + "probability": 0.9998 + }, + { + "start": 54683.7, + "end": 54684.54, + "probability": 0.8323 + }, + { + "start": 54686.06, + "end": 54687.26, + "probability": 0.9937 + }, + { + "start": 54688.18, + "end": 54689.83, + "probability": 0.8275 + }, + { + "start": 54691.18, + "end": 54692.2, + "probability": 0.8667 + }, + { + "start": 54695.58, + "end": 54697.24, + "probability": 0.9185 + }, + { + "start": 54697.32, + "end": 54700.14, + "probability": 0.9788 + }, + { + "start": 54700.36, + "end": 54702.0, + "probability": 0.996 + }, + { + "start": 54702.66, + "end": 54704.23, + "probability": 0.9602 + }, + { + "start": 54705.16, + "end": 54706.4, + "probability": 0.9912 + }, + { + "start": 54707.28, + "end": 54709.22, + "probability": 0.9412 + }, + { + "start": 54710.74, + "end": 54712.0, + "probability": 0.9878 + }, + { + "start": 54712.62, + "end": 54714.72, + "probability": 0.6992 + }, + { + "start": 54714.84, + "end": 54717.54, + "probability": 0.9951 + }, + { + "start": 54718.94, + "end": 54720.48, + "probability": 0.9316 + }, + { + "start": 54721.56, + "end": 54723.48, + "probability": 0.9477 + }, + { + "start": 54724.2, + "end": 54727.12, + "probability": 0.9286 + }, + { + "start": 54728.38, + "end": 54731.88, + "probability": 0.8622 + }, + { + "start": 54733.04, + "end": 54734.04, + "probability": 0.7433 + }, + { + "start": 54734.06, + "end": 54738.72, + "probability": 0.9622 + }, + { + "start": 54738.88, + "end": 54739.7, + "probability": 0.8621 + }, + { + "start": 54741.42, + "end": 54742.16, + "probability": 0.9304 + }, + { + "start": 54742.76, + "end": 54745.06, + "probability": 0.9749 + }, + { + "start": 54745.72, + "end": 54747.92, + "probability": 0.9941 + }, + { + "start": 54748.52, + "end": 54750.64, + "probability": 0.6773 + }, + { + "start": 54751.28, + "end": 54752.16, + "probability": 0.8148 + }, + { + "start": 54752.78, + "end": 54754.0, + "probability": 0.7485 + }, + { + "start": 54754.2, + "end": 54756.62, + "probability": 0.9707 + }, + { + "start": 54756.7, + "end": 54759.36, + "probability": 0.9746 + }, + { + "start": 54759.74, + "end": 54761.38, + "probability": 0.9808 + }, + { + "start": 54761.92, + "end": 54764.26, + "probability": 0.9355 + }, + { + "start": 54765.56, + "end": 54768.12, + "probability": 0.874 + }, + { + "start": 54768.8, + "end": 54769.92, + "probability": 0.7778 + }, + { + "start": 54770.08, + "end": 54772.04, + "probability": 0.9405 + }, + { + "start": 54773.12, + "end": 54774.38, + "probability": 0.9453 + }, + { + "start": 54775.3, + "end": 54775.64, + "probability": 0.422 + }, + { + "start": 54776.64, + "end": 54779.32, + "probability": 0.0774 + }, + { + "start": 54782.02, + "end": 54782.98, + "probability": 0.0623 + }, + { + "start": 54784.02, + "end": 54784.52, + "probability": 0.7712 + }, + { + "start": 54784.66, + "end": 54785.5, + "probability": 0.8306 + }, + { + "start": 54785.58, + "end": 54788.2, + "probability": 0.9634 + }, + { + "start": 54788.32, + "end": 54789.3, + "probability": 0.8011 + }, + { + "start": 54789.38, + "end": 54789.48, + "probability": 0.3738 + }, + { + "start": 54789.48, + "end": 54790.1, + "probability": 0.7305 + }, + { + "start": 54790.24, + "end": 54790.82, + "probability": 0.7226 + }, + { + "start": 54792.92, + "end": 54794.12, + "probability": 0.7442 + }, + { + "start": 54794.78, + "end": 54799.48, + "probability": 0.9738 + }, + { + "start": 54799.48, + "end": 54802.48, + "probability": 0.9933 + }, + { + "start": 54803.12, + "end": 54808.48, + "probability": 0.8985 + }, + { + "start": 54808.56, + "end": 54813.3, + "probability": 0.9784 + }, + { + "start": 54814.04, + "end": 54817.08, + "probability": 0.9903 + }, + { + "start": 54821.24, + "end": 54823.54, + "probability": 0.7652 + }, + { + "start": 54824.16, + "end": 54825.52, + "probability": 0.7407 + }, + { + "start": 54825.62, + "end": 54829.14, + "probability": 0.994 + }, + { + "start": 54829.56, + "end": 54830.28, + "probability": 0.8712 + }, + { + "start": 54830.6, + "end": 54831.22, + "probability": 0.8214 + }, + { + "start": 54831.44, + "end": 54832.08, + "probability": 0.5127 + }, + { + "start": 54832.08, + "end": 54832.96, + "probability": 0.9967 + }, + { + "start": 54833.76, + "end": 54835.64, + "probability": 0.709 + }, + { + "start": 54836.26, + "end": 54836.78, + "probability": 0.9479 + }, + { + "start": 54836.86, + "end": 54837.58, + "probability": 0.969 + }, + { + "start": 54837.9, + "end": 54839.28, + "probability": 0.9946 + }, + { + "start": 54839.38, + "end": 54840.22, + "probability": 0.9414 + }, + { + "start": 54841.04, + "end": 54842.42, + "probability": 0.9028 + }, + { + "start": 54843.16, + "end": 54844.78, + "probability": 0.7668 + }, + { + "start": 54846.16, + "end": 54847.98, + "probability": 0.8152 + }, + { + "start": 54850.1, + "end": 54851.4, + "probability": 0.9989 + }, + { + "start": 54851.98, + "end": 54856.36, + "probability": 0.978 + }, + { + "start": 54857.02, + "end": 54858.78, + "probability": 0.9896 + }, + { + "start": 54859.4, + "end": 54860.48, + "probability": 0.978 + }, + { + "start": 54861.68, + "end": 54864.72, + "probability": 0.6011 + }, + { + "start": 54865.34, + "end": 54869.62, + "probability": 0.9758 + }, + { + "start": 54870.76, + "end": 54872.04, + "probability": 0.2084 + }, + { + "start": 54873.6, + "end": 54875.46, + "probability": 0.6453 + }, + { + "start": 54876.38, + "end": 54877.6, + "probability": 0.7598 + }, + { + "start": 54878.66, + "end": 54879.77, + "probability": 0.9829 + }, + { + "start": 54880.3, + "end": 54881.16, + "probability": 0.6417 + }, + { + "start": 54881.22, + "end": 54882.38, + "probability": 0.5042 + }, + { + "start": 54882.88, + "end": 54884.28, + "probability": 0.2417 + }, + { + "start": 54884.82, + "end": 54885.69, + "probability": 0.7861 + }, + { + "start": 54887.0, + "end": 54887.98, + "probability": 0.6755 + }, + { + "start": 54888.96, + "end": 54890.18, + "probability": 0.7521 + }, + { + "start": 54890.46, + "end": 54891.06, + "probability": 0.3701 + }, + { + "start": 54891.14, + "end": 54892.76, + "probability": 0.5013 + }, + { + "start": 54893.5, + "end": 54894.44, + "probability": 0.9624 + }, + { + "start": 54894.7, + "end": 54895.84, + "probability": 0.0415 + }, + { + "start": 54896.36, + "end": 54896.46, + "probability": 0.1043 + }, + { + "start": 54897.68, + "end": 54898.36, + "probability": 0.1287 + }, + { + "start": 54899.28, + "end": 54900.48, + "probability": 0.3836 + }, + { + "start": 54901.0, + "end": 54902.34, + "probability": 0.7903 + }, + { + "start": 54903.12, + "end": 54905.24, + "probability": 0.6948 + }, + { + "start": 54905.54, + "end": 54906.62, + "probability": 0.8516 + }, + { + "start": 54906.9, + "end": 54910.2, + "probability": 0.6717 + }, + { + "start": 54910.38, + "end": 54910.38, + "probability": 0.584 + }, + { + "start": 54912.68, + "end": 54912.88, + "probability": 0.0493 + }, + { + "start": 54912.88, + "end": 54913.4, + "probability": 0.1666 + }, + { + "start": 54914.1, + "end": 54915.24, + "probability": 0.6984 + }, + { + "start": 54915.86, + "end": 54918.64, + "probability": 0.561 + }, + { + "start": 54919.36, + "end": 54922.62, + "probability": 0.9937 + }, + { + "start": 54922.96, + "end": 54924.75, + "probability": 0.9985 + }, + { + "start": 54925.32, + "end": 54927.15, + "probability": 0.4438 + }, + { + "start": 54927.36, + "end": 54931.22, + "probability": 0.9391 + }, + { + "start": 54931.52, + "end": 54932.8, + "probability": 0.849 + }, + { + "start": 54933.32, + "end": 54933.82, + "probability": 0.4768 + }, + { + "start": 54934.54, + "end": 54937.42, + "probability": 0.6357 + }, + { + "start": 54938.58, + "end": 54939.86, + "probability": 0.8862 + }, + { + "start": 54940.46, + "end": 54942.0, + "probability": 0.804 + }, + { + "start": 54942.78, + "end": 54943.44, + "probability": 0.9259 + }, + { + "start": 54944.94, + "end": 54945.6, + "probability": 0.8888 + }, + { + "start": 54946.32, + "end": 54946.89, + "probability": 0.7695 + }, + { + "start": 54948.14, + "end": 54951.14, + "probability": 0.9944 + }, + { + "start": 54951.54, + "end": 54953.06, + "probability": 0.7531 + }, + { + "start": 54953.44, + "end": 54954.94, + "probability": 0.4051 + }, + { + "start": 54955.22, + "end": 54956.94, + "probability": 0.547 + }, + { + "start": 54957.84, + "end": 54959.0, + "probability": 0.8337 + }, + { + "start": 54959.7, + "end": 54963.74, + "probability": 0.8008 + }, + { + "start": 54966.14, + "end": 54969.3, + "probability": 0.9004 + }, + { + "start": 54970.16, + "end": 54972.92, + "probability": 0.5293 + }, + { + "start": 54974.08, + "end": 54978.96, + "probability": 0.8388 + }, + { + "start": 54979.56, + "end": 54982.46, + "probability": 0.8346 + }, + { + "start": 54983.42, + "end": 54985.04, + "probability": 0.9868 + }, + { + "start": 54985.7, + "end": 54987.28, + "probability": 0.5011 + }, + { + "start": 54987.34, + "end": 54991.08, + "probability": 0.8807 + }, + { + "start": 54991.76, + "end": 54993.09, + "probability": 0.5645 + }, + { + "start": 54994.28, + "end": 54994.76, + "probability": 0.133 + }, + { + "start": 54996.1, + "end": 55001.94, + "probability": 0.9751 + }, + { + "start": 55002.1, + "end": 55004.14, + "probability": 0.8021 + }, + { + "start": 55004.62, + "end": 55006.62, + "probability": 0.7954 + }, + { + "start": 55006.9, + "end": 55008.12, + "probability": 0.5006 + }, + { + "start": 55008.72, + "end": 55009.58, + "probability": 0.8898 + }, + { + "start": 55009.96, + "end": 55010.52, + "probability": 0.6956 + }, + { + "start": 55012.58, + "end": 55013.36, + "probability": 0.7159 + }, + { + "start": 55013.42, + "end": 55016.18, + "probability": 0.8398 + }, + { + "start": 55016.26, + "end": 55020.12, + "probability": 0.9216 + }, + { + "start": 55020.58, + "end": 55021.75, + "probability": 0.9829 + }, + { + "start": 55022.76, + "end": 55027.66, + "probability": 0.9849 + }, + { + "start": 55027.86, + "end": 55029.16, + "probability": 0.5977 + }, + { + "start": 55029.82, + "end": 55033.9, + "probability": 0.9292 + }, + { + "start": 55035.06, + "end": 55038.92, + "probability": 0.7278 + }, + { + "start": 55039.6, + "end": 55042.02, + "probability": 0.9857 + }, + { + "start": 55042.9, + "end": 55044.06, + "probability": 0.9865 + }, + { + "start": 55045.5, + "end": 55047.3, + "probability": 0.5574 + }, + { + "start": 55051.38, + "end": 55056.54, + "probability": 0.9205 + }, + { + "start": 55056.56, + "end": 55058.38, + "probability": 0.9904 + }, + { + "start": 55058.94, + "end": 55060.76, + "probability": 0.9844 + }, + { + "start": 55060.86, + "end": 55061.96, + "probability": 0.9652 + }, + { + "start": 55063.16, + "end": 55065.28, + "probability": 0.8608 + }, + { + "start": 55068.84, + "end": 55071.9, + "probability": 0.8771 + }, + { + "start": 55071.96, + "end": 55073.74, + "probability": 0.9911 + }, + { + "start": 55074.98, + "end": 55077.92, + "probability": 0.5256 + }, + { + "start": 55077.92, + "end": 55080.92, + "probability": 0.2711 + }, + { + "start": 55081.36, + "end": 55082.26, + "probability": 0.7778 + }, + { + "start": 55082.48, + "end": 55087.3, + "probability": 0.9524 + }, + { + "start": 55087.3, + "end": 55095.7, + "probability": 0.9989 + }, + { + "start": 55095.7, + "end": 55100.02, + "probability": 0.991 + }, + { + "start": 55101.34, + "end": 55106.16, + "probability": 0.9939 + }, + { + "start": 55106.18, + "end": 55108.86, + "probability": 0.7465 + }, + { + "start": 55109.08, + "end": 55110.26, + "probability": 0.9608 + }, + { + "start": 55110.78, + "end": 55112.4, + "probability": 0.9902 + }, + { + "start": 55112.46, + "end": 55113.6, + "probability": 0.838 + }, + { + "start": 55113.94, + "end": 55116.1, + "probability": 0.9821 + }, + { + "start": 55116.22, + "end": 55123.86, + "probability": 0.6694 + }, + { + "start": 55123.94, + "end": 55126.1, + "probability": 0.9062 + }, + { + "start": 55126.92, + "end": 55127.3, + "probability": 0.3212 + }, + { + "start": 55127.42, + "end": 55128.0, + "probability": 0.1812 + }, + { + "start": 55128.14, + "end": 55130.06, + "probability": 0.1254 + }, + { + "start": 55130.06, + "end": 55132.12, + "probability": 0.4024 + }, + { + "start": 55132.76, + "end": 55135.42, + "probability": 0.8628 + }, + { + "start": 55136.0, + "end": 55137.72, + "probability": 0.8595 + }, + { + "start": 55138.3, + "end": 55139.44, + "probability": 0.7539 + }, + { + "start": 55139.54, + "end": 55143.0, + "probability": 0.9785 + }, + { + "start": 55143.06, + "end": 55144.12, + "probability": 0.7531 + }, + { + "start": 55145.1, + "end": 55145.84, + "probability": 0.7753 + }, + { + "start": 55146.56, + "end": 55151.94, + "probability": 0.8262 + }, + { + "start": 55152.16, + "end": 55154.92, + "probability": 0.9126 + }, + { + "start": 55157.83, + "end": 55161.0, + "probability": 0.8373 + }, + { + "start": 55161.52, + "end": 55162.72, + "probability": 0.8774 + }, + { + "start": 55162.72, + "end": 55165.6, + "probability": 0.9612 + }, + { + "start": 55166.42, + "end": 55166.44, + "probability": 0.9309 + }, + { + "start": 55169.68, + "end": 55174.16, + "probability": 0.9562 + }, + { + "start": 55174.94, + "end": 55175.38, + "probability": 0.3621 + }, + { + "start": 55176.22, + "end": 55177.78, + "probability": 0.5764 + }, + { + "start": 55180.24, + "end": 55184.02, + "probability": 0.9728 + }, + { + "start": 55184.58, + "end": 55186.5, + "probability": 0.94 + }, + { + "start": 55186.62, + "end": 55188.78, + "probability": 0.9621 + }, + { + "start": 55189.34, + "end": 55192.52, + "probability": 0.9728 + }, + { + "start": 55193.24, + "end": 55194.82, + "probability": 0.6305 + }, + { + "start": 55195.67, + "end": 55198.82, + "probability": 0.9368 + }, + { + "start": 55199.34, + "end": 55203.92, + "probability": 0.9376 + }, + { + "start": 55203.96, + "end": 55206.82, + "probability": 0.1153 + }, + { + "start": 55206.82, + "end": 55207.72, + "probability": 0.1269 + }, + { + "start": 55208.24, + "end": 55209.72, + "probability": 0.6997 + }, + { + "start": 55210.12, + "end": 55211.54, + "probability": 0.9351 + }, + { + "start": 55211.98, + "end": 55213.9, + "probability": 0.9866 + }, + { + "start": 55214.62, + "end": 55215.25, + "probability": 0.7397 + }, + { + "start": 55216.04, + "end": 55219.12, + "probability": 0.8333 + }, + { + "start": 55219.2, + "end": 55219.52, + "probability": 0.4431 + }, + { + "start": 55219.8, + "end": 55221.27, + "probability": 0.8131 + }, + { + "start": 55221.86, + "end": 55226.24, + "probability": 0.9853 + }, + { + "start": 55226.68, + "end": 55227.16, + "probability": 0.8452 + }, + { + "start": 55227.68, + "end": 55230.14, + "probability": 0.7678 + }, + { + "start": 55230.92, + "end": 55231.9, + "probability": 0.9966 + }, + { + "start": 55232.2, + "end": 55232.44, + "probability": 0.5687 + }, + { + "start": 55232.86, + "end": 55234.08, + "probability": 0.9098 + }, + { + "start": 55234.86, + "end": 55236.0, + "probability": 0.9824 + }, + { + "start": 55236.54, + "end": 55238.46, + "probability": 0.9862 + }, + { + "start": 55238.78, + "end": 55239.98, + "probability": 0.8734 + }, + { + "start": 55240.42, + "end": 55241.28, + "probability": 0.8733 + }, + { + "start": 55241.3, + "end": 55244.18, + "probability": 0.9429 + }, + { + "start": 55244.22, + "end": 55246.48, + "probability": 0.9799 + }, + { + "start": 55246.82, + "end": 55248.74, + "probability": 0.936 + }, + { + "start": 55249.26, + "end": 55251.8, + "probability": 0.9649 + }, + { + "start": 55253.12, + "end": 55254.7, + "probability": 0.0599 + }, + { + "start": 55254.84, + "end": 55255.78, + "probability": 0.7338 + }, + { + "start": 55257.24, + "end": 55261.1, + "probability": 0.8245 + }, + { + "start": 55263.04, + "end": 55264.68, + "probability": 0.6389 + }, + { + "start": 55265.98, + "end": 55268.74, + "probability": 0.9096 + }, + { + "start": 55269.08, + "end": 55271.34, + "probability": 0.969 + }, + { + "start": 55272.16, + "end": 55275.36, + "probability": 0.8657 + }, + { + "start": 55275.38, + "end": 55278.12, + "probability": 0.9748 + }, + { + "start": 55278.74, + "end": 55281.98, + "probability": 0.3136 + }, + { + "start": 55282.34, + "end": 55283.58, + "probability": 0.1898 + }, + { + "start": 55284.14, + "end": 55287.78, + "probability": 0.8733 + }, + { + "start": 55287.94, + "end": 55291.68, + "probability": 0.981 + }, + { + "start": 55292.06, + "end": 55293.89, + "probability": 0.7147 + }, + { + "start": 55294.24, + "end": 55297.46, + "probability": 0.7878 + }, + { + "start": 55297.92, + "end": 55301.44, + "probability": 0.9844 + }, + { + "start": 55301.44, + "end": 55303.74, + "probability": 0.9668 + }, + { + "start": 55304.56, + "end": 55305.6, + "probability": 0.9705 + }, + { + "start": 55305.74, + "end": 55306.58, + "probability": 0.9911 + }, + { + "start": 55306.94, + "end": 55309.82, + "probability": 0.9966 + }, + { + "start": 55311.18, + "end": 55311.28, + "probability": 0.4403 + }, + { + "start": 55312.0, + "end": 55316.98, + "probability": 0.995 + }, + { + "start": 55317.6, + "end": 55319.86, + "probability": 0.9806 + }, + { + "start": 55320.36, + "end": 55322.32, + "probability": 0.74 + }, + { + "start": 55323.12, + "end": 55326.5, + "probability": 0.985 + }, + { + "start": 55326.94, + "end": 55328.32, + "probability": 0.9905 + }, + { + "start": 55329.02, + "end": 55332.6, + "probability": 0.9569 + }, + { + "start": 55333.0, + "end": 55335.7, + "probability": 0.9963 + }, + { + "start": 55336.56, + "end": 55339.52, + "probability": 0.7032 + }, + { + "start": 55340.6, + "end": 55340.98, + "probability": 0.4971 + }, + { + "start": 55341.0, + "end": 55343.32, + "probability": 0.9966 + }, + { + "start": 55344.26, + "end": 55347.42, + "probability": 0.8491 + }, + { + "start": 55348.24, + "end": 55349.02, + "probability": 0.9474 + }, + { + "start": 55349.7, + "end": 55350.36, + "probability": 0.3844 + }, + { + "start": 55351.18, + "end": 55356.22, + "probability": 0.9539 + }, + { + "start": 55356.7, + "end": 55361.26, + "probability": 0.9318 + }, + { + "start": 55361.86, + "end": 55362.16, + "probability": 0.7675 + }, + { + "start": 55362.68, + "end": 55364.48, + "probability": 0.9163 + }, + { + "start": 55365.1, + "end": 55367.74, + "probability": 0.7453 + }, + { + "start": 55368.14, + "end": 55372.62, + "probability": 0.7723 + }, + { + "start": 55372.7, + "end": 55373.4, + "probability": 0.7789 + }, + { + "start": 55373.92, + "end": 55378.1, + "probability": 0.9648 + }, + { + "start": 55378.26, + "end": 55379.04, + "probability": 0.3004 + }, + { + "start": 55379.2, + "end": 55382.02, + "probability": 0.2377 + }, + { + "start": 55382.02, + "end": 55384.06, + "probability": 0.3022 + }, + { + "start": 55385.22, + "end": 55388.68, + "probability": 0.5374 + }, + { + "start": 55388.68, + "end": 55392.84, + "probability": 0.9376 + }, + { + "start": 55393.46, + "end": 55394.88, + "probability": 0.9071 + }, + { + "start": 55395.04, + "end": 55399.6, + "probability": 0.9846 + }, + { + "start": 55399.95, + "end": 55406.1, + "probability": 0.8774 + }, + { + "start": 55406.26, + "end": 55407.38, + "probability": 0.7272 + }, + { + "start": 55408.14, + "end": 55414.04, + "probability": 0.137 + }, + { + "start": 55414.22, + "end": 55414.4, + "probability": 0.4804 + }, + { + "start": 55414.4, + "end": 55414.4, + "probability": 0.0734 + }, + { + "start": 55414.4, + "end": 55414.4, + "probability": 0.3119 + }, + { + "start": 55414.4, + "end": 55414.64, + "probability": 0.569 + }, + { + "start": 55414.78, + "end": 55416.52, + "probability": 0.9709 + }, + { + "start": 55416.74, + "end": 55418.44, + "probability": 0.8561 + }, + { + "start": 55418.98, + "end": 55422.16, + "probability": 0.7589 + }, + { + "start": 55422.54, + "end": 55424.3, + "probability": 0.186 + }, + { + "start": 55425.18, + "end": 55426.24, + "probability": 0.3046 + }, + { + "start": 55426.78, + "end": 55427.84, + "probability": 0.0398 + }, + { + "start": 55427.84, + "end": 55428.3, + "probability": 0.7567 + }, + { + "start": 55428.72, + "end": 55429.98, + "probability": 0.9558 + }, + { + "start": 55430.2, + "end": 55430.32, + "probability": 0.3311 + }, + { + "start": 55430.32, + "end": 55432.33, + "probability": 0.9873 + }, + { + "start": 55432.66, + "end": 55433.95, + "probability": 0.8379 + }, + { + "start": 55434.86, + "end": 55439.21, + "probability": 0.9882 + }, + { + "start": 55439.96, + "end": 55440.84, + "probability": 0.68 + }, + { + "start": 55441.4, + "end": 55444.88, + "probability": 0.9235 + }, + { + "start": 55445.32, + "end": 55451.14, + "probability": 0.9587 + }, + { + "start": 55451.64, + "end": 55454.07, + "probability": 0.9917 + }, + { + "start": 55454.78, + "end": 55455.52, + "probability": 0.8579 + }, + { + "start": 55456.0, + "end": 55458.42, + "probability": 0.9678 + }, + { + "start": 55458.86, + "end": 55459.56, + "probability": 0.9442 + }, + { + "start": 55459.7, + "end": 55460.38, + "probability": 0.908 + }, + { + "start": 55460.7, + "end": 55461.56, + "probability": 0.9603 + }, + { + "start": 55461.64, + "end": 55463.74, + "probability": 0.9919 + }, + { + "start": 55464.34, + "end": 55468.36, + "probability": 0.936 + }, + { + "start": 55468.92, + "end": 55471.2, + "probability": 0.9856 + }, + { + "start": 55471.54, + "end": 55474.76, + "probability": 0.991 + }, + { + "start": 55474.76, + "end": 55477.8, + "probability": 0.9924 + }, + { + "start": 55478.82, + "end": 55480.74, + "probability": 0.7135 + }, + { + "start": 55481.26, + "end": 55484.84, + "probability": 0.8968 + }, + { + "start": 55485.36, + "end": 55488.72, + "probability": 0.9821 + }, + { + "start": 55489.16, + "end": 55492.0, + "probability": 0.9478 + }, + { + "start": 55493.42, + "end": 55494.4, + "probability": 0.5833 + }, + { + "start": 55495.14, + "end": 55496.22, + "probability": 0.8133 + }, + { + "start": 55497.04, + "end": 55498.88, + "probability": 0.969 + }, + { + "start": 55499.34, + "end": 55499.98, + "probability": 0.6265 + }, + { + "start": 55500.02, + "end": 55502.56, + "probability": 0.5699 + }, + { + "start": 55502.56, + "end": 55506.96, + "probability": 0.9907 + }, + { + "start": 55507.76, + "end": 55511.44, + "probability": 0.988 + }, + { + "start": 55511.9, + "end": 55515.22, + "probability": 0.9821 + }, + { + "start": 55515.8, + "end": 55521.6, + "probability": 0.9871 + }, + { + "start": 55522.32, + "end": 55525.76, + "probability": 0.5199 + }, + { + "start": 55526.5, + "end": 55529.46, + "probability": 0.9972 + }, + { + "start": 55530.24, + "end": 55535.66, + "probability": 0.9763 + }, + { + "start": 55535.76, + "end": 55537.26, + "probability": 0.9548 + }, + { + "start": 55537.72, + "end": 55538.68, + "probability": 0.6226 + }, + { + "start": 55538.98, + "end": 55540.24, + "probability": 0.9391 + }, + { + "start": 55540.46, + "end": 55543.12, + "probability": 0.8855 + }, + { + "start": 55543.52, + "end": 55545.9, + "probability": 0.9846 + }, + { + "start": 55546.3, + "end": 55547.6, + "probability": 0.9508 + }, + { + "start": 55548.04, + "end": 55549.84, + "probability": 0.5833 + }, + { + "start": 55549.92, + "end": 55550.94, + "probability": 0.7486 + }, + { + "start": 55551.24, + "end": 55552.8, + "probability": 0.9936 + }, + { + "start": 55553.16, + "end": 55554.52, + "probability": 0.9819 + }, + { + "start": 55555.02, + "end": 55556.0, + "probability": 0.5536 + }, + { + "start": 55556.32, + "end": 55559.46, + "probability": 0.9568 + }, + { + "start": 55559.66, + "end": 55561.8, + "probability": 0.986 + }, + { + "start": 55561.86, + "end": 55563.04, + "probability": 0.8089 + }, + { + "start": 55564.18, + "end": 55570.1, + "probability": 0.9207 + }, + { + "start": 55579.28, + "end": 55584.22, + "probability": 0.7403 + }, + { + "start": 55585.6, + "end": 55588.86, + "probability": 0.7214 + }, + { + "start": 55589.7, + "end": 55590.4, + "probability": 0.7735 + }, + { + "start": 55591.6, + "end": 55595.26, + "probability": 0.9016 + }, + { + "start": 55596.16, + "end": 55597.22, + "probability": 0.9175 + }, + { + "start": 55597.36, + "end": 55599.98, + "probability": 0.8718 + }, + { + "start": 55602.14, + "end": 55606.92, + "probability": 0.7714 + }, + { + "start": 55607.22, + "end": 55607.82, + "probability": 0.7395 + }, + { + "start": 55608.0, + "end": 55609.82, + "probability": 0.9565 + }, + { + "start": 55610.17, + "end": 55612.9, + "probability": 0.9915 + }, + { + "start": 55613.4, + "end": 55615.4, + "probability": 0.9331 + }, + { + "start": 55616.22, + "end": 55618.2, + "probability": 0.9704 + }, + { + "start": 55618.2, + "end": 55621.32, + "probability": 0.6676 + }, + { + "start": 55621.62, + "end": 55625.22, + "probability": 0.7253 + }, + { + "start": 55625.3, + "end": 55626.58, + "probability": 0.729 + }, + { + "start": 55626.64, + "end": 55629.28, + "probability": 0.8899 + }, + { + "start": 55629.4, + "end": 55633.02, + "probability": 0.5303 + }, + { + "start": 55634.06, + "end": 55634.44, + "probability": 0.1956 + }, + { + "start": 55634.46, + "end": 55636.7, + "probability": 0.5886 + }, + { + "start": 55636.74, + "end": 55638.85, + "probability": 0.9924 + }, + { + "start": 55639.5, + "end": 55641.66, + "probability": 0.8696 + }, + { + "start": 55642.08, + "end": 55642.18, + "probability": 0.4378 + }, + { + "start": 55644.0, + "end": 55646.56, + "probability": 0.6672 + }, + { + "start": 55646.81, + "end": 55649.72, + "probability": 0.6793 + }, + { + "start": 55650.48, + "end": 55653.74, + "probability": 0.981 + }, + { + "start": 55654.52, + "end": 55665.08, + "probability": 0.9943 + }, + { + "start": 55665.3, + "end": 55668.8, + "probability": 0.7396 + }, + { + "start": 55668.88, + "end": 55673.66, + "probability": 0.9277 + }, + { + "start": 55674.04, + "end": 55675.23, + "probability": 0.895 + }, + { + "start": 55675.8, + "end": 55678.02, + "probability": 0.8531 + }, + { + "start": 55679.18, + "end": 55680.02, + "probability": 0.9941 + }, + { + "start": 55681.1, + "end": 55684.68, + "probability": 0.4145 + }, + { + "start": 55685.14, + "end": 55687.34, + "probability": 0.6788 + }, + { + "start": 55687.67, + "end": 55690.38, + "probability": 0.8818 + }, + { + "start": 55690.38, + "end": 55692.86, + "probability": 0.6659 + }, + { + "start": 55693.92, + "end": 55696.78, + "probability": 0.7438 + }, + { + "start": 55697.1, + "end": 55699.3, + "probability": 0.8613 + }, + { + "start": 55700.28, + "end": 55705.94, + "probability": 0.5726 + }, + { + "start": 55706.98, + "end": 55712.78, + "probability": 0.9058 + }, + { + "start": 55714.66, + "end": 55715.26, + "probability": 0.7518 + }, + { + "start": 55715.4, + "end": 55716.86, + "probability": 0.9868 + }, + { + "start": 55717.08, + "end": 55720.87, + "probability": 0.9534 + }, + { + "start": 55722.28, + "end": 55724.71, + "probability": 0.9177 + }, + { + "start": 55724.98, + "end": 55726.24, + "probability": 0.7023 + }, + { + "start": 55727.19, + "end": 55729.62, + "probability": 0.9569 + }, + { + "start": 55730.52, + "end": 55731.86, + "probability": 0.8871 + }, + { + "start": 55732.54, + "end": 55734.06, + "probability": 0.9707 + }, + { + "start": 55734.62, + "end": 55736.38, + "probability": 0.9087 + }, + { + "start": 55737.12, + "end": 55742.38, + "probability": 0.9952 + }, + { + "start": 55742.52, + "end": 55746.46, + "probability": 0.9938 + }, + { + "start": 55747.1, + "end": 55748.72, + "probability": 0.9215 + }, + { + "start": 55749.52, + "end": 55751.64, + "probability": 0.8539 + }, + { + "start": 55752.96, + "end": 55756.58, + "probability": 0.6534 + }, + { + "start": 55756.86, + "end": 55761.44, + "probability": 0.9163 + }, + { + "start": 55762.04, + "end": 55765.91, + "probability": 0.9038 + }, + { + "start": 55767.56, + "end": 55771.96, + "probability": 0.8787 + }, + { + "start": 55772.02, + "end": 55773.84, + "probability": 0.9215 + }, + { + "start": 55774.44, + "end": 55776.16, + "probability": 0.9408 + }, + { + "start": 55777.04, + "end": 55780.54, + "probability": 0.9948 + }, + { + "start": 55780.72, + "end": 55782.38, + "probability": 0.9723 + }, + { + "start": 55784.52, + "end": 55786.82, + "probability": 0.9429 + }, + { + "start": 55787.02, + "end": 55790.86, + "probability": 0.9873 + }, + { + "start": 55790.94, + "end": 55792.12, + "probability": 0.5275 + }, + { + "start": 55792.8, + "end": 55794.32, + "probability": 0.6698 + }, + { + "start": 55794.64, + "end": 55798.16, + "probability": 0.6985 + }, + { + "start": 55798.46, + "end": 55801.14, + "probability": 0.6763 + }, + { + "start": 55804.5, + "end": 55809.5, + "probability": 0.9941 + }, + { + "start": 55810.64, + "end": 55814.52, + "probability": 0.8421 + }, + { + "start": 55815.58, + "end": 55816.6, + "probability": 0.7329 + }, + { + "start": 55817.96, + "end": 55819.66, + "probability": 0.9363 + }, + { + "start": 55819.84, + "end": 55821.16, + "probability": 0.7819 + }, + { + "start": 55821.7, + "end": 55825.92, + "probability": 0.9851 + }, + { + "start": 55825.92, + "end": 55828.02, + "probability": 0.4972 + }, + { + "start": 55828.16, + "end": 55830.1, + "probability": 0.7368 + }, + { + "start": 55830.7, + "end": 55831.82, + "probability": 0.3036 + }, + { + "start": 55831.82, + "end": 55832.26, + "probability": 0.0361 + }, + { + "start": 55832.98, + "end": 55833.62, + "probability": 0.132 + }, + { + "start": 55837.1, + "end": 55837.42, + "probability": 0.414 + }, + { + "start": 55839.2, + "end": 55840.7, + "probability": 0.6141 + }, + { + "start": 55840.88, + "end": 55841.58, + "probability": 0.3624 + }, + { + "start": 55841.76, + "end": 55843.52, + "probability": 0.857 + }, + { + "start": 55843.64, + "end": 55845.87, + "probability": 0.8972 + }, + { + "start": 55847.26, + "end": 55851.1, + "probability": 0.4029 + }, + { + "start": 55851.42, + "end": 55853.84, + "probability": 0.8055 + }, + { + "start": 55854.4, + "end": 55855.06, + "probability": 0.5818 + }, + { + "start": 55855.52, + "end": 55856.84, + "probability": 0.9818 + }, + { + "start": 55856.96, + "end": 55860.34, + "probability": 0.8323 + }, + { + "start": 55860.94, + "end": 55861.4, + "probability": 0.9317 + }, + { + "start": 55861.48, + "end": 55862.62, + "probability": 0.9083 + }, + { + "start": 55862.78, + "end": 55863.98, + "probability": 0.9883 + }, + { + "start": 55864.38, + "end": 55865.54, + "probability": 0.8687 + }, + { + "start": 55866.32, + "end": 55866.84, + "probability": 0.7514 + }, + { + "start": 55867.64, + "end": 55869.1, + "probability": 0.6112 + }, + { + "start": 55869.18, + "end": 55873.3, + "probability": 0.9797 + }, + { + "start": 55874.32, + "end": 55876.74, + "probability": 0.5766 + }, + { + "start": 55877.54, + "end": 55880.72, + "probability": 0.9778 + }, + { + "start": 55880.82, + "end": 55882.8, + "probability": 0.9985 + }, + { + "start": 55883.56, + "end": 55885.3, + "probability": 0.9797 + }, + { + "start": 55885.76, + "end": 55888.04, + "probability": 0.657 + }, + { + "start": 55888.22, + "end": 55889.92, + "probability": 0.8005 + }, + { + "start": 55891.1, + "end": 55892.48, + "probability": 0.971 + }, + { + "start": 55892.56, + "end": 55894.3, + "probability": 0.9937 + }, + { + "start": 55894.64, + "end": 55896.0, + "probability": 0.8853 + }, + { + "start": 55896.06, + "end": 55896.62, + "probability": 0.4666 + }, + { + "start": 55896.74, + "end": 55899.1, + "probability": 0.9519 + }, + { + "start": 55899.28, + "end": 55900.12, + "probability": 0.4997 + }, + { + "start": 55900.2, + "end": 55902.02, + "probability": 0.7221 + }, + { + "start": 55904.26, + "end": 55907.98, + "probability": 0.9186 + }, + { + "start": 55908.12, + "end": 55912.0, + "probability": 0.9659 + }, + { + "start": 55913.92, + "end": 55915.32, + "probability": 0.5252 + }, + { + "start": 55915.54, + "end": 55920.58, + "probability": 0.9673 + }, + { + "start": 55921.22, + "end": 55921.42, + "probability": 0.8528 + }, + { + "start": 55921.52, + "end": 55925.69, + "probability": 0.9922 + }, + { + "start": 55925.86, + "end": 55931.2, + "probability": 0.775 + }, + { + "start": 55931.3, + "end": 55932.14, + "probability": 0.7465 + }, + { + "start": 55932.26, + "end": 55933.02, + "probability": 0.9291 + }, + { + "start": 55933.7, + "end": 55938.36, + "probability": 0.9982 + }, + { + "start": 55938.64, + "end": 55939.94, + "probability": 0.6443 + }, + { + "start": 55940.16, + "end": 55943.52, + "probability": 0.8994 + }, + { + "start": 55943.64, + "end": 55944.44, + "probability": 0.8384 + }, + { + "start": 55944.8, + "end": 55945.58, + "probability": 0.8778 + }, + { + "start": 55945.74, + "end": 55946.76, + "probability": 0.9907 + }, + { + "start": 55948.0, + "end": 55949.84, + "probability": 0.8808 + }, + { + "start": 55950.5, + "end": 55953.88, + "probability": 0.9858 + }, + { + "start": 55954.14, + "end": 55955.66, + "probability": 0.9565 + }, + { + "start": 55956.3, + "end": 55959.78, + "probability": 0.9009 + }, + { + "start": 55960.21, + "end": 55963.36, + "probability": 0.9269 + }, + { + "start": 55963.86, + "end": 55965.9, + "probability": 0.6498 + }, + { + "start": 55966.16, + "end": 55966.76, + "probability": 0.8657 + }, + { + "start": 55968.14, + "end": 55970.3, + "probability": 0.5049 + }, + { + "start": 55970.36, + "end": 55970.7, + "probability": 0.8343 + }, + { + "start": 55970.76, + "end": 55971.02, + "probability": 0.6769 + }, + { + "start": 55971.2, + "end": 55972.01, + "probability": 0.9921 + }, + { + "start": 55972.38, + "end": 55973.14, + "probability": 0.9254 + }, + { + "start": 55974.01, + "end": 55977.76, + "probability": 0.9924 + }, + { + "start": 55977.86, + "end": 55979.06, + "probability": 0.9868 + }, + { + "start": 55979.32, + "end": 55980.48, + "probability": 0.82 + }, + { + "start": 55980.58, + "end": 55981.32, + "probability": 0.7102 + }, + { + "start": 55981.44, + "end": 55982.12, + "probability": 0.7741 + }, + { + "start": 55982.4, + "end": 55983.32, + "probability": 0.6672 + }, + { + "start": 55983.6, + "end": 55985.4, + "probability": 0.9653 + }, + { + "start": 55986.54, + "end": 55990.86, + "probability": 0.9697 + }, + { + "start": 55992.68, + "end": 55994.2, + "probability": 0.9906 + }, + { + "start": 55994.98, + "end": 55995.56, + "probability": 0.6368 + }, + { + "start": 55995.6, + "end": 55995.88, + "probability": 0.7491 + }, + { + "start": 55996.24, + "end": 55998.0, + "probability": 0.9222 + }, + { + "start": 55998.28, + "end": 55999.56, + "probability": 0.9331 + }, + { + "start": 56000.04, + "end": 56001.42, + "probability": 0.8608 + }, + { + "start": 56001.54, + "end": 56002.76, + "probability": 0.5904 + }, + { + "start": 56002.84, + "end": 56004.78, + "probability": 0.926 + }, + { + "start": 56005.28, + "end": 56005.88, + "probability": 0.8599 + }, + { + "start": 56007.28, + "end": 56007.64, + "probability": 0.9279 + }, + { + "start": 56007.68, + "end": 56009.7, + "probability": 0.9897 + }, + { + "start": 56009.7, + "end": 56010.48, + "probability": 0.7433 + }, + { + "start": 56010.48, + "end": 56010.82, + "probability": 0.7257 + }, + { + "start": 56010.86, + "end": 56011.56, + "probability": 0.8969 + }, + { + "start": 56011.7, + "end": 56013.06, + "probability": 0.8916 + }, + { + "start": 56013.62, + "end": 56015.84, + "probability": 0.7797 + }, + { + "start": 56016.12, + "end": 56017.56, + "probability": 0.8975 + }, + { + "start": 56017.66, + "end": 56022.3, + "probability": 0.9884 + }, + { + "start": 56022.46, + "end": 56025.58, + "probability": 0.9377 + }, + { + "start": 56026.3, + "end": 56027.12, + "probability": 0.9481 + }, + { + "start": 56028.46, + "end": 56029.1, + "probability": 0.8325 + }, + { + "start": 56029.74, + "end": 56030.42, + "probability": 0.7681 + }, + { + "start": 56031.2, + "end": 56034.38, + "probability": 0.9395 + }, + { + "start": 56034.48, + "end": 56035.12, + "probability": 0.9274 + }, + { + "start": 56035.22, + "end": 56035.76, + "probability": 0.8774 + }, + { + "start": 56036.54, + "end": 56037.0, + "probability": 0.8885 + }, + { + "start": 56037.86, + "end": 56039.4, + "probability": 0.806 + }, + { + "start": 56040.02, + "end": 56040.98, + "probability": 0.9851 + }, + { + "start": 56042.06, + "end": 56042.34, + "probability": 0.3257 + }, + { + "start": 56042.5, + "end": 56042.6, + "probability": 0.8288 + }, + { + "start": 56042.7, + "end": 56043.28, + "probability": 0.8929 + }, + { + "start": 56043.42, + "end": 56044.96, + "probability": 0.9792 + }, + { + "start": 56045.22, + "end": 56046.1, + "probability": 0.3587 + }, + { + "start": 56046.56, + "end": 56048.34, + "probability": 0.7867 + }, + { + "start": 56048.62, + "end": 56048.9, + "probability": 0.9014 + }, + { + "start": 56049.44, + "end": 56051.62, + "probability": 0.85 + }, + { + "start": 56052.22, + "end": 56053.54, + "probability": 0.9661 + }, + { + "start": 56054.66, + "end": 56055.16, + "probability": 0.5757 + }, + { + "start": 56055.3, + "end": 56057.04, + "probability": 0.9362 + }, + { + "start": 56057.16, + "end": 56058.86, + "probability": 0.8091 + }, + { + "start": 56059.32, + "end": 56063.3, + "probability": 0.763 + }, + { + "start": 56064.7, + "end": 56064.88, + "probability": 0.8353 + }, + { + "start": 56064.98, + "end": 56066.82, + "probability": 0.9579 + }, + { + "start": 56066.84, + "end": 56067.72, + "probability": 0.707 + }, + { + "start": 56068.62, + "end": 56071.3, + "probability": 0.9912 + }, + { + "start": 56071.34, + "end": 56073.84, + "probability": 0.755 + }, + { + "start": 56074.02, + "end": 56075.64, + "probability": 0.9987 + }, + { + "start": 56075.86, + "end": 56077.54, + "probability": 0.9444 + }, + { + "start": 56078.34, + "end": 56080.28, + "probability": 0.8796 + }, + { + "start": 56080.46, + "end": 56081.26, + "probability": 0.8911 + }, + { + "start": 56081.74, + "end": 56084.42, + "probability": 0.9229 + }, + { + "start": 56084.42, + "end": 56085.63, + "probability": 0.858 + }, + { + "start": 56087.64, + "end": 56090.14, + "probability": 0.9265 + }, + { + "start": 56090.96, + "end": 56092.46, + "probability": 0.9313 + }, + { + "start": 56092.8, + "end": 56094.76, + "probability": 0.9925 + }, + { + "start": 56095.74, + "end": 56096.72, + "probability": 0.9838 + }, + { + "start": 56097.74, + "end": 56101.02, + "probability": 0.9753 + }, + { + "start": 56103.02, + "end": 56106.18, + "probability": 0.9815 + }, + { + "start": 56106.82, + "end": 56109.1, + "probability": 0.9954 + }, + { + "start": 56109.1, + "end": 56111.48, + "probability": 0.9899 + }, + { + "start": 56111.64, + "end": 56113.24, + "probability": 0.9946 + }, + { + "start": 56114.76, + "end": 56119.56, + "probability": 0.9898 + }, + { + "start": 56119.66, + "end": 56121.56, + "probability": 0.9971 + }, + { + "start": 56121.64, + "end": 56122.92, + "probability": 0.6975 + }, + { + "start": 56123.54, + "end": 56124.5, + "probability": 0.9941 + }, + { + "start": 56125.72, + "end": 56127.22, + "probability": 0.232 + }, + { + "start": 56129.06, + "end": 56129.54, + "probability": 0.1341 + }, + { + "start": 56129.87, + "end": 56133.02, + "probability": 0.2902 + }, + { + "start": 56133.78, + "end": 56135.84, + "probability": 0.9162 + }, + { + "start": 56135.9, + "end": 56138.6, + "probability": 0.3445 + }, + { + "start": 56138.74, + "end": 56139.86, + "probability": 0.8142 + }, + { + "start": 56140.0, + "end": 56141.46, + "probability": 0.9258 + }, + { + "start": 56141.88, + "end": 56142.92, + "probability": 0.881 + }, + { + "start": 56143.08, + "end": 56144.42, + "probability": 0.7996 + }, + { + "start": 56145.56, + "end": 56149.04, + "probability": 0.7094 + }, + { + "start": 56149.88, + "end": 56150.98, + "probability": 0.5001 + }, + { + "start": 56151.08, + "end": 56151.44, + "probability": 0.8173 + }, + { + "start": 56151.92, + "end": 56152.36, + "probability": 0.491 + }, + { + "start": 56152.48, + "end": 56154.16, + "probability": 0.7925 + }, + { + "start": 56156.82, + "end": 56160.3, + "probability": 0.8248 + }, + { + "start": 56160.4, + "end": 56162.06, + "probability": 0.7987 + }, + { + "start": 56162.12, + "end": 56163.14, + "probability": 0.2982 + }, + { + "start": 56163.18, + "end": 56166.58, + "probability": 0.7196 + }, + { + "start": 56166.58, + "end": 56169.72, + "probability": 0.7598 + }, + { + "start": 56171.0, + "end": 56173.64, + "probability": 0.9314 + }, + { + "start": 56173.84, + "end": 56175.52, + "probability": 0.8147 + }, + { + "start": 56175.72, + "end": 56177.5, + "probability": 0.7712 + }, + { + "start": 56177.62, + "end": 56177.76, + "probability": 0.7374 + }, + { + "start": 56177.88, + "end": 56178.36, + "probability": 0.2925 + }, + { + "start": 56178.48, + "end": 56180.0, + "probability": 0.5333 + }, + { + "start": 56180.62, + "end": 56181.72, + "probability": 0.7473 + }, + { + "start": 56181.82, + "end": 56182.9, + "probability": 0.943 + }, + { + "start": 56183.68, + "end": 56184.94, + "probability": 0.9929 + }, + { + "start": 56185.64, + "end": 56189.52, + "probability": 0.9866 + }, + { + "start": 56189.68, + "end": 56192.18, + "probability": 0.9963 + }, + { + "start": 56192.88, + "end": 56193.44, + "probability": 0.8087 + }, + { + "start": 56194.1, + "end": 56196.76, + "probability": 0.9602 + }, + { + "start": 56196.94, + "end": 56200.18, + "probability": 0.9872 + }, + { + "start": 56200.44, + "end": 56200.58, + "probability": 0.5224 + }, + { + "start": 56201.2, + "end": 56203.28, + "probability": 0.5714 + }, + { + "start": 56204.58, + "end": 56205.56, + "probability": 0.4854 + }, + { + "start": 56205.9, + "end": 56206.3, + "probability": 0.9764 + }, + { + "start": 56207.3, + "end": 56207.74, + "probability": 0.832 + }, + { + "start": 56208.72, + "end": 56211.56, + "probability": 0.7336 + }, + { + "start": 56213.4, + "end": 56217.16, + "probability": 0.8778 + }, + { + "start": 56217.36, + "end": 56218.18, + "probability": 0.4396 + }, + { + "start": 56218.32, + "end": 56219.24, + "probability": 0.8981 + }, + { + "start": 56220.84, + "end": 56226.76, + "probability": 0.9912 + }, + { + "start": 56227.14, + "end": 56227.58, + "probability": 0.7044 + }, + { + "start": 56227.66, + "end": 56228.78, + "probability": 0.8002 + }, + { + "start": 56228.98, + "end": 56231.4, + "probability": 0.9862 + }, + { + "start": 56232.08, + "end": 56233.06, + "probability": 0.9917 + }, + { + "start": 56234.58, + "end": 56239.6, + "probability": 0.9945 + }, + { + "start": 56240.2, + "end": 56241.38, + "probability": 0.9484 + }, + { + "start": 56242.22, + "end": 56243.58, + "probability": 0.8931 + }, + { + "start": 56247.06, + "end": 56248.1, + "probability": 0.1755 + }, + { + "start": 56248.64, + "end": 56251.24, + "probability": 0.9678 + }, + { + "start": 56251.54, + "end": 56253.35, + "probability": 0.9654 + }, + { + "start": 56254.38, + "end": 56257.56, + "probability": 0.9229 + }, + { + "start": 56257.72, + "end": 56259.48, + "probability": 0.8906 + }, + { + "start": 56260.7, + "end": 56261.92, + "probability": 0.8283 + }, + { + "start": 56262.54, + "end": 56263.86, + "probability": 0.6583 + }, + { + "start": 56264.02, + "end": 56267.24, + "probability": 0.7661 + }, + { + "start": 56269.42, + "end": 56273.1, + "probability": 0.8456 + }, + { + "start": 56274.16, + "end": 56274.72, + "probability": 0.9268 + }, + { + "start": 56275.22, + "end": 56276.14, + "probability": 0.9897 + }, + { + "start": 56277.06, + "end": 56277.86, + "probability": 0.9967 + }, + { + "start": 56278.88, + "end": 56279.5, + "probability": 0.988 + }, + { + "start": 56280.66, + "end": 56281.16, + "probability": 0.9612 + }, + { + "start": 56282.0, + "end": 56283.42, + "probability": 0.9962 + }, + { + "start": 56284.54, + "end": 56286.34, + "probability": 0.9881 + }, + { + "start": 56288.54, + "end": 56289.4, + "probability": 0.9279 + }, + { + "start": 56291.32, + "end": 56292.32, + "probability": 0.9715 + }, + { + "start": 56293.28, + "end": 56296.29, + "probability": 0.9983 + }, + { + "start": 56297.26, + "end": 56299.14, + "probability": 0.7075 + }, + { + "start": 56299.24, + "end": 56300.04, + "probability": 0.7175 + }, + { + "start": 56301.08, + "end": 56302.12, + "probability": 0.7185 + }, + { + "start": 56302.14, + "end": 56303.22, + "probability": 0.946 + }, + { + "start": 56303.42, + "end": 56307.42, + "probability": 0.9028 + }, + { + "start": 56308.8, + "end": 56315.86, + "probability": 0.9865 + }, + { + "start": 56317.3, + "end": 56317.88, + "probability": 0.655 + }, + { + "start": 56318.8, + "end": 56318.8, + "probability": 0.3253 + }, + { + "start": 56318.8, + "end": 56318.8, + "probability": 0.3982 + }, + { + "start": 56318.8, + "end": 56320.68, + "probability": 0.6761 + }, + { + "start": 56320.78, + "end": 56321.58, + "probability": 0.9453 + }, + { + "start": 56321.96, + "end": 56326.14, + "probability": 0.947 + }, + { + "start": 56328.26, + "end": 56332.65, + "probability": 0.7389 + }, + { + "start": 56333.58, + "end": 56335.34, + "probability": 0.6239 + }, + { + "start": 56336.24, + "end": 56337.6, + "probability": 0.7068 + }, + { + "start": 56338.02, + "end": 56338.88, + "probability": 0.9237 + }, + { + "start": 56339.58, + "end": 56344.7, + "probability": 0.82 + }, + { + "start": 56345.34, + "end": 56345.78, + "probability": 0.3376 + }, + { + "start": 56346.74, + "end": 56348.36, + "probability": 0.6082 + }, + { + "start": 56348.4, + "end": 56349.22, + "probability": 0.7318 + }, + { + "start": 56349.3, + "end": 56349.6, + "probability": 0.9605 + }, + { + "start": 56349.88, + "end": 56352.46, + "probability": 0.9881 + }, + { + "start": 56352.56, + "end": 56355.84, + "probability": 0.9976 + }, + { + "start": 56356.0, + "end": 56357.9, + "probability": 0.7098 + }, + { + "start": 56358.62, + "end": 56361.74, + "probability": 0.993 + }, + { + "start": 56361.86, + "end": 56362.76, + "probability": 0.7471 + }, + { + "start": 56363.06, + "end": 56364.01, + "probability": 0.5996 + }, + { + "start": 56364.9, + "end": 56368.19, + "probability": 0.9612 + }, + { + "start": 56369.38, + "end": 56371.18, + "probability": 0.8851 + }, + { + "start": 56371.66, + "end": 56374.84, + "probability": 0.7128 + }, + { + "start": 56375.6, + "end": 56376.0, + "probability": 0.8368 + }, + { + "start": 56376.02, + "end": 56379.98, + "probability": 0.9689 + }, + { + "start": 56380.44, + "end": 56381.68, + "probability": 0.8715 + }, + { + "start": 56381.98, + "end": 56382.36, + "probability": 0.7687 + }, + { + "start": 56383.14, + "end": 56384.48, + "probability": 0.6907 + }, + { + "start": 56385.48, + "end": 56388.42, + "probability": 0.9341 + }, + { + "start": 56388.54, + "end": 56392.78, + "probability": 0.9772 + }, + { + "start": 56393.56, + "end": 56397.28, + "probability": 0.8651 + }, + { + "start": 56398.46, + "end": 56399.46, + "probability": 0.9727 + }, + { + "start": 56400.9, + "end": 56402.8, + "probability": 0.9563 + }, + { + "start": 56405.42, + "end": 56406.76, + "probability": 0.9803 + }, + { + "start": 56407.5, + "end": 56408.76, + "probability": 0.9927 + }, + { + "start": 56410.28, + "end": 56414.18, + "probability": 0.9941 + }, + { + "start": 56414.88, + "end": 56415.8, + "probability": 0.5643 + }, + { + "start": 56415.94, + "end": 56420.82, + "probability": 0.9977 + }, + { + "start": 56420.9, + "end": 56423.9, + "probability": 0.994 + }, + { + "start": 56424.68, + "end": 56425.12, + "probability": 0.4313 + }, + { + "start": 56425.34, + "end": 56430.34, + "probability": 0.9966 + }, + { + "start": 56431.64, + "end": 56431.96, + "probability": 0.5123 + }, + { + "start": 56432.08, + "end": 56433.3, + "probability": 0.9343 + }, + { + "start": 56433.44, + "end": 56433.86, + "probability": 0.781 + }, + { + "start": 56434.04, + "end": 56434.48, + "probability": 0.9009 + }, + { + "start": 56434.58, + "end": 56435.04, + "probability": 0.6722 + }, + { + "start": 56435.46, + "end": 56436.92, + "probability": 0.9445 + }, + { + "start": 56438.62, + "end": 56441.1, + "probability": 0.989 + }, + { + "start": 56442.76, + "end": 56445.54, + "probability": 0.9626 + }, + { + "start": 56446.16, + "end": 56447.68, + "probability": 0.8413 + }, + { + "start": 56448.64, + "end": 56449.9, + "probability": 0.8737 + }, + { + "start": 56450.82, + "end": 56453.52, + "probability": 0.9567 + }, + { + "start": 56454.5, + "end": 56454.96, + "probability": 0.7483 + }, + { + "start": 56455.16, + "end": 56455.52, + "probability": 0.5262 + }, + { + "start": 56455.64, + "end": 56459.24, + "probability": 0.9894 + }, + { + "start": 56460.5, + "end": 56462.26, + "probability": 0.9797 + }, + { + "start": 56462.9, + "end": 56465.86, + "probability": 0.9951 + }, + { + "start": 56466.86, + "end": 56469.98, + "probability": 0.9932 + }, + { + "start": 56470.88, + "end": 56474.62, + "probability": 0.8901 + }, + { + "start": 56475.28, + "end": 56478.7, + "probability": 0.9922 + }, + { + "start": 56480.5, + "end": 56480.92, + "probability": 0.8211 + }, + { + "start": 56483.48, + "end": 56487.72, + "probability": 0.9971 + }, + { + "start": 56487.72, + "end": 56490.34, + "probability": 0.9871 + }, + { + "start": 56491.46, + "end": 56493.7, + "probability": 0.999 + }, + { + "start": 56494.36, + "end": 56496.0, + "probability": 0.9089 + }, + { + "start": 56497.2, + "end": 56498.07, + "probability": 0.8821 + }, + { + "start": 56498.22, + "end": 56499.66, + "probability": 0.8922 + }, + { + "start": 56499.72, + "end": 56500.12, + "probability": 0.8512 + }, + { + "start": 56500.32, + "end": 56501.16, + "probability": 0.97 + }, + { + "start": 56503.18, + "end": 56506.5, + "probability": 0.9977 + }, + { + "start": 56509.71, + "end": 56511.34, + "probability": 0.1513 + }, + { + "start": 56511.34, + "end": 56514.36, + "probability": 0.8846 + }, + { + "start": 56515.48, + "end": 56517.44, + "probability": 0.7637 + }, + { + "start": 56517.56, + "end": 56518.45, + "probability": 0.9746 + }, + { + "start": 56518.74, + "end": 56519.32, + "probability": 0.4709 + }, + { + "start": 56519.46, + "end": 56521.72, + "probability": 0.9351 + }, + { + "start": 56521.98, + "end": 56522.26, + "probability": 0.2298 + }, + { + "start": 56522.3, + "end": 56523.24, + "probability": 0.7782 + }, + { + "start": 56525.62, + "end": 56526.96, + "probability": 0.7704 + }, + { + "start": 56528.1, + "end": 56529.44, + "probability": 0.7139 + }, + { + "start": 56529.62, + "end": 56533.2, + "probability": 0.9858 + }, + { + "start": 56533.92, + "end": 56537.24, + "probability": 0.9954 + }, + { + "start": 56538.34, + "end": 56543.2, + "probability": 0.9629 + }, + { + "start": 56543.32, + "end": 56544.92, + "probability": 0.9373 + }, + { + "start": 56546.56, + "end": 56547.34, + "probability": 0.3326 + }, + { + "start": 56547.84, + "end": 56548.46, + "probability": 0.9568 + }, + { + "start": 56548.7, + "end": 56551.62, + "probability": 0.9733 + }, + { + "start": 56552.08, + "end": 56553.19, + "probability": 0.9902 + }, + { + "start": 56555.2, + "end": 56555.82, + "probability": 0.5863 + }, + { + "start": 56555.9, + "end": 56557.2, + "probability": 0.9975 + }, + { + "start": 56557.6, + "end": 56558.88, + "probability": 0.9928 + }, + { + "start": 56560.18, + "end": 56561.28, + "probability": 0.6659 + }, + { + "start": 56561.48, + "end": 56562.92, + "probability": 0.8802 + }, + { + "start": 56563.26, + "end": 56564.28, + "probability": 0.7055 + }, + { + "start": 56564.36, + "end": 56564.58, + "probability": 0.7353 + }, + { + "start": 56564.7, + "end": 56565.22, + "probability": 0.9127 + }, + { + "start": 56566.38, + "end": 56569.12, + "probability": 0.9193 + }, + { + "start": 56569.64, + "end": 56571.74, + "probability": 0.9889 + }, + { + "start": 56573.48, + "end": 56574.02, + "probability": 0.6836 + }, + { + "start": 56574.26, + "end": 56577.0, + "probability": 0.8962 + }, + { + "start": 56577.88, + "end": 56581.2, + "probability": 0.8198 + }, + { + "start": 56581.3, + "end": 56583.04, + "probability": 0.6777 + }, + { + "start": 56583.2, + "end": 56584.92, + "probability": 0.7456 + }, + { + "start": 56584.96, + "end": 56586.54, + "probability": 0.9976 + }, + { + "start": 56587.4, + "end": 56589.5, + "probability": 0.6495 + }, + { + "start": 56590.36, + "end": 56591.1, + "probability": 0.5377 + }, + { + "start": 56591.92, + "end": 56595.92, + "probability": 0.9702 + }, + { + "start": 56596.7, + "end": 56598.3, + "probability": 0.9756 + }, + { + "start": 56598.42, + "end": 56599.26, + "probability": 0.9669 + }, + { + "start": 56599.36, + "end": 56600.1, + "probability": 0.609 + }, + { + "start": 56600.12, + "end": 56600.6, + "probability": 0.9622 + }, + { + "start": 56601.7, + "end": 56603.26, + "probability": 0.778 + }, + { + "start": 56604.32, + "end": 56607.44, + "probability": 0.9946 + }, + { + "start": 56608.32, + "end": 56610.6, + "probability": 0.8852 + }, + { + "start": 56612.18, + "end": 56615.22, + "probability": 0.8882 + }, + { + "start": 56616.16, + "end": 56617.44, + "probability": 0.9784 + }, + { + "start": 56618.42, + "end": 56620.56, + "probability": 0.9837 + }, + { + "start": 56622.86, + "end": 56625.88, + "probability": 0.9092 + }, + { + "start": 56626.04, + "end": 56629.62, + "probability": 0.7881 + }, + { + "start": 56630.04, + "end": 56632.78, + "probability": 0.9736 + }, + { + "start": 56633.92, + "end": 56636.02, + "probability": 0.9932 + }, + { + "start": 56636.46, + "end": 56639.1, + "probability": 0.9611 + }, + { + "start": 56639.22, + "end": 56639.63, + "probability": 0.7158 + }, + { + "start": 56639.76, + "end": 56640.16, + "probability": 0.4571 + }, + { + "start": 56640.3, + "end": 56640.72, + "probability": 0.7595 + }, + { + "start": 56640.82, + "end": 56641.02, + "probability": 0.3382 + }, + { + "start": 56642.3, + "end": 56643.28, + "probability": 0.9829 + }, + { + "start": 56645.1, + "end": 56646.52, + "probability": 0.9741 + }, + { + "start": 56647.2, + "end": 56647.66, + "probability": 0.7292 + }, + { + "start": 56648.36, + "end": 56649.8, + "probability": 0.8052 + }, + { + "start": 56649.88, + "end": 56650.56, + "probability": 0.8649 + }, + { + "start": 56650.86, + "end": 56652.04, + "probability": 0.9724 + }, + { + "start": 56653.3, + "end": 56654.46, + "probability": 0.9326 + }, + { + "start": 56655.42, + "end": 56660.62, + "probability": 0.9683 + }, + { + "start": 56661.56, + "end": 56662.96, + "probability": 0.8492 + }, + { + "start": 56664.2, + "end": 56667.76, + "probability": 0.9937 + }, + { + "start": 56668.08, + "end": 56668.84, + "probability": 0.9958 + }, + { + "start": 56669.18, + "end": 56669.88, + "probability": 0.9199 + }, + { + "start": 56670.6, + "end": 56671.22, + "probability": 0.3535 + }, + { + "start": 56671.26, + "end": 56671.54, + "probability": 0.7431 + }, + { + "start": 56671.62, + "end": 56672.4, + "probability": 0.8828 + }, + { + "start": 56672.4, + "end": 56672.7, + "probability": 0.7798 + }, + { + "start": 56674.52, + "end": 56675.29, + "probability": 0.3594 + }, + { + "start": 56675.86, + "end": 56678.98, + "probability": 0.8657 + }, + { + "start": 56680.38, + "end": 56682.66, + "probability": 0.9717 + }, + { + "start": 56683.02, + "end": 56683.38, + "probability": 0.8128 + }, + { + "start": 56684.44, + "end": 56686.82, + "probability": 0.8665 + }, + { + "start": 56688.62, + "end": 56689.48, + "probability": 0.7337 + }, + { + "start": 56690.88, + "end": 56694.5, + "probability": 0.5641 + }, + { + "start": 56695.76, + "end": 56698.94, + "probability": 0.9653 + }, + { + "start": 56699.0, + "end": 56700.86, + "probability": 0.9535 + }, + { + "start": 56701.04, + "end": 56702.82, + "probability": 0.9813 + }, + { + "start": 56703.62, + "end": 56706.16, + "probability": 0.938 + }, + { + "start": 56706.54, + "end": 56707.64, + "probability": 0.7981 + }, + { + "start": 56707.9, + "end": 56708.36, + "probability": 0.7384 + }, + { + "start": 56708.74, + "end": 56710.52, + "probability": 0.7969 + }, + { + "start": 56711.24, + "end": 56712.34, + "probability": 0.907 + }, + { + "start": 56712.4, + "end": 56713.54, + "probability": 0.9927 + }, + { + "start": 56713.9, + "end": 56714.3, + "probability": 0.5781 + }, + { + "start": 56714.8, + "end": 56715.92, + "probability": 0.9857 + }, + { + "start": 56716.14, + "end": 56717.14, + "probability": 0.8403 + }, + { + "start": 56717.4, + "end": 56718.56, + "probability": 0.9142 + }, + { + "start": 56720.26, + "end": 56723.48, + "probability": 0.7905 + }, + { + "start": 56723.64, + "end": 56724.08, + "probability": 0.5764 + }, + { + "start": 56724.08, + "end": 56724.66, + "probability": 0.8887 + }, + { + "start": 56724.74, + "end": 56725.84, + "probability": 0.9462 + }, + { + "start": 56726.0, + "end": 56726.46, + "probability": 0.9274 + }, + { + "start": 56726.64, + "end": 56727.06, + "probability": 0.6639 + }, + { + "start": 56727.32, + "end": 56729.02, + "probability": 0.9181 + }, + { + "start": 56729.46, + "end": 56730.86, + "probability": 0.7598 + }, + { + "start": 56732.26, + "end": 56734.12, + "probability": 0.9917 + }, + { + "start": 56735.38, + "end": 56735.8, + "probability": 0.9018 + }, + { + "start": 56736.18, + "end": 56737.63, + "probability": 0.8671 + }, + { + "start": 56738.42, + "end": 56739.38, + "probability": 0.6915 + }, + { + "start": 56740.3, + "end": 56741.42, + "probability": 0.7826 + }, + { + "start": 56742.22, + "end": 56745.24, + "probability": 0.9487 + }, + { + "start": 56745.86, + "end": 56746.04, + "probability": 0.7124 + }, + { + "start": 56746.16, + "end": 56749.32, + "probability": 0.5532 + }, + { + "start": 56751.0, + "end": 56754.04, + "probability": 0.9967 + }, + { + "start": 56755.06, + "end": 56756.1, + "probability": 0.9878 + }, + { + "start": 56757.52, + "end": 56759.14, + "probability": 0.9803 + }, + { + "start": 56760.18, + "end": 56761.08, + "probability": 0.9868 + }, + { + "start": 56762.06, + "end": 56765.09, + "probability": 0.6172 + }, + { + "start": 56765.98, + "end": 56768.24, + "probability": 0.9989 + }, + { + "start": 56768.54, + "end": 56772.32, + "probability": 0.9849 + }, + { + "start": 56772.32, + "end": 56775.4, + "probability": 0.9953 + }, + { + "start": 56775.84, + "end": 56776.4, + "probability": 0.3503 + }, + { + "start": 56776.98, + "end": 56778.22, + "probability": 0.9649 + }, + { + "start": 56778.24, + "end": 56780.5, + "probability": 0.9417 + }, + { + "start": 56780.94, + "end": 56783.26, + "probability": 0.8224 + }, + { + "start": 56783.5, + "end": 56785.82, + "probability": 0.7677 + }, + { + "start": 56786.36, + "end": 56788.94, + "probability": 0.9967 + }, + { + "start": 56789.38, + "end": 56791.46, + "probability": 0.8644 + }, + { + "start": 56792.3, + "end": 56793.58, + "probability": 0.4981 + }, + { + "start": 56793.86, + "end": 56794.82, + "probability": 0.2481 + }, + { + "start": 56795.54, + "end": 56797.5, + "probability": 0.9611 + }, + { + "start": 56798.26, + "end": 56798.56, + "probability": 0.6406 + }, + { + "start": 56798.68, + "end": 56798.92, + "probability": 0.6555 + }, + { + "start": 56799.0, + "end": 56799.7, + "probability": 0.7451 + }, + { + "start": 56799.82, + "end": 56803.98, + "probability": 0.9017 + }, + { + "start": 56804.91, + "end": 56807.82, + "probability": 0.7476 + }, + { + "start": 56808.88, + "end": 56813.56, + "probability": 0.9915 + }, + { + "start": 56813.96, + "end": 56814.32, + "probability": 0.6051 + }, + { + "start": 56814.44, + "end": 56818.04, + "probability": 0.6189 + }, + { + "start": 56818.2, + "end": 56818.38, + "probability": 0.2164 + }, + { + "start": 56818.42, + "end": 56819.26, + "probability": 0.6531 + }, + { + "start": 56819.42, + "end": 56821.42, + "probability": 0.9835 + }, + { + "start": 56822.0, + "end": 56822.6, + "probability": 0.6949 + }, + { + "start": 56823.32, + "end": 56827.16, + "probability": 0.8394 + }, + { + "start": 56827.2, + "end": 56827.86, + "probability": 0.6228 + }, + { + "start": 56828.8, + "end": 56829.26, + "probability": 0.4565 + }, + { + "start": 56829.42, + "end": 56831.3, + "probability": 0.8289 + }, + { + "start": 56832.28, + "end": 56833.92, + "probability": 0.053 + }, + { + "start": 56834.62, + "end": 56835.56, + "probability": 0.8413 + }, + { + "start": 56836.44, + "end": 56837.24, + "probability": 0.7922 + }, + { + "start": 56838.26, + "end": 56839.02, + "probability": 0.7348 + }, + { + "start": 56839.82, + "end": 56841.88, + "probability": 0.9344 + }, + { + "start": 56842.54, + "end": 56844.14, + "probability": 0.9175 + }, + { + "start": 56844.16, + "end": 56845.82, + "probability": 0.8311 + }, + { + "start": 56845.84, + "end": 56846.36, + "probability": 0.4282 + }, + { + "start": 56846.46, + "end": 56848.42, + "probability": 0.8425 + }, + { + "start": 56848.48, + "end": 56849.08, + "probability": 0.6813 + }, + { + "start": 56849.18, + "end": 56851.5, + "probability": 0.8438 + }, + { + "start": 56851.64, + "end": 56852.36, + "probability": 0.8741 + }, + { + "start": 56852.5, + "end": 56853.48, + "probability": 0.7846 + }, + { + "start": 56853.54, + "end": 56857.5, + "probability": 0.9828 + }, + { + "start": 56858.14, + "end": 56858.8, + "probability": 0.9648 + }, + { + "start": 56859.64, + "end": 56861.12, + "probability": 0.9961 + }, + { + "start": 56861.44, + "end": 56865.1, + "probability": 0.9919 + }, + { + "start": 56866.16, + "end": 56867.5, + "probability": 0.9976 + }, + { + "start": 56869.38, + "end": 56872.72, + "probability": 0.9639 + }, + { + "start": 56872.88, + "end": 56875.22, + "probability": 0.999 + }, + { + "start": 56876.4, + "end": 56876.66, + "probability": 0.8092 + }, + { + "start": 56877.22, + "end": 56878.54, + "probability": 0.9446 + }, + { + "start": 56881.36, + "end": 56882.04, + "probability": 0.7515 + }, + { + "start": 56883.16, + "end": 56884.38, + "probability": 0.5 + }, + { + "start": 56885.58, + "end": 56887.72, + "probability": 0.9831 + }, + { + "start": 56888.46, + "end": 56891.08, + "probability": 0.8605 + }, + { + "start": 56891.94, + "end": 56894.64, + "probability": 0.9033 + }, + { + "start": 56896.02, + "end": 56898.16, + "probability": 0.8538 + }, + { + "start": 56899.0, + "end": 56899.0, + "probability": 0.2263 + }, + { + "start": 56899.08, + "end": 56899.92, + "probability": 0.4764 + }, + { + "start": 56900.02, + "end": 56900.44, + "probability": 0.6541 + }, + { + "start": 56900.62, + "end": 56903.16, + "probability": 0.9017 + }, + { + "start": 56904.32, + "end": 56907.44, + "probability": 0.8955 + }, + { + "start": 56907.7, + "end": 56911.6, + "probability": 0.9743 + }, + { + "start": 56911.88, + "end": 56912.48, + "probability": 0.9028 + }, + { + "start": 56913.92, + "end": 56915.08, + "probability": 0.497 + }, + { + "start": 56915.22, + "end": 56916.1, + "probability": 0.6183 + }, + { + "start": 56916.58, + "end": 56919.7, + "probability": 0.9312 + }, + { + "start": 56920.5, + "end": 56923.84, + "probability": 0.8527 + }, + { + "start": 56924.18, + "end": 56924.38, + "probability": 0.508 + }, + { + "start": 56924.38, + "end": 56926.56, + "probability": 0.8976 + }, + { + "start": 56928.52, + "end": 56930.76, + "probability": 0.9197 + }, + { + "start": 56931.68, + "end": 56933.36, + "probability": 0.9343 + }, + { + "start": 56933.56, + "end": 56934.71, + "probability": 0.988 + }, + { + "start": 56935.06, + "end": 56935.86, + "probability": 0.9764 + }, + { + "start": 56936.04, + "end": 56936.96, + "probability": 0.704 + }, + { + "start": 56937.2, + "end": 56939.24, + "probability": 0.9888 + }, + { + "start": 56940.8, + "end": 56942.76, + "probability": 0.9414 + }, + { + "start": 56943.3, + "end": 56945.72, + "probability": 0.9596 + }, + { + "start": 56947.14, + "end": 56949.02, + "probability": 0.885 + }, + { + "start": 56949.8, + "end": 56951.54, + "probability": 0.6755 + }, + { + "start": 56953.18, + "end": 56955.34, + "probability": 0.6634 + }, + { + "start": 56955.36, + "end": 56956.06, + "probability": 0.9488 + }, + { + "start": 56956.7, + "end": 56958.98, + "probability": 0.7241 + }, + { + "start": 56959.86, + "end": 56961.34, + "probability": 0.766 + }, + { + "start": 56962.86, + "end": 56965.86, + "probability": 0.9868 + }, + { + "start": 56966.74, + "end": 56968.5, + "probability": 0.6629 + }, + { + "start": 56968.5, + "end": 56968.76, + "probability": 0.4844 + }, + { + "start": 56969.26, + "end": 56970.24, + "probability": 0.7578 + }, + { + "start": 56971.5, + "end": 56972.82, + "probability": 0.9629 + }, + { + "start": 56973.34, + "end": 56976.46, + "probability": 0.7214 + }, + { + "start": 56977.36, + "end": 56980.16, + "probability": 0.991 + }, + { + "start": 56981.58, + "end": 56983.46, + "probability": 0.7721 + }, + { + "start": 56984.02, + "end": 56986.2, + "probability": 0.9976 + }, + { + "start": 56987.14, + "end": 56988.32, + "probability": 0.9277 + }, + { + "start": 56988.5, + "end": 56989.38, + "probability": 0.9785 + }, + { + "start": 56989.66, + "end": 56990.53, + "probability": 0.9862 + }, + { + "start": 56990.84, + "end": 56991.84, + "probability": 0.9681 + }, + { + "start": 56992.04, + "end": 56992.42, + "probability": 0.657 + }, + { + "start": 56992.84, + "end": 56995.1, + "probability": 0.9917 + }, + { + "start": 56995.74, + "end": 56996.78, + "probability": 0.9556 + }, + { + "start": 56997.5, + "end": 56998.8, + "probability": 0.9064 + }, + { + "start": 56998.86, + "end": 57001.38, + "probability": 0.9971 + }, + { + "start": 57002.26, + "end": 57004.9, + "probability": 0.9652 + }, + { + "start": 57005.18, + "end": 57006.22, + "probability": 0.9873 + }, + { + "start": 57006.42, + "end": 57009.22, + "probability": 0.9588 + }, + { + "start": 57010.4, + "end": 57010.96, + "probability": 0.783 + }, + { + "start": 57011.4, + "end": 57012.16, + "probability": 0.9828 + }, + { + "start": 57012.42, + "end": 57013.2, + "probability": 0.9611 + }, + { + "start": 57013.3, + "end": 57013.6, + "probability": 0.5684 + }, + { + "start": 57014.7, + "end": 57016.38, + "probability": 0.9539 + }, + { + "start": 57017.32, + "end": 57019.16, + "probability": 0.9184 + }, + { + "start": 57019.36, + "end": 57020.41, + "probability": 0.9531 + }, + { + "start": 57020.98, + "end": 57022.28, + "probability": 0.9233 + }, + { + "start": 57022.48, + "end": 57024.72, + "probability": 0.488 + }, + { + "start": 57024.84, + "end": 57026.56, + "probability": 0.8542 + }, + { + "start": 57027.38, + "end": 57029.24, + "probability": 0.6812 + }, + { + "start": 57030.06, + "end": 57030.74, + "probability": 0.3256 + }, + { + "start": 57030.82, + "end": 57031.82, + "probability": 0.6131 + }, + { + "start": 57032.7, + "end": 57034.42, + "probability": 0.8243 + }, + { + "start": 57035.54, + "end": 57037.14, + "probability": 0.9945 + }, + { + "start": 57037.36, + "end": 57038.36, + "probability": 0.8671 + }, + { + "start": 57038.86, + "end": 57040.38, + "probability": 0.7645 + }, + { + "start": 57041.86, + "end": 57043.3, + "probability": 0.8418 + }, + { + "start": 57043.68, + "end": 57046.18, + "probability": 0.7301 + }, + { + "start": 57047.2, + "end": 57049.27, + "probability": 0.6191 + }, + { + "start": 57049.64, + "end": 57049.86, + "probability": 0.4113 + }, + { + "start": 57049.86, + "end": 57052.52, + "probability": 0.8684 + }, + { + "start": 57052.64, + "end": 57053.62, + "probability": 0.4718 + }, + { + "start": 57054.64, + "end": 57055.4, + "probability": 0.856 + }, + { + "start": 57055.54, + "end": 57057.32, + "probability": 0.7471 + }, + { + "start": 57057.52, + "end": 57061.26, + "probability": 0.5353 + }, + { + "start": 57062.02, + "end": 57063.18, + "probability": 0.9529 + }, + { + "start": 57063.26, + "end": 57065.12, + "probability": 0.9281 + }, + { + "start": 57065.34, + "end": 57066.24, + "probability": 0.9507 + }, + { + "start": 57066.4, + "end": 57068.74, + "probability": 0.9925 + }, + { + "start": 57069.0, + "end": 57071.47, + "probability": 0.8135 + }, + { + "start": 57071.5, + "end": 57073.06, + "probability": 0.4214 + }, + { + "start": 57073.18, + "end": 57075.22, + "probability": 0.844 + }, + { + "start": 57075.48, + "end": 57077.63, + "probability": 0.9838 + }, + { + "start": 57078.3, + "end": 57080.6, + "probability": 0.7078 + }, + { + "start": 57081.42, + "end": 57083.22, + "probability": 0.8086 + }, + { + "start": 57083.92, + "end": 57087.5, + "probability": 0.9543 + }, + { + "start": 57089.54, + "end": 57090.48, + "probability": 0.963 + }, + { + "start": 57091.12, + "end": 57092.09, + "probability": 0.8619 + }, + { + "start": 57093.34, + "end": 57094.22, + "probability": 0.947 + }, + { + "start": 57094.96, + "end": 57095.98, + "probability": 0.9859 + }, + { + "start": 57096.76, + "end": 57101.66, + "probability": 0.9748 + }, + { + "start": 57101.66, + "end": 57105.06, + "probability": 0.9615 + }, + { + "start": 57105.9, + "end": 57107.47, + "probability": 0.9991 + }, + { + "start": 57107.96, + "end": 57109.84, + "probability": 0.9827 + }, + { + "start": 57110.56, + "end": 57112.4, + "probability": 0.9939 + }, + { + "start": 57112.4, + "end": 57114.08, + "probability": 0.5645 + }, + { + "start": 57114.36, + "end": 57117.24, + "probability": 0.6285 + }, + { + "start": 57117.7, + "end": 57118.52, + "probability": 0.5477 + }, + { + "start": 57118.56, + "end": 57120.34, + "probability": 0.6754 + }, + { + "start": 57120.42, + "end": 57121.32, + "probability": 0.9848 + }, + { + "start": 57121.48, + "end": 57122.42, + "probability": 0.9071 + }, + { + "start": 57122.44, + "end": 57125.42, + "probability": 0.9758 + }, + { + "start": 57125.56, + "end": 57126.74, + "probability": 0.7741 + }, + { + "start": 57127.44, + "end": 57128.68, + "probability": 0.881 + }, + { + "start": 57128.84, + "end": 57130.44, + "probability": 0.9528 + }, + { + "start": 57130.64, + "end": 57131.4, + "probability": 0.7632 + }, + { + "start": 57131.54, + "end": 57133.26, + "probability": 0.9909 + }, + { + "start": 57133.56, + "end": 57135.76, + "probability": 0.7012 + }, + { + "start": 57136.06, + "end": 57137.1, + "probability": 0.7581 + }, + { + "start": 57137.92, + "end": 57139.52, + "probability": 0.6746 + }, + { + "start": 57140.26, + "end": 57140.36, + "probability": 0.7513 + }, + { + "start": 57141.1, + "end": 57143.92, + "probability": 0.9897 + }, + { + "start": 57144.1, + "end": 57146.44, + "probability": 0.9907 + }, + { + "start": 57147.3, + "end": 57148.96, + "probability": 0.9111 + }, + { + "start": 57149.04, + "end": 57150.98, + "probability": 0.8677 + }, + { + "start": 57151.6, + "end": 57154.78, + "probability": 0.7716 + }, + { + "start": 57155.7, + "end": 57155.82, + "probability": 0.1673 + }, + { + "start": 57155.82, + "end": 57156.86, + "probability": 0.8918 + }, + { + "start": 57157.02, + "end": 57160.94, + "probability": 0.6693 + }, + { + "start": 57161.52, + "end": 57165.74, + "probability": 0.9482 + }, + { + "start": 57167.28, + "end": 57168.52, + "probability": 0.8961 + }, + { + "start": 57169.3, + "end": 57169.75, + "probability": 0.877 + }, + { + "start": 57169.86, + "end": 57171.64, + "probability": 0.5801 + }, + { + "start": 57172.16, + "end": 57174.9, + "probability": 0.8783 + }, + { + "start": 57175.64, + "end": 57176.16, + "probability": 0.9275 + }, + { + "start": 57177.54, + "end": 57180.22, + "probability": 0.9677 + }, + { + "start": 57180.28, + "end": 57181.14, + "probability": 0.7528 + }, + { + "start": 57181.28, + "end": 57181.8, + "probability": 0.9341 + }, + { + "start": 57181.92, + "end": 57182.24, + "probability": 0.9274 + }, + { + "start": 57182.3, + "end": 57182.66, + "probability": 0.4969 + }, + { + "start": 57184.32, + "end": 57186.92, + "probability": 0.9606 + }, + { + "start": 57187.72, + "end": 57188.18, + "probability": 0.9183 + }, + { + "start": 57188.74, + "end": 57189.06, + "probability": 0.5806 + }, + { + "start": 57189.84, + "end": 57190.26, + "probability": 0.6982 + }, + { + "start": 57191.62, + "end": 57194.48, + "probability": 0.8687 + }, + { + "start": 57196.4, + "end": 57197.94, + "probability": 0.8467 + }, + { + "start": 57199.48, + "end": 57200.54, + "probability": 0.9079 + }, + { + "start": 57200.62, + "end": 57201.82, + "probability": 0.936 + }, + { + "start": 57201.9, + "end": 57204.72, + "probability": 0.9035 + }, + { + "start": 57205.38, + "end": 57206.46, + "probability": 0.5482 + }, + { + "start": 57206.8, + "end": 57213.02, + "probability": 0.7527 + }, + { + "start": 57213.94, + "end": 57215.52, + "probability": 0.8545 + }, + { + "start": 57216.52, + "end": 57217.54, + "probability": 0.959 + }, + { + "start": 57218.78, + "end": 57219.4, + "probability": 0.9054 + }, + { + "start": 57219.66, + "end": 57221.38, + "probability": 0.9668 + }, + { + "start": 57221.64, + "end": 57223.74, + "probability": 0.9956 + }, + { + "start": 57225.36, + "end": 57225.88, + "probability": 0.3535 + }, + { + "start": 57226.02, + "end": 57230.62, + "probability": 0.6511 + }, + { + "start": 57230.66, + "end": 57230.94, + "probability": 0.3249 + }, + { + "start": 57231.92, + "end": 57232.53, + "probability": 0.9478 + }, + { + "start": 57233.2, + "end": 57237.92, + "probability": 0.9614 + }, + { + "start": 57238.12, + "end": 57239.22, + "probability": 0.9865 + }, + { + "start": 57239.24, + "end": 57240.28, + "probability": 0.7189 + }, + { + "start": 57240.42, + "end": 57241.68, + "probability": 0.6731 + }, + { + "start": 57242.96, + "end": 57245.14, + "probability": 0.9746 + }, + { + "start": 57246.62, + "end": 57247.08, + "probability": 0.9208 + }, + { + "start": 57247.76, + "end": 57248.5, + "probability": 0.8677 + }, + { + "start": 57248.88, + "end": 57253.66, + "probability": 0.9674 + }, + { + "start": 57253.72, + "end": 57256.86, + "probability": 0.9503 + }, + { + "start": 57256.86, + "end": 57259.78, + "probability": 0.9087 + }, + { + "start": 57260.52, + "end": 57262.38, + "probability": 0.981 + }, + { + "start": 57262.74, + "end": 57263.0, + "probability": 0.7518 + }, + { + "start": 57263.08, + "end": 57263.2, + "probability": 0.7784 + }, + { + "start": 57263.3, + "end": 57264.02, + "probability": 0.9525 + }, + { + "start": 57264.54, + "end": 57268.02, + "probability": 0.9955 + }, + { + "start": 57268.18, + "end": 57269.17, + "probability": 0.7424 + }, + { + "start": 57270.04, + "end": 57271.08, + "probability": 0.7764 + }, + { + "start": 57272.18, + "end": 57273.54, + "probability": 0.6159 + }, + { + "start": 57274.62, + "end": 57276.06, + "probability": 0.9751 + }, + { + "start": 57277.04, + "end": 57278.02, + "probability": 0.4149 + }, + { + "start": 57278.14, + "end": 57279.84, + "probability": 0.9739 + }, + { + "start": 57280.34, + "end": 57283.12, + "probability": 0.8438 + }, + { + "start": 57283.72, + "end": 57285.76, + "probability": 0.9653 + }, + { + "start": 57285.9, + "end": 57287.78, + "probability": 0.7112 + }, + { + "start": 57287.88, + "end": 57289.88, + "probability": 0.9189 + }, + { + "start": 57289.98, + "end": 57291.36, + "probability": 0.9932 + }, + { + "start": 57291.74, + "end": 57292.88, + "probability": 0.9961 + }, + { + "start": 57293.4, + "end": 57296.86, + "probability": 0.9924 + }, + { + "start": 57297.0, + "end": 57298.08, + "probability": 0.9962 + }, + { + "start": 57298.98, + "end": 57300.0, + "probability": 0.9712 + }, + { + "start": 57300.24, + "end": 57301.44, + "probability": 0.8713 + }, + { + "start": 57301.82, + "end": 57302.8, + "probability": 0.9756 + }, + { + "start": 57302.88, + "end": 57305.4, + "probability": 0.8953 + }, + { + "start": 57305.9, + "end": 57308.8, + "probability": 0.7227 + }, + { + "start": 57308.88, + "end": 57312.54, + "probability": 0.9935 + }, + { + "start": 57312.8, + "end": 57316.84, + "probability": 0.9909 + }, + { + "start": 57319.08, + "end": 57320.12, + "probability": 0.6326 + }, + { + "start": 57320.58, + "end": 57321.92, + "probability": 0.911 + }, + { + "start": 57322.72, + "end": 57324.9, + "probability": 0.5865 + }, + { + "start": 57325.7, + "end": 57327.58, + "probability": 0.9951 + }, + { + "start": 57328.5, + "end": 57328.78, + "probability": 0.3318 + }, + { + "start": 57329.42, + "end": 57332.01, + "probability": 0.5201 + }, + { + "start": 57332.22, + "end": 57334.82, + "probability": 0.9709 + }, + { + "start": 57339.0, + "end": 57342.6, + "probability": 0.9886 + }, + { + "start": 57343.94, + "end": 57347.04, + "probability": 0.9355 + }, + { + "start": 57347.74, + "end": 57350.36, + "probability": 0.8348 + }, + { + "start": 57350.82, + "end": 57351.08, + "probability": 0.6685 + }, + { + "start": 57351.52, + "end": 57352.04, + "probability": 0.8096 + }, + { + "start": 57352.16, + "end": 57353.48, + "probability": 0.5994 + }, + { + "start": 57353.48, + "end": 57353.96, + "probability": 0.5215 + }, + { + "start": 57354.1, + "end": 57356.9, + "probability": 0.7809 + }, + { + "start": 57356.9, + "end": 57358.78, + "probability": 0.9336 + }, + { + "start": 57359.66, + "end": 57361.07, + "probability": 0.8101 + }, + { + "start": 57361.48, + "end": 57363.92, + "probability": 0.7022 + }, + { + "start": 57363.94, + "end": 57364.46, + "probability": 0.7043 + }, + { + "start": 57364.72, + "end": 57365.02, + "probability": 0.4986 + }, + { + "start": 57365.1, + "end": 57365.96, + "probability": 0.4323 + }, + { + "start": 57369.12, + "end": 57371.34, + "probability": 0.6914 + }, + { + "start": 57371.92, + "end": 57374.56, + "probability": 0.9836 + }, + { + "start": 57374.56, + "end": 57379.48, + "probability": 0.9888 + }, + { + "start": 57379.74, + "end": 57381.56, + "probability": 0.2794 + }, + { + "start": 57381.68, + "end": 57381.68, + "probability": 0.4429 + }, + { + "start": 57381.68, + "end": 57382.58, + "probability": 0.8156 + }, + { + "start": 57382.64, + "end": 57383.34, + "probability": 0.7415 + }, + { + "start": 57383.54, + "end": 57384.34, + "probability": 0.8018 + }, + { + "start": 57384.68, + "end": 57386.26, + "probability": 0.7154 + }, + { + "start": 57386.54, + "end": 57388.2, + "probability": 0.9731 + }, + { + "start": 57388.92, + "end": 57393.64, + "probability": 0.9772 + }, + { + "start": 57393.82, + "end": 57394.24, + "probability": 0.5169 + }, + { + "start": 57394.54, + "end": 57395.68, + "probability": 0.8864 + }, + { + "start": 57395.98, + "end": 57397.08, + "probability": 0.542 + }, + { + "start": 57397.38, + "end": 57400.06, + "probability": 0.8003 + }, + { + "start": 57400.2, + "end": 57401.7, + "probability": 0.9728 + }, + { + "start": 57403.32, + "end": 57404.7, + "probability": 0.9803 + }, + { + "start": 57405.7, + "end": 57406.88, + "probability": 0.626 + }, + { + "start": 57407.84, + "end": 57409.67, + "probability": 0.8166 + }, + { + "start": 57410.26, + "end": 57412.24, + "probability": 0.9954 + }, + { + "start": 57412.76, + "end": 57413.37, + "probability": 0.928 + }, + { + "start": 57414.18, + "end": 57415.36, + "probability": 0.9985 + }, + { + "start": 57416.1, + "end": 57420.56, + "probability": 0.9934 + }, + { + "start": 57420.64, + "end": 57421.98, + "probability": 0.6892 + }, + { + "start": 57422.06, + "end": 57423.74, + "probability": 0.8685 + }, + { + "start": 57425.22, + "end": 57429.64, + "probability": 0.9878 + }, + { + "start": 57430.82, + "end": 57435.74, + "probability": 0.6853 + }, + { + "start": 57436.44, + "end": 57440.46, + "probability": 0.9894 + }, + { + "start": 57441.7, + "end": 57444.96, + "probability": 0.8682 + }, + { + "start": 57447.9, + "end": 57448.44, + "probability": 0.377 + }, + { + "start": 57449.28, + "end": 57452.94, + "probability": 0.8688 + }, + { + "start": 57453.14, + "end": 57453.54, + "probability": 0.7401 + }, + { + "start": 57456.42, + "end": 57456.92, + "probability": 0.9454 + }, + { + "start": 57458.1, + "end": 57461.34, + "probability": 0.996 + }, + { + "start": 57461.78, + "end": 57463.36, + "probability": 0.8349 + }, + { + "start": 57463.46, + "end": 57464.46, + "probability": 0.972 + }, + { + "start": 57464.52, + "end": 57465.24, + "probability": 0.9462 + }, + { + "start": 57465.28, + "end": 57466.94, + "probability": 0.9951 + }, + { + "start": 57467.64, + "end": 57469.02, + "probability": 0.9946 + }, + { + "start": 57470.02, + "end": 57470.78, + "probability": 0.9001 + }, + { + "start": 57472.38, + "end": 57475.88, + "probability": 0.9049 + }, + { + "start": 57476.68, + "end": 57478.14, + "probability": 0.8921 + }, + { + "start": 57479.62, + "end": 57480.72, + "probability": 0.9565 + }, + { + "start": 57481.88, + "end": 57483.26, + "probability": 0.8529 + }, + { + "start": 57484.44, + "end": 57485.18, + "probability": 0.8477 + }, + { + "start": 57486.06, + "end": 57486.65, + "probability": 0.918 + }, + { + "start": 57487.58, + "end": 57488.86, + "probability": 0.9952 + }, + { + "start": 57489.42, + "end": 57490.74, + "probability": 0.6716 + }, + { + "start": 57491.66, + "end": 57494.48, + "probability": 0.8061 + }, + { + "start": 57494.72, + "end": 57495.7, + "probability": 0.9598 + }, + { + "start": 57496.06, + "end": 57497.06, + "probability": 0.3504 + }, + { + "start": 57497.5, + "end": 57499.16, + "probability": 0.9262 + }, + { + "start": 57499.26, + "end": 57500.92, + "probability": 0.892 + }, + { + "start": 57500.92, + "end": 57501.4, + "probability": 0.3553 + }, + { + "start": 57502.41, + "end": 57504.14, + "probability": 0.8763 + }, + { + "start": 57504.32, + "end": 57505.5, + "probability": 0.9482 + }, + { + "start": 57505.74, + "end": 57508.36, + "probability": 0.7776 + }, + { + "start": 57508.46, + "end": 57509.62, + "probability": 0.8472 + }, + { + "start": 57510.68, + "end": 57512.4, + "probability": 0.9667 + }, + { + "start": 57512.58, + "end": 57512.65, + "probability": 0.0112 + }, + { + "start": 57513.66, + "end": 57515.36, + "probability": 0.8239 + }, + { + "start": 57516.24, + "end": 57518.64, + "probability": 0.8679 + }, + { + "start": 57519.68, + "end": 57520.06, + "probability": 0.9395 + }, + { + "start": 57521.16, + "end": 57522.14, + "probability": 0.8967 + }, + { + "start": 57524.32, + "end": 57524.62, + "probability": 0.9639 + }, + { + "start": 57526.32, + "end": 57526.58, + "probability": 0.4357 + }, + { + "start": 57527.3, + "end": 57528.78, + "probability": 0.9197 + }, + { + "start": 57528.9, + "end": 57532.32, + "probability": 0.8679 + }, + { + "start": 57532.86, + "end": 57534.72, + "probability": 0.9875 + }, + { + "start": 57534.94, + "end": 57537.08, + "probability": 0.9722 + }, + { + "start": 57537.3, + "end": 57539.48, + "probability": 0.8575 + }, + { + "start": 57539.84, + "end": 57540.5, + "probability": 0.9711 + }, + { + "start": 57541.64, + "end": 57543.66, + "probability": 0.6128 + }, + { + "start": 57544.92, + "end": 57545.3, + "probability": 0.6142 + }, + { + "start": 57545.44, + "end": 57547.38, + "probability": 0.9939 + }, + { + "start": 57548.86, + "end": 57550.4, + "probability": 0.9183 + }, + { + "start": 57550.6, + "end": 57552.18, + "probability": 0.5051 + }, + { + "start": 57552.28, + "end": 57552.54, + "probability": 0.712 + }, + { + "start": 57553.38, + "end": 57554.2, + "probability": 0.973 + }, + { + "start": 57554.66, + "end": 57555.16, + "probability": 0.9112 + }, + { + "start": 57556.36, + "end": 57557.92, + "probability": 0.9974 + }, + { + "start": 57559.58, + "end": 57561.32, + "probability": 0.9861 + }, + { + "start": 57562.42, + "end": 57564.82, + "probability": 0.8687 + }, + { + "start": 57565.4, + "end": 57568.12, + "probability": 0.9538 + }, + { + "start": 57568.98, + "end": 57573.42, + "probability": 0.9364 + }, + { + "start": 57573.94, + "end": 57576.82, + "probability": 0.6324 + }, + { + "start": 57577.16, + "end": 57577.52, + "probability": 0.3206 + }, + { + "start": 57578.08, + "end": 57579.26, + "probability": 0.7036 + }, + { + "start": 57579.84, + "end": 57581.8, + "probability": 0.8938 + }, + { + "start": 57582.1, + "end": 57582.44, + "probability": 0.6949 + }, + { + "start": 57582.76, + "end": 57583.88, + "probability": 0.9738 + }, + { + "start": 57584.52, + "end": 57588.08, + "probability": 0.9701 + }, + { + "start": 57588.5, + "end": 57590.04, + "probability": 0.9681 + }, + { + "start": 57591.34, + "end": 57592.56, + "probability": 0.5674 + }, + { + "start": 57593.81, + "end": 57595.68, + "probability": 0.8815 + }, + { + "start": 57596.9, + "end": 57600.74, + "probability": 0.9595 + }, + { + "start": 57601.82, + "end": 57604.5, + "probability": 0.9915 + }, + { + "start": 57605.9, + "end": 57608.22, + "probability": 0.8444 + }, + { + "start": 57608.24, + "end": 57610.98, + "probability": 0.756 + }, + { + "start": 57612.06, + "end": 57612.98, + "probability": 0.8403 + }, + { + "start": 57613.88, + "end": 57615.06, + "probability": 0.769 + }, + { + "start": 57615.2, + "end": 57618.02, + "probability": 0.9778 + }, + { + "start": 57619.32, + "end": 57619.64, + "probability": 0.9596 + }, + { + "start": 57620.98, + "end": 57623.38, + "probability": 0.9789 + }, + { + "start": 57623.44, + "end": 57624.02, + "probability": 0.7097 + }, + { + "start": 57624.12, + "end": 57625.08, + "probability": 0.7135 + }, + { + "start": 57625.48, + "end": 57626.0, + "probability": 0.7537 + }, + { + "start": 57626.9, + "end": 57627.6, + "probability": 0.8502 + }, + { + "start": 57628.36, + "end": 57629.17, + "probability": 0.9956 + }, + { + "start": 57629.82, + "end": 57631.42, + "probability": 0.7651 + }, + { + "start": 57631.96, + "end": 57635.42, + "probability": 0.9556 + }, + { + "start": 57636.26, + "end": 57638.58, + "probability": 0.9995 + }, + { + "start": 57638.8, + "end": 57639.48, + "probability": 0.6826 + }, + { + "start": 57639.48, + "end": 57642.86, + "probability": 0.779 + }, + { + "start": 57644.08, + "end": 57644.68, + "probability": 0.8828 + }, + { + "start": 57644.82, + "end": 57645.54, + "probability": 0.8989 + }, + { + "start": 57646.12, + "end": 57649.0, + "probability": 0.9913 + }, + { + "start": 57649.64, + "end": 57650.6, + "probability": 0.9703 + }, + { + "start": 57650.92, + "end": 57651.7, + "probability": 0.7557 + }, + { + "start": 57653.12, + "end": 57656.0, + "probability": 0.9041 + }, + { + "start": 57656.74, + "end": 57658.8, + "probability": 0.9793 + }, + { + "start": 57658.88, + "end": 57659.44, + "probability": 0.847 + }, + { + "start": 57659.98, + "end": 57660.98, + "probability": 0.9566 + }, + { + "start": 57662.2, + "end": 57663.6, + "probability": 0.9658 + }, + { + "start": 57663.76, + "end": 57665.78, + "probability": 0.8228 + }, + { + "start": 57665.92, + "end": 57667.16, + "probability": 0.824 + }, + { + "start": 57667.74, + "end": 57668.84, + "probability": 0.9909 + }, + { + "start": 57668.94, + "end": 57669.64, + "probability": 0.5504 + }, + { + "start": 57669.8, + "end": 57671.26, + "probability": 0.904 + }, + { + "start": 57671.5, + "end": 57674.68, + "probability": 0.9015 + }, + { + "start": 57675.52, + "end": 57677.26, + "probability": 0.8867 + }, + { + "start": 57677.42, + "end": 57679.16, + "probability": 0.9221 + }, + { + "start": 57679.68, + "end": 57681.2, + "probability": 0.7792 + }, + { + "start": 57681.88, + "end": 57684.36, + "probability": 0.7343 + }, + { + "start": 57685.0, + "end": 57686.16, + "probability": 0.9135 + }, + { + "start": 57687.14, + "end": 57689.26, + "probability": 0.9215 + }, + { + "start": 57690.08, + "end": 57690.76, + "probability": 0.6986 + }, + { + "start": 57691.28, + "end": 57692.78, + "probability": 0.9953 + }, + { + "start": 57693.62, + "end": 57695.8, + "probability": 0.9474 + }, + { + "start": 57696.4, + "end": 57700.36, + "probability": 0.745 + }, + { + "start": 57701.08, + "end": 57703.0, + "probability": 0.7763 + }, + { + "start": 57703.58, + "end": 57706.66, + "probability": 0.9839 + }, + { + "start": 57708.68, + "end": 57712.98, + "probability": 0.895 + }, + { + "start": 57714.65, + "end": 57718.86, + "probability": 0.3984 + }, + { + "start": 57718.86, + "end": 57719.52, + "probability": 0.6522 + }, + { + "start": 57719.8, + "end": 57722.44, + "probability": 0.7529 + }, + { + "start": 57722.7, + "end": 57725.54, + "probability": 0.3684 + }, + { + "start": 57726.24, + "end": 57729.86, + "probability": 0.8276 + }, + { + "start": 57730.66, + "end": 57731.62, + "probability": 0.7568 + }, + { + "start": 57733.04, + "end": 57737.92, + "probability": 0.9443 + }, + { + "start": 57738.04, + "end": 57739.84, + "probability": 0.8765 + }, + { + "start": 57740.16, + "end": 57741.8, + "probability": 0.9211 + }, + { + "start": 57742.12, + "end": 57744.12, + "probability": 0.926 + }, + { + "start": 57744.16, + "end": 57744.72, + "probability": 0.66 + }, + { + "start": 57745.72, + "end": 57747.44, + "probability": 0.6884 + }, + { + "start": 57747.74, + "end": 57749.08, + "probability": 0.6534 + }, + { + "start": 57750.31, + "end": 57751.32, + "probability": 0.9766 + }, + { + "start": 57752.98, + "end": 57754.98, + "probability": 0.9971 + }, + { + "start": 57755.38, + "end": 57755.66, + "probability": 0.908 + }, + { + "start": 57756.12, + "end": 57756.22, + "probability": 0.6522 + }, + { + "start": 57757.16, + "end": 57758.94, + "probability": 0.9927 + }, + { + "start": 57760.42, + "end": 57761.96, + "probability": 0.9259 + }, + { + "start": 57762.52, + "end": 57762.96, + "probability": 0.8651 + }, + { + "start": 57764.02, + "end": 57766.26, + "probability": 0.8732 + }, + { + "start": 57767.72, + "end": 57768.88, + "probability": 0.9552 + }, + { + "start": 57770.24, + "end": 57771.26, + "probability": 0.9226 + }, + { + "start": 57772.5, + "end": 57773.36, + "probability": 0.6084 + }, + { + "start": 57773.54, + "end": 57774.12, + "probability": 0.8629 + }, + { + "start": 57774.22, + "end": 57775.02, + "probability": 0.828 + }, + { + "start": 57775.1, + "end": 57775.96, + "probability": 0.8938 + }, + { + "start": 57776.24, + "end": 57777.44, + "probability": 0.9967 + }, + { + "start": 57778.2, + "end": 57779.5, + "probability": 0.8247 + }, + { + "start": 57781.74, + "end": 57784.37, + "probability": 0.6447 + }, + { + "start": 57784.68, + "end": 57785.36, + "probability": 0.7091 + }, + { + "start": 57785.42, + "end": 57785.84, + "probability": 0.8704 + }, + { + "start": 57785.94, + "end": 57786.2, + "probability": 0.8782 + }, + { + "start": 57786.38, + "end": 57787.18, + "probability": 0.9126 + }, + { + "start": 57787.78, + "end": 57788.5, + "probability": 0.7403 + }, + { + "start": 57788.56, + "end": 57789.36, + "probability": 0.9535 + }, + { + "start": 57789.8, + "end": 57791.04, + "probability": 0.9616 + }, + { + "start": 57791.12, + "end": 57793.56, + "probability": 0.9863 + }, + { + "start": 57793.74, + "end": 57794.88, + "probability": 0.8364 + }, + { + "start": 57795.0, + "end": 57795.78, + "probability": 0.9236 + }, + { + "start": 57795.84, + "end": 57798.84, + "probability": 0.9815 + }, + { + "start": 57799.04, + "end": 57800.78, + "probability": 0.8098 + }, + { + "start": 57801.78, + "end": 57802.36, + "probability": 0.813 + }, + { + "start": 57803.52, + "end": 57805.1, + "probability": 0.9004 + }, + { + "start": 57805.98, + "end": 57807.48, + "probability": 0.9732 + }, + { + "start": 57808.44, + "end": 57810.76, + "probability": 0.9757 + }, + { + "start": 57810.98, + "end": 57812.84, + "probability": 0.9297 + }, + { + "start": 57814.24, + "end": 57817.22, + "probability": 0.8846 + }, + { + "start": 57817.28, + "end": 57818.66, + "probability": 0.982 + }, + { + "start": 57818.74, + "end": 57819.8, + "probability": 0.8525 + }, + { + "start": 57820.1, + "end": 57823.34, + "probability": 0.8708 + }, + { + "start": 57823.34, + "end": 57828.08, + "probability": 0.8675 + }, + { + "start": 57828.26, + "end": 57829.96, + "probability": 0.8114 + }, + { + "start": 57830.6, + "end": 57831.37, + "probability": 0.9927 + }, + { + "start": 57832.34, + "end": 57834.64, + "probability": 0.9243 + }, + { + "start": 57835.88, + "end": 57836.44, + "probability": 0.8497 + }, + { + "start": 57837.98, + "end": 57839.42, + "probability": 0.9002 + }, + { + "start": 57839.64, + "end": 57840.6, + "probability": 0.9456 + }, + { + "start": 57840.68, + "end": 57842.22, + "probability": 0.8278 + }, + { + "start": 57842.36, + "end": 57843.94, + "probability": 0.9852 + }, + { + "start": 57844.04, + "end": 57844.72, + "probability": 0.7782 + }, + { + "start": 57845.74, + "end": 57846.44, + "probability": 0.9497 + }, + { + "start": 57847.12, + "end": 57848.1, + "probability": 0.8136 + }, + { + "start": 57849.2, + "end": 57853.08, + "probability": 0.8846 + }, + { + "start": 57853.3, + "end": 57854.9, + "probability": 0.8688 + }, + { + "start": 57855.24, + "end": 57858.34, + "probability": 0.9072 + }, + { + "start": 57858.44, + "end": 57861.4, + "probability": 0.9866 + }, + { + "start": 57861.46, + "end": 57862.46, + "probability": 0.9371 + }, + { + "start": 57863.38, + "end": 57863.9, + "probability": 0.6882 + }, + { + "start": 57865.16, + "end": 57866.2, + "probability": 0.9462 + }, + { + "start": 57867.08, + "end": 57869.32, + "probability": 0.609 + }, + { + "start": 57870.0, + "end": 57872.14, + "probability": 0.9697 + }, + { + "start": 57873.46, + "end": 57876.12, + "probability": 0.7179 + }, + { + "start": 57876.9, + "end": 57877.96, + "probability": 0.9966 + }, + { + "start": 57878.66, + "end": 57879.5, + "probability": 0.8123 + }, + { + "start": 57879.76, + "end": 57880.52, + "probability": 0.954 + }, + { + "start": 57880.62, + "end": 57881.14, + "probability": 0.9473 + }, + { + "start": 57881.62, + "end": 57882.66, + "probability": 0.7658 + }, + { + "start": 57883.6, + "end": 57884.74, + "probability": 0.7653 + }, + { + "start": 57885.02, + "end": 57885.68, + "probability": 0.8312 + }, + { + "start": 57885.7, + "end": 57886.43, + "probability": 0.9647 + }, + { + "start": 57886.66, + "end": 57887.52, + "probability": 0.8377 + }, + { + "start": 57887.64, + "end": 57888.32, + "probability": 0.8191 + }, + { + "start": 57888.38, + "end": 57889.54, + "probability": 0.9741 + }, + { + "start": 57890.62, + "end": 57893.06, + "probability": 0.7242 + }, + { + "start": 57894.16, + "end": 57896.08, + "probability": 0.9542 + }, + { + "start": 57897.12, + "end": 57899.12, + "probability": 0.9724 + }, + { + "start": 57900.34, + "end": 57903.4, + "probability": 0.5291 + }, + { + "start": 57903.48, + "end": 57905.9, + "probability": 0.9912 + }, + { + "start": 57905.98, + "end": 57906.6, + "probability": 0.3236 + }, + { + "start": 57907.08, + "end": 57908.05, + "probability": 0.978 + }, + { + "start": 57908.26, + "end": 57909.28, + "probability": 0.6899 + }, + { + "start": 57910.84, + "end": 57915.26, + "probability": 0.9766 + }, + { + "start": 57915.46, + "end": 57916.1, + "probability": 0.8631 + }, + { + "start": 57917.08, + "end": 57918.28, + "probability": 0.6849 + }, + { + "start": 57919.54, + "end": 57920.86, + "probability": 0.8902 + }, + { + "start": 57922.2, + "end": 57923.26, + "probability": 0.6452 + }, + { + "start": 57924.04, + "end": 57924.98, + "probability": 0.9627 + }, + { + "start": 57925.76, + "end": 57927.5, + "probability": 0.9169 + }, + { + "start": 57928.68, + "end": 57929.42, + "probability": 0.9583 + }, + { + "start": 57930.32, + "end": 57930.9, + "probability": 0.9876 + }, + { + "start": 57931.92, + "end": 57934.12, + "probability": 0.6132 + }, + { + "start": 57934.18, + "end": 57935.5, + "probability": 0.5583 + }, + { + "start": 57936.22, + "end": 57937.28, + "probability": 0.8179 + }, + { + "start": 57937.34, + "end": 57938.52, + "probability": 0.803 + }, + { + "start": 57939.16, + "end": 57940.66, + "probability": 0.9909 + }, + { + "start": 57941.6, + "end": 57942.28, + "probability": 0.6939 + }, + { + "start": 57943.2, + "end": 57944.66, + "probability": 0.5499 + }, + { + "start": 57944.88, + "end": 57946.42, + "probability": 0.9421 + }, + { + "start": 57946.94, + "end": 57947.54, + "probability": 0.5253 + }, + { + "start": 57948.18, + "end": 57949.32, + "probability": 0.7638 + }, + { + "start": 57949.86, + "end": 57951.42, + "probability": 0.7163 + }, + { + "start": 57953.04, + "end": 57953.36, + "probability": 0.6521 + }, + { + "start": 57954.32, + "end": 57956.94, + "probability": 0.9902 + }, + { + "start": 57958.04, + "end": 57962.3, + "probability": 0.9771 + }, + { + "start": 57962.72, + "end": 57965.46, + "probability": 0.964 + }, + { + "start": 57965.86, + "end": 57966.78, + "probability": 0.9758 + }, + { + "start": 57966.84, + "end": 57967.64, + "probability": 0.9878 + }, + { + "start": 57968.86, + "end": 57971.16, + "probability": 0.9681 + }, + { + "start": 57972.52, + "end": 57975.04, + "probability": 0.9507 + }, + { + "start": 57976.4, + "end": 57978.56, + "probability": 0.9315 + }, + { + "start": 57978.66, + "end": 57982.5, + "probability": 0.8781 + }, + { + "start": 57982.74, + "end": 57984.08, + "probability": 0.8202 + }, + { + "start": 57984.2, + "end": 57985.2, + "probability": 0.8135 + }, + { + "start": 57985.22, + "end": 57986.2, + "probability": 0.9084 + }, + { + "start": 57986.3, + "end": 57988.48, + "probability": 0.9897 + }, + { + "start": 57988.72, + "end": 57992.76, + "probability": 0.9802 + }, + { + "start": 57994.0, + "end": 57994.36, + "probability": 0.5169 + }, + { + "start": 57994.46, + "end": 57995.78, + "probability": 0.7718 + }, + { + "start": 57995.86, + "end": 57997.86, + "probability": 0.8992 + }, + { + "start": 58000.6, + "end": 58002.98, + "probability": 0.628 + }, + { + "start": 58003.54, + "end": 58004.78, + "probability": 0.8454 + }, + { + "start": 58005.22, + "end": 58006.84, + "probability": 0.7147 + }, + { + "start": 58007.02, + "end": 58008.28, + "probability": 0.7309 + }, + { + "start": 58008.96, + "end": 58010.38, + "probability": 0.9713 + }, + { + "start": 58010.48, + "end": 58011.38, + "probability": 0.4166 + }, + { + "start": 58011.44, + "end": 58012.14, + "probability": 0.4578 + }, + { + "start": 58012.26, + "end": 58014.34, + "probability": 0.8577 + }, + { + "start": 58014.84, + "end": 58015.56, + "probability": 0.9691 + }, + { + "start": 58016.02, + "end": 58017.54, + "probability": 0.6866 + }, + { + "start": 58017.62, + "end": 58019.3, + "probability": 0.9302 + }, + { + "start": 58020.54, + "end": 58021.5, + "probability": 0.7796 + }, + { + "start": 58022.9, + "end": 58025.1, + "probability": 0.8723 + }, + { + "start": 58025.68, + "end": 58027.66, + "probability": 0.8398 + }, + { + "start": 58028.54, + "end": 58030.8, + "probability": 0.9907 + }, + { + "start": 58031.46, + "end": 58032.42, + "probability": 0.7906 + }, + { + "start": 58032.94, + "end": 58033.38, + "probability": 0.9525 + }, + { + "start": 58034.08, + "end": 58034.78, + "probability": 0.9915 + }, + { + "start": 58035.64, + "end": 58036.94, + "probability": 0.8375 + }, + { + "start": 58037.98, + "end": 58040.38, + "probability": 0.8786 + }, + { + "start": 58041.02, + "end": 58042.8, + "probability": 0.3089 + }, + { + "start": 58042.8, + "end": 58043.32, + "probability": 0.8017 + }, + { + "start": 58043.36, + "end": 58044.02, + "probability": 0.4646 + }, + { + "start": 58045.14, + "end": 58045.42, + "probability": 0.813 + }, + { + "start": 58046.58, + "end": 58049.38, + "probability": 0.9456 + }, + { + "start": 58049.62, + "end": 58051.14, + "probability": 0.9818 + }, + { + "start": 58051.82, + "end": 58053.68, + "probability": 0.6606 + }, + { + "start": 58053.82, + "end": 58054.98, + "probability": 0.7611 + }, + { + "start": 58055.7, + "end": 58056.78, + "probability": 0.8665 + }, + { + "start": 58058.08, + "end": 58059.38, + "probability": 0.6835 + }, + { + "start": 58060.72, + "end": 58062.16, + "probability": 0.6506 + }, + { + "start": 58062.28, + "end": 58065.62, + "probability": 0.8334 + }, + { + "start": 58065.62, + "end": 58066.96, + "probability": 0.6363 + }, + { + "start": 58069.18, + "end": 58071.52, + "probability": 0.7971 + }, + { + "start": 58071.64, + "end": 58073.39, + "probability": 0.9407 + }, + { + "start": 58073.84, + "end": 58075.52, + "probability": 0.6392 + }, + { + "start": 58075.64, + "end": 58076.72, + "probability": 0.7857 + }, + { + "start": 58076.84, + "end": 58077.77, + "probability": 0.9814 + }, + { + "start": 58078.58, + "end": 58081.66, + "probability": 0.8322 + }, + { + "start": 58082.78, + "end": 58085.94, + "probability": 0.8044 + }, + { + "start": 58086.32, + "end": 58088.69, + "probability": 0.9531 + }, + { + "start": 58089.38, + "end": 58089.96, + "probability": 0.8634 + }, + { + "start": 58091.7, + "end": 58092.62, + "probability": 0.7038 + }, + { + "start": 58094.4, + "end": 58097.1, + "probability": 0.9398 + }, + { + "start": 58097.48, + "end": 58097.84, + "probability": 0.3274 + }, + { + "start": 58098.3, + "end": 58099.02, + "probability": 0.9404 + }, + { + "start": 58099.06, + "end": 58099.78, + "probability": 0.899 + }, + { + "start": 58099.9, + "end": 58100.36, + "probability": 0.9546 + }, + { + "start": 58100.78, + "end": 58101.5, + "probability": 0.5139 + }, + { + "start": 58101.66, + "end": 58104.72, + "probability": 0.9829 + }, + { + "start": 58106.44, + "end": 58108.16, + "probability": 0.9861 + }, + { + "start": 58108.38, + "end": 58109.22, + "probability": 0.9604 + }, + { + "start": 58109.52, + "end": 58110.46, + "probability": 0.9812 + }, + { + "start": 58110.52, + "end": 58111.04, + "probability": 0.9218 + }, + { + "start": 58111.24, + "end": 58112.34, + "probability": 0.9697 + }, + { + "start": 58112.94, + "end": 58114.36, + "probability": 0.957 + }, + { + "start": 58115.94, + "end": 58118.0, + "probability": 0.9976 + }, + { + "start": 58118.76, + "end": 58120.3, + "probability": 0.9625 + }, + { + "start": 58122.06, + "end": 58122.58, + "probability": 0.6414 + }, + { + "start": 58122.82, + "end": 58125.16, + "probability": 0.985 + }, + { + "start": 58125.34, + "end": 58127.48, + "probability": 0.9882 + }, + { + "start": 58128.08, + "end": 58129.68, + "probability": 0.9961 + }, + { + "start": 58129.82, + "end": 58130.78, + "probability": 0.7917 + }, + { + "start": 58130.86, + "end": 58133.82, + "probability": 0.991 + }, + { + "start": 58134.38, + "end": 58135.94, + "probability": 0.51 + }, + { + "start": 58136.48, + "end": 58137.16, + "probability": 0.8491 + }, + { + "start": 58139.88, + "end": 58141.14, + "probability": 0.9599 + }, + { + "start": 58141.64, + "end": 58143.02, + "probability": 0.937 + }, + { + "start": 58143.52, + "end": 58145.44, + "probability": 0.8644 + }, + { + "start": 58145.52, + "end": 58147.41, + "probability": 0.8878 + }, + { + "start": 58147.56, + "end": 58148.82, + "probability": 0.6596 + }, + { + "start": 58149.0, + "end": 58149.7, + "probability": 0.7489 + }, + { + "start": 58150.38, + "end": 58152.48, + "probability": 0.8617 + }, + { + "start": 58152.88, + "end": 58153.4, + "probability": 0.9656 + }, + { + "start": 58154.3, + "end": 58155.32, + "probability": 0.7872 + }, + { + "start": 58156.96, + "end": 58161.48, + "probability": 0.9904 + }, + { + "start": 58161.66, + "end": 58162.7, + "probability": 0.8794 + }, + { + "start": 58164.12, + "end": 58165.52, + "probability": 0.8576 + }, + { + "start": 58167.18, + "end": 58169.68, + "probability": 0.8914 + }, + { + "start": 58169.96, + "end": 58172.04, + "probability": 0.8294 + }, + { + "start": 58173.16, + "end": 58173.92, + "probability": 0.8271 + }, + { + "start": 58174.58, + "end": 58176.7, + "probability": 0.8209 + }, + { + "start": 58177.68, + "end": 58180.84, + "probability": 0.9248 + }, + { + "start": 58181.2, + "end": 58182.24, + "probability": 0.6441 + }, + { + "start": 58182.54, + "end": 58183.54, + "probability": 0.9951 + }, + { + "start": 58184.26, + "end": 58184.68, + "probability": 0.8505 + }, + { + "start": 58184.82, + "end": 58185.0, + "probability": 0.791 + }, + { + "start": 58185.2, + "end": 58185.3, + "probability": 0.3239 + }, + { + "start": 58185.32, + "end": 58185.8, + "probability": 0.9144 + }, + { + "start": 58186.2, + "end": 58187.68, + "probability": 0.9956 + }, + { + "start": 58188.08, + "end": 58189.2, + "probability": 0.9868 + }, + { + "start": 58189.3, + "end": 58191.02, + "probability": 0.9282 + }, + { + "start": 58191.48, + "end": 58194.1, + "probability": 0.6649 + }, + { + "start": 58194.54, + "end": 58198.22, + "probability": 0.665 + }, + { + "start": 58198.22, + "end": 58200.24, + "probability": 0.7825 + }, + { + "start": 58200.4, + "end": 58202.7, + "probability": 0.7421 + }, + { + "start": 58203.46, + "end": 58205.26, + "probability": 0.9434 + }, + { + "start": 58205.66, + "end": 58207.14, + "probability": 0.9023 + }, + { + "start": 58207.88, + "end": 58209.6, + "probability": 0.8498 + }, + { + "start": 58209.66, + "end": 58211.1, + "probability": 0.7404 + }, + { + "start": 58211.3, + "end": 58212.3, + "probability": 0.993 + }, + { + "start": 58212.88, + "end": 58213.65, + "probability": 0.5541 + }, + { + "start": 58215.06, + "end": 58216.04, + "probability": 0.9333 + }, + { + "start": 58217.14, + "end": 58218.0, + "probability": 0.7489 + }, + { + "start": 58219.06, + "end": 58221.3, + "probability": 0.9912 + }, + { + "start": 58222.03, + "end": 58223.45, + "probability": 0.7329 + }, + { + "start": 58224.42, + "end": 58227.02, + "probability": 0.8145 + }, + { + "start": 58228.18, + "end": 58230.3, + "probability": 0.9698 + }, + { + "start": 58231.8, + "end": 58232.42, + "probability": 0.7852 + }, + { + "start": 58232.52, + "end": 58232.66, + "probability": 0.5026 + }, + { + "start": 58232.74, + "end": 58234.34, + "probability": 0.9612 + }, + { + "start": 58234.56, + "end": 58235.08, + "probability": 0.1864 + }, + { + "start": 58235.14, + "end": 58235.72, + "probability": 0.8567 + }, + { + "start": 58235.82, + "end": 58236.89, + "probability": 0.7518 + }, + { + "start": 58237.14, + "end": 58240.36, + "probability": 0.8167 + }, + { + "start": 58241.44, + "end": 58242.1, + "probability": 0.9673 + }, + { + "start": 58243.34, + "end": 58245.18, + "probability": 0.671 + }, + { + "start": 58246.04, + "end": 58247.76, + "probability": 0.9586 + }, + { + "start": 58248.52, + "end": 58249.66, + "probability": 0.9929 + }, + { + "start": 58250.74, + "end": 58252.4, + "probability": 0.8479 + }, + { + "start": 58252.72, + "end": 58253.56, + "probability": 0.8892 + }, + { + "start": 58253.76, + "end": 58255.86, + "probability": 0.8403 + }, + { + "start": 58256.0, + "end": 58256.96, + "probability": 0.6437 + }, + { + "start": 58257.14, + "end": 58258.44, + "probability": 0.9536 + }, + { + "start": 58259.32, + "end": 58261.94, + "probability": 0.9037 + }, + { + "start": 58262.04, + "end": 58264.68, + "probability": 0.9248 + }, + { + "start": 58265.64, + "end": 58268.26, + "probability": 0.9905 + }, + { + "start": 58268.96, + "end": 58269.14, + "probability": 0.619 + }, + { + "start": 58269.16, + "end": 58270.62, + "probability": 0.9859 + }, + { + "start": 58271.04, + "end": 58273.14, + "probability": 0.4381 + }, + { + "start": 58273.72, + "end": 58276.22, + "probability": 0.6497 + }, + { + "start": 58276.54, + "end": 58278.08, + "probability": 0.7717 + }, + { + "start": 58278.22, + "end": 58280.9, + "probability": 0.8931 + }, + { + "start": 58280.96, + "end": 58282.5, + "probability": 0.9222 + }, + { + "start": 58284.6, + "end": 58286.72, + "probability": 0.4929 + }, + { + "start": 58286.92, + "end": 58287.24, + "probability": 0.6231 + }, + { + "start": 58287.78, + "end": 58288.36, + "probability": 0.8079 + }, + { + "start": 58288.5, + "end": 58291.06, + "probability": 0.9771 + }, + { + "start": 58291.3, + "end": 58293.14, + "probability": 0.6665 + }, + { + "start": 58293.76, + "end": 58295.64, + "probability": 0.8706 + }, + { + "start": 58295.82, + "end": 58296.1, + "probability": 0.8078 + }, + { + "start": 58296.6, + "end": 58298.8, + "probability": 0.8984 + }, + { + "start": 58299.18, + "end": 58300.2, + "probability": 0.3655 + }, + { + "start": 58300.48, + "end": 58301.86, + "probability": 0.7551 + }, + { + "start": 58301.98, + "end": 58304.6, + "probability": 0.5902 + }, + { + "start": 58305.24, + "end": 58307.26, + "probability": 0.7457 + }, + { + "start": 58307.42, + "end": 58309.64, + "probability": 0.843 + }, + { + "start": 58309.82, + "end": 58312.0, + "probability": 0.9337 + }, + { + "start": 58313.3, + "end": 58313.72, + "probability": 0.6317 + }, + { + "start": 58314.28, + "end": 58318.16, + "probability": 0.8016 + }, + { + "start": 58318.72, + "end": 58320.94, + "probability": 0.9878 + }, + { + "start": 58321.6, + "end": 58323.62, + "probability": 0.9956 + }, + { + "start": 58324.7, + "end": 58325.78, + "probability": 0.9451 + }, + { + "start": 58326.66, + "end": 58328.75, + "probability": 0.9075 + }, + { + "start": 58329.04, + "end": 58330.28, + "probability": 0.7045 + }, + { + "start": 58330.44, + "end": 58332.5, + "probability": 0.9829 + }, + { + "start": 58332.66, + "end": 58333.64, + "probability": 0.8343 + }, + { + "start": 58334.82, + "end": 58335.96, + "probability": 0.6278 + }, + { + "start": 58336.0, + "end": 58337.12, + "probability": 0.9823 + }, + { + "start": 58337.26, + "end": 58338.22, + "probability": 0.8318 + }, + { + "start": 58339.02, + "end": 58340.38, + "probability": 0.9481 + }, + { + "start": 58341.32, + "end": 58342.46, + "probability": 0.9635 + }, + { + "start": 58343.18, + "end": 58344.32, + "probability": 0.732 + }, + { + "start": 58345.72, + "end": 58346.74, + "probability": 0.8574 + }, + { + "start": 58346.82, + "end": 58348.32, + "probability": 0.9697 + }, + { + "start": 58348.56, + "end": 58350.01, + "probability": 0.9106 + }, + { + "start": 58350.1, + "end": 58353.72, + "probability": 0.7436 + }, + { + "start": 58354.14, + "end": 58357.2, + "probability": 0.904 + }, + { + "start": 58360.3, + "end": 58361.58, + "probability": 0.7236 + }, + { + "start": 58361.72, + "end": 58364.4, + "probability": 0.957 + }, + { + "start": 58365.34, + "end": 58367.02, + "probability": 0.9496 + }, + { + "start": 58367.82, + "end": 58369.26, + "probability": 0.7866 + }, + { + "start": 58369.75, + "end": 58371.68, + "probability": 0.6744 + }, + { + "start": 58372.46, + "end": 58374.84, + "probability": 0.9972 + }, + { + "start": 58374.84, + "end": 58376.9, + "probability": 0.8313 + }, + { + "start": 58406.22, + "end": 58408.98, + "probability": 0.0017 + }, + { + "start": 58409.0, + "end": 58409.0, + "probability": 0.0 + }, + { + "start": 58409.34, + "end": 58411.04, + "probability": 0.0538 + }, + { + "start": 58411.54, + "end": 58413.23, + "probability": 0.0504 + }, + { + "start": 58413.58, + "end": 58413.62, + "probability": 0.0358 + }, + { + "start": 58413.62, + "end": 58413.9, + "probability": 0.1584 + }, + { + "start": 58416.84, + "end": 58421.18, + "probability": 0.0507 + }, + { + "start": 58422.14, + "end": 58424.1, + "probability": 0.2486 + }, + { + "start": 58424.82, + "end": 58425.34, + "probability": 0.1487 + }, + { + "start": 58427.3, + "end": 58429.82, + "probability": 0.057 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.0, + "end": 58546.0, + "probability": 0.0 + }, + { + "start": 58546.12, + "end": 58546.18, + "probability": 0.0392 + }, + { + "start": 58546.18, + "end": 58547.42, + "probability": 0.7542 + }, + { + "start": 58548.3, + "end": 58550.61, + "probability": 0.8415 + }, + { + "start": 58552.3, + "end": 58555.4, + "probability": 0.3638 + }, + { + "start": 58556.3, + "end": 58558.46, + "probability": 0.6128 + }, + { + "start": 58558.54, + "end": 58561.26, + "probability": 0.8588 + }, + { + "start": 58562.34, + "end": 58565.48, + "probability": 0.8811 + }, + { + "start": 58565.7, + "end": 58567.0, + "probability": 0.8459 + }, + { + "start": 58567.02, + "end": 58567.52, + "probability": 0.9483 + }, + { + "start": 58567.6, + "end": 58569.12, + "probability": 0.6806 + }, + { + "start": 58569.72, + "end": 58572.96, + "probability": 0.7884 + }, + { + "start": 58573.5, + "end": 58578.0, + "probability": 0.8917 + }, + { + "start": 58578.22, + "end": 58580.54, + "probability": 0.9291 + }, + { + "start": 58580.92, + "end": 58583.06, + "probability": 0.9535 + }, + { + "start": 58583.26, + "end": 58583.8, + "probability": 0.7166 + }, + { + "start": 58583.9, + "end": 58585.02, + "probability": 0.6307 + }, + { + "start": 58585.3, + "end": 58586.86, + "probability": 0.8654 + }, + { + "start": 58587.52, + "end": 58589.56, + "probability": 0.9971 + }, + { + "start": 58589.94, + "end": 58590.94, + "probability": 0.5075 + }, + { + "start": 58591.26, + "end": 58592.7, + "probability": 0.188 + }, + { + "start": 58592.7, + "end": 58593.64, + "probability": 0.6298 + }, + { + "start": 58593.64, + "end": 58600.42, + "probability": 0.9774 + }, + { + "start": 58600.7, + "end": 58601.46, + "probability": 0.7928 + }, + { + "start": 58601.76, + "end": 58604.66, + "probability": 0.9966 + }, + { + "start": 58606.02, + "end": 58606.4, + "probability": 0.9218 + }, + { + "start": 58606.84, + "end": 58607.5, + "probability": 0.8396 + }, + { + "start": 58607.94, + "end": 58609.5, + "probability": 0.9712 + }, + { + "start": 58609.98, + "end": 58610.7, + "probability": 0.7191 + }, + { + "start": 58610.7, + "end": 58611.3, + "probability": 0.87 + }, + { + "start": 58611.42, + "end": 58612.66, + "probability": 0.9875 + }, + { + "start": 58613.7, + "end": 58616.12, + "probability": 0.9281 + }, + { + "start": 58617.32, + "end": 58622.02, + "probability": 0.9109 + }, + { + "start": 58623.56, + "end": 58626.92, + "probability": 0.9484 + }, + { + "start": 58628.62, + "end": 58629.5, + "probability": 0.6855 + }, + { + "start": 58630.28, + "end": 58631.58, + "probability": 0.769 + }, + { + "start": 58632.24, + "end": 58634.96, + "probability": 0.7025 + }, + { + "start": 58636.2, + "end": 58637.92, + "probability": 0.9656 + }, + { + "start": 58638.54, + "end": 58639.48, + "probability": 0.9247 + }, + { + "start": 58639.98, + "end": 58641.96, + "probability": 0.4548 + }, + { + "start": 58642.4, + "end": 58642.92, + "probability": 0.9207 + }, + { + "start": 58642.92, + "end": 58645.3, + "probability": 0.9553 + }, + { + "start": 58646.34, + "end": 58647.74, + "probability": 0.9893 + }, + { + "start": 58647.8, + "end": 58648.12, + "probability": 0.7086 + }, + { + "start": 58648.22, + "end": 58650.04, + "probability": 0.8301 + }, + { + "start": 58650.54, + "end": 58652.14, + "probability": 0.7846 + }, + { + "start": 58653.02, + "end": 58655.08, + "probability": 0.9486 + }, + { + "start": 58655.52, + "end": 58656.22, + "probability": 0.4803 + }, + { + "start": 58656.26, + "end": 58657.2, + "probability": 0.9504 + }, + { + "start": 58657.6, + "end": 58659.52, + "probability": 0.677 + }, + { + "start": 58659.62, + "end": 58660.16, + "probability": 0.9073 + }, + { + "start": 58660.4, + "end": 58660.94, + "probability": 0.8485 + }, + { + "start": 58663.26, + "end": 58666.48, + "probability": 0.774 + }, + { + "start": 58667.34, + "end": 58667.96, + "probability": 0.4292 + }, + { + "start": 58668.06, + "end": 58672.04, + "probability": 0.9417 + }, + { + "start": 58672.12, + "end": 58674.04, + "probability": 0.9866 + }, + { + "start": 58674.6, + "end": 58676.26, + "probability": 0.9943 + }, + { + "start": 58677.04, + "end": 58678.88, + "probability": 0.6722 + }, + { + "start": 58679.3, + "end": 58681.02, + "probability": 0.5281 + }, + { + "start": 58682.86, + "end": 58684.62, + "probability": 0.877 + }, + { + "start": 58685.9, + "end": 58686.66, + "probability": 0.5052 + }, + { + "start": 58687.42, + "end": 58688.02, + "probability": 0.5888 + }, + { + "start": 58688.86, + "end": 58690.24, + "probability": 0.9512 + }, + { + "start": 58691.0, + "end": 58692.58, + "probability": 0.9855 + }, + { + "start": 58693.12, + "end": 58695.38, + "probability": 0.9356 + }, + { + "start": 58696.32, + "end": 58698.96, + "probability": 0.9826 + }, + { + "start": 58700.24, + "end": 58702.06, + "probability": 0.9174 + }, + { + "start": 58703.24, + "end": 58705.18, + "probability": 0.8137 + }, + { + "start": 58705.94, + "end": 58706.72, + "probability": 0.9669 + }, + { + "start": 58707.24, + "end": 58708.2, + "probability": 0.7804 + }, + { + "start": 58708.48, + "end": 58709.9, + "probability": 0.9956 + }, + { + "start": 58709.98, + "end": 58711.62, + "probability": 0.9223 + }, + { + "start": 58712.64, + "end": 58717.9, + "probability": 0.5268 + }, + { + "start": 58718.2, + "end": 58718.86, + "probability": 0.4996 + }, + { + "start": 58718.86, + "end": 58721.7, + "probability": 0.938 + }, + { + "start": 58722.84, + "end": 58723.18, + "probability": 0.4661 + }, + { + "start": 58723.26, + "end": 58726.1, + "probability": 0.6696 + }, + { + "start": 58727.44, + "end": 58731.22, + "probability": 0.9957 + }, + { + "start": 58732.46, + "end": 58736.6, + "probability": 0.9852 + }, + { + "start": 58736.72, + "end": 58737.44, + "probability": 0.8188 + }, + { + "start": 58737.58, + "end": 58738.9, + "probability": 0.5671 + }, + { + "start": 58739.2, + "end": 58740.1, + "probability": 0.4441 + }, + { + "start": 58740.12, + "end": 58741.58, + "probability": 0.7235 + }, + { + "start": 58742.76, + "end": 58748.02, + "probability": 0.9771 + }, + { + "start": 58748.14, + "end": 58752.08, + "probability": 0.989 + }, + { + "start": 58752.24, + "end": 58754.04, + "probability": 0.9926 + }, + { + "start": 58755.1, + "end": 58756.44, + "probability": 0.8989 + }, + { + "start": 58757.58, + "end": 58758.64, + "probability": 0.3481 + }, + { + "start": 58759.38, + "end": 58760.64, + "probability": 0.9464 + }, + { + "start": 58760.78, + "end": 58761.64, + "probability": 0.9656 + }, + { + "start": 58761.72, + "end": 58762.56, + "probability": 0.9071 + }, + { + "start": 58762.66, + "end": 58763.56, + "probability": 0.5095 + }, + { + "start": 58763.62, + "end": 58764.88, + "probability": 0.9801 + }, + { + "start": 58767.2, + "end": 58768.9, + "probability": 0.3843 + }, + { + "start": 58770.26, + "end": 58771.72, + "probability": 0.9551 + }, + { + "start": 58772.82, + "end": 58775.16, + "probability": 0.926 + }, + { + "start": 58776.58, + "end": 58779.54, + "probability": 0.9903 + }, + { + "start": 58780.38, + "end": 58781.94, + "probability": 0.9182 + }, + { + "start": 58783.3, + "end": 58786.08, + "probability": 0.8995 + }, + { + "start": 58787.44, + "end": 58792.08, + "probability": 0.9807 + }, + { + "start": 58793.08, + "end": 58794.78, + "probability": 0.783 + }, + { + "start": 58795.76, + "end": 58798.76, + "probability": 0.9629 + }, + { + "start": 58799.16, + "end": 58799.93, + "probability": 0.5525 + }, + { + "start": 58800.42, + "end": 58801.1, + "probability": 0.8271 + }, + { + "start": 58801.92, + "end": 58803.96, + "probability": 0.9956 + }, + { + "start": 58804.04, + "end": 58804.66, + "probability": 0.8965 + }, + { + "start": 58804.78, + "end": 58808.12, + "probability": 0.9753 + }, + { + "start": 58808.84, + "end": 58810.34, + "probability": 0.7962 + }, + { + "start": 58811.46, + "end": 58812.9, + "probability": 0.9168 + }, + { + "start": 58813.82, + "end": 58815.12, + "probability": 0.846 + }, + { + "start": 58817.14, + "end": 58820.1, + "probability": 0.6757 + }, + { + "start": 58821.06, + "end": 58823.52, + "probability": 0.927 + }, + { + "start": 58824.38, + "end": 58826.44, + "probability": 0.9979 + }, + { + "start": 58827.0, + "end": 58827.98, + "probability": 0.998 + }, + { + "start": 58830.48, + "end": 58831.36, + "probability": 0.9946 + }, + { + "start": 58832.1, + "end": 58833.08, + "probability": 0.7811 + }, + { + "start": 58833.68, + "end": 58837.54, + "probability": 0.9971 + }, + { + "start": 58838.68, + "end": 58839.72, + "probability": 0.8352 + }, + { + "start": 58840.96, + "end": 58842.24, + "probability": 0.9666 + }, + { + "start": 58843.8, + "end": 58844.38, + "probability": 0.9484 + }, + { + "start": 58845.2, + "end": 58846.3, + "probability": 0.8339 + }, + { + "start": 58846.9, + "end": 58848.56, + "probability": 0.9337 + }, + { + "start": 58849.98, + "end": 58851.04, + "probability": 0.9795 + }, + { + "start": 58853.14, + "end": 58855.9, + "probability": 0.9895 + }, + { + "start": 58857.08, + "end": 58858.12, + "probability": 0.999 + }, + { + "start": 58859.18, + "end": 58862.74, + "probability": 0.999 + }, + { + "start": 58864.08, + "end": 58866.62, + "probability": 0.7813 + }, + { + "start": 58867.58, + "end": 58868.74, + "probability": 0.9545 + }, + { + "start": 58870.4, + "end": 58872.7, + "probability": 0.9111 + }, + { + "start": 58873.58, + "end": 58876.58, + "probability": 0.9854 + }, + { + "start": 58876.84, + "end": 58878.38, + "probability": 0.9821 + }, + { + "start": 58879.24, + "end": 58881.28, + "probability": 0.9894 + }, + { + "start": 58882.44, + "end": 58882.86, + "probability": 0.7765 + }, + { + "start": 58883.7, + "end": 58886.4, + "probability": 0.9347 + }, + { + "start": 58886.8, + "end": 58888.92, + "probability": 0.6192 + }, + { + "start": 58889.06, + "end": 58893.78, + "probability": 0.9506 + }, + { + "start": 58893.94, + "end": 58894.92, + "probability": 0.9525 + }, + { + "start": 58895.7, + "end": 58896.2, + "probability": 0.7255 + }, + { + "start": 58896.34, + "end": 58899.1, + "probability": 0.9922 + }, + { + "start": 58899.1, + "end": 58906.4, + "probability": 0.9988 + }, + { + "start": 58906.68, + "end": 58907.56, + "probability": 0.515 + }, + { + "start": 58907.78, + "end": 58909.86, + "probability": 0.7839 + }, + { + "start": 58910.42, + "end": 58912.46, + "probability": 0.8207 + }, + { + "start": 58913.9, + "end": 58921.58, + "probability": 0.9953 + }, + { + "start": 58921.86, + "end": 58925.48, + "probability": 0.7833 + }, + { + "start": 58926.14, + "end": 58932.66, + "probability": 0.8782 + }, + { + "start": 58933.82, + "end": 58934.62, + "probability": 0.3596 + }, + { + "start": 58935.56, + "end": 58937.16, + "probability": 0.9922 + }, + { + "start": 58938.5, + "end": 58939.96, + "probability": 0.9668 + }, + { + "start": 58941.48, + "end": 58943.88, + "probability": 0.9892 + }, + { + "start": 58946.24, + "end": 58949.24, + "probability": 0.9849 + }, + { + "start": 58949.86, + "end": 58954.48, + "probability": 0.8218 + }, + { + "start": 58954.94, + "end": 58957.26, + "probability": 0.77 + }, + { + "start": 58958.42, + "end": 58963.58, + "probability": 0.9965 + }, + { + "start": 58964.74, + "end": 58969.5, + "probability": 0.9781 + }, + { + "start": 58970.3, + "end": 58973.26, + "probability": 0.9857 + }, + { + "start": 58974.0, + "end": 58975.55, + "probability": 0.4763 + }, + { + "start": 58976.78, + "end": 58979.66, + "probability": 0.9679 + }, + { + "start": 58980.52, + "end": 58982.0, + "probability": 0.8066 + }, + { + "start": 58982.88, + "end": 58983.14, + "probability": 0.9817 + }, + { + "start": 58983.4, + "end": 58984.66, + "probability": 0.9929 + }, + { + "start": 58984.9, + "end": 58989.26, + "probability": 0.9476 + }, + { + "start": 58989.58, + "end": 58990.9, + "probability": 0.9383 + }, + { + "start": 58991.52, + "end": 58994.86, + "probability": 0.7911 + }, + { + "start": 58995.58, + "end": 58997.22, + "probability": 0.7365 + }, + { + "start": 58998.38, + "end": 59002.04, + "probability": 0.8091 + }, + { + "start": 59002.88, + "end": 59005.42, + "probability": 0.9928 + }, + { + "start": 59005.8, + "end": 59006.44, + "probability": 0.8799 + }, + { + "start": 59006.94, + "end": 59007.28, + "probability": 0.8118 + }, + { + "start": 59008.14, + "end": 59011.16, + "probability": 0.9515 + }, + { + "start": 59012.02, + "end": 59012.8, + "probability": 0.8845 + }, + { + "start": 59013.54, + "end": 59016.94, + "probability": 0.9843 + }, + { + "start": 59017.06, + "end": 59018.21, + "probability": 0.9753 + }, + { + "start": 59018.54, + "end": 59024.2, + "probability": 0.9834 + }, + { + "start": 59024.58, + "end": 59026.94, + "probability": 0.6552 + }, + { + "start": 59027.52, + "end": 59028.62, + "probability": 0.6774 + }, + { + "start": 59030.04, + "end": 59031.54, + "probability": 0.8501 + }, + { + "start": 59031.74, + "end": 59033.7, + "probability": 0.9814 + }, + { + "start": 59033.72, + "end": 59036.14, + "probability": 0.957 + }, + { + "start": 59036.5, + "end": 59038.3, + "probability": 0.566 + }, + { + "start": 59038.76, + "end": 59040.58, + "probability": 0.6772 + }, + { + "start": 59040.7, + "end": 59043.3, + "probability": 0.5168 + }, + { + "start": 59043.34, + "end": 59044.72, + "probability": 0.946 + }, + { + "start": 59045.5, + "end": 59046.38, + "probability": 0.9775 + }, + { + "start": 59046.72, + "end": 59047.12, + "probability": 0.5991 + }, + { + "start": 59047.72, + "end": 59049.86, + "probability": 0.998 + }, + { + "start": 59050.82, + "end": 59054.68, + "probability": 0.9916 + }, + { + "start": 59055.14, + "end": 59057.52, + "probability": 0.9907 + }, + { + "start": 59057.66, + "end": 59058.8, + "probability": 0.3132 + }, + { + "start": 59058.86, + "end": 59059.08, + "probability": 0.7352 + }, + { + "start": 59059.26, + "end": 59061.76, + "probability": 0.8708 + }, + { + "start": 59061.9, + "end": 59064.36, + "probability": 0.7823 + }, + { + "start": 59065.9, + "end": 59066.84, + "probability": 0.9551 + }, + { + "start": 59067.32, + "end": 59069.88, + "probability": 0.9259 + }, + { + "start": 59071.14, + "end": 59072.66, + "probability": 0.9922 + }, + { + "start": 59074.2, + "end": 59076.28, + "probability": 0.9751 + }, + { + "start": 59077.48, + "end": 59079.84, + "probability": 0.949 + }, + { + "start": 59081.24, + "end": 59085.6, + "probability": 0.9924 + }, + { + "start": 59085.66, + "end": 59087.62, + "probability": 0.5521 + }, + { + "start": 59088.5, + "end": 59089.9, + "probability": 0.9928 + }, + { + "start": 59090.72, + "end": 59092.0, + "probability": 0.4999 + }, + { + "start": 59092.9, + "end": 59094.62, + "probability": 0.9927 + }, + { + "start": 59095.52, + "end": 59096.72, + "probability": 0.7385 + }, + { + "start": 59098.0, + "end": 59100.18, + "probability": 0.8345 + }, + { + "start": 59101.44, + "end": 59103.26, + "probability": 0.9927 + }, + { + "start": 59103.48, + "end": 59106.6, + "probability": 0.9941 + }, + { + "start": 59106.6, + "end": 59110.42, + "probability": 0.9925 + }, + { + "start": 59111.34, + "end": 59113.02, + "probability": 0.8881 + }, + { + "start": 59113.18, + "end": 59114.16, + "probability": 0.9082 + }, + { + "start": 59114.78, + "end": 59116.28, + "probability": 0.9971 + }, + { + "start": 59116.76, + "end": 59118.76, + "probability": 0.9811 + }, + { + "start": 59119.74, + "end": 59121.32, + "probability": 0.9115 + }, + { + "start": 59122.32, + "end": 59125.4, + "probability": 0.9985 + }, + { + "start": 59126.32, + "end": 59129.2, + "probability": 0.8328 + }, + { + "start": 59129.2, + "end": 59131.82, + "probability": 0.9998 + }, + { + "start": 59133.08, + "end": 59137.32, + "probability": 0.9897 + }, + { + "start": 59137.54, + "end": 59139.04, + "probability": 0.9656 + }, + { + "start": 59139.32, + "end": 59139.46, + "probability": 0.1548 + }, + { + "start": 59139.82, + "end": 59141.9, + "probability": 0.9634 + }, + { + "start": 59141.94, + "end": 59144.07, + "probability": 0.8698 + }, + { + "start": 59144.28, + "end": 59147.14, + "probability": 0.9872 + }, + { + "start": 59148.96, + "end": 59151.4, + "probability": 0.7599 + }, + { + "start": 59151.92, + "end": 59154.16, + "probability": 0.9746 + }, + { + "start": 59155.5, + "end": 59158.06, + "probability": 0.9862 + }, + { + "start": 59158.66, + "end": 59159.76, + "probability": 0.6442 + }, + { + "start": 59160.42, + "end": 59164.48, + "probability": 0.9548 + }, + { + "start": 59164.62, + "end": 59166.14, + "probability": 0.9844 + }, + { + "start": 59167.9, + "end": 59169.48, + "probability": 0.773 + }, + { + "start": 59170.02, + "end": 59171.82, + "probability": 0.9977 + }, + { + "start": 59176.04, + "end": 59177.9, + "probability": 0.1179 + }, + { + "start": 59177.9, + "end": 59180.92, + "probability": 0.3946 + }, + { + "start": 59181.0, + "end": 59181.8, + "probability": 0.6801 + }, + { + "start": 59181.9, + "end": 59183.47, + "probability": 0.9214 + }, + { + "start": 59184.94, + "end": 59187.34, + "probability": 0.9563 + }, + { + "start": 59188.04, + "end": 59188.7, + "probability": 0.9016 + }, + { + "start": 59188.86, + "end": 59189.53, + "probability": 0.5343 + }, + { + "start": 59190.3, + "end": 59190.48, + "probability": 0.3765 + }, + { + "start": 59190.58, + "end": 59191.2, + "probability": 0.9595 + }, + { + "start": 59191.36, + "end": 59195.22, + "probability": 0.9626 + }, + { + "start": 59195.28, + "end": 59197.41, + "probability": 0.9951 + }, + { + "start": 59197.46, + "end": 59198.5, + "probability": 0.617 + }, + { + "start": 59198.82, + "end": 59200.26, + "probability": 0.917 + }, + { + "start": 59200.86, + "end": 59203.0, + "probability": 0.86 + }, + { + "start": 59204.08, + "end": 59207.18, + "probability": 0.9957 + }, + { + "start": 59207.64, + "end": 59208.92, + "probability": 0.0027 + }, + { + "start": 59209.02, + "end": 59209.38, + "probability": 0.9023 + }, + { + "start": 59209.52, + "end": 59212.22, + "probability": 0.8268 + }, + { + "start": 59212.34, + "end": 59213.6, + "probability": 0.3786 + }, + { + "start": 59214.34, + "end": 59218.94, + "probability": 0.9473 + }, + { + "start": 59219.08, + "end": 59220.27, + "probability": 0.9948 + }, + { + "start": 59220.42, + "end": 59221.68, + "probability": 0.9963 + }, + { + "start": 59221.88, + "end": 59223.64, + "probability": 0.8877 + }, + { + "start": 59223.64, + "end": 59225.42, + "probability": 0.9181 + }, + { + "start": 59225.48, + "end": 59226.46, + "probability": 0.7028 + }, + { + "start": 59226.76, + "end": 59228.02, + "probability": 0.9768 + }, + { + "start": 59228.22, + "end": 59233.74, + "probability": 0.9863 + }, + { + "start": 59234.04, + "end": 59234.04, + "probability": 0.5463 + }, + { + "start": 59234.04, + "end": 59234.04, + "probability": 0.4561 + }, + { + "start": 59234.04, + "end": 59235.98, + "probability": 0.4626 + }, + { + "start": 59236.04, + "end": 59236.88, + "probability": 0.0874 + }, + { + "start": 59237.44, + "end": 59239.52, + "probability": 0.825 + }, + { + "start": 59240.97, + "end": 59243.96, + "probability": 0.7156 + }, + { + "start": 59244.6, + "end": 59246.52, + "probability": 0.9487 + }, + { + "start": 59247.18, + "end": 59251.36, + "probability": 0.9922 + }, + { + "start": 59252.1, + "end": 59253.34, + "probability": 0.9604 + }, + { + "start": 59253.98, + "end": 59254.98, + "probability": 0.8338 + }, + { + "start": 59255.74, + "end": 59259.82, + "probability": 0.9945 + }, + { + "start": 59260.12, + "end": 59261.26, + "probability": 0.9514 + }, + { + "start": 59261.3, + "end": 59261.6, + "probability": 0.8551 + }, + { + "start": 59262.04, + "end": 59262.64, + "probability": 0.8976 + }, + { + "start": 59263.5, + "end": 59264.46, + "probability": 0.7945 + }, + { + "start": 59265.48, + "end": 59267.82, + "probability": 0.9878 + }, + { + "start": 59268.56, + "end": 59271.1, + "probability": 0.9283 + }, + { + "start": 59271.38, + "end": 59272.92, + "probability": 0.7956 + }, + { + "start": 59273.0, + "end": 59273.76, + "probability": 0.96 + }, + { + "start": 59274.78, + "end": 59275.42, + "probability": 0.7136 + }, + { + "start": 59275.94, + "end": 59276.64, + "probability": 0.4931 + }, + { + "start": 59276.84, + "end": 59276.98, + "probability": 0.3081 + }, + { + "start": 59280.21, + "end": 59283.46, + "probability": 0.5915 + }, + { + "start": 59284.66, + "end": 59284.98, + "probability": 0.2961 + }, + { + "start": 59286.53, + "end": 59288.36, + "probability": 0.5031 + }, + { + "start": 59288.62, + "end": 59293.0, + "probability": 0.2654 + }, + { + "start": 59297.14, + "end": 59298.86, + "probability": 0.7266 + }, + { + "start": 59299.54, + "end": 59301.66, + "probability": 0.6788 + }, + { + "start": 59301.88, + "end": 59302.84, + "probability": 0.1261 + }, + { + "start": 59303.2, + "end": 59303.88, + "probability": 0.7709 + }, + { + "start": 59303.98, + "end": 59305.66, + "probability": 0.9873 + }, + { + "start": 59305.9, + "end": 59306.28, + "probability": 0.9219 + }, + { + "start": 59306.32, + "end": 59306.76, + "probability": 0.7685 + }, + { + "start": 59307.22, + "end": 59308.08, + "probability": 0.9846 + }, + { + "start": 59308.36, + "end": 59309.36, + "probability": 0.4741 + }, + { + "start": 59309.76, + "end": 59313.5, + "probability": 0.9412 + }, + { + "start": 59313.5, + "end": 59314.1, + "probability": 0.9016 + }, + { + "start": 59314.96, + "end": 59317.0, + "probability": 0.9996 + }, + { + "start": 59317.92, + "end": 59318.78, + "probability": 0.7923 + }, + { + "start": 59318.88, + "end": 59319.12, + "probability": 0.8973 + }, + { + "start": 59319.24, + "end": 59320.5, + "probability": 0.8196 + }, + { + "start": 59320.6, + "end": 59320.78, + "probability": 0.4536 + }, + { + "start": 59321.04, + "end": 59324.68, + "probability": 0.6831 + }, + { + "start": 59325.02, + "end": 59327.1, + "probability": 0.9081 + }, + { + "start": 59328.0, + "end": 59331.7, + "probability": 0.9288 + }, + { + "start": 59332.52, + "end": 59334.0, + "probability": 0.8611 + }, + { + "start": 59334.94, + "end": 59336.8, + "probability": 0.9875 + }, + { + "start": 59336.88, + "end": 59338.46, + "probability": 0.9688 + }, + { + "start": 59339.32, + "end": 59340.26, + "probability": 0.9856 + }, + { + "start": 59340.42, + "end": 59342.14, + "probability": 0.9951 + }, + { + "start": 59342.22, + "end": 59342.98, + "probability": 0.5046 + }, + { + "start": 59343.36, + "end": 59343.48, + "probability": 0.492 + }, + { + "start": 59344.44, + "end": 59345.84, + "probability": 0.7583 + }, + { + "start": 59345.84, + "end": 59347.1, + "probability": 0.6895 + }, + { + "start": 59347.28, + "end": 59348.98, + "probability": 0.665 + }, + { + "start": 59349.64, + "end": 59352.42, + "probability": 0.8449 + }, + { + "start": 59352.72, + "end": 59353.42, + "probability": 0.5969 + }, + { + "start": 59353.46, + "end": 59356.6, + "probability": 0.8596 + }, + { + "start": 59357.14, + "end": 59359.44, + "probability": 0.6816 + }, + { + "start": 59362.1, + "end": 59363.94, + "probability": 0.7678 + }, + { + "start": 59373.78, + "end": 59375.6, + "probability": 0.6251 + }, + { + "start": 59376.22, + "end": 59377.54, + "probability": 0.5913 + }, + { + "start": 59378.16, + "end": 59379.48, + "probability": 0.6124 + }, + { + "start": 59379.6, + "end": 59380.2, + "probability": 0.5227 + }, + { + "start": 59380.3, + "end": 59381.68, + "probability": 0.5851 + }, + { + "start": 59382.34, + "end": 59384.9, + "probability": 0.8255 + }, + { + "start": 59385.78, + "end": 59385.98, + "probability": 0.6098 + }, + { + "start": 59387.32, + "end": 59390.52, + "probability": 0.8889 + }, + { + "start": 59391.5, + "end": 59393.64, + "probability": 0.9766 + }, + { + "start": 59395.06, + "end": 59399.84, + "probability": 0.979 + }, + { + "start": 59401.38, + "end": 59401.98, + "probability": 0.7418 + }, + { + "start": 59402.46, + "end": 59406.71, + "probability": 0.948 + }, + { + "start": 59406.86, + "end": 59407.7, + "probability": 0.8657 + }, + { + "start": 59407.8, + "end": 59408.28, + "probability": 0.4412 + }, + { + "start": 59408.38, + "end": 59409.04, + "probability": 0.6598 + }, + { + "start": 59409.24, + "end": 59412.04, + "probability": 0.8484 + }, + { + "start": 59413.1, + "end": 59414.42, + "probability": 0.6664 + }, + { + "start": 59416.1, + "end": 59417.4, + "probability": 0.7524 + }, + { + "start": 59419.08, + "end": 59419.64, + "probability": 0.6983 + }, + { + "start": 59420.66, + "end": 59422.42, + "probability": 0.9312 + }, + { + "start": 59423.32, + "end": 59423.42, + "probability": 0.2089 + }, + { + "start": 59423.48, + "end": 59424.06, + "probability": 0.8597 + }, + { + "start": 59424.1, + "end": 59424.76, + "probability": 0.8279 + }, + { + "start": 59424.86, + "end": 59425.62, + "probability": 0.7564 + }, + { + "start": 59425.72, + "end": 59425.9, + "probability": 0.7376 + }, + { + "start": 59427.12, + "end": 59428.62, + "probability": 0.9995 + }, + { + "start": 59429.0, + "end": 59430.44, + "probability": 0.9195 + }, + { + "start": 59430.56, + "end": 59433.52, + "probability": 0.7701 + }, + { + "start": 59434.74, + "end": 59437.3, + "probability": 0.5097 + }, + { + "start": 59438.64, + "end": 59441.82, + "probability": 0.9426 + }, + { + "start": 59441.82, + "end": 59443.72, + "probability": 0.9922 + }, + { + "start": 59444.92, + "end": 59446.9, + "probability": 0.8102 + }, + { + "start": 59447.1, + "end": 59448.06, + "probability": 0.5891 + }, + { + "start": 59448.78, + "end": 59449.38, + "probability": 0.4237 + }, + { + "start": 59449.64, + "end": 59449.74, + "probability": 0.7021 + }, + { + "start": 59450.3, + "end": 59451.38, + "probability": 0.9039 + }, + { + "start": 59452.04, + "end": 59453.78, + "probability": 0.5428 + }, + { + "start": 59453.82, + "end": 59455.64, + "probability": 0.7201 + }, + { + "start": 59456.14, + "end": 59458.76, + "probability": 0.9187 + }, + { + "start": 59458.86, + "end": 59460.83, + "probability": 0.9648 + }, + { + "start": 59463.28, + "end": 59465.46, + "probability": 0.795 + }, + { + "start": 59465.72, + "end": 59466.62, + "probability": 0.5071 + }, + { + "start": 59467.66, + "end": 59471.63, + "probability": 0.9937 + }, + { + "start": 59474.2, + "end": 59474.76, + "probability": 0.8261 + }, + { + "start": 59476.2, + "end": 59476.7, + "probability": 0.9851 + }, + { + "start": 59478.54, + "end": 59482.36, + "probability": 0.8789 + }, + { + "start": 59482.98, + "end": 59484.02, + "probability": 0.9944 + }, + { + "start": 59484.8, + "end": 59490.05, + "probability": 0.9906 + }, + { + "start": 59491.58, + "end": 59493.32, + "probability": 0.998 + }, + { + "start": 59494.86, + "end": 59496.94, + "probability": 0.8459 + }, + { + "start": 59497.16, + "end": 59498.44, + "probability": 0.5107 + }, + { + "start": 59498.5, + "end": 59500.82, + "probability": 0.8892 + }, + { + "start": 59501.54, + "end": 59502.32, + "probability": 0.8096 + }, + { + "start": 59503.16, + "end": 59504.6, + "probability": 0.9521 + }, + { + "start": 59506.12, + "end": 59509.08, + "probability": 0.9033 + }, + { + "start": 59509.92, + "end": 59514.46, + "probability": 0.6529 + }, + { + "start": 59514.54, + "end": 59515.16, + "probability": 0.8413 + }, + { + "start": 59515.26, + "end": 59516.18, + "probability": 0.8447 + }, + { + "start": 59516.26, + "end": 59517.8, + "probability": 0.9909 + }, + { + "start": 59517.96, + "end": 59518.4, + "probability": 0.7506 + }, + { + "start": 59519.8, + "end": 59522.9, + "probability": 0.9919 + }, + { + "start": 59523.54, + "end": 59524.34, + "probability": 0.9599 + }, + { + "start": 59525.16, + "end": 59528.62, + "probability": 0.934 + }, + { + "start": 59540.24, + "end": 59541.0, + "probability": 0.9922 + }, + { + "start": 59542.9, + "end": 59543.02, + "probability": 0.0806 + }, + { + "start": 59543.02, + "end": 59543.02, + "probability": 0.133 + }, + { + "start": 59543.02, + "end": 59543.02, + "probability": 0.0894 + }, + { + "start": 59543.02, + "end": 59545.42, + "probability": 0.5668 + }, + { + "start": 59546.18, + "end": 59547.88, + "probability": 0.4424 + }, + { + "start": 59548.6, + "end": 59549.26, + "probability": 0.999 + }, + { + "start": 59549.36, + "end": 59550.56, + "probability": 0.5092 + }, + { + "start": 59552.52, + "end": 59554.7, + "probability": 0.9655 + }, + { + "start": 59558.02, + "end": 59558.5, + "probability": 0.862 + }, + { + "start": 59558.72, + "end": 59562.0, + "probability": 0.8048 + }, + { + "start": 59562.42, + "end": 59562.98, + "probability": 0.4066 + }, + { + "start": 59563.1, + "end": 59564.42, + "probability": 0.3583 + }, + { + "start": 59565.4, + "end": 59566.22, + "probability": 0.7125 + }, + { + "start": 59566.96, + "end": 59567.76, + "probability": 0.76 + }, + { + "start": 59569.3, + "end": 59572.38, + "probability": 0.9664 + }, + { + "start": 59574.08, + "end": 59575.46, + "probability": 0.8381 + }, + { + "start": 59576.42, + "end": 59577.24, + "probability": 0.8051 + }, + { + "start": 59579.24, + "end": 59582.44, + "probability": 0.7849 + }, + { + "start": 59582.96, + "end": 59587.14, + "probability": 0.843 + }, + { + "start": 59589.08, + "end": 59590.14, + "probability": 0.7511 + }, + { + "start": 59592.26, + "end": 59593.84, + "probability": 0.9671 + }, + { + "start": 59594.78, + "end": 59596.78, + "probability": 0.9363 + }, + { + "start": 59598.58, + "end": 59599.98, + "probability": 0.9428 + }, + { + "start": 59602.32, + "end": 59602.66, + "probability": 0.9257 + }, + { + "start": 59603.44, + "end": 59604.2, + "probability": 0.6537 + }, + { + "start": 59607.88, + "end": 59608.82, + "probability": 0.7094 + }, + { + "start": 59610.14, + "end": 59612.5, + "probability": 0.7829 + }, + { + "start": 59612.86, + "end": 59616.3, + "probability": 0.932 + }, + { + "start": 59617.48, + "end": 59619.06, + "probability": 0.9901 + }, + { + "start": 59620.56, + "end": 59623.34, + "probability": 0.2153 + }, + { + "start": 59623.34, + "end": 59624.38, + "probability": 0.0784 + }, + { + "start": 59624.98, + "end": 59625.92, + "probability": 0.5823 + }, + { + "start": 59627.06, + "end": 59628.98, + "probability": 0.9357 + }, + { + "start": 59629.68, + "end": 59631.66, + "probability": 0.7355 + }, + { + "start": 59632.8, + "end": 59636.74, + "probability": 0.9614 + }, + { + "start": 59636.92, + "end": 59640.16, + "probability": 0.9791 + }, + { + "start": 59641.46, + "end": 59642.7, + "probability": 0.8693 + }, + { + "start": 59643.26, + "end": 59645.24, + "probability": 0.9165 + }, + { + "start": 59646.16, + "end": 59648.26, + "probability": 0.9619 + }, + { + "start": 59650.08, + "end": 59651.0, + "probability": 0.7328 + }, + { + "start": 59652.5, + "end": 59655.4, + "probability": 0.9996 + }, + { + "start": 59656.16, + "end": 59657.04, + "probability": 0.8846 + }, + { + "start": 59657.18, + "end": 59660.16, + "probability": 0.835 + }, + { + "start": 59660.28, + "end": 59661.0, + "probability": 0.8813 + }, + { + "start": 59661.1, + "end": 59667.4, + "probability": 0.6949 + }, + { + "start": 59667.86, + "end": 59668.54, + "probability": 0.8163 + }, + { + "start": 59670.72, + "end": 59672.2, + "probability": 0.7108 + }, + { + "start": 59672.52, + "end": 59676.3, + "probability": 0.9409 + }, + { + "start": 59676.82, + "end": 59679.08, + "probability": 0.8359 + }, + { + "start": 59680.8, + "end": 59687.24, + "probability": 0.979 + }, + { + "start": 59687.32, + "end": 59688.44, + "probability": 0.7453 + }, + { + "start": 59688.68, + "end": 59689.18, + "probability": 0.4172 + }, + { + "start": 59690.2, + "end": 59691.3, + "probability": 0.5487 + }, + { + "start": 59692.0, + "end": 59693.7, + "probability": 0.9709 + }, + { + "start": 59695.38, + "end": 59695.58, + "probability": 0.6306 + }, + { + "start": 59695.58, + "end": 59697.28, + "probability": 0.7632 + }, + { + "start": 59701.06, + "end": 59705.52, + "probability": 0.9948 + }, + { + "start": 59707.42, + "end": 59709.02, + "probability": 0.9331 + }, + { + "start": 59710.04, + "end": 59711.18, + "probability": 0.9921 + }, + { + "start": 59712.4, + "end": 59717.38, + "probability": 0.6263 + }, + { + "start": 59718.12, + "end": 59720.3, + "probability": 0.7163 + }, + { + "start": 59720.78, + "end": 59721.26, + "probability": 0.8262 + }, + { + "start": 59722.98, + "end": 59723.8, + "probability": 0.9351 + }, + { + "start": 59725.78, + "end": 59727.96, + "probability": 0.99 + }, + { + "start": 59728.12, + "end": 59729.86, + "probability": 0.9815 + }, + { + "start": 59733.08, + "end": 59734.96, + "probability": 0.5331 + }, + { + "start": 59735.16, + "end": 59737.12, + "probability": 0.9373 + }, + { + "start": 59738.46, + "end": 59739.92, + "probability": 0.9808 + }, + { + "start": 59741.1, + "end": 59746.06, + "probability": 0.7627 + }, + { + "start": 59747.2, + "end": 59748.16, + "probability": 0.8114 + }, + { + "start": 59748.9, + "end": 59750.2, + "probability": 0.4873 + }, + { + "start": 59750.34, + "end": 59750.84, + "probability": 0.6685 + }, + { + "start": 59750.96, + "end": 59751.16, + "probability": 0.8725 + }, + { + "start": 59751.58, + "end": 59752.99, + "probability": 0.8477 + }, + { + "start": 59754.34, + "end": 59759.78, + "probability": 0.7232 + }, + { + "start": 59760.58, + "end": 59761.08, + "probability": 0.1523 + }, + { + "start": 59761.08, + "end": 59764.92, + "probability": 0.2293 + }, + { + "start": 59765.92, + "end": 59771.09, + "probability": 0.7727 + }, + { + "start": 59772.64, + "end": 59775.34, + "probability": 0.7928 + }, + { + "start": 59776.3, + "end": 59777.04, + "probability": 0.9162 + }, + { + "start": 59778.58, + "end": 59779.42, + "probability": 0.4935 + }, + { + "start": 59780.14, + "end": 59783.04, + "probability": 0.6247 + }, + { + "start": 59784.48, + "end": 59787.44, + "probability": 0.753 + }, + { + "start": 59789.12, + "end": 59791.58, + "probability": 0.9736 + }, + { + "start": 59793.32, + "end": 59797.74, + "probability": 0.9303 + }, + { + "start": 59798.2, + "end": 59799.3, + "probability": 0.9922 + }, + { + "start": 59799.6, + "end": 59800.05, + "probability": 0.76 + }, + { + "start": 59801.26, + "end": 59804.0, + "probability": 0.6906 + }, + { + "start": 59804.8, + "end": 59810.28, + "probability": 0.7733 + }, + { + "start": 59810.52, + "end": 59814.4, + "probability": 0.6494 + }, + { + "start": 59814.62, + "end": 59816.56, + "probability": 0.8787 + }, + { + "start": 59817.64, + "end": 59820.24, + "probability": 0.712 + }, + { + "start": 59820.76, + "end": 59822.74, + "probability": 0.9862 + }, + { + "start": 59823.22, + "end": 59825.22, + "probability": 0.9829 + }, + { + "start": 59825.76, + "end": 59830.18, + "probability": 0.9972 + }, + { + "start": 59832.32, + "end": 59833.58, + "probability": 0.8288 + }, + { + "start": 59834.04, + "end": 59839.78, + "probability": 0.9942 + }, + { + "start": 59841.52, + "end": 59847.98, + "probability": 0.912 + }, + { + "start": 59850.06, + "end": 59853.6, + "probability": 0.9856 + }, + { + "start": 59854.24, + "end": 59855.22, + "probability": 0.932 + }, + { + "start": 59856.56, + "end": 59859.3, + "probability": 0.5426 + }, + { + "start": 59859.3, + "end": 59860.82, + "probability": 0.9399 + }, + { + "start": 59861.9, + "end": 59862.4, + "probability": 0.4938 + }, + { + "start": 59862.54, + "end": 59863.2, + "probability": 0.8616 + }, + { + "start": 59864.44, + "end": 59866.88, + "probability": 0.9896 + }, + { + "start": 59867.28, + "end": 59867.92, + "probability": 0.9417 + }, + { + "start": 59868.88, + "end": 59871.52, + "probability": 0.9009 + }, + { + "start": 59875.79, + "end": 59878.35, + "probability": 0.9248 + }, + { + "start": 59879.5, + "end": 59880.21, + "probability": 0.8953 + }, + { + "start": 59880.86, + "end": 59882.14, + "probability": 0.6567 + }, + { + "start": 59882.8, + "end": 59883.52, + "probability": 0.9233 + }, + { + "start": 59884.52, + "end": 59887.84, + "probability": 0.8908 + }, + { + "start": 59889.78, + "end": 59890.14, + "probability": 0.4633 + }, + { + "start": 59890.9, + "end": 59891.76, + "probability": 0.8296 + }, + { + "start": 59893.3, + "end": 59896.02, + "probability": 0.7551 + }, + { + "start": 59896.52, + "end": 59897.7, + "probability": 0.827 + }, + { + "start": 59898.24, + "end": 59898.96, + "probability": 0.7301 + }, + { + "start": 59899.04, + "end": 59899.42, + "probability": 0.8019 + }, + { + "start": 59899.6, + "end": 59903.16, + "probability": 0.5011 + }, + { + "start": 59904.36, + "end": 59907.22, + "probability": 0.9539 + }, + { + "start": 59907.38, + "end": 59907.7, + "probability": 0.4873 + }, + { + "start": 59907.86, + "end": 59908.6, + "probability": 0.5145 + }, + { + "start": 59908.98, + "end": 59909.46, + "probability": 0.8446 + }, + { + "start": 59909.92, + "end": 59910.26, + "probability": 0.8679 + }, + { + "start": 59910.54, + "end": 59911.02, + "probability": 0.8347 + }, + { + "start": 59913.48, + "end": 59917.17, + "probability": 0.8777 + }, + { + "start": 59917.36, + "end": 59921.94, + "probability": 0.9668 + }, + { + "start": 59922.36, + "end": 59923.54, + "probability": 0.9673 + }, + { + "start": 59924.18, + "end": 59925.66, + "probability": 0.8232 + }, + { + "start": 59926.6, + "end": 59928.04, + "probability": 0.8082 + }, + { + "start": 59928.84, + "end": 59930.16, + "probability": 0.9743 + }, + { + "start": 59930.7, + "end": 59933.44, + "probability": 0.9609 + }, + { + "start": 59933.72, + "end": 59936.24, + "probability": 0.1388 + }, + { + "start": 59937.1, + "end": 59938.34, + "probability": 0.8086 + }, + { + "start": 59939.24, + "end": 59940.5, + "probability": 0.8741 + }, + { + "start": 59941.02, + "end": 59944.6, + "probability": 0.915 + }, + { + "start": 59944.78, + "end": 59945.52, + "probability": 0.5269 + }, + { + "start": 59945.68, + "end": 59949.12, + "probability": 0.8772 + }, + { + "start": 59949.82, + "end": 59953.22, + "probability": 0.8221 + }, + { + "start": 59954.02, + "end": 59956.32, + "probability": 0.7303 + }, + { + "start": 59956.52, + "end": 59956.74, + "probability": 0.0482 + }, + { + "start": 59958.55, + "end": 59960.28, + "probability": 0.6901 + }, + { + "start": 59961.4, + "end": 59965.22, + "probability": 0.719 + }, + { + "start": 59966.62, + "end": 59968.88, + "probability": 0.819 + }, + { + "start": 59969.92, + "end": 59971.96, + "probability": 0.97 + }, + { + "start": 59972.96, + "end": 59977.84, + "probability": 0.8156 + }, + { + "start": 59979.28, + "end": 59979.38, + "probability": 0.4619 + }, + { + "start": 59979.92, + "end": 59980.24, + "probability": 0.7801 + }, + { + "start": 59981.34, + "end": 59982.88, + "probability": 0.9728 + }, + { + "start": 59983.88, + "end": 59984.8, + "probability": 0.9646 + }, + { + "start": 59985.5, + "end": 59986.22, + "probability": 0.8779 + }, + { + "start": 59986.26, + "end": 59987.12, + "probability": 0.9177 + }, + { + "start": 59987.86, + "end": 59989.82, + "probability": 0.7821 + }, + { + "start": 59990.02, + "end": 59991.08, + "probability": 0.8873 + }, + { + "start": 59992.22, + "end": 59993.2, + "probability": 0.6221 + }, + { + "start": 59994.3, + "end": 59994.88, + "probability": 0.8718 + }, + { + "start": 59995.0, + "end": 59996.72, + "probability": 0.9701 + }, + { + "start": 59997.08, + "end": 59997.78, + "probability": 0.9632 + }, + { + "start": 59997.82, + "end": 59999.22, + "probability": 0.7129 + }, + { + "start": 59999.8, + "end": 60001.26, + "probability": 0.6528 + }, + { + "start": 60002.26, + "end": 60003.08, + "probability": 0.8462 + }, + { + "start": 60003.84, + "end": 60006.34, + "probability": 0.9381 + }, + { + "start": 60006.82, + "end": 60007.86, + "probability": 0.5354 + }, + { + "start": 60008.7, + "end": 60009.4, + "probability": 0.8809 + }, + { + "start": 60009.94, + "end": 60010.72, + "probability": 0.527 + }, + { + "start": 60013.28, + "end": 60016.8, + "probability": 0.9197 + }, + { + "start": 60017.62, + "end": 60022.9, + "probability": 0.9014 + }, + { + "start": 60024.42, + "end": 60027.26, + "probability": 0.9135 + }, + { + "start": 60027.56, + "end": 60028.94, + "probability": 0.7953 + }, + { + "start": 60030.44, + "end": 60035.38, + "probability": 0.9634 + }, + { + "start": 60036.58, + "end": 60038.72, + "probability": 0.6406 + }, + { + "start": 60039.58, + "end": 60042.0, + "probability": 0.8576 + }, + { + "start": 60045.14, + "end": 60047.84, + "probability": 0.9428 + }, + { + "start": 60049.68, + "end": 60054.43, + "probability": 0.8197 + }, + { + "start": 60055.4, + "end": 60058.98, + "probability": 0.8556 + }, + { + "start": 60059.38, + "end": 60059.76, + "probability": 0.7225 + }, + { + "start": 60060.42, + "end": 60063.16, + "probability": 0.9124 + }, + { + "start": 60065.62, + "end": 60067.5, + "probability": 0.7363 + }, + { + "start": 60068.22, + "end": 60068.5, + "probability": 0.9147 + }, + { + "start": 60070.36, + "end": 60070.7, + "probability": 0.8883 + }, + { + "start": 60071.58, + "end": 60072.02, + "probability": 0.9337 + }, + { + "start": 60072.4, + "end": 60074.28, + "probability": 0.3648 + }, + { + "start": 60074.4, + "end": 60078.72, + "probability": 0.9474 + }, + { + "start": 60080.8, + "end": 60081.38, + "probability": 0.7554 + }, + { + "start": 60082.66, + "end": 60083.38, + "probability": 0.8466 + }, + { + "start": 60083.74, + "end": 60084.04, + "probability": 0.7959 + }, + { + "start": 60084.56, + "end": 60085.32, + "probability": 0.8101 + }, + { + "start": 60085.54, + "end": 60088.54, + "probability": 0.9509 + }, + { + "start": 60090.86, + "end": 60093.6, + "probability": 0.9331 + }, + { + "start": 60094.34, + "end": 60094.96, + "probability": 0.5793 + }, + { + "start": 60096.1, + "end": 60097.48, + "probability": 0.6941 + }, + { + "start": 60098.86, + "end": 60099.44, + "probability": 0.9612 + }, + { + "start": 60100.1, + "end": 60100.74, + "probability": 0.9108 + }, + { + "start": 60102.46, + "end": 60104.38, + "probability": 0.8212 + }, + { + "start": 60106.76, + "end": 60107.64, + "probability": 0.8957 + }, + { + "start": 60108.72, + "end": 60108.98, + "probability": 0.3197 + }, + { + "start": 60109.92, + "end": 60110.76, + "probability": 0.9705 + }, + { + "start": 60111.68, + "end": 60113.1, + "probability": 0.989 + }, + { + "start": 60113.62, + "end": 60114.26, + "probability": 0.9144 + }, + { + "start": 60115.66, + "end": 60118.28, + "probability": 0.7537 + }, + { + "start": 60119.72, + "end": 60120.76, + "probability": 0.8917 + }, + { + "start": 60121.72, + "end": 60124.0, + "probability": 0.7276 + }, + { + "start": 60125.64, + "end": 60127.52, + "probability": 0.9152 + }, + { + "start": 60128.68, + "end": 60129.84, + "probability": 0.8975 + }, + { + "start": 60130.38, + "end": 60131.98, + "probability": 0.9819 + }, + { + "start": 60132.34, + "end": 60134.02, + "probability": 0.9624 + }, + { + "start": 60135.6, + "end": 60137.86, + "probability": 0.7463 + }, + { + "start": 60139.02, + "end": 60141.69, + "probability": 0.9639 + }, + { + "start": 60143.1, + "end": 60144.83, + "probability": 0.7988 + }, + { + "start": 60145.54, + "end": 60148.02, + "probability": 0.8013 + }, + { + "start": 60148.94, + "end": 60149.82, + "probability": 0.6723 + }, + { + "start": 60151.58, + "end": 60152.84, + "probability": 0.9545 + }, + { + "start": 60154.86, + "end": 60159.96, + "probability": 0.9947 + }, + { + "start": 60159.96, + "end": 60162.44, + "probability": 0.9772 + }, + { + "start": 60163.24, + "end": 60166.82, + "probability": 0.9718 + }, + { + "start": 60167.7, + "end": 60172.16, + "probability": 0.9896 + }, + { + "start": 60173.6, + "end": 60176.74, + "probability": 0.5189 + }, + { + "start": 60177.52, + "end": 60182.72, + "probability": 0.9129 + }, + { + "start": 60183.38, + "end": 60186.16, + "probability": 0.9751 + }, + { + "start": 60189.44, + "end": 60190.73, + "probability": 0.8088 + }, + { + "start": 60192.04, + "end": 60193.9, + "probability": 0.892 + }, + { + "start": 60194.06, + "end": 60200.26, + "probability": 0.9888 + }, + { + "start": 60200.34, + "end": 60200.94, + "probability": 0.8538 + }, + { + "start": 60202.2, + "end": 60203.22, + "probability": 0.9585 + }, + { + "start": 60203.94, + "end": 60207.86, + "probability": 0.8647 + }, + { + "start": 60208.64, + "end": 60209.78, + "probability": 0.9624 + }, + { + "start": 60210.86, + "end": 60213.14, + "probability": 0.7937 + }, + { + "start": 60213.16, + "end": 60213.94, + "probability": 0.9513 + }, + { + "start": 60215.08, + "end": 60216.19, + "probability": 0.9506 + }, + { + "start": 60216.56, + "end": 60217.78, + "probability": 0.698 + }, + { + "start": 60219.14, + "end": 60219.56, + "probability": 0.8504 + }, + { + "start": 60220.52, + "end": 60222.34, + "probability": 0.8065 + }, + { + "start": 60223.5, + "end": 60229.58, + "probability": 0.8864 + }, + { + "start": 60231.68, + "end": 60234.92, + "probability": 0.877 + }, + { + "start": 60235.34, + "end": 60236.06, + "probability": 0.5544 + }, + { + "start": 60236.52, + "end": 60236.68, + "probability": 0.7585 + }, + { + "start": 60237.34, + "end": 60238.04, + "probability": 0.9509 + }, + { + "start": 60239.76, + "end": 60241.5, + "probability": 0.5973 + }, + { + "start": 60242.54, + "end": 60245.6, + "probability": 0.9609 + }, + { + "start": 60247.5, + "end": 60248.7, + "probability": 0.9755 + }, + { + "start": 60250.16, + "end": 60250.76, + "probability": 0.6506 + }, + { + "start": 60254.54, + "end": 60256.1, + "probability": 0.802 + }, + { + "start": 60257.14, + "end": 60257.88, + "probability": 0.6129 + }, + { + "start": 60258.0, + "end": 60260.16, + "probability": 0.749 + }, + { + "start": 60260.6, + "end": 60263.22, + "probability": 0.6938 + }, + { + "start": 60265.56, + "end": 60271.28, + "probability": 0.8853 + }, + { + "start": 60272.22, + "end": 60273.42, + "probability": 0.9601 + }, + { + "start": 60274.38, + "end": 60275.36, + "probability": 0.8481 + }, + { + "start": 60276.76, + "end": 60277.38, + "probability": 0.9937 + }, + { + "start": 60277.9, + "end": 60279.16, + "probability": 0.9951 + }, + { + "start": 60279.72, + "end": 60281.18, + "probability": 0.7909 + }, + { + "start": 60281.86, + "end": 60284.4, + "probability": 0.9434 + }, + { + "start": 60285.16, + "end": 60285.74, + "probability": 0.9827 + }, + { + "start": 60287.33, + "end": 60292.74, + "probability": 0.8329 + }, + { + "start": 60292.78, + "end": 60293.28, + "probability": 0.7025 + }, + { + "start": 60293.36, + "end": 60293.74, + "probability": 0.8977 + }, + { + "start": 60294.3, + "end": 60295.78, + "probability": 0.8749 + }, + { + "start": 60295.9, + "end": 60296.46, + "probability": 0.6559 + }, + { + "start": 60296.58, + "end": 60296.98, + "probability": 0.5716 + }, + { + "start": 60297.58, + "end": 60299.94, + "probability": 0.834 + }, + { + "start": 60301.72, + "end": 60303.24, + "probability": 0.7916 + }, + { + "start": 60304.68, + "end": 60308.88, + "probability": 0.9918 + }, + { + "start": 60308.88, + "end": 60311.42, + "probability": 0.9297 + }, + { + "start": 60312.48, + "end": 60313.42, + "probability": 0.701 + }, + { + "start": 60313.74, + "end": 60315.13, + "probability": 0.9377 + }, + { + "start": 60316.28, + "end": 60319.04, + "probability": 0.6688 + }, + { + "start": 60319.7, + "end": 60321.68, + "probability": 0.866 + }, + { + "start": 60322.34, + "end": 60324.52, + "probability": 0.7201 + }, + { + "start": 60325.32, + "end": 60326.08, + "probability": 0.8846 + }, + { + "start": 60327.36, + "end": 60329.56, + "probability": 0.5598 + }, + { + "start": 60330.3, + "end": 60332.94, + "probability": 0.9565 + }, + { + "start": 60333.64, + "end": 60334.42, + "probability": 0.8892 + }, + { + "start": 60335.02, + "end": 60337.22, + "probability": 0.9271 + }, + { + "start": 60338.24, + "end": 60340.86, + "probability": 0.8413 + }, + { + "start": 60341.6, + "end": 60342.6, + "probability": 0.7224 + }, + { + "start": 60345.68, + "end": 60348.64, + "probability": 0.282 + }, + { + "start": 60350.06, + "end": 60350.78, + "probability": 0.7431 + }, + { + "start": 60351.84, + "end": 60354.06, + "probability": 0.4409 + }, + { + "start": 60354.8, + "end": 60355.5, + "probability": 0.8995 + }, + { + "start": 60356.52, + "end": 60360.96, + "probability": 0.9956 + }, + { + "start": 60362.08, + "end": 60364.46, + "probability": 0.998 + }, + { + "start": 60364.46, + "end": 60367.0, + "probability": 0.818 + }, + { + "start": 60367.48, + "end": 60368.46, + "probability": 0.6387 + }, + { + "start": 60369.42, + "end": 60375.06, + "probability": 0.8467 + }, + { + "start": 60376.38, + "end": 60377.28, + "probability": 0.5663 + }, + { + "start": 60378.06, + "end": 60381.98, + "probability": 0.7715 + }, + { + "start": 60383.82, + "end": 60385.8, + "probability": 0.2049 + }, + { + "start": 60385.88, + "end": 60386.76, + "probability": 0.1857 + }, + { + "start": 60386.82, + "end": 60386.92, + "probability": 0.6273 + }, + { + "start": 60388.0, + "end": 60389.24, + "probability": 0.8245 + }, + { + "start": 60390.52, + "end": 60392.78, + "probability": 0.9153 + }, + { + "start": 60393.4, + "end": 60396.18, + "probability": 0.8955 + }, + { + "start": 60397.24, + "end": 60397.8, + "probability": 0.6383 + }, + { + "start": 60397.84, + "end": 60401.06, + "probability": 0.9583 + }, + { + "start": 60401.24, + "end": 60401.66, + "probability": 0.9521 + }, + { + "start": 60402.14, + "end": 60402.68, + "probability": 0.9597 + }, + { + "start": 60404.12, + "end": 60406.04, + "probability": 0.976 + }, + { + "start": 60406.66, + "end": 60407.84, + "probability": 0.7026 + }, + { + "start": 60409.4, + "end": 60414.74, + "probability": 0.9905 + }, + { + "start": 60415.52, + "end": 60417.14, + "probability": 0.9215 + }, + { + "start": 60417.93, + "end": 60420.32, + "probability": 0.7673 + }, + { + "start": 60420.5, + "end": 60421.36, + "probability": 0.9983 + }, + { + "start": 60422.74, + "end": 60423.84, + "probability": 0.6679 + }, + { + "start": 60424.52, + "end": 60425.44, + "probability": 0.7126 + }, + { + "start": 60426.5, + "end": 60428.08, + "probability": 0.989 + }, + { + "start": 60428.64, + "end": 60433.36, + "probability": 0.9736 + }, + { + "start": 60434.14, + "end": 60436.26, + "probability": 0.9178 + }, + { + "start": 60437.58, + "end": 60438.07, + "probability": 0.4103 + }, + { + "start": 60439.4, + "end": 60440.86, + "probability": 0.955 + }, + { + "start": 60440.88, + "end": 60441.64, + "probability": 0.9104 + }, + { + "start": 60441.96, + "end": 60442.84, + "probability": 0.8544 + }, + { + "start": 60443.98, + "end": 60446.68, + "probability": 0.472 + }, + { + "start": 60448.16, + "end": 60448.9, + "probability": 0.7345 + }, + { + "start": 60450.4, + "end": 60453.5, + "probability": 0.9535 + }, + { + "start": 60454.0, + "end": 60454.78, + "probability": 0.9207 + }, + { + "start": 60455.7, + "end": 60456.12, + "probability": 0.8337 + }, + { + "start": 60457.62, + "end": 60461.0, + "probability": 0.9901 + }, + { + "start": 60461.82, + "end": 60466.38, + "probability": 0.9569 + }, + { + "start": 60467.36, + "end": 60468.34, + "probability": 0.6877 + }, + { + "start": 60469.12, + "end": 60470.92, + "probability": 0.7381 + }, + { + "start": 60471.18, + "end": 60473.14, + "probability": 0.5623 + }, + { + "start": 60473.94, + "end": 60475.1, + "probability": 0.9795 + }, + { + "start": 60475.9, + "end": 60476.72, + "probability": 0.7711 + }, + { + "start": 60477.46, + "end": 60481.7, + "probability": 0.9168 + }, + { + "start": 60483.46, + "end": 60487.88, + "probability": 0.9718 + }, + { + "start": 60488.86, + "end": 60490.4, + "probability": 0.7267 + }, + { + "start": 60491.16, + "end": 60494.08, + "probability": 0.5473 + }, + { + "start": 60494.16, + "end": 60495.2, + "probability": 0.7207 + }, + { + "start": 60495.24, + "end": 60496.52, + "probability": 0.9728 + }, + { + "start": 60496.76, + "end": 60498.62, + "probability": 0.6567 + }, + { + "start": 60498.84, + "end": 60500.06, + "probability": 0.762 + }, + { + "start": 60500.18, + "end": 60503.14, + "probability": 0.8538 + }, + { + "start": 60503.64, + "end": 60507.2, + "probability": 0.8827 + }, + { + "start": 60507.78, + "end": 60510.4, + "probability": 0.9198 + }, + { + "start": 60513.93, + "end": 60514.38, + "probability": 0.5056 + }, + { + "start": 60515.24, + "end": 60516.0, + "probability": 0.5591 + }, + { + "start": 60516.4, + "end": 60517.24, + "probability": 0.6841 + }, + { + "start": 60518.2, + "end": 60520.4, + "probability": 0.7469 + }, + { + "start": 60520.94, + "end": 60521.52, + "probability": 0.7734 + }, + { + "start": 60522.1, + "end": 60524.78, + "probability": 0.9909 + }, + { + "start": 60525.36, + "end": 60527.86, + "probability": 0.834 + }, + { + "start": 60528.02, + "end": 60529.51, + "probability": 0.7199 + }, + { + "start": 60529.96, + "end": 60530.82, + "probability": 0.4982 + }, + { + "start": 60531.44, + "end": 60532.5, + "probability": 0.726 + }, + { + "start": 60532.64, + "end": 60537.2, + "probability": 0.9365 + }, + { + "start": 60537.76, + "end": 60539.66, + "probability": 0.9323 + }, + { + "start": 60540.72, + "end": 60543.58, + "probability": 0.9745 + }, + { + "start": 60544.56, + "end": 60546.48, + "probability": 0.9674 + }, + { + "start": 60548.64, + "end": 60549.5, + "probability": 0.758 + }, + { + "start": 60550.06, + "end": 60551.0, + "probability": 0.9415 + }, + { + "start": 60551.4, + "end": 60553.02, + "probability": 0.9741 + }, + { + "start": 60553.86, + "end": 60556.54, + "probability": 0.8161 + }, + { + "start": 60558.86, + "end": 60559.96, + "probability": 0.9927 + }, + { + "start": 60561.1, + "end": 60561.92, + "probability": 0.8772 + }, + { + "start": 60562.4, + "end": 60562.98, + "probability": 0.7895 + }, + { + "start": 60563.2, + "end": 60566.22, + "probability": 0.8734 + }, + { + "start": 60567.64, + "end": 60570.42, + "probability": 0.8392 + }, + { + "start": 60570.82, + "end": 60571.94, + "probability": 0.5176 + }, + { + "start": 60571.98, + "end": 60572.88, + "probability": 0.9731 + }, + { + "start": 60573.8, + "end": 60575.97, + "probability": 0.8515 + }, + { + "start": 60576.58, + "end": 60577.52, + "probability": 0.6852 + }, + { + "start": 60577.68, + "end": 60578.28, + "probability": 0.721 + }, + { + "start": 60578.36, + "end": 60581.88, + "probability": 0.9458 + }, + { + "start": 60582.66, + "end": 60583.46, + "probability": 0.9152 + }, + { + "start": 60583.54, + "end": 60585.98, + "probability": 0.981 + }, + { + "start": 60586.18, + "end": 60586.68, + "probability": 0.6592 + }, + { + "start": 60586.98, + "end": 60587.18, + "probability": 0.5069 + }, + { + "start": 60587.6, + "end": 60588.64, + "probability": 0.6668 + }, + { + "start": 60588.72, + "end": 60589.08, + "probability": 0.1705 + }, + { + "start": 60589.12, + "end": 60589.6, + "probability": 0.8189 + }, + { + "start": 60589.98, + "end": 60592.98, + "probability": 0.9434 + }, + { + "start": 60594.34, + "end": 60595.26, + "probability": 0.8712 + }, + { + "start": 60596.02, + "end": 60596.58, + "probability": 0.9874 + }, + { + "start": 60597.32, + "end": 60599.1, + "probability": 0.4998 + }, + { + "start": 60600.26, + "end": 60600.88, + "probability": 0.7894 + }, + { + "start": 60601.52, + "end": 60605.08, + "probability": 0.9298 + }, + { + "start": 60605.74, + "end": 60607.9, + "probability": 0.6989 + }, + { + "start": 60608.66, + "end": 60609.16, + "probability": 0.5835 + }, + { + "start": 60610.32, + "end": 60612.78, + "probability": 0.6266 + }, + { + "start": 60613.5, + "end": 60614.3, + "probability": 0.8791 + }, + { + "start": 60615.1, + "end": 60615.76, + "probability": 0.7749 + }, + { + "start": 60616.82, + "end": 60620.1, + "probability": 0.886 + }, + { + "start": 60621.02, + "end": 60621.58, + "probability": 0.578 + }, + { + "start": 60622.66, + "end": 60623.1, + "probability": 0.9052 + }, + { + "start": 60624.76, + "end": 60629.32, + "probability": 0.9272 + }, + { + "start": 60630.18, + "end": 60633.28, + "probability": 0.9404 + }, + { + "start": 60633.86, + "end": 60634.64, + "probability": 0.7708 + }, + { + "start": 60635.02, + "end": 60635.61, + "probability": 0.8022 + }, + { + "start": 60636.22, + "end": 60637.52, + "probability": 0.925 + }, + { + "start": 60638.14, + "end": 60640.44, + "probability": 0.769 + }, + { + "start": 60641.48, + "end": 60641.88, + "probability": 0.9451 + }, + { + "start": 60643.1, + "end": 60644.9, + "probability": 0.7201 + }, + { + "start": 60645.98, + "end": 60648.94, + "probability": 0.9911 + }, + { + "start": 60649.98, + "end": 60651.32, + "probability": 0.9845 + }, + { + "start": 60652.84, + "end": 60656.76, + "probability": 0.9983 + }, + { + "start": 60658.12, + "end": 60658.98, + "probability": 0.5357 + }, + { + "start": 60660.32, + "end": 60661.14, + "probability": 0.866 + }, + { + "start": 60662.1, + "end": 60663.02, + "probability": 0.8312 + }, + { + "start": 60663.84, + "end": 60664.5, + "probability": 0.8042 + }, + { + "start": 60665.22, + "end": 60666.76, + "probability": 0.7403 + }, + { + "start": 60666.9, + "end": 60668.78, + "probability": 0.9473 + }, + { + "start": 60668.9, + "end": 60669.42, + "probability": 0.8763 + }, + { + "start": 60669.54, + "end": 60670.84, + "probability": 0.7729 + }, + { + "start": 60672.28, + "end": 60674.64, + "probability": 0.9001 + }, + { + "start": 60675.3, + "end": 60676.22, + "probability": 0.9144 + }, + { + "start": 60676.26, + "end": 60677.04, + "probability": 0.8199 + }, + { + "start": 60677.2, + "end": 60677.78, + "probability": 0.9463 + }, + { + "start": 60678.16, + "end": 60679.42, + "probability": 0.9912 + }, + { + "start": 60679.56, + "end": 60680.06, + "probability": 0.981 + }, + { + "start": 60680.18, + "end": 60680.78, + "probability": 0.9062 + }, + { + "start": 60682.52, + "end": 60688.2, + "probability": 0.9512 + }, + { + "start": 60688.24, + "end": 60690.44, + "probability": 0.8471 + }, + { + "start": 60692.5, + "end": 60695.84, + "probability": 0.9807 + }, + { + "start": 60696.46, + "end": 60697.54, + "probability": 0.8125 + }, + { + "start": 60699.12, + "end": 60699.74, + "probability": 0.9009 + }, + { + "start": 60700.14, + "end": 60701.98, + "probability": 0.9548 + }, + { + "start": 60703.96, + "end": 60705.28, + "probability": 0.7485 + }, + { + "start": 60705.68, + "end": 60706.5, + "probability": 0.9551 + }, + { + "start": 60706.88, + "end": 60707.72, + "probability": 0.8184 + }, + { + "start": 60708.3, + "end": 60711.68, + "probability": 0.9946 + }, + { + "start": 60712.22, + "end": 60716.44, + "probability": 0.7526 + }, + { + "start": 60716.94, + "end": 60718.92, + "probability": 0.8659 + }, + { + "start": 60721.48, + "end": 60723.7, + "probability": 0.9963 + }, + { + "start": 60723.86, + "end": 60725.34, + "probability": 0.9432 + }, + { + "start": 60725.98, + "end": 60727.74, + "probability": 0.9948 + }, + { + "start": 60729.56, + "end": 60732.86, + "probability": 0.84 + }, + { + "start": 60733.56, + "end": 60737.67, + "probability": 0.9636 + }, + { + "start": 60738.74, + "end": 60742.62, + "probability": 0.9293 + }, + { + "start": 60742.8, + "end": 60743.22, + "probability": 0.8707 + }, + { + "start": 60743.36, + "end": 60743.84, + "probability": 0.8499 + }, + { + "start": 60743.96, + "end": 60744.42, + "probability": 0.8467 + }, + { + "start": 60744.54, + "end": 60746.09, + "probability": 0.9244 + }, + { + "start": 60746.26, + "end": 60746.8, + "probability": 0.7476 + }, + { + "start": 60746.88, + "end": 60747.24, + "probability": 0.987 + }, + { + "start": 60747.26, + "end": 60747.84, + "probability": 0.9448 + }, + { + "start": 60748.9, + "end": 60749.74, + "probability": 0.895 + }, + { + "start": 60750.56, + "end": 60751.1, + "probability": 0.8575 + }, + { + "start": 60753.0, + "end": 60753.7, + "probability": 0.6612 + }, + { + "start": 60754.12, + "end": 60756.02, + "probability": 0.9463 + }, + { + "start": 60757.16, + "end": 60758.98, + "probability": 0.968 + }, + { + "start": 60759.98, + "end": 60761.22, + "probability": 0.9873 + }, + { + "start": 60762.38, + "end": 60765.34, + "probability": 0.9961 + }, + { + "start": 60766.3, + "end": 60768.62, + "probability": 0.6519 + }, + { + "start": 60769.5, + "end": 60770.47, + "probability": 0.9653 + }, + { + "start": 60771.38, + "end": 60773.24, + "probability": 0.9734 + }, + { + "start": 60773.88, + "end": 60774.08, + "probability": 0.4839 + }, + { + "start": 60775.0, + "end": 60775.96, + "probability": 0.1156 + }, + { + "start": 60776.08, + "end": 60778.7, + "probability": 0.7024 + }, + { + "start": 60780.08, + "end": 60780.62, + "probability": 0.8003 + }, + { + "start": 60781.9, + "end": 60784.74, + "probability": 0.7804 + }, + { + "start": 60787.25, + "end": 60792.46, + "probability": 0.9577 + }, + { + "start": 60793.16, + "end": 60795.06, + "probability": 0.9928 + }, + { + "start": 60796.0, + "end": 60796.7, + "probability": 0.7205 + }, + { + "start": 60798.54, + "end": 60800.08, + "probability": 0.9009 + }, + { + "start": 60800.48, + "end": 60801.6, + "probability": 0.9096 + }, + { + "start": 60803.02, + "end": 60803.24, + "probability": 0.931 + }, + { + "start": 60804.18, + "end": 60805.68, + "probability": 0.8429 + }, + { + "start": 60805.96, + "end": 60807.78, + "probability": 0.9741 + }, + { + "start": 60808.46, + "end": 60809.44, + "probability": 0.9945 + }, + { + "start": 60810.7, + "end": 60811.54, + "probability": 0.8734 + }, + { + "start": 60812.14, + "end": 60813.12, + "probability": 0.6187 + }, + { + "start": 60814.96, + "end": 60816.06, + "probability": 0.7404 + }, + { + "start": 60817.04, + "end": 60817.38, + "probability": 0.4587 + }, + { + "start": 60817.86, + "end": 60818.3, + "probability": 0.7941 + }, + { + "start": 60819.24, + "end": 60821.38, + "probability": 0.9841 + }, + { + "start": 60822.78, + "end": 60823.9, + "probability": 0.9779 + }, + { + "start": 60823.94, + "end": 60825.82, + "probability": 0.8163 + }, + { + "start": 60826.72, + "end": 60827.32, + "probability": 0.8758 + }, + { + "start": 60828.18, + "end": 60828.76, + "probability": 0.7526 + }, + { + "start": 60830.72, + "end": 60833.96, + "probability": 0.7633 + }, + { + "start": 60835.18, + "end": 60838.38, + "probability": 0.9811 + }, + { + "start": 60840.36, + "end": 60842.1, + "probability": 0.9742 + }, + { + "start": 60844.18, + "end": 60845.16, + "probability": 0.985 + }, + { + "start": 60847.04, + "end": 60848.14, + "probability": 0.969 + }, + { + "start": 60850.34, + "end": 60853.0, + "probability": 0.6966 + }, + { + "start": 60854.08, + "end": 60857.06, + "probability": 0.934 + }, + { + "start": 60857.68, + "end": 60858.06, + "probability": 0.7442 + }, + { + "start": 60859.02, + "end": 60861.1, + "probability": 0.6195 + }, + { + "start": 60862.26, + "end": 60864.28, + "probability": 0.8075 + }, + { + "start": 60864.34, + "end": 60865.32, + "probability": 0.9541 + }, + { + "start": 60866.7, + "end": 60868.22, + "probability": 0.7394 + }, + { + "start": 60869.0, + "end": 60871.02, + "probability": 0.5473 + }, + { + "start": 60872.22, + "end": 60876.72, + "probability": 0.9395 + }, + { + "start": 60877.76, + "end": 60879.14, + "probability": 0.9411 + }, + { + "start": 60880.62, + "end": 60881.4, + "probability": 0.6012 + }, + { + "start": 60881.46, + "end": 60883.0, + "probability": 0.6814 + }, + { + "start": 60883.08, + "end": 60883.5, + "probability": 0.3509 + }, + { + "start": 60883.72, + "end": 60884.56, + "probability": 0.9574 + }, + { + "start": 60884.68, + "end": 60885.87, + "probability": 0.8595 + }, + { + "start": 60887.22, + "end": 60888.66, + "probability": 0.9351 + }, + { + "start": 60888.76, + "end": 60891.66, + "probability": 0.7225 + }, + { + "start": 60891.76, + "end": 60892.61, + "probability": 0.8704 + }, + { + "start": 60893.4, + "end": 60894.52, + "probability": 0.9453 + }, + { + "start": 60896.2, + "end": 60899.64, + "probability": 0.9248 + }, + { + "start": 60900.32, + "end": 60908.56, + "probability": 0.9408 + }, + { + "start": 60909.22, + "end": 60911.58, + "probability": 0.9834 + }, + { + "start": 60912.1, + "end": 60913.46, + "probability": 0.964 + }, + { + "start": 60915.0, + "end": 60917.6, + "probability": 0.9492 + }, + { + "start": 60917.72, + "end": 60919.1, + "probability": 0.7403 + }, + { + "start": 60919.64, + "end": 60920.84, + "probability": 0.9913 + }, + { + "start": 60922.66, + "end": 60923.24, + "probability": 0.5164 + }, + { + "start": 60924.6, + "end": 60925.68, + "probability": 0.6332 + }, + { + "start": 60926.6, + "end": 60929.14, + "probability": 0.9299 + }, + { + "start": 60930.04, + "end": 60930.96, + "probability": 0.766 + }, + { + "start": 60931.72, + "end": 60932.52, + "probability": 0.9583 + }, + { + "start": 60936.96, + "end": 60937.6, + "probability": 0.79 + }, + { + "start": 60938.4, + "end": 60940.0, + "probability": 0.9023 + }, + { + "start": 60940.68, + "end": 60941.7, + "probability": 0.9357 + }, + { + "start": 60943.44, + "end": 60944.65, + "probability": 0.7091 + }, + { + "start": 60945.18, + "end": 60945.74, + "probability": 0.899 + }, + { + "start": 60946.66, + "end": 60947.74, + "probability": 0.8152 + }, + { + "start": 60948.42, + "end": 60949.24, + "probability": 0.818 + }, + { + "start": 60949.9, + "end": 60954.28, + "probability": 0.9301 + }, + { + "start": 60955.42, + "end": 60958.98, + "probability": 0.9345 + }, + { + "start": 60960.2, + "end": 60960.84, + "probability": 0.8706 + }, + { + "start": 60962.72, + "end": 60964.2, + "probability": 0.8888 + }, + { + "start": 60965.5, + "end": 60967.56, + "probability": 0.9985 + }, + { + "start": 60969.2, + "end": 60970.86, + "probability": 0.798 + }, + { + "start": 60971.58, + "end": 60972.84, + "probability": 0.8929 + }, + { + "start": 60972.92, + "end": 60976.32, + "probability": 0.9546 + }, + { + "start": 60977.48, + "end": 60978.9, + "probability": 0.9915 + }, + { + "start": 60980.02, + "end": 60981.48, + "probability": 0.9787 + }, + { + "start": 60981.62, + "end": 60982.84, + "probability": 0.9967 + }, + { + "start": 60982.96, + "end": 60983.96, + "probability": 0.7802 + }, + { + "start": 60984.02, + "end": 60984.36, + "probability": 0.4856 + }, + { + "start": 60985.34, + "end": 60985.94, + "probability": 0.416 + }, + { + "start": 60986.02, + "end": 60987.88, + "probability": 0.9448 + }, + { + "start": 60989.0, + "end": 60990.32, + "probability": 0.947 + }, + { + "start": 60990.46, + "end": 60991.2, + "probability": 0.6967 + }, + { + "start": 60992.16, + "end": 60993.54, + "probability": 0.4168 + }, + { + "start": 60993.72, + "end": 60996.19, + "probability": 0.6577 + }, + { + "start": 60998.1, + "end": 60998.86, + "probability": 0.411 + }, + { + "start": 61000.48, + "end": 61001.38, + "probability": 0.8338 + }, + { + "start": 61002.52, + "end": 61003.04, + "probability": 0.84 + }, + { + "start": 61003.22, + "end": 61004.32, + "probability": 0.8402 + }, + { + "start": 61004.36, + "end": 61005.26, + "probability": 0.9832 + }, + { + "start": 61007.2, + "end": 61007.82, + "probability": 0.6787 + }, + { + "start": 61008.74, + "end": 61010.06, + "probability": 0.9126 + }, + { + "start": 61011.8, + "end": 61012.12, + "probability": 0.9882 + }, + { + "start": 61012.22, + "end": 61015.36, + "probability": 0.9297 + }, + { + "start": 61015.5, + "end": 61018.24, + "probability": 0.8909 + }, + { + "start": 61020.16, + "end": 61024.29, + "probability": 0.3785 + }, + { + "start": 61025.52, + "end": 61026.18, + "probability": 0.7782 + }, + { + "start": 61026.82, + "end": 61027.58, + "probability": 0.7464 + }, + { + "start": 61028.56, + "end": 61029.3, + "probability": 0.6786 + }, + { + "start": 61030.66, + "end": 61031.26, + "probability": 0.3412 + }, + { + "start": 61032.9, + "end": 61033.7, + "probability": 0.8949 + }, + { + "start": 61034.84, + "end": 61038.06, + "probability": 0.9225 + }, + { + "start": 61038.58, + "end": 61040.3, + "probability": 0.8503 + }, + { + "start": 61040.84, + "end": 61045.26, + "probability": 0.9512 + }, + { + "start": 61045.96, + "end": 61050.24, + "probability": 0.7598 + }, + { + "start": 61051.28, + "end": 61052.82, + "probability": 0.9205 + }, + { + "start": 61053.44, + "end": 61055.3, + "probability": 0.9844 + }, + { + "start": 61057.66, + "end": 61060.54, + "probability": 0.6524 + }, + { + "start": 61060.6, + "end": 61061.64, + "probability": 0.9248 + }, + { + "start": 61062.26, + "end": 61062.96, + "probability": 0.9406 + }, + { + "start": 61064.28, + "end": 61064.82, + "probability": 0.7501 + }, + { + "start": 61065.44, + "end": 61067.54, + "probability": 0.7826 + }, + { + "start": 61069.2, + "end": 61071.42, + "probability": 0.9333 + }, + { + "start": 61073.56, + "end": 61074.62, + "probability": 0.8001 + }, + { + "start": 61077.3, + "end": 61080.8, + "probability": 0.8859 + }, + { + "start": 61081.06, + "end": 61081.28, + "probability": 0.7935 + }, + { + "start": 61082.6, + "end": 61083.42, + "probability": 0.871 + }, + { + "start": 61084.26, + "end": 61085.32, + "probability": 0.3655 + }, + { + "start": 61086.44, + "end": 61087.56, + "probability": 0.6115 + }, + { + "start": 61087.92, + "end": 61088.48, + "probability": 0.4437 + }, + { + "start": 61088.86, + "end": 61092.57, + "probability": 0.7326 + }, + { + "start": 61093.84, + "end": 61095.38, + "probability": 0.5037 + }, + { + "start": 61096.34, + "end": 61098.84, + "probability": 0.9663 + }, + { + "start": 61099.54, + "end": 61100.3, + "probability": 0.5903 + }, + { + "start": 61101.04, + "end": 61102.95, + "probability": 0.9052 + }, + { + "start": 61103.86, + "end": 61107.9, + "probability": 0.8579 + }, + { + "start": 61108.12, + "end": 61109.22, + "probability": 0.8687 + }, + { + "start": 61110.12, + "end": 61112.58, + "probability": 0.7292 + }, + { + "start": 61115.08, + "end": 61119.3, + "probability": 0.6787 + }, + { + "start": 61121.46, + "end": 61122.28, + "probability": 0.6993 + }, + { + "start": 61123.46, + "end": 61126.02, + "probability": 0.8284 + }, + { + "start": 61126.76, + "end": 61129.1, + "probability": 0.9033 + }, + { + "start": 61129.84, + "end": 61130.76, + "probability": 0.2293 + }, + { + "start": 61132.92, + "end": 61136.02, + "probability": 0.7938 + }, + { + "start": 61136.74, + "end": 61137.71, + "probability": 0.289 + }, + { + "start": 61138.5, + "end": 61142.36, + "probability": 0.9712 + }, + { + "start": 61143.48, + "end": 61145.8, + "probability": 0.8089 + }, + { + "start": 61146.56, + "end": 61146.66, + "probability": 0.0658 + }, + { + "start": 61151.56, + "end": 61152.94, + "probability": 0.4429 + }, + { + "start": 61155.4, + "end": 61157.52, + "probability": 0.2712 + }, + { + "start": 61158.48, + "end": 61158.87, + "probability": 0.7383 + }, + { + "start": 61160.26, + "end": 61161.2, + "probability": 0.6875 + }, + { + "start": 61163.09, + "end": 61165.88, + "probability": 0.9177 + }, + { + "start": 61166.98, + "end": 61172.16, + "probability": 0.68 + }, + { + "start": 61172.72, + "end": 61173.95, + "probability": 0.7424 + }, + { + "start": 61175.2, + "end": 61176.86, + "probability": 0.9299 + }, + { + "start": 61177.6, + "end": 61180.68, + "probability": 0.9286 + }, + { + "start": 61181.2, + "end": 61184.78, + "probability": 0.9631 + }, + { + "start": 61185.34, + "end": 61186.56, + "probability": 0.8529 + }, + { + "start": 61186.9, + "end": 61188.28, + "probability": 0.7842 + }, + { + "start": 61188.5, + "end": 61189.48, + "probability": 0.9794 + }, + { + "start": 61189.88, + "end": 61190.72, + "probability": 0.9219 + }, + { + "start": 61190.84, + "end": 61191.4, + "probability": 0.9055 + }, + { + "start": 61192.44, + "end": 61195.54, + "probability": 0.9081 + }, + { + "start": 61196.24, + "end": 61196.96, + "probability": 0.6364 + }, + { + "start": 61198.3, + "end": 61200.86, + "probability": 0.9968 + }, + { + "start": 61200.86, + "end": 61202.16, + "probability": 0.8893 + }, + { + "start": 61202.64, + "end": 61203.66, + "probability": 0.8102 + }, + { + "start": 61204.52, + "end": 61206.43, + "probability": 0.8559 + }, + { + "start": 61206.98, + "end": 61209.24, + "probability": 0.3945 + }, + { + "start": 61209.3, + "end": 61210.02, + "probability": 0.8882 + }, + { + "start": 61210.88, + "end": 61212.24, + "probability": 0.1216 + }, + { + "start": 61212.94, + "end": 61213.46, + "probability": 0.8051 + }, + { + "start": 61214.66, + "end": 61216.12, + "probability": 0.4239 + }, + { + "start": 61216.9, + "end": 61220.92, + "probability": 0.9033 + }, + { + "start": 61221.22, + "end": 61225.3, + "probability": 0.5848 + }, + { + "start": 61225.38, + "end": 61226.56, + "probability": 0.603 + }, + { + "start": 61227.08, + "end": 61229.5, + "probability": 0.9866 + }, + { + "start": 61230.36, + "end": 61231.84, + "probability": 0.9854 + }, + { + "start": 61232.5, + "end": 61237.22, + "probability": 0.8949 + }, + { + "start": 61237.38, + "end": 61240.9, + "probability": 0.9645 + }, + { + "start": 61241.32, + "end": 61243.34, + "probability": 0.9541 + }, + { + "start": 61243.58, + "end": 61244.66, + "probability": 0.5179 + }, + { + "start": 61244.84, + "end": 61246.46, + "probability": 0.5298 + }, + { + "start": 61246.54, + "end": 61247.72, + "probability": 0.8406 + }, + { + "start": 61248.48, + "end": 61250.74, + "probability": 0.9401 + }, + { + "start": 61251.26, + "end": 61253.7, + "probability": 0.8317 + }, + { + "start": 61254.78, + "end": 61255.34, + "probability": 0.8461 + }, + { + "start": 61255.96, + "end": 61256.44, + "probability": 0.8061 + }, + { + "start": 61257.52, + "end": 61259.34, + "probability": 0.9595 + }, + { + "start": 61259.46, + "end": 61260.1, + "probability": 0.9102 + }, + { + "start": 61260.14, + "end": 61263.42, + "probability": 0.8292 + }, + { + "start": 61264.3, + "end": 61264.36, + "probability": 0.374 + }, + { + "start": 61265.18, + "end": 61267.7, + "probability": 0.827 + }, + { + "start": 61268.38, + "end": 61270.52, + "probability": 0.851 + }, + { + "start": 61271.44, + "end": 61275.56, + "probability": 0.5166 + }, + { + "start": 61275.82, + "end": 61277.56, + "probability": 0.7297 + }, + { + "start": 61278.0, + "end": 61278.76, + "probability": 0.3337 + }, + { + "start": 61278.86, + "end": 