diff --git "a/61877/metadata.json" "b/61877/metadata.json" new file mode 100644--- /dev/null +++ "b/61877/metadata.json" @@ -0,0 +1,49872 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "61877", + "quality_score": 0.8901, + "per_segment_quality_scores": [ + { + "start": 41.14, + "end": 41.24, + "probability": 0.1767 + }, + { + "start": 41.24, + "end": 41.24, + "probability": 0.1943 + }, + { + "start": 41.24, + "end": 41.92, + "probability": 0.1949 + }, + { + "start": 42.7, + "end": 44.44, + "probability": 0.5985 + }, + { + "start": 46.91, + "end": 47.77, + "probability": 0.1952 + }, + { + "start": 56.93, + "end": 61.0, + "probability": 0.6899 + }, + { + "start": 62.13, + "end": 63.67, + "probability": 0.3564 + }, + { + "start": 64.68, + "end": 67.465, + "probability": 0.1776 + }, + { + "start": 69.41, + "end": 71.53, + "probability": 0.6384 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 166.0, + "end": 166.0, + "probability": 0.0 + }, + { + "start": 177.46, + "end": 178.16, + "probability": 0.3711 + }, + { + "start": 178.16, + "end": 179.08, + "probability": 0.4728 + }, + { + "start": 180.32, + "end": 183.46, + "probability": 0.0449 + }, + { + "start": 183.46, + "end": 185.29, + "probability": 0.0723 + }, + { + "start": 186.74, + "end": 188.52, + "probability": 0.1031 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.0, + "end": 289.0, + "probability": 0.0 + }, + { + "start": 289.2, + "end": 289.2, + "probability": 0.1131 + }, + { + "start": 289.2, + "end": 289.62, + "probability": 0.4021 + }, + { + "start": 290.28, + "end": 292.38, + "probability": 0.5514 + }, + { + "start": 294.06, + "end": 296.34, + "probability": 0.5361 + }, + { + "start": 297.62, + "end": 300.98, + "probability": 0.9088 + }, + { + "start": 302.06, + "end": 308.24, + "probability": 0.9912 + }, + { + "start": 309.44, + "end": 315.48, + "probability": 0.9759 + }, + { + "start": 316.56, + "end": 323.38, + "probability": 0.9616 + }, + { + "start": 324.02, + "end": 325.4, + "probability": 0.7774 + }, + { + "start": 326.04, + "end": 326.8, + "probability": 0.7569 + }, + { + "start": 326.94, + "end": 330.62, + "probability": 0.9964 + }, + { + "start": 330.7, + "end": 334.64, + "probability": 0.9702 + }, + { + "start": 334.64, + "end": 339.72, + "probability": 0.8659 + }, + { + "start": 340.92, + "end": 345.06, + "probability": 0.8726 + }, + { + "start": 346.04, + "end": 347.2, + "probability": 0.6451 + }, + { + "start": 348.54, + "end": 351.88, + "probability": 0.716 + }, + { + "start": 353.02, + "end": 360.94, + "probability": 0.9725 + }, + { + "start": 361.24, + "end": 362.75, + "probability": 0.7705 + }, + { + "start": 362.94, + "end": 364.2, + "probability": 0.7525 + }, + { + "start": 365.16, + "end": 366.5, + "probability": 0.6055 + }, + { + "start": 367.32, + "end": 371.78, + "probability": 0.9551 + }, + { + "start": 372.64, + "end": 376.48, + "probability": 0.9927 + }, + { + "start": 378.06, + "end": 381.5, + "probability": 0.9232 + }, + { + "start": 382.0, + "end": 382.84, + "probability": 0.4543 + }, + { + "start": 382.88, + "end": 389.82, + "probability": 0.951 + }, + { + "start": 389.92, + "end": 392.68, + "probability": 0.9249 + }, + { + "start": 392.68, + "end": 396.18, + "probability": 0.8965 + }, + { + "start": 396.86, + "end": 400.24, + "probability": 0.8997 + }, + { + "start": 400.7, + "end": 403.42, + "probability": 0.7583 + }, + { + "start": 403.52, + "end": 405.68, + "probability": 0.6717 + }, + { + "start": 405.72, + "end": 407.12, + "probability": 0.9738 + }, + { + "start": 407.48, + "end": 408.38, + "probability": 0.946 + }, + { + "start": 408.48, + "end": 409.02, + "probability": 0.8319 + }, + { + "start": 409.08, + "end": 412.06, + "probability": 0.9507 + }, + { + "start": 412.5, + "end": 413.66, + "probability": 0.8257 + }, + { + "start": 413.92, + "end": 414.2, + "probability": 0.0745 + }, + { + "start": 414.38, + "end": 414.9, + "probability": 0.4504 + }, + { + "start": 415.34, + "end": 415.72, + "probability": 0.9646 + }, + { + "start": 416.38, + "end": 418.24, + "probability": 0.6201 + }, + { + "start": 418.4, + "end": 421.04, + "probability": 0.8382 + }, + { + "start": 421.56, + "end": 423.76, + "probability": 0.8912 + }, + { + "start": 424.6, + "end": 426.24, + "probability": 0.6917 + }, + { + "start": 426.84, + "end": 430.48, + "probability": 0.8994 + }, + { + "start": 430.64, + "end": 435.06, + "probability": 0.9922 + }, + { + "start": 435.86, + "end": 435.96, + "probability": 0.8539 + }, + { + "start": 438.22, + "end": 447.68, + "probability": 0.5576 + }, + { + "start": 447.88, + "end": 451.92, + "probability": 0.8822 + }, + { + "start": 452.1, + "end": 452.94, + "probability": 0.8567 + }, + { + "start": 453.04, + "end": 454.88, + "probability": 0.9976 + }, + { + "start": 455.24, + "end": 459.46, + "probability": 0.9976 + }, + { + "start": 459.72, + "end": 461.7, + "probability": 0.9893 + }, + { + "start": 462.34, + "end": 463.62, + "probability": 0.8488 + }, + { + "start": 463.82, + "end": 467.54, + "probability": 0.8767 + }, + { + "start": 467.54, + "end": 471.94, + "probability": 0.9668 + }, + { + "start": 472.2, + "end": 474.14, + "probability": 0.7975 + }, + { + "start": 474.54, + "end": 477.68, + "probability": 0.8305 + }, + { + "start": 478.48, + "end": 480.16, + "probability": 0.9687 + }, + { + "start": 480.7, + "end": 486.42, + "probability": 0.9777 + }, + { + "start": 487.06, + "end": 490.46, + "probability": 0.8516 + }, + { + "start": 490.54, + "end": 495.9, + "probability": 0.9873 + }, + { + "start": 495.9, + "end": 500.76, + "probability": 0.9517 + }, + { + "start": 500.76, + "end": 505.6, + "probability": 0.9618 + }, + { + "start": 506.42, + "end": 508.28, + "probability": 0.5637 + }, + { + "start": 508.52, + "end": 513.79, + "probability": 0.9717 + }, + { + "start": 514.26, + "end": 518.2, + "probability": 0.9935 + }, + { + "start": 518.28, + "end": 519.38, + "probability": 0.991 + }, + { + "start": 519.62, + "end": 523.48, + "probability": 0.9927 + }, + { + "start": 524.9, + "end": 527.22, + "probability": 0.8411 + }, + { + "start": 527.4, + "end": 528.22, + "probability": 0.7471 + }, + { + "start": 528.5, + "end": 529.3, + "probability": 0.4343 + }, + { + "start": 529.32, + "end": 530.46, + "probability": 0.9094 + }, + { + "start": 530.92, + "end": 531.32, + "probability": 0.7141 + }, + { + "start": 531.46, + "end": 531.96, + "probability": 0.6137 + }, + { + "start": 532.14, + "end": 534.06, + "probability": 0.8112 + }, + { + "start": 534.16, + "end": 535.12, + "probability": 0.7886 + }, + { + "start": 535.14, + "end": 535.6, + "probability": 0.8583 + }, + { + "start": 536.18, + "end": 539.02, + "probability": 0.9915 + }, + { + "start": 539.18, + "end": 539.64, + "probability": 0.6227 + }, + { + "start": 540.0, + "end": 541.76, + "probability": 0.9549 + }, + { + "start": 542.08, + "end": 543.86, + "probability": 0.7268 + }, + { + "start": 544.3, + "end": 549.1, + "probability": 0.9991 + }, + { + "start": 549.5, + "end": 551.68, + "probability": 0.9971 + }, + { + "start": 551.8, + "end": 552.86, + "probability": 0.997 + }, + { + "start": 553.08, + "end": 554.0, + "probability": 0.9911 + }, + { + "start": 554.98, + "end": 555.92, + "probability": 0.7852 + }, + { + "start": 556.4, + "end": 559.36, + "probability": 0.9943 + }, + { + "start": 559.42, + "end": 561.74, + "probability": 0.9969 + }, + { + "start": 562.12, + "end": 564.58, + "probability": 0.9199 + }, + { + "start": 564.58, + "end": 567.94, + "probability": 0.9967 + }, + { + "start": 568.0, + "end": 568.22, + "probability": 0.6517 + }, + { + "start": 568.26, + "end": 570.44, + "probability": 0.7658 + }, + { + "start": 570.9, + "end": 573.18, + "probability": 0.9885 + }, + { + "start": 573.18, + "end": 575.04, + "probability": 0.9741 + }, + { + "start": 575.2, + "end": 575.42, + "probability": 0.5522 + }, + { + "start": 575.5, + "end": 576.08, + "probability": 0.8718 + }, + { + "start": 576.44, + "end": 578.78, + "probability": 0.706 + }, + { + "start": 578.98, + "end": 579.8, + "probability": 0.7516 + }, + { + "start": 579.88, + "end": 580.36, + "probability": 0.7614 + }, + { + "start": 580.38, + "end": 583.46, + "probability": 0.6385 + }, + { + "start": 583.56, + "end": 585.33, + "probability": 0.8479 + }, + { + "start": 585.68, + "end": 588.6, + "probability": 0.9559 + }, + { + "start": 588.66, + "end": 590.06, + "probability": 0.9921 + }, + { + "start": 590.16, + "end": 591.46, + "probability": 0.7671 + }, + { + "start": 591.48, + "end": 592.4, + "probability": 0.8308 + }, + { + "start": 592.46, + "end": 593.64, + "probability": 0.9802 + }, + { + "start": 594.02, + "end": 597.68, + "probability": 0.9863 + }, + { + "start": 597.72, + "end": 598.08, + "probability": 0.6908 + }, + { + "start": 598.4, + "end": 598.76, + "probability": 0.8738 + }, + { + "start": 599.18, + "end": 599.6, + "probability": 0.3328 + }, + { + "start": 599.68, + "end": 603.4, + "probability": 0.9791 + }, + { + "start": 604.14, + "end": 606.76, + "probability": 0.8523 + }, + { + "start": 606.8, + "end": 607.48, + "probability": 0.689 + }, + { + "start": 608.18, + "end": 609.72, + "probability": 0.858 + }, + { + "start": 611.1, + "end": 613.22, + "probability": 0.6219 + }, + { + "start": 613.8, + "end": 614.54, + "probability": 0.7566 + }, + { + "start": 615.22, + "end": 616.62, + "probability": 0.6335 + }, + { + "start": 617.28, + "end": 618.76, + "probability": 0.9551 + }, + { + "start": 619.18, + "end": 620.4, + "probability": 0.8963 + }, + { + "start": 620.64, + "end": 621.54, + "probability": 0.8744 + }, + { + "start": 622.28, + "end": 625.38, + "probability": 0.8689 + }, + { + "start": 625.64, + "end": 626.96, + "probability": 0.9958 + }, + { + "start": 627.56, + "end": 628.54, + "probability": 0.7124 + }, + { + "start": 629.06, + "end": 633.06, + "probability": 0.9703 + }, + { + "start": 633.24, + "end": 636.84, + "probability": 0.9595 + }, + { + "start": 637.48, + "end": 640.44, + "probability": 0.9516 + }, + { + "start": 640.82, + "end": 641.22, + "probability": 0.6735 + }, + { + "start": 641.3, + "end": 642.64, + "probability": 0.6556 + }, + { + "start": 644.02, + "end": 646.74, + "probability": 0.6153 + }, + { + "start": 646.86, + "end": 647.56, + "probability": 0.9385 + }, + { + "start": 647.64, + "end": 648.16, + "probability": 0.872 + }, + { + "start": 648.26, + "end": 650.7, + "probability": 0.7877 + }, + { + "start": 651.12, + "end": 653.02, + "probability": 0.8242 + }, + { + "start": 653.16, + "end": 654.44, + "probability": 0.917 + }, + { + "start": 654.94, + "end": 658.2, + "probability": 0.9964 + }, + { + "start": 658.28, + "end": 660.96, + "probability": 0.915 + }, + { + "start": 661.18, + "end": 663.38, + "probability": 0.9061 + }, + { + "start": 663.48, + "end": 665.3, + "probability": 0.6995 + }, + { + "start": 666.38, + "end": 667.76, + "probability": 0.959 + }, + { + "start": 668.02, + "end": 673.12, + "probability": 0.8498 + }, + { + "start": 673.28, + "end": 674.62, + "probability": 0.9499 + }, + { + "start": 674.76, + "end": 677.66, + "probability": 0.9535 + }, + { + "start": 677.72, + "end": 678.26, + "probability": 0.9653 + }, + { + "start": 678.96, + "end": 680.56, + "probability": 0.6577 + }, + { + "start": 680.64, + "end": 683.06, + "probability": 0.9824 + }, + { + "start": 683.2, + "end": 684.44, + "probability": 0.9918 + }, + { + "start": 684.46, + "end": 686.16, + "probability": 0.9935 + }, + { + "start": 686.24, + "end": 688.68, + "probability": 0.9639 + }, + { + "start": 688.76, + "end": 691.0, + "probability": 0.8555 + }, + { + "start": 691.12, + "end": 692.26, + "probability": 0.9504 + }, + { + "start": 692.36, + "end": 695.36, + "probability": 0.7759 + }, + { + "start": 696.68, + "end": 697.9, + "probability": 0.7244 + }, + { + "start": 698.04, + "end": 700.36, + "probability": 0.751 + }, + { + "start": 701.02, + "end": 705.2, + "probability": 0.9608 + }, + { + "start": 705.7, + "end": 708.88, + "probability": 0.8938 + }, + { + "start": 709.06, + "end": 709.7, + "probability": 0.5212 + }, + { + "start": 710.04, + "end": 710.46, + "probability": 0.5717 + }, + { + "start": 711.04, + "end": 711.48, + "probability": 0.9531 + }, + { + "start": 712.38, + "end": 717.66, + "probability": 0.9061 + }, + { + "start": 717.7, + "end": 717.98, + "probability": 0.7322 + }, + { + "start": 718.44, + "end": 720.48, + "probability": 0.7773 + }, + { + "start": 720.56, + "end": 723.34, + "probability": 0.655 + }, + { + "start": 723.96, + "end": 725.92, + "probability": 0.9536 + }, + { + "start": 727.2, + "end": 729.34, + "probability": 0.7109 + }, + { + "start": 730.5, + "end": 732.86, + "probability": 0.7188 + }, + { + "start": 733.38, + "end": 734.96, + "probability": 0.965 + }, + { + "start": 737.22, + "end": 741.26, + "probability": 0.9501 + }, + { + "start": 741.76, + "end": 742.26, + "probability": 0.4279 + }, + { + "start": 742.46, + "end": 746.84, + "probability": 0.8213 + }, + { + "start": 747.06, + "end": 748.48, + "probability": 0.7919 + }, + { + "start": 749.7, + "end": 754.0, + "probability": 0.985 + }, + { + "start": 754.76, + "end": 758.14, + "probability": 0.9894 + }, + { + "start": 759.24, + "end": 762.08, + "probability": 0.9739 + }, + { + "start": 763.42, + "end": 763.98, + "probability": 0.601 + }, + { + "start": 764.72, + "end": 769.72, + "probability": 0.9751 + }, + { + "start": 770.62, + "end": 771.54, + "probability": 0.9958 + }, + { + "start": 772.32, + "end": 773.7, + "probability": 0.7881 + }, + { + "start": 774.5, + "end": 775.48, + "probability": 0.941 + }, + { + "start": 776.02, + "end": 776.54, + "probability": 0.5145 + }, + { + "start": 777.4, + "end": 781.34, + "probability": 0.9046 + }, + { + "start": 781.94, + "end": 785.58, + "probability": 0.9116 + }, + { + "start": 785.64, + "end": 787.3, + "probability": 0.6991 + }, + { + "start": 787.52, + "end": 787.82, + "probability": 0.944 + }, + { + "start": 788.98, + "end": 793.3, + "probability": 0.9767 + }, + { + "start": 793.88, + "end": 795.32, + "probability": 0.6354 + }, + { + "start": 795.4, + "end": 795.76, + "probability": 0.7435 + }, + { + "start": 797.9, + "end": 800.0, + "probability": 0.7262 + }, + { + "start": 800.18, + "end": 802.5, + "probability": 0.8725 + }, + { + "start": 802.98, + "end": 806.94, + "probability": 0.8698 + }, + { + "start": 815.68, + "end": 817.94, + "probability": 0.6402 + }, + { + "start": 819.04, + "end": 827.56, + "probability": 0.9885 + }, + { + "start": 829.18, + "end": 834.36, + "probability": 0.9814 + }, + { + "start": 835.58, + "end": 841.04, + "probability": 0.973 + }, + { + "start": 841.76, + "end": 843.8, + "probability": 0.9657 + }, + { + "start": 844.36, + "end": 847.96, + "probability": 0.9846 + }, + { + "start": 848.5, + "end": 849.06, + "probability": 0.379 + }, + { + "start": 849.28, + "end": 853.19, + "probability": 0.9917 + }, + { + "start": 854.02, + "end": 855.04, + "probability": 0.9301 + }, + { + "start": 855.16, + "end": 859.12, + "probability": 0.9908 + }, + { + "start": 859.92, + "end": 862.94, + "probability": 0.6608 + }, + { + "start": 863.6, + "end": 865.2, + "probability": 0.9706 + }, + { + "start": 866.14, + "end": 869.7, + "probability": 0.9723 + }, + { + "start": 870.32, + "end": 871.3, + "probability": 0.9925 + }, + { + "start": 871.48, + "end": 872.34, + "probability": 0.9918 + }, + { + "start": 872.54, + "end": 873.44, + "probability": 0.8757 + }, + { + "start": 873.86, + "end": 874.66, + "probability": 0.8317 + }, + { + "start": 874.74, + "end": 875.76, + "probability": 0.9332 + }, + { + "start": 876.12, + "end": 877.12, + "probability": 0.9547 + }, + { + "start": 877.8, + "end": 878.98, + "probability": 0.9662 + }, + { + "start": 879.08, + "end": 880.36, + "probability": 0.8087 + }, + { + "start": 880.44, + "end": 881.9, + "probability": 0.9751 + }, + { + "start": 882.02, + "end": 884.08, + "probability": 0.6916 + }, + { + "start": 884.18, + "end": 885.12, + "probability": 0.7678 + }, + { + "start": 885.6, + "end": 888.28, + "probability": 0.9901 + }, + { + "start": 888.48, + "end": 889.68, + "probability": 0.9355 + }, + { + "start": 889.86, + "end": 891.28, + "probability": 0.9685 + }, + { + "start": 891.34, + "end": 892.06, + "probability": 0.9096 + }, + { + "start": 892.72, + "end": 895.77, + "probability": 0.7344 + }, + { + "start": 896.78, + "end": 898.82, + "probability": 0.9814 + }, + { + "start": 899.2, + "end": 900.16, + "probability": 0.9432 + }, + { + "start": 900.26, + "end": 903.98, + "probability": 0.9795 + }, + { + "start": 903.98, + "end": 909.98, + "probability": 0.8743 + }, + { + "start": 910.04, + "end": 910.5, + "probability": 0.8675 + }, + { + "start": 910.96, + "end": 911.16, + "probability": 0.6563 + }, + { + "start": 911.56, + "end": 913.42, + "probability": 0.865 + }, + { + "start": 913.56, + "end": 916.0, + "probability": 0.7615 + }, + { + "start": 916.38, + "end": 917.04, + "probability": 0.6117 + }, + { + "start": 917.68, + "end": 919.12, + "probability": 0.8815 + }, + { + "start": 921.84, + "end": 924.06, + "probability": 0.824 + }, + { + "start": 925.06, + "end": 930.22, + "probability": 0.8922 + }, + { + "start": 931.0, + "end": 933.72, + "probability": 0.8298 + }, + { + "start": 934.92, + "end": 942.06, + "probability": 0.9398 + }, + { + "start": 943.12, + "end": 950.46, + "probability": 0.9723 + }, + { + "start": 950.94, + "end": 952.4, + "probability": 0.7079 + }, + { + "start": 952.68, + "end": 954.06, + "probability": 0.0824 + }, + { + "start": 954.66, + "end": 958.0, + "probability": 0.7921 + }, + { + "start": 959.08, + "end": 959.6, + "probability": 0.6361 + }, + { + "start": 960.74, + "end": 961.28, + "probability": 0.7711 + }, + { + "start": 961.92, + "end": 962.5, + "probability": 0.6758 + }, + { + "start": 964.26, + "end": 968.34, + "probability": 0.9925 + }, + { + "start": 969.32, + "end": 972.7, + "probability": 0.9675 + }, + { + "start": 974.56, + "end": 977.4, + "probability": 0.9359 + }, + { + "start": 978.14, + "end": 979.68, + "probability": 0.7528 + }, + { + "start": 980.58, + "end": 985.48, + "probability": 0.9663 + }, + { + "start": 986.42, + "end": 987.36, + "probability": 0.5869 + }, + { + "start": 988.1, + "end": 992.36, + "probability": 0.8353 + }, + { + "start": 993.22, + "end": 994.52, + "probability": 0.9728 + }, + { + "start": 995.18, + "end": 997.62, + "probability": 0.7729 + }, + { + "start": 998.56, + "end": 999.82, + "probability": 0.6606 + }, + { + "start": 999.96, + "end": 1002.82, + "probability": 0.8878 + }, + { + "start": 1003.54, + "end": 1005.18, + "probability": 0.9585 + }, + { + "start": 1005.48, + "end": 1005.92, + "probability": 0.558 + }, + { + "start": 1006.12, + "end": 1012.86, + "probability": 0.9641 + }, + { + "start": 1013.76, + "end": 1016.8, + "probability": 0.9067 + }, + { + "start": 1017.94, + "end": 1019.38, + "probability": 0.9897 + }, + { + "start": 1020.26, + "end": 1022.26, + "probability": 0.9497 + }, + { + "start": 1022.34, + "end": 1025.3, + "probability": 0.6537 + }, + { + "start": 1026.9, + "end": 1033.38, + "probability": 0.9899 + }, + { + "start": 1033.9, + "end": 1036.53, + "probability": 0.5099 + }, + { + "start": 1037.12, + "end": 1039.0, + "probability": 0.8794 + }, + { + "start": 1039.32, + "end": 1039.92, + "probability": 0.6006 + }, + { + "start": 1040.26, + "end": 1041.34, + "probability": 0.7739 + }, + { + "start": 1041.46, + "end": 1043.36, + "probability": 0.6659 + }, + { + "start": 1043.86, + "end": 1049.4, + "probability": 0.981 + }, + { + "start": 1049.71, + "end": 1050.44, + "probability": 0.4931 + }, + { + "start": 1050.72, + "end": 1052.92, + "probability": 0.8062 + }, + { + "start": 1053.04, + "end": 1055.06, + "probability": 0.7728 + }, + { + "start": 1055.1, + "end": 1055.68, + "probability": 0.6165 + }, + { + "start": 1056.22, + "end": 1059.12, + "probability": 0.7032 + }, + { + "start": 1062.36, + "end": 1066.26, + "probability": 0.6012 + }, + { + "start": 1066.8, + "end": 1067.92, + "probability": 0.6002 + }, + { + "start": 1068.44, + "end": 1069.36, + "probability": 0.829 + }, + { + "start": 1070.04, + "end": 1075.9, + "probability": 0.9447 + }, + { + "start": 1075.9, + "end": 1079.62, + "probability": 0.993 + }, + { + "start": 1080.1, + "end": 1082.98, + "probability": 0.9293 + }, + { + "start": 1083.86, + "end": 1088.22, + "probability": 0.7368 + }, + { + "start": 1089.0, + "end": 1089.68, + "probability": 0.6521 + }, + { + "start": 1090.16, + "end": 1094.8, + "probability": 0.9857 + }, + { + "start": 1095.36, + "end": 1098.16, + "probability": 0.9946 + }, + { + "start": 1098.8, + "end": 1103.8, + "probability": 0.9963 + }, + { + "start": 1104.28, + "end": 1108.94, + "probability": 0.9187 + }, + { + "start": 1109.46, + "end": 1111.68, + "probability": 0.8557 + }, + { + "start": 1113.22, + "end": 1118.26, + "probability": 0.7515 + }, + { + "start": 1118.94, + "end": 1121.54, + "probability": 0.9873 + }, + { + "start": 1121.96, + "end": 1122.4, + "probability": 0.5168 + }, + { + "start": 1122.7, + "end": 1126.06, + "probability": 0.9642 + }, + { + "start": 1127.02, + "end": 1129.26, + "probability": 0.8215 + }, + { + "start": 1129.88, + "end": 1134.0, + "probability": 0.8092 + }, + { + "start": 1134.02, + "end": 1134.66, + "probability": 0.6223 + }, + { + "start": 1134.92, + "end": 1137.22, + "probability": 0.8626 + }, + { + "start": 1139.2, + "end": 1140.44, + "probability": 0.1908 + }, + { + "start": 1140.44, + "end": 1141.16, + "probability": 0.6305 + }, + { + "start": 1143.48, + "end": 1145.8, + "probability": 0.8984 + }, + { + "start": 1146.5, + "end": 1148.86, + "probability": 0.9902 + }, + { + "start": 1149.42, + "end": 1151.56, + "probability": 0.7734 + }, + { + "start": 1152.28, + "end": 1155.76, + "probability": 0.9956 + }, + { + "start": 1155.82, + "end": 1157.68, + "probability": 0.8318 + }, + { + "start": 1157.86, + "end": 1161.66, + "probability": 0.9946 + }, + { + "start": 1162.1, + "end": 1162.9, + "probability": 0.7611 + }, + { + "start": 1163.0, + "end": 1166.16, + "probability": 0.9736 + }, + { + "start": 1166.32, + "end": 1169.48, + "probability": 0.7367 + }, + { + "start": 1169.98, + "end": 1172.6, + "probability": 0.9766 + }, + { + "start": 1172.74, + "end": 1173.12, + "probability": 0.4623 + }, + { + "start": 1173.16, + "end": 1174.02, + "probability": 0.8155 + }, + { + "start": 1174.36, + "end": 1176.14, + "probability": 0.9788 + }, + { + "start": 1177.28, + "end": 1180.44, + "probability": 0.9208 + }, + { + "start": 1181.37, + "end": 1186.87, + "probability": 0.9738 + }, + { + "start": 1188.58, + "end": 1189.31, + "probability": 0.1379 + }, + { + "start": 1189.5, + "end": 1190.52, + "probability": 0.8148 + }, + { + "start": 1190.58, + "end": 1191.42, + "probability": 0.7997 + }, + { + "start": 1191.94, + "end": 1192.88, + "probability": 0.7368 + }, + { + "start": 1193.1, + "end": 1195.86, + "probability": 0.9482 + }, + { + "start": 1196.32, + "end": 1198.96, + "probability": 0.9641 + }, + { + "start": 1199.88, + "end": 1203.78, + "probability": 0.8507 + }, + { + "start": 1204.24, + "end": 1206.94, + "probability": 0.9338 + }, + { + "start": 1207.48, + "end": 1209.94, + "probability": 0.7494 + }, + { + "start": 1210.16, + "end": 1216.36, + "probability": 0.9526 + }, + { + "start": 1216.74, + "end": 1219.9, + "probability": 0.9832 + }, + { + "start": 1219.92, + "end": 1220.58, + "probability": 0.5366 + }, + { + "start": 1220.94, + "end": 1222.68, + "probability": 0.404 + }, + { + "start": 1223.28, + "end": 1224.26, + "probability": 0.9544 + }, + { + "start": 1224.78, + "end": 1226.74, + "probability": 0.9615 + }, + { + "start": 1226.76, + "end": 1230.7, + "probability": 0.959 + }, + { + "start": 1230.8, + "end": 1233.02, + "probability": 0.9786 + }, + { + "start": 1233.1, + "end": 1236.22, + "probability": 0.9856 + }, + { + "start": 1236.54, + "end": 1239.54, + "probability": 0.8205 + }, + { + "start": 1239.78, + "end": 1240.32, + "probability": 0.4625 + }, + { + "start": 1240.36, + "end": 1244.06, + "probability": 0.9223 + }, + { + "start": 1244.6, + "end": 1244.8, + "probability": 0.7984 + }, + { + "start": 1244.96, + "end": 1247.52, + "probability": 0.6491 + }, + { + "start": 1248.92, + "end": 1249.62, + "probability": 0.0373 + }, + { + "start": 1249.62, + "end": 1249.9, + "probability": 0.4767 + }, + { + "start": 1251.18, + "end": 1251.96, + "probability": 0.5177 + }, + { + "start": 1252.6, + "end": 1254.68, + "probability": 0.9654 + }, + { + "start": 1256.08, + "end": 1256.98, + "probability": 0.7567 + }, + { + "start": 1257.08, + "end": 1258.88, + "probability": 0.8212 + }, + { + "start": 1259.04, + "end": 1260.94, + "probability": 0.8562 + }, + { + "start": 1260.98, + "end": 1265.4, + "probability": 0.8295 + }, + { + "start": 1265.94, + "end": 1267.9, + "probability": 0.9967 + }, + { + "start": 1268.72, + "end": 1275.5, + "probability": 0.9941 + }, + { + "start": 1275.5, + "end": 1279.82, + "probability": 0.9985 + }, + { + "start": 1280.3, + "end": 1281.18, + "probability": 0.8604 + }, + { + "start": 1283.34, + "end": 1284.12, + "probability": 0.7683 + }, + { + "start": 1284.32, + "end": 1287.82, + "probability": 0.9476 + }, + { + "start": 1287.82, + "end": 1291.48, + "probability": 0.9565 + }, + { + "start": 1291.96, + "end": 1292.96, + "probability": 0.8591 + }, + { + "start": 1293.46, + "end": 1294.34, + "probability": 0.6431 + }, + { + "start": 1294.74, + "end": 1296.48, + "probability": 0.85 + }, + { + "start": 1296.58, + "end": 1297.68, + "probability": 0.9314 + }, + { + "start": 1298.9, + "end": 1301.7, + "probability": 0.959 + }, + { + "start": 1302.22, + "end": 1306.68, + "probability": 0.9625 + }, + { + "start": 1307.04, + "end": 1311.32, + "probability": 0.9287 + }, + { + "start": 1311.38, + "end": 1312.32, + "probability": 0.9836 + }, + { + "start": 1312.78, + "end": 1313.2, + "probability": 0.2989 + }, + { + "start": 1313.36, + "end": 1315.4, + "probability": 0.819 + }, + { + "start": 1315.42, + "end": 1316.36, + "probability": 0.9514 + }, + { + "start": 1316.64, + "end": 1318.08, + "probability": 0.9922 + }, + { + "start": 1318.32, + "end": 1319.65, + "probability": 0.9856 + }, + { + "start": 1320.22, + "end": 1322.66, + "probability": 0.9534 + }, + { + "start": 1322.74, + "end": 1325.54, + "probability": 0.979 + }, + { + "start": 1325.8, + "end": 1328.92, + "probability": 0.9115 + }, + { + "start": 1329.18, + "end": 1329.6, + "probability": 0.7301 + }, + { + "start": 1329.76, + "end": 1330.74, + "probability": 0.89 + }, + { + "start": 1330.82, + "end": 1334.48, + "probability": 0.958 + }, + { + "start": 1334.48, + "end": 1338.72, + "probability": 0.9844 + }, + { + "start": 1339.22, + "end": 1344.98, + "probability": 0.9979 + }, + { + "start": 1344.98, + "end": 1350.82, + "probability": 0.9534 + }, + { + "start": 1351.18, + "end": 1351.74, + "probability": 0.6238 + }, + { + "start": 1352.38, + "end": 1353.14, + "probability": 0.9365 + }, + { + "start": 1353.58, + "end": 1353.78, + "probability": 0.4292 + }, + { + "start": 1353.9, + "end": 1355.5, + "probability": 0.7409 + }, + { + "start": 1355.62, + "end": 1356.98, + "probability": 0.9577 + }, + { + "start": 1357.12, + "end": 1357.58, + "probability": 0.5193 + }, + { + "start": 1357.6, + "end": 1358.9, + "probability": 0.5925 + }, + { + "start": 1359.6, + "end": 1361.16, + "probability": 0.6184 + }, + { + "start": 1362.12, + "end": 1363.44, + "probability": 0.7148 + }, + { + "start": 1363.54, + "end": 1364.06, + "probability": 0.8912 + }, + { + "start": 1364.16, + "end": 1367.08, + "probability": 0.7964 + }, + { + "start": 1367.82, + "end": 1370.44, + "probability": 0.9531 + }, + { + "start": 1371.32, + "end": 1374.4, + "probability": 0.9532 + }, + { + "start": 1374.44, + "end": 1376.82, + "probability": 0.7157 + }, + { + "start": 1377.4, + "end": 1378.38, + "probability": 0.3432 + }, + { + "start": 1379.38, + "end": 1383.9, + "probability": 0.9206 + }, + { + "start": 1384.04, + "end": 1385.74, + "probability": 0.9409 + }, + { + "start": 1386.38, + "end": 1388.62, + "probability": 0.9801 + }, + { + "start": 1389.72, + "end": 1392.42, + "probability": 0.8771 + }, + { + "start": 1393.14, + "end": 1395.74, + "probability": 0.8628 + }, + { + "start": 1396.62, + "end": 1402.4, + "probability": 0.9966 + }, + { + "start": 1403.1, + "end": 1405.56, + "probability": 0.995 + }, + { + "start": 1405.72, + "end": 1409.92, + "probability": 0.9876 + }, + { + "start": 1411.16, + "end": 1415.46, + "probability": 0.877 + }, + { + "start": 1415.76, + "end": 1416.14, + "probability": 0.5618 + }, + { + "start": 1416.16, + "end": 1417.4, + "probability": 0.9296 + }, + { + "start": 1418.02, + "end": 1420.26, + "probability": 0.7087 + }, + { + "start": 1421.44, + "end": 1423.76, + "probability": 0.8305 + }, + { + "start": 1424.02, + "end": 1427.72, + "probability": 0.9834 + }, + { + "start": 1428.36, + "end": 1431.02, + "probability": 0.9789 + }, + { + "start": 1431.68, + "end": 1433.4, + "probability": 0.9274 + }, + { + "start": 1434.0, + "end": 1435.9, + "probability": 0.9639 + }, + { + "start": 1437.06, + "end": 1438.91, + "probability": 0.9534 + }, + { + "start": 1439.6, + "end": 1440.54, + "probability": 0.9006 + }, + { + "start": 1441.18, + "end": 1444.26, + "probability": 0.9324 + }, + { + "start": 1444.76, + "end": 1446.16, + "probability": 0.9856 + }, + { + "start": 1446.64, + "end": 1446.86, + "probability": 0.7518 + }, + { + "start": 1447.76, + "end": 1449.56, + "probability": 0.9141 + }, + { + "start": 1449.74, + "end": 1451.9, + "probability": 0.5125 + }, + { + "start": 1452.38, + "end": 1454.58, + "probability": 0.8739 + }, + { + "start": 1456.74, + "end": 1458.7, + "probability": 0.5918 + }, + { + "start": 1459.5, + "end": 1462.94, + "probability": 0.9237 + }, + { + "start": 1463.72, + "end": 1464.46, + "probability": 0.636 + }, + { + "start": 1465.26, + "end": 1468.96, + "probability": 0.3518 + }, + { + "start": 1469.58, + "end": 1469.96, + "probability": 0.0281 + }, + { + "start": 1470.74, + "end": 1471.88, + "probability": 0.015 + }, + { + "start": 1475.1, + "end": 1475.2, + "probability": 0.2833 + }, + { + "start": 1475.62, + "end": 1476.66, + "probability": 0.0111 + }, + { + "start": 1476.66, + "end": 1480.75, + "probability": 0.2665 + }, + { + "start": 1481.36, + "end": 1482.3, + "probability": 0.8965 + }, + { + "start": 1482.36, + "end": 1483.14, + "probability": 0.9875 + }, + { + "start": 1483.6, + "end": 1485.5, + "probability": 0.9653 + }, + { + "start": 1486.06, + "end": 1486.78, + "probability": 0.9723 + }, + { + "start": 1487.08, + "end": 1488.6, + "probability": 0.1555 + }, + { + "start": 1489.08, + "end": 1489.1, + "probability": 0.1334 + }, + { + "start": 1489.1, + "end": 1492.94, + "probability": 0.7698 + }, + { + "start": 1493.44, + "end": 1498.74, + "probability": 0.9509 + }, + { + "start": 1499.24, + "end": 1504.34, + "probability": 0.948 + }, + { + "start": 1504.92, + "end": 1506.14, + "probability": 0.9497 + }, + { + "start": 1506.68, + "end": 1508.14, + "probability": 0.9473 + }, + { + "start": 1508.78, + "end": 1511.3, + "probability": 0.9543 + }, + { + "start": 1511.7, + "end": 1513.22, + "probability": 0.9829 + }, + { + "start": 1513.66, + "end": 1515.82, + "probability": 0.969 + }, + { + "start": 1516.14, + "end": 1518.04, + "probability": 0.9236 + }, + { + "start": 1518.4, + "end": 1522.88, + "probability": 0.9927 + }, + { + "start": 1522.88, + "end": 1526.58, + "probability": 0.9557 + }, + { + "start": 1526.9, + "end": 1527.1, + "probability": 0.6805 + }, + { + "start": 1527.64, + "end": 1529.96, + "probability": 0.6361 + }, + { + "start": 1530.42, + "end": 1532.46, + "probability": 0.8076 + }, + { + "start": 1532.72, + "end": 1533.12, + "probability": 0.3891 + }, + { + "start": 1533.66, + "end": 1535.12, + "probability": 0.9456 + }, + { + "start": 1535.84, + "end": 1536.6, + "probability": 0.6496 + }, + { + "start": 1536.7, + "end": 1537.62, + "probability": 0.9268 + }, + { + "start": 1537.72, + "end": 1538.68, + "probability": 0.6666 + }, + { + "start": 1540.14, + "end": 1541.72, + "probability": 0.8808 + }, + { + "start": 1541.74, + "end": 1543.74, + "probability": 0.9379 + }, + { + "start": 1543.74, + "end": 1550.98, + "probability": 0.9434 + }, + { + "start": 1551.78, + "end": 1552.38, + "probability": 0.923 + }, + { + "start": 1552.58, + "end": 1553.8, + "probability": 0.9006 + }, + { + "start": 1554.06, + "end": 1554.86, + "probability": 0.5068 + }, + { + "start": 1554.88, + "end": 1557.04, + "probability": 0.8785 + }, + { + "start": 1558.32, + "end": 1559.24, + "probability": 0.9479 + }, + { + "start": 1559.42, + "end": 1561.7, + "probability": 0.8403 + }, + { + "start": 1562.08, + "end": 1564.58, + "probability": 0.9253 + }, + { + "start": 1565.5, + "end": 1566.48, + "probability": 0.5263 + }, + { + "start": 1567.38, + "end": 1571.7, + "probability": 0.8028 + }, + { + "start": 1572.4, + "end": 1573.28, + "probability": 0.8721 + }, + { + "start": 1574.66, + "end": 1579.7, + "probability": 0.9632 + }, + { + "start": 1580.72, + "end": 1583.28, + "probability": 0.9436 + }, + { + "start": 1583.5, + "end": 1583.71, + "probability": 0.5766 + }, + { + "start": 1584.08, + "end": 1584.84, + "probability": 0.5039 + }, + { + "start": 1586.08, + "end": 1587.24, + "probability": 0.5518 + }, + { + "start": 1587.78, + "end": 1591.42, + "probability": 0.9323 + }, + { + "start": 1591.5, + "end": 1592.62, + "probability": 0.9397 + }, + { + "start": 1593.1, + "end": 1596.54, + "probability": 0.9167 + }, + { + "start": 1596.96, + "end": 1597.76, + "probability": 0.9055 + }, + { + "start": 1598.98, + "end": 1599.38, + "probability": 0.5613 + }, + { + "start": 1602.18, + "end": 1602.46, + "probability": 0.1344 + }, + { + "start": 1602.46, + "end": 1603.92, + "probability": 0.6044 + }, + { + "start": 1604.06, + "end": 1605.78, + "probability": 0.7808 + }, + { + "start": 1610.16, + "end": 1614.24, + "probability": 0.7581 + }, + { + "start": 1615.68, + "end": 1623.8, + "probability": 0.8912 + }, + { + "start": 1624.66, + "end": 1625.06, + "probability": 0.032 + }, + { + "start": 1625.06, + "end": 1625.42, + "probability": 0.0782 + }, + { + "start": 1625.98, + "end": 1627.04, + "probability": 0.5304 + }, + { + "start": 1627.12, + "end": 1627.22, + "probability": 0.4241 + }, + { + "start": 1627.3, + "end": 1627.66, + "probability": 0.6166 + }, + { + "start": 1627.68, + "end": 1630.38, + "probability": 0.7862 + }, + { + "start": 1630.48, + "end": 1635.14, + "probability": 0.7828 + }, + { + "start": 1635.74, + "end": 1639.7, + "probability": 0.9968 + }, + { + "start": 1640.64, + "end": 1640.82, + "probability": 0.1523 + }, + { + "start": 1641.04, + "end": 1645.74, + "probability": 0.983 + }, + { + "start": 1646.32, + "end": 1648.44, + "probability": 0.9151 + }, + { + "start": 1649.34, + "end": 1652.58, + "probability": 0.9312 + }, + { + "start": 1653.16, + "end": 1655.82, + "probability": 0.946 + }, + { + "start": 1656.42, + "end": 1656.78, + "probability": 0.5269 + }, + { + "start": 1656.84, + "end": 1659.92, + "probability": 0.9233 + }, + { + "start": 1659.92, + "end": 1663.72, + "probability": 0.971 + }, + { + "start": 1664.26, + "end": 1667.74, + "probability": 0.9251 + }, + { + "start": 1667.74, + "end": 1671.46, + "probability": 0.7838 + }, + { + "start": 1672.32, + "end": 1674.56, + "probability": 0.8387 + }, + { + "start": 1675.3, + "end": 1680.34, + "probability": 0.8411 + }, + { + "start": 1680.56, + "end": 1682.5, + "probability": 0.7193 + }, + { + "start": 1682.86, + "end": 1687.24, + "probability": 0.8974 + }, + { + "start": 1687.24, + "end": 1687.26, + "probability": 0.2644 + }, + { + "start": 1688.09, + "end": 1690.66, + "probability": 0.025 + }, + { + "start": 1691.08, + "end": 1691.1, + "probability": 0.1379 + }, + { + "start": 1691.1, + "end": 1691.1, + "probability": 0.2074 + }, + { + "start": 1691.1, + "end": 1691.8, + "probability": 0.3871 + }, + { + "start": 1691.88, + "end": 1695.96, + "probability": 0.9583 + }, + { + "start": 1696.0, + "end": 1699.5, + "probability": 0.9507 + }, + { + "start": 1699.88, + "end": 1701.56, + "probability": 0.9592 + }, + { + "start": 1702.74, + "end": 1705.1, + "probability": 0.5912 + }, + { + "start": 1705.2, + "end": 1707.26, + "probability": 0.8172 + }, + { + "start": 1707.98, + "end": 1708.4, + "probability": 0.6841 + }, + { + "start": 1708.52, + "end": 1710.64, + "probability": 0.162 + }, + { + "start": 1710.64, + "end": 1710.64, + "probability": 0.0513 + }, + { + "start": 1710.64, + "end": 1710.9, + "probability": 0.0427 + }, + { + "start": 1710.9, + "end": 1711.78, + "probability": 0.5717 + }, + { + "start": 1711.88, + "end": 1714.24, + "probability": 0.8805 + }, + { + "start": 1714.66, + "end": 1715.01, + "probability": 0.3148 + }, + { + "start": 1715.78, + "end": 1715.88, + "probability": 0.576 + }, + { + "start": 1716.28, + "end": 1716.51, + "probability": 0.6298 + }, + { + "start": 1716.92, + "end": 1718.96, + "probability": 0.4948 + }, + { + "start": 1719.76, + "end": 1720.66, + "probability": 0.3236 + }, + { + "start": 1720.76, + "end": 1721.66, + "probability": 0.7892 + }, + { + "start": 1722.64, + "end": 1726.22, + "probability": 0.9684 + }, + { + "start": 1726.22, + "end": 1729.84, + "probability": 0.9993 + }, + { + "start": 1731.04, + "end": 1732.38, + "probability": 0.7381 + }, + { + "start": 1733.16, + "end": 1735.38, + "probability": 0.9618 + }, + { + "start": 1735.76, + "end": 1736.98, + "probability": 0.932 + }, + { + "start": 1737.78, + "end": 1741.9, + "probability": 0.9764 + }, + { + "start": 1742.76, + "end": 1744.02, + "probability": 0.9779 + }, + { + "start": 1744.64, + "end": 1747.06, + "probability": 0.9812 + }, + { + "start": 1747.66, + "end": 1749.38, + "probability": 0.6511 + }, + { + "start": 1750.28, + "end": 1751.02, + "probability": 0.7761 + }, + { + "start": 1751.7, + "end": 1752.86, + "probability": 0.8833 + }, + { + "start": 1753.46, + "end": 1754.04, + "probability": 0.9424 + }, + { + "start": 1754.52, + "end": 1757.76, + "probability": 0.9794 + }, + { + "start": 1758.52, + "end": 1762.42, + "probability": 0.9854 + }, + { + "start": 1763.06, + "end": 1766.22, + "probability": 0.8207 + }, + { + "start": 1766.82, + "end": 1771.88, + "probability": 0.9971 + }, + { + "start": 1772.88, + "end": 1775.98, + "probability": 0.9899 + }, + { + "start": 1775.98, + "end": 1778.42, + "probability": 0.9763 + }, + { + "start": 1779.46, + "end": 1783.94, + "probability": 0.9951 + }, + { + "start": 1784.58, + "end": 1786.94, + "probability": 0.9763 + }, + { + "start": 1787.4, + "end": 1790.04, + "probability": 0.9974 + }, + { + "start": 1790.14, + "end": 1790.9, + "probability": 0.8396 + }, + { + "start": 1791.14, + "end": 1791.78, + "probability": 0.8164 + }, + { + "start": 1792.6, + "end": 1795.76, + "probability": 0.9766 + }, + { + "start": 1796.4, + "end": 1798.08, + "probability": 0.9934 + }, + { + "start": 1798.44, + "end": 1799.6, + "probability": 0.98 + }, + { + "start": 1800.06, + "end": 1802.08, + "probability": 0.9858 + }, + { + "start": 1802.56, + "end": 1803.74, + "probability": 0.9763 + }, + { + "start": 1804.08, + "end": 1805.32, + "probability": 0.9867 + }, + { + "start": 1805.64, + "end": 1807.32, + "probability": 0.918 + }, + { + "start": 1807.74, + "end": 1809.78, + "probability": 0.975 + }, + { + "start": 1810.44, + "end": 1811.9, + "probability": 0.7404 + }, + { + "start": 1812.0, + "end": 1813.54, + "probability": 0.8413 + }, + { + "start": 1813.7, + "end": 1815.7, + "probability": 0.7948 + }, + { + "start": 1815.76, + "end": 1816.34, + "probability": 0.6711 + }, + { + "start": 1818.28, + "end": 1819.42, + "probability": 0.7488 + }, + { + "start": 1831.54, + "end": 1833.2, + "probability": 0.653 + }, + { + "start": 1834.12, + "end": 1835.14, + "probability": 0.8951 + }, + { + "start": 1836.38, + "end": 1838.15, + "probability": 0.626 + }, + { + "start": 1839.34, + "end": 1842.22, + "probability": 0.9468 + }, + { + "start": 1843.38, + "end": 1847.38, + "probability": 0.994 + }, + { + "start": 1848.34, + "end": 1848.69, + "probability": 0.0017 + }, + { + "start": 1850.24, + "end": 1851.44, + "probability": 0.9989 + }, + { + "start": 1852.58, + "end": 1854.44, + "probability": 0.9946 + }, + { + "start": 1856.1, + "end": 1858.44, + "probability": 0.9794 + }, + { + "start": 1859.38, + "end": 1860.2, + "probability": 0.7668 + }, + { + "start": 1861.88, + "end": 1863.74, + "probability": 0.9616 + }, + { + "start": 1864.62, + "end": 1868.56, + "probability": 0.894 + }, + { + "start": 1869.72, + "end": 1870.48, + "probability": 0.998 + }, + { + "start": 1871.22, + "end": 1872.88, + "probability": 0.9967 + }, + { + "start": 1873.78, + "end": 1877.16, + "probability": 0.9976 + }, + { + "start": 1878.2, + "end": 1881.62, + "probability": 0.9764 + }, + { + "start": 1882.46, + "end": 1883.48, + "probability": 0.9596 + }, + { + "start": 1884.34, + "end": 1886.26, + "probability": 0.8736 + }, + { + "start": 1887.1, + "end": 1888.18, + "probability": 0.9827 + }, + { + "start": 1889.52, + "end": 1899.42, + "probability": 0.9766 + }, + { + "start": 1899.46, + "end": 1900.28, + "probability": 0.7726 + }, + { + "start": 1901.2, + "end": 1902.56, + "probability": 0.926 + }, + { + "start": 1903.42, + "end": 1904.66, + "probability": 0.9126 + }, + { + "start": 1905.62, + "end": 1906.46, + "probability": 0.9876 + }, + { + "start": 1907.26, + "end": 1908.72, + "probability": 0.9358 + }, + { + "start": 1909.46, + "end": 1913.12, + "probability": 0.6539 + }, + { + "start": 1913.68, + "end": 1918.16, + "probability": 0.9959 + }, + { + "start": 1918.66, + "end": 1920.76, + "probability": 0.9858 + }, + { + "start": 1923.04, + "end": 1925.1, + "probability": 0.7751 + }, + { + "start": 1925.3, + "end": 1926.78, + "probability": 0.8447 + }, + { + "start": 1927.02, + "end": 1931.28, + "probability": 0.9351 + }, + { + "start": 1931.54, + "end": 1932.24, + "probability": 0.8293 + }, + { + "start": 1932.58, + "end": 1937.58, + "probability": 0.9115 + }, + { + "start": 1938.06, + "end": 1941.31, + "probability": 0.9202 + }, + { + "start": 1942.14, + "end": 1943.27, + "probability": 0.9886 + }, + { + "start": 1943.6, + "end": 1948.02, + "probability": 0.9609 + }, + { + "start": 1948.64, + "end": 1949.88, + "probability": 0.9482 + }, + { + "start": 1950.82, + "end": 1953.2, + "probability": 0.9803 + }, + { + "start": 1953.38, + "end": 1954.12, + "probability": 0.7396 + }, + { + "start": 1954.46, + "end": 1955.44, + "probability": 0.9006 + }, + { + "start": 1956.78, + "end": 1957.6, + "probability": 0.8366 + }, + { + "start": 1957.74, + "end": 1962.94, + "probability": 0.8657 + }, + { + "start": 1965.72, + "end": 1970.16, + "probability": 0.9845 + }, + { + "start": 1970.68, + "end": 1974.36, + "probability": 0.9955 + }, + { + "start": 1976.58, + "end": 1977.87, + "probability": 0.6153 + }, + { + "start": 1978.32, + "end": 1979.02, + "probability": 0.7922 + }, + { + "start": 1979.08, + "end": 1982.26, + "probability": 0.8104 + }, + { + "start": 1982.38, + "end": 1985.08, + "probability": 0.8904 + }, + { + "start": 1985.08, + "end": 1988.94, + "probability": 0.9924 + }, + { + "start": 1989.32, + "end": 1991.54, + "probability": 0.8592 + }, + { + "start": 1991.64, + "end": 1995.2, + "probability": 0.999 + }, + { + "start": 1995.72, + "end": 1995.88, + "probability": 0.1755 + }, + { + "start": 1996.22, + "end": 1997.82, + "probability": 0.8627 + }, + { + "start": 1997.9, + "end": 1998.59, + "probability": 0.9786 + }, + { + "start": 1999.88, + "end": 2003.58, + "probability": 0.9841 + }, + { + "start": 2004.4, + "end": 2006.92, + "probability": 0.9736 + }, + { + "start": 2007.86, + "end": 2009.02, + "probability": 0.8521 + }, + { + "start": 2009.58, + "end": 2013.72, + "probability": 0.9148 + }, + { + "start": 2014.76, + "end": 2015.48, + "probability": 0.7193 + }, + { + "start": 2015.6, + "end": 2015.94, + "probability": 0.8951 + }, + { + "start": 2016.02, + "end": 2017.46, + "probability": 0.9836 + }, + { + "start": 2040.14, + "end": 2040.18, + "probability": 0.0133 + }, + { + "start": 2040.18, + "end": 2041.42, + "probability": 0.4675 + }, + { + "start": 2041.46, + "end": 2042.7, + "probability": 0.7645 + }, + { + "start": 2042.92, + "end": 2043.32, + "probability": 0.693 + }, + { + "start": 2043.38, + "end": 2044.76, + "probability": 0.961 + }, + { + "start": 2045.06, + "end": 2046.13, + "probability": 0.9875 + }, + { + "start": 2046.88, + "end": 2049.6, + "probability": 0.9622 + }, + { + "start": 2051.0, + "end": 2051.6, + "probability": 0.0425 + }, + { + "start": 2051.6, + "end": 2052.14, + "probability": 0.164 + }, + { + "start": 2052.7, + "end": 2055.84, + "probability": 0.7465 + }, + { + "start": 2056.6, + "end": 2058.12, + "probability": 0.86 + }, + { + "start": 2058.24, + "end": 2061.8, + "probability": 0.8448 + }, + { + "start": 2062.08, + "end": 2063.86, + "probability": 0.3089 + }, + { + "start": 2064.7, + "end": 2068.2, + "probability": 0.8653 + }, + { + "start": 2068.3, + "end": 2072.14, + "probability": 0.9413 + }, + { + "start": 2073.22, + "end": 2077.38, + "probability": 0.8301 + }, + { + "start": 2078.02, + "end": 2079.78, + "probability": 0.5738 + }, + { + "start": 2080.42, + "end": 2083.32, + "probability": 0.7297 + }, + { + "start": 2083.54, + "end": 2085.38, + "probability": 0.8306 + }, + { + "start": 2085.54, + "end": 2087.88, + "probability": 0.9554 + }, + { + "start": 2088.46, + "end": 2089.44, + "probability": 0.9023 + }, + { + "start": 2089.54, + "end": 2092.44, + "probability": 0.9375 + }, + { + "start": 2092.56, + "end": 2094.48, + "probability": 0.9523 + }, + { + "start": 2095.62, + "end": 2098.48, + "probability": 0.9421 + }, + { + "start": 2099.32, + "end": 2103.16, + "probability": 0.9686 + }, + { + "start": 2103.4, + "end": 2103.6, + "probability": 0.7303 + }, + { + "start": 2104.04, + "end": 2104.88, + "probability": 0.6162 + }, + { + "start": 2105.02, + "end": 2106.74, + "probability": 0.9765 + }, + { + "start": 2107.38, + "end": 2109.38, + "probability": 0.6012 + }, + { + "start": 2110.76, + "end": 2113.05, + "probability": 0.7164 + }, + { + "start": 2113.8, + "end": 2117.68, + "probability": 0.9146 + }, + { + "start": 2118.84, + "end": 2120.42, + "probability": 0.9883 + }, + { + "start": 2120.5, + "end": 2123.12, + "probability": 0.9092 + }, + { + "start": 2124.4, + "end": 2127.9, + "probability": 0.9854 + }, + { + "start": 2127.9, + "end": 2132.04, + "probability": 0.9778 + }, + { + "start": 2132.64, + "end": 2134.12, + "probability": 0.3085 + }, + { + "start": 2134.3, + "end": 2134.3, + "probability": 0.1234 + }, + { + "start": 2134.3, + "end": 2134.78, + "probability": 0.3702 + }, + { + "start": 2134.84, + "end": 2136.94, + "probability": 0.8346 + }, + { + "start": 2137.04, + "end": 2140.62, + "probability": 0.9819 + }, + { + "start": 2140.68, + "end": 2141.44, + "probability": 0.922 + }, + { + "start": 2141.56, + "end": 2147.03, + "probability": 0.6479 + }, + { + "start": 2147.58, + "end": 2149.12, + "probability": 0.9207 + }, + { + "start": 2149.82, + "end": 2150.36, + "probability": 0.9918 + }, + { + "start": 2151.4, + "end": 2153.96, + "probability": 0.9724 + }, + { + "start": 2155.52, + "end": 2156.92, + "probability": 0.5314 + }, + { + "start": 2158.1, + "end": 2161.18, + "probability": 0.7495 + }, + { + "start": 2162.62, + "end": 2164.96, + "probability": 0.9945 + }, + { + "start": 2166.88, + "end": 2170.36, + "probability": 0.9208 + }, + { + "start": 2171.44, + "end": 2172.04, + "probability": 0.8595 + }, + { + "start": 2172.64, + "end": 2177.3, + "probability": 0.9119 + }, + { + "start": 2177.6, + "end": 2180.86, + "probability": 0.7279 + }, + { + "start": 2182.76, + "end": 2186.38, + "probability": 0.625 + }, + { + "start": 2186.6, + "end": 2187.52, + "probability": 0.6193 + }, + { + "start": 2189.14, + "end": 2192.92, + "probability": 0.9327 + }, + { + "start": 2193.44, + "end": 2194.31, + "probability": 0.0099 + }, + { + "start": 2195.72, + "end": 2197.46, + "probability": 0.0494 + }, + { + "start": 2198.0, + "end": 2198.0, + "probability": 0.3681 + }, + { + "start": 2198.0, + "end": 2198.0, + "probability": 0.1834 + }, + { + "start": 2198.0, + "end": 2198.0, + "probability": 0.0301 + }, + { + "start": 2198.0, + "end": 2198.0, + "probability": 0.0076 + }, + { + "start": 2198.0, + "end": 2198.54, + "probability": 0.1729 + }, + { + "start": 2199.12, + "end": 2200.52, + "probability": 0.3583 + }, + { + "start": 2200.68, + "end": 2204.93, + "probability": 0.9534 + }, + { + "start": 2205.48, + "end": 2207.12, + "probability": 0.8133 + }, + { + "start": 2208.18, + "end": 2210.78, + "probability": 0.9766 + }, + { + "start": 2211.52, + "end": 2214.06, + "probability": 0.3842 + }, + { + "start": 2214.8, + "end": 2216.92, + "probability": 0.9585 + }, + { + "start": 2217.36, + "end": 2218.18, + "probability": 0.7864 + }, + { + "start": 2218.44, + "end": 2219.56, + "probability": 0.895 + }, + { + "start": 2220.12, + "end": 2221.2, + "probability": 0.9043 + }, + { + "start": 2221.66, + "end": 2222.3, + "probability": 0.8168 + }, + { + "start": 2222.66, + "end": 2223.34, + "probability": 0.7277 + }, + { + "start": 2224.98, + "end": 2226.14, + "probability": 0.5344 + }, + { + "start": 2226.62, + "end": 2230.44, + "probability": 0.7287 + }, + { + "start": 2230.7, + "end": 2232.3, + "probability": 0.7304 + }, + { + "start": 2233.78, + "end": 2236.16, + "probability": 0.7277 + }, + { + "start": 2236.22, + "end": 2236.44, + "probability": 0.778 + }, + { + "start": 2236.5, + "end": 2238.06, + "probability": 0.8973 + }, + { + "start": 2238.2, + "end": 2238.86, + "probability": 0.6749 + }, + { + "start": 2239.02, + "end": 2239.66, + "probability": 0.9443 + }, + { + "start": 2250.92, + "end": 2251.36, + "probability": 0.6772 + }, + { + "start": 2252.22, + "end": 2254.64, + "probability": 0.9629 + }, + { + "start": 2255.26, + "end": 2260.18, + "probability": 0.944 + }, + { + "start": 2260.58, + "end": 2261.26, + "probability": 0.7603 + }, + { + "start": 2262.02, + "end": 2266.34, + "probability": 0.962 + }, + { + "start": 2266.66, + "end": 2269.82, + "probability": 0.9957 + }, + { + "start": 2270.44, + "end": 2274.08, + "probability": 0.939 + }, + { + "start": 2274.08, + "end": 2276.44, + "probability": 0.996 + }, + { + "start": 2276.96, + "end": 2278.26, + "probability": 0.9993 + }, + { + "start": 2278.9, + "end": 2280.1, + "probability": 0.2932 + }, + { + "start": 2280.16, + "end": 2283.64, + "probability": 0.8245 + }, + { + "start": 2284.18, + "end": 2285.58, + "probability": 0.7707 + }, + { + "start": 2285.96, + "end": 2286.78, + "probability": 0.7537 + }, + { + "start": 2287.24, + "end": 2290.58, + "probability": 0.9562 + }, + { + "start": 2291.3, + "end": 2297.64, + "probability": 0.9781 + }, + { + "start": 2298.08, + "end": 2300.62, + "probability": 0.9818 + }, + { + "start": 2301.04, + "end": 2301.9, + "probability": 0.9429 + }, + { + "start": 2302.1, + "end": 2303.44, + "probability": 0.9691 + }, + { + "start": 2303.76, + "end": 2304.8, + "probability": 0.9039 + }, + { + "start": 2305.04, + "end": 2307.08, + "probability": 0.8859 + }, + { + "start": 2307.16, + "end": 2307.68, + "probability": 0.8819 + }, + { + "start": 2307.72, + "end": 2308.84, + "probability": 0.882 + }, + { + "start": 2309.14, + "end": 2313.18, + "probability": 0.8933 + }, + { + "start": 2314.12, + "end": 2317.48, + "probability": 0.5329 + }, + { + "start": 2317.48, + "end": 2317.48, + "probability": 0.2792 + }, + { + "start": 2317.48, + "end": 2317.72, + "probability": 0.5228 + }, + { + "start": 2317.98, + "end": 2323.64, + "probability": 0.3938 + }, + { + "start": 2325.66, + "end": 2326.28, + "probability": 0.7736 + }, + { + "start": 2327.3, + "end": 2329.12, + "probability": 0.6605 + }, + { + "start": 2329.82, + "end": 2331.1, + "probability": 0.9348 + }, + { + "start": 2331.8, + "end": 2333.8, + "probability": 0.8109 + }, + { + "start": 2334.36, + "end": 2336.4, + "probability": 0.8979 + }, + { + "start": 2336.84, + "end": 2337.54, + "probability": 0.8657 + }, + { + "start": 2338.02, + "end": 2338.76, + "probability": 0.9672 + }, + { + "start": 2339.84, + "end": 2341.06, + "probability": 0.3151 + }, + { + "start": 2341.94, + "end": 2343.76, + "probability": 0.9555 + }, + { + "start": 2344.52, + "end": 2345.42, + "probability": 0.7547 + }, + { + "start": 2346.18, + "end": 2347.52, + "probability": 0.8483 + }, + { + "start": 2348.55, + "end": 2351.84, + "probability": 0.9078 + }, + { + "start": 2352.56, + "end": 2353.34, + "probability": 0.9743 + }, + { + "start": 2354.26, + "end": 2355.12, + "probability": 0.8348 + }, + { + "start": 2355.42, + "end": 2356.36, + "probability": 0.8431 + }, + { + "start": 2356.5, + "end": 2356.88, + "probability": 0.7509 + }, + { + "start": 2357.24, + "end": 2358.9, + "probability": 0.9604 + }, + { + "start": 2359.96, + "end": 2361.82, + "probability": 0.8783 + }, + { + "start": 2362.34, + "end": 2364.06, + "probability": 0.021 + }, + { + "start": 2364.06, + "end": 2366.0, + "probability": 0.7482 + }, + { + "start": 2366.68, + "end": 2367.74, + "probability": 0.0707 + }, + { + "start": 2368.92, + "end": 2369.02, + "probability": 0.2038 + }, + { + "start": 2369.02, + "end": 2369.02, + "probability": 0.2901 + }, + { + "start": 2369.02, + "end": 2369.02, + "probability": 0.0204 + }, + { + "start": 2369.02, + "end": 2369.02, + "probability": 0.1644 + }, + { + "start": 2369.02, + "end": 2369.02, + "probability": 0.1374 + }, + { + "start": 2369.02, + "end": 2369.12, + "probability": 0.2412 + }, + { + "start": 2369.26, + "end": 2369.26, + "probability": 0.3396 + }, + { + "start": 2369.48, + "end": 2370.62, + "probability": 0.8735 + }, + { + "start": 2373.12, + "end": 2374.54, + "probability": 0.8612 + }, + { + "start": 2375.12, + "end": 2375.42, + "probability": 0.9492 + }, + { + "start": 2376.04, + "end": 2378.98, + "probability": 0.9667 + }, + { + "start": 2380.15, + "end": 2381.4, + "probability": 0.937 + }, + { + "start": 2381.84, + "end": 2383.02, + "probability": 0.9831 + }, + { + "start": 2383.28, + "end": 2384.16, + "probability": 0.6509 + }, + { + "start": 2384.98, + "end": 2386.54, + "probability": 0.9768 + }, + { + "start": 2387.88, + "end": 2388.74, + "probability": 0.8671 + }, + { + "start": 2388.74, + "end": 2391.26, + "probability": 0.9886 + }, + { + "start": 2391.76, + "end": 2392.84, + "probability": 0.9908 + }, + { + "start": 2393.42, + "end": 2393.94, + "probability": 0.8124 + }, + { + "start": 2394.52, + "end": 2396.08, + "probability": 0.56 + }, + { + "start": 2396.74, + "end": 2396.88, + "probability": 0.0452 + }, + { + "start": 2398.16, + "end": 2398.88, + "probability": 0.9586 + }, + { + "start": 2399.54, + "end": 2400.86, + "probability": 0.9874 + }, + { + "start": 2401.98, + "end": 2404.2, + "probability": 0.8194 + }, + { + "start": 2404.74, + "end": 2405.8, + "probability": 0.9622 + }, + { + "start": 2407.16, + "end": 2412.16, + "probability": 0.7988 + }, + { + "start": 2412.8, + "end": 2414.84, + "probability": 0.7153 + }, + { + "start": 2415.76, + "end": 2419.86, + "probability": 0.979 + }, + { + "start": 2420.56, + "end": 2421.62, + "probability": 0.7704 + }, + { + "start": 2422.2, + "end": 2423.38, + "probability": 0.501 + }, + { + "start": 2423.78, + "end": 2424.58, + "probability": 0.9926 + }, + { + "start": 2425.92, + "end": 2426.1, + "probability": 0.4119 + }, + { + "start": 2426.54, + "end": 2427.8, + "probability": 0.7869 + }, + { + "start": 2430.64, + "end": 2431.98, + "probability": 0.9147 + }, + { + "start": 2432.34, + "end": 2433.76, + "probability": 0.667 + }, + { + "start": 2435.02, + "end": 2436.92, + "probability": 0.9968 + }, + { + "start": 2436.98, + "end": 2437.7, + "probability": 0.9193 + }, + { + "start": 2439.08, + "end": 2439.2, + "probability": 0.2391 + }, + { + "start": 2440.5, + "end": 2443.98, + "probability": 0.8545 + }, + { + "start": 2444.32, + "end": 2444.8, + "probability": 0.9852 + }, + { + "start": 2445.96, + "end": 2447.6, + "probability": 0.9775 + }, + { + "start": 2450.16, + "end": 2454.69, + "probability": 0.9585 + }, + { + "start": 2455.96, + "end": 2457.2, + "probability": 0.9381 + }, + { + "start": 2458.6, + "end": 2459.54, + "probability": 0.9682 + }, + { + "start": 2459.98, + "end": 2463.0, + "probability": 0.6207 + }, + { + "start": 2463.82, + "end": 2464.92, + "probability": 0.1809 + }, + { + "start": 2465.54, + "end": 2467.28, + "probability": 0.7564 + }, + { + "start": 2468.86, + "end": 2470.3, + "probability": 0.5783 + }, + { + "start": 2471.96, + "end": 2473.73, + "probability": 0.8935 + }, + { + "start": 2475.74, + "end": 2480.74, + "probability": 0.91 + }, + { + "start": 2483.12, + "end": 2486.86, + "probability": 0.7893 + }, + { + "start": 2487.74, + "end": 2491.5, + "probability": 0.8625 + }, + { + "start": 2491.82, + "end": 2492.12, + "probability": 0.946 + }, + { + "start": 2492.76, + "end": 2495.56, + "probability": 0.9567 + }, + { + "start": 2496.16, + "end": 2497.16, + "probability": 0.9749 + }, + { + "start": 2497.64, + "end": 2500.92, + "probability": 0.9698 + }, + { + "start": 2501.38, + "end": 2502.22, + "probability": 0.895 + }, + { + "start": 2502.48, + "end": 2503.48, + "probability": 0.7891 + }, + { + "start": 2503.54, + "end": 2507.34, + "probability": 0.9663 + }, + { + "start": 2507.58, + "end": 2508.38, + "probability": 0.8094 + }, + { + "start": 2508.86, + "end": 2509.94, + "probability": 0.6609 + }, + { + "start": 2510.06, + "end": 2510.99, + "probability": 0.6695 + }, + { + "start": 2511.28, + "end": 2512.04, + "probability": 0.9292 + }, + { + "start": 2512.16, + "end": 2513.92, + "probability": 0.4724 + }, + { + "start": 2514.0, + "end": 2514.78, + "probability": 0.7783 + }, + { + "start": 2515.34, + "end": 2516.38, + "probability": 0.5536 + }, + { + "start": 2516.42, + "end": 2518.58, + "probability": 0.6412 + }, + { + "start": 2519.9, + "end": 2523.47, + "probability": 0.864 + }, + { + "start": 2530.6, + "end": 2531.18, + "probability": 0.5077 + }, + { + "start": 2531.32, + "end": 2536.54, + "probability": 0.7959 + }, + { + "start": 2537.16, + "end": 2541.06, + "probability": 0.8668 + }, + { + "start": 2542.02, + "end": 2544.68, + "probability": 0.8203 + }, + { + "start": 2545.84, + "end": 2549.02, + "probability": 0.8417 + }, + { + "start": 2549.62, + "end": 2554.5, + "probability": 0.9536 + }, + { + "start": 2554.78, + "end": 2555.66, + "probability": 0.8694 + }, + { + "start": 2556.0, + "end": 2557.94, + "probability": 0.9758 + }, + { + "start": 2558.26, + "end": 2560.92, + "probability": 0.9933 + }, + { + "start": 2561.4, + "end": 2562.67, + "probability": 0.9802 + }, + { + "start": 2562.78, + "end": 2565.42, + "probability": 0.999 + }, + { + "start": 2565.82, + "end": 2571.78, + "probability": 0.9683 + }, + { + "start": 2571.94, + "end": 2573.64, + "probability": 0.8577 + }, + { + "start": 2573.74, + "end": 2575.32, + "probability": 0.563 + }, + { + "start": 2575.5, + "end": 2581.38, + "probability": 0.9551 + }, + { + "start": 2581.66, + "end": 2583.62, + "probability": 0.9978 + }, + { + "start": 2583.78, + "end": 2585.84, + "probability": 0.9959 + }, + { + "start": 2586.18, + "end": 2589.84, + "probability": 0.9951 + }, + { + "start": 2590.0, + "end": 2591.56, + "probability": 0.8629 + }, + { + "start": 2591.66, + "end": 2592.48, + "probability": 0.9095 + }, + { + "start": 2592.66, + "end": 2593.21, + "probability": 0.9069 + }, + { + "start": 2593.74, + "end": 2595.2, + "probability": 0.9932 + }, + { + "start": 2595.28, + "end": 2595.5, + "probability": 0.7467 + }, + { + "start": 2595.84, + "end": 2596.36, + "probability": 0.3234 + }, + { + "start": 2596.38, + "end": 2597.0, + "probability": 0.7253 + }, + { + "start": 2599.5, + "end": 2604.46, + "probability": 0.5002 + }, + { + "start": 2604.46, + "end": 2606.46, + "probability": 0.8924 + }, + { + "start": 2607.96, + "end": 2609.54, + "probability": 0.9912 + }, + { + "start": 2609.96, + "end": 2610.5, + "probability": 0.6623 + }, + { + "start": 2610.74, + "end": 2613.52, + "probability": 0.7759 + }, + { + "start": 2614.44, + "end": 2614.98, + "probability": 0.6992 + }, + { + "start": 2616.18, + "end": 2619.62, + "probability": 0.9598 + }, + { + "start": 2620.5, + "end": 2622.0, + "probability": 0.7421 + }, + { + "start": 2622.84, + "end": 2626.36, + "probability": 0.6287 + }, + { + "start": 2627.02, + "end": 2627.38, + "probability": 0.7917 + }, + { + "start": 2628.28, + "end": 2630.32, + "probability": 0.9866 + }, + { + "start": 2630.5, + "end": 2631.24, + "probability": 0.3852 + }, + { + "start": 2631.76, + "end": 2632.28, + "probability": 0.9904 + }, + { + "start": 2633.84, + "end": 2635.63, + "probability": 0.8112 + }, + { + "start": 2636.24, + "end": 2637.64, + "probability": 0.8263 + }, + { + "start": 2638.4, + "end": 2639.18, + "probability": 0.6472 + }, + { + "start": 2639.62, + "end": 2640.52, + "probability": 0.9681 + }, + { + "start": 2641.08, + "end": 2641.48, + "probability": 0.7162 + }, + { + "start": 2644.59, + "end": 2646.5, + "probability": 0.6819 + }, + { + "start": 2647.56, + "end": 2650.28, + "probability": 0.832 + }, + { + "start": 2651.52, + "end": 2653.08, + "probability": 0.9294 + }, + { + "start": 2653.42, + "end": 2656.48, + "probability": 0.1472 + }, + { + "start": 2657.44, + "end": 2658.63, + "probability": 0.8533 + }, + { + "start": 2660.0, + "end": 2661.8, + "probability": 0.9636 + }, + { + "start": 2662.32, + "end": 2662.42, + "probability": 0.1906 + }, + { + "start": 2662.42, + "end": 2663.42, + "probability": 0.8429 + }, + { + "start": 2664.1, + "end": 2670.42, + "probability": 0.9496 + }, + { + "start": 2670.72, + "end": 2670.72, + "probability": 0.2014 + }, + { + "start": 2671.54, + "end": 2673.86, + "probability": 0.5376 + }, + { + "start": 2674.02, + "end": 2674.82, + "probability": 0.8688 + }, + { + "start": 2674.9, + "end": 2675.88, + "probability": 0.923 + }, + { + "start": 2675.96, + "end": 2676.7, + "probability": 0.7721 + }, + { + "start": 2677.06, + "end": 2677.46, + "probability": 0.7808 + }, + { + "start": 2678.16, + "end": 2680.68, + "probability": 0.8635 + }, + { + "start": 2681.34, + "end": 2684.42, + "probability": 0.9224 + }, + { + "start": 2685.02, + "end": 2685.72, + "probability": 0.8756 + }, + { + "start": 2686.54, + "end": 2687.64, + "probability": 0.2018 + }, + { + "start": 2687.76, + "end": 2689.64, + "probability": 0.7092 + }, + { + "start": 2690.38, + "end": 2692.58, + "probability": 0.9434 + }, + { + "start": 2693.2, + "end": 2698.76, + "probability": 0.9609 + }, + { + "start": 2698.76, + "end": 2702.48, + "probability": 0.7014 + }, + { + "start": 2703.6, + "end": 2706.82, + "probability": 0.5868 + }, + { + "start": 2707.46, + "end": 2710.04, + "probability": 0.9974 + }, + { + "start": 2710.5, + "end": 2714.1, + "probability": 0.9963 + }, + { + "start": 2714.48, + "end": 2715.6, + "probability": 0.7914 + }, + { + "start": 2717.5, + "end": 2719.62, + "probability": 0.6228 + }, + { + "start": 2719.7, + "end": 2721.22, + "probability": 0.9404 + }, + { + "start": 2722.12, + "end": 2723.32, + "probability": 0.9407 + }, + { + "start": 2723.7, + "end": 2725.9, + "probability": 0.9891 + }, + { + "start": 2726.12, + "end": 2728.64, + "probability": 0.9612 + }, + { + "start": 2729.64, + "end": 2730.34, + "probability": 0.7729 + }, + { + "start": 2730.42, + "end": 2730.68, + "probability": 0.832 + }, + { + "start": 2732.04, + "end": 2733.44, + "probability": 0.6807 + }, + { + "start": 2733.7, + "end": 2733.7, + "probability": 0.0056 + }, + { + "start": 2733.7, + "end": 2733.7, + "probability": 0.0513 + }, + { + "start": 2733.7, + "end": 2733.96, + "probability": 0.5307 + }, + { + "start": 2736.0, + "end": 2738.62, + "probability": 0.9806 + }, + { + "start": 2741.98, + "end": 2745.96, + "probability": 0.7308 + }, + { + "start": 2746.7, + "end": 2749.8, + "probability": 0.8459 + }, + { + "start": 2750.02, + "end": 2751.56, + "probability": 0.9619 + }, + { + "start": 2752.58, + "end": 2754.14, + "probability": 0.9729 + }, + { + "start": 2754.32, + "end": 2757.98, + "probability": 0.9796 + }, + { + "start": 2758.5, + "end": 2762.58, + "probability": 0.9994 + }, + { + "start": 2763.32, + "end": 2764.93, + "probability": 0.9951 + }, + { + "start": 2765.5, + "end": 2768.64, + "probability": 0.9961 + }, + { + "start": 2769.36, + "end": 2774.56, + "probability": 0.9279 + }, + { + "start": 2775.16, + "end": 2776.22, + "probability": 0.9902 + }, + { + "start": 2777.14, + "end": 2777.7, + "probability": 0.9273 + }, + { + "start": 2778.38, + "end": 2778.84, + "probability": 0.5579 + }, + { + "start": 2778.96, + "end": 2781.8, + "probability": 0.8638 + }, + { + "start": 2782.48, + "end": 2786.44, + "probability": 0.9305 + }, + { + "start": 2787.18, + "end": 2789.86, + "probability": 0.8556 + }, + { + "start": 2790.56, + "end": 2792.3, + "probability": 0.9769 + }, + { + "start": 2792.76, + "end": 2794.88, + "probability": 0.9917 + }, + { + "start": 2795.32, + "end": 2799.92, + "probability": 0.9915 + }, + { + "start": 2799.92, + "end": 2802.28, + "probability": 0.9805 + }, + { + "start": 2802.72, + "end": 2803.84, + "probability": 0.9304 + }, + { + "start": 2803.94, + "end": 2806.48, + "probability": 0.9392 + }, + { + "start": 2807.16, + "end": 2808.98, + "probability": 0.961 + }, + { + "start": 2809.26, + "end": 2812.96, + "probability": 0.8997 + }, + { + "start": 2813.54, + "end": 2815.96, + "probability": 0.9342 + }, + { + "start": 2816.5, + "end": 2817.88, + "probability": 0.9444 + }, + { + "start": 2818.5, + "end": 2819.82, + "probability": 0.9937 + }, + { + "start": 2821.16, + "end": 2823.08, + "probability": 0.7996 + }, + { + "start": 2823.72, + "end": 2826.14, + "probability": 0.981 + }, + { + "start": 2826.54, + "end": 2826.82, + "probability": 0.7957 + }, + { + "start": 2827.36, + "end": 2828.64, + "probability": 0.194 + }, + { + "start": 2828.68, + "end": 2829.48, + "probability": 0.7785 + }, + { + "start": 2829.96, + "end": 2832.14, + "probability": 0.6291 + }, + { + "start": 2834.08, + "end": 2836.44, + "probability": 0.8003 + }, + { + "start": 2836.68, + "end": 2841.32, + "probability": 0.8899 + }, + { + "start": 2842.76, + "end": 2844.92, + "probability": 0.9467 + }, + { + "start": 2845.92, + "end": 2847.62, + "probability": 0.9919 + }, + { + "start": 2848.04, + "end": 2849.44, + "probability": 0.8223 + }, + { + "start": 2850.18, + "end": 2853.32, + "probability": 0.7882 + }, + { + "start": 2853.78, + "end": 2854.28, + "probability": 0.9663 + }, + { + "start": 2854.44, + "end": 2857.34, + "probability": 0.7409 + }, + { + "start": 2858.28, + "end": 2861.92, + "probability": 0.9333 + }, + { + "start": 2862.1, + "end": 2862.77, + "probability": 0.7612 + }, + { + "start": 2863.22, + "end": 2865.28, + "probability": 0.9536 + }, + { + "start": 2865.88, + "end": 2868.38, + "probability": 0.95 + }, + { + "start": 2869.14, + "end": 2870.14, + "probability": 0.9968 + }, + { + "start": 2870.18, + "end": 2872.64, + "probability": 0.9938 + }, + { + "start": 2873.52, + "end": 2876.14, + "probability": 0.8533 + }, + { + "start": 2876.5, + "end": 2879.98, + "probability": 0.8624 + }, + { + "start": 2881.0, + "end": 2883.28, + "probability": 0.9261 + }, + { + "start": 2883.76, + "end": 2887.54, + "probability": 0.9224 + }, + { + "start": 2888.18, + "end": 2889.5, + "probability": 0.8811 + }, + { + "start": 2889.66, + "end": 2893.1, + "probability": 0.7702 + }, + { + "start": 2893.28, + "end": 2895.4, + "probability": 0.88 + }, + { + "start": 2895.76, + "end": 2899.1, + "probability": 0.9488 + }, + { + "start": 2899.18, + "end": 2900.72, + "probability": 0.8339 + }, + { + "start": 2900.84, + "end": 2901.82, + "probability": 0.5689 + }, + { + "start": 2913.06, + "end": 2913.06, + "probability": 0.1166 + }, + { + "start": 2913.06, + "end": 2916.88, + "probability": 0.9932 + }, + { + "start": 2916.88, + "end": 2921.02, + "probability": 0.9669 + }, + { + "start": 2922.38, + "end": 2930.34, + "probability": 0.9978 + }, + { + "start": 2930.42, + "end": 2938.21, + "probability": 0.9839 + }, + { + "start": 2938.88, + "end": 2941.94, + "probability": 0.8706 + }, + { + "start": 2942.08, + "end": 2945.67, + "probability": 0.7658 + }, + { + "start": 2946.38, + "end": 2952.88, + "probability": 0.9811 + }, + { + "start": 2953.18, + "end": 2959.26, + "probability": 0.9366 + }, + { + "start": 2960.12, + "end": 2965.08, + "probability": 0.585 + }, + { + "start": 2965.66, + "end": 2970.1, + "probability": 0.9769 + }, + { + "start": 2970.12, + "end": 2974.9, + "probability": 0.8751 + }, + { + "start": 2975.32, + "end": 2979.62, + "probability": 0.9429 + }, + { + "start": 2979.72, + "end": 2982.72, + "probability": 0.8704 + }, + { + "start": 2983.44, + "end": 2988.6, + "probability": 0.9768 + }, + { + "start": 2989.04, + "end": 2991.72, + "probability": 0.9817 + }, + { + "start": 2992.34, + "end": 3002.2, + "probability": 0.9066 + }, + { + "start": 3002.38, + "end": 3003.42, + "probability": 0.7846 + }, + { + "start": 3003.52, + "end": 3005.28, + "probability": 0.7895 + }, + { + "start": 3005.46, + "end": 3010.22, + "probability": 0.9876 + }, + { + "start": 3010.42, + "end": 3012.8, + "probability": 0.6957 + }, + { + "start": 3013.3, + "end": 3016.8, + "probability": 0.9933 + }, + { + "start": 3017.18, + "end": 3021.96, + "probability": 0.9924 + }, + { + "start": 3021.96, + "end": 3026.3, + "probability": 0.999 + }, + { + "start": 3027.46, + "end": 3028.04, + "probability": 0.563 + }, + { + "start": 3028.62, + "end": 3028.97, + "probability": 0.3134 + }, + { + "start": 3029.7, + "end": 3033.2, + "probability": 0.5143 + }, + { + "start": 3034.34, + "end": 3035.82, + "probability": 0.6623 + }, + { + "start": 3037.3, + "end": 3037.92, + "probability": 0.7547 + }, + { + "start": 3039.38, + "end": 3042.48, + "probability": 0.5918 + }, + { + "start": 3043.42, + "end": 3044.16, + "probability": 0.85 + }, + { + "start": 3044.26, + "end": 3055.34, + "probability": 0.9504 + }, + { + "start": 3056.32, + "end": 3056.34, + "probability": 0.6562 + }, + { + "start": 3057.36, + "end": 3058.22, + "probability": 0.8208 + }, + { + "start": 3059.34, + "end": 3059.74, + "probability": 0.9052 + }, + { + "start": 3059.88, + "end": 3060.34, + "probability": 0.8501 + }, + { + "start": 3060.94, + "end": 3065.7, + "probability": 0.6787 + }, + { + "start": 3065.92, + "end": 3066.58, + "probability": 0.3607 + }, + { + "start": 3072.82, + "end": 3074.34, + "probability": 0.6608 + }, + { + "start": 3074.76, + "end": 3075.36, + "probability": 0.5079 + }, + { + "start": 3076.26, + "end": 3077.1, + "probability": 0.3752 + }, + { + "start": 3077.14, + "end": 3077.82, + "probability": 0.6191 + }, + { + "start": 3079.16, + "end": 3082.12, + "probability": 0.8896 + }, + { + "start": 3082.36, + "end": 3084.26, + "probability": 0.9562 + }, + { + "start": 3086.04, + "end": 3086.9, + "probability": 0.0002 + }, + { + "start": 3087.7, + "end": 3092.24, + "probability": 0.5221 + }, + { + "start": 3092.8, + "end": 3094.8, + "probability": 0.5143 + }, + { + "start": 3095.2, + "end": 3097.38, + "probability": 0.9972 + }, + { + "start": 3098.66, + "end": 3101.98, + "probability": 0.9868 + }, + { + "start": 3102.84, + "end": 3105.56, + "probability": 0.9278 + }, + { + "start": 3105.8, + "end": 3106.56, + "probability": 0.9669 + }, + { + "start": 3106.8, + "end": 3107.38, + "probability": 0.841 + }, + { + "start": 3107.62, + "end": 3108.08, + "probability": 0.8438 + }, + { + "start": 3108.66, + "end": 3109.6, + "probability": 0.6436 + }, + { + "start": 3109.88, + "end": 3111.42, + "probability": 0.8151 + }, + { + "start": 3112.02, + "end": 3113.2, + "probability": 0.9485 + }, + { + "start": 3113.22, + "end": 3117.32, + "probability": 0.8936 + }, + { + "start": 3117.34, + "end": 3118.24, + "probability": 0.8329 + }, + { + "start": 3119.22, + "end": 3121.08, + "probability": 0.9802 + }, + { + "start": 3121.2, + "end": 3124.54, + "probability": 0.8868 + }, + { + "start": 3125.78, + "end": 3126.94, + "probability": 0.232 + }, + { + "start": 3129.05, + "end": 3132.78, + "probability": 0.0978 + }, + { + "start": 3132.78, + "end": 3133.76, + "probability": 0.4852 + }, + { + "start": 3133.84, + "end": 3135.76, + "probability": 0.9768 + }, + { + "start": 3136.3, + "end": 3137.84, + "probability": 0.9878 + }, + { + "start": 3138.12, + "end": 3140.46, + "probability": 0.9603 + }, + { + "start": 3141.36, + "end": 3141.92, + "probability": 0.8163 + }, + { + "start": 3142.14, + "end": 3143.29, + "probability": 0.8391 + }, + { + "start": 3143.4, + "end": 3144.63, + "probability": 0.8805 + }, + { + "start": 3145.74, + "end": 3146.04, + "probability": 0.6675 + }, + { + "start": 3146.6, + "end": 3147.6, + "probability": 0.7465 + }, + { + "start": 3151.4, + "end": 3153.98, + "probability": 0.0859 + }, + { + "start": 3153.98, + "end": 3156.58, + "probability": 0.3412 + }, + { + "start": 3157.46, + "end": 3159.55, + "probability": 0.2595 + }, + { + "start": 3159.86, + "end": 3163.64, + "probability": 0.9612 + }, + { + "start": 3163.74, + "end": 3164.14, + "probability": 0.5163 + }, + { + "start": 3165.1, + "end": 3167.32, + "probability": 0.8001 + }, + { + "start": 3167.5, + "end": 3168.0, + "probability": 0.9828 + }, + { + "start": 3168.96, + "end": 3169.76, + "probability": 0.6107 + }, + { + "start": 3169.92, + "end": 3173.02, + "probability": 0.702 + }, + { + "start": 3173.18, + "end": 3174.24, + "probability": 0.6889 + }, + { + "start": 3174.82, + "end": 3183.62, + "probability": 0.6183 + }, + { + "start": 3183.8, + "end": 3186.14, + "probability": 0.9191 + }, + { + "start": 3187.84, + "end": 3190.72, + "probability": 0.8964 + }, + { + "start": 3191.4, + "end": 3195.36, + "probability": 0.9661 + }, + { + "start": 3195.36, + "end": 3200.06, + "probability": 0.9651 + }, + { + "start": 3201.08, + "end": 3205.42, + "probability": 0.9984 + }, + { + "start": 3206.14, + "end": 3207.16, + "probability": 0.8898 + }, + { + "start": 3208.32, + "end": 3210.52, + "probability": 0.8963 + }, + { + "start": 3210.52, + "end": 3214.38, + "probability": 0.751 + }, + { + "start": 3215.1, + "end": 3219.23, + "probability": 0.9949 + }, + { + "start": 3219.44, + "end": 3219.9, + "probability": 0.743 + }, + { + "start": 3220.0, + "end": 3222.18, + "probability": 0.7027 + }, + { + "start": 3222.66, + "end": 3224.64, + "probability": 0.8246 + }, + { + "start": 3224.64, + "end": 3229.32, + "probability": 0.8565 + }, + { + "start": 3229.36, + "end": 3231.76, + "probability": 0.994 + }, + { + "start": 3231.86, + "end": 3232.68, + "probability": 0.5871 + }, + { + "start": 3233.3, + "end": 3236.8, + "probability": 0.8673 + }, + { + "start": 3237.34, + "end": 3241.62, + "probability": 0.9926 + }, + { + "start": 3241.78, + "end": 3245.12, + "probability": 0.8431 + }, + { + "start": 3245.24, + "end": 3245.7, + "probability": 0.8776 + }, + { + "start": 3246.24, + "end": 3248.68, + "probability": 0.9749 + }, + { + "start": 3249.14, + "end": 3251.58, + "probability": 0.903 + }, + { + "start": 3251.88, + "end": 3253.22, + "probability": 0.9043 + }, + { + "start": 3254.06, + "end": 3255.0, + "probability": 0.5279 + }, + { + "start": 3255.02, + "end": 3255.94, + "probability": 0.9537 + }, + { + "start": 3256.62, + "end": 3260.14, + "probability": 0.6226 + }, + { + "start": 3260.52, + "end": 3261.8, + "probability": 0.8019 + }, + { + "start": 3262.9, + "end": 3262.98, + "probability": 0.2338 + }, + { + "start": 3263.16, + "end": 3264.98, + "probability": 0.6386 + }, + { + "start": 3266.2, + "end": 3268.36, + "probability": 0.7124 + }, + { + "start": 3268.52, + "end": 3269.08, + "probability": 0.5203 + }, + { + "start": 3269.58, + "end": 3270.0, + "probability": 0.389 + }, + { + "start": 3270.02, + "end": 3274.3, + "probability": 0.7603 + }, + { + "start": 3274.38, + "end": 3276.96, + "probability": 0.9095 + }, + { + "start": 3278.02, + "end": 3281.62, + "probability": 0.6567 + }, + { + "start": 3281.74, + "end": 3283.26, + "probability": 0.5811 + }, + { + "start": 3283.62, + "end": 3284.5, + "probability": 0.8992 + }, + { + "start": 3284.8, + "end": 3286.48, + "probability": 0.9407 + }, + { + "start": 3287.16, + "end": 3288.52, + "probability": 0.5181 + }, + { + "start": 3288.72, + "end": 3291.72, + "probability": 0.8632 + }, + { + "start": 3292.32, + "end": 3293.92, + "probability": 0.7581 + }, + { + "start": 3294.04, + "end": 3295.48, + "probability": 0.8482 + }, + { + "start": 3296.78, + "end": 3298.44, + "probability": 0.4002 + }, + { + "start": 3299.44, + "end": 3301.66, + "probability": 0.5505 + }, + { + "start": 3301.84, + "end": 3305.14, + "probability": 0.8016 + }, + { + "start": 3305.54, + "end": 3308.14, + "probability": 0.8726 + }, + { + "start": 3308.14, + "end": 3310.21, + "probability": 0.8233 + }, + { + "start": 3311.01, + "end": 3313.24, + "probability": 0.8467 + }, + { + "start": 3314.58, + "end": 3316.0, + "probability": 0.7131 + }, + { + "start": 3316.58, + "end": 3319.06, + "probability": 0.9727 + }, + { + "start": 3319.1, + "end": 3319.56, + "probability": 0.62 + }, + { + "start": 3323.62, + "end": 3324.96, + "probability": 0.6082 + }, + { + "start": 3325.16, + "end": 3328.24, + "probability": 0.3595 + }, + { + "start": 3328.26, + "end": 3333.0, + "probability": 0.7952 + }, + { + "start": 3333.32, + "end": 3337.68, + "probability": 0.6566 + }, + { + "start": 3337.84, + "end": 3338.04, + "probability": 0.7955 + }, + { + "start": 3338.48, + "end": 3340.61, + "probability": 0.5819 + }, + { + "start": 3341.3, + "end": 3342.38, + "probability": 0.7981 + }, + { + "start": 3342.62, + "end": 3346.9, + "probability": 0.9734 + }, + { + "start": 3346.9, + "end": 3352.34, + "probability": 0.9976 + }, + { + "start": 3352.34, + "end": 3358.1, + "probability": 0.979 + }, + { + "start": 3358.7, + "end": 3362.72, + "probability": 0.9501 + }, + { + "start": 3362.74, + "end": 3364.51, + "probability": 0.9971 + }, + { + "start": 3365.38, + "end": 3367.88, + "probability": 0.9355 + }, + { + "start": 3368.3, + "end": 3369.58, + "probability": 0.9977 + }, + { + "start": 3369.72, + "end": 3371.04, + "probability": 0.834 + }, + { + "start": 3371.28, + "end": 3375.24, + "probability": 0.9508 + }, + { + "start": 3375.82, + "end": 3376.24, + "probability": 0.6658 + }, + { + "start": 3376.32, + "end": 3376.54, + "probability": 0.8495 + }, + { + "start": 3376.6, + "end": 3381.58, + "probability": 0.9386 + }, + { + "start": 3382.18, + "end": 3383.52, + "probability": 0.4629 + }, + { + "start": 3383.56, + "end": 3387.06, + "probability": 0.9149 + }, + { + "start": 3387.72, + "end": 3392.78, + "probability": 0.9744 + }, + { + "start": 3393.14, + "end": 3393.32, + "probability": 0.7823 + }, + { + "start": 3394.34, + "end": 3395.08, + "probability": 0.5421 + }, + { + "start": 3395.12, + "end": 3398.92, + "probability": 0.4853 + }, + { + "start": 3399.02, + "end": 3399.68, + "probability": 0.3287 + }, + { + "start": 3399.68, + "end": 3399.68, + "probability": 0.0727 + }, + { + "start": 3399.68, + "end": 3401.24, + "probability": 0.0575 + }, + { + "start": 3401.24, + "end": 3402.0, + "probability": 0.8452 + }, + { + "start": 3402.7, + "end": 3404.24, + "probability": 0.72 + }, + { + "start": 3405.1, + "end": 3406.18, + "probability": 0.8864 + }, + { + "start": 3408.72, + "end": 3410.88, + "probability": 0.5126 + }, + { + "start": 3410.94, + "end": 3413.0, + "probability": 0.7852 + }, + { + "start": 3413.14, + "end": 3416.38, + "probability": 0.973 + }, + { + "start": 3416.98, + "end": 3419.12, + "probability": 0.5927 + }, + { + "start": 3420.0, + "end": 3420.32, + "probability": 0.9612 + }, + { + "start": 3422.3, + "end": 3425.98, + "probability": 0.9919 + }, + { + "start": 3426.92, + "end": 3429.64, + "probability": 0.9297 + }, + { + "start": 3430.84, + "end": 3434.68, + "probability": 0.7988 + }, + { + "start": 3435.68, + "end": 3435.68, + "probability": 0.6626 + }, + { + "start": 3438.7, + "end": 3440.48, + "probability": 0.8826 + }, + { + "start": 3441.06, + "end": 3442.94, + "probability": 0.9702 + }, + { + "start": 3443.56, + "end": 3443.78, + "probability": 0.832 + }, + { + "start": 3445.34, + "end": 3446.13, + "probability": 0.3467 + }, + { + "start": 3447.36, + "end": 3448.84, + "probability": 0.8168 + }, + { + "start": 3449.38, + "end": 3454.4, + "probability": 0.9543 + }, + { + "start": 3457.28, + "end": 3461.24, + "probability": 0.6911 + }, + { + "start": 3461.24, + "end": 3466.16, + "probability": 0.8796 + }, + { + "start": 3466.54, + "end": 3467.08, + "probability": 0.6057 + }, + { + "start": 3467.66, + "end": 3467.94, + "probability": 0.8901 + }, + { + "start": 3468.52, + "end": 3469.68, + "probability": 0.9127 + }, + { + "start": 3470.22, + "end": 3471.08, + "probability": 0.5898 + }, + { + "start": 3471.8, + "end": 3475.64, + "probability": 0.9512 + }, + { + "start": 3475.72, + "end": 3481.11, + "probability": 0.9599 + }, + { + "start": 3481.26, + "end": 3482.22, + "probability": 0.8081 + }, + { + "start": 3482.78, + "end": 3484.78, + "probability": 0.8981 + }, + { + "start": 3485.32, + "end": 3486.94, + "probability": 0.9561 + }, + { + "start": 3487.06, + "end": 3488.58, + "probability": 0.8203 + }, + { + "start": 3490.46, + "end": 3493.52, + "probability": 0.8431 + }, + { + "start": 3494.28, + "end": 3500.16, + "probability": 0.9705 + }, + { + "start": 3500.88, + "end": 3504.68, + "probability": 0.9844 + }, + { + "start": 3505.54, + "end": 3506.22, + "probability": 0.8996 + }, + { + "start": 3507.74, + "end": 3509.3, + "probability": 0.6415 + }, + { + "start": 3509.56, + "end": 3512.28, + "probability": 0.9154 + }, + { + "start": 3512.74, + "end": 3514.86, + "probability": 0.9939 + }, + { + "start": 3515.66, + "end": 3519.38, + "probability": 0.6675 + }, + { + "start": 3520.06, + "end": 3521.68, + "probability": 0.6994 + }, + { + "start": 3522.3, + "end": 3525.66, + "probability": 0.8455 + }, + { + "start": 3527.64, + "end": 3528.86, + "probability": 0.8359 + }, + { + "start": 3528.94, + "end": 3530.1, + "probability": 0.9039 + }, + { + "start": 3530.3, + "end": 3530.9, + "probability": 0.9199 + }, + { + "start": 3530.98, + "end": 3532.22, + "probability": 0.7808 + }, + { + "start": 3532.94, + "end": 3538.92, + "probability": 0.9989 + }, + { + "start": 3539.1, + "end": 3539.56, + "probability": 0.7615 + }, + { + "start": 3540.4, + "end": 3541.62, + "probability": 0.7594 + }, + { + "start": 3541.84, + "end": 3546.64, + "probability": 0.9587 + }, + { + "start": 3546.78, + "end": 3547.4, + "probability": 0.6805 + }, + { + "start": 3547.54, + "end": 3551.52, + "probability": 0.9657 + }, + { + "start": 3551.88, + "end": 3552.13, + "probability": 0.9673 + }, + { + "start": 3552.62, + "end": 3553.76, + "probability": 0.9756 + }, + { + "start": 3554.44, + "end": 3556.46, + "probability": 0.9536 + }, + { + "start": 3557.42, + "end": 3558.88, + "probability": 0.9714 + }, + { + "start": 3559.5, + "end": 3562.36, + "probability": 0.7236 + }, + { + "start": 3562.88, + "end": 3568.94, + "probability": 0.9371 + }, + { + "start": 3568.94, + "end": 3573.0, + "probability": 0.9192 + }, + { + "start": 3573.8, + "end": 3574.72, + "probability": 0.6339 + }, + { + "start": 3575.16, + "end": 3577.96, + "probability": 0.7109 + }, + { + "start": 3578.32, + "end": 3580.06, + "probability": 0.8572 + }, + { + "start": 3580.4, + "end": 3581.98, + "probability": 0.9836 + }, + { + "start": 3582.4, + "end": 3585.88, + "probability": 0.9791 + }, + { + "start": 3586.4, + "end": 3588.8, + "probability": 0.3894 + }, + { + "start": 3590.72, + "end": 3590.82, + "probability": 0.219 + }, + { + "start": 3590.82, + "end": 3590.82, + "probability": 0.2744 + }, + { + "start": 3590.82, + "end": 3591.96, + "probability": 0.1323 + }, + { + "start": 3592.1, + "end": 3593.06, + "probability": 0.9537 + }, + { + "start": 3593.14, + "end": 3593.4, + "probability": 0.8498 + }, + { + "start": 3593.84, + "end": 3597.16, + "probability": 0.9773 + }, + { + "start": 3597.7, + "end": 3602.08, + "probability": 0.9912 + }, + { + "start": 3602.48, + "end": 3604.18, + "probability": 0.9932 + }, + { + "start": 3604.26, + "end": 3607.2, + "probability": 0.9988 + }, + { + "start": 3607.2, + "end": 3611.3, + "probability": 0.9364 + }, + { + "start": 3612.36, + "end": 3613.4, + "probability": 0.7321 + }, + { + "start": 3613.52, + "end": 3618.8, + "probability": 0.9987 + }, + { + "start": 3619.44, + "end": 3622.2, + "probability": 0.9355 + }, + { + "start": 3622.64, + "end": 3625.54, + "probability": 0.9888 + }, + { + "start": 3626.0, + "end": 3627.5, + "probability": 0.9975 + }, + { + "start": 3628.34, + "end": 3629.58, + "probability": 0.8741 + }, + { + "start": 3634.0, + "end": 3639.06, + "probability": 0.9768 + }, + { + "start": 3639.06, + "end": 3642.74, + "probability": 0.7471 + }, + { + "start": 3643.56, + "end": 3644.02, + "probability": 0.3459 + }, + { + "start": 3644.12, + "end": 3645.62, + "probability": 0.8879 + }, + { + "start": 3646.84, + "end": 3647.47, + "probability": 0.4582 + }, + { + "start": 3647.72, + "end": 3648.48, + "probability": 0.8296 + }, + { + "start": 3648.68, + "end": 3650.33, + "probability": 0.6301 + }, + { + "start": 3651.54, + "end": 3653.06, + "probability": 0.9554 + }, + { + "start": 3653.74, + "end": 3654.84, + "probability": 0.9405 + }, + { + "start": 3657.18, + "end": 3657.76, + "probability": 0.1479 + }, + { + "start": 3657.76, + "end": 3659.76, + "probability": 0.5866 + }, + { + "start": 3661.14, + "end": 3661.14, + "probability": 0.1308 + }, + { + "start": 3661.14, + "end": 3661.84, + "probability": 0.5358 + }, + { + "start": 3661.94, + "end": 3663.36, + "probability": 0.5552 + }, + { + "start": 3663.36, + "end": 3664.32, + "probability": 0.2967 + }, + { + "start": 3664.32, + "end": 3669.08, + "probability": 0.2723 + }, + { + "start": 3669.1, + "end": 3669.8, + "probability": 0.2461 + }, + { + "start": 3670.16, + "end": 3670.16, + "probability": 0.0409 + }, + { + "start": 3670.16, + "end": 3670.77, + "probability": 0.567 + }, + { + "start": 3671.08, + "end": 