diff --git "a/124988/metadata.json" "b/124988/metadata.json" new file mode 100644--- /dev/null +++ "b/124988/metadata.json" @@ -0,0 +1,30497 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "124988", + "quality_score": 0.8459, + "per_segment_quality_scores": [ + { + "start": 29.12, + "end": 29.16, + "probability": 0.1568 + }, + { + "start": 29.16, + "end": 30.35, + "probability": 0.8435 + }, + { + "start": 30.6, + "end": 31.96, + "probability": 0.6197 + }, + { + "start": 32.16, + "end": 37.83, + "probability": 0.6109 + }, + { + "start": 40.78, + "end": 44.34, + "probability": 0.058 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.2, + "end": 126.56, + "probability": 0.0293 + }, + { + "start": 130.0, + "end": 130.82, + "probability": 0.0218 + }, + { + "start": 131.8, + "end": 134.32, + "probability": 0.0494 + }, + { + "start": 134.41, + "end": 135.72, + "probability": 0.0577 + }, + { + "start": 136.66, + "end": 137.76, + "probability": 0.1426 + }, + { + "start": 140.3, + "end": 140.78, + "probability": 0.2172 + }, + { + "start": 141.4, + "end": 143.84, + "probability": 0.0678 + }, + { + "start": 143.84, + "end": 143.84, + "probability": 0.074 + }, + { + "start": 143.84, + "end": 144.32, + "probability": 0.1414 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.18, + "end": 265.92, + "probability": 0.0536 + }, + { + "start": 265.92, + "end": 266.94, + "probability": 0.315 + }, + { + "start": 267.04, + "end": 267.78, + "probability": 0.6713 + }, + { + "start": 268.34, + "end": 269.38, + "probability": 0.8776 + }, + { + "start": 270.16, + "end": 271.2, + "probability": 0.9043 + }, + { + "start": 271.78, + "end": 272.96, + "probability": 0.9819 + }, + { + "start": 273.72, + "end": 275.02, + "probability": 0.9938 + }, + { + "start": 276.3, + "end": 277.72, + "probability": 0.9857 + }, + { + "start": 277.78, + "end": 280.44, + "probability": 0.9584 + }, + { + "start": 280.74, + "end": 282.42, + "probability": 0.8914 + }, + { + "start": 283.18, + "end": 286.2, + "probability": 0.9972 + }, + { + "start": 286.2, + "end": 288.56, + "probability": 0.9987 + }, + { + "start": 289.78, + "end": 291.88, + "probability": 0.9285 + }, + { + "start": 292.58, + "end": 294.52, + "probability": 0.9956 + }, + { + "start": 295.74, + "end": 299.02, + "probability": 0.9622 + }, + { + "start": 299.16, + "end": 300.36, + "probability": 0.9971 + }, + { + "start": 301.32, + "end": 303.52, + "probability": 0.9636 + }, + { + "start": 304.94, + "end": 305.6, + "probability": 0.6896 + }, + { + "start": 306.96, + "end": 307.42, + "probability": 0.9332 + }, + { + "start": 308.4, + "end": 309.32, + "probability": 0.99 + }, + { + "start": 310.32, + "end": 311.76, + "probability": 0.9358 + }, + { + "start": 312.78, + "end": 315.04, + "probability": 0.9866 + }, + { + "start": 315.54, + "end": 317.7, + "probability": 0.9927 + }, + { + "start": 319.18, + "end": 319.78, + "probability": 0.9384 + }, + { + "start": 320.72, + "end": 322.08, + "probability": 0.9988 + }, + { + "start": 323.02, + "end": 328.42, + "probability": 0.9982 + }, + { + "start": 329.64, + "end": 333.98, + "probability": 0.9637 + }, + { + "start": 335.1, + "end": 335.82, + "probability": 0.9819 + }, + { + "start": 336.52, + "end": 339.16, + "probability": 0.6733 + }, + { + "start": 339.72, + "end": 341.58, + "probability": 0.8282 + }, + { + "start": 342.68, + "end": 347.52, + "probability": 0.9908 + }, + { + "start": 349.5, + "end": 350.5, + "probability": 0.8512 + }, + { + "start": 351.5, + "end": 352.48, + "probability": 0.9941 + }, + { + "start": 353.04, + "end": 354.16, + "probability": 0.9469 + }, + { + "start": 355.46, + "end": 359.22, + "probability": 0.9926 + }, + { + "start": 359.34, + "end": 361.22, + "probability": 0.996 + }, + { + "start": 362.46, + "end": 368.02, + "probability": 0.9802 + }, + { + "start": 369.08, + "end": 371.12, + "probability": 0.9972 + }, + { + "start": 371.78, + "end": 373.78, + "probability": 0.8981 + }, + { + "start": 374.28, + "end": 377.62, + "probability": 0.9907 + }, + { + "start": 378.08, + "end": 378.38, + "probability": 0.7906 + }, + { + "start": 379.5, + "end": 380.26, + "probability": 0.7395 + }, + { + "start": 380.8, + "end": 384.1, + "probability": 0.7958 + }, + { + "start": 384.34, + "end": 386.7, + "probability": 0.8392 + }, + { + "start": 387.38, + "end": 387.86, + "probability": 0.8293 + }, + { + "start": 408.46, + "end": 412.62, + "probability": 0.8444 + }, + { + "start": 413.44, + "end": 417.26, + "probability": 0.4906 + }, + { + "start": 418.0, + "end": 422.16, + "probability": 0.988 + }, + { + "start": 422.24, + "end": 423.74, + "probability": 0.6681 + }, + { + "start": 425.32, + "end": 429.56, + "probability": 0.738 + }, + { + "start": 430.68, + "end": 431.92, + "probability": 0.7226 + }, + { + "start": 432.72, + "end": 433.42, + "probability": 0.6154 + }, + { + "start": 436.14, + "end": 438.96, + "probability": 0.9958 + }, + { + "start": 439.14, + "end": 441.8, + "probability": 0.9755 + }, + { + "start": 441.98, + "end": 444.42, + "probability": 0.9006 + }, + { + "start": 446.62, + "end": 448.46, + "probability": 0.7397 + }, + { + "start": 448.64, + "end": 449.54, + "probability": 0.7543 + }, + { + "start": 450.0, + "end": 451.98, + "probability": 0.8985 + }, + { + "start": 452.08, + "end": 452.7, + "probability": 0.8705 + }, + { + "start": 452.8, + "end": 455.48, + "probability": 0.9138 + }, + { + "start": 457.58, + "end": 463.18, + "probability": 0.8345 + }, + { + "start": 466.78, + "end": 468.2, + "probability": 0.6626 + }, + { + "start": 468.36, + "end": 471.52, + "probability": 0.9669 + }, + { + "start": 471.58, + "end": 472.24, + "probability": 0.5759 + }, + { + "start": 475.34, + "end": 476.68, + "probability": 0.5444 + }, + { + "start": 476.96, + "end": 478.12, + "probability": 0.9967 + }, + { + "start": 480.24, + "end": 481.24, + "probability": 0.7012 + }, + { + "start": 482.5, + "end": 486.9, + "probability": 0.9489 + }, + { + "start": 487.62, + "end": 489.64, + "probability": 0.9939 + }, + { + "start": 492.04, + "end": 493.62, + "probability": 0.9938 + }, + { + "start": 496.06, + "end": 501.84, + "probability": 0.923 + }, + { + "start": 503.2, + "end": 504.98, + "probability": 0.9483 + }, + { + "start": 505.04, + "end": 506.56, + "probability": 0.5705 + }, + { + "start": 506.74, + "end": 507.54, + "probability": 0.7238 + }, + { + "start": 508.38, + "end": 509.48, + "probability": 0.6298 + }, + { + "start": 511.2, + "end": 513.54, + "probability": 0.9911 + }, + { + "start": 513.84, + "end": 515.0, + "probability": 0.9212 + }, + { + "start": 515.06, + "end": 520.7, + "probability": 0.9766 + }, + { + "start": 521.94, + "end": 526.02, + "probability": 0.7844 + }, + { + "start": 528.58, + "end": 531.94, + "probability": 0.8335 + }, + { + "start": 534.74, + "end": 542.38, + "probability": 0.9429 + }, + { + "start": 542.4, + "end": 542.54, + "probability": 0.0347 + }, + { + "start": 542.54, + "end": 542.54, + "probability": 0.201 + }, + { + "start": 542.54, + "end": 543.4, + "probability": 0.2761 + }, + { + "start": 544.56, + "end": 545.5, + "probability": 0.9249 + }, + { + "start": 546.0, + "end": 547.5, + "probability": 0.7842 + }, + { + "start": 548.04, + "end": 550.02, + "probability": 0.9338 + }, + { + "start": 550.38, + "end": 552.06, + "probability": 0.2478 + }, + { + "start": 552.7, + "end": 554.38, + "probability": 0.2553 + }, + { + "start": 555.84, + "end": 555.86, + "probability": 0.2823 + }, + { + "start": 557.3, + "end": 557.6, + "probability": 0.0019 + }, + { + "start": 557.6, + "end": 558.42, + "probability": 0.1918 + }, + { + "start": 558.42, + "end": 558.42, + "probability": 0.0798 + }, + { + "start": 558.42, + "end": 558.42, + "probability": 0.0593 + }, + { + "start": 558.42, + "end": 559.18, + "probability": 0.098 + }, + { + "start": 559.18, + "end": 559.8, + "probability": 0.3643 + }, + { + "start": 560.04, + "end": 561.84, + "probability": 0.8779 + }, + { + "start": 563.04, + "end": 563.84, + "probability": 0.6626 + }, + { + "start": 564.68, + "end": 566.0, + "probability": 0.9619 + }, + { + "start": 566.22, + "end": 569.34, + "probability": 0.9821 + }, + { + "start": 570.38, + "end": 580.82, + "probability": 0.9691 + }, + { + "start": 580.94, + "end": 581.72, + "probability": 0.6366 + }, + { + "start": 582.36, + "end": 583.12, + "probability": 0.9155 + }, + { + "start": 583.2, + "end": 586.98, + "probability": 0.6534 + }, + { + "start": 587.04, + "end": 589.32, + "probability": 0.1012 + }, + { + "start": 589.38, + "end": 591.54, + "probability": 0.0408 + }, + { + "start": 591.78, + "end": 593.96, + "probability": 0.1534 + }, + { + "start": 594.24, + "end": 594.32, + "probability": 0.134 + }, + { + "start": 594.32, + "end": 594.68, + "probability": 0.1536 + }, + { + "start": 594.68, + "end": 598.28, + "probability": 0.863 + }, + { + "start": 601.02, + "end": 602.56, + "probability": 0.6745 + }, + { + "start": 602.64, + "end": 605.22, + "probability": 0.6872 + }, + { + "start": 605.32, + "end": 605.46, + "probability": 0.5677 + }, + { + "start": 605.46, + "end": 607.18, + "probability": 0.2551 + }, + { + "start": 607.56, + "end": 609.08, + "probability": 0.7353 + }, + { + "start": 609.14, + "end": 611.04, + "probability": 0.333 + }, + { + "start": 611.04, + "end": 612.98, + "probability": 0.2899 + }, + { + "start": 613.14, + "end": 613.34, + "probability": 0.0448 + }, + { + "start": 613.44, + "end": 616.0, + "probability": 0.7639 + }, + { + "start": 616.18, + "end": 618.37, + "probability": 0.9369 + }, + { + "start": 618.8, + "end": 621.81, + "probability": 0.6265 + }, + { + "start": 622.38, + "end": 625.8, + "probability": 0.9004 + }, + { + "start": 626.84, + "end": 627.46, + "probability": 0.0331 + }, + { + "start": 627.46, + "end": 627.52, + "probability": 0.452 + }, + { + "start": 627.52, + "end": 627.52, + "probability": 0.033 + }, + { + "start": 627.52, + "end": 628.06, + "probability": 0.0659 + }, + { + "start": 628.35, + "end": 631.84, + "probability": 0.3239 + }, + { + "start": 632.3, + "end": 633.7, + "probability": 0.4211 + }, + { + "start": 634.6, + "end": 636.62, + "probability": 0.5675 + }, + { + "start": 636.8, + "end": 637.78, + "probability": 0.3899 + }, + { + "start": 637.78, + "end": 638.26, + "probability": 0.6893 + }, + { + "start": 639.82, + "end": 643.96, + "probability": 0.1462 + }, + { + "start": 644.06, + "end": 645.28, + "probability": 0.9901 + }, + { + "start": 645.34, + "end": 646.12, + "probability": 0.8187 + }, + { + "start": 646.12, + "end": 647.68, + "probability": 0.3472 + }, + { + "start": 647.94, + "end": 651.48, + "probability": 0.5663 + }, + { + "start": 651.56, + "end": 652.35, + "probability": 0.958 + }, + { + "start": 653.54, + "end": 655.84, + "probability": 0.566 + }, + { + "start": 656.04, + "end": 657.24, + "probability": 0.9531 + }, + { + "start": 658.82, + "end": 661.88, + "probability": 0.7886 + }, + { + "start": 662.06, + "end": 663.8, + "probability": 0.8982 + }, + { + "start": 664.52, + "end": 667.12, + "probability": 0.9941 + }, + { + "start": 667.2, + "end": 670.32, + "probability": 0.9519 + }, + { + "start": 671.68, + "end": 673.98, + "probability": 0.8516 + }, + { + "start": 674.12, + "end": 675.52, + "probability": 0.65 + }, + { + "start": 675.62, + "end": 675.92, + "probability": 0.7318 + }, + { + "start": 676.14, + "end": 679.46, + "probability": 0.721 + }, + { + "start": 679.98, + "end": 682.6, + "probability": 0.3107 + }, + { + "start": 682.64, + "end": 684.1, + "probability": 0.2303 + }, + { + "start": 684.16, + "end": 685.85, + "probability": 0.0848 + }, + { + "start": 686.94, + "end": 687.84, + "probability": 0.8643 + }, + { + "start": 688.3, + "end": 693.06, + "probability": 0.9025 + }, + { + "start": 693.18, + "end": 695.24, + "probability": 0.8834 + }, + { + "start": 695.54, + "end": 697.74, + "probability": 0.9705 + }, + { + "start": 698.32, + "end": 698.82, + "probability": 0.4535 + }, + { + "start": 698.82, + "end": 702.4, + "probability": 0.9165 + }, + { + "start": 702.78, + "end": 703.56, + "probability": 0.6027 + }, + { + "start": 703.64, + "end": 706.38, + "probability": 0.9006 + }, + { + "start": 706.54, + "end": 707.46, + "probability": 0.9757 + }, + { + "start": 707.54, + "end": 709.12, + "probability": 0.7771 + }, + { + "start": 709.8, + "end": 710.54, + "probability": 0.7222 + }, + { + "start": 710.56, + "end": 712.18, + "probability": 0.8745 + }, + { + "start": 712.26, + "end": 712.64, + "probability": 0.7686 + }, + { + "start": 712.66, + "end": 713.24, + "probability": 0.3068 + }, + { + "start": 713.56, + "end": 713.68, + "probability": 0.4447 + }, + { + "start": 713.68, + "end": 714.98, + "probability": 0.6505 + }, + { + "start": 716.16, + "end": 719.12, + "probability": 0.2978 + }, + { + "start": 719.22, + "end": 719.54, + "probability": 0.6133 + }, + { + "start": 719.6, + "end": 720.54, + "probability": 0.9254 + }, + { + "start": 721.36, + "end": 722.94, + "probability": 0.9985 + }, + { + "start": 723.0, + "end": 724.9, + "probability": 0.8871 + }, + { + "start": 725.22, + "end": 726.45, + "probability": 0.3238 + }, + { + "start": 727.58, + "end": 730.3, + "probability": 0.5856 + }, + { + "start": 730.36, + "end": 732.16, + "probability": 0.9693 + }, + { + "start": 732.38, + "end": 732.98, + "probability": 0.8938 + }, + { + "start": 733.06, + "end": 733.46, + "probability": 0.0634 + }, + { + "start": 733.54, + "end": 736.3, + "probability": 0.9026 + }, + { + "start": 736.64, + "end": 740.3, + "probability": 0.0072 + }, + { + "start": 740.6, + "end": 740.6, + "probability": 0.1528 + }, + { + "start": 740.6, + "end": 740.6, + "probability": 0.0866 + }, + { + "start": 740.6, + "end": 742.79, + "probability": 0.4578 + }, + { + "start": 743.76, + "end": 747.9, + "probability": 0.7895 + }, + { + "start": 748.18, + "end": 749.16, + "probability": 0.8586 + }, + { + "start": 749.62, + "end": 752.08, + "probability": 0.891 + }, + { + "start": 752.32, + "end": 753.76, + "probability": 0.7802 + }, + { + "start": 753.82, + "end": 757.0, + "probability": 0.6408 + }, + { + "start": 758.62, + "end": 760.64, + "probability": 0.6699 + }, + { + "start": 761.26, + "end": 765.46, + "probability": 0.9607 + }, + { + "start": 766.32, + "end": 769.56, + "probability": 0.8273 + }, + { + "start": 770.12, + "end": 774.54, + "probability": 0.4985 + }, + { + "start": 774.54, + "end": 778.38, + "probability": 0.96 + }, + { + "start": 778.84, + "end": 781.84, + "probability": 0.8575 + }, + { + "start": 782.32, + "end": 784.9, + "probability": 0.8088 + }, + { + "start": 804.72, + "end": 806.7, + "probability": 0.7446 + }, + { + "start": 808.52, + "end": 810.82, + "probability": 0.6433 + }, + { + "start": 811.7, + "end": 812.5, + "probability": 0.8451 + }, + { + "start": 813.32, + "end": 814.0, + "probability": 0.6833 + }, + { + "start": 815.2, + "end": 821.3, + "probability": 0.9899 + }, + { + "start": 821.9, + "end": 824.14, + "probability": 0.937 + }, + { + "start": 825.94, + "end": 826.3, + "probability": 0.4985 + }, + { + "start": 826.36, + "end": 827.54, + "probability": 0.7926 + }, + { + "start": 827.64, + "end": 830.3, + "probability": 0.9717 + }, + { + "start": 830.7, + "end": 831.79, + "probability": 0.9527 + }, + { + "start": 832.4, + "end": 833.42, + "probability": 0.9127 + }, + { + "start": 833.9, + "end": 840.7, + "probability": 0.9829 + }, + { + "start": 841.88, + "end": 845.46, + "probability": 0.9783 + }, + { + "start": 845.46, + "end": 848.8, + "probability": 0.9987 + }, + { + "start": 849.84, + "end": 853.92, + "probability": 0.999 + }, + { + "start": 854.82, + "end": 856.18, + "probability": 0.6877 + }, + { + "start": 856.44, + "end": 861.08, + "probability": 0.9926 + }, + { + "start": 861.08, + "end": 865.72, + "probability": 0.9884 + }, + { + "start": 866.9, + "end": 872.63, + "probability": 0.9917 + }, + { + "start": 873.6, + "end": 874.54, + "probability": 0.5942 + }, + { + "start": 875.58, + "end": 878.4, + "probability": 0.998 + }, + { + "start": 878.4, + "end": 881.6, + "probability": 0.7662 + }, + { + "start": 883.1, + "end": 885.64, + "probability": 0.989 + }, + { + "start": 886.44, + "end": 888.82, + "probability": 0.9752 + }, + { + "start": 888.86, + "end": 892.78, + "probability": 0.9945 + }, + { + "start": 892.78, + "end": 896.22, + "probability": 0.9596 + }, + { + "start": 896.88, + "end": 902.14, + "probability": 0.9672 + }, + { + "start": 902.6, + "end": 903.14, + "probability": 0.694 + }, + { + "start": 903.26, + "end": 903.82, + "probability": 0.9421 + }, + { + "start": 903.88, + "end": 906.1, + "probability": 0.9226 + }, + { + "start": 907.08, + "end": 910.38, + "probability": 0.94 + }, + { + "start": 910.98, + "end": 911.26, + "probability": 0.761 + }, + { + "start": 911.3, + "end": 912.12, + "probability": 0.9686 + }, + { + "start": 912.22, + "end": 916.32, + "probability": 0.9923 + }, + { + "start": 916.32, + "end": 921.32, + "probability": 0.985 + }, + { + "start": 921.98, + "end": 928.48, + "probability": 0.9312 + }, + { + "start": 929.22, + "end": 933.04, + "probability": 0.9934 + }, + { + "start": 933.04, + "end": 937.28, + "probability": 0.9979 + }, + { + "start": 937.88, + "end": 939.74, + "probability": 0.9954 + }, + { + "start": 940.88, + "end": 944.44, + "probability": 0.985 + }, + { + "start": 944.98, + "end": 950.49, + "probability": 0.9876 + }, + { + "start": 951.7, + "end": 953.68, + "probability": 0.6671 + }, + { + "start": 954.28, + "end": 958.5, + "probability": 0.7412 + }, + { + "start": 960.0, + "end": 963.84, + "probability": 0.8892 + }, + { + "start": 964.54, + "end": 968.24, + "probability": 0.991 + }, + { + "start": 968.9, + "end": 974.04, + "probability": 0.986 + }, + { + "start": 974.82, + "end": 978.4, + "probability": 0.9797 + }, + { + "start": 978.4, + "end": 981.74, + "probability": 0.9948 + }, + { + "start": 982.96, + "end": 986.8, + "probability": 0.9985 + }, + { + "start": 987.42, + "end": 989.72, + "probability": 0.7756 + }, + { + "start": 990.46, + "end": 991.96, + "probability": 0.9417 + }, + { + "start": 992.56, + "end": 994.44, + "probability": 0.7363 + }, + { + "start": 995.2, + "end": 998.12, + "probability": 0.9803 + }, + { + "start": 998.48, + "end": 1003.18, + "probability": 0.9742 + }, + { + "start": 1004.26, + "end": 1006.2, + "probability": 0.9547 + }, + { + "start": 1006.72, + "end": 1008.98, + "probability": 0.9417 + }, + { + "start": 1009.54, + "end": 1014.98, + "probability": 0.9686 + }, + { + "start": 1015.74, + "end": 1017.44, + "probability": 0.5908 + }, + { + "start": 1018.48, + "end": 1020.9, + "probability": 0.9737 + }, + { + "start": 1021.52, + "end": 1024.96, + "probability": 0.998 + }, + { + "start": 1025.5, + "end": 1026.28, + "probability": 0.6283 + }, + { + "start": 1026.36, + "end": 1027.12, + "probability": 0.899 + }, + { + "start": 1027.2, + "end": 1027.94, + "probability": 0.943 + }, + { + "start": 1028.2, + "end": 1029.06, + "probability": 0.9565 + }, + { + "start": 1029.12, + "end": 1030.06, + "probability": 0.9866 + }, + { + "start": 1030.34, + "end": 1032.58, + "probability": 0.9759 + }, + { + "start": 1033.14, + "end": 1037.76, + "probability": 0.8798 + }, + { + "start": 1038.2, + "end": 1043.84, + "probability": 0.9742 + }, + { + "start": 1046.42, + "end": 1051.98, + "probability": 0.9964 + }, + { + "start": 1052.68, + "end": 1053.4, + "probability": 0.814 + }, + { + "start": 1053.6, + "end": 1055.13, + "probability": 0.8402 + }, + { + "start": 1055.36, + "end": 1058.22, + "probability": 0.9396 + }, + { + "start": 1059.34, + "end": 1060.8, + "probability": 0.9497 + }, + { + "start": 1061.44, + "end": 1065.12, + "probability": 0.9455 + }, + { + "start": 1065.64, + "end": 1070.36, + "probability": 0.9937 + }, + { + "start": 1070.76, + "end": 1072.94, + "probability": 0.9056 + }, + { + "start": 1073.46, + "end": 1075.44, + "probability": 0.9214 + }, + { + "start": 1075.82, + "end": 1078.92, + "probability": 0.9738 + }, + { + "start": 1079.98, + "end": 1085.28, + "probability": 0.9965 + }, + { + "start": 1085.62, + "end": 1090.84, + "probability": 0.9982 + }, + { + "start": 1091.82, + "end": 1096.16, + "probability": 0.9969 + }, + { + "start": 1096.72, + "end": 1101.44, + "probability": 0.9995 + }, + { + "start": 1102.28, + "end": 1108.34, + "probability": 0.9955 + }, + { + "start": 1109.1, + "end": 1116.26, + "probability": 0.992 + }, + { + "start": 1117.2, + "end": 1121.08, + "probability": 0.9573 + }, + { + "start": 1121.64, + "end": 1126.3, + "probability": 0.9858 + }, + { + "start": 1127.08, + "end": 1129.98, + "probability": 0.9928 + }, + { + "start": 1130.76, + "end": 1136.72, + "probability": 0.897 + }, + { + "start": 1136.72, + "end": 1143.52, + "probability": 0.9701 + }, + { + "start": 1144.08, + "end": 1149.56, + "probability": 0.9884 + }, + { + "start": 1150.02, + "end": 1151.24, + "probability": 0.826 + }, + { + "start": 1151.94, + "end": 1156.68, + "probability": 0.9996 + }, + { + "start": 1156.68, + "end": 1161.74, + "probability": 0.9973 + }, + { + "start": 1162.46, + "end": 1168.72, + "probability": 0.9977 + }, + { + "start": 1169.16, + "end": 1170.52, + "probability": 0.9361 + }, + { + "start": 1170.96, + "end": 1174.02, + "probability": 0.993 + }, + { + "start": 1174.52, + "end": 1175.18, + "probability": 0.6978 + }, + { + "start": 1175.98, + "end": 1177.28, + "probability": 0.9897 + }, + { + "start": 1178.12, + "end": 1179.06, + "probability": 0.8803 + }, + { + "start": 1179.76, + "end": 1182.78, + "probability": 0.9808 + }, + { + "start": 1182.8, + "end": 1187.14, + "probability": 0.982 + }, + { + "start": 1187.8, + "end": 1194.24, + "probability": 0.9979 + }, + { + "start": 1194.52, + "end": 1194.8, + "probability": 0.7144 + }, + { + "start": 1194.98, + "end": 1195.98, + "probability": 0.7685 + }, + { + "start": 1196.48, + "end": 1198.34, + "probability": 0.9385 + }, + { + "start": 1198.42, + "end": 1201.14, + "probability": 0.9938 + }, + { + "start": 1201.48, + "end": 1204.78, + "probability": 0.9865 + }, + { + "start": 1205.16, + "end": 1207.62, + "probability": 0.9985 + }, + { + "start": 1207.94, + "end": 1210.76, + "probability": 0.9073 + }, + { + "start": 1211.52, + "end": 1213.88, + "probability": 0.9933 + }, + { + "start": 1213.98, + "end": 1218.14, + "probability": 0.9936 + }, + { + "start": 1218.66, + "end": 1223.14, + "probability": 0.9965 + }, + { + "start": 1223.14, + "end": 1227.82, + "probability": 0.9932 + }, + { + "start": 1227.9, + "end": 1233.84, + "probability": 0.995 + }, + { + "start": 1234.1, + "end": 1234.8, + "probability": 0.8806 + }, + { + "start": 1235.22, + "end": 1238.3, + "probability": 0.9857 + }, + { + "start": 1238.34, + "end": 1242.44, + "probability": 0.9962 + }, + { + "start": 1242.9, + "end": 1248.4, + "probability": 0.9703 + }, + { + "start": 1248.52, + "end": 1249.74, + "probability": 0.702 + }, + { + "start": 1249.86, + "end": 1250.84, + "probability": 0.8882 + }, + { + "start": 1251.54, + "end": 1256.78, + "probability": 0.9673 + }, + { + "start": 1257.44, + "end": 1258.74, + "probability": 0.9309 + }, + { + "start": 1259.34, + "end": 1262.9, + "probability": 0.8859 + }, + { + "start": 1263.64, + "end": 1264.56, + "probability": 0.7933 + }, + { + "start": 1265.12, + "end": 1269.44, + "probability": 0.948 + }, + { + "start": 1269.92, + "end": 1272.94, + "probability": 0.979 + }, + { + "start": 1273.34, + "end": 1275.3, + "probability": 0.9564 + }, + { + "start": 1275.66, + "end": 1277.1, + "probability": 0.8009 + }, + { + "start": 1278.0, + "end": 1279.06, + "probability": 0.9729 + }, + { + "start": 1279.96, + "end": 1280.86, + "probability": 0.6214 + }, + { + "start": 1280.92, + "end": 1281.89, + "probability": 0.9805 + }, + { + "start": 1282.46, + "end": 1282.88, + "probability": 0.3705 + }, + { + "start": 1283.06, + "end": 1284.58, + "probability": 0.9137 + }, + { + "start": 1284.68, + "end": 1285.7, + "probability": 0.9296 + }, + { + "start": 1286.06, + "end": 1290.12, + "probability": 0.9805 + }, + { + "start": 1290.7, + "end": 1292.9, + "probability": 0.9621 + }, + { + "start": 1293.32, + "end": 1295.72, + "probability": 0.9997 + }, + { + "start": 1296.42, + "end": 1298.56, + "probability": 0.8219 + }, + { + "start": 1299.1, + "end": 1303.28, + "probability": 0.989 + }, + { + "start": 1303.74, + "end": 1305.94, + "probability": 0.9788 + }, + { + "start": 1306.56, + "end": 1310.08, + "probability": 0.9945 + }, + { + "start": 1310.08, + "end": 1314.88, + "probability": 0.9946 + }, + { + "start": 1315.76, + "end": 1319.48, + "probability": 0.9692 + }, + { + "start": 1319.9, + "end": 1322.88, + "probability": 0.995 + }, + { + "start": 1323.52, + "end": 1324.66, + "probability": 0.9519 + }, + { + "start": 1326.3, + "end": 1328.36, + "probability": 0.9993 + }, + { + "start": 1328.9, + "end": 1330.98, + "probability": 0.8221 + }, + { + "start": 1331.42, + "end": 1334.18, + "probability": 0.9813 + }, + { + "start": 1334.92, + "end": 1335.78, + "probability": 0.5211 + }, + { + "start": 1336.8, + "end": 1340.68, + "probability": 0.9904 + }, + { + "start": 1342.22, + "end": 1342.48, + "probability": 0.8958 + }, + { + "start": 1342.56, + "end": 1343.78, + "probability": 0.9822 + }, + { + "start": 1344.4, + "end": 1345.94, + "probability": 0.9857 + }, + { + "start": 1346.16, + "end": 1347.72, + "probability": 0.9771 + }, + { + "start": 1348.32, + "end": 1350.92, + "probability": 0.9859 + }, + { + "start": 1351.48, + "end": 1357.12, + "probability": 0.9826 + }, + { + "start": 1357.86, + "end": 1362.54, + "probability": 0.9858 + }, + { + "start": 1362.66, + "end": 1364.52, + "probability": 0.8845 + }, + { + "start": 1365.36, + "end": 1370.4, + "probability": 0.8372 + }, + { + "start": 1370.4, + "end": 1375.06, + "probability": 0.9397 + }, + { + "start": 1375.84, + "end": 1380.96, + "probability": 0.7437 + }, + { + "start": 1381.5, + "end": 1385.32, + "probability": 0.9498 + }, + { + "start": 1385.32, + "end": 1389.74, + "probability": 0.9842 + }, + { + "start": 1390.56, + "end": 1396.44, + "probability": 0.987 + }, + { + "start": 1396.82, + "end": 1399.46, + "probability": 0.9954 + }, + { + "start": 1400.2, + "end": 1405.48, + "probability": 0.962 + }, + { + "start": 1405.48, + "end": 1406.06, + "probability": 0.5769 + }, + { + "start": 1406.34, + "end": 1409.36, + "probability": 0.7742 + }, + { + "start": 1409.36, + "end": 1410.12, + "probability": 0.6761 + }, + { + "start": 1410.94, + "end": 1414.64, + "probability": 0.9749 + }, + { + "start": 1414.78, + "end": 1415.93, + "probability": 0.9597 + }, + { + "start": 1416.6, + "end": 1420.92, + "probability": 0.9805 + }, + { + "start": 1421.32, + "end": 1422.88, + "probability": 0.822 + }, + { + "start": 1423.3, + "end": 1427.92, + "probability": 0.8506 + }, + { + "start": 1428.08, + "end": 1431.58, + "probability": 0.9893 + }, + { + "start": 1431.72, + "end": 1432.1, + "probability": 0.8552 + }, + { + "start": 1432.36, + "end": 1436.52, + "probability": 0.9796 + }, + { + "start": 1437.0, + "end": 1438.28, + "probability": 0.9717 + }, + { + "start": 1438.58, + "end": 1439.18, + "probability": 0.7653 + }, + { + "start": 1439.32, + "end": 1439.86, + "probability": 0.064 + }, + { + "start": 1441.04, + "end": 1441.58, + "probability": 0.0224 + }, + { + "start": 1454.08, + "end": 1456.0, + "probability": 0.1386 + }, + { + "start": 1471.56, + "end": 1475.54, + "probability": 0.9985 + }, + { + "start": 1478.8, + "end": 1480.58, + "probability": 0.7856 + }, + { + "start": 1480.82, + "end": 1482.18, + "probability": 0.2004 + }, + { + "start": 1482.36, + "end": 1483.08, + "probability": 0.4621 + }, + { + "start": 1483.14, + "end": 1483.7, + "probability": 0.6421 + }, + { + "start": 1483.86, + "end": 1489.22, + "probability": 0.4609 + }, + { + "start": 1491.62, + "end": 1492.94, + "probability": 0.9919 + }, + { + "start": 1494.9, + "end": 1496.26, + "probability": 0.9242 + }, + { + "start": 1498.18, + "end": 1502.74, + "probability": 0.9751 + }, + { + "start": 1503.32, + "end": 1504.48, + "probability": 0.9787 + }, + { + "start": 1505.1, + "end": 1508.9, + "probability": 0.8782 + }, + { + "start": 1509.64, + "end": 1512.18, + "probability": 0.8713 + }, + { + "start": 1513.6, + "end": 1514.74, + "probability": 0.8816 + }, + { + "start": 1515.98, + "end": 1517.92, + "probability": 0.9976 + }, + { + "start": 1517.92, + "end": 1521.92, + "probability": 0.995 + }, + { + "start": 1522.0, + "end": 1523.02, + "probability": 0.118 + }, + { + "start": 1524.62, + "end": 1526.4, + "probability": 0.9783 + }, + { + "start": 1527.72, + "end": 1530.66, + "probability": 0.7974 + }, + { + "start": 1531.4, + "end": 1532.56, + "probability": 0.7896 + }, + { + "start": 1532.62, + "end": 1533.78, + "probability": 0.6677 + }, + { + "start": 1533.82, + "end": 1535.1, + "probability": 0.8291 + }, + { + "start": 1536.24, + "end": 1543.63, + "probability": 0.9716 + }, + { + "start": 1544.04, + "end": 1546.12, + "probability": 0.9889 + }, + { + "start": 1546.58, + "end": 1546.68, + "probability": 0.3748 + }, + { + "start": 1546.68, + "end": 1549.34, + "probability": 0.6835 + }, + { + "start": 1549.44, + "end": 1555.52, + "probability": 0.9125 + }, + { + "start": 1555.52, + "end": 1558.5, + "probability": 0.6838 + }, + { + "start": 1558.7, + "end": 1561.44, + "probability": 0.6447 + }, + { + "start": 1561.56, + "end": 1562.82, + "probability": 0.86 + }, + { + "start": 1563.62, + "end": 1564.92, + "probability": 0.1944 + }, + { + "start": 1565.76, + "end": 1567.62, + "probability": 0.0747 + }, + { + "start": 1567.76, + "end": 1569.46, + "probability": 0.1993 + }, + { + "start": 1569.82, + "end": 1572.54, + "probability": 0.6424 + }, + { + "start": 1575.42, + "end": 1576.0, + "probability": 0.4179 + }, + { + "start": 1576.06, + "end": 1580.6, + "probability": 0.8633 + }, + { + "start": 1580.6, + "end": 1581.13, + "probability": 0.5784 + }, + { + "start": 1582.62, + "end": 1583.78, + "probability": 0.9116 + }, + { + "start": 1584.08, + "end": 1585.12, + "probability": 0.8723 + }, + { + "start": 1585.24, + "end": 1586.12, + "probability": 0.7791 + }, + { + "start": 1586.22, + "end": 1587.02, + "probability": 0.6038 + }, + { + "start": 1587.14, + "end": 1587.14, + "probability": 0.0025 + }, + { + "start": 1588.78, + "end": 1588.92, + "probability": 0.0191 + }, + { + "start": 1588.92, + "end": 1588.92, + "probability": 0.046 + }, + { + "start": 1588.92, + "end": 1589.14, + "probability": 0.209 + }, + { + "start": 1589.18, + "end": 1589.9, + "probability": 0.6516 + }, + { + "start": 1589.92, + "end": 1591.34, + "probability": 0.8469 + }, + { + "start": 1591.44, + "end": 1599.1, + "probability": 0.9316 + }, + { + "start": 1599.54, + "end": 1599.9, + "probability": 0.0695 + }, + { + "start": 1600.24, + "end": 1600.24, + "probability": 0.0977 + }, + { + "start": 1600.3, + "end": 1601.0, + "probability": 0.6943 + }, + { + "start": 1601.46, + "end": 1601.82, + "probability": 0.008 + }, + { + "start": 1601.84, + "end": 1603.92, + "probability": 0.8313 + }, + { + "start": 1604.46, + "end": 1608.74, + "probability": 0.8693 + }, + { + "start": 1609.12, + "end": 1609.76, + "probability": 0.1117 + }, + { + "start": 1609.76, + "end": 1610.2, + "probability": 0.0607 + }, + { + "start": 1610.2, + "end": 1614.52, + "probability": 0.8463 + }, + { + "start": 1615.1, + "end": 1615.1, + "probability": 0.3044 + }, + { + "start": 1615.2, + "end": 1616.28, + "probability": 0.4979 + }, + { + "start": 1616.76, + "end": 1617.92, + "probability": 0.2263 + }, + { + "start": 1619.32, + "end": 1619.56, + "probability": 0.2156 + }, + { + "start": 1619.56, + "end": 1620.08, + "probability": 0.2504 + }, + { + "start": 1620.22, + "end": 1622.38, + "probability": 0.8311 + }, + { + "start": 1622.48, + "end": 1624.52, + "probability": 0.9399 + }, + { + "start": 1625.06, + "end": 1628.02, + "probability": 0.431 + }, + { + "start": 1628.02, + "end": 1628.72, + "probability": 0.5358 + }, + { + "start": 1629.94, + "end": 1633.0, + "probability": 0.7888 + }, + { + "start": 1633.0, + "end": 1634.02, + "probability": 0.836 + }, + { + "start": 1634.08, + "end": 1638.08, + "probability": 0.959 + }, + { + "start": 1638.08, + "end": 1639.0, + "probability": 0.9543 + }, + { + "start": 1639.1, + "end": 1639.58, + "probability": 0.3836 + }, + { + "start": 1639.58, + "end": 1639.84, + "probability": 0.7201 + }, + { + "start": 1639.96, + "end": 1642.44, + "probability": 0.8789 + }, + { + "start": 1643.88, + "end": 1645.12, + "probability": 0.6384 + }, + { + "start": 1645.24, + "end": 1646.24, + "probability": 0.9467 + }, + { + "start": 1646.58, + "end": 1646.58, + "probability": 0.0905 + }, + { + "start": 1646.8, + "end": 1650.52, + "probability": 0.7544 + }, + { + "start": 1651.04, + "end": 1651.6, + "probability": 0.0863 + }, + { + "start": 1652.52, + "end": 1652.52, + "probability": 0.1143 + }, + { + "start": 1652.52, + "end": 1655.45, + "probability": 0.5061 + }, + { + "start": 1656.02, + "end": 1659.1, + "probability": 0.988 + }, + { + "start": 1659.18, + "end": 1661.2, + "probability": 0.8022 + }, + { + "start": 1661.2, + "end": 1662.04, + "probability": 0.5647 + }, + { + "start": 1662.22, + "end": 1665.72, + "probability": 0.5716 + }, + { + "start": 1665.76, + "end": 1665.8, + "probability": 0.0025 + }, + { + "start": 1665.86, + "end": 1666.24, + "probability": 0.1286 + }, + { + "start": 1666.24, + "end": 1666.24, + "probability": 0.1641 + }, + { + "start": 1666.42, + "end": 1670.76, + "probability": 0.8292 + }, + { + "start": 1684.65, + "end": 1685.44, + "probability": 0.0395 + }, + { + "start": 1685.44, + "end": 1685.44, + "probability": 0.1947 + }, + { + "start": 1685.44, + "end": 1685.44, + "probability": 0.5129 + }, + { + "start": 1685.44, + "end": 1685.44, + "probability": 0.1442 + }, + { + "start": 1685.44, + "end": 1685.54, + "probability": 0.3375 + }, + { + "start": 1685.54, + "end": 1685.54, + "probability": 0.1164 + }, + { + "start": 1685.54, + "end": 1685.56, + "probability": 0.0305 + }, + { + "start": 1685.56, + "end": 1685.56, + "probability": 0.1097 + }, + { + "start": 1685.56, + "end": 1685.94, + "probability": 0.3295 + }, + { + "start": 1689.18, + "end": 1692.6, + "probability": 0.9945 + }, + { + "start": 1692.74, + "end": 1693.48, + "probability": 0.7429 + }, + { + "start": 1693.54, + "end": 1694.12, + "probability": 0.8567 + }, + { + "start": 1694.14, + "end": 1695.5, + "probability": 0.7895 + }, + { + "start": 1695.5, + "end": 1697.64, + "probability": 0.9979 + }, + { + "start": 1698.2, + "end": 1701.32, + "probability": 0.9189 + }, + { + "start": 1702.58, + "end": 1702.58, + "probability": 0.0667 + }, + { + "start": 1702.58, + "end": 1704.14, + "probability": 0.9329 + }, + { + "start": 1704.5, + "end": 1705.06, + "probability": 0.2254 + }, + { + "start": 1706.7, + "end": 1707.44, + "probability": 0.036 + }, + { + "start": 1707.44, + "end": 1711.24, + "probability": 0.5404 + }, + { + "start": 1711.64, + "end": 1715.12, + "probability": 0.6476 + }, + { + "start": 1716.12, + "end": 1716.66, + "probability": 0.7297 + }, + { + "start": 1717.24, + "end": 1717.38, + "probability": 0.4285 + }, + { + "start": 1717.38, + "end": 1717.98, + "probability": 0.7306 + }, + { + "start": 1718.1, + "end": 1718.84, + "probability": 0.9151 + }, + { + "start": 1718.98, + "end": 1719.3, + "probability": 0.8779 + }, + { + "start": 1719.34, + "end": 1720.48, + "probability": 0.8477 + }, + { + "start": 1721.02, + "end": 1721.38, + "probability": 0.5108 + }, + { + "start": 1722.3, + "end": 1722.84, + "probability": 0.7851 + }, + { + "start": 1723.58, + "end": 1724.1, + "probability": 0.8875 + }, + { + "start": 1724.86, + "end": 1724.86, + "probability": 0.079 + }, + { + "start": 1724.86, + "end": 1725.56, + "probability": 0.2157 + }, + { + "start": 1725.76, + "end": 1726.4, + "probability": 0.6064 + }, + { + "start": 1726.96, + "end": 1730.5, + "probability": 0.4996 + }, + { + "start": 1731.26, + "end": 1732.04, + "probability": 0.0479 + }, + { + "start": 1732.28, + "end": 1733.5, + "probability": 0.3206 + }, + { + "start": 1733.5, + "end": 1733.91, + "probability": 0.0872 + }, + { + "start": 1734.14, + "end": 1734.86, + "probability": 0.3412 + }, + { + "start": 1735.4, + "end": 1736.86, + "probability": 0.7144 + }, + { + "start": 1736.96, + "end": 1737.86, + "probability": 0.7986 + }, + { + "start": 1739.12, + "end": 1740.84, + "probability": 0.0833 + }, + { + "start": 1740.98, + "end": 1740.98, + "probability": 0.1894 + }, + { + "start": 1740.98, + "end": 1740.98, + "probability": 0.1897 + }, + { + "start": 1741.04, + "end": 1741.7, + "probability": 0.2385 + }, + { + "start": 1742.12, + "end": 1744.42, + "probability": 0.9675 + }, + { + "start": 1744.52, + "end": 1745.86, + "probability": 0.8477 + }, + { + "start": 1745.9, + "end": 1746.8, + "probability": 0.7005 + }, + { + "start": 1747.16, + "end": 1748.4, + "probability": 0.4622 + }, + { + "start": 1748.58, + "end": 1749.62, + "probability": 0.9012 + }, + { + "start": 1750.64, + "end": 1751.12, + "probability": 0.7915 + }, + { + "start": 1752.52, + "end": 1753.85, + "probability": 0.8389 + }, + { + "start": 1754.48, + "end": 1756.48, + "probability": 0.7659 + }, + { + "start": 1757.08, + "end": 1758.82, + "probability": 0.9509 + }, + { + "start": 1759.56, + "end": 1760.26, + "probability": 0.9314 + }, + { + "start": 1761.0, + "end": 1762.34, + "probability": 0.9502 + }, + { + "start": 1763.34, + "end": 1767.58, + "probability": 0.9961 + }, + { + "start": 1767.66, + "end": 1768.94, + "probability": 0.8197 + }, + { + "start": 1769.73, + "end": 1771.58, + "probability": 0.0262 + }, + { + "start": 1771.6, + "end": 1772.24, + "probability": 0.2034 + }, + { + "start": 1772.24, + "end": 1773.34, + "probability": 0.1419 + }, + { + "start": 1773.39, + "end": 1776.5, + "probability": 0.1939 + }, + { + "start": 1776.5, + "end": 1776.68, + "probability": 0.0917 + }, + { + "start": 1776.68, + "end": 1777.78, + "probability": 0.7906 + }, + { + "start": 1778.22, + "end": 1783.82, + "probability": 0.9971 + }, + { + "start": 1784.52, + "end": 1787.12, + "probability": 0.4857 + }, + { + "start": 1787.7, + "end": 1789.36, + "probability": 0.654 + }, + { + "start": 1790.22, + "end": 1792.02, + "probability": 0.6495 + }, + { + "start": 1792.96, + "end": 1793.58, + "probability": 0.9563 + }, + { + "start": 1793.68, + "end": 1795.32, + "probability": 0.9489 + }, + { + "start": 1795.82, + "end": 1799.1, + "probability": 0.9508 + }, + { + "start": 1799.14, + "end": 1799.34, + "probability": 0.1641 + }, + { + "start": 1799.46, + "end": 1799.58, + "probability": 0.4716 + }, + { + "start": 1799.58, + "end": 1801.32, + "probability": 0.3596 + }, + { + "start": 1801.42, + "end": 1802.87, + "probability": 0.5033 + }, + { + "start": 1803.12, + "end": 1806.06, + "probability": 0.9476 + }, + { + "start": 1806.34, + "end": 1807.32, + "probability": 0.0984 + }, + { + "start": 1808.32, + "end": 1808.56, + "probability": 0.0421 + }, + { + "start": 1809.24, + "end": 1809.28, + "probability": 0.0136 + }, + { + "start": 1811.0, + "end": 1811.56, + "probability": 0.07 + }, + { + "start": 1812.3, + "end": 1812.3, + "probability": 0.1162 + }, + { + "start": 1812.3, + "end": 1814.18, + "probability": 0.5137 + }, + { + "start": 1815.98, + "end": 1816.64, + "probability": 0.1989 + }, + { + "start": 1816.72, + "end": 1819.92, + "probability": 0.8586 + }, + { + "start": 1820.02, + "end": 1823.2, + "probability": 0.8229 + }, + { + "start": 1824.88, + "end": 1827.2, + "probability": 0.6436 + }, + { + "start": 1827.36, + "end": 1829.52, + "probability": 0.9282 + }, + { + "start": 1829.98, + "end": 1831.76, + "probability": 0.7139 + }, + { + "start": 1831.94, + "end": 1832.32, + "probability": 0.12 + }, + { + "start": 1832.32, + "end": 1833.04, + "probability": 0.0952 + }, + { + "start": 1833.24, + "end": 1834.32, + "probability": 0.1461 + }, + { + "start": 1834.32, + "end": 1835.14, + "probability": 0.3379 + }, + { + "start": 1836.08, + "end": 1837.32, + "probability": 0.9412 + }, + { + "start": 1837.4, + "end": 1838.24, + "probability": 0.7202 + }, + { + "start": 1838.28, + "end": 1839.16, + "probability": 0.9063 + }, + { + "start": 1839.26, + "end": 1839.7, + "probability": 0.656 + }, + { + "start": 1839.76, + "end": 1839.88, + "probability": 0.2816 + }, + { + "start": 1840.02, + "end": 1840.56, + "probability": 0.4449 + }, + { + "start": 1840.7, + "end": 1842.76, + "probability": 0.9932 + }, + { + "start": 1843.36, + "end": 1845.78, + "probability": 0.6542 + }, + { + "start": 1846.04, + "end": 1847.96, + "probability": 0.7651 + }, + { + "start": 1848.18, + "end": 1852.42, + "probability": 0.9185 + }, + { + "start": 1852.5, + "end": 1853.48, + "probability": 0.9655 + }, + { + "start": 1853.48, + "end": 1856.92, + "probability": 0.7345 + }, + { + "start": 1857.0, + "end": 1858.6, + "probability": 0.5575 + }, + { + "start": 1859.02, + "end": 1863.68, + "probability": 0.8774 + }, + { + "start": 1864.38, + "end": 1867.96, + "probability": 0.5813 + }, + { + "start": 1868.08, + "end": 1871.18, + "probability": 0.1218 + }, + { + "start": 1872.06, + "end": 1873.34, + "probability": 0.0361 + }, + { + "start": 1873.34, + "end": 1875.02, + "probability": 0.1527 + }, + { + "start": 1880.14, + "end": 1884.94, + "probability": 0.0765 + }, + { + "start": 1885.46, + "end": 1888.3, + "probability": 0.6757 + }, + { + "start": 1888.96, + "end": 1891.72, + "probability": 0.9198 + }, + { + "start": 1899.08, + "end": 1900.96, + "probability": 0.075 + }, + { + "start": 1900.98, + "end": 1903.44, + "probability": 0.1227 + }, + { + "start": 1904.28, + "end": 1906.42, + "probability": 0.0683 + }, + { + "start": 1906.46, + "end": 1906.66, + "probability": 0.0744 + }, + { + "start": 1906.66, + "end": 1909.42, + "probability": 0.5107 + }, + { + "start": 1909.6, + "end": 1909.6, + "probability": 0.2171 + }, + { + "start": 1909.6, + "end": 1909.6, + "probability": 0.177 + }, + { + "start": 1909.6, + "end": 1909.6, + "probability": 0.0621 + }, + { + "start": 1909.6, + "end": 1909.6, + "probability": 0.0219 + }, + { + "start": 1909.6, + "end": 1910.12, + "probability": 0.0683 + }, + { + "start": 1912.32, + "end": 1913.66, + "probability": 0.4477 + }, + { + "start": 1913.86, + "end": 1914.58, + "probability": 0.6683 + }, + { + "start": 1914.84, + "end": 1916.28, + "probability": 0.5267 + }, + { + "start": 1917.04, + "end": 1918.46, + "probability": 0.454 + }, + { + "start": 1919.72, + "end": 1921.2, + "probability": 0.9924 + }, + { + "start": 1921.94, + "end": 1923.42, + "probability": 0.9507 + }, + { + "start": 1924.12, + "end": 1925.38, + "probability": 0.9645 + }, + { + "start": 1925.48, + "end": 1927.2, + "probability": 0.9922 + }, + { + "start": 1928.66, + "end": 1932.92, + "probability": 0.8823 + }, + { + "start": 1933.44, + "end": 1934.8, + "probability": 0.9604 + }, + { + "start": 1935.6, + "end": 1937.1, + "probability": 0.7262 + }, + { + "start": 1939.64, + "end": 1943.16, + "probability": 0.9962 + }, + { + "start": 1943.28, + "end": 1943.82, + "probability": 0.7035 + }, + { + "start": 1943.82, + "end": 1944.8, + "probability": 0.072 + }, + { + "start": 1945.83, + "end": 1950.04, + "probability": 0.9329 + }, + { + "start": 1950.8, + "end": 1952.46, + "probability": 0.9166 + }, + { + "start": 1953.16, + "end": 1954.78, + "probability": 0.8849 + }, + { + "start": 1955.3, + "end": 1958.23, + "probability": 0.9553 + }, + { + "start": 1958.96, + "end": 1960.2, + "probability": 0.9702 + }, + { + "start": 1960.3, + "end": 1962.02, + "probability": 0.9836 + }, + { + "start": 1962.1, + "end": 1963.1, + "probability": 0.9375 + }, + { + "start": 1963.3, + "end": 1966.0, + "probability": 0.9929 + }, + { + "start": 1966.0, + "end": 1968.9, + "probability": 0.9214 + }, + { + "start": 1970.06, + "end": 1973.56, + "probability": 0.9595 + }, + { + "start": 1973.72, + "end": 1977.1, + "probability": 0.9836 + }, + { + "start": 1978.48, + "end": 1979.74, + "probability": 0.8452 + }, + { + "start": 1980.24, + "end": 1982.3, + "probability": 0.7858 + }, + { + "start": 1982.56, + "end": 1984.64, + "probability": 0.9403 + }, + { + "start": 1985.1, + "end": 1988.8, + "probability": 0.9913 + }, + { + "start": 1989.16, + "end": 