diff --git "a/66204/metadata.json" "b/66204/metadata.json" new file mode 100644--- /dev/null +++ "b/66204/metadata.json" @@ -0,0 +1,43442 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "66204", + "quality_score": 0.9044, + "per_segment_quality_scores": [ + { + "start": 33.16, + "end": 33.38, + "probability": 0.3449 + }, + { + "start": 33.68, + "end": 34.56, + "probability": 0.9916 + }, + { + "start": 35.82, + "end": 36.14, + "probability": 0.7833 + }, + { + "start": 36.48, + "end": 37.68, + "probability": 0.81 + }, + { + "start": 37.8, + "end": 39.22, + "probability": 0.8886 + }, + { + "start": 39.28, + "end": 40.74, + "probability": 0.8755 + }, + { + "start": 41.62, + "end": 43.44, + "probability": 0.6835 + }, + { + "start": 44.04, + "end": 46.16, + "probability": 0.9426 + }, + { + "start": 47.04, + "end": 48.0, + "probability": 0.4751 + }, + { + "start": 48.82, + "end": 50.0, + "probability": 0.5516 + }, + { + "start": 50.72, + "end": 53.98, + "probability": 0.9624 + }, + { + "start": 54.0, + "end": 56.84, + "probability": 0.6352 + }, + { + "start": 57.36, + "end": 63.5, + "probability": 0.794 + }, + { + "start": 63.5, + "end": 64.98, + "probability": 0.5129 + }, + { + "start": 65.42, + "end": 68.48, + "probability": 0.7924 + }, + { + "start": 69.08, + "end": 73.0, + "probability": 0.7294 + }, + { + "start": 73.68, + "end": 76.46, + "probability": 0.5148 + }, + { + "start": 77.12, + "end": 77.62, + "probability": 0.0553 + }, + { + "start": 77.62, + "end": 79.76, + "probability": 0.0256 + }, + { + "start": 80.12, + "end": 80.58, + "probability": 0.0373 + }, + { + "start": 80.58, + "end": 81.98, + "probability": 0.103 + }, + { + "start": 85.18, + "end": 86.64, + "probability": 0.6279 + }, + { + "start": 87.26, + "end": 90.02, + "probability": 0.1896 + }, + { + "start": 90.88, + "end": 95.16, + "probability": 0.0719 + }, + { + "start": 100.02, + "end": 107.62, + "probability": 0.0541 + }, + { + "start": 108.32, + "end": 109.6, + "probability": 0.0455 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.0, + "end": 150.0, + "probability": 0.0 + }, + { + "start": 150.12, + "end": 150.6, + "probability": 0.0681 + }, + { + "start": 151.66, + "end": 155.26, + "probability": 0.0391 + }, + { + "start": 170.94, + "end": 171.2, + "probability": 0.1619 + }, + { + "start": 171.48, + "end": 173.4, + "probability": 0.094 + }, + { + "start": 174.62, + "end": 175.06, + "probability": 0.0752 + }, + { + "start": 177.95, + "end": 180.03, + "probability": 0.0551 + }, + { + "start": 181.99, + "end": 184.76, + "probability": 0.0407 + }, + { + "start": 185.58, + "end": 186.16, + "probability": 0.2579 + }, + { + "start": 187.84, + "end": 188.7, + "probability": 0.2015 + }, + { + "start": 190.16, + "end": 191.58, + "probability": 0.0337 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 283.98, + "end": 286.96, + "probability": 0.9909 + }, + { + "start": 287.8, + "end": 289.38, + "probability": 0.9766 + }, + { + "start": 290.66, + "end": 291.74, + "probability": 0.7931 + }, + { + "start": 292.74, + "end": 296.12, + "probability": 0.9877 + }, + { + "start": 296.86, + "end": 302.4, + "probability": 0.9805 + }, + { + "start": 302.84, + "end": 303.8, + "probability": 0.9966 + }, + { + "start": 304.32, + "end": 305.64, + "probability": 0.9958 + }, + { + "start": 306.64, + "end": 311.18, + "probability": 0.792 + }, + { + "start": 311.9, + "end": 315.94, + "probability": 0.9727 + }, + { + "start": 316.62, + "end": 317.96, + "probability": 0.7699 + }, + { + "start": 318.72, + "end": 320.3, + "probability": 0.9855 + }, + { + "start": 321.24, + "end": 323.94, + "probability": 0.9844 + }, + { + "start": 324.68, + "end": 325.32, + "probability": 0.9009 + }, + { + "start": 325.94, + "end": 329.8, + "probability": 0.979 + }, + { + "start": 330.58, + "end": 331.52, + "probability": 0.7252 + }, + { + "start": 332.28, + "end": 335.22, + "probability": 0.9799 + }, + { + "start": 335.76, + "end": 337.48, + "probability": 0.7678 + }, + { + "start": 338.32, + "end": 339.72, + "probability": 0.9139 + }, + { + "start": 341.14, + "end": 342.68, + "probability": 0.7745 + }, + { + "start": 343.46, + "end": 344.78, + "probability": 0.9235 + }, + { + "start": 345.62, + "end": 346.34, + "probability": 0.9918 + }, + { + "start": 346.6, + "end": 347.18, + "probability": 0.9767 + }, + { + "start": 347.48, + "end": 347.78, + "probability": 0.6688 + }, + { + "start": 348.04, + "end": 348.82, + "probability": 0.9841 + }, + { + "start": 349.2, + "end": 350.16, + "probability": 0.9783 + }, + { + "start": 350.7, + "end": 352.62, + "probability": 0.7016 + }, + { + "start": 353.46, + "end": 356.02, + "probability": 0.7326 + }, + { + "start": 356.76, + "end": 358.3, + "probability": 0.9937 + }, + { + "start": 358.98, + "end": 362.82, + "probability": 0.9642 + }, + { + "start": 363.72, + "end": 364.4, + "probability": 0.8903 + }, + { + "start": 364.94, + "end": 365.52, + "probability": 0.922 + }, + { + "start": 366.1, + "end": 367.84, + "probability": 0.971 + }, + { + "start": 368.42, + "end": 369.38, + "probability": 0.9231 + }, + { + "start": 370.02, + "end": 372.24, + "probability": 0.9888 + }, + { + "start": 373.14, + "end": 374.68, + "probability": 0.9772 + }, + { + "start": 375.62, + "end": 376.1, + "probability": 0.5296 + }, + { + "start": 376.88, + "end": 380.54, + "probability": 0.9469 + }, + { + "start": 381.12, + "end": 381.86, + "probability": 0.797 + }, + { + "start": 382.66, + "end": 384.02, + "probability": 0.9695 + }, + { + "start": 385.04, + "end": 386.56, + "probability": 0.9635 + }, + { + "start": 387.12, + "end": 389.54, + "probability": 0.9144 + }, + { + "start": 390.08, + "end": 391.32, + "probability": 0.8463 + }, + { + "start": 392.7, + "end": 393.18, + "probability": 0.4378 + }, + { + "start": 394.22, + "end": 399.16, + "probability": 0.9905 + }, + { + "start": 400.86, + "end": 404.16, + "probability": 0.9867 + }, + { + "start": 404.78, + "end": 405.78, + "probability": 0.9108 + }, + { + "start": 407.0, + "end": 408.32, + "probability": 0.877 + }, + { + "start": 409.34, + "end": 411.6, + "probability": 0.7644 + }, + { + "start": 412.26, + "end": 414.16, + "probability": 0.9371 + }, + { + "start": 415.18, + "end": 420.14, + "probability": 0.8958 + }, + { + "start": 421.1, + "end": 422.78, + "probability": 0.9891 + }, + { + "start": 423.44, + "end": 424.18, + "probability": 0.8569 + }, + { + "start": 425.54, + "end": 428.0, + "probability": 0.8903 + }, + { + "start": 429.54, + "end": 431.66, + "probability": 0.7665 + }, + { + "start": 432.92, + "end": 433.5, + "probability": 0.5706 + }, + { + "start": 434.08, + "end": 435.82, + "probability": 0.9878 + }, + { + "start": 436.94, + "end": 439.56, + "probability": 0.9941 + }, + { + "start": 440.06, + "end": 441.24, + "probability": 0.9492 + }, + { + "start": 441.66, + "end": 444.46, + "probability": 0.9977 + }, + { + "start": 444.9, + "end": 446.1, + "probability": 0.9421 + }, + { + "start": 446.7, + "end": 447.58, + "probability": 0.7281 + }, + { + "start": 448.6, + "end": 449.28, + "probability": 0.8765 + }, + { + "start": 450.88, + "end": 451.8, + "probability": 0.9801 + }, + { + "start": 452.98, + "end": 455.98, + "probability": 0.898 + }, + { + "start": 456.66, + "end": 457.1, + "probability": 0.9179 + }, + { + "start": 457.64, + "end": 459.48, + "probability": 0.9077 + }, + { + "start": 460.28, + "end": 465.58, + "probability": 0.9751 + }, + { + "start": 466.0, + "end": 467.12, + "probability": 0.731 + }, + { + "start": 467.94, + "end": 469.26, + "probability": 0.6983 + }, + { + "start": 469.86, + "end": 472.38, + "probability": 0.8907 + }, + { + "start": 473.1, + "end": 476.24, + "probability": 0.8784 + }, + { + "start": 476.26, + "end": 476.94, + "probability": 0.6072 + }, + { + "start": 477.28, + "end": 477.82, + "probability": 0.9527 + }, + { + "start": 478.32, + "end": 479.06, + "probability": 0.7566 + }, + { + "start": 479.76, + "end": 480.78, + "probability": 0.8792 + }, + { + "start": 481.88, + "end": 484.12, + "probability": 0.7742 + }, + { + "start": 484.8, + "end": 485.9, + "probability": 0.9244 + }, + { + "start": 486.86, + "end": 488.78, + "probability": 0.7619 + }, + { + "start": 489.44, + "end": 490.42, + "probability": 0.8518 + }, + { + "start": 491.0, + "end": 491.82, + "probability": 0.7036 + }, + { + "start": 492.66, + "end": 494.56, + "probability": 0.9295 + }, + { + "start": 495.5, + "end": 496.68, + "probability": 0.9908 + }, + { + "start": 497.54, + "end": 498.74, + "probability": 0.9961 + }, + { + "start": 499.42, + "end": 500.75, + "probability": 0.9418 + }, + { + "start": 501.5, + "end": 502.1, + "probability": 0.9194 + }, + { + "start": 502.42, + "end": 503.12, + "probability": 0.9094 + }, + { + "start": 503.42, + "end": 504.3, + "probability": 0.9391 + }, + { + "start": 505.04, + "end": 506.1, + "probability": 0.9517 + }, + { + "start": 507.36, + "end": 508.28, + "probability": 0.8523 + }, + { + "start": 509.76, + "end": 510.74, + "probability": 0.9692 + }, + { + "start": 511.74, + "end": 512.66, + "probability": 0.8462 + }, + { + "start": 513.46, + "end": 517.66, + "probability": 0.998 + }, + { + "start": 518.22, + "end": 520.36, + "probability": 0.6711 + }, + { + "start": 521.26, + "end": 524.4, + "probability": 0.98 + }, + { + "start": 525.02, + "end": 530.22, + "probability": 0.9929 + }, + { + "start": 531.06, + "end": 533.32, + "probability": 0.9862 + }, + { + "start": 533.98, + "end": 539.04, + "probability": 0.9946 + }, + { + "start": 539.64, + "end": 540.52, + "probability": 0.6651 + }, + { + "start": 541.78, + "end": 543.86, + "probability": 0.9561 + }, + { + "start": 544.56, + "end": 545.88, + "probability": 0.9484 + }, + { + "start": 546.68, + "end": 547.38, + "probability": 0.7831 + }, + { + "start": 548.04, + "end": 551.2, + "probability": 0.9946 + }, + { + "start": 551.2, + "end": 553.78, + "probability": 0.9612 + }, + { + "start": 554.62, + "end": 556.7, + "probability": 0.992 + }, + { + "start": 557.4, + "end": 558.14, + "probability": 0.9372 + }, + { + "start": 559.48, + "end": 560.2, + "probability": 0.8376 + }, + { + "start": 560.88, + "end": 562.22, + "probability": 0.9984 + }, + { + "start": 562.76, + "end": 565.42, + "probability": 0.9941 + }, + { + "start": 565.42, + "end": 568.66, + "probability": 0.9991 + }, + { + "start": 569.84, + "end": 572.98, + "probability": 0.9958 + }, + { + "start": 573.82, + "end": 575.12, + "probability": 0.7441 + }, + { + "start": 575.48, + "end": 577.1, + "probability": 0.9631 + }, + { + "start": 577.3, + "end": 578.12, + "probability": 0.9787 + }, + { + "start": 578.9, + "end": 580.23, + "probability": 0.9814 + }, + { + "start": 581.26, + "end": 582.34, + "probability": 0.9969 + }, + { + "start": 583.26, + "end": 586.22, + "probability": 0.9824 + }, + { + "start": 587.22, + "end": 588.24, + "probability": 0.9515 + }, + { + "start": 589.04, + "end": 590.14, + "probability": 0.9784 + }, + { + "start": 590.92, + "end": 591.88, + "probability": 0.7962 + }, + { + "start": 592.42, + "end": 593.28, + "probability": 0.9798 + }, + { + "start": 593.96, + "end": 596.54, + "probability": 0.9903 + }, + { + "start": 597.16, + "end": 600.66, + "probability": 0.9944 + }, + { + "start": 601.5, + "end": 604.38, + "probability": 0.748 + }, + { + "start": 605.18, + "end": 607.1, + "probability": 0.7987 + }, + { + "start": 607.64, + "end": 609.68, + "probability": 0.9332 + }, + { + "start": 610.2, + "end": 613.96, + "probability": 0.9912 + }, + { + "start": 614.64, + "end": 616.94, + "probability": 0.7703 + }, + { + "start": 617.52, + "end": 619.88, + "probability": 0.9802 + }, + { + "start": 620.68, + "end": 624.46, + "probability": 0.918 + }, + { + "start": 625.2, + "end": 629.88, + "probability": 0.9329 + }, + { + "start": 630.7, + "end": 634.1, + "probability": 0.9768 + }, + { + "start": 634.1, + "end": 637.38, + "probability": 0.9831 + }, + { + "start": 638.46, + "end": 639.18, + "probability": 0.7021 + }, + { + "start": 639.88, + "end": 640.58, + "probability": 0.9243 + }, + { + "start": 641.12, + "end": 642.82, + "probability": 0.9661 + }, + { + "start": 643.42, + "end": 644.98, + "probability": 0.8688 + }, + { + "start": 645.64, + "end": 646.02, + "probability": 0.9019 + }, + { + "start": 646.66, + "end": 647.22, + "probability": 0.9404 + }, + { + "start": 648.78, + "end": 649.6, + "probability": 0.404 + }, + { + "start": 650.52, + "end": 652.8, + "probability": 0.9845 + }, + { + "start": 654.18, + "end": 655.46, + "probability": 0.9946 + }, + { + "start": 656.06, + "end": 657.82, + "probability": 0.9561 + }, + { + "start": 658.52, + "end": 659.68, + "probability": 0.8535 + }, + { + "start": 660.26, + "end": 662.06, + "probability": 0.9743 + }, + { + "start": 662.64, + "end": 663.4, + "probability": 0.9227 + }, + { + "start": 664.04, + "end": 665.78, + "probability": 0.9597 + }, + { + "start": 666.54, + "end": 670.8, + "probability": 0.9858 + }, + { + "start": 671.72, + "end": 673.4, + "probability": 0.9927 + }, + { + "start": 674.04, + "end": 676.42, + "probability": 0.988 + }, + { + "start": 677.18, + "end": 677.9, + "probability": 0.7249 + }, + { + "start": 678.76, + "end": 680.8, + "probability": 0.9954 + }, + { + "start": 681.36, + "end": 683.7, + "probability": 0.9737 + }, + { + "start": 684.24, + "end": 687.46, + "probability": 0.9814 + }, + { + "start": 688.04, + "end": 689.22, + "probability": 0.8314 + }, + { + "start": 689.8, + "end": 692.4, + "probability": 0.9402 + }, + { + "start": 692.84, + "end": 693.5, + "probability": 0.8381 + }, + { + "start": 694.54, + "end": 696.32, + "probability": 0.92 + }, + { + "start": 697.16, + "end": 701.56, + "probability": 0.9739 + }, + { + "start": 702.32, + "end": 704.42, + "probability": 0.9542 + }, + { + "start": 705.04, + "end": 706.96, + "probability": 0.8862 + }, + { + "start": 707.38, + "end": 712.92, + "probability": 0.9045 + }, + { + "start": 713.78, + "end": 714.7, + "probability": 0.6448 + }, + { + "start": 715.34, + "end": 716.92, + "probability": 0.9061 + }, + { + "start": 717.48, + "end": 720.28, + "probability": 0.8293 + }, + { + "start": 721.12, + "end": 723.78, + "probability": 0.9834 + }, + { + "start": 724.38, + "end": 728.34, + "probability": 0.9414 + }, + { + "start": 728.96, + "end": 732.22, + "probability": 0.9705 + }, + { + "start": 732.88, + "end": 735.08, + "probability": 0.9703 + }, + { + "start": 735.6, + "end": 736.78, + "probability": 0.9368 + }, + { + "start": 737.44, + "end": 739.86, + "probability": 0.9527 + }, + { + "start": 740.42, + "end": 741.02, + "probability": 0.9246 + }, + { + "start": 741.1, + "end": 742.16, + "probability": 0.9875 + }, + { + "start": 742.24, + "end": 743.0, + "probability": 0.9351 + }, + { + "start": 743.4, + "end": 746.42, + "probability": 0.8973 + }, + { + "start": 747.6, + "end": 753.94, + "probability": 0.7038 + }, + { + "start": 754.78, + "end": 757.68, + "probability": 0.8844 + }, + { + "start": 758.6, + "end": 763.84, + "probability": 0.9754 + }, + { + "start": 764.64, + "end": 767.2, + "probability": 0.9728 + }, + { + "start": 767.84, + "end": 769.54, + "probability": 0.9107 + }, + { + "start": 770.16, + "end": 771.76, + "probability": 0.83 + }, + { + "start": 772.66, + "end": 773.34, + "probability": 0.6286 + }, + { + "start": 773.94, + "end": 776.9, + "probability": 0.9468 + }, + { + "start": 777.5, + "end": 784.6, + "probability": 0.9882 + }, + { + "start": 785.26, + "end": 787.18, + "probability": 0.8962 + }, + { + "start": 787.7, + "end": 791.46, + "probability": 0.99 + }, + { + "start": 793.34, + "end": 795.74, + "probability": 0.8249 + }, + { + "start": 796.38, + "end": 801.76, + "probability": 0.8625 + }, + { + "start": 802.74, + "end": 805.28, + "probability": 0.8311 + }, + { + "start": 805.36, + "end": 806.08, + "probability": 0.8831 + }, + { + "start": 806.28, + "end": 808.04, + "probability": 0.9355 + }, + { + "start": 808.16, + "end": 809.4, + "probability": 0.9372 + }, + { + "start": 810.26, + "end": 812.12, + "probability": 0.9707 + }, + { + "start": 820.54, + "end": 821.98, + "probability": 0.4929 + }, + { + "start": 823.22, + "end": 827.11, + "probability": 0.7767 + }, + { + "start": 827.72, + "end": 829.3, + "probability": 0.8099 + }, + { + "start": 830.7, + "end": 837.5, + "probability": 0.9663 + }, + { + "start": 837.5, + "end": 842.28, + "probability": 0.9524 + }, + { + "start": 842.82, + "end": 849.04, + "probability": 0.9968 + }, + { + "start": 849.8, + "end": 854.88, + "probability": 0.931 + }, + { + "start": 856.92, + "end": 860.88, + "probability": 0.9984 + }, + { + "start": 861.72, + "end": 868.89, + "probability": 0.9008 + }, + { + "start": 870.24, + "end": 871.92, + "probability": 0.7609 + }, + { + "start": 872.88, + "end": 875.7, + "probability": 0.9897 + }, + { + "start": 876.08, + "end": 880.86, + "probability": 0.9898 + }, + { + "start": 881.8, + "end": 887.2, + "probability": 0.9919 + }, + { + "start": 887.2, + "end": 891.26, + "probability": 0.9749 + }, + { + "start": 892.38, + "end": 895.72, + "probability": 0.5629 + }, + { + "start": 896.3, + "end": 899.82, + "probability": 0.9846 + }, + { + "start": 900.76, + "end": 905.1, + "probability": 0.9883 + }, + { + "start": 906.06, + "end": 906.68, + "probability": 0.7979 + }, + { + "start": 907.7, + "end": 913.7, + "probability": 0.8074 + }, + { + "start": 914.36, + "end": 917.72, + "probability": 0.8286 + }, + { + "start": 918.44, + "end": 920.72, + "probability": 0.9215 + }, + { + "start": 921.58, + "end": 923.14, + "probability": 0.9598 + }, + { + "start": 923.24, + "end": 924.56, + "probability": 0.8203 + }, + { + "start": 925.1, + "end": 927.02, + "probability": 0.9316 + }, + { + "start": 927.78, + "end": 935.58, + "probability": 0.8926 + }, + { + "start": 937.04, + "end": 938.92, + "probability": 0.5358 + }, + { + "start": 939.3, + "end": 941.41, + "probability": 0.8711 + }, + { + "start": 941.84, + "end": 943.56, + "probability": 0.939 + }, + { + "start": 943.94, + "end": 945.12, + "probability": 0.9464 + }, + { + "start": 945.5, + "end": 946.82, + "probability": 0.9357 + }, + { + "start": 947.04, + "end": 948.33, + "probability": 0.986 + }, + { + "start": 948.64, + "end": 950.18, + "probability": 0.9351 + }, + { + "start": 950.6, + "end": 952.08, + "probability": 0.9884 + }, + { + "start": 952.88, + "end": 953.7, + "probability": 0.9784 + }, + { + "start": 954.04, + "end": 955.62, + "probability": 0.7595 + }, + { + "start": 956.2, + "end": 958.3, + "probability": 0.9178 + }, + { + "start": 959.06, + "end": 962.9, + "probability": 0.9536 + }, + { + "start": 963.72, + "end": 967.76, + "probability": 0.9723 + }, + { + "start": 968.76, + "end": 971.44, + "probability": 0.438 + }, + { + "start": 972.02, + "end": 978.96, + "probability": 0.9564 + }, + { + "start": 979.46, + "end": 981.12, + "probability": 0.5705 + }, + { + "start": 981.84, + "end": 982.62, + "probability": 0.8807 + }, + { + "start": 984.38, + "end": 987.96, + "probability": 0.824 + }, + { + "start": 988.12, + "end": 993.14, + "probability": 0.8945 + }, + { + "start": 994.18, + "end": 999.3, + "probability": 0.9714 + }, + { + "start": 999.82, + "end": 1003.86, + "probability": 0.8779 + }, + { + "start": 1004.84, + "end": 1005.92, + "probability": 0.8481 + }, + { + "start": 1006.46, + "end": 1011.54, + "probability": 0.9921 + }, + { + "start": 1011.88, + "end": 1015.16, + "probability": 0.9941 + }, + { + "start": 1015.72, + "end": 1020.12, + "probability": 0.8556 + }, + { + "start": 1021.24, + "end": 1025.72, + "probability": 0.8903 + }, + { + "start": 1026.82, + "end": 1029.5, + "probability": 0.5938 + }, + { + "start": 1030.24, + "end": 1031.16, + "probability": 0.6288 + }, + { + "start": 1031.94, + "end": 1034.66, + "probability": 0.8198 + }, + { + "start": 1035.62, + "end": 1038.66, + "probability": 0.9364 + }, + { + "start": 1040.0, + "end": 1045.92, + "probability": 0.9976 + }, + { + "start": 1046.74, + "end": 1047.94, + "probability": 0.9095 + }, + { + "start": 1048.14, + "end": 1048.86, + "probability": 0.6123 + }, + { + "start": 1049.34, + "end": 1050.2, + "probability": 0.0305 + }, + { + "start": 1050.2, + "end": 1051.16, + "probability": 0.5465 + }, + { + "start": 1051.24, + "end": 1052.28, + "probability": 0.6026 + }, + { + "start": 1052.98, + "end": 1055.08, + "probability": 0.9175 + }, + { + "start": 1055.5, + "end": 1060.5, + "probability": 0.9339 + }, + { + "start": 1061.1, + "end": 1065.68, + "probability": 0.9871 + }, + { + "start": 1065.72, + "end": 1071.46, + "probability": 0.9332 + }, + { + "start": 1072.02, + "end": 1074.64, + "probability": 0.626 + }, + { + "start": 1075.38, + "end": 1078.34, + "probability": 0.9539 + }, + { + "start": 1078.98, + "end": 1084.72, + "probability": 0.5442 + }, + { + "start": 1085.42, + "end": 1086.1, + "probability": 0.8198 + }, + { + "start": 1086.28, + "end": 1086.62, + "probability": 0.8556 + }, + { + "start": 1086.8, + "end": 1088.46, + "probability": 0.4941 + }, + { + "start": 1088.84, + "end": 1089.08, + "probability": 0.4902 + }, + { + "start": 1089.3, + "end": 1089.86, + "probability": 0.5131 + }, + { + "start": 1089.92, + "end": 1090.94, + "probability": 0.9076 + }, + { + "start": 1091.1, + "end": 1092.04, + "probability": 0.9336 + }, + { + "start": 1092.38, + "end": 1094.4, + "probability": 0.9197 + }, + { + "start": 1095.04, + "end": 1099.86, + "probability": 0.9927 + }, + { + "start": 1099.92, + "end": 1101.22, + "probability": 0.9026 + }, + { + "start": 1101.3, + "end": 1101.8, + "probability": 0.3154 + }, + { + "start": 1101.84, + "end": 1103.1, + "probability": 0.4559 + }, + { + "start": 1103.16, + "end": 1103.68, + "probability": 0.6527 + }, + { + "start": 1104.94, + "end": 1105.4, + "probability": 0.883 + }, + { + "start": 1106.12, + "end": 1109.26, + "probability": 0.9178 + }, + { + "start": 1110.1, + "end": 1115.98, + "probability": 0.8127 + }, + { + "start": 1116.8, + "end": 1117.22, + "probability": 0.9736 + }, + { + "start": 1117.92, + "end": 1123.28, + "probability": 0.9709 + }, + { + "start": 1124.04, + "end": 1131.14, + "probability": 0.984 + }, + { + "start": 1131.14, + "end": 1135.9, + "probability": 0.9853 + }, + { + "start": 1136.58, + "end": 1138.74, + "probability": 0.9945 + }, + { + "start": 1139.18, + "end": 1141.22, + "probability": 0.6182 + }, + { + "start": 1141.94, + "end": 1146.1, + "probability": 0.8015 + }, + { + "start": 1146.54, + "end": 1149.84, + "probability": 0.7925 + }, + { + "start": 1150.88, + "end": 1153.66, + "probability": 0.8315 + }, + { + "start": 1154.28, + "end": 1155.78, + "probability": 0.84 + }, + { + "start": 1156.2, + "end": 1157.94, + "probability": 0.9366 + }, + { + "start": 1158.16, + "end": 1158.5, + "probability": 0.0505 + }, + { + "start": 1158.5, + "end": 1158.5, + "probability": 0.4703 + }, + { + "start": 1158.5, + "end": 1159.7, + "probability": 0.7262 + }, + { + "start": 1160.42, + "end": 1161.92, + "probability": 0.6877 + }, + { + "start": 1161.92, + "end": 1162.06, + "probability": 0.0005 + }, + { + "start": 1163.64, + "end": 1163.64, + "probability": 0.0875 + }, + { + "start": 1163.64, + "end": 1163.64, + "probability": 0.6512 + }, + { + "start": 1163.64, + "end": 1165.22, + "probability": 0.9661 + }, + { + "start": 1165.22, + "end": 1166.18, + "probability": 0.9559 + }, + { + "start": 1166.72, + "end": 1168.6, + "probability": 0.924 + }, + { + "start": 1169.76, + "end": 1174.14, + "probability": 0.9618 + }, + { + "start": 1175.02, + "end": 1176.96, + "probability": 0.7942 + }, + { + "start": 1177.52, + "end": 1178.06, + "probability": 0.621 + }, + { + "start": 1178.54, + "end": 1182.22, + "probability": 0.7631 + }, + { + "start": 1183.34, + "end": 1186.64, + "probability": 0.8031 + }, + { + "start": 1187.42, + "end": 1188.72, + "probability": 0.7263 + }, + { + "start": 1189.26, + "end": 1197.34, + "probability": 0.9224 + }, + { + "start": 1197.62, + "end": 1197.92, + "probability": 0.7373 + }, + { + "start": 1199.18, + "end": 1200.14, + "probability": 0.9383 + }, + { + "start": 1200.84, + "end": 1202.78, + "probability": 0.5214 + }, + { + "start": 1203.42, + "end": 1205.12, + "probability": 0.6533 + }, + { + "start": 1205.68, + "end": 1210.04, + "probability": 0.8586 + }, + { + "start": 1210.48, + "end": 1212.74, + "probability": 0.9801 + }, + { + "start": 1213.12, + "end": 1214.8, + "probability": 0.9091 + }, + { + "start": 1215.58, + "end": 1219.98, + "probability": 0.7907 + }, + { + "start": 1221.44, + "end": 1224.32, + "probability": 0.9661 + }, + { + "start": 1225.3, + "end": 1228.7, + "probability": 0.6422 + }, + { + "start": 1229.54, + "end": 1230.4, + "probability": 0.4661 + }, + { + "start": 1231.4, + "end": 1233.62, + "probability": 0.9728 + }, + { + "start": 1233.78, + "end": 1238.8, + "probability": 0.9715 + }, + { + "start": 1238.8, + "end": 1245.32, + "probability": 0.9958 + }, + { + "start": 1245.74, + "end": 1248.4, + "probability": 0.8022 + }, + { + "start": 1248.82, + "end": 1250.04, + "probability": 0.8748 + }, + { + "start": 1251.12, + "end": 1255.7, + "probability": 0.9191 + }, + { + "start": 1256.44, + "end": 1261.9, + "probability": 0.9774 + }, + { + "start": 1262.74, + "end": 1263.88, + "probability": 0.6901 + }, + { + "start": 1263.98, + "end": 1265.3, + "probability": 0.7236 + }, + { + "start": 1265.72, + "end": 1268.22, + "probability": 0.9315 + }, + { + "start": 1268.7, + "end": 1269.1, + "probability": 0.8062 + }, + { + "start": 1269.32, + "end": 1271.04, + "probability": 0.79 + }, + { + "start": 1271.32, + "end": 1275.44, + "probability": 0.9731 + }, + { + "start": 1275.8, + "end": 1277.1, + "probability": 0.8392 + }, + { + "start": 1277.9, + "end": 1280.08, + "probability": 0.9583 + }, + { + "start": 1281.12, + "end": 1283.98, + "probability": 0.9379 + }, + { + "start": 1284.52, + "end": 1292.74, + "probability": 0.8846 + }, + { + "start": 1293.48, + "end": 1294.9, + "probability": 0.6959 + }, + { + "start": 1295.74, + "end": 1298.78, + "probability": 0.8432 + }, + { + "start": 1299.22, + "end": 1301.38, + "probability": 0.978 + }, + { + "start": 1301.9, + "end": 1302.62, + "probability": 0.4276 + }, + { + "start": 1303.44, + "end": 1307.1, + "probability": 0.6616 + }, + { + "start": 1308.28, + "end": 1309.3, + "probability": 0.9517 + }, + { + "start": 1310.08, + "end": 1313.34, + "probability": 0.996 + }, + { + "start": 1314.68, + "end": 1315.24, + "probability": 0.8818 + }, + { + "start": 1316.68, + "end": 1320.94, + "probability": 0.9787 + }, + { + "start": 1321.5, + "end": 1322.46, + "probability": 0.598 + }, + { + "start": 1323.94, + "end": 1324.38, + "probability": 0.9729 + }, + { + "start": 1324.94, + "end": 1330.04, + "probability": 0.9985 + }, + { + "start": 1330.34, + "end": 1333.4, + "probability": 0.9204 + }, + { + "start": 1333.88, + "end": 1336.58, + "probability": 0.9904 + }, + { + "start": 1337.6, + "end": 1339.94, + "probability": 0.7756 + }, + { + "start": 1341.76, + "end": 1343.96, + "probability": 0.8815 + }, + { + "start": 1344.94, + "end": 1345.58, + "probability": 0.1007 + }, + { + "start": 1346.18, + "end": 1350.3, + "probability": 0.9563 + }, + { + "start": 1351.8, + "end": 1354.5, + "probability": 0.8353 + }, + { + "start": 1355.46, + "end": 1356.44, + "probability": 0.8252 + }, + { + "start": 1356.58, + "end": 1361.46, + "probability": 0.9224 + }, + { + "start": 1362.14, + "end": 1362.96, + "probability": 0.2131 + }, + { + "start": 1363.22, + "end": 1363.94, + "probability": 0.3629 + }, + { + "start": 1364.92, + "end": 1365.24, + "probability": 0.8915 + }, + { + "start": 1365.28, + "end": 1365.98, + "probability": 0.6435 + }, + { + "start": 1366.26, + "end": 1367.98, + "probability": 0.7006 + }, + { + "start": 1368.14, + "end": 1372.66, + "probability": 0.9875 + }, + { + "start": 1373.46, + "end": 1375.9, + "probability": 0.9771 + }, + { + "start": 1376.48, + "end": 1377.22, + "probability": 0.9771 + }, + { + "start": 1378.64, + "end": 1382.0, + "probability": 0.9685 + }, + { + "start": 1382.74, + "end": 1385.92, + "probability": 0.8086 + }, + { + "start": 1386.64, + "end": 1390.32, + "probability": 0.9871 + }, + { + "start": 1390.58, + "end": 1390.92, + "probability": 0.8285 + }, + { + "start": 1391.24, + "end": 1392.2, + "probability": 0.9553 + }, + { + "start": 1392.72, + "end": 1393.22, + "probability": 0.5081 + }, + { + "start": 1393.24, + "end": 1395.82, + "probability": 0.4721 + }, + { + "start": 1396.32, + "end": 1399.92, + "probability": 0.974 + }, + { + "start": 1399.98, + "end": 1405.74, + "probability": 0.9845 + }, + { + "start": 1406.36, + "end": 1411.1, + "probability": 0.7507 + }, + { + "start": 1412.14, + "end": 1413.36, + "probability": 0.7267 + }, + { + "start": 1413.52, + "end": 1416.14, + "probability": 0.7331 + }, + { + "start": 1416.72, + "end": 1419.74, + "probability": 0.9531 + }, + { + "start": 1420.34, + "end": 1424.34, + "probability": 0.9674 + }, + { + "start": 1425.14, + "end": 1428.06, + "probability": 0.9919 + }, + { + "start": 1429.17, + "end": 1433.28, + "probability": 0.9904 + }, + { + "start": 1433.76, + "end": 1436.5, + "probability": 0.73 + }, + { + "start": 1436.86, + "end": 1440.84, + "probability": 0.9434 + }, + { + "start": 1441.08, + "end": 1441.32, + "probability": 0.6355 + }, + { + "start": 1442.06, + "end": 1444.3, + "probability": 0.7283 + }, + { + "start": 1444.4, + "end": 1446.64, + "probability": 0.83 + }, + { + "start": 1447.54, + "end": 1450.18, + "probability": 0.9502 + }, + { + "start": 1450.28, + "end": 1451.56, + "probability": 0.9612 + }, + { + "start": 1452.18, + "end": 1453.3, + "probability": 0.6435 + }, + { + "start": 1454.36, + "end": 1456.74, + "probability": 0.9976 + }, + { + "start": 1467.1, + "end": 1467.68, + "probability": 0.4969 + }, + { + "start": 1467.76, + "end": 1468.9, + "probability": 0.5719 + }, + { + "start": 1469.08, + "end": 1470.34, + "probability": 0.9578 + }, + { + "start": 1470.6, + "end": 1472.2, + "probability": 0.8736 + }, + { + "start": 1473.0, + "end": 1473.99, + "probability": 0.9878 + }, + { + "start": 1475.24, + "end": 1476.92, + "probability": 0.9103 + }, + { + "start": 1477.02, + "end": 1479.46, + "probability": 0.8582 + }, + { + "start": 1479.64, + "end": 1482.7, + "probability": 0.978 + }, + { + "start": 1483.78, + "end": 1486.44, + "probability": 0.8572 + }, + { + "start": 1486.54, + "end": 1488.26, + "probability": 0.868 + }, + { + "start": 1488.4, + "end": 1489.49, + "probability": 0.7991 + }, + { + "start": 1490.64, + "end": 1490.7, + "probability": 0.0159 + }, + { + "start": 1490.7, + "end": 1492.26, + "probability": 0.2467 + }, + { + "start": 1492.32, + "end": 1494.14, + "probability": 0.4799 + }, + { + "start": 1496.92, + "end": 1497.96, + "probability": 0.3085 + }, + { + "start": 1497.98, + "end": 1497.98, + "probability": 0.0408 + }, + { + "start": 1497.98, + "end": 1498.24, + "probability": 0.0778 + }, + { + "start": 1498.4, + "end": 1499.08, + "probability": 0.58 + }, + { + "start": 1500.32, + "end": 1502.52, + "probability": 0.629 + }, + { + "start": 1502.74, + "end": 1503.9, + "probability": 0.8359 + }, + { + "start": 1504.12, + "end": 1504.72, + "probability": 0.7983 + }, + { + "start": 1505.9, + "end": 1507.51, + "probability": 0.8798 + }, + { + "start": 1508.32, + "end": 1509.38, + "probability": 0.5233 + }, + { + "start": 1509.38, + "end": 1512.46, + "probability": 0.9233 + }, + { + "start": 1512.7, + "end": 1514.5, + "probability": 0.8071 + }, + { + "start": 1515.02, + "end": 1516.06, + "probability": 0.9837 + }, + { + "start": 1516.14, + "end": 1516.64, + "probability": 0.4853 + }, + { + "start": 1516.64, + "end": 1516.96, + "probability": 0.4673 + }, + { + "start": 1517.08, + "end": 1518.66, + "probability": 0.9738 + }, + { + "start": 1519.06, + "end": 1522.6, + "probability": 0.9946 + }, + { + "start": 1522.6, + "end": 1525.32, + "probability": 0.9978 + }, + { + "start": 1525.86, + "end": 1527.92, + "probability": 0.9922 + }, + { + "start": 1528.46, + "end": 1529.24, + "probability": 0.5573 + }, + { + "start": 1529.38, + "end": 1529.56, + "probability": 0.819 + }, + { + "start": 1529.74, + "end": 1530.48, + "probability": 0.6181 + }, + { + "start": 1530.56, + "end": 1531.5, + "probability": 0.8882 + }, + { + "start": 1531.54, + "end": 1534.64, + "probability": 0.9192 + }, + { + "start": 1535.42, + "end": 1536.56, + "probability": 0.7142 + }, + { + "start": 1536.64, + "end": 1538.5, + "probability": 0.9989 + }, + { + "start": 1538.82, + "end": 1541.06, + "probability": 0.8365 + }, + { + "start": 1541.18, + "end": 1541.84, + "probability": 0.6316 + }, + { + "start": 1541.98, + "end": 1545.47, + "probability": 0.9696 + }, + { + "start": 1546.0, + "end": 1550.62, + "probability": 0.9729 + }, + { + "start": 1551.18, + "end": 1553.3, + "probability": 0.8542 + }, + { + "start": 1553.4, + "end": 1556.1, + "probability": 0.9941 + }, + { + "start": 1556.82, + "end": 1561.5, + "probability": 0.9902 + }, + { + "start": 1562.08, + "end": 1564.72, + "probability": 0.8633 + }, + { + "start": 1565.24, + "end": 1566.12, + "probability": 0.7446 + }, + { + "start": 1567.5, + "end": 1569.14, + "probability": 0.0505 + }, + { + "start": 1570.86, + "end": 1570.86, + "probability": 0.0391 + }, + { + "start": 1570.86, + "end": 1573.24, + "probability": 0.7502 + }, + { + "start": 1573.86, + "end": 1580.68, + "probability": 0.9766 + }, + { + "start": 1581.4, + "end": 1584.06, + "probability": 0.9908 + }, + { + "start": 1584.06, + "end": 1588.14, + "probability": 0.9919 + }, + { + "start": 1588.56, + "end": 1590.66, + "probability": 0.99 + }, + { + "start": 1591.66, + "end": 1593.16, + "probability": 0.9722 + }, + { + "start": 1594.22, + "end": 1595.36, + "probability": 0.6185 + }, + { + "start": 1595.56, + "end": 1596.54, + "probability": 0.9838 + }, + { + "start": 1596.7, + "end": 1597.94, + "probability": 0.8502 + }, + { + "start": 1599.86, + "end": 1601.28, + "probability": 0.9678 + }, + { + "start": 1603.06, + "end": 1606.44, + "probability": 0.9858 + }, + { + "start": 1607.18, + "end": 1607.56, + "probability": 0.369 + }, + { + "start": 1608.8, + "end": 1610.88, + "probability": 0.7959 + }, + { + "start": 1612.16, + "end": 1613.26, + "probability": 0.8789 + }, + { + "start": 1615.94, + "end": 1618.72, + "probability": 0.9701 + }, + { + "start": 1620.26, + "end": 1621.16, + "probability": 0.8191 + }, + { + "start": 1621.5, + "end": 1623.02, + "probability": 0.8723 + }, + { + "start": 1623.76, + "end": 1626.38, + "probability": 0.8699 + }, + { + "start": 1626.8, + "end": 1630.35, + "probability": 0.9845 + }, + { + "start": 1630.8, + "end": 1631.5, + "probability": 0.6688 + }, + { + "start": 1631.58, + "end": 1632.22, + "probability": 0.7171 + }, + { + "start": 1632.4, + "end": 1634.82, + "probability": 0.8972 + }, + { + "start": 1635.86, + "end": 1636.14, + "probability": 0.7646 + }, + { + "start": 1636.2, + "end": 1637.24, + "probability": 0.9573 + }, + { + "start": 1637.32, + "end": 1640.3, + "probability": 0.9011 + }, + { + "start": 1642.34, + "end": 1642.6, + "probability": 0.7554 + }, + { + "start": 1643.94, + "end": 1644.7, + "probability": 0.9445 + }, + { + "start": 1645.86, + "end": 1647.46, + "probability": 0.9749 + }, + { + "start": 1648.38, + "end": 1651.92, + "probability": 0.9868 + }, + { + "start": 1653.06, + "end": 1658.58, + "probability": 0.9939 + }, + { + "start": 1659.4, + "end": 1659.86, + "probability": 0.8135 + }, + { + "start": 1659.9, + "end": 1663.38, + "probability": 0.9478 + }, + { + "start": 1665.28, + "end": 1670.2, + "probability": 0.9982 + }, + { + "start": 1672.08, + "end": 1674.62, + "probability": 0.9846 + }, + { + "start": 1675.88, + "end": 1681.34, + "probability": 0.9837 + }, + { + "start": 1683.0, + "end": 1684.02, + "probability": 0.6612 + }, + { + "start": 1684.84, + "end": 1686.46, + "probability": 0.8576 + }, + { + "start": 1686.52, + "end": 1687.52, + "probability": 0.897 + }, + { + "start": 1687.86, + "end": 1693.84, + "probability": 0.9961 + }, + { + "start": 1694.26, + "end": 1700.16, + "probability": 0.9798 + }, + { + "start": 1700.28, + "end": 1700.84, + "probability": 0.3125 + }, + { + "start": 1700.84, + "end": 1701.44, + "probability": 0.3443 + }, + { + "start": 1701.76, + "end": 1703.32, + "probability": 0.9178 + }, + { + "start": 1703.36, + "end": 1708.32, + "probability": 0.9763 + }, + { + "start": 1708.38, + "end": 1710.42, + "probability": 0.9953 + }, + { + "start": 1711.02, + "end": 1712.32, + "probability": 0.9993 + }, + { + "start": 1713.62, + "end": 1715.1, + "probability": 0.8889 + }, + { + "start": 1715.78, + "end": 1718.42, + "probability": 0.9966 + }, + { + "start": 1718.52, + "end": 1719.62, + "probability": 0.8734 + }, + { + "start": 1720.14, + "end": 1723.18, + "probability": 0.9979 + }, + { + "start": 1723.92, + "end": 1729.24, + "probability": 0.986 + }, + { + "start": 1729.44, + "end": 1729.96, + "probability": 0.8151 + }, + { + "start": 1731.3, + "end": 1735.14, + "probability": 0.9783 + }, + { + "start": 1735.54, + "end": 1736.56, + "probability": 0.8918 + }, + { + "start": 1737.08, + "end": 1739.86, + "probability": 0.9966 + }, + { + "start": 1741.08, + "end": 1741.82, + "probability": 0.0554 + }, + { + "start": 1741.82, + "end": 1741.82, + "probability": 0.1765 + }, + { + "start": 1741.82, + "end": 1741.9, + "probability": 0.0804 + }, + { + "start": 1741.94, + "end": 1743.42, + "probability": 0.7927 + }, + { + "start": 1743.58, + "end": 1744.44, + "probability": 0.7841 + }, + { + "start": 1745.04, + "end": 1745.78, + "probability": 0.885 + }, + { + "start": 1745.94, + "end": 1750.04, + "probability": 0.9858 + }, + { + "start": 1750.98, + "end": 1753.0, + "probability": 0.7457 + }, + { + "start": 1754.14, + "end": 1755.04, + "probability": 0.6794 + }, + { + "start": 1755.78, + "end": 1758.42, + "probability": 0.874 + }, + { + "start": 1758.96, + "end": 1762.02, + "probability": 0.9989 + }, + { + "start": 1762.54, + "end": 1765.18, + "probability": 0.9941 + }, + { + "start": 1765.24, + "end": 1766.28, + "probability": 0.9687 + }, + { + "start": 1766.42, + "end": 1767.06, + "probability": 0.902 + }, + { + "start": 1767.12, + "end": 1767.76, + "probability": 0.9467 + }, + { + "start": 1769.02, + "end": 1770.16, + "probability": 0.7687 + }, + { + "start": 1771.7, + "end": 1772.44, + "probability": 0.9971 + }, + { + "start": 1773.52, + "end": 1774.86, + "probability": 0.83 + }, + { + "start": 1776.14, + "end": 1777.52, + "probability": 0.8735 + }, + { + "start": 1777.96, + "end": 1778.3, + "probability": 0.6153 + }, + { + "start": 1778.42, + "end": 1779.08, + "probability": 0.9126 + }, + { + "start": 1779.18, + "end": 1781.0, + "probability": 0.9952 + }, + { + "start": 1781.38, + "end": 1784.88, + "probability": 0.9972 + }, + { + "start": 1784.88, + "end": 1788.06, + "probability": 0.9915 + }, + { + "start": 1788.94, + "end": 1791.88, + "probability": 0.999 + }, + { + "start": 1791.88, + "end": 1794.98, + "probability": 0.9995 + }, + { + "start": 1795.96, + "end": 1797.36, + "probability": 0.9386 + }, + { + "start": 1798.98, + "end": 1804.52, + "probability": 0.9985 + }, + { + "start": 1804.66, + "end": 1805.82, + "probability": 0.2503 + }, + { + "start": 1805.86, + "end": 1806.72, + "probability": 0.3101 + }, + { + "start": 1806.74, + "end": 1807.22, + "probability": 0.826 + }, + { + "start": 1807.24, + "end": 1808.94, + "probability": 0.5685 + }, + { + "start": 1809.46, + "end": 1810.18, + "probability": 0.3058 + }, + { + "start": 1810.26, + "end": 1812.94, + "probability": 0.6222 + }, + { + "start": 1813.16, + "end": 1815.36, + "probability": 0.5515 + }, + { + "start": 1815.36, + "end": 1817.48, + "probability": 0.6405 + }, + { + "start": 1817.66, + "end": 1820.95, + "probability": 0.9391 + }, + { + "start": 1821.72, + "end": 1823.8, + "probability": 0.1288 + }, + { + "start": 1824.02, + "end": 1828.86, + "probability": 0.8369 + }, + { + "start": 1829.14, + "end": 1832.06, + "probability": 0.4281 + }, + { + "start": 1832.82, + "end": 1834.32, + "probability": 0.206 + }, + { + "start": 1835.05, + "end": 1835.98, + "probability": 0.1873 + }, + { + "start": 1836.02, + "end": 1836.08, + "probability": 0.0651 + }, + { + "start": 1836.08, + "end": 1836.48, + "probability": 0.4584 + }, + { + "start": 1836.48, + "end": 1836.76, + "probability": 0.7259 + }, + { + "start": 1836.86, + "end": 1837.59, + "probability": 0.8017 + }, + { + "start": 1838.04, + "end": 1840.82, + "probability": 0.4989 + }, + { + "start": 1842.38, + "end": 1843.24, + "probability": 0.5967 + }, + { + "start": 1843.24, + "end": 1847.34, + "probability": 0.8467 + }, + { + "start": 1847.44, + "end": 1848.16, + "probability": 0.397 + }, + { + "start": 1848.54, + "end": 1850.24, + "probability": 0.9858 + }, + { + "start": 1850.38, + "end": 1851.72, + "probability": 0.8709 + }, + { + "start": 1851.92, + "end": 1853.2, + "probability": 0.4939 + }, + { + "start": 1855.4, + "end": 1859.44, + "probability": 0.9909 + }, + { + "start": 1859.44, + "end": 1862.58, + "probability": 0.9521 + }, + { + "start": 1862.72, + "end": 1864.6, + "probability": 0.9121 + }, + { + "start": 1864.66, + "end": 1866.16, + "probability": 0.9966 + }, + { + "start": 1866.76, + "end": 1867.36, + "probability": 0.7405 + }, + { + "start": 1868.24, + "end": 1870.24, + "probability": 0.9856 + }, + { + "start": 1870.34, + "end": 1871.84, + "probability": 0.8401 + }, + { + "start": 1874.42, + "end": 1875.76, + "probability": 0.6941 + }, + { + "start": 1876.04, + "end": 1879.72, + "probability": 0.9748 + }, + { + "start": 1879.98, + "end": 1882.52, + "probability": 0.9955 + }, + { + "start": 1883.72, + "end": 1890.06, + "probability": 0.996 + }, + { + "start": 1890.28, + "end": 1892.86, + "probability": 0.8184 + }, + { + "start": 1894.18, + "end": 1895.96, + "probability": 0.9956 + }, + { + "start": 1896.48, + "end": 1899.8, + "probability": 0.0554 + }, + { + "start": 1900.38, + "end": 1900.38, + "probability": 0.0152 + }, + { + "start": 1900.38, + "end": 1900.38, + "probability": 0.1242 + }, + { + "start": 1900.38, + "end": 1902.86, + "probability": 0.9766 + }, + { + "start": 1902.96, + "end": 1903.54, + "probability": 0.6407 + }, + { + "start": 1903.7, + "end": 1904.18, + "probability": 0.9609 + }, + { + "start": 1904.36, + "end": 1904.58, + "probability": 0.8888 + }, + { + "start": 1906.42, + "end": 1909.4, + "probability": 0.9786 + }, + { + "start": 1909.66, + "end": 1913.36, + "probability": 0.9553 + }, + { + "start": 1914.72, + "end": 1916.9, + "probability": 0.9771 + }, + { + "start": 1917.12, + "end": 1920.67, + "probability": 0.9423 + }, + { + "start": 1921.58, + "end": 1925.36, + "probability": 0.9832 + }, + { + "start": 1926.18, + "end": 1930.08, + "probability": 0.9964 + }, + { + "start": 1930.24, + "end": 1934.48, + "probability": 0.9604 + }, + { + "start": 1934.52, + "end": 1934.66, + "probability": 0.5355 + }, + { + "start": 1934.76, + "end": 1937.34, + "probability": 0.8109 + }, + { + "start": 1938.56, + "end": 1943.38, + "probability": 0.9702 + }, + { + "start": 1943.8, + "end": 1947.56, + "probability": 0.999 + }, + { + "start": 1947.94, + "end": 1949.48, + "probability": 0.9623 + }, + { + "start": 1949.54, + "end": 1951.4, + "probability": 0.997 + }, + { + "start": 1952.1, + "end": 1953.36, + "probability": 0.8234 + }, + { + "start": 1953.48, + "end": 1956.58, + "probability": 0.9977 + }, + { + "start": 1957.28, + "end": 1958.34, + "probability": 0.999 + }, + { + "start": 1959.72, + "end": 1963.32, + "probability": 0.9938 + }, + { + "start": 1963.42, + "end": 1964.34, + "probability": 0.9812 + }, + { + "start": 1964.56, + "end": 1966.52, + "probability": 0.9642 + }, + { + "start": 1966.72, + "end": 1970.1, + "probability": 0.9785 + }, + { + "start": 1970.1, + "end": 1973.16, + "probability": 0.9786 + }, + { + "start": 1973.26, + "end": 1976.52, + "probability": 0.9937 + }, + { + "start": 1976.58, + "end": 1978.04, + "probability": 0.9541 + }, + { + "start": 1978.12, + "end": 1981.74, + "probability": 0.9206 + }, + { + "start": 1982.2, + "end": 1985.86, + "probability": 0.9812 + }, + { + "start": 1986.12, + "end": 1988.34, + "probability": 0.8892 + }, + { + "start": 1988.46, + "end": 1990.1, + "probability": 0.9985 + }, + { + "start": 1990.44, + "end": 1993.92, + "probability": 0.9985 + }, + { + "start": 1994.2, + "end": 1995.19, + "probability": 0.9863 + }, + { + "start": 1995.32, + "end": 1996.84, + "probability": 0.9333 + }, + { + "start": 1997.38, + "end": 1998.68, + "probability": 0.957 + }, + { + "start": 1999.58, + "end": 2002.6, + "probability": 0.9797 + }, + { + "start": 2003.74, + "end": 2006.9, + "probability": 0.9958 + }, + { + "start": 2006.98, + "end": 2011.08, + "probability": 0.9744 + }, + { + "start": 2012.0, + "end": 2016.02, + "probability": 0.9553 + }, + { + "start": 2016.76, + "end": 2019.4, + "probability": 0.8707 + }, + { + "start": 2020.24, + "end": 2022.44, + "probability": 0.8988 + }, + { + "start": 2023.76, + "end": 2023.76, + "probability": 0.3194 + }, + { + "start": 2025.82, + "end": 2025.82, + "probability": 0.1208 + }, + { + "start": 2025.82, + "end": 2027.29, + "probability": 0.4205 + }, + { + "start": 2027.8, + "end": 2029.52, + "probability": 0.3419 + }, + { + "start": 2029.94, + "end": 2031.14, + "probability": 0.4257 + }, + { + "start": 2031.18, + "end": 2031.6, + "probability": 0.9023 + }, + { + "start": 2031.7, + "end": 2032.88, + "probability": 0.9517 + }, + { + "start": 2033.14, + "end": 2033.94, + "probability": 0.7126 + }, + { + "start": 2033.98, + "end": 2037.84, + "probability": 0.9278 + }, + { + "start": 2038.1, + "end": 2042.52, + "probability": 0.9958 + }, + { + "start": 2042.58, + "end": 2043.24, + "probability": 0.729 + }, + { + "start": 2043.26, + "end": 2043.78, + "probability": 0.7482 + }, + { + "start": 2043.9, + "end": 2045.12, + "probability": 0.8922 + }, + { + "start": 2045.92, + "end": 2046.98, + "probability": 0.8655 + }, + { + "start": 2047.4, + "end": 2052.08, + "probability": 0.9963 + }, + { + "start": 2052.1, + "end": 2052.28, + "probability": 0.0549 + }, + { + "start": 2052.48, + "end": 2053.44, + "probability": 0.0124 + }, + { + "start": 2053.88, + "end": 2054.22, + "probability": 0.0381 + }, + { + "start": 2054.22, + "end": 2055.7, + "probability": 0.6736 + }, + { + "start": 2055.8, + "end": 2056.22, + "probability": 0.8838 + }, + { + "start": 2056.26, + "end": 2057.84, + "probability": 0.9668 + }, + { + "start": 2058.2, + "end": 2059.21, + "probability": 0.9663 + }, + { + "start": 2060.52, + "end": 2065.58, + "probability": 0.9909 + }, + { + "start": 2065.98, + "end": 2069.54, + "probability": 0.9952 + }, + { + "start": 2069.64, + "end": 2073.36, + "probability": 0.8435 + }, + { + "start": 2073.4, + "end": 2076.7, + "probability": 0.9034 + }, + { + "start": 2076.96, + "end": 2080.06, + "probability": 0.9919 + }, + { + "start": 2080.39, + "end": 2081.74, + "probability": 0.9355 + }, + { + "start": 2081.84, + "end": 2083.4, + "probability": 0.98 + }, + { + "start": 2083.4, + "end": 2088.46, + "probability": 0.969 + }, + { + "start": 2088.68, + "end": 2088.68, + "probability": 0.1197 + }, + { + "start": 2088.68, + "end": 2089.34, + "probability": 0.9309 + }, + { + "start": 2090.46, + "end": 2092.52, + "probability": 0.7563 + }, + { + "start": 2093.96, + "end": 2103.34, + "probability": 0.8841 + }, + { + "start": 2103.48, + "end": 2104.66, + "probability": 0.9569 + }, + { + "start": 2105.36, + "end": 2107.0, + "probability": 0.7211 + }, + { + "start": 2107.2, + "end": 2110.4, + "probability": 0.9587 + }, + { + "start": 2111.56, + "end": 2113.5, + "probability": 0.9612 + }, + { + "start": 2114.06, + "end": 2119.44, + "probability": 0.9973 + }, + { + "start": 2120.54, + "end": 2121.26, + "probability": 0.8624 + }, + { + "start": 2121.5, + "end": 2123.14, + "probability": 0.7554 + }, + { + "start": 2123.34, + "end": 2125.42, + "probability": 0.9713 + }, + { + "start": 2125.54, + "end": 2130.32, + "probability": 0.9933 + }, + { + "start": 2130.98, + "end": 2134.02, + "probability": 0.9894 + }, + { + "start": 2134.2, + "end": 2135.3, + "probability": 0.9037 + }, + { + "start": 2135.34, + "end": 2136.22, + "probability": 0.9078 + }, + { + "start": 2136.38, + "end": 2137.62, + "probability": 0.8375 + }, + { + "start": 2138.68, + "end": 2140.56, + "probability": 0.954 + }, + { + "start": 2141.38, + "end": 2142.5, + "probability": 0.6047 + }, + { + "start": 2142.68, + "end": 2149.64, + "probability": 0.9871 + }, + { + "start": 2150.28, + "end": 2153.06, + "probability": 0.9661 + }, + { + "start": 2153.5, + "end": 2153.68, + "probability": 0.7342 + }, + { + "start": 2154.56, + "end": 2156.82, + "probability": 0.845 + }, + { + "start": 2156.94, + "end": 2158.42, + "probability": 0.9 + }, + { + "start": 2159.04, + "end": 2160.5, + "probability": 0.8546 + }, + { + "start": 2161.76, + "end": 2163.06, + "probability": 0.8068 + }, + { + "start": 2163.2, + "end": 2164.28, + "probability": 0.555 + }, + { + "start": 2164.38, + "end": 2165.9, + "probability": 0.795 + }, + { + "start": 2166.04, + "end": 2167.84, + "probability": 0.9389 + }, + { + "start": 2168.94, + "end": 2175.22, + "probability": 0.8932 + }, + { + "start": 2175.98, + "end": 2179.0, + "probability": 0.6348 + }, + { + "start": 2179.18, + "end": 2180.04, + "probability": 0.6689 + }, + { + "start": 2181.0, + "end": 2185.32, + "probability": 0.8905 + }, + { + "start": 2185.54, + "end": 2187.02, + "probability": 0.8661 + }, + { + "start": 2187.4, + "end": 2188.82, + "probability": 0.9551 + }, + { + "start": 2189.36, + "end": 2190.2, + "probability": 0.9804 + }, + { + "start": 2190.74, + "end": 2191.36, + "probability": 0.8321 + }, + { + "start": 2191.9, + "end": 2196.32, + "probability": 0.7793 + }, + { + "start": 2196.86, + "end": 2197.0, + "probability": 0.0645 + }, + { + "start": 2197.52, + "end": 2198.7, + "probability": 0.5908 + }, + { + "start": 2198.9, + "end": 2200.26, + "probability": 0.254 + }, + { + "start": 2200.38, + "end": 2202.36, + "probability": 0.9448 + }, + { + "start": 2203.94, + "end": 2207.16, + "probability": 0.9829 + }, + { + "start": 2207.16, + "end": 2211.0, + "probability": 0.9627 + }, + { + "start": 2211.46, + "end": 2220.52, + "probability": 0.8602 + }, + { + "start": 2220.52, + "end": 2225.0, + "probability": 0.8532 + }, + { + "start": 2225.38, + "end": 2231.42, + "probability": 0.9518 + }, + { + "start": 2231.56, + "end": 2231.88, + "probability": 0.7483 + }, + { + "start": 2233.16, + "end": 2236.8, + "probability": 0.7726 + }, + { + "start": 2237.48, + "end": 2241.24, + "probability": 0.9855 + }, + { + "start": 2241.3, + "end": 2247.04, + "probability": 0.9921 + }, + { + "start": 2247.68, + "end": 2248.16, + "probability": 0.5209 + }, + { + "start": 2262.1, + "end": 2262.36, + "probability": 0.2813 + }, + { + "start": 2262.48, + "end": 2262.68, + "probability": 0.6243 + }, + { + "start": 2264.96, + "end": 2265.96, + "probability": 0.6258 + }, + { + "start": 2267.76, + "end": 2270.72, + "probability": 0.985 + }, + { + "start": 2271.3, + "end": 2271.86, + "probability": 0.8607 + }, + { + "start": 2274.1, + "end": 2278.52, + "probability": 0.9959 + }, + { + "start": 2278.71, + "end": 2282.26, + "probability": 0.9927 + }, + { + "start": 2282.92, + "end": 2283.52, + "probability": 0.7386 + }, + { + "start": 2284.88, + "end": 2285.84, + "probability": 0.7186 + }, + { + "start": 2286.42, + "end": 2286.88, + "probability": 0.4862 + }, + { + "start": 2288.0, + "end": 2289.9, + "probability": 0.9937 + }, + { + "start": 2290.64, + "end": 2291.78, + "probability": 0.8326 + }, + { + "start": 2292.66, + "end": 2296.7, + "probability": 0.9872 + }, + { + "start": 2297.56, + "end": 2302.28, + "probability": 0.9956 + }, + { + "start": 2302.94, + "end": 2306.58, + "probability": 0.9985 + }, + { + "start": 2306.58, + "end": 2310.08, + "probability": 0.9988 + }, + { + "start": 2311.8, + "end": 2315.24, + "probability": 0.9187 + }, + { + "start": 2316.28, + "end": 2318.66, + "probability": 0.985 + }, + { + "start": 2319.64, + "end": 2322.82, + "probability": 0.9985 + }, + { + "start": 2324.14, + "end": 2330.92, + "probability": 0.9992 + }, + { + "start": 2331.92, + "end": 2334.68, + "probability": 0.9905 + }, + { + "start": 2335.22, + "end": 2340.94, + "probability": 0.9851 + }, + { + "start": 2342.56, + "end": 2346.84, + "probability": 0.9897 + }, + { + "start": 2347.94, + "end": 2354.58, + "probability": 0.9661 + }, + { + "start": 2355.56, + "end": 2361.48, + "probability": 0.9962 + }, + { + "start": 2362.14, + "end": 2366.44, + "probability": 0.9932 + }, + { + "start": 2367.12, + "end": 2372.34, + "probability": 0.9727 + }, + { + "start": 2373.08, + "end": 2377.82, + "probability": 0.9976 + }, + { + "start": 2379.18, + "end": 2382.86, + "probability": 0.9946 + }, + { + "start": 2383.02, + "end": 2384.14, + "probability": 0.8993 + }, + { + "start": 2384.68, + "end": 2389.94, + "probability": 0.9852 + }, + { + "start": 2391.2, + "end": 2394.48, + "probability": 0.9755 + }, + { + "start": 2395.12, + "end": 2397.1, + "probability": 0.6456 + }, + { + "start": 2398.46, + "end": 2400.2, + "probability": 0.9626 + }, + { + "start": 2400.98, + "end": 2404.86, + "probability": 0.9579 + }, + { + "start": 2405.0, + "end": 2409.62, + "probability": 0.971 + }, + { + "start": 2410.36, + "end": 2414.46, + "probability": 0.9907 + }, + { + "start": 2415.24, + "end": 2419.5, + "probability": 0.9916 + }, + { + "start": 2420.38, + "end": 2422.42, + "probability": 0.9601 + }, + { + "start": 2422.9, + "end": 2424.56, + "probability": 0.9847 + }, + { + "start": 2425.72, + "end": 2429.06, + "probability": 0.9854 + }, + { + "start": 2429.98, + "end": 2434.14, + "probability": 0.9982 + }, + { + "start": 2434.14, + "end": 2438.62, + "probability": 0.9972 + }, + { + "start": 2440.04, + "end": 2445.36, + "probability": 0.9958 + }, + { + "start": 2446.14, + "end": 2449.68, + "probability": 0.9111 + }, + { + "start": 2450.94, + "end": 2454.72, + "probability": 0.8518 + }, + { + "start": 2454.76, + "end": 2458.38, + "probability": 0.9844 + }, + { + "start": 2459.08, + "end": 2463.64, + "probability": 0.9758 + }, + { + "start": 2466.04, + "end": 2469.1, + "probability": 0.9925 + }, + { + "start": 2470.0, + "end": 2473.86, + "probability": 0.9679 + }, + { + "start": 2474.68, + "end": 2477.52, + "probability": 0.9908 + }, + { + "start": 2477.52, + "end": 2481.56, + "probability": 0.9974 + }, + { + "start": 2482.64, + "end": 2487.7, + "probability": 0.993 + }, + { + "start": 2487.7, + "end": 2492.16, + "probability": 0.9976 + }, + { + "start": 2493.14, + "end": 2494.68, + "probability": 0.9023 + }, + { + "start": 2495.38, + "end": 2497.58, + "probability": 0.97 + }, + { + "start": 2498.38, + "end": 2499.8, + "probability": 0.9416 + }, + { + "start": 2500.56, + "end": 2502.86, + "probability": 0.7835 + }, + { + "start": 2503.52, + "end": 2505.77, + "probability": 0.9989 + }, + { + "start": 2506.94, + "end": 2510.29, + "probability": 0.9963 + }, + { + "start": 2510.34, + "end": 2517.84, + "probability": 0.963 + }, + { + "start": 2519.14, + "end": 2523.58, + "probability": 0.9932 + }, + { + "start": 2523.58, + "end": 2529.16, + "probability": 0.9678 + }, + { + "start": 2530.32, + "end": 2530.34, + "probability": 0.0347 + }, + { + "start": 2530.34, + "end": 2530.84, + "probability": 0.676 + }, + { + "start": 2531.54, + "end": 2533.08, + "probability": 0.26 + }, + { + "start": 2533.72, + "end": 2537.42, + "probability": 0.5433 + }, + { + "start": 2538.54, + "end": 2538.54, + "probability": 0.0396 + }, + { + "start": 2538.62, + "end": 2541.86, + "probability": 0.8848 + }, + { + "start": 2542.18, + "end": 2546.54, + "probability": 0.9927 + }, + { + "start": 2548.74, + "end": 2550.56, + "probability": 0.9087 + }, + { + "start": 2551.12, + "end": 2555.72, + "probability": 0.9961 + }, + { + "start": 2556.36, + "end": 2559.82, + "probability": 0.9938 + }, + { + "start": 2560.48, + "end": 2561.18, + "probability": 0.6915 + }, + { + "start": 2561.78, + "end": 2567.26, + "probability": 0.7518 + }, + { + "start": 2567.96, + "end": 2571.24, + "probability": 0.9883 + }, + { + "start": 2571.24, + "end": 2576.1, + "probability": 0.9937 + }, + { + "start": 2576.46, + "end": 2578.62, + "probability": 0.9176 + }, + { + "start": 2580.0, + "end": 2584.6, + "probability": 0.9885 + }, + { + "start": 2584.6, + "end": 2588.52, + "probability": 0.9979 + }, + { + "start": 2589.04, + "end": 2590.46, + "probability": 0.9953 + }, + { + "start": 2591.0, + "end": 2592.38, + "probability": 0.7047 + }, + { + "start": 2592.88, + "end": 2596.12, + "probability": 0.9066 + }, + { + "start": 2596.52, + "end": 2597.56, + "probability": 0.9639 + }, + { + "start": 2598.7, + "end": 2602.06, + "probability": 0.9965 + }, + { + "start": 2602.92, + "end": 2607.5, + "probability": 0.9768 + }, + { + "start": 2608.8, + "end": 2613.28, + "probability": 0.9546 + }, + { + "start": 2613.9, + "end": 2616.08, + "probability": 0.8027 + }, + { + "start": 2617.38, + "end": 2618.08, + "probability": 0.7668 + }, + { + "start": 2618.76, + "end": 2624.98, + "probability": 0.9959 + }, + { + "start": 2625.74, + "end": 2626.35, + "probability": 0.9473 + }, + { + "start": 2627.26, + "end": 2629.46, + "probability": 0.8564 + }, + { + "start": 2630.54, + "end": 2632.46, + "probability": 0.9258 + }, + { + "start": 2633.58, + "end": 2637.58, + "probability": 0.8705 + }, + { + "start": 2638.18, + "end": 2641.74, + "probability": 0.9691 + }, + { + "start": 2642.62, + "end": 2647.16, + "probability": 0.9954 + }, + { + "start": 2647.8, + "end": 2651.1, + "probability": 0.9336 + }, + { + "start": 2652.22, + "end": 2655.12, + "probability": 0.969 + }, + { + "start": 2655.12, + "end": 2660.04, + "probability": 0.9848 + }, + { + "start": 2660.56, + "end": 2662.96, + "probability": 0.6687 + }, + { + "start": 2663.8, + "end": 2668.84, + "probability": 0.9845 + }, + { + "start": 2669.6, + "end": 2674.56, + "probability": 0.9849 + }, + { + "start": 2675.32, + "end": 2677.74, + "probability": 0.9863 + }, + { + "start": 2678.68, + "end": 2681.62, + "probability": 0.7531 + }, + { + "start": 2682.48, + "end": 2686.76, + "probability": 0.9973 + }, + { + "start": 2687.46, + "end": 2691.48, + "probability": 0.7457 + }, + { + "start": 2691.48, + "end": 2694.36, + "probability": 0.8643 + }, + { + "start": 2694.86, + "end": 2695.3, + "probability": 0.4565 + }, + { + "start": 2696.58, + "end": 2698.74, + "probability": 0.9283 + }, + { + "start": 2699.56, + "end": 2700.04, + "probability": 0.7646 + }, + { + "start": 2700.66, + "end": 2706.16, + "probability": 0.9504 + }, + { + "start": 2707.08, + "end": 2709.5, + "probability": 0.98 + }, + { + "start": 2712.58, + "end": 2713.46, + "probability": 0.9362 + }, + { + "start": 2714.1, + "end": 2716.12, + "probability": 0.9967 + }, + { + "start": 2718.72, + "end": 2722.72, + "probability": 0.8774 + }, + { + "start": 2722.9, + "end": 2724.08, + "probability": 0.7187 + }, + { + "start": 2724.92, + "end": 2728.8, + "probability": 0.781 + }, + { + "start": 2729.86, + "end": 2733.78, + "probability": 0.9974 + }, + { + "start": 2734.84, + "end": 2737.94, + "probability": 0.9462 + }, + { + "start": 2738.82, + "end": 2741.06, + "probability": 0.9353 + }, + { + "start": 2741.66, + "end": 2743.26, + "probability": 0.9838 + }, + { + "start": 2743.92, + "end": 2750.4, + "probability": 0.9897 + }, + { + "start": 2750.68, + "end": 2753.24, + "probability": 0.8422 + }, + { + "start": 2754.48, + "end": 2756.02, + "probability": 0.4406 + }, + { + "start": 2756.88, + "end": 2760.56, + "probability": 0.7993 + }, + { + "start": 2761.52, + "end": 2764.68, + "probability": 0.9529 + }, + { + "start": 2765.46, + "end": 2770.26, + "probability": 0.9193 + }, + { + "start": 2770.64, + "end": 2775.84, + "probability": 0.9138 + }, + { + "start": 2776.9, + "end": 2780.44, + "probability": 0.9165 + }, + { + "start": 2780.44, + "end": 2783.94, + "probability": 0.9966 + }, + { + "start": 2784.28, + "end": 2786.06, + "probability": 0.9939 + }, + { + "start": 2787.88, + "end": 2791.13, + "probability": 0.9839 + }, + { + "start": 2793.02, + "end": 2798.2, + "probability": 0.9749 + }, + { + "start": 2799.08, + "end": 2800.26, + "probability": 0.999 + }, + { + "start": 2801.44, + "end": 2802.6, + "probability": 0.6057 + }, + { + "start": 2803.06, + "end": 2804.8, + "probability": 0.8063 + }, + { + "start": 2805.06, + "end": 2806.88, + "probability": 0.9756 + }, + { + "start": 2807.62, + "end": 2808.54, + "probability": 0.7702 + }, + { + "start": 2809.28, + "end": 2810.96, + "probability": 0.8774 + }, + { + "start": 2811.62, + "end": 2813.92, + "probability": 0.9615 + }, + { + "start": 2816.06, + "end": 2822.78, + "probability": 0.9686 + }, + { + "start": 2824.06, + "end": 2824.9, + "probability": 0.7482 + }, + { + "start": 2826.82, + "end": 2831.12, + "probability": 0.9944 + }, + { + "start": 2831.9, + "end": 2833.38, + "probability": 0.978 + }, + { + "start": 2834.8, + "end": 2839.22, + "probability": 0.9958 + }, + { + "start": 2839.84, + "end": 2841.06, + "probability": 0.8388 + }, + { + "start": 2843.2, + "end": 2847.24, + "probability": 0.7882 + }, + { + "start": 2848.0, + "end": 2850.04, + "probability": 0.9774 + }, + { + "start": 2850.42, + "end": 2858.22, + "probability": 0.9847 + }, + { + "start": 2858.38, + "end": 2860.36, + "probability": 0.8477 + }, + { + "start": 2863.12, + "end": 2864.98, + "probability": 0.6199 + }, + { + "start": 2865.06, + "end": 2866.48, + "probability": 0.846 + }, + { + "start": 2866.66, + "end": 2870.94, + "probability": 0.9194 + }, + { + "start": 2871.58, + "end": 2875.7, + "probability": 0.9746 + }, + { + "start": 2876.82, + "end": 2878.22, + "probability": 0.6793 + }, + { + "start": 2878.7, + "end": 2879.72, + "probability": 0.9474 + }, + { + "start": 2879.78, + "end": 2880.94, + "probability": 0.8009 + }, + { + "start": 2881.36, + "end": 2882.54, + "probability": 0.9714 + }, + { + "start": 2884.02, + "end": 2885.18, + "probability": 0.4143 + }, + { + "start": 2885.4, + "end": 2886.51, + "probability": 0.2917 + }, + { + "start": 2887.24, + "end": 2887.52, + "probability": 0.3998 + }, + { + "start": 2887.68, + "end": 2892.88, + "probability": 0.91 + }, + { + "start": 2893.34, + "end": 2894.68, + "probability": 0.8962 + }, + { + "start": 2895.06, + "end": 2897.34, + "probability": 0.9821 + }, + { + "start": 2898.54, + "end": 2901.16, + "probability": 0.6781 + }, + { + "start": 2901.36, + "end": 2904.82, + "probability": 0.8933 + }, + { + "start": 2922.42, + "end": 2922.92, + "probability": 0.4944 + }, + { + "start": 2923.1, + "end": 2923.7, + "probability": 0.5505 + }, + { + "start": 2923.92, + "end": 2925.34, + "probability": 0.6921 + }, + { + "start": 2925.72, + "end": 2928.6, + "probability": 0.9548 + }, + { + "start": 2929.62, + "end": 2937.52, + "probability": 0.9852 + }, + { + "start": 2937.52, + "end": 2947.52, + "probability": 0.921 + }, + { + "start": 2947.68, + "end": 2950.18, + "probability": 0.7632 + }, + { + "start": 2950.24, + "end": 2955.46, + "probability": 0.8008 + }, + { + "start": 2956.88, + "end": 2957.52, + "probability": 0.7819 + }, + { + "start": 2957.6, + "end": 2958.22, + "probability": 0.7097 + }, + { + "start": 2958.34, + "end": 2961.7, + "probability": 0.9953 + }, + { + "start": 2961.74, + "end": 2964.58, + "probability": 0.989 + }, + { + "start": 2964.82, + "end": 2968.36, + "probability": 0.993 + }, + { + "start": 2968.57, + "end": 2971.12, + "probability": 0.7507 + }, + { + "start": 2971.34, + "end": 2974.69, + "probability": 0.9902 + }, + { + "start": 2977.02, + "end": 2980.68, + "probability": 0.8916 + }, + { + "start": 2980.74, + "end": 2981.28, + "probability": 0.7758 + }, + { + "start": 2982.63, + "end": 2988.94, + "probability": 0.9886 + }, + { + "start": 2989.74, + "end": 2990.02, + "probability": 0.5135 + }, + { + "start": 2990.16, + "end": 2990.32, + "probability": 0.9289 + }, + { + "start": 2990.4, + "end": 2991.58, + "probability": 0.9436 + }, + { + "start": 2991.76, + "end": 2995.7, + "probability": 0.8606 + }, + { + "start": 2997.7, + "end": 3001.98, + "probability": 0.9951 + }, + { + "start": 3003.46, + "end": 3005.98, + "probability": 0.9764 + }, + { + "start": 3006.04, + "end": 3009.96, + "probability": 0.9985 + }, + { + "start": 3010.84, + "end": 3012.64, + "probability": 0.9188 + }, + { + "start": 3013.58, + "end": 3014.78, + "probability": 0.7386 + }, + { + "start": 3015.82, + "end": 3016.96, + "probability": 0.9639 + }, + { + "start": 3018.42, + "end": 3020.06, + "probability": 0.923 + }, + { + "start": 3020.2, + "end": 3024.28, + "probability": 0.9792 + }, + { + "start": 3024.34, + "end": 3025.7, + "probability": 0.467 + }, + { + "start": 3025.84, + "end": 3027.1, + "probability": 0.8734 + }, + { + "start": 3028.38, + "end": 3029.1, + "probability": 0.353 + }, + { + "start": 3029.96, + "end": 3033.22, + "probability": 0.7996 + }, + { + "start": 3033.32, + "end": 3039.16, + "probability": 0.9814 + }, + { + "start": 3039.86, + "end": 3041.48, + "probability": 0.916 + }, + { + "start": 3041.62, + "end": 3044.94, + "probability": 0.9819 + }, + { + "start": 3045.88, + "end": 3048.03, + "probability": 0.952 + }, + { + "start": 3049.06, + "end": 3052.14, + "probability": 0.769 + }, + { + "start": 3054.36, + "end": 3056.4, + "probability": 0.9937 + }, + { + "start": 3057.14, + "end": 3059.6, + "probability": 0.9933 + }, + { + "start": 3060.3, + "end": 3062.44, + "probability": 0.9971 + }, + { + "start": 3063.2, + "end": 3071.76, + "probability": 0.9695 + }, + { + "start": 3071.86, + "end": 3073.46, + "probability": 0.0792 + }, + { + "start": 3073.46, + "end": 3075.04, + "probability": 0.4832 + }, + { + "start": 3076.28, + "end": 3080.98, + "probability": 0.9819 + }, + { + "start": 3082.85, + "end": 3086.94, + "probability": 0.737 + }, + { + "start": 3089.54, + "end": 3090.7, + "probability": 0.587 + }, + { + "start": 3091.64, + "end": 3092.8, + "probability": 0.6377 + }, + { + "start": 3092.94, + "end": 3098.16, + "probability": 0.9891 + }, + { + "start": 3098.26, + "end": 3099.56, + "probability": 0.4762 + }, + { + "start": 3100.42, + "end": 3101.8, + "probability": 0.2076 + }, + { + "start": 3102.34, + "end": 3109.4, + "probability": 0.9131 + }, + { + "start": 3109.4, + "end": 3111.7, + "probability": 0.9924 + }, + { + "start": 3112.16, + "end": 3115.52, + "probability": 0.9947 + }, + { + "start": 3115.62, + "end": 3116.12, + "probability": 0.5168 + }, + { + "start": 3116.2, + "end": 3117.08, + "probability": 0.8734 + }, + { + "start": 3117.14, + "end": 3119.3, + "probability": 0.992 + }, + { + "start": 3119.36, + "end": 3121.5, + "probability": 0.9868 + }, + { + "start": 3121.56, + "end": 3123.86, + "probability": 0.9608 + }, + { + "start": 3123.96, + "end": 3127.34, + "probability": 0.9941 + }, + { + "start": 3127.5, + "end": 3128.04, + "probability": 0.877 + }, + { + "start": 3128.16, + "end": 3129.98, + "probability": 0.998 + }, + { + "start": 3130.14, + "end": 3131.6, + "probability": 0.9763 + }, + { + "start": 3132.16, + "end": 3135.82, + "probability": 0.2927 + }, + { + "start": 3136.02, + "end": 3137.3, + "probability": 0.8032 + }, + { + "start": 3138.66, + "end": 3140.42, + "probability": 0.9087 + }, + { + "start": 3140.94, + "end": 3142.66, + "probability": 0.8342 + }, + { + "start": 3142.74, + "end": 3143.96, + "probability": 0.7563 + }, + { + "start": 3144.98, + "end": 3148.28, + "probability": 0.9458 + }, + { + "start": 3148.36, + "end": 3150.24, + "probability": 0.8312 + }, + { + "start": 3151.0, + "end": 3152.1, + "probability": 0.7567 + }, + { + "start": 3152.18, + "end": 3159.96, + "probability": 0.8673 + }, + { + "start": 3160.76, + "end": 3163.9, + "probability": 0.9359 + }, + { + "start": 3164.8, + "end": 3165.6, + "probability": 0.7927 + }, + { + "start": 3166.02, + "end": 3172.38, + "probability": 0.9766 + }, + { + "start": 3173.34, + "end": 3177.36, + "probability": 0.9743 + }, + { + "start": 3178.0, + "end": 3179.0, + "probability": 0.6816 + }, + { + "start": 3179.14, + "end": 3184.2, + "probability": 0.973 + }, + { + "start": 3184.2, + "end": 3188.82, + "probability": 0.9958 + }, + { + "start": 3190.02, + "end": 3195.22, + "probability": 0.9769 + }, + { + "start": 3197.96, + "end": 3199.12, + "probability": 0.7716 + }, + { + "start": 3199.8, + "end": 3204.36, + "probability": 0.9909 + }, + { + "start": 3204.36, + "end": 3207.36, + "probability": 0.6365 + }, + { + "start": 3207.98, + "end": 3212.08, + "probability": 0.9849 + }, + { + "start": 3212.16, + "end": 3213.62, + "probability": 0.9579 + }, + { + "start": 3213.7, + "end": 3214.25, + "probability": 0.7926 + }, + { + "start": 3215.02, + "end": 3218.56, + "probability": 0.9929 + }, + { + "start": 3219.4, + "end": 3220.16, + "probability": 0.7358 + }, + { + "start": 3220.52, + "end": 3221.16, + "probability": 0.6191 + }, + { + "start": 3221.3, + "end": 3222.22, + "probability": 0.8763 + }, + { + "start": 3222.28, + "end": 3225.52, + "probability": 0.9938 + }, + { + "start": 3226.04, + "end": 3227.46, + "probability": 0.9585 + }, + { + "start": 3228.24, + "end": 3231.44, + "probability": 0.8861 + }, + { + "start": 3231.64, + "end": 3238.14, + "probability": 0.962 + }, + { + "start": 3238.14, + "end": 3242.8, + "probability": 0.998 + }, + { + "start": 3243.1, + "end": 3245.98, + "probability": 0.9723 + }, + { + "start": 3246.56, + "end": 3250.76, + "probability": 0.9832 + }, + { + "start": 3251.78, + "end": 3255.74, + "probability": 0.9902 + }, + { + "start": 3256.54, + "end": 3258.76, + "probability": 0.9834 + }, + { + "start": 3259.06, + "end": 3265.36, + "probability": 0.9906 + }, + { + "start": 3265.46, + "end": 3268.68, + "probability": 0.9805 + }, + { + "start": 3269.56, + "end": 3273.32, + "probability": 0.9963 + }, + { + "start": 3273.32, + "end": 3279.3, + "probability": 0.9911 + }, + { + "start": 3279.9, + "end": 3283.26, + "probability": 0.998 + }, + { + "start": 3283.6, + "end": 3286.58, + "probability": 0.998 + }, + { + "start": 3287.16, + "end": 3289.46, + "probability": 0.9725 + }, + { + "start": 3289.6, + "end": 3292.72, + "probability": 0.9566 + }, + { + "start": 3293.06, + "end": 3293.26, + "probability": 0.7996 + }, + { + "start": 3293.96, + "end": 3297.16, + "probability": 0.8692 + }, + { + "start": 3298.1, + "end": 3302.31, + "probability": 0.9618 + }, + { + "start": 3303.06, + "end": 3304.56, + "probability": 0.8587 + }, + { + "start": 3304.86, + "end": 3306.18, + "probability": 0.9613 + }, + { + "start": 3306.26, + "end": 3307.5, + "probability": 0.791 + }, + { + "start": 3307.58, + "end": 3307.98, + "probability": 0.5783 + }, + { + "start": 3308.02, + "end": 3308.16, + "probability": 0.5276 + }, + { + "start": 3308.32, + "end": 3308.8, + "probability": 0.6226 + }, + { + "start": 3309.8, + "end": 3312.82, + "probability": 0.9458 + }, + { + "start": 3317.46, + "end": 3320.04, + "probability": 0.2626 + }, + { + "start": 3322.24, + "end": 3323.0, + "probability": 0.4599 + }, + { + "start": 3323.0, + "end": 3324.5, + "probability": 0.7537 + }, + { + "start": 3324.6, + "end": 3325.16, + "probability": 0.7218 + }, + { + "start": 3325.28, + "end": 3326.98, + "probability": 0.6454 + }, + { + "start": 3327.8, + "end": 3332.26, + "probability": 0.859 + }, + { + "start": 3332.82, + "end": 3334.7, + "probability": 0.7502 + }, + { + "start": 3335.28, + "end": 3338.26, + "probability": 0.9424 + }, + { + "start": 3338.86, + "end": 3339.24, + "probability": 0.9768 + }, + { + "start": 3340.18, + "end": 3344.3, + "probability": 0.8745 + }, + { + "start": 3345.1, + "end": 3346.44, + "probability": 0.9689 + }, + { + "start": 3347.14, + "end": 3351.84, + "probability": 0.938 + }, + { + "start": 3352.28, + "end": 3352.92, + "probability": 0.7163 + }, + { + "start": 3352.96, + "end": 3359.22, + "probability": 0.9899 + }, + { + "start": 3360.06, + "end": 3364.86, + "probability": 0.9883 + }, + { + "start": 3365.68, + "end": 3367.58, + "probability": 0.9897 + }, + { + "start": 3368.28, + "end": 3372.26, + "probability": 0.9688 + }, + { + "start": 3373.4, + "end": 3374.84, + "probability": 0.9424 + }, + { + "start": 3375.48, + "end": 3377.72, + "probability": 0.9795 + }, + { + "start": 3378.38, + "end": 3383.7, + "probability": 0.998 + }, + { + "start": 