diff --git "a/11886/metadata.json" "b/11886/metadata.json" new file mode 100644--- /dev/null +++ "b/11886/metadata.json" @@ -0,0 +1,16432 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "11886", + "quality_score": 0.896, + "per_segment_quality_scores": [ + { + "start": 88.34, + "end": 90.96, + "probability": 0.1691 + }, + { + "start": 91.79, + "end": 92.72, + "probability": 0.1748 + }, + { + "start": 103.08, + "end": 108.32, + "probability": 0.0298 + }, + { + "start": 108.34, + "end": 111.7, + "probability": 0.0763 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.84, + "end": 130.02, + "probability": 0.9844 + }, + { + "start": 130.02, + "end": 134.04, + "probability": 0.9704 + }, + { + "start": 134.6, + "end": 136.4, + "probability": 0.6256 + }, + { + "start": 136.84, + "end": 138.77, + "probability": 0.9167 + }, + { + "start": 139.04, + "end": 139.9, + "probability": 0.6221 + }, + { + "start": 140.12, + "end": 141.48, + "probability": 0.9962 + }, + { + "start": 141.66, + "end": 142.32, + "probability": 0.7124 + }, + { + "start": 142.86, + "end": 148.06, + "probability": 0.9674 + }, + { + "start": 148.6, + "end": 150.14, + "probability": 0.185 + }, + { + "start": 150.26, + "end": 151.0, + "probability": 0.9059 + }, + { + "start": 151.54, + "end": 153.11, + "probability": 0.4771 + }, + { + "start": 154.16, + "end": 154.72, + "probability": 0.4661 + }, + { + "start": 156.94, + "end": 157.46, + "probability": 0.1823 + }, + { + "start": 158.32, + "end": 158.68, + "probability": 0.0469 + }, + { + "start": 158.72, + "end": 160.7, + "probability": 0.5021 + }, + { + "start": 160.82, + "end": 164.06, + "probability": 0.2565 + }, + { + "start": 164.67, + "end": 166.73, + "probability": 0.9965 + }, + { + "start": 167.42, + "end": 168.04, + "probability": 0.4756 + }, + { + "start": 168.28, + "end": 170.38, + "probability": 0.7887 + }, + { + "start": 170.92, + "end": 175.8, + "probability": 0.9357 + }, + { + "start": 176.7, + "end": 180.6, + "probability": 0.9683 + }, + { + "start": 181.28, + "end": 183.76, + "probability": 0.7126 + }, + { + "start": 185.47, + "end": 188.22, + "probability": 0.966 + }, + { + "start": 188.96, + "end": 193.8, + "probability": 0.9544 + }, + { + "start": 193.92, + "end": 197.2, + "probability": 0.9644 + }, + { + "start": 198.3, + "end": 201.26, + "probability": 0.9783 + }, + { + "start": 201.82, + "end": 204.16, + "probability": 0.9784 + }, + { + "start": 204.16, + "end": 208.8, + "probability": 0.9849 + }, + { + "start": 209.98, + "end": 212.74, + "probability": 0.854 + }, + { + "start": 213.46, + "end": 214.3, + "probability": 0.4299 + }, + { + "start": 214.5, + "end": 218.2, + "probability": 0.833 + }, + { + "start": 218.62, + "end": 219.56, + "probability": 0.7628 + }, + { + "start": 219.92, + "end": 222.81, + "probability": 0.9707 + }, + { + "start": 223.5, + "end": 225.66, + "probability": 0.8524 + }, + { + "start": 226.3, + "end": 227.38, + "probability": 0.8586 + }, + { + "start": 227.48, + "end": 228.42, + "probability": 0.7632 + }, + { + "start": 229.08, + "end": 230.38, + "probability": 0.8045 + }, + { + "start": 232.02, + "end": 238.5, + "probability": 0.9731 + }, + { + "start": 239.32, + "end": 239.68, + "probability": 0.9644 + }, + { + "start": 241.08, + "end": 242.36, + "probability": 0.9931 + }, + { + "start": 243.2, + "end": 244.58, + "probability": 0.8158 + }, + { + "start": 247.52, + "end": 251.34, + "probability": 0.9849 + }, + { + "start": 252.88, + "end": 259.8, + "probability": 0.9812 + }, + { + "start": 261.86, + "end": 263.94, + "probability": 0.9854 + }, + { + "start": 265.94, + "end": 273.2, + "probability": 0.9868 + }, + { + "start": 275.12, + "end": 279.44, + "probability": 0.9888 + }, + { + "start": 280.42, + "end": 281.94, + "probability": 0.9575 + }, + { + "start": 283.34, + "end": 284.76, + "probability": 0.9932 + }, + { + "start": 285.82, + "end": 290.2, + "probability": 0.9799 + }, + { + "start": 292.58, + "end": 296.98, + "probability": 0.692 + }, + { + "start": 298.1, + "end": 302.46, + "probability": 0.9768 + }, + { + "start": 303.98, + "end": 311.1, + "probability": 0.9841 + }, + { + "start": 313.0, + "end": 319.32, + "probability": 0.943 + }, + { + "start": 319.72, + "end": 322.5, + "probability": 0.7361 + }, + { + "start": 323.7, + "end": 326.78, + "probability": 0.9731 + }, + { + "start": 328.56, + "end": 332.48, + "probability": 0.9919 + }, + { + "start": 334.16, + "end": 335.34, + "probability": 0.7211 + }, + { + "start": 336.06, + "end": 337.36, + "probability": 0.61 + }, + { + "start": 338.36, + "end": 340.36, + "probability": 0.5306 + }, + { + "start": 341.1, + "end": 345.1, + "probability": 0.9608 + }, + { + "start": 345.86, + "end": 349.42, + "probability": 0.9321 + }, + { + "start": 350.72, + "end": 355.46, + "probability": 0.9112 + }, + { + "start": 355.46, + "end": 359.42, + "probability": 0.9751 + }, + { + "start": 360.3, + "end": 360.7, + "probability": 0.5268 + }, + { + "start": 361.24, + "end": 364.52, + "probability": 0.7543 + }, + { + "start": 365.44, + "end": 370.44, + "probability": 0.8311 + }, + { + "start": 371.18, + "end": 372.97, + "probability": 0.8726 + }, + { + "start": 373.7, + "end": 376.66, + "probability": 0.973 + }, + { + "start": 377.24, + "end": 378.54, + "probability": 0.9719 + }, + { + "start": 378.58, + "end": 383.98, + "probability": 0.7274 + }, + { + "start": 384.76, + "end": 385.48, + "probability": 0.5103 + }, + { + "start": 387.46, + "end": 388.18, + "probability": 0.57 + }, + { + "start": 389.48, + "end": 393.22, + "probability": 0.9109 + }, + { + "start": 394.4, + "end": 397.76, + "probability": 0.9264 + }, + { + "start": 399.84, + "end": 399.84, + "probability": 0.9531 + }, + { + "start": 401.24, + "end": 404.26, + "probability": 0.9501 + }, + { + "start": 405.22, + "end": 410.04, + "probability": 0.9324 + }, + { + "start": 410.84, + "end": 411.48, + "probability": 0.9097 + }, + { + "start": 412.28, + "end": 417.18, + "probability": 0.9731 + }, + { + "start": 417.18, + "end": 421.34, + "probability": 0.8417 + }, + { + "start": 423.1, + "end": 425.32, + "probability": 0.7723 + }, + { + "start": 426.84, + "end": 431.68, + "probability": 0.8042 + }, + { + "start": 432.44, + "end": 434.47, + "probability": 0.8538 + }, + { + "start": 437.1, + "end": 438.24, + "probability": 0.7201 + }, + { + "start": 439.48, + "end": 440.96, + "probability": 0.6146 + }, + { + "start": 443.02, + "end": 449.13, + "probability": 0.8997 + }, + { + "start": 450.16, + "end": 458.86, + "probability": 0.9813 + }, + { + "start": 460.16, + "end": 464.42, + "probability": 0.6707 + }, + { + "start": 465.3, + "end": 469.86, + "probability": 0.9948 + }, + { + "start": 470.88, + "end": 473.32, + "probability": 0.9102 + }, + { + "start": 474.06, + "end": 476.14, + "probability": 0.6883 + }, + { + "start": 476.92, + "end": 483.16, + "probability": 0.6711 + }, + { + "start": 485.62, + "end": 489.2, + "probability": 0.9861 + }, + { + "start": 489.2, + "end": 493.74, + "probability": 0.9556 + }, + { + "start": 494.54, + "end": 495.24, + "probability": 0.7449 + }, + { + "start": 496.08, + "end": 497.64, + "probability": 0.8996 + }, + { + "start": 498.24, + "end": 499.31, + "probability": 0.6759 + }, + { + "start": 499.96, + "end": 502.66, + "probability": 0.8826 + }, + { + "start": 503.54, + "end": 506.54, + "probability": 0.9585 + }, + { + "start": 506.54, + "end": 510.08, + "probability": 0.935 + }, + { + "start": 511.16, + "end": 516.84, + "probability": 0.9907 + }, + { + "start": 516.84, + "end": 520.52, + "probability": 0.8963 + }, + { + "start": 522.04, + "end": 527.2, + "probability": 0.7822 + }, + { + "start": 528.0, + "end": 528.94, + "probability": 0.7412 + }, + { + "start": 529.98, + "end": 530.04, + "probability": 0.0052 + }, + { + "start": 532.8, + "end": 537.56, + "probability": 0.9789 + }, + { + "start": 538.46, + "end": 541.04, + "probability": 0.9844 + }, + { + "start": 542.68, + "end": 545.04, + "probability": 0.4685 + }, + { + "start": 545.86, + "end": 549.26, + "probability": 0.7446 + }, + { + "start": 550.26, + "end": 554.02, + "probability": 0.9044 + }, + { + "start": 555.52, + "end": 557.5, + "probability": 0.7647 + }, + { + "start": 558.5, + "end": 559.28, + "probability": 0.9495 + }, + { + "start": 559.78, + "end": 560.68, + "probability": 0.7813 + }, + { + "start": 562.28, + "end": 565.34, + "probability": 0.7869 + }, + { + "start": 565.46, + "end": 569.64, + "probability": 0.9919 + }, + { + "start": 571.02, + "end": 574.8, + "probability": 0.9929 + }, + { + "start": 575.58, + "end": 579.44, + "probability": 0.9873 + }, + { + "start": 581.62, + "end": 582.88, + "probability": 0.6364 + }, + { + "start": 583.62, + "end": 584.0, + "probability": 0.1505 + }, + { + "start": 584.12, + "end": 584.12, + "probability": 0.1178 + }, + { + "start": 584.3, + "end": 587.46, + "probability": 0.4815 + }, + { + "start": 587.58, + "end": 588.9, + "probability": 0.8286 + }, + { + "start": 589.46, + "end": 591.34, + "probability": 0.9097 + }, + { + "start": 592.22, + "end": 593.88, + "probability": 0.9402 + }, + { + "start": 594.44, + "end": 596.23, + "probability": 0.9643 + }, + { + "start": 598.14, + "end": 601.56, + "probability": 0.9606 + }, + { + "start": 605.14, + "end": 605.84, + "probability": 0.7655 + }, + { + "start": 607.4, + "end": 610.1, + "probability": 0.8153 + }, + { + "start": 610.8, + "end": 611.62, + "probability": 0.5258 + }, + { + "start": 612.88, + "end": 618.78, + "probability": 0.0912 + }, + { + "start": 619.26, + "end": 621.4, + "probability": 0.2975 + }, + { + "start": 621.8, + "end": 625.57, + "probability": 0.4181 + }, + { + "start": 626.34, + "end": 627.16, + "probability": 0.2048 + }, + { + "start": 628.96, + "end": 632.14, + "probability": 0.1185 + }, + { + "start": 633.96, + "end": 635.38, + "probability": 0.1042 + }, + { + "start": 637.48, + "end": 639.64, + "probability": 0.7332 + }, + { + "start": 641.14, + "end": 643.86, + "probability": 0.9465 + }, + { + "start": 644.28, + "end": 646.79, + "probability": 0.9351 + }, + { + "start": 648.04, + "end": 648.6, + "probability": 0.9565 + }, + { + "start": 649.4, + "end": 655.44, + "probability": 0.9931 + }, + { + "start": 657.78, + "end": 662.34, + "probability": 0.9775 + }, + { + "start": 663.2, + "end": 664.28, + "probability": 0.9507 + }, + { + "start": 665.0, + "end": 666.14, + "probability": 0.7904 + }, + { + "start": 667.04, + "end": 670.72, + "probability": 0.9906 + }, + { + "start": 671.46, + "end": 673.02, + "probability": 0.9958 + }, + { + "start": 674.02, + "end": 675.52, + "probability": 0.981 + }, + { + "start": 676.74, + "end": 678.72, + "probability": 0.9727 + }, + { + "start": 679.3, + "end": 681.5, + "probability": 0.96 + }, + { + "start": 683.18, + "end": 691.56, + "probability": 0.9707 + }, + { + "start": 692.02, + "end": 693.28, + "probability": 0.9204 + }, + { + "start": 694.74, + "end": 702.48, + "probability": 0.9817 + }, + { + "start": 704.84, + "end": 709.68, + "probability": 0.9984 + }, + { + "start": 710.2, + "end": 716.56, + "probability": 0.985 + }, + { + "start": 718.3, + "end": 723.24, + "probability": 0.9898 + }, + { + "start": 723.73, + "end": 730.68, + "probability": 0.9978 + }, + { + "start": 731.3, + "end": 734.5, + "probability": 0.5378 + }, + { + "start": 736.34, + "end": 738.37, + "probability": 0.6023 + }, + { + "start": 738.82, + "end": 741.74, + "probability": 0.2917 + }, + { + "start": 742.16, + "end": 746.4, + "probability": 0.9575 + }, + { + "start": 748.58, + "end": 750.06, + "probability": 0.3342 + }, + { + "start": 754.08, + "end": 757.48, + "probability": 0.8271 + }, + { + "start": 759.22, + "end": 760.52, + "probability": 0.96 + }, + { + "start": 761.12, + "end": 764.48, + "probability": 0.9609 + }, + { + "start": 766.06, + "end": 772.5, + "probability": 0.9688 + }, + { + "start": 774.22, + "end": 775.26, + "probability": 0.5261 + }, + { + "start": 776.2, + "end": 778.86, + "probability": 0.7942 + }, + { + "start": 780.36, + "end": 781.36, + "probability": 0.8962 + }, + { + "start": 782.18, + "end": 785.72, + "probability": 0.6509 + }, + { + "start": 787.18, + "end": 787.86, + "probability": 0.8183 + }, + { + "start": 787.86, + "end": 789.94, + "probability": 0.5012 + }, + { + "start": 790.4, + "end": 795.52, + "probability": 0.8234 + }, + { + "start": 797.0, + "end": 801.6, + "probability": 0.9369 + }, + { + "start": 802.06, + "end": 804.38, + "probability": 0.3911 + }, + { + "start": 804.66, + "end": 805.22, + "probability": 0.1456 + }, + { + "start": 805.34, + "end": 806.58, + "probability": 0.7849 + }, + { + "start": 806.7, + "end": 808.4, + "probability": 0.1242 + }, + { + "start": 808.68, + "end": 810.37, + "probability": 0.856 + }, + { + "start": 810.86, + "end": 815.14, + "probability": 0.9376 + }, + { + "start": 815.72, + "end": 820.48, + "probability": 0.9912 + }, + { + "start": 821.26, + "end": 825.12, + "probability": 0.703 + }, + { + "start": 829.4, + "end": 832.26, + "probability": 0.7495 + }, + { + "start": 833.38, + "end": 834.92, + "probability": 0.9341 + }, + { + "start": 836.36, + "end": 837.54, + "probability": 0.9529 + }, + { + "start": 838.54, + "end": 842.4, + "probability": 0.9484 + }, + { + "start": 842.4, + "end": 848.4, + "probability": 0.8505 + }, + { + "start": 848.4, + "end": 852.78, + "probability": 0.6901 + }, + { + "start": 854.4, + "end": 858.42, + "probability": 0.5921 + }, + { + "start": 859.6, + "end": 860.58, + "probability": 0.514 + }, + { + "start": 861.48, + "end": 861.82, + "probability": 0.7725 + }, + { + "start": 861.82, + "end": 863.58, + "probability": 0.8477 + }, + { + "start": 863.74, + "end": 864.59, + "probability": 0.7719 + }, + { + "start": 865.26, + "end": 866.88, + "probability": 0.9417 + }, + { + "start": 866.98, + "end": 870.42, + "probability": 0.9604 + }, + { + "start": 871.22, + "end": 874.5, + "probability": 0.9355 + }, + { + "start": 875.32, + "end": 876.84, + "probability": 0.9696 + }, + { + "start": 878.54, + "end": 888.66, + "probability": 0.8729 + }, + { + "start": 889.82, + "end": 893.8, + "probability": 0.8417 + }, + { + "start": 894.6, + "end": 895.9, + "probability": 0.918 + }, + { + "start": 897.18, + "end": 898.06, + "probability": 0.7178 + }, + { + "start": 899.54, + "end": 900.58, + "probability": 0.8956 + }, + { + "start": 901.24, + "end": 902.81, + "probability": 0.7563 + }, + { + "start": 905.96, + "end": 911.1, + "probability": 0.71 + }, + { + "start": 912.04, + "end": 915.06, + "probability": 0.761 + }, + { + "start": 917.94, + "end": 918.98, + "probability": 0.7799 + }, + { + "start": 920.96, + "end": 923.68, + "probability": 0.5905 + }, + { + "start": 925.16, + "end": 926.82, + "probability": 0.7731 + }, + { + "start": 928.72, + "end": 933.44, + "probability": 0.6042 + }, + { + "start": 934.64, + "end": 937.94, + "probability": 0.974 + }, + { + "start": 938.68, + "end": 939.7, + "probability": 0.7599 + }, + { + "start": 940.7, + "end": 944.14, + "probability": 0.9917 + }, + { + "start": 944.6, + "end": 946.74, + "probability": 0.9839 + }, + { + "start": 948.36, + "end": 951.54, + "probability": 0.9849 + }, + { + "start": 952.02, + "end": 953.32, + "probability": 0.9544 + }, + { + "start": 953.78, + "end": 955.48, + "probability": 0.9703 + }, + { + "start": 955.76, + "end": 957.32, + "probability": 0.9733 + }, + { + "start": 957.54, + "end": 958.68, + "probability": 0.8994 + }, + { + "start": 959.1, + "end": 960.5, + "probability": 0.9932 + }, + { + "start": 960.76, + "end": 961.66, + "probability": 0.6752 + }, + { + "start": 961.84, + "end": 964.02, + "probability": 0.7393 + }, + { + "start": 964.44, + "end": 965.92, + "probability": 0.6737 + }, + { + "start": 966.44, + "end": 968.86, + "probability": 0.8912 + }, + { + "start": 969.18, + "end": 972.12, + "probability": 0.9619 + }, + { + "start": 972.36, + "end": 973.88, + "probability": 0.715 + }, + { + "start": 974.42, + "end": 977.26, + "probability": 0.9496 + }, + { + "start": 977.54, + "end": 979.12, + "probability": 0.8053 + }, + { + "start": 979.14, + "end": 980.5, + "probability": 0.7399 + }, + { + "start": 981.1, + "end": 981.8, + "probability": 0.6252 + }, + { + "start": 981.88, + "end": 984.54, + "probability": 0.7939 + }, + { + "start": 984.92, + "end": 988.68, + "probability": 0.9256 + }, + { + "start": 988.8, + "end": 990.32, + "probability": 0.777 + }, + { + "start": 990.34, + "end": 992.62, + "probability": 0.8879 + }, + { + "start": 992.64, + "end": 993.9, + "probability": 0.5147 + }, + { + "start": 994.28, + "end": 994.58, + "probability": 0.3685 + }, + { + "start": 994.6, + "end": 995.86, + "probability": 0.7663 + }, + { + "start": 995.98, + "end": 996.16, + "probability": 0.5145 + }, + { + "start": 996.26, + "end": 998.1, + "probability": 0.9875 + }, + { + "start": 998.62, + "end": 1000.28, + "probability": 0.9692 + }, + { + "start": 1000.92, + "end": 1004.1, + "probability": 0.5309 + }, + { + "start": 1006.32, + "end": 1006.94, + "probability": 0.0071 + }, + { + "start": 1009.38, + "end": 1011.08, + "probability": 0.2464 + }, + { + "start": 1011.08, + "end": 1011.3, + "probability": 0.2116 + }, + { + "start": 1011.74, + "end": 1011.84, + "probability": 0.0946 + }, + { + "start": 1012.32, + "end": 1015.38, + "probability": 0.5288 + }, + { + "start": 1016.7, + "end": 1019.3, + "probability": 0.7091 + }, + { + "start": 1020.32, + "end": 1022.06, + "probability": 0.6387 + }, + { + "start": 1022.12, + "end": 1023.5, + "probability": 0.8523 + }, + { + "start": 1023.54, + "end": 1024.78, + "probability": 0.8244 + }, + { + "start": 1024.78, + "end": 1024.8, + "probability": 0.3086 + }, + { + "start": 1024.8, + "end": 1028.24, + "probability": 0.823 + }, + { + "start": 1028.48, + "end": 1028.6, + "probability": 0.4242 + }, + { + "start": 1028.68, + "end": 1029.72, + "probability": 0.8235 + }, + { + "start": 1029.8, + "end": 1031.84, + "probability": 0.873 + }, + { + "start": 1032.12, + "end": 1038.89, + "probability": 0.9489 + }, + { + "start": 1040.76, + "end": 1045.14, + "probability": 0.8977 + }, + { + "start": 1047.12, + "end": 1049.54, + "probability": 0.1964 + }, + { + "start": 1049.94, + "end": 1051.12, + "probability": 0.2737 + }, + { + "start": 1051.34, + "end": 1053.34, + "probability": 0.2706 + }, + { + "start": 1053.64, + "end": 1058.22, + "probability": 0.7756 + }, + { + "start": 1058.7, + "end": 1060.4, + "probability": 0.7646 + }, + { + "start": 1060.54, + "end": 1067.22, + "probability": 0.7283 + }, + { + "start": 1067.28, + "end": 1068.88, + "probability": 0.861 + }, + { + "start": 1069.78, + "end": 1075.58, + "probability": 0.9976 + }, + { + "start": 1077.58, + "end": 1081.5, + "probability": 0.993 + }, + { + "start": 1081.5, + "end": 1085.76, + "probability": 0.1524 + }, + { + "start": 1085.98, + "end": 1093.54, + "probability": 0.9751 + }, + { + "start": 1096.18, + "end": 1099.08, + "probability": 0.8354 + }, + { + "start": 1099.64, + "end": 1101.14, + "probability": 0.6248 + }, + { + "start": 1101.84, + "end": 1106.8, + "probability": 0.8805 + }, + { + "start": 1107.76, + "end": 1114.76, + "probability": 0.9971 + }, + { + "start": 1115.62, + "end": 1121.32, + "probability": 0.9043 + }, + { + "start": 1121.32, + "end": 1127.72, + "probability": 0.9977 + }, + { + "start": 1129.72, + "end": 1133.8, + "probability": 0.9073 + }, + { + "start": 1134.54, + "end": 1137.44, + "probability": 0.9904 + }, + { + "start": 1137.44, + "end": 1143.35, + "probability": 0.9966 + }, + { + "start": 1144.18, + "end": 1145.06, + "probability": 0.7811 + }, + { + "start": 1146.3, + "end": 1151.44, + "probability": 0.9819 + }, + { + "start": 1152.52, + "end": 1159.44, + "probability": 0.9914 + }, + { + "start": 1160.48, + "end": 1168.56, + "probability": 0.7485 + }, + { + "start": 1169.06, + "end": 1178.58, + "probability": 0.7055 + }, + { + "start": 1178.58, + "end": 1183.92, + "probability": 0.943 + }, + { + "start": 1183.92, + "end": 1189.46, + "probability": 0.9948 + }, + { + "start": 1190.12, + "end": 1193.36, + "probability": 0.8826 + }, + { + "start": 1193.48, + "end": 1196.9, + "probability": 0.9664 + }, + { + "start": 1199.08, + "end": 1201.04, + "probability": 0.7515 + }, + { + "start": 1201.04, + "end": 1204.7, + "probability": 0.7886 + }, + { + "start": 1204.86, + "end": 1208.19, + "probability": 0.977 + }, + { + "start": 1209.28, + "end": 1215.02, + "probability": 0.9182 + }, + { + "start": 1215.02, + "end": 1219.44, + "probability": 0.9985 + }, + { + "start": 1220.2, + "end": 1223.96, + "probability": 0.9376 + }, + { + "start": 1224.9, + "end": 1232.9, + "probability": 0.9282 + }, + { + "start": 1234.08, + "end": 1238.16, + "probability": 0.8582 + }, + { + "start": 1238.58, + "end": 1241.0, + "probability": 0.9916 + }, + { + "start": 1241.0, + "end": 1245.56, + "probability": 0.9692 + }, + { + "start": 1247.96, + "end": 1253.9, + "probability": 0.9975 + }, + { + "start": 1254.8, + "end": 1258.92, + "probability": 0.9297 + }, + { + "start": 1259.66, + "end": 1263.26, + "probability": 0.9861 + }, + { + "start": 1264.06, + "end": 1267.1, + "probability": 0.6202 + }, + { + "start": 1269.32, + "end": 1270.3, + "probability": 0.8179 + }, + { + "start": 1270.66, + "end": 1276.86, + "probability": 0.9959 + }, + { + "start": 1278.0, + "end": 1281.06, + "probability": 0.9783 + }, + { + "start": 1281.82, + "end": 1286.6, + "probability": 0.9987 + }, + { + "start": 1287.1, + "end": 1289.08, + "probability": 0.9361 + }, + { + "start": 1289.78, + "end": 1292.88, + "probability": 0.9354 + }, + { + "start": 1293.58, + "end": 1299.04, + "probability": 0.924 + }, + { + "start": 1299.52, + "end": 1305.84, + "probability": 0.9814 + }, + { + "start": 1306.62, + "end": 1311.62, + "probability": 0.9683 + }, + { + "start": 1311.96, + "end": 1314.36, + "probability": 0.9248 + }, + { + "start": 1315.3, + "end": 1318.64, + "probability": 0.142 + }, + { + "start": 1318.74, + "end": 1319.22, + "probability": 0.1551 + }, + { + "start": 1320.14, + "end": 1321.94, + "probability": 0.8043 + }, + { + "start": 1322.02, + "end": 1322.38, + "probability": 0.3853 + }, + { + "start": 1322.42, + "end": 1328.96, + "probability": 0.8745 + }, + { + "start": 1329.6, + "end": 1336.9, + "probability": 0.8867 + }, + { + "start": 1337.78, + "end": 1339.96, + "probability": 0.5115 + }, + { + "start": 1340.52, + "end": 1344.88, + "probability": 0.9753 + }, + { + "start": 1348.1, + "end": 1353.36, + "probability": 0.9927 + }, + { + "start": 1355.26, + "end": 1356.58, + "probability": 0.791 + }, + { + "start": 1358.11, + "end": 1360.58, + "probability": 0.7211 + }, + { + "start": 1360.82, + "end": 1363.96, + "probability": 0.9758 + }, + { + "start": 1364.64, + "end": 1369.26, + "probability": 0.9961 + }, + { + "start": 1369.56, + "end": 1371.26, + "probability": 0.0552 + }, + { + "start": 1371.42, + "end": 1372.58, + "probability": 0.857 + }, + { + "start": 1372.74, + "end": 1377.86, + "probability": 0.8553 + }, + { + "start": 1377.96, + "end": 1380.98, + "probability": 0.9966 + }, + { + "start": 1382.54, + "end": 1385.94, + "probability": 0.5352 + }, + { + "start": 1387.18, + "end": 1390.08, + "probability": 0.8815 + }, + { + "start": 1391.0, + "end": 1394.86, + "probability": 0.5479 + }, + { + "start": 1395.56, + "end": 1397.12, + "probability": 0.2317 + }, + { + "start": 1398.54, + "end": 1400.62, + "probability": 0.4689 + }, + { + "start": 1401.2, + "end": 1402.66, + "probability": 0.7319 + }, + { + "start": 1402.86, + "end": 1403.44, + "probability": 0.7986 + }, + { + "start": 1403.64, + "end": 1403.98, + "probability": 0.429 + }, + { + "start": 1404.02, + "end": 1404.02, + "probability": 0.2326 + }, + { + "start": 1404.02, + "end": 1405.16, + "probability": 0.7739 + }, + { + "start": 1405.26, + "end": 1406.14, + "probability": 0.568 + }, + { + "start": 1406.86, + "end": 1407.88, + "probability": 0.7924 + }, + { + "start": 1407.88, + "end": 1412.88, + "probability": 0.7309 + }, + { + "start": 1413.94, + "end": 1416.22, + "probability": 0.9922 + }, + { + "start": 1416.36, + "end": 1418.26, + "probability": 0.98 + }, + { + "start": 1418.92, + "end": 1420.84, + "probability": 0.8857 + }, + { + "start": 1421.6, + "end": 1422.16, + "probability": 0.7616 + }, + { + "start": 1422.4, + "end": 1428.64, + "probability": 0.9784 + }, + { + "start": 1429.52, + "end": 1430.9, + "probability": 0.796 + }, + { + "start": 1431.8, + "end": 1433.34, + "probability": 0.826 + }, + { + "start": 1433.7, + "end": 1435.54, + "probability": 0.8892 + }, + { + "start": 1435.78, + "end": 1436.32, + "probability": 0.1259 + }, + { + "start": 1436.46, + "end": 1437.7, + "probability": 0.1391 + }, + { + "start": 1438.2, + "end": 1439.96, + "probability": 0.9006 + }, + { + "start": 1440.46, + "end": 1440.7, + "probability": 0.1293 + }, + { + "start": 1441.49, + "end": 1444.48, + "probability": 0.6508 + }, + { + "start": 1444.48, + "end": 1446.0, + "probability": 0.7056 + }, + { + "start": 1446.7, + "end": 1447.42, + "probability": 0.6265 + }, + { + "start": 1448.46, + "end": 1451.92, + "probability": 0.8817 + }, + { + "start": 1452.3, + "end": 1459.26, + "probability": 0.8188 + }, + { + "start": 1460.16, + "end": 1463.14, + "probability": 0.6812 + }, + { + "start": 1463.84, + "end": 1466.63, + "probability": 0.9394 + }, + { + "start": 1467.68, + "end": 1469.42, + "probability": 0.9032 + }, + { + "start": 1469.58, + "end": 1469.82, + "probability": 0.9195 + }, + { + "start": 1469.9, + "end": 1470.72, + "probability": 0.9495 + }, + { + "start": 1470.84, + "end": 1471.66, + "probability": 0.5066 + }, + { + "start": 1472.04, + "end": 1476.66, + "probability": 0.9329 + }, + { + "start": 1476.66, + "end": 1483.38, + "probability": 0.9069 + }, + { + "start": 1483.56, + "end": 1485.86, + "probability": 0.4283 + }, + { + "start": 1486.18, + "end": 1486.66, + "probability": 0.3769 + }, + { + "start": 1488.16, + "end": 1492.1, + "probability": 0.6326 + }, + { + "start": 1492.72, + "end": 1493.24, + "probability": 0.8905 + }, + { + "start": 1493.34, + "end": 1496.12, + "probability": 0.9929 + }, + { + "start": 1496.18, + "end": 1504.62, + "probability": 0.9829 + }, + { + "start": 1505.6, + "end": 1511.46, + "probability": 0.9829 + }, + { + "start": 1512.24, + "end": 1517.24, + "probability": 0.9514 + }, + { + "start": 1517.72, + "end": 1522.56, + "probability": 0.9614 + }, + { + "start": 1523.08, + "end": 1524.98, + "probability": 0.9799 + }, + { + "start": 1525.92, + "end": 1527.42, + "probability": 0.8906 + }, + { + "start": 1528.02, + "end": 1529.22, + "probability": 0.9758 + }, + { + "start": 1529.58, + "end": 1531.87, + "probability": 0.9645 + }, + { + "start": 1532.46, + "end": 1534.0, + "probability": 0.9215 + }, + { + "start": 1534.06, + "end": 1535.32, + "probability": 0.7891 + }, + { + "start": 1535.82, + "end": 1537.7, + "probability": 0.5453 + }, + { + "start": 1538.52, + "end": 1541.64, + "probability": 0.8049 + }, + { + "start": 1541.98, + "end": 1543.4, + "probability": 0.9676 + }, + { + "start": 1544.12, + "end": 1546.8, + "probability": 0.8773 + }, + { + "start": 1547.18, + "end": 1553.18, + "probability": 0.9888 + }, + { + "start": 1553.24, + "end": 1558.2, + "probability": 0.8428 + }, + { + "start": 1558.68, + "end": 1562.2, + "probability": 0.803 + }, + { + "start": 1562.52, + "end": 1569.98, + "probability": 0.9093 + }, + { + "start": 1570.54, + "end": 1573.66, + "probability": 0.7596 + }, + { + "start": 1573.84, + "end": 1578.46, + "probability": 0.8313 + }, + { + "start": 1580.59, + "end": 1586.72, + "probability": 0.6677 + }, + { + "start": 1587.2, + "end": 1588.31, + "probability": 0.9027 + }, + { + "start": 1590.14, + "end": 1591.78, + "probability": 0.2747 + }, + { + "start": 