3672.06, + "probability": 0.9839 + }, + { + "start": 3673.02, + "end": 3674.38, + "probability": 0.7573 + }, + { + "start": 3675.28, + "end": 3676.3, + "probability": 0.7637 + }, + { + "start": 3676.66, + "end": 3677.02, + "probability": 0.0082 + }, + { + "start": 3677.02, + "end": 3678.02, + "probability": 0.6807 + }, + { + "start": 3678.12, + "end": 3678.52, + "probability": 0.6167 + }, + { + "start": 3679.48, + "end": 3681.38, + "probability": 0.3719 + }, + { + "start": 3683.22, + "end": 3683.88, + "probability": 0.5541 + }, + { + "start": 3684.58, + "end": 3685.42, + "probability": 0.814 + }, + { + "start": 3685.42, + "end": 3686.38, + "probability": 0.9445 + }, + { + "start": 3686.4, + "end": 3686.94, + "probability": 0.8096 + }, + { + "start": 3687.08, + "end": 3687.95, + "probability": 0.4579 + }, + { + "start": 3688.54, + "end": 3689.96, + "probability": 0.5974 + }, + { + "start": 3691.26, + "end": 3693.06, + "probability": 0.866 + }, + { + "start": 3693.84, + "end": 3699.96, + "probability": 0.8483 + }, + { + "start": 3700.3, + "end": 3702.2, + "probability": 0.554 + }, + { + "start": 3703.48, + "end": 3704.21, + "probability": 0.6363 + }, + { + "start": 3704.74, + "end": 3709.4, + "probability": 0.8073 + }, + { + "start": 3710.26, + "end": 3712.04, + "probability": 0.7214 + }, + { + "start": 3712.64, + "end": 3717.52, + "probability": 0.8769 + }, + { + "start": 3718.34, + "end": 3719.64, + "probability": 0.9867 + }, + { + "start": 3721.2, + "end": 3722.9, + "probability": 0.7824 + }, + { + "start": 3723.5, + "end": 3725.16, + "probability": 0.7443 + }, + { + "start": 3725.34, + "end": 3727.44, + "probability": 0.6498 + }, + { + "start": 3727.52, + "end": 3728.08, + "probability": 0.7221 + }, + { + "start": 3728.16, + "end": 3730.8, + "probability": 0.9309 + }, + { + "start": 3731.26, + "end": 3733.12, + "probability": 0.7266 + }, + { + "start": 3733.2, + "end": 3734.48, + "probability": 0.9871 + }, + { + "start": 3735.3, + "end": 3736.42, + "probability": 0.3588 + }, + { + "start": 3737.26, + "end": 3738.32, + "probability": 0.771 + }, + { + "start": 3738.8, + "end": 3739.89, + "probability": 0.5302 + }, + { + "start": 3740.94, + "end": 3744.02, + "probability": 0.9342 + }, + { + "start": 3744.36, + "end": 3746.16, + "probability": 0.9575 + }, + { + "start": 3747.74, + "end": 3751.06, + "probability": 0.8691 + }, + { + "start": 3751.4, + "end": 3753.94, + "probability": 0.8574 + }, + { + "start": 3754.2, + "end": 3755.76, + "probability": 0.9419 + }, + { + "start": 3757.12, + "end": 3758.88, + "probability": 0.9381 + }, + { + "start": 3760.7, + "end": 3766.48, + "probability": 0.9092 + }, + { + "start": 3767.8, + "end": 3770.42, + "probability": 0.9507 + }, + { + "start": 3772.06, + "end": 3772.64, + "probability": 0.669 + }, + { + "start": 3773.66, + "end": 3777.54, + "probability": 0.6204 + }, + { + "start": 3778.22, + "end": 3780.18, + "probability": 0.644 + }, + { + "start": 3780.26, + "end": 3781.34, + "probability": 0.8875 + }, + { + "start": 3781.62, + "end": 3783.18, + "probability": 0.9714 + }, + { + "start": 3783.5, + "end": 3784.01, + "probability": 0.9531 + }, + { + "start": 3784.82, + "end": 3786.2, + "probability": 0.9928 + }, + { + "start": 3786.32, + "end": 3787.09, + "probability": 0.0557 + }, + { + "start": 3787.68, + "end": 3787.94, + "probability": 0.6401 + }, + { + "start": 3788.62, + "end": 3790.22, + "probability": 0.6846 + }, + { + "start": 3791.02, + "end": 3793.16, + "probability": 0.7275 + }, + { + "start": 3794.14, + "end": 3795.14, + "probability": 0.6051 + }, + { + "start": 3795.72, + "end": 3797.34, + "probability": 0.8556 + }, + { + "start": 3797.4, + "end": 3799.59, + "probability": 0.9956 + }, + { + "start": 3800.1, + "end": 3803.16, + "probability": 0.3767 + }, + { + "start": 3803.36, + "end": 3804.46, + "probability": 0.978 + }, + { + "start": 3805.84, + "end": 3807.6, + "probability": 0.744 + }, + { + "start": 3808.04, + "end": 3809.84, + "probability": 0.8865 + }, + { + "start": 3810.0, + "end": 3811.28, + "probability": 0.9622 + }, + { + "start": 3811.58, + "end": 3814.0, + "probability": 0.8373 + }, + { + "start": 3814.08, + "end": 3814.9, + "probability": 0.9854 + }, + { + "start": 3815.4, + "end": 3816.3, + "probability": 0.5414 + }, + { + "start": 3816.76, + "end": 3817.64, + "probability": 0.9692 + }, + { + "start": 3817.76, + "end": 3818.22, + "probability": 0.5887 + }, + { + "start": 3819.56, + "end": 3820.66, + "probability": 0.6958 + }, + { + "start": 3821.92, + "end": 3822.98, + "probability": 0.8301 + }, + { + "start": 3822.98, + "end": 3823.32, + "probability": 0.5007 + }, + { + "start": 3823.42, + "end": 3823.79, + "probability": 0.8921 + }, + { + "start": 3824.0, + "end": 3824.72, + "probability": 0.8024 + }, + { + "start": 3824.84, + "end": 3826.1, + "probability": 0.8846 + }, + { + "start": 3826.68, + "end": 3827.64, + "probability": 0.6606 + }, + { + "start": 3828.2, + "end": 3830.58, + "probability": 0.9138 + }, + { + "start": 3831.58, + "end": 3832.04, + "probability": 0.6148 + }, + { + "start": 3832.22, + "end": 3832.68, + "probability": 0.4486 + }, + { + "start": 3832.96, + "end": 3833.62, + "probability": 0.5334 + }, + { + "start": 3834.02, + "end": 3835.2, + "probability": 0.5352 + }, + { + "start": 3836.4, + "end": 3838.06, + "probability": 0.9189 + }, + { + "start": 3838.06, + "end": 3842.24, + "probability": 0.7796 + }, + { + "start": 3843.4, + "end": 3847.0, + "probability": 0.8416 + }, + { + "start": 3847.04, + "end": 3854.24, + "probability": 0.7276 + }, + { + "start": 3854.34, + "end": 3854.96, + "probability": 0.6471 + }, + { + "start": 3855.24, + "end": 3855.58, + "probability": 0.5161 + }, + { + "start": 3856.56, + "end": 3858.4, + "probability": 0.707 + }, + { + "start": 3858.52, + "end": 3861.56, + "probability": 0.7241 + }, + { + "start": 3861.74, + "end": 3862.34, + "probability": 0.5895 + }, + { + "start": 3866.04, + "end": 3868.44, + "probability": 0.6506 + }, + { + "start": 3869.46, + "end": 3870.2, + "probability": 0.5658 + }, + { + "start": 3870.2, + "end": 3871.06, + "probability": 0.8896 + }, + { + "start": 3871.44, + "end": 3874.32, + "probability": 0.9736 + }, + { + "start": 3875.48, + "end": 3879.72, + "probability": 0.9451 + }, + { + "start": 3881.22, + "end": 3882.04, + "probability": 0.6708 + }, + { + "start": 3883.06, + "end": 3886.56, + "probability": 0.8076 + }, + { + "start": 3887.86, + "end": 3891.6, + "probability": 0.97 + }, + { + "start": 3892.3, + "end": 3895.16, + "probability": 0.9344 + }, + { + "start": 3896.76, + "end": 3898.34, + "probability": 0.7532 + }, + { + "start": 3899.64, + "end": 3907.58, + "probability": 0.9618 + }, + { + "start": 3908.02, + "end": 3908.28, + "probability": 0.6658 + }, + { + "start": 3909.42, + "end": 3909.78, + "probability": 0.5273 + }, + { + "start": 3909.88, + "end": 3910.62, + "probability": 0.8916 + }, + { + "start": 3910.72, + "end": 3911.22, + "probability": 0.8725 + }, + { + "start": 3912.0, + "end": 3912.82, + "probability": 0.891 + }, + { + "start": 3913.22, + "end": 3914.06, + "probability": 0.971 + }, + { + "start": 3914.18, + "end": 3914.68, + "probability": 0.6833 + }, + { + "start": 3916.56, + "end": 3920.32, + "probability": 0.3331 + }, + { + "start": 3929.72, + "end": 3930.58, + "probability": 0.4143 + }, + { + "start": 3932.82, + "end": 3932.82, + "probability": 0.0217 + }, + { + "start": 3932.82, + "end": 3932.82, + "probability": 0.0119 + }, + { + "start": 3932.82, + "end": 3932.82, + "probability": 0.1484 + }, + { + "start": 3932.82, + "end": 3932.82, + "probability": 0.0423 + }, + { + "start": 3932.82, + "end": 3934.28, + "probability": 0.1945 + }, + { + "start": 3935.22, + "end": 3939.5, + "probability": 0.9866 + }, + { + "start": 3939.54, + "end": 3942.48, + "probability": 0.924 + }, + { + "start": 3942.8, + "end": 3944.06, + "probability": 0.7545 + }, + { + "start": 3944.56, + "end": 3946.58, + "probability": 0.6616 + }, + { + "start": 3947.54, + "end": 3949.83, + "probability": 0.986 + }, + { + "start": 3951.9, + "end": 3957.22, + "probability": 0.1637 + }, + { + "start": 3957.92, + "end": 3966.38, + "probability": 0.8594 + }, + { + "start": 3966.98, + "end": 3968.98, + "probability": 0.883 + }, + { + "start": 3969.74, + "end": 3970.4, + "probability": 0.7891 + }, + { + "start": 3971.16, + "end": 3971.9, + "probability": 0.955 + }, + { + "start": 3971.98, + "end": 3972.7, + "probability": 0.9619 + }, + { + "start": 3972.78, + "end": 3974.24, + "probability": 0.3166 + }, + { + "start": 3974.3, + "end": 3974.52, + "probability": 0.7267 + }, + { + "start": 3974.8, + "end": 3975.5, + "probability": 0.6592 + }, + { + "start": 3975.94, + "end": 3977.0, + "probability": 0.826 + }, + { + "start": 3977.52, + "end": 3979.2, + "probability": 0.8457 + }, + { + "start": 3980.64, + "end": 3981.6, + "probability": 0.668 + }, + { + "start": 3981.68, + "end": 3983.04, + "probability": 0.962 + }, + { + "start": 3983.24, + "end": 3987.44, + "probability": 0.799 + }, + { + "start": 3988.88, + "end": 3990.24, + "probability": 0.8778 + }, + { + "start": 3990.86, + "end": 3992.32, + "probability": 0.4776 + }, + { + "start": 3992.52, + "end": 3993.78, + "probability": 0.8032 + }, + { + "start": 3995.54, + "end": 3997.3, + "probability": 0.0311 + }, + { + "start": 4000.6, + "end": 4002.5, + "probability": 0.6011 + }, + { + "start": 4002.76, + "end": 4004.48, + "probability": 0.8335 + }, + { + "start": 4005.28, + "end": 4007.1, + "probability": 0.9355 + }, + { + "start": 4008.1, + "end": 4010.18, + "probability": 0.9506 + }, + { + "start": 4011.34, + "end": 4014.12, + "probability": 0.7249 + }, + { + "start": 4014.7, + "end": 4016.06, + "probability": 0.5097 + }, + { + "start": 4016.76, + "end": 4018.66, + "probability": 0.7273 + }, + { + "start": 4019.04, + "end": 4019.84, + "probability": 0.2415 + }, + { + "start": 4020.25, + "end": 4021.35, + "probability": 0.3147 + }, + { + "start": 4021.88, + "end": 4024.52, + "probability": 0.9006 + }, + { + "start": 4024.52, + "end": 4024.78, + "probability": 0.5748 + }, + { + "start": 4024.96, + "end": 4025.94, + "probability": 0.5014 + }, + { + "start": 4026.82, + "end": 4031.94, + "probability": 0.8633 + }, + { + "start": 4033.02, + "end": 4035.94, + "probability": 0.6224 + }, + { + "start": 4036.3, + "end": 4040.58, + "probability": 0.7548 + }, + { + "start": 4040.68, + "end": 4041.6, + "probability": 0.833 + }, + { + "start": 4042.16, + "end": 4044.0, + "probability": 0.7468 + }, + { + "start": 4044.8, + "end": 4046.1, + "probability": 0.785 + }, + { + "start": 4047.04, + "end": 4049.86, + "probability": 0.6794 + }, + { + "start": 4050.0, + "end": 4051.74, + "probability": 0.5521 + }, + { + "start": 4053.2, + "end": 4058.58, + "probability": 0.9412 + }, + { + "start": 4059.46, + "end": 4064.84, + "probability": 0.8478 + }, + { + "start": 4065.02, + "end": 4066.62, + "probability": 0.5425 + }, + { + "start": 4067.38, + "end": 4069.32, + "probability": 0.9867 + }, + { + "start": 4069.52, + "end": 4072.24, + "probability": 0.9297 + }, + { + "start": 4072.82, + "end": 4074.14, + "probability": 0.7568 + }, + { + "start": 4074.56, + "end": 4077.96, + "probability": 0.9465 + }, + { + "start": 4081.68, + "end": 4083.44, + "probability": 0.6878 + }, + { + "start": 4084.06, + "end": 4085.88, + "probability": 0.6147 + }, + { + "start": 4088.12, + "end": 4090.92, + "probability": 0.9359 + }, + { + "start": 4091.02, + "end": 4093.26, + "probability": 0.7107 + }, + { + "start": 4093.74, + "end": 4095.3, + "probability": 0.9344 + }, + { + "start": 4095.5, + "end": 4096.28, + "probability": 0.8604 + }, + { + "start": 4097.26, + "end": 4098.28, + "probability": 0.6323 + }, + { + "start": 4098.78, + "end": 4101.24, + "probability": 0.9292 + }, + { + "start": 4102.24, + "end": 4104.32, + "probability": 0.9048 + }, + { + "start": 4105.26, + "end": 4106.43, + "probability": 0.8789 + }, + { + "start": 4106.6, + "end": 4110.84, + "probability": 0.9844 + }, + { + "start": 4111.44, + "end": 4114.28, + "probability": 0.902 + }, + { + "start": 4114.9, + "end": 4115.88, + "probability": 0.6372 + }, + { + "start": 4116.7, + "end": 4117.24, + "probability": 0.8047 + }, + { + "start": 4117.76, + "end": 4118.9, + "probability": 0.9867 + }, + { + "start": 4119.42, + "end": 4121.56, + "probability": 0.986 + }, + { + "start": 4121.88, + "end": 4125.14, + "probability": 0.7934 + }, + { + "start": 4125.24, + "end": 4126.3, + "probability": 0.7553 + }, + { + "start": 4126.84, + "end": 4130.4, + "probability": 0.9246 + }, + { + "start": 4131.08, + "end": 4131.3, + "probability": 0.5917 + }, + { + "start": 4131.4, + "end": 4134.78, + "probability": 0.8256 + }, + { + "start": 4134.84, + "end": 4139.31, + "probability": 0.9956 + }, + { + "start": 4139.96, + "end": 4145.98, + "probability": 0.9905 + }, + { + "start": 4146.92, + "end": 4150.66, + "probability": 0.7638 + }, + { + "start": 4151.2, + "end": 4153.9, + "probability": 0.9771 + }, + { + "start": 4154.08, + "end": 4156.76, + "probability": 0.9215 + }, + { + "start": 4157.26, + "end": 4158.43, + "probability": 0.9373 + }, + { + "start": 4159.14, + "end": 4160.5, + "probability": 0.9361 + }, + { + "start": 4160.74, + "end": 4161.1, + "probability": 0.6748 + }, + { + "start": 4161.1, + "end": 4164.98, + "probability": 0.9478 + }, + { + "start": 4165.64, + "end": 4167.6, + "probability": 0.8474 + }, + { + "start": 4168.14, + "end": 4169.2, + "probability": 0.9805 + }, + { + "start": 4169.26, + "end": 4172.32, + "probability": 0.9646 + }, + { + "start": 4172.32, + "end": 4175.92, + "probability": 0.9839 + }, + { + "start": 4176.68, + "end": 4179.32, + "probability": 0.9902 + }, + { + "start": 4179.94, + "end": 4181.44, + "probability": 0.9911 + }, + { + "start": 4182.42, + "end": 4183.1, + "probability": 0.4598 + }, + { + "start": 4183.24, + "end": 4184.7, + "probability": 0.787 + }, + { + "start": 4186.78, + "end": 4188.22, + "probability": 0.9929 + }, + { + "start": 4189.56, + "end": 4194.91, + "probability": 0.9705 + }, + { + "start": 4196.74, + "end": 4197.16, + "probability": 0.7372 + }, + { + "start": 4199.96, + "end": 4204.56, + "probability": 0.9767 + }, + { + "start": 4206.24, + "end": 4208.2, + "probability": 0.9248 + }, + { + "start": 4208.86, + "end": 4209.5, + "probability": 0.9634 + }, + { + "start": 4210.08, + "end": 4212.44, + "probability": 0.9875 + }, + { + "start": 4214.22, + "end": 4216.74, + "probability": 0.7542 + }, + { + "start": 4216.92, + "end": 4220.86, + "probability": 0.8791 + }, + { + "start": 4221.1, + "end": 4221.26, + "probability": 0.3246 + }, + { + "start": 4221.3, + "end": 4222.12, + "probability": 0.8008 + }, + { + "start": 4222.22, + "end": 4223.1, + "probability": 0.7851 + }, + { + "start": 4223.88, + "end": 4227.76, + "probability": 0.8505 + }, + { + "start": 4228.68, + "end": 4230.62, + "probability": 0.9796 + }, + { + "start": 4231.04, + "end": 4235.44, + "probability": 0.9335 + }, + { + "start": 4235.6, + "end": 4236.04, + "probability": 0.7958 + }, + { + "start": 4236.18, + "end": 4236.94, + "probability": 0.5974 + }, + { + "start": 4237.3, + "end": 4239.17, + "probability": 0.7203 + }, + { + "start": 4239.3, + "end": 4244.84, + "probability": 0.8844 + }, + { + "start": 4244.92, + "end": 4247.14, + "probability": 0.8094 + }, + { + "start": 4247.46, + "end": 4248.54, + "probability": 0.9169 + }, + { + "start": 4249.1, + "end": 4252.04, + "probability": 0.9457 + }, + { + "start": 4253.19, + "end": 4254.06, + "probability": 0.3269 + }, + { + "start": 4256.52, + "end": 4256.86, + "probability": 0.1866 + }, + { + "start": 4256.86, + "end": 4256.86, + "probability": 0.0652 + }, + { + "start": 4256.86, + "end": 4258.6, + "probability": 0.246 + }, + { + "start": 4259.2, + "end": 4260.56, + "probability": 0.1183 + }, + { + "start": 4261.42, + "end": 4262.24, + "probability": 0.5021 + }, + { + "start": 4262.8, + "end": 4263.9, + "probability": 0.9694 + }, + { + "start": 4265.42, + "end": 4266.42, + "probability": 0.9279 + }, + { + "start": 4267.02, + "end": 4267.24, + "probability": 0.8567 + }, + { + "start": 4268.6, + "end": 4270.08, + "probability": 0.5387 + }, + { + "start": 4270.23, + "end": 4273.98, + "probability": 0.7332 + }, + { + "start": 4276.8, + "end": 4278.44, + "probability": 0.7049 + }, + { + "start": 4279.14, + "end": 4285.0, + "probability": 0.9772 + }, + { + "start": 4285.14, + "end": 4289.8, + "probability": 0.9884 + }, + { + "start": 4290.38, + "end": 4292.86, + "probability": 0.8892 + }, + { + "start": 4293.4, + "end": 4296.04, + "probability": 0.868 + }, + { + "start": 4296.54, + "end": 4299.82, + "probability": 0.9984 + }, + { + "start": 4300.58, + "end": 4304.28, + "probability": 0.9979 + }, + { + "start": 4304.52, + "end": 4307.7, + "probability": 0.9729 + }, + { + "start": 4309.68, + "end": 4310.62, + "probability": 0.3264 + }, + { + "start": 4311.04, + "end": 4314.36, + "probability": 0.9951 + }, + { + "start": 4314.86, + "end": 4320.52, + "probability": 0.9732 + }, + { + "start": 4322.16, + "end": 4322.9, + "probability": 0.5273 + }, + { + "start": 4323.14, + "end": 4326.08, + "probability": 0.9143 + }, + { + "start": 4326.64, + "end": 4328.86, + "probability": 0.9919 + }, + { + "start": 4328.86, + "end": 4331.81, + "probability": 0.9596 + }, + { + "start": 4332.72, + "end": 4334.1, + "probability": 0.0759 + }, + { + "start": 4334.1, + "end": 4334.73, + "probability": 0.8522 + }, + { + "start": 4335.26, + "end": 4340.52, + "probability": 0.9528 + }, + { + "start": 4340.96, + "end": 4342.34, + "probability": 0.204 + }, + { + "start": 4353.21, + "end": 4356.4, + "probability": 0.1622 + }, + { + "start": 4356.42, + "end": 4358.05, + "probability": 0.0907 + }, + { + "start": 4359.52, + "end": 4361.3, + "probability": 0.0507 + }, + { + "start": 4361.44, + "end": 4361.44, + "probability": 0.4319 + }, + { + "start": 4361.44, + "end": 4362.0, + "probability": 0.0643 + }, + { + "start": 4362.16, + "end": 4362.16, + "probability": 0.1105 + }, + { + "start": 4362.68, + "end": 4362.92, + "probability": 0.1632 + }, + { + "start": 4364.25, + "end": 4369.46, + "probability": 0.1256 + }, + { + "start": 4370.21, + "end": 4370.7, + "probability": 0.0275 + }, + { + "start": 4370.7, + "end": 4370.7, + "probability": 0.1255 + }, + { + "start": 4370.7, + "end": 4375.42, + "probability": 0.0414 + }, + { + "start": 4375.42, + "end": 4375.42, + "probability": 0.0392 + }, + { + "start": 4375.72, + "end": 4375.72, + "probability": 0.0272 + }, + { + "start": 4375.72, + "end": 4376.02, + "probability": 0.1681 + }, + { + "start": 4376.56, + "end": 4376.82, + "probability": 0.1339 + }, + { + "start": 4379.1, + "end": 4380.72, + "probability": 0.179 + }, + { + "start": 4380.72, + "end": 4381.56, + "probability": 0.0627 + }, + { + "start": 4382.54, + "end": 4385.1, + "probability": 0.0528 + }, + { + "start": 4389.52, + "end": 4389.74, + "probability": 0.0007 + }, + { + "start": 4390.74, + "end": 4390.84, + "probability": 0.2701 + }, + { + "start": 4390.84, + "end": 4391.7, + "probability": 0.0337 + }, + { + "start": 4392.44, + "end": 4392.7, + "probability": 0.0324 + }, + { + "start": 4394.06, + "end": 4394.2, + "probability": 0.0035 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.0, + "end": 4416.0, + "probability": 0.0 + }, + { + "start": 4416.32, + "end": 4417.04, + "probability": 0.1052 + }, + { + "start": 4417.04, + "end": 4417.04, + "probability": 0.0294 + }, + { + "start": 4417.04, + "end": 4417.04, + "probability": 0.0453 + }, + { + "start": 4417.04, + "end": 4420.18, + "probability": 0.671 + }, + { + "start": 4421.26, + "end": 4423.0, + "probability": 0.8195 + }, + { + "start": 4424.02, + "end": 4426.04, + "probability": 0.9191 + }, + { + "start": 4426.84, + "end": 4434.94, + "probability": 0.9866 + }, + { + "start": 4435.0, + "end": 4435.76, + "probability": 0.9117 + }, + { + "start": 4437.4, + "end": 4438.72, + "probability": 0.9403 + }, + { + "start": 4439.28, + "end": 4445.46, + "probability": 0.9181 + }, + { + "start": 4445.58, + "end": 4446.48, + "probability": 0.8212 + }, + { + "start": 4447.44, + "end": 4449.08, + "probability": 0.9971 + }, + { + "start": 4450.02, + "end": 4455.04, + "probability": 0.9852 + }, + { + "start": 4455.04, + "end": 4458.98, + "probability": 0.7383 + }, + { + "start": 4459.8, + "end": 4464.87, + "probability": 0.9629 + }, + { + "start": 4465.38, + "end": 4470.34, + "probability": 0.998 + }, + { + "start": 4470.34, + "end": 4475.64, + "probability": 0.9992 + }, + { + "start": 4476.72, + "end": 4477.26, + "probability": 0.4151 + }, + { + "start": 4477.52, + "end": 4478.3, + "probability": 0.6215 + }, + { + "start": 4479.54, + "end": 4482.7, + "probability": 0.8843 + }, + { + "start": 4484.3, + "end": 4486.0, + "probability": 0.7655 + }, + { + "start": 4486.66, + "end": 4491.74, + "probability": 0.876 + }, + { + "start": 4491.78, + "end": 4493.86, + "probability": 0.2765 + }, + { + "start": 4493.86, + "end": 4495.5, + "probability": 0.1565 + }, + { + "start": 4496.18, + "end": 4497.82, + "probability": 0.9272 + }, + { + "start": 4500.03, + "end": 4502.66, + "probability": 0.8659 + }, + { + "start": 4503.84, + "end": 4506.92, + "probability": 0.8632 + }, + { + "start": 4507.48, + "end": 4510.11, + "probability": 0.9917 + }, + { + "start": 4511.96, + "end": 4514.14, + "probability": 0.9636 + }, + { + "start": 4514.94, + "end": 4520.88, + "probability": 0.8914 + }, + { + "start": 4521.8, + "end": 4524.64, + "probability": 0.6991 + }, + { + "start": 4525.2, + "end": 4526.84, + "probability": 0.9806 + }, + { + "start": 4527.34, + "end": 4529.92, + "probability": 0.2782 + }, + { + "start": 4530.04, + "end": 4530.4, + "probability": 0.825 + }, + { + "start": 4530.54, + "end": 4531.67, + "probability": 0.9949 + }, + { + "start": 4532.0, + "end": 4532.48, + "probability": 0.5587 + }, + { + "start": 4532.86, + "end": 4534.52, + "probability": 0.9375 + }, + { + "start": 4535.36, + "end": 4537.02, + "probability": 0.8561 + }, + { + "start": 4537.68, + "end": 4539.44, + "probability": 0.8623 + }, + { + "start": 4540.0, + "end": 4540.62, + "probability": 0.3937 + }, + { + "start": 4542.48, + "end": 4543.36, + "probability": 0.5332 + }, + { + "start": 4544.4, + "end": 4545.5, + "probability": 0.5163 + }, + { + "start": 4545.68, + "end": 4547.0, + "probability": 0.7261 + }, + { + "start": 4548.12, + "end": 4550.24, + "probability": 0.9873 + }, + { + "start": 4550.86, + "end": 4552.6, + "probability": 0.9099 + }, + { + "start": 4552.88, + "end": 4554.58, + "probability": 0.811 + }, + { + "start": 4555.26, + "end": 4555.76, + "probability": 0.9419 + }, + { + "start": 4556.26, + "end": 4556.92, + "probability": 0.4212 + }, + { + "start": 4557.04, + "end": 4557.53, + "probability": 0.7898 + }, + { + "start": 4558.18, + "end": 4560.6, + "probability": 0.2828 + }, + { + "start": 4560.76, + "end": 4561.44, + "probability": 0.9277 + }, + { + "start": 4561.54, + "end": 4563.6, + "probability": 0.9849 + }, + { + "start": 4564.42, + "end": 4566.92, + "probability": 0.8351 + }, + { + "start": 4567.64, + "end": 4567.88, + "probability": 0.6278 + }, + { + "start": 4568.48, + "end": 4569.74, + "probability": 0.9878 + }, + { + "start": 4570.64, + "end": 4572.67, + "probability": 0.9489 + }, + { + "start": 4573.3, + "end": 4575.12, + "probability": 0.9908 + }, + { + "start": 4575.28, + "end": 4575.84, + "probability": 0.7231 + }, + { + "start": 4576.86, + "end": 4577.98, + "probability": 0.7114 + }, + { + "start": 4578.48, + "end": 4579.86, + "probability": 0.8728 + }, + { + "start": 4580.4, + "end": 4583.9, + "probability": 0.9214 + }, + { + "start": 4584.74, + "end": 4587.98, + "probability": 0.7131 + }, + { + "start": 4589.02, + "end": 4590.66, + "probability": 0.6976 + }, + { + "start": 4596.84, + "end": 4599.14, + "probability": 0.629 + }, + { + "start": 4599.32, + "end": 4600.55, + "probability": 0.9579 + }, + { + "start": 4600.7, + "end": 4601.68, + "probability": 0.8147 + }, + { + "start": 4601.88, + "end": 4607.12, + "probability": 0.7971 + }, + { + "start": 4607.34, + "end": 4607.44, + "probability": 0.9139 + }, + { + "start": 4608.42, + "end": 4612.38, + "probability": 0.994 + }, + { + "start": 4613.62, + "end": 4617.46, + "probability": 0.971 + }, + { + "start": 4618.36, + "end": 4621.72, + "probability": 0.9005 + }, + { + "start": 4622.9, + "end": 4623.42, + "probability": 0.7632 + }, + { + "start": 4624.36, + "end": 4626.46, + "probability": 0.9678 + }, + { + "start": 4627.8, + "end": 4630.16, + "probability": 0.9975 + }, + { + "start": 4630.72, + "end": 4632.06, + "probability": 0.9247 + }, + { + "start": 4632.72, + "end": 4633.94, + "probability": 0.7484 + }, + { + "start": 4634.5, + "end": 4636.1, + "probability": 0.9221 + }, + { + "start": 4636.72, + "end": 4639.26, + "probability": 0.9678 + }, + { + "start": 4639.82, + "end": 4643.36, + "probability": 0.9528 + }, + { + "start": 4643.68, + "end": 4646.22, + "probability": 0.958 + }, + { + "start": 4646.28, + "end": 4647.76, + "probability": 0.9191 + }, + { + "start": 4648.96, + "end": 4651.9, + "probability": 0.999 + }, + { + "start": 4651.9, + "end": 4655.16, + "probability": 0.9897 + }, + { + "start": 4656.1, + "end": 4659.74, + "probability": 0.9872 + }, + { + "start": 4661.12, + "end": 4662.54, + "probability": 0.9367 + }, + { + "start": 4662.68, + "end": 4666.22, + "probability": 0.9386 + }, + { + "start": 4667.32, + "end": 4670.14, + "probability": 0.9835 + }, + { + "start": 4670.26, + "end": 4670.78, + "probability": 0.8837 + }, + { + "start": 4670.94, + "end": 4672.23, + "probability": 0.9814 + }, + { + "start": 4672.74, + "end": 4675.18, + "probability": 0.9829 + }, + { + "start": 4675.8, + "end": 4678.1, + "probability": 0.9372 + }, + { + "start": 4678.7, + "end": 4681.04, + "probability": 0.9972 + }, + { + "start": 4681.32, + "end": 4683.08, + "probability": 0.8824 + }, + { + "start": 4683.54, + "end": 4684.84, + "probability": 0.8822 + }, + { + "start": 4685.48, + "end": 4686.6, + "probability": 0.9354 + }, + { + "start": 4687.06, + "end": 4688.02, + "probability": 0.9522 + }, + { + "start": 4688.3, + "end": 4689.98, + "probability": 0.9986 + }, + { + "start": 4690.86, + "end": 4691.82, + "probability": 0.7112 + }, + { + "start": 4691.92, + "end": 4695.52, + "probability": 0.9399 + }, + { + "start": 4698.02, + "end": 4701.06, + "probability": 0.9646 + }, + { + "start": 4701.78, + "end": 4702.79, + "probability": 0.9167 + }, + { + "start": 4703.28, + "end": 4707.46, + "probability": 0.9888 + }, + { + "start": 4708.06, + "end": 4712.3, + "probability": 0.9985 + }, + { + "start": 4712.4, + "end": 4713.24, + "probability": 0.9971 + }, + { + "start": 4713.82, + "end": 4717.58, + "probability": 0.9317 + }, + { + "start": 4717.58, + "end": 4721.6, + "probability": 0.8903 + }, + { + "start": 4722.04, + "end": 4722.04, + "probability": 0.0128 + }, + { + "start": 4722.04, + "end": 4722.85, + "probability": 0.9326 + }, + { + "start": 4723.06, + "end": 4724.66, + "probability": 0.9284 + }, + { + "start": 4725.16, + "end": 4726.22, + "probability": 0.9863 + }, + { + "start": 4726.32, + "end": 4728.56, + "probability": 0.9482 + }, + { + "start": 4728.96, + "end": 4731.12, + "probability": 0.958 + }, + { + "start": 4731.26, + "end": 4733.88, + "probability": 0.9965 + }, + { + "start": 4734.42, + "end": 4735.52, + "probability": 0.9461 + }, + { + "start": 4736.24, + "end": 4740.04, + "probability": 0.9946 + }, + { + "start": 4740.76, + "end": 4740.94, + "probability": 0.2542 + }, + { + "start": 4741.08, + "end": 4741.08, + "probability": 0.3086 + }, + { + "start": 4741.08, + "end": 4741.86, + "probability": 0.6626 + }, + { + "start": 4742.5, + "end": 4744.36, + "probability": 0.7664 + }, + { + "start": 4744.92, + "end": 4746.42, + "probability": 0.9172 + }, + { + "start": 4747.92, + "end": 4749.32, + "probability": 0.9408 + }, + { + "start": 4750.38, + "end": 4756.2, + "probability": 0.6656 + }, + { + "start": 4757.0, + "end": 4761.44, + "probability": 0.496 + }, + { + "start": 4762.04, + "end": 4763.36, + "probability": 0.788 + }, + { + "start": 4763.88, + "end": 4765.94, + "probability": 0.3644 + }, + { + "start": 4767.14, + "end": 4771.02, + "probability": 0.7798 + }, + { + "start": 4771.12, + "end": 4773.22, + "probability": 0.8826 + }, + { + "start": 4774.68, + "end": 4776.32, + "probability": 0.9695 + }, + { + "start": 4777.22, + "end": 4782.02, + "probability": 0.9328 + }, + { + "start": 4782.74, + "end": 4787.06, + "probability": 0.8714 + }, + { + "start": 4787.32, + "end": 4791.06, + "probability": 0.9963 + }, + { + "start": 4792.0, + "end": 4793.88, + "probability": 0.8197 + }, + { + "start": 4793.88, + "end": 4796.42, + "probability": 0.9301 + }, + { + "start": 4796.5, + "end": 4797.19, + "probability": 0.9319 + }, + { + "start": 4799.58, + "end": 4801.5, + "probability": 0.6688 + }, + { + "start": 4801.86, + "end": 4802.58, + "probability": 0.7145 + }, + { + "start": 4803.22, + "end": 4804.64, + "probability": 0.8857 + }, + { + "start": 4806.2, + "end": 4809.4, + "probability": 0.822 + }, + { + "start": 4809.5, + "end": 4811.56, + "probability": 0.8157 + }, + { + "start": 4811.58, + "end": 4811.92, + "probability": 0.8833 + }, + { + "start": 4812.56, + "end": 4813.26, + "probability": 0.8049 + }, + { + "start": 4813.32, + "end": 4814.4, + "probability": 0.8695 + }, + { + "start": 4815.1, + "end": 4817.92, + "probability": 0.9507 + }, + { + "start": 4818.88, + "end": 4820.46, + "probability": 0.7275 + }, + { + "start": 4820.66, + "end": 4822.94, + "probability": 0.7581 + }, + { + "start": 4823.8, + "end": 4824.74, + "probability": 0.9925 + }, + { + "start": 4825.58, + "end": 4827.72, + "probability": 0.8455 + }, + { + "start": 4827.86, + "end": 4828.76, + "probability": 0.9453 + }, + { + "start": 4829.14, + "end": 4829.74, + "probability": 0.7308 + }, + { + "start": 4831.44, + "end": 4832.62, + "probability": 0.6151 + }, + { + "start": 4832.86, + "end": 4834.38, + "probability": 0.917 + }, + { + "start": 4844.0, + "end": 4846.68, + "probability": 0.7591 + }, + { + "start": 4848.4, + "end": 4854.04, + "probability": 0.9771 + }, + { + "start": 4854.5, + "end": 4855.68, + "probability": 0.9977 + }, + { + "start": 4856.34, + "end": 4857.61, + "probability": 0.9945 + }, + { + "start": 4858.0, + "end": 4858.67, + "probability": 0.9226 + }, + { + "start": 4859.0, + "end": 4859.8, + "probability": 0.9333 + }, + { + "start": 4861.2, + "end": 4863.48, + "probability": 0.9754 + }, + { + "start": 4864.04, + "end": 4867.52, + "probability": 0.955 + }, + { + "start": 4867.92, + "end": 4871.7, + "probability": 0.6895 + }, + { + "start": 4871.94, + "end": 4876.96, + "probability": 0.9423 + }, + { + "start": 4877.34, + "end": 4879.58, + "probability": 0.9948 + }, + { + "start": 4879.74, + "end": 4882.98, + "probability": 0.9866 + }, + { + "start": 4883.8, + "end": 4884.74, + "probability": 0.8126 + }, + { + "start": 4885.56, + "end": 4888.98, + "probability": 0.9924 + }, + { + "start": 4888.98, + "end": 4891.86, + "probability": 0.9946 + }, + { + "start": 4892.36, + "end": 4895.26, + "probability": 0.9916 + }, + { + "start": 4896.08, + "end": 4897.88, + "probability": 0.9989 + }, + { + "start": 4898.44, + "end": 4903.2, + "probability": 0.9982 + }, + { + "start": 4903.48, + "end": 4904.0, + "probability": 0.9413 + }, + { + "start": 4904.1, + "end": 4904.34, + "probability": 0.4119 + }, + { + "start": 4904.46, + "end": 4906.08, + "probability": 0.7979 + }, + { + "start": 4906.76, + "end": 4906.9, + "probability": 0.605 + }, + { + "start": 4907.1, + "end": 4907.74, + "probability": 0.8936 + }, + { + "start": 4907.92, + "end": 4912.73, + "probability": 0.9473 + }, + { + "start": 4913.32, + "end": 4914.08, + "probability": 0.6513 + }, + { + "start": 4914.65, + "end": 4915.62, + "probability": 0.9045 + }, + { + "start": 4915.68, + "end": 4916.04, + "probability": 0.6707 + }, + { + "start": 4916.16, + "end": 4916.68, + "probability": 0.8354 + }, + { + "start": 4916.88, + "end": 4918.3, + "probability": 0.9802 + }, + { + "start": 4918.38, + "end": 4918.94, + "probability": 0.6173 + }, + { + "start": 4918.98, + "end": 4921.68, + "probability": 0.9857 + }, + { + "start": 4922.06, + "end": 4925.54, + "probability": 0.9745 + }, + { + "start": 4926.0, + "end": 4927.7, + "probability": 0.9149 + }, + { + "start": 4928.38, + "end": 4929.34, + "probability": 0.9576 + }, + { + "start": 4929.44, + "end": 4930.3, + "probability": 0.856 + }, + { + "start": 4930.76, + "end": 4932.98, + "probability": 0.8577 + }, + { + "start": 4933.36, + "end": 4936.7, + "probability": 0.9598 + }, + { + "start": 4937.64, + "end": 4943.94, + "probability": 0.5693 + }, + { + "start": 4944.3, + "end": 4946.66, + "probability": 0.7491 + }, + { + "start": 4946.66, + "end": 4951.42, + "probability": 0.958 + }, + { + "start": 4951.7, + "end": 4951.92, + "probability": 0.7271 + }, + { + "start": 4952.46, + "end": 4952.84, + "probability": 0.2933 + }, + { + "start": 4952.9, + "end": 4953.54, + "probability": 0.7008 + }, + { + "start": 4953.88, + "end": 4958.68, + "probability": 0.8807 + }, + { + "start": 4959.54, + "end": 4962.38, + "probability": 0.7894 + }, + { + "start": 4964.06, + "end": 4965.92, + "probability": 0.8669 + }, + { + "start": 4967.5, + "end": 4968.22, + "probability": 0.7895 + }, + { + "start": 4968.82, + "end": 4969.16, + "probability": 0.8815 + }, + { + "start": 4969.84, + "end": 4973.8, + "probability": 0.9151 + }, + { + "start": 4975.0, + "end": 4976.98, + "probability": 0.7541 + }, + { + "start": 4977.08, + "end": 4977.36, + "probability": 0.8718 + }, + { + "start": 4978.6, + "end": 4981.02, + "probability": 0.9238 + }, + { + "start": 4981.58, + "end": 4982.26, + "probability": 0.0234 + }, + { + "start": 4982.62, + "end": 4982.8, + "probability": 0.8987 + }, + { + "start": 4983.84, + "end": 4985.64, + "probability": 0.8857 + }, + { + "start": 4986.34, + "end": 4988.6, + "probability": 0.6948 + }, + { + "start": 4989.38, + "end": 4990.16, + "probability": 0.3631 + }, + { + "start": 4990.7, + "end": 4992.24, + "probability": 0.9815 + }, + { + "start": 4993.12, + "end": 4998.88, + "probability": 0.8509 + }, + { + "start": 4999.72, + "end": 5000.4, + "probability": 0.9182 + }, + { + "start": 5001.18, + "end": 5003.66, + "probability": 0.8461 + }, + { + "start": 5004.66, + "end": 5005.28, + "probability": 0.5752 + }, + { + "start": 5006.08, + "end": 5006.36, + "probability": 0.7293 + }, + { + "start": 5007.08, + "end": 5007.58, + "probability": 0.6548 + }, + { + "start": 5008.14, + "end": 5009.1, + "probability": 0.9462 + }, + { + "start": 5009.2, + "end": 5010.0, + "probability": 0.9198 + }, + { + "start": 5010.1, + "end": 5011.03, + "probability": 0.8331 + }, + { + "start": 5011.54, + "end": 5013.56, + "probability": 0.8823 + }, + { + "start": 5014.64, + "end": 5015.76, + "probability": 0.9961 + }, + { + "start": 5016.54, + "end": 5018.22, + "probability": 0.947 + }, + { + "start": 5019.22, + "end": 5019.8, + "probability": 0.9189 + }, + { + "start": 5020.34, + "end": 5022.34, + "probability": 0.9993 + }, + { + "start": 5023.58, + "end": 5023.86, + "probability": 0.9877 + }, + { + "start": 5024.62, + "end": 5027.58, + "probability": 0.8812 + }, + { + "start": 5027.7, + "end": 5029.22, + "probability": 0.7442 + }, + { + "start": 5029.36, + "end": 5031.44, + "probability": 0.7983 + }, + { + "start": 5032.0, + "end": 5033.6, + "probability": 0.6303 + }, + { + "start": 5034.27, + "end": 5037.54, + "probability": 0.5013 + }, + { + "start": 5037.88, + "end": 5039.54, + "probability": 0.9384 + }, + { + "start": 5039.68, + "end": 5041.68, + "probability": 0.9703 + }, + { + "start": 5042.26, + "end": 5043.98, + "probability": 0.8584 + }, + { + "start": 5043.98, + "end": 5044.56, + "probability": 0.5702 + }, + { + "start": 5044.78, + "end": 5047.64, + "probability": 0.8186 + }, + { + "start": 5047.92, + "end": 5050.28, + "probability": 0.2896 + }, + { + "start": 5050.93, + "end": 5054.12, + "probability": 0.855 + }, + { + "start": 5055.94, + "end": 5057.06, + "probability": 0.9258 + }, + { + "start": 5057.1, + "end": 5057.46, + "probability": 0.5043 + }, + { + "start": 5057.5, + "end": 5060.22, + "probability": 0.9618 + }, + { + "start": 5060.26, + "end": 5061.16, + "probability": 0.9602 + }, + { + "start": 5061.58, + "end": 5062.22, + "probability": 0.5156 + }, + { + "start": 5062.94, + "end": 5066.7, + "probability": 0.7274 + }, + { + "start": 5067.34, + "end": 5068.86, + "probability": 0.9814 + }, + { + "start": 5069.0, + "end": 5070.42, + "probability": 0.8981 + }, + { + "start": 5070.8, + "end": 5071.6, + "probability": 0.5551 + }, + { + "start": 5072.14, + "end": 5076.58, + "probability": 0.7376 + }, + { + "start": 5076.68, + "end": 5076.96, + "probability": 0.5733 + }, + { + "start": 5077.48, + "end": 5078.48, + "probability": 0.7337 + }, + { + "start": 5079.88, + "end": 5080.76, + "probability": 0.2156 + }, + { + "start": 5081.6, + "end": 5082.38, + "probability": 0.8298 + }, + { + "start": 5082.82, + "end": 5083.14, + "probability": 0.3472 + }, + { + "start": 5083.36, + "end": 5084.24, + "probability": 0.9414 + }, + { + "start": 5084.96, + "end": 5086.06, + "probability": 0.4654 + }, + { + "start": 5086.34, + "end": 5089.14, + "probability": 0.6651 + }, + { + "start": 5095.56, + "end": 5096.76, + "probability": 0.7537 + }, + { + "start": 5096.86, + "end": 5097.5, + "probability": 0.6049 + }, + { + "start": 5098.18, + "end": 5102.08, + "probability": 0.974 + }, + { + "start": 5103.06, + "end": 5106.78, + "probability": 0.883 + }, + { + "start": 5107.38, + "end": 5108.46, + "probability": 0.8619 + }, + { + "start": 5108.6, + "end": 5109.49, + "probability": 0.842 + }, + { + "start": 5110.2, + "end": 5112.26, + "probability": 0.8633 + }, + { + "start": 5112.26, + "end": 5112.56, + "probability": 0.6852 + }, + { + "start": 5112.62, + "end": 5114.86, + "probability": 0.9306 + }, + { + "start": 5115.4, + "end": 5116.04, + "probability": 0.7957 + }, + { + "start": 5116.8, + "end": 5117.42, + "probability": 0.9021 + }, + { + "start": 5117.48, + "end": 5117.48, + "probability": 0.2432 + }, + { + "start": 5117.48, + "end": 5119.66, + "probability": 0.5534 + }, + { + "start": 5119.74, + "end": 5120.52, + "probability": 0.5652 + }, + { + "start": 5121.62, + "end": 5122.78, + "probability": 0.6369 + }, + { + "start": 5123.24, + "end": 5126.98, + "probability": 0.9916 + }, + { + "start": 5126.98, + "end": 5129.76, + "probability": 0.9661 + }, + { + "start": 5130.56, + "end": 5133.18, + "probability": 0.8701 + }, + { + "start": 5133.28, + "end": 5135.46, + "probability": 0.8187 + }, + { + "start": 5135.62, + "end": 5136.62, + "probability": 0.6355 + }, + { + "start": 5136.8, + "end": 5138.24, + "probability": 0.7624 + }, + { + "start": 5138.9, + "end": 5142.98, + "probability": 0.9267 + }, + { + "start": 5143.84, + "end": 5145.08, + "probability": 0.5144 + }, + { + "start": 5145.76, + "end": 5149.34, + "probability": 0.8327 + }, + { + "start": 5149.86, + "end": 5150.98, + "probability": 0.9374 + }, + { + "start": 5151.02, + "end": 5152.92, + "probability": 0.7469 + }, + { + "start": 5153.32, + "end": 5156.52, + "probability": 0.9628 + }, + { + "start": 5156.6, + "end": 5158.1, + "probability": 0.9071 + }, + { + "start": 5158.74, + "end": 5162.04, + "probability": 0.9506 + }, + { + "start": 5162.36, + "end": 5163.36, + "probability": 0.7651 + }, + { + "start": 5164.28, + "end": 5168.7, + "probability": 0.8347 + }, + { + "start": 5168.78, + "end": 5173.52, + "probability": 0.9604 + }, + { + "start": 5173.58, + "end": 5174.54, + "probability": 0.7873 + }, + { + "start": 5174.86, + "end": 5177.78, + "probability": 0.8966 + }, + { + "start": 5178.06, + "end": 5179.54, + "probability": 0.9452 + }, + { + "start": 5179.62, + "end": 5180.7, + "probability": 0.7122 + }, + { + "start": 5180.98, + "end": 5186.26, + "probability": 0.8711 + }, + { + "start": 5186.4, + "end": 5188.78, + "probability": 0.9059 + }, + { + "start": 5189.18, + "end": 5189.7, + "probability": 0.7127 + }, + { + "start": 5190.3, + "end": 5191.86, + "probability": 0.9868 + }, + { + "start": 5191.88, + "end": 5193.36, + "probability": 0.7443 + }, + { + "start": 5193.74, + "end": 5196.8, + "probability": 0.969 + }, + { + "start": 5196.94, + "end": 5197.34, + "probability": 0.7249 + }, + { + "start": 5197.58, + "end": 5197.66, + "probability": 0.0264 + }, + { + "start": 5197.82, + "end": 5198.12, + "probability": 0.7633 + }, + { + "start": 5198.14, + "end": 5199.36, + "probability": 0.9922 + }, + { + "start": 5199.52, + "end": 5203.76, + "probability": 0.8957 + }, + { + "start": 5203.86, + "end": 5204.88, + "probability": 0.8199 + }, + { + "start": 5204.98, + "end": 5206.2, + "probability": 0.8081 + }, + { + "start": 5206.34, + "end": 5210.88, + "probability": 0.9556 + }, + { + "start": 5212.7, + "end": 5214.36, + "probability": 0.8993 + }, + { + "start": 5214.92, + "end": 5218.44, + "probability": 0.9225 + }, + { + "start": 5218.56, + "end": 5221.76, + "probability": 0.991 + }, + { + "start": 5221.76, + "end": 5227.22, + "probability": 0.95 + }, + { + "start": 5227.34, + "end": 5228.86, + "probability": 0.8512 + }, + { + "start": 5229.4, + "end": 5231.84, + "probability": 0.6762 + }, + { + "start": 5232.2, + "end": 5232.4, + "probability": 0.688 + }, + { + "start": 5232.58, + "end": 5233.04, + "probability": 0.4828 + }, + { + "start": 5233.28, + "end": 5233.94, + "probability": 0.4944 + }, + { + "start": 5234.04, + "end": 5234.8, + "probability": 0.7146 + }, + { + "start": 5234.86, + "end": 5237.62, + "probability": 0.9544 + }, + { + "start": 5238.8, + "end": 5239.12, + "probability": 0.3794 + }, + { + "start": 5239.6, + "end": 5245.54, + "probability": 0.8825 + }, + { + "start": 5246.54, + "end": 5247.26, + "probability": 0.7769 + }, + { + "start": 5248.7, + "end": 5251.0, + "probability": 0.5431 + }, + { + "start": 5252.74, + "end": 5253.48, + "probability": 0.958 + }, + { + "start": 5253.58, + "end": 5254.22, + "probability": 0.1081 + }, + { + "start": 5255.24, + "end": 5256.62, + "probability": 0.7142 + }, + { + "start": 5256.66, + "end": 5259.48, + "probability": 0.3644 + }, + { + "start": 5262.13, + "end": 5267.02, + "probability": 0.8527 + }, + { + "start": 5268.12, + "end": 5270.04, + "probability": 0.3694 + }, + { + "start": 5271.58, + "end": 5275.64, + "probability": 0.8421 + }, + { + "start": 5276.18, + "end": 5278.04, + "probability": 0.9323 + }, + { + "start": 5278.98, + "end": 5282.48, + "probability": 0.9489 + }, + { + "start": 5283.5, + "end": 5287.52, + "probability": 0.9684 + }, + { + "start": 5288.4, + "end": 5289.4, + "probability": 0.9604 + }, + { + "start": 5290.02, + "end": 5291.34, + "probability": 0.7658 + }, + { + "start": 5292.16, + "end": 5300.56, + "probability": 0.8029 + }, + { + "start": 5300.56, + "end": 5301.76, + "probability": 0.3553 + }, + { + "start": 5301.76, + "end": 5302.24, + "probability": 0.2698 + }, + { + "start": 5302.24, + "end": 5302.36, + "probability": 0.1806 + }, + { + "start": 5302.36, + "end": 5302.78, + "probability": 0.7025 + }, + { + "start": 5303.0, + "end": 5305.44, + "probability": 0.6887 + }, + { + "start": 5306.18, + "end": 5306.25, + "probability": 0.0161 + }, + { + "start": 5307.48, + "end": 5307.88, + "probability": 0.0018 + }, + { + "start": 5307.88, + "end": 5309.1, + "probability": 0.3975 + }, + { + "start": 5309.22, + "end": 5309.46, + "probability": 0.5453 + }, + { + "start": 5310.02, + "end": 5312.78, + "probability": 0.276 + }, + { + "start": 5313.02, + "end": 5313.34, + "probability": 0.6329 + }, + { + "start": 5313.4, + "end": 5314.58, + "probability": 0.8411 + }, + { + "start": 5314.62, + "end": 5315.11, + "probability": 0.8511 + }, + { + "start": 5315.42, + "end": 5317.34, + "probability": 0.5389 + }, + { + "start": 5317.46, + "end": 5319.22, + "probability": 0.6457 + }, + { + "start": 5319.72, + "end": 5321.76, + "probability": 0.4871 + }, + { + "start": 5322.12, + "end": 5324.48, + "probability": 0.6341 + }, + { + "start": 5325.68, + "end": 5326.44, + "probability": 0.4137 + }, + { + "start": 5326.92, + "end": 5329.78, + "probability": 0.6211 + }, + { + "start": 5330.52, + "end": 5333.58, + "probability": 0.8393 + }, + { + "start": 5334.08, + "end": 5335.88, + "probability": 0.9805 + }, + { + "start": 5336.12, + "end": 5336.7, + "probability": 0.748 + }, + { + "start": 5336.78, + "end": 5337.26, + "probability": 0.499 + }, + { + "start": 5337.82, + "end": 5338.28, + "probability": 0.8826 + }, + { + "start": 5338.82, + "end": 5341.38, + "probability": 0.2501 + }, + { + "start": 5342.74, + "end": 5344.45, + "probability": 0.9199 + }, + { + "start": 5344.7, + "end": 5346.0, + "probability": 0.9159 + }, + { + "start": 5346.76, + "end": 5350.02, + "probability": 0.78 + }, + { + "start": 5352.16, + "end": 5353.26, + "probability": 0.3717 + }, + { + "start": 5354.38, + "end": 5356.3, + "probability": 0.8369 + }, + { + "start": 5356.82, + "end": 5357.64, + "probability": 0.8198 + }, + { + "start": 5359.1, + "end": 5361.54, + "probability": 0.618 + }, + { + "start": 5363.2, + "end": 5364.8, + "probability": 0.6346 + }, + { + "start": 5366.44, + "end": 5371.4, + "probability": 0.8471 + }, + { + "start": 5373.43, + "end": 5378.98, + "probability": 0.6519 + }, + { + "start": 5379.4, + "end": 5380.2, + "probability": 0.9345 + }, + { + "start": 5382.0, + "end": 5382.3, + "probability": 0.8223 + }, + { + "start": 5382.84, + "end": 5383.28, + "probability": 0.6377 + }, + { + "start": 5383.88, + "end": 5384.44, + "probability": 0.4399 + }, + { + "start": 5384.78, + "end": 5387.4, + "probability": 0.8472 + }, + { + "start": 5387.48, + "end": 5387.84, + "probability": 0.9105 + }, + { + "start": 5387.92, + "end": 5388.26, + "probability": 0.7904 + }, + { + "start": 5388.32, + "end": 5389.16, + "probability": 0.8978 + }, + { + "start": 5389.26, + "end": 5389.64, + "probability": 0.9604 + }, + { + "start": 5394.16, + "end": 5395.48, + "probability": 0.8152 + }, + { + "start": 5396.44, + "end": 5401.38, + "probability": 0.8874 + }, + { + "start": 5401.84, + "end": 5403.32, + "probability": 0.7244 + }, + { + "start": 5404.14, + "end": 5405.18, + "probability": 0.7001 + }, + { + "start": 5405.59, + "end": 5408.64, + "probability": 0.8875 + }, + { + "start": 5408.72, + "end": 5409.32, + "probability": 0.9341 + }, + { + "start": 5409.5, + "end": 5414.88, + "probability": 0.8426 + }, + { + "start": 5415.02, + "end": 5417.52, + "probability": 0.9911 + }, + { + "start": 5417.66, + "end": 5421.24, + "probability": 0.5879 + }, + { + "start": 5421.84, + "end": 5422.04, + "probability": 0.6165 + }, + { + "start": 5423.4, + "end": 5424.62, + "probability": 0.6886 + }, + { + "start": 5424.72, + "end": 5426.64, + "probability": 0.9922 + }, + { + "start": 5426.82, + "end": 5428.54, + "probability": 0.8009 + }, + { + "start": 5428.78, + "end": 5430.44, + "probability": 0.5823 + }, + { + "start": 5431.16, + "end": 5433.56, + "probability": 0.9862 + }, + { + "start": 5433.72, + "end": 5435.98, + "probability": 0.9344 + }, + { + "start": 5436.82, + "end": 5442.1, + "probability": 0.9982 + }, + { + "start": 5442.18, + "end": 5443.6, + "probability": 0.6917 + }, + { + "start": 5443.94, + "end": 5445.04, + "probability": 0.7917 + }, + { + "start": 5445.1, + "end": 5445.74, + "probability": 0.8444 + }, + { + "start": 5446.36, + "end": 5446.96, + "probability": 0.8843 + }, + { + "start": 5447.04, + "end": 5447.86, + "probability": 0.7509 + }, + { + "start": 5448.24, + "end": 5451.36, + "probability": 0.7045 + }, + { + "start": 5451.36, + "end": 5453.96, + "probability": 0.6724 + }, + { + "start": 5454.52, + "end": 5455.86, + "probability": 0.921 + }, + { + "start": 5456.26, + "end": 5458.28, + "probability": 0.9834 + }, + { + "start": 5458.82, + "end": 5460.68, + "probability": 0.2185 + }, + { + "start": 5460.68, + "end": 5464.66, + "probability": 0.6869 + }, + { + "start": 5464.74, + "end": 5467.22, + "probability": 0.7889 + }, + { + "start": 5468.12, + "end": 5470.74, + "probability": 0.991 + }, + { + "start": 5471.26, + "end": 5474.92, + "probability": 0.9909 + }, + { + "start": 5475.28, + "end": 5479.36, + "probability": 0.8355 + }, + { + "start": 5479.36, + "end": 5482.98, + "probability": 0.7452 + }, + { + "start": 5483.34, + "end": 5484.46, + "probability": 0.5333 + }, + { + "start": 5484.48, + "end": 5486.15, + "probability": 0.8552 + }, + { + "start": 5486.62, + "end": 5489.24, + "probability": 0.9815 + }, + { + "start": 5491.04, + "end": 5494.3, + "probability": 0.5072 + }, + { + "start": 5495.62, + "end": 5496.7, + "probability": 0.6096 + }, + { + "start": 5496.92, + "end": 5497.12, + "probability": 0.3506 + }, + { + "start": 5499.61, + "end": 5502.7, + "probability": 0.5169 + }, + { + "start": 5504.76, + "end": 5507.72, + "probability": 0.8394 + }, + { + "start": 5509.3, + "end": 5510.04, + "probability": 0.4573 + }, + { + "start": 5510.34, + "end": 5511.04, + "probability": 0.7978 + }, + { + "start": 5511.64, + "end": 5515.27, + "probability": 0.8102 + }, + { + "start": 5516.44, + "end": 5517.18, + "probability": 0.9528 + }, + { + "start": 5517.38, + "end": 5519.39, + "probability": 0.4811 + }, + { + "start": 5521.05, + "end": 5524.3, + "probability": 0.1612 + }, + { + "start": 5524.82, + "end": 5525.22, + "probability": 0.1839 + }, + { + "start": 5525.22, + "end": 5528.28, + "probability": 0.554 + }, + { + "start": 5528.48, + "end": 5530.0, + "probability": 0.8559 + }, + { + "start": 5531.46, + "end": 5533.92, + "probability": 0.7051 + }, + { + "start": 5536.12, + "end": 5541.76, + "probability": 0.8071 + }, + { + "start": 5542.2, + "end": 5542.48, + "probability": 0.0002 + }, + { + "start": 5543.58, + "end": 5544.82, + "probability": 0.6203 + }, + { + "start": 5545.06, + "end": 5545.38, + "probability": 0.8507 + }, + { + "start": 5546.18, + "end": 5549.52, + "probability": 0.6914 + }, + { + "start": 5550.32, + "end": 5550.66, + "probability": 0.9644 + }, + { + "start": 5552.16, + "end": 5554.76, + "probability": 0.9731 + }, + { + "start": 5555.52, + "end": 5558.54, + "probability": 0.9831 + }, + { + "start": 5560.02, + "end": 5560.7, + "probability": 0.8368 + }, + { + "start": 5561.06, + "end": 5561.66, + "probability": 0.5332 + }, + { + "start": 5562.14, + "end": 5562.84, + "probability": 0.8194 + }, + { + "start": 5563.5, + "end": 5565.9, + "probability": 0.9463 + }, + { + "start": 5566.5, + "end": 5569.04, + "probability": 0.9502 + }, + { + "start": 5571.66, + "end": 5573.14, + "probability": 0.2546 + }, + { + "start": 5574.28, + "end": 5575.54, + "probability": 0.9854 + }, + { + "start": 5578.72, + "end": 5579.1, + "probability": 0.3677 + }, + { + "start": 5579.66, + "end": 5580.12, + "probability": 0.5124 + }, + { + "start": 5580.5, + "end": 5581.6, + "probability": 0.6685 + }, + { + "start": 5582.08, + "end": 5582.38, + "probability": 0.3203 + }, + { + "start": 5583.34, + "end": 5584.48, + "probability": 0.796 + }, + { + "start": 5586.08, + "end": 5589.2, + "probability": 0.8921 + }, + { + "start": 5589.8, + "end": 5591.92, + "probability": 0.9897 + }, + { + "start": 5592.46, + "end": 5593.4, + "probability": 0.9816 + }, + { + "start": 5594.02, + "end": 5594.96, + "probability": 0.5286 + }, + { + "start": 5596.8, + "end": 5597.42, + "probability": 0.3729 + }, + { + "start": 5598.28, + "end": 5601.84, + "probability": 0.9014 + }, + { + "start": 5601.88, + "end": 5602.96, + "probability": 0.837 + }, + { + "start": 5604.12, + "end": 5605.78, + "probability": 0.9409 + }, + { + "start": 5607.54, + "end": 5608.68, + "probability": 0.95 + }, + { + "start": 5609.74, + "end": 5611.16, + "probability": 0.9735 + }, + { + "start": 5612.1, + "end": 5613.08, + "probability": 0.8776 + }, + { + "start": 5613.28, + "end": 5614.2, + "probability": 0.8384 + }, + { + "start": 5615.12, + "end": 5616.4, + "probability": 0.9153 + }, + { + "start": 5616.96, + "end": 5618.52, + "probability": 0.9683 + }, + { + "start": 5619.54, + "end": 5620.98, + "probability": 0.8238 + }, + { + "start": 5622.2, + "end": 5626.78, + "probability": 0.9252 + }, + { + "start": 5627.4, + "end": 5628.74, + "probability": 0.3102 + }, + { + "start": 5629.38, + "end": 5630.06, + "probability": 0.7377 + }, + { + "start": 5631.2, + "end": 5632.32, + "probability": 0.7027 + }, + { + "start": 5632.52, + "end": 5635.76, + "probability": 0.7291 + }, + { + "start": 5637.54, + "end": 5639.16, + "probability": 0.9773 + }, + { + "start": 5640.82, + "end": 5641.26, + "probability": 0.3307 + }, + { + "start": 5642.48, + "end": 5643.96, + "probability": 0.9351 + }, + { + "start": 5644.74, + "end": 5646.44, + "probability": 0.7397 + }, + { + "start": 5646.7, + "end": 5651.16, + "probability": 0.5332 + }, + { + "start": 5651.84, + "end": 5652.54, + "probability": 0.8987 + }, + { + "start": 5652.76, + "end": 5653.92, + "probability": 0.9502 + }, + { + "start": 5654.04, + "end": 5655.25, + "probability": 0.5669 + }, + { + "start": 5656.06, + "end": 5658.78, + "probability": 0.8214 + }, + { + "start": 5659.44, + "end": 5662.12, + "probability": 0.616 + }, + { + "start": 5662.28, + "end": 5663.5, + "probability": 0.9334 + }, + { + "start": 5664.06, + "end": 5664.64, + "probability": 0.3985 + }, + { + "start": 5664.76, + "end": 5665.02, + "probability": 0.6399 + }, + { + "start": 5665.3, + "end": 5670.28, + "probability": 0.7776 + }, + { + "start": 5671.22, + "end": 5676.04, + "probability": 0.6776 + }, + { + "start": 5676.32, + "end": 5677.14, + "probability": 0.7555 + }, + { + "start": 5677.26, + "end": 5679.52, + "probability": 0.7449 + }, + { + "start": 5680.02, + "end": 5680.6, + "probability": 0.6627 + }, + { + "start": 5680.86, + "end": 5685.72, + "probability": 0.5603 + }, + { + "start": 5685.72, + "end": 5686.98, + "probability": 0.8185 + }, + { + "start": 5687.1, + "end": 5687.2, + "probability": 0.8081 + }, + { + "start": 5691.06, + "end": 5692.92, + "probability": 0.667 + }, + { + "start": 5693.58, + "end": 5693.72, + "probability": 0.2444 + }, + { + "start": 5693.76, + "end": 5697.16, + "probability": 0.8257 + }, + { + "start": 5697.74, + "end": 5698.44, + "probability": 0.8906 + }, + { + "start": 5700.38, + "end": 5701.51, + "probability": 0.9478 + }, + { + "start": 5702.16, + "end": 5703.56, + "probability": 0.9694 + }, + { + "start": 5703.68, + "end": 5704.68, + "probability": 0.9521 + }, + { + "start": 5705.1, + "end": 5706.9, + "probability": 0.9119 + }, + { + "start": 5708.22, + "end": 5713.82, + "probability": 0.508 + }, + { + "start": 5714.5, + "end": 5716.4, + "probability": 0.6101 + }, + { + "start": 5717.54, + "end": 5718.48, + "probability": 0.9854 + }, + { + "start": 5718.9, + "end": 5719.3, + "probability": 0.8775 + }, + { + "start": 5720.22, + "end": 5720.92, + "probability": 0.9707 + }, + { + "start": 5726.9, + "end": 5727.8, + "probability": 0.2536 + }, + { + "start": 5728.38, + "end": 5729.46, + "probability": 0.871 + }, + { + "start": 5730.24, + "end": 5733.8, + "probability": 0.8852 + }, + { + "start": 5734.54, + "end": 5736.68, + "probability": 0.79 + }, + { + "start": 5737.04, + "end": 5739.26, + "probability": 0.9292 + }, + { + "start": 5739.78, + "end": 5741.64, + "probability": 0.4753 + }, + { + "start": 5742.08, + "end": 5746.1, + "probability": 0.9147 + }, + { + "start": 5746.86, + "end": 5747.4, + "probability": 0.4771 + }, + { + "start": 5747.5, + "end": 5748.32, + "probability": 0.8724 + }, + { + "start": 5748.44, + "end": 5748.9, + "probability": 0.8827 + }, + { + "start": 5748.96, + "end": 5749.58, + "probability": 0.7701 + }, + { + "start": 5749.74, + "end": 5753.14, + "probability": 0.7719 + }, + { + "start": 5753.2, + "end": 5755.78, + "probability": 0.9849 + }, + { + "start": 5755.78, + "end": 5759.5, + "probability": 0.9113 + }, + { + "start": 5759.98, + "end": 5761.16, + "probability": 0.6688 + }, + { + "start": 5763.72, + "end": 5764.52, + "probability": 0.6848 + }, + { + "start": 5764.84, + "end": 5765.58, + "probability": 0.845 + }, + { + "start": 5765.98, + "end": 5767.04, + "probability": 0.9321 + }, + { + "start": 5767.18, + "end": 5769.84, + "probability": 0.9722 + }, + { + "start": 5770.54, + "end": 5770.56, + "probability": 0.0134 + }, + { + "start": 5771.08, + "end": 5772.76, + "probability": 0.9137 + }, + { + "start": 5774.02, + "end": 5774.84, + "probability": 0.2494 + }, + { + "start": 5775.1, + "end": 5776.46, + "probability": 0.7172 + }, + { + "start": 5777.82, + "end": 5779.56, + "probability": 0.905 + }, + { + "start": 5779.72, + "end": 5782.9, + "probability": 0.9913 + }, + { + "start": 5783.48, + "end": 5788.92, + "probability": 0.998 + }, + { + "start": 5789.86, + "end": 5790.59, + "probability": 0.9734 + }, + { + "start": 5791.62, + "end": 5797.72, + "probability": 0.9412 + }, + { + "start": 5798.3, + "end": 5802.5, + "probability": 0.9226 + }, + { + "start": 5803.52, + "end": 5808.44, + "probability": 0.9321 + }, + { + "start": 5808.56, + "end": 5810.02, + "probability": 0.6665 + }, + { + "start": 5810.08, + "end": 5811.4, + "probability": 0.554 + }, + { + "start": 5811.56, + "end": 5814.3, + "probability": 0.7261 + }, + { + "start": 5814.94, + "end": 5819.36, + "probability": 0.8678 + }, + { + "start": 5819.58, + "end": 5820.04, + "probability": 0.3393 + }, + { + "start": 5820.62, + "end": 5827.12, + "probability": 0.986 + }, + { + "start": 5827.86, + "end": 5830.82, + "probability": 0.993 + }, + { + "start": 5830.92, + "end": 5831.74, + "probability": 0.414 + }, + { + "start": 5832.76, + "end": 5836.22, + "probability": 0.9807 + }, + { + "start": 5836.22, + "end": 5838.68, + "probability": 0.8777 + }, + { + "start": 5839.24, + "end": 5840.34, + "probability": 0.9924 + }, + { + "start": 5840.88, + "end": 5844.64, + "probability": 0.9307 + }, + { + "start": 5845.1, + "end": 5849.62, + "probability": 0.9761 + }, + { + "start": 5850.22, + "end": 5852.04, + "probability": 0.5845 + }, + { + "start": 5852.06, + "end": 5856.12, + "probability": 0.7894 + }, + { + "start": 5856.52, + "end": 5857.06, + "probability": 0.5934 + }, + { + "start": 5857.06, + "end": 5857.41, + "probability": 0.8247 + }, + { + "start": 5857.7, + "end": 5859.18, + "probability": 0.9385 + }, + { + "start": 5859.48, + "end": 5861.1, + "probability": 0.7619 + }, + { + "start": 5861.24, + "end": 5861.74, + "probability": 0.6738 + }, + { + "start": 5861.74, + "end": 5862.52, + "probability": 0.2942 + }, + { + "start": 5862.8, + "end": 5863.7, + "probability": 0.7525 + }, + { + "start": 5864.15, + "end": 5865.18, + "probability": 0.6436 + }, + { + "start": 5866.14, + "end": 5868.34, + "probability": 0.9505 + }, + { + "start": 5868.58, + "end": 5873.0, + "probability": 0.8759 + }, + { + "start": 5873.06, + "end": 5873.74, + "probability": 0.7675 + }, + { + "start": 5873.76, + "end": 5875.42, + "probability": 0.9791 + }, + { + "start": 5875.84, + "end": 5877.98, + "probability": 0.6156 + }, + { + "start": 5878.46, + "end": 5879.24, + "probability": 0.7173 + }, + { + "start": 5879.42, + "end": 5880.46, + "probability": 0.9252 + }, + { + "start": 5880.62, + "end": 5882.02, + "probability": 0.9508 + }, + { + "start": 5882.4, + "end": 5885.42, + "probability": 0.9307 + }, + { + "start": 5885.44, + "end": 5885.62, + "probability": 0.8699 + }, + { + "start": 5885.98, + "end": 5889.9, + "probability": 0.991 + }, + { + "start": 5890.7, + "end": 5893.24, + "probability": 0.6467 + }, + { + "start": 5893.58, + "end": 5895.28, + "probability": 0.961 + }, + { + "start": 5895.48, + "end": 5900.36, + "probability": 0.9274 + }, + { + "start": 5900.36, + "end": 5905.56, + "probability": 0.9952 + }, + { + "start": 5905.84, + "end": 5906.2, + "probability": 0.6538 + }, + { + "start": 5906.82, + "end": 5908.42, + "probability": 0.1159 + }, + { + "start": 5908.42, + "end": 5909.08, + "probability": 0.4819 + }, + { + "start": 5909.78, + "end": 5910.14, + "probability": 0.3236 + }, + { + "start": 5910.22, + "end": 5910.7, + "probability": 0.7315 + }, + { + "start": 5910.84, + "end": 5912.22, + "probability": 0.7524 + }, + { + "start": 5912.84, + "end": 5914.52, + "probability": 0.7956 + }, + { + "start": 5916.04, + "end": 5923.98, + "probability": 0.9806 + }, + { + "start": 5924.68, + "end": 5926.58, + "probability": 0.9431 + }, + { + "start": 5928.0, + "end": 5931.24, + "probability": 0.6666 + }, + { + "start": 5931.66, + "end": 5932.43, + "probability": 0.9897 + }, + { + "start": 5933.76, + "end": 5937.2, + "probability": 0.8963 + }, + { + "start": 5937.3, + "end": 5939.66, + "probability": 0.8421 + }, + { + "start": 5940.4, + "end": 5942.14, + "probability": 0.9785 + }, + { + "start": 5942.52, + "end": 5945.36, + "probability": 0.9609 + }, + { + "start": 5946.01, + "end": 5948.28, + "probability": 0.9121 + }, + { + "start": 5948.46, + "end": 5951.18, + "probability": 0.9195 + }, + { + "start": 5951.64, + "end": 5953.92, + "probability": 0.9938 + }, + { + "start": 5954.38, + "end": 5955.94, + "probability": 0.9248 + }, + { + "start": 5956.6, + "end": 5958.29, + "probability": 0.8308 + }, + { + "start": 5959.0, + "end": 5959.81, + "probability": 0.8726 + }, + { + "start": 5960.54, + "end": 5961.32, + "probability": 0.0928 + }, + { + "start": 5961.48, + "end": 5963.46, + "probability": 0.3522 + }, + { + "start": 5963.62, + "end": 5964.18, + "probability": 0.2261 + }, + { + "start": 5964.38, + "end": 5968.6, + "probability": 0.3375 + }, + { + "start": 5969.5, + "end": 5970.04, + "probability": 0.9644 + }, + { + "start": 5971.44, + "end": 5974.8, + "probability": 0.9726 + }, + { + "start": 5975.08, + "end": 5977.06, + "probability": 0.6657 + }, + { + "start": 5977.8, + "end": 5981.76, + "probability": 0.79 + }, + { + "start": 5981.86, + "end": 5985.58, + "probability": 0.9893 + }, + { + "start": 5986.38, + "end": 5988.96, + "probability": 0.9721 + }, + { + "start": 5989.2, + "end": 5989.68, + "probability": 0.6797 + }, + { + "start": 5989.82, + "end": 5992.46, + "probability": 0.7513 + }, + { + "start": 5996.38, + "end": 5998.04, + "probability": 0.2403 + }, + { + "start": 5998.56, + "end": 5998.6, + "probability": 0.7144 + }, + { + "start": 6001.17, + "end": 6003.16, + "probability": 0.9766 + }, + { + "start": 6003.28, + "end": 6004.1, + "probability": 0.9066 + }, + { + "start": 6004.2, + "end": 6007.0, + "probability": 0.6101 + }, + { + "start": 6007.34, + "end": 6009.16, + "probability": 0.9204 + }, + { + "start": 6017.16, + "end": 6020.38, + "probability": 0.931 + }, + { + "start": 6023.45, + "end": 6028.3, + "probability": 0.8896 + }, + { + "start": 6029.5, + "end": 6033.38, + "probability": 0.9532 + }, + { + "start": 6033.96, + "end": 6036.3, + "probability": 0.7616 + }, + { + "start": 6037.42, + "end": 6040.32, + "probability": 0.9219 + }, + { + "start": 6040.9, + "end": 6042.08, + "probability": 0.9698 + }, + { + "start": 6042.64, + "end": 6045.42, + "probability": 0.9512 + }, + { + "start": 6046.7, + "end": 6048.64, + "probability": 0.9639 + }, + { + "start": 6049.42, + "end": 6050.98, + "probability": 0.9878 + }, + { + "start": 6052.08, + "end": 6054.96, + "probability": 0.5391 + }, + { + "start": 6055.94, + "end": 6058.12, + "probability": 0.9956 + }, + { + "start": 6059.28, + "end": 6060.22, + "probability": 0.002 + }, + { + "start": 6061.08, + "end": 6063.86, + "probability": 0.21 + }, + { + "start": 6064.9, + "end": 6065.7, + "probability": 0.7069 + }, + { + "start": 6065.84, + "end": 6067.24, + "probability": 0.9683 + }, + { + "start": 6067.32, + "end": 6070.3, + "probability": 0.9053 + }, + { + "start": 6070.94, + "end": 6071.64, + "probability": 0.9844 + }, + { + "start": 6071.96, + "end": 6072.98, + "probability": 0.8633 + }, + { + "start": 6073.04, + "end": 6075.54, + "probability": 0.8025 + }, + { + "start": 6075.54, + "end": 6081.98, + "probability": 0.7951 + }, + { + "start": 6082.04, + "end": 6082.94, + "probability": 0.8348 + }, + { + "start": 6083.18, + "end": 6084.72, + "probability": 0.5157 + }, + { + "start": 6085.42, + "end": 6090.36, + "probability": 0.8315 + }, + { + "start": 6091.22, + "end": 6092.2, + "probability": 0.5264 + }, + { + "start": 6092.56, + "end": 6094.1, + "probability": 0.5507 + }, + { + "start": 6094.16, + "end": 6095.61, + "probability": 0.9771 + }, + { + "start": 6097.08, + "end": 6100.5, + "probability": 0.8065 + }, + { + "start": 6100.68, + "end": 6102.78, + "probability": 0.0687 + }, + { + "start": 6103.42, + "end": 6104.94, + "probability": 0.9728 + }, + { + "start": 6105.56, + "end": 6107.56, + "probability": 0.9638 + }, + { + "start": 6107.72, + "end": 6108.44, + "probability": 0.6662 + }, + { + "start": 6108.56, + "end": 6110.24, + "probability": 0.7556 + }, + { + "start": 6110.3, + "end": 6110.6, + "probability": 0.754 + }, + { + "start": 6122.36, + "end": 6122.46, + "probability": 0.3753 + }, + { + "start": 6122.54, + "end": 6125.38, + "probability": 0.7743 + }, + { + "start": 6126.24, + "end": 6126.9, + "probability": 0.7107 + }, + { + "start": 6127.9, + "end": 6128.46, + "probability": 0.5622 + }, + { + "start": 6129.62, + "end": 6130.46, + "probability": 0.813 + }, + { + "start": 6130.54, + "end": 6131.22, + "probability": 0.9128 + }, + { + "start": 6131.34, + "end": 6134.42, + "probability": 0.9945 + }, + { + "start": 6149.76, + "end": 6150.2, + "probability": 0.0471 + }, + { + "start": 6150.2, + "end": 6150.2, + "probability": 0.0145 + }, + { + "start": 6150.2, + "end": 6150.2, + "probability": 0.1429 + }, + { + "start": 6150.2, + "end": 6150.2, + "probability": 0.0952 + }, + { + "start": 6150.2, + "end": 6152.82, + "probability": 0.0597 + }, + { + "start": 6153.64, + "end": 6155.14, + "probability": 0.256 + }, + { + "start": 6155.62, + "end": 6158.24, + "probability": 0.3295 + }, + { + "start": 6158.86, + "end": 6161.78, + "probability": 0.9087 + }, + { + "start": 6162.34, + "end": 6164.94, + "probability": 0.7819 + }, + { + "start": 6167.28, + "end": 6174.96, + "probability": 0.9428 + }, + { + "start": 6175.72, + "end": 6180.02, + "probability": 0.9917 + }, + { + "start": 6181.06, + "end": 6183.2, + "probability": 0.9412 + }, + { + "start": 6183.72, + "end": 6186.04, + "probability": 0.9546 + }, + { + "start": 6187.22, + "end": 6188.32, + "probability": 0.7149 + }, + { + "start": 6189.36, + "end": 6192.74, + "probability": 0.9709 + }, + { + "start": 6193.9, + "end": 6195.6, + "probability": 0.7812 + }, + { + "start": 6196.8, + "end": 6200.18, + "probability": 0.483 + }, + { + "start": 6201.28, + "end": 6202.52, + "probability": 0.7947 + }, + { + "start": 6203.12, + "end": 6209.44, + "probability": 0.934 + }, + { + "start": 6210.82, + "end": 6211.22, + "probability": 0.5853 + }, + { + "start": 6211.66, + "end": 6213.18, + "probability": 0.9575 + }, + { + "start": 6214.22, + "end": 6216.22, + "probability": 0.8285 + }, + { + "start": 6217.56, + "end": 6217.7, + "probability": 0.4432 + }, + { + "start": 6217.94, + "end": 6220.44, + "probability": 0.9888 + }, + { + "start": 6220.5, + "end": 6221.8, + "probability": 0.9207 + }, + { + "start": 6222.12, + "end": 6228.78, + "probability": 0.976 + }, + { + "start": 6229.44, + "end": 6232.2, + "probability": 0.775 + }, + { + "start": 6232.76, + "end": 6234.98, + "probability": 0.8412 + }, + { + "start": 6236.3, + "end": 6240.52, + "probability": 0.9973 + }, + { + "start": 6241.36, + "end": 6243.24, + "probability": 0.8272 + }, + { + "start": 6243.76, + "end": 6244.67, + "probability": 0.5862 + }, + { + "start": 6245.06, + "end": 6246.56, + "probability": 0.9243 + }, + { + "start": 6246.9, + "end": 6251.28, + "probability": 0.9791 + }, + { + "start": 6252.92, + "end": 6256.58, + "probability": 0.9704 + }, + { + "start": 6257.34, + "end": 6258.34, + "probability": 0.5463 + }, + { + "start": 6259.7, + "end": 6260.6, + "probability": 0.3911 + }, + { + "start": 6260.74, + "end": 6261.6, + "probability": 0.9858 + }, + { + "start": 6261.86, + "end": 6266.02, + "probability": 0.7451 + }, + { + "start": 6267.18, + "end": 6268.88, + "probability": 0.921 + }, + { + "start": 6269.44, + "end": 6271.26, + "probability": 0.7355 + }, + { + "start": 6271.86, + "end": 6272.72, + "probability": 0.6379 + }, + { + "start": 6272.9, + "end": 6273.86, + "probability": 0.7982 + }, + { + "start": 6274.14, + "end": 6277.22, + "probability": 0.9285 + }, + { + "start": 6277.54, + "end": 6278.75, + "probability": 0.9373 + }, + { + "start": 6279.02, + "end": 6280.76, + "probability": 0.8682 + }, + { + "start": 6281.24, + "end": 6284.15, + "probability": 0.9786 + }, + { + "start": 6284.7, + "end": 6286.32, + "probability": 0.6457 + }, + { + "start": 6286.68, + "end": 6288.68, + "probability": 0.9509 + }, + { + "start": 6289.12, + "end": 6290.58, + "probability": 0.9961 + }, + { + "start": 6291.18, + "end": 6293.98, + "probability": 0.9421 + }, + { + "start": 6294.38, + "end": 6298.02, + "probability": 0.918 + }, + { + "start": 6299.22, + "end": 6302.24, + "probability": 0.8712 + }, + { + "start": 6302.38, + "end": 6303.08, + "probability": 0.3819 + }, + { + "start": 6303.42, + "end": 6306.86, + "probability": 0.9915 + }, + { + "start": 6308.12, + "end": 6311.18, + "probability": 0.9958 + }, + { + "start": 6311.4, + "end": 6312.26, + "probability": 0.8816 + }, + { + "start": 6312.64, + "end": 6313.19, + "probability": 0.7227 + }, + { + "start": 6313.64, + "end": 6319.72, + "probability": 0.9719 + }, + { + "start": 6319.72, + "end": 6322.05, + "probability": 0.5879 + }, + { + "start": 6322.74, + "end": 6325.41, + "probability": 0.9331 + }, + { + "start": 6326.44, + "end": 6330.6, + "probability": 0.7052 + }, + { + "start": 6330.76, + "end": 6331.02, + "probability": 0.8202 + }, + { + "start": 6331.48, + "end": 6333.56, + "probability": 0.7944 + }, + { + "start": 6333.68, + "end": 6336.46, + "probability": 0.7489 + }, + { + "start": 6337.36, + "end": 6338.34, + "probability": 0.8365 + }, + { + "start": 6338.4, + "end": 6342.34, + "probability": 0.9329 + }, + { + "start": 6342.76, + "end": 6343.0, + "probability": 0.9441 + }, + { + "start": 6343.22, + "end": 6347.36, + "probability": 0.9453 + }, + { + "start": 6348.04, + "end": 6348.22, + "probability": 0.3345 + }, + { + "start": 6348.9, + "end": 6350.0, + "probability": 0.6106 + }, + { + "start": 6350.64, + "end": 6351.78, + "probability": 0.665 + }, + { + "start": 6352.22, + "end": 6352.84, + "probability": 0.5113 + }, + { + "start": 6352.92, + "end": 6353.66, + "probability": 0.6874 + }, + { + "start": 6366.88, + "end": 6366.88, + "probability": 0.06 + }, + { + "start": 6366.88, + "end": 6368.02, + "probability": 0.286 + }, + { + "start": 6371.1, + "end": 6373.44, + "probability": 0.725 + }, + { + "start": 6374.14, + "end": 6383.64, + "probability": 0.9811 + }, + { + "start": 6383.64, + "end": 6384.94, + "probability": 0.6406 + }, + { + "start": 6385.1, + "end": 6387.16, + "probability": 0.8395 + }, + { + "start": 6388.06, + "end": 6390.1, + "probability": 0.6184 + }, + { + "start": 6390.84, + "end": 6392.32, + "probability": 0.805 + }, + { + "start": 6392.58, + "end": 6395.82, + "probability": 0.9678 + }, + { + "start": 6396.04, + "end": 6396.8, + "probability": 0.6815 + }, + { + "start": 6397.4, + "end": 6398.36, + "probability": 0.7285 + }, + { + "start": 6400.64, + "end": 6405.38, + "probability": 0.0141 + }, + { + "start": 6416.49, + "end": 6416.7, + "probability": 0.1795 + }, + { + "start": 6416.7, + "end": 6418.58, + "probability": 0.4421 + }, + { + "start": 6418.68, + "end": 6421.42, + "probability": 0.8876 + }, + { + "start": 6422.04, + "end": 6422.32, + "probability": 0.4295 + }, + { + "start": 6422.84, + "end": 6423.92, + "probability": 0.5359 + }, + { + "start": 6424.26, + "end": 6430.56, + "probability": 0.957 + }, + { + "start": 6432.62, + "end": 6434.94, + "probability": 0.6672 + }, + { + "start": 6435.16, + "end": 6438.7, + "probability": 0.6897 + }, + { + "start": 6438.88, + "end": 6443.44, + "probability": 0.723 + }, + { + "start": 6444.68, + "end": 6448.3, + "probability": 0.887 + }, + { + "start": 6449.04, + "end": 6452.74, + "probability": 0.8742 + }, + { + "start": 6453.24, + "end": 6455.4, + "probability": 0.744 + }, + { + "start": 6455.5, + "end": 6456.7, + "probability": 0.9707 + }, + { + "start": 6456.82, + "end": 6459.64, + "probability": 0.6175 + }, + { + "start": 6459.7, + "end": 6460.78, + "probability": 0.8436 + }, + { + "start": 6461.48, + "end": 6463.42, + "probability": 0.8831 + }, + { + "start": 6463.58, + "end": 6465.84, + "probability": 0.75 + }, + { + "start": 6466.05, + "end": 6468.5, + "probability": 0.7052 + }, + { + "start": 6468.72, + "end": 6472.26, + "probability": 0.7685 + }, + { + "start": 6473.1, + "end": 6474.52, + "probability": 0.6731 + }, + { + "start": 6474.66, + "end": 6479.66, + "probability": 0.8945 + }, + { + "start": 6479.82, + "end": 6483.2, + "probability": 0.7575 + }, + { + "start": 6483.76, + "end": 6485.22, + "probability": 0.527 + }, + { + "start": 6485.38, + "end": 6486.44, + "probability": 0.4631 + }, + { + "start": 6486.62, + "end": 6489.7, + "probability": 0.9277 + }, + { + "start": 6491.02, + "end": 6492.22, + "probability": 0.8053 + }, + { + "start": 6492.34, + "end": 6495.44, + "probability": 0.8605 + }, + { + "start": 6495.44, + "end": 6496.04, + "probability": 0.1016 + }, + { + "start": 6496.24, + "end": 6496.74, + "probability": 0.4664 + }, + { + "start": 6496.88, + "end": 6501.66, + "probability": 0.9357 + }, + { + "start": 6501.78, + "end": 6502.54, + "probability": 0.9175 + }, + { + "start": 6502.64, + "end": 6502.84, + "probability": 0.7501 + }, + { + "start": 6503.02, + "end": 6503.9, + "probability": 0.9062 + }, + { + "start": 6504.48, + "end": 6507.04, + "probability": 0.9376 + }, + { + "start": 6507.16, + "end": 6507.62, + "probability": 0.7503 + }, + { + "start": 6508.08, + "end": 6511.82, + "probability": 0.9235 + }, + { + "start": 6511.82, + "end": 6514.86, + "probability": 0.9927 + }, + { + "start": 6515.62, + "end": 6516.1, + "probability": 0.7357 + }, + { + "start": 6516.46, + "end": 6519.7, + "probability": 0.8447 + }, + { + "start": 6519.7, + "end": 6522.94, + "probability": 0.9899 + }, + { + "start": 6523.46, + "end": 6527.0, + "probability": 0.9691 + }, + { + "start": 6527.0, + "end": 6530.62, + "probability": 0.9977 + }, + { + "start": 6531.02, + "end": 6534.58, + "probability": 0.9946 + }, + { + "start": 6535.3, + "end": 6537.05, + "probability": 0.9963 + }, + { + "start": 6537.66, + "end": 6540.28, + "probability": 0.973 + }, + { + "start": 6540.28, + "end": 6543.62, + "probability": 0.8206 + }, + { + "start": 6545.5, + "end": 6549.34, + "probability": 0.9713 + }, + { + "start": 6549.34, + "end": 6553.34, + "probability": 0.9623 + }, + { + "start": 6553.34, + "end": 6557.84, + "probability": 0.9265 + }, + { + "start": 6558.52, + "end": 6564.1, + "probability": 0.9163 + }, + { + "start": 6564.1, + "end": 6567.5, + "probability": 0.9954 + }, + { + "start": 6567.5, + "end": 6571.94, + "probability": 0.9902 + }, + { + "start": 6572.6, + "end": 6576.64, + "probability": 0.9929 + }, + { + "start": 6576.64, + "end": 6579.58, + "probability": 0.6149 + }, + { + "start": 6580.36, + "end": 6584.7, + "probability": 0.9624 + }, + { + "start": 6585.14, + "end": 6585.34, + "probability": 0.4349 + }, + { + "start": 6585.34, + "end": 6585.82, + "probability": 0.6977 + }, + { + "start": 6585.88, + "end": 6587.68, + "probability": 0.8784 + }, + { + "start": 6587.68, + "end": 6590.06, + "probability": 0.959 + }, + { + "start": 6590.54, + "end": 6595.4, + "probability": 0.9902 + }, + { + "start": 6595.96, + "end": 6598.34, + "probability": 0.9948 + }, + { + "start": 6598.46, + "end": 6599.52, + "probability": 0.3712 + }, + { + "start": 6600.32, + "end": 6603.9, + "probability": 0.9493 + }, + { + "start": 6603.9, + "end": 6607.12, + "probability": 0.9198 + }, + { + "start": 6607.62, + "end": 6607.86, + "probability": 0.5667 + }, + { + "start": 6608.38, + "end": 6609.68, + "probability": 0.613 + }, + { + "start": 6609.92, + "end": 6610.66, + "probability": 0.8237 + }, + { + "start": 6610.72, + "end": 6612.44, + "probability": 0.6763 + }, + { + "start": 6612.48, + "end": 6614.32, + "probability": 0.9505 + }, + { + "start": 6614.72, + "end": 6618.36, + "probability": 0.9658 + }, + { + "start": 6618.96, + "end": 6622.22, + "probability": 0.9469 + }, + { + "start": 6622.66, + "end": 6623.18, + "probability": 0.4832 + }, + { + "start": 6623.58, + "end": 6626.66, + "probability": 0.9163 + }, + { + "start": 6627.14, + "end": 6627.5, + "probability": 0.3471 + }, + { + "start": 6627.52, + "end": 6630.38, + "probability": 0.8787 + }, + { + "start": 6630.48, + "end": 6632.9, + "probability": 0.9912 + }, + { + "start": 6633.4, + "end": 6636.5, + "probability": 0.9435 + }, + { + "start": 6636.88, + "end": 6639.44, + "probability": 0.9143 + }, + { + "start": 6639.44, + "end": 6642.84, + "probability": 0.9736 + }, + { + "start": 6643.76, + "end": 6646.78, + "probability": 0.9728 + }, + { + "start": 6647.16, + "end": 6651.74, + "probability": 0.9454 + }, + { + "start": 6652.2, + "end": 6652.6, + "probability": 0.4962 + }, + { + "start": 6652.66, + "end": 6656.22, + "probability": 0.8534 + }, + { + "start": 6657.06, + "end": 6658.06, + "probability": 0.8855 + }, + { + "start": 6658.22, + "end": 6659.24, + "probability": 0.6785 + }, + { + "start": 6659.56, + "end": 6660.42, + "probability": 0.8837 + }, + { + "start": 6660.9, + "end": 6663.18, + "probability": 0.9007 + }, + { + "start": 6663.22, + "end": 6664.64, + "probability": 0.7364 + }, + { + "start": 6665.26, + "end": 6670.82, + "probability": 0.8224 + }, + { + "start": 6671.0, + "end": 6671.5, + "probability": 0.7171 + }, + { + "start": 6671.7, + "end": 6674.18, + "probability": 0.9658 + }, + { + "start": 6674.78, + "end": 6675.42, + "probability": 0.9435 + }, + { + "start": 6675.5, + "end": 6680.24, + "probability": 0.9983 + }, + { + "start": 6680.28, + "end": 6683.92, + "probability": 0.9199 + }, + { + "start": 6684.44, + "end": 6686.42, + "probability": 0.9966 + }, + { + "start": 6686.5, + "end": 6693.62, + "probability": 0.9862 + }, + { + "start": 6694.02, + "end": 6699.64, + "probability": 0.8241 + }, + { + "start": 6701.77, + "end": 6706.28, + "probability": 0.8283 + }, + { + "start": 6706.7, + "end": 6709.68, + "probability": 0.5258 + }, + { + "start": 6710.54, + "end": 6713.46, + "probability": 0.9932 + }, + { + "start": 6713.92, + "end": 6714.94, + "probability": 0.8885 + }, + { + "start": 6715.4, + "end": 6719.08, + "probability": 0.9919 + }, + { + "start": 6719.26, + "end": 6720.19, + "probability": 0.8228 + }, + { + "start": 6722.48, + "end": 6723.18, + "probability": 0.5107 + }, + { + "start": 6723.6, + "end": 6725.36, + "probability": 0.9597 + }, + { + "start": 6725.56, + "end": 6726.9, + "probability": 0.7407 + }, + { + "start": 6727.2, + "end": 6731.66, + "probability": 0.7787 + }, + { + "start": 6731.9, + "end": 6736.16, + "probability": 0.9435 + }, + { + "start": 6736.48, + "end": 6736.76, + "probability": 0.8051 + }, + { + "start": 6737.6, + "end": 6739.42, + "probability": 0.7035 + }, + { + "start": 6739.52, + "end": 6739.82, + "probability": 0.4135 + }, + { + "start": 6739.94, + "end": 6742.38, + "probability": 0.8921 + }, + { + "start": 6742.7, + "end": 6745.24, + "probability": 0.8364 + }, + { + "start": 6745.76, + "end": 6747.64, + "probability": 0.9836 + }, + { + "start": 6748.8, + "end": 6750.4, + "probability": 0.9555 + }, + { + "start": 6751.9, + "end": 6754.38, + "probability": 0.9788 + }, + { + "start": 6754.88, + "end": 6757.0, + "probability": 0.8456 + }, + { + "start": 6757.56, + "end": 6759.48, + "probability": 0.6456 + }, + { + "start": 6761.01, + "end": 6764.08, + "probability": 0.7458 + }, + { + "start": 6766.7, + "end": 6767.34, + "probability": 0.509 + }, + { + "start": 6775.16, + "end": 6776.4, + "probability": 0.925 + }, + { + "start": 6779.7, + "end": 6781.98, + "probability": 0.7099 + }, + { + "start": 6782.06, + "end": 6782.66, + "probability": 0.8216 + }, + { + "start": 6782.76, + "end": 6783.26, + "probability": 0.6376 + }, + { + "start": 6783.4, + "end": 6787.22, + "probability": 0.7855 + }, + { + "start": 6787.94, + "end": 6789.98, + "probability": 0.9539 + }, + { + "start": 6792.72, + "end": 6800.44, + "probability": 0.9956 + }, + { + "start": 6801.1, + "end": 6805.34, + "probability": 0.7407 + }, + { + "start": 6805.88, + "end": 6806.68, + "probability": 0.926 + }, + { + "start": 6806.74, + "end": 6808.88, + "probability": 0.9757 + }, + { + "start": 6809.28, + "end": 6810.7, + "probability": 0.8171 + }, + { + "start": 6811.34, + "end": 6816.0, + "probability": 0.9189 + }, + { + "start": 6816.08, + "end": 6817.86, + "probability": 0.962 + }, + { + "start": 6817.98, + "end": 6824.62, + "probability": 0.7437 + }, + { + "start": 6825.0, + "end": 6827.94, + "probability": 0.9866 + }, + { + "start": 6828.36, + "end": 6830.36, + "probability": 0.8096 + }, + { + "start": 6830.74, + "end": 6832.16, + "probability": 0.7257 + }, + { + "start": 6832.58, + "end": 6833.07, + "probability": 0.9037 + }, + { + "start": 6834.26, + "end": 6835.24, + "probability": 0.8718 + }, + { + "start": 6835.42, + "end": 6843.22, + "probability": 0.8624 + }, + { + "start": 6843.6, + "end": 6844.58, + "probability": 0.9849 + }, + { + "start": 6845.66, + "end": 6848.36, + "probability": 0.9927 + }, + { + "start": 6848.36, + "end": 6852.46, + "probability": 0.9845 + }, + { + "start": 6853.04, + "end": 6854.48, + "probability": 0.9971 + }, + { + "start": 6854.84, + "end": 6859.3, + "probability": 0.9649 + }, + { + "start": 6859.64, + "end": 6860.16, + "probability": 0.7836 + }, + { + "start": 6861.34, + "end": 6864.18, + "probability": 0.5289 + }, + { + "start": 6864.74, + "end": 6867.32, + "probability": 0.915 + }, + { + "start": 6868.14, + "end": 6871.94, + "probability": 0.9111 + }, + { + "start": 6872.32, + "end": 6873.9, + "probability": 0.8984 + }, + { + "start": 6874.54, + "end": 6881.96, + "probability": 0.8104 + }, + { + "start": 6884.36, + "end": 6887.48, + "probability": 0.5119 + }, + { + "start": 6887.62, + "end": 6890.08, + "probability": 0.5126 + }, + { + "start": 6890.54, + "end": 6891.48, + "probability": 0.9053 + }, + { + "start": 6892.3, + "end": 6893.58, + "probability": 0.7339 + }, + { + "start": 6898.4, + "end": 6900.5, + "probability": 0.7378 + }, + { + "start": 6901.68, + "end": 6903.8, + "probability": 0.6442 + }, + { + "start": 6906.2, + "end": 6907.24, + "probability": 0.6021 + }, + { + "start": 6907.34, + "end": 6907.52, + "probability": 0.6008 + }, + { + "start": 6914.56, + "end": 6915.16, + "probability": 0.8931 + }, + { + "start": 6923.24, + "end": 6924.22, + "probability": 0.5824 + }, + { + "start": 6925.3, + "end": 6926.98, + "probability": 0.719 + }, + { + "start": 6928.9, + "end": 6932.78, + "probability": 0.9207 + }, + { + "start": 6933.52, + "end": 6933.66, + "probability": 0.9858 + }, + { + "start": 6936.2, + "end": 6938.08, + "probability": 0.9982 + }, + { + "start": 6938.24, + "end": 6941.38, + "probability": 0.9702 + }, + { + "start": 6941.84, + "end": 6942.66, + "probability": 0.9634 + }, + { + "start": 6944.54, + "end": 6945.88, + "probability": 0.9977 + }, + { + "start": 6947.08, + "end": 6948.08, + "probability": 0.6455 + }, + { + "start": 6948.24, + "end": 6950.28, + "probability": 0.7986 + }, + { + "start": 6953.08, + "end": 6957.12, + "probability": 0.9417 + }, + { + "start": 6957.12, + "end": 6959.26, + "probability": 0.9407 + }, + { + "start": 6961.0, + "end": 6964.54, + "probability": 0.9923 + }, + { + "start": 6965.16, + "end": 6966.0, + "probability": 0.7179 + }, + { + "start": 6967.8, + "end": 6968.66, + "probability": 0.5306 + }, + { + "start": 6969.62, + "end": 6972.52, + "probability": 0.835 + }, + { + "start": 6975.78, + "end": 6979.24, + "probability": 0.9624 + }, + { + "start": 6980.24, + "end": 6981.46, + "probability": 0.7819 + }, + { + "start": 6981.98, + "end": 6985.3, + "probability": 0.9582 + }, + { + "start": 6986.94, + "end": 6988.94, + "probability": 0.9786 + }, + { + "start": 6989.2, + "end": 6990.52, + "probability": 0.8132 + }, + { + "start": 6991.54, + "end": 6994.5, + "probability": 0.9818 + }, + { + "start": 6995.64, + "end": 6996.58, + "probability": 0.5934 + }, + { + "start": 6998.32, + "end": 7002.68, + "probability": 0.9978 + }, + { + "start": 7005.46, + "end": 7006.04, + "probability": 0.9922 + }, + { + "start": 7006.38, + "end": 7007.84, + "probability": 0.8472 + }, + { + "start": 7008.1, + "end": 7010.76, + "probability": 0.7632 + }, + { + "start": 7013.78, + "end": 7014.88, + "probability": 0.671 + }, + { + "start": 7016.06, + "end": 7016.82, + "probability": 0.8191 + }, + { + "start": 7017.58, + "end": 7020.34, + "probability": 0.793 + }, + { + "start": 7021.32, + "end": 7025.5, + "probability": 0.9784 + }, + { + "start": 7027.5, + "end": 7029.94, + "probability": 0.9852 + }, + { + "start": 7031.02, + "end": 7033.2, + "probability": 0.9381 + }, + { + "start": 7035.26, + "end": 7041.28, + "probability": 0.9916 + }, + { + "start": 7042.8, + "end": 7044.08, + "probability": 0.5192 + }, + { + "start": 7046.46, + "end": 7048.34, + "probability": 0.8944 + }, + { + "start": 7048.9, + "end": 7049.72, + "probability": 0.7908 + }, + { + "start": 7052.32, + "end": 7055.62, + "probability": 0.8799 + }, + { + "start": 7056.38, + "end": 7057.32, + "probability": 0.6876 + }, + { + "start": 7057.94, + "end": 7060.74, + "probability": 0.5893 + }, + { + "start": 7062.22, + "end": 7065.74, + "probability": 0.8379 + }, + { + "start": 7066.38, + "end": 7067.36, + "probability": 0.6542 + }, + { + "start": 7068.2, + "end": 7068.94, + "probability": 0.5956 + }, + { + "start": 7069.8, + "end": 7073.86, + "probability": 0.9326 + }, + { + "start": 7074.64, + "end": 7077.58, + "probability": 0.8526 + }, + { + "start": 7077.58, + "end": 7081.08, + "probability": 0.9712 + }, + { + "start": 7081.88, + "end": 7083.54, + "probability": 0.9712 + }, + { + "start": 7086.06, + "end": 7089.76, + "probability": 0.6538 + }, + { + "start": 7090.62, + "end": 7100.51, + "probability": 0.9811 + }, + { + "start": 7101.72, + "end": 7102.96, + "probability": 0.8309 + }, + { + "start": 7103.76, + "end": 7105.29, + "probability": 0.7751 + }, + { + "start": 7105.58, + "end": 7109.76, + "probability": 0.6255 + }, + { + "start": 7110.08, + "end": 7111.86, + "probability": 0.5698 + }, + { + "start": 7111.98, + "end": 7113.08, + "probability": 0.9877 + }, + { + "start": 7115.16, + "end": 7116.72, + "probability": 0.7965 + }, + { + "start": 7116.8, + "end": 7121.66, + "probability": 0.9863 + }, + { + "start": 7122.24, + "end": 7124.7, + "probability": 0.979 + }, + { + "start": 7125.78, + "end": 7126.72, + "probability": 0.5332 + }, + { + "start": 7127.58, + "end": 7129.52, + "probability": 0.8093 + }, + { + "start": 7130.66, + "end": 7132.6, + "probability": 0.6122 + }, + { + "start": 7134.3, + "end": 7136.3, + "probability": 0.8604 + }, + { + "start": 7137.34, + "end": 7138.96, + "probability": 0.5441 + }, + { + "start": 7139.82, + "end": 7142.36, + "probability": 0.701 + }, + { + "start": 7143.04, + "end": 7144.92, + "probability": 0.6402 + }, + { + "start": 7146.82, + "end": 7152.38, + "probability": 0.9859 + }, + { + "start": 7152.48, + "end": 7153.28, + "probability": 0.6713 + }, + { + "start": 7154.99, + "end": 7157.62, + "probability": 0.9702 + }, + { + "start": 7158.4, + "end": 7161.28, + "probability": 0.9785 + }, + { + "start": 7161.94, + "end": 7164.32, + "probability": 0.8156 + }, + { + "start": 7165.1, + "end": 7168.28, + "probability": 0.9369 + }, + { + "start": 7169.2, + "end": 7170.4, + "probability": 0.9966 + }, + { + "start": 7171.54, + "end": 7173.4, + "probability": 0.7148 + }, + { + "start": 7174.5, + "end": 7178.2, + "probability": 0.9982 + }, + { + "start": 7179.46, + "end": 7181.46, + "probability": 0.9685 + }, + { + "start": 7181.58, + "end": 7184.12, + "probability": 0.9257 + }, + { + "start": 7184.96, + "end": 7186.18, + "probability": 0.7954 + }, + { + "start": 7186.56, + "end": 7190.48, + "probability": 0.8586 + }, + { + "start": 7191.0, + "end": 7192.1, + "probability": 0.6586 + }, + { + "start": 7194.64, + "end": 7196.22, + "probability": 0.6136 + }, + { + "start": 7196.76, + "end": 7197.52, + "probability": 0.5583 + }, + { + "start": 7197.62, + "end": 7201.4, + "probability": 0.9891 + }, + { + "start": 7203.54, + "end": 7204.96, + "probability": 0.9124 + }, + { + "start": 7206.6, + "end": 7207.52, + "probability": 0.897 + }, + { + "start": 7209.66, + "end": 7213.2, + "probability": 0.9215 + }, + { + "start": 7213.78, + "end": 7214.38, + "probability": 0.5433 + }, + { + "start": 7214.38, + "end": 7215.1, + "probability": 0.5364 + }, + { + "start": 7215.84, + "end": 7217.28, + "probability": 0.5123 + }, + { + "start": 7217.3, + "end": 7220.96, + "probability": 0.9117 + }, + { + "start": 7221.04, + "end": 7222.88, + "probability": 0.8804 + }, + { + "start": 7223.6, + "end": 7224.66, + "probability": 0.9449 + }, + { + "start": 7224.74, + "end": 7225.73, + "probability": 0.7515 + }, + { + "start": 7225.92, + "end": 7228.42, + "probability": 0.6639 + }, + { + "start": 7229.14, + "end": 7230.16, + "probability": 0.7828 + }, + { + "start": 7230.8, + "end": 7233.22, + "probability": 0.6382 + }, + { + "start": 7233.96, + "end": 7235.32, + "probability": 0.5959 + }, + { + "start": 7236.36, + "end": 7238.99, + "probability": 0.853 + }, + { + "start": 7240.0, + "end": 7241.6, + "probability": 0.9337 + }, + { + "start": 7245.36, + "end": 7247.1, + "probability": 0.2572 + }, + { + "start": 7257.58, + "end": 7258.38, + "probability": 0.1468 + }, + { + "start": 7258.58, + "end": 7259.46, + "probability": 0.6527 + }, + { + "start": 7260.46, + "end": 7260.92, + "probability": 0.7239 + }, + { + "start": 7262.56, + "end": 7266.18, + "probability": 0.813 + }, + { + "start": 7266.96, + "end": 7271.7, + "probability": 0.7539 + }, + { + "start": 7272.24, + "end": 7278.2, + "probability": 0.9452 + }, + { + "start": 7278.26, + "end": 7279.3, + "probability": 0.8848 + }, + { + "start": 7279.84, + "end": 7280.98, + "probability": 0.7253 + }, + { + "start": 7281.34, + "end": 7284.86, + "probability": 0.9893 + }, + { + "start": 7285.28, + "end": 7288.06, + "probability": 0.6819 + }, + { + "start": 7288.34, + "end": 7289.4, + "probability": 0.7781 + }, + { + "start": 7289.48, + "end": 7291.78, + "probability": 0.7631 + }, + { + "start": 7292.59, + "end": 7298.82, + "probability": 0.9381 + }, + { + "start": 7299.18, + "end": 7300.88, + "probability": 0.8791 + }, + { + "start": 7301.22, + "end": 7302.92, + "probability": 0.9806 + }, + { + "start": 7304.08, + "end": 7304.78, + "probability": 0.7804 + }, + { + "start": 7305.62, + "end": 7309.06, + "probability": 0.9833 + }, + { + "start": 7309.08, + "end": 7310.36, + "probability": 0.9064 + }, + { + "start": 7310.78, + "end": 7311.64, + "probability": 0.7227 + }, + { + "start": 7311.7, + "end": 7313.56, + "probability": 0.8405 + }, + { + "start": 7314.02, + "end": 7317.4, + "probability": 0.9531 + }, + { + "start": 7317.82, + "end": 7321.9, + "probability": 0.9889 + }, + { + "start": 7322.04, + "end": 7329.68, + "probability": 0.9819 + }, + { + "start": 7330.14, + "end": 7333.6, + "probability": 0.9325 + }, + { + "start": 7334.06, + "end": 7339.62, + "probability": 0.9797 + }, + { + "start": 7340.24, + "end": 7341.14, + "probability": 0.8557 + }, + { + "start": 7341.46, + "end": 7348.23, + "probability": 0.9906 + }, + { + "start": 7350.1, + "end": 7351.98, + "probability": 0.5009 + }, + { + "start": 7352.54, + "end": 7358.2, + "probability": 0.8002 + }, + { + "start": 7358.26, + "end": 7359.48, + "probability": 0.9146 + }, + { + "start": 7360.12, + "end": 7363.46, + "probability": 0.7926 + }, + { + "start": 7363.7, + "end": 7366.4, + "probability": 0.9113 + }, + { + "start": 7367.16, + "end": 7367.65, + "probability": 0.3379 + }, + { + "start": 7368.52, + "end": 7369.4, + "probability": 0.9674 + }, + { + "start": 7370.28, + "end": 7371.28, + "probability": 0.9547 + }, + { + "start": 7371.5, + "end": 7372.2, + "probability": 0.4549 + }, + { + "start": 7372.72, + "end": 7373.96, + "probability": 0.9855 + }, + { + "start": 7374.24, + "end": 7375.49, + "probability": 0.4822 + }, + { + "start": 7375.75, + "end": 7379.22, + "probability": 0.9291 + }, + { + "start": 7379.92, + "end": 7381.58, + "probability": 0.8325 + }, + { + "start": 7382.36, + "end": 7385.36, + "probability": 0.8672 + }, + { + "start": 7385.64, + "end": 7387.88, + "probability": 0.9918 + }, + { + "start": 7389.34, + "end": 7395.24, + "probability": 0.7901 + }, + { + "start": 7395.76, + "end": 7399.64, + "probability": 0.8608 + }, + { + "start": 7400.52, + "end": 7401.0, + "probability": 0.8222 + }, + { + "start": 7401.75, + "end": 7405.5, + "probability": 0.8634 + }, + { + "start": 7406.12, + "end": 7406.86, + "probability": 0.6496 + }, + { + "start": 7407.46, + "end": 7408.76, + "probability": 0.8842 + }, + { + "start": 7408.98, + "end": 7412.7, + "probability": 0.9927 + }, + { + "start": 7413.58, + "end": 7414.32, + "probability": 0.8571 + }, + { + "start": 7415.24, + "end": 7417.72, + "probability": 0.3482 + }, + { + "start": 7418.04, + "end": 7419.61, + "probability": 0.8399 + }, + { + "start": 7419.88, + "end": 7423.38, + "probability": 0.9596 + }, + { + "start": 7424.08, + "end": 7425.88, + "probability": 0.7922 + }, + { + "start": 7426.24, + "end": 7428.4, + "probability": 0.8529 + }, + { + "start": 7428.98, + "end": 7430.03, + "probability": 0.6793 + }, + { + "start": 7430.44, + "end": 7432.08, + "probability": 0.9135 + }, + { + "start": 7432.72, + "end": 7437.96, + "probability": 0.8539 + }, + { + "start": 7438.3, + "end": 7439.46, + "probability": 0.9146 + }, + { + "start": 7440.34, + "end": 7441.66, + "probability": 0.8556 + }, + { + "start": 7441.68, + "end": 7443.56, + "probability": 0.7444 + }, + { + "start": 7444.04, + "end": 7446.12, + "probability": 0.336 + }, + { + "start": 7446.9, + "end": 7448.64, + "probability": 0.9507 + }, + { + "start": 7449.02, + "end": 7451.42, + "probability": 0.9367 + }, + { + "start": 7451.92, + "end": 7452.62, + "probability": 0.8194 + }, + { + "start": 7452.72, + "end": 7454.02, + "probability": 0.985 + }, + { + "start": 7454.5, + "end": 7455.42, + "probability": 0.9939 + }, + { + "start": 7455.96, + "end": 7457.74, + "probability": 0.9502 + }, + { + "start": 7457.88, + "end": 7461.12, + "probability": 0.8798 + }, + { + "start": 7461.64, + "end": 7465.82, + "probability": 0.9633 + }, + { + "start": 7466.36, + "end": 7468.32, + "probability": 0.714 + }, + { + "start": 7468.64, + "end": 7470.08, + "probability": 0.8383 + }, + { + "start": 7470.42, + "end": 7476.78, + "probability": 0.7424 + }, + { + "start": 7477.66, + "end": 7479.96, + "probability": 0.9889 + }, + { + "start": 7480.4, + "end": 7482.46, + "probability": 0.9273 + }, + { + "start": 7483.16, + "end": 7488.74, + "probability": 0.954 + }, + { + "start": 7489.34, + "end": 7490.11, + "probability": 0.957 + }, + { + "start": 7491.06, + "end": 7493.32, + "probability": 0.9441 + }, + { + "start": 7493.4, + "end": 7494.06, + "probability": 0.6198 + }, + { + "start": 7494.92, + "end": 7495.78, + "probability": 0.8667 + }, + { + "start": 7496.26, + "end": 7501.62, + "probability": 0.9846 + }, + { + "start": 7502.32, + "end": 7503.96, + "probability": 0.9738 + }, + { + "start": 7504.54, + "end": 7506.74, + "probability": 0.9939 + }, + { + "start": 7507.26, + "end": 7507.98, + "probability": 0.7086 + }, + { + "start": 7508.24, + "end": 7510.98, + "probability": 0.9932 + }, + { + "start": 7511.36, + "end": 7516.96, + "probability": 0.9775 + }, + { + "start": 7517.06, + "end": 7518.02, + "probability": 0.7613 + }, + { + "start": 7518.36, + "end": 7520.16, + "probability": 0.9299 + }, + { + "start": 7520.22, + "end": 7523.18, + "probability": 0.9788 + }, + { + "start": 7523.6, + "end": 7526.1, + "probability": 0.9836 + }, + { + "start": 7526.38, + "end": 7533.04, + "probability": 0.9836 + }, + { + "start": 7533.54, + "end": 7533.74, + "probability": 0.5403 + }, + { + "start": 7534.08, + "end": 7537.22, + "probability": 0.817 + }, + { + "start": 7537.84, + "end": 7540.78, + "probability": 0.8041 + }, + { + "start": 7541.18, + "end": 7541.8, + "probability": 0.5348 + }, + { + "start": 7542.94, + "end": 7544.96, + "probability": 0.8113 + }, + { + "start": 7545.86, + "end": 7547.54, + "probability": 0.8017 + }, + { + "start": 7568.66, + "end": 7568.76, + "probability": 0.2981 + }, + { + "start": 7568.76, + "end": 7570.5, + "probability": 0.6839 + }, + { + "start": 7573.56, + "end": 7575.94, + "probability": 0.8652 + }, + { + "start": 7576.92, + "end": 7578.16, + "probability": 0.9888 + }, + { + "start": 7579.08, + "end": 7580.66, + "probability": 0.9835 + }, + { + "start": 7580.76, + "end": 7581.28, + "probability": 0.133 + }, + { + "start": 7581.7, + "end": 7581.88, + "probability": 0.2149 + }, + { + "start": 7581.88, + "end": 7582.2, + "probability": 0.8774 + }, + { + "start": 7582.8, + "end": 7583.4, + "probability": 0.9395 + }, + { + "start": 7584.68, + "end": 7586.77, + "probability": 0.9839 + }, + { + "start": 7587.24, + "end": 7591.1, + "probability": 0.7556 + }, + { + "start": 7591.8, + "end": 7593.76, + "probability": 0.7657 + }, + { + "start": 7593.84, + "end": 7596.88, + "probability": 0.9741 + }, + { + "start": 7597.66, + "end": 7599.4, + "probability": 0.8394 + }, + { + "start": 7600.46, + "end": 7602.72, + "probability": 0.1108 + }, + { + "start": 7602.86, + "end": 7603.0, + "probability": 0.1049 + }, + { + "start": 7603.0, + "end": 7603.9, + "probability": 0.4318 + }, + { + "start": 7604.52, + "end": 7606.08, + "probability": 0.7662 + }, + { + "start": 7606.66, + "end": 7609.88, + "probability": 0.9613 + }, + { + "start": 7610.58, + "end": 7613.18, + "probability": 0.8761 + }, + { + "start": 7613.48, + "end": 7615.46, + "probability": 0.9773 + }, + { + "start": 7615.94, + "end": 7618.7, + "probability": 0.9908 + }, + { + "start": 7619.62, + "end": 7619.64, + "probability": 0.1851 + }, + { + "start": 7619.78, + "end": 7620.86, + "probability": 0.797 + }, + { + "start": 7621.04, + "end": 7623.55, + "probability": 0.9912 + }, + { + "start": 7623.8, + "end": 7624.98, + "probability": 0.9604 + }, + { + "start": 7625.52, + "end": 7627.76, + "probability": 0.8371 + }, + { + "start": 7629.82, + "end": 7638.84, + "probability": 0.991 + }, + { + "start": 7640.14, + "end": 7643.12, + "probability": 0.9971 + }, + { + "start": 7644.04, + "end": 7652.76, + "probability": 0.9946 + }, + { + "start": 7653.48, + "end": 7655.36, + "probability": 0.9901 + }, + { + "start": 7656.1, + "end": 7657.74, + "probability": 0.6671 + }, + { + "start": 7659.4, + "end": 7667.38, + "probability": 0.9981 + }, + { + "start": 7667.92, + "end": 7670.0, + "probability": 0.8066 + }, + { + "start": 7670.38, + "end": 7671.24, + "probability": 0.8593 + }, + { + "start": 7672.3, + "end": 7674.46, + "probability": 0.9963 + }, + { + "start": 7675.34, + "end": 7681.0, + "probability": 0.9922 + }, + { + "start": 7681.74, + "end": 7682.51, + "probability": 0.793 + }, + { + "start": 7683.5, + "end": 7688.7, + "probability": 0.9974 + }, + { + "start": 7689.46, + "end": 7690.76, + "probability": 0.9761 + }, + { + "start": 7691.48, + "end": 7697.58, + "probability": 0.9958 + }, + { + "start": 7697.58, + "end": 7702.46, + "probability": 0.9883 + }, + { + "start": 7704.02, + "end": 7705.48, + "probability": 0.5989 + }, + { + "start": 7706.84, + "end": 7707.76, + "probability": 0.9803 + }, + { + "start": 7708.92, + "end": 7716.44, + "probability": 0.9673 + }, + { + "start": 7717.38, + "end": 7722.36, + "probability": 0.9963 + }, + { + "start": 7723.14, + "end": 7727.52, + "probability": 0.9929 + }, + { + "start": 7727.52, + "end": 7731.94, + "probability": 0.9988 + }, + { + "start": 7732.48, + "end": 7734.34, + "probability": 0.7598 + }, + { + "start": 7735.3, + "end": 7740.18, + "probability": 0.9975 + }, + { + "start": 7740.18, + "end": 7743.14, + "probability": 0.9963 + }, + { + "start": 7743.86, + "end": 7749.4, + "probability": 0.9792 + }, + { + "start": 7749.5, + "end": 7754.4, + "probability": 0.9701 + }, + { + "start": 7756.14, + "end": 7758.42, + "probability": 0.9427 + }, + { + "start": 7759.66, + "end": 7763.52, + "probability": 0.9701 + }, + { + "start": 7764.26, + "end": 7765.4, + "probability": 0.8866 + }, + { + "start": 7766.06, + "end": 7769.26, + "probability": 0.7884 + }, + { + "start": 7770.16, + "end": 7778.04, + "probability": 0.9946 + }, + { + "start": 7778.86, + "end": 7780.4, + "probability": 0.6696 + }, + { + "start": 7780.94, + "end": 7784.64, + "probability": 0.9858 + }, + { + "start": 7785.68, + "end": 7789.16, + "probability": 0.5474 + }, + { + "start": 7789.9, + "end": 7794.74, + "probability": 0.999 + }, + { + "start": 7795.38, + "end": 7798.78, + "probability": 0.9912 + }, + { + "start": 7799.18, + "end": 7803.86, + "probability": 0.9983 + }, + { + "start": 7804.8, + "end": 7808.0, + "probability": 0.9878 + }, + { + "start": 7808.52, + "end": 7809.3, + "probability": 0.8256 + }, + { + "start": 7809.96, + "end": 7812.26, + "probability": 0.953 + }, + { + "start": 7812.32, + "end": 7812.8, + "probability": 0.7547 + }, + { + "start": 7812.98, + "end": 7814.88, + "probability": 0.6069 + }, + { + "start": 7815.38, + "end": 7818.48, + "probability": 0.813 + }, + { + "start": 7820.06, + "end": 7822.58, + "probability": 0.8875 + }, + { + "start": 7824.61, + "end": 7827.12, + "probability": 0.5484 + }, + { + "start": 7828.5, + "end": 7830.58, + "probability": 0.8569 + }, + { + "start": 7832.4, + "end": 7834.12, + "probability": 0.9669 + }, + { + "start": 7840.92, + "end": 7843.72, + "probability": 0.8485 + }, + { + "start": 7844.78, + "end": 7846.32, + "probability": 0.7241 + }, + { + "start": 7847.78, + "end": 7848.58, + "probability": 0.8194 + }, + { + "start": 7848.84, + "end": 7849.16, + "probability": 0.9647 + }, + { + "start": 7852.42, + "end": 7854.88, + "probability": 0.9328 + }, + { + "start": 7856.14, + "end": 7860.6, + "probability": 0.9895 + }, + { + "start": 7861.84, + "end": 7864.26, + "probability": 0.8614 + }, + { + "start": 7865.46, + "end": 7870.18, + "probability": 0.9364 + }, + { + "start": 7871.66, + "end": 7880.22, + "probability": 0.9916 + }, + { + "start": 7881.74, + "end": 7887.7, + "probability": 0.9784 + }, + { + "start": 7888.62, + "end": 7890.8, + "probability": 0.5857 + }, + { + "start": 7892.2, + "end": 7894.52, + "probability": 0.4986 + }, + { + "start": 7896.02, + "end": 7899.6, + "probability": 0.9275 + }, + { + "start": 7900.34, + "end": 7903.2, + "probability": 0.9933 + }, + { + "start": 7903.78, + "end": 7911.56, + "probability": 0.9364 + }, + { + "start": 7913.06, + "end": 7913.06, + "probability": 0.0113 + }, + { + "start": 7914.12, + "end": 7916.62, + "probability": 0.9888 + }, + { + "start": 7917.82, + "end": 7923.06, + "probability": 0.9686 + }, + { + "start": 7923.4, + "end": 7925.66, + "probability": 0.5847 + }, + { + "start": 7926.28, + "end": 7927.92, + "probability": 0.987 + }, + { + "start": 7928.92, + "end": 7932.38, + "probability": 0.9053 + }, + { + "start": 7932.86, + "end": 7935.26, + "probability": 0.9079 + }, + { + "start": 7935.4, + "end": 7937.24, + "probability": 0.6479 + }, + { + "start": 7938.16, + "end": 7939.86, + "probability": 0.9671 + }, + { + "start": 7940.68, + "end": 7944.88, + "probability": 0.9634 + }, + { + "start": 7945.74, + "end": 7949.22, + "probability": 0.9948 + }, + { + "start": 7950.3, + "end": 7956.24, + "probability": 0.9754 + }, + { + "start": 7958.6, + "end": 7961.16, + "probability": 0.959 + }, + { + "start": 7961.76, + "end": 7963.7, + "probability": 0.4558 + }, + { + "start": 7963.92, + "end": 7964.52, + "probability": 0.1011 + }, + { + "start": 7965.28, + "end": 7970.6, + "probability": 0.7579 + }, + { + "start": 7972.0, + "end": 7977.22, + "probability": 0.9336 + }, + { + "start": 7978.52, + "end": 7983.02, + "probability": 0.9843 + }, + { + "start": 7985.36, + "end": 7987.02, + "probability": 0.7344 + }, + { + "start": 7987.24, + "end": 7987.56, + "probability": 0.3983 + }, + { + "start": 7987.58, + "end": 7988.06, + "probability": 0.889 + }, + { + "start": 7988.2, + "end": 7992.36, + "probability": 0.9788 + }, + { + "start": 7992.42, + "end": 7994.16, + "probability": 0.8303 + }, + { + "start": 7996.4, + "end": 7997.46, + "probability": 0.9734 + }, + { + "start": 7998.08, + "end": 8005.46, + "probability": 0.7905 + }, + { + "start": 8006.12, + "end": 8010.24, + "probability": 0.8638 + }, + { + "start": 8011.6, + "end": 8015.34, + "probability": 0.8972 + }, + { + "start": 8015.34, + "end": 8020.22, + "probability": 0.6317 + }, + { + "start": 8021.32, + "end": 8027.04, + "probability": 0.9735 + }, + { + "start": 8028.04, + "end": 8031.22, + "probability": 0.9935 + }, + { + "start": 8032.6, + "end": 8034.32, + "probability": 0.7131 + }, + { + "start": 8035.14, + "end": 8035.9, + "probability": 0.9766 + }, + { + "start": 8036.44, + "end": 8040.44, + "probability": 0.4806 + }, + { + "start": 8040.44, + "end": 8041.2, + "probability": 0.8766 + }, + { + "start": 8041.36, + "end": 8042.4, + "probability": 0.9026 + }, + { + "start": 8043.08, + "end": 8046.24, + "probability": 0.8694 + }, + { + "start": 8046.72, + "end": 8050.34, + "probability": 0.7742 + }, + { + "start": 8050.52, + "end": 8053.76, + "probability": 0.2155 + }, + { + "start": 8054.04, + "end": 8055.34, + "probability": 0.7118 + }, + { + "start": 8055.44, + "end": 8056.96, + "probability": 0.7444 + }, + { + "start": 8057.62, + "end": 8060.3, + "probability": 0.8588 + }, + { + "start": 8061.16, + "end": 8063.48, + "probability": 0.9099 + }, + { + "start": 8065.02, + "end": 8067.58, + "probability": 0.9903 + }, + { + "start": 8067.58, + "end": 8069.7, + "probability": 0.7759 + }, + { + "start": 8071.1, + "end": 8074.18, + "probability": 0.9957 + }, + { + "start": 8075.24, + "end": 8077.78, + "probability": 0.9309 + }, + { + "start": 8079.16, + "end": 8082.16, + "probability": 0.9766 + }, + { + "start": 8083.0, + "end": 8085.18, + "probability": 0.8716 + }, + { + "start": 8086.0, + "end": 8090.5, + "probability": 0.8921 + }, + { + "start": 8091.06, + "end": 8099.52, + "probability": 0.9714 + }, + { + "start": 8100.22, + "end": 8102.28, + "probability": 0.8022 + }, + { + "start": 8102.92, + "end": 8109.92, + "probability": 0.8465 + }, + { + "start": 8110.52, + "end": 8111.82, + "probability": 0.7573 + }, + { + "start": 8112.32, + "end": 8117.32, + "probability": 0.7341 + }, + { + "start": 8117.4, + "end": 8118.94, + "probability": 0.8511 + }, + { + "start": 8119.88, + "end": 8126.2, + "probability": 0.994 + }, + { + "start": 8126.36, + "end": 8134.68, + "probability": 0.9568 + }, + { + "start": 8136.36, + "end": 8139.4, + "probability": 0.9946 + }, + { + "start": 8139.66, + "end": 8140.86, + "probability": 0.747 + }, + { + "start": 8140.88, + "end": 8143.18, + "probability": 0.5151 + }, + { + "start": 8143.8, + "end": 8147.98, + "probability": 0.9849 + }, + { + "start": 8150.28, + "end": 8154.18, + "probability": 0.8282 + }, + { + "start": 8155.26, + "end": 8156.94, + "probability": 0.9437 + }, + { + "start": 8157.46, + "end": 8158.44, + "probability": 0.8445 + }, + { + "start": 8159.36, + "end": 8164.5, + "probability": 0.9937 + }, + { + "start": 8165.54, + "end": 8169.46, + "probability": 0.9972 + }, + { + "start": 8170.02, + "end": 8172.32, + "probability": 0.8581 + }, + { + "start": 8172.74, + "end": 8177.31, + "probability": 0.9928 + }, + { + "start": 8177.7, + "end": 8178.16, + "probability": 0.8174 + }, + { + "start": 8178.5, + "end": 8180.82, + "probability": 0.7547 + }, + { + "start": 8181.46, + "end": 8183.52, + "probability": 0.9474 + }, + { + "start": 8185.22, + "end": 8186.14, + "probability": 0.3823 + }, + { + "start": 8186.28, + "end": 8187.36, + "probability": 0.0738 + }, + { + "start": 8187.94, + "end": 8190.48, + "probability": 0.9832 + }, + { + "start": 8194.0, + "end": 8195.72, + "probability": 0.6784 + }, + { + "start": 8196.56, + "end": 8198.16, + "probability": 0.5162 + }, + { + "start": 8202.28, + "end": 8202.28, + "probability": 0.0257 + }, + { + "start": 8202.28, + "end": 8203.24, + "probability": 0.4814 + }, + { + "start": 8205.5, + "end": 8207.3, + "probability": 0.6783 + }, + { + "start": 8209.08, + "end": 8211.08, + "probability": 0.9084 + }, + { + "start": 8213.46, + "end": 8219.84, + "probability": 0.9738 + }, + { + "start": 8220.9, + "end": 8227.48, + "probability": 0.7351 + }, + { + "start": 8228.74, + "end": 8230.58, + "probability": 0.9633 + }, + { + "start": 8232.24, + "end": 8233.14, + "probability": 0.572 + }, + { + "start": 8234.7, + "end": 8238.1, + "probability": 0.6923 + }, + { + "start": 8240.38, + "end": 8245.9, + "probability": 0.6684 + }, + { + "start": 8247.98, + "end": 8249.84, + "probability": 0.9445 + }, + { + "start": 8251.78, + "end": 8257.5, + "probability": 0.9901 + }, + { + "start": 8258.26, + "end": 8259.74, + "probability": 0.9055 + }, + { + "start": 8260.76, + "end": 8263.72, + "probability": 0.6878 + }, + { + "start": 8264.7, + "end": 8267.02, + "probability": 0.7892 + }, + { + "start": 8268.04, + "end": 8275.84, + "probability": 0.8728 + }, + { + "start": 8276.08, + "end": 8279.18, + "probability": 0.6705 + }, + { + "start": 8280.48, + "end": 8287.4, + "probability": 0.8471 + }, + { + "start": 8287.62, + "end": 8288.28, + "probability": 0.5024 + }, + { + "start": 8289.52, + "end": 8293.62, + "probability": 0.7358 + }, + { + "start": 8294.3, + "end": 8295.24, + "probability": 0.924 + }, + { + "start": 8297.1, + "end": 8298.16, + "probability": 0.433 + }, + { + "start": 8299.82, + "end": 8300.8, + "probability": 0.8971 + }, + { + "start": 8300.9, + "end": 8301.58, + "probability": 0.7747 + }, + { + "start": 8301.86, + "end": 8303.0, + "probability": 0.8193 + }, + { + "start": 8303.06, + "end": 8306.19, + "probability": 0.8735 + }, + { + "start": 8308.5, + "end": 8312.4, + "probability": 0.8195 + }, + { + "start": 8313.72, + "end": 8320.36, + "probability": 0.961 + }, + { + "start": 8324.1, + "end": 8326.4, + "probability": 0.9194 + }, + { + "start": 8327.68, + "end": 8328.26, + "probability": 0.8584 + }, + { + "start": 8331.4, + "end": 8332.7, + "probability": 0.3178 + }, + { + "start": 8333.8, + "end": 8334.36, + "probability": 0.5225 + }, + { + "start": 8336.18, + "end": 8339.48, + "probability": 0.6728 + }, + { + "start": 8340.28, + "end": 8342.12, + "probability": 0.7897 + }, + { + "start": 8343.94, + "end": 8351.08, + "probability": 0.97 + }, + { + "start": 8351.56, + "end": 8353.7, + "probability": 0.9443 + }, + { + "start": 8353.86, + "end": 8355.68, + "probability": 0.656 + }, + { + "start": 8357.0, + "end": 8361.78, + "probability": 0.7847 + }, + { + "start": 8362.34, + "end": 8364.42, + "probability": 0.7132 + }, + { + "start": 8364.78, + "end": 8369.62, + "probability": 0.8661 + }, + { + "start": 8369.82, + "end": 8372.5, + "probability": 0.7982 + }, + { + "start": 8373.0, + "end": 8376.82, + "probability": 0.6065 + }, + { + "start": 8376.96, + "end": 8386.22, + "probability": 0.8935 + }, + { + "start": 8386.24, + "end": 8391.54, + "probability": 0.9985 + }, + { + "start": 8392.8, + "end": 8398.64, + "probability": 0.9859 + }, + { + "start": 8399.56, + "end": 8400.58, + "probability": 0.8943 + }, + { + "start": 8401.72, + "end": 8406.24, + "probability": 0.989 + }, + { + "start": 8408.52, + "end": 8415.26, + "probability": 0.9802 + }, + { + "start": 8416.18, + "end": 8418.2, + "probability": 0.8921 + }, + { + "start": 8418.9, + "end": 8423.5, + "probability": 0.927 + }, + { + "start": 8424.22, + "end": 8426.0, + "probability": 0.9967 + }, + { + "start": 8426.52, + "end": 8428.91, + "probability": 0.9771 + }, + { + "start": 8432.14, + "end": 8433.64, + "probability": 0.7214 + }, + { + "start": 8434.38, + "end": 8439.64, + "probability": 0.9343 + }, + { + "start": 8440.36, + "end": 8441.6, + "probability": 0.99 + }, + { + "start": 8442.12, + "end": 8448.0, + "probability": 0.9939 + }, + { + "start": 8449.06, + "end": 8451.54, + "probability": 0.8025 + }, + { + "start": 8451.58, + "end": 8451.84, + "probability": 0.8863 + }, + { + "start": 8451.92, + "end": 8454.24, + "probability": 0.8871 + }, + { + "start": 8456.24, + "end": 8459.82, + "probability": 0.9543 + }, + { + "start": 8460.48, + "end": 8461.04, + "probability": 0.5697 + }, + { + "start": 8461.68, + "end": 8464.56, + "probability": 0.9534 + }, + { + "start": 8465.52, + "end": 8467.94, + "probability": 0.9968 + }, + { + "start": 8468.26, + "end": 8470.44, + "probability": 0.9857 + }, + { + "start": 8471.18, + "end": 8471.66, + "probability": 0.5067 + }, + { + "start": 8473.0, + "end": 8475.08, + "probability": 0.7611 + }, + { + "start": 8475.6, + "end": 8478.18, + "probability": 0.8476 + }, + { + "start": 8478.66, + "end": 8479.58, + "probability": 0.1187 + }, + { + "start": 8480.84, + "end": 8481.94, + "probability": 0.756 + }, + { + "start": 8482.42, + "end": 8483.58, + "probability": 0.5221 + }, + { + "start": 8483.84, + "end": 8489.06, + "probability": 0.9128 + }, + { + "start": 8490.0, + "end": 8491.2, + "probability": 0.8141 + }, + { + "start": 8503.12, + "end": 8503.36, + "probability": 0.3058 + }, + { + "start": 8503.44, + "end": 8504.48, + "probability": 0.8687 + }, + { + "start": 8505.0, + "end": 8505.84, + "probability": 0.6437 + }, + { + "start": 8507.82, + "end": 8513.18, + "probability": 0.9324 + }, + { + "start": 8514.34, + "end": 8517.48, + "probability": 0.8687 + }, + { + "start": 8518.08, + "end": 8520.26, + "probability": 0.5454 + }, + { + "start": 8521.16, + "end": 8524.74, + "probability": 0.8217 + }, + { + "start": 8525.56, + "end": 8527.2, + "probability": 0.8903 + }, + { + "start": 8529.14, + "end": 8532.84, + "probability": 0.9687 + }, + { + "start": 8532.84, + "end": 8537.22, + "probability": 0.9219 + }, + { + "start": 8538.14, + "end": 8538.76, + "probability": 0.7596 + }, + { + "start": 8538.9, + "end": 8541.54, + "probability": 0.9399 + }, + { + "start": 8541.72, + "end": 8543.14, + "probability": 0.8428 + }, + { + "start": 8544.2, + "end": 8545.34, + "probability": 0.7475 + }, + { + "start": 8546.04, + "end": 8548.52, + "probability": 0.8703 + }, + { + "start": 8550.06, + "end": 8553.06, + "probability": 0.9087 + }, + { + "start": 8553.26, + "end": 8557.28, + "probability": 0.9641 + }, + { + "start": 8558.08, + "end": 8558.4, + "probability": 0.6599 + }, + { + "start": 8559.96, + "end": 8564.58, + "probability": 0.6604 + }, + { + "start": 8564.7, + "end": 8567.74, + "probability": 0.8387 + }, + { + "start": 8569.77, + "end": 8572.46, + "probability": 0.9849 + }, + { + "start": 8573.12, + "end": 8578.16, + "probability": 0.9896 + }, + { + "start": 8580.26, + "end": 8581.75, + "probability": 0.9601 + }, + { + "start": 8582.5, + "end": 8583.15, + "probability": 0.5048 + }, + { + "start": 8584.06, + "end": 8585.68, + "probability": 0.9968 + }, + { + "start": 8586.7, + "end": 8587.4, + "probability": 0.6606 + }, + { + "start": 8587.48, + "end": 8588.08, + "probability": 0.9829 + }, + { + "start": 8588.18, + "end": 8588.84, + "probability": 0.9599 + }, + { + "start": 8589.68, + "end": 8591.66, + "probability": 0.9927 + }, + { + "start": 8593.34, + "end": 8595.22, + "probability": 0.7782 + }, + { + "start": 8595.24, + "end": 8596.38, + "probability": 0.9518 + }, + { + "start": 8596.98, + "end": 8597.72, + "probability": 0.9867 + }, + { + "start": 8599.02, + "end": 8602.92, + "probability": 0.9753 + }, + { + "start": 8604.26, + "end": 8606.86, + "probability": 0.9346 + }, + { + "start": 8608.76, + "end": 8610.36, + "probability": 0.8473 + }, + { + "start": 8611.36, + "end": 8613.55, + "probability": 0.9593 + }, + { + "start": 8615.76, + "end": 8620.16, + "probability": 0.884 + }, + { + "start": 8621.16, + "end": 8621.58, + "probability": 0.4991 + }, + { + "start": 8622.72, + "end": 8625.86, + "probability": 0.9907 + }, + { + "start": 8626.04, + "end": 8628.42, + "probability": 0.9988 + }, + { + "start": 8628.84, + "end": 8631.4, + "probability": 0.861 + }, + { + "start": 8633.0, + "end": 8637.5, + "probability": 0.8457 + }, + { + "start": 8637.82, + "end": 8638.97, + "probability": 0.7302 + }, + { + "start": 8639.72, + "end": 8640.42, + "probability": 0.6623 + }, + { + "start": 8642.02, + "end": 8644.18, + "probability": 0.8704 + }, + { + "start": 8644.92, + "end": 8647.12, + "probability": 0.9746 + }, + { + "start": 8648.34, + "end": 8650.76, + "probability": 0.9792 + }, + { + "start": 8650.76, + "end": 8653.0, + "probability": 0.7563 + }, + { + "start": 8653.44, + "end": 8653.7, + "probability": 0.3812 + }, + { + "start": 8654.14, + "end": 8655.78, + "probability": 0.9924 + }, + { + "start": 8656.64, + "end": 8657.78, + "probability": 0.6948 + }, + { + "start": 8658.1, + "end": 8659.04, + "probability": 0.8036 + }, + { + "start": 8659.24, + "end": 8662.12, + "probability": 0.7932 + }, + { + "start": 8662.56, + "end": 8664.4, + "probability": 0.8119 + }, + { + "start": 8664.96, + "end": 8665.55, + "probability": 0.6524 + }, + { + "start": 8665.78, + "end": 8668.18, + "probability": 0.783 + }, + { + "start": 8668.66, + "end": 8669.87, + "probability": 0.9362 + }, + { + "start": 8670.24, + "end": 8672.1, + "probability": 0.9899 + }, + { + "start": 8673.52, + "end": 8676.78, + "probability": 0.925 + }, + { + "start": 8676.8, + "end": 8677.72, + "probability": 0.8165 + }, + { + "start": 8678.34, + "end": 8680.86, + "probability": 0.7285 + }, + { + "start": 8681.04, + "end": 8682.02, + "probability": 0.9309 + }, + { + "start": 8682.82, + "end": 8687.92, + "probability": 0.9865 + }, + { + "start": 8690.66, + "end": 8691.84, + "probability": 0.8558 + }, + { + "start": 8692.36, + "end": 8695.6, + "probability": 0.9883 + }, + { + "start": 8695.7, + "end": 8696.36, + "probability": 0.8018 + }, + { + "start": 8696.46, + "end": 8697.02, + "probability": 0.7725 + }, + { + "start": 8697.14, + "end": 8698.78, + "probability": 0.6175 + }, + { + "start": 8699.12, + "end": 8703.58, + "probability": 0.9924 + }, + { + "start": 8705.68, + "end": 8706.8, + "probability": 0.8828 + }, + { + "start": 8706.84, + "end": 8708.0, + "probability": 0.9777 + }, + { + "start": 8708.08, + "end": 8710.92, + "probability": 0.9947 + }, + { + "start": 8711.62, + "end": 8715.1, + "probability": 0.9309 + }, + { + "start": 8716.3, + "end": 8720.04, + "probability": 0.9953 + }, + { + "start": 8720.04, + "end": 8722.56, + "probability": 0.9954 + }, + { + "start": 8724.36, + "end": 8728.04, + "probability": 0.9972 + }, + { + "start": 8729.58, + "end": 8732.34, + "probability": 0.4824 + }, + { + "start": 8733.04, + "end": 8733.76, + "probability": 0.9341 + }, + { + "start": 8734.38, + "end": 8739.75, + "probability": 0.9054 + }, + { + "start": 8739.96, + "end": 8742.88, + "probability": 0.8901 + }, + { + "start": 8743.08, + "end": 8744.88, + "probability": 0.991 + }, + { + "start": 8745.62, + "end": 8746.51, + "probability": 0.9818 + }, + { + "start": 8748.0, + "end": 8751.57, + "probability": 0.8734 + }, + { + "start": 8753.0, + "end": 8754.76, + "probability": 0.5326 + }, + { + "start": 8755.5, + "end": 8760.64, + "probability": 0.9362 + }, + { + "start": 8761.6, + "end": 8762.48, + "probability": 0.9188 + }, + { + "start": 8762.6, + "end": 8763.42, + "probability": 0.7471 + }, + { + "start": 8763.66, + "end": 8765.46, + "probability": 0.9849 + }, + { + "start": 8765.48, + "end": 8767.0, + "probability": 0.8984 + }, + { + "start": 8769.24, + "end": 8770.18, + "probability": 0.6549 + }, + { + "start": 8772.63, + "end": 8775.04, + "probability": 0.538 + }, + { + "start": 8775.04, + "end": 8775.04, + "probability": 0.2064 + }, + { + "start": 8775.04, + "end": 8775.04, + "probability": 0.255 + }, + { + "start": 8775.04, + "end": 8776.56, + "probability": 0.4946 + }, + { + "start": 8777.18, + "end": 8777.7, + "probability": 0.1333 + }, + { + "start": 8777.7, + "end": 8779.22, + "probability": 0.8293 + }, + { + "start": 8780.02, + "end": 8784.24, + "probability": 0.9092 + }, + { + "start": 8784.52, + "end": 8784.92, + "probability": 0.7672 + }, + { + "start": 8785.02, + "end": 8785.84, + "probability": 0.7392 + }, + { + "start": 8785.84, + "end": 8786.9, + "probability": 0.999 + }, + { + "start": 8787.46, + "end": 8790.34, + "probability": 0.8871 + }, + { + "start": 8790.56, + "end": 8792.11, + "probability": 0.7634 + }, + { + "start": 8792.36, + "end": 8796.74, + "probability": 0.7499 + }, + { + "start": 8796.94, + "end": 8798.1, + "probability": 0.8469 + }, + { + "start": 8798.78, + "end": 8800.7, + "probability": 0.9736 + }, + { + "start": 8800.78, + "end": 8803.84, + "probability": 0.8409 + }, + { + "start": 8804.58, + "end": 8806.96, + "probability": 0.8714 + }, + { + "start": 8807.12, + "end": 8811.46, + "probability": 0.8577 + }, + { + "start": 8812.22, + "end": 8813.84, + "probability": 0.5529 + }, + { + "start": 8814.42, + "end": 8815.64, + "probability": 0.8418 + }, + { + "start": 8816.14, + "end": 8816.44, + "probability": 0.4536 + }, + { + "start": 8816.96, + "end": 8817.48, + "probability": 0.2239 + }, + { + "start": 8817.48, + "end": 8818.2, + "probability": 0.6652 + }, + { + "start": 8825.28, + "end": 8825.48, + "probability": 0.0004 + }, + { + "start": 8829.38, + "end": 8831.24, + "probability": 0.0478 + }, + { + "start": 8836.48, + "end": 8838.3, + "probability": 0.561 + }, + { + "start": 8838.94, + "end": 8840.46, + "probability": 0.8135 + }, + { + "start": 8841.1, + "end": 8841.72, + "probability": 0.5944 + }, + { + "start": 8841.92, + "end": 8844.32, + "probability": 0.9516 + }, + { + "start": 8844.82, + "end": 8847.08, + "probability": 0.9607 + }, + { + "start": 8847.58, + "end": 8848.46, + "probability": 0.7429 + }, + { + "start": 8848.9, + "end": 8849.66, + "probability": 0.5111 + }, + { + "start": 8849.66, + "end": 8850.82, + "probability": 0.8998 + }, + { + "start": 8852.36, + "end": 8853.6, + "probability": 0.0264 + }, + { + "start": 8860.42, + "end": 8860.42, + "probability": 0.1063 + }, + { + "start": 8866.36, + "end": 8866.8, + "probability": 0.0895 + }, + { + "start": 8866.8, + "end": 8869.82, + "probability": 0.6124 + }, + { + "start": 8869.9, + "end": 8875.54, + "probability": 0.9756 + }, + { + "start": 8876.2, + "end": 8882.84, + "probability": 0.9028 + }, + { + "start": 8883.8, + "end": 8884.9, + "probability": 0.8872 + }, + { + "start": 8885.08, + "end": 8885.88, + "probability": 0.6405 + }, + { + "start": 8886.16, + "end": 8887.4, + "probability": 0.7118 + }, + { + "start": 8887.92, + "end": 8889.16, + "probability": 0.6245 + }, + { + "start": 8889.16, + "end": 8889.94, + "probability": 0.8461 + }, + { + "start": 8889.94, + "end": 8893.66, + "probability": 0.8802 + }, + { + "start": 8893.78, + "end": 8894.8, + "probability": 0.6805 + }, + { + "start": 8895.1, + "end": 8898.14, + "probability": 0.9731 + }, + { + "start": 8898.7, + "end": 8900.8, + "probability": 0.8382 + }, + { + "start": 8901.3, + "end": 8906.86, + "probability": 0.9949 + }, + { + "start": 8907.4, + "end": 8913.14, + "probability": 0.9715 + }, + { + "start": 8913.36, + "end": 8914.6, + "probability": 0.9727 + }, + { + "start": 8914.72, + "end": 8915.66, + "probability": 0.8146 + }, + { + "start": 8916.08, + "end": 8918.56, + "probability": 0.9717 + }, + { + "start": 8918.92, + "end": 8923.42, + "probability": 0.9329 + }, + { + "start": 8923.62, + "end": 8928.52, + "probability": 0.9902 + }, + { + "start": 8929.28, + "end": 8934.12, + "probability": 0.9951 + }, + { + "start": 8934.12, + "end": 8938.82, + "probability": 0.998 + }, + { + "start": 8939.32, + "end": 8943.64, + "probability": 0.9973 + }, + { + "start": 8944.14, + "end": 8947.78, + "probability": 0.9885 + }, + { + "start": 8947.78, + "end": 8951.48, + "probability": 0.9925 + }, + { + "start": 8951.7, + "end": 8955.08, + "probability": 0.9111 + }, + { + "start": 8955.54, + "end": 8955.76, + "probability": 0.0159 + }, + { + "start": 8955.76, + "end": 8956.34, + "probability": 0.4686 + }, + { + "start": 8956.36, + "end": 8956.9, + "probability": 0.7978 + }, + { + "start": 8957.24, + "end": 8960.56, + "probability": 0.9888 + }, + { + "start": 8960.66, + "end": 8962.99, + "probability": 0.9735 + }, + { + "start": 8963.64, + "end": 8964.04, + "probability": 0.8865 + }, + { + "start": 8964.08, + "end": 8966.92, + "probability": 0.9671 + }, + { + "start": 8967.02, + "end": 8969.52, + "probability": 0.9057 + }, + { + "start": 8969.7, + "end": 8972.28, + "probability": 0.9724 + }, + { + "start": 8972.28, + "end": 8976.64, + "probability": 0.9985 + }, + { + "start": 8977.02, + "end": 8978.44, + "probability": 0.9556 + }, + { + "start": 8978.86, + "end": 8981.56, + "probability": 0.9287 + }, + { + "start": 8982.16, + "end": 8985.34, + "probability": 0.9928 + }, + { + "start": 8985.84, + "end": 8988.84, + "probability": 0.9914 + }, + { + "start": 8988.84, + "end": 8992.86, + "probability": 0.9924 + }, + { + "start": 8993.28, + "end": 8996.2, + "probability": 0.9719 + }, + { + "start": 8996.2, + "end": 8997.19, + "probability": 0.6762 + }, + { + "start": 8998.3, + "end": 9001.82, + "probability": 0.9933 + }, + { + "start": 9002.14, + "end": 9005.95, + "probability": 0.8928 + }, + { + "start": 9007.18, + "end": 9009.86, + "probability": 0.9818 + }, + { + "start": 9010.08, + "end": 9011.42, + "probability": 0.9369 + }, + { + "start": 9011.62, + "end": 9012.5, + "probability": 0.826 + }, + { + "start": 9012.66, + "end": 9013.86, + "probability": 0.8984 + }, + { + "start": 9014.08, + "end": 9016.26, + "probability": 0.9938 + }, + { + "start": 9016.44, + "end": 9018.68, + "probability": 0.9944 + }, + { + "start": 9019.12, + "end": 9021.18, + "probability": 0.9595 + }, + { + "start": 9021.38, + "end": 9023.36, + "probability": 0.7234 + }, + { + "start": 9023.64, + "end": 9026.5, + "probability": 0.9585 + }, + { + "start": 9026.52, + "end": 9027.98, + "probability": 0.9473 + }, + { + "start": 9028.36, + "end": 9029.76, + "probability": 0.981 + }, + { + "start": 9030.24, + "end": 9035.74, + "probability": 0.9612 + }, + { + "start": 9036.32, + "end": 9039.08, + "probability": 0.9205 + }, + { + "start": 9039.24, + "end": 9040.68, + "probability": 0.7227 + }, + { + "start": 9040.72, + "end": 9042.72, + "probability": 0.9237 + }, + { + "start": 9043.16, + "end": 9044.12, + "probability": 0.939 + }, + { + "start": 9044.44, + "end": 9045.36, + "probability": 0.8269 + }, + { + "start": 9045.54, + "end": 9048.38, + "probability": 0.9567 + }, + { + "start": 9048.74, + "end": 9052.96, + "probability": 0.8711 + }, + { + "start": 9053.58, + "end": 9056.04, + "probability": 0.9218 + }, + { + "start": 9056.54, + "end": 9057.32, + "probability": 0.7766 + }, + { + "start": 9057.38, + "end": 9058.54, + "probability": 0.95 + }, + { + "start": 9058.72, + "end": 9060.22, + "probability": 0.61 + }, + { + "start": 9060.58, + "end": 9063.3, + "probability": 0.812 + }, + { + "start": 9063.38, + "end": 9065.5, + "probability": 0.8975 + }, + { + "start": 9066.12, + "end": 9066.88, + "probability": 0.749 + }, + { + "start": 9067.04, + "end": 9067.76, + "probability": 0.6813 + }, + { + "start": 9068.58, + "end": 9069.42, + "probability": 0.7437 + }, + { + "start": 9069.6, + "end": 9072.08, + "probability": 0.977 + }, + { + "start": 9072.28, + "end": 9076.6, + "probability": 0.9883 + }, + { + "start": 9077.04, + "end": 9077.88, + "probability": 0.6457 + }, + { + "start": 9077.96, + "end": 9079.56, + "probability": 0.942 + }, + { + "start": 9079.9, + "end": 9082.64, + "probability": 0.7596 + }, + { + "start": 9082.96, + "end": 9087.72, + "probability": 0.9985 + }, + { + "start": 9088.16, + "end": 9088.76, + "probability": 0.4147 + }, + { + "start": 9088.84, + "end": 9090.02, + "probability": 0.9171 + }, + { + "start": 9090.32, + "end": 9091.18, + "probability": 0.7977 + }, + { + "start": 9091.56, + "end": 9092.28, + "probability": 0.9114 + }, + { + "start": 9092.46, + "end": 9095.32, + "probability": 0.7066 + }, + { + "start": 9095.44, + "end": 9096.52, + "probability": 0.9774 + }, + { + "start": 9097.66, + "end": 9100.56, + "probability": 0.8706 + }, + { + "start": 9100.8, + "end": 9104.0, + "probability": 0.945 + }, + { + "start": 9104.02, + "end": 9105.48, + "probability": 0.7374 + }, + { + "start": 9105.78, + "end": 9106.7, + "probability": 0.5831 + }, + { + "start": 9122.7, + "end": 9123.82, + "probability": 0.6529 + }, + { + "start": 9123.98, + "end": 9124.6, + "probability": 0.6718 + }, + { + "start": 9124.7, + "end": 9125.6, + "probability": 0.6489 + }, + { + "start": 9125.7, + "end": 9126.66, + "probability": 0.7609 + }, + { + "start": 9127.0, + "end": 9127.82, + "probability": 0.9387 + }, + { + "start": 9128.66, + "end": 9129.44, + "probability": 0.9365 + }, + { + "start": 9129.52, + "end": 9131.1, + "probability": 0.9764 + }, + { + "start": 9132.5, + "end": 9135.36, + "probability": 0.9902 + }, + { + "start": 9135.4, + "end": 9136.16, + "probability": 0.667 + }, + { + "start": 9137.2, + "end": 9141.7, + "probability": 0.9738 + }, + { + "start": 9143.26, + "end": 9146.02, + "probability": 0.7268 + }, + { + "start": 9146.74, + "end": 9150.36, + "probability": 0.879 + }, + { + "start": 9150.5, + "end": 9152.72, + "probability": 0.9802 + }, + { + "start": 9152.96, + "end": 9152.96, + "probability": 0.0651 + }, + { + "start": 9152.96, + "end": 9154.6, + "probability": 0.4235 + }, + { + "start": 9154.8, + "end": 9158.32, + "probability": 0.9646 + }, + { + "start": 9158.46, + "end": 9163.46, + "probability": 0.9389 + }, + { + "start": 9164.1, + "end": 9165.92, + "probability": 0.1742 + }, + { + "start": 9166.22, + "end": 9167.52, + "probability": 0.8788 + }, + { + "start": 9167.66, + "end": 9168.56, + "probability": 0.2231 + }, + { + "start": 9169.12, + "end": 9170.6, + "probability": 0.6989 + }, + { + "start": 9170.92, + "end": 9172.26, + "probability": 0.9518 + }, + { + "start": 9172.28, + "end": 9173.44, + "probability": 0.7192 + }, + { + "start": 9173.88, + "end": 9174.6, + "probability": 0.8166 + }, + { + "start": 9174.96, + "end": 9175.82, + "probability": 0.9389 + }, + { + "start": 9176.08, + "end": 9177.06, + "probability": 0.9864 + }, + { + "start": 9177.34, + "end": 9178.12, + "probability": 0.8878 + }, + { + "start": 9178.36, + "end": 9179.34, + "probability": 0.9892 + }, + { + "start": 9179.5, + "end": 9180.4, + "probability": 0.812 + }, + { + "start": 9180.92, + "end": 9182.76, + "probability": 0.9305 + }, + { + "start": 9182.88, + "end": 9185.0, + "probability": 0.9871 + }, + { + "start": 9185.28, + "end": 9186.36, + "probability": 0.6886 + }, + { + "start": 9186.74, + "end": 9187.64, + "probability": 0.9725 + }, + { + "start": 9187.86, + "end": 9188.88, + "probability": 0.9779 + }, + { + "start": 9189.06, + "end": 9190.02, + "probability": 0.7884 + }, + { + "start": 9190.3, + "end": 9192.66, + "probability": 0.8429 + }, + { + "start": 9193.44, + "end": 9195.38, + "probability": 0.5963 + }, + { + "start": 9196.16, + "end": 9198.68, + "probability": 0.4954 + }, + { + "start": 9198.82, + "end": 9203.29, + "probability": 0.9861 + }, + { + "start": 9203.86, + "end": 9204.56, + "probability": 0.0372 + }, + { + "start": 9204.56, + "end": 9206.64, + "probability": 0.26 + }, + { + "start": 9206.7, + "end": 9208.02, + "probability": 0.9446 + }, + { + "start": 9208.38, + "end": 9209.7, + "probability": 0.7256 + }, + { + "start": 9209.94, + "end": 9214.5, + "probability": 0.8499 + }, + { + "start": 9215.18, + "end": 9219.82, + "probability": 0.9951 + }, + { + "start": 9219.82, + "end": 9223.86, + "probability": 0.9933 + }, + { + "start": 9224.72, + "end": 9227.22, + "probability": 0.8682 + }, + { + "start": 9228.32, + "end": 9229.2, + "probability": 0.7889 + }, + { + "start": 9229.48, + "end": 9234.15, + "probability": 0.6473 + }, + { + "start": 9234.58, + "end": 9235.0, + "probability": 0.3354 + }, + { + "start": 9235.54, + "end": 9236.92, + "probability": 0.5137 + }, + { + "start": 9237.82, + "end": 9238.02, + "probability": 0.2251 + }, + { + "start": 9255.46, + "end": 9257.02, + "probability": 0.6109 + }, + { + "start": 9257.64, + "end": 9259.24, + "probability": 0.4982 + }, + { + "start": 9259.26, + "end": 9263.4, + "probability": 0.9255 + }, + { + "start": 9264.44, + "end": 9266.76, + "probability": 0.9693 + }, + { + "start": 9267.68, + "end": 9269.9, + "probability": 0.6289 + }, + { + "start": 9270.42, + "end": 9272.11, + "probability": 0.7672 + }, + { + "start": 9272.76, + "end": 9276.7, + "probability": 0.7199 + }, + { + "start": 9276.78, + "end": 9278.1, + "probability": 0.6339 + }, + { + "start": 9278.64, + "end": 9280.14, + "probability": 0.9947 + }, + { + "start": 9281.66, + "end": 9286.46, + "probability": 0.953 + }, + { + "start": 9286.5, + "end": 9291.36, + "probability": 0.9253 + }, + { + "start": 9291.4, + "end": 9293.96, + "probability": 0.7919 + }, + { + "start": 9294.14, + "end": 9294.58, + "probability": 0.6945 + }, + { + "start": 9295.1, + "end": 9297.68, + "probability": 0.9919 + }, + { + "start": 9297.68, + "end": 9301.28, + "probability": 0.9523 + }, + { + "start": 9305.22, + "end": 9307.4, + "probability": 0.638 + }, + { + "start": 9308.44, + "end": 9311.62, + "probability": 0.99 + }, + { + "start": 9311.62, + "end": 9314.26, + "probability": 0.9224 + }, + { + "start": 9314.94, + "end": 9316.8, + "probability": 0.8492 + }, + { + "start": 9316.98, + "end": 9318.08, + "probability": 0.564 + }, + { + "start": 9318.34, + "end": 9321.9, + "probability": 0.9814 + }, + { + "start": 9322.6, + "end": 9325.64, + "probability": 0.6694 + }, + { + "start": 9326.18, + "end": 9328.68, + "probability": 0.8214 + }, + { + "start": 9329.76, + "end": 9332.92, + "probability": 0.9668 + }, + { + "start": 9333.44, + "end": 9334.64, + "probability": 0.959 + }, + { + "start": 9334.7, + "end": 9334.86, + "probability": 0.6794 + }, + { + "start": 9335.64, + "end": 9337.6, + "probability": 0.7342 + }, + { + "start": 9338.0, + "end": 9339.6, + "probability": 0.8374 + }, + { + "start": 9340.18, + "end": 9344.84, + "probability": 0.6933 + }, + { + "start": 9345.44, + "end": 9350.0, + "probability": 0.8101 + }, + { + "start": 9350.26, + "end": 9354.16, + "probability": 0.99 + }, + { + "start": 9354.26, + "end": 9356.58, + "probability": 0.8661 + }, + { + "start": 9367.14, + "end": 9367.8, + "probability": 0.4487 + }, + { + "start": 9367.86, + "end": 9368.54, + "probability": 0.83 + }, + { + "start": 9368.68, + "end": 9370.36, + "probability": 0.9757 + }, + { + "start": 9370.36, + "end": 9372.44, + "probability": 0.627 + }, + { + "start": 9373.08, + "end": 9373.22, + "probability": 0.0048 + }, + { + "start": 9374.74, + "end": 9377.22, + "probability": 0.8507 + }, + { + "start": 9377.32, + "end": 9381.42, + "probability": 0.9759 + }, + { + "start": 9382.78, + "end": 9383.58, + "probability": 0.5114 + }, + { + "start": 9383.74, + "end": 9385.98, + "probability": 0.9438 + }, + { + "start": 9387.26, + "end": 9389.82, + "probability": 0.9775 + }, + { + "start": 9390.0, + "end": 9391.88, + "probability": 0.7744 + }, + { + "start": 9391.88, + "end": 9393.76, + "probability": 0.6885 + }, + { + "start": 9394.4, + "end": 9396.08, + "probability": 0.987 + }, + { + "start": 9396.08, + "end": 9398.38, + "probability": 0.4921 + }, + { + "start": 9398.5, + "end": 9398.96, + "probability": 0.6202 + }, + { + "start": 9399.44, + "end": 9401.44, + "probability": 0.8397 + }, + { + "start": 9401.46, + "end": 9404.04, + "probability": 0.8516 + }, + { + "start": 9405.28, + "end": 9407.14, + "probability": 0.9728 + }, + { + "start": 9407.32, + "end": 9408.5, + "probability": 0.8513 + }, + { + "start": 9409.14, + "end": 9411.1, + "probability": 0.7547 + }, + { + "start": 9412.18, + "end": 9413.42, + "probability": 0.8702 + }, + { + "start": 9414.1, + "end": 9416.28, + "probability": 0.9878 + }, + { + "start": 9416.46, + "end": 9419.02, + "probability": 0.8912 + }, + { + "start": 9420.02, + "end": 9422.74, + "probability": 0.9788 + }, + { + "start": 9423.34, + "end": 9426.28, + "probability": 0.8552 + }, + { + "start": 9426.94, + "end": 9430.2, + "probability": 0.8465 + }, + { + "start": 9430.2, + "end": 9433.76, + "probability": 0.9881 + }, + { + "start": 9435.0, + "end": 9436.92, + "probability": 0.7749 + }, + { + "start": 9436.98, + "end": 9439.68, + "probability": 0.8505 + }, + { + "start": 9440.1, + "end": 9440.34, + "probability": 0.4234 + }, + { + "start": 9440.36, + "end": 9443.93, + "probability": 0.7154 + }, + { + "start": 9444.62, + "end": 9446.94, + "probability": 0.7192 + }, + { + "start": 9447.08, + "end": 9449.34, + "probability": 0.867 + }, + { + "start": 9450.26, + "end": 9451.04, + "probability": 0.7932 + }, + { + "start": 9452.1, + "end": 9455.2, + "probability": 0.7969 + }, + { + "start": 9456.28, + "end": 9457.2, + "probability": 0.6767 + }, + { + "start": 9457.76, + "end": 9459.62, + "probability": 0.8447 + }, + { + "start": 9459.62, + "end": 9462.7, + "probability": 0.7175 + }, + { + "start": 9462.74, + "end": 9464.74, + "probability": 0.9371 + }, + { + "start": 9464.8, + "end": 9467.42, + "probability": 0.9293 + }, + { + "start": 9467.48, + "end": 9468.66, + "probability": 0.6583 + }, + { + "start": 9469.88, + "end": 9470.64, + "probability": 0.7308 + }, + { + "start": 9471.22, + "end": 9472.5, + "probability": 0.958 + }, + { + "start": 9472.64, + "end": 9474.72, + "probability": 0.7423 + }, + { + "start": 9474.78, + "end": 9478.56, + "probability": 0.7581 + }, + { + "start": 9478.68, + "end": 9482.2, + "probability": 0.8292 + }, + { + "start": 9483.04, + "end": 9484.72, + "probability": 0.7056 + }, + { + "start": 9484.84, + "end": 9487.48, + "probability": 0.6744 + }, + { + "start": 9487.48, + "end": 9489.5, + "probability": 0.6903 + }, + { + "start": 9490.58, + "end": 9491.84, + "probability": 0.9763 + }, + { + "start": 9493.56, + "end": 9494.22, + "probability": 0.8737 + }, + { + "start": 9495.04, + "end": 9495.96, + "probability": 0.9152 + }, + { + "start": 9496.48, + "end": 9497.02, + "probability": 0.9244 + }, + { + "start": 9497.62, + "end": 9502.32, + "probability": 0.9824 + }, + { + "start": 9502.84, + "end": 9503.36, + "probability": 0.509 + }, + { + "start": 9503.44, + "end": 9506.14, + "probability": 0.9544 + }, + { + "start": 9506.2, + "end": 9507.56, + "probability": 0.8189 + }, + { + "start": 9508.4, + "end": 9508.96, + "probability": 0.4311 + }, + { + "start": 9509.08, + "end": 9509.56, + "probability": 0.6242 + }, + { + "start": 9509.72, + "end": 9510.16, + "probability": 0.7116 + }, + { + "start": 9510.24, + "end": 9510.9, + "probability": 0.8233 + }, + { + "start": 9510.94, + "end": 9511.94, + "probability": 0.9641 + }, + { + "start": 9512.5, + "end": 9518.02, + "probability": 0.6646 + }, + { + "start": 9518.34, + "end": 9519.22, + "probability": 0.8688 + }, + { + "start": 9519.3, + "end": 9520.3, + "probability": 0.9792 + }, + { + "start": 9520.56, + "end": 9520.8, + "probability": 0.9896 + }, + { + "start": 9520.8, + "end": 9521.44, + "probability": 0.6192 + }, + { + "start": 9521.86, + "end": 9523.88, + "probability": 0.9956 + }, + { + "start": 9524.9, + "end": 9528.82, + "probability": 0.9946 + }, + { + "start": 9528.84, + "end": 9530.32, + "probability": 0.9372 + }, + { + "start": 9530.68, + "end": 9534.72, + "probability": 0.9656 + }, + { + "start": 9535.24, + "end": 9537.44, + "probability": 0.6379 + }, + { + "start": 9537.54, + "end": 9542.3, + "probability": 0.9346 + }, + { + "start": 9542.38, + "end": 9542.96, + "probability": 0.8564 + }, + { + "start": 9542.98, + "end": 9547.04, + "probability": 0.8108 + }, + { + "start": 9547.38, + "end": 9549.72, + "probability": 0.8537 + }, + { + "start": 9549.74, + "end": 9551.5, + "probability": 0.8777 + }, + { + "start": 9551.62, + "end": 9552.28, + "probability": 0.4717 + }, + { + "start": 9552.88, + "end": 9556.85, + "probability": 0.7136 + }, + { + "start": 9558.12, + "end": 9559.42, + "probability": 0.9551 + }, + { + "start": 9559.76, + "end": 9563.8, + "probability": 0.8051 + }, + { + "start": 9563.9, + "end": 9567.38, + "probability": 0.585 + }, + { + "start": 9567.42, + "end": 9567.96, + "probability": 0.5073 + }, + { + "start": 9567.96, + "end": 9569.12, + "probability": 0.6228 + }, + { + "start": 9579.6, + "end": 9584.88, + "probability": 0.005 + }, + { + "start": 9587.8, + "end": 9590.22, + "probability": 0.6757 + }, + { + "start": 9590.46, + "end": 9592.3, + "probability": 0.9799 + }, + { + "start": 9593.34, + "end": 9596.12, + "probability": 0.9625 + }, + { + "start": 9596.34, + "end": 9596.96, + "probability": 0.565 + }, + { + "start": 9596.98, + "end": 9597.88, + "probability": 0.7141 + }, + { + "start": 9598.56, + "end": 9598.96, + "probability": 0.0398 + }, + { + "start": 9601.8, + "end": 9606.28, + "probability": 0.0138 + }, + { + "start": 9611.86, + "end": 9613.88, + "probability": 0.0427 + }, + { + "start": 9613.88, + "end": 9615.34, + "probability": 0.3243 + }, + { + "start": 9616.72, + "end": 9618.6, + "probability": 0.4735 + }, + { + "start": 9618.7, + "end": 9619.84, + "probability": 0.7502 + }, + { + "start": 9620.82, + "end": 9622.52, + "probability": 0.8361 + }, + { + "start": 9623.5, + "end": 9626.12, + "probability": 0.9808 + }, + { + "start": 9626.18, + "end": 9632.02, + "probability": 0.9774 + }, + { + "start": 9632.7, + "end": 9633.92, + "probability": 0.7268 + }, + { + "start": 9634.14, + "end": 9636.62, + "probability": 0.6253 + }, + { + "start": 9637.42, + "end": 9641.4, + "probability": 0.9663 + }, + { + "start": 9642.96, + "end": 9643.24, + "probability": 0.7718 + }, + { + "start": 9643.4, + "end": 9648.46, + "probability": 0.9681 + }, + { + "start": 9648.88, + "end": 9651.34, + "probability": 0.5532 + }, + { + "start": 9652.44, + "end": 9655.34, + "probability": 0.8053 + }, + { + "start": 9658.06, + "end": 9658.82, + "probability": 0.7338 + }, + { + "start": 9659.34, + "end": 9660.12, + "probability": 0.4173 + }, + { + "start": 9660.14, + "end": 9661.98, + "probability": 0.6301 + }, + { + "start": 9662.7, + "end": 9667.24, + "probability": 0.8982 + }, + { + "start": 9667.58, + "end": 9668.5, + "probability": 0.842 + }, + { + "start": 9674.96, + "end": 9677.62, + "probability": 0.9642 + }, + { + "start": 9677.82, + "end": 9679.45, + "probability": 0.5086 + }, + { + "start": 9680.08, + "end": 9682.5, + "probability": 0.9082 + }, + { + "start": 9682.6, + "end": 9684.2, + "probability": 0.9404 + }, + { + "start": 9684.36, + "end": 9686.86, + "probability": 0.9827 + }, + { + "start": 9687.08, + "end": 9687.98, + "probability": 0.9875 + }, + { + "start": 9688.04, + "end": 9688.76, + "probability": 0.9734 + }, + { + "start": 9688.9, + "end": 9689.84, + "probability": 0.8663 + }, + { + "start": 9690.3, + "end": 9691.98, + "probability": 0.9941 + }, + { + "start": 9692.02, + "end": 9697.56, + "probability": 0.9895 + }, + { + "start": 9697.74, + "end": 9698.6, + "probability": 0.8227 + }, + { + "start": 9698.68, + "end": 9699.2, + "probability": 0.3654 + }, + { + "start": 9700.9, + "end": 9702.0, + "probability": 0.7822 + }, + { + "start": 9702.18, + "end": 9702.62, + "probability": 0.2923 + }, + { + "start": 9702.74, + "end": 9703.56, + "probability": 0.7274 + }, + { + "start": 9703.62, + "end": 9704.28, + "probability": 0.4018 + }, + { + "start": 9704.7, + "end": 9709.66, + "probability": 0.9445 + }, + { + "start": 9710.62, + "end": 9711.68, + "probability": 0.9502 + }, + { + "start": 9712.06, + "end": 9712.84, + "probability": 0.6696 + }, + { + "start": 9712.94, + "end": 9713.78, + "probability": 0.6416 + }, + { + "start": 9714.12, + "end": 9714.62, + "probability": 0.8085 + }, + { + "start": 9715.2, + "end": 9718.5, + "probability": 0.9688 + }, + { + "start": 9718.64, + "end": 9720.2, + "probability": 0.7981 + }, + { + "start": 9720.46, + "end": 9725.12, + "probability": 0.8599 + }, + { + "start": 9725.46, + "end": 9727.72, + "probability": 0.9983 + }, + { + "start": 9727.98, + "end": 9728.96, + "probability": 0.7321 + }, + { + "start": 9729.12, + "end": 9736.3, + "probability": 0.9596 + }, + { + "start": 9736.68, + "end": 9739.58, + "probability": 0.8194 + }, + { + "start": 9740.2, + "end": 9743.64, + "probability": 0.9862 + }, + { + "start": 9743.72, + "end": 9747.22, + "probability": 0.9845 + }, + { + "start": 9747.62, + "end": 9749.16, + "probability": 0.984 + }, + { + "start": 9749.84, + "end": 9750.64, + "probability": 0.6812 + }, + { + "start": 9751.08, + "end": 9752.88, + "probability": 0.6086 + }, + { + "start": 9752.96, + "end": 9753.82, + "probability": 0.6811 + }, + { + "start": 9753.84, + "end": 9755.1, + "probability": 0.6954 + }, + { + "start": 9755.26, + "end": 9757.46, + "probability": 0.7391 + }, + { + "start": 9757.48, + "end": 9760.86, + "probability": 0.8735 + }, + { + "start": 9761.18, + "end": 9764.58, + "probability": 0.9805 + }, + { + "start": 9765.06, + "end": 9765.58, + "probability": 0.8965 + }, + { + "start": 9765.68, + "end": 9766.36, + "probability": 0.8327 + }, + { + "start": 9766.5, + "end": 9770.06, + "probability": 0.994 + }, + { + "start": 9770.32, + "end": 9773.28, + "probability": 0.9964 + }, + { + "start": 9773.52, + "end": 9774.38, + "probability": 0.949 + }, + { + "start": 9774.56, + "end": 9777.14, + "probability": 0.9834 + }, + { + "start": 9777.24, + "end": 9778.24, + "probability": 0.9745 + }, + { + "start": 9778.68, + "end": 9779.28, + "probability": 0.5349 + }, + { + "start": 9779.74, + "end": 9780.96, + "probability": 0.7403 + }, + { + "start": 9781.2, + "end": 9783.38, + "probability": 0.3118 + }, + { + "start": 9783.7, + "end": 9785.46, + "probability": 0.769 + }, + { + "start": 9785.54, + "end": 9790.43, + "probability": 0.9677 + }, + { + "start": 9790.98, + "end": 9796.4, + "probability": 0.9951 + }, + { + "start": 9796.52, + "end": 9797.24, + "probability": 0.826 + }, + { + "start": 9797.56, + "end": 9800.6, + "probability": 0.8691 + }, + { + "start": 9801.02, + "end": 9801.42, + "probability": 0.626 + }, + { + "start": 9801.48, + "end": 9804.58, + "probability": 0.998 + }, + { + "start": 9805.08, + "end": 9806.0, + "probability": 0.914 + }, + { + "start": 9806.2, + "end": 9811.3, + "probability": 0.9738 + }, + { + "start": 9811.92, + "end": 9818.16, + "probability": 0.8364 + }, + { + "start": 9818.48, + "end": 9819.02, + "probability": 0.7283 + }, + { + "start": 9819.42, + "end": 9820.02, + "probability": 0.6872 + }, + { + "start": 9820.52, + "end": 9826.73, + "probability": 0.9403 + }, + { + "start": 9827.1, + "end": 9832.04, + "probability": 0.953 + }, + { + "start": 9832.16, + "end": 9833.06, + "probability": 0.6311 + }, + { + "start": 9833.52, + "end": 9834.66, + "probability": 0.8869 + }, + { + "start": 9834.72, + "end": 9836.12, + "probability": 0.8543 + }, + { + "start": 9836.54, + "end": 9836.88, + "probability": 0.3699 + }, + { + "start": 9836.92, + "end": 9838.0, + "probability": 0.8583 + }, + { + "start": 9838.12, + "end": 9839.0, + "probability": 0.894 + }, + { + "start": 9839.04, + "end": 9839.78, + "probability": 0.5974 + }, + { + "start": 9840.12, + "end": 9841.9, + "probability": 0.5726 + }, + { + "start": 9842.58, + "end": 9845.34, + "probability": 0.7085 + }, + { + "start": 9845.92, + "end": 9847.2, + "probability": 0.995 + }, + { + "start": 9847.72, + "end": 9850.1, + "probability": 0.9827 + }, + { + "start": 9871.24, + "end": 9873.32, + "probability": 0.6485 + }, + { + "start": 9873.44, + "end": 9875.82, + "probability": 0.8947 + }, + { + "start": 9875.98, + "end": 9876.42, + "probability": 0.7316 + }, + { + "start": 9876.42, + "end": 9880.26, + "probability": 0.8535 + }, + { + "start": 9881.16, + "end": 9881.76, + "probability": 0.7281 + }, + { + "start": 9881.94, + "end": 9884.63, + "probability": 0.9863 + }, + { + "start": 9884.82, + "end": 9885.2, + "probability": 0.7025 + }, + { + "start": 9885.2, + "end": 9885.94, + "probability": 0.5242 + }, + { + "start": 9886.7, + "end": 9887.74, + "probability": 0.7992 + }, + { + "start": 9888.06, + "end": 9896.98, + "probability": 0.9403 + }, + { + "start": 9897.06, + "end": 9900.8, + "probability": 0.9943 + }, + { + "start": 9901.4, + "end": 9902.68, + "probability": 0.5203 + }, + { + "start": 9902.74, + "end": 9903.98, + "probability": 0.9503 + }, + { + "start": 9904.16, + "end": 9905.8, + "probability": 0.9036 + }, + { + "start": 9905.8, + "end": 9905.88, + "probability": 0.1342 + }, + { + "start": 9905.88, + "end": 9913.38, + "probability": 0.9865 + }, + { + "start": 9913.7, + "end": 9917.18, + "probability": 0.9985 + }, + { + "start": 9917.88, + "end": 9920.76, + "probability": 0.9753 + }, + { + "start": 9921.36, + "end": 9922.86, + "probability": 0.9399 + }, + { + "start": 9923.06, + "end": 9926.68, + "probability": 0.9777 + }, + { + "start": 9926.78, + "end": 9928.66, + "probability": 0.9831 + }, + { + "start": 9928.68, + "end": 9933.32, + "probability": 0.9023 + }, + { + "start": 9934.16, + "end": 9935.26, + "probability": 0.6083 + }, + { + "start": 9935.28, + "end": 9938.12, + "probability": 0.7145 + }, + { + "start": 9938.44, + "end": 9940.02, + "probability": 0.8799 + }, + { + "start": 9940.06, + "end": 9941.26, + "probability": 0.9806 + }, + { + "start": 9941.3, + "end": 9941.88, + "probability": 0.9391 + }, + { + "start": 9941.94, + "end": 9944.34, + "probability": 0.9293 + }, + { + "start": 9944.9, + "end": 9945.86, + "probability": 0.6526 + }, + { + "start": 9946.0, + "end": 9946.46, + "probability": 0.6879 + }, + { + "start": 9946.56, + "end": 9949.46, + "probability": 0.9391 + }, + { + "start": 9949.46, + "end": 9952.32, + "probability": 0.8636 + }, + { + "start": 9952.76, + "end": 9958.6, + "probability": 0.7871 + }, + { + "start": 9959.78, + "end": 9962.52, + "probability": 0.9885 + }, + { + "start": 9963.9, + "end": 9965.2, + "probability": 0.9556 + }, + { + "start": 9965.2, + "end": 9965.46, + "probability": 0.3633 + }, + { + "start": 9965.48, + "end": 9967.2, + "probability": 0.8289 + }, + { + "start": 9967.22, + "end": 9967.58, + "probability": 0.8739 + }, + { + "start": 9969.94, + "end": 9971.8, + "probability": 0.9861 + }, + { + "start": 9972.06, + "end": 9973.5, + "probability": 0.9957 + }, + { + "start": 9974.18, + "end": 9979.12, + "probability": 0.963 + }, + { + "start": 9979.7, + "end": 9981.94, + "probability": 0.286 + }, + { + "start": 9982.28, + "end": 9984.4, + "probability": 0.3883 + }, + { + "start": 9984.64, + "end": 9986.48, + "probability": 0.9092 + }, + { + "start": 9987.08, + "end": 9993.36, + "probability": 0.979 + }, + { + "start": 10001.64, + "end": 10002.42, + "probability": 0.5037 + }, + { + "start": 10002.44, + "end": 10003.38, + "probability": 0.8298 + }, + { + "start": 10003.7, + "end": 10008.32, + "probability": 0.9862 + }, + { + "start": 10008.61, + "end": 10012.46, + "probability": 0.5198 + }, + { + "start": 10013.3, + "end": 10018.1, + "probability": 0.5528 + }, + { + "start": 10018.1, + "end": 10020.68, + "probability": 0.9734 + }, + { + "start": 10020.84, + "end": 10021.38, + "probability": 0.657 + }, + { + "start": 10022.32, + "end": 10024.32, + "probability": 0.9839 + }, + { + "start": 10024.32, + "end": 10027.2, + "probability": 0.988 + }, + { + "start": 10028.38, + "end": 10030.88, + "probability": 0.9135 + }, + { + "start": 10031.68, + "end": 10032.76, + "probability": 0.8587 + }, + { + "start": 10032.9, + "end": 10035.44, + "probability": 0.9726 + }, + { + "start": 10035.5, + "end": 10036.56, + "probability": 0.7655 + }, + { + "start": 10037.2, + "end": 10042.84, + "probability": 0.9411 + }, + { + "start": 10043.0, + "end": 10044.52, + "probability": 0.9777 + }, + { + "start": 10045.46, + "end": 10048.0, + "probability": 0.8962 + }, + { + "start": 10048.18, + "end": 10049.38, + "probability": 0.9587 + }, + { + "start": 10049.94, + "end": 10052.42, + "probability": 0.9331 + }, + { + "start": 10053.32, + "end": 10055.26, + "probability": 0.9917 + }, + { + "start": 10055.84, + "end": 10056.58, + "probability": 0.949 + }, + { + "start": 10057.7, + "end": 10058.94, + "probability": 0.4192 + }, + { + "start": 10059.18, + "end": 10066.52, + "probability": 0.9749 + }, + { + "start": 10067.32, + "end": 10070.58, + "probability": 0.9393 + }, + { + "start": 10071.12, + "end": 10073.18, + "probability": 0.9293 + }, + { + "start": 10074.06, + "end": 10076.18, + "probability": 0.9709 + }, + { + "start": 10076.56, + "end": 10079.7, + "probability": 0.9785 + }, + { + "start": 10080.5, + "end": 10085.16, + "probability": 0.9453 + }, + { + "start": 10085.86, + "end": 10088.08, + "probability": 0.9779 + }, + { + "start": 10089.1, + "end": 10093.48, + "probability": 0.9493 + }, + { + "start": 10093.94, + "end": 10098.24, + "probability": 0.9489 + }, + { + "start": 10098.76, + "end": 10103.1, + "probability": 0.887 + }, + { + "start": 10103.76, + "end": 10105.26, + "probability": 0.6093 + }, + { + "start": 10106.28, + "end": 10108.58, + "probability": 0.8243 + }, + { + "start": 10109.42, + "end": 10109.82, + "probability": 0.8485 + }, + { + "start": 10109.88, + "end": 10115.74, + "probability": 0.75 + }, + { + "start": 10116.2, + "end": 10119.1, + "probability": 0.6717 + }, + { + "start": 10119.3, + "end": 10122.24, + "probability": 0.1485 + }, + { + "start": 10122.24, + "end": 10124.6, + "probability": 0.9646 + }, + { + "start": 10124.64, + "end": 10127.44, + "probability": 0.8537 + }, + { + "start": 10129.02, + "end": 10133.56, + "probability": 0.7635 + }, + { + "start": 10134.22, + "end": 10134.4, + "probability": 0.5193 + }, + { + "start": 10134.5, + "end": 10137.44, + "probability": 0.9224 + }, + { + "start": 10138.24, + "end": 10141.44, + "probability": 0.8686 + }, + { + "start": 10141.52, + "end": 10141.92, + "probability": 0.6676 + }, + { + "start": 10141.96, + "end": 10144.27, + "probability": 0.9913 + }, + { + "start": 10145.38, + "end": 10149.6, + "probability": 0.7509 + }, + { + "start": 10149.66, + "end": 10151.62, + "probability": 0.7563 + }, + { + "start": 10153.18, + "end": 10155.6, + "probability": 0.9487 + }, + { + "start": 10155.6, + "end": 10159.12, + "probability": 0.9058 + }, + { + "start": 10159.76, + "end": 10161.48, + "probability": 0.8125 + }, + { + "start": 10162.68, + "end": 10168.06, + "probability": 0.9724 + }, + { + "start": 10168.94, + "end": 10169.74, + "probability": 0.8813 + }, + { + "start": 10170.56, + "end": 10173.46, + "probability": 0.9956 + }, + { + "start": 10173.54, + "end": 10176.44, + "probability": 0.9804 + }, + { + "start": 10176.94, + "end": 10178.16, + "probability": 0.753 + }, + { + "start": 10181.5, + "end": 10190.78, + "probability": 0.9624 + }, + { + "start": 10190.82, + "end": 10193.86, + "probability": 0.9456 + }, + { + "start": 10194.46, + "end": 10197.34, + "probability": 0.9945 + }, + { + "start": 10198.1, + "end": 10200.86, + "probability": 0.9636 + }, + { + "start": 10201.08, + "end": 10201.77, + "probability": 0.215 + }, + { + "start": 10202.0, + "end": 10202.98, + "probability": 0.8472 + }, + { + "start": 10203.06, + "end": 10204.22, + "probability": 0.9443 + }, + { + "start": 10204.42, + "end": 10206.04, + "probability": 0.9015 + }, + { + "start": 10206.42, + "end": 10206.94, + "probability": 0.7964 + }, + { + "start": 10207.02, + "end": 10209.86, + "probability": 0.8821 + }, + { + "start": 10211.42, + "end": 10213.52, + "probability": 0.7278 + }, + { + "start": 10213.68, + "end": 10217.9, + "probability": 0.9948 + }, + { + "start": 10218.62, + "end": 10219.0, + "probability": 0.6736 + }, + { + "start": 10219.14, + "end": 10220.2, + "probability": 0.9807 + }, + { + "start": 10220.32, + "end": 10221.4, + "probability": 0.9587 + }, + { + "start": 10221.72, + "end": 10222.84, + "probability": 0.6176 + }, + { + "start": 10222.9, + "end": 10227.28, + "probability": 0.8949 + }, + { + "start": 10227.7, + "end": 10232.28, + "probability": 0.9642 + }, + { + "start": 10232.54, + "end": 10234.48, + "probability": 0.8274 + }, + { + "start": 10234.9, + "end": 10236.12, + "probability": 0.8616 + }, + { + "start": 10236.74, + "end": 10240.22, + "probability": 0.9969 + }, + { + "start": 10241.12, + "end": 10242.84, + "probability": 0.9003 + }, + { + "start": 10242.94, + "end": 10248.32, + "probability": 0.9841 + }, + { + "start": 10248.42, + "end": 10251.44, + "probability": 0.9748 + }, + { + "start": 10251.44, + "end": 10254.26, + "probability": 0.9995 + }, + { + "start": 10254.86, + "end": 10256.48, + "probability": 0.888 + }, + { + "start": 10257.38, + "end": 10257.88, + "probability": 0.434 + }, + { + "start": 10257.96, + "end": 10261.02, + "probability": 0.9146 + }, + { + "start": 10261.6, + "end": 10264.26, + "probability": 0.9657 + }, + { + "start": 10264.4, + "end": 10265.28, + "probability": 0.928 + }, + { + "start": 10265.76, + "end": 10267.08, + "probability": 0.978 + }, + { + "start": 10267.56, + "end": 10268.2, + "probability": 0.556 + }, + { + "start": 10268.46, + "end": 10269.76, + "probability": 0.9925 + }, + { + "start": 10270.24, + "end": 10273.18, + "probability": 0.9916 + }, + { + "start": 10273.18, + "end": 10278.26, + "probability": 0.9916 + }, + { + "start": 10278.42, + "end": 10282.92, + "probability": 0.8554 + }, + { + "start": 10283.12, + "end": 10286.14, + "probability": 0.8853 + }, + { + "start": 10286.34, + "end": 10288.16, + "probability": 0.8469 + }, + { + "start": 10288.3, + "end": 10292.24, + "probability": 0.9014 + }, + { + "start": 10293.18, + "end": 10295.06, + "probability": 0.7639 + }, + { + "start": 10295.16, + "end": 10296.66, + "probability": 0.9376 + }, + { + "start": 10297.16, + "end": 10302.42, + "probability": 0.9569 + }, + { + "start": 10302.54, + "end": 10302.7, + "probability": 0.0981 + }, + { + "start": 10302.76, + "end": 10305.58, + "probability": 0.6119 + }, + { + "start": 10307.3, + "end": 10307.52, + "probability": 0.3509 + }, + { + "start": 10307.52, + "end": 10307.72, + "probability": 0.2015 + }, + { + "start": 10307.8, + "end": 10308.1, + "probability": 0.7199 + }, + { + "start": 10308.24, + "end": 10309.2, + "probability": 0.7671 + }, + { + "start": 10309.38, + "end": 10310.32, + "probability": 0.578 + }, + { + "start": 10310.4, + "end": 10313.06, + "probability": 0.985 + }, + { + "start": 10313.06, + "end": 10315.52, + "probability": 0.9987 + }, + { + "start": 10315.94, + "end": 10316.36, + "probability": 0.9481 + }, + { + "start": 10317.72, + "end": 10320.86, + "probability": 0.9814 + }, + { + "start": 10322.6, + "end": 10323.12, + "probability": 0.607 + }, + { + "start": 10323.22, + "end": 10323.44, + "probability": 0.4344 + }, + { + "start": 10323.54, + "end": 10327.26, + "probability": 0.9832 + }, + { + "start": 10327.26, + "end": 10331.24, + "probability": 0.9562 + }, + { + "start": 10332.16, + "end": 10332.51, + "probability": 0.515 + }, + { + "start": 10333.0, + "end": 10337.02, + "probability": 0.9597 + }, + { + "start": 10337.4, + "end": 10339.02, + "probability": 0.9945 + }, + { + "start": 10339.12, + "end": 10339.54, + "probability": 0.9269 + }, + { + "start": 10341.78, + "end": 10344.34, + "probability": 0.9579 + }, + { + "start": 10344.38, + "end": 10344.76, + "probability": 0.7759 + }, + { + "start": 10344.8, + "end": 10345.82, + "probability": 0.9478 + }, + { + "start": 10346.5, + "end": 10349.0, + "probability": 0.9639 + }, + { + "start": 10350.06, + "end": 10352.94, + "probability": 0.9308 + }, + { + "start": 10352.94, + "end": 10355.66, + "probability": 0.9712 + }, + { + "start": 10355.8, + "end": 10357.28, + "probability": 0.9973 + }, + { + "start": 10358.02, + "end": 10362.8, + "probability": 0.7317 + }, + { + "start": 10363.14, + "end": 10365.0, + "probability": 0.9363 + }, + { + "start": 10365.62, + "end": 10368.8, + "probability": 0.8267 + }, + { + "start": 10369.68, + "end": 10371.28, + "probability": 0.7368 + }, + { + "start": 10371.6, + "end": 10372.24, + "probability": 0.8597 + }, + { + "start": 10372.32, + "end": 10373.96, + "probability": 0.9761 + }, + { + "start": 10374.28, + "end": 10376.8, + "probability": 0.9564 + }, + { + "start": 10376.96, + "end": 10378.72, + "probability": 0.652 + }, + { + "start": 10378.82, + "end": 10379.96, + "probability": 0.8351 + }, + { + "start": 10380.46, + "end": 10383.92, + "probability": 0.882 + }, + { + "start": 10383.96, + "end": 10388.33, + "probability": 0.9845 + }, + { + "start": 10388.74, + "end": 10391.76, + "probability": 0.9904 + }, + { + "start": 10391.8, + "end": 10392.38, + "probability": 0.7746 + }, + { + "start": 10392.72, + "end": 10393.46, + "probability": 0.7137 + }, + { + "start": 10393.58, + "end": 10393.96, + "probability": 0.965 + }, + { + "start": 10394.02, + "end": 10398.8, + "probability": 0.8346 + }, + { + "start": 10398.88, + "end": 10402.22, + "probability": 0.8445 + }, + { + "start": 10402.56, + "end": 10403.54, + "probability": 0.5179 + }, + { + "start": 10403.72, + "end": 10404.06, + "probability": 0.548 + }, + { + "start": 10404.34, + "end": 10407.5, + "probability": 0.9586 + }, + { + "start": 10408.14, + "end": 10408.46, + "probability": 0.3093 + }, + { + "start": 10408.62, + "end": 10411.16, + "probability": 0.6743 + }, + { + "start": 10411.64, + "end": 10417.87, + "probability": 0.8057 + }, + { + "start": 10420.38, + "end": 10426.42, + "probability": 0.9185 + }, + { + "start": 10426.58, + "end": 10427.12, + "probability": 0.7988 + }, + { + "start": 10427.42, + "end": 10431.92, + "probability": 0.6693 + }, + { + "start": 10431.96, + "end": 10432.1, + "probability": 0.9334 + }, + { + "start": 10432.3, + "end": 10435.32, + "probability": 0.9786 + }, + { + "start": 10436.52, + "end": 10437.28, + "probability": 0.9218 + }, + { + "start": 10437.72, + "end": 10440.6, + "probability": 0.9269 + }, + { + "start": 10441.03, + "end": 10444.77, + "probability": 0.9744 + }, + { + "start": 10447.0, + "end": 10449.62, + "probability": 0.9399 + }, + { + "start": 10449.9, + "end": 10451.3, + "probability": 0.8869 + }, + { + "start": 10451.84, + "end": 10454.96, + "probability": 0.9116 + }, + { + "start": 10455.48, + "end": 10458.08, + "probability": 0.7451 + }, + { + "start": 10458.24, + "end": 10460.96, + "probability": 0.9932 + }, + { + "start": 10461.08, + "end": 10461.76, + "probability": 0.6998 + }, + { + "start": 10462.22, + "end": 10463.02, + "probability": 0.8602 + }, + { + "start": 10463.16, + "end": 10464.18, + "probability": 0.9839 + }, + { + "start": 10464.8, + "end": 10465.52, + "probability": 0.7498 + }, + { + "start": 10465.6, + "end": 10467.84, + "probability": 0.8749 + }, + { + "start": 10468.26, + "end": 10469.07, + "probability": 0.6158 + }, + { + "start": 10469.42, + "end": 10472.02, + "probability": 0.989 + }, + { + "start": 10472.84, + "end": 10477.44, + "probability": 0.9583 + }, + { + "start": 10477.92, + "end": 10479.18, + "probability": 0.6748 + }, + { + "start": 10479.3, + "end": 10479.84, + "probability": 0.8981 + }, + { + "start": 10479.9, + "end": 10480.48, + "probability": 0.7616 + }, + { + "start": 10480.62, + "end": 10482.02, + "probability": 0.9271 + }, + { + "start": 10482.56, + "end": 10484.26, + "probability": 0.9746 + }, + { + "start": 10484.32, + "end": 10485.52, + "probability": 0.6172 + }, + { + "start": 10485.56, + "end": 10485.82, + "probability": 0.3553 + }, + { + "start": 10486.0, + "end": 10489.26, + "probability": 0.7571 + }, + { + "start": 10490.88, + "end": 10493.54, + "probability": 0.9001 + }, + { + "start": 10493.68, + "end": 10494.58, + "probability": 0.7941 + }, + { + "start": 10494.66, + "end": 10496.9, + "probability": 0.9443 + }, + { + "start": 10497.56, + "end": 10499.72, + "probability": 0.6377 + }, + { + "start": 10500.26, + "end": 10503.18, + "probability": 0.7757 + }, + { + "start": 10503.4, + "end": 10503.78, + "probability": 0.4611 + }, + { + "start": 10504.36, + "end": 10508.04, + "probability": 0.7378 + }, + { + "start": 10508.12, + "end": 10508.3, + "probability": 0.2809 + }, + { + "start": 10508.9, + "end": 10509.22, + "probability": 0.235 + }, + { + "start": 10509.26, + "end": 10511.48, + "probability": 0.3671 + }, + { + "start": 10511.58, + "end": 10511.68, + "probability": 0.7507 + }, + { + "start": 10511.88, + "end": 10512.06, + "probability": 0.6951 + }, + { + "start": 10512.2, + "end": 10512.32, + "probability": 0.3856 + }, + { + "start": 10512.32, + "end": 10512.82, + "probability": 0.7215 + }, + { + "start": 10512.84, + "end": 10513.42, + "probability": 0.628 + }, + { + "start": 10513.62, + "end": 10514.6, + "probability": 0.866 + }, + { + "start": 10514.86, + "end": 10516.14, + "probability": 0.8826 + }, + { + "start": 10517.14, + "end": 10517.74, + "probability": 0.7555 + }, + { + "start": 10519.36, + "end": 10520.0, + "probability": 0.2895 + }, + { + "start": 10520.22, + "end": 10520.8, + "probability": 0.667 + }, + { + "start": 10520.88, + "end": 10521.59, + "probability": 0.8003 + }, + { + "start": 10521.88, + "end": 10522.56, + "probability": 0.2109 + }, + { + "start": 10522.66, + "end": 10523.19, + "probability": 0.989 + }, + { + "start": 10523.32, + "end": 10523.92, + "probability": 0.7508 + }, + { + "start": 10523.98, + "end": 10524.61, + "probability": 0.9647 + }, + { + "start": 10524.9, + "end": 10525.6, + "probability": 0.9034 + }, + { + "start": 10527.26, + "end": 10527.84, + "probability": 0.3721 + }, + { + "start": 10528.4, + "end": 10529.2, + "probability": 0.0558 + }, + { + "start": 10529.2, + "end": 10529.89, + "probability": 0.1797 + }, + { + "start": 10530.58, + "end": 10531.52, + "probability": 0.5506 + }, + { + "start": 10531.8, + "end": 10532.98, + "probability": 0.5905 + }, + { + "start": 10533.08, + "end": 10533.9, + "probability": 0.7885 + }, + { + "start": 10534.34, + "end": 10534.78, + "probability": 0.7075 + }, + { + "start": 10534.84, + "end": 10535.08, + "probability": 0.8437 + }, + { + "start": 10535.1, + "end": 10538.2, + "probability": 0.9326 + }, + { + "start": 10539.44, + "end": 10540.3, + "probability": 0.8499 + }, + { + "start": 10542.46, + "end": 10542.96, + "probability": 0.9118 + }, + { + "start": 10543.62, + "end": 10544.32, + "probability": 0.9354 + }, + { + "start": 10545.36, + "end": 10547.5, + "probability": 0.8875 + }, + { + "start": 10548.2, + "end": 10550.72, + "probability": 0.9854 + }, + { + "start": 10551.5, + "end": 10561.64, + "probability": 0.9297 + }, + { + "start": 10561.68, + "end": 10562.26, + "probability": 0.7233 + }, + { + "start": 10563.36, + "end": 10564.78, + "probability": 0.6622 + }, + { + "start": 10565.92, + "end": 10568.4, + "probability": 0.9554 + }, + { + "start": 10568.98, + "end": 10572.94, + "probability": 0.9849 + }, + { + "start": 10575.5, + "end": 10576.68, + "probability": 0.7532 + }, + { + "start": 10577.38, + "end": 10579.4, + "probability": 0.983 + }, + { + "start": 10580.58, + "end": 10583.46, + "probability": 0.9819 + }, + { + "start": 10583.94, + "end": 10585.0, + "probability": 0.7404 + }, + { + "start": 10585.34, + "end": 10585.82, + "probability": 0.7622 + }, + { + "start": 10587.44, + "end": 10593.98, + "probability": 0.9859 + }, + { + "start": 10595.44, + "end": 10596.36, + "probability": 0.895 + }, + { + "start": 10598.56, + "end": 10606.76, + "probability": 0.9714 + }, + { + "start": 10608.26, + "end": 10608.86, + "probability": 0.8105 + }, + { + "start": 10609.42, + "end": 10612.42, + "probability": 0.9731 + }, + { + "start": 10613.3, + "end": 10614.72, + "probability": 0.9105 + }, + { + "start": 10615.42, + "end": 10617.5, + "probability": 0.8044 + }, + { + "start": 10618.86, + "end": 10620.5, + "probability": 0.731 + }, + { + "start": 10621.08, + "end": 10622.66, + "probability": 0.9763 + }, + { + "start": 10622.8, + "end": 10624.68, + "probability": 0.9136 + }, + { + "start": 10625.64, + "end": 10626.56, + "probability": 0.9123 + }, + { + "start": 10627.48, + "end": 10631.86, + "probability": 0.9937 + }, + { + "start": 10633.3, + "end": 10639.54, + "probability": 0.9802 + }, + { + "start": 10640.84, + "end": 10643.68, + "probability": 0.9934 + }, + { + "start": 10644.2, + "end": 10646.24, + "probability": 0.9846 + }, + { + "start": 10647.84, + "end": 10649.12, + "probability": 0.9296 + }, + { + "start": 10650.56, + "end": 10651.58, + "probability": 0.899 + }, + { + "start": 10652.8, + "end": 10656.96, + "probability": 0.9982 + }, + { + "start": 10658.08, + "end": 10662.9, + "probability": 0.7557 + }, + { + "start": 10663.5, + "end": 10666.74, + "probability": 0.6787 + }, + { + "start": 10667.44, + "end": 10667.92, + "probability": 0.5519 + }, + { + "start": 10669.04, + "end": 10670.36, + "probability": 0.9038 + }, + { + "start": 10671.14, + "end": 10676.2, + "probability": 0.9132 + }, + { + "start": 10677.1, + "end": 10678.9, + "probability": 0.9671 + }, + { + "start": 10680.08, + "end": 10684.52, + "probability": 0.9092 + }, + { + "start": 10684.52, + "end": 10690.26, + "probability": 0.9158 + }, + { + "start": 10690.46, + "end": 10692.28, + "probability": 0.9157 + }, + { + "start": 10693.98, + "end": 10696.95, + "probability": 0.6543 + }, + { + "start": 10698.02, + "end": 10699.62, + "probability": 0.9833 + }, + { + "start": 10701.22, + "end": 10705.06, + "probability": 0.9696 + }, + { + "start": 10705.88, + "end": 10706.78, + "probability": 0.9268 + }, + { + "start": 10707.54, + "end": 10711.2, + "probability": 0.8242 + }, + { + "start": 10711.72, + "end": 10716.36, + "probability": 0.9838 + }, + { + "start": 10717.62, + "end": 10723.0, + "probability": 0.9972 + }, + { + "start": 10724.28, + "end": 10724.74, + "probability": 0.48 + }, + { + "start": 10724.96, + "end": 10727.72, + "probability": 0.821 + }, + { + "start": 10727.86, + "end": 10728.82, + "probability": 0.947 + }, + { + "start": 10729.58, + "end": 10732.94, + "probability": 0.9478 + }, + { + "start": 10734.04, + "end": 10734.78, + "probability": 0.5353 + }, + { + "start": 10735.76, + "end": 10739.64, + "probability": 0.9822 + }, + { + "start": 10740.54, + "end": 10742.22, + "probability": 0.8993 + }, + { + "start": 10742.9, + "end": 10743.56, + "probability": 0.9253 + }, + { + "start": 10743.92, + "end": 10748.9, + "probability": 0.8134 + }, + { + "start": 10749.12, + "end": 10749.78, + "probability": 0.9204 + }, + { + "start": 10750.8, + "end": 10756.06, + "probability": 0.9954 + }, + { + "start": 10757.4, + "end": 10757.88, + "probability": 0.9336 + }, + { + "start": 10758.5, + "end": 10761.52, + "probability": 0.9971 + }, + { + "start": 10762.3, + "end": 10765.5, + "probability": 0.9678 + }, + { + "start": 10766.28, + "end": 10768.12, + "probability": 0.9907 + }, + { + "start": 10768.76, + "end": 10775.08, + "probability": 0.9756 + }, + { + "start": 10776.44, + "end": 10778.06, + "probability": 0.6585 + }, + { + "start": 10778.58, + "end": 10782.8, + "probability": 0.7729 + }, + { + "start": 10782.8, + "end": 10787.3, + "probability": 0.9807 + }, + { + "start": 10787.98, + "end": 10789.28, + "probability": 0.5507 + }, + { + "start": 10790.0, + "end": 10790.8, + "probability": 0.8693 + }, + { + "start": 10791.06, + "end": 10797.4, + "probability": 0.9258 + }, + { + "start": 10797.48, + "end": 10798.02, + "probability": 0.5005 + }, + { + "start": 10798.94, + "end": 10802.68, + "probability": 0.732 + }, + { + "start": 10803.3, + "end": 10806.96, + "probability": 0.9795 + }, + { + "start": 10807.5, + "end": 10808.68, + "probability": 0.8683 + }, + { + "start": 10809.2, + "end": 10812.6, + "probability": 0.9316 + }, + { + "start": 10813.4, + "end": 10815.96, + "probability": 0.9881 + }, + { + "start": 10816.5, + "end": 10820.48, + "probability": 0.9946 + }, + { + "start": 10821.16, + "end": 10823.08, + "probability": 0.9736 + }, + { + "start": 10823.58, + "end": 10825.94, + "probability": 0.9765 + }, + { + "start": 10826.4, + "end": 10828.28, + "probability": 0.9985 + }, + { + "start": 10829.3, + "end": 10829.96, + "probability": 0.7296 + }, + { + "start": 10830.56, + "end": 10832.24, + "probability": 0.9977 + }, + { + "start": 10832.66, + "end": 10837.52, + "probability": 0.9701 + }, + { + "start": 10838.56, + "end": 10846.54, + "probability": 0.9984 + }, + { + "start": 10847.0, + "end": 10847.7, + "probability": 0.4618 + }, + { + "start": 10847.74, + "end": 10850.06, + "probability": 0.7725 + }, + { + "start": 10850.54, + "end": 10852.88, + "probability": 0.0828 + }, + { + "start": 10853.58, + "end": 