1992.02, + "probability": 0.9898 + }, + { + "start": 1992.1, + "end": 1993.7, + "probability": 0.9948 + }, + { + "start": 1994.1, + "end": 1998.82, + "probability": 0.9976 + }, + { + "start": 1998.9, + "end": 2002.53, + "probability": 0.8105 + }, + { + "start": 2003.74, + "end": 2005.32, + "probability": 0.8604 + }, + { + "start": 2005.38, + "end": 2007.74, + "probability": 0.9341 + }, + { + "start": 2008.2, + "end": 2011.14, + "probability": 0.9686 + }, + { + "start": 2012.0, + "end": 2014.23, + "probability": 0.9966 + }, + { + "start": 2015.28, + "end": 2018.28, + "probability": 0.6488 + }, + { + "start": 2018.28, + "end": 2020.36, + "probability": 0.9517 + }, + { + "start": 2020.8, + "end": 2023.56, + "probability": 0.8891 + }, + { + "start": 2024.14, + "end": 2027.48, + "probability": 0.9955 + }, + { + "start": 2028.96, + "end": 2031.62, + "probability": 0.9907 + }, + { + "start": 2031.7, + "end": 2032.74, + "probability": 0.9937 + }, + { + "start": 2032.8, + "end": 2034.2, + "probability": 0.9814 + }, + { + "start": 2034.32, + "end": 2035.64, + "probability": 0.9985 + }, + { + "start": 2035.94, + "end": 2039.38, + "probability": 0.8966 + }, + { + "start": 2039.5, + "end": 2041.7, + "probability": 0.8078 + }, + { + "start": 2041.86, + "end": 2045.46, + "probability": 0.9925 + }, + { + "start": 2045.94, + "end": 2046.52, + "probability": 0.8996 + }, + { + "start": 2047.42, + "end": 2048.08, + "probability": 0.4974 + }, + { + "start": 2048.74, + "end": 2049.98, + "probability": 0.1886 + }, + { + "start": 2050.14, + "end": 2051.92, + "probability": 0.3045 + }, + { + "start": 2051.96, + "end": 2053.24, + "probability": 0.1182 + }, + { + "start": 2053.54, + "end": 2054.32, + "probability": 0.3291 + }, + { + "start": 2054.62, + "end": 2055.04, + "probability": 0.1607 + }, + { + "start": 2055.18, + "end": 2055.24, + "probability": 0.0593 + }, + { + "start": 2055.24, + "end": 2055.88, + "probability": 0.4077 + }, + { + "start": 2056.76, + "end": 2059.02, + "probability": 0.9219 + }, + { + "start": 2059.42, + "end": 2060.48, + "probability": 0.5755 + }, + { + "start": 2060.66, + "end": 2060.66, + "probability": 0.036 + }, + { + "start": 2061.5, + "end": 2065.24, + "probability": 0.3425 + }, + { + "start": 2065.42, + "end": 2065.56, + "probability": 0.1846 + }, + { + "start": 2065.62, + "end": 2066.88, + "probability": 0.439 + }, + { + "start": 2066.98, + "end": 2068.32, + "probability": 0.0132 + }, + { + "start": 2068.32, + "end": 2069.24, + "probability": 0.7733 + }, + { + "start": 2069.66, + "end": 2071.72, + "probability": 0.0224 + }, + { + "start": 2071.72, + "end": 2071.72, + "probability": 0.1078 + }, + { + "start": 2071.72, + "end": 2072.5, + "probability": 0.3165 + }, + { + "start": 2072.5, + "end": 2073.4, + "probability": 0.3549 + }, + { + "start": 2073.4, + "end": 2074.87, + "probability": 0.9495 + }, + { + "start": 2075.12, + "end": 2080.06, + "probability": 0.5003 + }, + { + "start": 2081.06, + "end": 2082.54, + "probability": 0.044 + }, + { + "start": 2082.54, + "end": 2083.5, + "probability": 0.6262 + }, + { + "start": 2083.64, + "end": 2084.04, + "probability": 0.0982 + }, + { + "start": 2084.04, + "end": 2086.14, + "probability": 0.0751 + }, + { + "start": 2086.14, + "end": 2087.98, + "probability": 0.7972 + }, + { + "start": 2088.08, + "end": 2088.94, + "probability": 0.3799 + }, + { + "start": 2089.0, + "end": 2090.34, + "probability": 0.1459 + }, + { + "start": 2090.5, + "end": 2091.74, + "probability": 0.8684 + }, + { + "start": 2092.48, + "end": 2095.12, + "probability": 0.478 + }, + { + "start": 2095.94, + "end": 2095.94, + "probability": 0.0117 + }, + { + "start": 2095.94, + "end": 2096.44, + "probability": 0.4124 + }, + { + "start": 2096.88, + "end": 2097.52, + "probability": 0.7861 + }, + { + "start": 2097.8, + "end": 2099.44, + "probability": 0.8667 + }, + { + "start": 2099.54, + "end": 2100.58, + "probability": 0.9919 + }, + { + "start": 2100.66, + "end": 2102.15, + "probability": 0.9858 + }, + { + "start": 2102.56, + "end": 2103.23, + "probability": 0.9555 + }, + { + "start": 2103.74, + "end": 2105.24, + "probability": 0.9893 + }, + { + "start": 2105.34, + "end": 2106.74, + "probability": 0.6784 + }, + { + "start": 2106.8, + "end": 2107.86, + "probability": 0.7844 + }, + { + "start": 2107.98, + "end": 2109.52, + "probability": 0.7638 + }, + { + "start": 2109.56, + "end": 2113.82, + "probability": 0.7458 + }, + { + "start": 2113.82, + "end": 2114.9, + "probability": 0.668 + }, + { + "start": 2115.24, + "end": 2117.29, + "probability": 0.9833 + }, + { + "start": 2117.46, + "end": 2119.62, + "probability": 0.8228 + }, + { + "start": 2119.82, + "end": 2119.82, + "probability": 0.394 + }, + { + "start": 2119.82, + "end": 2121.18, + "probability": 0.6182 + }, + { + "start": 2123.27, + "end": 2125.58, + "probability": 0.998 + }, + { + "start": 2125.62, + "end": 2126.7, + "probability": 0.4158 + }, + { + "start": 2126.98, + "end": 2130.3, + "probability": 0.9499 + }, + { + "start": 2130.38, + "end": 2133.74, + "probability": 0.8083 + }, + { + "start": 2134.3, + "end": 2137.2, + "probability": 0.8516 + }, + { + "start": 2137.46, + "end": 2138.68, + "probability": 0.4861 + }, + { + "start": 2138.92, + "end": 2141.6, + "probability": 0.9906 + }, + { + "start": 2141.66, + "end": 2142.4, + "probability": 0.8311 + }, + { + "start": 2143.24, + "end": 2147.0, + "probability": 0.9435 + }, + { + "start": 2147.92, + "end": 2149.7, + "probability": 0.6294 + }, + { + "start": 2149.78, + "end": 2150.48, + "probability": 0.9438 + }, + { + "start": 2160.42, + "end": 2163.04, + "probability": 0.6702 + }, + { + "start": 2163.22, + "end": 2164.18, + "probability": 0.8867 + }, + { + "start": 2164.3, + "end": 2167.86, + "probability": 0.9515 + }, + { + "start": 2168.64, + "end": 2171.16, + "probability": 0.9434 + }, + { + "start": 2171.16, + "end": 2175.1, + "probability": 0.9915 + }, + { + "start": 2175.74, + "end": 2179.58, + "probability": 0.9578 + }, + { + "start": 2179.58, + "end": 2185.28, + "probability": 0.985 + }, + { + "start": 2185.94, + "end": 2186.94, + "probability": 0.7164 + }, + { + "start": 2187.1, + "end": 2187.8, + "probability": 0.6692 + }, + { + "start": 2188.0, + "end": 2192.14, + "probability": 0.982 + }, + { + "start": 2192.8, + "end": 2192.82, + "probability": 0.3663 + }, + { + "start": 2192.82, + "end": 2196.24, + "probability": 0.8787 + }, + { + "start": 2196.68, + "end": 2200.54, + "probability": 0.9812 + }, + { + "start": 2200.66, + "end": 2202.76, + "probability": 0.9852 + }, + { + "start": 2203.48, + "end": 2205.7, + "probability": 0.9932 + }, + { + "start": 2205.74, + "end": 2207.52, + "probability": 0.9847 + }, + { + "start": 2208.42, + "end": 2210.74, + "probability": 0.8947 + }, + { + "start": 2211.26, + "end": 2213.16, + "probability": 0.9915 + }, + { + "start": 2213.58, + "end": 2214.4, + "probability": 0.8745 + }, + { + "start": 2214.46, + "end": 2215.06, + "probability": 0.5529 + }, + { + "start": 2215.14, + "end": 2217.06, + "probability": 0.9875 + }, + { + "start": 2218.0, + "end": 2223.62, + "probability": 0.9873 + }, + { + "start": 2224.4, + "end": 2229.02, + "probability": 0.9685 + }, + { + "start": 2229.74, + "end": 2230.82, + "probability": 0.684 + }, + { + "start": 2231.34, + "end": 2232.84, + "probability": 0.9591 + }, + { + "start": 2233.46, + "end": 2234.1, + "probability": 0.9862 + }, + { + "start": 2234.22, + "end": 2235.34, + "probability": 0.9876 + }, + { + "start": 2235.4, + "end": 2236.12, + "probability": 0.9796 + }, + { + "start": 2236.46, + "end": 2239.2, + "probability": 0.9815 + }, + { + "start": 2239.92, + "end": 2243.36, + "probability": 0.9921 + }, + { + "start": 2244.12, + "end": 2245.87, + "probability": 0.9978 + }, + { + "start": 2246.66, + "end": 2248.54, + "probability": 0.9325 + }, + { + "start": 2249.54, + "end": 2250.12, + "probability": 0.7723 + }, + { + "start": 2250.3, + "end": 2252.24, + "probability": 0.9601 + }, + { + "start": 2252.54, + "end": 2254.48, + "probability": 0.8167 + }, + { + "start": 2254.98, + "end": 2256.5, + "probability": 0.7628 + }, + { + "start": 2257.06, + "end": 2258.26, + "probability": 0.9345 + }, + { + "start": 2259.5, + "end": 2262.82, + "probability": 0.7553 + }, + { + "start": 2263.32, + "end": 2265.14, + "probability": 0.9578 + }, + { + "start": 2265.22, + "end": 2270.56, + "probability": 0.9811 + }, + { + "start": 2271.36, + "end": 2276.1, + "probability": 0.9885 + }, + { + "start": 2277.22, + "end": 2280.52, + "probability": 0.9144 + }, + { + "start": 2280.52, + "end": 2282.92, + "probability": 0.9979 + }, + { + "start": 2283.96, + "end": 2288.76, + "probability": 0.9956 + }, + { + "start": 2289.22, + "end": 2290.96, + "probability": 0.9238 + }, + { + "start": 2291.54, + "end": 2291.78, + "probability": 0.5734 + }, + { + "start": 2291.92, + "end": 2292.42, + "probability": 0.892 + }, + { + "start": 2292.5, + "end": 2296.1, + "probability": 0.9933 + }, + { + "start": 2296.98, + "end": 2297.32, + "probability": 0.8391 + }, + { + "start": 2297.38, + "end": 2300.68, + "probability": 0.8491 + }, + { + "start": 2300.84, + "end": 2300.98, + "probability": 0.578 + }, + { + "start": 2301.14, + "end": 2301.64, + "probability": 0.7026 + }, + { + "start": 2301.94, + "end": 2303.67, + "probability": 0.9808 + }, + { + "start": 2303.72, + "end": 2307.62, + "probability": 0.9917 + }, + { + "start": 2308.94, + "end": 2309.6, + "probability": 0.665 + }, + { + "start": 2309.76, + "end": 2312.64, + "probability": 0.9137 + }, + { + "start": 2313.44, + "end": 2314.78, + "probability": 0.8796 + }, + { + "start": 2315.54, + "end": 2316.58, + "probability": 0.9705 + }, + { + "start": 2316.72, + "end": 2319.02, + "probability": 0.957 + }, + { + "start": 2319.42, + "end": 2322.5, + "probability": 0.6662 + }, + { + "start": 2322.5, + "end": 2324.2, + "probability": 0.3619 + }, + { + "start": 2325.3, + "end": 2327.92, + "probability": 0.8979 + }, + { + "start": 2328.8, + "end": 2333.52, + "probability": 0.9824 + }, + { + "start": 2333.94, + "end": 2337.32, + "probability": 0.9944 + }, + { + "start": 2337.98, + "end": 2339.28, + "probability": 0.9532 + }, + { + "start": 2339.46, + "end": 2340.28, + "probability": 0.3234 + }, + { + "start": 2340.7, + "end": 2342.28, + "probability": 0.8826 + }, + { + "start": 2343.0, + "end": 2345.32, + "probability": 0.761 + }, + { + "start": 2346.02, + "end": 2348.68, + "probability": 0.8135 + }, + { + "start": 2349.22, + "end": 2351.08, + "probability": 0.9392 + }, + { + "start": 2351.84, + "end": 2352.88, + "probability": 0.7202 + }, + { + "start": 2353.06, + "end": 2354.64, + "probability": 0.5045 + }, + { + "start": 2355.3, + "end": 2358.04, + "probability": 0.988 + }, + { + "start": 2358.56, + "end": 2359.62, + "probability": 0.7108 + }, + { + "start": 2360.0, + "end": 2361.12, + "probability": 0.9943 + }, + { + "start": 2361.56, + "end": 2362.54, + "probability": 0.9969 + }, + { + "start": 2362.62, + "end": 2366.84, + "probability": 0.9862 + }, + { + "start": 2367.0, + "end": 2369.32, + "probability": 0.9091 + }, + { + "start": 2369.38, + "end": 2370.14, + "probability": 0.8709 + }, + { + "start": 2370.2, + "end": 2370.66, + "probability": 0.7415 + }, + { + "start": 2370.7, + "end": 2371.28, + "probability": 0.6638 + }, + { + "start": 2371.84, + "end": 2373.1, + "probability": 0.9185 + }, + { + "start": 2373.44, + "end": 2374.4, + "probability": 0.9958 + }, + { + "start": 2375.36, + "end": 2380.16, + "probability": 0.9058 + }, + { + "start": 2380.8, + "end": 2382.16, + "probability": 0.9797 + }, + { + "start": 2382.26, + "end": 2382.46, + "probability": 0.2517 + }, + { + "start": 2382.46, + "end": 2382.66, + "probability": 0.633 + }, + { + "start": 2383.16, + "end": 2386.48, + "probability": 0.7244 + }, + { + "start": 2405.76, + "end": 2407.52, + "probability": 0.6544 + }, + { + "start": 2409.38, + "end": 2411.48, + "probability": 0.9989 + }, + { + "start": 2412.32, + "end": 2413.26, + "probability": 0.9592 + }, + { + "start": 2415.44, + "end": 2417.86, + "probability": 0.9008 + }, + { + "start": 2419.46, + "end": 2421.56, + "probability": 0.9982 + }, + { + "start": 2423.18, + "end": 2424.12, + "probability": 0.6347 + }, + { + "start": 2425.48, + "end": 2427.38, + "probability": 0.9941 + }, + { + "start": 2431.36, + "end": 2433.0, + "probability": 0.7531 + }, + { + "start": 2436.55, + "end": 2439.34, + "probability": 0.7374 + }, + { + "start": 2441.74, + "end": 2442.76, + "probability": 0.9959 + }, + { + "start": 2444.28, + "end": 2445.4, + "probability": 0.8764 + }, + { + "start": 2447.46, + "end": 2449.42, + "probability": 0.4361 + }, + { + "start": 2451.16, + "end": 2457.16, + "probability": 0.9912 + }, + { + "start": 2458.5, + "end": 2461.74, + "probability": 0.86 + }, + { + "start": 2463.76, + "end": 2467.3, + "probability": 0.8025 + }, + { + "start": 2467.98, + "end": 2469.32, + "probability": 0.9631 + }, + { + "start": 2470.74, + "end": 2472.14, + "probability": 0.9735 + }, + { + "start": 2473.52, + "end": 2474.18, + "probability": 0.9854 + }, + { + "start": 2475.36, + "end": 2476.88, + "probability": 0.8472 + }, + { + "start": 2478.54, + "end": 2480.7, + "probability": 0.7416 + }, + { + "start": 2482.14, + "end": 2483.64, + "probability": 0.9951 + }, + { + "start": 2485.92, + "end": 2489.32, + "probability": 0.8655 + }, + { + "start": 2490.6, + "end": 2494.0, + "probability": 0.9977 + }, + { + "start": 2494.8, + "end": 2498.54, + "probability": 0.8717 + }, + { + "start": 2500.08, + "end": 2502.66, + "probability": 0.9961 + }, + { + "start": 2503.6, + "end": 2506.8, + "probability": 0.9921 + }, + { + "start": 2508.9, + "end": 2509.8, + "probability": 0.7073 + }, + { + "start": 2510.68, + "end": 2512.76, + "probability": 0.748 + }, + { + "start": 2513.68, + "end": 2514.96, + "probability": 0.881 + }, + { + "start": 2516.02, + "end": 2517.0, + "probability": 0.5338 + }, + { + "start": 2517.14, + "end": 2517.6, + "probability": 0.7644 + }, + { + "start": 2518.6, + "end": 2520.0, + "probability": 0.9962 + }, + { + "start": 2522.82, + "end": 2523.22, + "probability": 0.5017 + }, + { + "start": 2523.96, + "end": 2526.88, + "probability": 0.8546 + }, + { + "start": 2528.2, + "end": 2531.48, + "probability": 0.9163 + }, + { + "start": 2532.94, + "end": 2533.86, + "probability": 0.9349 + }, + { + "start": 2534.4, + "end": 2535.32, + "probability": 0.8836 + }, + { + "start": 2536.86, + "end": 2539.52, + "probability": 0.9642 + }, + { + "start": 2541.4, + "end": 2544.68, + "probability": 0.9529 + }, + { + "start": 2545.46, + "end": 2546.9, + "probability": 0.8065 + }, + { + "start": 2547.56, + "end": 2550.84, + "probability": 0.1766 + }, + { + "start": 2551.11, + "end": 2553.86, + "probability": 0.4994 + }, + { + "start": 2554.02, + "end": 2563.08, + "probability": 0.9073 + }, + { + "start": 2563.98, + "end": 2565.18, + "probability": 0.7591 + }, + { + "start": 2565.55, + "end": 2568.66, + "probability": 0.9661 + }, + { + "start": 2569.58, + "end": 2571.28, + "probability": 0.9097 + }, + { + "start": 2574.1, + "end": 2579.04, + "probability": 0.907 + }, + { + "start": 2579.38, + "end": 2580.68, + "probability": 0.8971 + }, + { + "start": 2581.64, + "end": 2585.98, + "probability": 0.9183 + }, + { + "start": 2587.32, + "end": 2588.34, + "probability": 0.5779 + }, + { + "start": 2589.32, + "end": 2591.62, + "probability": 0.842 + }, + { + "start": 2592.58, + "end": 2592.58, + "probability": 0.6276 + }, + { + "start": 2592.58, + "end": 2596.38, + "probability": 0.9582 + }, + { + "start": 2596.9, + "end": 2597.96, + "probability": 0.9491 + }, + { + "start": 2598.32, + "end": 2598.6, + "probability": 0.7639 + }, + { + "start": 2599.24, + "end": 2600.18, + "probability": 0.7908 + }, + { + "start": 2600.68, + "end": 2602.72, + "probability": 0.5772 + }, + { + "start": 2611.56, + "end": 2614.06, + "probability": 0.6241 + }, + { + "start": 2638.58, + "end": 2641.72, + "probability": 0.6686 + }, + { + "start": 2643.2, + "end": 2645.82, + "probability": 0.5978 + }, + { + "start": 2646.4, + "end": 2648.96, + "probability": 0.9326 + }, + { + "start": 2653.6, + "end": 2655.56, + "probability": 0.8087 + }, + { + "start": 2656.58, + "end": 2658.76, + "probability": 0.9966 + }, + { + "start": 2659.88, + "end": 2661.62, + "probability": 0.8093 + }, + { + "start": 2662.84, + "end": 2663.9, + "probability": 0.7852 + }, + { + "start": 2664.54, + "end": 2665.46, + "probability": 0.7432 + }, + { + "start": 2666.36, + "end": 2668.5, + "probability": 0.8294 + }, + { + "start": 2669.68, + "end": 2675.56, + "probability": 0.9888 + }, + { + "start": 2676.24, + "end": 2678.82, + "probability": 0.9604 + }, + { + "start": 2679.96, + "end": 2682.92, + "probability": 0.9256 + }, + { + "start": 2684.2, + "end": 2689.82, + "probability": 0.9969 + }, + { + "start": 2691.44, + "end": 2692.54, + "probability": 0.7656 + }, + { + "start": 2693.12, + "end": 2694.16, + "probability": 0.9451 + }, + { + "start": 2695.2, + "end": 2698.02, + "probability": 0.9967 + }, + { + "start": 2698.58, + "end": 2699.8, + "probability": 0.7651 + }, + { + "start": 2701.1, + "end": 2704.96, + "probability": 0.6766 + }, + { + "start": 2706.46, + "end": 2709.16, + "probability": 0.271 + }, + { + "start": 2710.2, + "end": 2711.5, + "probability": 0.3576 + }, + { + "start": 2712.14, + "end": 2714.92, + "probability": 0.709 + }, + { + "start": 2716.4, + "end": 2717.54, + "probability": 0.9033 + }, + { + "start": 2718.06, + "end": 2719.78, + "probability": 0.6548 + }, + { + "start": 2720.42, + "end": 2721.3, + "probability": 0.6519 + }, + { + "start": 2721.92, + "end": 2722.96, + "probability": 0.8161 + }, + { + "start": 2723.5, + "end": 2724.6, + "probability": 0.8998 + }, + { + "start": 2725.4, + "end": 2726.66, + "probability": 0.3488 + }, + { + "start": 2728.2, + "end": 2729.16, + "probability": 0.5849 + }, + { + "start": 2729.9, + "end": 2730.32, + "probability": 0.5589 + }, + { + "start": 2731.56, + "end": 2732.68, + "probability": 0.4601 + }, + { + "start": 2733.28, + "end": 2734.54, + "probability": 0.6527 + }, + { + "start": 2735.22, + "end": 2736.14, + "probability": 0.7765 + }, + { + "start": 2737.08, + "end": 2738.02, + "probability": 0.4845 + }, + { + "start": 2738.8, + "end": 2739.98, + "probability": 0.8191 + }, + { + "start": 2740.54, + "end": 2741.7, + "probability": 0.7641 + }, + { + "start": 2742.32, + "end": 2743.52, + "probability": 0.7277 + }, + { + "start": 2745.0, + "end": 2745.44, + "probability": 0.6972 + }, + { + "start": 2746.34, + "end": 2747.92, + "probability": 0.3315 + }, + { + "start": 2749.1, + "end": 2750.0, + "probability": 0.7358 + }, + { + "start": 2750.7, + "end": 2751.86, + "probability": 0.7586 + }, + { + "start": 2752.76, + "end": 2753.72, + "probability": 0.6129 + }, + { + "start": 2754.32, + "end": 2755.5, + "probability": 0.901 + }, + { + "start": 2756.1, + "end": 2757.5, + "probability": 0.8273 + }, + { + "start": 2758.22, + "end": 2759.92, + "probability": 0.9353 + }, + { + "start": 2761.1, + "end": 2763.54, + "probability": 0.7016 + }, + { + "start": 2764.38, + "end": 2765.38, + "probability": 0.897 + }, + { + "start": 2766.08, + "end": 2767.0, + "probability": 0.6741 + }, + { + "start": 2767.78, + "end": 2769.3, + "probability": 0.6521 + }, + { + "start": 2770.4, + "end": 2771.56, + "probability": 0.7772 + }, + { + "start": 2772.1, + "end": 2773.22, + "probability": 0.7494 + }, + { + "start": 2773.82, + "end": 2774.72, + "probability": 0.7493 + }, + { + "start": 2775.46, + "end": 2776.54, + "probability": 0.7562 + }, + { + "start": 2777.66, + "end": 2778.82, + "probability": 0.6755 + }, + { + "start": 2779.44, + "end": 2780.18, + "probability": 0.7445 + }, + { + "start": 2781.4, + "end": 2784.5, + "probability": 0.9201 + }, + { + "start": 2785.36, + "end": 2788.58, + "probability": 0.6304 + }, + { + "start": 2789.38, + "end": 2790.0, + "probability": 0.5231 + }, + { + "start": 2790.0, + "end": 2790.82, + "probability": 0.6037 + }, + { + "start": 2791.22, + "end": 2793.66, + "probability": 0.9807 + }, + { + "start": 2794.24, + "end": 2802.62, + "probability": 0.7536 + }, + { + "start": 2803.0, + "end": 2804.94, + "probability": 0.8167 + }, + { + "start": 2805.02, + "end": 2806.76, + "probability": 0.6007 + }, + { + "start": 2807.08, + "end": 2810.56, + "probability": 0.9665 + }, + { + "start": 2811.08, + "end": 2812.96, + "probability": 0.6685 + }, + { + "start": 2813.44, + "end": 2818.04, + "probability": 0.7195 + }, + { + "start": 2818.04, + "end": 2819.12, + "probability": 0.7208 + }, + { + "start": 2819.66, + "end": 2825.38, + "probability": 0.9556 + }, + { + "start": 2825.94, + "end": 2829.32, + "probability": 0.842 + }, + { + "start": 2829.98, + "end": 2832.28, + "probability": 0.9651 + }, + { + "start": 2832.6, + "end": 2833.96, + "probability": 0.9453 + }, + { + "start": 2833.96, + "end": 2834.56, + "probability": 0.878 + }, + { + "start": 2834.86, + "end": 2838.76, + "probability": 0.9331 + }, + { + "start": 2839.64, + "end": 2840.14, + "probability": 0.9464 + }, + { + "start": 2840.4, + "end": 2841.18, + "probability": 0.7419 + }, + { + "start": 2841.56, + "end": 2847.48, + "probability": 0.928 + }, + { + "start": 2847.64, + "end": 2850.16, + "probability": 0.9324 + }, + { + "start": 2863.72, + "end": 2865.38, + "probability": 0.608 + }, + { + "start": 2867.62, + "end": 2872.32, + "probability": 0.584 + }, + { + "start": 2873.94, + "end": 2876.32, + "probability": 0.9696 + }, + { + "start": 2876.46, + "end": 2879.23, + "probability": 0.8588 + }, + { + "start": 2880.74, + "end": 2881.64, + "probability": 0.9539 + }, + { + "start": 2882.56, + "end": 2883.18, + "probability": 0.8419 + }, + { + "start": 2883.38, + "end": 2886.42, + "probability": 0.8284 + }, + { + "start": 2887.18, + "end": 2888.8, + "probability": 0.8816 + }, + { + "start": 2889.0, + "end": 2890.4, + "probability": 0.988 + }, + { + "start": 2890.98, + "end": 2892.22, + "probability": 0.9465 + }, + { + "start": 2892.44, + "end": 2892.8, + "probability": 0.7515 + }, + { + "start": 2893.42, + "end": 2896.56, + "probability": 0.9288 + }, + { + "start": 2897.28, + "end": 2903.36, + "probability": 0.9716 + }, + { + "start": 2903.36, + "end": 2908.3, + "probability": 0.9894 + }, + { + "start": 2909.0, + "end": 2909.84, + "probability": 0.9764 + }, + { + "start": 2910.62, + "end": 2911.68, + "probability": 0.8412 + }, + { + "start": 2911.76, + "end": 2915.46, + "probability": 0.6535 + }, + { + "start": 2916.28, + "end": 2918.5, + "probability": 0.5286 + }, + { + "start": 2919.3, + "end": 2920.88, + "probability": 0.9855 + }, + { + "start": 2921.4, + "end": 2922.86, + "probability": 0.8294 + }, + { + "start": 2925.1, + "end": 2926.32, + "probability": 0.6341 + }, + { + "start": 2927.04, + "end": 2929.55, + "probability": 0.995 + }, + { + "start": 2930.32, + "end": 2931.47, + "probability": 0.9927 + }, + { + "start": 2931.66, + "end": 2935.8, + "probability": 0.8379 + }, + { + "start": 2935.94, + "end": 2936.94, + "probability": 0.6896 + }, + { + "start": 2937.14, + "end": 2938.65, + "probability": 0.9791 + }, + { + "start": 2939.36, + "end": 2940.34, + "probability": 0.6206 + }, + { + "start": 2940.84, + "end": 2944.0, + "probability": 0.9515 + }, + { + "start": 2944.12, + "end": 2945.52, + "probability": 0.699 + }, + { + "start": 2945.96, + "end": 2948.52, + "probability": 0.5172 + }, + { + "start": 2949.1, + "end": 2951.94, + "probability": 0.8687 + }, + { + "start": 2952.74, + "end": 2957.34, + "probability": 0.9891 + }, + { + "start": 2958.32, + "end": 2960.8, + "probability": 0.9974 + }, + { + "start": 2961.34, + "end": 2962.48, + "probability": 0.9943 + }, + { + "start": 2962.92, + "end": 2964.06, + "probability": 0.9824 + }, + { + "start": 2964.46, + "end": 2966.35, + "probability": 0.9457 + }, + { + "start": 2967.5, + "end": 2968.56, + "probability": 0.6679 + }, + { + "start": 2969.08, + "end": 2974.16, + "probability": 0.979 + }, + { + "start": 2975.58, + "end": 2977.95, + "probability": 0.9941 + }, + { + "start": 2978.42, + "end": 2983.42, + "probability": 0.9937 + }, + { + "start": 2983.42, + "end": 2987.84, + "probability": 0.9988 + }, + { + "start": 2988.5, + "end": 2989.08, + "probability": 0.9852 + }, + { + "start": 2989.62, + "end": 2992.86, + "probability": 0.9817 + }, + { + "start": 2993.54, + "end": 2994.82, + "probability": 0.9425 + }, + { + "start": 2995.46, + "end": 2996.68, + "probability": 0.9323 + }, + { + "start": 2997.58, + "end": 3001.74, + "probability": 0.9915 + }, + { + "start": 3002.44, + "end": 3003.96, + "probability": 0.9506 + }, + { + "start": 3004.34, + "end": 3009.48, + "probability": 0.9963 + }, + { + "start": 3010.06, + "end": 3010.84, + "probability": 0.8629 + }, + { + "start": 3011.68, + "end": 3013.84, + "probability": 0.9854 + }, + { + "start": 3014.96, + "end": 3019.92, + "probability": 0.9985 + }, + { + "start": 3020.76, + "end": 3022.16, + "probability": 0.9934 + }, + { + "start": 3022.7, + "end": 3027.32, + "probability": 0.9353 + }, + { + "start": 3027.32, + "end": 3027.54, + "probability": 0.4838 + }, + { + "start": 3027.54, + "end": 3029.58, + "probability": 0.8429 + }, + { + "start": 3029.74, + "end": 3032.6, + "probability": 0.8227 + }, + { + "start": 3033.12, + "end": 3033.62, + "probability": 0.752 + }, + { + "start": 3033.9, + "end": 3034.06, + "probability": 0.7141 + }, + { + "start": 3034.44, + "end": 3035.28, + "probability": 0.7178 + }, + { + "start": 3035.38, + "end": 3036.22, + "probability": 0.6148 + }, + { + "start": 3036.6, + "end": 3038.94, + "probability": 0.9572 + }, + { + "start": 3039.54, + "end": 3040.5, + "probability": 0.8038 + }, + { + "start": 3040.88, + "end": 3045.32, + "probability": 0.9688 + }, + { + "start": 3045.62, + "end": 3051.26, + "probability": 0.9971 + }, + { + "start": 3051.96, + "end": 3057.18, + "probability": 0.9966 + }, + { + "start": 3057.36, + "end": 3060.2, + "probability": 0.9033 + }, + { + "start": 3060.58, + "end": 3061.26, + "probability": 0.7406 + }, + { + "start": 3061.88, + "end": 3063.82, + "probability": 0.7043 + }, + { + "start": 3064.6, + "end": 3065.06, + "probability": 0.9374 + }, + { + "start": 3066.3, + "end": 3074.39, + "probability": 0.8592 + }, + { + "start": 3074.8, + "end": 3077.38, + "probability": 0.5998 + }, + { + "start": 3078.44, + "end": 3079.08, + "probability": 0.7623 + }, + { + "start": 3080.74, + "end": 3081.22, + "probability": 0.0415 + }, + { + "start": 3085.75, + "end": 3087.05, + "probability": 0.0554 + }, + { + "start": 3094.26, + "end": 3094.67, + "probability": 0.093 + }, + { + "start": 3094.67, + "end": 3097.75, + "probability": 0.6666 + }, + { + "start": 3098.33, + "end": 3099.27, + "probability": 0.8654 + }, + { + "start": 3099.43, + "end": 3103.75, + "probability": 0.928 + }, + { + "start": 3104.29, + "end": 3110.23, + "probability": 0.8862 + }, + { + "start": 3110.71, + "end": 3112.59, + "probability": 0.8219 + }, + { + "start": 3113.79, + "end": 3116.81, + "probability": 0.038 + }, + { + "start": 3117.55, + "end": 3125.75, + "probability": 0.053 + }, + { + "start": 3125.93, + "end": 3129.51, + "probability": 0.7992 + }, + { + "start": 3129.93, + "end": 3135.01, + "probability": 0.965 + }, + { + "start": 3135.43, + "end": 3137.39, + "probability": 0.8677 + }, + { + "start": 3137.87, + "end": 3141.01, + "probability": 0.9768 + }, + { + "start": 3141.61, + "end": 3143.97, + "probability": 0.8066 + }, + { + "start": 3144.69, + "end": 3149.73, + "probability": 0.9461 + }, + { + "start": 3149.79, + "end": 3152.01, + "probability": 0.9819 + }, + { + "start": 3152.22, + "end": 3155.23, + "probability": 0.8344 + }, + { + "start": 3162.01, + "end": 3163.49, + "probability": 0.5479 + }, + { + "start": 3163.93, + "end": 3168.65, + "probability": 0.4352 + }, + { + "start": 3168.99, + "end": 3169.43, + "probability": 0.1743 + }, + { + "start": 3169.43, + "end": 3169.99, + "probability": 0.7761 + }, + { + "start": 3170.57, + "end": 3172.57, + "probability": 0.0352 + }, + { + "start": 3173.81, + "end": 3174.19, + "probability": 0.3363 + }, + { + "start": 3174.19, + "end": 3174.19, + "probability": 0.4391 + }, + { + "start": 3174.19, + "end": 3174.79, + "probability": 0.6001 + }, + { + "start": 3176.25, + "end": 3178.77, + "probability": 0.9904 + }, + { + "start": 3179.03, + "end": 3179.91, + "probability": 0.2849 + }, + { + "start": 3180.15, + "end": 3181.19, + "probability": 0.0752 + }, + { + "start": 3182.19, + "end": 3187.99, + "probability": 0.0784 + }, + { + "start": 3188.27, + "end": 3188.99, + "probability": 0.9211 + }, + { + "start": 3189.57, + "end": 3189.85, + "probability": 0.6008 + }, + { + "start": 3191.19, + "end": 3192.41, + "probability": 0.4196 + }, + { + "start": 3194.87, + "end": 3200.45, + "probability": 0.5366 + }, + { + "start": 3201.47, + "end": 3202.85, + "probability": 0.2685 + }, + { + "start": 3205.43, + "end": 3209.01, + "probability": 0.7031 + }, + { + "start": 3209.25, + "end": 3210.01, + "probability": 0.3482 + }, + { + "start": 3210.17, + "end": 3215.19, + "probability": 0.7041 + }, + { + "start": 3215.29, + "end": 3216.85, + "probability": 0.851 + }, + { + "start": 3219.13, + "end": 3220.13, + "probability": 0.5348 + }, + { + "start": 3220.63, + "end": 3221.31, + "probability": 0.3993 + }, + { + "start": 3221.31, + "end": 3224.53, + "probability": 0.8419 + }, + { + "start": 3224.65, + "end": 3225.25, + "probability": 0.3058 + }, + { + "start": 3225.37, + "end": 3226.15, + "probability": 0.7452 + }, + { + "start": 3227.41, + "end": 3231.31, + "probability": 0.8083 + }, + { + "start": 3231.39, + "end": 3240.05, + "probability": 0.2642 + }, + { + "start": 3240.05, + "end": 3240.21, + "probability": 0.0287 + }, + { + "start": 3241.23, + "end": 3241.23, + "probability": 0.1736 + }, + { + "start": 3241.23, + "end": 3241.23, + "probability": 0.2552 + }, + { + "start": 3241.23, + "end": 3243.51, + "probability": 0.1251 + }, + { + "start": 3243.57, + "end": 3244.27, + "probability": 0.2674 + }, + { + "start": 3244.45, + "end": 3244.97, + "probability": 0.4868 + }, + { + "start": 3245.07, + "end": 3246.1, + "probability": 0.59 + }, + { + "start": 3248.19, + "end": 3250.17, + "probability": 0.6661 + }, + { + "start": 3250.66, + "end": 3252.87, + "probability": 0.6203 + }, + { + "start": 3253.29, + "end": 3256.89, + "probability": 0.63 + }, + { + "start": 3256.97, + "end": 3260.87, + "probability": 0.7188 + }, + { + "start": 3261.35, + "end": 3262.39, + "probability": 0.6255 + }, + { + "start": 3262.53, + "end": 3269.63, + "probability": 0.9328 + }, + { + "start": 3269.85, + "end": 3270.55, + "probability": 0.8325 + }, + { + "start": 3271.05, + "end": 3274.55, + "probability": 0.8431 + }, + { + "start": 3274.55, + "end": 3276.87, + "probability": 0.9507 + }, + { + "start": 3277.05, + "end": 3282.21, + "probability": 0.7946 + }, + { + "start": 3282.63, + "end": 3284.43, + "probability": 0.5 + }, + { + "start": 3285.25, + "end": 3287.93, + "probability": 0.9858 + }, + { + "start": 3287.97, + "end": 3290.63, + "probability": 0.7113 + }, + { + "start": 3290.75, + "end": 3294.55, + "probability": 0.9548 + }, + { + "start": 3295.09, + "end": 3296.01, + "probability": 0.8125 + }, + { + "start": 3296.19, + "end": 3301.05, + "probability": 0.9585 + }, + { + "start": 3301.13, + "end": 3305.87, + "probability": 0.9464 + }, + { + "start": 3306.13, + "end": 3308.81, + "probability": 0.9718 + }, + { + "start": 3308.93, + "end": 3310.19, + "probability": 0.7586 + }, + { + "start": 3310.83, + "end": 3311.51, + "probability": 0.7649 + }, + { + "start": 3311.93, + "end": 3312.63, + "probability": 0.7869 + }, + { + "start": 3312.79, + "end": 3314.97, + "probability": 0.9326 + }, + { + "start": 3314.97, + "end": 3318.65, + "probability": 0.9371 + }, + { + "start": 3319.63, + "end": 3324.33, + "probability": 0.9027 + }, + { + "start": 3325.21, + "end": 3327.55, + "probability": 0.9292 + }, + { + "start": 3327.67, + "end": 3329.25, + "probability": 0.9326 + }, + { + "start": 3329.95, + "end": 3331.05, + "probability": 0.8255 + }, + { + "start": 3331.87, + "end": 3335.07, + "probability": 0.9795 + }, + { + "start": 3335.49, + "end": 3335.87, + "probability": 0.0929 + }, + { + "start": 3336.21, + "end": 3338.99, + "probability": 0.8044 + }, + { + "start": 3339.75, + "end": 3342.11, + "probability": 0.7667 + }, + { + "start": 3342.25, + "end": 3345.05, + "probability": 0.9644 + }, + { + "start": 3345.69, + "end": 3347.03, + "probability": 0.6976 + }, + { + "start": 3347.47, + "end": 3349.43, + "probability": 0.9165 + }, + { + "start": 3349.51, + "end": 3351.53, + "probability": 0.7319 + }, + { + "start": 3351.57, + "end": 3354.01, + "probability": 0.9538 + }, + { + "start": 3354.01, + "end": 3358.73, + "probability": 0.9301 + }, + { + "start": 3358.85, + "end": 3361.37, + "probability": 0.7917 + }, + { + "start": 3362.11, + "end": 3367.89, + "probability": 0.9724 + }, + { + "start": 3367.95, + "end": 3370.93, + "probability": 0.8627 + }, + { + "start": 3371.29, + "end": 3372.75, + "probability": 0.9061 + }, + { + "start": 3373.43, + "end": 3374.25, + "probability": 0.9274 + }, + { + "start": 3376.95, + "end": 3381.35, + "probability": 0.6017 + }, + { + "start": 3382.59, + "end": 3386.48, + "probability": 0.9865 + }, + { + "start": 3389.25, + "end": 3390.57, + "probability": 0.6761 + }, + { + "start": 3391.69, + "end": 3391.97, + "probability": 0.1661 + }, + { + "start": 3392.01, + "end": 3393.51, + "probability": 0.4158 + }, + { + "start": 3393.87, + "end": 3395.59, + "probability": 0.6485 + }, + { + "start": 3395.71, + "end": 3397.31, + "probability": 0.9252 + }, + { + "start": 3397.35, + "end": 3398.73, + "probability": 0.9957 + }, + { + "start": 3398.81, + "end": 3399.55, + "probability": 0.9817 + }, + { + "start": 3399.65, + "end": 3401.41, + "probability": 0.7607 + }, + { + "start": 3401.41, + "end": 3407.03, + "probability": 0.8574 + }, + { + "start": 3407.35, + "end": 3407.85, + "probability": 0.0214 + }, + { + "start": 3407.97, + "end": 3409.79, + "probability": 0.7329 + }, + { + "start": 3410.01, + "end": 3410.53, + "probability": 0.6901 + }, + { + "start": 3412.51, + "end": 3413.83, + "probability": 0.9031 + }, + { + "start": 3414.91, + "end": 3420.53, + "probability": 0.9906 + }, + { + "start": 3422.27, + "end": 3423.59, + "probability": 0.9988 + }, + { + "start": 3424.59, + "end": 3426.29, + "probability": 0.9302 + }, + { + "start": 3427.77, + "end": 3430.57, + "probability": 0.9835 + }, + { + "start": 3431.51, + "end": 3434.41, + "probability": 0.9415 + }, + { + "start": 3435.09, + "end": 3437.33, + "probability": 0.2458 + }, + { + "start": 3437.67, + "end": 3440.23, + "probability": 0.6641 + }, + { + "start": 3440.23, + "end": 3441.93, + "probability": 0.8905 + }, + { + "start": 3443.25, + "end": 3444.93, + "probability": 0.8865 + }, + { + "start": 3445.39, + "end": 3446.19, + "probability": 0.9523 + }, + { + "start": 3446.83, + "end": 3447.95, + "probability": 0.0406 + }, + { + "start": 3447.95, + "end": 3448.89, + "probability": 0.4084 + }, + { + "start": 3449.41, + "end": 3451.39, + "probability": 0.823 + }, + { + "start": 3451.47, + "end": 3455.17, + "probability": 0.925 + }, + { + "start": 3455.69, + "end": 3458.73, + "probability": 0.8701 + }, + { + "start": 3459.11, + "end": 3461.59, + "probability": 0.7177 + }, + { + "start": 3461.91, + "end": 3464.25, + "probability": 0.9675 + }, + { + "start": 3464.67, + "end": 3466.83, + "probability": 0.97 + }, + { + "start": 3466.93, + "end": 3468.57, + "probability": 0.4631 + }, + { + "start": 3468.65, + "end": 3470.01, + "probability": 0.8413 + }, + { + "start": 3470.73, + "end": 3472.17, + "probability": 0.9806 + }, + { + "start": 3472.79, + "end": 3472.86, + "probability": 0.0018 + }, + { + "start": 3473.21, + "end": 3475.38, + "probability": 0.4235 + }, + { + "start": 3475.77, + "end": 3477.99, + "probability": 0.9316 + }, + { + "start": 3478.07, + "end": 3479.21, + "probability": 0.687 + }, + { + "start": 3479.29, + "end": 3479.85, + "probability": 0.9146 + }, + { + "start": 3480.07, + "end": 3483.57, + "probability": 0.627 + }, + { + "start": 3483.93, + "end": 3486.59, + "probability": 0.786 + }, + { + "start": 3486.85, + "end": 3491.39, + "probability": 0.0518 + }, + { + "start": 3491.39, + "end": 3491.39, + "probability": 0.0336 + }, + { + "start": 3491.39, + "end": 3491.65, + "probability": 0.0746 + }, + { + "start": 3491.65, + "end": 3491.91, + "probability": 0.6018 + }, + { + "start": 3492.27, + "end": 3492.81, + "probability": 0.6902 + }, + { + "start": 3492.81, + "end": 3492.95, + "probability": 0.2229 + }, + { + "start": 3493.31, + "end": 3496.55, + "probability": 0.8357 + }, + { + "start": 3496.63, + "end": 3497.34, + "probability": 0.9328 + }, + { + "start": 3498.37, + "end": 3501.43, + "probability": 0.9083 + }, + { + "start": 3502.51, + "end": 3503.43, + "probability": 0.1195 + }, + { + "start": 3503.43, + "end": 3503.43, + "probability": 0.0814 + }, + { + "start": 3503.43, + "end": 3504.63, + "probability": 0.5001 + }, + { + "start": 3504.75, + "end": 3507.03, + "probability": 0.6019 + }, + { + "start": 3507.03, + "end": 3508.25, + "probability": 0.4184 + }, + { + "start": 3508.29, + "end": 3509.78, + "probability": 0.137 + }, + { + "start": 3510.55, + "end": 3513.43, + "probability": 0.4476 + }, + { + "start": 3513.65, + "end": 3514.91, + "probability": 0.5463 + }, + { + "start": 3515.03, + "end": 3515.89, + "probability": 0.8912 + }, + { + "start": 3516.01, + "end": 3516.97, + "probability": 0.8652 + }, + { + "start": 3517.11, + "end": 3517.77, + "probability": 0.483 + }, + { + "start": 3518.93, + "end": 3519.77, + "probability": 0.8684 + }, + { + "start": 3520.01, + "end": 3520.57, + "probability": 0.7503 + }, + { + "start": 3521.07, + "end": 3525.61, + "probability": 0.2592 + }, + { + "start": 3526.77, + "end": 3527.39, + "probability": 0.2894 + }, + { + "start": 3528.07, + "end": 3529.35, + "probability": 0.0841 + }, + { + "start": 3530.94, + "end": 3531.39, + "probability": 0.0297 + }, + { + "start": 3532.21, + "end": 3533.39, + "probability": 0.0788 + }, + { + "start": 3533.39, + "end": 3533.39, + "probability": 0.1573 + }, + { + "start": 3533.39, + "end": 3533.39, + "probability": 0.0293 + }, + { + "start": 3533.39, + "end": 3533.39, + "probability": 0.0822 + }, + { + "start": 3533.39, + "end": 3534.07, + "probability": 0.3223 + }, + { + "start": 3534.07, + "end": 3536.53, + "probability": 0.5057 + }, + { + "start": 3536.83, + "end": 3537.67, + "probability": 0.6852 + }, + { + "start": 3537.75, + "end": 3538.17, + "probability": 0.2845 + }, + { + "start": 3538.71, + "end": 3538.91, + "probability": 0.046 + }, + { + "start": 3539.49, + "end": 3543.29, + "probability": 0.9512 + }, + { + "start": 3543.61, + "end": 3545.37, + "probability": 0.5083 + }, + { + "start": 3545.41, + "end": 3546.67, + "probability": 0.915 + }, + { + "start": 3547.53, + "end": 3548.89, + "probability": 0.6458 + }, + { + "start": 3549.03, + "end": 3550.25, + "probability": 0.5631 + }, + { + "start": 3550.31, + "end": 3550.95, + "probability": 0.6136 + }, + { + "start": 3551.07, + "end": 3552.79, + "probability": 0.6177 + }, + { + "start": 3552.87, + "end": 3553.61, + "probability": 0.7666 + }, + { + "start": 3553.65, + "end": 3554.72, + "probability": 0.8809 + }, + { + "start": 3554.85, + "end": 3556.77, + "probability": 0.6368 + }, + { + "start": 3557.59, + "end": 3557.97, + "probability": 0.8356 + }, + { + "start": 3558.07, + "end": 3558.93, + "probability": 0.767 + }, + { + "start": 3558.95, + "end": 3560.43, + "probability": 0.7527 + }, + { + "start": 3560.49, + "end": 3561.01, + "probability": 0.8524 + }, + { + "start": 3561.15, + "end": 3562.39, + "probability": 0.4366 + }, + { + "start": 3562.39, + "end": 3563.55, + "probability": 0.7244 + }, + { + "start": 3563.69, + "end": 3564.21, + "probability": 0.2472 + }, + { + "start": 3564.23, + "end": 3564.95, + "probability": 0.3399 + }, + { + "start": 3565.03, + "end": 3566.0, + "probability": 0.8761 + }, + { + "start": 3566.19, + "end": 3569.93, + "probability": 0.0899 + }, + { + "start": 3570.09, + "end": 3572.21, + "probability": 0.383 + }, + { + "start": 3572.37, + "end": 3573.17, + "probability": 0.0068 + }, + { + "start": 3573.17, + "end": 3573.29, + "probability": 0.1699 + }, + { + "start": 3573.29, + "end": 3573.29, + "probability": 0.023 + }, + { + "start": 3573.29, + "end": 3574.09, + "probability": 0.274 + }, + { + "start": 3574.73, + "end": 3576.18, + "probability": 0.823 + }, + { + "start": 3582.49, + "end": 3582.93, + "probability": 0.0015 + }, + { + "start": 3582.95, + "end": 3583.79, + "probability": 0.1978 + }, + { + "start": 3584.07, + "end": 3584.07, + "probability": 0.2397 + }, + { + "start": 3584.13, + "end": 3584.13, + "probability": 0.1233 + }, + { + "start": 3584.13, + "end": 3584.13, + "probability": 0.1368 + }, + { + "start": 3584.13, + "end": 3584.99, + "probability": 0.216 + }, + { + "start": 3584.99, + "end": 3586.28, + "probability": 0.6621 + }, + { + "start": 3587.61, + "end": 3588.73, + "probability": 0.7572 + }, + { + "start": 3590.43, + "end": 3593.35, + "probability": 0.9858 + }, + { + "start": 3593.87, + "end": 3596.09, + "probability": 0.6768 + }, + { + "start": 3596.21, + "end": 3598.27, + "probability": 0.9779 + }, + { + "start": 3598.27, + "end": 3601.09, + "probability": 0.8276 + }, + { + "start": 3601.25, + "end": 3602.07, + "probability": 0.9147 + }, + { + "start": 3602.07, + "end": 3602.61, + "probability": 0.7456 + }, + { + "start": 3602.65, + "end": 3603.97, + "probability": 0.8357 + }, + { + "start": 3604.5, + "end": 3605.49, + "probability": 0.5586 + }, + { + "start": 3605.55, + "end": 3606.63, + "probability": 0.7393 + }, + { + "start": 3606.79, + "end": 3607.53, + "probability": 0.5335 + }, + { + "start": 3607.55, + "end": 3608.09, + "probability": 0.9184 + }, + { + "start": 3608.23, + "end": 3612.29, + "probability": 0.793 + }, + { + "start": 3612.95, + "end": 3612.95, + "probability": 0.0391 + }, + { + "start": 3612.95, + "end": 3616.99, + "probability": 0.7674 + }, + { + "start": 3617.57, + "end": 3619.03, + "probability": 0.923 + }, + { + "start": 3619.43, + "end": 3620.43, + "probability": 0.6135 + }, + { + "start": 3620.53, + "end": 3623.37, + "probability": 0.9521 + }, + { + "start": 3623.59, + "end": 3625.05, + "probability": 0.7332 + }, + { + "start": 3625.15, + "end": 3626.11, + "probability": 0.9556 + }, + { + "start": 3627.85, + "end": 3629.35, + "probability": 0.4084 + }, + { + "start": 3629.73, + "end": 3631.41, + "probability": 0.9047 + }, + { + "start": 3632.19, + "end": 3634.35, + "probability": 0.3799 + }, + { + "start": 3634.35, + "end": 3634.87, + "probability": 0.4346 + }, + { + "start": 3635.05, + "end": 3637.43, + "probability": 0.3419 + }, + { + "start": 3641.03, + "end": 3643.15, + "probability": 0.2386 + }, + { + "start": 3646.41, + "end": 3648.09, + "probability": 0.7119 + }, + { + "start": 3656.13, + "end": 3657.43, + "probability": 0.7581 + }, + { + "start": 3658.19, + "end": 3660.31, + "probability": 0.7399 + }, + { + "start": 3661.15, + "end": 3664.06, + "probability": 0.9118 + }, + { + "start": 3665.97, + "end": 3669.45, + "probability": 0.6171 + }, + { + "start": 3669.67, + "end": 3674.16, + "probability": 0.768 + }, + { + "start": 3674.91, + "end": 3679.57, + "probability": 0.4961 + }, + { + "start": 3679.71, + "end": 3683.99, + "probability": 0.9502 + }, + { + "start": 3684.65, + "end": 3690.75, + "probability": 0.8724 + }, + { + "start": 3690.75, + "end": 3695.65, + "probability": 0.9077 + }, + { + "start": 3695.79, + "end": 3698.01, + "probability": 0.7086 + }, + { + "start": 3698.13, + "end": 3702.37, + "probability": 0.9806 + }, + { + "start": 3703.03, + "end": 3706.91, + "probability": 0.9683 + }, + { + "start": 3707.91, + "end": 3708.85, + "probability": 0.7959 + }, + { + "start": 3709.33, + "end": 3709.91, + "probability": 0.7273 + }, + { + "start": 3709.93, + "end": 3713.69, + "probability": 0.9946 + }, + { + "start": 3713.85, + "end": 3717.39, + "probability": 0.9429 + }, + { + "start": 3717.85, + "end": 3720.81, + "probability": 0.9395 + }, + { + "start": 3720.85, + "end": 