61282.32, + "probability": 0.8925 + }, + { + "start": 61282.86, + "end": 61285.92, + "probability": 0.9767 + }, + { + "start": 61286.04, + "end": 61286.76, + "probability": 0.6172 + }, + { + "start": 61287.42, + "end": 61288.04, + "probability": 0.6494 + }, + { + "start": 61288.68, + "end": 61291.12, + "probability": 0.9547 + }, + { + "start": 61291.2, + "end": 61291.68, + "probability": 0.637 + }, + { + "start": 61291.68, + "end": 61291.82, + "probability": 0.7585 + }, + { + "start": 61291.9, + "end": 61293.88, + "probability": 0.1899 + }, + { + "start": 61293.98, + "end": 61295.4, + "probability": 0.5937 + }, + { + "start": 61295.48, + "end": 61296.4, + "probability": 0.9118 + }, + { + "start": 61296.5, + "end": 61297.14, + "probability": 0.41 + }, + { + "start": 61297.6, + "end": 61298.7, + "probability": 0.9799 + }, + { + "start": 61298.78, + "end": 61299.7, + "probability": 0.6626 + }, + { + "start": 61299.72, + "end": 61303.16, + "probability": 0.6632 + }, + { + "start": 61303.84, + "end": 61304.76, + "probability": 0.2895 + }, + { + "start": 61304.76, + "end": 61304.9, + "probability": 0.149 + }, + { + "start": 61304.9, + "end": 61306.1, + "probability": 0.4914 + }, + { + "start": 61306.4, + "end": 61307.38, + "probability": 0.6223 + }, + { + "start": 61307.38, + "end": 61309.48, + "probability": 0.366 + }, + { + "start": 61309.5, + "end": 61310.08, + "probability": 0.0061 + }, + { + "start": 61310.96, + "end": 61311.42, + "probability": 0.3424 + }, + { + "start": 61311.98, + "end": 61314.56, + "probability": 0.7904 + }, + { + "start": 61315.6, + "end": 61317.38, + "probability": 0.8292 + }, + { + "start": 61317.96, + "end": 61320.86, + "probability": 0.7398 + }, + { + "start": 61321.68, + "end": 61322.88, + "probability": 0.4977 + }, + { + "start": 61323.5, + "end": 61326.32, + "probability": 0.682 + }, + { + "start": 61327.22, + "end": 61331.38, + "probability": 0.9517 + }, + { + "start": 61332.18, + "end": 61333.08, + "probability": 0.9294 + }, + { + "start": 61333.86, + "end": 61335.76, + "probability": 0.7507 + }, + { + "start": 61338.18, + "end": 61339.94, + "probability": 0.6285 + }, + { + "start": 61341.56, + "end": 61342.24, + "probability": 0.9137 + }, + { + "start": 61343.4, + "end": 61344.56, + "probability": 0.9644 + }, + { + "start": 61345.06, + "end": 61345.66, + "probability": 0.9731 + }, + { + "start": 61345.78, + "end": 61347.74, + "probability": 0.9862 + }, + { + "start": 61349.14, + "end": 61351.36, + "probability": 0.6407 + }, + { + "start": 61351.36, + "end": 61353.3, + "probability": 0.6852 + }, + { + "start": 61356.02, + "end": 61360.06, + "probability": 0.795 + }, + { + "start": 61360.8, + "end": 61364.79, + "probability": 0.5648 + }, + { + "start": 61365.36, + "end": 61366.62, + "probability": 0.6381 + }, + { + "start": 61366.94, + "end": 61369.36, + "probability": 0.9357 + }, + { + "start": 61370.76, + "end": 61378.28, + "probability": 0.9666 + }, + { + "start": 61380.1, + "end": 61382.26, + "probability": 0.8661 + }, + { + "start": 61383.62, + "end": 61386.16, + "probability": 0.8606 + }, + { + "start": 61387.68, + "end": 61388.12, + "probability": 0.6549 + }, + { + "start": 61389.72, + "end": 61391.76, + "probability": 0.9219 + }, + { + "start": 61392.46, + "end": 61394.06, + "probability": 0.8225 + }, + { + "start": 61395.98, + "end": 61398.52, + "probability": 0.6702 + }, + { + "start": 61399.7, + "end": 61401.8, + "probability": 0.9424 + }, + { + "start": 61403.52, + "end": 61405.82, + "probability": 0.8796 + }, + { + "start": 61406.9, + "end": 61407.42, + "probability": 0.659 + }, + { + "start": 61408.7, + "end": 61411.18, + "probability": 0.7486 + }, + { + "start": 61413.14, + "end": 61416.53, + "probability": 0.476 + }, + { + "start": 61417.78, + "end": 61418.08, + "probability": 0.8969 + }, + { + "start": 61418.7, + "end": 61420.2, + "probability": 0.7519 + }, + { + "start": 61421.2, + "end": 61421.52, + "probability": 0.9425 + }, + { + "start": 61423.88, + "end": 61426.1, + "probability": 0.8989 + }, + { + "start": 61427.5, + "end": 61428.34, + "probability": 0.993 + }, + { + "start": 61429.82, + "end": 61432.5, + "probability": 0.9314 + }, + { + "start": 61433.88, + "end": 61435.22, + "probability": 0.8253 + }, + { + "start": 61436.06, + "end": 61437.68, + "probability": 0.9817 + }, + { + "start": 61438.28, + "end": 61439.9, + "probability": 0.8516 + }, + { + "start": 61440.82, + "end": 61441.52, + "probability": 0.8473 + }, + { + "start": 61442.36, + "end": 61445.82, + "probability": 0.8575 + }, + { + "start": 61446.54, + "end": 61447.22, + "probability": 0.9616 + }, + { + "start": 61447.8, + "end": 61450.18, + "probability": 0.9332 + }, + { + "start": 61450.36, + "end": 61451.1, + "probability": 0.9525 + }, + { + "start": 61451.58, + "end": 61455.74, + "probability": 0.9873 + }, + { + "start": 61456.26, + "end": 61457.0, + "probability": 0.7534 + }, + { + "start": 61457.54, + "end": 61460.92, + "probability": 0.9344 + }, + { + "start": 61460.98, + "end": 61462.18, + "probability": 0.9755 + }, + { + "start": 61462.64, + "end": 61463.88, + "probability": 0.9226 + }, + { + "start": 61464.34, + "end": 61466.96, + "probability": 0.9781 + }, + { + "start": 61467.28, + "end": 61468.16, + "probability": 0.8674 + }, + { + "start": 61468.68, + "end": 61469.52, + "probability": 0.9948 + }, + { + "start": 61470.08, + "end": 61474.74, + "probability": 0.9722 + }, + { + "start": 61475.32, + "end": 61478.38, + "probability": 0.9207 + }, + { + "start": 61478.78, + "end": 61479.96, + "probability": 0.7116 + }, + { + "start": 61480.36, + "end": 61481.36, + "probability": 0.4653 + }, + { + "start": 61484.68, + "end": 61485.92, + "probability": 0.2824 + }, + { + "start": 61488.9, + "end": 61490.06, + "probability": 0.0921 + }, + { + "start": 61490.16, + "end": 61490.28, + "probability": 0.1981 + }, + { + "start": 61490.28, + "end": 61491.0, + "probability": 0.0525 + }, + { + "start": 61491.14, + "end": 61491.36, + "probability": 0.2424 + }, + { + "start": 61493.7, + "end": 61498.34, + "probability": 0.958 + }, + { + "start": 61498.98, + "end": 61502.2, + "probability": 0.6522 + }, + { + "start": 61502.84, + "end": 61504.72, + "probability": 0.1257 + }, + { + "start": 61507.38, + "end": 61510.4, + "probability": 0.7893 + }, + { + "start": 61511.24, + "end": 61512.52, + "probability": 0.9437 + }, + { + "start": 61513.18, + "end": 61514.58, + "probability": 0.9309 + }, + { + "start": 61515.34, + "end": 61517.44, + "probability": 0.8645 + }, + { + "start": 61518.44, + "end": 61519.74, + "probability": 0.6743 + }, + { + "start": 61520.94, + "end": 61521.98, + "probability": 0.8172 + }, + { + "start": 61524.5, + "end": 61528.62, + "probability": 0.8584 + }, + { + "start": 61529.46, + "end": 61531.46, + "probability": 0.6236 + }, + { + "start": 61532.6, + "end": 61534.08, + "probability": 0.9959 + }, + { + "start": 61534.14, + "end": 61534.93, + "probability": 0.9668 + }, + { + "start": 61535.42, + "end": 61535.87, + "probability": 0.8724 + }, + { + "start": 61537.42, + "end": 61538.42, + "probability": 0.6207 + }, + { + "start": 61540.07, + "end": 61544.68, + "probability": 0.9396 + }, + { + "start": 61545.34, + "end": 61546.34, + "probability": 0.9958 + }, + { + "start": 61549.02, + "end": 61552.18, + "probability": 0.67 + }, + { + "start": 61554.04, + "end": 61557.84, + "probability": 0.9125 + }, + { + "start": 61558.46, + "end": 61559.18, + "probability": 0.868 + }, + { + "start": 61559.38, + "end": 61560.3, + "probability": 0.9111 + }, + { + "start": 61560.4, + "end": 61561.22, + "probability": 0.7093 + }, + { + "start": 61561.34, + "end": 61565.4, + "probability": 0.9089 + }, + { + "start": 61566.52, + "end": 61569.44, + "probability": 0.9636 + }, + { + "start": 61570.46, + "end": 61570.84, + "probability": 0.5383 + }, + { + "start": 61571.7, + "end": 61573.56, + "probability": 0.9163 + }, + { + "start": 61574.28, + "end": 61575.02, + "probability": 0.6931 + }, + { + "start": 61575.96, + "end": 61576.98, + "probability": 0.89 + }, + { + "start": 61578.8, + "end": 61581.0, + "probability": 0.5008 + }, + { + "start": 61582.16, + "end": 61583.8, + "probability": 0.8856 + }, + { + "start": 61585.8, + "end": 61588.6, + "probability": 0.9456 + }, + { + "start": 61590.32, + "end": 61592.34, + "probability": 0.889 + }, + { + "start": 61593.44, + "end": 61594.38, + "probability": 0.9506 + }, + { + "start": 61595.44, + "end": 61598.44, + "probability": 0.3431 + }, + { + "start": 61598.88, + "end": 61599.94, + "probability": 0.4807 + }, + { + "start": 61600.6, + "end": 61601.5, + "probability": 0.1832 + }, + { + "start": 61601.88, + "end": 61602.94, + "probability": 0.7341 + }, + { + "start": 61603.14, + "end": 61604.12, + "probability": 0.8846 + }, + { + "start": 61604.7, + "end": 61607.02, + "probability": 0.9784 + }, + { + "start": 61608.82, + "end": 61609.78, + "probability": 0.4076 + }, + { + "start": 61610.4, + "end": 61611.2, + "probability": 0.821 + }, + { + "start": 61611.84, + "end": 61613.74, + "probability": 0.9517 + }, + { + "start": 61613.98, + "end": 61614.64, + "probability": 0.6239 + }, + { + "start": 61614.7, + "end": 61617.52, + "probability": 0.9728 + }, + { + "start": 61621.34, + "end": 61621.92, + "probability": 0.1749 + }, + { + "start": 61621.92, + "end": 61624.32, + "probability": 0.8079 + }, + { + "start": 61625.06, + "end": 61626.8, + "probability": 0.9593 + }, + { + "start": 61626.86, + "end": 61627.58, + "probability": 0.7268 + }, + { + "start": 61629.5, + "end": 61631.52, + "probability": 0.9809 + }, + { + "start": 61631.58, + "end": 61632.38, + "probability": 0.6467 + }, + { + "start": 61632.56, + "end": 61637.74, + "probability": 0.8179 + }, + { + "start": 61637.74, + "end": 61638.4, + "probability": 0.6608 + }, + { + "start": 61639.2, + "end": 61643.28, + "probability": 0.9033 + }, + { + "start": 61643.32, + "end": 61646.92, + "probability": 0.9908 + }, + { + "start": 61648.38, + "end": 61652.78, + "probability": 0.8507 + }, + { + "start": 61653.18, + "end": 61653.88, + "probability": 0.9151 + }, + { + "start": 61656.26, + "end": 61656.96, + "probability": 0.7192 + }, + { + "start": 61656.96, + "end": 61663.68, + "probability": 0.9873 + }, + { + "start": 61664.94, + "end": 61666.7, + "probability": 0.6832 + }, + { + "start": 61668.16, + "end": 61670.1, + "probability": 0.7401 + }, + { + "start": 61673.6, + "end": 61682.5, + "probability": 0.9863 + }, + { + "start": 61684.08, + "end": 61687.46, + "probability": 0.9708 + }, + { + "start": 61688.7, + "end": 61696.54, + "probability": 0.9658 + }, + { + "start": 61697.44, + "end": 61702.16, + "probability": 0.9838 + }, + { + "start": 61702.78, + "end": 61703.92, + "probability": 0.663 + }, + { + "start": 61704.72, + "end": 61709.1, + "probability": 0.8934 + }, + { + "start": 61710.24, + "end": 61712.7, + "probability": 0.9937 + }, + { + "start": 61713.94, + "end": 61716.5, + "probability": 0.9674 + }, + { + "start": 61717.16, + "end": 61719.46, + "probability": 0.3929 + }, + { + "start": 61721.64, + "end": 61722.82, + "probability": 0.7385 + }, + { + "start": 61723.68, + "end": 61726.3, + "probability": 0.9712 + }, + { + "start": 61728.16, + "end": 61730.58, + "probability": 0.7209 + }, + { + "start": 61731.84, + "end": 61734.06, + "probability": 0.8795 + }, + { + "start": 61735.34, + "end": 61740.24, + "probability": 0.8382 + }, + { + "start": 61740.38, + "end": 61743.78, + "probability": 0.8327 + }, + { + "start": 61744.16, + "end": 61746.9, + "probability": 0.5909 + }, + { + "start": 61747.02, + "end": 61747.4, + "probability": 0.799 + }, + { + "start": 61748.66, + "end": 61750.82, + "probability": 0.8118 + }, + { + "start": 61750.86, + "end": 61752.44, + "probability": 0.9943 + }, + { + "start": 61752.62, + "end": 61753.7, + "probability": 0.7646 + }, + { + "start": 61753.94, + "end": 61758.54, + "probability": 0.864 + }, + { + "start": 61760.06, + "end": 61763.78, + "probability": 0.9125 + }, + { + "start": 61763.78, + "end": 61764.58, + "probability": 0.9282 + }, + { + "start": 61765.08, + "end": 61766.28, + "probability": 0.9856 + }, + { + "start": 61766.36, + "end": 61767.32, + "probability": 0.337 + }, + { + "start": 61767.38, + "end": 61772.6, + "probability": 0.8294 + }, + { + "start": 61776.6, + "end": 61778.96, + "probability": 0.7244 + }, + { + "start": 61779.42, + "end": 61780.76, + "probability": 0.5188 + }, + { + "start": 61780.82, + "end": 61781.04, + "probability": 0.6509 + }, + { + "start": 61781.52, + "end": 61782.94, + "probability": 0.2166 + }, + { + "start": 61783.48, + "end": 61784.1, + "probability": 0.3229 + }, + { + "start": 61785.14, + "end": 61788.22, + "probability": 0.5761 + }, + { + "start": 61788.47, + "end": 61790.36, + "probability": 0.9303 + }, + { + "start": 61790.78, + "end": 61795.74, + "probability": 0.9621 + }, + { + "start": 61796.4, + "end": 61799.3, + "probability": 0.7325 + }, + { + "start": 61799.98, + "end": 61801.88, + "probability": 0.9806 + }, + { + "start": 61803.12, + "end": 61806.77, + "probability": 0.6217 + }, + { + "start": 61808.38, + "end": 61808.68, + "probability": 0.646 + }, + { + "start": 61808.9, + "end": 61811.22, + "probability": 0.9692 + }, + { + "start": 61811.7, + "end": 61814.36, + "probability": 0.938 + }, + { + "start": 61815.18, + "end": 61816.0, + "probability": 0.7855 + }, + { + "start": 61817.3, + "end": 61818.74, + "probability": 0.6687 + }, + { + "start": 61819.32, + "end": 61819.52, + "probability": 0.7535 + }, + { + "start": 61820.24, + "end": 61820.96, + "probability": 0.9807 + }, + { + "start": 61822.26, + "end": 61824.84, + "probability": 0.9685 + }, + { + "start": 61825.2, + "end": 61828.44, + "probability": 0.335 + }, + { + "start": 61829.22, + "end": 61835.26, + "probability": 0.5023 + }, + { + "start": 61836.04, + "end": 61839.46, + "probability": 0.6315 + }, + { + "start": 61841.05, + "end": 61844.82, + "probability": 0.9141 + }, + { + "start": 61846.36, + "end": 61847.78, + "probability": 0.475 + }, + { + "start": 61849.03, + "end": 61851.28, + "probability": 0.905 + }, + { + "start": 61852.1, + "end": 61855.22, + "probability": 0.912 + }, + { + "start": 61855.84, + "end": 61859.26, + "probability": 0.5142 + }, + { + "start": 61865.46, + "end": 61867.24, + "probability": 0.9933 + }, + { + "start": 61870.48, + "end": 61871.14, + "probability": 0.5858 + }, + { + "start": 61871.18, + "end": 61871.76, + "probability": 0.5047 + }, + { + "start": 61871.9, + "end": 61873.98, + "probability": 0.9214 + }, + { + "start": 61874.22, + "end": 61874.94, + "probability": 0.8068 + }, + { + "start": 61875.18, + "end": 61875.76, + "probability": 0.726 + }, + { + "start": 61875.82, + "end": 61876.22, + "probability": 0.9295 + }, + { + "start": 61876.42, + "end": 61877.54, + "probability": 0.7983 + }, + { + "start": 61877.62, + "end": 61881.98, + "probability": 0.9697 + }, + { + "start": 61882.32, + "end": 61883.62, + "probability": 0.639 + }, + { + "start": 61884.42, + "end": 61888.24, + "probability": 0.976 + }, + { + "start": 61888.34, + "end": 61889.5, + "probability": 0.4611 + }, + { + "start": 61890.36, + "end": 61890.88, + "probability": 0.5066 + }, + { + "start": 61890.88, + "end": 61893.26, + "probability": 0.8472 + }, + { + "start": 61894.18, + "end": 61897.58, + "probability": 0.9897 + }, + { + "start": 61898.62, + "end": 61899.78, + "probability": 0.5596 + }, + { + "start": 61902.59, + "end": 61906.1, + "probability": 0.9423 + }, + { + "start": 61908.02, + "end": 61908.32, + "probability": 0.5706 + }, + { + "start": 61909.88, + "end": 61915.0, + "probability": 0.6084 + }, + { + "start": 61916.06, + "end": 61916.42, + "probability": 0.104 + }, + { + "start": 61917.28, + "end": 61918.14, + "probability": 0.7013 + }, + { + "start": 61918.76, + "end": 61922.22, + "probability": 0.6788 + }, + { + "start": 61924.1, + "end": 61925.8, + "probability": 0.8927 + }, + { + "start": 61927.04, + "end": 61929.4, + "probability": 0.9655 + }, + { + "start": 61930.12, + "end": 61931.84, + "probability": 0.759 + }, + { + "start": 61932.78, + "end": 61935.3, + "probability": 0.8642 + }, + { + "start": 61936.16, + "end": 61936.5, + "probability": 0.8493 + }, + { + "start": 61938.14, + "end": 61941.04, + "probability": 0.6589 + }, + { + "start": 61942.16, + "end": 61943.3, + "probability": 0.8541 + }, + { + "start": 61944.2, + "end": 61946.0, + "probability": 0.9663 + }, + { + "start": 61947.08, + "end": 61949.06, + "probability": 0.7623 + }, + { + "start": 61949.84, + "end": 61952.58, + "probability": 0.7014 + }, + { + "start": 61955.26, + "end": 61957.52, + "probability": 0.702 + }, + { + "start": 61958.46, + "end": 61959.82, + "probability": 0.6862 + }, + { + "start": 61960.74, + "end": 61962.86, + "probability": 0.4803 + }, + { + "start": 61964.82, + "end": 61969.22, + "probability": 0.1881 + }, + { + "start": 61969.22, + "end": 61971.74, + "probability": 0.1904 + }, + { + "start": 61973.24, + "end": 61974.91, + "probability": 0.0887 + }, + { + "start": 61976.88, + "end": 61978.52, + "probability": 0.3298 + }, + { + "start": 61979.06, + "end": 61980.16, + "probability": 0.583 + }, + { + "start": 61980.76, + "end": 61982.87, + "probability": 0.4407 + }, + { + "start": 61983.28, + "end": 61984.4, + "probability": 0.8427 + }, + { + "start": 61985.1, + "end": 61989.88, + "probability": 0.7129 + }, + { + "start": 61989.88, + "end": 61990.88, + "probability": 0.2615 + }, + { + "start": 61990.9, + "end": 61992.66, + "probability": 0.4377 + }, + { + "start": 61993.72, + "end": 61995.36, + "probability": 0.998 + }, + { + "start": 61996.66, + "end": 61996.76, + "probability": 0.0131 + }, + { + "start": 61998.06, + "end": 61999.7, + "probability": 0.9091 + }, + { + "start": 62001.0, + "end": 62002.14, + "probability": 0.7551 + }, + { + "start": 62002.3, + "end": 62004.44, + "probability": 0.896 + }, + { + "start": 62004.58, + "end": 62012.38, + "probability": 0.6176 + }, + { + "start": 62014.72, + "end": 62017.54, + "probability": 0.6037 + }, + { + "start": 62018.68, + "end": 62020.52, + "probability": 0.9557 + }, + { + "start": 62021.58, + "end": 62023.68, + "probability": 0.3314 + }, + { + "start": 62025.52, + "end": 62028.06, + "probability": 0.6684 + }, + { + "start": 62028.18, + "end": 62032.0, + "probability": 0.9521 + }, + { + "start": 62032.28, + "end": 62034.0, + "probability": 0.8323 + }, + { + "start": 62034.88, + "end": 62036.32, + "probability": 0.8127 + }, + { + "start": 62036.74, + "end": 62037.3, + "probability": 0.314 + }, + { + "start": 62037.42, + "end": 62037.94, + "probability": 0.7398 + }, + { + "start": 62039.5, + "end": 62043.18, + "probability": 0.3117 + }, + { + "start": 62043.6, + "end": 62044.4, + "probability": 0.5626 + }, + { + "start": 62045.34, + "end": 62047.06, + "probability": 0.2794 + }, + { + "start": 62048.85, + "end": 62054.38, + "probability": 0.888 + }, + { + "start": 62054.54, + "end": 62058.6, + "probability": 0.866 + }, + { + "start": 62059.86, + "end": 62064.1, + "probability": 0.9929 + }, + { + "start": 62064.38, + "end": 62064.9, + "probability": 0.6182 + }, + { + "start": 62065.24, + "end": 62066.78, + "probability": 0.9932 + }, + { + "start": 62067.92, + "end": 62073.02, + "probability": 0.9492 + }, + { + "start": 62073.26, + "end": 62073.88, + "probability": 0.8819 + }, + { + "start": 62074.26, + "end": 62076.06, + "probability": 0.9368 + }, + { + "start": 62077.08, + "end": 62078.86, + "probability": 0.558 + }, + { + "start": 62078.98, + "end": 62079.7, + "probability": 0.8062 + }, + { + "start": 62079.78, + "end": 62081.3, + "probability": 0.987 + }, + { + "start": 62081.8, + "end": 62084.48, + "probability": 0.8972 + }, + { + "start": 62085.58, + "end": 62088.88, + "probability": 0.8504 + }, + { + "start": 62089.6, + "end": 62092.1, + "probability": 0.6021 + }, + { + "start": 62093.1, + "end": 62094.84, + "probability": 0.4733 + }, + { + "start": 62094.92, + "end": 62096.44, + "probability": 0.8755 + }, + { + "start": 62096.56, + "end": 62100.32, + "probability": 0.7225 + }, + { + "start": 62101.12, + "end": 62102.98, + "probability": 0.9694 + }, + { + "start": 62105.3, + "end": 62105.32, + "probability": 0.0725 + }, + { + "start": 62105.32, + "end": 62107.48, + "probability": 0.992 + }, + { + "start": 62108.42, + "end": 62110.74, + "probability": 0.377 + }, + { + "start": 62110.98, + "end": 62113.12, + "probability": 0.6373 + }, + { + "start": 62113.26, + "end": 62116.12, + "probability": 0.6767 + }, + { + "start": 62120.68, + "end": 62124.36, + "probability": 0.6125 + }, + { + "start": 62125.0, + "end": 62126.9, + "probability": 0.9584 + }, + { + "start": 62127.94, + "end": 62129.22, + "probability": 0.9559 + }, + { + "start": 62130.32, + "end": 62131.46, + "probability": 0.9968 + }, + { + "start": 62133.66, + "end": 62138.1, + "probability": 0.9556 + }, + { + "start": 62139.68, + "end": 62141.24, + "probability": 0.2255 + }, + { + "start": 62141.74, + "end": 62144.98, + "probability": 0.9146 + }, + { + "start": 62146.48, + "end": 62149.86, + "probability": 0.9766 + }, + { + "start": 62150.2, + "end": 62150.3, + "probability": 0.6498 + }, + { + "start": 62150.48, + "end": 62151.2, + "probability": 0.9162 + }, + { + "start": 62151.32, + "end": 62153.6, + "probability": 0.9204 + }, + { + "start": 62155.12, + "end": 62155.32, + "probability": 0.3226 + }, + { + "start": 62155.54, + "end": 62157.42, + "probability": 0.7816 + }, + { + "start": 62157.74, + "end": 62159.38, + "probability": 0.9536 + }, + { + "start": 62161.1, + "end": 62163.66, + "probability": 0.9836 + }, + { + "start": 62164.58, + "end": 62165.08, + "probability": 0.7584 + }, + { + "start": 62166.46, + "end": 62168.46, + "probability": 0.9966 + }, + { + "start": 62169.5, + "end": 62170.44, + "probability": 0.9167 + }, + { + "start": 62175.0, + "end": 62175.52, + "probability": 0.4712 + }, + { + "start": 62176.69, + "end": 62179.08, + "probability": 0.9537 + }, + { + "start": 62179.5, + "end": 62182.66, + "probability": 0.5142 + }, + { + "start": 62184.1, + "end": 62187.4, + "probability": 0.8103 + }, + { + "start": 62187.56, + "end": 62188.58, + "probability": 0.8555 + }, + { + "start": 62189.04, + "end": 62192.04, + "probability": 0.6647 + }, + { + "start": 62194.98, + "end": 62195.62, + "probability": 0.0098 + }, + { + "start": 62197.61, + "end": 62199.6, + "probability": 0.9773 + }, + { + "start": 62200.23, + "end": 62200.82, + "probability": 0.0707 + }, + { + "start": 62201.82, + "end": 62203.14, + "probability": 0.9808 + }, + { + "start": 62204.86, + "end": 62206.4, + "probability": 0.8101 + }, + { + "start": 62206.54, + "end": 62209.23, + "probability": 0.9886 + }, + { + "start": 62210.02, + "end": 62213.74, + "probability": 0.876 + }, + { + "start": 62214.46, + "end": 62215.58, + "probability": 0.967 + }, + { + "start": 62216.18, + "end": 62216.76, + "probability": 0.5605 + }, + { + "start": 62217.72, + "end": 62220.74, + "probability": 0.9582 + }, + { + "start": 62221.66, + "end": 62225.09, + "probability": 0.8159 + }, + { + "start": 62225.22, + "end": 62227.33, + "probability": 0.9731 + }, + { + "start": 62228.74, + "end": 62230.1, + "probability": 0.8488 + }, + { + "start": 62231.3, + "end": 62232.46, + "probability": 0.7252 + }, + { + "start": 62232.68, + "end": 62233.08, + "probability": 0.7771 + }, + { + "start": 62233.18, + "end": 62236.92, + "probability": 0.9854 + }, + { + "start": 62238.34, + "end": 62239.06, + "probability": 0.7024 + }, + { + "start": 62239.26, + "end": 62240.68, + "probability": 0.9614 + }, + { + "start": 62240.92, + "end": 62241.34, + "probability": 0.6254 + }, + { + "start": 62241.44, + "end": 62243.66, + "probability": 0.9728 + }, + { + "start": 62243.78, + "end": 62244.64, + "probability": 0.9517 + }, + { + "start": 62246.7, + "end": 62248.32, + "probability": 0.9019 + }, + { + "start": 62249.54, + "end": 62251.54, + "probability": 0.9152 + }, + { + "start": 62251.66, + "end": 62258.26, + "probability": 0.7634 + }, + { + "start": 62260.36, + "end": 62261.76, + "probability": 0.8553 + }, + { + "start": 62263.42, + "end": 62264.88, + "probability": 0.815 + }, + { + "start": 62265.02, + "end": 62271.88, + "probability": 0.6684 + }, + { + "start": 62272.42, + "end": 62272.92, + "probability": 0.8643 + }, + { + "start": 62273.96, + "end": 62275.97, + "probability": 0.9702 + }, + { + "start": 62277.04, + "end": 62278.22, + "probability": 0.9637 + }, + { + "start": 62278.32, + "end": 62280.74, + "probability": 0.9925 + }, + { + "start": 62281.24, + "end": 62282.02, + "probability": 0.4083 + }, + { + "start": 62282.18, + "end": 62283.22, + "probability": 0.2002 + }, + { + "start": 62283.92, + "end": 62286.54, + "probability": 0.9281 + }, + { + "start": 62287.84, + "end": 62288.6, + "probability": 0.3807 + }, + { + "start": 62289.16, + "end": 62290.96, + "probability": 0.8652 + }, + { + "start": 62291.88, + "end": 62293.4, + "probability": 0.9814 + }, + { + "start": 62296.17, + "end": 62297.2, + "probability": 0.9874 + }, + { + "start": 62298.36, + "end": 62299.48, + "probability": 0.9646 + }, + { + "start": 62299.62, + "end": 62301.2, + "probability": 0.8595 + }, + { + "start": 62303.4, + "end": 62304.66, + "probability": 0.7971 + }, + { + "start": 62305.14, + "end": 62307.08, + "probability": 0.4768 + }, + { + "start": 62307.08, + "end": 62308.42, + "probability": 0.4444 + }, + { + "start": 62309.84, + "end": 62310.42, + "probability": 0.9766 + }, + { + "start": 62311.2, + "end": 62311.56, + "probability": 0.7486 + }, + { + "start": 62312.14, + "end": 62312.26, + "probability": 0.2933 + }, + { + "start": 62312.26, + "end": 62314.84, + "probability": 0.7487 + }, + { + "start": 62316.92, + "end": 62321.6, + "probability": 0.6885 + }, + { + "start": 62322.42, + "end": 62325.96, + "probability": 0.9615 + }, + { + "start": 62326.2, + "end": 62327.1, + "probability": 0.566 + }, + { + "start": 62327.66, + "end": 62330.3, + "probability": 0.8276 + }, + { + "start": 62332.5, + "end": 62335.2, + "probability": 0.994 + }, + { + "start": 62336.5, + "end": 62339.74, + "probability": 0.917 + }, + { + "start": 62340.56, + "end": 62341.74, + "probability": 0.5179 + }, + { + "start": 62342.3, + "end": 62343.47, + "probability": 0.9826 + }, + { + "start": 62344.88, + "end": 62348.58, + "probability": 0.9038 + }, + { + "start": 62348.94, + "end": 62351.34, + "probability": 0.9483 + }, + { + "start": 62351.78, + "end": 62354.56, + "probability": 0.8754 + }, + { + "start": 62355.44, + "end": 62357.0, + "probability": 0.6199 + }, + { + "start": 62357.44, + "end": 62360.3, + "probability": 0.9526 + }, + { + "start": 62361.4, + "end": 62363.63, + "probability": 0.4807 + }, + { + "start": 62364.06, + "end": 62367.54, + "probability": 0.6117 + }, + { + "start": 62368.18, + "end": 62368.76, + "probability": 0.4315 + }, + { + "start": 62369.5, + "end": 62371.88, + "probability": 0.6611 + }, + { + "start": 62371.96, + "end": 62375.32, + "probability": 0.97 + }, + { + "start": 62376.0, + "end": 62377.16, + "probability": 0.6739 + }, + { + "start": 62377.88, + "end": 62379.38, + "probability": 0.514 + }, + { + "start": 62379.76, + "end": 62381.02, + "probability": 0.9888 + }, + { + "start": 62381.46, + "end": 62382.88, + "probability": 0.6658 + }, + { + "start": 62383.32, + "end": 62383.9, + "probability": 0.4852 + }, + { + "start": 62384.08, + "end": 62384.28, + "probability": 0.4717 + }, + { + "start": 62384.3, + "end": 62385.28, + "probability": 0.6225 + }, + { + "start": 62386.28, + "end": 62387.78, + "probability": 0.5649 + }, + { + "start": 62387.92, + "end": 62388.24, + "probability": 0.5676 + }, + { + "start": 62388.32, + "end": 62390.04, + "probability": 0.8604 + }, + { + "start": 62390.3, + "end": 62393.24, + "probability": 0.9023 + }, + { + "start": 62393.26, + "end": 62395.34, + "probability": 0.9284 + }, + { + "start": 62395.64, + "end": 62401.28, + "probability": 0.963 + }, + { + "start": 62401.66, + "end": 62406.06, + "probability": 0.9537 + }, + { + "start": 62407.1, + "end": 62407.84, + "probability": 0.9868 + }, + { + "start": 62408.42, + "end": 62410.28, + "probability": 0.5834 + }, + { + "start": 62411.46, + "end": 62415.4, + "probability": 0.9705 + }, + { + "start": 62415.66, + "end": 62416.15, + "probability": 0.7531 + }, + { + "start": 62417.04, + "end": 62422.2, + "probability": 0.8107 + }, + { + "start": 62422.68, + "end": 62423.62, + "probability": 0.6152 + }, + { + "start": 62423.8, + "end": 62428.06, + "probability": 0.7273 + }, + { + "start": 62428.7, + "end": 62429.0, + "probability": 0.7764 + }, + { + "start": 62429.52, + "end": 62430.72, + "probability": 0.9087 + }, + { + "start": 62431.44, + "end": 62434.58, + "probability": 0.9615 + }, + { + "start": 62436.44, + "end": 62437.02, + "probability": 0.434 + }, + { + "start": 62437.46, + "end": 62441.7, + "probability": 0.8975 + }, + { + "start": 62442.22, + "end": 62444.82, + "probability": 0.4629 + }, + { + "start": 62444.94, + "end": 62450.14, + "probability": 0.7773 + }, + { + "start": 62450.58, + "end": 62453.12, + "probability": 0.6534 + }, + { + "start": 62453.38, + "end": 62454.02, + "probability": 0.6741 + }, + { + "start": 62454.44, + "end": 62455.8, + "probability": 0.5074 + }, + { + "start": 62455.9, + "end": 62457.52, + "probability": 0.7064 + }, + { + "start": 62458.96, + "end": 62460.72, + "probability": 0.6306 + }, + { + "start": 62461.26, + "end": 62462.44, + "probability": 0.665 + }, + { + "start": 62462.64, + "end": 62463.02, + "probability": 0.8734 + }, + { + "start": 62463.04, + "end": 62464.56, + "probability": 0.6431 + }, + { + "start": 62464.56, + "end": 62466.76, + "probability": 0.9069 + }, + { + "start": 62467.72, + "end": 62473.02, + "probability": 0.9041 + }, + { + "start": 62473.14, + "end": 62473.56, + "probability": 0.7653 + }, + { + "start": 62473.64, + "end": 62475.8, + "probability": 0.7479 + }, + { + "start": 62476.35, + "end": 62477.44, + "probability": 0.5663 + }, + { + "start": 62477.98, + "end": 62480.04, + "probability": 0.6745 + }, + { + "start": 62480.18, + "end": 62481.3, + "probability": 0.6102 + }, + { + "start": 62481.62, + "end": 62482.52, + "probability": 0.8984 + }, + { + "start": 62483.14, + "end": 62483.9, + "probability": 0.7242 + }, + { + "start": 62484.26, + "end": 62485.28, + "probability": 0.2644 + }, + { + "start": 62486.88, + "end": 62492.58, + "probability": 0.6693 + }, + { + "start": 62492.7, + "end": 62492.86, + "probability": 0.2131 + }, + { + "start": 62492.92, + "end": 62494.74, + "probability": 0.6301 + }, + { + "start": 62495.1, + "end": 62496.6, + "probability": 0.5542 + }, + { + "start": 62496.66, + "end": 62506.36, + "probability": 0.3767 + }, + { + "start": 62507.16, + "end": 62508.9, + "probability": 0.6086 + }, + { + "start": 62509.8, + "end": 62511.84, + "probability": 0.747 + }, + { + "start": 62512.06, + "end": 62512.66, + "probability": 0.7041 + }, + { + "start": 62512.78, + "end": 62514.18, + "probability": 0.0961 + }, + { + "start": 62514.18, + "end": 62516.56, + "probability": 0.7593 + }, + { + "start": 62516.56, + "end": 62519.4, + "probability": 0.8064 + }, + { + "start": 62519.94, + "end": 62521.72, + "probability": 0.6068 + }, + { + "start": 62521.72, + "end": 62522.2, + "probability": 0.8291 + }, + { + "start": 62522.22, + "end": 62525.74, + "probability": 0.9107 + }, + { + "start": 62526.68, + "end": 62531.26, + "probability": 0.8103 + }, + { + "start": 62531.92, + "end": 62532.84, + "probability": 0.8697 + }, + { + "start": 62533.64, + "end": 62536.12, + "probability": 0.9852 + }, + { + "start": 62536.74, + "end": 62538.22, + "probability": 0.9837 + }, + { + "start": 62539.08, + "end": 62539.64, + "probability": 0.5946 + }, + { + "start": 62541.0, + "end": 62547.88, + "probability": 0.9465 + }, + { + "start": 62548.56, + "end": 62551.28, + "probability": 0.971 + }, + { + "start": 62551.82, + "end": 62554.34, + "probability": 0.9998 + }, + { + "start": 62555.04, + "end": 62558.4, + "probability": 0.5413 + }, + { + "start": 62559.64, + "end": 62561.62, + "probability": 0.9146 + }, + { + "start": 62561.64, + "end": 62563.38, + "probability": 0.9242 + }, + { + "start": 62563.48, + "end": 62564.38, + "probability": 0.6538 + }, + { + "start": 62564.82, + "end": 62568.6, + "probability": 0.841 + }, + { + "start": 62568.8, + "end": 62569.66, + "probability": 0.2852 + }, + { + "start": 62570.06, + "end": 62573.2, + "probability": 0.9893 + }, + { + "start": 62573.34, + "end": 62573.58, + "probability": 0.7102 + }, + { + "start": 62574.5, + "end": 62575.0, + "probability": 0.4822 + }, + { + "start": 62575.14, + "end": 62578.76, + "probability": 0.9946 + }, + { + "start": 62578.82, + "end": 62579.76, + "probability": 0.7642 + }, + { + "start": 62580.86, + "end": 62583.06, + "probability": 0.9041 + }, + { + "start": 62583.28, + "end": 62584.1, + "probability": 0.6791 + }, + { + "start": 62584.28, + "end": 62584.98, + "probability": 0.8539 + }, + { + "start": 62585.42, + "end": 62588.92, + "probability": 0.936 + }, + { + "start": 62593.4, + "end": 62597.38, + "probability": 0.9978 + }, + { + "start": 62598.4, + "end": 62598.5, + "probability": 0.3019 + }, + { + "start": 62599.24, + "end": 62602.52, + "probability": 0.1662 + }, + { + "start": 62602.72, + "end": 62604.17, + "probability": 0.1568 + }, + { + "start": 62605.86, + "end": 62610.02, + "probability": 0.2692 + }, + { + "start": 62610.28, + "end": 62612.78, + "probability": 0.4488 + }, + { + "start": 62613.18, + "end": 62614.94, + "probability": 0.9411 + }, + { + "start": 62616.71, + "end": 62619.38, + "probability": 0.8442 + }, + { + "start": 62620.54, + "end": 62622.66, + "probability": 0.9076 + }, + { + "start": 62622.86, + "end": 62624.32, + "probability": 0.3905 + }, + { + "start": 62624.6, + "end": 62626.58, + "probability": 0.981 + }, + { + "start": 62627.46, + "end": 62630.72, + "probability": 0.5758 + }, + { + "start": 62630.82, + "end": 62631.62, + "probability": 0.4044 + }, + { + "start": 62631.76, + "end": 62632.66, + "probability": 0.8622 + }, + { + "start": 62632.92, + "end": 62633.26, + "probability": 0.431 + }, + { + "start": 62633.38, + "end": 62636.46, + "probability": 0.1697 + }, + { + "start": 62636.46, + "end": 62638.96, + "probability": 0.2893 + }, + { + "start": 62638.96, + "end": 62640.22, + "probability": 0.3966 + }, + { + "start": 62640.42, + "end": 62644.46, + "probability": 0.2502 + }, + { + "start": 62644.46, + "end": 62648.24, + "probability": 0.854 + }, + { + "start": 62648.6, + "end": 62651.52, + "probability": 0.9677 + }, + { + "start": 62651.58, + "end": 62653.56, + "probability": 0.6782 + }, + { + "start": 62653.66, + "end": 62655.2, + "probability": 0.9528 + }, + { + "start": 62655.6, + "end": 62657.48, + "probability": 0.8569 + }, + { + "start": 62657.94, + "end": 62659.4, + "probability": 0.7478 + }, + { + "start": 62659.8, + "end": 62661.4, + "probability": 0.9663 + }, + { + "start": 62661.64, + "end": 62663.62, + "probability": 0.9482 + }, + { + "start": 62664.18, + "end": 62670.84, + "probability": 0.4398 + }, + { + "start": 62670.84, + "end": 62675.63, + "probability": 0.7998 + }, + { + "start": 62676.1, + "end": 62676.54, + "probability": 0.0203 + }, + { + "start": 62676.54, + "end": 62678.62, + "probability": 0.3912 + }, + { + "start": 62678.62, + "end": 62681.27, + "probability": 0.757 + }, + { + "start": 62681.52, + "end": 62684.02, + "probability": 0.6905 + }, + { + "start": 62684.2, + "end": 62686.7, + "probability": 0.8818 + }, + { + "start": 62687.66, + "end": 62688.64, + "probability": 0.8151 + }, + { + "start": 62688.76, + "end": 62691.02, + "probability": 0.2531 + }, + { + "start": 62691.36, + "end": 62694.66, + "probability": 0.5419 + }, + { + "start": 62699.04, + "end": 62704.8, + "probability": 0.938 + }, + { + "start": 62705.4, + "end": 62710.1, + "probability": 0.4501 + }, + { + "start": 62710.26, + "end": 62711.54, + "probability": 0.519 + }, + { + "start": 62714.04, + "end": 62714.9, + "probability": 0.0624 + }, + { + "start": 62714.9, + "end": 62714.9, + "probability": 0.2817 + }, + { + "start": 62714.9, + "end": 62714.9, + "probability": 0.2295 + }, + { + "start": 62714.9, + "end": 62715.72, + "probability": 0.3907 + }, + { + "start": 62716.24, + "end": 62717.69, + "probability": 0.6031 + }, + { + "start": 62718.34, + "end": 62722.06, + "probability": 0.7359 + }, + { + "start": 62722.64, + "end": 62724.96, + "probability": 0.4144 + }, + { + "start": 62725.0, + "end": 62726.02, + "probability": 0.739 + }, + { + "start": 62726.14, + "end": 62730.14, + "probability": 0.5942 + }, + { + "start": 62730.64, + "end": 62732.38, + "probability": 0.8745 + }, + { + "start": 62732.94, + "end": 62735.4, + "probability": 0.9922 + }, + { + "start": 62735.68, + "end": 62737.12, + "probability": 0.8703 + }, + { + "start": 62738.56, + "end": 62739.06, + "probability": 0.7717 + }, + { + "start": 62739.14, + "end": 62740.01, + "probability": 0.9985 + }, + { + "start": 62740.8, + "end": 62741.66, + "probability": 0.5484 + }, + { + "start": 62742.44, + "end": 62747.72, + "probability": 0.9918 + }, + { + "start": 62748.16, + "end": 62749.82, + "probability": 0.2325 + }, + { + "start": 62750.22, + "end": 62752.54, + "probability": 0.8724 + }, + { + "start": 62752.58, + "end": 62753.36, + "probability": 0.6365 + }, + { + "start": 62753.92, + "end": 62754.72, + "probability": 0.6715 + }, + { + "start": 62755.08, + "end": 62756.14, + "probability": 0.9639 + }, + { + "start": 62756.32, + "end": 62757.68, + "probability": 0.8215 + }, + { + "start": 62758.58, + "end": 62761.36, + "probability": 0.8107 + }, + { + "start": 62763.04, + "end": 62764.16, + "probability": 0.9453 + }, + { + "start": 62764.34, + "end": 62765.54, + "probability": 0.9659 + }, + { + "start": 62765.64, + "end": 62766.76, + "probability": 0.3757 + }, + { + "start": 62767.14, + "end": 62767.78, + "probability": 0.9773 + }, + { + "start": 62767.84, + "end": 62770.56, + "probability": 0.2626 + }, + { + "start": 62771.12, + "end": 62773.06, + "probability": 0.8178 + }, + { + "start": 62773.9, + "end": 62776.86, + "probability": 0.624 + }, + { + "start": 62776.86, + "end": 62777.54, + "probability": 0.4251 + }, + { + "start": 62777.54, + "end": 62777.56, + "probability": 0.7913 + }, + { + "start": 62777.82, + "end": 62780.3, + "probability": 0.9194 + }, + { + "start": 62780.4, + "end": 62782.16, + "probability": 0.7308 + }, + { + "start": 62782.62, + "end": 62784.26, + "probability": 0.0569 + }, + { + "start": 62784.4, + "end": 62787.9, + "probability": 0.9441 + }, + { + "start": 62788.04, + "end": 62788.5, + "probability": 0.448 + }, + { + "start": 62789.26, + "end": 62795.08, + "probability": 0.4125 + }, + { + "start": 62795.48, + "end": 62797.26, + "probability": 0.8608 + }, + { + "start": 62797.32, + "end": 62802.07, + "probability": 0.9621 + }, + { + "start": 62803.02, + "end": 62803.58, + "probability": 0.6277 + }, + { + "start": 62803.64, + "end": 62804.46, + "probability": 0.4786 + }, + { + "start": 62804.92, + "end": 62806.58, + "probability": 0.7417 + }, + { + "start": 62807.5, + "end": 62810.83, + "probability": 0.5247 + }, + { + "start": 62811.76, + "end": 62815.02, + "probability": 0.9608 + }, + { + "start": 62815.08, + "end": 62817.56, + "probability": 0.3842 + }, + { + "start": 62817.86, + "end": 62818.04, + "probability": 0.0374 + }, + { + "start": 62818.74, + "end": 62820.08, + "probability": 0.5335 + }, + { + "start": 62820.84, + "end": 62822.66, + "probability": 0.5851 + }, + { + "start": 62822.88, + "end": 62824.36, + "probability": 0.9531 + }, + { + "start": 62825.22, + "end": 62828.78, + "probability": 0.9066 + }, + { + "start": 62829.4, + "end": 62831.0, + "probability": 0.9836 + }, + { + "start": 62831.74, + "end": 62833.0, + "probability": 0.7263 + }, + { + "start": 62834.0, + "end": 62835.39, + "probability": 0.3401 + }, + { + "start": 62836.47, + "end": 62839.24, + "probability": 0.7591 + }, + { + "start": 62839.88, + "end": 62845.96, + "probability": 0.9828 + }, + { + "start": 62846.4, + "end": 62851.14, + "probability": 0.8535 + }, + { + "start": 62851.76, + "end": 62853.54, + "probability": 0.8088 + }, + { + "start": 62853.94, + "end": 62858.04, + "probability": 0.9297 + }, + { + "start": 62858.46, + "end": 62860.4, + "probability": 0.9683 + }, + { + "start": 62860.86, + "end": 62864.68, + "probability": 0.7803 + }, + { + "start": 62865.96, + "end": 62867.58, + "probability": 0.9001 + }, + { + "start": 62868.0, + "end": 62874.96, + "probability": 0.4144 + }, + { + "start": 62876.22, + "end": 62876.46, + "probability": 0.322 + }, + { + "start": 62876.46, + "end": 62879.48, + "probability": 0.7877 + }, + { + "start": 62879.54, + "end": 62880.3, + "probability": 0.9285 + }, + { + "start": 62880.36, + "end": 62883.08, + "probability": 0.9641 + }, + { + "start": 62884.69, + "end": 62890.2, + "probability": 0.9646 + }, + { + "start": 62890.5, + "end": 62890.6, + "probability": 0.1877 + }, + { + "start": 62891.14, + "end": 62891.78, + "probability": 0.9723 + }, + { + "start": 62892.7, + "end": 62897.8, + "probability": 0.8864 + }, + { + "start": 62898.62, + "end": 62902.3, + "probability": 0.6634 + }, + { + "start": 62902.86, + "end": 62904.54, + "probability": 0.7057 + }, + { + "start": 62904.72, + "end": 62905.26, + "probability": 0.5829 + }, + { + "start": 62907.4, + "end": 62909.88, + "probability": 0.8066 + }, + { + "start": 62910.54, + "end": 62911.85, + "probability": 0.4947 + }, + { + "start": 62912.34, + "end": 62913.48, + "probability": 0.5291 + }, + { + "start": 62913.52, + "end": 62914.48, + "probability": 0.7878 + }, + { + "start": 62914.62, + "end": 62917.07, + "probability": 0.9326 + }, + { + "start": 62917.9, + "end": 62918.94, + "probability": 0.958 + }, + { + "start": 62919.66, + "end": 62920.34, + "probability": 0.478 + }, + { + "start": 62920.38, + "end": 62921.42, + "probability": 0.649 + }, + { + "start": 62921.62, + "end": 62924.4, + "probability": 0.8185 + }, + { + "start": 62924.91, + "end": 62926.68, + "probability": 0.752 + }, + { + "start": 62926.72, + "end": 62929.2, + "probability": 0.9087 + }, + { + "start": 62929.22, + "end": 62931.36, + "probability": 0.9951 + }, + { + "start": 62931.48, + "end": 62933.0, + "probability": 0.8436 + }, + { + "start": 62934.5, + "end": 62935.86, + "probability": 0.2398 + }, + { + "start": 62937.42, + "end": 62938.24, + "probability": 0.0379 + }, + { + "start": 62938.36, + "end": 62939.86, + "probability": 0.5302 + }, + { + "start": 62939.96, + "end": 62942.28, + "probability": 0.1881 + }, + { + "start": 62942.88, + "end": 62943.9, + "probability": 0.6288 + }, + { + "start": 62944.0, + "end": 62944.44, + "probability": 0.7869 + }, + { + "start": 62944.6, + "end": 62944.94, + "probability": 0.5307 + }, + { + "start": 62945.18, + "end": 62947.24, + "probability": 0.9135 + }, + { + "start": 62947.28, + "end": 62948.99, + "probability": 0.9556 + }, + { + "start": 62949.5, + "end": 62950.45, + "probability": 0.9419 + }, + { + "start": 62950.54, + "end": 62951.05, + "probability": 0.9641 + }, + { + "start": 62952.3, + "end": 62956.02, + "probability": 0.7313 + }, + { + "start": 62956.54, + "end": 62959.43, + "probability": 0.8815 + }, + { + "start": 62960.5, + "end": 62967.56, + "probability": 0.8374 + }, + { + "start": 62968.28, + "end": 62969.44, + "probability": 0.5702 + }, + { + "start": 62970.38, + "end": 62972.2, + "probability": 0.3764 + }, + { + "start": 62972.2, + "end": 62972.56, + "probability": 0.6393 + }, + { + "start": 62972.58, + "end": 62974.4, + "probability": 0.554 + }, + { + "start": 62974.5, + "end": 62975.12, + "probability": 0.6945 + }, + { + "start": 62976.6, + "end": 62977.18, + "probability": 0.8411 + }, + { + "start": 62977.24, + "end": 62979.08, + "probability": 0.9827 + }, + { + "start": 62979.18, + "end": 62981.97, + "probability": 0.9924 + }, + { + "start": 62983.04, + "end": 62984.78, + "probability": 0.105 + }, + { + "start": 62984.96, + "end": 62985.22, + "probability": 0.1113 + }, + { + "start": 62985.86, + "end": 62986.28, + "probability": 0.6646 + }, + { + "start": 62986.38, + "end": 62987.02, + "probability": 0.4225 + }, + { + "start": 62987.22, + "end": 62988.46, + "probability": 0.8256 + }, + { + "start": 62988.52, + "end": 62990.6, + "probability": 0.8295 + }, + { + "start": 62990.78, + "end": 62991.76, + "probability": 0.9849 + }, + { + "start": 62992.22, + "end": 62994.22, + "probability": 0.9385 + }, + { + "start": 62994.82, + "end": 62998.0, + "probability": 0.1653 + }, + { + "start": 62998.26, + "end": 63001.22, + "probability": 0.0211 + }, + { + "start": 63001.62, + "end": 63002.04, + "probability": 0.1002 + }, + { + "start": 63002.4, + "end": 63002.64, + "probability": 0.5686 + }, + { + "start": 63002.64, + "end": 63006.48, + "probability": 0.3106 + }, + { + "start": 63006.78, + "end": 63008.5, + "probability": 0.4989 + }, + { + "start": 63008.62, + "end": 63010.08, + "probability": 0.8604 + }, + { + "start": 63011.16, + "end": 63013.2, + "probability": 0.3047 + }, + { + "start": 63013.84, + "end": 63016.32, + "probability": 0.9958 + }, + { + "start": 63018.54, + "end": 63021.16, + "probability": 0.9105 + }, + { + "start": 63021.32, + "end": 63023.33, + "probability": 0.6786 + }, + { + "start": 63023.66, + "end": 63025.0, + "probability": 0.8905 + }, + { + "start": 63025.54, + "end": 63028.9, + "probability": 0.9401 + }, + { + "start": 63029.28, + "end": 63030.68, + "probability": 0.9841 + }, + { + "start": 63031.28, + "end": 63033.44, + "probability": 0.9362 + }, + { + "start": 63033.56, + "end": 63035.3, + "probability": 0.8446 + }, + { + "start": 63036.73, + "end": 63037.68, + "probability": 0.1497 + }, + { + "start": 63037.68, + "end": 63039.4, + "probability": 0.7699 + }, + { + "start": 63039.68, + "end": 63044.42, + "probability": 0.741 + }, + { + "start": 63044.94, + "end": 63044.94, + "probability": 0.0196 + }, + { + "start": 63044.94, + "end": 63046.06, + "probability": 0.9928 + }, + { + "start": 63046.14, + "end": 63048.52, + "probability": 0.9642 + }, + { + "start": 63048.84, + "end": 63050.14, + "probability": 0.8246 + }, + { + "start": 63050.22, + "end": 63051.36, + "probability": 0.7676 + }, + { + "start": 63051.58, + "end": 63052.8, + "probability": 0.9644 + }, + { + "start": 63053.34, + "end": 63055.42, + "probability": 0.9866 + }, + { + "start": 63056.6, + "end": 63058.8, + "probability": 0.9478 + }, + { + "start": 63059.14, + "end": 63061.9, + "probability": 0.8296 + }, + { + "start": 63062.48, + "end": 63063.78, + "probability": 0.6918 + }, + { + "start": 63063.8, + "end": 63066.36, + "probability": 0.7406 + }, + { + "start": 63066.42, + "end": 63068.46, + "probability": 0.6491 + }, + { + "start": 63069.48, + "end": 63070.0, + "probability": 0.4141 + }, + { + "start": 63070.86, + "end": 63071.9, + "probability": 0.0821 + }, + { + "start": 63071.92, + "end": 63074.04, + "probability": 0.7532 + }, + { + "start": 63074.12, + "end": 63075.26, + "probability": 0.9637 + }, + { + "start": 63075.5, + "end": 63078.72, + "probability": 0.6659 + }, + { + "start": 63078.72, + "end": 63080.81, + "probability": 0.1312 + }, + { + "start": 63082.16, + "end": 63087.48, + "probability": 0.6122 + }, + { + "start": 63087.62, + "end": 63089.42, + "probability": 0.7759 + }, + { + "start": 63090.67, + "end": 63093.36, + "probability": 0.9941 + }, + { + "start": 63093.94, + "end": 63095.02, + "probability": 0.928 + }, + { + "start": 63095.48, + "end": 63096.0, + "probability": 0.61 + }, + { + "start": 63096.52, + "end": 63097.66, + "probability": 0.9896 + }, + { + "start": 63098.12, + "end": 63099.0, + "probability": 0.7872 + }, + { + "start": 63099.6, + "end": 63103.34, + "probability": 0.9926 + }, + { + "start": 63103.44, + "end": 63104.24, + "probability": 0.7969 + }, + { + "start": 63104.86, + "end": 63112.78, + "probability": 0.9584 + }, + { + "start": 63113.38, + "end": 63116.16, + "probability": 0.8086 + }, + { + "start": 63118.21, + "end": 63125.9, + "probability": 0.5719 + }, + { + "start": 63126.1, + "end": 63128.42, + "probability": 0.7882 + }, + { + "start": 63129.96, + "end": 63134.8, + "probability": 0.5569 + }, + { + "start": 63135.42, + "end": 63137.54, + "probability": 0.7679 + }, + { + "start": 63137.82, + "end": 63142.86, + "probability": 0.6807 + }, + { + "start": 63143.1, + "end": 63144.96, + "probability": 0.4479 + }, + { + "start": 63144.96, + "end": 63147.18, + "probability": 0.3649 + }, + { + "start": 63149.76, + "end": 63151.92, + "probability": 0.3297 + }, + { + "start": 63152.46, + "end": 63154.26, + "probability": 0.6791 + }, + { + "start": 63156.72, + "end": 63160.52, + "probability": 0.7262 + }, + { + "start": 63161.25, + "end": 63164.2, + "probability": 0.944 + }, + { + "start": 63164.9, + "end": 63167.38, + "probability": 0.7826 + }, + { + "start": 63168.48, + "end": 63170.24, + "probability": 0.8266 + }, + { + "start": 63171.56, + "end": 63172.86, + "probability": 0.6972 + }, + { + "start": 63173.34, + "end": 63174.24, + "probability": 0.9932 + }, + { + "start": 63174.32, + "end": 63176.0, + "probability": 0.9979 + }, + { + "start": 63176.06, + "end": 63176.58, + "probability": 0.721 + }, + { + "start": 63178.32, + "end": 63180.22, + "probability": 0.9341 + }, + { + "start": 63183.71, + "end": 63186.48, + "probability": 0.9267 + }, + { + "start": 63186.88, + "end": 63188.94, + "probability": 0.9941 + }, + { + "start": 63190.22, + "end": 63191.96, + "probability": 0.9172 + }, + { + "start": 63192.06, + "end": 63194.86, + "probability": 0.8813 + }, + { + "start": 63195.96, + "end": 63198.78, + "probability": 0.6694 + }, + { + "start": 63199.8, + "end": 63204.06, + "probability": 0.9136 + }, + { + "start": 63205.6, + "end": 63208.74, + "probability": 0.8289 + }, + { + "start": 63209.46, + "end": 63212.98, + "probability": 0.9097 + }, + { + "start": 63213.84, + "end": 63216.34, + "probability": 0.9993 + }, + { + "start": 63217.92, + "end": 63222.28, + "probability": 0.6255 + }, + { + "start": 63223.36, + "end": 63228.63, + "probability": 0.9552 + }, + { + "start": 63231.2, + "end": 63233.08, + "probability": 0.9692 + }, + { + "start": 63233.64, + "end": 63235.84, + "probability": 0.9473 + }, + { + "start": 63236.82, + "end": 63237.78, + "probability": 0.7087 + }, + { + "start": 63237.82, + "end": 63239.46, + "probability": 0.7289 + }, + { + "start": 63239.76, + "end": 63240.6, + "probability": 0.3609 + }, + { + "start": 63240.74, + "end": 63242.76, + "probability": 0.95 + }, + { + "start": 63243.74, + "end": 63244.94, + "probability": 0.9919 + }, + { + "start": 63246.62, + "end": 63247.12, + "probability": 0.8838 + }, + { + "start": 63249.62, + "end": 63249.98, + "probability": 0.0041 + }, + { + "start": 63250.52, + "end": 63252.9, + "probability": 0.8861 + }, + { + "start": 63254.02, + "end": 63254.76, + "probability": 0.2927 + }, + { + "start": 63255.5, + "end": 63256.82, + "probability": 0.9966 + }, + { + "start": 63258.14, + "end": 63260.62, + "probability": 0.8589 + }, + { + "start": 63261.92, + "end": 63264.56, + "probability": 0.7833 + }, + { + "start": 63265.44, + "end": 63267.88, + "probability": 0.9178 + }, + { + "start": 63269.7, + "end": 63271.44, + "probability": 0.7575 + }, + { + "start": 63272.42, + "end": 63273.37, + "probability": 0.3956 + }, + { + "start": 63274.5, + "end": 63276.68, + "probability": 0.9185 + }, + { + "start": 63277.18, + "end": 63280.36, + "probability": 0.9376 + }, + { + "start": 63282.4, + "end": 63284.94, + "probability": 0.9973 + }, + { + "start": 63286.42, + "end": 63287.48, + "probability": 0.4232 + }, + { + "start": 63287.54, + "end": 63288.98, + "probability": 0.8935 + }, + { + "start": 63289.1, + "end": 63291.1, + "probability": 0.9971 + }, + { + "start": 63291.42, + "end": 63296.22, + "probability": 0.9743 + }, + { + "start": 63296.38, + "end": 63297.02, + "probability": 0.9797 + }, + { + "start": 63299.16, + "end": 63301.78, + "probability": 0.8069 + }, + { + "start": 63301.84, + "end": 63303.34, + "probability": 0.9978 + }, + { + "start": 63304.52, + "end": 63305.68, + "probability": 0.9897 + }, + { + "start": 63305.76, + "end": 63310.94, + "probability": 0.9495 + }, + { + "start": 63313.62, + "end": 63315.44, + "probability": 0.9862 + }, + { + "start": 63316.06, + "end": 63317.62, + "probability": 0.8057 + }, + { + "start": 63318.64, + "end": 63318.92, + "probability": 0.7285 + }, + { + "start": 63319.78, + "end": 63320.96, + "probability": 0.9449 + }, + { + "start": 63321.04, + "end": 63322.35, + "probability": 0.9812 + }, + { + "start": 63322.64, + "end": 63324.58, + "probability": 0.1208 + }, + { + "start": 63325.02, + "end": 63326.98, + "probability": 0.0187 + }, + { + "start": 63326.98, + "end": 63327.3, + "probability": 0.0212 + }, + { + "start": 63327.82, + "end": 63330.64, + "probability": 0.2964 + }, + { + "start": 63330.8, + "end": 63333.56, + "probability": 0.7695 + }, + { + "start": 63333.99, + "end": 63338.7, + "probability": 0.587 + }, + { + "start": 63338.76, + "end": 63339.02, + "probability": 0.0185 + }, + { + "start": 63339.02, + "end": 63340.23, + "probability": 0.7131 + }, + { + "start": 63340.68, + "end": 63343.34, + "probability": 0.0785 + }, + { + "start": 63344.36, + "end": 63344.5, + "probability": 0.0811 + }, + { + "start": 63344.5, + "end": 63348.28, + "probability": 0.6145 + }, + { + "start": 63350.08, + "end": 63354.68, + "probability": 0.7726 + }, + { + "start": 63354.88, + "end": 63356.88, + "probability": 0.8568 + }, + { + "start": 63357.04, + "end": 63360.2, + "probability": 0.998 + }, + { + "start": 63360.78, + "end": 63363.44, + "probability": 0.8393 + }, + { + "start": 63366.6, + "end": 63367.82, + "probability": 0.51 + }, + { + "start": 63368.76, + "end": 63371.48, + "probability": 0.7433 + }, + { + "start": 63372.54, + "end": 63374.44, + "probability": 0.6518 + }, + { + "start": 63374.52, + "end": 63375.5, + "probability": 0.3076 + }, + { + "start": 63375.56, + "end": 63375.92, + "probability": 0.3694 + }, + { + "start": 63376.32, + "end": 63376.54, + "probability": 0.4574 + }, + { + "start": 63376.64, + "end": 63379.44, + "probability": 0.7567 + }, + { + "start": 63379.68, + "end": 63383.7, + "probability": 0.9182 + }, + { + "start": 63384.46, + "end": 63389.26, + "probability": 0.9955 + }, + { + "start": 63390.28, + "end": 63391.98, + "probability": 0.8901 + }, + { + "start": 63393.12, + "end": 63397.0, + "probability": 0.998 + }, + { + "start": 63398.04, + "end": 63400.82, + "probability": 0.9842 + }, + { + "start": 63400.98, + "end": 63401.32, + "probability": 0.0032 + }, + { + "start": 63406.52, + "end": 63407.94, + "probability": 0.4971 + }, + { + "start": 63408.04, + "end": 63408.24, + "probability": 0.6869 + }, + { + "start": 63408.34, + "end": 63411.6, + "probability": 0.9462 + }, + { + "start": 63411.64, + "end": 63415.64, + "probability": 0.97 + }, + { + "start": 63416.32, + "end": 63419.94, + "probability": 0.6585 + }, + { + "start": 63420.48, + "end": 63421.24, + "probability": 0.5489 + }, + { + "start": 63423.77, + "end": 63426.42, + "probability": 0.5788 + }, + { + "start": 63427.04, + "end": 63428.24, + "probability": 0.9548 + }, + { + "start": 63428.72, + "end": 63430.36, + "probability": 0.9451 + }, + { + "start": 63431.06, + "end": 63433.56, + "probability": 0.8503 + }, + { + "start": 63434.26, + "end": 63434.98, + "probability": 0.9215 + }, + { + "start": 63435.82, + "end": 63439.14, + "probability": 0.5839 + }, + { + "start": 63440.2, + "end": 63443.12, + "probability": 0.7034 + }, + { + "start": 63443.64, + "end": 63444.36, + "probability": 0.7182 + }, + { + "start": 63445.06, + "end": 63448.94, + "probability": 0.6255 + }, + { + "start": 63451.74, + "end": 63453.72, + "probability": 0.9338 + }, + { + "start": 63454.5, + "end": 63458.8, + "probability": 0.8677 + }, + { + "start": 63459.38, + "end": 63460.86, + "probability": 0.7449 + }, + { + "start": 63461.82, + "end": 63464.06, + "probability": 0.9905 + }, + { + "start": 63464.48, + "end": 63468.4, + "probability": 0.8697 + }, + { + "start": 63470.12, + "end": 63473.4, + "probability": 0.9918 + }, + { + "start": 63474.0, + "end": 63476.02, + "probability": 0.9432 + }, + { + "start": 63476.14, + "end": 63480.98, + "probability": 0.9777 + }, + { + "start": 63482.18, + "end": 63482.86, + "probability": 0.8208 + }, + { + "start": 63484.04, + "end": 63486.44, + "probability": 0.9649 + }, + { + "start": 63486.7, + "end": 63489.14, + "probability": 0.8815 + }, + { + "start": 63489.22, + "end": 63492.46, + "probability": 0.6692 + }, + { + "start": 63492.48, + "end": 63492.48, + "probability": 0.5 + }, + { + "start": 63493.04, + "end": 63499.16, + "probability": 0.7405 + }, + { + "start": 63500.16, + "end": 63503.92, + "probability": 0.9558 + }, + { + "start": 63504.9, + "end": 63509.0, + "probability": 0.544 + }, + { + "start": 63510.34, + "end": 63512.02, + "probability": 0.6616 + }, + { + "start": 63512.98, + "end": 63515.74, + "probability": 0.267 + }, + { + "start": 63515.88, + "end": 63517.74, + "probability": 0.8989 + }, + { + "start": 63518.68, + "end": 63521.5, + "probability": 0.5503 + }, + { + "start": 63522.04, + "end": 63522.96, + "probability": 0.636 + }, + { + "start": 63524.88, + "end": 63526.84, + "probability": 0.9893 + }, + { + "start": 63528.28, + "end": 63529.5, + "probability": 0.5903 + }, + { + "start": 63530.08, + "end": 63533.7, + "probability": 0.9931 + }, + { + "start": 63533.84, + "end": 63535.42, + "probability": 0.5899 + }, + { + "start": 63536.32, + "end": 63537.82, + "probability": 0.9761 + }, + { + "start": 63538.4, + "end": 63540.7, + "probability": 0.8447 + }, + { + "start": 63541.34, + "end": 63543.86, + "probability": 0.7458 + }, + { + "start": 63545.2, + "end": 63547.3, + "probability": 0.9767 + }, + { + "start": 63547.44, + "end": 63548.2, + "probability": 0.9537 + }, + { + "start": 63548.28, + "end": 63551.42, + "probability": 0.8032 + }, + { + "start": 63552.92, + "end": 63555.04, + "probability": 0.8771 + }, + { + "start": 63555.58, + "end": 63560.0, + "probability": 0.6882 + }, + { + "start": 63560.46, + "end": 63562.55, + "probability": 0.5522 + }, + { + "start": 63563.38, + "end": 63564.48, + "probability": 0.8665 + }, + { + "start": 63564.52, + "end": 63565.74, + "probability": 0.8141 + }, + { + "start": 63565.96, + "end": 63567.8, + "probability": 0.9955 + }, + { + "start": 63568.04, + "end": 63570.82, + "probability": 0.893 + }, + { + "start": 63571.12, + "end": 63572.64, + "probability": 0.7281 + }, + { + "start": 63573.7, + "end": 63576.08, + "probability": 0.9881 + }, + { + "start": 63576.46, + "end": 63579.84, + "probability": 0.9363 + }, + { + "start": 63580.52, + "end": 63584.06, + "probability": 0.6556 + }, + { + "start": 63584.9, + "end": 63587.12, + "probability": 0.7651 + }, + { + "start": 63589.26, + "end": 63591.02, + "probability": 0.959 + }, + { + "start": 63591.54, + "end": 63592.82, + "probability": 0.1826 + }, + { + "start": 63593.2, + "end": 63594.18, + "probability": 0.5607 + }, + { + "start": 63594.64, + "end": 63601.52, + "probability": 0.7692 + }, + { + "start": 63602.06, + "end": 63603.24, + "probability": 0.625 + }, + { + "start": 63603.68, + "end": 63608.34, + "probability": 0.9189 + }, + { + "start": 63608.92, + "end": 63611.98, + "probability": 0.801 + }, + { + "start": 63612.84, + "end": 63615.72, + "probability": 0.8275 + }, + { + "start": 63616.2, + "end": 63617.05, + "probability": 0.6011 + }, + { + "start": 63617.66, + "end": 63619.2, + "probability": 0.8588 + }, + { + "start": 63619.44, + "end": 63622.14, + "probability": 0.4787 + }, + { + "start": 63622.62, + "end": 63625.32, + "probability": 0.7871 + }, + { + "start": 63625.74, + "end": 63626.18, + "probability": 0.8437 + }, + { + "start": 63626.18, + "end": 63628.34, + "probability": 0.756 + }, + { + "start": 63628.46, + "end": 63628.98, + "probability": 0.3749 + }, + { + "start": 63629.68, + "end": 63629.74, + "probability": 0.0625 + }, + { + "start": 63629.74, + "end": 63631.28, + "probability": 0.4038 + }, + { + "start": 63631.54, + "end": 63633.66, + "probability": 0.762 + }, + { + "start": 63634.26, + "end": 63637.7, + "probability": 0.8737 + }, + { + "start": 63638.42, + "end": 63640.02, + "probability": 0.9899 + }, + { + "start": 63640.56, + "end": 63641.62, + "probability": 0.9604 + }, + { + "start": 63642.12, + "end": 63645.7, + "probability": 0.3826 + }, + { + "start": 63645.88, + "end": 63648.56, + "probability": 0.9222 + }, + { + "start": 63648.7, + "end": 63649.34, + "probability": 0.8201 + }, + { + "start": 63650.1, + "end": 63652.16, + "probability": 0.9871 + }, + { + "start": 63652.86, + "end": 63654.5, + "probability": 0.728 + }, + { + "start": 63655.22, + "end": 63655.96, + "probability": 0.4872 + }, + { + "start": 63656.86, + "end": 63659.06, + "probability": 0.9883 + }, + { + "start": 63660.36, + "end": 63661.64, + "probability": 0.5311 + }, + { + "start": 63667.7, + "end": 63670.7, + "probability": 0.9686 + }, + { + "start": 63670.7, + "end": 63673.8, + "probability": 0.886 + }, + { + "start": 63674.63, + "end": 63675.16, + "probability": 0.9585 + }, + { + "start": 63679.16, + "end": 63680.68, + "probability": 0.886 + }, + { + "start": 63680.78, + "end": 63681.45, + "probability": 0.9677 + }, + { + "start": 63681.92, + "end": 63685.04, + "probability": 0.8574 + }, + { + "start": 63686.02, + "end": 63688.18, + "probability": 0.9104 + }, + { + "start": 63689.08, + "end": 63689.66, + "probability": 0.4641 + }, + { + "start": 63690.74, + "end": 63691.84, + "probability": 0.7849 + }, + { + "start": 63691.94, + "end": 63692.72, + "probability": 0.7291 + }, + { + "start": 63693.02, + "end": 63693.64, + "probability": 0.531 + }, + { + "start": 63693.8, + "end": 63695.1, + "probability": 0.8841 + }, + { + "start": 63695.32, + "end": 63695.64, + "probability": 0.483 + }, + { + "start": 63696.14, + "end": 63696.9, + "probability": 0.167 + }, + { + "start": 63698.2, + "end": 63699.46, + "probability": 0.9984 + }, + { + "start": 63700.36, + "end": 63701.73, + "probability": 0.9811 + }, + { + "start": 63701.98, + "end": 63702.38, + "probability": 0.899 + }, + { + "start": 63702.66, + "end": 63703.72, + "probability": 0.8037 + }, + { + "start": 63706.02, + "end": 63708.3, + "probability": 0.6419 + }, + { + "start": 63710.5, + "end": 63714.46, + "probability": 0.9854 + }, + { + "start": 63715.08, + "end": 63716.16, + "probability": 0.0227 + }, + { + "start": 63716.72, + "end": 63721.74, + "probability": 0.9587 + }, + { + "start": 63721.74, + "end": 63725.28, + "probability": 0.8566 + }, + { + "start": 63726.08, + "end": 63729.34, + "probability": 0.9741 + }, + { + "start": 63731.48, + "end": 63732.44, + "probability": 0.8865 + }, + { + "start": 63733.36, + "end": 63734.06, + "probability": 0.7595 + }, + { + "start": 63735.74, + "end": 63737.12, + "probability": 0.9016 + }, + { + "start": 63738.02, + "end": 63742.58, + "probability": 0.781 + }, + { + "start": 63743.9, + "end": 63750.64, + "probability": 0.9265 + }, + { + "start": 63751.26, + "end": 63751.74, + "probability": 0.7255 + }, + { + "start": 63751.84, + "end": 63752.52, + "probability": 0.7424 + }, + { + "start": 63753.74, + "end": 63756.92, + "probability": 0.991 + }, + { + "start": 63757.72, + "end": 63758.46, + "probability": 0.988 + }, + { + "start": 63760.82, + "end": 63764.63, + "probability": 0.8148 + }, + { + "start": 63765.08, + "end": 63767.36, + "probability": 0.9904 + }, + { + "start": 63768.42, + "end": 63772.68, + "probability": 0.9343 + }, + { + "start": 63773.97, + "end": 63778.6, + "probability": 0.142 + }, + { + "start": 63778.8, + "end": 63780.66, + "probability": 0.7734 + }, + { + "start": 63780.7, + "end": 63781.18, + "probability": 0.1566 + }, + { + "start": 63781.82, + "end": 63785.12, + "probability": 0.3357 + }, + { + "start": 63785.12, + "end": 63787.2, + "probability": 0.7401 + }, + { + "start": 63787.92, + "end": 63792.58, + "probability": 0.999 + }, + { + "start": 63793.36, + "end": 63794.24, + "probability": 0.9919 + }, + { + "start": 63796.26, + "end": 63798.18, + "probability": 0.958 + }, + { + "start": 63798.72, + "end": 63802.0, + "probability": 0.9653 + }, + { + "start": 63803.34, + "end": 63807.38, + "probability": 0.8981 + }, + { + "start": 63808.36, + "end": 63809.24, + "probability": 0.9678 + }, + { + "start": 63809.86, + "end": 63817.28, + "probability": 0.9719 + }, + { + "start": 63817.42, + "end": 63817.62, + "probability": 0.3784 + }, + { + "start": 63817.68, + "end": 63818.57, + "probability": 0.7834 + }, + { + "start": 63819.82, + "end": 63822.2, + "probability": 0.6249 + }, + { + "start": 63822.2, + "end": 63822.86, + "probability": 0.6468 + }, + { + "start": 63823.98, + "end": 63825.64, + "probability": 0.9453 + }, + { + "start": 63827.82, + "end": 63830.66, + "probability": 0.9275 + }, + { + "start": 63830.66, + "end": 63833.4, + "probability": 0.9664 + }, + { + "start": 63834.0, + "end": 63836.38, + "probability": 0.4956 + }, + { + "start": 63836.4, + "end": 63838.08, + "probability": 0.9342 + }, + { + "start": 63840.06, + "end": 63840.94, + "probability": 0.8365 + }, + { + "start": 63842.04, + "end": 63843.97, + "probability": 0.9873 + }, + { + "start": 63844.24, + "end": 63846.76, + "probability": 0.9604 + }, + { + "start": 63846.86, + "end": 63848.14, + "probability": 0.9693 + }, + { + "start": 63849.46, + "end": 63851.22, + "probability": 0.7348 + }, + { + "start": 63851.4, + "end": 63852.6, + "probability": 0.6547 + }, + { + "start": 63852.9, + "end": 63854.12, + "probability": 0.9447 + }, + { + "start": 63854.88, + "end": 63855.94, + "probability": 0.9562 + }, + { + "start": 63857.44, + "end": 63858.9, + "probability": 0.9116 + }, + { + "start": 63861.26, + "end": 63863.1, + "probability": 0.6157 + }, + { + "start": 63863.2, + "end": 63864.76, + "probability": 0.7283 + }, + { + "start": 63865.54, + "end": 63867.34, + "probability": 0.8967 + }, + { + "start": 63867.82, + "end": 63868.84, + "probability": 0.9695 + }, + { + "start": 63871.3, + "end": 63875.78, + "probability": 0.0212 + }, + { + "start": 63877.4, + "end": 63881.32, + "probability": 0.475 + }, + { + "start": 63881.62, + "end": 63884.82, + "probability": 0.7663 + }, + { + "start": 63884.82, + "end": 63888.38, + "probability": 0.9968 + }, + { + "start": 63888.54, + "end": 63890.88, + "probability": 0.8447 + }, + { + "start": 63892.16, + "end": 63894.32, + "probability": 0.8919 + }, + { + "start": 63894.54, + "end": 63896.04, + "probability": 0.9199 + }, + { + "start": 63897.32, + "end": 63899.3, + "probability": 0.7346 + }, + { + "start": 63900.7, + "end": 63901.98, + "probability": 0.4921 + }, + { + "start": 63904.3, + "end": 63906.22, + "probability": 0.6886 + }, + { + "start": 63908.2, + "end": 63911.58, + "probability": 0.9116 + }, + { + "start": 63913.1, + "end": 63913.78, + "probability": 0.6038 + }, + { + "start": 63913.9, + "end": 63917.46, + "probability": 0.6594 + }, + { + "start": 63918.4, + "end": 63921.8, + "probability": 0.8728 + }, + { + "start": 63922.5, + "end": 63925.24, + "probability": 0.8267 + }, + { + "start": 63926.5, + "end": 63928.29, + "probability": 0.485 + }, + { + "start": 63929.62, + "end": 63933.41, + "probability": 0.6567 + }, + { + "start": 63934.56, + "end": 63938.06, + "probability": 0.4371 + }, + { + "start": 63939.2, + "end": 63939.2, + "probability": 0.162 + }, + { + "start": 63939.2, + "end": 63939.2, + "probability": 0.1455 + }, + { + "start": 63939.2, + "end": 63940.12, + "probability": 0.8695 + }, + { + "start": 63942.52, + "end": 63943.61, + "probability": 0.9008 + }, + { + "start": 63944.3, + "end": 63947.12, + "probability": 0.6416 + }, + { + "start": 63947.22, + "end": 63951.82, + "probability": 0.8096 + }, + { + "start": 63954.84, + "end": 63956.97, + "probability": 0.8586 + }, + { + "start": 63957.88, + "end": 63959.34, + "probability": 0.9097 + }, + { + "start": 63959.86, + "end": 63962.16, + "probability": 0.9918 + }, + { + "start": 63962.88, + "end": 63965.2, + "probability": 0.7921 + }, + { + "start": 63965.7, + "end": 63968.7, + "probability": 0.9044 + }, + { + "start": 63969.96, + "end": 63972.38, + "probability": 0.9284 + }, + { + "start": 63972.82, + "end": 63974.84, + "probability": 0.9709 + }, + { + "start": 63976.68, + "end": 63980.74, + "probability": 0.3056 + }, + { + "start": 63980.74, + "end": 63981.44, + "probability": 0.2284 + }, + { + "start": 63983.12, + "end": 63983.82, + "probability": 0.8874 + }, + { + "start": 63984.38, + "end": 63985.08, + "probability": 0.5311 + }, + { + "start": 63985.26, + "end": 63991.84, + "probability": 0.8352 + }, + { + "start": 63992.64, + "end": 63993.96, + "probability": 0.5547 + }, + { + "start": 63995.26, + "end": 63998.0, + "probability": 0.8365 + }, + { + "start": 63998.33, + "end": 64003.58, + "probability": 0.9444 + }, + { + "start": 64004.6, + "end": 64007.17, + "probability": 0.9507 + }, + { + "start": 64007.42, + "end": 64008.3, + "probability": 0.6895 + }, + { + "start": 64009.34, + "end": 64013.54, + "probability": 0.8612 + }, + { + "start": 64013.68, + "end": 64014.16, + "probability": 0.5051 + }, + { + "start": 64015.74, + "end": 64018.42, + "probability": 0.9523 + }, + { + "start": 64019.78, + "end": 64021.08, + "probability": 0.7494 + }, + { + "start": 64021.68, + "end": 64026.78, + "probability": 0.6714 + }, + { + "start": 64027.74, + "end": 64028.24, + "probability": 0.1073 + }, + { + "start": 64028.48, + "end": 64033.22, + "probability": 0.9014 + }, + { + "start": 64034.62, + "end": 64036.66, + "probability": 0.9913 + }, + { + "start": 64036.92, + "end": 64037.68, + "probability": 0.6747 + }, + { + "start": 64038.1, + "end": 64041.16, + "probability": 0.6435 + }, + { + "start": 64042.5, + "end": 64045.94, + "probability": 0.5728 + }, + { + "start": 64046.56, + "end": 64049.12, + "probability": 0.8312 + }, + { + "start": 64050.56, + "end": 64052.22, + "probability": 0.9424 + }, + { + "start": 64053.12, + "end": 64054.38, + "probability": 0.9928 + }, + { + "start": 64054.58, + "end": 64056.98, + "probability": 0.6508 + }, + { + "start": 64057.4, + "end": 64058.44, + "probability": 0.8435 + }, + { + "start": 64058.86, + "end": 64061.14, + "probability": 0.5817 + }, + { + "start": 64062.16, + "end": 64063.4, + "probability": 0.9501 + }, + { + "start": 64064.06, + "end": 64067.22, + "probability": 0.9394 + }, + { + "start": 64067.42, + "end": 64067.94, + "probability": 0.9327 + }, + { + "start": 64068.54, + "end": 64069.96, + "probability": 0.9684 + }, + { + "start": 64070.5, + "end": 64071.28, + "probability": 0.5262 + }, + { + "start": 64071.44, + "end": 64072.98, + "probability": 0.6321 + }, + { + "start": 64073.04, + "end": 64073.56, + "probability": 0.7573 + }, + { + "start": 64074.1, + "end": 64078.74, + "probability": 0.9672 + }, + { + "start": 64078.74, + "end": 64081.28, + "probability": 0.9886 + }, + { + "start": 64083.04, + "end": 64085.6, + "probability": 0.9354 + }, + { + "start": 64085.94, + "end": 64088.34, + "probability": 0.8671 + }, + { + "start": 64090.05, + "end": 64091.98, + "probability": 0.7203 + }, + { + "start": 64093.8, + "end": 64095.52, + "probability": 0.8212 + }, + { + "start": 64095.68, + "end": 64097.13, + "probability": 0.9472 + }, + { + "start": 64097.78, + "end": 64098.6, + "probability": 0.7799 + }, + { + "start": 64099.62, + "end": 64103.3, + "probability": 0.8674 + }, + { + "start": 64104.28, + "end": 64106.02, + "probability": 0.8097 + }, + { + "start": 64107.08, + "end": 64108.44, + "probability": 0.5541 + }, + { + "start": 64109.28, + "end": 64110.62, + "probability": 0.624 + }, + { + "start": 64111.1, + "end": 64113.78, + "probability": 0.8398 + }, + { + "start": 64115.5, + "end": 64118.64, + "probability": 0.8744 + }, + { + "start": 64119.44, + "end": 64120.58, + "probability": 0.9888 + }, + { + "start": 64120.82, + "end": 64122.2, + "probability": 0.5392 + }, + { + "start": 64123.14, + "end": 64124.48, + "probability": 0.7967 + }, + { + "start": 64125.44, + "end": 64128.08, + "probability": 0.8 + }, + { + "start": 64129.22, + "end": 64132.24, + "probability": 0.5453 + }, + { + "start": 64133.12, + "end": 64134.18, + "probability": 0.9776 + }, + { + "start": 64135.4, + "end": 64143.82, + "probability": 0.8082 + }, + { + "start": 64144.18, + "end": 64145.02, + "probability": 0.4551 + }, + { + "start": 64145.5, + "end": 64146.32, + "probability": 0.474 + }, + { + "start": 64147.02, + "end": 64147.92, + "probability": 0.3469 + }, + { + "start": 64147.92, + "end": 64150.6, + "probability": 0.5494 + }, + { + "start": 64151.9, + "end": 64152.72, + "probability": 0.6857 + }, + { + "start": 64152.8, + "end": 64153.47, + "probability": 0.3756 + }, + { + "start": 64153.94, + "end": 64155.72, + "probability": 0.5788 + }, + { + "start": 64157.38, + "end": 64160.12, + "probability": 0.3819 + }, + { + "start": 64160.16, + "end": 64160.24, + "probability": 0.4288 + }, + { + "start": 64160.24, + "end": 64161.47, + "probability": 0.8428 + }, + { + "start": 64163.36, + "end": 64166.78, + "probability": 0.8469 + }, + { + "start": 64167.74, + "end": 64170.48, + "probability": 0.8439 + }, + { + "start": 64170.48, + "end": 64173.38, + "probability": 0.8587 + }, + { + "start": 64173.44, + "end": 64174.32, + "probability": 0.6379 + }, + { + "start": 64174.54, + "end": 64176.88, + "probability": 0.7417 + }, + { + "start": 64176.92, + "end": 64178.02, + "probability": 0.679 + }, + { + "start": 64178.98, + "end": 64180.82, + "probability": 0.9094 + }, + { + "start": 64181.62, + "end": 64184.06, + "probability": 0.9458 + }, + { + "start": 64184.66, + "end": 64186.66, + "probability": 0.7546 + }, + { + "start": 64186.74, + "end": 64188.78, + "probability": 0.7922 + }, + { + "start": 64189.92, + "end": 64190.84, + "probability": 0.9098 + }, + { + "start": 64191.36, + "end": 64194.1, + "probability": 0.6425 + }, + { + "start": 64194.24, + "end": 64196.4, + "probability": 0.8119 + }, + { + "start": 64197.18, + "end": 64198.6, + "probability": 0.6862 + }, + { + "start": 64198.62, + "end": 64200.34, + "probability": 0.8005 + }, + { + "start": 64200.56, + "end": 64201.62, + "probability": 0.0147 + }, + { + "start": 64202.48, + "end": 64203.46, + "probability": 0.7534 + }, + { + "start": 64203.46, + "end": 64203.88, + "probability": 0.3132 + }, + { + "start": 64204.0, + "end": 64204.82, + "probability": 0.6977 + }, + { + "start": 64205.3, + "end": 64205.84, + "probability": 0.651 + }, + { + "start": 64205.92, + "end": 64207.84, + "probability": 0.1284 + }, + { + "start": 64209.18, + "end": 64212.5, + "probability": 0.4259 + }, + { + "start": 64212.94, + "end": 64216.44, + "probability": 0.7773 + }, + { + "start": 64216.74, + "end": 64217.38, + "probability": 0.9414 + }, + { + "start": 64217.46, + "end": 64217.9, + "probability": 0.8177 + }, + { + "start": 64217.96, + "end": 64219.36, + "probability": 0.9491 + }, + { + "start": 64220.46, + "end": 64221.8, + "probability": 0.8641 + }, + { + "start": 64221.9, + "end": 64227.6, + "probability": 0.9437 + }, + { + "start": 64227.9, + "end": 64230.58, + "probability": 0.3985 + }, + { + "start": 64231.34, + "end": 64234.88, + "probability": 0.9208 + }, + { + "start": 64235.78, + "end": 64236.98, + "probability": 0.7439 + }, + { + "start": 64237.14, + "end": 64239.36, + "probability": 0.9698 + }, + { + "start": 64239.48, + "end": 64240.68, + "probability": 0.8895 + }, + { + "start": 64240.78, + "end": 64242.46, + "probability": 0.8894 + }, + { + "start": 64242.62, + "end": 64242.62, + "probability": 0.0974 + }, + { + "start": 64244.98, + "end": 64246.72, + "probability": 0.2866 + }, + { + "start": 64247.04, + "end": 64250.24, + "probability": 0.9307 + }, + { + "start": 64250.9, + "end": 64252.18, + "probability": 0.9851 + }, + { + "start": 64253.0, + "end": 64255.24, + "probability": 0.9563 + }, + { + "start": 64256.04, + "end": 64258.4, + "probability": 0.9778 + }, + { + "start": 64258.94, + "end": 64261.68, + "probability": 0.6696 + }, + { + "start": 64263.22, + "end": 64266.3, + "probability": 0.3491 + }, + { + "start": 64266.3, + "end": 64266.3, + "probability": 0.0929 + }, + { + "start": 64266.3, + "end": 64266.3, + "probability": 0.0555 + }, + { + "start": 64266.3, + "end": 64266.3, + "probability": 0.1316 + }, + { + "start": 64266.3, + "end": 64266.3, + "probability": 0.3048 + }, + { + "start": 64266.3, + "end": 64267.39, + "probability": 0.5568 + }, + { + "start": 64267.84, + "end": 64267.98, + "probability": 0.2044 + }, + { + "start": 64268.42, + "end": 64269.44, + "probability": 0.5082 + }, + { + "start": 64269.6, + "end": 64271.16, + "probability": 0.4836 + }, + { + "start": 64271.28, + "end": 64272.12, + "probability": 0.5951 + }, + { + "start": 64272.66, + "end": 64273.48, + "probability": 0.8675 + }, + { + "start": 64274.4, + "end": 64276.0, + "probability": 0.83 + }, + { + "start": 64276.76, + "end": 64280.36, + "probability": 0.8993 + }, + { + "start": 64280.92, + "end": 64282.0, + "probability": 0.6342 + }, + { + "start": 64282.66, + "end": 64283.4, + "probability": 0.7035 + }, + { + "start": 64283.98, + "end": 64284.68, + "probability": 0.2613 + }, + { + "start": 64285.48, + "end": 64286.26, + "probability": 0.782 + }, + { + "start": 64286.4, + "end": 64288.86, + "probability": 0.7207 + }, + { + "start": 64290.62, + "end": 64291.57, + "probability": 0.5303 + }, + { + "start": 64291.82, + "end": 64293.56, + "probability": 0.8464 + }, + { + "start": 64293.68, + "end": 64301.42, + "probability": 0.8776 + }, + { + "start": 64301.9, + "end": 64302.98, + "probability": 0.9329 + }, + { + "start": 64303.08, + "end": 64305.86, + "probability": 0.9927 + }, + { + "start": 64306.66, + "end": 64308.24, + "probability": 0.8588 + }, + { + "start": 64308.62, + "end": 64310.36, + "probability": 0.3727 + }, + { + "start": 64311.28, + "end": 64312.24, + "probability": 0.9178 + }, + { + "start": 64313.02, + "end": 64314.76, + "probability": 0.8338 + }, + { + "start": 64315.24, + "end": 64317.52, + "probability": 0.9723 + }, + { + "start": 64318.64, + "end": 64320.62, + "probability": 0.7109 + }, + { + "start": 64321.74, + "end": 64324.2, + "probability": 0.6643 + }, + { + "start": 64324.28, + "end": 64324.72, + "probability": 0.8773 + }, + { + "start": 64324.78, + "end": 64325.06, + "probability": 0.5395 + }, + { + "start": 64325.12, + "end": 64329.28, + "probability": 0.5925 + }, + { + "start": 64329.88, + "end": 64332.62, + "probability": 0.736 + }, + { + "start": 64332.8, + "end": 64333.08, + "probability": 0.8277 + }, + { + "start": 64333.88, + "end": 64334.94, + "probability": 0.953 + }, + { + "start": 64335.86, + "end": 64339.28, + "probability": 0.8039 + }, + { + "start": 64340.08, + "end": 64341.16, + "probability": 0.2841 + }, + { + "start": 64341.24, + "end": 64341.58, + "probability": 0.1315 + }, + { + "start": 64344.02, + "end": 64347.84, + "probability": 0.7085 + }, + { + "start": 64348.06, + "end": 64349.26, + "probability": 0.9829 + }, + { + "start": 64350.26, + "end": 64352.29, + "probability": 0.8923 + }, + { + "start": 64352.84, + "end": 64353.68, + "probability": 0.0911 + }, + { + "start": 64354.0, + "end": 64354.94, + "probability": 0.1698 + }, + { + "start": 64354.94, + "end": 64355.64, + "probability": 0.6717 + }, + { + "start": 64356.48, + "end": 64359.74, + "probability": 0.1542 + }, + { + "start": 64361.44, + "end": 64362.86, + "probability": 0.3424 + }, + { + "start": 64363.14, + "end": 64364.56, + "probability": 0.8327 + }, + { + "start": 64364.72, + "end": 64365.64, + "probability": 0.72 + }, + { + "start": 64366.91, + "end": 64369.24, + "probability": 0.403 + }, + { + "start": 64369.68, + "end": 64375.12, + "probability": 0.8981 + }, + { + "start": 64375.74, + "end": 64376.44, + "probability": 0.4032 + }, + { + "start": 64376.56, + "end": 64377.98, + "probability": 0.528 + }, + { + "start": 64378.66, + "end": 64381.26, + "probability": 0.7614 + }, + { + "start": 64381.62, + "end": 64382.96, + "probability": 0.5861 + }, + { + "start": 64383.12, + "end": 64383.86, + "probability": 0.7081 + }, + { + "start": 64383.9, + "end": 64384.42, + "probability": 0.7342 + }, + { + "start": 64384.54, + "end": 64385.12, + "probability": 0.8975 + }, + { + "start": 64385.22, + "end": 64385.92, + "probability": 0.8254 + }, + { + "start": 64386.72, + "end": 64386.94, + "probability": 0.629 + }, + { + "start": 64387.04, + "end": 64387.94, + "probability": 0.9204 + }, + { + "start": 64388.34, + "end": 64389.22, + "probability": 0.9436 + }, + { + "start": 64389.28, + "end": 64389.76, + "probability": 0.4291 + }, + { + "start": 64389.88, + "end": 64391.38, + "probability": 0.9539 + }, + { + "start": 64393.22, + "end": 64396.24, + "probability": 0.9374 + }, + { + "start": 64397.4, + "end": 64397.75, + "probability": 0.1501 + }, + { + "start": 64397.98, + "end": 64401.4, + "probability": 0.6905 + }, + { + "start": 64401.54, + "end": 64402.56, + "probability": 0.816 + }, + { + "start": 64403.32, + "end": 64406.18, + "probability": 0.8374 + }, + { + "start": 64407.66, + "end": 64411.84, + "probability": 0.8467 + }, + { + "start": 64412.44, + "end": 64413.03, + "probability": 0.7463 + }, + { + "start": 64413.78, + "end": 64414.44, + "probability": 0.8922 + }, + { + "start": 64415.0, + "end": 64415.74, + "probability": 0.9768 + }, + { + "start": 64415.82, + "end": 64415.92, + "probability": 0.48 + }, + { + "start": 64418.8, + "end": 64421.54, + "probability": 0.6729 + }, + { + "start": 64421.72, + "end": 64423.04, + "probability": 0.8687 + }, + { + "start": 64423.48, + "end": 64424.94, + "probability": 0.9917 + }, + { + "start": 64425.34, + "end": 64426.3, + "probability": 0.9845 + }, + { + "start": 64426.92, + "end": 64428.8, + "probability": 0.5128 + }, + { + "start": 64429.32, + "end": 64430.72, + "probability": 0.2485 + }, + { + "start": 64431.02, + "end": 64433.12, + "probability": 0.6494 + }, + { + "start": 64433.64, + "end": 64435.9, + "probability": 0.9495 + }, + { + "start": 64436.08, + "end": 64437.19, + "probability": 0.2121 + }, + { + "start": 64438.6, + "end": 64439.44, + "probability": 0.7043 + }, + { + "start": 64439.52, + "end": 64441.76, + "probability": 0.9858 + }, + { + "start": 64441.84, + "end": 64442.96, + "probability": 0.7362 + }, + { + "start": 64443.7, + "end": 64444.98, + "probability": 0.5113 + }, + { + "start": 64445.6, + "end": 64448.24, + "probability": 0.8663 + }, + { + "start": 64449.9, + "end": 64450.63, + "probability": 0.6639 + }, + { + "start": 64451.06, + "end": 64454.84, + "probability": 0.9253 + }, + { + "start": 64455.44, + "end": 64458.16, + "probability": 0.964 + }, + { + "start": 64458.16, + "end": 64460.92, + "probability": 0.9946 + }, + { + "start": 64462.14, + "end": 64463.26, + "probability": 0.4858 + }, + { + "start": 64464.06, + "end": 64464.92, + "probability": 0.9089 + }, + { + "start": 64466.12, + "end": 64467.58, + "probability": 0.9945 + }, + { + "start": 64469.08, + "end": 64471.32, + "probability": 0.7703 + }, + { + "start": 64471.42, + "end": 64472.32, + "probability": 0.5672 + }, + { + "start": 64472.46, + "end": 64473.24, + "probability": 0.9766 + }, + { + "start": 64474.2, + "end": 64475.22, + "probability": 0.3833 + }, + { + "start": 64476.08, + "end": 64476.58, + "probability": 0.8356 + }, + { + "start": 64477.58, + "end": 64478.68, + "probability": 0.897 + }, + { + "start": 64479.1, + "end": 64480.5, + "probability": 0.6626 + }, + { + "start": 64480.58, + "end": 64480.7, + "probability": 0.4708 + }, + { + "start": 64480.72, + "end": 64481.34, + "probability": 0.8629 + }, + { + "start": 64481.42, + "end": 64481.9, + "probability": 0.7196 + }, + { + "start": 64482.46, + "end": 64486.09, + "probability": 0.9692 + }, + { + "start": 64488.2, + "end": 64490.86, + "probability": 0.9851 + }, + { + "start": 64491.3, + "end": 64493.74, + "probability": 0.8714 + }, + { + "start": 64494.42, + "end": 64495.36, + "probability": 0.8907 + }, + { + "start": 64495.46, + "end": 64496.54, + "probability": 0.7632 + }, + { + "start": 64496.64, + "end": 64497.16, + "probability": 0.5134 + }, + { + "start": 64497.16, + "end": 64498.6, + "probability": 0.6758 + }, + { + "start": 64501.04, + "end": 64505.62, + "probability": 0.9312 + }, + { + "start": 64506.84, + "end": 64510.7, + "probability": 0.9824 + }, + { + "start": 64511.98, + "end": 64513.09, + "probability": 0.9943 + }, + { + "start": 64513.32, + "end": 64515.3, + "probability": 0.9647 + }, + { + "start": 64515.4, + "end": 64516.2, + "probability": 0.887 + }, + { + "start": 64516.84, + "end": 64519.3, + "probability": 0.8777 + }, + { + "start": 64520.52, + "end": 64522.48, + "probability": 0.9424 + }, + { + "start": 64522.84, + "end": 64523.73, + "probability": 0.9762 + }, + { + "start": 64524.34, + "end": 64525.18, + "probability": 0.4648 + }, + { + "start": 64526.38, + "end": 64527.08, + "probability": 0.9887 + }, + { + "start": 64528.0, + "end": 64529.49, + "probability": 0.8712 + }, + { + "start": 64529.64, + "end": 64532.04, + "probability": 0.5634 + }, + { + "start": 64532.16, + "end": 64533.78, + "probability": 0.9728 + }, + { + "start": 64534.34, + "end": 64537.64, + "probability": 0.8083 + }, + { + "start": 64537.8, + "end": 64538.46, + "probability": 0.6546 + }, + { + "start": 64538.54, + "end": 64539.38, + "probability": 0.98 + }, + { + "start": 64539.54, + "end": 64542.22, + "probability": 0.4275 + }, + { + "start": 64542.38, + "end": 64543.86, + "probability": 0.6278 + }, + { + "start": 64544.37, + "end": 64546.42, + "probability": 0.6548 + }, + { + "start": 64546.48, + "end": 64547.64, + "probability": 0.9485 + }, + { + "start": 64548.62, + "end": 64550.3, + "probability": 0.8998 + }, + { + "start": 64551.32, + "end": 64553.6, + "probability": 0.7944 + }, + { + "start": 64553.88, + "end": 64555.38, + "probability": 0.9505 + }, + { + "start": 64555.67, + "end": 64558.92, + "probability": 0.8711 + }, + { + "start": 64559.42, + "end": 64560.1, + "probability": 0.1691 + }, + { + "start": 64560.2, + "end": 64563.26, + "probability": 0.9641 + }, + { + "start": 64563.38, + "end": 64567.14, + "probability": 0.9209 + }, + { + "start": 64567.2, + "end": 64568.3, + "probability": 0.804 + }, + { + "start": 64569.12, + "end": 64569.94, + "probability": 0.5878 + }, + { + "start": 64570.12, + "end": 64571.64, + "probability": 0.8764 + }, + { + "start": 64573.38, + "end": 64574.78, + "probability": 0.9672 + }, + { + "start": 64575.08, + "end": 64576.52, + "probability": 0.8423 + }, + { + "start": 64577.04, + "end": 64579.06, + "probability": 0.9932 + }, + { + "start": 64579.76, + "end": 64580.28, + "probability": 0.4324 + }, + { + "start": 64580.64, + "end": 64582.84, + "probability": 0.0151 + }, + { + "start": 64583.2, + "end": 64583.2, + "probability": 0.0241 + }, + { + "start": 64583.2, + "end": 64583.8, + "probability": 0.5424 + }, + { + "start": 64584.2, + "end": 64584.68, + "probability": 0.1297 + }, + { + "start": 64584.68, + "end": 64586.42, + "probability": 0.2427 + }, + { + "start": 64586.64, + "end": 64587.76, + "probability": 0.4832 + }, + { + "start": 64587.88, + "end": 64589.32, + "probability": 0.2629 + }, + { + "start": 64589.56, + "end": 64590.68, + "probability": 0.5146 + }, + { + "start": 64590.68, + "end": 64593.68, + "probability": 0.586 + }, + { + "start": 64594.58, + "end": 64597.36, + "probability": 0.5632 + }, + { + "start": 64597.54, + "end": 64598.86, + "probability": 0.9613 + }, + { + "start": 64598.88, + "end": 64600.08, + "probability": 0.0457 + }, + { + "start": 64600.14, + "end": 64600.76, + "probability": 0.7276 + }, + { + "start": 64601.0, + "end": 64602.2, + "probability": 0.9692 + }, + { + "start": 64602.56, + "end": 64605.38, + "probability": 0.2742 + }, + { + "start": 64605.9, + "end": 64606.62, + "probability": 0.8359 + }, + { + "start": 64608.41, + "end": 64611.16, + "probability": 0.9552 + }, + { + "start": 64611.26, + "end": 64614.26, + "probability": 0.8926 + }, + { + "start": 64614.62, + "end": 64615.08, + "probability": 0.7822 + }, + { + "start": 64615.22, + "end": 64616.26, + "probability": 0.165 + }, + { + "start": 64616.52, + "end": 64619.72, + "probability": 0.8302 + }, + { + "start": 64619.92, + "end": 64620.62, + "probability": 0.6297 + }, + { + "start": 64620.92, + "end": 64623.38, + "probability": 0.495 + }, + { + "start": 64624.08, + "end": 64627.26, + "probability": 0.3685 + }, + { + "start": 64628.14, + "end": 64630.24, + "probability": 0.4296 + }, + { + "start": 64631.96, + "end": 64634.92, + "probability": 0.9901 + }, + { + "start": 64635.56, + "end": 64638.58, + "probability": 0.5876 + }, + { + "start": 64639.0, + "end": 64640.24, + "probability": 0.9889 + }, + { + "start": 64640.54, + "end": 64642.5, + "probability": 0.8073 + }, + { + "start": 64643.32, + "end": 64643.83, + "probability": 0.7134 + }, + { + "start": 64644.0, + "end": 64644.8, + "probability": 0.6404 + }, + { + "start": 64646.16, + "end": 64647.32, + "probability": 0.6284 + }, + { + "start": 64648.38, + "end": 64650.5, + "probability": 0.9208 + }, + { + "start": 64651.76, + "end": 64652.38, + "probability": 0.9362 + }, + { + "start": 64653.32, + "end": 64656.38, + "probability": 0.8739 + }, + { + "start": 64657.28, + "end": 64661.66, + "probability": 0.9496 + }, + { + "start": 64662.48, + "end": 64665.2, + "probability": 0.9654 + }, + { + "start": 64666.6, + "end": 64671.22, + "probability": 0.9863 + }, + { + "start": 64672.28, + "end": 64675.02, + "probability": 0.9985 + }, + { + "start": 64676.52, + "end": 64679.1, + "probability": 0.9034 + }, + { + "start": 64679.1, + "end": 64682.34, + "probability": 0.8524 + }, + { + "start": 64683.38, + "end": 64685.24, + "probability": 0.9225 + }, + { + "start": 64685.38, + "end": 64686.17, + "probability": 0.8389 + }, + { + "start": 64687.56, + "end": 64689.32, + "probability": 0.8857 + }, + { + "start": 64689.92, + "end": 64690.9, + "probability": 0.6462 + }, + { + "start": 64691.04, + "end": 64692.78, + "probability": 0.8681 + }, + { + "start": 64694.04, + "end": 64698.16, + "probability": 0.9499 + }, + { + "start": 64698.96, + "end": 64700.56, + "probability": 0.941 + }, + { + "start": 64701.4, + "end": 64704.88, + "probability": 0.8699 + }, + { + "start": 64706.4, + "end": 64708.72, + "probability": 0.9508 + }, + { + "start": 64709.56, + "end": 64710.32, + "probability": 0.9387 + }, + { + "start": 64711.28, + "end": 64712.25, + "probability": 0.9713 + }, + { + "start": 64713.8, + "end": 64715.02, + "probability": 0.9935 + }, + { + "start": 64716.12, + "end": 64718.7, + "probability": 0.8127 + }, + { + "start": 64718.86, + "end": 64721.0, + "probability": 0.9746 + }, + { + "start": 64721.02, + "end": 64722.12, + "probability": 0.5611 + }, + { + "start": 64723.42, + "end": 64727.02, + "probability": 0.9833 + }, + { + "start": 64727.66, + "end": 64729.0, + "probability": 0.9917 + }, + { + "start": 64730.84, + "end": 64733.02, + "probability": 0.9747 + }, + { + "start": 64733.6, + "end": 64735.18, + "probability": 0.9661 + }, + { + "start": 64736.46, + "end": 64738.02, + "probability": 0.7644 + }, + { + "start": 64738.14, + "end": 64740.08, + "probability": 0.5646 + }, + { + "start": 64740.92, + "end": 64742.72, + "probability": 0.972 + }, + { + "start": 64744.38, + "end": 64747.46, + "probability": 0.7309 + }, + { + "start": 64749.02, + "end": 64750.68, + "probability": 0.9657 + }, + { + "start": 64750.82, + "end": 64751.4, + "probability": 0.6787 + }, + { + "start": 64751.5, + "end": 64752.24, + "probability": 0.8167 + }, + { + "start": 64752.48, + "end": 64753.48, + "probability": 0.7577 + }, + { + "start": 64753.68, + "end": 64755.24, + "probability": 0.7737 + }, + { + "start": 64755.48, + "end": 64756.14, + "probability": 0.478 + }, + { + "start": 64756.14, + "end": 64756.8, + "probability": 0.4611 + }, + { + "start": 64758.36, + "end": 64760.24, + "probability": 0.9406 + }, + { + "start": 64762.02, + "end": 64763.88, + "probability": 0.6834 + }, + { + "start": 