3384.52, + "end": 3386.34, + "probability": 0.8123 + }, + { + "start": 3387.02, + "end": 3388.82, + "probability": 0.8226 + }, + { + "start": 3389.54, + "end": 3392.3, + "probability": 0.9878 + }, + { + "start": 3393.42, + "end": 3396.5, + "probability": 0.9945 + }, + { + "start": 3396.56, + "end": 3402.22, + "probability": 0.9936 + }, + { + "start": 3402.22, + "end": 3408.24, + "probability": 0.9995 + }, + { + "start": 3409.32, + "end": 3412.1, + "probability": 0.8583 + }, + { + "start": 3412.74, + "end": 3418.52, + "probability": 0.9774 + }, + { + "start": 3419.28, + "end": 3419.98, + "probability": 0.898 + }, + { + "start": 3420.56, + "end": 3423.2, + "probability": 0.9893 + }, + { + "start": 3423.66, + "end": 3425.06, + "probability": 0.9954 + }, + { + "start": 3425.56, + "end": 3432.72, + "probability": 0.9989 + }, + { + "start": 3433.52, + "end": 3435.84, + "probability": 0.8923 + }, + { + "start": 3437.06, + "end": 3438.89, + "probability": 0.8139 + }, + { + "start": 3439.06, + "end": 3440.78, + "probability": 0.9382 + }, + { + "start": 3441.84, + "end": 3448.26, + "probability": 0.9934 + }, + { + "start": 3448.68, + "end": 3449.51, + "probability": 0.9622 + }, + { + "start": 3450.02, + "end": 3457.36, + "probability": 0.9854 + }, + { + "start": 3458.36, + "end": 3458.72, + "probability": 0.3778 + }, + { + "start": 3460.56, + "end": 3462.44, + "probability": 0.7142 + }, + { + "start": 3463.44, + "end": 3466.96, + "probability": 0.8936 + }, + { + "start": 3467.76, + "end": 3470.78, + "probability": 0.9741 + }, + { + "start": 3471.7, + "end": 3472.5, + "probability": 0.9629 + }, + { + "start": 3472.56, + "end": 3476.66, + "probability": 0.8199 + }, + { + "start": 3476.66, + "end": 3478.94, + "probability": 0.9966 + }, + { + "start": 3479.66, + "end": 3483.94, + "probability": 0.9895 + }, + { + "start": 3484.46, + "end": 3486.8, + "probability": 0.9985 + }, + { + "start": 3486.92, + "end": 3490.54, + "probability": 0.9959 + }, + { + "start": 3491.04, + "end": 3494.66, + "probability": 0.994 + }, + { + "start": 3495.12, + "end": 3499.08, + "probability": 0.9992 + }, + { + "start": 3500.22, + "end": 3503.1, + "probability": 0.8102 + }, + { + "start": 3503.22, + "end": 3505.4, + "probability": 0.5088 + }, + { + "start": 3507.26, + "end": 3509.46, + "probability": 0.9717 + }, + { + "start": 3510.44, + "end": 3511.84, + "probability": 0.9355 + }, + { + "start": 3512.24, + "end": 3516.1, + "probability": 0.9845 + }, + { + "start": 3516.1, + "end": 3518.5, + "probability": 0.9974 + }, + { + "start": 3518.98, + "end": 3523.58, + "probability": 0.6304 + }, + { + "start": 3524.28, + "end": 3526.76, + "probability": 0.9964 + }, + { + "start": 3527.14, + "end": 3531.32, + "probability": 0.5063 + }, + { + "start": 3531.8, + "end": 3533.18, + "probability": 0.8709 + }, + { + "start": 3533.84, + "end": 3536.34, + "probability": 0.9766 + }, + { + "start": 3536.42, + "end": 3541.64, + "probability": 0.9964 + }, + { + "start": 3542.28, + "end": 3543.7, + "probability": 0.7562 + }, + { + "start": 3545.78, + "end": 3546.34, + "probability": 0.6271 + }, + { + "start": 3547.76, + "end": 3548.89, + "probability": 0.6751 + }, + { + "start": 3566.98, + "end": 3567.0, + "probability": 0.723 + }, + { + "start": 3567.0, + "end": 3567.7, + "probability": 0.6918 + }, + { + "start": 3568.3, + "end": 3570.88, + "probability": 0.7943 + }, + { + "start": 3571.68, + "end": 3574.08, + "probability": 0.9415 + }, + { + "start": 3575.1, + "end": 3576.38, + "probability": 0.8804 + }, + { + "start": 3577.36, + "end": 3579.92, + "probability": 0.7078 + }, + { + "start": 3580.78, + "end": 3586.7, + "probability": 0.9971 + }, + { + "start": 3587.96, + "end": 3589.44, + "probability": 0.9848 + }, + { + "start": 3590.12, + "end": 3591.65, + "probability": 0.9818 + }, + { + "start": 3592.58, + "end": 3596.28, + "probability": 0.9971 + }, + { + "start": 3597.7, + "end": 3601.08, + "probability": 0.973 + }, + { + "start": 3601.94, + "end": 3605.98, + "probability": 0.9923 + }, + { + "start": 3607.06, + "end": 3609.2, + "probability": 0.9501 + }, + { + "start": 3609.72, + "end": 3611.64, + "probability": 0.9722 + }, + { + "start": 3612.8, + "end": 3618.12, + "probability": 0.9313 + }, + { + "start": 3619.06, + "end": 3622.86, + "probability": 0.9937 + }, + { + "start": 3623.64, + "end": 3630.12, + "probability": 0.9982 + }, + { + "start": 3630.72, + "end": 3631.1, + "probability": 0.3728 + }, + { + "start": 3631.3, + "end": 3632.78, + "probability": 0.799 + }, + { + "start": 3632.88, + "end": 3636.48, + "probability": 0.9243 + }, + { + "start": 3638.0, + "end": 3641.16, + "probability": 0.9973 + }, + { + "start": 3642.12, + "end": 3643.62, + "probability": 0.9806 + }, + { + "start": 3644.32, + "end": 3646.2, + "probability": 0.9644 + }, + { + "start": 3646.98, + "end": 3648.84, + "probability": 0.7218 + }, + { + "start": 3650.0, + "end": 3653.12, + "probability": 0.9464 + }, + { + "start": 3653.7, + "end": 3657.9, + "probability": 0.9897 + }, + { + "start": 3659.56, + "end": 3661.38, + "probability": 0.7721 + }, + { + "start": 3662.04, + "end": 3664.46, + "probability": 0.9749 + }, + { + "start": 3665.6, + "end": 3668.88, + "probability": 0.9545 + }, + { + "start": 3670.3, + "end": 3672.4, + "probability": 0.9489 + }, + { + "start": 3673.14, + "end": 3678.44, + "probability": 0.9936 + }, + { + "start": 3679.4, + "end": 3680.44, + "probability": 0.5782 + }, + { + "start": 3681.7, + "end": 3684.0, + "probability": 0.5357 + }, + { + "start": 3684.6, + "end": 3685.36, + "probability": 0.4474 + }, + { + "start": 3686.28, + "end": 3688.78, + "probability": 0.9197 + }, + { + "start": 3690.3, + "end": 3695.3, + "probability": 0.9813 + }, + { + "start": 3695.8, + "end": 3697.04, + "probability": 0.9281 + }, + { + "start": 3697.78, + "end": 3703.08, + "probability": 0.9927 + }, + { + "start": 3704.82, + "end": 3707.2, + "probability": 0.9585 + }, + { + "start": 3707.88, + "end": 3709.72, + "probability": 0.9829 + }, + { + "start": 3711.06, + "end": 3714.44, + "probability": 0.9764 + }, + { + "start": 3715.4, + "end": 3719.1, + "probability": 0.9752 + }, + { + "start": 3719.78, + "end": 3723.06, + "probability": 0.7481 + }, + { + "start": 3723.68, + "end": 3726.26, + "probability": 0.8586 + }, + { + "start": 3726.8, + "end": 3727.86, + "probability": 0.5468 + }, + { + "start": 3728.7, + "end": 3729.64, + "probability": 0.8017 + }, + { + "start": 3730.3, + "end": 3733.54, + "probability": 0.9713 + }, + { + "start": 3733.98, + "end": 3738.88, + "probability": 0.9914 + }, + { + "start": 3739.3, + "end": 3740.04, + "probability": 0.8452 + }, + { + "start": 3740.26, + "end": 3741.3, + "probability": 0.9147 + }, + { + "start": 3741.78, + "end": 3743.26, + "probability": 0.8311 + }, + { + "start": 3744.14, + "end": 3746.12, + "probability": 0.9871 + }, + { + "start": 3747.24, + "end": 3750.68, + "probability": 0.984 + }, + { + "start": 3751.9, + "end": 3753.0, + "probability": 0.8313 + }, + { + "start": 3753.9, + "end": 3755.86, + "probability": 0.9927 + }, + { + "start": 3756.44, + "end": 3757.66, + "probability": 0.9926 + }, + { + "start": 3758.46, + "end": 3764.42, + "probability": 0.9906 + }, + { + "start": 3765.22, + "end": 3767.52, + "probability": 0.9615 + }, + { + "start": 3768.08, + "end": 3770.18, + "probability": 0.998 + }, + { + "start": 3771.06, + "end": 3772.78, + "probability": 0.9736 + }, + { + "start": 3773.34, + "end": 3777.7, + "probability": 0.9905 + }, + { + "start": 3778.1, + "end": 3783.18, + "probability": 0.9932 + }, + { + "start": 3783.7, + "end": 3785.58, + "probability": 0.7084 + }, + { + "start": 3786.36, + "end": 3792.14, + "probability": 0.9943 + }, + { + "start": 3792.76, + "end": 3796.94, + "probability": 0.9734 + }, + { + "start": 3797.24, + "end": 3798.96, + "probability": 0.9152 + }, + { + "start": 3799.06, + "end": 3800.74, + "probability": 0.5874 + }, + { + "start": 3801.64, + "end": 3802.62, + "probability": 0.9833 + }, + { + "start": 3803.78, + "end": 3804.16, + "probability": 0.6235 + }, + { + "start": 3815.32, + "end": 3817.54, + "probability": 0.8091 + }, + { + "start": 3818.94, + "end": 3819.84, + "probability": 0.7925 + }, + { + "start": 3820.0, + "end": 3822.56, + "probability": 0.9822 + }, + { + "start": 3822.74, + "end": 3825.14, + "probability": 0.9819 + }, + { + "start": 3826.3, + "end": 3827.28, + "probability": 0.9514 + }, + { + "start": 3827.58, + "end": 3831.42, + "probability": 0.7363 + }, + { + "start": 3832.32, + "end": 3832.7, + "probability": 0.611 + }, + { + "start": 3833.54, + "end": 3837.84, + "probability": 0.9961 + }, + { + "start": 3838.34, + "end": 3841.48, + "probability": 0.9966 + }, + { + "start": 3842.04, + "end": 3843.1, + "probability": 0.6206 + }, + { + "start": 3843.76, + "end": 3847.96, + "probability": 0.9863 + }, + { + "start": 3848.42, + "end": 3851.04, + "probability": 0.8059 + }, + { + "start": 3851.08, + "end": 3856.66, + "probability": 0.9952 + }, + { + "start": 3858.0, + "end": 3859.02, + "probability": 0.7081 + }, + { + "start": 3859.66, + "end": 3863.11, + "probability": 0.9956 + }, + { + "start": 3863.24, + "end": 3865.86, + "probability": 0.9963 + }, + { + "start": 3866.46, + "end": 3871.7, + "probability": 0.9252 + }, + { + "start": 3872.46, + "end": 3877.44, + "probability": 0.9881 + }, + { + "start": 3877.64, + "end": 3883.64, + "probability": 0.987 + }, + { + "start": 3884.3, + "end": 3889.32, + "probability": 0.9972 + }, + { + "start": 3889.61, + "end": 3893.94, + "probability": 0.9962 + }, + { + "start": 3894.72, + "end": 3897.76, + "probability": 0.9482 + }, + { + "start": 3897.76, + "end": 3901.96, + "probability": 0.9971 + }, + { + "start": 3902.38, + "end": 3904.68, + "probability": 0.9951 + }, + { + "start": 3905.34, + "end": 3908.94, + "probability": 0.9185 + }, + { + "start": 3908.94, + "end": 3912.82, + "probability": 0.9421 + }, + { + "start": 3913.28, + "end": 3915.52, + "probability": 0.6524 + }, + { + "start": 3916.24, + "end": 3918.6, + "probability": 0.981 + }, + { + "start": 3919.0, + "end": 3922.44, + "probability": 0.624 + }, + { + "start": 3922.6, + "end": 3922.66, + "probability": 0.0336 + }, + { + "start": 3922.66, + "end": 3923.68, + "probability": 0.8743 + }, + { + "start": 3924.14, + "end": 3926.62, + "probability": 0.998 + }, + { + "start": 3926.94, + "end": 3930.4, + "probability": 0.9951 + }, + { + "start": 3930.52, + "end": 3931.58, + "probability": 0.7583 + }, + { + "start": 3932.2, + "end": 3935.52, + "probability": 0.9492 + }, + { + "start": 3936.02, + "end": 3937.26, + "probability": 0.9662 + }, + { + "start": 3937.56, + "end": 3939.04, + "probability": 0.7547 + }, + { + "start": 3939.5, + "end": 3943.46, + "probability": 0.9826 + }, + { + "start": 3944.12, + "end": 3945.42, + "probability": 0.8738 + }, + { + "start": 3946.22, + "end": 3949.32, + "probability": 0.9967 + }, + { + "start": 3950.1, + "end": 3952.52, + "probability": 0.7891 + }, + { + "start": 3953.0, + "end": 3953.0, + "probability": 0.1626 + }, + { + "start": 3953.0, + "end": 3954.36, + "probability": 0.7353 + }, + { + "start": 3954.76, + "end": 3955.34, + "probability": 0.7235 + }, + { + "start": 3956.16, + "end": 3959.24, + "probability": 0.9685 + }, + { + "start": 3959.66, + "end": 3961.66, + "probability": 0.835 + }, + { + "start": 3962.16, + "end": 3962.82, + "probability": 0.9573 + }, + { + "start": 3963.04, + "end": 3963.42, + "probability": 0.8405 + }, + { + "start": 3964.48, + "end": 3965.08, + "probability": 0.6896 + }, + { + "start": 3968.12, + "end": 3968.82, + "probability": 0.9786 + }, + { + "start": 3969.86, + "end": 3971.02, + "probability": 0.6364 + }, + { + "start": 3998.94, + "end": 4001.72, + "probability": 0.6819 + }, + { + "start": 4003.66, + "end": 4007.74, + "probability": 0.9963 + }, + { + "start": 4008.32, + "end": 4009.72, + "probability": 0.826 + }, + { + "start": 4010.7, + "end": 4012.42, + "probability": 0.9666 + }, + { + "start": 4013.18, + "end": 4014.6, + "probability": 0.9668 + }, + { + "start": 4015.64, + "end": 4020.04, + "probability": 0.9983 + }, + { + "start": 4021.52, + "end": 4025.76, + "probability": 0.9772 + }, + { + "start": 4025.76, + "end": 4029.3, + "probability": 0.9552 + }, + { + "start": 4030.12, + "end": 4033.3, + "probability": 0.9824 + }, + { + "start": 4034.72, + "end": 4041.36, + "probability": 0.8846 + }, + { + "start": 4043.54, + "end": 4047.4, + "probability": 0.9227 + }, + { + "start": 4047.92, + "end": 4051.6, + "probability": 0.9968 + }, + { + "start": 4054.04, + "end": 4059.6, + "probability": 0.9988 + }, + { + "start": 4060.38, + "end": 4064.56, + "probability": 0.9942 + }, + { + "start": 4065.46, + "end": 4070.98, + "probability": 0.9987 + }, + { + "start": 4071.33, + "end": 4076.62, + "probability": 0.998 + }, + { + "start": 4077.76, + "end": 4078.74, + "probability": 0.8417 + }, + { + "start": 4079.64, + "end": 4082.96, + "probability": 0.8763 + }, + { + "start": 4083.88, + "end": 4087.1, + "probability": 0.9578 + }, + { + "start": 4087.98, + "end": 4092.08, + "probability": 0.9946 + }, + { + "start": 4092.9, + "end": 4094.9, + "probability": 0.9766 + }, + { + "start": 4096.36, + "end": 4099.08, + "probability": 0.9966 + }, + { + "start": 4099.16, + "end": 4100.42, + "probability": 0.9583 + }, + { + "start": 4101.46, + "end": 4104.54, + "probability": 0.9888 + }, + { + "start": 4105.5, + "end": 4108.7, + "probability": 0.9962 + }, + { + "start": 4110.24, + "end": 4118.3, + "probability": 0.9113 + }, + { + "start": 4119.1, + "end": 4122.22, + "probability": 0.8076 + }, + { + "start": 4123.08, + "end": 4126.14, + "probability": 0.9438 + }, + { + "start": 4126.82, + "end": 4129.0, + "probability": 0.9644 + }, + { + "start": 4129.2, + "end": 4130.9, + "probability": 0.978 + }, + { + "start": 4130.92, + "end": 4132.72, + "probability": 0.9852 + }, + { + "start": 4133.7, + "end": 4136.32, + "probability": 0.9976 + }, + { + "start": 4137.78, + "end": 4141.9, + "probability": 0.9967 + }, + { + "start": 4144.3, + "end": 4146.82, + "probability": 0.9987 + }, + { + "start": 4147.52, + "end": 4150.86, + "probability": 0.9541 + }, + { + "start": 4151.0, + "end": 4153.65, + "probability": 0.9253 + }, + { + "start": 4154.44, + "end": 4159.52, + "probability": 0.995 + }, + { + "start": 4161.2, + "end": 4162.74, + "probability": 0.9978 + }, + { + "start": 4162.88, + "end": 4165.74, + "probability": 0.9978 + }, + { + "start": 4166.58, + "end": 4172.64, + "probability": 0.9942 + }, + { + "start": 4173.62, + "end": 4175.8, + "probability": 0.8417 + }, + { + "start": 4176.8, + "end": 4182.92, + "probability": 0.9996 + }, + { + "start": 4183.68, + "end": 4185.56, + "probability": 0.9878 + }, + { + "start": 4186.22, + "end": 4188.48, + "probability": 0.9963 + }, + { + "start": 4189.96, + "end": 4194.16, + "probability": 0.9724 + }, + { + "start": 4194.58, + "end": 4194.8, + "probability": 0.3754 + }, + { + "start": 4196.02, + "end": 4196.38, + "probability": 0.1714 + }, + { + "start": 4196.38, + "end": 4198.14, + "probability": 0.5585 + }, + { + "start": 4199.0, + "end": 4202.36, + "probability": 0.8659 + }, + { + "start": 4204.0, + "end": 4205.48, + "probability": 0.7629 + }, + { + "start": 4205.56, + "end": 4206.8, + "probability": 0.9623 + }, + { + "start": 4207.38, + "end": 4208.58, + "probability": 0.6735 + }, + { + "start": 4208.68, + "end": 4209.16, + "probability": 0.4551 + }, + { + "start": 4209.28, + "end": 4210.39, + "probability": 0.8797 + }, + { + "start": 4212.26, + "end": 4214.22, + "probability": 0.9089 + }, + { + "start": 4214.84, + "end": 4216.36, + "probability": 0.9724 + }, + { + "start": 4217.34, + "end": 4219.92, + "probability": 0.9923 + }, + { + "start": 4219.92, + "end": 4223.18, + "probability": 0.9976 + }, + { + "start": 4224.26, + "end": 4225.88, + "probability": 0.9695 + }, + { + "start": 4226.44, + "end": 4229.02, + "probability": 0.9941 + }, + { + "start": 4229.82, + "end": 4231.28, + "probability": 0.9988 + }, + { + "start": 4231.82, + "end": 4238.44, + "probability": 0.9762 + }, + { + "start": 4238.44, + "end": 4243.58, + "probability": 0.9974 + }, + { + "start": 4244.1, + "end": 4246.24, + "probability": 0.9985 + }, + { + "start": 4246.24, + "end": 4249.2, + "probability": 0.9912 + }, + { + "start": 4249.76, + "end": 4252.24, + "probability": 0.9988 + }, + { + "start": 4252.78, + "end": 4253.41, + "probability": 0.8358 + }, + { + "start": 4253.62, + "end": 4258.68, + "probability": 0.9941 + }, + { + "start": 4259.14, + "end": 4261.74, + "probability": 0.5046 + }, + { + "start": 4261.98, + "end": 4262.74, + "probability": 0.543 + }, + { + "start": 4262.82, + "end": 4264.16, + "probability": 0.6705 + }, + { + "start": 4265.18, + "end": 4267.8, + "probability": 0.2434 + }, + { + "start": 4268.42, + "end": 4271.96, + "probability": 0.7546 + }, + { + "start": 4272.22, + "end": 4272.22, + "probability": 0.0549 + }, + { + "start": 4272.22, + "end": 4272.22, + "probability": 0.1861 + }, + { + "start": 4272.22, + "end": 4274.34, + "probability": 0.4643 + }, + { + "start": 4274.34, + "end": 4275.54, + "probability": 0.679 + }, + { + "start": 4275.84, + "end": 4275.84, + "probability": 0.5786 + }, + { + "start": 4275.84, + "end": 4278.34, + "probability": 0.7746 + }, + { + "start": 4279.08, + "end": 4283.72, + "probability": 0.5451 + }, + { + "start": 4284.28, + "end": 4286.06, + "probability": 0.5661 + }, + { + "start": 4286.12, + "end": 4286.96, + "probability": 0.7955 + }, + { + "start": 4287.84, + "end": 4288.42, + "probability": 0.1177 + }, + { + "start": 4290.22, + "end": 4292.26, + "probability": 0.4658 + }, + { + "start": 4293.56, + "end": 4299.1, + "probability": 0.0944 + }, + { + "start": 4299.8, + "end": 4300.46, + "probability": 0.137 + }, + { + "start": 4300.98, + "end": 4304.56, + "probability": 0.1216 + }, + { + "start": 4305.16, + "end": 4307.86, + "probability": 0.5 + }, + { + "start": 4308.16, + "end": 4309.4, + "probability": 0.0812 + }, + { + "start": 4309.6, + "end": 4313.08, + "probability": 0.0752 + }, + { + "start": 4313.52, + "end": 4316.78, + "probability": 0.4884 + }, + { + "start": 4318.15, + "end": 4319.99, + "probability": 0.3897 + }, + { + "start": 4320.36, + "end": 4322.66, + "probability": 0.4418 + }, + { + "start": 4322.76, + "end": 4323.62, + "probability": 0.5233 + }, + { + "start": 4323.64, + "end": 4324.82, + "probability": 0.361 + }, + { + "start": 4324.82, + "end": 4325.3, + "probability": 0.5735 + }, + { + "start": 4325.34, + "end": 4326.22, + "probability": 0.6458 + }, + { + "start": 4326.78, + "end": 4328.58, + "probability": 0.8716 + }, + { + "start": 4328.7, + "end": 4332.14, + "probability": 0.6493 + }, + { + "start": 4332.66, + "end": 4334.26, + "probability": 0.5938 + }, + { + "start": 4336.58, + "end": 4338.22, + "probability": 0.9962 + }, + { + "start": 4339.22, + "end": 4340.48, + "probability": 0.9786 + }, + { + "start": 4341.5, + "end": 4342.76, + "probability": 0.6251 + }, + { + "start": 4344.18, + "end": 4347.14, + "probability": 0.9795 + }, + { + "start": 4348.82, + "end": 4354.92, + "probability": 0.9971 + }, + { + "start": 4356.3, + "end": 4359.62, + "probability": 0.9934 + }, + { + "start": 4360.46, + "end": 4361.72, + "probability": 0.9966 + }, + { + "start": 4362.72, + "end": 4364.02, + "probability": 0.9878 + }, + { + "start": 4365.9, + "end": 4371.64, + "probability": 0.9978 + }, + { + "start": 4373.22, + "end": 4374.6, + "probability": 0.9855 + }, + { + "start": 4376.32, + "end": 4379.36, + "probability": 0.9981 + }, + { + "start": 4380.44, + "end": 4383.98, + "probability": 0.9824 + }, + { + "start": 4385.1, + "end": 4386.58, + "probability": 0.6751 + }, + { + "start": 4388.66, + "end": 4392.9, + "probability": 0.9052 + }, + { + "start": 4394.48, + "end": 4397.34, + "probability": 0.9987 + }, + { + "start": 4397.34, + "end": 4400.08, + "probability": 0.9971 + }, + { + "start": 4401.68, + "end": 4405.18, + "probability": 0.6604 + }, + { + "start": 4405.32, + "end": 4406.92, + "probability": 0.8538 + }, + { + "start": 4406.98, + "end": 4410.74, + "probability": 0.8826 + }, + { + "start": 4410.88, + "end": 4411.24, + "probability": 0.4951 + }, + { + "start": 4411.34, + "end": 4413.92, + "probability": 0.947 + }, + { + "start": 4417.32, + "end": 4418.44, + "probability": 0.9137 + }, + { + "start": 4419.24, + "end": 4419.86, + "probability": 0.7863 + }, + { + "start": 4421.92, + "end": 4423.42, + "probability": 0.8151 + }, + { + "start": 4423.6, + "end": 4426.98, + "probability": 0.9392 + }, + { + "start": 4427.1, + "end": 4432.24, + "probability": 0.9565 + }, + { + "start": 4433.46, + "end": 4435.54, + "probability": 0.9644 + }, + { + "start": 4437.4, + "end": 4442.52, + "probability": 0.816 + }, + { + "start": 4442.6, + "end": 4444.66, + "probability": 0.8768 + }, + { + "start": 4445.82, + "end": 4449.1, + "probability": 0.9183 + }, + { + "start": 4449.18, + "end": 4450.12, + "probability": 0.93 + }, + { + "start": 4452.1, + "end": 4455.86, + "probability": 0.9705 + }, + { + "start": 4455.92, + "end": 4459.14, + "probability": 0.9556 + }, + { + "start": 4459.44, + "end": 4462.0, + "probability": 0.7729 + }, + { + "start": 4463.68, + "end": 4466.44, + "probability": 0.9945 + }, + { + "start": 4466.44, + "end": 4468.98, + "probability": 0.9919 + }, + { + "start": 4470.64, + "end": 4471.64, + "probability": 0.736 + }, + { + "start": 4471.74, + "end": 4471.96, + "probability": 0.3215 + }, + { + "start": 4472.1, + "end": 4472.68, + "probability": 0.6376 + }, + { + "start": 4472.74, + "end": 4474.14, + "probability": 0.9749 + }, + { + "start": 4475.08, + "end": 4476.04, + "probability": 0.7965 + }, + { + "start": 4476.16, + "end": 4479.72, + "probability": 0.9908 + }, + { + "start": 4480.8, + "end": 4482.03, + "probability": 0.9753 + }, + { + "start": 4482.24, + "end": 4483.3, + "probability": 0.9092 + }, + { + "start": 4484.64, + "end": 4486.36, + "probability": 0.572 + }, + { + "start": 4488.14, + "end": 4490.96, + "probability": 0.9702 + }, + { + "start": 4492.48, + "end": 4493.02, + "probability": 0.7 + }, + { + "start": 4493.12, + "end": 4495.54, + "probability": 0.9777 + }, + { + "start": 4495.58, + "end": 4498.86, + "probability": 0.8826 + }, + { + "start": 4498.94, + "end": 4503.04, + "probability": 0.9846 + }, + { + "start": 4504.06, + "end": 4507.28, + "probability": 0.9952 + }, + { + "start": 4508.44, + "end": 4509.74, + "probability": 0.9854 + }, + { + "start": 4510.54, + "end": 4511.08, + "probability": 0.5621 + }, + { + "start": 4511.86, + "end": 4512.9, + "probability": 0.9109 + }, + { + "start": 4513.0, + "end": 4515.16, + "probability": 0.9448 + }, + { + "start": 4515.24, + "end": 4518.42, + "probability": 0.8767 + }, + { + "start": 4518.98, + "end": 4520.04, + "probability": 0.8522 + }, + { + "start": 4520.5, + "end": 4521.58, + "probability": 0.8904 + }, + { + "start": 4521.62, + "end": 4522.42, + "probability": 0.788 + }, + { + "start": 4522.56, + "end": 4523.12, + "probability": 0.5004 + }, + { + "start": 4523.98, + "end": 4524.5, + "probability": 0.485 + }, + { + "start": 4525.0, + "end": 4526.54, + "probability": 0.9946 + }, + { + "start": 4526.58, + "end": 4528.27, + "probability": 0.6577 + }, + { + "start": 4529.24, + "end": 4533.2, + "probability": 0.9005 + }, + { + "start": 4533.64, + "end": 4534.68, + "probability": 0.9687 + }, + { + "start": 4535.26, + "end": 4537.92, + "probability": 0.88 + }, + { + "start": 4539.58, + "end": 4543.3, + "probability": 0.9797 + }, + { + "start": 4543.34, + "end": 4544.24, + "probability": 0.9907 + }, + { + "start": 4544.3, + "end": 4544.46, + "probability": 0.4533 + }, + { + "start": 4544.52, + "end": 4544.84, + "probability": 0.4764 + }, + { + "start": 4545.02, + "end": 4547.42, + "probability": 0.9691 + }, + { + "start": 4547.76, + "end": 4548.23, + "probability": 0.946 + }, + { + "start": 4548.96, + "end": 4551.68, + "probability": 0.9245 + }, + { + "start": 4551.76, + "end": 4552.62, + "probability": 0.9696 + }, + { + "start": 4552.86, + "end": 4553.98, + "probability": 0.9128 + }, + { + "start": 4554.2, + "end": 4557.6, + "probability": 0.9937 + }, + { + "start": 4557.64, + "end": 4562.42, + "probability": 0.9906 + }, + { + "start": 4562.52, + "end": 4563.46, + "probability": 0.539 + }, + { + "start": 4563.94, + "end": 4565.36, + "probability": 0.9695 + }, + { + "start": 4565.44, + "end": 4565.94, + "probability": 0.6498 + }, + { + "start": 4566.3, + "end": 4567.22, + "probability": 0.7726 + }, + { + "start": 4567.94, + "end": 4569.24, + "probability": 0.9331 + }, + { + "start": 4569.28, + "end": 4573.44, + "probability": 0.9912 + }, + { + "start": 4573.48, + "end": 4573.62, + "probability": 0.2768 + }, + { + "start": 4573.72, + "end": 4576.0, + "probability": 0.9683 + }, + { + "start": 4576.1, + "end": 4577.54, + "probability": 0.9094 + }, + { + "start": 4577.8, + "end": 4579.56, + "probability": 0.5009 + }, + { + "start": 4579.94, + "end": 4582.26, + "probability": 0.9883 + }, + { + "start": 4582.46, + "end": 4582.82, + "probability": 0.8223 + }, + { + "start": 4583.08, + "end": 4583.08, + "probability": 0.5746 + }, + { + "start": 4583.16, + "end": 4584.26, + "probability": 0.714 + }, + { + "start": 4605.52, + "end": 4607.4, + "probability": 0.7462 + }, + { + "start": 4608.5, + "end": 4609.64, + "probability": 0.6662 + }, + { + "start": 4610.94, + "end": 4614.5, + "probability": 0.927 + }, + { + "start": 4615.28, + "end": 4615.84, + "probability": 0.9146 + }, + { + "start": 4616.42, + "end": 4619.82, + "probability": 0.9579 + }, + { + "start": 4621.44, + "end": 4622.18, + "probability": 0.6981 + }, + { + "start": 4623.1, + "end": 4626.82, + "probability": 0.9863 + }, + { + "start": 4628.34, + "end": 4629.08, + "probability": 0.5517 + }, + { + "start": 4630.92, + "end": 4631.84, + "probability": 0.9622 + }, + { + "start": 4632.6, + "end": 4636.35, + "probability": 0.5663 + }, + { + "start": 4637.48, + "end": 4638.66, + "probability": 0.7612 + }, + { + "start": 4639.52, + "end": 4640.86, + "probability": 0.9919 + }, + { + "start": 4642.44, + "end": 4645.58, + "probability": 0.9158 + }, + { + "start": 4646.92, + "end": 4651.74, + "probability": 0.9861 + }, + { + "start": 4652.54, + "end": 4653.88, + "probability": 0.9968 + }, + { + "start": 4654.6, + "end": 4658.7, + "probability": 0.9991 + }, + { + "start": 4659.8, + "end": 4660.96, + "probability": 0.9924 + }, + { + "start": 4662.32, + "end": 4665.23, + "probability": 0.8604 + }, + { + "start": 4666.76, + "end": 4673.08, + "probability": 0.9954 + }, + { + "start": 4673.22, + "end": 4674.06, + "probability": 0.0087 + }, + { + "start": 4675.62, + "end": 4675.72, + "probability": 0.416 + }, + { + "start": 4675.72, + "end": 4676.46, + "probability": 0.5579 + }, + { + "start": 4678.4, + "end": 4678.78, + "probability": 0.5704 + }, + { + "start": 4678.8, + "end": 4679.18, + "probability": 0.3376 + }, + { + "start": 4679.18, + "end": 4683.34, + "probability": 0.5552 + }, + { + "start": 4683.58, + "end": 4684.76, + "probability": 0.0673 + }, + { + "start": 4685.72, + "end": 4689.6, + "probability": 0.233 + }, + { + "start": 4689.66, + "end": 4690.22, + "probability": 0.4732 + }, + { + "start": 4690.22, + "end": 4691.32, + "probability": 0.7694 + }, + { + "start": 4691.42, + "end": 4693.2, + "probability": 0.954 + }, + { + "start": 4693.34, + "end": 4694.28, + "probability": 0.7793 + }, + { + "start": 4694.54, + "end": 4694.96, + "probability": 0.6522 + }, + { + "start": 4695.08, + "end": 4697.68, + "probability": 0.8469 + }, + { + "start": 4698.4, + "end": 4700.82, + "probability": 0.0746 + }, + { + "start": 4701.38, + "end": 4701.38, + "probability": 0.0526 + }, + { + "start": 4701.38, + "end": 4701.72, + "probability": 0.2526 + }, + { + "start": 4702.6, + "end": 4704.88, + "probability": 0.9634 + }, + { + "start": 4705.0, + "end": 4706.98, + "probability": 0.7412 + }, + { + "start": 4707.24, + "end": 4710.48, + "probability": 0.9177 + }, + { + "start": 4710.64, + "end": 4711.4, + "probability": 0.957 + }, + { + "start": 4711.4, + "end": 4713.16, + "probability": 0.8379 + }, + { + "start": 4713.24, + "end": 4713.66, + "probability": 0.752 + }, + { + "start": 4713.74, + "end": 4714.42, + "probability": 0.3899 + }, + { + "start": 4715.6, + "end": 4717.4, + "probability": 0.659 + }, + { + "start": 4720.5, + "end": 4722.36, + "probability": 0.8275 + }, + { + "start": 4722.52, + "end": 4723.25, + "probability": 0.3665 + }, + { + "start": 4724.7, + "end": 4728.48, + "probability": 0.6568 + }, + { + "start": 4729.88, + "end": 4730.92, + "probability": 0.625 + }, + { + "start": 4733.15, + "end": 4737.96, + "probability": 0.9207 + }, + { + "start": 4738.58, + "end": 4739.38, + "probability": 0.7456 + }, + { + "start": 4740.56, + "end": 4740.9, + "probability": 0.9435 + }, + { + "start": 4741.9, + "end": 4742.9, + "probability": 0.929 + }, + { + "start": 4743.54, + "end": 4745.46, + "probability": 0.9667 + }, + { + "start": 4745.46, + "end": 4747.68, + "probability": 0.9757 + }, + { + "start": 4747.86, + "end": 4748.4, + "probability": 0.9226 + }, + { + "start": 4749.36, + "end": 4749.94, + "probability": 0.8914 + }, + { + "start": 4750.7, + "end": 4753.98, + "probability": 0.9503 + }, + { + "start": 4755.04, + "end": 4756.84, + "probability": 0.9941 + }, + { + "start": 4757.54, + "end": 4762.74, + "probability": 0.9976 + }, + { + "start": 4763.46, + "end": 4763.8, + "probability": 0.8251 + }, + { + "start": 4764.5, + "end": 4767.44, + "probability": 0.9312 + }, + { + "start": 4768.26, + "end": 4771.5, + "probability": 0.9934 + }, + { + "start": 4772.7, + "end": 4776.68, + "probability": 0.9944 + }, + { + "start": 4777.32, + "end": 4780.18, + "probability": 0.9546 + }, + { + "start": 4780.68, + "end": 4785.76, + "probability": 0.9945 + }, + { + "start": 4786.88, + "end": 4787.48, + "probability": 0.8572 + }, + { + "start": 4788.12, + "end": 4791.7, + "probability": 0.999 + }, + { + "start": 4792.28, + "end": 4794.32, + "probability": 0.9176 + }, + { + "start": 4794.56, + "end": 4799.86, + "probability": 0.9677 + }, + { + "start": 4800.76, + "end": 4802.84, + "probability": 0.8605 + }, + { + "start": 4803.42, + "end": 4807.96, + "probability": 0.8967 + }, + { + "start": 4808.2, + "end": 4808.78, + "probability": 0.6161 + }, + { + "start": 4809.92, + "end": 4811.02, + "probability": 0.6861 + }, + { + "start": 4827.68, + "end": 4827.92, + "probability": 0.8088 + }, + { + "start": 4835.22, + "end": 4837.18, + "probability": 0.665 + }, + { + "start": 4839.26, + "end": 4843.48, + "probability": 0.9983 + }, + { + "start": 4843.96, + "end": 4844.68, + "probability": 0.9771 + }, + { + "start": 4844.74, + "end": 4845.68, + "probability": 0.9742 + }, + { + "start": 4846.42, + "end": 4848.94, + "probability": 0.554 + }, + { + "start": 4849.98, + "end": 4852.08, + "probability": 0.998 + }, + { + "start": 4852.74, + "end": 4853.16, + "probability": 0.8429 + }, + { + "start": 4853.82, + "end": 4856.28, + "probability": 0.6864 + }, + { + "start": 4857.2, + "end": 4859.58, + "probability": 0.9868 + }, + { + "start": 4860.58, + "end": 4864.52, + "probability": 0.9974 + }, + { + "start": 4864.52, + "end": 4869.5, + "probability": 0.9985 + }, + { + "start": 4869.56, + "end": 4870.58, + "probability": 0.9912 + }, + { + "start": 4870.72, + "end": 4871.02, + "probability": 0.7533 + }, + { + "start": 4872.72, + "end": 4877.46, + "probability": 0.9884 + }, + { + "start": 4878.16, + "end": 4880.76, + "probability": 0.9692 + }, + { + "start": 4881.26, + "end": 4884.9, + "probability": 0.9357 + }, + { + "start": 4885.54, + "end": 4886.34, + "probability": 0.8915 + }, + { + "start": 4887.48, + "end": 4889.6, + "probability": 0.9572 + }, + { + "start": 4889.82, + "end": 4891.8, + "probability": 0.9597 + }, + { + "start": 4892.38, + "end": 4895.74, + "probability": 0.9787 + }, + { + "start": 4896.42, + "end": 4898.96, + "probability": 0.9932 + }, + { + "start": 4899.52, + "end": 4904.8, + "probability": 0.9971 + }, + { + "start": 4906.02, + "end": 4908.32, + "probability": 0.9518 + }, + { + "start": 4909.22, + "end": 4915.66, + "probability": 0.9494 + }, + { + "start": 4915.68, + "end": 4917.58, + "probability": 0.8376 + }, + { + "start": 4917.7, + "end": 4920.46, + "probability": 0.963 + }, + { + "start": 4920.8, + "end": 4922.22, + "probability": 0.708 + }, + { + "start": 4922.46, + "end": 4923.58, + "probability": 0.6318 + }, + { + "start": 4923.7, + "end": 4927.38, + "probability": 0.968 + }, + { + "start": 4927.66, + "end": 4932.0, + "probability": 0.9845 + }, + { + "start": 4932.04, + "end": 4932.72, + "probability": 0.8794 + }, + { + "start": 4932.74, + "end": 4936.08, + "probability": 0.7494 + }, + { + "start": 4937.04, + "end": 4937.2, + "probability": 0.1913 + }, + { + "start": 4937.46, + "end": 4938.82, + "probability": 0.7632 + }, + { + "start": 4938.9, + "end": 4940.72, + "probability": 0.6814 + }, + { + "start": 4941.1, + "end": 4944.78, + "probability": 0.9181 + }, + { + "start": 4945.16, + "end": 4945.36, + "probability": 0.9224 + }, + { + "start": 4945.44, + "end": 4949.72, + "probability": 0.9604 + }, + { + "start": 4949.72, + "end": 4953.34, + "probability": 0.9985 + }, + { + "start": 4954.06, + "end": 4955.06, + "probability": 0.8459 + }, + { + "start": 4956.02, + "end": 4958.32, + "probability": 0.9978 + }, + { + "start": 4959.5, + "end": 4961.7, + "probability": 0.8579 + }, + { + "start": 4962.42, + "end": 4964.54, + "probability": 0.9119 + }, + { + "start": 4964.62, + "end": 4966.04, + "probability": 0.7344 + }, + { + "start": 4966.66, + "end": 4968.94, + "probability": 0.9325 + }, + { + "start": 4969.48, + "end": 4971.08, + "probability": 0.9609 + }, + { + "start": 4971.4, + "end": 4974.52, + "probability": 0.9658 + }, + { + "start": 4975.46, + "end": 4981.1, + "probability": 0.9198 + }, + { + "start": 4981.74, + "end": 4983.9, + "probability": 0.7454 + }, + { + "start": 4984.7, + "end": 4989.08, + "probability": 0.9912 + }, + { + "start": 4990.04, + "end": 4994.64, + "probability": 0.9464 + }, + { + "start": 4995.02, + "end": 4999.7, + "probability": 0.9812 + }, + { + "start": 5000.32, + "end": 5001.78, + "probability": 0.9395 + }, + { + "start": 5003.1, + "end": 5005.24, + "probability": 0.8672 + }, + { + "start": 5005.76, + "end": 5008.76, + "probability": 0.8634 + }, + { + "start": 5008.76, + "end": 5011.82, + "probability": 0.998 + }, + { + "start": 5013.08, + "end": 5014.44, + "probability": 0.9367 + }, + { + "start": 5014.96, + "end": 5016.26, + "probability": 0.8747 + }, + { + "start": 5016.96, + "end": 5017.6, + "probability": 0.7178 + }, + { + "start": 5018.06, + "end": 5020.72, + "probability": 0.7875 + }, + { + "start": 5021.2, + "end": 5023.76, + "probability": 0.9816 + }, + { + "start": 5024.14, + "end": 5025.38, + "probability": 0.9087 + }, + { + "start": 5025.68, + "end": 5027.4, + "probability": 0.7496 + }, + { + "start": 5028.4, + "end": 5030.14, + "probability": 0.6427 + }, + { + "start": 5030.42, + "end": 5035.28, + "probability": 0.9705 + }, + { + "start": 5035.56, + "end": 5037.05, + "probability": 0.9897 + }, + { + "start": 5037.34, + "end": 5037.74, + "probability": 0.8309 + }, + { + "start": 5037.8, + "end": 5039.02, + "probability": 0.9985 + }, + { + "start": 5039.26, + "end": 5041.66, + "probability": 0.9905 + }, + { + "start": 5042.62, + "end": 5049.0, + "probability": 0.6502 + }, + { + "start": 5049.82, + "end": 5051.48, + "probability": 0.8208 + }, + { + "start": 5051.58, + "end": 5054.56, + "probability": 0.9883 + }, + { + "start": 5054.56, + "end": 5056.46, + "probability": 0.7466 + }, + { + "start": 5057.22, + "end": 5058.72, + "probability": 0.6224 + }, + { + "start": 5058.94, + "end": 5061.36, + "probability": 0.7659 + }, + { + "start": 5061.78, + "end": 5065.16, + "probability": 0.9443 + }, + { + "start": 5065.76, + "end": 5070.7, + "probability": 0.9778 + }, + { + "start": 5070.98, + "end": 5073.74, + "probability": 0.9978 + }, + { + "start": 5074.22, + "end": 5075.86, + "probability": 0.9446 + }, + { + "start": 5076.62, + "end": 5078.0, + "probability": 0.8165 + }, + { + "start": 5079.22, + "end": 5081.94, + "probability": 0.9893 + }, + { + "start": 5082.42, + "end": 5083.96, + "probability": 0.9808 + }, + { + "start": 5084.46, + "end": 5085.38, + "probability": 0.8497 + }, + { + "start": 5085.5, + "end": 5086.62, + "probability": 0.8498 + }, + { + "start": 5087.0, + "end": 5090.0, + "probability": 0.9855 + }, + { + "start": 5090.72, + "end": 5091.82, + "probability": 0.9837 + }, + { + "start": 5091.92, + "end": 5094.74, + "probability": 0.9106 + }, + { + "start": 5094.82, + "end": 5095.64, + "probability": 0.7798 + }, + { + "start": 5095.76, + "end": 5096.56, + "probability": 0.739 + }, + { + "start": 5096.98, + "end": 5099.62, + "probability": 0.952 + }, + { + "start": 5099.94, + "end": 5100.76, + "probability": 0.6016 + }, + { + "start": 5101.02, + "end": 5104.36, + "probability": 0.843 + }, + { + "start": 5104.82, + "end": 5106.24, + "probability": 0.5882 + }, + { + "start": 5106.82, + "end": 5107.68, + "probability": 0.6308 + }, + { + "start": 5108.16, + "end": 5113.1, + "probability": 0.9565 + }, + { + "start": 5113.52, + "end": 5117.12, + "probability": 0.9606 + }, + { + "start": 5117.54, + "end": 5118.34, + "probability": 0.967 + }, + { + "start": 5118.72, + "end": 5119.3, + "probability": 0.687 + }, + { + "start": 5119.64, + "end": 5121.31, + "probability": 0.9639 + }, + { + "start": 5121.68, + "end": 5122.54, + "probability": 0.5215 + }, + { + "start": 5122.54, + "end": 5123.66, + "probability": 0.3946 + }, + { + "start": 5124.32, + "end": 5129.16, + "probability": 0.9723 + }, + { + "start": 5129.6, + "end": 5131.44, + "probability": 0.9824 + }, + { + "start": 5131.54, + "end": 5132.62, + "probability": 0.8432 + }, + { + "start": 5133.04, + "end": 5133.74, + "probability": 0.5282 + }, + { + "start": 5133.82, + "end": 5135.76, + "probability": 0.8836 + }, + { + "start": 5136.24, + "end": 5136.6, + "probability": 0.7112 + }, + { + "start": 5136.64, + "end": 5137.72, + "probability": 0.6712 + }, + { + "start": 5138.18, + "end": 5140.0, + "probability": 0.9307 + }, + { + "start": 5140.42, + "end": 5143.06, + "probability": 0.9969 + }, + { + "start": 5143.3, + "end": 5145.56, + "probability": 0.8323 + }, + { + "start": 5146.12, + "end": 5147.92, + "probability": 0.9097 + }, + { + "start": 5148.26, + "end": 5149.18, + "probability": 0.689 + }, + { + "start": 5149.48, + "end": 5150.64, + "probability": 0.9767 + }, + { + "start": 5150.9, + "end": 5152.5, + "probability": 0.98 + }, + { + "start": 5152.76, + "end": 5153.2, + "probability": 0.6455 + }, + { + "start": 5154.44, + "end": 5155.04, + "probability": 0.7863 + }, + { + "start": 5156.96, + "end": 5158.16, + "probability": 0.9639 + }, + { + "start": 5159.72, + "end": 5160.52, + "probability": 0.7911 + }, + { + "start": 5162.54, + "end": 5163.9, + "probability": 0.984 + }, + { + "start": 5199.2, + "end": 5199.98, + "probability": 0.5612 + }, + { + "start": 5201.34, + "end": 5202.77, + "probability": 0.77 + }, + { + "start": 5203.14, + "end": 5208.6, + "probability": 0.9695 + }, + { + "start": 5208.6, + "end": 5212.52, + "probability": 0.9814 + }, + { + "start": 5213.9, + "end": 5214.42, + "probability": 0.6823 + }, + { + "start": 5214.52, + "end": 5215.18, + "probability": 0.6501 + }, + { + "start": 5215.26, + "end": 5216.98, + "probability": 0.9882 + }, + { + "start": 5218.3, + "end": 5220.76, + "probability": 0.9844 + }, + { + "start": 5221.68, + "end": 5225.2, + "probability": 0.8944 + }, + { + "start": 5225.72, + "end": 5227.96, + "probability": 0.9797 + }, + { + "start": 5228.58, + "end": 5229.56, + "probability": 0.7912 + }, + { + "start": 5230.48, + "end": 5231.56, + "probability": 0.9746 + }, + { + "start": 5231.72, + "end": 5235.22, + "probability": 0.8916 + }, + { + "start": 5235.32, + "end": 5237.04, + "probability": 0.9312 + }, + { + "start": 5238.94, + "end": 5240.16, + "probability": 0.5209 + }, + { + "start": 5240.3, + "end": 5242.62, + "probability": 0.9812 + }, + { + "start": 5243.02, + "end": 5244.16, + "probability": 0.8813 + }, + { + "start": 5245.28, + "end": 5247.04, + "probability": 0.6066 + }, + { + "start": 5247.86, + "end": 5249.48, + "probability": 0.8825 + }, + { + "start": 5249.82, + "end": 5251.44, + "probability": 0.9844 + }, + { + "start": 5251.64, + "end": 5253.44, + "probability": 0.9912 + }, + { + "start": 5253.52, + "end": 5255.28, + "probability": 0.4689 + }, + { + "start": 5255.38, + "end": 5258.22, + "probability": 0.9748 + }, + { + "start": 5259.22, + "end": 5261.32, + "probability": 0.6732 + }, + { + "start": 5265.06, + "end": 5267.24, + "probability": 0.9354 + }, + { + "start": 5269.28, + "end": 5271.0, + "probability": 0.973 + }, + { + "start": 5272.1, + "end": 5273.32, + "probability": 0.7446 + }, + { + "start": 5274.36, + "end": 5277.68, + "probability": 0.9695 + }, + { + "start": 5278.7, + "end": 5280.86, + "probability": 0.8085 + }, + { + "start": 5281.5, + "end": 5284.82, + "probability": 0.992 + }, + { + "start": 5284.82, + "end": 5286.52, + "probability": 0.9956 + }, + { + "start": 5287.62, + "end": 5289.62, + "probability": 0.9966 + }, + { + "start": 5290.82, + "end": 5292.02, + "probability": 0.6473 + }, + { + "start": 5293.98, + "end": 5295.88, + "probability": 0.8385 + }, + { + "start": 5297.6, + "end": 5301.0, + "probability": 0.9553 + }, + { + "start": 5302.16, + "end": 5304.02, + "probability": 0.936 + }, + { + "start": 5304.8, + "end": 5311.18, + "probability": 0.955 + }, + { + "start": 5312.26, + "end": 5313.36, + "probability": 0.6189 + }, + { + "start": 5313.46, + "end": 5317.62, + "probability": 0.7571 + }, + { + "start": 5318.04, + "end": 5319.35, + "probability": 0.9934 + }, + { + "start": 5319.88, + "end": 5323.06, + "probability": 0.9824 + }, + { + "start": 5323.14, + "end": 5325.22, + "probability": 0.9919 + }, + { + "start": 5326.2, + "end": 5327.96, + "probability": 0.9906 + }, + { + "start": 5328.08, + "end": 5329.7, + "probability": 0.4574 + }, + { + "start": 5329.7, + "end": 5329.96, + "probability": 0.4392 + }, + { + "start": 5330.04, + "end": 5331.26, + "probability": 0.7541 + }, + { + "start": 5332.48, + "end": 5334.68, + "probability": 0.9773 + }, + { + "start": 5335.24, + "end": 5336.88, + "probability": 0.7252 + }, + { + "start": 5337.48, + "end": 5338.52, + "probability": 0.7374 + }, + { + "start": 5338.72, + "end": 5343.32, + "probability": 0.988 + }, + { + "start": 5343.4, + "end": 5346.36, + "probability": 0.9834 + }, + { + "start": 5347.08, + "end": 5349.48, + "probability": 0.9979 + }, + { + "start": 5349.9, + "end": 5352.21, + "probability": 0.9902 + }, + { + "start": 5352.34, + "end": 5353.96, + "probability": 0.9586 + }, + { + "start": 5354.86, + "end": 5358.36, + "probability": 0.9973 + }, + { + "start": 5358.36, + "end": 5361.86, + "probability": 0.9818 + }, + { + "start": 5362.5, + "end": 5363.88, + "probability": 0.6733 + }, + { + "start": 5364.74, + "end": 5366.54, + "probability": 0.9399 + }, + { + "start": 5367.96, + "end": 5370.08, + "probability": 0.7753 + }, + { + "start": 5370.48, + "end": 5374.92, + "probability": 0.9681 + }, + { + "start": 5375.52, + "end": 5379.96, + "probability": 0.9907 + }, + { + "start": 5380.58, + "end": 5381.32, + "probability": 0.4992 + }, + { + "start": 5381.48, + "end": 5382.08, + "probability": 0.7679 + }, + { + "start": 5382.64, + "end": 5386.46, + "probability": 0.9655 + }, + { + "start": 5387.1, + "end": 5388.6, + "probability": 0.6657 + }, + { + "start": 5388.68, + "end": 5389.98, + "probability": 0.6925 + }, + { + "start": 5390.4, + "end": 5392.43, + "probability": 0.8381 + }, + { + "start": 5393.94, + "end": 5394.32, + "probability": 0.5483 + }, + { + "start": 5394.46, + "end": 5396.08, + "probability": 0.9077 + }, + { + "start": 5397.02, + "end": 5398.42, + "probability": 0.8416 + }, + { + "start": 5399.02, + "end": 5402.84, + "probability": 0.8745 + }, + { + "start": 5403.5, + "end": 5406.84, + "probability": 0.969 + }, + { + "start": 5406.86, + "end": 5407.56, + "probability": 0.853 + }, + { + "start": 5408.4, + "end": 5409.56, + "probability": 0.9265 + }, + { + "start": 5410.2, + "end": 5416.23, + "probability": 0.946 + }, + { + "start": 5417.44, + "end": 5421.44, + "probability": 0.9853 + }, + { + "start": 5423.5, + "end": 5423.94, + "probability": 0.7127 + }, + { + "start": 5427.3, + "end": 5428.18, + "probability": 0.7418 + }, + { + "start": 5429.3, + "end": 5430.16, + "probability": 0.8227 + }, + { + "start": 5432.68, + "end": 5433.1, + "probability": 0.7043 + }, + { + "start": 5447.5, + "end": 5448.0, + "probability": 0.4169 + }, + { + "start": 5452.72, + "end": 5454.62, + "probability": 0.7479 + }, + { + "start": 5455.46, + "end": 5456.38, + "probability": 0.9323 + }, + { + "start": 5458.54, + "end": 5460.68, + "probability": 0.8341 + }, + { + "start": 5462.74, + "end": 5463.04, + "probability": 0.8972 + }, + { + "start": 5464.56, + "end": 5465.04, + "probability": 0.926 + }, + { + "start": 5466.74, + "end": 5469.22, + "probability": 0.8831 + }, + { + "start": 5470.4, + "end": 5470.88, + "probability": 0.9016 + }, + { + "start": 5472.64, + "end": 5473.28, + "probability": 0.7831 + }, + { + "start": 5474.78, + "end": 5476.22, + "probability": 0.9676 + }, + { + "start": 5477.02, + "end": 5478.02, + "probability": 0.8578 + }, + { + "start": 5479.48, + "end": 5480.24, + "probability": 0.8162 + }, + { + "start": 5482.58, + "end": 5483.2, + "probability": 0.3892 + }, + { + "start": 5484.94, + "end": 5486.02, + "probability": 0.5643 + }, + { + "start": 5487.16, + "end": 5488.06, + "probability": 0.9314 + }, + { + "start": 5488.6, + "end": 5491.44, + "probability": 0.9705 + }, + { + "start": 5493.28, + "end": 5495.14, + "probability": 0.7509 + }, + { + "start": 5496.22, + "end": 5497.94, + "probability": 0.9805 + }, + { + "start": 5498.74, + "end": 5501.04, + "probability": 0.9934 + }, + { + "start": 5502.06, + "end": 5502.48, + "probability": 0.7755 + }, + { + "start": 5504.14, + "end": 5505.08, + "probability": 0.7959 + }, + { + "start": 5506.86, + "end": 5507.68, + "probability": 0.8598 + }, + { + "start": 5509.52, + "end": 5511.48, + "probability": 0.83 + }, + { + "start": 5512.62, + "end": 5514.7, + "probability": 0.9058 + }, + { + "start": 5517.12, + "end": 5521.18, + "probability": 0.7949 + }, + { + "start": 5524.94, + "end": 5527.26, + "probability": 0.9675 + }, + { + "start": 5528.66, + "end": 5532.83, + "probability": 0.8437 + }, + { + "start": 5534.24, + "end": 5535.1, + "probability": 0.9801 + }, + { + "start": 5535.1, + "end": 5536.36, + "probability": 0.9829 + }, + { + "start": 5536.6, + "end": 5541.24, + "probability": 0.9241 + }, + { + "start": 5542.78, + "end": 5543.98, + "probability": 0.8647 + }, + { + "start": 5544.72, + "end": 5548.38, + "probability": 0.9902 + }, + { + "start": 5548.4, + "end": 5554.22, + "probability": 0.9954 + }, + { + "start": 5554.82, + "end": 5555.8, + "probability": 0.7321 + }, + { + "start": 5556.32, + "end": 5559.06, + "probability": 0.9979 + }, + { + "start": 5560.96, + "end": 5562.8, + "probability": 0.9221 + }, + { + "start": 5563.22, + "end": 5565.32, + "probability": 0.9466 + }, + { + "start": 5567.18, + "end": 5567.86, + "probability": 0.9504 + }, + { + "start": 5568.72, + "end": 5571.64, + "probability": 0.9897 + }, + { + "start": 5572.38, + "end": 5574.72, + "probability": 0.9213 + }, + { + "start": 5575.48, + "end": 5576.76, + "probability": 0.8789 + }, + { + "start": 5577.4, + "end": 5580.22, + "probability": 0.9955 + }, + { + "start": 5580.56, + "end": 5581.88, + "probability": 0.9227 + }, + { + "start": 5582.32, + "end": 5583.14, + "probability": 0.9853 + }, + { + "start": 5584.1, + "end": 5584.76, + "probability": 0.9167 + }, + { + "start": 5585.98, + "end": 5590.16, + "probability": 0.9722 + }, + { + "start": 5591.72, + "end": 5595.22, + "probability": 0.9101 + }, + { + "start": 5596.3, + "end": 5597.98, + "probability": 0.9866 + }, + { + "start": 5598.82, + "end": 5600.52, + "probability": 0.7303 + }, + { + "start": 5601.46, + "end": 5603.78, + "probability": 0.8877 + }, + { + "start": 5604.42, + "end": 5605.16, + "probability": 0.9172 + }, + { + "start": 5605.26, + "end": 5606.28, + "probability": 0.8816 + }, + { + "start": 5606.34, + "end": 5609.18, + "probability": 0.9387 + }, + { + "start": 5609.32, + "end": 5610.22, + "probability": 0.6014 + }, + { + "start": 5611.28, + "end": 5613.8, + "probability": 0.952 + }, + { + "start": 5614.54, + "end": 5618.82, + "probability": 0.98 + }, + { + "start": 5620.56, + "end": 5621.24, + "probability": 0.9973 + }, + { + "start": 5621.8, + "end": 5622.41, + "probability": 0.9734 + }, + { + "start": 5623.8, + "end": 5627.49, + "probability": 0.9987 + }, + { + "start": 5629.16, + "end": 5629.36, + "probability": 0.4212 + }, + { + "start": 5629.46, + "end": 5630.55, + "probability": 0.8519 + }, + { + "start": 5631.22, + "end": 5632.1, + "probability": 0.7916 + }, + { + "start": 5632.26, + "end": 5634.16, + "probability": 0.7534 + }, + { + "start": 5634.24, + "end": 5635.1, + "probability": 0.763 + }, + { + "start": 5635.7, + "end": 5636.46, + "probability": 0.7546 + }, + { + "start": 5637.2, + "end": 5639.92, + "probability": 0.9304 + }, + { + "start": 5640.5, + "end": 5642.84, + "probability": 0.8752 + }, + { + "start": 5643.22, + "end": 5643.9, + "probability": 0.9345 + }, + { + "start": 5644.58, + "end": 5648.0, + "probability": 0.9477 + }, + { + "start": 5648.1, + "end": 5648.62, + "probability": 0.7435 + }, + { + "start": 5649.68, + "end": 5651.06, + "probability": 0.9771 + }, + { + "start": 5654.09, + "end": 5657.5, + "probability": 0.8541 + }, + { + "start": 5658.42, + "end": 5660.28, + "probability": 0.9872 + }, + { + "start": 5661.04, + "end": 5664.54, + "probability": 0.9633 + }, + { + "start": 5664.98, + "end": 5670.16, + "probability": 0.9825 + }, + { + "start": 5671.36, + "end": 5673.0, + "probability": 0.5969 + }, + { + "start": 5673.25, + "end": 5679.62, + "probability": 0.8617 + }, + { + "start": 5680.04, + "end": 5680.92, + "probability": 0.6532 + }, + { + "start": 5680.96, + "end": 5685.14, + "probability": 0.9816 + }, + { + "start": 5687.46, + "end": 5691.32, + "probability": 0.9258 + }, + { + "start": 5691.98, + "end": 5693.63, + "probability": 0.9907 + }, + { + "start": 5694.88, + "end": 5700.2, + "probability": 0.9693 + }, + { + "start": 5700.58, + "end": 5701.44, + "probability": 0.8378 + }, + { + "start": 5701.58, + "end": 5702.34, + "probability": 0.7693 + }, + { + "start": 5702.7, + "end": 5704.26, + "probability": 0.9836 + }, + { + "start": 5704.7, + "end": 5707.92, + "probability": 0.7554 + }, + { + "start": 5708.34, + "end": 5709.02, + "probability": 0.5509 + }, + { + "start": 5709.58, + "end": 5714.66, + "probability": 0.9923 + }, + { + "start": 5715.9, + "end": 5718.47, + "probability": 0.7101 + }, + { + "start": 5719.33, + "end": 5722.16, + "probability": 0.958 + }, + { + "start": 5722.2, + "end": 5722.54, + "probability": 0.8695 + }, + { + "start": 5722.9, + "end": 5724.23, + "probability": 0.5078 + }, + { + "start": 5724.4, + "end": 5726.52, + "probability": 0.9675 + }, + { + "start": 5726.66, + "end": 5727.52, + "probability": 0.7373 + }, + { + "start": 5728.5, + "end": 5733.32, + "probability": 0.9277 + }, + { + "start": 5734.34, + "end": 5735.36, + "probability": 0.8779 + }, + { + "start": 5736.14, + "end": 5738.9, + "probability": 0.9642 + }, + { + "start": 5739.3, + "end": 5741.42, + "probability": 0.8538 + }, + { + "start": 5741.58, + "end": 5745.32, + "probability": 0.9623 + }, + { + "start": 5745.32, + "end": 5745.42, + "probability": 0.7318 + }, + { + "start": 5747.26, + "end": 5751.84, + "probability": 0.947 + }, + { + "start": 5751.84, + "end": 5757.74, + "probability": 0.9887 + }, + { + "start": 5758.34, + "end": 5759.3, + "probability": 0.8514 + }, + { + "start": 5760.1, + "end": 5762.98, + "probability": 0.6039 + }, + { + "start": 5763.48, + "end": 5765.96, + "probability": 0.6171 + }, + { + "start": 5766.04, + "end": 5769.38, + "probability": 0.75 + }, + { + "start": 5769.38, + "end": 5773.9, + "probability": 0.991 + }, + { + "start": 5773.94, + "end": 5774.7, + "probability": 0.5934 + }, + { + "start": 5775.38, + "end": 5776.12, + "probability": 0.9695 + }, + { + "start": 5776.94, + "end": 5782.28, + "probability": 0.9928 + }, + { + "start": 5783.02, + "end": 5783.76, + "probability": 0.8117 + }, + { + "start": 5784.82, + "end": 5786.36, + "probability": 0.8481 + }, + { + "start": 5786.4, + "end": 5787.32, + "probability": 0.9984 + }, + { + "start": 5789.4, + "end": 5790.86, + "probability": 0.9124 + }, + { + "start": 5791.4, + "end": 5792.31, + "probability": 0.9763 + }, + { + "start": 5793.34, + "end": 5795.86, + "probability": 0.9216 + }, + { + "start": 5796.42, + "end": 5797.61, + "probability": 0.829 + }, + { + "start": 5799.02, + "end": 5804.26, + "probability": 0.9812 + }, + { + "start": 5804.72, + "end": 5805.74, + "probability": 0.8373 + }, + { + "start": 5805.84, + "end": 5808.64, + "probability": 0.9884 + }, + { + "start": 5808.72, + "end": 5810.28, + "probability": 0.9493 + }, + { + "start": 5810.74, + "end": 5813.59, + "probability": 0.9793 + }, + { + "start": 5813.84, + "end": 5817.2, + "probability": 0.9936 + }, + { + "start": 5817.84, + "end": 5819.86, + "probability": 0.6618 + }, + { + "start": 5820.36, + "end": 5821.68, + "probability": 0.9861 + }, + { + "start": 5822.06, + "end": 5822.98, + "probability": 0.9796 + }, + { + "start": 5823.24, + "end": 5823.84, + "probability": 0.9435 + }, + { + "start": 5824.18, + "end": 5825.56, + "probability": 0.749 + }, + { + "start": 5827.02, + "end": 5830.6, + "probability": 0.9381 + }, + { + "start": 5831.42, + "end": 5835.22, + "probability": 0.986 + }, + { + "start": 5835.36, + "end": 5836.26, + "probability": 0.6504 + }, + { + "start": 5838.12, + "end": 5839.34, + "probability": 0.7614 + }, + { + "start": 5841.1, + "end": 5841.8, + "probability": 0.8742 + }, + { + "start": 5841.88, + "end": 5842.02, + "probability": 0.1574 + }, + { + "start": 5842.08, + "end": 5842.36, + "probability": 0.6165 + }, + { + "start": 5842.72, + "end": 5844.86, + "probability": 0.9816 + }, + { + "start": 5845.3, + "end": 5846.14, + "probability": 0.8081 + }, + { + "start": 5846.62, + "end": 5849.68, + "probability": 0.9937 + }, + { + "start": 5849.84, + "end": 5854.18, + "probability": 0.9965 + }, + { + "start": 5855.4, + "end": 5856.3, + "probability": 0.7286 + }, + { + "start": 5856.72, + "end": 5857.56, + "probability": 0.9446 + }, + { + "start": 5857.66, + "end": 5859.84, + "probability": 0.8408 + }, + { + "start": 5859.92, + "end": 5861.14, + "probability": 0.6216 + }, + { + "start": 5861.62, + "end": 5862.2, + "probability": 0.9827 + }, + { + "start": 5863.26, + "end": 5866.66, + "probability": 0.8167 + }, + { + "start": 5867.24, + "end": 5869.88, + "probability": 0.8719 + }, + { + "start": 5870.18, + "end": 5871.42, + "probability": 0.7535 + }, + { + "start": 5871.52, + "end": 5873.24, + "probability": 0.8007 + }, + { + "start": 5873.9, + "end": 5875.72, + "probability": 0.5724 + }, + { + "start": 5876.28, + "end": 5878.74, + "probability": 0.9766 + }, + { + "start": 5879.14, + "end": 5880.84, + "probability": 0.5581 + }, + { + "start": 5881.46, + "end": 5881.78, + "probability": 0.764 + }, + { + "start": 5881.8, + "end": 5882.98, + "probability": 0.7483 + }, + { + "start": 5883.12, + "end": 5890.3, + "probability": 0.9703 + }, + { + "start": 5890.96, + "end": 5892.68, + "probability": 0.9034 + }, + { + "start": 5893.36, + "end": 5896.0, + "probability": 0.9531 + }, + { + "start": 5896.82, + "end": 5899.32, + "probability": 0.9944 + }, + { + "start": 5899.56, + "end": 5900.98, + "probability": 0.5365 + }, + { + "start": 5901.08, + "end": 5901.34, + "probability": 0.3959 + }, + { + "start": 5901.34, + "end": 5903.36, + "probability": 0.73 + }, + { + "start": 5904.46, + "end": 5904.68, + "probability": 0.4672 + }, + { + "start": 5904.68, + "end": 5904.68, + "probability": 0.1016 + }, + { + "start": 5904.68, + "end": 5904.89, + "probability": 0.4946 + }, + { + "start": 5905.84, + "end": 5909.8, + "probability": 0.504 + }, + { + "start": 5909.82, + "end": 5911.14, + "probability": 0.6477 + }, + { + "start": 5911.34, + "end": 5912.65, + "probability": 0.6984 + }, + { + "start": 5913.26, + "end": 5913.4, + "probability": 0.1523 + }, + { + "start": 5913.44, + "end": 5914.3, + "probability": 0.5185 + }, + { + "start": 5914.48, + "end": 5916.8, + "probability": 0.8301 + }, + { + "start": 5917.18, + "end": 5919.92, + "probability": 0.8624 + }, + { + "start": 5920.28, + "end": 5922.61, + "probability": 0.9507 + }, + { + "start": 5923.12, + "end": 5926.1, + "probability": 0.6607 + }, + { + "start": 5926.1, + "end": 5927.0, + "probability": 0.5702 + }, + { + "start": 5927.0, + "end": 5929.04, + "probability": 0.9925 + }, + { + "start": 5929.2, + "end": 5930.1, + "probability": 0.8647 + }, + { + "start": 5930.1, + "end": 5933.66, + "probability": 0.8954 + }, + { + "start": 5933.66, + "end": 5936.4, + "probability": 0.9963 + }, + { + "start": 5936.58, + "end": 5937.54, + "probability": 0.9977 + }, + { + "start": 5938.24, + "end": 5939.86, + "probability": 0.943 + }, + { + "start": 5941.1, + "end": 5942.44, + "probability": 0.1944 + }, + { + "start": 5942.48, + "end": 5943.96, + "probability": 0.4339 + }, + { + "start": 5943.98, + "end": 5947.8, + "probability": 0.6988 + }, + { + "start": 5948.34, + "end": 5952.04, + "probability": 0.8531 + }, + { + "start": 5952.44, + "end": 5955.16, + "probability": 0.9963 + }, + { + "start": 5955.16, + "end": 5958.9, + "probability": 0.8423 + }, + { + "start": 5959.26, + "end": 5963.16, + "probability": 0.994 + }, + { + "start": 5963.3, + "end": 5963.84, + "probability": 0.7929 + }, + { + "start": 5964.36, + "end": 5965.64, + "probability": 0.5151 + }, + { + "start": 5965.74, + "end": 5966.46, + "probability": 0.0171 + }, + { + "start": 5966.46, + "end": 5971.08, + "probability": 0.6078 + }, + { + "start": 5971.08, + "end": 5971.38, + "probability": 0.1755 + }, + { + "start": 5971.46, + "end": 5971.9, + "probability": 0.9459 + }, + { + "start": 5972.0, + "end": 5974.44, + "probability": 0.8878 + }, + { + "start": 5974.64, + "end": 5976.18, + "probability": 0.9148 + }, + { + "start": 5976.56, + "end": 5977.98, + "probability": 0.8199 + }, + { + "start": 5978.32, + "end": 5980.34, + "probability": 0.7683 + }, + { + "start": 5980.46, + "end": 5981.1, + "probability": 0.5773 + }, + { + "start": 5981.1, + "end": 5984.74, + "probability": 0.9879 + }, + { + "start": 5985.08, + "end": 5986.8, + "probability": 0.9695 + }, + { + "start": 5987.16, + "end": 5988.68, + "probability": 0.7114 + }, + { + "start": 5988.82, + "end": 5992.72, + "probability": 0.7628 + }, + { + "start": 5993.1, + "end": 5994.4, + "probability": 0.1507 + }, + { + "start": 5994.96, + "end": 5999.24, + "probability": 0.6813 + }, + { + "start": 6000.02, + "end": 6001.16, + "probability": 0.083 + }, + { + "start": 6001.24, + "end": 6003.68, + "probability": 0.6376 + }, + { + "start": 6003.94, + "end": 6005.34, + "probability": 0.9031 + }, + { + "start": 6005.96, + "end": 6006.76, + "probability": 0.9492 + }, + { + "start": 6007.62, + "end": 6011.4, + "probability": 0.4893 + }, + { + "start": 6011.98, + "end": 6013.52, + "probability": 0.1638 + }, + { + "start": 6013.82, + "end": 6014.4, + "probability": 0.1276 + }, + { + "start": 6014.4, + "end": 6014.4, + "probability": 0.2763 + }, + { + "start": 6014.4, + "end": 6014.4, + "probability": 0.2279 + }, + { + "start": 6014.4, + "end": 6015.52, + "probability": 0.4321 + }, + { + "start": 6015.54, + "end": 6016.92, + "probability": 0.876 + }, + { + "start": 6016.92, + "end": 6018.42, + "probability": 0.4847 + }, + { + "start": 6018.52, + "end": 6020.94, + "probability": 0.3636 + }, + { + "start": 6021.44, + "end": 6023.7, + "probability": 0.7116 + }, + { + "start": 6023.7, + "end": 6023.89, + "probability": 0.2825 + }, + { + "start": 6024.26, + "end": 6026.0, + "probability": 0.8627 + }, + { + "start": 6026.18, + "end": 6028.16, + "probability": 0.5503 + }, + { + "start": 6028.46, + "end": 6032.42, + "probability": 0.9882 + }, + { + "start": 6032.66, + "end": 6035.06, + "probability": 0.9949 + }, + { + "start": 6035.64, + "end": 6039.32, + "probability": 0.9204 + }, + { + "start": 6039.88, + "end": 6042.66, + "probability": 0.925 + }, + { + "start": 6042.8, + "end": 6043.56, + "probability": 0.6311 + }, + { + "start": 6044.0, + "end": 6048.17, + "probability": 0.945 + }, + { + "start": 6049.54, + "end": 6050.14, + "probability": 0.5262 + }, + { + "start": 6050.16, + "end": 6053.44, + "probability": 0.9986 + }, + { + "start": 6053.8, + "end": 6055.82, + "probability": 0.8543 + }, + { + "start": 6056.34, + "end": 6057.22, + "probability": 0.8458 + }, + { + "start": 6057.9, + "end": 6058.62, + "probability": 0.8342 + }, + { + "start": 6059.22, + "end": 6062.8, + "probability": 0.9523 + }, + { + "start": 6063.06, + "end": 6065.46, + "probability": 0.9833 + }, + { + "start": 6065.9, + "end": 6066.6, + "probability": 0.3454 + }, + { + "start": 6066.96, + "end": 6071.58, + "probability": 0.9906 + }, + { + "start": 6071.64, + "end": 6072.62, + "probability": 0.7989 + }, + { + "start": 6072.96, + "end": 6074.54, + "probability": 0.9731 + }, + { + "start": 6076.1, + "end": 6077.32, + "probability": 0.8731 + }, + { + "start": 6077.96, + "end": 6083.3, + "probability": 0.9957 + }, + { + "start": 6083.48, + "end": 6087.3, + "probability": 0.9489 + }, + { + "start": 6087.46, + "end": 6088.32, + "probability": 0.7507 + }, + { + "start": 6088.68, + "end": 6091.14, + "probability": 0.9527 + }, + { + "start": 6091.5, + "end": 6096.14, + "probability": 0.9847 + }, + { + "start": 6096.46, + "end": 6101.3, + "probability": 0.9692 + }, + { + "start": 6103.0, + "end": 6103.88, + "probability": 0.8188 + }, + { + "start": 6104.88, + "end": 6108.66, + "probability": 0.9839 + }, + { + "start": 6109.16, + "end": 6110.88, + "probability": 0.9546 + }, + { + "start": 6111.72, + "end": 6112.84, + "probability": 0.8186 + }, + { + "start": 6114.48, + "end": 6117.07, + "probability": 0.9932 + }, + { + "start": 6121.96, + "end": 6122.38, + "probability": 0.0517 + }, + { + "start": 6122.38, + "end": 6124.4, + "probability": 0.2667 + }, + { + "start": 6124.4, + "end": 6126.7, + "probability": 0.1766 + }, + { + "start": 6126.8, + "end": 6127.08, + "probability": 0.6917 + }, + { + "start": 6127.12, + "end": 6129.01, + "probability": 0.0692 + }, + { + "start": 6129.34, + "end": 6131.66, + "probability": 0.9697 + }, + { + "start": 6131.72, + "end": 6135.9, + "probability": 0.0441 + }, + { + "start": 6135.9, + "end": 6136.74, + "probability": 0.8252 + }, + { + "start": 6136.78, + "end": 6137.64, + "probability": 0.5545 + }, + { + "start": 6138.42, + "end": 6140.62, + "probability": 0.0537 + }, + { + "start": 6140.62, + "end": 6142.16, + "probability": 0.8919 + }, + { + "start": 6143.52, + "end": 6145.38, + "probability": 0.8384 + }, + { + "start": 6145.64, + "end": 6146.63, + "probability": 0.7988 + }, + { + "start": 6149.03, + "end": 6151.68, + "probability": 0.0196 + }, + { + "start": 6152.32, + "end": 6152.32, + "probability": 0.0171 + }, + { + "start": 6152.32, + "end": 6152.32, + "probability": 0.102 + }, + { + "start": 6152.32, + "end": 6154.5, + "probability": 0.4878 + }, + { + "start": 6155.9, + "end": 6157.14, + "probability": 0.8132 + }, + { + "start": 6157.5, + "end": 6163.62, + "probability": 0.9633 + }, + { + "start": 6163.84, + "end": 6165.4, + "probability": 0.9339 + }, + { + "start": 6165.9, + "end": 6167.84, + "probability": 0.9324 + }, + { + "start": 6168.4, + "end": 6169.78, + "probability": 0.9456 + }, + { + "start": 6170.54, + "end": 6171.88, + "probability": 0.9722 + }, + { + "start": 6173.02, + "end": 6179.28, + "probability": 0.9731 + }, + { + "start": 6180.46, + "end": 6185.7, + "probability": 0.991 + }, + { + "start": 6185.7, + "end": 6189.6, + "probability": 0.9928 + }, + { + "start": 6190.48, + "end": 6191.16, + "probability": 0.6452 + }, + { + "start": 6191.94, + "end": 6192.5, + "probability": 0.614 + }, + { + "start": 6192.58, + "end": 6193.64, + "probability": 0.8195 + }, + { + "start": 6194.02, + "end": 6195.18, + "probability": 0.9492 + }, + { + "start": 6199.7, + "end": 6200.46, + "probability": 0.4777 + }, + { + "start": 6201.6, + "end": 6207.6, + "probability": 0.991 + }, + { + "start": 6207.6, + "end": 6211.5, + "probability": 0.9795 + }, + { + "start": 6212.68, + "end": 6215.76, + "probability": 0.8004 + }, + { + "start": 6216.28, + "end": 6218.96, + "probability": 0.9291 + }, + { + "start": 6219.7, + "end": 6223.2, + "probability": 0.9482 + }, + { + "start": 6224.06, + "end": 6225.34, + "probability": 0.8828 + }, + { + "start": 6225.86, + "end": 6228.64, + "probability": 0.9964 + }, + { + "start": 6228.96, + "end": 6233.24, + "probability": 0.9917 + }, + { + "start": 6233.58, + "end": 6236.2, + "probability": 0.9881 + }, + { + "start": 6237.6, + "end": 6237.88, + "probability": 0.6049 + }, + { + "start": 6238.0, + "end": 6238.78, + "probability": 0.7745 + }, + { + "start": 6238.86, + "end": 6243.06, + "probability": 0.953 + }, + { + "start": 6243.06, + "end": 6249.66, + "probability": 0.993 + }, + { + "start": 6250.82, + "end": 6252.86, + "probability": 0.7324 + }, + { + "start": 6253.06, + "end": 6255.28, + "probability": 0.9741 + }, + { + "start": 6255.6, + "end": 6260.54, + "probability": 0.9856 + }, + { + "start": 6260.88, + "end": 6261.02, + "probability": 0.705 + }, + { + "start": 6261.56, + "end": 6261.72, + "probability": 0.319 + }, + { + "start": 6261.72, + "end": 6263.1, + "probability": 0.8658 + }, + { + "start": 6263.1, + "end": 6264.36, + "probability": 0.7347 + }, + { + "start": 6264.48, + "end": 6265.2, + "probability": 0.7304 + }, + { + "start": 6265.64, + "end": 6268.54, + "probability": 0.9263 + }, + { + "start": 6268.74, + "end": 6274.44, + "probability": 0.9281 + }, + { + "start": 6275.14, + "end": 6276.24, + "probability": 0.8049 + }, + { + "start": 6276.64, + "end": 6280.38, + "probability": 0.9115 + }, + { + "start": 6281.66, + "end": 6284.54, + "probability": 0.9867 + }, + { + "start": 6284.98, + "end": 6289.98, + "probability": 0.9531 + }, + { + "start": 6289.98, + "end": 6293.88, + "probability": 0.9515 + }, + { + "start": 6294.62, + "end": 6299.06, + "probability": 0.9645 + }, + { + "start": 6299.38, + "end": 6300.58, + "probability": 0.8677 + }, + { + "start": 6300.72, + "end": 6301.7, + "probability": 0.7545 + }, + { + "start": 6302.22, + "end": 6305.26, + "probability": 0.9893 + }, + { + "start": 6305.6, + "end": 6306.32, + "probability": 0.6526 + }, + { + "start": 6306.36, + "end": 6307.56, + "probability": 0.8245 + }, + { + "start": 6307.98, + "end": 6313.42, + "probability": 0.9828 + }, + { + "start": 6314.5, + "end": 6317.71, + "probability": 0.9878 + }, + { + "start": 6318.4, + "end": 6322.06, + "probability": 0.8715 + }, + { + "start": 6322.18, + "end": 6322.58, + "probability": 0.2005 + }, + { + "start": 6322.78, + "end": 6322.86, + "probability": 0.1803 + }, + { + "start": 6323.5, + "end": 6326.36, + "probability": 0.8332 + }, + { + "start": 6326.74, + "end": 6334.08, + "probability": 0.9754 + }, + { + "start": 6334.38, + "end": 6337.42, + "probability": 0.9557 + }, + { + "start": 6337.64, + "end": 6342.32, + "probability": 0.9965 + }, + { + "start": 6342.48, + "end": 6343.3, + "probability": 0.6605 + }, + { + "start": 6343.68, + "end": 6344.86, + "probability": 0.9324 + }, + { + "start": 6345.06, + "end": 6347.76, + "probability": 0.9241 + }, + { + "start": 6348.18, + "end": 6350.46, + "probability": 0.971 + }, + { + "start": 6350.92, + "end": 6354.16, + "probability": 0.9772 + }, + { + "start": 6354.64, + "end": 6355.32, + "probability": 0.8574 + }, + { + "start": 6355.86, + "end": 6356.6, + "probability": 0.9915 + }, + { + "start": 6357.14, + "end": 6357.3, + "probability": 0.2656 + }, + { + "start": 6357.3, + "end": 6357.3, + "probability": 0.3914 + }, + { + "start": 6357.3, + "end": 6358.16, + "probability": 0.5164 + }, + { + "start": 6358.86, + "end": 6359.44, + "probability": 0.5006 + }, + { + "start": 6360.04, + "end": 6361.82, + "probability": 0.7426 + }, + { + "start": 6362.46, + "end": 6364.62, + "probability": 0.5889 + }, + { + "start": 6364.82, + "end": 6365.62, + "probability": 0.84 + }, + { + "start": 6365.8, + "end": 6368.86, + "probability": 0.6461 + }, + { + "start": 6369.56, + "end": 6373.72, + "probability": 0.9 + }, + { + "start": 6374.42, + "end": 6377.14, + "probability": 0.95 + }, + { + "start": 6377.52, + "end": 6378.72, + "probability": 0.8189 + }, + { + "start": 6378.88, + "end": 6379.75, + "probability": 0.9612 + }, + { + "start": 6380.04, + "end": 6382.0, + "probability": 0.9843 + }, + { + "start": 6382.36, + "end": 6386.24, + "probability": 0.9961 + }, + { + "start": 6386.52, + "end": 6387.68, + "probability": 0.5995 + }, + { + "start": 6387.74, + "end": 6388.76, + "probability": 0.7873 + }, + { + "start": 6388.82, + "end": 6390.72, + "probability": 0.909 + }, + { + "start": 6391.02, + "end": 6393.72, + "probability": 0.9902 + }, + { + "start": 6393.94, + "end": 6395.42, + "probability": 0.9946 + }, + { + "start": 6395.72, + "end": 6397.06, + "probability": 0.9959 + }, + { + "start": 6397.52, + "end": 6400.84, + "probability": 0.9956 + }, + { + "start": 6401.18, + "end": 6406.4, + "probability": 0.9919 + }, + { + "start": 6407.52, + "end": 6409.46, + "probability": 0.9988 + }, + { + "start": 6409.78, + "end": 6414.5, + "probability": 0.9823 + }, + { + "start": 6416.68, + "end": 6419.0, + "probability": 0.7805 + }, + { + "start": 6419.26, + "end": 6422.24, + "probability": 0.9361 + }, + { + "start": 6426.7, + "end": 6433.28, + "probability": 0.8944 + }, + { + "start": 6434.5, + "end": 6436.12, + "probability": 0.8774 + }, + { + "start": 6436.2, + "end": 6436.92, + "probability": 0.5999 + }, + { + "start": 6437.14, + "end": 6438.08, + "probability": 0.6922 + }, + { + "start": 6438.98, + "end": 6440.42, + "probability": 0.2223 + }, + { + "start": 6446.56, + "end": 6448.76, + "probability": 0.2093 + }, + { + "start": 6448.8, + "end": 6450.4, + "probability": 0.4119 + }, + { + "start": 6450.4, + "end": 6453.18, + "probability": 0.9869 + }, + { + "start": 6457.98, + "end": 6461.14, + "probability": 0.4262 + }, + { + "start": 6461.34, + "end": 6463.72, + "probability": 0.9658 + }, + { + "start": 6464.84, + "end": 6469.24, + "probability": 0.9222 + }, + { + "start": 6470.04, + "end": 6470.68, + "probability": 0.6866 + }, + { + "start": 6470.76, + "end": 6471.36, + "probability": 0.6394 + }, + { + "start": 6471.52, + "end": 6472.26, + "probability": 0.3411 + }, + { + "start": 6490.1, + "end": 6490.1, + "probability": 0.1312 + }, + { + "start": 6490.1, + "end": 6494.32, + "probability": 0.6006 + }, + { + "start": 6494.42, + "end": 6496.0, + "probability": 0.9711 + }, + { + "start": 6497.14, + "end": 6498.56, + "probability": 0.9201 + }, + { + "start": 6501.46, + "end": 6502.26, + "probability": 0.366 + }, + { + "start": 6502.36, + "end": 6504.62, + "probability": 0.8361 + }, + { + "start": 6505.28, + "end": 6510.82, + "probability": 0.844 + }, + { + "start": 6512.46, + "end": 6516.58, + "probability": 0.9838 + }, + { + "start": 6517.12, + "end": 6518.42, + "probability": 0.8356 + }, + { + "start": 6518.56, + "end": 6519.0, + "probability": 0.2853 + }, + { + "start": 6519.1, + "end": 6519.9, + "probability": 0.7 + }, + { + "start": 6535.76, + "end": 6535.76, + "probability": 0.1974 + }, + { + "start": 6535.76, + "end": 6539.86, + "probability": 0.539 + }, + { + "start": 6540.8, + "end": 6541.54, + "probability": 0.3811 + }, + { + "start": 6541.72, + "end": 6544.06, + "probability": 0.8634 + }, + { + "start": 6544.82, + "end": 6548.38, + "probability": 0.8039 + }, + { + "start": 6548.44, + "end": 6552.74, + "probability": 0.7496 + }, + { + "start": 6552.88, + "end": 6555.56, + "probability": 0.5571 + }, + { + "start": 6555.58, + "end": 6558.54, + "probability": 0.0491 + }, + { + "start": 6560.52, + "end": 6562.44, + "probability": 0.7542 + }, + { + "start": 6562.58, + "end": 