1591.78, + "end": 1594.36, + "probability": 0.6805 + }, + { + "start": 1594.68, + "end": 1594.96, + "probability": 0.0313 + }, + { + "start": 1596.24, + "end": 1597.3, + "probability": 0.2805 + }, + { + "start": 1599.04, + "end": 1600.18, + "probability": 0.6156 + }, + { + "start": 1600.36, + "end": 1604.54, + "probability": 0.5655 + }, + { + "start": 1605.1, + "end": 1607.04, + "probability": 0.4398 + }, + { + "start": 1607.76, + "end": 1610.6, + "probability": 0.8534 + }, + { + "start": 1611.14, + "end": 1613.96, + "probability": 0.9966 + }, + { + "start": 1614.26, + "end": 1615.58, + "probability": 0.6643 + }, + { + "start": 1615.9, + "end": 1617.46, + "probability": 0.9929 + }, + { + "start": 1617.48, + "end": 1619.6, + "probability": 0.9973 + }, + { + "start": 1619.62, + "end": 1621.22, + "probability": 0.9443 + }, + { + "start": 1621.78, + "end": 1625.98, + "probability": 0.3909 + }, + { + "start": 1626.18, + "end": 1628.64, + "probability": 0.6503 + }, + { + "start": 1628.94, + "end": 1629.3, + "probability": 0.7769 + }, + { + "start": 1629.3, + "end": 1631.3, + "probability": 0.8818 + }, + { + "start": 1631.4, + "end": 1634.94, + "probability": 0.976 + }, + { + "start": 1635.36, + "end": 1637.84, + "probability": 0.9427 + }, + { + "start": 1638.0, + "end": 1641.46, + "probability": 0.9635 + }, + { + "start": 1641.58, + "end": 1642.72, + "probability": 0.9737 + }, + { + "start": 1643.36, + "end": 1644.44, + "probability": 0.8049 + }, + { + "start": 1646.14, + "end": 1648.8, + "probability": 0.7996 + }, + { + "start": 1649.32, + "end": 1650.12, + "probability": 0.7849 + }, + { + "start": 1650.9, + "end": 1654.26, + "probability": 0.9526 + }, + { + "start": 1654.76, + "end": 1658.82, + "probability": 0.9631 + }, + { + "start": 1659.52, + "end": 1661.78, + "probability": 0.5305 + }, + { + "start": 1662.62, + "end": 1663.7, + "probability": 0.7424 + }, + { + "start": 1663.9, + "end": 1668.22, + "probability": 0.9544 + }, + { + "start": 1668.22, + "end": 1670.88, + "probability": 0.9858 + }, + { + "start": 1671.28, + "end": 1672.98, + "probability": 0.9637 + }, + { + "start": 1673.12, + "end": 1676.3, + "probability": 0.6918 + }, + { + "start": 1676.3, + "end": 1680.96, + "probability": 0.7444 + }, + { + "start": 1681.04, + "end": 1682.64, + "probability": 0.8202 + }, + { + "start": 1682.9, + "end": 1683.68, + "probability": 0.8908 + }, + { + "start": 1685.74, + "end": 1687.22, + "probability": 0.8235 + }, + { + "start": 1687.78, + "end": 1695.16, + "probability": 0.9819 + }, + { + "start": 1695.16, + "end": 1703.54, + "probability": 0.8842 + }, + { + "start": 1704.48, + "end": 1708.86, + "probability": 0.9035 + }, + { + "start": 1709.0, + "end": 1712.8, + "probability": 0.8689 + }, + { + "start": 1713.26, + "end": 1715.09, + "probability": 0.8046 + }, + { + "start": 1715.94, + "end": 1716.46, + "probability": 0.9111 + }, + { + "start": 1716.58, + "end": 1717.76, + "probability": 0.7684 + }, + { + "start": 1717.92, + "end": 1718.22, + "probability": 0.5723 + }, + { + "start": 1718.28, + "end": 1719.34, + "probability": 0.7822 + }, + { + "start": 1719.96, + "end": 1725.74, + "probability": 0.9729 + }, + { + "start": 1725.88, + "end": 1732.13, + "probability": 0.9818 + }, + { + "start": 1732.6, + "end": 1737.86, + "probability": 0.994 + }, + { + "start": 1740.72, + "end": 1741.52, + "probability": 0.7817 + }, + { + "start": 1743.02, + "end": 1751.42, + "probability": 0.9209 + }, + { + "start": 1753.72, + "end": 1755.58, + "probability": 0.9985 + }, + { + "start": 1757.6, + "end": 1762.16, + "probability": 0.9741 + }, + { + "start": 1763.4, + "end": 1765.0, + "probability": 0.8682 + }, + { + "start": 1766.22, + "end": 1768.64, + "probability": 0.9971 + }, + { + "start": 1769.52, + "end": 1772.9, + "probability": 0.9888 + }, + { + "start": 1774.8, + "end": 1776.14, + "probability": 0.8141 + }, + { + "start": 1777.32, + "end": 1778.16, + "probability": 0.98 + }, + { + "start": 1780.7, + "end": 1785.86, + "probability": 0.958 + }, + { + "start": 1788.64, + "end": 1791.36, + "probability": 0.9971 + }, + { + "start": 1791.44, + "end": 1792.24, + "probability": 0.787 + }, + { + "start": 1793.6, + "end": 1798.8, + "probability": 0.8984 + }, + { + "start": 1800.06, + "end": 1803.8, + "probability": 0.9473 + }, + { + "start": 1804.18, + "end": 1806.68, + "probability": 0.7969 + }, + { + "start": 1808.18, + "end": 1809.22, + "probability": 0.8616 + }, + { + "start": 1810.8, + "end": 1812.2, + "probability": 0.9108 + }, + { + "start": 1813.48, + "end": 1817.12, + "probability": 0.9902 + }, + { + "start": 1817.32, + "end": 1818.18, + "probability": 0.9807 + }, + { + "start": 1818.28, + "end": 1819.3, + "probability": 0.8819 + }, + { + "start": 1819.82, + "end": 1825.32, + "probability": 0.9814 + }, + { + "start": 1825.32, + "end": 1828.48, + "probability": 0.9933 + }, + { + "start": 1831.18, + "end": 1832.48, + "probability": 0.4988 + }, + { + "start": 1833.02, + "end": 1833.84, + "probability": 0.6096 + }, + { + "start": 1834.82, + "end": 1841.7, + "probability": 0.9921 + }, + { + "start": 1842.6, + "end": 1846.76, + "probability": 0.8509 + }, + { + "start": 1848.16, + "end": 1849.22, + "probability": 0.9656 + }, + { + "start": 1850.06, + "end": 1855.76, + "probability": 0.8117 + }, + { + "start": 1857.6, + "end": 1858.87, + "probability": 0.8505 + }, + { + "start": 1861.44, + "end": 1863.48, + "probability": 0.7307 + }, + { + "start": 1864.16, + "end": 1865.52, + "probability": 0.95 + }, + { + "start": 1866.2, + "end": 1867.16, + "probability": 0.7475 + }, + { + "start": 1868.82, + "end": 1872.16, + "probability": 0.9785 + }, + { + "start": 1872.3, + "end": 1874.5, + "probability": 0.8534 + }, + { + "start": 1874.86, + "end": 1875.56, + "probability": 0.7372 + }, + { + "start": 1875.62, + "end": 1876.98, + "probability": 0.9873 + }, + { + "start": 1877.06, + "end": 1881.56, + "probability": 0.9936 + }, + { + "start": 1882.88, + "end": 1883.86, + "probability": 0.9736 + }, + { + "start": 1884.1, + "end": 1885.36, + "probability": 0.9834 + }, + { + "start": 1886.6, + "end": 1888.28, + "probability": 0.9707 + }, + { + "start": 1889.14, + "end": 1890.0, + "probability": 0.9443 + }, + { + "start": 1890.04, + "end": 1891.06, + "probability": 0.9976 + }, + { + "start": 1892.2, + "end": 1894.12, + "probability": 0.9988 + }, + { + "start": 1894.92, + "end": 1897.3, + "probability": 0.9976 + }, + { + "start": 1897.44, + "end": 1899.02, + "probability": 0.9421 + }, + { + "start": 1899.4, + "end": 1901.5, + "probability": 0.8334 + }, + { + "start": 1903.62, + "end": 1904.3, + "probability": 0.8756 + }, + { + "start": 1905.66, + "end": 1911.02, + "probability": 0.9414 + }, + { + "start": 1913.24, + "end": 1915.1, + "probability": 0.9971 + }, + { + "start": 1918.3, + "end": 1919.55, + "probability": 0.938 + }, + { + "start": 1920.6, + "end": 1923.24, + "probability": 0.8312 + }, + { + "start": 1924.58, + "end": 1926.34, + "probability": 0.5874 + }, + { + "start": 1928.02, + "end": 1929.7, + "probability": 0.8956 + }, + { + "start": 1929.76, + "end": 1931.82, + "probability": 0.6672 + }, + { + "start": 1932.22, + "end": 1932.54, + "probability": 0.6245 + }, + { + "start": 1933.1, + "end": 1936.52, + "probability": 0.9956 + }, + { + "start": 1939.18, + "end": 1940.88, + "probability": 0.7971 + }, + { + "start": 1940.96, + "end": 1942.02, + "probability": 0.4561 + }, + { + "start": 1942.12, + "end": 1944.06, + "probability": 0.8364 + }, + { + "start": 1945.68, + "end": 1946.64, + "probability": 0.6733 + }, + { + "start": 1946.68, + "end": 1948.4, + "probability": 0.4742 + }, + { + "start": 1948.58, + "end": 1950.46, + "probability": 0.8679 + }, + { + "start": 1950.56, + "end": 1952.72, + "probability": 0.7753 + }, + { + "start": 1953.18, + "end": 1954.08, + "probability": 0.4487 + }, + { + "start": 1954.12, + "end": 1955.55, + "probability": 0.9604 + }, + { + "start": 1957.0, + "end": 1958.48, + "probability": 0.9747 + }, + { + "start": 1960.2, + "end": 1961.18, + "probability": 0.9016 + }, + { + "start": 1963.14, + "end": 1968.28, + "probability": 0.9984 + }, + { + "start": 1968.82, + "end": 1971.32, + "probability": 0.8861 + }, + { + "start": 1972.0, + "end": 1973.0, + "probability": 0.9932 + }, + { + "start": 1973.04, + "end": 1973.64, + "probability": 0.6208 + }, + { + "start": 1973.7, + "end": 1974.14, + "probability": 0.5656 + }, + { + "start": 1974.42, + "end": 1975.74, + "probability": 0.9933 + }, + { + "start": 1977.9, + "end": 1980.34, + "probability": 0.922 + }, + { + "start": 1982.24, + "end": 1984.56, + "probability": 0.9982 + }, + { + "start": 1985.48, + "end": 1987.36, + "probability": 0.9062 + }, + { + "start": 1988.34, + "end": 1993.48, + "probability": 0.9989 + }, + { + "start": 1993.56, + "end": 1994.08, + "probability": 0.9869 + }, + { + "start": 1994.14, + "end": 1994.52, + "probability": 0.5811 + }, + { + "start": 1994.52, + "end": 1995.34, + "probability": 0.9231 + }, + { + "start": 1996.1, + "end": 1996.62, + "probability": 0.0643 + }, + { + "start": 1996.62, + "end": 1998.84, + "probability": 0.6053 + }, + { + "start": 1999.46, + "end": 2001.6, + "probability": 0.8268 + }, + { + "start": 2001.68, + "end": 2005.84, + "probability": 0.8297 + }, + { + "start": 2006.84, + "end": 2009.24, + "probability": 0.8168 + }, + { + "start": 2009.64, + "end": 2013.04, + "probability": 0.9657 + }, + { + "start": 2013.04, + "end": 2015.84, + "probability": 0.9981 + }, + { + "start": 2016.32, + "end": 2016.58, + "probability": 0.4937 + }, + { + "start": 2016.78, + "end": 2016.94, + "probability": 0.6141 + }, + { + "start": 2016.98, + "end": 2018.34, + "probability": 0.8558 + }, + { + "start": 2018.44, + "end": 2019.96, + "probability": 0.9043 + }, + { + "start": 2020.02, + "end": 2021.76, + "probability": 0.4673 + }, + { + "start": 2021.8, + "end": 2026.42, + "probability": 0.0449 + }, + { + "start": 2027.39, + "end": 2029.5, + "probability": 0.044 + }, + { + "start": 2029.5, + "end": 2030.28, + "probability": 0.082 + }, + { + "start": 2030.32, + "end": 2030.32, + "probability": 0.1114 + }, + { + "start": 2030.68, + "end": 2031.48, + "probability": 0.3738 + }, + { + "start": 2031.48, + "end": 2034.07, + "probability": 0.4014 + }, + { + "start": 2034.36, + "end": 2035.82, + "probability": 0.0683 + }, + { + "start": 2039.44, + "end": 2042.94, + "probability": 0.2188 + }, + { + "start": 2043.46, + "end": 2047.74, + "probability": 0.9828 + }, + { + "start": 2048.44, + "end": 2048.44, + "probability": 0.0577 + }, + { + "start": 2048.44, + "end": 2048.44, + "probability": 0.4383 + }, + { + "start": 2048.44, + "end": 2052.84, + "probability": 0.9916 + }, + { + "start": 2054.68, + "end": 2057.22, + "probability": 0.9192 + }, + { + "start": 2058.82, + "end": 2059.88, + "probability": 0.9392 + }, + { + "start": 2060.14, + "end": 2061.3, + "probability": 0.8391 + }, + { + "start": 2061.6, + "end": 2063.0, + "probability": 0.979 + }, + { + "start": 2064.04, + "end": 2065.24, + "probability": 0.9545 + }, + { + "start": 2065.34, + "end": 2066.88, + "probability": 0.9656 + }, + { + "start": 2067.74, + "end": 2071.52, + "probability": 0.9974 + }, + { + "start": 2071.52, + "end": 2074.0, + "probability": 0.6578 + }, + { + "start": 2074.5, + "end": 2074.91, + "probability": 0.7251 + }, + { + "start": 2076.32, + "end": 2076.94, + "probability": 0.9561 + }, + { + "start": 2078.24, + "end": 2080.74, + "probability": 0.9778 + }, + { + "start": 2081.02, + "end": 2083.86, + "probability": 0.9499 + }, + { + "start": 2084.28, + "end": 2085.64, + "probability": 0.7883 + }, + { + "start": 2086.08, + "end": 2089.7, + "probability": 0.9576 + }, + { + "start": 2090.16, + "end": 2092.38, + "probability": 0.9292 + }, + { + "start": 2092.68, + "end": 2095.98, + "probability": 0.8883 + }, + { + "start": 2096.66, + "end": 2102.08, + "probability": 0.8102 + }, + { + "start": 2102.26, + "end": 2103.12, + "probability": 0.8714 + }, + { + "start": 2103.18, + "end": 2105.38, + "probability": 0.8135 + }, + { + "start": 2106.18, + "end": 2108.62, + "probability": 0.9624 + }, + { + "start": 2109.2, + "end": 2112.88, + "probability": 0.9341 + }, + { + "start": 2112.98, + "end": 2114.4, + "probability": 0.9761 + }, + { + "start": 2114.98, + "end": 2117.58, + "probability": 0.9321 + }, + { + "start": 2118.62, + "end": 2120.42, + "probability": 0.929 + }, + { + "start": 2121.38, + "end": 2123.76, + "probability": 0.7411 + }, + { + "start": 2123.76, + "end": 2125.5, + "probability": 0.8477 + }, + { + "start": 2125.62, + "end": 2126.48, + "probability": 0.9637 + }, + { + "start": 2126.56, + "end": 2128.04, + "probability": 0.7745 + }, + { + "start": 2129.88, + "end": 2133.86, + "probability": 0.8189 + }, + { + "start": 2135.44, + "end": 2139.38, + "probability": 0.981 + }, + { + "start": 2140.48, + "end": 2141.98, + "probability": 0.9745 + }, + { + "start": 2143.84, + "end": 2144.86, + "probability": 0.8416 + }, + { + "start": 2144.92, + "end": 2145.96, + "probability": 0.9554 + }, + { + "start": 2146.06, + "end": 2147.12, + "probability": 0.1597 + }, + { + "start": 2147.62, + "end": 2150.02, + "probability": 0.5255 + }, + { + "start": 2150.02, + "end": 2152.66, + "probability": 0.9754 + }, + { + "start": 2153.7, + "end": 2154.61, + "probability": 0.7886 + }, + { + "start": 2156.24, + "end": 2157.19, + "probability": 0.8335 + }, + { + "start": 2158.62, + "end": 2159.66, + "probability": 0.5837 + }, + { + "start": 2161.36, + "end": 2163.46, + "probability": 0.6066 + }, + { + "start": 2164.14, + "end": 2167.98, + "probability": 0.6952 + }, + { + "start": 2169.86, + "end": 2176.56, + "probability": 0.9123 + }, + { + "start": 2176.66, + "end": 2177.18, + "probability": 0.5986 + }, + { + "start": 2177.8, + "end": 2182.46, + "probability": 0.7867 + }, + { + "start": 2182.5, + "end": 2184.14, + "probability": 0.9954 + }, + { + "start": 2184.3, + "end": 2185.3, + "probability": 0.7536 + }, + { + "start": 2185.54, + "end": 2190.18, + "probability": 0.9848 + }, + { + "start": 2190.18, + "end": 2190.66, + "probability": 0.6305 + }, + { + "start": 2190.84, + "end": 2193.8, + "probability": 0.9927 + }, + { + "start": 2193.94, + "end": 2195.84, + "probability": 0.9609 + }, + { + "start": 2196.58, + "end": 2199.36, + "probability": 0.9849 + }, + { + "start": 2199.52, + "end": 2200.9, + "probability": 0.9662 + }, + { + "start": 2201.8, + "end": 2203.5, + "probability": 0.5983 + }, + { + "start": 2203.6, + "end": 2205.62, + "probability": 0.4726 + }, + { + "start": 2205.98, + "end": 2207.24, + "probability": 0.7794 + }, + { + "start": 2208.36, + "end": 2209.59, + "probability": 0.9985 + }, + { + "start": 2211.08, + "end": 2213.72, + "probability": 0.9756 + }, + { + "start": 2214.18, + "end": 2217.54, + "probability": 0.7475 + }, + { + "start": 2219.14, + "end": 2222.06, + "probability": 0.8992 + }, + { + "start": 2224.05, + "end": 2224.52, + "probability": 0.0461 + }, + { + "start": 2224.52, + "end": 2225.2, + "probability": 0.1444 + }, + { + "start": 2225.64, + "end": 2227.84, + "probability": 0.8817 + }, + { + "start": 2228.58, + "end": 2232.72, + "probability": 0.9979 + }, + { + "start": 2232.72, + "end": 2234.31, + "probability": 0.4279 + }, + { + "start": 2235.5, + "end": 2237.06, + "probability": 0.9178 + }, + { + "start": 2237.7, + "end": 2238.8, + "probability": 0.9614 + }, + { + "start": 2240.38, + "end": 2243.38, + "probability": 0.9536 + }, + { + "start": 2245.64, + "end": 2247.16, + "probability": 0.9349 + }, + { + "start": 2247.28, + "end": 2249.62, + "probability": 0.9946 + }, + { + "start": 2250.54, + "end": 2253.44, + "probability": 0.9921 + }, + { + "start": 2253.44, + "end": 2256.88, + "probability": 0.9834 + }, + { + "start": 2257.04, + "end": 2258.2, + "probability": 0.9645 + }, + { + "start": 2258.48, + "end": 2260.38, + "probability": 0.949 + }, + { + "start": 2260.54, + "end": 2261.16, + "probability": 0.2264 + }, + { + "start": 2261.72, + "end": 2263.2, + "probability": 0.8587 + }, + { + "start": 2263.46, + "end": 2266.26, + "probability": 0.978 + }, + { + "start": 2266.26, + "end": 2269.24, + "probability": 0.9727 + }, + { + "start": 2269.82, + "end": 2276.98, + "probability": 0.9741 + }, + { + "start": 2277.06, + "end": 2278.4, + "probability": 0.8042 + }, + { + "start": 2278.66, + "end": 2280.2, + "probability": 0.7326 + }, + { + "start": 2280.76, + "end": 2281.42, + "probability": 0.7199 + }, + { + "start": 2282.0, + "end": 2282.88, + "probability": 0.9099 + }, + { + "start": 2282.94, + "end": 2286.94, + "probability": 0.8389 + }, + { + "start": 2287.96, + "end": 2293.5, + "probability": 0.5337 + }, + { + "start": 2294.28, + "end": 2295.88, + "probability": 0.1235 + }, + { + "start": 2295.88, + "end": 2296.02, + "probability": 0.4894 + }, + { + "start": 2296.06, + "end": 2296.06, + "probability": 0.1148 + }, + { + "start": 2296.14, + "end": 2296.16, + "probability": 0.3229 + }, + { + "start": 2296.16, + "end": 2296.16, + "probability": 0.4612 + }, + { + "start": 2296.16, + "end": 2296.82, + "probability": 0.3595 + }, + { + "start": 2296.96, + "end": 2300.66, + "probability": 0.6048 + }, + { + "start": 2301.18, + "end": 2306.3, + "probability": 0.7388 + }, + { + "start": 2306.36, + "end": 2306.84, + "probability": 0.7401 + }, + { + "start": 2306.92, + "end": 2307.22, + "probability": 0.4092 + }, + { + "start": 2307.24, + "end": 2309.26, + "probability": 0.9293 + }, + { + "start": 2310.02, + "end": 2310.74, + "probability": 0.0119 + }, + { + "start": 2310.86, + "end": 2313.92, + "probability": 0.8162 + }, + { + "start": 2314.04, + "end": 2315.66, + "probability": 0.9677 + }, + { + "start": 2315.96, + "end": 2317.16, + "probability": 0.6368 + }, + { + "start": 2317.88, + "end": 2318.16, + "probability": 0.0043 + }, + { + "start": 2318.16, + "end": 2319.45, + "probability": 0.5179 + }, + { + "start": 2319.86, + "end": 2321.84, + "probability": 0.0765 + }, + { + "start": 2322.2, + "end": 2323.46, + "probability": 0.2771 + }, + { + "start": 2323.64, + "end": 2325.62, + "probability": 0.2724 + }, + { + "start": 2325.68, + "end": 2326.42, + "probability": 0.4211 + }, + { + "start": 2326.8, + "end": 2327.46, + "probability": 0.9465 + }, + { + "start": 2329.48, + "end": 2331.32, + "probability": 0.9797 + }, + { + "start": 2331.64, + "end": 2332.94, + "probability": 0.8357 + }, + { + "start": 2334.54, + "end": 2335.74, + "probability": 0.8093 + }, + { + "start": 2338.28, + "end": 2339.62, + "probability": 0.9493 + }, + { + "start": 2344.4, + "end": 2348.46, + "probability": 0.9982 + }, + { + "start": 2348.98, + "end": 2352.96, + "probability": 0.9287 + }, + { + "start": 2353.94, + "end": 2354.86, + "probability": 0.6731 + }, + { + "start": 2354.88, + "end": 2356.3, + "probability": 0.0234 + }, + { + "start": 2356.3, + "end": 2357.44, + "probability": 0.9648 + }, + { + "start": 2357.96, + "end": 2358.02, + "probability": 0.1628 + }, + { + "start": 2358.06, + "end": 2358.51, + "probability": 0.024 + }, + { + "start": 2361.34, + "end": 2366.1, + "probability": 0.9686 + }, + { + "start": 2366.1, + "end": 2369.98, + "probability": 0.9881 + }, + { + "start": 2370.5, + "end": 2371.9, + "probability": 0.9617 + }, + { + "start": 2375.18, + "end": 2378.78, + "probability": 0.9968 + }, + { + "start": 2379.02, + "end": 2381.61, + "probability": 0.9964 + }, + { + "start": 2382.04, + "end": 2384.18, + "probability": 0.9 + }, + { + "start": 2386.26, + "end": 2390.36, + "probability": 0.9866 + }, + { + "start": 2391.08, + "end": 2392.2, + "probability": 0.8014 + }, + { + "start": 2392.88, + "end": 2395.22, + "probability": 0.6704 + }, + { + "start": 2396.04, + "end": 2397.76, + "probability": 0.9814 + }, + { + "start": 2397.96, + "end": 2400.16, + "probability": 0.9764 + }, + { + "start": 2401.22, + "end": 2402.42, + "probability": 0.611 + }, + { + "start": 2403.08, + "end": 2404.62, + "probability": 0.9752 + }, + { + "start": 2405.26, + "end": 2406.44, + "probability": 0.8154 + }, + { + "start": 2407.22, + "end": 2409.82, + "probability": 0.9767 + }, + { + "start": 2410.64, + "end": 2414.1, + "probability": 0.9943 + }, + { + "start": 2414.82, + "end": 2417.28, + "probability": 0.9915 + }, + { + "start": 2418.46, + "end": 2420.02, + "probability": 0.7487 + }, + { + "start": 2420.1, + "end": 2421.95, + "probability": 0.8219 + }, + { + "start": 2422.42, + "end": 2423.66, + "probability": 0.8601 + }, + { + "start": 2423.9, + "end": 2424.56, + "probability": 0.8277 + }, + { + "start": 2424.68, + "end": 2428.26, + "probability": 0.8133 + }, + { + "start": 2428.96, + "end": 2431.68, + "probability": 0.9935 + }, + { + "start": 2432.36, + "end": 2435.79, + "probability": 0.9795 + }, + { + "start": 2438.12, + "end": 2439.18, + "probability": 0.7771 + }, + { + "start": 2439.28, + "end": 2443.78, + "probability": 0.9706 + }, + { + "start": 2443.78, + "end": 2449.54, + "probability": 0.9956 + }, + { + "start": 2450.12, + "end": 2450.88, + "probability": 0.5433 + }, + { + "start": 2450.98, + "end": 2451.4, + "probability": 0.6447 + }, + { + "start": 2453.02, + "end": 2459.22, + "probability": 0.8884 + }, + { + "start": 2459.22, + "end": 2468.0, + "probability": 0.7458 + }, + { + "start": 2468.14, + "end": 2473.88, + "probability": 0.8337 + }, + { + "start": 2474.36, + "end": 2477.78, + "probability": 0.9321 + }, + { + "start": 2477.88, + "end": 2481.2, + "probability": 0.7792 + }, + { + "start": 2485.6, + "end": 2488.02, + "probability": 0.9891 + }, + { + "start": 2490.44, + "end": 2492.42, + "probability": 0.1831 + }, + { + "start": 2493.28, + "end": 2493.28, + "probability": 0.0029 + }, + { + "start": 2494.44, + "end": 2496.68, + "probability": 0.0145 + }, + { + "start": 2500.54, + "end": 2504.94, + "probability": 0.5725 + }, + { + "start": 2505.42, + "end": 2509.92, + "probability": 0.9135 + }, + { + "start": 2511.06, + "end": 2513.16, + "probability": 0.821 + }, + { + "start": 2513.42, + "end": 2517.54, + "probability": 0.9479 + }, + { + "start": 2517.62, + "end": 2520.82, + "probability": 0.991 + }, + { + "start": 2520.82, + "end": 2524.98, + "probability": 0.9969 + }, + { + "start": 2525.48, + "end": 2529.98, + "probability": 0.9979 + }, + { + "start": 2530.32, + "end": 2531.28, + "probability": 0.9177 + }, + { + "start": 2531.44, + "end": 2533.46, + "probability": 0.9616 + }, + { + "start": 2533.52, + "end": 2535.76, + "probability": 0.9226 + }, + { + "start": 2536.86, + "end": 2541.12, + "probability": 0.9991 + }, + { + "start": 2541.6, + "end": 2543.92, + "probability": 0.8169 + }, + { + "start": 2543.92, + "end": 2548.14, + "probability": 0.9829 + }, + { + "start": 2548.26, + "end": 2549.14, + "probability": 0.6925 + }, + { + "start": 2549.46, + "end": 2550.22, + "probability": 0.2378 + }, + { + "start": 2550.56, + "end": 2551.22, + "probability": 0.5091 + }, + { + "start": 2551.44, + "end": 2555.3, + "probability": 0.9338 + }, + { + "start": 2555.52, + "end": 2556.98, + "probability": 0.7251 + }, + { + "start": 2557.26, + "end": 2559.84, + "probability": 0.9616 + }, + { + "start": 2560.04, + "end": 2562.48, + "probability": 0.9427 + }, + { + "start": 2563.34, + "end": 2568.08, + "probability": 0.788 + }, + { + "start": 2568.96, + "end": 2569.94, + "probability": 0.9355 + }, + { + "start": 2570.04, + "end": 2571.42, + "probability": 0.6841 + }, + { + "start": 2571.92, + "end": 2575.42, + "probability": 0.9761 + }, + { + "start": 2575.42, + "end": 2580.98, + "probability": 0.959 + }, + { + "start": 2581.28, + "end": 2581.6, + "probability": 0.5201 + }, + { + "start": 2581.64, + "end": 2582.72, + "probability": 0.9006 + }, + { + "start": 2582.82, + "end": 2583.02, + "probability": 0.4403 + }, + { + "start": 2583.1, + "end": 2583.42, + "probability": 0.3774 + }, + { + "start": 2583.46, + "end": 2584.16, + "probability": 0.2432 + }, + { + "start": 2584.28, + "end": 2588.94, + "probability": 0.9951 + }, + { + "start": 2589.22, + "end": 2593.1, + "probability": 0.9884 + }, + { + "start": 2593.74, + "end": 2596.3, + "probability": 0.9938 + }, + { + "start": 2596.32, + "end": 2600.74, + "probability": 0.5843 + }, + { + "start": 2600.86, + "end": 2604.04, + "probability": 0.9669 + }, + { + "start": 2604.56, + "end": 2613.5, + "probability": 0.3332 + }, + { + "start": 2613.7, + "end": 2617.88, + "probability": 0.7573 + }, + { + "start": 2617.98, + "end": 2620.18, + "probability": 0.9837 + }, + { + "start": 2620.2, + "end": 2620.66, + "probability": 0.6049 + }, + { + "start": 2620.8, + "end": 2622.66, + "probability": 0.9928 + }, + { + "start": 2622.72, + "end": 2624.2, + "probability": 0.8332 + }, + { + "start": 2624.2, + "end": 2627.34, + "probability": 0.2613 + }, + { + "start": 2627.46, + "end": 2631.18, + "probability": 0.8403 + }, + { + "start": 2632.32, + "end": 2637.32, + "probability": 0.9984 + }, + { + "start": 2637.32, + "end": 2642.74, + "probability": 0.9962 + }, + { + "start": 2643.84, + "end": 2645.03, + "probability": 0.9382 + }, + { + "start": 2645.84, + "end": 2649.34, + "probability": 0.9958 + }, + { + "start": 2649.56, + "end": 2650.56, + "probability": 0.6101 + }, + { + "start": 2651.18, + "end": 2651.96, + "probability": 0.7907 + }, + { + "start": 2652.04, + "end": 2658.44, + "probability": 0.9598 + }, + { + "start": 2658.82, + "end": 2662.23, + "probability": 0.9448 + }, + { + "start": 2662.72, + "end": 2665.68, + "probability": 0.9544 + }, + { + "start": 2665.8, + "end": 2667.48, + "probability": 0.9854 + }, + { + "start": 2667.74, + "end": 2669.7, + "probability": 0.9453 + }, + { + "start": 2670.4, + "end": 2672.1, + "probability": 0.7924 + }, + { + "start": 2672.86, + "end": 2674.02, + "probability": 0.8182 + }, + { + "start": 2675.1, + "end": 2678.76, + "probability": 0.895 + }, + { + "start": 2679.18, + "end": 2679.52, + "probability": 0.5989 + }, + { + "start": 2679.52, + "end": 2682.48, + "probability": 0.9704 + }, + { + "start": 2683.26, + "end": 2687.52, + "probability": 0.9846 + }, + { + "start": 2688.08, + "end": 2691.14, + "probability": 0.8432 + }, + { + "start": 2691.54, + "end": 2692.78, + "probability": 0.8673 + }, + { + "start": 2692.9, + "end": 2697.42, + "probability": 0.9961 + }, + { + "start": 2698.4, + "end": 2699.22, + "probability": 0.0302 + }, + { + "start": 2699.74, + "end": 2706.64, + "probability": 0.8813 + }, + { + "start": 2707.26, + "end": 2710.72, + "probability": 0.9896 + }, + { + "start": 2711.5, + "end": 2713.86, + "probability": 0.9231 + }, + { + "start": 2714.32, + "end": 2717.57, + "probability": 0.9575 + }, + { + "start": 2717.88, + "end": 2719.76, + "probability": 0.5523 + }, + { + "start": 2720.52, + "end": 2720.52, + "probability": 0.0712 + }, + { + "start": 2720.52, + "end": 2722.52, + "probability": 0.7307 + }, + { + "start": 2722.7, + "end": 2723.9, + "probability": 0.4782 + }, + { + "start": 2723.94, + "end": 2725.06, + "probability": 0.3217 + }, + { + "start": 2725.14, + "end": 2727.98, + "probability": 0.5837 + }, + { + "start": 2728.78, + "end": 2729.06, + "probability": 0.8345 + }, + { + "start": 2729.58, + "end": 2732.89, + "probability": 0.9934 + }, + { + "start": 2733.86, + "end": 2739.74, + "probability": 0.8119 + }, + { + "start": 2740.1, + "end": 2741.66, + "probability": 0.8146 + }, + { + "start": 2741.76, + "end": 2743.4, + "probability": 0.6497 + }, + { + "start": 2743.74, + "end": 2745.36, + "probability": 0.9719 + }, + { + "start": 2745.42, + "end": 2746.08, + "probability": 0.7746 + }, + { + "start": 2746.22, + "end": 2752.62, + "probability": 0.9808 + }, + { + "start": 2752.68, + "end": 2754.4, + "probability": 0.7094 + }, + { + "start": 2754.52, + "end": 2757.62, + "probability": 0.6598 + }, + { + "start": 2758.08, + "end": 2759.48, + "probability": 0.863 + }, + { + "start": 