3721.47, + "probability": 0.2343 + }, + { + "start": 3721.51, + "end": 3723.09, + "probability": 0.736 + }, + { + "start": 3723.65, + "end": 3728.71, + "probability": 0.9724 + }, + { + "start": 3728.97, + "end": 3731.83, + "probability": 0.8636 + }, + { + "start": 3731.89, + "end": 3733.73, + "probability": 0.942 + }, + { + "start": 3733.93, + "end": 3737.67, + "probability": 0.9144 + }, + { + "start": 3737.89, + "end": 3740.73, + "probability": 0.8751 + }, + { + "start": 3741.03, + "end": 3746.45, + "probability": 0.9846 + }, + { + "start": 3747.93, + "end": 3750.43, + "probability": 0.5831 + }, + { + "start": 3751.05, + "end": 3751.87, + "probability": 0.4357 + }, + { + "start": 3753.61, + "end": 3757.69, + "probability": 0.7762 + }, + { + "start": 3758.41, + "end": 3762.85, + "probability": 0.9307 + }, + { + "start": 3764.47, + "end": 3768.31, + "probability": 0.9913 + }, + { + "start": 3768.87, + "end": 3772.47, + "probability": 0.9897 + }, + { + "start": 3772.78, + "end": 3778.75, + "probability": 0.9917 + }, + { + "start": 3778.75, + "end": 3782.47, + "probability": 0.978 + }, + { + "start": 3782.53, + "end": 3783.61, + "probability": 0.6238 + }, + { + "start": 3784.77, + "end": 3788.19, + "probability": 0.9252 + }, + { + "start": 3790.25, + "end": 3791.49, + "probability": 0.2034 + }, + { + "start": 3791.49, + "end": 3792.91, + "probability": 0.5636 + }, + { + "start": 3793.65, + "end": 3795.89, + "probability": 0.9722 + }, + { + "start": 3795.99, + "end": 3801.15, + "probability": 0.9653 + }, + { + "start": 3801.21, + "end": 3803.73, + "probability": 0.998 + }, + { + "start": 3804.57, + "end": 3806.93, + "probability": 0.8321 + }, + { + "start": 3807.33, + "end": 3811.85, + "probability": 0.9697 + }, + { + "start": 3812.17, + "end": 3815.47, + "probability": 0.9709 + }, + { + "start": 3815.95, + "end": 3820.37, + "probability": 0.9253 + }, + { + "start": 3820.61, + "end": 3825.53, + "probability": 0.9481 + }, + { + "start": 3826.25, + "end": 3827.11, + "probability": 0.6937 + }, + { + "start": 3827.33, + "end": 3831.57, + "probability": 0.8274 + }, + { + "start": 3831.65, + "end": 3832.39, + "probability": 0.7588 + }, + { + "start": 3832.75, + "end": 3834.45, + "probability": 0.8532 + }, + { + "start": 3834.59, + "end": 3835.61, + "probability": 0.7089 + }, + { + "start": 3836.05, + "end": 3837.75, + "probability": 0.9502 + }, + { + "start": 3838.15, + "end": 3839.91, + "probability": 0.6834 + }, + { + "start": 3840.23, + "end": 3842.35, + "probability": 0.9578 + }, + { + "start": 3842.83, + "end": 3844.07, + "probability": 0.8794 + }, + { + "start": 3851.47, + "end": 3853.39, + "probability": 0.7314 + }, + { + "start": 3854.54, + "end": 3861.75, + "probability": 0.9846 + }, + { + "start": 3862.23, + "end": 3865.31, + "probability": 0.9873 + }, + { + "start": 3865.79, + "end": 3867.71, + "probability": 0.6619 + }, + { + "start": 3867.93, + "end": 3871.4, + "probability": 0.6874 + }, + { + "start": 3872.31, + "end": 3874.51, + "probability": 0.8086 + }, + { + "start": 3874.93, + "end": 3878.91, + "probability": 0.8717 + }, + { + "start": 3879.01, + "end": 3880.53, + "probability": 0.7142 + }, + { + "start": 3880.81, + "end": 3884.19, + "probability": 0.6185 + }, + { + "start": 3884.35, + "end": 3884.53, + "probability": 0.6356 + }, + { + "start": 3884.77, + "end": 3885.57, + "probability": 0.9414 + }, + { + "start": 3885.99, + "end": 3887.13, + "probability": 0.9571 + }, + { + "start": 3887.21, + "end": 3892.81, + "probability": 0.8364 + }, + { + "start": 3892.95, + "end": 3895.71, + "probability": 0.9618 + }, + { + "start": 3895.95, + "end": 3897.29, + "probability": 0.9993 + }, + { + "start": 3897.91, + "end": 3902.13, + "probability": 0.9966 + }, + { + "start": 3902.61, + "end": 3908.05, + "probability": 0.9949 + }, + { + "start": 3908.53, + "end": 3910.97, + "probability": 0.7568 + }, + { + "start": 3911.77, + "end": 3920.27, + "probability": 0.832 + }, + { + "start": 3920.91, + "end": 3924.85, + "probability": 0.9804 + }, + { + "start": 3924.99, + "end": 3925.91, + "probability": 0.8842 + }, + { + "start": 3925.97, + "end": 3927.31, + "probability": 0.732 + }, + { + "start": 3927.89, + "end": 3928.6, + "probability": 0.8101 + }, + { + "start": 3929.91, + "end": 3931.53, + "probability": 0.7919 + }, + { + "start": 3931.61, + "end": 3933.03, + "probability": 0.988 + }, + { + "start": 3933.35, + "end": 3934.55, + "probability": 0.6904 + }, + { + "start": 3934.61, + "end": 3935.39, + "probability": 0.749 + }, + { + "start": 3935.95, + "end": 3937.83, + "probability": 0.8792 + }, + { + "start": 3938.21, + "end": 3938.65, + "probability": 0.9829 + }, + { + "start": 3939.41, + "end": 3940.59, + "probability": 0.9292 + }, + { + "start": 3941.57, + "end": 3944.09, + "probability": 0.96 + }, + { + "start": 3944.53, + "end": 3945.65, + "probability": 0.9695 + }, + { + "start": 3946.25, + "end": 3947.27, + "probability": 0.9904 + }, + { + "start": 3947.57, + "end": 3950.15, + "probability": 0.9295 + }, + { + "start": 3950.55, + "end": 3953.23, + "probability": 0.8913 + }, + { + "start": 3953.57, + "end": 3955.66, + "probability": 0.96 + }, + { + "start": 3956.75, + "end": 3957.23, + "probability": 0.5051 + }, + { + "start": 3957.63, + "end": 3962.17, + "probability": 0.9811 + }, + { + "start": 3962.53, + "end": 3963.63, + "probability": 0.4941 + }, + { + "start": 3964.07, + "end": 3964.23, + "probability": 0.41 + }, + { + "start": 3965.21, + "end": 3966.73, + "probability": 0.869 + }, + { + "start": 3967.53, + "end": 3972.89, + "probability": 0.6042 + }, + { + "start": 3973.57, + "end": 3974.91, + "probability": 0.707 + }, + { + "start": 3975.91, + "end": 3976.07, + "probability": 0.7856 + }, + { + "start": 3976.92, + "end": 3980.23, + "probability": 0.7375 + }, + { + "start": 3980.37, + "end": 3981.77, + "probability": 0.5813 + }, + { + "start": 3982.45, + "end": 3985.17, + "probability": 0.9771 + }, + { + "start": 3985.33, + "end": 3986.69, + "probability": 0.7614 + }, + { + "start": 3987.33, + "end": 3990.11, + "probability": 0.8971 + }, + { + "start": 3990.91, + "end": 3994.35, + "probability": 0.9714 + }, + { + "start": 3995.11, + "end": 3995.95, + "probability": 0.9104 + }, + { + "start": 3996.57, + "end": 3998.13, + "probability": 0.6635 + }, + { + "start": 3998.61, + "end": 3999.87, + "probability": 0.6868 + }, + { + "start": 4000.13, + "end": 4001.65, + "probability": 0.9561 + }, + { + "start": 4002.83, + "end": 4004.07, + "probability": 0.8655 + }, + { + "start": 4004.33, + "end": 4007.43, + "probability": 0.986 + }, + { + "start": 4008.49, + "end": 4009.59, + "probability": 0.0834 + }, + { + "start": 4009.61, + "end": 4010.17, + "probability": 0.812 + }, + { + "start": 4010.61, + "end": 4011.25, + "probability": 0.402 + }, + { + "start": 4011.95, + "end": 4014.67, + "probability": 0.9395 + }, + { + "start": 4015.19, + "end": 4018.31, + "probability": 0.9588 + }, + { + "start": 4019.01, + "end": 4021.45, + "probability": 0.9902 + }, + { + "start": 4021.53, + "end": 4022.91, + "probability": 0.9954 + }, + { + "start": 4024.03, + "end": 4025.27, + "probability": 0.8969 + }, + { + "start": 4025.49, + "end": 4027.25, + "probability": 0.938 + }, + { + "start": 4027.37, + "end": 4028.51, + "probability": 0.946 + }, + { + "start": 4028.85, + "end": 4030.29, + "probability": 0.759 + }, + { + "start": 4030.75, + "end": 4031.87, + "probability": 0.7819 + }, + { + "start": 4032.83, + "end": 4033.47, + "probability": 0.4116 + }, + { + "start": 4034.37, + "end": 4035.53, + "probability": 0.8918 + }, + { + "start": 4036.03, + "end": 4037.47, + "probability": 0.5061 + }, + { + "start": 4038.09, + "end": 4039.19, + "probability": 0.8639 + }, + { + "start": 4040.85, + "end": 4042.76, + "probability": 0.8835 + }, + { + "start": 4043.69, + "end": 4046.09, + "probability": 0.9756 + }, + { + "start": 4046.57, + "end": 4047.49, + "probability": 0.7701 + }, + { + "start": 4047.99, + "end": 4049.35, + "probability": 0.9584 + }, + { + "start": 4049.65, + "end": 4052.19, + "probability": 0.9613 + }, + { + "start": 4053.17, + "end": 4056.07, + "probability": 0.9934 + }, + { + "start": 4056.69, + "end": 4059.77, + "probability": 0.9976 + }, + { + "start": 4060.85, + "end": 4062.79, + "probability": 0.8178 + }, + { + "start": 4063.71, + "end": 4064.65, + "probability": 0.9673 + }, + { + "start": 4064.89, + "end": 4066.15, + "probability": 0.9301 + }, + { + "start": 4066.57, + "end": 4068.14, + "probability": 0.9652 + }, + { + "start": 4069.13, + "end": 4070.55, + "probability": 0.8261 + }, + { + "start": 4071.63, + "end": 4073.89, + "probability": 0.7319 + }, + { + "start": 4074.77, + "end": 4075.95, + "probability": 0.959 + }, + { + "start": 4076.05, + "end": 4076.23, + "probability": 0.3169 + }, + { + "start": 4076.37, + "end": 4076.75, + "probability": 0.6385 + }, + { + "start": 4077.15, + "end": 4077.29, + "probability": 0.8408 + }, + { + "start": 4077.29, + "end": 4077.41, + "probability": 0.3407 + }, + { + "start": 4077.81, + "end": 4078.33, + "probability": 0.7301 + }, + { + "start": 4078.61, + "end": 4079.25, + "probability": 0.5241 + }, + { + "start": 4080.49, + "end": 4081.37, + "probability": 0.3448 + }, + { + "start": 4081.57, + "end": 4083.13, + "probability": 0.7947 + }, + { + "start": 4085.89, + "end": 4086.97, + "probability": 0.1501 + }, + { + "start": 4086.97, + "end": 4086.97, + "probability": 0.0748 + }, + { + "start": 4086.97, + "end": 4087.46, + "probability": 0.5963 + }, + { + "start": 4087.93, + "end": 4092.27, + "probability": 0.8273 + }, + { + "start": 4092.53, + "end": 4093.71, + "probability": 0.6379 + }, + { + "start": 4094.13, + "end": 4095.39, + "probability": 0.6806 + }, + { + "start": 4095.85, + "end": 4101.51, + "probability": 0.9842 + }, + { + "start": 4101.77, + "end": 4102.19, + "probability": 0.8271 + }, + { + "start": 4102.31, + "end": 4105.09, + "probability": 0.3145 + }, + { + "start": 4105.15, + "end": 4105.45, + "probability": 0.0906 + }, + { + "start": 4105.45, + "end": 4106.59, + "probability": 0.561 + }, + { + "start": 4107.33, + "end": 4107.61, + "probability": 0.1453 + }, + { + "start": 4107.61, + "end": 4108.57, + "probability": 0.4355 + }, + { + "start": 4108.61, + "end": 4110.37, + "probability": 0.8341 + }, + { + "start": 4111.65, + "end": 4113.13, + "probability": 0.5597 + }, + { + "start": 4113.39, + "end": 4114.01, + "probability": 0.6608 + }, + { + "start": 4114.73, + "end": 4115.23, + "probability": 0.8717 + }, + { + "start": 4115.99, + "end": 4116.09, + "probability": 0.1306 + }, + { + "start": 4117.39, + "end": 4117.59, + "probability": 0.1771 + }, + { + "start": 4118.17, + "end": 4119.39, + "probability": 0.3423 + }, + { + "start": 4120.15, + "end": 4122.11, + "probability": 0.6932 + }, + { + "start": 4122.29, + "end": 4123.33, + "probability": 0.6323 + }, + { + "start": 4126.21, + "end": 4127.65, + "probability": 0.2245 + }, + { + "start": 4128.57, + "end": 4129.49, + "probability": 0.3652 + }, + { + "start": 4131.15, + "end": 4132.91, + "probability": 0.6242 + }, + { + "start": 4132.91, + "end": 4133.97, + "probability": 0.6503 + }, + { + "start": 4135.05, + "end": 4138.03, + "probability": 0.9958 + }, + { + "start": 4138.93, + "end": 4140.93, + "probability": 0.96 + }, + { + "start": 4142.37, + "end": 4146.43, + "probability": 0.9728 + }, + { + "start": 4146.81, + "end": 4147.83, + "probability": 0.957 + }, + { + "start": 4148.43, + "end": 4151.47, + "probability": 0.7957 + }, + { + "start": 4151.61, + "end": 4154.87, + "probability": 0.9848 + }, + { + "start": 4155.47, + "end": 4158.15, + "probability": 0.9351 + }, + { + "start": 4159.29, + "end": 4162.17, + "probability": 0.9609 + }, + { + "start": 4162.73, + "end": 4166.45, + "probability": 0.9917 + }, + { + "start": 4167.07, + "end": 4170.01, + "probability": 0.9883 + }, + { + "start": 4170.31, + "end": 4171.79, + "probability": 0.6512 + }, + { + "start": 4172.75, + "end": 4175.15, + "probability": 0.9941 + }, + { + "start": 4177.35, + "end": 4178.05, + "probability": 0.4365 + }, + { + "start": 4179.57, + "end": 4180.91, + "probability": 0.7942 + }, + { + "start": 4181.99, + "end": 4182.71, + "probability": 0.8696 + }, + { + "start": 4182.77, + "end": 4183.55, + "probability": 0.8608 + }, + { + "start": 4183.63, + "end": 4184.61, + "probability": 0.9984 + }, + { + "start": 4184.71, + "end": 4189.37, + "probability": 0.979 + }, + { + "start": 4190.43, + "end": 4192.75, + "probability": 0.8962 + }, + { + "start": 4192.83, + "end": 4194.55, + "probability": 0.9875 + }, + { + "start": 4194.93, + "end": 4195.67, + "probability": 0.9847 + }, + { + "start": 4196.25, + "end": 4196.99, + "probability": 0.7837 + }, + { + "start": 4197.93, + "end": 4198.97, + "probability": 0.8728 + }, + { + "start": 4200.19, + "end": 4201.47, + "probability": 0.7686 + }, + { + "start": 4201.59, + "end": 4201.59, + "probability": 0.8247 + }, + { + "start": 4201.89, + "end": 4205.95, + "probability": 0.9642 + }, + { + "start": 4207.33, + "end": 4208.29, + "probability": 0.7664 + }, + { + "start": 4209.43, + "end": 4215.83, + "probability": 0.9483 + }, + { + "start": 4216.53, + "end": 4217.29, + "probability": 0.9738 + }, + { + "start": 4218.25, + "end": 4223.13, + "probability": 0.9951 + }, + { + "start": 4223.53, + "end": 4224.29, + "probability": 0.8386 + }, + { + "start": 4224.65, + "end": 4225.67, + "probability": 0.9761 + }, + { + "start": 4227.05, + "end": 4229.65, + "probability": 0.9958 + }, + { + "start": 4229.75, + "end": 4230.39, + "probability": 0.8035 + }, + { + "start": 4230.47, + "end": 4231.43, + "probability": 0.9111 + }, + { + "start": 4231.49, + "end": 4232.21, + "probability": 0.9556 + }, + { + "start": 4233.17, + "end": 4233.41, + "probability": 0.8655 + }, + { + "start": 4234.15, + "end": 4236.77, + "probability": 0.9894 + }, + { + "start": 4237.23, + "end": 4241.43, + "probability": 0.9438 + }, + { + "start": 4242.35, + "end": 4243.15, + "probability": 0.8651 + }, + { + "start": 4243.57, + "end": 4243.61, + "probability": 0.0312 + }, + { + "start": 4243.61, + "end": 4244.32, + "probability": 0.93 + }, + { + "start": 4244.55, + "end": 4246.65, + "probability": 0.9537 + }, + { + "start": 4247.51, + "end": 4248.97, + "probability": 0.7963 + }, + { + "start": 4249.57, + "end": 4253.65, + "probability": 0.9791 + }, + { + "start": 4253.77, + "end": 4257.65, + "probability": 0.9902 + }, + { + "start": 4258.31, + "end": 4259.01, + "probability": 0.9941 + }, + { + "start": 4260.55, + "end": 4263.63, + "probability": 0.9733 + }, + { + "start": 4263.85, + "end": 4265.79, + "probability": 0.943 + }, + { + "start": 4266.29, + "end": 4267.56, + "probability": 0.9551 + }, + { + "start": 4267.83, + "end": 4270.97, + "probability": 0.7763 + }, + { + "start": 4271.05, + "end": 4273.81, + "probability": 0.994 + }, + { + "start": 4274.47, + "end": 4277.87, + "probability": 0.9971 + }, + { + "start": 4278.93, + "end": 4280.11, + "probability": 0.8511 + }, + { + "start": 4280.59, + "end": 4282.11, + "probability": 0.9963 + }, + { + "start": 4282.75, + "end": 4284.89, + "probability": 0.9749 + }, + { + "start": 4285.63, + "end": 4289.87, + "probability": 0.9844 + }, + { + "start": 4290.91, + "end": 4294.45, + "probability": 0.9816 + }, + { + "start": 4294.45, + "end": 4299.51, + "probability": 0.9952 + }, + { + "start": 4299.55, + "end": 4299.73, + "probability": 0.4099 + }, + { + "start": 4299.79, + "end": 4300.37, + "probability": 0.7264 + }, + { + "start": 4300.69, + "end": 4303.27, + "probability": 0.9492 + }, + { + "start": 4303.39, + "end": 4307.87, + "probability": 0.9974 + }, + { + "start": 4308.21, + "end": 4314.03, + "probability": 0.9889 + }, + { + "start": 4314.63, + "end": 4314.63, + "probability": 0.3322 + }, + { + "start": 4314.63, + "end": 4317.25, + "probability": 0.9861 + }, + { + "start": 4317.65, + "end": 4318.41, + "probability": 0.8654 + }, + { + "start": 4318.81, + "end": 4323.59, + "probability": 0.9399 + }, + { + "start": 4324.65, + "end": 4326.91, + "probability": 0.7277 + }, + { + "start": 4341.57, + "end": 4343.71, + "probability": 0.4745 + }, + { + "start": 4345.09, + "end": 4347.83, + "probability": 0.9581 + }, + { + "start": 4348.69, + "end": 4349.63, + "probability": 0.8373 + }, + { + "start": 4350.35, + "end": 4352.01, + "probability": 0.2377 + }, + { + "start": 4352.91, + "end": 4354.51, + "probability": 0.8033 + }, + { + "start": 4356.05, + "end": 4357.45, + "probability": 0.8374 + }, + { + "start": 4358.29, + "end": 4360.76, + "probability": 0.9077 + }, + { + "start": 4362.63, + "end": 4364.03, + "probability": 0.685 + }, + { + "start": 4365.73, + "end": 4369.41, + "probability": 0.9684 + }, + { + "start": 4370.67, + "end": 4371.57, + "probability": 0.8301 + }, + { + "start": 4373.21, + "end": 4376.87, + "probability": 0.9154 + }, + { + "start": 4379.21, + "end": 4379.71, + "probability": 0.8621 + }, + { + "start": 4380.85, + "end": 4382.93, + "probability": 0.7019 + }, + { + "start": 4383.73, + "end": 4388.09, + "probability": 0.9681 + }, + { + "start": 4390.33, + "end": 4396.63, + "probability": 0.9907 + }, + { + "start": 4396.77, + "end": 4397.83, + "probability": 0.6945 + }, + { + "start": 4398.49, + "end": 4402.61, + "probability": 0.9551 + }, + { + "start": 4405.13, + "end": 4407.83, + "probability": 0.9959 + }, + { + "start": 4408.89, + "end": 4414.95, + "probability": 0.9471 + }, + { + "start": 4416.46, + "end": 4421.41, + "probability": 0.8774 + }, + { + "start": 4423.47, + "end": 4427.95, + "probability": 0.9876 + }, + { + "start": 4429.59, + "end": 4433.27, + "probability": 0.5596 + }, + { + "start": 4434.21, + "end": 4435.81, + "probability": 0.9577 + }, + { + "start": 4437.43, + "end": 4440.71, + "probability": 0.986 + }, + { + "start": 4442.71, + "end": 4444.47, + "probability": 0.9871 + }, + { + "start": 4446.01, + "end": 4447.85, + "probability": 0.8192 + }, + { + "start": 4449.61, + "end": 4452.85, + "probability": 0.0386 + }, + { + "start": 4452.91, + "end": 4453.45, + "probability": 0.4081 + }, + { + "start": 4454.49, + "end": 4455.73, + "probability": 0.3251 + }, + { + "start": 4458.71, + "end": 4459.95, + "probability": 0.493 + }, + { + "start": 4461.03, + "end": 4466.27, + "probability": 0.9803 + }, + { + "start": 4466.47, + "end": 4467.03, + "probability": 0.8537 + }, + { + "start": 4468.71, + "end": 4471.21, + "probability": 0.0039 + }, + { + "start": 4473.05, + "end": 4473.81, + "probability": 0.1291 + }, + { + "start": 4474.01, + "end": 4476.13, + "probability": 0.6643 + }, + { + "start": 4477.99, + "end": 4480.77, + "probability": 0.3055 + }, + { + "start": 4480.89, + "end": 4481.71, + "probability": 0.7095 + }, + { + "start": 4485.61, + "end": 4487.15, + "probability": 0.9409 + }, + { + "start": 4488.33, + "end": 4494.13, + "probability": 0.9893 + }, + { + "start": 4494.75, + "end": 4498.01, + "probability": 0.7274 + }, + { + "start": 4499.05, + "end": 4500.49, + "probability": 0.8995 + }, + { + "start": 4502.03, + "end": 4506.71, + "probability": 0.978 + }, + { + "start": 4506.71, + "end": 4511.49, + "probability": 0.9478 + }, + { + "start": 4514.13, + "end": 4518.01, + "probability": 0.9269 + }, + { + "start": 4521.07, + "end": 4525.55, + "probability": 0.9663 + }, + { + "start": 4526.57, + "end": 4530.53, + "probability": 0.9839 + }, + { + "start": 4530.61, + "end": 4530.73, + "probability": 0.2961 + }, + { + "start": 4530.73, + "end": 4531.95, + "probability": 0.8093 + }, + { + "start": 4533.27, + "end": 4536.88, + "probability": 0.9628 + }, + { + "start": 4540.55, + "end": 4547.13, + "probability": 0.9245 + }, + { + "start": 4547.45, + "end": 4550.19, + "probability": 0.9585 + }, + { + "start": 4552.25, + "end": 4555.71, + "probability": 0.8659 + }, + { + "start": 4557.87, + "end": 4561.97, + "probability": 0.9907 + }, + { + "start": 4562.03, + "end": 4562.41, + "probability": 0.7513 + }, + { + "start": 4562.45, + "end": 4563.15, + "probability": 0.7515 + }, + { + "start": 4563.73, + "end": 4565.75, + "probability": 0.9451 + }, + { + "start": 4587.77, + "end": 4588.99, + "probability": 0.6496 + }, + { + "start": 4590.43, + "end": 4592.47, + "probability": 0.8339 + }, + { + "start": 4594.37, + "end": 4596.57, + "probability": 0.9106 + }, + { + "start": 4596.77, + "end": 4597.45, + "probability": 0.6802 + }, + { + "start": 4597.45, + "end": 4598.37, + "probability": 0.5453 + }, + { + "start": 4598.71, + "end": 4599.69, + "probability": 0.9895 + }, + { + "start": 4600.19, + "end": 4601.73, + "probability": 0.9677 + }, + { + "start": 4601.83, + "end": 4604.97, + "probability": 0.9285 + }, + { + "start": 4606.21, + "end": 4606.99, + "probability": 0.6231 + }, + { + "start": 4607.57, + "end": 4609.35, + "probability": 0.8679 + }, + { + "start": 4609.89, + "end": 4611.15, + "probability": 0.549 + }, + { + "start": 4612.53, + "end": 4612.73, + "probability": 0.0251 + }, + { + "start": 4613.75, + "end": 4614.17, + "probability": 0.0677 + }, + { + "start": 4614.47, + "end": 4614.95, + "probability": 0.4357 + }, + { + "start": 4616.23, + "end": 4617.57, + "probability": 0.978 + }, + { + "start": 4618.21, + "end": 4619.47, + "probability": 0.9637 + }, + { + "start": 4621.03, + "end": 4628.42, + "probability": 0.851 + }, + { + "start": 4630.23, + "end": 4640.15, + "probability": 0.9783 + }, + { + "start": 4642.01, + "end": 4643.03, + "probability": 0.7941 + }, + { + "start": 4644.37, + "end": 4646.15, + "probability": 0.9869 + }, + { + "start": 4647.39, + "end": 4651.95, + "probability": 0.9017 + }, + { + "start": 4653.25, + "end": 4656.29, + "probability": 0.593 + }, + { + "start": 4656.43, + "end": 4660.51, + "probability": 0.9925 + }, + { + "start": 4662.21, + "end": 4664.11, + "probability": 0.9441 + }, + { + "start": 4665.15, + "end": 4669.41, + "probability": 0.9736 + }, + { + "start": 4670.37, + "end": 4671.77, + "probability": 0.3136 + }, + { + "start": 4673.23, + "end": 4675.53, + "probability": 0.9965 + }, + { + "start": 4677.05, + "end": 4679.5, + "probability": 0.9871 + }, + { + "start": 4680.57, + "end": 4687.15, + "probability": 0.7395 + }, + { + "start": 4688.25, + "end": 4690.77, + "probability": 0.765 + }, + { + "start": 4691.57, + "end": 4693.09, + "probability": 0.9615 + }, + { + "start": 4694.11, + "end": 4695.89, + "probability": 0.9373 + }, + { + "start": 4696.53, + "end": 4698.53, + "probability": 0.6318 + }, + { + "start": 4700.21, + "end": 4701.41, + "probability": 0.9307 + }, + { + "start": 4701.95, + "end": 4703.15, + "probability": 0.8677 + }, + { + "start": 4704.51, + "end": 4706.47, + "probability": 0.9732 + }, + { + "start": 4707.95, + "end": 4709.31, + "probability": 0.4656 + }, + { + "start": 4710.19, + "end": 4712.15, + "probability": 0.9003 + }, + { + "start": 4713.17, + "end": 4716.09, + "probability": 0.9177 + }, + { + "start": 4716.83, + "end": 4718.19, + "probability": 0.6845 + }, + { + "start": 4720.49, + "end": 4724.15, + "probability": 0.9952 + }, + { + "start": 4725.11, + "end": 4728.03, + "probability": 0.8787 + }, + { + "start": 4729.79, + "end": 4732.59, + "probability": 0.9509 + }, + { + "start": 4733.69, + "end": 4735.23, + "probability": 0.4999 + }, + { + "start": 4736.09, + "end": 4739.23, + "probability": 0.9128 + }, + { + "start": 4740.55, + "end": 4744.87, + "probability": 0.6589 + }, + { + "start": 4745.55, + "end": 4746.81, + "probability": 0.333 + }, + { + "start": 4748.05, + "end": 4755.1, + "probability": 0.9006 + }, + { + "start": 4756.09, + "end": 4757.35, + "probability": 0.4706 + }, + { + "start": 4758.23, + "end": 4758.23, + "probability": 0.098 + }, + { + "start": 4758.23, + "end": 4761.4, + "probability": 0.9969 + }, + { + "start": 4762.73, + "end": 4764.19, + "probability": 0.8791 + }, + { + "start": 4764.73, + "end": 4766.62, + "probability": 0.8917 + }, + { + "start": 4767.27, + "end": 4768.61, + "probability": 0.9975 + }, + { + "start": 4769.61, + "end": 4772.83, + "probability": 0.8319 + }, + { + "start": 4773.09, + "end": 4775.47, + "probability": 0.591 + }, + { + "start": 4775.67, + "end": 4777.09, + "probability": 0.9976 + }, + { + "start": 4777.65, + "end": 4779.89, + "probability": 0.9868 + }, + { + "start": 4780.23, + "end": 4783.59, + "probability": 0.9916 + }, + { + "start": 4783.99, + "end": 4784.95, + "probability": 0.9721 + }, + { + "start": 4785.13, + "end": 4785.75, + "probability": 0.9406 + }, + { + "start": 4786.29, + "end": 4786.29, + "probability": 0.3575 + }, + { + "start": 4786.29, + "end": 4789.43, + "probability": 0.6858 + }, + { + "start": 4789.43, + "end": 4792.95, + "probability": 0.6672 + }, + { + "start": 4803.47, + "end": 4804.4, + "probability": 0.6789 + }, + { + "start": 4804.69, + "end": 4805.85, + "probability": 0.7179 + }, + { + "start": 4807.01, + "end": 4810.05, + "probability": 0.8896 + }, + { + "start": 4811.07, + "end": 4813.65, + "probability": 0.8431 + }, + { + "start": 4814.91, + "end": 4816.47, + "probability": 0.9966 + }, + { + "start": 4817.35, + "end": 4818.43, + "probability": 0.78 + }, + { + "start": 4818.65, + "end": 4821.35, + "probability": 0.9977 + }, + { + "start": 4822.47, + "end": 4825.71, + "probability": 0.6865 + }, + { + "start": 4826.99, + "end": 4829.79, + "probability": 0.992 + }, + { + "start": 4830.98, + "end": 4834.11, + "probability": 0.5201 + }, + { + "start": 4835.39, + "end": 4839.21, + "probability": 0.9807 + }, + { + "start": 4839.21, + "end": 4841.89, + "probability": 0.9 + }, + { + "start": 4842.81, + "end": 4843.47, + "probability": 0.5391 + }, + { + "start": 4844.69, + "end": 4846.71, + "probability": 0.9954 + }, + { + "start": 4847.23, + "end": 4848.43, + "probability": 0.8614 + }, + { + "start": 4848.49, + "end": 4853.35, + "probability": 0.9962 + }, + { + "start": 4853.49, + "end": 4856.73, + "probability": 0.5388 + }, + { + "start": 4856.83, + "end": 4857.68, + "probability": 0.631 + }, + { + "start": 4858.39, + "end": 4859.15, + "probability": 0.8211 + }, + { + "start": 4859.29, + "end": 4861.83, + "probability": 0.9786 + }, + { + "start": 4862.05, + "end": 4865.11, + "probability": 0.8884 + }, + { + "start": 4866.13, + "end": 4868.09, + "probability": 0.8454 + }, + { + "start": 4868.27, + "end": 4869.49, + "probability": 0.9763 + }, + { + "start": 4869.85, + "end": 4872.75, + "probability": 0.994 + }, + { + "start": 4873.51, + "end": 4875.65, + "probability": 0.9775 + }, + { + "start": 4875.77, + "end": 4877.81, + "probability": 0.9854 + }, + { + "start": 4878.17, + "end": 4882.49, + "probability": 0.9907 + }, + { + "start": 4882.49, + "end": 4886.49, + "probability": 0.8669 + }, + { + "start": 4887.03, + "end": 4888.11, + "probability": 0.6739 + }, + { + "start": 4888.57, + "end": 4896.21, + "probability": 0.9965 + }, + { + "start": 4896.21, + "end": 4897.05, + "probability": 0.709 + }, + { + "start": 4897.63, + "end": 4898.43, + "probability": 0.7153 + }, + { + "start": 4898.79, + "end": 4903.21, + "probability": 0.9218 + }, + { + "start": 4905.73, + "end": 4907.69, + "probability": 0.9877 + }, + { + "start": 4907.89, + "end": 4909.27, + "probability": 0.7754 + }, + { + "start": 4909.69, + "end": 4912.55, + "probability": 0.9704 + }, + { + "start": 4912.93, + "end": 4914.89, + "probability": 0.9926 + }, + { + "start": 4914.95, + "end": 4915.85, + "probability": 0.7375 + }, + { + "start": 4915.89, + "end": 4917.93, + "probability": 0.8043 + }, + { + "start": 4917.95, + "end": 4919.43, + "probability": 0.9777 + }, + { + "start": 4919.77, + "end": 4921.11, + "probability": 0.7953 + }, + { + "start": 4921.25, + "end": 4926.51, + "probability": 0.9856 + }, + { + "start": 4927.21, + "end": 4932.2, + "probability": 0.9668 + }, + { + "start": 4932.81, + "end": 4934.35, + "probability": 0.7842 + }, + { + "start": 4935.15, + "end": 4939.23, + "probability": 0.9739 + }, + { + "start": 4939.33, + "end": 4940.6, + "probability": 0.9839 + }, + { + "start": 4940.77, + "end": 4942.15, + "probability": 0.9004 + }, + { + "start": 4942.29, + "end": 4944.17, + "probability": 0.9484 + }, + { + "start": 4944.61, + "end": 4947.65, + "probability": 0.7221 + }, + { + "start": 4948.99, + "end": 4950.35, + "probability": 0.99 + }, + { + "start": 4950.51, + "end": 4953.91, + "probability": 0.9319 + }, + { + "start": 4954.75, + "end": 4955.85, + "probability": 0.9734 + }, + { + "start": 4956.81, + "end": 4959.67, + "probability": 0.9011 + }, + { + "start": 4960.73, + "end": 4964.5, + "probability": 0.9882 + }, + { + "start": 4964.63, + "end": 4967.99, + "probability": 0.7375 + }, + { + "start": 4968.37, + "end": 4969.69, + "probability": 0.9956 + }, + { + "start": 4969.79, + "end": 4971.55, + "probability": 0.9973 + }, + { + "start": 4971.73, + "end": 4973.95, + "probability": 0.9788 + }, + { + "start": 4974.37, + "end": 4974.97, + "probability": 0.9668 + }, + { + "start": 4975.77, + "end": 4977.25, + "probability": 0.9897 + }, + { + "start": 4977.31, + "end": 4978.63, + "probability": 0.9905 + }, + { + "start": 4979.63, + "end": 4984.05, + "probability": 0.9937 + }, + { + "start": 4984.75, + "end": 4984.87, + "probability": 0.5437 + }, + { + "start": 4984.99, + "end": 4986.69, + "probability": 0.9839 + }, + { + "start": 4986.83, + "end": 4990.26, + "probability": 0.7479 + }, + { + "start": 4990.29, + "end": 4991.45, + "probability": 0.3895 + }, + { + "start": 4991.55, + "end": 4991.63, + "probability": 0.1872 + }, + { + "start": 4991.63, + "end": 4993.59, + "probability": 0.6431 + }, + { + "start": 4993.65, + "end": 4996.91, + "probability": 0.9966 + }, + { + "start": 4996.91, + "end": 4997.21, + "probability": 0.7036 + }, + { + "start": 4997.35, + "end": 4998.05, + "probability": 0.5284 + }, + { + "start": 4998.33, + "end": 5001.35, + "probability": 0.802 + }, + { + "start": 5001.37, + "end": 5001.45, + "probability": 0.7894 + }, + { + "start": 5001.79, + "end": 5003.91, + "probability": 0.952 + }, + { + "start": 5004.19, + "end": 5004.43, + "probability": 0.6879 + }, + { + "start": 5004.85, + "end": 5004.85, + "probability": 0.553 + }, + { + "start": 5004.85, + "end": 5006.73, + "probability": 0.8739 + }, + { + "start": 5007.47, + "end": 5008.25, + "probability": 0.8481 + }, + { + "start": 5008.63, + "end": 5011.55, + "probability": 0.7329 + }, + { + "start": 5011.67, + "end": 5012.75, + "probability": 0.9873 + }, + { + "start": 5023.55, + "end": 5025.11, + "probability": 0.6338 + }, + { + "start": 5025.59, + "end": 5026.71, + "probability": 0.6497 + }, + { + "start": 5027.91, + "end": 5031.75, + "probability": 0.8609 + }, + { + "start": 5032.29, + "end": 5033.85, + "probability": 0.9666 + }, + { + "start": 5035.11, + "end": 5036.81, + "probability": 0.999 + }, + { + "start": 5037.61, + "end": 5038.49, + "probability": 0.9257 + }, + { + "start": 5039.39, + "end": 5040.57, + "probability": 0.9842 + }, + { + "start": 5042.37, + "end": 5043.53, + "probability": 0.8504 + }, + { + "start": 5044.17, + "end": 5045.89, + "probability": 0.821 + }, + { + "start": 5047.21, + "end": 5048.31, + "probability": 0.9873 + }, + { + "start": 5049.17, + "end": 5053.11, + "probability": 0.9919 + }, + { + "start": 5054.71, + "end": 5059.35, + "probability": 0.9818 + }, + { + "start": 5060.21, + "end": 5064.0, + "probability": 0.763 + }, + { + "start": 5065.49, + "end": 5066.27, + "probability": 0.4538 + }, + { + "start": 5067.33, + "end": 5069.23, + "probability": 0.9307 + }, + { + "start": 5070.15, + "end": 5071.01, + "probability": 0.7849 + }, + { + "start": 5072.41, + "end": 5072.48, + "probability": 0.0037 + }, + { + "start": 5074.05, + "end": 5075.21, + "probability": 0.8813 + }, + { + "start": 5076.03, + "end": 5076.91, + "probability": 0.9792 + }, + { + "start": 5077.51, + "end": 5078.35, + "probability": 0.8419 + }, + { + "start": 5078.95, + "end": 5079.93, + "probability": 0.939 + }, + { + "start": 5081.07, + "end": 5083.23, + "probability": 0.5369 + }, + { + "start": 5083.85, + "end": 5084.45, + "probability": 0.695 + }, + { + "start": 5085.31, + "end": 5086.17, + "probability": 0.9839 + }, + { + "start": 5087.15, + "end": 5093.37, + "probability": 0.9329 + }, + { + "start": 5094.27, + "end": 5097.21, + "probability": 0.9438 + }, + { + "start": 5098.05, + "end": 5098.51, + "probability": 0.9147 + }, + { + "start": 5099.39, + "end": 5100.01, + "probability": 0.7537 + }, + { + "start": 5100.93, + "end": 5103.59, + "probability": 0.9927 + }, + { + "start": 5103.59, + "end": 5109.55, + "probability": 0.9778 + }, + { + "start": 5110.49, + "end": 5110.65, + "probability": 0.1495 + }, + { + "start": 5110.65, + "end": 5119.35, + "probability": 0.7602 + }, + { + "start": 5120.01, + "end": 5120.81, + "probability": 0.8413 + }, + { + "start": 5121.47, + "end": 5128.19, + "probability": 0.9286 + }, + { + "start": 5128.75, + "end": 5132.37, + "probability": 0.9909 + }, + { + "start": 5133.25, + "end": 5136.07, + "probability": 0.91 + }, + { + "start": 5136.67, + "end": 5139.35, + "probability": 0.9585 + }, + { + "start": 5140.17, + "end": 5142.85, + "probability": 0.8866 + }, + { + "start": 5143.99, + "end": 5149.03, + "probability": 0.9259 + }, + { + "start": 5149.81, + "end": 5151.79, + "probability": 0.8992 + }, + { + "start": 5152.45, + "end": 5153.31, + "probability": 0.9817 + }, + { + "start": 5154.55, + "end": 5159.79, + "probability": 0.9735 + }, + { + "start": 5160.35, + "end": 5161.87, + "probability": 0.9604 + }, + { + "start": 5162.67, + "end": 5164.85, + "probability": 0.9982 + }, + { + "start": 5165.43, + "end": 5168.27, + "probability": 0.9603 + }, + { + "start": 5168.83, + "end": 5170.17, + "probability": 0.969 + }, + { + "start": 5170.67, + "end": 5171.87, + "probability": 0.8473 + }, + { + "start": 5171.91, + "end": 5172.47, + "probability": 0.6894 + }, + { + "start": 5173.19, + "end": 5175.39, + "probability": 0.9934 + }, + { + "start": 5176.51, + "end": 5177.99, + "probability": 0.9678 + }, + { + "start": 5178.73, + "end": 5180.47, + "probability": 0.9588 + }, + { + "start": 5181.33, + "end": 5186.76, + "probability": 0.8971 + }, + { + "start": 5189.05, + "end": 5191.51, + "probability": 0.7952 + }, + { + "start": 5192.61, + "end": 5196.89, + "probability": 0.9668 + }, + { + "start": 5197.93, + "end": 5204.73, + "probability": 0.9915 + }, + { + "start": 5205.51, + "end": 5209.59, + "probability": 0.9663 + }, + { + "start": 5210.07, + "end": 5210.47, + "probability": 0.7346 + }, + { + "start": 5210.47, + "end": 5210.67, + "probability": 0.7265 + }, + { + "start": 5211.15, + "end": 5213.87, + "probability": 0.9597 + }, + { + "start": 5214.31, + "end": 5217.41, + "probability": 0.9687 + }, + { + "start": 5221.23, + "end": 5223.07, + "probability": 0.8186 + }, + { + "start": 5231.27, + "end": 5234.23, + "probability": 0.7508 + }, + { + "start": 5234.91, + "end": 5235.91, + "probability": 0.8793 + }, + { + "start": 5236.57, + "end": 5236.79, + "probability": 0.4328 + }, + { + "start": 5236.87, + "end": 5240.77, + "probability": 0.9933 + }, + { + "start": 5241.15, + "end": 5242.87, + "probability": 0.9623 + }, + { + "start": 5243.47, + "end": 5246.59, + "probability": 0.9792 + }, + { + "start": 5246.59, + "end": 5248.93, + "probability": 0.98 + }, + { + "start": 5249.65, + "end": 5252.5, + "probability": 0.8215 + }, + { + "start": 5253.11, + "end": 5257.43, + "probability": 0.8902 + }, + { + "start": 5257.53, + "end": 5259.11, + "probability": 0.9427 + }, + { + "start": 5259.35, + "end": 5266.11, + "probability": 0.993 + }, + { + "start": 5266.67, + "end": 5268.03, + "probability": 0.9552 + }, + { + "start": 5268.53, + "end": 5271.33, + "probability": 0.9731 + }, + { + "start": 5271.77, + "end": 5275.93, + "probability": 0.8687 + }, + { + "start": 5276.65, + "end": 5276.73, + "probability": 0.6129 + }, + { + "start": 5276.85, + "end": 5277.63, + "probability": 0.6091 + }, + { + "start": 5277.65, + "end": 5278.17, + "probability": 0.814 + }, + { + "start": 5278.67, + "end": 5280.39, + "probability": 0.9552 + }, + { + "start": 5280.59, + "end": 5283.81, + "probability": 0.9925 + }, + { + "start": 5284.59, + "end": 5292.15, + "probability": 0.9452 + }, + { + "start": 5292.15, + "end": 5296.83, + "probability": 0.9985 + }, + { + "start": 5297.37, + "end": 5299.41, + "probability": 0.7068 + }, + { + "start": 5299.93, + "end": 5302.97, + "probability": 0.7618 + }, + { + "start": 5303.57, + "end": 5306.45, + "probability": 0.9765 + }, + { + "start": 5306.51, + "end": 5310.51, + "probability": 0.9998 + }, + { + "start": 5310.51, + "end": 5314.71, + "probability": 0.9961 + }, + { + "start": 5315.35, + "end": 5320.13, + "probability": 0.9807 + }, + { + "start": 5320.61, + "end": 5325.31, + "probability": 0.9855 + }, + { + "start": 5325.71, + "end": 5327.89, + "probability": 0.6985 + }, + { + "start": 5328.17, + "end": 5328.49, + "probability": 0.9141 + }, + { + "start": 5328.69, + "end": 5329.75, + "probability": 0.9005 + }, + { + "start": 5330.15, + "end": 5335.45, + "probability": 0.972 + }, + { + "start": 5335.63, + "end": 5336.17, + "probability": 0.648 + }, + { + "start": 5336.91, + "end": 5340.91, + "probability": 0.9105 + }, + { + "start": 5341.35, + "end": 5343.15, + "probability": 0.945 + }, + { + "start": 5343.85, + "end": 5347.59, + "probability": 0.9961 + }, + { + "start": 5347.59, + "end": 5351.39, + "probability": 0.9896 + }, + { + "start": 5352.23, + "end": 5358.54, + "probability": 0.9456 + }, + { + "start": 5359.17, + "end": 5363.49, + "probability": 0.929 + }, + { + "start": 5363.95, + "end": 5367.79, + "probability": 0.5571 + }, + { + "start": 5367.79, + "end": 5369.51, + "probability": 0.7679 + }, + { + "start": 5369.67, + "end": 5370.23, + "probability": 0.75 + }, + { + "start": 5371.15, + "end": 5377.01, + "probability": 0.999 + }, + { + "start": 5377.63, + "end": 5379.33, + "probability": 0.9738 + }, + { + "start": 5380.29, + "end": 5386.46, + "probability": 0.9982 + }, + { + "start": 5386.95, + "end": 5388.17, + "probability": 0.7496 + }, + { + "start": 5388.55, + "end": 5389.07, + "probability": 0.3971 + }, + { + "start": 5389.29, + "end": 5389.63, + "probability": 0.7243 + }, + { + "start": 5389.79, + "end": 5392.29, + "probability": 0.998 + }, + { + "start": 5392.41, + "end": 5393.07, + "probability": 0.8062 + }, + { + "start": 5393.57, + "end": 5395.61, + "probability": 0.9214 + }, + { + "start": 5395.67, + "end": 5398.61, + "probability": 0.9298 + }, + { + "start": 5398.73, + "end": 5399.24, + "probability": 0.8389 + }, + { + "start": 5399.63, + "end": 5405.77, + "probability": 0.9819 + }, + { + "start": 5405.99, + "end": 5407.25, + "probability": 0.6829 + }, + { + "start": 5407.39, + "end": 5407.51, + "probability": 0.2073 + }, + { + "start": 5407.51, + "end": 5412.17, + "probability": 0.837 + }, + { + "start": 5412.29, + "end": 5415.35, + "probability": 0.9751 + }, + { + "start": 5415.75, + "end": 5418.27, + "probability": 0.9858 + }, + { + "start": 5418.35, + "end": 5418.79, + "probability": 0.7833 + }, + { + "start": 5419.21, + "end": 5419.31, + "probability": 0.2243 + }, + { + "start": 5419.37, + "end": 5422.14, + "probability": 0.9922 + }, + { + "start": 5422.37, + "end": 5422.79, + "probability": 0.5779 + }, + { + "start": 5422.81, + "end": 5425.39, + "probability": 0.9976 + }, + { + "start": 5425.47, + "end": 5426.37, + "probability": 0.725 + }, + { + "start": 5426.39, + "end": 5426.87, + "probability": 0.9074 + }, + { + "start": 5427.23, + "end": 5429.37, + "probability": 0.9702 + }, + { + "start": 5429.47, + "end": 5430.49, + "probability": 0.9775 + }, + { + "start": 5432.47, + "end": 5435.73, + "probability": 0.3527 + }, + { + "start": 5439.33, + "end": 5443.15, + "probability": 0.8222 + }, + { + "start": 5444.07, + "end": 5444.43, + "probability": 0.7731 + }, + { + "start": 5445.05, + "end": 5450.99, + "probability": 0.8052 + }, + { + "start": 5452.13, + "end": 5457.35, + "probability": 0.9396 + }, + { + "start": 5458.43, + "end": 5458.63, + "probability": 0.8341 + }, + { + "start": 5459.93, + "end": 5464.79, + "probability": 0.9985 + }, + { + "start": 5465.75, + "end": 5466.25, + "probability": 0.6432 + }, + { + "start": 5468.13, + "end": 5468.89, + "probability": 0.7563 + }, + { + "start": 5469.77, + "end": 5471.15, + "probability": 0.887 + }, + { + "start": 5472.15, + "end": 5479.85, + "probability": 0.962 + }, + { + "start": 5482.05, + "end": 5486.71, + "probability": 0.9897 + }, + { + "start": 5487.43, + "end": 5490.11, + "probability": 0.9054 + }, + { + "start": 5490.81, + "end": 5493.81, + "probability": 0.7498 + }, + { + "start": 5494.51, + "end": 5497.55, + "probability": 0.9401 + }, + { + "start": 5498.07, + "end": 5499.41, + "probability": 0.7346 + }, + { + "start": 5501.73, + "end": 5507.15, + "probability": 0.857 + }, + { + "start": 5507.27, + "end": 5508.49, + "probability": 0.4989 + }, + { + "start": 5508.61, + "end": 5511.57, + "probability": 0.9565 + }, + { + "start": 5512.89, + "end": 5516.97, + "probability": 0.8164 + }, + { + "start": 5517.93, + "end": 5520.61, + "probability": 0.6721 + }, + { + "start": 5522.39, + "end": 5524.51, + "probability": 0.9922 + }, + { + "start": 5525.71, + "end": 5526.43, + "probability": 0.1462 + }, + { + "start": 5526.49, + "end": 5532.35, + "probability": 0.9564 + }, + { + "start": 5532.41, + "end": 5535.45, + "probability": 0.9946 + }, + { + "start": 5535.93, + "end": 5540.23, + "probability": 0.8345 + }, + { + "start": 5541.97, + "end": 5546.33, + "probability": 0.8342 + }, + { + "start": 5549.41, + "end": 5550.97, + "probability": 0.9891 + }, + { + "start": 5552.05, + "end": 5556.31, + "probability": 0.9041 + }, + { + "start": 5557.21, + "end": 5558.26, + "probability": 0.9897 + }, + { + "start": 5559.57, + "end": 5561.49, + "probability": 0.9082 + }, + { + "start": 5562.13, + "end": 5563.84, + "probability": 0.9819 + }, + { + "start": 5566.75, + "end": 5570.57, + "probability": 0.9626 + }, + { + "start": 5571.99, + "end": 5572.89, + "probability": 0.613 + }, + { + "start": 5573.55, + "end": 5574.57, + "probability": 0.902 + }, + { + "start": 5575.19, + "end": 5576.95, + "probability": 0.9272 + }, + { + "start": 5577.51, + "end": 5579.17, + "probability": 0.9288 + }, + { + "start": 5579.59, + "end": 5582.59, + "probability": 0.9952 + }, + { + "start": 5583.27, + "end": 5586.61, + "probability": 0.9941 + }, + { + "start": 5588.39, + "end": 5590.95, + "probability": 0.9977 + }, + { + "start": 5591.89, + "end": 5594.63, + "probability": 0.9987 + }, + { + "start": 5596.73, + "end": 5600.09, + "probability": 0.9475 + }, + { + "start": 5602.29, + "end": 5602.45, + "probability": 0.3643 + }, + { + "start": 5603.73, + "end": 5605.61, + "probability": 0.8163 + }, + { + "start": 5606.19, + "end": 5608.53, + "probability": 0.9984 + }, + { + "start": 5608.53, + "end": 5609.63, + "probability": 0.1333 + }, + { + "start": 5610.15, + "end": 5613.73, + "probability": 0.3185 + }, + { + "start": 5614.25, + "end": 5618.33, + "probability": 0.4952 + }, + { + "start": 5619.19, + "end": 5625.87, + "probability": 0.6159 + }, + { + "start": 5626.31, + "end": 5627.59, + "probability": 0.4979 + }, + { + "start": 5627.59, + "end": 5627.8, + "probability": 0.3187 + }, + { + "start": 5628.59, + "end": 5633.63, + "probability": 0.8284 + }, + { + "start": 5633.63, + "end": 5638.13, + "probability": 0.9696 + }, + { + "start": 5638.33, + "end": 5639.51, + "probability": 0.5071 + }, + { + "start": 5639.61, + "end": 5639.61, + "probability": 0.3814 + }, + { + "start": 5639.61, + "end": 5640.83, + "probability": 0.7279 + }, + { + "start": 5642.11, + "end": 5644.29, + "probability": 0.953 + }, + { + "start": 5645.65, + "end": 5648.01, + "probability": 0.9717 + }, + { + "start": 5648.55, + "end": 5651.25, + "probability": 0.6619 + }, + { + "start": 5651.71, + "end": 5652.82, + "probability": 0.4977 + }, + { + "start": 5653.75, + "end": 5655.13, + "probability": 0.8918 + }, + { + "start": 5655.37, + "end": 5657.45, + "probability": 0.998 + }, + { + "start": 5657.47, + "end": 5658.49, + "probability": 0.9272 + }, + { + "start": 5658.55, + "end": 5659.97, + "probability": 0.7106 + }, + { + "start": 5660.47, + "end": 5663.61, + "probability": 0.7248 + }, + { + "start": 5663.61, + "end": 5665.87, + "probability": 0.4488 + }, + { + "start": 5666.11, + "end": 5666.33, + "probability": 0.5111 + }, + { + "start": 5666.51, + "end": 5667.17, + "probability": 0.8907 + }, + { + "start": 5667.17, + "end": 5668.43, + "probability": 0.7178 + }, + { + "start": 5668.43, + "end": 5670.01, + "probability": 0.3345 + }, + { + "start": 5670.13, + "end": 5670.49, + "probability": 0.1641 + }, + { + "start": 5670.51, + "end": 5672.77, + "probability": 0.8236 + }, + { + "start": 5683.03, + "end": 5683.13, + "probability": 0.8396 + }, + { + "start": 5683.13, + "end": 5686.31, + "probability": 0.2305 + }, + { + "start": 5686.65, + "end": 5690.41, + "probability": 0.2271 + }, + { + "start": 5692.59, + "end": 5694.55, + "probability": 0.8691 + }, + { + "start": 5695.05, + "end": 5697.07, + "probability": 0.7249 + }, + { + "start": 5701.87, + "end": 5704.93, + "probability": 0.9844 + }, + { + "start": 5706.15, + "end": 5711.95, + "probability": 0.9283 + }, + { + "start": 5712.81, + "end": 5713.51, + "probability": 0.627 + }, + { + "start": 5713.65, + "end": 5717.27, + "probability": 0.9427 + }, + { + "start": 5718.41, + "end": 5718.99, + "probability": 0.9223 + }, + { + "start": 5719.11, + "end": 5720.37, + "probability": 0.777 + }, + { + "start": 5720.45, + "end": 5722.63, + "probability": 0.7969 + }, + { + "start": 5722.77, + "end": 5726.37, + "probability": 0.9441 + }, + { + "start": 5727.71, + "end": 5732.69, + "probability": 0.7533 + }, + { + "start": 5732.69, + "end": 5737.03, + "probability": 0.9554 + }, + { + "start": 5737.77, + "end": 5740.85, + "probability": 0.9726 + }, + { + "start": 5741.19, + "end": 5743.01, + "probability": 0.9655 + }, + { + "start": 5743.09, + "end": 5747.67, + "probability": 0.9447 + }, + { + "start": 5748.73, + "end": 5749.51, + "probability": 0.8971 + }, + { + "start": 5750.13, + "end": 5755.39, + "probability": 0.9106 + }, + { + "start": 5755.57, + "end": 5758.29, + "probability": 0.9873 + }, + { + "start": 5759.17, + "end": 5762.35, + "probability": 0.9857 + }, + { + "start": 5762.35, + "end": 5768.89, + "probability": 0.9833 + }, + { + "start": 5769.75, + "end": 5774.13, + "probability": 0.9882 + }, + { + "start": 5774.83, + "end": 5783.37, + "probability": 0.8449 + }, + { + "start": 5783.71, + "end": 5784.29, + "probability": 0.6363 + }, + { + "start": 5784.45, + "end": 5796.23, + "probability": 0.9382 + }, + { + "start": 5796.23, + "end": 5800.73, + "probability": 0.9964 + }, + { + "start": 5801.03, + "end": 5801.77, + "probability": 0.6813 + }, + { + "start": 5801.83, + "end": 5807.19, + "probability": 0.9679 + }, + { + "start": 5807.35, + "end": 5808.65, + "probability": 0.8771 + }, + { + "start": 5808.93, + "end": 5812.95, + "probability": 0.9822 + }, + { + "start": 5813.05, + "end": 5814.33, + "probability": 0.9182 + }, + { + "start": 5814.69, + "end": 5817.97, + "probability": 0.984 + }, + { + "start": 5817.97, + "end": 5821.69, + "probability": 0.989 + }, + { + "start": 5822.29, + "end": 5823.97, + "probability": 0.9671 + }, + { + "start": 5824.57, + "end": 5830.55, + "probability": 0.8777 + }, + { + "start": 5830.55, + "end": 5836.49, + "probability": 0.9928 + }, + { + "start": 5836.59, + "end": 5837.89, + "probability": 0.7675 + }, + { + "start": 5838.63, + "end": 5842.51, + "probability": 0.8179 + }, + { + "start": 5842.83, + "end": 5846.13, + "probability": 0.993 + }, + { + "start": 5846.45, + "end": 5851.19, + "probability": 0.9829 + }, + { + "start": 5852.19, + "end": 5854.39, + "probability": 0.8854 + }, + { + "start": 5854.53, + "end": 5856.73, + "probability": 0.9583 + }, + { + "start": 5857.03, + "end": 5862.11, + "probability": 0.9088 + }, + { + "start": 5862.29, + "end": 5863.89, + "probability": 0.9669 + }, + { + "start": 5864.61, + "end": 5869.61, + "probability": 0.9297 + }, + { + "start": 5869.73, + "end": 5874.21, + "probability": 0.978 + }, + { + "start": 5874.21, + "end": 5876.99, + "probability": 0.9916 + }, + { + "start": 5877.95, + "end": 5880.33, + "probability": 0.9908 + }, + { + "start": 5880.95, + "end": 5887.69, + "probability": 0.9722 + }, + { + "start": 5888.27, + "end": 5891.25, + "probability": 0.9549 + }, + { + "start": 5891.25, + "end": 5895.47, + "probability": 0.9854 + }, + { + "start": 5896.47, + "end": 5900.0, + "probability": 0.7422 + }, + { + "start": 5900.41, + "end": 5901.69, + "probability": 0.9666 + }, + { + "start": 5901.89, + "end": 5902.31, + "probability": 0.2853 + }, + { + "start": 5902.45, + "end": 5902.81, + "probability": 0.6035 + }, + { + "start": 5903.33, + "end": 5905.65, + "probability": 0.9668 + }, + { + "start": 5914.31, + "end": 5914.63, + "probability": 0.507 + }, + { + "start": 5917.77, + "end": 5918.43, + "probability": 0.9943 + }, + { + "start": 5918.97, + "end": 5919.63, + "probability": 0.341 + }, + { + "start": 5920.18, + "end": 5921.55, + "probability": 0.8716 + }, + { + "start": 5921.67, + "end": 5923.35, + "probability": 0.96 + }, + { + "start": 5923.59, + "end": 5924.83, + "probability": 0.9589 + }, + { + "start": 5925.27, + "end": 5926.39, + "probability": 0.824 + }, + { + "start": 5927.31, + "end": 5928.65, + "probability": 0.9768 + }, + { + "start": 5930.41, + "end": 5931.43, + "probability": 0.8634 + }, + { + "start": 5933.35, + "end": 5934.67, + "probability": 0.7312 + }, + { + "start": 5936.91, + "end": 5939.13, + "probability": 0.9973 + }, + { + "start": 5941.43, + "end": 5942.17, + "probability": 0.8828 + }, + { + "start": 5944.17, + "end": 5948.93, + "probability": 0.9742 + }, + { + "start": 5950.47, + "end": 5951.71, + "probability": 0.9985 + }, + { + "start": 5954.45, + "end": 5958.19, + "probability": 0.9532 + }, + { + "start": 5959.21, + "end": 5963.19, + "probability": 0.9856 + }, + { + "start": 5964.49, + "end": 5967.05, + "probability": 0.9451 + }, + { + "start": 5968.41, + "end": 5977.49, + "probability": 0.96 + }, + { + "start": 5979.75, + "end": 5984.45, + "probability": 0.9529 + }, + { + "start": 5985.95, + "end": 5986.87, + "probability": 0.9787 + }, + { + "start": 5988.83, + "end": 5989.71, + "probability": 0.2578 + }, + { + "start": 5990.13, + "end": 5992.01, + "probability": 0.7395 + }, + { + "start": 5992.87, + "end": 5993.59, + "probability": 0.898 + }, + { + "start": 5995.35, + "end": 5998.73, + "probability": 0.9129 + }, + { + "start": 5998.75, + "end": 5999.75, + "probability": 0.4331 + }, + { + "start": 6001.03, + "end": 6004.17, + "probability": 0.9736 + }, + { + "start": 6004.93, + "end": 6006.69, + "probability": 0.9344 + }, + { + "start": 6008.49, + "end": 6009.55, + "probability": 0.8044 + }, + { + "start": 6011.19, + "end": 6013.65, + "probability": 0.7432 + }, + { + "start": 6014.17, + "end": 6015.29, + "probability": 0.9798 + }, + { + "start": 6015.47, + "end": 6016.73, + "probability": 0.0412 + }, + { + "start": 6017.11, + "end": 6017.15, + "probability": 0.1578 + }, + { + "start": 6017.47, + "end": 6018.79, + "probability": 0.9897 + }, + { + "start": 6020.5, + "end": 6022.74, + "probability": 0.8672 + }, + { + "start": 6023.83, + "end": 6026.57, + "probability": 0.564 + }, + { + "start": 6027.15, + "end": 6027.47, + "probability": 0.7929 + }, + { + "start": 6027.49, + "end": 6029.58, + "probability": 0.7958 + }, + { + "start": 6029.87, + "end": 6032.21, + "probability": 0.7811 + }, + { + "start": 6032.33, + "end": 6032.95, + "probability": 0.2588 + }, + { + "start": 6032.97, + "end": 6033.18, + "probability": 0.1075 + }, + { + "start": 6033.29, + "end": 6034.13, + "probability": 0.199 + }, + { + "start": 6034.13, + "end": 6036.13, + "probability": 0.1698 + }, + { + "start": 6036.27, + "end": 6039.31, + "probability": 0.1247 + }, + { + "start": 6039.83, + "end": 6040.07, + "probability": 0.0381 + }, + { + "start": 6040.07, + "end": 6040.07, + "probability": 0.0093 + }, + { + "start": 6040.07, + "end": 6040.71, + "probability": 0.3167 + }, + { + "start": 6040.77, + "end": 6043.39, + "probability": 0.857 + }, + { + "start": 6043.51, + "end": 6044.62, + "probability": 0.7183 + }, + { + "start": 6045.91, + "end": 6046.99, + "probability": 0.3834 + }, + { + "start": 6046.99, + "end": 6048.55, + "probability": 0.4634 + }, + { + "start": 6048.67, + "end": 6051.55, + "probability": 0.7754 + }, + { + "start": 6051.55, + "end": 6051.55, + "probability": 0.0451 + }, + { + "start": 6051.55, + "end": 6052.21, + "probability": 0.6744 + }, + { + "start": 6052.25, + "end": 6053.7, + "probability": 0.9834 + }, + { + "start": 6054.27, + "end": 6055.71, + "probability": 0.5596 + }, + { + "start": 6055.71, + "end": 6056.57, + "probability": 0.4276 + }, + { + "start": 6056.57, + "end": 6057.34, + "probability": 0.7926 + }, + { + "start": 6058.33, + "end": 6060.05, + "probability": 0.2376 + }, + { + "start": 6060.27, + "end": 6061.51, + "probability": 0.8113 + }, + { + "start": 6061.55, + "end": 6062.09, + "probability": 0.8508 + }, + { + "start": 6062.67, + "end": 6064.75, + "probability": 0.2193 + }, + { + "start": 6065.27, + "end": 6067.11, + "probability": 0.0909 + }, + { + "start": 6070.63, + "end": 6074.85, + "probability": 0.3569 + }, + { + "start": 6074.85, + "end": 6075.89, + "probability": 0.4654 + }, + { + "start": 6077.69, + "end": 6077.87, + "probability": 0.7168 + }, + { + "start": 6079.21, + "end": 6079.85, + "probability": 0.2011 + }, + { + "start": 6080.43, + "end": 6085.21, + "probability": 0.1505 + }, + { + "start": 6085.21, + "end": 6085.73, + "probability": 0.2214 + }, + { + "start": 6085.93, + "end": 6086.93, + "probability": 0.0037 + }, + { + "start": 6087.37, + "end": 6088.63, + "probability": 0.0538 + }, + { + "start": 6088.95, + "end": 6089.95, + "probability": 0.3337 + }, + { + "start": 6089.95, + "end": 6090.03, + "probability": 0.0994 + }, + { + "start": 6090.11, + "end": 6095.79, + "probability": 0.0614 + }, + { + "start": 6096.65, + "end": 6098.95, + "probability": 0.1257 + }, + { + "start": 6098.97, + "end": 6100.69, + "probability": 0.2136 + }, + { + "start": 6100.69, + "end": 6100.71, + "probability": 0.4584 + }, + { + "start": 6100.71, + "end": 6103.01, + "probability": 0.0333 + }, + { + "start": 6103.07, + "end": 6103.07, + "probability": 0.2743 + }, + { + "start": 6103.13, + "end": 6103.13, + "probability": 0.0042 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6125.88, + "end": 6128.58, + "probability": 0.5243 + }, + { + "start": 6128.58, + "end": 6129.9, + "probability": 0.5677 + }, + { + "start": 6129.98, + "end": 6131.9, + "probability": 0.9678 + }, + { + "start": 6132.04, + "end": 6133.16, + "probability": 0.9402 + }, + { + "start": 6133.68, + "end": 6135.59, + "probability": 0.0463 + }, + { + "start": 6137.55, + "end": 6137.84, + "probability": 0.0318 + }, + { + "start": 6137.84, + "end": 6137.92, + "probability": 0.0866 + }, + { + "start": 6137.92, + "end": 6138.34, + "probability": 0.3183 + }, + { + "start": 6138.76, + "end": 6138.86, + "probability": 0.2502 + }, + { + "start": 6138.86, + "end": 6140.72, + "probability": 0.4003 + }, + { + "start": 6141.52, + "end": 6142.2, + "probability": 0.4703 + }, + { + "start": 6143.02, + "end": 6146.6, + "probability": 0.0205 + }, + { + "start": 6146.78, + "end": 6147.3, + "probability": 0.0682 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6248.0, + "end": 6248.0, + "probability": 0.0 + }, + { + "start": 6249.88, + "end": 6249.88, + "probability": 0.0048 + }, + { + "start": 6249.88, + "end": 6249.88, + "probability": 0.16 + }, + { + "start": 6249.88, + "end": 6249.88, + "probability": 0.5155 + }, + { + "start": 6249.88, + "end": 6249.88, + "probability": 0.0658 + }, + { + "start": 6249.88, + "end": 6249.88, + "probability": 0.0816 + }, + { + "start": 6249.88, + "end": 6249.88, + "probability": 0.1514 + }, + { + "start": 6249.88, + "end": 6249.88, + "probability": 0.064 + }, + { + "start": 6249.88, + "end": 6250.06, + "probability": 0.3099 + }, + { + "start": 6250.16, + "end": 6252.97, + "probability": 0.9453 + }, + { + "start": 6253.66, + "end": 6255.44, + "probability": 0.9336 + }, + { + "start": 6255.68, + "end": 6255.68, + "probability": 0.0037 + }, + { + "start": 6255.9, + "end": 6256.04, + "probability": 0.1343 + }, + { + "start": 6256.04, + "end": 6256.94, + "probability": 0.5579 + }, + { + "start": 6256.98, + "end": 6260.9, + "probability": 0.9734 + }, + { + "start": 6261.13, + "end": 6265.62, + "probability": 0.9887 + }, + { + "start": 6266.46, + "end": 6269.58, + "probability": 0.9603 + }, + { + "start": 6269.58, + "end": 6273.06, + "probability": 0.9995 + }, + { + "start": 6274.2, + "end": 6275.38, + "probability": 0.7488 + }, + { + "start": 6276.46, + "end": 6278.44, + "probability": 0.8145 + }, + { + "start": 6278.56, + "end": 6281.34, + "probability": 0.9963 + }, + { + "start": 6282.84, + "end": 6283.66, + "probability": 0.9097 + }, + { + "start": 6284.4, + "end": 6285.3, + "probability": 0.9326 + }, + { + "start": 6285.92, + "end": 6286.76, + "probability": 0.7398 + }, + { + "start": 6287.7, + "end": 6289.38, + "probability": 0.8608 + }, + { + "start": 6289.92, + "end": 6291.36, + "probability": 0.8063 + }, + { + "start": 6291.6, + "end": 6294.4, + "probability": 0.8172 + }, + { + "start": 6294.94, + "end": 6296.58, + "probability": 0.9949 + }, + { + "start": 6296.68, + "end": 6298.54, + "probability": 0.991 + }, + { + "start": 6298.96, + "end": 6299.47, + "probability": 0.9653 + }, + { + "start": 6301.0, + "end": 6303.78, + "probability": 0.9926 + }, + { + "start": 6304.46, + "end": 6305.24, + "probability": 0.427 + }, + { + "start": 6305.58, + "end": 6308.06, + "probability": 0.9823 + }, + { + "start": 6312.5, + "end": 6315.22, + "probability": 0.867 + }, + { + "start": 6338.28, + "end": 6339.28, + "probability": 0.6466 + }, + { + "start": 6339.8, + "end": 6341.0, + "probability": 0.7396 + }, + { + "start": 6341.18, + "end": 6342.08, + "probability": 0.7803 + }, + { + "start": 6343.46, + "end": 6346.64, + "probability": 0.9944 + }, + { + "start": 6346.86, + "end": 6348.38, + "probability": 0.9832 + }, + { + "start": 6348.98, + "end": 6351.04, + "probability": 0.8481 + }, + { + "start": 6352.46, + "end": 6354.98, + "probability": 0.8449 + }, + { + "start": 6356.26, + "end": 6357.24, + "probability": 0.9528 + }, + { + "start": 6357.5, + "end": 6362.04, + "probability": 0.9932 + }, + { + "start": 6365.4, + "end": 6365.62, + "probability": 0.1864 + }, + { + "start": 6365.76, + "end": 6365.76, + "probability": 0.3004 + }, + { + "start": 6366.3, + "end": 6367.7, + "probability": 0.7659 + }, + { + "start": 6368.22, + "end": 6369.46, + "probability": 0.8765 + }, + { + "start": 6369.78, + "end": 6371.32, + "probability": 0.8871 + }, + { + "start": 6371.36, + "end": 6373.34, + "probability": 0.9272 + }, + { + "start": 6373.56, + "end": 6376.14, + "probability": 0.9312 + }, + { + "start": 6376.6, + "end": 6381.62, + "probability": 0.9873 + }, + { + "start": 6382.54, + "end": 6383.52, + "probability": 0.9976 + }, + { + "start": 6384.22, + "end": 6386.56, + "probability": 0.999 + }, + { + "start": 6387.06, + "end": 6387.64, + "probability": 0.7593 + }, + { + "start": 6388.2, + "end": 6392.26, + "probability": 0.9746 + }, + { + "start": 6393.22, + "end": 6394.98, + "probability": 0.6121 + }, + { + "start": 6396.22, + "end": 6398.3, + "probability": 0.9888 + }, + { + "start": 6400.28, + "end": 6400.92, + "probability": 0.9634 + }, + { + "start": 6402.04, + "end": 6404.08, + "probability": 0.9829 + }, + { + "start": 6404.64, + "end": 6407.18, + "probability": 0.9885 + }, + { + "start": 6407.46, + "end": 6409.8, + "probability": 0.9699 + }, + { + "start": 6410.5, + "end": 6412.78, + "probability": 0.877 + }, + { + "start": 6413.1, + "end": 6414.66, + "probability": 0.856 + }, + { + "start": 6415.72, + "end": 6417.66, + "probability": 0.9616 + }, + { + "start": 6418.34, + "end": 6419.54, + "probability": 0.6981 + }, + { + "start": 6419.66, + "end": 6421.02, + "probability": 0.9479 + }, + { + "start": 6421.16, + "end": 6423.26, + "probability": 0.9801 + }, + { + "start": 6424.6, + "end": 6427.4, + "probability": 0.989 + }, + { + "start": 6427.64, + "end": 6428.52, + "probability": 0.7071 + }, + { + "start": 6429.04, + "end": 6432.44, + "probability": 0.9831 + }, + { + "start": 6433.12, + "end": 6434.18, + "probability": 0.6738 + }, + { + "start": 6435.0, + "end": 6436.68, + "probability": 0.9636 + }, + { + "start": 6437.4, + "end": 6438.54, + "probability": 0.9608 + }, + { + "start": 6438.98, + "end": 6440.36, + "probability": 0.9805 + }, + { + "start": 6440.42, + "end": 6441.06, + "probability": 0.9702 + }, + { + "start": 6441.1, + "end": 6441.94, + "probability": 0.995 + }, + { + "start": 6441.98, + "end": 6443.74, + "probability": 0.9182 + }, + { + "start": 6444.06, + "end": 6445.68, + "probability": 0.9728 + }, + { + "start": 6446.12, + "end": 6448.3, + "probability": 0.9963 + }, + { + "start": 6448.6, + "end": 6449.6, + "probability": 0.9876 + }, + { + "start": 6450.06, + "end": 6450.76, + "probability": 0.9166 + }, + { + "start": 6451.46, + "end": 6454.0, + "probability": 0.9939 + }, + { + "start": 6454.6, + "end": 6457.46, + "probability": 0.8528 + }, + { + "start": 6458.26, + "end": 6462.44, + "probability": 0.8856 + }, + { + "start": 6463.12, + "end": 6464.74, + "probability": 0.9365 + }, + { + "start": 6465.04, + "end": 6466.18, + "probability": 0.1603 + }, + { + "start": 6466.48, + "end": 6466.8, + "probability": 0.6592 + }, + { + "start": 6467.56, + "end": 6469.98, + "probability": 0.8691 + }, + { + "start": 6470.64, + "end": 6471.42, + "probability": 0.7181 + }, + { + "start": 6471.52, + "end": 6473.6, + "probability": 0.8921 + }, + { + "start": 6473.6, + "end": 6477.86, + "probability": 0.9659 + }, + { + "start": 6478.72, + "end": 6480.06, + "probability": 0.9913 + }, + { + "start": 6480.62, + "end": 6484.08, + "probability": 0.7151 + }, + { + "start": 6484.2, + "end": 6484.74, + "probability": 0.737 + }, + { + "start": 6485.68, + "end": 6489.1, + "probability": 0.9854 + }, + { + "start": 6489.22, + "end": 6489.84, + "probability": 0.8713 + }, + { + "start": 6489.94, + "end": 6490.74, + "probability": 0.9187 + }, + { + "start": 6490.8, + "end": 6495.16, + "probability": 0.9263 + }, + { + "start": 6495.8, + "end": 6497.48, + "probability": 0.9843 + }, + { + "start": 6498.0, + "end": 6499.56, + "probability": 0.9553 + }, + { + "start": 6500.16, + "end": 6502.76, + "probability": 0.9493 + }, + { + "start": 6503.32, + "end": 6504.32, + "probability": 0.9974 + }, + { + "start": 6504.9, + "end": 6507.16, + "probability": 0.8176 + }, + { + "start": 6508.2, + "end": 6508.64, + "probability": 0.592 + }, + { + "start": 6509.18, + "end": 6513.44, + "probability": 0.9927 + }, + { + "start": 6513.86, + "end": 6514.64, + "probability": 0.8838 + }, + { + "start": 6514.78, + "end": 6515.34, + "probability": 0.9888 + }, + { + "start": 6516.16, + "end": 6516.86, + "probability": 0.9782 + }, + { + "start": 6517.46, + "end": 6519.28, + "probability": 0.968 + }, + { + "start": 6520.18, + "end": 6520.94, + "probability": 0.7964 + }, + { + "start": 6521.18, + "end": 6522.94, + "probability": 0.9587 + }, + { + "start": 6523.54, + "end": 6524.8, + "probability": 0.8113 + }, + { + "start": 6525.1, + "end": 6529.18, + "probability": 0.9954 + }, + { + "start": 6529.46, + "end": 6531.64, + "probability": 0.9908 + }, + { + "start": 6532.08, + "end": 6532.6, + "probability": 0.5863 + }, + { + "start": 6532.64, + "end": 6533.0, + "probability": 0.8112 + }, + { + "start": 6533.36, + "end": 6534.1, + "probability": 0.6206 + }, + { + "start": 6534.42, + "end": 6536.48, + "probability": 0.8694 + }, + { + "start": 6536.5, + "end": 6537.98, + "probability": 0.9551 + }, + { + "start": 6538.32, + "end": 6541.42, + "probability": 0.9602 + }, + { + "start": 6541.9, + "end": 6542.31, + "probability": 0.9111 + }, + { + "start": 6543.06, + "end": 6546.4, + "probability": 0.9973 + }, + { + "start": 6547.06, + "end": 6548.2, + "probability": 0.9393 + }, + { + "start": 6549.1, + "end": 6550.26, + "probability": 0.8792 + }, + { + "start": 6550.8, + "end": 6551.58, + "probability": 0.563 + }, + { + "start": 6551.66, + "end": 6552.32, + "probability": 0.9172 + }, + { + "start": 6552.48, + "end": 6553.07, + "probability": 0.9093 + }, + { + "start": 6553.16, + "end": 6555.34, + "probability": 0.8669 + }, + { + "start": 6555.46, + "end": 6555.98, + "probability": 0.7 + }, + { + "start": 6569.76, + "end": 6569.86, + "probability": 0.9082 + }, + { + "start": 6591.36, + "end": 6592.28, + "probability": 0.0649 + }, + { + "start": 6592.28, + "end": 6594.9, + "probability": 0.1212 + }, + { + "start": 6594.9, + "end": 6598.32, + "probability": 0.0227 + }, + { + "start": 6598.5, + "end": 6599.54, + "probability": 0.285 + }, + { + "start": 6599.54, + "end": 6599.66, + "probability": 0.5138 + }, + { + "start": 6602.19, + "end": 6604.24, + "probability": 0.0667 + }, + { + "start": 6604.84, + "end": 6610.0, + "probability": 0.0369 + }, + { + "start": 6610.52, + "end": 6611.46, + "probability": 0.0666 + }, + { + "start": 6612.88, + "end": 6613.94, + "probability": 0.1821 + }, + { + "start": 6613.94, + "end": 6614.14, + "probability": 0.1349 + }, + { + "start": 6614.14, + "end": 6614.14, + "probability": 0.0682 + }, + { + "start": 6614.14, + "end": 6614.48, + "probability": 0.0217 + }, + { + "start": 6614.7, + "end": 6616.04, + "probability": 0.1417 + }, + { + "start": 6624.04, + "end": 6624.6, + "probability": 0.0175 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.0, + "end": 6654.0, + "probability": 0.0 + }, + { + "start": 6654.34, + "end": 6654.68, + "probability": 0.0255 + }, + { + "start": 6655.32, + "end": 6656.14, + "probability": 0.7181 + }, + { + "start": 6656.84, + "end": 6660.1, + "probability": 0.9439 + }, + { + "start": 6661.58, + "end": 6661.76, + "probability": 0.3186 + }, + { + "start": 6661.94, + "end": 6667.06, + "probability": 0.9938 + }, + { + "start": 6667.06, + "end": 6672.94, + "probability": 0.9702 + }, + { + "start": 6673.58, + "end": 6678.26, + "probability": 0.9914 + }, + { + "start": 6678.26, + "end": 6685.02, + "probability": 0.9905 + }, + { + "start": 6685.72, + "end": 6688.22, + "probability": 0.99 + }, + { + "start": 6688.9, + "end": 6691.86, + "probability": 0.9971 + }, + { + "start": 6692.5, + "end": 6698.96, + "probability": 0.5464 + }, + { + "start": 6698.96, + "end": 6699.52, + "probability": 0.8076 + }, + { + "start": 6699.6, + "end": 6700.08, + "probability": 0.6482 + }, + { + "start": 6700.22, + "end": 6701.68, + "probability": 0.706 + }, + { + "start": 6701.68, + "end": 6710.66, + "probability": 0.9831 + }, + { + "start": 6711.38, + "end": 6714.94, + "probability": 0.9672 + }, + { + "start": 6715.14, + "end": 6717.1, + "probability": 0.9812 + }, + { + "start": 6717.82, + "end": 6723.9, + "probability": 0.9785 + }, + { + "start": 6724.48, + "end": 6725.8, + "probability": 0.9727 + }, + { + "start": 6726.54, + "end": 6730.58, + "probability": 0.8702 + }, + { + "start": 6730.7, + "end": 6731.21, + "probability": 0.9854 + }, + { + "start": 6731.74, + "end": 6734.06, + "probability": 0.984 + }, + { + "start": 6734.22, + "end": 6737.24, + "probability": 0.9904 + }, + { + "start": 6737.42, + "end": 6739.9, + "probability": 0.7289 + }, + { + "start": 6740.92, + "end": 6743.86, + "probability": 0.9993 + }, + { + "start": 6744.34, + "end": 6746.52, + "probability": 0.9939 + }, + { + "start": 6747.04, + "end": 6751.5, + "probability": 0.9897 + }, + { + "start": 6751.64, + "end": 6753.32, + "probability": 0.8669 + }, + { + "start": 6753.64, + "end": 6754.32, + "probability": 0.9587 + }, + { + "start": 6755.04, + "end": 6755.56, + "probability": 0.9801 + }, + { + "start": 6756.12, + "end": 6757.62, + "probability": 0.8595 + }, + { + "start": 6757.82, + "end": 6759.94, + "probability": 0.9513 + }, + { + "start": 6760.0, + "end": 6761.0, + "probability": 0.6346 + }, + { + "start": 6761.6, + "end": 6763.38, + "probability": 0.8374 + }, + { + "start": 6764.28, + "end": 6774.02, + "probability": 0.9806 + }, + { + "start": 6774.12, + "end": 6774.58, + "probability": 0.8335 + }, + { + "start": 6775.14, + "end": 6775.8, + "probability": 0.5308 + }, + { + "start": 6780.34, + "end": 6782.1, + "probability": 0.587 + }, + { + "start": 6782.16, + "end": 6782.42, + "probability": 0.6871 + }, + { + "start": 6782.7, + "end": 6783.94, + "probability": 0.6221 + }, + { + "start": 6783.98, + "end": 6785.14, + "probability": 0.4966 + }, + { + "start": 6785.22, + "end": 6786.82, + "probability": 0.9241 + }, + { + "start": 6787.0, + "end": 6788.38, + "probability": 0.9777 + }, + { + "start": 6788.92, + "end": 6791.85, + "probability": 0.6483 + }, + { + "start": 6792.08, + "end": 6793.46, + "probability": 0.6539 + }, + { + "start": 6794.1, + "end": 6796.18, + "probability": 0.9937 + }, + { + "start": 6796.54, + "end": 6799.56, + "probability": 0.9129 + }, + { + "start": 6799.94, + "end": 6801.28, + "probability": 0.9444 + }, + { + "start": 6801.54, + "end": 6803.64, + "probability": 0.9832 + }, + { + "start": 6803.76, + "end": 6804.02, + "probability": 0.6067 + }, + { + "start": 6804.36, + "end": 6804.92, + "probability": 0.5537 + }, + { + "start": 6805.0, + "end": 6805.6, + "probability": 0.0801 + }, + { + "start": 6806.62, + "end": 6806.62, + "probability": 0.5943 + }, + { + "start": 6806.62, + "end": 6808.0, + "probability": 0.8063 + }, + { + "start": 6808.06, + "end": 6809.22, + "probability": 0.6696 + }, + { + "start": 6809.32, + "end": 6810.02, + "probability": 0.6638 + }, + { + "start": 6810.08, + "end": 6813.36, + "probability": 0.9969 + }, + { + "start": 6814.02, + "end": 6817.74, + "probability": 0.8867 + }, + { + "start": 6818.26, + "end": 6822.98, + "probability": 0.9749 + }, + { + "start": 6823.12, + "end": 6825.78, + "probability": 0.8831 + }, + { + "start": 6826.0, + "end": 6827.18, + "probability": 0.9684 + }, + { + "start": 6828.29, + "end": 6831.85, + "probability": 0.661 + }, + { + "start": 6832.4, + "end": 6836.44, + "probability": 0.9855 + }, + { + "start": 6836.92, + "end": 6839.46, + "probability": 0.9813 + }, + { + "start": 6840.12, + "end": 6843.17, + "probability": 0.9869 + }, + { + "start": 6844.72, + "end": 6846.72, + "probability": 0.9919 + }, + { + "start": 6847.9, + "end": 6852.52, + "probability": 0.8824 + }, + { + "start": 6852.76, + "end": 6854.98, + "probability": 0.7333 + }, + { + "start": 6855.86, + "end": 6859.82, + "probability": 0.9847 + }, + { + "start": 6860.66, + "end": 6864.44, + "probability": 0.9949 + }, + { + "start": 6865.12, + "end": 6865.38, + "probability": 0.0052 + }, + { + "start": 6865.38, + "end": 6866.74, + "probability": 0.6871 + }, + { + "start": 6867.78, + "end": 6874.02, + "probability": 0.8855 + }, + { + "start": 6874.5, + "end": 6878.0, + "probability": 0.8539 + }, + { + "start": 6880.02, + "end": 6881.18, + "probability": 0.9866 + }, + { + "start": 6881.38, + "end": 6883.12, + "probability": 0.9869 + }, + { + "start": 6883.84, + "end": 6886.64, + "probability": 0.8979 + }, + { + "start": 6886.76, + "end": 6889.32, + "probability": 0.9922 + }, + { + "start": 6889.36, + "end": 6893.6, + "probability": 0.9617 + }, + { + "start": 6893.72, + "end": 6894.7, + "probability": 0.8854 + }, + { + "start": 6895.48, + "end": 6898.36, + "probability": 0.9766 + }, + { + "start": 6898.84, + "end": 6901.59, + "probability": 0.853 + }, + { + "start": 6902.14, + "end": 6905.04, + "probability": 0.9843 + }, + { + "start": 6905.22, + "end": 6907.04, + "probability": 0.9966 + }, + { + "start": 6907.2, + "end": 6910.4, + "probability": 0.817 + }, + { + "start": 6910.46, + "end": 6912.1, + "probability": 0.9009 + }, + { + "start": 6912.12, + "end": 6913.42, + "probability": 0.9835 + }, + { + "start": 6913.9, + "end": 6914.56, + "probability": 0.9111 + }, + { + "start": 6915.24, + "end": 6916.48, + "probability": 0.9963 + }, + { + "start": 6916.54, + "end": 6917.28, + "probability": 0.7774 + }, + { + "start": 6918.02, + "end": 6918.68, + "probability": 0.9303 + }, + { + "start": 6918.72, + "end": 6919.5, + "probability": 0.9673 + }, + { + "start": 6919.92, + "end": 6920.74, + "probability": 0.9907 + }, + { + "start": 6920.76, + "end": 6921.66, + "probability": 0.9926 + }, + { + "start": 6921.72, + "end": 6923.7, + "probability": 0.9847 + }, + { + "start": 6923.94, + "end": 6924.62, + "probability": 0.9541 + }, + { + "start": 6924.68, + "end": 6929.6, + "probability": 0.9963 + }, + { + "start": 6929.7, + "end": 6930.26, + "probability": 0.7347 + }, + { + "start": 6930.34, + "end": 6931.36, + "probability": 0.9814 + }, + { + "start": 6932.06, + "end": 6933.84, + "probability": 0.4517 + }, + { + "start": 6933.88, + "end": 6936.04, + "probability": 0.7211 + }, + { + "start": 6936.62, + "end": 6939.0, + "probability": 0.7852 + }, + { + "start": 6939.54, + "end": 6940.32, + "probability": 0.6769 + }, + { + "start": 6941.36, + "end": 6943.7, + "probability": 0.8803 + }, + { + "start": 6943.82, + "end": 6944.42, + "probability": 0.801 + }, + { + "start": 6944.66, + "end": 6948.76, + "probability": 0.9345 + }, + { + "start": 6949.16, + "end": 6952.76, + "probability": 0.9766 + }, + { + "start": 6953.4, + "end": 6954.44, + "probability": 0.6968 + }, + { + "start": 6955.66, + "end": 6957.0, + "probability": 0.8228 + }, + { + "start": 6957.56, + "end": 6961.66, + "probability": 0.9838 + }, + { + "start": 6961.8, + "end": 6962.5, + "probability": 0.758 + }, + { + "start": 6962.58, + "end": 6964.24, + "probability": 0.7456 + }, + { + "start": 6964.58, + "end": 6968.26, + "probability": 0.985 + }, + { + "start": 6969.02, + "end": 6970.3, + "probability": 0.6996 + }, + { + "start": 6970.52, + "end": 6971.6, + "probability": 0.9704 + }, + { + "start": 6971.88, + "end": 6974.26, + "probability": 0.9952 + }, + { + "start": 6974.26, + "end": 6977.38, + "probability": 0.9747 + }, + { + "start": 6977.76, + "end": 6978.64, + "probability": 0.9513 + }, + { + "start": 6978.76, + "end": 6979.92, + "probability": 0.9647 + }, + { + "start": 6980.26, + "end": 6981.2, + "probability": 0.9814 + }, + { + "start": 6981.34, + "end": 6983.31, + "probability": 0.9683 + }, + { + "start": 6983.64, + "end": 6985.06, + "probability": 0.6123 + }, + { + "start": 6985.14, + "end": 6986.38, + "probability": 0.8621 + }, + { + "start": 6986.58, + "end": 6988.23, + "probability": 0.9727 + }, + { + "start": 6988.4, + "end": 6990.76, + "probability": 0.9922 + }, + { + "start": 6991.1, + "end": 6993.28, + "probability": 0.9896 + }, + { + "start": 6993.84, + "end": 6994.12, + "probability": 0.6324 + }, + { + "start": 6994.24, + "end": 6995.02, + "probability": 0.5518 + }, + { + "start": 6995.1, + "end": 6995.62, + "probability": 0.543 + }, + { + "start": 6995.98, + "end": 6997.38, + "probability": 0.9509 + }, + { + "start": 6997.96, + "end": 7000.32, + "probability": 0.9648 + }, + { + "start": 7000.7, + "end": 7001.52, + "probability": 0.9146 + }, + { + "start": 7001.74, + "end": 7003.8, + "probability": 0.8703 + }, + { + "start": 7004.02, + "end": 7007.48, + "probability": 0.7991 + }, + { + "start": 7007.66, + "end": 7007.66, + "probability": 0.6834 + }, + { + "start": 7007.8, + "end": 7008.52, + "probability": 0.6812 + }, + { + "start": 7009.04, + "end": 7013.66, + "probability": 0.9858 + }, + { + "start": 7013.86, + "end": 7016.78, + "probability": 0.8807 + }, + { + "start": 7016.86, + "end": 7017.5, + "probability": 0.7924 + }, + { + "start": 7037.8, + "end": 7037.8, + "probability": 0.083 + }, + { + "start": 7037.8, + "end": 7037.8, + "probability": 0.0448 + }, + { + "start": 7037.8, + "end": 7040.5, + "probability": 0.6612 + }, + { + "start": 7041.62, + "end": 7044.28, + "probability": 0.95 + }, + { + "start": 7045.36, + "end": 7047.66, + "probability": 0.9752 + }, + { + "start": 7047.9, + "end": 7051.56, + "probability": 0.9746 + }, + { + "start": 7052.84, + "end": 7054.66, + "probability": 0.9619 + }, + { + "start": 7056.18, + "end": 7061.78, + "probability": 0.9964 + }, + { + "start": 7063.14, + "end": 7066.1, + "probability": 0.9976 + }, + { + "start": 7067.1, + "end": 7068.14, + "probability": 0.7612 + }, + { + "start": 7068.84, + "end": 7072.9, + "probability": 0.9937 + }, + { + "start": 7073.5, + "end": 7076.7, + "probability": 0.8617 + }, + { + "start": 7076.74, + "end": 7078.72, + "probability": 0.9844 + }, + { + "start": 7079.34, + "end": 7081.8, + "probability": 0.7887 + }, + { + "start": 7082.7, + "end": 7084.96, + "probability": 0.888 + }, + { + "start": 7085.88, + "end": 7087.68, + "probability": 0.7492 + }, + { + "start": 7088.58, + "end": 7092.5, + "probability": 0.9917 + }, + { + "start": 7093.5, + "end": 7095.98, + "probability": 0.8573 + }, + { + "start": 7097.86, + "end": 7102.76, + "probability": 0.9532 + }, + { + "start": 7104.32, + "end": 7105.7, + "probability": 0.6071 + }, + { + "start": 7106.3, + "end": 7110.24, + "probability": 0.9784 + }, + { + "start": 7111.34, + "end": 7115.26, + "probability": 0.9783 + }, + { + "start": 7115.56, + "end": 7116.64, + "probability": 0.7866 + }, + { + "start": 7117.68, + "end": 7119.11, + "probability": 0.9907 + }, + { + "start": 7119.56, + "end": 7120.18, + "probability": 0.6536 + }, + { + "start": 7120.32, + "end": 7125.06, + "probability": 0.9622 + }, + { + "start": 7125.18, + "end": 7132.78, + "probability": 0.9741 + }, + { + "start": 7134.84, + "end": 7136.44, + "probability": 0.9432 + }, + { + "start": 7138.46, + "end": 7141.66, + "probability": 0.9832 + }, + { + "start": 7143.02, + "end": 7143.62, + "probability": 0.6203 + }, + { + "start": 7145.02, + "end": 7146.36, + "probability": 0.8489 + }, + { + "start": 7146.46, + "end": 7149.54, + "probability": 0.7296 + }, + { + "start": 7149.54, + "end": 7151.18, + "probability": 0.767 + }, + { + "start": 7151.26, + "end": 7152.2, + "probability": 0.9343 + }, + { + "start": 7155.46, + "end": 7156.98, + "probability": 0.9137 + }, + { + "start": 7158.3, + "end": 7160.98, + "probability": 0.9979 + }, + { + "start": 7161.74, + "end": 7162.22, + "probability": 0.6976 + }, + { + "start": 7163.68, + "end": 7165.16, + "probability": 0.9868 + }, + { + "start": 7167.58, + "end": 7168.24, + "probability": 0.7357 + }, + { + "start": 7168.9, + "end": 7171.48, + "probability": 0.508 + }, + { + "start": 7173.28, + "end": 7174.44, + "probability": 0.9283 + }, + { + "start": 7175.72, + "end": 7178.66, + "probability": 0.9465 + }, + { + "start": 7178.78, + "end": 7180.78, + "probability": 0.9443 + }, + { + "start": 7180.84, + "end": 7181.32, + "probability": 0.7637 + }, + { + "start": 7181.38, + "end": 7182.54, + "probability": 0.937 + }, + { + "start": 7183.44, + "end": 7184.58, + "probability": 0.6663 + }, + { + "start": 7186.18, + "end": 7187.74, + "probability": 0.9813 + }, + { + "start": 7187.92, + "end": 7190.34, + "probability": 0.9799 + }, + { + "start": 7192.14, + "end": 7197.18, + "probability": 0.9343 + }, + { + "start": 7197.18, + "end": 7201.06, + "probability": 0.9842 + }, + { + "start": 7201.6, + "end": 7202.58, + "probability": 0.6585 + }, + { + "start": 7203.28, + "end": 7204.42, + "probability": 0.927 + }, + { + "start": 7204.78, + "end": 7208.26, + "probability": 0.9942 + }, + { + "start": 7209.32, + "end": 7212.24, + "probability": 0.9149 + }, + { + "start": 7212.94, + "end": 7213.72, + "probability": 0.8452 + }, + { + "start": 7214.74, + "end": 7217.91, + "probability": 0.896 + }, + { + "start": 7218.8, + "end": 7219.66, + "probability": 0.8343 + }, + { + "start": 7220.24, + "end": 7223.58, + "probability": 0.989 + }, + { + "start": 7223.62, + "end": 7224.38, + "probability": 0.7222 + }, + { + "start": 7224.96, + "end": 7226.98, + "probability": 0.888 + }, + { + "start": 7229.72, + "end": 7232.04, + "probability": 0.8887 + }, + { + "start": 7243.14, + "end": 7243.18, + "probability": 0.1601 + }, + { + "start": 7243.18, + "end": 7243.48, + "probability": 0.1762 + }, + { + "start": 7243.48, + "end": 7243.5, + "probability": 0.1007 + }, + { + "start": 7243.5, + "end": 7243.74, + "probability": 0.0564 + }, + { + "start": 7259.98, + "end": 7261.74, + "probability": 0.1556 + }, + { + "start": 7267.1, + "end": 7268.16, + "probability": 0.3379 + }, + { + "start": 7268.94, + "end": 7271.94, + "probability": 0.8961 + }, + { + "start": 7272.6, + "end": 7273.8, + "probability": 0.9112 + }, + { + "start": 7273.82, + "end": 7277.8, + "probability": 0.9521 + }, + { + "start": 7278.32, + "end": 7281.42, + "probability": 0.8188 + }, + { + "start": 7282.2, + "end": 7282.96, + "probability": 0.5472 + }, + { + "start": 7283.96, + "end": 7285.38, + "probability": 0.6533 + }, + { + "start": 7285.4, + "end": 7285.88, + "probability": 0.3912 + }, + { + "start": 7288.04, + "end": 7289.74, + "probability": 0.9101 + }, + { + "start": 7289.94, + "end": 7296.08, + "probability": 0.9759 + }, + { + "start": 7296.3, + "end": 7298.26, + "probability": 0.9403 + }, + { + "start": 7298.26, + "end": 7300.62, + "probability": 0.9979 + }, + { + "start": 7301.46, + "end": 7302.18, + "probability": 0.7166 + }, + { + "start": 7303.0, + "end": 7304.4, + "probability": 0.6993 + }, + { + "start": 7305.0, + "end": 7307.32, + "probability": 0.4719 + }, + { + "start": 7308.46, + "end": 7311.38, + "probability": 0.9463 + }, + { + "start": 7311.52, + "end": 7313.02, + "probability": 0.7391 + }, + { + "start": 7315.12, + "end": 7319.78, + "probability": 0.9961 + }, + { + "start": 7319.78, + "end": 7324.76, + "probability": 0.987 + }, + { + "start": 7326.4, + "end": 7328.18, + "probability": 0.5917 + }, + { + "start": 7328.92, + "end": 7331.6, + "probability": 0.9554 + }, + { + "start": 7332.3, + "end": 7336.1, + "probability": 0.9919 + }, + { + "start": 7337.16, + "end": 7337.82, + "probability": 0.7132 + }, + { + "start": 7337.94, + "end": 7340.16, + "probability": 0.9699 + }, + { + "start": 7340.64, + "end": 7343.88, + "probability": 0.975 + }, + { + "start": 7344.38, + "end": 7347.4, + "probability": 0.986 + }, + { + "start": 7348.04, + "end": 7352.6, + "probability": 0.9421 + }, + { + "start": 7353.16, + "end": 7353.6, + "probability": 0.6858 + }, + { + "start": 7354.12, + "end": 7356.58, + "probability": 0.9775 + }, + { + "start": 7357.3, + "end": 7361.32, + "probability": 0.9751 + }, + { + "start": 7361.78, + "end": 7362.81, + "probability": 0.8589 + }, + { + "start": 7363.3, + "end": 7364.7, + "probability": 0.8969 + }, + { + "start": 7365.68, + "end": 7369.28, + "probability": 0.985 + }, + { + "start": 7370.1, + "end": 7374.64, + "probability": 0.9908 + }, + { + "start": 7375.86, + "end": 7380.2, + "probability": 0.9354 + }, + { + "start": 7381.0, + "end": 7383.18, + "probability": 0.8885 + }, + { + "start": 7383.9, + "end": 7385.98, + "probability": 0.9572 + }, + { + "start": 7386.34, + "end": 7389.26, + "probability": 0.9238 + }, + { + "start": 7389.92, + "end": 7392.44, + "probability": 0.9955 + }, + { + "start": 7393.16, + "end": 7398.3, + "probability": 0.9926 + }, + { + "start": 7398.98, + "end": 7402.8, + "probability": 0.9979 + }, + { + "start": 7403.54, + "end": 7409.32, + "probability": 0.9961 + }, + { + "start": 7410.14, + "end": 7415.98, + "probability": 0.991 + }, + { + "start": 7416.44, + "end": 7419.74, + "probability": 0.996 + }, + { + "start": 7423.34, + "end": 7428.34, + "probability": 0.9731 + }, + { + "start": 7429.06, + "end": 7431.9, + "probability": 0.9907 + }, + { + "start": 7432.62, + "end": 7437.07, + "probability": 0.9941 + }, + { + "start": 7437.88, + "end": 7442.82, + "probability": 0.9787 + }, + { + "start": 7442.98, + "end": 7443.48, + "probability": 0.7364 + }, + { + "start": 7444.24, + "end": 7445.52, + "probability": 0.9257 + }, + { + "start": 7446.18, + "end": 7447.52, + "probability": 0.9545 + }, + { + "start": 7455.04, + "end": 7456.82, + "probability": 0.7816 + }, + { + "start": 7457.96, + "end": 7461.1, + "probability": 0.8708 + }, + { + "start": 7462.06, + "end": 7465.94, + "probability": 0.8843 + }, + { + "start": 7467.24, + "end": 7470.46, + "probability": 0.9159 + }, + { + "start": 7470.56, + "end": 7475.0, + "probability": 0.9045 + }, + { + "start": 7476.22, + "end": 7479.84, + "probability": 0.938 + }, + { + "start": 7480.98, + "end": 7485.38, + "probability": 0.992 + }, + { + "start": 7486.14, + "end": 7486.92, + "probability": 0.7787 + }, + { + "start": 7487.02, + "end": 7493.3, + "probability": 0.9475 + }, + { + "start": 7493.42, + "end": 7494.12, + "probability": 0.7358 + }, + { + "start": 7494.54, + "end": 7495.54, + "probability": 0.8994 + }, + { + "start": 7496.28, + "end": 7499.78, + "probability": 0.9931 + }, + { + "start": 7500.76, + "end": 7501.2, + "probability": 0.5531 + }, + { + "start": 7501.44, + "end": 7505.92, + "probability": 0.9699 + }, + { + "start": 7505.92, + "end": 7508.8, + "probability": 0.9993 + }, + { + "start": 7510.28, + "end": 7514.9, + "probability": 0.9316 + }, + { + "start": 7515.94, + "end": 7519.8, + "probability": 0.9788 + }, + { + "start": 7519.86, + "end": 7522.9, + "probability": 0.9041 + }, + { + "start": 7523.46, + "end": 7524.18, + "probability": 0.5008 + }, + { + "start": 7525.4, + "end": 7528.32, + "probability": 0.9728 + }, + { + "start": 7529.06, + "end": 7531.64, + "probability": 0.9679 + }, + { + "start": 7532.94, + "end": 7535.94, + "probability": 0.9609 + }, + { + "start": 7537.08, + "end": 7539.28, + "probability": 0.9946 + }, + { + "start": 7540.78, + "end": 7542.98, + "probability": 0.9767 + }, + { + "start": 7543.32, + "end": 7544.0, + "probability": 0.3934 + }, + { + "start": 7544.24, + "end": 7547.66, + "probability": 0.9049 + }, + { + "start": 7547.9, + "end": 7552.12, + "probability": 0.8383 + }, + { + "start": 7552.78, + "end": 7553.28, + "probability": 0.7471 + }, + { + "start": 7553.52, + "end": 7560.82, + "probability": 0.9871 + }, + { + "start": 7561.38, + "end": 7563.3, + "probability": 0.9974 + }, + { + "start": 7565.24, + "end": 7567.68, + "probability": 0.8486 + }, + { + "start": 7567.68, + "end": 7570.32, + "probability": 0.9973 + }, + { + "start": 7570.64, + "end": 7574.2, + "probability": 0.9842 + }, + { + "start": 7575.02, + "end": 7579.36, + "probability": 0.9863 + }, + { + "start": 7580.26, + "end": 7582.58, + "probability": 0.9612 + }, + { + "start": 7583.42, + "end": 7584.86, + "probability": 0.9795 + }, + { + "start": 7586.2, + "end": 7588.96, + "probability": 0.9885 + }, + { + "start": 7590.06, + "end": 7592.38, + "probability": 0.9451 + }, + { + "start": 7593.02, + "end": 7598.32, + "probability": 0.9521 + }, + { + "start": 7598.42, + "end": 7601.1, + "probability": 0.7235 + }, + { + "start": 7601.48, + "end": 7603.9, + "probability": 0.9541 + }, + { + "start": 7604.18, + "end": 7606.18, + "probability": 0.869 + }, + { + "start": 7606.54, + "end": 7607.8, + "probability": 0.6742 + }, + { + "start": 7608.0, + "end": 7609.28, + "probability": 0.7206 + }, + { + "start": 7609.54, + "end": 7610.08, + "probability": 0.9462 + }, + { + "start": 7610.26, + "end": 7610.7, + "probability": 0.6554 + }, + { + "start": 7610.76, + "end": 7611.38, + "probability": 0.4688 + }, + { + "start": 7611.78, + "end": 7613.1, + "probability": 0.7832 + }, + { + "start": 7613.96, + "end": 7615.02, + "probability": 0.9155 + }, + { + "start": 7615.88, + "end": 7617.84, + "probability": 0.9915 + }, + { + "start": 7618.64, + "end": 7621.36, + "probability": 0.9866 + }, + { + "start": 7622.22, + "end": 7622.7, + "probability": 0.8939 + }, + { + "start": 7623.38, + "end": 7626.1, + "probability": 0.9791 + }, + { + "start": 7626.84, + "end": 7628.54, + "probability": 0.2673 + }, + { + "start": 7642.64, + "end": 7645.64, + "probability": 0.686 + }, + { + "start": 7647.62, + "end": 7650.82, + "probability": 0.9954 + }, + { + "start": 7650.82, + "end": 7654.4, + "probability": 0.9986 + }, + { + "start": 7655.18, + "end": 7655.18, + "probability": 0.7935 + }, + { + "start": 7655.76, + "end": 7661.1, + "probability": 0.9919 + }, + { + "start": 7662.08, + "end": 7663.48, + "probability": 0.6105 + }, + { + "start": 7664.14, + "end": 7665.92, + "probability": 0.9897 + }, + { + "start": 7666.78, + "end": 7670.72, + "probability": 0.9932 + }, + { + "start": 7670.72, + "end": 7676.0, + "probability": 0.9982 + }, + { + "start": 7676.6, + "end": 7677.58, + "probability": 0.9607 + }, + { + "start": 7678.62, + "end": 7682.68, + "probability": 0.9258 + }, + { + "start": 7683.28, + "end": 7686.7, + "probability": 0.9974 + }, + { + "start": 7688.42, + "end": 