10855.34, + "probability": 0.1503 + }, + { + "start": 10855.34, + "end": 10856.28, + "probability": 0.4229 + }, + { + "start": 10858.02, + "end": 10859.14, + "probability": 0.9182 + }, + { + "start": 10860.74, + "end": 10862.3, + "probability": 0.6259 + }, + { + "start": 10862.32, + "end": 10863.98, + "probability": 0.4346 + }, + { + "start": 10871.4, + "end": 10872.16, + "probability": 0.9415 + }, + { + "start": 10874.24, + "end": 10874.86, + "probability": 0.756 + }, + { + "start": 10874.94, + "end": 10875.78, + "probability": 0.7336 + }, + { + "start": 10875.98, + "end": 10878.4, + "probability": 0.6615 + }, + { + "start": 10879.3, + "end": 10882.38, + "probability": 0.9424 + }, + { + "start": 10882.42, + "end": 10884.3, + "probability": 0.6685 + }, + { + "start": 10884.72, + "end": 10888.48, + "probability": 0.9695 + }, + { + "start": 10889.26, + "end": 10894.96, + "probability": 0.8833 + }, + { + "start": 10895.42, + "end": 10897.05, + "probability": 0.9691 + }, + { + "start": 10898.06, + "end": 10901.14, + "probability": 0.8876 + }, + { + "start": 10901.86, + "end": 10905.16, + "probability": 0.9163 + }, + { + "start": 10905.24, + "end": 10906.02, + "probability": 0.9128 + }, + { + "start": 10906.54, + "end": 10907.2, + "probability": 0.6131 + }, + { + "start": 10907.3, + "end": 10910.92, + "probability": 0.9055 + }, + { + "start": 10911.18, + "end": 10912.44, + "probability": 0.9553 + }, + { + "start": 10913.0, + "end": 10913.58, + "probability": 0.8933 + }, + { + "start": 10914.62, + "end": 10916.8, + "probability": 0.9893 + }, + { + "start": 10917.36, + "end": 10920.76, + "probability": 0.902 + }, + { + "start": 10921.48, + "end": 10922.16, + "probability": 0.9805 + }, + { + "start": 10922.28, + "end": 10927.82, + "probability": 0.983 + }, + { + "start": 10928.36, + "end": 10929.16, + "probability": 0.6439 + }, + { + "start": 10929.58, + "end": 10930.54, + "probability": 0.932 + }, + { + "start": 10930.66, + "end": 10934.16, + "probability": 0.9767 + }, + { + "start": 10935.32, + "end": 10938.24, + "probability": 0.9152 + }, + { + "start": 10939.28, + "end": 10941.76, + "probability": 0.9701 + }, + { + "start": 10942.74, + "end": 10943.76, + "probability": 0.8149 + }, + { + "start": 10944.52, + "end": 10945.58, + "probability": 0.8315 + }, + { + "start": 10946.3, + "end": 10949.12, + "probability": 0.9217 + }, + { + "start": 10949.98, + "end": 10951.76, + "probability": 0.9063 + }, + { + "start": 10952.66, + "end": 10957.12, + "probability": 0.9957 + }, + { + "start": 10958.48, + "end": 10962.04, + "probability": 0.9224 + }, + { + "start": 10962.76, + "end": 10965.98, + "probability": 0.9806 + }, + { + "start": 10967.78, + "end": 10969.42, + "probability": 0.9315 + }, + { + "start": 10970.2, + "end": 10973.66, + "probability": 0.8711 + }, + { + "start": 10974.54, + "end": 10976.2, + "probability": 0.7215 + }, + { + "start": 10976.8, + "end": 10979.62, + "probability": 0.9019 + }, + { + "start": 10980.2, + "end": 10980.74, + "probability": 0.711 + }, + { + "start": 10982.94, + "end": 10984.96, + "probability": 0.9995 + }, + { + "start": 10985.76, + "end": 10988.06, + "probability": 0.9927 + }, + { + "start": 10988.92, + "end": 10990.84, + "probability": 0.9834 + }, + { + "start": 10991.52, + "end": 10992.38, + "probability": 0.9268 + }, + { + "start": 10992.94, + "end": 10996.72, + "probability": 0.9949 + }, + { + "start": 10997.6, + "end": 10999.48, + "probability": 0.9985 + }, + { + "start": 11000.06, + "end": 11006.72, + "probability": 0.9722 + }, + { + "start": 11007.32, + "end": 11010.62, + "probability": 0.8813 + }, + { + "start": 11010.62, + "end": 11015.24, + "probability": 0.9199 + }, + { + "start": 11015.64, + "end": 11016.78, + "probability": 0.8291 + }, + { + "start": 11018.48, + "end": 11024.16, + "probability": 0.9735 + }, + { + "start": 11026.28, + "end": 11027.64, + "probability": 0.8805 + }, + { + "start": 11028.32, + "end": 11030.38, + "probability": 0.8794 + }, + { + "start": 11031.56, + "end": 11035.78, + "probability": 0.998 + }, + { + "start": 11036.38, + "end": 11037.14, + "probability": 0.9258 + }, + { + "start": 11037.86, + "end": 11042.5, + "probability": 0.9102 + }, + { + "start": 11043.02, + "end": 11043.76, + "probability": 0.7606 + }, + { + "start": 11044.54, + "end": 11045.82, + "probability": 0.7549 + }, + { + "start": 11048.04, + "end": 11048.84, + "probability": 0.7419 + }, + { + "start": 11050.18, + "end": 11052.4, + "probability": 0.9966 + }, + { + "start": 11053.76, + "end": 11055.93, + "probability": 0.9971 + }, + { + "start": 11057.22, + "end": 11062.6, + "probability": 0.9895 + }, + { + "start": 11062.6, + "end": 11066.86, + "probability": 0.9951 + }, + { + "start": 11067.58, + "end": 11068.38, + "probability": 0.8359 + }, + { + "start": 11068.94, + "end": 11074.88, + "probability": 0.9971 + }, + { + "start": 11075.46, + "end": 11076.72, + "probability": 0.9688 + }, + { + "start": 11077.46, + "end": 11079.48, + "probability": 0.9972 + }, + { + "start": 11080.0, + "end": 11080.82, + "probability": 0.7266 + }, + { + "start": 11081.66, + "end": 11085.4, + "probability": 0.958 + }, + { + "start": 11086.04, + "end": 11086.32, + "probability": 0.5177 + }, + { + "start": 11087.06, + "end": 11090.46, + "probability": 0.9549 + }, + { + "start": 11090.58, + "end": 11090.86, + "probability": 0.4121 + }, + { + "start": 11090.86, + "end": 11091.9, + "probability": 0.9189 + }, + { + "start": 11092.06, + "end": 11092.86, + "probability": 0.8486 + }, + { + "start": 11093.98, + "end": 11097.68, + "probability": 0.8776 + }, + { + "start": 11098.5, + "end": 11100.76, + "probability": 0.9878 + }, + { + "start": 11101.62, + "end": 11105.44, + "probability": 0.9867 + }, + { + "start": 11105.44, + "end": 11108.6, + "probability": 0.9996 + }, + { + "start": 11109.36, + "end": 11110.38, + "probability": 0.9982 + }, + { + "start": 11110.94, + "end": 11114.02, + "probability": 0.7974 + }, + { + "start": 11114.86, + "end": 11119.06, + "probability": 0.9464 + }, + { + "start": 11120.6, + "end": 11126.34, + "probability": 0.9881 + }, + { + "start": 11127.26, + "end": 11129.16, + "probability": 0.8923 + }, + { + "start": 11129.28, + "end": 11132.38, + "probability": 0.8032 + }, + { + "start": 11132.98, + "end": 11136.06, + "probability": 0.9833 + }, + { + "start": 11136.68, + "end": 11138.22, + "probability": 0.9346 + }, + { + "start": 11138.64, + "end": 11142.78, + "probability": 0.9867 + }, + { + "start": 11142.78, + "end": 11148.04, + "probability": 0.9945 + }, + { + "start": 11148.92, + "end": 11153.21, + "probability": 0.987 + }, + { + "start": 11154.12, + "end": 11157.02, + "probability": 0.9949 + }, + { + "start": 11157.92, + "end": 11161.58, + "probability": 0.9907 + }, + { + "start": 11162.68, + "end": 11166.32, + "probability": 0.8753 + }, + { + "start": 11167.32, + "end": 11171.7, + "probability": 0.8125 + }, + { + "start": 11172.38, + "end": 11177.22, + "probability": 0.8184 + }, + { + "start": 11177.28, + "end": 11178.96, + "probability": 0.9844 + }, + { + "start": 11179.46, + "end": 11180.78, + "probability": 0.9567 + }, + { + "start": 11181.46, + "end": 11185.18, + "probability": 0.9883 + }, + { + "start": 11186.16, + "end": 11187.92, + "probability": 0.6396 + }, + { + "start": 11188.56, + "end": 11189.52, + "probability": 0.8255 + }, + { + "start": 11190.06, + "end": 11191.0, + "probability": 0.8438 + }, + { + "start": 11191.06, + "end": 11192.3, + "probability": 0.9071 + }, + { + "start": 11192.52, + "end": 11193.6, + "probability": 0.6048 + }, + { + "start": 11194.1, + "end": 11194.1, + "probability": 0.3149 + }, + { + "start": 11194.1, + "end": 11196.28, + "probability": 0.9816 + }, + { + "start": 11196.92, + "end": 11198.42, + "probability": 0.891 + }, + { + "start": 11198.46, + "end": 11201.88, + "probability": 0.8581 + }, + { + "start": 11201.94, + "end": 11204.27, + "probability": 0.7511 + }, + { + "start": 11204.58, + "end": 11207.2, + "probability": 0.9893 + }, + { + "start": 11207.22, + "end": 11207.48, + "probability": 0.7043 + }, + { + "start": 11208.6, + "end": 11210.3, + "probability": 0.9268 + }, + { + "start": 11210.42, + "end": 11211.94, + "probability": 0.9013 + }, + { + "start": 11213.16, + "end": 11213.78, + "probability": 0.8953 + }, + { + "start": 11214.42, + "end": 11217.09, + "probability": 0.7363 + }, + { + "start": 11220.12, + "end": 11220.4, + "probability": 0.9411 + }, + { + "start": 11220.86, + "end": 11221.02, + "probability": 0.4396 + }, + { + "start": 11222.54, + "end": 11224.0, + "probability": 0.6919 + }, + { + "start": 11227.34, + "end": 11227.99, + "probability": 0.262 + }, + { + "start": 11228.14, + "end": 11228.5, + "probability": 0.0246 + }, + { + "start": 11228.64, + "end": 11231.8, + "probability": 0.9756 + }, + { + "start": 11232.02, + "end": 11233.0, + "probability": 0.5447 + }, + { + "start": 11233.12, + "end": 11234.2, + "probability": 0.9702 + }, + { + "start": 11234.24, + "end": 11235.42, + "probability": 0.9059 + }, + { + "start": 11235.48, + "end": 11237.25, + "probability": 0.9451 + }, + { + "start": 11238.12, + "end": 11239.24, + "probability": 0.7466 + }, + { + "start": 11239.78, + "end": 11241.06, + "probability": 0.4368 + }, + { + "start": 11241.08, + "end": 11241.44, + "probability": 0.7358 + }, + { + "start": 11241.52, + "end": 11242.96, + "probability": 0.695 + }, + { + "start": 11243.7, + "end": 11245.64, + "probability": 0.4971 + }, + { + "start": 11245.78, + "end": 11248.96, + "probability": 0.9927 + }, + { + "start": 11249.28, + "end": 11252.48, + "probability": 0.9857 + }, + { + "start": 11254.02, + "end": 11256.34, + "probability": 0.8864 + }, + { + "start": 11257.16, + "end": 11260.4, + "probability": 0.8825 + }, + { + "start": 11261.68, + "end": 11262.5, + "probability": 0.9686 + }, + { + "start": 11262.68, + "end": 11263.72, + "probability": 0.7096 + }, + { + "start": 11263.76, + "end": 11266.0, + "probability": 0.9095 + }, + { + "start": 11266.48, + "end": 11267.36, + "probability": 0.8978 + }, + { + "start": 11268.44, + "end": 11270.42, + "probability": 0.6887 + }, + { + "start": 11270.72, + "end": 11273.6, + "probability": 0.9722 + }, + { + "start": 11274.26, + "end": 11278.02, + "probability": 0.984 + }, + { + "start": 11278.54, + "end": 11282.92, + "probability": 0.9874 + }, + { + "start": 11284.0, + "end": 11286.48, + "probability": 0.9805 + }, + { + "start": 11287.16, + "end": 11287.34, + "probability": 0.7524 + }, + { + "start": 11287.5, + "end": 11291.18, + "probability": 0.9868 + }, + { + "start": 11291.88, + "end": 11295.78, + "probability": 0.9094 + }, + { + "start": 11296.34, + "end": 11297.92, + "probability": 0.9131 + }, + { + "start": 11298.56, + "end": 11304.04, + "probability": 0.9892 + }, + { + "start": 11305.04, + "end": 11306.78, + "probability": 0.9915 + }, + { + "start": 11307.4, + "end": 11311.2, + "probability": 0.9963 + }, + { + "start": 11311.74, + "end": 11313.58, + "probability": 0.9893 + }, + { + "start": 11313.96, + "end": 11317.24, + "probability": 0.8969 + }, + { + "start": 11317.58, + "end": 11323.22, + "probability": 0.9862 + }, + { + "start": 11323.92, + "end": 11327.1, + "probability": 0.8737 + }, + { + "start": 11327.74, + "end": 11330.52, + "probability": 0.9937 + }, + { + "start": 11331.44, + "end": 11333.36, + "probability": 0.6018 + }, + { + "start": 11334.84, + "end": 11336.2, + "probability": 0.8468 + }, + { + "start": 11337.12, + "end": 11339.7, + "probability": 0.8713 + }, + { + "start": 11340.34, + "end": 11341.58, + "probability": 0.6833 + }, + { + "start": 11342.62, + "end": 11346.38, + "probability": 0.6008 + }, + { + "start": 11347.3, + "end": 11350.36, + "probability": 0.7594 + }, + { + "start": 11350.5, + "end": 11352.22, + "probability": 0.7799 + }, + { + "start": 11353.71, + "end": 11355.22, + "probability": 0.9645 + }, + { + "start": 11355.26, + "end": 11356.28, + "probability": 0.839 + }, + { + "start": 11356.64, + "end": 11360.32, + "probability": 0.8077 + }, + { + "start": 11360.42, + "end": 11360.54, + "probability": 0.3666 + }, + { + "start": 11360.68, + "end": 11360.94, + "probability": 0.6495 + }, + { + "start": 11361.0, + "end": 11363.28, + "probability": 0.8644 + }, + { + "start": 11363.38, + "end": 11364.04, + "probability": 0.3386 + }, + { + "start": 11364.2, + "end": 11364.62, + "probability": 0.3495 + }, + { + "start": 11365.06, + "end": 11367.29, + "probability": 0.9035 + }, + { + "start": 11368.34, + "end": 11368.34, + "probability": 0.0768 + }, + { + "start": 11368.34, + "end": 11368.76, + "probability": 0.3953 + }, + { + "start": 11369.72, + "end": 11376.1, + "probability": 0.842 + }, + { + "start": 11376.2, + "end": 11376.55, + "probability": 0.8221 + }, + { + "start": 11377.24, + "end": 11379.44, + "probability": 0.9747 + }, + { + "start": 11379.44, + "end": 11382.08, + "probability": 0.983 + }, + { + "start": 11383.5, + "end": 11385.08, + "probability": 0.4505 + }, + { + "start": 11386.92, + "end": 11390.86, + "probability": 0.758 + }, + { + "start": 11391.28, + "end": 11392.86, + "probability": 0.5188 + }, + { + "start": 11393.62, + "end": 11396.34, + "probability": 0.7427 + }, + { + "start": 11396.4, + "end": 11402.76, + "probability": 0.9958 + }, + { + "start": 11403.06, + "end": 11408.22, + "probability": 0.999 + }, + { + "start": 11409.22, + "end": 11410.08, + "probability": 0.7564 + }, + { + "start": 11410.56, + "end": 11413.4, + "probability": 0.9899 + }, + { + "start": 11413.54, + "end": 11415.3, + "probability": 0.8759 + }, + { + "start": 11416.34, + "end": 11418.34, + "probability": 0.9934 + }, + { + "start": 11419.6, + "end": 11421.15, + "probability": 0.9058 + }, + { + "start": 11422.12, + "end": 11425.76, + "probability": 0.9308 + }, + { + "start": 11426.16, + "end": 11426.78, + "probability": 0.9768 + }, + { + "start": 11426.86, + "end": 11427.22, + "probability": 0.9302 + }, + { + "start": 11427.34, + "end": 11428.86, + "probability": 0.8069 + }, + { + "start": 11429.0, + "end": 11430.32, + "probability": 0.7487 + }, + { + "start": 11430.86, + "end": 11432.16, + "probability": 0.754 + }, + { + "start": 11432.5, + "end": 11435.06, + "probability": 0.9666 + }, + { + "start": 11435.36, + "end": 11435.79, + "probability": 0.5845 + }, + { + "start": 11436.42, + "end": 11438.58, + "probability": 0.9719 + }, + { + "start": 11440.44, + "end": 11445.16, + "probability": 0.9741 + }, + { + "start": 11445.82, + "end": 11448.58, + "probability": 0.9883 + }, + { + "start": 11449.24, + "end": 11450.44, + "probability": 0.9917 + }, + { + "start": 11450.52, + "end": 11451.38, + "probability": 0.8218 + }, + { + "start": 11451.66, + "end": 11456.46, + "probability": 0.9626 + }, + { + "start": 11457.5, + "end": 11460.72, + "probability": 0.8314 + }, + { + "start": 11460.8, + "end": 11462.3, + "probability": 0.9872 + }, + { + "start": 11462.86, + "end": 11464.26, + "probability": 0.6165 + }, + { + "start": 11465.16, + "end": 11467.52, + "probability": 0.9794 + }, + { + "start": 11468.02, + "end": 11469.55, + "probability": 0.9899 + }, + { + "start": 11470.94, + "end": 11473.04, + "probability": 0.9953 + }, + { + "start": 11474.0, + "end": 11476.36, + "probability": 0.9642 + }, + { + "start": 11479.02, + "end": 11482.84, + "probability": 0.7516 + }, + { + "start": 11483.66, + "end": 11484.98, + "probability": 0.627 + }, + { + "start": 11484.98, + "end": 11485.88, + "probability": 0.686 + }, + { + "start": 11486.3, + "end": 11489.0, + "probability": 0.7894 + }, + { + "start": 11489.48, + "end": 11492.04, + "probability": 0.9907 + }, + { + "start": 11492.58, + "end": 11494.06, + "probability": 0.742 + }, + { + "start": 11494.54, + "end": 11498.1, + "probability": 0.9956 + }, + { + "start": 11499.31, + "end": 11505.28, + "probability": 0.9323 + }, + { + "start": 11505.96, + "end": 11508.44, + "probability": 0.9995 + }, + { + "start": 11511.78, + "end": 11519.38, + "probability": 0.844 + }, + { + "start": 11520.5, + "end": 11522.98, + "probability": 0.9797 + }, + { + "start": 11523.14, + "end": 11524.14, + "probability": 0.6604 + }, + { + "start": 11525.42, + "end": 11531.34, + "probability": 0.4497 + }, + { + "start": 11532.02, + "end": 11533.56, + "probability": 0.3367 + }, + { + "start": 11533.94, + "end": 11538.06, + "probability": 0.7365 + }, + { + "start": 11538.52, + "end": 11540.68, + "probability": 0.9966 + }, + { + "start": 11540.78, + "end": 11542.79, + "probability": 0.9866 + }, + { + "start": 11543.46, + "end": 11545.32, + "probability": 0.9333 + }, + { + "start": 11545.6, + "end": 11547.78, + "probability": 0.9919 + }, + { + "start": 11547.94, + "end": 11548.3, + "probability": 0.5867 + }, + { + "start": 11548.68, + "end": 11549.72, + "probability": 0.6602 + }, + { + "start": 11549.78, + "end": 11550.2, + "probability": 0.5176 + }, + { + "start": 11551.16, + "end": 11551.64, + "probability": 0.6279 + }, + { + "start": 11551.78, + "end": 11552.54, + "probability": 0.4149 + }, + { + "start": 11552.7, + "end": 11552.7, + "probability": 0.436 + }, + { + "start": 11552.8, + "end": 11556.88, + "probability": 0.9756 + }, + { + "start": 11557.48, + "end": 11561.1, + "probability": 0.9142 + }, + { + "start": 11561.22, + "end": 11562.2, + "probability": 0.6848 + }, + { + "start": 11562.64, + "end": 11564.66, + "probability": 0.8186 + }, + { + "start": 11564.7, + "end": 11566.36, + "probability": 0.9836 + }, + { + "start": 11567.26, + "end": 11567.9, + "probability": 0.4431 + }, + { + "start": 11568.46, + "end": 11569.86, + "probability": 0.758 + }, + { + "start": 11571.02, + "end": 11573.12, + "probability": 0.9803 + }, + { + "start": 11574.24, + "end": 11574.64, + "probability": 0.2469 + }, + { + "start": 11574.78, + "end": 11576.04, + "probability": 0.7251 + }, + { + "start": 11576.84, + "end": 11578.16, + "probability": 0.7841 + }, + { + "start": 11592.04, + "end": 11592.2, + "probability": 0.2893 + }, + { + "start": 11592.2, + "end": 11593.46, + "probability": 0.6535 + }, + { + "start": 11599.38, + "end": 11604.68, + "probability": 0.8227 + }, + { + "start": 11605.74, + "end": 11608.72, + "probability": 0.8999 + }, + { + "start": 11609.46, + "end": 11613.1, + "probability": 0.9858 + }, + { + "start": 11615.22, + "end": 11619.88, + "probability": 0.7875 + }, + { + "start": 11620.6, + "end": 11622.6, + "probability": 0.9943 + }, + { + "start": 11624.66, + "end": 11625.24, + "probability": 0.0257 + }, + { + "start": 11625.66, + "end": 11629.34, + "probability": 0.9559 + }, + { + "start": 11630.26, + "end": 11633.92, + "probability": 0.9951 + }, + { + "start": 11635.12, + "end": 11641.46, + "probability": 0.9937 + }, + { + "start": 11642.74, + "end": 11645.92, + "probability": 0.9963 + }, + { + "start": 11647.02, + "end": 11648.06, + "probability": 0.9915 + }, + { + "start": 11649.58, + "end": 11654.48, + "probability": 0.9971 + }, + { + "start": 11654.82, + "end": 11659.32, + "probability": 0.9966 + }, + { + "start": 11661.14, + "end": 11665.74, + "probability": 0.9768 + }, + { + "start": 11667.18, + "end": 11673.02, + "probability": 0.9956 + }, + { + "start": 11674.48, + "end": 11677.18, + "probability": 0.9613 + }, + { + "start": 11678.38, + "end": 11680.2, + "probability": 0.9891 + }, + { + "start": 11681.46, + "end": 11685.18, + "probability": 0.9596 + }, + { + "start": 11686.76, + "end": 11689.4, + "probability": 0.9882 + }, + { + "start": 11690.28, + "end": 11691.72, + "probability": 0.91 + }, + { + "start": 11692.46, + "end": 11693.64, + "probability": 0.9976 + }, + { + "start": 11694.3, + "end": 11697.25, + "probability": 0.9958 + }, + { + "start": 11698.3, + "end": 11699.22, + "probability": 0.9991 + }, + { + "start": 11699.94, + "end": 11700.74, + "probability": 0.9922 + }, + { + "start": 11702.12, + "end": 11704.65, + "probability": 0.9937 + }, + { + "start": 11709.52, + "end": 11712.82, + "probability": 0.7545 + }, + { + "start": 11714.6, + "end": 11716.8, + "probability": 0.9943 + }, + { + "start": 11718.06, + "end": 11722.56, + "probability": 0.9984 + }, + { + "start": 11723.7, + "end": 11725.06, + "probability": 0.7372 + }, + { + "start": 11726.04, + "end": 11730.82, + "probability": 0.9825 + }, + { + "start": 11732.12, + "end": 11735.22, + "probability": 0.6516 + }, + { + "start": 11736.34, + "end": 11737.2, + "probability": 0.9354 + }, + { + "start": 11737.76, + "end": 11743.16, + "probability": 0.9886 + }, + { + "start": 11744.18, + "end": 11746.9, + "probability": 0.9885 + }, + { + "start": 11748.04, + "end": 11751.2, + "probability": 0.7997 + }, + { + "start": 11753.26, + "end": 11757.14, + "probability": 0.9973 + }, + { + "start": 11757.9, + "end": 11760.0, + "probability": 0.967 + }, + { + "start": 11760.88, + "end": 11761.3, + "probability": 0.4687 + }, + { + "start": 11761.46, + "end": 11761.76, + "probability": 0.8391 + }, + { + "start": 11761.84, + "end": 11765.53, + "probability": 0.9106 + }, + { + "start": 11765.76, + "end": 11768.92, + "probability": 0.8145 + }, + { + "start": 11769.62, + "end": 11771.38, + "probability": 0.8112 + }, + { + "start": 11771.96, + "end": 11773.95, + "probability": 0.9927 + }, + { + "start": 11774.78, + "end": 11776.36, + "probability": 0.97 + }, + { + "start": 11776.82, + "end": 11778.72, + "probability": 0.6709 + }, + { + "start": 11779.3, + "end": 11784.12, + "probability": 0.9551 + }, + { + "start": 11785.16, + "end": 11787.9, + "probability": 0.9817 + }, + { + "start": 11788.86, + "end": 11795.68, + "probability": 0.9839 + }, + { + "start": 11796.38, + "end": 11800.94, + "probability": 0.9296 + }, + { + "start": 11801.84, + "end": 11803.28, + "probability": 0.9443 + }, + { + "start": 11804.12, + "end": 11809.64, + "probability": 0.9893 + }, + { + "start": 11810.26, + "end": 11811.56, + "probability": 0.9512 + }, + { + "start": 11812.56, + "end": 11819.94, + "probability": 0.9042 + }, + { + "start": 11821.4, + "end": 11823.72, + "probability": 0.9043 + }, + { + "start": 11823.9, + "end": 11827.84, + "probability": 0.968 + }, + { + "start": 11829.48, + "end": 11832.14, + "probability": 0.9009 + }, + { + "start": 11833.26, + "end": 11835.78, + "probability": 0.9811 + }, + { + "start": 11836.92, + "end": 11838.98, + "probability": 0.9731 + }, + { + "start": 11840.65, + "end": 11844.54, + "probability": 0.986 + }, + { + "start": 11845.28, + "end": 11847.54, + "probability": 0.8071 + }, + { + "start": 11848.16, + "end": 11850.44, + "probability": 0.955 + }, + { + "start": 11851.22, + "end": 11854.52, + "probability": 0.995 + }, + { + "start": 11855.18, + "end": 11857.48, + "probability": 0.9971 + }, + { + "start": 11858.38, + "end": 11860.28, + "probability": 0.9188 + }, + { + "start": 11860.94, + "end": 11862.92, + "probability": 0.9756 + }, + { + "start": 11863.6, + "end": 11866.33, + "probability": 0.9643 + }, + { + "start": 11866.62, + "end": 11871.26, + "probability": 0.9847 + }, + { + "start": 11871.46, + "end": 11872.0, + "probability": 0.8263 + }, + { + "start": 11872.06, + "end": 11872.62, + "probability": 0.7874 + }, + { + "start": 11873.7, + "end": 11874.46, + "probability": 0.8046 + }, + { + "start": 11874.98, + "end": 11875.66, + "probability": 0.6643 + }, + { + "start": 11875.86, + "end": 11876.8, + "probability": 0.892 + }, + { + "start": 11877.26, + "end": 11880.66, + "probability": 0.926 + }, + { + "start": 11880.74, + "end": 11882.86, + "probability": 0.6932 + }, + { + "start": 11883.72, + "end": 11885.78, + "probability": 0.9191 + }, + { + "start": 11888.82, + "end": 11889.98, + "probability": 0.8043 + }, + { + "start": 11890.76, + "end": 11894.3, + "probability": 0.9556 + }, + { + "start": 11894.3, + "end": 11898.38, + "probability": 0.998 + }, + { + "start": 11899.78, + "end": 11901.34, + "probability": 0.9905 + }, + { + "start": 11901.42, + "end": 11902.76, + "probability": 0.9479 + }, + { + "start": 11904.14, + "end": 11904.96, + "probability": 0.901 + }, + { + "start": 11906.48, + "end": 11907.94, + "probability": 0.7982 + }, + { + "start": 11918.32, + "end": 11918.32, + "probability": 0.6879 + }, + { + "start": 11918.32, + "end": 11919.66, + "probability": 0.5328 + }, + { + "start": 11924.36, + "end": 11926.44, + "probability": 0.748 + }, + { + "start": 11928.4, + "end": 11931.6, + "probability": 0.9934 + }, + { + "start": 11933.9, + "end": 11936.44, + "probability": 0.9804 + }, + { + "start": 11936.54, + "end": 11937.58, + "probability": 0.9636 + }, + { + "start": 11937.62, + "end": 11941.08, + "probability": 0.9868 + }, + { + "start": 11942.6, + "end": 11947.38, + "probability": 0.9267 + }, + { + "start": 11947.46, + "end": 11948.33, + "probability": 0.6937 + }, + { + "start": 11949.0, + "end": 11953.56, + "probability": 0.9897 + }, + { + "start": 11953.56, + "end": 11958.48, + "probability": 0.9872 + }, + { + "start": 11959.68, + "end": 11964.64, + "probability": 0.9874 + }, + { + "start": 11965.64, + "end": 11969.0, + "probability": 0.994 + }, + { + "start": 11969.74, + "end": 11972.09, + "probability": 0.9828 + }, + { + "start": 11972.4, + "end": 11977.38, + "probability": 0.9877 + }, + { + "start": 11977.48, + "end": 11979.68, + "probability": 0.9896 + }, + { + "start": 11980.6, + "end": 11981.76, + "probability": 0.7706 + }, + { + "start": 11982.58, + "end": 11984.3, + "probability": 0.9401 + }, + { + "start": 11987.18, + "end": 11989.1, + "probability": 0.9907 + }, + { + "start": 11989.82, + "end": 11990.02, + "probability": 0.8572 + }, + { + "start": 11990.46, + "end": 11991.84, + "probability": 0.9578 + }, + { + "start": 11992.14, + "end": 11994.24, + "probability": 0.9934 + }, + { + "start": 11994.4, + "end": 11996.6, + "probability": 0.9873 + }, + { + "start": 11996.72, + "end": 11997.84, + "probability": 0.7317 + }, + { + "start": 11998.14, + "end": 11999.58, + "probability": 0.664 + }, + { + "start": 11999.7, + "end": 12000.44, + "probability": 0.9073 + }, + { + "start": 12000.88, + "end": 12002.32, + "probability": 0.9596 + }, + { + "start": 12002.96, + "end": 12003.76, + "probability": 0.4995 + }, + { + "start": 12003.84, + "end": 12008.3, + "probability": 0.8759 + }, + { + "start": 12008.4, + "end": 12011.54, + "probability": 0.8623 + }, + { + "start": 12011.88, + "end": 12012.4, + "probability": 0.7476 + }, + { + "start": 12012.46, + "end": 12015.5, + "probability": 0.9517 + }, + { + "start": 12015.88, + "end": 12018.14, + "probability": 0.9975 + }, + { + "start": 12018.2, + "end": 12018.94, + "probability": 0.9747 + }, + { + "start": 12019.6, + "end": 12024.58, + "probability": 0.8708 + }, + { + "start": 12024.58, + "end": 12028.88, + "probability": 0.9703 + }, + { + "start": 12028.92, + "end": 12029.68, + "probability": 0.9351 + }, + { + "start": 12030.02, + "end": 12031.7, + "probability": 0.9454 + }, + { + "start": 12032.04, + "end": 12035.96, + "probability": 0.9648 + }, + { + "start": 12035.96, + "end": 12038.16, + "probability": 0.9541 + }, + { + "start": 12038.5, + "end": 12040.08, + "probability": 0.9961 + }, + { + "start": 12040.74, + "end": 12046.68, + "probability": 0.9866 + }, + { + "start": 12046.82, + "end": 12047.9, + "probability": 0.8891 + }, + { + "start": 12048.12, + "end": 12049.38, + "probability": 0.9479 + }, + { + "start": 12049.44, + "end": 12051.26, + "probability": 0.9293 + }, + { + "start": 12051.52, + "end": 12052.74, + "probability": 0.9401 + }, + { + "start": 12052.9, + "end": 12055.66, + "probability": 0.9485 + }, + { + "start": 12055.78, + "end": 12057.5, + "probability": 0.9895 + }, + { + "start": 12057.76, + "end": 12059.38, + "probability": 0.9918 + }, + { + "start": 12059.58, + "end": 12063.88, + "probability": 0.9621 + }, + { + "start": 12064.48, + "end": 12067.68, + "probability": 0.9883 + }, + { + "start": 12068.22, + "end": 12070.04, + "probability": 0.9701 + }, + { + "start": 12070.16, + "end": 12073.86, + "probability": 0.9967 + }, + { + "start": 12075.38, + "end": 12078.26, + "probability": 0.9722 + }, + { + "start": 12078.36, + "end": 12080.46, + "probability": 0.9686 + }, + { + "start": 12081.3, + "end": 12082.22, + "probability": 0.9484 + }, + { + "start": 12082.92, + "end": 12084.16, + "probability": 0.6488 + }, + { + "start": 12084.54, + "end": 12086.14, + "probability": 0.9912 + }, + { + "start": 12086.2, + "end": 12089.16, + "probability": 0.95 + }, + { + "start": 12089.16, + "end": 12091.86, + "probability": 0.9635 + }, + { + "start": 12092.22, + "end": 12095.9, + "probability": 0.993 + }, + { + "start": 12096.86, + "end": 12098.7, + "probability": 0.9932 + }, + { + "start": 12098.86, + "end": 12101.48, + "probability": 0.9888 + }, + { + "start": 12102.02, + "end": 12104.76, + "probability": 0.9473 + }, + { + "start": 12105.1, + "end": 12106.6, + "probability": 0.9681 + }, + { + "start": 12106.7, + "end": 12106.88, + "probability": 0.803 + }, + { + "start": 12108.5, + "end": 12111.04, + "probability": 0.8906 + }, + { + "start": 12111.48, + "end": 12112.72, + "probability": 0.8733 + }, + { + "start": 12113.64, + "end": 12114.22, + "probability": 0.318 + }, + { + "start": 12114.78, + "end": 12116.5, + "probability": 0.5913 + }, + { + "start": 12117.82, + "end": 12118.5, + "probability": 0.4595 + }, + { + "start": 12128.6, + "end": 12129.5, + "probability": 0.8357 + }, + { + "start": 12130.71, + "end": 12131.26, + "probability": 0.6205 + }, + { + "start": 12132.06, + "end": 12132.88, + "probability": 0.6601 + }, + { + "start": 12134.26, + "end": 12137.9, + "probability": 0.9398 + }, + { + "start": 12137.9, + "end": 12139.88, + "probability": 0.9794 + }, + { + "start": 12140.86, + "end": 12143.82, + "probability": 0.9848 + }, + { + "start": 12143.82, + "end": 12147.88, + "probability": 0.9421 + }, + { + "start": 12148.24, + "end": 12153.16, + "probability": 0.9688 + }, + { + "start": 12153.26, + "end": 12155.42, + "probability": 0.9978 + }, + { + "start": 12155.42, + "end": 12159.1, + "probability": 0.9468 + }, + { + "start": 12160.1, + "end": 12161.58, + "probability": 0.8985 + }, + { + "start": 12161.62, + "end": 12164.18, + "probability": 0.7954 + }, + { + "start": 12164.7, + "end": 12166.48, + "probability": 0.7898 + }, + { + "start": 12167.06, + "end": 12168.74, + "probability": 0.2307 + }, + { + "start": 12169.08, + "end": 12170.64, + "probability": 0.9776 + }, + { + "start": 12170.72, + "end": 12172.36, + "probability": 0.9641 + }, + { + "start": 12173.27, + "end": 12174.34, + "probability": 0.538 + }, + { + "start": 12174.52, + "end": 12175.18, + "probability": 0.4934 + }, + { + "start": 12175.24, + "end": 12176.82, + "probability": 0.7173 + }, + { + "start": 12177.36, + "end": 12179.34, + "probability": 0.9514 + }, + { + "start": 12179.56, + "end": 12181.22, + "probability": 0.9535 + }, + { + "start": 12181.84, + "end": 12184.39, + "probability": 0.957 + }, + { + "start": 12184.94, + "end": 12187.92, + "probability": 0.7156 + }, + { + "start": 12188.4, + "end": 12192.46, + "probability": 0.9235 + }, + { + "start": 12192.48, + "end": 12194.48, + "probability": 0.9556 + }, + { + "start": 12194.78, + "end": 12198.36, + "probability": 0.6931 + }, + { + "start": 12198.46, + "end": 12198.98, + "probability": 0.7666 + }, + { + "start": 12199.32, + "end": 12202.76, + "probability": 0.9705 + }, + { + "start": 12202.98, + "end": 12204.12, + "probability": 0.869 + }, + { + "start": 12204.48, + "end": 12205.7, + "probability": 0.9216 + }, + { + "start": 12205.8, + "end": 12208.66, + "probability": 0.9902 + }, + { + "start": 12209.18, + "end": 12211.39, + "probability": 0.7784 + }, + { + "start": 12211.86, + "end": 12214.34, + "probability": 0.9938 + }, + { + "start": 12214.56, + "end": 12216.56, + "probability": 0.9797 + }, + { + "start": 12216.98, + "end": 12217.54, + "probability": 0.6238 + }, + { + "start": 12218.08, + "end": 12218.52, + "probability": 0.6925 + }, + { + "start": 12218.58, + "end": 12221.28, + "probability": 0.9908 + }, + { + "start": 12221.28, + "end": 12224.0, + "probability": 0.9601 + }, + { + "start": 12224.88, + "end": 12228.62, + "probability": 0.9671 + }, + { + "start": 12228.82, + "end": 12231.88, + "probability": 0.939 + }, + { + "start": 12231.94, + "end": 12235.17, + "probability": 0.6818 + }, + { + "start": 12235.78, + "end": 12238.84, + "probability": 0.8152 + }, + { + "start": 12239.32, + "end": 12240.38, + "probability": 0.8083 + }, + { + "start": 12241.22, + "end": 12243.38, + "probability": 0.8155 + }, + { + "start": 12243.78, + "end": 12245.32, + "probability": 0.978 + }, + { + "start": 12245.98, + "end": 12249.88, + "probability": 0.9639 + }, + { + "start": 12250.42, + "end": 12253.22, + "probability": 0.887 + }, + { + "start": 12253.22, + "end": 12256.26, + "probability": 0.9737 + }, + { + "start": 12256.6, + "end": 12258.55, + "probability": 0.8809 + }, + { + "start": 12258.9, + "end": 12260.44, + "probability": 0.9673 + }, + { + "start": 12260.5, + "end": 12261.12, + "probability": 0.9325 + }, + { + "start": 12261.74, + "end": 12263.2, + "probability": 0.9476 + }, + { + "start": 12263.26, + "end": 12265.4, + "probability": 0.9475 + }, + { + "start": 12265.66, + "end": 12267.3, + "probability": 0.9508 + }, + { + "start": 12267.6, + "end": 12269.14, + "probability": 0.7604 + }, + { + "start": 12270.0, + "end": 12271.44, + "probability": 0.9829 + }, + { + "start": 12271.72, + "end": 12273.72, + "probability": 0.8545 + }, + { + "start": 12274.04, + "end": 12276.76, + "probability": 0.9042 + }, + { + "start": 12276.84, + "end": 12279.2, + "probability": 0.9975 + }, + { + "start": 12279.78, + "end": 12281.76, + "probability": 0.9958 + }, + { + "start": 12282.02, + "end": 12283.2, + "probability": 0.9968 + }, + { + "start": 12283.96, + "end": 12290.08, + "probability": 0.9004 + }, + { + "start": 12290.24, + "end": 12291.96, + "probability": 0.7663 + }, + { + "start": 12292.34, + "end": 12296.12, + "probability": 0.9319 + }, + { + "start": 12296.78, + "end": 12300.34, + "probability": 0.3187 + }, + { + "start": 12300.42, + "end": 12303.24, + "probability": 0.7317 + }, + { + "start": 12303.62, + "end": 12307.56, + "probability": 0.9921 + }, + { + "start": 12307.86, + "end": 12310.06, + "probability": 0.9551 + }, + { + "start": 12310.4, + "end": 12312.15, + "probability": 0.9458 + }, + { + "start": 12312.28, + "end": 12316.4, + "probability": 0.9897 + }, + { + "start": 12317.26, + "end": 12320.05, + "probability": 0.9134 + }, + { + "start": 12320.42, + "end": 12321.98, + "probability": 0.9602 + }, + { + "start": 12322.26, + "end": 12325.14, + "probability": 0.8236 + }, + { + "start": 12325.68, + "end": 12327.6, + "probability": 0.9808 + }, + { + "start": 12327.6, + "end": 12330.54, + "probability": 0.9765 + }, + { + "start": 12331.02, + "end": 12332.28, + "probability": 0.8039 + }, + { + "start": 12332.74, + "end": 12335.5, + "probability": 0.8549 + }, + { + "start": 12336.3, + "end": 12339.24, + "probability": 0.9851 + }, + { + "start": 12339.8, + "end": 12341.86, + "probability": 0.8682 + }, + { + "start": 12342.58, + "end": 12343.84, + "probability": 0.8474 + }, + { + "start": 12344.86, + "end": 12347.16, + "probability": 0.9788 + }, + { + "start": 12347.36, + "end": 12348.88, + "probability": 0.9905 + }, + { + "start": 12349.46, + "end": 12351.64, + "probability": 0.9528 + }, + { + "start": 12351.98, + "end": 12355.82, + "probability": 0.9858 + }, + { + "start": 12356.28, + "end": 12357.24, + "probability": 0.9403 + }, + { + "start": 12357.66, + "end": 12361.54, + "probability": 0.9467 + }, + { + "start": 12361.64, + "end": 12362.44, + "probability": 0.8295 + }, + { + "start": 12362.6, + "end": 12363.72, + "probability": 0.8415 + }, + { + "start": 12363.84, + "end": 12366.62, + "probability": 0.9912 + }, + { + "start": 12366.92, + "end": 12369.56, + "probability": 0.8804 + }, + { + "start": 12369.64, + "end": 12370.72, + "probability": 0.9722 + }, + { + "start": 12371.3, + "end": 12372.14, + "probability": 0.8462 + }, + { + "start": 12373.1, + "end": 12374.78, + "probability": 0.8872 + }, + { + "start": 12375.12, + "end": 12379.92, + "probability": 0.9531 + }, + { + "start": 12380.48, + "end": 12380.66, + "probability": 0.5346 + }, + { + "start": 12380.82, + "end": 12384.46, + "probability": 0.9635 + }, + { + "start": 12384.8, + "end": 12386.6, + "probability": 0.8716 + }, + { + "start": 12386.62, + "end": 12389.08, + "probability": 0.9046 + }, + { + "start": 12389.62, + "end": 12393.0, + "probability": 0.9983 + }, + { + "start": 12393.0, + "end": 12396.4, + "probability": 0.9919 + }, + { + "start": 12397.04, + "end": 12398.72, + "probability": 0.8355 + }, + { + "start": 12401.68, + "end": 12402.96, + "probability": 0.3797 + }, + { + "start": 12403.06, + "end": 12407.24, + "probability": 0.9934 + }, + { + "start": 12407.58, + "end": 12410.37, + "probability": 0.9541 + }, + { + "start": 12410.8, + "end": 12411.68, + "probability": 0.944 + }, + { + "start": 12411.86, + "end": 12414.78, + "probability": 0.8542 + }, + { + "start": 12415.12, + "end": 12415.44, + "probability": 0.965 + }, + { + "start": 12416.34, + "end": 12416.58, + "probability": 0.4889 + }, + { + "start": 12417.02, + "end": 12418.08, + "probability": 0.876 + }, + { + "start": 12418.14, + "end": 12418.96, + "probability": 0.9186 + }, + { + "start": 12419.3, + "end": 12420.34, + "probability": 0.7517 + }, + { + "start": 12420.36, + "end": 12421.82, + "probability": 0.6567 + }, + { + "start": 12422.32, + "end": 12424.46, + "probability": 0.9717 + }, + { + "start": 12424.78, + "end": 12425.9, + "probability": 0.9263 + }, + { + "start": 12426.18, + "end": 12427.98, + "probability": 0.8548 + }, + { + "start": 12428.34, + "end": 12430.74, + "probability": 0.7623 + }, + { + "start": 12430.88, + "end": 12432.3, + "probability": 0.9902 + }, + { + "start": 12432.66, + "end": 12435.32, + "probability": 0.9654 + }, + { + "start": 12435.84, + "end": 12436.6, + "probability": 0.8647 + }, + { + "start": 12436.72, + "end": 12439.74, + "probability": 0.9445 + }, + { + "start": 12439.98, + "end": 12441.64, + "probability": 0.6607 + }, + { + "start": 12442.16, + "end": 12444.14, + "probability": 0.9801 + }, + { + "start": 12444.14, + "end": 12446.88, + "probability": 0.9266 + }, + { + "start": 12447.66, + "end": 12449.02, + "probability": 0.4495 + }, + { + "start": 12449.12, + "end": 12453.46, + "probability": 0.9852 + }, + { + "start": 12453.48, + "end": 12456.06, + "probability": 0.9109 + }, + { + "start": 12456.8, + "end": 12457.3, + "probability": 0.7478 + }, + { + "start": 12458.16, + "end": 12459.14, + "probability": 0.9771 + }, + { + "start": 12461.08, + "end": 12463.4, + "probability": 0.9032 + }, + { + "start": 12471.52, + "end": 12473.68, + "probability": 0.8147 + }, + { + "start": 12476.12, + "end": 12477.18, + "probability": 0.8488 + }, + { + "start": 12477.3, + "end": 12478.26, + "probability": 0.8704 + }, + { + "start": 12478.42, + "end": 12479.08, + "probability": 0.8355 + }, + { + "start": 12479.2, + "end": 12480.52, + "probability": 0.6483 + }, + { + "start": 12481.42, + "end": 12484.5, + "probability": 0.9939 + }, + { + "start": 12485.12, + "end": 12488.16, + "probability": 0.9221 + }, + { + "start": 12489.02, + "end": 12492.46, + "probability": 0.9785 + }, + { + "start": 12493.76, + "end": 12497.5, + "probability": 0.9935 + }, + { + "start": 12498.42, + "end": 12498.98, + "probability": 0.918 + }, + { + "start": 12499.14, + "end": 12502.56, + "probability": 0.9957 + }, + { + "start": 12502.56, + "end": 12505.58, + "probability": 0.997 + }, + { + "start": 12506.08, + "end": 12507.32, + "probability": 0.8893 + }, + { + "start": 12507.74, + "end": 12508.78, + "probability": 0.9761 + }, + { + "start": 12508.88, + "end": 12513.66, + "probability": 0.9934 + }, + { + "start": 12513.66, + "end": 12519.0, + "probability": 0.9975 + }, + { + "start": 12519.12, + "end": 12519.66, + "probability": 0.912 + }, + { + "start": 12520.44, + "end": 12524.18, + "probability": 0.9805 + }, + { + "start": 12524.26, + "end": 12527.66, + "probability": 0.9977 + }, + { + "start": 12528.6, + "end": 12530.16, + "probability": 0.9865 + }, + { + "start": 12530.9, + "end": 12533.68, + "probability": 0.9805 + }, + { + "start": 12534.58, + "end": 12538.82, + "probability": 0.9832 + }, + { + "start": 12539.56, + "end": 12543.4, + "probability": 0.9729 + }, + { + "start": 12543.96, + "end": 12545.36, + "probability": 0.8691 + }, + { + "start": 12545.92, + "end": 12551.6, + "probability": 0.9933 + }, + { + "start": 12551.6, + "end": 12556.3, + "probability": 0.9964 + }, + { + "start": 12557.22, + "end": 12559.2, + "probability": 0.9541 + }, + { + "start": 12559.72, + "end": 12566.28, + "probability": 0.8922 + }, + { + "start": 12566.28, + "end": 12572.12, + "probability": 0.9802 + }, + { + "start": 12572.76, + "end": 12576.04, + "probability": 0.757 + }, + { + "start": 12577.12, + "end": 12580.56, + "probability": 0.6797 + }, + { + "start": 12580.56, + "end": 12580.77, + "probability": 0.3436 + }, + { + "start": 12581.7, + "end": 12587.38, + "probability": 0.9764 + }, + { + "start": 12587.84, + "end": 12591.58, + "probability": 0.9906 + }, + { + "start": 12592.38, + "end": 12595.7, + "probability": 0.995 + }, + { + "start": 12595.8, + "end": 12597.66, + "probability": 0.9722 + }, + { + "start": 12598.1, + "end": 12598.68, + "probability": 0.7193 + }, + { + "start": 12598.8, + "end": 12601.54, + "probability": 0.9922 + }, + { + "start": 12601.54, + "end": 12603.8, + "probability": 0.9971 + }, + { + "start": 12604.64, + "end": 12606.42, + "probability": 0.9907 + }, + { + "start": 12607.02, + "end": 12607.46, + "probability": 0.7255 + }, + { + "start": 12608.64, + "end": 12611.6, + "probability": 0.9553 + }, + { + "start": 12611.7, + "end": 12614.7, + "probability": 0.9977 + }, + { + "start": 12615.2, + "end": 12617.08, + "probability": 0.5731 + }, + { + "start": 12617.7, + "end": 12619.26, + "probability": 0.9858 + }, + { + "start": 12619.78, + "end": 12621.4, + "probability": 0.9929 + }, + { + "start": 12621.72, + "end": 12623.2, + "probability": 0.9838 + }, + { + "start": 12623.68, + "end": 12627.36, + "probability": 0.9807 + }, + { + "start": 12627.9, + "end": 12629.94, + "probability": 0.9795 + }, + { + "start": 12630.4, + "end": 12631.98, + "probability": 0.9903 + }, + { + "start": 12632.34, + "end": 12635.82, + "probability": 0.8148 + }, + { + "start": 12636.2, + "end": 12638.08, + "probability": 0.9885 + }, + { + "start": 12638.48, + "end": 12639.3, + "probability": 0.8882 + }, + { + "start": 12639.66, + "end": 12640.32, + "probability": 0.8177 + }, + { + "start": 12640.78, + "end": 12642.74, + "probability": 0.9941 + }, + { + "start": 12642.78, + "end": 12643.37, + "probability": 0.7151 + }, + { + "start": 12643.98, + "end": 12644.1, + "probability": 0.151 + }, + { + "start": 12644.1, + "end": 12644.24, + "probability": 0.7144 + }, + { + "start": 12644.36, + "end": 12645.58, + "probability": 0.8107 + }, + { + "start": 12646.06, + "end": 12652.12, + "probability": 0.9652 + }, + { + "start": 12653.14, + "end": 12653.44, + "probability": 0.8439 + }, + { + "start": 12654.34, + "end": 12656.74, + "probability": 0.91 + }, + { + "start": 12657.62, + "end": 12658.34, + "probability": 0.9293 + }, + { + "start": 12658.44, + "end": 12661.02, + "probability": 0.9937 + }, + { + "start": 12662.12, + "end": 12664.98, + "probability": 0.9946 + }, + { + "start": 12665.92, + "end": 12670.04, + "probability": 0.9954 + }, + { + "start": 12670.24, + "end": 12673.92, + "probability": 0.9978 + }, + { + "start": 12674.88, + "end": 12675.92, + "probability": 0.9604 + }, + { + "start": 12677.26, + "end": 12680.96, + "probability": 0.998 + }, + { + "start": 12681.86, + "end": 12683.96, + "probability": 0.756 + }, + { + "start": 12685.3, + "end": 12689.92, + "probability": 0.9912 + }, + { + "start": 12691.02, + "end": 12692.4, + "probability": 0.9183 + }, + { + "start": 12693.9, + "end": 12694.68, + "probability": 0.4981 + }, + { + "start": 12695.44, + "end": 12698.02, + "probability": 0.9861 + }, + { + "start": 12699.16, + "end": 12699.58, + "probability": 0.9746 + }, + { + "start": 12700.34, + "end": 12700.62, + "probability": 0.2339 + }, + { + "start": 12700.62, + "end": 12700.98, + "probability": 0.5191 + }, + { + "start": 12702.28, + "end": 12704.3, + "probability": 0.7724 + }, + { + "start": 12705.42, + "end": 12706.24, + "probability": 0.896 + }, + { + "start": 12707.08, + "end": 12714.08, + "probability": 0.9872 + }, + { + "start": 12714.58, + "end": 12717.8, + "probability": 0.695 + }, + { + "start": 12718.81, + "end": 12720.38, + "probability": 0.2152 + }, + { + "start": 12721.56, + "end": 12722.86, + "probability": 0.9109 + }, + { + "start": 12724.04, + "end": 12726.14, + "probability": 0.8809 + }, + { + "start": 12726.8, + "end": 12729.7, + "probability": 0.986 + }, + { + "start": 12730.34, + "end": 12732.18, + "probability": 0.9678 + }, + { + "start": 12733.5, + "end": 12737.5, + "probability": 0.9882 + }, + { + "start": 12738.74, + "end": 12742.48, + "probability": 0.9852 + }, + { + "start": 12743.62, + "end": 12745.52, + "probability": 0.9744 + }, + { + "start": 12745.68, + "end": 12746.76, + "probability": 0.9697 + }, + { + "start": 12747.48, + "end": 12752.84, + "probability": 0.9971 + }, + { + "start": 12753.44, + "end": 12756.18, + "probability": 0.995 + }, + { + "start": 12756.9, + "end": 12760.47, + "probability": 0.9932 + }, + { + "start": 12761.58, + "end": 12762.44, + "probability": 0.7378 + }, + { + "start": 12763.7, + "end": 12764.62, + "probability": 0.9482 + }, + { + "start": 12764.7, + "end": 12765.44, + "probability": 0.8238 + }, + { + "start": 12766.28, + "end": 12767.97, + "probability": 0.8224 + }, + { + "start": 12769.38, + "end": 12770.8, + "probability": 0.5882 + }, + { + "start": 12771.8, + "end": 12773.8, + "probability": 0.7911 + }, + { + "start": 12774.62, + "end": 12776.88, + "probability": 0.8313 + }, + { + "start": 12776.9, + "end": 12777.26, + "probability": 0.3589 + }, + { + "start": 12777.26, + "end": 12777.82, + "probability": 0.6125 + }, + { + "start": 12778.92, + "end": 12782.88, + "probability": 0.9969 + }, + { + "start": 12783.62, + "end": 12786.66, + "probability": 0.9984 + }, + { + "start": 12787.12, + "end": 12788.38, + "probability": 0.9107 + }, + { + "start": 12788.74, + "end": 12790.42, + "probability": 0.7974 + }, + { + "start": 12790.5, + "end": 12790.74, + "probability": 0.3103 + }, + { + "start": 12790.82, + "end": 12794.22, + "probability": 0.8992 + }, + { + "start": 12795.4, + "end": 12796.28, + "probability": 0.728 + }, + { + "start": 12796.28, + "end": 12796.28, + "probability": 0.408 + }, + { + "start": 12796.28, + "end": 12797.56, + "probability": 0.8491 + }, + { + "start": 12798.86, + "end": 12799.5, + "probability": 0.7264 + }, + { + "start": 12799.98, + "end": 12801.14, + "probability": 0.9132 + }, + { + "start": 12802.72, + "end": 12802.76, + "probability": 0.4333 + }, + { + "start": 12812.34, + "end": 12812.44, + "probability": 0.3536 + }, + { + "start": 12812.44, + "end": 12813.68, + "probability": 0.7273 + }, + { + "start": 12815.18, + "end": 12817.42, + "probability": 0.8418 + }, + { + "start": 12818.32, + "end": 12819.96, + "probability": 0.5941 + }, + { + "start": 12821.6, + "end": 12824.78, + "probability": 0.9058 + }, + { + "start": 12824.98, + "end": 12825.76, + "probability": 0.9046 + }, + { + "start": 12825.9, + "end": 12830.92, + "probability": 0.973 + }, + { + "start": 12831.8, + "end": 12836.42, + "probability": 0.8622 + }, + { + "start": 12837.95, + "end": 12841.7, + "probability": 0.9922 + }, + { + "start": 12844.24, + "end": 12845.74, + "probability": 0.7683 + }, + { + "start": 12846.86, + "end": 12847.72, + "probability": 0.5388 + }, + { + "start": 12847.98, + "end": 12848.7, + "probability": 0.8578 + }, + { + "start": 12849.26, + "end": 12849.66, + "probability": 0.3313 + }, + { + "start": 12850.26, + "end": 12850.94, + "probability": 0.9259 + }, + { + "start": 12851.28, + "end": 12852.11, + "probability": 0.9559 + }, + { + "start": 12852.64, + "end": 12855.08, + "probability": 0.4838 + }, + { + "start": 12855.62, + "end": 12858.44, + "probability": 0.9312 + }, + { + "start": 12858.94, + "end": 12860.62, + "probability": 0.9257 + }, + { + "start": 12861.02, + "end": 12862.86, + "probability": 0.9742 + }, + { + "start": 12863.58, + "end": 12865.6, + "probability": 0.9207 + }, + { + "start": 12866.88, + "end": 12875.04, + "probability": 0.9507 + }, + { + "start": 12875.32, + "end": 12875.84, + "probability": 0.7223 + }, + { + "start": 12875.94, + "end": 12878.16, + "probability": 0.8752 + }, + { + "start": 12878.9, + "end": 12883.4, + "probability": 0.9918 + }, + { + "start": 12883.48, + "end": 12883.86, + "probability": 0.8971 + }, + { + "start": 12884.2, + "end": 12886.06, + "probability": 0.8918 + }, + { + "start": 12887.32, + "end": 12888.12, + "probability": 0.7231 + }, + { + "start": 12888.84, + "end": 12890.14, + "probability": 0.8422 + }, + { + "start": 12890.98, + "end": 12892.3, + "probability": 0.917 + }, + { + "start": 12892.96, + "end": 12893.46, + "probability": 0.5099 + }, + { + "start": 12894.24, + "end": 12894.66, + "probability": 0.6818 + }, + { + "start": 12894.7, + "end": 12895.66, + "probability": 0.9331 + }, + { + "start": 12895.96, + "end": 12900.86, + "probability": 0.9467 + }, + { + "start": 12901.0, + "end": 12905.66, + "probability": 0.4568 + }, + { + "start": 12906.14, + "end": 12908.82, + "probability": 0.7452 + }, + { + "start": 12909.82, + "end": 12910.72, + "probability": 0.874 + }, + { + "start": 12911.18, + "end": 12913.04, + "probability": 0.987 + }, + { + "start": 12913.18, + "end": 12914.14, + "probability": 0.9729 + }, + { + "start": 12914.18, + "end": 12915.0, + "probability": 0.7694 + }, + { + "start": 12915.16, + "end": 12916.43, + "probability": 0.9635 + }, + { + "start": 12917.2, + "end": 12917.92, + "probability": 0.5565 + }, + { + "start": 12918.4, + "end": 12918.76, + "probability": 0.4992 + }, + { + "start": 12919.92, + "end": 12924.62, + "probability": 0.8327 + }, + { + "start": 12925.16, + "end": 12930.8, + "probability": 0.9799 + }, + { + "start": 12931.36, + "end": 12935.3, + "probability": 0.9297 + }, + { + "start": 12936.08, + "end": 12937.88, + "probability": 0.9843 + }, + { + "start": 12938.6, + "end": 12939.8, + "probability": 0.8969 + }, + { + "start": 12939.92, + "end": 12944.0, + "probability": 0.7773 + }, + { + "start": 12944.44, + "end": 12945.32, + "probability": 0.6064 + }, + { + "start": 12946.94, + "end": 12947.08, + "probability": 0.3416 + }, + { + "start": 12947.18, + "end": 12948.02, + "probability": 0.6025 + }, + { + "start": 12948.28, + "end": 12949.52, + "probability": 0.7931 + }, + { + "start": 12949.54, + "end": 12950.62, + "probability": 0.7003 + }, + { + "start": 12951.84, + "end": 12954.68, + "probability": 0.7078 + }, + { + "start": 12955.38, + "end": 12958.5, + "probability": 0.9231 + }, + { + "start": 12959.26, + "end": 12960.98, + "probability": 0.9739 + }, + { + "start": 12961.5, + "end": 12964.72, + "probability": 0.9609 + }, + { + "start": 12964.82, + "end": 12965.62, + "probability": 0.8937 + }, + { + "start": 12966.06, + "end": 12969.42, + "probability": 0.9941 + }, + { + "start": 12970.48, + "end": 12971.34, + "probability": 0.6957 + }, + { + "start": 12972.74, + "end": 12973.72, + "probability": 0.785 + }, + { + "start": 12974.02, + "end": 12974.98, + "probability": 0.9244 + }, + { + "start": 12975.12, + "end": 12977.9, + "probability": 0.8104 + }, + { + "start": 12977.96, + "end": 12978.32, + "probability": 0.8203 + }, + { + "start": 12978.56, + "end": 12980.38, + "probability": 0.9954 + }, + { + "start": 12981.16, + "end": 12983.74, + "probability": 0.8804 + }, + { + "start": 12984.74, + "end": 12987.2, + "probability": 0.7075 + }, + { + "start": 12988.58, + "end": 12990.28, + "probability": 0.8224 + }, + { + "start": 12990.96, + "end": 12991.86, + "probability": 0.9684 + }, + { + "start": 12992.04, + "end": 12993.04, + "probability": 0.9026 + }, + { + "start": 12993.32, + "end": 12995.13, + "probability": 0.9463 + }, + { + "start": 12996.1, + "end": 12999.0, + "probability": 0.8898 + }, + { + "start": 12999.14, + "end": 13000.82, + "probability": 0.8641 + }, + { + "start": 13002.32, + "end": 13004.94, + "probability": 0.9528 + }, + { + "start": 13005.46, + "end": 13010.54, + "probability": 0.9448 + }, + { + "start": 13010.64, + "end": 13015.16, + "probability": 0.985 + }, + { + "start": 13015.16, + "end": 13018.86, + "probability": 0.997 + }, + { + "start": 13020.08, + "end": 13022.9, + "probability": 0.8991 + }, + { + "start": 13024.54, + "end": 13027.6, + "probability": 0.9764 + }, + { + "start": 13028.52, + "end": 13030.67, + "probability": 0.88 + }, + { + "start": 13032.0, + "end": 13035.88, + "probability": 0.9954 + }, + { + "start": 13037.34, + "end": 13038.56, + "probability": 0.7112 + }, + { + "start": 13039.32, + "end": 13041.76, + "probability": 0.7871 + }, + { + "start": 13042.72, + "end": 13044.24, + "probability": 0.7717 + }, + { + "start": 13044.44, + "end": 13045.1, + "probability": 0.9279 + }, + { + "start": 13045.18, + "end": 13046.16, + "probability": 0.9648 + }, + { + "start": 13047.22, + "end": 13049.08, + "probability": 0.9468 + }, + { + "start": 13050.92, + "end": 13055.3, + "probability": 0.96 + }, + { + "start": 13056.0, + "end": 13060.52, + "probability": 0.7689 + }, + { + "start": 13061.22, + "end": 13064.3, + "probability": 0.735 + }, + { + "start": 13066.86, + "end": 13067.9, + "probability": 0.9984 + }, + { + "start": 13068.98, + "end": 13070.24, + "probability": 0.9167 + }, + { + "start": 13071.14, + "end": 13073.48, + "probability": 0.9506 + }, + { + "start": 13073.58, + "end": 13074.08, + "probability": 0.8568 + }, + { + "start": 13074.14, + "end": 13074.76, + "probability": 0.8087 + }, + { + "start": 13075.26, + "end": 13077.72, + "probability": 0.6877 + }, + { + "start": 13078.16, + "end": 13079.1, + "probability": 0.9963 + }, + { + "start": 13080.66, + "end": 13082.08, + "probability": 0.817 + }, + { + "start": 13083.54, + "end": 13087.72, + "probability": 0.8251 + }, + { + "start": 13087.76, + "end": 13088.64, + "probability": 0.7122 + }, + { + "start": 13088.96, + "end": 13092.39, + "probability": 0.943 + }, + { + "start": 13094.9, + "end": 13094.9, + "probability": 0.0348 + }, + { + "start": 13094.9, + "end": 13094.9, + "probability": 0.0166 + }, + { + "start": 13094.9, + "end": 13097.58, + "probability": 0.6459 + }, + { + "start": 13098.02, + "end": 13100.08, + "probability": 0.986 + }, + { + "start": 13100.18, + "end": 13101.04, + "probability": 0.6334 + }, + { + "start": 13101.66, + "end": 13102.69, + "probability": 0.7103 + }, + { + "start": 13103.84, + "end": 13107.44, + "probability": 0.961 + }, + { + "start": 13107.84, + "end": 13109.64, + "probability": 0.6366 + }, + { + "start": 13110.04, + "end": 13111.48, + "probability": 0.9739 + }, + { + "start": 13111.66, + "end": 13111.98, + "probability": 0.7302 + }, + { + "start": 13112.08, + "end": 13112.8, + "probability": 0.7159 + }, + { + "start": 13114.46, + "end": 13117.3, + "probability": 0.8545 + }, + { + "start": 13118.1, + "end": 13120.64, + "probability": 0.9333 + }, + { + "start": 13120.72, + "end": 13121.32, + "probability": 0.6316 + }, + { + "start": 13122.04, + "end": 13125.74, + "probability": 0.6732 + }, + { + "start": 13127.88, + "end": 13129.22, + "probability": 0.3825 + }, + { + "start": 13129.22, + "end": 13129.44, + "probability": 0.6076 + }, + { + "start": 13129.67, + "end": 13129.74, + "probability": 0.5182 + }, + { + "start": 13129.74, + "end": 13132.46, + "probability": 0.9878 + }, + { + "start": 13132.94, + "end": 13133.56, + "probability": 0.9332 + }, + { + "start": 13133.86, + "end": 13135.46, + "probability": 0.9094 + }, + { + "start": 13135.76, + "end": 13136.28, + "probability": 0.6286 + }, + { + "start": 13136.74, + "end": 13137.55, + "probability": 0.9951 + }, + { + "start": 13138.34, + "end": 13138.62, + "probability": 0.4958 + }, + { + "start": 13138.8, + "end": 13139.38, + "probability": 0.9302 + }, + { + "start": 13139.88, + "end": 13140.16, + "probability": 0.4585 + }, + { + "start": 13140.48, + "end": 13140.72, + "probability": 0.8173 + }, + { + "start": 13141.32, + "end": 13142.74, + "probability": 0.808 + }, + { + "start": 13143.36, + "end": 13144.6, + "probability": 0.6713 + }, + { + "start": 13147.02, + "end": 13149.98, + "probability": 0.9595 + }, + { + "start": 13150.08, + "end": 13150.2, + "probability": 0.1151 + }, + { + "start": 13150.26, + "end": 13153.6, + "probability": 0.6779 + }, + { + "start": 13159.32, + "end": 13161.56, + "probability": 0.8217 + }, + { + "start": 13164.36, + "end": 13165.34, + "probability": 0.8197 + }, + { + "start": 13166.08, + "end": 13166.98, + "probability": 0.7318 + }, + { + "start": 13168.82, + "end": 13171.3, + "probability": 0.9352 + }, + { + "start": 13171.48, + "end": 13172.3, + "probability": 0.9349 + }, + { + "start": 13173.8, + "end": 13174.28, + "probability": 0.9717 + }, + { + "start": 13174.36, + "end": 13174.7, + "probability": 0.9509 + }, + { + "start": 13174.76, + "end": 13176.32, + "probability": 0.9958 + }, + { + "start": 13176.32, + "end": 13177.48, + "probability": 0.7281 + }, + { + "start": 13178.54, + "end": 13182.12, + "probability": 0.9971 + }, + { + "start": 13183.38, + "end": 13190.0, + "probability": 0.9983 + }, + { + "start": 13191.18, + "end": 13193.9, + "probability": 0.8646 + }, + { + "start": 13195.4, + "end": 13197.62, + "probability": 0.9805 + }, + { + "start": 13197.62, + "end": 13200.12, + "probability": 0.9949 + }, + { + "start": 13200.8, + "end": 13201.6, + "probability": 0.999 + }, + { + "start": 13202.58, + "end": 13204.36, + "probability": 0.9758 + }, + { + "start": 13205.84, + "end": 13207.58, + "probability": 0.924 + }, + { + "start": 13208.54, + "end": 13211.4, + "probability": 0.8061 + }, + { + "start": 13212.1, + "end": 13215.12, + "probability": 0.8497 + }, + { + "start": 13215.5, + "end": 13216.77, + "probability": 0.9506 + }, + { + "start": 13217.92, + "end": 13220.08, + "probability": 0.9826 + }, + { + "start": 13220.22, + "end": 13223.68, + "probability": 0.9526 + }, + { + "start": 13224.42, + "end": 13226.46, + "probability": 0.8167 + }, + { + "start": 13227.08, + "end": 13228.38, + "probability": 0.9863 + }, + { + "start": 13229.3, + "end": 13233.02, + "probability": 0.8885 + }, + { + "start": 13233.88, + "end": 13238.78, + "probability": 0.9823 + }, + { + "start": 13239.3, + "end": 13240.76, + "probability": 0.9787 + }, + { + "start": 13242.42, + "end": 13243.34, + "probability": 0.7531 + }, + { + "start": 13243.96, + "end": 13244.38, + "probability": 0.9774 + }, + { + "start": 13245.88, + "end": 13250.3, + "probability": 0.9907 + }, + { + "start": 13250.9, + "end": 13251.84, + "probability": 0.9709 + }, + { + "start": 13253.08, + "end": 13255.16, + "probability": 0.9957 + }, + { + "start": 13256.16, + "end": 13259.16, + "probability": 0.9723 + }, + { + "start": 13260.64, + "end": 13262.64, + "probability": 0.9832 + }, + { + "start": 13263.44, + "end": 13264.3, + "probability": 0.9775 + }, + { + "start": 13265.3, + "end": 13265.88, + "probability": 0.9988 + }, + { + "start": 13266.58, + "end": 13267.68, + "probability": 0.9983 + }, + { + "start": 13268.56, + "end": 13271.98, + "probability": 0.9928 + }, + { + "start": 13272.6, + "end": 13274.26, + "probability": 0.9989 + }, + { + "start": 13275.02, + "end": 13275.44, + "probability": 0.5882 + }, + { + "start": 13276.74, + "end": 13277.64, + "probability": 0.7154 + }, + { + "start": 13279.22, + "end": 13280.64, + "probability": 0.9966 + }, + { + "start": 13281.18, + "end": 13287.42, + "probability": 0.9964 + }, + { + "start": 13288.36, + "end": 13291.73, + "probability": 0.9912 + }, + { + "start": 13293.16, + "end": 13294.34, + "probability": 0.9673 + }, + { + "start": 13295.98, + "end": 13297.86, + "probability": 0.9434 + }, + { + "start": 13298.74, + "end": 13304.54, + "probability": 0.9918 + }, + { + "start": 13305.18, + "end": 13306.36, + "probability": 0.9958 + }, + { + "start": 13307.4, + "end": 13308.9, + "probability": 0.9121 + }, + { + "start": 13309.7, + "end": 13312.18, + "probability": 0.9285 + }, + { + "start": 13312.62, + "end": 13319.08, + "probability": 0.9696 + }, + { + "start": 13319.34, + "end": 13320.42, + "probability": 0.9791 + }, + { + "start": 13322.22, + "end": 13324.24, + "probability": 0.9868 + }, + { + "start": 13325.32, + "end": 13328.14, + "probability": 0.753 + }, + { + "start": 13329.24, + "end": 13330.06, + "probability": 0.9331 + }, + { + "start": 13330.62, + "end": 13332.82, + "probability": 0.9771 + }, + { + "start": 13334.02, + "end": 13337.78, + "probability": 0.9839 + }, + { + "start": 13338.7, + "end": 13340.3, + "probability": 0.9238 + }, + { + "start": 13341.58, + "end": 13344.88, + "probability": 0.8185 + }, + { + "start": 13346.36, + "end": 13350.2, + "probability": 0.9621 + }, + { + "start": 13351.58, + "end": 13353.14, + "probability": 0.8435 + }, + { + "start": 13354.0, + "end": 13354.62, + "probability": 0.8512 + }, + { + "start": 13355.2, + "end": 13356.76, + "probability": 0.938 + }, + { + "start": 13357.68, + "end": 13358.98, + "probability": 0.9939 + }, + { + "start": 13359.68, + "end": 13360.78, + "probability": 0.4459 + }, + { + "start": 13361.56, + "end": 13362.64, + "probability": 0.6292 + }, + { + "start": 13363.54, + "end": 13365.38, + "probability": 0.9366 + }, + { + "start": 13366.12, + "end": 13367.02, + "probability": 0.9359 + }, + { + "start": 13367.8, + "end": 13368.8, + "probability": 0.9705 + }, + { + "start": 13369.68, + "end": 13373.56, + "probability": 0.9875 + }, + { + "start": 13374.08, + "end": 13375.68, + "probability": 0.9198 + }, + { + "start": 13376.8, + "end": 13379.5, + "probability": 0.9962 + }, + { + "start": 13380.46, + "end": 13381.8, + "probability": 0.9982 + }, + { + "start": 13382.86, + "end": 13384.86, + "probability": 0.987 + }, + { + "start": 13386.04, + "end": 13386.36, + "probability": 0.7676 + }, + { + "start": 13387.74, + "end": 13389.6, + "probability": 0.9763 + }, + { + "start": 13389.7, + "end": 13391.44, + "probability": 0.8737 + }, + { + "start": 13392.26, + "end": 13392.82, + "probability": 0.5383 + }, + { + "start": 13394.24, + "end": 13395.48, + "probability": 0.988 + }, + { + "start": 13396.48, + "end": 13397.14, + "probability": 0.3181 + }, + { + "start": 13397.96, + "end": 13400.22, + "probability": 0.8023 + }, + { + "start": 13418.9, + "end": 13418.98, + "probability": 0.3313 + }, + { + "start": 13418.98, + "end": 13419.58, + "probability": 0.4389 + }, + { + "start": 13419.78, + "end": 13420.64, + "probability": 0.7159 + }, + { + "start": 13421.56, + "end": 13422.18, + "probability": 0.5582 + }, + { + "start": 13422.26, + "end": 13422.84, + "probability": 0.7173 + }, + { + "start": 13423.2, + "end": 13427.76, + "probability": 0.9272 + }, + { + "start": 13427.76, + "end": 13430.4, + "probability": 0.747 + }, + { + "start": 13431.02, + "end": 13431.5, + "probability": 0.8909 + }, + { + "start": 13432.38, + "end": 13440.66, + "probability": 0.979 + }, + { + "start": 13441.04, + "end": 13443.48, + "probability": 0.9972 + }, + { + "start": 13444.5, + "end": 13445.96, + "probability": 0.8184 + }, + { + "start": 13446.9, + "end": 13450.04, + "probability": 0.9791 + }, + { + "start": 13450.04, + "end": 13454.3, + "probability": 0.9516 + }, + { + "start": 13454.54, + "end": 13455.4, + "probability": 0.7192 + }, + { + "start": 13455.54, + "end": 13458.24, + "probability": 0.8325 + }, + { + "start": 13458.6, + "end": 13461.82, + "probability": 0.9858 + }, + { + "start": 13462.92, + "end": 13465.48, + "probability": 0.6628 + }, + { + "start": 13466.22, + "end": 13473.46, + "probability": 0.9526 + }, + { + "start": 13474.0, + "end": 13477.6, + "probability": 0.9331 + }, + { + "start": 13478.3, + "end": 13481.78, + "probability": 0.646 + }, + { + "start": 13483.0, + "end": 13483.66, + "probability": 0.8753 + }, + { + "start": 13484.76, + "end": 13485.62, + "probability": 0.4714 + }, + { + "start": 13486.72, + "end": 13489.22, + "probability": 0.775 + }, + { + "start": 13490.06, + "end": 13490.8, + "probability": 0.619 + }, + { + "start": 13491.54, + "end": 13494.14, + "probability": 0.8271 + }, + { + "start": 13494.74, + "end": 13496.54, + "probability": 0.8589 + }, + { + "start": 13498.54, + "end": 13500.72, + "probability": 0.981 + }, + { + "start": 13501.34, + "end": 13501.96, + "probability": 0.7936 + }, + { + "start": 13502.68, + "end": 13503.84, + "probability": 0.9807 + }, + { + "start": 13504.56, + "end": 13505.48, + "probability": 0.798 + }, + { + "start": 13506.26, + "end": 13508.66, + "probability": 0.9918 + }, + { + "start": 13509.36, + "end": 13511.96, + "probability": 0.9924 + }, + { + "start": 13513.18, + "end": 13514.38, + "probability": 0.5591 + }, + { + "start": 13515.02, + "end": 13516.64, + "probability": 0.5721 + }, + { + "start": 13517.34, + "end": 13518.88, + "probability": 0.7462 + }, + { + "start": 13519.44, + "end": 13520.88, + "probability": 0.9526 + }, + { + "start": 13521.5, + "end": 13522.28, + "probability": 0.8459 + }, + { + "start": 13522.9, + "end": 13526.14, + "probability": 0.6964 + }, + { + "start": 13526.84, + "end": 13528.0, + "probability": 0.5635 + }, + { + "start": 13528.02, + "end": 13528.56, + "probability": 0.5338 + }, + { + "start": 13529.04, + "end": 13529.86, + "probability": 0.6803 + }, + { + "start": 13530.2, + "end": 13530.56, + "probability": 0.6345 + }, + { + "start": 13531.08, + "end": 13533.86, + "probability": 0.5243 + }, + { + "start": 13534.36, + "end": 13538.4, + "probability": 0.9385 + }, + { + "start": 13539.22, + "end": 13539.9, + "probability": 0.9948 + }, + { + "start": 13541.08, + "end": 13543.44, + "probability": 0.3503 + }, + { + "start": 13544.64, + "end": 13546.66, + "probability": 0.891 + }, + { + "start": 13547.38, + "end": 13550.56, + "probability": 0.9844 + }, + { + "start": 13551.4, + "end": 13555.16, + "probability": 0.9349 + }, + { + "start": 13555.52, + "end": 13556.66, + "probability": 0.4859 + }, + { + "start": 13556.82, + "end": 13558.34, + "probability": 0.9719 + }, + { + "start": 13558.44, + "end": 13561.36, + "probability": 0.9431 + }, + { + "start": 13562.22, + "end": 13563.44, + "probability": 0.4538 + }, + { + "start": 13564.8, + "end": 13568.82, + "probability": 0.9482 + }, + { + "start": 13569.38, + "end": 13571.3, + "probability": 0.9449 + }, + { + "start": 13571.4, + "end": 13572.0, + "probability": 0.6953 + }, + { + "start": 13572.08, + "end": 13572.3, + "probability": 0.5212 + }, + { + "start": 13572.38, + "end": 13573.38, + "probability": 0.8062 + }, + { + "start": 13574.38, + "end": 13575.46, + "probability": 0.1998 + }, + { + "start": 13575.84, + "end": 13576.75, + "probability": 0.6566 + }, + { + "start": 13577.41, + "end": 13583.38, + "probability": 0.4604 + }, + { + "start": 13583.5, + "end": 13584.76, + "probability": 0.2247 + }, + { + "start": 13585.24, + "end": 13588.32, + "probability": 0.8528 + }, + { + "start": 13588.58, + "end": 13591.36, + "probability": 0.8054 + }, + { + "start": 13591.36, + "end": 13592.18, + "probability": 0.4344 + }, + { + "start": 13592.7, + "end": 13597.02, + "probability": 0.8838 + }, + { + "start": 13597.38, + "end": 13600.96, + "probability": 0.9939 + }, + { + "start": 13603.2, + "end": 13604.18, + "probability": 0.2824 + }, + { + "start": 13604.28, + "end": 13604.98, + "probability": 0.8075 + }, + { + "start": 13606.58, + "end": 13608.3, + "probability": 0.7873 + }, + { + "start": 13609.16, + "end": 13609.78, + "probability": 0.3557 + }, + { + "start": 13610.06, + "end": 13611.24, + "probability": 0.817 + }, + { + "start": 13611.92, + "end": 13614.88, + "probability": 0.864 + }, + { + "start": 13621.9, + "end": 13622.56, + "probability": 0.316 + }, + { + "start": 13627.38, + "end": 13628.62, + "probability": 0.8504 + }, + { + "start": 13629.34, + "end": 13629.44, + "probability": 0.7489 + }, + { + "start": 13633.52, + "end": 13634.88, + "probability": 0.8448 + }, + { + "start": 13636.02, + "end": 13637.94, + "probability": 0.934 + }, + { + "start": 13639.12, + "end": 13645.6, + "probability": 0.9297 + }, + { + "start": 13646.86, + "end": 13648.1, + "probability": 0.8496 + }, + { + "start": 13649.78, + "end": 13652.56, + "probability": 0.8263 + }, + { + "start": 13654.68, + "end": 13656.2, + "probability": 0.9406 + }, + { + "start": 13658.7, + "end": 13660.68, + "probability": 0.9966 + }, + { + "start": 13661.98, + "end": 13663.3, + "probability": 0.8554 + }, + { + "start": 13664.82, + "end": 13665.48, + "probability": 0.8691 + }, + { + "start": 13668.74, + "end": 13669.3, + "probability": 0.7617 + }, + { + "start": 13670.14, + "end": 13671.76, + "probability": 0.9672 + }, + { + "start": 13672.78, + "end": 13673.02, + "probability": 0.5296 + }, + { + "start": 13673.82, + "end": 13675.22, + "probability": 0.7874 + }, + { + "start": 13677.06, + "end": 13679.92, + "probability": 0.8793 + }, + { + "start": 13681.12, + "end": 13682.76, + "probability": 0.9287 + }, + { + "start": 13683.34, + "end": 13683.86, + "probability": 0.9095 + }, + { + "start": 13684.48, + "end": 13684.96, + "probability": 0.9937 + }, + { + "start": 13685.86, + "end": 13686.62, + "probability": 0.9628 + }, + { + "start": 13688.44, + "end": 13689.14, + "probability": 0.9414 + }, + { + "start": 13689.26, + "end": 13694.7, + "probability": 0.8334 + }, + { + "start": 13696.88, + "end": 13700.34, + "probability": 0.9659 + }, + { + "start": 13701.36, + "end": 13703.2, + "probability": 0.9891 + }, + { + "start": 13704.44, + "end": 13705.62, + "probability": 0.6112 + }, + { + "start": 13706.52, + "end": 13709.02, + "probability": 0.5529 + }, + { + "start": 13709.3, + "end": 13724.5, + "probability": 0.9268 + }, + { + "start": 13726.94, + "end": 13728.38, + "probability": 0.7378 + }, + { + "start": 13730.08, + "end": 13732.38, + "probability": 0.9585 + }, + { + "start": 13733.48, + "end": 13736.98, + "probability": 0.871 + }, + { + "start": 13739.84, + "end": 13743.24, + "probability": 0.9391 + }, + { + "start": 13744.46, + "end": 13746.98, + "probability": 0.9875 + }, + { + "start": 13747.1, + "end": 13748.0, + "probability": 0.5611 + }, + { + "start": 13749.74, + "end": 13753.12, + "probability": 0.921 + }, + { + "start": 13753.36, + "end": 13754.04, + "probability": 0.9197 + }, + { + "start": 13755.6, + "end": 13761.18, + "probability": 0.9329 + }, + { + "start": 13761.18, + "end": 13763.28, + "probability": 0.9059 + }, + { + "start": 13764.14, + "end": 13764.56, + "probability": 0.9793 + }, + { + "start": 13766.62, + "end": 13770.86, + "probability": 0.9673 + }, + { + "start": 13773.72, + "end": 13778.64, + "probability": 0.9875 + }, + { + "start": 13779.22, + "end": 13781.48, + "probability": 0.9502 + }, + { + "start": 13784.54, + "end": 13786.24, + "probability": 0.5407 + }, + { + "start": 13786.36, + "end": 13787.66, + "probability": 0.8249 + }, + { + "start": 13788.96, + "end": 13789.2, + "probability": 0.4976 + }, + { + "start": 13792.42, + "end": 13797.58, + "probability": 0.9193 + }, + { + "start": 13799.98, + "end": 13804.72, + "probability": 0.9572 + }, + { + "start": 13805.28, + "end": 13809.04, + "probability": 0.7766 + }, + { + "start": 13809.6, + "end": 13810.22, + "probability": 0.7846 + }, + { + "start": 13813.74, + "end": 13816.06, + "probability": 0.9854 + }, + { + "start": 13817.44, + "end": 13819.16, + "probability": 0.8194 + }, + { + "start": 13820.5, + "end": 13821.3, + "probability": 0.9346 + }, + { + "start": 13822.12, + "end": 13826.76, + "probability": 0.9547 + }, + { + "start": 13828.56, + "end": 13830.88, + "probability": 0.9969 + }, + { + "start": 13832.14, + "end": 13835.86, + "probability": 0.9786 + }, + { + "start": 13838.04, + "end": 13839.64, + "probability": 0.958 + }, + { + "start": 13840.42, + "end": 13843.04, + "probability": 0.9888 + }, + { + "start": 13843.86, + "end": 13845.08, + "probability": 0.3495 + }, + { + "start": 13845.26, + "end": 13846.24, + "probability": 0.8325 + }, + { + "start": 13847.8, + "end": 13848.54, + "probability": 0.7979 + }, + { + "start": 13850.9, + "end": 13853.64, + "probability": 0.9964 + }, + { + "start": 13855.1, + "end": 13855.54, + "probability": 0.5655 + }, + { + "start": 13857.12, + "end": 13860.06, + "probability": 0.8279 + }, + { + "start": 13860.16, + "end": 13860.98, + "probability": 0.6734 + }, + { + "start": 13861.08, + "end": 13861.6, + "probability": 0.7429 + }, + { + "start": 13863.38, + "end": 13868.16, + "probability": 0.7011 + }, + { + "start": 13870.02, + "end": 13870.54, + "probability": 0.5284 + }, + { + "start": 13873.18, + "end": 13874.44, + "probability": 0.9019 + }, + { + "start": 13874.52, + "end": 13876.22, + "probability": 0.906 + }, + { + "start": 13876.58, + "end": 13877.1, + "probability": 0.5185 + }, + { + "start": 13877.24, + "end": 13877.96, + "probability": 0.8975 + }, + { + "start": 13878.04, + "end": 13879.6, + "probability": 0.745 + }, + { + "start": 13880.26, + "end": 13880.82, + "probability": 0.8604 + }, + { + "start": 13880.88, + "end": 13881.5, + "probability": 0.9121 + }, + { + "start": 13881.64, + "end": 13884.1, + "probability": 0.8066 + }, + { + "start": 13884.64, + "end": 13887.86, + "probability": 0.9709 + }, + { + "start": 13887.94, + "end": 13888.76, + "probability": 0.921 + }, + { + "start": 13890.06, + "end": 13890.84, + "probability": 0.8424 + }, + { + "start": 13892.8, + "end": 13898.2, + "probability": 0.9763 + }, + { + "start": 13898.72, + "end": 13898.92, + "probability": 0.0388 + }, + { + "start": 13898.92, + "end": 13900.66, + "probability": 0.9306 + }, + { + "start": 13900.78, + "end": 13901.5, + "probability": 0.8149 + }, + { + "start": 13901.64, + "end": 13902.4, + "probability": 0.902 + }, + { + "start": 13902.48, + "end": 13904.76, + "probability": 0.8956 + }, + { + "start": 13905.64, + "end": 13908.08, + "probability": 0.9906 + }, + { + "start": 13910.3, + "end": 13912.32, + "probability": 0.9023 + }, + { + "start": 13913.1, + "end": 13920.2, + "probability": 0.9924 + }, + { + "start": 13921.06, + "end": 13924.24, + "probability": 0.9952 + }, + { + "start": 13924.96, + "end": 13925.91, + "probability": 0.8984 + }, + { + "start": 13926.82, + "end": 13928.54, + "probability": 0.9871 + }, + { + "start": 13929.5, + "end": 13934.84, + "probability": 0.941 + }, + { + "start": 13935.5, + "end": 13936.44, + "probability": 0.3125 + }, + { + "start": 13936.44, + "end": 13938.9, + "probability": 0.957 + }, + { + "start": 13939.78, + "end": 13944.78, + "probability": 0.8333 + }, + { + "start": 13945.9, + "end": 13947.02, + "probability": 0.7127 + }, + { + "start": 13947.62, + "end": 13953.7, + "probability": 0.9897 + }, + { + "start": 13953.86, + "end": 13954.1, + "probability": 0.6707 + }, + { + "start": 13954.36, + "end": 13954.5, + "probability": 0.7292 + }, + { + "start": 13955.24, + "end": 13956.38, + "probability": 0.7677 + }, + { + "start": 13956.6, + "end": 13957.98, + "probability": 0.7202 + }, + { + "start": 13958.56, + "end": 13959.12, + "probability": 0.8055 + }, + { + "start": 13959.2, + "end": 13960.82, + "probability": 0.8324 + }, + { + "start": 13961.5, + "end": 13961.8, + "probability": 0.752 + }, + { + "start": 13981.1, + "end": 13981.1, + "probability": 0.2649 + }, + { + "start": 13981.1, + "end": 13981.93, + "probability": 0.4381 + }, + { + "start": 13982.14, + "end": 13982.56, + "probability": 0.6844 + }, + { + "start": 13988.5, + "end": 13989.08, + "probability": 0.1555 + }, + { + "start": 13989.36, + "end": 13990.7, + "probability": 0.7149 + }, + { + "start": 13991.84, + "end": 13993.06, + "probability": 0.8362 + }, + { + "start": 13993.34, + "end": 13996.12, + "probability": 0.935 + }, + { + "start": 13996.52, + "end": 13998.3, + "probability": 0.855 + }, + { + "start": 13998.4, + "end": 13999.1, + "probability": 0.7833 + }, + { + "start": 14000.6, + "end": 14001.0, + "probability": 0.9929 + }, + { + "start": 14003.02, + "end": 14004.04, + "probability": 0.358 + }, + { + "start": 14005.12, + "end": 14005.72, + "probability": 0.8961 + }, + { + "start": 14006.6, + "end": 14009.34, + "probability": 0.9559 + }, + { + "start": 14009.9, + "end": 14013.24, + "probability": 0.9978 + }, + { + "start": 14014.06, + "end": 14018.08, + "probability": 0.9874 + }, + { + "start": 14018.88, + "end": 14020.48, + "probability": 0.731 + }, + { + "start": 14021.1, + "end": 14024.89, + "probability": 0.7065 + }, + { + "start": 14026.24, + "end": 14028.7, + "probability": 0.9312 + }, + { + "start": 14029.1, + "end": 14032.02, + "probability": 0.9821 + }, + { + "start": 14033.1, + "end": 14034.86, + "probability": 0.8743 + }, + { + "start": 14034.94, + "end": 14035.4, + "probability": 0.533 + }, + { + "start": 14035.74, + "end": 14038.34, + "probability": 0.9622 + }, + { + "start": 14038.58, + "end": 14039.24, + "probability": 0.266 + }, + { + "start": 14039.7, + "end": 14042.96, + "probability": 0.59 + }, + { + "start": 14044.1, + "end": 14046.02, + "probability": 0.8452 + }, + { + "start": 14046.62, + "end": 14046.9, + "probability": 0.7381 + }, + { + "start": 14048.2, + "end": 14050.64, + "probability": 0.8837 + }, + { + "start": 14052.14, + "end": 14053.5, + "probability": 0.968 + }, + { + "start": 14055.52, + "end": 14059.12, + "probability": 0.9527 + }, + { + "start": 14059.2, + "end": 14060.8, + "probability": 0.6328 + }, + { + "start": 14060.96, + "end": 14061.44, + "probability": 0.4398 + }, + { + "start": 14061.48, + "end": 14062.8, + "probability": 0.9233 + }, + { + "start": 14063.34, + "end": 14066.84, + "probability": 0.8371 + }, + { + "start": 14069.32, + "end": 14072.56, + "probability": 0.97 + }, + { + "start": 14073.1, + "end": 14073.94, + "probability": 0.8679 + }, + { + "start": 14075.5, + "end": 14077.38, + "probability": 0.9387 + }, + { + "start": 14079.4, + "end": 14086.34, + "probability": 0.9926 + }, + { + "start": 14087.0, + "end": 14094.24, + "probability": 0.917 + }, + { + "start": 14095.2, + "end": 14095.96, + "probability": 0.8622 + }, + { + "start": 14096.54, + "end": 14099.96, + "probability": 0.877 + }, + { + "start": 14100.8, + "end": 14104.4, + "probability": 0.9938 + }, + { + "start": 14105.0, + "end": 14106.1, + "probability": 0.9678 + }, + { + "start": 14106.54, + "end": 14108.38, + "probability": 0.9427 + }, + { + "start": 14108.8, + "end": 14110.67, + "probability": 0.9336 + }, + { + "start": 14113.0, + "end": 14113.68, + "probability": 0.5088 + }, + { + "start": 14114.58, + "end": 14117.24, + "probability": 0.8031 + }, + { + "start": 14117.4, + "end": 14119.52, + "probability": 0.8911 + }, + { + "start": 14119.92, + "end": 14122.92, + "probability": 0.9738 + }, + { + "start": 14124.4, + "end": 14125.24, + "probability": 0.757 + }, + { + "start": 14126.86, + "end": 14129.2, + "probability": 0.8177 + }, + { + "start": 14130.4, + "end": 14133.5, + "probability": 0.8879 + }, + { + "start": 14134.16, + "end": 14135.7, + "probability": 0.8993 + }, + { + "start": 14136.82, + "end": 14137.52, + "probability": 0.7785 + }, + { + "start": 14138.24, + "end": 14141.9, + "probability": 0.9797 + }, + { + "start": 14142.16, + "end": 14142.36, + "probability": 0.7538 + }, + { + "start": 14143.64, + "end": 14143.88, + "probability": 0.8034 + }, + { + "start": 14144.34, + "end": 14144.98, + "probability": 0.6665 + }, + { + "start": 14145.24, + "end": 14146.76, + "probability": 0.9476 + }, + { + "start": 14147.66, + "end": 14148.82, + "probability": 0.9956 + }, + { + "start": 14149.16, + "end": 14150.66, + "probability": 0.9875 + }, + { + "start": 14151.2, + "end": 14152.4, + "probability": 0.9821 + }, + { + "start": 14153.58, + "end": 14155.44, + "probability": 0.9777 + }, + { + "start": 14156.82, + "end": 14157.86, + "probability": 0.814 + }, + { + "start": 14158.27, + "end": 14160.82, + "probability": 0.9639 + }, + { + "start": 14161.32, + "end": 14161.84, + "probability": 0.81 + }, + { + "start": 14163.58, + "end": 14165.78, + "probability": 0.7854 + }, + { + "start": 14168.02, + "end": 14171.58, + "probability": 0.7136 + }, + { + "start": 14172.12, + "end": 14173.26, + "probability": 0.7328 + }, + { + "start": 14173.66, + "end": 14178.34, + "probability": 0.9493 + }, + { + "start": 14178.92, + "end": 14181.82, + "probability": 0.9785 + }, + { + "start": 14182.38, + "end": 14183.08, + "probability": 0.9352 + }, + { + "start": 14183.64, + "end": 14186.92, + "probability": 0.9507 + }, + { + "start": 14188.02, + "end": 14188.94, + "probability": 0.9429 + }, + { + "start": 14189.74, + "end": 14190.08, + "probability": 0.4846 + }, + { + "start": 14190.78, + "end": 14193.58, + "probability": 0.9019 + }, + { + "start": 14194.28, + "end": 14195.3, + "probability": 0.8069 + }, + { + "start": 14196.16, + "end": 14197.62, + "probability": 0.8595 + }, + { + "start": 14198.48, + "end": 14199.48, + "probability": 0.8867 + }, + { + "start": 14199.84, + "end": 14203.74, + "probability": 0.7095 + }, + { + "start": 14205.3, + "end": 14208.02, + "probability": 0.8652 + }, + { + "start": 14208.82, + "end": 14211.4, + "probability": 0.9135 + }, + { + "start": 14211.56, + "end": 14212.24, + "probability": 0.7739 + }, + { + "start": 14212.36, + "end": 14213.18, + "probability": 0.845 + }, + { + "start": 14214.0, + "end": 14215.12, + "probability": 0.9899 + }, + { + "start": 14215.7, + "end": 14217.76, + "probability": 0.9165 + }, + { + "start": 14218.62, + "end": 14220.01, + "probability": 0.877 + }, + { + "start": 14220.62, + "end": 14225.02, + "probability": 0.9765 + }, + { + "start": 14225.62, + "end": 14229.72, + "probability": 0.9098 + }, + { + "start": 14230.16, + "end": 14232.26, + "probability": 0.8397 + }, + { + "start": 14232.9, + "end": 14234.36, + "probability": 0.8234 + }, + { + "start": 14235.28, + "end": 14235.56, + "probability": 0.6301 + }, + { + "start": 14236.44, + "end": 14237.52, + "probability": 0.8911 + }, + { + "start": 14238.22, + "end": 14239.08, + "probability": 0.7273 + }, + { + "start": 14239.6, + "end": 14241.82, + "probability": 0.9661 + }, + { + "start": 14241.86, + "end": 14242.42, + "probability": 0.3777 + }, + { + "start": 14242.42, + "end": 14245.64, + "probability": 0.9424 + }, + { + "start": 14246.04, + "end": 14249.82, + "probability": 0.817 + }, + { + "start": 14251.0, + "end": 14255.36, + "probability": 0.9849 + }, + { + "start": 14256.12, + "end": 14257.42, + "probability": 0.8087 + }, + { + "start": 14258.8, + "end": 14261.82, + "probability": 0.7602 + }, + { + "start": 14263.44, + "end": 14264.88, + "probability": 0.9953 + }, + { + "start": 14265.54, + "end": 14267.0, + "probability": 0.9786 + }, + { + "start": 14267.6, + "end": 14269.66, + "probability": 0.769 + }, + { + "start": 14270.95, + "end": 14273.88, + "probability": 0.9888 + }, + { + "start": 14274.48, + "end": 14275.26, + "probability": 0.5163 + }, + { + "start": 14275.42, + "end": 14276.12, + "probability": 0.7607 + }, + { + "start": 14276.64, + "end": 14278.52, + "probability": 0.939 + }, + { + "start": 14279.7, + "end": 14281.6, + "probability": 0.9968 + }, + { + "start": 14282.44, + "end": 14285.66, + "probability": 0.9835 + }, + { + "start": 14286.18, + "end": 14287.5, + "probability": 0.4012 + }, + { + "start": 14287.9, + "end": 14291.26, + "probability": 0.93 + }, + { + "start": 14291.54, + "end": 14293.34, + "probability": 0.8714 + }, + { + "start": 14294.32, + "end": 14297.62, + "probability": 0.9233 + }, + { + "start": 14297.72, + "end": 14300.14, + "probability": 0.9257 + }, + { + "start": 14301.04, + "end": 14303.4, + "probability": 0.7824 + }, + { + "start": 14303.48, + "end": 14304.68, + "probability": 0.9012 + }, + { + "start": 14305.46, + "end": 14306.36, + "probability": 0.8162 + }, + { + "start": 14307.46, + "end": 14308.78, + "probability": 0.8796 + }, + { + "start": 14310.66, + "end": 14310.98, + "probability": 0.4774 + }, + { + "start": 14328.16, + "end": 14328.2, + "probability": 0.3646 + }, + { + "start": 14328.2, + "end": 14329.67, + "probability": 0.7861 + }, + { + "start": 14336.04, + "end": 14336.24, + "probability": 0.8443 + }, + { + "start": 14337.2, + "end": 14338.78, + "probability": 0.6437 + }, + { + "start": 14339.0, + "end": 14341.18, + "probability": 0.8066 + }, + { + "start": 14342.06, + "end": 14348.04, + "probability": 0.9652 + }, + { + "start": 14348.04, + "end": 14353.44, + "probability": 0.9758 + }, + { + "start": 14354.64, + "end": 14358.68, + "probability": 0.996 + }, + { + "start": 14359.64, + "end": 14362.16, + "probability": 0.8571 + }, + { + "start": 14363.38, + "end": 14369.9, + "probability": 0.9963 + }, + { + "start": 14371.46, + "end": 14375.66, + "probability": 0.9968 + }, + { + "start": 14376.46, + "end": 14381.3, + "probability": 0.9943 + }, + { + "start": 14382.28, + "end": 14384.38, + "probability": 0.9963 + }, + { + "start": 14385.86, + "end": 14387.28, + "probability": 0.8293 + }, + { + "start": 14387.44, + "end": 14393.4, + "probability": 0.9884 + }, + { + "start": 14394.1, + "end": 14395.4, + "probability": 0.9912 + }, + { + "start": 14396.84, + "end": 14401.8, + "probability": 0.9827 + }, + { + "start": 14403.04, + "end": 14404.52, + "probability": 0.9744 + }, + { + "start": 14405.18, + "end": 14406.52, + "probability": 0.9925 + }, + { + "start": 14407.2, + "end": 14408.4, + "probability": 0.9889 + }, + { + "start": 14409.16, + "end": 14410.88, + "probability": 0.9925 + }, + { + "start": 14411.62, + "end": 14415.24, + "probability": 0.9955 + }, + { + "start": 14416.2, + "end": 14419.76, + "probability": 0.9894 + }, + { + "start": 14420.4, + "end": 14421.64, + "probability": 0.7935 + }, + { + "start": 14422.38, + "end": 14423.62, + "probability": 0.9818 + }, + { + "start": 14424.84, + "end": 14426.46, + "probability": 0.6201 + }, + { + "start": 14427.04, + "end": 14428.7, + "probability": 0.9893 + }, + { + "start": 14429.44, + "end": 14431.92, + "probability": 0.9977 + }, + { + "start": 14432.5, + "end": 14438.52, + "probability": 0.9973 + }, + { + "start": 14440.48, + "end": 14445.34, + "probability": 0.9917 + }, + { + "start": 14445.48, + "end": 14445.9, + "probability": 0.8714 + }, + { + "start": 