6565.34, + "probability": 0.986 + }, + { + "start": 6565.36, + "end": 6565.86, + "probability": 0.7099 + }, + { + "start": 6576.72, + "end": 6579.68, + "probability": 0.7516 + }, + { + "start": 6581.1, + "end": 6583.24, + "probability": 0.9634 + }, + { + "start": 6583.24, + "end": 6586.3, + "probability": 0.9874 + }, + { + "start": 6587.14, + "end": 6594.06, + "probability": 0.8879 + }, + { + "start": 6594.2, + "end": 6595.94, + "probability": 0.2674 + }, + { + "start": 6597.42, + "end": 6600.9, + "probability": 0.9954 + }, + { + "start": 6601.64, + "end": 6603.68, + "probability": 0.9748 + }, + { + "start": 6604.54, + "end": 6607.36, + "probability": 0.9874 + }, + { + "start": 6607.36, + "end": 6610.64, + "probability": 0.9371 + }, + { + "start": 6611.06, + "end": 6613.88, + "probability": 0.965 + }, + { + "start": 6666.04, + "end": 6668.99, + "probability": 0.8752 + }, + { + "start": 6670.5, + "end": 6673.06, + "probability": 0.9909 + }, + { + "start": 6673.06, + "end": 6676.1, + "probability": 0.9677 + }, + { + "start": 6677.5, + "end": 6680.92, + "probability": 0.9514 + }, + { + "start": 6681.86, + "end": 6684.36, + "probability": 0.9095 + }, + { + "start": 6685.1, + "end": 6687.78, + "probability": 0.9796 + }, + { + "start": 6688.76, + "end": 6691.52, + "probability": 0.9976 + }, + { + "start": 6692.5, + "end": 6693.04, + "probability": 0.8818 + }, + { + "start": 6694.02, + "end": 6697.22, + "probability": 0.9944 + }, + { + "start": 6698.08, + "end": 6700.92, + "probability": 0.9964 + }, + { + "start": 6700.92, + "end": 6704.3, + "probability": 0.9932 + }, + { + "start": 6704.88, + "end": 6706.54, + "probability": 0.8083 + }, + { + "start": 6707.08, + "end": 6708.98, + "probability": 0.9902 + }, + { + "start": 6711.24, + "end": 6711.92, + "probability": 0.9547 + }, + { + "start": 6712.28, + "end": 6712.98, + "probability": 0.9512 + }, + { + "start": 6713.2, + "end": 6718.64, + "probability": 0.994 + }, + { + "start": 6720.24, + "end": 6724.1, + "probability": 0.9854 + }, + { + "start": 6724.1, + "end": 6726.9, + "probability": 0.7181 + }, + { + "start": 6727.86, + "end": 6730.34, + "probability": 0.9652 + }, + { + "start": 6731.4, + "end": 6733.12, + "probability": 0.9602 + }, + { + "start": 6733.84, + "end": 6737.74, + "probability": 0.9931 + }, + { + "start": 6739.12, + "end": 6740.8, + "probability": 0.9152 + }, + { + "start": 6741.28, + "end": 6744.46, + "probability": 0.9868 + }, + { + "start": 6744.46, + "end": 6749.34, + "probability": 0.9985 + }, + { + "start": 6750.36, + "end": 6750.64, + "probability": 0.1914 + }, + { + "start": 6750.7, + "end": 6753.24, + "probability": 0.7662 + }, + { + "start": 6754.02, + "end": 6756.8, + "probability": 0.9873 + }, + { + "start": 6758.0, + "end": 6758.48, + "probability": 0.7436 + }, + { + "start": 6758.72, + "end": 6763.36, + "probability": 0.9863 + }, + { + "start": 6763.96, + "end": 6766.36, + "probability": 0.9932 + }, + { + "start": 6766.36, + "end": 6770.34, + "probability": 0.9913 + }, + { + "start": 6772.6, + "end": 6772.92, + "probability": 0.6467 + }, + { + "start": 6773.12, + "end": 6778.56, + "probability": 0.9948 + }, + { + "start": 6778.56, + "end": 6783.4, + "probability": 0.9565 + }, + { + "start": 6784.48, + "end": 6784.88, + "probability": 0.6813 + }, + { + "start": 6785.42, + "end": 6791.8, + "probability": 0.9053 + }, + { + "start": 6792.74, + "end": 6796.76, + "probability": 0.9548 + }, + { + "start": 6797.5, + "end": 6799.66, + "probability": 0.9337 + }, + { + "start": 6800.9, + "end": 6803.8, + "probability": 0.9772 + }, + { + "start": 6805.14, + "end": 6806.88, + "probability": 0.7959 + }, + { + "start": 6807.58, + "end": 6809.46, + "probability": 0.9625 + }, + { + "start": 6810.08, + "end": 6813.1, + "probability": 0.8931 + }, + { + "start": 6813.88, + "end": 6817.3, + "probability": 0.8709 + }, + { + "start": 6818.26, + "end": 6821.96, + "probability": 0.817 + }, + { + "start": 6822.8, + "end": 6825.54, + "probability": 0.9229 + }, + { + "start": 6826.44, + "end": 6829.12, + "probability": 0.925 + }, + { + "start": 6829.12, + "end": 6834.08, + "probability": 0.9971 + }, + { + "start": 6836.22, + "end": 6836.54, + "probability": 0.3268 + }, + { + "start": 6836.66, + "end": 6838.86, + "probability": 0.8662 + }, + { + "start": 6838.86, + "end": 6841.8, + "probability": 0.9954 + }, + { + "start": 6842.5, + "end": 6847.08, + "probability": 0.9935 + }, + { + "start": 6848.66, + "end": 6851.9, + "probability": 0.9871 + }, + { + "start": 6851.9, + "end": 6854.4, + "probability": 0.9993 + }, + { + "start": 6855.62, + "end": 6858.82, + "probability": 0.9972 + }, + { + "start": 6858.82, + "end": 6863.58, + "probability": 0.998 + }, + { + "start": 6864.88, + "end": 6865.34, + "probability": 0.4421 + }, + { + "start": 6865.38, + "end": 6866.1, + "probability": 0.7288 + }, + { + "start": 6866.2, + "end": 6870.16, + "probability": 0.9732 + }, + { + "start": 6871.58, + "end": 6876.26, + "probability": 0.9613 + }, + { + "start": 6877.08, + "end": 6880.12, + "probability": 0.9993 + }, + { + "start": 6880.76, + "end": 6883.54, + "probability": 0.9845 + }, + { + "start": 6883.74, + "end": 6884.24, + "probability": 0.7542 + }, + { + "start": 6885.4, + "end": 6888.1, + "probability": 0.9166 + }, + { + "start": 6888.66, + "end": 6890.52, + "probability": 0.7973 + }, + { + "start": 6890.64, + "end": 6893.08, + "probability": 0.8868 + }, + { + "start": 6893.6, + "end": 6894.52, + "probability": 0.5957 + }, + { + "start": 6896.24, + "end": 6899.66, + "probability": 0.9022 + }, + { + "start": 6899.72, + "end": 6903.16, + "probability": 0.3995 + }, + { + "start": 6903.26, + "end": 6904.96, + "probability": 0.7605 + }, + { + "start": 6905.5, + "end": 6909.54, + "probability": 0.9765 + }, + { + "start": 6909.94, + "end": 6911.22, + "probability": 0.611 + }, + { + "start": 6911.8, + "end": 6912.82, + "probability": 0.913 + }, + { + "start": 6926.42, + "end": 6927.64, + "probability": 0.0059 + }, + { + "start": 6927.64, + "end": 6927.64, + "probability": 0.5081 + }, + { + "start": 6927.64, + "end": 6928.04, + "probability": 0.3569 + }, + { + "start": 6928.16, + "end": 6928.54, + "probability": 0.547 + }, + { + "start": 6928.54, + "end": 6929.1, + "probability": 0.5578 + }, + { + "start": 6929.14, + "end": 6930.2, + "probability": 0.6984 + }, + { + "start": 6930.68, + "end": 6933.76, + "probability": 0.841 + }, + { + "start": 6933.98, + "end": 6935.32, + "probability": 0.8639 + }, + { + "start": 6937.1, + "end": 6937.8, + "probability": 0.6447 + }, + { + "start": 6938.0, + "end": 6938.94, + "probability": 0.5101 + }, + { + "start": 6938.94, + "end": 6939.84, + "probability": 0.6035 + }, + { + "start": 6955.0, + "end": 6956.94, + "probability": 0.0601 + }, + { + "start": 6956.94, + "end": 6958.72, + "probability": 0.3276 + }, + { + "start": 6959.44, + "end": 6961.9, + "probability": 0.7621 + }, + { + "start": 6962.46, + "end": 6962.68, + "probability": 0.4155 + }, + { + "start": 6963.22, + "end": 6966.78, + "probability": 0.6511 + }, + { + "start": 6972.92, + "end": 6975.8, + "probability": 0.5797 + }, + { + "start": 6975.92, + "end": 6978.66, + "probability": 0.8153 + }, + { + "start": 6979.32, + "end": 6983.36, + "probability": 0.652 + }, + { + "start": 6983.5, + "end": 6984.74, + "probability": 0.6492 + }, + { + "start": 6984.86, + "end": 6986.24, + "probability": 0.9375 + }, + { + "start": 6986.4, + "end": 6991.5, + "probability": 0.8933 + }, + { + "start": 6992.08, + "end": 6993.26, + "probability": 0.5817 + }, + { + "start": 6993.4, + "end": 6996.48, + "probability": 0.7425 + }, + { + "start": 6996.6, + "end": 6997.08, + "probability": 0.7371 + }, + { + "start": 6997.16, + "end": 6998.14, + "probability": 0.729 + }, + { + "start": 6998.3, + "end": 6999.78, + "probability": 0.9889 + }, + { + "start": 7000.14, + "end": 7006.7, + "probability": 0.9832 + }, + { + "start": 7009.56, + "end": 7011.98, + "probability": 0.6235 + }, + { + "start": 7012.48, + "end": 7015.94, + "probability": 0.6622 + }, + { + "start": 7017.5, + "end": 7017.7, + "probability": 0.369 + }, + { + "start": 7017.7, + "end": 7017.7, + "probability": 0.0945 + }, + { + "start": 7017.7, + "end": 7022.18, + "probability": 0.8444 + }, + { + "start": 7022.18, + "end": 7028.78, + "probability": 0.9043 + }, + { + "start": 7028.88, + "end": 7030.5, + "probability": 0.4579 + }, + { + "start": 7031.08, + "end": 7032.68, + "probability": 0.853 + }, + { + "start": 7033.62, + "end": 7035.02, + "probability": 0.8708 + }, + { + "start": 7035.12, + "end": 7038.74, + "probability": 0.7373 + }, + { + "start": 7039.26, + "end": 7040.38, + "probability": 0.827 + }, + { + "start": 7052.04, + "end": 7052.78, + "probability": 0.5637 + }, + { + "start": 7052.82, + "end": 7053.48, + "probability": 0.8413 + }, + { + "start": 7053.66, + "end": 7057.24, + "probability": 0.9958 + }, + { + "start": 7057.98, + "end": 7060.66, + "probability": 0.9829 + }, + { + "start": 7061.1, + "end": 7061.78, + "probability": 0.9323 + }, + { + "start": 7061.94, + "end": 7063.12, + "probability": 0.9344 + }, + { + "start": 7063.84, + "end": 7065.58, + "probability": 0.9198 + }, + { + "start": 7066.52, + "end": 7069.3, + "probability": 0.1365 + }, + { + "start": 7069.3, + "end": 7069.32, + "probability": 0.4456 + }, + { + "start": 7069.34, + "end": 7074.12, + "probability": 0.7891 + }, + { + "start": 7074.82, + "end": 7076.78, + "probability": 0.9917 + }, + { + "start": 7076.92, + "end": 7077.84, + "probability": 0.7744 + }, + { + "start": 7078.34, + "end": 7080.42, + "probability": 0.9137 + }, + { + "start": 7080.42, + "end": 7082.48, + "probability": 0.8865 + }, + { + "start": 7083.32, + "end": 7084.62, + "probability": 0.8259 + }, + { + "start": 7085.68, + "end": 7085.84, + "probability": 0.0579 + }, + { + "start": 7085.84, + "end": 7086.38, + "probability": 0.3305 + }, + { + "start": 7086.4, + "end": 7087.28, + "probability": 0.6907 + }, + { + "start": 7087.42, + "end": 7088.18, + "probability": 0.893 + }, + { + "start": 7088.62, + "end": 7092.5, + "probability": 0.9569 + }, + { + "start": 7093.22, + "end": 7097.13, + "probability": 0.9949 + }, + { + "start": 7098.18, + "end": 7098.86, + "probability": 0.5851 + }, + { + "start": 7098.98, + "end": 7102.26, + "probability": 0.9345 + }, + { + "start": 7102.26, + "end": 7105.8, + "probability": 0.9797 + }, + { + "start": 7106.44, + "end": 7107.52, + "probability": 0.1104 + }, + { + "start": 7108.26, + "end": 7108.26, + "probability": 0.022 + }, + { + "start": 7108.26, + "end": 7110.04, + "probability": 0.7182 + }, + { + "start": 7110.42, + "end": 7113.86, + "probability": 0.9663 + }, + { + "start": 7114.36, + "end": 7114.36, + "probability": 0.2851 + }, + { + "start": 7114.36, + "end": 7115.42, + "probability": 0.4175 + }, + { + "start": 7115.74, + "end": 7118.44, + "probability": 0.887 + }, + { + "start": 7121.44, + "end": 7121.7, + "probability": 0.3245 + }, + { + "start": 7121.7, + "end": 7123.8, + "probability": 0.8101 + }, + { + "start": 7124.36, + "end": 7126.8, + "probability": 0.5484 + }, + { + "start": 7127.32, + "end": 7130.3, + "probability": 0.6024 + }, + { + "start": 7130.38, + "end": 7131.06, + "probability": 0.5435 + }, + { + "start": 7131.2, + "end": 7132.6, + "probability": 0.2795 + }, + { + "start": 7133.0, + "end": 7134.41, + "probability": 0.6616 + }, + { + "start": 7135.26, + "end": 7139.38, + "probability": 0.8601 + }, + { + "start": 7139.48, + "end": 7142.76, + "probability": 0.9749 + }, + { + "start": 7143.82, + "end": 7144.88, + "probability": 0.0699 + }, + { + "start": 7144.88, + "end": 7145.18, + "probability": 0.1611 + }, + { + "start": 7145.18, + "end": 7146.38, + "probability": 0.5892 + }, + { + "start": 7146.86, + "end": 7147.52, + "probability": 0.7083 + }, + { + "start": 7147.52, + "end": 7151.12, + "probability": 0.8167 + }, + { + "start": 7152.48, + "end": 7152.48, + "probability": 0.0086 + }, + { + "start": 7152.48, + "end": 7152.48, + "probability": 0.0614 + }, + { + "start": 7152.48, + "end": 7152.48, + "probability": 0.057 + }, + { + "start": 7152.48, + "end": 7153.98, + "probability": 0.2373 + }, + { + "start": 7154.0, + "end": 7155.3, + "probability": 0.5867 + }, + { + "start": 7156.52, + "end": 7160.2, + "probability": 0.9808 + }, + { + "start": 7160.6, + "end": 7162.14, + "probability": 0.9754 + }, + { + "start": 7162.96, + "end": 7163.58, + "probability": 0.1176 + }, + { + "start": 7163.58, + "end": 7164.38, + "probability": 0.0384 + }, + { + "start": 7164.38, + "end": 7164.84, + "probability": 0.2309 + }, + { + "start": 7164.84, + "end": 7166.23, + "probability": 0.8181 + }, + { + "start": 7166.94, + "end": 7168.68, + "probability": 0.2174 + }, + { + "start": 7169.2, + "end": 7172.44, + "probability": 0.9294 + }, + { + "start": 7172.66, + "end": 7174.14, + "probability": 0.978 + }, + { + "start": 7174.66, + "end": 7177.94, + "probability": 0.987 + }, + { + "start": 7178.54, + "end": 7180.06, + "probability": 0.9488 + }, + { + "start": 7180.46, + "end": 7181.52, + "probability": 0.8801 + }, + { + "start": 7181.66, + "end": 7182.99, + "probability": 0.9713 + }, + { + "start": 7183.48, + "end": 7186.96, + "probability": 0.9912 + }, + { + "start": 7187.4, + "end": 7188.7, + "probability": 0.8084 + }, + { + "start": 7189.2, + "end": 7189.78, + "probability": 0.7739 + }, + { + "start": 7189.92, + "end": 7192.78, + "probability": 0.8062 + }, + { + "start": 7193.3, + "end": 7196.16, + "probability": 0.9949 + }, + { + "start": 7196.32, + "end": 7199.52, + "probability": 0.8882 + }, + { + "start": 7199.52, + "end": 7200.14, + "probability": 0.0631 + }, + { + "start": 7200.22, + "end": 7201.86, + "probability": 0.7965 + }, + { + "start": 7202.48, + "end": 7206.72, + "probability": 0.85 + }, + { + "start": 7206.72, + "end": 7213.24, + "probability": 0.9022 + }, + { + "start": 7213.66, + "end": 7215.32, + "probability": 0.949 + }, + { + "start": 7215.86, + "end": 7216.56, + "probability": 0.6268 + }, + { + "start": 7216.66, + "end": 7219.84, + "probability": 0.7561 + }, + { + "start": 7219.84, + "end": 7222.68, + "probability": 0.8918 + }, + { + "start": 7223.32, + "end": 7225.2, + "probability": 0.9697 + }, + { + "start": 7225.38, + "end": 7225.56, + "probability": 0.7644 + }, + { + "start": 7227.32, + "end": 7230.72, + "probability": 0.8767 + }, + { + "start": 7231.04, + "end": 7232.52, + "probability": 0.5577 + }, + { + "start": 7233.54, + "end": 7237.7, + "probability": 0.985 + }, + { + "start": 7248.82, + "end": 7249.46, + "probability": 0.5388 + }, + { + "start": 7259.6, + "end": 7260.9, + "probability": 0.6522 + }, + { + "start": 7272.7, + "end": 7273.5, + "probability": 0.6535 + }, + { + "start": 7273.58, + "end": 7274.84, + "probability": 0.7978 + }, + { + "start": 7274.96, + "end": 7277.55, + "probability": 0.7917 + }, + { + "start": 7278.6, + "end": 7281.42, + "probability": 0.8873 + }, + { + "start": 7282.36, + "end": 7284.38, + "probability": 0.8946 + }, + { + "start": 7285.2, + "end": 7288.44, + "probability": 0.8323 + }, + { + "start": 7289.44, + "end": 7291.7, + "probability": 0.9883 + }, + { + "start": 7291.72, + "end": 7295.14, + "probability": 0.9281 + }, + { + "start": 7296.52, + "end": 7300.4, + "probability": 0.9796 + }, + { + "start": 7301.1, + "end": 7304.2, + "probability": 0.9196 + }, + { + "start": 7304.92, + "end": 7305.82, + "probability": 0.6159 + }, + { + "start": 7307.66, + "end": 7310.8, + "probability": 0.9944 + }, + { + "start": 7311.38, + "end": 7313.94, + "probability": 0.9973 + }, + { + "start": 7314.32, + "end": 7315.02, + "probability": 0.7814 + }, + { + "start": 7316.54, + "end": 7319.96, + "probability": 0.896 + }, + { + "start": 7320.6, + "end": 7323.02, + "probability": 0.8328 + }, + { + "start": 7323.5, + "end": 7326.46, + "probability": 0.9864 + }, + { + "start": 7327.44, + "end": 7330.42, + "probability": 0.9706 + }, + { + "start": 7331.82, + "end": 7333.5, + "probability": 0.8264 + }, + { + "start": 7334.32, + "end": 7337.3, + "probability": 0.6627 + }, + { + "start": 7338.42, + "end": 7341.1, + "probability": 0.9937 + }, + { + "start": 7341.28, + "end": 7344.56, + "probability": 0.9262 + }, + { + "start": 7345.5, + "end": 7348.1, + "probability": 0.9825 + }, + { + "start": 7349.34, + "end": 7351.44, + "probability": 0.5205 + }, + { + "start": 7352.16, + "end": 7354.92, + "probability": 0.9839 + }, + { + "start": 7354.92, + "end": 7358.54, + "probability": 0.9969 + }, + { + "start": 7376.36, + "end": 7378.28, + "probability": 0.9796 + }, + { + "start": 7378.9, + "end": 7384.14, + "probability": 0.9531 + }, + { + "start": 7385.04, + "end": 7387.88, + "probability": 0.8756 + }, + { + "start": 7389.42, + "end": 7392.18, + "probability": 0.967 + }, + { + "start": 7392.98, + "end": 7398.24, + "probability": 0.9982 + }, + { + "start": 7399.26, + "end": 7401.14, + "probability": 0.8489 + }, + { + "start": 7401.82, + "end": 7402.72, + "probability": 0.6771 + }, + { + "start": 7404.04, + "end": 7405.52, + "probability": 0.9907 + }, + { + "start": 7406.06, + "end": 7409.0, + "probability": 0.978 + }, + { + "start": 7409.54, + "end": 7411.2, + "probability": 0.7876 + }, + { + "start": 7412.46, + "end": 7416.96, + "probability": 0.9725 + }, + { + "start": 7417.58, + "end": 7417.98, + "probability": 0.4794 + }, + { + "start": 7418.96, + "end": 7422.2, + "probability": 0.9919 + }, + { + "start": 7422.68, + "end": 7426.74, + "probability": 0.998 + }, + { + "start": 7427.88, + "end": 7432.14, + "probability": 0.8554 + }, + { + "start": 7432.98, + "end": 7436.22, + "probability": 0.8861 + }, + { + "start": 7436.32, + "end": 7437.04, + "probability": 0.9011 + }, + { + "start": 7437.2, + "end": 7439.38, + "probability": 0.9324 + }, + { + "start": 7440.2, + "end": 7446.84, + "probability": 0.9819 + }, + { + "start": 7448.08, + "end": 7451.86, + "probability": 0.9654 + }, + { + "start": 7452.82, + "end": 7455.96, + "probability": 0.9543 + }, + { + "start": 7456.68, + "end": 7461.34, + "probability": 0.9695 + }, + { + "start": 7462.32, + "end": 7467.76, + "probability": 0.9728 + }, + { + "start": 7469.88, + "end": 7471.42, + "probability": 0.7075 + }, + { + "start": 7472.78, + "end": 7476.42, + "probability": 0.9912 + }, + { + "start": 7477.02, + "end": 7478.03, + "probability": 0.9937 + }, + { + "start": 7478.84, + "end": 7484.32, + "probability": 0.9839 + }, + { + "start": 7485.96, + "end": 7487.68, + "probability": 0.9717 + }, + { + "start": 7488.88, + "end": 7495.04, + "probability": 0.9255 + }, + { + "start": 7495.92, + "end": 7496.78, + "probability": 0.6261 + }, + { + "start": 7496.88, + "end": 7497.42, + "probability": 0.8805 + }, + { + "start": 7497.68, + "end": 7500.92, + "probability": 0.959 + }, + { + "start": 7501.4, + "end": 7502.26, + "probability": 0.6834 + }, + { + "start": 7503.84, + "end": 7509.54, + "probability": 0.9897 + }, + { + "start": 7510.04, + "end": 7513.32, + "probability": 0.7843 + }, + { + "start": 7514.24, + "end": 7516.6, + "probability": 0.947 + }, + { + "start": 7517.32, + "end": 7519.22, + "probability": 0.991 + }, + { + "start": 7520.4, + "end": 7523.64, + "probability": 0.9552 + }, + { + "start": 7524.16, + "end": 7526.34, + "probability": 0.9482 + }, + { + "start": 7526.76, + "end": 7528.92, + "probability": 0.9979 + }, + { + "start": 7530.26, + "end": 7532.18, + "probability": 0.9964 + }, + { + "start": 7533.5, + "end": 7536.12, + "probability": 0.8664 + }, + { + "start": 7537.04, + "end": 7539.52, + "probability": 0.9363 + }, + { + "start": 7540.34, + "end": 7541.74, + "probability": 0.7145 + }, + { + "start": 7543.06, + "end": 7543.06, + "probability": 0.5363 + }, + { + "start": 7543.58, + "end": 7545.58, + "probability": 0.9616 + }, + { + "start": 7546.16, + "end": 7546.88, + "probability": 0.7574 + }, + { + "start": 7547.38, + "end": 7548.18, + "probability": 0.6617 + }, + { + "start": 7549.0, + "end": 7551.74, + "probability": 0.9876 + }, + { + "start": 7553.34, + "end": 7556.16, + "probability": 0.9924 + }, + { + "start": 7556.16, + "end": 7558.78, + "probability": 0.9989 + }, + { + "start": 7559.72, + "end": 7560.34, + "probability": 0.7503 + }, + { + "start": 7561.02, + "end": 7563.0, + "probability": 0.9774 + }, + { + "start": 7564.08, + "end": 7570.54, + "probability": 0.9877 + }, + { + "start": 7571.56, + "end": 7574.28, + "probability": 0.9667 + }, + { + "start": 7576.24, + "end": 7579.52, + "probability": 0.9882 + }, + { + "start": 7580.1, + "end": 7582.5, + "probability": 0.8077 + }, + { + "start": 7584.66, + "end": 7588.12, + "probability": 0.9672 + }, + { + "start": 7588.88, + "end": 7591.36, + "probability": 0.6626 + }, + { + "start": 7592.04, + "end": 7594.94, + "probability": 0.8813 + }, + { + "start": 7595.48, + "end": 7596.3, + "probability": 0.9814 + }, + { + "start": 7597.34, + "end": 7601.52, + "probability": 0.9498 + }, + { + "start": 7602.32, + "end": 7605.38, + "probability": 0.9827 + }, + { + "start": 7606.26, + "end": 7612.88, + "probability": 0.9958 + }, + { + "start": 7614.12, + "end": 7617.28, + "probability": 0.9783 + }, + { + "start": 7617.84, + "end": 7619.48, + "probability": 0.9947 + }, + { + "start": 7620.44, + "end": 7622.68, + "probability": 0.9407 + }, + { + "start": 7623.92, + "end": 7627.18, + "probability": 0.8048 + }, + { + "start": 7628.3, + "end": 7631.1, + "probability": 0.9908 + }, + { + "start": 7631.68, + "end": 7633.78, + "probability": 0.9185 + }, + { + "start": 7634.46, + "end": 7638.44, + "probability": 0.8548 + }, + { + "start": 7638.78, + "end": 7639.4, + "probability": 0.8099 + }, + { + "start": 7639.84, + "end": 7642.26, + "probability": 0.9799 + }, + { + "start": 7643.72, + "end": 7644.78, + "probability": 0.5046 + }, + { + "start": 7646.0, + "end": 7650.1, + "probability": 0.9773 + }, + { + "start": 7650.1, + "end": 7654.6, + "probability": 0.9998 + }, + { + "start": 7655.56, + "end": 7661.06, + "probability": 0.9943 + }, + { + "start": 7661.88, + "end": 7668.26, + "probability": 0.7644 + }, + { + "start": 7668.9, + "end": 7669.78, + "probability": 0.8647 + }, + { + "start": 7670.6, + "end": 7671.32, + "probability": 0.9285 + }, + { + "start": 7672.78, + "end": 7679.5, + "probability": 0.9828 + }, + { + "start": 7680.14, + "end": 7683.94, + "probability": 0.7476 + }, + { + "start": 7685.34, + "end": 7689.32, + "probability": 0.9951 + }, + { + "start": 7689.32, + "end": 7693.6, + "probability": 0.9975 + }, + { + "start": 7694.36, + "end": 7694.84, + "probability": 0.6571 + }, + { + "start": 7695.62, + "end": 7699.28, + "probability": 0.9648 + }, + { + "start": 7699.88, + "end": 7700.68, + "probability": 0.977 + }, + { + "start": 7702.32, + "end": 7702.94, + "probability": 0.5278 + }, + { + "start": 7703.88, + "end": 7709.22, + "probability": 0.9323 + }, + { + "start": 7709.92, + "end": 7712.74, + "probability": 0.9116 + }, + { + "start": 7714.14, + "end": 7718.3, + "probability": 0.9893 + }, + { + "start": 7718.86, + "end": 7723.14, + "probability": 0.3561 + }, + { + "start": 7724.22, + "end": 7727.56, + "probability": 0.9927 + }, + { + "start": 7727.56, + "end": 7730.8, + "probability": 0.9984 + }, + { + "start": 7732.08, + "end": 7735.96, + "probability": 0.9988 + }, + { + "start": 7735.96, + "end": 7740.42, + "probability": 0.9976 + }, + { + "start": 7741.0, + "end": 7745.44, + "probability": 0.9991 + }, + { + "start": 7746.04, + "end": 7746.98, + "probability": 0.9355 + }, + { + "start": 7748.08, + "end": 7749.74, + "probability": 0.9366 + }, + { + "start": 7750.28, + "end": 7752.04, + "probability": 0.954 + }, + { + "start": 7753.16, + "end": 7756.54, + "probability": 0.978 + }, + { + "start": 7757.46, + "end": 7758.98, + "probability": 0.9805 + }, + { + "start": 7759.38, + "end": 7762.04, + "probability": 0.8989 + }, + { + "start": 7762.34, + "end": 7763.34, + "probability": 0.7659 + }, + { + "start": 7763.84, + "end": 7765.76, + "probability": 0.8664 + }, + { + "start": 7766.82, + "end": 7768.74, + "probability": 0.9731 + }, + { + "start": 7769.64, + "end": 7772.06, + "probability": 0.916 + }, + { + "start": 7773.38, + "end": 7776.26, + "probability": 0.9828 + }, + { + "start": 7776.96, + "end": 7777.62, + "probability": 0.8218 + }, + { + "start": 7778.18, + "end": 7780.14, + "probability": 0.9897 + }, + { + "start": 7798.6, + "end": 7801.38, + "probability": 0.7057 + }, + { + "start": 7802.38, + "end": 7803.32, + "probability": 0.7114 + }, + { + "start": 7804.4, + "end": 7806.4, + "probability": 0.9722 + }, + { + "start": 7807.4, + "end": 7808.12, + "probability": 0.9496 + }, + { + "start": 7809.48, + "end": 7811.64, + "probability": 0.9946 + }, + { + "start": 7812.22, + "end": 7813.67, + "probability": 0.6016 + }, + { + "start": 7815.12, + "end": 7816.78, + "probability": 0.9287 + }, + { + "start": 7817.36, + "end": 7820.22, + "probability": 0.7695 + }, + { + "start": 7821.08, + "end": 7821.94, + "probability": 0.7032 + }, + { + "start": 7824.08, + "end": 7828.76, + "probability": 0.9725 + }, + { + "start": 7830.04, + "end": 7833.42, + "probability": 0.9921 + }, + { + "start": 7833.42, + "end": 7837.84, + "probability": 0.9989 + }, + { + "start": 7838.56, + "end": 7839.48, + "probability": 0.9644 + }, + { + "start": 7839.82, + "end": 7844.96, + "probability": 0.9944 + }, + { + "start": 7845.8, + "end": 7850.9, + "probability": 0.9742 + }, + { + "start": 7851.42, + "end": 7851.88, + "probability": 0.9813 + }, + { + "start": 7853.46, + "end": 7859.44, + "probability": 0.9933 + }, + { + "start": 7859.44, + "end": 7865.98, + "probability": 0.9822 + }, + { + "start": 7866.9, + "end": 7870.8, + "probability": 0.9321 + }, + { + "start": 7871.5, + "end": 7872.72, + "probability": 0.7411 + }, + { + "start": 7873.74, + "end": 7877.54, + "probability": 0.99 + }, + { + "start": 7878.8, + "end": 7885.78, + "probability": 0.9829 + }, + { + "start": 7886.74, + "end": 7890.12, + "probability": 0.8194 + }, + { + "start": 7890.96, + "end": 7893.32, + "probability": 0.9773 + }, + { + "start": 7893.88, + "end": 7896.3, + "probability": 0.9332 + }, + { + "start": 7896.94, + "end": 7899.36, + "probability": 0.9055 + }, + { + "start": 7899.92, + "end": 7901.56, + "probability": 0.9214 + }, + { + "start": 7902.78, + "end": 7905.82, + "probability": 0.9922 + }, + { + "start": 7906.34, + "end": 7908.82, + "probability": 0.9977 + }, + { + "start": 7909.62, + "end": 7913.22, + "probability": 0.9967 + }, + { + "start": 7913.7, + "end": 7915.1, + "probability": 0.8151 + }, + { + "start": 7915.62, + "end": 7918.22, + "probability": 0.8627 + }, + { + "start": 7919.36, + "end": 7922.58, + "probability": 0.9514 + }, + { + "start": 7922.58, + "end": 7927.32, + "probability": 0.9971 + }, + { + "start": 7928.2, + "end": 7929.8, + "probability": 0.6078 + }, + { + "start": 7929.92, + "end": 7931.06, + "probability": 0.9313 + }, + { + "start": 7931.22, + "end": 7934.0, + "probability": 0.9905 + }, + { + "start": 7935.12, + "end": 7935.54, + "probability": 0.4411 + }, + { + "start": 7935.6, + "end": 7940.06, + "probability": 0.8942 + }, + { + "start": 7940.8, + "end": 7947.72, + "probability": 0.9946 + }, + { + "start": 7948.54, + "end": 7951.34, + "probability": 0.8679 + }, + { + "start": 7952.12, + "end": 7953.62, + "probability": 0.4568 + }, + { + "start": 7954.76, + "end": 7956.15, + "probability": 0.9941 + }, + { + "start": 7956.82, + "end": 7957.86, + "probability": 0.9521 + }, + { + "start": 7958.72, + "end": 7961.02, + "probability": 0.9714 + }, + { + "start": 7961.02, + "end": 7964.22, + "probability": 0.8158 + }, + { + "start": 7964.64, + "end": 7966.7, + "probability": 0.8547 + }, + { + "start": 7967.28, + "end": 7971.5, + "probability": 0.7081 + }, + { + "start": 7972.2, + "end": 7975.48, + "probability": 0.9254 + }, + { + "start": 7976.04, + "end": 7976.42, + "probability": 0.7843 + }, + { + "start": 7977.64, + "end": 7978.36, + "probability": 0.9191 + }, + { + "start": 7978.88, + "end": 7980.14, + "probability": 0.9072 + }, + { + "start": 7981.02, + "end": 7981.56, + "probability": 0.8222 + }, + { + "start": 7981.7, + "end": 7982.18, + "probability": 0.858 + }, + { + "start": 7982.36, + "end": 7982.8, + "probability": 0.7823 + }, + { + "start": 7983.02, + "end": 7985.18, + "probability": 0.9268 + }, + { + "start": 7985.62, + "end": 7988.14, + "probability": 0.9749 + }, + { + "start": 7989.2, + "end": 7992.52, + "probability": 0.9814 + }, + { + "start": 7993.06, + "end": 7995.82, + "probability": 0.9818 + }, + { + "start": 7996.32, + "end": 7997.72, + "probability": 0.8022 + }, + { + "start": 7999.24, + "end": 8002.02, + "probability": 0.9966 + }, + { + "start": 8002.02, + "end": 8005.3, + "probability": 0.9904 + }, + { + "start": 8006.34, + "end": 8009.42, + "probability": 0.8745 + }, + { + "start": 8009.58, + "end": 8010.14, + "probability": 0.6349 + }, + { + "start": 8010.32, + "end": 8011.86, + "probability": 0.8856 + }, + { + "start": 8012.52, + "end": 8014.36, + "probability": 0.7592 + }, + { + "start": 8014.84, + "end": 8016.56, + "probability": 0.7755 + }, + { + "start": 8016.94, + "end": 8019.16, + "probability": 0.9797 + }, + { + "start": 8020.44, + "end": 8022.92, + "probability": 0.9891 + }, + { + "start": 8023.52, + "end": 8026.02, + "probability": 0.9865 + }, + { + "start": 8026.02, + "end": 8030.06, + "probability": 0.9685 + }, + { + "start": 8030.94, + "end": 8034.64, + "probability": 0.9808 + }, + { + "start": 8035.16, + "end": 8038.68, + "probability": 0.9396 + }, + { + "start": 8039.38, + "end": 8042.28, + "probability": 0.8928 + }, + { + "start": 8042.8, + "end": 8044.58, + "probability": 0.9602 + }, + { + "start": 8046.14, + "end": 8047.06, + "probability": 0.6656 + }, + { + "start": 8047.2, + "end": 8050.14, + "probability": 0.9213 + }, + { + "start": 8050.6, + "end": 8054.78, + "probability": 0.966 + }, + { + "start": 8054.9, + "end": 8058.44, + "probability": 0.8939 + }, + { + "start": 8059.04, + "end": 8060.96, + "probability": 0.8303 + }, + { + "start": 8061.56, + "end": 8063.68, + "probability": 0.9919 + }, + { + "start": 8064.2, + "end": 8066.86, + "probability": 0.9915 + }, + { + "start": 8067.46, + "end": 8068.96, + "probability": 0.9111 + }, + { + "start": 8069.54, + "end": 8072.5, + "probability": 0.991 + }, + { + "start": 8074.7, + "end": 8075.6, + "probability": 0.7216 + }, + { + "start": 8075.62, + "end": 8080.24, + "probability": 0.9829 + }, + { + "start": 8080.8, + "end": 8086.36, + "probability": 0.9567 + }, + { + "start": 8087.22, + "end": 8088.34, + "probability": 0.7586 + }, + { + "start": 8088.58, + "end": 8090.54, + "probability": 0.9945 + }, + { + "start": 8091.1, + "end": 8094.04, + "probability": 0.8975 + }, + { + "start": 8094.22, + "end": 8096.42, + "probability": 0.8446 + }, + { + "start": 8096.7, + "end": 8097.6, + "probability": 0.5547 + }, + { + "start": 8098.34, + "end": 8100.06, + "probability": 0.8271 + }, + { + "start": 8100.78, + "end": 8103.16, + "probability": 0.9552 + }, + { + "start": 8103.68, + "end": 8105.92, + "probability": 0.9743 + }, + { + "start": 8106.42, + "end": 8107.28, + "probability": 0.6737 + }, + { + "start": 8107.74, + "end": 8110.44, + "probability": 0.9866 + }, + { + "start": 8110.56, + "end": 8113.88, + "probability": 0.9844 + }, + { + "start": 8114.88, + "end": 8116.72, + "probability": 0.985 + }, + { + "start": 8117.68, + "end": 8119.74, + "probability": 0.8228 + }, + { + "start": 8120.34, + "end": 8122.52, + "probability": 0.7971 + }, + { + "start": 8123.12, + "end": 8127.02, + "probability": 0.9397 + }, + { + "start": 8127.86, + "end": 8129.98, + "probability": 0.9588 + }, + { + "start": 8129.98, + "end": 8132.48, + "probability": 0.9746 + }, + { + "start": 8133.26, + "end": 8138.0, + "probability": 0.9951 + }, + { + "start": 8138.56, + "end": 8141.5, + "probability": 0.9283 + }, + { + "start": 8142.06, + "end": 8147.44, + "probability": 0.975 + }, + { + "start": 8148.76, + "end": 8149.62, + "probability": 0.9969 + }, + { + "start": 8150.22, + "end": 8153.74, + "probability": 0.9304 + }, + { + "start": 8154.24, + "end": 8155.18, + "probability": 0.855 + }, + { + "start": 8155.36, + "end": 8155.96, + "probability": 0.9493 + }, + { + "start": 8156.04, + "end": 8156.7, + "probability": 0.8096 + }, + { + "start": 8156.76, + "end": 8160.08, + "probability": 0.853 + }, + { + "start": 8161.43, + "end": 8163.74, + "probability": 0.749 + }, + { + "start": 8164.44, + "end": 8164.98, + "probability": 0.9692 + }, + { + "start": 8165.76, + "end": 8167.58, + "probability": 0.9897 + }, + { + "start": 8169.2, + "end": 8171.54, + "probability": 0.999 + }, + { + "start": 8171.76, + "end": 8174.22, + "probability": 0.8915 + }, + { + "start": 8174.58, + "end": 8178.51, + "probability": 0.9531 + }, + { + "start": 8179.42, + "end": 8181.84, + "probability": 0.9673 + }, + { + "start": 8183.76, + "end": 8187.46, + "probability": 0.6089 + }, + { + "start": 8187.52, + "end": 8191.56, + "probability": 0.9926 + }, + { + "start": 8192.78, + "end": 8193.46, + "probability": 0.5541 + }, + { + "start": 8204.76, + "end": 8207.94, + "probability": 0.8961 + }, + { + "start": 8209.06, + "end": 8211.52, + "probability": 0.9841 + }, + { + "start": 8212.22, + "end": 8213.54, + "probability": 0.8369 + }, + { + "start": 8213.6, + "end": 8214.88, + "probability": 0.9035 + }, + { + "start": 8214.94, + "end": 8215.4, + "probability": 0.4912 + }, + { + "start": 8215.48, + "end": 8215.72, + "probability": 0.3088 + }, + { + "start": 8215.78, + "end": 8216.84, + "probability": 0.9502 + }, + { + "start": 8218.39, + "end": 8225.06, + "probability": 0.8574 + }, + { + "start": 8225.82, + "end": 8229.5, + "probability": 0.9149 + }, + { + "start": 8230.18, + "end": 8234.0, + "probability": 0.9421 + }, + { + "start": 8234.88, + "end": 8238.48, + "probability": 0.9104 + }, + { + "start": 8238.96, + "end": 8242.14, + "probability": 0.9672 + }, + { + "start": 8242.78, + "end": 8243.76, + "probability": 0.7499 + }, + { + "start": 8245.28, + "end": 8246.96, + "probability": 0.8978 + }, + { + "start": 8247.98, + "end": 8253.0, + "probability": 0.9932 + }, + { + "start": 8254.1, + "end": 8259.64, + "probability": 0.9272 + }, + { + "start": 8260.2, + "end": 8262.0, + "probability": 0.8896 + }, + { + "start": 8262.82, + "end": 8266.02, + "probability": 0.8688 + }, + { + "start": 8266.78, + "end": 8269.96, + "probability": 0.9967 + }, + { + "start": 8269.96, + "end": 8273.42, + "probability": 0.991 + }, + { + "start": 8274.54, + "end": 8277.44, + "probability": 0.9946 + }, + { + "start": 8277.74, + "end": 8280.1, + "probability": 0.7197 + }, + { + "start": 8280.78, + "end": 8283.02, + "probability": 0.9927 + }, + { + "start": 8283.7, + "end": 8288.28, + "probability": 0.9928 + }, + { + "start": 8289.88, + "end": 8290.38, + "probability": 0.4758 + }, + { + "start": 8290.4, + "end": 8294.48, + "probability": 0.9552 + }, + { + "start": 8295.24, + "end": 8297.44, + "probability": 0.9927 + }, + { + "start": 8298.6, + "end": 8300.4, + "probability": 0.9349 + }, + { + "start": 8300.96, + "end": 8307.0, + "probability": 0.9392 + }, + { + "start": 8308.16, + "end": 8313.32, + "probability": 0.8728 + }, + { + "start": 8313.64, + "end": 8314.74, + "probability": 0.9839 + }, + { + "start": 8315.72, + "end": 8320.12, + "probability": 0.9961 + }, + { + "start": 8320.36, + "end": 8321.3, + "probability": 0.6992 + }, + { + "start": 8322.1, + "end": 8323.98, + "probability": 0.8434 + }, + { + "start": 8325.06, + "end": 8326.34, + "probability": 0.978 + }, + { + "start": 8326.52, + "end": 8327.24, + "probability": 0.8266 + }, + { + "start": 8327.58, + "end": 8332.56, + "probability": 0.9644 + }, + { + "start": 8333.26, + "end": 8334.72, + "probability": 0.9824 + }, + { + "start": 8336.54, + "end": 8336.76, + "probability": 0.1077 + }, + { + "start": 8336.76, + "end": 8341.14, + "probability": 0.8713 + }, + { + "start": 8341.82, + "end": 8344.82, + "probability": 0.9529 + }, + { + "start": 8345.62, + "end": 8349.24, + "probability": 0.9951 + }, + { + "start": 8350.28, + "end": 8354.54, + "probability": 0.9603 + }, + { + "start": 8354.54, + "end": 8357.3, + "probability": 0.9993 + }, + { + "start": 8357.72, + "end": 8362.42, + "probability": 0.9034 + }, + { + "start": 8363.1, + "end": 8368.6, + "probability": 0.9823 + }, + { + "start": 8369.76, + "end": 8370.46, + "probability": 0.9539 + }, + { + "start": 8371.06, + "end": 8372.68, + "probability": 0.9922 + }, + { + "start": 8372.96, + "end": 8376.48, + "probability": 0.99 + }, + { + "start": 8377.22, + "end": 8382.78, + "probability": 0.9978 + }, + { + "start": 8382.88, + "end": 8384.06, + "probability": 0.8458 + }, + { + "start": 8384.98, + "end": 8387.76, + "probability": 0.7967 + }, + { + "start": 8388.96, + "end": 8394.62, + "probability": 0.8156 + }, + { + "start": 8395.34, + "end": 8400.4, + "probability": 0.9941 + }, + { + "start": 8400.4, + "end": 8405.76, + "probability": 0.9987 + }, + { + "start": 8406.82, + "end": 8410.22, + "probability": 0.9905 + }, + { + "start": 8410.98, + "end": 8416.5, + "probability": 0.9933 + }, + { + "start": 8417.0, + "end": 8417.86, + "probability": 0.7565 + }, + { + "start": 8418.6, + "end": 8420.8, + "probability": 0.9188 + }, + { + "start": 8421.58, + "end": 8425.12, + "probability": 0.9854 + }, + { + "start": 8425.9, + "end": 8429.36, + "probability": 0.9892 + }, + { + "start": 8430.0, + "end": 8435.42, + "probability": 0.9969 + }, + { + "start": 8437.64, + "end": 8441.84, + "probability": 0.9719 + }, + { + "start": 8443.36, + "end": 8447.44, + "probability": 0.991 + }, + { + "start": 8447.68, + "end": 8450.98, + "probability": 0.9751 + }, + { + "start": 8452.18, + "end": 8456.6, + "probability": 0.8603 + }, + { + "start": 8456.68, + "end": 8458.18, + "probability": 0.973 + }, + { + "start": 8458.74, + "end": 8460.0, + "probability": 0.7939 + }, + { + "start": 8461.16, + "end": 8463.82, + "probability": 0.9783 + }, + { + "start": 8465.0, + "end": 8469.8, + "probability": 0.9974 + }, + { + "start": 8470.62, + "end": 8473.9, + "probability": 0.9985 + }, + { + "start": 8474.72, + "end": 8476.76, + "probability": 0.915 + }, + { + "start": 8477.82, + "end": 8481.12, + "probability": 0.9948 + }, + { + "start": 8481.24, + "end": 8487.42, + "probability": 0.9795 + }, + { + "start": 8487.54, + "end": 8489.36, + "probability": 0.7991 + }, + { + "start": 8489.68, + "end": 8490.88, + "probability": 0.8865 + }, + { + "start": 8491.76, + "end": 8497.56, + "probability": 0.9883 + }, + { + "start": 8498.32, + "end": 8502.12, + "probability": 0.9773 + }, + { + "start": 8504.1, + "end": 8505.92, + "probability": 0.8624 + }, + { + "start": 8506.8, + "end": 8511.3, + "probability": 0.9835 + }, + { + "start": 8511.3, + "end": 8516.04, + "probability": 0.9901 + }, + { + "start": 8517.0, + "end": 8523.96, + "probability": 0.9929 + }, + { + "start": 8524.76, + "end": 8527.64, + "probability": 0.8936 + }, + { + "start": 8528.64, + "end": 8530.16, + "probability": 0.9705 + }, + { + "start": 8531.0, + "end": 8533.36, + "probability": 0.9872 + }, + { + "start": 8534.22, + "end": 8536.18, + "probability": 0.9733 + }, + { + "start": 8536.92, + "end": 8539.62, + "probability": 0.9568 + }, + { + "start": 8540.38, + "end": 8547.56, + "probability": 0.9888 + }, + { + "start": 8548.18, + "end": 8553.18, + "probability": 0.99 + }, + { + "start": 8553.18, + "end": 8558.04, + "probability": 0.9974 + }, + { + "start": 8558.68, + "end": 8562.06, + "probability": 0.991 + }, + { + "start": 8562.06, + "end": 8566.22, + "probability": 0.9814 + }, + { + "start": 8566.96, + "end": 8568.4, + "probability": 0.8411 + }, + { + "start": 8568.88, + "end": 8571.26, + "probability": 0.8847 + }, + { + "start": 8571.72, + "end": 8573.64, + "probability": 0.8486 + }, + { + "start": 8574.54, + "end": 8578.44, + "probability": 0.9946 + }, + { + "start": 8578.44, + "end": 8583.58, + "probability": 0.9939 + }, + { + "start": 8584.28, + "end": 8591.42, + "probability": 0.9573 + }, + { + "start": 8592.04, + "end": 8594.2, + "probability": 0.9834 + }, + { + "start": 8595.2, + "end": 8599.32, + "probability": 0.987 + }, + { + "start": 8599.86, + "end": 8602.42, + "probability": 0.8447 + }, + { + "start": 8602.5, + "end": 8603.44, + "probability": 0.4261 + }, + { + "start": 8603.64, + "end": 8607.88, + "probability": 0.9976 + }, + { + "start": 8607.88, + "end": 8612.6, + "probability": 0.9987 + }, + { + "start": 8613.64, + "end": 8615.28, + "probability": 0.5946 + }, + { + "start": 8615.8, + "end": 8617.58, + "probability": 0.9281 + }, + { + "start": 8618.32, + "end": 8619.34, + "probability": 0.4663 + }, + { + "start": 8619.92, + "end": 8621.86, + "probability": 0.9498 + }, + { + "start": 8622.66, + "end": 8625.16, + "probability": 0.9981 + }, + { + "start": 8625.8, + "end": 8627.58, + "probability": 0.9376 + }, + { + "start": 8628.08, + "end": 8630.1, + "probability": 0.9968 + }, + { + "start": 8631.04, + "end": 8632.68, + "probability": 0.78 + }, + { + "start": 8632.84, + "end": 8633.56, + "probability": 0.8488 + }, + { + "start": 8633.62, + "end": 8634.38, + "probability": 0.7904 + }, + { + "start": 8634.52, + "end": 8635.42, + "probability": 0.7145 + }, + { + "start": 8635.96, + "end": 8640.12, + "probability": 0.9967 + }, + { + "start": 8640.12, + "end": 8644.16, + "probability": 0.9464 + }, + { + "start": 8644.94, + "end": 8645.68, + "probability": 0.655 + }, + { + "start": 8646.22, + "end": 8648.9, + "probability": 0.9979 + }, + { + "start": 8649.56, + "end": 8651.32, + "probability": 0.9716 + }, + { + "start": 8651.72, + "end": 8654.14, + "probability": 0.9508 + }, + { + "start": 8655.62, + "end": 8656.04, + "probability": 0.4284 + }, + { + "start": 8656.48, + "end": 8661.48, + "probability": 0.985 + }, + { + "start": 8661.48, + "end": 8665.58, + "probability": 0.9934 + }, + { + "start": 8666.5, + "end": 8669.26, + "probability": 0.9985 + }, + { + "start": 8669.94, + "end": 8673.92, + "probability": 0.9963 + }, + { + "start": 8674.58, + "end": 8680.98, + "probability": 0.9561 + }, + { + "start": 8682.26, + "end": 8687.42, + "probability": 0.9661 + }, + { + "start": 8688.18, + "end": 8694.86, + "probability": 0.9968 + }, + { + "start": 8695.38, + "end": 8696.18, + "probability": 0.3849 + }, + { + "start": 8696.76, + "end": 8700.88, + "probability": 0.934 + }, + { + "start": 8701.66, + "end": 8705.58, + "probability": 0.9913 + }, + { + "start": 8705.58, + "end": 8710.04, + "probability": 0.9958 + }, + { + "start": 8711.46, + "end": 8714.42, + "probability": 0.8833 + }, + { + "start": 8715.08, + "end": 8719.18, + "probability": 0.9897 + }, + { + "start": 8719.86, + "end": 8722.2, + "probability": 0.9961 + }, + { + "start": 8722.72, + "end": 8724.16, + "probability": 0.9916 + }, + { + "start": 8724.78, + "end": 8725.64, + "probability": 0.8647 + }, + { + "start": 8726.7, + "end": 8729.74, + "probability": 0.9914 + }, + { + "start": 8730.26, + "end": 8731.96, + "probability": 0.8069 + }, + { + "start": 8732.42, + "end": 8735.8, + "probability": 0.9913 + }, + { + "start": 8736.56, + "end": 8739.34, + "probability": 0.9973 + }, + { + "start": 8739.92, + "end": 8741.62, + "probability": 0.9892 + }, + { + "start": 8742.12, + "end": 8743.0, + "probability": 0.9636 + }, + { + "start": 8743.34, + "end": 8745.7, + "probability": 0.9849 + }, + { + "start": 8747.22, + "end": 8747.72, + "probability": 0.7126 + }, + { + "start": 8748.56, + "end": 8749.82, + "probability": 0.9207 + }, + { + "start": 8750.32, + "end": 8753.96, + "probability": 0.9209 + }, + { + "start": 8754.64, + "end": 8756.44, + "probability": 0.9573 + }, + { + "start": 8757.22, + "end": 8764.36, + "probability": 0.8793 + }, + { + "start": 8764.84, + "end": 8766.5, + "probability": 0.5224 + }, + { + "start": 8766.94, + "end": 8771.06, + "probability": 0.7766 + }, + { + "start": 8771.06, + "end": 8773.76, + "probability": 0.9917 + }, + { + "start": 8774.56, + "end": 8777.64, + "probability": 0.994 + }, + { + "start": 8778.24, + "end": 8780.5, + "probability": 0.9969 + }, + { + "start": 8781.3, + "end": 8784.58, + "probability": 0.9969 + }, + { + "start": 8785.18, + "end": 8786.8, + "probability": 0.8692 + }, + { + "start": 8787.42, + "end": 8790.26, + "probability": 0.7354 + }, + { + "start": 8790.8, + "end": 8793.58, + "probability": 0.9922 + }, + { + "start": 8793.66, + "end": 8794.56, + "probability": 0.9486 + }, + { + "start": 8795.78, + "end": 8796.7, + "probability": 0.7413 + }, + { + "start": 8798.48, + "end": 8801.12, + "probability": 0.7898 + }, + { + "start": 8801.3, + "end": 8803.16, + "probability": 0.8748 + }, + { + "start": 8804.1, + "end": 8805.02, + "probability": 0.9944 + }, + { + "start": 8805.54, + "end": 8807.98, + "probability": 0.8833 + }, + { + "start": 8808.68, + "end": 8810.16, + "probability": 0.9747 + }, + { + "start": 8811.0, + "end": 8812.94, + "probability": 0.9932 + }, + { + "start": 8813.72, + "end": 8817.2, + "probability": 0.9657 + }, + { + "start": 8818.24, + "end": 8824.12, + "probability": 0.9192 + }, + { + "start": 8824.2, + "end": 8826.42, + "probability": 0.9188 + }, + { + "start": 8827.52, + "end": 8831.9, + "probability": 0.9086 + }, + { + "start": 8831.94, + "end": 8833.02, + "probability": 0.7121 + }, + { + "start": 8833.62, + "end": 8837.4, + "probability": 0.9885 + }, + { + "start": 8838.06, + "end": 8842.1, + "probability": 0.9629 + }, + { + "start": 8842.82, + "end": 8843.72, + "probability": 0.8439 + }, + { + "start": 8844.4, + "end": 8847.58, + "probability": 0.8406 + }, + { + "start": 8848.28, + "end": 8850.56, + "probability": 0.6798 + }, + { + "start": 8851.16, + "end": 8853.66, + "probability": 0.972 + }, + { + "start": 8854.22, + "end": 8858.04, + "probability": 0.9932 + }, + { + "start": 8858.48, + "end": 8859.26, + "probability": 0.613 + }, + { + "start": 8861.43, + "end": 8863.52, + "probability": 0.0563 + }, + { + "start": 8863.52, + "end": 8867.7, + "probability": 0.6924 + }, + { + "start": 8868.44, + "end": 8870.0, + "probability": 0.7617 + }, + { + "start": 8870.8, + "end": 8874.78, + "probability": 0.9936 + }, + { + "start": 8875.18, + "end": 8877.08, + "probability": 0.9976 + }, + { + "start": 8877.84, + "end": 8879.94, + "probability": 0.9937 + }, + { + "start": 8880.4, + "end": 8881.52, + "probability": 0.9704 + }, + { + "start": 8881.94, + "end": 8884.58, + "probability": 0.9656 + }, + { + "start": 8885.08, + "end": 8885.22, + "probability": 0.8066 + }, + { + "start": 8885.84, + "end": 8886.7, + "probability": 0.5058 + }, + { + "start": 8887.28, + "end": 8892.08, + "probability": 0.9827 + }, + { + "start": 8892.9, + "end": 8896.54, + "probability": 0.9936 + }, + { + "start": 8897.16, + "end": 8899.9, + "probability": 0.9883 + }, + { + "start": 8900.44, + "end": 8904.1, + "probability": 0.9899 + }, + { + "start": 8905.18, + "end": 8906.82, + "probability": 0.96 + }, + { + "start": 8907.4, + "end": 8912.12, + "probability": 0.9964 + }, + { + "start": 8912.9, + "end": 8914.08, + "probability": 0.7096 + }, + { + "start": 8914.7, + "end": 8918.84, + "probability": 0.9902 + }, + { + "start": 8918.84, + "end": 8922.76, + "probability": 0.9883 + }, + { + "start": 8923.58, + "end": 8926.26, + "probability": 0.9513 + }, + { + "start": 8926.84, + "end": 8930.02, + "probability": 0.9368 + }, + { + "start": 8930.74, + "end": 8934.56, + "probability": 0.9193 + }, + { + "start": 8935.26, + "end": 8937.32, + "probability": 0.9132 + }, + { + "start": 8938.0, + "end": 8939.18, + "probability": 0.8706 + }, + { + "start": 8939.34, + "end": 8939.8, + "probability": 0.8582 + }, + { + "start": 8939.9, + "end": 8942.04, + "probability": 0.9868 + }, + { + "start": 8942.64, + "end": 8946.0, + "probability": 0.963 + }, + { + "start": 8947.44, + "end": 8951.82, + "probability": 0.9745 + }, + { + "start": 8951.82, + "end": 8954.58, + "probability": 0.946 + }, + { + "start": 8954.7, + "end": 8955.96, + "probability": 0.8496 + }, + { + "start": 8956.7, + "end": 8957.56, + "probability": 0.8535 + }, + { + "start": 8958.66, + "end": 8961.08, + "probability": 0.998 + }, + { + "start": 8962.3, + "end": 8964.68, + "probability": 0.8338 + }, + { + "start": 8965.46, + "end": 8968.16, + "probability": 0.7551 + }, + { + "start": 8969.34, + "end": 8971.62, + "probability": 0.9939 + }, + { + "start": 8972.5, + "end": 8973.38, + "probability": 0.9441 + }, + { + "start": 8974.28, + "end": 8975.9, + "probability": 0.8997 + }, + { + "start": 8976.88, + "end": 8977.48, + "probability": 0.7687 + }, + { + "start": 8978.06, + "end": 8982.86, + "probability": 0.9468 + }, + { + "start": 8983.76, + "end": 8984.64, + "probability": 0.909 + }, + { + "start": 8985.16, + "end": 8986.9, + "probability": 0.7366 + }, + { + "start": 8987.52, + "end": 8988.96, + "probability": 0.9897 + }, + { + "start": 8989.54, + "end": 8992.02, + "probability": 0.9778 + }, + { + "start": 8992.62, + "end": 8995.54, + "probability": 0.9161 + }, + { + "start": 8996.38, + "end": 8999.24, + "probability": 0.996 + }, + { + "start": 9001.08, + "end": 9004.14, + "probability": 0.8083 + }, + { + "start": 9004.3, + "end": 9008.2, + "probability": 0.9939 + }, + { + "start": 9008.7, + "end": 9011.12, + "probability": 0.999 + }, + { + "start": 9012.22, + "end": 9014.32, + "probability": 0.9485 + }, + { + "start": 9015.24, + "end": 9017.62, + "probability": 0.8199 + }, + { + "start": 9017.74, + "end": 9018.96, + "probability": 0.979 + }, + { + "start": 9021.32, + "end": 9021.7, + "probability": 0.8135 + }, + { + "start": 9021.96, + "end": 9023.12, + "probability": 0.8021 + }, + { + "start": 9023.2, + "end": 9024.72, + "probability": 0.8419 + }, + { + "start": 9025.14, + "end": 9026.7, + "probability": 0.9446 + }, + { + "start": 9026.92, + "end": 9027.64, + "probability": 0.7476 + }, + { + "start": 9027.86, + "end": 9028.62, + "probability": 0.5407 + }, + { + "start": 9029.2, + "end": 9032.2, + "probability": 0.7859 + }, + { + "start": 9032.86, + "end": 9035.38, + "probability": 0.834 + }, + { + "start": 9035.86, + "end": 9037.14, + "probability": 0.6043 + }, + { + "start": 9037.24, + "end": 9040.66, + "probability": 0.9786 + }, + { + "start": 9041.24, + "end": 9045.62, + "probability": 0.9834 + }, + { + "start": 9045.62, + "end": 9049.56, + "probability": 0.8408 + }, + { + "start": 9049.94, + "end": 9051.04, + "probability": 0.5605 + }, + { + "start": 9051.28, + "end": 9054.18, + "probability": 0.9783 + }, + { + "start": 9054.32, + "end": 9054.54, + "probability": 0.6034 + }, + { + "start": 9055.42, + "end": 9056.6, + "probability": 0.8368 + }, + { + "start": 9056.66, + "end": 9057.3, + "probability": 0.7007 + }, + { + "start": 9057.52, + "end": 9061.88, + "probability": 0.9774 + }, + { + "start": 9061.88, + "end": 9065.24, + "probability": 0.4351 + }, + { + "start": 9065.3, + "end": 9070.52, + "probability": 0.9658 + }, + { + "start": 9070.52, + "end": 9073.48, + "probability": 0.9859 + }, + { + "start": 9074.22, + "end": 9074.72, + "probability": 0.4844 + }, + { + "start": 9076.0, + "end": 9076.21, + "probability": 0.0226 + }, + { + "start": 9077.88, + "end": 9079.7, + "probability": 0.896 + }, + { + "start": 9080.14, + "end": 9083.06, + "probability": 0.9284 + }, + { + "start": 9083.26, + "end": 9083.36, + "probability": 0.7156 + }, + { + "start": 9085.86, + "end": 9088.36, + "probability": 0.9796 + }, + { + "start": 9092.74, + "end": 9093.76, + "probability": 0.4573 + }, + { + "start": 9094.02, + "end": 9095.06, + "probability": 0.6269 + }, + { + "start": 9095.18, + "end": 9095.88, + "probability": 0.8902 + }, + { + "start": 9095.96, + "end": 9096.78, + "probability": 0.9313 + }, + { + "start": 9097.34, + "end": 9100.38, + "probability": 0.9949 + }, + { + "start": 9100.38, + "end": 9103.52, + "probability": 0.7499 + }, + { + "start": 9104.32, + "end": 9104.92, + "probability": 0.0178 + }, + { + "start": 9105.0, + "end": 9108.42, + "probability": 0.9168 + }, + { + "start": 9109.3, + "end": 9111.64, + "probability": 0.8828 + }, + { + "start": 9112.12, + "end": 9114.7, + "probability": 0.999 + }, + { + "start": 9115.4, + "end": 9118.3, + "probability": 0.9913 + }, + { + "start": 9118.4, + "end": 9119.54, + "probability": 0.9875 + }, + { + "start": 9119.58, + "end": 9121.62, + "probability": 0.9961 + }, + { + "start": 9122.28, + "end": 9124.3, + "probability": 0.9756 + }, + { + "start": 9124.38, + "end": 9125.74, + "probability": 0.9874 + }, + { + "start": 9126.06, + "end": 9127.3, + "probability": 0.9905 + }, + { + "start": 9127.58, + "end": 9129.08, + "probability": 0.9219 + }, + { + "start": 9129.5, + "end": 9130.25, + "probability": 0.9652 + }, + { + "start": 9130.68, + "end": 9136.1, + "probability": 0.9822 + }, + { + "start": 9136.8, + "end": 9139.72, + "probability": 0.9559 + }, + { + "start": 9139.72, + "end": 9143.7, + "probability": 0.9978 + }, + { + "start": 9144.58, + "end": 9150.02, + "probability": 0.9961 + }, + { + "start": 9150.46, + "end": 9152.0, + "probability": 0.9761 + }, + { + "start": 9152.66, + "end": 9154.58, + "probability": 0.9905 + }, + { + "start": 9155.58, + "end": 9158.98, + "probability": 0.9897 + }, + { + "start": 9159.18, + "end": 9159.86, + "probability": 0.8057 + }, + { + "start": 9160.04, + "end": 9163.14, + "probability": 0.8991 + }, + { + "start": 9163.54, + "end": 9164.92, + "probability": 0.9838 + }, + { + "start": 9165.78, + "end": 9167.86, + "probability": 0.8699 + }, + { + "start": 9168.52, + "end": 9170.54, + "probability": 0.9813 + }, + { + "start": 9171.52, + "end": 9175.22, + "probability": 0.9854 + }, + { + "start": 9175.22, + "end": 9178.8, + "probability": 0.9844 + }, + { + "start": 9179.26, + "end": 9181.26, + "probability": 0.8796 + }, + { + "start": 9181.94, + "end": 9187.7, + "probability": 0.7629 + }, + { + "start": 9188.18, + "end": 9189.06, + "probability": 0.6667 + }, + { + "start": 9189.18, + "end": 9189.9, + "probability": 0.5446 + }, + { + "start": 9190.18, + "end": 9192.72, + "probability": 0.9619 + }, + { + "start": 9192.94, + "end": 9196.02, + "probability": 0.9384 + }, + { + "start": 9196.62, + "end": 9200.22, + "probability": 0.9605 + }, + { + "start": 9200.42, + "end": 9204.68, + "probability": 0.9856 + }, + { + "start": 9205.02, + "end": 9207.76, + "probability": 0.9463 + }, + { + "start": 9208.74, + "end": 9212.24, + "probability": 0.8744 + }, + { + "start": 9212.28, + "end": 9214.42, + "probability": 0.909 + }, + { + "start": 9214.92, + "end": 9217.6, + "probability": 0.9163 + }, + { + "start": 9217.6, + "end": 9220.28, + "probability": 0.971 + }, + { + "start": 9220.74, + "end": 9223.74, + "probability": 0.9469 + }, + { + "start": 9223.74, + "end": 9227.7, + "probability": 0.9926 + }, + { + "start": 9228.4, + "end": 9231.44, + "probability": 0.9831 + }, + { + "start": 9231.66, + "end": 9235.04, + "probability": 0.9922 + }, + { + "start": 9235.04, + "end": 9237.66, + "probability": 0.787 + }, + { + "start": 9237.8, + "end": 9243.1, + "probability": 0.96 + }, + { + "start": 9243.1, + "end": 9246.7, + "probability": 0.9621 + }, + { + "start": 9247.24, + "end": 9249.34, + "probability": 0.9971 + }, + { + "start": 9249.34, + "end": 9251.96, + "probability": 0.9442 + }, + { + "start": 9252.52, + "end": 9254.0, + "probability": 0.827 + }, + { + "start": 9254.14, + "end": 9256.14, + "probability": 0.9951 + }, + { + "start": 9256.14, + "end": 9259.12, + "probability": 0.9628 + }, + { + "start": 9259.44, + "end": 9262.6, + "probability": 0.9914 + }, + { + "start": 9262.6, + "end": 9266.88, + "probability": 0.9866 + }, + { + "start": 9267.68, + "end": 9270.94, + "probability": 0.9765 + }, + { + "start": 9270.94, + "end": 9275.0, + "probability": 0.9828 + }, + { + "start": 9275.96, + "end": 9278.72, + "probability": 0.9854 + }, + { + "start": 9278.72, + "end": 9283.2, + "probability": 0.9772 + }, + { + "start": 9283.6, + "end": 9288.24, + "probability": 0.9044 + }, + { + "start": 9288.6, + "end": 9292.6, + "probability": 0.7799 + }, + { + "start": 9293.2, + "end": 9294.54, + "probability": 0.7365 + }, + { + "start": 9295.16, + "end": 9297.18, + "probability": 0.914 + }, + { + "start": 9297.64, + "end": 9299.8, + "probability": 0.9898 + }, + { + "start": 9299.8, + "end": 9302.38, + "probability": 0.9819 + }, + { + "start": 9303.28, + "end": 9306.86, + "probability": 0.9974 + }, + { + "start": 9307.36, + "end": 9310.78, + "probability": 0.9624 + }, + { + "start": 9311.14, + "end": 9313.58, + "probability": 0.916 + }, + { + "start": 9314.56, + "end": 9318.56, + "probability": 0.9848 + }, + { + "start": 9319.12, + "end": 9321.58, + "probability": 0.7542 + }, + { + "start": 9321.84, + "end": 9322.74, + "probability": 0.8575 + }, + { + "start": 9322.84, + "end": 9323.68, + "probability": 0.6508 + }, + { + "start": 9324.24, + "end": 9327.48, + "probability": 0.9912 + }, + { + "start": 9327.98, + "end": 9331.58, + "probability": 0.9888 + }, + { + "start": 9332.2, + "end": 9336.22, + "probability": 0.8244 + }, + { + "start": 9336.64, + "end": 9341.24, + "probability": 0.972 + }, + { + "start": 9341.38, + "end": 9343.94, + "probability": 0.9101 + }, + { + "start": 9343.94, + "end": 9347.08, + "probability": 0.9733 + }, + { + "start": 9347.16, + "end": 9349.14, + "probability": 0.986 + }, + { + "start": 9349.96, + "end": 9352.08, + "probability": 0.9927 + }, + { + "start": 9352.16, + "end": 9354.66, + "probability": 0.9942 + }, + { + "start": 9355.0, + "end": 9358.02, + "probability": 0.9908 + }, + { + "start": 9358.02, + "end": 9361.38, + "probability": 0.9773 + }, + { + "start": 9361.88, + "end": 9364.54, + "probability": 0.9141 + }, + { + "start": 9364.54, + "end": 9367.54, + "probability": 0.9778 + }, + { + "start": 9368.14, + "end": 9371.5, + "probability": 0.9953 + }, + { + "start": 9372.0, + "end": 9374.22, + "probability": 0.9963 + }, + { + "start": 9374.22, + "end": 9377.06, + "probability": 0.9819 + }, + { + "start": 9377.12, + "end": 9378.64, + "probability": 0.714 + }, + { + "start": 9379.08, + "end": 9379.58, + "probability": 0.9448 + }, + { + "start": 9379.68, + "end": 9380.06, + "probability": 0.9836 + }, + { + "start": 9380.16, + "end": 9380.88, + "probability": 0.8576 + }, + { + "start": 9380.96, + "end": 9382.32, + "probability": 0.9619 + }, + { + "start": 9385.0, + "end": 9389.74, + "probability": 0.9937 + }, + { + "start": 9389.74, + "end": 9396.0, + "probability": 0.9725 + }, + { + "start": 9396.12, + "end": 9399.06, + "probability": 0.7158 + }, + { + "start": 9399.44, + "end": 9401.78, + "probability": 0.9775 + }, + { + "start": 9402.3, + "end": 9406.3, + "probability": 0.9917 + }, + { + "start": 9406.34, + "end": 9406.64, + "probability": 0.5003 + }, + { + "start": 9407.12, + "end": 9408.04, + "probability": 0.9125 + }, + { + "start": 9408.34, + "end": 9409.62, + "probability": 0.8141 + }, + { + "start": 9409.68, + "end": 9414.58, + "probability": 0.9969 + }, + { + "start": 9415.22, + "end": 9415.46, + "probability": 0.8156 + }, + { + "start": 9415.46, + "end": 9417.24, + "probability": 0.9894 + }, + { + "start": 9417.46, + "end": 9419.4, + "probability": 0.9976 + }, + { + "start": 9419.48, + "end": 9420.86, + "probability": 0.9873 + }, + { + "start": 9421.48, + "end": 9422.94, + "probability": 0.7743 + }, + { + "start": 9423.64, + "end": 9424.98, + "probability": 0.7855 + }, + { + "start": 9425.28, + "end": 9427.68, + "probability": 0.9339 + }, + { + "start": 9427.74, + "end": 9430.26, + "probability": 0.9871 + }, + { + "start": 9430.74, + "end": 9431.1, + "probability": 0.7706 + }, + { + "start": 9431.14, + "end": 9435.04, + "probability": 0.9812 + }, + { + "start": 9435.36, + "end": 9438.28, + "probability": 0.9866 + }, + { + "start": 9438.8, + "end": 9441.94, + "probability": 0.9464 + }, + { + "start": 9441.94, + "end": 9445.08, + "probability": 0.9945 + }, + { + "start": 9445.44, + "end": 9448.72, + "probability": 0.9854 + }, + { + "start": 9448.72, + "end": 9453.16, + "probability": 0.9619 + }, + { + "start": 9453.16, + "end": 9457.86, + "probability": 0.995 + }, + { + "start": 9458.18, + "end": 9459.58, + "probability": 0.4366 + }, + { + "start": 9460.32, + "end": 9460.7, + "probability": 0.7693 + }, + { + "start": 9460.78, + "end": 9464.56, + "probability": 0.9829 + }, + { + "start": 9464.7, + "end": 9468.22, + "probability": 0.8896 + }, + { + "start": 9468.56, + "end": 9471.42, + "probability": 0.9967 + }, + { + "start": 9471.52, + "end": 9472.86, + "probability": 0.7358 + }, + { + "start": 9473.2, + "end": 9480.26, + "probability": 0.9614 + }, + { + "start": 9480.34, + "end": 9482.24, + "probability": 0.712 + }, + { + "start": 9482.26, + "end": 9482.68, + "probability": 0.9176 + }, + { + "start": 9482.76, + "end": 9487.44, + "probability": 0.9938 + }, + { + "start": 9487.7, + "end": 9491.04, + "probability": 0.9932 + }, + { + "start": 9491.04, + "end": 9494.92, + "probability": 0.8525 + }, + { + "start": 9495.24, + "end": 9497.41, + "probability": 0.9716 + }, + { + "start": 9498.74, + "end": 9500.9, + "probability": 0.9733 + }, + { + "start": 9503.22, + "end": 9503.94, + "probability": 0.7588 + }, + { + "start": 9504.62, + "end": 9507.0, + "probability": 0.9052 + }, + { + "start": 9507.3, + "end": 9510.98, + "probability": 0.9897 + }, + { + "start": 9511.84, + "end": 9514.12, + "probability": 0.995 + }, + { + "start": 9514.18, + "end": 9514.3, + "probability": 0.3082 + }, + { + "start": 9514.48, + "end": 9519.26, + "probability": 0.9956 + }, + { + "start": 9519.62, + "end": 9521.72, + "probability": 0.9867 + }, + { + "start": 9522.02, + "end": 9524.66, + "probability": 0.9982 + }, + { + "start": 9524.94, + "end": 9527.8, + "probability": 0.9751 + }, + { + "start": 9527.84, + "end": 9530.6, + "probability": 0.853 + }, + { + "start": 9530.82, + "end": 9533.3, + "probability": 0.8087 + }, + { + "start": 9533.44, + "end": 9535.12, + "probability": 0.9276 + }, + { + "start": 9535.72, + "end": 9537.34, + "probability": 0.9968 + }, + { + "start": 9537.66, + "end": 9540.28, + "probability": 0.8764 + }, + { + "start": 9540.34, + "end": 9544.02, + "probability": 0.9987 + }, + { + "start": 9544.02, + "end": 9547.28, + "probability": 0.9995 + }, + { + "start": 9547.76, + "end": 9548.92, + "probability": 0.6485 + }, + { + "start": 9549.1, + "end": 9549.88, + "probability": 0.7824 + }, + { + "start": 9550.42, + "end": 9552.96, + "probability": 0.9928 + }, + { + "start": 9553.54, + "end": 9556.2, + "probability": 0.9827 + }, + { + "start": 9556.28, + "end": 9557.84, + "probability": 0.9762 + }, + { + "start": 9558.14, + "end": 9562.98, + "probability": 0.9771 + }, + { + "start": 9563.26, + "end": 9567.34, + "probability": 0.9601 + }, + { + "start": 9567.52, + "end": 9570.08, + "probability": 0.9945 + }, + { + "start": 9570.58, + "end": 9572.88, + "probability": 0.9362 + }, + { + "start": 9573.06, + "end": 9573.62, + "probability": 0.2592 + }, + { + "start": 9573.62, + "end": 9575.26, + "probability": 0.9492 + }, + { + "start": 9575.78, + "end": 9576.58, + "probability": 0.1369 + }, + { + "start": 9576.66, + "end": 9577.1, + "probability": 0.5469 + }, + { + "start": 9577.42, + "end": 9579.14, + "probability": 0.8291 + }, + { + "start": 9579.22, + "end": 9580.06, + "probability": 0.6951 + }, + { + "start": 9580.42, + "end": 9581.94, + "probability": 0.9626 + }, + { + "start": 9582.08, + "end": 9583.32, + "probability": 0.6443 + }, + { + "start": 9583.38, + "end": 9585.84, + "probability": 0.9683 + }, + { + "start": 9586.0, + "end": 9586.96, + "probability": 0.9255 + }, + { + "start": 9587.28, + "end": 9587.92, + "probability": 0.8988 + }, + { + "start": 9588.02, + "end": 9589.83, + "probability": 0.9889 + }, + { + "start": 9591.66, + "end": 9591.72, + "probability": 0.1805 + }, + { + "start": 9591.72, + "end": 9595.46, + "probability": 0.9893 + }, + { + "start": 9595.88, + "end": 9596.94, + "probability": 0.7706 + }, + { + "start": 9597.3, + "end": 9598.74, + "probability": 0.8572 + }, + { + "start": 9598.82, + "end": 9600.48, + "probability": 0.9243 + }, + { + "start": 9600.56, + "end": 9601.6, + "probability": 0.8406 + }, + { + "start": 9601.72, + "end": 9602.6, + "probability": 0.8667 + }, + { + "start": 9603.0, + "end": 9604.58, + "probability": 0.8725 + }, + { + "start": 9604.66, + "end": 9606.3, + "probability": 0.9966 + }, + { + "start": 9606.41, + "end": 9607.19, + "probability": 0.9085 + }, + { + "start": 9607.76, + "end": 9608.9, + "probability": 0.9407 + }, + { + "start": 9608.96, + "end": 9610.52, + "probability": 0.9271 + }, + { + "start": 9610.96, + "end": 9612.2, + "probability": 0.6668 + }, + { + "start": 9612.26, + "end": 9614.72, + "probability": 0.8383 + }, + { + "start": 9615.24, + "end": 9619.62, + "probability": 0.9927 + }, + { + "start": 9620.08, + "end": 9621.76, + "probability": 0.8304 + }, + { + "start": 9621.98, + "end": 9622.82, + "probability": 0.3922 + }, + { + "start": 9622.96, + "end": 9623.84, + "probability": 0.7734 + }, + { + "start": 9623.96, + "end": 9626.54, + "probability": 0.9855 + }, + { + "start": 9626.9, + "end": 9628.54, + "probability": 0.9116 + }, + { + "start": 9628.64, + "end": 9629.32, + "probability": 0.8572 + }, + { + "start": 9629.44, + "end": 9631.54, + "probability": 0.9954 + }, + { + "start": 9631.96, + "end": 9634.14, + "probability": 0.8704 + }, + { + "start": 9634.48, + "end": 9636.56, + "probability": 0.885 + }, + { + "start": 9636.88, + "end": 9638.28, + "probability": 0.8712 + }, + { + "start": 9638.38, + "end": 9639.68, + "probability": 0.8386 + }, + { + "start": 9639.86, + "end": 9644.16, + "probability": 0.977 + }, + { + "start": 9644.4, + "end": 9646.22, + "probability": 0.714 + }, + { + "start": 9646.32, + "end": 9646.7, + "probability": 0.7961 + }, + { + "start": 9646.78, + "end": 9647.2, + "probability": 0.7571 + }, + { + "start": 9647.34, + "end": 9648.26, + "probability": 0.8528 + }, + { + "start": 9648.34, + "end": 9651.86, + "probability": 0.9541 + }, + { + "start": 9652.26, + "end": 9652.56, + "probability": 0.4838 + }, + { + "start": 9652.68, + "end": 9653.88, + "probability": 0.8903 + }, + { + "start": 9653.94, + "end": 9654.7, + "probability": 0.7566 + }, + { + "start": 9654.78, + "end": 9655.98, + "probability": 0.9594 + }, + { + "start": 9656.28, + "end": 9657.8, + "probability": 0.7539 + }, + { + "start": 9658.4, + "end": 9659.76, + "probability": 0.8 + }, + { + "start": 9659.98, + "end": 9663.2, + "probability": 0.9914 + }, + { + "start": 9663.2, + "end": 9666.22, + "probability": 0.9985 + }, + { + "start": 9666.96, + "end": 9668.38, + "probability": 0.7501 + }, + { + "start": 9669.3, + "end": 9670.48, + "probability": 0.9627 + }, + { + "start": 9670.6, + "end": 9671.06, + "probability": 0.6542 + }, + { + "start": 9671.4, + "end": 9672.3, + "probability": 0.8459 + }, + { + "start": 9672.58, + "end": 9674.96, + "probability": 0.8434 + }, + { + "start": 9675.22, + "end": 9678.72, + "probability": 0.9829 + }, + { + "start": 9678.82, + "end": 9679.9, + "probability": 0.7201 + }, + { + "start": 9679.94, + "end": 9682.52, + "probability": 0.9692 + }, + { + "start": 9682.56, + "end": 9684.06, + "probability": 0.9895 + }, + { + "start": 9685.12, + "end": 9685.62, + "probability": 0.6079 + }, + { + "start": 9686.3, + "end": 9687.7, + "probability": 0.7303 + }, + { + "start": 9687.76, + "end": 9688.4, + "probability": 0.4766 + }, + { + "start": 9688.52, + "end": 9690.2, + "probability": 0.2638 + }, + { + "start": 9690.28, + "end": 9691.68, + "probability": 0.4737 + }, + { + "start": 9691.7, + "end": 9692.32, + "probability": 0.8092 + }, + { + "start": 9692.38, + "end": 9694.84, + "probability": 0.96 + }, + { + "start": 9695.18, + "end": 9696.16, + "probability": 0.0921 + }, + { + "start": 9696.26, + "end": 9698.28, + "probability": 0.0164 + }, + { + "start": 9698.28, + "end": 9698.3, + "probability": 0.0045 + }, + { + "start": 9698.3, + "end": 9700.11, + "probability": 0.6029 + }, + { + "start": 9700.68, + "end": 9701.86, + "probability": 0.9078 + }, + { + "start": 9702.38, + "end": 9705.2, + "probability": 0.8017 + }, + { + "start": 9705.26, + "end": 9707.18, + "probability": 0.9819 + }, + { + "start": 9707.3, + "end": 9709.6, + "probability": 0.9902 + }, + { + "start": 9709.6, + "end": 9712.66, + "probability": 0.9772 + }, + { + "start": 9713.0, + "end": 9715.12, + "probability": 0.7451 + }, + { + "start": 9715.24, + "end": 9715.68, + "probability": 0.8853 + }, + { + "start": 9715.68, + "end": 9716.38, + "probability": 0.6622 + }, + { + "start": 9717.14, + "end": 9720.32, + "probability": 0.6103 + }, + { + "start": 9721.18, + "end": 9722.66, + "probability": 0.9561 + }, + { + "start": 9724.1, + "end": 9726.42, + "probability": 0.1705 + }, + { + "start": 9748.68, + "end": 9752.12, + "probability": 0.9895 + }, + { + "start": 9753.48, + "end": 9756.6, + "probability": 0.9941 + }, + { + "start": 9756.6, + "end": 9761.32, + "probability": 0.9954 + }, + { + "start": 9762.32, + "end": 9765.73, + "probability": 0.947 + }, + { + "start": 9766.5, + "end": 9770.18, + "probability": 0.9987 + }, + { + "start": 9770.18, + "end": 9774.4, + "probability": 0.9995 + }, + { + "start": 9775.42, + "end": 9779.66, + "probability": 0.9985 + }, + { + "start": 9780.71, + "end": 9783.78, + "probability": 0.9893 + }, + { + "start": 9783.9, + "end": 9784.51, + "probability": 0.946 + }, + { + "start": 9785.4, + "end": 9786.97, + "probability": 0.9993 + }, + { + "start": 9790.16, + "end": 9792.26, + "probability": 0.8703 + }, + { + "start": 9792.86, + "end": 9796.04, + "probability": 0.9758 + }, + { + "start": 9798.94, + "end": 9804.0, + "probability": 0.9062 + }, + { + "start": 9805.58, + "end": 9809.34, + "probability": 0.9985 + }, + { + "start": 9810.28, + "end": 9813.05, + "probability": 0.9988 + }, + { + "start": 9813.76, + "end": 9815.4, + "probability": 0.9627 + }, + { + "start": 9816.66, + "end": 9820.72, + "probability": 0.8599 + }, + { + "start": 9821.12, + "end": 9822.12, + "probability": 0.8948 + }, + { + "start": 9822.7, + "end": 9823.8, + "probability": 0.9976 + }, + { + "start": 9824.64, + "end": 9825.78, + "probability": 0.8351 + }, + { + "start": 9827.26, + "end": 9832.84, + "probability": 0.9966 + }, + { + "start": 9833.02, + "end": 9834.0, + "probability": 0.9871 + }, + { + "start": 9834.94, + "end": 9839.46, + "probability": 0.9601 + }, + { + "start": 9841.3, + "end": 9845.68, + "probability": 0.9973 + }, + { + "start": 9846.16, + "end": 9849.62, + "probability": 0.9929 + }, + { + "start": 9850.84, + "end": 9853.47, + "probability": 0.9937 + }, + { + "start": 9854.26, + "end": 9856.3, + "probability": 0.9841 + }, + { + "start": 9856.66, + "end": 9858.84, + "probability": 0.9954 + }, + { + "start": 9860.52, + "end": 9861.4, + "probability": 0.8718 + }, + { + "start": 9862.0, + "end": 9863.26, + "probability": 0.8804 + }, + { + "start": 9865.1, + "end": 9870.76, + "probability": 0.9883 + }, + { + "start": 9871.8, + "end": 9877.36, + "probability": 0.9644 + }, + { + "start": 9878.06, + "end": 9879.56, + "probability": 0.9401 + }, + { + "start": 9880.0, + "end": 9880.9, + "probability": 0.697 + }, + { + "start": 9881.64, + "end": 9882.18, + "probability": 0.7756 + }, + { + "start": 9882.9, + "end": 9884.26, + "probability": 0.9622 + }, + { + "start": 9884.84, + "end": 9887.08, + "probability": 0.9863 + }, + { + "start": 9887.12, + "end": 9889.76, + "probability": 0.9963 + }, + { + "start": 9890.46, + "end": 9891.46, + "probability": 0.9826 + }, + { + "start": 9891.58, + "end": 9893.62, + "probability": 0.9741 + }, + { + "start": 9894.12, + "end": 9897.38, + "probability": 0.6885 + }, + { + "start": 9897.96, + "end": 9903.22, + "probability": 0.8152 + }, + { + "start": 9904.58, + "end": 9905.7, + "probability": 0.8979 + }, + { + "start": 9906.36, + "end": 9907.68, + "probability": 0.9805 + }, + { + "start": 9907.76, + "end": 9909.0, + "probability": 0.9473 + }, + { + "start": 9909.62, + "end": 9910.22, + "probability": 0.4021 + }, + { + "start": 9911.26, + "end": 9911.82, + "probability": 0.8497 + }, + { + "start": 9911.9, + "end": 9919.32, + "probability": 0.8156 + }, + { + "start": 9919.74, + "end": 9921.56, + "probability": 0.9213 + }, + { + "start": 9922.54, + "end": 9927.62, + "probability": 0.9618 + }, + { + "start": 9928.04, + "end": 9931.66, + "probability": 0.8599 + }, + { + "start": 9933.82, + "end": 9937.02, + "probability": 0.7403 + }, + { + "start": 9937.84, + "end": 