64765.32, + "end": 64768.52, + "probability": 0.9982 + }, + { + "start": 64768.92, + "end": 64770.08, + "probability": 0.9293 + }, + { + "start": 64770.72, + "end": 64774.4, + "probability": 0.969 + }, + { + "start": 64775.26, + "end": 64777.02, + "probability": 0.9848 + }, + { + "start": 64779.08, + "end": 64781.36, + "probability": 0.9982 + }, + { + "start": 64781.42, + "end": 64783.8, + "probability": 0.7225 + }, + { + "start": 64785.78, + "end": 64787.28, + "probability": 0.9482 + }, + { + "start": 64787.98, + "end": 64788.82, + "probability": 0.9656 + }, + { + "start": 64790.1, + "end": 64793.02, + "probability": 0.6613 + }, + { + "start": 64793.12, + "end": 64794.24, + "probability": 0.9841 + }, + { + "start": 64794.8, + "end": 64795.98, + "probability": 0.9932 + }, + { + "start": 64796.62, + "end": 64797.82, + "probability": 0.8466 + }, + { + "start": 64797.82, + "end": 64798.22, + "probability": 0.7894 + }, + { + "start": 64800.06, + "end": 64803.28, + "probability": 0.8536 + }, + { + "start": 64805.52, + "end": 64806.9, + "probability": 0.6087 + }, + { + "start": 64807.56, + "end": 64809.86, + "probability": 0.9762 + }, + { + "start": 64810.52, + "end": 64812.76, + "probability": 0.7542 + }, + { + "start": 64814.42, + "end": 64816.23, + "probability": 0.7914 + }, + { + "start": 64816.92, + "end": 64818.46, + "probability": 0.7325 + }, + { + "start": 64818.64, + "end": 64819.98, + "probability": 0.9975 + }, + { + "start": 64820.1, + "end": 64820.86, + "probability": 0.9802 + }, + { + "start": 64821.62, + "end": 64822.98, + "probability": 0.6706 + }, + { + "start": 64824.92, + "end": 64825.58, + "probability": 0.9433 + }, + { + "start": 64825.72, + "end": 64829.46, + "probability": 0.8673 + }, + { + "start": 64830.62, + "end": 64831.6, + "probability": 0.9933 + }, + { + "start": 64832.54, + "end": 64833.22, + "probability": 0.9037 + }, + { + "start": 64835.34, + "end": 64837.22, + "probability": 0.8706 + }, + { + "start": 64838.52, + "end": 64841.84, + "probability": 0.9819 + }, + { + "start": 64843.12, + "end": 64846.26, + "probability": 0.9258 + }, + { + "start": 64847.68, + "end": 64850.72, + "probability": 0.7482 + }, + { + "start": 64850.84, + "end": 64852.36, + "probability": 0.8813 + }, + { + "start": 64854.69, + "end": 64859.68, + "probability": 0.906 + }, + { + "start": 64860.94, + "end": 64863.58, + "probability": 0.9595 + }, + { + "start": 64863.66, + "end": 64867.56, + "probability": 0.9969 + }, + { + "start": 64867.72, + "end": 64867.94, + "probability": 0.8844 + }, + { + "start": 64868.04, + "end": 64868.6, + "probability": 0.8148 + }, + { + "start": 64868.74, + "end": 64869.3, + "probability": 0.575 + }, + { + "start": 64870.22, + "end": 64874.48, + "probability": 0.8535 + }, + { + "start": 64875.18, + "end": 64876.32, + "probability": 0.9757 + }, + { + "start": 64877.22, + "end": 64878.89, + "probability": 0.9966 + }, + { + "start": 64879.44, + "end": 64881.26, + "probability": 0.9851 + }, + { + "start": 64882.08, + "end": 64883.36, + "probability": 0.887 + }, + { + "start": 64884.1, + "end": 64885.52, + "probability": 0.8133 + }, + { + "start": 64885.66, + "end": 64886.98, + "probability": 0.7581 + }, + { + "start": 64888.58, + "end": 64890.92, + "probability": 0.7279 + }, + { + "start": 64892.12, + "end": 64895.52, + "probability": 0.8488 + }, + { + "start": 64896.08, + "end": 64898.48, + "probability": 0.9966 + }, + { + "start": 64903.22, + "end": 64904.84, + "probability": 0.8481 + }, + { + "start": 64904.88, + "end": 64910.26, + "probability": 0.7184 + }, + { + "start": 64910.46, + "end": 64911.22, + "probability": 0.8604 + }, + { + "start": 64912.56, + "end": 64915.14, + "probability": 0.8822 + }, + { + "start": 64915.22, + "end": 64915.74, + "probability": 0.9944 + }, + { + "start": 64916.56, + "end": 64919.48, + "probability": 0.9937 + }, + { + "start": 64919.62, + "end": 64920.48, + "probability": 0.49 + }, + { + "start": 64920.7, + "end": 64921.2, + "probability": 0.7312 + }, + { + "start": 64921.26, + "end": 64923.68, + "probability": 0.8771 + }, + { + "start": 64923.72, + "end": 64927.16, + "probability": 0.499 + }, + { + "start": 64928.6, + "end": 64930.8, + "probability": 0.8885 + }, + { + "start": 64930.8, + "end": 64935.16, + "probability": 0.8616 + }, + { + "start": 64935.79, + "end": 64939.58, + "probability": 0.9555 + }, + { + "start": 64939.58, + "end": 64940.14, + "probability": 0.5254 + }, + { + "start": 64940.5, + "end": 64942.12, + "probability": 0.6889 + }, + { + "start": 64942.38, + "end": 64942.64, + "probability": 0.5856 + }, + { + "start": 64942.76, + "end": 64945.5, + "probability": 0.9151 + }, + { + "start": 64946.96, + "end": 64948.56, + "probability": 0.5613 + }, + { + "start": 64949.12, + "end": 64953.54, + "probability": 0.9518 + }, + { + "start": 64953.84, + "end": 64954.82, + "probability": 0.8522 + }, + { + "start": 64955.56, + "end": 64956.64, + "probability": 0.7717 + }, + { + "start": 64957.56, + "end": 64958.97, + "probability": 0.552 + }, + { + "start": 64959.04, + "end": 64961.7, + "probability": 0.712 + }, + { + "start": 64962.12, + "end": 64964.92, + "probability": 0.8379 + }, + { + "start": 64966.18, + "end": 64970.0, + "probability": 0.8794 + }, + { + "start": 64970.84, + "end": 64974.74, + "probability": 0.9721 + }, + { + "start": 64975.46, + "end": 64978.07, + "probability": 0.7188 + }, + { + "start": 64979.06, + "end": 64980.62, + "probability": 0.9769 + }, + { + "start": 64981.36, + "end": 64983.28, + "probability": 0.9984 + }, + { + "start": 64984.42, + "end": 64987.5, + "probability": 0.6334 + }, + { + "start": 64987.58, + "end": 64988.5, + "probability": 0.638 + }, + { + "start": 64989.42, + "end": 64990.36, + "probability": 0.6333 + }, + { + "start": 64990.38, + "end": 64995.86, + "probability": 0.9846 + }, + { + "start": 64996.62, + "end": 64997.02, + "probability": 0.3413 + }, + { + "start": 64998.28, + "end": 65001.32, + "probability": 0.9723 + }, + { + "start": 65001.48, + "end": 65002.7, + "probability": 0.9717 + }, + { + "start": 65003.78, + "end": 65005.5, + "probability": 0.248 + }, + { + "start": 65005.5, + "end": 65006.42, + "probability": 0.7581 + }, + { + "start": 65008.96, + "end": 65010.2, + "probability": 0.9268 + }, + { + "start": 65011.54, + "end": 65012.6, + "probability": 0.273 + }, + { + "start": 65012.8, + "end": 65014.84, + "probability": 0.4026 + }, + { + "start": 65014.98, + "end": 65015.44, + "probability": 0.3619 + }, + { + "start": 65015.5, + "end": 65019.86, + "probability": 0.7977 + }, + { + "start": 65020.36, + "end": 65020.94, + "probability": 0.8289 + }, + { + "start": 65027.0, + "end": 65030.08, + "probability": 0.676 + }, + { + "start": 65030.22, + "end": 65032.22, + "probability": 0.3398 + }, + { + "start": 65032.26, + "end": 65032.96, + "probability": 0.4949 + }, + { + "start": 65033.14, + "end": 65037.22, + "probability": 0.7505 + }, + { + "start": 65039.56, + "end": 65042.7, + "probability": 0.6142 + }, + { + "start": 65042.9, + "end": 65043.62, + "probability": 0.544 + }, + { + "start": 65043.66, + "end": 65046.76, + "probability": 0.4056 + }, + { + "start": 65047.42, + "end": 65049.98, + "probability": 0.5038 + }, + { + "start": 65050.16, + "end": 65050.38, + "probability": 0.7192 + }, + { + "start": 65050.78, + "end": 65051.34, + "probability": 0.4799 + }, + { + "start": 65051.92, + "end": 65054.24, + "probability": 0.4445 + }, + { + "start": 65056.58, + "end": 65060.02, + "probability": 0.6466 + }, + { + "start": 65060.54, + "end": 65061.01, + "probability": 0.8932 + }, + { + "start": 65062.0, + "end": 65062.34, + "probability": 0.1964 + }, + { + "start": 65063.5, + "end": 65066.14, + "probability": 0.0783 + }, + { + "start": 65066.36, + "end": 65070.0, + "probability": 0.4454 + }, + { + "start": 65071.26, + "end": 65074.74, + "probability": 0.7261 + }, + { + "start": 65075.9, + "end": 65078.19, + "probability": 0.8194 + }, + { + "start": 65079.36, + "end": 65084.58, + "probability": 0.9478 + }, + { + "start": 65085.0, + "end": 65090.0, + "probability": 0.8007 + }, + { + "start": 65091.32, + "end": 65098.96, + "probability": 0.8418 + }, + { + "start": 65099.02, + "end": 65099.82, + "probability": 0.7377 + }, + { + "start": 65099.86, + "end": 65101.44, + "probability": 0.9821 + }, + { + "start": 65101.88, + "end": 65104.56, + "probability": 0.9165 + }, + { + "start": 65105.02, + "end": 65105.96, + "probability": 0.8125 + }, + { + "start": 65107.38, + "end": 65115.0, + "probability": 0.922 + }, + { + "start": 65115.64, + "end": 65118.34, + "probability": 0.5758 + }, + { + "start": 65118.48, + "end": 65123.24, + "probability": 0.7216 + }, + { + "start": 65123.86, + "end": 65127.14, + "probability": 0.7147 + }, + { + "start": 65127.32, + "end": 65127.44, + "probability": 0.6173 + }, + { + "start": 65127.88, + "end": 65129.98, + "probability": 0.813 + }, + { + "start": 65130.06, + "end": 65130.47, + "probability": 0.5321 + }, + { + "start": 65131.26, + "end": 65132.22, + "probability": 0.7107 + }, + { + "start": 65132.22, + "end": 65133.61, + "probability": 0.7512 + }, + { + "start": 65134.44, + "end": 65135.2, + "probability": 0.3856 + }, + { + "start": 65135.34, + "end": 65135.76, + "probability": 0.618 + }, + { + "start": 65135.9, + "end": 65138.2, + "probability": 0.8684 + }, + { + "start": 65138.3, + "end": 65139.52, + "probability": 0.7764 + }, + { + "start": 65141.28, + "end": 65146.48, + "probability": 0.5599 + }, + { + "start": 65147.72, + "end": 65150.0, + "probability": 0.5741 + }, + { + "start": 65150.12, + "end": 65150.84, + "probability": 0.6874 + }, + { + "start": 65151.26, + "end": 65153.08, + "probability": 0.8315 + }, + { + "start": 65153.12, + "end": 65160.5, + "probability": 0.5616 + }, + { + "start": 65160.56, + "end": 65161.84, + "probability": 0.5745 + }, + { + "start": 65162.64, + "end": 65165.32, + "probability": 0.968 + }, + { + "start": 65165.4, + "end": 65168.52, + "probability": 0.4107 + }, + { + "start": 65168.94, + "end": 65170.18, + "probability": 0.8444 + }, + { + "start": 65170.26, + "end": 65171.46, + "probability": 0.7041 + }, + { + "start": 65171.72, + "end": 65173.42, + "probability": 0.7284 + }, + { + "start": 65174.18, + "end": 65177.34, + "probability": 0.8312 + }, + { + "start": 65178.5, + "end": 65184.28, + "probability": 0.9874 + }, + { + "start": 65184.44, + "end": 65185.44, + "probability": 0.6488 + }, + { + "start": 65191.28, + "end": 65196.66, + "probability": 0.5944 + }, + { + "start": 65197.5, + "end": 65199.34, + "probability": 0.7712 + }, + { + "start": 65200.74, + "end": 65205.11, + "probability": 0.3589 + }, + { + "start": 65207.58, + "end": 65210.66, + "probability": 0.8473 + }, + { + "start": 65210.72, + "end": 65214.24, + "probability": 0.8631 + }, + { + "start": 65215.1, + "end": 65216.98, + "probability": 0.9694 + }, + { + "start": 65217.08, + "end": 65217.96, + "probability": 0.9288 + }, + { + "start": 65218.62, + "end": 65220.9, + "probability": 0.6254 + }, + { + "start": 65221.46, + "end": 65223.7, + "probability": 0.4079 + }, + { + "start": 65223.86, + "end": 65226.36, + "probability": 0.5159 + }, + { + "start": 65226.86, + "end": 65228.6, + "probability": 0.7398 + }, + { + "start": 65230.2, + "end": 65232.54, + "probability": 0.9962 + }, + { + "start": 65233.72, + "end": 65235.06, + "probability": 0.4504 + }, + { + "start": 65235.12, + "end": 65235.88, + "probability": 0.8153 + }, + { + "start": 65239.36, + "end": 65241.64, + "probability": 0.5257 + }, + { + "start": 65242.3, + "end": 65243.48, + "probability": 0.8589 + }, + { + "start": 65244.62, + "end": 65245.52, + "probability": 0.2352 + }, + { + "start": 65246.52, + "end": 65248.06, + "probability": 0.9505 + }, + { + "start": 65248.32, + "end": 65249.24, + "probability": 0.3539 + }, + { + "start": 65249.3, + "end": 65251.58, + "probability": 0.5839 + }, + { + "start": 65252.02, + "end": 65253.54, + "probability": 0.8093 + }, + { + "start": 65254.0, + "end": 65255.26, + "probability": 0.9167 + }, + { + "start": 65255.34, + "end": 65258.22, + "probability": 0.7732 + }, + { + "start": 65260.0, + "end": 65262.3, + "probability": 0.7533 + }, + { + "start": 65262.36, + "end": 65266.7, + "probability": 0.9878 + }, + { + "start": 65267.54, + "end": 65271.12, + "probability": 0.6485 + }, + { + "start": 65271.7, + "end": 65275.68, + "probability": 0.7699 + }, + { + "start": 65279.06, + "end": 65283.76, + "probability": 0.9912 + }, + { + "start": 65283.76, + "end": 65289.66, + "probability": 0.9611 + }, + { + "start": 65290.22, + "end": 65294.8, + "probability": 0.8868 + }, + { + "start": 65295.34, + "end": 65296.44, + "probability": 0.5229 + }, + { + "start": 65297.46, + "end": 65303.16, + "probability": 0.9692 + }, + { + "start": 65303.84, + "end": 65308.1, + "probability": 0.9304 + }, + { + "start": 65309.82, + "end": 65312.68, + "probability": 0.9001 + }, + { + "start": 65314.94, + "end": 65316.32, + "probability": 0.8785 + }, + { + "start": 65317.18, + "end": 65318.46, + "probability": 0.9255 + }, + { + "start": 65318.78, + "end": 65321.6, + "probability": 0.9089 + }, + { + "start": 65322.42, + "end": 65322.91, + "probability": 0.6219 + }, + { + "start": 65324.6, + "end": 65326.1, + "probability": 0.6855 + }, + { + "start": 65326.28, + "end": 65327.15, + "probability": 0.8977 + }, + { + "start": 65327.5, + "end": 65329.82, + "probability": 0.955 + }, + { + "start": 65329.98, + "end": 65331.38, + "probability": 0.9801 + }, + { + "start": 65331.88, + "end": 65334.47, + "probability": 0.9896 + }, + { + "start": 65335.86, + "end": 65339.16, + "probability": 0.994 + }, + { + "start": 65339.16, + "end": 65344.12, + "probability": 0.9723 + }, + { + "start": 65345.22, + "end": 65346.62, + "probability": 0.1461 + }, + { + "start": 65346.62, + "end": 65347.92, + "probability": 0.4142 + }, + { + "start": 65348.56, + "end": 65350.96, + "probability": 0.6196 + }, + { + "start": 65352.6, + "end": 65358.14, + "probability": 0.7532 + }, + { + "start": 65358.24, + "end": 65359.36, + "probability": 0.6731 + }, + { + "start": 65359.96, + "end": 65364.06, + "probability": 0.9713 + }, + { + "start": 65364.72, + "end": 65365.68, + "probability": 0.6011 + }, + { + "start": 65366.7, + "end": 65368.32, + "probability": 0.7941 + }, + { + "start": 65368.32, + "end": 65372.01, + "probability": 0.9526 + }, + { + "start": 65373.34, + "end": 65377.5, + "probability": 0.5609 + }, + { + "start": 65378.4, + "end": 65379.01, + "probability": 0.3675 + }, + { + "start": 65380.12, + "end": 65381.64, + "probability": 0.6477 + }, + { + "start": 65382.65, + "end": 65384.38, + "probability": 0.9375 + }, + { + "start": 65385.12, + "end": 65386.14, + "probability": 0.8328 + }, + { + "start": 65387.22, + "end": 65391.56, + "probability": 0.9912 + }, + { + "start": 65391.66, + "end": 65392.4, + "probability": 0.8384 + }, + { + "start": 65392.42, + "end": 65393.02, + "probability": 0.9423 + }, + { + "start": 65393.86, + "end": 65399.48, + "probability": 0.9888 + }, + { + "start": 65399.66, + "end": 65401.36, + "probability": 0.9824 + }, + { + "start": 65401.64, + "end": 65404.2, + "probability": 0.7595 + }, + { + "start": 65404.8, + "end": 65410.06, + "probability": 0.831 + }, + { + "start": 65410.28, + "end": 65412.5, + "probability": 0.5005 + }, + { + "start": 65412.9, + "end": 65413.0, + "probability": 0.6795 + }, + { + "start": 65413.82, + "end": 65415.6, + "probability": 0.584 + }, + { + "start": 65419.06, + "end": 65419.58, + "probability": 0.8948 + }, + { + "start": 65419.84, + "end": 65420.06, + "probability": 0.4944 + }, + { + "start": 65421.02, + "end": 65423.62, + "probability": 0.818 + }, + { + "start": 65424.5, + "end": 65426.5, + "probability": 0.4632 + }, + { + "start": 65426.5, + "end": 65428.56, + "probability": 0.8311 + }, + { + "start": 65428.74, + "end": 65430.94, + "probability": 0.1151 + }, + { + "start": 65431.4, + "end": 65432.24, + "probability": 0.8281 + }, + { + "start": 65433.44, + "end": 65439.02, + "probability": 0.7513 + }, + { + "start": 65440.02, + "end": 65441.19, + "probability": 0.8267 + }, + { + "start": 65441.5, + "end": 65445.39, + "probability": 0.9927 + }, + { + "start": 65445.78, + "end": 65447.08, + "probability": 0.8115 + }, + { + "start": 65447.48, + "end": 65451.14, + "probability": 0.9907 + }, + { + "start": 65451.78, + "end": 65453.64, + "probability": 0.9408 + }, + { + "start": 65454.96, + "end": 65458.02, + "probability": 0.9711 + }, + { + "start": 65458.56, + "end": 65459.52, + "probability": 0.5806 + }, + { + "start": 65459.7, + "end": 65461.94, + "probability": 0.2408 + }, + { + "start": 65463.18, + "end": 65468.64, + "probability": 0.9575 + }, + { + "start": 65469.1, + "end": 65470.6, + "probability": 0.6077 + }, + { + "start": 65470.6, + "end": 65471.16, + "probability": 0.2381 + }, + { + "start": 65471.34, + "end": 65474.48, + "probability": 0.1325 + }, + { + "start": 65474.74, + "end": 65475.72, + "probability": 0.1666 + }, + { + "start": 65476.68, + "end": 65479.16, + "probability": 0.1247 + }, + { + "start": 65480.08, + "end": 65482.54, + "probability": 0.7568 + }, + { + "start": 65483.42, + "end": 65484.22, + "probability": 0.9646 + }, + { + "start": 65486.0, + "end": 65487.36, + "probability": 0.7396 + }, + { + "start": 65488.02, + "end": 65490.28, + "probability": 0.6401 + }, + { + "start": 65490.78, + "end": 65493.22, + "probability": 0.9929 + }, + { + "start": 65493.9, + "end": 65497.08, + "probability": 0.7964 + }, + { + "start": 65497.62, + "end": 65499.4, + "probability": 0.5352 + }, + { + "start": 65499.86, + "end": 65500.62, + "probability": 0.7286 + }, + { + "start": 65501.18, + "end": 65502.52, + "probability": 0.7887 + }, + { + "start": 65503.34, + "end": 65505.2, + "probability": 0.9868 + }, + { + "start": 65507.08, + "end": 65511.24, + "probability": 0.4932 + }, + { + "start": 65511.8, + "end": 65512.36, + "probability": 0.8911 + }, + { + "start": 65512.98, + "end": 65516.2, + "probability": 0.9276 + }, + { + "start": 65516.46, + "end": 65517.56, + "probability": 0.7135 + }, + { + "start": 65519.59, + "end": 65523.02, + "probability": 0.8553 + }, + { + "start": 65523.36, + "end": 65525.68, + "probability": 0.9537 + }, + { + "start": 65526.34, + "end": 65529.2, + "probability": 0.9917 + }, + { + "start": 65530.6, + "end": 65531.06, + "probability": 0.5575 + }, + { + "start": 65531.62, + "end": 65531.72, + "probability": 0.3939 + }, + { + "start": 65531.72, + "end": 65531.72, + "probability": 0.2735 + }, + { + "start": 65531.72, + "end": 65533.54, + "probability": 0.8778 + }, + { + "start": 65533.76, + "end": 65538.4, + "probability": 0.8522 + }, + { + "start": 65539.68, + "end": 65544.28, + "probability": 0.9858 + }, + { + "start": 65544.96, + "end": 65545.66, + "probability": 0.4514 + }, + { + "start": 65546.88, + "end": 65547.92, + "probability": 0.9254 + }, + { + "start": 65548.7, + "end": 65551.36, + "probability": 0.9442 + }, + { + "start": 65551.36, + "end": 65554.98, + "probability": 0.9966 + }, + { + "start": 65555.58, + "end": 65559.58, + "probability": 0.9653 + }, + { + "start": 65559.8, + "end": 65564.8, + "probability": 0.9972 + }, + { + "start": 65564.92, + "end": 65565.62, + "probability": 0.6378 + }, + { + "start": 65565.74, + "end": 65568.44, + "probability": 0.8318 + }, + { + "start": 65569.2, + "end": 65572.08, + "probability": 0.9502 + }, + { + "start": 65572.16, + "end": 65573.88, + "probability": 0.4936 + }, + { + "start": 65573.94, + "end": 65575.76, + "probability": 0.8359 + }, + { + "start": 65575.92, + "end": 65579.58, + "probability": 0.7832 + }, + { + "start": 65580.06, + "end": 65582.58, + "probability": 0.3253 + }, + { + "start": 65583.92, + "end": 65585.04, + "probability": 0.1668 + }, + { + "start": 65585.36, + "end": 65586.22, + "probability": 0.0608 + }, + { + "start": 65586.22, + "end": 65586.48, + "probability": 0.422 + }, + { + "start": 65587.12, + "end": 65591.64, + "probability": 0.8919 + }, + { + "start": 65592.7, + "end": 65593.1, + "probability": 0.3703 + }, + { + "start": 65593.58, + "end": 65594.78, + "probability": 0.6427 + }, + { + "start": 65595.4, + "end": 65597.74, + "probability": 0.7955 + }, + { + "start": 65598.48, + "end": 65601.98, + "probability": 0.9785 + }, + { + "start": 65601.98, + "end": 65604.86, + "probability": 0.9989 + }, + { + "start": 65605.9, + "end": 65607.48, + "probability": 0.939 + }, + { + "start": 65607.7, + "end": 65608.45, + "probability": 0.8818 + }, + { + "start": 65609.54, + "end": 65611.08, + "probability": 0.866 + }, + { + "start": 65611.58, + "end": 65611.98, + "probability": 0.5137 + }, + { + "start": 65612.06, + "end": 65612.5, + "probability": 0.3017 + }, + { + "start": 65612.58, + "end": 65613.46, + "probability": 0.7432 + }, + { + "start": 65613.52, + "end": 65614.24, + "probability": 0.8964 + }, + { + "start": 65615.68, + "end": 65622.04, + "probability": 0.6742 + }, + { + "start": 65622.7, + "end": 65626.4, + "probability": 0.6639 + }, + { + "start": 65627.58, + "end": 65629.32, + "probability": 0.9195 + }, + { + "start": 65630.5, + "end": 65632.18, + "probability": 0.8322 + }, + { + "start": 65632.28, + "end": 65632.86, + "probability": 0.3779 + }, + { + "start": 65632.94, + "end": 65634.64, + "probability": 0.7881 + }, + { + "start": 65634.78, + "end": 65635.32, + "probability": 0.698 + }, + { + "start": 65635.34, + "end": 65640.04, + "probability": 0.2953 + }, + { + "start": 65640.04, + "end": 65640.34, + "probability": 0.6753 + }, + { + "start": 65640.9, + "end": 65643.24, + "probability": 0.8265 + }, + { + "start": 65643.46, + "end": 65644.36, + "probability": 0.3701 + }, + { + "start": 65644.36, + "end": 65648.08, + "probability": 0.4105 + }, + { + "start": 65648.46, + "end": 65650.68, + "probability": 0.6652 + }, + { + "start": 65650.68, + "end": 65651.22, + "probability": 0.4763 + }, + { + "start": 65652.72, + "end": 65654.12, + "probability": 0.2204 + }, + { + "start": 65654.12, + "end": 65655.68, + "probability": 0.9915 + }, + { + "start": 65657.18, + "end": 65659.2, + "probability": 0.8663 + }, + { + "start": 65661.54, + "end": 65663.74, + "probability": 0.8835 + }, + { + "start": 65664.84, + "end": 65669.16, + "probability": 0.6098 + }, + { + "start": 65669.24, + "end": 65669.96, + "probability": 0.8149 + }, + { + "start": 65670.14, + "end": 65671.52, + "probability": 0.7905 + }, + { + "start": 65672.66, + "end": 65674.9, + "probability": 0.9891 + }, + { + "start": 65675.62, + "end": 65680.86, + "probability": 0.9719 + }, + { + "start": 65681.9, + "end": 65684.02, + "probability": 0.8448 + }, + { + "start": 65684.62, + "end": 65686.26, + "probability": 0.8445 + }, + { + "start": 65686.34, + "end": 65689.76, + "probability": 0.8057 + }, + { + "start": 65689.84, + "end": 65689.98, + "probability": 0.2248 + }, + { + "start": 65690.08, + "end": 65690.18, + "probability": 0.4194 + }, + { + "start": 65690.44, + "end": 65691.74, + "probability": 0.6656 + }, + { + "start": 65691.84, + "end": 65692.6, + "probability": 0.6827 + }, + { + "start": 65692.72, + "end": 65693.32, + "probability": 0.6076 + }, + { + "start": 65694.06, + "end": 65698.34, + "probability": 0.4469 + }, + { + "start": 65700.2, + "end": 65700.68, + "probability": 0.0652 + }, + { + "start": 65700.96, + "end": 65701.02, + "probability": 0.3982 + }, + { + "start": 65702.68, + "end": 65704.96, + "probability": 0.2352 + }, + { + "start": 65705.06, + "end": 65707.94, + "probability": 0.6494 + }, + { + "start": 65708.48, + "end": 65710.2, + "probability": 0.9692 + }, + { + "start": 65710.3, + "end": 65711.4, + "probability": 0.9745 + }, + { + "start": 65712.0, + "end": 65713.3, + "probability": 0.9742 + }, + { + "start": 65713.4, + "end": 65717.02, + "probability": 0.8614 + }, + { + "start": 65717.82, + "end": 65719.3, + "probability": 0.9394 + }, + { + "start": 65719.94, + "end": 65720.94, + "probability": 0.9843 + }, + { + "start": 65721.02, + "end": 65722.26, + "probability": 0.946 + }, + { + "start": 65722.62, + "end": 65725.9, + "probability": 0.8245 + }, + { + "start": 65727.22, + "end": 65728.74, + "probability": 0.9927 + }, + { + "start": 65728.86, + "end": 65729.48, + "probability": 0.5337 + }, + { + "start": 65729.5, + "end": 65730.52, + "probability": 0.9629 + }, + { + "start": 65730.74, + "end": 65732.58, + "probability": 0.7297 + }, + { + "start": 65733.82, + "end": 65737.84, + "probability": 0.9053 + }, + { + "start": 65737.94, + "end": 65741.62, + "probability": 0.9401 + }, + { + "start": 65742.99, + "end": 65748.98, + "probability": 0.7592 + }, + { + "start": 65749.88, + "end": 65750.18, + "probability": 0.9244 + }, + { + "start": 65751.04, + "end": 65753.24, + "probability": 0.6649 + }, + { + "start": 65753.88, + "end": 65756.34, + "probability": 0.9627 + }, + { + "start": 65756.34, + "end": 65760.0, + "probability": 0.9688 + }, + { + "start": 65760.06, + "end": 65762.06, + "probability": 0.9511 + }, + { + "start": 65762.64, + "end": 65765.44, + "probability": 0.9279 + }, + { + "start": 65766.24, + "end": 65767.8, + "probability": 0.4857 + }, + { + "start": 65768.1, + "end": 65768.56, + "probability": 0.4729 + }, + { + "start": 65768.98, + "end": 65770.7, + "probability": 0.3541 + }, + { + "start": 65770.74, + "end": 65772.86, + "probability": 0.6469 + }, + { + "start": 65772.9, + "end": 65774.86, + "probability": 0.7276 + }, + { + "start": 65776.83, + "end": 65779.13, + "probability": 0.0933 + }, + { + "start": 65779.84, + "end": 65780.76, + "probability": 0.3392 + }, + { + "start": 65781.44, + "end": 65783.63, + "probability": 0.718 + }, + { + "start": 65784.2, + "end": 65786.84, + "probability": 0.5476 + }, + { + "start": 65787.62, + "end": 65791.28, + "probability": 0.8092 + }, + { + "start": 65792.44, + "end": 65793.58, + "probability": 0.9163 + }, + { + "start": 65794.9, + "end": 65796.9, + "probability": 0.9951 + }, + { + "start": 65797.8, + "end": 65800.28, + "probability": 0.9048 + }, + { + "start": 65800.96, + "end": 65803.3, + "probability": 0.9954 + }, + { + "start": 65803.92, + "end": 65806.9, + "probability": 0.8823 + }, + { + "start": 65807.3, + "end": 65808.34, + "probability": 0.9014 + }, + { + "start": 65808.5, + "end": 65811.6, + "probability": 0.9524 + }, + { + "start": 65812.06, + "end": 65814.1, + "probability": 0.826 + }, + { + "start": 65814.52, + "end": 65817.46, + "probability": 0.7067 + }, + { + "start": 65817.58, + "end": 65818.38, + "probability": 0.9675 + }, + { + "start": 65818.66, + "end": 65822.26, + "probability": 0.975 + }, + { + "start": 65822.88, + "end": 65823.3, + "probability": 0.5816 + }, + { + "start": 65823.38, + "end": 65826.3, + "probability": 0.9907 + }, + { + "start": 65826.64, + "end": 65828.01, + "probability": 0.9618 + }, + { + "start": 65828.42, + "end": 65829.98, + "probability": 0.8945 + }, + { + "start": 65830.72, + "end": 65832.74, + "probability": 0.9375 + }, + { + "start": 65833.86, + "end": 65834.4, + "probability": 0.8613 + }, + { + "start": 65835.76, + "end": 65839.32, + "probability": 0.9077 + }, + { + "start": 65839.84, + "end": 65841.52, + "probability": 0.967 + }, + { + "start": 65841.6, + "end": 65842.34, + "probability": 0.6007 + }, + { + "start": 65842.58, + "end": 65843.6, + "probability": 0.7813 + }, + { + "start": 65844.66, + "end": 65845.9, + "probability": 0.485 + }, + { + "start": 65847.36, + "end": 65850.1, + "probability": 0.9301 + }, + { + "start": 65850.54, + "end": 65853.84, + "probability": 0.9452 + }, + { + "start": 65854.4, + "end": 65857.2, + "probability": 0.7348 + }, + { + "start": 65858.14, + "end": 65859.04, + "probability": 0.9956 + }, + { + "start": 65859.44, + "end": 65861.82, + "probability": 0.682 + }, + { + "start": 65862.24, + "end": 65865.62, + "probability": 0.9962 + }, + { + "start": 65865.86, + "end": 65866.0, + "probability": 0.4908 + }, + { + "start": 65866.16, + "end": 65868.72, + "probability": 0.8669 + }, + { + "start": 65868.78, + "end": 65869.68, + "probability": 0.2338 + }, + { + "start": 65869.74, + "end": 65872.18, + "probability": 0.6786 + }, + { + "start": 65872.2, + "end": 65872.8, + "probability": 0.2989 + }, + { + "start": 65873.12, + "end": 65874.72, + "probability": 0.9864 + }, + { + "start": 65875.38, + "end": 65876.5, + "probability": 0.9541 + }, + { + "start": 65878.68, + "end": 65882.48, + "probability": 0.6752 + }, + { + "start": 65883.96, + "end": 65885.3, + "probability": 0.9136 + }, + { + "start": 65887.28, + "end": 65889.64, + "probability": 0.2642 + }, + { + "start": 65889.9, + "end": 65891.54, + "probability": 0.8386 + }, + { + "start": 65891.88, + "end": 65895.16, + "probability": 0.8347 + }, + { + "start": 65895.2, + "end": 65896.34, + "probability": 0.9341 + }, + { + "start": 65897.2, + "end": 65900.6, + "probability": 0.9844 + }, + { + "start": 65900.6, + "end": 65905.04, + "probability": 0.8646 + }, + { + "start": 65905.56, + "end": 65908.44, + "probability": 0.8015 + }, + { + "start": 65909.66, + "end": 65912.18, + "probability": 0.9919 + }, + { + "start": 65912.26, + "end": 65913.92, + "probability": 0.6157 + }, + { + "start": 65914.64, + "end": 65917.32, + "probability": 0.9883 + }, + { + "start": 65918.08, + "end": 65921.75, + "probability": 0.993 + }, + { + "start": 65922.86, + "end": 65925.5, + "probability": 0.9134 + }, + { + "start": 65925.58, + "end": 65926.86, + "probability": 0.9572 + }, + { + "start": 65926.96, + "end": 65927.06, + "probability": 0.8733 + }, + { + "start": 65929.06, + "end": 65933.1, + "probability": 0.6268 + }, + { + "start": 65933.92, + "end": 65935.52, + "probability": 0.9809 + }, + { + "start": 65941.28, + "end": 65942.18, + "probability": 0.0247 + }, + { + "start": 65943.04, + "end": 65944.26, + "probability": 0.157 + }, + { + "start": 65944.26, + "end": 65944.48, + "probability": 0.1679 + }, + { + "start": 65944.48, + "end": 65944.66, + "probability": 0.1665 + }, + { + "start": 65944.66, + "end": 65944.94, + "probability": 0.3184 + }, + { + "start": 65947.18, + "end": 65948.16, + "probability": 0.09 + }, + { + "start": 65949.02, + "end": 65950.14, + "probability": 0.4931 + }, + { + "start": 65951.46, + "end": 65954.08, + "probability": 0.1449 + }, + { + "start": 65954.22, + "end": 65955.28, + "probability": 0.2614 + }, + { + "start": 65957.02, + "end": 65961.68, + "probability": 0.8536 + }, + { + "start": 65962.0, + "end": 65962.7, + "probability": 0.936 + }, + { + "start": 65963.58, + "end": 65964.96, + "probability": 0.9097 + }, + { + "start": 65965.52, + "end": 65966.61, + "probability": 0.7572 + }, + { + "start": 65967.28, + "end": 65969.36, + "probability": 0.7999 + }, + { + "start": 65970.04, + "end": 65972.58, + "probability": 0.7871 + }, + { + "start": 65973.54, + "end": 65974.5, + "probability": 0.9415 + }, + { + "start": 65974.52, + "end": 65977.26, + "probability": 0.9425 + }, + { + "start": 65977.44, + "end": 65977.86, + "probability": 0.3855 + }, + { + "start": 65978.9, + "end": 65980.21, + "probability": 0.8526 + }, + { + "start": 65980.96, + "end": 65983.62, + "probability": 0.7641 + }, + { + "start": 65983.62, + "end": 65986.22, + "probability": 0.9951 + }, + { + "start": 65986.62, + "end": 65988.73, + "probability": 0.3849 + }, + { + "start": 65989.0, + "end": 65993.68, + "probability": 0.5586 + }, + { + "start": 65994.34, + "end": 65996.78, + "probability": 0.8286 + }, + { + "start": 65997.48, + "end": 66000.46, + "probability": 0.6952 + }, + { + "start": 66001.02, + "end": 66002.38, + "probability": 0.9551 + }, + { + "start": 66002.92, + "end": 66004.78, + "probability": 0.4127 + }, + { + "start": 66018.26, + "end": 66021.52, + "probability": 0.786 + }, + { + "start": 66021.68, + "end": 66024.28, + "probability": 0.8937 + }, + { + "start": 66025.52, + "end": 66026.42, + "probability": 0.8586 + }, + { + "start": 66026.76, + "end": 66027.24, + "probability": 0.8824 + }, + { + "start": 66027.28, + "end": 66027.74, + "probability": 0.8467 + }, + { + "start": 66027.76, + "end": 66028.74, + "probability": 0.9578 + }, + { + "start": 66029.02, + "end": 66030.18, + "probability": 0.8477 + }, + { + "start": 66032.48, + "end": 66034.26, + "probability": 0.7708 + }, + { + "start": 66035.08, + "end": 66036.98, + "probability": 0.908 + }, + { + "start": 66037.48, + "end": 66040.46, + "probability": 0.9015 + }, + { + "start": 66041.7, + "end": 66044.74, + "probability": 0.8197 + }, + { + "start": 66045.34, + "end": 66047.74, + "probability": 0.9462 + }, + { + "start": 66048.5, + "end": 66048.62, + "probability": 0.5306 + }, + { + "start": 66048.62, + "end": 66050.0, + "probability": 0.8288 + }, + { + "start": 66057.28, + "end": 66063.86, + "probability": 0.9978 + }, + { + "start": 66063.86, + "end": 66067.6, + "probability": 0.9854 + }, + { + "start": 66068.5, + "end": 66071.38, + "probability": 0.7662 + }, + { + "start": 66071.74, + "end": 66073.52, + "probability": 0.8748 + }, + { + "start": 66073.52, + "end": 66075.96, + "probability": 0.9941 + }, + { + "start": 66076.22, + "end": 66078.84, + "probability": 0.6485 + }, + { + "start": 66078.92, + "end": 66083.62, + "probability": 0.7091 + }, + { + "start": 66084.42, + "end": 66085.58, + "probability": 0.1802 + }, + { + "start": 66087.32, + "end": 66089.42, + "probability": 0.8147 + }, + { + "start": 66089.64, + "end": 66093.18, + "probability": 0.5368 + }, + { + "start": 66093.18, + "end": 66096.46, + "probability": 0.3426 + }, + { + "start": 66096.76, + "end": 66099.22, + "probability": 0.5082 + }, + { + "start": 66099.3, + "end": 66101.24, + "probability": 0.8781 + }, + { + "start": 66101.76, + "end": 66102.24, + "probability": 0.6771 + }, + { + "start": 66102.3, + "end": 66102.8, + "probability": 0.8628 + }, + { + "start": 66104.48, + "end": 66105.98, + "probability": 0.9705 + }, + { + "start": 66106.12, + "end": 66106.94, + "probability": 0.6571 + }, + { + "start": 66106.98, + "end": 66108.97, + "probability": 0.5567 + }, + { + "start": 66109.9, + "end": 66112.88, + "probability": 0.9834 + }, + { + "start": 66112.88, + "end": 66114.82, + "probability": 0.9938 + }, + { + "start": 66116.56, + "end": 66120.36, + "probability": 0.9658 + }, + { + "start": 66120.5, + "end": 66121.16, + "probability": 0.5129 + }, + { + "start": 66121.26, + "end": 66121.8, + "probability": 0.8495 + }, + { + "start": 66122.06, + "end": 66122.94, + "probability": 0.8892 + }, + { + "start": 66123.72, + "end": 66124.93, + "probability": 0.8867 + }, + { + "start": 66125.34, + "end": 66126.8, + "probability": 0.1393 + }, + { + "start": 66127.22, + "end": 66128.18, + "probability": 0.7096 + }, + { + "start": 66128.36, + "end": 66129.93, + "probability": 0.9356 + }, + { + "start": 66130.3, + "end": 66134.76, + "probability": 0.8589 + }, + { + "start": 66135.44, + "end": 66138.56, + "probability": 0.995 + }, + { + "start": 66138.7, + "end": 66139.71, + "probability": 0.998 + }, + { + "start": 66140.86, + "end": 66143.22, + "probability": 0.942 + }, + { + "start": 66145.02, + "end": 66146.62, + "probability": 0.9237 + }, + { + "start": 66146.72, + "end": 66148.82, + "probability": 0.9041 + }, + { + "start": 66150.52, + "end": 66153.9, + "probability": 0.9915 + }, + { + "start": 66155.98, + "end": 66157.08, + "probability": 0.88 + }, + { + "start": 66157.94, + "end": 66158.76, + "probability": 0.6484 + }, + { + "start": 66159.08, + "end": 66162.68, + "probability": 0.9312 + }, + { + "start": 66162.82, + "end": 66164.78, + "probability": 0.9701 + }, + { + "start": 66165.62, + "end": 66167.58, + "probability": 0.7663 + }, + { + "start": 66168.52, + "end": 66169.68, + "probability": 0.9565 + }, + { + "start": 66169.76, + "end": 66170.78, + "probability": 0.9729 + }, + { + "start": 66170.9, + "end": 66172.38, + "probability": 0.777 + }, + { + "start": 66173.08, + "end": 66173.76, + "probability": 0.9664 + }, + { + "start": 66173.88, + "end": 66174.53, + "probability": 0.9658 + }, + { + "start": 66174.92, + "end": 66175.54, + "probability": 0.6289 + }, + { + "start": 66176.04, + "end": 66177.07, + "probability": 0.9902 + }, + { + "start": 66178.54, + "end": 66179.38, + "probability": 0.8165 + }, + { + "start": 66179.46, + "end": 66180.66, + "probability": 0.1169 + }, + { + "start": 66180.74, + "end": 66181.98, + "probability": 0.9214 + }, + { + "start": 66182.88, + "end": 66185.06, + "probability": 0.8369 + }, + { + "start": 66186.24, + "end": 66188.9, + "probability": 0.987 + }, + { + "start": 66188.92, + "end": 66189.98, + "probability": 0.8809 + }, + { + "start": 66190.38, + "end": 66193.94, + "probability": 0.9351 + }, + { + "start": 66195.0, + "end": 66197.1, + "probability": 0.8066 + }, + { + "start": 66197.94, + "end": 66202.08, + "probability": 0.9749 + }, + { + "start": 66202.48, + "end": 66203.72, + "probability": 0.9391 + }, + { + "start": 66204.46, + "end": 66206.12, + "probability": 0.9939 + }, + { + "start": 66208.96, + "end": 66210.0, + "probability": 0.4734 + }, + { + "start": 66210.16, + "end": 66211.17, + "probability": 0.5262 + }, + { + "start": 66211.64, + "end": 66213.42, + "probability": 0.6902 + }, + { + "start": 66213.58, + "end": 66214.4, + "probability": 0.3317 + }, + { + "start": 66214.54, + "end": 66216.22, + "probability": 0.49 + }, + { + "start": 66216.46, + "end": 66218.66, + "probability": 0.5141 + }, + { + "start": 66219.22, + "end": 66221.78, + "probability": 0.9292 + }, + { + "start": 66222.12, + "end": 66225.58, + "probability": 0.9751 + }, + { + "start": 66225.86, + "end": 66229.28, + "probability": 0.7583 + }, + { + "start": 66229.92, + "end": 66232.12, + "probability": 0.6015 + }, + { + "start": 66232.58, + "end": 66233.64, + "probability": 0.6483 + }, + { + "start": 66233.86, + "end": 66234.1, + "probability": 0.5372 + }, + { + "start": 66234.16, + "end": 66235.22, + "probability": 0.9868 + }, + { + "start": 66235.44, + "end": 66238.66, + "probability": 0.9458 + }, + { + "start": 66239.82, + "end": 66240.88, + "probability": 0.8823 + }, + { + "start": 66241.9, + "end": 66243.96, + "probability": 0.9971 + }, + { + "start": 66244.58, + "end": 66245.3, + "probability": 0.862 + }, + { + "start": 66246.08, + "end": 66247.66, + "probability": 0.9586 + }, + { + "start": 66248.06, + "end": 66255.08, + "probability": 0.9707 + }, + { + "start": 66255.16, + "end": 66255.94, + "probability": 0.7158 + }, + { + "start": 66256.04, + "end": 66256.68, + "probability": 0.7676 + }, + { + "start": 66258.44, + "end": 66260.02, + "probability": 0.6968 + }, + { + "start": 66260.64, + "end": 66264.86, + "probability": 0.6955 + }, + { + "start": 66265.64, + "end": 66266.56, + "probability": 0.7352 + }, + { + "start": 66266.74, + "end": 66268.1, + "probability": 0.9369 + }, + { + "start": 66268.26, + "end": 66269.52, + "probability": 0.7441 + }, + { + "start": 66272.7, + "end": 66275.72, + "probability": 0.9632 + }, + { + "start": 66275.94, + "end": 66277.06, + "probability": 0.8165 + }, + { + "start": 66277.24, + "end": 66278.5, + "probability": 0.8269 + }, + { + "start": 66278.58, + "end": 66278.84, + "probability": 0.344 + }, + { + "start": 66278.92, + "end": 66278.96, + "probability": 0.3765 + }, + { + "start": 66279.02, + "end": 66283.04, + "probability": 0.9941 + }, + { + "start": 66283.92, + "end": 66285.48, + "probability": 0.985 + }, + { + "start": 66285.54, + "end": 66286.56, + "probability": 0.5781 + }, + { + "start": 66286.64, + "end": 66287.06, + "probability": 0.5636 + }, + { + "start": 66287.06, + "end": 66287.72, + "probability": 0.7722 + }, + { + "start": 66288.44, + "end": 66290.06, + "probability": 0.9385 + }, + { + "start": 66290.2, + "end": 66291.1, + "probability": 0.8533 + }, + { + "start": 66291.16, + "end": 66292.55, + "probability": 0.9675 + }, + { + "start": 66292.74, + "end": 66293.28, + "probability": 0.5583 + }, + { + "start": 66293.34, + "end": 66293.75, + "probability": 0.7939 + }, + { + "start": 66294.24, + "end": 66294.84, + "probability": 0.609 + }, + { + "start": 66294.94, + "end": 66296.5, + "probability": 0.2381 + }, + { + "start": 66298.98, + "end": 66300.66, + "probability": 0.738 + }, + { + "start": 66302.02, + "end": 66305.68, + "probability": 0.9427 + }, + { + "start": 66306.9, + "end": 66309.66, + "probability": 0.9586 + }, + { + "start": 66310.74, + "end": 66312.84, + "probability": 0.9578 + }, + { + "start": 66315.06, + "end": 66316.36, + "probability": 0.8758 + }, + { + "start": 66319.5, + "end": 66323.78, + "probability": 0.8643 + }, + { + "start": 66325.56, + "end": 66326.54, + "probability": 0.9912 + }, + { + "start": 66329.05, + "end": 66331.58, + "probability": 0.7538 + }, + { + "start": 66333.0, + "end": 66334.78, + "probability": 0.9677 + }, + { + "start": 66336.68, + "end": 66337.28, + "probability": 0.9118 + }, + { + "start": 66339.92, + "end": 66340.88, + "probability": 0.7468 + }, + { + "start": 66341.6, + "end": 66342.28, + "probability": 0.8563 + }, + { + "start": 66343.88, + "end": 66345.84, + "probability": 0.9826 + }, + { + "start": 66347.64, + "end": 66350.7, + "probability": 0.9795 + }, + { + "start": 66352.44, + "end": 66354.26, + "probability": 0.9949 + }, + { + "start": 66355.14, + "end": 66356.86, + "probability": 0.8909 + }, + { + "start": 66357.98, + "end": 66361.7, + "probability": 0.9445 + }, + { + "start": 66361.84, + "end": 66363.22, + "probability": 0.729 + }, + { + "start": 66364.32, + "end": 66365.64, + "probability": 0.8733 + }, + { + "start": 66366.82, + "end": 66370.14, + "probability": 0.6655 + }, + { + "start": 66372.42, + "end": 66373.28, + "probability": 0.5808 + }, + { + "start": 66375.94, + "end": 66377.7, + "probability": 0.9932 + }, + { + "start": 66378.64, + "end": 66382.12, + "probability": 0.9987 + }, + { + "start": 66383.7, + "end": 66384.46, + "probability": 0.9143 + }, + { + "start": 66385.62, + "end": 66388.0, + "probability": 0.8599 + }, + { + "start": 66389.88, + "end": 66392.36, + "probability": 0.977 + }, + { + "start": 66393.24, + "end": 66395.32, + "probability": 0.7817 + }, + { + "start": 66396.54, + "end": 66397.46, + "probability": 0.9609 + }, + { + "start": 66398.38, + "end": 66399.24, + "probability": 0.9609 + }, + { + "start": 66402.76, + "end": 66403.62, + "probability": 0.8477 + }, + { + "start": 66405.58, + "end": 66407.94, + "probability": 0.7716 + }, + { + "start": 66408.7, + "end": 66411.38, + "probability": 0.8262 + }, + { + "start": 66412.16, + "end": 66413.36, + "probability": 0.9846 + }, + { + "start": 66416.32, + "end": 66416.7, + "probability": 0.3809 + }, + { + "start": 66418.08, + "end": 66424.02, + "probability": 0.9937 + }, + { + "start": 66427.0, + "end": 66428.46, + "probability": 0.7948 + }, + { + "start": 66429.56, + "end": 66430.32, + "probability": 0.9561 + }, + { + "start": 66431.58, + "end": 66435.02, + "probability": 0.93 + }, + { + "start": 66437.28, + "end": 66442.47, + "probability": 0.9648 + }, + { + "start": 66442.98, + "end": 66444.38, + "probability": 0.6172 + }, + { + "start": 66445.5, + "end": 66446.02, + "probability": 0.4037 + }, + { + "start": 66446.82, + "end": 66449.74, + "probability": 0.9668 + }, + { + "start": 66450.02, + "end": 66451.42, + "probability": 0.7898 + }, + { + "start": 66452.52, + "end": 66454.42, + "probability": 0.8946 + }, + { + "start": 66454.8, + "end": 66455.06, + "probability": 0.969 + }, + { + "start": 66456.32, + "end": 66459.2, + "probability": 0.9944 + }, + { + "start": 66460.68, + "end": 66462.56, + "probability": 0.8342 + }, + { + "start": 66462.74, + "end": 66463.72, + "probability": 0.8099 + }, + { + "start": 66464.4, + "end": 66466.33, + "probability": 0.5194 + }, + { + "start": 66467.38, + "end": 66471.14, + "probability": 0.8719 + }, + { + "start": 66472.6, + "end": 66473.86, + "probability": 0.9841 + }, + { + "start": 66474.54, + "end": 66475.66, + "probability": 0.9302 + }, + { + "start": 66477.04, + "end": 66477.44, + "probability": 0.661 + }, + { + "start": 66477.58, + "end": 66478.22, + "probability": 0.741 + }, + { + "start": 66478.32, + "end": 66481.74, + "probability": 0.9948 + }, + { + "start": 66482.76, + "end": 66484.82, + "probability": 0.9789 + }, + { + "start": 66485.38, + "end": 66486.28, + "probability": 0.9928 + }, + { + "start": 66487.68, + "end": 66490.32, + "probability": 0.8362 + }, + { + "start": 66491.38, + "end": 66495.12, + "probability": 0.9175 + }, + { + "start": 66497.2, + "end": 66498.66, + "probability": 0.998 + }, + { + "start": 66501.48, + "end": 66502.22, + "probability": 0.9528 + }, + { + "start": 66502.34, + "end": 66502.84, + "probability": 0.9701 + }, + { + "start": 66502.92, + "end": 66503.44, + "probability": 0.988 + }, + { + "start": 66503.54, + "end": 66504.0, + "probability": 0.9208 + }, + { + "start": 66504.04, + "end": 66505.26, + "probability": 0.7241 + }, + { + "start": 66505.34, + "end": 66506.86, + "probability": 0.998 + }, + { + "start": 66507.82, + "end": 66513.2, + "probability": 0.9561 + }, + { + "start": 66514.5, + "end": 66515.5, + "probability": 0.4759 + }, + { + "start": 66515.94, + "end": 66519.12, + "probability": 0.8867 + }, + { + "start": 66519.22, + "end": 66520.54, + "probability": 0.8886 + }, + { + "start": 66522.28, + "end": 66522.82, + "probability": 0.901 + }, + { + "start": 66524.5, + "end": 66526.4, + "probability": 0.996 + }, + { + "start": 66528.18, + "end": 66529.76, + "probability": 0.9951 + }, + { + "start": 66530.28, + "end": 66532.88, + "probability": 0.559 + }, + { + "start": 66534.3, + "end": 66535.16, + "probability": 0.9416 + }, + { + "start": 66535.92, + "end": 66536.46, + "probability": 0.6432 + }, + { + "start": 66537.56, + "end": 66541.04, + "probability": 0.9695 + }, + { + "start": 66542.24, + "end": 66544.64, + "probability": 0.9206 + }, + { + "start": 66544.96, + "end": 66548.44, + "probability": 0.7515 + }, + { + "start": 66549.52, + "end": 66550.15, + "probability": 0.5848 + }, + { + "start": 66550.4, + "end": 66550.94, + "probability": 0.8032 + }, + { + "start": 66551.56, + "end": 66551.98, + "probability": 0.9543 + }, + { + "start": 66554.0, + "end": 66554.64, + "probability": 0.8975 + }, + { + "start": 66555.86, + "end": 66557.06, + "probability": 0.9228 + }, + { + "start": 66557.58, + "end": 66558.68, + "probability": 0.9099 + }, + { + "start": 66559.92, + "end": 66562.38, + "probability": 0.9884 + }, + { + "start": 66563.96, + "end": 66564.96, + "probability": 0.977 + }, + { + "start": 66566.24, + "end": 66567.62, + "probability": 0.4525 + }, + { + "start": 66568.8, + "end": 66569.64, + "probability": 0.5823 + }, + { + "start": 66569.78, + "end": 66571.16, + "probability": 0.7638 + }, + { + "start": 66571.3, + "end": 66574.42, + "probability": 0.958 + }, + { + "start": 66574.9, + "end": 66577.62, + "probability": 0.978 + }, + { + "start": 66578.26, + "end": 66579.1, + "probability": 0.9702 + }, + { + "start": 66579.94, + "end": 66582.2, + "probability": 0.9976 + }, + { + "start": 66582.6, + "end": 66583.06, + "probability": 0.5068 + }, + { + "start": 66583.28, + "end": 66584.68, + "probability": 0.9695 + }, + { + "start": 66585.3, + "end": 66587.04, + "probability": 0.9655 + }, + { + "start": 66588.98, + "end": 66589.08, + "probability": 0.5134 + }, + { + "start": 66590.2, + "end": 66592.82, + "probability": 0.897 + }, + { + "start": 66593.14, + "end": 66593.42, + "probability": 0.98 + }, + { + "start": 66596.18, + "end": 66599.24, + "probability": 0.876 + }, + { + "start": 66601.2, + "end": 66603.16, + "probability": 0.8745 + }, + { + "start": 66604.42, + "end": 66605.54, + "probability": 0.6749 + }, + { + "start": 66606.92, + "end": 66608.19, + "probability": 0.8601 + }, + { + "start": 66609.32, + "end": 66611.18, + "probability": 0.8266 + }, + { + "start": 66612.58, + "end": 66613.88, + "probability": 0.9822 + }, + { + "start": 66614.34, + "end": 66614.76, + "probability": 0.7285 + }, + { + "start": 66616.42, + "end": 66616.42, + "probability": 0.0797 + }, + { + "start": 66617.87, + "end": 66620.39, + "probability": 0.7681 + }, + { + "start": 66621.32, + "end": 66626.14, + "probability": 0.5608 + }, + { + "start": 66626.6, + "end": 66627.58, + "probability": 0.5742 + }, + { + "start": 66627.74, + "end": 66628.82, + "probability": 0.4653 + }, + { + "start": 66628.98, + "end": 66629.14, + "probability": 0.4954 + }, + { + "start": 66629.2, + "end": 66629.54, + "probability": 0.811 + }, + { + "start": 66629.66, + "end": 66630.35, + "probability": 0.9871 + }, + { + "start": 66630.46, + "end": 66631.02, + "probability": 0.8842 + }, + { + "start": 66632.1, + "end": 66633.54, + "probability": 0.835 + }, + { + "start": 66636.78, + "end": 66638.88, + "probability": 0.6977 + }, + { + "start": 66639.1, + "end": 66642.04, + "probability": 0.9855 + }, + { + "start": 66642.52, + "end": 66644.04, + "probability": 0.9692 + }, + { + "start": 66644.1, + "end": 66645.58, + "probability": 0.7127 + }, + { + "start": 66646.22, + "end": 66647.16, + "probability": 0.9842 + }, + { + "start": 66648.78, + "end": 66650.7, + "probability": 0.9778 + }, + { + "start": 66651.62, + "end": 66652.38, + "probability": 0.9867 + }, + { + "start": 66654.22, + "end": 66656.1, + "probability": 0.9023 + }, + { + "start": 66656.12, + "end": 66656.48, + "probability": 0.4484 + }, + { + "start": 66656.58, + "end": 66658.75, + "probability": 0.9719 + }, + { + "start": 66659.72, + "end": 66663.76, + "probability": 0.9971 + }, + { + "start": 66665.0, + "end": 66667.5, + "probability": 0.9184 + }, + { + "start": 66668.42, + "end": 66670.96, + "probability": 0.9813 + }, + { + "start": 66671.54, + "end": 66672.54, + "probability": 0.8345 + }, + { + "start": 66673.0, + "end": 66673.76, + "probability": 0.6247 + }, + { + "start": 66673.96, + "end": 66674.7, + "probability": 0.8154 + }, + { + "start": 66675.12, + "end": 66675.94, + "probability": 0.6441 + }, + { + "start": 66677.12, + "end": 66678.68, + "probability": 0.9943 + }, + { + "start": 66678.88, + "end": 66680.98, + "probability": 0.9153 + }, + { + "start": 66681.3, + "end": 66682.51, + "probability": 0.9885 + }, + { + "start": 66683.2, + "end": 66683.87, + "probability": 0.915 + }, + { + "start": 66686.82, + "end": 66688.24, + "probability": 0.9867 + }, + { + "start": 66690.72, + "end": 66693.42, + "probability": 0.8741 + }, + { + "start": 66694.62, + "end": 66695.62, + "probability": 0.3747 + }, + { + "start": 66696.74, + "end": 66696.98, + "probability": 0.2068 + }, + { + "start": 66696.98, + "end": 66697.46, + "probability": 0.5186 + }, + { + "start": 66698.16, + "end": 66699.23, + "probability": 0.6202 + }, + { + "start": 66701.22, + "end": 66702.6, + "probability": 0.915 + }, + { + "start": 66703.52, + "end": 66705.34, + "probability": 0.9982 + }, + { + "start": 66705.62, + "end": 66706.22, + "probability": 0.684 + }, + { + "start": 66706.38, + "end": 66706.64, + "probability": 0.724 + }, + { + "start": 66706.74, + "end": 66707.6, + "probability": 0.9556 + }, + { + "start": 66708.96, + "end": 66710.02, + "probability": 0.8519 + }, + { + "start": 66710.48, + "end": 66712.9, + "probability": 0.9006 + }, + { + "start": 66714.42, + "end": 66715.1, + "probability": 0.6056 + }, + { + "start": 66716.36, + "end": 66718.1, + "probability": 0.8297 + }, + { + "start": 66718.9, + "end": 66721.16, + "probability": 0.9653 + }, + { + "start": 66722.26, + "end": 66725.4, + "probability": 0.9875 + }, + { + "start": 66726.08, + "end": 66728.78, + "probability": 0.8088 + }, + { + "start": 66730.86, + "end": 66731.86, + "probability": 0.7353 + }, + { + "start": 66732.76, + "end": 66733.34, + "probability": 0.8062 + }, + { + "start": 66734.3, + "end": 66738.4, + "probability": 0.9878 + }, + { + "start": 66738.82, + "end": 66739.98, + "probability": 0.9299 + }, + { + "start": 66740.42, + "end": 66741.5, + "probability": 0.9029 + }, + { + "start": 66742.3, + "end": 66744.58, + "probability": 0.7974 + }, + { + "start": 66745.94, + "end": 66752.34, + "probability": 0.8649 + }, + { + "start": 66754.8, + "end": 66755.72, + "probability": 0.8223 + }, + { + "start": 66756.68, + "end": 66758.6, + "probability": 0.8815 + }, + { + "start": 66759.62, + "end": 66760.24, + "probability": 0.583 + }, + { + "start": 66760.32, + "end": 66761.06, + "probability": 0.8096 + }, + { + "start": 66761.36, + "end": 66761.94, + "probability": 0.4559 + }, + { + "start": 66762.06, + "end": 66762.96, + "probability": 0.5344 + }, + { + "start": 66763.2, + "end": 66766.28, + "probability": 0.9956 + }, + { + "start": 66766.48, + "end": 66768.78, + "probability": 0.5481 + }, + { + "start": 66770.0, + "end": 66772.76, + "probability": 0.7384 + }, + { + "start": 66773.32, + "end": 66775.89, + "probability": 0.7319 + }, + { + "start": 66776.5, + "end": 66777.45, + "probability": 0.9539 + }, + { + "start": 66778.76, + "end": 66779.68, + "probability": 0.6375 + }, + { + "start": 66779.88, + "end": 66780.4, + "probability": 0.4203 + }, + { + "start": 66780.52, + "end": 66783.4, + "probability": 0.4965 + }, + { + "start": 66783.56, + "end": 66784.19, + "probability": 0.3499 + }, + { + "start": 66784.68, + "end": 66787.02, + "probability": 0.5431 + }, + { + "start": 66787.3, + "end": 66787.78, + "probability": 0.4047 + }, + { + "start": 66787.92, + "end": 66788.7, + "probability": 0.7391 + }, + { + "start": 66789.02, + "end": 66791.38, + "probability": 0.9335 + }, + { + "start": 66791.62, + "end": 66792.68, + "probability": 0.6036 + }, + { + "start": 66792.82, + "end": 66793.1, + "probability": 0.9084 + }, + { + "start": 66793.6, + "end": 66795.72, + "probability": 0.7166 + }, + { + "start": 66795.76, + "end": 66795.86, + "probability": 0.3881 + }, + { + "start": 66796.34, + "end": 66798.66, + "probability": 0.8809 + }, + { + "start": 66799.26, + "end": 66801.14, + "probability": 0.6219 + }, + { + "start": 66801.24, + "end": 66801.66, + "probability": 0.8337 + }, + { + "start": 66801.86, + "end": 66802.52, + "probability": 0.6289 + }, + { + "start": 66803.09, + "end": 66807.46, + "probability": 0.8863 + }, + { + "start": 66808.82, + "end": 66810.52, + "probability": 0.8425 + }, + { + "start": 66811.06, + "end": 66812.45, + "probability": 0.7196 + }, + { + "start": 66813.98, + "end": 66816.24, + "probability": 0.4699 + }, + { + "start": 66816.28, + "end": 66816.98, + "probability": 0.8926 + }, + { + "start": 66817.04, + "end": 66818.68, + "probability": 0.874 + }, + { + "start": 66819.1, + "end": 66821.24, + "probability": 0.609 + }, + { + "start": 66822.62, + "end": 66825.04, + "probability": 0.9863 + }, + { + "start": 66825.04, + "end": 66825.32, + "probability": 0.4879 + }, + { + "start": 66825.6, + "end": 66827.7, + "probability": 0.9039 + }, + { + "start": 66828.06, + "end": 66829.56, + "probability": 0.922 + }, + { + "start": 66830.42, + "end": 66831.48, + "probability": 0.8648 + }, + { + "start": 66831.82, + "end": 66833.06, + "probability": 0.8022 + }, + { + "start": 66834.8, + "end": 66835.74, + "probability": 0.624 + }, + { + "start": 66838.48, + "end": 66841.22, + "probability": 0.7372 + }, + { + "start": 66841.56, + "end": 66842.84, + "probability": 0.9494 + }, + { + "start": 66842.94, + "end": 66844.32, + "probability": 0.8884 + }, + { + "start": 66844.68, + "end": 66845.98, + "probability": 0.9834 + }, + { + "start": 66846.38, + "end": 66848.12, + "probability": 0.9678 + }, + { + "start": 66848.98, + "end": 66849.36, + "probability": 0.8417 + }, + { + "start": 66850.02, + "end": 66850.77, + "probability": 0.7453 + }, + { + "start": 66851.1, + "end": 66851.5, + "probability": 0.7507 + }, + { + "start": 66852.48, + "end": 66857.9, + "probability": 0.7576 + }, + { + "start": 66858.66, + "end": 66860.86, + "probability": 0.9353 + }, + { + "start": 66862.18, + "end": 66864.66, + "probability": 0.9915 + }, + { + "start": 66865.42, + "end": 66869.92, + "probability": 0.9165 + }, + { + "start": 66870.9, + "end": 66874.86, + "probability": 0.9916 + }, + { + "start": 66875.64, + "end": 66876.18, + "probability": 0.7428 + }, + { + "start": 66877.4, + "end": 66877.98, + "probability": 0.4946 + }, + { + "start": 66878.12, + "end": 66881.52, + "probability": 0.9626 + }, + { + "start": 66882.26, + "end": 66886.76, + "probability": 0.9953 + }, + { + "start": 66889.2, + "end": 66890.88, + "probability": 0.9531 + }, + { + "start": 66891.76, + "end": 66892.9, + "probability": 0.6053 + }, + { + "start": 66893.68, + "end": 66894.86, + "probability": 0.7911 + }, + { + "start": 66895.46, + "end": 66898.18, + "probability": 0.932 + }, + { + "start": 66898.94, + "end": 66900.64, + "probability": 0.9666 + }, + { + "start": 66903.22, + "end": 66905.12, + "probability": 0.9615 + }, + { + "start": 66906.48, + "end": 66908.52, + "probability": 0.9614 + }, + { + "start": 66909.02, + "end": 66910.36, + "probability": 0.8028 + }, + { + "start": 66911.57, + "end": 66913.5, + "probability": 0.8056 + }, + { + "start": 66914.38, + "end": 66916.66, + "probability": 0.8413 + }, + { + "start": 66917.76, + "end": 66918.94, + "probability": 0.9837 + }, + { + "start": 66918.96, + "end": 66920.4, + "probability": 0.8767 + }, + { + "start": 66921.0, + "end": 66922.24, + "probability": 0.938 + }, + { + "start": 66923.28, + "end": 66925.35, + "probability": 0.998 + }, + { + "start": 66926.48, + "end": 66929.0, + "probability": 0.8416 + }, + { + "start": 66929.34, + "end": 66930.48, + "probability": 0.7895 + }, + { + "start": 66932.4, + "end": 66934.38, + "probability": 0.9626 + }, + { + "start": 66936.38, + "end": 66937.39, + "probability": 0.9771 + }, + { + "start": 66938.9, + "end": 66940.5, + "probability": 0.9199 + }, + { + "start": 66940.52, + "end": 66942.56, + "probability": 0.4953 + }, + { + "start": 66943.98, + "end": 66947.86, + "probability": 0.7993 + }, + { + "start": 66948.42, + "end": 66948.82, + "probability": 0.8301 + }, + { + "start": 66949.16, + "end": 66949.98, + "probability": 0.305 + }, + { + "start": 66950.38, + "end": 66953.08, + "probability": 0.9602 + }, + { + "start": 66953.9, + "end": 66956.64, + "probability": 0.7712 + }, + { + "start": 66958.4, + "end": 66960.74, + "probability": 0.9849 + }, + { + "start": 66961.48, + "end": 66962.74, + "probability": 0.9889 + }, + { + "start": 66964.7, + "end": 66965.42, + "probability": 0.6025 + }, + { + "start": 66965.5, + "end": 66966.84, + "probability": 0.9845 + }, + { + "start": 66967.36, + "end": 66969.48, + "probability": 0.9604 + }, + { + "start": 66971.02, + "end": 66972.44, + "probability": 0.7119 + }, + { + "start": 66973.56, + "end": 66974.48, + "probability": 0.5812 + }, + { + "start": 66974.56, + "end": 66977.5, + "probability": 0.5727 + }, + { + "start": 66978.58, + "end": 66978.98, + "probability": 0.8514 + }, + { + "start": 66980.3, + "end": 66980.94, + "probability": 0.9421 + }, + { + "start": 66983.16, + "end": 66983.8, + "probability": 0.8172 + }, + { + "start": 66984.62, + "end": 66985.46, + "probability": 0.9138 + }, + { + "start": 66986.46, + "end": 66987.14, + "probability": 0.9189 + }, + { + "start": 66989.32, + "end": 66992.8, + "probability": 0.9451 + }, + { + "start": 67005.0, + "end": 67005.48, + "probability": 0.1639 + }, + { + "start": 67005.48, + "end": 67005.48, + "probability": 0.0235 + }, + { + "start": 67005.48, + "end": 67005.48, + "probability": 0.0588 + }, + { + "start": 67005.48, + "end": 67007.06, + "probability": 0.3631 + }, + { + "start": 67009.0, + "end": 67009.2, + "probability": 0.4551 + }, + { + "start": 67009.74, + "end": 67010.23, + "probability": 0.188 + }, + { + "start": 67011.86, + "end": 67013.76, + "probability": 0.7367 + }, + { + "start": 67014.54, + "end": 67015.1, + "probability": 0.5154 + }, + { + "start": 67016.1, + "end": 67016.56, + "probability": 0.7528 + }, + { + "start": 67017.08, + "end": 67017.72, + "probability": 0.9912 + }, + { + "start": 67018.34, + "end": 67020.06, + "probability": 0.8186 + }, + { + "start": 67021.48, + "end": 67025.06, + "probability": 0.5229 + }, + { + "start": 67025.06, + "end": 67026.68, + "probability": 0.8946 + }, + { + "start": 67027.84, + "end": 67028.46, + "probability": 0.9662 + }, + { + "start": 67029.02, + "end": 67029.72, + "probability": 0.7996 + }, + { + "start": 67030.52, + "end": 67031.9, + "probability": 0.9136 + }, + { + "start": 67032.76, + "end": 67037.7, + "probability": 0.8672 + }, + { + "start": 67038.7, + "end": 67041.42, + "probability": 0.9369 + }, + { + "start": 67042.48, + "end": 67045.21, + "probability": 0.8298 + }, + { + "start": 67046.32, + "end": 67048.58, + "probability": 0.6773 + }, + { + "start": 67048.76, + "end": 67051.2, + "probability": 0.9128 + }, + { + "start": 67051.64, + "end": 67052.98, + "probability": 0.7772 + }, + { + "start": 67054.58, + "end": 67056.86, + "probability": 0.6443 + }, + { + "start": 67057.48, + "end": 67059.78, + "probability": 0.9644 + }, + { + "start": 67060.86, + "end": 67062.18, + "probability": 0.9832 + }, + { + "start": 67062.32, + "end": 67063.44, + "probability": 0.9726 + }, + { + "start": 67063.52, + "end": 67064.56, + "probability": 0.9367 + }, + { + "start": 67065.17, + "end": 67069.8, + "probability": 0.744 + }, + { + "start": 67070.0, + "end": 67071.05, + "probability": 0.2678 + }, + { + "start": 67071.44, + "end": 67074.82, + "probability": 0.8482 + }, + { + "start": 67074.86, + "end": 67076.7, + "probability": 0.9361 + }, + { + "start": 67077.76, + "end": 67079.18, + "probability": 0.8218 + }, + { + "start": 67079.68, + "end": 67081.08, + "probability": 0.9126 + }, + { + "start": 67081.92, + "end": 67082.98, + "probability": 0.8884 + }, + { + "start": 67083.22, + "end": 67084.2, + "probability": 0.4055 + }, + { + "start": 67085.04, + "end": 67086.36, + "probability": 0.8982 + }, + { + "start": 67086.64, + "end": 67087.18, + "probability": 0.7847 + }, + { + "start": 67087.24, + "end": 67089.52, + "probability": 0.9473 + }, + { + "start": 67090.32, + "end": 67091.67, + "probability": 0.5425 + }, + { + "start": 67092.14, + "end": 67093.15, + "probability": 0.6723 + }, + { + "start": 67094.6, + "end": 67094.74, + "probability": 0.4417 + }, + { + "start": 67096.9, + "end": 67105.76, + "probability": 0.8855 + }, + { + "start": 67106.18, + "end": 67106.84, + "probability": 0.459 + }, + { + "start": 67106.98, + "end": 67109.12, + "probability": 0.8462 + }, + { + "start": 67109.44, + "end": 67110.2, + "probability": 0.9396 + }, + { + "start": 67110.98, + "end": 67112.44, + "probability": 0.995 + }, + { + "start": 67112.82, + "end": 67114.14, + "probability": 0.999 + }, + { + "start": 67114.2, + "end": 67114.72, + "probability": 0.5375 + }, + { + "start": 67116.62, + "end": 67118.72, + "probability": 0.9912 + }, + { + "start": 67121.24, + "end": 67124.12, + "probability": 0.7404 + }, + { + "start": 67125.58, + "end": 67126.96, + "probability": 0.9705 + }, + { + "start": 67128.86, + "end": 67130.14, + "probability": 0.9863 + }, + { + "start": 67131.08, + "end": 67131.9, + "probability": 0.6868 + }, + { + "start": 67133.1, + "end": 67136.04, + "probability": 0.994 + }, + { + "start": 67136.16, + "end": 67137.0, + "probability": 0.9688 + }, + { + "start": 67137.06, + "end": 67138.2, + "probability": 0.5283 + }, + { + "start": 67138.42, + "end": 67139.82, + "probability": 0.9023 + }, + { + "start": 67139.92, + "end": 67141.34, + "probability": 0.8885 + }, + { + "start": 67141.5, + "end": 67144.72, + "probability": 0.8773 + }, + { + "start": 67145.81, + "end": 67151.68, + "probability": 0.9646 + }, + { + "start": 67151.68, + "end": 67155.28, + "probability": 0.9773 + }, + { + "start": 67156.48, + "end": 67159.54, + "probability": 0.5977 + }, + { + "start": 67159.54, + "end": 67160.74, + "probability": 0.2859 + }, + { + "start": 67160.76, + "end": 67161.34, + "probability": 0.5461 + }, + { + "start": 67162.64, + "end": 67164.88, + "probability": 0.9351 + }, + { + "start": 67164.98, + "end": 67165.84, + "probability": 0.851 + }, + { + "start": 67166.08, + "end": 67166.32, + "probability": 0.7048 + }, + { + "start": 67166.38, + "end": 67168.38, + "probability": 0.2285 + }, + { + "start": 67168.5, + "end": 67169.14, + "probability": 0.7942 + }, + { + "start": 67170.22, + "end": 67171.66, + "probability": 0.6219 + }, + { + "start": 67171.66, + "end": 67174.2, + "probability": 0.7482 + }, + { + "start": 67175.54, + "end": 67178.22, + "probability": 0.9781 + }, + { + "start": 67180.02, + "end": 67181.98, + "probability": 0.1354 + }, + { + "start": 67182.3, + "end": 67182.52, + "probability": 0.2947 + }, + { + "start": 67183.8, + "end": 67186.2, + "probability": 0.9688 + }, + { + "start": 67186.9, + "end": 67189.48, + "probability": 0.7102 + }, + { + "start": 67190.5, + "end": 67194.26, + "probability": 0.9773 + }, + { + "start": 67194.42, + "end": 67195.06, + "probability": 0.7545 + }, + { + "start": 67195.36, + "end": 67195.8, + "probability": 0.9729 + }, + { + "start": 67196.7, + "end": 67197.96, + "probability": 0.9107 + }, + { + "start": 67198.04, + "end": 67198.76, + "probability": 0.6556 + }, + { + "start": 67199.06, + "end": 67199.85, + "probability": 0.7478 + }, + { + "start": 67200.72, + "end": 67201.8, + "probability": 0.6543 + }, + { + "start": 67202.5, + "end": 67205.72, + "probability": 0.9177 + }, + { + "start": 67207.44, + "end": 67208.6, + "probability": 0.7717 + }, + { + "start": 67210.08, + "end": 67211.44, + "probability": 0.9753 + }, + { + "start": 67212.7, + "end": 67213.7, + "probability": 0.3858 + }, + { + "start": 67213.9, + "end": 67215.74, + "probability": 0.984 + }, + { + "start": 67215.82, + "end": 67216.76, + "probability": 0.9377 + }, + { + "start": 67217.58, + "end": 67220.48, + "probability": 0.7822 + }, + { + "start": 67220.6, + "end": 67221.36, + "probability": 0.7466 + }, + { + "start": 67222.38, + "end": 67224.06, + "probability": 0.8587 + }, + { + "start": 67224.8, + "end": 67225.9, + "probability": 0.9265 + }, + { + "start": 67226.08, + "end": 67227.19, + "probability": 0.6119 + }, + { + "start": 67228.8, + "end": 67235.48, + "probability": 0.8938 + }, + { + "start": 67236.8, + "end": 67237.78, + "probability": 0.689 + }, + { + "start": 67238.8, + "end": 67241.88, + "probability": 0.8091 + }, + { + "start": 67242.6, + "end": 67243.44, + "probability": 0.7997 + }, + { + "start": 67243.52, + "end": 67243.74, + "probability": 0.8185 + }, + { + "start": 67243.92, + "end": 67245.02, + "probability": 0.9673 + }, + { + "start": 67246.32, + "end": 67247.66, + "probability": 0.1799 + }, + { + "start": 67247.7, + "end": 67248.06, + "probability": 0.6396 + }, + { + "start": 67248.22, + "end": 67249.2, + "probability": 0.9888 + }, + { + "start": 67249.32, + "end": 67250.1, + "probability": 0.7122 + }, + { + "start": 67252.5, + "end": 67256.9, + "probability": 0.8655 + }, + { + "start": 67257.12, + "end": 67259.02, + "probability": 0.5606 + }, + { + "start": 67259.46, + "end": 67260.9, + "probability": 0.6634 + }, + { + "start": 67262.24, + "end": 67264.3, + "probability": 0.8484 + }, + { + "start": 67264.42, + "end": 67264.56, + "probability": 0.9188 + }, + { + "start": 67264.6, + "end": 67265.86, + "probability": 0.9829 + }, + { + "start": 67266.04, + "end": 67267.16, + "probability": 0.9946 + }, + { + "start": 67267.9, + "end": 67268.28, + "probability": 0.4171 + }, + { + "start": 67268.6, + "end": 67271.02, + "probability": 0.8654 + }, + { + "start": 67271.14, + "end": 67272.46, + "probability": 0.7354 + }, + { + "start": 67272.92, + "end": 67274.48, + "probability": 0.5189 + }, + { + "start": 67274.6, + "end": 67277.77, + "probability": 0.7251 + }, + { + "start": 67278.2, + "end": 67280.11, + "probability": 0.9034 + }, + { + "start": 67280.62, + "end": 67283.11, + "probability": 0.4273 + }, + { + "start": 67284.0, + "end": 67285.04, + "probability": 0.4481 + }, + { + "start": 67285.56, + "end": 67287.9, + "probability": 0.5372 + }, + { + "start": 67289.02, + "end": 67292.26, + "probability": 0.8276 + }, + { + "start": 67292.82, + "end": 67293.56, + "probability": 0.6983 + }, + { + "start": 67294.28, + "end": 67295.28, + "probability": 0.7742 + }, + { + "start": 67297.2, + "end": 67298.22, + "probability": 0.8832 + }, + { + "start": 67298.24, + "end": 67299.3, + "probability": 0.9897 + }, + { + "start": 67299.36, + "end": 67300.29, + "probability": 0.886 + }, + { + "start": 67301.7, + "end": 67302.82, + "probability": 0.5889 + }, + { + "start": 67303.02, + "end": 67305.26, + "probability": 0.9647 + }, + { + "start": 67306.32, + "end": 67307.14, + "probability": 0.8994 + }, + { + "start": 67308.06, + "end": 67310.8, + "probability": 0.69 + }, + { + "start": 67310.94, + "end": 67311.48, + "probability": 0.7062 + }, + { + "start": 67311.58, + "end": 67312.26, + "probability": 0.8083 + }, + { + "start": 67312.58, + "end": 67313.32, + "probability": 0.5435 + }, + { + "start": 67313.68, + "end": 67318.62, + "probability": 0.8236 + }, + { + "start": 67319.9, + "end": 67319.9, + "probability": 0.0741 + }, + { + "start": 67319.9, + "end": 67325.02, + "probability": 0.9597 + }, + { + "start": 67327.38, + "end": 67330.12, + "probability": 0.974 + }, + { + "start": 67331.1, + "end": 67333.08, + "probability": 0.9271 + }, + { + "start": 67333.52, + "end": 67336.52, + "probability": 0.7586 + }, + { + "start": 67337.3, + "end": 67338.6, + "probability": 0.9343 + }, + { + "start": 67338.82, + "end": 67340.26, + "probability": 0.9789 + }, + { + "start": 67341.02, + "end": 67342.06, + "probability": 0.5058 + }, + { + "start": 67343.04, + "end": 67345.44, + "probability": 0.8462 + }, + { + "start": 67346.84, + "end": 67349.58, + "probability": 0.9008 + }, + { + "start": 67350.52, + "end": 67351.4, + "probability": 0.8551 + }, + { + "start": 67352.34, + "end": 67353.58, + "probability": 0.8221 + }, + { + "start": 67354.84, + "end": 67358.52, + "probability": 0.9969 + }, + { + "start": 67358.52, + "end": 67360.7, + "probability": 0.8786 + }, + { + "start": 67361.36, + "end": 67363.86, + "probability": 0.9972 + }, + { + "start": 67364.02, + "end": 67366.86, + "probability": 0.9014 + }, + { + "start": 67367.58, + "end": 67371.42, + "probability": 0.9225 + }, + { + "start": 67372.4, + "end": 67372.94, + "probability": 0.7326 + }, + { + "start": 67373.56, + "end": 67375.08, + "probability": 0.9912 + }, + { + "start": 67375.14, + "end": 67376.28, + "probability": 0.9717 + }, + { + "start": 67377.5, + "end": 67378.86, + "probability": 0.9878 + }, + { + "start": 67379.56, + "end": 67381.02, + "probability": 0.9814 + }, + { + "start": 67381.68, + "end": 67382.92, + "probability": 0.9655 + }, + { + "start": 67383.8, + "end": 67386.92, + "probability": 0.667 + }, + { + "start": 67387.02, + "end": 67387.46, + "probability": 0.9254 + }, + { + "start": 67387.5, + "end": 67388.3, + "probability": 0.4783 + }, + { + "start": 67388.78, + "end": 67390.34, + "probability": 0.9409 + }, + { + "start": 67391.1, + "end": 67392.82, + "probability": 0.8535 + }, + { + "start": 67395.02, + "end": 67398.84, + "probability": 0.5335 + }, + { + "start": 67399.14, + "end": 67400.12, + "probability": 0.9491 + }, + { + "start": 67401.78, + "end": 67402.22, + "probability": 0.8497 + }, + { + "start": 67403.3, + "end": 67404.14, + "probability": 0.9821 + }, + { + "start": 67404.64, + "end": 67405.36, + "probability": 0.338 + }, + { + "start": 67405.52, + "end": 67406.36, + "probability": 0.9238 + }, + { + "start": 67406.68, + "end": 67409.82, + "probability": 0.9715 + }, + { + "start": 67411.3, + "end": 67413.04, + "probability": 0.7179 + }, + { + "start": 67414.8, + "end": 67417.4, + "probability": 0.961 + }, + { + "start": 67417.48, + "end": 67417.9, + "probability": 0.7718 + }, + { + "start": 67418.0, + "end": 67422.0, + "probability": 0.6857 + }, + { + "start": 67423.06, + "end": 67426.32, + "probability": 0.9955 + }, + { + "start": 67427.38, + "end": 67428.82, + "probability": 0.9829 + }, + { + "start": 67429.36, + "end": 67430.46, + "probability": 0.9275 + }, + { + "start": 67431.34, + "end": 67433.15, + "probability": 0.6887 + }, + { + "start": 67433.8, + "end": 67435.6, + "probability": 0.8107 + }, + { + "start": 67436.54, + "end": 67438.66, + "probability": 0.9972 + }, + { + "start": 67439.84, + "end": 67440.3, + "probability": 0.8364 + }, + { + "start": 67440.9, + "end": 67442.24, + "probability": 0.9948 + }, + { + "start": 67442.3, + "end": 67443.47, + "probability": 0.7704 + }, + { + "start": 67444.72, + "end": 67446.18, + "probability": 0.9911 + }, + { + "start": 67447.48, + "end": 67447.78, + "probability": 0.8954 + }, + { + "start": 67448.42, + "end": 67448.78, + "probability": 0.4459 + }, + { + "start": 67448.9, + "end": 67449.15, + "probability": 0.8984 + }, + { + "start": 67450.3, + "end": 67452.3, + "probability": 0.7754 + }, + { + "start": 67453.94, + "end": 67455.36, + "probability": 0.9812 + }, + { + "start": 67456.12, + "end": 67457.8, + "probability": 0.9759 + }, + { + "start": 67459.92, + "end": 67461.18, + "probability": 0.6486 + }, + { + "start": 67461.8, + "end": 67464.22, + "probability": 0.9896 + }, + { + "start": 67465.32, + "end": 67469.13, + "probability": 0.8971 + }, + { + "start": 67470.38, + "end": 67470.38, + "probability": 0.2394 + }, + { + "start": 67474.62, + "end": 67476.64, + "probability": 0.0242 + }, + { + "start": 67478.7, + "end": 67478.7, + "probability": 0.0011 + }, + { + "start": 67479.32, + "end": 67480.14, + "probability": 0.2876 + }, + { + "start": 67486.74, + "end": 67486.74, + "probability": 0.1752 + }, + { + "start": 67486.74, + "end": 67486.74, + "probability": 0.1156 + }, + { + "start": 67486.74, + "end": 67487.44, + "probability": 0.1839 + }, + { + "start": 67487.82, + "end": 67490.37, + "probability": 0.063 + }, + { + "start": 67503.4, + "end": 67506.02, + "probability": 0.47 + }, + { + "start": 67507.5, + "end": 67509.96, + "probability": 0.7052 + }, + { + "start": 67511.22, + "end": 67513.21, + "probability": 0.996 + }, + { + "start": 67514.1, + "end": 67516.64, + "probability": 0.8813 + }, + { + "start": 67517.48, + "end": 67518.28, + "probability": 0.7827 + }, + { + "start": 67518.85, + "end": 67521.8, + "probability": 0.9883 + }, + { + "start": 67522.78, + "end": 67522.96, + "probability": 0.0134 + }, + { + "start": 67523.18, + "end": 67527.36, + "probability": 0.8652 + }, + { + "start": 67528.86, + "end": 67531.42, + "probability": 0.9976 + }, + { + "start": 67532.12, + "end": 67536.14, + "probability": 0.8393 + }, + { + "start": 67537.12, + "end": 67538.18, + "probability": 0.9808 + }, + { + "start": 67538.98, + "end": 67539.94, + "probability": 0.9747 + }, + { + "start": 67542.91, + "end": 67544.57, + "probability": 0.3722 + }, + { + "start": 67546.02, + "end": 67548.7, + "probability": 0.7455 + }, + { + "start": 67550.66, + "end": 67550.68, + "probability": 0.0001 + }, + { + "start": 67564.8, + "end": 67569.88, + "probability": 0.8424 + }, + { + "start": 67571.52, + "end": 67578.18, + "probability": 0.9143 + }, + { + "start": 67578.46, + "end": 67579.54, + "probability": 0.5042 + }, + { + "start": 67581.34, + "end": 67583.08, + "probability": 0.971 + }, + { + "start": 67584.18, + "end": 67584.84, + "probability": 0.7695 + }, + { + "start": 67585.48, + "end": 67588.0, + "probability": 0.9074 + }, + { + "start": 67588.1, + "end": 67589.52, + "probability": 0.9891 + }, + { + "start": 67590.3, + "end": 67592.76, + "probability": 0.9678 + }, + { + "start": 67593.52, + "end": 67597.1, + "probability": 0.9756 + }, + { + "start": 67597.92, + "end": 67598.96, + "probability": 0.9932 + }, + { + "start": 67600.3, + "end": 67600.64, + "probability": 0.0272 + }, + { + "start": 67600.64, + "end": 67604.16, + "probability": 0.9019 + }, + { + "start": 67605.18, + "end": 67608.96, + "probability": 0.8577 + }, + { + "start": 67609.16, + "end": 67611.84, + "probability": 0.7892 + }, + { + "start": 67612.3, + "end": 67614.04, + "probability": 0.7549 + }, + { + "start": 67614.56, + "end": 67615.33, + "probability": 0.5522 + }, + { + "start": 67615.76, + "end": 67616.12, + "probability": 0.5926 + }, + { + "start": 67616.34, + "end": 67622.4, + "probability": 0.9684 + }, + { + "start": 67623.06, + "end": 67625.76, + "probability": 0.9277 + }, + { + "start": 67626.5, + "end": 67628.38, + "probability": 0.9949 + }, + { + "start": 67628.48, + "end": 67632.3, + "probability": 0.991 + }, + { + "start": 67633.12, + "end": 67634.3, + "probability": 0.9062 + }, + { + "start": 67635.74, + "end": 67640.1, + "probability": 0.9454 + }, + { + "start": 67640.82, + "end": 67642.52, + "probability": 0.9784 + }, + { + "start": 67642.7, + "end": 67643.78, + "probability": 0.9214 + }, + { + "start": 67644.96, + "end": 67648.9, + "probability": 0.953 + }, + { + "start": 67651.26, + "end": 67653.42, + "probability": 0.7746 + }, + { + "start": 67653.74, + "end": 67655.82, + "probability": 0.9425 + }, + { + "start": 67656.72, + "end": 67659.66, + "probability": 0.9956 + }, + { + "start": 67659.94, + "end": 67662.52, + "probability": 0.9973 + }, + { + "start": 67663.1, + "end": 67666.94, + "probability": 0.9982 + }, + { + "start": 67666.94, + "end": 67672.4, + "probability": 0.9971 + }, + { + "start": 67673.16, + "end": 67674.03, + "probability": 0.9893 + }, + { + "start": 67675.88, + "end": 67678.78, + "probability": 0.8838 + }, + { + "start": 67679.54, + "end": 67684.72, + "probability": 0.9856 + }, + { + "start": 67685.9, + "end": 67691.52, + "probability": 0.9845 + }, + { + "start": 67692.0, + "end": 67693.96, + "probability": 0.9122 + }, + { + "start": 67694.42, + "end": 67695.58, + "probability": 0.89 + }, + { + "start": 67696.34, + "end": 67698.01, + "probability": 0.8228 + }, + { + "start": 67698.78, + "end": 67700.92, + "probability": 0.9383 + }, + { + "start": 67701.72, + "end": 67705.4, + "probability": 0.1177 + }, + { + "start": 67705.96, + "end": 67706.7, + "probability": 0.8103 + }, + { + "start": 67706.88, + "end": 67712.88, + "probability": 0.9813 + }, + { + "start": 67713.36, + "end": 67714.86, + "probability": 0.7131 + }, + { + "start": 67715.28, + "end": 67717.66, + "probability": 0.9584 + }, + { + "start": 67718.18, + "end": 67721.8, + "probability": 0.8088 + }, + { + "start": 67722.87, + "end": 67726.52, + "probability": 0.9915 + }, + { + "start": 67727.36, + "end": 67730.04, + "probability": 0.9927 + }, + { + "start": 67730.64, + "end": 67731.16, + "probability": 0.6768 + }, + { + "start": 67731.5, + "end": 67732.2, + "probability": 0.964 + }, + { + "start": 67732.76, + "end": 67735.52, + "probability": 0.9473 + }, + { + "start": 67735.9, + "end": 67736.38, + "probability": 0.5576 + }, + { + "start": 67737.74, + "end": 67737.74, + "probability": 0.018 + }, + { + "start": 67738.62, + "end": 67740.4, + "probability": 0.0297 + }, + { + "start": 67740.4, + "end": 67741.26, + "probability": 0.5497 + }, + { + "start": 67741.46, + "end": 67742.6, + "probability": 0.5062 + }, + { + "start": 67743.02, + "end": 67747.38, + "probability": 0.9763 + }, + { + "start": 67748.4, + "end": 67749.46, + "probability": 0.9299 + }, + { + "start": 67749.56, + "end": 67753.64, + "probability": 0.8867 + }, + { + "start": 67754.26, + "end": 67756.42, + "probability": 0.9141 + }, + { + "start": 67757.18, + "end": 67759.66, + "probability": 0.9825 + }, + { + "start": 67762.04, + "end": 67764.12, + "probability": 0.9315 + }, + { + "start": 67764.22, + "end": 67767.86, + "probability": 0.8774 + }, + { + "start": 67768.68, + "end": 67771.28, + "probability": 0.9969 + }, + { + "start": 67771.78, + "end": 67772.78, + "probability": 0.7166 + }, + { + "start": 67772.96, + "end": 67773.66, + "probability": 0.7959 + }, + { + "start": 67773.76, + "end": 67778.88, + "probability": 0.9841 + }, + { + "start": 67779.02, + "end": 67779.79, + "probability": 0.9927 + }, + { + "start": 67780.18, + "end": 67780.54, + "probability": 0.9161 + }, + { + "start": 67781.94, + "end": 67786.6, + "probability": 0.9968 + }, + { + "start": 67787.22, + "end": 67790.44, + "probability": 0.6708 + }, + { + "start": 67790.86, + "end": 67795.7, + "probability": 0.9985 + }, + { + "start": 67795.7, + "end": 67799.32, + "probability": 0.9259 + }, + { + "start": 67801.36, + "end": 67802.36, + "probability": 0.8964 + }, + { + "start": 67802.56, + "end": 67807.66, + "probability": 0.8358 + }, + { + "start": 67807.72, + "end": 67809.18, + "probability": 0.9688 + }, + { + "start": 67809.54, + "end": 67811.32, + "probability": 0.8158 + }, + { + "start": 67811.8, + "end": 67817.86, + "probability": 0.9771 + }, + { + "start": 67818.54, + "end": 67823.14, + "probability": 0.9821 + }, + { + "start": 67823.98, + "end": 67827.32, + "probability": 0.994 + }, + { + "start": 67827.98, + "end": 67832.04, + "probability": 0.9983 + }, + { + "start": 67832.32, + "end": 67833.86, + "probability": 0.9149 + }, + { + "start": 67834.76, + "end": 67837.82, + "probability": 0.9955 + }, + { + "start": 67838.76, + "end": 67842.62, + "probability": 0.9949 + }, + { + "start": 67843.14, + "end": 67850.68, + "probability": 0.8219 + }, + { + "start": 67850.68, + "end": 67856.38, + "probability": 0.5957 + }, + { + "start": 67857.4, + "end": 67861.64, + "probability": 0.9859 + }, + { + "start": 67862.26, + "end": 67864.62, + "probability": 0.9888 + }, + { + "start": 67866.04, + "end": 67868.24, + "probability": 0.8533 + }, + { + "start": 67868.7, + "end": 67870.56, + "probability": 0.8971 + }, + { + "start": 67870.78, + "end": 67874.42, + "probability": 0.9788 + }, + { + "start": 67874.48, + "end": 67879.14, + "probability": 0.9325 + }, + { + "start": 67882.54, + "end": 67883.76, + "probability": 0.9978 + }, + { + "start": 67884.5, + "end": 67887.64, + "probability": 0.8888 + }, + { + "start": 67887.78, + "end": 67888.18, + "probability": 0.8963 + }, + { + "start": 67888.4, + "end": 67889.58, + "probability": 0.9781 + }, + { + "start": 67890.64, + "end": 67891.98, + "probability": 0.967 + }, + { + "start": 67892.6, + "end": 67894.92, + "probability": 0.8915 + }, + { + "start": 67895.04, + "end": 67898.08, + "probability": 0.9944 + }, + { + "start": 67899.26, + "end": 67900.44, + "probability": 0.9978 + }, + { + "start": 67901.68, + "end": 67904.0, + "probability": 0.9962 + }, + { + "start": 67904.38, + "end": 67908.14, + "probability": 0.9972 + }, + { + "start": 67909.08, + "end": 67909.78, + "probability": 0.9753 + }, + { + "start": 67910.16, + "end": 67910.96, + "probability": 0.9701 + }, + { + "start": 67911.5, + "end": 67914.08, + "probability": 0.9772 + }, + { + "start": 67915.98, + "end": 67917.8, + "probability": 0.9491 + }, + { + "start": 67918.2, + "end": 67923.48, + "probability": 0.819 + }, + { + "start": 67924.18, + "end": 67926.46, + "probability": 0.5374 + }, + { + "start": 67926.46, + "end": 67930.38, + "probability": 0.7974 + }, + { + "start": 67931.1, + "end": 67936.38, + "probability": 0.9907 + }, + { + "start": 67936.8, + "end": 67937.88, + "probability": 0.9073 + }, + { + "start": 67938.2, + "end": 67940.5, + "probability": 0.4579 + }, + { + "start": 67940.92, + "end": 67943.9, + "probability": 0.8625 + }, + { + "start": 67944.68, + "end": 67945.54, + "probability": 0.8501 + }, + { + "start": 67945.58, + "end": 67945.94, + "probability": 0.9614 + }, + { + "start": 67946.54, + "end": 67949.32, + "probability": 0.8447 + }, + { + "start": 67950.18, + "end": 67953.82, + "probability": 0.985 + }, + { + "start": 67955.02, + "end": 67957.78, + "probability": 0.7662 + }, + { + "start": 67958.08, + "end": 67959.52, + "probability": 0.9758 + }, + { + "start": 67960.12, + "end": 67961.32, + "probability": 0.9964 + }, + { + "start": 67962.24, + "end": 67964.76, + "probability": 0.8125 + }, + { + "start": 67965.46, + "end": 67969.06, + "probability": 0.9761 + }, + { + "start": 67969.2, + "end": 67976.46, + "probability": 0.9984 + }, + { + "start": 67977.64, + "end": 67978.56, + "probability": 0.8864 + }, + { + "start": 67979.48, + "end": 67980.36, + "probability": 0.9703 + }, + { + "start": 67981.08, + "end": 67982.6, + "probability": 0.991 + }, + { + "start": 67983.22, + "end": 67985.6, + "probability": 0.7494 + }, + { + "start": 67986.9, + "end": 67987.82, + "probability": 0.505 + }, + { + "start": 67989.46, + "end": 67992.94, + "probability": 0.9653 + }, + { + "start": 67993.22, + "end": 67996.3, + "probability": 0.9843 + }, + { + "start": 67996.76, + "end": 68000.04, + "probability": 0.9956 + }, + { + "start": 68000.1, + "end": 68001.36, + "probability": 0.9503 + }, + { + "start": 68001.74, + "end": 68002.47, + "probability": 0.969 + }, + { + "start": 68003.28, + "end": 68004.04, + "probability": 0.7074 + }, + { + "start": 68004.42, + "end": 68005.12, + "probability": 0.7481 + }, + { + "start": 68005.76, + "end": 68007.26, + "probability": 0.8631 + }, + { + "start": 68008.06, + "end": 68009.06, + "probability": 0.6234 + }, + { + "start": 68009.14, + "end": 68010.88, + "probability": 0.913 + }, + { + "start": 68012.73, + "end": 68017.26, + "probability": 0.2003 + }, + { + "start": 68018.92, + "end": 68020.74, + "probability": 0.3577 + }, + { + "start": 68022.02, + "end": 68024.42, + "probability": 0.8982 + }, + { + "start": 68025.66, + "end": 68031.0, + "probability": 0.6164 + }, + { + "start": 68031.52, + "end": 68032.44, + "probability": 0.5306 + }, + { + "start": 68033.16, + "end": 68034.16, + "probability": 0.6898 + }, + { + "start": 68034.88, + "end": 68035.6, + "probability": 0.3771 + }, + { + "start": 68043.9, + "end": 68048.54, + "probability": 0.884 + }, + { + "start": 68048.56, + "end": 68052.1, + "probability": 0.7895 + }, + { + "start": 68052.12, + "end": 68055.22, + "probability": 0.7147 + }, + { + "start": 68055.64, + "end": 68056.46, + "probability": 0.8191 + }, + { + "start": 68056.98, + "end": 68057.56, + "probability": 0.8333 + }, + { + "start": 68057.56, + "end": 68058.1, + "probability": 0.7996 + }, + { + "start": 68058.28, + "end": 68061.52, + "probability": 0.9887 + }, + { + "start": 68061.74, + "end": 68066.02, + "probability": 0.9609 + }, + { + "start": 68066.08, + "end": 68068.1, + "probability": 0.9699 + }, + { + "start": 68068.62, + "end": 68071.7, + "probability": 0.9882 + }, + { + "start": 68072.9, + "end": 68074.46, + "probability": 0.8747 + }, + { + "start": 68074.56, + "end": 68076.0, + "probability": 0.9728 + }, + { + "start": 68076.3, + "end": 68077.2, + "probability": 0.8083 + }, + { + "start": 68084.56, + "end": 68091.42, + "probability": 0.9902 + }, + { + "start": 68092.84, + "end": 68097.04, + "probability": 0.9992 + }, + { + "start": 68097.8, + "end": 68099.22, + "probability": 0.9429 + }, + { + "start": 68099.68, + "end": 68105.48, + "probability": 0.9186 + }, + { + "start": 68105.68, + "end": 68106.94, + "probability": 0.9012 + }, + { + "start": 68106.98, + "end": 68111.04, + "probability": 0.9799 + }, + { + "start": 68111.34, + "end": 68113.62, + "probability": 0.9993 + }, + { + "start": 68114.64, + "end": 68118.24, + "probability": 0.999 + }, + { + "start": 68118.86, + "end": 68123.56, + "probability": 0.9956 + }, + { + "start": 68124.44, + "end": 68129.18, + "probability": 0.9892 + }, + { + "start": 68130.0, + "end": 68135.48, + "probability": 0.9985 + }, + { + "start": 68135.48, + "end": 68135.58, + "probability": 0.5386 + }, + { + "start": 68135.9, + "end": 68136.98, + "probability": 0.4327 + }, + { + "start": 68137.48, + "end": 68140.57, + "probability": 0.998 + }, + { + "start": 68141.94, + "end": 68143.36, + "probability": 0.9961 + }, + { + "start": 68146.48, + "end": 68149.0, + "probability": 0.7934 + }, + { + "start": 68149.1, + "end": 68149.9, + "probability": 0.7156 + }, + { + "start": 68149.9, + "end": 68153.38, + "probability": 0.997 + }, + { + "start": 68153.46, + "end": 68154.48, + "probability": 0.9918 + }, + { + "start": 68154.68, + "end": 68158.64, + "probability": 0.9886 + }, + { + "start": 68159.38, + "end": 68159.48, + "probability": 0.9992 + }, + { + "start": 68161.02, + "end": 68163.98, + "probability": 0.979 + }, + { + "start": 68164.08, + "end": 68167.56, + "probability": 0.987 + }, + { + "start": 68168.38, + "end": 68169.7, + "probability": 0.894 + }, + { + "start": 68169.84, + "end": 68171.52, + "probability": 0.8137 + }, + { + "start": 68171.62, + "end": 68172.02, + "probability": 0.7503 + }, + { + "start": 68172.1, + "end": 68172.86, + "probability": 0.8735 + }, + { + "start": 68173.96, + "end": 68177.78, + "probability": 0.9829 + }, + { + "start": 68181.65, + "end": 68187.9, + "probability": 0.8798 + }, + { + "start": 68188.4, + "end": 68190.44, + "probability": 0.9465 + }, + { + "start": 68190.96, + "end": 68193.4, + "probability": 0.9667 + }, + { + "start": 68194.82, + "end": 68195.5, + "probability": 0.4441 + }, + { + "start": 68196.2, + "end": 68199.28, + "probability": 0.7354 + }, + { + "start": 68200.54, + "end": 68202.22, + "probability": 0.4329 + }, + { + "start": 68203.1, + "end": 68207.0, + "probability": 0.7168 + }, + { + "start": 68207.1, + "end": 68208.7, + "probability": 0.995 + }, + { + "start": 68209.12, + "end": 68210.28, + "probability": 0.5325 + }, + { + "start": 68210.5, + "end": 68211.8, + "probability": 0.8952 + }, + { + "start": 68212.14, + "end": 68213.48, + "probability": 0.2809 + }, + { + "start": 68214.6, + "end": 68216.7, + "probability": 0.8976 + }, + { + "start": 68216.78, + "end": 68218.2, + "probability": 0.9941 + }, + { + "start": 68219.16, + "end": 68223.68, + "probability": 0.9144 + }, + { + "start": 68223.8, + "end": 68228.56, + "probability": 0.9733 + }, + { + "start": 68229.56, + "end": 68229.96, + "probability": 0.9476 + }, + { + "start": 68230.56, + "end": 68231.06, + "probability": 0.5029 + }, + { + "start": 68231.14, + "end": 68235.4, + "probability": 0.8568 + }, + { + "start": 68236.98, + "end": 68240.02, + "probability": 0.2756 + }, + { + "start": 68240.52, + "end": 68241.6, + "probability": 0.6633 + }, + { + "start": 68241.8, + "end": 68242.2, + "probability": 0.7608 + }, + { + "start": 68242.64, + "end": 68245.86, + "probability": 0.7205 + }, + { + "start": 68245.86, + "end": 68246.64, + "probability": 0.7729 + }, + { + "start": 68247.54, + "end": 68249.76, + "probability": 0.7355 + }, + { + "start": 68249.82, + "end": 68250.56, + "probability": 0.8338 + }, + { + "start": 68250.68, + "end": 68253.4, + "probability": 0.7311 + }, + { + "start": 68253.62, + "end": 68256.32, + "probability": 0.8564 + }, + { + "start": 68256.68, + "end": 68258.8, + "probability": 0.962 + }, + { + "start": 68260.02, + "end": 68262.8, + "probability": 0.7832 + }, + { + "start": 68263.0, + "end": 68265.3, + "probability": 0.9192 + }, + { + "start": 68265.42, + "end": 68267.78, + "probability": 0.9897 + }, + { + "start": 68268.62, + "end": 68270.04, + "probability": 0.9791 + }, + { + "start": 68270.72, + "end": 68271.52, + "probability": 0.7524 + }, + { + "start": 68272.0, + "end": 68278.02, + "probability": 0.9867 + }, + { + "start": 68278.54, + "end": 68278.8, + "probability": 0.751 + }, + { + "start": 68279.24, + "end": 68281.74, + "probability": 0.9543 + }, + { + "start": 68282.04, + "end": 68285.82, + "probability": 0.9548 + }, + { + "start": 68285.82, + "end": 68289.74, + "probability": 0.9962 + }, + { + "start": 68290.08, + "end": 68293.94, + "probability": 0.9966 + }, + { + "start": 68294.68, + "end": 68297.42, + "probability": 0.7203 + }, + { + "start": 68297.52, + "end": 68299.34, + "probability": 0.9521 + }, + { + "start": 68301.78, + "end": 68304.8, + "probability": 0.6627 + }, + { + "start": 68304.9, + "end": 68306.88, + "probability": 0.9946 + }, + { + "start": 68307.14, + "end": 68308.36, + "probability": 0.8642 + }, + { + "start": 68309.12, + "end": 68310.88, + "probability": 0.2205 + }, + { + "start": 68310.88, + "end": 68311.26, + "probability": 0.2222 + }, + { + "start": 68312.0, + "end": 68318.28, + "probability": 0.9904 + }, + { + "start": 68318.4, + "end": 68319.88, + "probability": 0.8855 + }, + { + "start": 68320.36, + "end": 68323.4, + "probability": 0.964 + }, + { + "start": 68324.12, + "end": 68326.12, + "probability": 0.9592 + }, + { + "start": 68326.58, + "end": 68330.96, + "probability": 0.9927 + }, + { + "start": 68331.4, + "end": 68332.58, + "probability": 0.9889 + }, + { + "start": 68333.73, + "end": 68337.28, + "probability": 0.0287 + }, + { + "start": 68337.6, + "end": 68341.54, + "probability": 0.9811 + }, + { + "start": 68342.82, + "end": 68344.48, + "probability": 0.666 + }, + { + "start": 68344.88, + "end": 68346.06, + "probability": 0.0734 + }, + { + "start": 68346.06, + "end": 68347.1, + "probability": 0.7824 + }, + { + "start": 68347.24, + "end": 68347.92, + "probability": 0.6619 + }, + { + "start": 68349.04, + "end": 68351.74, + "probability": 0.8772 + }, + { + "start": 68352.02, + "end": 68354.1, + "probability": 0.9941 + }, + { + "start": 68354.74, + "end": 68357.06, + "probability": 0.9934 + }, + { + "start": 68357.64, + "end": 68361.64, + "probability": 0.9121 + }, + { + "start": 68362.46, + "end": 68364.85, + "probability": 0.9643 + }, + { + "start": 68365.18, + "end": 68365.92, + "probability": 0.9349 + }, + { + "start": 68366.24, + "end": 68367.16, + "probability": 0.9082 + }, + { + "start": 68368.28, + "end": 68371.48, + "probability": 0.9558 + }, + { + "start": 68371.84, + "end": 68375.14, + "probability": 0.8478 + }, + { + "start": 68375.3, + "end": 68376.38, + "probability": 0.9458 + }, + { + "start": 68376.8, + "end": 68379.14, + "probability": 0.9971 + }, + { + "start": 68379.5, + "end": 68380.84, + "probability": 0.9029 + }, + { + "start": 68381.4, + "end": 68383.92, + "probability": 0.9027 + }, + { + "start": 68386.34, + "end": 68391.54, + "probability": 0.9955 + }, + { + "start": 68391.98, + "end": 68397.46, + "probability": 0.998 + }, + { + "start": 68398.26, + "end": 68405.1, + "probability": 0.9587 + }, + { + "start": 68405.16, + "end": 68406.54, + "probability": 0.907 + }, + { + "start": 68406.64, + "end": 68407.9, + "probability": 0.9995 + }, + { + "start": 68408.88, + "end": 68411.56, + "probability": 0.9971 + }, + { + "start": 68411.6, + "end": 68415.8, + "probability": 0.7658 + }, + { + "start": 68416.22, + "end": 68417.1, + "probability": 0.9686 + }, + { + "start": 68417.74, + "end": 68419.82, + "probability": 0.9951 + }, + { + "start": 68420.0, + "end": 68422.16, + "probability": 0.9969 + }, + { + "start": 68423.14, + "end": 68425.02, + "probability": 0.9958 + }, + { + "start": 68425.6, + "end": 68430.34, + "probability": 0.9976 + }, + { + "start": 68430.54, + "end": 68431.48, + "probability": 0.9654 + }, + { + "start": 68432.54, + "end": 68434.48, + "probability": 0.9944 + }, + { + "start": 68436.32, + "end": 68439.38, + "probability": 0.9467 + }, + { + "start": 68439.44, + "end": 68446.94, + "probability": 0.9909 + }, + { + "start": 68447.58, + "end": 68449.68, + "probability": 0.9438 + }, + { + "start": 68450.32, + "end": 68450.9, + "probability": 0.9315 + }, + { + "start": 68451.52, + "end": 68452.52, + "probability": 0.7785 + }, + { + "start": 68452.82, + "end": 68453.62, + "probability": 0.9888 + }, + { + "start": 68454.06, + "end": 68454.84, + "probability": 0.9681 + }, + { + "start": 68455.2, + "end": 68461.24, + "probability": 0.8864 + }, + { + "start": 68461.3, + "end": 68462.32, + "probability": 0.9626 + }, + { + "start": 68462.9, + "end": 68469.7, + "probability": 0.9628 + }, + { + "start": 68470.7, + "end": 68472.84, + "probability": 0.9482 + }, + { + "start": 68473.5, + "end": 68476.46, + "probability": 0.8885 + }, + { + "start": 68476.46, + "end": 68479.5, + "probability": 0.845 + }, + { + "start": 68479.58, + "end": 68483.92, + "probability": 0.8861 + }, + { + "start": 68484.38, + "end": 68487.74, + "probability": 0.9548 + }, + { + "start": 68488.14, + "end": 68490.04, + "probability": 0.9982 + }, + { + "start": 68490.04, + "end": 68493.46, + "probability": 0.7451 + }, + { + "start": 68495.2, + "end": 68497.18, + "probability": 0.857 + }, + { + "start": 68498.92, + "end": 68501.16, + "probability": 0.8364 + }, + { + "start": 68501.5, + "end": 68502.8, + "probability": 0.9899 + }, + { + "start": 68505.0, + "end": 68510.78, + "probability": 0.5047 + }, + { + "start": 68511.68, + "end": 68516.96, + "probability": 0.9771 + }, + { + "start": 68517.1, + "end": 68518.02, + "probability": 0.796 + }, + { + "start": 68518.6, + "end": 68519.88, + "probability": 0.9703 + }, + { + "start": 68520.44, + "end": 68520.62, + "probability": 0.9989 + }, + { + "start": 68521.52, + "end": 68523.14, + "probability": 0.7321 + }, + { + "start": 68523.86, + "end": 68526.88, + "probability": 0.9824 + }, + { + "start": 68527.5, + "end": 68528.06, + "probability": 0.48 + }, + { + "start": 68529.78, + "end": 68530.56, + "probability": 0.5279 + }, + { + "start": 68532.02, + "end": 68532.72, + "probability": 0.0519 + }, + { + "start": 68532.82, + "end": 68532.82, + "probability": 0.1748 + }, + { + "start": 68532.82, + "end": 68532.82, + "probability": 0.1632 + }, + { + "start": 68532.88, + "end": 68535.54, + "probability": 0.7343 + }, + { + "start": 68536.24, + "end": 68539.06, + "probability": 0.9966 + }, + { + "start": 68539.24, + "end": 68540.94, + "probability": 0.9409 + }, + { + "start": 68541.72, + "end": 68543.76, + "probability": 0.7926 + }, + { + "start": 68544.34, + "end": 68545.62, + "probability": 0.6695 + }, + { + "start": 68546.52, + "end": 68549.44, + "probability": 0.9956 + }, + { + "start": 68549.44, + "end": 68552.34, + "probability": 0.989 + }, + { + "start": 68552.5, + "end": 68552.9, + "probability": 0.7963 + }, + { + "start": 68553.54, + "end": 68554.82, + "probability": 0.9491 + }, + { + "start": 68556.0, + "end": 68559.33, + "probability": 0.9857 + }, + { + "start": 68559.64, + "end": 68560.72, + "probability": 0.8508 + }, + { + "start": 68560.94, + "end": 68562.39, + "probability": 0.9978 + }, + { + "start": 68563.18, + "end": 68566.02, + "probability": 0.9205 + }, + { + "start": 68567.32, + "end": 68569.22, + "probability": 0.9142 + }, + { + "start": 68569.8, + "end": 68571.64, + "probability": 0.9611 + }, + { + "start": 68572.98, + "end": 68575.28, + "probability": 0.9282 + }, + { + "start": 68575.44, + "end": 68576.46, + "probability": 0.6983 + }, + { + "start": 68577.98, + "end": 68581.3, + "probability": 0.9093 + }, + { + "start": 68582.16, + "end": 68586.6, + "probability": 0.9015 + }, + { + "start": 68586.7, + "end": 68587.14, + "probability": 0.8483 + }, + { + "start": 68587.4, + "end": 68587.92, + "probability": 0.8947 + }, + { + "start": 68588.04, + "end": 68589.24, + "probability": 0.9993 + }, + { + "start": 68589.94, + "end": 68591.72, + "probability": 0.9694 + }, + { + "start": 68592.66, + "end": 68596.88, + "probability": 0.9958 + }, + { + "start": 68597.8, + "end": 68599.02, + "probability": 0.9883 + }, + { + "start": 68599.2, + "end": 68600.14, + "probability": 0.4124 + }, + { + "start": 68600.32, + "end": 68601.1, + "probability": 0.8699 + }, + { + "start": 68601.94, + "end": 68604.2, + "probability": 0.7917 + }, + { + "start": 68604.54, + "end": 68607.0, + "probability": 0.9992 + }, + { + "start": 68607.32, + "end": 68610.02, + "probability": 0.9948 + }, + { + "start": 68610.22, + "end": 68610.5, + "probability": 0.9324 + }, + { + "start": 68610.88, + "end": 68614.82, + "probability": 0.9596 + }, + { + "start": 68616.44, + "end": 68617.46, + "probability": 0.9966 + }, + { + "start": 68617.64, + "end": 68620.94, + "probability": 0.9746 + }, + { + "start": 68622.3, + "end": 68623.38, + "probability": 0.7975 + }, + { + "start": 68623.78, + "end": 68625.32, + "probability": 0.6398 + }, + { + "start": 68625.4, + "end": 68627.48, + "probability": 0.9708 + }, + { + "start": 68627.64, + "end": 68630.1, + "probability": 0.3704 + }, + { + "start": 68630.64, + "end": 68635.12, + "probability": 0.8324 + }, + { + "start": 68635.4, + "end": 68636.44, + "probability": 0.9755 + }, + { + "start": 68636.96, + "end": 68639.7, + "probability": 0.8217 + }, + { + "start": 68640.32, + "end": 68640.88, + "probability": 0.6518 + }, + { + "start": 68641.26, + "end": 68642.14, + "probability": 0.3907 + }, + { + "start": 68642.4, + "end": 68645.04, + "probability": 0.9861 + }, + { + "start": 68645.58, + "end": 68646.6, + "probability": 0.8723 + }, + { + "start": 68647.02, + "end": 68651.28, + "probability": 0.9379 + }, + { + "start": 68652.54, + "end": 68655.66, + "probability": 0.6111 + }, + { + "start": 68655.74, + "end": 68658.84, + "probability": 0.9849 + }, + { + "start": 68658.84, + "end": 68661.96, + "probability": 0.9103 + }, + { + "start": 68665.3, + "end": 68669.16, + "probability": 0.9865 + }, + { + "start": 68669.68, + "end": 68671.68, + "probability": 0.5746 + }, + { + "start": 68673.29, + "end": 68674.7, + "probability": 0.9366 + }, + { + "start": 68675.72, + "end": 68676.98, + "probability": 0.9368 + }, + { + "start": 68677.92, + "end": 68680.1, + "probability": 0.9844 + }, + { + "start": 68680.62, + "end": 68681.94, + "probability": 0.9824 + }, + { + "start": 68683.08, + "end": 68684.83, + "probability": 0.0075 + }, + { + "start": 68686.34, + "end": 68686.44, + "probability": 0.3027 + }, + { + "start": 68686.44, + "end": 68690.0, + "probability": 0.7886 + }, + { + "start": 68691.24, + "end": 68691.74, + "probability": 0.2629 + }, + { + "start": 68692.76, + "end": 68693.76, + "probability": 0.8376 + }, + { + "start": 68694.7, + "end": 68700.42, + "probability": 0.9912 + }, + { + "start": 68701.06, + "end": 68703.56, + "probability": 0.8747 + }, + { + "start": 68703.8, + "end": 68704.38, + "probability": 0.6389 + }, + { + "start": 68704.52, + "end": 68704.94, + "probability": 0.5883 + }, + { + "start": 68705.12, + "end": 68706.7, + "probability": 0.8387 + }, + { + "start": 68707.8, + "end": 68709.12, + "probability": 0.9575 + }, + { + "start": 68709.34, + "end": 68709.98, + "probability": 0.0715 + }, + { + "start": 68709.98, + "end": 68710.9, + "probability": 0.9305 + }, + { + "start": 68711.42, + "end": 68714.42, + "probability": 0.5838 + }, + { + "start": 68714.86, + "end": 68716.2, + "probability": 0.8657 + }, + { + "start": 68716.2, + "end": 68716.46, + "probability": 0.2653 + }, + { + "start": 68717.02, + "end": 68717.98, + "probability": 0.6263 + }, + { + "start": 68718.0, + "end": 68719.44, + "probability": 0.8695 + }, + { + "start": 68719.56, + "end": 68721.14, + "probability": 0.6205 + }, + { + "start": 68721.56, + "end": 68722.74, + "probability": 0.6153 + }, + { + "start": 68722.82, + "end": 68724.74, + "probability": 0.5791 + }, + { + "start": 68725.44, + "end": 68727.08, + "probability": 0.8319 + }, + { + "start": 68727.48, + "end": 68728.07, + "probability": 0.6942 + }, + { + "start": 68728.62, + "end": 68730.24, + "probability": 0.8064 + }, + { + "start": 68730.52, + "end": 68731.82, + "probability": 0.9468 + }, + { + "start": 68732.42, + "end": 68737.74, + "probability": 0.8291 + }, + { + "start": 68738.59, + "end": 68741.56, + "probability": 0.5852 + }, + { + "start": 68742.22, + "end": 68742.64, + "probability": 0.7967 + }, + { + "start": 68742.9, + "end": 68743.95, + "probability": 0.8391 + }, + { + "start": 68744.48, + "end": 68746.27, + "probability": 0.7684 + }, + { + "start": 68746.94, + "end": 68747.42, + "probability": 0.1378 + }, + { + "start": 68747.52, + "end": 68748.86, + "probability": 0.8457 + }, + { + "start": 68748.96, + "end": 68749.52, + "probability": 0.6537 + }, + { + "start": 68749.56, + "end": 68749.76, + "probability": 0.8967 + }, + { + "start": 68750.1, + "end": 68751.14, + "probability": 0.8736 + }, + { + "start": 68751.28, + "end": 68752.24, + "probability": 0.7819 + }, + { + "start": 68752.66, + "end": 68753.9, + "probability": 0.7737 + }, + { + "start": 68754.88, + "end": 68757.46, + "probability": 0.7971 + }, + { + "start": 68757.46, + "end": 68757.46, + "probability": 0.3044 + }, + { + "start": 68757.46, + "end": 68757.46, + "probability": 0.1414 + }, + { + "start": 68757.46, + "end": 68759.42, + "probability": 0.7122 + }, + { + "start": 68759.44, + "end": 68761.22, + "probability": 0.8294 + }, + { + "start": 68761.76, + "end": 68762.62, + "probability": 0.8414 + }, + { + "start": 68763.36, + "end": 68764.62, + "probability": 0.811 + }, + { + "start": 68764.98, + "end": 68766.7, + "probability": 0.925 + }, + { + "start": 68767.14, + "end": 68767.32, + "probability": 0.9902 + }, + { + "start": 68767.84, + "end": 68768.06, + "probability": 0.2635 + }, + { + "start": 68769.05, + "end": 68771.1, + "probability": 0.1556 + }, + { + "start": 68771.78, + "end": 68772.38, + "probability": 0.6203 + }, + { + "start": 68773.38, + "end": 68773.88, + "probability": 0.7374 + }, + { + "start": 68773.88, + "end": 68774.62, + "probability": 0.4336 + }, + { + "start": 68775.6, + "end": 68776.2, + "probability": 0.5055 + }, + { + "start": 68776.34, + "end": 68778.08, + "probability": 0.8001 + }, + { + "start": 68778.48, + "end": 68778.48, + "probability": 0.0782 + }, + { + "start": 68778.48, + "end": 68778.97, + "probability": 0.1199 + }, + { + "start": 68780.46, + "end": 68782.72, + "probability": 0.1661 + }, + { + "start": 68782.74, + "end": 68782.74, + "probability": 0.3194 + }, + { + "start": 68782.74, + "end": 68782.76, + "probability": 0.0405 + }, + { + "start": 68782.86, + "end": 68784.12, + "probability": 0.2483 + }, + { + "start": 68784.62, + "end": 68787.02, + "probability": 0.2959 + }, + { + "start": 68787.18, + "end": 68788.51, + "probability": 0.7049 + }, + { + "start": 68789.42, + "end": 68791.82, + "probability": 0.5 + }, + { + "start": 68792.06, + "end": 68794.02, + "probability": 0.8859 + }, + { + "start": 68794.26, + "end": 68795.28, + "probability": 0.5353 + }, + { + "start": 68795.28, + "end": 68796.92, + "probability": 0.8313 + }, + { + "start": 68796.94, + "end": 68799.58, + "probability": 0.897 + }, + { + "start": 68799.88, + "end": 68801.94, + "probability": 0.9417 + }, + { + "start": 68801.94, + "end": 68802.1, + "probability": 0.707 + }, + { + "start": 68802.48, + "end": 68803.2, + "probability": 0.8143 + }, + { + "start": 68803.34, + "end": 68805.58, + "probability": 0.8506 + }, + { + "start": 68805.86, + "end": 68812.66, + "probability": 0.9904 + }, + { + "start": 68813.32, + "end": 68814.2, + "probability": 0.9396 + }, + { + "start": 68814.42, + "end": 68815.76, + "probability": 0.9797 + }, + { + "start": 68816.78, + "end": 68820.82, + "probability": 0.9001 + }, + { + "start": 68820.96, + "end": 68822.48, + "probability": 0.9075 + }, + { + "start": 68822.64, + "end": 68827.14, + "probability": 0.9447 + }, + { + "start": 68827.54, + "end": 68827.84, + "probability": 0.8728 + }, + { + "start": 68828.6, + "end": 68830.64, + "probability": 0.7569 + }, + { + "start": 68831.42, + "end": 68833.24, + "probability": 0.6935 + }, + { + "start": 68834.12, + "end": 68835.78, + "probability": 0.898 + }, + { + "start": 68836.72, + "end": 68839.49, + "probability": 0.9445 + }, + { + "start": 68840.1, + "end": 68844.38, + "probability": 0.4539 + }, + { + "start": 68844.38, + "end": 68848.16, + "probability": 0.8263 + }, + { + "start": 68848.2, + "end": 68849.26, + "probability": 0.8535 + }, + { + "start": 68849.9, + "end": 68849.98, + "probability": 0.2295 + }, + { + "start": 68849.98, + "end": 68851.24, + "probability": 0.5522 + }, + { + "start": 68851.32, + "end": 68852.24, + "probability": 0.3314 + }, + { + "start": 68853.34, + "end": 68854.02, + "probability": 0.6604 + }, + { + "start": 68854.08, + "end": 68857.06, + "probability": 0.7032 + }, + { + "start": 68857.26, + "end": 68857.4, + "probability": 0.1038 + }, + { + "start": 68857.92, + "end": 68858.68, + "probability": 0.5698 + }, + { + "start": 68858.7, + "end": 68860.36, + "probability": 0.9903 + }, + { + "start": 68860.64, + "end": 68861.0, + "probability": 0.9694 + }, + { + "start": 68861.88, + "end": 68862.92, + "probability": 0.7093 + }, + { + "start": 68862.98, + "end": 68864.38, + "probability": 0.9049 + }, + { + "start": 68864.88, + "end": 68867.57, + "probability": 0.9761 + }, + { + "start": 68868.94, + "end": 68871.16, + "probability": 0.9778 + }, + { + "start": 68873.56, + "end": 68875.84, + "probability": 0.9105 + }, + { + "start": 68876.8, + "end": 68881.56, + "probability": 0.9158 + }, + { + "start": 68882.38, + "end": 68884.58, + "probability": 0.9368 + }, + { + "start": 68886.5, + "end": 68889.6, + "probability": 0.744 + }, + { + "start": 68889.68, + "end": 68892.66, + "probability": 0.9949 + }, + { + "start": 68894.02, + "end": 68897.16, + "probability": 0.9734 + }, + { + "start": 68898.54, + "end": 68901.84, + "probability": 0.9549 + }, + { + "start": 68902.6, + "end": 68904.76, + "probability": 0.9024 + }, + { + "start": 68905.04, + "end": 68907.2, + "probability": 0.575 + }, + { + "start": 68908.52, + "end": 68911.48, + "probability": 0.8354 + }, + { + "start": 68911.5, + "end": 68911.96, + "probability": 0.6581 + }, + { + "start": 68912.26, + "end": 68912.66, + "probability": 0.7788 + }, + { + "start": 68912.82, + "end": 68915.02, + "probability": 0.8694 + }, + { + "start": 68915.16, + "end": 68915.94, + "probability": 0.9237 + }, + { + "start": 68916.04, + "end": 68917.23, + "probability": 0.9946 + }, + { + "start": 68917.58, + "end": 68920.02, + "probability": 0.9685 + }, + { + "start": 68920.42, + "end": 68921.76, + "probability": 0.8337 + }, + { + "start": 68922.48, + "end": 68923.1, + "probability": 0.9314 + }, + { + "start": 68923.22, + "end": 68923.56, + "probability": 0.9903 + }, + { + "start": 68923.68, + "end": 68925.16, + "probability": 0.9775 + }, + { + "start": 68925.54, + "end": 68926.68, + "probability": 0.9778 + }, + { + "start": 68927.2, + "end": 68928.38, + "probability": 0.8895 + }, + { + "start": 68928.48, + "end": 68929.14, + "probability": 0.8446 + }, + { + "start": 68929.48, + "end": 68931.52, + "probability": 0.7084 + }, + { + "start": 68931.62, + "end": 68933.4, + "probability": 0.9714 + }, + { + "start": 68933.7, + "end": 68934.42, + "probability": 0.6197 + }, + { + "start": 68936.42, + "end": 68937.18, + "probability": 0.0019 + }, + { + "start": 68938.41, + "end": 68941.12, + "probability": 0.546 + }, + { + "start": 68941.3, + "end": 68941.3, + "probability": 0.6509 + }, + { + "start": 68941.3, + "end": 68941.96, + "probability": 0.4533 + }, + { + "start": 68942.24, + "end": 68942.68, + "probability": 0.0614 + }, + { + "start": 68942.74, + "end": 68943.85, + "probability": 0.3322 + }, + { + "start": 68944.08, + "end": 68944.56, + "probability": 0.4915 + }, + { + "start": 68944.56, + "end": 68944.56, + "probability": 0.253 + }, + { + "start": 68944.56, + "end": 68945.68, + "probability": 0.1008 + }, + { + "start": 68945.84, + "end": 68946.18, + "probability": 0.2022 + }, + { + "start": 68946.18, + "end": 68946.18, + "probability": 0.0736 + }, + { + "start": 68946.18, + "end": 68946.18, + "probability": 0.0276 + }, + { + "start": 68946.18, + "end": 68946.39, + "probability": 0.2837 + }, + { + "start": 68947.24, + "end": 68949.29, + "probability": 0.3857 + }, + { + "start": 68949.94, + "end": 68950.92, + "probability": 0.9644 + }, + { + "start": 68951.02, + "end": 68952.94, + "probability": 0.6245 + }, + { + "start": 68953.18, + "end": 68955.54, + "probability": 0.9403 + }, + { + "start": 68957.86, + "end": 68960.56, + "probability": 0.5294 + }, + { + "start": 68960.88, + "end": 68963.08, + "probability": 0.8968 + }, + { + "start": 68964.56, + "end": 68966.63, + "probability": 0.8684 + }, + { + "start": 68968.32, + "end": 68968.72, + "probability": 0.6813 + }, + { + "start": 68969.68, + "end": 68972.56, + "probability": 0.9785 + }, + { + "start": 68973.08, + "end": 68974.48, + "probability": 0.7315 + }, + { + "start": 68975.06, + "end": 68976.82, + "probability": 0.7959 + }, + { + "start": 68977.38, + "end": 68981.28, + "probability": 0.8118 + }, + { + "start": 68981.28, + "end": 68983.66, + "probability": 0.5848 + }, + { + "start": 68984.7, + "end": 68985.0, + "probability": 0.9418 + }, + { + "start": 68985.66, + "end": 68989.94, + "probability": 0.8947 + }, + { + "start": 68990.06, + "end": 68991.14, + "probability": 0.6514 + }, + { + "start": 68991.38, + "end": 68991.82, + "probability": 0.569 + }, + { + "start": 68992.16, + "end": 68993.18, + "probability": 0.8196 + }, + { + "start": 68993.24, + "end": 68994.4, + "probability": 0.9946 + }, + { + "start": 68994.48, + "end": 68998.38, + "probability": 0.9889 + }, + { + "start": 68998.9, + "end": 69001.48, + "probability": 0.9564 + }, + { + "start": 69002.42, + "end": 69003.22, + "probability": 0.696 + }, + { + "start": 69003.38, + "end": 69007.22, + "probability": 0.8829 + }, + { + "start": 69007.26, + "end": 69010.46, + "probability": 0.9965 + }, + { + "start": 69010.64, + "end": 69013.36, + "probability": 0.9865 + }, + { + "start": 69013.42, + "end": 69015.5, + "probability": 0.9837 + }, + { + "start": 69016.62, + "end": 69018.4, + "probability": 0.973 + }, + { + "start": 69018.44, + "end": 69020.18, + "probability": 0.9351 + }, + { + "start": 69020.46, + "end": 69021.64, + "probability": 0.9458 + }, + { + "start": 69021.72, + "end": 69025.16, + "probability": 0.9798 + }, + { + "start": 69025.52, + "end": 69029.54, + "probability": 0.4113 + }, + { + "start": 69029.54, + "end": 69029.54, + "probability": 0.0573 + }, + { + "start": 69029.54, + "end": 69029.54, + "probability": 0.6612 + }, + { + "start": 69029.54, + "end": 69030.25, + "probability": 0.7994 + }, + { + "start": 69030.46, + "end": 69031.82, + "probability": 0.6609 + }, + { + "start": 69031.82, + "end": 69036.12, + "probability": 0.9166 + }, + { + "start": 69036.42, + "end": 69036.66, + "probability": 0.4041 + }, + { + "start": 69036.82, + "end": 69039.68, + "probability": 0.5606 + }, + { + "start": 69040.34, + "end": 69043.74, + "probability": 0.9316 + }, + { + "start": 69044.38, + "end": 69044.74, + "probability": 0.4226 + }, + { + "start": 69044.74, + "end": 69046.44, + "probability": 0.7322 + }, + { + "start": 69046.52, + "end": 69047.7, + "probability": 0.6613 + }, + { + "start": 69047.78, + "end": 69048.54, + "probability": 0.7788 + }, + { + "start": 69048.76, + "end": 69049.66, + "probability": 0.9795 + }, + { + "start": 69049.74, + "end": 69051.86, + "probability": 0.8582 + }, + { + "start": 69052.16, + "end": 69053.28, + "probability": 0.9966 + }, + { + "start": 69053.46, + "end": 69054.04, + "probability": 0.8963 + }, + { + "start": 69054.48, + "end": 69055.16, + "probability": 0.7234 + }, + { + "start": 69055.32, + "end": 69055.68, + "probability": 0.7457 + }, + { + "start": 69055.72, + "end": 69058.26, + "probability": 0.9831 + }, + { + "start": 69058.78, + "end": 69059.66, + "probability": 0.9639 + }, + { + "start": 69059.96, + "end": 69061.04, + "probability": 0.9869 + }, + { + "start": 69061.14, + "end": 69062.18, + "probability": 0.9713 + }, + { + "start": 69062.66, + "end": 69063.9, + "probability": 0.6564 + }, + { + "start": 69064.16, + "end": 69065.3, + "probability": 0.8711 + }, + { + "start": 69065.44, + "end": 69066.9, + "probability": 0.9741 + }, + { + "start": 69067.38, + "end": 69068.37, + "probability": 0.8774 + }, + { + "start": 69068.78, + "end": 69069.74, + "probability": 0.9702 + }, + { + "start": 69070.38, + "end": 69071.76, + "probability": 0.7881 + }, + { + "start": 69072.02, + "end": 69074.78, + "probability": 0.9731 + }, + { + "start": 69074.9, + "end": 69075.78, + "probability": 0.9451 + }, + { + "start": 69075.86, + "end": 69078.46, + "probability": 0.8231 + }, + { + "start": 69078.56, + "end": 69081.52, + "probability": 0.9831 + }, + { + "start": 69082.04, + "end": 69083.32, + "probability": 0.6876 + }, + { + "start": 69084.26, + "end": 69085.4, + "probability": 0.7544 + }, + { + "start": 69085.52, + "end": 69088.32, + "probability": 0.9941 + }, + { + "start": 69088.92, + "end": 69089.96, + "probability": 0.8875 + }, + { + "start": 69090.08, + "end": 69094.72, + "probability": 0.7339 + }, + { + "start": 69094.98, + "end": 69095.47, + "probability": 0.6259 + }, + { + "start": 69095.68, + "end": 69096.72, + "probability": 0.6501 + }, + { + "start": 69096.84, + "end": 69102.22, + "probability": 0.9773 + }, + { + "start": 69102.46, + "end": 69103.38, + "probability": 0.9893 + }, + { + "start": 69103.76, + "end": 69108.7, + "probability": 0.8023 + }, + { + "start": 69109.04, + "end": 69110.84, + "probability": 0.8099 + }, + { + "start": 69111.4, + "end": 69118.36, + "probability": 0.9933 + }, + { + "start": 69118.6, + "end": 69119.08, + "probability": 0.7385 + }, + { + "start": 69119.14, + "end": 69120.46, + "probability": 0.715 + }, + { + "start": 69120.66, + "end": 69122.16, + "probability": 0.9617 + }, + { + "start": 69123.3, + "end": 69124.28, + "probability": 0.543 + }, + { + "start": 69124.66, + "end": 69125.14, + "probability": 0.6104 + }, + { + "start": 69125.3, + "end": 69126.92, + "probability": 0.9132 + }, + { + "start": 69127.16, + "end": 69129.64, + "probability": 0.9709 + }, + { + "start": 69130.12, + "end": 69135.58, + "probability": 0.7841 + }, + { + "start": 69136.94, + "end": 69138.1, + "probability": 0.7856 + }, + { + "start": 69138.8, + "end": 69141.42, + "probability": 0.9534 + }, + { + "start": 69142.58, + "end": 69143.54, + "probability": 0.8677 + }, + { + "start": 69144.14, + "end": 69145.26, + "probability": 0.8906 + }, + { + "start": 69146.18, + "end": 69148.72, + "probability": 0.9296 + }, + { + "start": 69148.86, + "end": 69150.54, + "probability": 0.9078 + }, + { + "start": 69151.56, + "end": 69152.32, + "probability": 0.5651 + }, + { + "start": 69152.44, + "end": 69153.54, + "probability": 0.9069 + }, + { + "start": 69154.02, + "end": 69155.6, + "probability": 0.9761 + }, + { + "start": 69155.98, + "end": 69156.48, + "probability": 0.2578 + }, + { + "start": 69156.48, + "end": 69158.3, + "probability": 0.4392 + }, + { + "start": 69158.94, + "end": 69159.14, + "probability": 0.8674 + }, + { + "start": 69159.78, + "end": 69162.62, + "probability": 0.8592 + }, + { + "start": 69163.48, + "end": 69164.22, + "probability": 0.2675 + }, + { + "start": 69164.36, + "end": 69165.06, + "probability": 0.6693 + }, + { + "start": 69165.24, + "end": 69166.46, + "probability": 0.946 + }, + { + "start": 69166.68, + "end": 69168.0, + "probability": 0.8696 + }, + { + "start": 69169.12, + "end": 69172.16, + "probability": 0.8703 + }, + { + "start": 69172.16, + "end": 69174.0, + "probability": 0.7479 + }, + { + "start": 69174.68, + "end": 69176.24, + "probability": 0.5873 + }, + { + "start": 69176.72, + "end": 69179.0, + "probability": 0.8475 + }, + { + "start": 69179.46, + "end": 69179.84, + "probability": 0.8678 + }, + { + "start": 69180.18, + "end": 69180.44, + "probability": 0.9642 + }, + { + "start": 69180.58, + "end": 69180.86, + "probability": 0.7014 + }, + { + "start": 69181.28, + "end": 69183.08, + "probability": 0.6171 + }, + { + "start": 69183.08, + "end": 69183.92, + "probability": 0.6789 + }, + { + "start": 69184.04, + "end": 69185.34, + "probability": 0.5595 + }, + { + "start": 69185.56, + "end": 69189.22, + "probability": 0.9503 + }, + { + "start": 69189.42, + "end": 69193.14, + "probability": 0.9334 + }, + { + "start": 69193.94, + "end": 69195.26, + "probability": 0.9838 + }, + { + "start": 69195.5, + "end": 69196.44, + "probability": 0.8358 + }, + { + "start": 69196.6, + "end": 69198.82, + "probability": 0.8983 + }, + { + "start": 69199.16, + "end": 69200.02, + "probability": 0.9545 + }, + { + "start": 69200.26, + "end": 69202.36, + "probability": 0.967 + }, + { + "start": 69202.7, + "end": 69203.32, + "probability": 0.9314 + }, + { + "start": 69203.68, + "end": 69203.98, + "probability": 0.8364 + }, + { + "start": 69204.14, + "end": 69204.36, + "probability": 0.8524 + }, + { + "start": 69204.42, + "end": 69205.52, + "probability": 0.9672 + }, + { + "start": 69205.64, + "end": 69208.04, + "probability": 0.9124 + }, + { + "start": 69208.52, + "end": 69209.44, + "probability": 0.9587 + }, + { + "start": 69209.64, + "end": 69209.94, + "probability": 0.7851 + }, + { + "start": 69210.02, + "end": 69210.36, + "probability": 0.8419 + }, + { + "start": 69210.6, + "end": 69215.16, + "probability": 0.8181 + }, + { + "start": 69215.88, + "end": 69218.22, + "probability": 0.9963 + }, + { + "start": 69218.78, + "end": 69219.44, + "probability": 0.9329 + }, + { + "start": 69219.98, + "end": 69221.78, + "probability": 0.7642 + }, + { + "start": 69222.32, + "end": 69223.42, + "probability": 0.9361 + }, + { + "start": 69223.48, + "end": 69225.64, + "probability": 0.8398 + }, + { + "start": 69225.76, + "end": 69229.62, + "probability": 0.3002 + }, + { + "start": 69229.74, + "end": 69230.38, + "probability": 0.0038 + }, + { + "start": 69232.68, + "end": 69235.76, + "probability": 0.3809 + }, + { + "start": 69236.32, + "end": 69238.58, + "probability": 0.6304 + }, + { + "start": 69238.68, + "end": 69239.84, + "probability": 0.8855 + }, + { + "start": 69240.04, + "end": 69240.2, + "probability": 0.712 + }, + { + "start": 69240.7, + "end": 69243.74, + "probability": 0.7563 + }, + { + "start": 69245.1, + "end": 69245.42, + "probability": 0.1596 + }, + { + "start": 69245.42, + "end": 69245.88, + "probability": 0.0487 + }, + { + "start": 69245.98, + "end": 69247.7, + "probability": 0.6099 + }, + { + "start": 69247.86, + "end": 69249.0, + "probability": 0.7687 + }, + { + "start": 69249.98, + "end": 69251.7, + "probability": 0.7461 + }, + { + "start": 69252.72, + "end": 69255.54, + "probability": 0.4417 + }, + { + "start": 69256.06, + "end": 69258.92, + "probability": 0.7223 + }, + { + "start": 69259.0, + "end": 69260.0, + "probability": 0.5842 + }, + { + "start": 69260.16, + "end": 69261.98, + "probability": 0.8146 + }, + { + "start": 69262.52, + "end": 69263.66, + "probability": 0.5706 + }, + { + "start": 69263.94, + "end": 69265.72, + "probability": 0.8365 + }, + { + "start": 69265.98, + "end": 69267.62, + "probability": 0.9978 + }, + { + "start": 69268.2, + "end": 69269.6, + "probability": 0.9961 + }, + { + "start": 69270.12, + "end": 69271.42, + "probability": 0.9131 + }, + { + "start": 69271.5, + "end": 69274.2, + "probability": 0.7783 + }, + { + "start": 69275.34, + "end": 69276.68, + "probability": 0.6192 + }, + { + "start": 69277.18, + "end": 69279.4, + "probability": 0.5477 + }, + { + "start": 69279.4, + "end": 69280.42, + "probability": 0.4363 + }, + { + "start": 69280.54, + "end": 69281.12, + "probability": 0.804 + }, + { + "start": 69281.44, + "end": 69283.28, + "probability": 0.7288 + }, + { + "start": 69283.42, + "end": 69285.9, + "probability": 0.9924 + }, + { + "start": 69286.1, + "end": 69287.62, + "probability": 0.814 + }, + { + "start": 69287.66, + "end": 69288.98, + "probability": 0.8948 + }, + { + "start": 69289.06, + "end": 69291.08, + "probability": 0.7915 + }, + { + "start": 69291.18, + "end": 69294.22, + "probability": 0.8754 + }, + { + "start": 69294.66, + "end": 69298.6, + "probability": 0.9348 + }, + { + "start": 69299.52, + "end": 69300.47, + "probability": 0.9009 + }, + { + "start": 69301.34, + "end": 69301.96, + "probability": 0.5454 + }, + { + "start": 69304.44, + "end": 69306.26, + "probability": 0.5584 + }, + { + "start": 69307.14, + "end": 69312.94, + "probability": 0.9907 + }, + { + "start": 69313.02, + "end": 69317.7, + "probability": 0.9937 + }, + { + "start": 69317.78, + "end": 69321.2, + "probability": 0.9961 + }, + { + "start": 69321.56, + "end": 69323.36, + "probability": 0.8392 + }, + { + "start": 69323.78, + "end": 69323.84, + "probability": 0.8103 + }, + { + "start": 69323.84, + "end": 69326.36, + "probability": 0.814 + }, + { + "start": 69326.52, + "end": 69326.72, + "probability": 0.9593 + }, + { + "start": 69327.78, + "end": 69329.98, + "probability": 0.9634 + }, + { + "start": 69330.06, + "end": 69331.12, + "probability": 0.927 + }, + { + "start": 69331.28, + "end": 69332.2, + "probability": 0.9124 + }, + { + "start": 69332.76, + "end": 69335.66, + "probability": 0.7263 + }, + { + "start": 69335.96, + "end": 69337.92, + "probability": 0.8979 + }, + { + "start": 69338.32, + "end": 69338.7, + "probability": 0.7845 + }, + { + "start": 69338.74, + "end": 69342.9, + "probability": 0.9794 + }, + { + "start": 69343.38, + "end": 69344.26, + "probability": 0.8719 + }, + { + "start": 69344.36, + "end": 69346.06, + "probability": 0.8647 + }, + { + "start": 69346.96, + "end": 69353.64, + "probability": 0.9502 + }, + { + "start": 69353.9, + "end": 69357.88, + "probability": 0.9935 + }, + { + "start": 69358.38, + "end": 69359.4, + "probability": 0.93 + }, + { + "start": 69360.68, + "end": 69361.04, + "probability": 0.9198 + }, + { + "start": 69361.18, + "end": 69363.49, + "probability": 0.9788 + }, + { + "start": 69363.94, + "end": 69366.56, + "probability": 0.9575 + }, + { + "start": 69368.24, + "end": 69371.16, + "probability": 0.8169 + }, + { + "start": 69371.94, + "end": 69375.94, + "probability": 0.8364 + }, + { + "start": 69376.08, + "end": 69377.4, + "probability": 0.9141 + }, + { + "start": 69377.54, + "end": 69381.96, + "probability": 0.9683 + }, + { + "start": 69382.58, + "end": 69384.62, + "probability": 0.7695 + }, + { + "start": 69384.86, + "end": 69386.08, + "probability": 0.9397 + }, + { + "start": 69386.62, + "end": 69387.4, + "probability": 0.9182 + }, + { + "start": 69387.92, + "end": 69390.06, + "probability": 0.9942 + }, + { + "start": 69390.46, + "end": 69392.48, + "probability": 0.4058 + }, + { + "start": 69393.02, + "end": 69396.2, + "probability": 0.8453 + }, + { + "start": 69396.56, + "end": 69396.76, + "probability": 0.8551 + }, + { + "start": 69396.9, + "end": 69398.7, + "probability": 0.7237 + }, + { + "start": 69398.86, + "end": 69401.22, + "probability": 0.9938 + }, + { + "start": 69401.26, + "end": 69404.96, + "probability": 0.8527 + }, + { + "start": 69404.96, + "end": 69406.32, + "probability": 0.9294 + }, + { + "start": 69406.7, + "end": 69407.76, + "probability": 0.9502 + }, + { + "start": 69407.92, + "end": 69408.64, + "probability": 0.7289 + }, + { + "start": 69409.36, + "end": 69412.36, + "probability": 0.8652 + }, + { + "start": 69412.5, + "end": 69413.46, + "probability": 0.7734 + }, + { + "start": 69414.3, + "end": 69415.2, + "probability": 0.6258 + }, + { + "start": 69415.52, + "end": 69417.36, + "probability": 0.999 + }, + { + "start": 69417.8, + "end": 69418.0, + "probability": 0.574 + }, + { + "start": 69418.08, + "end": 69419.14, + "probability": 0.9788 + }, + { + "start": 69419.22, + "end": 69421.7, + "probability": 0.9907 + }, + { + "start": 69423.26, + "end": 69425.18, + "probability": 0.972 + }, + { + "start": 69425.36, + "end": 69426.12, + "probability": 0.9769 + }, + { + "start": 69426.46, + "end": 69429.08, + "probability": 0.9683 + }, + { + "start": 69429.34, + "end": 69429.88, + "probability": 0.7184 + }, + { + "start": 69430.16, + "end": 69431.02, + "probability": 0.972 + }, + { + "start": 69431.1, + "end": 69431.8, + "probability": 0.9402 + }, + { + "start": 69431.94, + "end": 69432.62, + "probability": 0.9201 + }, + { + "start": 69433.2, + "end": 69435.16, + "probability": 0.9948 + }, + { + "start": 69435.68, + "end": 69436.06, + "probability": 0.8128 + }, + { + "start": 69436.78, + "end": 69437.08, + "probability": 0.3854 + }, + { + "start": 69437.42, + "end": 69438.56, + "probability": 0.8378 + }, + { + "start": 69439.56, + "end": 69440.48, + "probability": 0.6795 + }, + { + "start": 69440.6, + "end": 69442.78, + "probability": 0.7978 + }, + { + "start": 69443.28, + "end": 69446.98, + "probability": 0.9514 + }, + { + "start": 69447.08, + "end": 69451.48, + "probability": 0.9224 + }, + { + "start": 69452.34, + "end": 69452.74, + "probability": 0.8298 + }, + { + "start": 69453.22, + "end": 69454.76, + "probability": 0.9015 + }, + { + "start": 69454.9, + "end": 69455.16, + "probability": 0.5818 + }, + { + "start": 69455.24, + "end": 69456.11, + "probability": 0.9971 + }, + { + "start": 69456.6, + "end": 69459.22, + "probability": 0.9846 + }, + { + "start": 69459.82, + "end": 69460.76, + "probability": 0.8576 + }, + { + "start": 69460.86, + "end": 69461.36, + "probability": 0.9324 + }, + { + "start": 69461.6, + "end": 69465.04, + "probability": 0.9844 + }, + { + "start": 69465.08, + "end": 69466.18, + "probability": 0.8776 + }, + { + "start": 69466.92, + "end": 69469.98, + "probability": 0.8535 + }, + { + "start": 69470.3, + "end": 69473.9, + "probability": 0.9797 + }, + { + "start": 69474.62, + "end": 69477.62, + "probability": 0.9937 + }, + { + "start": 69478.16, + "end": 69481.14, + "probability": 0.4817 + }, + { + "start": 69481.82, + "end": 69484.5, + "probability": 0.9717 + }, + { + "start": 69484.92, + "end": 69485.52, + "probability": 0.6936 + }, + { + "start": 69486.36, + "end": 69486.74, + "probability": 0.6732 + }, + { + "start": 69487.9, + "end": 69488.18, + "probability": 0.0232 + }, + { + "start": 69492.18, + "end": 69494.78, + "probability": 0.8079 + }, + { + "start": 69495.75, + "end": 69499.26, + "probability": 0.9705 + }, + { + "start": 69499.66, + "end": 69501.05, + "probability": 0.9824 + }, + { + "start": 69501.3, + "end": 69502.92, + "probability": 0.5956 + }, + { + "start": 69503.4, + "end": 69504.12, + "probability": 0.5939 + }, + { + "start": 69504.26, + "end": 69505.96, + "probability": 0.9312 + }, + { + "start": 69506.14, + "end": 69506.6, + "probability": 0.8437 + }, + { + "start": 69507.02, + "end": 69508.24, + "probability": 0.2858 + }, + { + "start": 69508.88, + "end": 69509.58, + "probability": 0.8702 + }, + { + "start": 69510.06, + "end": 69511.16, + "probability": 0.9315 + }, + { + "start": 69511.46, + "end": 69511.95, + "probability": 0.9184 + }, + { + "start": 69512.38, + "end": 69513.12, + "probability": 0.6418 + }, + { + "start": 69513.52, + "end": 69514.36, + "probability": 0.8738 + }, + { + "start": 69514.74, + "end": 69515.56, + "probability": 0.946 + }, + { + "start": 69515.7, + "end": 69516.42, + "probability": 0.8936 + }, + { + "start": 69516.9, + "end": 69520.0, + "probability": 0.9687 + }, + { + "start": 69521.3, + "end": 69523.3, + "probability": 0.8905 + }, + { + "start": 69523.6, + "end": 69525.96, + "probability": 0.9858 + }, + { + "start": 69526.86, + "end": 69527.86, + "probability": 0.8452 + }, + { + "start": 69528.64, + "end": 69530.3, + "probability": 0.8893 + }, + { + "start": 69530.64, + "end": 69534.76, + "probability": 0.9559 + }, + { + "start": 69536.0, + "end": 69537.2, + "probability": 0.9937 + }, + { + "start": 69537.42, + "end": 69539.22, + "probability": 0.9389 + }, + { + "start": 69540.04, + "end": 69541.14, + "probability": 0.8452 + }, + { + "start": 69541.24, + "end": 69541.72, + "probability": 0.7515 + }, + { + "start": 69541.8, + "end": 69543.94, + "probability": 0.965 + }, + { + "start": 69544.14, + "end": 69546.18, + "probability": 0.9575 + }, + { + "start": 69546.76, + "end": 69548.16, + "probability": 0.8868 + }, + { + "start": 69548.9, + "end": 69552.36, + "probability": 0.9753 + }, + { + "start": 69552.38, + "end": 69553.3, + "probability": 0.9709 + }, + { + "start": 69553.42, + "end": 69555.4, + "probability": 0.922 + }, + { + "start": 69555.52, + "end": 69555.98, + "probability": 0.4719 + }, + { + "start": 69556.06, + "end": 69558.26, + "probability": 0.9935 + }, + { + "start": 69558.94, + "end": 69559.84, + "probability": 0.9002 + }, + { + "start": 69560.8, + "end": 69562.28, + "probability": 0.4461 + }, + { + "start": 69562.84, + "end": 69565.58, + "probability": 0.6259 + }, + { + "start": 69565.76, + "end": 69567.56, + "probability": 0.9412 + }, + { + "start": 69567.88, + "end": 69571.8, + "probability": 0.8191 + }, + { + "start": 69572.16, + "end": 69575.52, + "probability": 0.8961 + }, + { + "start": 69576.22, + "end": 69580.06, + "probability": 0.9915 + }, + { + "start": 69580.06, + "end": 69583.66, + "probability": 0.9984 + }, + { + "start": 69584.72, + "end": 69588.62, + "probability": 0.9749 + }, + { + "start": 69589.12, + "end": 69590.44, + "probability": 0.7542 + }, + { + "start": 69591.42, + "end": 69592.16, + "probability": 0.5734 + }, + { + "start": 69593.16, + "end": 69593.78, + "probability": 0.9243 + }, + { + "start": 69594.54, + "end": 69595.08, + "probability": 0.8049 + }, + { + "start": 69595.4, + "end": 69598.36, + "probability": 0.959 + }, + { + "start": 69598.42, + "end": 69601.1, + "probability": 0.9043 + }, + { + "start": 69601.3, + "end": 69602.8, + "probability": 0.89 + }, + { + "start": 69603.58, + "end": 69604.74, + "probability": 0.6929 + }, + { + "start": 69605.58, + "end": 69609.52, + "probability": 0.9954 + }, + { + "start": 69609.66, + "end": 69611.46, + "probability": 0.5518 + }, + { + "start": 69611.96, + "end": 69614.4, + "probability": 0.2283 + }, + { + "start": 69614.72, + "end": 69619.52, + "probability": 0.8162 + }, + { + "start": 69620.76, + "end": 69620.76, + "probability": 0.0531 + }, + { + "start": 69620.76, + "end": 69621.54, + "probability": 0.4841 + }, + { + "start": 69621.74, + "end": 69623.84, + "probability": 0.6706 + }, + { + "start": 69624.04, + "end": 69624.98, + "probability": 0.9958 + }, + { + "start": 69625.63, + "end": 69630.58, + "probability": 0.7674 + }, + { + "start": 69631.38, + "end": 69632.84, + "probability": 0.5589 + }, + { + "start": 69632.84, + "end": 69635.4, + "probability": 0.8333 + }, + { + "start": 69635.46, + "end": 69640.2, + "probability": 0.4969 + }, + { + "start": 69641.04, + "end": 69641.54, + "probability": 0.4239 + }, + { + "start": 69642.2, + "end": 69647.98, + "probability": 0.6865 + }, + { + "start": 69648.16, + "end": 69648.76, + "probability": 0.3717 + }, + { + "start": 69649.54, + "end": 69650.92, + "probability": 0.3549 + }, + { + "start": 69651.74, + "end": 69655.46, + "probability": 0.9508 + }, + { + "start": 69655.66, + "end": 69657.62, + "probability": 0.8994 + }, + { + "start": 69658.38, + "end": 69661.64, + "probability": 0.8794 + }, + { + "start": 69662.66, + "end": 69664.3, + "probability": 0.2178 + }, + { + "start": 69664.42, + "end": 69670.02, + "probability": 0.7036 + }, + { + "start": 69670.46, + "end": 69675.0, + "probability": 0.9275 + }, + { + "start": 69675.34, + "end": 69677.52, + "probability": 0.6074 + }, + { + "start": 69679.7, + "end": 69683.92, + "probability": 0.8231 + }, + { + "start": 69684.28, + "end": 69684.66, + "probability": 0.7398 + }, + { + "start": 69685.2, + "end": 69686.06, + "probability": 0.5638 + }, + { + "start": 69686.16, + "end": 69691.01, + "probability": 0.792 + }, + { + "start": 69691.08, + "end": 69695.54, + "probability": 0.9526 + }, + { + "start": 69695.9, + "end": 69699.18, + "probability": 0.991 + }, + { + "start": 69699.46, + "end": 69701.66, + "probability": 0.7509 + }, + { + "start": 69701.7, + "end": 69701.76, + "probability": 0.1659 + }, + { + "start": 69702.06, + "end": 69702.62, + "probability": 0.7389 + }, + { + "start": 69704.34, + "end": 69709.92, + "probability": 0.9729 + }, + { + "start": 69709.92, + "end": 69716.54, + "probability": 0.9736 + }, + { + "start": 69716.62, + "end": 69716.62, + "probability": 0.8571 + }, + { + "start": 69716.84, + "end": 69718.2, + "probability": 0.962 + }, + { + "start": 69718.44, + "end": 69718.92, + "probability": 0.8515 + }, + { + "start": 69719.06, + "end": 69721.3, + "probability": 0.9946 + }, + { + "start": 69721.3, + "end": 69723.82, + "probability": 0.9822 + }, + { + "start": 69723.9, + "end": 69725.08, + "probability": 0.8117 + }, + { + "start": 69725.34, + "end": 69726.76, + "probability": 0.4767 + }, + { + "start": 69726.86, + "end": 69727.88, + "probability": 0.7977 + }, + { + "start": 69728.24, + "end": 69729.24, + "probability": 0.9072 + }, + { + "start": 69729.82, + "end": 69732.14, + "probability": 0.2409 + }, + { + "start": 69732.5, + "end": 69736.2, + "probability": 0.2332 + }, + { + "start": 69736.6, + "end": 69740.04, + "probability": 0.9242 + }, + { + "start": 69740.11, + "end": 69741.98, + "probability": 0.734 + }, + { + "start": 69742.1, + "end": 69743.14, + "probability": 0.3323 + }, + { + "start": 69743.82, + "end": 69745.8, + "probability": 0.4218 + }, + { + "start": 69745.96, + "end": 69747.98, + "probability": 0.9468 + }, + { + "start": 69748.12, + "end": 69749.2, + "probability": 0.6058 + }, + { + "start": 69749.44, + "end": 69752.11, + "probability": 0.8345 + }, + { + "start": 69752.18, + "end": 69754.34, + "probability": 0.492 + }, + { + "start": 69754.74, + "end": 69754.88, + "probability": 0.4829 + }, + { + "start": 69756.02, + "end": 69756.16, + "probability": 0.1443 + }, + { + "start": 69756.16, + "end": 69756.98, + "probability": 0.0096 + }, + { + "start": 69757.44, + "end": 69760.66, + "probability": 0.4098 + }, + { + "start": 69761.06, + "end": 69761.62, + "probability": 0.4336 + }, + { + "start": 69763.44, + "end": 69768.62, + "probability": 0.9284 + }, + { + "start": 69769.22, + "end": 69771.34, + "probability": 0.9142 + }, + { + "start": 69771.96, + "end": 69776.64, + "probability": 0.9922 + }, + { + "start": 69776.94, + "end": 69777.2, + "probability": 0.3682 + }, + { + "start": 69777.32, + "end": 69777.6, + "probability": 0.8671 + }, + { + "start": 69777.72, + "end": 69780.22, + "probability": 0.9162 + }, + { + "start": 69780.6, + "end": 69782.74, + "probability": 0.9781 + }, + { + "start": 69782.74, + "end": 69785.6, + "probability": 0.8097 + }, + { + "start": 69785.94, + "end": 69790.12, + "probability": 0.7435 + }, + { + "start": 69790.96, + "end": 69793.66, + "probability": 0.9272 + }, + { + "start": 69794.72, + "end": 69795.02, + "probability": 0.0086 + }, + { + "start": 69795.02, + "end": 69797.58, + "probability": 0.9331 + }, + { + "start": 69798.58, + "end": 69802.62, + "probability": 0.8149 + }, + { + "start": 69802.84, + "end": 69804.08, + "probability": 0.566 + }, + { + "start": 69804.24, + "end": 69806.7, + "probability": 0.9463 + }, + { + "start": 69807.64, + "end": 69809.78, + "probability": 0.9646 + }, + { + "start": 69810.4, + "end": 69810.95, + "probability": 0.6548 + }, + { + "start": 69811.58, + "end": 69811.98, + "probability": 0.5257 + }, + { + "start": 69811.98, + "end": 69812.14, + "probability": 0.5556 + }, + { + "start": 69812.26, + "end": 69816.62, + "probability": 0.9358 + }, + { + "start": 69817.38, + "end": 69818.72, + "probability": 0.709 + }, + { + "start": 69819.54, + "end": 69820.76, + "probability": 0.9776 + }, + { + "start": 69821.64, + "end": 69822.9, + "probability": 0.5459 + }, + { + "start": 69823.24, + "end": 69824.94, + "probability": 0.9417 + }, + { + "start": 69826.04, + "end": 69826.88, + "probability": 0.7347 + }, + { + "start": 69827.16, + "end": 69828.42, + "probability": 0.7051 + }, + { + "start": 69828.52, + "end": 69829.26, + "probability": 0.8146 + }, + { + "start": 69829.58, + "end": 69832.12, + "probability": 0.9932 + }, + { + "start": 69832.24, + "end": 69835.48, + "probability": 0.9409 + }, + { + "start": 69835.8, + "end": 69838.28, + "probability": 0.906 + }, + { + "start": 69839.34, + "end": 69845.96, + "probability": 0.9906 + }, + { + "start": 69846.2, + "end": 69847.44, + "probability": 0.5373 + }, + { + "start": 69847.52, + "end": 69848.94, + "probability": 0.8245 + }, + { + "start": 69849.38, + "end": 69852.64, + "probability": 0.9746 + }, + { + "start": 69853.24, + "end": 69855.44, + "probability": 0.6853 + }, + { + "start": 69856.12, + "end": 69860.12, + "probability": 0.7666 + }, + { + "start": 69860.3, + "end": 69861.12, + "probability": 0.9553 + }, + { + "start": 69861.46, + "end": 69862.34, + "probability": 0.8298 + }, + { + "start": 69866.21, + "end": 69867.72, + "probability": 0.0566 + }, + { + "start": 69867.78, + "end": 69868.84, + "probability": 0.6998 + }, + { + "start": 69869.76, + "end": 69874.12, + "probability": 0.9689 + }, + { + "start": 69874.12, + "end": 69878.68, + "probability": 0.9958 + }, + { + "start": 69879.02, + "end": 69879.36, + "probability": 0.3402 + }, + { + "start": 69879.64, + "end": 69882.28, + "probability": 0.9468 + }, + { + "start": 69882.28, + "end": 69884.4, + "probability": 0.9199 + }, + { + "start": 69884.92, + "end": 69887.2, + "probability": 0.9965 + }, + { + "start": 69887.72, + "end": 69890.12, + "probability": 0.991 + }, + { + "start": 69891.46, + "end": 69892.96, + "probability": 0.9928 + }, + { + "start": 69893.26, + "end": 69897.28, + "probability": 0.9866 + }, + { + "start": 69898.4, + "end": 69900.17, + "probability": 0.9658 + }, + { + "start": 69900.62, + "end": 69901.1, + "probability": 0.6963 + }, + { + "start": 69901.54, + "end": 69904.02, + "probability": 0.7847 + }, + { + "start": 69904.34, + "end": 69908.18, + "probability": 0.9803 + }, + { + "start": 69908.34, + "end": 69909.06, + "probability": 0.7756 + }, + { + "start": 69910.18, + "end": 69912.3, + "probability": 0.9699 + }, + { + "start": 69912.44, + "end": 69913.58, + "probability": 0.4654 + }, + { + "start": 69913.88, + "end": 69914.86, + "probability": 0.7441 + }, + { + "start": 69914.92, + "end": 69917.58, + "probability": 0.9318 + }, + { + "start": 69917.88, + "end": 69921.86, + "probability": 0.8453 + }, + { + "start": 69921.96, + "end": 69924.94, + "probability": 0.9883 + }, + { + "start": 69925.3, + "end": 69927.3, + "probability": 0.872 + }, + { + "start": 69927.44, + "end": 69929.12, + "probability": 0.991 + }, + { + "start": 69929.36, + "end": 69932.88, + "probability": 0.9949 + }, + { + "start": 69933.82, + "end": 69935.58, + "probability": 0.9869 + }, + { + "start": 69935.76, + "end": 69939.22, + "probability": 0.9801 + }, + { + "start": 69939.26, + "end": 69940.86, + "probability": 0.9657 + }, + { + "start": 69942.0, + "end": 69945.56, + "probability": 0.6847 + }, + { + "start": 69946.32, + "end": 69947.4, + "probability": 0.7773 + }, + { + "start": 69947.74, + "end": 69950.58, + "probability": 0.975 + }, + { + "start": 69951.78, + "end": 69954.02, + "probability": 0.8152 + }, + { + "start": 69954.18, + "end": 69956.11, + "probability": 0.9575 + }, + { + "start": 69956.46, + "end": 69957.96, + "probability": 0.9899 + }, + { + "start": 69958.8, + "end": 69964.42, + "probability": 0.7597 + }, + { + "start": 69964.6, + "end": 69965.34, + "probability": 0.9366 + }, + { + "start": 69965.86, + "end": 69966.26, + "probability": 0.7631 + }, + { + "start": 69966.32, + "end": 69968.6, + "probability": 0.9855 + }, + { + "start": 69968.8, + "end": 69970.56, + "probability": 0.9271 + }, + { + "start": 69970.88, + "end": 69973.18, + "probability": 0.983 + }, + { + "start": 69973.18, + "end": 69977.86, + "probability": 0.9743 + }, + { + "start": 69978.24, + "end": 69979.18, + "probability": 0.8588 + }, + { + "start": 69979.3, + "end": 69981.54, + "probability": 0.9871 + }, + { + "start": 69981.92, + "end": 69984.02, + "probability": 0.9733 + }, + { + "start": 69984.92, + "end": 69987.06, + "probability": 0.7059 + }, + { + "start": 69989.38, + "end": 69990.78, + "probability": 0.4913 + }, + { + "start": 69991.38, + "end": 69992.8, + "probability": 0.9831 + }, + { + "start": 69993.22, + "end": 69993.92, + "probability": 0.9508 + }, + { + "start": 69994.64, + "end": 69998.58, + "probability": 0.981 + }, + { + "start": 69999.12, + "end": 70000.54, + "probability": 0.9233 + }, + { + "start": 70001.7, + "end": 70002.56, + "probability": 0.8206 + }, + { + "start": 70004.02, + "end": 70005.28, + "probability": 0.8453 + }, + { + "start": 70005.92, + "end": 70007.98, + "probability": 0.8862 + }, + { + "start": 70008.5, + "end": 70011.98, + "probability": 0.8943 + }, + { + "start": 70012.14, + "end": 70014.62, + "probability": 0.9466 + }, + { + "start": 70016.12, + "end": 70017.84, + "probability": 0.8717 + }, + { + "start": 70017.9, + "end": 70018.06, + "probability": 0.9829 + }, + { + "start": 70018.96, + "end": 70019.7, + "probability": 0.4419 + }, + { + "start": 70020.5, + "end": 70021.28, + "probability": 0.9098 + }, + { + "start": 70021.6, + "end": 70025.14, + "probability": 0.8722 + }, + { + "start": 70025.14, + "end": 70027.3, + "probability": 0.9832 + }, + { + "start": 70027.52, + "end": 70028.98, + "probability": 0.9385 + }, + { + "start": 70029.26, + "end": 70030.32, + "probability": 0.9878 + }, + { + "start": 70030.78, + "end": 70034.38, + "probability": 0.9578 + }, + { + "start": 70035.1, + "end": 70039.76, + "probability": 0.9331 + }, + { + "start": 70040.12, + "end": 70041.23, + "probability": 0.9429 + }, + { + "start": 70042.28, + "end": 70044.1, + "probability": 0.9985 + }, + { + "start": 70044.22, + "end": 70045.08, + "probability": 0.769 + }, + { + "start": 70045.34, + "end": 70045.62, + "probability": 0.6209 + }, + { + "start": 70046.26, + "end": 70047.2, + "probability": 0.999 + }, + { + "start": 70047.78, + "end": 70048.02, + "probability": 0.6938 + }, + { + "start": 70048.76, + "end": 70050.71, + "probability": 0.838 + }, + { + "start": 70051.56, + "end": 70053.62, + "probability": 0.9355 + }, + { + "start": 70054.46, + "end": 70055.56, + "probability": 0.8863 + }, + { + "start": 70055.6, + "end": 70057.2, + "probability": 0.9109 + }, + { + "start": 70057.58, + "end": 70058.32, + "probability": 0.9253 + }, + { + "start": 70060.32, + "end": 70063.26, + "probability": 0.6038 + }, + { + "start": 70063.4, + "end": 70065.62, + "probability": 0.9858 + }, + { + "start": 70065.68, + "end": 70066.36, + "probability": 0.9662 + }, + { + "start": 70066.64, + "end": 70067.36, + "probability": 0.2837 + }, + { + "start": 70068.32, + "end": 70069.16, + "probability": 0.9819 + }, + { + "start": 70069.52, + "end": 70069.62, + "probability": 0.6201 + }, + { + "start": 70070.5, + "end": 70071.28, + "probability": 0.5966 + }, + { + "start": 70071.68, + "end": 70075.54, + "probability": 0.6846 + }, + { + "start": 70075.8, + "end": 70077.22, + "probability": 0.9619 + }, + { + "start": 70077.62, + "end": 70080.36, + "probability": 0.1391 + }, + { + "start": 70080.36, + "end": 70082.3, + "probability": 0.2459 + }, + { + "start": 70082.46, + "end": 70083.52, + "probability": 0.4502 + }, + { + "start": 70083.72, + "end": 70085.36, + "probability": 0.6486 + }, + { + "start": 70085.94, + "end": 70091.68, + "probability": 0.5496 + }, + { + "start": 70092.18, + "end": 70093.58, + "probability": 0.9956 + }, + { + "start": 70093.66, + "end": 70095.7, + "probability": 0.9489 + }, + { + "start": 70096.36, + "end": 70098.0, + "probability": 0.8344 + }, + { + "start": 70098.58, + "end": 70101.7, + "probability": 0.9703 + }, + { + "start": 70101.86, + "end": 70104.8, + "probability": 0.9895 + }, + { + "start": 70105.74, + "end": 70108.84, + "probability": 0.7355 + }, + { + "start": 70110.18, + "end": 70110.56, + "probability": 0.0299 + }, + { + "start": 70110.56, + "end": 70111.7, + "probability": 0.4633 + }, + { + "start": 70111.7, + "end": 70111.7, + "probability": 0.3332 + }, + { + "start": 70111.72, + "end": 70114.32, + "probability": 0.8027 + }, + { + "start": 70114.64, + "end": 70119.7, + "probability": 0.7291 + }, + { + "start": 70120.4, + "end": 70123.96, + "probability": 0.7795 + }, + { + "start": 70125.7, + "end": 70127.24, + "probability": 0.4327 + }, + { + "start": 70128.42, + "end": 70129.25, + "probability": 0.8234 + }, + { + "start": 70131.06, + "end": 70134.04, + "probability": 0.9937 + }, + { + "start": 70135.88, + "end": 70136.8, + "probability": 0.6308 + }, + { + "start": 70138.14, + "end": 70142.44, + "probability": 0.5695 + }, + { + "start": 70143.26, + "end": 70144.56, + "probability": 0.9241 + }, + { + "start": 70145.08, + "end": 70146.46, + "probability": 0.929 + }, + { + "start": 70147.1, + "end": 70147.7, + "probability": 0.7481 + }, + { + "start": 70148.82, + "end": 70151.32, + "probability": 0.9062 + }, + { + "start": 70152.7, + "end": 70156.98, + "probability": 0.9759 + }, + { + "start": 70158.28, + "end": 70162.32, + "probability": 0.7848 + }, + { + "start": 70162.7, + "end": 70164.66, + "probability": 0.9956 + }, + { + "start": 70165.05, + "end": 70168.42, + "probability": 0.9938 + }, + { + "start": 70169.04, + "end": 70171.54, + "probability": 0.9922 + }, + { + "start": 70172.54, + "end": 70175.64, + "probability": 0.9883 + }, + { + "start": 70176.6, + "end": 70178.18, + "probability": 0.6615 + }, + { + "start": 70178.36, + "end": 70181.22, + "probability": 0.9819 + }, + { + "start": 70182.12, + "end": 70184.8, + "probability": 0.579 + }, + { + "start": 70185.84, + "end": 70189.64, + "probability": 0.8539 + }, + { + "start": 70189.64, + "end": 70195.28, + "probability": 0.9821 + }, + { + "start": 70195.28, + "end": 70200.6, + "probability": 0.9958 + }, + { + "start": 70201.38, + "end": 70202.6, + "probability": 0.6281 + }, + { + "start": 70203.2, + "end": 70206.14, + "probability": 0.919 + }, + { + "start": 70206.92, + "end": 70207.66, + "probability": 0.3654 + }, + { + "start": 70208.16, + "end": 70210.6, + "probability": 0.9642 + }, + { + "start": 70211.48, + "end": 70211.9, + "probability": 0.7407 + }, + { + "start": 70212.18, + "end": 70213.53, + "probability": 0.5273 + }, + { + "start": 70214.02, + "end": 70215.12, + "probability": 0.9233 + }, + { + "start": 70216.74, + "end": 70219.1, + "probability": 0.9449 + }, + { + "start": 70219.76, + "end": 70222.48, + "probability": 0.9979 + }, + { + "start": 70223.24, + "end": 70224.76, + "probability": 0.9895 + }, + { + "start": 70225.04, + "end": 70228.4, + "probability": 0.9188 + }, + { + "start": 70228.92, + "end": 70230.48, + "probability": 0.7583 + }, + { + "start": 70231.73, + "end": 70238.3, + "probability": 0.8257 + }, + { + "start": 70238.88, + "end": 70243.1, + "probability": 0.8859 + }, + { + "start": 70243.7, + "end": 70245.36, + "probability": 0.6653 + }, + { + "start": 70245.68, + "end": 70248.36, + "probability": 0.965 + }, + { + "start": 70249.4, + "end": 70252.42, + "probability": 0.9822 + }, + { + "start": 70252.82, + "end": 70253.52, + "probability": 0.8098 + }, + { + "start": 70254.3, + "end": 70258.82, + "probability": 0.9644 + }, + { + "start": 70259.04, + "end": 70260.56, + "probability": 0.917 + }, + { + "start": 70261.24, + "end": 70263.86, + "probability": 0.8584 + }, + { + "start": 70264.38, + "end": 70268.62, + "probability": 0.9105 + }, + { + "start": 70268.9, + "end": 70272.38, + "probability": 0.995 + }, + { + "start": 70273.32, + "end": 70275.74, + "probability": 0.4313 + }, + { + "start": 70277.06, + "end": 70278.54, + "probability": 0.4983 + }, + { + "start": 70279.08, + "end": 70280.32, + "probability": 0.5806 + }, + { + "start": 70280.52, + "end": 70282.16, + "probability": 0.9932 + }, + { + "start": 70282.84, + "end": 70286.74, + "probability": 0.9902 + }, + { + "start": 70287.36, + "end": 70290.17, + "probability": 0.73 + }, + { + "start": 70292.3, + "end": 70296.04, + "probability": 0.9282 + }, + { + "start": 70296.66, + "end": 70299.0, + "probability": 0.9865 + }, + { + "start": 70299.58, + "end": 70303.44, + "probability": 0.7772 + }, + { + "start": 70303.6, + "end": 70306.9, + "probability": 0.8452 + }, + { + "start": 70307.86, + "end": 70308.26, + "probability": 0.0556 + }, + { + "start": 70308.7, + "end": 70310.34, + "probability": 0.9362 + }, + { + "start": 70310.74, + "end": 70311.4, + "probability": 0.1443 + }, + { + "start": 70311.6, + "end": 70315.6, + "probability": 0.9683 + }, + { + "start": 70316.02, + "end": 70317.14, + "probability": 0.7888 + }, + { + "start": 70317.42, + "end": 70318.9, + "probability": 0.9524 + }, + { + "start": 70319.28, + "end": 70321.02, + "probability": 0.8431 + }, + { + "start": 70321.32, + "end": 70323.74, + "probability": 0.9751 + }, + { + "start": 70324.22, + "end": 70324.9, + "probability": 0.9215 + }, + { + "start": 70324.94, + "end": 70325.34, + "probability": 0.502 + }, + { + "start": 70325.4, + "end": 70326.34, + "probability": 0.735 + }, + { + "start": 70326.68, + "end": 70330.68, + "probability": 0.7791 + }, + { + "start": 70330.72, + "end": 70331.74, + "probability": 0.8528 + }, + { + "start": 70332.18, + "end": 70336.58, + "probability": 0.9951 + }, + { + "start": 70337.52, + "end": 70340.2, + "probability": 0.5753 + }, + { + "start": 70340.96, + "end": 70342.99, + "probability": 0.9987 + }, + { + "start": 70343.48, + "end": 70344.92, + "probability": 0.8172 + }, + { + "start": 70345.5, + "end": 70349.0, + "probability": 0.9779 + }, + { + "start": 70349.64, + "end": 70352.46, + "probability": 0.9695 + }, + { + "start": 70353.16, + "end": 70354.62, + "probability": 0.8811 + }, + { + "start": 70354.88, + "end": 70357.1, + "probability": 0.5457 + }, + { + "start": 70358.06, + "end": 70365.2, + "probability": 0.9956 + }, + { + "start": 70365.5, + "end": 70366.64, + "probability": 0.9159 + }, + { + "start": 70367.42, + "end": 70370.14, + "probability": 0.9985 + }, + { + "start": 70370.42, + "end": 70372.9, + "probability": 0.9969 + }, + { + "start": 70373.68, + "end": 70374.17, + "probability": 0.9165 + }, + { + "start": 70375.08, + "end": 70375.43, + "probability": 0.4487 + }, + { + "start": 70375.96, + "end": 70377.56, + "probability": 0.9104 + }, + { + "start": 70378.08, + "end": 70378.32, + "probability": 0.8678 + }, + { + "start": 70378.44, + "end": 70384.26, + "probability": 0.9943 + }, + { + "start": 70384.88, + "end": 70389.84, + "probability": 0.8738 + }, + { + "start": 70390.96, + "end": 70393.48, + "probability": 0.9992 + }, + { + "start": 70393.82, + "end": 70396.96, + "probability": 0.9891 + }, + { + "start": 70397.62, + "end": 70400.66, + "probability": 0.995 + }, + { + "start": 70401.12, + "end": 70401.88, + "probability": 0.9179 + }, + { + "start": 70401.98, + "end": 70402.64, + "probability": 0.5978 + }, + { + "start": 70402.86, + "end": 70403.62, + "probability": 0.8845 + }, + { + "start": 70403.78, + "end": 70404.7, + "probability": 0.9698 + }, + { + "start": 70404.72, + "end": 70405.82, + "probability": 0.7393 + }, + { + "start": 70406.07, + "end": 70408.82, + "probability": 0.8384 + }, + { + "start": 70408.92, + "end": 70413.72, + "probability": 0.9854 + }, + { + "start": 70414.44, + "end": 70418.36, + "probability": 0.8248 + }, + { + "start": 70418.84, + "end": 70420.4, + "probability": 0.9934 + }, + { + "start": 70420.56, + "end": 70425.06, + "probability": 0.9717 + }, + { + "start": 70427.52, + "end": 70432.38, + "probability": 0.9282 + }, + { + "start": 70433.08, + "end": 70435.02, + "probability": 0.9805 + }, + { + "start": 70435.32, + "end": 70436.66, + "probability": 0.9347 + }, + { + "start": 70437.32, + "end": 70437.82, + "probability": 0.7066 + }, + { + "start": 70438.36, + "end": 70439.02, + "probability": 0.5688 + }, + { + "start": 70439.62, + "end": 70442.6, + "probability": 0.9446 + }, + { + "start": 70442.6, + "end": 70447.42, + "probability": 0.8756 + }, + { + "start": 70448.4, + "end": 70451.14, + "probability": 0.7552 + }, + { + "start": 70451.66, + "end": 70454.22, + "probability": 0.9257 + }, + { + "start": 70454.9, + "end": 70455.3, + "probability": 0.0009 + }, + { + "start": 70458.32, + "end": 70459.98, + "probability": 0.2212 + }, + { + "start": 70460.6, + "end": 70461.38, + "probability": 0.8878 + }, + { + "start": 70462.4, + "end": 70463.05, + "probability": 0.7964 + }, + { + "start": 70463.28, + "end": 70464.3, + "probability": 0.7773 + }, + { + "start": 70464.69, + "end": 70466.61, + "probability": 0.6034 + }, + { + "start": 70466.96, + "end": 70467.32, + "probability": 0.1303 + }, + { + "start": 70468.1, + "end": 70470.15, + "probability": 0.6045 + }, + { + "start": 70471.24, + "end": 70473.7, + "probability": 0.7159 + }, + { + "start": 70474.12, + "end": 70474.83, + "probability": 0.9543 + }, + { + "start": 70475.5, + "end": 70478.68, + "probability": 0.9951 + }, + { + "start": 70479.0, + "end": 70482.16, + "probability": 0.8923 + }, + { + "start": 70482.24, + "end": 70484.08, + "probability": 0.8838 + }, + { + "start": 70484.46, + "end": 70485.8, + "probability": 0.7881 + }, + { + "start": 70486.23, + "end": 70488.04, + "probability": 0.6548 + }, + { + "start": 70488.04, + "end": 70491.56, + "probability": 0.7809 + }, + { + "start": 70491.72, + "end": 70493.8, + "probability": 0.3031 + }, + { + "start": 70494.1, + "end": 70496.9, + "probability": 0.7977 + }, + { + "start": 70496.94, + "end": 70497.66, + "probability": 0.9961 + }, + { + "start": 70498.24, + "end": 70502.88, + "probability": 0.9902 + }, + { + "start": 70502.94, + "end": 70504.42, + "probability": 0.9618 + }, + { + "start": 70504.52, + "end": 70506.3, + "probability": 0.996 + }, + { + "start": 70506.46, + "end": 70509.98, + "probability": 0.995 + }, + { + "start": 70510.4, + "end": 70511.2, + "probability": 0.8973 + }, + { + "start": 70511.28, + "end": 70512.84, + "probability": 0.7299 + }, + { + "start": 70513.32, + "end": 70515.24, + "probability": 0.6166 + }, + { + "start": 70516.18, + "end": 70520.08, + "probability": 0.738 + }, + { + "start": 70520.52, + "end": 70522.46, + "probability": 0.7305 + }, + { + "start": 70522.72, + "end": 70524.44, + "probability": 0.7597 + }, + { + "start": 70524.72, + "end": 70526.78, + "probability": 0.6633 + }, + { + "start": 70526.88, + "end": 70529.08, + "probability": 0.7493 + }, + { + "start": 70529.98, + "end": 70531.88, + "probability": 0.7803 + }, + { + "start": 70532.32, + "end": 70533.26, + "probability": 0.4903 + }, + { + "start": 70533.78, + "end": 70537.22, + "probability": 0.6891 + }, + { + "start": 70537.7, + "end": 70538.62, + "probability": 0.602 + }, + { + "start": 70539.46, + "end": 70541.38, + "probability": 0.8636 + }, + { + "start": 70541.64, + "end": 70545.0, + "probability": 0.9025 + }, + { + "start": 70545.5, + "end": 70546.54, + "probability": 0.9307 + }, + { + "start": 70547.3, + "end": 70549.32, + "probability": 0.9771 + }, + { + "start": 70549.92, + "end": 70550.16, + "probability": 0.9983 + }, + { + "start": 70551.14, + "end": 70552.46, + "probability": 0.9282 + }, + { + "start": 70552.94, + "end": 70553.18, + "probability": 0.5011 + }, + { + "start": 70553.7, + "end": 70554.9, + "probability": 0.978 + }, + { + "start": 70555.74, + "end": 70556.98, + "probability": 0.871 + }, + { + "start": 70557.04, + "end": 70557.8, + "probability": 0.9098 + }, + { + "start": 70558.68, + "end": 70560.46, + "probability": 0.665 + }, + { + "start": 70561.18, + "end": 70562.36, + "probability": 0.3738 + }, + { + "start": 70562.76, + "end": 70565.48, + "probability": 0.837 + }, + { + "start": 70565.56, + "end": 70565.86, + "probability": 0.8495 + }, + { + "start": 70566.0, + "end": 70566.74, + "probability": 0.7422 + }, + { + "start": 70567.36, + "end": 70569.8, + "probability": 0.9967 + }, + { + "start": 70570.1, + "end": 70572.9, + "probability": 0.955 + }, + { + "start": 70572.94, + "end": 70573.3, + "probability": 0.1795 + }, + { + "start": 70573.3, + "end": 70573.74, + "probability": 0.0586 + }, + { + "start": 70574.18, + "end": 70577.58, + "probability": 0.8628 + }, + { + "start": 70578.48, + "end": 70582.0, + "probability": 0.4011 + }, + { + "start": 70582.44, + "end": 70585.36, + "probability": 0.7942 + }, + { + "start": 70586.24, + "end": 70586.94, + "probability": 0.6581 + }, + { + "start": 70587.2, + "end": 70589.42, + "probability": 0.0524 + }, + { + "start": 70590.26, + "end": 70590.7, + "probability": 0.1024 + }, + { + "start": 70591.66, + "end": 70592.34, + "probability": 0.2058 + }, + { + "start": 70592.34, + "end": 70592.75, + "probability": 0.2069 + }, + { + "start": 70593.14, + "end": 70593.82, + "probability": 0.0443 + }, + { + "start": 70594.02, + "end": 70594.84, + "probability": 0.6831 + }, + { + "start": 70594.94, + "end": 70596.71, + "probability": 0.8975 + }, + { + "start": 70597.38, + "end": 70601.92, + "probability": 0.6132 + }, + { + "start": 70602.24, + "end": 70604.64, + "probability": 0.505 + }, + { + "start": 70605.0, + "end": 70606.84, + "probability": 0.5565 + }, + { + "start": 70607.48, + "end": 70615.58, + "probability": 0.6726 + }, + { + "start": 70616.64, + "end": 70618.08, + "probability": 0.5016 + }, + { + "start": 70618.26, + "end": 70620.24, + "probability": 0.7091 + }, + { + "start": 70621.02, + "end": 70621.8, + "probability": 0.924 + }, + { + "start": 70621.8, + "end": 70623.88, + "probability": 0.7205 + }, + { + "start": 70624.52, + "end": 70625.34, + "probability": 0.8647 + }, + { + "start": 70626.54, + "end": 70626.78, + "probability": 0.4633 + }, + { + "start": 70626.8, + "end": 70628.56, + "probability": 0.9646 + }, + { + "start": 70628.58, + "end": 70630.56, + "probability": 0.975 + }, + { + "start": 70630.66, + "end": 70634.25, + "probability": 0.8208 + }, + { + "start": 70635.08, + "end": 70637.86, + "probability": 0.9955 + }, + { + "start": 70638.5, + "end": 70639.59, + "probability": 0.9961 + }, + { + "start": 70640.46, + "end": 70641.64, + "probability": 0.4814 + }, + { + "start": 70641.88, + "end": 70642.64, + "probability": 0.9868 + }, + { + "start": 70643.06, + "end": 70644.54, + "probability": 0.9654 + }, + { + "start": 70644.9, + "end": 70645.89, + "probability": 0.9948 + }, + { + "start": 70646.12, + "end": 70649.02, + "probability": 0.6561 + }, + { + "start": 70649.8, + "end": 70651.96, + "probability": 0.6399 + }, + { + "start": 70652.3, + "end": 70656.6, + "probability": 0.9863 + }, + { + "start": 70657.0, + "end": 70660.08, + "probability": 0.9487 + }, + { + "start": 70660.56, + "end": 70662.74, + "probability": 0.7825 + }, + { + "start": 70663.32, + "end": 70668.52, + "probability": 0.9481 + }, + { + "start": 70668.52, + "end": 70673.64, + "probability": 0.9523 + }, + { + "start": 70675.48, + "end": 70678.44, + "probability": 0.5812 + }, + { + "start": 70678.64, + "end": 70680.48, + "probability": 0.8801 + }, + { + "start": 70680.62, + "end": 70682.46, + "probability": 0.7743 + }, + { + "start": 70682.88, + "end": 70685.36, + "probability": 0.9914 + }, + { + "start": 70686.34, + "end": 70687.0, + "probability": 0.8008 + }, + { + "start": 70687.68, + "end": 70687.82, + "probability": 0.3456 + }, + { + "start": 70687.82, + "end": 70691.12, + "probability": 0.9954 + }, + { + "start": 70691.28, + "end": 70692.08, + "probability": 0.7132 + }, + { + "start": 70692.5, + "end": 70693.36, + "probability": 0.6418 + }, + { + "start": 70694.46, + "end": 70696.98, + "probability": 0.9955 + }, + { + "start": 70697.36, + "end": 70699.72, + "probability": 0.9746 + }, + { + "start": 70700.78, + "end": 70703.24, + "probability": 0.9133 + }, + { + "start": 70703.3, + "end": 70706.78, + "probability": 0.9885 + }, + { + "start": 70708.28, + "end": 70712.28, + "probability": 0.9824 + }, + { + "start": 70713.1, + "end": 70714.48, + "probability": 0.9912 + }, + { + "start": 70714.6, + "end": 70716.15, + "probability": 0.9983 + }, + { + "start": 70717.3, + "end": 70718.84, + "probability": 0.8725 + }, + { + "start": 70719.38, + "end": 70720.7, + "probability": 0.3687 + }, + { + "start": 70720.92, + "end": 70721.46, + "probability": 0.3345 + }, + { + "start": 70721.6, + "end": 70722.78, + "probability": 0.498 + }, + { + "start": 70723.92, + "end": 70724.91, + "probability": 0.4773 + }, + { + "start": 70725.28, + "end": 70729.06, + "probability": 0.6762 + }, + { + "start": 70730.54, + "end": 70735.42, + "probability": 0.9761 + }, + { + "start": 70735.62, + "end": 70736.9, + "probability": 0.9097 + }, + { + "start": 70737.12, + "end": 70738.6, + "probability": 0.8341 + }, + { + "start": 70740.1, + "end": 70740.98, + "probability": 0.2513 + }, + { + "start": 70741.68, + "end": 70741.92, + "probability": 0.324 + }, + { + "start": 70741.98, + "end": 70746.02, + "probability": 0.9856 + }, + { + "start": 70746.46, + "end": 70753.02, + "probability": 0.774 + }, + { + "start": 70753.73, + "end": 70758.66, + "probability": 0.3209 + }, + { + "start": 70759.44, + "end": 70761.98, + "probability": 0.6623 + }, + { + "start": 70762.22, + "end": 70762.5, + "probability": 0.6107 + }, + { + "start": 70763.34, + "end": 70764.98, + "probability": 0.1088 + }, + { + "start": 70765.1, + "end": 70765.78, + "probability": 0.7502 + }, + { + "start": 70765.78, + "end": 70766.44, + "probability": 0.0495 + }, + { + "start": 70766.64, + "end": 70768.26, + "probability": 0.4705 + }, + { + "start": 70768.3, + "end": 70768.72, + "probability": 0.9421 + }, + { + "start": 70769.16, + "end": 70775.42, + "probability": 0.7064 + }, + { + "start": 70776.04, + "end": 70777.2, + "probability": 0.9232 + }, + { + "start": 70777.46, + "end": 70780.66, + "probability": 0.8358 + }, + { + "start": 70782.48, + "end": 70784.14, + "probability": 0.7912 + }, + { + "start": 70784.6, + "end": 70788.0, + "probability": 0.8264 + }, + { + "start": 70788.12, + "end": 70789.25, + "probability": 0.9911 + }, + { + "start": 70789.78, + "end": 70791.7, + "probability": 0.7309 + }, + { + "start": 70792.2, + "end": 70793.06, + "probability": 0.7974 + }, + { + "start": 70793.2, + "end": 70797.56, + "probability": 0.9203 + }, + { + "start": 70797.8, + "end": 70800.12, + "probability": 0.6712 + }, + { + "start": 70800.38, + "end": 70803.64, + "probability": 0.8579 + }, + { + "start": 70804.22, + "end": 70805.24, + "probability": 0.5931 + }, + { + "start": 70805.76, + "end": 70808.1, + "probability": 0.9247 + }, + { + "start": 70808.5, + "end": 70808.82, + "probability": 0.7677 + }, + { + "start": 70808.94, + "end": 70810.1, + "probability": 0.7841 + }, + { + "start": 70810.16, + "end": 70812.03, + "probability": 0.9596 + }, + { + "start": 70812.48, + "end": 70813.48, + "probability": 0.4766 + }, + { + "start": 70813.56, + "end": 70816.7, + "probability": 0.9807 + }, + { + "start": 70817.56, + "end": 70818.84, + "probability": 0.5867 + }, + { + "start": 70819.3, + "end": 70821.1, + "probability": 0.2223 + }, + { + "start": 70821.24, + "end": 70822.4, + "probability": 0.6108 + }, + { + "start": 70822.48, + "end": 70824.18, + "probability": 0.593 + }, + { + "start": 70824.3, + "end": 70825.38, + "probability": 0.7137 + }, + { + "start": 70825.74, + "end": 70828.28, + "probability": 0.8274 + }, + { + "start": 70828.72, + "end": 70830.58, + "probability": 0.8204 + }, + { + "start": 70830.78, + "end": 70834.3, + "probability": 0.6182 + }, + { + "start": 70834.67, + "end": 70839.64, + "probability": 0.6432 + }, + { + "start": 70839.9, + "end": 70841.32, + "probability": 0.8792 + }, + { + "start": 70841.9, + "end": 70843.18, + "probability": 0.7616 + }, + { + "start": 70844.38, + "end": 70845.72, + "probability": 0.3821 + }, + { + "start": 70847.42, + "end": 70852.66, + "probability": 0.3133 + }, + { + "start": 70853.31, + "end": 70861.3, + "probability": 0.9839 + }, + { + "start": 70861.34, + "end": 70863.22, + "probability": 0.8599 + }, + { + "start": 70863.28, + "end": 70866.18, + "probability": 0.8899 + }, + { + "start": 70866.92, + "end": 70871.1, + "probability": 0.58 + }, + { + "start": 70871.14, + "end": 70872.34, + "probability": 0.9196 + }, + { + "start": 70872.64, + "end": 70875.1, + "probability": 0.9253 + }, + { + "start": 70875.3, + "end": 70876.58, + "probability": 0.8695 + }, + { + "start": 70876.74, + "end": 70877.64, + "probability": 0.3322 + }, + { + "start": 70877.92, + "end": 70878.92, + "probability": 0.7258 + }, + { + "start": 70879.68, + "end": 70881.04, + "probability": 0.7035 + }, + { + "start": 70881.6, + "end": 70883.2, + "probability": 0.3352 + }, + { + "start": 70883.81, + "end": 70887.87, + "probability": 0.3705 + }, + { + "start": 70887.96, + "end": 70891.68, + "probability": 0.5435 + }, + { + "start": 70891.7, + "end": 70891.86, + "probability": 0.0206 + }, + { + "start": 70892.28, + "end": 70893.84, + "probability": 0.0398 + }, + { + "start": 70894.62, + "end": 70895.32, + "probability": 0.7739 + }, + { + "start": 70896.18, + "end": 70897.66, + "probability": 0.4437 + }, + { + "start": 70897.74, + "end": 70898.84, + "probability": 0.4679 + }, + { + "start": 70898.94, + "end": 70899.56, + "probability": 0.7676 + }, + { + "start": 70899.66, + "end": 70901.02, + "probability": 0.2325 + }, + { + "start": 70901.16, + "end": 70902.66, + "probability": 0.4112 + }, + { + "start": 70902.78, + "end": 70903.08, + "probability": 0.5659 + }, + { + "start": 70906.44, + "end": 70907.06, + "probability": 0.3106 + }, + { + "start": 70907.64, + "end": 70907.66, + "probability": 0.0919 + }, + { + "start": 70907.82, + "end": 70908.46, + "probability": 0.621 + }, + { + "start": 70908.86, + "end": 70911.86, + "probability": 0.4387 + }, + { + "start": 70912.38, + "end": 70913.55, + "probability": 0.844 + }, + { + "start": 70915.54, + "end": 70915.9, + "probability": 0.6721 + }, + { + "start": 70926.8, + "end": 70927.26, + "probability": 0.2267 + }, + { + "start": 70928.0, + "end": 70929.42, + "probability": 0.7524 + }, + { + "start": 70929.8, + "end": 70930.62, + "probability": 0.4347 + }, + { + "start": 70930.74, + "end": 70931.56, + "probability": 0.5438 + }, + { + "start": 70931.56, + "end": 70932.48, + "probability": 0.8958 + }, + { + "start": 70932.76, + "end": 70939.0, + "probability": 0.8799 + }, + { + "start": 70939.78, + "end": 70940.86, + "probability": 0.9941 + }, + { + "start": 70940.94, + "end": 70943.5, + "probability": 0.9806 + }, + { + "start": 70944.88, + "end": 70948.02, + "probability": 0.9507 + }, + { + "start": 70948.18, + "end": 70949.54, + "probability": 0.9888 + }, + { + "start": 70950.06, + "end": 70953.38, + "probability": 0.7106 + }, + { + "start": 70953.92, + "end": 70955.44, + "probability": 0.7351 + }, + { + "start": 70955.54, + "end": 70957.88, + "probability": 0.9929 + }, + { + "start": 70958.54, + "end": 70960.02, + "probability": 0.9547 + }, + { + "start": 70960.5, + "end": 70963.14, + "probability": 0.8742 + }, + { + "start": 70963.82, + "end": 70965.76, + "probability": 0.9001 + }, + { + "start": 70966.66, + "end": 70968.4, + "probability": 0.8017 + }, + { + "start": 70969.18, + "end": 70971.38, + "probability": 0.7185 + }, + { + "start": 70971.86, + "end": 70975.52, + "probability": 0.9022 + }, + { + "start": 70975.68, + "end": 70976.72, + "probability": 0.8877 + }, + { + "start": 70977.24, + "end": 70978.66, + "probability": 0.4257 + }, + { + "start": 70979.68, + "end": 70984.84, + "probability": 0.9874 + }, + { + "start": 70984.96, + "end": 70985.56, + "probability": 0.6662 + }, + { + "start": 70986.0, + "end": 70987.08, + "probability": 0.967 + }, + { + "start": 70987.3, + "end": 70988.07, + "probability": 0.7776 + }, + { + "start": 70988.38, + "end": 70989.97, + "probability": 0.9658 + }, + { + "start": 70990.8, + "end": 70991.84, + "probability": 0.9663 + }, + { + "start": 70992.02, + "end": 70995.46, + "probability": 0.999 + }, + { + "start": 70995.46, + "end": 70999.08, + "probability": 0.9948 + }, + { + "start": 70999.26, + "end": 71000.94, + "probability": 0.9647 + }, + { + "start": 71001.14, + "end": 71003.84, + "probability": 0.8021 + }, + { + "start": 71004.28, + "end": 71011.06, + "probability": 0.9207 + }, + { + "start": 71011.26, + "end": 71013.18, + "probability": 0.7038 + }, + { + "start": 71013.6, + "end": 71014.04, + "probability": 0.3741 + }, + { + "start": 71014.1, + "end": 71018.54, + "probability": 0.726 + }, + { + "start": 71019.08, + "end": 71020.62, + "probability": 0.629 + }, + { + "start": 71020.66, + "end": 71021.28, + "probability": 0.9175 + }, + { + "start": 71022.1, + "end": 71025.24, + "probability": 0.9149 + }, + { + "start": 71027.68, + "end": 71030.72, + "probability": 0.8037 + }, + { + "start": 71031.26, + "end": 71033.74, + "probability": 0.9651 + }, + { + "start": 71034.48, + "end": 71036.1, + "probability": 0.9292 + }, + { + "start": 71036.2, + "end": 71039.78, + "probability": 0.8916 + }, + { + "start": 71039.88, + "end": 71040.54, + "probability": 0.957 + }, + { + "start": 71041.58, + "end": 71046.28, + "probability": 0.9951 + }, + { + "start": 71047.04, + "end": 71050.61, + "probability": 0.9988 + }, + { + "start": 71051.4, + "end": 71053.56, + "probability": 0.9023 + }, + { + "start": 71054.06, + "end": 71057.76, + "probability": 0.951 + }, + { + "start": 71058.28, + "end": 71059.36, + "probability": 0.86 + }, + { + "start": 71060.88, + "end": 71062.38, + "probability": 0.5731 + }, + { + "start": 71062.58, + "end": 71064.32, + "probability": 0.8997 + }, + { + "start": 71064.48, + "end": 71066.14, + "probability": 0.6286 + }, + { + "start": 71066.64, + "end": 71068.2, + "probability": 0.9902 + }, + { + "start": 71068.64, + "end": 71071.18, + "probability": 0.8105 + }, + { + "start": 71071.4, + "end": 71074.22, + "probability": 0.9378 + }, + { + "start": 71074.6, + "end": 71079.58, + "probability": 0.9897 + }, + { + "start": 71080.14, + "end": 71081.36, + "probability": 0.85 + }, + { + "start": 71081.76, + "end": 71082.99, + "probability": 0.6435 + }, + { + "start": 71083.2, + "end": 71084.88, + "probability": 0.7136 + }, + { + "start": 71085.38, + "end": 71086.84, + "probability": 0.9939 + }, + { + "start": 71087.0, + "end": 71087.9, + "probability": 0.8725 + }, + { + "start": 71088.26, + "end": 71089.38, + "probability": 0.9937 + }, + { + "start": 71090.3, + "end": 71091.5, + "probability": 0.9002 + }, + { + "start": 71091.86, + "end": 71095.48, + "probability": 0.9924 + }, + { + "start": 71095.84, + "end": 71099.06, + "probability": 0.9976 + }, + { + "start": 71099.06, + "end": 71103.6, + "probability": 0.9818 + }, + { + "start": 71104.14, + "end": 71107.61, + "probability": 0.9844 + }, + { + "start": 71108.06, + "end": 71111.7, + "probability": 0.9611 + }, + { + "start": 71112.34, + "end": 71115.86, + "probability": 0.9927 + }, + { + "start": 71115.86, + "end": 71120.36, + "probability": 0.3583 + }, + { + "start": 71121.14, + "end": 71122.58, + "probability": 0.5732 + }, + { + "start": 71122.66, + "end": 71123.72, + "probability": 0.7284 + }, + { + "start": 71123.8, + "end": 71126.2, + "probability": 0.8679 + }, + { + "start": 71127.1, + "end": 71131.66, + "probability": 0.7729 + }, + { + "start": 71131.7, + "end": 71132.22, + "probability": 0.7402 + }, + { + "start": 71132.3, + "end": 71135.64, + "probability": 0.8633 + }, + { + "start": 71136.5, + "end": 71141.1, + "probability": 0.9553 + }, + { + "start": 71141.62, + "end": 71148.88, + "probability": 0.9492 + }, + { + "start": 71148.9, + "end": 71151.12, + "probability": 0.9968 + }, + { + "start": 71151.12, + "end": 71155.06, + "probability": 0.7173 + }, + { + "start": 71157.2, + "end": 71161.04, + "probability": 0.912 + }, + { + "start": 71161.48, + "end": 71162.5, + "probability": 0.9709 + }, + { + "start": 71162.84, + "end": 71163.74, + "probability": 0.9329 + }, + { + "start": 71164.14, + "end": 71165.66, + "probability": 0.9806 + }, + { + "start": 71166.26, + "end": 71166.96, + "probability": 0.6927 + }, + { + "start": 71167.34, + "end": 71170.38, + "probability": 0.9791 + }, + { + "start": 71170.98, + "end": 71173.54, + "probability": 0.6582 + }, + { + "start": 71174.06, + "end": 71175.38, + "probability": 0.9795 + }, + { + "start": 71175.62, + "end": 71177.01, + "probability": 0.4565 + }, + { + "start": 71178.4, + "end": 71181.0, + "probability": 0.9919 + }, + { + "start": 71181.36, + "end": 71184.6, + "probability": 0.9508 + }, + { + "start": 71185.24, + "end": 71189.76, + "probability": 0.8248 + }, + { + "start": 71190.88, + "end": 71193.32, + "probability": 0.9963 + }, + { + "start": 71193.72, + "end": 71198.94, + "probability": 0.9329 + }, + { + "start": 71199.46, + "end": 71206.44, + "probability": 0.992 + }, + { + "start": 71206.72, + "end": 71207.28, + "probability": 0.7072 + }, + { + "start": 71207.98, + "end": 71210.32, + "probability": 0.6957 + }, + { + "start": 71210.38, + "end": 71210.86, + "probability": 0.8057 + }, + { + "start": 71211.44, + "end": 71213.64, + "probability": 0.9714 + }, + { + "start": 71214.34, + "end": 71216.64, + "probability": 0.9861 + }, + { + "start": 71218.94, + "end": 71220.46, + "probability": 0.9292 + }, + { + "start": 71223.68, + "end": 71224.18, + "probability": 0.8134 + }, + { + "start": 71231.68, + "end": 71232.94, + "probability": 0.7436 + }, + { + "start": 71233.84, + "end": 71234.58, + "probability": 0.9689 + }, + { + "start": 71236.52, + "end": 71237.24, + "probability": 0.4792 + }, + { + "start": 71237.94, + "end": 71238.16, + "probability": 0.1769 + }, + { + "start": 71238.2, + "end": 71239.62, + "probability": 0.7809 + }, + { + "start": 71239.8, + "end": 71241.06, + "probability": 0.7699 + }, + { + "start": 71243.48, + "end": 71245.28, + "probability": 0.9742 + }, + { + "start": 71247.68, + "end": 71248.04, + "probability": 0.9277 + }, + { + "start": 71249.6, + "end": 71251.16, + "probability": 0.652 + }, + { + "start": 71254.34, + "end": 71256.16, + "probability": 0.8612 + }, + { + "start": 71257.14, + "end": 71259.46, + "probability": 0.8392 + }, + { + "start": 71260.96, + "end": 71261.84, + "probability": 0.8106 + }, + { + "start": 71263.38, + "end": 71264.78, + "probability": 0.9971 + }, + { + "start": 71266.88, + "end": 71269.02, + "probability": 0.9971 + }, + { + "start": 71271.08, + "end": 71272.74, + "probability": 0.9297 + }, + { + "start": 71273.82, + "end": 71276.58, + "probability": 0.9945 + }, + { + "start": 71278.74, + "end": 71280.04, + "probability": 0.9772 + }, + { + "start": 71281.58, + "end": 71282.28, + "probability": 0.9946 + }, + { + "start": 71284.12, + "end": 71284.76, + "probability": 0.9397 + }, + { + "start": 71287.1, + "end": 71288.4, + "probability": 0.9896 + }, + { + "start": 71291.32, + "end": 71293.54, + "probability": 0.9907 + }, + { + "start": 71293.8, + "end": 71295.25, + "probability": 0.9951 + }, + { + "start": 71296.52, + "end": 71298.3, + "probability": 0.9983 + }, + { + "start": 71299.48, + "end": 71299.96, + "probability": 0.9969 + }, + { + "start": 71300.52, + "end": 71301.13, + "probability": 0.9771 + }, + { + "start": 71302.84, + "end": 71304.36, + "probability": 0.9928 + }, + { + "start": 71305.78, + "end": 71307.16, + "probability": 0.8959 + }, + { + "start": 71309.04, + "end": 71311.8, + "probability": 0.9946 + }, + { + "start": 71312.16, + "end": 71313.4, + "probability": 0.9993 + }, + { + "start": 71315.34, + "end": 71315.96, + "probability": 0.9817 + }, + { + "start": 71317.88, + "end": 71318.96, + "probability": 0.9711 + }, + { + "start": 71321.06, + "end": 71325.66, + "probability": 0.9628 + }, + { + "start": 71326.36, + "end": 71327.52, + "probability": 0.9013 + }, + { + "start": 71331.06, + "end": 71333.68, + "probability": 0.9353 + }, + { + "start": 71336.1, + "end": 71339.32, + "probability": 0.9861 + }, + { + "start": 71339.96, + "end": 71342.3, + "probability": 0.9984 + }, + { + "start": 71343.92, + "end": 71347.9, + "probability": 0.9424 + }, + { + "start": 71348.72, + "end": 71353.26, + "probability": 0.9399 + }, + { + "start": 71354.54, + "end": 71356.68, + "probability": 0.9787 + }, + { + "start": 71358.66, + "end": 71359.6, + "probability": 0.8018 + }, + { + "start": 71361.64, + "end": 71363.1, + "probability": 0.766 + }, + { + "start": 71364.82, + "end": 71366.08, + "probability": 0.9937 + }, + { + "start": 71367.5, + "end": 71368.44, + "probability": 0.9961 + }, + { + "start": 71369.04, + "end": 71371.2, + "probability": 0.9751 + }, + { + "start": 71373.42, + "end": 71374.7, + "probability": 0.3734 + }, + { + "start": 71375.96, + "end": 71377.68, + "probability": 0.8849 + }, + { + "start": 71378.82, + "end": 71381.56, + "probability": 0.3302 + }, + { + "start": 71382.08, + "end": 71384.86, + "probability": 0.8967 + }, + { + "start": 71386.3, + "end": 71387.28, + "probability": 0.9213 + }, + { + "start": 71388.1, + "end": 71390.1, + "probability": 0.981 + }, + { + "start": 71391.08, + "end": 71395.28, + "probability": 0.9778 + }, + { + "start": 71396.58, + "end": 71398.22, + "probability": 0.9668 + }, + { + "start": 71399.24, + "end": 71401.44, + "probability": 0.672 + }, + { + "start": 71402.18, + "end": 71404.0, + "probability": 0.9301 + }, + { + "start": 71404.12, + "end": 71406.42, + "probability": 0.8962 + }, + { + "start": 71406.48, + "end": 71406.86, + "probability": 0.7641 + }, + { + "start": 71407.5, + "end": 71407.94, + "probability": 0.2246 + }, + { + "start": 71408.3, + "end": 71409.62, + "probability": 0.9421 + }, + { + "start": 71410.12, + "end": 71412.22, + "probability": 0.3519 + }, + { + "start": 71412.9, + "end": 71414.0, + "probability": 0.8506 + }, + { + "start": 71414.82, + "end": 71416.36, + "probability": 0.9702 + }, + { + "start": 71417.28, + "end": 71417.6, + "probability": 0.9846 + }, + { + "start": 71418.98, + "end": 71420.86, + "probability": 0.9661 + }, + { + "start": 71421.5, + "end": 71423.96, + "probability": 0.9868 + }, + { + "start": 71424.22, + "end": 71425.01, + "probability": 0.9966 + }, + { + "start": 71426.06, + "end": 71432.14, + "probability": 0.7953 + }, + { + "start": 71432.32, + "end": 71433.7, + "probability": 0.4929 + }, + { + "start": 71434.6, + "end": 71435.92, + "probability": 0.8882 + }, + { + "start": 71436.2, + "end": 71436.7, + "probability": 0.7075 + }, + { + "start": 71437.58, + "end": 71438.6, + "probability": 0.9137 + }, + { + "start": 71439.22, + "end": 71441.92, + "probability": 0.8358 + }, + { + "start": 71442.1, + "end": 71442.62, + "probability": 0.6482 + }, + { + "start": 71443.38, + "end": 71447.52, + "probability": 0.6853 + }, + { + "start": 71448.16, + "end": 71452.16, + "probability": 0.8414 + }, + { + "start": 71453.12, + "end": 71453.68, + "probability": 0.5486 + }, + { + "start": 71454.42, + "end": 71455.54, + "probability": 0.4987 + }, + { + "start": 71456.08, + "end": 71456.92, + "probability": 0.8306 + }, + { + "start": 71457.84, + "end": 71459.86, + "probability": 0.9946 + }, + { + "start": 71463.4, + "end": 71464.48, + "probability": 0.9051 + }, + { + "start": 71467.56, + "end": 71470.5, + "probability": 0.9844 + }, + { + "start": 71471.76, + "end": 71474.32, + "probability": 0.9043 + }, + { + "start": 71474.46, + "end": 71474.54, + "probability": 0.6733 + }, + { + "start": 71474.62, + "end": 71474.9, + "probability": 0.302 + }, + { + "start": 71474.9, + "end": 71479.66, + "probability": 0.8936 + }, + { + "start": 71480.62, + "end": 71482.21, + "probability": 0.6759 + }, + { + "start": 71482.56, + "end": 71483.72, + "probability": 0.7509 + }, + { + "start": 71485.18, + "end": 71486.64, + "probability": 0.1215 + }, + { + "start": 71486.76, + "end": 71490.08, + "probability": 0.9972 + }, + { + "start": 71490.08, + "end": 71496.08, + "probability": 0.9302 + }, + { + "start": 71497.4, + "end": 71500.24, + "probability": 0.9917 + }, + { + "start": 71500.28, + "end": 71501.02, + "probability": 0.6929 + }, + { + "start": 71502.46, + "end": 71504.05, + "probability": 0.9024 + }, + { + "start": 71504.26, + "end": 71505.54, + "probability": 0.987 + }, + { + "start": 71505.64, + "end": 71506.54, + "probability": 0.9622 + }, + { + "start": 71506.94, + "end": 71508.3, + "probability": 0.9527 + }, + { + "start": 71508.58, + "end": 71509.96, + "probability": 0.9524 + }, + { + "start": 71510.34, + "end": 71511.46, + "probability": 0.9707 + }, + { + "start": 71512.5, + "end": 71514.08, + "probability": 0.9648 + }, + { + "start": 71516.7, + "end": 71518.38, + "probability": 0.8505 + }, + { + "start": 71520.22, + "end": 71520.98, + "probability": 0.9138 + }, + { + "start": 71523.02, + "end": 71524.26, + "probability": 0.8837 + }, + { + "start": 71524.84, + "end": 71527.38, + "probability": 0.9871 + }, + { + "start": 71528.38, + "end": 71529.46, + "probability": 0.7244 + }, + { + "start": 71531.28, + "end": 71531.58, + "probability": 0.8784 + }, + { + "start": 71532.54, + "end": 71533.4, + "probability": 0.7328 + }, + { + "start": 71533.86, + "end": 71534.79, + "probability": 0.9077 + }, + { + "start": 71536.36, + "end": 71537.32, + "probability": 0.8838 + }, + { + "start": 71538.84, + "end": 71540.02, + "probability": 0.9585 + }, + { + "start": 71543.76, + "end": 71545.38, + "probability": 0.855 + }, + { + "start": 71546.04, + "end": 71548.65, + "probability": 0.9649 + }, + { + "start": 71549.9, + "end": 71553.16, + "probability": 0.9922 + }, + { + "start": 71555.0, + "end": 71556.74, + "probability": 0.3572 + }, + { + "start": 71558.42, + "end": 71560.28, + "probability": 0.9937 + }, + { + "start": 71561.84, + "end": 71563.18, + "probability": 0.8711 + }, + { + "start": 71563.26, + "end": 71568.62, + "probability": 0.9111 + }, + { + "start": 71568.8, + "end": 71569.56, + "probability": 0.4125 + }, + { + "start": 71570.8, + "end": 71572.91, + "probability": 0.9975 + }, + { + "start": 71574.0, + "end": 71575.58, + "probability": 0.8458 + }, + { + "start": 71576.74, + "end": 71582.9, + "probability": 0.9747 + }, + { + "start": 71584.58, + "end": 71588.0, + "probability": 