14446.44, + "end": 14450.26, + "probability": 0.9967 + }, + { + "start": 14451.2, + "end": 14457.88, + "probability": 0.9971 + }, + { + "start": 14458.94, + "end": 14459.74, + "probability": 0.6873 + }, + { + "start": 14460.79, + "end": 14464.46, + "probability": 0.9976 + }, + { + "start": 14464.46, + "end": 14468.84, + "probability": 0.9975 + }, + { + "start": 14468.84, + "end": 14475.74, + "probability": 0.9991 + }, + { + "start": 14476.74, + "end": 14477.06, + "probability": 0.4169 + }, + { + "start": 14477.16, + "end": 14478.24, + "probability": 0.7233 + }, + { + "start": 14478.46, + "end": 14480.28, + "probability": 0.9639 + }, + { + "start": 14483.46, + "end": 14486.02, + "probability": 0.9739 + }, + { + "start": 14486.58, + "end": 14487.66, + "probability": 0.8454 + }, + { + "start": 14488.4, + "end": 14491.08, + "probability": 0.7604 + }, + { + "start": 14491.74, + "end": 14495.62, + "probability": 0.9941 + }, + { + "start": 14496.68, + "end": 14498.62, + "probability": 0.8288 + }, + { + "start": 14499.18, + "end": 14504.02, + "probability": 0.9691 + }, + { + "start": 14504.56, + "end": 14506.38, + "probability": 0.9985 + }, + { + "start": 14507.3, + "end": 14511.96, + "probability": 0.9392 + }, + { + "start": 14512.5, + "end": 14513.8, + "probability": 0.9774 + }, + { + "start": 14514.18, + "end": 14515.42, + "probability": 0.9907 + }, + { + "start": 14515.92, + "end": 14517.1, + "probability": 0.9743 + }, + { + "start": 14517.68, + "end": 14523.06, + "probability": 0.9844 + }, + { + "start": 14523.24, + "end": 14523.68, + "probability": 0.7606 + }, + { + "start": 14525.12, + "end": 14527.02, + "probability": 0.9251 + }, + { + "start": 14527.08, + "end": 14528.32, + "probability": 0.9534 + }, + { + "start": 14528.94, + "end": 14529.48, + "probability": 0.6742 + }, + { + "start": 14529.58, + "end": 14530.76, + "probability": 0.989 + }, + { + "start": 14530.78, + "end": 14531.26, + "probability": 0.816 + }, + { + "start": 14531.48, + "end": 14532.78, + "probability": 0.8619 + }, + { + "start": 14532.86, + "end": 14533.22, + "probability": 0.456 + }, + { + "start": 14533.9, + "end": 14535.82, + "probability": 0.6601 + }, + { + "start": 14536.06, + "end": 14537.32, + "probability": 0.8471 + }, + { + "start": 14537.96, + "end": 14539.44, + "probability": 0.7852 + }, + { + "start": 14539.6, + "end": 14542.02, + "probability": 0.6458 + }, + { + "start": 14544.06, + "end": 14547.94, + "probability": 0.9855 + }, + { + "start": 14548.62, + "end": 14551.19, + "probability": 0.8795 + }, + { + "start": 14560.02, + "end": 14560.02, + "probability": 0.0279 + }, + { + "start": 14567.2, + "end": 14567.88, + "probability": 0.1088 + }, + { + "start": 14568.34, + "end": 14568.82, + "probability": 0.4196 + }, + { + "start": 14569.0, + "end": 14573.32, + "probability": 0.8349 + }, + { + "start": 14574.44, + "end": 14574.6, + "probability": 0.0303 + }, + { + "start": 14574.78, + "end": 14577.04, + "probability": 0.9966 + }, + { + "start": 14577.08, + "end": 14578.68, + "probability": 0.9618 + }, + { + "start": 14579.62, + "end": 14580.6, + "probability": 0.766 + }, + { + "start": 14580.72, + "end": 14581.62, + "probability": 0.6733 + }, + { + "start": 14581.66, + "end": 14583.34, + "probability": 0.645 + }, + { + "start": 14584.08, + "end": 14586.74, + "probability": 0.8384 + }, + { + "start": 14586.88, + "end": 14587.56, + "probability": 0.7573 + }, + { + "start": 14587.64, + "end": 14588.64, + "probability": 0.851 + }, + { + "start": 14590.96, + "end": 14594.8, + "probability": 0.3851 + }, + { + "start": 14597.08, + "end": 14600.0, + "probability": 0.9932 + }, + { + "start": 14601.44, + "end": 14602.68, + "probability": 0.7891 + }, + { + "start": 14602.82, + "end": 14603.72, + "probability": 0.9696 + }, + { + "start": 14604.42, + "end": 14606.92, + "probability": 0.961 + }, + { + "start": 14609.3, + "end": 14609.56, + "probability": 0.4176 + }, + { + "start": 14609.72, + "end": 14611.24, + "probability": 0.7456 + }, + { + "start": 14611.28, + "end": 14611.54, + "probability": 0.701 + }, + { + "start": 14611.56, + "end": 14612.7, + "probability": 0.4175 + }, + { + "start": 14612.78, + "end": 14614.48, + "probability": 0.9645 + }, + { + "start": 14616.06, + "end": 14617.22, + "probability": 0.975 + }, + { + "start": 14618.78, + "end": 14620.32, + "probability": 0.9974 + }, + { + "start": 14620.42, + "end": 14620.8, + "probability": 0.8453 + }, + { + "start": 14622.2, + "end": 14624.7, + "probability": 0.8558 + }, + { + "start": 14626.32, + "end": 14629.8, + "probability": 0.9966 + }, + { + "start": 14630.2, + "end": 14631.02, + "probability": 0.9563 + }, + { + "start": 14631.1, + "end": 14631.78, + "probability": 0.8228 + }, + { + "start": 14631.8, + "end": 14632.96, + "probability": 0.8812 + }, + { + "start": 14633.08, + "end": 14637.8, + "probability": 0.8952 + }, + { + "start": 14638.52, + "end": 14640.35, + "probability": 0.9677 + }, + { + "start": 14641.42, + "end": 14641.78, + "probability": 0.8331 + }, + { + "start": 14642.48, + "end": 14644.96, + "probability": 0.844 + }, + { + "start": 14645.32, + "end": 14648.44, + "probability": 0.9282 + }, + { + "start": 14648.96, + "end": 14650.22, + "probability": 0.9202 + }, + { + "start": 14650.38, + "end": 14652.18, + "probability": 0.8016 + }, + { + "start": 14652.2, + "end": 14653.66, + "probability": 0.9364 + }, + { + "start": 14654.28, + "end": 14654.92, + "probability": 0.9239 + }, + { + "start": 14655.58, + "end": 14657.94, + "probability": 0.9832 + }, + { + "start": 14659.14, + "end": 14659.66, + "probability": 0.4484 + }, + { + "start": 14659.74, + "end": 14660.28, + "probability": 0.8198 + }, + { + "start": 14660.42, + "end": 14661.24, + "probability": 0.8192 + }, + { + "start": 14661.3, + "end": 14662.06, + "probability": 0.4419 + }, + { + "start": 14662.3, + "end": 14663.56, + "probability": 0.6969 + }, + { + "start": 14663.64, + "end": 14663.98, + "probability": 0.5785 + }, + { + "start": 14665.42, + "end": 14666.44, + "probability": 0.7502 + }, + { + "start": 14666.56, + "end": 14667.26, + "probability": 0.7041 + }, + { + "start": 14667.4, + "end": 14668.4, + "probability": 0.9915 + }, + { + "start": 14668.44, + "end": 14669.04, + "probability": 0.7998 + }, + { + "start": 14669.8, + "end": 14671.83, + "probability": 0.7133 + }, + { + "start": 14672.08, + "end": 14674.04, + "probability": 0.9177 + }, + { + "start": 14675.12, + "end": 14675.54, + "probability": 0.8372 + }, + { + "start": 14676.46, + "end": 14677.6, + "probability": 0.8344 + }, + { + "start": 14677.72, + "end": 14680.54, + "probability": 0.9475 + }, + { + "start": 14681.2, + "end": 14681.96, + "probability": 0.7837 + }, + { + "start": 14682.3, + "end": 14683.57, + "probability": 0.6031 + }, + { + "start": 14684.4, + "end": 14684.81, + "probability": 0.9875 + }, + { + "start": 14686.24, + "end": 14687.6, + "probability": 0.8945 + }, + { + "start": 14689.64, + "end": 14690.2, + "probability": 0.5488 + }, + { + "start": 14690.3, + "end": 14690.86, + "probability": 0.4245 + }, + { + "start": 14691.02, + "end": 14692.24, + "probability": 0.8904 + }, + { + "start": 14692.36, + "end": 14693.7, + "probability": 0.9128 + }, + { + "start": 14694.96, + "end": 14696.15, + "probability": 0.9482 + }, + { + "start": 14697.1, + "end": 14699.58, + "probability": 0.9746 + }, + { + "start": 14700.0, + "end": 14701.72, + "probability": 0.9982 + }, + { + "start": 14702.8, + "end": 14707.42, + "probability": 0.8417 + }, + { + "start": 14708.84, + "end": 14709.62, + "probability": 0.4207 + }, + { + "start": 14710.44, + "end": 14712.56, + "probability": 0.9461 + }, + { + "start": 14714.28, + "end": 14714.4, + "probability": 0.5559 + }, + { + "start": 14714.42, + "end": 14716.32, + "probability": 0.5079 + }, + { + "start": 14716.54, + "end": 14717.32, + "probability": 0.6108 + }, + { + "start": 14717.64, + "end": 14719.08, + "probability": 0.8198 + }, + { + "start": 14719.24, + "end": 14720.82, + "probability": 0.6304 + }, + { + "start": 14721.56, + "end": 14722.28, + "probability": 0.722 + }, + { + "start": 14722.8, + "end": 14723.02, + "probability": 0.5144 + }, + { + "start": 14723.06, + "end": 14727.09, + "probability": 0.9274 + }, + { + "start": 14727.7, + "end": 14729.58, + "probability": 0.7979 + }, + { + "start": 14730.98, + "end": 14733.88, + "probability": 0.7649 + }, + { + "start": 14734.28, + "end": 14736.14, + "probability": 0.8929 + }, + { + "start": 14736.28, + "end": 14739.44, + "probability": 0.9829 + }, + { + "start": 14740.16, + "end": 14741.0, + "probability": 0.8839 + }, + { + "start": 14742.26, + "end": 14742.58, + "probability": 0.7725 + }, + { + "start": 14743.38, + "end": 14746.06, + "probability": 0.9742 + }, + { + "start": 14746.18, + "end": 14748.96, + "probability": 0.9632 + }, + { + "start": 14749.24, + "end": 14750.32, + "probability": 0.8695 + }, + { + "start": 14751.1, + "end": 14752.34, + "probability": 0.9604 + }, + { + "start": 14752.44, + "end": 14754.28, + "probability": 0.9803 + }, + { + "start": 14754.66, + "end": 14756.14, + "probability": 0.8634 + }, + { + "start": 14756.26, + "end": 14757.2, + "probability": 0.9195 + }, + { + "start": 14758.06, + "end": 14761.12, + "probability": 0.9018 + }, + { + "start": 14761.92, + "end": 14764.04, + "probability": 0.8531 + }, + { + "start": 14764.42, + "end": 14767.28, + "probability": 0.9552 + }, + { + "start": 14767.4, + "end": 14768.78, + "probability": 0.9966 + }, + { + "start": 14770.24, + "end": 14770.56, + "probability": 0.6683 + }, + { + "start": 14770.64, + "end": 14772.96, + "probability": 0.9727 + }, + { + "start": 14773.46, + "end": 14774.02, + "probability": 0.9254 + }, + { + "start": 14775.54, + "end": 14777.32, + "probability": 0.6649 + }, + { + "start": 14777.34, + "end": 14777.54, + "probability": 0.8059 + }, + { + "start": 14777.91, + "end": 14780.64, + "probability": 0.8099 + }, + { + "start": 14781.14, + "end": 14783.36, + "probability": 0.9839 + }, + { + "start": 14784.58, + "end": 14785.96, + "probability": 0.9541 + }, + { + "start": 14786.56, + "end": 14789.0, + "probability": 0.9178 + }, + { + "start": 14789.66, + "end": 14792.08, + "probability": 0.994 + }, + { + "start": 14792.16, + "end": 14794.08, + "probability": 0.7596 + }, + { + "start": 14794.78, + "end": 14797.3, + "probability": 0.4459 + }, + { + "start": 14797.42, + "end": 14798.7, + "probability": 0.4025 + }, + { + "start": 14799.56, + "end": 14800.12, + "probability": 0.7404 + }, + { + "start": 14800.18, + "end": 14801.52, + "probability": 0.1692 + }, + { + "start": 14801.62, + "end": 14803.44, + "probability": 0.8276 + }, + { + "start": 14803.56, + "end": 14805.56, + "probability": 0.9784 + }, + { + "start": 14806.04, + "end": 14808.58, + "probability": 0.9897 + }, + { + "start": 14809.71, + "end": 14811.48, + "probability": 0.8637 + }, + { + "start": 14813.0, + "end": 14813.1, + "probability": 0.7181 + }, + { + "start": 14814.08, + "end": 14816.14, + "probability": 0.2424 + }, + { + "start": 14818.59, + "end": 14820.5, + "probability": 0.9552 + }, + { + "start": 14821.2, + "end": 14824.44, + "probability": 0.9651 + }, + { + "start": 14824.44, + "end": 14826.7, + "probability": 0.9841 + }, + { + "start": 14827.24, + "end": 14831.04, + "probability": 0.9967 + }, + { + "start": 14832.42, + "end": 14835.02, + "probability": 0.947 + }, + { + "start": 14835.66, + "end": 14838.58, + "probability": 0.832 + }, + { + "start": 14839.34, + "end": 14840.14, + "probability": 0.9766 + }, + { + "start": 14841.04, + "end": 14844.94, + "probability": 0.9688 + }, + { + "start": 14845.68, + "end": 14848.66, + "probability": 0.9972 + }, + { + "start": 14848.66, + "end": 14851.7, + "probability": 0.9507 + }, + { + "start": 14851.8, + "end": 14852.84, + "probability": 0.9375 + }, + { + "start": 14853.4, + "end": 14855.02, + "probability": 0.9976 + }, + { + "start": 14855.9, + "end": 14857.84, + "probability": 0.1455 + }, + { + "start": 14858.78, + "end": 14859.9, + "probability": 0.925 + }, + { + "start": 14860.56, + "end": 14862.78, + "probability": 0.995 + }, + { + "start": 14863.34, + "end": 14865.86, + "probability": 0.9254 + }, + { + "start": 14866.68, + "end": 14868.64, + "probability": 0.9272 + }, + { + "start": 14869.78, + "end": 14871.94, + "probability": 0.9941 + }, + { + "start": 14873.26, + "end": 14874.44, + "probability": 0.9868 + }, + { + "start": 14875.78, + "end": 14877.32, + "probability": 0.8587 + }, + { + "start": 14877.9, + "end": 14880.0, + "probability": 0.9445 + }, + { + "start": 14880.12, + "end": 14880.61, + "probability": 0.646 + }, + { + "start": 14880.84, + "end": 14881.99, + "probability": 0.8737 + }, + { + "start": 14883.08, + "end": 14885.74, + "probability": 0.8743 + }, + { + "start": 14886.0, + "end": 14888.14, + "probability": 0.9871 + }, + { + "start": 14888.26, + "end": 14889.12, + "probability": 0.9937 + }, + { + "start": 14889.2, + "end": 14889.56, + "probability": 0.3477 + }, + { + "start": 14890.76, + "end": 14894.5, + "probability": 0.9237 + }, + { + "start": 14895.52, + "end": 14896.28, + "probability": 0.8719 + }, + { + "start": 14896.38, + "end": 14897.26, + "probability": 0.9215 + }, + { + "start": 14897.68, + "end": 14898.38, + "probability": 0.7159 + }, + { + "start": 14898.38, + "end": 14899.0, + "probability": 0.7196 + }, + { + "start": 14899.08, + "end": 14899.4, + "probability": 0.6842 + }, + { + "start": 14899.42, + "end": 14900.28, + "probability": 0.8754 + }, + { + "start": 14900.56, + "end": 14901.42, + "probability": 0.6502 + }, + { + "start": 14901.86, + "end": 14902.04, + "probability": 0.3179 + }, + { + "start": 14902.1, + "end": 14903.2, + "probability": 0.7147 + }, + { + "start": 14903.82, + "end": 14904.6, + "probability": 0.9531 + }, + { + "start": 14904.68, + "end": 14905.98, + "probability": 0.9629 + }, + { + "start": 14906.04, + "end": 14907.56, + "probability": 0.4682 + }, + { + "start": 14907.68, + "end": 14908.36, + "probability": 0.9801 + }, + { + "start": 14908.64, + "end": 14909.76, + "probability": 0.9619 + }, + { + "start": 14910.18, + "end": 14911.94, + "probability": 0.9175 + }, + { + "start": 14912.42, + "end": 14915.5, + "probability": 0.9907 + }, + { + "start": 14916.42, + "end": 14918.18, + "probability": 0.774 + }, + { + "start": 14919.22, + "end": 14921.6, + "probability": 0.9482 + }, + { + "start": 14921.84, + "end": 14924.12, + "probability": 0.98 + }, + { + "start": 14924.64, + "end": 14927.82, + "probability": 0.8973 + }, + { + "start": 14928.4, + "end": 14930.3, + "probability": 0.7466 + }, + { + "start": 14930.48, + "end": 14931.44, + "probability": 0.7558 + }, + { + "start": 14932.18, + "end": 14936.34, + "probability": 0.871 + }, + { + "start": 14937.1, + "end": 14938.84, + "probability": 0.9862 + }, + { + "start": 14939.68, + "end": 14941.76, + "probability": 0.9591 + }, + { + "start": 14941.78, + "end": 14942.24, + "probability": 0.7797 + }, + { + "start": 14942.32, + "end": 14943.25, + "probability": 0.8315 + }, + { + "start": 14943.46, + "end": 14945.3, + "probability": 0.8174 + }, + { + "start": 14945.38, + "end": 14946.98, + "probability": 0.9857 + }, + { + "start": 14947.44, + "end": 14948.06, + "probability": 0.8542 + }, + { + "start": 14948.2, + "end": 14948.68, + "probability": 0.8599 + }, + { + "start": 14948.74, + "end": 14949.78, + "probability": 0.9281 + }, + { + "start": 14950.42, + "end": 14951.12, + "probability": 0.9404 + }, + { + "start": 14951.2, + "end": 14953.2, + "probability": 0.8672 + }, + { + "start": 14953.22, + "end": 14953.88, + "probability": 0.7544 + }, + { + "start": 14953.92, + "end": 14954.5, + "probability": 0.97 + }, + { + "start": 14954.58, + "end": 14955.42, + "probability": 0.7657 + }, + { + "start": 14956.08, + "end": 14956.6, + "probability": 0.9327 + }, + { + "start": 14956.68, + "end": 14957.02, + "probability": 0.5497 + }, + { + "start": 14957.14, + "end": 14957.76, + "probability": 0.9315 + }, + { + "start": 14958.16, + "end": 14960.0, + "probability": 0.9926 + }, + { + "start": 14960.5, + "end": 14962.74, + "probability": 0.9857 + }, + { + "start": 14963.8, + "end": 14965.06, + "probability": 0.9945 + }, + { + "start": 14965.16, + "end": 14966.76, + "probability": 0.8119 + }, + { + "start": 14968.1, + "end": 14968.86, + "probability": 0.4891 + }, + { + "start": 14969.42, + "end": 14974.58, + "probability": 0.9492 + }, + { + "start": 14975.1, + "end": 14976.0, + "probability": 0.8953 + }, + { + "start": 14976.52, + "end": 14978.8, + "probability": 0.9791 + }, + { + "start": 14978.94, + "end": 14980.56, + "probability": 0.9536 + }, + { + "start": 14980.72, + "end": 14981.07, + "probability": 0.6875 + }, + { + "start": 14981.16, + "end": 14981.8, + "probability": 0.6989 + }, + { + "start": 14981.82, + "end": 14982.08, + "probability": 0.763 + }, + { + "start": 14982.6, + "end": 14984.26, + "probability": 0.9792 + }, + { + "start": 14985.52, + "end": 14987.86, + "probability": 0.9965 + }, + { + "start": 14988.56, + "end": 14989.88, + "probability": 0.8691 + }, + { + "start": 14991.0, + "end": 14992.38, + "probability": 0.9839 + }, + { + "start": 14992.54, + "end": 14992.94, + "probability": 0.3271 + }, + { + "start": 14993.04, + "end": 14995.4, + "probability": 0.8698 + }, + { + "start": 14995.92, + "end": 14997.12, + "probability": 0.9309 + }, + { + "start": 14997.68, + "end": 15000.26, + "probability": 0.9902 + }, + { + "start": 15002.34, + "end": 15003.38, + "probability": 0.9795 + }, + { + "start": 15004.38, + "end": 15005.22, + "probability": 0.285 + }, + { + "start": 15005.26, + "end": 15006.82, + "probability": 0.4087 + }, + { + "start": 15007.1, + "end": 15009.06, + "probability": 0.4711 + }, + { + "start": 15009.26, + "end": 15011.42, + "probability": 0.762 + }, + { + "start": 15012.4, + "end": 15012.54, + "probability": 0.1276 + }, + { + "start": 15015.94, + "end": 15019.48, + "probability": 0.4373 + }, + { + "start": 15019.98, + "end": 15021.52, + "probability": 0.7019 + }, + { + "start": 15021.62, + "end": 15022.8, + "probability": 0.9958 + }, + { + "start": 15022.94, + "end": 15023.22, + "probability": 0.4057 + }, + { + "start": 15023.88, + "end": 15026.14, + "probability": 0.7114 + }, + { + "start": 15026.78, + "end": 15027.98, + "probability": 0.9932 + }, + { + "start": 15028.92, + "end": 15030.42, + "probability": 0.1844 + }, + { + "start": 15031.18, + "end": 15034.02, + "probability": 0.6764 + }, + { + "start": 15034.96, + "end": 15037.0, + "probability": 0.9451 + }, + { + "start": 15037.2, + "end": 15038.8, + "probability": 0.4877 + }, + { + "start": 15038.8, + "end": 15040.08, + "probability": 0.8923 + }, + { + "start": 15040.26, + "end": 15041.04, + "probability": 0.4406 + }, + { + "start": 15041.36, + "end": 15043.96, + "probability": 0.9407 + }, + { + "start": 15044.2, + "end": 15049.9, + "probability": 0.731 + }, + { + "start": 15049.92, + "end": 15051.06, + "probability": 0.6302 + }, + { + "start": 15051.06, + "end": 15057.16, + "probability": 0.8272 + }, + { + "start": 15058.14, + "end": 15059.3, + "probability": 0.8874 + }, + { + "start": 15063.22, + "end": 15063.96, + "probability": 0.7855 + }, + { + "start": 15065.68, + "end": 15069.94, + "probability": 0.8698 + }, + { + "start": 15071.34, + "end": 15073.1, + "probability": 0.9937 + }, + { + "start": 15073.66, + "end": 15074.62, + "probability": 0.9644 + }, + { + "start": 15074.7, + "end": 15075.22, + "probability": 0.8792 + }, + { + "start": 15075.84, + "end": 15077.7, + "probability": 0.9823 + }, + { + "start": 15077.86, + "end": 15078.88, + "probability": 0.7204 + }, + { + "start": 15079.5, + "end": 15080.02, + "probability": 0.5497 + }, + { + "start": 15080.4, + "end": 15081.8, + "probability": 0.9941 + }, + { + "start": 15082.0, + "end": 15084.18, + "probability": 0.7192 + }, + { + "start": 15084.56, + "end": 15086.8, + "probability": 0.9972 + }, + { + "start": 15087.22, + "end": 15088.7, + "probability": 0.9966 + }, + { + "start": 15089.32, + "end": 15092.28, + "probability": 0.9678 + }, + { + "start": 15092.76, + "end": 15093.42, + "probability": 0.798 + }, + { + "start": 15093.84, + "end": 15095.8, + "probability": 0.8338 + }, + { + "start": 15095.88, + "end": 15096.3, + "probability": 0.649 + }, + { + "start": 15096.94, + "end": 15098.74, + "probability": 0.7522 + }, + { + "start": 15099.24, + "end": 15099.86, + "probability": 0.4733 + }, + { + "start": 15100.14, + "end": 15101.34, + "probability": 0.1011 + }, + { + "start": 15101.42, + "end": 15104.68, + "probability": 0.9912 + }, + { + "start": 15105.7, + "end": 15106.12, + "probability": 0.9404 + }, + { + "start": 15107.02, + "end": 15108.53, + "probability": 0.9917 + }, + { + "start": 15109.06, + "end": 15110.52, + "probability": 0.5078 + }, + { + "start": 15110.6, + "end": 15112.38, + "probability": 0.8904 + }, + { + "start": 15112.78, + "end": 15115.64, + "probability": 0.9818 + }, + { + "start": 15115.64, + "end": 15119.5, + "probability": 0.9909 + }, + { + "start": 15119.96, + "end": 15122.7, + "probability": 0.9764 + }, + { + "start": 15123.46, + "end": 15123.88, + "probability": 0.6805 + }, + { + "start": 15125.2, + "end": 15127.2, + "probability": 0.8959 + }, + { + "start": 15127.34, + "end": 15129.48, + "probability": 0.8093 + }, + { + "start": 15129.68, + "end": 15132.16, + "probability": 0.9645 + }, + { + "start": 15132.16, + "end": 15134.72, + "probability": 0.9306 + }, + { + "start": 15135.28, + "end": 15136.26, + "probability": 0.0104 + }, + { + "start": 15136.52, + "end": 15138.24, + "probability": 0.1516 + }, + { + "start": 15138.7, + "end": 15139.78, + "probability": 0.7659 + }, + { + "start": 15139.9, + "end": 15140.88, + "probability": 0.7666 + }, + { + "start": 15140.96, + "end": 15141.58, + "probability": 0.5658 + }, + { + "start": 15141.64, + "end": 15142.28, + "probability": 0.7063 + }, + { + "start": 15144.08, + "end": 15144.58, + "probability": 0.0782 + }, + { + "start": 15148.3, + "end": 15148.82, + "probability": 0.0 + }, + { + "start": 15158.96, + "end": 15159.76, + "probability": 0.1025 + }, + { + "start": 15160.34, + "end": 15163.66, + "probability": 0.6369 + }, + { + "start": 15163.76, + "end": 15165.46, + "probability": 0.9177 + }, + { + "start": 15165.66, + "end": 15166.58, + "probability": 0.3425 + }, + { + "start": 15167.12, + "end": 15171.48, + "probability": 0.8185 + }, + { + "start": 15171.88, + "end": 15172.8, + "probability": 0.6186 + }, + { + "start": 15173.78, + "end": 15174.4, + "probability": 0.0032 + }, + { + "start": 15187.72, + "end": 15190.68, + "probability": 0.0588 + }, + { + "start": 15191.68, + "end": 15195.44, + "probability": 0.1516 + }, + { + "start": 15195.56, + "end": 15197.38, + "probability": 0.9829 + }, + { + "start": 15197.38, + "end": 15200.46, + "probability": 0.9941 + }, + { + "start": 15200.62, + "end": 15202.4, + "probability": 0.7185 + }, + { + "start": 15203.28, + "end": 15206.04, + "probability": 0.7712 + }, + { + "start": 15206.18, + "end": 15207.66, + "probability": 0.1317 + }, + { + "start": 15208.06, + "end": 15208.88, + "probability": 0.6793 + }, + { + "start": 15209.26, + "end": 15211.61, + "probability": 0.8306 + }, + { + "start": 15211.78, + "end": 15213.62, + "probability": 0.7133 + }, + { + "start": 15214.9, + "end": 15215.6, + "probability": 0.7824 + }, + { + "start": 15223.06, + "end": 15223.3, + "probability": 0.349 + }, + { + "start": 15223.32, + "end": 15223.76, + "probability": 0.5403 + }, + { + "start": 15225.16, + "end": 15226.2, + "probability": 0.764 + }, + { + "start": 15229.38, + "end": 15233.58, + "probability": 0.7715 + }, + { + "start": 15235.02, + "end": 15239.22, + "probability": 0.9594 + }, + { + "start": 15239.68, + "end": 15241.74, + "probability": 0.9427 + }, + { + "start": 15242.8, + "end": 15247.58, + "probability": 0.9164 + }, + { + "start": 15248.14, + "end": 15251.94, + "probability": 0.9656 + }, + { + "start": 15251.94, + "end": 15254.14, + "probability": 0.9835 + }, + { + "start": 15255.18, + "end": 15256.04, + "probability": 0.6251 + }, + { + "start": 15257.16, + "end": 15259.58, + "probability": 0.9712 + }, + { + "start": 15260.16, + "end": 15262.48, + "probability": 0.5231 + }, + { + "start": 15263.06, + "end": 15265.66, + "probability": 0.9876 + }, + { + "start": 15266.58, + "end": 15269.16, + "probability": 0.8775 + }, + { + "start": 15269.86, + "end": 15274.6, + "probability": 0.9476 + }, + { + "start": 15275.36, + "end": 15276.44, + "probability": 0.8822 + }, + { + "start": 15277.04, + "end": 15280.92, + "probability": 0.9793 + }, + { + "start": 15282.0, + "end": 15284.62, + "probability": 0.2561 + }, + { + "start": 15285.58, + "end": 15293.52, + "probability": 0.9752 + }, + { + "start": 15294.52, + "end": 15297.08, + "probability": 0.9178 + }, + { + "start": 15297.08, + "end": 15300.86, + "probability": 0.9851 + }, + { + "start": 15301.34, + "end": 15303.56, + "probability": 0.9753 + }, + { + "start": 15304.1, + "end": 15306.2, + "probability": 0.9773 + }, + { + "start": 15306.74, + "end": 15309.44, + "probability": 0.9908 + }, + { + "start": 15311.46, + "end": 15314.32, + "probability": 0.9874 + }, + { + "start": 15315.04, + "end": 15315.5, + "probability": 0.2697 + }, + { + "start": 15316.12, + "end": 15321.58, + "probability": 0.9237 + }, + { + "start": 15321.66, + "end": 15322.36, + "probability": 0.9609 + }, + { + "start": 15322.42, + "end": 15326.88, + "probability": 0.9787 + }, + { + "start": 15328.06, + "end": 15329.54, + "probability": 0.9053 + }, + { + "start": 15330.74, + "end": 15332.94, + "probability": 0.9133 + }, + { + "start": 15333.74, + "end": 15335.8, + "probability": 0.9445 + }, + { + "start": 15336.88, + "end": 15339.02, + "probability": 0.761 + }, + { + "start": 15339.74, + "end": 15342.1, + "probability": 0.9419 + }, + { + "start": 15342.1, + "end": 15346.62, + "probability": 0.9702 + }, + { + "start": 15347.36, + "end": 15348.14, + "probability": 0.59 + }, + { + "start": 15348.6, + "end": 15351.6, + "probability": 0.9921 + }, + { + "start": 15352.28, + "end": 15352.82, + "probability": 0.7814 + }, + { + "start": 15353.06, + "end": 15353.58, + "probability": 0.8919 + }, + { + "start": 15353.64, + "end": 15359.84, + "probability": 0.9617 + }, + { + "start": 15360.24, + "end": 15361.2, + "probability": 0.9807 + }, + { + "start": 15362.38, + "end": 15364.48, + "probability": 0.5872 + }, + { + "start": 15364.54, + "end": 15365.62, + "probability": 0.8457 + }, + { + "start": 15366.52, + "end": 15367.92, + "probability": 0.9913 + }, + { + "start": 15368.54, + "end": 15370.04, + "probability": 0.976 + }, + { + "start": 15370.6, + "end": 15374.82, + "probability": 0.9741 + }, + { + "start": 15375.62, + "end": 15378.06, + "probability": 0.9599 + }, + { + "start": 15378.56, + "end": 15379.76, + "probability": 0.7955 + }, + { + "start": 15380.34, + "end": 15384.38, + "probability": 0.986 + }, + { + "start": 15385.16, + "end": 15389.32, + "probability": 0.9701 + }, + { + "start": 15389.94, + "end": 15392.52, + "probability": 0.9785 + }, + { + "start": 15393.12, + "end": 15398.24, + "probability": 0.9893 + }, + { + "start": 15398.7, + "end": 15401.18, + "probability": 0.7013 + }, + { + "start": 15402.1, + "end": 15406.58, + "probability": 0.8998 + }, + { + "start": 15407.12, + "end": 15407.52, + "probability": 0.3821 + }, + { + "start": 15408.66, + "end": 15413.02, + "probability": 0.9943 + }, + { + "start": 15413.44, + "end": 15418.08, + "probability": 0.9951 + }, + { + "start": 15419.0, + "end": 15422.12, + "probability": 0.9112 + }, + { + "start": 15422.74, + "end": 15423.32, + "probability": 0.4388 + }, + { + "start": 15423.46, + "end": 15426.54, + "probability": 0.9205 + }, + { + "start": 15427.66, + "end": 15428.38, + "probability": 0.8524 + }, + { + "start": 15429.14, + "end": 15431.06, + "probability": 0.8411 + }, + { + "start": 15431.64, + "end": 15434.7, + "probability": 0.989 + }, + { + "start": 15435.44, + "end": 15438.04, + "probability": 0.9769 + }, + { + "start": 15438.56, + "end": 15439.48, + "probability": 0.5892 + }, + { + "start": 15439.94, + "end": 15443.96, + "probability": 0.9917 + }, + { + "start": 15444.82, + "end": 15448.22, + "probability": 0.9912 + }, + { + "start": 15448.8, + "end": 15451.76, + "probability": 0.9885 + }, + { + "start": 15452.4, + "end": 15453.62, + "probability": 0.9616 + }, + { + "start": 15454.28, + "end": 15457.54, + "probability": 0.8077 + }, + { + "start": 15457.98, + "end": 15459.92, + "probability": 0.8691 + }, + { + "start": 15460.96, + "end": 15461.86, + "probability": 0.782 + }, + { + "start": 15462.46, + "end": 15464.74, + "probability": 0.9009 + }, + { + "start": 15465.28, + "end": 15466.28, + "probability": 0.9226 + }, + { + "start": 15466.92, + "end": 15469.6, + "probability": 0.9902 + }, + { + "start": 15470.18, + "end": 15472.36, + "probability": 0.9868 + }, + { + "start": 15472.36, + "end": 15475.86, + "probability": 0.9056 + }, + { + "start": 15476.76, + "end": 15478.04, + "probability": 0.8652 + }, + { + "start": 15478.7, + "end": 15480.12, + "probability": 0.9684 + }, + { + "start": 15480.12, + "end": 15480.92, + "probability": 0.6058 + }, + { + "start": 15480.96, + "end": 15482.2, + "probability": 0.8894 + }, + { + "start": 15482.8, + "end": 15484.06, + "probability": 0.783 + }, + { + "start": 15485.2, + "end": 15490.18, + "probability": 0.9399 + }, + { + "start": 15490.94, + "end": 15491.52, + "probability": 0.8981 + }, + { + "start": 15491.8, + "end": 15494.74, + "probability": 0.9014 + }, + { + "start": 15495.22, + "end": 15499.04, + "probability": 0.9806 + }, + { + "start": 15499.2, + "end": 15501.14, + "probability": 0.9603 + }, + { + "start": 15501.6, + "end": 15502.02, + "probability": 0.8356 + }, + { + "start": 15503.7, + "end": 15504.98, + "probability": 0.9746 + }, + { + "start": 15505.14, + "end": 15506.52, + "probability": 0.922 + }, + { + "start": 15507.5, + "end": 15509.44, + "probability": 0.7418 + }, + { + "start": 15510.46, + "end": 15512.1, + "probability": 0.8676 + }, + { + "start": 15512.9, + "end": 15514.82, + "probability": 0.9785 + }, + { + "start": 15515.86, + "end": 15516.42, + "probability": 0.9844 + }, + { + "start": 15519.94, + "end": 15520.32, + "probability": 0.2756 + }, + { + "start": 15520.32, + "end": 15520.32, + "probability": 0.5051 + }, + { + "start": 15520.32, + "end": 15520.67, + "probability": 0.9246 + }, + { + "start": 15522.1, + "end": 15524.0, + "probability": 0.9609 + }, + { + "start": 15524.68, + "end": 15527.16, + "probability": 0.7403 + }, + { + "start": 15529.3, + "end": 15531.12, + "probability": 0.5149 + }, + { + "start": 15531.12, + "end": 15531.12, + "probability": 0.075 + }, + { + "start": 15531.12, + "end": 15531.38, + "probability": 0.3611 + }, + { + "start": 15531.42, + "end": 15531.88, + "probability": 0.2551 + }, + { + "start": 15531.92, + "end": 15532.92, + "probability": 0.8443 + }, + { + "start": 15533.74, + "end": 15534.1, + "probability": 0.745 + }, + { + "start": 15552.98, + "end": 15553.14, + "probability": 0.3242 + }, + { + "start": 15553.7, + "end": 15555.12, + "probability": 0.4259 + }, + { + "start": 15555.12, + "end": 15560.1, + "probability": 0.5711 + }, + { + "start": 15560.14, + "end": 15560.58, + "probability": 0.4556 + }, + { + "start": 15560.84, + "end": 15563.02, + "probability": 0.8002 + }, + { + "start": 15563.14, + "end": 15564.04, + "probability": 0.6537 + }, + { + "start": 15564.92, + "end": 15567.34, + "probability": 0.842 + }, + { + "start": 15567.92, + "end": 15569.86, + "probability": 0.8509 + }, + { + "start": 15570.56, + "end": 15571.81, + "probability": 0.9778 + }, + { + "start": 15572.72, + "end": 15573.7, + "probability": 0.6536 + }, + { + "start": 15574.38, + "end": 15575.4, + "probability": 0.9387 + }, + { + "start": 15575.8, + "end": 15576.86, + "probability": 0.7315 + }, + { + "start": 15576.86, + "end": 15577.48, + "probability": 0.5882 + }, + { + "start": 15577.84, + "end": 15578.68, + "probability": 0.9813 + }, + { + "start": 15579.46, + "end": 15580.12, + "probability": 0.8131 + }, + { + "start": 15581.4, + "end": 15582.0, + "probability": 0.7221 + }, + { + "start": 15582.08, + "end": 15584.2, + "probability": 0.761 + }, + { + "start": 15584.3, + "end": 15585.5, + "probability": 0.8106 + }, + { + "start": 15585.64, + "end": 15586.98, + "probability": 0.896 + }, + { + "start": 15587.32, + "end": 15587.34, + "probability": 0.7222 + }, + { + "start": 15588.14, + "end": 15589.93, + "probability": 0.9967 + }, + { + "start": 15590.62, + "end": 15591.9, + "probability": 0.9313 + }, + { + "start": 15592.62, + "end": 15595.19, + "probability": 0.9979 + }, + { + "start": 15595.62, + "end": 15598.32, + "probability": 0.9991 + }, + { + "start": 15599.54, + "end": 15601.54, + "probability": 0.7451 + }, + { + "start": 15602.1, + "end": 15603.98, + "probability": 0.5054 + }, + { + "start": 15605.48, + "end": 15606.94, + "probability": 0.7088 + }, + { + "start": 15607.78, + "end": 15609.82, + "probability": 0.9224 + }, + { + "start": 15610.38, + "end": 15613.29, + "probability": 0.9958 + }, + { + "start": 15613.96, + "end": 15615.6, + "probability": 0.8848 + }, + { + "start": 15616.2, + "end": 15622.28, + "probability": 0.9814 + }, + { + "start": 15623.78, + "end": 15624.48, + "probability": 0.7593 + }, + { + "start": 15625.02, + "end": 15625.9, + "probability": 0.9091 + }, + { + "start": 15626.6, + "end": 15627.12, + "probability": 0.944 + }, + { + "start": 15627.9, + "end": 15629.36, + "probability": 0.8743 + }, + { + "start": 15631.02, + "end": 15636.56, + "probability": 0.9938 + }, + { + "start": 15637.5, + "end": 15638.08, + "probability": 0.7804 + }, + { + "start": 15638.68, + "end": 15641.52, + "probability": 0.9799 + }, + { + "start": 15643.34, + "end": 15645.94, + "probability": 0.9764 + }, + { + "start": 15646.56, + "end": 15653.18, + "probability": 0.9775 + }, + { + "start": 15654.08, + "end": 15656.02, + "probability": 0.7361 + }, + { + "start": 15657.16, + "end": 15660.84, + "probability": 0.942 + }, + { + "start": 15662.1, + "end": 15668.76, + "probability": 0.9878 + }, + { + "start": 15669.13, + "end": 15675.62, + "probability": 0.9906 + }, + { + "start": 15676.24, + "end": 15678.92, + "probability": 0.9963 + }, + { + "start": 15679.52, + "end": 15684.58, + "probability": 0.8644 + }, + { + "start": 15685.56, + "end": 15688.4, + "probability": 0.997 + }, + { + "start": 15688.4, + "end": 15691.96, + "probability": 0.7719 + }, + { + "start": 15692.6, + "end": 15697.98, + "probability": 0.9883 + }, + { + "start": 15698.18, + "end": 15702.88, + "probability": 0.995 + }, + { + "start": 15704.14, + "end": 15706.68, + "probability": 0.9313 + }, + { + "start": 15707.4, + "end": 15710.22, + "probability": 0.9961 + }, + { + "start": 15710.22, + "end": 15713.46, + "probability": 0.9712 + }, + { + "start": 15713.84, + "end": 15715.23, + "probability": 0.7834 + }, + { + "start": 15715.6, + "end": 15717.18, + "probability": 0.0695 + }, + { + "start": 15717.26, + "end": 15717.76, + "probability": 0.125 + }, + { + "start": 15717.8, + "end": 15718.88, + "probability": 0.5536 + }, + { + "start": 15718.92, + "end": 15721.24, + "probability": 0.9763 + }, + { + "start": 15721.72, + "end": 15722.78, + "probability": 0.7617 + }, + { + "start": 15722.86, + "end": 15723.8, + "probability": 0.5341 + }, + { + "start": 15724.38, + "end": 15724.94, + "probability": 0.7444 + }, + { + "start": 15725.38, + "end": 15727.5, + "probability": 0.3287 + }, + { + "start": 15729.28, + "end": 15729.4, + "probability": 0.0065 + }, + { + "start": 15729.52, + "end": 15730.32, + "probability": 0.0752 + }, + { + "start": 15730.68, + "end": 15736.62, + "probability": 0.752 + }, + { + "start": 15736.72, + "end": 15736.84, + "probability": 0.2745 + }, + { + "start": 15736.84, + "end": 15738.06, + "probability": 0.5022 + }, + { + "start": 15738.78, + "end": 15739.1, + "probability": 0.006 + }, + { + "start": 15739.1, + "end": 15739.1, + "probability": 0.3257 + }, + { + "start": 15739.1, + "end": 15740.13, + "probability": 0.6528 + }, + { + "start": 15740.48, + "end": 15742.66, + "probability": 0.2836 + }, + { + "start": 15743.44, + "end": 15743.44, + "probability": 0.2759 + }, + { + "start": 15744.6, + "end": 15744.6, + "probability": 0.0896 + }, + { + "start": 15744.6, + "end": 15744.72, + "probability": 0.0628 + }, + { + "start": 15744.72, + "end": 15746.32, + "probability": 0.4955 + }, + { + "start": 15747.96, + "end": 15751.84, + "probability": 0.0801 + }, + { + "start": 15752.97, + "end": 15754.32, + "probability": 0.0203 + }, + { + "start": 15754.32, + "end": 15754.38, + "probability": 0.0695 + }, + { + "start": 15754.38, + "end": 15754.58, + "probability": 0.2923 + }, + { + "start": 15754.8, + "end": 15755.52, + "probability": 0.2493 + }, + { + "start": 15757.96, + "end": 15760.24, + "probability": 0.1294 + }, + { + "start": 15761.54, + "end": 15761.94, + "probability": 0.1299 + }, + { + "start": 15763.12, + "end": 15768.54, + "probability": 0.0639 + }, + { + "start": 15769.18, + "end": 15772.02, + "probability": 0.3934 + }, + { + "start": 15773.16, + "end": 15773.16, + "probability": 0.0247 + }, + { + "start": 15779.4, + "end": 15783.42, + "probability": 0.1586 + }, + { + "start": 15783.52, + "end": 15783.54, + "probability": 0.0331 + }, + { + "start": 15783.54, + "end": 15785.1, + "probability": 0.3945 + }, + { + "start": 15786.1, + "end": 15788.02, + "probability": 0.1361 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.0, + "end": 15833.0, + "probability": 0.0 + }, + { + "start": 15833.24, + "end": 15833.38, + "probability": 0.646 + }, + { + "start": 15833.38, + "end": 15834.0, + "probability": 0.2033 + }, + { + "start": 15834.68, + "end": 15835.08, + "probability": 0.4214 + }, + { + "start": 15835.38, + "end": 15836.72, + "probability": 0.4257 + }, + { + "start": 15836.74, + "end": 15837.56, + "probability": 0.9113 + }, + { + "start": 15837.74, + "end": 15838.68, + "probability": 0.917 + }, + { + "start": 15838.86, + "end": 15839.74, + "probability": 0.9585 + }, + { + "start": 15839.86, + "end": 15840.44, + "probability": 0.3388 + }, + { + "start": 15840.56, + "end": 15843.48, + "probability": 0.679 + }, + { + "start": 15845.44, + "end": 15845.44, + "probability": 0.0094 + }, + { + "start": 15845.44, + "end": 15847.98, + "probability": 0.8542 + }, + { + "start": 15848.64, + "end": 15858.02, + "probability": 0.8908 + }, + { + "start": 15858.1, + "end": 15858.96, + "probability": 0.9015 + }, + { + "start": 15860.16, + "end": 15860.62, + "probability": 0.9019 + }, + { + "start": 15862.16, + "end": 15869.16, + "probability": 0.8266 + }, + { + "start": 15870.12, + "end": 15872.56, + "probability": 0.9926 + }, + { + "start": 15873.42, + "end": 15877.66, + "probability": 0.8515 + }, + { + "start": 15877.98, + "end": 15878.92, + "probability": 0.5792 + }, + { + "start": 15879.94, + "end": 15881.72, + "probability": 0.6249 + }, + { + "start": 15882.72, + "end": 15887.08, + "probability": 0.9717 + }, + { + "start": 15887.86, + "end": 15889.68, + "probability": 0.958 + }, + { + "start": 15890.3, + "end": 15894.34, + "probability": 0.985 + }, + { + "start": 15894.34, + "end": 15899.36, + "probability": 0.9841 + }, + { + "start": 15899.74, + "end": 15901.54, + "probability": 0.8478 + }, + { + "start": 15902.54, + "end": 15904.1, + "probability": 0.5458 + }, + { + "start": 15904.44, + "end": 15904.44, + "probability": 0.5817 + }, + { + "start": 15904.8, + "end": 15907.06, + "probability": 0.8725 + }, + { + "start": 15907.72, + "end": 15914.28, + "probability": 0.9087 + }, + { + "start": 15914.96, + "end": 15920.48, + "probability": 0.9706 + }, + { + "start": 15921.14, + "end": 15921.24, + "probability": 0.2897 + }, + { + "start": 15921.68, + "end": 15922.28, + "probability": 0.3935 + }, + { + "start": 15922.34, + "end": 15922.84, + "probability": 0.9381 + }, + { + "start": 15923.02, + "end": 15924.97, + "probability": 0.9795 + }, + { + "start": 15925.32, + "end": 15927.6, + "probability": 0.4105 + }, + { + "start": 15928.2, + "end": 15936.2, + "probability": 0.9956 + }, + { + "start": 15936.84, + "end": 15938.36, + "probability": 0.6742 + }, + { + "start": 15938.52, + "end": 15939.62, + "probability": 0.7965 + }, + { + "start": 15940.18, + "end": 15941.34, + "probability": 0.8843 + }, + { + "start": 15943.49, + "end": 15945.82, + "probability": 0.6625 + }, + { + "start": 15946.54, + "end": 15952.14, + "probability": 0.8957 + }, + { + "start": 15952.84, + "end": 15957.76, + "probability": 0.9945 + }, + { + "start": 15958.16, + "end": 15958.82, + "probability": 0.0943 + }, + { + "start": 15958.82, + "end": 15959.94, + "probability": 0.8779 + }, + { + "start": 15960.1, + "end": 15960.92, + "probability": 0.7132 + }, + { + "start": 15961.48, + "end": 15961.48, + "probability": 0.0048 + }, + { + "start": 15961.48, + "end": 15961.48, + "probability": 0.1365 + }, + { + "start": 15961.48, + "end": 15965.98, + "probability": 0.7827 + }, + { + "start": 15966.5, + "end": 15966.94, + "probability": 0.7909 + }, + { + "start": 15967.06, + "end": 15967.46, + "probability": 0.3411 + }, + { + "start": 15968.38, + "end": 15969.16, + "probability": 0.7184 + }, + { + "start": 15969.24, + "end": 15971.92, + "probability": 0.9703 + }, + { + "start": 15971.92, + "end": 15972.96, + "probability": 0.4794 + }, + { + "start": 15973.08, + "end": 15973.42, + "probability": 0.341 + }, + { + "start": 15973.42, + "end": 15974.16, + "probability": 0.8389 + }, + { + "start": 15974.3, + "end": 15975.66, + "probability": 0.8965 + }, + { + "start": 15976.14, + "end": 15978.34, + "probability": 0.9804 + }, + { + "start": 15978.44, + "end": 15983.7, + "probability": 0.446 + }, + { + "start": 15984.1, + "end": 15986.7, + "probability": 0.0314 + }, + { + "start": 15986.88, + "end": 15986.88, + "probability": 0.0336 + }, + { + "start": 15986.88, + "end": 15990.08, + "probability": 0.218 + }, + { + "start": 15991.24, + "end": 15999.42, + "probability": 0.1649 + }, + { + "start": 16000.64, + "end": 16000.88, + "probability": 0.1124 + }, + { + "start": 16000.88, + "end": 16001.26, + "probability": 0.3079 + }, + { + "start": 16001.26, + "end": 16001.26, + "probability": 0.1638 + }, + { + "start": 16001.26, + "end": 16001.26, + "probability": 0.0203 + }, + { + "start": 16001.26, + "end": 16003.38, + "probability": 0.6074 + }, + { + "start": 16011.0, + "end": 16011.48, + "probability": 0.6667 + }, + { + "start": 16011.54, + "end": 16011.98, + "probability": 0.9089 + }, + { + "start": 16015.12, + "end": 16021.62, + "probability": 0.9573 + }, + { + "start": 16021.62, + "end": 16023.74, + "probability": 0.9871 + }, + { + "start": 16025.38, + "end": 16026.87, + "probability": 0.8983 + }, + { + "start": 16027.9, + "end": 16029.98, + "probability": 0.9976 + }, + { + "start": 16030.2, + "end": 16031.68, + "probability": 0.7909 + }, + { + "start": 16032.28, + "end": 16034.66, + "probability": 0.9938 + }, + { + "start": 16034.72, + "end": 16035.78, + "probability": 0.9329 + }, + { + "start": 16036.26, + "end": 16038.36, + "probability": 0.8775 + }, + { + "start": 16038.46, + "end": 16041.88, + "probability": 0.8516 + }, + { + "start": 16042.52, + "end": 16045.36, + "probability": 0.7686 + }, + { + "start": 16045.5, + "end": 16048.02, + "probability": 0.9063 + }, + { + "start": 16048.2, + "end": 16048.94, + "probability": 0.5352 + }, + { + "start": 16049.0, + "end": 16049.62, + "probability": 0.7312 + }, + { + "start": 16049.96, + "end": 16051.08, + "probability": 0.9628 + }, + { + "start": 16051.5, + "end": 16053.92, + "probability": 0.8775 + }, + { + "start": 16054.06, + "end": 16055.76, + "probability": 0.8726 + }, + { + "start": 16056.06, + "end": 16059.1, + "probability": 0.7416 + }, + { + "start": 16059.28, + "end": 16060.76, + "probability": 0.9035 + }, + { + "start": 16060.86, + "end": 16062.24, + "probability": 0.9025 + }, + { + "start": 16062.6, + "end": 16067.96, + "probability": 0.9338 + }, + { + "start": 16068.42, + "end": 16070.9, + "probability": 0.9951 + }, + { + "start": 16071.18, + "end": 16074.14, + "probability": 0.988 + }, + { + "start": 16074.58, + "end": 16075.6, + "probability": 0.5155 + }, + { + "start": 16075.66, + "end": 16077.02, + "probability": 0.9907 + }, + { + "start": 16077.48, + "end": 16079.06, + "probability": 0.9412 + }, + { + "start": 16079.7, + "end": 16079.8, + "probability": 0.4518 + }, + { + "start": 16080.0, + "end": 16082.02, + "probability": 0.9174 + }, + { + "start": 16082.16, + "end": 16083.94, + "probability": 0.7732 + }, + { + "start": 16084.52, + "end": 16087.3, + "probability": 0.9718 + }, + { + "start": 16087.36, + "end": 16089.3, + "probability": 0.8249 + }, + { + "start": 16089.92, + "end": 16094.58, + "probability": 0.9875 + }, + { + "start": 16095.88, + "end": 16100.54, + "probability": 0.9243 + }, + { + "start": 16100.54, + "end": 16103.78, + "probability": 0.9567 + }, + { + "start": 16104.44, + "end": 16105.84, + "probability": 0.7345 + }, + { + "start": 16106.42, + "end": 16109.34, + "probability": 0.9495 + }, + { + "start": 16110.08, + "end": 16112.46, + "probability": 0.891 + }, + { + "start": 16112.52, + "end": 16113.22, + "probability": 0.6921 + }, + { + "start": 16113.38, + "end": 16116.64, + "probability": 0.9928 + }, + { + "start": 16117.04, + "end": 16119.36, + "probability": 0.9476 + }, + { + "start": 16119.44, + "end": 16120.84, + "probability": 0.8804 + }, + { + "start": 16121.2, + "end": 16121.36, + "probability": 0.6694 + }, + { + "start": 16121.72, + "end": 16123.56, + "probability": 0.6551 + }, + { + "start": 16124.08, + "end": 16126.72, + "probability": 0.9885 + }, + { + "start": 16127.26, + "end": 16129.4, + "probability": 0.9915 + }, + { + "start": 16129.74, + "end": 16133.82, + "probability": 0.9951 + }, + { + "start": 16133.92, + "end": 16134.24, + "probability": 0.5308 + }, + { + "start": 16134.58, + "end": 16135.8, + "probability": 0.9952 + }, + { + "start": 16136.3, + "end": 16141.14, + "probability": 0.9823 + }, + { + "start": 16141.5, + "end": 16145.0, + "probability": 0.9881 + }, + { + "start": 16145.0, + "end": 16147.9, + "probability": 0.9947 + }, + { + "start": 16148.42, + "end": 16151.13, + "probability": 0.9958 + }, + { + "start": 16151.3, + "end": 16152.98, + "probability": 0.8404 + }, + { + "start": 16153.06, + "end": 16156.48, + "probability": 0.9007 + }, + { + "start": 16156.84, + "end": 16158.05, + "probability": 0.6777 + }, + { + "start": 16158.32, + "end": 16159.74, + "probability": 0.7069 + }, + { + "start": 16160.08, + "end": 16162.56, + "probability": 0.938 + }, + { + "start": 16163.02, + "end": 16165.3, + "probability": 0.989 + }, + { + "start": 16165.68, + "end": 16166.74, + "probability": 0.9927 + }, + { + "start": 16167.46, + "end": 16170.54, + "probability": 0.9952 + }, + { + "start": 16170.54, + "end": 16173.74, + "probability": 0.9932 + }, + { + "start": 16174.06, + "end": 16175.17, + "probability": 0.8608 + }, + { + "start": 16175.74, + "end": 16176.86, + "probability": 0.907 + }, + { + "start": 16177.32, + "end": 16178.38, + "probability": 0.5293 + }, + { + "start": 16178.48, + "end": 16180.62, + "probability": 0.5689 + }, + { + "start": 16180.86, + "end": 16184.34, + "probability": 0.7183 + }, + { + "start": 16184.4, + "end": 16185.56, + "probability": 0.7677 + }, + { + "start": 16185.62, + "end": 16186.42, + "probability": 0.9631 + }, + { + "start": 16186.44, + "end": 16187.12, + "probability": 0.9455 + }, + { + "start": 16187.48, + "end": 16190.3, + "probability": 0.9137 + }, + { + "start": 16190.6, + "end": 16191.26, + "probability": 0.5637 + }, + { + "start": 16191.32, + "end": 16193.14, + "probability": 0.9213 + }, + { + "start": 16193.62, + "end": 16195.94, + "probability": 0.9971 + }, + { + "start": 16196.28, + "end": 16198.0, + "probability": 0.4539 + }, + { + "start": 16198.38, + "end": 16202.32, + "probability": 0.9768 + }, + { + "start": 16202.68, + "end": 16204.04, + "probability": 0.2761 + }, + { + "start": 16204.44, + "end": 16204.58, + "probability": 0.0638 + }, + { + "start": 16204.94, + "end": 16205.22, + "probability": 0.0507 + }, + { + "start": 16205.22, + "end": 16206.05, + "probability": 0.6855 + }, + { + "start": 16206.4, + "end": 16206.88, + "probability": 0.9713 + }, + { + "start": 16207.12, + "end": 16212.6, + "probability": 0.9758 + }, + { + "start": 16212.64, + "end": 16213.46, + "probability": 0.6318 + }, + { + "start": 16213.68, + "end": 16214.5, + "probability": 0.7015 + }, + { + "start": 16214.86, + "end": 16217.09, + "probability": 0.9531 + }, + { + "start": 16217.46, + "end": 16219.1, + "probability": 0.7423 + }, + { + "start": 16219.2, + "end": 16220.48, + "probability": 0.6245 + }, + { + "start": 16220.94, + "end": 16224.7, + "probability": 0.8359 + }, + { + "start": 16224.72, + "end": 16225.12, + "probability": 0.7023 + }, + { + "start": 16225.16, + "end": 16225.98, + "probability": 0.7847 + }, + { + "start": 16226.08, + "end": 16226.58, + "probability": 0.8529 + }, + { + "start": 16227.02, + "end": 16228.3, + "probability": 0.8374 + }, + { + "start": 16228.38, + "end": 16229.52, + "probability": 0.7785 + }, + { + "start": 16229.92, + "end": 16230.44, + "probability": 0.7638 + }, + { + "start": 16230.56, + "end": 16231.64, + "probability": 0.8615 + }, + { + "start": 16233.06, + "end": 16234.12, + "probability": 0.1259 + }, + { + "start": 16234.54, + "end": 16234.54, + "probability": 0.1896 + }, + { + "start": 16234.54, + "end": 16236.04, + "probability": 0.5703 + }, + { + "start": 16236.4, + "end": 16237.5, + "probability": 0.9858 + }, + { + "start": 16239.32, + "end": 16239.94, + "probability": 0.6125 + }, + { + "start": 16240.34, + "end": 16240.44, + "probability": 0.1138 + }, + { + "start": 16240.44, + "end": 16240.5, + "probability": 0.1164 + }, + { + "start": 16240.6, + "end": 16241.76, + "probability": 0.3723 + }, + { + "start": 16243.6, + "end": 16245.44, + "probability": 0.6447 + }, + { + "start": 16245.52, + "end": 16246.12, + "probability": 0.2535 + }, + { + "start": 16246.2, + "end": 16247.76, + "probability": 0.6865 + }, + { + "start": 16248.16, + "end": 16249.81, + "probability": 0.4014 + }, + { + "start": 16249.98, + "end": 16250.16, + "probability": 0.1713 + }, + { + "start": 16251.08, + "end": 16252.44, + "probability": 0.3044 + }, + { + "start": 16252.98, + "end": 16253.08, + "probability": 0.3431 + }, + { + "start": 16253.46, + "end": 16254.74, + "probability": 0.6548 + }, + { + "start": 16254.9, + "end": 16256.4, + "probability": 0.8103 + }, + { + "start": 16256.68, + "end": 16257.28, + "probability": 0.1541 + }, + { + "start": 16257.48, + "end": 16259.36, + "probability": 0.7785 + }, + { + "start": 16263.04, + "end": 16263.14, + "probability": 0.5765 + }, + { + "start": 16263.14, + "end": 16264.78, + "probability": 0.6473 + }, + { + "start": 16266.43, + "end": 16267.54, + "probability": 0.1752 + }, + { + "start": 16267.54, + "end": 16269.42, + "probability": 0.1477 + }, + { + "start": 16271.38, + "end": 16273.9, + "probability": 0.8008 + }, + { + "start": 16275.1, + "end": 16277.1, + "probability": 0.9161 + }, + { + "start": 16277.42, + "end": 16277.92, + "probability": 0.7271 + }, + { + "start": 16278.26, + "end": 16278.8, + "probability": 0.7035 + }, + { + "start": 16280.32, + "end": 16280.32, + "probability": 0.4955 + }, + { + "start": 16280.32, + "end": 16281.3, + "probability": 0.7196 + }, + { + "start": 16282.0, + "end": 16283.9, + "probability": 0.8312 + }, + { + "start": 16286.8, + "end": 16287.42, + "probability": 0.9308 + }, + { + "start": 16288.12, + "end": 16289.08, + "probability": 0.9851 + }, + { + "start": 16290.02, + "end": 16291.44, + "probability": 0.8924 + }, + { + "start": 16292.76, + "end": 16295.52, + "probability": 0.99 + }, + { + "start": 16296.4, + "end": 16299.98, + "probability": 0.9377 + }, + { + "start": 16301.34, + "end": 16301.52, + "probability": 0.1262 + }, + { + "start": 16301.52, + "end": 16304.1, + "probability": 0.9908 + }, + { + "start": 16304.66, + "end": 16306.12, + "probability": 0.7107 + }, + { + "start": 16307.82, + "end": 16308.84, + "probability": 0.9945 + }, + { + "start": 16309.8, + "end": 16311.22, + "probability": 0.9951 + }, + { + "start": 16312.14, + "end": 16313.62, + "probability": 0.9952 + }, + { + "start": 16314.38, + "end": 16319.32, + "probability": 0.9956 + }, + { + "start": 16320.08, + "end": 16324.8, + "probability": 0.8062 + }, + { + "start": 16325.76, + "end": 16328.0, + "probability": 0.6893 + }, + { + "start": 16328.74, + "end": 16329.66, + "probability": 0.8355 + }, + { + "start": 16330.22, + "end": 16333.52, + "probability": 0.86 + }, + { + "start": 16334.76, + "end": 16335.91, + "probability": 0.6419 + }, + { + "start": 16336.82, + "end": 16338.8, + "probability": 0.9772 + }, + { + "start": 16339.36, + "end": 16344.12, + "probability": 0.9274 + }, + { + "start": 16344.64, + "end": 16347.14, + "probability": 0.9963 + }, + { + "start": 16348.04, + "end": 16349.32, + "probability": 0.9867 + }, + { + "start": 16349.88, + "end": 16354.86, + "probability": 0.9711 + }, + { + "start": 16355.6, + "end": 16357.58, + "probability": 0.6871 + }, + { + "start": 16358.04, + "end": 16360.35, + "probability": 0.9946 + }, + { + "start": 16360.94, + "end": 16363.0, + "probability": 0.9123 + }, + { + "start": 16363.54, + "end": 16368.92, + "probability": 0.9902 + }, + { + "start": 16369.38, + "end": 16369.38, + "probability": 0.0628 + }, + { + "start": 16369.38, + "end": 16375.02, + "probability": 0.9739 + }, + { + "start": 16376.92, + "end": 16378.08, + "probability": 0.9645 + }, + { + "start": 16378.48, + "end": 16378.48, + "probability": 0.0047 + }, + { + "start": 16378.48, + "end": 16382.34, + "probability": 0.9966 + }, + { + "start": 16382.94, + "end": 16385.46, + "probability": 0.9325 + }, + { + "start": 16386.04, + "end": 16386.04, + "probability": 0.0516 + }, + { + "start": 16386.04, + "end": 16394.3, + "probability": 0.9514 + }, + { + "start": 16394.54, + "end": 16395.7, + "probability": 0.9561 + }, + { + "start": 16396.74, + "end": 16400.84, + "probability": 0.9338 + }, + { + "start": 16401.48, + "end": 16401.92, + "probability": 0.7781 + }, + { + "start": 16402.72, + "end": 16404.94, + "probability": 0.9173 + }, + { + "start": 16406.14, + "end": 16406.92, + "probability": 0.8853 + }, + { + "start": 16407.7, + "end": 16412.46, + "probability": 0.8191 + }, + { + "start": 16413.2, + "end": 16415.46, + "probability": 0.9965 + }, + { + "start": 16416.26, + "end": 16417.74, + "probability": 0.9915 + }, + { + "start": 16417.92, + "end": 16423.46, + "probability": 0.9941 + }, + { + "start": 16424.36, + "end": 16427.32, + "probability": 0.7478 + }, + { + "start": 16427.8, + "end": 16431.76, + "probability": 0.981 + }, + { + "start": 16432.72, + "end": 16435.24, + "probability": 0.9978 + }, + { + "start": 16435.94, + "end": 16436.77, + "probability": 0.659 + }, + { + "start": 16437.74, + "end": 16438.24, + "probability": 0.2018 + }, + { + "start": 16439.02, + "end": 16443.82, + "probability": 0.958 + }, + { + "start": 16444.44, + "end": 16446.28, + "probability": 0.7899 + }, + { + "start": 16446.64, + "end": 16449.98, + "probability": 0.9946 + }, + { + "start": 16450.2, + "end": 16452.54, + "probability": 0.9983 + }, + { + "start": 16453.12, + "end": 16454.08, + "probability": 0.6301 + }, + { + "start": 16455.04, + "end": 16456.24, + "probability": 0.8495 + }, + { + "start": 16456.52, + "end": 16461.48, + "probability": 0.9022 + }, + { + "start": 16461.86, + "end": 16463.4, + "probability": 0.9932 + }, + { + "start": 16464.46, + "end": 16466.68, + "probability": 0.9812 + }, + { + "start": 16467.08, + "end": 16469.02, + "probability": 0.986 + }, + { + "start": 16469.18, + "end": 16471.4, + "probability": 0.9788 + }, + { + "start": 16471.82, + "end": 16472.66, + "probability": 0.6755 + }, + { + "start": 16473.22, + "end": 16475.54, + "probability": 0.9822 + }, + { + "start": 16476.1, + "end": 16476.86, + "probability": 0.727 + }, + { + "start": 16477.26, + "end": 16477.26, + "probability": 0.6551 + }, + { + "start": 16477.36, + "end": 16479.72, + "probability": 0.9814 + }, + { + "start": 16480.0, + "end": 16481.2, + "probability": 0.8409 + }, + { + "start": 16481.42, + "end": 16483.66, + "probability": 0.9762 + }, + { + "start": 16483.9, + "end": 16485.32, + "probability": 0.9445 + }, + { + "start": 16485.38, + "end": 16485.68, + "probability": 0.8226 + }, + { + "start": 16485.84, + "end": 16485.86, + "probability": 0.1769 + }, + { + "start": 16485.86, + "end": 16491.86, + "probability": 0.9283 + }, + { + "start": 16492.02, + "end": 16492.56, + "probability": 0.7269 + }, + { + "start": 16492.88, + "end": 16494.42, + "probability": 0.7501 + }, + { + "start": 16502.12, + "end": 16502.12, + "probability": 0.2667 + }, + { + "start": 16502.16, + "end": 16503.32, + "probability": 0.7018 + }, + { + "start": 16506.92, + "end": 16507.7, + "probability": 0.6031 + }, + { + "start": 16507.74, + "end": 16508.32, + "probability": 0.6464 + }, + { + "start": 16508.4, + "end": 16509.46, + "probability": 0.8877 + }, + { + "start": 16509.64, + "end": 16510.74, + "probability": 0.5785 + }, + { + "start": 16512.12, + "end": 16514.34, + "probability": 0.9789 + }, + { + "start": 16515.12, + "end": 16515.68, + "probability": 0.766 + }, + { + "start": 16516.32, + "end": 16519.18, + "probability": 0.8728 + }, + { + "start": 16521.9, + "end": 16522.0, + "probability": 0.0398 + }, + { + "start": 16522.0, + "end": 16522.46, + "probability": 0.4995 + }, + { + "start": 16522.66, + "end": 16523.56, + "probability": 0.345 + }, + { + "start": 16524.92, + "end": 16526.32, + "probability": 0.9956 + }, + { + "start": 16526.52, + "end": 16530.06, + "probability": 0.7506 + }, + { + "start": 16530.92, + "end": 16533.62, + "probability": 0.9863 + }, + { + "start": 16533.76, + "end": 16534.96, + "probability": 0.7393 + }, + { + "start": 16535.12, + "end": 16535.92, + "probability": 0.8105 + }, + { + "start": 16537.22, + "end": 16539.18, + "probability": 0.9889 + }, + { + "start": 16539.26, + "end": 16541.78, + "probability": 0.8019 + }, + { + "start": 16541.88, + "end": 16546.46, + "probability": 0.8141 + }, + { + "start": 16546.84, + "end": 16548.76, + "probability": 0.9956 + }, + { + "start": 16549.42, + "end": 16551.22, + "probability": 0.9545 + }, + { + "start": 16551.3, + "end": 16552.68, + "probability": 0.9414 + }, + { + "start": 16553.86, + "end": 16553.88, + "probability": 0.515 + }, + { + "start": 16554.18, + "end": 16555.12, + "probability": 0.2297 + }, + { + "start": 16555.12, + "end": 16559.3, + "probability": 0.9287 + }, + { + "start": 16559.3, + "end": 16562.22, + "probability": 0.9584 + }, + { + "start": 16562.9, + "end": 16566.68, + "probability": 0.9977 + }, + { + "start": 16567.2, + "end": 16570.26, + "probability": 0.9572 + }, + { + "start": 16571.48, + "end": 16572.38, + "probability": 0.7681 + }, + { + "start": 16573.76, + "end": 16576.9, + "probability": 0.7782 + }, + { + "start": 16577.42, + "end": 16578.38, + "probability": 0.9976 + }, + { + "start": 16578.46, + "end": 16579.87, + "probability": 0.9973 + }, + { + "start": 16580.86, + "end": 16582.18, + "probability": 0.5629 + }, + { + "start": 16582.68, + "end": 16584.86, + "probability": 0.9697 + }, + { + "start": 16585.3, + "end": 16587.04, + "probability": 0.9138 + }, + { + "start": 16587.14, + "end": 16588.16, + "probability": 0.8594 + }, + { + "start": 16588.46, + "end": 16590.56, + "probability": 0.8319 + }, + { + "start": 16590.9, + "end": 16591.48, + "probability": 0.089 + }, + { + "start": 16591.86, + "end": 16592.92, + "probability": 0.7947 + }, + { + "start": 16593.46, + "end": 16593.82, + "probability": 0.5433 + }, + { + "start": 16593.86, + "end": 16594.76, + "probability": 0.8616 + }, + { + "start": 16595.26, + "end": 16597.74, + "probability": 0.8526 + }, + { + "start": 16599.28, + "end": 16600.59, + "probability": 0.9148 + }, + { + "start": 16601.62, + "end": 16602.4, + "probability": 0.7941 + }, + { + "start": 16603.3, + "end": 16607.56, + "probability": 0.931 + }, + { + "start": 16608.3, + "end": 16610.06, + "probability": 0.4633 + }, + { + "start": 16611.2, + "end": 16612.84, + "probability": 0.4846 + }, + { + "start": 16612.88, + "end": 16613.52, + "probability": 0.4659 + }, + { + "start": 16614.74, + "end": 16617.94, + "probability": 0.9165 + }, + { + "start": 16617.98, + "end": 16618.52, + "probability": 0.7199 + }, + { + "start": 16618.8, + "end": 16619.7, + "probability": 0.706 + }, + { + "start": 16620.38, + "end": 16621.86, + "probability": 0.6913 + }, + { + "start": 16621.96, + "end": 16625.16, + "probability": 0.9038 + }, + { + "start": 16625.68, + "end": 16627.92, + "probability": 0.7107 + }, + { + "start": 16628.7, + "end": 16631.16, + "probability": 0.8591 + }, + { + "start": 16631.52, + "end": 16632.66, + "probability": 0.6309 + }, + { + "start": 16632.82, + "end": 16634.91, + "probability": 0.9774 + }, + { + "start": 16636.5, + "end": 16641.04, + "probability": 0.957 + }, + { + "start": 16641.04, + "end": 16643.62, + "probability": 0.9885 + }, + { + "start": 16644.32, + "end": 16645.98, + "probability": 0.9921 + }, + { + "start": 16646.82, + "end": 16648.64, + "probability": 0.9716 + }, + { + "start": 16648.76, + "end": 16649.68, + "probability": 0.656 + }, + { + "start": 16649.82, + "end": 16650.63, + "probability": 0.866 + }, + { + "start": 16651.62, + "end": 16652.38, + "probability": 0.7047 + }, + { + "start": 16652.8, + "end": 16654.06, + "probability": 0.9676 + }, + { + "start": 16654.16, + "end": 16656.72, + "probability": 0.9708 + }, + { + "start": 16657.08, + "end": 16657.58, + "probability": 0.5613 + }, + { + "start": 16657.62, + "end": 16658.5, + "probability": 0.6791 + }, + { + "start": 16659.4, + "end": 16660.48, + "probability": 0.9966 + }, + { + "start": 16661.4, + "end": 16664.1, + "probability": 0.7775 + }, + { + "start": 16664.62, + "end": 16666.32, + "probability": 0.9951 + }, + { + "start": 16666.74, + "end": 16667.98, + "probability": 0.8377 + }, + { + "start": 16668.6, + "end": 16671.8, + "probability": 0.9781 + }, + { + "start": 16672.54, + "end": 16675.02, + "probability": 0.7727 + }, + { + "start": 16675.68, + "end": 16678.66, + "probability": 0.9967 + }, + { + "start": 16678.86, + "end": 16679.06, + "probability": 0.1108 + }, + { + "start": 16680.24, + "end": 16683.36, + "probability": 0.2304 + }, + { + "start": 16683.38, + "end": 16683.8, + "probability": 0.5345 + }, + { + "start": 16683.94, + "end": 16684.24, + "probability": 0.7588 + }, + { + "start": 16684.28, + "end": 16684.82, + "probability": 0.958 + }, + { + "start": 16685.6, + "end": 16686.48, + "probability": 0.7085 + }, + { + "start": 16686.54, + "end": 16687.2, + "probability": 0.6764 + }, + { + "start": 16687.22, + "end": 16689.96, + "probability": 0.5238 + }, + { + "start": 16690.0, + "end": 16691.5, + "probability": 0.6095 + }, + { + "start": 16691.58, + "end": 16693.92, + "probability": 0.996 + }, + { + "start": 16694.04, + "end": 16695.5, + "probability": 0.5582 + }, + { + "start": 16695.5, + "end": 16697.08, + "probability": 0.9749 + }, + { + "start": 16697.24, + "end": 16700.78, + "probability": 0.8369 + }, + { + "start": 16701.14, + "end": 16703.44, + "probability": 0.7429 + }, + { + "start": 16703.74, + "end": 16705.28, + "probability": 0.8837 + }, + { + "start": 16706.71, + "end": 16707.88, + "probability": 0.0923 + }, + { + "start": 16707.88, + "end": 16707.88, + "probability": 0.4174 + }, + { + "start": 16707.88, + "end": 16707.88, + "probability": 0.1272 + }, + { + "start": 16707.88, + "end": 16709.36, + "probability": 0.5982 + }, + { + "start": 16710.12, + "end": 16712.62, + "probability": 0.5625 + }, + { + "start": 16713.4, + "end": 16715.34, + "probability": 0.5781 + }, + { + "start": 16718.12, + "end": 16718.66, + "probability": 0.3866 + }, + { + "start": 16718.68, + "end": 16719.3, + "probability": 0.4341 + }, + { + "start": 16719.3, + "end": 16719.3, + "probability": 0.6866 + }, + { + "start": 16719.3, + "end": 16719.86, + "probability": 0.7365 + }, + { + "start": 16720.56, + "end": 16722.96, + "probability": 0.8011 + }, + { + "start": 16723.64, + "end": 16724.96, + "probability": 0.8591 + }, + { + "start": 16726.16, + "end": 16726.62, + "probability": 0.3047 + }, + { + "start": 16726.76, + "end": 16729.22, + "probability": 0.7266 + }, + { + "start": 16732.28, + "end": 16735.26, + "probability": 0.9681 + }, + { + "start": 16736.38, + "end": 16740.92, + "probability": 0.2119 + }, + { + "start": 16740.92, + "end": 16740.92, + "probability": 0.4021 + }, + { + "start": 16740.92, + "end": 16740.96, + "probability": 0.027 + }, + { + "start": 16750.9, + "end": 16751.72, + "probability": 0.4565 + }, + { + "start": 16754.84, + "end": 16755.66, + "probability": 0.441 + }, + { + "start": 16755.76, + "end": 16756.7, + "probability": 0.7192 + }, + { + "start": 16756.76, + "end": 16758.14, + "probability": 0.5737 + }, + { + "start": 16758.22, + "end": 16763.48, + "probability": 0.78 + }, + { + "start": 16763.7, + "end": 16766.86, + "probability": 0.8289 + }, + { + "start": 16766.98, + "end": 16771.62, + "probability": 0.9789 + }, + { + "start": 16772.72, + "end": 16772.72, + "probability": 0.1699 + }, + { + "start": 16773.02, + "end": 16775.04, + "probability": 0.7576 + }, + { + "start": 16775.06, + "end": 16778.24, + "probability": 0.983 + }, + { + "start": 16779.36, + "end": 16783.3, + "probability": 0.9509 + }, + { + "start": 16784.24, + "end": 16786.58, + "probability": 0.9619 + }, + { + "start": 16786.64, + "end": 16790.84, + "probability": 0.9753 + }, + { + "start": 16791.04, + "end": 16793.18, + "probability": 0.9749 + }, + { + "start": 16793.24, + "end": 16793.7, + "probability": 0.9546 + }, + { + "start": 16795.14, + "end": 16796.52, + "probability": 0.9025 + }, + { + "start": 16797.58, + "end": 16800.68, + "probability": 0.9553 + }, + { + "start": 16801.42, + "end": 16803.2, + "probability": 0.988 + }, + { + "start": 16803.8, + "end": 16806.36, + "probability": 0.9964 + }, + { + "start": 16806.8, + "end": 16810.28, + "probability": 0.9898 + }, + { + "start": 16810.88, + "end": 16813.84, + "probability": 0.9949 + }, + { + "start": 16815.08, + "end": 16818.58, + "probability": 0.8944 + }, + { + "start": 16819.17, + "end": 16823.14, + "probability": 0.9486 + }, + { + "start": 16824.2, + "end": 16825.9, + "probability": 0.9654 + }, + { + "start": 16826.82, + "end": 16828.36, + "probability": 0.8547 + }, + { + "start": 16829.24, + "end": 16833.24, + "probability": 0.9925 + }, + { + "start": 16833.36, + "end": 16835.4, + "probability": 0.9852 + }, + { + "start": 16836.36, + "end": 16839.22, + "probability": 0.993 + }, + { + "start": 16840.12, + "end": 16841.88, + "probability": 0.9734 + }, + { + "start": 16842.88, + "end": 16844.8, + "probability": 0.943 + }, + { + "start": 16845.82, + "end": 16847.88, + "probability": 0.7487 + }, + { + "start": 16848.7, + "end": 16852.28, + "probability": 0.9848 + }, + { + "start": 16852.82, + "end": 16854.14, + "probability": 0.9714 + }, + { + "start": 16854.4, + "end": 16855.72, + "probability": 0.9929 + }, + { + "start": 16855.9, + "end": 16857.9, + "probability": 0.9977 + }, + { + "start": 16858.5, + "end": 16860.4, + "probability": 0.6376 + }, + { + "start": 16860.96, + "end": 16863.16, + "probability": 0.9292 + }, + { + "start": 16863.94, + "end": 16864.5, + "probability": 0.6449 + }, + { + "start": 16865.58, + "end": 16867.74, + "probability": 0.6942 + }, + { + "start": 16868.24, + "end": 16870.34, + "probability": 0.9872 + }, + { + "start": 16871.02, + "end": 16876.88, + "probability": 0.9956 + }, + { + "start": 16878.0, + "end": 16879.8, + "probability": 0.9741 + }, + { + "start": 16880.46, + "end": 16884.26, + "probability": 0.9448 + }, + { + "start": 16884.84, + "end": 16889.52, + "probability": 0.9945 + }, + { + "start": 16891.0, + "end": 16894.68, + "probability": 0.9188 + }, + { + "start": 16895.66, + "end": 16896.55, + "probability": 0.9882 + }, + { + "start": 16897.5, + "end": 16900.92, + "probability": 0.991 + }, + { + "start": 16900.92, + "end": 16905.06, + "probability": 0.9989 + }, + { + "start": 16905.62, + "end": 16907.34, + "probability": 0.9539 + }, + { + "start": 16908.42, + "end": 16913.66, + "probability": 0.9927 + }, + { + "start": 16913.68, + "end": 16919.82, + "probability": 0.9997 + }, + { + "start": 16920.4, + "end": 16922.94, + "probability": 0.8996 + }, + { + "start": 16924.66, + "end": 16926.04, + "probability": 0.7175 + }, + { + "start": 16926.76, + "end": 16930.72, + "probability": 0.9963 + }, + { + "start": 16931.4, + "end": 16934.77, + "probability": 0.9297 + }, + { + "start": 16935.58, + "end": 16938.48, + "probability": 0.9358 + }, + { + "start": 16939.12, + "end": 16943.19, + "probability": 0.8068 + }, + { + "start": 16943.8, + "end": 16944.36, + "probability": 0.8492 + }, + { + "start": 16945.16, + "end": 16946.56, + "probability": 0.7878 + }, + { + "start": 16946.64, + "end": 16948.0, + "probability": 0.8759 + }, + { + "start": 16948.72, + "end": 16949.04, + "probability": 0.6682 + }, + { + "start": 16959.68, + "end": 16959.82, + "probability": 0.2924 + }, + { + "start": 16959.82, + "end": 16960.31, + "probability": 0.4901 + }, + { + "start": 16961.46, + "end": 16965.46, + "probability": 0.9853 + }, + { + "start": 16966.38, + "end": 16967.04, + "probability": 0.9683 + }, + { + "start": 16967.12, + "end": 16970.72, + "probability": 0.9663 + }, + { + "start": 16971.7, + "end": 16974.4, + "probability": 0.8328 + }, + { + "start": 16974.58, + "end": 16977.63, + "probability": 0.9979 + }, + { + "start": 16979.44, + "end": 16981.54, + "probability": 0.9387 + }, + { + "start": 16981.64, + "end": 16986.74, + "probability": 0.9174 + }, + { + "start": 16986.76, + "end": 16989.48, + "probability": 0.9917 + }, + { + "start": 16990.12, + "end": 16994.8, + "probability": 0.9712 + }, + { + "start": 16995.74, + "end": 16996.96, + "probability": 0.7674 + }, + { + "start": 16997.08, + "end": 17002.7, + "probability": 0.8102 + }, + { + "start": 17003.38, + "end": 17008.48, + "probability": 0.8954 + }, + { + "start": 17008.9, + "end": 17009.84, + "probability": 0.8274 + }, + { + "start": 17009.96, + "end": 17012.0, + "probability": 0.9801 + }, + { + "start": 17012.58, + "end": 17014.36, + "probability": 0.9993 + }, + { + "start": 17015.08, + "end": 17019.84, + "probability": 0.9771 + }, + { + "start": 17020.06, + "end": 17021.76, + "probability": 0.7639 + }, + { + "start": 17023.1, + "end": 17024.18, + "probability": 0.95 + }, + { + "start": 17026.92, + "end": 17027.4, + "probability": 0.2166 + }, + { + "start": 17027.98, + "end": 17030.68, + "probability": 0.9801 + }, + { + "start": 17030.9, + "end": 17031.54, + "probability": 0.8593 + }, + { + "start": 17031.56, + "end": 17033.32, + "probability": 0.8746 + }, + { + "start": 17033.56, + "end": 17033.76, + "probability": 0.6877 + }, + { + "start": 17033.94, + "end": 17034.4, + "probability": 0.9095 + }, + { + "start": 17035.68, + "end": 17038.08, + "probability": 0.9896 + }, + { + "start": 17040.64, + "end": 17041.04, + "probability": 0.8684 + }, + { + "start": 17042.9, + "end": 17045.62, + "probability": 0.8368 + }, + { + "start": 17047.36, + "end": 17050.84, + "probability": 0.9354 + }, + { + "start": 17051.76, + "end": 17053.71, + "probability": 0.8958 + }, + { + "start": 17054.06, + "end": 17054.74, + "probability": 0.9801 + }, + { + "start": 17054.8, + "end": 17058.72, + "probability": 0.744 + }, + { + "start": 17059.42, + "end": 17061.47, + "probability": 0.9922 + }, + { + "start": 17061.68, + "end": 17064.22, + "probability": 0.9174 + }, + { + "start": 17064.34, + "end": 17065.74, + "probability": 0.9917 + }, + { + "start": 17066.52, + "end": 17069.08, + "probability": 0.8614 + }, + { + "start": 17070.1, + "end": 17073.7, + "probability": 0.8959 + }, + { + "start": 17074.38, + "end": 17076.86, + "probability": 0.9683 + }, + { + "start": 17077.74, + "end": 17081.16, + "probability": 0.95 + }, + { + "start": 17081.82, + "end": 17085.96, + "probability": 0.9956 + }, + { + "start": 17086.22, + "end": 17087.76, + "probability": 0.975 + }, + { + "start": 17088.8, + "end": 17091.0, + "probability": 0.9984 + }, + { + "start": 17092.32, + "end": 17096.14, + "probability": 0.4058 + }, + { + "start": 17097.5, + "end": 17100.86, + "probability": 0.9667 + }, + { + "start": 17101.48, + "end": 17102.48, + "probability": 0.9739 + }, + { + "start": 17103.2, + "end": 17104.08, + "probability": 0.8472 + }, + { + "start": 17105.02, + "end": 17106.5, + "probability": 0.9961 + }, + { + "start": 17107.99, + "end": 17113.48, + "probability": 0.9976 + }, + { + "start": 17113.68, + "end": 17115.24, + "probability": 0.7994 + }, + { + "start": 17115.28, + "end": 17115.98, + "probability": 0.8857 + }, + { + "start": 17116.9, + "end": 17118.96, + "probability": 0.981 + }, + { + "start": 17119.46, + "end": 17124.56, + "probability": 0.9717 + }, + { + "start": 17125.4, + "end": 17130.64, + "probability": 0.9321 + }, + { + "start": 17131.24, + "end": 17131.86, + "probability": 0.5293 + }, + { + "start": 17131.96, + "end": 17133.12, + "probability": 0.9244 + }, + { + "start": 17133.5, + "end": 17133.87, + "probability": 0.9585 + }, + { + "start": 17134.66, + "end": 17138.34, + "probability": 0.9636 + }, + { + "start": 17138.78, + "end": 17140.44, + "probability": 0.9785 + }, + { + "start": 17141.02, + "end": 17145.22, + "probability": 0.9625 + }, + { + "start": 17145.56, + "end": 17147.26, + "probability": 0.6545 + }, + { + "start": 17147.34, + "end": 17147.66, + "probability": 0.2589 + }, + { + "start": 17147.72, + "end": 17148.4, + "probability": 0.5313 + }, + { + "start": 17148.42, + "end": 17148.76, + "probability": 0.7049 + }, + { + "start": 17148.8, + "end": 17153.29, + "probability": 0.8655 + }, + { + "start": 17159.54, + "end": 17160.93, + "probability": 0.9414 + }, + { + "start": 17165.6, + "end": 17165.62, + "probability": 0.0311 + }, + { + "start": 17165.72, + "end": 17165.82, + "probability": 0.6007 + }, + { + "start": 17167.32, + "end": 17168.54, + "probability": 0.4924 + }, + { + "start": 17168.54, + "end": 17168.88, + "probability": 0.9205 + }, + { + "start": 17169.64, + "end": 17171.64, + "probability": 0.7355 + }, + { + "start": 17172.52, + "end": 17176.7, + "probability": 0.9426 + }, + { + "start": 17177.5, + "end": 17179.2, + "probability": 0.8433 + }, + { + "start": 17180.02, + "end": 17180.76, + "probability": 0.7556 + }, + { + "start": 17180.94, + "end": 17184.52, + "probability": 0.997 + }, + { + "start": 17184.98, + "end": 17185.92, + "probability": 0.9912 + }, + { + "start": 17186.98, + "end": 17190.44, + "probability": 0.9943 + }, + { + "start": 17191.22, + "end": 17194.2, + "probability": 0.9621 + }, + { + "start": 17194.36, + "end": 17196.32, + "probability": 0.7959 + }, + { + "start": 17197.42, + "end": 17199.88, + "probability": 0.834 + }, + { + "start": 17200.72, + "end": 17201.02, + "probability": 0.9564 + }, + { + "start": 17203.42, + "end": 17205.52, + "probability": 0.9765 + }, + { + "start": 17205.64, + "end": 17207.52, + "probability": 0.982 + }, + { + "start": 17207.52, + "end": 17208.76, + "probability": 0.7586 + }, + { + "start": 17209.9, + "end": 17213.38, + "probability": 0.9349 + }, + { + "start": 17214.04, + "end": 17220.02, + "probability": 0.9678 + }, + { + "start": 17220.08, + "end": 17221.44, + "probability": 0.9035 + }, + { + "start": 17222.42, + "end": 17225.14, + "probability": 0.9827 + }, + { + "start": 17225.24, + "end": 17229.62, + "probability": 0.8931 + }, + { + "start": 17230.22, + "end": 17232.44, + "probability": 0.9823 + }, + { + "start": 17233.96, + "end": 17235.02, + "probability": 0.4107 + }, + { + "start": 17235.14, + "end": 17237.88, + "probability": 0.8493 + }, + { + "start": 17238.18, + "end": 17243.18, + "probability": 0.9662 + }, + { + "start": 17243.5, + "end": 17246.28, + "probability": 0.9562 + }, + { + "start": 17246.66, + "end": 17250.32, + "probability": 0.9938 + }, + { + "start": 17251.12, + "end": 17251.84, + "probability": 0.7456 + }, + { + "start": 17252.88, + "end": 17259.08, + "probability": 0.9661 + }, + { + "start": 17259.26, + "end": 17260.68, + "probability": 0.9556 + }, + { + "start": 17262.0, + "end": 17263.06, + "probability": 0.9146 + }, + { + "start": 17263.98, + "end": 17266.48, + "probability": 0.9641 + }, + { + "start": 17267.9, + "end": 17271.78, + "probability": 0.9979 + }, + { + "start": 17272.8, + "end": 17274.82, + "probability": 0.7557 + }, + { + "start": 17275.42, + "end": 17280.3, + "probability": 0.9723 + }, + { + "start": 17280.74, + "end": 17282.26, + "probability": 0.8675 + }, + { + "start": 17283.08, + "end": 17285.26, + "probability": 0.998 + }, + { + "start": 17286.22, + "end": 17287.3, + "probability": 0.3584 + }, + { + "start": 17288.1, + "end": 17288.94, + "probability": 0.6456 + }, + { + "start": 17289.54, + "end": 17291.26, + "probability": 0.8647 + }, + { + "start": 17291.5, + "end": 17294.36, + "probability": 0.7273 + }, + { + "start": 17295.22, + "end": 17297.4, + "probability": 0.9978 + }, + { + "start": 17298.1, + "end": 17299.72, + "probability": 0.9243 + }, + { + "start": 17301.16, + "end": 17302.16, + "probability": 0.9757 + }, + { + "start": 17303.6, + "end": 17306.14, + "probability": 0.9906 + }, + { + "start": 17306.46, + "end": 17307.46, + "probability": 0.6558 + }, + { + "start": 17308.0, + "end": 17311.32, + "probability": 0.9427 + }, + { + "start": 17311.8, + "end": 17314.24, + "probability": 0.9941 + }, + { + "start": 17315.08, + "end": 17319.0, + "probability": 0.9754 + }, + { + "start": 17319.86, + "end": 17323.41, + "probability": 0.9956 + }, + { + "start": 17324.1, + "end": 17325.98, + "probability": 0.7031 + }, + { + "start": 17326.9, + "end": 17329.2, + "probability": 0.9066 + }, + { + "start": 17331.1, + "end": 17333.56, + "probability": 0.998 + }, + { + "start": 17334.42, + "end": 17337.64, + "probability": 0.9114 + }, + { + "start": 17337.86, + "end": 17341.34, + "probability": 0.9951 + }, + { + "start": 17341.76, + "end": 17343.58, + "probability": 0.9492 + }, + { + "start": 17345.04, + "end": 17347.48, + "probability": 0.979 + }, + { + "start": 17347.78, + "end": 17348.34, + "probability": 0.6786 + }, + { + "start": 17348.36, + "end": 17350.52, + "probability": 0.8628 + }, + { + "start": 17351.42, + "end": 17352.94, + "probability": 0.9204 + }, + { + "start": 17353.84, + "end": 17355.36, + "probability": 0.5701 + }, + { + "start": 17355.36, + "end": 17355.85, + "probability": 0.6759 + }, + { + "start": 17357.5, + "end": 17358.52, + "probability": 0.9 + }, + { + "start": 17359.34, + "end": 17360.18, + "probability": 0.597 + }, + { + "start": 17360.3, + "end": 17361.76, + "probability": 0.9142 + }, + { + "start": 17361.9, + "end": 17363.58, + "probability": 0.9387 + }, + { + "start": 17363.78, + "end": 17365.42, + "probability": 0.8627 + }, + { + "start": 17366.2, + "end": 17367.64, + "probability": 0.9814 + }, + { + "start": 17367.7, + "end": 17367.96, + "probability": 0.7082 + }, + { + "start": 17368.42, + "end": 17368.86, + "probability": 0.7241 + }, + { + "start": 17368.94, + "end": 17370.28, + "probability": 0.753 + }, + { + "start": 17370.36, + "end": 17373.7, + "probability": 0.9846 + }, + { + "start": 17374.3, + "end": 17376.5, + "probability": 0.8823 + }, + { + "start": 17376.58, + "end": 17377.16, + "probability": 0.5277 + }, + { + "start": 17377.16, + "end": 17378.54, + "probability": 0.7578 + }, + { + "start": 17378.6, + "end": 17380.49, + "probability": 0.6812 + }, + { + "start": 17380.56, + "end": 17381.14, + "probability": 0.749 + }, + { + "start": 17381.26, + "end": 17381.46, + "probability": 0.5384 + }, + { + "start": 17381.6, + "end": 17383.46, + "probability": 0.9398 + }, + { + "start": 17383.46, + "end": 17386.46, + "probability": 0.4878 + }, + { + "start": 17386.62, + "end": 17389.88, + "probability": 0.0467 + }, + { + "start": 17390.96, + "end": 17394.3, + "probability": 0.0106 + }, + { + "start": 17407.52, + "end": 17408.18, + "probability": 0.2359 + }, + { + "start": 17417.17, + "end": 17418.18, + "probability": 0.0124 + }, + { + "start": 17419.04, + "end": 17424.06, + "probability": 0.0176 + }, + { + "start": 17424.14, + "end": 17427.08, + "probability": 0.6983 + }, + { + "start": 17427.26, + "end": 17430.5, + "probability": 0.5182 + }, + { + "start": 17432.42, + "end": 17438.92, + "probability": 0.164 + }, + { + "start": 17440.28, + "end": 17444.98, + "probability": 0.0926 + }, + { + "start": 17448.16, + "end": 17454.5, + "probability": 0.0856 + }, + { + "start": 17455.2, + "end": 17456.26, + "probability": 0.3678 + }, + { + "start": 17456.4, + "end": 17458.62, + "probability": 0.0833 + }, + { + "start": 17458.62, + "end": 17459.96, + "probability": 0.0317 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.0, + "end": 17465.0, + "probability": 0.0 + }, + { + "start": 17465.14, + "end": 17467.46, + "probability": 0.514 + }, + { + "start": 17467.54, + "end": 17470.22, + "probability": 0.4972 + }, + { + "start": 17471.04, + "end": 17471.2, + "probability": 0.7994 + }, + { + "start": 17471.28, + "end": 17471.62, + "probability": 0.6562 + }, + { + "start": 17471.66, + "end": 17472.04, + "probability": 0.9614 + }, + { + "start": 17472.1, + "end": 17474.16, + "probability": 0.9095 + }, + { + "start": 17474.16, + "end": 17476.76, + "probability": 0.5181 + }, + { + "start": 17476.88, + "end": 17479.76, + "probability": 0.372 + }, + { + "start": 17480.18, + "end": 17481.16, + "probability": 0.6688 + }, + { + "start": 17481.58, + "end": 17484.34, + "probability": 0.826 + }, + { + "start": 17485.32, + "end": 17486.2, + "probability": 0.7545 + }, + { + "start": 17486.32, + "end": 17488.42, + "probability": 0.9854 + }, + { + "start": 17489.16, + "end": 17489.56, + "probability": 0.9045 + }, + { + "start": 17508.46, + "end": 17510.32, + "probability": 0.737 + }, + { + "start": 17511.32, + "end": 17514.16, + "probability": 0.7959 + }, + { + "start": 17515.12, + "end": 17518.76, + "probability": 0.9034 + }, + { + "start": 17520.26, + "end": 17522.24, + "probability": 0.9587 + }, + { + "start": 17522.8, + "end": 17526.92, + "probability": 0.8796 + }, + { + "start": 17527.8, + "end": 17528.98, + "probability": 0.8269 + }, + { + "start": 17530.8, + "end": 17535.18, + "probability": 0.9478 + }, + { + "start": 17535.58, + "end": 17536.2, + "probability": 0.9941 + }, + { + "start": 17536.86, + "end": 17537.48, + "probability": 0.8076 + }, + { + "start": 17538.2, + "end": 17540.04, + "probability": 0.9727 + }, + { + "start": 17541.18, + "end": 17542.22, + "probability": 0.9954 + }, + { + "start": 17543.14, + "end": 17544.2, + "probability": 0.5848 + }, + { + "start": 17544.24, + "end": 17545.0, + "probability": 0.6561 + }, + { + "start": 17545.1, + "end": 17546.08, + "probability": 0.9243 + }, + { + "start": 17546.26, + "end": 17546.44, + "probability": 0.2877 + }, + { + "start": 17547.36, + "end": 17550.04, + "probability": 0.9634 + }, + { + "start": 17550.06, + "end": 17552.32, + "probability": 0.9444 + }, + { + "start": 17553.24, + "end": 17557.1, + "probability": 0.7036 + }, + { + "start": 17557.84, + "end": 17559.08, + "probability": 0.9937 + }, + { + "start": 17560.4, + "end": 17561.96, + "probability": 0.7305 + }, + { + "start": 17562.08, + "end": 17563.12, + "probability": 0.5259 + }, + { + "start": 17563.22, + "end": 17563.82, + "probability": 0.9569 + }, + { + "start": 17564.42, + "end": 17566.74, + "probability": 0.9125 + }, + { + "start": 17567.2, + "end": 17571.02, + "probability": 0.8699 + }, + { + "start": 17571.54, + "end": 17571.74, + "probability": 0.7906 + }, + { + "start": 17573.42, + "end": 17576.24, + "probability": 0.9448 + }, + { + "start": 17576.96, + "end": 17580.48, + "probability": 0.7748 + }, + { + "start": 17580.76, + "end": 17583.72, + "probability": 0.7612 + }, + { + "start": 17583.98, + "end": 17587.44, + "probability": 0.9821 + }, + { + "start": 17588.22, + "end": 17590.54, + "probability": 0.9903 + }, + { + "start": 17590.7, + "end": 17593.88, + "probability": 0.9966 + }, + { + "start": 17593.98, + "end": 17597.66, + "probability": 0.9591 + }, + { + "start": 17599.4, + "end": 17600.96, + "probability": 0.993 + }, + { + "start": 17601.14, + "end": 17602.46, + "probability": 0.8934 + }, + { + "start": 17607.65, + "end": 17609.58, + "probability": 0.6517 + }, + { + "start": 17611.7, + "end": 17612.96, + "probability": 0.7475 + }, + { + "start": 17612.96, + "end": 17613.4, + "probability": 0.8442 + }, + { + "start": 17614.84, + "end": 17615.26, + "probability": 0.7189 + }, + { + "start": 17615.5, + "end": 17616.72, + "probability": 0.8134 + }, + { + "start": 17616.88, + "end": 17619.26, + "probability": 0.9967 + }, + { + "start": 17619.72, + "end": 17622.84, + "probability": 0.9983 + }, + { + "start": 17623.4, + "end": 17624.94, + "probability": 0.881 + }, + { + "start": 17625.1, + "end": 17626.6, + "probability": 0.9888 + }, + { + "start": 17626.74, + "end": 17627.12, + "probability": 0.7303 + }, + { + "start": 17627.12, + "end": 17628.34, + "probability": 0.9401 + }, + { + "start": 17628.4, + "end": 17629.9, + "probability": 0.9553 + }, + { + "start": 17630.5, + "end": 17639.3, + "probability": 0.7093 + }, + { + "start": 17640.18, + "end": 17642.16, + "probability": 0.9829 + }, + { + "start": 17642.22, + "end": 17642.78, + "probability": 0.7998 + }, + { + "start": 17642.86, + "end": 17646.44, + "probability": 0.9984 + }, + { + "start": 17646.44, + "end": 17649.46, + "probability": 0.9731 + }, + { + "start": 17650.22, + "end": 17651.06, + "probability": 0.7383 + }, + { + "start": 17651.44, + "end": 17652.5, + "probability": 0.9629 + }, + { + "start": 17652.76, + "end": 17655.14, + "probability": 0.7774 + }, + { + "start": 17656.0, + "end": 17660.36, + "probability": 0.9865 + }, + { + "start": 17660.52, + "end": 17666.34, + "probability": 0.9977 + }, + { + "start": 17666.88, + "end": 17667.28, + "probability": 0.447 + }, + { + "start": 17667.48, + "end": 17671.46, + "probability": 0.9911 + }, + { + "start": 17671.62, + "end": 