9940.62, + "probability": 0.8904 + }, + { + "start": 9941.38, + "end": 9945.2, + "probability": 0.7783 + }, + { + "start": 9945.32, + "end": 9948.66, + "probability": 0.91 + }, + { + "start": 9950.46, + "end": 9953.0, + "probability": 0.9983 + }, + { + "start": 9953.92, + "end": 9957.12, + "probability": 0.8602 + }, + { + "start": 9957.98, + "end": 9960.9, + "probability": 0.9728 + }, + { + "start": 9960.9, + "end": 9964.34, + "probability": 0.9976 + }, + { + "start": 9965.44, + "end": 9967.96, + "probability": 0.9932 + }, + { + "start": 9968.04, + "end": 9969.48, + "probability": 0.8379 + }, + { + "start": 9970.34, + "end": 9971.0, + "probability": 0.5879 + }, + { + "start": 9971.2, + "end": 9972.24, + "probability": 0.0077 + }, + { + "start": 9972.68, + "end": 9974.52, + "probability": 0.9099 + }, + { + "start": 9974.66, + "end": 9975.47, + "probability": 0.7825 + }, + { + "start": 9976.46, + "end": 9978.82, + "probability": 0.9663 + }, + { + "start": 9979.5, + "end": 9982.0, + "probability": 0.7987 + }, + { + "start": 9982.78, + "end": 9985.8, + "probability": 0.9867 + }, + { + "start": 9985.94, + "end": 9987.4, + "probability": 0.9584 + }, + { + "start": 9987.98, + "end": 9991.76, + "probability": 0.8281 + }, + { + "start": 9992.38, + "end": 9994.82, + "probability": 0.9956 + }, + { + "start": 9995.64, + "end": 9996.86, + "probability": 0.9951 + }, + { + "start": 9997.58, + "end": 9999.56, + "probability": 0.9528 + }, + { + "start": 10000.5, + "end": 10002.68, + "probability": 0.9979 + }, + { + "start": 10003.72, + "end": 10006.42, + "probability": 0.9981 + }, + { + "start": 10006.68, + "end": 10008.52, + "probability": 0.9741 + }, + { + "start": 10009.92, + "end": 10014.02, + "probability": 0.9985 + }, + { + "start": 10014.02, + "end": 10018.12, + "probability": 0.9975 + }, + { + "start": 10018.12, + "end": 10022.6, + "probability": 0.9995 + }, + { + "start": 10023.52, + "end": 10026.18, + "probability": 0.6555 + }, + { + "start": 10026.42, + "end": 10027.36, + "probability": 0.8863 + }, + { + "start": 10027.76, + "end": 10031.96, + "probability": 0.97 + }, + { + "start": 10032.36, + "end": 10036.26, + "probability": 0.8251 + }, + { + "start": 10036.68, + "end": 10038.06, + "probability": 0.9941 + }, + { + "start": 10039.28, + "end": 10042.96, + "probability": 0.9775 + }, + { + "start": 10043.5, + "end": 10047.72, + "probability": 0.995 + }, + { + "start": 10048.46, + "end": 10051.66, + "probability": 0.9702 + }, + { + "start": 10052.22, + "end": 10054.26, + "probability": 0.8204 + }, + { + "start": 10055.2, + "end": 10057.52, + "probability": 0.9583 + }, + { + "start": 10057.68, + "end": 10058.06, + "probability": 0.8317 + }, + { + "start": 10058.38, + "end": 10059.12, + "probability": 0.7423 + }, + { + "start": 10061.4, + "end": 10062.86, + "probability": 0.8247 + }, + { + "start": 10064.96, + "end": 10065.7, + "probability": 0.671 + }, + { + "start": 10066.38, + "end": 10067.28, + "probability": 0.8785 + }, + { + "start": 10069.66, + "end": 10070.82, + "probability": 0.5012 + }, + { + "start": 10072.4, + "end": 10073.76, + "probability": 0.8752 + }, + { + "start": 10075.32, + "end": 10076.9, + "probability": 0.8067 + }, + { + "start": 10077.86, + "end": 10079.04, + "probability": 0.7944 + }, + { + "start": 10079.96, + "end": 10080.56, + "probability": 0.227 + }, + { + "start": 10080.8, + "end": 10083.16, + "probability": 0.9714 + }, + { + "start": 10083.16, + "end": 10086.96, + "probability": 0.272 + }, + { + "start": 10087.18, + "end": 10090.16, + "probability": 0.2233 + }, + { + "start": 10098.24, + "end": 10098.44, + "probability": 0.4828 + }, + { + "start": 10098.44, + "end": 10100.38, + "probability": 0.6495 + }, + { + "start": 10103.16, + "end": 10104.08, + "probability": 0.7471 + }, + { + "start": 10116.26, + "end": 10116.98, + "probability": 0.0049 + }, + { + "start": 10116.98, + "end": 10116.98, + "probability": 0.16 + }, + { + "start": 10118.06, + "end": 10119.72, + "probability": 0.6362 + }, + { + "start": 10120.28, + "end": 10121.64, + "probability": 0.7931 + }, + { + "start": 10121.72, + "end": 10124.26, + "probability": 0.9266 + }, + { + "start": 10128.76, + "end": 10135.33, + "probability": 0.0138 + }, + { + "start": 10140.94, + "end": 10141.66, + "probability": 0.0008 + }, + { + "start": 10144.42, + "end": 10144.52, + "probability": 0.0423 + }, + { + "start": 10144.56, + "end": 10146.12, + "probability": 0.4823 + }, + { + "start": 10146.94, + "end": 10148.24, + "probability": 0.8846 + }, + { + "start": 10148.36, + "end": 10153.14, + "probability": 0.9353 + }, + { + "start": 10162.86, + "end": 10164.64, + "probability": 0.174 + }, + { + "start": 10164.66, + "end": 10165.46, + "probability": 0.614 + }, + { + "start": 10165.54, + "end": 10165.82, + "probability": 0.9229 + }, + { + "start": 10165.9, + "end": 10167.08, + "probability": 0.8121 + }, + { + "start": 10168.1, + "end": 10171.36, + "probability": 0.7464 + }, + { + "start": 10171.48, + "end": 10173.42, + "probability": 0.3253 + }, + { + "start": 10173.54, + "end": 10175.2, + "probability": 0.7506 + }, + { + "start": 10175.44, + "end": 10176.3, + "probability": 0.982 + }, + { + "start": 10176.86, + "end": 10180.48, + "probability": 0.7068 + }, + { + "start": 10181.84, + "end": 10181.88, + "probability": 0.2693 + }, + { + "start": 10206.21, + "end": 10209.54, + "probability": 0.7752 + }, + { + "start": 10211.3, + "end": 10213.76, + "probability": 0.9685 + }, + { + "start": 10213.8, + "end": 10217.36, + "probability": 0.9355 + }, + { + "start": 10217.48, + "end": 10219.42, + "probability": 0.1813 + }, + { + "start": 10220.46, + "end": 10221.25, + "probability": 0.7912 + }, + { + "start": 10222.48, + "end": 10226.22, + "probability": 0.8762 + }, + { + "start": 10226.98, + "end": 10229.74, + "probability": 0.9954 + }, + { + "start": 10231.1, + "end": 10232.12, + "probability": 0.7664 + }, + { + "start": 10232.2, + "end": 10235.6, + "probability": 0.9585 + }, + { + "start": 10235.74, + "end": 10239.9, + "probability": 0.8851 + }, + { + "start": 10240.58, + "end": 10241.58, + "probability": 0.8591 + }, + { + "start": 10241.7, + "end": 10242.24, + "probability": 0.8156 + }, + { + "start": 10242.24, + "end": 10246.25, + "probability": 0.9938 + }, + { + "start": 10247.16, + "end": 10249.32, + "probability": 0.8877 + }, + { + "start": 10250.4, + "end": 10255.86, + "probability": 0.9238 + }, + { + "start": 10255.94, + "end": 10257.74, + "probability": 0.9973 + }, + { + "start": 10258.44, + "end": 10259.86, + "probability": 0.9021 + }, + { + "start": 10260.92, + "end": 10262.56, + "probability": 0.9406 + }, + { + "start": 10262.56, + "end": 10264.86, + "probability": 0.7897 + }, + { + "start": 10265.0, + "end": 10265.26, + "probability": 0.3801 + }, + { + "start": 10265.32, + "end": 10268.04, + "probability": 0.918 + }, + { + "start": 10268.84, + "end": 10269.3, + "probability": 0.6618 + }, + { + "start": 10269.48, + "end": 10270.08, + "probability": 0.6257 + }, + { + "start": 10270.16, + "end": 10273.6, + "probability": 0.9536 + }, + { + "start": 10273.76, + "end": 10274.94, + "probability": 0.8979 + }, + { + "start": 10275.5, + "end": 10276.6, + "probability": 0.8613 + }, + { + "start": 10276.62, + "end": 10279.52, + "probability": 0.7642 + }, + { + "start": 10279.64, + "end": 10280.06, + "probability": 0.9595 + }, + { + "start": 10280.9, + "end": 10284.1, + "probability": 0.9814 + }, + { + "start": 10284.1, + "end": 10287.6, + "probability": 0.9983 + }, + { + "start": 10288.22, + "end": 10289.18, + "probability": 0.9889 + }, + { + "start": 10289.42, + "end": 10291.7, + "probability": 0.9868 + }, + { + "start": 10292.84, + "end": 10295.94, + "probability": 0.9888 + }, + { + "start": 10296.06, + "end": 10299.55, + "probability": 0.978 + }, + { + "start": 10300.24, + "end": 10303.68, + "probability": 0.9866 + }, + { + "start": 10304.58, + "end": 10308.6, + "probability": 0.9624 + }, + { + "start": 10308.6, + "end": 10310.84, + "probability": 0.8106 + }, + { + "start": 10310.9, + "end": 10311.92, + "probability": 0.738 + }, + { + "start": 10312.0, + "end": 10313.28, + "probability": 0.992 + }, + { + "start": 10313.98, + "end": 10316.18, + "probability": 0.8807 + }, + { + "start": 10316.18, + "end": 10319.04, + "probability": 0.9977 + }, + { + "start": 10319.84, + "end": 10322.36, + "probability": 0.927 + }, + { + "start": 10322.7, + "end": 10324.32, + "probability": 0.9854 + }, + { + "start": 10324.6, + "end": 10329.46, + "probability": 0.9717 + }, + { + "start": 10330.16, + "end": 10332.58, + "probability": 0.9658 + }, + { + "start": 10332.58, + "end": 10335.4, + "probability": 0.9886 + }, + { + "start": 10336.14, + "end": 10339.22, + "probability": 0.984 + }, + { + "start": 10339.22, + "end": 10342.04, + "probability": 0.9854 + }, + { + "start": 10342.82, + "end": 10343.18, + "probability": 0.5714 + }, + { + "start": 10343.26, + "end": 10347.64, + "probability": 0.9492 + }, + { + "start": 10348.22, + "end": 10349.88, + "probability": 0.5408 + }, + { + "start": 10350.54, + "end": 10352.9, + "probability": 0.9922 + }, + { + "start": 10352.94, + "end": 10356.16, + "probability": 0.926 + }, + { + "start": 10356.16, + "end": 10359.46, + "probability": 0.9968 + }, + { + "start": 10359.96, + "end": 10361.42, + "probability": 0.8127 + }, + { + "start": 10361.78, + "end": 10365.76, + "probability": 0.8176 + }, + { + "start": 10365.82, + "end": 10366.3, + "probability": 0.7611 + }, + { + "start": 10367.08, + "end": 10368.38, + "probability": 0.6139 + }, + { + "start": 10369.58, + "end": 10371.28, + "probability": 0.9492 + }, + { + "start": 10371.48, + "end": 10372.88, + "probability": 0.9886 + }, + { + "start": 10375.6, + "end": 10376.5, + "probability": 0.6107 + }, + { + "start": 10379.18, + "end": 10379.28, + "probability": 0.1312 + }, + { + "start": 10397.5, + "end": 10398.22, + "probability": 0.3505 + }, + { + "start": 10398.22, + "end": 10398.46, + "probability": 0.0085 + }, + { + "start": 10398.46, + "end": 10399.1, + "probability": 0.1666 + }, + { + "start": 10399.78, + "end": 10401.6, + "probability": 0.6448 + }, + { + "start": 10401.9, + "end": 10403.44, + "probability": 0.9793 + }, + { + "start": 10403.68, + "end": 10406.48, + "probability": 0.9668 + }, + { + "start": 10409.16, + "end": 10410.04, + "probability": 0.5728 + }, + { + "start": 10426.5, + "end": 10426.5, + "probability": 0.0201 + }, + { + "start": 10426.5, + "end": 10426.5, + "probability": 0.0512 + }, + { + "start": 10426.5, + "end": 10426.5, + "probability": 0.1007 + }, + { + "start": 10426.5, + "end": 10427.7, + "probability": 0.1936 + }, + { + "start": 10428.74, + "end": 10430.48, + "probability": 0.5459 + }, + { + "start": 10430.64, + "end": 10432.61, + "probability": 0.9081 + }, + { + "start": 10436.98, + "end": 10436.98, + "probability": 0.2486 + }, + { + "start": 10436.98, + "end": 10440.4, + "probability": 0.9548 + }, + { + "start": 10441.08, + "end": 10441.78, + "probability": 0.2131 + }, + { + "start": 10441.88, + "end": 10448.3, + "probability": 0.8773 + }, + { + "start": 10454.4, + "end": 10454.5, + "probability": 0.0803 + }, + { + "start": 10454.5, + "end": 10455.98, + "probability": 0.6733 + }, + { + "start": 10457.64, + "end": 10458.4, + "probability": 0.9635 + }, + { + "start": 10458.54, + "end": 10460.6, + "probability": 0.9848 + }, + { + "start": 10460.6, + "end": 10464.74, + "probability": 0.9902 + }, + { + "start": 10464.88, + "end": 10468.78, + "probability": 0.8307 + }, + { + "start": 10468.92, + "end": 10472.06, + "probability": 0.9032 + }, + { + "start": 10472.06, + "end": 10477.0, + "probability": 0.9642 + }, + { + "start": 10477.12, + "end": 10477.82, + "probability": 0.7125 + }, + { + "start": 10478.46, + "end": 10482.88, + "probability": 0.9252 + }, + { + "start": 10483.64, + "end": 10486.56, + "probability": 0.927 + }, + { + "start": 10487.24, + "end": 10488.92, + "probability": 0.9291 + }, + { + "start": 10489.46, + "end": 10491.34, + "probability": 0.8326 + }, + { + "start": 10492.46, + "end": 10493.22, + "probability": 0.7966 + }, + { + "start": 10493.34, + "end": 10493.62, + "probability": 0.4991 + }, + { + "start": 10493.7, + "end": 10497.84, + "probability": 0.959 + }, + { + "start": 10497.94, + "end": 10499.22, + "probability": 0.9775 + }, + { + "start": 10499.32, + "end": 10501.08, + "probability": 0.9303 + }, + { + "start": 10501.72, + "end": 10505.48, + "probability": 0.9749 + }, + { + "start": 10505.54, + "end": 10508.1, + "probability": 0.9481 + }, + { + "start": 10509.6, + "end": 10513.26, + "probability": 0.9589 + }, + { + "start": 10513.4, + "end": 10516.94, + "probability": 0.9981 + }, + { + "start": 10516.94, + "end": 10519.62, + "probability": 0.9916 + }, + { + "start": 10520.32, + "end": 10524.14, + "probability": 0.9947 + }, + { + "start": 10524.74, + "end": 10526.44, + "probability": 0.9229 + }, + { + "start": 10527.14, + "end": 10529.76, + "probability": 0.793 + }, + { + "start": 10529.88, + "end": 10532.8, + "probability": 0.9956 + }, + { + "start": 10533.44, + "end": 10535.42, + "probability": 0.8426 + }, + { + "start": 10535.46, + "end": 10535.86, + "probability": 0.8527 + }, + { + "start": 10536.64, + "end": 10537.38, + "probability": 0.7457 + }, + { + "start": 10537.7, + "end": 10541.02, + "probability": 0.9919 + }, + { + "start": 10541.18, + "end": 10542.26, + "probability": 0.9906 + }, + { + "start": 10542.78, + "end": 10546.86, + "probability": 0.9001 + }, + { + "start": 10547.42, + "end": 10553.62, + "probability": 0.2841 + }, + { + "start": 10560.38, + "end": 10560.38, + "probability": 0.0036 + }, + { + "start": 10570.08, + "end": 10573.02, + "probability": 0.5047 + }, + { + "start": 10573.12, + "end": 10575.06, + "probability": 0.8465 + }, + { + "start": 10575.64, + "end": 10577.86, + "probability": 0.9795 + }, + { + "start": 10579.18, + "end": 10580.26, + "probability": 0.5408 + }, + { + "start": 10596.68, + "end": 10596.68, + "probability": 0.0226 + }, + { + "start": 10596.68, + "end": 10596.68, + "probability": 0.0354 + }, + { + "start": 10596.68, + "end": 10596.68, + "probability": 0.1306 + }, + { + "start": 10596.68, + "end": 10599.78, + "probability": 0.5424 + }, + { + "start": 10599.98, + "end": 10601.76, + "probability": 0.9723 + }, + { + "start": 10602.08, + "end": 10604.16, + "probability": 0.8942 + }, + { + "start": 10604.78, + "end": 10607.64, + "probability": 0.9958 + }, + { + "start": 10607.72, + "end": 10612.98, + "probability": 0.5996 + }, + { + "start": 10613.36, + "end": 10613.64, + "probability": 0.9571 + }, + { + "start": 10619.16, + "end": 10619.94, + "probability": 0.6336 + }, + { + "start": 10620.14, + "end": 10620.5, + "probability": 0.8706 + }, + { + "start": 10620.66, + "end": 10621.46, + "probability": 0.9576 + }, + { + "start": 10621.56, + "end": 10624.54, + "probability": 0.9836 + }, + { + "start": 10626.08, + "end": 10628.58, + "probability": 0.9902 + }, + { + "start": 10628.66, + "end": 10631.78, + "probability": 0.8993 + }, + { + "start": 10632.72, + "end": 10633.52, + "probability": 0.7483 + }, + { + "start": 10633.6, + "end": 10635.8, + "probability": 0.9922 + }, + { + "start": 10635.8, + "end": 10637.58, + "probability": 0.9924 + }, + { + "start": 10639.0, + "end": 10643.44, + "probability": 0.9394 + }, + { + "start": 10644.3, + "end": 10646.01, + "probability": 0.8711 + }, + { + "start": 10646.9, + "end": 10648.48, + "probability": 0.7911 + }, + { + "start": 10649.26, + "end": 10650.4, + "probability": 0.1987 + }, + { + "start": 10650.4, + "end": 10654.2, + "probability": 0.916 + }, + { + "start": 10655.5, + "end": 10657.84, + "probability": 0.9779 + }, + { + "start": 10657.84, + "end": 10660.46, + "probability": 0.9568 + }, + { + "start": 10660.9, + "end": 10663.88, + "probability": 0.9794 + }, + { + "start": 10665.62, + "end": 10668.0, + "probability": 0.4708 + }, + { + "start": 10668.12, + "end": 10670.2, + "probability": 0.7109 + }, + { + "start": 10670.92, + "end": 10673.32, + "probability": 0.8472 + }, + { + "start": 10676.32, + "end": 10679.14, + "probability": 0.9983 + }, + { + "start": 10679.24, + "end": 10679.92, + "probability": 0.3671 + }, + { + "start": 10680.48, + "end": 10688.52, + "probability": 0.9484 + }, + { + "start": 10688.64, + "end": 10689.56, + "probability": 0.6938 + }, + { + "start": 10690.42, + "end": 10691.17, + "probability": 0.9939 + }, + { + "start": 10691.33, + "end": 10693.23, + "probability": 0.9666 + }, + { + "start": 10694.54, + "end": 10694.64, + "probability": 0.2686 + }, + { + "start": 10694.66, + "end": 10697.94, + "probability": 0.9156 + }, + { + "start": 10699.18, + "end": 10701.68, + "probability": 0.6981 + }, + { + "start": 10702.58, + "end": 10704.76, + "probability": 0.8979 + }, + { + "start": 10704.88, + "end": 10708.42, + "probability": 0.9895 + }, + { + "start": 10708.84, + "end": 10712.06, + "probability": 0.9399 + }, + { + "start": 10712.12, + "end": 10712.82, + "probability": 0.606 + }, + { + "start": 10713.52, + "end": 10718.02, + "probability": 0.929 + }, + { + "start": 10718.52, + "end": 10722.22, + "probability": 0.9845 + }, + { + "start": 10722.22, + "end": 10726.54, + "probability": 0.986 + }, + { + "start": 10727.3, + "end": 10728.02, + "probability": 0.8514 + }, + { + "start": 10728.3, + "end": 10731.78, + "probability": 0.9384 + }, + { + "start": 10731.84, + "end": 10733.15, + "probability": 0.8397 + }, + { + "start": 10734.05, + "end": 10736.54, + "probability": 0.5533 + }, + { + "start": 10737.02, + "end": 10740.5, + "probability": 0.9072 + }, + { + "start": 10740.58, + "end": 10742.62, + "probability": 0.9117 + }, + { + "start": 10743.68, + "end": 10746.64, + "probability": 0.9629 + }, + { + "start": 10746.7, + "end": 10748.6, + "probability": 0.9863 + }, + { + "start": 10748.6, + "end": 10753.22, + "probability": 0.969 + }, + { + "start": 10754.42, + "end": 10756.4, + "probability": 0.8275 + }, + { + "start": 10756.4, + "end": 10761.46, + "probability": 0.9827 + }, + { + "start": 10762.16, + "end": 10766.48, + "probability": 0.9832 + }, + { + "start": 10766.48, + "end": 10771.32, + "probability": 0.9298 + }, + { + "start": 10771.64, + "end": 10772.96, + "probability": 0.4166 + }, + { + "start": 10773.38, + "end": 10777.04, + "probability": 0.928 + }, + { + "start": 10777.54, + "end": 10779.38, + "probability": 0.9496 + }, + { + "start": 10779.52, + "end": 10782.1, + "probability": 0.9959 + }, + { + "start": 10782.1, + "end": 10784.76, + "probability": 0.9979 + }, + { + "start": 10785.0, + "end": 10785.46, + "probability": 0.7699 + }, + { + "start": 10786.46, + "end": 10788.5, + "probability": 0.9772 + }, + { + "start": 10789.36, + "end": 10792.72, + "probability": 0.9755 + }, + { + "start": 10793.32, + "end": 10793.9, + "probability": 0.24 + }, + { + "start": 10794.44, + "end": 10797.08, + "probability": 0.8871 + }, + { + "start": 10797.86, + "end": 10798.4, + "probability": 0.5296 + }, + { + "start": 10798.62, + "end": 10799.44, + "probability": 0.844 + }, + { + "start": 10815.9, + "end": 10815.9, + "probability": 0.0051 + }, + { + "start": 10815.9, + "end": 10817.26, + "probability": 0.2012 + }, + { + "start": 10819.32, + "end": 10821.06, + "probability": 0.4852 + }, + { + "start": 10821.06, + "end": 10823.08, + "probability": 0.8027 + }, + { + "start": 10823.94, + "end": 10825.76, + "probability": 0.9924 + }, + { + "start": 10826.94, + "end": 10827.94, + "probability": 0.6256 + }, + { + "start": 10828.76, + "end": 10830.76, + "probability": 0.0346 + }, + { + "start": 10843.92, + "end": 10844.14, + "probability": 0.0923 + }, + { + "start": 10844.14, + "end": 10845.94, + "probability": 0.4497 + }, + { + "start": 10846.04, + "end": 10848.18, + "probability": 0.7046 + }, + { + "start": 10853.68, + "end": 10857.8, + "probability": 0.8337 + }, + { + "start": 10857.8, + "end": 10860.5, + "probability": 0.5929 + }, + { + "start": 10861.45, + "end": 10866.26, + "probability": 0.5365 + }, + { + "start": 10866.56, + "end": 10867.0, + "probability": 0.77 + }, + { + "start": 10868.88, + "end": 10871.32, + "probability": 0.8182 + }, + { + "start": 10872.14, + "end": 10876.12, + "probability": 0.9953 + }, + { + "start": 10876.42, + "end": 10878.52, + "probability": 0.995 + }, + { + "start": 10878.68, + "end": 10879.72, + "probability": 0.8938 + }, + { + "start": 10880.4, + "end": 10883.18, + "probability": 0.9854 + }, + { + "start": 10883.7, + "end": 10886.72, + "probability": 0.9926 + }, + { + "start": 10887.48, + "end": 10890.24, + "probability": 0.988 + }, + { + "start": 10890.74, + "end": 10891.44, + "probability": 0.6711 + }, + { + "start": 10891.96, + "end": 10895.4, + "probability": 0.999 + }, + { + "start": 10896.02, + "end": 10902.88, + "probability": 0.862 + }, + { + "start": 10902.88, + "end": 10908.76, + "probability": 0.9941 + }, + { + "start": 10909.76, + "end": 10911.44, + "probability": 0.8831 + }, + { + "start": 10911.96, + "end": 10913.0, + "probability": 0.9814 + }, + { + "start": 10913.16, + "end": 10914.74, + "probability": 0.9938 + }, + { + "start": 10914.82, + "end": 10915.72, + "probability": 0.9535 + }, + { + "start": 10917.12, + "end": 10918.74, + "probability": 0.8871 + }, + { + "start": 10919.14, + "end": 10920.58, + "probability": 0.9871 + }, + { + "start": 10921.34, + "end": 10924.66, + "probability": 0.9862 + }, + { + "start": 10925.5, + "end": 10929.28, + "probability": 0.9973 + }, + { + "start": 10929.98, + "end": 10930.26, + "probability": 0.7866 + }, + { + "start": 10931.26, + "end": 10934.74, + "probability": 0.9408 + }, + { + "start": 10935.48, + "end": 10937.56, + "probability": 0.4932 + }, + { + "start": 10938.18, + "end": 10940.34, + "probability": 0.9944 + }, + { + "start": 10940.48, + "end": 10941.98, + "probability": 0.8855 + }, + { + "start": 10942.12, + "end": 10942.8, + "probability": 0.7844 + }, + { + "start": 10943.3, + "end": 10945.48, + "probability": 0.9607 + }, + { + "start": 10945.56, + "end": 10946.44, + "probability": 0.8803 + }, + { + "start": 10946.92, + "end": 10952.34, + "probability": 0.9689 + }, + { + "start": 10953.16, + "end": 10954.56, + "probability": 0.9272 + }, + { + "start": 10955.78, + "end": 10957.74, + "probability": 0.8029 + }, + { + "start": 10958.8, + "end": 10960.26, + "probability": 0.8606 + }, + { + "start": 10961.34, + "end": 10963.96, + "probability": 0.9551 + }, + { + "start": 10964.1, + "end": 10968.18, + "probability": 0.8329 + }, + { + "start": 10968.86, + "end": 10970.32, + "probability": 0.3034 + }, + { + "start": 10970.84, + "end": 10976.08, + "probability": 0.9655 + }, + { + "start": 10976.5, + "end": 10977.67, + "probability": 0.4104 + }, + { + "start": 10978.88, + "end": 10980.74, + "probability": 0.5437 + }, + { + "start": 10982.78, + "end": 10983.2, + "probability": 0.7671 + }, + { + "start": 10983.38, + "end": 10984.01, + "probability": 0.6985 + }, + { + "start": 10984.18, + "end": 10986.8, + "probability": 0.7312 + }, + { + "start": 10987.36, + "end": 10989.0, + "probability": 0.8693 + }, + { + "start": 10993.5, + "end": 10995.76, + "probability": 0.9084 + }, + { + "start": 10996.36, + "end": 10997.96, + "probability": 0.713 + }, + { + "start": 10997.98, + "end": 10999.74, + "probability": 0.5176 + }, + { + "start": 11001.54, + "end": 11003.06, + "probability": 0.8469 + }, + { + "start": 11003.16, + "end": 11005.9, + "probability": 0.8713 + }, + { + "start": 11006.32, + "end": 11007.42, + "probability": 0.9673 + }, + { + "start": 11008.42, + "end": 11011.16, + "probability": 0.8142 + }, + { + "start": 11011.78, + "end": 11015.5, + "probability": 0.7498 + }, + { + "start": 11016.32, + "end": 11017.6, + "probability": 0.9799 + }, + { + "start": 11017.76, + "end": 11020.14, + "probability": 0.9714 + }, + { + "start": 11023.74, + "end": 11024.7, + "probability": 0.9055 + }, + { + "start": 11032.02, + "end": 11032.51, + "probability": 0.9268 + }, + { + "start": 11033.2, + "end": 11037.86, + "probability": 0.6141 + }, + { + "start": 11037.88, + "end": 11039.24, + "probability": 0.9929 + }, + { + "start": 11039.86, + "end": 11040.82, + "probability": 0.9886 + }, + { + "start": 11042.16, + "end": 11044.86, + "probability": 0.8102 + }, + { + "start": 11045.22, + "end": 11047.06, + "probability": 0.9902 + }, + { + "start": 11047.08, + "end": 11047.54, + "probability": 0.6957 + }, + { + "start": 11047.64, + "end": 11048.86, + "probability": 0.7998 + }, + { + "start": 11049.22, + "end": 11050.54, + "probability": 0.9692 + }, + { + "start": 11051.54, + "end": 11055.18, + "probability": 0.6294 + }, + { + "start": 11055.56, + "end": 11058.0, + "probability": 0.2445 + }, + { + "start": 11059.14, + "end": 11059.46, + "probability": 0.5492 + }, + { + "start": 11059.5, + "end": 11062.24, + "probability": 0.0159 + }, + { + "start": 11063.56, + "end": 11065.4, + "probability": 0.7562 + }, + { + "start": 11066.02, + "end": 11067.58, + "probability": 0.9839 + }, + { + "start": 11067.74, + "end": 11070.5, + "probability": 0.9937 + }, + { + "start": 11070.54, + "end": 11070.96, + "probability": 0.7903 + }, + { + "start": 11071.06, + "end": 11073.98, + "probability": 0.8887 + }, + { + "start": 11074.68, + "end": 11076.78, + "probability": 0.9895 + }, + { + "start": 11076.84, + "end": 11077.64, + "probability": 0.8192 + }, + { + "start": 11078.5, + "end": 11081.06, + "probability": 0.9674 + }, + { + "start": 11081.94, + "end": 11083.18, + "probability": 0.7119 + }, + { + "start": 11083.98, + "end": 11084.89, + "probability": 0.8679 + }, + { + "start": 11085.76, + "end": 11090.22, + "probability": 0.9385 + }, + { + "start": 11090.4, + "end": 11091.76, + "probability": 0.9985 + }, + { + "start": 11092.42, + "end": 11092.72, + "probability": 0.5912 + }, + { + "start": 11092.72, + "end": 11095.78, + "probability": 0.9972 + }, + { + "start": 11095.82, + "end": 11096.06, + "probability": 0.4815 + }, + { + "start": 11096.26, + "end": 11096.36, + "probability": 0.5416 + }, + { + "start": 11096.48, + "end": 11098.98, + "probability": 0.9688 + }, + { + "start": 11099.08, + "end": 11100.26, + "probability": 0.8916 + }, + { + "start": 11101.14, + "end": 11102.02, + "probability": 0.8123 + }, + { + "start": 11102.16, + "end": 11102.74, + "probability": 0.8534 + }, + { + "start": 11102.8, + "end": 11106.0, + "probability": 0.9757 + }, + { + "start": 11106.5, + "end": 11108.0, + "probability": 0.9961 + }, + { + "start": 11108.58, + "end": 11110.46, + "probability": 0.6867 + }, + { + "start": 11110.88, + "end": 11110.88, + "probability": 0.7001 + }, + { + "start": 11110.88, + "end": 11113.88, + "probability": 0.9889 + }, + { + "start": 11113.94, + "end": 11114.78, + "probability": 0.8986 + }, + { + "start": 11115.26, + "end": 11116.44, + "probability": 0.9189 + }, + { + "start": 11117.08, + "end": 11117.62, + "probability": 0.8859 + }, + { + "start": 11118.18, + "end": 11118.86, + "probability": 0.6785 + }, + { + "start": 11118.98, + "end": 11120.12, + "probability": 0.8808 + }, + { + "start": 11120.32, + "end": 11121.74, + "probability": 0.8131 + }, + { + "start": 11122.38, + "end": 11123.54, + "probability": 0.8536 + }, + { + "start": 11138.56, + "end": 11140.22, + "probability": 0.5582 + }, + { + "start": 11140.34, + "end": 11142.54, + "probability": 0.699 + }, + { + "start": 11143.12, + "end": 11145.52, + "probability": 0.8767 + }, + { + "start": 11147.8, + "end": 11149.76, + "probability": 0.988 + }, + { + "start": 11150.68, + "end": 11156.34, + "probability": 0.9573 + }, + { + "start": 11156.6, + "end": 11158.0, + "probability": 0.6376 + }, + { + "start": 11159.81, + "end": 11164.6, + "probability": 0.8188 + }, + { + "start": 11165.28, + "end": 11166.06, + "probability": 0.9224 + }, + { + "start": 11166.68, + "end": 11167.82, + "probability": 0.9761 + }, + { + "start": 11169.22, + "end": 11170.74, + "probability": 0.9302 + }, + { + "start": 11174.2, + "end": 11175.12, + "probability": 0.5012 + }, + { + "start": 11177.3, + "end": 11178.36, + "probability": 0.7782 + }, + { + "start": 11179.1, + "end": 11181.7, + "probability": 0.8231 + }, + { + "start": 11182.26, + "end": 11184.94, + "probability": 0.7665 + }, + { + "start": 11185.58, + "end": 11187.08, + "probability": 0.9423 + }, + { + "start": 11188.1, + "end": 11195.42, + "probability": 0.9255 + }, + { + "start": 11196.82, + "end": 11197.46, + "probability": 0.666 + }, + { + "start": 11199.84, + "end": 11202.12, + "probability": 0.9629 + }, + { + "start": 11203.28, + "end": 11207.32, + "probability": 0.9272 + }, + { + "start": 11209.36, + "end": 11214.9, + "probability": 0.9939 + }, + { + "start": 11215.72, + "end": 11217.72, + "probability": 0.8552 + }, + { + "start": 11218.64, + "end": 11219.58, + "probability": 0.9947 + }, + { + "start": 11223.2, + "end": 11226.6, + "probability": 0.8608 + }, + { + "start": 11227.28, + "end": 11228.08, + "probability": 0.8961 + }, + { + "start": 11228.64, + "end": 11233.62, + "probability": 0.8887 + }, + { + "start": 11234.4, + "end": 11235.36, + "probability": 0.9549 + }, + { + "start": 11236.98, + "end": 11240.64, + "probability": 0.9344 + }, + { + "start": 11241.26, + "end": 11249.6, + "probability": 0.9604 + }, + { + "start": 11250.42, + "end": 11256.42, + "probability": 0.9937 + }, + { + "start": 11257.34, + "end": 11257.84, + "probability": 0.5911 + }, + { + "start": 11257.9, + "end": 11260.24, + "probability": 0.8133 + }, + { + "start": 11260.34, + "end": 11262.74, + "probability": 0.9352 + }, + { + "start": 11263.52, + "end": 11264.26, + "probability": 0.7321 + }, + { + "start": 11264.34, + "end": 11264.92, + "probability": 0.9824 + }, + { + "start": 11265.06, + "end": 11266.06, + "probability": 0.9737 + }, + { + "start": 11266.2, + "end": 11267.3, + "probability": 0.9099 + }, + { + "start": 11267.82, + "end": 11271.12, + "probability": 0.9827 + }, + { + "start": 11272.18, + "end": 11273.14, + "probability": 0.61 + }, + { + "start": 11273.38, + "end": 11275.48, + "probability": 0.0002 + }, + { + "start": 11276.42, + "end": 11277.54, + "probability": 0.801 + }, + { + "start": 11278.54, + "end": 11280.06, + "probability": 0.9835 + }, + { + "start": 11280.2, + "end": 11281.14, + "probability": 0.9611 + }, + { + "start": 11281.16, + "end": 11282.02, + "probability": 0.7914 + }, + { + "start": 11282.6, + "end": 11285.8, + "probability": 0.9736 + }, + { + "start": 11286.86, + "end": 11291.0, + "probability": 0.9877 + }, + { + "start": 11291.6, + "end": 11296.4, + "probability": 0.9958 + }, + { + "start": 11296.76, + "end": 11300.86, + "probability": 0.9958 + }, + { + "start": 11301.88, + "end": 11304.86, + "probability": 0.9993 + }, + { + "start": 11304.86, + "end": 11309.74, + "probability": 0.9423 + }, + { + "start": 11310.54, + "end": 11313.72, + "probability": 0.9285 + }, + { + "start": 11314.44, + "end": 11317.82, + "probability": 0.9907 + }, + { + "start": 11318.96, + "end": 11319.9, + "probability": 0.8583 + }, + { + "start": 11321.64, + "end": 11325.96, + "probability": 0.9915 + }, + { + "start": 11326.78, + "end": 11328.98, + "probability": 0.964 + }, + { + "start": 11330.9, + "end": 11333.48, + "probability": 0.9049 + }, + { + "start": 11334.16, + "end": 11337.08, + "probability": 0.9963 + }, + { + "start": 11338.04, + "end": 11338.86, + "probability": 0.7207 + }, + { + "start": 11338.96, + "end": 11340.24, + "probability": 0.7571 + }, + { + "start": 11340.74, + "end": 11343.02, + "probability": 0.9163 + }, + { + "start": 11343.68, + "end": 11345.74, + "probability": 0.7306 + }, + { + "start": 11346.3, + "end": 11347.44, + "probability": 0.9119 + }, + { + "start": 11348.02, + "end": 11349.66, + "probability": 0.9878 + }, + { + "start": 11350.04, + "end": 11353.09, + "probability": 0.9946 + }, + { + "start": 11354.42, + "end": 11356.04, + "probability": 0.9577 + }, + { + "start": 11356.86, + "end": 11358.84, + "probability": 0.9928 + }, + { + "start": 11359.6, + "end": 11361.04, + "probability": 0.8314 + }, + { + "start": 11361.82, + "end": 11364.48, + "probability": 0.8302 + }, + { + "start": 11364.48, + "end": 11370.32, + "probability": 0.9771 + }, + { + "start": 11370.56, + "end": 11371.28, + "probability": 0.7218 + }, + { + "start": 11372.06, + "end": 11372.58, + "probability": 0.9508 + }, + { + "start": 11373.1, + "end": 11375.08, + "probability": 0.9846 + }, + { + "start": 11375.56, + "end": 11380.62, + "probability": 0.9945 + }, + { + "start": 11381.3, + "end": 11385.42, + "probability": 0.9969 + }, + { + "start": 11385.9, + "end": 11387.46, + "probability": 0.7474 + }, + { + "start": 11388.52, + "end": 11392.98, + "probability": 0.9942 + }, + { + "start": 11393.28, + "end": 11394.54, + "probability": 0.6021 + }, + { + "start": 11395.28, + "end": 11396.22, + "probability": 0.913 + }, + { + "start": 11396.92, + "end": 11397.2, + "probability": 0.5639 + }, + { + "start": 11397.88, + "end": 11398.8, + "probability": 0.8091 + }, + { + "start": 11399.32, + "end": 11403.52, + "probability": 0.9819 + }, + { + "start": 11404.2, + "end": 11405.72, + "probability": 0.6838 + }, + { + "start": 11407.24, + "end": 11409.76, + "probability": 0.7471 + }, + { + "start": 11410.42, + "end": 11411.96, + "probability": 0.8169 + }, + { + "start": 11413.0, + "end": 11415.86, + "probability": 0.829 + }, + { + "start": 11416.36, + "end": 11417.06, + "probability": 0.4262 + }, + { + "start": 11417.38, + "end": 11418.62, + "probability": 0.9845 + }, + { + "start": 11419.68, + "end": 11420.18, + "probability": 0.4532 + }, + { + "start": 11421.34, + "end": 11423.08, + "probability": 0.9697 + }, + { + "start": 11423.7, + "end": 11428.14, + "probability": 0.9041 + }, + { + "start": 11428.5, + "end": 11431.6, + "probability": 0.9941 + }, + { + "start": 11431.94, + "end": 11435.88, + "probability": 0.9749 + }, + { + "start": 11436.54, + "end": 11437.6, + "probability": 0.7637 + }, + { + "start": 11438.18, + "end": 11439.5, + "probability": 0.8439 + }, + { + "start": 11440.08, + "end": 11442.52, + "probability": 0.9692 + }, + { + "start": 11443.04, + "end": 11444.66, + "probability": 0.9361 + }, + { + "start": 11444.9, + "end": 11448.06, + "probability": 0.7843 + }, + { + "start": 11448.64, + "end": 11454.06, + "probability": 0.7974 + }, + { + "start": 11454.76, + "end": 11457.26, + "probability": 0.7854 + }, + { + "start": 11457.8, + "end": 11459.74, + "probability": 0.8122 + }, + { + "start": 11460.73, + "end": 11463.18, + "probability": 0.3728 + }, + { + "start": 11463.18, + "end": 11467.5, + "probability": 0.8981 + }, + { + "start": 11468.38, + "end": 11470.3, + "probability": 0.9715 + }, + { + "start": 11471.06, + "end": 11472.36, + "probability": 0.9759 + }, + { + "start": 11472.92, + "end": 11478.44, + "probability": 0.9864 + }, + { + "start": 11478.84, + "end": 11484.66, + "probability": 0.9908 + }, + { + "start": 11485.0, + "end": 11487.0, + "probability": 0.9898 + }, + { + "start": 11487.55, + "end": 11490.18, + "probability": 0.2672 + }, + { + "start": 11490.18, + "end": 11490.78, + "probability": 0.5314 + }, + { + "start": 11490.96, + "end": 11494.3, + "probability": 0.9397 + }, + { + "start": 11516.14, + "end": 11517.52, + "probability": 0.4448 + }, + { + "start": 11517.54, + "end": 11517.96, + "probability": 0.9135 + }, + { + "start": 11518.66, + "end": 11519.2, + "probability": 0.6862 + }, + { + "start": 11519.32, + "end": 11526.68, + "probability": 0.9712 + }, + { + "start": 11526.76, + "end": 11528.18, + "probability": 0.9888 + }, + { + "start": 11528.3, + "end": 11532.36, + "probability": 0.7901 + }, + { + "start": 11534.16, + "end": 11537.76, + "probability": 0.9913 + }, + { + "start": 11537.76, + "end": 11540.36, + "probability": 0.9891 + }, + { + "start": 11540.54, + "end": 11542.44, + "probability": 0.7359 + }, + { + "start": 11543.26, + "end": 11546.14, + "probability": 0.7598 + }, + { + "start": 11546.98, + "end": 11548.9, + "probability": 0.9844 + }, + { + "start": 11550.76, + "end": 11552.26, + "probability": 0.9902 + }, + { + "start": 11553.2, + "end": 11556.62, + "probability": 0.9262 + }, + { + "start": 11558.38, + "end": 11559.46, + "probability": 0.7648 + }, + { + "start": 11559.82, + "end": 11562.74, + "probability": 0.998 + }, + { + "start": 11563.5, + "end": 11565.5, + "probability": 0.9978 + }, + { + "start": 11567.12, + "end": 11567.22, + "probability": 0.9897 + }, + { + "start": 11568.06, + "end": 11568.44, + "probability": 0.6201 + }, + { + "start": 11569.4, + "end": 11572.0, + "probability": 0.9852 + }, + { + "start": 11572.82, + "end": 11574.54, + "probability": 0.9503 + }, + { + "start": 11575.32, + "end": 11577.08, + "probability": 0.8766 + }, + { + "start": 11577.98, + "end": 11582.7, + "probability": 0.9918 + }, + { + "start": 11583.48, + "end": 11584.1, + "probability": 0.9383 + }, + { + "start": 11584.28, + "end": 11585.22, + "probability": 0.5014 + }, + { + "start": 11585.92, + "end": 11588.84, + "probability": 0.9854 + }, + { + "start": 11589.86, + "end": 11591.12, + "probability": 0.9111 + }, + { + "start": 11592.32, + "end": 11594.52, + "probability": 0.9962 + }, + { + "start": 11595.54, + "end": 11598.17, + "probability": 0.9966 + }, + { + "start": 11599.16, + "end": 11603.98, + "probability": 0.9964 + }, + { + "start": 11604.96, + "end": 11606.18, + "probability": 0.7832 + }, + { + "start": 11607.98, + "end": 11610.94, + "probability": 0.9759 + }, + { + "start": 11611.12, + "end": 11611.78, + "probability": 0.3979 + }, + { + "start": 11611.94, + "end": 11615.48, + "probability": 0.674 + }, + { + "start": 11615.56, + "end": 11619.06, + "probability": 0.9521 + }, + { + "start": 11619.1, + "end": 11620.2, + "probability": 0.9608 + }, + { + "start": 11620.92, + "end": 11626.08, + "probability": 0.9707 + }, + { + "start": 11626.58, + "end": 11628.8, + "probability": 0.8073 + }, + { + "start": 11629.66, + "end": 11630.82, + "probability": 0.8807 + }, + { + "start": 11631.56, + "end": 11632.66, + "probability": 0.9263 + }, + { + "start": 11634.48, + "end": 11635.2, + "probability": 0.7395 + }, + { + "start": 11636.62, + "end": 11637.94, + "probability": 0.5833 + }, + { + "start": 11638.64, + "end": 11642.16, + "probability": 0.9473 + }, + { + "start": 11642.9, + "end": 11645.2, + "probability": 0.9954 + }, + { + "start": 11646.02, + "end": 11653.72, + "probability": 0.9927 + }, + { + "start": 11654.5, + "end": 11656.18, + "probability": 0.9785 + }, + { + "start": 11656.8, + "end": 11657.46, + "probability": 0.7168 + }, + { + "start": 11658.6, + "end": 11660.5, + "probability": 0.9672 + }, + { + "start": 11661.52, + "end": 11665.5, + "probability": 0.9944 + }, + { + "start": 11665.58, + "end": 11666.94, + "probability": 0.994 + }, + { + "start": 11667.14, + "end": 11669.58, + "probability": 0.9866 + }, + { + "start": 11670.12, + "end": 11672.77, + "probability": 0.9944 + }, + { + "start": 11673.62, + "end": 11678.08, + "probability": 0.962 + }, + { + "start": 11679.04, + "end": 11681.2, + "probability": 0.8541 + }, + { + "start": 11682.14, + "end": 11687.46, + "probability": 0.9087 + }, + { + "start": 11688.1, + "end": 11689.05, + "probability": 0.9922 + }, + { + "start": 11690.16, + "end": 11693.66, + "probability": 0.9384 + }, + { + "start": 11694.66, + "end": 11697.44, + "probability": 0.9661 + }, + { + "start": 11698.14, + "end": 11700.16, + "probability": 0.8332 + }, + { + "start": 11700.88, + "end": 11706.84, + "probability": 0.9684 + }, + { + "start": 11707.9, + "end": 11708.1, + "probability": 0.3742 + }, + { + "start": 11708.16, + "end": 11713.04, + "probability": 0.9125 + }, + { + "start": 11713.04, + "end": 11717.8, + "probability": 0.9944 + }, + { + "start": 11718.7, + "end": 11721.92, + "probability": 0.9987 + }, + { + "start": 11722.8, + "end": 11724.78, + "probability": 0.9984 + }, + { + "start": 11725.54, + "end": 11726.84, + "probability": 0.9941 + }, + { + "start": 11727.48, + "end": 11730.0, + "probability": 0.7697 + }, + { + "start": 11730.8, + "end": 11733.06, + "probability": 0.9845 + }, + { + "start": 11733.72, + "end": 11734.58, + "probability": 0.961 + }, + { + "start": 11735.32, + "end": 11736.94, + "probability": 0.9945 + }, + { + "start": 11738.26, + "end": 11740.56, + "probability": 0.916 + }, + { + "start": 11742.2, + "end": 11745.92, + "probability": 0.9939 + }, + { + "start": 11747.1, + "end": 11749.14, + "probability": 0.999 + }, + { + "start": 11750.26, + "end": 11751.52, + "probability": 0.7007 + }, + { + "start": 11752.16, + "end": 11753.4, + "probability": 0.9834 + }, + { + "start": 11753.58, + "end": 11754.08, + "probability": 0.6647 + }, + { + "start": 11754.22, + "end": 11756.3, + "probability": 0.9971 + }, + { + "start": 11757.02, + "end": 11758.12, + "probability": 0.9366 + }, + { + "start": 11758.92, + "end": 11760.24, + "probability": 0.9952 + }, + { + "start": 11761.0, + "end": 11761.98, + "probability": 0.7689 + }, + { + "start": 11762.16, + "end": 11763.72, + "probability": 0.9983 + }, + { + "start": 11763.78, + "end": 11766.22, + "probability": 0.9663 + }, + { + "start": 11766.86, + "end": 11770.54, + "probability": 0.9536 + }, + { + "start": 11771.42, + "end": 11773.08, + "probability": 0.999 + }, + { + "start": 11773.32, + "end": 11779.98, + "probability": 0.9152 + }, + { + "start": 11781.24, + "end": 11782.3, + "probability": 0.7095 + }, + { + "start": 11782.7, + "end": 11785.02, + "probability": 0.7421 + }, + { + "start": 11785.36, + "end": 11790.62, + "probability": 0.9932 + }, + { + "start": 11792.18, + "end": 11793.6, + "probability": 0.8463 + }, + { + "start": 11794.32, + "end": 11797.66, + "probability": 0.9976 + }, + { + "start": 11797.84, + "end": 11798.29, + "probability": 0.2794 + }, + { + "start": 11799.88, + "end": 11803.68, + "probability": 0.9668 + }, + { + "start": 11806.26, + "end": 11807.38, + "probability": 0.9677 + }, + { + "start": 11808.26, + "end": 11811.0, + "probability": 0.9977 + }, + { + "start": 11811.08, + "end": 11812.87, + "probability": 0.9887 + }, + { + "start": 11813.82, + "end": 11815.28, + "probability": 0.9346 + }, + { + "start": 11816.68, + "end": 11818.98, + "probability": 0.9646 + }, + { + "start": 11819.52, + "end": 11822.32, + "probability": 0.7239 + }, + { + "start": 11822.48, + "end": 11828.88, + "probability": 0.7762 + }, + { + "start": 11829.64, + "end": 11832.34, + "probability": 0.8846 + }, + { + "start": 11832.96, + "end": 11834.8, + "probability": 0.5745 + }, + { + "start": 11836.4, + "end": 11839.22, + "probability": 0.8487 + }, + { + "start": 11840.46, + "end": 11845.44, + "probability": 0.9869 + }, + { + "start": 11845.56, + "end": 11846.21, + "probability": 0.9034 + }, + { + "start": 11847.06, + "end": 11849.66, + "probability": 0.9277 + }, + { + "start": 11850.2, + "end": 11853.42, + "probability": 0.6523 + }, + { + "start": 11854.48, + "end": 11856.2, + "probability": 0.9912 + }, + { + "start": 11856.26, + "end": 11857.06, + "probability": 0.7687 + }, + { + "start": 11857.2, + "end": 11858.8, + "probability": 0.7668 + }, + { + "start": 11859.26, + "end": 11859.84, + "probability": 0.7586 + }, + { + "start": 11860.16, + "end": 11861.9, + "probability": 0.4418 + }, + { + "start": 11862.08, + "end": 11863.54, + "probability": 0.8472 + }, + { + "start": 11865.42, + "end": 11865.68, + "probability": 0.944 + }, + { + "start": 11866.06, + "end": 11866.06, + "probability": 0.7809 + }, + { + "start": 11866.1, + "end": 11866.2, + "probability": 0.4825 + }, + { + "start": 11866.28, + "end": 11868.46, + "probability": 0.9407 + }, + { + "start": 11869.2, + "end": 11870.36, + "probability": 0.8092 + }, + { + "start": 11871.11, + "end": 11874.22, + "probability": 0.9854 + }, + { + "start": 11874.22, + "end": 11877.92, + "probability": 0.797 + }, + { + "start": 11878.08, + "end": 11879.56, + "probability": 0.5943 + }, + { + "start": 11880.14, + "end": 11882.38, + "probability": 0.7144 + }, + { + "start": 11882.54, + "end": 11883.98, + "probability": 0.8704 + }, + { + "start": 11887.88, + "end": 11890.08, + "probability": 0.002 + }, + { + "start": 11901.66, + "end": 11901.78, + "probability": 0.0361 + }, + { + "start": 11901.78, + "end": 11905.22, + "probability": 0.8801 + }, + { + "start": 11905.3, + "end": 11906.0, + "probability": 0.8584 + }, + { + "start": 11906.02, + "end": 11906.56, + "probability": 0.6822 + }, + { + "start": 11906.72, + "end": 11908.26, + "probability": 0.9951 + }, + { + "start": 11908.64, + "end": 11909.64, + "probability": 0.7963 + }, + { + "start": 11909.82, + "end": 11910.2, + "probability": 0.8184 + }, + { + "start": 11910.24, + "end": 11911.12, + "probability": 0.7089 + }, + { + "start": 11912.5, + "end": 11913.76, + "probability": 0.7456 + }, + { + "start": 11915.08, + "end": 11915.16, + "probability": 0.0218 + }, + { + "start": 11923.38, + "end": 11923.83, + "probability": 0.0149 + }, + { + "start": 11925.66, + "end": 11929.9, + "probability": 0.0116 + }, + { + "start": 11930.58, + "end": 11930.58, + "probability": 0.0448 + }, + { + "start": 11930.58, + "end": 11932.86, + "probability": 0.6258 + }, + { + "start": 11933.0, + "end": 11934.88, + "probability": 0.9347 + }, + { + "start": 11935.02, + "end": 11937.74, + "probability": 0.9972 + }, + { + "start": 11938.12, + "end": 11939.0, + "probability": 0.7574 + }, + { + "start": 11939.6, + "end": 11939.78, + "probability": 0.319 + }, + { + "start": 11939.94, + "end": 11939.94, + "probability": 0.1526 + }, + { + "start": 11939.94, + "end": 11940.18, + "probability": 0.6519 + }, + { + "start": 11940.24, + "end": 11941.16, + "probability": 0.3466 + }, + { + "start": 11941.26, + "end": 11941.3, + "probability": 0.2884 + }, + { + "start": 11941.3, + "end": 11941.84, + "probability": 0.941 + }, + { + "start": 11941.92, + "end": 11945.28, + "probability": 0.902 + }, + { + "start": 11945.98, + "end": 11947.1, + "probability": 0.5001 + }, + { + "start": 11947.2, + "end": 11948.66, + "probability": 0.0494 + }, + { + "start": 11948.76, + "end": 11949.8, + "probability": 0.9094 + }, + { + "start": 11950.26, + "end": 11954.0, + "probability": 0.8898 + }, + { + "start": 11955.42, + "end": 11957.24, + "probability": 0.6927 + }, + { + "start": 11958.1, + "end": 11960.96, + "probability": 0.9722 + }, + { + "start": 11961.82, + "end": 11964.3, + "probability": 0.9854 + }, + { + "start": 11965.44, + "end": 11968.28, + "probability": 0.7721 + }, + { + "start": 11969.28, + "end": 11969.73, + "probability": 0.1804 + }, + { + "start": 11970.16, + "end": 11973.7, + "probability": 0.2374 + }, + { + "start": 11973.82, + "end": 11974.62, + "probability": 0.7152 + }, + { + "start": 11974.74, + "end": 11979.84, + "probability": 0.9848 + }, + { + "start": 11979.96, + "end": 11980.92, + "probability": 0.7323 + }, + { + "start": 11981.66, + "end": 11982.28, + "probability": 0.8034 + }, + { + "start": 11982.56, + "end": 11984.4, + "probability": 0.9635 + }, + { + "start": 11984.56, + "end": 11988.42, + "probability": 0.9443 + }, + { + "start": 11988.52, + "end": 11992.56, + "probability": 0.9814 + }, + { + "start": 11993.24, + "end": 11994.4, + "probability": 0.8705 + }, + { + "start": 11994.48, + "end": 11996.54, + "probability": 0.8682 + }, + { + "start": 11997.34, + "end": 11998.48, + "probability": 0.9824 + }, + { + "start": 11998.62, + "end": 11999.78, + "probability": 0.9533 + }, + { + "start": 11999.88, + "end": 12000.94, + "probability": 0.9081 + }, + { + "start": 12001.54, + "end": 12002.7, + "probability": 0.3058 + }, + { + "start": 12002.76, + "end": 12006.79, + "probability": 0.6221 + }, + { + "start": 12007.16, + "end": 12008.36, + "probability": 0.7584 + }, + { + "start": 12009.34, + "end": 12015.92, + "probability": 0.9854 + }, + { + "start": 12015.92, + "end": 12020.02, + "probability": 0.9937 + }, + { + "start": 12020.26, + "end": 12024.22, + "probability": 0.7306 + }, + { + "start": 12024.26, + "end": 12025.14, + "probability": 0.4422 + }, + { + "start": 12026.06, + "end": 12027.24, + "probability": 0.9952 + }, + { + "start": 12027.38, + "end": 12028.48, + "probability": 0.9306 + }, + { + "start": 12029.34, + "end": 12030.42, + "probability": 0.9678 + }, + { + "start": 12030.54, + "end": 12031.54, + "probability": 0.9771 + }, + { + "start": 12031.64, + "end": 12036.4, + "probability": 0.9928 + }, + { + "start": 12036.44, + "end": 12037.6, + "probability": 0.5147 + }, + { + "start": 12038.32, + "end": 12038.98, + "probability": 0.9263 + }, + { + "start": 12039.12, + "end": 12040.66, + "probability": 0.9277 + }, + { + "start": 12040.74, + "end": 12041.96, + "probability": 0.8936 + }, + { + "start": 12042.5, + "end": 12043.22, + "probability": 0.9294 + }, + { + "start": 12043.4, + "end": 12045.58, + "probability": 0.9928 + }, + { + "start": 12046.08, + "end": 12049.0, + "probability": 0.9563 + }, + { + "start": 12049.3, + "end": 12049.64, + "probability": 0.605 + }, + { + "start": 12050.2, + "end": 12051.86, + "probability": 0.7271 + }, + { + "start": 12051.96, + "end": 12055.08, + "probability": 0.9927 + }, + { + "start": 12056.16, + "end": 12057.24, + "probability": 0.9973 + }, + { + "start": 12057.26, + "end": 12059.86, + "probability": 0.8096 + }, + { + "start": 12060.74, + "end": 12063.68, + "probability": 0.9539 + }, + { + "start": 12064.5, + "end": 12066.02, + "probability": 0.9483 + }, + { + "start": 12066.7, + "end": 12069.94, + "probability": 0.9922 + }, + { + "start": 12070.04, + "end": 12075.64, + "probability": 0.9971 + }, + { + "start": 12075.64, + "end": 12081.48, + "probability": 0.9927 + }, + { + "start": 12084.0, + "end": 12087.34, + "probability": 0.7386 + }, + { + "start": 12088.2, + "end": 12091.62, + "probability": 0.667 + }, + { + "start": 12092.38, + "end": 12094.06, + "probability": 0.8599 + }, + { + "start": 12094.58, + "end": 12096.52, + "probability": 0.9539 + }, + { + "start": 12096.6, + "end": 12100.74, + "probability": 0.971 + }, + { + "start": 12100.88, + "end": 12102.14, + "probability": 0.8736 + }, + { + "start": 12117.88, + "end": 12121.42, + "probability": 0.4826 + }, + { + "start": 12121.48, + "end": 12123.8, + "probability": 0.9382 + }, + { + "start": 12125.64, + "end": 12129.1, + "probability": 0.7771 + }, + { + "start": 12129.86, + "end": 12134.22, + "probability": 0.898 + }, + { + "start": 12134.62, + "end": 12136.64, + "probability": 0.9329 + }, + { + "start": 12137.14, + "end": 12141.8, + "probability": 0.7576 + }, + { + "start": 12141.8, + "end": 12141.8, + "probability": 0.2423 + }, + { + "start": 12141.8, + "end": 12141.8, + "probability": 0.4305 + }, + { + "start": 12141.8, + "end": 12144.14, + "probability": 0.8849 + }, + { + "start": 12145.48, + "end": 12149.86, + "probability": 0.7488 + }, + { + "start": 12151.14, + "end": 12151.86, + "probability": 0.8738 + }, + { + "start": 12153.58, + "end": 12158.88, + "probability": 0.8567 + }, + { + "start": 12158.9, + "end": 12160.96, + "probability": 0.5692 + }, + { + "start": 12161.94, + "end": 12163.48, + "probability": 0.8849 + }, + { + "start": 12163.64, + "end": 12165.72, + "probability": 0.9693 + }, + { + "start": 12165.88, + "end": 12166.68, + "probability": 0.9196 + }, + { + "start": 12167.8, + "end": 12170.92, + "probability": 0.9703 + }, + { + "start": 12172.06, + "end": 12172.2, + "probability": 0.5012 + }, + { + "start": 12172.32, + "end": 12173.48, + "probability": 0.9031 + }, + { + "start": 12173.9, + "end": 12177.62, + "probability": 0.9456 + }, + { + "start": 12177.92, + "end": 12178.74, + "probability": 0.7923 + }, + { + "start": 12179.44, + "end": 12180.54, + "probability": 0.949 + }, + { + "start": 12181.64, + "end": 12184.62, + "probability": 0.9653 + }, + { + "start": 12185.4, + "end": 12189.74, + "probability": 0.9678 + }, + { + "start": 12190.0, + "end": 12192.18, + "probability": 0.9575 + }, + { + "start": 12193.54, + "end": 12196.22, + "probability": 0.9648 + }, + { + "start": 12196.88, + "end": 12200.3, + "probability": 0.9462 + }, + { + "start": 12201.38, + "end": 12206.52, + "probability": 0.9156 + }, + { + "start": 12207.72, + "end": 12208.64, + "probability": 0.6603 + }, + { + "start": 12209.28, + "end": 12211.12, + "probability": 0.9312 + }, + { + "start": 12212.04, + "end": 12217.42, + "probability": 0.9839 + }, + { + "start": 12218.14, + "end": 12221.18, + "probability": 0.9948 + }, + { + "start": 12222.06, + "end": 12226.96, + "probability": 0.9658 + }, + { + "start": 12227.7, + "end": 12230.32, + "probability": 0.9312 + }, + { + "start": 12231.06, + "end": 12240.16, + "probability": 0.8758 + }, + { + "start": 12240.22, + "end": 12241.69, + "probability": 0.8359 + }, + { + "start": 12242.56, + "end": 12243.0, + "probability": 0.8932 + }, + { + "start": 12243.76, + "end": 12244.13, + "probability": 0.8676 + }, + { + "start": 12244.22, + "end": 12245.09, + "probability": 0.9873 + }, + { + "start": 12245.44, + "end": 12245.79, + "probability": 0.4556 + }, + { + "start": 12246.16, + "end": 12247.56, + "probability": 0.8842 + }, + { + "start": 12248.4, + "end": 12249.45, + "probability": 0.8958 + }, + { + "start": 12250.6, + "end": 12252.42, + "probability": 0.9515 + }, + { + "start": 12252.94, + "end": 12255.1, + "probability": 0.7607 + }, + { + "start": 12255.22, + "end": 12255.68, + "probability": 0.386 + }, + { + "start": 12256.2, + "end": 12257.6, + "probability": 0.74 + }, + { + "start": 12257.76, + "end": 12258.92, + "probability": 0.7179 + }, + { + "start": 12259.9, + "end": 12263.2, + "probability": 0.7724 + }, + { + "start": 12263.9, + "end": 12266.66, + "probability": 0.9507 + }, + { + "start": 12266.74, + "end": 12268.74, + "probability": 0.6813 + }, + { + "start": 12269.18, + "end": 12270.56, + "probability": 0.7425 + }, + { + "start": 12270.64, + "end": 12271.32, + "probability": 0.7973 + }, + { + "start": 12271.94, + "end": 12277.98, + "probability": 0.9787 + }, + { + "start": 12280.72, + "end": 12282.62, + "probability": 0.3474 + }, + { + "start": 12282.82, + "end": 12284.02, + "probability": 0.727 + }, + { + "start": 12285.48, + "end": 12286.11, + "probability": 0.8745 + }, + { + "start": 12287.12, + "end": 12289.12, + "probability": 0.8893 + }, + { + "start": 12289.54, + "end": 12293.2, + "probability": 0.0196 + }, + { + "start": 12294.04, + "end": 12298.28, + "probability": 0.5905 + }, + { + "start": 12298.98, + "end": 12300.66, + "probability": 0.0197 + }, + { + "start": 12301.34, + "end": 12301.42, + "probability": 0.4125 + }, + { + "start": 12301.42, + "end": 12305.3, + "probability": 0.3136 + }, + { + "start": 12307.0, + "end": 12308.22, + "probability": 0.0201 + }, + { + "start": 12308.22, + "end": 12310.96, + "probability": 0.6508 + }, + { + "start": 12311.64, + "end": 12314.42, + "probability": 0.7737 + }, + { + "start": 12315.1, + "end": 12317.2, + "probability": 0.789 + }, + { + "start": 12318.44, + "end": 12324.04, + "probability": 0.9797 + }, + { + "start": 12324.14, + "end": 12326.52, + "probability": 0.8812 + }, + { + "start": 12326.68, + "end": 12330.16, + "probability": 0.8229 + }, + { + "start": 12332.18, + "end": 12333.26, + "probability": 0.8232 + }, + { + "start": 12333.34, + "end": 12333.62, + "probability": 0.5123 + }, + { + "start": 12333.74, + "end": 12336.18, + "probability": 0.9764 + }, + { + "start": 12336.9, + "end": 12340.82, + "probability": 0.9974 + }, + { + "start": 12340.88, + "end": 12341.28, + "probability": 0.7307 + }, + { + "start": 12342.14, + "end": 12342.7, + "probability": 0.3907 + }, + { + "start": 12343.42, + "end": 12344.08, + "probability": 0.8838 + }, + { + "start": 12344.24, + "end": 12344.94, + "probability": 0.6169 + }, + { + "start": 12345.02, + "end": 12346.04, + "probability": 0.8129 + }, + { + "start": 12346.5, + "end": 12348.58, + "probability": 0.8784 + }, + { + "start": 12349.64, + "end": 12352.94, + "probability": 0.9746 + }, + { + "start": 12353.7, + "end": 12356.1, + "probability": 0.925 + }, + { + "start": 12356.58, + "end": 12363.94, + "probability": 0.9715 + }, + { + "start": 12364.0, + "end": 12365.22, + "probability": 0.937 + }, + { + "start": 12365.3, + "end": 12367.18, + "probability": 0.9832 + }, + { + "start": 12367.24, + "end": 12370.6, + "probability": 0.9702 + }, + { + "start": 12370.84, + "end": 12372.86, + "probability": 0.2413 + }, + { + "start": 12372.86, + "end": 12373.92, + "probability": 0.7561 + }, + { + "start": 12374.16, + "end": 12376.58, + "probability": 0.7244 + }, + { + "start": 12376.66, + "end": 12377.09, + "probability": 0.8918 + }, + { + "start": 12377.26, + "end": 12378.36, + "probability": 0.8207 + }, + { + "start": 12379.38, + "end": 12383.44, + "probability": 0.9902 + }, + { + "start": 12384.3, + "end": 12387.56, + "probability": 0.9974 + }, + { + "start": 12387.7, + "end": 12389.48, + "probability": 0.8504 + }, + { + "start": 12389.6, + "end": 12392.48, + "probability": 0.9194 + }, + { + "start": 12392.54, + "end": 12393.18, + "probability": 0.8624 + }, + { + "start": 12394.2, + "end": 12395.42, + "probability": 0.9967 + }, + { + "start": 12396.16, + "end": 12398.1, + "probability": 0.9977 + }, + { + "start": 12398.16, + "end": 12398.66, + "probability": 0.8816 + }, + { + "start": 12398.8, + "end": 12401.64, + "probability": 0.8599 + }, + { + "start": 12403.4, + "end": 12404.38, + "probability": 0.5563 + }, + { + "start": 12406.52, + "end": 12410.3, + "probability": 0.4476 + }, + { + "start": 12410.36, + "end": 12412.22, + "probability": 0.6367 + }, + { + "start": 12412.88, + "end": 12422.56, + "probability": 0.5798 + }, + { + "start": 12423.54, + "end": 12426.32, + "probability": 0.9606 + }, + { + "start": 12427.2, + "end": 12430.18, + "probability": 0.696 + }, + { + "start": 12431.06, + "end": 12432.46, + "probability": 0.9907 + }, + { + "start": 12432.78, + "end": 12436.98, + "probability": 0.9467 + }, + { + "start": 12437.42, + "end": 12441.6, + "probability": 0.9889 + }, + { + "start": 12441.72, + "end": 12444.6, + "probability": 0.9686 + }, + { + "start": 12445.22, + "end": 12448.46, + "probability": 0.8136 + }, + { + "start": 12449.44, + "end": 12452.28, + "probability": 0.969 + }, + { + "start": 12452.7, + "end": 12453.5, + "probability": 0.967 + }, + { + "start": 12453.96, + "end": 12455.92, + "probability": 0.9279 + }, + { + "start": 12456.28, + "end": 12457.08, + "probability": 0.7676 + }, + { + "start": 12457.16, + "end": 12458.46, + "probability": 0.9194 + }, + { + "start": 12459.0, + "end": 12460.76, + "probability": 0.8307 + }, + { + "start": 12460.82, + "end": 12464.6, + "probability": 0.9934 + }, + { + "start": 12464.68, + "end": 12465.1, + "probability": 0.8609 + }, + { + "start": 12466.5, + "end": 12468.77, + "probability": 0.713 + }, + { + "start": 12469.28, + "end": 12472.14, + "probability": 0.9746 + }, + { + "start": 12472.5, + "end": 12472.8, + "probability": 0.9612 + }, + { + "start": 12473.32, + "end": 12476.12, + "probability": 0.7404 + }, + { + "start": 12477.22, + "end": 12477.94, + "probability": 0.8708 + }, + { + "start": 12478.58, + "end": 12480.22, + "probability": 0.6946 + }, + { + "start": 12481.22, + "end": 12482.66, + "probability": 0.7073 + }, + { + "start": 12495.14, + "end": 12498.9, + "probability": 0.6576 + }, + { + "start": 12500.24, + "end": 12502.88, + "probability": 0.9402 + }, + { + "start": 12503.02, + "end": 12504.02, + "probability": 0.9504 + }, + { + "start": 12504.1, + "end": 12505.5, + "probability": 0.9867 + }, + { + "start": 12505.58, + "end": 12508.7, + "probability": 0.9924 + }, + { + "start": 12508.88, + "end": 12510.84, + "probability": 0.9701 + }, + { + "start": 12511.76, + "end": 12512.55, + "probability": 0.6879 + }, + { + "start": 12513.18, + "end": 12514.22, + "probability": 0.8326 + }, + { + "start": 12514.64, + "end": 12518.72, + "probability": 0.9675 + }, + { + "start": 12519.34, + "end": 12522.24, + "probability": 0.9927 + }, + { + "start": 12522.42, + "end": 12524.06, + "probability": 0.9791 + }, + { + "start": 12524.6, + "end": 12526.28, + "probability": 0.9988 + }, + { + "start": 12526.92, + "end": 12527.28, + "probability": 0.3886 + }, + { + "start": 12527.9, + "end": 12531.5, + "probability": 0.9415 + }, + { + "start": 12532.04, + "end": 12534.86, + "probability": 0.9929 + }, + { + "start": 12535.4, + "end": 12536.76, + "probability": 0.7933 + }, + { + "start": 12536.82, + "end": 12538.82, + "probability": 0.9907 + }, + { + "start": 12539.3, + "end": 12543.36, + "probability": 0.8906 + }, + { + "start": 12543.42, + "end": 12545.42, + "probability": 0.4273 + }, + { + "start": 12546.1, + "end": 12550.06, + "probability": 0.9838 + }, + { + "start": 12550.42, + "end": 12552.84, + "probability": 0.9049 + }, + { + "start": 12553.74, + "end": 12557.14, + "probability": 0.833 + }, + { + "start": 12558.42, + "end": 12560.24, + "probability": 0.9961 + }, + { + "start": 12560.92, + "end": 12565.26, + "probability": 0.9937 + }, + { + "start": 12565.98, + "end": 12568.44, + "probability": 0.9987 + }, + { + "start": 12568.52, + "end": 12571.54, + "probability": 0.9979 + }, + { + "start": 12572.02, + "end": 12572.52, + "probability": 0.6177 + }, + { + "start": 12572.62, + "end": 12575.22, + "probability": 0.9917 + }, + { + "start": 12576.0, + "end": 12578.64, + "probability": 0.9775 + }, + { + "start": 12578.82, + "end": 12580.91, + "probability": 0.9951 + }, + { + "start": 12581.62, + "end": 12582.94, + "probability": 0.8721 + }, + { + "start": 12582.96, + "end": 12584.28, + "probability": 0.8453 + }, + { + "start": 12584.78, + "end": 12586.64, + "probability": 0.883 + }, + { + "start": 12586.72, + "end": 12588.4, + "probability": 0.9581 + }, + { + "start": 12588.82, + "end": 12590.4, + "probability": 0.9911 + }, + { + "start": 12591.2, + "end": 12593.5, + "probability": 0.9173 + }, + { + "start": 12593.66, + "end": 12596.06, + "probability": 0.9983 + }, + { + "start": 12596.38, + "end": 12598.94, + "probability": 0.9683 + }, + { + "start": 12598.94, + "end": 12601.8, + "probability": 0.9552 + }, + { + "start": 12602.38, + "end": 12606.56, + "probability": 0.9779 + }, + { + "start": 12607.02, + "end": 12608.7, + "probability": 0.9591 + }, + { + "start": 12609.22, + "end": 12609.86, + "probability": 0.5616 + }, + { + "start": 12609.9, + "end": 12611.18, + "probability": 0.9628 + }, + { + "start": 12611.54, + "end": 12614.0, + "probability": 0.9774 + }, + { + "start": 12614.08, + "end": 12614.52, + "probability": 0.8437 + }, + { + "start": 12615.5, + "end": 12617.06, + "probability": 0.7148 + }, + { + "start": 12617.1, + "end": 12618.36, + "probability": 0.9951 + }, + { + "start": 12619.56, + "end": 12619.84, + "probability": 0.6478 + }, + { + "start": 12631.84, + "end": 12631.94, + "probability": 0.2652 + }, + { + "start": 12631.94, + "end": 12633.29, + "probability": 0.5635 + }, + { + "start": 12633.3, + "end": 12633.92, + "probability": 0.865 + }, + { + "start": 12634.28, + "end": 12634.42, + "probability": 0.681 + }, + { + "start": 12638.48, + "end": 12639.0, + "probability": 0.1534 + }, + { + "start": 12639.04, + "end": 12640.06, + "probability": 0.6756 + }, + { + "start": 12640.46, + "end": 12644.14, + "probability": 0.9756 + }, + { + "start": 12645.12, + "end": 12647.7, + "probability": 0.9824 + }, + { + "start": 12647.84, + "end": 12649.32, + "probability": 0.8328 + }, + { + "start": 12650.26, + "end": 12654.14, + "probability": 0.9575 + }, + { + "start": 12654.4, + "end": 12655.64, + "probability": 0.7323 + }, + { + "start": 12657.66, + "end": 12659.54, + "probability": 0.6419 + }, + { + "start": 12659.66, + "end": 12665.3, + "probability": 0.9179 + }, + { + "start": 12666.52, + "end": 12667.56, + "probability": 0.981 + }, + { + "start": 12667.74, + "end": 12668.28, + "probability": 0.7773 + }, + { + "start": 12668.32, + "end": 12669.57, + "probability": 0.9893 + }, + { + "start": 12670.76, + "end": 12674.14, + "probability": 0.9902 + }, + { + "start": 12674.86, + "end": 12677.18, + "probability": 0.6492 + }, + { + "start": 12677.86, + "end": 12681.84, + "probability": 0.9916 + }, + { + "start": 12681.88, + "end": 12684.34, + "probability": 0.9922 + }, + { + "start": 12684.7, + "end": 12685.54, + "probability": 0.6775 + }, + { + "start": 12685.62, + "end": 12689.56, + "probability": 0.9915 + }, + { + "start": 12690.14, + "end": 12690.46, + "probability": 0.8582 + }, + { + "start": 12691.34, + "end": 12693.58, + "probability": 0.9769 + }, + { + "start": 12694.1, + "end": 12697.78, + "probability": 0.9951 + }, + { + "start": 12698.36, + "end": 12699.3, + "probability": 0.2468 + }, + { + "start": 12702.3, + "end": 12703.96, + "probability": 0.7376 + }, + { + "start": 12704.46, + "end": 12707.64, + "probability": 0.931 + }, + { + "start": 12708.12, + "end": 12711.32, + "probability": 0.9766 + }, + { + "start": 12712.3, + "end": 12713.34, + "probability": 0.9365 + }, + { + "start": 12714.78, + "end": 12716.54, + "probability": 0.9546 + }, + { + "start": 12716.66, + "end": 12718.06, + "probability": 0.9758 + }, + { + "start": 12718.48, + "end": 12723.38, + "probability": 0.9918 + }, + { + "start": 12724.08, + "end": 12727.32, + "probability": 0.825 + }, + { + "start": 12727.42, + "end": 12730.14, + "probability": 0.9553 + }, + { + "start": 12730.82, + "end": 12735.74, + "probability": 0.9966 + }, + { + "start": 12736.18, + "end": 12737.48, + "probability": 0.9896 + }, + { + "start": 12737.66, + "end": 12739.74, + "probability": 0.8673 + }, + { + "start": 12739.8, + "end": 12740.9, + "probability": 0.8254 + }, + { + "start": 12741.3, + "end": 12743.48, + "probability": 0.958 + }, + { + "start": 12743.96, + "end": 12744.44, + "probability": 0.7301 + }, + { + "start": 12744.8, + "end": 12747.32, + "probability": 0.9943 + }, + { + "start": 12748.34, + "end": 12748.8, + "probability": 0.7826 + }, + { + "start": 12749.74, + "end": 12750.06, + "probability": 0.0076 + }, + { + "start": 12750.06, + "end": 12753.44, + "probability": 0.9959 + }, + { + "start": 12753.44, + "end": 12756.4, + "probability": 0.9996 + }, + { + "start": 12757.2, + "end": 12759.68, + "probability": 0.8102 + }, + { + "start": 12760.26, + "end": 12765.22, + "probability": 0.9932 + }, + { + "start": 12765.28, + "end": 12766.71, + "probability": 0.9373 + }, + { + "start": 12767.44, + "end": 12768.88, + "probability": 0.9941 + }, + { + "start": 12770.72, + "end": 12778.86, + "probability": 0.8059 + }, + { + "start": 12779.64, + "end": 12783.0, + "probability": 0.9933 + }, + { + "start": 12783.32, + "end": 12786.22, + "probability": 0.9824 + }, + { + "start": 12786.66, + "end": 12791.44, + "probability": 0.9956 + }, + { + "start": 12792.24, + "end": 12793.38, + "probability": 0.9533 + }, + { + "start": 12793.94, + "end": 12796.22, + "probability": 0.9883 + }, + { + "start": 12797.06, + "end": 12799.12, + "probability": 0.9662 + }, + { + "start": 12800.36, + "end": 12803.16, + "probability": 0.5362 + }, + { + "start": 12804.54, + "end": 12806.62, + "probability": 0.9395 + }, + { + "start": 12807.24, + "end": 12808.24, + "probability": 0.6616 + }, + { + "start": 12808.6, + "end": 12812.92, + "probability": 0.9023 + }, + { + "start": 12813.81, + "end": 12817.84, + "probability": 0.8663 + }, + { + "start": 12818.42, + "end": 12820.1, + "probability": 0.9489 + }, + { + "start": 12821.52, + "end": 12825.06, + "probability": 0.6728 + }, + { + "start": 12825.58, + "end": 12826.9, + "probability": 0.9951 + }, + { + "start": 12827.46, + "end": 12829.86, + "probability": 0.9756 + }, + { + "start": 12829.94, + "end": 12834.34, + "probability": 0.9848 + }, + { + "start": 12834.78, + "end": 12835.8, + "probability": 0.9624 + }, + { + "start": 12836.0, + "end": 12839.98, + "probability": 0.9713 + }, + { + "start": 12839.98, + "end": 12843.94, + "probability": 0.9964 + }, + { + "start": 12844.56, + "end": 12847.56, + "probability": 0.7656 + }, + { + "start": 12848.28, + "end": 12850.72, + "probability": 0.9485 + }, + { + "start": 12851.12, + "end": 12852.06, + "probability": 0.9756 + }, + { + "start": 12852.24, + "end": 12854.76, + "probability": 0.988 + }, + { + "start": 12854.88, + "end": 12856.52, + "probability": 0.8873 + }, + { + "start": 12857.1, + "end": 12858.7, + "probability": 0.8007 + }, + { + "start": 12859.22, + "end": 12860.68, + "probability": 0.8068 + }, + { + "start": 12860.82, + "end": 12866.28, + "probability": 0.9662 + }, + { + "start": 12866.72, + "end": 12867.36, + "probability": 0.8366 + }, + { + "start": 12867.92, + "end": 12871.09, + "probability": 0.9805 + }, + { + "start": 12871.66, + "end": 12876.38, + "probability": 0.9356 + }, + { + "start": 12876.82, + "end": 12879.46, + "probability": 0.9059 + }, + { + "start": 12880.22, + "end": 12884.98, + "probability": 0.9986 + }, + { + "start": 12885.46, + "end": 12887.6, + "probability": 0.9266 + }, + { + "start": 12887.92, + "end": 12889.9, + "probability": 0.9766 + }, + { + "start": 12890.12, + "end": 12890.96, + "probability": 0.8887 + }, + { + "start": 12891.02, + "end": 12891.48, + "probability": 0.6542 + }, + { + "start": 12892.32, + "end": 12893.78, + "probability": 0.507 + }, + { + "start": 12893.82, + "end": 12895.25, + "probability": 0.9607 + }, + { + "start": 12898.66, + "end": 12900.46, + "probability": 0.6474 + }, + { + "start": 12901.62, + "end": 12902.42, + "probability": 0.5677 + }, + { + "start": 12902.52, + "end": 12903.12, + "probability": 0.5615 + }, + { + "start": 12903.88, + "end": 12905.74, + "probability": 0.8579 + }, + { + "start": 12906.94, + "end": 12912.56, + "probability": 0.9041 + }, + { + "start": 12917.14, + "end": 12918.56, + "probability": 0.6984 + }, + { + "start": 12918.66, + "end": 12920.36, + "probability": 0.1385 + }, + { + "start": 12920.36, + "end": 12924.22, + "probability": 0.8984 + }, + { + "start": 12924.5, + "end": 12929.02, + "probability": 0.9858 + }, + { + "start": 12929.02, + "end": 12932.5, + "probability": 0.9775 + }, + { + "start": 12933.2, + "end": 12938.88, + "probability": 0.9868 + }, + { + "start": 12939.22, + "end": 12940.22, + "probability": 0.787 + }, + { + "start": 12941.4, + "end": 12942.46, + "probability": 0.9456 + }, + { + "start": 12943.4, + "end": 12949.1, + "probability": 0.8764 + }, + { + "start": 12949.1, + "end": 12952.8, + "probability": 0.9844 + }, + { + "start": 12953.48, + "end": 12960.0, + "probability": 0.9438 + }, + { + "start": 12960.98, + "end": 12961.28, + "probability": 0.265 + }, + { + "start": 12961.36, + "end": 12965.14, + "probability": 0.9814 + }, + { + "start": 12965.14, + "end": 12970.1, + "probability": 0.954 + }, + { + "start": 12970.74, + "end": 12974.72, + "probability": 0.9771 + }, + { + "start": 12975.34, + "end": 12975.8, + "probability": 0.7729 + }, + { + "start": 12975.84, + "end": 12979.02, + "probability": 0.9919 + }, + { + "start": 12979.02, + "end": 12982.18, + "probability": 0.9514 + }, + { + "start": 12983.04, + "end": 12984.4, + "probability": 0.8513 + }, + { + "start": 12985.06, + "end": 12988.98, + "probability": 0.9697 + }, + { + "start": 12990.86, + "end": 12996.26, + "probability": 0.995 + }, + { + "start": 12997.12, + "end": 13000.78, + "probability": 0.9723 + }, + { + "start": 13000.78, + "end": 13003.3, + "probability": 0.8853 + }, + { + "start": 13004.02, + "end": 13008.6, + "probability": 0.787 + }, + { + "start": 13009.16, + "end": 13016.38, + "probability": 0.9947 + }, + { + "start": 13017.04, + "end": 13020.46, + "probability": 0.9871 + }, + { + "start": 13020.9, + "end": 13025.68, + "probability": 0.991 + }, + { + "start": 13026.12, + "end": 13028.38, + "probability": 0.9372 + }, + { + "start": 13029.54, + "end": 13030.98, + "probability": 0.7788 + }, + { + "start": 13031.52, + "end": 13034.92, + "probability": 0.9875 + }, + { + "start": 13035.58, + "end": 13041.94, + "probability": 0.9253 + }, + { + "start": 13043.32, + "end": 13047.76, + "probability": 0.9636 + }, + { + "start": 13047.82, + "end": 13052.4, + "probability": 0.9934 + }, + { + "start": 13052.48, + "end": 13053.42, + "probability": 0.9214 + }, + { + "start": 13053.5, + "end": 13054.12, + "probability": 0.8491 + }, + { + "start": 13054.2, + "end": 13056.16, + "probability": 0.9767 + }, + { + "start": 13056.88, + "end": 13061.7, + "probability": 0.9861 + }, + { + "start": 13061.78, + "end": 13067.36, + "probability": 0.9421 + }, + { + "start": 13067.36, + "end": 13071.56, + "probability": 0.9917 + }, + { + "start": 13071.62, + "end": 13072.48, + "probability": 0.8473 + }, + { + "start": 13072.62, + "end": 13076.72, + "probability": 0.9874 + }, + { + "start": 