2760.02, + "end": 2764.32, + "probability": 0.9569 + }, + { + "start": 2765.4, + "end": 2772.44, + "probability": 0.9773 + }, + { + "start": 2772.44, + "end": 2779.02, + "probability": 0.9974 + }, + { + "start": 2779.78, + "end": 2782.18, + "probability": 0.9504 + }, + { + "start": 2782.94, + "end": 2786.3, + "probability": 0.9507 + }, + { + "start": 2787.5, + "end": 2788.82, + "probability": 0.9244 + }, + { + "start": 2789.96, + "end": 2790.48, + "probability": 0.5177 + }, + { + "start": 2791.14, + "end": 2792.14, + "probability": 0.8919 + }, + { + "start": 2792.82, + "end": 2796.22, + "probability": 0.6749 + }, + { + "start": 2796.32, + "end": 2797.94, + "probability": 0.9574 + }, + { + "start": 2798.66, + "end": 2803.22, + "probability": 0.9795 + }, + { + "start": 2803.86, + "end": 2807.3, + "probability": 0.98 + }, + { + "start": 2809.1, + "end": 2815.16, + "probability": 0.9929 + }, + { + "start": 2816.9, + "end": 2823.56, + "probability": 0.9014 + }, + { + "start": 2823.72, + "end": 2830.06, + "probability": 0.9438 + }, + { + "start": 2830.06, + "end": 2835.38, + "probability": 0.9722 + }, + { + "start": 2835.46, + "end": 2838.42, + "probability": 0.9826 + }, + { + "start": 2839.14, + "end": 2843.76, + "probability": 0.918 + }, + { + "start": 2844.54, + "end": 2844.96, + "probability": 0.8911 + }, + { + "start": 2846.46, + "end": 2847.58, + "probability": 0.7918 + }, + { + "start": 2847.74, + "end": 2849.52, + "probability": 0.9122 + }, + { + "start": 2849.66, + "end": 2853.22, + "probability": 0.9872 + }, + { + "start": 2853.8, + "end": 2856.43, + "probability": 0.0432 + }, + { + "start": 2857.46, + "end": 2858.76, + "probability": 0.18 + }, + { + "start": 2859.34, + "end": 2864.18, + "probability": 0.8469 + }, + { + "start": 2864.38, + "end": 2868.02, + "probability": 0.7532 + }, + { + "start": 2868.2, + "end": 2870.92, + "probability": 0.7591 + }, + { + "start": 2871.26, + "end": 2873.7, + "probability": 0.1422 + }, + { + "start": 2874.32, + "end": 2876.04, + "probability": 0.4641 + }, + { + "start": 2876.04, + "end": 2876.04, + "probability": 0.2914 + }, + { + "start": 2876.04, + "end": 2878.26, + "probability": 0.9119 + }, + { + "start": 2878.36, + "end": 2881.89, + "probability": 0.7475 + }, + { + "start": 2882.22, + "end": 2883.1, + "probability": 0.7219 + }, + { + "start": 2884.04, + "end": 2886.34, + "probability": 0.6895 + }, + { + "start": 2887.5, + "end": 2889.18, + "probability": 0.322 + }, + { + "start": 2889.24, + "end": 2891.0, + "probability": 0.8241 + }, + { + "start": 2891.44, + "end": 2895.42, + "probability": 0.7477 + }, + { + "start": 2895.72, + "end": 2896.38, + "probability": 0.9553 + }, + { + "start": 2897.08, + "end": 2901.32, + "probability": 0.9862 + }, + { + "start": 2901.8, + "end": 2903.22, + "probability": 0.6545 + }, + { + "start": 2904.64, + "end": 2905.58, + "probability": 0.8528 + }, + { + "start": 2905.7, + "end": 2912.1, + "probability": 0.9658 + }, + { + "start": 2913.74, + "end": 2915.85, + "probability": 0.9496 + }, + { + "start": 2917.28, + "end": 2922.2, + "probability": 0.9828 + }, + { + "start": 2923.9, + "end": 2924.92, + "probability": 0.974 + }, + { + "start": 2924.98, + "end": 2926.48, + "probability": 0.8157 + }, + { + "start": 2926.62, + "end": 2929.46, + "probability": 0.9683 + }, + { + "start": 2930.14, + "end": 2931.94, + "probability": 0.9668 + }, + { + "start": 2932.48, + "end": 2934.48, + "probability": 0.714 + }, + { + "start": 2935.18, + "end": 2936.06, + "probability": 0.4652 + }, + { + "start": 2936.76, + "end": 2939.36, + "probability": 0.9878 + }, + { + "start": 2940.4, + "end": 2948.3, + "probability": 0.9146 + }, + { + "start": 2948.96, + "end": 2950.86, + "probability": 0.9803 + }, + { + "start": 2951.4, + "end": 2954.88, + "probability": 0.7929 + }, + { + "start": 2956.46, + "end": 2958.82, + "probability": 0.9297 + }, + { + "start": 2959.76, + "end": 2964.2, + "probability": 0.8928 + }, + { + "start": 2966.5, + "end": 2967.36, + "probability": 0.8404 + }, + { + "start": 2968.2, + "end": 2969.5, + "probability": 0.8969 + }, + { + "start": 2970.38, + "end": 2972.96, + "probability": 0.968 + }, + { + "start": 2973.12, + "end": 2974.26, + "probability": 0.674 + }, + { + "start": 2974.42, + "end": 2978.26, + "probability": 0.786 + }, + { + "start": 2978.94, + "end": 2980.46, + "probability": 0.7787 + }, + { + "start": 2981.42, + "end": 2983.86, + "probability": 0.791 + }, + { + "start": 2983.94, + "end": 2985.42, + "probability": 0.9727 + }, + { + "start": 2985.48, + "end": 2989.4, + "probability": 0.7933 + }, + { + "start": 2989.7, + "end": 2993.3, + "probability": 0.9821 + }, + { + "start": 2994.26, + "end": 2998.0, + "probability": 0.9695 + }, + { + "start": 2998.52, + "end": 3000.34, + "probability": 0.7573 + }, + { + "start": 3001.22, + "end": 3002.66, + "probability": 0.7549 + }, + { + "start": 3004.04, + "end": 3004.96, + "probability": 0.7998 + }, + { + "start": 3005.68, + "end": 3014.3, + "probability": 0.9792 + }, + { + "start": 3015.34, + "end": 3018.46, + "probability": 0.9922 + }, + { + "start": 3019.52, + "end": 3023.68, + "probability": 0.8835 + }, + { + "start": 3024.6, + "end": 3026.18, + "probability": 0.814 + }, + { + "start": 3027.6, + "end": 3028.5, + "probability": 0.9648 + }, + { + "start": 3030.44, + "end": 3036.28, + "probability": 0.9899 + }, + { + "start": 3036.72, + "end": 3038.08, + "probability": 0.9515 + }, + { + "start": 3038.62, + "end": 3040.4, + "probability": 0.9974 + }, + { + "start": 3041.22, + "end": 3044.06, + "probability": 0.9616 + }, + { + "start": 3045.04, + "end": 3047.76, + "probability": 0.809 + }, + { + "start": 3048.56, + "end": 3049.72, + "probability": 0.7625 + }, + { + "start": 3051.62, + "end": 3052.42, + "probability": 0.4187 + }, + { + "start": 3053.78, + "end": 3056.92, + "probability": 0.7881 + }, + { + "start": 3057.2, + "end": 3059.58, + "probability": 0.8369 + }, + { + "start": 3060.4, + "end": 3061.89, + "probability": 0.9307 + }, + { + "start": 3063.16, + "end": 3065.9, + "probability": 0.9685 + }, + { + "start": 3066.54, + "end": 3070.92, + "probability": 0.9985 + }, + { + "start": 3071.34, + "end": 3073.1, + "probability": 0.9932 + }, + { + "start": 3073.22, + "end": 3074.12, + "probability": 0.9021 + }, + { + "start": 3074.26, + "end": 3077.0, + "probability": 0.9734 + }, + { + "start": 3077.74, + "end": 3078.88, + "probability": 0.9497 + }, + { + "start": 3080.52, + "end": 3081.54, + "probability": 0.7318 + }, + { + "start": 3081.62, + "end": 3082.42, + "probability": 0.9656 + }, + { + "start": 3082.54, + "end": 3083.52, + "probability": 0.7901 + }, + { + "start": 3083.6, + "end": 3085.05, + "probability": 0.9908 + }, + { + "start": 3085.94, + "end": 3087.12, + "probability": 0.7583 + }, + { + "start": 3090.54, + "end": 3090.86, + "probability": 0.0428 + }, + { + "start": 3091.8, + "end": 3092.0, + "probability": 0.0995 + }, + { + "start": 3092.54, + "end": 3092.54, + "probability": 0.1741 + }, + { + "start": 3092.54, + "end": 3097.48, + "probability": 0.6192 + }, + { + "start": 3100.7, + "end": 3101.56, + "probability": 0.7766 + }, + { + "start": 3103.0, + "end": 3104.92, + "probability": 0.5623 + }, + { + "start": 3107.88, + "end": 3109.9, + "probability": 0.9868 + }, + { + "start": 3110.2, + "end": 3114.66, + "probability": 0.972 + }, + { + "start": 3114.86, + "end": 3118.87, + "probability": 0.988 + }, + { + "start": 3119.78, + "end": 3122.16, + "probability": 0.9816 + }, + { + "start": 3123.12, + "end": 3125.44, + "probability": 0.8244 + }, + { + "start": 3126.26, + "end": 3128.46, + "probability": 0.8901 + }, + { + "start": 3129.54, + "end": 3136.24, + "probability": 0.9961 + }, + { + "start": 3137.36, + "end": 3145.2, + "probability": 0.979 + }, + { + "start": 3145.82, + "end": 3152.1, + "probability": 0.9956 + }, + { + "start": 3153.5, + "end": 3159.25, + "probability": 0.9399 + }, + { + "start": 3161.26, + "end": 3164.98, + "probability": 0.9839 + }, + { + "start": 3165.56, + "end": 3167.6, + "probability": 0.9241 + }, + { + "start": 3168.1, + "end": 3171.51, + "probability": 0.9261 + }, + { + "start": 3172.16, + "end": 3180.1, + "probability": 0.8033 + }, + { + "start": 3182.84, + "end": 3186.64, + "probability": 0.9531 + }, + { + "start": 3186.7, + "end": 3190.04, + "probability": 0.9447 + }, + { + "start": 3190.14, + "end": 3190.72, + "probability": 0.8525 + }, + { + "start": 3192.52, + "end": 3195.78, + "probability": 0.6199 + }, + { + "start": 3196.7, + "end": 3197.72, + "probability": 0.9456 + }, + { + "start": 3198.16, + "end": 3200.78, + "probability": 0.9757 + }, + { + "start": 3200.92, + "end": 3204.24, + "probability": 0.9819 + }, + { + "start": 3205.84, + "end": 3207.56, + "probability": 0.9927 + }, + { + "start": 3207.94, + "end": 3210.2, + "probability": 0.998 + }, + { + "start": 3210.94, + "end": 3214.84, + "probability": 0.9707 + }, + { + "start": 3215.2, + "end": 3221.46, + "probability": 0.9767 + }, + { + "start": 3223.38, + "end": 3226.84, + "probability": 0.9777 + }, + { + "start": 3227.38, + "end": 3228.18, + "probability": 0.8649 + }, + { + "start": 3228.66, + "end": 3230.66, + "probability": 0.9963 + }, + { + "start": 3231.12, + "end": 3234.05, + "probability": 0.8573 + }, + { + "start": 3235.26, + "end": 3236.3, + "probability": 0.9023 + }, + { + "start": 3236.58, + "end": 3242.54, + "probability": 0.9556 + }, + { + "start": 3242.98, + "end": 3244.24, + "probability": 0.9668 + }, + { + "start": 3244.62, + "end": 3245.62, + "probability": 0.6461 + }, + { + "start": 3245.86, + "end": 3251.04, + "probability": 0.9448 + }, + { + "start": 3251.04, + "end": 3255.14, + "probability": 0.8272 + }, + { + "start": 3255.64, + "end": 3259.74, + "probability": 0.8372 + }, + { + "start": 3266.66, + "end": 3268.06, + "probability": 0.6987 + }, + { + "start": 3268.64, + "end": 3272.28, + "probability": 0.9782 + }, + { + "start": 3272.4, + "end": 3278.08, + "probability": 0.8953 + }, + { + "start": 3278.3, + "end": 3280.78, + "probability": 0.9808 + }, + { + "start": 3281.5, + "end": 3282.82, + "probability": 0.8929 + }, + { + "start": 3286.66, + "end": 3290.5, + "probability": 0.777 + }, + { + "start": 3291.52, + "end": 3294.78, + "probability": 0.966 + }, + { + "start": 3294.78, + "end": 3298.04, + "probability": 0.9932 + }, + { + "start": 3299.42, + "end": 3300.64, + "probability": 0.893 + }, + { + "start": 3302.12, + "end": 3305.36, + "probability": 0.8719 + }, + { + "start": 3305.6, + "end": 3306.46, + "probability": 0.7945 + }, + { + "start": 3306.84, + "end": 3308.3, + "probability": 0.8937 + }, + { + "start": 3308.82, + "end": 3309.62, + "probability": 0.8927 + }, + { + "start": 3310.8, + "end": 3315.84, + "probability": 0.9589 + }, + { + "start": 3316.96, + "end": 3319.2, + "probability": 0.863 + }, + { + "start": 3319.68, + "end": 3323.28, + "probability": 0.99 + }, + { + "start": 3324.06, + "end": 3324.82, + "probability": 0.8332 + }, + { + "start": 3325.54, + "end": 3326.66, + "probability": 0.7666 + }, + { + "start": 3328.24, + "end": 3328.84, + "probability": 0.7444 + }, + { + "start": 3329.02, + "end": 3331.14, + "probability": 0.9687 + }, + { + "start": 3331.24, + "end": 3334.68, + "probability": 0.9585 + }, + { + "start": 3335.56, + "end": 3340.48, + "probability": 0.9476 + }, + { + "start": 3340.9, + "end": 3350.2, + "probability": 0.9515 + }, + { + "start": 3350.64, + "end": 3352.98, + "probability": 0.7811 + }, + { + "start": 3354.12, + "end": 3356.56, + "probability": 0.9788 + }, + { + "start": 3356.76, + "end": 3358.1, + "probability": 0.98 + }, + { + "start": 3358.56, + "end": 3360.5, + "probability": 0.949 + }, + { + "start": 3360.56, + "end": 3365.94, + "probability": 0.9056 + }, + { + "start": 3365.94, + "end": 3369.88, + "probability": 0.9982 + }, + { + "start": 3369.98, + "end": 3371.16, + "probability": 0.6614 + }, + { + "start": 3371.92, + "end": 3376.68, + "probability": 0.9082 + }, + { + "start": 3377.8, + "end": 3379.18, + "probability": 0.274 + }, + { + "start": 3379.18, + "end": 3380.04, + "probability": 0.706 + }, + { + "start": 3380.18, + "end": 3381.09, + "probability": 0.7791 + }, + { + "start": 3381.7, + "end": 3384.14, + "probability": 0.9758 + }, + { + "start": 3384.26, + "end": 3386.48, + "probability": 0.8228 + }, + { + "start": 3386.98, + "end": 3387.62, + "probability": 0.4864 + }, + { + "start": 3387.82, + "end": 3388.68, + "probability": 0.8298 + }, + { + "start": 3388.86, + "end": 3389.76, + "probability": 0.9414 + }, + { + "start": 3390.38, + "end": 3392.38, + "probability": 0.835 + }, + { + "start": 3392.5, + "end": 3393.36, + "probability": 0.5575 + }, + { + "start": 3393.36, + "end": 3394.62, + "probability": 0.4353 + }, + { + "start": 3394.62, + "end": 3398.58, + "probability": 0.3405 + }, + { + "start": 3398.58, + "end": 3400.64, + "probability": 0.7937 + }, + { + "start": 3401.14, + "end": 3405.08, + "probability": 0.7143 + }, + { + "start": 3405.76, + "end": 3411.04, + "probability": 0.8906 + }, + { + "start": 3411.78, + "end": 3417.84, + "probability": 0.9883 + }, + { + "start": 3419.16, + "end": 3420.54, + "probability": 0.9775 + }, + { + "start": 3422.54, + "end": 3426.15, + "probability": 0.9876 + }, + { + "start": 3426.98, + "end": 3428.51, + "probability": 0.9326 + }, + { + "start": 3429.56, + "end": 3430.6, + "probability": 0.7831 + }, + { + "start": 3430.84, + "end": 3432.66, + "probability": 0.7363 + }, + { + "start": 3433.2, + "end": 3434.76, + "probability": 0.9817 + }, + { + "start": 3434.9, + "end": 3437.38, + "probability": 0.9662 + }, + { + "start": 3438.3, + "end": 3439.62, + "probability": 0.9912 + }, + { + "start": 3439.8, + "end": 3442.02, + "probability": 0.9077 + }, + { + "start": 3442.2, + "end": 3443.7, + "probability": 0.7993 + }, + { + "start": 3443.88, + "end": 3444.6, + "probability": 0.9421 + }, + { + "start": 3444.68, + "end": 3445.68, + "probability": 0.67 + }, + { + "start": 3448.18, + "end": 3452.58, + "probability": 0.8729 + }, + { + "start": 3452.74, + "end": 3455.94, + "probability": 0.9294 + }, + { + "start": 3456.0, + "end": 3459.06, + "probability": 0.6466 + }, + { + "start": 3459.94, + "end": 3463.4, + "probability": 0.9931 + }, + { + "start": 3464.28, + "end": 3467.4, + "probability": 0.9748 + }, + { + "start": 3467.82, + "end": 3471.14, + "probability": 0.9418 + }, + { + "start": 3471.38, + "end": 3473.68, + "probability": 0.7838 + }, + { + "start": 3474.2, + "end": 3475.78, + "probability": 0.7602 + }, + { + "start": 3475.9, + "end": 3478.6, + "probability": 0.9489 + }, + { + "start": 3478.96, + "end": 3482.62, + "probability": 0.9805 + }, + { + "start": 3483.04, + "end": 3488.26, + "probability": 0.9933 + }, + { + "start": 3488.54, + "end": 3490.71, + "probability": 0.837 + }, + { + "start": 3491.86, + "end": 3499.12, + "probability": 0.9689 + }, + { + "start": 3500.34, + "end": 3503.28, + "probability": 0.9932 + }, + { + "start": 3503.94, + "end": 3508.44, + "probability": 0.9504 + }, + { + "start": 3508.44, + "end": 3512.8, + "probability": 0.9955 + }, + { + "start": 3512.94, + "end": 3514.02, + "probability": 0.3617 + }, + { + "start": 3515.52, + "end": 3517.86, + "probability": 0.9647 + }, + { + "start": 3517.94, + "end": 3521.32, + "probability": 0.9753 + }, + { + "start": 3521.52, + "end": 3522.78, + "probability": 0.9901 + }, + { + "start": 3523.24, + "end": 3525.26, + "probability": 0.9945 + }, + { + "start": 3525.58, + "end": 3530.84, + "probability": 0.9786 + }, + { + "start": 3532.48, + "end": 3536.74, + "probability": 0.9977 + }, + { + "start": 3537.68, + "end": 3538.16, + "probability": 0.8825 + }, + { + "start": 3540.5, + "end": 3545.14, + "probability": 0.9902 + }, + { + "start": 3545.7, + "end": 3550.02, + "probability": 0.9381 + }, + { + "start": 3550.92, + "end": 3555.44, + "probability": 0.9907 + }, + { + "start": 3555.74, + "end": 3558.48, + "probability": 0.8889 + }, + { + "start": 3558.84, + "end": 3559.44, + "probability": 0.5361 + }, + { + "start": 3560.36, + "end": 3563.56, + "probability": 0.9819 + }, + { + "start": 3563.64, + "end": 3564.1, + "probability": 0.8141 + }, + { + "start": 3564.22, + "end": 3565.12, + "probability": 0.3898 + }, + { + "start": 3565.18, + "end": 3566.48, + "probability": 0.9014 + }, + { + "start": 3567.3, + "end": 3567.67, + "probability": 0.8804 + }, + { + "start": 3569.16, + "end": 3572.5, + "probability": 0.9843 + }, + { + "start": 3572.8, + "end": 3575.06, + "probability": 0.9934 + }, + { + "start": 3575.26, + "end": 3578.8, + "probability": 0.8005 + }, + { + "start": 3578.86, + "end": 3580.14, + "probability": 0.4549 + }, + { + "start": 3580.78, + "end": 3582.29, + "probability": 0.5351 + }, + { + "start": 3582.79, + "end": 3589.44, + "probability": 0.9932 + }, + { + "start": 3589.54, + "end": 3591.0, + "probability": 0.6865 + }, + { + "start": 3592.14, + "end": 3594.03, + "probability": 0.9224 + }, + { + "start": 3594.46, + "end": 3598.02, + "probability": 0.995 + }, + { + "start": 3598.96, + "end": 3603.28, + "probability": 0.977 + }, + { + "start": 3603.4, + "end": 3609.66, + "probability": 0.9917 + }, + { + "start": 3610.02, + "end": 3611.56, + "probability": 0.998 + }, + { + "start": 3613.92, + "end": 3618.38, + "probability": 0.9966 + }, + { + "start": 3618.38, + "end": 3622.46, + "probability": 0.9948 + }, + { + "start": 3623.0, + "end": 3628.16, + "probability": 0.9913 + }, + { + "start": 3628.32, + "end": 3631.62, + "probability": 0.9907 + }, + { + "start": 3632.02, + "end": 3633.82, + "probability": 0.995 + }, + { + "start": 3633.9, + "end": 3635.5, + "probability": 0.9754 + }, + { + "start": 3635.76, + "end": 3636.34, + "probability": 0.2893 + }, + { + "start": 3636.34, + "end": 3637.38, + "probability": 0.9635 + }, + { + "start": 3637.46, + "end": 3638.44, + "probability": 0.8839 + }, + { + "start": 3638.78, + "end": 3640.78, + "probability": 0.9775 + }, + { + "start": 3641.28, + "end": 3643.56, + "probability": 0.9875 + }, + { + "start": 3643.72, + "end": 3644.84, + "probability": 0.9398 + }, + { + "start": 3645.22, + "end": 3648.21, + "probability": 0.9806 + }, + { + "start": 3648.76, + "end": 3653.08, + "probability": 0.991 + }, + { + "start": 3653.16, + "end": 3654.56, + "probability": 0.6775 + }, + { + "start": 3655.0, + "end": 3655.82, + "probability": 0.925 + }, + { + "start": 3656.12, + "end": 3658.52, + "probability": 0.8029 + }, + { + "start": 3658.62, + "end": 3660.06, + "probability": 0.7604 + }, + { + "start": 3660.4, + "end": 3662.7, + "probability": 0.9603 + }, + { + "start": 3663.18, + "end": 3665.1, + "probability": 0.9845 + }, + { + "start": 3666.82, + "end": 3670.32, + "probability": 0.9908 + }, + { + "start": 3671.78, + "end": 3673.86, + "probability": 0.9987 + }, + { + "start": 3673.96, + "end": 3675.96, + "probability": 0.8284 + }, + { + "start": 3678.94, + "end": 3683.02, + "probability": 0.9171 + }, + { + "start": 3683.9, + "end": 3688.16, + "probability": 0.9756 + }, + { + "start": 3688.52, + "end": 3691.1, + "probability": 0.9756 + }, + { + "start": 3691.16, + "end": 3695.52, + "probability": 0.9788 + }, + { + "start": 3695.58, + "end": 3700.3, + "probability": 0.9779 + }, + { + "start": 3700.58, + "end": 3702.14, + "probability": 0.8783 + }, + { + "start": 3702.74, + "end": 3703.72, + "probability": 0.9684 + }, + { + "start": 3704.34, + "end": 3710.94, + "probability": 0.9814 + }, + { + "start": 3712.0, + "end": 3714.66, + "probability": 0.9611 + }, + { + "start": 3715.38, + "end": 3719.42, + "probability": 0.9701 + }, + { + "start": 3719.42, + "end": 3723.26, + "probability": 0.9535 + }, + { + "start": 3723.52, + "end": 3726.04, + "probability": 0.9437 + }, + { + "start": 3726.24, + "end": 3727.36, + "probability": 0.6626 + }, + { + "start": 3727.72, + "end": 3734.6, + "probability": 0.9923 + }, + { + "start": 3734.98, + "end": 3737.5, + "probability": 0.9685 + }, + { + "start": 3737.6, + "end": 3739.98, + "probability": 0.9333 + }, + { + "start": 3740.14, + "end": 3743.78, + "probability": 0.9966 + }, + { + "start": 3744.06, + "end": 3745.88, + "probability": 0.7029 + }, + { + "start": 3746.3, + "end": 3747.62, + "probability": 0.7317 + }, + { + "start": 3747.68, + "end": 3749.0, + "probability": 0.9385 + }, + { + "start": 3749.32, + "end": 3750.82, + "probability": 0.788 + }, + { + "start": 3751.46, + "end": 3752.62, + "probability": 0.9565 + }, + { + "start": 3752.96, + "end": 3756.38, + "probability": 0.9707 + }, + { + "start": 3756.38, + "end": 3760.12, + "probability": 0.9806 + }, + { + "start": 3760.94, + "end": 3766.26, + "probability": 0.995 + }, + { + "start": 3766.92, + "end": 3769.7, + "probability": 0.9889 + }, + { + "start": 3770.36, + "end": 3774.72, + "probability": 0.9295 + }, + { + "start": 3777.4, + "end": 3778.68, + "probability": 0.8298 + }, + { + "start": 3780.14, + "end": 3781.19, + "probability": 0.8452 + }, + { + "start": 3782.12, + "end": 3782.86, + "probability": 0.5796 + }, + { + "start": 3783.02, + "end": 3789.68, + "probability": 0.9766 + }, + { + "start": 3789.68, + "end": 3794.38, + "probability": 0.9956 + }, + { + "start": 3795.72, + "end": 3798.56, + "probability": 0.8931 + }, + { + "start": 3799.02, + "end": 3800.92, + "probability": 0.9887 + }, + { + "start": 3801.36, + "end": 3803.1, + "probability": 0.8082 + }, + { + "start": 3803.64, + "end": 3806.12, + "probability": 0.9975 + }, + { + "start": 3806.78, + "end": 3809.54, + "probability": 0.936 + }, + { + "start": 3809.66, + "end": 3811.44, + "probability": 0.9756 + }, + { + "start": 3811.86, + "end": 3817.32, + "probability": 0.9719 + }, + { + "start": 3818.68, + "end": 3821.54, + "probability": 0.7323 + }, + { + "start": 3822.18, + "end": 3825.8, + "probability": 0.953 + }, + { + "start": 3826.54, + "end": 3830.72, + "probability": 0.8247 + }, + { + "start": 3830.86, + "end": 3834.86, + "probability": 0.9729 + }, + { + "start": 3835.48, + "end": 3837.3, + "probability": 0.7173 + }, + { + "start": 3838.88, + "end": 3841.9, + "probability": 0.9062 + }, + { + "start": 3842.26, + "end": 3844.68, + "probability": 0.7933 + }, + { + "start": 3845.24, + "end": 3846.89, + "probability": 0.7383 + }, + { + "start": 3848.02, + "end": 3850.02, + "probability": 0.2301 + }, + { + "start": 3850.02, + "end": 3850.98, + "probability": 0.674 + }, + { + "start": 3850.98, + "end": 3853.56, + "probability": 0.9828 + }, + { + "start": 3854.04, + "end": 3855.12, + "probability": 0.6651 + }, + { + "start": 3855.5, + "end": 3860.88, + "probability": 0.8613 + }, + { + "start": 3860.94, + "end": 3861.7, + "probability": 0.8872 + }, + { + "start": 3861.82, + "end": 3862.7, + "probability": 0.7392 + }, + { + "start": 3862.78, + "end": 3865.94, + "probability": 0.7374 + }, + { + "start": 3866.54, + "end": 3871.08, + "probability": 0.7837 + }, + { + "start": 3871.92, + "end": 3872.94, + "probability": 0.7727 + }, + { + "start": 3873.22, + "end": 3873.5, + "probability": 0.602 + }, + { + "start": 3873.64, + "end": 3874.92, + "probability": 0.8541 + }, + { + "start": 3875.04, + "end": 3875.66, + "probability": 0.6411 + }, + { + "start": 3875.76, + "end": 3877.41, + "probability": 0.1163 + }, + { + "start": 3877.5, + "end": 3878.04, + "probability": 0.2136 + }, + { + "start": 3878.16, + "end": 3879.02, + "probability": 0.6097 + }, + { + "start": 3879.2, + "end": 3881.12, + "probability": 0.9673 + }, + { + "start": 3881.26, + "end": 3882.6, + "probability": 0.7733 + }, + { + "start": 3882.6, + "end": 3884.14, + "probability": 0.9893 + }, + { + "start": 3884.26, + "end": 3884.44, + "probability": 0.7023 + }, + { + "start": 3884.46, + "end": 3884.76, + "probability": 0.6285 + }, + { + "start": 3884.76, + "end": 3885.64, + "probability": 0.8235 + }, + { + "start": 3885.8, + "end": 3887.24, + "probability": 0.8627 + }, + { + "start": 3887.66, + "end": 3889.45, + "probability": 0.8423 + }, + { + "start": 3889.7, + "end": 3891.3, + "probability": 0.5437 + }, + { + "start": 3891.54, + "end": 3894.93, + "probability": 0.9927 + }, + { + "start": 3895.94, + "end": 3897.88, + "probability": 0.959 + }, + { + "start": 3898.0, + "end": 3899.34, + "probability": 0.7435 + }, + { + "start": 3899.46, + "end": 3901.42, + "probability": 0.9857 + }, + { + "start": 3901.48, + "end": 3902.12, + "probability": 0.613 + }, + { + "start": 3902.28, + "end": 3903.7, + "probability": 0.9443 + }, + { + "start": 3904.06, + "end": 3907.62, + "probability": 0.9247 + }, + { + "start": 3908.0, + "end": 3910.13, + "probability": 0.9832 + }, + { + "start": 3910.38, + "end": 3911.66, + "probability": 0.9172 + }, + { + "start": 3912.04, + "end": 3913.99, + "probability": 0.9609 + }, + { + "start": 3915.02, + "end": 3917.76, + "probability": 0.9893 + }, + { + "start": 3918.48, + "end": 3923.24, + "probability": 0.5341 + }, + { + "start": 3923.82, + "end": 3925.32, + "probability": 0.1063 + }, + { + "start": 3925.34, + "end": 3926.7, + "probability": 0.8921 + }, + { + "start": 3926.92, + "end": 3929.56, + "probability": 0.785 + }, + { + "start": 3929.62, + "end": 3932.3, + "probability": 0.9336 + }, + { + "start": 3932.4, + "end": 3934.14, + "probability": 0.58 + }, + { + "start": 3934.22, + "end": 3934.96, + "probability": 0.7852 + }, + { + "start": 3935.06, + "end": 3938.36, + "probability": 0.8038 + }, + { + "start": 3938.5, + "end": 3939.96, + "probability": 0.964 + }, + { + "start": 3940.4, + "end": 3942.14, + "probability": 0.9673 + }, + { + "start": 3942.14, + "end": 3943.04, + "probability": 0.5334 + }, + { + "start": 3943.1, + "end": 3944.48, + "probability": 0.9956 + }, + { + "start": 3944.6, + "end": 3945.3, + "probability": 0.9937 + }, + { + "start": 3946.02, + "end": 3947.5, + "probability": 0.7051 + }, + { + "start": 3947.62, + "end": 3949.7, + "probability": 0.7631 + }, + { + "start": 3950.08, + "end": 3951.66, + "probability": 0.66 + }, + { + "start": 3951.78, + "end": 3951.88, + "probability": 0.5963 + }, + { + "start": 3952.04, + "end": 3953.22, + "probability": 0.6812 + }, + { + "start": 3953.54, + "end": 3956.6, + "probability": 0.861 + }, + { + "start": 3957.04, + "end": 3963.46, + "probability": 0.998 + }, + { + "start": 3964.04, + "end": 3971.5, + "probability": 0.9958 + }, + { + "start": 3971.5, + "end": 3979.46, + "probability": 0.892 + }, + { + "start": 3979.66, + "end": 3980.46, + "probability": 0.7253 + }, + { + "start": 3980.58, + "end": 3982.94, + "probability": 0.9912 + }, + { + "start": 3983.98, + "end": 3988.56, + "probability": 0.8256 + }, + { + "start": 3989.2, + "end": 3990.08, + "probability": 0.7935 + }, + { + "start": 3990.16, + "end": 3994.48, + "probability": 0.9723 + }, + { + "start": 3994.64, + "end": 3996.02, + "probability": 0.8752 + }, + { + "start": 3996.42, + "end": 3997.18, + "probability": 0.8593 + }, + { + "start": 3997.34, + "end": 3998.51, + "probability": 0.9161 + }, + { + "start": 3998.74, + "end": 4002.52, + "probability": 0.9893 + }, + { + "start": 4002.74, + "end": 4003.74, + "probability": 0.9212 + }, + { + "start": 4003.82, + "end": 4005.52, + "probability": 0.9755 + }, + { + "start": 4005.76, + "end": 4007.8, + "probability": 0.9653 + }, + { + "start": 4008.18, + "end": 4011.3, + "probability": 0.9587 + }, + { + "start": 4013.18, + "end": 4014.22, + "probability": 0.767 + }, + { + "start": 4014.94, + "end": 4016.22, + "probability": 0.6519 + }, + { + "start": 4017.08, + "end": 4020.52, + "probability": 0.9894 + }, + { + "start": 4021.0, + "end": 4027.18, + "probability": 0.9886 + }, + { + "start": 4027.66, + "end": 4030.2, + "probability": 0.9971 + }, + { + "start": 4030.4, + "end": 4031.22, + "probability": 0.7341 + }, + { + "start": 4031.58, + "end": 4032.7, + "probability": 0.7444 + }, + { + "start": 4032.92, + "end": 4037.43, + "probability": 