17672.54, + "probability": 0.989 + }, + { + "start": 17673.08, + "end": 17674.22, + "probability": 0.9983 + }, + { + "start": 17674.38, + "end": 17678.24, + "probability": 0.9587 + }, + { + "start": 17678.32, + "end": 17680.38, + "probability": 0.9597 + }, + { + "start": 17680.7, + "end": 17681.78, + "probability": 0.6244 + }, + { + "start": 17682.38, + "end": 17684.34, + "probability": 0.9539 + }, + { + "start": 17684.98, + "end": 17686.96, + "probability": 0.6182 + }, + { + "start": 17688.74, + "end": 17689.88, + "probability": 0.1832 + }, + { + "start": 17694.2, + "end": 17695.21, + "probability": 0.5971 + }, + { + "start": 17695.28, + "end": 17696.9, + "probability": 0.4962 + }, + { + "start": 17696.96, + "end": 17697.5, + "probability": 0.6603 + }, + { + "start": 17697.54, + "end": 17697.96, + "probability": 0.2227 + }, + { + "start": 17697.96, + "end": 17698.62, + "probability": 0.5643 + }, + { + "start": 17698.72, + "end": 17699.72, + "probability": 0.662 + }, + { + "start": 17699.78, + "end": 17702.46, + "probability": 0.8989 + }, + { + "start": 17702.8, + "end": 17706.3, + "probability": 0.95 + }, + { + "start": 17706.86, + "end": 17707.98, + "probability": 0.0928 + }, + { + "start": 17708.1, + "end": 17708.78, + "probability": 0.3793 + }, + { + "start": 17708.96, + "end": 17711.78, + "probability": 0.9932 + }, + { + "start": 17711.78, + "end": 17714.88, + "probability": 0.9968 + }, + { + "start": 17715.06, + "end": 17716.92, + "probability": 0.9611 + }, + { + "start": 17716.98, + "end": 17717.72, + "probability": 0.3649 + }, + { + "start": 17720.56, + "end": 17724.64, + "probability": 0.9237 + }, + { + "start": 17724.82, + "end": 17729.78, + "probability": 0.9946 + }, + { + "start": 17729.86, + "end": 17732.26, + "probability": 0.7896 + }, + { + "start": 17732.38, + "end": 17733.08, + "probability": 0.8523 + }, + { + "start": 17733.44, + "end": 17734.3, + "probability": 0.6528 + }, + { + "start": 17734.86, + "end": 17739.3, + "probability": 0.9947 + }, + { + "start": 17740.02, + "end": 17746.7, + "probability": 0.9884 + }, + { + "start": 17746.9, + "end": 17750.66, + "probability": 0.9746 + }, + { + "start": 17750.9, + "end": 17753.14, + "probability": 0.9557 + }, + { + "start": 17754.46, + "end": 17757.56, + "probability": 0.0611 + }, + { + "start": 17757.78, + "end": 17759.14, + "probability": 0.27 + }, + { + "start": 17759.5, + "end": 17760.98, + "probability": 0.5864 + }, + { + "start": 17761.74, + "end": 17765.56, + "probability": 0.9197 + }, + { + "start": 17765.56, + "end": 17768.52, + "probability": 0.98 + }, + { + "start": 17768.68, + "end": 17773.64, + "probability": 0.9861 + }, + { + "start": 17773.8, + "end": 17774.5, + "probability": 0.93 + }, + { + "start": 17774.96, + "end": 17775.38, + "probability": 0.5634 + }, + { + "start": 17775.44, + "end": 17777.66, + "probability": 0.6743 + }, + { + "start": 17777.74, + "end": 17779.0, + "probability": 0.9532 + }, + { + "start": 17779.56, + "end": 17780.08, + "probability": 0.4991 + }, + { + "start": 17781.08, + "end": 17782.32, + "probability": 0.9015 + }, + { + "start": 17782.88, + "end": 17783.64, + "probability": 0.5641 + }, + { + "start": 17784.3, + "end": 17785.88, + "probability": 0.9865 + }, + { + "start": 17787.44, + "end": 17788.7, + "probability": 0.5398 + }, + { + "start": 17801.24, + "end": 17802.34, + "probability": 0.2436 + }, + { + "start": 17802.34, + "end": 17802.44, + "probability": 0.9175 + }, + { + "start": 17803.6, + "end": 17803.92, + "probability": 0.4541 + }, + { + "start": 17804.02, + "end": 17807.06, + "probability": 0.6931 + }, + { + "start": 17807.8, + "end": 17809.42, + "probability": 0.9849 + }, + { + "start": 17809.62, + "end": 17813.82, + "probability": 0.9878 + }, + { + "start": 17814.38, + "end": 17815.7, + "probability": 0.5962 + }, + { + "start": 17815.74, + "end": 17816.58, + "probability": 0.7784 + }, + { + "start": 17817.32, + "end": 17819.18, + "probability": 0.9626 + }, + { + "start": 17819.2, + "end": 17822.16, + "probability": 0.957 + }, + { + "start": 17822.26, + "end": 17827.18, + "probability": 0.9592 + }, + { + "start": 17827.4, + "end": 17829.84, + "probability": 0.9814 + }, + { + "start": 17830.46, + "end": 17831.88, + "probability": 0.9463 + }, + { + "start": 17833.42, + "end": 17837.2, + "probability": 0.885 + }, + { + "start": 17837.38, + "end": 17839.28, + "probability": 0.9917 + }, + { + "start": 17839.44, + "end": 17844.6, + "probability": 0.9849 + }, + { + "start": 17845.26, + "end": 17848.24, + "probability": 0.9788 + }, + { + "start": 17849.18, + "end": 17855.88, + "probability": 0.7657 + }, + { + "start": 17856.64, + "end": 17858.86, + "probability": 0.9825 + }, + { + "start": 17858.92, + "end": 17860.84, + "probability": 0.9876 + }, + { + "start": 17861.28, + "end": 17862.7, + "probability": 0.7979 + }, + { + "start": 17863.46, + "end": 17866.52, + "probability": 0.9974 + }, + { + "start": 17866.56, + "end": 17868.44, + "probability": 0.9411 + }, + { + "start": 17869.06, + "end": 17871.36, + "probability": 0.7858 + }, + { + "start": 17872.06, + "end": 17873.28, + "probability": 0.5557 + }, + { + "start": 17874.26, + "end": 17878.42, + "probability": 0.9416 + }, + { + "start": 17878.56, + "end": 17880.19, + "probability": 0.9083 + }, + { + "start": 17880.98, + "end": 17882.54, + "probability": 0.9599 + }, + { + "start": 17882.6, + "end": 17885.01, + "probability": 0.9932 + }, + { + "start": 17885.82, + "end": 17887.24, + "probability": 0.7503 + }, + { + "start": 17887.36, + "end": 17890.7, + "probability": 0.913 + }, + { + "start": 17891.32, + "end": 17893.48, + "probability": 0.8944 + }, + { + "start": 17893.72, + "end": 17895.06, + "probability": 0.9893 + }, + { + "start": 17895.94, + "end": 17897.44, + "probability": 0.7754 + }, + { + "start": 17897.5, + "end": 17898.18, + "probability": 0.8076 + }, + { + "start": 17898.58, + "end": 17899.9, + "probability": 0.9774 + }, + { + "start": 17899.98, + "end": 17902.92, + "probability": 0.958 + }, + { + "start": 17903.74, + "end": 17906.62, + "probability": 0.949 + }, + { + "start": 17906.62, + "end": 17909.78, + "probability": 0.999 + }, + { + "start": 17910.32, + "end": 17913.14, + "probability": 0.9949 + }, + { + "start": 17913.2, + "end": 17914.66, + "probability": 0.9946 + }, + { + "start": 17915.6, + "end": 17919.38, + "probability": 0.9946 + }, + { + "start": 17919.76, + "end": 17923.63, + "probability": 0.9937 + }, + { + "start": 17924.54, + "end": 17927.02, + "probability": 0.9626 + }, + { + "start": 17927.2, + "end": 17927.46, + "probability": 0.4063 + }, + { + "start": 17927.58, + "end": 17932.28, + "probability": 0.997 + }, + { + "start": 17932.94, + "end": 17937.82, + "probability": 0.9855 + }, + { + "start": 17938.28, + "end": 17938.86, + "probability": 0.5125 + }, + { + "start": 17939.04, + "end": 17940.32, + "probability": 0.897 + }, + { + "start": 17941.06, + "end": 17942.64, + "probability": 0.9702 + }, + { + "start": 17943.62, + "end": 17944.42, + "probability": 0.9001 + }, + { + "start": 17944.5, + "end": 17945.12, + "probability": 0.7899 + }, + { + "start": 17945.14, + "end": 17945.84, + "probability": 0.9399 + }, + { + "start": 17945.94, + "end": 17949.62, + "probability": 0.9691 + }, + { + "start": 17950.22, + "end": 17951.54, + "probability": 0.9575 + }, + { + "start": 17954.01, + "end": 17956.74, + "probability": 0.9985 + }, + { + "start": 17957.42, + "end": 17958.7, + "probability": 0.9976 + }, + { + "start": 17959.3, + "end": 17962.04, + "probability": 0.9512 + }, + { + "start": 17962.12, + "end": 17965.4, + "probability": 0.9986 + }, + { + "start": 17965.58, + "end": 17965.98, + "probability": 0.5252 + }, + { + "start": 17966.56, + "end": 17967.66, + "probability": 0.9866 + }, + { + "start": 17967.72, + "end": 17970.32, + "probability": 0.9038 + }, + { + "start": 17970.88, + "end": 17972.34, + "probability": 0.8341 + }, + { + "start": 17972.36, + "end": 17973.7, + "probability": 0.8259 + }, + { + "start": 17973.72, + "end": 17973.96, + "probability": 0.7282 + }, + { + "start": 17974.32, + "end": 17975.24, + "probability": 0.8855 + }, + { + "start": 17975.58, + "end": 17977.06, + "probability": 0.755 + }, + { + "start": 17977.26, + "end": 17977.48, + "probability": 0.8154 + }, + { + "start": 17978.28, + "end": 17980.44, + "probability": 0.9616 + }, + { + "start": 17981.59, + "end": 17983.24, + "probability": 0.4915 + }, + { + "start": 17983.24, + "end": 17983.24, + "probability": 0.3953 + }, + { + "start": 17983.24, + "end": 17983.72, + "probability": 0.4428 + }, + { + "start": 17983.74, + "end": 17984.22, + "probability": 0.4597 + }, + { + "start": 17984.34, + "end": 17985.6, + "probability": 0.5595 + }, + { + "start": 17986.64, + "end": 17987.72, + "probability": 0.3637 + }, + { + "start": 17987.72, + "end": 17987.72, + "probability": 0.4618 + }, + { + "start": 17987.72, + "end": 17988.76, + "probability": 0.3237 + }, + { + "start": 17988.84, + "end": 17989.62, + "probability": 0.9834 + }, + { + "start": 17989.74, + "end": 17990.48, + "probability": 0.9753 + }, + { + "start": 17990.92, + "end": 17991.26, + "probability": 0.1617 + }, + { + "start": 17991.52, + "end": 17991.84, + "probability": 0.4823 + }, + { + "start": 17991.94, + "end": 17992.83, + "probability": 0.7881 + }, + { + "start": 17994.2, + "end": 17994.64, + "probability": 0.4321 + }, + { + "start": 17994.64, + "end": 17995.14, + "probability": 0.155 + }, + { + "start": 17995.56, + "end": 17995.72, + "probability": 0.2168 + }, + { + "start": 17995.72, + "end": 17996.38, + "probability": 0.1412 + }, + { + "start": 17997.08, + "end": 17997.8, + "probability": 0.9303 + }, + { + "start": 17998.66, + "end": 17999.88, + "probability": 0.6887 + }, + { + "start": 18000.33, + "end": 18001.48, + "probability": 0.5184 + }, + { + "start": 18002.66, + "end": 18006.31, + "probability": 0.515 + }, + { + "start": 18006.34, + "end": 18006.4, + "probability": 0.0069 + }, + { + "start": 18006.4, + "end": 18007.38, + "probability": 0.8806 + }, + { + "start": 18007.46, + "end": 18008.49, + "probability": 0.7896 + }, + { + "start": 18009.74, + "end": 18010.28, + "probability": 0.4263 + }, + { + "start": 18010.35, + "end": 18010.77, + "probability": 0.0202 + }, + { + "start": 18011.72, + "end": 18012.77, + "probability": 0.8954 + }, + { + "start": 18013.14, + "end": 18014.1, + "probability": 0.5586 + }, + { + "start": 18015.44, + "end": 18018.28, + "probability": 0.8442 + }, + { + "start": 18018.44, + "end": 18020.2, + "probability": 0.9398 + }, + { + "start": 18020.4, + "end": 18020.6, + "probability": 0.0443 + }, + { + "start": 18021.16, + "end": 18022.62, + "probability": 0.8376 + }, + { + "start": 18024.84, + "end": 18027.3, + "probability": 0.8357 + }, + { + "start": 18029.1, + "end": 18030.04, + "probability": 0.6475 + }, + { + "start": 18030.18, + "end": 18031.3, + "probability": 0.7922 + }, + { + "start": 18031.7, + "end": 18035.18, + "probability": 0.9961 + }, + { + "start": 18036.38, + "end": 18039.4, + "probability": 0.9731 + }, + { + "start": 18040.96, + "end": 18043.7, + "probability": 0.9868 + }, + { + "start": 18045.08, + "end": 18047.18, + "probability": 0.9504 + }, + { + "start": 18048.1, + "end": 18049.36, + "probability": 0.9214 + }, + { + "start": 18049.46, + "end": 18050.64, + "probability": 0.8799 + }, + { + "start": 18051.76, + "end": 18053.98, + "probability": 0.9819 + }, + { + "start": 18055.58, + "end": 18057.88, + "probability": 0.9984 + }, + { + "start": 18059.94, + "end": 18064.56, + "probability": 0.9885 + }, + { + "start": 18065.24, + "end": 18065.86, + "probability": 0.9457 + }, + { + "start": 18067.38, + "end": 18069.32, + "probability": 0.9927 + }, + { + "start": 18070.36, + "end": 18076.52, + "probability": 0.7168 + }, + { + "start": 18077.3, + "end": 18077.44, + "probability": 0.0553 + }, + { + "start": 18077.44, + "end": 18077.56, + "probability": 0.2821 + }, + { + "start": 18077.56, + "end": 18078.2, + "probability": 0.0756 + }, + { + "start": 18078.2, + "end": 18079.52, + "probability": 0.8706 + }, + { + "start": 18079.52, + "end": 18079.52, + "probability": 0.0012 + }, + { + "start": 18079.52, + "end": 18080.01, + "probability": 0.8172 + }, + { + "start": 18080.36, + "end": 18083.98, + "probability": 0.7332 + }, + { + "start": 18083.98, + "end": 18084.98, + "probability": 0.2985 + }, + { + "start": 18084.98, + "end": 18086.84, + "probability": 0.1023 + }, + { + "start": 18086.84, + "end": 18087.55, + "probability": 0.7007 + }, + { + "start": 18087.94, + "end": 18088.04, + "probability": 0.0102 + }, + { + "start": 18088.04, + "end": 18088.04, + "probability": 0.9055 + }, + { + "start": 18088.04, + "end": 18089.5, + "probability": 0.8393 + }, + { + "start": 18089.58, + "end": 18089.58, + "probability": 0.3137 + }, + { + "start": 18089.64, + "end": 18090.34, + "probability": 0.9486 + }, + { + "start": 18090.64, + "end": 18090.84, + "probability": 0.3435 + }, + { + "start": 18091.36, + "end": 18091.54, + "probability": 0.035 + }, + { + "start": 18091.58, + "end": 18093.94, + "probability": 0.9117 + }, + { + "start": 18094.08, + "end": 18094.08, + "probability": 0.1687 + }, + { + "start": 18094.08, + "end": 18094.56, + "probability": 0.5877 + }, + { + "start": 18094.68, + "end": 18094.88, + "probability": 0.9392 + }, + { + "start": 18094.94, + "end": 18094.94, + "probability": 0.7978 + }, + { + "start": 18094.94, + "end": 18094.96, + "probability": 0.7284 + }, + { + "start": 18094.96, + "end": 18095.87, + "probability": 0.5973 + }, + { + "start": 18096.84, + "end": 18098.54, + "probability": 0.4072 + }, + { + "start": 18098.98, + "end": 18099.6, + "probability": 0.8386 + }, + { + "start": 18100.02, + "end": 18100.14, + "probability": 0.733 + }, + { + "start": 18100.24, + "end": 18101.87, + "probability": 0.9586 + }, + { + "start": 18102.26, + "end": 18104.44, + "probability": 0.9329 + }, + { + "start": 18105.02, + "end": 18105.66, + "probability": 0.4901 + }, + { + "start": 18106.0, + "end": 18106.32, + "probability": 0.4497 + }, + { + "start": 18106.74, + "end": 18107.68, + "probability": 0.9204 + }, + { + "start": 18107.74, + "end": 18108.26, + "probability": 0.499 + }, + { + "start": 18108.48, + "end": 18109.98, + "probability": 0.7627 + }, + { + "start": 18110.04, + "end": 18110.4, + "probability": 0.9517 + }, + { + "start": 18110.58, + "end": 18110.66, + "probability": 0.5077 + }, + { + "start": 18110.66, + "end": 18110.76, + "probability": 0.2552 + }, + { + "start": 18113.12, + "end": 18114.7, + "probability": 0.7875 + }, + { + "start": 18114.76, + "end": 18115.04, + "probability": 0.8315 + }, + { + "start": 18115.08, + "end": 18115.94, + "probability": 0.8534 + }, + { + "start": 18116.04, + "end": 18118.58, + "probability": 0.9243 + }, + { + "start": 18118.7, + "end": 18120.16, + "probability": 0.9987 + }, + { + "start": 18120.62, + "end": 18121.18, + "probability": 0.4251 + }, + { + "start": 18121.62, + "end": 18122.02, + "probability": 0.5697 + }, + { + "start": 18122.32, + "end": 18125.62, + "probability": 0.7866 + }, + { + "start": 18125.64, + "end": 18127.64, + "probability": 0.5239 + }, + { + "start": 18128.04, + "end": 18130.1, + "probability": 0.0578 + }, + { + "start": 18131.64, + "end": 18133.06, + "probability": 0.2053 + }, + { + "start": 18133.36, + "end": 18134.79, + "probability": 0.8072 + }, + { + "start": 18135.22, + "end": 18136.77, + "probability": 0.845 + }, + { + "start": 18137.02, + "end": 18137.02, + "probability": 0.0912 + }, + { + "start": 18137.02, + "end": 18140.22, + "probability": 0.8571 + }, + { + "start": 18140.88, + "end": 18143.76, + "probability": 0.1449 + }, + { + "start": 18144.34, + "end": 18144.64, + "probability": 0.0779 + }, + { + "start": 18144.64, + "end": 18144.64, + "probability": 0.1213 + }, + { + "start": 18144.64, + "end": 18144.64, + "probability": 0.1819 + }, + { + "start": 18144.64, + "end": 18144.64, + "probability": 0.0873 + }, + { + "start": 18144.64, + "end": 18146.86, + "probability": 0.6301 + }, + { + "start": 18147.16, + "end": 18149.14, + "probability": 0.7803 + }, + { + "start": 18149.58, + "end": 18151.14, + "probability": 0.9111 + }, + { + "start": 18151.6, + "end": 18153.28, + "probability": 0.9132 + }, + { + "start": 18153.64, + "end": 18154.13, + "probability": 0.6507 + }, + { + "start": 18155.54, + "end": 18156.38, + "probability": 0.4921 + }, + { + "start": 18156.76, + "end": 18158.16, + "probability": 0.7992 + }, + { + "start": 18158.18, + "end": 18160.34, + "probability": 0.4716 + }, + { + "start": 18160.42, + "end": 18163.34, + "probability": 0.9061 + }, + { + "start": 18163.52, + "end": 18163.52, + "probability": 0.1209 + }, + { + "start": 18163.52, + "end": 18165.02, + "probability": 0.7942 + }, + { + "start": 18165.42, + "end": 18167.74, + "probability": 0.9612 + }, + { + "start": 18168.38, + "end": 18169.74, + "probability": 0.1535 + }, + { + "start": 18170.08, + "end": 18170.1, + "probability": 0.0401 + }, + { + "start": 18170.1, + "end": 18170.32, + "probability": 0.6407 + }, + { + "start": 18170.72, + "end": 18172.88, + "probability": 0.9717 + }, + { + "start": 18173.2, + "end": 18175.88, + "probability": 0.8695 + }, + { + "start": 18176.18, + "end": 18176.18, + "probability": 0.0203 + }, + { + "start": 18176.18, + "end": 18176.18, + "probability": 0.2532 + }, + { + "start": 18176.18, + "end": 18178.58, + "probability": 0.5783 + }, + { + "start": 18178.68, + "end": 18179.44, + "probability": 0.08 + }, + { + "start": 18179.56, + "end": 18181.48, + "probability": 0.3872 + }, + { + "start": 18181.7, + "end": 18183.18, + "probability": 0.8814 + }, + { + "start": 18183.26, + "end": 18183.4, + "probability": 0.5442 + }, + { + "start": 18184.12, + "end": 18185.88, + "probability": 0.452 + }, + { + "start": 18186.18, + "end": 18187.14, + "probability": 0.8629 + }, + { + "start": 18187.24, + "end": 18187.94, + "probability": 0.87 + }, + { + "start": 18188.08, + "end": 18189.14, + "probability": 0.884 + }, + { + "start": 18190.02, + "end": 18192.52, + "probability": 0.8354 + }, + { + "start": 18192.72, + "end": 18195.5, + "probability": 0.7402 + }, + { + "start": 18195.88, + "end": 18195.9, + "probability": 0.0347 + }, + { + "start": 18195.9, + "end": 18196.26, + "probability": 0.6538 + }, + { + "start": 18196.4, + "end": 18197.48, + "probability": 0.932 + }, + { + "start": 18197.82, + "end": 18197.82, + "probability": 0.2195 + }, + { + "start": 18197.82, + "end": 18198.47, + "probability": 0.7244 + }, + { + "start": 18199.78, + "end": 18203.76, + "probability": 0.9893 + }, + { + "start": 18203.96, + "end": 18204.74, + "probability": 0.2754 + }, + { + "start": 18204.86, + "end": 18205.16, + "probability": 0.2534 + }, + { + "start": 18205.3, + "end": 18207.28, + "probability": 0.748 + }, + { + "start": 18207.34, + "end": 18207.48, + "probability": 0.2174 + }, + { + "start": 18207.92, + "end": 18208.04, + "probability": 0.2444 + }, + { + "start": 18208.04, + "end": 18210.62, + "probability": 0.7124 + }, + { + "start": 18210.76, + "end": 18212.14, + "probability": 0.8711 + }, + { + "start": 18212.4, + "end": 18213.4, + "probability": 0.045 + }, + { + "start": 18214.34, + "end": 18215.08, + "probability": 0.0247 + }, + { + "start": 18215.6, + "end": 18215.88, + "probability": 0.2071 + }, + { + "start": 18215.88, + "end": 18216.28, + "probability": 0.263 + }, + { + "start": 18216.8, + "end": 18218.74, + "probability": 0.684 + }, + { + "start": 18219.16, + "end": 18222.34, + "probability": 0.7766 + }, + { + "start": 18222.34, + "end": 18223.36, + "probability": 0.0385 + }, + { + "start": 18223.36, + "end": 18226.19, + "probability": 0.0984 + }, + { + "start": 18227.34, + "end": 18227.85, + "probability": 0.1755 + }, + { + "start": 18228.26, + "end": 18229.26, + "probability": 0.3133 + }, + { + "start": 18229.36, + "end": 18230.04, + "probability": 0.5844 + }, + { + "start": 18230.06, + "end": 18230.52, + "probability": 0.4938 + }, + { + "start": 18230.64, + "end": 18232.94, + "probability": 0.8978 + }, + { + "start": 18233.58, + "end": 18234.32, + "probability": 0.0052 + }, + { + "start": 18234.32, + "end": 18235.65, + "probability": 0.5172 + }, + { + "start": 18235.78, + "end": 18236.48, + "probability": 0.6022 + }, + { + "start": 18236.58, + "end": 18237.84, + "probability": 0.7644 + }, + { + "start": 18237.98, + "end": 18238.26, + "probability": 0.0498 + }, + { + "start": 18238.26, + "end": 18240.52, + "probability": 0.8501 + }, + { + "start": 18241.06, + "end": 18244.4, + "probability": 0.5609 + }, + { + "start": 18244.52, + "end": 18244.88, + "probability": 0.4293 + }, + { + "start": 18245.3, + "end": 18247.54, + "probability": 0.6259 + }, + { + "start": 18247.7, + "end": 18250.94, + "probability": 0.9598 + }, + { + "start": 18251.02, + "end": 18253.06, + "probability": 0.9722 + }, + { + "start": 18253.16, + "end": 18256.06, + "probability": 0.9633 + }, + { + "start": 18256.06, + "end": 18256.84, + "probability": 0.8876 + }, + { + "start": 18256.84, + "end": 18256.96, + "probability": 0.3182 + }, + { + "start": 18256.96, + "end": 18258.94, + "probability": 0.8307 + }, + { + "start": 18259.18, + "end": 18260.04, + "probability": 0.2853 + }, + { + "start": 18260.32, + "end": 18260.42, + "probability": 0.0897 + }, + { + "start": 18260.42, + "end": 18261.23, + "probability": 0.393 + }, + { + "start": 18262.58, + "end": 18263.16, + "probability": 0.0631 + }, + { + "start": 18263.26, + "end": 18264.86, + "probability": 0.347 + }, + { + "start": 18264.86, + "end": 18264.86, + "probability": 0.1116 + }, + { + "start": 18264.86, + "end": 18266.8, + "probability": 0.7173 + }, + { + "start": 18267.26, + "end": 18268.3, + "probability": 0.1883 + }, + { + "start": 18268.3, + "end": 18269.64, + "probability": 0.7263 + }, + { + "start": 18270.36, + "end": 18270.43, + "probability": 0.2046 + }, + { + "start": 18271.28, + "end": 18271.58, + "probability": 0.1101 + }, + { + "start": 18271.84, + "end": 18275.34, + "probability": 0.9745 + }, + { + "start": 18275.48, + "end": 18276.86, + "probability": 0.354 + }, + { + "start": 18276.86, + "end": 18278.64, + "probability": 0.7398 + }, + { + "start": 18278.74, + "end": 18279.1, + "probability": 0.7646 + }, + { + "start": 18279.18, + "end": 18279.25, + "probability": 0.321 + }, + { + "start": 18279.6, + "end": 18280.08, + "probability": 0.8889 + }, + { + "start": 18280.24, + "end": 18281.88, + "probability": 0.8512 + }, + { + "start": 18282.28, + "end": 18284.23, + "probability": 0.0319 + }, + { + "start": 18285.04, + "end": 18286.94, + "probability": 0.875 + }, + { + "start": 18287.84, + "end": 18291.59, + "probability": 0.8699 + }, + { + "start": 18291.66, + "end": 18293.74, + "probability": 0.735 + }, + { + "start": 18293.8, + "end": 18294.92, + "probability": 0.416 + }, + { + "start": 18294.94, + "end": 18298.66, + "probability": 0.9565 + }, + { + "start": 18299.1, + "end": 18299.82, + "probability": 0.6966 + }, + { + "start": 18299.9, + "end": 18304.04, + "probability": 0.9329 + }, + { + "start": 18304.43, + "end": 18309.2, + "probability": 0.9744 + }, + { + "start": 18309.42, + "end": 18317.26, + "probability": 0.9812 + }, + { + "start": 18317.44, + "end": 18320.86, + "probability": 0.8954 + }, + { + "start": 18321.0, + "end": 18321.18, + "probability": 0.5035 + }, + { + "start": 18321.2, + "end": 18324.52, + "probability": 0.9657 + }, + { + "start": 18325.2, + "end": 18325.56, + "probability": 0.2304 + }, + { + "start": 18325.56, + "end": 18328.66, + "probability": 0.6035 + }, + { + "start": 18328.68, + "end": 18334.18, + "probability": 0.7864 + }, + { + "start": 18334.2, + "end": 18334.2, + "probability": 0.5872 + }, + { + "start": 18334.2, + "end": 18334.68, + "probability": 0.8903 + }, + { + "start": 18335.24, + "end": 18337.21, + "probability": 0.7486 + }, + { + "start": 18337.72, + "end": 18337.82, + "probability": 0.3867 + }, + { + "start": 18338.98, + "end": 18342.64, + "probability": 0.9307 + }, + { + "start": 18346.26, + "end": 18346.6, + "probability": 0.419 + }, + { + "start": 18347.04, + "end": 18347.32, + "probability": 0.7384 + }, + { + "start": 18347.36, + "end": 18347.96, + "probability": 0.5571 + }, + { + "start": 18348.08, + "end": 18352.62, + "probability": 0.8774 + }, + { + "start": 18353.2, + "end": 18354.7, + "probability": 0.8918 + }, + { + "start": 18355.22, + "end": 18355.76, + "probability": 0.594 + }, + { + "start": 18356.42, + "end": 18357.74, + "probability": 0.992 + }, + { + "start": 18358.08, + "end": 18359.04, + "probability": 0.9451 + }, + { + "start": 18359.54, + "end": 18361.16, + "probability": 0.9575 + }, + { + "start": 18361.64, + "end": 18362.16, + "probability": 0.3872 + }, + { + "start": 18362.7, + "end": 18364.72, + "probability": 0.831 + }, + { + "start": 18365.64, + "end": 18367.7, + "probability": 0.9945 + }, + { + "start": 18368.22, + "end": 18369.26, + "probability": 0.5868 + }, + { + "start": 18371.6, + "end": 18374.1, + "probability": 0.6206 + }, + { + "start": 18374.58, + "end": 18376.4, + "probability": 0.4526 + }, + { + "start": 18377.26, + "end": 18380.24, + "probability": 0.8183 + }, + { + "start": 18380.54, + "end": 18382.38, + "probability": 0.948 + }, + { + "start": 18383.14, + "end": 18384.78, + "probability": 0.8725 + }, + { + "start": 18385.44, + "end": 18388.64, + "probability": 0.9111 + }, + { + "start": 18389.1, + "end": 18389.66, + "probability": 0.9436 + }, + { + "start": 18390.26, + "end": 18390.84, + "probability": 0.918 + }, + { + "start": 18391.06, + "end": 18392.62, + "probability": 0.8071 + }, + { + "start": 18392.68, + "end": 18394.8, + "probability": 0.6529 + }, + { + "start": 18395.66, + "end": 18396.1, + "probability": 0.8341 + }, + { + "start": 18396.22, + "end": 18398.1, + "probability": 0.8677 + }, + { + "start": 18398.18, + "end": 18398.32, + "probability": 0.8557 + }, + { + "start": 18398.38, + "end": 18399.97, + "probability": 0.9533 + }, + { + "start": 18400.58, + "end": 18407.38, + "probability": 0.957 + }, + { + "start": 18408.0, + "end": 18409.52, + "probability": 0.9001 + }, + { + "start": 18410.0, + "end": 18410.66, + "probability": 0.8895 + }, + { + "start": 18410.72, + "end": 18412.3, + "probability": 0.9535 + }, + { + "start": 18412.42, + "end": 18414.8, + "probability": 0.9761 + }, + { + "start": 18414.98, + "end": 18415.44, + "probability": 0.5407 + }, + { + "start": 18415.66, + "end": 18416.24, + "probability": 0.6401 + }, + { + "start": 18416.34, + "end": 18417.3, + "probability": 0.9443 + }, + { + "start": 18417.72, + "end": 18419.98, + "probability": 0.9949 + }, + { + "start": 18420.42, + "end": 18424.3, + "probability": 0.9731 + }, + { + "start": 18424.72, + "end": 18428.06, + "probability": 0.9894 + }, + { + "start": 18428.4, + "end": 18430.12, + "probability": 0.9952 + }, + { + "start": 18430.24, + "end": 18432.0, + "probability": 0.9969 + }, + { + "start": 18432.7, + "end": 18435.28, + "probability": 0.9897 + }, + { + "start": 18435.28, + "end": 18437.46, + "probability": 0.5941 + }, + { + "start": 18437.58, + "end": 18437.74, + "probability": 0.5197 + }, + { + "start": 18437.9, + "end": 18438.96, + "probability": 0.9673 + }, + { + "start": 18439.28, + "end": 18441.46, + "probability": 0.9158 + }, + { + "start": 18441.76, + "end": 18444.22, + "probability": 0.9893 + }, + { + "start": 18444.9, + "end": 18447.32, + "probability": 0.9775 + }, + { + "start": 18448.16, + "end": 18449.06, + "probability": 0.9102 + }, + { + "start": 18449.16, + "end": 18450.78, + "probability": 0.8101 + }, + { + "start": 18451.32, + "end": 18453.76, + "probability": 0.6897 + }, + { + "start": 18453.78, + "end": 18454.62, + "probability": 0.9451 + }, + { + "start": 18455.08, + "end": 18458.12, + "probability": 0.9227 + }, + { + "start": 18458.22, + "end": 18459.74, + "probability": 0.9434 + }, + { + "start": 18460.02, + "end": 18461.4, + "probability": 0.9645 + }, + { + "start": 18461.52, + "end": 18462.8, + "probability": 0.9932 + }, + { + "start": 18463.14, + "end": 18464.02, + "probability": 0.9886 + }, + { + "start": 18464.14, + "end": 18464.46, + "probability": 0.5356 + }, + { + "start": 18464.58, + "end": 18466.96, + "probability": 0.9223 + }, + { + "start": 18467.38, + "end": 18470.18, + "probability": 0.8257 + }, + { + "start": 18470.5, + "end": 18471.68, + "probability": 0.9624 + }, + { + "start": 18472.14, + "end": 18472.74, + "probability": 0.594 + }, + { + "start": 18472.82, + "end": 18473.25, + "probability": 0.9611 + }, + { + "start": 18473.5, + "end": 18474.63, + "probability": 0.9866 + }, + { + "start": 18475.06, + "end": 18475.64, + "probability": 0.8081 + }, + { + "start": 18475.76, + "end": 18476.64, + "probability": 0.9808 + }, + { + "start": 18476.98, + "end": 18480.3, + "probability": 0.9847 + }, + { + "start": 18480.72, + "end": 18482.54, + "probability": 0.9889 + }, + { + "start": 18482.86, + "end": 18484.36, + "probability": 0.9019 + }, + { + "start": 18484.5, + "end": 18485.24, + "probability": 0.8486 + }, + { + "start": 18485.4, + "end": 18486.34, + "probability": 0.8679 + }, + { + "start": 18486.54, + "end": 18489.64, + "probability": 0.9411 + }, + { + "start": 18490.16, + "end": 18493.78, + "probability": 0.9389 + }, + { + "start": 18494.1, + "end": 18497.2, + "probability": 0.9958 + }, + { + "start": 18497.88, + "end": 18501.16, + "probability": 0.9915 + }, + { + "start": 18501.44, + "end": 18502.24, + "probability": 0.6067 + }, + { + "start": 18502.42, + "end": 18503.06, + "probability": 0.7419 + }, + { + "start": 18503.08, + "end": 18504.78, + "probability": 0.9746 + }, + { + "start": 18505.46, + "end": 18505.58, + "probability": 0.1142 + }, + { + "start": 18506.48, + "end": 18507.74, + "probability": 0.7166 + }, + { + "start": 18510.16, + "end": 18510.91, + "probability": 0.1308 + }, + { + "start": 18511.46, + "end": 18512.94, + "probability": 0.5052 + }, + { + "start": 18513.04, + "end": 18514.48, + "probability": 0.8011 + }, + { + "start": 18514.6, + "end": 18515.18, + "probability": 0.3727 + }, + { + "start": 18515.3, + "end": 18516.18, + "probability": 0.7767 + }, + { + "start": 18516.18, + "end": 18520.26, + "probability": 0.9028 + }, + { + "start": 18520.28, + "end": 18520.94, + "probability": 0.6401 + }, + { + "start": 18521.08, + "end": 18523.04, + "probability": 0.3755 + }, + { + "start": 18523.08, + "end": 18523.26, + "probability": 0.3343 + }, + { + "start": 18523.36, + "end": 18524.24, + "probability": 0.9941 + }, + { + "start": 18524.38, + "end": 18525.96, + "probability": 0.9024 + }, + { + "start": 18526.1, + "end": 18529.88, + "probability": 0.8958 + }, + { + "start": 18530.22, + "end": 18531.7, + "probability": 0.8164 + }, + { + "start": 18531.8, + "end": 18534.16, + "probability": 0.9943 + }, + { + "start": 18534.8, + "end": 18536.5, + "probability": 0.8854 + }, + { + "start": 18536.86, + "end": 18538.1, + "probability": 0.925 + }, + { + "start": 18538.48, + "end": 18540.1, + "probability": 0.9807 + }, + { + "start": 18540.26, + "end": 18540.46, + "probability": 0.8319 + }, + { + "start": 18540.64, + "end": 18541.92, + "probability": 0.7395 + }, + { + "start": 18542.26, + "end": 18544.94, + "probability": 0.9907 + }, + { + "start": 18545.02, + "end": 18546.46, + "probability": 0.9915 + }, + { + "start": 18546.52, + "end": 18547.52, + "probability": 0.6379 + }, + { + "start": 18547.62, + "end": 18548.4, + "probability": 0.6985 + }, + { + "start": 18548.88, + "end": 18552.14, + "probability": 0.9769 + }, + { + "start": 18552.28, + "end": 18556.82, + "probability": 0.9893 + }, + { + "start": 18556.92, + "end": 18557.62, + "probability": 0.5712 + }, + { + "start": 18557.98, + "end": 18559.78, + "probability": 0.999 + }, + { + "start": 18560.0, + "end": 18562.64, + "probability": 0.9984 + }, + { + "start": 18563.02, + "end": 18567.96, + "probability": 0.9805 + }, + { + "start": 18568.28, + "end": 18572.66, + "probability": 0.998 + }, + { + "start": 18573.04, + "end": 18574.18, + "probability": 0.9653 + }, + { + "start": 18574.3, + "end": 18575.32, + "probability": 0.7286 + }, + { + "start": 18575.7, + "end": 18577.46, + "probability": 0.9958 + }, + { + "start": 18577.54, + "end": 18581.22, + "probability": 0.9897 + }, + { + "start": 18581.58, + "end": 18582.48, + "probability": 0.8968 + }, + { + "start": 18582.58, + "end": 18585.54, + "probability": 0.894 + }, + { + "start": 18585.58, + "end": 18587.74, + "probability": 0.9819 + }, + { + "start": 18587.8, + "end": 18588.14, + "probability": 0.7713 + }, + { + "start": 18588.86, + "end": 18589.2, + "probability": 0.3307 + }, + { + "start": 18589.36, + "end": 18591.2, + "probability": 0.7773 + }, + { + "start": 18591.34, + "end": 18592.52, + "probability": 0.7407 + }, + { + "start": 18592.68, + "end": 18593.42, + "probability": 0.5706 + }, + { + "start": 18593.62, + "end": 18594.92, + "probability": 0.7972 + }, + { + "start": 18595.6, + "end": 18596.92, + "probability": 0.4608 + }, + { + "start": 18598.5, + "end": 18600.36, + "probability": 0.6803 + }, + { + "start": 18600.74, + "end": 18602.06, + "probability": 0.9408 + }, + { + "start": 18609.38, + "end": 18610.8, + "probability": 0.5938 + }, + { + "start": 18611.54, + "end": 18614.42, + "probability": 0.8758 + }, + { + "start": 18615.24, + "end": 18616.22, + "probability": 0.6179 + }, + { + "start": 18617.62, + "end": 18618.18, + "probability": 0.9065 + }, + { + "start": 18618.78, + "end": 18622.34, + "probability": 0.7931 + }, + { + "start": 18623.68, + "end": 18625.0, + "probability": 0.9922 + }, + { + "start": 18626.34, + "end": 18628.46, + "probability": 0.8328 + }, + { + "start": 18629.02, + "end": 18629.84, + "probability": 0.8555 + }, + { + "start": 18631.38, + "end": 18635.82, + "probability": 0.9946 + }, + { + "start": 18637.44, + "end": 18644.66, + "probability": 0.9875 + }, + { + "start": 18645.28, + "end": 18645.96, + "probability": 0.9866 + }, + { + "start": 18647.0, + "end": 18648.56, + "probability": 0.6598 + }, + { + "start": 18648.98, + "end": 18651.72, + "probability": 0.9943 + }, + { + "start": 18652.08, + "end": 18653.2, + "probability": 0.7988 + }, + { + "start": 18654.52, + "end": 18656.08, + "probability": 0.6487 + }, + { + "start": 18656.76, + "end": 18658.22, + "probability": 0.8817 + }, + { + "start": 18658.76, + "end": 18663.32, + "probability": 0.9798 + }, + { + "start": 18664.24, + "end": 18666.9, + "probability": 0.9646 + }, + { + "start": 18666.98, + "end": 18669.84, + "probability": 0.9888 + }, + { + "start": 18670.02, + "end": 18670.48, + "probability": 0.6914 + }, + { + "start": 18671.12, + "end": 18672.6, + "probability": 0.516 + }, + { + "start": 18674.4, + "end": 18674.42, + "probability": 0.0202 + }, + { + "start": 18674.42, + "end": 18681.86, + "probability": 0.9263 + }, + { + "start": 18681.96, + "end": 18683.24, + "probability": 0.9937 + }, + { + "start": 18683.66, + "end": 18686.02, + "probability": 0.9564 + }, + { + "start": 18686.8, + "end": 18687.88, + "probability": 0.6923 + }, + { + "start": 18688.02, + "end": 18692.44, + "probability": 0.79 + }, + { + "start": 18692.54, + "end": 18693.92, + "probability": 0.7156 + }, + { + "start": 18694.5, + "end": 18695.06, + "probability": 0.3692 + }, + { + "start": 18695.66, + "end": 18699.32, + "probability": 0.947 + }, + { + "start": 18699.56, + "end": 18700.76, + "probability": 0.8377 + }, + { + "start": 18700.96, + "end": 18704.56, + "probability": 0.626 + }, + { + "start": 18705.7, + "end": 18707.12, + "probability": 0.9884 + }, + { + "start": 18707.56, + "end": 18708.64, + "probability": 0.7775 + }, + { + "start": 18709.72, + "end": 18712.68, + "probability": 0.9966 + }, + { + "start": 18712.68, + "end": 18715.06, + "probability": 0.9998 + }, + { + "start": 18715.76, + "end": 18716.56, + "probability": 0.9829 + }, + { + "start": 18717.68, + "end": 18718.42, + "probability": 0.8836 + }, + { + "start": 18719.24, + "end": 18723.44, + "probability": 0.9888 + }, + { + "start": 18723.8, + "end": 18730.11, + "probability": 0.979 + }, + { + "start": 18731.62, + "end": 18734.26, + "probability": 0.554 + }, + { + "start": 18735.4, + "end": 18737.5, + "probability": 0.3239 + }, + { + "start": 18738.08, + "end": 18738.5, + "probability": 0.679 + }, + { + "start": 18738.88, + "end": 18740.72, + "probability": 0.6476 + }, + { + "start": 18741.08, + "end": 18742.64, + "probability": 0.9229 + }, + { + "start": 18742.68, + "end": 18744.01, + "probability": 0.9824 + }, + { + "start": 18745.38, + "end": 18749.4, + "probability": 0.7732 + }, + { + "start": 18750.36, + "end": 18752.72, + "probability": 0.8647 + }, + { + "start": 18753.34, + "end": 18754.74, + "probability": 0.3273 + }, + { + "start": 18755.34, + "end": 18759.12, + "probability": 0.917 + }, + { + "start": 18760.52, + "end": 18761.78, + "probability": 0.8691 + }, + { + "start": 18762.32, + "end": 18767.46, + "probability": 0.9979 + }, + { + "start": 18768.22, + "end": 18770.94, + "probability": 0.9967 + }, + { + "start": 18771.68, + "end": 18773.4, + "probability": 0.7894 + }, + { + "start": 18774.18, + "end": 18779.24, + "probability": 0.9966 + }, + { + "start": 18779.74, + "end": 18781.64, + "probability": 0.8967 + }, + { + "start": 18782.3, + "end": 18783.56, + "probability": 0.9917 + }, + { + "start": 18783.92, + "end": 18785.14, + "probability": 0.8783 + }, + { + "start": 18785.62, + "end": 18786.98, + "probability": 0.9958 + }, + { + "start": 18787.52, + "end": 18791.52, + "probability": 0.7988 + }, + { + "start": 18792.2, + "end": 18794.36, + "probability": 0.9181 + }, + { + "start": 18795.02, + "end": 18796.16, + "probability": 0.9276 + }, + { + "start": 18796.68, + "end": 18798.2, + "probability": 0.9196 + }, + { + "start": 18798.52, + "end": 18799.84, + "probability": 0.9728 + }, + { + "start": 18800.3, + "end": 18801.6, + "probability": 0.6602 + }, + { + "start": 18801.9, + "end": 18804.82, + "probability": 0.9907 + }, + { + "start": 18805.58, + "end": 18809.06, + "probability": 0.9558 + }, + { + "start": 18809.38, + "end": 18811.76, + "probability": 0.8112 + }, + { + "start": 18811.8, + "end": 18812.64, + "probability": 0.7051 + }, + { + "start": 18813.04, + "end": 18814.02, + "probability": 0.5826 + }, + { + "start": 18814.6, + "end": 18816.46, + "probability": 0.9541 + }, + { + "start": 18816.5, + "end": 18816.7, + "probability": 0.1837 + }, + { + "start": 18816.8, + "end": 18818.98, + "probability": 0.6797 + }, + { + "start": 18819.18, + "end": 18819.26, + "probability": 0.5145 + }, + { + "start": 18819.26, + "end": 18821.94, + "probability": 0.8435 + }, + { + "start": 18822.1, + "end": 18822.24, + "probability": 0.5874 + }, + { + "start": 18822.24, + "end": 18823.4, + "probability": 0.9378 + }, + { + "start": 18823.7, + "end": 18824.3, + "probability": 0.9984 + }, + { + "start": 18825.02, + "end": 18825.6, + "probability": 0.5652 + }, + { + "start": 18826.1, + "end": 18829.34, + "probability": 0.7054 + }, + { + "start": 18829.72, + "end": 18834.28, + "probability": 0.9218 + }, + { + "start": 18834.56, + "end": 18834.88, + "probability": 0.8378 + }, + { + "start": 18835.08, + "end": 18837.14, + "probability": 0.9148 + }, + { + "start": 18837.28, + "end": 18839.84, + "probability": 0.8603 + }, + { + "start": 18839.94, + "end": 18842.46, + "probability": 0.5586 + }, + { + "start": 18842.74, + "end": 18844.34, + "probability": 0.9096 + }, + { + "start": 18844.4, + "end": 18845.38, + "probability": 0.9918 + }, + { + "start": 18845.98, + "end": 18848.02, + "probability": 0.9764 + }, + { + "start": 18848.86, + "end": 18851.62, + "probability": 0.9907 + }, + { + "start": 18852.0, + "end": 18852.56, + "probability": 0.9668 + }, + { + "start": 18853.06, + "end": 18854.68, + "probability": 0.9611 + }, + { + "start": 18855.84, + "end": 18857.56, + "probability": 0.562 + }, + { + "start": 18859.14, + "end": 18861.74, + "probability": 0.9462 + }, + { + "start": 18862.48, + "end": 18864.4, + "probability": 0.9136 + }, + { + "start": 18864.52, + "end": 18864.82, + "probability": 0.8099 + }, + { + "start": 18865.94, + "end": 18866.82, + "probability": 0.8359 + }, + { + "start": 18867.48, + "end": 18868.68, + "probability": 0.298 + }, + { + "start": 18870.08, + "end": 18871.68, + "probability": 0.8595 + }, + { + "start": 18872.26, + "end": 18873.62, + "probability": 0.9852 + }, + { + "start": 18874.58, + "end": 18879.3, + "probability": 0.9776 + }, + { + "start": 18880.38, + "end": 18881.04, + "probability": 0.9758 + }, + { + "start": 18881.62, + "end": 18887.22, + "probability": 0.9995 + }, + { + "start": 18887.8, + "end": 18888.66, + "probability": 0.999 + }, + { + "start": 18888.78, + "end": 18889.21, + "probability": 0.8811 + }, + { + "start": 18889.62, + "end": 18890.14, + "probability": 0.937 + }, + { + "start": 18890.64, + "end": 18891.39, + "probability": 0.9736 + }, + { + "start": 18892.78, + "end": 18893.18, + "probability": 0.7164 + }, + { + "start": 18893.4, + "end": 18897.22, + "probability": 0.9435 + }, + { + "start": 18897.24, + "end": 18897.96, + "probability": 0.7218 + }, + { + "start": 18898.66, + "end": 18900.32, + "probability": 0.9946 + }, + { + "start": 18900.68, + "end": 18905.42, + "probability": 0.9971 + }, + { + "start": 18905.62, + "end": 18907.07, + "probability": 0.7555 + }, + { + "start": 18907.78, + "end": 18910.84, + "probability": 0.8871 + }, + { + "start": 18911.0, + "end": 18911.26, + "probability": 0.9385 + }, + { + "start": 18911.32, + "end": 18913.18, + "probability": 0.6879 + }, + { + "start": 18913.28, + "end": 18915.58, + "probability": 0.9246 + }, + { + "start": 18916.1, + "end": 18919.4, + "probability": 0.8962 + }, + { + "start": 18920.08, + "end": 18925.28, + "probability": 0.8894 + }, + { + "start": 18925.8, + "end": 18929.75, + "probability": 0.9478 + }, + { + "start": 18929.94, + "end": 18931.9, + "probability": 0.9976 + }, + { + "start": 18932.44, + "end": 18934.98, + "probability": 0.9805 + }, + { + "start": 18935.48, + "end": 18936.16, + "probability": 0.7422 + }, + { + "start": 18937.42, + "end": 18940.62, + "probability": 0.9558 + }, + { + "start": 18941.2, + "end": 18942.72, + "probability": 0.9961 + }, + { + "start": 18943.34, + "end": 18944.88, + "probability": 0.796 + }, + { + "start": 18945.4, + "end": 18949.06, + "probability": 0.7653 + }, + { + "start": 18949.74, + "end": 18952.19, + "probability": 0.8945 + }, + { + "start": 18953.08, + "end": 18956.06, + "probability": 0.9907 + }, + { + "start": 18956.72, + "end": 18958.28, + "probability": 0.8447 + }, + { + "start": 18958.46, + "end": 18959.46, + "probability": 0.7207 + }, + { + "start": 18959.82, + "end": 18962.74, + "probability": 0.8683 + }, + { + "start": 18962.84, + "end": 18963.56, + "probability": 0.9372 + }, + { + "start": 18965.02, + "end": 18968.34, + "probability": 0.9909 + }, + { + "start": 18968.9, + "end": 18970.16, + "probability": 0.9784 + }, + { + "start": 18970.7, + "end": 18973.34, + "probability": 0.989 + }, + { + "start": 18973.44, + "end": 18975.74, + "probability": 0.865 + }, + { + "start": 18976.12, + "end": 18979.26, + "probability": 0.9965 + }, + { + "start": 18979.64, + "end": 18980.6, + "probability": 0.993 + }, + { + "start": 18980.74, + "end": 18982.32, + "probability": 0.9915 + }, + { + "start": 18982.38, + "end": 18983.21, + "probability": 0.9923 + }, + { + "start": 18983.84, + "end": 18985.14, + "probability": 0.9696 + }, + { + "start": 18986.8, + "end": 18987.78, + "probability": 0.9483 + }, + { + "start": 18988.14, + "end": 18991.36, + "probability": 0.9992 + }, + { + "start": 18992.62, + "end": 18993.68, + "probability": 0.7305 + }, + { + "start": 18993.78, + "end": 18995.88, + "probability": 0.991 + }, + { + "start": 18996.38, + "end": 18998.48, + "probability": 0.7538 + }, + { + "start": 18999.04, + "end": 19001.02, + "probability": 0.7431 + }, + { + "start": 19001.24, + "end": 19005.84, + "probability": 0.9341 + }, + { + "start": 19006.02, + "end": 19006.86, + "probability": 0.5021 + }, + { + "start": 19007.3, + "end": 19008.7, + "probability": 0.9529 + }, + { + "start": 19008.8, + "end": 19010.66, + "probability": 0.8612 + }, + { + "start": 19011.64, + "end": 19011.8, + "probability": 0.424 + }, + { + "start": 19011.96, + "end": 19012.38, + "probability": 0.7003 + }, + { + "start": 19012.52, + "end": 19016.5, + "probability": 0.8765 + }, + { + "start": 19016.56, + "end": 19016.78, + "probability": 0.7007 + }, + { + "start": 19017.78, + "end": 19019.98, + "probability": 0.9456 + }, + { + "start": 19020.94, + "end": 19022.88, + "probability": 0.6749 + }, + { + "start": 19023.3, + "end": 19024.16, + "probability": 0.8712 + }, + { + "start": 19024.22, + "end": 19025.81, + "probability": 0.948 + }, + { + "start": 19026.42, + "end": 19030.8, + "probability": 0.9926 + }, + { + "start": 19031.84, + "end": 19032.62, + "probability": 0.896 + }, + { + "start": 19033.22, + "end": 19034.4, + "probability": 0.8919 + }, + { + "start": 19034.58, + "end": 19035.4, + "probability": 0.5051 + }, + { + "start": 19035.88, + "end": 19039.26, + "probability": 0.9416 + }, + { + "start": 19040.0, + "end": 19044.28, + "probability": 0.9377 + }, + { + "start": 19045.0, + "end": 19047.16, + "probability": 0.9668 + }, + { + "start": 19047.72, + "end": 19052.06, + "probability": 0.8058 + }, + { + "start": 19052.7, + "end": 19057.3, + "probability": 0.9902 + }, + { + "start": 19057.72, + "end": 19058.68, + "probability": 0.8116 + }, + { + "start": 19058.8, + "end": 19061.64, + "probability": 0.6714 + }, + { + "start": 19062.68, + "end": 19062.74, + "probability": 0.4202 + }, + { + "start": 19062.74, + "end": 19065.4, + "probability": 0.9893 + }, + { + "start": 19065.82, + "end": 19069.34, + "probability": 0.7764 + }, + { + "start": 19069.44, + "end": 19071.68, + "probability": 0.9468 + }, + { + "start": 19072.14, + "end": 19075.08, + "probability": 0.9751 + }, + { + "start": 19075.12, + "end": 19076.32, + "probability": 0.9185 + }, + { + "start": 19076.6, + "end": 19076.66, + "probability": 0.4283 + }, + { + "start": 19076.74, + "end": 19077.8, + "probability": 0.9115 + }, + { + "start": 19078.34, + "end": 19082.72, + "probability": 0.9973 + }, + { + "start": 19082.88, + "end": 19083.44, + "probability": 0.6396 + }, + { + "start": 19083.54, + "end": 19084.16, + "probability": 0.5287 + }, + { + "start": 19084.2, + "end": 19085.5, + "probability": 0.9966 + }, + { + "start": 19086.66, + "end": 19088.4, + "probability": 0.9306 + }, + { + "start": 19088.52, + "end": 19089.7, + "probability": 0.9041 + }, + { + "start": 19089.78, + "end": 19090.4, + "probability": 0.5552 + }, + { + "start": 19090.56, + "end": 19092.74, + "probability": 0.9792 + }, + { + "start": 19092.88, + "end": 19094.08, + "probability": 0.9897 + }, + { + "start": 19094.52, + "end": 19095.2, + "probability": 0.9335 + }, + { + "start": 19097.1, + "end": 19098.82, + "probability": 0.8988 + }, + { + "start": 19099.14, + "end": 19102.1, + "probability": 0.7525 + }, + { + "start": 19102.58, + "end": 19103.18, + "probability": 0.2922 + }, + { + "start": 19103.18, + "end": 19103.18, + "probability": 0.4869 + }, + { + "start": 19103.18, + "end": 19103.81, + "probability": 0.8539 + }, + { + "start": 19104.04, + "end": 19104.68, + "probability": 0.8204 + }, + { + "start": 19104.7, + "end": 19105.9, + "probability": 0.7663 + }, + { + "start": 19106.56, + "end": 19107.0, + "probability": 0.4132 + }, + { + "start": 19107.18, + "end": 19108.46, + "probability": 0.82 + }, + { + "start": 19108.7, + "end": 19111.34, + "probability": 0.7153 + }, + { + "start": 19111.48, + "end": 19112.04, + "probability": 0.2626 + }, + { + "start": 19112.26, + "end": 19113.58, + "probability": 0.7069 + }, + { + "start": 19115.32, + "end": 19116.76, + "probability": 0.3451 + }, + { + "start": 19117.54, + "end": 19118.56, + "probability": 0.2785 + }, + { + "start": 19119.41, + "end": 19124.56, + "probability": 0.0769 + }, + { + "start": 19128.0, + "end": 19128.1, + "probability": 0.0496 + }, + { + "start": 19128.1, + "end": 19128.18, + "probability": 0.2497 + }, + { + "start": 19128.18, + "end": 19128.18, + "probability": 0.0723 + }, + { + "start": 19128.18, + "end": 19128.72, + "probability": 0.2774 + }, + { + "start": 19128.78, + "end": 19129.94, + "probability": 0.6413 + }, + { + "start": 19130.62, + "end": 19130.88, + "probability": 0.52 + }, + { + "start": 19132.06, + "end": 19132.98, + "probability": 0.1855 + }, + { + "start": 19133.44, + "end": 19135.56, + "probability": 0.5293 + }, + { + "start": 19135.56, + "end": 19137.96, + "probability": 0.1673 + }, + { + "start": 19138.02, + "end": 19138.58, + "probability": 0.5997 + }, + { + "start": 19138.66, + "end": 19139.46, + "probability": 0.8057 + }, + { + "start": 19139.58, + "end": 19139.96, + "probability": 0.6559 + }, + { + "start": 19140.0, + "end": 19140.58, + "probability": 0.8447 + }, + { + "start": 19141.46, + "end": 19142.58, + "probability": 0.9648 + }, + { + "start": 19142.58, + "end": 19145.76, + "probability": 0.9927 + }, + { + "start": 19146.48, + "end": 19148.8, + "probability": 0.8683 + }, + { + "start": 19149.86, + "end": 19152.9, + "probability": 0.9135 + }, + { + "start": 19153.6, + "end": 19155.18, + "probability": 0.4857 + }, + { + "start": 19155.26, + "end": 19157.52, + "probability": 0.9092 + }, + { + "start": 19157.58, + "end": 19160.98, + "probability": 0.9224 + }, + { + "start": 19160.98, + "end": 19164.89, + "probability": 0.9393 + }, + { + "start": 19165.26, + "end": 19166.18, + "probability": 0.5212 + }, + { + "start": 19166.26, + "end": 19167.58, + "probability": 0.7885 + }, + { + "start": 19167.74, + "end": 19170.48, + "probability": 0.9795 + }, + { + "start": 19170.68, + "end": 19176.38, + "probability": 0.9298 + }, + { + "start": 19176.42, + "end": 19177.32, + "probability": 0.2104 + }, + { + "start": 19177.42, + "end": 19177.86, + "probability": 0.9701 + }, + { + "start": 19177.88, + "end": 19179.92, + "probability": 0.9158 + }, + { + "start": 19179.92, + "end": 19182.2, + "probability": 0.8291 + }, + { + "start": 19182.76, + "end": 19184.26, + "probability": 0.9009 + }, + { + "start": 19184.4, + "end": 19188.12, + "probability": 0.9571 + }, + { + "start": 19188.2, + "end": 19189.38, + "probability": 0.8327 + }, + { + "start": 19189.46, + "end": 19189.6, + "probability": 0.5978 + }, + { + "start": 19189.66, + "end": 19191.95, + "probability": 0.863 + }, + { + "start": 19191.98, + "end": 19194.66, + "probability": 0.8129 + }, + { + "start": 19194.74, + "end": 19197.02, + "probability": 0.6674 + }, + { + "start": 19197.12, + "end": 19203.9, + "probability": 0.794 + }, + { + "start": 19204.14, + "end": 19205.16, + "probability": 0.0663 + }, + { + "start": 19205.16, + "end": 19206.12, + "probability": 0.2427 + }, + { + "start": 19206.52, + "end": 19206.54, + "probability": 0.1877 + }, + { + "start": 19206.54, + "end": 19207.32, + "probability": 0.28 + }, + { + "start": 19207.52, + "end": 19208.58, + "probability": 0.1677 + }, + { + "start": 19208.72, + "end": 19209.36, + "probability": 0.529 + }, + { + "start": 19209.44, + "end": 19211.14, + "probability": 0.8613 + }, + { + "start": 19211.28, + "end": 19211.58, + "probability": 0.0588 + }, + { + "start": 19211.58, + "end": 19212.52, + "probability": 0.8936 + }, + { + "start": 19212.68, + "end": 19214.08, + "probability": 0.9427 + }, + { + "start": 19214.08, + "end": 19214.46, + "probability": 0.033 + }, + { + "start": 19214.48, + "end": 19218.0, + "probability": 0.7265 + }, + { + "start": 19218.12, + "end": 19224.06, + "probability": 0.9587 + }, + { + "start": 19224.12, + "end": 19225.64, + "probability": 0.6803 + }, + { + "start": 19225.72, + "end": 19229.54, + "probability": 0.8955 + }, + { + "start": 19231.74, + "end": 19232.4, + "probability": 0.004 + }, + { + "start": 19232.4, + "end": 19232.4, + "probability": 0.0032 + }, + { + "start": 19232.4, + "end": 19233.62, + "probability": 0.1129 + }, + { + "start": 19233.66, + "end": 19234.46, + "probability": 0.6891 + }, + { + "start": 19235.22, + "end": 19236.46, + "probability": 0.8047 + }, + { + "start": 19236.46, + "end": 19237.02, + "probability": 0.1508 + }, + { + "start": 19237.02, + "end": 19237.64, + "probability": 0.7436 + }, + { + "start": 19237.7, + "end": 19240.03, + "probability": 0.7496 + }, + { + "start": 19240.36, + "end": 19241.7, + "probability": 0.6648 + }, + { + "start": 19242.02, + "end": 19244.92, + "probability": 0.9912 + }, + { + "start": 19245.1, + "end": 19246.3, + "probability": 0.9961 + }, + { + "start": 19246.48, + "end": 19247.06, + "probability": 0.6936 + }, + { + "start": 19247.32, + "end": 19249.78, + "probability": 0.9909 + }, + { + "start": 19249.84, + "end": 19251.08, + "probability": 0.8683 + }, + { + "start": 19251.08, + "end": 19252.94, + "probability": 0.8153 + }, + { + "start": 19253.34, + "end": 19255.74, + "probability": 0.6707 + }, + { + "start": 19255.78, + "end": 19256.02, + "probability": 0.4636 + }, + { + "start": 19256.1, + "end": 19256.86, + "probability": 0.8735 + }, + { + "start": 19257.04, + "end": 19257.52, + "probability": 0.7622 + }, + { + "start": 19257.64, + "end": 19258.12, + "probability": 0.9126 + }, + { + "start": 19258.26, + "end": 19258.68, + "probability": 0.9215 + }, + { + "start": 19258.78, + "end": 19259.56, + "probability": 0.6322 + }, + { + "start": 19260.04, + "end": 19260.1, + "probability": 0.0002 + }, + { + "start": 19262.32, + "end": 19262.42, + "probability": 0.0263 + }, + { + "start": 19262.42, + "end": 19262.42, + "probability": 0.1002 + }, + { + "start": 19262.42, + "end": 19262.42, + "probability": 0.0304 + }, + { + "start": 19262.42, + "end": 19262.86, + "probability": 0.0213 + }, + { + "start": 19263.02, + "end": 19263.85, + "probability": 0.234 + }, + { + "start": 19264.46, + "end": 19267.48, + "probability": 0.9608 + }, + { + "start": 19268.08, + "end": 19268.8, + "probability": 0.012 + }, + { + "start": 19271.02, + "end": 19271.18, + "probability": 0.01 + }, + { + "start": 19271.18, + "end": 19271.18, + "probability": 0.0406 + }, + { + "start": 19271.18, + "end": 19272.72, + "probability": 0.1713 + }, + { + "start": 19273.2, + "end": 19275.08, + "probability": 0.8936 + }, + { + "start": 19275.44, + "end": 19279.32, + "probability": 0.9722 + }, + { + "start": 19279.32, + "end": 19284.28, + "probability": 0.9065 + }, + { + "start": 19284.54, + "end": 19284.66, + "probability": 0.2982 + }, + { + "start": 19284.7, + "end": 19287.14, + "probability": 0.8791 + }, + { + "start": 19287.22, + "end": 19288.68, + "probability": 0.9175 + }, + { + "start": 19289.1, + "end": 19292.5, + "probability": 0.9284 + }, + { + "start": 19292.8, + "end": 19294.34, + "probability": 0.9679 + }, + { + "start": 19294.5, + "end": 19297.88, + "probability": 0.9819 + }, + { + "start": 19298.02, + "end": 19298.86, + "probability": 0.7369 + }, + { + "start": 19298.88, + "end": 19303.7, + "probability": 0.9888 + }, + { + "start": 19303.74, + "end": 19305.82, + "probability": 0.9967 + }, + { + "start": 19306.68, + "end": 19306.78, + "probability": 0.0483 + }, + { + "start": 19306.78, + "end": 19306.78, + "probability": 0.0891 + }, + { + "start": 19306.78, + "end": 19307.2, + "probability": 0.4189 + }, + { + "start": 19307.28, + "end": 19309.34, + "probability": 0.6349 + }, + { + "start": 19309.48, + "end": 19311.8, + "probability": 0.9104 + }, + { + "start": 19312.32, + "end": 19313.58, + "probability": 0.3183 + }, + { + "start": 19313.76, + "end": 19315.92, + "probability": 0.8895 + }, + { + "start": 19315.98, + "end": 19316.52, + "probability": 0.9499 + }, + { + "start": 19316.56, + "end": 19317.46, + "probability": 0.7876 + }, + { + "start": 19317.6, + "end": 19318.12, + "probability": 0.9767 + }, + { + "start": 19318.2, + "end": 19318.8, + "probability": 0.9976 + }, + { + "start": 19319.24, + "end": 19320.16, + "probability": 0.9857 + }, + { + "start": 19320.26, + "end": 19321.54, + "probability": 0.8191 + }, + { + "start": 19322.06, + "end": 19323.58, + "probability": 0.9634 + }, + { + "start": 19324.1, + "end": 19327.0, + "probability": 0.8409 + }, + { + "start": 19327.32, + "end": 19327.74, + "probability": 0.7282 + }, + { + "start": 19327.96, + "end": 19330.81, + "probability": 0.8555 + }, + { + "start": 19330.92, + "end": 19331.16, + "probability": 0.3696 + }, + { + "start": 19331.22, + "end": 19332.88, + "probability": 0.7303 + }, + { + "start": 19333.02, + "end": 19334.4, + "probability": 0.8771 + }, + { + "start": 19334.46, + "end": 19334.48, + "probability": 0.013 + }, + { + "start": 19334.48, + "end": 19335.22, + "probability": 0.8279 + }, + { + "start": 19335.3, + "end": 19336.24, + "probability": 0.5806 + }, + { + "start": 19336.58, + "end": 19338.7, + "probability": 0.5266 + }, + { + "start": 19338.82, + "end": 19341.68, + "probability": 0.9103 + }, + { + "start": 19341.8, + "end": 19343.52, + "probability": 0.6332 + }, + { + "start": 19343.52, + "end": 19345.58, + "probability": 0.5377 + }, + { + "start": 19345.64, + "end": 19346.72, + "probability": 0.9012 + }, + { + "start": 19346.9, + "end": 19347.52, + "probability": 0.6055 + }, + { + "start": 19347.58, + "end": 19348.47, + "probability": 0.4972 + }, + { + "start": 19348.54, + "end": 19349.82, + "probability": 0.37 + }, + { + "start": 19350.67, + "end": 19352.5, + "probability": 0.991 + }, + { + "start": 19352.5, + "end": 19353.14, + "probability": 0.2568 + }, + { + "start": 19353.54, + "end": 19354.42, + "probability": 0.6416 + }, + { + "start": 19354.62, + "end": 19355.56, + "probability": 0.9633 + }, + { + "start": 19355.74, + "end": 19360.02, + "probability": 0.7414 + }, + { + "start": 19360.22, + "end": 19360.22, + "probability": 0.0918 + }, + { + "start": 19360.22, + "end": 19360.22, + "probability": 0.2553 + }, + { + "start": 19360.24, + "end": 19362.22, + "probability": 0.742 + }, + { + "start": 19362.22, + "end": 19364.72, + "probability": 0.8738 + }, + { + "start": 19364.96, + "end": 19367.0, + "probability": 0.8631 + }, + { + "start": 19377.68, + "end": 19379.78, + "probability": 0.3695 + }, + { + "start": 19380.2, + "end": 19382.2, + "probability": 0.6393 + }, + { + "start": 19382.68, + "end": 19383.9, + "probability": 0.869 + }, + { + "start": 19384.02, + "end": 19388.08, + "probability": 0.9858 + }, + { + "start": 19389.22, + "end": 19390.2, + "probability": 0.9644 + }, + { + "start": 19390.48, + "end": 19395.46, + "probability": 0.9954 + }, + { + "start": 19395.6, + "end": 19396.42, + "probability": 0.4761 + }, + { + "start": 19397.08, + "end": 19401.54, + "probability": 0.8772 + }, + { + "start": 19402.2, + "end": 19407.78, + "probability": 0.9986 + }, + { + "start": 19407.94, + "end": 19409.24, + "probability": 0.8208 + }, + { + "start": 19409.66, + "end": 19410.97, + "probability": 0.9733 + }, + { + "start": 19411.3, + "end": 19412.52, + "probability": 0.7063 + }, + { + "start": 19412.64, + "end": 19413.36, + "probability": 0.013 + }, + { + "start": 19413.8, + "end": 19418.06, + "probability": 0.9826 + }, + { + "start": 19418.22, + "end": 19419.26, + "probability": 0.8286 + }, + { + "start": 19419.34, + "end": 19422.86, + "probability": 0.9852 + }, + { + "start": 19423.0, + "end": 19423.68, + "probability": 0.0408 + }, + { + "start": 19423.68, + "end": 19424.6, + "probability": 0.8212 + }, + { + "start": 19424.62, + "end": 19425.55, + "probability": 0.917 + }, + { + "start": 19425.82, + "end": 19429.98, + "probability": 0.7371 + }, + { + "start": 19430.86, + "end": 19433.62, + "probability": 0.4836 + }, + { + "start": 19433.74, + "end": 19434.34, + "probability": 0.4068 + }, + { + "start": 19434.36, + "end": 19435.62, + "probability": 0.7761 + }, + { + "start": 19435.78, + "end": 19437.1, + "probability": 0.7598 + }, + { + "start": 19437.54, + "end": 19442.28, + "probability": 0.8447 + }, + { + "start": 19442.28, + "end": 19444.4, + "probability": 0.0813 + }, + { + "start": 19445.1, + "end": 19445.66, + "probability": 0.1384 + }, + { + "start": 19445.72, + "end": 19447.32, + "probability": 0.9146 + }, + { + "start": 19447.92, + "end": 19452.92, + "probability": 0.9722 + }, + { + "start": 19453.28, + "end": 19456.95, + "probability": 0.9985 + }, + { + "start": 19457.54, + "end": 19459.01, + "probability": 0.9861 + }, + { + "start": 19459.46, + "end": 19461.01, + "probability": 0.9102 + }, + { + "start": 19461.4, + "end": 19463.1, + "probability": 0.9941 + }, + { + "start": 19463.22, + "end": 19464.86, + "probability": 0.9496 + }, + { + "start": 19465.22, + "end": 19466.92, + "probability": 0.8423 + }, + { + "start": 19466.98, + "end": 19469.34, + "probability": 0.8743 + }, + { + "start": 19469.4, + "end": 19473.44, + "probability": 0.9856 + }, + { + "start": 19473.98, + "end": 19474.1, + "probability": 0.006 + }, + { + "start": 19474.1, + "end": 19474.1, + "probability": 0.0279 + }, + { + "start": 19474.1, + "end": 19475.22, + "probability": 0.6636 + }, + { + "start": 19475.56, + "end": 19476.52, + "probability": 0.5577 + }, + { + "start": 19476.78, + "end": 19478.76, + "probability": 0.1507 + }, + { + "start": 19478.98, + "end": 19480.16, + "probability": 0.7056 + }, + { + "start": 19480.16, + "end": 19481.22, + "probability": 0.3726 + }, + { + "start": 19482.28, + "end": 19486.12, + "probability": 0.6614 + }, + { + "start": 19486.94, + "end": 19487.08, + "probability": 0.0301 + }, + { + "start": 19487.08, + "end": 19487.72, + "probability": 0.5042 + }, + { + "start": 19488.08, + "end": 19488.38, + "probability": 0.5482 + }, + { + "start": 19488.7, + "end": 19489.52, + "probability": 0.7732 + }, + { + "start": 19489.7, + "end": 19491.84, + "probability": 0.9232 + }, + { + "start": 19491.92, + "end": 19495.0, + "probability": 0.1826 + }, + { + "start": 19496.04, + "end": 19496.4, + "probability": 0.0124 + }, + { + "start": 19496.5, + "end": 19496.54, + "probability": 0.0169 + }, + { + "start": 19496.54, + "end": 19498.18, + "probability": 0.2499 + }, + { + "start": 19498.18, + "end": 19499.1, + "probability": 0.6692 + }, + { + "start": 19499.18, + "end": 19503.26, + "probability": 0.8158 + }, + { + "start": 19503.6, + "end": 19506.48, + "probability": 0.9595 + }, + { + "start": 19506.9, + "end": 19508.58, + "probability": 0.9473 + }, + { + "start": 19509.86, + "end": 19510.74, + "probability": 0.8926 + }, + { + "start": 19510.74, + "end": 19512.36, + "probability": 0.9246 + }, + { + "start": 19512.62, + "end": 19513.74, + "probability": 0.0402 + }, + { + "start": 19514.34, + "end": 19514.36, + "probability": 0.1557 + }, + { + "start": 19514.42, + "end": 19514.42, + "probability": 0.1524 + }, + { + "start": 19514.42, + "end": 19514.42, + "probability": 0.1651 + }, + { + "start": 19514.42, + "end": 19516.06, + "probability": 0.7266 + }, + { + "start": 19516.16, + "end": 19518.28, + "probability": 0.9827 + }, + { + "start": 19518.48, + "end": 19521.86, + "probability": 0.8582 + }, + { + "start": 19521.86, + "end": 19526.42, + "probability": 0.9952 + }, + { + "start": 19526.56, + "end": 19527.78, + "probability": 0.9886 + }, + { + "start": 19527.78, + "end": 19529.29, + "probability": 0.9253 + }, + { + "start": 19531.44, + "end": 19531.44, + "probability": 0.0497 + }, + { + "start": 19531.44, + "end": 19531.58, + "probability": 0.2369 + }, + { + "start": 19531.58, + "end": 19531.58, + "probability": 0.0337 + }, + { + "start": 19531.58, + "end": 19532.12, + "probability": 0.3443 + }, + { + "start": 19532.22, + "end": 19534.2, + "probability": 0.8514 + }, + { + "start": 19534.84, + "end": 19535.1, + "probability": 0.0264 + }, + { + "start": 19535.1, + "end": 19537.86, + "probability": 0.8392 + }, + { + "start": 19537.86, + "end": 19538.07, + "probability": 0.3295 + }, + { + "start": 19538.9, + "end": 19543.8, + "probability": 0.9697 + }, + { + "start": 19544.34, + "end": 19548.28, + "probability": 0.7589 + }, + { + "start": 19548.66, + "end": 19550.82, + "probability": 0.2137 + }, + { + "start": 19550.98, + "end": 19552.62, + "probability": 0.422 + }, + { + "start": 19552.64, + "end": 19553.7, + "probability": 0.3585 + }, + { + "start": 19553.9, + "end": 19556.16, + "probability": 0.9932 + }, + { + "start": 19556.24, + "end": 19562.4, + "probability": 0.2854 + }, + { + "start": 19562.4, + "end": 19564.76, + "probability": 0.1427 + }, + { + "start": 19564.98, + "end": 19565.56, + "probability": 0.1076 + }, + { + "start": 19565.56, + "end": 19565.56, + "probability": 0.0235 + }, + { + "start": 19565.56, + "end": 19565.56, + "probability": 0.2168 + }, + { + "start": 19565.56, + "end": 19567.93, + "probability": 0.4858 + }, + { + "start": 19568.78, + "end": 19571.58, + "probability": 0.8541 + }, + { + "start": 19572.0, + "end": 19575.16, + "probability": 0.8426 + }, + { + "start": 19575.16, + "end": 19575.28, + "probability": 0.131 + }, + { + "start": 19575.28, + "end": 19575.64, + "probability": 0.1749 + }, + { + "start": 19575.74, + "end": 19576.76, + "probability": 0.7739 + }, + { + "start": 19576.9, + "end": 19580.3, + "probability": 0.8423 + }, + { + "start": 19580.3, + "end": 19581.32, + "probability": 0.8052 + }, + { + "start": 19581.44, + "end": 19585.92, + "probability": 0.9934 + }, + { + "start": 19586.04, + "end": 19586.08, + "probability": 0.2879 + }, + { + "start": 19586.22, + "end": 19587.1, + "probability": 0.8042 + }, + { + "start": 19587.12, + "end": 19588.56, + "probability": 0.8735 + }, + { + "start": 19588.66, + "end": 19590.18, + "probability": 0.991 + }, + { + "start": 19590.26, + "end": 19594.24, + "probability": 0.9636 + }, + { + "start": 19594.6, + "end": 19598.04, + "probability": 0.9763 + }, + { + "start": 19598.06, + "end": 19598.62, + "probability": 0.8298 + }, + { + "start": 19599.06, + "end": 19600.68, + "probability": 0.9816 + }, + { + "start": 19601.1, + "end": 19602.66, + "probability": 0.9894 + }, + { + "start": 19603.16, + "end": 19608.25, + "probability": 0.9175 + }, + { + "start": 19608.4, + "end": 19608.78, + "probability": 0.343 + }, + { + "start": 19608.78, + "end": 19608.82, + "probability": 0.3383 + }, + { + "start": 19608.9, + "end": 19610.76, + "probability": 0.9962 + }, + { + "start": 19610.86, + "end": 19611.34, + "probability": 0.7244 + }, + { + "start": 19611.62, + "end": 19611.62, + "probability": 0.0854 + }, + { + "start": 19611.62, + "end": 19614.04, + "probability": 0.5955 + }, + { + "start": 19614.2, + "end": 19618.08, + "probability": 0.8748 + }, + { + "start": 19631.7, + "end": 19632.72, + "probability": 0.6038 + }, + { + "start": 19633.24, + "end": 19634.12, + "probability": 0.9414 + }, + { + "start": 19634.2, + "end": 19635.28, + "probability": 0.9866 + }, + { + "start": 19635.36, + "end": 19636.52, + "probability": 0.988 + }, + { + "start": 19637.84, + "end": 19639.36, + "probability": 0.8016 + }, + { + "start": 19639.48, + "end": 19641.0, + "probability": 0.9917 + }, + { + "start": 19641.2, + "end": 19642.96, + "probability": 0.916 + }, + { + "start": 19644.26, + "end": 19644.84, + "probability": 0.3337 + }, + { + "start": 19645.02, + "end": 19648.73, + "probability": 0.9842 + }, + { + "start": 19649.1, + "end": 19650.64, + "probability": 0.9439 + }, + { + "start": 19650.66, + "end": 19653.37, + "probability": 0.9506 + }, + { + "start": 19653.42, + "end": 19654.67, + "probability": 0.7646 + }, + { + "start": 19654.8, + "end": 19656.06, + "probability": 0.8841 + }, + { + "start": 19656.64, + "end": 19657.38, + "probability": 0.6314 + }, + { + "start": 19657.84, + "end": 19657.88, + "probability": 0.0547 + }, + { + "start": 19657.88, + "end": 19659.02, + "probability": 0.9882 + }, + { + "start": 19659.18, + "end": 19662.7, + "probability": 0.9904 + }, + { + "start": 19663.18, + "end": 19663.86, + "probability": 0.5217 + }, + { + "start": 19663.94, + "end": 19666.38, + "probability": 0.916 + }, + { + "start": 19666.52, + "end": 19671.12, + "probability": 0.9871 + }, + { + "start": 19671.18, + "end": 19671.88, + "probability": 0.9441 + }, + { + "start": 19672.06, + "end": 19675.3, + "probability": 0.9919 + }, + { + "start": 19675.92, + "end": 19680.22, + "probability": 0.8242 + }, + { + "start": 19680.3, + "end": 19680.88, + "probability": 0.7768 + }, + { + "start": 19681.06, + "end": 19681.48, + "probability": 0.4994 + }, + { + "start": 19681.62, + "end": 19684.34, + "probability": 0.7637 + }, + { + "start": 19684.4, + "end": 19684.44, + "probability": 0.0639 + }, + { + "start": 19684.44, + "end": 19685.62, + "probability": 0.1246 + }, + { + "start": 19685.82, + "end": 19686.16, + "probability": 0.6892 + }, + { + "start": 19686.28, + "end": 19686.63, + "probability": 0.6105 + }, + { + "start": 19687.24, + "end": 19688.88, + "probability": 0.4994 + }, + { + "start": 19689.06, + "end": 19689.4, + "probability": 0.295 + }, + { + "start": 19689.48, + "end": 19689.48, + "probability": 0.3844 + }, + { + "start": 19689.48, + "end": 19689.52, + "probability": 0.0983 + }, + { + "start": 19689.52, + "end": 19691.57, + "probability": 0.5118 + }, + { + "start": 19691.7, + "end": 19691.76, + "probability": 0.4496 + }, + { + "start": 19691.84, + "end": 19691.9, + "probability": 0.4544 + }, + { + "start": 19691.9, + "end": 19692.27, + "probability": 0.4849 + }, + { + "start": 19692.62, + "end": 19693.98, + "probability": 0.7646 + }, + { + "start": 19694.06, + "end": 19695.32, + "probability": 0.8804 + }, + { + "start": 19695.44, + "end": 19695.54, + "probability": 0.3081 + }, + { + "start": 19695.72, + "end": 19698.08, + "probability": 0.9897 + }, + { + "start": 19698.08, + "end": 19700.06, + "probability": 0.6255 + }, + { + "start": 19700.06, + "end": 19702.32, + "probability": 0.3942 + }, + { + "start": 19704.2, + "end": 19705.28, + "probability": 0.1211 + }, + { + "start": 19705.28, + "end": 19708.38, + "probability": 0.5114 + }, + { + "start": 19708.38, + "end": 19708.38, + "probability": 0.4312 + }, + { + "start": 19708.38, + "end": 19709.5, + "probability": 0.6274 + }, + { + "start": 19710.0, + "end": 19710.65, + "probability": 0.6653 + }, + { + "start": 19711.48, + "end": 19715.56, + "probability": 0.1404 + }, + { + "start": 19715.58, + "end": 19717.66, + "probability": 0.8929 + }, + { + "start": 19717.66, + "end": 19717.72, + "probability": 0.337 + }, + { + "start": 19717.72, + "end": 19719.16, + "probability": 0.9173 + }, + { + "start": 19719.36, + "end": 19720.88, + "probability": 0.9917 + }, + { + "start": 19720.94, + "end": 19721.83, + "probability": 0.7363 + }, + { + "start": 19722.78, + "end": 19724.6, + "probability": 0.8674 + }, + { + "start": 19724.62, + "end": 19726.76, + "probability": 0.903 + }, + { + "start": 19726.84, + "end": 19728.06, + "probability": 0.9882 + }, + { + "start": 19728.48, + "end": 19731.36, + "probability": 0.9756 + }, + { + "start": 19731.36, + "end": 19734.46, + "probability": 0.9857 + }, + { + "start": 19734.74, + "end": 19737.56, + "probability": 0.749 + }, + { + "start": 19737.88, + "end": 19741.72, + "probability": 0.9883 + }, + { + "start": 19742.02, + "end": 19743.56, + "probability": 0.9972 + }, + { + "start": 19743.6, + "end": 19743.98, + "probability": 0.8743 + }, + { + "start": 19744.16, + "end": 19744.74, + "probability": 0.9829 + }, + { + "start": 19744.86, + "end": 19745.38, + "probability": 0.9421 + }, + { + "start": 19745.9, + "end": 19746.95, + "probability": 0.1441 + }, + { + "start": 19747.06, + "end": 19748.72, + "probability": 0.9085 + }, + { + "start": 19749.16, + "end": 19750.16, + "probability": 0.4654 + }, + { + "start": 19750.24, + "end": 19750.76, + "probability": 0.937 + }, + { + "start": 19751.22, + "end": 19752.39, + "probability": 0.94 + }, + { + "start": 19752.62, + "end": 19754.76, + "probability": 0.9717 + }, + { + "start": 19754.94, + "end": 19757.54, + "probability": 0.9382 + }, + { + "start": 19757.78, + "end": 19759.74, + "probability": 0.8939 + }, + { + "start": 19760.22, + "end": 19761.12, + "probability": 0.594 + }, + { + "start": 19761.16, + "end": 19763.0, + "probability": 0.7732 + }, + { + "start": 19763.12, + "end": 19763.72, + "probability": 0.9063 + }, + { + "start": 19763.72, + "end": 19764.04, + "probability": 0.8612 + }, + { + "start": 19764.32, + "end": 19765.4, + "probability": 0.9321 + }, + { + "start": 19766.38, + "end": 19767.81, + "probability": 0.908 + }, + { + "start": 19768.2, + "end": 19768.96, + "probability": 0.7408 + }, + { + "start": 19769.08, + "end": 19770.14, + "probability": 0.9622 + }, + { + "start": 19770.5, + "end": 19772.36, + "probability": 0.6294 + }, + { + "start": 19772.44, + "end": 19773.7, + "probability": 0.865 + }, + { + "start": 19773.78, + "end": 19775.96, + "probability": 0.9891 + }, + { + "start": 19776.54, + "end": 19777.18, + "probability": 0.9598 + }, + { + "start": 19777.56, + "end": 19779.88, + "probability": 0.9919 + }, + { + "start": 19780.5, + "end": 19781.64, + "probability": 0.5715 + }, + { + "start": 19782.02, + "end": 19783.12, + "probability": 0.8962 + }, + { + "start": 19783.22, + "end": 19784.62, + "probability": 0.8998 + }, + { + "start": 19785.66, + "end": 19787.19, + "probability": 0.9537 + }, + { + "start": 19787.3, + "end": 19790.72, + "probability": 0.8926 + }, + { + "start": 19790.8, + "end": 19792.08, + "probability": 0.9445 + }, + { + "start": 19792.34, + "end": 19794.82, + "probability": 0.6719 + }, + { + "start": 19794.94, + "end": 19795.4, + "probability": 0.7707 + }, + { + "start": 19795.66, + "end": 19799.9, + "probability": 0.9235 + }, + { + "start": 19800.38, + "end": 19803.08, + "probability": 0.9912 + }, + { + "start": 19803.82, + "end": 19806.96, + "probability": 0.9341 + }, + { + "start": 19807.22, + "end": 19808.14, + "probability": 0.6809 + }, + { + "start": 19808.4, + "end": 19809.52, + "probability": 0.8047 + }, + { + "start": 19809.8, + "end": 19810.7, + "probability": 0.7486 + }, + { + "start": 19810.92, + "end": 19813.0, + "probability": 0.7521 + }, + { + "start": 19813.04, + "end": 19814.4, + "probability": 0.7788 + }, + { + "start": 19814.66, + "end": 19816.5, + "probability": 0.9548 + }, + { + "start": 19816.9, + "end": 19818.09, + "probability": 0.9902 + }, + { + "start": 19819.09, + "end": 19819.79, + "probability": 0.1632 + }, + { + "start": 19820.83, + "end": 19823.99, + "probability": 0.998 + }, + { + "start": 19824.73, + "end": 19828.53, + "probability": 0.9878 + }, + { + "start": 19828.69, + "end": 19830.85, + "probability": 0.9847 + }, + { + "start": 19831.29, + "end": 19833.09, + "probability": 0.7357 + }, + { + "start": 19833.45, + "end": 19833.94, + "probability": 0.665 + }, + { + "start": 19834.71, + "end": 19836.27, + "probability": 0.9959 + }, + { + "start": 19836.27, + "end": 19838.11, + "probability": 0.787 + }, + { + "start": 19838.11, + "end": 19838.51, + "probability": 0.8017 + }, + { + "start": 19838.95, + "end": 19840.82, + "probability": 0.9196 + }, + { + "start": 19841.53, + "end": 19845.37, + "probability": 0.78 + }, + { + "start": 19845.87, + "end": 19846.57, + "probability": 0.6484 + }, + { + "start": 19847.21, + "end": 19850.31, + "probability": 0.9805 + }, + { + "start": 19850.77, + "end": 19854.19, + "probability": 0.7623 + }, + { + "start": 19854.39, + "end": 19855.91, + "probability": 0.6382 + }, + { + "start": 19856.57, + "end": 19857.69, + "probability": 0.8302 + }, + { + "start": 19858.15, + "end": 19858.95, + "probability": 0.6511 + }, + { + "start": 19859.13, + "end": 19859.75, + "probability": 0.7676 + }, + { + "start": 19859.93, + "end": 19860.99, + "probability": 0.6867 + }, + { + "start": 19875.53, + "end": 19875.97, + "probability": 0.2061 + }, + { + "start": 19884.83, + "end": 19885.65, + "probability": 0.0001 + }, + { + "start": 19886.27, + "end": 19891.41, + "probability": 0.7518 + }, + { + "start": 19891.51, + "end": 19892.79, + "probability": 0.1872 + }, + { + "start": 19893.71, + "end": 19896.55, + "probability": 0.4989 + }, + { + "start": 19897.45, + "end": 19900.39, + "probability": 0.8781 + }, + { + "start": 19903.0, + "end": 19906.95, + "probability": 0.1493 + }, + { + "start": 19909.59, + "end": 19910.85, + "probability": 0.0893 + }, + { + "start": 19912.79, + "end": 19915.13, + "probability": 0.147 + }, + { + "start": 19918.57, + "end": 19921.27, + "probability": 0.0664 + }, + { + "start": 19922.19, + "end": 19924.29, + "probability": 0.0619 + }, + { + "start": 19928.65, + "end": 19928.93, + "probability": 0.0723 + }, + { + "start": 19934.63, + "end": 19935.69, + "probability": 0.4748 + }, + { + "start": 19936.43, + "end": 19938.97, + "probability": 0.0728 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.0, + "end": 19939.0, + "probability": 0.0 + }, + { + "start": 19939.24, + "end": 19939.24, + "probability": 0.0001 + }, + { + "start": 19939.24, + "end": 19941.06, + "probability": 0.4836 + }, + { + "start": 19942.68, + "end": 19947.06, + "probability": 0.9832 + }, + { + "start": 19961.28, + "end": 19962.2, + "probability": 0.4616 + }, + { + "start": 19962.78, + "end": 19963.76, + "probability": 0.7026 + }, + { + "start": 19965.68, + "end": 19967.68, + "probability": 0.9893 + }, + { + "start": 19969.28, + "end": 19975.76, + "probability": 0.9018 + }, + { + "start": 19975.86, + "end": 19982.12, + "probability": 0.9647 + }, + { + "start": 19982.96, + "end": 19984.4, + "probability": 0.9116 + }, + { + "start": 19985.04, + "end": 19986.04, + "probability": 0.5887 + }, + { + "start": 19987.42, + "end": 19990.66, + "probability": 0.9971 + }, + { + "start": 19991.3, + "end": 19994.74, + "probability": 0.9201 + }, + { + "start": 19995.36, + "end": 19996.32, + "probability": 0.6585 + }, + { + "start": 19997.46, + "end": 19999.86, + "probability": 0.9509 + }, + { + "start": 20000.72, + "end": 20003.46, + "probability": 0.9927 + }, + { + "start": 20004.32, + "end": 20005.08, + "probability": 0.531 + }, + { + "start": 20005.62, + "end": 20006.6, + "probability": 0.7356 + }, + { + "start": 20008.28, + "end": 20010.18, + "probability": 0.9813 + }, + { + "start": 20011.2, + "end": 20014.32, + "probability": 0.9879 + }, + { + "start": 20014.32, + "end": 20017.24, + "probability": 0.9897 + }, + { + "start": 20017.42, + "end": 20019.62, + "probability": 0.9937 + }, + { + "start": 20019.86, + "end": 20020.32, + "probability": 0.7308 + }, + { + "start": 20020.34, + "end": 20022.34, + "probability": 0.801 + }, + { + "start": 20022.74, + "end": 20024.72, + "probability": 0.9789 + }, + { + "start": 20025.54, + "end": 20028.64, + "probability": 0.9805 + }, + { + "start": 20028.8, + "end": 20032.08, + "probability": 0.9603 + }, + { + "start": 20032.08, + "end": 20034.48, + "probability": 0.9987 + }, + { + "start": 20035.78, + "end": 20038.1, + "probability": 0.7463 + }, + { + "start": 20039.26, + "end": 20044.98, + "probability": 0.0867 + }, + { + "start": 20045.36, + "end": 20049.64, + "probability": 0.9684 + }, + { + "start": 20049.76, + "end": 20050.91, + "probability": 0.7366 + }, + { + "start": 20051.88, + "end": 20055.06, + "probability": 0.9917 + }, + { + "start": 20055.06, + "end": 20059.96, + "probability": 0.999 + }, + { + "start": 20060.48, + "end": 20063.54, + "probability": 0.9385 + }, + { + "start": 20064.94, + "end": 20066.82, + "probability": 0.9159 + }, + { + "start": 20067.92, + "end": 20073.24, + "probability": 0.9963 + }, + { + "start": 20074.5, + "end": 20077.44, + "probability": 0.95 + }, + { + "start": 20078.1, + "end": 20079.04, + "probability": 0.7913 + }, + { + "start": 20079.62, + "end": 20082.56, + "probability": 0.9908 + }, + { + "start": 20083.76, + "end": 20085.98, + "probability": 0.9934 + }, + { + "start": 20086.48, + "end": 20088.48, + "probability": 0.9954 + }, + { + "start": 20091.14, + "end": 20093.56, + "probability": 0.8376 + }, + { + "start": 20094.48, + "end": 20099.44, + "probability": 0.9455 + }, + { + "start": 20100.2, + "end": 20102.88, + "probability": 0.6851 + }, + { + "start": 20102.88, + "end": 20105.68, + "probability": 0.9967 + }, + { + "start": 20106.38, + "end": 20110.74, + "probability": 0.9983 + }, + { + "start": 20111.7, + "end": 20113.38, + "probability": 0.7528 + }, + { + "start": 20114.1, + "end": 20115.86, + "probability": 0.9867 + }, + { + "start": 20117.4, + "end": 20118.34, + "probability": 0.9457 + }, + { + "start": 20120.16, + "end": 20120.7, + "probability": 0.8683 + }, + { + "start": 20122.94, + "end": 20125.32, + "probability": 0.8894 + }, + { + "start": 20126.72, + "end": 20131.76, + "probability": 0.9948 + }, + { + "start": 20133.08, + "end": 20134.82, + "probability": 0.9985 + }, + { + "start": 20135.56, + "end": 20136.12, + "probability": 0.4819 + }, + { + "start": 20136.86, + "end": 20138.12, + "probability": 0.9993 + }, + { + "start": 20139.24, + "end": 20140.58, + "probability": 0.9977 + }, + { + "start": 20141.34, + "end": 20144.5, + "probability": 0.9854 + }, + { + "start": 20144.88, + "end": 20149.44, + "probability": 0.9606 + }, + { + "start": 20151.54, + "end": 20154.36, + "probability": 0.6934 + }, + { + "start": 20155.39, + "end": 20159.58, + "probability": 0.9551 + }, + { + "start": 20161.58, + "end": 20167.62, + "probability": 0.4889 + }, + { + "start": 20169.4, + "end": 20171.05, + "probability": 0.5268 + }, + { + "start": 20172.06, + "end": 20175.4, + "probability": 0.9563 + }, + { + "start": 20176.52, + "end": 20179.16, + "probability": 0.9043 + }, + { + "start": 20180.2, + "end": 20181.25, + "probability": 0.9515 + }, + { + "start": 20182.36, + "end": 20184.94, + "probability": 0.9967 + }, + { + "start": 20185.48, + "end": 20186.54, + "probability": 0.9661 + }, + { + "start": 20186.8, + "end": 20193.66, + "probability": 0.9876 + }, + { + "start": 20194.22, + "end": 20196.76, + "probability": 0.8955 + }, + { + "start": 20196.78, + "end": 20197.08, + "probability": 0.7398 + }, + { + "start": 20197.84, + "end": 20199.46, + "probability": 0.8256 + }, + { + "start": 20199.6, + "end": 20200.2, + "probability": 0.9796 + }, + { + "start": 20200.84, + "end": 20205.72, + "probability": 0.9937 + }, + { + "start": 20205.74, + "end": 20206.56, + "probability": 0.9619 + }, + { + "start": 20207.52, + "end": 20211.4, + "probability": 0.9878 + }, + { + "start": 20211.74, + "end": 20212.46, + "probability": 0.6375 + }, + { + "start": 20213.32, + "end": 20215.02, + "probability": 0.9222 + }, + { + "start": 20215.56, + "end": 20216.42, + "probability": 0.9424 + }, + { + "start": 20217.44, + "end": 20218.88, + "probability": 0.7498 + }, + { + "start": 20219.44, + "end": 20222.24, + "probability": 0.9858 + }, + { + "start": 20223.24, + "end": 20223.56, + "probability": 0.7741 + }, + { + "start": 20223.76, + "end": 20225.66, + "probability": 0.967 + }, + { + "start": 20226.52, + "end": 20227.9, + "probability": 0.998 + }, + { + "start": 20228.48, + "end": 20231.04, + "probability": 0.9974 + }, + { + "start": 20231.9, + "end": 20235.14, + "probability": 0.8734 + }, + { + "start": 20235.76, + "end": 20236.48, + "probability": 0.5277 + }, + { + "start": 20236.98, + "end": 20238.16, + "probability": 0.972 + }, + { + "start": 20238.46, + "end": 20239.77, + "probability": 0.9987 + }, + { + "start": 20240.66, + "end": 20241.47, + "probability": 0.9326 + }, + { + "start": 20242.9, + "end": 20244.02, + "probability": 0.813 + }, + { + "start": 20245.66, + "end": 20246.16, + "probability": 0.544 + }, + { + "start": 20247.42, + "end": 20249.34, + "probability": 0.961 + }, + { + "start": 20249.84, + "end": 20251.48, + "probability": 0.835 + }, + { + "start": 20251.6, + "end": 20251.98, + "probability": 0.5659 + }, + { + "start": 20252.02, + "end": 20252.22, + "probability": 0.8609 + }, + { + "start": 20253.48, + "end": 20256.76, + "probability": 0.9028 + }, + { + "start": 20256.98, + "end": 20257.12, + "probability": 0.7076 + }, + { + "start": 20257.82, + "end": 20263.0, + "probability": 0.954 + }, + { + "start": 20263.5, + "end": 20267.74, + "probability": 0.9902 + }, + { + "start": 20268.36, + "end": 20268.88, + "probability": 0.464 + }, + { + "start": 20269.42, + "end": 20275.24, + "probability": 0.9935 + }, + { + "start": 20276.64, + "end": 20278.4, + "probability": 0.6682 + }, + { + "start": 20279.2, + "end": 20281.16, + "probability": 0.872 + }, + { + "start": 20281.58, + "end": 20281.76, + "probability": 0.546 + }, + { + "start": 20282.08, + "end": 20285.9, + "probability": 0.9722 + }, + { + "start": 20286.54, + "end": 20289.84, + "probability": 0.875 + }, + { + "start": 20290.4, + "end": 20292.54, + "probability": 0.8225 + }, + { + "start": 20293.14, + "end": 20295.76, + "probability": 0.7998 + }, + { + "start": 20295.86, + "end": 20297.38, + "probability": 0.8726 + }, + { + "start": 20297.5, + "end": 20300.48, + "probability": 0.8304 + }, + { + "start": 20300.56, + "end": 20301.05, + "probability": 0.9742 + }, + { + "start": 20304.94, + "end": 20307.22, + "probability": 0.7994 + }, + { + "start": 20307.88, + "end": 20309.2, + "probability": 0.6682 + }, + { + "start": 20309.8, + "end": 20313.38, + "probability": 0.979 + }, + { + "start": 20313.46, + "end": 20316.48, + "probability": 0.9161 + }, + { + "start": 20317.22, + "end": 20319.06, + "probability": 0.9828 + }, + { + "start": 20319.8, + "end": 20321.41, + "probability": 0.7593 + }, + { + "start": 20322.28, + "end": 20322.66, + "probability": 0.7168 + }, + { + "start": 20322.92, + "end": 20323.54, + "probability": 0.855 + }, + { + "start": 20323.84, + "end": 20326.11, + "probability": 0.9681 + }, + { + "start": 20327.6, + "end": 20328.16, + "probability": 0.7745 + }, + { + "start": 20328.34, + "end": 20329.4, + "probability": 0.9274 + }, + { + "start": 20329.5, + "end": 20330.2, + "probability": 0.8052 + }, + { + "start": 20330.48, + "end": 20332.1, + "probability": 0.9451 + }, + { + "start": 20332.68, + "end": 20334.02, + "probability": 0.6422 + }, + { + "start": 20334.8, + "end": 20335.48, + "probability": 0.8122 + }, + { + "start": 20335.54, + "end": 20336.38, + "probability": 0.7324 + }, + { + "start": 20336.54, + "end": 20339.86, + "probability": 0.6919 + }, + { + "start": 20341.24, + "end": 20341.8, + "probability": 0.9598 + }, + { + "start": 20341.9, + "end": 20342.16, + "probability": 0.8762 + }, + { + "start": 20342.3, + "end": 20343.94, + "probability": 0.6307 + }, + { + "start": 20344.1, + "end": 20344.72, + "probability": 0.7909 + }, + { + "start": 20345.22, + "end": 20345.64, + "probability": 