13076.72, + "end": 13081.2, + "probability": 0.8623 + }, + { + "start": 13081.94, + "end": 13085.54, + "probability": 0.7641 + }, + { + "start": 13086.52, + "end": 13089.42, + "probability": 0.9642 + }, + { + "start": 13089.42, + "end": 13092.92, + "probability": 0.9985 + }, + { + "start": 13093.0, + "end": 13096.58, + "probability": 0.9624 + }, + { + "start": 13096.7, + "end": 13100.42, + "probability": 0.982 + }, + { + "start": 13100.96, + "end": 13101.38, + "probability": 0.5996 + }, + { + "start": 13101.46, + "end": 13106.48, + "probability": 0.9961 + }, + { + "start": 13106.52, + "end": 13112.52, + "probability": 0.9845 + }, + { + "start": 13113.18, + "end": 13117.1, + "probability": 0.9827 + }, + { + "start": 13117.2, + "end": 13120.67, + "probability": 0.999 + }, + { + "start": 13121.8, + "end": 13123.32, + "probability": 0.6959 + }, + { + "start": 13124.24, + "end": 13129.96, + "probability": 0.9471 + }, + { + "start": 13130.68, + "end": 13131.76, + "probability": 0.9317 + }, + { + "start": 13131.82, + "end": 13137.76, + "probability": 0.9797 + }, + { + "start": 13137.98, + "end": 13138.38, + "probability": 0.0166 + }, + { + "start": 13139.08, + "end": 13140.62, + "probability": 0.9941 + }, + { + "start": 13143.02, + "end": 13144.25, + "probability": 0.9826 + }, + { + "start": 13145.26, + "end": 13146.92, + "probability": 0.9951 + }, + { + "start": 13148.5, + "end": 13149.7, + "probability": 0.9953 + }, + { + "start": 13149.82, + "end": 13152.52, + "probability": 0.9434 + }, + { + "start": 13152.54, + "end": 13155.0, + "probability": 0.9806 + }, + { + "start": 13155.86, + "end": 13162.26, + "probability": 0.986 + }, + { + "start": 13162.36, + "end": 13162.99, + "probability": 0.71 + }, + { + "start": 13163.24, + "end": 13163.94, + "probability": 0.6389 + }, + { + "start": 13167.7, + "end": 13169.34, + "probability": 0.8019 + }, + { + "start": 13169.46, + "end": 13170.04, + "probability": 0.77 + }, + { + "start": 13170.12, + "end": 13173.73, + "probability": 0.9758 + }, + { + "start": 13174.04, + "end": 13176.6, + "probability": 0.9932 + }, + { + "start": 13176.6, + "end": 13180.18, + "probability": 0.9588 + }, + { + "start": 13180.8, + "end": 13182.9, + "probability": 0.39 + }, + { + "start": 13183.28, + "end": 13185.66, + "probability": 0.9663 + }, + { + "start": 13185.82, + "end": 13186.8, + "probability": 0.5054 + }, + { + "start": 13188.22, + "end": 13191.0, + "probability": 0.8207 + }, + { + "start": 13191.06, + "end": 13192.71, + "probability": 0.7756 + }, + { + "start": 13193.62, + "end": 13194.58, + "probability": 0.8496 + }, + { + "start": 13194.88, + "end": 13195.82, + "probability": 0.7331 + }, + { + "start": 13196.08, + "end": 13196.88, + "probability": 0.6981 + }, + { + "start": 13197.2, + "end": 13199.4, + "probability": 0.7242 + }, + { + "start": 13199.62, + "end": 13200.92, + "probability": 0.7672 + }, + { + "start": 13201.18, + "end": 13202.72, + "probability": 0.6402 + }, + { + "start": 13202.74, + "end": 13204.3, + "probability": 0.8905 + }, + { + "start": 13206.04, + "end": 13206.7, + "probability": 0.9178 + }, + { + "start": 13207.9, + "end": 13207.9, + "probability": 0.387 + }, + { + "start": 13207.9, + "end": 13209.06, + "probability": 0.699 + }, + { + "start": 13218.2, + "end": 13218.56, + "probability": 0.4077 + }, + { + "start": 13218.58, + "end": 13221.56, + "probability": 0.9189 + }, + { + "start": 13222.96, + "end": 13225.0, + "probability": 0.6625 + }, + { + "start": 13228.98, + "end": 13231.84, + "probability": 0.6985 + }, + { + "start": 13233.52, + "end": 13234.66, + "probability": 0.5925 + }, + { + "start": 13235.62, + "end": 13237.14, + "probability": 0.8774 + }, + { + "start": 13238.14, + "end": 13240.66, + "probability": 0.9523 + }, + { + "start": 13241.6, + "end": 13246.84, + "probability": 0.9193 + }, + { + "start": 13248.12, + "end": 13250.36, + "probability": 0.8909 + }, + { + "start": 13250.46, + "end": 13259.94, + "probability": 0.9665 + }, + { + "start": 13260.86, + "end": 13262.22, + "probability": 0.9978 + }, + { + "start": 13262.94, + "end": 13273.04, + "probability": 0.929 + }, + { + "start": 13273.64, + "end": 13277.24, + "probability": 0.7499 + }, + { + "start": 13277.86, + "end": 13281.4, + "probability": 0.9323 + }, + { + "start": 13282.42, + "end": 13285.18, + "probability": 0.9709 + }, + { + "start": 13285.82, + "end": 13287.58, + "probability": 0.8624 + }, + { + "start": 13289.04, + "end": 13296.44, + "probability": 0.9878 + }, + { + "start": 13297.46, + "end": 13299.91, + "probability": 0.9844 + }, + { + "start": 13301.98, + "end": 13304.18, + "probability": 0.9355 + }, + { + "start": 13304.72, + "end": 13309.0, + "probability": 0.9736 + }, + { + "start": 13309.72, + "end": 13312.66, + "probability": 0.4995 + }, + { + "start": 13313.44, + "end": 13314.32, + "probability": 0.6585 + }, + { + "start": 13315.22, + "end": 13317.38, + "probability": 0.9906 + }, + { + "start": 13318.1, + "end": 13322.74, + "probability": 0.9858 + }, + { + "start": 13323.04, + "end": 13326.84, + "probability": 0.9873 + }, + { + "start": 13327.24, + "end": 13330.42, + "probability": 0.8353 + }, + { + "start": 13331.06, + "end": 13336.5, + "probability": 0.9678 + }, + { + "start": 13337.72, + "end": 13345.42, + "probability": 0.925 + }, + { + "start": 13345.72, + "end": 13347.24, + "probability": 0.6565 + }, + { + "start": 13347.56, + "end": 13348.36, + "probability": 0.8956 + }, + { + "start": 13349.8, + "end": 13350.46, + "probability": 0.777 + }, + { + "start": 13351.58, + "end": 13361.08, + "probability": 0.9048 + }, + { + "start": 13361.92, + "end": 13363.66, + "probability": 0.7939 + }, + { + "start": 13365.14, + "end": 13366.06, + "probability": 0.0334 + }, + { + "start": 13367.44, + "end": 13367.54, + "probability": 0.2207 + }, + { + "start": 13367.54, + "end": 13367.74, + "probability": 0.7914 + }, + { + "start": 13367.86, + "end": 13370.82, + "probability": 0.9802 + }, + { + "start": 13371.7, + "end": 13378.26, + "probability": 0.9369 + }, + { + "start": 13378.78, + "end": 13381.72, + "probability": 0.9968 + }, + { + "start": 13382.28, + "end": 13388.6, + "probability": 0.9641 + }, + { + "start": 13389.22, + "end": 13392.1, + "probability": 0.6538 + }, + { + "start": 13392.2, + "end": 13393.42, + "probability": 0.7161 + }, + { + "start": 13393.46, + "end": 13395.12, + "probability": 0.8952 + }, + { + "start": 13395.6, + "end": 13397.22, + "probability": 0.9097 + }, + { + "start": 13397.54, + "end": 13398.3, + "probability": 0.979 + }, + { + "start": 13398.6, + "end": 13402.16, + "probability": 0.9731 + }, + { + "start": 13402.42, + "end": 13403.94, + "probability": 0.9413 + }, + { + "start": 13404.02, + "end": 13405.44, + "probability": 0.978 + }, + { + "start": 13405.46, + "end": 13407.02, + "probability": 0.9613 + }, + { + "start": 13407.32, + "end": 13409.6, + "probability": 0.8833 + }, + { + "start": 13409.9, + "end": 13411.08, + "probability": 0.9858 + }, + { + "start": 13411.3, + "end": 13412.74, + "probability": 0.9884 + }, + { + "start": 13413.16, + "end": 13415.9, + "probability": 0.999 + }, + { + "start": 13416.22, + "end": 13418.78, + "probability": 0.9592 + }, + { + "start": 13418.86, + "end": 13421.58, + "probability": 0.9334 + }, + { + "start": 13421.72, + "end": 13421.78, + "probability": 0.9258 + }, + { + "start": 13421.82, + "end": 13422.58, + "probability": 0.6008 + }, + { + "start": 13422.6, + "end": 13423.16, + "probability": 0.6047 + }, + { + "start": 13423.34, + "end": 13424.2, + "probability": 0.8496 + }, + { + "start": 13425.02, + "end": 13434.04, + "probability": 0.86 + }, + { + "start": 13434.54, + "end": 13440.04, + "probability": 0.9925 + }, + { + "start": 13440.3, + "end": 13442.24, + "probability": 0.8086 + }, + { + "start": 13442.8, + "end": 13452.38, + "probability": 0.6016 + }, + { + "start": 13452.38, + "end": 13453.18, + "probability": 0.5655 + }, + { + "start": 13453.3, + "end": 13454.94, + "probability": 0.6548 + }, + { + "start": 13455.28, + "end": 13456.66, + "probability": 0.9585 + }, + { + "start": 13457.12, + "end": 13459.38, + "probability": 0.9944 + }, + { + "start": 13459.9, + "end": 13460.68, + "probability": 0.6866 + }, + { + "start": 13461.0, + "end": 13463.78, + "probability": 0.9677 + }, + { + "start": 13463.88, + "end": 13467.0, + "probability": 0.9639 + }, + { + "start": 13467.4, + "end": 13468.02, + "probability": 0.7119 + }, + { + "start": 13468.26, + "end": 13469.74, + "probability": 0.9957 + }, + { + "start": 13470.08, + "end": 13473.72, + "probability": 0.9924 + }, + { + "start": 13474.02, + "end": 13474.4, + "probability": 0.8722 + }, + { + "start": 13475.54, + "end": 13477.12, + "probability": 0.7294 + }, + { + "start": 13477.22, + "end": 13479.16, + "probability": 0.7802 + }, + { + "start": 13479.28, + "end": 13480.84, + "probability": 0.9756 + }, + { + "start": 13497.6, + "end": 13498.74, + "probability": 0.8279 + }, + { + "start": 13498.8, + "end": 13503.94, + "probability": 0.9658 + }, + { + "start": 13504.22, + "end": 13506.56, + "probability": 0.9575 + }, + { + "start": 13506.82, + "end": 13508.84, + "probability": 0.6812 + }, + { + "start": 13509.56, + "end": 13512.72, + "probability": 0.7279 + }, + { + "start": 13513.36, + "end": 13517.82, + "probability": 0.9825 + }, + { + "start": 13518.48, + "end": 13521.14, + "probability": 0.9954 + }, + { + "start": 13522.02, + "end": 13526.56, + "probability": 0.9929 + }, + { + "start": 13527.18, + "end": 13530.22, + "probability": 0.9912 + }, + { + "start": 13530.98, + "end": 13532.9, + "probability": 0.9889 + }, + { + "start": 13533.42, + "end": 13536.52, + "probability": 0.8563 + }, + { + "start": 13537.12, + "end": 13538.82, + "probability": 0.9713 + }, + { + "start": 13539.46, + "end": 13543.26, + "probability": 0.9793 + }, + { + "start": 13544.4, + "end": 13548.88, + "probability": 0.9946 + }, + { + "start": 13548.88, + "end": 13552.8, + "probability": 0.9989 + }, + { + "start": 13553.52, + "end": 13558.5, + "probability": 0.9933 + }, + { + "start": 13559.14, + "end": 13562.18, + "probability": 0.8527 + }, + { + "start": 13562.38, + "end": 13563.88, + "probability": 0.8314 + }, + { + "start": 13564.86, + "end": 13568.28, + "probability": 0.9412 + }, + { + "start": 13569.08, + "end": 13572.18, + "probability": 0.9157 + }, + { + "start": 13572.58, + "end": 13573.18, + "probability": 0.612 + }, + { + "start": 13573.34, + "end": 13575.66, + "probability": 0.8616 + }, + { + "start": 13576.56, + "end": 13578.48, + "probability": 0.8459 + }, + { + "start": 13579.02, + "end": 13580.41, + "probability": 0.8889 + }, + { + "start": 13580.54, + "end": 13581.12, + "probability": 0.4711 + }, + { + "start": 13582.02, + "end": 13582.9, + "probability": 0.7073 + }, + { + "start": 13583.46, + "end": 13584.9, + "probability": 0.5088 + }, + { + "start": 13584.98, + "end": 13585.72, + "probability": 0.8464 + }, + { + "start": 13585.78, + "end": 13592.1, + "probability": 0.761 + }, + { + "start": 13592.7, + "end": 13594.17, + "probability": 0.9803 + }, + { + "start": 13595.0, + "end": 13596.86, + "probability": 0.4571 + }, + { + "start": 13597.44, + "end": 13600.18, + "probability": 0.9394 + }, + { + "start": 13600.26, + "end": 13600.9, + "probability": 0.749 + }, + { + "start": 13601.4, + "end": 13602.66, + "probability": 0.9198 + }, + { + "start": 13603.08, + "end": 13604.36, + "probability": 0.9412 + }, + { + "start": 13605.0, + "end": 13608.86, + "probability": 0.9937 + }, + { + "start": 13609.62, + "end": 13615.34, + "probability": 0.9531 + }, + { + "start": 13615.34, + "end": 13619.76, + "probability": 0.9875 + }, + { + "start": 13620.26, + "end": 13622.36, + "probability": 0.7482 + }, + { + "start": 13622.9, + "end": 13624.28, + "probability": 0.9688 + }, + { + "start": 13625.16, + "end": 13628.34, + "probability": 0.9812 + }, + { + "start": 13628.9, + "end": 13632.88, + "probability": 0.9937 + }, + { + "start": 13633.42, + "end": 13637.52, + "probability": 0.9982 + }, + { + "start": 13638.1, + "end": 13641.26, + "probability": 0.9976 + }, + { + "start": 13642.16, + "end": 13647.48, + "probability": 0.9966 + }, + { + "start": 13648.14, + "end": 13651.5, + "probability": 0.9966 + }, + { + "start": 13651.5, + "end": 13654.92, + "probability": 0.9995 + }, + { + "start": 13655.88, + "end": 13660.0, + "probability": 0.9711 + }, + { + "start": 13660.7, + "end": 13662.1, + "probability": 0.9906 + }, + { + "start": 13662.62, + "end": 13663.52, + "probability": 0.811 + }, + { + "start": 13664.36, + "end": 13666.24, + "probability": 0.855 + }, + { + "start": 13666.96, + "end": 13668.46, + "probability": 0.97 + }, + { + "start": 13669.12, + "end": 13670.34, + "probability": 0.7297 + }, + { + "start": 13670.38, + "end": 13674.64, + "probability": 0.7993 + }, + { + "start": 13675.24, + "end": 13678.16, + "probability": 0.9873 + }, + { + "start": 13678.16, + "end": 13681.94, + "probability": 0.9984 + }, + { + "start": 13682.66, + "end": 13687.44, + "probability": 0.9543 + }, + { + "start": 13687.64, + "end": 13690.34, + "probability": 0.9673 + }, + { + "start": 13691.16, + "end": 13691.86, + "probability": 0.9411 + }, + { + "start": 13692.16, + "end": 13693.16, + "probability": 0.9218 + }, + { + "start": 13693.62, + "end": 13696.24, + "probability": 0.9976 + }, + { + "start": 13696.8, + "end": 13697.68, + "probability": 0.6692 + }, + { + "start": 13698.04, + "end": 13698.84, + "probability": 0.8385 + }, + { + "start": 13698.98, + "end": 13699.48, + "probability": 0.8279 + }, + { + "start": 13699.96, + "end": 13703.42, + "probability": 0.6695 + }, + { + "start": 13704.24, + "end": 13709.2, + "probability": 0.6717 + }, + { + "start": 13709.2, + "end": 13715.96, + "probability": 0.9871 + }, + { + "start": 13717.14, + "end": 13720.9, + "probability": 0.9961 + }, + { + "start": 13721.62, + "end": 13725.56, + "probability": 0.9551 + }, + { + "start": 13726.18, + "end": 13727.66, + "probability": 0.9271 + }, + { + "start": 13728.4, + "end": 13735.14, + "probability": 0.995 + }, + { + "start": 13735.6, + "end": 13736.0, + "probability": 0.4402 + }, + { + "start": 13736.18, + "end": 13737.94, + "probability": 0.9681 + }, + { + "start": 13738.58, + "end": 13740.48, + "probability": 0.9704 + }, + { + "start": 13741.34, + "end": 13744.54, + "probability": 0.5165 + }, + { + "start": 13745.24, + "end": 13747.84, + "probability": 0.7893 + }, + { + "start": 13748.36, + "end": 13751.9, + "probability": 0.9881 + }, + { + "start": 13752.92, + "end": 13757.4, + "probability": 0.9358 + }, + { + "start": 13757.76, + "end": 13758.76, + "probability": 0.941 + }, + { + "start": 13759.24, + "end": 13763.6, + "probability": 0.9844 + }, + { + "start": 13764.12, + "end": 13766.26, + "probability": 0.9924 + }, + { + "start": 13766.84, + "end": 13769.4, + "probability": 0.9684 + }, + { + "start": 13770.06, + "end": 13773.04, + "probability": 0.6182 + }, + { + "start": 13773.08, + "end": 13773.08, + "probability": 0.0238 + }, + { + "start": 13773.08, + "end": 13774.48, + "probability": 0.8444 + }, + { + "start": 13775.52, + "end": 13778.52, + "probability": 0.9567 + }, + { + "start": 13779.6, + "end": 13780.8, + "probability": 0.9763 + }, + { + "start": 13781.3, + "end": 13782.56, + "probability": 0.9858 + }, + { + "start": 13783.02, + "end": 13783.84, + "probability": 0.9778 + }, + { + "start": 13783.98, + "end": 13784.72, + "probability": 0.9609 + }, + { + "start": 13785.14, + "end": 13788.08, + "probability": 0.9885 + }, + { + "start": 13788.14, + "end": 13788.89, + "probability": 0.9239 + }, + { + "start": 13789.34, + "end": 13791.16, + "probability": 0.9373 + }, + { + "start": 13791.84, + "end": 13793.94, + "probability": 0.9917 + }, + { + "start": 13794.76, + "end": 13798.34, + "probability": 0.9763 + }, + { + "start": 13799.06, + "end": 13802.64, + "probability": 0.9778 + }, + { + "start": 13803.54, + "end": 13805.36, + "probability": 0.9585 + }, + { + "start": 13805.96, + "end": 13807.94, + "probability": 0.9388 + }, + { + "start": 13807.96, + "end": 13810.58, + "probability": 0.9272 + }, + { + "start": 13810.76, + "end": 13811.9, + "probability": 0.9716 + }, + { + "start": 13813.02, + "end": 13813.74, + "probability": 0.7874 + }, + { + "start": 13814.28, + "end": 13816.6, + "probability": 0.9827 + }, + { + "start": 13817.16, + "end": 13818.61, + "probability": 0.9279 + }, + { + "start": 13819.08, + "end": 13821.82, + "probability": 0.993 + }, + { + "start": 13821.82, + "end": 13825.66, + "probability": 0.96 + }, + { + "start": 13826.24, + "end": 13827.12, + "probability": 0.8022 + }, + { + "start": 13827.54, + "end": 13831.76, + "probability": 0.972 + }, + { + "start": 13831.82, + "end": 13833.46, + "probability": 0.9966 + }, + { + "start": 13833.66, + "end": 13833.96, + "probability": 0.8069 + }, + { + "start": 13834.14, + "end": 13835.74, + "probability": 0.8544 + }, + { + "start": 13835.8, + "end": 13836.04, + "probability": 0.5824 + }, + { + "start": 13836.16, + "end": 13839.06, + "probability": 0.8237 + }, + { + "start": 13839.28, + "end": 13841.62, + "probability": 0.7598 + }, + { + "start": 13844.14, + "end": 13847.58, + "probability": 0.7884 + }, + { + "start": 13848.7, + "end": 13850.94, + "probability": 0.8237 + }, + { + "start": 13852.92, + "end": 13854.46, + "probability": 0.5897 + }, + { + "start": 13854.54, + "end": 13856.18, + "probability": 0.7101 + }, + { + "start": 13856.28, + "end": 13859.6, + "probability": 0.9928 + }, + { + "start": 13860.6, + "end": 13865.94, + "probability": 0.9305 + }, + { + "start": 13866.28, + "end": 13868.62, + "probability": 0.9248 + }, + { + "start": 13868.84, + "end": 13869.94, + "probability": 0.9952 + }, + { + "start": 13870.94, + "end": 13872.58, + "probability": 0.8901 + }, + { + "start": 13873.22, + "end": 13879.56, + "probability": 0.9801 + }, + { + "start": 13880.18, + "end": 13882.02, + "probability": 0.9988 + }, + { + "start": 13882.04, + "end": 13885.98, + "probability": 0.998 + }, + { + "start": 13887.32, + "end": 13888.9, + "probability": 0.8057 + }, + { + "start": 13889.62, + "end": 13893.08, + "probability": 0.9796 + }, + { + "start": 13893.8, + "end": 13896.84, + "probability": 0.9714 + }, + { + "start": 13896.84, + "end": 13899.22, + "probability": 0.9989 + }, + { + "start": 13900.06, + "end": 13901.48, + "probability": 0.9504 + }, + { + "start": 13902.22, + "end": 13903.0, + "probability": 0.8983 + }, + { + "start": 13903.62, + "end": 13904.28, + "probability": 0.9985 + }, + { + "start": 13904.82, + "end": 13908.4, + "probability": 0.9282 + }, + { + "start": 13909.22, + "end": 13912.42, + "probability": 0.9224 + }, + { + "start": 13912.46, + "end": 13912.68, + "probability": 0.4811 + }, + { + "start": 13912.78, + "end": 13913.62, + "probability": 0.6995 + }, + { + "start": 13914.08, + "end": 13915.62, + "probability": 0.7776 + }, + { + "start": 13917.22, + "end": 13920.54, + "probability": 0.9905 + }, + { + "start": 13920.94, + "end": 13922.28, + "probability": 0.9977 + }, + { + "start": 13923.04, + "end": 13924.72, + "probability": 0.9128 + }, + { + "start": 13925.34, + "end": 13926.87, + "probability": 0.97 + }, + { + "start": 13927.02, + "end": 13932.56, + "probability": 0.9325 + }, + { + "start": 13933.0, + "end": 13937.8, + "probability": 0.9749 + }, + { + "start": 13937.9, + "end": 13940.26, + "probability": 0.8899 + }, + { + "start": 13940.32, + "end": 13942.44, + "probability": 0.9878 + }, + { + "start": 13942.5, + "end": 13945.72, + "probability": 0.9743 + }, + { + "start": 13945.84, + "end": 13948.4, + "probability": 0.9902 + }, + { + "start": 13948.66, + "end": 13949.3, + "probability": 0.9189 + }, + { + "start": 13949.42, + "end": 13949.86, + "probability": 0.8585 + }, + { + "start": 13949.92, + "end": 13951.36, + "probability": 0.9504 + }, + { + "start": 13951.56, + "end": 13953.9, + "probability": 0.9841 + }, + { + "start": 13954.26, + "end": 13955.26, + "probability": 0.7645 + }, + { + "start": 13955.32, + "end": 13956.28, + "probability": 0.9646 + }, + { + "start": 13956.8, + "end": 13957.32, + "probability": 0.8941 + }, + { + "start": 13957.36, + "end": 13960.74, + "probability": 0.9963 + }, + { + "start": 13960.8, + "end": 13961.83, + "probability": 0.9941 + }, + { + "start": 13962.34, + "end": 13964.72, + "probability": 0.9893 + }, + { + "start": 13965.46, + "end": 13969.68, + "probability": 0.9572 + }, + { + "start": 13970.24, + "end": 13971.22, + "probability": 0.915 + }, + { + "start": 13971.94, + "end": 13973.82, + "probability": 0.9846 + }, + { + "start": 13974.4, + "end": 13975.86, + "probability": 0.9479 + }, + { + "start": 13976.38, + "end": 13977.88, + "probability": 0.9928 + }, + { + "start": 13978.1, + "end": 13981.18, + "probability": 0.0841 + }, + { + "start": 13981.18, + "end": 13985.92, + "probability": 0.9801 + }, + { + "start": 13986.66, + "end": 13988.5, + "probability": 0.9854 + }, + { + "start": 13988.58, + "end": 13991.62, + "probability": 0.9945 + }, + { + "start": 13992.18, + "end": 13997.28, + "probability": 0.994 + }, + { + "start": 13997.44, + "end": 13999.15, + "probability": 0.9927 + }, + { + "start": 13999.62, + "end": 14000.82, + "probability": 0.9934 + }, + { + "start": 14000.98, + "end": 14002.14, + "probability": 0.8438 + }, + { + "start": 14002.18, + "end": 14007.34, + "probability": 0.9915 + }, + { + "start": 14008.34, + "end": 14013.92, + "probability": 0.9856 + }, + { + "start": 14013.94, + "end": 14014.9, + "probability": 0.7479 + }, + { + "start": 14015.0, + "end": 14016.24, + "probability": 0.9939 + }, + { + "start": 14016.6, + "end": 14018.24, + "probability": 0.7842 + }, + { + "start": 14018.68, + "end": 14019.42, + "probability": 0.9155 + }, + { + "start": 14019.52, + "end": 14019.98, + "probability": 0.7991 + }, + { + "start": 14020.98, + "end": 14022.02, + "probability": 0.8187 + }, + { + "start": 14022.54, + "end": 14023.06, + "probability": 0.8873 + }, + { + "start": 14023.72, + "end": 14025.4, + "probability": 0.937 + }, + { + "start": 14025.42, + "end": 14028.78, + "probability": 0.9727 + }, + { + "start": 14029.3, + "end": 14032.61, + "probability": 0.5841 + }, + { + "start": 14034.36, + "end": 14039.3, + "probability": 0.9412 + }, + { + "start": 14039.4, + "end": 14040.66, + "probability": 0.4997 + }, + { + "start": 14040.78, + "end": 14041.18, + "probability": 0.5035 + }, + { + "start": 14048.76, + "end": 14048.78, + "probability": 0.0061 + }, + { + "start": 14048.78, + "end": 14048.78, + "probability": 0.0016 + }, + { + "start": 14057.94, + "end": 14059.68, + "probability": 0.5947 + }, + { + "start": 14059.74, + "end": 14061.88, + "probability": 0.8018 + }, + { + "start": 14062.0, + "end": 14063.44, + "probability": 0.9445 + }, + { + "start": 14063.8, + "end": 14066.48, + "probability": 0.9842 + }, + { + "start": 14066.64, + "end": 14067.6, + "probability": 0.75 + }, + { + "start": 14068.9, + "end": 14070.16, + "probability": 0.0636 + }, + { + "start": 14084.2, + "end": 14084.58, + "probability": 0.1273 + }, + { + "start": 14084.58, + "end": 14084.7, + "probability": 0.0315 + }, + { + "start": 14084.7, + "end": 14084.7, + "probability": 0.1169 + }, + { + "start": 14084.7, + "end": 14086.92, + "probability": 0.9135 + }, + { + "start": 14087.04, + "end": 14089.54, + "probability": 0.9862 + }, + { + "start": 14090.32, + "end": 14091.38, + "probability": 0.9959 + }, + { + "start": 14091.38, + "end": 14091.98, + "probability": 0.7529 + }, + { + "start": 14092.16, + "end": 14093.88, + "probability": 0.9802 + }, + { + "start": 14093.88, + "end": 14096.8, + "probability": 0.8076 + }, + { + "start": 14097.36, + "end": 14098.02, + "probability": 0.8402 + }, + { + "start": 14098.5, + "end": 14099.4, + "probability": 0.7461 + }, + { + "start": 14100.18, + "end": 14100.82, + "probability": 0.6679 + }, + { + "start": 14102.54, + "end": 14106.1, + "probability": 0.4006 + }, + { + "start": 14106.62, + "end": 14108.42, + "probability": 0.9616 + }, + { + "start": 14109.44, + "end": 14110.32, + "probability": 0.9979 + }, + { + "start": 14111.0, + "end": 14113.62, + "probability": 0.9352 + }, + { + "start": 14114.32, + "end": 14116.45, + "probability": 0.8618 + }, + { + "start": 14118.08, + "end": 14120.06, + "probability": 0.9771 + }, + { + "start": 14120.4, + "end": 14120.68, + "probability": 0.8652 + }, + { + "start": 14123.26, + "end": 14123.72, + "probability": 0.2285 + }, + { + "start": 14123.72, + "end": 14125.26, + "probability": 0.6295 + }, + { + "start": 14127.46, + "end": 14128.8, + "probability": 0.9719 + }, + { + "start": 14129.48, + "end": 14130.56, + "probability": 0.7511 + }, + { + "start": 14133.06, + "end": 14134.44, + "probability": 0.8305 + }, + { + "start": 14135.42, + "end": 14140.42, + "probability": 0.9771 + }, + { + "start": 14141.72, + "end": 14147.18, + "probability": 0.9841 + }, + { + "start": 14147.38, + "end": 14148.23, + "probability": 0.9937 + }, + { + "start": 14149.98, + "end": 14153.48, + "probability": 0.9948 + }, + { + "start": 14154.88, + "end": 14159.24, + "probability": 0.9946 + }, + { + "start": 14159.76, + "end": 14161.18, + "probability": 0.9562 + }, + { + "start": 14161.26, + "end": 14162.86, + "probability": 0.9978 + }, + { + "start": 14164.5, + "end": 14165.24, + "probability": 0.8219 + }, + { + "start": 14165.64, + "end": 14170.3, + "probability": 0.9866 + }, + { + "start": 14170.34, + "end": 14172.96, + "probability": 0.9915 + }, + { + "start": 14174.56, + "end": 14176.7, + "probability": 0.9665 + }, + { + "start": 14178.05, + "end": 14180.56, + "probability": 0.502 + }, + { + "start": 14180.72, + "end": 14183.34, + "probability": 0.7382 + }, + { + "start": 14184.24, + "end": 14185.88, + "probability": 0.8863 + }, + { + "start": 14186.78, + "end": 14188.5, + "probability": 0.9773 + }, + { + "start": 14188.6, + "end": 14191.7, + "probability": 0.9359 + }, + { + "start": 14192.98, + "end": 14197.16, + "probability": 0.9879 + }, + { + "start": 14197.16, + "end": 14200.2, + "probability": 0.9844 + }, + { + "start": 14200.76, + "end": 14202.58, + "probability": 0.969 + }, + { + "start": 14203.74, + "end": 14206.74, + "probability": 0.9468 + }, + { + "start": 14207.2, + "end": 14208.8, + "probability": 0.9907 + }, + { + "start": 14209.82, + "end": 14211.18, + "probability": 0.8726 + }, + { + "start": 14211.36, + "end": 14213.28, + "probability": 0.9563 + }, + { + "start": 14213.32, + "end": 14213.9, + "probability": 0.998 + }, + { + "start": 14215.02, + "end": 14217.46, + "probability": 0.9886 + }, + { + "start": 14217.72, + "end": 14219.62, + "probability": 0.9482 + }, + { + "start": 14220.27, + "end": 14223.18, + "probability": 0.9983 + }, + { + "start": 14224.36, + "end": 14225.44, + "probability": 0.538 + }, + { + "start": 14225.76, + "end": 14228.28, + "probability": 0.814 + }, + { + "start": 14229.2, + "end": 14232.56, + "probability": 0.9644 + }, + { + "start": 14233.22, + "end": 14233.88, + "probability": 0.9273 + }, + { + "start": 14234.32, + "end": 14239.52, + "probability": 0.9849 + }, + { + "start": 14240.04, + "end": 14242.32, + "probability": 0.9927 + }, + { + "start": 14242.92, + "end": 14243.98, + "probability": 0.5572 + }, + { + "start": 14244.08, + "end": 14245.84, + "probability": 0.9894 + }, + { + "start": 14245.92, + "end": 14247.04, + "probability": 0.8804 + }, + { + "start": 14248.24, + "end": 14249.94, + "probability": 0.9932 + }, + { + "start": 14250.7, + "end": 14253.8, + "probability": 0.9929 + }, + { + "start": 14254.66, + "end": 14256.02, + "probability": 0.8796 + }, + { + "start": 14256.94, + "end": 14258.42, + "probability": 0.5672 + }, + { + "start": 14259.18, + "end": 14261.82, + "probability": 0.9893 + }, + { + "start": 14262.74, + "end": 14264.42, + "probability": 0.9746 + }, + { + "start": 14265.58, + "end": 14266.82, + "probability": 0.9792 + }, + { + "start": 14266.88, + "end": 14271.46, + "probability": 0.9875 + }, + { + "start": 14272.78, + "end": 14276.42, + "probability": 0.9501 + }, + { + "start": 14276.56, + "end": 14277.76, + "probability": 0.778 + }, + { + "start": 14277.8, + "end": 14280.54, + "probability": 0.981 + }, + { + "start": 14281.34, + "end": 14283.71, + "probability": 0.929 + }, + { + "start": 14284.8, + "end": 14286.74, + "probability": 0.8978 + }, + { + "start": 14287.14, + "end": 14289.0, + "probability": 0.9205 + }, + { + "start": 14291.2, + "end": 14291.28, + "probability": 0.3734 + }, + { + "start": 14291.5, + "end": 14292.34, + "probability": 0.7309 + }, + { + "start": 14292.44, + "end": 14294.36, + "probability": 0.9819 + }, + { + "start": 14294.48, + "end": 14298.6, + "probability": 0.9899 + }, + { + "start": 14298.72, + "end": 14299.3, + "probability": 0.6406 + }, + { + "start": 14299.38, + "end": 14301.64, + "probability": 0.872 + }, + { + "start": 14301.72, + "end": 14303.65, + "probability": 0.9729 + }, + { + "start": 14304.3, + "end": 14309.4, + "probability": 0.9833 + }, + { + "start": 14309.56, + "end": 14310.62, + "probability": 0.7413 + }, + { + "start": 14311.26, + "end": 14315.76, + "probability": 0.9617 + }, + { + "start": 14316.4, + "end": 14318.12, + "probability": 0.9367 + }, + { + "start": 14319.2, + "end": 14320.7, + "probability": 0.9742 + }, + { + "start": 14320.74, + "end": 14323.6, + "probability": 0.9907 + }, + { + "start": 14323.6, + "end": 14326.54, + "probability": 0.9959 + }, + { + "start": 14327.0, + "end": 14328.66, + "probability": 0.996 + }, + { + "start": 14329.48, + "end": 14330.7, + "probability": 0.8709 + }, + { + "start": 14331.34, + "end": 14333.68, + "probability": 0.9084 + }, + { + "start": 14334.36, + "end": 14336.68, + "probability": 0.8006 + }, + { + "start": 14337.7, + "end": 14339.0, + "probability": 0.9315 + }, + { + "start": 14339.18, + "end": 14341.36, + "probability": 0.9272 + }, + { + "start": 14341.96, + "end": 14345.06, + "probability": 0.9577 + }, + { + "start": 14345.16, + "end": 14346.36, + "probability": 0.9911 + }, + { + "start": 14346.74, + "end": 14347.7, + "probability": 0.9688 + }, + { + "start": 14348.12, + "end": 14352.2, + "probability": 0.8437 + }, + { + "start": 14353.14, + "end": 14356.26, + "probability": 0.9971 + }, + { + "start": 14357.04, + "end": 14359.87, + "probability": 0.9464 + }, + { + "start": 14361.14, + "end": 14362.22, + "probability": 0.7946 + }, + { + "start": 14362.88, + "end": 14366.26, + "probability": 0.9647 + }, + { + "start": 14366.84, + "end": 14371.22, + "probability": 0.9563 + }, + { + "start": 14371.86, + "end": 14373.62, + "probability": 0.9634 + }, + { + "start": 14374.84, + "end": 14375.04, + "probability": 0.6497 + }, + { + "start": 14376.52, + "end": 14376.9, + "probability": 0.4167 + }, + { + "start": 14377.78, + "end": 14378.62, + "probability": 0.7638 + }, + { + "start": 14378.62, + "end": 14379.18, + "probability": 0.8769 + }, + { + "start": 14379.62, + "end": 14380.16, + "probability": 0.3644 + }, + { + "start": 14381.66, + "end": 14382.28, + "probability": 0.9159 + }, + { + "start": 14382.4, + "end": 14383.7, + "probability": 0.9727 + }, + { + "start": 14385.32, + "end": 14387.76, + "probability": 0.772 + }, + { + "start": 14387.82, + "end": 14392.02, + "probability": 0.9033 + }, + { + "start": 14393.18, + "end": 14396.66, + "probability": 0.9942 + }, + { + "start": 14396.74, + "end": 14399.74, + "probability": 0.9507 + }, + { + "start": 14400.48, + "end": 14403.04, + "probability": 0.998 + }, + { + "start": 14403.1, + "end": 14404.99, + "probability": 0.9023 + }, + { + "start": 14405.68, + "end": 14407.84, + "probability": 0.9839 + }, + { + "start": 14407.86, + "end": 14409.2, + "probability": 0.7889 + }, + { + "start": 14410.36, + "end": 14410.86, + "probability": 0.4892 + }, + { + "start": 14412.5, + "end": 14414.74, + "probability": 0.7096 + }, + { + "start": 14414.74, + "end": 14416.24, + "probability": 0.7649 + }, + { + "start": 14416.36, + "end": 14417.74, + "probability": 0.8144 + }, + { + "start": 14418.54, + "end": 14421.26, + "probability": 0.978 + }, + { + "start": 14422.46, + "end": 14425.2, + "probability": 0.8336 + }, + { + "start": 14426.06, + "end": 14426.96, + "probability": 0.9949 + }, + { + "start": 14428.48, + "end": 14429.3, + "probability": 0.5607 + }, + { + "start": 14429.42, + "end": 14433.2, + "probability": 0.9299 + }, + { + "start": 14433.88, + "end": 14435.54, + "probability": 0.9889 + }, + { + "start": 14436.2, + "end": 14438.34, + "probability": 0.8418 + }, + { + "start": 14439.08, + "end": 14439.68, + "probability": 0.5247 + }, + { + "start": 14440.1, + "end": 14444.04, + "probability": 0.9788 + }, + { + "start": 14444.18, + "end": 14449.26, + "probability": 0.8102 + }, + { + "start": 14449.36, + "end": 14452.34, + "probability": 0.9724 + }, + { + "start": 14452.34, + "end": 14457.03, + "probability": 0.8296 + }, + { + "start": 14457.72, + "end": 14459.47, + "probability": 0.5371 + }, + { + "start": 14460.1, + "end": 14460.92, + "probability": 0.812 + }, + { + "start": 14461.22, + "end": 14461.7, + "probability": 0.452 + }, + { + "start": 14461.7, + "end": 14462.36, + "probability": 0.7441 + }, + { + "start": 14462.48, + "end": 14463.38, + "probability": 0.8553 + }, + { + "start": 14463.74, + "end": 14464.34, + "probability": 0.8936 + }, + { + "start": 14464.38, + "end": 14466.82, + "probability": 0.9651 + }, + { + "start": 14467.34, + "end": 14467.94, + "probability": 0.5816 + }, + { + "start": 14468.08, + "end": 14468.48, + "probability": 0.2639 + }, + { + "start": 14468.8, + "end": 14470.8, + "probability": 0.853 + }, + { + "start": 14470.82, + "end": 14472.8, + "probability": 0.99 + }, + { + "start": 14472.98, + "end": 14473.7, + "probability": 0.8113 + }, + { + "start": 14473.94, + "end": 14474.94, + "probability": 0.9806 + }, + { + "start": 14475.62, + "end": 14479.3, + "probability": 0.991 + }, + { + "start": 14479.6, + "end": 14483.86, + "probability": 0.9927 + }, + { + "start": 14484.84, + "end": 14485.92, + "probability": 0.888 + }, + { + "start": 14486.64, + "end": 14488.34, + "probability": 0.9575 + }, + { + "start": 14489.14, + "end": 14491.68, + "probability": 0.9704 + }, + { + "start": 14492.64, + "end": 14493.24, + "probability": 0.9173 + }, + { + "start": 14493.36, + "end": 14496.64, + "probability": 0.9897 + }, + { + "start": 14497.1, + "end": 14498.24, + "probability": 0.7346 + }, + { + "start": 14498.28, + "end": 14501.56, + "probability": 0.9485 + }, + { + "start": 14501.56, + "end": 14504.66, + "probability": 0.9911 + }, + { + "start": 14505.3, + "end": 14507.46, + "probability": 0.989 + }, + { + "start": 14507.98, + "end": 14508.82, + "probability": 0.7603 + }, + { + "start": 14508.96, + "end": 14509.92, + "probability": 0.9675 + }, + { + "start": 14509.98, + "end": 14511.32, + "probability": 0.828 + }, + { + "start": 14512.08, + "end": 14513.38, + "probability": 0.6245 + }, + { + "start": 14513.42, + "end": 14515.02, + "probability": 0.9926 + }, + { + "start": 14515.14, + "end": 14517.0, + "probability": 0.9297 + }, + { + "start": 14517.06, + "end": 14517.62, + "probability": 0.8679 + }, + { + "start": 14518.14, + "end": 14521.12, + "probability": 0.8338 + }, + { + "start": 14521.76, + "end": 14522.14, + "probability": 0.971 + }, + { + "start": 14522.3, + "end": 14524.88, + "probability": 0.9731 + }, + { + "start": 14524.98, + "end": 14526.72, + "probability": 0.7747 + }, + { + "start": 14526.84, + "end": 14528.56, + "probability": 0.601 + }, + { + "start": 14528.58, + "end": 14528.98, + "probability": 0.765 + }, + { + "start": 14529.98, + "end": 14532.98, + "probability": 0.9547 + }, + { + "start": 14533.08, + "end": 14535.16, + "probability": 0.9032 + }, + { + "start": 14535.26, + "end": 14537.22, + "probability": 0.9913 + }, + { + "start": 14537.94, + "end": 14539.9, + "probability": 0.9901 + }, + { + "start": 14540.48, + "end": 14541.44, + "probability": 0.7446 + }, + { + "start": 14541.98, + "end": 14545.54, + "probability": 0.9038 + }, + { + "start": 14546.18, + "end": 14548.76, + "probability": 0.8945 + }, + { + "start": 14549.28, + "end": 14551.04, + "probability": 0.9604 + }, + { + "start": 14551.88, + "end": 14558.48, + "probability": 0.952 + }, + { + "start": 14558.54, + "end": 14559.3, + "probability": 0.7919 + }, + { + "start": 14559.76, + "end": 14560.8, + "probability": 0.843 + }, + { + "start": 14561.36, + "end": 14562.44, + "probability": 0.7276 + }, + { + "start": 14563.1, + "end": 14566.66, + "probability": 0.9351 + }, + { + "start": 14567.18, + "end": 14567.9, + "probability": 0.7391 + }, + { + "start": 14568.02, + "end": 14569.94, + "probability": 0.998 + }, + { + "start": 14570.56, + "end": 14572.96, + "probability": 0.7995 + }, + { + "start": 14573.06, + "end": 14574.4, + "probability": 0.993 + }, + { + "start": 14574.48, + "end": 14575.7, + "probability": 0.5684 + }, + { + "start": 14575.8, + "end": 14577.86, + "probability": 0.9056 + }, + { + "start": 14577.94, + "end": 14579.44, + "probability": 0.9907 + }, + { + "start": 14579.54, + "end": 14582.82, + "probability": 0.9937 + }, + { + "start": 14583.36, + "end": 14586.12, + "probability": 0.9036 + }, + { + "start": 14586.24, + "end": 14587.18, + "probability": 0.8621 + }, + { + "start": 14587.22, + "end": 14588.62, + "probability": 0.9715 + }, + { + "start": 14588.84, + "end": 14589.98, + "probability": 0.7325 + }, + { + "start": 14590.32, + "end": 14590.64, + "probability": 0.7535 + }, + { + "start": 14590.66, + "end": 14591.24, + "probability": 0.6749 + }, + { + "start": 14592.18, + "end": 14593.18, + "probability": 0.8413 + }, + { + "start": 14593.3, + "end": 14593.86, + "probability": 0.6105 + }, + { + "start": 14594.8, + "end": 14596.56, + "probability": 0.9358 + }, + { + "start": 14596.96, + "end": 14601.26, + "probability": 0.9883 + }, + { + "start": 14601.86, + "end": 14602.32, + "probability": 0.561 + }, + { + "start": 14602.4, + "end": 14604.02, + "probability": 0.8497 + }, + { + "start": 14605.54, + "end": 14607.54, + "probability": 0.9326 + }, + { + "start": 14607.54, + "end": 14607.98, + "probability": 0.6847 + }, + { + "start": 14608.22, + "end": 14610.6, + "probability": 0.9487 + }, + { + "start": 14610.62, + "end": 14612.4, + "probability": 0.7798 + }, + { + "start": 14612.94, + "end": 14615.02, + "probability": 0.7711 + }, + { + "start": 14615.9, + "end": 14617.6, + "probability": 0.7178 + }, + { + "start": 14618.86, + "end": 14619.34, + "probability": 0.6287 + }, + { + "start": 14620.1, + "end": 14621.32, + "probability": 0.937 + }, + { + "start": 14622.28, + "end": 14624.12, + "probability": 0.7739 + }, + { + "start": 14625.06, + "end": 14625.68, + "probability": 0.748 + }, + { + "start": 14626.4, + "end": 14630.04, + "probability": 0.633 + }, + { + "start": 14631.56, + "end": 14633.38, + "probability": 0.955 + }, + { + "start": 14638.56, + "end": 14639.9, + "probability": 0.5485 + }, + { + "start": 14640.08, + "end": 14640.58, + "probability": 0.9412 + }, + { + "start": 14642.04, + "end": 14643.38, + "probability": 0.5253 + }, + { + "start": 14643.76, + "end": 14644.64, + "probability": 0.7069 + }, + { + "start": 14644.8, + "end": 14645.46, + "probability": 0.7375 + }, + { + "start": 14645.6, + "end": 14649.98, + "probability": 0.5535 + }, + { + "start": 14650.7, + "end": 14653.19, + "probability": 0.3518 + }, + { + "start": 14653.4, + "end": 14655.2, + "probability": 0.2235 + }, + { + "start": 14656.06, + "end": 14656.12, + "probability": 0.2463 + }, + { + "start": 14656.12, + "end": 14658.8, + "probability": 0.9636 + }, + { + "start": 14659.9, + "end": 14660.7, + "probability": 0.7777 + }, + { + "start": 14660.76, + "end": 14663.56, + "probability": 0.826 + }, + { + "start": 14664.94, + "end": 14665.42, + "probability": 0.8783 + }, + { + "start": 14666.16, + "end": 14671.82, + "probability": 0.9931 + }, + { + "start": 14672.02, + "end": 14674.36, + "probability": 0.9871 + }, + { + "start": 14675.38, + "end": 14676.9, + "probability": 0.8773 + }, + { + "start": 14677.32, + "end": 14678.72, + "probability": 0.7236 + }, + { + "start": 14678.72, + "end": 14681.0, + "probability": 0.9414 + }, + { + "start": 14681.16, + "end": 14683.74, + "probability": 0.9811 + }, + { + "start": 14683.74, + "end": 14685.5, + "probability": 0.9971 + }, + { + "start": 14685.82, + "end": 14690.06, + "probability": 0.9756 + }, + { + "start": 14690.16, + "end": 14691.58, + "probability": 0.5928 + }, + { + "start": 14692.1, + "end": 14692.74, + "probability": 0.7956 + }, + { + "start": 14693.08, + "end": 14693.5, + "probability": 0.8741 + }, + { + "start": 14693.76, + "end": 14694.52, + "probability": 0.9209 + }, + { + "start": 14694.56, + "end": 14695.7, + "probability": 0.9104 + }, + { + "start": 14696.36, + "end": 14697.77, + "probability": 0.9878 + }, + { + "start": 14698.6, + "end": 14702.88, + "probability": 0.9899 + }, + { + "start": 14703.0, + "end": 14706.12, + "probability": 0.9734 + }, + { + "start": 14706.52, + "end": 14712.44, + "probability": 0.9932 + }, + { + "start": 14712.44, + "end": 14717.72, + "probability": 0.9937 + }, + { + "start": 14717.72, + "end": 14719.42, + "probability": 0.7456 + }, + { + "start": 14719.86, + "end": 14721.32, + "probability": 0.9943 + }, + { + "start": 14721.46, + "end": 14722.9, + "probability": 0.4878 + }, + { + "start": 14723.52, + "end": 14724.82, + "probability": 0.8898 + }, + { + "start": 14724.92, + "end": 14727.1, + "probability": 0.9514 + }, + { + "start": 14727.18, + "end": 14728.54, + "probability": 0.9523 + }, + { + "start": 14729.04, + "end": 14731.56, + "probability": 0.9805 + }, + { + "start": 14732.52, + "end": 14734.78, + "probability": 0.9951 + }, + { + "start": 14735.38, + "end": 14737.56, + "probability": 0.8057 + }, + { + "start": 14738.12, + "end": 14740.72, + "probability": 0.8535 + }, + { + "start": 14741.9, + "end": 14744.18, + "probability": 0.9747 + }, + { + "start": 14745.08, + "end": 14750.12, + "probability": 0.9846 + }, + { + "start": 14750.2, + "end": 14754.84, + "probability": 0.9983 + }, + { + "start": 14755.42, + "end": 14759.18, + "probability": 0.97 + }, + { + "start": 14759.28, + "end": 14761.42, + "probability": 0.9224 + }, + { + "start": 14762.38, + "end": 14765.5, + "probability": 0.9736 + }, + { + "start": 14765.88, + "end": 14769.9, + "probability": 0.9784 + }, + { + "start": 14770.32, + "end": 14775.0, + "probability": 0.9968 + }, + { + "start": 14775.24, + "end": 14777.66, + "probability": 0.9568 + }, + { + "start": 14778.22, + "end": 14778.98, + "probability": 0.725 + }, + { + "start": 14779.26, + "end": 14781.46, + "probability": 0.9972 + }, + { + "start": 14782.02, + "end": 14783.6, + "probability": 0.9653 + }, + { + "start": 14783.64, + "end": 14785.44, + "probability": 0.9862 + }, + { + "start": 14786.22, + "end": 14786.56, + "probability": 0.6942 + }, + { + "start": 14786.58, + "end": 14786.82, + "probability": 0.7139 + }, + { + "start": 14786.94, + "end": 14787.24, + "probability": 0.7866 + }, + { + "start": 14787.34, + "end": 14788.04, + "probability": 0.9475 + }, + { + "start": 14788.1, + "end": 14789.94, + "probability": 0.9633 + }, + { + "start": 14790.28, + "end": 14796.62, + "probability": 0.9861 + }, + { + "start": 14796.62, + "end": 14802.38, + "probability": 0.7404 + }, + { + "start": 14803.18, + "end": 14806.44, + "probability": 0.9928 + }, + { + "start": 14806.68, + "end": 14809.14, + "probability": 0.9541 + }, + { + "start": 14809.6, + "end": 14810.32, + "probability": 0.6506 + }, + { + "start": 14810.38, + "end": 14810.92, + "probability": 0.8516 + }, + { + "start": 14811.02, + "end": 14814.4, + "probability": 0.9843 + }, + { + "start": 14814.86, + "end": 14816.72, + "probability": 0.996 + }, + { + "start": 14816.78, + "end": 14817.16, + "probability": 0.8821 + }, + { + "start": 14817.36, + "end": 14818.24, + "probability": 0.9556 + }, + { + "start": 14818.44, + "end": 14819.38, + "probability": 0.9456 + }, + { + "start": 14819.88, + "end": 14820.68, + "probability": 0.9251 + }, + { + "start": 14821.34, + "end": 14822.78, + "probability": 0.925 + }, + { + "start": 14823.4, + "end": 14826.06, + "probability": 0.9695 + }, + { + "start": 14826.58, + "end": 14829.28, + "probability": 0.998 + }, + { + "start": 14829.28, + "end": 14832.56, + "probability": 0.9905 + }, + { + "start": 14832.96, + "end": 14837.32, + "probability": 0.9957 + }, + { + "start": 14837.4, + "end": 14840.32, + "probability": 0.994 + }, + { + "start": 14840.4, + "end": 14841.2, + "probability": 0.8275 + }, + { + "start": 14841.56, + "end": 14843.62, + "probability": 0.9792 + }, + { + "start": 14844.02, + "end": 14844.54, + "probability": 0.7711 + }, + { + "start": 14845.68, + "end": 14847.52, + "probability": 0.9084 + }, + { + "start": 14847.68, + "end": 14848.82, + "probability": 0.526 + }, + { + "start": 14849.56, + "end": 14852.08, + "probability": 0.9388 + }, + { + "start": 14852.3, + "end": 14853.24, + "probability": 0.7796 + }, + { + "start": 14853.34, + "end": 14853.88, + "probability": 0.9297 + }, + { + "start": 14854.0, + "end": 14854.5, + "probability": 0.8976 + }, + { + "start": 14854.5, + "end": 14855.0, + "probability": 0.9861 + }, + { + "start": 14855.06, + "end": 14858.36, + "probability": 0.6611 + }, + { + "start": 14859.18, + "end": 14860.69, + "probability": 0.8868 + }, + { + "start": 14860.94, + "end": 14865.22, + "probability": 0.9571 + }, + { + "start": 14865.56, + "end": 14865.94, + "probability": 0.7536 + }, + { + "start": 14866.34, + "end": 14867.27, + "probability": 0.9281 + }, + { + "start": 14867.44, + "end": 14867.64, + "probability": 0.4291 + }, + { + "start": 14867.74, + "end": 14869.25, + "probability": 0.792 + }, + { + "start": 14869.52, + "end": 14871.84, + "probability": 0.979 + }, + { + "start": 14871.84, + "end": 14873.94, + "probability": 0.979 + }, + { + "start": 14874.02, + "end": 14876.02, + "probability": 0.4255 + }, + { + "start": 14876.82, + "end": 14880.94, + "probability": 0.0581 + }, + { + "start": 14880.94, + "end": 14880.94, + "probability": 0.5032 + }, + { + "start": 14880.94, + "end": 14881.06, + "probability": 0.4113 + }, + { + "start": 14882.98, + "end": 14883.76, + "probability": 0.9026 + }, + { + "start": 14886.8, + "end": 14887.28, + "probability": 0.5118 + }, + { + "start": 14888.33, + "end": 14890.36, + "probability": 0.96 + }, + { + "start": 14890.48, + "end": 14892.52, + "probability": 0.1284 + }, + { + "start": 14892.52, + "end": 14895.12, + "probability": 0.2658 + }, + { + "start": 14895.94, + "end": 14898.2, + "probability": 0.0992 + }, + { + "start": 14899.08, + "end": 14900.12, + "probability": 0.4396 + }, + { + "start": 14901.58, + "end": 14902.24, + "probability": 0.1161 + }, + { + "start": 14902.6, + "end": 14905.6, + "probability": 0.4116 + }, + { + "start": 14908.68, + "end": 14909.72, + "probability": 0.7857 + }, + { + "start": 14910.08, + "end": 14910.48, + "probability": 0.0023 + }, + { + "start": 14910.48, + "end": 14911.26, + "probability": 0.288 + }, + { + "start": 14911.26, + "end": 14913.06, + "probability": 0.9771 + }, + { + "start": 14913.3, + "end": 14915.21, + "probability": 0.4418 + }, + { + "start": 14916.18, + "end": 14917.28, + "probability": 0.7868 + }, + { + "start": 14917.46, + "end": 14920.54, + "probability": 0.9568 + }, + { + "start": 14920.62, + "end": 14923.22, + "probability": 0.9781 + }, + { + "start": 14923.26, + "end": 14923.64, + "probability": 0.4619 + }, + { + "start": 14923.72, + "end": 14924.36, + "probability": 0.5808 + }, + { + "start": 14925.68, + "end": 14930.42, + "probability": 0.0145 + }, + { + "start": 14934.62, + "end": 14936.24, + "probability": 0.0038 + }, + { + "start": 14936.92, + "end": 14938.72, + "probability": 0.0946 + }, + { + "start": 14939.38, + "end": 14941.98, + "probability": 0.6748 + }, + { + "start": 14942.1, + "end": 14943.58, + "probability": 0.8433 + }, + { + "start": 14943.64, + "end": 14946.68, + "probability": 0.9889 + }, + { + "start": 14946.78, + "end": 14948.24, + "probability": 0.7819 + }, + { + "start": 14948.42, + "end": 14950.36, + "probability": 0.8442 + }, + { + "start": 14950.44, + "end": 14952.7, + "probability": 0.723 + }, + { + "start": 14953.18, + "end": 14954.48, + "probability": 0.8295 + }, + { + "start": 14964.98, + "end": 14965.66, + "probability": 0.7336 + }, + { + "start": 14965.72, + "end": 14966.96, + "probability": 0.7469 + }, + { + "start": 14967.12, + "end": 14968.66, + "probability": 0.8455 + }, + { + "start": 14968.76, + "end": 14970.27, + "probability": 0.8579 + }, + { + "start": 14971.12, + "end": 14972.88, + "probability": 0.9842 + }, + { + "start": 14973.0, + "end": 14974.7, + "probability": 0.7187 + }, + { + "start": 14974.8, + "end": 14976.08, + "probability": 0.6559 + }, + { + "start": 14976.24, + "end": 14977.76, + "probability": 0.9475 + }, + { + "start": 14978.56, + "end": 14981.48, + "probability": 0.9628 + }, + { + "start": 14981.56, + "end": 14982.68, + "probability": 0.8744 + }, + { + "start": 14983.26, + "end": 14988.78, + "probability": 0.9906 + }, + { + "start": 14988.78, + "end": 14994.44, + "probability": 0.9863 + }, + { + "start": 14994.74, + "end": 14998.64, + "probability": 0.5613 + }, + { + "start": 14999.08, + "end": 15004.7, + "probability": 0.9001 + }, + { + "start": 15004.8, + "end": 15004.96, + "probability": 0.3393 + }, + { + "start": 15005.0, + "end": 15005.7, + "probability": 0.8265 + }, + { + "start": 15006.0, + "end": 15008.78, + "probability": 0.8674 + }, + { + "start": 15009.3, + "end": 15009.96, + "probability": 0.6646 + }, + { + "start": 15010.56, + "end": 15011.68, + "probability": 0.753 + }, + { + "start": 15011.96, + "end": 15014.2, + "probability": 0.6051 + }, + { + "start": 15014.28, + "end": 15015.52, + "probability": 0.5634 + }, + { + "start": 15015.58, + "end": 15018.52, + "probability": 0.9453 + }, + { + "start": 15018.82, + "end": 15022.66, + "probability": 0.983 + }, + { + "start": 15023.26, + "end": 15028.54, + "probability": 0.9751 + }, + { + "start": 15028.98, + "end": 15030.02, + "probability": 0.8719 + }, + { + "start": 15030.12, + "end": 15032.7, + "probability": 0.9818 + }, + { + "start": 15033.12, + "end": 15035.22, + "probability": 0.994 + }, + { + "start": 15035.58, + "end": 15038.6, + "probability": 0.9556 + }, + { + "start": 15039.22, + "end": 15043.08, + "probability": 0.979 + }, + { + "start": 15043.08, + "end": 15046.34, + "probability": 0.9965 + }, + { + "start": 15046.72, + "end": 15050.3, + "probability": 0.7474 + }, + { + "start": 15050.3, + "end": 15057.16, + "probability": 0.9787 + }, + { + "start": 15058.69, + "end": 15059.36, + "probability": 0.5877 + }, + { + "start": 15059.36, + "end": 15060.28, + "probability": 0.117 + }, + { + "start": 15060.32, + "end": 15060.68, + "probability": 0.6841 + }, + { + "start": 15060.8, + "end": 15061.06, + "probability": 0.5353 + }, + { + "start": 15061.94, + "end": 15064.63, + "probability": 0.7688 + }, + { + "start": 15064.82, + "end": 15064.96, + "probability": 0.4381 + }, + { + "start": 15065.18, + "end": 15067.9, + "probability": 0.9001 + }, + { + "start": 15068.44, + "end": 15070.64, + "probability": 0.8475 + }, + { + "start": 15070.68, + "end": 15074.08, + "probability": 0.8588 + }, + { + "start": 15074.5, + "end": 15076.92, + "probability": 0.9921 + }, + { + "start": 15077.36, + "end": 15078.88, + "probability": 0.9619 + }, + { + "start": 15080.26, + "end": 15084.16, + "probability": 0.9515 + }, + { + "start": 15084.16, + "end": 15089.42, + "probability": 0.8115 + }, + { + "start": 15089.72, + "end": 15093.6, + "probability": 0.9834 + }, + { + "start": 15093.78, + "end": 15097.78, + "probability": 0.9767 + }, + { + "start": 15097.78, + "end": 15099.52, + "probability": 0.9598 + }, + { + "start": 15099.96, + "end": 15101.58, + "probability": 0.8669 + }, + { + "start": 15102.04, + "end": 15104.34, + "probability": 0.9941 + }, + { + "start": 15104.34, + "end": 15107.2, + "probability": 0.9805 + }, + { + "start": 15107.26, + "end": 15107.6, + "probability": 0.6926 + }, + { + "start": 15108.26, + "end": 15110.4, + "probability": 0.5625 + }, + { + "start": 15110.48, + "end": 15110.8, + "probability": 0.6044 + }, + { + "start": 15110.84, + "end": 15111.22, + "probability": 0.8682 + }, + { + "start": 15111.28, + "end": 15114.2, + "probability": 0.9473 + }, + { + "start": 15114.2, + "end": 15116.68, + "probability": 0.379 + }, + { + "start": 15117.32, + "end": 15118.72, + "probability": 0.6452 + }, + { + "start": 15118.94, + "end": 15123.4, + "probability": 0.8208 + }, + { + "start": 15123.52, + "end": 15124.34, + "probability": 0.557 + }, + { + "start": 15124.94, + "end": 15126.78, + "probability": 0.9126 + }, + { + "start": 15127.72, + "end": 15128.96, + "probability": 0.7733 + }, + { + "start": 15139.33, + "end": 15140.08, + "probability": 0.5204 + }, + { + "start": 15140.18, + "end": 15140.74, + "probability": 0.3759 + }, + { + "start": 15141.58, + "end": 15142.32, + "probability": 0.2777 + }, + { + "start": 15143.04, + "end": 15145.46, + "probability": 0.5152 + }, + { + "start": 15146.4, + "end": 15147.88, + "probability": 0.8652 + }, + { + "start": 15150.72, + "end": 15154.76, + "probability": 0.6284 + }, + { + "start": 15154.76, + "end": 15162.04, + "probability": 0.9729 + }, + { + "start": 15162.68, + "end": 15163.62, + "probability": 0.571 + }, + { + "start": 15164.56, + "end": 15165.74, + "probability": 0.7382 + }, + { + "start": 15166.26, + "end": 15167.82, + "probability": 0.6006 + }, + { + "start": 15168.88, + "end": 15171.5, + "probability": 0.9919 + }, + { + "start": 15172.06, + "end": 15174.96, + "probability": 0.9718 + }, + { + "start": 15175.5, + "end": 15177.38, + "probability": 0.9026 + }, + { + "start": 15177.42, + "end": 15180.76, + "probability": 0.978 + }, + { + "start": 15182.18, + "end": 15184.94, + "probability": 0.551 + }, + { + "start": 15186.34, + "end": 15191.0, + "probability": 0.6865 + }, + { + "start": 15191.06, + "end": 15192.58, + "probability": 0.9706 + }, + { + "start": 15193.79, + "end": 15197.92, + "probability": 0.9145 + }, + { + "start": 15198.68, + "end": 15200.55, + "probability": 0.9822 + }, + { + "start": 15202.16, + "end": 15206.02, + "probability": 0.8889 + }, + { + "start": 15206.6, + "end": 15209.88, + "probability": 0.826 + }, + { + "start": 15210.48, + "end": 15211.82, + "probability": 0.7622 + }, + { + "start": 15212.82, + "end": 15214.42, + "probability": 0.771 + }, + { + "start": 15214.9, + "end": 15217.48, + "probability": 0.7804 + }, + { + "start": 15217.62, + "end": 15219.36, + "probability": 0.7672 + }, + { + "start": 15219.94, + "end": 15220.8, + "probability": 0.9487 + }, + { + "start": 15220.9, + "end": 15222.5, + "probability": 0.9839 + }, + { + "start": 15223.36, + "end": 15226.62, + "probability": 0.8623 + }, + { + "start": 15227.32, + "end": 15228.88, + "probability": 0.9952 + }, + { + "start": 15229.52, + "end": 15230.72, + "probability": 0.8266 + }, + { + "start": 15231.34, + "end": 15233.78, + "probability": 0.7742 + }, + { + "start": 15235.04, + "end": 15239.04, + "probability": 0.9806 + }, + { + "start": 15239.18, + "end": 15239.84, + "probability": 0.9388 + }, + { + "start": 15239.98, + "end": 15243.12, + "probability": 0.966 + }, + { + "start": 15243.3, + "end": 15243.98, + "probability": 0.3895 + }, + { + "start": 15244.44, + "end": 15244.62, + "probability": 0.2982 + }, + { + "start": 15244.76, + "end": 15246.88, + "probability": 0.9867 + }, + { + "start": 15246.92, + "end": 15251.1, + "probability": 0.9546 + }, + { + "start": 15251.48, + "end": 15252.33, + "probability": 0.9062 + }, + { + "start": 15252.6, + "end": 15254.86, + "probability": 0.9844 + }, + { + "start": 15256.98, + "end": 15257.64, + "probability": 0.3477 + }, + { + "start": 15257.64, + "end": 15258.42, + "probability": 0.3951 + }, + { + "start": 15258.52, + "end": 15259.1, + "probability": 0.5244 + }, + { + "start": 15259.98, + "end": 15261.92, + "probability": 0.8624 + }, + { + "start": 15263.0, + "end": 15267.84, + "probability": 0.873 + }, + { + "start": 15268.56, + "end": 15272.16, + "probability": 0.9757 + }, + { + "start": 15272.24, + "end": 15273.36, + "probability": 0.6597 + }, + { + "start": 15273.44, + "end": 15275.82, + "probability": 0.8949 + }, + { + "start": 15276.14, + "end": 15278.34, + "probability": 0.9681 + }, + { + "start": 15278.34, + "end": 15280.4, + "probability": 0.3483 + }, + { + "start": 15280.52, + "end": 15282.18, + "probability": 0.171 + }, + { + "start": 15282.34, + "end": 15285.04, + "probability": 0.4741 + }, + { + "start": 15304.5, + "end": 15306.74, + "probability": 0.6812 + }, + { + "start": 15306.92, + "end": 15307.52, + "probability": 0.6748 + }, + { + "start": 15307.64, + "end": 15309.4, + "probability": 0.535 + }, + { + "start": 15309.9, + "end": 15312.14, + "probability": 0.804 + }, + { + "start": 15312.3, + "end": 15312.52, + "probability": 0.1861 + }, + { + "start": 15314.72, + "end": 15317.12, + "probability": 0.7488 + }, + { + "start": 15317.18, + "end": 15319.0, + "probability": 0.8593 + }, + { + "start": 15319.54, + "end": 15322.44, + "probability": 0.7461 + }, + { + "start": 15322.5, + "end": 15323.26, + "probability": 0.7567 + }, + { + "start": 15345.6, + "end": 15347.28, + "probability": 0.553 + }, + { + "start": 15348.4, + "end": 15350.44, + "probability": 0.7797 + }, + { + "start": 15351.1, + "end": 15352.02, + "probability": 0.5375 + }, + { + "start": 15353.3, + "end": 15354.6, + "probability": 0.5743 + }, + { + "start": 15355.4, + "end": 15356.8, + "probability": 0.9083 + }, + { + "start": 15357.52, + "end": 15358.84, + "probability": 0.8249 + }, + { + "start": 15359.16, + "end": 15365.78, + "probability": 0.7866 + }, + { + "start": 15367.02, + "end": 15371.42, + "probability": 0.9946 + }, + { + "start": 15372.74, + "end": 15377.82, + "probability": 0.991 + }, + { + "start": 15378.56, + "end": 15382.28, + "probability": 0.9955 + }, + { + "start": 15383.06, + "end": 15386.02, + "probability": 0.7842 + }, + { + "start": 15387.36, + "end": 15388.62, + "probability": 0.8754 + }, + { + "start": 15390.86, + "end": 15392.16, + "probability": 0.9993 + }, + { + "start": 15393.8, + "end": 15397.12, + "probability": 0.9977 + }, + { + "start": 15398.74, + "end": 15400.16, + "probability": 0.9998 + }, + { + "start": 15400.88, + "end": 15404.82, + "probability": 0.9957 + }, + { + "start": 15406.06, + "end": 15407.16, + "probability": 0.9899 + }, + { + "start": 15408.28, + "end": 15408.96, + "probability": 0.8217 + }, + { + "start": 15410.2, + "end": 15413.44, + "probability": 0.9959 + }, + { + "start": 15414.08, + "end": 15414.76, + "probability": 0.6994 + }, + { + "start": 15415.58, + "end": 15416.08, + "probability": 0.806 + }, + { + "start": 15417.66, + "end": 15419.12, + "probability": 0.8174 + }, + { + "start": 15420.24, + "end": 15421.28, + "probability": 0.6408 + }, + { + "start": 15423.52, + "end": 15425.12, + "probability": 0.9854 + }, + { + "start": 15427.7, + "end": 15429.6, + "probability": 0.9776 + }, + { + "start": 15431.24, + "end": 15432.24, + "probability": 0.9393 + }, + { + "start": 15432.3, + "end": 15432.66, + "probability": 0.9835 + }, + { + "start": 15433.06, + "end": 15435.88, + "probability": 0.8354 + }, + { + "start": 15437.66, + "end": 15439.6, + "probability": 0.9341 + }, + { + "start": 15442.1, + "end": 15445.06, + "probability": 0.9876 + }, + { + "start": 15445.54, + "end": 15446.68, + "probability": 0.9132 + }, + { + "start": 15447.48, + "end": 15449.06, + "probability": 0.7025 + }, + { + "start": 15451.22, + "end": 15455.78, + "probability": 0.9445 + }, + { + "start": 15455.96, + "end": 15458.62, + "probability": 0.9764 + }, + { + "start": 15461.0, + "end": 15465.24, + "probability": 0.7775 + }, + { + "start": 15466.76, + "end": 15469.08, + "probability": 0.9334 + }, + { + "start": 15470.84, + "end": 15475.5, + "probability": 0.988 + }, + { + "start": 15477.22, + "end": 15479.52, + "probability": 0.8554 + }, + { + "start": 15480.04, + "end": 15480.6, + "probability": 0.6051 + }, + { + "start": 15482.88, + "end": 15486.22, + "probability": 0.9639 + }, + { + "start": 15488.9, + "end": 15491.98, + "probability": 0.9872 + }, + { + "start": 15492.88, + "end": 15494.88, + "probability": 0.6955 + }, + { + "start": 15496.82, + "end": 15498.54, + "probability": 0.8485 + }, + { + "start": 15499.92, + "end": 15501.02, + "probability": 0.7289 + }, + { + "start": 15502.98, + "end": 15506.64, + "probability": 0.9627 + }, + { + "start": 15507.48, + "end": 15508.64, + "probability": 0.912 + }, + { + "start": 15511.42, + "end": 15515.46, + "probability": 0.9314 + }, + { + "start": 15516.44, + "end": 15520.3, + "probability": 0.9211 + }, + { + "start": 15520.88, + "end": 15521.7, + "probability": 0.7757 + }, + { + "start": 15523.0, + "end": 15523.88, + "probability": 0.8828 + }, + { + "start": 15524.94, + "end": 15525.38, + "probability": 0.7809 + }, + { + "start": 15527.24, + "end": 15528.34, + "probability": 0.8594 + }, + { + "start": 15529.96, + "end": 15538.44, + "probability": 0.9843 + }, + { + "start": 15540.88, + "end": 15545.24, + "probability": 0.958 + }, + { + "start": 15545.98, + "end": 15546.49, + "probability": 0.999 + }, + { + "start": 15547.84, + "end": 15552.82, + "probability": 0.9787 + }, + { + "start": 15553.66, + "end": 15557.08, + "probability": 0.9914 + }, + { + "start": 15558.46, + "end": 15560.96, + "probability": 0.9539 + }, + { + "start": 15561.18, + "end": 15562.84, + "probability": 0.9926 + }, + { + "start": 15563.6, + "end": 15567.3, + "probability": 0.9668 + }, + { + "start": 15567.42, + "end": 15570.9, + "probability": 0.5515 + }, + { + "start": 15570.98, + "end": 15571.74, + "probability": 0.4206 + }, + { + "start": 15571.74, + "end": 15572.06, + "probability": 0.1907 + }, + { + "start": 15572.16, + "end": 15572.94, + "probability": 0.6254 + }, + { + "start": 15573.52, + "end": 15574.64, + "probability": 0.8629 + }, + { + "start": 15577.2, + "end": 15581.14, + "probability": 0.9504 + }, + { + "start": 15582.3, + "end": 15583.84, + "probability": 0.9045 + }, + { + "start": 15587.88, + "end": 15594.38, + "probability": 0.9879 + }, + { + "start": 15596.8, + "end": 15598.04, + "probability": 0.735 + }, + { + "start": 15598.7, + "end": 15599.78, + "probability": 0.9834 + }, + { + "start": 15600.32, + "end": 15601.3, + "probability": 0.9902 + }, + { + "start": 15602.12, + "end": 15604.66, + "probability": 0.6071 + }, + { + "start": 15605.4, + "end": 15607.32, + "probability": 0.9666 + }, + { + "start": 15608.04, + "end": 15610.02, + "probability": 0.9785 + }, + { + "start": 15610.8, + "end": 15612.28, + "probability": 0.9788 + }, + { + "start": 15612.8, + "end": 15618.66, + "probability": 0.9912 + }, + { + "start": 15618.72, + "end": 15621.56, + "probability": 0.9983 + }, + { + "start": 15622.2, + "end": 15624.58, + "probability": 0.9248 + }, + { + "start": 15625.4, + "end": 15629.02, + "probability": 0.9736 + }, + { + "start": 15630.78, + "end": 15632.78, + "probability": 0.9971 + }, + { + "start": 15633.58, + "end": 15637.36, + "probability": 0.9869 + }, + { + "start": 15638.74, + "end": 15639.46, + "probability": 0.9033 + }, + { + "start": 15639.64, + "end": 15639.98, + "probability": 0.8898 + }, + { + "start": 15640.14, + "end": 15641.5, + "probability": 0.8709 + }, + { + "start": 15642.0, + "end": 15644.4, + "probability": 0.8636 + }, + { + "start": 15645.06, + "end": 15646.24, + "probability": 0.9711 + }, + { + "start": 15647.14, + "end": 15651.76, + "probability": 0.896 + }, + { + "start": 15654.94, + "end": 15660.54, + "probability": 0.9473 + }, + { + "start": 15661.14, + "end": 15662.3, + "probability": 0.9883 + }, + { + "start": 15662.88, + "end": 15666.12, + "probability": 0.7396 + }, + { + "start": 15666.72, + "end": 15667.34, + "probability": 0.4775 + }, + { + "start": 15669.74, + "end": 15674.24, + "probability": 0.9664 + }, + { + "start": 15675.62, + "end": 15682.52, + "probability": 0.6482 + }, + { + "start": 15685.12, + "end": 15685.82, + "probability": 0.4413 + }, + { + "start": 15686.18, + "end": 15691.18, + "probability": 0.9871 + }, + { + "start": 15691.36, + "end": 15691.86, + "probability": 0.7545 + }, + { + "start": 15692.78, + "end": 15695.7, + "probability": 0.9919 + }, + { + "start": 15696.36, + "end": 15700.46, + "probability": 0.9898 + }, + { + "start": 15702.98, + "end": 15710.3, + "probability": 0.9677 + }, + { + "start": 15711.04, + "end": 15713.54, + "probability": 0.7588 + }, + { + "start": 15714.18, + "end": 15714.82, + "probability": 0.8379 + }, + { + "start": 15715.68, + "end": 15720.22, + "probability": 0.9253 + }, + { + "start": 15720.76, + "end": 15724.12, + "probability": 0.9271 + }, + { + "start": 15725.16, + "end": 15725.82, + "probability": 0.5504 + }, + { + "start": 15726.34, + "end": 15727.9, + "probability": 0.7662 + }, + { + "start": 15728.88, + "end": 15730.16, + "probability": 0.3521 + }, + { + "start": 15730.38, + "end": 15731.7, + "probability": 0.9811 + }, + { + "start": 15732.4, + "end": 15733.52, + "probability": 0.9456 + }, + { + "start": 15734.08, + "end": 15736.4, + "probability": 0.6664 + }, + { + "start": 15736.96, + "end": 15741.06, + "probability": 0.9941 + }, + { + "start": 15741.58, + "end": 15741.93, + "probability": 0.7539 + }, + { + "start": 15742.46, + "end": 15747.32, + "probability": 0.8433 + }, + { + "start": 15747.38, + "end": 15747.92, + "probability": 0.8414 + }, + { + "start": 15748.72, + "end": 15749.58, + "probability": 0.7276 + }, + { + "start": 15750.04, + "end": 15750.24, + "probability": 0.7093 + }, + { + "start": 15751.34, + "end": 15753.58, + "probability": 0.6708 + }, + { + "start": 15753.9, + "end": 15754.78, + "probability": 0.6673 + }, + { + "start": 15754.92, + "end": 15758.68, + "probability": 0.91 + }, + { + "start": 15759.34, + "end": 15761.22, + "probability": 0.7545 + }, + { + "start": 15762.34, + "end": 15763.22, + "probability": 0.5074 + }, + { + "start": 15764.2, + "end": 15765.07, + "probability": 0.8271 + }, + { + "start": 15765.26, + "end": 15767.74, + "probability": 0.5675 + }, + { + "start": 15768.34, + "end": 15768.74, + "probability": 0.4542 + }, + { + "start": 15768.86, + "end": 15771.18, + "probability": 0.9559 + }, + { + "start": 15771.18, + "end": 15773.82, + "probability": 0.7982 + }, + { + "start": 15774.38, + "end": 15777.66, + "probability": 0.7452 + }, + { + "start": 15777.72, + "end": 15778.02, + "probability": 0.427 + }, + { + "start": 15778.14, + "end": 15778.5, + "probability": 0.6581 + }, + { + "start": 15786.96, + "end": 15786.96, + "probability": 0.0043 + }, + { + "start": 15786.96, + "end": 15787.04, + "probability": 0.0436 + }, + { + "start": 15796.08, + "end": 15796.82, + "probability": 0.4976 + }, + { + "start": 15796.9, + "end": 15798.32, + "probability": 0.9624 + }, + { + "start": 15798.4, + "end": 15798.58, + "probability": 0.2661 + }, + { + "start": 15798.62, + "end": 15800.44, + "probability": 0.9905 + }, + { + "start": 15800.58, + "end": 15800.86, + "probability": 0.2851 + }, + { + "start": 15800.96, + "end": 15801.28, + "probability": 0.6415 + }, + { + "start": 15811.84, + "end": 15811.84, + "probability": 0.0304 + }, + { + "start": 15811.84, + "end": 15811.84, + "probability": 0.0153 + }, + { + "start": 15811.84, + "end": 15811.84, + "probability": 0.1063 + }, + { + "start": 15811.84, + "end": 15813.52, + "probability": 0.7524 + }, + { + "start": 15814.48, + "end": 15816.46, + "probability": 0.6249 + }, + { + "start": 15816.5, + "end": 15817.68, + "probability": 0.9845 + }, + { + "start": 15818.34, + "end": 15818.9, + "probability": 0.7602 + }, + { + "start": 15819.36, + "end": 15821.32, + "probability": 0.8261 + }, + { + "start": 15821.4, + "end": 15822.84, + "probability": 0.981 + }, + { + "start": 15823.38, + "end": 15825.48, + "probability": 0.9387 + }, + { + "start": 15825.82, + "end": 15826.8, + "probability": 0.5289 + }, + { + "start": 15827.84, + "end": 15829.38, + "probability": 0.9411 + }, + { + "start": 15830.22, + "end": 15830.26, + "probability": 0.2242 + }, + { + "start": 15830.84, + "end": 15832.34, + "probability": 0.7811 + }, + { + "start": 15832.34, + "end": 15834.8, + "probability": 0.8989 + }, + { + "start": 15835.42, + "end": 15837.74, + "probability": 0.6513 + }, + { + "start": 15838.0, + "end": 15838.3, + "probability": 0.5599 + }, + { + "start": 15838.57, + "end": 15841.48, + "probability": 0.9342 + }, + { + "start": 15842.42, + "end": 15843.86, + "probability": 0.522 + }, + { + "start": 15844.0, + "end": 15844.78, + "probability": 0.859 + }, + { + "start": 15844.84, + "end": 15847.82, + "probability": 0.9875 + }, + { + "start": 15847.98, + "end": 15848.48, + "probability": 0.7658 + }, + { + "start": 15848.88, + "end": 15849.14, + "probability": 0.7649 + }, + { + "start": 15849.2, + "end": 15852.64, + "probability": 0.9836 + }, + { + "start": 15853.54, + "end": 15857.22, + "probability": 0.8988 + }, + { + "start": 15857.3, + "end": 15857.56, + "probability": 0.6296 + }, + { + "start": 15857.58, + "end": 15857.84, + "probability": 0.8088 + }, + { + "start": 15858.96, + "end": 15861.02, + "probability": 0.7447 + }, + { + "start": 15861.54, + "end": 15862.5, + "probability": 0.9897 + }, + { + "start": 15862.54, + "end": 15863.4, + "probability": 0.9097 + }, + { + "start": 15863.86, + "end": 15865.88, + "probability": 0.8341 + }, + { + "start": 15865.96, + "end": 15866.42, + "probability": 0.93 + }, + { + "start": 15867.16, + "end": 15867.64, + "probability": 0.6326 + }, + { + "start": 15867.64, + "end": 15868.34, + "probability": 0.7355 + }, + { + "start": 15868.72, + "end": 15871.32, + "probability": 0.8757 + }, + { + "start": 15871.48, + "end": 15871.84, + "probability": 0.4562 + }, + { + "start": 15871.94, + "end": 15872.24, + "probability": 0.5439 + }, + { + "start": 15872.32, + "end": 15873.85, + "probability": 0.9326 + }, + { + "start": 15874.9, + "end": 15875.94, + "probability": 0.1137 + }, + { + "start": 15876.67, + "end": 15878.68, + "probability": 0.6869 + }, + { + "start": 15879.16, + "end": 15880.08, + "probability": 0.9264 + }, + { + "start": 15880.46, + "end": 15880.82, + "probability": 0.7999 + }, + { + "start": 15880.9, + "end": 15881.62, + "probability": 0.555 + }, + { + "start": 15881.74, + "end": 15884.2, + "probability": 0.5503 + }, + { + "start": 15893.96, + "end": 15894.24, + "probability": 0.7672 + }, + { + "start": 15894.32, + "end": 15894.52, + "probability": 0.7479 + }, + { + "start": 15894.62, + "end": 15896.26, + "probability": 0.4182 + }, + { + "start": 15896.3, + "end": 15896.94, + "probability": 0.3347 + }, + { + "start": 15897.04, + "end": 15898.34, + "probability": 0.8442 + }, + { + "start": 15898.64, + "end": 15898.74, + "probability": 0.7715 + }, + { + "start": 15899.28, + "end": 15900.08, + "probability": 0.7723 + }, + { + "start": 15901.54, + "end": 15905.46, + "probability": 0.9844 + }, + { + "start": 15905.66, + "end": 15906.48, + "probability": 0.9941 + }, + { + "start": 15908.1, + "end": 15909.1, + "probability": 0.9955 + }, + { + "start": 15910.76, + "end": 15914.62, + "probability": 0.7407 + }, + { + "start": 15917.36, + "end": 15918.5, + "probability": 0.0246 + }, + { + "start": 15919.02, + "end": 15919.74, + "probability": 0.0198 + }, + { + "start": 15920.8, + "end": 15925.68, + "probability": 0.5048 + }, + { + "start": 15926.9, + "end": 15928.72, + "probability": 0.944 + }, + { + "start": 15929.66, + "end": 15931.26, + "probability": 0.7981 + }, + { + "start": 15931.8, + "end": 15932.6, + "probability": 0.9226 + }, + { + "start": 15932.76, + "end": 15933.12, + "probability": 0.8876 + }, + { + "start": 15936.66, + "end": 15939.66, + "probability": 0.9424 + }, + { + "start": 15940.2, + "end": 15945.02, + "probability": 0.6796 + }, + { + "start": 15946.12, + "end": 15948.6, + "probability": 0.9897 + }, + { + "start": 15949.2, + "end": 15951.84, + "probability": 0.832 + }, + { + "start": 15952.7, + "end": 15957.02, + "probability": 0.9948 + }, + { + "start": 15957.56, + "end": 15960.56, + "probability": 0.9949 + }, + { + "start": 15961.1, + "end": 15961.9, + "probability": 0.6965 + }, + { + "start": 15963.14, + "end": 15965.54, + "probability": 0.6615 + }, + { + "start": 15966.26, + "end": 15967.12, + "probability": 0.7271 + }, + { + "start": 15968.4, + "end": 15973.17, + "probability": 0.9321 + }, + { + "start": 