0.9963 + }, + { + "start": 71589.44, + "end": 71591.72, + "probability": 0.9748 + }, + { + "start": 71592.64, + "end": 71596.22, + "probability": 0.9896 + }, + { + "start": 71597.4, + "end": 71599.08, + "probability": 0.9941 + }, + { + "start": 71601.12, + "end": 71606.1, + "probability": 0.9946 + }, + { + "start": 71607.04, + "end": 71608.2, + "probability": 0.6574 + }, + { + "start": 71609.9, + "end": 71614.2, + "probability": 0.991 + }, + { + "start": 71616.48, + "end": 71621.64, + "probability": 0.9851 + }, + { + "start": 71622.86, + "end": 71626.62, + "probability": 0.8871 + }, + { + "start": 71627.28, + "end": 71631.5, + "probability": 0.8592 + }, + { + "start": 71632.16, + "end": 71635.3, + "probability": 0.7493 + }, + { + "start": 71635.94, + "end": 71636.18, + "probability": 0.6618 + }, + { + "start": 71637.3, + "end": 71639.18, + "probability": 0.5739 + }, + { + "start": 71641.07, + "end": 71641.9, + "probability": 0.8494 + }, + { + "start": 71642.02, + "end": 71642.52, + "probability": 0.3912 + }, + { + "start": 71642.54, + "end": 71643.84, + "probability": 0.9036 + }, + { + "start": 71643.9, + "end": 71644.27, + "probability": 0.7742 + }, + { + "start": 71644.66, + "end": 71645.72, + "probability": 0.6498 + }, + { + "start": 71645.82, + "end": 71646.48, + "probability": 0.5334 + }, + { + "start": 71647.1, + "end": 71649.58, + "probability": 0.9032 + }, + { + "start": 71649.7, + "end": 71651.06, + "probability": 0.6355 + }, + { + "start": 71652.16, + "end": 71653.64, + "probability": 0.7588 + }, + { + "start": 71653.64, + "end": 71654.48, + "probability": 0.714 + }, + { + "start": 71654.78, + "end": 71655.82, + "probability": 0.9122 + }, + { + "start": 71656.6, + "end": 71657.6, + "probability": 0.9751 + }, + { + "start": 71658.42, + "end": 71660.3, + "probability": 0.9268 + }, + { + "start": 71660.64, + "end": 71661.6, + "probability": 0.7482 + }, + { + "start": 71661.9, + "end": 71663.04, + "probability": 0.9966 + }, + { + "start": 71663.6, + "end": 71664.54, + "probability": 0.6484 + }, + { + "start": 71665.6, + "end": 71668.31, + "probability": 0.9246 + }, + { + "start": 71669.48, + "end": 71672.02, + "probability": 0.8647 + }, + { + "start": 71672.8, + "end": 71673.62, + "probability": 0.9567 + }, + { + "start": 71673.62, + "end": 71675.44, + "probability": 0.9698 + }, + { + "start": 71676.18, + "end": 71677.98, + "probability": 0.9814 + }, + { + "start": 71679.8, + "end": 71682.34, + "probability": 0.9103 + }, + { + "start": 71684.64, + "end": 71687.08, + "probability": 0.9132 + }, + { + "start": 71688.14, + "end": 71689.3, + "probability": 0.8503 + }, + { + "start": 71690.42, + "end": 71694.26, + "probability": 0.8955 + }, + { + "start": 71695.96, + "end": 71696.54, + "probability": 0.6225 + }, + { + "start": 71698.02, + "end": 71701.28, + "probability": 0.9709 + }, + { + "start": 71701.48, + "end": 71703.14, + "probability": 0.6732 + }, + { + "start": 71704.76, + "end": 71706.42, + "probability": 0.9932 + }, + { + "start": 71707.74, + "end": 71709.76, + "probability": 0.9805 + }, + { + "start": 71710.34, + "end": 71716.16, + "probability": 0.8551 + }, + { + "start": 71716.78, + "end": 71718.34, + "probability": 0.8303 + }, + { + "start": 71719.1, + "end": 71721.46, + "probability": 0.8753 + }, + { + "start": 71721.74, + "end": 71723.72, + "probability": 0.9948 + }, + { + "start": 71727.64, + "end": 71729.58, + "probability": 0.9686 + }, + { + "start": 71733.12, + "end": 71737.58, + "probability": 0.949 + }, + { + "start": 71738.84, + "end": 71741.12, + "probability": 0.9862 + }, + { + "start": 71743.0, + "end": 71743.9, + "probability": 0.8521 + }, + { + "start": 71744.0, + "end": 71745.78, + "probability": 0.9896 + }, + { + "start": 71746.0, + "end": 71747.29, + "probability": 0.7499 + }, + { + "start": 71747.86, + "end": 71748.6, + "probability": 0.9338 + }, + { + "start": 71748.7, + "end": 71749.6, + "probability": 0.9869 + }, + { + "start": 71749.66, + "end": 71750.48, + "probability": 0.8775 + }, + { + "start": 71750.56, + "end": 71751.56, + "probability": 0.9821 + }, + { + "start": 71751.86, + "end": 71752.9, + "probability": 0.9714 + }, + { + "start": 71767.67, + "end": 71768.24, + "probability": 0.2653 + }, + { + "start": 71768.24, + "end": 71768.24, + "probability": 0.1205 + }, + { + "start": 71768.24, + "end": 71768.24, + "probability": 0.0947 + }, + { + "start": 71768.24, + "end": 71768.24, + "probability": 0.0486 + }, + { + "start": 71768.24, + "end": 71768.26, + "probability": 0.22 + }, + { + "start": 71768.26, + "end": 71770.96, + "probability": 0.8384 + }, + { + "start": 71772.46, + "end": 71774.38, + "probability": 0.7747 + }, + { + "start": 71775.38, + "end": 71776.76, + "probability": 0.8971 + }, + { + "start": 71778.42, + "end": 71781.44, + "probability": 0.9907 + }, + { + "start": 71783.1, + "end": 71788.46, + "probability": 0.9967 + }, + { + "start": 71789.94, + "end": 71791.66, + "probability": 0.8243 + }, + { + "start": 71791.82, + "end": 71797.36, + "probability": 0.9836 + }, + { + "start": 71800.34, + "end": 71803.6, + "probability": 0.827 + }, + { + "start": 71804.66, + "end": 71808.78, + "probability": 0.7218 + }, + { + "start": 71809.78, + "end": 71813.54, + "probability": 0.7415 + }, + { + "start": 71816.7, + "end": 71819.62, + "probability": 0.9939 + }, + { + "start": 71825.04, + "end": 71826.96, + "probability": 0.8376 + }, + { + "start": 71830.32, + "end": 71832.52, + "probability": 0.8459 + }, + { + "start": 71834.62, + "end": 71836.76, + "probability": 0.9294 + }, + { + "start": 71837.96, + "end": 71840.8, + "probability": 0.9984 + }, + { + "start": 71843.28, + "end": 71845.36, + "probability": 0.9111 + }, + { + "start": 71845.56, + "end": 71846.86, + "probability": 0.9286 + }, + { + "start": 71846.96, + "end": 71847.76, + "probability": 0.8911 + }, + { + "start": 71847.82, + "end": 71849.52, + "probability": 0.8848 + }, + { + "start": 71851.64, + "end": 71853.84, + "probability": 0.9221 + }, + { + "start": 71855.36, + "end": 71859.66, + "probability": 0.9168 + }, + { + "start": 71862.32, + "end": 71866.3, + "probability": 0.9828 + }, + { + "start": 71867.46, + "end": 71870.94, + "probability": 0.9824 + }, + { + "start": 71871.86, + "end": 71874.12, + "probability": 0.9159 + }, + { + "start": 71875.08, + "end": 71876.7, + "probability": 0.9873 + }, + { + "start": 71878.16, + "end": 71882.52, + "probability": 0.9823 + }, + { + "start": 71882.7, + "end": 71884.38, + "probability": 0.9017 + }, + { + "start": 71886.54, + "end": 71890.42, + "probability": 0.988 + }, + { + "start": 71890.78, + "end": 71891.92, + "probability": 0.9779 + }, + { + "start": 71893.16, + "end": 71894.34, + "probability": 0.9906 + }, + { + "start": 71894.52, + "end": 71896.16, + "probability": 0.8005 + }, + { + "start": 71897.42, + "end": 71899.42, + "probability": 0.9871 + }, + { + "start": 71900.38, + "end": 71902.36, + "probability": 0.9417 + }, + { + "start": 71904.06, + "end": 71906.72, + "probability": 0.9358 + }, + { + "start": 71908.38, + "end": 71909.19, + "probability": 0.8734 + }, + { + "start": 71909.88, + "end": 71911.22, + "probability": 0.9671 + }, + { + "start": 71911.48, + "end": 71912.6, + "probability": 0.9299 + }, + { + "start": 71912.66, + "end": 71916.84, + "probability": 0.981 + }, + { + "start": 71917.3, + "end": 71919.46, + "probability": 0.0427 + }, + { + "start": 71926.84, + "end": 71926.94, + "probability": 0.0127 + }, + { + "start": 71929.57, + "end": 71930.22, + "probability": 0.044 + }, + { + "start": 71935.36, + "end": 71935.5, + "probability": 0.25 + }, + { + "start": 72018.0, + "end": 72018.0, + "probability": 0.0 + }, + { + "start": 72024.62, + "end": 72028.42, + "probability": 0.1238 + }, + { + "start": 72029.72, + "end": 72035.24, + "probability": 0.095 + }, + { + "start": 72036.48, + "end": 72038.64, + "probability": 0.2535 + }, + { + "start": 72038.64, + "end": 72041.44, + "probability": 0.0776 + }, + { + "start": 72041.48, + "end": 72046.68, + "probability": 0.0632 + }, + { + "start": 72047.87, + "end": 72049.16, + "probability": 0.0449 + }, + { + "start": 72049.18, + "end": 72052.1, + "probability": 0.0277 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72138.0, + "end": 72138.0, + "probability": 0.0 + }, + { + "start": 72142.56, + "end": 72148.96, + "probability": 0.0156 + }, + { + "start": 72148.96, + "end": 72148.96, + "probability": 0.0537 + }, + { + "start": 72148.96, + "end": 72148.96, + "probability": 0.0676 + }, + { + "start": 72148.96, + "end": 72148.96, + "probability": 0.1005 + }, + { + "start": 72148.96, + "end": 72148.96, + "probability": 0.2327 + }, + { + "start": 72148.96, + "end": 72151.42, + "probability": 0.4639 + }, + { + "start": 72151.84, + "end": 72152.9, + "probability": 0.6644 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72279.0, + "end": 72279.0, + "probability": 0.0 + }, + { + "start": 72285.02, + "end": 72285.86, + "probability": 0.0165 + }, + { + "start": 72285.86, + "end": 72286.54, + "probability": 0.0337 + }, + { + "start": 72286.54, + "end": 72287.8, + "probability": 0.0644 + }, + { + "start": 72288.18, + "end": 72289.52, + "probability": 0.0551 + }, + { + "start": 72291.49, + "end": 72295.86, + "probability": 0.117 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72448.0, + "end": 72448.0, + "probability": 0.0 + }, + { + "start": 72460.46, + "end": 72462.22, + "probability": 0.2989 + }, + { + "start": 72463.5, + "end": 72465.78, + "probability": 0.127 + }, + { + "start": 72466.55, + "end": 72467.94, + "probability": 0.0431 + }, + { + "start": 72467.94, + "end": 72469.08, + "probability": 0.0505 + }, + { + "start": 72469.44, + "end": 72471.42, + "probability": 0.1103 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.0, + "end": 72572.0, + "probability": 0.0 + }, + { + "start": 72572.48, + "end": 72574.14, + "probability": 0.0284 + }, + { + "start": 72575.28, + "end": 72575.94, + "probability": 0.0619 + }, + { + "start": 72576.22, + "end": 72578.46, + "probability": 0.0035 + }, + { + "start": 72579.24, + "end": 72581.3, + "probability": 0.0767 + }, + { + "start": 72591.96, + "end": 72592.92, + "probability": 0.2724 + }, + { + "start": 72598.08, + "end": 72598.68, + "probability": 0.0 + }, + { + "start": 72599.94, + "end": 72604.32, + "probability": 0.1295 + }, + { + "start": 72604.32, + "end": 72605.42, + "probability": 0.0423 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.0, + "end": 72693.0, + "probability": 0.0 + }, + { + "start": 72693.26, + "end": 72697.62, + "probability": 0.0596 + }, + { + "start": 72698.72, + "end": 72701.0, + "probability": 0.1571 + }, + { + "start": 72701.96, + "end": 72702.92, + "probability": 0.1778 + }, + { + "start": 72703.18, + "end": 72703.96, + "probability": 0.0938 + }, + { + "start": 72703.96, + "end": 72704.0, + "probability": 0.5931 + }, + { + "start": 72705.08, + "end": 72706.68, + "probability": 0.0603 + }, + { + "start": 72706.7, + "end": 72706.84, + "probability": 0.0297 + }, + { + "start": 72706.84, + "end": 72708.22, + "probability": 0.1657 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.0, + "end": 72817.0, + "probability": 0.0 + }, + { + "start": 72817.58, + "end": 72819.7, + "probability": 0.1725 + }, + { + "start": 72819.7, + "end": 72820.5, + "probability": 0.2092 + }, + { + "start": 72820.58, + "end": 72820.92, + "probability": 0.2101 + }, + { + "start": 72821.34, + "end": 72822.0, + "probability": 0.2592 + }, + { + "start": 72823.1, + "end": 72823.12, + "probability": 0.0983 + }, + { + "start": 72823.12, + "end": 72825.6, + "probability": 0.9808 + }, + { + "start": 72826.46, + "end": 72828.86, + "probability": 0.5061 + }, + { + "start": 72829.0, + "end": 72829.0, + "probability": 0.0971 + }, + { + "start": 72829.28, + "end": 72830.56, + "probability": 0.0718 + }, + { + "start": 72830.56, + "end": 72833.18, + "probability": 0.0623 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72943.0, + "end": 72943.0, + "probability": 0.0 + }, + { + "start": 72950.42, + "end": 72953.44, + "probability": 0.0715 + }, + { + "start": 72953.54, + "end": 72953.89, + "probability": 0.1205 + }, + { + "start": 72954.7, + "end": 72956.9, + "probability": 0.1733 + }, + { + "start": 72957.18, + "end": 72959.14, + "probability": 0.0753 + }, + { + "start": 72966.98, + "end": 72967.08, + "probability": 0.25 + }, + { + "start": 72967.08, + "end": 72967.08, + "probability": 0.0186 + }, + { + "start": 72967.08, + "end": 72967.92, + "probability": 0.101 + }, + { + "start": 72967.94, + "end": 72969.28, + "probability": 0.067 + }, + { + "start": 72971.74, + "end": 72972.08, + "probability": 0.4144 + }, + { + "start": 72972.08, + "end": 72973.14, + "probability": 0.1247 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.0, + "end": 73140.0, + "probability": 0.0 + }, + { + "start": 73140.64, + "end": 73142.12, + "probability": 0.1433 + }, + { + "start": 73144.74, + "end": 73146.96, + "probability": 0.0148 + }, + { + "start": 73149.49, + "end": 73150.36, + "probability": 0.054 + }, + { + "start": 73151.97, + "end": 73152.16, + "probability": 0.0155 + }, + { + "start": 73152.49, + "end": 73155.4, + "probability": 0.1722 + }, + { + "start": 73156.89, + "end": 73158.5, + "probability": 0.2466 + }, + { + "start": 73159.98, + "end": 73164.42, + "probability": 0.021 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.0, + "end": 73265.0, + "probability": 0.0 + }, + { + "start": 73265.34, + "end": 73265.78, + "probability": 0.1543 + }, + { + "start": 73266.34, + "end": 73266.8, + "probability": 0.2698 + }, + { + "start": 73266.95, + "end": 73272.73, + "probability": 0.271 + }, + { + "start": 73273.58, + "end": 73277.76, + "probability": 0.0191 + }, + { + "start": 73280.08, + "end": 73284.64, + "probability": 0.022 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.0, + "end": 73403.0, + "probability": 0.0 + }, + { + "start": 73403.2, + "end": 73404.3, + "probability": 0.0267 + }, + { + "start": 73404.96, + "end": 73406.42, + "probability": 0.0636 + }, + { + "start": 73407.84, + "end": 73408.86, + "probability": 0.1586 + }, + { + "start": 73411.42, + "end": 73412.4, + "probability": 0.0399 + }, + { + "start": 73412.4, + "end": 73424.66, + "probability": 0.087 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73573.0, + "end": 73573.0, + "probability": 0.0 + }, + { + "start": 73582.94, + "end": 73586.3, + "probability": 0.0758 + }, + { + "start": 73588.84, + "end": 73593.64, + "probability": 0.0387 + }, + { + "start": 73593.72, + "end": 73594.64, + "probability": 0.0812 + }, + { + "start": 73594.96, + "end": 73597.92, + "probability": 0.0541 + }, + { + "start": 73598.62, + "end": 73599.44, + "probability": 0.0135 + }, + { + "start": 73600.18, + "end": 73601.02, + "probability": 0.1551 + }, + { + "start": 73603.36, + "end": 73603.5, + "probability": 0.0007 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.0, + "probability": 0.0 + }, + { + "start": 73697.0, + "end": 73697.74, + "probability": 0.282 + }, + { + "start": 73697.74, + "end": 73698.84, + "probability": 0.9702 + }, + { + "start": 73699.48, + "end": 73699.88, + "probability": 0.8753 + }, + { + "start": 73700.82, + "end": 73702.7, + "probability": 0.9451 + }, + { + "start": 73702.82, + "end": 73704.76, + "probability": 0.7867 + }, + { + "start": 73706.82, + "end": 73707.68, + "probability": 0.441 + }, + { + "start": 73708.75, + "end": 73709.49, + "probability": 0.4269 + }, + { + "start": 73709.96, + "end": 73713.98, + "probability": 0.8477 + }, + { + "start": 73714.56, + "end": 73716.56, + "probability": 0.8987 + }, + { + "start": 73716.56, + "end": 73718.48, + "probability": 0.9079 + }, + { + "start": 73718.8, + "end": 73718.98, + "probability": 0.8669 + }, + { + "start": 73720.94, + "end": 73721.88, + "probability": 0.9336 + }, + { + "start": 73722.08, + "end": 73725.78, + "probability": 0.9119 + }, + { + "start": 73726.3, + "end": 73726.9, + "probability": 0.1725 + }, + { + "start": 73726.9, + "end": 73729.6, + "probability": 0.6086 + }, + { + "start": 73730.7, + "end": 73732.34, + "probability": 0.947 + }, + { + "start": 73733.66, + "end": 73735.08, + "probability": 0.9368 + }, + { + "start": 73736.8, + "end": 73739.12, + "probability": 0.9058 + }, + { + "start": 73740.56, + "end": 73742.46, + "probability": 0.996 + }, + { + "start": 73743.5, + "end": 73746.88, + "probability": 0.9965 + }, + { + "start": 73747.78, + "end": 73748.56, + "probability": 0.9658 + }, + { + "start": 73748.94, + "end": 73750.3, + "probability": 0.9493 + }, + { + "start": 73750.96, + "end": 73752.38, + "probability": 0.9683 + }, + { + "start": 73752.82, + "end": 73753.48, + "probability": 0.926 + }, + { + "start": 73753.58, + "end": 73754.52, + "probability": 0.8241 + }, + { + "start": 73754.56, + "end": 73755.12, + "probability": 0.9116 + }, + { + "start": 73755.84, + "end": 73757.15, + "probability": 0.7718 + }, + { + "start": 73759.6, + "end": 73760.51, + "probability": 0.8955 + }, + { + "start": 73760.86, + "end": 73761.3, + "probability": 0.9507 + }, + { + "start": 73761.62, + "end": 73762.72, + "probability": 0.9929 + }, + { + "start": 73763.18, + "end": 73764.5, + "probability": 0.7915 + }, + { + "start": 73765.84, + "end": 73766.8, + "probability": 0.8302 + }, + { + "start": 73767.52, + "end": 73767.82, + "probability": 0.6145 + }, + { + "start": 73768.02, + "end": 73771.28, + "probability": 0.9845 + }, + { + "start": 73773.04, + "end": 73773.96, + "probability": 0.9685 + }, + { + "start": 73775.22, + "end": 73777.82, + "probability": 0.9736 + }, + { + "start": 73778.04, + "end": 73778.74, + "probability": 0.8884 + }, + { + "start": 73778.86, + "end": 73780.04, + "probability": 0.7033 + }, + { + "start": 73781.02, + "end": 73782.16, + "probability": 0.946 + }, + { + "start": 73782.28, + "end": 73782.94, + "probability": 0.8337 + }, + { + "start": 73783.06, + "end": 73784.14, + "probability": 0.8351 + }, + { + "start": 73784.24, + "end": 73784.68, + "probability": 0.7257 + }, + { + "start": 73785.5, + "end": 73787.38, + "probability": 0.9951 + }, + { + "start": 73788.32, + "end": 73793.36, + "probability": 0.9882 + }, + { + "start": 73793.6, + "end": 73795.64, + "probability": 0.9565 + }, + { + "start": 73796.6, + "end": 73798.26, + "probability": 0.9277 + }, + { + "start": 73799.6, + "end": 73801.8, + "probability": 0.9769 + }, + { + "start": 73802.66, + "end": 73804.62, + "probability": 0.9832 + }, + { + "start": 73806.24, + "end": 73809.72, + "probability": 0.971 + }, + { + "start": 73810.82, + "end": 73813.26, + "probability": 0.9778 + }, + { + "start": 73813.48, + "end": 73814.68, + "probability": 0.999 + }, + { + "start": 73816.08, + "end": 73817.82, + "probability": 0.9814 + }, + { + "start": 73820.04, + "end": 73821.0, + "probability": 0.9839 + }, + { + "start": 73822.38, + "end": 73823.4, + "probability": 0.9648 + }, + { + "start": 73824.94, + "end": 73827.22, + "probability": 0.9124 + }, + { + "start": 73828.56, + "end": 73832.76, + "probability": 0.9985 + }, + { + "start": 73834.26, + "end": 73834.96, + "probability": 0.8169 + }, + { + "start": 73836.0, + "end": 73836.86, + "probability": 0.8848 + }, + { + "start": 73838.08, + "end": 73839.06, + "probability": 0.9734 + }, + { + "start": 73840.04, + "end": 73840.92, + "probability": 0.7948 + }, + { + "start": 73843.16, + "end": 73844.94, + "probability": 0.7465 + }, + { + "start": 73845.46, + "end": 73849.9, + "probability": 0.9826 + }, + { + "start": 73849.9, + "end": 73855.26, + "probability": 0.9775 + }, + { + "start": 73855.36, + "end": 73856.18, + "probability": 0.9971 + }, + { + "start": 73856.88, + "end": 73857.98, + "probability": 0.8763 + }, + { + "start": 73858.06, + "end": 73859.2, + "probability": 0.7938 + }, + { + "start": 73859.62, + "end": 73860.4, + "probability": 0.9 + }, + { + "start": 73860.44, + "end": 73861.44, + "probability": 0.9591 + }, + { + "start": 73861.82, + "end": 73863.52, + "probability": 0.9915 + }, + { + "start": 73864.18, + "end": 73865.3, + "probability": 0.9818 + }, + { + "start": 73865.98, + "end": 73867.6, + "probability": 0.9717 + }, + { + "start": 73867.7, + "end": 73870.36, + "probability": 0.8551 + }, + { + "start": 73870.9, + "end": 73875.36, + "probability": 0.9899 + }, + { + "start": 73875.36, + "end": 73878.75, + "probability": 0.9951 + }, + { + "start": 73879.34, + "end": 73880.06, + "probability": 0.8539 + }, + { + "start": 73880.68, + "end": 73881.76, + "probability": 0.9443 + }, + { + "start": 73882.8, + "end": 73886.58, + "probability": 0.9492 + }, + { + "start": 73887.76, + "end": 73889.6, + "probability": 0.7975 + }, + { + "start": 73890.5, + "end": 73891.86, + "probability": 0.8792 + }, + { + "start": 73891.92, + "end": 73893.1, + "probability": 0.7638 + }, + { + "start": 73893.98, + "end": 73894.82, + "probability": 0.9292 + }, + { + "start": 73895.42, + "end": 73902.2, + "probability": 0.9717 + }, + { + "start": 73903.74, + "end": 73904.66, + "probability": 0.7273 + }, + { + "start": 73905.96, + "end": 73907.0, + "probability": 0.7105 + }, + { + "start": 73909.2, + "end": 73914.9, + "probability": 0.9967 + }, + { + "start": 73917.48, + "end": 73919.12, + "probability": 0.976 + }, + { + "start": 73919.94, + "end": 73921.2, + "probability": 0.856 + }, + { + "start": 73922.28, + "end": 73925.56, + "probability": 0.9879 + }, + { + "start": 73926.32, + "end": 73927.62, + "probability": 0.8925 + }, + { + "start": 73928.82, + "end": 73931.22, + "probability": 0.9966 + }, + { + "start": 73932.08, + "end": 73937.84, + "probability": 0.9078 + }, + { + "start": 73938.02, + "end": 73938.72, + "probability": 0.7181 + }, + { + "start": 73939.76, + "end": 73943.28, + "probability": 0.7266 + }, + { + "start": 73944.92, + "end": 73949.88, + "probability": 0.5988 + }, + { + "start": 73950.3, + "end": 73952.28, + "probability": 0.3841 + }, + { + "start": 73952.82, + "end": 73956.6, + "probability": 0.8196 + }, + { + "start": 73956.6, + "end": 73961.84, + "probability": 0.986 + }, + { + "start": 73962.7, + "end": 73963.68, + "probability": 0.682 + }, + { + "start": 73963.9, + "end": 73966.64, + "probability": 0.8711 + }, + { + "start": 73966.76, + "end": 73967.66, + "probability": 0.8068 + }, + { + "start": 73967.84, + "end": 73971.86, + "probability": 0.9856 + }, + { + "start": 73972.76, + "end": 73974.16, + "probability": 0.9224 + }, + { + "start": 73974.68, + "end": 73978.26, + "probability": 0.9702 + }, + { + "start": 73978.34, + "end": 73979.2, + "probability": 0.8405 + }, + { + "start": 73979.6, + "end": 73982.46, + "probability": 0.955 + }, + { + "start": 73983.2, + "end": 73985.44, + "probability": 0.9935 + }, + { + "start": 73985.96, + "end": 73986.97, + "probability": 0.9906 + }, + { + "start": 73987.64, + "end": 73988.84, + "probability": 0.9804 + }, + { + "start": 73989.64, + "end": 73991.82, + "probability": 0.9215 + }, + { + "start": 73992.94, + "end": 73996.46, + "probability": 0.6978 + }, + { + "start": 73997.12, + "end": 74000.14, + "probability": 0.9559 + }, + { + "start": 74000.76, + "end": 74002.51, + "probability": 0.9697 + }, + { + "start": 74003.2, + "end": 74004.56, + "probability": 0.4854 + }, + { + "start": 74005.37, + "end": 74008.92, + "probability": 0.9896 + }, + { + "start": 74010.0, + "end": 74011.86, + "probability": 0.9883 + }, + { + "start": 74013.72, + "end": 74014.48, + "probability": 0.6914 + }, + { + "start": 74015.54, + "end": 74015.88, + "probability": 0.8459 + }, + { + "start": 74017.2, + "end": 74017.8, + "probability": 0.9447 + }, + { + "start": 74017.9, + "end": 74018.42, + "probability": 0.9496 + }, + { + "start": 74018.78, + "end": 74019.32, + "probability": 0.9524 + }, + { + "start": 74019.46, + "end": 74021.34, + "probability": 0.7991 + }, + { + "start": 74021.58, + "end": 74025.14, + "probability": 0.957 + }, + { + "start": 74025.86, + "end": 74029.54, + "probability": 0.9844 + }, + { + "start": 74030.04, + "end": 74031.76, + "probability": 0.9974 + }, + { + "start": 74032.52, + "end": 74036.18, + "probability": 0.9677 + }, + { + "start": 74037.14, + "end": 74040.3, + "probability": 0.9856 + }, + { + "start": 74040.48, + "end": 74042.1, + "probability": 0.9865 + }, + { + "start": 74042.2, + "end": 74044.52, + "probability": 0.8953 + }, + { + "start": 74044.66, + "end": 74047.25, + "probability": 0.9604 + }, + { + "start": 74047.42, + "end": 74048.82, + "probability": 0.9893 + }, + { + "start": 74048.88, + "end": 74050.28, + "probability": 0.7009 + }, + { + "start": 74050.44, + "end": 74050.8, + "probability": 0.855 + }, + { + "start": 74051.76, + "end": 74052.35, + "probability": 0.9512 + }, + { + "start": 74053.58, + "end": 74056.28, + "probability": 0.9943 + }, + { + "start": 74056.5, + "end": 74059.54, + "probability": 0.9778 + }, + { + "start": 74060.2, + "end": 74061.58, + "probability": 0.6697 + }, + { + "start": 74062.58, + "end": 74063.32, + "probability": 0.6933 + }, + { + "start": 74063.58, + "end": 74065.86, + "probability": 0.5807 + }, + { + "start": 74066.04, + "end": 74067.48, + "probability": 0.9882 + }, + { + "start": 74067.6, + "end": 74069.54, + "probability": 0.9379 + }, + { + "start": 74070.58, + "end": 74072.79, + "probability": 0.8291 + }, + { + "start": 74073.4, + "end": 74074.84, + "probability": 0.9788 + }, + { + "start": 74074.92, + "end": 74075.66, + "probability": 0.842 + }, + { + "start": 74075.8, + "end": 74076.99, + "probability": 0.9917 + }, + { + "start": 74077.7, + "end": 74078.75, + "probability": 0.9206 + }, + { + "start": 74079.24, + "end": 74080.12, + "probability": 0.9927 + }, + { + "start": 74080.26, + "end": 74081.59, + "probability": 0.9447 + }, + { + "start": 74081.76, + "end": 74083.18, + "probability": 0.9358 + }, + { + "start": 74083.72, + "end": 74087.92, + "probability": 0.9245 + }, + { + "start": 74088.7, + "end": 74091.68, + "probability": 0.991 + }, + { + "start": 74091.8, + "end": 74094.52, + "probability": 0.9984 + }, + { + "start": 74094.92, + "end": 74095.4, + "probability": 0.8822 + }, + { + "start": 74095.72, + "end": 74097.3, + "probability": 0.8617 + }, + { + "start": 74098.68, + "end": 74101.4, + "probability": 0.8516 + }, + { + "start": 74101.76, + "end": 74103.6, + "probability": 0.8972 + }, + { + "start": 74103.76, + "end": 74108.16, + "probability": 0.9655 + }, + { + "start": 74109.32, + "end": 74110.92, + "probability": 0.9711 + }, + { + "start": 74111.56, + "end": 74115.3, + "probability": 0.9657 + }, + { + "start": 74116.02, + "end": 74120.8, + "probability": 0.9808 + }, + { + "start": 74121.62, + "end": 74122.41, + "probability": 0.7363 + }, + { + "start": 74123.56, + "end": 74126.64, + "probability": 0.9951 + }, + { + "start": 74127.8, + "end": 74129.5, + "probability": 0.9966 + }, + { + "start": 74130.24, + "end": 74132.94, + "probability": 0.9379 + }, + { + "start": 74133.88, + "end": 74135.3, + "probability": 0.9934 + }, + { + "start": 74136.14, + "end": 74142.02, + "probability": 0.9871 + }, + { + "start": 74142.76, + "end": 74144.71, + "probability": 0.8332 + }, + { + "start": 74145.74, + "end": 74149.06, + "probability": 0.9941 + }, + { + "start": 74150.38, + "end": 74152.44, + "probability": 0.999 + }, + { + "start": 74152.62, + "end": 74157.44, + "probability": 0.9864 + }, + { + "start": 74158.7, + "end": 74160.46, + "probability": 0.5456 + }, + { + "start": 74161.22, + "end": 74164.76, + "probability": 0.9631 + }, + { + "start": 74166.6, + "end": 74168.24, + "probability": 0.8228 + }, + { + "start": 74169.4, + "end": 74170.28, + "probability": 0.9126 + }, + { + "start": 74171.86, + "end": 74173.08, + "probability": 0.9532 + }, + { + "start": 74173.76, + "end": 74179.32, + "probability": 0.9793 + }, + { + "start": 74180.16, + "end": 74181.96, + "probability": 0.9897 + }, + { + "start": 74182.58, + "end": 74185.41, + "probability": 0.9698 + }, + { + "start": 74186.48, + "end": 74190.16, + "probability": 0.9942 + }, + { + "start": 74190.84, + "end": 74195.5, + "probability": 0.9839 + }, + { + "start": 74196.16, + "end": 74198.82, + "probability": 0.995 + }, + { + "start": 74199.42, + "end": 74201.2, + "probability": 1.0 + }, + { + "start": 74201.98, + "end": 74203.4, + "probability": 0.9976 + }, + { + "start": 74204.34, + "end": 74208.68, + "probability": 0.998 + }, + { + "start": 74209.16, + "end": 74210.09, + "probability": 0.9276 + }, + { + "start": 74211.32, + "end": 74211.86, + "probability": 0.8112 + }, + { + "start": 74212.08, + "end": 74212.34, + "probability": 0.7092 + }, + { + "start": 74213.08, + "end": 74217.72, + "probability": 0.9717 + }, + { + "start": 74218.5, + "end": 74219.98, + "probability": 0.9798 + }, + { + "start": 74220.92, + "end": 74221.1, + "probability": 0.8847 + }, + { + "start": 74221.8, + "end": 74225.32, + "probability": 0.9912 + }, + { + "start": 74226.22, + "end": 74229.35, + "probability": 0.99 + }, + { + "start": 74229.54, + "end": 74232.54, + "probability": 0.9939 + }, + { + "start": 74233.08, + "end": 74236.24, + "probability": 0.874 + }, + { + "start": 74236.76, + "end": 74239.3, + "probability": 0.9917 + }, + { + "start": 74239.98, + "end": 74241.84, + "probability": 0.8788 + }, + { + "start": 74242.4, + "end": 74245.42, + "probability": 0.9166 + }, + { + "start": 74246.26, + "end": 74246.62, + "probability": 0.2655 + }, + { + "start": 74246.84, + "end": 74252.22, + "probability": 0.9893 + }, + { + "start": 74252.8, + "end": 74255.66, + "probability": 0.9976 + }, + { + "start": 74255.74, + "end": 74257.7, + "probability": 0.9904 + }, + { + "start": 74258.34, + "end": 74259.24, + "probability": 0.676 + }, + { + "start": 74260.18, + "end": 74262.7, + "probability": 0.9494 + }, + { + "start": 74263.92, + "end": 74266.25, + "probability": 0.7043 + }, + { + "start": 74268.0, + "end": 74268.9, + "probability": 0.6653 + }, + { + "start": 74269.8, + "end": 74270.04, + "probability": 0.551 + }, + { + "start": 74271.1, + "end": 74273.22, + "probability": 0.9026 + }, + { + "start": 74273.44, + "end": 74273.92, + "probability": 0.4078 + }, + { + "start": 74274.1, + "end": 74275.6, + "probability": 0.9452 + }, + { + "start": 74278.62, + "end": 74279.0, + "probability": 0.7841 + }, + { + "start": 74280.98, + "end": 74282.2, + "probability": 0.0243 + }, + { + "start": 74282.38, + "end": 74283.51, + "probability": 0.8208 + }, + { + "start": 74284.28, + "end": 74285.45, + "probability": 0.6085 + }, + { + "start": 74285.74, + "end": 74287.44, + "probability": 0.396 + }, + { + "start": 74287.7, + "end": 74293.28, + "probability": 0.4728 + }, + { + "start": 74294.08, + "end": 74295.16, + "probability": 0.5428 + }, + { + "start": 74295.84, + "end": 74296.0, + "probability": 0.2754 + }, + { + "start": 74296.9, + "end": 74297.86, + "probability": 0.3791 + }, + { + "start": 74297.96, + "end": 74299.24, + "probability": 0.4993 + }, + { + "start": 74299.36, + "end": 74304.14, + "probability": 0.2177 + }, + { + "start": 74306.74, + "end": 74308.82, + "probability": 0.5978 + }, + { + "start": 74309.12, + "end": 74310.4, + "probability": 0.7789 + }, + { + "start": 74310.58, + "end": 74312.62, + "probability": 0.887 + }, + { + "start": 74312.76, + "end": 74316.98, + "probability": 0.9971 + }, + { + "start": 74317.56, + "end": 74319.52, + "probability": 0.8931 + }, + { + "start": 74319.86, + "end": 74323.42, + "probability": 0.2797 + }, + { + "start": 74324.6, + "end": 74325.56, + "probability": 0.9717 + }, + { + "start": 74325.9, + "end": 74326.7, + "probability": 0.7303 + }, + { + "start": 74326.8, + "end": 74326.88, + "probability": 0.7193 + }, + { + "start": 74326.88, + "end": 74329.0, + "probability": 0.7841 + }, + { + "start": 74329.68, + "end": 74331.8, + "probability": 0.4108 + }, + { + "start": 74332.62, + "end": 74333.1, + "probability": 0.7602 + }, + { + "start": 74335.04, + "end": 74339.18, + "probability": 0.7488 + }, + { + "start": 74339.7, + "end": 74342.62, + "probability": 0.9736 + }, + { + "start": 74343.3, + "end": 74344.72, + "probability": 0.7066 + }, + { + "start": 74345.28, + "end": 74346.42, + "probability": 0.6403 + }, + { + "start": 74346.98, + "end": 74348.02, + "probability": 0.9523 + }, + { + "start": 74348.26, + "end": 74352.36, + "probability": 0.1431 + }, + { + "start": 74352.36, + "end": 74352.36, + "probability": 0.1501 + }, + { + "start": 74352.36, + "end": 74352.36, + "probability": 0.2515 + }, + { + "start": 74352.36, + "end": 74352.36, + "probability": 0.2236 + }, + { + "start": 74352.36, + "end": 74359.9, + "probability": 0.8502 + }, + { + "start": 74361.24, + "end": 74366.74, + "probability": 0.9975 + }, + { + "start": 74366.74, + "end": 74372.26, + "probability": 0.982 + }, + { + "start": 74372.42, + "end": 74375.27, + "probability": 0.5621 + }, + { + "start": 74375.58, + "end": 74377.56, + "probability": 0.4745 + }, + { + "start": 74377.82, + "end": 74378.1, + "probability": 0.9521 + }, + { + "start": 74378.14, + "end": 74380.34, + "probability": 0.998 + }, + { + "start": 74380.66, + "end": 74383.14, + "probability": 0.9468 + }, + { + "start": 74383.24, + "end": 74384.2, + "probability": 0.9774 + }, + { + "start": 74384.66, + "end": 74388.52, + "probability": 0.9972 + }, + { + "start": 74389.32, + "end": 74392.04, + "probability": 0.7484 + }, + { + "start": 74392.82, + "end": 74396.88, + "probability": 0.9077 + }, + { + "start": 74397.5, + "end": 74399.76, + "probability": 0.9248 + }, + { + "start": 74400.22, + "end": 74401.32, + "probability": 0.9382 + }, + { + "start": 74401.34, + "end": 74404.44, + "probability": 0.9737 + }, + { + "start": 74404.92, + "end": 74409.38, + "probability": 0.9772 + }, + { + "start": 74411.14, + "end": 74412.5, + "probability": 0.8332 + }, + { + "start": 74413.06, + "end": 74419.1, + "probability": 0.9886 + }, + { + "start": 74419.1, + "end": 74425.1, + "probability": 0.8323 + }, + { + "start": 74425.16, + "end": 74428.24, + "probability": 0.8929 + }, + { + "start": 74429.0, + "end": 74432.0, + "probability": 0.7985 + }, + { + "start": 74432.58, + "end": 74436.08, + "probability": 0.9771 + }, + { + "start": 74436.28, + "end": 74439.7, + "probability": 0.9651 + }, + { + "start": 74441.16, + "end": 74442.06, + "probability": 0.8776 + }, + { + "start": 74442.16, + "end": 74444.46, + "probability": 0.9968 + }, + { + "start": 74444.74, + "end": 74446.33, + "probability": 0.9982 + }, + { + "start": 74447.06, + "end": 74448.2, + "probability": 0.5138 + }, + { + "start": 74448.7, + "end": 74455.0, + "probability": 0.9941 + }, + { + "start": 74455.48, + "end": 74456.92, + "probability": 0.9958 + }, + { + "start": 74457.72, + "end": 74459.58, + "probability": 0.8936 + }, + { + "start": 74460.32, + "end": 74460.94, + "probability": 0.4962 + }, + { + "start": 74466.48, + "end": 74468.98, + "probability": 0.9393 + }, + { + "start": 74471.0, + "end": 74472.86, + "probability": 0.9717 + }, + { + "start": 74473.98, + "end": 74474.78, + "probability": 0.9474 + }, + { + "start": 74475.38, + "end": 74479.3, + "probability": 0.9956 + }, + { + "start": 74480.68, + "end": 74483.88, + "probability": 0.999 + }, + { + "start": 74483.88, + "end": 74486.1, + "probability": 0.998 + }, + { + "start": 74486.48, + "end": 74488.44, + "probability": 0.9993 + }, + { + "start": 74489.0, + "end": 74492.0, + "probability": 0.9712 + }, + { + "start": 74493.62, + "end": 74495.02, + "probability": 0.9048 + }, + { + "start": 74495.46, + "end": 74499.5, + "probability": 0.9941 + }, + { + "start": 74499.7, + "end": 74501.34, + "probability": 0.7308 + }, + { + "start": 74502.08, + "end": 74503.74, + "probability": 0.9517 + }, + { + "start": 74504.14, + "end": 74506.68, + "probability": 0.7116 + }, + { + "start": 74508.58, + "end": 74509.92, + "probability": 0.8965 + }, + { + "start": 74510.26, + "end": 74511.38, + "probability": 0.9702 + }, + { + "start": 74511.52, + "end": 74513.1, + "probability": 0.9949 + }, + { + "start": 74513.24, + "end": 74514.76, + "probability": 0.9918 + }, + { + "start": 74515.34, + "end": 74516.12, + "probability": 0.9701 + }, + { + "start": 74516.34, + "end": 74516.9, + "probability": 0.5364 + }, + { + "start": 74516.92, + "end": 74518.24, + "probability": 0.8598 + }, + { + "start": 74518.28, + "end": 74518.72, + "probability": 0.9481 + }, + { + "start": 74518.9, + "end": 74521.16, + "probability": 0.771 + }, + { + "start": 74521.76, + "end": 74528.12, + "probability": 0.991 + }, + { + "start": 74529.62, + "end": 74535.88, + "probability": 0.9932 + }, + { + "start": 74535.96, + "end": 74537.78, + "probability": 0.9907 + }, + { + "start": 74537.86, + "end": 74539.36, + "probability": 0.8052 + }, + { + "start": 74540.7, + "end": 74543.92, + "probability": 0.9541 + }, + { + "start": 74544.92, + "end": 74549.2, + "probability": 0.9928 + }, + { + "start": 74549.48, + "end": 74551.1, + "probability": 0.9923 + }, + { + "start": 74551.22, + "end": 74554.62, + "probability": 0.9872 + }, + { + "start": 74555.0, + "end": 74556.58, + "probability": 0.788 + }, + { + "start": 74558.92, + "end": 74562.0, + "probability": 0.9907 + }, + { + "start": 74562.86, + "end": 74567.3, + "probability": 0.9492 + }, + { + "start": 74568.48, + "end": 74568.7, + "probability": 0.799 + }, + { + "start": 74568.8, + "end": 74571.9, + "probability": 0.8762 + }, + { + "start": 74572.02, + "end": 74573.86, + "probability": 0.9067 + }, + { + "start": 74574.66, + "end": 74577.6, + "probability": 0.7882 + }, + { + "start": 74577.72, + "end": 74582.78, + "probability": 0.9954 + }, + { + "start": 74582.98, + "end": 74585.44, + "probability": 0.9641 + }, + { + "start": 74585.44, + "end": 74589.9, + "probability": 0.9956 + }, + { + "start": 74590.48, + "end": 74595.96, + "probability": 0.9496 + }, + { + "start": 74595.96, + "end": 74600.72, + "probability": 0.9935 + }, + { + "start": 74602.18, + "end": 74604.62, + "probability": 0.9858 + }, + { + "start": 74605.26, + "end": 74606.16, + "probability": 0.9002 + }, + { + "start": 74606.38, + "end": 74611.3, + "probability": 0.9992 + }, + { + "start": 74611.66, + "end": 74614.2, + "probability": 0.9534 + }, + { + "start": 74614.64, + "end": 74616.14, + "probability": 0.9798 + }, + { + "start": 74616.22, + "end": 74620.9, + "probability": 0.998 + }, + { + "start": 74620.96, + "end": 74623.62, + "probability": 0.9991 + }, + { + "start": 74624.24, + "end": 74625.64, + "probability": 0.9759 + }, + { + "start": 74626.12, + "end": 74626.67, + "probability": 0.9241 + }, + { + "start": 74627.4, + "end": 74628.61, + "probability": 0.9766 + }, + { + "start": 74629.22, + "end": 74631.82, + "probability": 0.938 + }, + { + "start": 74633.28, + "end": 74636.4, + "probability": 0.9823 + }, + { + "start": 74637.28, + "end": 74640.06, + "probability": 0.986 + }, + { + "start": 74640.54, + "end": 74642.56, + "probability": 0.9943 + }, + { + "start": 74642.64, + "end": 74643.86, + "probability": 0.9205 + }, + { + "start": 74643.92, + "end": 74644.68, + "probability": 0.8095 + }, + { + "start": 74645.18, + "end": 74647.9, + "probability": 0.9198 + }, + { + "start": 74648.0, + "end": 74650.82, + "probability": 0.9743 + }, + { + "start": 74651.06, + "end": 74654.92, + "probability": 0.8804 + }, + { + "start": 74655.52, + "end": 74659.12, + "probability": 0.9634 + }, + { + "start": 74660.4, + "end": 74663.04, + "probability": 0.8583 + }, + { + "start": 74664.08, + "end": 74664.82, + "probability": 0.7675 + }, + { + "start": 74665.1, + "end": 74666.48, + "probability": 0.9033 + }, + { + "start": 74666.56, + "end": 74669.88, + "probability": 0.9957 + }, + { + "start": 74670.82, + "end": 74676.06, + "probability": 0.9944 + }, + { + "start": 74676.26, + "end": 74677.9, + "probability": 0.9942 + }, + { + "start": 74679.76, + "end": 74685.06, + "probability": 0.9624 + }, + { + "start": 74685.12, + "end": 74686.58, + "probability": 0.8174 + }, + { + "start": 74687.4, + "end": 74689.36, + "probability": 0.9945 + }, + { + "start": 74689.78, + "end": 74690.86, + "probability": 0.9746 + }, + { + "start": 74691.92, + "end": 74693.28, + "probability": 0.9956 + }, + { + "start": 74693.36, + "end": 74695.18, + "probability": 0.9561 + }, + { + "start": 74695.36, + "end": 74697.36, + "probability": 0.9275 + }, + { + "start": 74697.5, + "end": 74699.66, + "probability": 0.9814 + }, + { + "start": 74700.28, + "end": 74705.04, + "probability": 0.9424 + }, + { + "start": 74705.98, + "end": 74709.14, + "probability": 0.9896 + }, + { + "start": 74709.92, + "end": 74711.34, + "probability": 0.9708 + }, + { + "start": 74711.78, + "end": 74713.26, + "probability": 0.9855 + }, + { + "start": 74713.62, + "end": 74715.18, + "probability": 0.9055 + }, + { + "start": 74716.34, + "end": 74717.14, + "probability": 0.4246 + }, + { + "start": 74717.74, + "end": 74720.8, + "probability": 0.6799 + }, + { + "start": 74721.06, + "end": 74721.74, + "probability": 0.8112 + }, + { + "start": 74721.84, + "end": 74722.04, + "probability": 0.8049 + }, + { + "start": 74722.32, + "end": 74722.9, + "probability": 0.7896 + }, + { + "start": 74723.12, + "end": 74724.38, + "probability": 0.3848 + }, + { + "start": 74724.58, + "end": 74725.14, + "probability": 0.0787 + }, + { + "start": 74725.28, + "end": 74726.86, + "probability": 0.9171 + }, + { + "start": 74727.1, + "end": 74727.36, + "probability": 0.4014 + }, + { + "start": 74727.48, + "end": 74730.82, + "probability": 0.2322 + }, + { + "start": 74730.82, + "end": 74733.76, + "probability": 0.8108 + }, + { + "start": 74734.34, + "end": 74735.72, + "probability": 0.9936 + }, + { + "start": 74735.82, + "end": 74737.14, + "probability": 0.8871 + }, + { + "start": 74737.28, + "end": 74738.4, + "probability": 0.9815 + }, + { + "start": 74738.8, + "end": 74740.64, + "probability": 0.8763 + }, + { + "start": 74741.56, + "end": 74742.47, + "probability": 0.964 + }, + { + "start": 74742.66, + "end": 74745.3, + "probability": 0.9951 + }, + { + "start": 74745.94, + "end": 74746.08, + "probability": 0.0811 + }, + { + "start": 74746.08, + "end": 74746.96, + "probability": 0.6463 + }, + { + "start": 74747.02, + "end": 74747.02, + "probability": 0.581 + }, + { + "start": 74747.32, + "end": 74748.18, + "probability": 0.3789 + }, + { + "start": 74748.24, + "end": 74750.44, + "probability": 0.8785 + }, + { + "start": 74750.62, + "end": 74750.72, + "probability": 0.2897 + }, + { + "start": 74751.04, + "end": 74751.36, + "probability": 0.4655 + }, + { + "start": 74751.8, + "end": 74751.88, + "probability": 0.2996 + }, + { + "start": 74751.88, + "end": 74751.98, + "probability": 0.3074 + }, + { + "start": 74752.4, + "end": 74756.14, + "probability": 0.9974 + }, + { + "start": 74756.5, + "end": 74757.34, + "probability": 0.7505 + }, + { + "start": 74757.48, + "end": 74758.18, + "probability": 0.8744 + }, + { + "start": 74758.42, + "end": 74760.16, + "probability": 0.9015 + }, + { + "start": 74761.0, + "end": 74761.96, + "probability": 0.9904 + }, + { + "start": 74762.2, + "end": 74762.76, + "probability": 0.861 + }, + { + "start": 74763.74, + "end": 74766.87, + "probability": 0.7403 + }, + { + "start": 74767.24, + "end": 74770.02, + "probability": 0.4438 + }, + { + "start": 74770.26, + "end": 74773.6, + "probability": 0.9731 + }, + { + "start": 74774.2, + "end": 74777.48, + "probability": 0.7968 + }, + { + "start": 74777.5, + "end": 74778.36, + "probability": 0.7964 + }, + { + "start": 74779.0, + "end": 74780.2, + "probability": 0.876 + }, + { + "start": 74782.84, + "end": 74789.02, + "probability": 0.9934 + }, + { + "start": 74789.86, + "end": 74792.66, + "probability": 0.9928 + }, + { + "start": 74793.3, + "end": 74796.5, + "probability": 0.998 + }, + { + "start": 74797.44, + "end": 74798.2, + "probability": 0.5701 + }, + { + "start": 74798.9, + "end": 74800.06, + "probability": 0.9175 + }, + { + "start": 74800.56, + "end": 74803.14, + "probability": 0.9917 + }, + { + "start": 74803.54, + "end": 74805.64, + "probability": 0.9073 + }, + { + "start": 74805.72, + "end": 74808.34, + "probability": 0.8498 + }, + { + "start": 74808.86, + "end": 74811.4, + "probability": 0.9888 + }, + { + "start": 74811.5, + "end": 74813.4, + "probability": 0.691 + }, + { + "start": 74813.52, + "end": 74814.54, + "probability": 0.7135 + }, + { + "start": 74814.76, + "end": 74815.92, + "probability": 0.8198 + }, + { + "start": 74816.18, + "end": 74820.3, + "probability": 0.9785 + }, + { + "start": 74820.78, + "end": 74822.6, + "probability": 0.9077 + }, + { + "start": 74822.84, + "end": 74823.74, + "probability": 0.5285 + }, + { + "start": 74823.9, + "end": 74824.84, + "probability": 0.5679 + }, + { + "start": 74825.04, + "end": 74827.3, + "probability": 0.9858 + }, + { + "start": 74827.72, + "end": 74830.16, + "probability": 0.9029 + }, + { + "start": 74830.32, + "end": 74831.58, + "probability": 0.9783 + }, + { + "start": 74831.7, + "end": 74833.06, + "probability": 0.864 + }, + { + "start": 74833.44, + "end": 74836.08, + "probability": 0.998 + }, + { + "start": 74836.32, + "end": 74837.46, + "probability": 0.7745 + }, + { + "start": 74837.92, + "end": 74839.18, + "probability": 0.6291 + }, + { + "start": 74839.4, + "end": 74840.39, + "probability": 0.8151 + }, + { + "start": 74840.88, + "end": 74845.42, + "probability": 0.9751 + }, + { + "start": 74845.46, + "end": 74849.6, + "probability": 0.9982 + }, + { + "start": 74851.26, + "end": 74853.26, + "probability": 0.9609 + }, + { + "start": 74853.64, + "end": 74855.03, + "probability": 0.8457 + }, + { + "start": 74856.28, + "end": 74859.54, + "probability": 0.9775 + }, + { + "start": 74860.36, + "end": 74863.46, + "probability": 0.9683 + }, + { + "start": 74863.48, + "end": 74864.78, + "probability": 0.9697 + }, + { + "start": 74864.88, + "end": 74865.34, + "probability": 0.9738 + }, + { + "start": 74866.26, + "end": 74870.34, + "probability": 0.9722 + }, + { + "start": 74871.0, + "end": 74872.25, + "probability": 0.8806 + }, + { + "start": 74873.14, + "end": 74875.64, + "probability": 0.7108 + }, + { + "start": 74875.92, + "end": 74876.8, + "probability": 0.79 + }, + { + "start": 74876.96, + "end": 74878.74, + "probability": 0.7705 + }, + { + "start": 74879.18, + "end": 74882.6, + "probability": 0.9836 + }, + { + "start": 74883.48, + "end": 74883.9, + "probability": 0.9458 + }, + { + "start": 74884.58, + "end": 74885.86, + "probability": 0.9875 + }, + { + "start": 74886.68, + "end": 74887.4, + "probability": 0.7542 + }, + { + "start": 74887.54, + "end": 74891.2, + "probability": 0.5733 + }, + { + "start": 74892.2, + "end": 74892.92, + "probability": 0.8203 + }, + { + "start": 74893.26, + "end": 74894.44, + "probability": 0.9226 + }, + { + "start": 74895.8, + "end": 74900.22, + "probability": 0.9911 + }, + { + "start": 74900.8, + "end": 74905.26, + "probability": 0.998 + }, + { + "start": 74905.84, + "end": 74907.66, + "probability": 0.926 + }, + { + "start": 74908.92, + "end": 74911.3, + "probability": 0.9902 + }, + { + "start": 74912.38, + "end": 74914.18, + "probability": 0.9575 + }, + { + "start": 74914.98, + "end": 74916.33, + "probability": 0.9746 + }, + { + "start": 74917.04, + "end": 74918.4, + "probability": 0.9073 + }, + { + "start": 74918.72, + "end": 74920.24, + "probability": 0.9839 + }, + { + "start": 74920.4, + "end": 74921.66, + "probability": 0.9556 + }, + { + "start": 74921.86, + "end": 74923.76, + "probability": 0.8235 + }, + { + "start": 74924.22, + "end": 74928.5, + "probability": 0.985 + }, + { + "start": 74929.4, + "end": 74932.42, + "probability": 0.9875 + }, + { + "start": 74932.94, + "end": 74939.42, + "probability": 0.9966 + }, + { + "start": 74939.58, + "end": 74940.42, + "probability": 0.6905 + }, + { + "start": 74941.3, + "end": 74944.78, + "probability": 0.9046 + }, + { + "start": 74945.52, + "end": 74946.6, + "probability": 0.899 + }, + { + "start": 74946.7, + "end": 74948.64, + "probability": 0.9196 + }, + { + "start": 74948.78, + "end": 74950.5, + "probability": 0.6907 + }, + { + "start": 74951.52, + "end": 74952.1, + "probability": 0.6076 + }, + { + "start": 74952.86, + "end": 74955.16, + "probability": 0.8359 + }, + { + "start": 74955.68, + "end": 74961.04, + "probability": 0.9937 + }, + { + "start": 74962.28, + "end": 74964.02, + "probability": 0.8953 + }, + { + "start": 74965.59, + "end": 74967.38, + "probability": 0.999 + }, + { + "start": 74968.32, + "end": 74969.64, + "probability": 0.9622 + }, + { + "start": 74970.12, + "end": 74971.8, + "probability": 0.8301 + }, + { + "start": 74972.12, + "end": 74972.88, + "probability": 0.7237 + }, + { + "start": 74973.6, + "end": 74975.58, + "probability": 0.9517 + }, + { + "start": 74976.16, + "end": 74979.14, + "probability": 0.8632 + }, + { + "start": 74980.38, + "end": 74982.64, + "probability": 0.9955 + }, + { + "start": 74983.74, + "end": 74986.74, + "probability": 0.8434 + }, + { + "start": 74986.9, + "end": 74988.0, + "probability": 0.7876 + }, + { + "start": 74988.4, + "end": 74990.43, + "probability": 0.9539 + }, + { + "start": 74991.02, + "end": 74991.78, + "probability": 0.822 + }, + { + "start": 74993.54, + "end": 74996.38, + "probability": 0.9984 + }, + { + "start": 74996.5, + "end": 74998.94, + "probability": 0.9919 + }, + { + "start": 75000.1, + "end": 75004.7, + "probability": 0.995 + }, + { + "start": 75005.72, + "end": 75007.02, + "probability": 0.7598 + }, + { + "start": 75008.84, + "end": 75010.64, + "probability": 0.8498 + }, + { + "start": 75010.95, + "end": 75014.74, + "probability": 0.9951 + }, + { + "start": 75014.74, + "end": 75018.18, + "probability": 0.9986 + }, + { + "start": 75018.88, + "end": 75023.06, + "probability": 0.7624 + }, + { + "start": 75023.18, + "end": 75026.2, + "probability": 0.9958 + }, + { + "start": 75026.38, + "end": 75027.24, + "probability": 0.75 + }, + { + "start": 75027.82, + "end": 75029.72, + "probability": 0.6396 + }, + { + "start": 75029.76, + "end": 75031.24, + "probability": 0.8293 + }, + { + "start": 75031.8, + "end": 75035.54, + "probability": 0.9995 + }, + { + "start": 75035.84, + "end": 75038.32, + "probability": 0.9964 + }, + { + "start": 75038.88, + "end": 75040.99, + "probability": 0.9727 + }, + { + "start": 75041.54, + "end": 75043.42, + "probability": 0.9951 + }, + { + "start": 75043.64, + "end": 75047.23, + "probability": 0.9956 + }, + { + "start": 75047.54, + "end": 75050.56, + "probability": 0.2969 + }, + { + "start": 75050.84, + "end": 75052.78, + "probability": 0.6309 + }, + { + "start": 75055.18, + "end": 75060.3, + "probability": 0.1262 + }, + { + "start": 75062.14, + "end": 75063.62, + "probability": 0.6295 + }, + { + "start": 75065.62, + "end": 75068.98, + "probability": 0.0976 + }, + { + "start": 75069.28, + "end": 75070.9, + "probability": 0.4806 + }, + { + "start": 75071.12, + "end": 75071.94, + "probability": 0.0619 + }, + { + "start": 75073.58, + "end": 75073.58, + "probability": 0.0082 + }, + { + "start": 75074.68, + "end": 75078.34, + "probability": 0.4936 + }, + { + "start": 75078.66, + "end": 75079.82, + "probability": 0.2723 + }, + { + "start": 75081.24, + "end": 75085.22, + "probability": 0.4622 + }, + { + "start": 75085.38, + "end": 75086.62, + "probability": 0.4548 + }, + { + "start": 75086.7, + "end": 75090.5, + "probability": 0.3152 + }, + { + "start": 75090.74, + "end": 75090.84, + "probability": 0.5545 + }, + { + "start": 75092.12, + "end": 75093.26, + "probability": 0.9993 + }, + { + "start": 75093.54, + "end": 75094.92, + "probability": 0.9028 + }, + { + "start": 75095.84, + "end": 75101.44, + "probability": 0.995 + }, + { + "start": 75101.78, + "end": 75104.52, + "probability": 0.9991 + }, + { + "start": 75104.92, + "end": 75107.82, + "probability": 0.967 + }, + { + "start": 75108.74, + "end": 75109.56, + "probability": 0.9165 + }, + { + "start": 75109.62, + "end": 75110.56, + "probability": 0.9103 + }, + { + "start": 75110.76, + "end": 75114.06, + "probability": 0.8502 + }, + { + "start": 75114.68, + "end": 75116.44, + "probability": 0.9914 + }, + { + "start": 75116.5, + "end": 75116.86, + "probability": 0.9261 + }, + { + "start": 75116.94, + "end": 75118.34, + "probability": 0.9668 + }, + { + "start": 75118.44, + "end": 75119.46, + "probability": 0.9248 + }, + { + "start": 75119.86, + "end": 75121.52, + "probability": 0.9944 + }, + { + "start": 75122.86, + "end": 75123.86, + "probability": 0.9665 + }, + { + "start": 75124.02, + "end": 75125.26, + "probability": 0.9593 + }, + { + "start": 75125.74, + "end": 75126.36, + "probability": 0.7398 + }, + { + "start": 75126.44, + "end": 75127.8, + "probability": 0.4748 + }, + { + "start": 75127.96, + "end": 75128.96, + "probability": 0.9556 + }, + { + "start": 75129.77, + "end": 75130.52, + "probability": 0.3638 + }, + { + "start": 75131.44, + "end": 75133.32, + "probability": 0.9946 + }, + { + "start": 75133.44, + "end": 75134.36, + "probability": 0.8278 + }, + { + "start": 75134.5, + "end": 75135.16, + "probability": 0.9611 + }, + { + "start": 75135.54, + "end": 75136.0, + "probability": 0.9445 + }, + { + "start": 75136.08, + "end": 75136.88, + "probability": 0.8875 + }, + { + "start": 75137.32, + "end": 75138.52, + "probability": 0.9634 + }, + { + "start": 75138.74, + "end": 75140.8, + "probability": 0.8252 + }, + { + "start": 75140.96, + "end": 75141.58, + "probability": 0.8186 + }, + { + "start": 75142.68, + "end": 75145.44, + "probability": 0.981 + }, + { + "start": 75146.6, + "end": 75150.0, + "probability": 0.9972 + }, + { + "start": 75150.56, + "end": 75154.08, + "probability": 0.9163 + }, + { + "start": 75154.7, + "end": 75158.54, + "probability": 0.9915 + }, + { + "start": 75159.02, + "end": 75161.68, + "probability": 0.952 + }, + { + "start": 75162.72, + "end": 75164.08, + "probability": 0.9313 + }, + { + "start": 75166.08, + "end": 75166.28, + "probability": 0.7413 + }, + { + "start": 75166.38, + "end": 75167.01, + "probability": 0.7502 + }, + { + "start": 75167.24, + "end": 75168.78, + "probability": 0.9865 + }, + { + "start": 75168.92, + "end": 75175.14, + "probability": 0.9687 + }, + { + "start": 75175.92, + "end": 75181.44, + "probability": 0.9449 + }, + { + "start": 75182.26, + "end": 75185.38, + "probability": 0.8442 + }, + { + "start": 75185.38, + "end": 75188.22, + "probability": 0.9993 + }, + { + "start": 75188.9, + "end": 75189.74, + "probability": 0.8017 + }, + { + "start": 75190.48, + "end": 75192.78, + "probability": 0.855 + }, + { + "start": 75194.52, + "end": 75199.52, + "probability": 0.9874 + }, + { + "start": 75200.14, + "end": 75204.24, + "probability": 0.9861 + }, + { + "start": 75204.86, + "end": 75207.58, + "probability": 0.9783 + }, + { + "start": 75208.18, + "end": 75214.02, + "probability": 0.9951 + }, + { + "start": 75215.3, + "end": 75218.8, + "probability": 0.9932 + }, + { + "start": 75219.9, + "end": 75222.68, + "probability": 0.9997 + }, + { + "start": 75223.74, + "end": 75226.76, + "probability": 0.9418 + }, + { + "start": 75227.22, + "end": 75227.66, + "probability": 0.3837 + }, + { + "start": 75227.76, + "end": 75230.06, + "probability": 0.9944 + }, + { + "start": 75230.74, + "end": 75232.08, + "probability": 0.9794 + }, + { + "start": 75232.56, + "end": 75233.28, + "probability": 0.9204 + }, + { + "start": 75233.78, + "end": 75234.95, + "probability": 0.9824 + }, + { + "start": 75235.18, + "end": 75235.94, + "probability": 0.7833 + }, + { + "start": 75236.2, + "end": 75237.44, + "probability": 0.9535 + }, + { + "start": 75237.62, + "end": 75238.92, + "probability": 0.6782 + }, + { + "start": 75239.58, + "end": 75241.48, + "probability": 0.6955 + }, + { + "start": 75242.1, + "end": 75243.66, + "probability": 0.9046 + }, + { + "start": 75244.54, + "end": 75245.94, + "probability": 0.9848 + }, + { + "start": 75246.72, + "end": 75248.56, + "probability": 0.8372 + }, + { + "start": 75249.02, + "end": 75250.46, + "probability": 0.9971 + }, + { + "start": 75250.56, + "end": 75254.94, + "probability": 0.9901 + }, + { + "start": 75254.94, + "end": 75257.96, + "probability": 0.9917 + }, + { + "start": 75257.96, + "end": 75262.68, + "probability": 0.9954 + }, + { + "start": 75262.98, + "end": 75264.42, + "probability": 0.9226 + }, + { + "start": 75265.76, + "end": 75268.88, + "probability": 0.9111 + }, + { + "start": 75269.66, + "end": 75271.18, + "probability": 0.9888 + }, + { + "start": 75271.82, + "end": 75276.54, + "probability": 0.9893 + }, + { + "start": 75277.38, + "end": 75280.18, + "probability": 0.9762 + }, + { + "start": 75280.86, + "end": 75282.6, + "probability": 0.6214 + }, + { + "start": 75283.28, + "end": 75286.32, + "probability": 0.9371 + }, + { + "start": 75287.2, + "end": 75288.14, + "probability": 0.7942 + }, + { + "start": 75288.28, + "end": 75289.68, + "probability": 0.8509 + }, + { + "start": 75289.84, + "end": 75290.44, + "probability": 0.8073 + }, + { + "start": 75290.56, + "end": 75291.06, + "probability": 0.9085 + }, + { + "start": 75291.14, + "end": 75292.68, + "probability": 0.9825 + }, + { + "start": 75292.7, + "end": 75294.04, + "probability": 0.9911 + }, + { + "start": 75294.54, + "end": 75295.8, + "probability": 0.9746 + }, + { + "start": 75295.9, + "end": 75299.62, + "probability": 0.9923 + }, + { + "start": 75300.58, + "end": 75302.46, + "probability": 0.915 + }, + { + "start": 75303.08, + "end": 75305.52, + "probability": 0.9905 + }, + { + "start": 75305.96, + "end": 75306.84, + "probability": 0.9803 + }, + { + "start": 75307.36, + "end": 75310.86, + "probability": 0.65 + }, + { + "start": 75311.06, + "end": 75312.12, + "probability": 0.7017 + }, + { + "start": 75312.34, + "end": 75316.46, + "probability": 0.9719 + }, + { + "start": 75316.98, + "end": 75320.1, + "probability": 0.9698 + }, + { + "start": 75320.74, + "end": 75321.62, + "probability": 0.584 + }, + { + "start": 75321.9, + "end": 75323.22, + "probability": 0.7184 + }, + { + "start": 75323.52, + "end": 75329.2, + "probability": 0.9579 + }, + { + "start": 75329.74, + "end": 75331.16, + "probability": 0.9644 + }, + { + "start": 75331.94, + "end": 75334.28, + "probability": 0.7488 + }, + { + "start": 75334.36, + "end": 75335.78, + "probability": 0.9961 + }, + { + "start": 75340.06, + "end": 75341.34, + "probability": 0.9912 + }, + { + "start": 75342.18, + "end": 75342.8, + "probability": 0.9526 + }, + { + "start": 75343.02, + "end": 75343.68, + "probability": 0.9864 + }, + { + "start": 75343.78, + "end": 75344.36, + "probability": 0.8072 + }, + { + "start": 75344.54, + "end": 75345.1, + "probability": 0.9026 + }, + { + "start": 75345.46, + "end": 75349.68, + "probability": 0.9543 + }, + { + "start": 75349.96, + "end": 75352.02, + "probability": 0.9287 + }, + { + "start": 75353.34, + "end": 75354.58, + "probability": 0.9326 + }, + { + "start": 75355.12, + "end": 75357.74, + "probability": 0.8427 + }, + { + "start": 75358.36, + "end": 75361.26, + "probability": 0.9487 + }, + { + "start": 75361.54, + "end": 75364.7, + "probability": 0.991 + }, + { + "start": 75365.84, + "end": 75366.6, + "probability": 0.6739 + }, + { + "start": 75366.6, + "end": 75367.74, + "probability": 0.6648 + }, + { + "start": 75367.94, + "end": 75372.46, + "probability": 0.7356 + }, + { + "start": 75372.56, + "end": 75373.9, + "probability": 0.8567 + }, + { + "start": 75374.38, + "end": 75376.06, + "probability": 0.9951 + }, + { + "start": 75376.62, + "end": 75377.4, + "probability": 0.8348 + }, + { + "start": 75377.4, + "end": 75378.44, + "probability": 0.9795 + }, + { + "start": 75378.86, + "end": 75381.86, + "probability": 0.8145 + }, + { + "start": 75381.86, + "end": 75384.4, + "probability": 0.9988 + }, + { + "start": 75385.02, + "end": 75388.78, + "probability": 0.9666 + }, + { + "start": 75388.94, + "end": 75391.66, + "probability": 0.9972 + }, + { + "start": 75392.3, + "end": 75394.8, + "probability": 0.9793 + }, + { + "start": 75395.34, + "end": 75398.9, + "probability": 0.7026 + }, + { + "start": 75399.7, + "end": 75403.12, + "probability": 0.9928 + }, + { + "start": 75403.3, + "end": 75406.2, + "probability": 0.9646 + }, + { + "start": 75406.7, + "end": 75411.18, + "probability": 0.9946 + }, + { + "start": 75411.86, + "end": 75413.06, + "probability": 0.9181 + }, + { + "start": 75414.68, + "end": 75418.26, + "probability": 0.759 + }, + { + "start": 75418.86, + "end": 75419.94, + "probability": 0.8779 + }, + { + "start": 75420.64, + "end": 75424.18, + "probability": 0.969 + }, + { + "start": 75425.24, + "end": 75425.56, + "probability": 0.5408 + }, + { + "start": 75425.7, + "end": 75428.94, + "probability": 0.9058 + }, + { + "start": 75429.44, + "end": 75430.16, + "probability": 0.9908 + }, + { + "start": 75431.08, + "end": 75437.25, + "probability": 0.9883 + }, + { + "start": 75437.8, + "end": 75439.66, + "probability": 0.8854 + }, + { + "start": 75439.92, + "end": 75441.88, + "probability": 0.9741 + }, + { + "start": 75442.46, + "end": 75444.62, + "probability": 0.8119 + }, + { + "start": 75444.82, + "end": 75447.32, + "probability": 0.9896 + }, + { + "start": 75447.4, + "end": 75450.36, + "probability": 0.9705 + }, + { + "start": 75450.52, + "end": 75453.1, + "probability": 0.9928 + }, + { + "start": 75453.1, + "end": 75455.66, + "probability": 0.9954 + }, + { + "start": 75456.16, + "end": 75456.52, + "probability": 0.6577 + }, + { + "start": 75456.96, + "end": 75459.0, + "probability": 0.8708 + }, + { + "start": 75459.18, + "end": 75460.48, + "probability": 0.8964 + }, + { + "start": 75460.78, + "end": 75461.26, + "probability": 0.7929 + }, + { + "start": 75461.74, + "end": 75463.36, + "probability": 0.9781 + }, + { + "start": 75463.54, + "end": 75465.08, + "probability": 0.9958 + }, + { + "start": 75465.52, + "end": 75467.66, + "probability": 0.9885 + }, + { + "start": 75468.04, + "end": 75470.58, + "probability": 0.9387 + }, + { + "start": 75471.08, + "end": 75473.64, + "probability": 0.9924 + }, + { + "start": 75474.1, + "end": 75475.74, + "probability": 0.9982 + }, + { + "start": 75476.26, + "end": 75480.12, + "probability": 0.9055 + }, + { + "start": 75480.4, + "end": 75483.14, + "probability": 0.9945 + }, + { + "start": 75483.7, + "end": 75485.28, + "probability": 0.626 + }, + { + "start": 75485.64, + "end": 75486.74, + "probability": 0.6995 + }, + { + "start": 75486.86, + "end": 75487.66, + "probability": 0.9267 + }, + { + "start": 75487.74, + "end": 75488.14, + "probability": 0.8099 + }, + { + "start": 75488.24, + "end": 75490.06, + "probability": 0.9581 + }, + { + "start": 75490.34, + "end": 75491.54, + "probability": 0.5934 + }, + { + "start": 75491.62, + "end": 75492.2, + "probability": 0.8441 + }, + { + "start": 75492.72, + "end": 75494.58, + "probability": 0.9159 + }, + { + "start": 75494.68, + "end": 75495.45, + "probability": 0.7792 + }, + { + "start": 75495.74, + "end": 75497.04, + "probability": 0.4873 + }, + { + "start": 75497.04, + "end": 75500.78, + "probability": 0.9301 + }, + { + "start": 75501.0, + "end": 75503.24, + "probability": 0.5771 + }, + { + "start": 75503.8, + "end": 75505.42, + "probability": 0.9968 + }, + { + "start": 75505.72, + "end": 75508.68, + "probability": 0.685 + }, + { + "start": 75509.4, + "end": 75511.56, + "probability": 0.7037 + }, + { + "start": 75512.12, + "end": 75512.74, + "probability": 0.7707 + }, + { + "start": 75513.84, + "end": 75516.3, + "probability": 0.5001 + }, + { + "start": 75516.6, + "end": 75517.7, + "probability": 0.7581 + }, + { + "start": 75517.76, + "end": 75518.4, + "probability": 0.7046 + }, + { + "start": 75518.52, + "end": 75518.72, + "probability": 0.8035 + }, + { + "start": 75519.0, + "end": 75519.84, + "probability": 0.9912 + }, + { + "start": 75520.06, + "end": 75521.12, + "probability": 0.9137 + }, + { + "start": 75521.26, + "end": 75522.18, + "probability": 0.9502 + }, + { + "start": 75522.7, + "end": 75523.12, + "probability": 0.5526 + }, + { + "start": 75523.48, + "end": 75524.0, + "probability": 0.538 + }, + { + "start": 75524.66, + "end": 75526.96, + "probability": 0.9935 + }, + { + "start": 75527.04, + "end": 75527.92, + "probability": 0.7673 + }, + { + "start": 75528.08, + "end": 75530.44, + "probability": 0.6629 + }, + { + "start": 75531.02, + "end": 75534.74, + "probability": 0.9733 + }, + { + "start": 75535.3, + "end": 75535.88, + "probability": 0.9897 + }, + { + "start": 75536.46, + "end": 75536.84, + "probability": 0.8261 + }, + { + "start": 75537.08, + "end": 75539.14, + "probability": 0.8364 + }, + { + "start": 75540.12, + "end": 75540.92, + "probability": 0.486 + }, + { + "start": 75540.94, + "end": 75542.0, + "probability": 0.6819 + }, + { + "start": 75542.14, + "end": 75542.98, + "probability": 0.5303 + }, + { + "start": 75542.98, + "end": 75543.9, + "probability": 0.7155 + }, + { + "start": 75545.34, + "end": 75549.12, + "probability": 0.7956 + }, + { + "start": 75549.26, + "end": 75551.04, + "probability": 0.6972 + }, + { + "start": 75551.16, + "end": 75552.49, + "probability": 0.8743 + }, + { + "start": 75553.42, + "end": 75555.5, + "probability": 0.7238 + }, + { + "start": 75555.58, + "end": 75557.5, + "probability": 0.6654 + }, + { + "start": 75557.66, + "end": 75558.64, + "probability": 0.633 + }, + { + "start": 75559.0, + "end": 75559.22, + "probability": 0.72 + }, + { + "start": 75559.68, + "end": 75560.36, + "probability": 0.9263 + }, + { + "start": 75560.56, + "end": 75562.83, + "probability": 0.9935 + }, + { + "start": 75563.54, + "end": 75564.14, + "probability": 0.9554 + }, + { + "start": 75564.7, + "end": 75565.74, + "probability": 0.9387 + }, + { + "start": 75566.08, + "end": 75568.6, + "probability": 0.9454 + }, + { + "start": 75569.84, + "end": 75572.22, + "probability": 0.99 + }, + { + "start": 75573.08, + "end": 75575.36, + "probability": 0.892 + }, + { + "start": 75575.4, + "end": 75583.72, + "probability": 0.962 + }, + { + "start": 75584.46, + "end": 75585.18, + "probability": 0.7445 + }, + { + "start": 75585.58, + "end": 75586.18, + "probability": 0.7344 + }, + { + "start": 75586.96, + "end": 75588.6, + "probability": 0.9729 + }, + { + "start": 75589.02, + "end": 75591.58, + "probability": 0.9971 + }, + { + "start": 75592.26, + "end": 75592.7, + "probability": 0.8151 + }, + { + "start": 75592.84, + "end": 75594.28, + "probability": 0.8038 + }, + { + "start": 75594.38, + "end": 75595.38, + "probability": 0.9752 + }, + { + "start": 75595.86, + "end": 75597.66, + "probability": 0.9141 + }, + { + "start": 75600.33, + "end": 75602.5, + "probability": 0.6423 + }, + { + "start": 75623.4, + "end": 75625.5, + "probability": 0.6622 + }, + { + "start": 75629.46, + "end": 75631.44, + "probability": 0.5767 + }, + { + "start": 75632.8, + "end": 75632.8, + "probability": 0.1884 + }, + { + "start": 75632.8, + "end": 75633.36, + "probability": 0.6532 + }, + { + "start": 75633.98, + "end": 75635.1, + "probability": 0.8357 + }, + { + "start": 75635.18, + "end": 75641.56, + "probability": 0.9418 + }, + { + "start": 75643.36, + "end": 75644.28, + "probability": 0.5644 + }, + { + "start": 75646.3, + "end": 75646.3, + "probability": 0.053 + }, + { + "start": 75646.3, + "end": 75647.24, + "probability": 0.5808 + }, + { + "start": 75649.38, + "end": 75649.72, + "probability": 0.6159 + }, + { + "start": 75650.96, + "end": 75652.29, + "probability": 0.9683 + }, + { + "start": 75652.42, + "end": 75652.82, + "probability": 0.9385 + }, + { + "start": 75652.9, + "end": 75653.12, + "probability": 0.3988 + }, + { + "start": 75653.26, + "end": 75653.62, + "probability": 0.5709 + }, + { + "start": 75653.64, + "end": 75654.22, + "probability": 0.1782 + }, + { + "start": 75655.16, + "end": 75657.5, + "probability": 0.934 + }, + { + "start": 75658.3, + "end": 75661.86, + "probability": 0.9881 + }, + { + "start": 75663.22, + "end": 75666.96, + "probability": 0.8402 + }, + { + "start": 75667.94, + "end": 75668.32, + "probability": 0.8789 + }, + { + "start": 75668.86, + "end": 75671.64, + "probability": 0.9846 + }, + { + "start": 75673.56, + "end": 75681.5, + "probability": 0.9546 + }, + { + "start": 75682.16, + "end": 75684.04, + "probability": 0.9114 + }, + { + "start": 75686.12, + "end": 75687.58, + "probability": 0.998 + }, + { + "start": 75689.38, + "end": 75690.42, + "probability": 0.6596 + }, + { + "start": 75693.16, + "end": 75694.66, + "probability": 0.895 + }, + { + "start": 75695.34, + "end": 75698.74, + "probability": 0.812 + }, + { + "start": 75701.52, + "end": 75702.24, + "probability": 0.9368 + }, + { + "start": 75703.14, + "end": 75708.04, + "probability": 0.9062 + }, + { + "start": 75709.34, + "end": 75711.68, + "probability": 0.9925 + }, + { + "start": 75713.02, + "end": 75714.3, + "probability": 0.9984 + }, + { + "start": 75715.14, + "end": 75717.06, + "probability": 0.9968 + }, + { + "start": 75717.8, + "end": 75722.58, + "probability": 0.997 + }, + { + "start": 75723.14, + "end": 75724.24, + "probability": 0.5087 + }, + { + "start": 75724.96, + "end": 75727.28, + "probability": 0.9954 + }, + { + "start": 75729.44, + "end": 75731.0, + "probability": 0.9387 + }, + { + "start": 75731.28, + "end": 75734.76, + "probability": 0.9725 + }, + { + "start": 75735.82, + "end": 75739.16, + "probability": 0.9961 + }, + { + "start": 75739.5, + "end": 75741.64, + "probability": 0.9925 + }, + { + "start": 75742.88, + "end": 75746.02, + "probability": 0.9949 + }, + { + "start": 75747.88, + "end": 75751.06, + "probability": 0.8149 + }, + { + "start": 75752.2, + "end": 75754.88, + "probability": 0.6584 + }, + { + "start": 75756.29, + "end": 75759.24, + "probability": 0.5077 + }, + { + "start": 75760.9, + "end": 75761.48, + "probability": 0.6567 + }, + { + "start": 75762.22, + "end": 75766.48, + "probability": 0.9312 + }, + { + "start": 75766.68, + "end": 75768.98, + "probability": 0.9072 + }, + { + "start": 75769.32, + "end": 75771.5, + "probability": 0.7814 + }, + { + "start": 75772.68, + "end": 75775.24, + "probability": 0.8695 + }, + { + "start": 75775.86, + "end": 75778.34, + "probability": 0.8353 + }, + { + "start": 75779.24, + "end": 75780.12, + "probability": 0.881 + }, + { + "start": 75781.12, + "end": 75783.66, + "probability": 0.7695 + }, + { + "start": 75784.82, + "end": 75785.06, + "probability": 0.515 + }, + { + "start": 75785.28, + "end": 75790.74, + "probability": 0.9059 + }, + { + "start": 75791.42, + "end": 75793.32, + "probability": 0.9903 + }, + { + "start": 75796.26, + "end": 75800.58, + "probability": 0.9728 + }, + { + "start": 75801.88, + "end": 75805.61, + "probability": 0.9219 + }, + { + "start": 75806.7, + "end": 75807.94, + "probability": 0.9205 + }, + { + "start": 75808.66, + "end": 75810.42, + "probability": 0.9897 + }, + { + "start": 75812.0, + "end": 75814.72, + "probability": 0.4905 + }, + { + "start": 75815.16, + "end": 75816.1, + "probability": 0.801 + }, + { + "start": 75817.78, + "end": 75820.0, + "probability": 0.7179 + }, + { + "start": 75820.0, + "end": 75822.2, + "probability": 0.3867 + }, + { + "start": 75823.04, + "end": 75824.1, + "probability": 0.2026 + }, + { + "start": 75824.46, + "end": 75827.68, + "probability": 0.99 + }, + { + "start": 75828.28, + "end": 75829.4, + "probability": 0.9912 + }, + { + "start": 75829.86, + "end": 75831.62, + "probability": 0.005 + }, + { + "start": 75833.16, + "end": 75833.86, + "probability": 0.0268 + }, + { + "start": 75833.86, + "end": 75836.66, + "probability": 0.875 + }, + { + "start": 75837.9, + "end": 75839.64, + "probability": 0.9902 + }, + { + "start": 75840.52, + "end": 75841.12, + "probability": 0.74 + }, + { + "start": 75841.74, + "end": 75842.36, + "probability": 0.7797 + }, + { + "start": 75842.6, + "end": 75843.6, + "probability": 0.5499 + }, + { + "start": 75843.76, + "end": 75847.94, + "probability": 0.8782 + }, + { + "start": 75848.58, + "end": 75850.98, + "probability": 0.9911 + }, + { + "start": 75851.04, + "end": 75851.8, + "probability": 0.9502 + }, + { + "start": 75852.38, + "end": 75853.46, + "probability": 0.9502 + }, + { + "start": 75855.96, + "end": 75858.88, + "probability": 0.9954 + }, + { + "start": 75860.5, + "end": 75866.0, + "probability": 0.9131 + }, + { + "start": 75866.74, + "end": 75869.32, + "probability": 0.871 + }, + { + "start": 75871.97, + "end": 75873.84, + "probability": 0.5193 + }, + { + "start": 75875.76, + "end": 75876.14, + "probability": 0.483 + }, + { + "start": 75876.2, + "end": 75880.26, + "probability": 0.9961 + }, + { + "start": 75880.3, + "end": 75885.94, + "probability": 0.9192 + }, + { + "start": 75886.38, + "end": 75890.5, + "probability": 0.901 + }, + { + "start": 75891.42, + "end": 75895.24, + "probability": 0.8447 + }, + { + "start": 75897.48, + "end": 75900.0, + "probability": 0.9117 + }, + { + "start": 75901.2, + "end": 75901.88, + "probability": 0.7037 + }, + { + "start": 75904.36, + "end": 75907.14, + "probability": 0.7881 + }, + { + "start": 75908.92, + "end": 75910.08, + "probability": 0.9533 + }, + { + "start": 75912.44, + "end": 75914.78, + "probability": 0.9792 + }, + { + "start": 75915.54, + "end": 75918.88, + "probability": 0.9954 + }, + { + "start": 75922.3, + "end": 75922.92, + "probability": 0.8123 + }, + { + "start": 75923.72, + "end": 75924.66, + "probability": 0.5015 + }, + { + "start": 75926.56, + "end": 75926.74, + "probability": 0.1147 + }, + { + "start": 75926.74, + "end": 75928.74, + "probability": 0.9922 + }, + { + "start": 75930.3, + "end": 75931.18, + "probability": 0.9917 + }, + { + "start": 75934.7, + "end": 75935.2, + "probability": 0.9792 + }, + { + "start": 75936.88, + "end": 75941.12, + "probability": 0.9648 + }, + { + "start": 75947.34, + "end": 75948.22, + "probability": 0.5461 + }, + { + "start": 75948.54, + "end": 75949.58, + "probability": 0.8081 + }, + { + "start": 75950.3, + "end": 75951.38, + "probability": 0.9875 + }, + { + "start": 75952.18, + "end": 75955.22, + "probability": 0.9854 + }, + { + "start": 75955.76, + "end": 75956.36, + "probability": 0.8413 + }, + { + "start": 75963.24, + "end": 75963.46, + "probability": 0.462 + }, + { + "start": 75963.52, + "end": 75967.54, + "probability": 0.5385 + }, + { + "start": 75967.68, + "end": 75968.6, + "probability": 0.973 + }, + { + "start": 75970.98, + "end": 75971.78, + "probability": 0.7513 + }, + { + "start": 75973.56, + "end": 75976.46, + "probability": 0.0774 + }, + { + "start": 75977.42, + "end": 75978.42, + "probability": 0.5917 + }, + { + "start": 75979.2, + "end": 75981.62, + "probability": 0.8643 + }, + { + "start": 75982.04, + "end": 75984.22, + "probability": 0.8743 + }, + { + "start": 75984.32, + "end": 75987.7, + "probability": 0.9822 + }, + { + "start": 75988.74, + "end": 75989.12, + "probability": 0.9009 + }, + { + "start": 75993.2, + "end": 75994.28, + "probability": 0.9771 + }, + { + "start": 75996.24, + "end": 75996.8, + "probability": 0.0059 + }, + { + "start": 75998.72, + "end": 76001.06, + "probability": 0.7247 + }, + { + "start": 76002.26, + "end": 76003.24, + "probability": 0.9031 + }, + { + "start": 76005.22, + "end": 76008.72, + "probability": 0.8263 + }, + { + "start": 76010.04, + "end": 76011.5, + "probability": 0.9613 + }, + { + "start": 76012.22, + "end": 76016.8, + "probability": 0.9766 + }, + { + "start": 76017.34, + "end": 76018.36, + "probability": 0.9717 + }, + { + "start": 76018.88, + "end": 76020.12, + "probability": 0.9294 + }, + { + "start": 76022.16, + "end": 76025.21, + "probability": 0.8773 + }, + { + "start": 76026.32, + "end": 76028.82, + "probability": 0.9962 + }, + { + "start": 76029.36, + "end": 76030.58, + "probability": 0.9739 + }, + { + "start": 76031.92, + "end": 76032.1, + "probability": 0.6563 + }, + { + "start": 76036.0, + "end": 76037.94, + "probability": 0.9987 + }, + { + "start": 76040.58, + "end": 76042.56, + "probability": 0.9826 + }, + { + "start": 76044.42, + "end": 76045.55, + "probability": 0.8043 + }, + { + "start": 76047.22, + "end": 76050.0, + "probability": 0.999 + }, + { + "start": 76051.66, + "end": 76052.52, + "probability": 0.9949 + }, + { + "start": 76053.66, + "end": 76055.36, + "probability": 0.9854 + }, + { + "start": 76056.66, + "end": 76056.92, + "probability": 0.6771 + }, + { + "start": 76057.66, + "end": 76059.02, + "probability": 0.9959 + }, + { + "start": 76062.34, + "end": 76065.26, + "probability": 0.998 + }, + { + "start": 76067.08, + "end": 76069.44, + "probability": 0.725 + }, + { + "start": 76070.46, + "end": 76071.08, + "probability": 0.8614 + }, + { + "start": 76074.54, + "end": 76078.36, + "probability": 0.9924 + }, + { + "start": 76080.2, + "end": 76083.72, + "probability": 0.9904 + }, + { + "start": 76086.38, + "end": 76086.84, + "probability": 0.4777 + }, + { + "start": 76089.34, + "end": 76089.9, + "probability": 0.283 + }, + { + "start": 76090.94, + "end": 76091.86, + "probability": 0.0993 + }, + { + "start": 76092.06, + "end": 76092.46, + "probability": 0.007 + }, + { + "start": 76092.95, + "end": 76094.98, + "probability": 0.3284 + }, + { + "start": 76096.78, + "end": 76097.52, + "probability": 0.0566 + }, + { + "start": 76102.6, + "end": 76107.2, + "probability": 0.9255 + }, + { + "start": 76109.48, + "end": 76113.22, + "probability": 0.9966 + }, + { + "start": 76114.4, + "end": 76115.24, + "probability": 0.9374 + }, + { + "start": 76116.42, + "end": 76117.9, + "probability": 0.9506 + }, + { + "start": 76118.5, + "end": 76120.35, + "probability": 0.8935 + }, + { + "start": 76122.58, + "end": 76124.62, + "probability": 0.8735 + }, + { + "start": 76126.86, + "end": 76128.42, + "probability": 0.4569 + }, + { + "start": 76129.16, + "end": 76131.58, + "probability": 0.9669 + }, + { + "start": 76134.14, + "end": 76135.2, + "probability": 0.9351 + }, + { + "start": 76136.34, + "end": 76139.08, + "probability": 0.9969 + }, + { + "start": 76140.42, + "end": 76141.62, + "probability": 0.9816 + }, + { + "start": 76143.04, + "end": 76144.34, + "probability": 0.9538 + }, + { + "start": 76145.24, + "end": 76146.24, + "probability": 0.9378 + }, + { + "start": 76147.94, + "end": 76151.44, + "probability": 0.9985 + }, + { + "start": 76157.22, + "end": 76161.12, + "probability": 0.9674 + }, + { + "start": 76161.32, + "end": 76163.7, + "probability": 0.9925 + }, + { + "start": 76165.82, + "end": 76168.18, + "probability": 0.6763 + }, + { + "start": 76168.58, + "end": 76170.14, + "probability": 0.7334 + }, + { + "start": 76171.22, + "end": 76172.16, + "probability": 0.8066 + }, + { + "start": 76172.54, + "end": 76175.84, + "probability": 0.991 + }, + { + "start": 76177.06, + "end": 76183.5, + "probability": 0.9121 + }, + { + "start": 76184.12, + "end": 76188.44, + "probability": 0.9459 + }, + { + "start": 76189.14, + "end": 76189.82, + "probability": 0.9717 + }, + { + "start": 76191.3, + "end": 76193.08, + "probability": 0.9712 + }, + { + "start": 76194.84, + "end": 76195.38, + "probability": 0.5706 + }, + { + "start": 76196.46, + "end": 76197.16, + "probability": 0.6515 + }, + { + "start": 76197.46, + "end": 76199.82, + "probability": 0.9077 + }, + { + "start": 76201.54, + "end": 76202.82, + "probability": 0.8124 + }, + { + "start": 76205.32, + "end": 76206.66, + "probability": 0.9242 + }, + { + "start": 76208.56, + "end": 76209.94, + "probability": 0.8961 + }, + { + "start": 76212.2, + "end": 76213.76, + "probability": 0.8073 + }, + { + "start": 76215.34, + "end": 76217.02, + "probability": 0.9931 + }, + { + "start": 76218.46, + "end": 76220.14, + "probability": 0.9741 + }, + { + "start": 76221.34, + "end": 76223.1, + "probability": 0.8859 + }, + { + "start": 76225.04, + "end": 76228.16, + "probability": 0.821 + }, + { + "start": 76230.82, + "end": 76238.46, + "probability": 0.9454 + }, + { + "start": 76238.6, + "end": 76239.44, + "probability": 0.4228 + }, + { + "start": 76239.52, + "end": 76240.86, + "probability": 0.6461 + }, + { + "start": 76241.42, + "end": 76242.38, + "probability": 0.8633 + }, + { + "start": 76244.78, + "end": 76246.18, + "probability": 0.2476 + }, + { + "start": 76248.22, + "end": 76253.34, + "probability": 0.9891 + }, + { + "start": 76253.34, + "end": 76258.96, + "probability": 0.7333 + }, + { + "start": 76259.92, + "end": 76261.54, + "probability": 0.7502 + }, + { + "start": 76262.3, + "end": 76267.93, + "probability": 0.946 + }, + { + "start": 76268.0, + "end": 76272.24, + "probability": 0.9932 + }, + { + "start": 76273.46, + "end": 76274.3, + "probability": 0.8078 + }, + { + "start": 76276.02, + "end": 76277.04, + "probability": 0.6475 + }, + { + "start": 76279.97, + "end": 76282.46, + "probability": 0.9902 + }, + { + "start": 76286.64, + "end": 76288.6, + "probability": 0.9417 + }, + { + "start": 76290.36, + "end": 76292.32, + "probability": 0.969 + }, + { + "start": 76293.0, + "end": 76294.71, + "probability": 0.9536 + }, + { + "start": 76295.9, + "end": 76299.76, + "probability": 0.9637 + }, + { + "start": 76301.4, + "end": 76304.32, + "probability": 0.9741 + }, + { + "start": 76304.32, + "end": 76308.54, + "probability": 0.8891 + }, + { + "start": 76312.12, + "end": 76317.2, + "probability": 0.9564 + }, + { + "start": 76317.36, + "end": 76317.94, + "probability": 0.515 + }, + { + "start": 76320.46, + "end": 76326.82, + "probability": 0.9644 + }, + { + "start": 76329.3, + "end": 76330.0, + "probability": 0.352 + }, + { + "start": 76331.04, + "end": 76332.1, + "probability": 0.9205 + }, + { + "start": 76333.9, + "end": 76334.02, + "probability": 0.8657 + }, + { + "start": 76336.26, + "end": 76337.08, + "probability": 0.7996 + }, + { + "start": 76341.36, + "end": 76341.62, + "probability": 0.0468 + }, + { + "start": 76345.68, + "end": 76347.28, + "probability": 0.7972 + }, + { + "start": 76349.12, + "end": 76353.11, + "probability": 0.8745 + }, + { + "start": 76354.74, + "end": 76357.64, + "probability": 0.3966 + }, + { + "start": 76359.06, + "end": 76359.85, + "probability": 0.5874 + }, + { + "start": 76361.86, + "end": 76363.29, + "probability": 0.4761 + }, + { + "start": 76363.52, + "end": 76364.82, + "probability": 0.9247 + }, + { + "start": 76364.9, + "end": 76365.8, + "probability": 0.9423 + }, + { + "start": 76365.9, + "end": 76366.69, + "probability": 0.9604 + }, + { + "start": 76369.56, + "end": 76371.6, + "probability": 0.903 + }, + { + "start": 76372.8, + "end": 76373.7, + "probability": 0.9628 + }, + { + "start": 76377.44, + "end": 76379.34, + "probability": 0.7674 + }, + { + "start": 76379.92, + "end": 76381.12, + "probability": 0.9419 + }, + { + "start": 76381.82, + "end": 76383.0, + "probability": 0.6156 + }, + { + "start": 76383.52, + "end": 76384.18, + "probability": 0.9756 + }, + { + "start": 76388.76, + "end": 76390.16, + "probability": 0.8191 + }, + { + "start": 76393.44, + "end": 76394.18, + "probability": 0.5762 + }, + { + "start": 76396.06, + "end": 76397.6, + "probability": 0.9458 + }, + { + "start": 76397.88, + "end": 76398.7, + "probability": 0.8302 + }, + { + "start": 76400.2, + "end": 76401.18, + "probability": 0.8383 + }, + { + "start": 76402.5, + "end": 76403.9, + "probability": 0.9871 + }, + { + "start": 76407.64, + "end": 76410.06, + "probability": 0.5077 + }, + { + "start": 76411.94, + "end": 76413.56, + "probability": 0.9979 + }, + { + "start": 76415.12, + "end": 76415.42, + "probability": 0.907 + }, + { + "start": 76416.36, + "end": 76418.56, + "probability": 0.8905 + }, + { + "start": 76419.54, + "end": 76421.09, + "probability": 0.6119 + }, + { + "start": 76422.96, + "end": 76426.7, + "probability": 0.324 + }, + { + "start": 76429.7, + "end": 76431.9, + "probability": 0.7094 + }, + { + "start": 76433.12, + "end": 76433.68, + "probability": 0.7087 + }, + { + "start": 76434.32, + "end": 76434.98, + "probability": 0.8684 + }, + { + "start": 76437.76, + "end": 76439.44, + "probability": 0.9842 + }, + { + "start": 76440.44, + "end": 76442.28, + "probability": 0.9988 + }, + { + "start": 76443.42, + "end": 76444.46, + "probability": 0.8509 + }, + { + "start": 76445.96, + "end": 76446.24, + "probability": 0.981 + }, + { + "start": 76447.08, + "end": 76449.1, + "probability": 0.9977 + }, + { + "start": 76450.16, + "end": 76452.26, + "probability": 0.897 + }, + { + "start": 76455.42, + "end": 76455.98, + "probability": 0.4843 + }, + { + "start": 76456.98, + "end": 76459.02, + "probability": 0.7454 + }, + { + "start": 76459.96, + "end": 76461.92, + "probability": 0.9639 + }, + { + "start": 76463.78, + "end": 76464.92, + "probability": 0.9871 + }, + { + "start": 76465.98, + "end": 76470.0, + "probability": 0.6673 + }, + { + "start": 76471.88, + "end": 76473.7, + "probability": 0.9775 + }, + { + "start": 76476.68, + "end": 76481.84, + "probability": 0.9562 + }, + { + "start": 76483.36, + "end": 76483.58, + "probability": 0.0003 + }, + { + "start": 76485.82, + "end": 76486.4, + "probability": 0.3941 + }, + { + "start": 76487.14, + "end": 76488.38, + "probability": 0.7925 + }, + { + "start": 76490.64, + "end": 76492.52, + "probability": 0.8932 + }, + { + "start": 76493.2, + "end": 76494.48, + "probability": 0.998 + }, + { + "start": 76497.94, + "end": 76500.06, + "probability": 0.9673 + }, + { + "start": 76502.3, + "end": 76503.66, + "probability": 0.9318 + }, + { + "start": 76505.48, + "end": 76507.9, + "probability": 0.9784 + }, + { + "start": 76510.12, + "end": 76511.9, + "probability": 0.7818 + }, + { + "start": 76513.58, + "end": 76514.64, + "probability": 0.9812 + }, + { + "start": 76515.44, + "end": 76521.88, + "probability": 0.7195 + }, + { + "start": 76522.72, + "end": 76524.52, + "probability": 0.5721 + }, + { + "start": 76524.72, + "end": 76524.84, + "probability": 0.3095 + }, + { + "start": 76524.92, + "end": 76524.92, + "probability": 0.4509 + }, + { + "start": 76528.68, + "end": 76530.0, + "probability": 0.6254 + }, + { + "start": 76534.54, + "end": 76535.13, + "probability": 0.3145 + }, + { + "start": 76535.32, + "end": 76536.56, + "probability": 0.9686 + }, + { + "start": 76537.42, + "end": 76541.35, + "probability": 0.9609 + }, + { + "start": 76542.58, + "end": 76543.26, + "probability": 0.8379 + }, + { + "start": 76547.88, + "end": 76548.94, + "probability": 0.6217 + }, + { + "start": 76550.44, + "end": 76552.02, + "probability": 0.998 + }, + { + "start": 76553.46, + "end": 76555.42, + "probability": 0.8615 + }, + { + "start": 76556.28, + "end": 76557.68, + "probability": 0.9917 + }, + { + "start": 76558.64, + "end": 76565.02, + "probability": 0.9736 + }, + { + "start": 76570.22, + "end": 76570.8, + "probability": 0.4999 + }, + { + "start": 76572.28, + "end": 76574.82, + "probability": 0.9849 + }, + { + "start": 76575.58, + "end": 76578.78, + "probability": 0.8979 + }, + { + "start": 76580.12, + "end": 76582.2, + "probability": 0.6259 + }, + { + "start": 76582.34, + "end": 76583.12, + "probability": 0.8405 + }, + { + "start": 76583.16, + "end": 76584.84, + "probability": 0.9286 + }, + { + "start": 76584.94, + "end": 76591.34, + "probability": 0.8915 + }, + { + "start": 76592.06, + "end": 76593.18, + "probability": 0.7284 + }, + { + "start": 76595.38, + "end": 76597.66, + "probability": 0.9722 + }, + { + "start": 76601.54, + "end": 76602.88, + "probability": 0.9805 + }, + { + "start": 76603.94, + "end": 76606.62, + "probability": 0.9966 + }, + { + "start": 76611.86, + "end": 76613.3, + "probability": 0.7188 + }, + { + "start": 76615.18, + "end": 76617.52, + "probability": 0.9254 + }, + { + "start": 76619.28, + "end": 76621.08, + "probability": 0.8524 + }, + { + "start": 76622.32, + "end": 76623.54, + "probability": 0.6187 + }, + { + "start": 76623.8, + "end": 76625.02, + "probability": 0.914 + }, + { + "start": 76626.72, + "end": 76628.04, + "probability": 0.8973 + }, + { + "start": 76628.3, + "end": 76629.3, + "probability": 0.9844 + }, + { + "start": 76631.86, + "end": 76632.52, + "probability": 0.7128 + }, + { + "start": 76632.76, + "end": 76632.96, + "probability": 0.9689 + }, + { + "start": 76634.3, + "end": 76634.84, + "probability": 0.9676 + }, + { + "start": 76636.76, + "end": 76639.58, + "probability": 0.9089 + }, + { + "start": 76641.0, + "end": 76642.46, + "probability": 0.995 + }, + { + "start": 76642.76, + "end": 76644.1, + "probability": 0.9487 + }, + { + "start": 76650.24, + "end": 76651.94, + "probability": 0.9772 + }, + { + "start": 76657.7, + "end": 76662.6, + "probability": 0.9922 + }, + { + "start": 76663.28, + "end": 76664.42, + "probability": 0.8822 + }, + { + "start": 76664.96, + "end": 76666.31, + "probability": 0.9968 + }, + { + "start": 76667.14, + "end": 76671.18, + "probability": 0.9897 + }, + { + "start": 76674.24, + "end": 76675.9, + "probability": 0.9979 + }, + { + "start": 76677.46, + "end": 76679.76, + "probability": 0.9849 + }, + { + "start": 76680.46, + "end": 76680.84, + "probability": 0.9914 + }, + { + "start": 76683.78, + "end": 76684.86, + "probability": 0.7122 + }, + { + "start": 76686.1, + "end": 76691.52, + "probability": 0.9761 + }, + { + "start": 76691.52, + "end": 76694.32, + "probability": 0.9805 + }, + { + "start": 76697.44, + "end": 76701.38, + "probability": 0.9951 + }, + { + "start": 76701.38, + "end": 76705.26, + "probability": 0.9961 + }, + { + "start": 76706.12, + "end": 76707.76, + "probability": 0.9729 + }, + { + "start": 76708.32, + "end": 76709.14, + "probability": 0.8415 + }, + { + "start": 76711.18, + "end": 76712.0, + "probability": 0.6321 + }, + { + "start": 76715.16, + "end": 76715.74, + "probability": 0.9423 + }, + { + "start": 76719.46, + "end": 76721.74, + "probability": 0.9604 + }, + { + "start": 76723.94, + "end": 76724.5, + "probability": 0.602 + }, + { + "start": 76725.54, + "end": 76727.36, + "probability": 0.9391 + }, + { + "start": 76729.24, + "end": 76730.16, + "probability": 0.8927 + }, + { + "start": 76730.44, + "end": 76735.5, + "probability": 0.9894 + }, + { + "start": 76737.52, + "end": 76743.46, + "probability": 0.8773 + }, + { + "start": 76746.26, + "end": 76747.34, + "probability": 0.9893 + }, + { + "start": 76748.06, + "end": 76748.92, + "probability": 0.981 + }, + { + "start": 76749.86, + "end": 76752.84, + "probability": 0.9989 + }, + { + "start": 76753.4, + "end": 76753.4, + "probability": 0.3691 + }, + { + "start": 76753.98, + "end": 76755.36, + "probability": 0.6806 + }, + { + "start": 76757.7, + "end": 76763.36, + "probability": 0.7358 + }, + { + "start": 76767.24, + "end": 76770.98, + "probability": 0.9856 + }, + { + "start": 76775.18, + "end": 76775.94, + "probability": 0.6517 + }, + { + "start": 76779.82, + "end": 76782.76, + "probability": 0.9855 + }, + { + "start": 76784.92, + "end": 76785.18, + "probability": 0.4765 + }, + { + "start": 76787.1, + "end": 76788.58, + "probability": 0.9972 + }, + { + "start": 76789.3, + "end": 76790.5, + "probability": 0.998 + }, + { + "start": 76792.04, + "end": 76792.34, + "probability": 0.8679 + }, + { + "start": 76793.0, + "end": 76794.0, + "probability": 0.9911 + }, + { + "start": 76795.66, + "end": 76796.84, + "probability": 0.6666 + }, + { + "start": 76797.82, + "end": 76798.4, + "probability": 0.9769 + }, + { + "start": 76799.68, + "end": 76801.32, + "probability": 0.9937 + }, + { + "start": 76802.26, + "end": 76806.44, + "probability": 0.8346 + }, + { + "start": 76807.08, + "end": 76811.54, + "probability": 0.9961 + }, + { + "start": 76811.66, + "end": 76813.48, + "probability": 0.9333 + }, + { + "start": 76815.02, + "end": 76816.54, + "probability": 0.3455 + }, + { + "start": 76817.72, + "end": 76818.66, + "probability": 0.8287 + }, + { + "start": 76819.92, + "end": 76822.36, + "probability": 0.9973 + }, + { + "start": 76823.02, + "end": 76823.84, + "probability": 0.9308 + }, + { + "start": 76824.84, + "end": 76825.54, + "probability": 0.8192 + }, + { + "start": 76826.74, + "end": 76827.64, + "probability": 0.9976 + }, + { + "start": 76829.56, + "end": 76830.66, + "probability": 0.7539 + }, + { + "start": 76832.64, + "end": 76834.68, + "probability": 0.9901 + }, + { + "start": 76835.62, + "end": 76838.94, + "probability": 0.8826 + }, + { + "start": 76840.24, + "end": 76842.92, + "probability": 0.8282 + }, + { + "start": 76845.2, + "end": 76847.42, + "probability": 0.9702 + }, + { + "start": 76849.32, + "end": 76852.44, + "probability": 0.8209 + }, + { + "start": 76852.82, + "end": 76854.4, + "probability": 0.6854 + }, + { + "start": 76855.12, + "end": 76856.78, + "probability": 