7691.52, + "probability": 0.9973 + }, + { + "start": 7691.74, + "end": 7695.54, + "probability": 0.9939 + }, + { + "start": 7695.96, + "end": 7697.68, + "probability": 0.9394 + }, + { + "start": 7698.7, + "end": 7701.7, + "probability": 0.9644 + }, + { + "start": 7703.4, + "end": 7706.92, + "probability": 0.9846 + }, + { + "start": 7707.78, + "end": 7710.6, + "probability": 0.9928 + }, + { + "start": 7712.08, + "end": 7716.3, + "probability": 0.993 + }, + { + "start": 7717.12, + "end": 7719.66, + "probability": 0.5792 + }, + { + "start": 7720.1, + "end": 7724.18, + "probability": 0.9182 + }, + { + "start": 7725.54, + "end": 7726.9, + "probability": 0.6338 + }, + { + "start": 7727.76, + "end": 7728.76, + "probability": 0.7219 + }, + { + "start": 7729.48, + "end": 7735.06, + "probability": 0.85 + }, + { + "start": 7735.76, + "end": 7736.92, + "probability": 0.9775 + }, + { + "start": 7740.6, + "end": 7742.74, + "probability": 0.9748 + }, + { + "start": 7743.8, + "end": 7748.62, + "probability": 0.979 + }, + { + "start": 7748.62, + "end": 7752.6, + "probability": 0.9985 + }, + { + "start": 7753.58, + "end": 7755.62, + "probability": 0.5574 + }, + { + "start": 7755.86, + "end": 7756.94, + "probability": 0.969 + }, + { + "start": 7757.42, + "end": 7762.34, + "probability": 0.9858 + }, + { + "start": 7763.32, + "end": 7763.98, + "probability": 0.8904 + }, + { + "start": 7764.26, + "end": 7768.12, + "probability": 0.9819 + }, + { + "start": 7769.08, + "end": 7770.3, + "probability": 0.8313 + }, + { + "start": 7770.9, + "end": 7774.22, + "probability": 0.8127 + }, + { + "start": 7774.7, + "end": 7778.86, + "probability": 0.7923 + }, + { + "start": 7780.16, + "end": 7785.22, + "probability": 0.9897 + }, + { + "start": 7786.02, + "end": 7791.84, + "probability": 0.9948 + }, + { + "start": 7792.48, + "end": 7793.84, + "probability": 0.9826 + }, + { + "start": 7794.52, + "end": 7800.04, + "probability": 0.9191 + }, + { + "start": 7803.58, + "end": 7811.7, + "probability": 0.8012 + }, + { + "start": 7812.4, + "end": 7814.58, + "probability": 0.9532 + }, + { + "start": 7815.92, + "end": 7816.3, + "probability": 0.63 + }, + { + "start": 7816.32, + "end": 7816.82, + "probability": 0.7615 + }, + { + "start": 7817.5, + "end": 7820.18, + "probability": 0.9414 + }, + { + "start": 7837.66, + "end": 7839.42, + "probability": 0.8088 + }, + { + "start": 7840.22, + "end": 7849.7, + "probability": 0.9943 + }, + { + "start": 7849.96, + "end": 7852.14, + "probability": 0.9663 + }, + { + "start": 7852.9, + "end": 7854.82, + "probability": 0.8346 + }, + { + "start": 7856.26, + "end": 7858.84, + "probability": 0.9707 + }, + { + "start": 7859.34, + "end": 7861.0, + "probability": 0.9663 + }, + { + "start": 7862.21, + "end": 7867.72, + "probability": 0.8775 + }, + { + "start": 7868.8, + "end": 7870.64, + "probability": 0.8614 + }, + { + "start": 7871.2, + "end": 7873.26, + "probability": 0.9604 + }, + { + "start": 7874.2, + "end": 7878.26, + "probability": 0.8866 + }, + { + "start": 7878.98, + "end": 7881.88, + "probability": 0.9512 + }, + { + "start": 7883.2, + "end": 7884.28, + "probability": 0.9148 + }, + { + "start": 7884.96, + "end": 7888.54, + "probability": 0.762 + }, + { + "start": 7891.34, + "end": 7892.58, + "probability": 0.6032 + }, + { + "start": 7895.01, + "end": 7897.46, + "probability": 0.6733 + }, + { + "start": 7897.54, + "end": 7899.56, + "probability": 0.9969 + }, + { + "start": 7900.88, + "end": 7905.02, + "probability": 0.9658 + }, + { + "start": 7906.12, + "end": 7908.26, + "probability": 0.9783 + }, + { + "start": 7909.7, + "end": 7913.46, + "probability": 0.9951 + }, + { + "start": 7914.54, + "end": 7917.22, + "probability": 0.9707 + }, + { + "start": 7919.16, + "end": 7921.46, + "probability": 0.9873 + }, + { + "start": 7922.62, + "end": 7929.22, + "probability": 0.9924 + }, + { + "start": 7930.58, + "end": 7932.6, + "probability": 0.9799 + }, + { + "start": 7933.1, + "end": 7934.7, + "probability": 0.8112 + }, + { + "start": 7935.08, + "end": 7935.74, + "probability": 0.8228 + }, + { + "start": 7937.3, + "end": 7939.8, + "probability": 0.9006 + }, + { + "start": 7940.92, + "end": 7941.78, + "probability": 0.8848 + }, + { + "start": 7942.66, + "end": 7944.1, + "probability": 0.852 + }, + { + "start": 7944.96, + "end": 7946.24, + "probability": 0.9527 + }, + { + "start": 7947.2, + "end": 7948.6, + "probability": 0.9806 + }, + { + "start": 7950.7, + "end": 7951.6, + "probability": 0.9103 + }, + { + "start": 7952.78, + "end": 7956.9, + "probability": 0.9968 + }, + { + "start": 7957.34, + "end": 7958.51, + "probability": 0.9774 + }, + { + "start": 7959.14, + "end": 7961.18, + "probability": 0.9653 + }, + { + "start": 7961.58, + "end": 7964.22, + "probability": 0.8096 + }, + { + "start": 7965.58, + "end": 7967.1, + "probability": 0.7359 + }, + { + "start": 7970.32, + "end": 7974.88, + "probability": 0.8299 + }, + { + "start": 7975.74, + "end": 7980.16, + "probability": 0.9524 + }, + { + "start": 7981.2, + "end": 7983.18, + "probability": 0.8769 + }, + { + "start": 7985.28, + "end": 7988.8, + "probability": 0.9805 + }, + { + "start": 7990.16, + "end": 7993.26, + "probability": 0.9962 + }, + { + "start": 7993.26, + "end": 7999.94, + "probability": 0.9866 + }, + { + "start": 8001.58, + "end": 8002.32, + "probability": 0.4889 + }, + { + "start": 8003.62, + "end": 8005.38, + "probability": 0.7673 + }, + { + "start": 8005.86, + "end": 8008.62, + "probability": 0.7843 + }, + { + "start": 8009.02, + "end": 8010.96, + "probability": 0.6263 + }, + { + "start": 8011.8, + "end": 8014.16, + "probability": 0.959 + }, + { + "start": 8014.22, + "end": 8014.88, + "probability": 0.5622 + }, + { + "start": 8015.28, + "end": 8016.18, + "probability": 0.72 + }, + { + "start": 8016.66, + "end": 8018.86, + "probability": 0.9893 + }, + { + "start": 8019.42, + "end": 8022.9, + "probability": 0.9846 + }, + { + "start": 8023.58, + "end": 8027.94, + "probability": 0.9946 + }, + { + "start": 8028.8, + "end": 8031.56, + "probability": 0.7693 + }, + { + "start": 8032.16, + "end": 8032.44, + "probability": 0.7042 + }, + { + "start": 8032.44, + "end": 8033.22, + "probability": 0.5164 + }, + { + "start": 8033.4, + "end": 8033.8, + "probability": 0.6639 + }, + { + "start": 8033.86, + "end": 8038.1, + "probability": 0.9503 + }, + { + "start": 8039.67, + "end": 8042.5, + "probability": 0.7175 + }, + { + "start": 8042.76, + "end": 8047.04, + "probability": 0.9305 + }, + { + "start": 8047.62, + "end": 8048.1, + "probability": 0.7208 + }, + { + "start": 8048.9, + "end": 8049.22, + "probability": 0.0859 + }, + { + "start": 8049.52, + "end": 8049.78, + "probability": 0.0082 + }, + { + "start": 8049.78, + "end": 8049.78, + "probability": 0.2918 + }, + { + "start": 8049.78, + "end": 8051.9, + "probability": 0.5078 + }, + { + "start": 8051.96, + "end": 8052.4, + "probability": 0.8257 + }, + { + "start": 8052.54, + "end": 8053.74, + "probability": 0.928 + }, + { + "start": 8053.86, + "end": 8055.22, + "probability": 0.7144 + }, + { + "start": 8055.26, + "end": 8056.94, + "probability": 0.9528 + }, + { + "start": 8057.14, + "end": 8061.16, + "probability": 0.9875 + }, + { + "start": 8061.16, + "end": 8063.46, + "probability": 0.8249 + }, + { + "start": 8063.46, + "end": 8065.78, + "probability": 0.4986 + }, + { + "start": 8069.44, + "end": 8070.68, + "probability": 0.6364 + }, + { + "start": 8071.26, + "end": 8074.06, + "probability": 0.8662 + }, + { + "start": 8078.56, + "end": 8080.14, + "probability": 0.9754 + }, + { + "start": 8080.24, + "end": 8080.76, + "probability": 0.8259 + }, + { + "start": 8080.92, + "end": 8083.88, + "probability": 0.7966 + }, + { + "start": 8083.88, + "end": 8083.88, + "probability": 0.9667 + }, + { + "start": 8083.92, + "end": 8084.94, + "probability": 0.6439 + }, + { + "start": 8085.2, + "end": 8095.72, + "probability": 0.9181 + }, + { + "start": 8095.86, + "end": 8096.48, + "probability": 0.6852 + }, + { + "start": 8096.56, + "end": 8097.44, + "probability": 0.7494 + }, + { + "start": 8097.58, + "end": 8098.32, + "probability": 0.9085 + }, + { + "start": 8098.38, + "end": 8100.58, + "probability": 0.7749 + }, + { + "start": 8101.12, + "end": 8101.2, + "probability": 0.0026 + }, + { + "start": 8102.6, + "end": 8102.82, + "probability": 0.0346 + }, + { + "start": 8102.82, + "end": 8102.82, + "probability": 0.258 + }, + { + "start": 8102.82, + "end": 8102.82, + "probability": 0.541 + }, + { + "start": 8102.82, + "end": 8103.78, + "probability": 0.3625 + }, + { + "start": 8104.76, + "end": 8106.78, + "probability": 0.6583 + }, + { + "start": 8108.64, + "end": 8109.54, + "probability": 0.6372 + }, + { + "start": 8123.26, + "end": 8124.08, + "probability": 0.5807 + }, + { + "start": 8124.16, + "end": 8125.2, + "probability": 0.8571 + }, + { + "start": 8125.36, + "end": 8127.54, + "probability": 0.9936 + }, + { + "start": 8127.68, + "end": 8129.86, + "probability": 0.9871 + }, + { + "start": 8130.94, + "end": 8133.92, + "probability": 0.9675 + }, + { + "start": 8134.8, + "end": 8135.82, + "probability": 0.9837 + }, + { + "start": 8136.5, + "end": 8139.16, + "probability": 0.9771 + }, + { + "start": 8139.38, + "end": 8141.68, + "probability": 0.9583 + }, + { + "start": 8142.48, + "end": 8144.13, + "probability": 0.9882 + }, + { + "start": 8145.1, + "end": 8148.54, + "probability": 0.9772 + }, + { + "start": 8149.26, + "end": 8153.46, + "probability": 0.991 + }, + { + "start": 8154.6, + "end": 8160.0, + "probability": 0.7071 + }, + { + "start": 8160.14, + "end": 8161.44, + "probability": 0.8629 + }, + { + "start": 8162.28, + "end": 8167.46, + "probability": 0.9862 + }, + { + "start": 8167.78, + "end": 8168.98, + "probability": 0.8571 + }, + { + "start": 8169.54, + "end": 8169.9, + "probability": 0.8273 + }, + { + "start": 8170.12, + "end": 8170.78, + "probability": 0.695 + }, + { + "start": 8170.82, + "end": 8171.46, + "probability": 0.9293 + }, + { + "start": 8171.56, + "end": 8172.6, + "probability": 0.4698 + }, + { + "start": 8172.66, + "end": 8173.74, + "probability": 0.5948 + }, + { + "start": 8173.92, + "end": 8174.42, + "probability": 0.8777 + }, + { + "start": 8175.88, + "end": 8177.36, + "probability": 0.9723 + }, + { + "start": 8177.44, + "end": 8181.52, + "probability": 0.9386 + }, + { + "start": 8182.42, + "end": 8187.52, + "probability": 0.9269 + }, + { + "start": 8188.02, + "end": 8189.14, + "probability": 0.9722 + }, + { + "start": 8189.98, + "end": 8190.46, + "probability": 0.8161 + }, + { + "start": 8191.82, + "end": 8194.04, + "probability": 0.9692 + }, + { + "start": 8194.32, + "end": 8195.76, + "probability": 0.9722 + }, + { + "start": 8196.1, + "end": 8201.62, + "probability": 0.9555 + }, + { + "start": 8202.16, + "end": 8202.6, + "probability": 0.9737 + }, + { + "start": 8203.6, + "end": 8204.86, + "probability": 0.7804 + }, + { + "start": 8205.48, + "end": 8209.9, + "probability": 0.864 + }, + { + "start": 8210.78, + "end": 8213.18, + "probability": 0.9576 + }, + { + "start": 8214.7, + "end": 8215.14, + "probability": 0.7622 + }, + { + "start": 8215.18, + "end": 8219.78, + "probability": 0.9937 + }, + { + "start": 8221.0, + "end": 8222.32, + "probability": 0.6299 + }, + { + "start": 8222.92, + "end": 8225.38, + "probability": 0.9812 + }, + { + "start": 8225.6, + "end": 8226.86, + "probability": 0.5101 + }, + { + "start": 8227.98, + "end": 8230.26, + "probability": 0.9634 + }, + { + "start": 8230.98, + "end": 8234.4, + "probability": 0.9984 + }, + { + "start": 8234.98, + "end": 8237.3, + "probability": 0.991 + }, + { + "start": 8237.9, + "end": 8243.16, + "probability": 0.8411 + }, + { + "start": 8244.7, + "end": 8247.34, + "probability": 0.9941 + }, + { + "start": 8247.48, + "end": 8248.72, + "probability": 0.9699 + }, + { + "start": 8249.14, + "end": 8252.56, + "probability": 0.9933 + }, + { + "start": 8253.56, + "end": 8254.62, + "probability": 0.8723 + }, + { + "start": 8255.34, + "end": 8257.46, + "probability": 0.9523 + }, + { + "start": 8258.0, + "end": 8260.94, + "probability": 0.9764 + }, + { + "start": 8261.12, + "end": 8262.32, + "probability": 0.9396 + }, + { + "start": 8263.06, + "end": 8266.0, + "probability": 0.9937 + }, + { + "start": 8266.0, + "end": 8270.24, + "probability": 0.9132 + }, + { + "start": 8270.5, + "end": 8270.82, + "probability": 0.8284 + }, + { + "start": 8271.82, + "end": 8272.54, + "probability": 0.5385 + }, + { + "start": 8272.72, + "end": 8275.26, + "probability": 0.8496 + }, + { + "start": 8275.58, + "end": 8276.32, + "probability": 0.9297 + }, + { + "start": 8276.34, + "end": 8277.5, + "probability": 0.9614 + }, + { + "start": 8290.96, + "end": 8292.9, + "probability": 0.6457 + }, + { + "start": 8293.14, + "end": 8294.6, + "probability": 0.7342 + }, + { + "start": 8294.78, + "end": 8297.46, + "probability": 0.997 + }, + { + "start": 8297.46, + "end": 8301.08, + "probability": 0.9965 + }, + { + "start": 8301.3, + "end": 8305.26, + "probability": 0.9883 + }, + { + "start": 8305.26, + "end": 8308.44, + "probability": 0.9695 + }, + { + "start": 8308.7, + "end": 8312.77, + "probability": 0.9964 + }, + { + "start": 8312.88, + "end": 8317.5, + "probability": 0.9984 + }, + { + "start": 8317.68, + "end": 8321.6, + "probability": 0.9958 + }, + { + "start": 8321.64, + "end": 8323.7, + "probability": 0.9613 + }, + { + "start": 8323.8, + "end": 8326.1, + "probability": 0.9345 + }, + { + "start": 8326.24, + "end": 8329.54, + "probability": 0.9717 + }, + { + "start": 8330.22, + "end": 8330.96, + "probability": 0.8746 + }, + { + "start": 8331.3, + "end": 8335.84, + "probability": 0.9863 + }, + { + "start": 8336.2, + "end": 8336.78, + "probability": 0.7742 + }, + { + "start": 8336.84, + "end": 8337.26, + "probability": 0.7679 + }, + { + "start": 8338.08, + "end": 8340.86, + "probability": 0.9932 + }, + { + "start": 8341.28, + "end": 8343.68, + "probability": 0.8642 + }, + { + "start": 8343.72, + "end": 8346.76, + "probability": 0.9992 + }, + { + "start": 8347.22, + "end": 8350.38, + "probability": 0.9299 + }, + { + "start": 8350.38, + "end": 8353.48, + "probability": 0.9911 + }, + { + "start": 8353.58, + "end": 8355.64, + "probability": 0.9945 + }, + { + "start": 8355.86, + "end": 8357.28, + "probability": 0.9531 + }, + { + "start": 8357.78, + "end": 8361.61, + "probability": 0.9837 + }, + { + "start": 8362.42, + "end": 8366.5, + "probability": 0.9919 + }, + { + "start": 8367.24, + "end": 8367.86, + "probability": 0.9858 + }, + { + "start": 8368.36, + "end": 8370.02, + "probability": 0.1626 + }, + { + "start": 8370.14, + "end": 8370.26, + "probability": 0.262 + }, + { + "start": 8370.26, + "end": 8374.22, + "probability": 0.7594 + }, + { + "start": 8374.24, + "end": 8374.34, + "probability": 0.3576 + }, + { + "start": 8374.34, + "end": 8374.5, + "probability": 0.3843 + }, + { + "start": 8374.58, + "end": 8374.98, + "probability": 0.1346 + }, + { + "start": 8375.16, + "end": 8376.0, + "probability": 0.6529 + }, + { + "start": 8376.44, + "end": 8377.22, + "probability": 0.835 + }, + { + "start": 8377.44, + "end": 8378.44, + "probability": 0.7812 + }, + { + "start": 8378.92, + "end": 8380.66, + "probability": 0.542 + }, + { + "start": 8380.86, + "end": 8381.6, + "probability": 0.7184 + }, + { + "start": 8381.8, + "end": 8382.3, + "probability": 0.2145 + }, + { + "start": 8382.3, + "end": 8383.9, + "probability": 0.8002 + }, + { + "start": 8383.9, + "end": 8386.24, + "probability": 0.7944 + }, + { + "start": 8386.28, + "end": 8386.72, + "probability": 0.1343 + }, + { + "start": 8386.84, + "end": 8388.94, + "probability": 0.8576 + }, + { + "start": 8389.04, + "end": 8389.3, + "probability": 0.0436 + }, + { + "start": 8389.46, + "end": 8392.68, + "probability": 0.8319 + }, + { + "start": 8393.42, + "end": 8394.96, + "probability": 0.718 + }, + { + "start": 8395.2, + "end": 8396.76, + "probability": 0.7639 + }, + { + "start": 8397.48, + "end": 8397.72, + "probability": 0.2549 + }, + { + "start": 8397.84, + "end": 8397.98, + "probability": 0.0237 + }, + { + "start": 8397.98, + "end": 8400.59, + "probability": 0.8134 + }, + { + "start": 8400.88, + "end": 8401.84, + "probability": 0.7102 + }, + { + "start": 8402.0, + "end": 8402.44, + "probability": 0.8906 + }, + { + "start": 8402.54, + "end": 8405.88, + "probability": 0.8633 + }, + { + "start": 8405.94, + "end": 8409.16, + "probability": 0.4434 + }, + { + "start": 8409.26, + "end": 8411.94, + "probability": 0.2097 + }, + { + "start": 8412.04, + "end": 8414.58, + "probability": 0.9839 + }, + { + "start": 8414.68, + "end": 8418.82, + "probability": 0.941 + }, + { + "start": 8419.46, + "end": 8423.18, + "probability": 0.4744 + }, + { + "start": 8423.18, + "end": 8423.92, + "probability": 0.5023 + }, + { + "start": 8424.04, + "end": 8424.22, + "probability": 0.2655 + }, + { + "start": 8424.22, + "end": 8428.44, + "probability": 0.8692 + }, + { + "start": 8428.48, + "end": 8431.02, + "probability": 0.9511 + }, + { + "start": 8431.2, + "end": 8431.7, + "probability": 0.8804 + }, + { + "start": 8431.92, + "end": 8433.96, + "probability": 0.5618 + }, + { + "start": 8433.96, + "end": 8435.48, + "probability": 0.7519 + }, + { + "start": 8435.56, + "end": 8437.26, + "probability": 0.9529 + }, + { + "start": 8437.44, + "end": 8438.3, + "probability": 0.8185 + }, + { + "start": 8438.3, + "end": 8438.3, + "probability": 0.0087 + }, + { + "start": 8438.38, + "end": 8439.42, + "probability": 0.8834 + }, + { + "start": 8439.46, + "end": 8442.12, + "probability": 0.9476 + }, + { + "start": 8442.12, + "end": 8443.36, + "probability": 0.837 + }, + { + "start": 8443.54, + "end": 8445.1, + "probability": 0.4175 + }, + { + "start": 8445.12, + "end": 8445.72, + "probability": 0.6143 + }, + { + "start": 8445.72, + "end": 8446.24, + "probability": 0.4551 + }, + { + "start": 8446.24, + "end": 8447.18, + "probability": 0.8726 + }, + { + "start": 8447.24, + "end": 8447.68, + "probability": 0.5411 + }, + { + "start": 8447.82, + "end": 8448.44, + "probability": 0.483 + }, + { + "start": 8448.56, + "end": 8453.6, + "probability": 0.8621 + }, + { + "start": 8453.6, + "end": 8453.8, + "probability": 0.0361 + }, + { + "start": 8453.8, + "end": 8455.58, + "probability": 0.3799 + }, + { + "start": 8455.96, + "end": 8458.45, + "probability": 0.7629 + }, + { + "start": 8458.64, + "end": 8461.4, + "probability": 0.3508 + }, + { + "start": 8461.5, + "end": 8461.96, + "probability": 0.2924 + }, + { + "start": 8462.02, + "end": 8466.58, + "probability": 0.7012 + }, + { + "start": 8466.82, + "end": 8467.96, + "probability": 0.7532 + }, + { + "start": 8468.06, + "end": 8470.02, + "probability": 0.9285 + }, + { + "start": 8470.02, + "end": 8473.88, + "probability": 0.6137 + }, + { + "start": 8474.36, + "end": 8475.22, + "probability": 0.5345 + }, + { + "start": 8475.22, + "end": 8476.22, + "probability": 0.2204 + }, + { + "start": 8476.38, + "end": 8477.68, + "probability": 0.5065 + }, + { + "start": 8477.7, + "end": 8482.24, + "probability": 0.6477 + }, + { + "start": 8482.38, + "end": 8483.8, + "probability": 0.8415 + }, + { + "start": 8486.14, + "end": 8486.14, + "probability": 0.0128 + }, + { + "start": 8486.14, + "end": 8486.14, + "probability": 0.0513 + }, + { + "start": 8486.14, + "end": 8486.8, + "probability": 0.5823 + }, + { + "start": 8486.9, + "end": 8487.44, + "probability": 0.3191 + }, + { + "start": 8487.48, + "end": 8488.26, + "probability": 0.5045 + }, + { + "start": 8488.3, + "end": 8488.64, + "probability": 0.063 + }, + { + "start": 8488.84, + "end": 8490.68, + "probability": 0.7802 + }, + { + "start": 8490.68, + "end": 8491.86, + "probability": 0.9401 + }, + { + "start": 8492.18, + "end": 8493.94, + "probability": 0.6918 + }, + { + "start": 8494.3, + "end": 8496.06, + "probability": 0.547 + }, + { + "start": 8496.08, + "end": 8498.56, + "probability": 0.8192 + }, + { + "start": 8498.66, + "end": 8501.88, + "probability": 0.9565 + }, + { + "start": 8501.98, + "end": 8502.78, + "probability": 0.7405 + }, + { + "start": 8503.0, + "end": 8506.0, + "probability": 0.9824 + }, + { + "start": 8506.06, + "end": 8506.92, + "probability": 0.5813 + }, + { + "start": 8506.96, + "end": 8507.6, + "probability": 0.9024 + }, + { + "start": 8507.72, + "end": 8508.18, + "probability": 0.6547 + }, + { + "start": 8508.24, + "end": 8510.16, + "probability": 0.9316 + }, + { + "start": 8510.8, + "end": 8511.68, + "probability": 0.2574 + }, + { + "start": 8511.74, + "end": 8512.06, + "probability": 0.5078 + }, + { + "start": 8512.06, + "end": 8514.12, + "probability": 0.5507 + }, + { + "start": 8514.12, + "end": 8515.06, + "probability": 0.746 + }, + { + "start": 8515.36, + "end": 8516.74, + "probability": 0.8794 + }, + { + "start": 8517.96, + "end": 8520.44, + "probability": 0.9502 + }, + { + "start": 8520.68, + "end": 8522.18, + "probability": 0.8562 + }, + { + "start": 8522.26, + "end": 8523.72, + "probability": 0.7485 + }, + { + "start": 8523.74, + "end": 8526.82, + "probability": 0.9017 + }, + { + "start": 8527.2, + "end": 8528.18, + "probability": 0.0966 + }, + { + "start": 8528.4, + "end": 8528.62, + "probability": 0.1833 + }, + { + "start": 8529.3, + "end": 8534.76, + "probability": 0.0153 + }, + { + "start": 8535.32, + "end": 8536.88, + "probability": 0.1988 + }, + { + "start": 8536.88, + "end": 8536.88, + "probability": 0.1766 + }, + { + "start": 8537.36, + "end": 8538.58, + "probability": 0.3315 + }, + { + "start": 8538.74, + "end": 8540.02, + "probability": 0.0435 + }, + { + "start": 8540.04, + "end": 8540.8, + "probability": 0.057 + }, + { + "start": 8541.76, + "end": 8543.9, + "probability": 0.1616 + }, + { + "start": 8544.94, + "end": 8545.26, + "probability": 0.0262 + }, + { + "start": 8547.86, + "end": 8549.96, + "probability": 0.5806 + }, + { + "start": 8551.08, + "end": 8551.08, + "probability": 0.1572 + }, + { + "start": 8551.5, + "end": 8552.1, + "probability": 0.0179 + }, + { + "start": 8552.1, + "end": 8552.1, + "probability": 0.0952 + }, + { + "start": 8552.1, + "end": 8552.66, + "probability": 0.0042 + }, + { + "start": 8554.3, + "end": 8556.66, + "probability": 0.7173 + }, + { + "start": 8557.68, + "end": 8560.76, + "probability": 0.7687 + }, + { + "start": 8561.52, + "end": 8567.76, + "probability": 0.5642 + }, + { + "start": 8568.06, + "end": 8570.76, + "probability": 0.7928 + }, + { + "start": 8571.02, + "end": 8572.8, + "probability": 0.3795 + }, + { + "start": 8572.96, + "end": 8576.97, + "probability": 0.998 + }, + { + "start": 8577.38, + "end": 8578.68, + "probability": 0.9034 + }, + { + "start": 8579.04, + "end": 8579.66, + "probability": 0.8965 + }, + { + "start": 8581.26, + "end": 8581.78, + "probability": 0.4503 + }, + { + "start": 8581.78, + "end": 8582.34, + "probability": 0.5949 + }, + { + "start": 8583.06, + "end": 8584.56, + "probability": 0.748 + }, + { + "start": 8584.94, + "end": 8587.22, + "probability": 0.9717 + }, + { + "start": 8587.42, + "end": 8588.04, + "probability": 0.6544 + }, + { + "start": 8588.06, + "end": 8588.3, + "probability": 0.4203 + }, + { + "start": 8588.3, + "end": 8589.4, + "probability": 0.998 + }, + { + "start": 8589.8, + "end": 8590.62, + "probability": 0.8788 + }, + { + "start": 8590.82, + "end": 8592.94, + "probability": 0.7531 + }, + { + "start": 8594.84, + "end": 8597.92, + "probability": 0.9938 + }, + { + "start": 8598.78, + "end": 8603.92, + "probability": 0.998 + }, + { + "start": 8604.78, + "end": 8606.5, + "probability": 0.9933 + }, + { + "start": 8607.62, + "end": 8611.1, + "probability": 0.9832 + }, + { + "start": 8612.12, + "end": 8615.66, + "probability": 0.8568 + }, + { + "start": 8616.08, + "end": 8618.16, + "probability": 0.7354 + }, + { + "start": 8619.82, + "end": 8623.08, + "probability": 0.9867 + }, + { + "start": 8623.08, + "end": 8626.3, + "probability": 0.9971 + }, + { + "start": 8627.54, + "end": 8632.98, + "probability": 0.9858 + }, + { + "start": 8633.74, + "end": 8638.08, + "probability": 0.8536 + }, + { + "start": 8638.76, + "end": 8641.56, + "probability": 0.9834 + }, + { + "start": 8644.98, + "end": 8648.49, + "probability": 0.9971 + }, + { + "start": 8648.98, + "end": 8655.02, + "probability": 0.9531 + }, + { + "start": 8655.48, + "end": 8657.46, + "probability": 0.9987 + }, + { + "start": 8658.18, + "end": 8660.46, + "probability": 0.979 + }, + { + "start": 8662.1, + "end": 8664.7, + "probability": 0.9907 + }, + { + "start": 8664.7, + "end": 8667.76, + "probability": 0.9971 + }, + { + "start": 8668.16, + "end": 8669.5, + "probability": 0.7523 + }, + { + "start": 8670.48, + "end": 8672.12, + "probability": 0.6257 + }, + { + "start": 8672.72, + "end": 8674.88, + "probability": 0.9762 + }, + { + "start": 8676.6, + "end": 8678.82, + "probability": 0.9191 + }, + { + "start": 8679.68, + "end": 8681.72, + "probability": 0.9219 + }, + { + "start": 8682.78, + "end": 8684.6, + "probability": 0.4708 + }, + { + "start": 8686.36, + "end": 8689.64, + "probability": 0.9514 + }, + { + "start": 8690.2, + "end": 8692.24, + "probability": 0.6907 + }, + { + "start": 8692.94, + "end": 8699.68, + "probability": 0.903 + }, + { + "start": 8699.94, + "end": 8702.72, + "probability": 0.9941 + }, + { + "start": 8704.84, + "end": 8708.14, + "probability": 0.9871 + }, + { + "start": 8708.48, + "end": 8711.72, + "probability": 0.9943 + }, + { + "start": 8712.24, + "end": 8712.7, + "probability": 0.9852 + }, + { + "start": 8713.84, + "end": 8723.9, + "probability": 0.9951 + }, + { + "start": 8724.58, + "end": 8733.24, + "probability": 0.979 + }, + { + "start": 8733.8, + "end": 8738.32, + "probability": 0.9824 + }, + { + "start": 8738.32, + "end": 8742.78, + "probability": 0.9987 + }, + { + "start": 8743.48, + "end": 8746.4, + "probability": 0.9976 + }, + { + "start": 8748.94, + "end": 8750.82, + "probability": 0.9969 + }, + { + "start": 8751.68, + "end": 8752.64, + "probability": 0.7767 + }, + { + "start": 8753.16, + "end": 8754.0, + "probability": 0.7458 + }, + { + "start": 8754.22, + "end": 8757.98, + "probability": 0.9977 + }, + { + "start": 8759.3, + "end": 8767.02, + "probability": 0.9499 + }, + { + "start": 8767.1, + "end": 8767.9, + "probability": 0.8655 + }, + { + "start": 8769.7, + "end": 8773.46, + "probability": 0.9156 + }, + { + "start": 8774.18, + "end": 8778.72, + "probability": 0.9989 + }, + { + "start": 8779.28, + "end": 8787.12, + "probability": 0.9966 + }, + { + "start": 8787.52, + "end": 8788.8, + "probability": 0.9954 + }, + { + "start": 8789.52, + "end": 8794.86, + "probability": 0.9974 + }, + { + "start": 8795.58, + "end": 8797.34, + "probability": 0.9972 + }, + { + "start": 8797.46, + "end": 8798.08, + "probability": 0.7654 + }, + { + "start": 8798.44, + "end": 8800.5, + "probability": 0.8509 + }, + { + "start": 8800.74, + "end": 8802.52, + "probability": 0.9648 + }, + { + "start": 8804.08, + "end": 8805.26, + "probability": 0.9663 + }, + { + "start": 8823.86, + "end": 8824.94, + "probability": 0.6625 + }, + { + "start": 8826.4, + "end": 8827.36, + "probability": 0.8909 + }, + { + "start": 8828.56, + "end": 8829.06, + "probability": 0.6372 + }, + { + "start": 8829.18, + "end": 8832.14, + "probability": 0.9946 + }, + { + "start": 8832.9, + "end": 8833.56, + "probability": 0.9654 + }, + { + "start": 8834.7, + "end": 8836.84, + "probability": 0.9991 + }, + { + "start": 8836.84, + "end": 8839.52, + "probability": 0.9544 + }, + { + "start": 8841.14, + "end": 8844.16, + "probability": 0.9905 + }, + { + "start": 8844.5, + "end": 8845.66, + "probability": 0.7977 + }, + { + "start": 8846.28, + "end": 8849.5, + "probability": 0.9869 + }, + { + "start": 8850.04, + "end": 8852.16, + "probability": 0.9896 + }, + { + "start": 8853.02, + "end": 8859.48, + "probability": 0.9015 + }, + { + "start": 8861.26, + "end": 8862.66, + "probability": 0.9867 + }, + { + "start": 8864.24, + "end": 8866.8, + "probability": 0.856 + }, + { + "start": 8866.8, + "end": 8868.24, + "probability": 0.721 + }, + { + "start": 8868.44, + "end": 8869.68, + "probability": 0.7601 + }, + { + "start": 8870.7, + "end": 8872.38, + "probability": 0.9115 + }, + { + "start": 8873.28, + "end": 8879.64, + "probability": 0.1344 + }, + { + "start": 8879.84, + "end": 8880.64, + "probability": 0.0995 + }, + { + "start": 8880.64, + "end": 8882.8, + "probability": 0.5226 + }, + { + "start": 8882.86, + "end": 8883.62, + "probability": 0.6433 + }, + { + "start": 8883.62, + "end": 8884.1, + "probability": 0.7974 + }, + { + "start": 8884.64, + "end": 8884.82, + "probability": 0.5359 + }, + { + "start": 8885.06, + "end": 8886.72, + "probability": 0.6955 + }, + { + "start": 8887.22, + "end": 8889.56, + "probability": 0.7539 + }, + { + "start": 8889.88, + "end": 8891.72, + "probability": 0.5976 + }, + { + "start": 8891.84, + "end": 8892.4, + "probability": 0.574 + }, + { + "start": 8892.52, + "end": 8892.82, + "probability": 0.3351 + }, + { + "start": 8893.04, + "end": 8894.1, + "probability": 0.1389 + }, + { + "start": 8894.1, + "end": 8896.28, + "probability": 0.348 + }, + { + "start": 8896.86, + "end": 8897.1, + "probability": 0.0305 + }, + { + "start": 8897.1, + "end": 8899.8, + "probability": 0.1899 + }, + { + "start": 8900.22, + "end": 8902.92, + "probability": 0.8999 + }, + { + "start": 8902.92, + "end": 8903.7, + "probability": 0.7648 + }, + { + "start": 8904.06, + "end": 8905.3, + "probability": 0.0655 + }, + { + "start": 8906.08, + "end": 8906.22, + "probability": 0.244 + }, + { + "start": 8906.22, + "end": 8909.46, + "probability": 0.6425 + }, + { + "start": 8910.12, + "end": 8911.26, + "probability": 0.9941 + }, + { + "start": 8912.02, + "end": 8915.66, + "probability": 0.8732 + }, + { + "start": 8916.44, + "end": 8918.07, + "probability": 0.9944 + }, + { + "start": 8919.4, + "end": 8919.4, + "probability": 0.3579 + }, + { + "start": 8919.4, + "end": 8920.42, + "probability": 0.8741 + }, + { + "start": 8920.78, + "end": 8923.22, + "probability": 0.9504 + }, + { + "start": 8923.62, + "end": 8925.86, + "probability": 0.9942 + }, + { + "start": 8926.22, + "end": 8929.77, + "probability": 0.9892 + }, + { + "start": 8931.24, + "end": 8932.16, + "probability": 0.9201 + }, + { + "start": 8932.66, + "end": 8933.46, + "probability": 0.8373 + }, + { + "start": 8933.8, + "end": 8934.54, + "probability": 0.8782 + }, + { + "start": 8934.96, + "end": 8936.0, + "probability": 0.9822 + }, + { + "start": 8936.8, + "end": 8937.38, + "probability": 0.9899 + }, + { + "start": 8938.12, + "end": 8940.5, + "probability": 0.9985 + }, + { + "start": 8940.5, + "end": 8943.24, + "probability": 0.9978 + }, + { + "start": 8943.96, + "end": 8948.2, + "probability": 0.9631 + }, + { + "start": 8948.68, + "end": 8949.42, + "probability": 0.8323 + }, + { + "start": 8950.3, + "end": 8951.68, + "probability": 0.9998 + }, + { + "start": 8952.54, + "end": 8954.28, + "probability": 0.9253 + }, + { + "start": 8955.18, + "end": 8956.02, + "probability": 0.7446 + }, + { + "start": 8957.04, + "end": 8960.22, + "probability": 0.9995 + }, + { + "start": 8960.64, + "end": 8964.24, + "probability": 0.978 + }, + { + "start": 8965.84, + "end": 8966.8, + "probability": 0.4461 + }, + { + "start": 8968.18, + "end": 8968.72, + "probability": 0.795 + }, + { + "start": 8969.72, + "end": 8975.46, + "probability": 0.9815 + }, + { + "start": 8976.24, + "end": 8976.98, + "probability": 0.9379 + }, + { + "start": 8977.54, + "end": 8978.43, + "probability": 0.6191 + }, + { + "start": 8979.18, + "end": 8980.24, + "probability": 0.7313 + }, + { + "start": 8980.72, + "end": 8984.36, + "probability": 0.9976 + }, + { + "start": 8985.06, + "end": 8988.26, + "probability": 0.9993 + }, + { + "start": 8988.68, + "end": 8989.26, + "probability": 0.5964 + }, + { + "start": 8989.54, + "end": 8990.9, + "probability": 0.916 + }, + { + "start": 8997.1, + "end": 8997.1, + "probability": 0.0017 + }, + { + "start": 9009.76, + "end": 9011.04, + "probability": 0.6117 + }, + { + "start": 9011.3, + "end": 9012.5, + "probability": 0.8961 + }, + { + "start": 9012.62, + "end": 9015.7, + "probability": 0.8843 + }, + { + "start": 9017.58, + "end": 9019.24, + "probability": 0.9198 + }, + { + "start": 9020.84, + "end": 9022.48, + "probability": 0.9571 + }, + { + "start": 9022.76, + "end": 9023.5, + "probability": 0.6853 + }, + { + "start": 9023.5, + "end": 9024.98, + "probability": 0.8513 + }, + { + "start": 9025.5, + "end": 9029.0, + "probability": 0.998 + }, + { + "start": 9029.0, + "end": 9032.02, + "probability": 0.9991 + }, + { + "start": 9032.7, + "end": 9035.3, + "probability": 0.9843 + }, + { + "start": 9035.44, + "end": 9035.72, + "probability": 0.7752 + }, + { + "start": 9035.8, + "end": 9038.42, + "probability": 0.8586 + }, + { + "start": 9038.9, + "end": 9040.16, + "probability": 0.9098 + }, + { + "start": 9040.28, + "end": 9041.06, + "probability": 0.714 + }, + { + "start": 9041.92, + "end": 9043.86, + "probability": 0.4726 + }, + { + "start": 9044.1, + "end": 9044.76, + "probability": 0.4942 + }, + { + "start": 9045.24, + "end": 9047.68, + "probability": 0.9958 + }, + { + "start": 9048.08, + "end": 9049.82, + "probability": 0.8863 + }, + { + "start": 9050.18, + "end": 9052.72, + "probability": 0.9773 + }, + { + "start": 9053.32, + "end": 9056.92, + "probability": 0.9982 + }, + { + "start": 9057.64, + "end": 9058.84, + "probability": 0.8848 + }, + { + "start": 9059.36, + "end": 9061.02, + "probability": 0.8836 + }, + { + "start": 9061.52, + "end": 9062.42, + "probability": 0.5955 + }, + { + "start": 9062.84, + "end": 9064.7, + "probability": 0.9274 + }, + { + "start": 9065.78, + "end": 9068.38, + "probability": 0.8075 + }, + { + "start": 9068.94, + "end": 9072.48, + "probability": 0.8916 + }, + { + "start": 9072.78, + "end": 9075.2, + "probability": 0.9712 + }, + { + "start": 9076.32, + "end": 9076.84, + "probability": 0.4494 + }, + { + "start": 9077.72, + "end": 9078.46, + "probability": 0.7877 + }, + { + "start": 9079.02, + "end": 9079.26, + "probability": 0.7726 + }, + { + "start": 9079.34, + "end": 9080.04, + "probability": 0.9199 + }, + { + "start": 9080.1, + "end": 9083.6, + "probability": 0.9551 + }, + { + "start": 9084.32, + "end": 9089.32, + "probability": 0.9902 + }, + { + "start": 9089.52, + "end": 9091.68, + "probability": 0.9572 + }, + { + "start": 9091.78, + "end": 9092.56, + "probability": 0.5844 + }, + { + "start": 9092.82, + "end": 9094.3, + "probability": 0.8297 + }, + { + "start": 9094.98, + "end": 9097.0, + "probability": 0.8356 + }, + { + "start": 9097.06, + "end": 9098.64, + "probability": 0.9901 + }, + { + "start": 9099.12, + "end": 9099.66, + "probability": 0.6894 + }, + { + "start": 9100.24, + "end": 9101.69, + "probability": 0.8135 + }, + { + "start": 9102.84, + "end": 9103.88, + "probability": 0.8414 + }, + { + "start": 9104.42, + "end": 9108.34, + "probability": 0.8276 + }, + { + "start": 9108.72, + "end": 9112.04, + "probability": 0.9862 + }, + { + "start": 9112.76, + "end": 9113.48, + "probability": 0.9113 + }, + { + "start": 9114.3, + "end": 9115.61, + "probability": 0.8466 + }, + { + "start": 9116.74, + "end": 9118.38, + "probability": 0.9641 + }, + { + "start": 9118.96, + "end": 9120.48, + "probability": 0.9399 + }, + { + "start": 9120.78, + "end": 9123.84, + "probability": 0.9125 + }, + { + "start": 9124.14, + "end": 9125.54, + "probability": 0.9156 + }, + { + "start": 9125.98, + "end": 9129.3, + "probability": 0.9315 + }, + { + "start": 9129.34, + "end": 9130.82, + "probability": 0.7392 + }, + { + "start": 9131.6, + "end": 9134.64, + "probability": 0.7462 + }, + { + "start": 9135.34, + "end": 9137.48, + "probability": 0.7858 + }, + { + "start": 9137.84, + "end": 9142.34, + "probability": 0.9915 + }, + { + "start": 9142.78, + "end": 9145.1, + "probability": 0.9626 + }, + { + "start": 9145.66, + "end": 9146.54, + "probability": 0.9004 + }, + { + "start": 9146.86, + "end": 9148.16, + "probability": 0.9379 + }, + { + "start": 9148.32, + "end": 9148.54, + "probability": 0.7102 + }, + { + "start": 9149.12, + "end": 9150.47, + "probability": 0.872 + }, + { + "start": 9150.82, + "end": 9151.72, + "probability": 0.5116 + }, + { + "start": 9151.98, + "end": 9153.24, + "probability": 0.9766 + }, + { + "start": 9155.16, + "end": 9155.28, + "probability": 0.0361 + }, + { + "start": 9155.28, + "end": 9155.52, + "probability": 0.1519 + }, + { + "start": 9156.34, + "end": 9157.58, + "probability": 0.6772 + }, + { + "start": 9157.66, + "end": 9160.38, + "probability": 0.9935 + }, + { + "start": 9160.38, + "end": 9163.48, + "probability": 0.9387 + }, + { + "start": 9163.98, + "end": 9166.38, + "probability": 0.9954 + }, + { + "start": 9167.06, + "end": 9168.44, + "probability": 0.7935 + }, + { + "start": 9168.58, + "end": 9170.32, + "probability": 0.8669 + }, + { + "start": 9171.44, + "end": 9173.3, + "probability": 0.9834 + }, + { + "start": 9173.76, + "end": 9176.12, + "probability": 0.8216 + }, + { + "start": 9176.94, + "end": 9177.18, + "probability": 0.607 + }, + { + "start": 9178.1, + "end": 9178.86, + "probability": 0.6561 + }, + { + "start": 9179.06, + "end": 9180.34, + "probability": 0.96 + }, + { + "start": 9181.46, + "end": 9181.8, + "probability": 0.3574 + }, + { + "start": 9181.82, + "end": 9183.16, + "probability": 0.8029 + }, + { + "start": 9183.74, + "end": 9184.96, + "probability": 0.8187 + }, + { + "start": 9185.14, + "end": 9185.58, + "probability": 0.9147 + }, + { + "start": 9186.12, + "end": 9189.3, + "probability": 0.767 + }, + { + "start": 9189.76, + "end": 9190.84, + "probability": 0.9802 + }, + { + "start": 9191.0, + "end": 9193.32, + "probability": 0.7903 + }, + { + "start": 9193.88, + "end": 9195.24, + "probability": 0.9944 + }, + { + "start": 9195.24, + "end": 9195.56, + "probability": 0.7387 + }, + { + "start": 9195.64, + "end": 9198.54, + "probability": 0.9861 + }, + { + "start": 9198.54, + "end": 9200.64, + "probability": 0.9941 + }, + { + "start": 9200.7, + "end": 9201.56, + "probability": 0.9636 + }, + { + "start": 9201.8, + "end": 9204.2, + "probability": 0.9694 + }, + { + "start": 9204.22, + "end": 9206.92, + "probability": 0.9839 + }, + { + "start": 9208.3, + "end": 9210.58, + "probability": 0.5991 + }, + { + "start": 9210.72, + "end": 9211.14, + "probability": 0.8816 + }, + { + "start": 9211.38, + "end": 9212.0, + "probability": 0.9692 + }, + { + "start": 9212.14, + "end": 9212.64, + "probability": 0.5004 + }, + { + "start": 9212.72, + "end": 9213.93, + "probability": 0.9249 + }, + { + "start": 9214.36, + "end": 9215.2, + "probability": 0.8394 + }, + { + "start": 9215.32, + "end": 9218.68, + "probability": 0.5415 + }, + { + "start": 9219.0, + "end": 9219.02, + "probability": 0.5867 + }, + { + "start": 9219.02, + "end": 9219.54, + "probability": 0.5571 + }, + { + "start": 9219.64, + "end": 9221.84, + "probability": 0.8901 + }, + { + "start": 9222.2, + "end": 9222.32, + "probability": 0.2622 + }, + { + "start": 9222.44, + "end": 9225.28, + "probability": 0.8853 + }, + { + "start": 9225.82, + "end": 9226.04, + "probability": 0.5112 + }, + { + "start": 9226.08, + "end": 9230.84, + "probability": 0.9956 + }, + { + "start": 9230.84, + "end": 9231.02, + "probability": 0.6167 + }, + { + "start": 9231.12, + "end": 9235.08, + "probability": 0.9948 + }, + { + "start": 9235.64, + "end": 9235.9, + "probability": 0.7133 + }, + { + "start": 9235.94, + "end": 9237.42, + "probability": 0.9203 + }, + { + "start": 9237.46, + "end": 9241.16, + "probability": 0.9825 + }, + { + "start": 9241.44, + "end": 9242.1, + "probability": 0.7325 + }, + { + "start": 9242.48, + "end": 9245.32, + "probability": 0.931 + }, + { + "start": 9268.78, + "end": 9271.32, + "probability": 0.6795 + }, + { + "start": 9273.02, + "end": 9277.04, + "probability": 0.9473 + }, + { + "start": 9277.8, + "end": 9279.02, + "probability": 0.6338 + }, + { + "start": 9279.46, + "end": 9282.61, + "probability": 0.0216 + }, + { + "start": 9284.32, + "end": 9287.8, + "probability": 0.9937 + }, + { + "start": 9287.8, + "end": 9295.3, + "probability": 0.9867 + }, + { + "start": 9296.06, + "end": 9297.84, + "probability": 0.9991 + }, + { + "start": 9297.94, + "end": 9299.12, + "probability": 0.8524 + }, + { + "start": 9300.1, + "end": 9303.24, + "probability": 0.9625 + }, + { + "start": 9303.44, + "end": 9309.97, + "probability": 0.9916 + }, + { + "start": 9310.26, + "end": 9314.88, + "probability": 0.9817 + }, + { + "start": 9315.1, + "end": 9319.34, + "probability": 0.9922 + }, + { + "start": 9319.48, + "end": 9322.28, + "probability": 0.9863 + }, + { + "start": 9322.92, + "end": 9329.66, + "probability": 0.9508 + }, + { + "start": 9330.14, + "end": 9331.9, + "probability": 0.4329 + }, + { + "start": 9332.06, + "end": 9333.2, + "probability": 0.8181 + }, + { + "start": 9333.74, + "end": 9341.68, + "probability": 0.9832 + }, + { + "start": 9342.36, + "end": 9344.04, + "probability": 0.9863 + }, + { + "start": 9344.26, + "end": 9346.24, + "probability": 0.9526 + }, + { + "start": 9346.4, + "end": 9350.44, + "probability": 0.9707 + }, + { + "start": 9350.88, + "end": 9356.18, + "probability": 0.955 + }, + { + "start": 9356.36, + "end": 9357.64, + "probability": 0.9792 + }, + { + "start": 9358.32, + "end": 9363.8, + "probability": 0.9573 + }, + { + "start": 9364.84, + "end": 9369.08, + "probability": 0.9923 + }, + { + "start": 9369.08, + "end": 9373.58, + "probability": 0.9865 + }, + { + "start": 9374.48, + "end": 9375.68, + "probability": 0.9946 + }, + { + "start": 9376.48, + "end": 9378.6, + "probability": 0.9849 + }, + { + "start": 9379.44, + "end": 9384.82, + "probability": 0.9202 + }, + { + "start": 9384.92, + "end": 9392.44, + "probability": 0.9937 + }, + { + "start": 9393.0, + "end": 9396.88, + "probability": 0.9947 + }, + { + "start": 9397.58, + "end": 9406.1, + "probability": 0.993 + }, + { + "start": 9406.56, + "end": 9411.02, + "probability": 0.9937 + }, + { + "start": 9411.84, + "end": 9412.74, + "probability": 0.9699 + }, + { + "start": 9413.36, + "end": 9416.48, + "probability": 0.8493 + }, + { + "start": 9417.12, + "end": 9421.36, + "probability": 0.806 + }, + { + "start": 9421.96, + "end": 9428.02, + "probability": 0.9891 + }, + { + "start": 9428.32, + "end": 9432.14, + "probability": 0.8592 + }, + { + "start": 9432.74, + "end": 9436.04, + "probability": 0.9973 + }, + { + "start": 9436.68, + "end": 9440.96, + "probability": 0.9671 + }, + { + "start": 9441.44, + "end": 9447.06, + "probability": 0.9839 + }, + { + "start": 9447.52, + "end": 9451.3, + "probability": 0.584 + }, + { + "start": 9451.3, + "end": 9454.84, + "probability": 0.6252 + }, + { + "start": 9454.92, + "end": 9455.44, + "probability": 0.7654 + }, + { + "start": 9455.48, + "end": 9459.44, + "probability": 0.9372 + }, + { + "start": 9472.94, + "end": 9474.98, + "probability": 0.6928 + }, + { + "start": 9475.63, + "end": 9480.18, + "probability": 0.9934 + }, + { + "start": 9482.18, + "end": 9485.82, + "probability": 0.9295 + }, + { + "start": 9486.44, + "end": 9487.5, + "probability": 0.4576 + }, + { + "start": 9492.26, + "end": 9492.72, + "probability": 0.0089 + }, + { + "start": 9492.72, + "end": 9492.92, + "probability": 0.0837 + }, + { + "start": 9492.92, + "end": 9492.92, + "probability": 0.6437 + }, + { + "start": 9492.92, + "end": 9493.78, + "probability": 0.6601 + }, + { + "start": 9497.26, + "end": 9497.68, + "probability": 0.3817 + }, + { + "start": 9498.32, + "end": 9499.56, + "probability": 0.705 + }, + { + "start": 9501.28, + "end": 9503.0, + "probability": 0.2678 + }, + { + "start": 9503.08, + "end": 9503.48, + "probability": 0.0112 + }, + { + "start": 9504.18, + "end": 9506.1, + "probability": 0.6927 + }, + { + "start": 9507.2, + "end": 9509.24, + "probability": 0.9852 + }, + { + "start": 9510.06, + "end": 9510.83, + "probability": 0.6536 + }, + { + "start": 9511.3, + "end": 9514.16, + "probability": 0.9691 + }, + { + "start": 9516.14, + "end": 9519.92, + "probability": 0.8835 + }, + { + "start": 9521.5, + "end": 9526.4, + "probability": 0.9943 + }, + { + "start": 9528.18, + "end": 9529.2, + "probability": 0.9663 + }, + { + "start": 9529.32, + "end": 9530.16, + "probability": 0.3618 + }, + { + "start": 9530.22, + "end": 9533.9, + "probability": 0.9905 + }, + { + "start": 9536.2, + "end": 9536.86, + "probability": 