0.9641 + }, + { + "start": 4037.64, + "end": 4041.44, + "probability": 0.8424 + }, + { + "start": 4042.36, + "end": 4046.08, + "probability": 0.844 + }, + { + "start": 4047.14, + "end": 4048.92, + "probability": 0.9243 + }, + { + "start": 4049.06, + "end": 4051.76, + "probability": 0.9349 + }, + { + "start": 4052.08, + "end": 4053.94, + "probability": 0.8885 + }, + { + "start": 4054.62, + "end": 4057.28, + "probability": 0.9633 + }, + { + "start": 4058.04, + "end": 4059.82, + "probability": 0.959 + }, + { + "start": 4059.88, + "end": 4061.0, + "probability": 0.8073 + }, + { + "start": 4061.34, + "end": 4065.06, + "probability": 0.9688 + }, + { + "start": 4065.58, + "end": 4066.08, + "probability": 0.9154 + }, + { + "start": 4066.7, + "end": 4068.74, + "probability": 0.9287 + }, + { + "start": 4068.9, + "end": 4071.3, + "probability": 0.9546 + }, + { + "start": 4071.42, + "end": 4072.54, + "probability": 0.7766 + }, + { + "start": 4072.96, + "end": 4077.58, + "probability": 0.895 + }, + { + "start": 4077.58, + "end": 4080.96, + "probability": 0.9854 + }, + { + "start": 4088.35, + "end": 4091.98, + "probability": 0.2661 + }, + { + "start": 4092.12, + "end": 4093.6, + "probability": 0.758 + }, + { + "start": 4094.18, + "end": 4095.38, + "probability": 0.7921 + }, + { + "start": 4096.28, + "end": 4098.52, + "probability": 0.9642 + }, + { + "start": 4099.64, + "end": 4102.26, + "probability": 0.9351 + }, + { + "start": 4103.4, + "end": 4105.23, + "probability": 0.77 + }, + { + "start": 4105.98, + "end": 4106.4, + "probability": 0.5269 + }, + { + "start": 4106.96, + "end": 4110.06, + "probability": 0.9683 + }, + { + "start": 4110.06, + "end": 4113.38, + "probability": 0.8412 + }, + { + "start": 4114.66, + "end": 4116.64, + "probability": 0.0353 + }, + { + "start": 4116.82, + "end": 4117.28, + "probability": 0.3498 + }, + { + "start": 4117.36, + "end": 4118.12, + "probability": 0.608 + }, + { + "start": 4118.12, + "end": 4121.72, + "probability": 0.955 + }, + { + "start": 4121.82, + "end": 4123.7, + "probability": 0.5247 + }, + { + "start": 4123.8, + "end": 4126.66, + "probability": 0.1948 + }, + { + "start": 4126.88, + "end": 4129.3, + "probability": 0.2571 + }, + { + "start": 4130.88, + "end": 4131.9, + "probability": 0.5908 + }, + { + "start": 4131.98, + "end": 4134.14, + "probability": 0.852 + }, + { + "start": 4134.38, + "end": 4135.8, + "probability": 0.9736 + }, + { + "start": 4137.44, + "end": 4137.82, + "probability": 0.1035 + }, + { + "start": 4137.86, + "end": 4139.48, + "probability": 0.8935 + }, + { + "start": 4139.56, + "end": 4140.49, + "probability": 0.9642 + }, + { + "start": 4141.54, + "end": 4141.98, + "probability": 0.372 + }, + { + "start": 4142.08, + "end": 4145.76, + "probability": 0.9594 + }, + { + "start": 4145.76, + "end": 4148.88, + "probability": 0.999 + }, + { + "start": 4148.9, + "end": 4149.45, + "probability": 0.51 + }, + { + "start": 4149.78, + "end": 4151.02, + "probability": 0.9993 + }, + { + "start": 4152.08, + "end": 4156.14, + "probability": 0.9546 + }, + { + "start": 4156.36, + "end": 4157.18, + "probability": 0.5488 + }, + { + "start": 4157.76, + "end": 4158.64, + "probability": 0.9524 + }, + { + "start": 4159.4, + "end": 4164.96, + "probability": 0.9901 + }, + { + "start": 4165.5, + "end": 4166.87, + "probability": 0.7197 + }, + { + "start": 4167.7, + "end": 4168.88, + "probability": 0.7957 + }, + { + "start": 4169.1, + "end": 4171.45, + "probability": 0.9873 + }, + { + "start": 4172.24, + "end": 4176.78, + "probability": 0.9072 + }, + { + "start": 4176.92, + "end": 4177.27, + "probability": 0.9258 + }, + { + "start": 4177.76, + "end": 4178.3, + "probability": 0.7882 + }, + { + "start": 4179.14, + "end": 4179.54, + "probability": 0.1779 + }, + { + "start": 4179.64, + "end": 4180.6, + "probability": 0.3495 + }, + { + "start": 4180.7, + "end": 4185.18, + "probability": 0.9425 + }, + { + "start": 4185.32, + "end": 4185.9, + "probability": 0.928 + }, + { + "start": 4186.08, + "end": 4187.14, + "probability": 0.7406 + }, + { + "start": 4187.74, + "end": 4189.46, + "probability": 0.9267 + }, + { + "start": 4189.82, + "end": 4192.56, + "probability": 0.9687 + }, + { + "start": 4193.06, + "end": 4194.3, + "probability": 0.7163 + }, + { + "start": 4194.38, + "end": 4195.72, + "probability": 0.6709 + }, + { + "start": 4195.76, + "end": 4197.04, + "probability": 0.9253 + }, + { + "start": 4197.14, + "end": 4202.88, + "probability": 0.9805 + }, + { + "start": 4203.32, + "end": 4206.34, + "probability": 0.951 + }, + { + "start": 4206.64, + "end": 4208.37, + "probability": 0.9551 + }, + { + "start": 4208.7, + "end": 4213.5, + "probability": 0.9348 + }, + { + "start": 4214.04, + "end": 4216.34, + "probability": 0.9901 + }, + { + "start": 4216.38, + "end": 4218.88, + "probability": 0.972 + }, + { + "start": 4219.12, + "end": 4220.34, + "probability": 0.7107 + }, + { + "start": 4220.88, + "end": 4222.12, + "probability": 0.9482 + }, + { + "start": 4224.12, + "end": 4226.08, + "probability": 0.6883 + }, + { + "start": 4226.16, + "end": 4226.88, + "probability": 0.7435 + }, + { + "start": 4226.94, + "end": 4231.66, + "probability": 0.9256 + }, + { + "start": 4231.76, + "end": 4232.72, + "probability": 0.5038 + }, + { + "start": 4232.92, + "end": 4234.02, + "probability": 0.8209 + }, + { + "start": 4234.14, + "end": 4235.74, + "probability": 0.8603 + }, + { + "start": 4235.92, + "end": 4237.14, + "probability": 0.9741 + }, + { + "start": 4237.76, + "end": 4240.44, + "probability": 0.8494 + }, + { + "start": 4241.12, + "end": 4242.14, + "probability": 0.991 + }, + { + "start": 4242.28, + "end": 4244.14, + "probability": 0.9861 + }, + { + "start": 4244.3, + "end": 4246.13, + "probability": 0.9515 + }, + { + "start": 4246.44, + "end": 4248.26, + "probability": 0.8669 + }, + { + "start": 4248.32, + "end": 4249.63, + "probability": 0.8793 + }, + { + "start": 4250.7, + "end": 4253.96, + "probability": 0.951 + }, + { + "start": 4254.52, + "end": 4256.54, + "probability": 0.9941 + }, + { + "start": 4257.8, + "end": 4261.86, + "probability": 0.9854 + }, + { + "start": 4261.86, + "end": 4267.96, + "probability": 0.9933 + }, + { + "start": 4268.4, + "end": 4269.64, + "probability": 0.949 + }, + { + "start": 4270.04, + "end": 4271.76, + "probability": 0.8502 + }, + { + "start": 4272.32, + "end": 4273.36, + "probability": 0.9639 + }, + { + "start": 4273.68, + "end": 4276.55, + "probability": 0.9794 + }, + { + "start": 4276.88, + "end": 4277.96, + "probability": 0.761 + }, + { + "start": 4278.0, + "end": 4281.66, + "probability": 0.8426 + }, + { + "start": 4282.6, + "end": 4286.52, + "probability": 0.8346 + }, + { + "start": 4286.52, + "end": 4291.16, + "probability": 0.8839 + }, + { + "start": 4291.42, + "end": 4293.58, + "probability": 0.7485 + }, + { + "start": 4294.26, + "end": 4296.06, + "probability": 0.9926 + }, + { + "start": 4296.48, + "end": 4297.56, + "probability": 0.9836 + }, + { + "start": 4297.64, + "end": 4298.52, + "probability": 0.939 + }, + { + "start": 4298.58, + "end": 4299.98, + "probability": 0.9731 + }, + { + "start": 4300.5, + "end": 4303.0, + "probability": 0.9865 + }, + { + "start": 4304.3, + "end": 4305.7, + "probability": 0.8344 + }, + { + "start": 4305.8, + "end": 4308.9, + "probability": 0.9237 + }, + { + "start": 4308.96, + "end": 4309.14, + "probability": 0.7672 + }, + { + "start": 4309.2, + "end": 4310.1, + "probability": 0.9619 + }, + { + "start": 4310.68, + "end": 4312.18, + "probability": 0.8757 + }, + { + "start": 4312.92, + "end": 4316.8, + "probability": 0.988 + }, + { + "start": 4316.9, + "end": 4317.84, + "probability": 0.7805 + }, + { + "start": 4318.44, + "end": 4319.52, + "probability": 0.5884 + }, + { + "start": 4320.04, + "end": 4320.74, + "probability": 0.7399 + }, + { + "start": 4320.98, + "end": 4324.08, + "probability": 0.9647 + }, + { + "start": 4324.28, + "end": 4324.91, + "probability": 0.7598 + }, + { + "start": 4325.38, + "end": 4325.42, + "probability": 0.5686 + }, + { + "start": 4325.42, + "end": 4326.74, + "probability": 0.3292 + }, + { + "start": 4326.74, + "end": 4330.64, + "probability": 0.2515 + }, + { + "start": 4330.9, + "end": 4331.92, + "probability": 0.0144 + }, + { + "start": 4332.06, + "end": 4332.38, + "probability": 0.7043 + }, + { + "start": 4334.05, + "end": 4334.44, + "probability": 0.0979 + }, + { + "start": 4334.54, + "end": 4334.82, + "probability": 0.3942 + }, + { + "start": 4335.38, + "end": 4343.42, + "probability": 0.9583 + }, + { + "start": 4344.1, + "end": 4347.5, + "probability": 0.9839 + }, + { + "start": 4347.68, + "end": 4351.34, + "probability": 0.9895 + }, + { + "start": 4352.54, + "end": 4354.72, + "probability": 0.7299 + }, + { + "start": 4355.46, + "end": 4357.7, + "probability": 0.735 + }, + { + "start": 4357.84, + "end": 4361.66, + "probability": 0.9933 + }, + { + "start": 4362.34, + "end": 4364.22, + "probability": 0.5787 + }, + { + "start": 4364.38, + "end": 4365.2, + "probability": 0.9174 + }, + { + "start": 4366.44, + "end": 4368.54, + "probability": 0.9854 + }, + { + "start": 4368.56, + "end": 4370.04, + "probability": 0.9824 + }, + { + "start": 4370.7, + "end": 4372.76, + "probability": 0.6005 + }, + { + "start": 4373.32, + "end": 4377.68, + "probability": 0.8965 + }, + { + "start": 4377.72, + "end": 4380.72, + "probability": 0.9956 + }, + { + "start": 4381.6, + "end": 4384.18, + "probability": 0.7778 + }, + { + "start": 4384.3, + "end": 4387.34, + "probability": 0.8611 + }, + { + "start": 4388.76, + "end": 4391.82, + "probability": 0.9932 + }, + { + "start": 4392.02, + "end": 4393.52, + "probability": 0.9912 + }, + { + "start": 4393.9, + "end": 4395.86, + "probability": 0.993 + }, + { + "start": 4397.2, + "end": 4397.36, + "probability": 0.0001 + }, + { + "start": 4404.18, + "end": 4406.38, + "probability": 0.0485 + }, + { + "start": 4406.44, + "end": 4406.98, + "probability": 0.2798 + }, + { + "start": 4407.64, + "end": 4411.26, + "probability": 0.591 + }, + { + "start": 4411.26, + "end": 4411.82, + "probability": 0.1519 + }, + { + "start": 4412.4, + "end": 4413.06, + "probability": 0.552 + }, + { + "start": 4413.08, + "end": 4413.99, + "probability": 0.9004 + }, + { + "start": 4414.62, + "end": 4418.8, + "probability": 0.5818 + }, + { + "start": 4418.9, + "end": 4420.74, + "probability": 0.728 + }, + { + "start": 4421.62, + "end": 4425.46, + "probability": 0.9907 + }, + { + "start": 4425.46, + "end": 4430.62, + "probability": 0.9829 + }, + { + "start": 4430.82, + "end": 4431.64, + "probability": 0.59 + }, + { + "start": 4432.0, + "end": 4432.98, + "probability": 0.898 + }, + { + "start": 4433.7, + "end": 4434.72, + "probability": 0.9675 + }, + { + "start": 4434.84, + "end": 4435.66, + "probability": 0.8835 + }, + { + "start": 4435.7, + "end": 4437.16, + "probability": 0.9895 + }, + { + "start": 4437.22, + "end": 4437.43, + "probability": 0.1653 + }, + { + "start": 4437.88, + "end": 4439.86, + "probability": 0.9722 + }, + { + "start": 4439.92, + "end": 4442.4, + "probability": 0.8584 + }, + { + "start": 4443.21, + "end": 4443.96, + "probability": 0.9531 + }, + { + "start": 4444.08, + "end": 4444.88, + "probability": 0.3633 + }, + { + "start": 4445.5, + "end": 4450.34, + "probability": 0.9491 + }, + { + "start": 4450.54, + "end": 4452.54, + "probability": 0.769 + }, + { + "start": 4452.54, + "end": 4453.72, + "probability": 0.5968 + }, + { + "start": 4453.76, + "end": 4455.09, + "probability": 0.277 + }, + { + "start": 4455.46, + "end": 4457.9, + "probability": 0.9587 + }, + { + "start": 4457.92, + "end": 4458.88, + "probability": 0.7981 + }, + { + "start": 4458.94, + "end": 4461.68, + "probability": 0.5241 + }, + { + "start": 4461.92, + "end": 4463.28, + "probability": 0.8109 + }, + { + "start": 4463.64, + "end": 4468.3, + "probability": 0.7834 + }, + { + "start": 4468.34, + "end": 4470.28, + "probability": 0.9102 + }, + { + "start": 4470.68, + "end": 4471.72, + "probability": 0.6997 + }, + { + "start": 4472.38, + "end": 4475.04, + "probability": 0.8626 + }, + { + "start": 4476.18, + "end": 4476.9, + "probability": 0.8545 + }, + { + "start": 4477.0, + "end": 4478.18, + "probability": 0.8315 + }, + { + "start": 4478.54, + "end": 4482.86, + "probability": 0.9408 + }, + { + "start": 4483.22, + "end": 4483.86, + "probability": 0.8562 + }, + { + "start": 4484.02, + "end": 4484.72, + "probability": 0.9043 + }, + { + "start": 4484.92, + "end": 4486.92, + "probability": 0.9941 + }, + { + "start": 4486.98, + "end": 4487.6, + "probability": 0.5247 + }, + { + "start": 4487.64, + "end": 4489.14, + "probability": 0.4373 + }, + { + "start": 4489.62, + "end": 4490.32, + "probability": 0.4747 + }, + { + "start": 4490.4, + "end": 4490.9, + "probability": 0.0102 + }, + { + "start": 4491.46, + "end": 4492.36, + "probability": 0.9852 + }, + { + "start": 4492.86, + "end": 4495.74, + "probability": 0.9928 + }, + { + "start": 4496.28, + "end": 4499.82, + "probability": 0.8433 + }, + { + "start": 4500.14, + "end": 4503.54, + "probability": 0.7472 + }, + { + "start": 4504.84, + "end": 4506.44, + "probability": 0.6244 + }, + { + "start": 4506.56, + "end": 4509.14, + "probability": 0.7215 + }, + { + "start": 4509.48, + "end": 4513.1, + "probability": 0.9397 + }, + { + "start": 4513.18, + "end": 4514.1, + "probability": 0.7103 + }, + { + "start": 4517.04, + "end": 4519.78, + "probability": 0.4566 + }, + { + "start": 4533.5, + "end": 4538.36, + "probability": 0.7193 + }, + { + "start": 4540.38, + "end": 4541.76, + "probability": 0.4791 + }, + { + "start": 4542.62, + "end": 4543.8, + "probability": 0.7137 + }, + { + "start": 4545.86, + "end": 4549.3, + "probability": 0.9174 + }, + { + "start": 4550.82, + "end": 4552.14, + "probability": 0.554 + }, + { + "start": 4553.58, + "end": 4556.38, + "probability": 0.8579 + }, + { + "start": 4558.96, + "end": 4564.36, + "probability": 0.8333 + }, + { + "start": 4565.24, + "end": 4568.64, + "probability": 0.9547 + }, + { + "start": 4570.0, + "end": 4570.54, + "probability": 0.7784 + }, + { + "start": 4570.68, + "end": 4573.08, + "probability": 0.7827 + }, + { + "start": 4573.36, + "end": 4574.18, + "probability": 0.7803 + }, + { + "start": 4574.18, + "end": 4574.84, + "probability": 0.7899 + }, + { + "start": 4575.76, + "end": 4578.02, + "probability": 0.0129 + }, + { + "start": 4578.02, + "end": 4580.4, + "probability": 0.5582 + }, + { + "start": 4582.2, + "end": 4591.9, + "probability": 0.9707 + }, + { + "start": 4592.24, + "end": 4593.2, + "probability": 0.6638 + }, + { + "start": 4593.96, + "end": 4594.92, + "probability": 0.8536 + }, + { + "start": 4595.02, + "end": 4595.68, + "probability": 0.968 + }, + { + "start": 4597.66, + "end": 4598.82, + "probability": 0.9573 + }, + { + "start": 4599.7, + "end": 4601.06, + "probability": 0.9966 + }, + { + "start": 4602.14, + "end": 4602.71, + "probability": 0.9109 + }, + { + "start": 4604.02, + "end": 4606.04, + "probability": 0.9448 + }, + { + "start": 4607.78, + "end": 4614.16, + "probability": 0.943 + }, + { + "start": 4614.28, + "end": 4615.24, + "probability": 0.8709 + }, + { + "start": 4615.64, + "end": 4617.46, + "probability": 0.9314 + }, + { + "start": 4631.33, + "end": 4636.92, + "probability": 0.7696 + }, + { + "start": 4637.72, + "end": 4641.6, + "probability": 0.5531 + }, + { + "start": 4641.72, + "end": 4642.58, + "probability": 0.8821 + }, + { + "start": 4643.34, + "end": 4643.92, + "probability": 0.8638 + }, + { + "start": 4644.44, + "end": 4649.04, + "probability": 0.7711 + }, + { + "start": 4650.06, + "end": 4656.0, + "probability": 0.9952 + }, + { + "start": 4656.04, + "end": 4657.44, + "probability": 0.903 + }, + { + "start": 4657.8, + "end": 4660.3, + "probability": 0.6827 + }, + { + "start": 4660.6, + "end": 4664.78, + "probability": 0.993 + }, + { + "start": 4665.64, + "end": 4668.98, + "probability": 0.9541 + }, + { + "start": 4669.8, + "end": 4670.92, + "probability": 0.8724 + }, + { + "start": 4671.58, + "end": 4674.28, + "probability": 0.9867 + }, + { + "start": 4674.46, + "end": 4676.14, + "probability": 0.972 + }, + { + "start": 4676.62, + "end": 4682.06, + "probability": 0.9508 + }, + { + "start": 4682.44, + "end": 4683.92, + "probability": 0.9153 + }, + { + "start": 4684.52, + "end": 4686.17, + "probability": 0.9756 + }, + { + "start": 4687.16, + "end": 4691.68, + "probability": 0.9694 + }, + { + "start": 4693.12, + "end": 4694.86, + "probability": 0.9131 + }, + { + "start": 4695.66, + "end": 4698.62, + "probability": 0.9059 + }, + { + "start": 4698.92, + "end": 4704.22, + "probability": 0.9786 + }, + { + "start": 4704.22, + "end": 4710.6, + "probability": 0.9674 + }, + { + "start": 4715.46, + "end": 4717.37, + "probability": 0.8621 + }, + { + "start": 4719.72, + "end": 4723.0, + "probability": 0.9645 + }, + { + "start": 4723.56, + "end": 4728.56, + "probability": 0.9911 + }, + { + "start": 4728.96, + "end": 4730.72, + "probability": 0.651 + }, + { + "start": 4730.98, + "end": 4732.34, + "probability": 0.9097 + }, + { + "start": 4732.9, + "end": 4734.53, + "probability": 0.8214 + }, + { + "start": 4736.28, + "end": 4737.44, + "probability": 0.7973 + }, + { + "start": 4738.0, + "end": 4742.8, + "probability": 0.8517 + }, + { + "start": 4742.8, + "end": 4743.64, + "probability": 0.5772 + }, + { + "start": 4744.44, + "end": 4746.47, + "probability": 0.9692 + }, + { + "start": 4746.84, + "end": 4748.08, + "probability": 0.8608 + }, + { + "start": 4749.62, + "end": 4753.6, + "probability": 0.7871 + }, + { + "start": 4754.46, + "end": 4755.24, + "probability": 0.7739 + }, + { + "start": 4755.32, + "end": 4757.6, + "probability": 0.9338 + }, + { + "start": 4757.88, + "end": 4758.46, + "probability": 0.9255 + }, + { + "start": 4758.6, + "end": 4758.84, + "probability": 0.6835 + }, + { + "start": 4758.98, + "end": 4760.08, + "probability": 0.7943 + }, + { + "start": 4761.6, + "end": 4762.04, + "probability": 0.9116 + }, + { + "start": 4762.6, + "end": 4763.78, + "probability": 0.9904 + }, + { + "start": 4763.96, + "end": 4765.02, + "probability": 0.7196 + }, + { + "start": 4765.16, + "end": 4766.14, + "probability": 0.9014 + }, + { + "start": 4767.42, + "end": 4771.1, + "probability": 0.9983 + }, + { + "start": 4771.1, + "end": 4775.3, + "probability": 0.9944 + }, + { + "start": 4775.38, + "end": 4775.87, + "probability": 0.6407 + }, + { + "start": 4777.06, + "end": 4780.46, + "probability": 0.9296 + }, + { + "start": 4780.96, + "end": 4782.54, + "probability": 0.9083 + }, + { + "start": 4782.68, + "end": 4784.08, + "probability": 0.8084 + }, + { + "start": 4784.34, + "end": 4788.33, + "probability": 0.9876 + }, + { + "start": 4788.9, + "end": 4792.02, + "probability": 0.8542 + }, + { + "start": 4793.53, + "end": 4795.72, + "probability": 0.7967 + }, + { + "start": 4795.92, + "end": 4803.06, + "probability": 0.9883 + }, + { + "start": 4803.42, + "end": 4806.74, + "probability": 0.9784 + }, + { + "start": 4807.02, + "end": 4810.06, + "probability": 0.8727 + }, + { + "start": 4810.4, + "end": 4812.06, + "probability": 0.998 + }, + { + "start": 4812.4, + "end": 4813.32, + "probability": 0.9647 + }, + { + "start": 4813.58, + "end": 4815.92, + "probability": 0.978 + }, + { + "start": 4816.0, + "end": 4818.94, + "probability": 0.929 + }, + { + "start": 4819.6, + "end": 4821.46, + "probability": 0.9964 + }, + { + "start": 4821.64, + "end": 4825.0, + "probability": 0.9775 + }, + { + "start": 4825.3, + "end": 4825.78, + "probability": 0.8374 + }, + { + "start": 4825.9, + "end": 4828.1, + "probability": 0.9647 + }, + { + "start": 4828.62, + "end": 4833.82, + "probability": 0.9582 + }, + { + "start": 4849.22, + "end": 4851.1, + "probability": 0.8196 + }, + { + "start": 4856.79, + "end": 4859.0, + "probability": 0.6417 + }, + { + "start": 4860.34, + "end": 4863.08, + "probability": 0.7467 + }, + { + "start": 4863.76, + "end": 4866.14, + "probability": 0.9551 + }, + { + "start": 4867.1, + "end": 4869.34, + "probability": 0.9015 + }, + { + "start": 4869.9, + "end": 4871.5, + "probability": 0.846 + }, + { + "start": 4871.66, + "end": 4872.6, + "probability": 0.7127 + }, + { + "start": 4873.1, + "end": 4874.16, + "probability": 0.5647 + }, + { + "start": 4874.28, + "end": 4875.26, + "probability": 0.6383 + }, + { + "start": 4875.34, + "end": 4876.36, + "probability": 0.981 + }, + { + "start": 4876.94, + "end": 4877.88, + "probability": 0.8754 + }, + { + "start": 4878.7, + "end": 4879.16, + "probability": 0.5769 + }, + { + "start": 4879.84, + "end": 4881.5, + "probability": 0.5853 + }, + { + "start": 4882.12, + "end": 4884.52, + "probability": 0.8245 + }, + { + "start": 4885.26, + "end": 4886.94, + "probability": 0.8478 + }, + { + "start": 4888.36, + "end": 4889.74, + "probability": 0.9622 + }, + { + "start": 4889.86, + "end": 4895.14, + "probability": 0.9474 + }, + { + "start": 4895.68, + "end": 4899.18, + "probability": 0.7976 + }, + { + "start": 4900.08, + "end": 4903.68, + "probability": 0.7563 + }, + { + "start": 4904.1, + "end": 4905.58, + "probability": 0.9633 + }, + { + "start": 4906.1, + "end": 4911.4, + "probability": 0.936 + }, + { + "start": 4911.98, + "end": 4913.96, + "probability": 0.9366 + }, + { + "start": 4914.78, + "end": 4917.5, + "probability": 0.8742 + }, + { + "start": 4917.86, + "end": 4918.82, + "probability": 0.6828 + }, + { + "start": 4918.98, + "end": 4921.88, + "probability": 0.9346 + }, + { + "start": 4922.44, + "end": 4924.99, + "probability": 0.9714 + }, + { + "start": 4925.78, + "end": 4927.26, + "probability": 0.4943 + }, + { + "start": 4927.96, + "end": 4929.88, + "probability": 0.8838 + }, + { + "start": 4931.1, + "end": 4933.94, + "probability": 0.9683 + }, + { + "start": 4934.64, + "end": 4939.08, + "probability": 0.7864 + }, + { + "start": 4939.08, + "end": 4942.21, + "probability": 0.9565 + }, + { + "start": 4943.44, + "end": 4947.46, + "probability": 0.9748 + }, + { + "start": 4947.92, + "end": 4950.6, + "probability": 0.93 + }, + { + "start": 4951.04, + "end": 4951.6, + "probability": 0.2901 + }, + { + "start": 4952.02, + "end": 4952.86, + "probability": 0.6946 + }, + { + "start": 4953.18, + "end": 4954.18, + "probability": 0.9585 + }, + { + "start": 4955.22, + "end": 4959.9, + "probability": 0.9858 + }, + { + "start": 4961.58, + "end": 4964.34, + "probability": 0.9714 + }, + { + "start": 4965.22, + "end": 4966.44, + "probability": 0.9456 + }, + { + "start": 4966.96, + "end": 4968.34, + "probability": 0.9844 + }, + { + "start": 4969.06, + "end": 4972.74, + "probability": 0.9153 + }, + { + "start": 4973.78, + "end": 4976.62, + "probability": 0.9897 + }, + { + "start": 4977.1, + "end": 4979.06, + "probability": 0.9858 + }, + { + "start": 4981.1, + "end": 4982.26, + "probability": 0.978 + }, + { + "start": 4983.48, + "end": 4985.66, + "probability": 0.985 + }, + { + "start": 4986.12, + "end": 4989.68, + "probability": 0.985 + }, + { + "start": 4990.5, + "end": 4992.88, + "probability": 0.9551 + }, + { + "start": 4993.38, + "end": 4999.06, + "probability": 0.9845 + }, + { + "start": 4999.78, + "end": 5002.31, + "probability": 0.9934 + }, + { + "start": 5002.86, + "end": 5005.54, + "probability": 0.855 + }, + { + "start": 5005.98, + "end": 5012.24, + "probability": 0.9195 + }, + { + "start": 5012.42, + "end": 5012.96, + "probability": 0.8887 + }, + { + "start": 5013.2, + "end": 5014.72, + "probability": 0.7453 + }, + { + "start": 5015.38, + "end": 5017.08, + "probability": 0.9989 + }, + { + "start": 5017.5, + "end": 5018.5, + "probability": 0.748 + }, + { + "start": 5018.9, + "end": 5020.2, + "probability": 0.875 + }, + { + "start": 5021.38, + "end": 5024.14, + "probability": 0.9074 + }, + { + "start": 5024.96, + "end": 5027.55, + "probability": 0.9937 + }, + { + "start": 5027.92, + "end": 5033.96, + "probability": 0.972 + }, + { + "start": 5034.74, + "end": 5037.02, + "probability": 0.6887 + }, + { + "start": 5037.02, + "end": 5040.48, + "probability": 0.9929 + }, + { + "start": 5041.38, + "end": 5046.66, + "probability": 0.9902 + }, + { + "start": 5048.06, + "end": 5048.2, + "probability": 0.2237 + }, + { + "start": 5048.28, + "end": 5048.34, + "probability": 0.3148 + }, + { + "start": 5048.34, + "end": 5051.15, + "probability": 0.8818 + }, + { + "start": 5052.28, + "end": 5052.66, + "probability": 0.5888 + }, + { + "start": 5052.78, + "end": 5053.84, + "probability": 0.8197 + }, + { + "start": 5054.46, + "end": 5054.46, + "probability": 0.1827 + }, + { + "start": 5055.59, + "end": 5062.48, + "probability": 0.9749 + }, + { + "start": 5063.12, + "end": 5065.28, + "probability": 0.975 + }, + { + "start": 5065.28, + "end": 5069.24, + "probability": 0.8 + }, + { + "start": 5069.72, + "end": 5070.82, + "probability": 0.9819 + }, + { + "start": 5072.12, + "end": 5074.48, + "probability": 0.9105 + }, + { + "start": 5075.68, + "end": 5076.92, + "probability": 0.493 + }, + { + "start": 5077.16, + "end": 5078.86, + "probability": 0.9272 + }, + { + "start": 5079.24, + "end": 5080.9, + "probability": 0.6555 + }, + { + "start": 5081.68, + "end": 5085.14, + "probability": 0.9496 + }, + { + "start": 5086.28, + "end": 5090.2, + "probability": 0.8552 + }, + { + "start": 5090.3, + "end": 5097.06, + "probability": 0.9499 + }, + { + "start": 5097.64, + "end": 5100.02, + "probability": 0.9827 + }, + { + "start": 5100.88, + "end": 5101.02, + "probability": 0.0578 + }, + { + "start": 5101.04, + "end": 5102.92, + "probability": 0.7201 + }, + { + "start": 5103.76, + "end": 5105.04, + "probability": 0.6411 + }, + { + "start": 5105.34, + "end": 5109.28, + "probability": 0.9056 + }, + { + "start": 5109.32, + "end": 5112.2, + "probability": 0.9967 + }, + { + "start": 5112.68, + "end": 5112.98, + "probability": 0.3297 + }, + { + "start": 5113.04, + "end": 5113.74, + "probability": 0.6529 + }, + { + "start": 5114.6, + "end": 5117.84, + "probability": 0.9006 + }, + { + "start": 5118.1, + "end": 5123.9, + "probability": 0.9547 + }, + { + "start": 5124.24, + "end": 5128.8, + "probability": 0.9629 + }, + { + "start": 5129.22, + "end": 5133.62, + "probability": 0.9175 + }, + { + "start": 5133.62, + "end": 5136.88, + "probability": 0.9937 + }, + { + "start": 5137.48, + "end": 5139.28, + "probability": 0.9984 + }, + { + "start": 5139.82, + "end": 5144.14, + "probability": 0.9843 + }, + { + "start": 5145.0, + "end": 5145.2, + "probability": 0.5231 + }, + { + "start": 5145.22, + "end": 5148.82, + "probability": 0.8839 + }, + { + "start": 5150.4, + "end": 5151.42, + "probability": 0.5885 + }, + { + "start": 5151.56, + "end": 5153.72, + "probability": 0.7215 + }, + { + "start": 5153.78, + "end": 5155.7, + "probability": 0.267 + }, + { + "start": 5155.74, + "end": 5163.54, + "probability": 0.8445 + }, + { + "start": 5163.74, + "end": 5164.62, + "probability": 0.2642 + }, + { + "start": 5165.48, + "end": 5165.58, + "probability": 0.0538 + }, + { + "start": 5175.58, + "end": 5177.96, + "probability": 0.9183 + }, + { + "start": 5181.65, + "end": 5187.26, + "probability": 0.6759 + }, + { + "start": 5188.92, + "end": 5191.28, + "probability": 0.8958 + }, + { + "start": 5192.06, + "end": 5192.9, + "probability": 0.8337 + }, + { + "start": 5193.7, + "end": 5195.68, + "probability": 0.9873 + }, + { + "start": 5196.58, + "end": 5198.64, + "probability": 0.978 + }, + { + "start": 5199.8, + "end": 5200.4, + "probability": 0.2244 + }, + { + "start": 5201.26, + "end": 5203.4, + "probability": 0.9314 + }, + { + "start": 5203.42, + "end": 5204.2, + "probability": 0.6632 + }, + { + "start": 5204.22, + "end": 5205.22, + "probability": 0.4908 + }, + { + "start": 5205.26, + "end": 5211.65, + "probability": 0.9919 + }, + { + "start": 5212.14, + "end": 5216.14, + "probability": 0.6546 + }, + { + "start": 