0.562 + }, + { + "start": 20346.82, + "end": 20348.3, + "probability": 0.9636 + }, + { + "start": 20348.86, + "end": 20351.4, + "probability": 0.8913 + }, + { + "start": 20352.16, + "end": 20352.74, + "probability": 0.9529 + }, + { + "start": 20353.34, + "end": 20358.42, + "probability": 0.9836 + }, + { + "start": 20359.0, + "end": 20363.42, + "probability": 0.9736 + }, + { + "start": 20363.44, + "end": 20364.06, + "probability": 0.7594 + }, + { + "start": 20364.58, + "end": 20365.84, + "probability": 0.5006 + }, + { + "start": 20366.48, + "end": 20369.76, + "probability": 0.6902 + }, + { + "start": 20370.16, + "end": 20372.16, + "probability": 0.9653 + }, + { + "start": 20372.18, + "end": 20374.86, + "probability": 0.9832 + }, + { + "start": 20375.16, + "end": 20379.43, + "probability": 0.4851 + }, + { + "start": 20379.56, + "end": 20379.86, + "probability": 0.4876 + }, + { + "start": 20379.94, + "end": 20381.48, + "probability": 0.9059 + }, + { + "start": 20381.54, + "end": 20382.08, + "probability": 0.8236 + }, + { + "start": 20384.36, + "end": 20386.6, + "probability": 0.8463 + }, + { + "start": 20386.72, + "end": 20387.59, + "probability": 0.6646 + }, + { + "start": 20388.2, + "end": 20391.2, + "probability": 0.9815 + }, + { + "start": 20391.2, + "end": 20393.74, + "probability": 0.9846 + }, + { + "start": 20393.86, + "end": 20394.04, + "probability": 0.4392 + }, + { + "start": 20394.78, + "end": 20395.54, + "probability": 0.9562 + }, + { + "start": 20397.98, + "end": 20398.08, + "probability": 0.469 + }, + { + "start": 20398.7, + "end": 20401.38, + "probability": 0.0528 + }, + { + "start": 20402.38, + "end": 20403.08, + "probability": 0.1413 + }, + { + "start": 20403.08, + "end": 20403.08, + "probability": 0.0083 + }, + { + "start": 20403.08, + "end": 20403.08, + "probability": 0.0341 + }, + { + "start": 20403.08, + "end": 20403.08, + "probability": 0.0771 + }, + { + "start": 20403.08, + "end": 20405.15, + "probability": 0.7676 + }, + { + "start": 20406.28, + "end": 20407.18, + "probability": 0.9769 + }, + { + "start": 20407.72, + "end": 20408.14, + "probability": 0.7097 + }, + { + "start": 20408.22, + "end": 20410.21, + "probability": 0.983 + }, + { + "start": 20412.9, + "end": 20414.2, + "probability": 0.7632 + }, + { + "start": 20414.22, + "end": 20417.7, + "probability": 0.814 + }, + { + "start": 20418.4, + "end": 20420.0, + "probability": 0.7411 + }, + { + "start": 20420.28, + "end": 20423.28, + "probability": 0.5521 + }, + { + "start": 20423.44, + "end": 20430.06, + "probability": 0.9087 + }, + { + "start": 20430.12, + "end": 20431.1, + "probability": 0.8993 + }, + { + "start": 20431.64, + "end": 20431.76, + "probability": 0.403 + }, + { + "start": 20432.24, + "end": 20433.5, + "probability": 0.8169 + }, + { + "start": 20433.98, + "end": 20435.54, + "probability": 0.8627 + }, + { + "start": 20436.03, + "end": 20438.98, + "probability": 0.9213 + }, + { + "start": 20439.78, + "end": 20444.64, + "probability": 0.9906 + }, + { + "start": 20445.9, + "end": 20446.56, + "probability": 0.8629 + }, + { + "start": 20447.52, + "end": 20449.68, + "probability": 0.9183 + }, + { + "start": 20450.44, + "end": 20453.4, + "probability": 0.9917 + }, + { + "start": 20453.4, + "end": 20454.66, + "probability": 0.9464 + }, + { + "start": 20455.96, + "end": 20456.64, + "probability": 0.8428 + }, + { + "start": 20457.64, + "end": 20459.26, + "probability": 0.875 + }, + { + "start": 20459.38, + "end": 20460.82, + "probability": 0.9272 + }, + { + "start": 20461.66, + "end": 20464.74, + "probability": 0.9086 + }, + { + "start": 20464.86, + "end": 20464.98, + "probability": 0.6989 + }, + { + "start": 20465.02, + "end": 20466.48, + "probability": 0.9619 + }, + { + "start": 20466.54, + "end": 20467.42, + "probability": 0.769 + }, + { + "start": 20467.52, + "end": 20470.5, + "probability": 0.9935 + }, + { + "start": 20471.08, + "end": 20473.4, + "probability": 0.9795 + }, + { + "start": 20474.0, + "end": 20474.78, + "probability": 0.9783 + }, + { + "start": 20475.54, + "end": 20476.58, + "probability": 0.9194 + }, + { + "start": 20476.92, + "end": 20477.86, + "probability": 0.9053 + }, + { + "start": 20478.12, + "end": 20478.68, + "probability": 0.9267 + }, + { + "start": 20478.78, + "end": 20479.84, + "probability": 0.991 + }, + { + "start": 20480.34, + "end": 20480.88, + "probability": 0.8265 + }, + { + "start": 20480.92, + "end": 20481.56, + "probability": 0.1213 + }, + { + "start": 20482.26, + "end": 20484.42, + "probability": 0.5967 + }, + { + "start": 20484.94, + "end": 20487.92, + "probability": 0.9878 + }, + { + "start": 20488.8, + "end": 20491.3, + "probability": 0.9954 + }, + { + "start": 20491.38, + "end": 20492.92, + "probability": 0.9988 + }, + { + "start": 20493.94, + "end": 20498.08, + "probability": 0.9938 + }, + { + "start": 20498.08, + "end": 20502.26, + "probability": 0.9973 + }, + { + "start": 20503.58, + "end": 20504.78, + "probability": 0.9862 + }, + { + "start": 20508.52, + "end": 20509.4, + "probability": 0.986 + }, + { + "start": 20510.3, + "end": 20511.56, + "probability": 0.6822 + }, + { + "start": 20513.48, + "end": 20514.16, + "probability": 0.7246 + }, + { + "start": 20515.64, + "end": 20518.26, + "probability": 0.9932 + }, + { + "start": 20519.46, + "end": 20522.34, + "probability": 0.9525 + }, + { + "start": 20523.06, + "end": 20524.56, + "probability": 0.1431 + }, + { + "start": 20524.58, + "end": 20527.88, + "probability": 0.9143 + }, + { + "start": 20528.08, + "end": 20532.2, + "probability": 0.6673 + }, + { + "start": 20532.3, + "end": 20533.56, + "probability": 0.3657 + }, + { + "start": 20533.64, + "end": 20535.94, + "probability": 0.9277 + }, + { + "start": 20536.08, + "end": 20537.12, + "probability": 0.3885 + }, + { + "start": 20537.12, + "end": 20542.12, + "probability": 0.9448 + }, + { + "start": 20543.2, + "end": 20544.66, + "probability": 0.9163 + }, + { + "start": 20545.32, + "end": 20547.52, + "probability": 0.8028 + }, + { + "start": 20547.58, + "end": 20548.32, + "probability": 0.638 + }, + { + "start": 20548.72, + "end": 20550.65, + "probability": 0.998 + }, + { + "start": 20551.46, + "end": 20551.88, + "probability": 0.8867 + }, + { + "start": 20552.68, + "end": 20554.32, + "probability": 0.9381 + }, + { + "start": 20554.94, + "end": 20556.2, + "probability": 0.9819 + }, + { + "start": 20556.44, + "end": 20559.3, + "probability": 0.9988 + }, + { + "start": 20560.06, + "end": 20564.18, + "probability": 0.9824 + }, + { + "start": 20565.32, + "end": 20567.17, + "probability": 0.9634 + }, + { + "start": 20568.38, + "end": 20569.64, + "probability": 0.9842 + }, + { + "start": 20570.26, + "end": 20572.68, + "probability": 0.9946 + }, + { + "start": 20573.22, + "end": 20574.84, + "probability": 0.9932 + }, + { + "start": 20574.86, + "end": 20579.02, + "probability": 0.9987 + }, + { + "start": 20580.92, + "end": 20582.58, + "probability": 0.9216 + }, + { + "start": 20582.62, + "end": 20583.54, + "probability": 0.6584 + }, + { + "start": 20583.84, + "end": 20584.98, + "probability": 0.4932 + }, + { + "start": 20585.1, + "end": 20585.68, + "probability": 0.538 + }, + { + "start": 20585.96, + "end": 20586.54, + "probability": 0.8628 + }, + { + "start": 20587.16, + "end": 20588.8, + "probability": 0.9966 + }, + { + "start": 20589.4, + "end": 20591.44, + "probability": 0.9951 + }, + { + "start": 20592.46, + "end": 20595.34, + "probability": 0.9968 + }, + { + "start": 20596.14, + "end": 20597.62, + "probability": 0.7196 + }, + { + "start": 20598.56, + "end": 20599.34, + "probability": 0.7196 + }, + { + "start": 20600.32, + "end": 20602.62, + "probability": 0.959 + }, + { + "start": 20603.3, + "end": 20606.66, + "probability": 0.8962 + }, + { + "start": 20607.18, + "end": 20608.6, + "probability": 0.9524 + }, + { + "start": 20609.12, + "end": 20609.36, + "probability": 0.7963 + }, + { + "start": 20609.84, + "end": 20611.62, + "probability": 0.9462 + }, + { + "start": 20612.02, + "end": 20613.5, + "probability": 0.9426 + }, + { + "start": 20614.3, + "end": 20616.46, + "probability": 0.895 + }, + { + "start": 20616.8, + "end": 20619.72, + "probability": 0.8631 + }, + { + "start": 20624.12, + "end": 20626.68, + "probability": 0.7027 + }, + { + "start": 20642.16, + "end": 20643.41, + "probability": 0.4531 + }, + { + "start": 20644.46, + "end": 20646.96, + "probability": 0.9033 + }, + { + "start": 20647.96, + "end": 20652.48, + "probability": 0.9505 + }, + { + "start": 20652.92, + "end": 20653.16, + "probability": 0.4864 + }, + { + "start": 20653.2, + "end": 20653.82, + "probability": 0.523 + }, + { + "start": 20654.2, + "end": 20655.8, + "probability": 0.8861 + }, + { + "start": 20656.2, + "end": 20658.86, + "probability": 0.9986 + }, + { + "start": 20659.0, + "end": 20659.42, + "probability": 0.6876 + }, + { + "start": 20659.52, + "end": 20660.5, + "probability": 0.6733 + }, + { + "start": 20660.58, + "end": 20661.2, + "probability": 0.7773 + }, + { + "start": 20661.42, + "end": 20662.08, + "probability": 0.9728 + }, + { + "start": 20663.42, + "end": 20669.02, + "probability": 0.9529 + }, + { + "start": 20669.64, + "end": 20674.92, + "probability": 0.9875 + }, + { + "start": 20675.46, + "end": 20676.0, + "probability": 0.5533 + }, + { + "start": 20676.0, + "end": 20678.74, + "probability": 0.9951 + }, + { + "start": 20679.26, + "end": 20681.58, + "probability": 0.9693 + }, + { + "start": 20681.94, + "end": 20683.24, + "probability": 0.6821 + }, + { + "start": 20683.86, + "end": 20685.84, + "probability": 0.9022 + }, + { + "start": 20685.94, + "end": 20686.38, + "probability": 0.6563 + }, + { + "start": 20686.56, + "end": 20690.7, + "probability": 0.9548 + }, + { + "start": 20690.94, + "end": 20694.44, + "probability": 0.9888 + }, + { + "start": 20694.94, + "end": 20699.46, + "probability": 0.9065 + }, + { + "start": 20699.9, + "end": 20702.16, + "probability": 0.991 + }, + { + "start": 20702.58, + "end": 20706.06, + "probability": 0.9966 + }, + { + "start": 20706.4, + "end": 20708.22, + "probability": 0.9624 + }, + { + "start": 20708.62, + "end": 20709.51, + "probability": 0.979 + }, + { + "start": 20710.0, + "end": 20711.72, + "probability": 0.9849 + }, + { + "start": 20712.06, + "end": 20713.26, + "probability": 0.959 + }, + { + "start": 20713.82, + "end": 20716.08, + "probability": 0.9927 + }, + { + "start": 20716.5, + "end": 20719.46, + "probability": 0.9512 + }, + { + "start": 20719.8, + "end": 20719.94, + "probability": 0.546 + }, + { + "start": 20720.08, + "end": 20722.76, + "probability": 0.9927 + }, + { + "start": 20722.76, + "end": 20727.0, + "probability": 0.9963 + }, + { + "start": 20727.38, + "end": 20728.52, + "probability": 0.6996 + }, + { + "start": 20728.86, + "end": 20733.42, + "probability": 0.9541 + }, + { + "start": 20733.64, + "end": 20737.96, + "probability": 0.995 + }, + { + "start": 20738.54, + "end": 20739.9, + "probability": 0.8572 + }, + { + "start": 20740.52, + "end": 20741.42, + "probability": 0.9442 + }, + { + "start": 20741.52, + "end": 20745.6, + "probability": 0.9938 + }, + { + "start": 20745.78, + "end": 20747.17, + "probability": 0.9958 + }, + { + "start": 20748.34, + "end": 20752.58, + "probability": 0.9973 + }, + { + "start": 20753.02, + "end": 20755.09, + "probability": 0.993 + }, + { + "start": 20755.56, + "end": 20756.52, + "probability": 0.9738 + }, + { + "start": 20757.4, + "end": 20759.08, + "probability": 0.9627 + }, + { + "start": 20759.58, + "end": 20761.34, + "probability": 0.8466 + }, + { + "start": 20761.68, + "end": 20765.56, + "probability": 0.9961 + }, + { + "start": 20765.96, + "end": 20767.96, + "probability": 0.9805 + }, + { + "start": 20770.08, + "end": 20775.08, + "probability": 0.9617 + }, + { + "start": 20775.46, + "end": 20776.25, + "probability": 0.8334 + }, + { + "start": 20777.2, + "end": 20778.62, + "probability": 0.8978 + }, + { + "start": 20780.08, + "end": 20787.14, + "probability": 0.9693 + }, + { + "start": 20788.0, + "end": 20790.78, + "probability": 0.9971 + }, + { + "start": 20791.58, + "end": 20797.44, + "probability": 0.996 + }, + { + "start": 20797.72, + "end": 20798.8, + "probability": 0.677 + }, + { + "start": 20799.18, + "end": 20799.56, + "probability": 0.9286 + }, + { + "start": 20800.46, + "end": 20801.46, + "probability": 0.9614 + }, + { + "start": 20803.0, + "end": 20804.12, + "probability": 0.7844 + }, + { + "start": 20804.24, + "end": 20807.16, + "probability": 0.9985 + }, + { + "start": 20807.16, + "end": 20809.12, + "probability": 0.9971 + }, + { + "start": 20809.14, + "end": 20809.7, + "probability": 0.4982 + }, + { + "start": 20810.38, + "end": 20812.58, + "probability": 0.9971 + }, + { + "start": 20812.92, + "end": 20816.24, + "probability": 0.9983 + }, + { + "start": 20816.24, + "end": 20820.86, + "probability": 0.9985 + }, + { + "start": 20821.24, + "end": 20825.9, + "probability": 0.9935 + }, + { + "start": 20825.9, + "end": 20828.9, + "probability": 0.9951 + }, + { + "start": 20829.22, + "end": 20830.88, + "probability": 0.9126 + }, + { + "start": 20830.96, + "end": 20833.1, + "probability": 0.999 + }, + { + "start": 20833.4, + "end": 20834.0, + "probability": 0.9584 + }, + { + "start": 20834.22, + "end": 20834.44, + "probability": 0.8329 + }, + { + "start": 20834.82, + "end": 20836.56, + "probability": 0.8774 + }, + { + "start": 20836.66, + "end": 20838.12, + "probability": 0.7589 + }, + { + "start": 20857.28, + "end": 20858.4, + "probability": 0.6879 + }, + { + "start": 20859.53, + "end": 20861.5, + "probability": 0.2481 + }, + { + "start": 20861.8, + "end": 20864.64, + "probability": 0.7297 + }, + { + "start": 20866.22, + "end": 20868.82, + "probability": 0.9514 + }, + { + "start": 20869.02, + "end": 20871.94, + "probability": 0.979 + }, + { + "start": 20872.34, + "end": 20873.62, + "probability": 0.7536 + }, + { + "start": 20874.18, + "end": 20877.0, + "probability": 0.9419 + }, + { + "start": 20878.04, + "end": 20879.78, + "probability": 0.8872 + }, + { + "start": 20880.06, + "end": 20885.4, + "probability": 0.9855 + }, + { + "start": 20886.06, + "end": 20887.02, + "probability": 0.6614 + }, + { + "start": 20887.74, + "end": 20892.4, + "probability": 0.9618 + }, + { + "start": 20893.24, + "end": 20893.72, + "probability": 0.5279 + }, + { + "start": 20894.44, + "end": 20896.66, + "probability": 0.9746 + }, + { + "start": 20897.46, + "end": 20902.5, + "probability": 0.9037 + }, + { + "start": 20903.02, + "end": 20903.72, + "probability": 0.8044 + }, + { + "start": 20904.26, + "end": 20906.16, + "probability": 0.9875 + }, + { + "start": 20907.56, + "end": 20910.34, + "probability": 0.9971 + }, + { + "start": 20911.22, + "end": 20915.48, + "probability": 0.9827 + }, + { + "start": 20917.06, + "end": 20920.22, + "probability": 0.854 + }, + { + "start": 20921.22, + "end": 20924.24, + "probability": 0.9324 + }, + { + "start": 20924.9, + "end": 20926.46, + "probability": 0.6212 + }, + { + "start": 20927.26, + "end": 20931.42, + "probability": 0.9813 + }, + { + "start": 20932.0, + "end": 20932.5, + "probability": 0.6963 + }, + { + "start": 20932.66, + "end": 20938.1, + "probability": 0.9893 + }, + { + "start": 20938.62, + "end": 20940.96, + "probability": 0.8499 + }, + { + "start": 20941.38, + "end": 20943.68, + "probability": 0.9431 + }, + { + "start": 20944.72, + "end": 20945.16, + "probability": 0.9888 + }, + { + "start": 20945.72, + "end": 20947.09, + "probability": 0.9507 + }, + { + "start": 20948.24, + "end": 20949.68, + "probability": 0.999 + }, + { + "start": 20950.36, + "end": 20953.44, + "probability": 0.7774 + }, + { + "start": 20954.14, + "end": 20955.37, + "probability": 0.8499 + }, + { + "start": 20955.62, + "end": 20960.08, + "probability": 0.9554 + }, + { + "start": 20961.1, + "end": 20962.13, + "probability": 0.5235 + }, + { + "start": 20963.81, + "end": 20968.06, + "probability": 0.7681 + }, + { + "start": 20968.26, + "end": 20974.0, + "probability": 0.9867 + }, + { + "start": 20974.0, + "end": 20979.8, + "probability": 0.9548 + }, + { + "start": 20979.86, + "end": 20982.76, + "probability": 0.1103 + }, + { + "start": 20982.94, + "end": 20984.72, + "probability": 0.771 + }, + { + "start": 20985.06, + "end": 20985.88, + "probability": 0.7332 + }, + { + "start": 20985.92, + "end": 20986.18, + "probability": 0.6977 + }, + { + "start": 20986.18, + "end": 20986.18, + "probability": 0.5981 + }, + { + "start": 20987.1, + "end": 20988.24, + "probability": 0.5084 + }, + { + "start": 20988.38, + "end": 20992.46, + "probability": 0.9956 + }, + { + "start": 20993.48, + "end": 20994.36, + "probability": 0.4873 + }, + { + "start": 20994.38, + "end": 20995.18, + "probability": 0.8406 + }, + { + "start": 20995.5, + "end": 20996.34, + "probability": 0.9458 + }, + { + "start": 20996.54, + "end": 21000.28, + "probability": 0.9944 + }, + { + "start": 21000.28, + "end": 21002.46, + "probability": 0.9014 + }, + { + "start": 21003.02, + "end": 21006.06, + "probability": 0.7936 + }, + { + "start": 21006.32, + "end": 21007.08, + "probability": 0.5362 + }, + { + "start": 21007.1, + "end": 21013.5, + "probability": 0.974 + }, + { + "start": 21014.2, + "end": 21015.54, + "probability": 0.896 + }, + { + "start": 21015.98, + "end": 21018.6, + "probability": 0.9708 + }, + { + "start": 21018.98, + "end": 21020.55, + "probability": 0.9675 + }, + { + "start": 21020.8, + "end": 21025.18, + "probability": 0.9856 + }, + { + "start": 21026.04, + "end": 21027.66, + "probability": 0.5432 + }, + { + "start": 21027.84, + "end": 21030.68, + "probability": 0.9214 + }, + { + "start": 21031.24, + "end": 21031.56, + "probability": 0.655 + }, + { + "start": 21031.82, + "end": 21032.42, + "probability": 0.9653 + }, + { + "start": 21032.8, + "end": 21037.0, + "probability": 0.988 + }, + { + "start": 21037.04, + "end": 21037.82, + "probability": 0.819 + }, + { + "start": 21038.04, + "end": 21039.66, + "probability": 0.9932 + }, + { + "start": 21040.2, + "end": 21040.46, + "probability": 0.88 + }, + { + "start": 21041.14, + "end": 21043.4, + "probability": 0.5605 + }, + { + "start": 21043.56, + "end": 21045.54, + "probability": 0.9373 + }, + { + "start": 21046.0, + "end": 21046.54, + "probability": 0.7596 + }, + { + "start": 21046.9, + "end": 21048.14, + "probability": 0.8704 + }, + { + "start": 21048.98, + "end": 21049.2, + "probability": 0.7484 + }, + { + "start": 21049.86, + "end": 21051.14, + "probability": 0.6623 + }, + { + "start": 21051.94, + "end": 21054.88, + "probability": 0.5708 + }, + { + "start": 21061.96, + "end": 21064.0, + "probability": 0.9403 + }, + { + "start": 21064.34, + "end": 21065.52, + "probability": 0.9693 + }, + { + "start": 21069.17, + "end": 21072.12, + "probability": 0.6181 + }, + { + "start": 21072.5, + "end": 21073.86, + "probability": 0.8163 + }, + { + "start": 21074.16, + "end": 21075.4, + "probability": 0.9577 + }, + { + "start": 21075.74, + "end": 21076.62, + "probability": 0.979 + }, + { + "start": 21076.76, + "end": 21078.5, + "probability": 0.9756 + }, + { + "start": 21078.7, + "end": 21081.1, + "probability": 0.9363 + }, + { + "start": 21081.54, + "end": 21085.4, + "probability": 0.994 + }, + { + "start": 21085.56, + "end": 21086.44, + "probability": 0.9692 + }, + { + "start": 21087.54, + "end": 21089.14, + "probability": 0.8838 + }, + { + "start": 21090.04, + "end": 21091.76, + "probability": 0.7669 + }, + { + "start": 21092.66, + "end": 21094.24, + "probability": 0.9529 + }, + { + "start": 21094.92, + "end": 21096.76, + "probability": 0.6725 + }, + { + "start": 21097.24, + "end": 21102.08, + "probability": 0.9811 + }, + { + "start": 21102.44, + "end": 21104.18, + "probability": 0.8213 + }, + { + "start": 21104.6, + "end": 21107.66, + "probability": 0.9946 + }, + { + "start": 21108.18, + "end": 21110.96, + "probability": 0.9828 + }, + { + "start": 21111.46, + "end": 21112.54, + "probability": 0.7732 + }, + { + "start": 21112.96, + "end": 21117.1, + "probability": 0.9846 + }, + { + "start": 21118.1, + "end": 21119.14, + "probability": 0.6599 + }, + { + "start": 21119.48, + "end": 21120.72, + "probability": 0.877 + }, + { + "start": 21121.24, + "end": 21122.48, + "probability": 0.9522 + }, + { + "start": 21122.96, + "end": 21125.44, + "probability": 0.9437 + }, + { + "start": 21125.78, + "end": 21131.42, + "probability": 0.96 + }, + { + "start": 21132.12, + "end": 21132.56, + "probability": 0.9221 + }, + { + "start": 21133.14, + "end": 21136.96, + "probability": 0.9666 + }, + { + "start": 21137.08, + "end": 21139.34, + "probability": 0.9331 + }, + { + "start": 21139.44, + "end": 21140.68, + "probability": 0.9469 + }, + { + "start": 21141.24, + "end": 21142.02, + "probability": 0.7858 + }, + { + "start": 21142.22, + "end": 21143.0, + "probability": 0.8126 + }, + { + "start": 21143.44, + "end": 21144.16, + "probability": 0.9777 + }, + { + "start": 21144.36, + "end": 21145.82, + "probability": 0.9833 + }, + { + "start": 21146.3, + "end": 21149.84, + "probability": 0.9312 + }, + { + "start": 21149.96, + "end": 21156.3, + "probability": 0.9883 + }, + { + "start": 21156.68, + "end": 21162.66, + "probability": 0.9973 + }, + { + "start": 21162.8, + "end": 21169.9, + "probability": 0.9969 + }, + { + "start": 21169.94, + "end": 21175.54, + "probability": 0.9995 + }, + { + "start": 21176.0, + "end": 21180.54, + "probability": 0.9983 + }, + { + "start": 21180.7, + "end": 21182.54, + "probability": 0.007 + }, + { + "start": 21183.06, + "end": 21183.27, + "probability": 0.1645 + }, + { + "start": 21183.28, + "end": 21183.28, + "probability": 0.1542 + }, + { + "start": 21183.28, + "end": 21183.28, + "probability": 0.1162 + }, + { + "start": 21183.28, + "end": 21184.12, + "probability": 0.4398 + }, + { + "start": 21184.12, + "end": 21184.47, + "probability": 0.6604 + }, + { + "start": 21185.58, + "end": 21186.14, + "probability": 0.6933 + }, + { + "start": 21187.0, + "end": 21190.42, + "probability": 0.959 + }, + { + "start": 21191.42, + "end": 21192.22, + "probability": 0.4795 + }, + { + "start": 21193.2, + "end": 21194.52, + "probability": 0.5126 + }, + { + "start": 21196.12, + "end": 21196.12, + "probability": 0.0402 + }, + { + "start": 21196.12, + "end": 21196.14, + "probability": 0.1644 + }, + { + "start": 21196.14, + "end": 21197.32, + "probability": 0.2641 + }, + { + "start": 21198.24, + "end": 21199.32, + "probability": 0.7951 + }, + { + "start": 21199.52, + "end": 21201.92, + "probability": 0.9768 + }, + { + "start": 21202.14, + "end": 21204.69, + "probability": 0.8403 + }, + { + "start": 21206.62, + "end": 21208.46, + "probability": 0.1309 + }, + { + "start": 21208.48, + "end": 21208.58, + "probability": 0.0049 + }, + { + "start": 21208.58, + "end": 21208.58, + "probability": 0.3493 + }, + { + "start": 21208.58, + "end": 21209.8, + "probability": 0.9171 + }, + { + "start": 21209.96, + "end": 21211.88, + "probability": 0.9233 + }, + { + "start": 21212.54, + "end": 21215.74, + "probability": 0.9909 + }, + { + "start": 21215.94, + "end": 21218.74, + "probability": 0.9939 + }, + { + "start": 21219.14, + "end": 21220.78, + "probability": 0.9719 + }, + { + "start": 21220.96, + "end": 21221.48, + "probability": 0.4006 + }, + { + "start": 21221.86, + "end": 21223.16, + "probability": 0.8867 + }, + { + "start": 21223.86, + "end": 21226.28, + "probability": 0.9829 + }, + { + "start": 21227.26, + "end": 21229.82, + "probability": 0.0001 + }, + { + "start": 21232.38, + "end": 21232.86, + "probability": 0.0292 + }, + { + "start": 21232.86, + "end": 21232.86, + "probability": 0.2278 + }, + { + "start": 21232.86, + "end": 21232.86, + "probability": 0.3359 + }, + { + "start": 21232.86, + "end": 21232.86, + "probability": 0.176 + }, + { + "start": 21232.86, + "end": 21232.86, + "probability": 0.1909 + }, + { + "start": 21232.86, + "end": 21234.82, + "probability": 0.7225 + }, + { + "start": 21236.04, + "end": 21236.8, + "probability": 0.5313 + }, + { + "start": 21236.8, + "end": 21241.18, + "probability": 0.5071 + }, + { + "start": 21241.72, + "end": 21242.92, + "probability": 0.232 + }, + { + "start": 21242.92, + "end": 21242.92, + "probability": 0.5978 + }, + { + "start": 21242.92, + "end": 21245.22, + "probability": 0.8113 + }, + { + "start": 21245.5, + "end": 21246.8, + "probability": 0.9497 + }, + { + "start": 21247.24, + "end": 21248.52, + "probability": 0.9329 + }, + { + "start": 21248.94, + "end": 21251.76, + "probability": 0.9795 + }, + { + "start": 21252.56, + "end": 21258.04, + "probability": 0.9556 + }, + { + "start": 21258.52, + "end": 21262.08, + "probability": 0.8428 + }, + { + "start": 21262.18, + "end": 21265.88, + "probability": 0.9992 + }, + { + "start": 21265.96, + "end": 21267.16, + "probability": 0.7857 + }, + { + "start": 21267.52, + "end": 21269.61, + "probability": 0.9717 + }, + { + "start": 21269.62, + "end": 21270.5, + "probability": 0.5545 + }, + { + "start": 21270.58, + "end": 21270.58, + "probability": 0.3107 + }, + { + "start": 21270.58, + "end": 21273.42, + "probability": 0.9061 + }, + { + "start": 21273.94, + "end": 21274.42, + "probability": 0.534 + }, + { + "start": 21274.66, + "end": 21275.94, + "probability": 0.9448 + }, + { + "start": 21277.2, + "end": 21281.06, + "probability": 0.9257 + }, + { + "start": 21281.06, + "end": 21283.98, + "probability": 0.981 + }, + { + "start": 21284.34, + "end": 21286.22, + "probability": 0.9762 + }, + { + "start": 21286.3, + "end": 21287.42, + "probability": 0.7502 + }, + { + "start": 21287.7, + "end": 21291.14, + "probability": 0.9717 + }, + { + "start": 21291.18, + "end": 21291.26, + "probability": 0.1803 + }, + { + "start": 21291.26, + "end": 21291.26, + "probability": 0.0449 + }, + { + "start": 21291.26, + "end": 21292.2, + "probability": 0.7483 + }, + { + "start": 21292.64, + "end": 21295.72, + "probability": 0.9802 + }, + { + "start": 21296.1, + "end": 21297.9, + "probability": 0.657 + }, + { + "start": 21298.04, + "end": 21300.4, + "probability": 0.8741 + }, + { + "start": 21307.0, + "end": 21307.8, + "probability": 0.8613 + }, + { + "start": 21308.7, + "end": 21309.16, + "probability": 0.14 + }, + { + "start": 21309.34, + "end": 21310.56, + "probability": 0.9629 + }, + { + "start": 21310.66, + "end": 21311.22, + "probability": 0.3003 + }, + { + "start": 21312.04, + "end": 21312.48, + "probability": 0.6578 + }, + { + "start": 21313.0, + "end": 21314.34, + "probability": 0.5738 + }, + { + "start": 21314.54, + "end": 21314.94, + "probability": 0.4727 + }, + { + "start": 21315.12, + "end": 21316.17, + "probability": 0.6363 + }, + { + "start": 21318.03, + "end": 21320.31, + "probability": 0.9062 + }, + { + "start": 21321.18, + "end": 21323.64, + "probability": 0.7767 + }, + { + "start": 21324.88, + "end": 21325.58, + "probability": 0.659 + }, + { + "start": 21328.54, + "end": 21330.06, + "probability": 0.9985 + }, + { + "start": 21331.68, + "end": 21334.0, + "probability": 0.9983 + }, + { + "start": 21335.4, + "end": 21338.46, + "probability": 0.9346 + }, + { + "start": 21338.5, + "end": 21340.36, + "probability": 0.8992 + }, + { + "start": 21341.78, + "end": 21342.16, + "probability": 0.7278 + }, + { + "start": 21342.9, + "end": 21346.32, + "probability": 0.8789 + }, + { + "start": 21346.86, + "end": 21348.82, + "probability": 0.9932 + }, + { + "start": 21349.48, + "end": 21353.26, + "probability": 0.986 + }, + { + "start": 21354.02, + "end": 21358.0, + "probability": 0.9697 + }, + { + "start": 21358.64, + "end": 21361.36, + "probability": 0.8604 + }, + { + "start": 21362.22, + "end": 21365.68, + "probability": 0.9878 + }, + { + "start": 21366.94, + "end": 21368.52, + "probability": 0.9241 + }, + { + "start": 21370.02, + "end": 21372.82, + "probability": 0.8418 + }, + { + "start": 21373.0, + "end": 21374.44, + "probability": 0.9806 + }, + { + "start": 21374.74, + "end": 21376.1, + "probability": 0.8106 + }, + { + "start": 21378.02, + "end": 21379.46, + "probability": 0.9979 + }, + { + "start": 21380.72, + "end": 21383.3, + "probability": 0.9965 + }, + { + "start": 21384.04, + "end": 21388.6, + "probability": 0.9982 + }, + { + "start": 21389.23, + "end": 21389.58, + "probability": 0.809 + }, + { + "start": 21390.14, + "end": 21393.98, + "probability": 0.9964 + }, + { + "start": 21394.68, + "end": 21402.08, + "probability": 0.9951 + }, + { + "start": 21402.9, + "end": 21405.22, + "probability": 0.9863 + }, + { + "start": 21405.76, + "end": 21405.76, + "probability": 0.0384 + }, + { + "start": 21405.76, + "end": 21405.94, + "probability": 0.6565 + }, + { + "start": 21406.76, + "end": 21408.3, + "probability": 0.9286 + }, + { + "start": 21408.42, + "end": 21408.6, + "probability": 0.4838 + }, + { + "start": 21408.76, + "end": 21411.5, + "probability": 0.8266 + }, + { + "start": 21411.94, + "end": 21413.8, + "probability": 0.9911 + }, + { + "start": 21413.96, + "end": 21415.03, + "probability": 0.9815 + }, + { + "start": 21415.42, + "end": 21416.34, + "probability": 0.9469 + }, + { + "start": 21416.94, + "end": 21423.9, + "probability": 0.9797 + }, + { + "start": 21424.74, + "end": 21426.09, + "probability": 0.9694 + }, + { + "start": 21426.34, + "end": 21428.46, + "probability": 0.9795 + }, + { + "start": 21428.7, + "end": 21428.8, + "probability": 0.2382 + }, + { + "start": 21429.26, + "end": 21429.26, + "probability": 0.0187 + }, + { + "start": 21429.26, + "end": 21430.77, + "probability": 0.1299 + }, + { + "start": 21431.02, + "end": 21433.4, + "probability": 0.5951 + }, + { + "start": 21433.4, + "end": 21435.34, + "probability": 0.48 + }, + { + "start": 21435.56, + "end": 21437.08, + "probability": 0.0856 + }, + { + "start": 21437.08, + "end": 21437.56, + "probability": 0.0206 + }, + { + "start": 21437.66, + "end": 21439.08, + "probability": 0.8661 + }, + { + "start": 21440.58, + "end": 21444.96, + "probability": 0.955 + }, + { + "start": 21446.2, + "end": 21447.04, + "probability": 0.9326 + }, + { + "start": 21448.02, + "end": 21452.36, + "probability": 0.8878 + }, + { + "start": 21453.28, + "end": 21454.5, + "probability": 0.9797 + }, + { + "start": 21455.46, + "end": 21456.54, + "probability": 0.9968 + }, + { + "start": 21457.52, + "end": 21460.18, + "probability": 0.9144 + }, + { + "start": 21460.94, + "end": 21462.92, + "probability": 0.917 + }, + { + "start": 21463.48, + "end": 21464.94, + "probability": 0.9849 + }, + { + "start": 21465.2, + "end": 21467.04, + "probability": 0.8958 + }, + { + "start": 21467.2, + "end": 21470.54, + "probability": 0.2502 + }, + { + "start": 21470.54, + "end": 21472.12, + "probability": 0.583 + }, + { + "start": 21472.6, + "end": 21473.14, + "probability": 0.1125 + }, + { + "start": 21473.44, + "end": 21476.34, + "probability": 0.5967 + }, + { + "start": 21476.66, + "end": 21477.86, + "probability": 0.2391 + }, + { + "start": 21477.94, + "end": 21478.58, + "probability": 0.3281 + }, + { + "start": 21478.68, + "end": 21479.72, + "probability": 0.909 + }, + { + "start": 21481.14, + "end": 21483.86, + "probability": 0.9439 + }, + { + "start": 21483.88, + "end": 21484.6, + "probability": 0.9509 + }, + { + "start": 21485.08, + "end": 21486.1, + "probability": 0.8067 + }, + { + "start": 21488.36, + "end": 21488.58, + "probability": 0.7201 + }, + { + "start": 21488.92, + "end": 21491.76, + "probability": 0.4186 + }, + { + "start": 21492.12, + "end": 21492.34, + "probability": 0.1319 + }, + { + "start": 21493.04, + "end": 21493.1, + "probability": 0.229 + }, + { + "start": 21494.02, + "end": 21494.12, + "probability": 0.1673 + }, + { + "start": 21494.94, + "end": 21494.94, + "probability": 0.2429 + }, + { + "start": 21494.94, + "end": 21495.86, + "probability": 0.4266 + }, + { + "start": 21496.38, + "end": 21498.16, + "probability": 0.769 + }, + { + "start": 21499.6, + "end": 21502.94, + "probability": 0.9831 + }, + { + "start": 21503.64, + "end": 21506.54, + "probability": 0.9961 + }, + { + "start": 21507.36, + "end": 21508.16, + "probability": 0.8203 + }, + { + "start": 21509.22, + "end": 21515.48, + "probability": 0.9828 + }, + { + "start": 21515.7, + "end": 21516.41, + "probability": 0.757 + }, + { + "start": 21516.48, + "end": 21516.68, + "probability": 0.03 + }, + { + "start": 21517.3, + "end": 21519.26, + "probability": 0.8541 + }, + { + "start": 21519.78, + "end": 21527.72, + "probability": 0.9956 + }, + { + "start": 21528.84, + "end": 21532.06, + "probability": 0.6819 + }, + { + "start": 21532.08, + "end": 21533.28, + "probability": 0.9783 + }, + { + "start": 21533.68, + "end": 21537.86, + "probability": 0.807 + }, + { + "start": 21538.06, + "end": 21542.5, + "probability": 0.9703 + }, + { + "start": 21542.66, + "end": 21543.32, + "probability": 0.9612 + }, + { + "start": 21544.58, + "end": 21546.24, + "probability": 0.8257 + }, + { + "start": 21546.38, + "end": 21548.72, + "probability": 0.8666 + }, + { + "start": 21548.84, + "end": 21549.8, + "probability": 0.7947 + }, + { + "start": 21562.52, + "end": 21562.52, + "probability": 0.2614 + }, + { + "start": 21562.52, + "end": 21564.24, + "probability": 0.7473 + }, + { + "start": 21564.72, + "end": 21564.92, + "probability": 0.525 + }, + { + "start": 21565.58, + "end": 21567.06, + "probability": 0.8623 + }, + { + "start": 21567.76, + "end": 21568.78, + "probability": 0.7118 + }, + { + "start": 21569.86, + "end": 21571.37, + "probability": 0.929 + }, + { + "start": 21572.16, + "end": 21574.82, + "probability": 0.8083 + }, + { + "start": 21575.82, + "end": 21578.04, + "probability": 0.7873 + }, + { + "start": 21578.66, + "end": 21579.5, + "probability": 0.8293 + }, + { + "start": 21580.84, + "end": 21581.52, + "probability": 0.6218 + }, + { + "start": 21582.8, + "end": 21583.92, + "probability": 0.7372 + }, + { + "start": 21584.96, + "end": 21586.5, + "probability": 0.9976 + }, + { + "start": 21586.6, + "end": 21590.68, + "probability": 0.9571 + }, + { + "start": 21591.42, + "end": 21593.28, + "probability": 0.9976 + }, + { + "start": 21594.7, + "end": 21595.16, + "probability": 0.9957 + }, + { + "start": 21595.72, + "end": 21596.82, + "probability": 0.9994 + }, + { + "start": 21597.7, + "end": 21598.58, + "probability": 0.6965 + }, + { + "start": 21599.76, + "end": 21600.28, + "probability": 0.844 + }, + { + "start": 21600.34, + "end": 21600.96, + "probability": 0.8413 + }, + { + "start": 21601.08, + "end": 21603.24, + "probability": 0.6857 + }, + { + "start": 21603.96, + "end": 21606.86, + "probability": 0.8775 + }, + { + "start": 21607.38, + "end": 21610.58, + "probability": 0.9994 + }, + { + "start": 21611.1, + "end": 21612.52, + "probability": 0.9934 + }, + { + "start": 21613.76, + "end": 21618.42, + "probability": 0.9844 + }, + { + "start": 21618.9, + "end": 21620.12, + "probability": 0.9626 + }, + { + "start": 21621.22, + "end": 21624.32, + "probability": 0.9893 + }, + { + "start": 21624.96, + "end": 21626.82, + "probability": 0.9579 + }, + { + "start": 21627.34, + "end": 21628.2, + "probability": 0.584 + }, + { + "start": 21628.62, + "end": 21629.2, + "probability": 0.8281 + }, + { + "start": 21629.32, + "end": 21629.94, + "probability": 0.9618 + }, + { + "start": 21630.2, + "end": 21631.12, + "probability": 0.8931 + }, + { + "start": 21631.28, + "end": 21636.06, + "probability": 0.9881 + }, + { + "start": 21637.06, + "end": 21638.9, + "probability": 0.8961 + }, + { + "start": 21639.42, + "end": 21641.82, + "probability": 0.9615 + }, + { + "start": 21642.48, + "end": 21645.24, + "probability": 0.9563 + }, + { + "start": 21645.76, + "end": 21649.1, + "probability": 0.9987 + }, + { + "start": 21649.1, + "end": 21652.66, + "probability": 0.9639 + }, + { + "start": 21653.66, + "end": 21654.44, + "probability": 0.8259 + }, + { + "start": 21655.08, + "end": 21656.82, + "probability": 0.9868 + }, + { + "start": 21657.52, + "end": 21658.96, + "probability": 0.9012 + }, + { + "start": 21659.62, + "end": 21661.06, + "probability": 0.7931 + }, + { + "start": 21661.86, + "end": 21665.28, + "probability": 0.9513 + }, + { + "start": 21666.02, + "end": 21671.54, + "probability": 0.9136 + }, + { + "start": 21672.22, + "end": 21673.52, + "probability": 0.9119 + }, + { + "start": 21674.36, + "end": 21674.99, + "probability": 0.4243 + }, + { + "start": 21675.64, + "end": 21677.6, + "probability": 0.4395 + }, + { + "start": 21678.44, + "end": 21682.1, + "probability": 0.9027 + }, + { + "start": 21682.72, + "end": 21684.5, + "probability": 0.7603 + }, + { + "start": 21685.12, + "end": 21685.98, + "probability": 0.901 + }, + { + "start": 21687.36, + "end": 21689.78, + "probability": 0.9964 + }, + { + "start": 21689.94, + "end": 21691.48, + "probability": 0.9964 + }, + { + "start": 21692.6, + "end": 21696.38, + "probability": 0.9051 + }, + { + "start": 21697.1, + "end": 21698.52, + "probability": 0.9924 + }, + { + "start": 21699.04, + "end": 21700.65, + "probability": 0.9838 + }, + { + "start": 21701.4, + "end": 21703.22, + "probability": 0.709 + }, + { + "start": 21704.32, + "end": 21705.32, + "probability": 0.9655 + }, + { + "start": 21705.92, + "end": 21708.46, + "probability": 0.9846 + }, + { + "start": 21709.22, + "end": 21712.58, + "probability": 0.9695 + }, + { + "start": 21712.58, + "end": 21715.24, + "probability": 0.993 + }, + { + "start": 21715.8, + "end": 21718.09, + "probability": 0.9259 + }, + { + "start": 21718.42, + "end": 21719.2, + "probability": 0.9186 + }, + { + "start": 21719.6, + "end": 21721.94, + "probability": 0.9856 + }, + { + "start": 21722.12, + "end": 21722.5, + "probability": 0.6194 + }, + { + "start": 21723.06, + "end": 21723.42, + "probability": 0.5643 + }, + { + "start": 21724.06, + "end": 21725.29, + "probability": 0.8862 + }, + { + "start": 21725.76, + "end": 21729.72, + "probability": 0.9699 + }, + { + "start": 21730.34, + "end": 21730.96, + "probability": 0.8434 + }, + { + "start": 21732.34, + "end": 21733.96, + "probability": 0.9154 + }, + { + "start": 21734.48, + "end": 21736.16, + "probability": 0.9529 + }, + { + "start": 21737.22, + "end": 21742.06, + "probability": 0.7797 + }, + { + "start": 21742.4, + "end": 21744.38, + "probability": 0.8506 + }, + { + "start": 21749.26, + "end": 21750.46, + "probability": 0.7538 + }, + { + "start": 21752.48, + "end": 21753.68, + "probability": 0.6123 + }, + { + "start": 21755.86, + "end": 21761.66, + "probability": 0.7709 + }, + { + "start": 21762.9, + "end": 21765.22, + "probability": 0.9865 + }, + { + "start": 21765.78, + "end": 21767.78, + "probability": 0.6756 + }, + { + "start": 21769.46, + "end": 21772.9, + "probability": 0.3859 + }, + { + "start": 21774.02, + "end": 21775.82, + "probability": 0.9203 + }, + { + "start": 21776.0, + "end": 21776.12, + "probability": 0.8909 + }, + { + "start": 21777.58, + "end": 21779.4, + "probability": 0.9307 + }, + { + "start": 21780.82, + "end": 21781.5, + "probability": 0.9395 + }, + { + "start": 21782.02, + "end": 21787.08, + "probability": 0.9359 + }, + { + "start": 21789.38, + "end": 21798.8, + "probability": 0.8973 + }, + { + "start": 21799.58, + "end": 21800.55, + "probability": 0.5371 + }, + { + "start": 21801.78, + "end": 21802.56, + "probability": 0.3905 + }, + { + "start": 21805.04, + "end": 21807.88, + "probability": 0.5793 + }, + { + "start": 21809.39, + "end": 21815.84, + "probability": 0.9957 + }, + { + "start": 21816.54, + "end": 21817.12, + "probability": 0.8034 + }, + { + "start": 21817.3, + "end": 21818.62, + "probability": 0.6839 + }, + { + "start": 21818.78, + "end": 21823.28, + "probability": 0.8773 + }, + { + "start": 21823.28, + "end": 21827.0, + "probability": 0.9613 + }, + { + "start": 21827.34, + "end": 21827.9, + "probability": 0.5823 + }, + { + "start": 21828.02, + "end": 21833.66, + "probability": 0.9896 + }, + { + "start": 21834.48, + "end": 21839.16, + "probability": 0.8855 + }, + { + "start": 21839.84, + "end": 21840.7, + "probability": 0.8777 + }, + { + "start": 21841.46, + "end": 21842.44, + "probability": 0.6558 + }, + { + "start": 21842.74, + "end": 21847.2, + "probability": 0.9336 + }, + { + "start": 21847.36, + "end": 21852.74, + "probability": 0.9154 + }, + { + "start": 21853.16, + "end": 21854.56, + "probability": 0.788 + }, + { + "start": 21854.98, + "end": 21855.18, + "probability": 0.1457 + }, + { + "start": 21855.2, + "end": 21855.98, + "probability": 0.7504 + }, + { + "start": 21856.08, + "end": 21860.32, + "probability": 0.8062 + }, + { + "start": 21860.88, + "end": 21863.08, + "probability": 0.9492 + }, + { + "start": 21863.42, + "end": 21866.62, + "probability": 0.4627 + }, + { + "start": 21866.86, + "end": 21868.3, + "probability": 0.8295 + }, + { + "start": 21869.08, + "end": 21872.92, + "probability": 0.9705 + }, + { + "start": 21873.38, + "end": 21873.7, + "probability": 0.9109 + }, + { + "start": 21873.76, + "end": 21874.76, + "probability": 0.8142 + }, + { + "start": 21875.28, + "end": 21876.94, + "probability": 0.9473 + }, + { + "start": 21877.34, + "end": 21880.68, + "probability": 0.9644 + }, + { + "start": 21880.68, + "end": 21885.22, + "probability": 0.812 + }, + { + "start": 21885.66, + "end": 21889.24, + "probability": 0.9754 + }, + { + "start": 21889.64, + "end": 21889.82, + "probability": 0.4649 + }, + { + "start": 21889.9, + "end": 21891.48, + "probability": 0.6595 + }, + { + "start": 21892.86, + "end": 21896.46, + "probability": 0.995 + }, + { + "start": 21896.58, + "end": 21901.62, + "probability": 0.9962 + }, + { + "start": 21901.82, + "end": 21904.0, + "probability": 0.9541 + }, + { + "start": 21904.08, + "end": 21905.14, + "probability": 0.8778 + }, + { + "start": 21905.64, + "end": 21906.16, + "probability": 0.0312 + }, + { + "start": 21907.84, + "end": 21908.24, + "probability": 0.0408 + }, + { + "start": 21909.26, + "end": 21909.4, + "probability": 0.1872 + }, + { + "start": 21909.4, + "end": 21909.94, + "probability": 0.8441 + }, + { + "start": 21910.46, + "end": 21910.54, + "probability": 0.5457 + }, + { + "start": 21910.6, + "end": 21912.46, + "probability": 0.8716 + }, + { + "start": 21912.54, + "end": 21914.25, + "probability": 0.9854 + }, + { + "start": 21916.54, + "end": 21919.02, + "probability": 0.5671 + }, + { + "start": 21919.76, + "end": 21922.36, + "probability": 0.9535 + }, + { + "start": 21922.4, + "end": 21922.92, + "probability": 0.8056 + }, + { + "start": 21922.98, + "end": 21926.84, + "probability": 0.917 + }, + { + "start": 21927.42, + "end": 21935.7, + "probability": 0.8717 + }, + { + "start": 21935.9, + "end": 21938.14, + "probability": 0.5162 + }, + { + "start": 21938.3, + "end": 21941.22, + "probability": 0.8052 + }, + { + "start": 21941.94, + "end": 21944.9, + "probability": 0.9113 + }, + { + "start": 21945.36, + "end": 21946.42, + "probability": 0.9939 + }, + { + "start": 21946.74, + "end": 21947.57, + "probability": 0.8335 + }, + { + "start": 21947.78, + "end": 21948.74, + "probability": 0.8232 + }, + { + "start": 21948.88, + "end": 21949.3, + "probability": 0.3978 + }, + { + "start": 21949.72, + "end": 21957.89, + "probability": 0.971 + }, + { + "start": 21959.18, + "end": 21962.84, + "probability": 0.9038 + }, + { + "start": 21963.76, + "end": 21970.5, + "probability": 0.9952 + }, + { + "start": 21970.6, + "end": 21971.96, + "probability": 0.9854 + }, + { + "start": 21972.0, + "end": 21972.74, + "probability": 0.9478 + }, + { + "start": 21972.88, + "end": 21974.1, + "probability": 0.852 + }, + { + "start": 21974.2, + "end": 21974.46, + "probability": 0.0207 + }, + { + "start": 21974.46, + "end": 21975.32, + "probability": 0.4976 + }, + { + "start": 21975.42, + "end": 21975.96, + "probability": 0.6832 + }, + { + "start": 21976.34, + "end": 21979.56, + "probability": 0.9082 + }, + { + "start": 21979.84, + "end": 21979.94, + "probability": 0.8919 + }, + { + "start": 21980.82, + "end": 21982.88, + "probability": 0.8234 + }, + { + "start": 21982.88, + "end": 21985.2, + "probability": 0.9233 + }, + { + "start": 21985.84, + "end": 21989.16, + "probability": 0.7337 + }, + { + "start": 22000.0, + "end": 22000.83, + "probability": 0.8854 + }, + { + "start": 22002.68, + "end": 22004.72, + "probability": 0.6957 + }, + { + "start": 22005.88, + "end": 22008.22, + "probability": 0.9075 + }, + { + "start": 22010.48, + "end": 22011.84, + "probability": 0.8705 + }, + { + "start": 22013.5, + "end": 22018.06, + "probability": 0.9028 + }, + { + "start": 22018.92, + "end": 22021.24, + "probability": 0.9805 + }, + { + "start": 22022.58, + "end": 22025.32, + "probability": 0.743 + }, + { + "start": 22026.62, + "end": 22027.5, + "probability": 0.8976 + }, + { + "start": 22029.34, + "end": 22030.48, + "probability": 0.9486 + }, + { + "start": 22030.48, + "end": 22031.38, + "probability": 0.0568 + }, + { + "start": 22031.62, + "end": 22031.76, + "probability": 0.1068 + }, + { + "start": 22031.76, + "end": 22031.86, + "probability": 0.4021 + }, + { + "start": 22032.46, + "end": 22034.72, + "probability": 0.5969 + }, + { + "start": 22035.06, + "end": 22035.06, + "probability": 0.06 + }, + { + "start": 22035.06, + "end": 22035.16, + "probability": 0.2272 + }, + { + "start": 22036.28, + "end": 22039.0, + "probability": 0.7185 + }, + { + "start": 22039.6, + "end": 22039.98, + "probability": 0.8455 + }, + { + "start": 22040.76, + "end": 22041.32, + "probability": 0.0759 + }, + { + "start": 22041.32, + "end": 22041.32, + "probability": 0.4251 + }, + { + "start": 22041.32, + "end": 22045.94, + "probability": 0.8866 + }, + { + "start": 22046.8, + "end": 22048.14, + "probability": 0.8086 + }, + { + "start": 22049.08, + "end": 22050.38, + "probability": 0.9236 + }, + { + "start": 22051.26, + "end": 22051.96, + "probability": 0.9447 + }, + { + "start": 22052.96, + "end": 22055.72, + "probability": 0.7976 + }, + { + "start": 22056.68, + "end": 22057.9, + "probability": 0.954 + }, + { + "start": 22059.02, + "end": 22059.72, + "probability": 0.7908 + }, + { + "start": 22061.3, + "end": 22061.9, + "probability": 0.7345 + }, + { + "start": 22063.42, + "end": 22065.94, + "probability": 0.6354 + }, + { + "start": 22067.31, + "end": 22071.76, + "probability": 0.7713 + }, + { + "start": 22074.42, + "end": 22077.98, + "probability": 0.783 + }, + { + "start": 22078.6, + "end": 22080.54, + "probability": 0.9961 + }, + { + "start": 22080.8, + "end": 22082.04, + "probability": 0.7071 + }, + { + "start": 22082.36, + "end": 22083.3, + "probability": 0.8605 + }, + { + "start": 22084.34, + "end": 22085.48, + "probability": 0.7201 + }, + { + "start": 22086.3, + "end": 22087.16, + "probability": 0.5934 + }, + { + "start": 22087.94, + "end": 22088.38, + "probability": 0.5103 + }, + { + "start": 22088.62, + "end": 22088.9, + "probability": 0.7529 + }, + { + "start": 22089.66, + "end": 22092.05, + "probability": 0.9865 + }, + { + "start": 22093.34, + "end": 22095.84, + "probability": 0.8212 + }, + { + "start": 22096.56, + "end": 22098.1, + "probability": 0.686 + }, + { + "start": 22098.46, + "end": 22099.78, + "probability": 0.7443 + }, + { + "start": 22099.98, + "end": 22101.18, + "probability": 0.6806 + }, + { + "start": 22101.3, + "end": 22103.24, + "probability": 0.8364 + }, + { + "start": 22104.18, + "end": 22111.9, + "probability": 0.9907 + }, + { + "start": 22112.84, + "end": 22114.28, + "probability": 0.995 + }, + { + "start": 22114.8, + "end": 22116.3, + "probability": 0.8103 + }, + { + "start": 22116.96, + "end": 22117.32, + "probability": 0.6654 + }, + { + "start": 22118.26, + "end": 22119.13, + "probability": 0.0107 + }, + { + "start": 22119.48, + "end": 22121.28, + "probability": 0.749 + }, + { + "start": 22121.32, + "end": 22122.7, + "probability": 0.9976 + }, + { + "start": 22123.52, + "end": 22125.44, + "probability": 0.9897 + }, + { + "start": 22126.56, + "end": 22131.98, + "probability": 0.9664 + }, + { + "start": 22133.18, + "end": 22134.18, + "probability": 0.5378 + }, + { + "start": 22134.66, + "end": 22136.38, + "probability": 0.962 + }, + { + "start": 22138.56, + "end": 22144.35, + "probability": 0.9279 + }, + { + "start": 22145.32, + "end": 22146.5, + "probability": 0.7055 + }, + { + "start": 22147.06, + "end": 22150.54, + "probability": 0.687 + }, + { + "start": 22151.14, + "end": 22155.36, + "probability": 0.9397 + }, + { + "start": 22156.12, + "end": 22158.62, + "probability": 0.6386 + }, + { + "start": 22159.36, + "end": 22161.28, + "probability": 0.939 + }, + { + "start": 22161.98, + "end": 22163.62, + "probability": 0.5272 + }, + { + "start": 22164.28, + "end": 22170.32, + "probability": 0.9761 + }, + { + "start": 22171.58, + "end": 22173.25, + "probability": 0.9448 + }, + { + "start": 22174.4, + "end": 22180.68, + "probability": 0.9043 + }, + { + "start": 22180.96, + "end": 22181.34, + "probability": 0.477 + }, + { + "start": 22182.54, + "end": 22183.62, + "probability": 0.4195 + }, + { + "start": 22184.56, + "end": 22192.2, + "probability": 0.8376 + }, + { + "start": 22192.24, + "end": 22192.26, + "probability": 0.3211 + }, + { + "start": 22192.26, + "end": 22192.87, + "probability": 0.9426 + }, + { + "start": 22193.84, + "end": 22196.8, + "probability": 0.9683 + }, + { + "start": 22197.5, + "end": 22197.76, + "probability": 0.7131 + }, + { + "start": 22197.82, + "end": 22199.54, + "probability": 0.67 + }, + { + "start": 22200.56, + "end": 22201.66, + "probability": 0.8723 + }, + { + "start": 22201.76, + "end": 22202.24, + "probability": 0.6071 + }, + { + "start": 22202.64, + "end": 22203.4, + "probability": 0.7431 + }, + { + "start": 22203.4, + "end": 22208.68, + "probability": 0.9104 + }, + { + "start": 22209.52, + "end": 22209.92, + "probability": 0.6094 + }, + { + "start": 22210.04, + "end": 22210.44, + "probability": 0.7836 + }, + { + "start": 22211.44, + "end": 22212.3, + "probability": 0.8565 + }, + { + "start": 22212.34, + "end": 22214.54, + "probability": 0.7188 + }, + { + "start": 22214.72, + "end": 22217.78, + "probability": 0.7734 + }, + { + "start": 22222.26, + "end": 22223.45, + "probability": 0.8558 + }, + { + "start": 22224.7, + "end": 22225.86, + "probability": 0.5902 + }, + { + "start": 22225.86, + "end": 22228.38, + "probability": 0.8103 + }, + { + "start": 22229.48, + "end": 22232.66, + "probability": 0.9614 + }, + { + "start": 22232.74, + "end": 22234.56, + "probability": 0.9749 + }, + { + "start": 22234.92, + "end": 22235.1, + "probability": 0.4986 + }, + { + "start": 22235.62, + "end": 22235.84, + "probability": 0.6926 + }, + { + "start": 22236.36, + "end": 22236.68, + "probability": 0.9556 + }, + { + "start": 22237.66, + "end": 22238.82, + "probability": 0.9846 + }, + { + "start": 22239.88, + "end": 22243.12, + "probability": 0.8413 + }, + { + "start": 22243.2, + "end": 22243.92, + "probability": 0.7688 + }, + { + "start": 22244.28, + "end": 22245.4, + "probability": 0.7737 + }, + { + "start": 22245.44, + "end": 22245.8, + "probability": 0.4721 + }, + { + "start": 22245.8, + "end": 22246.96, + "probability": 0.8993 + }, + { + "start": 22247.32, + "end": 22248.7, + "probability": 0.8245 + }, + { + "start": 22249.6, + "end": 22250.58, + "probability": 0.8042 + }, + { + "start": 22250.84, + "end": 22252.12, + "probability": 0.9003 + }, + { + "start": 22252.28, + "end": 22253.66, + "probability": 0.998 + }, + { + "start": 22254.8, + "end": 22258.2, + "probability": 0.9931 + }, + { + "start": 22259.0, + "end": 22260.9, + "probability": 0.8011 + }, + { + "start": 22261.36, + "end": 22263.04, + "probability": 0.7797 + }, + { + "start": 22263.24, + "end": 22263.64, + "probability": 0.9241 + }, + { + "start": 22264.08, + "end": 22265.34, + "probability": 0.6127 + }, + { + "start": 22265.93, + "end": 22269.6, + "probability": 0.0558 + }, + { + "start": 22269.72, + "end": 22270.24, + "probability": 0.6682 + }, + { + "start": 22270.32, + "end": 22270.86, + "probability": 0.7944 + }, + { + "start": 22270.92, + "end": 22271.74, + "probability": 0.63 + }, + { + "start": 22272.08, + "end": 22275.56, + "probability": 0.99 + }, + { + "start": 22275.58, + "end": 22276.16, + "probability": 0.9777 + }, + { + "start": 22276.56, + "end": 22276.66, + "probability": 0.2136 + }, + { + "start": 22277.1, + "end": 22278.52, + "probability": 0.5745 + }, + { + "start": 22278.84, + "end": 22280.88, + "probability": 0.977 + }, + { + "start": 22281.3, + "end": 22282.8, + "probability": 0.9894 + }, + { + "start": 22283.12, + "end": 22285.78, + "probability": 0.9341 + }, + { + "start": 22286.22, + "end": 22286.78, + "probability": 0.9609 + }, + { + "start": 22286.86, + "end": 22287.48, + "probability": 0.9619 + }, + { + "start": 22287.58, + "end": 22288.32, + "probability": 0.9784 + }, + { + "start": 22288.5, + "end": 22290.36, + "probability": 0.9873 + }, + { + "start": 22290.36, + "end": 22290.56, + "probability": 0.0129 + }, + { + "start": 22291.02, + "end": 22292.1, + "probability": 0.0474 + }, + { + "start": 22292.1, + "end": 22292.1, + "probability": 0.0072 + }, + { + "start": 22292.1, + "end": 22292.76, + "probability": 0.4309 + }, + { + "start": 22293.44, + "end": 22293.44, + "probability": 0.5695 + }, + { + "start": 22293.44, + "end": 22293.98, + "probability": 0.6732 + }, + { + "start": 22294.22, + "end": 22297.66, + "probability": 0.8189 + }, + { + "start": 22297.96, + "end": 22301.36, + "probability": 0.9526 + }, + { + "start": 22301.5, + "end": 22303.78, + "probability": 0.9973 + }, + { + "start": 22304.14, + "end": 22306.34, + "probability": 0.786 + }, + { + "start": 22307.62, + "end": 22310.48, + "probability": 0.9978 + }, + { + "start": 22311.1, + "end": 22314.76, + "probability": 0.0407 + }, + { + "start": 22314.76, + "end": 22314.78, + "probability": 0.1746 + }, + { + "start": 22314.78, + "end": 22314.88, + "probability": 0.0358 + }, + { + "start": 22314.88, + "end": 22314.88, + "probability": 0.0416 + }, + { + "start": 22314.88, + "end": 22316.29, + "probability": 0.1192 + }, + { + "start": 22317.88, + "end": 22319.12, + "probability": 0.9775 + }, + { + "start": 22319.38, + "end": 22320.34, + "probability": 0.978 + }, + { + "start": 22320.5, + "end": 22325.36, + "probability": 0.9806 + }, + { + "start": 22325.48, + "end": 22325.8, + "probability": 0.8062 + }, + { + "start": 22326.06, + "end": 22326.86, + "probability": 0.7063 + }, + { + "start": 22327.24, + "end": 22329.2, + "probability": 0.992 + }, + { + "start": 22329.44, + "end": 22330.94, + "probability": 0.7465 + }, + { + "start": 22331.32, + "end": 22333.42, + "probability": 0.9979 + }, + { + "start": 22333.42, + "end": 22336.64, + "probability": 0.9213 + }, + { + "start": 22336.7, + "end": 22339.0, + "probability": 0.9983 + }, + { + "start": 22339.3, + "end": 22341.16, + "probability": 0.9942 + }, + { + "start": 22341.24, + "end": 22341.92, + "probability": 0.8246 + }, + { + "start": 22341.98, + "end": 22342.12, + "probability": 0.4014 + }, + { + "start": 22342.4, + "end": 22343.7, + "probability": 0.9705 + }, + { + "start": 22343.78, + "end": 22345.52, + "probability": 0.8613 + }, + { + "start": 22345.8, + "end": 22348.02, + "probability": 0.9597 + }, + { + "start": 22348.1, + "end": 22349.32, + "probability": 0.7481 + }, + { + "start": 22349.56, + "end": 22353.8, + "probability": 0.9814 + }, + { + "start": 22353.8, + "end": 22358.38, + "probability": 0.9917 + }, + { + "start": 22358.8, + "end": 22361.46, + "probability": 0.9878 + }, + { + "start": 22361.9, + "end": 22363.64, + "probability": 0.9987 + }, + { + "start": 22363.7, + "end": 22366.56, + "probability": 0.9929 + }, + { + "start": 22366.56, + "end": 22369.66, + "probability": 0.9968 + }, + { + "start": 22369.88, + "end": 22373.26, + "probability": 0.9985 + }, + { + "start": 22373.48, + "end": 22376.8, + "probability": 0.8384 + }, + { + "start": 22377.0, + "end": 22380.16, + "probability": 0.9752 + }, + { + "start": 22380.26, + "end": 22382.06, + "probability": 0.9427 + }, + { + "start": 22382.36, + "end": 22383.1, + "probability": 0.9718 + }, + { + "start": 22383.34, + "end": 22384.64, + "probability": 0.9922 + }, + { + "start": 22385.08, + "end": 22385.29, + "probability": 0.0144 + }, + { + "start": 22386.6, + "end": 22386.7, + "probability": 0.1229 + }, + { + "start": 22386.7, + "end": 22386.96, + "probability": 0.1048 + }, + { + "start": 22386.96, + "end": 22387.5, + "probability": 0.4712 + }, + { + "start": 22387.8, + "end": 22389.14, + "probability": 0.9525 + }, + { + "start": 22390.18, + "end": 22391.52, + "probability": 0.9634 + }, + { + "start": 22391.64, + "end": 22393.04, + "probability": 0.8298 + }, + { + "start": 22393.16, + "end": 22395.3, + "probability": 0.9429 + }, + { + "start": 22395.82, + "end": 22396.22, + "probability": 0.2849 + }, + { + "start": 22396.22, + "end": 22396.68, + "probability": 0.3589 + }, + { + "start": 22396.68, + "end": 22398.54, + "probability": 0.2917 + }, + { + "start": 22398.72, + "end": 22399.1, + "probability": 0.6549 + }, + { + "start": 22399.64, + "end": 22401.9, + "probability": 0.6427 + }, + { + "start": 22402.6, + "end": 22403.3, + "probability": 0.7357 + }, + { + "start": 22403.42, + "end": 22404.67, + "probability": 0.7315 + }, + { + "start": 22405.44, + "end": 22407.48, + "probability": 0.4152 + }, + { + "start": 22408.32, + "end": 22409.22, + "probability": 0.9598 + }, + { + "start": 22409.32, + "end": 22410.18, + "probability": 0.7651 + }, + { + "start": 22410.24, + "end": 22411.22, + "probability": 0.9258 + }, + { + "start": 22411.46, + "end": 22413.54, + "probability": 0.7867 + }, + { + "start": 22414.06, + "end": 22415.36, + "probability": 0.312 + }, + { + "start": 22421.08, + "end": 22421.38, + "probability": 0.0396 + }, + { + "start": 22421.72, + "end": 22423.24, + "probability": 0.7651 + }, + { + "start": 22423.84, + "end": 22425.1, + "probability": 0.8347 + }, + { + "start": 22425.3, + "end": 22425.62, + "probability": 0.8467 + }, + { + "start": 22426.06, + "end": 22426.86, + "probability": 0.8902 + }, + { + "start": 22426.92, + "end": 22428.66, + "probability": 0.9892 + }, + { + "start": 22429.12, + "end": 22435.72, + "probability": 0.9901 + }, + { + "start": 22435.88, + "end": 22436.44, + "probability": 0.5786 + }, + { + "start": 22436.6, + "end": 22438.02, + "probability": 0.9897 + }, + { + "start": 22438.08, + "end": 22442.04, + "probability": 0.839 + }, + { + "start": 22442.14, + "end": 22442.6, + "probability": 0.9437 + }, + { + "start": 22442.76, + "end": 22444.14, + "probability": 0.9313 + }, + { + "start": 22444.24, + "end": 22444.78, + "probability": 0.9443 + }, + { + "start": 22445.08, + "end": 22447.15, + "probability": 0.725 + }, + { + "start": 22447.84, + "end": 22448.66, + "probability": 0.8286 + }, + { + "start": 22449.24, + "end": 22450.94, + "probability": 0.9023 + }, + { + "start": 22450.96, + "end": 22451.44, + "probability": 0.7594 + }, + { + "start": 22451.56, + "end": 22453.45, + "probability": 0.9946 + }, + { + "start": 22453.5, + "end": 22454.26, + "probability": 0.918 + }, + { + "start": 22454.34, + "end": 22455.46, + "probability": 0.9972 + }, + { + "start": 22455.52, + "end": 22455.96, + "probability": 0.7665 + }, + { + "start": 22456.02, + "end": 22456.08, + "probability": 0.1567 + }, + { + "start": 22456.1, + "end": 22457.3, + "probability": 0.5699 + }, + { + "start": 22457.32, + "end": 22459.2, + "probability": 0.9478 + }, + { + "start": 22459.84, + "end": 22461.24, + "probability": 0.9185 + }, + { + "start": 22461.76, + "end": 22464.42, + "probability": 0.998 + }, + { + "start": 22465.0, + "end": 22468.1, + "probability": 0.9226 + }, + { + "start": 22468.11, + "end": 22470.42, + "probability": 0.998 + }, + { + "start": 22470.76, + "end": 22471.14, + "probability": 0.7659 + }, + { + "start": 22471.42, + "end": 22471.72, + "probability": 0.7505 + }, + { + "start": 22472.82, + "end": 22475.18, + "probability": 0.8323 + }, + { + "start": 22475.3, + "end": 22476.86, + "probability": 0.9197 + }, + { + "start": 22479.0, + "end": 22479.8, + "probability": 0.6742 + }, + { + "start": 22479.92, + "end": 22481.88, + "probability": 0.8588 + }, + { + "start": 22490.1, + "end": 22491.66, + "probability": 0.7143 + }, + { + "start": 22492.66, + "end": 22493.78, + "probability": 0.8484 + }, + { + "start": 22495.14, + "end": 22498.0, + "probability": 0.7936 + }, + { + "start": 22498.08, + "end": 22500.5, + "probability": 0.9874 + }, + { + "start": 22500.6, + "end": 22505.97, + "probability": 0.9924 + }, + { + "start": 22506.3, + "end": 22508.64, + "probability": 0.7821 + }, + { + "start": 22510.72, + "end": 22514.36, + "probability": 0.7024 + }, + { + "start": 22515.72, + "end": 22517.66, + "probability": 0.9866 + }, + { + "start": 22518.54, + "end": 22520.52, + "probability": 0.9971 + }, + { + "start": 22521.5, + "end": 22525.58, + "probability": 0.6272 + }, + { + "start": 22526.38, + "end": 22526.96, + "probability": 0.2749 + }, + { + "start": 22527.94, + "end": 22528.96, + "probability": 0.8936 + }, + { + "start": 22530.34, + "end": 22538.4, + "probability": 0.9609 + }, + { + "start": 22540.1, + "end": 22543.29, + "probability": 0.8734 + }, + { + "start": 22543.56, + "end": 22545.12, + "probability": 0.9198 + }, + { + "start": 22545.32, + "end": 22546.24, + "probability": 0.5997 + }, + { + "start": 22546.68, + "end": 22549.43, + "probability": 0.9598 + }, + { + "start": 22549.94, + "end": 22551.74, + "probability": 0.9814 + }, + { + "start": 22552.44, + "end": 22555.18, + "probability": 0.9792 + }, + { + "start": 22556.34, + "end": 22558.18, + "probability": 0.9905 + }, + { + "start": 22558.36, + "end": 22561.62, + "probability": 0.9993 + }, + { + "start": 22562.46, + "end": 22565.5, + "probability": 0.7453 + }, + { + "start": 22566.22, + "end": 22570.3, + "probability": 0.9932 + }, + { + "start": 22571.46, + "end": 22573.66, + "probability": 0.8301 + }, + { + "start": 22574.62, + "end": 22575.16, + "probability": 0.7681 + }, + { + "start": 22575.94, + "end": 22576.98, + "probability": 0.8945 + }, + { + "start": 22578.3, + "end": 22579.44, + "probability": 0.3941 + }, + { + "start": 22579.62, + "end": 22579.84, + "probability": 0.4963 + }, + { + "start": 22579.92, + "end": 22584.88, + "probability": 0.9844 + }, + { + "start": 22586.6, + "end": 22592.1, + "probability": 0.9972 + }, + { + "start": 22593.24, + "end": 22595.8, + "probability": 0.7879 + }, + { + "start": 22595.88, + "end": 22597.82, + "probability": 0.8529 + }, + { + "start": 22598.44, + "end": 22603.94, + "probability": 0.9806 + }, + { + "start": 22604.72, + "end": 22607.92, + "probability": 0.9858 + }, + { + "start": 22608.48, + "end": 22611.1, + "probability": 0.9896 + }, + { + "start": 22611.76, + "end": 22617.76, + "probability": 0.9982 + }, + { + "start": 22617.9, + "end": 22620.44, + "probability": 0.8817 + }, + { + "start": 22622.04, + "end": 22624.88, + "probability": 0.9932 + }, + { + "start": 22624.94, + "end": 22627.98, + "probability": 0.9908 + }, + { + "start": 22628.8, + "end": 22630.76, + "probability": 0.9964 + }, + { + "start": 22631.8, + "end": 22633.77, + "probability": 0.9897 + }, + { + "start": 22635.04, + "end": 22638.94, + "probability": 0.9937 + }, + { + "start": 22639.64, + "end": 22640.32, + "probability": 0.8667 + }, + { + "start": 22641.0, + "end": 22641.1, + "probability": 0.9997 + }, + { + "start": 22641.84, + "end": 22644.02, + "probability": 0.9938 + }, + { + "start": 22645.12, + "end": 22647.45, + "probability": 0.9807 + }, + { + "start": 22648.7, + "end": 22649.45, + "probability": 0.9968 + }, + { + "start": 22650.52, + "end": 22654.64, + "probability": 0.9875 + }, + { + "start": 22654.82, + "end": 22659.12, + "probability": 0.7619 + }, + { + "start": 22659.46, + "end": 22663.86, + "probability": 0.9893 + }, + { + "start": 22663.86, + "end": 22667.48, + "probability": 0.8733 + }, + { + "start": 22667.78, + "end": 22669.44, + "probability": 0.9521 + }, + { + "start": 22670.02, + "end": 22675.38, + "probability": 0.98 + }, + { + "start": 22676.32, + "end": 22679.64, + "probability": 0.9965 + }, + { + "start": 22679.64, + "end": 22681.02, + "probability": 0.8567 + }, + { + "start": 22682.1, + "end": 22682.36, + "probability": 0.3577 + }, + { + "start": 22682.54, + "end": 22684.44, + "probability": 0.9375 + }, + { + "start": 22684.56, + "end": 22686.38, + "probability": 0.698 + }, + { + "start": 22686.46, + "end": 22687.2, + "probability": 0.5822 + }, + { + "start": 22687.38, + "end": 22688.62, + "probability": 0.9792 + }, + { + "start": 22689.34, + "end": 22689.92, + "probability": 0.4282 + }, + { + "start": 22702.22, + "end": 22704.62, + "probability": 0.1699 + }, + { + "start": 22704.62, + "end": 22704.62, + "probability": 0.1037 + }, + { + "start": 22704.62, + "end": 22704.62, + "probability": 0.3853 + }, + { + "start": 22704.62, + "end": 22705.72, + "probability": 0.5562 + }, + { + "start": 22706.74, + "end": 22709.02, + "probability": 0.2816 + }, + { + "start": 22710.86, + "end": 22710.86, + "probability": 0.1299 + }, + { + "start": 22710.86, + "end": 22713.0, + "probability": 0.4856 + }, + { + "start": 22714.3, + "end": 22715.04, + "probability": 0.6885 + }, + { + "start": 22715.1, + "end": 22715.8, + "probability": 0.7297 + }, + { + "start": 22716.08, + "end": 22717.71, + "probability": 0.916 + }, + { + "start": 22719.18, + "end": 22719.88, + "probability": 0.9739 + }, + { + "start": 22720.04, + "end": 22721.14, + "probability": 0.9604 + }, + { + "start": 22721.38, + "end": 22722.68, + "probability": 0.9774 + }, + { + "start": 22722.72, + "end": 22728.36, + "probability": 0.9883 + }, + { + "start": 22728.46, + "end": 22729.1, + "probability": 0.7788 + }, + { + "start": 22729.86, + "end": 22733.82, + "probability": 0.9866 + }, + { + "start": 22734.42, + "end": 22735.14, + "probability": 0.7834 + }, + { + "start": 22735.98, + "end": 22736.24, + "probability": 0.4209 + }, + { + "start": 22736.3, + "end": 22738.72, + "probability": 0.9377 + }, + { + "start": 22739.22, + "end": 22744.86, + "probability": 0.9413 + }, + { + "start": 22745.44, + "end": 22748.32, + "probability": 0.9602 + }, + { + "start": 22748.54, + "end": 22750.2, + "probability": 0.9914 + }, + { + "start": 22750.94, + "end": 22751.86, + "probability": 0.9644 + }, + { + "start": 22753.96, + "end": 22757.14, + "probability": 0.8882 + }, + { + "start": 22758.7, + "end": 22760.32, + "probability": 0.9927 + }, + { + "start": 22760.48, + "end": 22763.9, + "probability": 0.9071 + }, + { + "start": 22764.54, + "end": 22765.9, + "probability": 0.8892 + }, + { + "start": 22766.1, + "end": 22768.2, + "probability": 0.8082 + }, + { + "start": 22768.3, + "end": 22770.1, + "probability": 0.8581 + }, + { + "start": 22770.32, + "end": 22771.0, + "probability": 0.8855 + }, + { + "start": 22771.6, + "end": 22772.14, + "probability": 0.9778 + }, + { + "start": 22772.78, + "end": 22776.72, + "probability": 0.9976 + }, + { + "start": 22777.88, + "end": 22781.3, + "probability": 0.9993 + }, + { + "start": 22781.3, + "end": 22788.38, + "probability": 0.8257 + }, + { + "start": 22788.82, + "end": 22790.46, + "probability": 0.9453 + }, + { + "start": 22791.14, + "end": 22793.12, + "probability": 0.7614 + }, + { + "start": 22793.34, + "end": 22797.32, + "probability": 0.9985 + }, + { + "start": 22797.56, + "end": 22799.18, + "probability": 0.8791 + }, + { + "start": 22799.56, + "end": 22800.22, + "probability": 0.7043 + }, + { + "start": 22801.02, + "end": 22801.56, + "probability": 0.7984 + }, + { + "start": 22803.66, + "end": 22804.99, + "probability": 0.9971 + }, + { + "start": 22806.34, + "end": 22807.76, + "probability": 0.9653 + }, + { + "start": 22807.8, + "end": 22811.08, + "probability": 0.8905 + }, + { + "start": 22812.62, + "end": 22812.8, + "probability": 0.1867 + }, + { + "start": 22820.06, + "end": 22825.42, + "probability": 0.802 + }, + { + "start": 22826.34, + "end": 22826.46, + "probability": 0.7515 + }, + { + "start": 22826.46, + "end": 22827.14, + "probability": 0.7419 + }, + { + "start": 22827.56, + "end": 22830.88, + "probability": 0.9992 + }, + { + "start": 22831.34, + "end": 22834.28, + "probability": 0.9937 + }, + { + "start": 22834.68, + "end": 22835.92, + "probability": 0.8651 + }, + { + "start": 22836.3, + "end": 22837.18, + "probability": 0.9852 + }, + { + "start": 22837.36, + "end": 22840.14, + "probability": 0.9282 + }, + { + "start": 22840.56, + "end": 22843.02, + "probability": 0.9864 + }, + { + "start": 22843.42, + "end": 22845.12, + "probability": 0.951 + }, + { + "start": 22845.8, + "end": 22846.36, + "probability": 0.5716 + }, + { + "start": 22846.86, + "end": 22848.74, + "probability": 0.8139 + }, + { + "start": 22848.84, + "end": 22851.2, + "probability": 0.9956 + }, + { + "start": 22851.68, + "end": 22853.4, + "probability": 0.6752 + }, + { + "start": 22853.62, + "end": 22855.72, + "probability": 0.9847 + }, + { + "start": 22856.84, + "end": 22861.06, + "probability": 0.9854 + }, + { + "start": 22861.06, + "end": 22865.08, + "probability": 0.995 + }, + { + "start": 22865.9, + "end": 22867.76, + "probability": 0.7983 + }, + { + "start": 22868.0, + "end": 22868.84, + "probability": 0.9001 + }, + { + "start": 22869.0, + "end": 22874.02, + "probability": 0.9992 + }, + { + "start": 22874.58, + "end": 22876.3, + "probability": 0.9687 + }, + { + "start": 22876.46, + "end": 22877.52, + "probability": 0.9871 + }, + { + "start": 22878.24, + "end": 22880.96, + "probability": 0.7418 + }, + { + "start": 22881.54, + "end": 22884.87, + "probability": 0.9881 + }, + { + "start": 22885.46, + "end": 22886.26, + "probability": 0.5848 + }, + { + "start": 22886.36, + "end": 22888.36, + "probability": 0.94 + }, + { + "start": 22888.86, + "end": 22889.38, + "probability": 0.773 + }, + { + "start": 22890.0, + "end": 22892.2, + "probability": 0.8996 + }, + { + "start": 22892.22, + "end": 22894.66, + "probability": 0.7825 + }, + { + "start": 22894.9, + "end": 22896.02, + "probability": 0.9119 + }, + { + "start": 22909.1, + "end": 22909.32, + "probability": 0.1328 + }, + { + "start": 22909.32, + "end": 22910.45, + "probability": 0.5055 + }, + { + "start": 22910.68, + "end": 22911.38, + "probability": 0.4416 + }, + { + "start": 22914.1, + "end": 22915.42, + "probability": 0.6417 + }, + { + "start": 22916.8, + "end": 22917.66, + "probability": 0.9189 + }, + { + "start": 22919.44, + "end": 22920.74, + "probability": 0.6616 + }, + { + "start": 22923.2, + "end": 22924.2, + "probability": 0.9486 + }, + { + "start": 22925.78, + "end": 22926.84, + "probability": 0.4303 + }, + { + "start": 22927.36, + "end": 22930.3, + "probability": 0.9759 + }, + { + "start": 22931.16, + "end": 22933.14, + "probability": 0.9357 + }, + { + "start": 22934.68, + "end": 22936.16, + "probability": 0.7858 + }, + { + "start": 22936.22, + "end": 22937.6, + "probability": 0.9051 + }, + { + "start": 22937.72, + "end": 22947.26, + "probability": 0.9678 + }, + { + "start": 22948.04, + "end": 22953.16, + "probability": 0.9806 + }, + { + "start": 22953.88, + "end": 22954.98, + "probability": 0.708 + }, + { + "start": 22955.56, + "end": 22958.68, + "probability": 0.99 + }, + { + "start": 22959.08, + "end": 22960.22, + "probability": 0.9049 + }, + { + "start": 22960.54, + "end": 22962.12, + "probability": 0.9938 + }, + { + "start": 22963.46, + "end": 22965.6, + "probability": 0.8921 + }, + { + "start": 22965.74, + "end": 22966.16, + "probability": 0.6723 + }, + { + "start": 22966.24, + "end": 22968.54, + "probability": 0.9882 + }, + { + "start": 22968.72, + "end": 22974.7, + "probability": 0.9849 + }, + { + "start": 22976.22, + "end": 22978.24, + "probability": 0.9922 + }, + { + "start": 22979.34, + "end": 22980.7, + "probability": 0.9088 + }, + { + "start": 22981.64, + "end": 22982.72, + "probability": 0.9859 + }, + { + "start": 22983.52, + "end": 22987.46, + "probability": 0.9597 + }, + { + "start": 22989.82, + "end": 22990.96, + "probability": 0.8097 + }, + { + "start": 22991.92, + "end": 22992.82, + "probability": 0.9385 + }, + { + "start": 22993.54, + "end": 22997.3, + "probability": 0.9919 + }, + { + "start": 22998.26, + "end": 22999.84, + "probability": 0.6733 + }, + { + "start": 23000.44, + "end": 23003.52, + "probability": 0.9426 + }, + { + "start": 23004.42, + "end": 23007.24, + "probability": 0.9084 + }, + { + "start": 23007.7, + "end": 23013.08, + "probability": 0.9883 + }, + { + "start": 23013.92, + "end": 23015.32, + "probability": 0.514 + }, + { + "start": 23016.0, + "end": 23020.62, + "probability": 0.9929 + }, + { + "start": 23021.38, + "end": 23023.18, + "probability": 0.9893 + }, + { + "start": 23024.4, + "end": 23029.72, + "probability": 0.9424 + }, + { + "start": 23031.12, + "end": 23031.92, + "probability": 0.7762 + }, + { + "start": 23033.5, + "end": 23034.52, + "probability": 0.7449 + }, + { + "start": 23035.38, + "end": 23037.36, + "probability": 0.9664 + }, + { + "start": 23038.08, + "end": 23040.54, + "probability": 0.9993 + }, + { + "start": 23041.1, + "end": 23043.84, + "probability": 0.9312 + }, + { + "start": 23044.72, + "end": 23050.12, + "probability": 0.9966 + }, + { + "start": 23050.12, + "end": 23054.06, + "probability": 0.9601 + }, + { + "start": 23054.8, + "end": 23058.14, + "probability": 0.9946 + }, + { + "start": 23058.78, + "end": 23059.18, + "probability": 0.8936 + }, + { + "start": 23059.72, + "end": 23061.64, + "probability": 0.9976 + }, + { + "start": 23062.4, + "end": 23064.08, + "probability": 0.8623 + }, + { + "start": 23064.92, + "end": 23066.73, + "probability": 0.9969 + }, + { + "start": 23067.38, + "end": 23071.42, + "probability": 0.877 + }, + { + "start": 23071.96, + "end": 23079.64, + "probability": 0.9838 + }, + { + "start": 23080.14, + "end": 23081.2, + "probability": 0.9917 + }, + { + "start": 23081.8, + "end": 23084.44, + "probability": 0.9896 + }, + { + "start": 23085.44, + "end": 23088.26, + "probability": 0.9632 + }, + { + "start": 23088.74, + "end": 23090.34, + "probability": 0.5868 + }, + { + "start": 23090.8, + "end": 23090.84, + "probability": 0.0247 + }, + { + "start": 23090.84, + "end": 23091.64, + "probability": 0.5952 + }, + { + "start": 23092.4, + "end": 23095.32, + "probability": 0.841 + }, + { + "start": 23095.32, + "end": 23096.32, + "probability": 0.2702 + }, + { + "start": 23096.42, + "end": 23097.64, + "probability": 0.1259 + }, + { + "start": 23097.64, + "end": 23101.42, + "probability": 0.8064 + }, + { + "start": 23101.84, + "end": 23105.84, + "probability": 0.9941 + }, + { + "start": 23106.58, + "end": 23107.48, + "probability": 0.1131 + }, + { + "start": 23107.48, + "end": 23109.98, + "probability": 0.9915 + }, + { + "start": 23111.28, + "end": 23112.52, + "probability": 0.5881 + }, + { + "start": 23112.84, + "end": 23113.36, + "probability": 0.8964 + }, + { + "start": 23113.46, + "end": 23119.32, + "probability": 0.9902 + }, + { + "start": 23119.78, + "end": 23120.52, + "probability": 0.7902 + }, + { + "start": 23120.98, + "end": 23123.55, + "probability": 0.9415 + }, + { + "start": 23123.78, + "end": 23128.68, + "probability": 0.9863 + }, + { + "start": 23128.7, + "end": 23131.02, + "probability": 0.9813 + }, + { + "start": 23131.58, + "end": 23134.12, + "probability": 0.954 + }, + { + "start": 23134.4, + "end": 23134.54, + "probability": 0.3177 + }, + { + "start": 23134.54, + "end": 23136.2, + "probability": 0.8222 + }, + { + "start": 23136.56, + "end": 23137.96, + "probability": 0.8786 + }, + { + "start": 23138.14, + "end": 23138.78, + "probability": 0.5784 + }, + { + "start": 23138.98, + "end": 23140.36, + "probability": 0.9661 + }, + { + "start": 23140.86, + "end": 23141.44, + "probability": 0.892 + }, + { + "start": 23141.58, + "end": 23142.88, + "probability": 0.9928 + }, + { + "start": 23143.12, + "end": 23143.88, + "probability": 0.7214 + }, + { + "start": 23144.87, + "end": 23147.14, + "probability": 0.6352 + }, + { + "start": 23147.22, + "end": 23148.3, + "probability": 0.7778 + }, + { + "start": 23148.3, + "end": 23150.14, + "probability": 0.8164 + }, + { + "start": 23150.66, + "end": 23151.3, + "probability": 0.4219 + }, + { + "start": 23151.78, + "end": 23153.68, + "probability": 0.4412 + }, + { + "start": 23153.92, + "end": 23154.68, + "probability": 0.8709 + }, + { + "start": 23154.84, + "end": 23156.3, + "probability": 0.873 + }, + { + "start": 23157.1, + "end": 23157.76, + "probability": 0.9042 + }, + { + "start": 23158.5, + "end": 23160.28, + "probability": 0.983 + }, + { + "start": 23160.3, + "end": 23160.94, + "probability": 0.9066 + }, + { + "start": 23161.16, + "end": 23162.82, + "probability": 0.9785 + }, + { + "start": 23163.58, + "end": 23165.78, + "probability": 0.6945 + }, + { + "start": 23166.44, + "end": 23166.96, + "probability": 0.6525 + }, + { + "start": 23167.26, + "end": 23171.68, + "probability": 0.8092 + }, + { + "start": 23177.44, + "end": 23177.66, + "probability": 0.1221 + }, + { + "start": 23177.68, + "end": 23177.68, + "probability": 0.3533 + }, + { + "start": 23177.68, + "end": 23177.76, + "probability": 0.0227 + }, + { + "start": 23177.76, + "end": 23177.8, + "probability": 0.1199 + }, + { + "start": 23177.8, + "end": 23177.8, + "probability": 0.1923 + }, + { + "start": 23177.8, + "end": 23178.66, + "probability": 0.0989 + }, + { + "start": 23178.66, + "end": 23179.0, + "probability": 0.0496 + }, + { + "start": 23201.58, + "end": 23204.2, + "probability": 0.5362 + }, + { + "start": 23205.02, + "end": 23206.44, + "probability": 0.8546 + }, + { + "start": 23207.18, + "end": 23209.46, + "probability": 0.9702 + }, + { + "start": 23209.8, + "end": 23209.82, + "probability": 0.0394 + }, + { + "start": 23211.74, + "end": 23212.18, + "probability": 0.217 + }, + { + "start": 23213.38, + "end": 23213.58, + "probability": 0.1332 + }, + { + "start": 23213.7, + "end": 23214.68, + "probability": 0.6821 + }, + { + "start": 23214.92, + "end": 23216.23, + "probability": 0.9368 + }, + { + "start": 23217.44, + "end": 23221.88, + "probability": 0.9979 + }, + { + "start": 23222.44, + "end": 23224.61, + "probability": 0.8551 + }, + { + "start": 23225.24, + "end": 23226.97, + "probability": 0.9949 + }, + { + "start": 23227.26, + "end": 23227.96, + "probability": 0.8824 + }, + { + "start": 23228.96, + "end": 23230.58, + "probability": 0.8228 + }, + { + "start": 23231.26, + "end": 23232.26, + "probability": 0.8755 + }, + { + "start": 23232.52, + "end": 23238.16, + "probability": 0.9673 + }, + { + "start": 23238.16, + "end": 23243.96, + "probability": 0.9906 + }, + { + "start": 23244.44, + "end": 23245.8, + "probability": 0.9161 + }, + { + "start": 23246.46, + "end": 23250.34, + "probability": 0.8408 + }, + { + "start": 23251.2, + "end": 23252.94, + "probability": 0.9904 + }, + { + "start": 23253.36, + "end": 23256.22, + "probability": 0.9952 + }, + { + "start": 23256.8, + "end": 23259.04, + "probability": 0.9843 + }, + { + "start": 23259.44, + "end": 23260.86, + "probability": 0.9881 + }, + { + "start": 23261.02, + "end": 23261.7, + "probability": 0.9657 + }, + { + "start": 23262.84, + "end": 23263.68, + "probability": 0.745 + }, + { + "start": 23263.96, + "end": 23265.4, + "probability": 0.78 + }, + { + "start": 23265.92, + "end": 23266.92, + "probability": 0.8933 + }, + { + "start": 23266.98, + "end": 23267.42, + "probability": 0.5358 + }, + { + "start": 23267.48, + "end": 23268.02, + "probability": 0.7036 + }, + { + "start": 23268.12, + "end": 23269.14, + "probability": 0.9751 + }, + { + "start": 23269.2, + "end": 23270.21, + "probability": 0.9814 + }, + { + "start": 23271.08, + "end": 23272.86, + "probability": 0.9687 + }, + { + "start": 23286.44, + "end": 23288.0, + "probability": 0.9833 + }, + { + "start": 23289.38, + "end": 23290.8, + "probability": 0.1884 + }, + { + "start": 23290.92, + "end": 23293.38, + "probability": 0.011 + }, + { + "start": 23293.76, + "end": 23296.64, + "probability": 0.0233 + }, + { + "start": 23296.64, + "end": 23297.1, + "probability": 0.0288 + }, + { + "start": 23300.06, + "end": 23301.16, + "probability": 0.1118 + }, + { + "start": 23301.16, + "end": 23301.16, + "probability": 0.0844 + }, + { + "start": 23301.16, + "end": 23301.22, + "probability": 0.3157 + }, + { + "start": 23301.42, + "end": 23301.42, + "probability": 0.0483 + }, + { + "start": 23301.42, + "end": 23302.46, + "probability": 0.028 + }, + { + "start": 23302.5, + "end": 23302.5, + "probability": 0.1102 + }, + { + "start": 23302.5, + "end": 23302.5, + "probability": 0.2246 + }, + { + "start": 23302.5, + "end": 23302.5, + "probability": 0.0253 + }, + { + "start": 23302.5, + "end": 23302.5, + "probability": 0.0434 + }, + { + "start": 23302.5, + "end": 23302.5, + "probability": 0.0282 + }, + { + "start": 23302.5, + "end": 23302.5, + "probability": 0.1872 + }, + { + "start": 23302.5, + "end": 23304.6, + "probability": 0.4938 + }, + { + "start": 23305.5, + "end": 23307.2, + "probability": 0.4868 + }, + { + "start": 23307.78, + "end": 23309.14, + "probability": 0.9489 + }, + { + "start": 23309.5, + "end": 23311.12, + "probability": 0.9812 + }, + { + "start": 23311.44, + "end": 23312.02, + "probability": 0.9199 + }, + { + "start": 23312.26, + "end": 23312.74, + "probability": 0.6686 + }, + { + "start": 23313.04, + "end": 23313.46, + "probability": 0.7368 + }, + { + "start": 23314.44, + "end": 23320.06, + "probability": 0.9587 + }, + { + "start": 23320.22, + "end": 23322.98, + "probability": 0.9924 + }, + { + "start": 23323.44, + "end": 23324.72, + "probability": 0.694 + }, + { + "start": 23325.0, + "end": 23327.1, + "probability": 0.8893 + }, + { + "start": 23327.12, + "end": 23328.52, + "probability": 0.6804 + }, + { + "start": 23328.58, + "end": 23329.34, + "probability": 0.5157 + }, + { + "start": 23329.42, + "end": 23330.46, + "probability": 0.8353 + }, + { + "start": 23330.46, + "end": 23334.56, + "probability": 0.5714 + }, + { + "start": 23335.88, + "end": 23336.4, + "probability": 0.0578 + }, + { + "start": 23336.4, + "end": 23336.4, + "probability": 0.0789 + }, + { + "start": 23336.4, + "end": 23336.4, + "probability": 0.2198 + }, + { + "start": 23336.4, + "end": 23337.16, + "probability": 0.469 + }, + { + "start": 23337.26, + "end": 23338.32, + "probability": 0.5163 + }, + { + "start": 23338.44, + "end": 23339.92, + "probability": 0.4712 + }, + { + "start": 23340.0, + "end": 23341.26, + "probability": 0.1501 + }, + { + "start": 23341.48, + "end": 23342.18, + "probability": 0.8527 + }, + { + "start": 23342.3, + "end": 23343.12, + "probability": 0.9377 + }, + { + "start": 23343.72, + "end": 23345.72, + "probability": 0.9268 + }, + { + "start": 23346.86, + "end": 23348.94, + "probability": 0.2883 + }, + { + "start": 23349.84, + "end": 23352.5, + "probability": 0.9316 + }, + { + "start": 23353.52, + "end": 23354.25, + "probability": 0.7159 + }, + { + "start": 23354.6, + "end": 23355.98, + "probability": 0.6629 + }, + { + "start": 23356.38, + "end": 23360.48, + "probability": 0.4516 + }, + { + "start": 23360.7, + "end": 23362.36, + "probability": 0.1392 + }, + { + "start": 23362.36, + "end": 23362.36, + "probability": 0.0624 + }, + { + "start": 23362.36, + "end": 23362.36, + "probability": 0.1556 + }, + { + "start": 23362.36, + "end": 23362.6, + "probability": 0.1544 + }, + { + "start": 23363.04, + "end": 23365.92, + "probability": 0.6938 + }, + { + "start": 23366.3, + "end": 23368.14, + "probability": 0.4523 + }, + { + "start": 23368.14, + "end": 23369.64, + "probability": 0.2131 + }, + { + "start": 23369.88, + "end": 23371.62, + "probability": 0.6209 + }, + { + "start": 23371.62, + "end": 23372.26, + "probability": 0.4574 + }, + { + "start": 23373.12, + "end": 23374.16, + "probability": 0.7477 + }, + { + "start": 23374.36, + "end": 23378.86, + "probability": 0.8416 + }, + { + "start": 23379.8, + "end": 23382.14, + "probability": 0.4886 + }, + { + "start": 23383.38, + "end": 23384.0, + "probability": 0.0182 + }, + { + "start": 23384.0, + "end": 23384.78, + "probability": 0.4321 + }, + { + "start": 23385.16, + "end": 23386.16, + "probability": 0.9144 + }, + { + "start": 23386.8, + "end": 23386.8, + "probability": 0.3707 + }, + { + "start": 23386.8, + "end": 23387.64, + "probability": 0.5724 + }, + { + "start": 23388.08, + "end": 23389.72, + "probability": 0.9343 + }, + { + "start": 23389.98, + "end": 23392.42, + "probability": 0.9881 + }, + { + "start": 23392.46, + "end": 23393.08, + "probability": 0.8328 + }, + { + "start": 23393.16, + "end": 23393.78, + "probability": 0.9608 + }, + { + "start": 23393.88, + "end": 23395.12, + "probability": 0.9842 + }, + { + "start": 23395.38, + "end": 23395.62, + "probability": 0.9873 + }, + { + "start": 23396.16, + "end": 23396.68, + "probability": 0.8907 + }, + { + "start": 23396.78, + "end": 23398.18, + "probability": 0.8638 + }, + { + "start": 23398.3, + "end": 23399.72, + "probability": 0.9927 + }, + { + "start": 23400.3, + "end": 23404.18, + "probability": 0.7551 + }, + { + "start": 23404.74, + "end": 23406.22, + "probability": 0.5145 + }, + { + "start": 23406.24, + "end": 23408.14, + "probability": 0.7551 + }, + { + "start": 23408.64, + "end": 23409.36, + "probability": 0.5338 + }, + { + "start": 23409.5, + "end": 23410.0, + "probability": 0.6406 + }, + { + "start": 23410.04, + "end": 23410.94, + "probability": 0.9107 + }, + { + "start": 23412.96, + "end": 23416.66, + "probability": 0.5943 + }, + { + "start": 23416.66, + "end": 23417.82, + "probability": 0.7294 + }, + { + "start": 23417.9, + "end": 23418.98, + "probability": 0.896 + }, + { + "start": 23419.04, + "end": 23420.56, + "probability": 0.6997 + }, + { + "start": 23420.9, + "end": 23423.16, + "probability": 0.7239 + }, + { + "start": 23423.62, + "end": 23424.96, + "probability": 0.938 + }, + { + "start": 23425.42, + "end": 23426.66, + "probability": 0.875 + }, + { + "start": 23427.84, + "end": 23430.94, + "probability": 0.7692 + }, + { + "start": 23431.36, + "end": 23431.54, + "probability": 0.5657 + }, + { + "start": 23431.54, + "end": 23434.14, + "probability": 0.5613 + }, + { + "start": 23434.14, + "end": 23440.52, + "probability": 0.0996 + }, + { + "start": 23440.84, + "end": 23441.92, + "probability": 0.7922 + }, + { + "start": 23441.94, + "end": 23442.04, + "probability": 0.622 + }, + { + "start": 23442.36, + "end": 23444.47, + "probability": 0.9862 + }, + { + "start": 23444.84, + "end": 23445.91, + "probability": 0.8945 + }, + { + "start": 23446.3, + "end": 23450.28, + "probability": 0.8985 + }, + { + "start": 