0.7976 + }, + { + "start": 9537.32, + "end": 9542.16, + "probability": 0.9912 + }, + { + "start": 9543.98, + "end": 9546.6, + "probability": 0.8722 + }, + { + "start": 9547.34, + "end": 9549.04, + "probability": 0.9987 + }, + { + "start": 9550.02, + "end": 9551.44, + "probability": 0.9801 + }, + { + "start": 9552.12, + "end": 9554.68, + "probability": 0.9925 + }, + { + "start": 9555.2, + "end": 9557.96, + "probability": 0.9642 + }, + { + "start": 9559.52, + "end": 9559.74, + "probability": 0.1693 + }, + { + "start": 9560.38, + "end": 9561.46, + "probability": 0.815 + }, + { + "start": 9562.84, + "end": 9563.91, + "probability": 0.9995 + }, + { + "start": 9564.12, + "end": 9566.56, + "probability": 0.9944 + }, + { + "start": 9567.38, + "end": 9572.92, + "probability": 0.9915 + }, + { + "start": 9575.0, + "end": 9577.72, + "probability": 0.95 + }, + { + "start": 9578.02, + "end": 9583.52, + "probability": 0.9956 + }, + { + "start": 9583.52, + "end": 9588.58, + "probability": 0.9985 + }, + { + "start": 9589.16, + "end": 9591.16, + "probability": 0.999 + }, + { + "start": 9591.56, + "end": 9592.48, + "probability": 0.2593 + }, + { + "start": 9593.26, + "end": 9594.06, + "probability": 0.756 + }, + { + "start": 9594.1, + "end": 9596.7, + "probability": 0.8341 + }, + { + "start": 9597.4, + "end": 9601.08, + "probability": 0.7367 + }, + { + "start": 9601.42, + "end": 9602.42, + "probability": 0.1351 + }, + { + "start": 9602.62, + "end": 9603.18, + "probability": 0.9311 + }, + { + "start": 9604.4, + "end": 9604.4, + "probability": 0.7073 + }, + { + "start": 9604.4, + "end": 9605.48, + "probability": 0.7062 + }, + { + "start": 9605.62, + "end": 9605.94, + "probability": 0.8593 + }, + { + "start": 9626.54, + "end": 9628.5, + "probability": 0.6219 + }, + { + "start": 9631.06, + "end": 9633.64, + "probability": 0.7341 + }, + { + "start": 9634.44, + "end": 9636.19, + "probability": 0.7446 + }, + { + "start": 9637.34, + "end": 9639.8, + "probability": 0.8044 + }, + { + "start": 9641.04, + "end": 9642.78, + "probability": 0.8813 + }, + { + "start": 9643.64, + "end": 9646.24, + "probability": 0.893 + }, + { + "start": 9647.58, + "end": 9652.8, + "probability": 0.9863 + }, + { + "start": 9652.9, + "end": 9653.52, + "probability": 0.6061 + }, + { + "start": 9653.68, + "end": 9654.62, + "probability": 0.8407 + }, + { + "start": 9655.5, + "end": 9657.8, + "probability": 0.9924 + }, + { + "start": 9659.14, + "end": 9660.94, + "probability": 0.8345 + }, + { + "start": 9662.2, + "end": 9663.16, + "probability": 0.7991 + }, + { + "start": 9663.96, + "end": 9665.5, + "probability": 0.9372 + }, + { + "start": 9665.84, + "end": 9668.06, + "probability": 0.9873 + }, + { + "start": 9669.18, + "end": 9670.38, + "probability": 0.8514 + }, + { + "start": 9670.98, + "end": 9673.62, + "probability": 0.9877 + }, + { + "start": 9674.26, + "end": 9675.06, + "probability": 0.931 + }, + { + "start": 9675.68, + "end": 9676.94, + "probability": 0.5221 + }, + { + "start": 9679.04, + "end": 9684.06, + "probability": 0.9874 + }, + { + "start": 9684.3, + "end": 9685.32, + "probability": 0.3303 + }, + { + "start": 9685.82, + "end": 9686.66, + "probability": 0.9538 + }, + { + "start": 9687.62, + "end": 9689.48, + "probability": 0.6918 + }, + { + "start": 9690.06, + "end": 9690.06, + "probability": 0.2367 + }, + { + "start": 9690.52, + "end": 9691.24, + "probability": 0.6219 + }, + { + "start": 9691.68, + "end": 9694.72, + "probability": 0.9819 + }, + { + "start": 9695.3, + "end": 9696.04, + "probability": 0.7074 + }, + { + "start": 9696.56, + "end": 9697.92, + "probability": 0.9973 + }, + { + "start": 9698.32, + "end": 9700.7, + "probability": 0.9957 + }, + { + "start": 9701.6, + "end": 9706.96, + "probability": 0.957 + }, + { + "start": 9707.52, + "end": 9709.04, + "probability": 0.9798 + }, + { + "start": 9709.76, + "end": 9713.18, + "probability": 0.9654 + }, + { + "start": 9713.18, + "end": 9716.56, + "probability": 0.9644 + }, + { + "start": 9717.56, + "end": 9719.54, + "probability": 0.8566 + }, + { + "start": 9719.88, + "end": 9721.6, + "probability": 0.9956 + }, + { + "start": 9722.42, + "end": 9726.78, + "probability": 0.9922 + }, + { + "start": 9728.02, + "end": 9733.6, + "probability": 0.9868 + }, + { + "start": 9734.08, + "end": 9735.92, + "probability": 0.8865 + }, + { + "start": 9736.24, + "end": 9738.02, + "probability": 0.9269 + }, + { + "start": 9738.1, + "end": 9739.3, + "probability": 0.8149 + }, + { + "start": 9739.72, + "end": 9741.84, + "probability": 0.9039 + }, + { + "start": 9742.36, + "end": 9745.78, + "probability": 0.9405 + }, + { + "start": 9746.34, + "end": 9749.26, + "probability": 0.9974 + }, + { + "start": 9749.8, + "end": 9750.54, + "probability": 0.8874 + }, + { + "start": 9751.12, + "end": 9752.96, + "probability": 0.9673 + }, + { + "start": 9753.64, + "end": 9756.22, + "probability": 0.9372 + }, + { + "start": 9756.8, + "end": 9760.68, + "probability": 0.7702 + }, + { + "start": 9761.54, + "end": 9763.5, + "probability": 0.8017 + }, + { + "start": 9764.02, + "end": 9765.0, + "probability": 0.8694 + }, + { + "start": 9765.98, + "end": 9769.96, + "probability": 0.9495 + }, + { + "start": 9769.96, + "end": 9773.92, + "probability": 0.9455 + }, + { + "start": 9774.88, + "end": 9778.34, + "probability": 0.9076 + }, + { + "start": 9778.44, + "end": 9780.62, + "probability": 0.9507 + }, + { + "start": 9780.98, + "end": 9782.98, + "probability": 0.9902 + }, + { + "start": 9783.22, + "end": 9784.54, + "probability": 0.7667 + }, + { + "start": 9784.78, + "end": 9785.74, + "probability": 0.9882 + }, + { + "start": 9786.7, + "end": 9787.78, + "probability": 0.8101 + }, + { + "start": 9788.64, + "end": 9793.82, + "probability": 0.9697 + }, + { + "start": 9794.24, + "end": 9797.18, + "probability": 0.9642 + }, + { + "start": 9797.92, + "end": 9800.56, + "probability": 0.9839 + }, + { + "start": 9801.2, + "end": 9803.94, + "probability": 0.9791 + }, + { + "start": 9804.82, + "end": 9805.4, + "probability": 0.7909 + }, + { + "start": 9805.52, + "end": 9806.26, + "probability": 0.8587 + }, + { + "start": 9806.54, + "end": 9808.02, + "probability": 0.9487 + }, + { + "start": 9808.38, + "end": 9808.7, + "probability": 0.5005 + }, + { + "start": 9808.7, + "end": 9809.2, + "probability": 0.6883 + }, + { + "start": 9809.6, + "end": 9813.0, + "probability": 0.7104 + }, + { + "start": 9813.08, + "end": 9813.82, + "probability": 0.7329 + }, + { + "start": 9814.28, + "end": 9815.36, + "probability": 0.6372 + }, + { + "start": 9815.5, + "end": 9815.98, + "probability": 0.7347 + }, + { + "start": 9816.1, + "end": 9818.12, + "probability": 0.8287 + }, + { + "start": 9818.22, + "end": 9818.98, + "probability": 0.9815 + }, + { + "start": 9819.32, + "end": 9820.98, + "probability": 0.9819 + }, + { + "start": 9821.88, + "end": 9825.56, + "probability": 0.8116 + }, + { + "start": 9826.28, + "end": 9829.8, + "probability": 0.767 + }, + { + "start": 9830.26, + "end": 9832.3, + "probability": 0.9359 + }, + { + "start": 9846.82, + "end": 9849.54, + "probability": 0.6473 + }, + { + "start": 9850.68, + "end": 9852.08, + "probability": 0.9951 + }, + { + "start": 9852.22, + "end": 9854.08, + "probability": 0.9104 + }, + { + "start": 9854.24, + "end": 9855.34, + "probability": 0.8723 + }, + { + "start": 9855.64, + "end": 9856.46, + "probability": 0.1091 + }, + { + "start": 9856.78, + "end": 9857.28, + "probability": 0.5336 + }, + { + "start": 9857.34, + "end": 9859.1, + "probability": 0.6652 + }, + { + "start": 9859.88, + "end": 9860.38, + "probability": 0.3049 + }, + { + "start": 9861.02, + "end": 9862.54, + "probability": 0.7606 + }, + { + "start": 9862.66, + "end": 9863.74, + "probability": 0.8386 + }, + { + "start": 9864.68, + "end": 9866.46, + "probability": 0.7226 + }, + { + "start": 9867.12, + "end": 9869.92, + "probability": 0.9731 + }, + { + "start": 9870.54, + "end": 9871.58, + "probability": 0.9536 + }, + { + "start": 9872.22, + "end": 9874.98, + "probability": 0.9969 + }, + { + "start": 9875.48, + "end": 9878.38, + "probability": 0.8572 + }, + { + "start": 9878.54, + "end": 9879.42, + "probability": 0.842 + }, + { + "start": 9880.12, + "end": 9882.06, + "probability": 0.9877 + }, + { + "start": 9883.36, + "end": 9884.62, + "probability": 0.9829 + }, + { + "start": 9885.28, + "end": 9886.68, + "probability": 0.8717 + }, + { + "start": 9888.14, + "end": 9890.2, + "probability": 0.7543 + }, + { + "start": 9891.6, + "end": 9894.06, + "probability": 0.9917 + }, + { + "start": 9894.48, + "end": 9895.16, + "probability": 0.5889 + }, + { + "start": 9895.8, + "end": 9898.06, + "probability": 0.6265 + }, + { + "start": 9898.64, + "end": 9900.28, + "probability": 0.9826 + }, + { + "start": 9901.4, + "end": 9906.1, + "probability": 0.9609 + }, + { + "start": 9906.86, + "end": 9908.06, + "probability": 0.9253 + }, + { + "start": 9909.38, + "end": 9910.02, + "probability": 0.9197 + }, + { + "start": 9910.58, + "end": 9912.88, + "probability": 0.9656 + }, + { + "start": 9913.5, + "end": 9915.78, + "probability": 0.6273 + }, + { + "start": 9916.3, + "end": 9918.22, + "probability": 0.9863 + }, + { + "start": 9918.88, + "end": 9919.7, + "probability": 0.9175 + }, + { + "start": 9921.06, + "end": 9923.42, + "probability": 0.9951 + }, + { + "start": 9923.96, + "end": 9926.02, + "probability": 0.9808 + }, + { + "start": 9927.18, + "end": 9929.84, + "probability": 0.6724 + }, + { + "start": 9930.38, + "end": 9932.56, + "probability": 0.954 + }, + { + "start": 9933.4, + "end": 9934.78, + "probability": 0.7831 + }, + { + "start": 9935.42, + "end": 9936.76, + "probability": 0.8149 + }, + { + "start": 9937.5, + "end": 9944.06, + "probability": 0.9888 + }, + { + "start": 9944.7, + "end": 9947.18, + "probability": 0.9614 + }, + { + "start": 9947.74, + "end": 9949.2, + "probability": 0.367 + }, + { + "start": 9950.12, + "end": 9951.02, + "probability": 0.7601 + }, + { + "start": 9951.4, + "end": 9952.54, + "probability": 0.8493 + }, + { + "start": 9953.46, + "end": 9954.1, + "probability": 0.9121 + }, + { + "start": 9955.04, + "end": 9956.64, + "probability": 0.9722 + }, + { + "start": 9957.34, + "end": 9960.8, + "probability": 0.9639 + }, + { + "start": 9961.4, + "end": 9963.66, + "probability": 0.9847 + }, + { + "start": 9964.68, + "end": 9967.72, + "probability": 0.9329 + }, + { + "start": 9967.9, + "end": 9970.4, + "probability": 0.9391 + }, + { + "start": 9971.54, + "end": 9972.16, + "probability": 0.7391 + }, + { + "start": 9972.32, + "end": 9973.76, + "probability": 0.9506 + }, + { + "start": 9974.22, + "end": 9977.12, + "probability": 0.586 + }, + { + "start": 9977.12, + "end": 9979.28, + "probability": 0.6021 + }, + { + "start": 9979.92, + "end": 9981.26, + "probability": 0.606 + }, + { + "start": 9981.6, + "end": 9983.34, + "probability": 0.9955 + }, + { + "start": 9984.0, + "end": 9986.5, + "probability": 0.851 + }, + { + "start": 9986.64, + "end": 9989.06, + "probability": 0.9971 + }, + { + "start": 9989.62, + "end": 9992.38, + "probability": 0.6564 + }, + { + "start": 9993.18, + "end": 9994.92, + "probability": 0.7724 + }, + { + "start": 9995.02, + "end": 9995.8, + "probability": 0.6016 + }, + { + "start": 9996.0, + "end": 9998.58, + "probability": 0.6383 + }, + { + "start": 9998.72, + "end": 9999.52, + "probability": 0.7165 + }, + { + "start": 10000.16, + "end": 10003.88, + "probability": 0.9868 + }, + { + "start": 10004.4, + "end": 10005.38, + "probability": 0.4659 + }, + { + "start": 10006.5, + "end": 10007.74, + "probability": 0.9798 + }, + { + "start": 10008.08, + "end": 10009.4, + "probability": 0.9399 + }, + { + "start": 10009.8, + "end": 10014.28, + "probability": 0.9209 + }, + { + "start": 10014.82, + "end": 10016.6, + "probability": 0.8731 + }, + { + "start": 10016.8, + "end": 10018.0, + "probability": 0.819 + }, + { + "start": 10018.16, + "end": 10019.44, + "probability": 0.6563 + }, + { + "start": 10019.54, + "end": 10021.14, + "probability": 0.7645 + }, + { + "start": 10021.94, + "end": 10023.58, + "probability": 0.8102 + }, + { + "start": 10024.14, + "end": 10026.34, + "probability": 0.846 + }, + { + "start": 10026.76, + "end": 10028.78, + "probability": 0.2645 + }, + { + "start": 10028.78, + "end": 10029.12, + "probability": 0.2401 + }, + { + "start": 10029.12, + "end": 10030.09, + "probability": 0.5055 + }, + { + "start": 10030.22, + "end": 10030.46, + "probability": 0.5501 + }, + { + "start": 10030.68, + "end": 10030.74, + "probability": 0.2844 + }, + { + "start": 10030.82, + "end": 10031.72, + "probability": 0.8969 + }, + { + "start": 10031.72, + "end": 10036.36, + "probability": 0.9248 + }, + { + "start": 10036.78, + "end": 10039.62, + "probability": 0.8262 + }, + { + "start": 10039.92, + "end": 10040.16, + "probability": 0.0454 + }, + { + "start": 10040.16, + "end": 10040.94, + "probability": 0.8164 + }, + { + "start": 10042.06, + "end": 10045.14, + "probability": 0.8577 + }, + { + "start": 10046.18, + "end": 10047.44, + "probability": 0.6733 + }, + { + "start": 10047.6, + "end": 10048.12, + "probability": 0.7804 + }, + { + "start": 10048.12, + "end": 10048.22, + "probability": 0.6986 + }, + { + "start": 10048.3, + "end": 10048.3, + "probability": 0.4839 + }, + { + "start": 10048.46, + "end": 10051.76, + "probability": 0.8152 + }, + { + "start": 10052.24, + "end": 10054.56, + "probability": 0.5055 + }, + { + "start": 10055.18, + "end": 10055.18, + "probability": 0.4191 + }, + { + "start": 10055.6, + "end": 10057.07, + "probability": 0.8694 + }, + { + "start": 10057.62, + "end": 10058.52, + "probability": 0.4845 + }, + { + "start": 10058.94, + "end": 10060.14, + "probability": 0.9104 + }, + { + "start": 10061.5, + "end": 10063.14, + "probability": 0.9165 + }, + { + "start": 10076.64, + "end": 10078.52, + "probability": 0.5575 + }, + { + "start": 10080.26, + "end": 10082.12, + "probability": 0.9881 + }, + { + "start": 10082.24, + "end": 10083.16, + "probability": 0.9728 + }, + { + "start": 10083.36, + "end": 10085.74, + "probability": 0.9006 + }, + { + "start": 10085.84, + "end": 10086.68, + "probability": 0.861 + }, + { + "start": 10087.66, + "end": 10088.3, + "probability": 0.884 + }, + { + "start": 10088.76, + "end": 10088.76, + "probability": 0.4351 + }, + { + "start": 10088.76, + "end": 10088.92, + "probability": 0.4869 + }, + { + "start": 10089.0, + "end": 10093.56, + "probability": 0.8238 + }, + { + "start": 10094.42, + "end": 10094.58, + "probability": 0.336 + }, + { + "start": 10094.58, + "end": 10096.1, + "probability": 0.9929 + }, + { + "start": 10096.42, + "end": 10097.24, + "probability": 0.816 + }, + { + "start": 10098.24, + "end": 10099.54, + "probability": 0.999 + }, + { + "start": 10100.8, + "end": 10103.32, + "probability": 0.9935 + }, + { + "start": 10106.22, + "end": 10108.32, + "probability": 0.9935 + }, + { + "start": 10110.28, + "end": 10114.04, + "probability": 0.9469 + }, + { + "start": 10114.24, + "end": 10115.86, + "probability": 0.711 + }, + { + "start": 10117.24, + "end": 10118.27, + "probability": 0.6501 + }, + { + "start": 10118.96, + "end": 10120.56, + "probability": 0.9147 + }, + { + "start": 10121.98, + "end": 10122.64, + "probability": 0.541 + }, + { + "start": 10124.88, + "end": 10125.56, + "probability": 0.9535 + }, + { + "start": 10126.62, + "end": 10127.38, + "probability": 0.8046 + }, + { + "start": 10128.14, + "end": 10130.68, + "probability": 0.998 + }, + { + "start": 10132.02, + "end": 10133.96, + "probability": 0.752 + }, + { + "start": 10135.14, + "end": 10137.38, + "probability": 0.8287 + }, + { + "start": 10138.56, + "end": 10139.84, + "probability": 0.9794 + }, + { + "start": 10141.68, + "end": 10143.76, + "probability": 0.9678 + }, + { + "start": 10144.7, + "end": 10147.14, + "probability": 0.9478 + }, + { + "start": 10148.2, + "end": 10152.9, + "probability": 0.9733 + }, + { + "start": 10153.46, + "end": 10155.44, + "probability": 0.9818 + }, + { + "start": 10156.74, + "end": 10160.38, + "probability": 0.9871 + }, + { + "start": 10161.52, + "end": 10161.96, + "probability": 0.0741 + }, + { + "start": 10162.91, + "end": 10163.26, + "probability": 0.014 + }, + { + "start": 10163.26, + "end": 10163.4, + "probability": 0.2604 + }, + { + "start": 10164.08, + "end": 10166.82, + "probability": 0.8322 + }, + { + "start": 10166.9, + "end": 10168.78, + "probability": 0.9194 + }, + { + "start": 10169.18, + "end": 10170.82, + "probability": 0.9821 + }, + { + "start": 10171.42, + "end": 10174.76, + "probability": 0.9757 + }, + { + "start": 10176.58, + "end": 10179.0, + "probability": 0.235 + }, + { + "start": 10179.0, + "end": 10181.34, + "probability": 0.7316 + }, + { + "start": 10181.74, + "end": 10183.3, + "probability": 0.8993 + }, + { + "start": 10183.36, + "end": 10184.02, + "probability": 0.7716 + }, + { + "start": 10184.02, + "end": 10184.96, + "probability": 0.8938 + }, + { + "start": 10185.42, + "end": 10186.26, + "probability": 0.9255 + }, + { + "start": 10186.26, + "end": 10187.78, + "probability": 0.8357 + }, + { + "start": 10188.34, + "end": 10191.44, + "probability": 0.8025 + }, + { + "start": 10191.44, + "end": 10192.24, + "probability": 0.8271 + }, + { + "start": 10192.52, + "end": 10193.32, + "probability": 0.89 + }, + { + "start": 10193.64, + "end": 10194.65, + "probability": 0.9036 + }, + { + "start": 10195.74, + "end": 10196.44, + "probability": 0.7507 + }, + { + "start": 10197.92, + "end": 10198.56, + "probability": 0.7324 + }, + { + "start": 10199.48, + "end": 10200.5, + "probability": 0.7777 + }, + { + "start": 10201.08, + "end": 10202.12, + "probability": 0.7241 + }, + { + "start": 10202.44, + "end": 10203.38, + "probability": 0.7488 + }, + { + "start": 10203.5, + "end": 10206.92, + "probability": 0.9521 + }, + { + "start": 10207.32, + "end": 10209.88, + "probability": 0.7532 + }, + { + "start": 10210.96, + "end": 10213.68, + "probability": 0.9958 + }, + { + "start": 10214.46, + "end": 10216.64, + "probability": 0.9639 + }, + { + "start": 10217.16, + "end": 10217.82, + "probability": 0.8207 + }, + { + "start": 10218.88, + "end": 10220.24, + "probability": 0.6826 + }, + { + "start": 10220.68, + "end": 10222.24, + "probability": 0.685 + }, + { + "start": 10222.7, + "end": 10224.68, + "probability": 0.8273 + }, + { + "start": 10225.16, + "end": 10226.36, + "probability": 0.8223 + }, + { + "start": 10226.68, + "end": 10228.4, + "probability": 0.9647 + }, + { + "start": 10228.56, + "end": 10230.14, + "probability": 0.9923 + }, + { + "start": 10231.16, + "end": 10231.98, + "probability": 0.7607 + }, + { + "start": 10232.8, + "end": 10234.66, + "probability": 0.7968 + }, + { + "start": 10236.74, + "end": 10239.68, + "probability": 0.8786 + }, + { + "start": 10240.12, + "end": 10242.36, + "probability": 0.9151 + }, + { + "start": 10247.2, + "end": 10248.88, + "probability": 0.6986 + }, + { + "start": 10249.66, + "end": 10250.7, + "probability": 0.7013 + }, + { + "start": 10251.24, + "end": 10252.44, + "probability": 0.0006 + }, + { + "start": 10253.74, + "end": 10254.52, + "probability": 0.5559 + }, + { + "start": 10255.2, + "end": 10255.74, + "probability": 0.4701 + }, + { + "start": 10256.64, + "end": 10257.44, + "probability": 0.9017 + }, + { + "start": 10258.02, + "end": 10259.34, + "probability": 0.4264 + }, + { + "start": 10259.4, + "end": 10260.4, + "probability": 0.9521 + }, + { + "start": 10260.42, + "end": 10261.64, + "probability": 0.8477 + }, + { + "start": 10261.78, + "end": 10266.28, + "probability": 0.9238 + }, + { + "start": 10266.48, + "end": 10269.11, + "probability": 0.8031 + }, + { + "start": 10269.62, + "end": 10271.0, + "probability": 0.9298 + }, + { + "start": 10272.36, + "end": 10274.58, + "probability": 0.4559 + }, + { + "start": 10279.66, + "end": 10284.8, + "probability": 0.9204 + }, + { + "start": 10285.68, + "end": 10288.0, + "probability": 0.6046 + }, + { + "start": 10288.6, + "end": 10292.6, + "probability": 0.9938 + }, + { + "start": 10292.72, + "end": 10294.02, + "probability": 0.8551 + }, + { + "start": 10294.8, + "end": 10297.88, + "probability": 0.9521 + }, + { + "start": 10298.56, + "end": 10299.78, + "probability": 0.5266 + }, + { + "start": 10300.44, + "end": 10301.64, + "probability": 0.7696 + }, + { + "start": 10303.02, + "end": 10306.14, + "probability": 0.7047 + }, + { + "start": 10307.14, + "end": 10308.32, + "probability": 0.9944 + }, + { + "start": 10309.7, + "end": 10312.08, + "probability": 0.9575 + }, + { + "start": 10313.04, + "end": 10315.02, + "probability": 0.9724 + }, + { + "start": 10315.8, + "end": 10317.12, + "probability": 0.9677 + }, + { + "start": 10317.82, + "end": 10319.44, + "probability": 0.9788 + }, + { + "start": 10319.62, + "end": 10321.28, + "probability": 0.9908 + }, + { + "start": 10321.54, + "end": 10322.31, + "probability": 0.9849 + }, + { + "start": 10322.82, + "end": 10324.1, + "probability": 0.6376 + }, + { + "start": 10324.96, + "end": 10327.82, + "probability": 0.6452 + }, + { + "start": 10328.56, + "end": 10330.96, + "probability": 0.3177 + }, + { + "start": 10331.62, + "end": 10334.14, + "probability": 0.7473 + }, + { + "start": 10334.26, + "end": 10337.0, + "probability": 0.8398 + }, + { + "start": 10337.66, + "end": 10338.56, + "probability": 0.9272 + }, + { + "start": 10338.8, + "end": 10341.92, + "probability": 0.8123 + }, + { + "start": 10341.92, + "end": 10343.78, + "probability": 0.7262 + }, + { + "start": 10344.48, + "end": 10347.04, + "probability": 0.9666 + }, + { + "start": 10347.48, + "end": 10348.26, + "probability": 0.7668 + }, + { + "start": 10349.52, + "end": 10352.0, + "probability": 0.9753 + }, + { + "start": 10352.3, + "end": 10353.3, + "probability": 0.5254 + }, + { + "start": 10353.76, + "end": 10355.72, + "probability": 0.9779 + }, + { + "start": 10356.3, + "end": 10360.44, + "probability": 0.8457 + }, + { + "start": 10360.86, + "end": 10368.06, + "probability": 0.9284 + }, + { + "start": 10368.06, + "end": 10375.42, + "probability": 0.9951 + }, + { + "start": 10376.14, + "end": 10377.46, + "probability": 0.8748 + }, + { + "start": 10378.3, + "end": 10385.02, + "probability": 0.9561 + }, + { + "start": 10385.72, + "end": 10389.84, + "probability": 0.9571 + }, + { + "start": 10389.92, + "end": 10391.18, + "probability": 0.7481 + }, + { + "start": 10391.72, + "end": 10394.7, + "probability": 0.8894 + }, + { + "start": 10395.74, + "end": 10398.92, + "probability": 0.9819 + }, + { + "start": 10399.48, + "end": 10401.06, + "probability": 0.9762 + }, + { + "start": 10401.56, + "end": 10403.28, + "probability": 0.9856 + }, + { + "start": 10403.4, + "end": 10404.06, + "probability": 0.9417 + }, + { + "start": 10404.38, + "end": 10404.96, + "probability": 0.9839 + }, + { + "start": 10405.28, + "end": 10405.91, + "probability": 0.988 + }, + { + "start": 10406.78, + "end": 10408.16, + "probability": 0.9902 + }, + { + "start": 10408.2, + "end": 10411.24, + "probability": 0.9609 + }, + { + "start": 10411.4, + "end": 10415.14, + "probability": 0.7374 + }, + { + "start": 10417.3, + "end": 10420.38, + "probability": 0.9974 + }, + { + "start": 10420.94, + "end": 10423.5, + "probability": 0.9958 + }, + { + "start": 10423.66, + "end": 10424.78, + "probability": 0.7703 + }, + { + "start": 10424.84, + "end": 10427.8, + "probability": 0.9978 + }, + { + "start": 10427.88, + "end": 10430.2, + "probability": 0.9878 + }, + { + "start": 10430.32, + "end": 10435.08, + "probability": 0.9788 + }, + { + "start": 10435.2, + "end": 10435.99, + "probability": 0.9329 + }, + { + "start": 10436.2, + "end": 10436.9, + "probability": 0.7733 + }, + { + "start": 10437.04, + "end": 10438.24, + "probability": 0.9946 + }, + { + "start": 10438.66, + "end": 10439.72, + "probability": 0.7567 + }, + { + "start": 10440.6, + "end": 10442.92, + "probability": 0.9865 + }, + { + "start": 10443.08, + "end": 10444.16, + "probability": 0.9312 + }, + { + "start": 10444.28, + "end": 10445.44, + "probability": 0.7615 + }, + { + "start": 10445.56, + "end": 10446.82, + "probability": 0.7454 + }, + { + "start": 10447.7, + "end": 10449.53, + "probability": 0.9866 + }, + { + "start": 10450.24, + "end": 10453.56, + "probability": 0.9946 + }, + { + "start": 10453.72, + "end": 10458.06, + "probability": 0.993 + }, + { + "start": 10458.46, + "end": 10461.6, + "probability": 0.9928 + }, + { + "start": 10462.52, + "end": 10466.42, + "probability": 0.9989 + }, + { + "start": 10467.04, + "end": 10469.32, + "probability": 0.9922 + }, + { + "start": 10470.82, + "end": 10475.32, + "probability": 0.938 + }, + { + "start": 10475.9, + "end": 10476.08, + "probability": 0.0305 + }, + { + "start": 10476.08, + "end": 10477.28, + "probability": 0.1698 + }, + { + "start": 10477.64, + "end": 10480.38, + "probability": 0.9951 + }, + { + "start": 10481.0, + "end": 10481.46, + "probability": 0.6493 + }, + { + "start": 10481.54, + "end": 10482.06, + "probability": 0.9053 + }, + { + "start": 10482.46, + "end": 10482.94, + "probability": 0.9656 + }, + { + "start": 10483.08, + "end": 10483.5, + "probability": 0.9112 + }, + { + "start": 10484.06, + "end": 10484.58, + "probability": 0.9619 + }, + { + "start": 10484.72, + "end": 10485.34, + "probability": 0.9846 + }, + { + "start": 10485.44, + "end": 10486.04, + "probability": 0.9915 + }, + { + "start": 10486.1, + "end": 10487.56, + "probability": 0.6767 + }, + { + "start": 10487.92, + "end": 10489.96, + "probability": 0.9139 + }, + { + "start": 10490.08, + "end": 10491.62, + "probability": 0.9653 + }, + { + "start": 10491.68, + "end": 10495.32, + "probability": 0.913 + }, + { + "start": 10496.0, + "end": 10497.96, + "probability": 0.9401 + }, + { + "start": 10498.54, + "end": 10500.96, + "probability": 0.996 + }, + { + "start": 10501.4, + "end": 10501.84, + "probability": 0.5089 + }, + { + "start": 10502.36, + "end": 10506.5, + "probability": 0.9334 + }, + { + "start": 10506.92, + "end": 10508.54, + "probability": 0.9641 + }, + { + "start": 10508.96, + "end": 10510.62, + "probability": 0.973 + }, + { + "start": 10510.74, + "end": 10512.22, + "probability": 0.9767 + }, + { + "start": 10512.64, + "end": 10514.1, + "probability": 0.9938 + }, + { + "start": 10514.74, + "end": 10519.82, + "probability": 0.9937 + }, + { + "start": 10520.48, + "end": 10526.56, + "probability": 0.9961 + }, + { + "start": 10527.34, + "end": 10528.6, + "probability": 0.9871 + }, + { + "start": 10529.12, + "end": 10530.28, + "probability": 0.984 + }, + { + "start": 10530.92, + "end": 10532.02, + "probability": 0.6703 + }, + { + "start": 10532.8, + "end": 10535.04, + "probability": 0.6652 + }, + { + "start": 10535.18, + "end": 10535.26, + "probability": 0.1288 + }, + { + "start": 10535.26, + "end": 10535.26, + "probability": 0.602 + }, + { + "start": 10535.26, + "end": 10535.26, + "probability": 0.3945 + }, + { + "start": 10535.26, + "end": 10535.66, + "probability": 0.3448 + }, + { + "start": 10536.04, + "end": 10536.58, + "probability": 0.8245 + }, + { + "start": 10537.0, + "end": 10540.22, + "probability": 0.925 + }, + { + "start": 10540.56, + "end": 10545.9, + "probability": 0.9822 + }, + { + "start": 10546.3, + "end": 10547.64, + "probability": 0.9639 + }, + { + "start": 10547.96, + "end": 10548.9, + "probability": 0.6948 + }, + { + "start": 10548.96, + "end": 10549.98, + "probability": 0.7992 + }, + { + "start": 10550.6, + "end": 10551.38, + "probability": 0.8372 + }, + { + "start": 10551.42, + "end": 10554.64, + "probability": 0.8881 + }, + { + "start": 10554.8, + "end": 10556.02, + "probability": 0.9184 + }, + { + "start": 10556.44, + "end": 10558.02, + "probability": 0.8289 + }, + { + "start": 10558.1, + "end": 10558.9, + "probability": 0.8969 + }, + { + "start": 10559.72, + "end": 10563.82, + "probability": 0.9891 + }, + { + "start": 10564.34, + "end": 10567.32, + "probability": 0.9938 + }, + { + "start": 10567.82, + "end": 10569.04, + "probability": 0.9689 + }, + { + "start": 10569.84, + "end": 10571.1, + "probability": 0.9659 + }, + { + "start": 10572.24, + "end": 10577.46, + "probability": 0.9839 + }, + { + "start": 10578.18, + "end": 10579.67, + "probability": 0.8742 + }, + { + "start": 10580.28, + "end": 10582.16, + "probability": 0.9517 + }, + { + "start": 10582.8, + "end": 10584.16, + "probability": 0.9441 + }, + { + "start": 10584.54, + "end": 10586.92, + "probability": 0.9893 + }, + { + "start": 10587.0, + "end": 10588.36, + "probability": 0.9749 + }, + { + "start": 10588.76, + "end": 10591.24, + "probability": 0.991 + }, + { + "start": 10591.36, + "end": 10595.76, + "probability": 0.9984 + }, + { + "start": 10595.76, + "end": 10598.98, + "probability": 0.9994 + }, + { + "start": 10599.46, + "end": 10602.64, + "probability": 0.9943 + }, + { + "start": 10602.74, + "end": 10602.84, + "probability": 0.7145 + }, + { + "start": 10603.16, + "end": 10606.38, + "probability": 0.9988 + }, + { + "start": 10606.38, + "end": 10609.54, + "probability": 0.9966 + }, + { + "start": 10609.92, + "end": 10612.3, + "probability": 0.999 + }, + { + "start": 10612.4, + "end": 10612.4, + "probability": 0.5722 + }, + { + "start": 10612.4, + "end": 10614.98, + "probability": 0.9993 + }, + { + "start": 10614.98, + "end": 10618.48, + "probability": 0.9991 + }, + { + "start": 10619.4, + "end": 10624.1, + "probability": 0.9959 + }, + { + "start": 10624.9, + "end": 10627.8, + "probability": 0.9985 + }, + { + "start": 10628.14, + "end": 10629.14, + "probability": 0.7005 + }, + { + "start": 10629.54, + "end": 10629.54, + "probability": 0.4344 + }, + { + "start": 10629.56, + "end": 10635.92, + "probability": 0.4214 + }, + { + "start": 10636.58, + "end": 10637.58, + "probability": 0.8206 + }, + { + "start": 10639.38, + "end": 10641.22, + "probability": 0.0879 + }, + { + "start": 10642.06, + "end": 10643.8, + "probability": 0.072 + }, + { + "start": 10644.16, + "end": 10646.74, + "probability": 0.1394 + }, + { + "start": 10646.9, + "end": 10650.98, + "probability": 0.2074 + }, + { + "start": 10651.36, + "end": 10655.92, + "probability": 0.1503 + }, + { + "start": 10657.72, + "end": 10659.24, + "probability": 0.0471 + }, + { + "start": 10659.92, + "end": 10660.1, + "probability": 0.0126 + }, + { + "start": 10666.42, + "end": 10669.18, + "probability": 0.0235 + }, + { + "start": 10671.02, + "end": 10672.86, + "probability": 0.014 + }, + { + "start": 10673.84, + "end": 10676.78, + "probability": 0.1715 + }, + { + "start": 10679.04, + "end": 10682.04, + "probability": 0.6868 + }, + { + "start": 10685.52, + "end": 10686.24, + "probability": 0.9751 + }, + { + "start": 10692.1, + "end": 10693.92, + "probability": 0.8048 + }, + { + "start": 10694.14, + "end": 10695.38, + "probability": 0.626 + }, + { + "start": 10697.34, + "end": 10698.4, + "probability": 0.6172 + }, + { + "start": 10699.96, + "end": 10701.53, + "probability": 0.9067 + }, + { + "start": 10702.42, + "end": 10702.42, + "probability": 0.3963 + }, + { + "start": 10702.42, + "end": 10702.74, + "probability": 0.7703 + }, + { + "start": 10704.33, + "end": 10708.92, + "probability": 0.7164 + }, + { + "start": 10709.02, + "end": 10709.36, + "probability": 0.2734 + }, + { + "start": 10710.1, + "end": 10712.78, + "probability": 0.7582 + }, + { + "start": 10714.42, + "end": 10718.68, + "probability": 0.9829 + }, + { + "start": 10718.68, + "end": 10719.5, + "probability": 0.8746 + }, + { + "start": 10720.66, + "end": 10722.76, + "probability": 0.999 + }, + { + "start": 10724.84, + "end": 10727.31, + "probability": 0.8098 + }, + { + "start": 10729.21, + "end": 10735.36, + "probability": 0.7458 + }, + { + "start": 10736.47, + "end": 10738.5, + "probability": 0.9289 + }, + { + "start": 10739.2, + "end": 10740.04, + "probability": 0.8064 + }, + { + "start": 10741.28, + "end": 10743.68, + "probability": 0.9151 + }, + { + "start": 10744.0, + "end": 10744.78, + "probability": 0.7963 + }, + { + "start": 10744.88, + "end": 10745.54, + "probability": 0.9008 + }, + { + "start": 10745.66, + "end": 10747.55, + "probability": 0.4103 + }, + { + "start": 10748.02, + "end": 10750.18, + "probability": 0.7877 + }, + { + "start": 10750.26, + "end": 10753.52, + "probability": 0.8298 + }, + { + "start": 10753.66, + "end": 10755.45, + "probability": 0.7047 + }, + { + "start": 10756.56, + "end": 10759.24, + "probability": 0.9014 + }, + { + "start": 10761.3, + "end": 10761.86, + "probability": 0.8398 + }, + { + "start": 10763.76, + "end": 10764.46, + "probability": 0.9325 + }, + { + "start": 10772.76, + "end": 10775.18, + "probability": 0.6243 + }, + { + "start": 10776.38, + "end": 10778.6, + "probability": 0.9928 + }, + { + "start": 10779.82, + "end": 10782.6, + "probability": 0.9847 + }, + { + "start": 10782.82, + "end": 10786.06, + "probability": 0.986 + }, + { + "start": 10786.06, + "end": 10787.6, + "probability": 0.7829 + }, + { + "start": 10788.56, + "end": 10795.44, + "probability": 0.853 + }, + { + "start": 10795.98, + "end": 10796.58, + "probability": 0.5395 + }, + { + "start": 10796.66, + "end": 10797.02, + "probability": 0.6254 + }, + { + "start": 10797.14, + "end": 10800.78, + "probability": 0.9974 + }, + { + "start": 10801.84, + "end": 10805.44, + "probability": 0.958 + }, + { + "start": 10807.2, + "end": 10809.44, + "probability": 0.1671 + }, + { + "start": 10819.78, + "end": 10821.44, + "probability": 0.4909 + }, + { + "start": 10822.72, + "end": 10825.62, + "probability": 0.9912 + }, + { + "start": 10825.82, + "end": 10828.3, + "probability": 0.7 + }, + { + "start": 10828.78, + "end": 10831.48, + "probability": 0.9864 + }, + { + "start": 10833.3, + "end": 10834.61, + "probability": 0.8869 + }, + { + "start": 10834.98, + "end": 10838.44, + "probability": 0.9326 + }, + { + "start": 10840.04, + "end": 10845.6, + "probability": 0.8601 + }, + { + "start": 10846.44, + "end": 10848.54, + "probability": 0.7478 + }, + { + "start": 10849.28, + "end": 10850.32, + "probability": 0.9145 + }, + { + "start": 10851.02, + "end": 10852.2, + "probability": 0.8309 + }, + { + "start": 10853.42, + "end": 10854.14, + "probability": 0.9428 + }, + { + "start": 10854.72, + "end": 10856.02, + "probability": 0.9895 + }, + { + "start": 10856.74, + "end": 10858.68, + "probability": 0.991 + }, + { + "start": 10858.92, + "end": 10859.5, + "probability": 0.6884 + }, + { + "start": 10859.58, + "end": 10861.26, + "probability": 0.8351 + }, + { + "start": 10861.4, + "end": 10863.22, + "probability": 0.8374 + }, + { + "start": 10863.28, + "end": 10864.24, + "probability": 0.9738 + }, + { + "start": 10864.34, + "end": 10864.94, + "probability": 0.9345 + }, + { + "start": 10865.0, + "end": 10865.5, + "probability": 0.4851 + }, + { + "start": 10865.52, + "end": 10869.02, + "probability": 0.902 + }, + { + "start": 10869.84, + "end": 10871.46, + "probability": 0.965 + }, + { + "start": 10872.44, + "end": 10875.8, + "probability": 0.9954 + }, + { + "start": 10875.8, + "end": 10877.94, + "probability": 0.7763 + }, + { + "start": 10879.78, + "end": 10880.5, + "probability": 0.1592 + }, + { + "start": 10882.4, + "end": 10884.0, + "probability": 0.9882 + }, + { + "start": 10884.12, + "end": 10884.18, + "probability": 0.4239 + }, + { + "start": 10884.32, + "end": 10884.88, + "probability": 0.6843 + }, + { + "start": 10885.04, + "end": 10887.34, + "probability": 0.9176 + }, + { + "start": 10887.48, + "end": 10889.58, + "probability": 0.6699 + }, + { + "start": 10889.78, + "end": 10891.28, + "probability": 0.7115 + }, + { + "start": 10891.5, + "end": 10892.88, + "probability": 0.9517 + }, + { + "start": 10893.42, + "end": 10896.12, + "probability": 0.1298 + }, + { + "start": 10896.42, + "end": 10899.04, + "probability": 0.8893 + }, + { + "start": 10899.8, + "end": 10903.16, + "probability": 0.6564 + }, + { + "start": 10903.26, + "end": 10904.58, + "probability": 0.9578 + }, + { + "start": 10905.28, + "end": 10913.56, + "probability": 0.8473 + }, + { + "start": 10913.78, + "end": 10914.7, + "probability": 0.5004 + }, + { + "start": 10915.96, + "end": 10916.68, + "probability": 0.8594 + }, + { + "start": 10917.24, + "end": 10917.63, + "probability": 0.8737 + }, + { + "start": 10918.54, + "end": 10919.28, + "probability": 0.9209 + }, + { + "start": 10920.13, + "end": 10922.9, + "probability": 0.9404 + }, + { + "start": 10922.92, + "end": 10925.04, + "probability": 0.9775 + }, + { + "start": 10926.06, + "end": 10927.07, + "probability": 0.087 + }, + { + "start": 10928.1, + "end": 10931.38, + "probability": 0.9663 + }, + { + "start": 10931.78, + "end": 10932.56, + "probability": 0.8063 + }, + { + "start": 10933.28, + "end": 10937.92, + "probability": 0.9976 + }, + { + "start": 10938.16, + "end": 10939.8, + "probability": 0.884 + }, + { + "start": 10940.9, + "end": 10947.44, + "probability": 0.1259 + }, + { + "start": 10949.84, + "end": 10949.98, + "probability": 0.0105 + }, + { + "start": 10949.98, + "end": 10950.0, + "probability": 0.0174 + }, + { + "start": 10950.0, + "end": 10950.0, + "probability": 0.0655 + }, + { + "start": 10950.0, + "end": 10950.0, + "probability": 0.0285 + }, + { + "start": 10950.0, + "end": 10951.31, + "probability": 0.7672 + }, + { + "start": 10951.84, + "end": 10952.74, + "probability": 0.8061 + }, + { + "start": 10952.76, + "end": 10953.42, + "probability": 0.7651 + }, + { + "start": 10953.52, + "end": 10954.22, + "probability": 0.8892 + }, + { + "start": 10954.42, + "end": 10956.2, + "probability": 0.7878 + }, + { + "start": 10956.34, + "end": 10957.16, + "probability": 0.5192 + }, + { + "start": 10957.16, + "end": 10959.18, + "probability": 0.1444 + }, + { + "start": 10959.18, + "end": 10959.7, + "probability": 0.677 + }, + { + "start": 10959.82, + "end": 10960.88, + "probability": 0.831 + }, + { + "start": 10961.4, + "end": 10963.02, + "probability": 0.8877 + }, + { + "start": 10963.24, + "end": 10965.12, + "probability": 0.9548 + }, + { + "start": 10966.25, + "end": 10968.35, + "probability": 0.6449 + }, + { + "start": 10974.96, + "end": 10977.1, + "probability": 0.5818 + }, + { + "start": 10977.1, + "end": 10978.0, + "probability": 0.6669 + }, + { + "start": 10979.9, + "end": 10982.72, + "probability": 0.687 + }, + { + "start": 10983.36, + "end": 10984.56, + "probability": 0.9973 + }, + { + "start": 10985.12, + "end": 10987.1, + "probability": 0.9285 + }, + { + "start": 10987.24, + "end": 10987.72, + "probability": 0.4103 + }, + { + "start": 10987.8, + "end": 10988.2, + "probability": 0.9496 + }, + { + "start": 10988.82, + "end": 10991.04, + "probability": 0.9079 + }, + { + "start": 10991.12, + "end": 10991.91, + "probability": 0.8981 + }, + { + "start": 10991.98, + "end": 10992.08, + "probability": 0.8694 + }, + { + "start": 10992.42, + "end": 10992.66, + "probability": 0.8442 + }, + { + "start": 10992.72, + "end": 10993.24, + "probability": 0.7245 + }, + { + "start": 10993.54, + "end": 10995.36, + "probability": 0.695 + }, + { + "start": 10995.64, + "end": 10998.2, + "probability": 0.97 + }, + { + "start": 10998.76, + "end": 11000.72, + "probability": 0.9144 + }, + { + "start": 11001.76, + "end": 11001.76, + "probability": 0.1786 + }, + { + "start": 11001.76, + "end": 11001.76, + "probability": 0.3512 + }, + { + "start": 11001.76, + "end": 11003.26, + "probability": 0.5798 + }, + { + "start": 11003.64, + "end": 11004.42, + "probability": 0.6272 + }, + { + "start": 11004.46, + "end": 11005.18, + "probability": 0.5484 + }, + { + "start": 11005.46, + "end": 11006.9, + "probability": 0.5935 + }, + { + "start": 11007.1, + "end": 11008.84, + "probability": 0.9032 + }, + { + "start": 11008.98, + "end": 11010.8, + "probability": 0.965 + }, + { + "start": 11011.52, + "end": 11012.5, + "probability": 0.9236 + }, + { + "start": 11012.58, + "end": 11012.94, + "probability": 0.9514 + }, + { + "start": 11013.1, + "end": 11015.88, + "probability": 0.9307 + }, + { + "start": 11016.86, + "end": 11020.16, + "probability": 0.7263 + }, + { + "start": 11020.24, + "end": 11021.46, + "probability": 0.7796 + }, + { + "start": 11022.1, + "end": 11027.04, + "probability": 0.9249 + }, + { + "start": 11028.64, + "end": 11030.72, + "probability": 0.9838 + }, + { + "start": 11031.26, + "end": 11034.34, + "probability": 0.9889 + }, + { + "start": 11034.62, + "end": 11035.34, + "probability": 0.96 + }, + { + "start": 11036.2, + "end": 11039.02, + "probability": 0.9427 + }, + { + "start": 11039.06, + "end": 11039.94, + "probability": 0.9901 + }, + { + "start": 11039.98, + "end": 11040.71, + "probability": 0.6241 + }, + { + "start": 11040.86, + "end": 11042.06, + "probability": 0.7814 + }, + { + "start": 11042.2, + "end": 11044.56, + "probability": 0.982 + }, + { + "start": 11045.62, + "end": 11047.82, + "probability": 0.9206 + }, + { + "start": 11048.26, + "end": 11049.9, + "probability": 0.982 + }, + { + "start": 11050.02, + "end": 11051.93, + "probability": 0.9816 + }, + { + "start": 11052.72, + "end": 11053.88, + "probability": 0.8869 + }, + { + "start": 11053.98, + "end": 11058.29, + "probability": 0.7861 + }, + { + "start": 11059.1, + "end": 11060.66, + "probability": 0.59 + }, + { + "start": 11061.16, + "end": 11062.5, + "probability": 0.8581 + }, + { + "start": 11062.62, + "end": 11067.44, + "probability": 0.9321 + }, + { + "start": 11068.08, + "end": 11071.82, + "probability": 0.9648 + }, + { + "start": 11072.64, + "end": 11073.64, + "probability": 0.9649 + }, + { + "start": 11075.16, + "end": 11076.26, + "probability": 0.6598 + }, + { + "start": 11076.3, + "end": 11076.8, + "probability": 0.6636 + }, + { + "start": 11076.84, + "end": 11077.21, + "probability": 0.6064 + }, + { + "start": 11077.32, + "end": 11078.6, + "probability": 0.9111 + }, + { + "start": 11078.64, + "end": 11079.06, + "probability": 0.6898 + }, + { + "start": 11079.06, + "end": 11080.66, + "probability": 0.9548 + }, + { + "start": 11080.92, + "end": 11082.53, + "probability": 0.9658 + }, + { + "start": 11082.74, + "end": 11083.6, + "probability": 0.5426 + }, + { + "start": 11084.24, + "end": 11085.92, + "probability": 0.8463 + }, + { + "start": 11087.02, + "end": 11089.6, + "probability": 0.9529 + }, + { + "start": 11090.34, + "end": 11092.8, + "probability": 0.9573 + }, + { + "start": 11093.0, + "end": 11094.76, + "probability": 0.8174 + }, + { + "start": 11095.22, + "end": 11097.45, + "probability": 0.9926 + }, + { + "start": 11097.52, + "end": 11099.54, + "probability": 0.5868 + }, + { + "start": 11100.46, + "end": 11102.4, + "probability": 0.8421 + }, + { + "start": 11102.54, + "end": 11103.06, + "probability": 0.5486 + }, + { + "start": 11103.16, + "end": 11103.7, + "probability": 0.7358 + }, + { + "start": 11103.76, + "end": 11104.3, + "probability": 0.854 + }, + { + "start": 11104.68, + "end": 11105.68, + "probability": 0.991 + }, + { + "start": 11105.76, + "end": 11108.44, + "probability": 0.8452 + }, + { + "start": 11109.28, + "end": 11110.3, + "probability": 0.5878 + }, + { + "start": 11110.56, + "end": 11112.36, + "probability": 0.8511 + }, + { + "start": 11112.94, + "end": 11113.68, + "probability": 0.9868 + }, + { + "start": 11114.7, + "end": 11116.36, + "probability": 0.8376 + }, + { + "start": 11117.92, + "end": 11121.36, + "probability": 0.925 + }, + { + "start": 11121.5, + "end": 11123.5, + "probability": 0.9506 + }, + { + "start": 11123.56, + "end": 11126.4, + "probability": 0.9421 + }, + { + "start": 11127.24, + "end": 11127.82, + "probability": 0.271 + }, + { + "start": 11127.94, + "end": 11128.28, + "probability": 0.752 + }, + { + "start": 11128.36, + "end": 11130.0, + "probability": 0.8261 + }, + { + "start": 11130.02, + "end": 11131.66, + "probability": 0.6954 + }, + { + "start": 11131.72, + "end": 11132.33, + "probability": 0.8552 + }, + { + "start": 11133.42, + "end": 11134.06, + "probability": 0.897 + }, + { + "start": 11134.56, + "end": 11135.08, + "probability": 0.8568 + }, + { + "start": 11135.18, + "end": 11136.96, + "probability": 0.985 + }, + { + "start": 11137.3, + "end": 11138.22, + "probability": 0.9765 + }, + { + "start": 11139.14, + "end": 11141.68, + "probability": 0.7539 + }, + { + "start": 11142.6, + "end": 11143.44, + "probability": 0.731 + }, + { + "start": 11144.04, + "end": 11146.43, + "probability": 0.9872 + }, + { + "start": 11146.9, + "end": 11151.7, + "probability": 0.9905 + }, + { + "start": 11153.22, + "end": 