5218.68, + "end": 5218.88, + "probability": 0.4135 + }, + { + "start": 5219.2, + "end": 5219.74, + "probability": 0.9433 + }, + { + "start": 5219.76, + "end": 5227.06, + "probability": 0.9886 + }, + { + "start": 5227.1, + "end": 5228.24, + "probability": 0.729 + }, + { + "start": 5229.28, + "end": 5233.16, + "probability": 0.9736 + }, + { + "start": 5233.36, + "end": 5239.32, + "probability": 0.806 + }, + { + "start": 5240.24, + "end": 5244.32, + "probability": 0.9675 + }, + { + "start": 5245.22, + "end": 5249.5, + "probability": 0.674 + }, + { + "start": 5250.7, + "end": 5254.09, + "probability": 0.9194 + }, + { + "start": 5255.2, + "end": 5256.25, + "probability": 0.7747 + }, + { + "start": 5256.92, + "end": 5259.32, + "probability": 0.9592 + }, + { + "start": 5260.34, + "end": 5262.0, + "probability": 0.8925 + }, + { + "start": 5262.56, + "end": 5263.54, + "probability": 0.8065 + }, + { + "start": 5263.64, + "end": 5266.3, + "probability": 0.8649 + }, + { + "start": 5267.0, + "end": 5267.66, + "probability": 0.2853 + }, + { + "start": 5267.7, + "end": 5272.74, + "probability": 0.9852 + }, + { + "start": 5272.8, + "end": 5274.14, + "probability": 0.7657 + }, + { + "start": 5274.72, + "end": 5275.62, + "probability": 0.9438 + }, + { + "start": 5276.22, + "end": 5281.12, + "probability": 0.9663 + }, + { + "start": 5281.16, + "end": 5283.9, + "probability": 0.9837 + }, + { + "start": 5284.44, + "end": 5285.48, + "probability": 0.6898 + }, + { + "start": 5285.48, + "end": 5289.48, + "probability": 0.9097 + }, + { + "start": 5289.58, + "end": 5292.18, + "probability": 0.8078 + }, + { + "start": 5292.82, + "end": 5293.38, + "probability": 0.431 + }, + { + "start": 5293.46, + "end": 5293.96, + "probability": 0.7034 + }, + { + "start": 5294.32, + "end": 5296.66, + "probability": 0.9919 + }, + { + "start": 5296.72, + "end": 5299.14, + "probability": 0.9619 + }, + { + "start": 5299.22, + "end": 5303.92, + "probability": 0.9648 + }, + { + "start": 5304.64, + "end": 5305.38, + "probability": 0.3149 + }, + { + "start": 5305.78, + "end": 5306.62, + "probability": 0.6826 + }, + { + "start": 5306.64, + "end": 5307.48, + "probability": 0.3759 + }, + { + "start": 5307.64, + "end": 5308.7, + "probability": 0.9644 + }, + { + "start": 5309.6, + "end": 5312.22, + "probability": 0.991 + }, + { + "start": 5313.14, + "end": 5313.14, + "probability": 0.0817 + }, + { + "start": 5313.14, + "end": 5314.56, + "probability": 0.8916 + }, + { + "start": 5315.36, + "end": 5316.6, + "probability": 0.6735 + }, + { + "start": 5317.52, + "end": 5319.54, + "probability": 0.1963 + }, + { + "start": 5320.28, + "end": 5323.52, + "probability": 0.9775 + }, + { + "start": 5323.56, + "end": 5324.28, + "probability": 0.7805 + }, + { + "start": 5324.4, + "end": 5325.54, + "probability": 0.9077 + }, + { + "start": 5325.6, + "end": 5327.32, + "probability": 0.7568 + }, + { + "start": 5327.96, + "end": 5331.48, + "probability": 0.9168 + }, + { + "start": 5332.56, + "end": 5334.26, + "probability": 0.9696 + }, + { + "start": 5334.58, + "end": 5335.12, + "probability": 0.9055 + }, + { + "start": 5335.16, + "end": 5335.76, + "probability": 0.7922 + }, + { + "start": 5335.86, + "end": 5337.08, + "probability": 0.9922 + }, + { + "start": 5337.56, + "end": 5343.76, + "probability": 0.9636 + }, + { + "start": 5344.9, + "end": 5346.54, + "probability": 0.5621 + }, + { + "start": 5347.02, + "end": 5350.58, + "probability": 0.9819 + }, + { + "start": 5350.74, + "end": 5353.24, + "probability": 0.9799 + }, + { + "start": 5353.26, + "end": 5354.0, + "probability": 0.4029 + }, + { + "start": 5354.04, + "end": 5354.94, + "probability": 0.928 + }, + { + "start": 5355.46, + "end": 5357.62, + "probability": 0.6612 + }, + { + "start": 5358.32, + "end": 5359.5, + "probability": 0.7169 + }, + { + "start": 5359.62, + "end": 5363.72, + "probability": 0.7767 + }, + { + "start": 5364.24, + "end": 5365.8, + "probability": 0.6692 + }, + { + "start": 5365.94, + "end": 5366.78, + "probability": 0.5382 + }, + { + "start": 5366.84, + "end": 5371.24, + "probability": 0.8571 + }, + { + "start": 5371.32, + "end": 5373.42, + "probability": 0.8206 + }, + { + "start": 5373.58, + "end": 5373.72, + "probability": 0.3127 + }, + { + "start": 5373.8, + "end": 5374.26, + "probability": 0.74 + }, + { + "start": 5374.32, + "end": 5377.48, + "probability": 0.7568 + }, + { + "start": 5377.82, + "end": 5378.54, + "probability": 0.9197 + }, + { + "start": 5378.66, + "end": 5379.62, + "probability": 0.9432 + }, + { + "start": 5379.64, + "end": 5381.02, + "probability": 0.894 + }, + { + "start": 5381.1, + "end": 5383.58, + "probability": 0.8749 + }, + { + "start": 5384.02, + "end": 5385.5, + "probability": 0.8108 + }, + { + "start": 5385.94, + "end": 5386.4, + "probability": 0.7091 + }, + { + "start": 5386.68, + "end": 5387.91, + "probability": 0.9663 + }, + { + "start": 5388.46, + "end": 5390.86, + "probability": 0.9888 + }, + { + "start": 5391.1, + "end": 5393.24, + "probability": 0.9884 + }, + { + "start": 5393.52, + "end": 5397.54, + "probability": 0.9675 + }, + { + "start": 5397.72, + "end": 5398.24, + "probability": 0.3092 + }, + { + "start": 5398.28, + "end": 5401.42, + "probability": 0.9495 + }, + { + "start": 5401.64, + "end": 5401.78, + "probability": 0.2716 + }, + { + "start": 5401.8, + "end": 5402.9, + "probability": 0.5464 + }, + { + "start": 5403.38, + "end": 5406.74, + "probability": 0.7422 + }, + { + "start": 5406.88, + "end": 5408.83, + "probability": 0.9858 + }, + { + "start": 5409.38, + "end": 5410.32, + "probability": 0.8161 + }, + { + "start": 5410.68, + "end": 5411.32, + "probability": 0.431 + }, + { + "start": 5411.62, + "end": 5413.44, + "probability": 0.9712 + }, + { + "start": 5413.6, + "end": 5416.34, + "probability": 0.9684 + }, + { + "start": 5416.48, + "end": 5417.36, + "probability": 0.8929 + }, + { + "start": 5417.5, + "end": 5420.12, + "probability": 0.5353 + }, + { + "start": 5420.16, + "end": 5421.08, + "probability": 0.4596 + }, + { + "start": 5421.66, + "end": 5423.09, + "probability": 0.759 + }, + { + "start": 5423.56, + "end": 5424.86, + "probability": 0.0121 + }, + { + "start": 5424.86, + "end": 5427.75, + "probability": 0.7141 + }, + { + "start": 5428.44, + "end": 5430.24, + "probability": 0.5774 + }, + { + "start": 5430.38, + "end": 5431.88, + "probability": 0.7874 + }, + { + "start": 5432.06, + "end": 5435.64, + "probability": 0.9957 + }, + { + "start": 5437.86, + "end": 5438.3, + "probability": 0.353 + }, + { + "start": 5438.3, + "end": 5439.26, + "probability": 0.7905 + }, + { + "start": 5439.86, + "end": 5443.26, + "probability": 0.7869 + }, + { + "start": 5443.34, + "end": 5443.6, + "probability": 0.7 + }, + { + "start": 5443.84, + "end": 5444.68, + "probability": 0.703 + }, + { + "start": 5445.0, + "end": 5446.17, + "probability": 0.8503 + }, + { + "start": 5446.36, + "end": 5446.6, + "probability": 0.3894 + }, + { + "start": 5446.66, + "end": 5447.4, + "probability": 0.9005 + }, + { + "start": 5447.42, + "end": 5448.51, + "probability": 0.9297 + }, + { + "start": 5448.66, + "end": 5451.02, + "probability": 0.8606 + }, + { + "start": 5451.14, + "end": 5451.26, + "probability": 0.1091 + }, + { + "start": 5451.38, + "end": 5453.7, + "probability": 0.9907 + }, + { + "start": 5453.74, + "end": 5453.96, + "probability": 0.7469 + }, + { + "start": 5454.12, + "end": 5455.7, + "probability": 0.9122 + }, + { + "start": 5456.3, + "end": 5458.56, + "probability": 0.8855 + }, + { + "start": 5458.7, + "end": 5461.68, + "probability": 0.5766 + }, + { + "start": 5462.2, + "end": 5463.48, + "probability": 0.65 + }, + { + "start": 5470.66, + "end": 5472.1, + "probability": 0.5907 + }, + { + "start": 5472.2, + "end": 5472.2, + "probability": 0.4896 + }, + { + "start": 5472.2, + "end": 5474.04, + "probability": 0.4238 + }, + { + "start": 5475.52, + "end": 5478.62, + "probability": 0.9175 + }, + { + "start": 5479.8, + "end": 5480.85, + "probability": 0.9974 + }, + { + "start": 5482.44, + "end": 5486.44, + "probability": 0.8784 + }, + { + "start": 5487.4, + "end": 5493.08, + "probability": 0.9014 + }, + { + "start": 5493.78, + "end": 5495.14, + "probability": 0.6998 + }, + { + "start": 5495.9, + "end": 5496.88, + "probability": 0.9179 + }, + { + "start": 5497.32, + "end": 5498.64, + "probability": 0.8286 + }, + { + "start": 5498.96, + "end": 5504.82, + "probability": 0.9885 + }, + { + "start": 5505.46, + "end": 5509.08, + "probability": 0.9553 + }, + { + "start": 5509.1, + "end": 5511.56, + "probability": 0.9486 + }, + { + "start": 5512.14, + "end": 5517.46, + "probability": 0.9933 + }, + { + "start": 5517.76, + "end": 5522.68, + "probability": 0.9769 + }, + { + "start": 5523.08, + "end": 5526.2, + "probability": 0.994 + }, + { + "start": 5526.2, + "end": 5529.84, + "probability": 0.9963 + }, + { + "start": 5529.88, + "end": 5530.7, + "probability": 0.738 + }, + { + "start": 5531.34, + "end": 5533.68, + "probability": 0.6591 + }, + { + "start": 5533.7, + "end": 5534.72, + "probability": 0.9647 + }, + { + "start": 5535.04, + "end": 5535.62, + "probability": 0.7655 + }, + { + "start": 5535.74, + "end": 5537.36, + "probability": 0.9681 + }, + { + "start": 5537.58, + "end": 5538.67, + "probability": 0.5776 + }, + { + "start": 5539.26, + "end": 5542.84, + "probability": 0.9592 + }, + { + "start": 5542.94, + "end": 5543.78, + "probability": 0.7185 + }, + { + "start": 5543.82, + "end": 5547.38, + "probability": 0.8982 + }, + { + "start": 5547.38, + "end": 5549.34, + "probability": 0.4757 + }, + { + "start": 5549.58, + "end": 5552.12, + "probability": 0.8726 + }, + { + "start": 5552.14, + "end": 5553.46, + "probability": 0.9772 + }, + { + "start": 5553.58, + "end": 5557.54, + "probability": 0.7202 + }, + { + "start": 5558.02, + "end": 5558.54, + "probability": 0.9602 + }, + { + "start": 5559.18, + "end": 5559.76, + "probability": 0.9422 + }, + { + "start": 5559.92, + "end": 5560.16, + "probability": 0.4906 + }, + { + "start": 5560.18, + "end": 5562.96, + "probability": 0.8003 + }, + { + "start": 5563.32, + "end": 5564.46, + "probability": 0.9617 + }, + { + "start": 5565.2, + "end": 5566.48, + "probability": 0.8328 + }, + { + "start": 5566.68, + "end": 5567.83, + "probability": 0.9944 + }, + { + "start": 5568.8, + "end": 5569.02, + "probability": 0.0587 + }, + { + "start": 5569.02, + "end": 5575.14, + "probability": 0.9654 + }, + { + "start": 5575.2, + "end": 5578.54, + "probability": 0.8641 + }, + { + "start": 5578.76, + "end": 5580.18, + "probability": 0.8958 + }, + { + "start": 5580.32, + "end": 5581.33, + "probability": 0.8721 + }, + { + "start": 5581.96, + "end": 5583.62, + "probability": 0.6831 + }, + { + "start": 5583.86, + "end": 5585.7, + "probability": 0.9782 + }, + { + "start": 5585.84, + "end": 5586.04, + "probability": 0.6066 + }, + { + "start": 5586.12, + "end": 5589.56, + "probability": 0.8395 + }, + { + "start": 5590.02, + "end": 5592.8, + "probability": 0.8551 + }, + { + "start": 5593.2, + "end": 5594.96, + "probability": 0.851 + }, + { + "start": 5595.78, + "end": 5596.92, + "probability": 0.6973 + }, + { + "start": 5598.32, + "end": 5599.4, + "probability": 0.78 + }, + { + "start": 5599.98, + "end": 5601.46, + "probability": 0.8846 + }, + { + "start": 5601.58, + "end": 5607.0, + "probability": 0.998 + }, + { + "start": 5607.66, + "end": 5609.24, + "probability": 0.9852 + }, + { + "start": 5609.3, + "end": 5610.5, + "probability": 0.9269 + }, + { + "start": 5610.54, + "end": 5611.35, + "probability": 0.9113 + }, + { + "start": 5612.08, + "end": 5614.86, + "probability": 0.9893 + }, + { + "start": 5615.72, + "end": 5616.36, + "probability": 0.7371 + }, + { + "start": 5616.96, + "end": 5619.66, + "probability": 0.9956 + }, + { + "start": 5620.1, + "end": 5621.66, + "probability": 0.5267 + }, + { + "start": 5622.38, + "end": 5624.1, + "probability": 0.9097 + }, + { + "start": 5624.34, + "end": 5628.86, + "probability": 0.863 + }, + { + "start": 5628.94, + "end": 5629.68, + "probability": 0.8884 + }, + { + "start": 5630.0, + "end": 5630.78, + "probability": 0.9865 + }, + { + "start": 5630.94, + "end": 5631.56, + "probability": 0.7322 + }, + { + "start": 5631.9, + "end": 5632.56, + "probability": 0.8427 + }, + { + "start": 5632.58, + "end": 5636.14, + "probability": 0.9443 + }, + { + "start": 5636.68, + "end": 5638.76, + "probability": 0.9024 + }, + { + "start": 5639.42, + "end": 5640.36, + "probability": 0.9439 + }, + { + "start": 5640.92, + "end": 5642.29, + "probability": 0.9785 + }, + { + "start": 5642.86, + "end": 5644.9, + "probability": 0.7688 + }, + { + "start": 5645.12, + "end": 5645.98, + "probability": 0.7448 + }, + { + "start": 5646.74, + "end": 5650.7, + "probability": 0.91 + }, + { + "start": 5651.1, + "end": 5652.42, + "probability": 0.5856 + }, + { + "start": 5652.5, + "end": 5653.92, + "probability": 0.9211 + }, + { + "start": 5654.14, + "end": 5655.9, + "probability": 0.5789 + }, + { + "start": 5656.22, + "end": 5658.64, + "probability": 0.9629 + }, + { + "start": 5659.08, + "end": 5660.4, + "probability": 0.953 + }, + { + "start": 5660.4, + "end": 5662.26, + "probability": 0.6268 + }, + { + "start": 5662.82, + "end": 5665.02, + "probability": 0.8844 + }, + { + "start": 5665.4, + "end": 5666.96, + "probability": 0.9626 + }, + { + "start": 5667.5, + "end": 5671.36, + "probability": 0.9163 + }, + { + "start": 5671.36, + "end": 5673.75, + "probability": 0.9844 + }, + { + "start": 5674.38, + "end": 5677.04, + "probability": 0.9108 + }, + { + "start": 5677.6, + "end": 5678.66, + "probability": 0.8367 + }, + { + "start": 5678.86, + "end": 5679.9, + "probability": 0.6555 + }, + { + "start": 5680.0, + "end": 5681.97, + "probability": 0.7107 + }, + { + "start": 5682.56, + "end": 5682.58, + "probability": 0.733 + }, + { + "start": 5682.58, + "end": 5683.38, + "probability": 0.5989 + }, + { + "start": 5683.56, + "end": 5685.0, + "probability": 0.6788 + }, + { + "start": 5685.46, + "end": 5686.64, + "probability": 0.9017 + }, + { + "start": 5686.7, + "end": 5687.3, + "probability": 0.8674 + }, + { + "start": 5687.62, + "end": 5689.36, + "probability": 0.5632 + }, + { + "start": 5689.44, + "end": 5690.7, + "probability": 0.7397 + }, + { + "start": 5690.74, + "end": 5693.08, + "probability": 0.9854 + }, + { + "start": 5693.14, + "end": 5693.6, + "probability": 0.8839 + }, + { + "start": 5693.7, + "end": 5694.26, + "probability": 0.7415 + }, + { + "start": 5695.44, + "end": 5696.0, + "probability": 0.287 + }, + { + "start": 5696.06, + "end": 5696.71, + "probability": 0.9937 + }, + { + "start": 5697.1, + "end": 5699.74, + "probability": 0.9674 + }, + { + "start": 5699.92, + "end": 5701.2, + "probability": 0.7611 + }, + { + "start": 5701.48, + "end": 5702.44, + "probability": 0.8437 + }, + { + "start": 5702.6, + "end": 5706.42, + "probability": 0.9839 + }, + { + "start": 5706.7, + "end": 5707.14, + "probability": 0.8693 + }, + { + "start": 5707.8, + "end": 5708.42, + "probability": 0.644 + }, + { + "start": 5708.52, + "end": 5711.2, + "probability": 0.9975 + }, + { + "start": 5711.44, + "end": 5711.98, + "probability": 0.9873 + }, + { + "start": 5712.14, + "end": 5714.03, + "probability": 0.7505 + }, + { + "start": 5714.74, + "end": 5716.54, + "probability": 0.9482 + }, + { + "start": 5716.96, + "end": 5718.0, + "probability": 0.9635 + }, + { + "start": 5718.3, + "end": 5722.02, + "probability": 0.9863 + }, + { + "start": 5722.44, + "end": 5723.12, + "probability": 0.7232 + }, + { + "start": 5723.26, + "end": 5726.02, + "probability": 0.8932 + }, + { + "start": 5726.02, + "end": 5729.08, + "probability": 0.7909 + }, + { + "start": 5729.26, + "end": 5729.74, + "probability": 0.1283 + }, + { + "start": 5730.32, + "end": 5733.06, + "probability": 0.8966 + }, + { + "start": 5733.22, + "end": 5733.52, + "probability": 0.0139 + }, + { + "start": 5735.56, + "end": 5735.72, + "probability": 0.0005 + }, + { + "start": 5735.72, + "end": 5736.3, + "probability": 0.176 + }, + { + "start": 5736.52, + "end": 5740.9, + "probability": 0.9909 + }, + { + "start": 5741.42, + "end": 5741.98, + "probability": 0.8266 + }, + { + "start": 5751.26, + "end": 5752.34, + "probability": 0.5018 + }, + { + "start": 5752.42, + "end": 5753.54, + "probability": 0.8403 + }, + { + "start": 5757.9, + "end": 5759.4, + "probability": 0.1471 + }, + { + "start": 5760.32, + "end": 5761.56, + "probability": 0.7219 + }, + { + "start": 5762.82, + "end": 5770.0, + "probability": 0.9775 + }, + { + "start": 5771.4, + "end": 5777.36, + "probability": 0.9948 + }, + { + "start": 5777.36, + "end": 5780.88, + "probability": 0.9667 + }, + { + "start": 5782.68, + "end": 5790.24, + "probability": 0.9894 + }, + { + "start": 5790.24, + "end": 5797.64, + "probability": 0.9972 + }, + { + "start": 5798.64, + "end": 5801.42, + "probability": 0.8509 + }, + { + "start": 5802.64, + "end": 5808.82, + "probability": 0.9919 + }, + { + "start": 5809.2, + "end": 5811.78, + "probability": 0.9246 + }, + { + "start": 5812.4, + "end": 5814.88, + "probability": 0.9705 + }, + { + "start": 5816.66, + "end": 5821.2, + "probability": 0.9677 + }, + { + "start": 5823.12, + "end": 5827.28, + "probability": 0.4975 + }, + { + "start": 5827.28, + "end": 5832.28, + "probability": 0.8659 + }, + { + "start": 5832.92, + "end": 5836.64, + "probability": 0.9453 + }, + { + "start": 5838.06, + "end": 5842.74, + "probability": 0.947 + }, + { + "start": 5843.26, + "end": 5845.32, + "probability": 0.8118 + }, + { + "start": 5846.64, + "end": 5849.84, + "probability": 0.7422 + }, + { + "start": 5850.42, + "end": 5850.8, + "probability": 0.8876 + }, + { + "start": 5850.94, + "end": 5852.12, + "probability": 0.9653 + }, + { + "start": 5852.46, + "end": 5857.38, + "probability": 0.9932 + }, + { + "start": 5858.78, + "end": 5863.4, + "probability": 0.8803 + }, + { + "start": 5864.78, + "end": 5869.8, + "probability": 0.9659 + }, + { + "start": 5870.98, + "end": 5872.48, + "probability": 0.9095 + }, + { + "start": 5873.48, + "end": 5874.74, + "probability": 0.9951 + }, + { + "start": 5875.96, + "end": 5878.02, + "probability": 0.8894 + }, + { + "start": 5878.74, + "end": 5882.22, + "probability": 0.9569 + }, + { + "start": 5882.94, + "end": 5887.02, + "probability": 0.9025 + }, + { + "start": 5888.06, + "end": 5890.38, + "probability": 0.9653 + }, + { + "start": 5891.44, + "end": 5898.96, + "probability": 0.9554 + }, + { + "start": 5899.02, + "end": 5902.04, + "probability": 0.9902 + }, + { + "start": 5902.68, + "end": 5903.68, + "probability": 0.9488 + }, + { + "start": 5904.56, + "end": 5905.8, + "probability": 0.6996 + }, + { + "start": 5906.88, + "end": 5912.28, + "probability": 0.9824 + }, + { + "start": 5912.62, + "end": 5913.18, + "probability": 0.3911 + }, + { + "start": 5913.78, + "end": 5916.74, + "probability": 0.759 + }, + { + "start": 5917.7, + "end": 5921.61, + "probability": 0.9431 + }, + { + "start": 5922.38, + "end": 5922.89, + "probability": 0.8164 + }, + { + "start": 5925.0, + "end": 5926.58, + "probability": 0.9485 + }, + { + "start": 5926.72, + "end": 5927.75, + "probability": 0.9824 + }, + { + "start": 5928.06, + "end": 5931.42, + "probability": 0.9845 + }, + { + "start": 5931.42, + "end": 5935.24, + "probability": 0.998 + }, + { + "start": 5936.14, + "end": 5937.4, + "probability": 0.6691 + }, + { + "start": 5937.54, + "end": 5938.64, + "probability": 0.7317 + }, + { + "start": 5938.86, + "end": 5940.18, + "probability": 0.7947 + }, + { + "start": 5940.18, + "end": 5941.5, + "probability": 0.5834 + }, + { + "start": 5941.92, + "end": 5945.72, + "probability": 0.8296 + }, + { + "start": 5945.82, + "end": 5946.99, + "probability": 0.647 + }, + { + "start": 5948.12, + "end": 5952.98, + "probability": 0.64 + }, + { + "start": 5953.78, + "end": 5958.64, + "probability": 0.7473 + }, + { + "start": 5959.56, + "end": 5960.34, + "probability": 0.8654 + }, + { + "start": 5960.44, + "end": 5961.0, + "probability": 0.7007 + }, + { + "start": 5961.04, + "end": 5962.2, + "probability": 0.3652 + }, + { + "start": 5962.7, + "end": 5967.2, + "probability": 0.816 + }, + { + "start": 5967.56, + "end": 5970.47, + "probability": 0.995 + }, + { + "start": 5970.9, + "end": 5972.24, + "probability": 0.8932 + }, + { + "start": 5972.42, + "end": 5976.58, + "probability": 0.9896 + }, + { + "start": 5977.0, + "end": 5978.48, + "probability": 0.896 + }, + { + "start": 5979.02, + "end": 5980.08, + "probability": 0.9197 + }, + { + "start": 5980.2, + "end": 5982.22, + "probability": 0.8653 + }, + { + "start": 5982.36, + "end": 5983.24, + "probability": 0.8895 + }, + { + "start": 5983.5, + "end": 5984.5, + "probability": 0.9229 + }, + { + "start": 5985.36, + "end": 5986.26, + "probability": 0.9198 + }, + { + "start": 5987.04, + "end": 5989.66, + "probability": 0.9748 + }, + { + "start": 5990.28, + "end": 5991.8, + "probability": 0.7414 + }, + { + "start": 5992.36, + "end": 5996.36, + "probability": 0.8193 + }, + { + "start": 5996.38, + "end": 5997.68, + "probability": 0.6463 + }, + { + "start": 5997.72, + "end": 5999.64, + "probability": 0.9899 + }, + { + "start": 6000.12, + "end": 6003.7, + "probability": 0.979 + }, + { + "start": 6003.76, + "end": 6004.24, + "probability": 0.8032 + }, + { + "start": 6004.5, + "end": 6005.14, + "probability": 0.7416 + }, + { + "start": 6005.26, + "end": 6006.24, + "probability": 0.7387 + }, + { + "start": 6006.4, + "end": 6009.44, + "probability": 0.9015 + }, + { + "start": 6010.0, + "end": 6015.12, + "probability": 0.8954 + }, + { + "start": 6018.64, + "end": 6020.12, + "probability": 0.7014 + }, + { + "start": 6020.18, + "end": 6021.38, + "probability": 0.9294 + }, + { + "start": 6022.17, + "end": 6026.19, + "probability": 0.6855 + }, + { + "start": 6026.98, + "end": 6027.34, + "probability": 0.7734 + }, + { + "start": 6027.42, + "end": 6030.3, + "probability": 0.978 + }, + { + "start": 6030.38, + "end": 6032.0, + "probability": 0.909 + }, + { + "start": 6032.08, + "end": 6032.42, + "probability": 0.8941 + }, + { + "start": 6032.76, + "end": 6033.82, + "probability": 0.9673 + }, + { + "start": 6033.9, + "end": 6034.7, + "probability": 0.8719 + }, + { + "start": 6035.56, + "end": 6038.56, + "probability": 0.9741 + }, + { + "start": 6038.66, + "end": 6042.12, + "probability": 0.9898 + }, + { + "start": 6042.12, + "end": 6045.1, + "probability": 0.9898 + }, + { + "start": 6045.7, + "end": 6048.86, + "probability": 0.988 + }, + { + "start": 6048.86, + "end": 6051.32, + "probability": 0.9233 + }, + { + "start": 6051.76, + "end": 6053.9, + "probability": 0.9668 + }, + { + "start": 6055.06, + "end": 6060.91, + "probability": 0.9954 + }, + { + "start": 6062.7, + "end": 6068.0, + "probability": 0.9699 + }, + { + "start": 6068.68, + "end": 6072.6, + "probability": 0.9923 + }, + { + "start": 6072.68, + "end": 6074.18, + "probability": 0.9937 + }, + { + "start": 6074.9, + "end": 6075.52, + "probability": 0.5034 + }, + { + "start": 6076.12, + "end": 6081.08, + "probability": 0.9002 + }, + { + "start": 6081.62, + "end": 6082.04, + "probability": 0.6472 + }, + { + "start": 6082.16, + "end": 6083.16, + "probability": 0.7434 + }, + { + "start": 6083.42, + "end": 6084.18, + "probability": 0.9609 + }, + { + "start": 6084.32, + "end": 6085.03, + "probability": 0.9412 + }, + { + "start": 6085.78, + "end": 6086.16, + "probability": 0.927 + }, + { + "start": 6087.3, + "end": 6093.96, + "probability": 0.9381 + }, + { + "start": 6094.04, + "end": 6095.14, + "probability": 0.8364 + }, + { + "start": 6095.94, + "end": 6096.74, + "probability": 0.967 + }, + { + "start": 6099.24, + "end": 6103.14, + "probability": 0.832 + }, + { + "start": 6104.44, + "end": 6108.38, + "probability": 0.9551 + }, + { + "start": 6109.6, + "end": 6114.2, + "probability": 0.9258 + }, + { + "start": 6114.34, + "end": 6118.64, + "probability": 0.8821 + }, + { + "start": 6119.94, + "end": 6122.26, + "probability": 0.9851 + }, + { + "start": 6123.24, + "end": 6127.62, + "probability": 0.9753 + }, + { + "start": 6127.62, + "end": 6134.9, + "probability": 0.9209 + }, + { + "start": 6136.5, + "end": 6139.52, + "probability": 0.9633 + }, + { + "start": 6139.7, + "end": 6140.5, + "probability": 0.4053 + }, + { + "start": 6140.62, + "end": 6142.42, + "probability": 0.9434 + }, + { + "start": 6143.04, + "end": 6144.92, + "probability": 0.9649 + }, + { + "start": 6145.54, + "end": 6147.2, + "probability": 0.829 + }, + { + "start": 6148.34, + "end": 6151.32, + "probability": 0.9919 + }, + { + "start": 6152.42, + "end": 6155.22, + "probability": 0.729 + }, + { + "start": 6155.42, + "end": 6157.22, + "probability": 0.9935 + }, + { + "start": 6158.52, + "end": 6162.6, + "probability": 0.9607 + }, + { + "start": 6162.92, + "end": 6163.92, + "probability": 0.8042 + }, + { + "start": 6164.42, + "end": 6166.97, + "probability": 0.9941 + }, + { + "start": 6167.7, + "end": 6170.58, + "probability": 0.9916 + }, + { + "start": 6171.04, + "end": 6173.28, + "probability": 0.9951 + }, + { + "start": 6173.94, + "end": 6175.19, + "probability": 0.8814 + }, + { + "start": 6176.0, + "end": 6178.36, + "probability": 0.9386 + }, + { + "start": 6178.64, + "end": 6179.77, + "probability": 0.9414 + }, + { + "start": 6180.82, + "end": 6182.23, + "probability": 0.9394 + }, + { + "start": 6183.56, + "end": 6184.8, + "probability": 0.9348 + }, + { + "start": 6185.24, + "end": 6188.12, + "probability": 0.833 + }, + { + "start": 6188.2, + "end": 6189.36, + "probability": 0.9432 + }, + { + "start": 6190.08, + "end": 6192.09, + "probability": 0.9497 + }, + { + "start": 6192.72, + "end": 6195.62, + "probability": 0.9619 + }, + { + "start": 6196.46, + "end": 6201.02, + "probability": 0.9954 + }, + { + "start": 6202.24, + "end": 6205.66, + "probability": 0.5185 + }, + { + "start": 6206.42, + "end": 6207.42, + "probability": 0.7606 + }, + { + "start": 6208.0, + "end": 6213.1, + "probability": 0.768 + }, + { + "start": 6213.16, + "end": 6214.04, + "probability": 0.9595 + }, + { + "start": 6214.1, + "end": 6216.42, + "probability": 0.8944 + }, + { + "start": 6217.24, + "end": 6219.66, + "probability": 0.7761 + }, + { + "start": 6220.36, + "end": 6220.85, + "probability": 0.537 + }, + { + "start": 6221.12, + "end": 6222.42, + "probability": 0.9414 + }, + { + "start": 6222.5, + "end": 6225.38, + "probability": 0.9834 + }, + { + "start": 6225.38, + "end": 6228.94, + "probability": 0.9775 + }, + { + "start": 6229.0, + "end": 6230.82, + "probability": 0.9081 + }, + { + "start": 6232.14, + "end": 6232.48, + "probability": 0.9373 + }, + { + "start": 6233.32, + "end": 6238.5, + "probability": 0.9075 + }, + { + "start": 6239.04, + "end": 6240.83, + "probability": 0.9712 + }, + { + "start": 6240.9, + "end": 6247.16, + "probability": 0.9863 + }, + { + "start": 6247.72, + "end": 6250.66, + "probability": 0.9852 + }, + { + "start": 6251.28, + "end": 6255.24, + "probability": 0.9614 + }, + { + "start": 6255.64, + "end": 6257.22, + "probability": 0.9426 + }, + { + "start": 6257.58, + "end": 6259.04, + "probability": 0.9862 + }, + { + "start": 6259.4, + "end": 6259.78, + "probability": 0.7428 + }, + { + "start": 6259.98, + "end": 6262.16, + "probability": 0.8167 + }, + { + "start": 6262.8, + "end": 6266.7, + "probability": 0.8767 + }, + { + "start": 6266.88, + "end": 6267.66, + "probability": 0.52 + }, + { + "start": 6273.74, + "end": 6274.8, + "probability": 0.5621 + }, + { + "start": 6274.9, + "end": 6275.8, + "probability": 0.9045 + }, + { + "start": 6277.76, + "end": 6279.54, + "probability": 0.672 + }, + { + "start": 6280.32, + "end": 6281.04, + "probability": 0.4162 + }, + { + "start": 6281.56, + "end": 6285.02, + "probability": 0.9816 + }, + { + "start": 6286.18, + "end": 6287.54, + "probability": 0.7324 + }, + { + "start": 6288.12, + "end": 6293.3, + "probability": 0.9869 + }, + { + "start": 6294.36, + "end": 6299.96, + "probability": 0.9766 + }, + { + "start": 6300.18, + "end": 6301.98, + "probability": 0.6468 + }, + { + "start": 6302.44, + "end": 6303.92, + "probability": 0.9832 + }, + { + "start": 6304.66, + "end": 6307.7, + "probability": 0.8755 + }, + { + "start": 6307.74, + "end": 6310.42, + "probability": 0.8925 + }, + { + "start": 6311.18, + "end": 6316.9, + "probability": 0.7842 + }, + { + "start": 6317.92, + "end": 6322.82, + "probability": 0.9765 + }, + { + "start": 6323.68, + "end": 6328.61, + "probability": 0.9577 + }, + { + "start": 6328.76, + "end": 6331.82, + "probability": 0.8601 + }, + { + "start": 6332.2, + "end": 6335.12, + "probability": 0.8313 + }, + { + "start": 6335.14, + "end": 6338.5, + "probability": 0.9639 + }, + { + "start": 6338.54, + "end": 6341.44, + "probability": 0.9867 + }, + { + "start": 6343.54, + "end": 6344.6, + "probability": 0.5334 + }, + { + "start": 6344.7, + "end": 6345.48, + "probability": 0.4412 + }, + { + "start": 6345.62, + "end": 6346.54, + "probability": 0.6002 + }, + { + "start": 6346.88, + "end": 6348.37, + "probability": 0.8933 + }, + { + "start": 6348.9, + "end": 6352.76, + "probability": 0.781 + }, + { + "start": 6353.08, + "end": 6354.44, + "probability": 0.6825 + }, + { + "start": 6354.66, + "end": 6356.98, + "probability": 0.9395 + }, + { + "start": 6357.92, + "end": 6360.28, + "probability": 0.98 + }, + { + "start": 6360.42, + "end": 6364.78, + "probability": 0.9678 + }, + { + "start": 6365.72, + "end": 6366.34, + "probability": 0.8412 + }, + { + "start": 6366.5, + "end": 6368.88, + "probability": 0.886 + }, + { + "start": 6369.48, + "end": 6372.28, + "probability": 0.9729 + }, + { + "start": 6372.8, + "end": 6380.12, + "probability": 0.9955 + }, + { + "start": 6381.66, + "end": 6383.32, + "probability": 0.6614 + }, + { + "start": 6384.12, + "end": 6390.32, + "probability": 0.6548 + }, + { + "start": 6392.52, + "end": 6393.96, + "probability": 0.8671 + }, + { + "start": 6394.22, + "end": 6395.0, + "probability": 0.8457 + }, + { + "start": 6395.4, + "end": 6398.56, + "probability": 0.96 + }, + { + "start": 6399.36, + "end": 6400.54, + "probability": 0.9592 + }, + { + "start": 6400.56, + "end": 6407.22, + "probability": 0.9147 + }, + { + "start": 6407.54, + "end": 6409.54, + "probability": 0.9411 + }, + { + "start": 6409.9, + "end": 6413.98, + "probability": 0.9575 + }, + { + "start": 6414.08, + "end": 6416.68, + "probability": 0.8378 + }, + { + "start": 6417.64, + "end": 6420.72, + "probability": 0.419 + }, + { + "start": 6421.34, + "end": 6428.64, + "probability": 0.9689 + }, + { + "start": 6429.16, + "end": 6435.82, + "probability": 0.7933 + }, + { + "start": 6435.96, + "end": 6439.78, + "probability": 0.9941 + }, + { + "start": 6440.52, + "end": 6443.84, + "probability": 0.8076 + }, + { + "start": 6444.62, + "end": 6447.08, + "probability": 0.8468 + }, + { + "start": 6447.32, + "end": 6450.3, + "probability": 0.7811 + }, + { + "start": 6450.5, + "end": 6452.74, + "probability": 0.7969 + }, + { + "start": 6452.8, + "end": 6453.74, + "probability": 0.6298 + }, + { + "start": 6453.88, + "end": 6460.04, + "probability": 0.9661 + }, + { + "start": 6460.1, + "end": 6461.08, + "probability": 0.3904 + }, + { + "start": 6461.62, + "end": 6467.56, + "probability": 0.9839 + }, + { + "start": 6467.86, + "end": 6471.98, + "probability": 0.9539 + }, + { + "start": 6472.2, + "end": 6472.2, + "probability": 0.2597 + }, + { + "start": 6472.28, + "end": 6473.11, + "probability": 0.4678 + }, + { + "start": 6473.26, + "end": 6474.62, + "probability": 0.3746 + }, + { + "start": 6475.08, + "end": 6475.2, + "probability": 0.3102 + }, + { + "start": 6475.2, + "end": 6480.42, + "probability": 0.8745 + }, + { + "start": 6480.72, + "end": 6485.0, + "probability": 0.9618 + }, + { + "start": 6485.36, + "end": 6486.52, + "probability": 0.6341 + }, + { + "start": 6486.54, + "end": 6488.0, + "probability": 0.7487 + }, + { + "start": 6488.24, + "end": 6489.89, + "probability": 0.3538 + }, + { + "start": 6490.48, + "end": 6491.22, + "probability": 0.9542 + }, + { + "start": 6491.4, + "end": 6491.82, + "probability": 0.4254 + }, + { + "start": 6491.88, + "end": 6492.26, + "probability": 0.8365 + }, + { + "start": 6492.66, + "end": 6494.14, + "probability": 0.9614 + }, + { + "start": 6494.78, + "end": 6496.52, + "probability": 0.9734 + }, + { + "start": 6496.66, + "end": 6499.14, + "probability": 0.8777 + }, + { + "start": 6499.96, + "end": 6503.12, + "probability": 0.8643 + }, + { + "start": 6503.46, + "end": 6505.92, + "probability": 0.8881 + }, + { + "start": 6506.36, + "end": 6507.74, + "probability": 0.9894 + }, + { + "start": 6507.94, + "end": 6510.48, + "probability": 0.9854 + }, + { + "start": 6510.72, + "end": 6512.22, + "probability": 0.8838 + }, + { + "start": 6512.62, + "end": 6513.6, + "probability": 0.9865 + }, + { + "start": 6513.94, + "end": 6514.48, + "probability": 0.6218 + }, + { + "start": 6514.48, + "end": 6516.66, + "probability": 0.6971 + }, + { + "start": 6516.72, + "end": 6518.3, + "probability": 0.9185 + }, + { + "start": 6518.72, + "end": 6520.86, + "probability": 0.9681 + }, + { + "start": 6520.94, + "end": 6527.56, + "probability": 0.9397 + }, + { + "start": 6527.62, + "end": 6529.12, + "probability": 0.9609 + }, + { + "start": 6529.18, + "end": 6529.5, + "probability": 0.8882 + }, + { + "start": 6529.8, + "end": 6532.06, + "probability": 0.666 + }, + { + "start": 6532.5, + "end": 6536.56, + "probability": 0.9649 + }, + { + "start": 6537.24, + "end": 6538.28, + "probability": 0.2999 + }, + { + "start": 6539.36, + "end": 6540.02, + "probability": 0.9143 + }, + { + "start": 6541.72, + "end": 6544.34, + "probability": 0.1505 + }, + { + "start": 6550.84, + "end": 6551.66, + "probability": 0.6777 + }, + { + "start": 6552.84, + "end": 6553.82, + "probability": 0.9528 + }, + { + "start": 6553.9, + "end": 6555.2, + "probability": 0.9701 + }, + { + "start": 6555.32, + "end": 6558.44, + "probability": 0.7146 + }, + { + "start": 6559.52, + "end": 6563.64, + "probability": 0.7149 + }, + { + "start": 6563.76, + "end": 6565.13, + "probability": 0.781 + }, + { + "start": 6565.36, + "end": 6566.34, + "probability": 0.859 + }, + { + "start": 6566.8, + "end": 6570.26, + "probability": 0.9771 + }, + { + "start": 6570.62, + "end": 6574.1, + "probability": 0.8495 + }, + { + "start": 6574.1, + "end": 6578.06, + "probability": 0.9662 + }, + { + "start": 6578.28, + "end": 6579.68, + "probability": 0.9001 + }, + { + "start": 6580.04, + "end": 6582.64, + "probability": 0.8887 + }, + { + "start": 6583.36, + "end": 6589.94, + "probability": 0.9916 + }, + { + "start": 6590.46, + "end": 6594.14, + "probability": 0.7647 + }, + { + "start": 6594.74, + "end": 6595.54, + "probability": 0.8572 + }, + { + "start": 6596.36, + "end": 6598.96, + "probability": 0.6088 + }, + { + "start": 6600.34, + "end": 6602.48, + "probability": 0.8625 + }, + { + "start": 6603.68, + "end": 6605.71, + "probability": 0.8693 + }, + { + "start": 6606.28, + "end": 6609.04, + "probability": 0.8372 + }, + { + "start": 6609.3, + "end": 6611.52, + "probability": 0.782 + }, + { + "start": 6612.44, + "end": 6614.14, + "probability": 0.7642 + }, + { + "start": 6614.58, + "end": 6616.16, + "probability": 0.9627 + }, + { + "start": 6616.72, + "end": 6623.62, + "probability": 0.8935 + }, + { + "start": 6623.7, + "end": 6625.7, + "probability": 0.9841 + }, + { + "start": 6626.18, + "end": 6626.98, + "probability": 0.6428 + }, + { + "start": 6627.44, + "end": 6628.18, + "probability": 0.8456 + }, + { + "start": 6628.26, + "end": 6631.58, + "probability": 0.9803 + }, + { + "start": 6631.58, + "end": 6634.78, + "probability": 0.9888 + }, + { + "start": 6635.36, + "end": 6639.0, + "probability": 0.9429 + }, + { + "start": 6639.54, + "end": 6641.44, + "probability": 0.9851 + }, + { + "start": 6642.18, + "end": 6644.06, + "probability": 0.9941 + }, + { + "start": 6644.74, + "end": 6649.7, + "probability": 0.979 + }, + { + "start": 6650.22, + "end": 6652.62, + "probability": 0.9964 + }, + { + "start": 6653.96, + "end": 6654.56, + "probability": 0.6959 + }, + { + "start": 6654.86, + "end": 6655.3, + "probability": 0.9244 + }, + { + "start": 6655.56, + "end": 6655.9, + "probability": 0.6764 + }, + { + "start": 6655.92, + "end": 6661.44, + "probability": 0.9714 + }, + { + "start": 6662.76, + "end": 6663.7, + "probability": 0.7836 + }, + { + "start": 6664.44, + "end": 6665.76, + "probability": 0.3759 + }, + { + "start": 6665.84, + "end": 6667.3, + "probability": 0.9039 + }, + { + "start": 6667.42, + "end": 6668.45, + "probability": 0.8545 + }, + { + "start": 6669.08, + "end": 6670.56, + "probability": 0.9326 + }, + { + "start": 6670.88, + "end": 6672.74, + "probability": 0.8405 + }, + { + "start": 6672.82, + "end": 6674.9, + "probability": 0.7506 + }, + { + "start": 6675.38, + "end": 6676.94, + "probability": 0.9334 + }, + { + "start": 6677.44, + "end": 6678.62, + "probability": 0.7749 + }, + { + "start": 6678.76, + "end": 6681.38, + "probability": 0.9918 + }, + { + "start": 6681.9, + "end": 6684.36, + "probability": 0.9891 + }, + { + "start": 6684.62, + "end": 6687.28, + "probability": 0.9941 + }, + { + "start": 6687.5, + "end": 6688.38, + "probability": 0.9653 + }, + { + "start": 6688.44, + "end": 6689.7, + "probability": 0.5819 + }, + { + "start": 6689.74, + "end": 6691.36, + "probability": 0.7944 + }, + { + "start": 6691.5, + "end": 6692.02, + "probability": 0.1305 + }, + { + "start": 6692.02, + "end": 6692.97, + "probability": 0.5122 + }, + { + "start": 6693.26, + "end": 6696.5, + "probability": 0.766 + }, + { + "start": 6698.42, + "end": 6699.54, + "probability": 0.8046 + }, + { + "start": 6700.3, + "end": 6703.66, + "probability": 0.9549 + }, + { + "start": 6704.12, + "end": 6708.1, + "probability": 0.9455 + }, + { + "start": 6708.44, + "end": 6710.64, + "probability": 0.9469 + }, + { + "start": 6711.3, + "end": 6712.49, + "probability": 0.6252 + }, + { + "start": 6713.26, + "end": 6717.28, + "probability": 0.6074 + }, + { + "start": 6717.58, + "end": 6718.64, + "probability": 0.9612 + }, + { + "start": 6719.04, + "end": 6720.03, + "probability": 0.9963 + }, + { + "start": 6720.58, + "end": 6722.8, + "probability": 0.9817 + }, + { + "start": 6724.22, + "end": 6725.22, + "probability": 0.7513 + }, + { + "start": 6726.12, + "end": 6729.98, + "probability": 0.9891 + }, + { + "start": 6730.1, + "end": 6733.22, + "probability": 0.9954 + }, + { + "start": 6733.32, + "end": 6734.54, + "probability": 0.8986 + }, + { + "start": 6734.7, + "end": 6736.82, + "probability": 0.9015 + }, + { + "start": 6737.32, + "end": 6739.26, + "probability": 0.9032 + }, + { + "start": 6739.52, + "end": 6741.54, + "probability": 0.9838 + }, + { + "start": 6741.7, + "end": 6743.74, + "probability": 0.9727 + }, + { + "start": 6743.74, + "end": 6745.82, + "probability": 0.5881 + }, + { + "start": 6746.76, + "end": 6750.38, + "probability": 0.9923 + }, + { + "start": 6750.38, + "end": 6754.22, + "probability": 0.9917 + }, + { + "start": 6757.02, + "end": 6758.38, + "probability": 0.9988 + }, + { + "start": 6758.62, + "end": 6759.99, + "probability": 0.9146 + }, + { + "start": 6760.94, + "end": 6761.57, + "probability": 0.7346 + }, + { + "start": 6762.62, + "end": 6763.66, + "probability": 0.6674 + }, + { + "start": 6763.74, + "end": 6766.1, + "probability": 0.9385 + }, + { + "start": 6766.2, + "end": 6767.54, + "probability": 0.8599 + }, + { + "start": 6767.66, + "end": 6768.7, + "probability": 0.5926 + }, + { + "start": 6769.26, + "end": 6770.04, + "probability": 0.8529 + }, + { + "start": 6770.24, + "end": 6773.52, + "probability": 0.9293 + }, + { + "start": 6773.64, + "end": 6774.06, + "probability": 0.4445 + }, + { + "start": 6774.34, + "end": 6774.41, + "probability": 0.4989 + }, + { + "start": 6775.22, + "end": 6778.04, + "probability": 0.9425 + }, + { + "start": 6778.16, + "end": 6779.08, + "probability": 0.782 + }, + { + "start": 6779.24, + "end": 6780.24, + "probability": 0.8939 + }, + { + "start": 6780.44, + "end": 6781.66, + "probability": 0.8739 + }, + { + "start": 6781.76, + "end": 6784.92, + "probability": 0.96 + }, + { + "start": 6784.92, + "end": 6789.16, + "probability": 0.985 + }, + { + "start": 6789.64, + "end": 6791.16, + "probability": 0.8379 + }, + { + "start": 6791.28, + "end": 6792.41, + "probability": 0.7091 + }, + { + "start": 6792.9, + "end": 6794.98, + "probability": 0.9851 + }, + { + "start": 6794.98, + "end": 6797.8, + "probability": 0.9958 + }, + { + "start": 6797.92, + "end": 6799.54, + "probability": 0.9971 + }, + { + "start": 6800.24, + "end": 6801.48, + "probability": 0.9299 + }, + { + "start": 6801.78, + "end": 6807.12, + "probability": 0.9045 + }, + { + "start": 6807.32, + "end": 6807.64, + "probability": 0.3241 + }, + { + "start": 6807.72, + "end": 6809.78, + "probability": 0.74 + }, + { + "start": 6810.1, + "end": 6811.84, + "probability": 0.9541 + }, + { + "start": 6812.3, + "end": 6813.52, + "probability": 0.6204 + }, + { + "start": 6814.26, + "end": 6816.42, + "probability": 0.9946 + }, + { + "start": 6816.58, + "end": 6817.3, + "probability": 0.554 + }, + { + "start": 6817.9, + "end": 6821.26, + "probability": 0.8022 + }, + { + "start": 6821.52, + "end": 6827.16, + "probability": 0.921 + }, + { + "start": 6827.7, + "end": 6829.5, + "probability": 0.9789 + }, + { + "start": 6830.1, + "end": 6832.14, + "probability": 0.9917 + }, + { + "start": 6832.14, + "end": 6834.25, + "probability": 0.8364 + }, + { + "start": 6834.68, + "end": 6837.38, + "probability": 0.9937 + }, + { + "start": 6837.64, + "end": 6839.68, + "probability": 0.9858 + }, + { + "start": 6840.42, + "end": 6843.5, + "probability": 0.9446 + }, + { + "start": 6844.12, + "end": 6845.1, + "probability": 0.7363 + }, + { + "start": 6845.22, + "end": 6849.12, + "probability": 0.9388 + }, + { + "start": 6849.82, + "end": 6852.98, + "probability": 0.9958 + }, + { + "start": 6853.2, + "end": 6853.86, + "probability": 0.71 + }, + { + "start": 6853.88, + "end": 6855.28, + "probability": 0.998 + }, + { + "start": 6855.54, + "end": 6859.82, + "probability": 0.9728 + }, + { + "start": 6859.88, + "end": 6861.58, + "probability": 0.6602 + }, + { + "start": 6861.76, + "end": 6864.74, + "probability": 0.989 + }, + { + "start": 6865.08, + "end": 6868.06, + "probability": 0.976 + }, + { + "start": 6868.06, + "end": 6871.28, + "probability": 0.9912 + }, + { + "start": 6871.64, + "end": 6875.38, + "probability": 0.999 + }, + { + "start": 6875.46, + "end": 6875.74, + "probability": 0.7005 + }, + { + "start": 6875.86, + "end": 6877.62, + "probability": 0.8853 + }, + { + "start": 6877.8, + "end": 6879.54, + "probability": 0.9927 + }, + { + "start": 6879.58, + "end": 6882.12, + "probability": 0.8482 + }, + { + "start": 6882.52, + "end": 6887.26, + "probability": 0.3556 + }, + { + "start": 6903.26, + "end": 6905.4, + "probability": 0.588 + }, + { + "start": 6906.36, + "end": 6909.1, + "probability": 0.685 + }, + { + "start": 6919.32, + "end": 6923.5, + "probability": 0.9731 + }, + { + "start": 6924.72, + "end": 6925.34, + "probability": 0.8455 + }, + { + "start": 6925.4, + "end": 6933.02, + "probability": 0.9184 + }, + { + "start": 6933.54, + "end": 6938.4, + "probability": 0.8812 + }, + { + "start": 6939.36, + "end": 6940.98, + "probability": 0.8513 + }, + { + "start": 6941.08, + "end": 6943.16, + "probability": 0.918 + }, + { + "start": 6943.74, + "end": 6943.9, + "probability": 0.2709 + }, + { + "start": 6943.9, + "end": 6944.3, + "probability": 0.4742 + }, + { + "start": 6944.3, + "end": 6945.5, + "probability": 0.8115 + }, + { + "start": 6945.56, + "end": 6949.66, + "probability": 0.9747 + }, + { + "start": 6950.3, + "end": 6951.98, + "probability": 0.954 + }, + { + "start": 6952.1, + "end": 6953.04, + "probability": 0.9749 + }, + { + "start": 6953.14, + "end": 6958.93, + "probability": 0.6834 + }, + { + "start": 6959.22, + "end": 6959.48, + "probability": 0.236 + }, + { + "start": 6959.52, + "end": 6960.0, + "probability": 0.4593 + }, + { + "start": 6960.22, + "end": 6961.54, + "probability": 0.9293 + }, + { + "start": 6961.62, + "end": 6962.68, + "probability": 0.7629 + }, + { + "start": 6962.8, + "end": 6964.04, + "probability": 0.563 + }, + { + "start": 6964.06, + "end": 6966.28, + "probability": 0.8595 + }, + { + "start": 6966.76, + "end": 6968.48, + "probability": 0.921 + }, + { + "start": 6968.66, + "end": 6969.52, + "probability": 0.75 + }, + { + "start": 6970.02, + "end": 6970.4, + "probability": 0.8038 + }, + { + "start": 6972.63, + "end": 6978.4, + "probability": 0.9031 + }, + { + "start": 6978.8, + "end": 6979.96, + "probability": 0.8927 + }, + { + "start": 6980.34, + "end": 6983.78, + "probability": 0.9643 + }, + { + "start": 6984.02, + "end": 6984.62, + "probability": 0.9566 + }, + { + "start": 6984.86, + "end": 6985.56, + "probability": 0.7526 + }, + { + "start": 6985.9, + "end": 6987.02, + "probability": 0.8411 + }, + { + "start": 6987.6, + "end": 6988.2, + "probability": 0.7606 + }, + { + "start": 6988.54, + "end": 6992.74, + "probability": 0.9908 + }, + { + "start": 6992.74, + "end": 6996.94, + "probability": 0.9883 + }, + { + "start": 6998.3, + "end": 7001.68, + "probability": 0.9914 + }, + { + "start": 7001.68, + "end": 7007.36, + "probability": 0.7974 + }, + { + "start": 7009.06, + "end": 7009.68, + "probability": 0.0176 + }, + { + "start": 7009.86, + "end": 7011.38, + "probability": 0.9829 + }, + { + "start": 7011.84, + "end": 7014.44, + "probability": 0.9871 + }, + { + "start": 7015.34, + "end": 7017.61, + "probability": 0.1406 + }, + { + "start": 7017.92, + "end": 7019.26, + "probability": 0.6953 + }, + { + "start": 7019.44, + "end": 7020.0, + "probability": 0.8394 + }, + { + "start": 7020.06, + "end": 7023.2, + "probability": 0.8882 + }, + { + "start": 7024.0, + "end": 7026.04, + "probability": 0.9856 + }, + { + "start": 7026.14, + "end": 7027.38, + "probability": 0.7904 + }, + { + "start": 7027.52, + "end": 7030.27, + "probability": 0.9225 + }, + { + "start": 7030.52, + "end": 7032.8, + "probability": 0.5678 + }, + { + "start": 7032.88, + "end": 7034.12, + "probability": 0.7114 + }, + { + "start": 7034.18, + "end": 7036.06, + "probability": 0.9491 + }, + { + "start": 7036.54, + "end": 7037.62, + "probability": 0.0031 + }, + { + "start": 7037.62, + "end": 7037.62, + "probability": 0.1674 + }, + { + "start": 7037.62, + "end": 7040.6, + "probability": 0.9885 + }, + { + "start": 7040.8, + "end": 7042.42, + "probability": 0.9924 + }, + { + "start": 7043.28, + "end": 7048.84, + "probability": 0.992 + }, + { + "start": 7050.49, + "end": 7054.08, + "probability": 0.9741 + }, + { + "start": 7054.45, + "end": 7057.38, + "probability": 0.6756 + }, + { + "start": 7057.46, + "end": 7057.94, + "probability": 0.786 + }, + { + "start": 7057.94, + "end": 7059.1, + "probability": 0.9868 + }, + { + "start": 7059.62, + "end": 7064.22, + "probability": 0.9908 + }, + { + "start": 7064.22, + "end": 7069.96, + "probability": 0.9092 + }, + { + "start": 7070.16, + "end": 7071.98, + "probability": 0.7847 + }, + { + "start": 7072.54, + "end": 7073.86, + "probability": 0.9531 + }, + { + "start": 7074.02, + "end": 7078.66, + "probability": 0.86 + }, + { + "start": 7078.84, + "end": 7079.72, + "probability": 0.8359 + }, + { + "start": 7079.82, + "end": 7081.06, + "probability": 0.9425 + }, + { + "start": 7081.1, + "end": 7084.68, + "probability": 0.8537 + }, + { + "start": 7084.7, + "end": 7086.7, + "probability": 0.9949 + }, + { + "start": 7087.22, + "end": 7092.74, + "probability": 0.9985 + }, + { + "start": 7092.8, + "end": 7097.04, + "probability": 0.9888 + }, + { + "start": 7097.68, + "end": 7099.48, + "probability": 0.9345 + }, + { + "start": 7099.8, + "end": 7103.18, + "probability": 0.8839 + }, + { + "start": 7103.34, + "end": 7104.48, + "probability": 0.794 + }, + { + "start": 7104.56, + "end": 7105.18, + "probability": 0.8585 + }, + { + "start": 7105.26, + "end": 7105.92, + "probability": 0.457 + }, + { + "start": 7106.36, + "end": 7107.28, + "probability": 0.7694 + }, + { + "start": 7107.48, + "end": 7110.72, + "probability": 0.958 + }, + { + "start": 7110.72, + "end": 7111.76, + "probability": 0.6986 + }, + { + "start": 7111.76, + "end": 7112.2, + "probability": 0.3996 + }, + { + "start": 7112.26, + "end": 7114.38, + "probability": 0.7604 + }, + { + "start": 7114.44, + "end": 7116.76, + "probability": 0.4045 + }, + { + "start": 7116.92, + "end": 7117.42, + "probability": 0.6502 + }, + { + "start": 7117.64, + "end": 7118.36, + "probability": 0.9434 + }, + { + "start": 7119.18, + "end": 7120.02, + "probability": 0.4989 + }, + { + "start": 7120.16, + "end": 7121.78, + "probability": 0.7792 + }, + { + "start": 7121.96, + "end": 7123.36, + "probability": 0.8743 + }, + { + "start": 7123.98, + "end": 7126.34, + "probability": 0.9492 + }, + { + "start": 7126.42, + "end": 7128.42, + "probability": 0.9172 + }, + { + "start": 7128.72, + "end": 7131.24, + "probability": 0.9355 + }, + { + "start": 7131.64, + "end": 7132.24, + "probability": 0.3897 + }, + { + "start": 7132.56, + "end": 7137.44, + "probability": 0.9951 + }, + { + "start": 7137.99, + "end": 7143.4, + "probability": 0.9873 + }, + { + "start": 7143.78, + "end": 7145.23, + "probability": 0.9177 + }, + { + "start": 7145.64, + "end": 7150.08, + "probability": 0.8156 + }, + { + "start": 7150.7, + "end": 7154.24, + "probability": 0.988 + }, + { + "start": 7154.6, + "end": 7159.48, + "probability": 0.9966 + }, + { + "start": 7160.36, + "end": 7164.06, + "probability": 0.956 + }, + { + "start": 7164.32, + "end": 7171.24, + "probability": 0.9834 + }, + { + "start": 7171.28, + "end": 7177.56, + "probability": 0.976 + }, + { + "start": 7177.66, + "end": 7178.5, + "probability": 0.9178 + }, + { + "start": 7179.14, + "end": 7181.12, + "probability": 0.9322 + }, + { + "start": 7181.54, + "end": 7183.52, + "probability": 0.9207 + }, + { + "start": 7183.84, + "end": 7184.48, + "probability": 0.8179 + }, + { + "start": 7184.54, + "end": 7185.4, + "probability": 0.8592 + }, + { + "start": 7185.7, + "end": 7186.84, + "probability": 0.9873 + }, + { + "start": 7187.14, + "end": 7187.92, + "probability": 0.8123 + }, + { + "start": 7188.28, + "end": 7190.7, + "probability": 0.9816 + }, + { + "start": 7190.82, + "end": 7192.6, + "probability": 0.8967 + }, + { + "start": 7192.7, + "end": 7193.4, + "probability": 0.4928 + }, + { + "start": 7193.52, + "end": 7196.14, + "probability": 0.8265 + }, + { + "start": 7196.16, + "end": 7199.94, + "probability": 0.9524 + }, + { + "start": 7199.94, + "end": 7202.38, + "probability": 0.9976 + }, + { + "start": 7202.72, + "end": 7203.5, + "probability": 0.6387 + }, + { + "start": 7203.68, + "end": 7207.5, + "probability": 0.8944 + }, + { + "start": 7207.56, + "end": 7207.78, + "probability": 0.8295 + }, + { + "start": 7207.82, + "end": 7210.94, + "probability": 0.6046 + }, + { + "start": 7210.94, + "end": 7212.32, + "probability": 0.7369 + }, + { + "start": 7213.42, + "end": 7216.08, + "probability": 0.7044 + }, + { + "start": 7216.68, + "end": 7219.88, + "probability": 0.7922 + }, + { + "start": 7220.71, + "end": 7223.33, + "probability": 0.938 + }, + { + "start": 7223.9, + "end": 7225.95, + "probability": 0.9951 + }, + { + "start": 7226.28, + "end": 7230.9, + "probability": 0.8728 + }, + { + "start": 7231.52, + "end": 7232.96, + "probability": 0.7311 + }, + { + "start": 7233.36, + "end": 7235.74, + "probability": 0.7818 + }, + { + "start": 7235.74, + "end": 7237.98, + "probability": 0.5391 + }, + { + "start": 7238.36, + "end": 7238.52, + "probability": 0.2692 + }, + { + "start": 7238.52, + "end": 7239.28, + "probability": 0.5431 + }, + { + "start": 7239.4, + "end": 7246.3, + "probability": 0.9753 + }, + { + "start": 7246.48, + "end": 7250.16, + "probability": 0.9805 + }, + { + "start": 7250.78, + "end": 7251.62, + "probability": 0.8611 + }, + { + "start": 7251.68, + "end": 7253.5, + "probability": 0.9398 + }, + { + "start": 7253.58, + "end": 7254.08, + "probability": 0.6158 + }, + { + "start": 7254.2, + "end": 7255.44, + "probability": 0.5634 + }, + { + "start": 7255.44, + "end": 7260.58, + "probability": 0.9904 + }, + { + "start": 7261.54, + "end": 7263.3, + "probability": 0.99 + }, + { + "start": 7263.38, + "end": 7266.0, + "probability": 0.2361 + }, + { + "start": 7268.86, + "end": 7268.92, + "probability": 0.1047 + }, + { + "start": 7268.92, + "end": 7268.92, + "probability": 0.0258 + }, + { + "start": 7268.92, + "end": 7268.92, + "probability": 0.0135 + }, + { + "start": 7268.92, + "end": 7268.92, + "probability": 0.1565 + }, + { + "start": 7268.92, + "end": 7269.3, + "probability": 0.0336 + }, + { + "start": 7269.38, + "end": 7269.78, + "probability": 0.4515 + }, + { + "start": 7269.82, + "end": 7272.93, + "probability": 0.7684 + }, + { + "start": 7273.3, + "end": 7276.9, + "probability": 0.96 + }, + { + "start": 7277.36, + "end": 7278.9, + "probability": 0.8427 + }, + { + "start": 7279.04, + "end": 7281.28, + "probability": 0.99 + }, + { + "start": 7281.48, + "end": 7282.82, + "probability": 0.7906 + }, + { + "start": 7283.14, + "end": 7285.34, + "probability": 0.9011 + }, + { + "start": 7285.72, + "end": 7289.18, + "probability": 0.9561 + }, + { + "start": 7289.18, + "end": 7293.3, + "probability": 0.9912 + }, + { + "start": 7293.78, + "end": 7295.28, + "probability": 0.7867 + }, + { + "start": 7295.96, + "end": 7299.17, + "probability": 0.6624 + }, + { + "start": 7299.66, + "end": 7301.32, + "probability": 0.3627 + }, + { + "start": 7301.54, + "end": 7302.53, + "probability": 0.9418 + }, + { + "start": 7303.14, + "end": 7303.92, + "probability": 0.9025 + }, + { + "start": 7304.3, + "end": 7307.3, + "probability": 0.9845 + }, + { + "start": 7307.78, + "end": 7309.33, + "probability": 0.7533 + }, + { + "start": 7310.12, + "end": 7310.96, + "probability": 0.7842 + }, + { + "start": 7311.0, + "end": 7314.72, + "probability": 0.542 + }, + { + "start": 7314.72, + "end": 7314.72, + "probability": 0.0309 + }, + { + "start": 7314.72, + "end": 7314.72, + "probability": 0.0541 + }, + { + "start": 7314.72, + "end": 7319.0, + "probability": 0.6509 + }, + { + "start": 7319.04, + "end": 7320.1, + "probability": 0.8711 + }, + { + "start": 7320.44, + "end": 7324.76, + "probability": 0.9878 + }, + { + "start": 7325.1, + "end": 7326.27, + "probability": 0.9976 + }, + { + "start": 7327.1, + "end": 7329.08, + "probability": 0.9772 + }, + { + "start": 7329.5, + "end": 7330.24, + "probability": 0.4834 + }, + { + "start": 7330.58, + "end": 7334.0, + "probability": 0.9893 + }, + { + "start": 7334.52, + "end": 7337.06, + "probability": 0.7914 + }, + { + "start": 7337.46, + "end": 7339.2, + "probability": 0.819 + }, + { + "start": 7339.96, + "end": 7342.78, + "probability": 0.9811 + }, + { + "start": 7342.96, + "end": 7347.1, + "probability": 0.9925 + }, + { + "start": 7347.32, + "end": 7349.36, + "probability": 0.7133 + }, + { + "start": 7349.82, + "end": 7351.36, + "probability": 0.9676 + }, + { + "start": 7352.52, + "end": 7354.78, + "probability": 0.9634 + }, + { + "start": 7354.92, + "end": 7357.96, + "probability": 0.9917 + }, + { + "start": 7358.22, + "end": 7358.64, + "probability": 0.4505 + }, + { + "start": 7358.7, + "end": 7359.68, + "probability": 0.9167 + }, + { + "start": 7360.14, + "end": 7363.9, + "probability": 0.9172 + }, + { + "start": 7364.08, + "end": 7365.0, + "probability": 0.9004 + }, + { + "start": 7365.12, + "end": 7367.38, + "probability": 0.9646 + }, + { + "start": 7367.38, + "end": 7370.69, + "probability": 0.9918 + }, + { + "start": 7371.04, + "end": 