15973.86, + "end": 15978.12, + "probability": 0.8219 + }, + { + "start": 15978.48, + "end": 15982.78, + "probability": 0.97 + }, + { + "start": 15985.08, + "end": 15992.16, + "probability": 0.9491 + }, + { + "start": 15992.76, + "end": 15997.3, + "probability": 0.9653 + }, + { + "start": 15998.06, + "end": 15998.34, + "probability": 0.9941 + }, + { + "start": 16001.2, + "end": 16003.74, + "probability": 0.9801 + }, + { + "start": 16006.56, + "end": 16007.52, + "probability": 0.666 + }, + { + "start": 16008.56, + "end": 16012.4, + "probability": 0.9972 + }, + { + "start": 16014.56, + "end": 16020.33, + "probability": 0.742 + }, + { + "start": 16023.88, + "end": 16024.94, + "probability": 0.0849 + }, + { + "start": 16030.42, + "end": 16030.84, + "probability": 0.0228 + }, + { + "start": 16034.78, + "end": 16036.42, + "probability": 0.9758 + }, + { + "start": 16037.9, + "end": 16038.0, + "probability": 0.5328 + }, + { + "start": 16040.32, + "end": 16043.52, + "probability": 0.7141 + }, + { + "start": 16046.1, + "end": 16050.42, + "probability": 0.9885 + }, + { + "start": 16053.48, + "end": 16055.48, + "probability": 0.1724 + }, + { + "start": 16056.66, + "end": 16058.86, + "probability": 0.5641 + }, + { + "start": 16059.38, + "end": 16060.82, + "probability": 0.6199 + }, + { + "start": 16060.94, + "end": 16067.58, + "probability": 0.8765 + }, + { + "start": 16068.74, + "end": 16070.2, + "probability": 0.9546 + }, + { + "start": 16070.74, + "end": 16077.96, + "probability": 0.7733 + }, + { + "start": 16079.36, + "end": 16080.69, + "probability": 0.8773 + }, + { + "start": 16082.02, + "end": 16085.16, + "probability": 0.8752 + }, + { + "start": 16086.94, + "end": 16093.72, + "probability": 0.9939 + }, + { + "start": 16094.5, + "end": 16097.42, + "probability": 0.9743 + }, + { + "start": 16097.56, + "end": 16098.22, + "probability": 0.76 + }, + { + "start": 16098.3, + "end": 16101.0, + "probability": 0.9159 + }, + { + "start": 16103.64, + "end": 16107.82, + "probability": 0.9614 + }, + { + "start": 16107.82, + "end": 16110.7, + "probability": 0.9964 + }, + { + "start": 16111.5, + "end": 16112.88, + "probability": 0.9509 + }, + { + "start": 16113.56, + "end": 16116.16, + "probability": 0.985 + }, + { + "start": 16118.44, + "end": 16120.62, + "probability": 0.9143 + }, + { + "start": 16121.38, + "end": 16125.3, + "probability": 0.9469 + }, + { + "start": 16126.48, + "end": 16128.74, + "probability": 0.9878 + }, + { + "start": 16129.32, + "end": 16129.94, + "probability": 0.7066 + }, + { + "start": 16130.62, + "end": 16131.5, + "probability": 0.8572 + }, + { + "start": 16132.22, + "end": 16136.58, + "probability": 0.79 + }, + { + "start": 16137.36, + "end": 16137.82, + "probability": 0.4582 + }, + { + "start": 16138.02, + "end": 16138.74, + "probability": 0.9172 + }, + { + "start": 16138.8, + "end": 16144.12, + "probability": 0.9153 + }, + { + "start": 16144.64, + "end": 16149.88, + "probability": 0.9489 + }, + { + "start": 16150.46, + "end": 16154.5, + "probability": 0.7452 + }, + { + "start": 16154.96, + "end": 16155.38, + "probability": 0.7267 + }, + { + "start": 16156.54, + "end": 16158.94, + "probability": 0.7769 + }, + { + "start": 16159.06, + "end": 16159.4, + "probability": 0.8865 + }, + { + "start": 16159.56, + "end": 16160.42, + "probability": 0.5106 + }, + { + "start": 16160.5, + "end": 16163.5, + "probability": 0.8654 + }, + { + "start": 16163.58, + "end": 16164.7, + "probability": 0.8972 + }, + { + "start": 16164.8, + "end": 16165.58, + "probability": 0.633 + }, + { + "start": 16167.32, + "end": 16167.76, + "probability": 0.5976 + }, + { + "start": 16168.02, + "end": 16170.22, + "probability": 0.8211 + }, + { + "start": 16170.72, + "end": 16171.66, + "probability": 0.7684 + }, + { + "start": 16171.72, + "end": 16172.9, + "probability": 0.9395 + }, + { + "start": 16175.08, + "end": 16176.36, + "probability": 0.697 + }, + { + "start": 16176.92, + "end": 16177.38, + "probability": 0.9027 + }, + { + "start": 16178.72, + "end": 16179.96, + "probability": 0.8088 + }, + { + "start": 16181.74, + "end": 16182.9, + "probability": 0.5523 + }, + { + "start": 16183.82, + "end": 16184.62, + "probability": 0.7632 + }, + { + "start": 16185.38, + "end": 16187.72, + "probability": 0.9352 + }, + { + "start": 16188.34, + "end": 16191.26, + "probability": 0.9927 + }, + { + "start": 16192.14, + "end": 16194.58, + "probability": 0.9363 + }, + { + "start": 16195.7, + "end": 16197.7, + "probability": 0.9899 + }, + { + "start": 16198.6, + "end": 16200.7, + "probability": 0.6639 + }, + { + "start": 16201.16, + "end": 16201.28, + "probability": 0.2145 + }, + { + "start": 16201.36, + "end": 16201.5, + "probability": 0.7926 + }, + { + "start": 16201.6, + "end": 16202.92, + "probability": 0.9375 + }, + { + "start": 16203.18, + "end": 16203.88, + "probability": 0.6873 + }, + { + "start": 16203.92, + "end": 16204.62, + "probability": 0.8755 + }, + { + "start": 16204.72, + "end": 16205.44, + "probability": 0.6748 + }, + { + "start": 16206.2, + "end": 16207.88, + "probability": 0.9673 + }, + { + "start": 16208.41, + "end": 16212.86, + "probability": 0.9963 + }, + { + "start": 16213.0, + "end": 16213.94, + "probability": 0.8335 + }, + { + "start": 16214.96, + "end": 16219.48, + "probability": 0.7807 + }, + { + "start": 16219.6, + "end": 16220.08, + "probability": 0.9299 + }, + { + "start": 16220.16, + "end": 16222.68, + "probability": 0.9797 + }, + { + "start": 16223.28, + "end": 16225.32, + "probability": 0.6938 + }, + { + "start": 16225.44, + "end": 16226.42, + "probability": 0.673 + }, + { + "start": 16226.52, + "end": 16227.66, + "probability": 0.9904 + }, + { + "start": 16229.56, + "end": 16231.58, + "probability": 0.983 + }, + { + "start": 16232.36, + "end": 16235.82, + "probability": 0.9907 + }, + { + "start": 16236.54, + "end": 16240.26, + "probability": 0.9185 + }, + { + "start": 16240.88, + "end": 16241.78, + "probability": 0.9737 + }, + { + "start": 16241.92, + "end": 16243.04, + "probability": 0.955 + }, + { + "start": 16243.34, + "end": 16244.12, + "probability": 0.6289 + }, + { + "start": 16244.16, + "end": 16245.84, + "probability": 0.9825 + }, + { + "start": 16246.56, + "end": 16248.56, + "probability": 0.8512 + }, + { + "start": 16250.86, + "end": 16253.08, + "probability": 0.9954 + }, + { + "start": 16254.62, + "end": 16261.4, + "probability": 0.8807 + }, + { + "start": 16262.82, + "end": 16264.1, + "probability": 0.9894 + }, + { + "start": 16265.12, + "end": 16266.64, + "probability": 0.9794 + }, + { + "start": 16269.64, + "end": 16272.3, + "probability": 0.621 + }, + { + "start": 16273.04, + "end": 16274.58, + "probability": 0.8584 + }, + { + "start": 16277.12, + "end": 16277.32, + "probability": 0.6543 + }, + { + "start": 16278.32, + "end": 16281.12, + "probability": 0.9946 + }, + { + "start": 16282.32, + "end": 16283.04, + "probability": 0.6935 + }, + { + "start": 16283.82, + "end": 16284.68, + "probability": 0.8937 + }, + { + "start": 16285.66, + "end": 16288.2, + "probability": 0.9979 + }, + { + "start": 16289.36, + "end": 16292.68, + "probability": 0.999 + }, + { + "start": 16293.3, + "end": 16299.2, + "probability": 0.8349 + }, + { + "start": 16299.92, + "end": 16306.44, + "probability": 0.989 + }, + { + "start": 16307.36, + "end": 16309.26, + "probability": 0.9881 + }, + { + "start": 16310.16, + "end": 16311.22, + "probability": 0.9578 + }, + { + "start": 16311.74, + "end": 16312.92, + "probability": 0.8801 + }, + { + "start": 16312.96, + "end": 16313.78, + "probability": 0.5763 + }, + { + "start": 16313.88, + "end": 16314.78, + "probability": 0.8534 + }, + { + "start": 16315.16, + "end": 16315.74, + "probability": 0.7031 + }, + { + "start": 16315.76, + "end": 16316.92, + "probability": 0.6815 + }, + { + "start": 16317.96, + "end": 16322.53, + "probability": 0.9898 + }, + { + "start": 16323.02, + "end": 16327.2, + "probability": 0.9523 + }, + { + "start": 16328.16, + "end": 16329.18, + "probability": 0.9866 + }, + { + "start": 16329.94, + "end": 16333.2, + "probability": 0.8407 + }, + { + "start": 16334.12, + "end": 16335.62, + "probability": 0.8633 + }, + { + "start": 16336.58, + "end": 16337.52, + "probability": 0.9688 + }, + { + "start": 16339.3, + "end": 16341.69, + "probability": 0.8242 + }, + { + "start": 16343.44, + "end": 16344.0, + "probability": 0.7446 + }, + { + "start": 16345.5, + "end": 16347.62, + "probability": 0.9979 + }, + { + "start": 16348.0, + "end": 16350.18, + "probability": 0.9811 + }, + { + "start": 16350.6, + "end": 16352.06, + "probability": 0.9048 + }, + { + "start": 16352.8, + "end": 16353.58, + "probability": 0.652 + }, + { + "start": 16354.4, + "end": 16354.66, + "probability": 0.9126 + }, + { + "start": 16356.7, + "end": 16358.0, + "probability": 0.972 + }, + { + "start": 16358.14, + "end": 16358.38, + "probability": 0.9528 + }, + { + "start": 16359.04, + "end": 16361.76, + "probability": 0.9854 + }, + { + "start": 16362.42, + "end": 16365.42, + "probability": 0.2788 + }, + { + "start": 16365.7, + "end": 16366.32, + "probability": 0.5203 + }, + { + "start": 16366.56, + "end": 16369.16, + "probability": 0.9764 + }, + { + "start": 16369.26, + "end": 16372.06, + "probability": 0.7768 + }, + { + "start": 16372.16, + "end": 16375.08, + "probability": 0.9723 + }, + { + "start": 16375.52, + "end": 16377.23, + "probability": 0.9683 + }, + { + "start": 16377.94, + "end": 16381.82, + "probability": 0.9904 + }, + { + "start": 16382.68, + "end": 16383.54, + "probability": 0.9922 + }, + { + "start": 16384.58, + "end": 16387.32, + "probability": 0.9479 + }, + { + "start": 16388.38, + "end": 16389.64, + "probability": 0.9734 + }, + { + "start": 16389.94, + "end": 16391.27, + "probability": 0.0496 + }, + { + "start": 16391.38, + "end": 16393.84, + "probability": 0.5394 + }, + { + "start": 16393.96, + "end": 16395.18, + "probability": 0.3776 + }, + { + "start": 16395.18, + "end": 16395.92, + "probability": 0.6477 + }, + { + "start": 16396.12, + "end": 16398.92, + "probability": 0.7523 + }, + { + "start": 16398.98, + "end": 16400.0, + "probability": 0.8999 + }, + { + "start": 16400.76, + "end": 16402.62, + "probability": 0.9745 + }, + { + "start": 16403.0, + "end": 16404.58, + "probability": 0.875 + }, + { + "start": 16404.96, + "end": 16405.86, + "probability": 0.6001 + }, + { + "start": 16405.86, + "end": 16408.4, + "probability": 0.4812 + }, + { + "start": 16408.4, + "end": 16409.5, + "probability": 0.8101 + }, + { + "start": 16409.7, + "end": 16410.1, + "probability": 0.9567 + }, + { + "start": 16410.2, + "end": 16411.6, + "probability": 0.9785 + }, + { + "start": 16411.64, + "end": 16412.78, + "probability": 0.7335 + }, + { + "start": 16413.5, + "end": 16414.82, + "probability": 0.9235 + }, + { + "start": 16414.96, + "end": 16417.04, + "probability": 0.9872 + }, + { + "start": 16417.56, + "end": 16422.62, + "probability": 0.9983 + }, + { + "start": 16423.24, + "end": 16424.06, + "probability": 0.9992 + }, + { + "start": 16424.74, + "end": 16426.16, + "probability": 0.9668 + }, + { + "start": 16426.74, + "end": 16429.08, + "probability": 0.9993 + }, + { + "start": 16429.5, + "end": 16429.88, + "probability": 0.3098 + }, + { + "start": 16430.74, + "end": 16434.64, + "probability": 0.9186 + }, + { + "start": 16434.74, + "end": 16436.86, + "probability": 0.9966 + }, + { + "start": 16437.6, + "end": 16437.6, + "probability": 0.1389 + }, + { + "start": 16437.6, + "end": 16441.68, + "probability": 0.9129 + }, + { + "start": 16442.34, + "end": 16443.16, + "probability": 0.6143 + }, + { + "start": 16443.32, + "end": 16445.72, + "probability": 0.9469 + }, + { + "start": 16445.84, + "end": 16447.06, + "probability": 0.8367 + }, + { + "start": 16447.16, + "end": 16447.4, + "probability": 0.5405 + }, + { + "start": 16447.78, + "end": 16449.32, + "probability": 0.9225 + }, + { + "start": 16449.36, + "end": 16451.92, + "probability": 0.9276 + }, + { + "start": 16452.7, + "end": 16453.62, + "probability": 0.8038 + }, + { + "start": 16453.62, + "end": 16457.16, + "probability": 0.9231 + }, + { + "start": 16457.5, + "end": 16460.8, + "probability": 0.9528 + }, + { + "start": 16460.9, + "end": 16461.56, + "probability": 0.6636 + }, + { + "start": 16461.6, + "end": 16462.62, + "probability": 0.814 + }, + { + "start": 16462.64, + "end": 16464.4, + "probability": 0.9626 + }, + { + "start": 16464.42, + "end": 16464.94, + "probability": 0.6344 + }, + { + "start": 16465.06, + "end": 16468.0, + "probability": 0.9205 + }, + { + "start": 16468.06, + "end": 16469.3, + "probability": 0.7271 + }, + { + "start": 16470.14, + "end": 16470.72, + "probability": 0.7526 + }, + { + "start": 16471.12, + "end": 16473.76, + "probability": 0.892 + }, + { + "start": 16474.06, + "end": 16475.56, + "probability": 0.9045 + }, + { + "start": 16476.6, + "end": 16477.42, + "probability": 0.7169 + }, + { + "start": 16478.04, + "end": 16479.24, + "probability": 0.9598 + }, + { + "start": 16480.58, + "end": 16481.34, + "probability": 0.6634 + }, + { + "start": 16481.72, + "end": 16483.0, + "probability": 0.9862 + }, + { + "start": 16483.22, + "end": 16483.9, + "probability": 0.9037 + }, + { + "start": 16485.84, + "end": 16487.82, + "probability": 0.9297 + }, + { + "start": 16495.18, + "end": 16496.58, + "probability": 0.8148 + }, + { + "start": 16496.94, + "end": 16498.02, + "probability": 0.8732 + }, + { + "start": 16503.79, + "end": 16507.14, + "probability": 0.8327 + }, + { + "start": 16507.22, + "end": 16507.44, + "probability": 0.9447 + }, + { + "start": 16509.34, + "end": 16510.88, + "probability": 0.7752 + }, + { + "start": 16511.1, + "end": 16512.26, + "probability": 0.9324 + }, + { + "start": 16512.42, + "end": 16512.54, + "probability": 0.9136 + }, + { + "start": 16512.64, + "end": 16513.16, + "probability": 0.9435 + }, + { + "start": 16513.62, + "end": 16514.08, + "probability": 0.7111 + }, + { + "start": 16514.16, + "end": 16514.94, + "probability": 0.7754 + }, + { + "start": 16516.2, + "end": 16516.76, + "probability": 0.5222 + }, + { + "start": 16517.08, + "end": 16517.56, + "probability": 0.6477 + }, + { + "start": 16518.66, + "end": 16519.46, + "probability": 0.4141 + }, + { + "start": 16519.56, + "end": 16519.82, + "probability": 0.5317 + }, + { + "start": 16521.2, + "end": 16521.57, + "probability": 0.3568 + }, + { + "start": 16522.76, + "end": 16523.72, + "probability": 0.4995 + }, + { + "start": 16523.92, + "end": 16524.54, + "probability": 0.4038 + }, + { + "start": 16525.2, + "end": 16526.46, + "probability": 0.613 + }, + { + "start": 16527.86, + "end": 16531.46, + "probability": 0.8069 + }, + { + "start": 16533.18, + "end": 16538.76, + "probability": 0.8176 + }, + { + "start": 16541.16, + "end": 16548.14, + "probability": 0.9045 + }, + { + "start": 16550.28, + "end": 16552.26, + "probability": 0.9009 + }, + { + "start": 16553.8, + "end": 16554.9, + "probability": 0.684 + }, + { + "start": 16554.98, + "end": 16557.86, + "probability": 0.8336 + }, + { + "start": 16559.68, + "end": 16564.84, + "probability": 0.9193 + }, + { + "start": 16565.0, + "end": 16565.26, + "probability": 0.7935 + }, + { + "start": 16565.34, + "end": 16566.52, + "probability": 0.9036 + }, + { + "start": 16569.68, + "end": 16573.36, + "probability": 0.8312 + }, + { + "start": 16574.24, + "end": 16575.5, + "probability": 0.7196 + }, + { + "start": 16575.86, + "end": 16581.24, + "probability": 0.8184 + }, + { + "start": 16583.84, + "end": 16586.08, + "probability": 0.8115 + }, + { + "start": 16588.36, + "end": 16592.48, + "probability": 0.9863 + }, + { + "start": 16592.54, + "end": 16595.28, + "probability": 0.9623 + }, + { + "start": 16595.38, + "end": 16596.46, + "probability": 0.9334 + }, + { + "start": 16598.76, + "end": 16600.5, + "probability": 0.9609 + }, + { + "start": 16601.68, + "end": 16602.78, + "probability": 0.9597 + }, + { + "start": 16604.46, + "end": 16607.0, + "probability": 0.8894 + }, + { + "start": 16608.62, + "end": 16610.06, + "probability": 0.7187 + }, + { + "start": 16612.32, + "end": 16614.28, + "probability": 0.9983 + }, + { + "start": 16615.6, + "end": 16619.68, + "probability": 0.9331 + }, + { + "start": 16620.58, + "end": 16623.04, + "probability": 0.9988 + }, + { + "start": 16623.9, + "end": 16625.64, + "probability": 0.9632 + }, + { + "start": 16626.3, + "end": 16631.94, + "probability": 0.9878 + }, + { + "start": 16632.02, + "end": 16637.22, + "probability": 0.9409 + }, + { + "start": 16638.76, + "end": 16641.14, + "probability": 0.9683 + }, + { + "start": 16641.92, + "end": 16646.5, + "probability": 0.8721 + }, + { + "start": 16647.86, + "end": 16652.62, + "probability": 0.9839 + }, + { + "start": 16652.86, + "end": 16654.12, + "probability": 0.8948 + }, + { + "start": 16654.42, + "end": 16657.08, + "probability": 0.9819 + }, + { + "start": 16657.84, + "end": 16659.9, + "probability": 0.6675 + }, + { + "start": 16659.92, + "end": 16661.96, + "probability": 0.9125 + }, + { + "start": 16662.7, + "end": 16665.6, + "probability": 0.9597 + }, + { + "start": 16668.14, + "end": 16673.96, + "probability": 0.6666 + }, + { + "start": 16676.1, + "end": 16676.4, + "probability": 0.644 + }, + { + "start": 16679.2, + "end": 16681.58, + "probability": 0.8669 + }, + { + "start": 16681.72, + "end": 16682.58, + "probability": 0.9458 + }, + { + "start": 16682.64, + "end": 16683.7, + "probability": 0.9502 + }, + { + "start": 16683.94, + "end": 16684.94, + "probability": 0.9388 + }, + { + "start": 16685.38, + "end": 16686.3, + "probability": 0.9897 + }, + { + "start": 16687.86, + "end": 16688.66, + "probability": 0.9497 + }, + { + "start": 16688.72, + "end": 16691.42, + "probability": 0.9761 + }, + { + "start": 16693.64, + "end": 16697.68, + "probability": 0.9679 + }, + { + "start": 16698.58, + "end": 16699.86, + "probability": 0.9546 + }, + { + "start": 16701.42, + "end": 16703.68, + "probability": 0.9601 + }, + { + "start": 16704.78, + "end": 16708.7, + "probability": 0.9777 + }, + { + "start": 16710.14, + "end": 16712.06, + "probability": 0.6636 + }, + { + "start": 16712.14, + "end": 16712.98, + "probability": 0.5298 + }, + { + "start": 16713.06, + "end": 16715.54, + "probability": 0.9666 + }, + { + "start": 16717.76, + "end": 16719.16, + "probability": 0.8267 + }, + { + "start": 16719.48, + "end": 16720.87, + "probability": 0.9771 + }, + { + "start": 16721.34, + "end": 16722.33, + "probability": 0.6241 + }, + { + "start": 16724.52, + "end": 16725.46, + "probability": 0.969 + }, + { + "start": 16725.48, + "end": 16726.68, + "probability": 0.781 + }, + { + "start": 16726.82, + "end": 16728.3, + "probability": 0.9355 + }, + { + "start": 16730.24, + "end": 16734.5, + "probability": 0.8492 + }, + { + "start": 16735.42, + "end": 16739.14, + "probability": 0.7385 + }, + { + "start": 16739.82, + "end": 16741.82, + "probability": 0.9932 + }, + { + "start": 16742.82, + "end": 16745.68, + "probability": 0.9128 + }, + { + "start": 16746.16, + "end": 16749.6, + "probability": 0.9279 + }, + { + "start": 16750.22, + "end": 16754.82, + "probability": 0.9531 + }, + { + "start": 16756.46, + "end": 16759.04, + "probability": 0.626 + }, + { + "start": 16761.64, + "end": 16765.08, + "probability": 0.9185 + }, + { + "start": 16766.98, + "end": 16770.56, + "probability": 0.9749 + }, + { + "start": 16771.66, + "end": 16773.44, + "probability": 0.8246 + }, + { + "start": 16774.26, + "end": 16777.18, + "probability": 0.7684 + }, + { + "start": 16777.56, + "end": 16778.92, + "probability": 0.9401 + }, + { + "start": 16780.4, + "end": 16784.3, + "probability": 0.9956 + }, + { + "start": 16785.18, + "end": 16787.12, + "probability": 0.9973 + }, + { + "start": 16787.3, + "end": 16790.38, + "probability": 0.9636 + }, + { + "start": 16790.9, + "end": 16793.44, + "probability": 0.999 + }, + { + "start": 16794.32, + "end": 16795.56, + "probability": 0.9972 + }, + { + "start": 16796.66, + "end": 16803.82, + "probability": 0.9788 + }, + { + "start": 16805.24, + "end": 16809.86, + "probability": 0.9921 + }, + { + "start": 16810.24, + "end": 16811.42, + "probability": 0.7822 + }, + { + "start": 16812.54, + "end": 16815.24, + "probability": 0.9958 + }, + { + "start": 16815.96, + "end": 16816.66, + "probability": 0.8433 + }, + { + "start": 16817.32, + "end": 16820.5, + "probability": 0.7391 + }, + { + "start": 16820.76, + "end": 16820.82, + "probability": 0.4384 + }, + { + "start": 16821.56, + "end": 16821.56, + "probability": 0.1643 + }, + { + "start": 16821.56, + "end": 16821.56, + "probability": 0.3461 + }, + { + "start": 16821.56, + "end": 16821.56, + "probability": 0.317 + }, + { + "start": 16821.66, + "end": 16823.16, + "probability": 0.8623 + }, + { + "start": 16823.16, + "end": 16823.78, + "probability": 0.3678 + }, + { + "start": 16823.98, + "end": 16826.7, + "probability": 0.8955 + }, + { + "start": 16827.22, + "end": 16830.52, + "probability": 0.9856 + }, + { + "start": 16830.62, + "end": 16832.46, + "probability": 0.9495 + }, + { + "start": 16832.78, + "end": 16833.34, + "probability": 0.6326 + }, + { + "start": 16833.54, + "end": 16833.64, + "probability": 0.6259 + }, + { + "start": 16833.86, + "end": 16834.28, + "probability": 0.9185 + }, + { + "start": 16835.06, + "end": 16839.76, + "probability": 0.9436 + }, + { + "start": 16840.3, + "end": 16840.74, + "probability": 0.7836 + }, + { + "start": 16840.76, + "end": 16842.8, + "probability": 0.6257 + }, + { + "start": 16842.88, + "end": 16843.54, + "probability": 0.8228 + }, + { + "start": 16844.12, + "end": 16846.58, + "probability": 0.9805 + }, + { + "start": 16846.72, + "end": 16847.82, + "probability": 0.5967 + }, + { + "start": 16848.74, + "end": 16849.32, + "probability": 0.5309 + }, + { + "start": 16849.84, + "end": 16850.9, + "probability": 0.8271 + }, + { + "start": 16852.0, + "end": 16854.36, + "probability": 0.8315 + }, + { + "start": 16857.28, + "end": 16857.94, + "probability": 0.4147 + }, + { + "start": 16858.52, + "end": 16862.82, + "probability": 0.1621 + }, + { + "start": 16874.18, + "end": 16874.46, + "probability": 0.4372 + }, + { + "start": 16874.46, + "end": 16875.46, + "probability": 0.4755 + }, + { + "start": 16875.5, + "end": 16875.9, + "probability": 0.9464 + }, + { + "start": 16889.81, + "end": 16890.69, + "probability": 0.5214 + }, + { + "start": 16892.22, + "end": 16894.29, + "probability": 0.9521 + }, + { + "start": 16899.05, + "end": 16901.89, + "probability": 0.7546 + }, + { + "start": 16903.01, + "end": 16906.73, + "probability": 0.7586 + }, + { + "start": 16908.23, + "end": 16909.69, + "probability": 0.9701 + }, + { + "start": 16912.03, + "end": 16916.01, + "probability": 0.9907 + }, + { + "start": 16917.07, + "end": 16918.47, + "probability": 0.7506 + }, + { + "start": 16922.71, + "end": 16924.97, + "probability": 0.3219 + }, + { + "start": 16925.07, + "end": 16925.21, + "probability": 0.0011 + }, + { + "start": 16925.21, + "end": 16927.43, + "probability": 0.7291 + }, + { + "start": 16929.63, + "end": 16930.73, + "probability": 0.019 + }, + { + "start": 16932.44, + "end": 16937.65, + "probability": 0.7963 + }, + { + "start": 16937.99, + "end": 16938.55, + "probability": 0.1871 + }, + { + "start": 16940.19, + "end": 16940.69, + "probability": 0.4691 + }, + { + "start": 16941.11, + "end": 16944.75, + "probability": 0.8931 + }, + { + "start": 16945.27, + "end": 16948.33, + "probability": 0.9665 + }, + { + "start": 16950.73, + "end": 16953.43, + "probability": 0.942 + }, + { + "start": 16954.71, + "end": 16956.69, + "probability": 0.9683 + }, + { + "start": 16958.09, + "end": 16960.05, + "probability": 0.7135 + }, + { + "start": 16961.05, + "end": 16962.77, + "probability": 0.9472 + }, + { + "start": 16965.43, + "end": 16967.45, + "probability": 0.9823 + }, + { + "start": 16968.25, + "end": 16970.21, + "probability": 0.9751 + }, + { + "start": 16971.51, + "end": 16972.95, + "probability": 0.6503 + }, + { + "start": 16974.43, + "end": 16978.79, + "probability": 0.8838 + }, + { + "start": 16980.07, + "end": 16981.15, + "probability": 0.9565 + }, + { + "start": 16982.63, + "end": 16983.05, + "probability": 0.0998 + }, + { + "start": 16984.38, + "end": 16988.47, + "probability": 0.9476 + }, + { + "start": 16988.47, + "end": 16993.37, + "probability": 0.9479 + }, + { + "start": 16993.39, + "end": 16993.95, + "probability": 0.568 + }, + { + "start": 16993.95, + "end": 16994.37, + "probability": 0.4245 + }, + { + "start": 16997.57, + "end": 16998.99, + "probability": 0.0223 + }, + { + "start": 17000.71, + "end": 17000.71, + "probability": 0.2242 + }, + { + "start": 17000.81, + "end": 17004.53, + "probability": 0.4979 + }, + { + "start": 17004.73, + "end": 17004.91, + "probability": 0.3069 + }, + { + "start": 17007.17, + "end": 17012.75, + "probability": 0.996 + }, + { + "start": 17013.55, + "end": 17017.17, + "probability": 0.7599 + }, + { + "start": 17017.21, + "end": 17018.07, + "probability": 0.5732 + }, + { + "start": 17020.09, + "end": 17021.99, + "probability": 0.7035 + }, + { + "start": 17023.23, + "end": 17024.67, + "probability": 0.9788 + }, + { + "start": 17024.79, + "end": 17025.37, + "probability": 0.8782 + }, + { + "start": 17025.47, + "end": 17026.76, + "probability": 0.9749 + }, + { + "start": 17027.43, + "end": 17028.19, + "probability": 0.9441 + }, + { + "start": 17028.25, + "end": 17028.93, + "probability": 0.8694 + }, + { + "start": 17029.71, + "end": 17031.83, + "probability": 0.7999 + }, + { + "start": 17035.89, + "end": 17035.99, + "probability": 0.0165 + }, + { + "start": 17035.99, + "end": 17039.23, + "probability": 0.6824 + }, + { + "start": 17039.51, + "end": 17040.86, + "probability": 0.6039 + }, + { + "start": 17041.29, + "end": 17043.07, + "probability": 0.9224 + }, + { + "start": 17043.17, + "end": 17045.41, + "probability": 0.8273 + }, + { + "start": 17045.61, + "end": 17047.09, + "probability": 0.9364 + }, + { + "start": 17047.65, + "end": 17049.75, + "probability": 0.9424 + }, + { + "start": 17050.47, + "end": 17050.47, + "probability": 0.6449 + }, + { + "start": 17050.47, + "end": 17050.47, + "probability": 0.7722 + }, + { + "start": 17050.47, + "end": 17054.05, + "probability": 0.8528 + }, + { + "start": 17054.15, + "end": 17055.21, + "probability": 0.8383 + }, + { + "start": 17055.89, + "end": 17059.55, + "probability": 0.2071 + }, + { + "start": 17060.13, + "end": 17060.13, + "probability": 0.1752 + }, + { + "start": 17060.13, + "end": 17063.31, + "probability": 0.7436 + }, + { + "start": 17063.33, + "end": 17064.51, + "probability": 0.6822 + }, + { + "start": 17065.11, + "end": 17065.43, + "probability": 0.0361 + }, + { + "start": 17065.43, + "end": 17067.79, + "probability": 0.6461 + }, + { + "start": 17067.79, + "end": 17068.53, + "probability": 0.4558 + }, + { + "start": 17068.69, + "end": 17069.01, + "probability": 0.8645 + }, + { + "start": 17069.35, + "end": 17069.59, + "probability": 0.191 + }, + { + "start": 17069.59, + "end": 17072.41, + "probability": 0.4612 + }, + { + "start": 17072.57, + "end": 17072.99, + "probability": 0.39 + }, + { + "start": 17072.99, + "end": 17073.31, + "probability": 0.1755 + }, + { + "start": 17073.81, + "end": 17074.03, + "probability": 0.1694 + }, + { + "start": 17074.15, + "end": 17074.19, + "probability": 0.1599 + }, + { + "start": 17074.19, + "end": 17075.53, + "probability": 0.327 + }, + { + "start": 17075.65, + "end": 17076.61, + "probability": 0.6132 + }, + { + "start": 17076.79, + "end": 17078.39, + "probability": 0.2303 + }, + { + "start": 17078.67, + "end": 17079.29, + "probability": 0.0027 + }, + { + "start": 17079.29, + "end": 17079.79, + "probability": 0.6928 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17200.0, + "end": 17200.0, + "probability": 0.0 + }, + { + "start": 17205.18, + "end": 17207.2, + "probability": 0.0761 + }, + { + "start": 17207.84, + "end": 17212.88, + "probability": 0.1564 + }, + { + "start": 17214.04, + "end": 17216.06, + "probability": 0.1971 + }, + { + "start": 17216.06, + "end": 17216.62, + "probability": 0.2067 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.0, + "end": 17333.0, + "probability": 0.0 + }, + { + "start": 17333.36, + "end": 17333.7, + "probability": 0.037 + }, + { + "start": 17335.72, + "end": 17336.96, + "probability": 0.0553 + }, + { + "start": 17337.48, + "end": 17340.28, + "probability": 0.7364 + }, + { + "start": 17340.9, + "end": 17345.9, + "probability": 0.8994 + }, + { + "start": 17346.94, + "end": 17347.94, + "probability": 0.8032 + }, + { + "start": 17348.88, + "end": 17352.66, + "probability": 0.9771 + }, + { + "start": 17353.5, + "end": 17359.34, + "probability": 0.9565 + }, + { + "start": 17360.62, + "end": 17363.12, + "probability": 0.5254 + }, + { + "start": 17363.84, + "end": 17367.98, + "probability": 0.7027 + }, + { + "start": 17367.98, + "end": 17367.98, + "probability": 0.2095 + }, + { + "start": 17367.98, + "end": 17369.4, + "probability": 0.4995 + }, + { + "start": 17369.4, + "end": 17369.86, + "probability": 0.13 + }, + { + "start": 17370.08, + "end": 17372.38, + "probability": 0.7498 + }, + { + "start": 17373.22, + "end": 17375.32, + "probability": 0.0247 + }, + { + "start": 17375.9, + "end": 17377.42, + "probability": 0.6074 + }, + { + "start": 17378.99, + "end": 17379.34, + "probability": 0.0193 + }, + { + "start": 17379.34, + "end": 17382.98, + "probability": 0.202 + }, + { + "start": 17383.38, + "end": 17384.42, + "probability": 0.5535 + }, + { + "start": 17384.42, + "end": 17389.08, + "probability": 0.6936 + }, + { + "start": 17390.16, + "end": 17394.84, + "probability": 0.9863 + }, + { + "start": 17395.74, + "end": 17398.2, + "probability": 0.9938 + }, + { + "start": 17398.96, + "end": 17401.14, + "probability": 0.105 + }, + { + "start": 17401.24, + "end": 17401.92, + "probability": 0.1954 + }, + { + "start": 17401.92, + "end": 17402.27, + "probability": 0.5744 + }, + { + "start": 17403.28, + "end": 17405.76, + "probability": 0.4568 + }, + { + "start": 17406.32, + "end": 17408.46, + "probability": 0.646 + }, + { + "start": 17409.5, + "end": 17412.04, + "probability": 0.707 + }, + { + "start": 17414.24, + "end": 17415.96, + "probability": 0.9755 + }, + { + "start": 17416.28, + "end": 17419.58, + "probability": 0.8837 + }, + { + "start": 17420.04, + "end": 17420.36, + "probability": 0.8762 + }, + { + "start": 17420.7, + "end": 17422.3, + "probability": 0.1096 + }, + { + "start": 17422.46, + "end": 17423.0, + "probability": 0.4537 + }, + { + "start": 17423.46, + "end": 17425.11, + "probability": 0.5787 + }, + { + "start": 17425.7, + "end": 17428.78, + "probability": 0.0349 + }, + { + "start": 17429.14, + "end": 17429.46, + "probability": 0.1104 + }, + { + "start": 17430.32, + "end": 17432.42, + "probability": 0.6338 + }, + { + "start": 17433.4, + "end": 17441.42, + "probability": 0.0118 + }, + { + "start": 17442.1, + "end": 17442.94, + "probability": 0.2318 + }, + { + "start": 17443.0, + "end": 17443.98, + "probability": 0.2084 + }, + { + "start": 17444.34, + "end": 17446.1, + "probability": 0.2038 + }, + { + "start": 17446.28, + "end": 17446.76, + "probability": 0.3801 + }, + { + "start": 17446.76, + "end": 17447.38, + "probability": 0.2733 + }, + { + "start": 17448.65, + "end": 17450.58, + "probability": 0.7237 + }, + { + "start": 17450.96, + "end": 17451.1, + "probability": 0.5712 + }, + { + "start": 17451.1, + "end": 17452.38, + "probability": 0.8247 + }, + { + "start": 17453.44, + "end": 17454.84, + "probability": 0.3073 + }, + { + "start": 17455.56, + "end": 17456.02, + "probability": 0.0155 + }, + { + "start": 17456.42, + "end": 17456.6, + "probability": 0.2377 + }, + { + "start": 17456.6, + "end": 17457.14, + "probability": 0.2417 + }, + { + "start": 17457.2, + "end": 17457.86, + "probability": 0.7298 + }, + { + "start": 17459.32, + "end": 17460.74, + "probability": 0.0293 + }, + { + "start": 17460.9, + "end": 17460.96, + "probability": 0.0493 + }, + { + "start": 17460.96, + "end": 17461.84, + "probability": 0.0815 + }, + { + "start": 17461.84, + "end": 17462.5, + "probability": 0.0275 + }, + { + "start": 17462.56, + "end": 17463.32, + "probability": 0.061 + }, + { + "start": 17463.88, + "end": 17466.46, + "probability": 0.1183 + }, + { + "start": 17467.54, + "end": 17468.78, + "probability": 0.1757 + }, + { + "start": 17471.2, + "end": 17471.74, + "probability": 0.1496 + }, + { + "start": 17472.78, + "end": 17474.88, + "probability": 0.4513 + }, + { + "start": 17476.66, + "end": 17478.6, + "probability": 0.685 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17530.0, + "end": 17530.0, + "probability": 0.0 + }, + { + "start": 17531.78, + "end": 17533.98, + "probability": 0.7918 + }, + { + "start": 17534.06, + "end": 17535.4, + "probability": 0.84 + }, + { + "start": 17535.46, + "end": 17538.2, + "probability": 0.988 + }, + { + "start": 17538.48, + "end": 17541.06, + "probability": 0.8712 + }, + { + "start": 17543.44, + "end": 17544.44, + "probability": 0.7143 + }, + { + "start": 17544.46, + "end": 17545.4, + "probability": 0.3861 + }, + { + "start": 17545.48, + "end": 17550.1, + "probability": 0.9401 + }, + { + "start": 17550.82, + "end": 17552.22, + "probability": 0.5297 + }, + { + "start": 17553.02, + "end": 17554.74, + "probability": 0.0378 + }, + { + "start": 17556.4, + "end": 17557.64, + "probability": 0.8159 + }, + { + "start": 17557.76, + "end": 17560.08, + "probability": 0.6652 + }, + { + "start": 17560.64, + "end": 17562.9, + "probability": 0.8214 + }, + { + "start": 17567.28, + "end": 17567.98, + "probability": 0.546 + }, + { + "start": 17567.98, + "end": 17568.64, + "probability": 0.8016 + }, + { + "start": 17568.82, + "end": 17571.54, + "probability": 0.7301 + }, + { + "start": 17572.14, + "end": 17574.35, + "probability": 0.2172 + }, + { + "start": 17574.56, + "end": 17578.06, + "probability": 0.8545 + }, + { + "start": 17578.12, + "end": 17579.66, + "probability": 0.6429 + }, + { + "start": 17580.22, + "end": 17581.58, + "probability": 0.8381 + }, + { + "start": 17581.96, + "end": 17582.54, + "probability": 0.0481 + }, + { + "start": 17582.54, + "end": 17583.96, + "probability": 0.1582 + }, + { + "start": 17583.96, + "end": 17585.2, + "probability": 0.9592 + }, + { + "start": 17585.28, + "end": 17586.02, + "probability": 0.3899 + }, + { + "start": 17586.02, + "end": 17586.56, + "probability": 0.3146 + }, + { + "start": 17587.26, + "end": 17590.06, + "probability": 0.9009 + }, + { + "start": 17590.06, + "end": 17592.64, + "probability": 0.9866 + }, + { + "start": 17592.74, + "end": 17593.38, + "probability": 0.6606 + }, + { + "start": 17593.92, + "end": 17597.36, + "probability": 0.9978 + }, + { + "start": 17597.52, + "end": 17601.04, + "probability": 0.9812 + }, + { + "start": 17601.46, + "end": 17602.02, + "probability": 0.6491 + }, + { + "start": 17602.1, + "end": 17604.14, + "probability": 0.9559 + }, + { + "start": 17604.48, + "end": 17605.34, + "probability": 0.9904 + }, + { + "start": 17605.44, + "end": 17606.78, + "probability": 0.8286 + }, + { + "start": 17607.08, + "end": 17608.08, + "probability": 0.3871 + }, + { + "start": 17608.16, + "end": 17609.08, + "probability": 0.1914 + }, + { + "start": 17609.78, + "end": 17611.2, + "probability": 0.9251 + }, + { + "start": 17611.3, + "end": 17611.86, + "probability": 0.8765 + }, + { + "start": 17612.1, + "end": 17615.0, + "probability": 0.8475 + }, + { + "start": 17615.12, + "end": 17615.5, + "probability": 0.2801 + }, + { + "start": 17615.52, + "end": 17616.14, + "probability": 0.5208 + }, + { + "start": 17619.6, + "end": 17620.74, + "probability": 0.8394 + }, + { + "start": 17620.86, + "end": 17624.7, + "probability": 0.8478 + }, + { + "start": 17628.37, + "end": 17631.2, + "probability": 0.3056 + }, + { + "start": 17631.38, + "end": 17632.92, + "probability": 0.0194 + }, + { + "start": 17641.84, + "end": 17643.82, + "probability": 0.1285 + }, + { + "start": 17644.9, + "end": 17650.14, + "probability": 0.0132 + }, + { + "start": 17651.62, + "end": 17655.58, + "probability": 0.0226 + }, + { + "start": 17655.58, + "end": 17656.04, + "probability": 0.0554 + }, + { + "start": 17656.06, + "end": 17656.14, + "probability": 0.2636 + }, + { + "start": 17656.14, + "end": 17657.78, + "probability": 0.0351 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.0, + "end": 17753.0, + "probability": 0.0 + }, + { + "start": 17753.04, + "end": 17753.2, + "probability": 0.2928 + }, + { + "start": 17753.2, + "end": 17756.38, + "probability": 0.8945 + }, + { + "start": 17756.38, + "end": 17756.68, + "probability": 0.3906 + }, + { + "start": 17756.68, + "end": 17757.2, + "probability": 0.5818 + }, + { + "start": 17758.44, + "end": 17760.02, + "probability": 0.7084 + }, + { + "start": 17772.63, + "end": 17776.96, + "probability": 0.2588 + }, + { + "start": 17776.96, + "end": 17777.78, + "probability": 0.0263 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.0, + "end": 17897.0, + "probability": 0.0 + }, + { + "start": 17897.12, + "end": 17898.32, + "probability": 0.784 + }, + { + "start": 17898.84, + "end": 17900.18, + "probability": 0.6161 + }, + { + "start": 17901.06, + "end": 17904.14, + "probability": 0.9795 + }, + { + "start": 17905.0, + "end": 17906.0, + "probability": 0.804 + }, + { + "start": 17906.32, + "end": 17906.56, + "probability": 0.4295 + }, + { + "start": 17906.76, + "end": 17908.3, + "probability": 0.9671 + }, + { + "start": 17908.4, + "end": 17908.66, + "probability": 0.8742 + }, + { + "start": 17908.78, + "end": 17910.14, + "probability": 0.6718 + }, + { + "start": 17910.64, + "end": 17912.96, + "probability": 0.5079 + }, + { + "start": 17913.68, + "end": 17918.9, + "probability": 0.9502 + }, + { + "start": 17919.68, + "end": 17921.16, + "probability": 0.6217 + }, + { + "start": 17921.32, + "end": 17924.74, + "probability": 0.8995 + }, + { + "start": 17928.56, + "end": 17929.54, + "probability": 0.8057 + }, + { + "start": 17929.62, + "end": 17930.38, + "probability": 0.8925 + }, + { + "start": 17930.5, + "end": 17931.96, + "probability": 0.9891 + }, + { + "start": 17932.58, + "end": 17934.08, + "probability": 0.7217 + }, + { + "start": 17937.14, + "end": 17937.88, + "probability": 0.6334 + }, + { + "start": 17938.54, + "end": 17938.64, + "probability": 0.002 + }, + { + "start": 17956.62, + "end": 17957.18, + "probability": 0.0399 + }, + { + "start": 17957.18, + "end": 17958.9, + "probability": 0.7224 + }, + { + "start": 17958.98, + "end": 17959.84, + "probability": 0.9743 + }, + { + "start": 17960.68, + "end": 17961.78, + "probability": 0.0714 + }, + { + "start": 17963.02, + "end": 17963.58, + "probability": 0.2195 + }, + { + "start": 17964.86, + "end": 17965.56, + "probability": 0.3088 + }, + { + "start": 17965.78, + "end": 17968.74, + "probability": 0.9971 + }, + { + "start": 17969.42, + "end": 17970.48, + "probability": 0.9653 + }, + { + "start": 17970.74, + "end": 17970.74, + "probability": 0.0022 + }, + { + "start": 17974.8, + "end": 17978.57, + "probability": 0.7891 + }, + { + "start": 17980.68, + "end": 17983.28, + "probability": 0.9985 + }, + { + "start": 17983.74, + "end": 17985.62, + "probability": 0.9639 + }, + { + "start": 17987.08, + "end": 17989.2, + "probability": 0.9394 + }, + { + "start": 17994.44, + "end": 17998.0, + "probability": 0.0188 + }, + { + "start": 17998.0, + "end": 17998.0, + "probability": 0.0145 + }, + { + "start": 18006.36, + "end": 18006.36, + "probability": 0.0382 + }, + { + "start": 18006.36, + "end": 18007.46, + "probability": 0.8248 + }, + { + "start": 18009.22, + "end": 18011.78, + "probability": 0.2502 + }, + { + "start": 18012.6, + "end": 18013.24, + "probability": 0.2264 + }, + { + "start": 18014.5, + "end": 18015.28, + "probability": 0.7623 + }, + { + "start": 18015.9, + "end": 18017.94, + "probability": 0.9307 + }, + { + "start": 18018.38, + "end": 18022.04, + "probability": 0.9596 + }, + { + "start": 18022.16, + "end": 18024.1, + "probability": 0.7072 + }, + { + "start": 18024.92, + "end": 18027.36, + "probability": 0.7422 + }, + { + "start": 18028.02, + "end": 18038.26, + "probability": 0.7948 + }, + { + "start": 18039.96, + "end": 18040.96, + "probability": 0.4029 + }, + { + "start": 18042.42, + "end": 18044.68, + "probability": 0.5895 + }, + { + "start": 18055.18, + "end": 18055.18, + "probability": 0.0616 + }, + { + "start": 18055.18, + "end": 18055.2, + "probability": 0.2246 + }, + { + "start": 18071.18, + "end": 18071.6, + "probability": 0.3518 + }, + { + "start": 18072.12, + "end": 18073.0, + "probability": 0.1746 + }, + { + "start": 18074.06, + "end": 18075.52, + "probability": 0.3398 + }, + { + "start": 18082.82, + "end": 18083.68, + "probability": 0.6873 + }, + { + "start": 18084.24, + "end": 18084.94, + "probability": 0.9566 + }, + { + "start": 18095.1, + "end": 18096.28, + "probability": 0.7357 + }, + { + "start": 18100.32, + "end": 18103.1, + "probability": 0.6977 + }, + { + "start": 18104.32, + "end": 18106.48, + "probability": 0.944 + }, + { + "start": 18107.46, + "end": 18108.36, + "probability": 0.8727 + }, + { + "start": 18108.58, + "end": 18112.02, + "probability": 0.8485 + }, + { + "start": 18113.68, + "end": 18116.7, + "probability": 0.8442 + }, + { + "start": 18116.7, + "end": 18119.8, + "probability": 0.9683 + }, + { + "start": 18120.98, + "end": 18124.86, + "probability": 0.979 + }, + { + "start": 18125.46, + "end": 18128.0, + "probability": 0.9951 + }, + { + "start": 18128.0, + "end": 18130.4, + "probability": 0.9961 + }, + { + "start": 18130.96, + "end": 18133.6, + "probability": 0.9907 + }, + { + "start": 18133.72, + "end": 18135.18, + "probability": 0.9155 + }, + { + "start": 18136.1, + "end": 18137.24, + "probability": 0.7751 + }, + { + "start": 18137.82, + "end": 18142.26, + "probability": 0.9808 + }, + { + "start": 18142.26, + "end": 18146.84, + "probability": 0.9979 + }, + { + "start": 18146.86, + "end": 18147.06, + "probability": 0.3506 + }, + { + "start": 18147.08, + "end": 18149.02, + "probability": 0.9844 + }, + { + "start": 18150.0, + "end": 18154.92, + "probability": 0.9519 + }, + { + "start": 18155.56, + "end": 18157.48, + "probability": 0.9009 + }, + { + "start": 18160.42, + "end": 18161.16, + "probability": 0.6334 + }, + { + "start": 18161.66, + "end": 18164.12, + "probability": 0.8381 + }, + { + "start": 18164.44, + "end": 18167.4, + "probability": 0.9681 + }, + { + "start": 18167.72, + "end": 18167.9, + "probability": 0.8583 + }, + { + "start": 18167.98, + "end": 18168.52, + "probability": 0.8994 + }, + { + "start": 18169.04, + "end": 18170.58, + "probability": 0.9745 + }, + { + "start": 18170.74, + "end": 18171.28, + "probability": 0.7785 + }, + { + "start": 18172.6, + "end": 18173.18, + "probability": 0.8086 + }, + { + "start": 18173.9, + "end": 18176.1, + "probability": 0.9602 + }, + { + "start": 18177.46, + "end": 18179.92, + "probability": 0.6871 + }, + { + "start": 18181.18, + "end": 18182.14, + "probability": 0.9949 + }, + { + "start": 18183.14, + "end": 18183.45, + "probability": 0.0701 + }, + { + "start": 18185.18, + "end": 18186.64, + "probability": 0.0156 + }, + { + "start": 18187.78, + "end": 18190.16, + "probability": 0.038 + }, + { + "start": 18196.56, + "end": 18199.16, + "probability": 0.7053 + }, + { + "start": 18199.72, + "end": 18200.48, + "probability": 0.4905 + }, + { + "start": 18201.48, + "end": 18204.86, + "probability": 0.819 + }, + { + "start": 18207.4, + "end": 18208.68, + "probability": 0.1804 + }, + { + "start": 18222.28, + "end": 18223.24, + "probability": 0.0257 + }, + { + "start": 18223.24, + "end": 18224.72, + "probability": 0.0128 + }, + { + "start": 18224.8, + "end": 18224.8, + "probability": 0.051 + }, + { + "start": 18224.8, + "end": 18224.8, + "probability": 0.1111 + }, + { + "start": 18224.8, + "end": 18226.02, + "probability": 0.2732 + }, + { + "start": 18226.56, + "end": 18227.5, + "probability": 0.79 + }, + { + "start": 18228.06, + "end": 18228.6, + "probability": 0.8188 + }, + { + "start": 18228.82, + "end": 18230.36, + "probability": 0.4013 + }, + { + "start": 18231.6, + "end": 18234.0, + "probability": 0.1191 + }, + { + "start": 18234.98, + "end": 18236.16, + "probability": 0.1004 + }, + { + "start": 18242.72, + "end": 18243.56, + "probability": 0.665 + }, + { + "start": 18244.34, + "end": 18247.26, + "probability": 0.8043 + }, + { + "start": 18249.66, + "end": 18250.32, + "probability": 0.492 + }, + { + "start": 18250.5, + "end": 18254.86, + "probability": 0.9953 + }, + { + "start": 18255.5, + "end": 18257.56, + "probability": 0.9434 + }, + { + "start": 18258.44, + "end": 18262.26, + "probability": 0.4966 + }, + { + "start": 18262.26, + "end": 18265.7, + "probability": 0.9933 + }, + { + "start": 18265.78, + "end": 18268.74, + "probability": 0.9961 + }, + { + "start": 18269.3, + "end": 18269.9, + "probability": 0.4438 + }, + { + "start": 18270.56, + "end": 18272.66, + "probability": 0.946 + }, + { + "start": 18273.42, + "end": 18274.66, + "probability": 0.5808 + }, + { + "start": 18274.72, + "end": 18275.0, + "probability": 0.74 + }, + { + "start": 18275.16, + "end": 18277.88, + "probability": 0.7866 + }, + { + "start": 18278.0, + "end": 18278.4, + "probability": 0.7597 + }, + { + "start": 18280.1, + "end": 18283.34, + "probability": 0.9716 + }, + { + "start": 18283.36, + "end": 18286.68, + "probability": 0.8869 + }, + { + "start": 18287.12, + "end": 18293.88, + "probability": 0.8194 + }, + { + "start": 18295.86, + "end": 18298.2, + "probability": 0.7457 + }, + { + "start": 18300.1, + "end": 18300.8, + "probability": 0.8715 + }, + { + "start": 18302.34, + "end": 18305.88, + "probability": 0.6906 + }, + { + "start": 18309.0, + "end": 18309.54, + "probability": 0.4338 + }, + { + "start": 18312.78, + "end": 18313.76, + "probability": 0.4012 + }, + { + "start": 18324.34, + "end": 18325.94, + "probability": 0.6172 + }, + { + "start": 18326.2, + "end": 18328.28, + "probability": 0.9784 + }, + { + "start": 18328.7, + "end": 18330.66, + "probability": 0.7505 + }, + { + "start": 18330.78, + "end": 18332.86, + "probability": 0.0414 + }, + { + "start": 18333.06, + "end": 18334.7, + "probability": 0.8158 + }, + { + "start": 18335.44, + "end": 18337.46, + "probability": 0.7237 + }, + { + "start": 18338.4, + "end": 18340.9, + "probability": 0.9954 + }, + { + "start": 18341.84, + "end": 18341.92, + "probability": 0.0342 + }, + { + "start": 18342.06, + "end": 18343.22, + "probability": 0.937 + }, + { + "start": 18343.46, + "end": 18343.7, + "probability": 0.949 + }, + { + "start": 18343.8, + "end": 18345.62, + "probability": 0.885 + }, + { + "start": 18345.8, + "end": 18346.02, + "probability": 0.9587 + }, + { + "start": 18346.12, + "end": 18346.32, + "probability": 0.6969 + }, + { + "start": 18346.84, + "end": 18348.68, + "probability": 0.7743 + }, + { + "start": 18349.24, + "end": 18350.62, + "probability": 0.7983 + }, + { + "start": 18351.06, + "end": 18352.93, + "probability": 0.9976 + }, + { + "start": 18354.06, + "end": 18355.3, + "probability": 0.7082 + }, + { + "start": 18355.38, + "end": 18357.14, + "probability": 0.9645 + }, + { + "start": 18357.2, + "end": 18361.06, + "probability": 0.8114 + }, + { + "start": 18361.8, + "end": 18363.38, + "probability": 0.6653 + }, + { + "start": 18364.68, + "end": 18365.92, + "probability": 0.6879 + }, + { + "start": 18366.6, + "end": 18368.2, + "probability": 0.7723 + }, + { + "start": 18369.38, + "end": 18371.44, + "probability": 0.6708 + }, + { + "start": 18371.62, + "end": 18372.72, + "probability": 0.5754 + }, + { + "start": 18373.32, + "end": 18375.36, + "probability": 0.8549 + }, + { + "start": 18376.4, + "end": 18378.58, + "probability": 0.9819 + }, + { + "start": 18379.46, + "end": 18382.62, + "probability": 0.9407 + }, + { + "start": 18383.48, + "end": 18385.48, + "probability": 0.9963 + }, + { + "start": 18385.9, + "end": 18386.26, + "probability": 0.91 + }, + { + "start": 18387.58, + "end": 18390.8, + "probability": 0.991 + }, + { + "start": 18390.88, + "end": 18392.18, + "probability": 0.9749 + }, + { + "start": 18392.24, + "end": 18393.0, + "probability": 0.871 + }, + { + "start": 18395.29, + "end": 18396.98, + "probability": 0.9858 + }, + { + "start": 18397.26, + "end": 18398.36, + "probability": 0.387 + }, + { + "start": 18398.38, + "end": 18398.7, + "probability": 0.9268 + }, + { + "start": 18398.76, + "end": 18402.32, + "probability": 0.8937 + }, + { + "start": 18402.72, + "end": 18404.74, + "probability": 0.4981 + }, + { + "start": 18407.4, + "end": 18408.96, + "probability": 0.6195 + }, + { + "start": 18409.12, + "end": 18411.04, + "probability": 0.9734 + }, + { + "start": 18411.22, + "end": 18415.98, + "probability": 0.9985 + }, + { + "start": 18416.0, + "end": 18416.34, + "probability": 0.5786 + }, + { + "start": 18416.38, + "end": 18416.76, + "probability": 0.3712 + }, + { + "start": 18416.84, + "end": 18417.56, + "probability": 0.5525 + }, + { + "start": 18417.56, + "end": 18418.24, + "probability": 0.8141 + }, + { + "start": 18418.34, + "end": 18422.08, + "probability": 0.8648 + }, + { + "start": 18422.94, + "end": 18425.66, + "probability": 0.8803 + }, + { + "start": 18426.22, + "end": 18428.28, + "probability": 0.8137 + }, + { + "start": 18428.46, + "end": 18430.79, + "probability": 0.8594 + }, + { + "start": 18430.84, + "end": 18434.04, + "probability": 0.9577 + }, + { + "start": 18434.18, + "end": 18434.62, + "probability": 0.7836 + }, + { + "start": 18435.94, + "end": 18436.56, + "probability": 0.7341 + }, + { + "start": 18437.72, + "end": 18439.36, + "probability": 0.9902 + }, + { + "start": 18442.44, + "end": 18443.54, + "probability": 0.4741 + }, + { + "start": 18443.99, + "end": 18444.48, + "probability": 0.2973 + }, + { + "start": 18448.6, + "end": 18449.92, + "probability": 0.2818 + }, + { + "start": 18450.18, + "end": 18450.48, + "probability": 0.5078 + }, + { + "start": 18450.68, + "end": 18451.16, + "probability": 0.6128 + }, + { + "start": 18451.32, + "end": 18452.9, + "probability": 0.9854 + }, + { + "start": 18454.39, + "end": 18455.58, + "probability": 0.708 + }, + { + "start": 18455.92, + "end": 18457.56, + "probability": 0.9806 + }, + { + "start": 18458.66, + "end": 18461.14, + "probability": 0.9993 + }, + { + "start": 18461.5, + "end": 18462.5, + "probability": 0.9805 + }, + { + "start": 18465.36, + "end": 18467.8, + "probability": 0.8245 + }, + { + "start": 18468.46, + "end": 18470.3, + "probability": 0.5749 + }, + { + "start": 18470.94, + "end": 18471.42, + "probability": 0.5398 + }, + { + "start": 18471.88, + "end": 18474.72, + "probability": 0.8499 + }, + { + "start": 18479.72, + "end": 18486.32, + "probability": 0.002 + }, + { + "start": 18487.84, + "end": 18487.84, + "probability": 0.3 + }, + { + "start": 18488.54, + "end": 18489.24, + "probability": 0.1245 + }, + { + "start": 18490.61, + "end": 18493.98, + "probability": 0.0735 + }, + { + "start": 18496.64, + "end": 18496.82, + "probability": 0.0138 + }, + { + "start": 18496.82, + "end": 18497.44, + "probability": 0.1078 + }, + { + "start": 18497.44, + "end": 18497.7, + "probability": 0.2295 + }, + { + "start": 18506.5, + "end": 18506.86, + "probability": 0.4881 + }, + { + "start": 18507.64, + "end": 18509.2, + "probability": 0.7811 + }, + { + "start": 18509.76, + "end": 18513.66, + "probability": 0.9261 + }, + { + "start": 18515.26, + "end": 18515.26, + "probability": 0.0153 + }, + { + "start": 18515.78, + "end": 18515.98, + "probability": 0.0877 + }, + { + "start": 18520.92, + "end": 18523.58, + "probability": 0.0287 + }, + { + "start": 18526.82, + "end": 18528.8, + "probability": 0.0889 + }, + { + "start": 18531.06, + "end": 18531.62, + "probability": 0.4286 + }, + { + "start": 18532.34, + "end": 18534.52, + "probability": 0.6351 + }, + { + "start": 18539.46, + "end": 18539.9, + "probability": 0.3777 + }, + { + "start": 18540.72, + "end": 18544.24, + "probability": 0.751 + }, + { + "start": 18545.16, + "end": 18546.1, + "probability": 0.6478 + }, + { + "start": 18546.84, + "end": 18553.56, + "probability": 0.8088 + }, + { + "start": 18554.3, + "end": 18555.68, + "probability": 0.2602 + }, + { + "start": 18561.08, + "end": 18562.22, + "probability": 0.5496 + }, + { + "start": 18563.12, + "end": 18564.38, + "probability": 0.6273 + }, + { + "start": 18564.66, + "end": 18565.54, + "probability": 0.7262 + }, + { + "start": 18565.66, + "end": 18567.42, + "probability": 0.7037 + }, + { + "start": 18568.28, + "end": 18572.84, + "probability": 0.9617 + }, + { + "start": 18572.9, + "end": 18573.82, + "probability": 0.8818 + }, + { + "start": 18574.68, + "end": 18577.22, + "probability": 0.9358 + }, + { + "start": 18577.74, + "end": 18577.98, + "probability": 0.1209 + }, + { + "start": 18578.6, + "end": 18579.3, + "probability": 0.8966 + }, + { + "start": 18580.16, + "end": 18581.84, + "probability": 0.5923 + }, + { + "start": 18584.76, + "end": 18586.64, + "probability": 0.9829 + }, + { + "start": 18588.2, + "end": 18591.66, + "probability": 0.9819 + }, + { + "start": 18593.46, + "end": 18595.9, + "probability": 0.7977 + }, + { + "start": 18596.76, + "end": 18598.56, + "probability": 0.9346 + }, + { + "start": 18600.02, + "end": 18602.58, + "probability": 0.9907 + }, + { + "start": 18602.84, + "end": 18606.5, + "probability": 0.983 + }, + { + "start": 18607.3, + "end": 18611.68, + "probability": 0.9965 + }, + { + "start": 18611.68, + "end": 18616.52, + "probability": 0.9972 + }, + { + "start": 18617.0, + "end": 18620.2, + "probability": 0.9919 + }, + { + "start": 18620.62, + "end": 18625.22, + "probability": 0.9737 + }, + { + "start": 18625.68, + "end": 18627.18, + "probability": 0.8389 + }, + { + "start": 18627.56, + "end": 18631.3, + "probability": 0.9661 + }, + { + "start": 18632.62, + "end": 18634.68, + "probability": 0.9358 + }, + { + "start": 18634.74, + "end": 18636.68, + "probability": 0.9681 + }, + { + "start": 18637.1, + "end": 18640.5, + "probability": 0.9942 + }, + { + "start": 18641.06, + "end": 18645.84, + "probability": 0.9893 + }, + { + "start": 18646.4, + "end": 18649.62, + "probability": 0.9971 + }, + { + "start": 18649.62, + "end": 18653.74, + "probability": 0.9966 + }, + { + "start": 18654.62, + "end": 18656.86, + "probability": 0.9856 + }, + { + "start": 18656.86, + "end": 18659.94, + "probability": 0.9979 + }, + { + "start": 18660.42, + "end": 18661.34, + "probability": 0.9707 + }, + { + "start": 18661.42, + "end": 18668.36, + "probability": 0.9731 + }, + { + "start": 18668.9, + "end": 18672.2, + "probability": 0.9467 + }, + { + "start": 18672.74, + "end": 18677.14, + "probability": 0.9902 + }, + { + "start": 18677.8, + "end": 18678.28, + "probability": 0.6307 + }, + { + "start": 18678.8, + "end": 18681.76, + "probability": 0.8239 + }, + { + "start": 18682.62, + "end": 18685.48, + "probability": 0.3597 + }, + { + "start": 18685.96, + "end": 18690.46, + "probability": 0.974 + }, + { + "start": 18690.46, + "end": 18694.98, + "probability": 0.9987 + }, + { + "start": 18694.98, + "end": 18699.7, + "probability": 0.9946 + }, + { + "start": 18700.12, + "end": 18704.48, + "probability": 0.9728 + }, + { + "start": 18705.08, + "end": 18707.52, + "probability": 0.3408 + }, + { + "start": 18708.14, + "end": 18712.52, + "probability": 0.999 + }, + { + "start": 18712.52, + "end": 18717.14, + "probability": 0.9941 + }, + { + "start": 18718.1, + "end": 18722.46, + "probability": 0.9784 + }, + { + "start": 18722.46, + "end": 18726.36, + "probability": 0.9954 + }, + { + "start": 18726.98, + "end": 18730.46, + "probability": 0.9959 + }, + { + "start": 18730.46, + "end": 18734.28, + "probability": 0.9382 + }, + { + "start": 18734.92, + "end": 18740.32, + "probability": 0.9873 + }, + { + "start": 18740.9, + "end": 18746.76, + "probability": 0.9729 + }, + { + "start": 18748.22, + "end": 18752.5, + "probability": 0.9849 + }, + { + "start": 18752.86, + "end": 18755.08, + "probability": 0.8058 + }, + { + "start": 18755.18, + "end": 18759.86, + "probability": 0.9775 + }, + { + "start": 18760.28, + "end": 18764.34, + "probability": 0.9451 + }, + { + "start": 18764.34, + "end": 18767.38, + "probability": 0.9983 + }, + { + "start": 18768.34, + "end": 18768.56, + "probability": 0.383 + }, + { + "start": 18768.66, + "end": 18774.64, + "probability": 0.9916 + }, + { + "start": 18775.26, + "end": 18778.5, + "probability": 0.9717 + }, + { + "start": 18779.28, + "end": 18780.54, + "probability": 0.9867 + }, + { + "start": 18781.16, + "end": 18784.1, + "probability": 0.9967 + }, + { + "start": 18784.44, + "end": 18789.76, + "probability": 0.9848 + }, + { + "start": 18790.58, + "end": 18795.02, + "probability": 0.9983 + }, + { + "start": 18795.02, + "end": 18798.94, + "probability": 0.9984 + }, + { + "start": 18799.48, + "end": 18803.18, + "probability": 0.7883 + }, + { + "start": 18803.7, + "end": 18808.9, + "probability": 0.9922 + }, + { + "start": 18809.34, + "end": 18812.3, + "probability": 0.9774 + }, + { + "start": 18812.84, + "end": 18813.28, + "probability": 0.7709 + }, + { + "start": 18813.72, + "end": 18815.08, + "probability": 0.5694 + }, + { + "start": 18815.22, + "end": 18817.94, + "probability": 0.9957 + }, + { + "start": 18818.42, + "end": 18823.02, + "probability": 0.9791 + }, + { + "start": 18823.02, + "end": 18826.94, + "probability": 0.997 + }, + { + "start": 18827.52, + "end": 18828.74, + "probability": 0.9985 + }, + { + "start": 18829.18, + "end": 18833.44, + "probability": 0.9754 + }, + { + "start": 18834.26, + "end": 18837.74, + "probability": 0.992 + }, + { + "start": 18838.1, + "end": 18839.82, + "probability": 0.9689 + }, + { + "start": 18839.94, + "end": 18842.98, + "probability": 0.9851 + }, + { + "start": 18843.32, + "end": 18846.6, + "probability": 0.9759 + }, + { + "start": 18846.9, + "end": 18848.9, + "probability": 0.9039 + }, + { + "start": 18849.66, + "end": 18854.96, + "probability": 0.9984 + }, + { + "start": 18855.52, + "end": 18858.96, + "probability": 0.981 + }, + { + "start": 18859.52, + "end": 18863.5, + "probability": 0.9916 + }, + { + "start": 18863.88, + "end": 18868.6, + "probability": 0.9824 + }, + { + "start": 18869.1, + "end": 18873.22, + "probability": 0.9946 + }, + { + "start": 18873.22, + "end": 18877.12, + "probability": 0.9978 + }, + { + "start": 18877.62, + "end": 18881.28, + "probability": 0.9943 + }, + { + "start": 18881.28, + "end": 18885.9, + "probability": 0.9948 + }, + { + "start": 18886.14, + "end": 18889.6, + "probability": 0.9744 + }, + { + "start": 18889.9, + "end": 18893.9, + "probability": 0.8161 + }, + { + "start": 18894.42, + "end": 18896.82, + "probability": 0.6516 + }, + { + "start": 18897.18, + "end": 18900.12, + "probability": 0.9497 + }, + { + "start": 18900.86, + "end": 18903.74, + "probability": 0.9868 + }, + { + "start": 18903.84, + "end": 18904.5, + "probability": 0.787 + }, + { + "start": 18904.56, + "end": 18905.08, + "probability": 0.7006 + }, + { + "start": 18905.58, + "end": 18908.1, + "probability": 0.8053 + }, + { + "start": 18908.9, + "end": 18910.6, + "probability": 0.7834 + }, + { + "start": 18916.0, + "end": 18917.36, + "probability": 0.9733 + }, + { + "start": 18918.94, + "end": 18919.84, + "probability": 0.7703 + }, + { + "start": 18920.9, + "end": 18925.12, + "probability": 0.9404 + }, + { + "start": 18925.2, + "end": 18929.84, + "probability": 0.9946 + }, + { + "start": 18930.48, + "end": 18933.08, + "probability": 0.9825 + }, + { + "start": 18933.42, + "end": 18934.34, + "probability": 0.7652 + }, + { + "start": 18935.82, + "end": 18940.44, + "probability": 0.9972 + }, + { + "start": 18940.92, + "end": 18944.7, + "probability": 0.9955 + }, + { + "start": 18944.84, + "end": 18946.44, + "probability": 0.9128 + }, + { + "start": 18947.66, + "end": 18950.94, + "probability": 0.9313 + }, + { + "start": 18951.86, + "end": 18955.46, + "probability": 0.9863 + }, + { + "start": 18955.46, + "end": 18958.78, + "probability": 0.9885 + }, + { + "start": 18959.04, + "end": 18960.0, + "probability": 0.5698 + }, + { + "start": 18960.12, + "end": 18961.84, + "probability": 0.9793 + }, + { + "start": 18962.42, + "end": 18965.12, + "probability": 0.9958 + }, + { + "start": 18965.2, + "end": 18965.65, + "probability": 0.9357 + }, + { + "start": 18966.56, + "end": 18968.68, + "probability": 0.9825 + }, + { + "start": 18969.14, + "end": 18971.08, + "probability": 0.9935 + }, + { + "start": 18971.48, + "end": 18975.08, + "probability": 0.9773 + }, + { + "start": 18975.62, + "end": 18980.4, + "probability": 0.9927 + }, + { + "start": 18980.74, + "end": 18982.66, + "probability": 0.9526 + }, + { + "start": 18983.16, + "end": 18985.58, + "probability": 0.9912 + }, + { + "start": 18985.82, + "end": 18986.64, + "probability": 0.9919 + }, + { + "start": 18987.38, + "end": 18990.92, + "probability": 0.9712 + }, + { + "start": 18991.3, + "end": 18994.94, + "probability": 0.9884 + }, + { + "start": 18995.4, + "end": 18996.56, + "probability": 0.8204 + }, + { + "start": 18996.92, + "end": 18997.82, + "probability": 0.9291 + }, + { + "start": 18997.92, + "end": 18998.54, + "probability": 0.8937 + }, + { + "start": 18998.94, + "end": 19001.7, + "probability": 0.9541 + }, + { + "start": 19001.7, + "end": 19003.86, + "probability": 0.9856 + }, + { + "start": 19004.44, + "end": 19006.28, + "probability": 0.8994 + }, + { + "start": 19007.52, + "end": 19011.14, + "probability": 0.9975 + }, + { + "start": 19011.14, + "end": 19014.18, + "probability": 0.9999 + }, + { + "start": 19014.62, + "end": 19015.44, + "probability": 0.7813 + }, + { + "start": 19016.14, + "end": 19018.42, + "probability": 0.9327 + }, + { + "start": 19020.36, + "end": 19024.64, + "probability": 0.9983 + }, + { + "start": 19025.34, + "end": 19031.2, + "probability": 0.9781 + }, + { + "start": 19031.4, + "end": 19032.94, + "probability": 0.8508 + }, + { + "start": 19033.54, + "end": 19037.42, + "probability": 0.9937 + }, + { + "start": 19037.42, + "end": 19041.18, + "probability": 0.9971 + }, + { + "start": 19041.72, + "end": 19046.16, + "probability": 0.9922 + }, + { + "start": 19046.16, + "end": 19052.02, + "probability": 0.9883 + }, + { + "start": 19052.44, + "end": 19055.5, + "probability": 0.9946 + }, + { + "start": 19056.24, + "end": 19057.26, + "probability": 0.8632 + }, + { + "start": 19057.34, + "end": 19059.06, + "probability": 0.9159 + }, + { + "start": 19059.44, + "end": 19061.54, + "probability": 0.9978 + }, + { + "start": 19062.06, + "end": 19066.36, + "probability": 0.9641 + }, + { + "start": 19066.42, + "end": 19069.28, + "probability": 0.9672 + }, + { + "start": 19069.36, + "end": 19070.56, + "probability": 0.8582 + }, + { + "start": 19071.42, + "end": 19074.96, + "probability": 0.9829 + }, + { + "start": 19076.0, + "end": 19078.76, + "probability": 0.996 + }, + { + "start": 19079.14, + "end": 19082.74, + "probability": 0.9962 + }, + { + "start": 19082.74, + "end": 19085.72, + "probability": 0.9939 + }, + { + "start": 19086.96, + "end": 19088.22, + "probability": 0.7696 + }, + { + "start": 19088.28, + "end": 19088.74, + "probability": 0.7605 + }, + { + "start": 19088.98, + "end": 19089.28, + "probability": 0.6004 + }, + { + "start": 19089.38, + "end": 19089.74, + "probability": 0.7459 + }, + { + "start": 19089.78, + "end": 19090.76, + "probability": 0.8611 + }, + { + "start": 19090.92, + "end": 19092.46, + "probability": 0.7553 + }, + { + "start": 19092.5, + "end": 19096.2, + "probability": 0.9393 + }, + { + "start": 19096.2, + "end": 19097.48, + "probability": 0.9714 + }, + { + "start": 19098.34, + "end": 19099.52, + "probability": 0.4411 + }, + { + "start": 19099.64, + "end": 19100.28, + "probability": 0.6036 + }, + { + "start": 19101.18, + "end": 19103.06, + "probability": 0.8711 + }, + { + "start": 19104.04, + "end": 19105.12, + "probability": 0.9726 + }, + { + "start": 19107.78, + "end": 19109.72, + "probability": 0.6606 + }, + { + "start": 19110.34, + "end": 19111.0, + "probability": 0.8516 + }, + { + "start": 19111.46, + "end": 19111.58, + "probability": 0.9062 + }, + { + "start": 19112.18, + "end": 19112.64, + "probability": 0.9586 + }, + { + "start": 19113.6, + "end": 19116.22, + "probability": 0.8433 + }, + { + "start": 19136.68, + "end": 19136.68, + "probability": 0.046 + }, + { + "start": 19136.68, + "end": 19140.1, + "probability": 0.7307 + }, + { + "start": 19141.04, + "end": 19143.44, + "probability": 0.9771 + }, + { + "start": 19144.96, + "end": 19147.2, + "probability": 0.7367 + }, + { + "start": 19147.8, + "end": 19149.54, + "probability": 0.0509 + }, + { + "start": 19162.44, + "end": 19162.44, + "probability": 0.018 + }, + { + "start": 19162.44, + "end": 19165.14, + "probability": 0.6525 + }, + { + "start": 19165.36, + "end": 19168.64, + "probability": 0.7978 + }, + { + "start": 19168.7, + "end": 19170.2, + "probability": 0.9658 + }, + { + "start": 19173.06, + "end": 19176.09, + "probability": 0.3173 + }, + { + "start": 19179.56, + "end": 19181.88, + "probability": 0.0381 + }, + { + "start": 19182.1, + "end": 19184.65, + "probability": 0.3157 + }, + { + "start": 19188.08, + "end": 19191.9, + "probability": 0.6221 + }, + { + "start": 19193.02, + "end": 19194.18, + "probability": 0.9341 + }, + { + "start": 19194.3, + "end": 19195.14, + "probability": 0.5865 + }, + { + "start": 19195.28, + "end": 19200.46, + "probability": 0.989 + }, + { + "start": 19201.26, + "end": 19201.88, + "probability": 0.2042 + }, + { + "start": 19202.58, + "end": 19202.82, + "probability": 0.0791 + }, + { + "start": 19203.0, + "end": 19209.68, + "probability": 0.9908 + }, + { + "start": 19210.22, + "end": 19215.0, + "probability": 0.9884 + }, + { + "start": 19215.54, + "end": 19218.52, + "probability": 0.7778 + }, + { + "start": 19218.98, + "end": 19223.22, + "probability": 0.8883 + }, + { + "start": 19223.44, + "end": 19224.52, + "probability": 0.0797 + }, + { + "start": 19225.9, + "end": 19229.98, + "probability": 0.998 + }, + { + "start": 19230.6, + "end": 19233.86, + "probability": 0.9984 + }, + { + "start": 19233.86, + "end": 19238.58, + "probability": 0.9826 + }, + { + "start": 19239.14, + "end": 19242.04, + "probability": 0.8564 + }, + { + "start": 19242.36, + "end": 19248.78, + "probability": 0.986 + }, + { + "start": 19249.78, + "end": 19253.12, + "probability": 0.9919 + }, + { + "start": 19253.12, + "end": 19257.54, + "probability": 0.8388 + }, + { + "start": 19258.18, + "end": 19261.68, + "probability": 0.9498 + }, + { + "start": 19262.4, + "end": 19264.98, + "probability": 0.8024 + }, + { + "start": 19265.18, + "end": 19270.08, + "probability": 0.9609 + }, + { + "start": 19270.5, + "end": 19271.68, + "probability": 0.974 + }, + { + "start": 19273.18, + "end": 19275.36, + "probability": 0.9976 + }, + { + "start": 19276.58, + "end": 19281.64, + "probability": 0.8196 + }, + { + "start": 19282.66, + "end": 19287.84, + "probability": 0.9941 + }, + { + "start": 19288.5, + "end": 19294.12, + "probability": 0.983 + }, + { + "start": 19294.88, + "end": 19297.56, + "probability": 0.9213 + }, + { + "start": 19298.26, + "end": 19298.8, + "probability": 0.6788 + }, + { + "start": 19299.08, + "end": 19302.26, + "probability": 0.9428 + }, + { + "start": 19302.26, + "end": 19306.1, + "probability": 0.9605 + }, + { + "start": 19306.62, + "end": 19311.34, + "probability": 0.9883 + }, + { + "start": 19312.66, + "end": 19318.0, + "probability": 0.9928 + }, + { + "start": 19318.64, + "end": 19320.54, + "probability": 0.8254 + }, + { + "start": 19321.16, + "end": 19324.08, + "probability": 0.9395 + }, + { + "start": 19324.62, + "end": 19325.68, + "probability": 0.8761 + }, + { + "start": 19326.52, + "end": 19329.9, + "probability": 0.9924 + }, + { + "start": 19330.38, + "end": 19337.96, + "probability": 0.988 + }, + { + "start": 19338.84, + "end": 19340.4, + "probability": 0.9689 + }, + { + "start": 19340.64, + "end": 19343.26, + "probability": 0.9059 + }, + { + "start": 19343.74, + "end": 19347.9, + "probability": 0.9919 + }, + { + "start": 19348.58, + "end": 19349.06, + "probability": 0.8283 + }, + { + "start": 19349.26, + "end": 19352.42, + "probability": 0.9771 + }, + { + "start": 19352.86, + "end": 19356.66, + "probability": 0.9139 + }, + { + "start": 19357.26, + "end": 19360.56, + "probability": 0.9834 + }, + { + "start": 19361.36, + "end": 19363.78, + "probability": 0.5823 + }, + { + "start": 19364.3, + "end": 19368.4, + "probability": 0.9798 + }, + { + "start": 19368.9, + "end": 19372.38, + "probability": 0.9847 + }, + { + "start": 19373.02, + "end": 19375.58, + "probability": 0.9672 + }, + { + "start": 19376.28, + "end": 19377.7, + "probability": 0.7458 + }, + { + "start": 19378.22, + "end": 19382.1, + "probability": 0.9734 + }, + { + "start": 19384.06, + "end": 19389.56, + "probability": 0.972 + }, + { + "start": 19389.9, + "end": 19391.86, + "probability": 0.7101 + }, + { + "start": 19392.34, + "end": 19393.0, + "probability": 0.787 + }, + { + "start": 19393.76, + "end": 19396.98, + "probability": 0.9906 + }, + { + "start": 19397.28, + "end": 19400.84, + "probability": 0.9709 + }, + { + "start": 19401.54, + "end": 19407.3, + "probability": 0.9429 + }, + { + "start": 19407.76, + "end": 19408.42, + "probability": 0.8875 + }, + { + "start": 19408.76, + "end": 19409.7, + "probability": 0.9836 + }, + { + "start": 19410.54, + "end": 19414.72, + "probability": 0.9966 + }, + { + "start": 19414.72, + "end": 19420.44, + "probability": 0.9969 + }, + { + "start": 19420.9, + "end": 19423.78, + "probability": 0.301 + }, + { + "start": 19424.19, + "end": 19425.3, + "probability": 0.7332 + }, + { + "start": 19426.24, + "end": 19431.2, + "probability": 0.9771 + }, + { + "start": 19431.25, + "end": 19435.9, + "probability": 0.9707 + }, + { + "start": 19436.66, + "end": 19437.22, + "probability": 0.7748 + }, + { + "start": 19438.0, + "end": 19443.2, + "probability": 0.9604 + }, + { + "start": 19443.2, + "end": 19449.08, + "probability": 0.9919 + }, + { + "start": 19449.7, + "end": 19451.22, + "probability": 0.9339 + }, + { + "start": 19451.98, + "end": 19452.36, + "probability": 0.741 + }, + { + "start": 19452.44, + "end": 19457.66, + "probability": 0.9684 + }, + { + "start": 19457.88, + "end": 19463.12, + "probability": 0.962 + }, + { + "start": 19463.92, + "end": 19471.28, + "probability": 0.9707 + }, + { + "start": 19471.84, + "end": 19473.22, + "probability": 0.9725 + }, + { + "start": 19474.2, + "end": 19475.06, + "probability": 0.7962 + }, + { + "start": 19475.22, + "end": 19480.7, + "probability": 0.9866 + }, + { + "start": 19480.7, + "end": 19484.8, + "probability": 0.998 + }, + { + "start": 19486.02, + "end": 19488.42, + "probability": 0.8915 + }, + { + "start": 19489.0, + "end": 19492.6, + "probability": 0.9988 + }, + { + "start": 19493.02, + "end": 19496.08, + "probability": 0.9989 + }, + { + "start": 19496.54, + "end": 19503.98, + "probability": 0.9854 + }, + { + "start": 19504.66, + "end": 19507.32, + "probability": 0.9805 + }, + { + "start": 19513.66, + "end": 19518.28, + "probability": 0.9902 + }, + { + "start": 19518.28, + "end": 19524.46, + "probability": 0.9984 + }, + { + "start": 19524.96, + "end": 19528.14, + "probability": 0.9951 + }, + { + "start": 19528.86, + "end": 19530.76, + "probability": 0.67 + }, + { + "start": 19531.4, + "end": 19534.52, + "probability": 0.8565 + }, + { + "start": 19535.12, + "end": 19542.5, + "probability": 0.9858 + }, + { + "start": 19544.0, + "end": 19546.78, + "probability": 0.9979 + }, + { + "start": 19546.92, + "end": 19550.22, + "probability": 0.9132 + }, + { + "start": 19550.88, + "end": 19554.96, + "probability": 0.9008 + }, + { + "start": 19555.1, + "end": 19557.0, + "probability": 0.6858 + }, + { + "start": 19557.06, + "end": 19562.06, + "probability": 0.9873 + }, + { + "start": 19562.66, + "end": 19565.98, + "probability": 0.6404 + }, + { + "start": 19566.78, + "end": 19571.12, + "probability": 0.8364 + }, + { + "start": 19571.78, + "end": 19572.72, + "probability": 0.8387 + }, + { + "start": 19573.34, + "end": 19575.98, + "probability": 0.9653 + }, + { + "start": 19577.1, + "end": 19580.46, + "probability": 0.7453 + }, + { + "start": 19581.22, + "end": 19584.46, + "probability": 0.9849 + }, + { + "start": 19584.7, + "end": 19587.38, + "probability": 0.8911 + }, + { + "start": 19588.06, + "end": 19592.1, + "probability": 0.8127 + }, + { + "start": 