0.6256 + }, + { + "start": 76858.04, + "end": 76861.18, + "probability": 0.9457 + }, + { + "start": 76861.8, + "end": 76862.3, + "probability": 0.9858 + }, + { + "start": 76862.82, + "end": 76863.46, + "probability": 0.9873 + }, + { + "start": 76864.04, + "end": 76865.28, + "probability": 0.7631 + }, + { + "start": 76866.9, + "end": 76867.72, + "probability": 0.7801 + }, + { + "start": 76868.24, + "end": 76872.48, + "probability": 0.8465 + }, + { + "start": 76873.52, + "end": 76878.58, + "probability": 0.8403 + }, + { + "start": 76879.86, + "end": 76881.12, + "probability": 0.9214 + }, + { + "start": 76882.76, + "end": 76884.84, + "probability": 0.9702 + }, + { + "start": 76885.48, + "end": 76888.02, + "probability": 0.8741 + }, + { + "start": 76888.28, + "end": 76889.06, + "probability": 0.8973 + }, + { + "start": 76889.56, + "end": 76890.84, + "probability": 0.9474 + }, + { + "start": 76891.38, + "end": 76893.44, + "probability": 0.9972 + }, + { + "start": 76894.5, + "end": 76895.16, + "probability": 0.4948 + }, + { + "start": 76896.18, + "end": 76897.98, + "probability": 0.9788 + }, + { + "start": 76901.86, + "end": 76904.34, + "probability": 0.7841 + }, + { + "start": 76905.2, + "end": 76910.32, + "probability": 0.7738 + }, + { + "start": 76910.4, + "end": 76912.14, + "probability": 0.7467 + }, + { + "start": 76914.4, + "end": 76915.78, + "probability": 0.462 + }, + { + "start": 76915.84, + "end": 76916.6, + "probability": 0.7015 + }, + { + "start": 76916.72, + "end": 76916.82, + "probability": 0.7242 + }, + { + "start": 76917.1, + "end": 76922.6, + "probability": 0.9827 + }, + { + "start": 76923.46, + "end": 76925.88, + "probability": 0.9604 + }, + { + "start": 76927.78, + "end": 76931.7, + "probability": 0.8599 + }, + { + "start": 76932.12, + "end": 76933.2, + "probability": 0.9941 + }, + { + "start": 76934.48, + "end": 76938.82, + "probability": 0.9197 + }, + { + "start": 76942.76, + "end": 76946.68, + "probability": 0.9912 + }, + { + "start": 76947.98, + "end": 76949.26, + "probability": 0.5673 + }, + { + "start": 76950.8, + "end": 76951.34, + "probability": 0.9385 + }, + { + "start": 76955.73, + "end": 76957.3, + "probability": 0.9485 + }, + { + "start": 76959.2, + "end": 76960.28, + "probability": 0.5475 + }, + { + "start": 76961.62, + "end": 76965.66, + "probability": 0.9937 + }, + { + "start": 76966.8, + "end": 76967.84, + "probability": 0.9287 + }, + { + "start": 76969.62, + "end": 76971.39, + "probability": 0.7357 + }, + { + "start": 76973.34, + "end": 76975.3, + "probability": 0.88 + }, + { + "start": 76977.04, + "end": 76978.39, + "probability": 0.9634 + }, + { + "start": 76981.51, + "end": 76981.96, + "probability": 0.6234 + }, + { + "start": 76984.26, + "end": 76986.68, + "probability": 0.9876 + }, + { + "start": 76987.2, + "end": 76989.46, + "probability": 0.9812 + }, + { + "start": 76990.98, + "end": 76996.5, + "probability": 0.9083 + }, + { + "start": 76997.5, + "end": 76999.66, + "probability": 0.9277 + }, + { + "start": 77001.32, + "end": 77003.66, + "probability": 0.9654 + }, + { + "start": 77005.06, + "end": 77005.56, + "probability": 0.9956 + }, + { + "start": 77008.02, + "end": 77010.26, + "probability": 0.9139 + }, + { + "start": 77013.24, + "end": 77017.62, + "probability": 0.9838 + }, + { + "start": 77017.72, + "end": 77018.58, + "probability": 0.9767 + }, + { + "start": 77018.68, + "end": 77019.54, + "probability": 0.83 + }, + { + "start": 77019.68, + "end": 77020.46, + "probability": 0.8447 + }, + { + "start": 77020.5, + "end": 77022.8, + "probability": 0.9907 + }, + { + "start": 77025.88, + "end": 77026.32, + "probability": 0.6658 + }, + { + "start": 77027.32, + "end": 77031.7, + "probability": 0.9705 + }, + { + "start": 77032.86, + "end": 77037.46, + "probability": 0.717 + }, + { + "start": 77038.98, + "end": 77042.18, + "probability": 0.2474 + }, + { + "start": 77044.0, + "end": 77044.96, + "probability": 0.6035 + }, + { + "start": 77045.1, + "end": 77046.16, + "probability": 0.7292 + }, + { + "start": 77047.08, + "end": 77048.98, + "probability": 0.9789 + }, + { + "start": 77052.02, + "end": 77053.94, + "probability": 0.7497 + }, + { + "start": 77055.66, + "end": 77059.76, + "probability": 0.987 + }, + { + "start": 77060.42, + "end": 77062.36, + "probability": 0.8875 + }, + { + "start": 77064.2, + "end": 77068.78, + "probability": 0.8261 + }, + { + "start": 77069.3, + "end": 77070.46, + "probability": 0.9958 + }, + { + "start": 77072.68, + "end": 77076.26, + "probability": 0.9714 + }, + { + "start": 77078.48, + "end": 77080.2, + "probability": 0.9832 + }, + { + "start": 77080.74, + "end": 77084.76, + "probability": 0.985 + }, + { + "start": 77085.66, + "end": 77089.26, + "probability": 0.9833 + }, + { + "start": 77089.92, + "end": 77090.54, + "probability": 0.9302 + }, + { + "start": 77091.8, + "end": 77094.16, + "probability": 0.9922 + }, + { + "start": 77094.26, + "end": 77096.84, + "probability": 0.9742 + }, + { + "start": 77096.98, + "end": 77099.88, + "probability": 0.9481 + }, + { + "start": 77102.46, + "end": 77108.24, + "probability": 0.9932 + }, + { + "start": 77108.64, + "end": 77111.2, + "probability": 0.774 + }, + { + "start": 77112.08, + "end": 77115.82, + "probability": 0.908 + }, + { + "start": 77116.24, + "end": 77121.56, + "probability": 0.7906 + }, + { + "start": 77121.56, + "end": 77122.48, + "probability": 0.7712 + }, + { + "start": 77126.32, + "end": 77130.99, + "probability": 0.938 + }, + { + "start": 77132.88, + "end": 77133.76, + "probability": 0.8358 + }, + { + "start": 77134.48, + "end": 77135.0, + "probability": 0.9982 + }, + { + "start": 77136.1, + "end": 77138.46, + "probability": 0.8144 + }, + { + "start": 77139.4, + "end": 77141.28, + "probability": 0.8804 + }, + { + "start": 77142.12, + "end": 77143.92, + "probability": 0.9944 + }, + { + "start": 77146.4, + "end": 77149.56, + "probability": 0.9909 + }, + { + "start": 77152.06, + "end": 77153.0, + "probability": 0.8346 + }, + { + "start": 77155.0, + "end": 77157.54, + "probability": 0.969 + }, + { + "start": 77159.14, + "end": 77163.98, + "probability": 0.9806 + }, + { + "start": 77164.82, + "end": 77165.9, + "probability": 0.9985 + }, + { + "start": 77166.54, + "end": 77166.64, + "probability": 0.9297 + }, + { + "start": 77170.14, + "end": 77170.94, + "probability": 0.1728 + }, + { + "start": 77172.85, + "end": 77177.64, + "probability": 0.9656 + }, + { + "start": 77178.34, + "end": 77183.36, + "probability": 0.9869 + }, + { + "start": 77183.92, + "end": 77186.16, + "probability": 0.6592 + }, + { + "start": 77187.72, + "end": 77190.16, + "probability": 0.9867 + }, + { + "start": 77192.2, + "end": 77193.7, + "probability": 0.9006 + }, + { + "start": 77194.26, + "end": 77197.24, + "probability": 0.6871 + }, + { + "start": 77199.52, + "end": 77202.82, + "probability": 0.9824 + }, + { + "start": 77204.26, + "end": 77205.76, + "probability": 0.9325 + }, + { + "start": 77208.8, + "end": 77212.06, + "probability": 0.7382 + }, + { + "start": 77215.42, + "end": 77217.62, + "probability": 0.9863 + }, + { + "start": 77217.84, + "end": 77221.61, + "probability": 0.9656 + }, + { + "start": 77225.18, + "end": 77226.98, + "probability": 0.9072 + }, + { + "start": 77227.9, + "end": 77231.52, + "probability": 0.9293 + }, + { + "start": 77231.84, + "end": 77235.7, + "probability": 0.9436 + }, + { + "start": 77237.2, + "end": 77241.29, + "probability": 0.8919 + }, + { + "start": 77244.56, + "end": 77245.56, + "probability": 0.5506 + }, + { + "start": 77246.28, + "end": 77248.42, + "probability": 0.6421 + }, + { + "start": 77248.66, + "end": 77249.28, + "probability": 0.9014 + }, + { + "start": 77250.84, + "end": 77257.14, + "probability": 0.9918 + }, + { + "start": 77257.22, + "end": 77257.84, + "probability": 0.9971 + }, + { + "start": 77258.38, + "end": 77259.12, + "probability": 0.7546 + }, + { + "start": 77261.8, + "end": 77263.26, + "probability": 0.85 + }, + { + "start": 77264.94, + "end": 77265.6, + "probability": 0.1205 + }, + { + "start": 77266.18, + "end": 77267.22, + "probability": 0.4356 + }, + { + "start": 77267.26, + "end": 77268.28, + "probability": 0.3339 + }, + { + "start": 77271.31, + "end": 77273.04, + "probability": 0.2983 + }, + { + "start": 77278.71, + "end": 77281.87, + "probability": 0.6686 + }, + { + "start": 77284.48, + "end": 77286.76, + "probability": 0.9824 + }, + { + "start": 77286.86, + "end": 77290.22, + "probability": 0.9897 + }, + { + "start": 77291.54, + "end": 77291.96, + "probability": 0.6832 + }, + { + "start": 77293.38, + "end": 77295.86, + "probability": 0.854 + }, + { + "start": 77297.36, + "end": 77299.84, + "probability": 0.9857 + }, + { + "start": 77300.64, + "end": 77302.98, + "probability": 0.9189 + }, + { + "start": 77303.58, + "end": 77304.3, + "probability": 0.8912 + }, + { + "start": 77305.0, + "end": 77310.02, + "probability": 0.9161 + }, + { + "start": 77310.48, + "end": 77310.8, + "probability": 0.6681 + }, + { + "start": 77311.18, + "end": 77313.06, + "probability": 0.627 + }, + { + "start": 77313.32, + "end": 77315.78, + "probability": 0.9707 + }, + { + "start": 77315.86, + "end": 77316.5, + "probability": 0.8689 + }, + { + "start": 77316.77, + "end": 77317.48, + "probability": 0.9578 + }, + { + "start": 77321.6, + "end": 77321.7, + "probability": 0.5833 + }, + { + "start": 77322.64, + "end": 77322.92, + "probability": 0.7012 + }, + { + "start": 77324.42, + "end": 77326.74, + "probability": 0.957 + }, + { + "start": 77328.12, + "end": 77329.38, + "probability": 0.8979 + }, + { + "start": 77331.0, + "end": 77332.5, + "probability": 0.5742 + }, + { + "start": 77334.64, + "end": 77336.62, + "probability": 0.9864 + }, + { + "start": 77337.54, + "end": 77341.94, + "probability": 0.9166 + }, + { + "start": 77344.52, + "end": 77344.72, + "probability": 0.5766 + }, + { + "start": 77346.84, + "end": 77348.4, + "probability": 0.7505 + }, + { + "start": 77348.48, + "end": 77348.85, + "probability": 0.9484 + }, + { + "start": 77351.82, + "end": 77355.82, + "probability": 0.9524 + }, + { + "start": 77360.66, + "end": 77362.0, + "probability": 0.7871 + }, + { + "start": 77365.98, + "end": 77367.56, + "probability": 0.9121 + }, + { + "start": 77368.74, + "end": 77369.92, + "probability": 0.6597 + }, + { + "start": 77371.66, + "end": 77375.6, + "probability": 0.9757 + }, + { + "start": 77376.2, + "end": 77380.38, + "probability": 0.9689 + }, + { + "start": 77380.48, + "end": 77382.32, + "probability": 0.8842 + }, + { + "start": 77383.12, + "end": 77384.85, + "probability": 0.9592 + }, + { + "start": 77386.14, + "end": 77386.62, + "probability": 0.4775 + }, + { + "start": 77388.08, + "end": 77388.92, + "probability": 0.9482 + }, + { + "start": 77390.16, + "end": 77391.1, + "probability": 0.8783 + }, + { + "start": 77391.9, + "end": 77397.62, + "probability": 0.9252 + }, + { + "start": 77399.06, + "end": 77404.9, + "probability": 0.977 + }, + { + "start": 77406.56, + "end": 77409.54, + "probability": 0.9304 + }, + { + "start": 77410.36, + "end": 77411.9, + "probability": 0.5768 + }, + { + "start": 77412.56, + "end": 77413.8, + "probability": 0.5305 + }, + { + "start": 77413.8, + "end": 77414.9, + "probability": 0.2903 + }, + { + "start": 77416.28, + "end": 77416.77, + "probability": 0.4338 + }, + { + "start": 77430.12, + "end": 77431.73, + "probability": 0.6825 + }, + { + "start": 77432.66, + "end": 77434.32, + "probability": 0.8768 + }, + { + "start": 77436.54, + "end": 77438.36, + "probability": 0.9348 + }, + { + "start": 77438.6, + "end": 77440.9, + "probability": 0.9816 + }, + { + "start": 77441.58, + "end": 77442.46, + "probability": 0.7393 + }, + { + "start": 77443.34, + "end": 77443.96, + "probability": 0.9932 + }, + { + "start": 77445.02, + "end": 77448.77, + "probability": 0.8873 + }, + { + "start": 77452.82, + "end": 77455.04, + "probability": 0.9817 + }, + { + "start": 77455.68, + "end": 77456.1, + "probability": 0.8111 + }, + { + "start": 77458.88, + "end": 77460.86, + "probability": 0.8754 + }, + { + "start": 77461.68, + "end": 77463.92, + "probability": 0.9786 + }, + { + "start": 77466.96, + "end": 77469.06, + "probability": 0.9794 + }, + { + "start": 77470.58, + "end": 77471.0, + "probability": 0.9318 + }, + { + "start": 77471.92, + "end": 77476.12, + "probability": 0.831 + }, + { + "start": 77479.9, + "end": 77481.08, + "probability": 0.7646 + }, + { + "start": 77481.16, + "end": 77481.76, + "probability": 0.7276 + }, + { + "start": 77481.84, + "end": 77482.36, + "probability": 0.9242 + }, + { + "start": 77484.78, + "end": 77486.54, + "probability": 0.9667 + }, + { + "start": 77487.74, + "end": 77490.44, + "probability": 0.9222 + }, + { + "start": 77490.44, + "end": 77491.52, + "probability": 0.8423 + }, + { + "start": 77491.76, + "end": 77494.3, + "probability": 0.6754 + }, + { + "start": 77494.5, + "end": 77495.36, + "probability": 0.8319 + }, + { + "start": 77495.62, + "end": 77497.06, + "probability": 0.9521 + }, + { + "start": 77497.82, + "end": 77498.2, + "probability": 0.548 + }, + { + "start": 77498.26, + "end": 77501.6, + "probability": 0.9834 + }, + { + "start": 77502.08, + "end": 77503.84, + "probability": 0.9669 + }, + { + "start": 77504.48, + "end": 77507.86, + "probability": 0.9004 + }, + { + "start": 77508.62, + "end": 77509.06, + "probability": 0.7588 + }, + { + "start": 77512.74, + "end": 77513.26, + "probability": 0.6653 + }, + { + "start": 77513.32, + "end": 77516.2, + "probability": 0.9487 + }, + { + "start": 77516.24, + "end": 77517.84, + "probability": 0.5265 + }, + { + "start": 77518.8, + "end": 77519.9, + "probability": 0.9886 + }, + { + "start": 77520.5, + "end": 77521.94, + "probability": 0.6464 + }, + { + "start": 77522.98, + "end": 77523.99, + "probability": 0.7018 + }, + { + "start": 77528.28, + "end": 77529.44, + "probability": 0.8192 + }, + { + "start": 77532.02, + "end": 77532.7, + "probability": 0.7651 + }, + { + "start": 77533.6, + "end": 77536.66, + "probability": 0.9937 + }, + { + "start": 77538.56, + "end": 77540.66, + "probability": 0.9424 + }, + { + "start": 77543.32, + "end": 77543.98, + "probability": 0.6502 + }, + { + "start": 77544.58, + "end": 77545.98, + "probability": 0.5103 + }, + { + "start": 77546.64, + "end": 77547.4, + "probability": 0.7877 + }, + { + "start": 77548.82, + "end": 77550.9, + "probability": 0.9241 + }, + { + "start": 77552.12, + "end": 77553.2, + "probability": 0.9917 + }, + { + "start": 77557.04, + "end": 77558.02, + "probability": 0.7078 + }, + { + "start": 77558.18, + "end": 77558.86, + "probability": 0.6783 + }, + { + "start": 77559.18, + "end": 77560.48, + "probability": 0.9986 + }, + { + "start": 77562.94, + "end": 77564.94, + "probability": 0.8792 + }, + { + "start": 77566.66, + "end": 77570.14, + "probability": 0.9951 + }, + { + "start": 77571.58, + "end": 77572.96, + "probability": 0.7483 + }, + { + "start": 77573.78, + "end": 77575.76, + "probability": 0.8779 + }, + { + "start": 77576.82, + "end": 77578.14, + "probability": 0.8247 + }, + { + "start": 77579.9, + "end": 77583.92, + "probability": 0.9848 + }, + { + "start": 77585.7, + "end": 77587.06, + "probability": 0.8277 + }, + { + "start": 77589.7, + "end": 77591.84, + "probability": 0.9383 + }, + { + "start": 77594.16, + "end": 77595.62, + "probability": 0.9893 + }, + { + "start": 77599.06, + "end": 77599.5, + "probability": 0.9943 + }, + { + "start": 77601.28, + "end": 77602.62, + "probability": 0.856 + }, + { + "start": 77604.3, + "end": 77607.12, + "probability": 0.9548 + }, + { + "start": 77609.64, + "end": 77611.7, + "probability": 0.7791 + }, + { + "start": 77611.8, + "end": 77615.52, + "probability": 0.9016 + }, + { + "start": 77615.6, + "end": 77616.1, + "probability": 0.7531 + }, + { + "start": 77616.16, + "end": 77616.94, + "probability": 0.7537 + }, + { + "start": 77618.12, + "end": 77622.13, + "probability": 0.6117 + }, + { + "start": 77624.18, + "end": 77624.86, + "probability": 0.9725 + }, + { + "start": 77627.86, + "end": 77627.96, + "probability": 0.772 + }, + { + "start": 77629.22, + "end": 77630.12, + "probability": 0.9351 + }, + { + "start": 77630.16, + "end": 77633.48, + "probability": 0.9895 + }, + { + "start": 77633.52, + "end": 77635.7, + "probability": 0.9653 + }, + { + "start": 77637.9, + "end": 77639.08, + "probability": 0.9236 + }, + { + "start": 77640.86, + "end": 77642.0, + "probability": 0.8249 + }, + { + "start": 77643.08, + "end": 77644.5, + "probability": 0.6203 + }, + { + "start": 77645.92, + "end": 77646.44, + "probability": 0.8292 + }, + { + "start": 77647.6, + "end": 77648.34, + "probability": 0.9544 + }, + { + "start": 77649.62, + "end": 77652.82, + "probability": 0.965 + }, + { + "start": 77656.44, + "end": 77658.72, + "probability": 0.6535 + }, + { + "start": 77661.68, + "end": 77665.06, + "probability": 0.9229 + }, + { + "start": 77667.28, + "end": 77670.46, + "probability": 0.9363 + }, + { + "start": 77672.38, + "end": 77672.74, + "probability": 0.7927 + }, + { + "start": 77673.64, + "end": 77676.66, + "probability": 0.8535 + }, + { + "start": 77676.66, + "end": 77676.98, + "probability": 0.2678 + }, + { + "start": 77678.08, + "end": 77681.56, + "probability": 0.9574 + }, + { + "start": 77681.68, + "end": 77682.1, + "probability": 0.9932 + }, + { + "start": 77682.62, + "end": 77683.8, + "probability": 0.7715 + }, + { + "start": 77684.92, + "end": 77686.82, + "probability": 0.89 + }, + { + "start": 77687.68, + "end": 77692.06, + "probability": 0.964 + }, + { + "start": 77693.2, + "end": 77695.42, + "probability": 0.1645 + }, + { + "start": 77696.06, + "end": 77696.58, + "probability": 0.0251 + }, + { + "start": 77696.58, + "end": 77699.3, + "probability": 0.8013 + }, + { + "start": 77699.98, + "end": 77700.56, + "probability": 0.3226 + }, + { + "start": 77701.04, + "end": 77701.78, + "probability": 0.7026 + }, + { + "start": 77702.56, + "end": 77702.98, + "probability": 0.5042 + }, + { + "start": 77703.04, + "end": 77703.6, + "probability": 0.7262 + }, + { + "start": 77705.56, + "end": 77708.08, + "probability": 0.9772 + }, + { + "start": 77709.34, + "end": 77712.04, + "probability": 0.971 + }, + { + "start": 77712.82, + "end": 77713.73, + "probability": 0.6646 + }, + { + "start": 77715.3, + "end": 77717.7, + "probability": 0.8215 + }, + { + "start": 77719.68, + "end": 77719.68, + "probability": 0.7891 + }, + { + "start": 77721.32, + "end": 77723.2, + "probability": 0.9204 + }, + { + "start": 77723.92, + "end": 77724.5, + "probability": 0.9369 + }, + { + "start": 77725.44, + "end": 77726.78, + "probability": 0.9485 + }, + { + "start": 77730.42, + "end": 77731.06, + "probability": 0.6915 + }, + { + "start": 77731.4, + "end": 77732.06, + "probability": 0.6949 + }, + { + "start": 77733.44, + "end": 77734.5, + "probability": 0.9678 + }, + { + "start": 77734.6, + "end": 77735.24, + "probability": 0.7322 + }, + { + "start": 77735.26, + "end": 77738.84, + "probability": 0.9684 + }, + { + "start": 77742.64, + "end": 77743.98, + "probability": 0.997 + }, + { + "start": 77746.83, + "end": 77750.5, + "probability": 0.9974 + }, + { + "start": 77750.66, + "end": 77752.8, + "probability": 0.9863 + }, + { + "start": 77754.46, + "end": 77762.96, + "probability": 0.9893 + }, + { + "start": 77764.2, + "end": 77766.32, + "probability": 0.698 + }, + { + "start": 77768.28, + "end": 77769.76, + "probability": 0.9388 + }, + { + "start": 77771.1, + "end": 77771.68, + "probability": 0.8624 + }, + { + "start": 77775.52, + "end": 77776.16, + "probability": 0.9613 + }, + { + "start": 77778.06, + "end": 77780.18, + "probability": 0.9956 + }, + { + "start": 77781.62, + "end": 77781.9, + "probability": 0.9125 + }, + { + "start": 77782.44, + "end": 77783.54, + "probability": 0.7068 + }, + { + "start": 77784.68, + "end": 77785.16, + "probability": 0.4445 + }, + { + "start": 77785.26, + "end": 77789.32, + "probability": 0.8841 + }, + { + "start": 77789.56, + "end": 77790.58, + "probability": 0.5245 + }, + { + "start": 77791.12, + "end": 77792.14, + "probability": 0.8735 + }, + { + "start": 77794.86, + "end": 77795.42, + "probability": 0.8892 + }, + { + "start": 77799.06, + "end": 77802.98, + "probability": 0.939 + }, + { + "start": 77806.44, + "end": 77807.72, + "probability": 0.9236 + }, + { + "start": 77808.16, + "end": 77810.12, + "probability": 0.9854 + }, + { + "start": 77810.24, + "end": 77811.0, + "probability": 0.7194 + }, + { + "start": 77811.2, + "end": 77812.3, + "probability": 0.7411 + }, + { + "start": 77813.16, + "end": 77814.02, + "probability": 0.9308 + }, + { + "start": 77815.3, + "end": 77818.46, + "probability": 0.8252 + }, + { + "start": 77818.9, + "end": 77823.08, + "probability": 0.9839 + }, + { + "start": 77824.8, + "end": 77829.56, + "probability": 0.9372 + }, + { + "start": 77831.14, + "end": 77835.36, + "probability": 0.9103 + }, + { + "start": 77836.58, + "end": 77838.58, + "probability": 0.8756 + }, + { + "start": 77838.88, + "end": 77839.32, + "probability": 0.8659 + }, + { + "start": 77840.04, + "end": 77842.94, + "probability": 0.8721 + }, + { + "start": 77844.46, + "end": 77845.2, + "probability": 0.6223 + }, + { + "start": 77845.88, + "end": 77848.68, + "probability": 0.7812 + }, + { + "start": 77849.84, + "end": 77851.14, + "probability": 0.8082 + }, + { + "start": 77852.08, + "end": 77855.5, + "probability": 0.9688 + }, + { + "start": 77855.64, + "end": 77858.09, + "probability": 0.9536 + }, + { + "start": 77860.04, + "end": 77861.48, + "probability": 0.4996 + }, + { + "start": 77866.48, + "end": 77866.68, + "probability": 0.7039 + }, + { + "start": 77868.44, + "end": 77869.44, + "probability": 0.9919 + }, + { + "start": 77870.7, + "end": 77871.36, + "probability": 0.9979 + }, + { + "start": 77872.7, + "end": 77873.26, + "probability": 0.8296 + }, + { + "start": 77874.48, + "end": 77875.84, + "probability": 0.9951 + }, + { + "start": 77881.64, + "end": 77882.94, + "probability": 0.6 + }, + { + "start": 77885.5, + "end": 77886.22, + "probability": 0.9937 + }, + { + "start": 77888.3, + "end": 77889.08, + "probability": 0.9904 + }, + { + "start": 77890.32, + "end": 77891.26, + "probability": 0.5018 + }, + { + "start": 77892.38, + "end": 77894.34, + "probability": 0.7495 + }, + { + "start": 77895.6, + "end": 77896.24, + "probability": 0.0005 + }, + { + "start": 77897.98, + "end": 77899.88, + "probability": 0.7262 + }, + { + "start": 77900.04, + "end": 77902.2, + "probability": 0.9768 + }, + { + "start": 77904.64, + "end": 77906.77, + "probability": 0.6537 + }, + { + "start": 77908.28, + "end": 77909.34, + "probability": 0.6668 + }, + { + "start": 77910.88, + "end": 77913.42, + "probability": 0.9412 + }, + { + "start": 77920.54, + "end": 77921.75, + "probability": 0.9888 + }, + { + "start": 77923.48, + "end": 77924.61, + "probability": 0.9956 + }, + { + "start": 77925.82, + "end": 77926.52, + "probability": 0.9126 + }, + { + "start": 77927.84, + "end": 77928.74, + "probability": 0.9083 + }, + { + "start": 77930.76, + "end": 77933.28, + "probability": 0.923 + }, + { + "start": 77934.06, + "end": 77936.78, + "probability": 0.9839 + }, + { + "start": 77938.5, + "end": 77939.26, + "probability": 0.4259 + }, + { + "start": 77939.6, + "end": 77942.72, + "probability": 0.899 + }, + { + "start": 77943.64, + "end": 77944.44, + "probability": 0.7356 + }, + { + "start": 77945.68, + "end": 77946.58, + "probability": 0.8422 + }, + { + "start": 77946.6, + "end": 77947.98, + "probability": 0.9736 + }, + { + "start": 77949.18, + "end": 77950.16, + "probability": 0.9702 + }, + { + "start": 77950.86, + "end": 77951.9, + "probability": 0.82 + }, + { + "start": 77952.82, + "end": 77956.16, + "probability": 0.974 + }, + { + "start": 77956.28, + "end": 77957.9, + "probability": 0.8293 + }, + { + "start": 77957.9, + "end": 77960.2, + "probability": 0.8721 + }, + { + "start": 77960.98, + "end": 77965.3, + "probability": 0.9802 + }, + { + "start": 77965.8, + "end": 77967.0, + "probability": 0.9744 + }, + { + "start": 77967.18, + "end": 77967.48, + "probability": 0.2858 + }, + { + "start": 77968.74, + "end": 77971.1, + "probability": 0.9648 + }, + { + "start": 77971.84, + "end": 77976.04, + "probability": 0.9697 + }, + { + "start": 77976.46, + "end": 77976.78, + "probability": 0.8785 + }, + { + "start": 77980.78, + "end": 77982.94, + "probability": 0.9963 + }, + { + "start": 77984.18, + "end": 77987.4, + "probability": 0.9667 + }, + { + "start": 77988.84, + "end": 77991.64, + "probability": 0.989 + }, + { + "start": 77991.84, + "end": 77993.75, + "probability": 0.8125 + }, + { + "start": 77996.48, + "end": 77997.44, + "probability": 0.7401 + }, + { + "start": 77998.62, + "end": 78000.56, + "probability": 0.9099 + }, + { + "start": 78001.7, + "end": 78002.5, + "probability": 0.9245 + }, + { + "start": 78003.24, + "end": 78004.92, + "probability": 0.9572 + }, + { + "start": 78005.5, + "end": 78006.05, + "probability": 0.4962 + }, + { + "start": 78006.98, + "end": 78007.5, + "probability": 0.9976 + }, + { + "start": 78008.59, + "end": 78010.98, + "probability": 0.923 + }, + { + "start": 78011.28, + "end": 78015.2, + "probability": 0.8754 + }, + { + "start": 78015.28, + "end": 78016.12, + "probability": 0.7612 + }, + { + "start": 78016.44, + "end": 78017.16, + "probability": 0.9912 + }, + { + "start": 78018.46, + "end": 78019.08, + "probability": 0.8362 + }, + { + "start": 78020.78, + "end": 78021.79, + "probability": 0.6331 + }, + { + "start": 78022.04, + "end": 78023.02, + "probability": 0.8433 + }, + { + "start": 78023.16, + "end": 78025.78, + "probability": 0.7178 + }, + { + "start": 78027.1, + "end": 78028.82, + "probability": 0.9918 + }, + { + "start": 78029.02, + "end": 78033.38, + "probability": 0.9561 + }, + { + "start": 78034.04, + "end": 78034.82, + "probability": 0.476 + }, + { + "start": 78035.14, + "end": 78036.82, + "probability": 0.9915 + }, + { + "start": 78037.02, + "end": 78040.25, + "probability": 0.9847 + }, + { + "start": 78040.4, + "end": 78044.22, + "probability": 0.9744 + }, + { + "start": 78045.92, + "end": 78047.08, + "probability": 0.6677 + }, + { + "start": 78048.62, + "end": 78051.82, + "probability": 0.9009 + }, + { + "start": 78055.54, + "end": 78057.22, + "probability": 0.8464 + }, + { + "start": 78060.88, + "end": 78066.56, + "probability": 0.8914 + }, + { + "start": 78068.24, + "end": 78069.24, + "probability": 0.9761 + }, + { + "start": 78070.82, + "end": 78073.16, + "probability": 0.9336 + }, + { + "start": 78074.42, + "end": 78076.74, + "probability": 0.7227 + }, + { + "start": 78087.84, + "end": 78091.9, + "probability": 0.949 + }, + { + "start": 78093.1, + "end": 78099.24, + "probability": 0.954 + }, + { + "start": 78099.74, + "end": 78100.8, + "probability": 0.7998 + }, + { + "start": 78100.92, + "end": 78102.36, + "probability": 0.9847 + }, + { + "start": 78104.04, + "end": 78108.1, + "probability": 0.9532 + }, + { + "start": 78108.8, + "end": 78114.6, + "probability": 0.9883 + }, + { + "start": 78115.06, + "end": 78116.02, + "probability": 0.671 + }, + { + "start": 78118.12, + "end": 78119.52, + "probability": 0.9862 + }, + { + "start": 78120.48, + "end": 78121.92, + "probability": 0.9861 + }, + { + "start": 78122.34, + "end": 78125.46, + "probability": 0.9971 + }, + { + "start": 78125.56, + "end": 78127.38, + "probability": 0.8718 + }, + { + "start": 78128.08, + "end": 78128.88, + "probability": 0.9691 + }, + { + "start": 78130.08, + "end": 78130.9, + "probability": 0.9897 + }, + { + "start": 78137.42, + "end": 78138.44, + "probability": 0.9102 + }, + { + "start": 78142.26, + "end": 78143.28, + "probability": 0.8867 + }, + { + "start": 78144.52, + "end": 78145.2, + "probability": 0.9048 + }, + { + "start": 78147.32, + "end": 78147.56, + "probability": 0.9495 + }, + { + "start": 78148.3, + "end": 78151.22, + "probability": 0.9025 + }, + { + "start": 78153.14, + "end": 78154.69, + "probability": 0.4174 + }, + { + "start": 78156.68, + "end": 78158.92, + "probability": 0.681 + }, + { + "start": 78160.42, + "end": 78164.06, + "probability": 0.7982 + }, + { + "start": 78167.18, + "end": 78168.48, + "probability": 0.5175 + }, + { + "start": 78170.08, + "end": 78171.21, + "probability": 0.9717 + }, + { + "start": 78172.88, + "end": 78174.2, + "probability": 0.6106 + }, + { + "start": 78175.24, + "end": 78177.76, + "probability": 0.9334 + }, + { + "start": 78180.36, + "end": 78184.9, + "probability": 0.9478 + }, + { + "start": 78185.1, + "end": 78185.98, + "probability": 0.7499 + }, + { + "start": 78186.72, + "end": 78187.24, + "probability": 0.6879 + }, + { + "start": 78189.72, + "end": 78193.08, + "probability": 0.7891 + }, + { + "start": 78193.3, + "end": 78199.72, + "probability": 0.807 + }, + { + "start": 78200.12, + "end": 78200.12, + "probability": 0.0829 + }, + { + "start": 78200.12, + "end": 78200.28, + "probability": 0.0155 + }, + { + "start": 78201.12, + "end": 78202.12, + "probability": 0.7695 + }, + { + "start": 78203.22, + "end": 78203.66, + "probability": 0.7485 + }, + { + "start": 78204.28, + "end": 78205.36, + "probability": 0.9652 + }, + { + "start": 78205.4, + "end": 78206.8, + "probability": 0.9857 + }, + { + "start": 78206.82, + "end": 78210.5, + "probability": 0.9678 + }, + { + "start": 78210.62, + "end": 78212.62, + "probability": 0.9849 + }, + { + "start": 78212.74, + "end": 78213.56, + "probability": 0.8341 + }, + { + "start": 78213.6, + "end": 78214.26, + "probability": 0.877 + }, + { + "start": 78214.3, + "end": 78214.4, + "probability": 0.9485 + }, + { + "start": 78215.06, + "end": 78217.4, + "probability": 0.9445 + }, + { + "start": 78217.8, + "end": 78218.18, + "probability": 0.388 + }, + { + "start": 78218.88, + "end": 78221.2, + "probability": 0.863 + }, + { + "start": 78222.06, + "end": 78225.46, + "probability": 0.9844 + }, + { + "start": 78225.56, + "end": 78229.5, + "probability": 0.6219 + }, + { + "start": 78232.08, + "end": 78236.16, + "probability": 0.4812 + }, + { + "start": 78237.1, + "end": 78239.92, + "probability": 0.607 + }, + { + "start": 78240.84, + "end": 78242.24, + "probability": 0.9381 + }, + { + "start": 78243.72, + "end": 78245.12, + "probability": 0.9885 + }, + { + "start": 78246.3, + "end": 78247.82, + "probability": 0.8417 + }, + { + "start": 78248.28, + "end": 78250.32, + "probability": 0.99 + }, + { + "start": 78250.72, + "end": 78250.94, + "probability": 0.6095 + }, + { + "start": 78251.6, + "end": 78253.68, + "probability": 0.9705 + }, + { + "start": 78254.56, + "end": 78258.24, + "probability": 0.9971 + }, + { + "start": 78259.04, + "end": 78261.0, + "probability": 0.9135 + }, + { + "start": 78268.02, + "end": 78271.52, + "probability": 0.5462 + }, + { + "start": 78271.68, + "end": 78272.82, + "probability": 0.9771 + }, + { + "start": 78273.33, + "end": 78275.84, + "probability": 0.9343 + }, + { + "start": 78277.46, + "end": 78279.44, + "probability": 0.6723 + }, + { + "start": 78280.16, + "end": 78281.3, + "probability": 0.1779 + }, + { + "start": 78282.87, + "end": 78284.86, + "probability": 0.599 + }, + { + "start": 78285.42, + "end": 78287.1, + "probability": 0.7432 + }, + { + "start": 78287.34, + "end": 78288.92, + "probability": 0.9214 + }, + { + "start": 78289.3, + "end": 78290.28, + "probability": 0.6747 + }, + { + "start": 78291.06, + "end": 78293.5, + "probability": 0.7462 + }, + { + "start": 78293.5, + "end": 78295.82, + "probability": 0.7793 + }, + { + "start": 78296.1, + "end": 78297.42, + "probability": 0.2721 + }, + { + "start": 78298.22, + "end": 78301.72, + "probability": 0.6728 + }, + { + "start": 78301.94, + "end": 78305.52, + "probability": 0.8423 + }, + { + "start": 78305.96, + "end": 78307.8, + "probability": 0.8572 + }, + { + "start": 78308.38, + "end": 78311.56, + "probability": 0.7519 + }, + { + "start": 78311.96, + "end": 78317.74, + "probability": 0.1565 + }, + { + "start": 78318.38, + "end": 78327.52, + "probability": 0.5796 + }, + { + "start": 78330.86, + "end": 78333.28, + "probability": 0.1052 + }, + { + "start": 78335.8, + "end": 78338.9, + "probability": 0.1094 + }, + { + "start": 78339.2, + "end": 78340.78, + "probability": 0.0137 + }, + { + "start": 78340.78, + "end": 78342.32, + "probability": 0.0902 + }, + { + "start": 78342.78, + "end": 78346.39, + "probability": 0.0939 + }, + { + "start": 78350.02, + "end": 78351.08, + "probability": 0.167 + }, + { + "start": 78351.08, + "end": 78352.64, + "probability": 0.0292 + }, + { + "start": 78353.04, + "end": 78353.88, + "probability": 0.0294 + }, + { + "start": 78353.98, + "end": 78355.14, + "probability": 0.0464 + }, + { + "start": 78355.64, + "end": 78357.16, + "probability": 0.0482 + }, + { + "start": 78359.16, + "end": 78359.78, + "probability": 0.0371 + }, + { + "start": 78361.25, + "end": 78362.6, + "probability": 0.0457 + }, + { + "start": 78364.82, + "end": 78365.82, + "probability": 0.0041 + }, + { + "start": 78367.87, + "end": 78370.54, + "probability": 0.0189 + }, + { + "start": 78371.36, + "end": 78374.6, + "probability": 0.0385 + }, + { + "start": 78375.76, + "end": 78378.2, + "probability": 0.0284 + }, + { + "start": 78378.76, + "end": 78380.9, + "probability": 0.0565 + }, + { + "start": 78380.9, + "end": 78381.88, + "probability": 0.061 + }, + { + "start": 78382.28, + "end": 78382.98, + "probability": 0.0964 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.0, + "end": 78383.0, + "probability": 0.0 + }, + { + "start": 78383.02, + "end": 78383.18, + "probability": 0.0402 + }, + { + "start": 78384.18, + "end": 78384.18, + "probability": 0.2827 + }, + { + "start": 78384.18, + "end": 78384.81, + "probability": 0.2069 + }, + { + "start": 78386.88, + "end": 78388.56, + "probability": 0.8664 + }, + { + "start": 78391.76, + "end": 78393.34, + "probability": 0.9457 + }, + { + "start": 78394.44, + "end": 78395.0, + "probability": 0.7293 + }, + { + "start": 78396.26, + "end": 78397.62, + "probability": 0.6323 + }, + { + "start": 78399.02, + "end": 78401.8, + "probability": 0.9948 + }, + { + "start": 78401.88, + "end": 78403.0, + "probability": 0.4919 + }, + { + "start": 78404.7, + "end": 78408.12, + "probability": 0.7476 + }, + { + "start": 78408.42, + "end": 78410.1, + "probability": 0.6676 + }, + { + "start": 78411.2, + "end": 78412.3, + "probability": 0.9005 + }, + { + "start": 78412.92, + "end": 78414.06, + "probability": 0.6763 + }, + { + "start": 78415.14, + "end": 78416.46, + "probability": 0.9076 + }, + { + "start": 78416.76, + "end": 78421.14, + "probability": 0.9672 + }, + { + "start": 78422.18, + "end": 78423.2, + "probability": 0.794 + }, + { + "start": 78423.94, + "end": 78425.62, + "probability": 0.7072 + }, + { + "start": 78425.94, + "end": 78430.74, + "probability": 0.8965 + }, + { + "start": 78432.49, + "end": 78435.12, + "probability": 0.9704 + }, + { + "start": 78436.24, + "end": 78439.38, + "probability": 0.9636 + }, + { + "start": 78440.94, + "end": 78443.44, + "probability": 0.9761 + }, + { + "start": 78446.2, + "end": 78448.08, + "probability": 0.9529 + }, + { + "start": 78449.0, + "end": 78450.62, + "probability": 0.9128 + }, + { + "start": 78451.42, + "end": 78453.04, + "probability": 0.9858 + }, + { + "start": 78454.1, + "end": 78455.2, + "probability": 0.9893 + }, + { + "start": 78457.24, + "end": 78457.68, + "probability": 0.8544 + }, + { + "start": 78458.36, + "end": 78459.98, + "probability": 0.9032 + }, + { + "start": 78460.58, + "end": 78461.31, + "probability": 0.7988 + }, + { + "start": 78462.1, + "end": 78463.36, + "probability": 0.8069 + }, + { + "start": 78463.88, + "end": 78464.74, + "probability": 0.6964 + }, + { + "start": 78465.98, + "end": 78468.36, + "probability": 0.973 + }, + { + "start": 78471.1, + "end": 78473.78, + "probability": 0.759 + }, + { + "start": 78475.56, + "end": 78475.72, + "probability": 0.0539 + }, + { + "start": 78475.72, + "end": 78475.82, + "probability": 0.7664 + }, + { + "start": 78476.44, + "end": 78481.6, + "probability": 0.9773 + }, + { + "start": 78483.66, + "end": 78487.88, + "probability": 0.9287 + }, + { + "start": 78488.54, + "end": 78492.34, + "probability": 0.9938 + }, + { + "start": 78493.54, + "end": 78496.32, + "probability": 0.9344 + }, + { + "start": 78498.3, + "end": 78501.3, + "probability": 0.9849 + }, + { + "start": 78502.96, + "end": 78505.6, + "probability": 0.9256 + }, + { + "start": 78506.22, + "end": 78510.58, + "probability": 0.9644 + }, + { + "start": 78511.74, + "end": 78514.0, + "probability": 0.8768 + }, + { + "start": 78515.64, + "end": 78517.82, + "probability": 0.7409 + }, + { + "start": 78519.58, + "end": 78520.32, + "probability": 0.9473 + }, + { + "start": 78522.94, + "end": 78522.94, + "probability": 0.5711 + }, + { + "start": 78522.94, + "end": 78525.08, + "probability": 0.9673 + }, + { + "start": 78525.18, + "end": 78525.93, + "probability": 0.7529 + }, + { + "start": 78526.24, + "end": 78527.08, + "probability": 0.731 + }, + { + "start": 78527.26, + "end": 78528.32, + "probability": 0.7695 + }, + { + "start": 78529.46, + "end": 78530.84, + "probability": 0.4645 + }, + { + "start": 78531.48, + "end": 78532.33, + "probability": 0.9541 + }, + { + "start": 78533.74, + "end": 78535.72, + "probability": 0.8063 + }, + { + "start": 78536.32, + "end": 78536.81, + "probability": 0.8289 + }, + { + "start": 78537.64, + "end": 78538.66, + "probability": 0.9478 + }, + { + "start": 78540.5, + "end": 78541.22, + "probability": 0.8404 + }, + { + "start": 78542.18, + "end": 78543.08, + "probability": 0.8902 + }, + { + "start": 78544.2, + "end": 78545.27, + "probability": 0.9854 + }, + { + "start": 78546.4, + "end": 78547.58, + "probability": 0.743 + }, + { + "start": 78547.82, + "end": 78548.4, + "probability": 0.6596 + }, + { + "start": 78548.54, + "end": 78550.24, + "probability": 0.4348 + }, + { + "start": 78551.66, + "end": 78553.7, + "probability": 0.6857 + }, + { + "start": 78554.32, + "end": 78556.32, + "probability": 0.9026 + }, + { + "start": 78557.18, + "end": 78561.82, + "probability": 0.5199 + }, + { + "start": 78562.24, + "end": 78565.12, + "probability": 0.6667 + }, + { + "start": 78565.54, + "end": 78567.49, + "probability": 0.478 + }, + { + "start": 78567.9, + "end": 78569.88, + "probability": 0.6729 + }, + { + "start": 78570.52, + "end": 78575.4, + "probability": 0.6533 + }, + { + "start": 78575.66, + "end": 78579.36, + "probability": 0.5025 + }, + { + "start": 78579.56, + "end": 78581.62, + "probability": 0.6763 + }, + { + "start": 78582.04, + "end": 78584.04, + "probability": 0.9709 + }, + { + "start": 78585.48, + "end": 78588.94, + "probability": 0.9835 + }, + { + "start": 78590.72, + "end": 78591.64, + "probability": 0.9827 + }, + { + "start": 78594.54, + "end": 78597.9, + "probability": 0.9949 + }, + { + "start": 78599.12, + "end": 78600.6, + "probability": 0.5401 + }, + { + "start": 78602.32, + "end": 78606.26, + "probability": 0.9513 + }, + { + "start": 78606.4, + "end": 78607.24, + "probability": 0.6895 + }, + { + "start": 78609.06, + "end": 78609.96, + "probability": 0.9512 + }, + { + "start": 78614.44, + "end": 78615.34, + "probability": 0.9889 + }, + { + "start": 78617.22, + "end": 78619.04, + "probability": 0.9526 + }, + { + "start": 78619.7, + "end": 78620.76, + "probability": 0.8353 + }, + { + "start": 78621.4, + "end": 78621.46, + "probability": 0.3201 + }, + { + "start": 78622.96, + "end": 78630.78, + "probability": 0.8471 + }, + { + "start": 78632.62, + "end": 78633.46, + "probability": 0.6123 + }, + { + "start": 78633.94, + "end": 78637.0, + "probability": 0.6696 + }, + { + "start": 78637.98, + "end": 78638.48, + "probability": 0.7963 + }, + { + "start": 78639.54, + "end": 78640.5, + "probability": 0.9338 + }, + { + "start": 78641.2, + "end": 78642.84, + "probability": 0.9978 + }, + { + "start": 78643.72, + "end": 78646.4, + "probability": 0.9946 + }, + { + "start": 78648.7, + "end": 78649.72, + "probability": 0.984 + }, + { + "start": 78649.86, + "end": 78651.0, + "probability": 0.6667 + }, + { + "start": 78652.32, + "end": 78655.74, + "probability": 0.9967 + }, + { + "start": 78657.34, + "end": 78658.0, + "probability": 0.6149 + }, + { + "start": 78659.92, + "end": 78660.24, + "probability": 0.5199 + }, + { + "start": 78660.88, + "end": 78663.24, + "probability": 0.9778 + }, + { + "start": 78664.1, + "end": 78665.28, + "probability": 0.983 + }, + { + "start": 78666.26, + "end": 78667.04, + "probability": 0.9612 + }, + { + "start": 78667.88, + "end": 78670.22, + "probability": 0.9888 + }, + { + "start": 78672.18, + "end": 78672.7, + "probability": 0.8437 + }, + { + "start": 78674.38, + "end": 78675.6, + "probability": 0.9991 + }, + { + "start": 78676.92, + "end": 78678.36, + "probability": 0.8661 + }, + { + "start": 78679.08, + "end": 78680.0, + "probability": 0.999 + }, + { + "start": 78682.18, + "end": 78685.8, + "probability": 0.9657 + }, + { + "start": 78687.64, + "end": 78688.44, + "probability": 0.9599 + }, + { + "start": 78689.66, + "end": 78692.24, + "probability": 0.5317 + }, + { + "start": 78692.86, + "end": 78694.38, + "probability": 0.7967 + }, + { + "start": 78695.28, + "end": 78696.49, + "probability": 0.9963 + }, + { + "start": 78697.74, + "end": 78699.92, + "probability": 0.5898 + }, + { + "start": 78700.86, + "end": 78702.84, + "probability": 0.7651 + }, + { + "start": 78706.36, + "end": 78708.49, + "probability": 0.9194 + }, + { + "start": 78709.68, + "end": 78709.92, + "probability": 0.5988 + }, + { + "start": 78711.22, + "end": 78712.24, + "probability": 0.4709 + }, + { + "start": 78716.26, + "end": 78717.68, + "probability": 0.97 + }, + { + "start": 78718.66, + "end": 78722.86, + "probability": 0.9229 + }, + { + "start": 78723.32, + "end": 78725.39, + "probability": 0.9681 + }, + { + "start": 78726.64, + "end": 78727.68, + "probability": 0.8741 + }, + { + "start": 78727.86, + "end": 78728.7, + "probability": 0.802 + }, + { + "start": 78729.02, + "end": 78729.18, + "probability": 0.2862 + }, + { + "start": 78729.3, + "end": 78729.58, + "probability": 0.4693 + }, + { + "start": 78731.14, + "end": 78733.58, + "probability": 0.9976 + }, + { + "start": 78735.16, + "end": 78736.16, + "probability": 0.8459 + }, + { + "start": 78736.98, + "end": 78740.62, + "probability": 0.9775 + }, + { + "start": 78741.18, + "end": 78742.02, + "probability": 0.6522 + }, + { + "start": 78742.9, + "end": 78746.82, + "probability": 0.8877 + }, + { + "start": 78747.8, + "end": 78747.94, + "probability": 0.6749 + }, + { + "start": 78748.56, + "end": 78749.58, + "probability": 0.7812 + }, + { + "start": 78750.68, + "end": 78754.06, + "probability": 0.8185 + }, + { + "start": 78754.62, + "end": 78756.5, + "probability": 0.9675 + }, + { + "start": 78757.74, + "end": 78759.06, + "probability": 0.7387 + }, + { + "start": 78759.24, + "end": 78760.24, + "probability": 0.9841 + }, + { + "start": 78763.92, + "end": 78765.78, + "probability": 0.7389 + }, + { + "start": 78766.74, + "end": 78767.62, + "probability": 0.9478 + }, + { + "start": 78768.38, + "end": 78771.78, + "probability": 0.9957 + }, + { + "start": 78776.58, + "end": 78779.86, + "probability": 0.7723 + }, + { + "start": 78780.46, + "end": 78782.4, + "probability": 0.9774 + }, + { + "start": 78784.08, + "end": 78785.62, + "probability": 0.9922 + }, + { + "start": 78787.24, + "end": 78790.42, + "probability": 0.9568 + }, + { + "start": 78790.84, + "end": 78792.88, + "probability": 0.5204 + }, + { + "start": 78793.26, + "end": 78793.84, + "probability": 0.7487 + }, + { + "start": 78795.22, + "end": 78797.7, + "probability": 0.7263 + }, + { + "start": 78799.12, + "end": 78803.98, + "probability": 0.8151 + }, + { + "start": 78804.4, + "end": 78805.8, + "probability": 0.8658 + }, + { + "start": 78806.54, + "end": 78806.66, + "probability": 0.2826 + }, + { + "start": 78807.54, + "end": 78808.02, + "probability": 0.5078 + }, + { + "start": 78808.98, + "end": 78811.38, + "probability": 0.5053 + }, + { + "start": 78811.92, + "end": 78813.08, + "probability": 0.8987 + }, + { + "start": 78813.44, + "end": 78817.62, + "probability": 0.4655 + }, + { + "start": 78817.62, + "end": 78818.44, + "probability": 0.6427 + }, + { + "start": 78818.76, + "end": 78819.6, + "probability": 0.7625 + }, + { + "start": 78820.08, + "end": 78820.9, + "probability": 0.9357 + }, + { + "start": 78822.2, + "end": 78823.72, + "probability": 0.9381 + }, + { + "start": 78825.56, + "end": 78826.94, + "probability": 0.5928 + }, + { + "start": 78827.46, + "end": 78830.16, + "probability": 0.6284 + }, + { + "start": 78831.6, + "end": 78834.08, + "probability": 0.6846 + }, + { + "start": 78834.86, + "end": 78836.92, + "probability": 0.7019 + }, + { + "start": 78838.14, + "end": 78839.58, + "probability": 0.8536 + }, + { + "start": 78841.14, + "end": 78842.49, + "probability": 0.4397 + }, + { + "start": 78843.36, + "end": 78844.42, + "probability": 0.7814 + }, + { + "start": 78844.52, + "end": 78848.02, + "probability": 0.9796 + }, + { + "start": 78848.28, + "end": 78848.73, + "probability": 0.6106 + }, + { + "start": 78849.24, + "end": 78850.72, + "probability": 0.0723 + }, + { + "start": 78851.06, + "end": 78852.66, + "probability": 0.3485 + }, + { + "start": 78855.02, + "end": 78858.56, + "probability": 0.1288 + }, + { + "start": 78858.64, + "end": 78862.3, + "probability": 0.185 + }, + { + "start": 78862.98, + "end": 78868.6, + "probability": 0.6223 + }, + { + "start": 78870.2, + "end": 78871.74, + "probability": 0.0222 + }, + { + "start": 78872.22, + "end": 78872.36, + "probability": 0.2985 + }, + { + "start": 78885.26, + "end": 78886.02, + "probability": 0.1291 + }, + { + "start": 78886.44, + "end": 78892.94, + "probability": 0.8295 + }, + { + "start": 78894.69, + "end": 78896.76, + "probability": 0.6014 + }, + { + "start": 78897.76, + "end": 78898.16, + "probability": 0.5639 + }, + { + "start": 78898.72, + "end": 78902.92, + "probability": 0.0003 + }, + { + "start": 78904.28, + "end": 78907.64, + "probability": 0.6598 + }, + { + "start": 78908.24, + "end": 78909.84, + "probability": 0.7659 + }, + { + "start": 78910.42, + "end": 78910.98, + "probability": 0.7447 + }, + { + "start": 78911.52, + "end": 78911.88, + "probability": 0.5792 + }, + { + "start": 78913.48, + "end": 78916.12, + "probability": 0.5286 + }, + { + "start": 78917.44, + "end": 78918.56, + "probability": 0.3181 + }, + { + "start": 78919.18, + "end": 78921.02, + "probability": 0.6157 + }, + { + "start": 78922.02, + "end": 78926.52, + "probability": 0.6889 + }, + { + "start": 78929.4, + "end": 78932.3, + "probability": 0.5259 + }, + { + "start": 78932.3, + "end": 78933.21, + "probability": 0.4316 + }, + { + "start": 78933.8, + "end": 78935.02, + "probability": 0.5369 + }, + { + "start": 78935.26, + "end": 78939.9, + "probability": 0.7739 + }, + { + "start": 78940.1, + "end": 78940.86, + "probability": 0.7307 + }, + { + "start": 78941.02, + "end": 78941.72, + "probability": 0.6269 + }, + { + "start": 78941.84, + "end": 78942.64, + "probability": 0.9088 + }, + { + "start": 78943.12, + "end": 78943.88, + "probability": 0.6005 + }, + { + "start": 78944.08, + "end": 78945.22, + "probability": 0.5599 + }, + { + "start": 78945.88, + "end": 78946.56, + "probability": 0.4173 + }, + { + "start": 78949.84, + "end": 78951.3, + "probability": 0.5484 + }, + { + "start": 78951.44, + "end": 78951.51, + "probability": 0.4675 + }, + { + "start": 78953.16, + "end": 78955.58, + "probability": 0.4761 + }, + { + "start": 78958.24, + "end": 78960.64, + "probability": 0.5064 + }, + { + "start": 78960.8, + "end": 78962.48, + "probability": 0.9531 + }, + { + "start": 78962.66, + "end": 78966.1, + "probability": 0.6329 + }, + { + "start": 78966.84, + "end": 78967.28, + "probability": 0.0181 + }, + { + "start": 78969.3, + "end": 78970.66, + "probability": 0.8565 + }, + { + "start": 78972.82, + "end": 78975.44, + "probability": 0.5754 + }, + { + "start": 78977.28, + "end": 78978.1, + "probability": 0.8271 + }, + { + "start": 78978.22, + "end": 78980.24, + "probability": 0.9281 + }, + { + "start": 78981.02, + "end": 78981.98, + "probability": 0.9565 + }, + { + "start": 78982.36, + "end": 78984.82, + "probability": 0.9731 + }, + { + "start": 78986.4, + "end": 78988.98, + "probability": 0.8779 + }, + { + "start": 78989.1, + "end": 78989.68, + "probability": 0.9407 + }, + { + "start": 78990.02, + "end": 78990.96, + "probability": 0.9365 + }, + { + "start": 78991.22, + "end": 78992.48, + "probability": 0.8351 + }, + { + "start": 78992.58, + "end": 78993.36, + "probability": 0.7978 + }, + { + "start": 78994.28, + "end": 78994.4, + "probability": 0.5634 + }, + { + "start": 78995.44, + "end": 78998.48, + "probability": 0.9443 + }, + { + "start": 78999.08, + "end": 78999.64, + "probability": 0.9189 + }, + { + "start": 78999.94, + "end": 79000.54, + "probability": 0.9814 + }, + { + "start": 79002.12, + "end": 79003.62, + "probability": 0.9327 + }, + { + "start": 79004.2, + "end": 79007.86, + "probability": 0.896 + }, + { + "start": 79008.92, + "end": 79009.5, + "probability": 0.7376 + }, + { + "start": 79010.16, + "end": 79011.36, + "probability": 0.9776 + }, + { + "start": 79011.84, + "end": 79013.38, + "probability": 0.9807 + }, + { + "start": 79014.6, + "end": 79016.76, + "probability": 0.8958 + }, + { + "start": 79016.98, + "end": 79017.12, + "probability": 0.7335 + }, + { + "start": 79017.22, + "end": 79018.32, + "probability": 0.7379 + }, + { + "start": 79018.76, + "end": 79020.2, + "probability": 0.5921 + }, + { + "start": 79020.3, + "end": 79021.92, + "probability": 0.9778 + }, + { + "start": 79023.38, + "end": 79025.04, + "probability": 0.9888 + }, + { + "start": 79028.0, + "end": 79028.62, + "probability": 0.9831 + }, + { + "start": 79030.66, + "end": 79031.08, + "probability": 0.7756 + }, + { + "start": 79032.94, + "end": 79035.96, + "probability": 0.5981 + }, + { + "start": 79036.26, + "end": 79037.4, + "probability": 0.7499 + }, + { + "start": 79037.76, + "end": 79037.76, + "probability": 0.3731 + }, + { + "start": 79037.78, + "end": 79039.22, + "probability": 0.5185 + }, + { + "start": 79039.6, + "end": 79041.4, + "probability": 0.7954 + }, + { + "start": 79042.28, + "end": 79044.12, + "probability": 0.701 + }, + { + "start": 79047.86, + "end": 79051.42, + "probability": 0.8418 + }, + { + "start": 79052.94, + "end": 79054.04, + "probability": 0.8514 + }, + { + "start": 79054.34, + "end": 79055.34, + "probability": 0.9562 + }, + { + "start": 79056.02, + "end": 79056.54, + "probability": 0.9061 + }, + { + "start": 79058.22, + "end": 79062.78, + "probability": 0.8731 + }, + { + "start": 79063.78, + "end": 79064.82, + "probability": 0.1903 + }, + { + "start": 79067.7, + "end": 79069.26, + "probability": 0.9939 + }, + { + "start": 79071.32, + "end": 79073.83, + "probability": 0.9722 + }, + { + "start": 79074.56, + "end": 79076.04, + "probability": 0.7382 + }, + { + "start": 79077.94, + "end": 79078.9, + "probability": 0.5085 + }, + { + "start": 79080.92, + "end": 79082.96, + "probability": 0.9149 + }, + { + "start": 79084.12, + "end": 79084.86, + "probability": 0.5215 + }, + { + "start": 79085.7, + "end": 79090.5, + "probability": 0.4336 + }, + { + "start": 79092.64, + "end": 79094.78, + "probability": 0.5917 + }, + { + "start": 79095.6, + "end": 79096.08, + "probability": 0.5813 + }, + { + "start": 79097.56, + "end": 79099.46, + "probability": 0.6522 + }, + { + "start": 79099.74, + "end": 79100.02, + "probability": 0.8061 + }, + { + "start": 79101.12, + "end": 79105.05, + "probability": 0.8218 + }, + { + "start": 79106.36, + "end": 79107.14, + "probability": 0.4903 + }, + { + "start": 79108.16, + "end": 79108.42, + "probability": 0.4372 + }, + { + "start": 79110.2, + "end": 79110.86, + "probability": 0.3977 + }, + { + "start": 79112.74, + "end": 79115.94, + "probability": 0.198 + }, + { + "start": 79116.96, + "end": 79119.52, + "probability": 0.7253 + }, + { + "start": 79119.78, + "end": 79123.52, + "probability": 0.7453 + }, + { + "start": 79125.26, + "end": 79127.6, + "probability": 0.2176 + }, + { + "start": 79127.82, + "end": 79130.51, + "probability": 0.1427 + }, + { + "start": 79131.78, + "end": 79133.1, + "probability": 0.4297 + }, + { + "start": 79133.3, + "end": 79133.56, + "probability": 0.1337 + }, + { + "start": 79134.66, + "end": 79136.84, + "probability": 0.5811 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.0, + "end": 79237.0, + "probability": 0.0 + }, + { + "start": 79237.02, + "end": 79237.86, + "probability": 0.0669 + }, + { + "start": 79239.1, + "end": 79239.82, + "probability": 0.2634 + }, + { + "start": 79239.82, + "end": 79241.08, + "probability": 0.2515 + }, + { + "start": 79241.08, + "end": 79241.08, + "probability": 0.4881 + }, + { + "start": 79241.08, + "end": 79242.1, + "probability": 0.1969 + }, + { + "start": 79242.46, + "end": 79243.3, + "probability": 0.7426 + }, + { + "start": 79243.68, + "end": 79244.12, + "probability": 0.9385 + }, + { + "start": 79245.1, + "end": 79245.92, + "probability": 0.9069 + }, + { + "start": 79247.76, + "end": 79249.95, + "probability": 0.9473 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79360.0, + "end": 79360.0, + "probability": 0.0 + }, + { + "start": 79361.27, + "end": 79363.3, + "probability": 0.6366 + }, + { + "start": 79363.32, + "end": 79365.78, + "probability": 0.8699 + }, + { + "start": 79366.24, + "end": 79369.34, + "probability": 0.7007 + }, + { + "start": 79370.0, + "end": 79371.84, + "probability": 0.9814 + }, + { + "start": 79371.88, + "end": 79374.86, + "probability": 0.988 + }, + { + "start": 79375.52, + "end": 79376.7, + "probability": 0.1346 + }, + { + "start": 79377.92, + "end": 79378.56, + "probability": 0.4973 + }, + { + "start": 79379.84, + "end": 79382.18, + "probability": 0.9482 + }, + { + "start": 79382.58, + "end": 79383.64, + "probability": 0.3115 + }, + { + "start": 79383.64, + "end": 79386.7, + "probability": 0.8196 + }, + { + "start": 79388.04, + "end": 79390.96, + "probability": 0.8497 + }, + { + "start": 79391.35, + "end": 79392.88, + "probability": 0.6125 + }, + { + "start": 79394.48, + "end": 79395.68, + "probability": 0.6378 + }, + { + "start": 79395.8, + "end": 79396.4, + "probability": 0.3212 + }, + { + "start": 79396.54, + "end": 79401.42, + "probability": 0.5308 + }, + { + "start": 79401.58, + "end": 79402.4, + "probability": 0.7498 + }, + { + "start": 79402.86, + "end": 79405.5, + "probability": 0.97 + }, + { + "start": 79407.74, + "end": 79408.48, + "probability": 0.4926 + }, + { + "start": 79409.88, + "end": 79412.9, + "probability": 0.9226 + }, + { + "start": 79414.06, + "end": 79414.36, + "probability": 0.642 + }, + { + "start": 79415.06, + "end": 79415.89, + "probability": 0.9468 + }, + { + "start": 79416.38, + "end": 79418.56, + "probability": 0.9948 + }, + { + "start": 79419.8, + "end": 79422.73, + "probability": 0.9351 + }, + { + "start": 79423.12, + "end": 79424.4, + "probability": 0.4247 + }, + { + "start": 79425.04, + "end": 79425.7, + "probability": 0.6584 + }, + { + "start": 79427.78, + "end": 79430.08, + "probability": 0.98 + }, + { + "start": 79430.36, + "end": 79432.14, + "probability": 0.9834 + }, + { + "start": 79436.08, + "end": 79438.22, + "probability": 0.5155 + }, + { + "start": 79438.22, + "end": 79440.92, + "probability": 0.7073 + }, + { + "start": 79442.58, + "end": 79445.32, + "probability": 0.8763 + }, + { + "start": 79448.84, + "end": 79449.48, + "probability": 0.0429 + }, + { + "start": 79449.48, + "end": 79452.38, + "probability": 0.3478 + }, + { + "start": 79452.52, + "end": 79457.16, + "probability": 0.7091 + }, + { + "start": 79458.36, + "end": 79461.06, + "probability": 0.9737 + }, + { + "start": 79461.54, + "end": 79461.9, + "probability": 0.8918 + }, + { + "start": 79462.94, + "end": 79464.68, + "probability": 0.9754 + }, + { + "start": 79467.9, + "end": 79472.12, + "probability": 0.9744 + }, + { + "start": 79474.68, + "end": 79476.1, + "probability": 0.8829 + }, + { + "start": 79478.2, + "end": 79481.12, + "probability": 0.9391 + }, + { + "start": 79482.92, + "end": 79486.2, + "probability": 0.8976 + }, + { + "start": 79487.36, + "end": 79487.92, + "probability": 0.9521 + }, + { + "start": 79489.45, + "end": 79490.54, + "probability": 0.6248 + }, + { + "start": 79492.4, + "end": 79493.9, + "probability": 0.9584 + }, + { + "start": 79494.82, + "end": 79495.38, + "probability": 0.5876 + }, + { + "start": 79496.78, + "end": 79498.14, + "probability": 0.8461 + }, + { + "start": 79498.3, + "end": 79498.84, + "probability": 0.7873 + }, + { + "start": 79499.02, + "end": 79499.74, + "probability": 0.9348 + }, + { + "start": 79499.92, + "end": 79500.48, + "probability": 0.8481 + }, + { + "start": 79500.84, + "end": 79501.64, + "probability": 0.9791 + }, + { + "start": 79501.82, + "end": 79502.46, + "probability": 0.8399 + }, + { + "start": 79503.5, + "end": 79504.04, + "probability": 0.9892 + }, + { + "start": 79505.3, + "end": 79507.76, + "probability": 0.6495 + }, + { + "start": 79508.66, + "end": 79510.42, + "probability": 0.89 + }, + { + "start": 79511.94, + "end": 79511.94, + "probability": 0.3066 + }, + { + "start": 79512.9, + "end": 79515.41, + "probability": 0.6877 + }, + { + "start": 79516.06, + "end": 79516.96, + "probability": 0.7375 + }, + { + "start": 79518.0, + "end": 79520.36, + "probability": 0.8873 + }, + { + "start": 79521.56, + "end": 79524.18, + "probability": 0.8157 + }, + { + "start": 79525.06, + "end": 79525.74, + "probability": 0.8691 + }, + { + "start": 79527.58, + "end": 79528.4, + "probability": 0.7621 + }, + { + "start": 79529.86, + "end": 79530.28, + "probability": 0.5966 + }, + { + "start": 79530.5, + "end": 79531.46, + "probability": 0.9713 + }, + { + "start": 79531.84, + "end": 79533.02, + "probability": 0.6562 + }, + { + "start": 79533.74, + "end": 79534.28, + "probability": 0.8027 + }, + { + "start": 79535.5, + "end": 79536.34, + "probability": 0.8677 + }, + { + "start": 79537.24, + "end": 79538.25, + "probability": 0.7012 + }, + { + "start": 79539.64, + "end": 79540.14, + "probability": 0.5966 + }, + { + "start": 79542.64, + "end": 79545.36, + "probability": 0.9376 + }, + { + "start": 79546.62, + "end": 79548.7, + "probability": 0.9803 + }, + { + "start": 79549.26, + "end": 79549.54, + "probability": 0.7601 + }, + { + "start": 79550.26, + "end": 79550.76, + "probability": 0.8297 + }, + { + "start": 79551.78, + "end": 79552.16, + "probability": 0.5136 + }, + { + "start": 79553.12, + "end": 79553.6, + "probability": 0.5934 + }, + { + "start": 79555.0, + "end": 79555.56, + "probability": 0.8799 + }, + { + "start": 79558.78, + "end": 79559.12, + "probability": 0.6798 + }, + { + "start": 79561.56, + "end": 79562.18, + "probability": 0.9487 + }, + { + "start": 79564.45, + "end": 79569.32, + "probability": 0.9977 + }, + { + "start": 79571.38, + "end": 79572.8, + "probability": 0.9917 + }, + { + "start": 79574.78, + "end": 79575.38, + "probability": 0.9862 + }, + { + "start": 79576.14, + "end": 79579.2, + "probability": 0.9892 + }, + { + "start": 79580.04, + "end": 79580.62, + "probability": 0.712 + }, + { + "start": 79581.0, + "end": 79581.66, + "probability": 0.9482 + }, + { + "start": 79585.14, + "end": 79587.66, + "probability": 0.9836 + }, + { + "start": 79587.78, + "end": 79590.2, + "probability": 0.7222 + }, + { + "start": 79591.0, + "end": 79594.96, + "probability": 0.9272 + }, + { + "start": 79595.98, + "end": 79598.64, + "probability": 0.9696 + }, + { + "start": 79598.72, + "end": 79599.7, + "probability": 0.2713 + }, + { + "start": 79599.76, + "end": 79600.3, + "probability": 0.6605 + }, + { + "start": 79600.66, + "end": 79602.22, + "probability": 0.9404 + }, + { + "start": 79606.08, + "end": 79611.04, + "probability": 0.9395 + }, + { + "start": 79611.94, + "end": 79612.94, + "probability": 0.7355 + }, + { + "start": 79614.64, + "end": 79616.51, + "probability": 0.931 + }, + { + "start": 79617.26, + "end": 79618.94, + "probability": 0.8152 + }, + { + "start": 79620.42, + "end": 79623.44, + "probability": 0.6006 + }, + { + "start": 79625.08, + "end": 79625.48, + "probability": 0.8826 + }, + { + "start": 79626.84, + "end": 79629.5, + "probability": 0.7672 + }, + { + "start": 79630.04, + "end": 79632.26, + "probability": 0.9839 + }, + { + "start": 79632.88, + "end": 79633.7, + "probability": 0.8851 + }, + { + "start": 79634.54, + "end": 79637.14, + "probability": 0.9847 + }, + { + "start": 79637.4, + "end": 79637.72, + "probability": 0.6404 + }, + { + "start": 79637.9, + "end": 79640.26, + "probability": 0.9292 + }, + { + "start": 79641.34, + "end": 79643.96, + "probability": 0.9965 + }, + { + "start": 79645.38, + "end": 79646.04, + "probability": 0.334 + }, + { + "start": 79646.64, + "end": 79647.6, + "probability": 0.8357 + }, + { + "start": 79648.58, + "end": 79649.02, + "probability": 0.5363 + }, + { + "start": 79651.12, + "end": 79651.73, + "probability": 0.0602 + }, + { + "start": 79653.56, + "end": 79654.9, + "probability": 0.3903 + }, + { + "start": 79657.1, + "end": 79659.84, + "probability": 0.6553 + }, + { + "start": 79661.24, + "end": 79661.7, + "probability": 0.007 + }, + { + "start": 79662.78, + "end": 79663.38, + "probability": 0.303 + }, + { + "start": 79673.02, + "end": 79675.4, + "probability": 0.8361 + }, + { + "start": 79677.2, + "end": 79678.29, + "probability": 0.9793 + }, + { + "start": 79683.34, + "end": 79687.78, + "probability": 0.9978 + }, + { + "start": 79689.04, + "end": 79690.52, + "probability": 0.7798 + }, + { + "start": 79693.88, + "end": 79695.64, + "probability": 0.999 + }, + { + "start": 79696.52, + "end": 79699.6, + "probability": 0.5761 + }, + { + "start": 79700.56, + "end": 79702.42, + "probability": 0.9829 + }, + { + "start": 79703.7, + "end": 79705.12, + "probability": 0.6729 + }, + { + "start": 79706.04, + "end": 79707.06, + "probability": 0.6701 + }, + { + "start": 79708.6, + "end": 79709.74, + "probability": 0.9346 + }, + { + "start": 79710.32, + "end": 79713.74, + "probability": 0.9783 + }, + { + "start": 79714.3, + "end": 79717.8, + "probability": 0.9961 + }, + { + "start": 79718.94, + "end": 79721.06, + "probability": 0.8752 + }, + { + "start": 79721.78, + "end": 79725.82, + "probability": 0.9381 + }, + { + "start": 79726.26, + "end": 79726.92, + "probability": 0.9106 + }, + { + "start": 79728.02, + "end": 79729.7, + "probability": 0.9636 + }, + { + "start": 79730.28, + "end": 79732.86, + "probability": 0.998 + }, + { + "start": 79733.52, + "end": 79734.52, + "probability": 0.8198 + }, + { + "start": 79735.6, + "end": 79738.82, + "probability": 0.8862 + }, + { + "start": 79739.36, + "end": 79740.04, + "probability": 0.5103 + }, + { + "start": 79740.66, + "end": 79741.42, + "probability": 0.6769 + }, + { + "start": 79743.22, + "end": 79745.82, + "probability": 0.8712 + }, + { + "start": 79745.92, + "end": 79749.5, + "probability": 0.9893 + }, + { + "start": 79750.2, + "end": 79751.52, + "probability": 0.9966 + }, + { + "start": 79752.28, + "end": 79753.42, + "probability": 0.9222 + }, + { + "start": 79753.54, + "end": 79755.44, + "probability": 0.989 + }, + { + "start": 79756.42, + "end": 79757.54, + "probability": 0.98 + }, + { + "start": 79758.44, + "end": 79760.66, + "probability": 0.9831 + }, + { + "start": 79761.6, + "end": 79765.72, + "probability": 0.8735 + }, + { + "start": 79766.96, + "end": 79767.76, + "probability": 0.8374 + }, + { + "start": 79768.86, + "end": 79773.7, + "probability": 0.8567 + }, + { + "start": 79774.24, + "end": 79774.8, + "probability": 0.6874 + }, + { + "start": 79775.97, + "end": 79778.36, + "probability": 0.7956 + }, + { + "start": 79779.4, + "end": 79782.8, + "probability": 0.8238 + }, + { + "start": 79783.54, + "end": 79786.12, + "probability": 0.936 + }, + { + "start": 79786.72, + "end": 79788.28, + "probability": 0.7227 + }, + { + "start": 79789.2, + "end": 79791.08, + "probability": 0.9119 + }, + { + "start": 79791.88, + "end": 79793.92, + "probability": 0.9103 + }, + { + "start": 79795.18, + "end": 79798.68, + "probability": 0.9446 + }, + { + "start": 79799.12, + "end": 79802.02, + "probability": 0.9229 + }, + { + "start": 79802.56, + "end": 79803.04, + "probability": 0.5877 + }, + { + "start": 79803.82, + "end": 79806.76, + "probability": 0.8803 + }, + { + "start": 79807.46, + "end": 79811.56, + "probability": 0.8042 + }, + { + "start": 79812.7, + "end": 79813.56, + "probability": 0.9364 + }, + { + "start": 79814.62, + "end": 79814.94, + "probability": 0.8454 + }, + { + "start": 79815.78, + "end": 79817.46, + "probability": 0.8987 + }, + { + "start": 79818.5, + "end": 79823.38, + "probability": 0.9856 + }, + { + "start": 79825.14, + "end": 79826.74, + "probability": 0.8731 + }, + { + "start": 79828.96, + "end": 79831.16, + "probability": 0.7197 + }, + { + "start": 79831.68, + "end": 79837.54, + "probability": 0.9948 + }, + { + "start": 79838.18, + "end": 79841.2, + "probability": 0.9036 + }, + { + "start": 79841.26, + "end": 79841.42, + "probability": 0.399 + }, + { + "start": 79841.54, + "end": 79843.92, + "probability": 0.3897 + }, + { + "start": 79844.22, + "end": 79844.24, + "probability": 0.0083 + }, + { + "start": 79846.77, + "end": 79849.12, + "probability": 0.8739 + }, + { + "start": 79850.68, + "end": 79850.98, + "probability": 0.3607 + }, + { + "start": 79851.82, + "end": 79851.82, + "probability": 0.073 + }, + { + "start": 79851.82, + "end": 79855.66, + "probability": 0.6266 + }, + { + "start": 79856.58, + "end": 79859.46, + "probability": 0.9192 + }, + { + "start": 79859.82, + "end": 79861.5, + "probability": 0.9109 + }, + { + "start": 79861.98, + "end": 79866.06, + "probability": 0.9935 + }, + { + "start": 79866.56, + "end": 79869.16, + "probability": 0.9102 + }, + { + "start": 79870.3, + "end": 79873.1, + "probability": 0.9308 + }, + { + "start": 79874.14, + "end": 79877.64, + "probability": 0.9276 + }, + { + "start": 79877.84, + "end": 79879.46, + "probability": 0.8425 + }, + { + "start": 79881.52, + "end": 79883.52, + "probability": 0.8982 + }, + { + "start": 79883.9, + "end": 79884.9, + "probability": 0.9211 + }, + { + "start": 79886.04, + "end": 79887.14, + "probability": 0.8545 + }, + { + "start": 79887.64, + "end": 79888.61, + "probability": 0.959 + }, + { + "start": 79888.66, + "end": 79889.86, + "probability": 0.9712 + }, + { + "start": 79890.76, + "end": 79894.01, + "probability": 0.9373 + }, + { + "start": 79895.14, + "end": 79896.64, + "probability": 0.6662 + }, + { + "start": 79899.06, + "end": 79903.52, + "probability": 0.7755 + }, + { + "start": 79904.34, + "end": 79908.0, + "probability": 0.9525 + }, + { + "start": 79908.95, + "end": 79911.16, + "probability": 0.9846 + }, + { + "start": 79912.4, + "end": 79917.48, + "probability": 0.9875 + }, + { + "start": 79918.2, + "end": 79919.38, + "probability": 0.9981 + }, + { + "start": 79920.16, + "end": 79921.47, + "probability": 0.9061 + }, + { + "start": 79922.8, + "end": 79924.78, + "probability": 0.7014 + }, + { + "start": 79925.4, + "end": 79926.26, + "probability": 0.637 + }, + { + "start": 79927.2, + "end": 79929.04, + "probability": 0.5787 + }, + { + "start": 79929.86, + "end": 79931.16, + "probability": 0.7486 + }, + { + "start": 79931.48, + "end": 79931.56, + "probability": 0.3014 + }, + { + "start": 79931.56, + "end": 79935.74, + "probability": 0.97 + }, + { + "start": 79935.8, + "end": 79937.34, + "probability": 0.9753 + }, + { + "start": 79938.04, + "end": 79939.16, + "probability": 0.7693 + }, + { + "start": 79939.36, + "end": 79943.84, + "probability": 0.9785 + }, + { + "start": 79944.04, + "end": 79947.54, + "probability": 0.9881 + }, + { + "start": 79948.26, + "end": 79950.38, + "probability": 0.9927 + }, + { + "start": 79950.52, + "end": 79953.58, + "probability": 0.998 + }, + { + "start": 79953.72, + "end": 79955.06, + "probability": 0.95 + }, + { + "start": 79955.38, + "end": 79956.31, + "probability": 0.8585 + }, + { + "start": 79956.52, + "end": 79957.08, + "probability": 0.952 + }, + { + "start": 79957.86, + "end": 79962.01, + "probability": 0.9856 + }, + { + "start": 79962.69, + "end": 79971.16, + "probability": 0.9926 + }, + { + "start": 79971.34, + "end": 79975.56, + "probability": 0.9422 + }, + { + "start": 79976.14, + "end": 79977.12, + "probability": 0.9207 + }, + { + "start": 79977.68, + "end": 79978.16, + "probability": 0.7133 + }, + { + "start": 79979.0, + "end": 79980.68, + "probability": 0.9785 + }, + { + "start": 79982.06, + "end": 79991.4, + "probability": 0.9899 + }, + { + "start": 79992.28, + "end": 79994.96, + "probability": 0.6904 + }, + { + "start": 79995.98, + "end": 79997.26, + "probability": 0.8321 + }, + { + "start": 79998.54, + "end": 80001.84, + "probability": 0.6789 + }, + { + "start": 80002.6, + "end": 80005.28, + "probability": 0.9834 + }, + { + "start": 80005.38, + "end": 80006.78, + "probability": 0.9868 + }, + { + "start": 80006.84, + "end": 80007.54, + "probability": 0.8193 + }, + { + "start": 80009.71, + "end": 80013.86, + "probability": 0.9763 + }, + { + "start": 80014.32, + "end": 80016.48, + "probability": 0.7205 + }, + { + "start": 80018.12, + "end": 80022.52, + "probability": 0.5199 + }, + { + "start": 80023.42, + "end": 80024.34, + "probability": 0.7509 + }, + { + "start": 80024.44, + "end": 80026.36, + "probability": 0.942 + }, + { + "start": 80027.38, + "end": 80028.2, + "probability": 0.9268 + }, + { + "start": 80028.28, + "end": 80030.44, + "probability": 0.7079 + }, + { + "start": 80030.86, + "end": 80033.42, + "probability": 0.9883 + }, + { + "start": 80033.46, + "end": 80038.0, + "probability": 0.9405 + }, + { + "start": 80038.12, + "end": 80039.84, + "probability": 0.5042 + }, + { + "start": 80040.92, + "end": 80045.04, + "probability": 0.8389 + }, + { + "start": 80045.64, + "end": 80047.8, + "probability": 0.9797 + }, + { + "start": 80048.58, + "end": 80049.56, + "probability": 0.7581 + }, + { + "start": 80050.7, + "end": 80053.84, + "probability": 0.8791 + }, + { + "start": 80054.62, + "end": 80062.12, + "probability": 0.9321 + }, + { + "start": 80062.2, + "end": 80063.04, + "probability": 0.983 + }, + { + "start": 80063.7, + "end": 80064.04, + "probability": 0.7698 + }, + { + "start": 80064.5, + "end": 80065.3, + "probability": 0.9712 + }, + { + "start": 80065.8, + "end": 80070.88, + "probability": 0.9844 + }, + { + "start": 80071.68, + "end": 80073.14, + "probability": 0.9364 + }, + { + "start": 80073.46, + "end": 80080.36, + "probability": 0.9885 + }, + { + "start": 80082.61, + "end": 80086.76, + "probability": 0.7769 + }, + { + "start": 80087.14, + "end": 80088.76, + "probability": 0.9927 + }, + { + "start": 80089.74, + "end": 80091.04, + "probability": 0.7183 + }, + { + "start": 80091.52, + "end": 80093.08, + "probability": 0.9417 + }, + { + "start": 80093.6, + "end": 80097.64, + "probability": 0.9822 + }, + { + "start": 80098.44, + "end": 80098.54, + "probability": 0.5185 + }, + { + "start": 80099.92, + "end": 80103.82, + "probability": 0.979 + }, + { + "start": 80104.88, + "end": 80108.08, + "probability": 0.9288 + }, + { + "start": 80108.22, + "end": 80111.16, + "probability": 0.7646 + }, + { + "start": 80112.96, + "end": 80115.82, + "probability": 0.9108 + }, + { + "start": 80115.9, + "end": 80117.54, + "probability": 0.529 + }, + { + "start": 80117.56, + "end": 80122.58, + "probability": 0.9545 + }, + { + "start": 80122.96, + "end": 80125.26, + "probability": 0.8356 + }, + { + "start": 80125.96, + "end": 80127.28, + "probability": 0.9907 + }, + { + "start": 80127.42, + "end": 80128.12, + "probability": 0.5961 + }, + { + "start": 80128.2, + "end": 80130.02, + "probability": 0.9395 + }, + { + "start": 80130.9, + "end": 80131.58, + "probability": 0.7303 + }, + { + "start": 80131.74, + "end": 80132.59, + "probability": 0.6535 + }, + { + "start": 80133.0, + "end": 80133.72, + "probability": 0.86 + }, + { + "start": 80135.68, + "end": 80137.64, + "probability": 0.8562 + }, + { + "start": 80137.78, + "end": 80142.5, + "probability": 0.6773 + }, + { + "start": 80142.54, + "end": 80143.38, + "probability": 0.7392 + }, + { + "start": 80143.5, + "end": 80145.36, + "probability": 0.8549 + }, + { + "start": 80146.1, + "end": 80148.92, + "probability": 0.9553 + }, + { + "start": 80149.42, + "end": 80152.08, + "probability": 0.6035 + }, + { + "start": 80152.78, + "end": 80155.28, + "probability": 0.7245 + }, + { + "start": 80155.9, + "end": 80157.18, + "probability": 0.5311 + }, + { + "start": 80157.32, + "end": 80158.38, + "probability": 0.9568 + }, + { + "start": 80158.76, + "end": 80159.48, + "probability": 0.5809 + }, + { + "start": 80160.48, + "end": 80162.5, + "probability": 0.9602 + }, + { + "start": 80162.64, + "end": 80164.38, + "probability": 0.9556 + }, + { + "start": 80164.74, + "end": 80167.82, + "probability": 0.418 + }, + { + "start": 80167.9, + "end": 80169.42, + "probability": 0.75 + }, + { + "start": 80169.92, + "end": 80172.0, + "probability": 0.9916 + }, + { + "start": 80172.62, + "end": 80174.14, + "probability": 0.6915 + }, + { + "start": 80174.76, + "end": 80176.6, + "probability": 0.9614 + }, + { + "start": 80178.62, + "end": 80181.26, + "probability": 0.9977 + }, + { + "start": 80181.36, + "end": 80181.58, + "probability": 0.8412 + }, + { + "start": 80182.37, + "end": 80182.82, + "probability": 0.8615 + }, + { + "start": 80183.92, + "end": 80185.34, + "probability": 0.4942 + }, + { + "start": 80185.94, + "end": 80188.66, + "probability": 0.7842 + }, + { + "start": 80189.0, + "end": 80190.7, + "probability": 0.9773 + }, + { + "start": 80191.32, + "end": 80192.84, + "probability": 0.9858 + }, + { + "start": 80193.48, + "end": 80194.26, + "probability": 0.5122 + }, + { + "start": 80195.66, + "end": 80197.96, + "probability": 0.917 + }, + { + "start": 80198.34, + "end": 80199.71, + "probability": 0.5905 + }, + { + "start": 80200.18, + "end": 80200.54, + "probability": 0.3074 + }, + { + "start": 80200.58, + "end": 80201.82, + "probability": 0.8982 + }, + { + "start": 80202.18, + "end": 80202.84, + "probability": 0.5978 + }, + { + "start": 80203.0, + "end": 80204.1, + "probability": 0.9136 + }, + { + "start": 80204.4, + "end": 80204.98, + "probability": 0.8044 + }, + { + "start": 80205.7, + "end": 80210.16, + "probability": 0.5236 + }, + { + "start": 80210.24, + "end": 80211.74, + "probability": 0.9163 + }, + { + "start": 80212.3, + "end": 80213.22, + "probability": 0.9427 + }, + { + "start": 80213.8, + "end": 80217.65, + "probability": 0.9935 + }, + { + "start": 80218.72, + "end": 80220.26, + "probability": 0.726 + }, + { + "start": 80220.5, + "end": 80222.44, + "probability": 0.9418 + }, + { + "start": 80223.1, + "end": 80226.52, + "probability": 0.9637 + }, + { + "start": 80229.33, + "end": 80235.02, + "probability": 0.9844 + }, + { + "start": 80236.06, + "end": 80238.64, + "probability": 0.859 + }, + { + "start": 80238.74, + "end": 80241.42, + "probability": 0.8707 + }, + { + "start": 80241.92, + "end": 80242.78, + "probability": 0.5097 + }, + { + "start": 80243.46, + "end": 80243.88, + "probability": 0.8548 + }, + { + "start": 80246.46, + "end": 80247.02, + "probability": 0.5586 + }, + { + "start": 80247.64, + "end": 80250.26, + "probability": 0.8226 + }, + { + "start": 80250.34, + "end": 80251.22, + "probability": 0.8171 + }, + { + "start": 80251.84, + "end": 80255.96, + "probability": 0.9738 + }, + { + "start": 80256.18, + "end": 80256.59, + "probability": 0.8834 + }, + { + "start": 80257.76, + "end": 80259.33, + "probability": 0.9162 + }, + { + "start": 80259.52, + "end": 80262.12, + "probability": 0.6617 + }, + { + "start": 80262.82, + "end": 80264.74, + "probability": 0.5425 + }, + { + "start": 80265.58, + "end": 80267.04, + "probability": 0.973 + }, + { + "start": 80267.56, + "end": 80270.26, + "probability": 0.9853 + }, + { + "start": 80271.84, + "end": 80273.18, + "probability": 0.4564 + }, + { + "start": 80273.32, + "end": 80274.2, + "probability": 0.7009 + }, + { + "start": 80274.3, + "end": 80276.14, + "probability": 0.9559 + }, + { + "start": 80277.48, + "end": 80278.66, + "probability": 0.8778 + }, + { + "start": 80278.88, + "end": 80281.46, + "probability": 0.9185 + }, + { + "start": 80281.54, + "end": 80281.98, + "probability": 0.6018 + }, + { + "start": 80282.54, + "end": 80282.8, + "probability": 0.8698 + }, + { + "start": 80282.86, + "end": 80286.24, + "probability": 0.9683 + }, + { + "start": 80286.82, + "end": 80288.1, + "probability": 0.9624 + }, + { + "start": 80288.72, + "end": 80289.88, + "probability": 0.9932 + }, + { + "start": 80290.16, + "end": 80292.14, + "probability": 0.906 + }, + { + "start": 80293.4, + "end": 80294.78, + "probability": 0.743 + }, + { + "start": 80295.54, + "end": 80297.72, + "probability": 0.9929 + }, + { + "start": 80298.64, + "end": 80300.88, + "probability": 0.9556 + }, + { + "start": 80301.76, + "end": 80303.48, + "probability": 0.6772 + }, + { + "start": 80303.68, + "end": 80305.96, + "probability": 0.8651 + }, + { + "start": 80306.66, + "end": 80309.48, + "probability": 0.8784 + }, + { + "start": 80309.59, + "end": 80312.48, + "probability": 0.9894 + }, + { + "start": 80312.96, + "end": 80315.72, + "probability": 0.9111 + }, + { + "start": 80316.06, + "end": 80316.52, + "probability": 0.5502 + }, + { + "start": 80317.12, + "end": 80320.28, + "probability": 0.98 + }, + { + "start": 80321.06, + "end": 80323.26, + "probability": 0.9697 + }, + { + "start": 80323.96, + "end": 80324.8, + "probability": 0.8123 + }, + { + "start": 80325.18, + "end": 80329.8, + "probability": 0.9922 + }, + { + "start": 80330.78, + "end": 80333.7, + "probability": 0.8423 + }, + { + "start": 80334.06, + "end": 80334.5, + "probability": 0.7143 + }, + { + "start": 80335.3, + "end": 80338.2, + "probability": 0.8056 + }, + { + "start": 80338.98, + "end": 80340.02, + "probability": 0.2835 + }, + { + "start": 80340.64, + "end": 80342.92, + "probability": 0.9656 + }, + { + "start": 80343.44, + "end": 80344.3, + "probability": 0.9448 + }, + { + "start": 80344.58, + "end": 80347.14, + "probability": 0.951 + }, + { + "start": 80347.46, + "end": 80348.22, + "probability": 0.9251 + }, + { + "start": 80348.72, + "end": 80350.86, + "probability": 0.9797 + }, + { + "start": 80351.42, + "end": 80354.26, + "probability": 0.696 + }, + { + "start": 80354.34, + "end": 80356.64, + "probability": 0.8971 + }, + { + "start": 80357.48, + "end": 80358.22, + "probability": 0.9396 + }, + { + "start": 80358.88, + "end": 80359.23, + "probability": 0.6825 + }, + { + "start": 80360.12, + "end": 80362.33, + "probability": 0.2505 + }, + { + "start": 80362.36, + "end": 80365.34, + "probability": 0.9091 + }, + { + "start": 80365.6, + "end": 80366.24, + "probability": 0.738 + }, + { + "start": 80366.56, + "end": 80367.1, + "probability": 0.9075 + }, + { + "start": 80367.72, + "end": 80368.14, + "probability": 0.3994 + }, + { + "start": 80369.02, + "end": 80372.18, + "probability": 0.9055 + }, + { + "start": 80372.94, + "end": 80375.28, + "probability": 0.4503 + }, + { + "start": 80375.92, + "end": 80376.69, + "probability": 0.9078 + }, + { + "start": 80377.44, + "end": 80377.68, + "probability": 0.7871 + }, + { + "start": 80377.86, + "end": 80379.04, + "probability": 0.9683 + }, + { + "start": 80379.1, + "end": 80380.54, + "probability": 0.9917 + }, + { + "start": 80381.66, + "end": 80382.74, + "probability": 0.9207 + }, + { + "start": 80383.98, + "end": 80384.94, + "probability": 0.8428 + }, + { + "start": 80385.2, + "end": 80386.64, + "probability": 0.803 + }, + { + "start": 80387.0, + "end": 80388.84, + "probability": 0.9611 + }, + { + "start": 80389.64, + "end": 80391.08, + "probability": 0.9771 + }, + { + "start": 80391.64, + "end": 80394.52, + "probability": 0.7176 + }, + { + "start": 80395.7, + "end": 80397.64, + "probability": 0.9136 + }, + { + "start": 80398.84, + "end": 80399.43, + "probability": 0.9753 + }, + { + "start": 80400.66, + "end": 80401.34, + "probability": 0.9526 + }, + { + "start": 80401.66, + "end": 80402.28, + "probability": 0.9818 + }, + { + "start": 80402.54, + "end": 80402.95, + "probability": 0.9927 + }, + { + "start": 80403.42, + "end": 80404.12, + "probability": 0.951 + }, + { + "start": 80404.6, + "end": 80405.22, + "probability": 0.9043 + }, + { + "start": 80405.42, + "end": 80406.82, + "probability": 0.96 + }, + { + "start": 80407.46, + "end": 80408.92, + "probability": 0.9614 + }, + { + "start": 80410.2, + "end": 80411.5, + "probability": 0.876 + }, + { + "start": 80412.04, + "end": 80413.5, + "probability": 0.6691 + }, + { + "start": 80414.12, + "end": 80416.7, + "probability": 0.7946 + }, + { + "start": 80417.22, + "end": 80418.3, + "probability": 0.9021 + }, + { + "start": 80418.78, + "end": 80420.1, + "probability": 0.9524 + }, + { + "start": 80420.78, + "end": 80423.62, + "probability": 0.9427 + }, + { + "start": 80423.62, + "end": 80426.62, + "probability": 0.9442 + }, + { + "start": 80427.22, + "end": 80430.7, + "probability": 0.8187 + }, + { + "start": 80431.46, + "end": 80435.58, + "probability": 0.899 + }, + { + "start": 80436.62, + "end": 80440.28, + "probability": 0.8577 + }, + { + "start": 80440.28, + "end": 80441.18, + "probability": 0.6372 + }, + { + "start": 80442.0, + "end": 80444.08, + "probability": 0.8803 + }, + { + "start": 80444.82, + "end": 80449.9, + "probability": 0.9705 + }, + { + "start": 80450.34, + "end": 80451.66, + "probability": 0.8949 + }, + { + "start": 80452.28, + "end": 80454.0, + "probability": 0.7648 + }, + { + "start": 80454.62, + "end": 80455.72, + "probability": 0.9869 + }, + { + "start": 80456.16, + "end": 80459.46, + "probability": 0.9577 + }, + { + "start": 80460.2, + "end": 80462.62, + "probability": 0.722 + }, + { + "start": 80463.62, + "end": 80464.8, + "probability": 0.5705 + }, + { + "start": 80465.48, + "end": 80467.64, + "probability": 0.7719 + }, + { + "start": 80468.42, + "end": 80469.6, + "probability": 0.9669 + }, + { + "start": 80470.2, + "end": 80471.1, + "probability": 0.9847 + }, + { + "start": 80471.78, + "end": 80479.04, + "probability": 0.9933 + }, + { + "start": 80479.86, + "end": 80485.74, + "probability": 0.9945 + }, + { + "start": 80486.62, + "end": 80489.06, + "probability": 0.9897 + }, + { + "start": 80490.0, + "end": 80490.92, + "probability": 0.8007 + }, + { + "start": 80491.12, + "end": 80491.86, + "probability": 0.9767 + }, + { + "start": 80491.92, + "end": 80492.56, + "probability": 0.915 + }, + { + "start": 80493.0, + "end": 80495.26, + "probability": 0.9703 + }, + { + "start": 80495.32, + "end": 80499.32, + "probability": 0.7721 + }, + { + "start": 80499.88, + "end": 80500.68, + "probability": 0.7366 + }, + { + "start": 80501.36, + "end": 80502.08, + "probability": 0.7118 + }, + { + "start": 80502.64, + "end": 80504.26, + "probability": 0.7869 + }, + { + "start": 80504.68, + "end": 80506.58, + "probability": 0.5327 + }, + { + "start": 80506.66, + "end": 80506.8, + "probability": 0.794 + }, + { + "start": 80507.6, + "end": 80508.22, + "probability": 0.855 + }, + { + "start": 80508.76, + "end": 80509.55, + "probability": 0.9667 + }, + { + "start": 80510.24, + "end": 80511.86, + "probability": 0.9467 + }, + { + "start": 80512.28, + "end": 80513.44, + "probability": 0.9507 + }, + { + "start": 80515.08, + "end": 80518.84, + "probability": 0.9969 + }, + { + "start": 80519.48, + "end": 80520.42, + "probability": 0.885 + }, + { + "start": 80520.56, + "end": 80522.32, + "probability": 0.7743 + }, + { + "start": 80522.8, + "end": 80525.0, + "probability": 0.9796 + }, + { + "start": 80526.28, + "end": 80527.26, + "probability": 0.2354 + }, + { + "start": 80527.36, + "end": 80530.26, + "probability": 0.9791 + }, + { + "start": 80532.08, + "end": 80534.62, + "probability": 0.2419 + }, + { + "start": 80535.18, + "end": 80537.08, + "probability": 0.7579 + }, + { + "start": 80537.82, + "end": 80543.9, + "probability": 0.9048 + }, + { + "start": 80544.02, + "end": 80548.0, + "probability": 0.8818 + }, + { + "start": 80548.06, + "end": 80550.36, + "probability": 0.8346 + }, + { + "start": 80551.26, + "end": 80552.48, + "probability": 0.9658 + }, + { + "start": 80553.28, + "end": 80554.86, + "probability": 0.9613 + }, + { + "start": 80555.1, + "end": 80557.96, + "probability": 0.883 + }, + { + "start": 80558.54, + "end": 80560.2, + "probability": 0.5357 + }, + { + "start": 80560.22, + "end": 80561.28, + "probability": 0.4834 + }, + { + "start": 80561.54, + "end": 80563.02, + "probability": 0.9202 + }, + { + "start": 80566.02, + "end": 80568.02, + "probability": 0.3598 + }, + { + "start": 80568.02, + "end": 80569.82, + "probability": 0.0393 + }, + { + "start": 80570.24, + "end": 80571.2, + "probability": 0.7967 + }, + { + "start": 80571.56, + "end": 80572.6, + "probability": 0.7688 + }, + { + "start": 80572.94, + "end": 80573.78, + "probability": 0.8677 + }, + { + "start": 80574.42, + "end": 80578.3, + "probability": 0.8189 + }, + { + "start": 80578.96, + "end": 80579.52, + "probability": 0.9883 + }, + { + "start": 80579.94, + "end": 80583.62, + "probability": 0.6545 + }, + { + "start": 80584.02, + "end": 80584.6, + "probability": 0.8648 + }, + { + "start": 80585.16, + "end": 80588.52, + "probability": 0.9683 + }, + { + "start": 80592.96, + "end": 80593.4, + "probability": 0.4695 + }, + { + "start": 80593.92, + "end": 80594.08, + "probability": 0.3149 + }, + { + "start": 80594.5, + "end": 80597.9, + "probability": 0.9044 + }, + { + "start": 80597.98, + "end": 80599.63, + "probability": 0.9868 + }, + { + "start": 80599.98, + "end": 80601.03, + "probability": 0.7669 + }, + { + "start": 80601.16, + "end": 80602.22, + "probability": 0.9567 + }, + { + "start": 80602.74, + "end": 80604.8, + "probability": 0.8101 + }, + { + "start": 80605.08, + "end": 80606.0, + "probability": 0.9969 + }, + { + "start": 80607.24, + "end": 80607.84, + "probability": 0.9074 + }, + { + "start": 80607.94, + "end": 80610.96, + "probability": 0.9875 + }, + { + "start": 80611.44, + "end": 80615.56, + "probability": 0.9854 + }, + { + "start": 80615.56, + "end": 80619.56, + "probability": 0.9834 + }, + { + "start": 80619.7, + "end": 80621.74, + "probability": 0.8967 + }, + { + "start": 80622.02, + "end": 80623.27, + "probability": 0.7497 + }, + { + "start": 80624.0, + "end": 80625.67, + "probability": 0.9412 + }, + { + "start": 80626.14, + "end": 80628.88, + "probability": 0.9881 + }, + { + "start": 80630.26, + "end": 80632.5, + "probability": 0.9751 + }, + { + "start": 80633.92, + "end": 80634.12, + "probability": 0.0571 + }, + { + "start": 80634.96, + "end": 80637.52, + "probability": 0.0709 + }, + { + "start": 80637.94, + "end": 80638.04, + "probability": 0.0115 + }, + { + "start": 80638.04, + "end": 80638.88, + "probability": 0.867 + }, + { + "start": 80639.72, + "end": 80640.06, + "probability": 0.2769 + }, + { + "start": 80640.34, + "end": 80644.2, + "probability": 0.6677 + }, + { + "start": 80644.34, + "end": 80645.72, + "probability": 0.9655 + }, + { + "start": 80648.06, + "end": 80648.48, + "probability": 0.5577 + }, + { + "start": 80649.22, + "end": 80650.3, + "probability": 0.6152 + }, + { + "start": 80650.8, + "end": 80654.26, + "probability": 0.9923 + }, + { + "start": 80654.92, + "end": 80655.6, + "probability": 0.7741 + }, + { + "start": 80655.66, + "end": 80657.86, + "probability": 0.9949 + }, + { + "start": 80659.26, + "end": 80662.84, + "probability": 0.8104 + }, + { + "start": 80663.68, + "end": 80664.98, + "probability": 0.709 + }, + { + "start": 80665.12, + "end": 80665.82, + "probability": 0.5033 + }, + { + "start": 80666.48, + "end": 80668.76, + "probability": 0.9409 + }, + { + "start": 80669.3, + "end": 80670.04, + "probability": 0.8203 + }, + { + "start": 80670.04, + "end": 80670.26, + "probability": 0.8474 + }, + { + "start": 80670.44, + "end": 80673.16, + "probability": 0.9622 + }, + { + "start": 80673.39, + "end": 80676.64, + "probability": 0.9308 + }, + { + "start": 80676.98, + "end": 80677.02, + "probability": 0.008 + }, + { + "start": 80677.1, + "end": 80677.22, + "probability": 0.8432 + }, + { + "start": 80677.3, + "end": 80677.86, + "probability": 0.9294 + }, + { + "start": 80679.17, + "end": 80682.12, + "probability": 0.962 + }, + { + "start": 80682.8, + "end": 80684.32, + "probability": 0.7812 + }, + { + "start": 80684.32, + "end": 80689.38, + "probability": 0.9674 + }, + { + "start": 80689.9, + "end": 80690.94, + "probability": 0.4265 + }, + { + "start": 80691.34, + "end": 80692.06, + "probability": 0.7058 + }, + { + "start": 80692.14, + "end": 80693.36, + "probability": 0.7528 + }, + { + "start": 80693.9, + "end": 80696.88, + "probability": 0.7322 + }, + { + "start": 80697.58, + "end": 80701.42, + "probability": 0.9774 + }, + { + "start": 80702.18, + "end": 80704.68, + "probability": 0.9525 + }, + { + "start": 80705.42, + "end": 80707.68, + "probability": 0.9722 + }, + { + "start": 80708.24, + "end": 80711.44, + "probability": 0.8631 + }, + { + "start": 80712.1, + "end": 80713.44, + "probability": 0.8898 + }, + { + "start": 80713.98, + "end": 80716.38, + "probability": 0.9717 + }, + { + "start": 80717.02, + "end": 80721.86, + "probability": 0.9937 + }, + { + "start": 80722.44, + "end": 80723.02, + "probability": 0.8612 + }, + { + "start": 80723.1, + "end": 80724.44, + "probability": 0.995 + }, + { + "start": 80725.1, + "end": 80726.63, + "probability": 0.9352 + }, + { + "start": 80726.7, + "end": 80730.76, + "probability": 0.8867 + }, + { + "start": 80730.94, + "end": 80732.08, + "probability": 0.6758 + }, + { + "start": 80732.12, + "end": 80732.9, + "probability": 0.3225 + }, + { + "start": 80733.06, + "end": 80733.22, + "probability": 0.6897 + }, + { + "start": 80733.22, + "end": 80733.34, + "probability": 0.7063 + }, + { + "start": 80734.08, + "end": 80735.56, + "probability": 0.081 + }, + { + "start": 80735.94, + "end": 80735.96, + "probability": 0.0471 + }, + { + "start": 80735.96, + "end": 80739.64, + "probability": 0.9294 + }, + { + "start": 80739.64, + "end": 80742.62, + "probability": 0.999 + }, + { + "start": 80742.72, + "end": 80743.22, + "probability": 0.5361 + }, + { + "start": 80743.82, + "end": 80743.84, + "probability": 0.0162 + }, + { + "start": 80743.84, + "end": 80746.42, + "probability": 0.987 + }, + { + "start": 80746.96, + "end": 80747.42, + "probability": 0.9377 + }, + { + "start": 80748.34, + "end": 80750.44, + "probability": 0.9432 + }, + { + "start": 80751.18, + "end": 80755.68, + "probability": 0.9889 + }, + { + "start": 80769.88, + "end": 80770.28, + "probability": 0.0341 + }, + { + "start": 80770.28, + "end": 80770.28, + "probability": 0.0241 + }, + { + "start": 80770.28, + "end": 80772.52, + "probability": 0.781 + }, + { + "start": 80773.42, + "end": 80773.42, + "probability": 0.2156 + }, + { + "start": 80773.42, + "end": 80773.42, + "probability": 0.2401 + }, + { + "start": 80773.42, + "end": 80777.06, + "probability": 0.7312 + }, + { + "start": 80777.84, + "end": 80782.4, + "probability": 0.9563 + }, + { + "start": 80782.88, + "end": 80783.82, + "probability": 0.681 + }, + { + "start": 80784.06, + "end": 80786.36, + "probability": 0.7268 + }, + { + "start": 80788.92, + "end": 80791.14, + "probability": 0.8102 + }, + { + "start": 80791.56, + "end": 80792.1, + "probability": 0.5424 + }, + { + "start": 80792.18, + "end": 80795.14, + "probability": 0.8442 + }, + { + "start": 80795.94, + "end": 80800.52, + "probability": 0.9812 + }, + { + "start": 80802.64, + "end": 80804.74, + "probability": 0.8696 + }, + { + "start": 80805.94, + "end": 80807.68, + "probability": 0.7779 + }, + { + "start": 80808.4, + "end": 80810.9, + "probability": 0.9307 + }, + { + "start": 80811.64, + "end": 80813.38, + "probability": 0.9123 + }, + { + "start": 80814.08, + "end": 80816.52, + "probability": 0.9868 + }, + { + "start": 80817.16, + "end": 80820.4, + "probability": 0.9904 + }, + { + "start": 80821.06, + "end": 80821.8, + "probability": 0.8946 + }, + { + "start": 80822.44, + "end": 80825.02, + "probability": 0.9595 + }, + { + "start": 80825.4, + "end": 80828.63, + "probability": 0.9609 + }, + { + "start": 