11156.2, + "probability": 0.9185 + }, + { + "start": 11157.22, + "end": 11158.16, + "probability": 0.8914 + }, + { + "start": 11158.26, + "end": 11159.4, + "probability": 0.8478 + }, + { + "start": 11159.64, + "end": 11160.54, + "probability": 0.9304 + }, + { + "start": 11160.62, + "end": 11161.05, + "probability": 0.7636 + }, + { + "start": 11162.42, + "end": 11163.98, + "probability": 0.9875 + }, + { + "start": 11164.24, + "end": 11165.76, + "probability": 0.9487 + }, + { + "start": 11166.1, + "end": 11170.8, + "probability": 0.9985 + }, + { + "start": 11171.9, + "end": 11173.7, + "probability": 0.998 + }, + { + "start": 11174.46, + "end": 11179.6, + "probability": 0.9282 + }, + { + "start": 11179.6, + "end": 11185.16, + "probability": 0.9955 + }, + { + "start": 11185.84, + "end": 11186.8, + "probability": 0.9249 + }, + { + "start": 11186.86, + "end": 11188.13, + "probability": 0.7589 + }, + { + "start": 11189.08, + "end": 11191.76, + "probability": 0.9932 + }, + { + "start": 11192.18, + "end": 11195.12, + "probability": 0.0974 + }, + { + "start": 11195.86, + "end": 11198.56, + "probability": 0.1466 + }, + { + "start": 11198.68, + "end": 11199.48, + "probability": 0.9269 + }, + { + "start": 11199.98, + "end": 11202.58, + "probability": 0.7979 + }, + { + "start": 11203.38, + "end": 11209.52, + "probability": 0.6515 + }, + { + "start": 11209.88, + "end": 11212.64, + "probability": 0.8741 + }, + { + "start": 11212.82, + "end": 11213.76, + "probability": 0.7687 + }, + { + "start": 11213.8, + "end": 11214.15, + "probability": 0.4178 + }, + { + "start": 11215.94, + "end": 11218.52, + "probability": 0.781 + }, + { + "start": 11219.61, + "end": 11222.76, + "probability": 0.9985 + }, + { + "start": 11223.2, + "end": 11226.68, + "probability": 0.8668 + }, + { + "start": 11226.82, + "end": 11228.08, + "probability": 0.9337 + }, + { + "start": 11228.46, + "end": 11228.72, + "probability": 0.5849 + }, + { + "start": 11229.06, + "end": 11231.78, + "probability": 0.5865 + }, + { + "start": 11231.94, + "end": 11233.0, + "probability": 0.1269 + }, + { + "start": 11233.56, + "end": 11234.86, + "probability": 0.7527 + }, + { + "start": 11234.9, + "end": 11235.28, + "probability": 0.6139 + }, + { + "start": 11235.34, + "end": 11237.08, + "probability": 0.9797 + }, + { + "start": 11237.68, + "end": 11240.42, + "probability": 0.9775 + }, + { + "start": 11240.78, + "end": 11241.76, + "probability": 0.8942 + }, + { + "start": 11242.93, + "end": 11244.22, + "probability": 0.1152 + }, + { + "start": 11245.06, + "end": 11246.96, + "probability": 0.7566 + }, + { + "start": 11247.24, + "end": 11249.84, + "probability": 0.9399 + }, + { + "start": 11250.04, + "end": 11251.53, + "probability": 0.5921 + }, + { + "start": 11251.68, + "end": 11253.88, + "probability": 0.6341 + }, + { + "start": 11253.96, + "end": 11256.04, + "probability": 0.8909 + }, + { + "start": 11256.18, + "end": 11256.4, + "probability": 0.8009 + }, + { + "start": 11256.56, + "end": 11257.56, + "probability": 0.1988 + }, + { + "start": 11257.72, + "end": 11260.28, + "probability": 0.8695 + }, + { + "start": 11260.7, + "end": 11261.9, + "probability": 0.9658 + }, + { + "start": 11261.98, + "end": 11262.42, + "probability": 0.8347 + }, + { + "start": 11262.5, + "end": 11263.49, + "probability": 0.1151 + }, + { + "start": 11265.16, + "end": 11271.06, + "probability": 0.594 + }, + { + "start": 11271.24, + "end": 11272.87, + "probability": 0.9909 + }, + { + "start": 11273.12, + "end": 11276.46, + "probability": 0.7403 + }, + { + "start": 11276.82, + "end": 11277.66, + "probability": 0.5306 + }, + { + "start": 11277.84, + "end": 11279.62, + "probability": 0.8628 + }, + { + "start": 11279.78, + "end": 11282.99, + "probability": 0.7141 + }, + { + "start": 11283.42, + "end": 11284.61, + "probability": 0.9482 + }, + { + "start": 11284.94, + "end": 11285.4, + "probability": 0.7749 + }, + { + "start": 11286.52, + "end": 11288.66, + "probability": 0.4062 + }, + { + "start": 11288.78, + "end": 11292.4, + "probability": 0.9404 + }, + { + "start": 11292.62, + "end": 11292.98, + "probability": 0.9155 + }, + { + "start": 11293.0, + "end": 11294.92, + "probability": 0.2091 + }, + { + "start": 11295.27, + "end": 11297.02, + "probability": 0.1435 + }, + { + "start": 11297.45, + "end": 11298.67, + "probability": 0.3338 + }, + { + "start": 11299.06, + "end": 11300.82, + "probability": 0.9946 + }, + { + "start": 11301.68, + "end": 11305.5, + "probability": 0.9764 + }, + { + "start": 11305.54, + "end": 11306.3, + "probability": 0.9561 + }, + { + "start": 11306.72, + "end": 11311.3, + "probability": 0.9293 + }, + { + "start": 11311.62, + "end": 11312.28, + "probability": 0.9983 + }, + { + "start": 11312.36, + "end": 11313.85, + "probability": 0.9888 + }, + { + "start": 11313.92, + "end": 11315.06, + "probability": 0.9457 + }, + { + "start": 11315.24, + "end": 11317.8, + "probability": 0.5146 + }, + { + "start": 11317.98, + "end": 11318.1, + "probability": 0.4977 + }, + { + "start": 11318.16, + "end": 11318.28, + "probability": 0.9346 + }, + { + "start": 11318.38, + "end": 11319.12, + "probability": 0.9775 + }, + { + "start": 11319.56, + "end": 11320.25, + "probability": 0.9679 + }, + { + "start": 11321.44, + "end": 11323.08, + "probability": 0.9592 + }, + { + "start": 11323.3, + "end": 11325.32, + "probability": 0.9963 + }, + { + "start": 11325.4, + "end": 11327.62, + "probability": 0.8051 + }, + { + "start": 11328.1, + "end": 11330.68, + "probability": 0.7557 + }, + { + "start": 11330.8, + "end": 11331.2, + "probability": 0.5932 + }, + { + "start": 11331.54, + "end": 11333.1, + "probability": 0.9898 + }, + { + "start": 11333.28, + "end": 11333.54, + "probability": 0.9115 + }, + { + "start": 11333.54, + "end": 11334.49, + "probability": 0.7222 + }, + { + "start": 11334.6, + "end": 11335.28, + "probability": 0.9609 + }, + { + "start": 11336.31, + "end": 11337.06, + "probability": 0.0278 + }, + { + "start": 11337.06, + "end": 11338.66, + "probability": 0.5766 + }, + { + "start": 11339.16, + "end": 11339.7, + "probability": 0.4577 + }, + { + "start": 11339.7, + "end": 11341.36, + "probability": 0.1154 + }, + { + "start": 11341.4, + "end": 11341.88, + "probability": 0.3329 + }, + { + "start": 11341.94, + "end": 11343.28, + "probability": 0.9976 + }, + { + "start": 11343.72, + "end": 11345.8, + "probability": 0.8544 + }, + { + "start": 11346.56, + "end": 11348.88, + "probability": 0.6658 + }, + { + "start": 11348.96, + "end": 11352.86, + "probability": 0.9349 + }, + { + "start": 11352.86, + "end": 11356.98, + "probability": 0.9968 + }, + { + "start": 11357.22, + "end": 11358.7, + "probability": 0.8468 + }, + { + "start": 11359.06, + "end": 11360.61, + "probability": 0.9902 + }, + { + "start": 11361.04, + "end": 11362.09, + "probability": 0.98 + }, + { + "start": 11362.84, + "end": 11364.42, + "probability": 0.7107 + }, + { + "start": 11364.64, + "end": 11367.64, + "probability": 0.9231 + }, + { + "start": 11367.72, + "end": 11370.5, + "probability": 0.9845 + }, + { + "start": 11370.68, + "end": 11371.08, + "probability": 0.3757 + }, + { + "start": 11371.3, + "end": 11373.54, + "probability": 0.9176 + }, + { + "start": 11373.74, + "end": 11374.16, + "probability": 0.686 + }, + { + "start": 11374.18, + "end": 11374.39, + "probability": 0.5697 + }, + { + "start": 11375.12, + "end": 11375.78, + "probability": 0.2394 + }, + { + "start": 11377.92, + "end": 11378.28, + "probability": 0.0102 + }, + { + "start": 11378.8, + "end": 11378.8, + "probability": 0.0945 + }, + { + "start": 11378.8, + "end": 11378.88, + "probability": 0.1861 + }, + { + "start": 11378.96, + "end": 11379.52, + "probability": 0.6199 + }, + { + "start": 11379.74, + "end": 11381.36, + "probability": 0.8164 + }, + { + "start": 11381.4, + "end": 11382.92, + "probability": 0.5455 + }, + { + "start": 11383.16, + "end": 11384.0, + "probability": 0.4539 + }, + { + "start": 11384.6, + "end": 11385.36, + "probability": 0.9507 + }, + { + "start": 11385.52, + "end": 11386.44, + "probability": 0.9245 + }, + { + "start": 11386.68, + "end": 11387.78, + "probability": 0.801 + }, + { + "start": 11387.86, + "end": 11391.0, + "probability": 0.1722 + }, + { + "start": 11391.1, + "end": 11391.92, + "probability": 0.7019 + }, + { + "start": 11391.96, + "end": 11392.56, + "probability": 0.6629 + }, + { + "start": 11392.62, + "end": 11394.12, + "probability": 0.8081 + }, + { + "start": 11394.44, + "end": 11395.44, + "probability": 0.6919 + }, + { + "start": 11395.64, + "end": 11396.4, + "probability": 0.9297 + }, + { + "start": 11396.48, + "end": 11399.44, + "probability": 0.799 + }, + { + "start": 11399.92, + "end": 11400.62, + "probability": 0.9639 + }, + { + "start": 11401.46, + "end": 11403.9, + "probability": 0.8227 + }, + { + "start": 11404.0, + "end": 11406.0, + "probability": 0.9258 + }, + { + "start": 11406.06, + "end": 11408.44, + "probability": 0.6678 + }, + { + "start": 11408.44, + "end": 11409.38, + "probability": 0.21 + }, + { + "start": 11409.4, + "end": 11409.77, + "probability": 0.733 + }, + { + "start": 11410.74, + "end": 11412.42, + "probability": 0.5226 + }, + { + "start": 11412.48, + "end": 11412.8, + "probability": 0.6638 + }, + { + "start": 11413.06, + "end": 11415.81, + "probability": 0.489 + }, + { + "start": 11416.1, + "end": 11418.78, + "probability": 0.9804 + }, + { + "start": 11419.58, + "end": 11421.38, + "probability": 0.9858 + }, + { + "start": 11421.42, + "end": 11423.5, + "probability": 0.4998 + }, + { + "start": 11423.72, + "end": 11425.17, + "probability": 0.865 + }, + { + "start": 11426.96, + "end": 11427.36, + "probability": 0.0682 + }, + { + "start": 11427.36, + "end": 11427.62, + "probability": 0.1075 + }, + { + "start": 11427.62, + "end": 11430.28, + "probability": 0.5386 + }, + { + "start": 11430.42, + "end": 11430.8, + "probability": 0.0866 + }, + { + "start": 11430.8, + "end": 11431.94, + "probability": 0.1688 + }, + { + "start": 11432.06, + "end": 11433.18, + "probability": 0.8809 + }, + { + "start": 11433.3, + "end": 11433.56, + "probability": 0.6811 + }, + { + "start": 11433.64, + "end": 11434.64, + "probability": 0.7882 + }, + { + "start": 11434.78, + "end": 11435.46, + "probability": 0.6743 + }, + { + "start": 11435.52, + "end": 11438.18, + "probability": 0.8498 + }, + { + "start": 11438.28, + "end": 11439.03, + "probability": 0.9035 + }, + { + "start": 11439.72, + "end": 11442.76, + "probability": 0.9913 + }, + { + "start": 11443.02, + "end": 11443.76, + "probability": 0.929 + }, + { + "start": 11443.76, + "end": 11445.62, + "probability": 0.9751 + }, + { + "start": 11445.98, + "end": 11446.53, + "probability": 0.9722 + }, + { + "start": 11447.9, + "end": 11448.34, + "probability": 0.9868 + }, + { + "start": 11449.36, + "end": 11451.2, + "probability": 0.991 + }, + { + "start": 11451.2, + "end": 11451.36, + "probability": 0.1774 + }, + { + "start": 11451.4, + "end": 11452.15, + "probability": 0.9019 + }, + { + "start": 11452.42, + "end": 11454.56, + "probability": 0.0725 + }, + { + "start": 11454.56, + "end": 11454.56, + "probability": 0.0714 + }, + { + "start": 11454.56, + "end": 11456.37, + "probability": 0.826 + }, + { + "start": 11457.24, + "end": 11460.22, + "probability": 0.7845 + }, + { + "start": 11460.44, + "end": 11462.58, + "probability": 0.8389 + }, + { + "start": 11462.86, + "end": 11465.34, + "probability": 0.9028 + }, + { + "start": 11466.82, + "end": 11472.38, + "probability": 0.7274 + }, + { + "start": 11472.84, + "end": 11473.74, + "probability": 0.9401 + }, + { + "start": 11474.04, + "end": 11477.1, + "probability": 0.9622 + }, + { + "start": 11480.8, + "end": 11482.2, + "probability": 0.9968 + }, + { + "start": 11485.74, + "end": 11488.96, + "probability": 0.9688 + }, + { + "start": 11489.7, + "end": 11490.68, + "probability": 0.9775 + }, + { + "start": 11490.72, + "end": 11494.34, + "probability": 0.9838 + }, + { + "start": 11496.84, + "end": 11498.26, + "probability": 0.9982 + }, + { + "start": 11498.42, + "end": 11500.32, + "probability": 0.993 + }, + { + "start": 11500.96, + "end": 11501.6, + "probability": 0.5969 + }, + { + "start": 11503.46, + "end": 11503.84, + "probability": 0.9785 + }, + { + "start": 11510.44, + "end": 11511.28, + "probability": 0.1791 + }, + { + "start": 11511.28, + "end": 11511.8, + "probability": 0.6733 + }, + { + "start": 11511.94, + "end": 11512.48, + "probability": 0.5709 + }, + { + "start": 11512.6, + "end": 11515.0, + "probability": 0.8264 + }, + { + "start": 11515.32, + "end": 11519.2, + "probability": 0.9896 + }, + { + "start": 11519.22, + "end": 11520.46, + "probability": 0.5066 + }, + { + "start": 11520.52, + "end": 11521.56, + "probability": 0.6745 + }, + { + "start": 11521.56, + "end": 11523.98, + "probability": 0.7254 + }, + { + "start": 11524.06, + "end": 11525.66, + "probability": 0.53 + }, + { + "start": 11533.52, + "end": 11534.82, + "probability": 0.8857 + }, + { + "start": 11534.82, + "end": 11536.51, + "probability": 0.195 + }, + { + "start": 11537.78, + "end": 11538.62, + "probability": 0.9922 + }, + { + "start": 11539.0, + "end": 11541.34, + "probability": 0.9609 + }, + { + "start": 11541.4, + "end": 11541.62, + "probability": 0.7406 + }, + { + "start": 11541.68, + "end": 11544.76, + "probability": 0.9801 + }, + { + "start": 11544.82, + "end": 11546.22, + "probability": 0.9042 + }, + { + "start": 11546.36, + "end": 11547.82, + "probability": 0.8698 + }, + { + "start": 11548.0, + "end": 11548.68, + "probability": 0.9701 + }, + { + "start": 11549.74, + "end": 11552.7, + "probability": 0.6573 + }, + { + "start": 11553.0, + "end": 11554.58, + "probability": 0.6038 + }, + { + "start": 11554.64, + "end": 11555.02, + "probability": 0.6366 + }, + { + "start": 11555.12, + "end": 11556.26, + "probability": 0.9821 + }, + { + "start": 11556.4, + "end": 11558.08, + "probability": 0.7648 + }, + { + "start": 11558.7, + "end": 11562.46, + "probability": 0.8447 + }, + { + "start": 11562.62, + "end": 11565.54, + "probability": 0.7116 + }, + { + "start": 11566.04, + "end": 11568.2, + "probability": 0.9541 + }, + { + "start": 11568.32, + "end": 11570.16, + "probability": 0.7158 + }, + { + "start": 11570.9, + "end": 11572.6, + "probability": 0.8595 + }, + { + "start": 11572.72, + "end": 11573.95, + "probability": 0.7395 + }, + { + "start": 11574.2, + "end": 11576.94, + "probability": 0.5781 + }, + { + "start": 11577.62, + "end": 11579.74, + "probability": 0.7797 + }, + { + "start": 11580.08, + "end": 11581.02, + "probability": 0.7585 + }, + { + "start": 11582.25, + "end": 11585.22, + "probability": 0.4107 + }, + { + "start": 11585.52, + "end": 11593.18, + "probability": 0.7794 + }, + { + "start": 11593.18, + "end": 11596.26, + "probability": 0.4589 + }, + { + "start": 11596.86, + "end": 11597.66, + "probability": 0.0323 + }, + { + "start": 11598.28, + "end": 11603.06, + "probability": 0.2506 + }, + { + "start": 11603.12, + "end": 11604.48, + "probability": 0.7637 + }, + { + "start": 11612.16, + "end": 11612.5, + "probability": 0.5576 + }, + { + "start": 11620.22, + "end": 11629.14, + "probability": 0.4557 + }, + { + "start": 11629.7, + "end": 11632.1, + "probability": 0.2552 + }, + { + "start": 11633.06, + "end": 11633.96, + "probability": 0.4997 + }, + { + "start": 11634.37, + "end": 11635.7, + "probability": 0.7474 + }, + { + "start": 11635.7, + "end": 11638.56, + "probability": 0.9116 + }, + { + "start": 11638.56, + "end": 11642.48, + "probability": 0.2077 + }, + { + "start": 11642.74, + "end": 11644.3, + "probability": 0.0884 + }, + { + "start": 11646.34, + "end": 11648.22, + "probability": 0.0835 + }, + { + "start": 11648.34, + "end": 11650.86, + "probability": 0.0824 + }, + { + "start": 11664.82, + "end": 11668.68, + "probability": 0.22 + }, + { + "start": 11668.68, + "end": 11672.94, + "probability": 0.4758 + }, + { + "start": 11673.14, + "end": 11676.84, + "probability": 0.3029 + }, + { + "start": 11683.34, + "end": 11684.18, + "probability": 0.6291 + }, + { + "start": 11685.08, + "end": 11685.84, + "probability": 0.0121 + }, + { + "start": 11685.84, + "end": 11686.02, + "probability": 0.0244 + }, + { + "start": 11686.82, + "end": 11689.38, + "probability": 0.1441 + }, + { + "start": 11690.22, + "end": 11690.7, + "probability": 0.0258 + }, + { + "start": 11690.7, + "end": 11692.38, + "probability": 0.0315 + }, + { + "start": 11692.84, + "end": 11696.98, + "probability": 0.1838 + }, + { + "start": 11697.0, + "end": 11697.0, + "probability": 0.0 + }, + { + "start": 11697.0, + "end": 11697.0, + "probability": 0.0 + }, + { + "start": 11697.0, + "end": 11697.0, + "probability": 0.0 + }, + { + "start": 11697.0, + "end": 11697.0, + "probability": 0.0 + }, + { + "start": 11697.38, + "end": 11699.78, + "probability": 0.0665 + }, + { + "start": 11701.45, + "end": 11705.61, + "probability": 0.067 + }, + { + "start": 11706.42, + "end": 11706.42, + "probability": 0.0866 + }, + { + "start": 11708.38, + "end": 11709.84, + "probability": 0.0637 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11826.0, + "end": 11826.0, + "probability": 0.0 + }, + { + "start": 11853.12, + "end": 11855.68, + "probability": 0.0134 + }, + { + "start": 11859.58, + "end": 11861.58, + "probability": 0.023 + }, + { + "start": 11867.62, + "end": 11871.3, + "probability": 0.0206 + }, + { + "start": 11871.32, + "end": 11873.4, + "probability": 0.0372 + }, + { + "start": 11874.95, + "end": 11875.58, + "probability": 0.0479 + }, + { + "start": 11875.82, + "end": 11881.58, + "probability": 0.0374 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.0, + "end": 11946.0, + "probability": 0.0 + }, + { + "start": 11946.9, + "end": 11949.78, + "probability": 0.7236 + }, + { + "start": 11949.9, + "end": 11950.56, + "probability": 0.8046 + }, + { + "start": 11950.78, + "end": 11954.34, + "probability": 0.7464 + }, + { + "start": 11954.44, + "end": 11958.38, + "probability": 0.9454 + }, + { + "start": 11958.54, + "end": 11958.96, + "probability": 0.7362 + }, + { + "start": 11959.68, + "end": 11964.86, + "probability": 0.8336 + }, + { + "start": 11964.98, + "end": 11965.48, + "probability": 0.5969 + }, + { + "start": 11965.56, + "end": 11966.22, + "probability": 0.6631 + }, + { + "start": 11966.46, + "end": 11969.44, + "probability": 0.9679 + }, + { + "start": 11969.5, + "end": 11972.65, + "probability": 0.7862 + }, + { + "start": 11973.28, + "end": 11977.06, + "probability": 0.723 + }, + { + "start": 11977.52, + "end": 11980.14, + "probability": 0.6268 + }, + { + "start": 11980.46, + "end": 11980.96, + "probability": 0.86 + }, + { + "start": 11981.02, + "end": 11982.78, + "probability": 0.891 + }, + { + "start": 11982.9, + "end": 11985.74, + "probability": 0.9525 + }, + { + "start": 11985.82, + "end": 11989.58, + "probability": 0.986 + }, + { + "start": 11990.14, + "end": 11993.4, + "probability": 0.9912 + }, + { + "start": 11993.4, + "end": 11995.1, + "probability": 0.9351 + }, + { + "start": 11995.9, + "end": 11997.14, + "probability": 0.3796 + }, + { + "start": 11997.3, + "end": 12000.94, + "probability": 0.9899 + }, + { + "start": 12001.16, + "end": 12003.32, + "probability": 0.7518 + }, + { + "start": 12004.12, + "end": 12007.96, + "probability": 0.9574 + }, + { + "start": 12008.7, + "end": 12009.38, + "probability": 0.416 + }, + { + "start": 12009.5, + "end": 12012.4, + "probability": 0.9763 + }, + { + "start": 12012.44, + "end": 12012.7, + "probability": 0.5721 + }, + { + "start": 12012.82, + "end": 12018.06, + "probability": 0.8621 + }, + { + "start": 12019.06, + "end": 12020.46, + "probability": 0.6746 + }, + { + "start": 12020.48, + "end": 12024.78, + "probability": 0.9975 + }, + { + "start": 12024.78, + "end": 12028.86, + "probability": 0.95 + }, + { + "start": 12029.0, + "end": 12029.44, + "probability": 0.6276 + }, + { + "start": 12030.5, + "end": 12034.68, + "probability": 0.9647 + }, + { + "start": 12035.36, + "end": 12040.34, + "probability": 0.8906 + }, + { + "start": 12040.4, + "end": 12042.28, + "probability": 0.7182 + }, + { + "start": 12042.48, + "end": 12042.84, + "probability": 0.8274 + }, + { + "start": 12042.98, + "end": 12043.36, + "probability": 0.3527 + }, + { + "start": 12043.48, + "end": 12044.14, + "probability": 0.3346 + }, + { + "start": 12044.18, + "end": 12044.81, + "probability": 0.8093 + }, + { + "start": 12045.88, + "end": 12050.92, + "probability": 0.9274 + }, + { + "start": 12051.12, + "end": 12055.22, + "probability": 0.8233 + }, + { + "start": 12055.28, + "end": 12057.1, + "probability": 0.6992 + }, + { + "start": 12057.1, + "end": 12059.42, + "probability": 0.9722 + }, + { + "start": 12059.42, + "end": 12061.14, + "probability": 0.767 + }, + { + "start": 12061.54, + "end": 12064.74, + "probability": 0.5756 + }, + { + "start": 12064.8, + "end": 12068.76, + "probability": 0.9749 + }, + { + "start": 12069.3, + "end": 12072.42, + "probability": 0.8651 + }, + { + "start": 12073.0, + "end": 12076.66, + "probability": 0.8602 + }, + { + "start": 12076.76, + "end": 12079.5, + "probability": 0.7445 + }, + { + "start": 12080.02, + "end": 12082.02, + "probability": 0.854 + }, + { + "start": 12082.02, + "end": 12085.97, + "probability": 0.8753 + }, + { + "start": 12086.28, + "end": 12089.92, + "probability": 0.9181 + }, + { + "start": 12090.13, + "end": 12092.1, + "probability": 0.9132 + }, + { + "start": 12092.1, + "end": 12095.36, + "probability": 0.7635 + }, + { + "start": 12095.48, + "end": 12097.82, + "probability": 0.918 + }, + { + "start": 12097.9, + "end": 12102.09, + "probability": 0.8804 + }, + { + "start": 12102.5, + "end": 12105.04, + "probability": 0.9256 + }, + { + "start": 12105.16, + "end": 12105.46, + "probability": 0.5973 + }, + { + "start": 12107.21, + "end": 12109.1, + "probability": 0.8956 + }, + { + "start": 12109.2, + "end": 12111.1, + "probability": 0.5566 + }, + { + "start": 12111.18, + "end": 12113.84, + "probability": 0.9402 + }, + { + "start": 12113.98, + "end": 12115.96, + "probability": 0.891 + }, + { + "start": 12116.02, + "end": 12118.28, + "probability": 0.9738 + }, + { + "start": 12118.4, + "end": 12123.44, + "probability": 0.9858 + }, + { + "start": 12123.55, + "end": 12128.38, + "probability": 0.9935 + }, + { + "start": 12129.66, + "end": 12131.5, + "probability": 0.7088 + }, + { + "start": 12132.02, + "end": 12134.62, + "probability": 0.9102 + }, + { + "start": 12134.72, + "end": 12138.38, + "probability": 0.9288 + }, + { + "start": 12140.28, + "end": 12145.04, + "probability": 0.9879 + }, + { + "start": 12145.66, + "end": 12146.76, + "probability": 0.5951 + }, + { + "start": 12148.48, + "end": 12149.7, + "probability": 0.7435 + }, + { + "start": 12150.06, + "end": 12151.46, + "probability": 0.94 + }, + { + "start": 12152.54, + "end": 12153.96, + "probability": 0.9827 + }, + { + "start": 12154.66, + "end": 12155.56, + "probability": 0.7194 + }, + { + "start": 12156.8, + "end": 12158.54, + "probability": 0.5061 + }, + { + "start": 12158.82, + "end": 12165.56, + "probability": 0.9038 + }, + { + "start": 12166.72, + "end": 12167.6, + "probability": 0.9995 + }, + { + "start": 12170.88, + "end": 12171.94, + "probability": 0.6477 + }, + { + "start": 12172.0, + "end": 12173.08, + "probability": 0.8353 + }, + { + "start": 12174.02, + "end": 12178.32, + "probability": 0.7354 + }, + { + "start": 12178.82, + "end": 12181.9, + "probability": 0.9244 + }, + { + "start": 12184.74, + "end": 12185.69, + "probability": 0.6685 + }, + { + "start": 12186.8, + "end": 12187.98, + "probability": 0.9009 + }, + { + "start": 12188.46, + "end": 12188.5, + "probability": 0.2393 + }, + { + "start": 12188.5, + "end": 12188.82, + "probability": 0.2592 + }, + { + "start": 12188.92, + "end": 12189.42, + "probability": 0.6691 + }, + { + "start": 12189.48, + "end": 12190.09, + "probability": 0.8582 + }, + { + "start": 12191.4, + "end": 12195.48, + "probability": 0.8379 + }, + { + "start": 12195.75, + "end": 12200.48, + "probability": 0.9736 + }, + { + "start": 12200.86, + "end": 12203.18, + "probability": 0.8391 + }, + { + "start": 12203.5, + "end": 12207.14, + "probability": 0.9926 + }, + { + "start": 12208.5, + "end": 12211.34, + "probability": 0.9897 + }, + { + "start": 12211.42, + "end": 12213.9, + "probability": 0.8352 + }, + { + "start": 12213.92, + "end": 12215.34, + "probability": 0.9689 + }, + { + "start": 12216.0, + "end": 12218.88, + "probability": 0.7659 + }, + { + "start": 12219.58, + "end": 12221.98, + "probability": 0.9956 + }, + { + "start": 12222.76, + "end": 12223.9, + "probability": 0.7572 + }, + { + "start": 12225.06, + "end": 12226.04, + "probability": 0.9239 + }, + { + "start": 12227.74, + "end": 12231.82, + "probability": 0.9847 + }, + { + "start": 12232.34, + "end": 12233.5, + "probability": 0.9597 + }, + { + "start": 12234.32, + "end": 12239.44, + "probability": 0.991 + }, + { + "start": 12239.64, + "end": 12240.44, + "probability": 0.7534 + }, + { + "start": 12241.46, + "end": 12244.58, + "probability": 0.925 + }, + { + "start": 12248.48, + "end": 12249.82, + "probability": 0.7013 + }, + { + "start": 12250.48, + "end": 12251.22, + "probability": 0.667 + }, + { + "start": 12252.02, + "end": 12253.12, + "probability": 0.6697 + }, + { + "start": 12253.42, + "end": 12255.96, + "probability": 0.9926 + }, + { + "start": 12256.04, + "end": 12256.32, + "probability": 0.9253 + }, + { + "start": 12256.34, + "end": 12257.66, + "probability": 0.9524 + }, + { + "start": 12257.72, + "end": 12261.82, + "probability": 0.8924 + }, + { + "start": 12262.3, + "end": 12262.76, + "probability": 0.6915 + }, + { + "start": 12262.86, + "end": 12263.16, + "probability": 0.4781 + }, + { + "start": 12263.24, + "end": 12265.94, + "probability": 0.5513 + }, + { + "start": 12266.0, + "end": 12269.58, + "probability": 0.9409 + }, + { + "start": 12269.88, + "end": 12271.16, + "probability": 0.9513 + }, + { + "start": 12271.24, + "end": 12272.0, + "probability": 0.7778 + }, + { + "start": 12276.74, + "end": 12278.97, + "probability": 0.7589 + }, + { + "start": 12279.94, + "end": 12284.49, + "probability": 0.7508 + }, + { + "start": 12285.42, + "end": 12286.54, + "probability": 0.2565 + }, + { + "start": 12287.06, + "end": 12287.06, + "probability": 0.352 + }, + { + "start": 12287.06, + "end": 12288.16, + "probability": 0.6907 + }, + { + "start": 12289.82, + "end": 12289.98, + "probability": 0.0226 + }, + { + "start": 12291.44, + "end": 12295.04, + "probability": 0.6623 + }, + { + "start": 12295.38, + "end": 12297.0, + "probability": 0.9657 + }, + { + "start": 12297.06, + "end": 12297.8, + "probability": 0.7461 + }, + { + "start": 12297.9, + "end": 12298.62, + "probability": 0.2666 + }, + { + "start": 12298.66, + "end": 12298.86, + "probability": 0.6773 + }, + { + "start": 12298.94, + "end": 12300.76, + "probability": 0.593 + }, + { + "start": 12300.76, + "end": 12302.2, + "probability": 0.6008 + }, + { + "start": 12302.86, + "end": 12303.6, + "probability": 0.8021 + }, + { + "start": 12304.02, + "end": 12304.72, + "probability": 0.7162 + }, + { + "start": 12304.76, + "end": 12308.82, + "probability": 0.9583 + }, + { + "start": 12308.86, + "end": 12311.96, + "probability": 0.9507 + }, + { + "start": 12312.04, + "end": 12312.5, + "probability": 0.8615 + }, + { + "start": 12312.72, + "end": 12313.86, + "probability": 0.7938 + }, + { + "start": 12314.06, + "end": 12316.06, + "probability": 0.6613 + }, + { + "start": 12316.28, + "end": 12318.0, + "probability": 0.6782 + }, + { + "start": 12318.7, + "end": 12322.2, + "probability": 0.7595 + }, + { + "start": 12323.62, + "end": 12324.86, + "probability": 0.321 + }, + { + "start": 12325.28, + "end": 12327.16, + "probability": 0.8889 + }, + { + "start": 12329.1, + "end": 12330.76, + "probability": 0.7543 + }, + { + "start": 12331.84, + "end": 12332.76, + "probability": 0.5243 + }, + { + "start": 12334.17, + "end": 12336.82, + "probability": 0.8623 + }, + { + "start": 12336.96, + "end": 12338.18, + "probability": 0.9619 + }, + { + "start": 12341.1, + "end": 12341.5, + "probability": 0.0607 + }, + { + "start": 12341.5, + "end": 12341.5, + "probability": 0.2775 + }, + { + "start": 12341.5, + "end": 12341.8, + "probability": 0.504 + }, + { + "start": 12341.94, + "end": 12344.6, + "probability": 0.9372 + }, + { + "start": 12345.5, + "end": 12349.46, + "probability": 0.991 + }, + { + "start": 12350.02, + "end": 12352.82, + "probability": 0.908 + }, + { + "start": 12353.24, + "end": 12357.6, + "probability": 0.8513 + }, + { + "start": 12358.62, + "end": 12360.84, + "probability": 0.7695 + }, + { + "start": 12361.46, + "end": 12366.24, + "probability": 0.9946 + }, + { + "start": 12366.84, + "end": 12368.2, + "probability": 0.6761 + }, + { + "start": 12368.96, + "end": 12371.14, + "probability": 0.3316 + }, + { + "start": 12371.94, + "end": 12373.38, + "probability": 0.187 + }, + { + "start": 12374.04, + "end": 12376.72, + "probability": 0.9622 + }, + { + "start": 12377.92, + "end": 12381.5, + "probability": 0.9991 + }, + { + "start": 12382.78, + "end": 12386.74, + "probability": 0.9988 + }, + { + "start": 12387.24, + "end": 12388.38, + "probability": 0.854 + }, + { + "start": 12388.9, + "end": 12392.82, + "probability": 0.9807 + }, + { + "start": 12393.4, + "end": 12394.0, + "probability": 0.9053 + }, + { + "start": 12394.58, + "end": 12401.5, + "probability": 0.8755 + }, + { + "start": 12402.28, + "end": 12405.08, + "probability": 0.9406 + }, + { + "start": 12405.52, + "end": 12406.5, + "probability": 0.5102 + }, + { + "start": 12406.58, + "end": 12410.2, + "probability": 0.6739 + }, + { + "start": 12410.3, + "end": 12412.74, + "probability": 0.6262 + }, + { + "start": 12427.86, + "end": 12429.78, + "probability": 0.8209 + }, + { + "start": 12430.74, + "end": 12431.58, + "probability": 0.793 + }, + { + "start": 12431.74, + "end": 12433.26, + "probability": 0.825 + }, + { + "start": 12434.2, + "end": 12436.78, + "probability": 0.8194 + }, + { + "start": 12437.32, + "end": 12439.82, + "probability": 0.981 + }, + { + "start": 12439.96, + "end": 12444.06, + "probability": 0.9806 + }, + { + "start": 12444.82, + "end": 12445.96, + "probability": 0.9004 + }, + { + "start": 12446.14, + "end": 12448.0, + "probability": 0.8774 + }, + { + "start": 12448.12, + "end": 12449.38, + "probability": 0.9971 + }, + { + "start": 12450.16, + "end": 12453.1, + "probability": 0.974 + }, + { + "start": 12453.14, + "end": 12455.12, + "probability": 0.8052 + }, + { + "start": 12457.56, + "end": 12461.34, + "probability": 0.9388 + }, + { + "start": 12461.46, + "end": 12462.36, + "probability": 0.7433 + }, + { + "start": 12462.66, + "end": 12463.78, + "probability": 0.5502 + }, + { + "start": 12463.84, + "end": 12465.92, + "probability": 0.9212 + }, + { + "start": 12466.0, + "end": 12468.32, + "probability": 0.9216 + }, + { + "start": 12468.96, + "end": 12469.96, + "probability": 0.9094 + }, + { + "start": 12470.88, + "end": 12474.74, + "probability": 0.9462 + }, + { + "start": 12476.18, + "end": 12476.6, + "probability": 0.8569 + }, + { + "start": 12476.76, + "end": 12477.4, + "probability": 0.7974 + }, + { + "start": 12477.54, + "end": 12478.38, + "probability": 0.9597 + }, + { + "start": 12478.76, + "end": 12479.54, + "probability": 0.9131 + }, + { + "start": 12480.04, + "end": 12480.92, + "probability": 0.9896 + }, + { + "start": 12481.62, + "end": 12487.72, + "probability": 0.946 + }, + { + "start": 12488.86, + "end": 12490.24, + "probability": 0.6559 + }, + { + "start": 12490.24, + "end": 12491.72, + "probability": 0.8963 + }, + { + "start": 12491.78, + "end": 12493.94, + "probability": 0.7839 + }, + { + "start": 12494.5, + "end": 12496.92, + "probability": 0.725 + }, + { + "start": 12499.28, + "end": 12502.0, + "probability": 0.7658 + }, + { + "start": 12502.08, + "end": 12502.18, + "probability": 0.3534 + }, + { + "start": 12502.3, + "end": 12502.72, + "probability": 0.6367 + }, + { + "start": 12502.88, + "end": 12503.98, + "probability": 0.5943 + }, + { + "start": 12504.72, + "end": 12506.34, + "probability": 0.8235 + }, + { + "start": 12506.38, + "end": 12507.16, + "probability": 0.893 + }, + { + "start": 12507.16, + "end": 12508.44, + "probability": 0.5247 + }, + { + "start": 12508.7, + "end": 12511.78, + "probability": 0.9932 + }, + { + "start": 12512.2, + "end": 12514.36, + "probability": 0.996 + }, + { + "start": 12514.44, + "end": 12515.06, + "probability": 0.7461 + }, + { + "start": 12515.12, + "end": 12516.46, + "probability": 0.9922 + }, + { + "start": 12517.54, + "end": 12519.18, + "probability": 0.6393 + }, + { + "start": 12519.92, + "end": 12522.74, + "probability": 0.7443 + }, + { + "start": 12522.82, + "end": 12524.06, + "probability": 0.9686 + }, + { + "start": 12524.82, + "end": 12526.52, + "probability": 0.9813 + }, + { + "start": 12527.64, + "end": 12529.6, + "probability": 0.9264 + }, + { + "start": 12530.64, + "end": 12531.28, + "probability": 0.5209 + }, + { + "start": 12531.62, + "end": 12532.54, + "probability": 0.7527 + }, + { + "start": 12532.68, + "end": 12536.1, + "probability": 0.7266 + }, + { + "start": 12538.3, + "end": 12542.66, + "probability": 0.7159 + }, + { + "start": 12543.48, + "end": 12543.72, + "probability": 0.7466 + }, + { + "start": 12543.88, + "end": 12549.08, + "probability": 0.9944 + }, + { + "start": 12549.8, + "end": 12551.76, + "probability": 0.3364 + }, + { + "start": 12552.56, + "end": 12553.64, + "probability": 0.8981 + }, + { + "start": 12554.4, + "end": 12556.94, + "probability": 0.9554 + }, + { + "start": 12557.84, + "end": 12559.98, + "probability": 0.9453 + }, + { + "start": 12560.7, + "end": 12561.46, + "probability": 0.7467 + }, + { + "start": 12561.56, + "end": 12565.32, + "probability": 0.9225 + }, + { + "start": 12565.42, + "end": 12566.74, + "probability": 0.9003 + }, + { + "start": 12566.84, + "end": 12568.36, + "probability": 0.9893 + }, + { + "start": 12569.54, + "end": 12573.02, + "probability": 0.8903 + }, + { + "start": 12573.12, + "end": 12576.1, + "probability": 0.9858 + }, + { + "start": 12577.3, + "end": 12579.34, + "probability": 0.8819 + }, + { + "start": 12579.48, + "end": 12583.3, + "probability": 0.9017 + }, + { + "start": 12583.42, + "end": 12584.48, + "probability": 0.6797 + }, + { + "start": 12584.56, + "end": 12585.42, + "probability": 0.7254 + }, + { + "start": 12585.58, + "end": 12587.0, + "probability": 0.6776 + }, + { + "start": 12588.18, + "end": 12589.86, + "probability": 0.9016 + }, + { + "start": 12589.9, + "end": 12590.26, + "probability": 0.8806 + }, + { + "start": 12590.34, + "end": 12592.66, + "probability": 0.9978 + }, + { + "start": 12593.0, + "end": 12594.48, + "probability": 0.541 + }, + { + "start": 12594.56, + "end": 12596.44, + "probability": 0.9611 + }, + { + "start": 12596.58, + "end": 12598.2, + "probability": 0.6219 + }, + { + "start": 12599.32, + "end": 12601.1, + "probability": 0.6821 + }, + { + "start": 12601.9, + "end": 12603.29, + "probability": 0.7017 + }, + { + "start": 12604.12, + "end": 12607.14, + "probability": 0.8979 + }, + { + "start": 12607.2, + "end": 12608.88, + "probability": 0.7093 + }, + { + "start": 12609.76, + "end": 12612.18, + "probability": 0.9849 + }, + { + "start": 12612.28, + "end": 12613.96, + "probability": 0.9911 + }, + { + "start": 12614.48, + "end": 12615.24, + "probability": 0.5933 + }, + { + "start": 12615.4, + "end": 12618.98, + "probability": 0.9427 + }, + { + "start": 12619.12, + "end": 12620.34, + "probability": 0.7534 + }, + { + "start": 12620.44, + "end": 12623.18, + "probability": 0.9074 + }, + { + "start": 12624.84, + "end": 12626.94, + "probability": 0.8785 + }, + { + "start": 12628.14, + "end": 12629.76, + "probability": 0.9712 + }, + { + "start": 12630.78, + "end": 12632.22, + "probability": 0.9944 + }, + { + "start": 12632.34, + "end": 12633.9, + "probability": 0.9958 + }, + { + "start": 12633.98, + "end": 12635.26, + "probability": 0.9888 + }, + { + "start": 12636.56, + "end": 12636.91, + "probability": 0.3744 + }, + { + "start": 12640.98, + "end": 12643.87, + "probability": 0.9927 + }, + { + "start": 12644.57, + "end": 12648.56, + "probability": 0.9911 + }, + { + "start": 12650.28, + "end": 12653.84, + "probability": 0.9922 + }, + { + "start": 12653.88, + "end": 12655.5, + "probability": 0.8451 + }, + { + "start": 12655.98, + "end": 12657.28, + "probability": 0.8847 + }, + { + "start": 12657.38, + "end": 12657.94, + "probability": 0.8353 + }, + { + "start": 12659.3, + "end": 12659.66, + "probability": 0.5764 + }, + { + "start": 12659.76, + "end": 12660.58, + "probability": 0.8784 + }, + { + "start": 12660.6, + "end": 12662.12, + "probability": 0.8328 + }, + { + "start": 12662.4, + "end": 12665.3, + "probability": 0.9801 + }, + { + "start": 12666.42, + "end": 12668.26, + "probability": 0.8393 + }, + { + "start": 12668.32, + "end": 12671.06, + "probability": 0.9099 + }, + { + "start": 12672.12, + "end": 12678.12, + "probability": 0.9901 + }, + { + "start": 12678.98, + "end": 12680.38, + "probability": 0.936 + }, + { + "start": 12680.96, + "end": 12682.76, + "probability": 0.9423 + }, + { + "start": 12682.78, + "end": 12683.94, + "probability": 0.8789 + }, + { + "start": 12684.06, + "end": 12685.1, + "probability": 0.7079 + }, + { + "start": 12686.04, + "end": 12687.2, + "probability": 0.6917 + }, + { + "start": 12687.2, + "end": 12691.42, + "probability": 0.9961 + }, + { + "start": 12692.52, + "end": 12696.72, + "probability": 0.8345 + }, + { + "start": 12697.38, + "end": 12698.9, + "probability": 0.7715 + }, + { + "start": 12698.9, + "end": 12700.5, + "probability": 0.9421 + }, + { + "start": 12700.64, + "end": 12701.66, + "probability": 0.9445 + }, + { + "start": 12701.82, + "end": 12703.92, + "probability": 0.9927 + }, + { + "start": 12704.36, + "end": 12707.56, + "probability": 0.933 + }, + { + "start": 12707.88, + "end": 12709.16, + "probability": 0.9233 + }, + { + "start": 12710.2, + "end": 12711.62, + "probability": 0.9985 + }, + { + "start": 12712.54, + "end": 12717.52, + "probability": 0.7189 + }, + { + "start": 12717.58, + "end": 12718.48, + "probability": 0.7884 + }, + { + "start": 12719.98, + "end": 12722.1, + "probability": 0.9573 + }, + { + "start": 12722.1, + "end": 12724.34, + "probability": 0.7065 + }, + { + "start": 12724.38, + "end": 12727.56, + "probability": 0.9742 + }, + { + "start": 12727.62, + "end": 12729.84, + "probability": 0.9515 + }, + { + "start": 12730.38, + "end": 12732.7, + "probability": 0.9389 + }, + { + "start": 12733.62, + "end": 12735.3, + "probability": 0.9377 + }, + { + "start": 12735.9, + "end": 12737.76, + "probability": 0.8934 + }, + { + "start": 12738.28, + "end": 12738.72, + "probability": 0.6978 + }, + { + "start": 12738.82, + "end": 12740.02, + "probability": 0.8677 + }, + { + "start": 12740.12, + "end": 12741.6, + "probability": 0.9133 + }, + { + "start": 12741.68, + "end": 12743.24, + "probability": 0.9924 + }, + { + "start": 12743.96, + "end": 12744.56, + "probability": 0.7672 + }, + { + "start": 12744.72, + "end": 12745.92, + "probability": 0.9917 + }, + { + "start": 12747.59, + "end": 12751.14, + "probability": 0.7316 + }, + { + "start": 12751.88, + "end": 12753.2, + "probability": 0.9736 + }, + { + "start": 12754.42, + "end": 12756.7, + "probability": 0.6732 + }, + { + "start": 12756.7, + "end": 12757.24, + "probability": 0.8125 + }, + { + "start": 12757.24, + "end": 12758.4, + "probability": 0.9231 + }, + { + "start": 12758.46, + "end": 12759.14, + "probability": 0.6021 + }, + { + "start": 12761.19, + "end": 12762.74, + "probability": 0.0453 + }, + { + "start": 12763.4, + "end": 12764.62, + "probability": 0.8061 + }, + { + "start": 12764.7, + "end": 12765.94, + "probability": 0.9874 + }, + { + "start": 12766.02, + "end": 12768.83, + "probability": 0.9136 + }, + { + "start": 12769.12, + "end": 12770.86, + "probability": 0.6839 + }, + { + "start": 12771.24, + "end": 12774.88, + "probability": 0.9731 + }, + { + "start": 12775.12, + "end": 12775.94, + "probability": 0.9906 + }, + { + "start": 12776.46, + "end": 12777.42, + "probability": 0.6577 + }, + { + "start": 12777.58, + "end": 12778.68, + "probability": 0.6473 + }, + { + "start": 12778.7, + "end": 12781.24, + "probability": 0.8428 + }, + { + "start": 12781.24, + "end": 12784.2, + "probability": 0.6025 + }, + { + "start": 12784.4, + "end": 12786.58, + "probability": 0.3158 + }, + { + "start": 12787.22, + "end": 12788.58, + "probability": 0.6177 + }, + { + "start": 12791.98, + "end": 12792.38, + "probability": 0.6835 + }, + { + "start": 12792.94, + "end": 12794.04, + "probability": 0.0057 + }, + { + "start": 12795.08, + "end": 12798.28, + "probability": 0.0004 + }, + { + "start": 12805.78, + "end": 12808.54, + "probability": 0.5866 + }, + { + "start": 12808.72, + "end": 12811.42, + "probability": 0.9911 + }, + { + "start": 12811.94, + "end": 12815.16, + "probability": 0.8809 + }, + { + "start": 12815.16, + "end": 12817.19, + "probability": 0.5921 + }, + { + "start": 12817.76, + "end": 12821.42, + "probability": 0.3035 + }, + { + "start": 12823.56, + "end": 12826.28, + "probability": 0.4867 + }, + { + "start": 12827.44, + "end": 12828.28, + "probability": 0.5146 + }, + { + "start": 12831.94, + "end": 12834.64, + "probability": 0.1243 + }, + { + "start": 12835.16, + "end": 12835.64, + "probability": 0.135 + }, + { + "start": 12836.1, + "end": 12838.44, + "probability": 0.7408 + }, + { + "start": 12838.74, + "end": 12843.36, + "probability": 0.6686 + }, + { + "start": 12843.48, + "end": 12844.9, + "probability": 0.408 + }, + { + "start": 12845.66, + "end": 12847.5, + "probability": 0.9602 + }, + { + "start": 12847.88, + "end": 12849.3, + "probability": 0.9635 + }, + { + "start": 12849.78, + "end": 12854.34, + "probability": 0.7913 + }, + { + "start": 12854.42, + "end": 12854.96, + "probability": 0.8625 + }, + { + "start": 12855.46, + "end": 12858.68, + "probability": 0.5444 + }, + { + "start": 12861.38, + "end": 12862.22, + "probability": 0.581 + }, + { + "start": 12862.66, + "end": 12863.62, + "probability": 0.9781 + }, + { + "start": 12863.7, + "end": 12866.56, + "probability": 0.9424 + }, + { + "start": 12867.18, + "end": 12870.42, + "probability": 0.9684 + }, + { + "start": 12870.42, + "end": 12872.58, + "probability": 0.9871 + }, + { + "start": 12872.9, + "end": 12876.68, + "probability": 0.9981 + }, + { + "start": 12877.18, + "end": 12877.92, + "probability": 0.9647 + }, + { + "start": 12878.04, + "end": 12880.54, + "probability": 0.9954 + }, + { + "start": 12880.92, + "end": 12883.06, + "probability": 0.9959 + }, + { + "start": 12883.14, + "end": 12885.79, + "probability": 0.9878 + }, + { + "start": 12887.06, + "end": 12887.34, + "probability": 0.6119 + }, + { + "start": 12887.72, + "end": 12892.84, + "probability": 0.9087 + }, + { + "start": 12893.24, + "end": 12894.94, + "probability": 0.9924 + }, + { + "start": 12895.38, + "end": 12896.52, + "probability": 0.907 + }, + { + "start": 12896.56, + "end": 12898.36, + "probability": 0.9917 + }, + { + "start": 12898.62, + "end": 12900.84, + "probability": 0.9816 + }, + { + "start": 12901.26, + "end": 12902.02, + "probability": 0.3823 + }, + { + "start": 12902.06, + "end": 12903.02, + "probability": 0.9232 + }, + { + "start": 12903.34, + "end": 12905.62, + "probability": 0.9128 + }, + { + "start": 12905.62, + "end": 12906.44, + "probability": 0.7291 + }, + { + "start": 12906.64, + "end": 12907.54, + "probability": 0.8112 + }, + { + "start": 12907.86, + "end": 12909.84, + "probability": 0.7225 + }, + { + "start": 12909.84, + "end": 12911.84, + "probability": 0.9551 + }, + { + "start": 12911.9, + "end": 12912.3, + "probability": 0.6754 + }, + { + "start": 12913.54, + "end": 12914.54, + "probability": 0.616 + }, + { + "start": 12914.84, + "end": 12915.82, + "probability": 0.9107 + }, + { + "start": 12915.9, + "end": 12918.24, + "probability": 0.5891 + }, + { + "start": 12918.54, + "end": 12921.82, + "probability": 0.8008 + }, + { + "start": 12922.38, + "end": 12923.02, + "probability": 0.4297 + }, + { + "start": 12923.4, + "end": 12924.02, + "probability": 0.6784 + }, + { + "start": 12924.1, + "end": 12926.84, + "probability": 0.4993 + }, + { + "start": 12927.28, + "end": 12928.82, + "probability": 0.2327 + }, + { + "start": 