19592.4, + "end": 19593.38, + "probability": 0.808 + }, + { + "start": 19593.92, + "end": 19595.3, + "probability": 0.846 + }, + { + "start": 19595.9, + "end": 19598.8, + "probability": 0.9937 + }, + { + "start": 19599.32, + "end": 19601.12, + "probability": 0.8983 + }, + { + "start": 19603.88, + "end": 19604.58, + "probability": 0.7139 + }, + { + "start": 19609.2, + "end": 19610.98, + "probability": 0.7455 + }, + { + "start": 19612.4, + "end": 19614.0, + "probability": 0.8533 + }, + { + "start": 19638.09, + "end": 19639.12, + "probability": 0.0075 + }, + { + "start": 19639.12, + "end": 19639.12, + "probability": 0.1658 + }, + { + "start": 19639.12, + "end": 19639.38, + "probability": 0.1466 + }, + { + "start": 19639.84, + "end": 19640.78, + "probability": 0.8767 + }, + { + "start": 19641.28, + "end": 19643.48, + "probability": 0.9694 + }, + { + "start": 19643.56, + "end": 19644.98, + "probability": 0.8574 + }, + { + "start": 19647.1, + "end": 19649.04, + "probability": 0.0369 + }, + { + "start": 19649.82, + "end": 19649.98, + "probability": 0.0494 + }, + { + "start": 19675.74, + "end": 19676.42, + "probability": 0.0138 + }, + { + "start": 19676.42, + "end": 19678.34, + "probability": 0.6005 + }, + { + "start": 19679.0, + "end": 19682.07, + "probability": 0.9273 + }, + { + "start": 19683.66, + "end": 19688.66, + "probability": 0.2359 + }, + { + "start": 19689.82, + "end": 19690.14, + "probability": 0.7276 + }, + { + "start": 19698.9, + "end": 19699.38, + "probability": 0.632 + }, + { + "start": 19699.68, + "end": 19701.02, + "probability": 0.7817 + }, + { + "start": 19701.16, + "end": 19702.62, + "probability": 0.6737 + }, + { + "start": 19703.02, + "end": 19704.08, + "probability": 0.8148 + }, + { + "start": 19705.66, + "end": 19712.04, + "probability": 0.995 + }, + { + "start": 19712.68, + "end": 19716.38, + "probability": 0.9946 + }, + { + "start": 19716.92, + "end": 19721.48, + "probability": 0.9998 + }, + { + "start": 19721.64, + "end": 19727.66, + "probability": 0.9987 + }, + { + "start": 19727.76, + "end": 19729.62, + "probability": 0.897 + }, + { + "start": 19729.72, + "end": 19731.9, + "probability": 0.9871 + }, + { + "start": 19732.42, + "end": 19734.06, + "probability": 0.997 + }, + { + "start": 19735.6, + "end": 19739.88, + "probability": 0.8706 + }, + { + "start": 19739.88, + "end": 19743.38, + "probability": 0.9974 + }, + { + "start": 19744.18, + "end": 19746.16, + "probability": 0.9874 + }, + { + "start": 19746.73, + "end": 19750.28, + "probability": 0.955 + }, + { + "start": 19750.54, + "end": 19751.86, + "probability": 0.9832 + }, + { + "start": 19752.1, + "end": 19753.6, + "probability": 0.9938 + }, + { + "start": 19754.34, + "end": 19757.06, + "probability": 0.9094 + }, + { + "start": 19757.56, + "end": 19760.86, + "probability": 0.9979 + }, + { + "start": 19761.88, + "end": 19763.88, + "probability": 0.98 + }, + { + "start": 19764.84, + "end": 19765.94, + "probability": 0.7895 + }, + { + "start": 19766.7, + "end": 19767.52, + "probability": 0.7701 + }, + { + "start": 19767.6, + "end": 19767.88, + "probability": 0.4053 + }, + { + "start": 19767.92, + "end": 19768.48, + "probability": 0.8169 + }, + { + "start": 19768.76, + "end": 19773.74, + "probability": 0.9885 + }, + { + "start": 19775.4, + "end": 19779.94, + "probability": 0.9822 + }, + { + "start": 19781.5, + "end": 19784.04, + "probability": 0.9958 + }, + { + "start": 19784.04, + "end": 19787.4, + "probability": 0.9937 + }, + { + "start": 19787.86, + "end": 19790.08, + "probability": 0.9983 + }, + { + "start": 19790.08, + "end": 19792.82, + "probability": 0.9985 + }, + { + "start": 19793.64, + "end": 19799.34, + "probability": 0.8812 + }, + { + "start": 19799.54, + "end": 19802.0, + "probability": 0.8098 + }, + { + "start": 19803.34, + "end": 19806.34, + "probability": 0.9897 + }, + { + "start": 19806.92, + "end": 19810.84, + "probability": 0.8044 + }, + { + "start": 19811.44, + "end": 19813.66, + "probability": 0.9951 + }, + { + "start": 19814.52, + "end": 19819.08, + "probability": 0.9987 + }, + { + "start": 19819.08, + "end": 19822.98, + "probability": 0.9996 + }, + { + "start": 19823.68, + "end": 19826.3, + "probability": 0.9968 + }, + { + "start": 19826.82, + "end": 19829.74, + "probability": 0.9974 + }, + { + "start": 19830.5, + "end": 19836.26, + "probability": 0.9844 + }, + { + "start": 19836.36, + "end": 19839.36, + "probability": 0.8628 + }, + { + "start": 19839.54, + "end": 19841.18, + "probability": 0.9639 + }, + { + "start": 19841.8, + "end": 19842.96, + "probability": 0.9689 + }, + { + "start": 19843.44, + "end": 19843.82, + "probability": 0.4599 + }, + { + "start": 19843.96, + "end": 19845.06, + "probability": 0.9876 + }, + { + "start": 19845.38, + "end": 19845.76, + "probability": 0.625 + }, + { + "start": 19845.96, + "end": 19846.78, + "probability": 0.7871 + }, + { + "start": 19847.42, + "end": 19847.6, + "probability": 0.4527 + }, + { + "start": 19847.72, + "end": 19848.06, + "probability": 0.8079 + }, + { + "start": 19848.44, + "end": 19849.7, + "probability": 0.9556 + }, + { + "start": 19850.2, + "end": 19853.14, + "probability": 0.9951 + }, + { + "start": 19853.14, + "end": 19856.54, + "probability": 0.995 + }, + { + "start": 19857.2, + "end": 19859.52, + "probability": 0.9391 + }, + { + "start": 19860.0, + "end": 19864.0, + "probability": 0.9829 + }, + { + "start": 19864.4, + "end": 19865.42, + "probability": 0.957 + }, + { + "start": 19866.5, + "end": 19867.24, + "probability": 0.7495 + }, + { + "start": 19868.76, + "end": 19873.2, + "probability": 0.8375 + }, + { + "start": 19874.9, + "end": 19875.68, + "probability": 0.6119 + }, + { + "start": 19876.48, + "end": 19876.76, + "probability": 0.9374 + }, + { + "start": 19885.56, + "end": 19889.42, + "probability": 0.4855 + }, + { + "start": 19889.52, + "end": 19890.7, + "probability": 0.556 + }, + { + "start": 19892.92, + "end": 19894.9, + "probability": 0.8674 + }, + { + "start": 19919.24, + "end": 19920.02, + "probability": 0.5463 + }, + { + "start": 19920.08, + "end": 19921.24, + "probability": 0.7175 + }, + { + "start": 19921.64, + "end": 19926.32, + "probability": 0.9923 + }, + { + "start": 19927.4, + "end": 19928.37, + "probability": 0.6793 + }, + { + "start": 19928.62, + "end": 19931.2, + "probability": 0.745 + }, + { + "start": 19931.66, + "end": 19932.24, + "probability": 0.6232 + }, + { + "start": 19932.3, + "end": 19933.44, + "probability": 0.9234 + }, + { + "start": 19934.58, + "end": 19936.6, + "probability": 0.7636 + }, + { + "start": 19936.7, + "end": 19938.3, + "probability": 0.9692 + }, + { + "start": 19938.94, + "end": 19940.24, + "probability": 0.9092 + }, + { + "start": 19942.2, + "end": 19944.48, + "probability": 0.2261 + }, + { + "start": 19944.48, + "end": 19945.66, + "probability": 0.9382 + }, + { + "start": 19946.82, + "end": 19948.54, + "probability": 0.8903 + }, + { + "start": 19950.4, + "end": 19952.08, + "probability": 0.8826 + }, + { + "start": 19952.14, + "end": 19956.54, + "probability": 0.9956 + }, + { + "start": 19959.02, + "end": 19961.48, + "probability": 0.8224 + }, + { + "start": 19963.16, + "end": 19963.68, + "probability": 0.7304 + }, + { + "start": 19963.88, + "end": 19964.98, + "probability": 0.9961 + }, + { + "start": 19965.04, + "end": 19965.44, + "probability": 0.9358 + }, + { + "start": 19965.7, + "end": 19967.53, + "probability": 0.9103 + }, + { + "start": 19967.78, + "end": 19969.24, + "probability": 0.8315 + }, + { + "start": 19969.24, + "end": 19971.02, + "probability": 0.8927 + }, + { + "start": 19971.18, + "end": 19975.8, + "probability": 0.9935 + }, + { + "start": 19975.9, + "end": 19977.1, + "probability": 0.6782 + }, + { + "start": 19978.02, + "end": 19980.88, + "probability": 0.6165 + }, + { + "start": 19981.66, + "end": 19986.2, + "probability": 0.8731 + }, + { + "start": 19988.14, + "end": 19988.76, + "probability": 0.8737 + }, + { + "start": 19988.9, + "end": 19989.12, + "probability": 0.6115 + }, + { + "start": 19989.22, + "end": 19990.8, + "probability": 0.974 + }, + { + "start": 19990.98, + "end": 19991.4, + "probability": 0.667 + }, + { + "start": 19992.2, + "end": 19994.04, + "probability": 0.9722 + }, + { + "start": 19994.72, + "end": 19995.94, + "probability": 0.9658 + }, + { + "start": 19996.06, + "end": 19998.08, + "probability": 0.8701 + }, + { + "start": 19999.2, + "end": 20001.02, + "probability": 0.8748 + }, + { + "start": 20002.16, + "end": 20003.54, + "probability": 0.7606 + }, + { + "start": 20003.56, + "end": 20008.18, + "probability": 0.9968 + }, + { + "start": 20008.92, + "end": 20010.52, + "probability": 0.6014 + }, + { + "start": 20011.18, + "end": 20012.62, + "probability": 0.7832 + }, + { + "start": 20012.76, + "end": 20015.56, + "probability": 0.9564 + }, + { + "start": 20015.9, + "end": 20016.46, + "probability": 0.9353 + }, + { + "start": 20016.54, + "end": 20018.08, + "probability": 0.9956 + }, + { + "start": 20018.58, + "end": 20019.84, + "probability": 0.9021 + }, + { + "start": 20020.5, + "end": 20021.26, + "probability": 0.7057 + }, + { + "start": 20021.3, + "end": 20022.5, + "probability": 0.7194 + }, + { + "start": 20023.0, + "end": 20027.14, + "probability": 0.9613 + }, + { + "start": 20027.8, + "end": 20029.86, + "probability": 0.9941 + }, + { + "start": 20029.9, + "end": 20031.98, + "probability": 0.9138 + }, + { + "start": 20032.56, + "end": 20033.58, + "probability": 0.9211 + }, + { + "start": 20033.64, + "end": 20035.07, + "probability": 0.8013 + }, + { + "start": 20036.54, + "end": 20037.03, + "probability": 0.6206 + }, + { + "start": 20037.76, + "end": 20041.5, + "probability": 0.9913 + }, + { + "start": 20041.54, + "end": 20042.56, + "probability": 0.955 + }, + { + "start": 20043.12, + "end": 20043.56, + "probability": 0.9411 + }, + { + "start": 20043.7, + "end": 20045.22, + "probability": 0.9415 + }, + { + "start": 20045.4, + "end": 20046.94, + "probability": 0.9514 + }, + { + "start": 20047.74, + "end": 20051.2, + "probability": 0.9879 + }, + { + "start": 20052.34, + "end": 20054.38, + "probability": 0.6441 + }, + { + "start": 20054.66, + "end": 20056.96, + "probability": 0.791 + }, + { + "start": 20057.0, + "end": 20057.58, + "probability": 0.8668 + }, + { + "start": 20057.92, + "end": 20060.18, + "probability": 0.9968 + }, + { + "start": 20062.12, + "end": 20064.84, + "probability": 0.8739 + }, + { + "start": 20065.02, + "end": 20065.22, + "probability": 0.4665 + }, + { + "start": 20065.32, + "end": 20065.94, + "probability": 0.8065 + }, + { + "start": 20066.08, + "end": 20066.88, + "probability": 0.8298 + }, + { + "start": 20066.96, + "end": 20067.6, + "probability": 0.8794 + }, + { + "start": 20067.7, + "end": 20068.26, + "probability": 0.9525 + }, + { + "start": 20068.32, + "end": 20068.96, + "probability": 0.9465 + }, + { + "start": 20069.12, + "end": 20071.04, + "probability": 0.6823 + }, + { + "start": 20072.56, + "end": 20073.92, + "probability": 0.816 + }, + { + "start": 20074.06, + "end": 20075.42, + "probability": 0.5593 + }, + { + "start": 20075.44, + "end": 20075.7, + "probability": 0.9569 + }, + { + "start": 20075.8, + "end": 20077.5, + "probability": 0.9254 + }, + { + "start": 20077.68, + "end": 20077.82, + "probability": 0.8826 + }, + { + "start": 20077.88, + "end": 20079.53, + "probability": 0.8482 + }, + { + "start": 20079.7, + "end": 20080.4, + "probability": 0.9457 + }, + { + "start": 20080.52, + "end": 20080.82, + "probability": 0.3768 + }, + { + "start": 20081.96, + "end": 20083.4, + "probability": 0.8188 + }, + { + "start": 20083.54, + "end": 20084.52, + "probability": 0.9208 + }, + { + "start": 20084.7, + "end": 20088.28, + "probability": 0.9915 + }, + { + "start": 20088.44, + "end": 20089.86, + "probability": 0.9839 + }, + { + "start": 20091.18, + "end": 20093.54, + "probability": 0.9831 + }, + { + "start": 20094.22, + "end": 20094.46, + "probability": 0.2764 + }, + { + "start": 20095.3, + "end": 20097.29, + "probability": 0.9949 + }, + { + "start": 20098.08, + "end": 20101.12, + "probability": 0.9979 + }, + { + "start": 20101.6, + "end": 20104.14, + "probability": 0.9968 + }, + { + "start": 20104.72, + "end": 20106.1, + "probability": 0.9963 + }, + { + "start": 20106.22, + "end": 20107.98, + "probability": 0.9967 + }, + { + "start": 20108.68, + "end": 20111.28, + "probability": 0.9869 + }, + { + "start": 20112.72, + "end": 20116.02, + "probability": 0.9979 + }, + { + "start": 20116.6, + "end": 20119.32, + "probability": 0.9961 + }, + { + "start": 20119.32, + "end": 20123.42, + "probability": 0.7406 + }, + { + "start": 20124.8, + "end": 20125.28, + "probability": 0.5003 + }, + { + "start": 20125.44, + "end": 20129.76, + "probability": 0.9857 + }, + { + "start": 20130.4, + "end": 20133.0, + "probability": 0.9971 + }, + { + "start": 20133.54, + "end": 20137.08, + "probability": 0.9974 + }, + { + "start": 20137.56, + "end": 20140.22, + "probability": 0.968 + }, + { + "start": 20140.22, + "end": 20142.52, + "probability": 0.9902 + }, + { + "start": 20143.14, + "end": 20146.02, + "probability": 0.9648 + }, + { + "start": 20146.02, + "end": 20148.88, + "probability": 0.7993 + }, + { + "start": 20149.34, + "end": 20152.42, + "probability": 0.8022 + }, + { + "start": 20154.7, + "end": 20155.38, + "probability": 0.7888 + }, + { + "start": 20157.18, + "end": 20157.86, + "probability": 0.6906 + }, + { + "start": 20157.9, + "end": 20162.5, + "probability": 0.9881 + }, + { + "start": 20163.34, + "end": 20163.86, + "probability": 0.1784 + }, + { + "start": 20164.4, + "end": 20166.96, + "probability": 0.9826 + }, + { + "start": 20167.14, + "end": 20167.62, + "probability": 0.2049 + }, + { + "start": 20167.86, + "end": 20167.86, + "probability": 0.0759 + }, + { + "start": 20168.48, + "end": 20169.32, + "probability": 0.2381 + }, + { + "start": 20169.52, + "end": 20170.66, + "probability": 0.8545 + }, + { + "start": 20170.68, + "end": 20172.3, + "probability": 0.7243 + }, + { + "start": 20172.3, + "end": 20176.18, + "probability": 0.9811 + }, + { + "start": 20176.78, + "end": 20179.1, + "probability": 0.9068 + }, + { + "start": 20179.72, + "end": 20183.12, + "probability": 0.9808 + }, + { + "start": 20184.26, + "end": 20188.16, + "probability": 0.9917 + }, + { + "start": 20188.3, + "end": 20191.22, + "probability": 0.9886 + }, + { + "start": 20191.22, + "end": 20195.0, + "probability": 0.9455 + }, + { + "start": 20195.66, + "end": 20199.36, + "probability": 0.9945 + }, + { + "start": 20199.88, + "end": 20202.24, + "probability": 0.7994 + }, + { + "start": 20202.42, + "end": 20203.24, + "probability": 0.532 + }, + { + "start": 20203.82, + "end": 20207.32, + "probability": 0.9741 + }, + { + "start": 20207.32, + "end": 20209.96, + "probability": 0.9985 + }, + { + "start": 20210.46, + "end": 20211.52, + "probability": 0.5893 + }, + { + "start": 20211.7, + "end": 20213.18, + "probability": 0.9532 + }, + { + "start": 20214.4, + "end": 20218.28, + "probability": 0.9951 + }, + { + "start": 20218.74, + "end": 20220.46, + "probability": 0.9495 + }, + { + "start": 20220.46, + "end": 20223.6, + "probability": 0.9977 + }, + { + "start": 20223.94, + "end": 20226.54, + "probability": 0.981 + }, + { + "start": 20227.14, + "end": 20228.1, + "probability": 0.9431 + }, + { + "start": 20228.66, + "end": 20234.3, + "probability": 0.9149 + }, + { + "start": 20235.26, + "end": 20235.92, + "probability": 0.7819 + }, + { + "start": 20236.54, + "end": 20239.22, + "probability": 0.9989 + }, + { + "start": 20239.22, + "end": 20243.08, + "probability": 0.9945 + }, + { + "start": 20243.58, + "end": 20245.76, + "probability": 0.9492 + }, + { + "start": 20246.28, + "end": 20249.92, + "probability": 0.9856 + }, + { + "start": 20249.92, + "end": 20253.5, + "probability": 0.995 + }, + { + "start": 20254.42, + "end": 20256.9, + "probability": 0.9985 + }, + { + "start": 20256.9, + "end": 20259.8, + "probability": 0.9888 + }, + { + "start": 20260.26, + "end": 20263.94, + "probability": 0.9629 + }, + { + "start": 20263.96, + "end": 20265.52, + "probability": 0.9775 + }, + { + "start": 20266.38, + "end": 20270.44, + "probability": 0.8547 + }, + { + "start": 20270.64, + "end": 20274.86, + "probability": 0.9976 + }, + { + "start": 20274.96, + "end": 20277.3, + "probability": 0.9842 + }, + { + "start": 20277.44, + "end": 20278.78, + "probability": 0.8761 + }, + { + "start": 20280.7, + "end": 20281.84, + "probability": 0.9961 + }, + { + "start": 20282.22, + "end": 20286.58, + "probability": 0.9647 + }, + { + "start": 20287.08, + "end": 20289.68, + "probability": 0.744 + }, + { + "start": 20289.68, + "end": 20295.0, + "probability": 0.983 + }, + { + "start": 20295.68, + "end": 20296.7, + "probability": 0.922 + }, + { + "start": 20297.46, + "end": 20299.38, + "probability": 0.9966 + }, + { + "start": 20299.88, + "end": 20301.82, + "probability": 0.9399 + }, + { + "start": 20302.3, + "end": 20307.74, + "probability": 0.9852 + }, + { + "start": 20308.34, + "end": 20313.3, + "probability": 0.9275 + }, + { + "start": 20313.42, + "end": 20315.9, + "probability": 0.9959 + }, + { + "start": 20316.4, + "end": 20318.82, + "probability": 0.952 + }, + { + "start": 20319.46, + "end": 20321.14, + "probability": 0.9279 + }, + { + "start": 20322.47, + "end": 20327.52, + "probability": 0.6394 + }, + { + "start": 20329.04, + "end": 20330.16, + "probability": 0.428 + }, + { + "start": 20331.76, + "end": 20331.94, + "probability": 0.429 + }, + { + "start": 20331.94, + "end": 20334.02, + "probability": 0.1577 + }, + { + "start": 20334.2, + "end": 20335.76, + "probability": 0.73 + }, + { + "start": 20336.44, + "end": 20341.88, + "probability": 0.9975 + }, + { + "start": 20342.58, + "end": 20344.82, + "probability": 0.9988 + }, + { + "start": 20344.82, + "end": 20348.02, + "probability": 0.984 + }, + { + "start": 20348.72, + "end": 20350.94, + "probability": 0.9942 + }, + { + "start": 20351.48, + "end": 20354.2, + "probability": 0.9992 + }, + { + "start": 20355.5, + "end": 20358.32, + "probability": 0.8171 + }, + { + "start": 20359.5, + "end": 20363.38, + "probability": 0.9892 + }, + { + "start": 20364.68, + "end": 20366.5, + "probability": 0.6671 + }, + { + "start": 20366.64, + "end": 20368.04, + "probability": 0.9897 + }, + { + "start": 20368.08, + "end": 20371.78, + "probability": 0.9709 + }, + { + "start": 20372.54, + "end": 20375.62, + "probability": 0.9564 + }, + { + "start": 20376.48, + "end": 20379.02, + "probability": 0.856 + }, + { + "start": 20379.56, + "end": 20380.4, + "probability": 0.652 + }, + { + "start": 20380.78, + "end": 20381.3, + "probability": 0.6285 + }, + { + "start": 20381.78, + "end": 20384.62, + "probability": 0.9404 + }, + { + "start": 20384.8, + "end": 20387.24, + "probability": 0.9413 + }, + { + "start": 20387.86, + "end": 20388.1, + "probability": 0.7103 + }, + { + "start": 20388.14, + "end": 20388.74, + "probability": 0.7389 + }, + { + "start": 20389.06, + "end": 20390.88, + "probability": 0.9314 + }, + { + "start": 20391.38, + "end": 20394.0, + "probability": 0.9025 + }, + { + "start": 20394.42, + "end": 20395.24, + "probability": 0.929 + }, + { + "start": 20395.3, + "end": 20397.98, + "probability": 0.9792 + }, + { + "start": 20398.48, + "end": 20401.28, + "probability": 0.9381 + }, + { + "start": 20401.3, + "end": 20401.64, + "probability": 0.7349 + }, + { + "start": 20404.78, + "end": 20406.76, + "probability": 0.6426 + }, + { + "start": 20407.64, + "end": 20409.22, + "probability": 0.8965 + }, + { + "start": 20410.62, + "end": 20412.86, + "probability": 0.4441 + }, + { + "start": 20414.36, + "end": 20417.92, + "probability": 0.9504 + }, + { + "start": 20418.58, + "end": 20419.66, + "probability": 0.9858 + }, + { + "start": 20420.24, + "end": 20420.24, + "probability": 0.2289 + }, + { + "start": 20420.24, + "end": 20421.4, + "probability": 0.5658 + }, + { + "start": 20422.62, + "end": 20424.74, + "probability": 0.537 + }, + { + "start": 20424.74, + "end": 20425.08, + "probability": 0.4317 + }, + { + "start": 20425.08, + "end": 20425.08, + "probability": 0.4767 + }, + { + "start": 20425.08, + "end": 20425.08, + "probability": 0.0596 + }, + { + "start": 20425.08, + "end": 20427.32, + "probability": 0.3712 + }, + { + "start": 20427.54, + "end": 20428.36, + "probability": 0.2521 + }, + { + "start": 20429.78, + "end": 20430.12, + "probability": 0.1838 + }, + { + "start": 20434.08, + "end": 20434.18, + "probability": 0.2523 + }, + { + "start": 20434.18, + "end": 20434.18, + "probability": 0.0046 + }, + { + "start": 20457.43, + "end": 20458.09, + "probability": 0.2037 + }, + { + "start": 20458.09, + "end": 20458.15, + "probability": 0.0616 + }, + { + "start": 20458.15, + "end": 20464.23, + "probability": 0.6853 + }, + { + "start": 20467.59, + "end": 20467.59, + "probability": 0.0595 + }, + { + "start": 20467.59, + "end": 20468.51, + "probability": 0.443 + }, + { + "start": 20468.59, + "end": 20470.43, + "probability": 0.3748 + }, + { + "start": 20470.51, + "end": 20470.93, + "probability": 0.1574 + }, + { + "start": 20470.99, + "end": 20471.37, + "probability": 0.373 + }, + { + "start": 20471.37, + "end": 20472.27, + "probability": 0.0068 + }, + { + "start": 20472.41, + "end": 20475.57, + "probability": 0.8636 + }, + { + "start": 20476.51, + "end": 20476.77, + "probability": 0.1752 + }, + { + "start": 20476.77, + "end": 20477.71, + "probability": 0.4016 + }, + { + "start": 20477.71, + "end": 20478.41, + "probability": 0.713 + }, + { + "start": 20478.41, + "end": 20479.29, + "probability": 0.8747 + }, + { + "start": 20479.37, + "end": 20483.43, + "probability": 0.9289 + }, + { + "start": 20484.47, + "end": 20486.13, + "probability": 0.9912 + }, + { + "start": 20492.17, + "end": 20495.99, + "probability": 0.8093 + }, + { + "start": 20500.53, + "end": 20501.33, + "probability": 0.6683 + }, + { + "start": 20502.29, + "end": 20505.27, + "probability": 0.8411 + }, + { + "start": 20510.17, + "end": 20512.87, + "probability": 0.1267 + }, + { + "start": 20513.99, + "end": 20514.47, + "probability": 0.3806 + }, + { + "start": 20515.01, + "end": 20519.97, + "probability": 0.0423 + }, + { + "start": 20520.39, + "end": 20521.41, + "probability": 0.1218 + }, + { + "start": 20522.09, + "end": 20523.51, + "probability": 0.5206 + }, + { + "start": 20523.57, + "end": 20524.33, + "probability": 0.7318 + }, + { + "start": 20525.23, + "end": 20526.09, + "probability": 0.6215 + }, + { + "start": 20528.35, + "end": 20530.13, + "probability": 0.8019 + }, + { + "start": 20530.35, + "end": 20531.82, + "probability": 0.9719 + }, + { + "start": 20532.07, + "end": 20538.07, + "probability": 0.4261 + }, + { + "start": 20544.09, + "end": 20546.85, + "probability": 0.9279 + }, + { + "start": 20548.93, + "end": 20549.45, + "probability": 0.6277 + }, + { + "start": 20549.93, + "end": 20551.28, + "probability": 0.9729 + }, + { + "start": 20552.51, + "end": 20554.51, + "probability": 0.0429 + }, + { + "start": 20554.63, + "end": 20559.49, + "probability": 0.1091 + }, + { + "start": 20559.99, + "end": 20560.71, + "probability": 0.0991 + }, + { + "start": 20560.71, + "end": 20560.71, + "probability": 0.0638 + }, + { + "start": 20560.71, + "end": 20562.57, + "probability": 0.1005 + }, + { + "start": 20563.15, + "end": 20565.01, + "probability": 0.4105 + }, + { + "start": 20565.61, + "end": 20566.61, + "probability": 0.5119 + }, + { + "start": 20583.27, + "end": 20586.11, + "probability": 0.6396 + }, + { + "start": 20586.73, + "end": 20587.93, + "probability": 0.7742 + }, + { + "start": 20588.71, + "end": 20592.57, + "probability": 0.9974 + }, + { + "start": 20592.67, + "end": 20597.75, + "probability": 0.9949 + }, + { + "start": 20597.81, + "end": 20599.67, + "probability": 0.5 + }, + { + "start": 20601.65, + "end": 20601.65, + "probability": 0.022 + }, + { + "start": 20601.65, + "end": 20602.67, + "probability": 0.0872 + }, + { + "start": 20603.47, + "end": 20605.25, + "probability": 0.9777 + }, + { + "start": 20607.19, + "end": 20608.71, + "probability": 0.6032 + }, + { + "start": 20608.81, + "end": 20612.05, + "probability": 0.9204 + }, + { + "start": 20612.05, + "end": 20616.51, + "probability": 0.8305 + }, + { + "start": 20617.41, + "end": 20624.23, + "probability": 0.9894 + }, + { + "start": 20625.01, + "end": 20629.17, + "probability": 0.9967 + }, + { + "start": 20630.43, + "end": 20632.67, + "probability": 0.9071 + }, + { + "start": 20632.95, + "end": 20633.69, + "probability": 0.6018 + }, + { + "start": 20634.01, + "end": 20634.35, + "probability": 0.3194 + }, + { + "start": 20634.79, + "end": 20636.07, + "probability": 0.7959 + }, + { + "start": 20637.13, + "end": 20640.61, + "probability": 0.8841 + }, + { + "start": 20641.23, + "end": 20644.73, + "probability": 0.975 + }, + { + "start": 20645.59, + "end": 20650.83, + "probability": 0.9786 + }, + { + "start": 20652.25, + "end": 20653.39, + "probability": 0.6353 + }, + { + "start": 20656.09, + "end": 20661.59, + "probability": 0.9976 + }, + { + "start": 20662.77, + "end": 20662.93, + "probability": 0.277 + }, + { + "start": 20663.17, + "end": 20667.09, + "probability": 0.968 + }, + { + "start": 20667.85, + "end": 20672.33, + "probability": 0.9626 + }, + { + "start": 20673.23, + "end": 20676.51, + "probability": 0.9902 + }, + { + "start": 20677.49, + "end": 20678.29, + "probability": 0.2464 + }, + { + "start": 20678.43, + "end": 20679.71, + "probability": 0.617 + }, + { + "start": 20679.83, + "end": 20683.11, + "probability": 0.735 + }, + { + "start": 20683.97, + "end": 20687.13, + "probability": 0.9642 + }, + { + "start": 20688.03, + "end": 20688.93, + "probability": 0.8949 + }, + { + "start": 20689.91, + "end": 20695.29, + "probability": 0.8521 + }, + { + "start": 20696.07, + "end": 20699.13, + "probability": 0.9527 + }, + { + "start": 20700.27, + "end": 20704.27, + "probability": 0.9846 + }, + { + "start": 20705.21, + "end": 20708.29, + "probability": 0.9974 + }, + { + "start": 20709.27, + "end": 20711.45, + "probability": 0.9993 + }, + { + "start": 20713.39, + "end": 20715.77, + "probability": 0.9031 + }, + { + "start": 20715.77, + "end": 20721.33, + "probability": 0.9902 + }, + { + "start": 20721.91, + "end": 20723.27, + "probability": 0.854 + }, + { + "start": 20723.63, + "end": 20723.91, + "probability": 0.8723 + }, + { + "start": 20725.05, + "end": 20725.67, + "probability": 0.7836 + }, + { + "start": 20726.47, + "end": 20727.99, + "probability": 0.8579 + }, + { + "start": 20729.51, + "end": 20731.99, + "probability": 0.0292 + }, + { + "start": 20732.41, + "end": 20732.55, + "probability": 0.0354 + }, + { + "start": 20732.55, + "end": 20732.93, + "probability": 0.2434 + }, + { + "start": 20733.13, + "end": 20733.91, + "probability": 0.0634 + }, + { + "start": 20733.93, + "end": 20734.31, + "probability": 0.3352 + }, + { + "start": 20734.55, + "end": 20738.49, + "probability": 0.2754 + }, + { + "start": 20739.01, + "end": 20740.15, + "probability": 0.5279 + }, + { + "start": 20740.25, + "end": 20741.51, + "probability": 0.5073 + }, + { + "start": 20741.65, + "end": 20743.85, + "probability": 0.0648 + }, + { + "start": 20743.85, + "end": 20744.37, + "probability": 0.2651 + }, + { + "start": 20744.61, + "end": 20745.11, + "probability": 0.2636 + }, + { + "start": 20745.93, + "end": 20746.85, + "probability": 0.5472 + }, + { + "start": 20747.41, + "end": 20747.69, + "probability": 0.2383 + }, + { + "start": 20747.99, + "end": 20748.77, + "probability": 0.7827 + }, + { + "start": 20759.33, + "end": 20759.99, + "probability": 0.6725 + }, + { + "start": 20760.07, + "end": 20760.87, + "probability": 0.7333 + }, + { + "start": 20760.99, + "end": 20761.59, + "probability": 0.873 + }, + { + "start": 20761.75, + "end": 20762.93, + "probability": 0.71 + }, + { + "start": 20764.59, + "end": 20766.87, + "probability": 0.9956 + }, + { + "start": 20767.15, + "end": 20772.95, + "probability": 0.9902 + }, + { + "start": 20773.85, + "end": 20775.93, + "probability": 0.8657 + }, + { + "start": 20776.47, + "end": 20778.59, + "probability": 0.9825 + }, + { + "start": 20779.65, + "end": 20781.85, + "probability": 0.1619 + }, + { + "start": 20782.41, + "end": 20784.31, + "probability": 0.8032 + }, + { + "start": 20785.01, + "end": 20785.03, + "probability": 0.1563 + }, + { + "start": 20785.03, + "end": 20792.83, + "probability": 0.9765 + }, + { + "start": 20793.41, + "end": 20794.37, + "probability": 0.8508 + }, + { + "start": 20794.55, + "end": 20794.95, + "probability": 0.6681 + }, + { + "start": 20795.33, + "end": 20800.77, + "probability": 0.9889 + }, + { + "start": 20800.83, + "end": 20802.83, + "probability": 0.9109 + }, + { + "start": 20802.95, + "end": 20803.81, + "probability": 0.9885 + }, + { + "start": 20804.49, + "end": 20804.83, + "probability": 0.8949 + }, + { + "start": 20805.57, + "end": 20813.29, + "probability": 0.9793 + }, + { + "start": 20813.29, + "end": 20817.15, + "probability": 0.8988 + }, + { + "start": 20817.59, + "end": 20819.91, + "probability": 0.7299 + }, + { + "start": 20820.75, + "end": 20822.04, + "probability": 0.9733 + }, + { + "start": 20822.95, + "end": 20824.83, + "probability": 0.8212 + }, + { + "start": 20825.43, + "end": 20830.05, + "probability": 0.9927 + }, + { + "start": 20831.29, + "end": 20832.51, + "probability": 0.6519 + }, + { + "start": 20833.11, + "end": 20834.85, + "probability": 0.9888 + }, + { + "start": 20835.39, + "end": 20838.75, + "probability": 0.9591 + }, + { + "start": 20839.43, + "end": 20840.93, + "probability": 0.9099 + }, + { + "start": 20841.57, + "end": 20842.27, + "probability": 0.917 + }, + { + "start": 20844.59, + "end": 20847.34, + "probability": 0.9078 + }, + { + "start": 20848.09, + "end": 20849.97, + "probability": 0.2836 + }, + { + "start": 20850.67, + "end": 20854.31, + "probability": 0.5667 + }, + { + "start": 20854.57, + "end": 20856.85, + "probability": 0.4026 + }, + { + "start": 20856.85, + "end": 20858.29, + "probability": 0.7073 + }, + { + "start": 20858.39, + "end": 20861.13, + "probability": 0.8972 + }, + { + "start": 20863.77, + "end": 20870.57, + "probability": 0.983 + }, + { + "start": 20871.99, + "end": 20874.67, + "probability": 0.7306 + }, + { + "start": 20874.85, + "end": 20882.55, + "probability": 0.9985 + }, + { + "start": 20883.05, + "end": 20886.95, + "probability": 0.9971 + }, + { + "start": 20887.39, + "end": 20887.99, + "probability": 0.5128 + }, + { + "start": 20888.81, + "end": 20890.67, + "probability": 0.9838 + }, + { + "start": 20891.41, + "end": 20895.99, + "probability": 0.9873 + }, + { + "start": 20896.19, + "end": 20897.15, + "probability": 0.7289 + }, + { + "start": 20897.57, + "end": 20898.65, + "probability": 0.8423 + }, + { + "start": 20899.53, + "end": 20901.01, + "probability": 0.9949 + }, + { + "start": 20901.57, + "end": 20902.91, + "probability": 0.9612 + }, + { + "start": 20903.83, + "end": 20905.87, + "probability": 0.9924 + }, + { + "start": 20906.61, + "end": 20909.33, + "probability": 0.9935 + }, + { + "start": 20909.87, + "end": 20916.31, + "probability": 0.998 + }, + { + "start": 20917.05, + "end": 20918.11, + "probability": 0.8643 + }, + { + "start": 20919.01, + "end": 20924.11, + "probability": 0.8228 + }, + { + "start": 20924.15, + "end": 20928.53, + "probability": 0.9769 + }, + { + "start": 20929.15, + "end": 20931.07, + "probability": 0.8763 + }, + { + "start": 20931.59, + "end": 20933.13, + "probability": 0.975 + }, + { + "start": 20933.91, + "end": 20936.03, + "probability": 0.9135 + }, + { + "start": 20936.55, + "end": 20937.59, + "probability": 0.9871 + }, + { + "start": 20938.61, + "end": 20940.81, + "probability": 0.9636 + }, + { + "start": 20940.89, + "end": 20947.45, + "probability": 0.9863 + }, + { + "start": 20948.49, + "end": 20950.05, + "probability": 0.9994 + }, + { + "start": 20950.63, + "end": 20953.25, + "probability": 0.9452 + }, + { + "start": 20954.43, + "end": 20957.73, + "probability": 0.9941 + }, + { + "start": 20958.47, + "end": 20960.39, + "probability": 0.9939 + }, + { + "start": 20961.27, + "end": 20962.67, + "probability": 0.834 + }, + { + "start": 20963.19, + "end": 20964.97, + "probability": 0.8926 + }, + { + "start": 20965.51, + "end": 20967.89, + "probability": 0.939 + }, + { + "start": 20968.51, + "end": 20969.51, + "probability": 0.9984 + }, + { + "start": 20972.33, + "end": 20978.5, + "probability": 0.9925 + }, + { + "start": 20979.11, + "end": 20979.63, + "probability": 0.5077 + }, + { + "start": 20979.71, + "end": 20981.91, + "probability": 0.9802 + }, + { + "start": 20983.51, + "end": 20985.25, + "probability": 0.9952 + }, + { + "start": 20985.65, + "end": 20987.37, + "probability": 0.7142 + }, + { + "start": 20987.51, + "end": 20988.55, + "probability": 0.4909 + }, + { + "start": 20988.65, + "end": 20991.61, + "probability": 0.9757 + }, + { + "start": 20992.07, + "end": 20995.63, + "probability": 0.9956 + }, + { + "start": 20995.63, + "end": 20998.59, + "probability": 0.998 + }, + { + "start": 20998.95, + "end": 21000.09, + "probability": 0.8975 + }, + { + "start": 21000.51, + "end": 21000.93, + "probability": 0.6808 + }, + { + "start": 21001.07, + "end": 21001.65, + "probability": 0.615 + }, + { + "start": 21003.19, + "end": 21006.79, + "probability": 0.9644 + }, + { + "start": 21007.17, + "end": 21008.55, + "probability": 0.6082 + }, + { + "start": 21027.63, + "end": 21028.25, + "probability": 0.3763 + }, + { + "start": 21028.25, + "end": 21028.55, + "probability": 0.9482 + }, + { + "start": 21036.49, + "end": 21038.27, + "probability": 0.7139 + }, + { + "start": 21039.87, + "end": 21042.61, + "probability": 0.8894 + }, + { + "start": 21043.31, + "end": 21045.23, + "probability": 0.871 + }, + { + "start": 21046.03, + "end": 21047.99, + "probability": 0.9154 + }, + { + "start": 21049.53, + "end": 21055.63, + "probability": 0.9725 + }, + { + "start": 21056.47, + "end": 21057.25, + "probability": 0.5147 + }, + { + "start": 21058.69, + "end": 21063.87, + "probability": 0.7046 + }, + { + "start": 21066.69, + "end": 21068.23, + "probability": 0.8917 + }, + { + "start": 21069.13, + "end": 21070.79, + "probability": 0.6778 + }, + { + "start": 21072.87, + "end": 21077.13, + "probability": 0.9453 + }, + { + "start": 21077.21, + "end": 21079.39, + "probability": 0.751 + }, + { + "start": 21079.99, + "end": 21080.53, + "probability": 0.8876 + }, + { + "start": 21081.47, + "end": 21081.75, + "probability": 0.7502 + }, + { + "start": 21085.57, + "end": 21087.27, + "probability": 0.7791 + }, + { + "start": 21088.05, + "end": 21088.71, + "probability": 0.5302 + }, + { + "start": 21090.65, + "end": 21092.59, + "probability": 0.7756 + }, + { + "start": 21092.67, + "end": 21095.21, + "probability": 0.9708 + }, + { + "start": 21095.41, + "end": 21096.23, + "probability": 0.8865 + }, + { + "start": 21097.29, + "end": 21098.05, + "probability": 0.4683 + }, + { + "start": 21098.07, + "end": 21098.73, + "probability": 0.7897 + }, + { + "start": 21098.93, + "end": 21100.7, + "probability": 0.8242 + }, + { + "start": 21100.89, + "end": 21104.41, + "probability": 0.9037 + }, + { + "start": 21105.15, + "end": 21109.41, + "probability": 0.9647 + }, + { + "start": 21109.57, + "end": 21110.13, + "probability": 0.3408 + }, + { + "start": 21111.33, + "end": 21112.09, + "probability": 0.4844 + }, + { + "start": 21112.15, + "end": 21113.61, + "probability": 0.7253 + }, + { + "start": 21114.13, + "end": 21118.99, + "probability": 0.9783 + }, + { + "start": 21119.77, + "end": 21123.17, + "probability": 0.8669 + }, + { + "start": 21124.03, + "end": 21124.37, + "probability": 0.2714 + }, + { + "start": 21124.45, + "end": 21124.89, + "probability": 0.8455 + }, + { + "start": 21124.95, + "end": 21125.59, + "probability": 0.7533 + }, + { + "start": 21125.73, + "end": 21127.53, + "probability": 0.851 + }, + { + "start": 21131.69, + "end": 21133.19, + "probability": 0.091 + }, + { + "start": 21133.19, + "end": 21134.96, + "probability": 0.0822 + }, + { + "start": 21137.35, + "end": 21144.05, + "probability": 0.0601 + }, + { + "start": 21145.71, + "end": 21147.11, + "probability": 0.0616 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.0, + "end": 21271.0, + "probability": 0.0 + }, + { + "start": 21271.26, + "end": 21273.46, + "probability": 0.837 + }, + { + "start": 21274.18, + "end": 21274.82, + "probability": 0.4619 + }, + { + "start": 21275.72, + "end": 21279.16, + "probability": 0.997 + }, + { + "start": 21279.6, + "end": 21284.4, + "probability": 0.9888 + }, + { + "start": 21285.36, + "end": 21291.5, + "probability": 0.8776 + }, + { + "start": 21292.48, + "end": 21292.6, + "probability": 0.4588 + }, + { + "start": 21292.68, + "end": 21295.6, + "probability": 0.7922 + }, + { + "start": 21295.74, + "end": 21296.48, + "probability": 0.8884 + }, + { + "start": 21296.6, + "end": 21297.36, + "probability": 0.6852 + }, + { + "start": 21297.72, + "end": 21298.28, + "probability": 0.913 + }, + { + "start": 21298.34, + "end": 21300.02, + "probability": 0.9842 + }, + { + "start": 21300.82, + "end": 21303.82, + "probability": 0.9707 + }, + { + "start": 21304.1, + "end": 21306.14, + "probability": 0.9648 + }, + { + "start": 21306.54, + "end": 21309.5, + "probability": 0.5957 + }, + { + "start": 21309.58, + "end": 21309.88, + "probability": 0.2926 + }, + { + "start": 21309.9, + "end": 21311.32, + "probability": 0.9116 + }, + { + "start": 21311.42, + "end": 21312.24, + "probability": 0.5194 + }, + { + "start": 21313.1, + "end": 21313.24, + "probability": 0.4083 + }, + { + "start": 21314.52, + "end": 21315.34, + "probability": 0.2031 + }, + { + "start": 21315.92, + "end": 21320.72, + "probability": 0.9387 + }, + { + "start": 21321.94, + "end": 21324.38, + "probability": 0.9524 + }, + { + "start": 21325.36, + "end": 21327.38, + "probability": 0.9463 + }, + { + "start": 21328.98, + "end": 21333.72, + "probability": 0.8605 + }, + { + "start": 21334.48, + "end": 21340.2, + "probability": 0.992 + }, + { + "start": 21340.56, + "end": 21341.02, + "probability": 0.7923 + }, + { + "start": 21341.48, + "end": 21342.34, + "probability": 0.9736 + }, + { + "start": 21343.68, + "end": 21345.64, + "probability": 0.9517 + }, + { + "start": 21346.5, + "end": 21347.86, + "probability": 0.9795 + }, + { + "start": 21348.04, + "end": 21351.18, + "probability": 0.5475 + }, + { + "start": 21351.84, + "end": 21360.0, + "probability": 0.9297 + }, + { + "start": 21360.48, + "end": 21362.06, + "probability": 0.8992 + }, + { + "start": 21362.46, + "end": 21364.0, + "probability": 0.9838 + }, + { + "start": 21364.36, + "end": 21367.74, + "probability": 0.8625 + }, + { + "start": 21368.26, + "end": 21371.56, + "probability": 0.8192 + }, + { + "start": 21372.04, + "end": 21376.72, + "probability": 0.8789 + }, + { + "start": 21376.72, + "end": 21380.18, + "probability": 0.7711 + }, + { + "start": 21380.82, + "end": 21383.72, + "probability": 0.9951 + }, + { + "start": 21384.7, + "end": 21385.92, + "probability": 0.9604 + }, + { + "start": 21386.66, + "end": 21391.32, + "probability": 0.9919 + }, + { + "start": 21391.62, + "end": 21395.56, + "probability": 0.997 + }, + { + "start": 21396.24, + "end": 21397.42, + "probability": 0.8831 + }, + { + "start": 21398.42, + "end": 21399.04, + "probability": 0.8084 + }, + { + "start": 21399.16, + "end": 21399.92, + "probability": 0.7094 + }, + { + "start": 21400.32, + "end": 21401.74, + "probability": 0.7813 + }, + { + "start": 21401.84, + "end": 21402.96, + "probability": 0.8218 + }, + { + "start": 21403.28, + "end": 21404.38, + "probability": 0.9898 + }, + { + "start": 21404.5, + "end": 21407.08, + "probability": 0.9943 + }, + { + "start": 21407.16, + "end": 21408.54, + "probability": 0.6784 + }, + { + "start": 21408.94, + "end": 21410.98, + "probability": 0.6062 + }, + { + "start": 21411.06, + "end": 21415.1, + "probability": 0.9423 + }, + { + "start": 21415.1, + "end": 21416.6, + "probability": 0.7386 + }, + { + "start": 21417.2, + "end": 21417.2, + "probability": 0.4936 + }, + { + "start": 21417.5, + "end": 21418.64, + "probability": 0.9395 + }, + { + "start": 21419.9, + "end": 21421.18, + "probability": 0.9412 + }, + { + "start": 21440.86, + "end": 21441.02, + "probability": 0.1025 + }, + { + "start": 21441.02, + "end": 21443.12, + "probability": 0.5481 + }, + { + "start": 21443.92, + "end": 21447.18, + "probability": 0.8278 + }, + { + "start": 21449.42, + "end": 21450.24, + "probability": 0.5569 + }, + { + "start": 21450.5, + "end": 21454.26, + "probability": 0.8627 + }, + { + "start": 21454.26, + "end": 21455.78, + "probability": 0.8036 + }, + { + "start": 21456.62, + "end": 21458.58, + "probability": 0.9835 + }, + { + "start": 21458.8, + "end": 21460.34, + "probability": 0.7486 + }, + { + "start": 21460.86, + "end": 21461.92, + "probability": 0.959 + }, + { + "start": 21463.14, + "end": 21464.26, + "probability": 0.5871 + }, + { + "start": 21465.26, + "end": 21468.72, + "probability": 0.9766 + }, + { + "start": 21469.48, + "end": 21470.22, + "probability": 0.52 + }, + { + "start": 21470.96, + "end": 21475.9, + "probability": 0.8813 + }, + { + "start": 21475.9, + "end": 21482.38, + "probability": 0.9587 + }, + { + "start": 21482.58, + "end": 21484.48, + "probability": 0.7202 + }, + { + "start": 21484.5, + "end": 21490.32, + "probability": 0.7339 + }, + { + "start": 21491.06, + "end": 21495.78, + "probability": 0.8631 + }, + { + "start": 21495.8, + "end": 21498.52, + "probability": 0.6977 + }, + { + "start": 21498.66, + "end": 21500.4, + "probability": 0.8451 + }, + { + "start": 21500.96, + "end": 21502.58, + "probability": 0.8743 + }, + { + "start": 21503.44, + "end": 21506.48, + "probability": 0.9761 + }, + { + "start": 21507.14, + "end": 21508.28, + "probability": 0.7374 + }, + { + "start": 21508.92, + "end": 21511.84, + "probability": 0.4126 + }, + { + "start": 21511.84, + "end": 21515.76, + "probability": 0.9494 + }, + { + "start": 21516.26, + "end": 21522.24, + "probability": 0.8412 + }, + { + "start": 21522.96, + "end": 21523.22, + "probability": 0.8546 + }, + { + "start": 21523.84, + "end": 21524.18, + "probability": 0.4992 + }, + { + "start": 21526.48, + "end": 21528.5, + "probability": 0.8602 + }, + { + "start": 21529.52, + "end": 21530.3, + "probability": 0.7841 + }, + { + "start": 21532.28, + "end": 21533.52, + "probability": 0.9416 + }, + { + "start": 21534.94, + "end": 21535.74, + "probability": 0.6864 + }, + { + "start": 21536.86, + "end": 21537.68, + "probability": 0.6542 + }, + { + "start": 21538.48, + "end": 21539.3, + "probability": 0.7797 + }, + { + "start": 21540.44, + "end": 21540.64, + "probability": 0.7753 + }, + { + "start": 21567.66, + "end": 21568.7, + "probability": 0.7624 + }, + { + "start": 21570.72, + "end": 21575.4, + "probability": 0.9984 + }, + { + "start": 21576.9, + "end": 21579.92, + "probability": 0.9678 + }, + { + "start": 21580.6, + "end": 21584.06, + "probability": 0.9937 + }, + { + "start": 21584.76, + "end": 21587.66, + "probability": 0.9914 + }, + { + "start": 21589.36, + "end": 21590.06, + "probability": 0.9551 + }, + { + "start": 21591.2, + "end": 21591.92, + "probability": 0.7935 + }, + { + "start": 21593.0, + "end": 21595.62, + "probability": 0.9075 + }, + { + "start": 21596.44, + "end": 21600.36, + "probability": 0.9416 + }, + { + "start": 21601.62, + "end": 21604.62, + "probability": 0.9053 + }, + { + "start": 21605.38, + "end": 21607.06, + "probability": 0.9779 + }, + { + "start": 21607.74, + "end": 21608.32, + "probability": 0.4994 + }, + { + "start": 21608.92, + "end": 21609.58, + "probability": 0.9585 + }, + { + "start": 21610.42, + "end": 21614.38, + "probability": 0.9836 + }, + { + "start": 21615.36, + "end": 21617.26, + "probability": 0.9692 + }, + { + "start": 21618.76, + "end": 21626.08, + "probability": 0.9768 + }, + { + "start": 21627.08, + "end": 21628.72, + "probability": 0.7278 + }, + { + "start": 21629.3, + "end": 21631.0, + "probability": 0.9729 + }, + { + "start": 21631.8, + "end": 21635.0, + "probability": 0.8239 + }, + { + "start": 21636.32, + "end": 21641.1, + "probability": 0.9836 + }, + { + "start": 21644.26, + "end": 21644.36, + "probability": 0.3007 + }, + { + "start": 21645.88, + "end": 21647.36, + "probability": 0.9236 + }, + { + "start": 21648.36, + "end": 21651.42, + "probability": 0.9232 + }, + { + "start": 21651.96, + "end": 21654.14, + "probability": 0.9669 + }, + { + "start": 21655.24, + "end": 21657.54, + "probability": 0.938 + }, + { + "start": 21659.5, + "end": 21665.8, + "probability": 0.9939 + }, + { + "start": 21665.82, + "end": 21669.84, + "probability": 0.9784 + }, + { + "start": 21671.06, + "end": 21675.02, + "probability": 0.9953 + }, + { + "start": 21675.88, + "end": 21677.16, + "probability": 0.837 + }, + { + "start": 21678.1, + "end": 21682.9, + "probability": 0.834 + }, + { + "start": 21684.34, + "end": 21686.72, + "probability": 0.5325 + }, + { + "start": 21687.56, + "end": 21692.4, + "probability": 0.9814 + }, + { + "start": 21693.4, + "end": 21695.42, + "probability": 0.6665 + }, + { + "start": 21696.1, + "end": 21696.8, + "probability": 0.7054 + }, + { + "start": 21696.92, + "end": 21697.78, + "probability": 0.9491 + }, + { + "start": 21697.96, + "end": 21700.84, + "probability": 0.9824 + }, + { + "start": 21701.84, + "end": 21706.1, + "probability": 0.9956 + }, + { + "start": 21706.1, + "end": 21709.74, + "probability": 0.999 + }, + { + "start": 21710.32, + "end": 21719.78, + "probability": 0.9943 + }, + { + "start": 21720.48, + "end": 21727.47, + "probability": 0.9846 + }, + { + "start": 21727.7, + "end": 21728.52, + "probability": 0.8584 + }, + { + "start": 21728.88, + "end": 21730.17, + "probability": 0.8738 + }, + { + "start": 21730.8, + "end": 21733.6, + "probability": 0.8889 + }, + { + "start": 21734.6, + "end": 21738.78, + "probability": 0.9889 + }, + { + "start": 21738.78, + "end": 21743.32, + "probability": 0.9978 + }, + { + "start": 21744.99, + "end": 21748.78, + "probability": 0.6672 + }, + { + "start": 21749.38, + "end": 21753.14, + "probability": 0.7784 + }, + { + "start": 21753.86, + "end": 21756.9, + "probability": 0.8849 + }, + { + "start": 21756.94, + "end": 21761.16, + "probability": 0.9905 + }, + { + "start": 21761.96, + "end": 21763.06, + "probability": 0.8257 + }, + { + "start": 21763.2, + "end": 21766.4, + "probability": 0.7479 + }, + { + "start": 21766.52, + "end": 21769.96, + "probability": 0.9854 + }, + { + "start": 21769.96, + "end": 21774.74, + "probability": 0.9939 + }, + { + "start": 21775.14, + "end": 21775.8, + "probability": 0.6949 + }, + { + "start": 21776.06, + "end": 21776.64, + "probability": 0.931 + }, + { + "start": 21777.1, + "end": 21779.56, + "probability": 0.9742 + }, + { + "start": 21779.92, + "end": 21781.9, + "probability": 0.8354 + }, + { + "start": 21782.28, + "end": 21782.72, + "probability": 0.7468 + }, + { + "start": 21782.76, + "end": 21783.34, + "probability": 0.9269 + }, + { + "start": 21783.52, + "end": 21786.98, + "probability": 0.9611 + }, + { + "start": 21787.5, + "end": 21792.56, + "probability": 0.9732 + }, + { + "start": 21794.68, + "end": 21795.32, + "probability": 0.4941 + }, + { + "start": 21796.02, + "end": 21797.36, + "probability": 0.6054 + }, + { + "start": 21805.04, + "end": 21805.14, + "probability": 0.6183 + }, + { + "start": 21812.8, + "end": 21813.84, + "probability": 0.4956 + }, + { + "start": 21815.08, + "end": 21817.52, + "probability": 0.9039 + }, + { + "start": 21818.7, + "end": 21821.06, + "probability": 0.9731 + }, + { + "start": 21821.2, + "end": 21825.36, + "probability": 0.9734 + }, + { + "start": 21826.1, + "end": 21827.96, + "probability": 0.8171 + }, + { + "start": 21829.04, + "end": 21832.0, + "probability": 0.9845 + }, + { + "start": 21833.46, + "end": 21834.21, + "probability": 0.832 + }, + { + "start": 21835.54, + "end": 21838.72, + "probability": 0.9941 + }, + { + "start": 21839.2, + "end": 21840.58, + "probability": 0.989 + }, + { + "start": 21841.38, + "end": 21844.6, + "probability": 0.968 + }, + { + "start": 21844.64, + "end": 21845.64, + "probability": 0.8128 + }, + { + "start": 21845.8, + "end": 21849.44, + "probability": 0.9618 + }, + { + "start": 21850.7, + "end": 21853.04, + "probability": 0.873 + }, + { + "start": 21853.64, + "end": 21857.74, + "probability": 0.9833 + }, + { + "start": 21858.54, + "end": 21861.2, + "probability": 0.8665 + }, + { + "start": 21861.88, + "end": 21868.32, + "probability": 0.9854 + }, + { + "start": 21868.38, + "end": 21871.88, + "probability": 0.7884 + }, + { + "start": 21872.82, + "end": 21876.44, + "probability": 0.9966 + }, + { + "start": 21876.98, + "end": 21878.02, + "probability": 0.5358 + }, + { + "start": 21878.74, + "end": 21882.92, + "probability": 0.9951 + }, + { + "start": 21882.92, + "end": 21888.22, + "probability": 0.9877 + }, + { + "start": 21889.28, + "end": 21891.6, + "probability": 0.974 + }, + { + "start": 21891.72, + "end": 21894.06, + "probability": 0.9601 + }, + { + "start": 21894.64, + "end": 21896.2, + "probability": 0.9883 + }, + { + "start": 21896.76, + "end": 21898.14, + "probability": 0.9136 + }, + { + "start": 21898.14, + "end": 21899.86, + "probability": 0.977 + }, + { + "start": 21900.46, + "end": 21901.86, + "probability": 0.9159 + }, + { + "start": 21903.5, + "end": 21905.12, + "probability": 0.9032 + }, + { + "start": 21905.94, + "end": 21912.7, + "probability": 0.9847 + }, + { + "start": 21913.32, + "end": 21914.02, + "probability": 0.9404 + }, + { + "start": 21915.02, + "end": 21919.48, + "probability": 0.9816 + }, + { + "start": 21920.2, + "end": 21921.02, + "probability": 0.7962 + }, + { + "start": 21921.8, + "end": 21926.62, + "probability": 0.9841 + }, + { + "start": 21926.62, + "end": 21928.66, + "probability": 0.925 + }, + { + "start": 21928.96, + "end": 21931.44, + "probability": 0.6161 + }, + { + "start": 21932.1, + "end": 21932.58, + "probability": 0.1007 + }, + { + "start": 21932.58, + "end": 21935.66, + "probability": 0.9641 + }, + { + "start": 21936.08, + "end": 21937.24, + "probability": 0.7322 + }, + { + "start": 21937.74, + "end": 21941.44, + "probability": 0.9907 + }, + { + "start": 21941.94, + "end": 21943.9, + "probability": 0.9445 + }, + { + "start": 21944.42, + "end": 21950.38, + "probability": 0.9222 + }, + { + "start": 21950.8, + "end": 21953.85, + "probability": 0.9946 + }, + { + "start": 21954.56, + "end": 21959.44, + "probability": 0.9686 + }, + { + "start": 21959.96, + "end": 21963.22, + "probability": 0.8502 + }, + { + "start": 21963.56, + "end": 21967.36, + "probability": 0.98 + }, + { + "start": 21967.74, + "end": 21969.78, + "probability": 0.9922 + }, + { + "start": 21970.16, + "end": 21971.62, + "probability": 0.9985 + }, + { + "start": 21972.1, + "end": 21975.54, + "probability": 0.904 + }, + { + "start": 21976.42, + "end": 21978.68, + "probability": 0.998 + }, + { + "start": 21979.2, + "end": 21980.78, + "probability": 0.999 + }, + { + "start": 21981.42, + "end": 21981.85, + "probability": 0.7995 + }, + { + "start": 21982.74, + "end": 21986.09, + "probability": 0.9951 + }, + { + "start": 21986.88, + "end": 21991.5, + "probability": 0.9763 + }, + { + "start": 21992.0, + "end": 21994.02, + "probability": 0.9918 + }, + { + "start": 21994.54, + "end": 21996.64, + "probability": 0.9955 + }, + { + "start": 21997.12, + "end": 21998.44, + "probability": 0.97 + }, + { + "start": 21999.1, + "end": 22002.96, + "probability": 0.7119 + }, + { + "start": 22002.96, + "end": 22006.84, + "probability": 0.8868 + }, + { + "start": 22007.12, + "end": 22009.7, + "probability": 0.9961 + }, + { + "start": 22009.72, + "end": 22010.1, + "probability": 0.9197 + }, + { + "start": 22011.38, + "end": 22012.42, + "probability": 0.52 + }, + { + "start": 22016.12, + "end": 22016.92, + "probability": 0.5934 + }, + { + "start": 22018.86, + "end": 22019.86, + "probability": 0.7585 + }, + { + "start": 22036.24, + "end": 22037.6, + "probability": 0.7076 + }, + { + "start": 22038.36, + "end": 22039.98, + "probability": 0.8176 + }, + { + "start": 22042.22, + "end": 22046.66, + "probability": 0.9983 + }, + { + "start": 22047.8, + "end": 22052.46, + "probability": 0.9985 + }, + { + "start": 22053.5, + "end": 22055.4, + "probability": 0.8414 + }, + { + "start": 22055.64, + "end": 22059.58, + "probability": 0.9989 + }, + { + "start": 22060.04, + "end": 22060.32, + "probability": 0.5242 + }, + { + "start": 22060.88, + "end": 22061.76, + "probability": 0.9216 + }, + { + "start": 22063.22, + "end": 22065.54, + "probability": 0.864 + }, + { + "start": 22066.96, + "end": 22069.28, + "probability": 0.9905 + }, + { + "start": 22070.6, + "end": 22072.62, + "probability": 0.8743 + }, + { + "start": 22072.8, + "end": 22073.7, + "probability": 0.7808 + }, + { + "start": 22073.86, + "end": 22077.42, + "probability": 0.964 + }, + { + "start": 22077.62, + "end": 22081.28, + "probability": 0.9984 + }, + { + "start": 22081.28, + "end": 22084.26, + "probability": 0.9577 + }, + { + "start": 22084.54, + "end": 22085.28, + "probability": 0.7927 + }, + { + "start": 22086.14, + "end": 22087.92, + "probability": 0.8538 + }, + { + "start": 22089.02, + "end": 22094.82, + "probability": 0.9729 + }, + { + "start": 22096.06, + "end": 22099.54, + "probability": 0.9792 + }, + { + "start": 22100.96, + "end": 22102.44, + "probability": 0.7919 + }, + { + "start": 22103.28, + "end": 22106.86, + "probability": 0.9696 + }, + { + "start": 22107.84, + "end": 22112.22, + "probability": 0.9738 + }, + { + "start": 22112.46, + "end": 22113.88, + "probability": 0.959 + }, + { + "start": 22114.0, + "end": 22115.06, + "probability": 0.6785 + }, + { + "start": 22115.22, + "end": 22115.9, + "probability": 0.5711 + }, + { + "start": 22116.76, + "end": 22117.98, + "probability": 0.5752 + }, + { + "start": 22118.1, + "end": 22125.28, + "probability": 0.9915 + }, + { + "start": 22125.4, + "end": 22126.0, + "probability": 0.8376 + }, + { + "start": 22129.38, + "end": 22131.84, + "probability": 0.8079 + }, + { + "start": 22132.62, + "end": 22136.36, + "probability": 0.9101 + }, + { + "start": 22136.92, + "end": 22140.58, + "probability": 0.9917 + }, + { + "start": 22140.64, + "end": 22143.24, + "probability": 0.9668 + }, + { + "start": 22143.8, + "end": 22144.82, + "probability": 0.7986 + }, + { + "start": 22145.34, + "end": 22149.34, + "probability": 0.8321 + }, + { + "start": 22149.98, + "end": 22156.38, + "probability": 0.9941 + }, + { + "start": 22156.9, + "end": 22159.42, + "probability": 0.9865 + }, + { + "start": 22160.3, + "end": 22160.94, + "probability": 0.8184 + }, + { + "start": 22162.48, + "end": 22164.6, + "probability": 0.8312 + }, + { + "start": 22167.02, + "end": 22167.78, + "probability": 0.6731 + }, + { + "start": 22168.86, + "end": 22169.64, + "probability": 0.9029 + }, + { + "start": 22174.46, + "end": 22178.6, + "probability": 0.9623 + }, + { + "start": 22181.04, + "end": 22181.88, + "probability": 0.2351 + }, + { + "start": 22182.68, + "end": 22183.76, + "probability": 0.2178 + }, + { + "start": 22203.96, + "end": 22205.36, + "probability": 0.9023 + }, + { + "start": 22206.56, + "end": 22209.3, + "probability": 0.9691 + }, + { + "start": 22209.46, + "end": 22210.34, + "probability": 0.9829 + }, + { + "start": 22210.48, + "end": 22213.46, + "probability": 0.9799 + }, + { + "start": 22214.02, + "end": 22214.84, + "probability": 0.9831 + }, + { + "start": 22215.76, + "end": 22217.76, + "probability": 0.9872 + }, + { + "start": 22218.54, + "end": 22222.82, + "probability": 0.8749 + }, + { + "start": 22223.54, + "end": 22224.18, + "probability": 0.946 + }, + { + "start": 22224.38, + "end": 22226.43, + "probability": 0.9448 + }, + { + "start": 22227.52, + "end": 22229.36, + "probability": 0.7221 + }, + { + "start": 22230.52, + "end": 22232.02, + "probability": 0.9423 + }, + { + "start": 22233.6, + "end": 22235.81, + "probability": 0.9709 + }, + { + "start": 22237.58, + "end": 22239.52, + "probability": 0.9759 + }, + { + "start": 22240.82, + "end": 22245.94, + "probability": 0.9116 + }, + { + "start": 22246.46, + "end": 22248.28, + "probability": 0.7473 + }, + { + "start": 22249.3, + "end": 22253.88, + "probability": 0.9862 + }, + { + "start": 22255.48, + "end": 22257.24, + "probability": 0.7291 + }, + { + "start": 22259.78, + "end": 22263.26, + "probability": 0.9985 + }, + { + "start": 22263.94, + "end": 22264.59, + "probability": 0.7641 + }, + { + "start": 22265.1, + "end": 22268.78, + "probability": 0.9483 + }, + { + "start": 22269.6, + "end": 22271.7, + "probability": 0.8434 + }, + { + "start": 22272.24, + "end": 22274.19, + "probability": 0.9802 + }, + { + "start": 22275.24, + "end": 22280.04, + "probability": 0.9905 + }, + { + "start": 22280.04, + "end": 22284.74, + "probability": 0.9896 + }, + { + "start": 22284.86, + "end": 22288.18, + "probability": 0.9351 + }, + { + "start": 22288.3, + "end": 22289.32, + "probability": 0.5217 + }, + { + "start": 22290.76, + "end": 22292.7, + "probability": 0.8833 + }, + { + "start": 22293.64, + "end": 22298.28, + "probability": 0.9927 + }, + { + "start": 22298.76, + "end": 22302.3, + "probability": 0.9323 + }, + { + "start": 22303.06, + "end": 22305.76, + "probability": 0.9958 + }, + { + "start": 22306.56, + "end": 22310.22, + "probability": 0.9899 + }, + { + "start": 22310.78, + "end": 22311.24, + "probability": 0.4385 + }, + { + "start": 22312.22, + "end": 22315.34, + "probability": 0.9766 + }, + { + "start": 22315.88, + "end": 22319.3, + "probability": 0.9963 + }, + { + "start": 22319.96, + "end": 22323.64, + "probability": 0.9703 + }, + { + "start": 22324.22, + "end": 22328.44, + "probability": 0.9653 + }, + { + "start": 22328.96, + "end": 22330.48, + "probability": 0.8821 + }, + { + "start": 22331.16, + "end": 22333.06, + "probability": 0.9873 + }, + { + "start": 22333.98, + "end": 22336.46, + "probability": 0.9961 + }, + { + "start": 22337.26, + "end": 22340.08, + "probability": 0.7688 + }, + { + "start": 22340.38, + "end": 22341.68, + "probability": 0.4829 + }, + { + "start": 22342.04, + "end": 22345.22, + "probability": 0.9378 + }, + { + "start": 22345.22, + "end": 22349.06, + "probability": 0.9985 + }, + { + "start": 22349.64, + "end": 22353.08, + "probability": 0.9956 + }, + { + "start": 22353.1, + "end": 22356.11, + "probability": 0.9934 + }, + { + "start": 22356.28, + "end": 22357.26, + "probability": 0.6855 + }, + { + "start": 22357.92, + "end": 22362.38, + "probability": 0.993 + }, + { + "start": 22363.28, + "end": 22364.34, + "probability": 0.8201 + }, + { + "start": 22364.92, + "end": 22365.86, + "probability": 0.8056 + }, + { + "start": 22366.2, + "end": 22368.66, + "probability": 0.9635 + }, + { + "start": 22368.74, + "end": 22368.88, + "probability": 0.0028 + }, + { + "start": 22368.88, + "end": 22368.88, + "probability": 0.0204 + }, + { + "start": 22368.88, + "end": 22371.28, + "probability": 0.8379 + }, + { + "start": 22373.37, + "end": 22373.44, + "probability": 0.1329 + }, + { + "start": 22373.44, + "end": 22374.76, + "probability": 0.4247 + }, + { + "start": 22374.8, + "end": 22375.84, + "probability": 0.66 + }, + { + "start": 22375.84, + "end": 22376.4, + "probability": 0.3892 + }, + { + "start": 22376.44, + "end": 22380.92, + "probability": 0.9793 + }, + { + "start": 22381.1, + "end": 22383.54, + "probability": 0.9769 + }, + { + "start": 22383.66, + "end": 22384.15, + "probability": 0.8252 + }, + { + "start": 22384.9, + "end": 22387.4, + "probability": 0.9402 + }, + { + "start": 22387.54, + "end": 22387.56, + "probability": 0.2394 + }, + { + "start": 22387.56, + "end": 22387.56, + "probability": 0.0707 + }, + { + "start": 22387.56, + "end": 22388.16, + "probability": 0.3533 + }, + { + "start": 22388.32, + "end": 22389.98, + "probability": 0.5286 + }, + { + "start": 22390.1, + "end": 22391.15, + "probability": 0.2714 + }, + { + "start": 22391.4, + "end": 22395.58, + "probability": 0.9808 + }, + { + "start": 22395.66, + "end": 22396.58, + "probability": 0.2551 + }, + { + "start": 22396.64, + "end": 22400.02, + "probability": 0.9683 + }, + { + "start": 22401.14, + "end": 22405.72, + "probability": 0.9948 + }, + { + "start": 22405.72, + "end": 22410.48, + "probability": 0.9816 + }, + { + "start": 22410.56, + "end": 22410.56, + "probability": 0.0819 + }, + { + "start": 22410.66, + "end": 22410.94, + "probability": 0.4385 + }, + { + "start": 22410.96, + "end": 22413.92, + "probability": 0.9282 + }, + { + "start": 22414.28, + "end": 22418.56, + "probability": 0.9863 + }, + { + "start": 22419.22, + "end": 22419.44, + "probability": 0.8148 + }, + { + "start": 22419.74, + "end": 22421.16, + "probability": 0.9038 + }, + { + "start": 22421.2, + "end": 22422.26, + "probability": 0.8826 + }, + { + "start": 22423.1, + "end": 22423.48, + "probability": 0.4224 + }, + { + "start": 22424.08, + "end": 22425.38, + "probability": 0.5234 + }, + { + "start": 22425.4, + "end": 22426.4, + "probability": 0.8234 + }, + { + "start": 22426.46, + "end": 22427.64, + "probability": 0.8666 + }, + { + "start": 22428.58, + "end": 22429.04, + "probability": 0.9656 + }, + { + "start": 22429.46, + "end": 22431.36, + "probability": 0.8345 + }, + { + "start": 22431.4, + "end": 22431.92, + "probability": 0.9917 + }, + { + "start": 22432.34, + "end": 22434.04, + "probability": 0.8114 + }, + { + "start": 22434.76, + "end": 22435.32, + "probability": 0.4328 + }, + { + "start": 22435.5, + "end": 22437.2, + "probability": 0.5256 + }, + { + "start": 22437.26, + "end": 22439.48, + "probability": 0.7861 + }, + { + "start": 22439.74, + "end": 22440.94, + "probability": 0.7891 + }, + { + "start": 22454.26, + "end": 22455.9, + "probability": 0.1145 + }, + { + "start": 22456.0, + "end": 22458.58, + "probability": 0.6698 + }, + { + "start": 22459.6, + "end": 22466.12, + "probability": 0.9567 + }, + { + "start": 22466.78, + "end": 22467.28, + "probability": 0.8799 + }, + { + "start": 22468.28, + "end": 22468.98, + "probability": 0.5553 + }, + { + "start": 22469.4, + "end": 22471.58, + "probability": 0.8617 + }, + { + "start": 22471.58, + "end": 22474.56, + "probability": 0.8947 + }, + { + "start": 22476.56, + "end": 22480.06, + "probability": 0.8773 + }, + { + "start": 22481.02, + "end": 22482.58, + "probability": 0.5962 + }, + { + "start": 22483.68, + "end": 22485.78, + "probability": 0.6553 + }, + { + "start": 22486.3, + "end": 22487.4, + "probability": 0.9746 + }, + { + "start": 22487.44, + "end": 22488.5, + "probability": 0.6921 + }, + { + "start": 22488.86, + "end": 22489.98, + "probability": 0.6506 + }, + { + "start": 22490.48, + "end": 22496.16, + "probability": 0.9508 + }, + { + "start": 22496.18, + "end": 22500.32, + "probability": 0.8686 + }, + { + "start": 22500.86, + "end": 22503.12, + "probability": 0.7389 + }, + { + "start": 22503.92, + "end": 22504.0, + "probability": 0.0189 + }, + { + "start": 22504.0, + "end": 22506.98, + "probability": 0.916 + }, + { + "start": 22508.2, + "end": 22512.08, + "probability": 0.7311 + }, + { + "start": 22513.48, + "end": 22517.2, + "probability": 0.6593 + }, + { + "start": 22517.8, + "end": 22519.94, + "probability": 0.8154 + }, + { + "start": 22520.82, + "end": 22521.68, + "probability": 0.9587 + }, + { + "start": 22522.57, + "end": 22526.68, + "probability": 0.7496 + }, + { + "start": 22527.08, + "end": 22527.38, + "probability": 0.9014 + }, + { + "start": 22527.52, + "end": 22528.77, + "probability": 0.9541 + }, + { + "start": 22529.8, + "end": 22532.74, + "probability": 0.9943 + }, + { + "start": 22533.68, + "end": 22537.34, + "probability": 0.978 + }, + { + "start": 22537.44, + "end": 22539.68, + "probability": 0.8233 + }, + { + "start": 22542.3, + "end": 22542.38, + "probability": 0.0169 + }, + { + "start": 22544.3, + "end": 22544.42, + "probability": 0.0307 + }, + { + "start": 22544.42, + "end": 22544.42, + "probability": 0.1938 + }, + { + "start": 22544.42, + "end": 22546.16, + "probability": 0.968 + }, + { + "start": 22546.5, + "end": 22549.42, + "probability": 0.8865 + }, + { + "start": 22549.62, + "end": 22549.88, + "probability": 0.229 + }, + { + "start": 22549.9, + "end": 22552.0, + "probability": 0.8618 + }, + { + "start": 22552.08, + "end": 22554.76, + "probability": 0.0471 + }, + { + "start": 22555.76, + "end": 22556.66, + "probability": 0.0834 + }, + { + "start": 22556.66, + "end": 22557.22, + "probability": 0.3303 + }, + { + "start": 22557.24, + "end": 22559.44, + "probability": 0.9824 + }, + { + "start": 22559.62, + "end": 22563.38, + "probability": 0.9746 + }, + { + "start": 22563.66, + "end": 22566.53, + "probability": 0.6934 + }, + { + "start": 22566.8, + "end": 22570.02, + "probability": 0.9106 + }, + { + "start": 22570.68, + "end": 22571.4, + "probability": 0.5058 + }, + { + "start": 22571.4, + "end": 22573.56, + "probability": 0.4927 + }, + { + "start": 22573.56, + "end": 22575.12, + "probability": 0.747 + }, + { + "start": 22575.12, + "end": 22577.02, + "probability": 0.6759 + }, + { + "start": 22577.2, + "end": 22577.86, + "probability": 0.4715 + }, + { + "start": 22577.92, + "end": 22579.32, + "probability": 0.9956 + }, + { + "start": 22580.06, + "end": 22580.06, + "probability": 0.5353 + }, + { + "start": 22580.06, + "end": 22581.38, + "probability": 0.996 + }, + { + "start": 22581.38, + "end": 22581.45, + "probability": 0.5003 + }, + { + "start": 22582.08, + "end": 22583.32, + "probability": 0.5822 + }, + { + "start": 22583.4, + "end": 22584.74, + "probability": 0.7355 + }, + { + "start": 22584.77, + "end": 22587.6, + "probability": 0.6919 + }, + { + "start": 22587.64, + "end": 22588.34, + "probability": 0.1555 + }, + { + "start": 22588.36, + "end": 22589.6, + "probability": 0.8267 + }, + { + "start": 22589.82, + "end": 22591.44, + "probability": 0.9302 + }, + { + "start": 22592.02, + "end": 22592.84, + "probability": 0.9568 + }, + { + "start": 22593.14, + "end": 22593.64, + "probability": 0.4272 + }, + { + "start": 22595.39, + "end": 22595.9, + "probability": 0.0989 + }, + { + "start": 22595.9, + "end": 22596.98, + "probability": 0.957 + }, + { + "start": 22597.68, + "end": 22598.21, + "probability": 0.3179 + }, + { + "start": 22599.1, + "end": 22600.0, + "probability": 0.0418 + }, + { + "start": 22600.08, + "end": 22601.5, + "probability": 0.9541 + }, + { + "start": 22601.52, + "end": 22603.46, + "probability": 0.6974 + }, + { + "start": 22605.78, + "end": 22606.68, + "probability": 0.9385 + }, + { + "start": 22607.38, + "end": 22612.24, + "probability": 0.7623 + }, + { + "start": 22612.3, + "end": 22615.54, + "probability": 0.8049 + }, + { + "start": 22615.66, + "end": 22617.28, + "probability": 0.8461 + }, + { + "start": 22617.42, + "end": 22618.54, + "probability": 0.8032 + }, + { + "start": 22618.9, + "end": 22619.52, + "probability": 0.7701 + }, + { + "start": 22619.88, + "end": 22620.8, + "probability": 0.8322 + }, + { + "start": 22620.84, + "end": 22623.1, + "probability": 0.9895 + }, + { + "start": 22623.66, + "end": 22624.86, + "probability": 0.7992 + }, + { + "start": 22625.36, + "end": 22631.54, + "probability": 0.9894 + }, + { + "start": 22631.88, + "end": 22636.38, + "probability": 0.9446 + }, + { + "start": 22636.78, + "end": 22639.42, + "probability": 0.7198 + }, + { + "start": 22640.14, + "end": 22641.84, + "probability": 0.8638 + }, + { + "start": 22642.28, + "end": 22643.14, + "probability": 0.1671 + }, + { + "start": 22643.14, + "end": 22643.16, + "probability": 0.4049 + }, + { + "start": 22643.22, + "end": 22645.62, + "probability": 0.3278 + }, + { + "start": 22646.48, + "end": 22646.92, + "probability": 0.7701 + }, + { + "start": 22647.38, + "end": 22647.82, + "probability": 0.4047 + }, + { + "start": 22647.9, + "end": 22647.98, + "probability": 0.1662 + }, + { + "start": 22647.98, + "end": 22648.8, + "probability": 0.8542 + }, + { + "start": 22649.52, + "end": 22651.9, + "probability": 0.7854 + }, + { + "start": 22653.38, + "end": 22654.22, + "probability": 0.6976 + }, + { + "start": 22654.98, + "end": 22657.93, + "probability": 0.9939 + }, + { + "start": 22658.62, + "end": 22659.3, + "probability": 0.5954 + }, + { + "start": 22659.9, + "end": 22663.02, + "probability": 0.9609 + }, + { + "start": 22663.16, + "end": 22666.14, + "probability": 0.9585 + }, + { + "start": 22666.58, + "end": 22669.3, + "probability": 0.7364 + }, + { + "start": 22669.32, + "end": 22669.32, + "probability": 0.3239 + }, + { + "start": 22669.36, + "end": 22670.72, + "probability": 0.8826 + }, + { + "start": 22672.28, + "end": 22675.62, + "probability": 0.7548 + }, + { + "start": 22675.74, + "end": 22676.0, + "probability": 0.6135 + }, + { + "start": 22676.58, + "end": 22677.1, + "probability": 0.7358 + }, + { + "start": 22677.72, + "end": 22679.52, + "probability": 0.9893 + }, + { + "start": 22680.04, + "end": 22680.24, + "probability": 0.4753 + }, + { + "start": 22681.53, + "end": 22685.7, + "probability": 0.3691 + }, + { + "start": 22685.78, + "end": 22686.74, + "probability": 0.5707 + }, + { + "start": 22687.26, + "end": 22688.92, + "probability": 0.8253 + }, + { + "start": 22689.74, + "end": 22691.7, + "probability": 0.6517 + }, + { + "start": 22691.74, + "end": 22692.92, + "probability": 0.9283 + }, + { + "start": 22694.76, + "end": 22695.78, + "probability": 0.426 + }, + { + "start": 22699.08, + "end": 22700.98, + "probability": 0.7781 + }, + { + "start": 22701.5, + "end": 22702.2, + "probability": 0.501 + }, + { + "start": 22704.7, + "end": 22706.06, + "probability": 0.9215 + }, + { + "start": 22707.58, + "end": 22710.42, + "probability": 0.5271 + }, + { + "start": 22710.94, + "end": 22712.34, + "probability": 0.8296 + }, + { + "start": 22712.84, + "end": 22713.46, + "probability": 0.6007 + }, + { + "start": 22713.68, + "end": 22714.82, + "probability": 0.9543 + }, + { + "start": 22715.34, + "end": 22717.42, + "probability": 0.7131 + }, + { + "start": 22718.38, + "end": 22718.84, + "probability": 0.799 + }, + { + "start": 22721.0, + "end": 22723.78, + "probability": 0.8508 + }, + { + "start": 22726.02, + "end": 22728.4, + "probability": 0.5079 + }, + { + "start": 22728.48, + "end": 22729.4, + "probability": 0.9566 + }, + { + "start": 22730.14, + "end": 22730.64, + "probability": 0.6643 + }, + { + "start": 22734.88, + "end": 22737.96, + "probability": 0.8592 + }, + { + "start": 22738.2, + "end": 22741.04, + "probability": 0.3917 + }, + { + "start": 22741.8, + "end": 22744.04, + "probability": 0.7132 + }, + { + "start": 22744.92, + "end": 22746.9, + "probability": 0.1275 + }, + { + "start": 22749.98, + "end": 22751.76, + "probability": 0.0594 + }, + { + "start": 22751.76, + "end": 22753.98, + "probability": 0.0098 + }, + { + "start": 22789.42, + "end": 22791.78, + "probability": 0.242 + }, + { + "start": 22792.46, + "end": 22794.88, + "probability": 0.787 + }, + { + "start": 22795.0, + "end": 22797.12, + "probability": 0.95 + }, + { + "start": 22808.52, + "end": 22810.1, + "probability": 0.711 + }, + { + "start": 22811.4, + "end": 22812.52, + "probability": 0.7628 + }, + { + "start": 22815.18, + "end": 22817.02, + "probability": 0.8733 + }, + { + "start": 22817.32, + "end": 22818.98, + "probability": 0.9355 + }, + { + "start": 22819.92, + "end": 22822.42, + "probability": 0.9764 + }, + { + "start": 22823.26, + "end": 22824.44, + "probability": 0.9297 + }, + { + "start": 22825.72, + "end": 22826.44, + "probability": 0.7592 + }, + { + "start": 22827.0, + "end": 22829.5, + "probability": 0.6697 + }, + { + "start": 22831.02, + "end": 22833.32, + "probability": 0.952 + }, + { + "start": 22834.74, + "end": 22835.56, + "probability": 0.7771 + }, + { + "start": 22837.6, + "end": 22838.84, + "probability": 0.9968 + }, + { + "start": 22840.32, + "end": 22842.6, + "probability": 0.9712 + }, + { + "start": 22844.36, + "end": 22846.86, + "probability": 0.9196 + }, + { + "start": 22848.28, + "end": 22856.8, + "probability": 0.9788 + }, + { + "start": 22856.84, + "end": 22857.82, + "probability": 0.838 + }, + { + "start": 22858.5, + "end": 22860.16, + "probability": 0.9657 + }, + { + "start": 22861.28, + "end": 22865.0, + "probability": 0.9849 + }, + { + "start": 22866.6, + "end": 22870.32, + "probability": 0.9988 + }, + { + "start": 22871.3, + "end": 22874.4, + "probability": 0.9071 + }, + { + "start": 22875.34, + "end": 22879.94, + "probability": 0.9992 + }, + { + "start": 