7372.32, + "probability": 0.9946 + }, + { + "start": 7372.46, + "end": 7373.08, + "probability": 0.8439 + }, + { + "start": 7373.4, + "end": 7375.64, + "probability": 0.9755 + }, + { + "start": 7375.68, + "end": 7377.68, + "probability": 0.946 + }, + { + "start": 7378.22, + "end": 7381.7, + "probability": 0.8577 + }, + { + "start": 7381.76, + "end": 7382.04, + "probability": 0.7332 + }, + { + "start": 7382.1, + "end": 7382.88, + "probability": 0.8833 + }, + { + "start": 7383.38, + "end": 7385.56, + "probability": 0.8746 + }, + { + "start": 7385.86, + "end": 7387.26, + "probability": 0.2435 + }, + { + "start": 7387.9, + "end": 7391.08, + "probability": 0.7931 + }, + { + "start": 7391.08, + "end": 7391.56, + "probability": 0.7884 + }, + { + "start": 7392.04, + "end": 7392.66, + "probability": 0.7845 + }, + { + "start": 7392.78, + "end": 7396.94, + "probability": 0.9709 + }, + { + "start": 7397.12, + "end": 7400.54, + "probability": 0.986 + }, + { + "start": 7401.78, + "end": 7402.4, + "probability": 0.6984 + }, + { + "start": 7403.2, + "end": 7407.5, + "probability": 0.9724 + }, + { + "start": 7408.2, + "end": 7410.56, + "probability": 0.8461 + }, + { + "start": 7410.74, + "end": 7417.66, + "probability": 0.7592 + }, + { + "start": 7417.66, + "end": 7422.54, + "probability": 0.9809 + }, + { + "start": 7422.6, + "end": 7426.1, + "probability": 0.9985 + }, + { + "start": 7426.3, + "end": 7427.96, + "probability": 0.9985 + }, + { + "start": 7428.08, + "end": 7430.94, + "probability": 0.9972 + }, + { + "start": 7431.6, + "end": 7434.38, + "probability": 0.943 + }, + { + "start": 7434.54, + "end": 7440.06, + "probability": 0.9021 + }, + { + "start": 7440.26, + "end": 7442.02, + "probability": 0.9961 + }, + { + "start": 7442.34, + "end": 7445.76, + "probability": 0.926 + }, + { + "start": 7445.92, + "end": 7446.18, + "probability": 0.925 + }, + { + "start": 7446.24, + "end": 7449.0, + "probability": 0.9987 + }, + { + "start": 7449.7, + "end": 7455.32, + "probability": 0.9957 + }, + { + "start": 7455.66, + "end": 7456.38, + "probability": 0.9371 + }, + { + "start": 7456.54, + "end": 7457.32, + "probability": 0.7354 + }, + { + "start": 7457.4, + "end": 7458.0, + "probability": 0.7103 + }, + { + "start": 7458.38, + "end": 7460.49, + "probability": 0.998 + }, + { + "start": 7461.06, + "end": 7464.3, + "probability": 0.9747 + }, + { + "start": 7464.3, + "end": 7468.0, + "probability": 0.9992 + }, + { + "start": 7468.56, + "end": 7469.1, + "probability": 0.759 + }, + { + "start": 7469.26, + "end": 7470.26, + "probability": 0.8638 + }, + { + "start": 7470.46, + "end": 7471.14, + "probability": 0.7823 + }, + { + "start": 7471.3, + "end": 7472.64, + "probability": 0.9193 + }, + { + "start": 7472.92, + "end": 7476.6, + "probability": 0.9081 + }, + { + "start": 7476.64, + "end": 7479.14, + "probability": 0.8366 + }, + { + "start": 7479.46, + "end": 7481.56, + "probability": 0.9406 + }, + { + "start": 7481.88, + "end": 7482.24, + "probability": 0.8176 + }, + { + "start": 7482.44, + "end": 7487.54, + "probability": 0.7332 + }, + { + "start": 7488.32, + "end": 7490.69, + "probability": 0.6396 + }, + { + "start": 7493.02, + "end": 7499.36, + "probability": 0.8057 + }, + { + "start": 7499.44, + "end": 7503.74, + "probability": 0.7896 + }, + { + "start": 7504.04, + "end": 7506.46, + "probability": 0.8427 + }, + { + "start": 7506.78, + "end": 7508.26, + "probability": 0.8402 + }, + { + "start": 7508.74, + "end": 7513.42, + "probability": 0.942 + }, + { + "start": 7513.74, + "end": 7515.82, + "probability": 0.7501 + }, + { + "start": 7515.96, + "end": 7516.54, + "probability": 0.7813 + }, + { + "start": 7518.5, + "end": 7521.02, + "probability": 0.8652 + }, + { + "start": 7522.2, + "end": 7522.78, + "probability": 0.7064 + }, + { + "start": 7522.8, + "end": 7523.06, + "probability": 0.8707 + }, + { + "start": 7523.1, + "end": 7527.1, + "probability": 0.895 + }, + { + "start": 7527.82, + "end": 7529.41, + "probability": 0.9897 + }, + { + "start": 7530.66, + "end": 7533.16, + "probability": 0.6995 + }, + { + "start": 7533.24, + "end": 7533.38, + "probability": 0.7157 + }, + { + "start": 7533.4, + "end": 7537.86, + "probability": 0.9724 + }, + { + "start": 7538.16, + "end": 7539.44, + "probability": 0.9278 + }, + { + "start": 7539.62, + "end": 7540.58, + "probability": 0.6106 + }, + { + "start": 7540.82, + "end": 7543.1, + "probability": 0.9893 + }, + { + "start": 7543.16, + "end": 7545.48, + "probability": 0.8643 + }, + { + "start": 7546.38, + "end": 7547.94, + "probability": 0.9597 + }, + { + "start": 7548.02, + "end": 7550.04, + "probability": 0.9893 + }, + { + "start": 7550.3, + "end": 7551.56, + "probability": 0.8279 + }, + { + "start": 7551.62, + "end": 7553.46, + "probability": 0.8703 + }, + { + "start": 7553.56, + "end": 7554.31, + "probability": 0.842 + }, + { + "start": 7555.12, + "end": 7563.58, + "probability": 0.8994 + }, + { + "start": 7563.8, + "end": 7564.84, + "probability": 0.5701 + }, + { + "start": 7565.84, + "end": 7567.82, + "probability": 0.8142 + }, + { + "start": 7568.4, + "end": 7571.46, + "probability": 0.7517 + }, + { + "start": 7572.4, + "end": 7575.5, + "probability": 0.8543 + }, + { + "start": 7575.82, + "end": 7578.84, + "probability": 0.9756 + }, + { + "start": 7578.96, + "end": 7581.5, + "probability": 0.8351 + }, + { + "start": 7582.02, + "end": 7586.48, + "probability": 0.9465 + }, + { + "start": 7587.58, + "end": 7589.8, + "probability": 0.7332 + }, + { + "start": 7590.22, + "end": 7591.78, + "probability": 0.9655 + }, + { + "start": 7591.86, + "end": 7593.3, + "probability": 0.9417 + }, + { + "start": 7593.34, + "end": 7594.32, + "probability": 0.8881 + }, + { + "start": 7595.5, + "end": 7596.0, + "probability": 0.6841 + }, + { + "start": 7596.06, + "end": 7602.14, + "probability": 0.9769 + }, + { + "start": 7602.38, + "end": 7603.38, + "probability": 0.8472 + }, + { + "start": 7603.64, + "end": 7605.02, + "probability": 0.3711 + }, + { + "start": 7605.16, + "end": 7606.05, + "probability": 0.6536 + }, + { + "start": 7606.58, + "end": 7609.32, + "probability": 0.7173 + }, + { + "start": 7609.9, + "end": 7612.76, + "probability": 0.9529 + }, + { + "start": 7612.86, + "end": 7614.52, + "probability": 0.9517 + }, + { + "start": 7614.6, + "end": 7616.74, + "probability": 0.8903 + }, + { + "start": 7617.32, + "end": 7622.82, + "probability": 0.9924 + }, + { + "start": 7622.92, + "end": 7624.38, + "probability": 0.9882 + }, + { + "start": 7624.66, + "end": 7626.76, + "probability": 0.8083 + }, + { + "start": 7627.54, + "end": 7631.36, + "probability": 0.9956 + }, + { + "start": 7632.0, + "end": 7632.22, + "probability": 0.3933 + }, + { + "start": 7632.38, + "end": 7633.82, + "probability": 0.8701 + }, + { + "start": 7634.42, + "end": 7637.1, + "probability": 0.9226 + }, + { + "start": 7637.68, + "end": 7640.98, + "probability": 0.5872 + }, + { + "start": 7641.16, + "end": 7646.98, + "probability": 0.9932 + }, + { + "start": 7647.16, + "end": 7649.4, + "probability": 0.9056 + }, + { + "start": 7649.54, + "end": 7649.76, + "probability": 0.8641 + }, + { + "start": 7649.86, + "end": 7651.96, + "probability": 0.93 + }, + { + "start": 7651.96, + "end": 7655.84, + "probability": 0.9982 + }, + { + "start": 7655.96, + "end": 7657.12, + "probability": 0.7749 + }, + { + "start": 7657.26, + "end": 7661.38, + "probability": 0.9722 + }, + { + "start": 7662.34, + "end": 7665.7, + "probability": 0.9885 + }, + { + "start": 7666.48, + "end": 7667.98, + "probability": 0.9943 + }, + { + "start": 7669.04, + "end": 7670.48, + "probability": 0.5942 + }, + { + "start": 7670.54, + "end": 7671.2, + "probability": 0.804 + }, + { + "start": 7671.34, + "end": 7674.84, + "probability": 0.9646 + }, + { + "start": 7675.62, + "end": 7677.02, + "probability": 0.871 + }, + { + "start": 7677.2, + "end": 7680.05, + "probability": 0.9518 + }, + { + "start": 7681.14, + "end": 7684.81, + "probability": 0.9693 + }, + { + "start": 7687.3, + "end": 7693.18, + "probability": 0.9194 + }, + { + "start": 7693.18, + "end": 7696.74, + "probability": 0.5515 + }, + { + "start": 7696.96, + "end": 7700.88, + "probability": 0.9849 + }, + { + "start": 7701.12, + "end": 7702.55, + "probability": 0.9419 + }, + { + "start": 7702.98, + "end": 7704.4, + "probability": 0.9396 + }, + { + "start": 7704.8, + "end": 7706.02, + "probability": 0.7509 + }, + { + "start": 7706.8, + "end": 7709.84, + "probability": 0.987 + }, + { + "start": 7711.2, + "end": 7716.28, + "probability": 0.9591 + }, + { + "start": 7717.48, + "end": 7718.74, + "probability": 0.5829 + }, + { + "start": 7719.66, + "end": 7720.48, + "probability": 0.8343 + }, + { + "start": 7720.56, + "end": 7722.66, + "probability": 0.978 + }, + { + "start": 7722.74, + "end": 7724.08, + "probability": 0.665 + }, + { + "start": 7724.42, + "end": 7727.44, + "probability": 0.9661 + }, + { + "start": 7727.92, + "end": 7730.58, + "probability": 0.9568 + }, + { + "start": 7730.66, + "end": 7731.94, + "probability": 0.6349 + }, + { + "start": 7732.12, + "end": 7735.42, + "probability": 0.882 + }, + { + "start": 7735.48, + "end": 7736.18, + "probability": 0.6532 + }, + { + "start": 7736.22, + "end": 7737.3, + "probability": 0.8939 + }, + { + "start": 7737.36, + "end": 7738.46, + "probability": 0.9334 + }, + { + "start": 7738.9, + "end": 7739.96, + "probability": 0.9531 + }, + { + "start": 7740.06, + "end": 7745.32, + "probability": 0.9777 + }, + { + "start": 7745.32, + "end": 7751.5, + "probability": 0.9785 + }, + { + "start": 7752.34, + "end": 7755.14, + "probability": 0.7503 + }, + { + "start": 7756.08, + "end": 7758.94, + "probability": 0.87 + }, + { + "start": 7759.28, + "end": 7759.38, + "probability": 0.687 + }, + { + "start": 7759.44, + "end": 7761.48, + "probability": 0.7784 + }, + { + "start": 7761.54, + "end": 7764.18, + "probability": 0.7474 + }, + { + "start": 7764.5, + "end": 7769.4, + "probability": 0.9774 + }, + { + "start": 7769.82, + "end": 7772.16, + "probability": 0.9032 + }, + { + "start": 7772.5, + "end": 7776.92, + "probability": 0.6273 + }, + { + "start": 7777.54, + "end": 7783.92, + "probability": 0.8501 + }, + { + "start": 7787.02, + "end": 7789.18, + "probability": 0.917 + }, + { + "start": 7789.82, + "end": 7792.48, + "probability": 0.9436 + }, + { + "start": 7794.22, + "end": 7795.4, + "probability": 0.8363 + }, + { + "start": 7797.9, + "end": 7799.98, + "probability": 0.631 + }, + { + "start": 7799.98, + "end": 7803.66, + "probability": 0.7306 + }, + { + "start": 7803.82, + "end": 7804.86, + "probability": 0.7074 + }, + { + "start": 7804.9, + "end": 7806.51, + "probability": 0.643 + }, + { + "start": 7806.78, + "end": 7812.22, + "probability": 0.948 + }, + { + "start": 7813.44, + "end": 7816.6, + "probability": 0.9941 + }, + { + "start": 7816.92, + "end": 7821.38, + "probability": 0.8613 + }, + { + "start": 7821.98, + "end": 7823.9, + "probability": 0.8414 + }, + { + "start": 7824.36, + "end": 7826.9, + "probability": 0.9974 + }, + { + "start": 7827.62, + "end": 7830.32, + "probability": 0.5998 + }, + { + "start": 7830.44, + "end": 7832.0, + "probability": 0.9881 + }, + { + "start": 7832.82, + "end": 7837.16, + "probability": 0.9887 + }, + { + "start": 7837.76, + "end": 7839.58, + "probability": 0.9869 + }, + { + "start": 7840.2, + "end": 7842.68, + "probability": 0.9773 + }, + { + "start": 7843.52, + "end": 7845.85, + "probability": 0.916 + }, + { + "start": 7846.48, + "end": 7849.82, + "probability": 0.9912 + }, + { + "start": 7851.82, + "end": 7854.62, + "probability": 0.9929 + }, + { + "start": 7856.3, + "end": 7859.0, + "probability": 0.9722 + }, + { + "start": 7859.16, + "end": 7863.82, + "probability": 0.973 + }, + { + "start": 7864.32, + "end": 7869.68, + "probability": 0.9731 + }, + { + "start": 7870.36, + "end": 7873.54, + "probability": 0.8606 + }, + { + "start": 7874.32, + "end": 7876.86, + "probability": 0.9422 + }, + { + "start": 7876.94, + "end": 7878.42, + "probability": 0.5176 + }, + { + "start": 7878.46, + "end": 7881.12, + "probability": 0.9463 + }, + { + "start": 7881.12, + "end": 7882.14, + "probability": 0.81 + }, + { + "start": 7882.24, + "end": 7886.62, + "probability": 0.988 + }, + { + "start": 7886.7, + "end": 7888.1, + "probability": 0.9294 + }, + { + "start": 7888.2, + "end": 7891.22, + "probability": 0.8721 + }, + { + "start": 7891.54, + "end": 7891.54, + "probability": 0.0001 + }, + { + "start": 7892.9, + "end": 7900.51, + "probability": 0.2164 + }, + { + "start": 7901.1, + "end": 7902.78, + "probability": 0.9092 + }, + { + "start": 7902.84, + "end": 7906.44, + "probability": 0.9522 + }, + { + "start": 7906.6, + "end": 7910.94, + "probability": 0.9858 + }, + { + "start": 7912.1, + "end": 7913.14, + "probability": 0.7099 + }, + { + "start": 7913.72, + "end": 7917.46, + "probability": 0.7524 + }, + { + "start": 7918.12, + "end": 7918.84, + "probability": 0.7543 + }, + { + "start": 7918.88, + "end": 7919.92, + "probability": 0.9198 + }, + { + "start": 7920.14, + "end": 7923.78, + "probability": 0.9775 + }, + { + "start": 7924.1, + "end": 7926.02, + "probability": 0.9535 + }, + { + "start": 7926.5, + "end": 7927.44, + "probability": 0.9692 + }, + { + "start": 7927.62, + "end": 7929.64, + "probability": 0.9907 + }, + { + "start": 7930.05, + "end": 7932.24, + "probability": 0.6283 + }, + { + "start": 7932.4, + "end": 7936.06, + "probability": 0.8984 + }, + { + "start": 7936.32, + "end": 7937.94, + "probability": 0.7786 + }, + { + "start": 7938.06, + "end": 7940.92, + "probability": 0.891 + }, + { + "start": 7941.0, + "end": 7943.66, + "probability": 0.962 + }, + { + "start": 7943.76, + "end": 7948.68, + "probability": 0.9949 + }, + { + "start": 7949.42, + "end": 7954.26, + "probability": 0.9764 + }, + { + "start": 7954.26, + "end": 7959.36, + "probability": 0.9985 + }, + { + "start": 7959.36, + "end": 7962.84, + "probability": 0.9868 + }, + { + "start": 7963.32, + "end": 7965.22, + "probability": 0.9223 + }, + { + "start": 7966.32, + "end": 7970.82, + "probability": 0.9907 + }, + { + "start": 7971.12, + "end": 7976.02, + "probability": 0.9523 + }, + { + "start": 7976.58, + "end": 7979.16, + "probability": 0.9795 + }, + { + "start": 7979.62, + "end": 7981.84, + "probability": 0.9627 + }, + { + "start": 7982.24, + "end": 7986.48, + "probability": 0.9512 + }, + { + "start": 7986.86, + "end": 7988.8, + "probability": 0.9963 + }, + { + "start": 7989.12, + "end": 7991.02, + "probability": 0.967 + }, + { + "start": 7991.1, + "end": 7993.04, + "probability": 0.9569 + }, + { + "start": 7993.7, + "end": 7995.82, + "probability": 0.9956 + }, + { + "start": 7995.98, + "end": 8002.96, + "probability": 0.9257 + }, + { + "start": 8003.74, + "end": 8008.0, + "probability": 0.911 + }, + { + "start": 8008.54, + "end": 8011.52, + "probability": 0.9468 + }, + { + "start": 8011.72, + "end": 8013.72, + "probability": 0.9231 + }, + { + "start": 8014.47, + "end": 8018.04, + "probability": 0.968 + }, + { + "start": 8018.04, + "end": 8020.29, + "probability": 0.8909 + }, + { + "start": 8021.22, + "end": 8024.92, + "probability": 0.9017 + }, + { + "start": 8025.76, + "end": 8026.38, + "probability": 0.5073 + }, + { + "start": 8026.66, + "end": 8030.19, + "probability": 0.9077 + }, + { + "start": 8030.52, + "end": 8030.88, + "probability": 0.9396 + }, + { + "start": 8030.94, + "end": 8031.81, + "probability": 0.9408 + }, + { + "start": 8032.3, + "end": 8035.18, + "probability": 0.9749 + }, + { + "start": 8035.82, + "end": 8041.08, + "probability": 0.8501 + }, + { + "start": 8041.64, + "end": 8044.86, + "probability": 0.9979 + }, + { + "start": 8045.2, + "end": 8046.38, + "probability": 0.8821 + }, + { + "start": 8046.54, + "end": 8047.34, + "probability": 0.3565 + }, + { + "start": 8047.64, + "end": 8048.26, + "probability": 0.8981 + }, + { + "start": 8048.3, + "end": 8053.1, + "probability": 0.9963 + }, + { + "start": 8053.44, + "end": 8054.14, + "probability": 0.8823 + }, + { + "start": 8054.22, + "end": 8056.44, + "probability": 0.9937 + }, + { + "start": 8056.54, + "end": 8059.38, + "probability": 0.9945 + }, + { + "start": 8059.86, + "end": 8062.44, + "probability": 0.9078 + }, + { + "start": 8063.08, + "end": 8068.72, + "probability": 0.9691 + }, + { + "start": 8069.26, + "end": 8074.84, + "probability": 0.883 + }, + { + "start": 8074.92, + "end": 8076.72, + "probability": 0.9492 + }, + { + "start": 8076.8, + "end": 8077.92, + "probability": 0.8972 + }, + { + "start": 8078.26, + "end": 8079.84, + "probability": 0.7856 + }, + { + "start": 8079.92, + "end": 8082.64, + "probability": 0.9417 + }, + { + "start": 8082.9, + "end": 8084.5, + "probability": 0.9393 + }, + { + "start": 8084.86, + "end": 8087.74, + "probability": 0.9878 + }, + { + "start": 8087.98, + "end": 8089.16, + "probability": 0.7209 + }, + { + "start": 8089.22, + "end": 8092.4, + "probability": 0.8838 + }, + { + "start": 8092.9, + "end": 8095.48, + "probability": 0.8999 + }, + { + "start": 8095.6, + "end": 8097.16, + "probability": 0.7248 + }, + { + "start": 8097.72, + "end": 8100.36, + "probability": 0.996 + }, + { + "start": 8100.72, + "end": 8105.38, + "probability": 0.959 + }, + { + "start": 8105.5, + "end": 8108.82, + "probability": 0.9138 + }, + { + "start": 8109.06, + "end": 8114.46, + "probability": 0.9611 + }, + { + "start": 8114.86, + "end": 8117.84, + "probability": 0.9873 + }, + { + "start": 8117.98, + "end": 8118.36, + "probability": 0.8554 + }, + { + "start": 8118.96, + "end": 8120.04, + "probability": 0.7762 + }, + { + "start": 8120.16, + "end": 8121.26, + "probability": 0.6632 + }, + { + "start": 8121.26, + "end": 8121.62, + "probability": 0.6043 + }, + { + "start": 8121.68, + "end": 8124.63, + "probability": 0.9812 + }, + { + "start": 8125.4, + "end": 8129.46, + "probability": 0.9958 + }, + { + "start": 8129.66, + "end": 8131.48, + "probability": 0.7876 + }, + { + "start": 8131.86, + "end": 8135.34, + "probability": 0.8576 + }, + { + "start": 8136.0, + "end": 8140.92, + "probability": 0.6745 + }, + { + "start": 8141.78, + "end": 8143.4, + "probability": 0.8016 + }, + { + "start": 8143.48, + "end": 8144.18, + "probability": 0.9004 + }, + { + "start": 8144.24, + "end": 8145.22, + "probability": 0.9783 + }, + { + "start": 8145.78, + "end": 8147.64, + "probability": 0.5835 + }, + { + "start": 8147.64, + "end": 8150.34, + "probability": 0.8779 + }, + { + "start": 8150.48, + "end": 8153.0, + "probability": 0.9463 + }, + { + "start": 8153.42, + "end": 8153.94, + "probability": 0.8901 + }, + { + "start": 8154.02, + "end": 8158.76, + "probability": 0.9626 + }, + { + "start": 8159.8, + "end": 8162.98, + "probability": 0.7888 + }, + { + "start": 8163.5, + "end": 8164.76, + "probability": 0.2458 + }, + { + "start": 8165.1, + "end": 8167.72, + "probability": 0.9966 + }, + { + "start": 8167.82, + "end": 8171.08, + "probability": 0.9692 + }, + { + "start": 8171.08, + "end": 8173.65, + "probability": 0.9951 + }, + { + "start": 8174.74, + "end": 8175.34, + "probability": 0.8065 + }, + { + "start": 8175.4, + "end": 8178.0, + "probability": 0.8867 + }, + { + "start": 8178.1, + "end": 8179.29, + "probability": 0.7119 + }, + { + "start": 8180.62, + "end": 8181.76, + "probability": 0.6268 + }, + { + "start": 8181.9, + "end": 8183.16, + "probability": 0.442 + }, + { + "start": 8183.18, + "end": 8187.06, + "probability": 0.9553 + }, + { + "start": 8188.04, + "end": 8189.92, + "probability": 0.8589 + }, + { + "start": 8190.18, + "end": 8192.18, + "probability": 0.8391 + }, + { + "start": 8192.3, + "end": 8194.84, + "probability": 0.8418 + }, + { + "start": 8195.32, + "end": 8197.7, + "probability": 0.8735 + }, + { + "start": 8198.04, + "end": 8199.65, + "probability": 0.87 + }, + { + "start": 8200.43, + "end": 8205.98, + "probability": 0.9396 + }, + { + "start": 8206.46, + "end": 8212.78, + "probability": 0.984 + }, + { + "start": 8212.9, + "end": 8216.28, + "probability": 0.8343 + }, + { + "start": 8217.82, + "end": 8219.26, + "probability": 0.0077 + }, + { + "start": 8219.26, + "end": 8220.86, + "probability": 0.8172 + }, + { + "start": 8220.94, + "end": 8222.68, + "probability": 0.7 + }, + { + "start": 8222.8, + "end": 8224.84, + "probability": 0.8436 + }, + { + "start": 8224.88, + "end": 8232.42, + "probability": 0.8144 + }, + { + "start": 8234.94, + "end": 8235.92, + "probability": 0.6756 + }, + { + "start": 8236.04, + "end": 8244.12, + "probability": 0.9318 + }, + { + "start": 8244.56, + "end": 8246.94, + "probability": 0.9927 + }, + { + "start": 8248.52, + "end": 8248.92, + "probability": 0.3085 + }, + { + "start": 8248.94, + "end": 8250.38, + "probability": 0.7924 + }, + { + "start": 8250.54, + "end": 8252.48, + "probability": 0.9783 + }, + { + "start": 8252.98, + "end": 8258.64, + "probability": 0.8806 + }, + { + "start": 8259.34, + "end": 8259.76, + "probability": 0.2698 + }, + { + "start": 8259.76, + "end": 8265.98, + "probability": 0.9586 + }, + { + "start": 8267.07, + "end": 8271.64, + "probability": 0.9047 + }, + { + "start": 8272.46, + "end": 8278.88, + "probability": 0.985 + }, + { + "start": 8279.44, + "end": 8282.74, + "probability": 0.7634 + }, + { + "start": 8283.14, + "end": 8286.06, + "probability": 0.679 + }, + { + "start": 8286.22, + "end": 8286.98, + "probability": 0.5407 + }, + { + "start": 8287.3, + "end": 8288.0, + "probability": 0.6813 + }, + { + "start": 8288.04, + "end": 8288.52, + "probability": 0.8652 + }, + { + "start": 8296.02, + "end": 8297.8, + "probability": 0.7441 + }, + { + "start": 8303.7, + "end": 8304.72, + "probability": 0.1676 + }, + { + "start": 8304.72, + "end": 8305.28, + "probability": 0.3591 + }, + { + "start": 8305.92, + "end": 8307.89, + "probability": 0.2666 + }, + { + "start": 8308.36, + "end": 8311.66, + "probability": 0.9504 + }, + { + "start": 8311.7, + "end": 8315.32, + "probability": 0.7843 + }, + { + "start": 8315.94, + "end": 8317.22, + "probability": 0.4483 + }, + { + "start": 8317.66, + "end": 8318.08, + "probability": 0.2896 + }, + { + "start": 8318.54, + "end": 8320.74, + "probability": 0.7986 + }, + { + "start": 8321.04, + "end": 8321.32, + "probability": 0.0322 + }, + { + "start": 8321.32, + "end": 8321.32, + "probability": 0.0761 + }, + { + "start": 8321.32, + "end": 8321.6, + "probability": 0.6717 + }, + { + "start": 8322.68, + "end": 8323.56, + "probability": 0.9058 + }, + { + "start": 8323.94, + "end": 8325.04, + "probability": 0.4712 + }, + { + "start": 8325.6, + "end": 8330.3, + "probability": 0.8352 + }, + { + "start": 8331.4, + "end": 8337.8, + "probability": 0.6295 + }, + { + "start": 8337.8, + "end": 8341.32, + "probability": 0.876 + }, + { + "start": 8341.64, + "end": 8344.96, + "probability": 0.6239 + }, + { + "start": 8345.56, + "end": 8347.08, + "probability": 0.6092 + }, + { + "start": 8347.46, + "end": 8348.08, + "probability": 0.2416 + }, + { + "start": 8348.18, + "end": 8348.78, + "probability": 0.564 + }, + { + "start": 8348.8, + "end": 8349.34, + "probability": 0.7419 + }, + { + "start": 8349.86, + "end": 8354.56, + "probability": 0.0509 + }, + { + "start": 8366.0, + "end": 8369.44, + "probability": 0.4492 + }, + { + "start": 8369.96, + "end": 8371.44, + "probability": 0.3871 + }, + { + "start": 8372.14, + "end": 8379.02, + "probability": 0.7706 + }, + { + "start": 8380.28, + "end": 8385.82, + "probability": 0.9106 + }, + { + "start": 8386.58, + "end": 8389.6, + "probability": 0.8354 + }, + { + "start": 8390.02, + "end": 8394.56, + "probability": 0.8659 + }, + { + "start": 8395.08, + "end": 8398.76, + "probability": 0.865 + }, + { + "start": 8398.9, + "end": 8402.42, + "probability": 0.7666 + }, + { + "start": 8402.7, + "end": 8403.66, + "probability": 0.7512 + }, + { + "start": 8404.46, + "end": 8410.52, + "probability": 0.9561 + }, + { + "start": 8411.06, + "end": 8412.82, + "probability": 0.7514 + }, + { + "start": 8415.6, + "end": 8419.84, + "probability": 0.6651 + }, + { + "start": 8422.04, + "end": 8423.48, + "probability": 0.205 + }, + { + "start": 8424.38, + "end": 8428.16, + "probability": 0.6854 + }, + { + "start": 8428.2, + "end": 8431.6, + "probability": 0.8105 + }, + { + "start": 8431.6, + "end": 8434.2, + "probability": 0.525 + }, + { + "start": 8434.66, + "end": 8437.62, + "probability": 0.7453 + }, + { + "start": 8438.34, + "end": 8440.26, + "probability": 0.9718 + }, + { + "start": 8440.78, + "end": 8443.08, + "probability": 0.9448 + }, + { + "start": 8444.08, + "end": 8446.58, + "probability": 0.9865 + }, + { + "start": 8447.16, + "end": 8448.88, + "probability": 0.9458 + }, + { + "start": 8450.02, + "end": 8458.46, + "probability": 0.7606 + }, + { + "start": 8459.2, + "end": 8463.94, + "probability": 0.9849 + }, + { + "start": 8464.66, + "end": 8467.28, + "probability": 0.9897 + }, + { + "start": 8467.8, + "end": 8470.12, + "probability": 0.9927 + }, + { + "start": 8470.82, + "end": 8473.32, + "probability": 0.9718 + }, + { + "start": 8474.08, + "end": 8476.08, + "probability": 0.9928 + }, + { + "start": 8477.26, + "end": 8479.28, + "probability": 0.4606 + }, + { + "start": 8480.4, + "end": 8482.76, + "probability": 0.8937 + }, + { + "start": 8483.36, + "end": 8485.42, + "probability": 0.9094 + }, + { + "start": 8486.66, + "end": 8491.1, + "probability": 0.7033 + }, + { + "start": 8495.38, + "end": 8498.78, + "probability": 0.7244 + }, + { + "start": 8499.36, + "end": 8502.84, + "probability": 0.9526 + }, + { + "start": 8503.52, + "end": 8505.56, + "probability": 0.9824 + }, + { + "start": 8506.18, + "end": 8508.66, + "probability": 0.9845 + }, + { + "start": 8509.28, + "end": 8511.16, + "probability": 0.9564 + }, + { + "start": 8513.06, + "end": 8516.46, + "probability": 0.9811 + }, + { + "start": 8517.5, + "end": 8520.3, + "probability": 0.9756 + }, + { + "start": 8521.3, + "end": 8523.44, + "probability": 0.6714 + }, + { + "start": 8526.2, + "end": 8530.88, + "probability": 0.7781 + }, + { + "start": 8531.48, + "end": 8533.98, + "probability": 0.9038 + }, + { + "start": 8535.68, + "end": 8537.9, + "probability": 0.9102 + }, + { + "start": 8538.6, + "end": 8541.0, + "probability": 0.9436 + }, + { + "start": 8542.34, + "end": 8549.7, + "probability": 0.9768 + }, + { + "start": 8550.44, + "end": 8552.52, + "probability": 0.7624 + }, + { + "start": 8553.4, + "end": 8555.7, + "probability": 0.8997 + }, + { + "start": 8557.28, + "end": 8557.82, + "probability": 0.9707 + }, + { + "start": 8561.32, + "end": 8562.4, + "probability": 0.4906 + }, + { + "start": 8563.12, + "end": 8565.84, + "probability": 0.8571 + }, + { + "start": 8566.72, + "end": 8568.8, + "probability": 0.9724 + }, + { + "start": 8569.38, + "end": 8573.7, + "probability": 0.9067 + }, + { + "start": 8575.32, + "end": 8579.0, + "probability": 0.9859 + }, + { + "start": 8579.32, + "end": 8582.3, + "probability": 0.9762 + }, + { + "start": 8582.64, + "end": 8586.86, + "probability": 0.7485 + }, + { + "start": 8587.1, + "end": 8589.74, + "probability": 0.563 + }, + { + "start": 8590.12, + "end": 8594.42, + "probability": 0.8044 + }, + { + "start": 8594.88, + "end": 8596.82, + "probability": 0.9717 + }, + { + "start": 8597.98, + "end": 8600.62, + "probability": 0.9541 + }, + { + "start": 8601.84, + "end": 8603.98, + "probability": 0.8995 + }, + { + "start": 8604.52, + "end": 8606.72, + "probability": 0.9733 + }, + { + "start": 8607.74, + "end": 8610.34, + "probability": 0.9265 + }, + { + "start": 8611.92, + "end": 8614.38, + "probability": 0.8926 + }, + { + "start": 8614.98, + "end": 8616.56, + "probability": 0.7775 + }, + { + "start": 8621.5, + "end": 8624.8, + "probability": 0.718 + }, + { + "start": 8626.82, + "end": 8629.8, + "probability": 0.7976 + }, + { + "start": 8630.34, + "end": 8632.38, + "probability": 0.8865 + }, + { + "start": 8634.24, + "end": 8637.18, + "probability": 0.9541 + }, + { + "start": 8637.68, + "end": 8640.06, + "probability": 0.9799 + }, + { + "start": 8640.16, + "end": 8642.72, + "probability": 0.5017 + }, + { + "start": 8643.7, + "end": 8647.3, + "probability": 0.8186 + }, + { + "start": 8647.88, + "end": 8650.28, + "probability": 0.8301 + }, + { + "start": 8652.96, + "end": 8655.34, + "probability": 0.5599 + }, + { + "start": 8656.72, + "end": 8665.2, + "probability": 0.8215 + }, + { + "start": 8667.22, + "end": 8669.38, + "probability": 0.8629 + }, + { + "start": 8670.12, + "end": 8674.42, + "probability": 0.9564 + }, + { + "start": 8675.16, + "end": 8679.48, + "probability": 0.9683 + }, + { + "start": 8681.48, + "end": 8683.36, + "probability": 0.2093 + }, + { + "start": 8692.88, + "end": 8698.44, + "probability": 0.922 + }, + { + "start": 8699.16, + "end": 8701.46, + "probability": 0.9907 + }, + { + "start": 8702.44, + "end": 8704.9, + "probability": 0.9953 + }, + { + "start": 8705.58, + "end": 8707.54, + "probability": 0.99 + }, + { + "start": 8708.34, + "end": 8710.28, + "probability": 0.4384 + }, + { + "start": 8710.9, + "end": 8719.74, + "probability": 0.7096 + }, + { + "start": 8720.32, + "end": 8728.04, + "probability": 0.8789 + }, + { + "start": 8729.64, + "end": 8732.3, + "probability": 0.9518 + }, + { + "start": 8732.82, + "end": 8735.04, + "probability": 0.9814 + }, + { + "start": 8735.72, + "end": 8737.56, + "probability": 0.9843 + }, + { + "start": 8738.14, + "end": 8740.32, + "probability": 0.8645 + }, + { + "start": 8741.74, + "end": 8742.23, + "probability": 0.5217 + }, + { + "start": 8743.3, + "end": 8744.96, + "probability": 0.8758 + }, + { + "start": 8747.22, + "end": 8749.8, + "probability": 0.8368 + }, + { + "start": 8750.28, + "end": 8752.1, + "probability": 0.9215 + }, + { + "start": 8752.34, + "end": 8754.22, + "probability": 0.9805 + }, + { + "start": 8756.16, + "end": 8758.76, + "probability": 0.6533 + }, + { + "start": 8759.1, + "end": 8760.98, + "probability": 0.8488 + }, + { + "start": 8761.46, + "end": 8763.88, + "probability": 0.9287 + }, + { + "start": 8765.44, + "end": 8768.6, + "probability": 0.4616 + }, + { + "start": 8769.38, + "end": 8771.42, + "probability": 0.8239 + }, + { + "start": 8771.98, + "end": 8773.78, + "probability": 0.8046 + }, + { + "start": 8774.86, + "end": 8776.46, + "probability": 0.9482 + }, + { + "start": 8777.22, + "end": 8779.48, + "probability": 0.9673 + }, + { + "start": 8780.12, + "end": 8784.12, + "probability": 0.9432 + }, + { + "start": 8785.86, + "end": 8795.94, + "probability": 0.8048 + }, + { + "start": 8796.84, + "end": 8799.46, + "probability": 0.7883 + }, + { + "start": 8799.84, + "end": 8802.2, + "probability": 0.8567 + }, + { + "start": 8802.72, + "end": 8804.52, + "probability": 0.7912 + }, + { + "start": 8805.08, + "end": 8806.84, + "probability": 0.984 + }, + { + "start": 8807.66, + "end": 8809.64, + "probability": 0.9692 + }, + { + "start": 8812.64, + "end": 8816.88, + "probability": 0.7248 + }, + { + "start": 8817.84, + "end": 8818.36, + "probability": 0.1479 + }, + { + "start": 8818.36, + "end": 8822.14, + "probability": 0.1601 + }, + { + "start": 8825.62, + "end": 8831.64, + "probability": 0.911 + }, + { + "start": 8833.58, + "end": 8835.22, + "probability": 0.7103 + }, + { + "start": 8836.02, + "end": 8838.1, + "probability": 0.8667 + }, + { + "start": 8838.78, + "end": 8843.48, + "probability": 0.8811 + }, + { + "start": 8844.06, + "end": 8848.94, + "probability": 0.8937 + }, + { + "start": 8849.68, + "end": 8853.64, + "probability": 0.9464 + }, + { + "start": 8854.49, + "end": 8858.86, + "probability": 0.9824 + }, + { + "start": 8860.3, + "end": 8863.06, + "probability": 0.5865 + }, + { + "start": 8863.9, + "end": 8865.74, + "probability": 0.5245 + }, + { + "start": 8866.08, + "end": 8868.44, + "probability": 0.7474 + }, + { + "start": 8868.74, + "end": 8870.9, + "probability": 0.954 + }, + { + "start": 8871.54, + "end": 8873.68, + "probability": 0.9601 + }, + { + "start": 8874.44, + "end": 8876.94, + "probability": 0.9726 + }, + { + "start": 8877.1, + "end": 8880.68, + "probability": 0.8787 + }, + { + "start": 8881.66, + "end": 8885.18, + "probability": 0.881 + }, + { + "start": 8885.22, + "end": 8888.86, + "probability": 0.8338 + }, + { + "start": 8889.3, + "end": 8892.52, + "probability": 0.9504 + }, + { + "start": 8892.56, + "end": 8894.72, + "probability": 0.9789 + }, + { + "start": 8896.48, + "end": 8899.32, + "probability": 0.9502 + }, + { + "start": 8899.36, + "end": 8902.12, + "probability": 0.5947 + }, + { + "start": 8902.14, + "end": 8904.64, + "probability": 0.8975 + }, + { + "start": 8905.28, + "end": 8909.34, + "probability": 0.9757 + }, + { + "start": 8909.38, + "end": 8912.18, + "probability": 0.9834 + }, + { + "start": 8912.22, + "end": 8914.9, + "probability": 0.985 + }, + { + "start": 8915.54, + "end": 8919.78, + "probability": 0.6045 + }, + { + "start": 8921.24, + "end": 8923.84, + "probability": 0.7455 + }, + { + "start": 8924.24, + "end": 8927.6, + "probability": 0.9528 + }, + { + "start": 8928.08, + "end": 8930.58, + "probability": 0.9709 + }, + { + "start": 8930.96, + "end": 8932.96, + "probability": 0.7654 + }, + { + "start": 8933.32, + "end": 8935.8, + "probability": 0.863 + }, + { + "start": 8935.8, + "end": 8938.1, + "probability": 0.6617 + }, + { + "start": 8938.2, + "end": 8940.8, + "probability": 0.817 + }, + { + "start": 8941.04, + "end": 8943.5, + "probability": 0.9142 + }, + { + "start": 8943.68, + "end": 8945.88, + "probability": 0.8969 + }, + { + "start": 8946.08, + "end": 8951.0, + "probability": 0.842 + }, + { + "start": 8951.02, + "end": 8954.16, + "probability": 0.9646 + }, + { + "start": 8954.18, + "end": 8958.31, + "probability": 0.9734 + }, + { + "start": 8958.56, + "end": 8962.7, + "probability": 0.988 + }, + { + "start": 8963.12, + "end": 8964.54, + "probability": 0.5547 + }, + { + "start": 8964.68, + "end": 8966.71, + "probability": 0.9189 + }, + { + "start": 9020.14, + "end": 9020.4, + "probability": 0.1774 + }, + { + "start": 9020.46, + "end": 9022.72, + "probability": 0.7241 + }, + { + "start": 9023.28, + "end": 9025.58, + "probability": 0.8968 + }, + { + "start": 9026.04, + "end": 9028.52, + "probability": 0.8028 + }, + { + "start": 9030.08, + "end": 9032.21, + "probability": 0.7885 + }, + { + "start": 9051.62, + "end": 9052.2, + "probability": 0.7332 + }, + { + "start": 9053.17, + "end": 9057.76, + "probability": 0.5644 + }, + { + "start": 9057.76, + "end": 9060.3, + "probability": 0.8227 + }, + { + "start": 9060.68, + "end": 9061.94, + "probability": 0.8666 + }, + { + "start": 9062.1, + "end": 9062.9, + "probability": 0.9141 + }, + { + "start": 9063.62, + "end": 9065.38, + "probability": 0.7275 + }, + { + "start": 9065.58, + "end": 9071.42, + "probability": 0.8656 + }, + { + "start": 9072.9, + "end": 9075.5, + "probability": 0.6302 + }, + { + "start": 9075.5, + "end": 9081.92, + "probability": 0.4562 + }, + { + "start": 9086.28, + "end": 9090.6, + "probability": 0.6348 + }, + { + "start": 9090.9, + "end": 9091.7, + "probability": 0.9858 + }, + { + "start": 9096.14, + "end": 9099.64, + "probability": 0.8212 + }, + { + "start": 9099.98, + "end": 9100.62, + "probability": 0.52 + }, + { + "start": 9100.8, + "end": 9107.08, + "probability": 0.9335 + }, + { + "start": 9107.14, + "end": 9108.96, + "probability": 0.9988 + }, + { + "start": 9111.38, + "end": 9115.06, + "probability": 0.8736 + }, + { + "start": 9117.24, + "end": 9117.6, + "probability": 0.6701 + }, + { + "start": 9120.68, + "end": 9122.04, + "probability": 0.5992 + }, + { + "start": 9122.28, + "end": 9123.22, + "probability": 0.83 + }, + { + "start": 9123.38, + "end": 9124.6, + "probability": 0.95 + }, + { + "start": 9124.78, + "end": 9127.64, + "probability": 0.9894 + }, + { + "start": 9128.4, + "end": 9132.52, + "probability": 0.8206 + }, + { + "start": 9133.22, + "end": 9136.26, + "probability": 0.92 + }, + { + "start": 9137.46, + "end": 9142.66, + "probability": 0.7649 + }, + { + "start": 9143.72, + "end": 9145.94, + "probability": 0.6139 + }, + { + "start": 9147.18, + "end": 9150.2, + "probability": 0.979 + }, + { + "start": 9150.2, + "end": 9154.26, + "probability": 0.9771 + }, + { + "start": 9155.36, + "end": 9157.86, + "probability": 0.978 + }, + { + "start": 9157.86, + "end": 9161.86, + "probability": 0.9927 + }, + { + "start": 9162.4, + "end": 9164.32, + "probability": 0.9374 + }, + { + "start": 9164.32, + "end": 9167.62, + "probability": 0.9985 + }, + { + "start": 9168.12, + "end": 9169.5, + "probability": 0.9007 + }, + { + "start": 9169.6, + "end": 9173.8, + "probability": 0.9916 + }, + { + "start": 9174.52, + "end": 9177.72, + "probability": 0.9315 + }, + { + "start": 9178.02, + "end": 9180.96, + "probability": 0.9868 + }, + { + "start": 9181.36, + "end": 9184.08, + "probability": 0.9973 + }, + { + "start": 9185.26, + "end": 9186.9, + "probability": 0.9693 + }, + { + "start": 9186.96, + "end": 9189.42, + "probability": 0.9845 + }, + { + "start": 9189.58, + "end": 9191.46, + "probability": 0.9267 + }, + { + "start": 9192.4, + "end": 9195.04, + "probability": 0.9816 + }, + { + "start": 9195.04, + "end": 9197.58, + "probability": 0.9862 + }, + { + "start": 9198.1, + "end": 9198.64, + "probability": 0.6537 + }, + { + "start": 9199.06, + "end": 9199.38, + "probability": 0.4253 + }, + { + "start": 9199.82, + "end": 9202.47, + "probability": 0.9782 + }, + { + "start": 9202.82, + "end": 9204.22, + "probability": 0.9226 + }, + { + "start": 9204.34, + "end": 9207.78, + "probability": 0.8336 + }, + { + "start": 9208.18, + "end": 9208.98, + "probability": 0.8125 + }, + { + "start": 9209.78, + "end": 9213.5, + "probability": 0.8591 + }, + { + "start": 9213.5, + "end": 9217.6, + "probability": 0.9944 + }, + { + "start": 9218.1, + "end": 9220.34, + "probability": 0.972 + }, + { + "start": 9220.8, + "end": 9222.0, + "probability": 0.848 + }, + { + "start": 9222.8, + "end": 9225.38, + "probability": 0.8573 + }, + { + "start": 9225.84, + "end": 9227.98, + "probability": 0.7012 + }, + { + "start": 9228.46, + "end": 9231.06, + "probability": 0.9961 + }, + { + "start": 9231.5, + "end": 9233.16, + "probability": 0.975 + }, + { + "start": 9233.16, + "end": 9235.72, + "probability": 0.9699 + }, + { + "start": 9235.84, + "end": 9239.6, + "probability": 0.7528 + }, + { + "start": 9239.6, + "end": 9242.18, + "probability": 0.9648 + }, + { + "start": 9242.68, + "end": 9243.86, + "probability": 0.6009 + }, + { + "start": 9244.02, + "end": 9245.74, + "probability": 0.8164 + }, + { + "start": 9245.74, + "end": 9248.46, + "probability": 0.9979 + }, + { + "start": 9248.7, + "end": 9250.44, + "probability": 0.6536 + }, + { + "start": 9250.7, + "end": 9254.04, + "probability": 0.9664 + }, + { + "start": 9254.54, + "end": 9254.98, + "probability": 0.5174 + }, + { + "start": 9255.06, + "end": 9255.74, + "probability": 0.8048 + }, + { + "start": 9255.74, + "end": 9259.22, + "probability": 0.951 + }, + { + "start": 9259.32, + "end": 9260.68, + "probability": 0.5227 + }, + { + "start": 9260.68, + "end": 9263.4, + "probability": 0.9205 + }, + { + "start": 9263.68, + "end": 9266.42, + "probability": 0.6926 + }, + { + "start": 9266.42, + "end": 9270.18, + "probability": 0.7546 + }, + { + "start": 9271.0, + "end": 9272.78, + "probability": 0.7326 + }, + { + "start": 9272.84, + "end": 9273.14, + "probability": 0.6146 + }, + { + "start": 9273.58, + "end": 9275.38, + "probability": 0.9632 + }, + { + "start": 9276.06, + "end": 9280.46, + "probability": 0.9491 + }, + { + "start": 9280.52, + "end": 9280.8, + "probability": 0.7225 + }, + { + "start": 9281.06, + "end": 9283.4, + "probability": 0.9639 + }, + { + "start": 9283.64, + "end": 9285.26, + "probability": 0.9981 + }, + { + "start": 9285.32, + "end": 9286.14, + "probability": 0.7405 + }, + { + "start": 9286.56, + "end": 9287.32, + "probability": 0.9506 + }, + { + "start": 9288.26, + "end": 9289.66, + "probability": 0.7975 + }, + { + "start": 9290.38, + "end": 9292.62, + "probability": 0.8457 + }, + { + "start": 9292.76, + "end": 9294.36, + "probability": 0.8935 + }, + { + "start": 9295.18, + "end": 9298.22, + "probability": 0.4825 + }, + { + "start": 9299.72, + "end": 9300.84, + "probability": 0.4254 + }, + { + "start": 9300.88, + "end": 9305.02, + "probability": 0.664 + }, + { + "start": 9306.4, + "end": 9307.76, + "probability": 0.0481 + }, + { + "start": 9307.76, + "end": 9309.7, + "probability": 0.8143 + }, + { + "start": 9309.8, + "end": 9310.54, + "probability": 0.6848 + }, + { + "start": 9310.84, + "end": 9311.3, + "probability": 0.3878 + }, + { + "start": 9311.36, + "end": 9311.84, + "probability": 0.5738 + }, + { + "start": 9311.86, + "end": 9315.1, + "probability": 0.2738 + }, + { + "start": 9315.86, + "end": 9316.32, + "probability": 0.1894 + }, + { + "start": 9320.18, + "end": 9323.04, + "probability": 0.0032 + }, + { + "start": 9323.62, + "end": 9327.06, + "probability": 0.1851 + }, + { + "start": 9327.44, + "end": 9330.12, + "probability": 0.9817 + }, + { + "start": 9330.38, + "end": 9333.26, + "probability": 0.6794 + }, + { + "start": 9333.46, + "end": 9333.48, + "probability": 0.0097 + }, + { + "start": 9333.48, + "end": 9337.36, + "probability": 0.8068 + }, + { + "start": 9337.7, + "end": 9338.62, + "probability": 0.6582 + }, + { + "start": 9338.92, + "end": 9341.72, + "probability": 0.636 + }, + { + "start": 9342.12, + "end": 9343.36, + "probability": 0.4819 + }, + { + "start": 9343.5, + "end": 9344.34, + "probability": 0.8218 + }, + { + "start": 9344.78, + "end": 9345.44, + "probability": 0.7911 + }, + { + "start": 9345.44, + "end": 9345.94, + "probability": 0.4931 + }, + { + "start": 9345.96, + "end": 9346.4, + "probability": 0.6833 + }, + { + "start": 9346.4, + "end": 9346.82, + "probability": 0.7281 + }, + { + "start": 9346.88, + "end": 9347.84, + "probability": 0.7233 + }, + { + "start": 9350.24, + "end": 9350.58, + "probability": 0.0249 + }, + { + "start": 9352.54, + "end": 9356.88, + "probability": 0.0778 + }, + { + "start": 9357.52, + "end": 9358.08, + "probability": 0.3243 + }, + { + "start": 9358.08, + "end": 9358.98, + "probability": 0.0911 + }, + { + "start": 9362.36, + "end": 9363.04, + "probability": 0.3049 + }, + { + "start": 9363.68, + "end": 9364.53, + "probability": 0.5106 + }, + { + "start": 9365.5, + "end": 9369.36, + "probability": 0.7446 + }, + { + "start": 9369.84, + "end": 9371.24, + "probability": 0.6153 + }, + { + "start": 9371.44, + "end": 9375.52, + "probability": 0.9012 + }, + { + "start": 9376.0, + "end": 9377.38, + "probability": 0.9239 + }, + { + "start": 9377.92, + "end": 9382.2, + "probability": 0.9761 + }, + { + "start": 9382.4, + "end": 9387.86, + "probability": 0.7693 + }, + { + "start": 9388.32, + "end": 9390.32, + "probability": 0.7797 + }, + { + "start": 9390.4, + "end": 9390.74, + "probability": 0.858 + }, + { + "start": 9408.36, + "end": 9409.8, + "probability": 0.5403 + }, + { + "start": 9410.12, + "end": 9411.96, + "probability": 0.9921 + }, + { + "start": 9412.08, + "end": 9412.78, + "probability": 0.5401 + }, + { + "start": 9414.16, + "end": 9417.08, + "probability": 0.9658 + }, + { + "start": 9417.22, + "end": 9420.62, + "probability": 0.9381 + }, + { + "start": 9421.06, + "end": 9422.54, + "probability": 0.9351 + }, + { + "start": 9423.32, + "end": 9427.58, + "probability": 0.8465 + }, + { + "start": 9427.84, + "end": 9428.78, + "probability": 0.6046 + }, + { + "start": 9429.34, + "end": 9432.16, + "probability": 0.7856 + }, + { + "start": 9432.6, + "end": 9432.64, + "probability": 0.2882 + }, + { + "start": 9432.76, + "end": 9437.72, + "probability": 0.9715 + }, + { + "start": 9438.12, + "end": 9439.42, + "probability": 0.7354 + }, + { + "start": 9439.46, + "end": 9440.14, + "probability": 0.6361 + }, + { + "start": 9440.14, + "end": 9440.98, + "probability": 0.6523 + }, + { + "start": 9441.16, + "end": 9443.56, + "probability": 0.9375 + }, + { + "start": 9444.08, + "end": 9448.14, + "probability": 0.9825 + }, + { + "start": 9448.64, + "end": 9449.62, + "probability": 0.6723 + }, + { + "start": 9449.64, + "end": 9454.22, + "probability": 0.9676 + }, + { + "start": 9455.0, + "end": 9456.2, + "probability": 0.7045 + }, + { + "start": 9456.74, + "end": 9459.54, + "probability": 0.9919 + }, + { + "start": 9459.72, + "end": 9461.46, + "probability": 0.2337 + }, + { + "start": 9461.52, + "end": 9463.18, + "probability": 0.6428 + }, + { + "start": 9463.2, + "end": 9463.54, + "probability": 0.2766 + }, + { + "start": 9463.66, + "end": 9464.52, + "probability": 0.4452 + }, + { + "start": 9464.52, + "end": 9464.98, + "probability": 0.2692 + }, + { + "start": 9465.02, + "end": 9465.82, + "probability": 0.5158 + }, + { + "start": 9466.82, + "end": 9470.14, + "probability": 0.0043 + }, + { + "start": 9477.54, + "end": 9478.46, + "probability": 0.019 + }, + { + "start": 9478.46, + "end": 9479.82, + "probability": 0.3859 + }, + { + "start": 9479.88, + "end": 9483.46, + "probability": 0.9345 + }, + { + "start": 9483.92, + "end": 9483.92, + "probability": 0.0452 + }, + { + "start": 9483.92, + "end": 9485.7, + "probability": 0.804 + }, + { + "start": 9486.84, + "end": 9488.16, + "probability": 0.962 + }, + { + "start": 9490.22, + "end": 9492.68, + "probability": 0.9871 + }, + { + "start": 9493.12, + "end": 9493.56, + "probability": 0.4821 + }, + { + "start": 9494.04, + "end": 9494.08, + "probability": 0.097 + }, + { + "start": 9494.08, + "end": 9494.08, + "probability": 0.2679 + }, + { + "start": 9494.08, + "end": 9497.62, + "probability": 0.9357 + }, + { + "start": 9498.06, + "end": 9498.06, + "probability": 0.0134 + }, + { + "start": 9498.06, + "end": 9498.86, + "probability": 0.6674 + }, + { + "start": 9499.02, + "end": 9500.32, + "probability": 0.4201 + }, + { + "start": 9502.7, + "end": 9503.38, + "probability": 0.1186 + }, + { + "start": 9504.02, + "end": 9504.76, + "probability": 0.3196 + }, + { + "start": 9514.56, + "end": 9515.44, + "probability": 0.1782 + }, + { + "start": 9515.44, + "end": 9518.72, + "probability": 0.0554 + }, + { + "start": 9519.38, + "end": 9521.68, + "probability": 0.7176 + }, + { + "start": 9521.86, + "end": 9523.44, + "probability": 0.2169 + }, + { + "start": 9523.84, + "end": 9526.44, + "probability": 0.0892 + }, + { + "start": 9528.82, + "end": 9531.1, + "probability": 0.3403 + }, + { + "start": 9531.16, + "end": 9533.22, + "probability": 0.6142 + }, + { + "start": 9536.18, + "end": 9539.92, + "probability": 0.0458 + }, + { + "start": 9540.58, + "end": 9542.12, + "probability": 0.0206 + }, + { + "start": 9542.12, + "end": 9544.88, + "probability": 0.1549 + }, + { + "start": 9579.51, + "end": 9582.17, + "probability": 0.0691 + }, + { + "start": 9583.89, + "end": 9584.71, + "probability": 0.0859 + }, + { + "start": 9584.71, + "end": 9592.21, + "probability": 0.0799 + }, + { + "start": 9594.91, + "end": 9595.59, + "probability": 0.0212 + }, + { + "start": 9596.0, + "end": 9596.0, + "probability": 0.0 + }, + { + "start": 9596.0, + "end": 9596.0, + "probability": 0.0 + }, + { + "start": 9596.0, + "end": 9596.0, + "probability": 0.0 + }, + { + "start": 9596.0, + "end": 9596.0, + "probability": 0.0 + }, + { + "start": 9596.0, + "end": 9596.0, + "probability": 0.0 + }, + { + "start": 9596.0, + "end": 9596.0, + "probability": 0.0 + }, + { + "start": 9596.0, + "end": 9596.0, + "probability": 0.0 + }, + { + "start": 9596.0, + "end": 9596.0, + "probability": 0.0 + }, + { + "start": 9596.46, + "end": 9597.14, + "probability": 0.0436 + }, + { + "start": 9597.14, + "end": 9600.44, + "probability": 0.9876 + }, + { + "start": 9601.2, + "end": 9604.6, + "probability": 0.7612 + }, + { + "start": 9604.64, + "end": 9606.6, + "probability": 0.1147 + }, + { + "start": 9606.6, + "end": 9610.48, + "probability": 0.9338 + }, + { + "start": 9610.48, + "end": 9610.48, + "probability": 0.583 + }, + { + "start": 9610.56, + "end": 9610.56, + "probability": 0.4693 + }, + { + "start": 9610.58, + "end": 9612.32, + "probability": 0.936 + }, + { + "start": 9613.32, + "end": 9614.12, + "probability": 0.9749 + }, + { + "start": 9614.9, + "end": 9616.16, + "probability": 0.6133 + }, + { + "start": 9616.26, + "end": 9616.62, + "probability": 0.8837 + }, + { + "start": 9616.7, + "end": 9616.92, + "probability": 0.2693 + }, + { + "start": 9617.04, + "end": 9617.72, + "probability": 0.4269 + }, + { + "start": 9617.86, + "end": 9618.5, + "probability": 0.6657 + }, + { + "start": 9618.56, + "end": 9618.84, + "probability": 0.75 + }, + { + "start": 9618.92, + "end": 9620.2, + "probability": 0.9712 + }, + { + "start": 9620.24, + "end": 9621.07, + "probability": 0.7212 + }, + { + "start": 9621.48, + "end": 9621.66, + "probability": 0.5931 + }, + { + "start": 9621.66, + "end": 9622.3, + "probability": 0.564 + }, + { + "start": 9624.12, + "end": 9625.88, + "probability": 0.6018 + }, + { + "start": 9627.1, + "end": 9627.1, + "probability": 0.1366 + }, + { + "start": 9627.1, + "end": 9627.1, + "probability": 0.1365 + }, + { + "start": 9627.1, + "end": 9627.7, + "probability": 0.4623 + }, + { + "start": 9628.02, + "end": 9634.7, + "probability": 0.5035 + }, + { + "start": 9636.5, + "end": 9642.68, + "probability": 0.8013 + }, + { + "start": 9642.94, + "end": 9643.46, + "probability": 0.8188 + }, + { + "start": 9644.1, + "end": 9647.4, + "probability": 0.9968 + }, + { + "start": 9648.1, + "end": 9652.28, + "probability": 0.8183 + }, + { + "start": 9652.42, + "end": 9653.5, + "probability": 0.6745 + }, + { + "start": 9653.7, + "end": 9655.86, + "probability": 0.8069 + }, + { + "start": 9656.54, + "end": 9660.64, + "probability": 0.9172 + }, + { + "start": 9660.82, + "end": 9661.66, + "probability": 0.9248 + }, + { + "start": 9662.14, + "end": 9664.34, + "probability": 0.9897 + }, + { + "start": 9665.6, + "end": 9669.46, + "probability": 0.9403 + }, + { + "start": 9671.36, + "end": 9674.0, + "probability": 0.9749 + }, + { + "start": 9675.7, + "end": 9680.46, + "probability": 0.9956 + }, + { + "start": 9680.46, + "end": 9680.68, + "probability": 0.0848 + }, + { + "start": 9680.68, + "end": 9681.23, + "probability": 0.7496 + }, + { + "start": 9681.52, + "end": 9682.4, + "probability": 0.7587 + }, + { + "start": 9682.6, + "end": 9683.89, + "probability": 0.5923 + }, + { + "start": 9684.04, + "end": 9686.18, + "probability": 0.8682 + }, + { + "start": 9686.96, + "end": 9687.0, + "probability": 0.1208 + }, + { + "start": 9687.5, + "end": 9692.08, + "probability": 0.7456 + }, + { + "start": 9693.72, + "end": 9700.26, + "probability": 0.9893 + }, + { + "start": 9701.68, + "end": 9705.42, + "probability": 0.9922 + }, + { + "start": 9705.42, + "end": 9710.0, + "probability": 0.957 + }, + { + "start": 9710.68, + "end": 9714.0, + "probability": 0.9893 + }, + { + "start": 9716.2, + "end": 9720.02, + "probability": 0.9138 + }, + { + "start": 9723.92, + "end": 9729.42, + "probability": 0.9072 + }, + { + "start": 9729.5, + "end": 9730.28, + "probability": 0.7988 + }, + { + "start": 9730.36, + "end": 9731.56, + "probability": 0.7589 + }, + { + "start": 9732.4, + "end": 9734.28, + "probability": 0.9273 + }, + { + "start": 9734.46, + "end": 9736.24, + "probability": 0.093 + }, + { + "start": 9737.7, + "end": 9738.04, + "probability": 0.1758 + }, + { + "start": 9738.04, + "end": 9738.04, + "probability": 0.2725 + }, + { + "start": 9738.04, + "end": 9738.04, + "probability": 0.605 + }, + { + "start": 9738.04, + "end": 9742.0, + "probability": 0.8214 + }, + { + "start": 9742.0, + "end": 9744.68, + "probability": 0.9437 + }, + { + "start": 9745.16, + "end": 9747.32, + "probability": 0.5702 + }, + { + "start": 9747.5, + "end": 9748.36, + "probability": 0.7451 + }, + { + "start": 9748.46, + "end": 9750.26, + "probability": 0.7065 + }, + { + "start": 9750.58, + "end": 9752.22, + "probability": 0.6758 + }, + { + "start": 9752.4, + "end": 9753.34, + "probability": 0.856 + }, + { + "start": 9753.42, + "end": 9757.42, + "probability": 0.9781 + }, + { + "start": 9757.92, + "end": 9759.41, + "probability": 0.9245 + }, + { + "start": 9760.44, + "end": 9762.68, + "probability": 0.8611 + }, + { + "start": 9762.74, + "end": 9764.0, + "probability": 0.7462 + }, + { + "start": 9764.5, + "end": 9765.06, + "probability": 0.6339 + }, + { + "start": 9765.2, + "end": 9766.5, + "probability": 0.9528 + }, + { + "start": 9767.1, + "end": 9773.8, + "probability": 0.9283 + }, + { + "start": 9774.26, + "end": 9778.16, + "probability": 0.6309 + }, + { + "start": 9778.52, + "end": 9779.02, + "probability": 0.3916 + }, + { + "start": 9779.06, + "end": 9779.54, + "probability": 0.5887 + }, + { + "start": 9779.56, + "end": 9780.0, + "probability": 0.7887 + }, + { + "start": 9780.48, + "end": 9781.24, + "probability": 0.5355 + }, + { + "start": 9781.66, + "end": 9781.78, + "probability": 0.0049 + }, + { + "start": 9793.4, + "end": 9794.1, + "probability": 0.0105 + }, + { + "start": 9794.1, + "end": 9796.32, + "probability": 0.5376 + }, + { + "start": 9796.8, + "end": 9802.94, + "probability": 0.9258 + }, + { + "start": 9803.6, + "end": 9807.64, + "probability": 0.8899 + }, + { + "start": 9808.14, + "end": 9808.22, + "probability": 0.0306 + }, + { + "start": 9808.22, + "end": 9812.06, + "probability": 0.9854 + }, + { + "start": 9812.92, + "end": 9814.7, + "probability": 0.8792 + }, + { + "start": 9814.8, + "end": 9815.56, + "probability": 0.6705 + }, + { + "start": 9815.56, + "end": 9816.12, + "probability": 0.7565 + }, + { + "start": 9816.14, + "end": 9816.6, + "probability": 0.6378 + }, + { + "start": 9816.6, + "end": 9817.6, + "probability": 0.8435 + }, + { + "start": 9820.54, + "end": 9820.54, + "probability": 0.4167 + }, + { + "start": 9831.22, + "end": 9831.58, + "probability": 0.1061 + }, + { + "start": 9831.58, + "end": 9833.54, + "probability": 0.6839 + }, + { + "start": 9833.64, + "end": 9837.58, + "probability": 0.6334 + }, + { + "start": 9837.88, + "end": 9839.48, + "probability": 0.7258 + }, + { + "start": 9839.56, + "end": 9844.52, + "probability": 0.9669 + }, + { + "start": 9845.24, + "end": 9848.14, + "probability": 0.8785 + }, + { + "start": 9849.26, + "end": 9851.1, + "probability": 0.508 + }, + { + "start": 9851.16, + "end": 9852.04, + "probability": 0.783 + }, + { + "start": 9852.6, + "end": 9853.7, + "probability": 0.7961 + }, + { + "start": 9853.82, + "end": 9855.26, + "probability": 0.3447 + }, + { + "start": 9855.32, + "end": 9857.14, + "probability": 0.9819 + }, + { + "start": 9858.76, + "end": 9858.84, + "probability": 0.1252 + }, + { + "start": 9858.84, + "end": 9859.68, + "probability": 0.3972 + }, + { + "start": 9859.92, + "end": 9863.48, + "probability": 0.9891 + }, + { + "start": 9863.64, + "end": 9866.62, + "probability": 0.1604 + }, + { + "start": 9867.26, + "end": 9868.04, + "probability": 0.4903 + }, + { + "start": 9868.12, + "end": 9869.4, + "probability": 0.7147 + }, + { + "start": 9869.5, + "end": 9871.76, + "probability": 0.7002 + }, + { + "start": 9871.98, + "end": 9873.84, + "probability": 0.4248 + }, + { + "start": 9874.76, + "end": 9877.3, + "probability": 0.8306 + }, + { + "start": 9877.86, + "end": 9879.8, + "probability": 0.3806 + }, + { + "start": 9880.44, + "end": 9883.52, + "probability": 0.8684 + }, + { + "start": 9883.88, + "end": 9889.26, + "probability": 0.6638 + }, + { + "start": 9889.92, + "end": 9890.22, + "probability": 0.2479 + } + ], + "segments_count": 3283, + "words_count": 16402, + "avg_words_per_segment": 4.996, + "avg_segment_duration": 2.3283, + "avg_words_per_minute": 99.4577, + "plenum_id": "11886", + "duration": 9894.86, + "title": null, + "plenum_date": "2011-01-31" +} \ No newline at end of file