80829.98, + "end": 80831.64, + "probability": 0.8943 + }, + { + "start": 80832.34, + "end": 80835.04, + "probability": 0.9967 + }, + { + "start": 80835.04, + "end": 80839.06, + "probability": 0.9934 + }, + { + "start": 80839.76, + "end": 80842.01, + "probability": 0.9955 + }, + { + "start": 80843.34, + "end": 80845.38, + "probability": 0.9355 + }, + { + "start": 80845.7, + "end": 80846.76, + "probability": 0.8618 + }, + { + "start": 80847.29, + "end": 80850.74, + "probability": 0.8522 + }, + { + "start": 80850.84, + "end": 80853.0, + "probability": 0.9081 + }, + { + "start": 80853.5, + "end": 80855.0, + "probability": 0.6378 + }, + { + "start": 80855.04, + "end": 80856.66, + "probability": 0.9108 + }, + { + "start": 80856.96, + "end": 80857.76, + "probability": 0.9893 + }, + { + "start": 80858.82, + "end": 80860.98, + "probability": 0.9736 + }, + { + "start": 80861.62, + "end": 80863.52, + "probability": 0.9923 + }, + { + "start": 80863.8, + "end": 80864.87, + "probability": 0.9917 + }, + { + "start": 80865.97, + "end": 80867.48, + "probability": 0.9907 + }, + { + "start": 80868.4, + "end": 80873.22, + "probability": 0.9961 + }, + { + "start": 80874.0, + "end": 80879.96, + "probability": 0.9751 + }, + { + "start": 80879.96, + "end": 80884.14, + "probability": 0.9868 + }, + { + "start": 80884.5, + "end": 80884.75, + "probability": 0.7406 + }, + { + "start": 80885.24, + "end": 80888.02, + "probability": 0.8244 + }, + { + "start": 80888.82, + "end": 80890.34, + "probability": 0.9323 + }, + { + "start": 80891.61, + "end": 80895.7, + "probability": 0.9971 + }, + { + "start": 80896.34, + "end": 80897.86, + "probability": 0.9824 + }, + { + "start": 80898.6, + "end": 80899.28, + "probability": 0.8273 + }, + { + "start": 80900.22, + "end": 80900.68, + "probability": 0.9136 + }, + { + "start": 80902.14, + "end": 80904.76, + "probability": 0.9889 + }, + { + "start": 80904.9, + "end": 80905.76, + "probability": 0.708 + }, + { + "start": 80905.84, + "end": 80908.52, + "probability": 0.9918 + }, + { + "start": 80909.02, + "end": 80909.56, + "probability": 0.6626 + }, + { + "start": 80910.36, + "end": 80912.36, + "probability": 0.8967 + }, + { + "start": 80913.62, + "end": 80917.16, + "probability": 0.9652 + }, + { + "start": 80917.16, + "end": 80919.22, + "probability": 0.998 + }, + { + "start": 80919.9, + "end": 80921.98, + "probability": 0.7528 + }, + { + "start": 80922.08, + "end": 80923.48, + "probability": 0.9814 + }, + { + "start": 80924.06, + "end": 80925.58, + "probability": 0.8545 + }, + { + "start": 80926.4, + "end": 80927.48, + "probability": 0.4974 + }, + { + "start": 80927.84, + "end": 80928.92, + "probability": 0.9966 + }, + { + "start": 80929.5, + "end": 80931.32, + "probability": 0.8199 + }, + { + "start": 80931.8, + "end": 80933.72, + "probability": 0.9951 + }, + { + "start": 80934.64, + "end": 80936.0, + "probability": 0.8647 + }, + { + "start": 80936.68, + "end": 80937.68, + "probability": 0.4944 + }, + { + "start": 80939.02, + "end": 80939.96, + "probability": 0.7018 + }, + { + "start": 80940.2, + "end": 80940.82, + "probability": 0.5552 + }, + { + "start": 80941.16, + "end": 80946.34, + "probability": 0.8667 + }, + { + "start": 80946.34, + "end": 80950.54, + "probability": 0.9841 + }, + { + "start": 80951.94, + "end": 80954.02, + "probability": 0.4131 + }, + { + "start": 80954.68, + "end": 80957.44, + "probability": 0.9587 + }, + { + "start": 80957.98, + "end": 80960.5, + "probability": 0.9824 + }, + { + "start": 80960.7, + "end": 80964.58, + "probability": 0.8774 + }, + { + "start": 80964.76, + "end": 80969.64, + "probability": 0.4721 + }, + { + "start": 80969.86, + "end": 80970.52, + "probability": 0.8727 + }, + { + "start": 80971.64, + "end": 80972.52, + "probability": 0.2142 + }, + { + "start": 80972.98, + "end": 80975.94, + "probability": 0.9795 + }, + { + "start": 80976.62, + "end": 80979.12, + "probability": 0.9475 + }, + { + "start": 80979.82, + "end": 80982.96, + "probability": 0.602 + }, + { + "start": 80983.14, + "end": 80983.5, + "probability": 0.7048 + }, + { + "start": 80985.14, + "end": 80985.88, + "probability": 0.4969 + }, + { + "start": 80986.42, + "end": 80989.58, + "probability": 0.9914 + }, + { + "start": 80990.84, + "end": 80995.22, + "probability": 0.9787 + }, + { + "start": 80996.86, + "end": 80998.42, + "probability": 0.671 + }, + { + "start": 80999.64, + "end": 81001.58, + "probability": 0.8901 + }, + { + "start": 81002.71, + "end": 81004.81, + "probability": 0.3964 + }, + { + "start": 81006.56, + "end": 81007.74, + "probability": 0.7656 + }, + { + "start": 81009.08, + "end": 81010.36, + "probability": 0.9426 + }, + { + "start": 81011.96, + "end": 81013.18, + "probability": 0.7568 + }, + { + "start": 81015.38, + "end": 81018.74, + "probability": 0.7917 + }, + { + "start": 81020.24, + "end": 81023.2, + "probability": 0.9438 + }, + { + "start": 81025.3, + "end": 81026.18, + "probability": 0.9574 + }, + { + "start": 81027.52, + "end": 81029.84, + "probability": 0.8375 + }, + { + "start": 81031.28, + "end": 81032.64, + "probability": 0.967 + }, + { + "start": 81035.3, + "end": 81036.02, + "probability": 0.9873 + }, + { + "start": 81036.96, + "end": 81039.36, + "probability": 0.9006 + }, + { + "start": 81040.46, + "end": 81045.39, + "probability": 0.9936 + }, + { + "start": 81047.06, + "end": 81049.16, + "probability": 0.9028 + }, + { + "start": 81051.44, + "end": 81052.56, + "probability": 0.8744 + }, + { + "start": 81054.08, + "end": 81054.78, + "probability": 0.0902 + }, + { + "start": 81054.78, + "end": 81055.9, + "probability": 0.9912 + }, + { + "start": 81056.42, + "end": 81059.12, + "probability": 0.8683 + }, + { + "start": 81059.88, + "end": 81062.06, + "probability": 0.7602 + }, + { + "start": 81062.38, + "end": 81062.9, + "probability": 0.5446 + }, + { + "start": 81063.06, + "end": 81063.46, + "probability": 0.4551 + }, + { + "start": 81063.64, + "end": 81066.14, + "probability": 0.9017 + }, + { + "start": 81067.3, + "end": 81069.64, + "probability": 0.7002 + }, + { + "start": 81070.72, + "end": 81071.26, + "probability": 0.91 + }, + { + "start": 81073.3, + "end": 81075.06, + "probability": 0.7955 + }, + { + "start": 81075.16, + "end": 81076.0, + "probability": 0.7653 + }, + { + "start": 81076.12, + "end": 81079.04, + "probability": 0.7279 + }, + { + "start": 81079.64, + "end": 81082.08, + "probability": 0.8033 + }, + { + "start": 81083.52, + "end": 81086.92, + "probability": 0.9744 + }, + { + "start": 81088.06, + "end": 81090.42, + "probability": 0.9386 + }, + { + "start": 81091.1, + "end": 81094.66, + "probability": 0.7309 + }, + { + "start": 81094.9, + "end": 81097.28, + "probability": 0.8756 + }, + { + "start": 81097.38, + "end": 81098.04, + "probability": 0.706 + }, + { + "start": 81098.14, + "end": 81098.76, + "probability": 0.8209 + }, + { + "start": 81099.86, + "end": 81100.63, + "probability": 0.9823 + }, + { + "start": 81101.06, + "end": 81101.9, + "probability": 0.9921 + }, + { + "start": 81102.48, + "end": 81104.8, + "probability": 0.9698 + }, + { + "start": 81104.86, + "end": 81105.94, + "probability": 0.946 + }, + { + "start": 81112.84, + "end": 81113.72, + "probability": 0.476 + }, + { + "start": 81115.28, + "end": 81116.25, + "probability": 0.9907 + }, + { + "start": 81118.14, + "end": 81120.08, + "probability": 0.9849 + }, + { + "start": 81121.56, + "end": 81122.76, + "probability": 0.9256 + }, + { + "start": 81123.14, + "end": 81127.04, + "probability": 0.9927 + }, + { + "start": 81127.88, + "end": 81131.8, + "probability": 0.9587 + }, + { + "start": 81132.78, + "end": 81137.86, + "probability": 0.9006 + }, + { + "start": 81138.26, + "end": 81138.76, + "probability": 0.6479 + }, + { + "start": 81139.62, + "end": 81141.6, + "probability": 0.981 + }, + { + "start": 81142.14, + "end": 81145.36, + "probability": 0.9336 + }, + { + "start": 81148.82, + "end": 81151.2, + "probability": 0.9972 + }, + { + "start": 81152.11, + "end": 81155.49, + "probability": 0.9207 + }, + { + "start": 81156.4, + "end": 81157.18, + "probability": 0.66 + }, + { + "start": 81158.06, + "end": 81159.36, + "probability": 0.8569 + }, + { + "start": 81159.44, + "end": 81166.86, + "probability": 0.9313 + }, + { + "start": 81168.14, + "end": 81170.92, + "probability": 0.9623 + }, + { + "start": 81171.06, + "end": 81171.88, + "probability": 0.8071 + }, + { + "start": 81172.58, + "end": 81173.1, + "probability": 0.8822 + }, + { + "start": 81173.26, + "end": 81174.1, + "probability": 0.8786 + }, + { + "start": 81175.38, + "end": 81176.44, + "probability": 0.7614 + }, + { + "start": 81179.44, + "end": 81181.42, + "probability": 0.5993 + }, + { + "start": 81182.14, + "end": 81183.24, + "probability": 0.8461 + }, + { + "start": 81184.12, + "end": 81188.42, + "probability": 0.734 + }, + { + "start": 81189.12, + "end": 81193.96, + "probability": 0.6814 + }, + { + "start": 81194.94, + "end": 81196.86, + "probability": 0.9297 + }, + { + "start": 81197.6, + "end": 81199.18, + "probability": 0.5869 + }, + { + "start": 81200.08, + "end": 81202.0, + "probability": 0.9208 + }, + { + "start": 81202.56, + "end": 81203.05, + "probability": 0.5374 + }, + { + "start": 81205.1, + "end": 81207.54, + "probability": 0.9949 + }, + { + "start": 81208.12, + "end": 81211.46, + "probability": 0.9434 + }, + { + "start": 81211.52, + "end": 81212.3, + "probability": 0.9917 + }, + { + "start": 81212.58, + "end": 81217.16, + "probability": 0.9744 + }, + { + "start": 81218.9, + "end": 81219.82, + "probability": 0.9995 + }, + { + "start": 81220.48, + "end": 81222.64, + "probability": 0.9643 + }, + { + "start": 81223.48, + "end": 81225.86, + "probability": 0.971 + }, + { + "start": 81226.42, + "end": 81229.58, + "probability": 0.788 + }, + { + "start": 81229.72, + "end": 81230.98, + "probability": 0.9382 + }, + { + "start": 81231.64, + "end": 81232.05, + "probability": 0.9844 + }, + { + "start": 81232.82, + "end": 81233.42, + "probability": 0.4673 + }, + { + "start": 81234.44, + "end": 81236.38, + "probability": 0.995 + }, + { + "start": 81236.98, + "end": 81238.84, + "probability": 0.9431 + }, + { + "start": 81240.2, + "end": 81241.52, + "probability": 0.7224 + }, + { + "start": 81241.6, + "end": 81242.34, + "probability": 0.5738 + }, + { + "start": 81242.54, + "end": 81243.32, + "probability": 0.5525 + }, + { + "start": 81243.42, + "end": 81244.9, + "probability": 0.567 + }, + { + "start": 81244.9, + "end": 81249.38, + "probability": 0.8945 + }, + { + "start": 81249.8, + "end": 81251.14, + "probability": 0.9789 + }, + { + "start": 81254.48, + "end": 81258.42, + "probability": 0.7824 + }, + { + "start": 81261.46, + "end": 81264.34, + "probability": 0.9455 + }, + { + "start": 81264.72, + "end": 81268.24, + "probability": 0.9909 + }, + { + "start": 81269.46, + "end": 81269.46, + "probability": 0.3313 + }, + { + "start": 81269.46, + "end": 81270.38, + "probability": 0.9541 + }, + { + "start": 81271.54, + "end": 81273.72, + "probability": 0.9796 + }, + { + "start": 81274.36, + "end": 81276.1, + "probability": 0.9868 + }, + { + "start": 81277.06, + "end": 81280.48, + "probability": 0.9865 + }, + { + "start": 81281.08, + "end": 81282.71, + "probability": 0.962 + }, + { + "start": 81283.4, + "end": 81285.64, + "probability": 0.985 + }, + { + "start": 81286.44, + "end": 81288.98, + "probability": 0.5946 + }, + { + "start": 81290.14, + "end": 81290.74, + "probability": 0.6795 + }, + { + "start": 81291.38, + "end": 81292.46, + "probability": 0.7057 + }, + { + "start": 81292.96, + "end": 81293.84, + "probability": 0.9307 + }, + { + "start": 81293.86, + "end": 81294.34, + "probability": 0.7771 + }, + { + "start": 81294.46, + "end": 81294.58, + "probability": 0.2765 + }, + { + "start": 81294.66, + "end": 81296.44, + "probability": 0.9214 + }, + { + "start": 81297.22, + "end": 81298.46, + "probability": 0.8055 + }, + { + "start": 81299.18, + "end": 81302.5, + "probability": 0.9154 + }, + { + "start": 81303.24, + "end": 81308.78, + "probability": 0.8542 + }, + { + "start": 81309.46, + "end": 81312.4, + "probability": 0.9589 + }, + { + "start": 81314.06, + "end": 81317.22, + "probability": 0.8482 + }, + { + "start": 81317.8, + "end": 81319.24, + "probability": 0.9707 + }, + { + "start": 81319.32, + "end": 81320.58, + "probability": 0.8811 + }, + { + "start": 81321.02, + "end": 81325.62, + "probability": 0.987 + }, + { + "start": 81325.92, + "end": 81327.72, + "probability": 0.5895 + }, + { + "start": 81327.72, + "end": 81327.82, + "probability": 0.5001 + }, + { + "start": 81328.54, + "end": 81329.62, + "probability": 0.9494 + }, + { + "start": 81329.98, + "end": 81332.72, + "probability": 0.5456 + }, + { + "start": 81333.12, + "end": 81334.01, + "probability": 0.3493 + }, + { + "start": 81335.72, + "end": 81338.26, + "probability": 0.9898 + }, + { + "start": 81340.28, + "end": 81341.78, + "probability": 0.9521 + }, + { + "start": 81342.68, + "end": 81344.42, + "probability": 0.9974 + }, + { + "start": 81345.44, + "end": 81346.36, + "probability": 0.9932 + }, + { + "start": 81347.06, + "end": 81348.4, + "probability": 0.5961 + }, + { + "start": 81350.18, + "end": 81352.0, + "probability": 0.1334 + }, + { + "start": 81352.0, + "end": 81353.28, + "probability": 0.5798 + }, + { + "start": 81353.88, + "end": 81356.58, + "probability": 0.5109 + }, + { + "start": 81357.42, + "end": 81358.74, + "probability": 0.4046 + }, + { + "start": 81359.62, + "end": 81360.66, + "probability": 0.0955 + }, + { + "start": 81360.78, + "end": 81362.26, + "probability": 0.9954 + }, + { + "start": 81363.0, + "end": 81365.2, + "probability": 0.9897 + }, + { + "start": 81366.0, + "end": 81367.26, + "probability": 0.8354 + }, + { + "start": 81368.92, + "end": 81370.0, + "probability": 0.9663 + }, + { + "start": 81370.76, + "end": 81371.35, + "probability": 0.9331 + }, + { + "start": 81372.74, + "end": 81373.44, + "probability": 0.9838 + }, + { + "start": 81374.2, + "end": 81374.96, + "probability": 0.8125 + }, + { + "start": 81375.34, + "end": 81376.02, + "probability": 0.8362 + }, + { + "start": 81376.36, + "end": 81379.92, + "probability": 0.99 + }, + { + "start": 81380.84, + "end": 81382.02, + "probability": 0.568 + }, + { + "start": 81382.6, + "end": 81384.54, + "probability": 0.9298 + }, + { + "start": 81385.42, + "end": 81387.22, + "probability": 0.9434 + }, + { + "start": 81387.32, + "end": 81387.82, + "probability": 0.7338 + }, + { + "start": 81387.94, + "end": 81390.88, + "probability": 0.9483 + }, + { + "start": 81392.22, + "end": 81392.98, + "probability": 0.6152 + }, + { + "start": 81394.24, + "end": 81397.14, + "probability": 0.9987 + }, + { + "start": 81398.12, + "end": 81400.18, + "probability": 0.9817 + }, + { + "start": 81400.62, + "end": 81402.14, + "probability": 0.9301 + }, + { + "start": 81403.34, + "end": 81404.7, + "probability": 0.8583 + }, + { + "start": 81405.12, + "end": 81406.2, + "probability": 0.8654 + }, + { + "start": 81407.28, + "end": 81411.08, + "probability": 0.8221 + }, + { + "start": 81411.8, + "end": 81413.28, + "probability": 0.3052 + }, + { + "start": 81413.88, + "end": 81415.68, + "probability": 0.9871 + }, + { + "start": 81417.4, + "end": 81418.92, + "probability": 0.6689 + }, + { + "start": 81419.12, + "end": 81421.36, + "probability": 0.9191 + }, + { + "start": 81421.38, + "end": 81422.38, + "probability": 0.9483 + }, + { + "start": 81422.6, + "end": 81423.02, + "probability": 0.5034 + }, + { + "start": 81423.58, + "end": 81423.88, + "probability": 0.3977 + }, + { + "start": 81426.38, + "end": 81429.0, + "probability": 0.9786 + }, + { + "start": 81430.28, + "end": 81430.52, + "probability": 0.6594 + }, + { + "start": 81431.62, + "end": 81433.54, + "probability": 0.9688 + }, + { + "start": 81434.65, + "end": 81435.62, + "probability": 0.9299 + }, + { + "start": 81438.98, + "end": 81441.72, + "probability": 0.0175 + }, + { + "start": 81441.8, + "end": 81444.9, + "probability": 0.8452 + }, + { + "start": 81446.36, + "end": 81450.62, + "probability": 0.8002 + }, + { + "start": 81451.58, + "end": 81453.14, + "probability": 0.6753 + }, + { + "start": 81453.82, + "end": 81456.1, + "probability": 0.9036 + }, + { + "start": 81456.5, + "end": 81458.78, + "probability": 0.6607 + }, + { + "start": 81459.58, + "end": 81460.5, + "probability": 0.7607 + }, + { + "start": 81461.42, + "end": 81462.78, + "probability": 0.9401 + }, + { + "start": 81463.38, + "end": 81466.28, + "probability": 0.9569 + }, + { + "start": 81468.38, + "end": 81469.12, + "probability": 0.9609 + }, + { + "start": 81469.9, + "end": 81470.38, + "probability": 0.9868 + }, + { + "start": 81471.24, + "end": 81472.02, + "probability": 0.9956 + }, + { + "start": 81472.86, + "end": 81474.46, + "probability": 0.8289 + }, + { + "start": 81475.3, + "end": 81477.82, + "probability": 0.6868 + }, + { + "start": 81478.54, + "end": 81480.5, + "probability": 0.8305 + }, + { + "start": 81481.06, + "end": 81483.2, + "probability": 0.8486 + }, + { + "start": 81484.54, + "end": 81485.42, + "probability": 0.9346 + }, + { + "start": 81485.58, + "end": 81486.84, + "probability": 0.9106 + }, + { + "start": 81487.04, + "end": 81488.4, + "probability": 0.5265 + }, + { + "start": 81490.04, + "end": 81494.92, + "probability": 0.8685 + }, + { + "start": 81495.3, + "end": 81496.02, + "probability": 0.946 + }, + { + "start": 81497.0, + "end": 81497.6, + "probability": 0.3782 + }, + { + "start": 81498.9, + "end": 81499.56, + "probability": 0.6716 + }, + { + "start": 81500.58, + "end": 81504.27, + "probability": 0.9675 + }, + { + "start": 81504.66, + "end": 81505.94, + "probability": 0.8586 + }, + { + "start": 81509.78, + "end": 81514.22, + "probability": 0.6418 + }, + { + "start": 81514.82, + "end": 81515.98, + "probability": 0.7375 + }, + { + "start": 81516.9, + "end": 81517.68, + "probability": 0.5547 + }, + { + "start": 81518.32, + "end": 81522.9, + "probability": 0.9843 + }, + { + "start": 81523.1, + "end": 81524.04, + "probability": 0.5645 + }, + { + "start": 81524.12, + "end": 81525.64, + "probability": 0.1042 + }, + { + "start": 81526.74, + "end": 81528.5, + "probability": 0.8865 + }, + { + "start": 81530.06, + "end": 81530.52, + "probability": 0.8548 + }, + { + "start": 81531.48, + "end": 81536.12, + "probability": 0.9797 + }, + { + "start": 81537.0, + "end": 81537.94, + "probability": 0.387 + }, + { + "start": 81538.06, + "end": 81540.02, + "probability": 0.8801 + }, + { + "start": 81540.1, + "end": 81542.29, + "probability": 0.9512 + }, + { + "start": 81542.96, + "end": 81544.96, + "probability": 0.5004 + }, + { + "start": 81545.92, + "end": 81549.19, + "probability": 0.9407 + }, + { + "start": 81550.4, + "end": 81552.02, + "probability": 0.8711 + }, + { + "start": 81553.32, + "end": 81556.17, + "probability": 0.7516 + }, + { + "start": 81557.3, + "end": 81557.94, + "probability": 0.3679 + }, + { + "start": 81558.02, + "end": 81560.82, + "probability": 0.9027 + }, + { + "start": 81564.2, + "end": 81565.04, + "probability": 0.9069 + }, + { + "start": 81566.44, + "end": 81567.88, + "probability": 0.998 + }, + { + "start": 81569.5, + "end": 81571.14, + "probability": 0.8 + }, + { + "start": 81572.66, + "end": 81573.2, + "probability": 0.2682 + }, + { + "start": 81573.94, + "end": 81574.8, + "probability": 0.8633 + }, + { + "start": 81575.76, + "end": 81579.16, + "probability": 0.9896 + }, + { + "start": 81580.0, + "end": 81580.5, + "probability": 0.6646 + }, + { + "start": 81580.78, + "end": 81581.64, + "probability": 0.3863 + }, + { + "start": 81583.8, + "end": 81584.28, + "probability": 0.3444 + }, + { + "start": 81585.0, + "end": 81589.14, + "probability": 0.3053 + }, + { + "start": 81589.28, + "end": 81590.2, + "probability": 0.4547 + }, + { + "start": 81590.32, + "end": 81592.7, + "probability": 0.9795 + }, + { + "start": 81592.7, + "end": 81593.04, + "probability": 0.5817 + }, + { + "start": 81593.18, + "end": 81593.96, + "probability": 0.8639 + }, + { + "start": 81594.1, + "end": 81594.8, + "probability": 0.7876 + }, + { + "start": 81594.88, + "end": 81597.22, + "probability": 0.7328 + }, + { + "start": 81599.36, + "end": 81604.2, + "probability": 0.9832 + }, + { + "start": 81607.18, + "end": 81607.54, + "probability": 0.0112 + }, + { + "start": 81608.58, + "end": 81610.1, + "probability": 0.6467 + }, + { + "start": 81611.76, + "end": 81617.16, + "probability": 0.9792 + }, + { + "start": 81617.76, + "end": 81618.62, + "probability": 0.9969 + }, + { + "start": 81620.58, + "end": 81624.74, + "probability": 0.8278 + }, + { + "start": 81624.84, + "end": 81625.24, + "probability": 0.6661 + }, + { + "start": 81625.68, + "end": 81626.16, + "probability": 0.9269 + }, + { + "start": 81626.26, + "end": 81627.48, + "probability": 0.7912 + }, + { + "start": 81628.22, + "end": 81629.54, + "probability": 0.8 + }, + { + "start": 81630.78, + "end": 81632.38, + "probability": 0.7417 + }, + { + "start": 81632.58, + "end": 81633.7, + "probability": 0.8068 + }, + { + "start": 81636.44, + "end": 81637.78, + "probability": 0.988 + }, + { + "start": 81638.76, + "end": 81641.04, + "probability": 0.9866 + }, + { + "start": 81643.42, + "end": 81644.4, + "probability": 0.9128 + }, + { + "start": 81645.5, + "end": 81648.68, + "probability": 0.771 + }, + { + "start": 81650.08, + "end": 81653.22, + "probability": 0.9272 + }, + { + "start": 81654.97, + "end": 81657.58, + "probability": 0.9339 + }, + { + "start": 81658.34, + "end": 81662.52, + "probability": 0.881 + }, + { + "start": 81663.3, + "end": 81665.28, + "probability": 0.812 + }, + { + "start": 81666.14, + "end": 81666.66, + "probability": 0.7947 + }, + { + "start": 81667.5, + "end": 81668.6, + "probability": 0.9364 + }, + { + "start": 81671.42, + "end": 81672.64, + "probability": 0.9585 + }, + { + "start": 81673.1, + "end": 81675.04, + "probability": 0.9635 + }, + { + "start": 81675.12, + "end": 81675.76, + "probability": 0.9613 + }, + { + "start": 81676.4, + "end": 81680.56, + "probability": 0.8195 + }, + { + "start": 81681.88, + "end": 81682.2, + "probability": 0.7607 + }, + { + "start": 81683.34, + "end": 81685.02, + "probability": 0.8472 + }, + { + "start": 81685.92, + "end": 81686.44, + "probability": 0.2299 + }, + { + "start": 81686.58, + "end": 81688.92, + "probability": 0.873 + }, + { + "start": 81689.88, + "end": 81694.9, + "probability": 0.6673 + }, + { + "start": 81696.26, + "end": 81697.41, + "probability": 0.9699 + }, + { + "start": 81698.34, + "end": 81700.8, + "probability": 0.4973 + }, + { + "start": 81700.92, + "end": 81702.12, + "probability": 0.7226 + }, + { + "start": 81702.74, + "end": 81703.28, + "probability": 0.0666 + }, + { + "start": 81703.28, + "end": 81703.94, + "probability": 0.3234 + }, + { + "start": 81704.98, + "end": 81706.76, + "probability": 0.851 + }, + { + "start": 81707.3, + "end": 81708.44, + "probability": 0.8547 + }, + { + "start": 81709.86, + "end": 81710.37, + "probability": 0.9167 + }, + { + "start": 81712.44, + "end": 81717.1, + "probability": 0.9939 + }, + { + "start": 81718.48, + "end": 81723.72, + "probability": 0.3541 + }, + { + "start": 81723.74, + "end": 81727.35, + "probability": 0.9722 + }, + { + "start": 81728.1, + "end": 81729.1, + "probability": 0.9414 + }, + { + "start": 81730.48, + "end": 81734.6, + "probability": 0.8901 + }, + { + "start": 81734.7, + "end": 81735.16, + "probability": 0.5215 + }, + { + "start": 81735.48, + "end": 81735.74, + "probability": 0.5995 + }, + { + "start": 81735.88, + "end": 81737.9, + "probability": 0.6877 + }, + { + "start": 81739.36, + "end": 81739.92, + "probability": 0.7218 + }, + { + "start": 81741.9, + "end": 81742.6, + "probability": 0.9111 + }, + { + "start": 81744.24, + "end": 81747.34, + "probability": 0.8316 + }, + { + "start": 81748.1, + "end": 81753.42, + "probability": 0.983 + }, + { + "start": 81754.04, + "end": 81755.1, + "probability": 0.8256 + }, + { + "start": 81756.26, + "end": 81757.54, + "probability": 0.8876 + }, + { + "start": 81758.2, + "end": 81762.46, + "probability": 0.9845 + }, + { + "start": 81762.58, + "end": 81762.92, + "probability": 0.3582 + }, + { + "start": 81763.3, + "end": 81763.3, + "probability": 0.3201 + }, + { + "start": 81763.3, + "end": 81765.32, + "probability": 0.8393 + }, + { + "start": 81765.46, + "end": 81767.64, + "probability": 0.4486 + }, + { + "start": 81768.08, + "end": 81771.49, + "probability": 0.9475 + }, + { + "start": 81771.92, + "end": 81773.01, + "probability": 0.6666 + }, + { + "start": 81773.6, + "end": 81776.9, + "probability": 0.9395 + }, + { + "start": 81776.98, + "end": 81777.4, + "probability": 0.9757 + }, + { + "start": 81778.2, + "end": 81778.58, + "probability": 0.7617 + }, + { + "start": 81778.88, + "end": 81779.1, + "probability": 0.5947 + }, + { + "start": 81779.78, + "end": 81780.76, + "probability": 0.3715 + }, + { + "start": 81781.0, + "end": 81781.5, + "probability": 0.3382 + }, + { + "start": 81781.56, + "end": 81787.6, + "probability": 0.9401 + }, + { + "start": 81787.6, + "end": 81789.72, + "probability": 0.7938 + }, + { + "start": 81789.82, + "end": 81790.18, + "probability": 0.9167 + }, + { + "start": 81790.9, + "end": 81794.76, + "probability": 0.7712 + }, + { + "start": 81795.82, + "end": 81796.52, + "probability": 0.1467 + }, + { + "start": 81796.52, + "end": 81797.22, + "probability": 0.1289 + }, + { + "start": 81797.34, + "end": 81798.01, + "probability": 0.2482 + }, + { + "start": 81798.1, + "end": 81798.98, + "probability": 0.5211 + }, + { + "start": 81799.12, + "end": 81800.04, + "probability": 0.658 + }, + { + "start": 81800.26, + "end": 81801.72, + "probability": 0.9311 + }, + { + "start": 81802.8, + "end": 81805.72, + "probability": 0.9059 + }, + { + "start": 81806.14, + "end": 81806.84, + "probability": 0.6172 + }, + { + "start": 81806.94, + "end": 81807.58, + "probability": 0.5172 + }, + { + "start": 81807.92, + "end": 81809.86, + "probability": 0.9486 + }, + { + "start": 81809.88, + "end": 81811.88, + "probability": 0.9214 + }, + { + "start": 81812.0, + "end": 81812.92, + "probability": 0.821 + }, + { + "start": 81812.98, + "end": 81814.42, + "probability": 0.9198 + }, + { + "start": 81815.16, + "end": 81815.44, + "probability": 0.6946 + }, + { + "start": 81815.56, + "end": 81816.76, + "probability": 0.8448 + }, + { + "start": 81816.82, + "end": 81819.22, + "probability": 0.9863 + }, + { + "start": 81820.44, + "end": 81821.72, + "probability": 0.0822 + }, + { + "start": 81821.94, + "end": 81822.68, + "probability": 0.2021 + }, + { + "start": 81824.06, + "end": 81827.1, + "probability": 0.5421 + }, + { + "start": 81830.14, + "end": 81833.34, + "probability": 0.638 + }, + { + "start": 81834.1, + "end": 81836.36, + "probability": 0.9844 + }, + { + "start": 81836.8, + "end": 81837.68, + "probability": 0.8613 + }, + { + "start": 81838.34, + "end": 81839.54, + "probability": 0.7815 + }, + { + "start": 81842.5, + "end": 81845.1, + "probability": 0.8071 + }, + { + "start": 81846.1, + "end": 81847.2, + "probability": 0.7563 + }, + { + "start": 81847.34, + "end": 81848.52, + "probability": 0.8435 + }, + { + "start": 81849.1, + "end": 81850.52, + "probability": 0.8841 + }, + { + "start": 81851.44, + "end": 81851.9, + "probability": 0.7863 + }, + { + "start": 81851.96, + "end": 81857.54, + "probability": 0.9866 + }, + { + "start": 81858.28, + "end": 81861.08, + "probability": 0.9483 + }, + { + "start": 81861.82, + "end": 81866.16, + "probability": 0.791 + }, + { + "start": 81866.72, + "end": 81867.7, + "probability": 0.7449 + }, + { + "start": 81868.72, + "end": 81869.24, + "probability": 0.8177 + }, + { + "start": 81870.28, + "end": 81872.14, + "probability": 0.6678 + }, + { + "start": 81872.22, + "end": 81872.86, + "probability": 0.564 + }, + { + "start": 81873.68, + "end": 81874.0, + "probability": 0.5048 + }, + { + "start": 81874.18, + "end": 81874.98, + "probability": 0.7951 + }, + { + "start": 81875.24, + "end": 81875.74, + "probability": 0.6744 + }, + { + "start": 81876.32, + "end": 81876.84, + "probability": 0.8225 + }, + { + "start": 81877.6, + "end": 81881.3, + "probability": 0.8403 + }, + { + "start": 81881.34, + "end": 81882.46, + "probability": 0.9396 + }, + { + "start": 81883.04, + "end": 81885.94, + "probability": 0.859 + }, + { + "start": 81886.34, + "end": 81888.08, + "probability": 0.8657 + }, + { + "start": 81888.72, + "end": 81891.76, + "probability": 0.9846 + }, + { + "start": 81892.42, + "end": 81893.56, + "probability": 0.8948 + }, + { + "start": 81894.48, + "end": 81895.66, + "probability": 0.9031 + }, + { + "start": 81895.84, + "end": 81898.8, + "probability": 0.8374 + }, + { + "start": 81899.44, + "end": 81900.4, + "probability": 0.4844 + }, + { + "start": 81901.42, + "end": 81904.58, + "probability": 0.9979 + }, + { + "start": 81905.26, + "end": 81906.42, + "probability": 0.8065 + }, + { + "start": 81907.44, + "end": 81908.68, + "probability": 0.9888 + }, + { + "start": 81909.82, + "end": 81912.28, + "probability": 0.8984 + }, + { + "start": 81912.74, + "end": 81912.9, + "probability": 0.3476 + }, + { + "start": 81913.16, + "end": 81914.12, + "probability": 0.7237 + }, + { + "start": 81914.8, + "end": 81915.92, + "probability": 0.9595 + }, + { + "start": 81917.42, + "end": 81918.92, + "probability": 0.2803 + }, + { + "start": 81920.14, + "end": 81923.3, + "probability": 0.9751 + }, + { + "start": 81925.86, + "end": 81926.08, + "probability": 0.3323 + }, + { + "start": 81928.1, + "end": 81928.6, + "probability": 0.0598 + }, + { + "start": 81931.26, + "end": 81932.34, + "probability": 0.759 + }, + { + "start": 81933.2, + "end": 81935.06, + "probability": 0.8648 + }, + { + "start": 81938.2, + "end": 81938.7, + "probability": 0.9894 + }, + { + "start": 81939.26, + "end": 81940.94, + "probability": 0.9364 + }, + { + "start": 81942.74, + "end": 81945.2, + "probability": 0.9145 + }, + { + "start": 81947.62, + "end": 81948.3, + "probability": 0.9988 + }, + { + "start": 81950.18, + "end": 81950.86, + "probability": 0.8853 + }, + { + "start": 81951.74, + "end": 81952.76, + "probability": 0.6462 + }, + { + "start": 81954.36, + "end": 81955.11, + "probability": 0.9594 + }, + { + "start": 81957.48, + "end": 81958.5, + "probability": 0.9829 + }, + { + "start": 81960.88, + "end": 81966.54, + "probability": 0.9917 + }, + { + "start": 81968.56, + "end": 81972.2, + "probability": 0.9913 + }, + { + "start": 81973.28, + "end": 81974.72, + "probability": 0.9977 + }, + { + "start": 81975.88, + "end": 81980.36, + "probability": 0.9907 + }, + { + "start": 81983.36, + "end": 81983.38, + "probability": 0.1788 + }, + { + "start": 81983.64, + "end": 81983.8, + "probability": 0.5369 + }, + { + "start": 81983.82, + "end": 81985.68, + "probability": 0.7995 + }, + { + "start": 81986.14, + "end": 81988.16, + "probability": 0.9683 + }, + { + "start": 81989.82, + "end": 81991.32, + "probability": 0.981 + }, + { + "start": 81992.5, + "end": 81995.46, + "probability": 0.9889 + }, + { + "start": 81995.46, + "end": 81999.18, + "probability": 0.8668 + }, + { + "start": 82000.34, + "end": 82002.28, + "probability": 0.991 + }, + { + "start": 82003.32, + "end": 82004.38, + "probability": 0.9435 + }, + { + "start": 82005.12, + "end": 82005.77, + "probability": 0.9781 + }, + { + "start": 82007.26, + "end": 82007.81, + "probability": 0.9957 + }, + { + "start": 82009.86, + "end": 82012.68, + "probability": 0.998 + }, + { + "start": 82015.04, + "end": 82016.44, + "probability": 0.97 + }, + { + "start": 82019.28, + "end": 82022.58, + "probability": 0.9353 + }, + { + "start": 82025.78, + "end": 82027.56, + "probability": 0.8466 + }, + { + "start": 82028.2, + "end": 82031.02, + "probability": 0.9917 + }, + { + "start": 82031.78, + "end": 82032.1, + "probability": 0.8988 + }, + { + "start": 82034.92, + "end": 82039.24, + "probability": 0.9847 + }, + { + "start": 82040.16, + "end": 82041.88, + "probability": 0.6695 + }, + { + "start": 82043.18, + "end": 82045.08, + "probability": 0.8284 + }, + { + "start": 82045.8, + "end": 82046.14, + "probability": 0.8859 + }, + { + "start": 82049.66, + "end": 82050.5, + "probability": 0.9523 + }, + { + "start": 82051.52, + "end": 82052.68, + "probability": 0.8091 + }, + { + "start": 82053.46, + "end": 82054.34, + "probability": 0.979 + }, + { + "start": 82055.36, + "end": 82059.1, + "probability": 0.9937 + }, + { + "start": 82060.9, + "end": 82062.42, + "probability": 0.8333 + }, + { + "start": 82062.96, + "end": 82063.38, + "probability": 0.9003 + }, + { + "start": 82065.34, + "end": 82067.17, + "probability": 0.9933 + }, + { + "start": 82069.64, + "end": 82072.9, + "probability": 0.6861 + }, + { + "start": 82075.83, + "end": 82077.98, + "probability": 0.6558 + }, + { + "start": 82078.9, + "end": 82079.66, + "probability": 0.9216 + }, + { + "start": 82081.38, + "end": 82082.96, + "probability": 0.9065 + }, + { + "start": 82083.2, + "end": 82084.36, + "probability": 0.8863 + }, + { + "start": 82084.86, + "end": 82085.04, + "probability": 0.8903 + }, + { + "start": 82086.78, + "end": 82088.06, + "probability": 0.764 + }, + { + "start": 82089.84, + "end": 82091.16, + "probability": 0.8908 + }, + { + "start": 82095.56, + "end": 82097.14, + "probability": 0.9565 + }, + { + "start": 82098.42, + "end": 82101.18, + "probability": 0.986 + }, + { + "start": 82101.86, + "end": 82102.38, + "probability": 0.847 + }, + { + "start": 82103.16, + "end": 82104.7, + "probability": 0.9806 + }, + { + "start": 82105.56, + "end": 82106.34, + "probability": 0.8613 + }, + { + "start": 82107.78, + "end": 82108.97, + "probability": 0.9937 + }, + { + "start": 82111.02, + "end": 82113.4, + "probability": 0.9836 + }, + { + "start": 82114.58, + "end": 82116.8, + "probability": 0.9954 + }, + { + "start": 82120.74, + "end": 82121.58, + "probability": 0.69 + }, + { + "start": 82121.7, + "end": 82123.38, + "probability": 0.9575 + }, + { + "start": 82125.4, + "end": 82128.14, + "probability": 0.9849 + }, + { + "start": 82129.58, + "end": 82130.52, + "probability": 0.8471 + }, + { + "start": 82131.12, + "end": 82133.04, + "probability": 0.8749 + }, + { + "start": 82136.08, + "end": 82137.44, + "probability": 0.5386 + }, + { + "start": 82138.48, + "end": 82141.48, + "probability": 0.9094 + }, + { + "start": 82146.28, + "end": 82148.24, + "probability": 0.8849 + }, + { + "start": 82151.52, + "end": 82158.04, + "probability": 0.9798 + }, + { + "start": 82160.14, + "end": 82160.98, + "probability": 0.7476 + }, + { + "start": 82161.42, + "end": 82162.9, + "probability": 0.8715 + }, + { + "start": 82163.12, + "end": 82164.08, + "probability": 0.7914 + }, + { + "start": 82165.74, + "end": 82165.74, + "probability": 0.1844 + }, + { + "start": 82165.74, + "end": 82167.88, + "probability": 0.5566 + }, + { + "start": 82169.14, + "end": 82170.3, + "probability": 0.8523 + }, + { + "start": 82170.32, + "end": 82171.56, + "probability": 0.8301 + }, + { + "start": 82175.68, + "end": 82179.86, + "probability": 0.8285 + }, + { + "start": 82181.08, + "end": 82182.77, + "probability": 0.98 + }, + { + "start": 82183.58, + "end": 82184.2, + "probability": 0.7339 + }, + { + "start": 82184.3, + "end": 82184.76, + "probability": 0.7146 + }, + { + "start": 82184.84, + "end": 82185.5, + "probability": 0.5275 + }, + { + "start": 82185.62, + "end": 82186.78, + "probability": 0.8543 + }, + { + "start": 82189.3, + "end": 82191.44, + "probability": 0.4462 + }, + { + "start": 82192.78, + "end": 82194.01, + "probability": 0.9629 + }, + { + "start": 82194.12, + "end": 82196.34, + "probability": 0.936 + }, + { + "start": 82196.62, + "end": 82196.92, + "probability": 0.7672 + }, + { + "start": 82199.16, + "end": 82201.01, + "probability": 0.9575 + }, + { + "start": 82201.9, + "end": 82208.02, + "probability": 0.9707 + }, + { + "start": 82209.02, + "end": 82210.04, + "probability": 0.6059 + }, + { + "start": 82210.28, + "end": 82212.54, + "probability": 0.6647 + }, + { + "start": 82212.58, + "end": 82214.42, + "probability": 0.7513 + }, + { + "start": 82215.68, + "end": 82218.96, + "probability": 0.9457 + }, + { + "start": 82219.82, + "end": 82222.27, + "probability": 0.3822 + }, + { + "start": 82222.62, + "end": 82223.34, + "probability": 0.5046 + }, + { + "start": 82223.6, + "end": 82224.18, + "probability": 0.0844 + }, + { + "start": 82224.28, + "end": 82225.46, + "probability": 0.6381 + }, + { + "start": 82225.46, + "end": 82226.4, + "probability": 0.4785 + }, + { + "start": 82226.64, + "end": 82228.18, + "probability": 0.4111 + }, + { + "start": 82228.42, + "end": 82230.56, + "probability": 0.9749 + }, + { + "start": 82230.76, + "end": 82231.52, + "probability": 0.3992 + }, + { + "start": 82231.58, + "end": 82233.26, + "probability": 0.5659 + }, + { + "start": 82233.7, + "end": 82234.9, + "probability": 0.935 + }, + { + "start": 82235.36, + "end": 82235.36, + "probability": 0.283 + }, + { + "start": 82235.64, + "end": 82237.22, + "probability": 0.6055 + }, + { + "start": 82237.54, + "end": 82237.56, + "probability": 0.8144 + }, + { + "start": 82237.56, + "end": 82240.06, + "probability": 0.9348 + }, + { + "start": 82241.1, + "end": 82243.54, + "probability": 0.9448 + }, + { + "start": 82244.14, + "end": 82244.75, + "probability": 0.9756 + }, + { + "start": 82244.92, + "end": 82249.06, + "probability": 0.9602 + }, + { + "start": 82249.92, + "end": 82252.12, + "probability": 0.9753 + }, + { + "start": 82252.82, + "end": 82254.68, + "probability": 0.8855 + }, + { + "start": 82255.32, + "end": 82257.48, + "probability": 0.998 + }, + { + "start": 82258.08, + "end": 82258.88, + "probability": 0.9224 + }, + { + "start": 82260.18, + "end": 82260.6, + "probability": 0.5264 + }, + { + "start": 82262.28, + "end": 82267.3, + "probability": 0.977 + }, + { + "start": 82268.98, + "end": 82271.2, + "probability": 0.9732 + }, + { + "start": 82272.38, + "end": 82275.26, + "probability": 0.9662 + }, + { + "start": 82276.38, + "end": 82276.76, + "probability": 0.576 + }, + { + "start": 82276.78, + "end": 82278.98, + "probability": 0.7769 + }, + { + "start": 82280.4, + "end": 82283.06, + "probability": 0.5018 + }, + { + "start": 82284.24, + "end": 82288.78, + "probability": 0.9679 + }, + { + "start": 82289.44, + "end": 82290.76, + "probability": 0.8093 + }, + { + "start": 82291.18, + "end": 82291.48, + "probability": 0.8286 + }, + { + "start": 82293.18, + "end": 82293.36, + "probability": 0.5126 + }, + { + "start": 82293.46, + "end": 82294.83, + "probability": 0.9313 + }, + { + "start": 82296.92, + "end": 82298.62, + "probability": 0.9833 + }, + { + "start": 82299.82, + "end": 82302.86, + "probability": 0.7461 + }, + { + "start": 82303.9, + "end": 82307.1, + "probability": 0.9854 + }, + { + "start": 82307.46, + "end": 82307.82, + "probability": 0.3542 + }, + { + "start": 82307.86, + "end": 82307.86, + "probability": 0.4181 + }, + { + "start": 82307.96, + "end": 82308.48, + "probability": 0.6245 + }, + { + "start": 82308.68, + "end": 82309.9, + "probability": 0.728 + }, + { + "start": 82310.08, + "end": 82312.5, + "probability": 0.9944 + }, + { + "start": 82312.64, + "end": 82312.74, + "probability": 0.2849 + }, + { + "start": 82313.34, + "end": 82313.62, + "probability": 0.1935 + }, + { + "start": 82316.02, + "end": 82316.04, + "probability": 0.0052 + }, + { + "start": 82316.04, + "end": 82316.3, + "probability": 0.3297 + }, + { + "start": 82319.01, + "end": 82320.96, + "probability": 0.2486 + }, + { + "start": 82320.96, + "end": 82322.62, + "probability": 0.9517 + }, + { + "start": 82323.26, + "end": 82324.1, + "probability": 0.0998 + }, + { + "start": 82324.16, + "end": 82324.7, + "probability": 0.6001 + }, + { + "start": 82326.34, + "end": 82328.28, + "probability": 0.5775 + }, + { + "start": 82328.4, + "end": 82328.76, + "probability": 0.3411 + }, + { + "start": 82328.76, + "end": 82328.76, + "probability": 0.4325 + }, + { + "start": 82328.76, + "end": 82330.28, + "probability": 0.3102 + }, + { + "start": 82330.44, + "end": 82333.2, + "probability": 0.4564 + }, + { + "start": 82336.64, + "end": 82337.6, + "probability": 0.3216 + }, + { + "start": 82337.6, + "end": 82337.6, + "probability": 0.0304 + }, + { + "start": 82337.6, + "end": 82339.6, + "probability": 0.3619 + }, + { + "start": 82340.34, + "end": 82341.74, + "probability": 0.8979 + }, + { + "start": 82342.54, + "end": 82346.36, + "probability": 0.9893 + }, + { + "start": 82349.1, + "end": 82350.76, + "probability": 0.0874 + }, + { + "start": 82351.27, + "end": 82354.67, + "probability": 0.7908 + }, + { + "start": 82358.72, + "end": 82365.5, + "probability": 0.9756 + }, + { + "start": 82365.86, + "end": 82370.5, + "probability": 0.9683 + }, + { + "start": 82370.64, + "end": 82370.87, + "probability": 0.4689 + }, + { + "start": 82372.58, + "end": 82374.52, + "probability": 0.9919 + }, + { + "start": 82374.52, + "end": 82375.7, + "probability": 0.9945 + }, + { + "start": 82376.26, + "end": 82377.46, + "probability": 0.7959 + }, + { + "start": 82378.68, + "end": 82382.5, + "probability": 0.9968 + }, + { + "start": 82384.18, + "end": 82384.34, + "probability": 0.4598 + }, + { + "start": 82384.34, + "end": 82385.06, + "probability": 0.7703 + }, + { + "start": 82385.6, + "end": 82388.52, + "probability": 0.9937 + }, + { + "start": 82390.3, + "end": 82391.24, + "probability": 0.9948 + }, + { + "start": 82392.08, + "end": 82394.4, + "probability": 0.8066 + }, + { + "start": 82395.18, + "end": 82398.64, + "probability": 0.9412 + }, + { + "start": 82399.16, + "end": 82401.46, + "probability": 0.7367 + }, + { + "start": 82401.46, + "end": 82409.16, + "probability": 0.9602 + }, + { + "start": 82410.44, + "end": 82411.5, + "probability": 0.4873 + }, + { + "start": 82415.26, + "end": 82418.38, + "probability": 0.957 + }, + { + "start": 82419.96, + "end": 82422.96, + "probability": 0.8973 + }, + { + "start": 82423.9, + "end": 82424.22, + "probability": 0.7352 + }, + { + "start": 82424.78, + "end": 82425.0, + "probability": 0.8496 + }, + { + "start": 82426.42, + "end": 82432.5, + "probability": 0.9867 + }, + { + "start": 82433.78, + "end": 82433.78, + "probability": 0.5488 + }, + { + "start": 82433.78, + "end": 82434.48, + "probability": 0.3485 + }, + { + "start": 82434.66, + "end": 82434.98, + "probability": 0.4791 + }, + { + "start": 82435.12, + "end": 82437.58, + "probability": 0.8638 + }, + { + "start": 82437.68, + "end": 82438.64, + "probability": 0.6168 + }, + { + "start": 82438.94, + "end": 82439.44, + "probability": 0.7622 + }, + { + "start": 82442.74, + "end": 82446.58, + "probability": 0.8805 + }, + { + "start": 82447.16, + "end": 82448.42, + "probability": 0.8033 + }, + { + "start": 82449.98, + "end": 82450.58, + "probability": 0.8339 + }, + { + "start": 82451.6, + "end": 82452.4, + "probability": 0.9746 + }, + { + "start": 82452.92, + "end": 82454.16, + "probability": 0.9811 + }, + { + "start": 82454.96, + "end": 82457.32, + "probability": 0.9301 + }, + { + "start": 82459.1, + "end": 82459.48, + "probability": 0.8621 + }, + { + "start": 82459.9, + "end": 82460.52, + "probability": 0.7106 + }, + { + "start": 82460.74, + "end": 82462.4, + "probability": 0.5414 + }, + { + "start": 82462.46, + "end": 82463.06, + "probability": 0.6788 + }, + { + "start": 82463.38, + "end": 82463.48, + "probability": 0.8358 + }, + { + "start": 82464.28, + "end": 82465.18, + "probability": 0.9763 + }, + { + "start": 82465.6, + "end": 82466.18, + "probability": 0.5169 + }, + { + "start": 82466.38, + "end": 82466.48, + "probability": 0.7282 + }, + { + "start": 82467.54, + "end": 82468.6, + "probability": 0.0112 + }, + { + "start": 82469.5, + "end": 82472.04, + "probability": 0.1361 + }, + { + "start": 82472.7, + "end": 82474.26, + "probability": 0.813 + }, + { + "start": 82474.66, + "end": 82476.69, + "probability": 0.3794 + }, + { + "start": 82478.06, + "end": 82479.6, + "probability": 0.8536 + }, + { + "start": 82479.78, + "end": 82480.42, + "probability": 0.5172 + }, + { + "start": 82480.48, + "end": 82481.44, + "probability": 0.7061 + }, + { + "start": 82481.94, + "end": 82482.44, + "probability": 0.1397 + }, + { + "start": 82482.52, + "end": 82483.58, + "probability": 0.7056 + }, + { + "start": 82485.22, + "end": 82486.14, + "probability": 0.5352 + }, + { + "start": 82486.14, + "end": 82492.8, + "probability": 0.9713 + }, + { + "start": 82493.5, + "end": 82494.98, + "probability": 0.9815 + }, + { + "start": 82496.08, + "end": 82497.84, + "probability": 0.7849 + }, + { + "start": 82498.28, + "end": 82498.88, + "probability": 0.3782 + }, + { + "start": 82499.64, + "end": 82500.64, + "probability": 0.6045 + }, + { + "start": 82501.26, + "end": 82502.08, + "probability": 0.6825 + }, + { + "start": 82503.9, + "end": 82507.14, + "probability": 0.9792 + }, + { + "start": 82507.34, + "end": 82507.82, + "probability": 0.0147 + }, + { + "start": 82508.52, + "end": 82510.16, + "probability": 0.0536 + }, + { + "start": 82511.92, + "end": 82514.16, + "probability": 0.7072 + }, + { + "start": 82514.18, + "end": 82515.46, + "probability": 0.2956 + }, + { + "start": 82515.96, + "end": 82516.72, + "probability": 0.2749 + }, + { + "start": 82517.32, + "end": 82519.24, + "probability": 0.8027 + }, + { + "start": 82519.58, + "end": 82522.53, + "probability": 0.9793 + }, + { + "start": 82523.92, + "end": 82527.28, + "probability": 0.9971 + }, + { + "start": 82527.88, + "end": 82528.82, + "probability": 0.8345 + }, + { + "start": 82529.78, + "end": 82531.82, + "probability": 0.6158 + }, + { + "start": 82534.2, + "end": 82536.92, + "probability": 0.9768 + }, + { + "start": 82538.3, + "end": 82539.08, + "probability": 0.8859 + }, + { + "start": 82539.76, + "end": 82541.37, + "probability": 0.9946 + }, + { + "start": 82542.44, + "end": 82544.98, + "probability": 0.9652 + }, + { + "start": 82544.98, + "end": 82548.62, + "probability": 0.9727 + }, + { + "start": 82548.92, + "end": 82552.2, + "probability": 0.8276 + }, + { + "start": 82552.32, + "end": 82554.62, + "probability": 0.9984 + }, + { + "start": 82557.42, + "end": 82558.37, + "probability": 0.7656 + }, + { + "start": 82558.8, + "end": 82559.62, + "probability": 0.863 + }, + { + "start": 82559.72, + "end": 82561.34, + "probability": 0.9675 + }, + { + "start": 82561.34, + "end": 82563.68, + "probability": 0.9962 + }, + { + "start": 82566.48, + "end": 82566.48, + "probability": 0.4889 + }, + { + "start": 82567.06, + "end": 82569.66, + "probability": 0.8734 + }, + { + "start": 82570.98, + "end": 82572.58, + "probability": 0.988 + }, + { + "start": 82574.48, + "end": 82576.84, + "probability": 0.9072 + }, + { + "start": 82577.44, + "end": 82579.3, + "probability": 0.6797 + }, + { + "start": 82581.9, + "end": 82583.04, + "probability": 0.5498 + }, + { + "start": 82584.38, + "end": 82587.52, + "probability": 0.9991 + }, + { + "start": 82589.26, + "end": 82594.9, + "probability": 0.9841 + }, + { + "start": 82596.62, + "end": 82598.96, + "probability": 0.3245 + }, + { + "start": 82599.14, + "end": 82601.36, + "probability": 0.9374 + }, + { + "start": 82601.9, + "end": 82604.6, + "probability": 0.9912 + }, + { + "start": 82605.16, + "end": 82608.08, + "probability": 0.7768 + }, + { + "start": 82608.64, + "end": 82611.78, + "probability": 0.9506 + }, + { + "start": 82613.6, + "end": 82614.5, + "probability": 0.4108 + }, + { + "start": 82614.84, + "end": 82618.92, + "probability": 0.8698 + }, + { + "start": 82620.04, + "end": 82621.44, + "probability": 0.7961 + }, + { + "start": 82622.42, + "end": 82623.58, + "probability": 0.8403 + }, + { + "start": 82624.86, + "end": 82625.56, + "probability": 0.8314 + }, + { + "start": 82626.14, + "end": 82626.14, + "probability": 0.0001 + }, + { + "start": 82628.46, + "end": 82629.96, + "probability": 0.7708 + }, + { + "start": 82630.66, + "end": 82632.8, + "probability": 0.8977 + }, + { + "start": 82633.44, + "end": 82633.98, + "probability": 0.5182 + }, + { + "start": 82634.12, + "end": 82634.46, + "probability": 0.8247 + }, + { + "start": 82635.24, + "end": 82636.74, + "probability": 0.8275 + }, + { + "start": 82637.52, + "end": 82638.94, + "probability": 0.9287 + }, + { + "start": 82640.26, + "end": 82640.96, + "probability": 0.9663 + }, + { + "start": 82642.12, + "end": 82643.44, + "probability": 0.9146 + }, + { + "start": 82643.44, + "end": 82644.16, + "probability": 0.8625 + }, + { + "start": 82646.7, + "end": 82647.24, + "probability": 0.4619 + }, + { + "start": 82647.34, + "end": 82650.32, + "probability": 0.9953 + }, + { + "start": 82651.18, + "end": 82653.54, + "probability": 0.9117 + }, + { + "start": 82653.7, + "end": 82654.06, + "probability": 0.9054 + }, + { + "start": 82654.36, + "end": 82656.12, + "probability": 0.9329 + }, + { + "start": 82656.78, + "end": 82660.04, + "probability": 0.8992 + }, + { + "start": 82660.84, + "end": 82662.02, + "probability": 0.9489 + }, + { + "start": 82662.02, + "end": 82662.74, + "probability": 0.9361 + }, + { + "start": 82662.78, + "end": 82664.44, + "probability": 0.9189 + }, + { + "start": 82665.22, + "end": 82667.04, + "probability": 0.8132 + }, + { + "start": 82669.74, + "end": 82670.37, + "probability": 0.7367 + }, + { + "start": 82671.74, + "end": 82672.72, + "probability": 0.9951 + }, + { + "start": 82674.14, + "end": 82674.36, + "probability": 0.586 + }, + { + "start": 82674.42, + "end": 82679.42, + "probability": 0.998 + }, + { + "start": 82682.34, + "end": 82682.72, + "probability": 0.84 + }, + { + "start": 82682.74, + "end": 82683.36, + "probability": 0.919 + }, + { + "start": 82683.76, + "end": 82684.56, + "probability": 0.7235 + }, + { + "start": 82684.66, + "end": 82685.36, + "probability": 0.8441 + }, + { + "start": 82686.28, + "end": 82688.34, + "probability": 0.7361 + }, + { + "start": 82689.0, + "end": 82691.1, + "probability": 0.9844 + }, + { + "start": 82692.08, + "end": 82693.54, + "probability": 0.8057 + }, + { + "start": 82694.28, + "end": 82696.26, + "probability": 0.8738 + }, + { + "start": 82699.12, + "end": 82700.24, + "probability": 0.999 + }, + { + "start": 82700.8, + "end": 82701.86, + "probability": 0.9967 + }, + { + "start": 82702.02, + "end": 82702.18, + "probability": 0.3453 + }, + { + "start": 82702.28, + "end": 82702.82, + "probability": 0.8204 + }, + { + "start": 82702.84, + "end": 82703.28, + "probability": 0.8047 + }, + { + "start": 82704.4, + "end": 82709.3, + "probability": 0.9878 + }, + { + "start": 82710.52, + "end": 82712.28, + "probability": 0.9427 + }, + { + "start": 82712.28, + "end": 82715.76, + "probability": 0.9939 + }, + { + "start": 82716.34, + "end": 82719.66, + "probability": 0.9971 + }, + { + "start": 82720.78, + "end": 82724.51, + "probability": 0.9702 + }, + { + "start": 82727.2, + "end": 82729.18, + "probability": 0.5459 + }, + { + "start": 82730.26, + "end": 82733.9, + "probability": 0.9299 + }, + { + "start": 82734.6, + "end": 82739.66, + "probability": 0.9853 + }, + { + "start": 82739.76, + "end": 82744.16, + "probability": 0.9678 + }, + { + "start": 82744.98, + "end": 82747.08, + "probability": 0.9577 + }, + { + "start": 82748.74, + "end": 82754.48, + "probability": 0.918 + }, + { + "start": 82754.62, + "end": 82757.56, + "probability": 0.9867 + }, + { + "start": 82758.36, + "end": 82759.12, + "probability": 0.7513 + }, + { + "start": 82759.64, + "end": 82760.76, + "probability": 0.5049 + }, + { + "start": 82763.26, + "end": 82765.82, + "probability": 0.9678 + }, + { + "start": 82766.39, + "end": 82770.58, + "probability": 0.9609 + }, + { + "start": 82771.84, + "end": 82773.24, + "probability": 0.7126 + }, + { + "start": 82775.12, + "end": 82777.94, + "probability": 0.6101 + }, + { + "start": 82780.42, + "end": 82781.26, + "probability": 0.8759 + }, + { + "start": 82784.34, + "end": 82784.94, + "probability": 0.9232 + }, + { + "start": 82785.04, + "end": 82790.38, + "probability": 0.9868 + }, + { + "start": 82790.78, + "end": 82794.08, + "probability": 0.7747 + }, + { + "start": 82795.08, + "end": 82795.79, + "probability": 0.446 + }, + { + "start": 82795.9, + "end": 82796.58, + "probability": 0.9087 + }, + { + "start": 82796.68, + "end": 82797.32, + "probability": 0.8431 + }, + { + "start": 82797.54, + "end": 82798.76, + "probability": 0.9449 + }, + { + "start": 82799.5, + "end": 82801.82, + "probability": 0.9764 + }, + { + "start": 82803.3, + "end": 82804.68, + "probability": 0.7906 + }, + { + "start": 82804.8, + "end": 82808.12, + "probability": 0.9881 + }, + { + "start": 82808.12, + "end": 82810.0, + "probability": 0.9978 + }, + { + "start": 82811.62, + "end": 82813.36, + "probability": 0.3467 + }, + { + "start": 82813.4, + "end": 82814.18, + "probability": 0.6946 + }, + { + "start": 82814.22, + "end": 82815.78, + "probability": 0.9956 + }, + { + "start": 82816.48, + "end": 82819.4, + "probability": 0.9779 + }, + { + "start": 82821.52, + "end": 82824.14, + "probability": 0.9909 + }, + { + "start": 82824.92, + "end": 82827.1, + "probability": 0.7604 + }, + { + "start": 82829.24, + "end": 82831.3, + "probability": 0.9899 + }, + { + "start": 82834.16, + "end": 82834.76, + "probability": 0.8247 + }, + { + "start": 82835.8, + "end": 82837.12, + "probability": 0.9419 + }, + { + "start": 82838.98, + "end": 82842.34, + "probability": 0.9355 + }, + { + "start": 82842.78, + "end": 82844.0, + "probability": 0.7669 + }, + { + "start": 82844.68, + "end": 82850.7, + "probability": 0.9774 + }, + { + "start": 82852.18, + "end": 82854.54, + "probability": 0.9939 + }, + { + "start": 82855.92, + "end": 82856.69, + "probability": 0.9973 + }, + { + "start": 82858.16, + "end": 82859.88, + "probability": 0.8983 + }, + { + "start": 82859.92, + "end": 82861.98, + "probability": 0.8806 + }, + { + "start": 82862.34, + "end": 82863.02, + "probability": 0.9161 + }, + { + "start": 82863.1, + "end": 82863.54, + "probability": 0.8684 + }, + { + "start": 82864.36, + "end": 82867.49, + "probability": 0.9902 + }, + { + "start": 82870.42, + "end": 82874.1, + "probability": 0.9576 + }, + { + "start": 82874.24, + "end": 82876.54, + "probability": 0.783 + }, + { + "start": 82876.74, + "end": 82880.08, + "probability": 0.9878 + }, + { + "start": 82882.04, + "end": 82883.32, + "probability": 0.9645 + }, + { + "start": 82886.76, + "end": 82892.6, + "probability": 0.986 + }, + { + "start": 82893.9, + "end": 82899.28, + "probability": 0.9819 + }, + { + "start": 82899.92, + "end": 82902.3, + "probability": 0.9258 + }, + { + "start": 82902.4, + "end": 82903.0, + "probability": 0.8853 + }, + { + "start": 82903.1, + "end": 82904.18, + "probability": 0.4067 + }, + { + "start": 82905.2, + "end": 82906.56, + "probability": 0.976 + }, + { + "start": 82907.1, + "end": 82910.06, + "probability": 0.9806 + }, + { + "start": 82910.28, + "end": 82911.46, + "probability": 0.6618 + }, + { + "start": 82912.32, + "end": 82915.92, + "probability": 0.9976 + }, + { + "start": 82916.82, + "end": 82917.0, + "probability": 0.4482 + }, + { + "start": 82918.3, + "end": 82926.34, + "probability": 0.6514 + }, + { + "start": 82926.8, + "end": 82928.58, + "probability": 0.8195 + }, + { + "start": 82929.9, + "end": 82931.72, + "probability": 0.7361 + }, + { + "start": 82931.8, + "end": 82935.8, + "probability": 0.8651 + }, + { + "start": 82936.62, + "end": 82939.54, + "probability": 0.6937 + }, + { + "start": 82941.37, + "end": 82942.76, + "probability": 0.7793 + }, + { + "start": 82943.08, + "end": 82943.9, + "probability": 0.7887 + }, + { + "start": 82944.66, + "end": 82945.52, + "probability": 0.7957 + }, + { + "start": 82946.54, + "end": 82947.0, + "probability": 0.9629 + }, + { + "start": 82948.38, + "end": 82952.96, + "probability": 0.974 + }, + { + "start": 82953.64, + "end": 82955.94, + "probability": 0.9969 + }, + { + "start": 82957.02, + "end": 82958.3, + "probability": 0.5937 + }, + { + "start": 82959.08, + "end": 82961.12, + "probability": 0.9302 + }, + { + "start": 82962.38, + "end": 82965.26, + "probability": 0.9439 + }, + { + "start": 82966.36, + "end": 82968.98, + "probability": 0.9971 + }, + { + "start": 82970.52, + "end": 82973.78, + "probability": 0.9928 + }, + { + "start": 82974.48, + "end": 82977.44, + "probability": 0.9783 + }, + { + "start": 82978.4, + "end": 82979.06, + "probability": 0.9658 + }, + { + "start": 82980.22, + "end": 82985.12, + "probability": 0.9561 + }, + { + "start": 82986.06, + "end": 82988.34, + "probability": 0.9952 + }, + { + "start": 82988.5, + "end": 82989.3, + "probability": 0.9152 + }, + { + "start": 82989.72, + "end": 82991.88, + "probability": 0.988 + }, + { + "start": 82991.88, + "end": 82997.64, + "probability": 0.9847 + }, + { + "start": 82997.78, + "end": 82998.82, + "probability": 0.8847 + }, + { + "start": 83001.46, + "end": 83001.82, + "probability": 0.7047 + }, + { + "start": 83002.7, + "end": 83003.92, + "probability": 0.9123 + }, + { + "start": 83005.1, + "end": 83005.48, + "probability": 0.4982 + }, + { + "start": 83006.98, + "end": 83008.72, + "probability": 0.9996 + }, + { + "start": 83011.44, + "end": 83014.54, + "probability": 0.8809 + }, + { + "start": 83015.84, + "end": 83018.28, + "probability": 0.9468 + }, + { + "start": 83019.98, + "end": 83020.46, + "probability": 0.0686 + }, + { + "start": 83020.56, + "end": 83022.18, + "probability": 0.9249 + }, + { + "start": 83022.78, + "end": 83023.34, + "probability": 0.9063 + }, + { + "start": 83024.7, + "end": 83025.34, + "probability": 0.8891 + }, + { + "start": 83026.68, + "end": 83028.48, + "probability": 0.9878 + }, + { + "start": 83029.5, + "end": 83030.88, + "probability": 0.821 + }, + { + "start": 83031.94, + "end": 83033.22, + "probability": 0.9987 + }, + { + "start": 83036.36, + "end": 83040.12, + "probability": 0.9852 + }, + { + "start": 83041.1, + "end": 83042.48, + "probability": 0.8621 + }, + { + "start": 83043.64, + "end": 83049.06, + "probability": 0.9954 + }, + { + "start": 83049.1, + "end": 83050.14, + "probability": 0.8267 + }, + { + "start": 83050.7, + "end": 83051.82, + "probability": 0.8832 + }, + { + "start": 83052.68, + "end": 83054.38, + "probability": 0.9837 + }, + { + "start": 83055.76, + "end": 83058.54, + "probability": 0.9858 + }, + { + "start": 83059.46, + "end": 83062.96, + "probability": 0.9735 + }, + { + "start": 83063.14, + "end": 83064.98, + "probability": 0.5844 + }, + { + "start": 83065.54, + "end": 83066.34, + "probability": 0.9244 + }, + { + "start": 83066.42, + "end": 83066.72, + "probability": 0.7458 + }, + { + "start": 83067.08, + "end": 83069.0, + "probability": 0.98 + }, + { + "start": 83070.82, + "end": 83078.14, + "probability": 0.9888 + }, + { + "start": 83078.36, + "end": 83080.42, + "probability": 0.7974 + }, + { + "start": 83081.4, + "end": 83083.24, + "probability": 0.9624 + }, + { + "start": 83085.72, + "end": 83090.3, + "probability": 0.9111 + }, + { + "start": 83090.84, + "end": 83095.76, + "probability": 0.9079 + }, + { + "start": 83096.18, + "end": 83097.58, + "probability": 0.988 + }, + { + "start": 83098.02, + "end": 83101.44, + "probability": 0.9849 + }, + { + "start": 83101.44, + "end": 83104.14, + "probability": 0.999 + }, + { + "start": 83104.2, + "end": 83105.38, + "probability": 0.8363 + }, + { + "start": 83106.26, + "end": 83109.2, + "probability": 0.9849 + }, + { + "start": 83109.4, + "end": 83112.52, + "probability": 0.9927 + }, + { + "start": 83112.86, + "end": 83114.56, + "probability": 0.7744 + }, + { + "start": 83115.56, + "end": 83118.4, + "probability": 0.9818 + }, + { + "start": 83119.28, + "end": 83119.88, + "probability": 0.604 + }, + { + "start": 83121.06, + "end": 83122.48, + "probability": 0.8518 + }, + { + "start": 83123.32, + "end": 83123.97, + "probability": 0.9678 + }, + { + "start": 83124.36, + "end": 83125.84, + "probability": 0.9548 + }, + { + "start": 83126.04, + "end": 83126.6, + "probability": 0.5165 + }, + { + "start": 83126.84, + "end": 83127.42, + "probability": 0.7716 + }, + { + "start": 83128.66, + "end": 83129.26, + "probability": 0.9419 + }, + { + "start": 83129.84, + "end": 83131.34, + "probability": 0.8098 + }, + { + "start": 83131.86, + "end": 83134.08, + "probability": 0.9165 + }, + { + "start": 83135.16, + "end": 83137.3, + "probability": 0.9702 + }, + { + "start": 83137.8, + "end": 83139.94, + "probability": 0.8773 + }, + { + "start": 83140.1, + "end": 83145.22, + "probability": 0.999 + }, + { + "start": 83145.34, + "end": 83148.14, + "probability": 0.9593 + }, + { + "start": 83148.94, + "end": 83149.85, + "probability": 0.8252 + }, + { + "start": 83150.84, + "end": 83151.56, + "probability": 0.8353 + }, + { + "start": 83152.6, + "end": 83153.28, + "probability": 0.7809 + }, + { + "start": 83154.9, + "end": 83157.14, + "probability": 0.9839 + }, + { + "start": 83157.66, + "end": 83159.72, + "probability": 0.8349 + }, + { + "start": 83160.66, + "end": 83162.92, + "probability": 0.8507 + }, + { + "start": 83163.52, + "end": 83164.82, + "probability": 0.9779 + }, + { + "start": 83165.2, + "end": 83165.6, + "probability": 0.7595 + }, + { + "start": 83165.92, + "end": 83166.64, + "probability": 0.9436 + }, + { + "start": 83166.74, + "end": 83167.16, + "probability": 0.8563 + }, + { + "start": 83167.28, + "end": 83167.97, + "probability": 0.9307 + }, + { + "start": 83169.24, + "end": 83170.82, + "probability": 0.9731 + }, + { + "start": 83172.44, + "end": 83173.94, + "probability": 0.965 + }, + { + "start": 83175.5, + "end": 83176.24, + "probability": 0.0121 + }, + { + "start": 83180.6, + "end": 83181.72, + "probability": 0.2095 + }, + { + "start": 83182.28, + "end": 83183.06, + "probability": 0.6661 + }, + { + "start": 83185.8, + "end": 83185.92, + "probability": 0.7639 + }, + { + "start": 83205.22, + "end": 83205.88, + "probability": 0.1206 + }, + { + "start": 83208.34, + "end": 83210.1, + "probability": 0.7203 + }, + { + "start": 83211.6, + "end": 83213.58, + "probability": 0.95 + }, + { + "start": 83214.92, + "end": 83219.04, + "probability": 0.9253 + }, + { + "start": 83220.94, + "end": 83225.78, + "probability": 0.9469 + }, + { + "start": 83226.76, + "end": 83228.84, + "probability": 0.8173 + }, + { + "start": 83230.92, + "end": 83233.32, + "probability": 0.8507 + }, + { + "start": 83234.6, + "end": 83239.16, + "probability": 0.995 + }, + { + "start": 83239.18, + "end": 83243.56, + "probability": 0.9969 + }, + { + "start": 83244.42, + "end": 83245.84, + "probability": 0.8699 + }, + { + "start": 83246.82, + "end": 83248.62, + "probability": 0.9538 + }, + { + "start": 83249.58, + "end": 83251.84, + "probability": 0.9905 + }, + { + "start": 83252.42, + "end": 83252.82, + "probability": 0.9491 + }, + { + "start": 83254.44, + "end": 83261.54, + "probability": 0.9821 + }, + { + "start": 83263.06, + "end": 83267.54, + "probability": 0.9281 + }, + { + "start": 83268.64, + "end": 83270.52, + "probability": 0.9598 + }, + { + "start": 83271.6, + "end": 83273.94, + "probability": 0.9974 + }, + { + "start": 83275.12, + "end": 83282.6, + "probability": 0.9971 + }, + { + "start": 83285.26, + "end": 83285.62, + "probability": 0.3733 + }, + { + "start": 83285.88, + "end": 83292.24, + "probability": 0.9984 + }, + { + "start": 83292.24, + "end": 83301.1, + "probability": 0.9988 + }, + { + "start": 83301.66, + "end": 83302.8, + "probability": 0.7493 + }, + { + "start": 83303.44, + "end": 83309.36, + "probability": 0.8319 + }, + { + "start": 83309.74, + "end": 83310.9, + "probability": 0.674 + }, + { + "start": 83311.58, + "end": 83312.32, + "probability": 0.9653 + }, + { + "start": 83314.56, + "end": 83315.86, + "probability": 0.8942 + }, + { + "start": 83315.98, + "end": 83317.06, + "probability": 0.6653 + }, + { + "start": 83317.16, + "end": 83321.3, + "probability": 0.9971 + }, + { + "start": 83321.92, + "end": 83324.28, + "probability": 0.8436 + }, + { + "start": 83325.72, + "end": 83330.74, + "probability": 0.9963 + }, + { + "start": 83331.76, + "end": 83334.2, + "probability": 0.9144 + }, + { + "start": 83334.84, + "end": 83338.14, + "probability": 0.9907 + }, + { + "start": 83339.46, + "end": 83339.86, + "probability": 0.7418 + }, + { + "start": 83340.82, + "end": 83344.76, + "probability": 0.9425 + }, + { + "start": 83345.62, + "end": 83346.98, + "probability": 0.9536 + }, + { + "start": 83347.62, + "end": 83353.5, + "probability": 0.9412 + }, + { + "start": 83354.12, + "end": 83359.06, + "probability": 0.9922 + }, + { + "start": 83362.08, + "end": 83363.7, + "probability": 0.7962 + }, + { + "start": 83364.22, + "end": 83367.48, + "probability": 0.9849 + }, + { + "start": 83367.98, + "end": 83369.98, + "probability": 0.8027 + }, + { + "start": 83370.52, + "end": 83372.78, + "probability": 0.8936 + }, + { + "start": 83373.88, + "end": 83376.36, + "probability": 0.9391 + }, + { + "start": 83376.58, + "end": 83378.78, + "probability": 0.8923 + }, + { + "start": 83378.82, + "end": 83382.06, + "probability": 0.9885 + }, + { + "start": 83383.12, + "end": 83384.61, + "probability": 0.9951 + }, + { + "start": 83386.18, + "end": 83389.18, + "probability": 0.9604 + }, + { + "start": 83389.98, + "end": 83392.05, + "probability": 0.9728 + }, + { + "start": 83392.94, + "end": 83397.92, + "probability": 0.9966 + }, + { + "start": 83399.22, + "end": 83402.1, + "probability": 0.7856 + }, + { + "start": 83402.92, + "end": 83404.7, + "probability": 0.7698 + }, + { + "start": 83405.32, + "end": 83406.53, + "probability": 0.2735 + }, + { + "start": 83407.48, + "end": 83410.52, + "probability": 0.952 + }, + { + "start": 83411.28, + "end": 83413.14, + "probability": 0.8499 + }, + { + "start": 83413.82, + "end": 83415.6, + "probability": 0.9564 + }, + { + "start": 83416.62, + "end": 83418.9, + "probability": 0.9784 + }, + { + "start": 83419.62, + "end": 83423.0, + "probability": 0.9653 + }, + { + "start": 83423.76, + "end": 83424.5, + "probability": 0.8008 + }, + { + "start": 83425.18, + "end": 83431.52, + "probability": 0.9977 + }, + { + "start": 83432.36, + "end": 83436.7, + "probability": 0.9442 + }, + { + "start": 83437.14, + "end": 83440.14, + "probability": 0.9946 + }, + { + "start": 83440.64, + "end": 83442.84, + "probability": 0.809 + }, + { + "start": 83444.56, + "end": 83445.4, + "probability": 0.5167 + }, + { + "start": 83447.42, + "end": 83448.7, + "probability": 0.937 + }, + { + "start": 83452.62, + "end": 83456.88, + "probability": 0.8674 + }, + { + "start": 83457.8, + "end": 83460.1, + "probability": 0.9147 + }, + { + "start": 83460.94, + "end": 83462.0, + "probability": 0.9822 + }, + { + "start": 83462.56, + "end": 83465.74, + "probability": 0.9933 + }, + { + "start": 83466.64, + "end": 83469.08, + "probability": 0.9668 + }, + { + "start": 83469.82, + "end": 83471.3, + "probability": 0.9926 + }, + { + "start": 83472.14, + "end": 83474.36, + "probability": 0.992 + }, + { + "start": 83475.08, + "end": 83477.58, + "probability": 0.9769 + }, + { + "start": 83478.8, + "end": 83482.74, + "probability": 0.6647 + }, + { + "start": 83483.06, + "end": 83486.8, + "probability": 0.9957 + }, + { + "start": 83488.66, + "end": 83489.8, + "probability": 0.5043 + }, + { + "start": 83489.92, + "end": 83494.74, + "probability": 0.9623 + }, + { + "start": 83495.16, + "end": 83496.14, + "probability": 0.4979 + }, + { + "start": 83498.94, + "end": 83501.02, + "probability": 0.83 + }, + { + "start": 83502.08, + "end": 83502.8, + "probability": 0.9695 + }, + { + "start": 83503.4, + "end": 83504.54, + "probability": 0.9308 + }, + { + "start": 83505.54, + "end": 83506.85, + "probability": 0.998 + }, + { + "start": 83508.36, + "end": 83510.74, + "probability": 0.9478 + }, + { + "start": 83511.4, + "end": 83513.92, + "probability": 0.9938 + }, + { + "start": 83514.72, + "end": 83521.24, + "probability": 0.9877 + }, + { + "start": 83521.76, + "end": 83527.88, + "probability": 0.9912 + }, + { + "start": 83529.0, + "end": 83531.94, + "probability": 0.9181 + }, + { + "start": 83533.44, + "end": 83538.82, + "probability": 0.9027 + }, + { + "start": 83540.08, + "end": 83546.24, + "probability": 0.9889 + }, + { + "start": 83547.44, + "end": 83550.06, + "probability": 0.929 + }, + { + "start": 83550.74, + "end": 83551.92, + "probability": 0.7941 + }, + { + "start": 83553.4, + "end": 83555.3, + "probability": 0.9705 + }, + { + "start": 83555.94, + "end": 83556.8, + "probability": 0.6443 + }, + { + "start": 83558.06, + "end": 83558.58, + "probability": 0.3883 + }, + { + "start": 83559.26, + "end": 83563.36, + "probability": 0.9943 + }, + { + "start": 83564.4, + "end": 83566.92, + "probability": 0.9345 + }, + { + "start": 83566.98, + "end": 83572.04, + "probability": 0.9735 + }, + { + "start": 83572.04, + "end": 83576.94, + "probability": 0.8631 + }, + { + "start": 83577.38, + "end": 83577.96, + "probability": 0.4735 + }, + { + "start": 83578.98, + "end": 83580.94, + "probability": 0.9688 + }, + { + "start": 83581.72, + "end": 83582.12, + "probability": 0.8994 + }, + { + "start": 83582.28, + "end": 83582.82, + "probability": 0.9345 + }, + { + "start": 83582.94, + "end": 83583.66, + "probability": 0.9407 + }, + { + "start": 83584.16, + "end": 83585.12, + "probability": 0.9849 + }, + { + "start": 83585.42, + "end": 83586.68, + "probability": 0.9697 + }, + { + "start": 83588.76, + "end": 83590.46, + "probability": 0.9441 + }, + { + "start": 83590.58, + "end": 83592.46, + "probability": 0.9954 + }, + { + "start": 83593.54, + "end": 83597.96, + "probability": 0.9404 + }, + { + "start": 83600.32, + "end": 83606.88, + "probability": 0.9255 + }, + { + "start": 83607.98, + "end": 83610.66, + "probability": 0.995 + }, + { + "start": 83612.36, + "end": 83615.4, + "probability": 0.9844 + }, + { + "start": 83617.28, + "end": 83619.42, + "probability": 0.8802 + }, + { + "start": 83620.5, + "end": 83621.74, + "probability": 0.6513 + }, + { + "start": 83622.9, + "end": 83627.12, + "probability": 0.722 + }, + { + "start": 83628.16, + "end": 83632.38, + "probability": 0.8433 + }, + { + "start": 83632.38, + "end": 83637.32, + "probability": 0.982 + }, + { + "start": 83637.42, + "end": 83638.36, + "probability": 0.9847 + }, + { + "start": 83638.4, + "end": 83640.4, + "probability": 0.8854 + }, + { + "start": 83653.68, + "end": 83659.36, + "probability": 0.2857 + }, + { + "start": 83659.42, + "end": 83662.4, + "probability": 0.3394 + }, + { + "start": 83663.02, + "end": 83669.68, + "probability": 0.8907 + }, + { + "start": 83670.38, + "end": 83672.0, + "probability": 0.7428 + }, + { + "start": 83672.72, + "end": 83673.34, + "probability": 0.9219 + }, + { + "start": 83674.1, + "end": 83677.52, + "probability": 0.6123 + }, + { + "start": 83677.74, + "end": 83681.06, + "probability": 0.9253 + }, + { + "start": 83681.94, + "end": 83684.52, + "probability": 0.9849 + }, + { + "start": 83684.64, + "end": 83691.28, + "probability": 0.9866 + }, + { + "start": 83691.88, + "end": 83693.92, + "probability": 0.9771 + }, + { + "start": 83694.98, + "end": 83698.64, + "probability": 0.8668 + }, + { + "start": 83698.82, + "end": 83702.06, + "probability": 0.7965 + }, + { + "start": 83702.64, + "end": 83704.32, + "probability": 0.8846 + }, + { + "start": 83704.88, + "end": 83710.02, + "probability": 0.9904 + }, + { + "start": 83711.44, + "end": 83712.38, + "probability": 0.9143 + }, + { + "start": 83713.24, + "end": 83716.46, + "probability": 0.9774 + }, + { + "start": 83717.14, + "end": 83717.66, + "probability": 0.5549 + }, + { + "start": 83717.76, + "end": 83719.08, + "probability": 0.978 + }, + { + "start": 83719.46, + "end": 83722.66, + "probability": 0.9891 + }, + { + "start": 83723.26, + "end": 83724.78, + "probability": 0.969 + }, + { + "start": 83726.06, + "end": 83727.44, + "probability": 0.9836 + }, + { + "start": 83728.14, + "end": 83729.94, + "probability": 0.8899 + }, + { + "start": 83730.42, + "end": 83733.86, + "probability": 0.9187 + }, + { + "start": 83734.68, + "end": 83736.36, + "probability": 0.74 + }, + { + "start": 83736.56, + "end": 83740.74, + "probability": 0.7682 + }, + { + "start": 83741.1, + "end": 83741.7, + "probability": 0.3776 + }, + { + "start": 83741.86, + "end": 83744.84, + "probability": 0.8433 + }, + { + "start": 83746.06, + "end": 83750.46, + "probability": 0.9647 + }, + { + "start": 83751.04, + "end": 83756.38, + "probability": 0.9796 + }, + { + "start": 83757.94, + "end": 83758.38, + "probability": 0.9604 + }, + { + "start": 83760.0, + "end": 83761.26, + "probability": 0.8411 + }, + { + "start": 83762.0, + "end": 83764.96, + "probability": 0.981 + }, + { + "start": 83765.5, + "end": 83768.58, + "probability": 0.9992 + }, + { + "start": 83769.46, + "end": 83771.18, + "probability": 0.7769 + }, + { + "start": 83772.44, + "end": 83773.35, + "probability": 0.9958 + }, + { + "start": 83774.64, + "end": 83780.44, + "probability": 0.9849 + }, + { + "start": 83780.8, + "end": 83785.14, + "probability": 0.8556 + }, + { + "start": 83785.84, + "end": 83787.06, + "probability": 0.9268 + }, + { + "start": 83787.86, + "end": 83793.08, + "probability": 0.75 + }, + { + "start": 83793.7, + "end": 83795.42, + "probability": 0.9484 + }, + { + "start": 83796.06, + "end": 83797.9, + "probability": 0.9281 + }, + { + "start": 83799.2, + "end": 83802.04, + "probability": 0.9979 + }, + { + "start": 83802.6, + "end": 83805.94, + "probability": 0.8875 + }, + { + "start": 83806.5, + "end": 83808.98, + "probability": 0.8491 + }, + { + "start": 83810.12, + "end": 83812.58, + "probability": 0.9225 + }, + { + "start": 83813.54, + "end": 83818.46, + "probability": 0.9512 + }, + { + "start": 83819.58, + "end": 83823.68, + "probability": 0.9602 + }, + { + "start": 83824.34, + "end": 83824.66, + "probability": 0.358 + }, + { + "start": 83824.76, + "end": 83826.58, + "probability": 0.7708 + }, + { + "start": 83827.0, + "end": 83831.0, + "probability": 0.9959 + }, + { + "start": 83831.52, + "end": 83832.0, + "probability": 0.8704 + }, + { + "start": 83832.18, + "end": 83833.08, + "probability": 0.8446 + }, + { + "start": 83833.58, + "end": 83835.16, + "probability": 0.933 + }, + { + "start": 83835.4, + "end": 83836.12, + "probability": 0.9348 + }, + { + "start": 83838.1, + "end": 83840.74, + "probability": 0.9435 + }, + { + "start": 83840.88, + "end": 83844.76, + "probability": 0.9797 + }, + { + "start": 83845.34, + "end": 83848.94, + "probability": 0.9885 + }, + { + "start": 83849.7, + "end": 83853.42, + "probability": 0.9869 + }, + { + "start": 83854.38, + "end": 83855.38, + "probability": 0.5001 + }, + { + "start": 83856.56, + "end": 83857.8, + "probability": 0.9307 + }, + { + "start": 83858.44, + "end": 83861.72, + "probability": 0.973 + }, + { + "start": 83861.76, + "end": 83863.94, + "probability": 0.9965 + }, + { + "start": 83864.76, + "end": 83871.86, + "probability": 0.9777 + }, + { + "start": 83872.5, + "end": 83873.16, + "probability": 0.8211 + }, + { + "start": 83873.38, + "end": 83873.7, + "probability": 0.9342 + }, + { + "start": 83873.88, + "end": 83877.52, + "probability": 0.9342 + }, + { + "start": 83879.36, + "end": 83879.36, + "probability": 0.4091 + }, + { + "start": 83879.36, + "end": 83880.12, + "probability": 0.4253 + }, + { + "start": 83880.52, + "end": 83882.7, + "probability": 0.7405 + }, + { + "start": 83882.7, + "end": 83884.52, + "probability": 0.7109 + }, + { + "start": 83886.64, + "end": 83888.32, + "probability": 0.927 + }, + { + "start": 83888.42, + "end": 83889.36, + "probability": 0.9444 + }, + { + "start": 83889.4, + "end": 83892.88, + "probability": 0.9788 + }, + { + "start": 83892.88, + "end": 83896.2, + "probability": 0.9956 + }, + { + "start": 83896.7, + "end": 83901.82, + "probability": 0.9981 + }, + { + "start": 83902.66, + "end": 83903.84, + "probability": 0.8097 + }, + { + "start": 83904.42, + "end": 83908.82, + "probability": 0.9857 + }, + { + "start": 83909.44, + "end": 83912.66, + "probability": 0.9853 + }, + { + "start": 83912.66, + "end": 83915.48, + "probability": 0.9922 + }, + { + "start": 83916.66, + "end": 83919.88, + "probability": 0.9839 + }, + { + "start": 83920.4, + "end": 83922.4, + "probability": 0.9686 + }, + { + "start": 83923.32, + "end": 83925.12, + "probability": 0.9944 + }, + { + "start": 83925.66, + "end": 83930.36, + "probability": 0.9396 + }, + { + "start": 83931.24, + "end": 83932.08, + "probability": 0.927 + }, + { + "start": 83932.26, + "end": 83932.64, + "probability": 0.7946 + }, + { + "start": 83932.88, + "end": 83933.78, + "probability": 0.7053 + }, + { + "start": 83934.26, + "end": 83936.0, + "probability": 0.905 + }, + { + "start": 83936.46, + "end": 83940.64, + "probability": 0.9517 + }, + { + "start": 83941.86, + "end": 83946.34, + "probability": 0.979 + }, + { + "start": 83947.32, + "end": 83952.64, + "probability": 0.9958 + }, + { + "start": 83952.64, + "end": 83956.48, + "probability": 0.9951 + }, + { + "start": 83957.56, + "end": 83965.52, + "probability": 0.9974 + }, + { + "start": 83966.04, + "end": 83968.3, + "probability": 0.9615 + }, + { + "start": 83969.12, + "end": 83973.16, + "probability": 0.9703 + }, + { + "start": 83974.04, + "end": 83977.36, + "probability": 0.9756 + }, + { + "start": 83978.16, + "end": 83981.7, + "probability": 0.9779 + }, + { + "start": 83982.68, + "end": 83988.09, + "probability": 0.9912 + }, + { + "start": 83988.78, + "end": 83993.36, + "probability": 0.9092 + }, + { + "start": 83994.14, + "end": 83999.68, + "probability": 0.9935 + }, + { + "start": 84000.68, + "end": 84002.76, + "probability": 0.8339 + }, + { + "start": 84003.04, + "end": 84006.38, + "probability": 0.8768 + }, + { + "start": 84007.12, + "end": 84012.74, + "probability": 0.8452 + }, + { + "start": 84013.52, + "end": 84018.88, + "probability": 0.9824 + }, + { + "start": 84019.54, + "end": 84020.92, + "probability": 0.9081 + }, + { + "start": 84021.44, + "end": 84024.74, + "probability": 0.8535 + }, + { + "start": 84025.18, + "end": 84026.68, + "probability": 0.4925 + }, + { + "start": 84027.6, + "end": 84027.98, + "probability": 0.7863 + }, + { + "start": 84028.08, + "end": 84028.94, + "probability": 0.7609 + }, + { + "start": 84029.96, + "end": 84033.6, + "probability": 0.8786 + }, + { + "start": 84034.12, + "end": 84035.14, + "probability": 0.8726 + }, + { + "start": 84036.34, + "end": 84040.1, + "probability": 0.8465 + }, + { + "start": 84041.98, + "end": 84042.38, + "probability": 0.9702 + }, + { + "start": 84046.48, + "end": 84047.64, + "probability": 0.7374 + }, + { + "start": 84048.32, + "end": 84049.76, + "probability": 0.9117 + }, + { + "start": 84050.7, + "end": 84051.81, + "probability": 0.9189 + }, + { + "start": 84052.6, + "end": 84053.26, + "probability": 0.9403 + }, + { + "start": 84054.22, + "end": 84057.12, + "probability": 0.9836 + }, + { + "start": 84057.92, + "end": 84058.88, + "probability": 0.0422 + }, + { + "start": 84059.26, + "end": 84061.38, + "probability": 0.4798 + }, + { + "start": 84061.7, + "end": 84064.99, + "probability": 0.7988 + }, + { + "start": 84065.08, + "end": 84066.2, + "probability": 0.8494 + }, + { + "start": 84067.38, + "end": 84068.08, + "probability": 0.3172 + }, + { + "start": 84068.32, + "end": 84068.83, + "probability": 0.5428 + }, + { + "start": 84070.02, + "end": 84074.86, + "probability": 0.9789 + }, + { + "start": 84077.04, + "end": 84078.54, + "probability": 0.8421 + }, + { + "start": 84079.42, + "end": 84082.0, + "probability": 0.9106 + }, + { + "start": 84082.86, + "end": 84086.78, + "probability": 0.9797 + }, + { + "start": 84087.36, + "end": 84088.66, + "probability": 0.6152 + }, + { + "start": 84090.96, + "end": 84094.1, + "probability": 0.9914 + }, + { + "start": 84094.82, + "end": 84096.2, + "probability": 0.8471 + }, + { + "start": 84100.52, + "end": 84102.04, + "probability": 0.5858 + }, + { + "start": 84102.86, + "end": 84107.6, + "probability": 0.8108 + }, + { + "start": 84109.42, + "end": 84109.42, + "probability": 0.0121 + }, + { + "start": 84109.42, + "end": 84112.48, + "probability": 0.9231 + }, + { + "start": 84112.54, + "end": 84117.24, + "probability": 0.9771 + }, + { + "start": 84117.24, + "end": 84117.48, + "probability": 0.4449 + }, + { + "start": 84118.68, + "end": 84122.42, + "probability": 0.9801 + }, + { + "start": 84123.12, + "end": 84123.92, + "probability": 0.8618 + }, + { + "start": 84125.22, + "end": 84128.06, + "probability": 0.9822 + }, + { + "start": 84128.94, + "end": 84129.4, + "probability": 0.4828 + }, + { + "start": 84130.52, + "end": 84134.43, + "probability": 0.9974 + }, + { + "start": 84135.44, + "end": 84139.1, + "probability": 0.9685 + }, + { + "start": 84139.81, + "end": 84140.68, + "probability": 0.3105 + }, + { + "start": 84140.84, + "end": 84142.34, + "probability": 0.6081 + }, + { + "start": 84143.68, + "end": 84146.44, + "probability": 0.7925 + }, + { + "start": 84147.16, + "end": 84152.3, + "probability": 0.9941 + }, + { + "start": 84152.78, + "end": 84154.66, + "probability": 0.9966 + }, + { + "start": 84155.8, + "end": 84161.44, + "probability": 0.8305 + }, + { + "start": 84162.79, + "end": 84167.08, + "probability": 0.7539 + }, + { + "start": 84168.08, + "end": 84173.18, + "probability": 0.9901 + }, + { + "start": 84173.56, + "end": 84173.78, + "probability": 0.6947 + }, + { + "start": 84175.04, + "end": 84176.98, + "probability": 0.9953 + }, + { + "start": 84178.24, + "end": 84180.86, + "probability": 0.998 + }, + { + "start": 84181.52, + "end": 84184.0, + "probability": 0.9985 + }, + { + "start": 84184.72, + "end": 84187.92, + "probability": 0.9883 + }, + { + "start": 84189.06, + "end": 84193.58, + "probability": 0.9992 + }, + { + "start": 84194.16, + "end": 84195.66, + "probability": 0.9902 + }, + { + "start": 84196.38, + "end": 84198.74, + "probability": 0.9976 + }, + { + "start": 84199.26, + "end": 84203.4, + "probability": 0.996 + }, + { + "start": 84203.96, + "end": 84206.24, + "probability": 0.9927 + }, + { + "start": 84206.8, + "end": 84207.16, + "probability": 0.426 + }, + { + "start": 84208.3, + "end": 84211.98, + "probability": 0.9951 + }, + { + "start": 84212.6, + "end": 84214.9, + "probability": 0.9924 + }, + { + "start": 84215.74, + "end": 84221.88, + "probability": 0.9801 + }, + { + "start": 84222.38, + "end": 84222.68, + "probability": 0.3806 + }, + { + "start": 84224.12, + "end": 84229.22, + "probability": 0.9814 + }, + { + "start": 84229.78, + "end": 84233.18, + "probability": 0.9959 + }, + { + "start": 84233.94, + "end": 84237.9, + "probability": 0.87 + }, + { + "start": 84238.84, + "end": 84244.28, + "probability": 0.9979 + }, + { + "start": 84244.3, + "end": 84247.82, + "probability": 0.9894 + }, + { + "start": 84248.62, + "end": 84249.26, + "probability": 0.6933 + }, + { + "start": 84250.34, + "end": 84254.43, + "probability": 0.9977 + }, + { + "start": 84255.05, + "end": 84257.87, + "probability": 0.996 + }, + { + "start": 84258.49, + "end": 84258.91, + "probability": 0.4573 + }, + { + "start": 84260.21, + "end": 84261.41, + "probability": 0.9941 + }, + { + "start": 84262.31, + "end": 84264.39, + "probability": 0.9943 + }, + { + "start": 84265.03, + "end": 84270.05, + "probability": 0.9939 + }, + { + "start": 84270.59, + "end": 84271.15, + "probability": 0.7401 + }, + { + "start": 84272.01, + "end": 84276.11, + "probability": 0.9965 + }, + { + "start": 84276.47, + "end": 84281.45, + "probability": 0.8151 + }, + { + "start": 84282.17, + "end": 84283.55, + "probability": 0.2304 + }, + { + "start": 84283.55, + "end": 84284.37, + "probability": 0.743 + }, + { + "start": 84286.39, + "end": 84289.83, + "probability": 0.9979 + }, + { + "start": 84290.43, + "end": 84291.13, + "probability": 0.6646 + }, + { + "start": 84291.65, + "end": 84294.41, + "probability": 0.672 + }, + { + "start": 84294.93, + "end": 84297.19, + "probability": 0.8009 + }, + { + "start": 84297.39, + "end": 84298.03, + "probability": 0.0554 + }, + { + "start": 84301.57, + "end": 84305.11, + "probability": 0.1454 + }, + { + "start": 84309.41, + "end": 84318.61, + "probability": 0.677 + }, + { + "start": 84319.51, + "end": 84320.11, + "probability": 0.4152 + }, + { + "start": 84320.61, + "end": 84322.17, + "probability": 0.9634 + }, + { + "start": 84322.83, + "end": 84324.47, + "probability": 0.631 + }, + { + "start": 84324.79, + "end": 84325.66, + "probability": 0.8826 + }, + { + "start": 84325.91, + "end": 84326.91, + "probability": 0.2987 + }, + { + "start": 84327.15, + "end": 84334.29, + "probability": 0.536 + }, + { + "start": 84334.49, + "end": 84337.27, + "probability": 0.9556 + }, + { + "start": 84337.49, + "end": 84338.89, + "probability": 0.7246 + }, + { + "start": 84339.11, + "end": 84339.55, + "probability": 0.938 + }, + { + "start": 84340.27, + "end": 84342.51, + "probability": 0.2861 + }, + { + "start": 84342.51, + "end": 84342.57, + "probability": 0.168 + }, + { + "start": 84343.79, + "end": 84344.11, + "probability": 0.0992 + }, + { + "start": 84344.11, + "end": 84344.47, + "probability": 0.1348 + }, + { + "start": 84344.47, + "end": 84345.38, + "probability": 0.4892 + }, + { + "start": 84345.51, + "end": 84346.27, + "probability": 0.0172 + }, + { + "start": 84346.45, + "end": 84346.67, + "probability": 0.1953 + }, + { + "start": 84347.01, + "end": 84348.73, + "probability": 0.1414 + }, + { + "start": 84349.09, + "end": 84350.25, + "probability": 0.1805 + }, + { + "start": 84350.47, + "end": 84352.23, + "probability": 0.5668 + }, + { + "start": 84352.53, + "end": 84354.71, + "probability": 0.5366 + }, + { + "start": 84355.61, + "end": 84359.98, + "probability": 0.8403 + }, + { + "start": 84360.83, + "end": 84364.23, + "probability": 0.0762 + }, + { + "start": 84364.37, + "end": 84367.55, + "probability": 0.1733 + }, + { + "start": 84368.21, + "end": 84368.25, + "probability": 0.0249 + }, + { + "start": 84368.25, + "end": 84370.38, + "probability": 0.7582 + }, + { + "start": 84370.53, + "end": 84372.31, + "probability": 0.8106 + }, + { + "start": 84373.15, + "end": 84373.53, + "probability": 0.0103 + }, + { + "start": 84377.28, + "end": 84378.97, + "probability": 0.8032 + }, + { + "start": 84379.67, + "end": 84383.95, + "probability": 0.9169 + }, + { + "start": 84384.23, + "end": 84388.53, + "probability": 0.9078 + }, + { + "start": 84389.23, + "end": 84392.24, + "probability": 0.99 + }, + { + "start": 84392.49, + "end": 84396.73, + "probability": 0.5273 + }, + { + "start": 84396.73, + "end": 84398.67, + "probability": 0.6412 + }, + { + "start": 84398.67, + "end": 84399.21, + "probability": 0.3559 + }, + { + "start": 84399.21, + "end": 84399.21, + "probability": 0.643 + }, + { + "start": 84399.21, + "end": 84404.89, + "probability": 0.8179 + }, + { + "start": 84405.17, + "end": 84407.05, + "probability": 0.7463 + }, + { + "start": 84407.17, + "end": 84410.57, + "probability": 0.2896 + }, + { + "start": 84412.83, + "end": 84412.93, + "probability": 0.4908 + }, + { + "start": 84412.93, + "end": 84413.33, + "probability": 0.1318 + }, + { + "start": 84413.53, + "end": 84414.81, + "probability": 0.6068 + }, + { + "start": 84415.84, + "end": 84418.85, + "probability": 0.417 + }, + { + "start": 84419.93, + "end": 84420.97, + "probability": 0.9425 + }, + { + "start": 84421.13, + "end": 84423.29, + "probability": 0.7759 + }, + { + "start": 84423.51, + "end": 84424.59, + "probability": 0.6644 + }, + { + "start": 84425.07, + "end": 84425.91, + "probability": 0.5902 + }, + { + "start": 84426.33, + "end": 84428.13, + "probability": 0.5009 + }, + { + "start": 84429.52, + "end": 84433.57, + "probability": 0.8393 + }, + { + "start": 84434.43, + "end": 84439.55, + "probability": 0.915 + }, + { + "start": 84439.61, + "end": 84441.57, + "probability": 0.832 + }, + { + "start": 84441.65, + "end": 84442.1, + "probability": 0.386 + }, + { + "start": 84444.73, + "end": 84448.95, + "probability": 0.7092 + }, + { + "start": 84449.57, + "end": 84453.1, + "probability": 0.9971 + }, + { + "start": 84453.17, + "end": 84454.27, + "probability": 0.5349 + }, + { + "start": 84454.89, + "end": 84459.21, + "probability": 0.9248 + }, + { + "start": 84459.73, + "end": 84462.37, + "probability": 0.9974 + }, + { + "start": 84462.87, + "end": 84464.95, + "probability": 0.998 + }, + { + "start": 84465.63, + "end": 84467.59, + "probability": 0.8923 + }, + { + "start": 84468.15, + "end": 84472.69, + "probability": 0.9223 + }, + { + "start": 84472.93, + "end": 84477.09, + "probability": 0.9803 + }, + { + "start": 84477.83, + "end": 84479.65, + "probability": 0.6411 + }, + { + "start": 84479.89, + "end": 84486.53, + "probability": 0.9947 + }, + { + "start": 84486.95, + "end": 84491.79, + "probability": 0.9948 + }, + { + "start": 84492.29, + "end": 84497.31, + "probability": 0.9876 + }, + { + "start": 84498.19, + "end": 84499.45, + "probability": 0.9523 + }, + { + "start": 84500.37, + "end": 84503.67, + "probability": 0.9795 + }, + { + "start": 84504.83, + "end": 84506.55, + "probability": 0.9509 + }, + { + "start": 84507.27, + "end": 84513.83, + "probability": 0.9539 + }, + { + "start": 84513.93, + "end": 84514.93, + "probability": 0.7616 + }, + { + "start": 84515.73, + "end": 84518.43, + "probability": 0.9377 + }, + { + "start": 84519.43, + "end": 84524.36, + "probability": 0.9287 + }, + { + "start": 84525.39, + "end": 84528.79, + "probability": 0.7744 + }, + { + "start": 84529.41, + "end": 84531.29, + "probability": 0.2943 + }, + { + "start": 84531.95, + "end": 84537.17, + "probability": 0.9143 + }, + { + "start": 84537.21, + "end": 84540.71, + "probability": 0.7636 + }, + { + "start": 84541.13, + "end": 84544.93, + "probability": 0.9692 + }, + { + "start": 84545.63, + "end": 84550.37, + "probability": 0.8994 + }, + { + "start": 84550.93, + "end": 84554.21, + "probability": 0.8536 + }, + { + "start": 84555.07, + "end": 84557.59, + "probability": 0.9919 + }, + { + "start": 84558.37, + "end": 84560.99, + "probability": 0.6762 + }, + { + "start": 84562.09, + "end": 84564.01, + "probability": 0.878 + }, + { + "start": 84564.19, + "end": 84566.53, + "probability": 0.9922 + }, + { + "start": 84567.23, + "end": 84569.19, + "probability": 0.7595 + }, + { + "start": 84569.51, + "end": 84571.63, + "probability": 0.5929 + }, + { + "start": 84572.21, + "end": 84573.49, + "probability": 0.4175 + }, + { + "start": 84574.41, + "end": 84577.09, + "probability": 0.7963 + }, + { + "start": 84577.71, + "end": 84578.85, + "probability": 0.805 + }, + { + "start": 84579.41, + "end": 84580.47, + "probability": 0.6718 + }, + { + "start": 84581.11, + "end": 84584.61, + "probability": 0.8913 + }, + { + "start": 84585.15, + "end": 84587.29, + "probability": 0.6087 + }, + { + "start": 84587.91, + "end": 84590.07, + "probability": 0.9429 + }, + { + "start": 84591.45, + "end": 84592.43, + "probability": 0.3996 + }, + { + "start": 84592.85, + "end": 84593.13, + "probability": 0.4184 + }, + { + "start": 84593.75, + "end": 84598.37, + "probability": 0.9873 + }, + { + "start": 84599.11, + "end": 84602.63, + "probability": 0.7773 + }, + { + "start": 84603.35, + "end": 84604.77, + "probability": 0.5252 + }, + { + "start": 84605.57, + "end": 84608.03, + "probability": 0.9422 + }, + { + "start": 84608.83, + "end": 84610.51, + "probability": 0.9168 + }, + { + "start": 84612.51, + "end": 84614.79, + "probability": 0.9272 + }, + { + "start": 84615.49, + "end": 84617.49, + "probability": 0.8847 + }, + { + "start": 84619.78, + "end": 84621.92, + "probability": 0.4111 + }, + { + "start": 84622.85, + "end": 84626.25, + "probability": 0.9444 + }, + { + "start": 84626.25, + "end": 84630.73, + "probability": 0.8436 + }, + { + "start": 84631.39, + "end": 84635.45, + "probability": 0.9836 + }, + { + "start": 84635.57, + "end": 84639.21, + "probability": 0.8983 + }, + { + "start": 84639.87, + "end": 84641.01, + "probability": 0.9513 + }, + { + "start": 84641.11, + "end": 84642.11, + "probability": 0.7632 + }, + { + "start": 84642.15, + "end": 84645.19, + "probability": 0.8574 + } + ], + "segments_count": 29257, + "words_count": 143228, + "avg_words_per_segment": 4.8955, + "avg_segment_duration": 1.8798, + "avg_words_per_minute": 101.2399, + "plenum_id": "3871", + "duration": 84884.35, + "title": null, + "plenum_date": "2009-07-28" +} \ No newline at end of file