23450.42, + "end": 23452.18, + "probability": 0.8504 + }, + { + "start": 23452.4, + "end": 23453.98, + "probability": 0.332 + }, + { + "start": 23456.16, + "end": 23457.46, + "probability": 0.4834 + }, + { + "start": 23457.66, + "end": 23458.62, + "probability": 0.5795 + }, + { + "start": 23459.08, + "end": 23464.32, + "probability": 0.4783 + }, + { + "start": 23464.38, + "end": 23465.72, + "probability": 0.0163 + }, + { + "start": 23465.84, + "end": 23467.04, + "probability": 0.1598 + }, + { + "start": 23467.44, + "end": 23467.44, + "probability": 0.1791 + }, + { + "start": 23467.44, + "end": 23472.9, + "probability": 0.2314 + }, + { + "start": 23472.9, + "end": 23473.64, + "probability": 0.1659 + }, + { + "start": 23473.64, + "end": 23473.64, + "probability": 0.2398 + }, + { + "start": 23473.64, + "end": 23475.54, + "probability": 0.1576 + }, + { + "start": 23477.1, + "end": 23478.36, + "probability": 0.1546 + }, + { + "start": 23479.98, + "end": 23480.54, + "probability": 0.0696 + }, + { + "start": 23481.02, + "end": 23482.26, + "probability": 0.0193 + }, + { + "start": 23483.14, + "end": 23485.22, + "probability": 0.0108 + }, + { + "start": 23485.6, + "end": 23488.0, + "probability": 0.0673 + }, + { + "start": 23489.48, + "end": 23489.66, + "probability": 0.0769 + }, + { + "start": 23489.66, + "end": 23489.66, + "probability": 0.3143 + }, + { + "start": 23489.66, + "end": 23489.66, + "probability": 0.1073 + }, + { + "start": 23489.66, + "end": 23489.66, + "probability": 0.0756 + }, + { + "start": 23489.66, + "end": 23489.66, + "probability": 0.1974 + }, + { + "start": 23489.66, + "end": 23489.66, + "probability": 0.0983 + }, + { + "start": 23489.66, + "end": 23492.8, + "probability": 0.4651 + }, + { + "start": 23495.22, + "end": 23496.88, + "probability": 0.9072 + }, + { + "start": 23498.48, + "end": 23505.24, + "probability": 0.9841 + }, + { + "start": 23505.58, + "end": 23508.14, + "probability": 0.9932 + }, + { + "start": 23508.58, + "end": 23509.1, + "probability": 0.7272 + }, + { + "start": 23509.58, + "end": 23510.78, + "probability": 0.0655 + }, + { + "start": 23513.14, + "end": 23515.28, + "probability": 0.1722 + }, + { + "start": 23516.2, + "end": 23517.04, + "probability": 0.1336 + }, + { + "start": 23518.78, + "end": 23524.22, + "probability": 0.9375 + }, + { + "start": 23525.65, + "end": 23530.48, + "probability": 0.9525 + }, + { + "start": 23530.82, + "end": 23533.96, + "probability": 0.9995 + }, + { + "start": 23534.34, + "end": 23540.88, + "probability": 0.994 + }, + { + "start": 23541.58, + "end": 23542.28, + "probability": 0.9827 + }, + { + "start": 23542.88, + "end": 23543.46, + "probability": 0.6619 + }, + { + "start": 23543.64, + "end": 23544.83, + "probability": 0.8046 + }, + { + "start": 23545.22, + "end": 23547.22, + "probability": 0.9648 + }, + { + "start": 23547.38, + "end": 23548.29, + "probability": 0.9751 + }, + { + "start": 23550.34, + "end": 23553.38, + "probability": 0.6746 + }, + { + "start": 23553.96, + "end": 23557.52, + "probability": 0.9893 + }, + { + "start": 23557.52, + "end": 23560.64, + "probability": 0.9968 + }, + { + "start": 23561.6, + "end": 23562.86, + "probability": 0.8459 + }, + { + "start": 23562.98, + "end": 23563.86, + "probability": 0.7806 + }, + { + "start": 23563.94, + "end": 23564.34, + "probability": 0.7972 + }, + { + "start": 23564.56, + "end": 23565.92, + "probability": 0.9928 + }, + { + "start": 23566.32, + "end": 23569.08, + "probability": 0.9748 + }, + { + "start": 23569.96, + "end": 23571.1, + "probability": 0.7393 + }, + { + "start": 23571.16, + "end": 23571.4, + "probability": 0.4329 + }, + { + "start": 23571.52, + "end": 23575.06, + "probability": 0.9883 + }, + { + "start": 23575.28, + "end": 23576.01, + "probability": 0.4741 + }, + { + "start": 23576.78, + "end": 23581.34, + "probability": 0.9198 + }, + { + "start": 23583.78, + "end": 23587.52, + "probability": 0.856 + }, + { + "start": 23588.02, + "end": 23590.39, + "probability": 0.9805 + }, + { + "start": 23590.72, + "end": 23592.76, + "probability": 0.2046 + }, + { + "start": 23594.6, + "end": 23595.92, + "probability": 0.6594 + }, + { + "start": 23596.32, + "end": 23596.92, + "probability": 0.7651 + }, + { + "start": 23597.02, + "end": 23597.86, + "probability": 0.9739 + }, + { + "start": 23598.1, + "end": 23599.19, + "probability": 0.9958 + }, + { + "start": 23599.38, + "end": 23600.99, + "probability": 0.9774 + }, + { + "start": 23601.66, + "end": 23603.84, + "probability": 0.9882 + }, + { + "start": 23604.46, + "end": 23608.58, + "probability": 0.9925 + }, + { + "start": 23608.7, + "end": 23609.75, + "probability": 0.851 + }, + { + "start": 23610.32, + "end": 23613.14, + "probability": 0.9746 + }, + { + "start": 23613.78, + "end": 23616.44, + "probability": 0.9365 + }, + { + "start": 23617.06, + "end": 23617.38, + "probability": 0.7126 + }, + { + "start": 23617.56, + "end": 23618.51, + "probability": 0.9946 + }, + { + "start": 23619.92, + "end": 23622.58, + "probability": 0.7791 + }, + { + "start": 23622.58, + "end": 23624.36, + "probability": 0.8018 + }, + { + "start": 23624.42, + "end": 23625.24, + "probability": 0.8181 + }, + { + "start": 23625.32, + "end": 23625.86, + "probability": 0.8973 + }, + { + "start": 23626.0, + "end": 23626.62, + "probability": 0.9911 + }, + { + "start": 23626.78, + "end": 23627.48, + "probability": 0.9691 + }, + { + "start": 23627.78, + "end": 23628.8, + "probability": 0.9727 + }, + { + "start": 23629.46, + "end": 23634.28, + "probability": 0.9901 + }, + { + "start": 23634.42, + "end": 23635.45, + "probability": 0.8355 + }, + { + "start": 23636.6, + "end": 23637.78, + "probability": 0.9482 + }, + { + "start": 23637.86, + "end": 23639.12, + "probability": 0.5337 + }, + { + "start": 23639.22, + "end": 23640.36, + "probability": 0.8486 + }, + { + "start": 23640.68, + "end": 23642.42, + "probability": 0.9806 + }, + { + "start": 23642.84, + "end": 23644.0, + "probability": 0.7163 + }, + { + "start": 23644.34, + "end": 23648.12, + "probability": 0.7488 + }, + { + "start": 23648.68, + "end": 23651.44, + "probability": 0.6825 + }, + { + "start": 23651.94, + "end": 23652.68, + "probability": 0.7092 + }, + { + "start": 23652.72, + "end": 23659.32, + "probability": 0.9325 + }, + { + "start": 23659.32, + "end": 23665.86, + "probability": 0.9777 + }, + { + "start": 23666.42, + "end": 23668.39, + "probability": 0.9977 + }, + { + "start": 23668.54, + "end": 23668.78, + "probability": 0.8201 + }, + { + "start": 23668.94, + "end": 23670.4, + "probability": 0.9785 + }, + { + "start": 23671.8, + "end": 23673.7, + "probability": 0.832 + }, + { + "start": 23673.82, + "end": 23675.33, + "probability": 0.8998 + }, + { + "start": 23676.64, + "end": 23678.52, + "probability": 0.703 + }, + { + "start": 23680.22, + "end": 23681.72, + "probability": 0.5041 + }, + { + "start": 23681.94, + "end": 23684.48, + "probability": 0.975 + }, + { + "start": 23685.04, + "end": 23686.22, + "probability": 0.3236 + }, + { + "start": 23686.9, + "end": 23687.88, + "probability": 0.8997 + }, + { + "start": 23688.86, + "end": 23692.56, + "probability": 0.9951 + }, + { + "start": 23692.72, + "end": 23695.28, + "probability": 0.9656 + }, + { + "start": 23695.72, + "end": 23699.04, + "probability": 0.2632 + }, + { + "start": 23700.27, + "end": 23703.08, + "probability": 0.3303 + }, + { + "start": 23703.08, + "end": 23703.74, + "probability": 0.8677 + }, + { + "start": 23704.18, + "end": 23704.94, + "probability": 0.3696 + }, + { + "start": 23704.94, + "end": 23705.7, + "probability": 0.0817 + }, + { + "start": 23706.0, + "end": 23706.56, + "probability": 0.79 + }, + { + "start": 23706.84, + "end": 23707.54, + "probability": 0.8613 + }, + { + "start": 23707.98, + "end": 23709.46, + "probability": 0.9499 + }, + { + "start": 23709.92, + "end": 23711.08, + "probability": 0.8127 + }, + { + "start": 23711.5, + "end": 23715.18, + "probability": 0.9581 + }, + { + "start": 23715.38, + "end": 23721.1, + "probability": 0.9774 + }, + { + "start": 23721.68, + "end": 23726.52, + "probability": 0.9468 + }, + { + "start": 23727.1, + "end": 23730.28, + "probability": 0.9497 + }, + { + "start": 23730.82, + "end": 23732.68, + "probability": 0.9803 + }, + { + "start": 23733.04, + "end": 23735.04, + "probability": 0.9308 + }, + { + "start": 23735.56, + "end": 23738.64, + "probability": 0.9006 + }, + { + "start": 23738.94, + "end": 23743.82, + "probability": 0.9958 + }, + { + "start": 23744.24, + "end": 23745.66, + "probability": 0.8593 + }, + { + "start": 23746.34, + "end": 23747.82, + "probability": 0.7516 + }, + { + "start": 23748.4, + "end": 23751.2, + "probability": 0.9985 + }, + { + "start": 23752.08, + "end": 23754.02, + "probability": 0.9902 + }, + { + "start": 23754.48, + "end": 23756.04, + "probability": 0.7251 + }, + { + "start": 23756.24, + "end": 23757.97, + "probability": 0.9113 + }, + { + "start": 23758.06, + "end": 23759.14, + "probability": 0.5827 + }, + { + "start": 23760.02, + "end": 23764.7, + "probability": 0.9897 + }, + { + "start": 23765.0, + "end": 23766.42, + "probability": 0.5222 + }, + { + "start": 23766.88, + "end": 23771.26, + "probability": 0.98 + }, + { + "start": 23771.76, + "end": 23772.56, + "probability": 0.9174 + }, + { + "start": 23772.72, + "end": 23773.82, + "probability": 0.9448 + }, + { + "start": 23774.26, + "end": 23774.54, + "probability": 0.501 + }, + { + "start": 23774.54, + "end": 23776.92, + "probability": 0.9395 + }, + { + "start": 23777.32, + "end": 23780.94, + "probability": 0.7548 + }, + { + "start": 23781.44, + "end": 23787.6, + "probability": 0.7104 + }, + { + "start": 23787.96, + "end": 23789.4, + "probability": 0.8917 + }, + { + "start": 23789.7, + "end": 23791.1, + "probability": 0.769 + }, + { + "start": 23791.52, + "end": 23794.6, + "probability": 0.9652 + }, + { + "start": 23795.32, + "end": 23796.76, + "probability": 0.8801 + }, + { + "start": 23797.34, + "end": 23799.18, + "probability": 0.9237 + }, + { + "start": 23799.82, + "end": 23801.12, + "probability": 0.9092 + }, + { + "start": 23801.68, + "end": 23803.92, + "probability": 0.6462 + }, + { + "start": 23804.1, + "end": 23804.16, + "probability": 0.6046 + }, + { + "start": 23804.26, + "end": 23804.58, + "probability": 0.7805 + }, + { + "start": 23804.74, + "end": 23805.6, + "probability": 0.7732 + }, + { + "start": 23805.76, + "end": 23808.36, + "probability": 0.8781 + }, + { + "start": 23808.76, + "end": 23810.72, + "probability": 0.998 + }, + { + "start": 23811.44, + "end": 23813.56, + "probability": 0.9651 + }, + { + "start": 23814.14, + "end": 23817.44, + "probability": 0.8844 + }, + { + "start": 23817.54, + "end": 23818.54, + "probability": 0.7994 + }, + { + "start": 23818.7, + "end": 23819.62, + "probability": 0.7252 + }, + { + "start": 23820.81, + "end": 23824.62, + "probability": 0.9595 + }, + { + "start": 23824.92, + "end": 23825.28, + "probability": 0.5387 + }, + { + "start": 23825.32, + "end": 23827.5, + "probability": 0.674 + }, + { + "start": 23827.62, + "end": 23828.18, + "probability": 0.9381 + }, + { + "start": 23828.64, + "end": 23830.32, + "probability": 0.9128 + }, + { + "start": 23830.4, + "end": 23836.94, + "probability": 0.9666 + }, + { + "start": 23837.18, + "end": 23837.5, + "probability": 0.4823 + }, + { + "start": 23837.5, + "end": 23838.28, + "probability": 0.9985 + }, + { + "start": 23838.84, + "end": 23842.23, + "probability": 0.9985 + }, + { + "start": 23842.92, + "end": 23844.1, + "probability": 0.0164 + }, + { + "start": 23845.56, + "end": 23845.82, + "probability": 0.0233 + }, + { + "start": 23846.2, + "end": 23846.2, + "probability": 0.1935 + }, + { + "start": 23846.2, + "end": 23848.22, + "probability": 0.7591 + }, + { + "start": 23849.02, + "end": 23852.04, + "probability": 0.9435 + }, + { + "start": 23852.7, + "end": 23855.29, + "probability": 0.988 + }, + { + "start": 23855.6, + "end": 23856.24, + "probability": 0.7921 + }, + { + "start": 23856.34, + "end": 23857.56, + "probability": 0.7851 + }, + { + "start": 23857.6, + "end": 23859.8, + "probability": 0.9788 + }, + { + "start": 23860.14, + "end": 23861.92, + "probability": 0.9208 + }, + { + "start": 23862.22, + "end": 23863.84, + "probability": 0.9465 + }, + { + "start": 23864.22, + "end": 23865.32, + "probability": 0.9211 + }, + { + "start": 23865.78, + "end": 23869.44, + "probability": 0.9937 + }, + { + "start": 23869.78, + "end": 23871.6, + "probability": 0.9661 + }, + { + "start": 23871.8, + "end": 23872.78, + "probability": 0.9484 + }, + { + "start": 23873.56, + "end": 23874.76, + "probability": 0.5649 + }, + { + "start": 23874.76, + "end": 23875.46, + "probability": 0.8585 + }, + { + "start": 23876.36, + "end": 23877.58, + "probability": 0.512 + }, + { + "start": 23879.18, + "end": 23880.28, + "probability": 0.6732 + }, + { + "start": 23881.02, + "end": 23882.39, + "probability": 0.9899 + }, + { + "start": 23883.18, + "end": 23884.52, + "probability": 0.9634 + }, + { + "start": 23885.12, + "end": 23888.9, + "probability": 0.9689 + }, + { + "start": 23889.46, + "end": 23891.08, + "probability": 0.8154 + }, + { + "start": 23891.1, + "end": 23891.16, + "probability": 0.6774 + }, + { + "start": 23891.16, + "end": 23893.8, + "probability": 0.5259 + }, + { + "start": 23894.44, + "end": 23895.56, + "probability": 0.7944 + }, + { + "start": 23896.1, + "end": 23897.62, + "probability": 0.8057 + }, + { + "start": 23897.98, + "end": 23899.42, + "probability": 0.8848 + }, + { + "start": 23899.82, + "end": 23902.46, + "probability": 0.9719 + }, + { + "start": 23902.58, + "end": 23908.64, + "probability": 0.8329 + }, + { + "start": 23908.64, + "end": 23914.04, + "probability": 0.9813 + }, + { + "start": 23914.62, + "end": 23916.02, + "probability": 0.9246 + }, + { + "start": 23916.32, + "end": 23917.26, + "probability": 0.8397 + }, + { + "start": 23917.4, + "end": 23918.48, + "probability": 0.9045 + }, + { + "start": 23918.84, + "end": 23922.46, + "probability": 0.9928 + }, + { + "start": 23922.82, + "end": 23924.56, + "probability": 0.7042 + }, + { + "start": 23924.68, + "end": 23927.86, + "probability": 0.9133 + }, + { + "start": 23928.34, + "end": 23931.38, + "probability": 0.9792 + }, + { + "start": 23931.48, + "end": 23931.54, + "probability": 0.0035 + }, + { + "start": 23931.54, + "end": 23932.14, + "probability": 0.4124 + }, + { + "start": 23932.82, + "end": 23935.02, + "probability": 0.6614 + }, + { + "start": 23935.42, + "end": 23940.02, + "probability": 0.8555 + }, + { + "start": 23940.1, + "end": 23941.94, + "probability": 0.9969 + }, + { + "start": 23942.1, + "end": 23945.66, + "probability": 0.8278 + }, + { + "start": 23945.9, + "end": 23945.9, + "probability": 0.4083 + }, + { + "start": 23945.9, + "end": 23948.37, + "probability": 0.7415 + }, + { + "start": 23948.84, + "end": 23949.82, + "probability": 0.9089 + }, + { + "start": 23949.82, + "end": 23951.06, + "probability": 0.8789 + }, + { + "start": 23951.4, + "end": 23953.56, + "probability": 0.97 + }, + { + "start": 23954.18, + "end": 23956.24, + "probability": 0.8435 + }, + { + "start": 23956.34, + "end": 23958.32, + "probability": 0.9236 + }, + { + "start": 23960.17, + "end": 23963.92, + "probability": 0.9621 + }, + { + "start": 23964.98, + "end": 23967.66, + "probability": 0.4653 + }, + { + "start": 23968.96, + "end": 23970.06, + "probability": 0.4661 + }, + { + "start": 23970.14, + "end": 23971.52, + "probability": 0.7145 + }, + { + "start": 23971.99, + "end": 23974.32, + "probability": 0.837 + }, + { + "start": 23979.72, + "end": 23980.56, + "probability": 0.5946 + }, + { + "start": 23981.88, + "end": 23984.92, + "probability": 0.9448 + }, + { + "start": 23991.04, + "end": 23992.08, + "probability": 0.6011 + }, + { + "start": 23993.32, + "end": 23995.2, + "probability": 0.674 + }, + { + "start": 23996.7, + "end": 24000.3, + "probability": 0.9277 + }, + { + "start": 24001.18, + "end": 24002.1, + "probability": 0.98 + }, + { + "start": 24003.26, + "end": 24004.58, + "probability": 0.9639 + }, + { + "start": 24005.3, + "end": 24006.34, + "probability": 0.995 + }, + { + "start": 24007.28, + "end": 24008.64, + "probability": 0.7156 + }, + { + "start": 24008.86, + "end": 24010.14, + "probability": 0.9845 + }, + { + "start": 24010.26, + "end": 24011.22, + "probability": 0.9006 + }, + { + "start": 24012.24, + "end": 24016.34, + "probability": 0.9949 + }, + { + "start": 24017.14, + "end": 24019.67, + "probability": 0.998 + }, + { + "start": 24019.98, + "end": 24021.48, + "probability": 0.9827 + }, + { + "start": 24021.9, + "end": 24022.57, + "probability": 0.9035 + }, + { + "start": 24023.14, + "end": 24027.9, + "probability": 0.9915 + }, + { + "start": 24029.2, + "end": 24033.4, + "probability": 0.8802 + }, + { + "start": 24034.44, + "end": 24037.38, + "probability": 0.9958 + }, + { + "start": 24038.44, + "end": 24042.24, + "probability": 0.9902 + }, + { + "start": 24043.22, + "end": 24046.28, + "probability": 0.9941 + }, + { + "start": 24046.28, + "end": 24049.36, + "probability": 0.9997 + }, + { + "start": 24051.04, + "end": 24051.04, + "probability": 0.2058 + }, + { + "start": 24051.04, + "end": 24051.52, + "probability": 0.4912 + }, + { + "start": 24051.98, + "end": 24056.7, + "probability": 0.9971 + }, + { + "start": 24057.52, + "end": 24058.66, + "probability": 0.6858 + }, + { + "start": 24058.9, + "end": 24060.7, + "probability": 0.9312 + }, + { + "start": 24061.02, + "end": 24062.42, + "probability": 0.6008 + }, + { + "start": 24062.98, + "end": 24064.94, + "probability": 0.9824 + }, + { + "start": 24065.86, + "end": 24067.56, + "probability": 0.7503 + }, + { + "start": 24068.6, + "end": 24071.74, + "probability": 0.79 + }, + { + "start": 24072.18, + "end": 24076.48, + "probability": 0.961 + }, + { + "start": 24077.0, + "end": 24078.26, + "probability": 0.8466 + }, + { + "start": 24079.12, + "end": 24085.53, + "probability": 0.9556 + }, + { + "start": 24086.5, + "end": 24088.86, + "probability": 0.9922 + }, + { + "start": 24089.88, + "end": 24091.38, + "probability": 0.9956 + }, + { + "start": 24092.38, + "end": 24094.22, + "probability": 0.8256 + }, + { + "start": 24094.94, + "end": 24095.92, + "probability": 0.9541 + }, + { + "start": 24096.38, + "end": 24100.36, + "probability": 0.8901 + }, + { + "start": 24102.14, + "end": 24102.5, + "probability": 0.0127 + }, + { + "start": 24102.5, + "end": 24102.52, + "probability": 0.7796 + }, + { + "start": 24102.52, + "end": 24102.52, + "probability": 0.0714 + }, + { + "start": 24102.52, + "end": 24103.06, + "probability": 0.5324 + }, + { + "start": 24103.06, + "end": 24103.06, + "probability": 0.4009 + }, + { + "start": 24103.06, + "end": 24104.02, + "probability": 0.7722 + }, + { + "start": 24104.2, + "end": 24105.8, + "probability": 0.8139 + }, + { + "start": 24106.26, + "end": 24108.44, + "probability": 0.8175 + }, + { + "start": 24108.44, + "end": 24108.84, + "probability": 0.0175 + }, + { + "start": 24108.84, + "end": 24110.02, + "probability": 0.5 + }, + { + "start": 24110.22, + "end": 24112.44, + "probability": 0.6238 + }, + { + "start": 24113.04, + "end": 24113.16, + "probability": 0.0039 + }, + { + "start": 24113.24, + "end": 24114.0, + "probability": 0.1368 + }, + { + "start": 24114.2, + "end": 24116.52, + "probability": 0.8274 + }, + { + "start": 24116.52, + "end": 24119.32, + "probability": 0.9892 + }, + { + "start": 24119.72, + "end": 24125.26, + "probability": 0.4523 + }, + { + "start": 24126.34, + "end": 24126.34, + "probability": 0.0398 + }, + { + "start": 24126.34, + "end": 24126.34, + "probability": 0.0733 + }, + { + "start": 24126.34, + "end": 24127.7, + "probability": 0.1971 + }, + { + "start": 24128.06, + "end": 24128.92, + "probability": 0.5594 + }, + { + "start": 24129.3, + "end": 24130.21, + "probability": 0.835 + }, + { + "start": 24133.0, + "end": 24133.0, + "probability": 0.0529 + }, + { + "start": 24133.73, + "end": 24135.07, + "probability": 0.1725 + }, + { + "start": 24135.72, + "end": 24136.9, + "probability": 0.5201 + }, + { + "start": 24137.62, + "end": 24138.94, + "probability": 0.9178 + }, + { + "start": 24139.86, + "end": 24143.32, + "probability": 0.9163 + }, + { + "start": 24143.6, + "end": 24146.28, + "probability": 0.9673 + }, + { + "start": 24147.38, + "end": 24148.51, + "probability": 0.9542 + }, + { + "start": 24149.52, + "end": 24152.94, + "probability": 0.9885 + }, + { + "start": 24153.08, + "end": 24158.16, + "probability": 0.9692 + }, + { + "start": 24158.5, + "end": 24160.08, + "probability": 0.7181 + }, + { + "start": 24160.44, + "end": 24161.68, + "probability": 0.9 + }, + { + "start": 24162.2, + "end": 24164.3, + "probability": 0.8291 + }, + { + "start": 24165.62, + "end": 24166.12, + "probability": 0.6031 + }, + { + "start": 24166.28, + "end": 24166.68, + "probability": 0.8389 + }, + { + "start": 24166.78, + "end": 24169.24, + "probability": 0.9954 + }, + { + "start": 24169.34, + "end": 24170.3, + "probability": 0.8043 + }, + { + "start": 24170.72, + "end": 24172.46, + "probability": 0.9974 + }, + { + "start": 24172.76, + "end": 24174.68, + "probability": 0.8804 + }, + { + "start": 24174.88, + "end": 24175.94, + "probability": 0.9827 + }, + { + "start": 24176.26, + "end": 24181.38, + "probability": 0.8715 + }, + { + "start": 24182.42, + "end": 24183.9, + "probability": 0.2049 + }, + { + "start": 24183.9, + "end": 24183.9, + "probability": 0.0324 + }, + { + "start": 24183.9, + "end": 24183.9, + "probability": 0.7582 + }, + { + "start": 24183.9, + "end": 24184.34, + "probability": 0.4097 + }, + { + "start": 24184.44, + "end": 24185.48, + "probability": 0.6941 + }, + { + "start": 24185.56, + "end": 24192.02, + "probability": 0.9268 + }, + { + "start": 24192.74, + "end": 24193.5, + "probability": 0.9111 + }, + { + "start": 24194.18, + "end": 24194.78, + "probability": 0.9614 + }, + { + "start": 24195.28, + "end": 24196.12, + "probability": 0.6513 + }, + { + "start": 24196.54, + "end": 24199.24, + "probability": 0.9877 + }, + { + "start": 24199.32, + "end": 24199.86, + "probability": 0.9036 + }, + { + "start": 24200.08, + "end": 24201.8, + "probability": 0.7849 + }, + { + "start": 24202.18, + "end": 24205.1, + "probability": 0.846 + }, + { + "start": 24216.96, + "end": 24218.42, + "probability": 0.739 + }, + { + "start": 24218.82, + "end": 24220.02, + "probability": 0.1769 + }, + { + "start": 24221.34, + "end": 24221.96, + "probability": 0.6263 + }, + { + "start": 24222.31, + "end": 24224.2, + "probability": 0.8014 + }, + { + "start": 24224.28, + "end": 24226.08, + "probability": 0.9423 + }, + { + "start": 24226.08, + "end": 24231.92, + "probability": 0.921 + }, + { + "start": 24231.92, + "end": 24234.7, + "probability": 0.6251 + }, + { + "start": 24235.06, + "end": 24236.2, + "probability": 0.2584 + }, + { + "start": 24236.8, + "end": 24237.46, + "probability": 0.6499 + }, + { + "start": 24237.52, + "end": 24238.82, + "probability": 0.9847 + }, + { + "start": 24239.6, + "end": 24240.8, + "probability": 0.9419 + }, + { + "start": 24241.04, + "end": 24242.4, + "probability": 0.4482 + }, + { + "start": 24243.16, + "end": 24245.96, + "probability": 0.8962 + }, + { + "start": 24246.74, + "end": 24251.04, + "probability": 0.9845 + }, + { + "start": 24251.34, + "end": 24254.6, + "probability": 0.5541 + }, + { + "start": 24255.28, + "end": 24257.4, + "probability": 0.9861 + }, + { + "start": 24257.92, + "end": 24261.14, + "probability": 0.9954 + }, + { + "start": 24261.14, + "end": 24263.64, + "probability": 0.9992 + }, + { + "start": 24264.84, + "end": 24265.86, + "probability": 0.6577 + }, + { + "start": 24265.94, + "end": 24267.18, + "probability": 0.8746 + }, + { + "start": 24269.38, + "end": 24271.18, + "probability": 0.017 + }, + { + "start": 24271.56, + "end": 24274.14, + "probability": 0.3464 + }, + { + "start": 24275.02, + "end": 24277.0, + "probability": 0.9615 + }, + { + "start": 24277.24, + "end": 24278.3, + "probability": 0.9907 + }, + { + "start": 24278.6, + "end": 24279.87, + "probability": 0.7802 + }, + { + "start": 24281.44, + "end": 24285.34, + "probability": 0.4052 + }, + { + "start": 24286.12, + "end": 24286.34, + "probability": 0.0172 + }, + { + "start": 24286.34, + "end": 24286.42, + "probability": 0.1136 + }, + { + "start": 24286.42, + "end": 24286.42, + "probability": 0.0795 + }, + { + "start": 24286.42, + "end": 24286.42, + "probability": 0.0994 + }, + { + "start": 24286.42, + "end": 24286.5, + "probability": 0.272 + }, + { + "start": 24286.5, + "end": 24287.28, + "probability": 0.2806 + }, + { + "start": 24287.34, + "end": 24288.46, + "probability": 0.7007 + }, + { + "start": 24288.52, + "end": 24290.06, + "probability": 0.5028 + }, + { + "start": 24292.22, + "end": 24292.96, + "probability": 0.1919 + }, + { + "start": 24293.08, + "end": 24293.66, + "probability": 0.3879 + }, + { + "start": 24293.66, + "end": 24295.26, + "probability": 0.4496 + }, + { + "start": 24296.08, + "end": 24299.0, + "probability": 0.8372 + }, + { + "start": 24299.06, + "end": 24301.86, + "probability": 0.9953 + }, + { + "start": 24303.71, + "end": 24307.06, + "probability": 0.8935 + }, + { + "start": 24307.18, + "end": 24309.28, + "probability": 0.5929 + }, + { + "start": 24309.96, + "end": 24315.14, + "probability": 0.9398 + }, + { + "start": 24315.78, + "end": 24318.23, + "probability": 0.9907 + }, + { + "start": 24318.96, + "end": 24320.32, + "probability": 0.8825 + }, + { + "start": 24320.68, + "end": 24321.64, + "probability": 0.4576 + }, + { + "start": 24321.76, + "end": 24322.58, + "probability": 0.8669 + }, + { + "start": 24322.62, + "end": 24323.42, + "probability": 0.9656 + }, + { + "start": 24323.46, + "end": 24324.2, + "probability": 0.9728 + }, + { + "start": 24324.24, + "end": 24324.84, + "probability": 0.9565 + }, + { + "start": 24324.84, + "end": 24325.6, + "probability": 0.9265 + }, + { + "start": 24325.68, + "end": 24326.32, + "probability": 0.5471 + }, + { + "start": 24326.64, + "end": 24329.98, + "probability": 0.9883 + }, + { + "start": 24330.9, + "end": 24331.46, + "probability": 0.9294 + }, + { + "start": 24331.48, + "end": 24331.72, + "probability": 0.8593 + }, + { + "start": 24331.84, + "end": 24334.42, + "probability": 0.9934 + }, + { + "start": 24335.64, + "end": 24337.76, + "probability": 0.9309 + }, + { + "start": 24338.88, + "end": 24342.36, + "probability": 0.9936 + }, + { + "start": 24342.48, + "end": 24343.24, + "probability": 0.9064 + }, + { + "start": 24343.34, + "end": 24343.56, + "probability": 0.7266 + }, + { + "start": 24343.7, + "end": 24344.1, + "probability": 0.822 + }, + { + "start": 24344.2, + "end": 24344.6, + "probability": 0.5541 + }, + { + "start": 24344.66, + "end": 24345.46, + "probability": 0.8249 + }, + { + "start": 24346.0, + "end": 24346.22, + "probability": 0.4203 + }, + { + "start": 24346.28, + "end": 24347.9, + "probability": 0.9265 + }, + { + "start": 24347.98, + "end": 24350.48, + "probability": 0.9392 + }, + { + "start": 24351.2, + "end": 24352.9, + "probability": 0.9077 + }, + { + "start": 24352.94, + "end": 24353.68, + "probability": 0.4569 + }, + { + "start": 24353.8, + "end": 24354.56, + "probability": 0.7391 + }, + { + "start": 24354.62, + "end": 24355.02, + "probability": 0.7354 + }, + { + "start": 24355.04, + "end": 24355.44, + "probability": 0.5015 + }, + { + "start": 24355.56, + "end": 24355.68, + "probability": 0.7205 + }, + { + "start": 24355.74, + "end": 24360.04, + "probability": 0.9951 + }, + { + "start": 24360.1, + "end": 24360.24, + "probability": 0.8221 + }, + { + "start": 24360.36, + "end": 24361.68, + "probability": 0.8358 + }, + { + "start": 24361.74, + "end": 24362.96, + "probability": 0.9071 + }, + { + "start": 24363.12, + "end": 24364.56, + "probability": 0.9788 + }, + { + "start": 24365.28, + "end": 24367.12, + "probability": 0.9902 + }, + { + "start": 24367.76, + "end": 24369.64, + "probability": 0.9731 + }, + { + "start": 24369.64, + "end": 24371.44, + "probability": 0.7306 + }, + { + "start": 24372.22, + "end": 24376.06, + "probability": 0.9594 + }, + { + "start": 24376.4, + "end": 24377.72, + "probability": 0.9775 + }, + { + "start": 24377.76, + "end": 24379.24, + "probability": 0.8599 + }, + { + "start": 24379.34, + "end": 24379.5, + "probability": 0.6646 + }, + { + "start": 24379.58, + "end": 24380.12, + "probability": 0.7383 + }, + { + "start": 24380.12, + "end": 24381.04, + "probability": 0.7122 + }, + { + "start": 24381.96, + "end": 24385.34, + "probability": 0.9839 + }, + { + "start": 24385.44, + "end": 24385.98, + "probability": 0.9372 + }, + { + "start": 24386.02, + "end": 24387.03, + "probability": 0.9823 + }, + { + "start": 24387.1, + "end": 24387.66, + "probability": 0.8264 + }, + { + "start": 24387.72, + "end": 24388.68, + "probability": 0.8296 + }, + { + "start": 24389.48, + "end": 24389.64, + "probability": 0.5081 + }, + { + "start": 24389.78, + "end": 24391.54, + "probability": 0.9478 + }, + { + "start": 24391.85, + "end": 24393.42, + "probability": 0.9709 + }, + { + "start": 24393.48, + "end": 24396.24, + "probability": 0.984 + }, + { + "start": 24396.24, + "end": 24398.7, + "probability": 0.9792 + }, + { + "start": 24399.46, + "end": 24401.22, + "probability": 0.9179 + }, + { + "start": 24401.34, + "end": 24401.92, + "probability": 0.5256 + }, + { + "start": 24402.02, + "end": 24407.36, + "probability": 0.9933 + }, + { + "start": 24407.44, + "end": 24408.28, + "probability": 0.829 + }, + { + "start": 24408.36, + "end": 24408.56, + "probability": 0.5511 + }, + { + "start": 24408.62, + "end": 24412.1, + "probability": 0.9469 + }, + { + "start": 24412.1, + "end": 24412.28, + "probability": 0.3445 + }, + { + "start": 24412.4, + "end": 24412.44, + "probability": 0.451 + }, + { + "start": 24412.44, + "end": 24412.44, + "probability": 0.4002 + }, + { + "start": 24412.54, + "end": 24414.42, + "probability": 0.9924 + }, + { + "start": 24414.56, + "end": 24415.44, + "probability": 0.8345 + }, + { + "start": 24415.52, + "end": 24418.42, + "probability": 0.9934 + }, + { + "start": 24418.56, + "end": 24419.36, + "probability": 0.8612 + }, + { + "start": 24419.68, + "end": 24420.82, + "probability": 0.9388 + }, + { + "start": 24421.1, + "end": 24422.92, + "probability": 0.2038 + }, + { + "start": 24423.64, + "end": 24425.72, + "probability": 0.9587 + }, + { + "start": 24426.0, + "end": 24427.6, + "probability": 0.9468 + }, + { + "start": 24427.74, + "end": 24428.44, + "probability": 0.4346 + }, + { + "start": 24428.8, + "end": 24430.5, + "probability": 0.8794 + }, + { + "start": 24430.62, + "end": 24432.88, + "probability": 0.9856 + }, + { + "start": 24433.24, + "end": 24434.56, + "probability": 0.6347 + }, + { + "start": 24434.56, + "end": 24437.04, + "probability": 0.9722 + }, + { + "start": 24437.1, + "end": 24437.34, + "probability": 0.7519 + }, + { + "start": 24437.74, + "end": 24439.94, + "probability": 0.9263 + }, + { + "start": 24440.04, + "end": 24444.64, + "probability": 0.9717 + }, + { + "start": 24445.66, + "end": 24446.58, + "probability": 0.7795 + }, + { + "start": 24458.18, + "end": 24460.72, + "probability": 0.6014 + }, + { + "start": 24461.32, + "end": 24464.58, + "probability": 0.994 + }, + { + "start": 24466.98, + "end": 24468.94, + "probability": 0.9432 + }, + { + "start": 24469.66, + "end": 24472.7, + "probability": 0.9535 + }, + { + "start": 24473.12, + "end": 24474.04, + "probability": 0.401 + }, + { + "start": 24474.08, + "end": 24474.76, + "probability": 0.2164 + }, + { + "start": 24474.86, + "end": 24476.46, + "probability": 0.8426 + }, + { + "start": 24476.98, + "end": 24480.92, + "probability": 0.7972 + }, + { + "start": 24481.16, + "end": 24481.64, + "probability": 0.5583 + }, + { + "start": 24481.7, + "end": 24483.44, + "probability": 0.885 + }, + { + "start": 24483.48, + "end": 24485.16, + "probability": 0.9276 + }, + { + "start": 24485.2, + "end": 24486.74, + "probability": 0.9969 + }, + { + "start": 24487.7, + "end": 24491.74, + "probability": 0.9248 + }, + { + "start": 24492.32, + "end": 24492.56, + "probability": 0.4232 + }, + { + "start": 24492.72, + "end": 24495.04, + "probability": 0.8146 + }, + { + "start": 24495.5, + "end": 24497.04, + "probability": 0.9983 + }, + { + "start": 24497.2, + "end": 24498.54, + "probability": 0.9377 + }, + { + "start": 24498.9, + "end": 24503.88, + "probability": 0.8735 + }, + { + "start": 24503.92, + "end": 24506.52, + "probability": 0.9806 + }, + { + "start": 24507.2, + "end": 24507.94, + "probability": 0.7255 + }, + { + "start": 24508.66, + "end": 24510.36, + "probability": 0.7694 + }, + { + "start": 24510.96, + "end": 24515.5, + "probability": 0.9504 + }, + { + "start": 24516.06, + "end": 24518.48, + "probability": 0.9536 + }, + { + "start": 24518.48, + "end": 24520.8, + "probability": 0.1519 + }, + { + "start": 24521.42, + "end": 24521.98, + "probability": 0.5312 + }, + { + "start": 24522.02, + "end": 24522.44, + "probability": 0.2013 + }, + { + "start": 24522.44, + "end": 24525.1, + "probability": 0.9746 + }, + { + "start": 24525.22, + "end": 24525.76, + "probability": 0.5396 + }, + { + "start": 24526.86, + "end": 24527.92, + "probability": 0.733 + }, + { + "start": 24528.28, + "end": 24528.94, + "probability": 0.768 + }, + { + "start": 24529.02, + "end": 24533.22, + "probability": 0.9818 + }, + { + "start": 24533.58, + "end": 24536.5, + "probability": 0.77 + }, + { + "start": 24536.52, + "end": 24538.44, + "probability": 0.9935 + }, + { + "start": 24538.84, + "end": 24541.4, + "probability": 0.9325 + }, + { + "start": 24541.96, + "end": 24543.82, + "probability": 0.77 + }, + { + "start": 24544.34, + "end": 24547.56, + "probability": 0.9342 + }, + { + "start": 24547.6, + "end": 24549.46, + "probability": 0.964 + }, + { + "start": 24550.92, + "end": 24553.06, + "probability": 0.0855 + }, + { + "start": 24553.06, + "end": 24553.06, + "probability": 0.1118 + }, + { + "start": 24553.06, + "end": 24553.06, + "probability": 0.0334 + }, + { + "start": 24553.06, + "end": 24555.94, + "probability": 0.9297 + }, + { + "start": 24555.94, + "end": 24559.96, + "probability": 0.981 + }, + { + "start": 24560.36, + "end": 24560.98, + "probability": 0.1504 + }, + { + "start": 24564.22, + "end": 24564.7, + "probability": 0.3026 + }, + { + "start": 24564.9, + "end": 24568.0, + "probability": 0.9958 + }, + { + "start": 24568.0, + "end": 24571.34, + "probability": 0.9993 + }, + { + "start": 24571.94, + "end": 24575.76, + "probability": 0.9845 + }, + { + "start": 24576.42, + "end": 24579.5, + "probability": 0.6499 + }, + { + "start": 24580.18, + "end": 24586.6, + "probability": 0.9627 + }, + { + "start": 24587.78, + "end": 24590.04, + "probability": 0.8484 + }, + { + "start": 24590.76, + "end": 24595.16, + "probability": 0.9858 + }, + { + "start": 24595.24, + "end": 24596.54, + "probability": 0.9189 + }, + { + "start": 24597.4, + "end": 24599.7, + "probability": 0.9955 + }, + { + "start": 24600.24, + "end": 24603.64, + "probability": 0.9882 + }, + { + "start": 24604.08, + "end": 24606.64, + "probability": 0.6939 + }, + { + "start": 24606.7, + "end": 24607.02, + "probability": 0.7273 + }, + { + "start": 24607.02, + "end": 24607.38, + "probability": 0.9565 + }, + { + "start": 24608.0, + "end": 24609.52, + "probability": 0.6258 + }, + { + "start": 24610.04, + "end": 24610.88, + "probability": 0.8091 + }, + { + "start": 24611.42, + "end": 24612.32, + "probability": 0.663 + }, + { + "start": 24612.68, + "end": 24613.88, + "probability": 0.6821 + }, + { + "start": 24613.98, + "end": 24615.04, + "probability": 0.212 + }, + { + "start": 24615.26, + "end": 24615.82, + "probability": 0.8726 + }, + { + "start": 24615.88, + "end": 24620.46, + "probability": 0.9891 + }, + { + "start": 24620.66, + "end": 24621.24, + "probability": 0.1028 + }, + { + "start": 24621.56, + "end": 24626.81, + "probability": 0.9766 + }, + { + "start": 24627.88, + "end": 24628.52, + "probability": 0.7257 + }, + { + "start": 24628.52, + "end": 24629.68, + "probability": 0.8403 + }, + { + "start": 24629.78, + "end": 24630.6, + "probability": 0.8985 + }, + { + "start": 24630.66, + "end": 24635.94, + "probability": 0.8922 + }, + { + "start": 24636.26, + "end": 24636.42, + "probability": 0.0048 + }, + { + "start": 24636.42, + "end": 24636.42, + "probability": 0.1342 + }, + { + "start": 24636.42, + "end": 24637.27, + "probability": 0.7671 + }, + { + "start": 24637.8, + "end": 24638.24, + "probability": 0.6248 + }, + { + "start": 24638.5, + "end": 24639.36, + "probability": 0.3002 + }, + { + "start": 24639.38, + "end": 24643.86, + "probability": 0.9752 + }, + { + "start": 24644.0, + "end": 24644.12, + "probability": 0.6041 + }, + { + "start": 24644.48, + "end": 24646.12, + "probability": 0.994 + }, + { + "start": 24646.42, + "end": 24647.78, + "probability": 0.824 + }, + { + "start": 24647.8, + "end": 24648.06, + "probability": 0.6642 + }, + { + "start": 24648.22, + "end": 24649.78, + "probability": 0.8628 + }, + { + "start": 24649.78, + "end": 24651.78, + "probability": 0.5012 + }, + { + "start": 24652.18, + "end": 24653.02, + "probability": 0.7025 + }, + { + "start": 24653.44, + "end": 24654.48, + "probability": 0.6713 + }, + { + "start": 24654.88, + "end": 24658.56, + "probability": 0.925 + }, + { + "start": 24659.02, + "end": 24663.64, + "probability": 0.9933 + }, + { + "start": 24663.66, + "end": 24664.82, + "probability": 0.9712 + }, + { + "start": 24666.0, + "end": 24666.86, + "probability": 0.0212 + }, + { + "start": 24666.86, + "end": 24668.32, + "probability": 0.4171 + }, + { + "start": 24668.4, + "end": 24669.54, + "probability": 0.754 + }, + { + "start": 24669.7, + "end": 24672.46, + "probability": 0.7516 + }, + { + "start": 24672.64, + "end": 24673.02, + "probability": 0.5484 + }, + { + "start": 24673.14, + "end": 24675.6, + "probability": 0.8323 + }, + { + "start": 24675.94, + "end": 24677.3, + "probability": 0.8506 + }, + { + "start": 24677.88, + "end": 24678.72, + "probability": 0.1191 + }, + { + "start": 24679.22, + "end": 24681.72, + "probability": 0.7515 + }, + { + "start": 24683.28, + "end": 24685.04, + "probability": 0.7719 + }, + { + "start": 24685.06, + "end": 24687.0, + "probability": 0.9678 + }, + { + "start": 24687.56, + "end": 24690.3, + "probability": 0.7736 + }, + { + "start": 24691.32, + "end": 24693.22, + "probability": 0.9881 + }, + { + "start": 24693.28, + "end": 24695.92, + "probability": 0.6476 + }, + { + "start": 24697.12, + "end": 24700.5, + "probability": 0.9941 + }, + { + "start": 24700.64, + "end": 24701.24, + "probability": 0.4984 + }, + { + "start": 24701.64, + "end": 24705.22, + "probability": 0.9927 + }, + { + "start": 24705.66, + "end": 24706.46, + "probability": 0.6643 + }, + { + "start": 24706.6, + "end": 24708.86, + "probability": 0.8094 + }, + { + "start": 24709.0, + "end": 24710.51, + "probability": 0.9436 + }, + { + "start": 24710.59, + "end": 24711.19, + "probability": 0.6755 + }, + { + "start": 24711.27, + "end": 24712.67, + "probability": 0.9751 + }, + { + "start": 24713.19, + "end": 24714.97, + "probability": 0.8159 + }, + { + "start": 24715.39, + "end": 24717.01, + "probability": 0.9854 + }, + { + "start": 24717.39, + "end": 24719.91, + "probability": 0.829 + }, + { + "start": 24720.19, + "end": 24724.77, + "probability": 0.9985 + }, + { + "start": 24725.53, + "end": 24728.21, + "probability": 0.8668 + }, + { + "start": 24728.45, + "end": 24730.05, + "probability": 0.7861 + }, + { + "start": 24730.09, + "end": 24730.85, + "probability": 0.6389 + }, + { + "start": 24731.27, + "end": 24734.87, + "probability": 0.9364 + }, + { + "start": 24735.05, + "end": 24736.59, + "probability": 0.6425 + }, + { + "start": 24737.01, + "end": 24737.97, + "probability": 0.9434 + }, + { + "start": 24738.43, + "end": 24739.73, + "probability": 0.8606 + }, + { + "start": 24740.39, + "end": 24741.95, + "probability": 0.8461 + }, + { + "start": 24742.03, + "end": 24742.79, + "probability": 0.8949 + }, + { + "start": 24743.15, + "end": 24746.37, + "probability": 0.9645 + }, + { + "start": 24746.37, + "end": 24747.15, + "probability": 0.1635 + }, + { + "start": 24747.15, + "end": 24747.67, + "probability": 0.4838 + }, + { + "start": 24747.67, + "end": 24751.23, + "probability": 0.9419 + }, + { + "start": 24751.57, + "end": 24752.77, + "probability": 0.4932 + }, + { + "start": 24753.11, + "end": 24754.13, + "probability": 0.7867 + }, + { + "start": 24754.19, + "end": 24755.15, + "probability": 0.1431 + }, + { + "start": 24755.39, + "end": 24755.39, + "probability": 0.3743 + }, + { + "start": 24755.39, + "end": 24755.39, + "probability": 0.5571 + }, + { + "start": 24755.43, + "end": 24755.93, + "probability": 0.6176 + }, + { + "start": 24756.05, + "end": 24757.45, + "probability": 0.9332 + }, + { + "start": 24757.87, + "end": 24757.97, + "probability": 0.0818 + }, + { + "start": 24757.97, + "end": 24759.75, + "probability": 0.7724 + }, + { + "start": 24760.61, + "end": 24760.69, + "probability": 0.0244 + }, + { + "start": 24760.69, + "end": 24761.42, + "probability": 0.8723 + }, + { + "start": 24761.73, + "end": 24762.75, + "probability": 0.2809 + }, + { + "start": 24763.01, + "end": 24763.77, + "probability": 0.0948 + }, + { + "start": 24763.99, + "end": 24764.55, + "probability": 0.4196 + }, + { + "start": 24764.55, + "end": 24765.79, + "probability": 0.2254 + }, + { + "start": 24766.25, + "end": 24768.65, + "probability": 0.4789 + }, + { + "start": 24768.93, + "end": 24770.21, + "probability": 0.8721 + }, + { + "start": 24770.33, + "end": 24772.13, + "probability": 0.8991 + }, + { + "start": 24772.23, + "end": 24773.23, + "probability": 0.6909 + }, + { + "start": 24773.27, + "end": 24773.86, + "probability": 0.0092 + }, + { + "start": 24774.11, + "end": 24774.11, + "probability": 0.0017 + }, + { + "start": 24774.11, + "end": 24776.83, + "probability": 0.9883 + }, + { + "start": 24776.99, + "end": 24778.07, + "probability": 0.8751 + }, + { + "start": 24778.19, + "end": 24780.57, + "probability": 0.7953 + }, + { + "start": 24781.07, + "end": 24782.55, + "probability": 0.9206 + }, + { + "start": 24783.29, + "end": 24785.79, + "probability": 0.8539 + }, + { + "start": 24785.91, + "end": 24787.27, + "probability": 0.8341 + }, + { + "start": 24787.59, + "end": 24788.43, + "probability": 0.4692 + }, + { + "start": 24788.59, + "end": 24789.85, + "probability": 0.6661 + }, + { + "start": 24790.51, + "end": 24792.11, + "probability": 0.8924 + }, + { + "start": 24792.19, + "end": 24792.23, + "probability": 0.0872 + }, + { + "start": 24792.23, + "end": 24796.07, + "probability": 0.9673 + }, + { + "start": 24797.11, + "end": 24798.69, + "probability": 0.5642 + }, + { + "start": 24798.73, + "end": 24803.37, + "probability": 0.9924 + }, + { + "start": 24803.41, + "end": 24804.53, + "probability": 0.9902 + }, + { + "start": 24804.63, + "end": 24807.49, + "probability": 0.9382 + }, + { + "start": 24807.93, + "end": 24808.53, + "probability": 0.9736 + }, + { + "start": 24808.77, + "end": 24811.47, + "probability": 0.9964 + }, + { + "start": 24811.89, + "end": 24814.65, + "probability": 0.9971 + }, + { + "start": 24814.71, + "end": 24815.21, + "probability": 0.9185 + }, + { + "start": 24815.35, + "end": 24815.94, + "probability": 0.6888 + }, + { + "start": 24816.37, + "end": 24817.51, + "probability": 0.8956 + }, + { + "start": 24817.91, + "end": 24818.92, + "probability": 0.9253 + }, + { + "start": 24819.43, + "end": 24820.88, + "probability": 0.9673 + }, + { + "start": 24821.29, + "end": 24822.43, + "probability": 0.6778 + }, + { + "start": 24822.53, + "end": 24824.95, + "probability": 0.9146 + }, + { + "start": 24825.39, + "end": 24825.39, + "probability": 0.1251 + }, + { + "start": 24825.39, + "end": 24827.57, + "probability": 0.9739 + }, + { + "start": 24827.73, + "end": 24827.97, + "probability": 0.0774 + }, + { + "start": 24827.97, + "end": 24827.97, + "probability": 0.0422 + }, + { + "start": 24827.97, + "end": 24828.61, + "probability": 0.3894 + }, + { + "start": 24828.91, + "end": 24831.97, + "probability": 0.9365 + }, + { + "start": 24832.0, + "end": 24832.0, + "probability": 0.0 + }, + { + "start": 24832.0, + "end": 24832.0, + "probability": 0.0 + }, + { + "start": 24832.12, + "end": 24833.2, + "probability": 0.0771 + }, + { + "start": 24833.2, + "end": 24836.6, + "probability": 0.4745 + }, + { + "start": 24836.74, + "end": 24838.56, + "probability": 0.7497 + }, + { + "start": 24838.66, + "end": 24839.5, + "probability": 0.9604 + }, + { + "start": 24842.06, + "end": 24845.24, + "probability": 0.7802 + }, + { + "start": 24845.58, + "end": 24850.08, + "probability": 0.7822 + }, + { + "start": 24850.2, + "end": 24850.2, + "probability": 0.1843 + }, + { + "start": 24850.2, + "end": 24850.2, + "probability": 0.1645 + }, + { + "start": 24850.2, + "end": 24851.64, + "probability": 0.5775 + }, + { + "start": 24852.16, + "end": 24853.28, + "probability": 0.7145 + }, + { + "start": 24853.66, + "end": 24853.94, + "probability": 0.0055 + }, + { + "start": 24853.94, + "end": 24855.85, + "probability": 0.9563 + }, + { + "start": 24856.26, + "end": 24858.32, + "probability": 0.8956 + }, + { + "start": 24858.92, + "end": 24859.46, + "probability": 0.0817 + }, + { + "start": 24859.46, + "end": 24861.58, + "probability": 0.6008 + }, + { + "start": 24862.02, + "end": 24863.05, + "probability": 0.9543 + }, + { + "start": 24863.24, + "end": 24864.02, + "probability": 0.5792 + }, + { + "start": 24864.4, + "end": 24867.36, + "probability": 0.6802 + }, + { + "start": 24867.52, + "end": 24868.48, + "probability": 0.7103 + }, + { + "start": 24868.56, + "end": 24869.5, + "probability": 0.6285 + }, + { + "start": 24869.5, + "end": 24871.62, + "probability": 0.9637 + }, + { + "start": 24872.04, + "end": 24873.1, + "probability": 0.5684 + }, + { + "start": 24873.16, + "end": 24873.76, + "probability": 0.7753 + }, + { + "start": 24873.88, + "end": 24875.5, + "probability": 0.7729 + }, + { + "start": 24875.54, + "end": 24876.17, + "probability": 0.683 + }, + { + "start": 24876.62, + "end": 24878.02, + "probability": 0.918 + }, + { + "start": 24878.64, + "end": 24879.25, + "probability": 0.4697 + }, + { + "start": 24879.46, + "end": 24879.74, + "probability": 0.7209 + }, + { + "start": 24880.02, + "end": 24882.82, + "probability": 0.7341 + }, + { + "start": 24883.1, + "end": 24883.1, + "probability": 0.4233 + }, + { + "start": 24883.1, + "end": 24885.64, + "probability": 0.9724 + }, + { + "start": 24886.28, + "end": 24887.88, + "probability": 0.9849 + }, + { + "start": 24888.46, + "end": 24890.06, + "probability": 0.662 + }, + { + "start": 24890.22, + "end": 24891.04, + "probability": 0.9569 + }, + { + "start": 24891.1, + "end": 24892.65, + "probability": 0.4803 + }, + { + "start": 24892.82, + "end": 24894.84, + "probability": 0.7671 + }, + { + "start": 24895.34, + "end": 24896.84, + "probability": 0.9619 + }, + { + "start": 24899.46, + "end": 24900.02, + "probability": 0.1274 + }, + { + "start": 24900.02, + "end": 24900.02, + "probability": 0.1945 + }, + { + "start": 24900.02, + "end": 24900.02, + "probability": 0.3353 + }, + { + "start": 24900.02, + "end": 24900.23, + "probability": 0.7941 + }, + { + "start": 24900.5, + "end": 24901.04, + "probability": 0.7694 + }, + { + "start": 24901.36, + "end": 24903.96, + "probability": 0.8796 + }, + { + "start": 24904.16, + "end": 24904.46, + "probability": 0.5708 + }, + { + "start": 24904.54, + "end": 24904.76, + "probability": 0.8071 + }, + { + "start": 24904.88, + "end": 24905.22, + "probability": 0.8484 + }, + { + "start": 24905.58, + "end": 24906.2, + "probability": 0.7207 + }, + { + "start": 24906.22, + "end": 24906.65, + "probability": 0.9603 + }, + { + "start": 24907.38, + "end": 24907.96, + "probability": 0.2104 + }, + { + "start": 24909.14, + "end": 24910.46, + "probability": 0.4204 + }, + { + "start": 24910.66, + "end": 24912.27, + "probability": 0.9062 + }, + { + "start": 24912.66, + "end": 24913.16, + "probability": 0.4081 + }, + { + "start": 24913.22, + "end": 24913.36, + "probability": 0.6041 + }, + { + "start": 24913.36, + "end": 24914.06, + "probability": 0.8083 + }, + { + "start": 24914.46, + "end": 24915.56, + "probability": 0.9692 + }, + { + "start": 24915.66, + "end": 24916.72, + "probability": 0.9531 + }, + { + "start": 24917.22, + "end": 24919.04, + "probability": 0.1904 + }, + { + "start": 24919.22, + "end": 24919.44, + "probability": 0.9883 + }, + { + "start": 24920.2, + "end": 24921.2, + "probability": 0.5163 + }, + { + "start": 24921.64, + "end": 24921.72, + "probability": 0.0801 + }, + { + "start": 24921.72, + "end": 24923.18, + "probability": 0.5769 + }, + { + "start": 24923.36, + "end": 24925.9, + "probability": 0.8696 + }, + { + "start": 24926.2, + "end": 24926.86, + "probability": 0.8545 + }, + { + "start": 24927.08, + "end": 24931.32, + "probability": 0.9619 + }, + { + "start": 24931.4, + "end": 24931.48, + "probability": 0.1085 + }, + { + "start": 24931.5, + "end": 24931.5, + "probability": 0.4251 + }, + { + "start": 24931.5, + "end": 24931.5, + "probability": 0.2595 + }, + { + "start": 24931.5, + "end": 24931.56, + "probability": 0.6446 + }, + { + "start": 24931.64, + "end": 24932.68, + "probability": 0.9873 + }, + { + "start": 24932.96, + "end": 24934.1, + "probability": 0.9368 + }, + { + "start": 24934.44, + "end": 24934.46, + "probability": 0.0084 + }, + { + "start": 24934.46, + "end": 24935.6, + "probability": 0.8994 + }, + { + "start": 24935.98, + "end": 24936.9, + "probability": 0.8494 + }, + { + "start": 24937.16, + "end": 24941.0, + "probability": 0.9746 + }, + { + "start": 24941.04, + "end": 24941.7, + "probability": 0.5107 + }, + { + "start": 24941.8, + "end": 24942.18, + "probability": 0.789 + }, + { + "start": 24942.26, + "end": 24943.54, + "probability": 0.9705 + }, + { + "start": 24943.92, + "end": 24945.16, + "probability": 0.8447 + }, + { + "start": 24945.3, + "end": 24945.4, + "probability": 0.0175 + }, + { + "start": 24945.4, + "end": 24945.4, + "probability": 0.008 + }, + { + "start": 24945.4, + "end": 24952.96, + "probability": 0.9048 + }, + { + "start": 24953.68, + "end": 24954.18, + "probability": 0.0737 + }, + { + "start": 24954.38, + "end": 24956.14, + "probability": 0.6382 + }, + { + "start": 24956.22, + "end": 24958.26, + "probability": 0.8623 + }, + { + "start": 24958.8, + "end": 24961.06, + "probability": 0.7875 + }, + { + "start": 24961.06, + "end": 24961.62, + "probability": 0.1724 + }, + { + "start": 24961.72, + "end": 24965.2, + "probability": 0.8907 + }, + { + "start": 24965.66, + "end": 24968.48, + "probability": 0.859 + }, + { + "start": 24968.82, + "end": 24969.1, + "probability": 0.5091 + }, + { + "start": 24969.18, + "end": 24970.26, + "probability": 0.8353 + }, + { + "start": 24970.88, + "end": 24972.0, + "probability": 0.9105 + }, + { + "start": 24972.1, + "end": 24973.9, + "probability": 0.9877 + }, + { + "start": 24974.22, + "end": 24975.4, + "probability": 0.8982 + }, + { + "start": 24975.44, + "end": 24978.6, + "probability": 0.9751 + }, + { + "start": 24978.86, + "end": 24978.96, + "probability": 0.0117 + }, + { + "start": 24978.96, + "end": 24980.0, + "probability": 0.7667 + }, + { + "start": 24980.54, + "end": 24981.22, + "probability": 0.129 + }, + { + "start": 24981.22, + "end": 24982.2, + "probability": 0.4254 + }, + { + "start": 24983.34, + "end": 24985.7, + "probability": 0.0991 + }, + { + "start": 24985.88, + "end": 24987.48, + "probability": 0.8477 + }, + { + "start": 24987.58, + "end": 24990.58, + "probability": 0.9523 + }, + { + "start": 24990.6, + "end": 24994.12, + "probability": 0.6993 + }, + { + "start": 24994.16, + "end": 24996.66, + "probability": 0.9441 + }, + { + "start": 24997.34, + "end": 24997.62, + "probability": 0.7562 + }, + { + "start": 24998.3, + "end": 25000.02, + "probability": 0.9971 + }, + { + "start": 25000.14, + "end": 25002.08, + "probability": 0.9673 + }, + { + "start": 25002.58, + "end": 25005.38, + "probability": 0.8603 + }, + { + "start": 25006.2, + "end": 25010.48, + "probability": 0.9919 + }, + { + "start": 25011.1, + "end": 25013.64, + "probability": 0.997 + }, + { + "start": 25014.18, + "end": 25015.73, + "probability": 0.7168 + }, + { + "start": 25015.98, + "end": 25016.42, + "probability": 0.8698 + }, + { + "start": 25016.66, + "end": 25019.54, + "probability": 0.9735 + }, + { + "start": 25019.54, + "end": 25022.12, + "probability": 0.9958 + }, + { + "start": 25022.36, + "end": 25024.98, + "probability": 0.98 + }, + { + "start": 25025.16, + "end": 25027.32, + "probability": 0.6815 + }, + { + "start": 25027.62, + "end": 25030.22, + "probability": 0.9883 + }, + { + "start": 25030.4, + "end": 25031.92, + "probability": 0.9454 + }, + { + "start": 25032.34, + "end": 25033.92, + "probability": 0.9841 + }, + { + "start": 25034.48, + "end": 25037.56, + "probability": 0.9937 + }, + { + "start": 25037.7, + "end": 25039.02, + "probability": 0.9993 + }, + { + "start": 25039.32, + "end": 25040.84, + "probability": 0.997 + }, + { + "start": 25041.02, + "end": 25043.92, + "probability": 0.9796 + }, + { + "start": 25044.62, + "end": 25045.54, + "probability": 0.7584 + }, + { + "start": 25045.54, + "end": 25046.02, + "probability": 0.952 + }, + { + "start": 25046.14, + "end": 25047.12, + "probability": 0.8807 + }, + { + "start": 25047.5, + "end": 25049.12, + "probability": 0.9834 + }, + { + "start": 25049.48, + "end": 25052.42, + "probability": 0.8432 + }, + { + "start": 25053.06, + "end": 25057.18, + "probability": 0.6938 + }, + { + "start": 25057.66, + "end": 25060.6, + "probability": 0.9871 + }, + { + "start": 25060.6, + "end": 25064.18, + "probability": 0.9979 + }, + { + "start": 25064.7, + "end": 25065.22, + "probability": 0.5912 + }, + { + "start": 25065.26, + "end": 25066.46, + "probability": 0.4685 + }, + { + "start": 25066.56, + "end": 25067.59, + "probability": 0.9707 + }, + { + "start": 25068.4, + "end": 25070.48, + "probability": 0.9409 + }, + { + "start": 25070.98, + "end": 25072.84, + "probability": 0.9967 + }, + { + "start": 25073.14, + "end": 25074.84, + "probability": 0.9476 + }, + { + "start": 25075.02, + "end": 25075.86, + "probability": 0.5404 + }, + { + "start": 25076.0, + "end": 25076.72, + "probability": 0.5428 + }, + { + "start": 25076.98, + "end": 25077.64, + "probability": 0.8317 + }, + { + "start": 25077.72, + "end": 25080.28, + "probability": 0.9937 + }, + { + "start": 25080.3, + "end": 25081.12, + "probability": 0.2024 + }, + { + "start": 25081.28, + "end": 25085.02, + "probability": 0.9358 + }, + { + "start": 25085.47, + "end": 25088.26, + "probability": 0.1143 + }, + { + "start": 25088.26, + "end": 25088.26, + "probability": 0.1024 + }, + { + "start": 25088.26, + "end": 25088.48, + "probability": 0.514 + }, + { + "start": 25088.58, + "end": 25091.42, + "probability": 0.9646 + }, + { + "start": 25091.74, + "end": 25093.16, + "probability": 0.9551 + }, + { + "start": 25093.76, + "end": 25095.37, + "probability": 0.9929 + }, + { + "start": 25095.92, + "end": 25098.66, + "probability": 0.989 + }, + { + "start": 25098.68, + "end": 25100.72, + "probability": 0.9918 + }, + { + "start": 25101.2, + "end": 25105.64, + "probability": 0.9929 + }, + { + "start": 25105.96, + "end": 25109.52, + "probability": 0.7988 + }, + { + "start": 25109.9, + "end": 25113.46, + "probability": 0.9938 + }, + { + "start": 25113.66, + "end": 25114.08, + "probability": 0.5414 + }, + { + "start": 25114.6, + "end": 25116.62, + "probability": 0.821 + }, + { + "start": 25116.68, + "end": 25119.48, + "probability": 0.8348 + }, + { + "start": 25120.1, + "end": 25126.88, + "probability": 0.6716 + }, + { + "start": 25127.08, + "end": 25128.64, + "probability": 0.5091 + }, + { + "start": 25128.98, + "end": 25131.84, + "probability": 0.7162 + }, + { + "start": 25132.02, + "end": 25132.82, + "probability": 0.6095 + }, + { + "start": 25132.9, + "end": 25133.68, + "probability": 0.8315 + }, + { + "start": 25133.76, + "end": 25135.08, + "probability": 0.5956 + }, + { + "start": 25142.14, + "end": 25146.7, + "probability": 0.295 + }, + { + "start": 25154.62, + "end": 25154.78, + "probability": 0.5278 + }, + { + "start": 25157.02, + "end": 25162.62, + "probability": 0.6075 + }, + { + "start": 25162.84, + "end": 25163.74, + "probability": 0.4431 + }, + { + "start": 25169.84, + "end": 25173.12, + "probability": 0.8526 + }, + { + "start": 25173.3, + "end": 25175.86, + "probability": 0.4996 + }, + { + "start": 25179.04, + "end": 25180.58, + "probability": 0.0121 + }, + { + "start": 25181.1, + "end": 25182.52, + "probability": 0.0843 + }, + { + "start": 25183.88, + "end": 25184.9, + "probability": 0.0239 + }, + { + "start": 25186.62, + "end": 25186.62, + "probability": 0.0407 + }, + { + "start": 25186.84, + "end": 25188.44, + "probability": 0.4154 + }, + { + "start": 25188.68, + "end": 25190.98, + "probability": 0.151 + }, + { + "start": 25194.28, + "end": 25195.46, + "probability": 0.1109 + }, + { + "start": 25196.06, + "end": 25199.26, + "probability": 0.0237 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25244.0, + "end": 25244.0, + "probability": 0.0 + }, + { + "start": 25256.34, + "end": 25257.76, + "probability": 0.017 + }, + { + "start": 25267.81, + "end": 25268.8, + "probability": 0.0437 + }, + { + "start": 25268.8, + "end": 25270.78, + "probability": 0.1142 + }, + { + "start": 25273.62, + "end": 25279.12, + "probability": 0.4756 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25379.0, + "end": 25379.0, + "probability": 0.0 + }, + { + "start": 25380.11, + "end": 25381.1, + "probability": 0.0132 + }, + { + "start": 25381.26, + "end": 25381.74, + "probability": 0.0292 + }, + { + "start": 25381.74, + "end": 25381.74, + "probability": 0.3155 + }, + { + "start": 25381.74, + "end": 25381.74, + "probability": 0.0439 + }, + { + "start": 25381.74, + "end": 25381.74, + "probability": 0.328 + }, + { + "start": 25381.74, + "end": 25381.74, + "probability": 0.0152 + }, + { + "start": 25381.74, + "end": 25383.84, + "probability": 0.4805 + }, + { + "start": 25384.14, + "end": 25384.84, + "probability": 0.1311 + }, + { + "start": 25387.08, + "end": 25387.26, + "probability": 0.0569 + }, + { + "start": 25387.26, + "end": 25388.76, + "probability": 0.7938 + }, + { + "start": 25392.78, + "end": 25393.28, + "probability": 0.0014 + }, + { + "start": 25393.42, + "end": 25394.4, + "probability": 0.5461 + }, + { + "start": 25394.56, + "end": 25395.68, + "probability": 0.8042 + }, + { + "start": 25395.88, + "end": 25398.04, + "probability": 0.936 + }, + { + "start": 25398.04, + "end": 25400.12, + "probability": 0.7063 + }, + { + "start": 25400.34, + "end": 25404.94, + "probability": 0.9598 + }, + { + "start": 25405.4, + "end": 25406.58, + "probability": 0.9839 + }, + { + "start": 25406.8, + "end": 25407.98, + "probability": 0.9917 + }, + { + "start": 25408.2, + "end": 25410.46, + "probability": 0.6444 + }, + { + "start": 25410.54, + "end": 25412.8, + "probability": 0.9944 + }, + { + "start": 25413.1, + "end": 25413.54, + "probability": 0.5449 + }, + { + "start": 25413.6, + "end": 25414.15, + "probability": 0.9726 + }, + { + "start": 25414.22, + "end": 25415.86, + "probability": 0.9761 + }, + { + "start": 25416.36, + "end": 25419.2, + "probability": 0.9652 + }, + { + "start": 25419.64, + "end": 25423.26, + "probability": 0.7737 + }, + { + "start": 25423.36, + "end": 25424.7, + "probability": 0.9822 + }, + { + "start": 25426.02, + "end": 25426.78, + "probability": 0.9917 + }, + { + "start": 25427.18, + "end": 25428.24, + "probability": 0.7002 + }, + { + "start": 25428.28, + "end": 25432.14, + "probability": 0.9746 + }, + { + "start": 25432.5, + "end": 25433.98, + "probability": 0.8729 + }, + { + "start": 25434.36, + "end": 25436.54, + "probability": 0.9857 + }, + { + "start": 25436.78, + "end": 25437.5, + "probability": 0.9312 + }, + { + "start": 25438.24, + "end": 25441.36, + "probability": 0.8012 + }, + { + "start": 25441.54, + "end": 25442.2, + "probability": 0.1173 + }, + { + "start": 25442.2, + "end": 25444.16, + "probability": 0.8916 + }, + { + "start": 25444.26, + "end": 25445.6, + "probability": 0.8743 + }, + { + "start": 25446.0, + "end": 25446.66, + "probability": 0.658 + }, + { + "start": 25447.3, + "end": 25449.06, + "probability": 0.9388 + }, + { + "start": 25449.94, + "end": 25450.48, + "probability": 0.9594 + }, + { + "start": 25451.04, + "end": 25452.28, + "probability": 0.9531 + }, + { + "start": 25453.2, + "end": 25453.96, + "probability": 0.9026 + }, + { + "start": 25454.5, + "end": 25457.18, + "probability": 0.8438 + }, + { + "start": 25458.3, + "end": 25462.68, + "probability": 0.8953 + }, + { + "start": 25463.6, + "end": 25464.9, + "probability": 0.954 + }, + { + "start": 25465.7, + "end": 25469.14, + "probability": 0.9814 + }, + { + "start": 25469.68, + "end": 25473.74, + "probability": 0.9124 + }, + { + "start": 25475.02, + "end": 25477.16, + "probability": 0.8613 + }, + { + "start": 25478.96, + "end": 25480.78, + "probability": 0.8484 + }, + { + "start": 25481.06, + "end": 25482.25, + "probability": 0.9939 + }, + { + "start": 25482.6, + "end": 25483.06, + "probability": 0.1203 + }, + { + "start": 25484.4, + "end": 25484.62, + "probability": 0.0357 + }, + { + "start": 25484.62, + "end": 25486.94, + "probability": 0.9324 + }, + { + "start": 25487.78, + "end": 25489.8, + "probability": 0.6224 + }, + { + "start": 25491.54, + "end": 25493.14, + "probability": 0.9381 + }, + { + "start": 25493.54, + "end": 25493.6, + "probability": 0.0002 + }, + { + "start": 25494.12, + "end": 25494.62, + "probability": 0.1319 + }, + { + "start": 25496.56, + "end": 25499.02, + "probability": 0.1335 + }, + { + "start": 25499.08, + "end": 25500.04, + "probability": 0.57 + }, + { + "start": 25501.3, + "end": 25503.38, + "probability": 0.5658 + }, + { + "start": 25503.58, + "end": 25504.48, + "probability": 0.9353 + }, + { + "start": 25504.98, + "end": 25507.46, + "probability": 0.9087 + }, + { + "start": 25507.5, + "end": 25510.08, + "probability": 0.9906 + }, + { + "start": 25511.79, + "end": 25514.62, + "probability": 0.7454 + }, + { + "start": 25515.9, + "end": 25516.84, + "probability": 0.6672 + }, + { + "start": 25518.48, + "end": 25520.24, + "probability": 0.8646 + }, + { + "start": 25522.92, + "end": 25523.6, + "probability": 0.6077 + }, + { + "start": 25524.24, + "end": 25527.4, + "probability": 0.9132 + }, + { + "start": 25528.16, + "end": 25529.56, + "probability": 0.7732 + }, + { + "start": 25531.34, + "end": 25532.42, + "probability": 0.4988 + }, + { + "start": 25533.28, + "end": 25536.42, + "probability": 0.5251 + }, + { + "start": 25536.92, + "end": 25537.98, + "probability": 0.927 + }, + { + "start": 25538.38, + "end": 25542.52, + "probability": 0.94 + }, + { + "start": 25544.28, + "end": 25546.02, + "probability": 0.9971 + }, + { + "start": 25547.48, + "end": 25548.82, + "probability": 0.9634 + }, + { + "start": 25549.34, + "end": 25550.62, + "probability": 0.9837 + }, + { + "start": 25550.92, + "end": 25555.16, + "probability": 0.9905 + }, + { + "start": 25555.92, + "end": 25556.86, + "probability": 0.9932 + }, + { + "start": 25557.26, + "end": 25561.98, + "probability": 0.9881 + }, + { + "start": 25562.88, + "end": 25563.46, + "probability": 0.5748 + }, + { + "start": 25564.2, + "end": 25565.77, + "probability": 0.9321 + }, + { + "start": 25566.34, + "end": 25569.1, + "probability": 0.9945 + }, + { + "start": 25570.36, + "end": 25570.94, + "probability": 0.8896 + }, + { + "start": 25571.84, + "end": 25576.92, + "probability": 0.9618 + }, + { + "start": 25577.54, + "end": 25580.9, + "probability": 0.9978 + }, + { + "start": 25581.2, + "end": 25585.28, + "probability": 0.8601 + }, + { + "start": 25585.92, + "end": 25589.44, + "probability": 0.9578 + }, + { + "start": 25589.92, + "end": 25592.56, + "probability": 0.8943 + }, + { + "start": 25593.53, + "end": 25597.62, + "probability": 0.9668 + }, + { + "start": 25597.94, + "end": 25599.74, + "probability": 0.8861 + }, + { + "start": 25600.56, + "end": 25601.84, + "probability": 0.9727 + }, + { + "start": 25602.78, + "end": 25604.54, + "probability": 0.4965 + }, + { + "start": 25605.48, + "end": 25607.88, + "probability": 0.4495 + }, + { + "start": 25608.4, + "end": 25612.98, + "probability": 0.5343 + }, + { + "start": 25613.46, + "end": 25613.6, + "probability": 0.4465 + }, + { + "start": 25613.7, + "end": 25614.52, + "probability": 0.96 + }, + { + "start": 25614.78, + "end": 25617.5, + "probability": 0.9555 + }, + { + "start": 25617.94, + "end": 25619.42, + "probability": 0.984 + }, + { + "start": 25620.02, + "end": 25622.98, + "probability": 0.9584 + }, + { + "start": 25624.06, + "end": 25630.92, + "probability": 0.8427 + }, + { + "start": 25631.54, + "end": 25632.54, + "probability": 0.9319 + }, + { + "start": 25632.64, + "end": 25632.82, + "probability": 0.5697 + }, + { + "start": 25633.42, + "end": 25635.2, + "probability": 0.8016 + }, + { + "start": 25635.86, + "end": 25637.04, + "probability": 0.5498 + }, + { + "start": 25637.9, + "end": 25640.5, + "probability": 0.9351 + }, + { + "start": 25641.2, + "end": 25642.06, + "probability": 0.3788 + }, + { + "start": 25642.68, + "end": 25644.36, + "probability": 0.8174 + }, + { + "start": 25644.42, + "end": 25644.94, + "probability": 0.8529 + }, + { + "start": 25644.94, + "end": 25645.94, + "probability": 0.7588 + }, + { + "start": 25646.0, + "end": 25646.74, + "probability": 0.68 + }, + { + "start": 25647.88, + "end": 25648.28, + "probability": 0.3051 + }, + { + "start": 25648.28, + "end": 25649.08, + "probability": 0.5003 + }, + { + "start": 25649.5, + "end": 25652.96, + "probability": 0.8525 + }, + { + "start": 25653.0, + "end": 25653.69, + "probability": 0.8609 + }, + { + "start": 25654.38, + "end": 25656.8, + "probability": 0.5382 + }, + { + "start": 25656.86, + "end": 25657.6, + "probability": 0.8329 + }, + { + "start": 25658.76, + "end": 25660.34, + "probability": 0.4631 + }, + { + "start": 25661.24, + "end": 25663.74, + "probability": 0.7659 + }, + { + "start": 25664.3, + "end": 25666.04, + "probability": 0.7487 + }, + { + "start": 25666.9, + "end": 25667.5, + "probability": 0.0459 + }, + { + "start": 25668.08, + "end": 25668.74, + "probability": 0.8381 + }, + { + "start": 25671.56, + "end": 25671.56, + "probability": 0.0948 + }, + { + "start": 25671.56, + "end": 25671.56, + "probability": 0.3252 + }, + { + "start": 25671.56, + "end": 25671.56, + "probability": 0.4436 + }, + { + "start": 25671.56, + "end": 25675.03, + "probability": 0.518 + }, + { + "start": 25675.88, + "end": 25676.46, + "probability": 0.2608 + }, + { + "start": 25676.48, + "end": 25676.98, + "probability": 0.7239 + }, + { + "start": 25679.3, + "end": 25682.5, + "probability": 0.6682 + }, + { + "start": 25682.62, + "end": 25686.92, + "probability": 0.5908 + }, + { + "start": 25690.08, + "end": 25693.62, + "probability": 0.3191 + }, + { + "start": 25694.14, + "end": 25697.54, + "probability": 0.8132 + }, + { + "start": 25697.54, + "end": 25698.2, + "probability": 0.0486 + }, + { + "start": 25698.44, + "end": 25700.38, + "probability": 0.663 + }, + { + "start": 25700.98, + "end": 25701.68, + "probability": 0.6598 + }, + { + "start": 25702.5, + "end": 25704.85, + "probability": 0.8992 + }, + { + "start": 25706.26, + "end": 25707.62, + "probability": 0.5089 + }, + { + "start": 25708.27, + "end": 25710.34, + "probability": 0.2197 + }, + { + "start": 25710.44, + "end": 25713.52, + "probability": 0.8293 + }, + { + "start": 25714.48, + "end": 25716.8, + "probability": 0.2834 + }, + { + "start": 25722.5, + "end": 25722.92, + "probability": 0.597 + }, + { + "start": 25722.96, + "end": 25723.96, + "probability": 0.5384 + }, + { + "start": 25724.22, + "end": 25724.66, + "probability": 0.7172 + }, + { + "start": 25724.76, + "end": 25726.86, + "probability": 0.9554 + }, + { + "start": 25727.04, + "end": 25727.5, + "probability": 0.6759 + }, + { + "start": 25728.44, + "end": 25729.76, + "probability": 0.9277 + }, + { + "start": 25729.82, + "end": 25733.64, + "probability": 0.9623 + }, + { + "start": 25733.68, + "end": 25735.02, + "probability": 0.9634 + }, + { + "start": 25735.46, + "end": 25738.04, + "probability": 0.9956 + }, + { + "start": 25738.92, + "end": 25741.2, + "probability": 0.3128 + }, + { + "start": 25741.66, + "end": 25745.42, + "probability": 0.9609 + }, + { + "start": 25746.12, + "end": 25751.44, + "probability": 0.9565 + }, + { + "start": 25751.44, + "end": 25756.28, + "probability": 0.9928 + }, + { + "start": 25756.28, + "end": 25762.76, + "probability": 0.9978 + }, + { + "start": 25763.5, + "end": 25765.32, + "probability": 0.8239 + }, + { + "start": 25765.96, + "end": 25769.18, + "probability": 0.9985 + }, + { + "start": 25769.8, + "end": 25772.88, + "probability": 0.9945 + }, + { + "start": 25773.76, + "end": 25777.08, + "probability": 0.9904 + }, + { + "start": 25777.7, + "end": 25779.12, + "probability": 0.8834 + }, + { + "start": 25779.18, + "end": 25783.5, + "probability": 0.9824 + }, + { + "start": 25783.8, + "end": 25786.82, + "probability": 0.9639 + }, + { + "start": 25787.22, + "end": 25793.34, + "probability": 0.9521 + }, + { + "start": 25793.38, + "end": 25794.12, + "probability": 0.877 + }, + { + "start": 25794.44, + "end": 25795.36, + "probability": 0.9116 + }, + { + "start": 25795.48, + "end": 25796.08, + "probability": 0.8595 + }, + { + "start": 25796.26, + "end": 25797.2, + "probability": 0.5242 + }, + { + "start": 25797.64, + "end": 25798.06, + "probability": 0.5499 + }, + { + "start": 25798.4, + "end": 25804.08, + "probability": 0.9625 + }, + { + "start": 25804.08, + "end": 25804.56, + "probability": 0.5986 + }, + { + "start": 25805.1, + "end": 25806.46, + "probability": 0.6729 + }, + { + "start": 25806.98, + "end": 25810.28, + "probability": 0.9635 + }, + { + "start": 25810.68, + "end": 25813.34, + "probability": 0.9962 + }, + { + "start": 25813.4, + "end": 25814.88, + "probability": 0.8472 + }, + { + "start": 25814.96, + "end": 25817.1, + "probability": 0.7943 + }, + { + "start": 25817.14, + "end": 25819.34, + "probability": 0.9907 + }, + { + "start": 25819.4, + "end": 25820.28, + "probability": 0.8265 + }, + { + "start": 25820.5, + "end": 25825.82, + "probability": 0.8279 + }, + { + "start": 25826.06, + "end": 25831.82, + "probability": 0.9495 + }, + { + "start": 25832.46, + "end": 25837.54, + "probability": 0.9926 + }, + { + "start": 25838.02, + "end": 25838.38, + "probability": 0.7432 + }, + { + "start": 25838.5, + "end": 25841.04, + "probability": 0.959 + }, + { + "start": 25841.72, + "end": 25842.22, + "probability": 0.5688 + }, + { + "start": 25842.22, + "end": 25845.04, + "probability": 0.992 + }, + { + "start": 25846.36, + "end": 25849.44, + "probability": 0.9984 + }, + { + "start": 25849.44, + "end": 25854.28, + "probability": 0.9979 + }, + { + "start": 25854.44, + "end": 25855.34, + "probability": 0.7664 + }, + { + "start": 25855.48, + "end": 25856.06, + "probability": 0.9098 + }, + { + "start": 25856.54, + "end": 25859.08, + "probability": 0.9779 + }, + { + "start": 25859.54, + "end": 25866.44, + "probability": 0.9831 + }, + { + "start": 25866.46, + "end": 25867.58, + "probability": 0.3925 + }, + { + "start": 25867.8, + "end": 25872.0, + "probability": 0.6669 + }, + { + "start": 25872.42, + "end": 25873.22, + "probability": 0.6758 + }, + { + "start": 25873.76, + "end": 25873.9, + "probability": 0.8124 + }, + { + "start": 25874.54, + "end": 25876.08, + "probability": 0.9143 + }, + { + "start": 25877.04, + "end": 25881.5, + "probability": 0.9535 + }, + { + "start": 25881.9, + "end": 25883.63, + "probability": 0.9561 + }, + { + "start": 25884.18, + "end": 25889.48, + "probability": 0.9932 + }, + { + "start": 25889.92, + "end": 25892.44, + "probability": 0.9889 + }, + { + "start": 25892.78, + "end": 25895.16, + "probability": 0.9816 + }, + { + "start": 25895.48, + "end": 25895.84, + "probability": 0.8361 + }, + { + "start": 25896.42, + "end": 25897.44, + "probability": 0.9722 + }, + { + "start": 25897.98, + "end": 25898.88, + "probability": 0.7736 + }, + { + "start": 25899.6, + "end": 25901.97, + "probability": 0.6652 + }, + { + "start": 25903.48, + "end": 25906.78, + "probability": 0.8736 + }, + { + "start": 25907.66, + "end": 25908.38, + "probability": 0.8769 + }, + { + "start": 25908.66, + "end": 25914.72, + "probability": 0.7754 + }, + { + "start": 25915.24, + "end": 25917.54, + "probability": 0.7782 + }, + { + "start": 25918.02, + "end": 25919.12, + "probability": 0.6211 + }, + { + "start": 25919.34, + "end": 25920.24, + "probability": 0.8342 + }, + { + "start": 25920.82, + "end": 25921.94, + "probability": 0.8502 + }, + { + "start": 25928.97, + "end": 25931.82, + "probability": 0.0382 + }, + { + "start": 25931.83, + "end": 25934.76, + "probability": 0.0349 + }, + { + "start": 25937.6, + "end": 25939.58, + "probability": 0.0525 + }, + { + "start": 25939.58, + "end": 25941.96, + "probability": 0.8716 + }, + { + "start": 25942.4, + "end": 25944.0, + "probability": 0.9947 + }, + { + "start": 25944.52, + "end": 25949.26, + "probability": 0.9866 + }, + { + "start": 25950.42, + "end": 25952.46, + "probability": 0.7562 + }, + { + "start": 25953.32, + "end": 25958.4, + "probability": 0.7833 + }, + { + "start": 25959.18, + "end": 25961.0, + "probability": 0.5758 + }, + { + "start": 25961.98, + "end": 25962.84, + "probability": 0.9077 + }, + { + "start": 25969.0, + "end": 25972.82, + "probability": 0.9517 + }, + { + "start": 25973.34, + "end": 25974.8, + "probability": 0.9753 + }, + { + "start": 25975.26, + "end": 25978.54, + "probability": 0.9787 + }, + { + "start": 25979.08, + "end": 25979.66, + "probability": 0.901 + }, + { + "start": 25983.14, + "end": 25984.44, + "probability": 0.9311 + }, + { + "start": 25984.62, + "end": 25984.72, + "probability": 0.621 + }, + { + "start": 25985.64, + "end": 25989.96, + "probability": 0.9977 + }, + { + "start": 25989.98, + "end": 25994.32, + "probability": 0.7361 + }, + { + "start": 25994.82, + "end": 25997.74, + "probability": 0.4703 + }, + { + "start": 25997.8, + "end": 25997.9, + "probability": 0.7003 + }, + { + "start": 25998.5, + "end": 25999.44, + "probability": 0.7994 + }, + { + "start": 26000.28, + "end": 26001.9, + "probability": 0.7541 + }, + { + "start": 26002.84, + "end": 26003.6, + "probability": 0.6362 + }, + { + "start": 26004.22, + "end": 26006.96, + "probability": 0.9425 + }, + { + "start": 26008.04, + "end": 26009.08, + "probability": 0.5396 + }, + { + "start": 26010.08, + "end": 26014.52, + "probability": 0.9615 + }, + { + "start": 26015.5, + "end": 26022.16, + "probability": 0.9569 + }, + { + "start": 26022.66, + "end": 26026.6, + "probability": 0.9834 + }, + { + "start": 26026.78, + "end": 26029.84, + "probability": 0.9354 + }, + { + "start": 26030.48, + "end": 26032.28, + "probability": 0.9856 + }, + { + "start": 26034.3, + "end": 26038.06, + "probability": 0.8626 + }, + { + "start": 26039.1, + "end": 26042.94, + "probability": 0.9866 + }, + { + "start": 26043.56, + "end": 26049.86, + "probability": 0.994 + }, + { + "start": 26050.38, + "end": 26057.2, + "probability": 0.966 + }, + { + "start": 26057.42, + "end": 26062.34, + "probability": 0.9951 + }, + { + "start": 26063.16, + "end": 26069.2, + "probability": 0.9237 + }, + { + "start": 26070.0, + "end": 26075.98, + "probability": 0.9809 + }, + { + "start": 26076.38, + "end": 26078.34, + "probability": 0.9986 + }, + { + "start": 26079.14, + "end": 26081.48, + "probability": 0.989 + }, + { + "start": 26081.72, + "end": 26082.76, + "probability": 0.4377 + }, + { + "start": 26082.8, + "end": 26083.94, + "probability": 0.8297 + }, + { + "start": 26084.04, + "end": 26084.68, + "probability": 0.6628 + }, + { + "start": 26085.26, + "end": 26086.22, + "probability": 0.8742 + }, + { + "start": 26093.26, + "end": 26094.86, + "probability": 0.6837 + }, + { + "start": 26095.44, + "end": 26096.24, + "probability": 0.7495 + }, + { + "start": 26096.66, + "end": 26098.48, + "probability": 0.988 + }, + { + "start": 26098.96, + "end": 26100.06, + "probability": 0.8702 + }, + { + "start": 26100.76, + "end": 26104.58, + "probability": 0.9832 + }, + { + "start": 26105.66, + "end": 26109.0, + "probability": 0.9689 + }, + { + "start": 26110.92, + "end": 26112.22, + "probability": 0.9876 + }, + { + "start": 26112.78, + "end": 26113.0, + "probability": 0.4673 + }, + { + "start": 26113.72, + "end": 26116.76, + "probability": 0.7777 + }, + { + "start": 26117.66, + "end": 26118.88, + "probability": 0.9102 + }, + { + "start": 26120.06, + "end": 26120.34, + "probability": 0.9072 + }, + { + "start": 26121.1, + "end": 26122.5, + "probability": 0.9218 + }, + { + "start": 26123.02, + "end": 26123.64, + "probability": 0.9285 + }, + { + "start": 26124.72, + "end": 26125.64, + "probability": 0.9397 + }, + { + "start": 26125.66, + "end": 26126.24, + "probability": 0.8903 + }, + { + "start": 26126.7, + "end": 26127.66, + "probability": 0.4962 + }, + { + "start": 26128.7, + "end": 26131.2, + "probability": 0.7634 + }, + { + "start": 26132.18, + "end": 26135.38, + "probability": 0.709 + }, + { + "start": 26137.38, + "end": 26137.88, + "probability": 0.9316 + }, + { + "start": 26140.14, + "end": 26141.26, + "probability": 0.9481 + }, + { + "start": 26142.41, + "end": 26144.44, + "probability": 0.7038 + }, + { + "start": 26145.6, + "end": 26146.34, + "probability": 0.8568 + }, + { + "start": 26147.54, + "end": 26148.28, + "probability": 0.9702 + }, + { + "start": 26150.48, + "end": 26151.68, + "probability": 0.3017 + }, + { + "start": 26152.0, + "end": 26153.84, + "probability": 0.8115 + }, + { + "start": 26153.92, + "end": 26154.14, + "probability": 0.4128 + }, + { + "start": 26154.2, + "end": 26157.38, + "probability": 0.6524 + }, + { + "start": 26157.52, + "end": 26158.82, + "probability": 0.8706 + }, + { + "start": 26159.18, + "end": 26159.26, + "probability": 0.5788 + }, + { + "start": 26159.26, + "end": 26159.84, + "probability": 0.6038 + }, + { + "start": 26159.96, + "end": 26163.26, + "probability": 0.7276 + }, + { + "start": 26164.28, + "end": 26167.58, + "probability": 0.991 + }, + { + "start": 26168.26, + "end": 26169.58, + "probability": 0.8809 + }, + { + "start": 26170.58, + "end": 26176.58, + "probability": 0.9795 + }, + { + "start": 26177.7, + "end": 26181.46, + "probability": 0.969 + }, + { + "start": 26182.46, + "end": 26186.7, + "probability": 0.9976 + }, + { + "start": 26187.8, + "end": 26189.24, + "probability": 0.9932 + }, + { + "start": 26190.12, + "end": 26193.22, + "probability": 0.1857 + }, + { + "start": 26194.08, + "end": 26195.48, + "probability": 0.9851 + }, + { + "start": 26196.32, + "end": 26202.3, + "probability": 0.9957 + }, + { + "start": 26202.98, + "end": 26204.02, + "probability": 0.7187 + }, + { + "start": 26204.72, + "end": 26208.78, + "probability": 0.9837 + }, + { + "start": 26209.72, + "end": 26213.68, + "probability": 0.9862 + }, + { + "start": 26214.24, + "end": 26216.2, + "probability": 0.8391 + }, + { + "start": 26217.16, + "end": 26220.44, + "probability": 0.9366 + }, + { + "start": 26220.86, + "end": 26225.98, + "probability": 0.9884 + }, + { + "start": 26226.44, + "end": 26227.26, + "probability": 0.8179 + }, + { + "start": 26227.56, + "end": 26228.6, + "probability": 0.9797 + }, + { + "start": 26229.18, + "end": 26231.32, + "probability": 0.7988 + }, + { + "start": 26234.62, + "end": 26234.72, + "probability": 0.9739 + }, + { + "start": 26235.28, + "end": 26235.92, + "probability": 0.0263 + }, + { + "start": 26235.92, + "end": 26235.92, + "probability": 0.5029 + }, + { + "start": 26235.92, + "end": 26236.37, + "probability": 0.571 + }, + { + "start": 26236.82, + "end": 26237.44, + "probability": 0.8346 + }, + { + "start": 26237.92, + "end": 26238.42, + "probability": 0.6983 + }, + { + "start": 26239.38, + "end": 26241.88, + "probability": 0.8712 + }, + { + "start": 26242.44, + "end": 26243.74, + "probability": 0.9941 + }, + { + "start": 26244.6, + "end": 26245.64, + "probability": 0.9846 + }, + { + "start": 26246.58, + "end": 26247.44, + "probability": 0.9839 + }, + { + "start": 26250.42, + "end": 26250.52, + "probability": 0.2998 + }, + { + "start": 26252.28, + "end": 26254.72, + "probability": 0.7878 + }, + { + "start": 26255.64, + "end": 26256.04, + "probability": 0.9063 + }, + { + "start": 26259.18, + "end": 26260.36, + "probability": 0.9655 + }, + { + "start": 26263.48, + "end": 26264.88, + "probability": 0.9561 + }, + { + "start": 26265.04, + "end": 26265.88, + "probability": 0.8828 + }, + { + "start": 26266.06, + "end": 26266.47, + "probability": 0.86 + }, + { + "start": 26268.42, + "end": 26272.22, + "probability": 0.9695 + }, + { + "start": 26272.48, + "end": 26273.82, + "probability": 0.3308 + }, + { + "start": 26275.48, + "end": 26277.28, + "probability": 0.3971 + }, + { + "start": 26277.36, + "end": 26278.54, + "probability": 0.5834 + }, + { + "start": 26278.58, + "end": 26280.76, + "probability": 0.7904 + }, + { + "start": 26281.64, + "end": 26282.36, + "probability": 0.6653 + }, + { + "start": 26284.66, + "end": 26286.72, + "probability": 0.9207 + }, + { + "start": 26288.81, + "end": 26290.8, + "probability": 0.3971 + }, + { + "start": 26291.6, + "end": 26292.72, + "probability": 0.8949 + }, + { + "start": 26292.78, + "end": 26293.84, + "probability": 0.7032 + }, + { + "start": 26294.84, + "end": 26295.04, + "probability": 0.5721 + }, + { + "start": 26298.08, + "end": 26298.98, + "probability": 0.4048 + }, + { + "start": 26299.0, + "end": 26299.72, + "probability": 0.7079 + }, + { + "start": 26300.18, + "end": 26301.0, + "probability": 0.9231 + }, + { + "start": 26301.0, + "end": 26301.8, + "probability": 0.9426 + }, + { + "start": 26302.3, + "end": 26303.92, + "probability": 0.7119 + }, + { + "start": 26303.96, + "end": 26304.7, + "probability": 0.6825 + }, + { + "start": 26305.4, + "end": 26306.38, + "probability": 0.0549 + }, + { + "start": 26309.02, + "end": 26309.8, + "probability": 0.084 + }, + { + "start": 26310.5, + "end": 26310.99, + "probability": 0.2175 + }, + { + "start": 26311.86, + "end": 26311.86, + "probability": 0.1573 + }, + { + "start": 26311.86, + "end": 26311.86, + "probability": 0.2632 + }, + { + "start": 26311.86, + "end": 26314.94, + "probability": 0.9139 + }, + { + "start": 26315.26, + "end": 26316.94, + "probability": 0.9225 + }, + { + "start": 26319.6, + "end": 26321.9, + "probability": 0.9092 + }, + { + "start": 26322.66, + "end": 26323.52, + "probability": 0.7612 + }, + { + "start": 26323.7, + "end": 26323.76, + "probability": 0.3973 + }, + { + "start": 26324.0, + "end": 26331.68, + "probability": 0.8582 + }, + { + "start": 26331.68, + "end": 26335.54, + "probability": 0.9974 + }, + { + "start": 26336.22, + "end": 26338.78, + "probability": 0.9801 + }, + { + "start": 26338.78, + "end": 26339.34, + "probability": 0.8325 + }, + { + "start": 26339.5, + "end": 26341.2, + "probability": 0.9237 + }, + { + "start": 26341.58, + "end": 26342.24, + "probability": 0.2776 + }, + { + "start": 26342.28, + "end": 26344.16, + "probability": 0.9859 + }, + { + "start": 26344.88, + "end": 26348.26, + "probability": 0.8518 + }, + { + "start": 26348.32, + "end": 26349.58, + "probability": 0.964 + }, + { + "start": 26349.82, + "end": 26350.38, + "probability": 0.6888 + }, + { + "start": 26350.5, + "end": 26350.86, + "probability": 0.7419 + }, + { + "start": 26351.16, + "end": 26351.58, + "probability": 0.4927 + }, + { + "start": 26351.68, + "end": 26352.28, + "probability": 0.7844 + }, + { + "start": 26352.46, + "end": 26352.82, + "probability": 0.6738 + }, + { + "start": 26353.14, + "end": 26353.44, + "probability": 0.625 + }, + { + "start": 26353.52, + "end": 26354.12, + "probability": 0.8251 + }, + { + "start": 26354.14, + "end": 26356.26, + "probability": 0.9911 + }, + { + "start": 26356.84, + "end": 26357.84, + "probability": 0.564 + }, + { + "start": 26358.46, + "end": 26358.72, + "probability": 0.4201 + }, + { + "start": 26360.02, + "end": 26361.66, + "probability": 0.9436 + }, + { + "start": 26362.4, + "end": 26362.96, + "probability": 0.9048 + }, + { + "start": 26364.1, + "end": 26364.98, + "probability": 0.9733 + }, + { + "start": 26366.44, + "end": 26368.56, + "probability": 0.4723 + }, + { + "start": 26369.5, + "end": 26371.74, + "probability": 0.9935 + }, + { + "start": 26372.8, + "end": 26373.72, + "probability": 0.5588 + }, + { + "start": 26374.2, + "end": 26375.2, + "probability": 0.991 + }, + { + "start": 26376.2, + "end": 26378.12, + "probability": 0.9962 + }, + { + "start": 26378.84, + "end": 26382.86, + "probability": 0.6126 + }, + { + "start": 26383.0, + "end": 26384.06, + "probability": 0.6426 + }, + { + "start": 26384.18, + "end": 26384.86, + "probability": 0.6648 + }, + { + "start": 26385.44, + "end": 26386.22, + "probability": 0.7078 + }, + { + "start": 26388.6, + "end": 26389.72, + "probability": 0.0266 + }, + { + "start": 26390.72, + "end": 26395.24, + "probability": 0.1283 + }, + { + "start": 26395.24, + "end": 26396.5, + "probability": 0.0094 + }, + { + "start": 26402.86, + "end": 26403.44, + "probability": 0.0706 + }, + { + "start": 26403.44, + "end": 26403.52, + "probability": 0.1707 + }, + { + "start": 26403.52, + "end": 26403.52, + "probability": 0.3838 + }, + { + "start": 26403.52, + "end": 26405.22, + "probability": 0.6522 + }, + { + "start": 26405.38, + "end": 26410.48, + "probability": 0.981 + }, + { + "start": 26411.04, + "end": 26413.04, + "probability": 0.5827 + }, + { + "start": 26413.62, + "end": 26415.08, + "probability": 0.8787 + }, + { + "start": 26415.14, + "end": 26415.66, + "probability": 0.6617 + }, + { + "start": 26415.74, + "end": 26417.32, + "probability": 0.6532 + }, + { + "start": 26418.04, + "end": 26424.32, + "probability": 0.9313 + }, + { + "start": 26425.02, + "end": 26425.84, + "probability": 0.2139 + } + ], + "segments_count": 9971, + "words_count": 48010, + "avg_words_per_segment": 4.815, + "avg_segment_duration": 1.9505, + "avg_words_per_minute": 108.6021, + "plenum_id": "61877", + "duration": 26524.34, + "title": null, + "plenum_date": "2017-02-20" +} \ No newline at end of file