22881.06, + "end": 22883.74, + "probability": 0.9571 + }, + { + "start": 22885.14, + "end": 22885.56, + "probability": 0.7037 + }, + { + "start": 22885.68, + "end": 22890.98, + "probability": 0.827 + }, + { + "start": 22892.64, + "end": 22898.56, + "probability": 0.6759 + }, + { + "start": 22899.6, + "end": 22901.7, + "probability": 0.984 + }, + { + "start": 22902.26, + "end": 22903.02, + "probability": 0.6572 + }, + { + "start": 22904.76, + "end": 22907.5, + "probability": 0.9966 + }, + { + "start": 22908.8, + "end": 22910.88, + "probability": 0.8669 + }, + { + "start": 22911.44, + "end": 22912.76, + "probability": 0.7575 + }, + { + "start": 22913.6, + "end": 22914.64, + "probability": 0.9875 + }, + { + "start": 22915.2, + "end": 22916.5, + "probability": 0.8615 + }, + { + "start": 22917.28, + "end": 22918.36, + "probability": 0.9365 + }, + { + "start": 22919.46, + "end": 22920.68, + "probability": 0.985 + }, + { + "start": 22921.9, + "end": 22924.22, + "probability": 0.9852 + }, + { + "start": 22926.12, + "end": 22929.34, + "probability": 0.9931 + }, + { + "start": 22930.06, + "end": 22931.58, + "probability": 0.9695 + }, + { + "start": 22932.32, + "end": 22933.14, + "probability": 0.9775 + }, + { + "start": 22934.94, + "end": 22935.66, + "probability": 0.9829 + }, + { + "start": 22938.12, + "end": 22940.34, + "probability": 0.9449 + }, + { + "start": 22941.32, + "end": 22944.34, + "probability": 0.9961 + }, + { + "start": 22945.4, + "end": 22949.08, + "probability": 0.9863 + }, + { + "start": 22949.52, + "end": 22950.46, + "probability": 0.8159 + }, + { + "start": 22951.4, + "end": 22954.8, + "probability": 0.9971 + }, + { + "start": 22956.08, + "end": 22960.02, + "probability": 0.9616 + }, + { + "start": 22961.58, + "end": 22963.48, + "probability": 0.9736 + }, + { + "start": 22964.34, + "end": 22967.58, + "probability": 0.9946 + }, + { + "start": 22968.34, + "end": 22972.02, + "probability": 0.9984 + }, + { + "start": 22973.22, + "end": 22974.52, + "probability": 0.998 + }, + { + "start": 22976.24, + "end": 22981.56, + "probability": 0.9872 + }, + { + "start": 22982.14, + "end": 22983.22, + "probability": 0.9011 + }, + { + "start": 22984.1, + "end": 22986.34, + "probability": 0.9219 + }, + { + "start": 22987.44, + "end": 22988.04, + "probability": 0.6575 + }, + { + "start": 22989.02, + "end": 22989.7, + "probability": 0.9399 + }, + { + "start": 22990.64, + "end": 22995.66, + "probability": 0.995 + }, + { + "start": 22996.76, + "end": 22997.82, + "probability": 0.8833 + }, + { + "start": 22998.66, + "end": 23000.68, + "probability": 0.9974 + }, + { + "start": 23001.86, + "end": 23003.16, + "probability": 0.9646 + }, + { + "start": 23003.34, + "end": 23004.44, + "probability": 0.5618 + }, + { + "start": 23005.46, + "end": 23006.42, + "probability": 0.8946 + }, + { + "start": 23007.28, + "end": 23008.74, + "probability": 0.9312 + }, + { + "start": 23009.98, + "end": 23012.18, + "probability": 0.9922 + }, + { + "start": 23012.7, + "end": 23016.1, + "probability": 0.9737 + }, + { + "start": 23017.44, + "end": 23019.58, + "probability": 0.9874 + }, + { + "start": 23020.64, + "end": 23022.12, + "probability": 0.8739 + }, + { + "start": 23022.2, + "end": 23024.03, + "probability": 0.9862 + }, + { + "start": 23025.22, + "end": 23026.72, + "probability": 0.9954 + }, + { + "start": 23027.62, + "end": 23029.24, + "probability": 0.7275 + }, + { + "start": 23029.94, + "end": 23032.36, + "probability": 0.8559 + }, + { + "start": 23032.94, + "end": 23033.62, + "probability": 0.4232 + }, + { + "start": 23033.86, + "end": 23039.12, + "probability": 0.894 + }, + { + "start": 23039.34, + "end": 23039.4, + "probability": 0.5624 + }, + { + "start": 23039.58, + "end": 23040.24, + "probability": 0.9003 + }, + { + "start": 23041.42, + "end": 23044.1, + "probability": 0.1048 + }, + { + "start": 23044.1, + "end": 23045.37, + "probability": 0.2792 + }, + { + "start": 23045.98, + "end": 23047.06, + "probability": 0.4476 + }, + { + "start": 23047.12, + "end": 23047.72, + "probability": 0.1337 + }, + { + "start": 23048.48, + "end": 23049.84, + "probability": 0.7692 + }, + { + "start": 23050.39, + "end": 23053.0, + "probability": 0.8408 + }, + { + "start": 23055.58, + "end": 23055.58, + "probability": 0.5228 + }, + { + "start": 23055.58, + "end": 23055.58, + "probability": 0.7528 + }, + { + "start": 23055.58, + "end": 23056.35, + "probability": 0.0537 + }, + { + "start": 23056.88, + "end": 23056.88, + "probability": 0.3868 + }, + { + "start": 23056.88, + "end": 23059.44, + "probability": 0.9413 + }, + { + "start": 23059.76, + "end": 23062.54, + "probability": 0.9095 + }, + { + "start": 23063.06, + "end": 23065.02, + "probability": 0.8616 + }, + { + "start": 23065.14, + "end": 23065.7, + "probability": 0.6317 + }, + { + "start": 23066.48, + "end": 23067.18, + "probability": 0.7186 + }, + { + "start": 23067.9, + "end": 23068.82, + "probability": 0.5689 + }, + { + "start": 23070.38, + "end": 23071.88, + "probability": 0.9596 + }, + { + "start": 23072.7, + "end": 23073.02, + "probability": 0.3403 + }, + { + "start": 23073.86, + "end": 23075.78, + "probability": 0.5295 + }, + { + "start": 23076.14, + "end": 23078.18, + "probability": 0.9785 + }, + { + "start": 23078.24, + "end": 23079.3, + "probability": 0.5917 + }, + { + "start": 23080.18, + "end": 23082.74, + "probability": 0.9319 + }, + { + "start": 23082.9, + "end": 23087.3, + "probability": 0.9528 + }, + { + "start": 23090.96, + "end": 23091.14, + "probability": 0.7107 + }, + { + "start": 23091.9, + "end": 23096.08, + "probability": 0.6954 + }, + { + "start": 23097.98, + "end": 23103.46, + "probability": 0.9727 + }, + { + "start": 23103.46, + "end": 23111.46, + "probability": 0.9866 + }, + { + "start": 23112.38, + "end": 23112.8, + "probability": 0.9362 + }, + { + "start": 23113.44, + "end": 23113.92, + "probability": 0.9855 + }, + { + "start": 23114.52, + "end": 23116.22, + "probability": 0.9959 + }, + { + "start": 23117.04, + "end": 23121.04, + "probability": 0.9967 + }, + { + "start": 23122.32, + "end": 23127.06, + "probability": 0.9963 + }, + { + "start": 23128.7, + "end": 23133.6, + "probability": 0.9927 + }, + { + "start": 23134.48, + "end": 23138.54, + "probability": 0.9941 + }, + { + "start": 23139.1, + "end": 23140.96, + "probability": 0.9946 + }, + { + "start": 23141.56, + "end": 23144.14, + "probability": 0.9307 + }, + { + "start": 23144.46, + "end": 23147.88, + "probability": 0.9963 + }, + { + "start": 23151.0, + "end": 23154.38, + "probability": 0.9225 + }, + { + "start": 23155.44, + "end": 23157.77, + "probability": 0.7017 + }, + { + "start": 23159.98, + "end": 23161.05, + "probability": 0.1596 + }, + { + "start": 23161.96, + "end": 23166.84, + "probability": 0.9427 + }, + { + "start": 23166.84, + "end": 23171.8, + "probability": 0.9945 + }, + { + "start": 23172.58, + "end": 23173.2, + "probability": 0.7616 + }, + { + "start": 23173.74, + "end": 23176.46, + "probability": 0.9982 + }, + { + "start": 23176.46, + "end": 23180.26, + "probability": 0.9983 + }, + { + "start": 23181.34, + "end": 23181.5, + "probability": 0.2656 + }, + { + "start": 23181.7, + "end": 23187.52, + "probability": 0.9771 + }, + { + "start": 23187.52, + "end": 23191.24, + "probability": 0.999 + }, + { + "start": 23191.94, + "end": 23195.6, + "probability": 0.9126 + }, + { + "start": 23196.28, + "end": 23199.38, + "probability": 0.8385 + }, + { + "start": 23199.96, + "end": 23204.62, + "probability": 0.915 + }, + { + "start": 23205.12, + "end": 23206.78, + "probability": 0.8003 + }, + { + "start": 23206.98, + "end": 23211.64, + "probability": 0.932 + }, + { + "start": 23212.48, + "end": 23214.38, + "probability": 0.9792 + }, + { + "start": 23215.02, + "end": 23217.22, + "probability": 0.8502 + }, + { + "start": 23217.66, + "end": 23220.64, + "probability": 0.9868 + }, + { + "start": 23221.18, + "end": 23223.5, + "probability": 0.9829 + }, + { + "start": 23224.38, + "end": 23226.76, + "probability": 0.9991 + }, + { + "start": 23227.0, + "end": 23230.72, + "probability": 0.7826 + }, + { + "start": 23232.06, + "end": 23235.06, + "probability": 0.9675 + }, + { + "start": 23235.26, + "end": 23235.8, + "probability": 0.6986 + }, + { + "start": 23236.62, + "end": 23238.32, + "probability": 0.9612 + }, + { + "start": 23238.34, + "end": 23239.84, + "probability": 0.8825 + }, + { + "start": 23240.5, + "end": 23243.18, + "probability": 0.9349 + }, + { + "start": 23243.18, + "end": 23246.14, + "probability": 0.6957 + }, + { + "start": 23246.7, + "end": 23248.92, + "probability": 0.7624 + }, + { + "start": 23249.38, + "end": 23250.06, + "probability": 0.7004 + }, + { + "start": 23250.14, + "end": 23250.76, + "probability": 0.7942 + }, + { + "start": 23250.92, + "end": 23251.82, + "probability": 0.8952 + }, + { + "start": 23279.2, + "end": 23280.45, + "probability": 0.5657 + }, + { + "start": 23280.56, + "end": 23283.78, + "probability": 0.6331 + }, + { + "start": 23284.32, + "end": 23285.56, + "probability": 0.4547 + }, + { + "start": 23285.78, + "end": 23289.42, + "probability": 0.7442 + }, + { + "start": 23289.54, + "end": 23291.64, + "probability": 0.8964 + }, + { + "start": 23293.22, + "end": 23295.12, + "probability": 0.0182 + }, + { + "start": 23295.66, + "end": 23299.94, + "probability": 0.0402 + }, + { + "start": 23299.96, + "end": 23302.6, + "probability": 0.0606 + }, + { + "start": 23304.52, + "end": 23311.16, + "probability": 0.0142 + }, + { + "start": 23321.14, + "end": 23322.52, + "probability": 0.0652 + }, + { + "start": 23334.36, + "end": 23336.86, + "probability": 0.2464 + }, + { + "start": 23337.48, + "end": 23345.76, + "probability": 0.1832 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23362.0, + "end": 23362.0, + "probability": 0.0 + }, + { + "start": 23371.34, + "end": 23378.76, + "probability": 0.0732 + }, + { + "start": 23378.82, + "end": 23380.38, + "probability": 0.2214 + }, + { + "start": 23380.52, + "end": 23381.6, + "probability": 0.084 + }, + { + "start": 23381.6, + "end": 23383.43, + "probability": 0.0724 + }, + { + "start": 23384.64, + "end": 23384.94, + "probability": 0.5523 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.0, + "end": 23483.0, + "probability": 0.0 + }, + { + "start": 23483.22, + "end": 23483.22, + "probability": 0.1077 + }, + { + "start": 23483.22, + "end": 23483.78, + "probability": 0.1635 + }, + { + "start": 23483.8, + "end": 23484.64, + "probability": 0.7067 + }, + { + "start": 23485.06, + "end": 23486.82, + "probability": 0.6956 + }, + { + "start": 23487.62, + "end": 23490.16, + "probability": 0.7585 + }, + { + "start": 23490.24, + "end": 23491.58, + "probability": 0.8871 + }, + { + "start": 23491.98, + "end": 23496.68, + "probability": 0.9385 + }, + { + "start": 23497.22, + "end": 23499.4, + "probability": 0.7508 + }, + { + "start": 23501.76, + "end": 23504.54, + "probability": 0.9513 + }, + { + "start": 23504.54, + "end": 23507.12, + "probability": 0.9928 + }, + { + "start": 23507.6, + "end": 23510.8, + "probability": 0.9758 + }, + { + "start": 23510.8, + "end": 23513.08, + "probability": 0.9878 + }, + { + "start": 23513.86, + "end": 23517.42, + "probability": 0.9478 + }, + { + "start": 23518.02, + "end": 23523.74, + "probability": 0.9888 + }, + { + "start": 23523.74, + "end": 23528.16, + "probability": 0.9952 + }, + { + "start": 23529.72, + "end": 23530.78, + "probability": 0.6724 + }, + { + "start": 23531.38, + "end": 23536.68, + "probability": 0.9943 + }, + { + "start": 23536.68, + "end": 23542.28, + "probability": 0.9911 + }, + { + "start": 23542.76, + "end": 23547.66, + "probability": 0.8462 + }, + { + "start": 23547.66, + "end": 23551.9, + "probability": 0.996 + }, + { + "start": 23552.64, + "end": 23553.62, + "probability": 0.8698 + }, + { + "start": 23554.14, + "end": 23556.06, + "probability": 0.9807 + }, + { + "start": 23556.58, + "end": 23559.38, + "probability": 0.838 + }, + { + "start": 23559.96, + "end": 23563.52, + "probability": 0.9587 + }, + { + "start": 23564.06, + "end": 23566.16, + "probability": 0.9382 + }, + { + "start": 23566.9, + "end": 23569.46, + "probability": 0.9709 + }, + { + "start": 23570.4, + "end": 23575.22, + "probability": 0.9796 + }, + { + "start": 23575.9, + "end": 23576.96, + "probability": 0.7871 + }, + { + "start": 23577.1, + "end": 23583.1, + "probability": 0.8929 + }, + { + "start": 23583.1, + "end": 23586.58, + "probability": 0.9863 + }, + { + "start": 23587.08, + "end": 23587.52, + "probability": 0.4212 + }, + { + "start": 23587.6, + "end": 23589.48, + "probability": 0.9503 + }, + { + "start": 23590.32, + "end": 23591.6, + "probability": 0.9684 + }, + { + "start": 23595.66, + "end": 23596.8, + "probability": 0.9075 + }, + { + "start": 23598.22, + "end": 23600.92, + "probability": 0.6013 + }, + { + "start": 23601.54, + "end": 23602.48, + "probability": 0.5277 + }, + { + "start": 23603.04, + "end": 23603.42, + "probability": 0.3937 + }, + { + "start": 23603.84, + "end": 23609.34, + "probability": 0.9349 + }, + { + "start": 23609.74, + "end": 23611.68, + "probability": 0.9937 + }, + { + "start": 23612.3, + "end": 23614.38, + "probability": 0.8406 + }, + { + "start": 23614.9, + "end": 23617.96, + "probability": 0.9631 + }, + { + "start": 23618.48, + "end": 23621.86, + "probability": 0.7496 + }, + { + "start": 23622.2, + "end": 23625.36, + "probability": 0.9831 + }, + { + "start": 23625.4, + "end": 23629.18, + "probability": 0.5536 + }, + { + "start": 23629.92, + "end": 23631.2, + "probability": 0.5556 + }, + { + "start": 23633.74, + "end": 23634.22, + "probability": 0.275 + }, + { + "start": 23634.88, + "end": 23637.5, + "probability": 0.6493 + }, + { + "start": 23637.58, + "end": 23639.18, + "probability": 0.0522 + }, + { + "start": 23639.3, + "end": 23643.8, + "probability": 0.9005 + }, + { + "start": 23643.84, + "end": 23646.02, + "probability": 0.9238 + }, + { + "start": 23646.46, + "end": 23647.46, + "probability": 0.8673 + }, + { + "start": 23648.0, + "end": 23652.22, + "probability": 0.0966 + }, + { + "start": 23652.94, + "end": 23654.36, + "probability": 0.3291 + }, + { + "start": 23654.82, + "end": 23655.28, + "probability": 0.3916 + }, + { + "start": 23655.32, + "end": 23656.54, + "probability": 0.9438 + }, + { + "start": 23657.04, + "end": 23662.1, + "probability": 0.9919 + }, + { + "start": 23662.1, + "end": 23668.32, + "probability": 0.9983 + }, + { + "start": 23671.04, + "end": 23674.36, + "probability": 0.9066 + }, + { + "start": 23674.58, + "end": 23678.3, + "probability": 0.9976 + }, + { + "start": 23678.54, + "end": 23683.86, + "probability": 0.9992 + }, + { + "start": 23683.86, + "end": 23688.72, + "probability": 0.9673 + }, + { + "start": 23689.42, + "end": 23693.84, + "probability": 0.8851 + }, + { + "start": 23693.84, + "end": 23697.56, + "probability": 0.9983 + }, + { + "start": 23698.18, + "end": 23700.96, + "probability": 0.4281 + }, + { + "start": 23700.98, + "end": 23702.56, + "probability": 0.9228 + }, + { + "start": 23703.34, + "end": 23704.26, + "probability": 0.2388 + }, + { + "start": 23704.72, + "end": 23708.2, + "probability": 0.9922 + }, + { + "start": 23708.2, + "end": 23711.76, + "probability": 0.8188 + }, + { + "start": 23712.42, + "end": 23715.0, + "probability": 0.9542 + }, + { + "start": 23715.12, + "end": 23715.36, + "probability": 0.7275 + }, + { + "start": 23716.3, + "end": 23716.82, + "probability": 0.2389 + }, + { + "start": 23716.98, + "end": 23718.02, + "probability": 0.9683 + }, + { + "start": 23718.02, + "end": 23719.36, + "probability": 0.6747 + }, + { + "start": 23719.58, + "end": 23720.06, + "probability": 0.7047 + }, + { + "start": 23720.12, + "end": 23722.78, + "probability": 0.7333 + }, + { + "start": 23722.86, + "end": 23723.72, + "probability": 0.624 + }, + { + "start": 23723.8, + "end": 23725.52, + "probability": 0.9752 + }, + { + "start": 23725.66, + "end": 23728.34, + "probability": 0.7695 + }, + { + "start": 23728.74, + "end": 23729.28, + "probability": 0.6748 + }, + { + "start": 23729.44, + "end": 23731.04, + "probability": 0.8303 + }, + { + "start": 23732.0, + "end": 23734.52, + "probability": 0.3224 + }, + { + "start": 23735.44, + "end": 23737.82, + "probability": 0.6264 + }, + { + "start": 23738.1, + "end": 23739.42, + "probability": 0.9766 + }, + { + "start": 23742.02, + "end": 23743.64, + "probability": 0.826 + }, + { + "start": 23744.34, + "end": 23746.32, + "probability": 0.9565 + }, + { + "start": 23746.94, + "end": 23749.8, + "probability": 0.9951 + }, + { + "start": 23750.6, + "end": 23752.84, + "probability": 0.8246 + }, + { + "start": 23753.72, + "end": 23755.06, + "probability": 0.6682 + }, + { + "start": 23755.58, + "end": 23756.2, + "probability": 0.8571 + }, + { + "start": 23756.74, + "end": 23759.24, + "probability": 0.9727 + }, + { + "start": 23759.98, + "end": 23761.38, + "probability": 0.8886 + }, + { + "start": 23761.48, + "end": 23762.16, + "probability": 0.9718 + }, + { + "start": 23762.26, + "end": 23763.76, + "probability": 0.9317 + }, + { + "start": 23764.72, + "end": 23765.6, + "probability": 0.9857 + }, + { + "start": 23766.56, + "end": 23767.96, + "probability": 0.6347 + }, + { + "start": 23768.12, + "end": 23768.64, + "probability": 0.6228 + }, + { + "start": 23768.9, + "end": 23770.36, + "probability": 0.7654 + }, + { + "start": 23770.86, + "end": 23771.46, + "probability": 0.9624 + }, + { + "start": 23771.92, + "end": 23773.26, + "probability": 0.9911 + }, + { + "start": 23773.8, + "end": 23776.58, + "probability": 0.9766 + }, + { + "start": 23781.0, + "end": 23781.68, + "probability": 0.4459 + }, + { + "start": 23781.68, + "end": 23781.68, + "probability": 0.3601 + }, + { + "start": 23781.68, + "end": 23782.38, + "probability": 0.5694 + }, + { + "start": 23783.42, + "end": 23783.96, + "probability": 0.827 + }, + { + "start": 23784.5, + "end": 23786.88, + "probability": 0.8976 + }, + { + "start": 23789.52, + "end": 23790.96, + "probability": 0.947 + }, + { + "start": 23791.74, + "end": 23792.44, + "probability": 0.9708 + }, + { + "start": 23793.54, + "end": 23794.7, + "probability": 0.6629 + }, + { + "start": 23795.88, + "end": 23796.34, + "probability": 0.5395 + }, + { + "start": 23796.62, + "end": 23797.78, + "probability": 0.9552 + }, + { + "start": 23797.92, + "end": 23798.48, + "probability": 0.8664 + }, + { + "start": 23798.6, + "end": 23799.5, + "probability": 0.9877 + }, + { + "start": 23800.08, + "end": 23801.76, + "probability": 0.9886 + }, + { + "start": 23802.52, + "end": 23804.2, + "probability": 0.9943 + }, + { + "start": 23805.24, + "end": 23806.26, + "probability": 0.9748 + }, + { + "start": 23807.2, + "end": 23808.66, + "probability": 0.7097 + }, + { + "start": 23808.78, + "end": 23809.14, + "probability": 0.4201 + }, + { + "start": 23809.4, + "end": 23810.66, + "probability": 0.7102 + }, + { + "start": 23811.62, + "end": 23812.14, + "probability": 0.9333 + }, + { + "start": 23812.32, + "end": 23814.18, + "probability": 0.8598 + }, + { + "start": 23814.32, + "end": 23814.6, + "probability": 0.944 + }, + { + "start": 23815.06, + "end": 23816.72, + "probability": 0.7263 + }, + { + "start": 23819.48, + "end": 23820.18, + "probability": 0.5761 + }, + { + "start": 23820.34, + "end": 23820.94, + "probability": 0.3898 + }, + { + "start": 23820.94, + "end": 23820.94, + "probability": 0.6775 + }, + { + "start": 23820.94, + "end": 23821.96, + "probability": 0.5052 + }, + { + "start": 23822.12, + "end": 23822.66, + "probability": 0.4113 + }, + { + "start": 23823.14, + "end": 23824.38, + "probability": 0.9216 + }, + { + "start": 23825.0, + "end": 23827.22, + "probability": 0.8158 + }, + { + "start": 23827.8, + "end": 23829.94, + "probability": 0.9229 + }, + { + "start": 23830.76, + "end": 23832.16, + "probability": 0.7215 + }, + { + "start": 23833.12, + "end": 23834.74, + "probability": 0.974 + }, + { + "start": 23835.46, + "end": 23837.6, + "probability": 0.9935 + }, + { + "start": 23838.12, + "end": 23838.78, + "probability": 0.8931 + }, + { + "start": 23839.08, + "end": 23841.28, + "probability": 0.8984 + }, + { + "start": 23845.68, + "end": 23845.78, + "probability": 0.0487 + }, + { + "start": 23860.32, + "end": 23862.32, + "probability": 0.6972 + }, + { + "start": 23862.78, + "end": 23865.1, + "probability": 0.8394 + }, + { + "start": 23865.48, + "end": 23868.52, + "probability": 0.9451 + }, + { + "start": 23870.02, + "end": 23873.86, + "probability": 0.9147 + }, + { + "start": 23876.62, + "end": 23877.92, + "probability": 0.9398 + }, + { + "start": 23879.74, + "end": 23881.48, + "probability": 0.7145 + }, + { + "start": 23883.18, + "end": 23886.72, + "probability": 0.9972 + }, + { + "start": 23888.46, + "end": 23889.7, + "probability": 0.6536 + }, + { + "start": 23890.26, + "end": 23892.28, + "probability": 0.8203 + }, + { + "start": 23893.1, + "end": 23894.02, + "probability": 0.8149 + }, + { + "start": 23894.14, + "end": 23896.12, + "probability": 0.9924 + }, + { + "start": 23896.58, + "end": 23898.07, + "probability": 0.9336 + }, + { + "start": 23898.92, + "end": 23899.96, + "probability": 0.9821 + }, + { + "start": 23902.1, + "end": 23902.74, + "probability": 0.935 + }, + { + "start": 23902.96, + "end": 23904.52, + "probability": 0.7644 + }, + { + "start": 23904.56, + "end": 23905.96, + "probability": 0.4432 + }, + { + "start": 23906.3, + "end": 23907.06, + "probability": 0.9396 + }, + { + "start": 23907.14, + "end": 23908.92, + "probability": 0.6953 + }, + { + "start": 23910.38, + "end": 23911.38, + "probability": 0.9496 + }, + { + "start": 23911.44, + "end": 23912.24, + "probability": 0.9834 + }, + { + "start": 23912.3, + "end": 23914.54, + "probability": 0.9831 + }, + { + "start": 23915.8, + "end": 23919.64, + "probability": 0.9677 + }, + { + "start": 23919.7, + "end": 23919.94, + "probability": 0.9469 + }, + { + "start": 23919.98, + "end": 23921.04, + "probability": 0.9809 + }, + { + "start": 23921.14, + "end": 23923.12, + "probability": 0.9572 + }, + { + "start": 23923.78, + "end": 23924.84, + "probability": 0.999 + }, + { + "start": 23925.38, + "end": 23927.74, + "probability": 0.9992 + }, + { + "start": 23929.12, + "end": 23934.0, + "probability": 0.9362 + }, + { + "start": 23934.7, + "end": 23936.35, + "probability": 0.9923 + }, + { + "start": 23937.34, + "end": 23938.08, + "probability": 0.9296 + }, + { + "start": 23940.38, + "end": 23942.42, + "probability": 0.8866 + }, + { + "start": 23942.96, + "end": 23944.74, + "probability": 0.9766 + }, + { + "start": 23945.7, + "end": 23947.82, + "probability": 0.9973 + }, + { + "start": 23948.96, + "end": 23950.18, + "probability": 0.8749 + }, + { + "start": 23951.6, + "end": 23952.82, + "probability": 0.6851 + }, + { + "start": 23953.92, + "end": 23954.3, + "probability": 0.9335 + }, + { + "start": 23954.7, + "end": 23956.07, + "probability": 0.9862 + }, + { + "start": 23957.1, + "end": 23961.3, + "probability": 0.9878 + }, + { + "start": 23962.0, + "end": 23964.64, + "probability": 0.9916 + }, + { + "start": 23965.24, + "end": 23967.3, + "probability": 0.7739 + }, + { + "start": 23967.92, + "end": 23968.94, + "probability": 0.9906 + }, + { + "start": 23969.46, + "end": 23970.74, + "probability": 0.5261 + }, + { + "start": 23971.28, + "end": 23972.36, + "probability": 0.4289 + }, + { + "start": 23972.78, + "end": 23974.82, + "probability": 0.9603 + }, + { + "start": 23975.28, + "end": 23978.86, + "probability": 0.9928 + }, + { + "start": 23978.86, + "end": 23984.0, + "probability": 0.9911 + }, + { + "start": 23984.66, + "end": 23986.0, + "probability": 0.9997 + }, + { + "start": 23987.68, + "end": 23989.64, + "probability": 0.9447 + }, + { + "start": 23990.08, + "end": 23992.52, + "probability": 0.7769 + }, + { + "start": 23992.84, + "end": 23993.06, + "probability": 0.532 + }, + { + "start": 23993.12, + "end": 23993.74, + "probability": 0.7284 + }, + { + "start": 23994.16, + "end": 23997.28, + "probability": 0.9852 + }, + { + "start": 23997.62, + "end": 23997.98, + "probability": 0.6048 + }, + { + "start": 23998.76, + "end": 24002.76, + "probability": 0.861 + }, + { + "start": 24003.26, + "end": 24006.7, + "probability": 0.9952 + }, + { + "start": 24006.7, + "end": 24009.68, + "probability": 0.9969 + }, + { + "start": 24010.24, + "end": 24014.86, + "probability": 0.9244 + }, + { + "start": 24016.4, + "end": 24018.36, + "probability": 0.9978 + }, + { + "start": 24019.02, + "end": 24020.24, + "probability": 0.9888 + }, + { + "start": 24021.08, + "end": 24022.42, + "probability": 0.9971 + }, + { + "start": 24023.18, + "end": 24024.74, + "probability": 0.9638 + }, + { + "start": 24025.18, + "end": 24026.26, + "probability": 0.9956 + }, + { + "start": 24026.94, + "end": 24029.3, + "probability": 0.9189 + }, + { + "start": 24030.5, + "end": 24031.5, + "probability": 0.5295 + }, + { + "start": 24032.02, + "end": 24037.54, + "probability": 0.879 + }, + { + "start": 24038.18, + "end": 24041.04, + "probability": 0.9816 + }, + { + "start": 24041.66, + "end": 24047.06, + "probability": 0.9409 + }, + { + "start": 24047.6, + "end": 24050.7, + "probability": 0.9844 + }, + { + "start": 24050.88, + "end": 24051.22, + "probability": 0.1941 + }, + { + "start": 24051.24, + "end": 24052.6, + "probability": 0.6858 + }, + { + "start": 24052.94, + "end": 24054.2, + "probability": 0.834 + }, + { + "start": 24054.54, + "end": 24059.32, + "probability": 0.9716 + }, + { + "start": 24059.64, + "end": 24062.5, + "probability": 0.9941 + }, + { + "start": 24063.12, + "end": 24066.3, + "probability": 0.9338 + }, + { + "start": 24066.36, + "end": 24070.88, + "probability": 0.9186 + }, + { + "start": 24071.24, + "end": 24071.7, + "probability": 0.2953 + }, + { + "start": 24071.74, + "end": 24072.3, + "probability": 0.3345 + }, + { + "start": 24072.36, + "end": 24073.06, + "probability": 0.6604 + }, + { + "start": 24073.48, + "end": 24073.92, + "probability": 0.7382 + }, + { + "start": 24073.98, + "end": 24074.52, + "probability": 0.749 + }, + { + "start": 24074.76, + "end": 24077.5, + "probability": 0.9009 + }, + { + "start": 24077.86, + "end": 24081.06, + "probability": 0.8955 + }, + { + "start": 24081.38, + "end": 24082.46, + "probability": 0.9092 + }, + { + "start": 24082.9, + "end": 24084.68, + "probability": 0.9328 + }, + { + "start": 24084.86, + "end": 24088.14, + "probability": 0.8336 + }, + { + "start": 24088.22, + "end": 24088.74, + "probability": 0.9837 + }, + { + "start": 24090.14, + "end": 24093.1, + "probability": 0.7774 + }, + { + "start": 24093.16, + "end": 24094.28, + "probability": 0.8665 + }, + { + "start": 24095.02, + "end": 24100.36, + "probability": 0.6491 + }, + { + "start": 24100.86, + "end": 24102.16, + "probability": 0.5424 + }, + { + "start": 24102.24, + "end": 24103.28, + "probability": 0.9215 + }, + { + "start": 24103.78, + "end": 24104.48, + "probability": 0.7444 + }, + { + "start": 24104.62, + "end": 24105.18, + "probability": 0.5574 + }, + { + "start": 24105.74, + "end": 24106.68, + "probability": 0.4397 + }, + { + "start": 24123.3, + "end": 24131.0, + "probability": 0.3122 + }, + { + "start": 24131.08, + "end": 24138.06, + "probability": 0.3162 + }, + { + "start": 24138.06, + "end": 24138.62, + "probability": 0.0233 + }, + { + "start": 24140.61, + "end": 24145.34, + "probability": 0.1648 + }, + { + "start": 24145.52, + "end": 24145.54, + "probability": 0.0196 + }, + { + "start": 24150.0, + "end": 24150.64, + "probability": 0.0706 + }, + { + "start": 24165.78, + "end": 24169.08, + "probability": 0.1124 + }, + { + "start": 24170.32, + "end": 24173.85, + "probability": 0.041 + }, + { + "start": 24175.68, + "end": 24178.78, + "probability": 0.0143 + }, + { + "start": 24187.54, + "end": 24188.72, + "probability": 0.0596 + }, + { + "start": 24188.72, + "end": 24191.44, + "probability": 0.0567 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.0, + "end": 24220.0, + "probability": 0.0 + }, + { + "start": 24220.34, + "end": 24224.92, + "probability": 0.9875 + }, + { + "start": 24224.92, + "end": 24229.5, + "probability": 0.9941 + }, + { + "start": 24229.6, + "end": 24229.7, + "probability": 0.8772 + }, + { + "start": 24231.34, + "end": 24234.47, + "probability": 0.8371 + }, + { + "start": 24235.42, + "end": 24237.14, + "probability": 0.8806 + }, + { + "start": 24238.06, + "end": 24242.18, + "probability": 0.9679 + }, + { + "start": 24242.74, + "end": 24244.18, + "probability": 0.7474 + }, + { + "start": 24244.71, + "end": 24249.78, + "probability": 0.9893 + }, + { + "start": 24249.78, + "end": 24255.12, + "probability": 0.9786 + }, + { + "start": 24255.96, + "end": 24258.78, + "probability": 0.9945 + }, + { + "start": 24258.78, + "end": 24263.16, + "probability": 0.8204 + }, + { + "start": 24264.04, + "end": 24266.94, + "probability": 0.9746 + }, + { + "start": 24267.1, + "end": 24268.2, + "probability": 0.7386 + }, + { + "start": 24268.74, + "end": 24271.7, + "probability": 0.9991 + }, + { + "start": 24272.2, + "end": 24275.22, + "probability": 0.7036 + }, + { + "start": 24275.22, + "end": 24280.4, + "probability": 0.9796 + }, + { + "start": 24281.02, + "end": 24284.08, + "probability": 0.96 + }, + { + "start": 24284.08, + "end": 24288.54, + "probability": 0.9771 + }, + { + "start": 24288.66, + "end": 24289.1, + "probability": 0.7436 + }, + { + "start": 24291.1, + "end": 24292.68, + "probability": 0.8034 + }, + { + "start": 24292.68, + "end": 24293.1, + "probability": 0.4358 + }, + { + "start": 24293.1, + "end": 24294.64, + "probability": 0.973 + }, + { + "start": 24294.9, + "end": 24296.86, + "probability": 0.8578 + }, + { + "start": 24297.6, + "end": 24298.1, + "probability": 0.2762 + }, + { + "start": 24298.26, + "end": 24299.8, + "probability": 0.8749 + }, + { + "start": 24300.3, + "end": 24300.78, + "probability": 0.773 + }, + { + "start": 24301.04, + "end": 24302.46, + "probability": 0.7968 + }, + { + "start": 24302.92, + "end": 24303.52, + "probability": 0.9844 + }, + { + "start": 24303.6, + "end": 24304.92, + "probability": 0.98 + }, + { + "start": 24305.44, + "end": 24308.32, + "probability": 0.9848 + }, + { + "start": 24311.84, + "end": 24312.6, + "probability": 0.4782 + }, + { + "start": 24312.6, + "end": 24312.6, + "probability": 0.1587 + }, + { + "start": 24312.6, + "end": 24313.22, + "probability": 0.8305 + }, + { + "start": 24313.74, + "end": 24315.67, + "probability": 0.8397 + }, + { + "start": 24316.4, + "end": 24318.4, + "probability": 0.978 + }, + { + "start": 24318.94, + "end": 24319.5, + "probability": 0.9749 + }, + { + "start": 24319.94, + "end": 24321.24, + "probability": 0.7717 + }, + { + "start": 24321.4, + "end": 24321.88, + "probability": 0.5029 + }, + { + "start": 24322.12, + "end": 24323.62, + "probability": 0.7674 + }, + { + "start": 24324.26, + "end": 24324.76, + "probability": 0.9384 + }, + { + "start": 24324.92, + "end": 24326.48, + "probability": 0.8971 + }, + { + "start": 24326.62, + "end": 24326.98, + "probability": 0.9851 + }, + { + "start": 24327.36, + "end": 24328.76, + "probability": 0.7227 + }, + { + "start": 24329.46, + "end": 24331.41, + "probability": 0.9383 + }, + { + "start": 24331.96, + "end": 24332.48, + "probability": 0.7513 + }, + { + "start": 24332.66, + "end": 24333.98, + "probability": 0.7497 + }, + { + "start": 24334.1, + "end": 24335.02, + "probability": 0.5828 + }, + { + "start": 24335.5, + "end": 24336.84, + "probability": 0.9304 + }, + { + "start": 24337.02, + "end": 24337.48, + "probability": 0.5861 + }, + { + "start": 24337.64, + "end": 24339.1, + "probability": 0.7136 + }, + { + "start": 24339.9, + "end": 24340.48, + "probability": 0.9514 + }, + { + "start": 24341.1, + "end": 24342.56, + "probability": 0.89 + }, + { + "start": 24343.1, + "end": 24344.64, + "probability": 0.9599 + }, + { + "start": 24348.16, + "end": 24349.76, + "probability": 0.9801 + }, + { + "start": 24350.4, + "end": 24352.6, + "probability": 0.5792 + }, + { + "start": 24353.34, + "end": 24353.8, + "probability": 0.8849 + }, + { + "start": 24353.94, + "end": 24355.16, + "probability": 0.9485 + }, + { + "start": 24355.22, + "end": 24355.64, + "probability": 0.8684 + }, + { + "start": 24355.78, + "end": 24356.7, + "probability": 0.9749 + }, + { + "start": 24356.86, + "end": 24357.24, + "probability": 0.8799 + }, + { + "start": 24357.38, + "end": 24358.54, + "probability": 0.9883 + }, + { + "start": 24359.34, + "end": 24359.86, + "probability": 0.902 + }, + { + "start": 24361.77, + "end": 24363.1, + "probability": 0.4528 + }, + { + "start": 24363.1, + "end": 24363.1, + "probability": 0.082 + }, + { + "start": 24363.1, + "end": 24363.52, + "probability": 0.4307 + }, + { + "start": 24363.7, + "end": 24364.26, + "probability": 0.6935 + }, + { + "start": 24364.38, + "end": 24365.64, + "probability": 0.8448 + }, + { + "start": 24366.56, + "end": 24367.06, + "probability": 0.4433 + }, + { + "start": 24367.2, + "end": 24369.36, + "probability": 0.4866 + }, + { + "start": 24369.38, + "end": 24369.7, + "probability": 0.8513 + }, + { + "start": 24370.16, + "end": 24371.75, + "probability": 0.8728 + }, + { + "start": 24372.94, + "end": 24373.48, + "probability": 0.9645 + }, + { + "start": 24374.12, + "end": 24376.66, + "probability": 0.7797 + }, + { + "start": 24380.16, + "end": 24380.8, + "probability": 0.4291 + }, + { + "start": 24380.8, + "end": 24380.8, + "probability": 0.1664 + }, + { + "start": 24380.8, + "end": 24381.68, + "probability": 0.5748 + }, + { + "start": 24381.78, + "end": 24382.08, + "probability": 0.6609 + }, + { + "start": 24382.6, + "end": 24383.84, + "probability": 0.7205 + }, + { + "start": 24385.14, + "end": 24385.86, + "probability": 0.9426 + }, + { + "start": 24385.96, + "end": 24387.42, + "probability": 0.9543 + }, + { + "start": 24387.84, + "end": 24388.32, + "probability": 0.7727 + }, + { + "start": 24388.46, + "end": 24389.7, + "probability": 0.7728 + }, + { + "start": 24389.82, + "end": 24392.86, + "probability": 0.7032 + }, + { + "start": 24393.06, + "end": 24393.6, + "probability": 0.3107 + }, + { + "start": 24393.6, + "end": 24393.6, + "probability": 0.1622 + }, + { + "start": 24393.7, + "end": 24395.3, + "probability": 0.9022 + }, + { + "start": 24397.52, + "end": 24400.96, + "probability": 0.6588 + }, + { + "start": 24414.12, + "end": 24415.28, + "probability": 0.7011 + }, + { + "start": 24416.08, + "end": 24417.08, + "probability": 0.8976 + }, + { + "start": 24418.36, + "end": 24420.06, + "probability": 0.8465 + }, + { + "start": 24420.6, + "end": 24422.04, + "probability": 0.9624 + }, + { + "start": 24423.2, + "end": 24425.84, + "probability": 0.8688 + }, + { + "start": 24426.64, + "end": 24427.98, + "probability": 0.4543 + }, + { + "start": 24428.04, + "end": 24429.56, + "probability": 0.895 + }, + { + "start": 24430.36, + "end": 24434.66, + "probability": 0.998 + }, + { + "start": 24435.5, + "end": 24438.44, + "probability": 0.9966 + }, + { + "start": 24439.85, + "end": 24445.32, + "probability": 0.8682 + }, + { + "start": 24446.06, + "end": 24447.42, + "probability": 0.9098 + }, + { + "start": 24448.08, + "end": 24448.75, + "probability": 0.7106 + }, + { + "start": 24449.78, + "end": 24455.94, + "probability": 0.9081 + }, + { + "start": 24455.94, + "end": 24460.64, + "probability": 0.9885 + }, + { + "start": 24461.28, + "end": 24466.16, + "probability": 0.8889 + }, + { + "start": 24466.3, + "end": 24466.82, + "probability": 0.4089 + }, + { + "start": 24467.88, + "end": 24471.56, + "probability": 0.9455 + }, + { + "start": 24472.1, + "end": 24473.38, + "probability": 0.8669 + }, + { + "start": 24474.28, + "end": 24474.9, + "probability": 0.8397 + }, + { + "start": 24474.96, + "end": 24479.46, + "probability": 0.987 + }, + { + "start": 24480.52, + "end": 24482.82, + "probability": 0.8135 + }, + { + "start": 24483.0, + "end": 24485.4, + "probability": 0.79 + }, + { + "start": 24485.4, + "end": 24487.24, + "probability": 0.4606 + }, + { + "start": 24487.24, + "end": 24487.58, + "probability": 0.4554 + }, + { + "start": 24488.34, + "end": 24489.5, + "probability": 0.929 + }, + { + "start": 24490.74, + "end": 24494.46, + "probability": 0.9729 + }, + { + "start": 24495.34, + "end": 24498.17, + "probability": 0.9183 + }, + { + "start": 24498.98, + "end": 24500.28, + "probability": 0.9971 + }, + { + "start": 24500.74, + "end": 24502.56, + "probability": 0.9933 + }, + { + "start": 24503.88, + "end": 24505.84, + "probability": 0.8147 + }, + { + "start": 24507.18, + "end": 24508.16, + "probability": 0.9639 + }, + { + "start": 24509.04, + "end": 24509.84, + "probability": 0.9349 + }, + { + "start": 24510.48, + "end": 24511.94, + "probability": 0.7302 + }, + { + "start": 24513.04, + "end": 24514.46, + "probability": 0.9269 + }, + { + "start": 24514.86, + "end": 24516.02, + "probability": 0.9935 + }, + { + "start": 24516.8, + "end": 24519.2, + "probability": 0.907 + }, + { + "start": 24520.5, + "end": 24520.96, + "probability": 0.806 + }, + { + "start": 24521.92, + "end": 24523.9, + "probability": 0.9821 + }, + { + "start": 24524.36, + "end": 24527.9, + "probability": 0.9753 + }, + { + "start": 24527.9, + "end": 24531.04, + "probability": 0.9973 + }, + { + "start": 24531.6, + "end": 24534.4, + "probability": 0.9982 + }, + { + "start": 24534.4, + "end": 24537.94, + "probability": 1.0 + }, + { + "start": 24538.32, + "end": 24539.08, + "probability": 0.8634 + }, + { + "start": 24540.2, + "end": 24541.11, + "probability": 0.7142 + }, + { + "start": 24542.24, + "end": 24542.46, + "probability": 0.3233 + }, + { + "start": 24543.46, + "end": 24543.8, + "probability": 0.9249 + }, + { + "start": 24543.82, + "end": 24547.53, + "probability": 0.9812 + }, + { + "start": 24548.38, + "end": 24549.36, + "probability": 0.9101 + }, + { + "start": 24550.2, + "end": 24551.12, + "probability": 0.9995 + }, + { + "start": 24551.96, + "end": 24553.18, + "probability": 0.995 + }, + { + "start": 24554.04, + "end": 24556.74, + "probability": 0.9995 + }, + { + "start": 24556.74, + "end": 24559.4, + "probability": 0.8156 + }, + { + "start": 24560.56, + "end": 24562.2, + "probability": 0.7574 + }, + { + "start": 24563.28, + "end": 24564.02, + "probability": 0.4268 + }, + { + "start": 24564.54, + "end": 24565.9, + "probability": 0.392 + }, + { + "start": 24566.08, + "end": 24567.6, + "probability": 0.5643 + }, + { + "start": 24568.04, + "end": 24570.66, + "probability": 0.938 + }, + { + "start": 24571.2, + "end": 24572.16, + "probability": 0.8968 + }, + { + "start": 24573.22, + "end": 24577.94, + "probability": 0.9854 + }, + { + "start": 24579.16, + "end": 24581.28, + "probability": 0.9758 + }, + { + "start": 24581.86, + "end": 24584.26, + "probability": 0.7542 + }, + { + "start": 24584.9, + "end": 24586.36, + "probability": 0.9982 + }, + { + "start": 24587.46, + "end": 24588.44, + "probability": 0.8193 + }, + { + "start": 24589.44, + "end": 24591.66, + "probability": 0.9706 + }, + { + "start": 24592.38, + "end": 24594.14, + "probability": 0.9102 + }, + { + "start": 24595.22, + "end": 24598.06, + "probability": 0.7736 + }, + { + "start": 24599.18, + "end": 24602.7, + "probability": 0.928 + }, + { + "start": 24603.02, + "end": 24604.68, + "probability": 0.9884 + }, + { + "start": 24604.88, + "end": 24605.46, + "probability": 0.7186 + }, + { + "start": 24605.98, + "end": 24607.78, + "probability": 0.7703 + }, + { + "start": 24607.88, + "end": 24612.66, + "probability": 0.8008 + }, + { + "start": 24613.62, + "end": 24615.86, + "probability": 0.9873 + }, + { + "start": 24618.48, + "end": 24620.0, + "probability": 0.4818 + }, + { + "start": 24621.1, + "end": 24626.46, + "probability": 0.9017 + }, + { + "start": 24627.0, + "end": 24629.6, + "probability": 0.7363 + }, + { + "start": 24630.18, + "end": 24630.84, + "probability": 0.8127 + }, + { + "start": 24630.92, + "end": 24631.5, + "probability": 0.9275 + }, + { + "start": 24631.68, + "end": 24632.68, + "probability": 0.8378 + }, + { + "start": 24652.36, + "end": 24656.9, + "probability": 0.3549 + }, + { + "start": 24657.02, + "end": 24658.26, + "probability": 0.4896 + }, + { + "start": 24659.34, + "end": 24661.58, + "probability": 0.2823 + }, + { + "start": 24664.86, + "end": 24667.56, + "probability": 0.5395 + }, + { + "start": 24670.54, + "end": 24671.4, + "probability": 0.0585 + }, + { + "start": 24671.44, + "end": 24674.43, + "probability": 0.033 + }, + { + "start": 24674.48, + "end": 24676.92, + "probability": 0.2482 + }, + { + "start": 24677.24, + "end": 24682.1, + "probability": 0.2097 + }, + { + "start": 24685.78, + "end": 24685.78, + "probability": 0.0076 + }, + { + "start": 24692.62, + "end": 24698.22, + "probability": 0.1623 + }, + { + "start": 24698.22, + "end": 24698.94, + "probability": 0.0934 + }, + { + "start": 24698.94, + "end": 24703.04, + "probability": 0.2061 + }, + { + "start": 24705.02, + "end": 24706.8, + "probability": 0.0306 + }, + { + "start": 24707.32, + "end": 24707.42, + "probability": 0.1185 + }, + { + "start": 24707.42, + "end": 24711.42, + "probability": 0.0355 + }, + { + "start": 24711.82, + "end": 24713.92, + "probability": 0.2414 + }, + { + "start": 24714.36, + "end": 24715.8, + "probability": 0.0572 + }, + { + "start": 24716.0, + "end": 24716.0, + "probability": 0.0 + }, + { + "start": 24727.6, + "end": 24728.88, + "probability": 0.1125 + }, + { + "start": 24743.96, + "end": 24745.78, + "probability": 0.0331 + }, + { + "start": 24745.78, + "end": 24745.96, + "probability": 0.0227 + }, + { + "start": 24745.96, + "end": 24747.39, + "probability": 0.0166 + }, + { + "start": 24753.58, + "end": 24756.98, + "probability": 0.0181 + }, + { + "start": 24758.96, + "end": 24760.1, + "probability": 0.0209 + }, + { + "start": 24760.5, + "end": 24763.06, + "probability": 0.0118 + }, + { + "start": 24764.33, + "end": 24768.6, + "probability": 0.0576 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.0, + "end": 24843.0, + "probability": 0.0 + }, + { + "start": 24843.12, + "end": 24843.26, + "probability": 0.0538 + }, + { + "start": 24843.26, + "end": 24843.26, + "probability": 0.0473 + }, + { + "start": 24843.26, + "end": 24843.26, + "probability": 0.0545 + }, + { + "start": 24843.26, + "end": 24846.62, + "probability": 0.712 + }, + { + "start": 24846.76, + "end": 24847.1, + "probability": 0.5156 + }, + { + "start": 24847.62, + "end": 24848.86, + "probability": 0.5989 + }, + { + "start": 24849.52, + "end": 24850.82, + "probability": 0.6127 + }, + { + "start": 24850.96, + "end": 24853.84, + "probability": 0.9823 + }, + { + "start": 24853.88, + "end": 24856.7, + "probability": 0.8597 + }, + { + "start": 24873.22, + "end": 24875.38, + "probability": 0.6725 + }, + { + "start": 24876.18, + "end": 24881.78, + "probability": 0.9856 + }, + { + "start": 24882.26, + "end": 24884.54, + "probability": 0.9149 + }, + { + "start": 24884.62, + "end": 24886.18, + "probability": 0.9756 + }, + { + "start": 24886.78, + "end": 24887.88, + "probability": 0.5057 + }, + { + "start": 24888.48, + "end": 24890.92, + "probability": 0.8594 + }, + { + "start": 24891.74, + "end": 24895.68, + "probability": 0.9906 + }, + { + "start": 24896.3, + "end": 24898.98, + "probability": 0.9951 + }, + { + "start": 24899.94, + "end": 24902.32, + "probability": 0.97 + }, + { + "start": 24903.28, + "end": 24908.5, + "probability": 0.984 + }, + { + "start": 24908.78, + "end": 24912.56, + "probability": 0.9167 + }, + { + "start": 24914.06, + "end": 24916.5, + "probability": 0.8749 + }, + { + "start": 24917.1, + "end": 24918.62, + "probability": 0.932 + }, + { + "start": 24919.58, + "end": 24923.9, + "probability": 0.9954 + }, + { + "start": 24923.92, + "end": 24926.56, + "probability": 0.9937 + }, + { + "start": 24927.66, + "end": 24934.94, + "probability": 0.995 + }, + { + "start": 24936.1, + "end": 24939.3, + "probability": 0.8418 + }, + { + "start": 24940.5, + "end": 24945.16, + "probability": 0.9985 + }, + { + "start": 24946.16, + "end": 24947.88, + "probability": 0.9089 + }, + { + "start": 24948.86, + "end": 24951.26, + "probability": 0.9787 + }, + { + "start": 24951.86, + "end": 24953.32, + "probability": 0.9908 + }, + { + "start": 24954.02, + "end": 24960.12, + "probability": 0.993 + }, + { + "start": 24962.56, + "end": 24967.02, + "probability": 0.9897 + }, + { + "start": 24968.1, + "end": 24968.6, + "probability": 0.8815 + }, + { + "start": 24970.46, + "end": 24975.92, + "probability": 0.9886 + }, + { + "start": 24976.76, + "end": 24978.42, + "probability": 0.9661 + }, + { + "start": 24978.88, + "end": 24983.18, + "probability": 0.9922 + }, + { + "start": 24983.82, + "end": 24984.59, + "probability": 0.9014 + }, + { + "start": 24986.58, + "end": 24991.64, + "probability": 0.4088 + }, + { + "start": 24991.92, + "end": 24991.92, + "probability": 0.1833 + }, + { + "start": 24991.92, + "end": 24996.7, + "probability": 0.5869 + }, + { + "start": 24998.46, + "end": 24999.3, + "probability": 0.8427 + }, + { + "start": 24999.96, + "end": 25005.66, + "probability": 0.8667 + }, + { + "start": 25005.92, + "end": 25006.66, + "probability": 0.8247 + }, + { + "start": 25007.0, + "end": 25007.78, + "probability": 0.7348 + }, + { + "start": 25008.12, + "end": 25008.6, + "probability": 0.6091 + }, + { + "start": 25009.76, + "end": 25011.64, + "probability": 0.9951 + }, + { + "start": 25012.6, + "end": 25014.27, + "probability": 0.998 + }, + { + "start": 25014.76, + "end": 25016.08, + "probability": 0.952 + }, + { + "start": 25017.32, + "end": 25020.04, + "probability": 0.9283 + }, + { + "start": 25021.94, + "end": 25027.72, + "probability": 0.9928 + }, + { + "start": 25028.7, + "end": 25035.32, + "probability": 0.9951 + }, + { + "start": 25035.62, + "end": 25036.28, + "probability": 0.6742 + }, + { + "start": 25036.4, + "end": 25036.66, + "probability": 0.3781 + }, + { + "start": 25037.24, + "end": 25038.06, + "probability": 0.8087 + }, + { + "start": 25039.42, + "end": 25041.54, + "probability": 0.7034 + }, + { + "start": 25042.12, + "end": 25046.66, + "probability": 0.9745 + }, + { + "start": 25047.34, + "end": 25052.78, + "probability": 0.9599 + }, + { + "start": 25053.76, + "end": 25055.66, + "probability": 0.7821 + }, + { + "start": 25056.32, + "end": 25059.06, + "probability": 0.886 + }, + { + "start": 25059.6, + "end": 25062.34, + "probability": 0.9911 + }, + { + "start": 25062.72, + "end": 25063.94, + "probability": 0.885 + }, + { + "start": 25064.14, + "end": 25065.96, + "probability": 0.9404 + }, + { + "start": 25066.24, + "end": 25068.24, + "probability": 0.9218 + }, + { + "start": 25068.68, + "end": 25069.04, + "probability": 0.8557 + }, + { + "start": 25069.38, + "end": 25071.04, + "probability": 0.8095 + }, + { + "start": 25071.12, + "end": 25072.4, + "probability": 0.849 + }, + { + "start": 25075.98, + "end": 25077.36, + "probability": 0.4939 + }, + { + "start": 25077.44, + "end": 25079.26, + "probability": 0.9941 + }, + { + "start": 25081.1, + "end": 25082.95, + "probability": 0.8343 + }, + { + "start": 25084.68, + "end": 25086.52, + "probability": 0.765 + }, + { + "start": 25087.36, + "end": 25088.58, + "probability": 0.7223 + }, + { + "start": 25090.66, + "end": 25091.42, + "probability": 0.7677 + }, + { + "start": 25092.72, + "end": 25093.9, + "probability": 0.8854 + }, + { + "start": 25094.66, + "end": 25095.2, + "probability": 0.4951 + }, + { + "start": 25097.1, + "end": 25099.9, + "probability": 0.9917 + }, + { + "start": 25100.94, + "end": 25102.82, + "probability": 0.991 + }, + { + "start": 25102.98, + "end": 25106.14, + "probability": 0.9898 + }, + { + "start": 25107.04, + "end": 25107.75, + "probability": 0.7484 + }, + { + "start": 25107.98, + "end": 25112.92, + "probability": 0.9702 + }, + { + "start": 25127.8, + "end": 25128.98, + "probability": 0.6027 + }, + { + "start": 25130.1, + "end": 25130.86, + "probability": 0.7173 + }, + { + "start": 25130.9, + "end": 25133.06, + "probability": 0.9596 + }, + { + "start": 25133.16, + "end": 25135.68, + "probability": 0.8419 + }, + { + "start": 25136.08, + "end": 25137.16, + "probability": 0.8701 + }, + { + "start": 25137.96, + "end": 25140.9, + "probability": 0.9307 + }, + { + "start": 25141.58, + "end": 25142.98, + "probability": 0.7342 + }, + { + "start": 25143.74, + "end": 25146.32, + "probability": 0.9638 + }, + { + "start": 25146.42, + "end": 25148.98, + "probability": 0.7552 + }, + { + "start": 25149.04, + "end": 25150.88, + "probability": 0.8251 + }, + { + "start": 25151.52, + "end": 25151.78, + "probability": 0.248 + }, + { + "start": 25151.84, + "end": 25152.22, + "probability": 0.912 + }, + { + "start": 25152.46, + "end": 25153.46, + "probability": 0.8635 + }, + { + "start": 25153.5, + "end": 25154.4, + "probability": 0.628 + }, + { + "start": 25154.4, + "end": 25155.22, + "probability": 0.8242 + }, + { + "start": 25155.66, + "end": 25156.88, + "probability": 0.9922 + }, + { + "start": 25157.16, + "end": 25158.1, + "probability": 0.9706 + }, + { + "start": 25158.18, + "end": 25161.56, + "probability": 0.924 + }, + { + "start": 25161.66, + "end": 25162.18, + "probability": 0.7277 + }, + { + "start": 25162.56, + "end": 25164.84, + "probability": 0.991 + }, + { + "start": 25165.28, + "end": 25168.06, + "probability": 0.9472 + }, + { + "start": 25168.42, + "end": 25172.66, + "probability": 0.965 + }, + { + "start": 25173.02, + "end": 25175.55, + "probability": 0.9877 + }, + { + "start": 25177.06, + "end": 25179.79, + "probability": 0.8382 + }, + { + "start": 25180.17, + "end": 25182.31, + "probability": 0.9023 + }, + { + "start": 25182.67, + "end": 25183.51, + "probability": 0.7701 + }, + { + "start": 25183.65, + "end": 25188.59, + "probability": 0.9669 + }, + { + "start": 25189.25, + "end": 25191.13, + "probability": 0.9966 + }, + { + "start": 25191.89, + "end": 25194.67, + "probability": 0.9327 + }, + { + "start": 25194.87, + "end": 25195.35, + "probability": 0.7576 + }, + { + "start": 25197.34, + "end": 25198.47, + "probability": 0.4949 + }, + { + "start": 25198.49, + "end": 25199.47, + "probability": 0.7762 + }, + { + "start": 25199.47, + "end": 25200.41, + "probability": 0.9644 + }, + { + "start": 25200.49, + "end": 25202.59, + "probability": 0.8769 + }, + { + "start": 25202.71, + "end": 25204.43, + "probability": 0.8897 + }, + { + "start": 25204.87, + "end": 25209.53, + "probability": 0.7885 + }, + { + "start": 25209.67, + "end": 25210.71, + "probability": 0.4802 + }, + { + "start": 25210.79, + "end": 25211.73, + "probability": 0.8413 + }, + { + "start": 25212.17, + "end": 25212.77, + "probability": 0.8284 + }, + { + "start": 25212.85, + "end": 25213.39, + "probability": 0.5226 + }, + { + "start": 25213.49, + "end": 25214.43, + "probability": 0.7224 + }, + { + "start": 25230.03, + "end": 25231.37, + "probability": 0.158 + }, + { + "start": 25234.17, + "end": 25237.27, + "probability": 0.4567 + }, + { + "start": 25237.39, + "end": 25238.35, + "probability": 0.5208 + }, + { + "start": 25238.51, + "end": 25242.17, + "probability": 0.7375 + }, + { + "start": 25243.81, + "end": 25244.45, + "probability": 0.0322 + }, + { + "start": 25246.53, + "end": 25247.91, + "probability": 0.0921 + }, + { + "start": 25247.91, + "end": 25248.87, + "probability": 0.0576 + }, + { + "start": 25252.55, + "end": 25253.1, + "probability": 0.1263 + }, + { + "start": 25254.41, + "end": 25254.93, + "probability": 0.2707 + }, + { + "start": 25255.71, + "end": 25258.31, + "probability": 0.0479 + }, + { + "start": 25258.31, + "end": 25258.59, + "probability": 0.0443 + }, + { + "start": 25258.79, + "end": 25259.69, + "probability": 0.0797 + }, + { + "start": 25261.09, + "end": 25262.25, + "probability": 0.0097 + }, + { + "start": 25268.17, + "end": 25268.37, + "probability": 0.0005 + }, + { + "start": 25271.13, + "end": 25274.05, + "probability": 0.0606 + }, + { + "start": 25274.05, + "end": 25274.05, + "probability": 0.0309 + }, + { + "start": 25274.05, + "end": 25274.27, + "probability": 0.1422 + }, + { + "start": 25274.27, + "end": 25275.18, + "probability": 0.0624 + }, + { + "start": 25277.63, + "end": 25277.73, + "probability": 0.0237 + }, + { + "start": 25280.02, + "end": 25281.06, + "probability": 0.059 + }, + { + "start": 25281.61, + "end": 25282.23, + "probability": 0.1316 + }, + { + "start": 25283.4, + "end": 25285.37, + "probability": 0.0219 + }, + { + "start": 25288.91, + "end": 25292.49, + "probability": 0.0413 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.0, + "end": 25327.0, + "probability": 0.0 + }, + { + "start": 25327.7, + "end": 25327.9, + "probability": 0.0909 + }, + { + "start": 25327.9, + "end": 25327.9, + "probability": 0.0738 + }, + { + "start": 25327.9, + "end": 25331.04, + "probability": 0.0935 + }, + { + "start": 25331.4, + "end": 25333.87, + "probability": 0.6616 + }, + { + "start": 25346.78, + "end": 25349.2, + "probability": 0.9824 + }, + { + "start": 25350.02, + "end": 25350.58, + "probability": 0.1402 + }, + { + "start": 25351.1, + "end": 25351.52, + "probability": 0.0223 + }, + { + "start": 25351.56, + "end": 25354.46, + "probability": 0.1058 + }, + { + "start": 25354.46, + "end": 25356.44, + "probability": 0.0873 + }, + { + "start": 25356.44, + "end": 25357.32, + "probability": 0.0746 + }, + { + "start": 25357.32, + "end": 25357.4, + "probability": 0.3055 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25456.0, + "end": 25456.0, + "probability": 0.0 + }, + { + "start": 25457.57, + "end": 25458.7, + "probability": 0.0618 + }, + { + "start": 25458.86, + "end": 25458.86, + "probability": 0.005 + }, + { + "start": 25458.86, + "end": 25459.52, + "probability": 0.088 + }, + { + "start": 25459.52, + "end": 25460.36, + "probability": 0.1021 + }, + { + "start": 25460.4, + "end": 25461.04, + "probability": 0.1087 + }, + { + "start": 25461.22, + "end": 25461.26, + "probability": 0.0709 + }, + { + "start": 25461.26, + "end": 25461.9, + "probability": 0.1622 + }, + { + "start": 25462.1, + "end": 25462.64, + "probability": 0.5312 + }, + { + "start": 25463.42, + "end": 25470.94, + "probability": 0.641 + }, + { + "start": 25471.78, + "end": 25473.88, + "probability": 0.6584 + }, + { + "start": 25473.94, + "end": 25480.52, + "probability": 0.8911 + }, + { + "start": 25481.1, + "end": 25481.66, + "probability": 0.6716 + }, + { + "start": 25482.1, + "end": 25485.94, + "probability": 0.9406 + }, + { + "start": 25486.56, + "end": 25487.68, + "probability": 0.9141 + }, + { + "start": 25487.88, + "end": 25497.62, + "probability": 0.8303 + }, + { + "start": 25498.66, + "end": 25500.06, + "probability": 0.8507 + }, + { + "start": 25500.24, + "end": 25501.4, + "probability": 0.5941 + }, + { + "start": 25502.28, + "end": 25506.44, + "probability": 0.8171 + }, + { + "start": 25506.66, + "end": 25507.02, + "probability": 0.6641 + }, + { + "start": 25507.04, + "end": 25508.89, + "probability": 0.8027 + }, + { + "start": 25509.22, + "end": 25510.24, + "probability": 0.0458 + }, + { + "start": 25510.26, + "end": 25514.12, + "probability": 0.7362 + }, + { + "start": 25514.12, + "end": 25514.76, + "probability": 0.6716 + }, + { + "start": 25514.76, + "end": 25516.84, + "probability": 0.9076 + }, + { + "start": 25517.16, + "end": 25520.22, + "probability": 0.4357 + }, + { + "start": 25520.7, + "end": 25522.52, + "probability": 0.948 + }, + { + "start": 25523.1, + "end": 25525.0, + "probability": 0.9399 + }, + { + "start": 25525.82, + "end": 25527.22, + "probability": 0.7758 + }, + { + "start": 25527.38, + "end": 25528.3, + "probability": 0.9355 + }, + { + "start": 25528.48, + "end": 25529.72, + "probability": 0.8959 + }, + { + "start": 25530.14, + "end": 25531.66, + "probability": 0.7357 + }, + { + "start": 25532.06, + "end": 25532.08, + "probability": 0.2528 + }, + { + "start": 25532.08, + "end": 25532.5, + "probability": 0.6062 + }, + { + "start": 25537.1, + "end": 25539.92, + "probability": 0.9192 + }, + { + "start": 25540.24, + "end": 25543.58, + "probability": 0.7019 + }, + { + "start": 25543.64, + "end": 25544.39, + "probability": 0.6602 + }, + { + "start": 25545.1, + "end": 25547.72, + "probability": 0.8379 + }, + { + "start": 25547.72, + "end": 25548.77, + "probability": 0.5328 + }, + { + "start": 25549.54, + "end": 25551.14, + "probability": 0.2101 + }, + { + "start": 25551.64, + "end": 25552.26, + "probability": 0.1907 + }, + { + "start": 25552.26, + "end": 25553.8, + "probability": 0.5633 + }, + { + "start": 25554.88, + "end": 25555.3, + "probability": 0.62 + }, + { + "start": 25555.74, + "end": 25561.16, + "probability": 0.9429 + }, + { + "start": 25561.46, + "end": 25561.88, + "probability": 0.7854 + }, + { + "start": 25562.76, + "end": 25566.82, + "probability": 0.9362 + }, + { + "start": 25566.82, + "end": 25568.86, + "probability": 0.3162 + }, + { + "start": 25568.94, + "end": 25568.94, + "probability": 0.0111 + }, + { + "start": 25568.94, + "end": 25571.04, + "probability": 0.6198 + }, + { + "start": 25571.62, + "end": 25573.7, + "probability": 0.6899 + }, + { + "start": 25574.34, + "end": 25577.4, + "probability": 0.9219 + }, + { + "start": 25582.94, + "end": 25584.5, + "probability": 0.932 + }, + { + "start": 25587.24, + "end": 25590.6, + "probability": 0.9215 + }, + { + "start": 25591.18, + "end": 25591.71, + "probability": 0.4302 + }, + { + "start": 25593.36, + "end": 25594.28, + "probability": 0.6722 + }, + { + "start": 25595.24, + "end": 25596.36, + "probability": 0.9522 + }, + { + "start": 25596.88, + "end": 25598.02, + "probability": 0.8345 + }, + { + "start": 25601.98, + "end": 25603.94, + "probability": 0.6765 + }, + { + "start": 25603.94, + "end": 25607.16, + "probability": 0.6385 + }, + { + "start": 25607.3, + "end": 25609.7, + "probability": 0.9846 + }, + { + "start": 25611.28, + "end": 25614.0, + "probability": 0.9766 + }, + { + "start": 25614.7, + "end": 25616.96, + "probability": 0.9935 + }, + { + "start": 25617.98, + "end": 25618.86, + "probability": 0.931 + }, + { + "start": 25619.84, + "end": 25620.38, + "probability": 0.0001 + }, + { + "start": 25621.7, + "end": 25623.06, + "probability": 0.7445 + }, + { + "start": 25623.14, + "end": 25624.76, + "probability": 0.7 + }, + { + "start": 25625.18, + "end": 25626.08, + "probability": 0.8859 + }, + { + "start": 25627.15, + "end": 25629.6, + "probability": 0.9106 + }, + { + "start": 25629.68, + "end": 25631.38, + "probability": 0.7851 + }, + { + "start": 25631.94, + "end": 25633.98, + "probability": 0.9182 + }, + { + "start": 25634.2, + "end": 25635.2, + "probability": 0.3602 + }, + { + "start": 25636.56, + "end": 25637.38, + "probability": 0.0067 + }, + { + "start": 25637.92, + "end": 25638.86, + "probability": 0.0313 + }, + { + "start": 25639.08, + "end": 25639.42, + "probability": 0.0927 + }, + { + "start": 25639.92, + "end": 25641.02, + "probability": 0.3299 + }, + { + "start": 25641.4, + "end": 25644.8, + "probability": 0.4583 + }, + { + "start": 25647.82, + "end": 25650.8, + "probability": 0.5955 + }, + { + "start": 25650.82, + "end": 25651.47, + "probability": 0.4231 + }, + { + "start": 25652.2, + "end": 25653.18, + "probability": 0.1675 + }, + { + "start": 25653.36, + "end": 25656.9, + "probability": 0.1641 + }, + { + "start": 25657.08, + "end": 25659.22, + "probability": 0.3087 + }, + { + "start": 25659.86, + "end": 25660.83, + "probability": 0.5996 + }, + { + "start": 25662.19, + "end": 25664.61, + "probability": 0.0504 + }, + { + "start": 25665.58, + "end": 25666.88, + "probability": 0.4669 + }, + { + "start": 25666.88, + "end": 25667.58, + "probability": 0.1203 + }, + { + "start": 25667.86, + "end": 25669.56, + "probability": 0.4988 + }, + { + "start": 25669.56, + "end": 25669.94, + "probability": 0.4649 + }, + { + "start": 25670.0, + "end": 25675.44, + "probability": 0.9958 + }, + { + "start": 25675.98, + "end": 25679.8, + "probability": 0.9728 + }, + { + "start": 25679.8, + "end": 25683.72, + "probability": 0.9963 + }, + { + "start": 25684.14, + "end": 25687.28, + "probability": 0.9637 + }, + { + "start": 25687.86, + "end": 25691.9, + "probability": 0.6662 + }, + { + "start": 25692.82, + "end": 25698.24, + "probability": 0.9875 + }, + { + "start": 25699.26, + "end": 25701.54, + "probability": 0.9979 + }, + { + "start": 25702.08, + "end": 25703.21, + "probability": 0.998 + }, + { + "start": 25704.52, + "end": 25706.2, + "probability": 0.7619 + }, + { + "start": 25706.22, + "end": 25706.7, + "probability": 0.3444 + }, + { + "start": 25706.76, + "end": 25707.54, + "probability": 0.9606 + }, + { + "start": 25707.6, + "end": 25708.26, + "probability": 0.9922 + }, + { + "start": 25710.04, + "end": 25715.42, + "probability": 0.96 + }, + { + "start": 25715.84, + "end": 25716.58, + "probability": 0.0233 + }, + { + "start": 25717.08, + "end": 25717.58, + "probability": 0.7949 + }, + { + "start": 25718.64, + "end": 25720.06, + "probability": 0.9397 + }, + { + "start": 25721.38, + "end": 25722.22, + "probability": 0.4208 + }, + { + "start": 25722.68, + "end": 25723.76, + "probability": 0.9724 + }, + { + "start": 25724.72, + "end": 25726.54, + "probability": 0.9004 + }, + { + "start": 25727.24, + "end": 25730.06, + "probability": 0.9585 + }, + { + "start": 25730.9, + "end": 25733.26, + "probability": 0.9944 + }, + { + "start": 25733.32, + "end": 25733.76, + "probability": 0.9501 + }, + { + "start": 25734.84, + "end": 25738.19, + "probability": 0.5259 + }, + { + "start": 25740.94, + "end": 25743.12, + "probability": 0.002 + }, + { + "start": 25751.6, + "end": 25753.62, + "probability": 0.8666 + }, + { + "start": 25755.02, + "end": 25757.16, + "probability": 0.9378 + }, + { + "start": 25758.0, + "end": 25760.5, + "probability": 0.9882 + }, + { + "start": 25761.58, + "end": 25762.98, + "probability": 0.9244 + }, + { + "start": 25763.6, + "end": 25767.8, + "probability": 0.9629 + }, + { + "start": 25769.04, + "end": 25769.94, + "probability": 0.8521 + }, + { + "start": 25770.6, + "end": 25771.34, + "probability": 0.824 + }, + { + "start": 25772.9, + "end": 25775.26, + "probability": 0.87 + }, + { + "start": 25776.12, + "end": 25777.16, + "probability": 0.7298 + }, + { + "start": 25777.16, + "end": 25777.98, + "probability": 0.605 + }, + { + "start": 25777.98, + "end": 25779.42, + "probability": 0.9866 + }, + { + "start": 25779.44, + "end": 25779.54, + "probability": 0.3081 + }, + { + "start": 25779.56, + "end": 25779.9, + "probability": 0.6818 + }, + { + "start": 25780.0, + "end": 25784.38, + "probability": 0.9943 + }, + { + "start": 25785.3, + "end": 25787.68, + "probability": 0.8772 + }, + { + "start": 25788.2, + "end": 25790.88, + "probability": 0.6319 + }, + { + "start": 25790.88, + "end": 25792.86, + "probability": 0.5847 + }, + { + "start": 25792.96, + "end": 25794.14, + "probability": 0.7355 + }, + { + "start": 25794.72, + "end": 25796.28, + "probability": 0.6354 + }, + { + "start": 25796.38, + "end": 25797.12, + "probability": 0.921 + }, + { + "start": 25797.18, + "end": 25797.76, + "probability": 0.7483 + }, + { + "start": 25797.78, + "end": 25800.9, + "probability": 0.9976 + }, + { + "start": 25801.08, + "end": 25801.3, + "probability": 0.2865 + }, + { + "start": 25801.38, + "end": 25803.2, + "probability": 0.7705 + }, + { + "start": 25803.34, + "end": 25803.98, + "probability": 0.6339 + }, + { + "start": 25804.22, + "end": 25805.68, + "probability": 0.8532 + }, + { + "start": 25805.72, + "end": 25806.0, + "probability": 0.8822 + }, + { + "start": 25806.28, + "end": 25806.66, + "probability": 0.2402 + }, + { + "start": 25806.66, + "end": 25808.08, + "probability": 0.5765 + }, + { + "start": 25808.14, + "end": 25810.58, + "probability": 0.8618 + }, + { + "start": 25811.32, + "end": 25813.72, + "probability": 0.9583 + }, + { + "start": 25825.1, + "end": 25826.06, + "probability": 0.6201 + }, + { + "start": 25826.7, + "end": 25826.84, + "probability": 0.7354 + }, + { + "start": 25826.84, + "end": 25827.28, + "probability": 0.3701 + }, + { + "start": 25833.08, + "end": 25833.98, + "probability": 0.3014 + }, + { + "start": 25834.96, + "end": 25837.34, + "probability": 0.5753 + }, + { + "start": 25838.3, + "end": 25838.48, + "probability": 0.5526 + }, + { + "start": 25840.5, + "end": 25841.3, + "probability": 0.5339 + }, + { + "start": 25841.74, + "end": 25843.04, + "probability": 0.8528 + }, + { + "start": 25843.7, + "end": 25845.52, + "probability": 0.6589 + }, + { + "start": 25845.54, + "end": 25845.8, + "probability": 0.6854 + }, + { + "start": 25845.86, + "end": 25847.42, + "probability": 0.8491 + }, + { + "start": 25847.9, + "end": 25852.7, + "probability": 0.9388 + }, + { + "start": 25853.88, + "end": 25855.88, + "probability": 0.9575 + }, + { + "start": 25856.94, + "end": 25860.1, + "probability": 0.967 + }, + { + "start": 25860.2, + "end": 25864.4, + "probability": 0.9458 + }, + { + "start": 25864.4, + "end": 25867.5, + "probability": 0.9988 + }, + { + "start": 25868.3, + "end": 25871.98, + "probability": 0.9952 + }, + { + "start": 25872.26, + "end": 25874.44, + "probability": 0.8779 + }, + { + "start": 25874.62, + "end": 25875.76, + "probability": 0.999 + }, + { + "start": 25876.1, + "end": 25878.92, + "probability": 0.8959 + }, + { + "start": 25879.56, + "end": 25884.36, + "probability": 0.8677 + }, + { + "start": 25885.24, + "end": 25886.9, + "probability": 0.9377 + }, + { + "start": 25886.96, + "end": 25890.52, + "probability": 0.9954 + }, + { + "start": 25891.24, + "end": 25893.0, + "probability": 0.9665 + }, + { + "start": 25893.68, + "end": 25898.94, + "probability": 0.968 + }, + { + "start": 25899.52, + "end": 25899.7, + "probability": 0.4022 + }, + { + "start": 25899.86, + "end": 25903.08, + "probability": 0.9821 + }, + { + "start": 25903.08, + "end": 25907.37, + "probability": 0.9945 + }, + { + "start": 25907.98, + "end": 25910.64, + "probability": 0.9108 + }, + { + "start": 25911.06, + "end": 25915.62, + "probability": 0.9793 + }, + { + "start": 25915.85, + "end": 25916.0, + "probability": 0.5883 + }, + { + "start": 25916.64, + "end": 25918.64, + "probability": 0.937 + }, + { + "start": 25918.68, + "end": 25918.98, + "probability": 0.709 + }, + { + "start": 25919.04, + "end": 25920.16, + "probability": 0.8008 + }, + { + "start": 25920.28, + "end": 25925.62, + "probability": 0.9077 + }, + { + "start": 25926.24, + "end": 25929.46, + "probability": 0.7905 + }, + { + "start": 25929.58, + "end": 25930.62, + "probability": 0.4856 + }, + { + "start": 25930.88, + "end": 25931.86, + "probability": 0.8364 + }, + { + "start": 25932.28, + "end": 25932.96, + "probability": 0.7161 + }, + { + "start": 25933.0, + "end": 25933.54, + "probability": 0.564 + }, + { + "start": 25933.68, + "end": 25934.64, + "probability": 0.817 + }, + { + "start": 25935.08, + "end": 25938.12, + "probability": 0.0429 + }, + { + "start": 25952.4, + "end": 25959.26, + "probability": 0.166 + }, + { + "start": 25959.64, + "end": 25962.7, + "probability": 0.7861 + }, + { + "start": 25962.88, + "end": 25963.88, + "probability": 0.4601 + }, + { + "start": 25964.16, + "end": 25967.16, + "probability": 0.7346 + }, + { + "start": 25967.24, + "end": 25969.28, + "probability": 0.7485 + }, + { + "start": 25971.28, + "end": 25971.56, + "probability": 0.0152 + }, + { + "start": 25972.14, + "end": 25974.32, + "probability": 0.0 + }, + { + "start": 25976.48, + "end": 25977.64, + "probability": 0.0999 + }, + { + "start": 25979.44, + "end": 25979.94, + "probability": 0.0382 + }, + { + "start": 25981.9, + "end": 25983.82, + "probability": 0.1025 + }, + { + "start": 25984.4, + "end": 25985.48, + "probability": 0.0053 + }, + { + "start": 25986.42, + "end": 25986.42, + "probability": 0.0001 + }, + { + "start": 25988.56, + "end": 25990.08, + "probability": 0.0809 + }, + { + "start": 25992.2, + "end": 25993.54, + "probability": 0.0335 + }, + { + "start": 25993.54, + "end": 25995.46, + "probability": 0.1209 + }, + { + "start": 25995.68, + "end": 25998.22, + "probability": 0.0523 + }, + { + "start": 26011.52, + "end": 26012.61, + "probability": 0.016 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.0, + "end": 26042.0, + "probability": 0.0 + }, + { + "start": 26042.8, + "end": 26043.22, + "probability": 0.1204 + }, + { + "start": 26043.22, + "end": 26044.34, + "probability": 0.0716 + }, + { + "start": 26044.36, + "end": 26050.44, + "probability": 0.0375 + }, + { + "start": 26050.72, + "end": 26058.72, + "probability": 0.1644 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.0, + "end": 26164.0, + "probability": 0.0 + }, + { + "start": 26164.24, + "end": 26164.24, + "probability": 0.0005 + }, + { + "start": 26164.24, + "end": 26165.06, + "probability": 0.0638 + }, + { + "start": 26166.76, + "end": 26167.06, + "probability": 0.1094 + }, + { + "start": 26168.26, + "end": 26169.48, + "probability": 0.6641 + }, + { + "start": 26170.72, + "end": 26173.1, + "probability": 0.9781 + }, + { + "start": 26173.32, + "end": 26175.02, + "probability": 0.9744 + }, + { + "start": 26175.5, + "end": 26176.4, + "probability": 0.5204 + }, + { + "start": 26176.52, + "end": 26178.06, + "probability": 0.9666 + }, + { + "start": 26178.48, + "end": 26182.92, + "probability": 0.9954 + }, + { + "start": 26183.5, + "end": 26187.66, + "probability": 0.9768 + }, + { + "start": 26187.66, + "end": 26192.12, + "probability": 0.9826 + }, + { + "start": 26192.12, + "end": 26198.16, + "probability": 0.9866 + }, + { + "start": 26198.66, + "end": 26201.34, + "probability": 0.9368 + }, + { + "start": 26201.34, + "end": 26204.82, + "probability": 0.9554 + }, + { + "start": 26205.44, + "end": 26208.54, + "probability": 0.6806 + }, + { + "start": 26208.96, + "end": 26210.16, + "probability": 0.8814 + }, + { + "start": 26210.36, + "end": 26212.9, + "probability": 0.9768 + }, + { + "start": 26213.7, + "end": 26214.22, + "probability": 0.5735 + }, + { + "start": 26214.3, + "end": 26217.02, + "probability": 0.9067 + }, + { + "start": 26217.4, + "end": 26218.66, + "probability": 0.786 + }, + { + "start": 26218.82, + "end": 26224.4, + "probability": 0.8254 + }, + { + "start": 26225.21, + "end": 26229.32, + "probability": 0.5768 + }, + { + "start": 26229.4, + "end": 26230.34, + "probability": 0.9325 + }, + { + "start": 26230.48, + "end": 26233.2, + "probability": 0.9895 + }, + { + "start": 26233.26, + "end": 26233.62, + "probability": 0.7118 + }, + { + "start": 26234.04, + "end": 26236.28, + "probability": 0.8204 + }, + { + "start": 26236.32, + "end": 26239.22, + "probability": 0.8896 + }, + { + "start": 26239.32, + "end": 26240.66, + "probability": 0.9808 + }, + { + "start": 26243.34, + "end": 26246.74, + "probability": 0.9227 + }, + { + "start": 26246.94, + "end": 26248.44, + "probability": 0.9026 + }, + { + "start": 26249.98, + "end": 26252.6, + "probability": 0.9844 + }, + { + "start": 26252.6, + "end": 26256.22, + "probability": 0.7406 + }, + { + "start": 26256.8, + "end": 26257.74, + "probability": 0.5609 + }, + { + "start": 26257.94, + "end": 26259.2, + "probability": 0.5625 + }, + { + "start": 26259.26, + "end": 26260.26, + "probability": 0.7609 + }, + { + "start": 26266.5, + "end": 26267.26, + "probability": 0.6562 + }, + { + "start": 26267.34, + "end": 26268.18, + "probability": 0.8321 + }, + { + "start": 26268.24, + "end": 26269.26, + "probability": 0.6145 + }, + { + "start": 26273.52, + "end": 26274.64, + "probability": 0.1729 + }, + { + "start": 26289.12, + "end": 26292.6, + "probability": 0.8908 + }, + { + "start": 26292.6, + "end": 26295.28, + "probability": 0.5995 + }, + { + "start": 26295.38, + "end": 26296.36, + "probability": 0.5198 + }, + { + "start": 26297.16, + "end": 26301.34, + "probability": 0.8884 + }, + { + "start": 26302.8, + "end": 26303.16, + "probability": 0.0286 + }, + { + "start": 26304.04, + "end": 26308.26, + "probability": 0.0844 + }, + { + "start": 26308.67, + "end": 26310.26, + "probability": 0.0431 + }, + { + "start": 26310.26, + "end": 26311.12, + "probability": 0.0075 + }, + { + "start": 26313.36, + "end": 26316.0, + "probability": 0.0422 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + }, + { + "start": 26464.34, + "end": 26464.34, + "probability": 0.0 + } + ], + "segments_count": 8685, + "words_count": 43870, + "avg_words_per_segment": 5.0512, + "avg_segment_duration": 2.0856, + "avg_words_per_minute": 99.4621, + "plenum_id": "66204", + "duration": 26464.34, + "title": null, + "plenum_date": "2017-07-24" +} \ No newline at end of file