12929.88, + "end": 12931.05, + "probability": 0.7475 + }, + { + "start": 12931.58, + "end": 12933.42, + "probability": 0.7801 + }, + { + "start": 12933.52, + "end": 12935.14, + "probability": 0.7755 + }, + { + "start": 12935.58, + "end": 12937.02, + "probability": 0.9185 + }, + { + "start": 12937.06, + "end": 12937.82, + "probability": 0.9734 + }, + { + "start": 12942.52, + "end": 12943.04, + "probability": 0.4989 + }, + { + "start": 12943.1, + "end": 12944.1, + "probability": 0.6965 + }, + { + "start": 12944.48, + "end": 12945.58, + "probability": 0.8601 + }, + { + "start": 12945.74, + "end": 12951.16, + "probability": 0.9901 + }, + { + "start": 12951.78, + "end": 12954.06, + "probability": 0.8587 + }, + { + "start": 12954.72, + "end": 12956.14, + "probability": 0.5897 + }, + { + "start": 12956.28, + "end": 12960.84, + "probability": 0.6581 + }, + { + "start": 12960.92, + "end": 12962.7, + "probability": 0.9994 + }, + { + "start": 12963.38, + "end": 12966.2, + "probability": 0.9135 + }, + { + "start": 12966.2, + "end": 12969.5, + "probability": 0.9362 + }, + { + "start": 12970.62, + "end": 12976.18, + "probability": 0.9931 + }, + { + "start": 12977.12, + "end": 12981.92, + "probability": 0.9891 + }, + { + "start": 12981.92, + "end": 12989.06, + "probability": 0.9932 + }, + { + "start": 12989.7, + "end": 12990.88, + "probability": 0.9523 + }, + { + "start": 12991.92, + "end": 12992.56, + "probability": 0.683 + }, + { + "start": 12992.72, + "end": 12993.92, + "probability": 0.6437 + }, + { + "start": 12994.08, + "end": 12996.88, + "probability": 0.9714 + }, + { + "start": 12997.56, + "end": 13003.84, + "probability": 0.9814 + }, + { + "start": 13003.84, + "end": 13009.88, + "probability": 0.991 + }, + { + "start": 13011.04, + "end": 13011.6, + "probability": 0.9666 + }, + { + "start": 13012.3, + "end": 13014.28, + "probability": 0.9032 + }, + { + "start": 13015.14, + "end": 13015.6, + "probability": 0.8733 + }, + { + "start": 13016.24, + "end": 13019.18, + "probability": 0.9838 + }, + { + "start": 13019.72, + "end": 13021.3, + "probability": 0.9366 + }, + { + "start": 13021.4, + "end": 13026.56, + "probability": 0.8224 + }, + { + "start": 13026.56, + "end": 13030.98, + "probability": 0.998 + }, + { + "start": 13031.64, + "end": 13035.3, + "probability": 0.973 + }, + { + "start": 13035.42, + "end": 13037.34, + "probability": 0.7949 + }, + { + "start": 13037.94, + "end": 13039.68, + "probability": 0.5999 + }, + { + "start": 13040.32, + "end": 13041.93, + "probability": 0.8666 + }, + { + "start": 13043.12, + "end": 13046.5, + "probability": 0.9852 + }, + { + "start": 13047.08, + "end": 13051.04, + "probability": 0.9259 + }, + { + "start": 13051.68, + "end": 13054.08, + "probability": 0.9938 + }, + { + "start": 13054.88, + "end": 13059.58, + "probability": 0.998 + }, + { + "start": 13060.22, + "end": 13064.7, + "probability": 0.9954 + }, + { + "start": 13065.44, + "end": 13068.98, + "probability": 0.9988 + }, + { + "start": 13069.18, + "end": 13072.82, + "probability": 0.993 + }, + { + "start": 13073.28, + "end": 13075.36, + "probability": 0.8524 + }, + { + "start": 13076.98, + "end": 13079.24, + "probability": 0.9867 + }, + { + "start": 13080.72, + "end": 13081.14, + "probability": 0.5939 + }, + { + "start": 13081.14, + "end": 13081.92, + "probability": 0.6398 + }, + { + "start": 13082.0, + "end": 13087.69, + "probability": 0.9886 + }, + { + "start": 13088.46, + "end": 13090.66, + "probability": 0.9922 + }, + { + "start": 13091.68, + "end": 13092.36, + "probability": 0.7683 + }, + { + "start": 13092.46, + "end": 13093.76, + "probability": 0.7193 + }, + { + "start": 13093.78, + "end": 13098.56, + "probability": 0.9317 + }, + { + "start": 13099.16, + "end": 13100.08, + "probability": 0.8418 + }, + { + "start": 13100.8, + "end": 13107.13, + "probability": 0.9915 + }, + { + "start": 13107.58, + "end": 13107.82, + "probability": 0.0498 + }, + { + "start": 13107.82, + "end": 13109.94, + "probability": 0.9545 + }, + { + "start": 13110.38, + "end": 13113.74, + "probability": 0.9905 + }, + { + "start": 13113.74, + "end": 13116.46, + "probability": 0.995 + }, + { + "start": 13117.2, + "end": 13119.16, + "probability": 0.869 + }, + { + "start": 13119.32, + "end": 13121.1, + "probability": 0.9416 + }, + { + "start": 13121.7, + "end": 13125.76, + "probability": 0.9669 + }, + { + "start": 13125.8, + "end": 13126.14, + "probability": 0.838 + }, + { + "start": 13126.62, + "end": 13130.56, + "probability": 0.9817 + }, + { + "start": 13130.68, + "end": 13134.84, + "probability": 0.9946 + }, + { + "start": 13135.64, + "end": 13136.06, + "probability": 0.8116 + }, + { + "start": 13136.78, + "end": 13141.34, + "probability": 0.989 + }, + { + "start": 13141.34, + "end": 13147.06, + "probability": 0.8927 + }, + { + "start": 13147.56, + "end": 13149.14, + "probability": 0.9225 + }, + { + "start": 13149.7, + "end": 13150.7, + "probability": 0.9237 + }, + { + "start": 13151.22, + "end": 13152.94, + "probability": 0.9625 + }, + { + "start": 13153.54, + "end": 13157.1, + "probability": 0.9707 + }, + { + "start": 13157.1, + "end": 13161.04, + "probability": 0.9946 + }, + { + "start": 13161.96, + "end": 13163.68, + "probability": 0.788 + }, + { + "start": 13164.3, + "end": 13170.44, + "probability": 0.9888 + }, + { + "start": 13170.6, + "end": 13171.08, + "probability": 0.6145 + }, + { + "start": 13171.7, + "end": 13173.38, + "probability": 0.8347 + }, + { + "start": 13173.92, + "end": 13174.78, + "probability": 0.7158 + }, + { + "start": 13175.18, + "end": 13179.18, + "probability": 0.9732 + }, + { + "start": 13179.66, + "end": 13181.04, + "probability": 0.9729 + }, + { + "start": 13181.54, + "end": 13183.0, + "probability": 0.9436 + }, + { + "start": 13183.74, + "end": 13187.04, + "probability": 0.9867 + }, + { + "start": 13187.72, + "end": 13190.14, + "probability": 0.7486 + }, + { + "start": 13190.87, + "end": 13193.78, + "probability": 0.8272 + }, + { + "start": 13194.3, + "end": 13195.2, + "probability": 0.9247 + }, + { + "start": 13195.74, + "end": 13197.8, + "probability": 0.9868 + }, + { + "start": 13198.18, + "end": 13201.8, + "probability": 0.9868 + }, + { + "start": 13202.82, + "end": 13206.26, + "probability": 0.9998 + }, + { + "start": 13207.06, + "end": 13207.94, + "probability": 0.9562 + }, + { + "start": 13208.94, + "end": 13212.48, + "probability": 0.9944 + }, + { + "start": 13213.2, + "end": 13213.6, + "probability": 0.4768 + }, + { + "start": 13213.7, + "end": 13214.62, + "probability": 0.7481 + }, + { + "start": 13215.1, + "end": 13217.66, + "probability": 0.8201 + }, + { + "start": 13217.7, + "end": 13218.36, + "probability": 0.6671 + }, + { + "start": 13218.98, + "end": 13221.74, + "probability": 0.8592 + }, + { + "start": 13221.94, + "end": 13226.0, + "probability": 0.9896 + }, + { + "start": 13226.66, + "end": 13227.86, + "probability": 0.7144 + }, + { + "start": 13228.16, + "end": 13229.99, + "probability": 0.793 + }, + { + "start": 13230.14, + "end": 13231.84, + "probability": 0.5812 + }, + { + "start": 13232.68, + "end": 13233.64, + "probability": 0.6621 + }, + { + "start": 13233.78, + "end": 13235.5, + "probability": 0.8131 + }, + { + "start": 13235.62, + "end": 13236.42, + "probability": 0.7424 + }, + { + "start": 13237.24, + "end": 13238.8, + "probability": 0.9541 + }, + { + "start": 13239.04, + "end": 13241.54, + "probability": 0.7004 + }, + { + "start": 13242.46, + "end": 13243.18, + "probability": 0.6996 + }, + { + "start": 13243.7, + "end": 13245.38, + "probability": 0.919 + }, + { + "start": 13245.52, + "end": 13248.18, + "probability": 0.689 + }, + { + "start": 13248.74, + "end": 13251.56, + "probability": 0.9679 + }, + { + "start": 13252.18, + "end": 13253.86, + "probability": 0.9689 + }, + { + "start": 13253.94, + "end": 13254.76, + "probability": 0.9795 + }, + { + "start": 13255.02, + "end": 13256.2, + "probability": 0.9389 + }, + { + "start": 13256.34, + "end": 13257.08, + "probability": 0.8898 + }, + { + "start": 13260.56, + "end": 13260.88, + "probability": 0.7469 + }, + { + "start": 13261.58, + "end": 13261.62, + "probability": 0.0557 + }, + { + "start": 13261.62, + "end": 13261.62, + "probability": 0.1919 + }, + { + "start": 13261.62, + "end": 13262.0, + "probability": 0.4983 + }, + { + "start": 13262.54, + "end": 13263.2, + "probability": 0.3318 + }, + { + "start": 13265.28, + "end": 13265.84, + "probability": 0.6352 + }, + { + "start": 13265.9, + "end": 13269.86, + "probability": 0.921 + }, + { + "start": 13270.48, + "end": 13271.96, + "probability": 0.1894 + }, + { + "start": 13272.6, + "end": 13274.34, + "probability": 0.6018 + }, + { + "start": 13275.74, + "end": 13280.53, + "probability": 0.4205 + }, + { + "start": 13281.04, + "end": 13281.62, + "probability": 0.7566 + }, + { + "start": 13291.88, + "end": 13295.32, + "probability": 0.0826 + }, + { + "start": 13296.08, + "end": 13299.7, + "probability": 0.7415 + }, + { + "start": 13299.96, + "end": 13302.32, + "probability": 0.9745 + }, + { + "start": 13302.96, + "end": 13305.04, + "probability": 0.8321 + }, + { + "start": 13305.04, + "end": 13307.76, + "probability": 0.6893 + }, + { + "start": 13308.34, + "end": 13308.46, + "probability": 0.4917 + }, + { + "start": 13308.56, + "end": 13308.98, + "probability": 0.4388 + }, + { + "start": 13309.04, + "end": 13311.72, + "probability": 0.5775 + }, + { + "start": 13312.16, + "end": 13315.5, + "probability": 0.2417 + }, + { + "start": 13321.66, + "end": 13322.06, + "probability": 0.0775 + }, + { + "start": 13324.62, + "end": 13324.7, + "probability": 0.0162 + }, + { + "start": 13327.6, + "end": 13334.5, + "probability": 0.006 + }, + { + "start": 13336.46, + "end": 13338.74, + "probability": 0.11 + }, + { + "start": 13339.11, + "end": 13342.34, + "probability": 0.6176 + }, + { + "start": 13343.9, + "end": 13344.48, + "probability": 0.5031 + }, + { + "start": 13344.5, + "end": 13349.5, + "probability": 0.4772 + }, + { + "start": 13350.16, + "end": 13350.9, + "probability": 0.0309 + }, + { + "start": 13351.3, + "end": 13353.42, + "probability": 0.0166 + }, + { + "start": 13353.8, + "end": 13357.88, + "probability": 0.0264 + }, + { + "start": 13358.34, + "end": 13359.68, + "probability": 0.2225 + }, + { + "start": 13359.96, + "end": 13363.34, + "probability": 0.1639 + }, + { + "start": 13365.38, + "end": 13366.7, + "probability": 0.0903 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.0, + "end": 13374.0, + "probability": 0.0 + }, + { + "start": 13374.22, + "end": 13377.34, + "probability": 0.6947 + }, + { + "start": 13377.93, + "end": 13379.6, + "probability": 0.8534 + }, + { + "start": 13381.24, + "end": 13382.48, + "probability": 0.9932 + }, + { + "start": 13391.6, + "end": 13392.38, + "probability": 0.4042 + }, + { + "start": 13392.48, + "end": 13393.78, + "probability": 0.5627 + }, + { + "start": 13393.8, + "end": 13394.08, + "probability": 0.0359 + }, + { + "start": 13395.68, + "end": 13396.94, + "probability": 0.6943 + }, + { + "start": 13401.9, + "end": 13405.3, + "probability": 0.7746 + }, + { + "start": 13406.24, + "end": 13411.26, + "probability": 0.9158 + }, + { + "start": 13412.22, + "end": 13414.68, + "probability": 0.8329 + }, + { + "start": 13414.68, + "end": 13416.88, + "probability": 0.9974 + }, + { + "start": 13417.48, + "end": 13419.18, + "probability": 0.5551 + }, + { + "start": 13421.16, + "end": 13422.46, + "probability": 0.9337 + }, + { + "start": 13423.14, + "end": 13424.7, + "probability": 0.9052 + }, + { + "start": 13427.08, + "end": 13427.56, + "probability": 0.6454 + }, + { + "start": 13427.64, + "end": 13430.72, + "probability": 0.9819 + }, + { + "start": 13430.72, + "end": 13435.16, + "probability": 0.9895 + }, + { + "start": 13435.36, + "end": 13436.34, + "probability": 0.236 + }, + { + "start": 13437.42, + "end": 13441.46, + "probability": 0.981 + }, + { + "start": 13442.0, + "end": 13446.06, + "probability": 0.9503 + }, + { + "start": 13447.08, + "end": 13451.86, + "probability": 0.6647 + }, + { + "start": 13451.88, + "end": 13452.34, + "probability": 0.8283 + }, + { + "start": 13452.58, + "end": 13455.86, + "probability": 0.8757 + }, + { + "start": 13455.86, + "end": 13461.14, + "probability": 0.8292 + }, + { + "start": 13464.4, + "end": 13467.62, + "probability": 0.7884 + }, + { + "start": 13468.13, + "end": 13470.62, + "probability": 0.7337 + }, + { + "start": 13470.74, + "end": 13471.58, + "probability": 0.6768 + }, + { + "start": 13471.66, + "end": 13472.48, + "probability": 0.4772 + }, + { + "start": 13473.12, + "end": 13473.3, + "probability": 0.243 + }, + { + "start": 13473.3, + "end": 13475.2, + "probability": 0.2389 + }, + { + "start": 13475.24, + "end": 13476.96, + "probability": 0.9132 + }, + { + "start": 13478.62, + "end": 13481.78, + "probability": 0.8946 + }, + { + "start": 13482.72, + "end": 13484.84, + "probability": 0.9539 + }, + { + "start": 13484.84, + "end": 13487.02, + "probability": 0.9705 + }, + { + "start": 13487.92, + "end": 13492.06, + "probability": 0.9678 + }, + { + "start": 13492.06, + "end": 13494.52, + "probability": 0.5369 + }, + { + "start": 13494.9, + "end": 13498.36, + "probability": 0.9952 + }, + { + "start": 13498.36, + "end": 13500.64, + "probability": 0.8578 + }, + { + "start": 13501.48, + "end": 13506.38, + "probability": 0.9233 + }, + { + "start": 13506.38, + "end": 13512.62, + "probability": 0.9227 + }, + { + "start": 13513.08, + "end": 13517.06, + "probability": 0.9803 + }, + { + "start": 13517.06, + "end": 13521.82, + "probability": 0.9937 + }, + { + "start": 13522.36, + "end": 13524.72, + "probability": 0.9984 + }, + { + "start": 13524.72, + "end": 13529.2, + "probability": 0.9965 + }, + { + "start": 13529.36, + "end": 13529.7, + "probability": 0.4838 + }, + { + "start": 13530.38, + "end": 13532.16, + "probability": 0.9528 + }, + { + "start": 13532.22, + "end": 13535.26, + "probability": 0.9729 + }, + { + "start": 13535.26, + "end": 13539.52, + "probability": 0.9478 + }, + { + "start": 13540.4, + "end": 13543.76, + "probability": 0.9946 + }, + { + "start": 13544.22, + "end": 13547.24, + "probability": 0.9711 + }, + { + "start": 13548.36, + "end": 13551.42, + "probability": 0.9697 + }, + { + "start": 13552.1, + "end": 13555.0, + "probability": 0.9567 + }, + { + "start": 13555.14, + "end": 13555.56, + "probability": 0.3512 + }, + { + "start": 13556.34, + "end": 13560.04, + "probability": 0.995 + }, + { + "start": 13560.46, + "end": 13562.62, + "probability": 0.742 + }, + { + "start": 13562.74, + "end": 13565.38, + "probability": 0.967 + }, + { + "start": 13565.96, + "end": 13566.42, + "probability": 0.8801 + }, + { + "start": 13567.0, + "end": 13573.06, + "probability": 0.9601 + }, + { + "start": 13573.24, + "end": 13575.7, + "probability": 0.6514 + }, + { + "start": 13575.9, + "end": 13578.86, + "probability": 0.8488 + }, + { + "start": 13579.68, + "end": 13580.36, + "probability": 0.6668 + }, + { + "start": 13580.48, + "end": 13583.84, + "probability": 0.9799 + }, + { + "start": 13583.84, + "end": 13587.48, + "probability": 0.9954 + }, + { + "start": 13587.48, + "end": 13591.16, + "probability": 0.9994 + }, + { + "start": 13591.22, + "end": 13591.84, + "probability": 0.7548 + }, + { + "start": 13592.38, + "end": 13594.72, + "probability": 0.9875 + }, + { + "start": 13595.36, + "end": 13599.2, + "probability": 0.9363 + }, + { + "start": 13600.48, + "end": 13604.82, + "probability": 0.9143 + }, + { + "start": 13605.38, + "end": 13606.54, + "probability": 0.7546 + }, + { + "start": 13606.58, + "end": 13607.0, + "probability": 0.5914 + }, + { + "start": 13607.04, + "end": 13608.26, + "probability": 0.9288 + }, + { + "start": 13609.3, + "end": 13610.42, + "probability": 0.3566 + }, + { + "start": 13610.72, + "end": 13612.8, + "probability": 0.2772 + }, + { + "start": 13612.8, + "end": 13613.3, + "probability": 0.4937 + }, + { + "start": 13613.3, + "end": 13614.04, + "probability": 0.113 + }, + { + "start": 13614.04, + "end": 13614.04, + "probability": 0.2128 + }, + { + "start": 13614.04, + "end": 13615.74, + "probability": 0.5505 + }, + { + "start": 13615.84, + "end": 13616.34, + "probability": 0.579 + }, + { + "start": 13616.86, + "end": 13618.6, + "probability": 0.7516 + }, + { + "start": 13619.06, + "end": 13620.86, + "probability": 0.9745 + }, + { + "start": 13620.86, + "end": 13622.0, + "probability": 0.7061 + }, + { + "start": 13622.58, + "end": 13624.68, + "probability": 0.8267 + }, + { + "start": 13625.22, + "end": 13625.88, + "probability": 0.2935 + }, + { + "start": 13626.04, + "end": 13627.93, + "probability": 0.7346 + }, + { + "start": 13628.58, + "end": 13629.26, + "probability": 0.9067 + }, + { + "start": 13640.18, + "end": 13643.72, + "probability": 0.7024 + }, + { + "start": 13645.22, + "end": 13648.18, + "probability": 0.9749 + }, + { + "start": 13648.22, + "end": 13649.58, + "probability": 0.9694 + }, + { + "start": 13649.78, + "end": 13652.22, + "probability": 0.9026 + }, + { + "start": 13652.88, + "end": 13654.88, + "probability": 0.9374 + }, + { + "start": 13655.34, + "end": 13655.34, + "probability": 0.0002 + }, + { + "start": 13656.4, + "end": 13658.58, + "probability": 0.9744 + }, + { + "start": 13659.18, + "end": 13661.12, + "probability": 0.9784 + }, + { + "start": 13661.86, + "end": 13663.5, + "probability": 0.9758 + }, + { + "start": 13664.36, + "end": 13664.9, + "probability": 0.7513 + }, + { + "start": 13665.94, + "end": 13668.38, + "probability": 0.9849 + }, + { + "start": 13669.42, + "end": 13671.46, + "probability": 0.9177 + }, + { + "start": 13671.66, + "end": 13676.88, + "probability": 0.9906 + }, + { + "start": 13677.52, + "end": 13679.86, + "probability": 0.9211 + }, + { + "start": 13680.54, + "end": 13682.66, + "probability": 0.7456 + }, + { + "start": 13683.6, + "end": 13686.32, + "probability": 0.6832 + }, + { + "start": 13687.74, + "end": 13691.1, + "probability": 0.9225 + }, + { + "start": 13691.82, + "end": 13693.34, + "probability": 0.8972 + }, + { + "start": 13694.52, + "end": 13695.32, + "probability": 0.4835 + }, + { + "start": 13695.56, + "end": 13698.94, + "probability": 0.8641 + }, + { + "start": 13699.86, + "end": 13701.38, + "probability": 0.9704 + }, + { + "start": 13702.0, + "end": 13706.58, + "probability": 0.7983 + }, + { + "start": 13707.18, + "end": 13709.82, + "probability": 0.9972 + }, + { + "start": 13710.4, + "end": 13714.68, + "probability": 0.9846 + }, + { + "start": 13716.1, + "end": 13718.26, + "probability": 0.6604 + }, + { + "start": 13718.4, + "end": 13719.24, + "probability": 0.707 + }, + { + "start": 13719.44, + "end": 13723.88, + "probability": 0.7734 + }, + { + "start": 13724.76, + "end": 13728.26, + "probability": 0.8998 + }, + { + "start": 13728.82, + "end": 13731.08, + "probability": 0.9869 + }, + { + "start": 13731.08, + "end": 13734.72, + "probability": 0.741 + }, + { + "start": 13735.16, + "end": 13737.32, + "probability": 0.6896 + }, + { + "start": 13738.32, + "end": 13738.32, + "probability": 0.0016 + }, + { + "start": 13739.08, + "end": 13739.08, + "probability": 0.6524 + }, + { + "start": 13739.08, + "end": 13742.1, + "probability": 0.8677 + }, + { + "start": 13742.54, + "end": 13747.26, + "probability": 0.8918 + }, + { + "start": 13748.06, + "end": 13754.4, + "probability": 0.9204 + }, + { + "start": 13754.92, + "end": 13757.9, + "probability": 0.9343 + }, + { + "start": 13758.58, + "end": 13760.14, + "probability": 0.9571 + }, + { + "start": 13761.12, + "end": 13763.06, + "probability": 0.9138 + }, + { + "start": 13763.18, + "end": 13764.6, + "probability": 0.9221 + }, + { + "start": 13764.9, + "end": 13766.72, + "probability": 0.953 + }, + { + "start": 13766.94, + "end": 13767.98, + "probability": 0.9133 + }, + { + "start": 13768.34, + "end": 13771.26, + "probability": 0.9766 + }, + { + "start": 13771.94, + "end": 13775.6, + "probability": 0.9244 + }, + { + "start": 13776.54, + "end": 13776.94, + "probability": 0.8754 + }, + { + "start": 13777.52, + "end": 13779.72, + "probability": 0.9387 + }, + { + "start": 13780.86, + "end": 13781.1, + "probability": 0.8569 + }, + { + "start": 13781.26, + "end": 13784.4, + "probability": 0.9873 + }, + { + "start": 13784.4, + "end": 13786.88, + "probability": 0.9596 + }, + { + "start": 13787.54, + "end": 13788.59, + "probability": 0.9658 + }, + { + "start": 13788.8, + "end": 13789.3, + "probability": 0.9629 + }, + { + "start": 13789.6, + "end": 13790.14, + "probability": 0.7529 + }, + { + "start": 13790.18, + "end": 13791.08, + "probability": 0.9342 + }, + { + "start": 13791.62, + "end": 13792.66, + "probability": 0.7538 + }, + { + "start": 13792.78, + "end": 13793.15, + "probability": 0.7987 + }, + { + "start": 13793.8, + "end": 13795.47, + "probability": 0.9941 + }, + { + "start": 13796.8, + "end": 13797.89, + "probability": 0.9912 + }, + { + "start": 13798.04, + "end": 13798.84, + "probability": 0.9813 + }, + { + "start": 13799.18, + "end": 13803.82, + "probability": 0.8642 + }, + { + "start": 13804.22, + "end": 13806.76, + "probability": 0.8105 + }, + { + "start": 13806.76, + "end": 13809.28, + "probability": 0.9977 + }, + { + "start": 13810.02, + "end": 13811.2, + "probability": 0.7422 + }, + { + "start": 13811.74, + "end": 13813.42, + "probability": 0.7552 + }, + { + "start": 13814.08, + "end": 13817.16, + "probability": 0.9716 + }, + { + "start": 13817.58, + "end": 13819.83, + "probability": 0.9702 + }, + { + "start": 13819.96, + "end": 13821.62, + "probability": 0.9604 + }, + { + "start": 13821.72, + "end": 13822.96, + "probability": 0.9046 + }, + { + "start": 13823.72, + "end": 13826.04, + "probability": 0.8813 + }, + { + "start": 13826.12, + "end": 13828.76, + "probability": 0.5699 + }, + { + "start": 13829.26, + "end": 13830.82, + "probability": 0.8448 + }, + { + "start": 13831.1, + "end": 13833.7, + "probability": 0.9983 + }, + { + "start": 13833.7, + "end": 13837.14, + "probability": 0.9956 + }, + { + "start": 13837.88, + "end": 13838.72, + "probability": 0.7642 + }, + { + "start": 13838.8, + "end": 13839.26, + "probability": 0.7656 + }, + { + "start": 13839.6, + "end": 13842.06, + "probability": 0.9878 + }, + { + "start": 13842.1, + "end": 13843.68, + "probability": 0.8486 + }, + { + "start": 13843.68, + "end": 13847.28, + "probability": 0.9291 + }, + { + "start": 13847.74, + "end": 13850.94, + "probability": 0.9939 + }, + { + "start": 13851.08, + "end": 13852.46, + "probability": 0.9841 + }, + { + "start": 13852.58, + "end": 13852.82, + "probability": 0.8077 + }, + { + "start": 13853.42, + "end": 13854.46, + "probability": 0.7131 + }, + { + "start": 13855.22, + "end": 13858.24, + "probability": 0.7295 + }, + { + "start": 13858.42, + "end": 13859.42, + "probability": 0.89 + }, + { + "start": 13859.7, + "end": 13862.14, + "probability": 0.918 + }, + { + "start": 13863.56, + "end": 13865.5, + "probability": 0.4952 + }, + { + "start": 13865.5, + "end": 13865.76, + "probability": 0.8985 + }, + { + "start": 13867.3, + "end": 13867.74, + "probability": 0.8652 + }, + { + "start": 13868.06, + "end": 13869.34, + "probability": 0.0121 + }, + { + "start": 13870.04, + "end": 13871.66, + "probability": 0.9273 + }, + { + "start": 13872.5, + "end": 13874.06, + "probability": 0.928 + }, + { + "start": 13875.48, + "end": 13877.92, + "probability": 0.7776 + }, + { + "start": 13878.18, + "end": 13882.86, + "probability": 0.9938 + }, + { + "start": 13883.42, + "end": 13888.42, + "probability": 0.9976 + }, + { + "start": 13888.86, + "end": 13891.66, + "probability": 0.9796 + }, + { + "start": 13892.08, + "end": 13893.96, + "probability": 0.9765 + }, + { + "start": 13894.1, + "end": 13897.56, + "probability": 0.9219 + }, + { + "start": 13898.89, + "end": 13901.85, + "probability": 0.9983 + }, + { + "start": 13902.38, + "end": 13904.66, + "probability": 0.9197 + }, + { + "start": 13904.8, + "end": 13905.32, + "probability": 0.726 + }, + { + "start": 13905.44, + "end": 13906.63, + "probability": 0.8194 + }, + { + "start": 13907.0, + "end": 13908.38, + "probability": 0.8254 + }, + { + "start": 13909.02, + "end": 13912.38, + "probability": 0.9327 + }, + { + "start": 13912.98, + "end": 13915.84, + "probability": 0.9926 + }, + { + "start": 13916.6, + "end": 13919.16, + "probability": 0.9962 + }, + { + "start": 13919.94, + "end": 13923.18, + "probability": 0.9888 + }, + { + "start": 13923.82, + "end": 13924.46, + "probability": 0.8877 + }, + { + "start": 13924.8, + "end": 13925.29, + "probability": 0.5067 + }, + { + "start": 13925.44, + "end": 13927.32, + "probability": 0.876 + }, + { + "start": 13927.64, + "end": 13929.86, + "probability": 0.9913 + }, + { + "start": 13930.58, + "end": 13933.88, + "probability": 0.9666 + }, + { + "start": 13934.01, + "end": 13935.86, + "probability": 0.9689 + }, + { + "start": 13935.96, + "end": 13938.66, + "probability": 0.9964 + }, + { + "start": 13939.48, + "end": 13940.94, + "probability": 0.7909 + }, + { + "start": 13941.5, + "end": 13943.88, + "probability": 0.9899 + }, + { + "start": 13944.92, + "end": 13949.28, + "probability": 0.9913 + }, + { + "start": 13950.02, + "end": 13951.24, + "probability": 0.871 + }, + { + "start": 13951.32, + "end": 13951.9, + "probability": 0.7643 + }, + { + "start": 13952.0, + "end": 13952.64, + "probability": 0.8832 + }, + { + "start": 13952.74, + "end": 13953.54, + "probability": 0.8832 + }, + { + "start": 13953.6, + "end": 13954.7, + "probability": 0.9343 + }, + { + "start": 13955.58, + "end": 13962.18, + "probability": 0.936 + }, + { + "start": 13962.6, + "end": 13963.74, + "probability": 0.7468 + }, + { + "start": 13964.44, + "end": 13965.46, + "probability": 0.7951 + }, + { + "start": 13965.6, + "end": 13967.06, + "probability": 0.9885 + }, + { + "start": 13967.6, + "end": 13971.62, + "probability": 0.8707 + }, + { + "start": 13972.4, + "end": 13975.68, + "probability": 0.8654 + }, + { + "start": 13976.48, + "end": 13979.72, + "probability": 0.9644 + }, + { + "start": 13980.44, + "end": 13983.78, + "probability": 0.9677 + }, + { + "start": 13985.14, + "end": 13989.72, + "probability": 0.9946 + }, + { + "start": 13990.24, + "end": 13992.92, + "probability": 0.9812 + }, + { + "start": 13993.46, + "end": 13994.04, + "probability": 0.5897 + }, + { + "start": 13994.26, + "end": 13995.26, + "probability": 0.9492 + }, + { + "start": 13995.4, + "end": 13997.1, + "probability": 0.8304 + }, + { + "start": 13997.16, + "end": 13997.6, + "probability": 0.617 + }, + { + "start": 13998.36, + "end": 13999.44, + "probability": 0.7608 + }, + { + "start": 13999.9, + "end": 14002.56, + "probability": 0.8403 + }, + { + "start": 14002.88, + "end": 14003.72, + "probability": 0.9653 + }, + { + "start": 14005.28, + "end": 14005.56, + "probability": 0.421 + }, + { + "start": 14006.34, + "end": 14008.32, + "probability": 0.9551 + }, + { + "start": 14009.16, + "end": 14010.04, + "probability": 0.5935 + }, + { + "start": 14014.51, + "end": 14016.2, + "probability": 0.026 + }, + { + "start": 14016.36, + "end": 14018.84, + "probability": 0.7296 + }, + { + "start": 14033.96, + "end": 14034.8, + "probability": 0.5664 + }, + { + "start": 14035.7, + "end": 14036.96, + "probability": 0.8784 + }, + { + "start": 14037.52, + "end": 14038.9, + "probability": 0.9958 + }, + { + "start": 14039.38, + "end": 14040.54, + "probability": 0.9919 + }, + { + "start": 14041.02, + "end": 14042.74, + "probability": 0.6027 + }, + { + "start": 14043.3, + "end": 14045.04, + "probability": 0.9538 + }, + { + "start": 14045.66, + "end": 14048.38, + "probability": 0.9868 + }, + { + "start": 14048.58, + "end": 14050.38, + "probability": 0.836 + }, + { + "start": 14050.76, + "end": 14051.94, + "probability": 0.9886 + }, + { + "start": 14052.06, + "end": 14052.74, + "probability": 0.8034 + }, + { + "start": 14053.1, + "end": 14054.32, + "probability": 0.9663 + }, + { + "start": 14054.78, + "end": 14057.5, + "probability": 0.9972 + }, + { + "start": 14057.64, + "end": 14060.32, + "probability": 0.9951 + }, + { + "start": 14061.0, + "end": 14062.3, + "probability": 0.6769 + }, + { + "start": 14062.88, + "end": 14064.64, + "probability": 0.7757 + }, + { + "start": 14065.2, + "end": 14066.38, + "probability": 0.8449 + }, + { + "start": 14066.48, + "end": 14067.26, + "probability": 0.9798 + }, + { + "start": 14067.3, + "end": 14069.94, + "probability": 0.7887 + }, + { + "start": 14070.5, + "end": 14070.5, + "probability": 0.146 + }, + { + "start": 14070.5, + "end": 14072.74, + "probability": 0.8276 + }, + { + "start": 14073.36, + "end": 14076.26, + "probability": 0.9683 + }, + { + "start": 14077.12, + "end": 14077.28, + "probability": 0.2679 + }, + { + "start": 14077.68, + "end": 14080.22, + "probability": 0.9812 + }, + { + "start": 14080.26, + "end": 14082.78, + "probability": 0.9873 + }, + { + "start": 14083.06, + "end": 14083.74, + "probability": 0.4059 + }, + { + "start": 14084.1, + "end": 14088.28, + "probability": 0.9013 + }, + { + "start": 14088.64, + "end": 14089.41, + "probability": 0.5846 + }, + { + "start": 14090.36, + "end": 14091.78, + "probability": 0.8784 + }, + { + "start": 14092.3, + "end": 14094.04, + "probability": 0.9531 + }, + { + "start": 14094.1, + "end": 14095.26, + "probability": 0.9361 + }, + { + "start": 14096.36, + "end": 14097.42, + "probability": 0.6159 + }, + { + "start": 14098.62, + "end": 14099.66, + "probability": 0.8766 + }, + { + "start": 14099.84, + "end": 14100.48, + "probability": 0.752 + }, + { + "start": 14101.2, + "end": 14104.36, + "probability": 0.9752 + }, + { + "start": 14105.34, + "end": 14105.96, + "probability": 0.8877 + }, + { + "start": 14107.1, + "end": 14110.41, + "probability": 0.9611 + }, + { + "start": 14110.58, + "end": 14110.74, + "probability": 0.957 + }, + { + "start": 14111.26, + "end": 14112.1, + "probability": 0.7452 + }, + { + "start": 14113.04, + "end": 14114.04, + "probability": 0.9943 + }, + { + "start": 14114.26, + "end": 14117.12, + "probability": 0.8038 + }, + { + "start": 14117.62, + "end": 14119.38, + "probability": 0.645 + }, + { + "start": 14120.32, + "end": 14120.58, + "probability": 0.4683 + }, + { + "start": 14120.96, + "end": 14122.42, + "probability": 0.8779 + }, + { + "start": 14122.8, + "end": 14123.44, + "probability": 0.4781 + }, + { + "start": 14123.7, + "end": 14125.72, + "probability": 0.718 + }, + { + "start": 14126.12, + "end": 14128.12, + "probability": 0.8669 + }, + { + "start": 14129.58, + "end": 14130.84, + "probability": 0.8125 + }, + { + "start": 14131.04, + "end": 14132.06, + "probability": 0.5282 + }, + { + "start": 14132.18, + "end": 14132.94, + "probability": 0.8454 + }, + { + "start": 14133.4, + "end": 14135.64, + "probability": 0.9698 + }, + { + "start": 14135.86, + "end": 14136.66, + "probability": 0.9087 + }, + { + "start": 14137.2, + "end": 14138.64, + "probability": 0.7671 + }, + { + "start": 14139.04, + "end": 14143.08, + "probability": 0.9889 + }, + { + "start": 14143.28, + "end": 14144.22, + "probability": 0.4175 + }, + { + "start": 14144.88, + "end": 14148.94, + "probability": 0.9525 + }, + { + "start": 14149.28, + "end": 14151.72, + "probability": 0.9517 + }, + { + "start": 14152.02, + "end": 14152.46, + "probability": 0.5959 + }, + { + "start": 14152.6, + "end": 14153.34, + "probability": 0.6272 + }, + { + "start": 14153.44, + "end": 14153.78, + "probability": 0.8255 + }, + { + "start": 14154.14, + "end": 14156.02, + "probability": 0.8595 + }, + { + "start": 14156.76, + "end": 14160.24, + "probability": 0.9041 + }, + { + "start": 14160.24, + "end": 14163.2, + "probability": 0.96 + }, + { + "start": 14163.56, + "end": 14164.2, + "probability": 0.9556 + }, + { + "start": 14164.9, + "end": 14165.62, + "probability": 0.9155 + }, + { + "start": 14166.46, + "end": 14167.1, + "probability": 0.8983 + }, + { + "start": 14167.98, + "end": 14170.62, + "probability": 0.9751 + }, + { + "start": 14171.3, + "end": 14172.5, + "probability": 0.8678 + }, + { + "start": 14173.02, + "end": 14175.18, + "probability": 0.948 + }, + { + "start": 14175.54, + "end": 14178.0, + "probability": 0.9896 + }, + { + "start": 14180.4, + "end": 14180.96, + "probability": 0.9307 + }, + { + "start": 14180.96, + "end": 14182.3, + "probability": 0.8971 + }, + { + "start": 14183.2, + "end": 14185.78, + "probability": 0.9255 + }, + { + "start": 14186.5, + "end": 14190.02, + "probability": 0.9868 + }, + { + "start": 14190.24, + "end": 14191.3, + "probability": 0.9798 + }, + { + "start": 14191.98, + "end": 14192.9, + "probability": 0.938 + }, + { + "start": 14193.54, + "end": 14197.68, + "probability": 0.9402 + }, + { + "start": 14197.68, + "end": 14202.92, + "probability": 0.8937 + }, + { + "start": 14203.7, + "end": 14204.78, + "probability": 0.8053 + }, + { + "start": 14205.16, + "end": 14205.96, + "probability": 0.9085 + }, + { + "start": 14206.02, + "end": 14206.62, + "probability": 0.5066 + }, + { + "start": 14207.12, + "end": 14208.18, + "probability": 0.7863 + }, + { + "start": 14209.46, + "end": 14212.22, + "probability": 0.9752 + }, + { + "start": 14212.62, + "end": 14214.4, + "probability": 0.6161 + }, + { + "start": 14215.06, + "end": 14218.0, + "probability": 0.7759 + }, + { + "start": 14218.36, + "end": 14221.94, + "probability": 0.9806 + }, + { + "start": 14222.7, + "end": 14223.8, + "probability": 0.9373 + }, + { + "start": 14224.24, + "end": 14226.84, + "probability": 0.9905 + }, + { + "start": 14227.28, + "end": 14227.96, + "probability": 0.9645 + }, + { + "start": 14228.54, + "end": 14230.76, + "probability": 0.9094 + }, + { + "start": 14230.82, + "end": 14232.22, + "probability": 0.8995 + }, + { + "start": 14232.36, + "end": 14233.36, + "probability": 0.7416 + }, + { + "start": 14233.74, + "end": 14234.56, + "probability": 0.9896 + }, + { + "start": 14234.66, + "end": 14236.26, + "probability": 0.9988 + }, + { + "start": 14236.48, + "end": 14238.56, + "probability": 0.9825 + }, + { + "start": 14239.26, + "end": 14240.84, + "probability": 0.5491 + }, + { + "start": 14241.06, + "end": 14242.98, + "probability": 0.7104 + }, + { + "start": 14242.98, + "end": 14243.42, + "probability": 0.8148 + }, + { + "start": 14243.78, + "end": 14244.7, + "probability": 0.6221 + }, + { + "start": 14244.7, + "end": 14245.39, + "probability": 0.1028 + }, + { + "start": 14246.1, + "end": 14247.2, + "probability": 0.4669 + }, + { + "start": 14247.28, + "end": 14250.64, + "probability": 0.7356 + }, + { + "start": 14250.7, + "end": 14251.25, + "probability": 0.9594 + }, + { + "start": 14251.52, + "end": 14252.02, + "probability": 0.9195 + }, + { + "start": 14252.08, + "end": 14252.78, + "probability": 0.679 + }, + { + "start": 14253.27, + "end": 14256.62, + "probability": 0.936 + }, + { + "start": 14256.72, + "end": 14257.36, + "probability": 0.828 + }, + { + "start": 14257.68, + "end": 14259.58, + "probability": 0.8287 + }, + { + "start": 14259.62, + "end": 14260.12, + "probability": 0.4939 + }, + { + "start": 14260.14, + "end": 14260.5, + "probability": 0.3402 + }, + { + "start": 14260.52, + "end": 14260.74, + "probability": 0.3288 + }, + { + "start": 14260.74, + "end": 14261.5, + "probability": 0.6259 + }, + { + "start": 14261.92, + "end": 14262.78, + "probability": 0.7802 + }, + { + "start": 14263.02, + "end": 14263.9, + "probability": 0.5517 + }, + { + "start": 14264.32, + "end": 14266.6, + "probability": 0.8504 + }, + { + "start": 14266.9, + "end": 14268.06, + "probability": 0.8804 + }, + { + "start": 14268.18, + "end": 14269.15, + "probability": 0.9366 + }, + { + "start": 14269.56, + "end": 14271.98, + "probability": 0.7101 + }, + { + "start": 14272.56, + "end": 14275.0, + "probability": 0.9595 + }, + { + "start": 14275.18, + "end": 14276.36, + "probability": 0.6565 + }, + { + "start": 14276.62, + "end": 14279.57, + "probability": 0.8444 + }, + { + "start": 14297.22, + "end": 14298.54, + "probability": 0.369 + }, + { + "start": 14298.84, + "end": 14299.2, + "probability": 0.9223 + }, + { + "start": 14299.42, + "end": 14300.66, + "probability": 0.7739 + }, + { + "start": 14300.84, + "end": 14302.66, + "probability": 0.8207 + }, + { + "start": 14304.08, + "end": 14306.14, + "probability": 0.9313 + }, + { + "start": 14306.9, + "end": 14310.04, + "probability": 0.982 + }, + { + "start": 14310.3, + "end": 14311.09, + "probability": 0.9977 + }, + { + "start": 14314.46, + "end": 14317.62, + "probability": 0.9895 + }, + { + "start": 14320.92, + "end": 14323.5, + "probability": 0.9948 + }, + { + "start": 14323.56, + "end": 14326.04, + "probability": 0.8018 + }, + { + "start": 14326.28, + "end": 14330.5, + "probability": 0.9429 + }, + { + "start": 14332.1, + "end": 14332.62, + "probability": 0.7663 + }, + { + "start": 14332.94, + "end": 14335.62, + "probability": 0.8264 + }, + { + "start": 14335.62, + "end": 14337.0, + "probability": 0.546 + }, + { + "start": 14337.42, + "end": 14337.54, + "probability": 0.5367 + }, + { + "start": 14338.54, + "end": 14339.38, + "probability": 0.9467 + }, + { + "start": 14340.28, + "end": 14342.6, + "probability": 0.8323 + }, + { + "start": 14342.76, + "end": 14343.96, + "probability": 0.9498 + }, + { + "start": 14344.16, + "end": 14345.22, + "probability": 0.9963 + }, + { + "start": 14345.28, + "end": 14346.36, + "probability": 0.812 + }, + { + "start": 14346.88, + "end": 14349.4, + "probability": 0.9911 + }, + { + "start": 14349.96, + "end": 14352.32, + "probability": 0.9617 + }, + { + "start": 14353.2, + "end": 14353.72, + "probability": 0.7646 + }, + { + "start": 14355.34, + "end": 14358.92, + "probability": 0.9665 + }, + { + "start": 14359.92, + "end": 14362.7, + "probability": 0.9868 + }, + { + "start": 14365.14, + "end": 14368.16, + "probability": 0.9976 + }, + { + "start": 14368.24, + "end": 14369.58, + "probability": 0.7988 + }, + { + "start": 14369.92, + "end": 14370.62, + "probability": 0.8379 + }, + { + "start": 14371.0, + "end": 14373.37, + "probability": 0.9752 + }, + { + "start": 14375.5, + "end": 14376.42, + "probability": 0.8615 + }, + { + "start": 14376.82, + "end": 14377.71, + "probability": 0.8946 + }, + { + "start": 14378.1, + "end": 14379.56, + "probability": 0.7794 + }, + { + "start": 14381.04, + "end": 14384.02, + "probability": 0.9784 + }, + { + "start": 14385.28, + "end": 14388.26, + "probability": 0.8137 + }, + { + "start": 14389.44, + "end": 14391.68, + "probability": 0.9611 + }, + { + "start": 14392.72, + "end": 14393.08, + "probability": 0.7956 + }, + { + "start": 14393.42, + "end": 14394.32, + "probability": 0.9918 + }, + { + "start": 14394.96, + "end": 14395.66, + "probability": 0.9814 + }, + { + "start": 14396.52, + "end": 14399.02, + "probability": 0.9824 + }, + { + "start": 14401.2, + "end": 14402.38, + "probability": 0.988 + }, + { + "start": 14402.94, + "end": 14405.66, + "probability": 0.8884 + }, + { + "start": 14406.32, + "end": 14408.14, + "probability": 0.925 + }, + { + "start": 14408.68, + "end": 14409.44, + "probability": 0.8474 + }, + { + "start": 14409.5, + "end": 14411.16, + "probability": 0.6562 + }, + { + "start": 14412.78, + "end": 14416.24, + "probability": 0.9982 + }, + { + "start": 14417.18, + "end": 14419.76, + "probability": 0.5771 + }, + { + "start": 14421.06, + "end": 14423.92, + "probability": 0.9352 + }, + { + "start": 14424.88, + "end": 14425.94, + "probability": 0.7136 + }, + { + "start": 14428.48, + "end": 14430.49, + "probability": 0.994 + }, + { + "start": 14433.22, + "end": 14437.86, + "probability": 0.8831 + }, + { + "start": 14439.56, + "end": 14443.86, + "probability": 0.9929 + }, + { + "start": 14444.0, + "end": 14445.9, + "probability": 0.9946 + }, + { + "start": 14446.52, + "end": 14449.22, + "probability": 0.932 + }, + { + "start": 14450.54, + "end": 14453.1, + "probability": 0.9677 + }, + { + "start": 14454.02, + "end": 14455.24, + "probability": 0.9405 + }, + { + "start": 14456.8, + "end": 14459.66, + "probability": 0.9759 + }, + { + "start": 14461.02, + "end": 14463.8, + "probability": 0.9971 + }, + { + "start": 14464.42, + "end": 14465.5, + "probability": 0.6327 + }, + { + "start": 14466.12, + "end": 14468.92, + "probability": 0.8968 + }, + { + "start": 14469.96, + "end": 14471.4, + "probability": 0.921 + }, + { + "start": 14472.1, + "end": 14473.84, + "probability": 0.9928 + }, + { + "start": 14477.62, + "end": 14480.74, + "probability": 0.7698 + }, + { + "start": 14481.36, + "end": 14482.6, + "probability": 0.9722 + }, + { + "start": 14483.34, + "end": 14484.88, + "probability": 0.9989 + }, + { + "start": 14484.94, + "end": 14485.92, + "probability": 0.9974 + }, + { + "start": 14485.98, + "end": 14487.31, + "probability": 0.9985 + }, + { + "start": 14487.34, + "end": 14488.68, + "probability": 0.9993 + }, + { + "start": 14489.1, + "end": 14490.82, + "probability": 0.9805 + }, + { + "start": 14491.34, + "end": 14494.0, + "probability": 0.6853 + }, + { + "start": 14495.34, + "end": 14498.08, + "probability": 0.9982 + }, + { + "start": 14498.42, + "end": 14499.21, + "probability": 0.9904 + }, + { + "start": 14499.38, + "end": 14500.34, + "probability": 0.9317 + }, + { + "start": 14501.4, + "end": 14504.88, + "probability": 0.9981 + }, + { + "start": 14505.88, + "end": 14506.48, + "probability": 0.7966 + }, + { + "start": 14506.78, + "end": 14509.02, + "probability": 0.9962 + }, + { + "start": 14509.36, + "end": 14511.16, + "probability": 0.8747 + }, + { + "start": 14511.72, + "end": 14513.28, + "probability": 0.9867 + }, + { + "start": 14514.48, + "end": 14515.58, + "probability": 0.9161 + }, + { + "start": 14517.04, + "end": 14517.58, + "probability": 0.9573 + }, + { + "start": 14518.78, + "end": 14520.66, + "probability": 0.9872 + }, + { + "start": 14521.84, + "end": 14523.7, + "probability": 0.9222 + }, + { + "start": 14524.52, + "end": 14525.12, + "probability": 0.7624 + }, + { + "start": 14525.66, + "end": 14526.72, + "probability": 0.8641 + }, + { + "start": 14527.24, + "end": 14531.16, + "probability": 0.9839 + }, + { + "start": 14532.26, + "end": 14534.08, + "probability": 0.7733 + }, + { + "start": 14535.82, + "end": 14537.4, + "probability": 0.7323 + }, + { + "start": 14537.76, + "end": 14543.12, + "probability": 0.9754 + }, + { + "start": 14543.18, + "end": 14543.9, + "probability": 0.9582 + }, + { + "start": 14543.92, + "end": 14544.82, + "probability": 0.9082 + }, + { + "start": 14545.46, + "end": 14547.7, + "probability": 0.9941 + }, + { + "start": 14547.78, + "end": 14551.36, + "probability": 0.9967 + }, + { + "start": 14552.08, + "end": 14555.4, + "probability": 0.9977 + }, + { + "start": 14555.54, + "end": 14560.38, + "probability": 0.8587 + }, + { + "start": 14561.25, + "end": 14564.48, + "probability": 0.7831 + }, + { + "start": 14564.56, + "end": 14566.53, + "probability": 0.9956 + }, + { + "start": 14567.0, + "end": 14569.14, + "probability": 0.9979 + }, + { + "start": 14569.64, + "end": 14571.34, + "probability": 0.6727 + }, + { + "start": 14571.84, + "end": 14573.28, + "probability": 0.9264 + }, + { + "start": 14573.7, + "end": 14574.88, + "probability": 0.7038 + }, + { + "start": 14575.14, + "end": 14575.92, + "probability": 0.66 + }, + { + "start": 14576.22, + "end": 14577.38, + "probability": 0.7079 + }, + { + "start": 14578.92, + "end": 14581.6, + "probability": 0.8221 + }, + { + "start": 14582.74, + "end": 14584.56, + "probability": 0.7501 + }, + { + "start": 14584.64, + "end": 14585.32, + "probability": 0.7833 + }, + { + "start": 14585.34, + "end": 14588.86, + "probability": 0.8082 + }, + { + "start": 14589.9, + "end": 14591.8, + "probability": 0.4217 + }, + { + "start": 14592.46, + "end": 14594.88, + "probability": 0.783 + }, + { + "start": 14595.48, + "end": 14598.28, + "probability": 0.4823 + }, + { + "start": 14599.16, + "end": 14599.82, + "probability": 0.4507 + }, + { + "start": 14603.32, + "end": 14603.56, + "probability": 0.2163 + }, + { + "start": 14613.92, + "end": 14617.06, + "probability": 0.6168 + }, + { + "start": 14617.62, + "end": 14620.9, + "probability": 0.2212 + }, + { + "start": 14621.84, + "end": 14625.32, + "probability": 0.6495 + }, + { + "start": 14626.32, + "end": 14630.34, + "probability": 0.0835 + }, + { + "start": 14630.84, + "end": 14635.42, + "probability": 0.0336 + }, + { + "start": 14639.82, + "end": 14641.14, + "probability": 0.1547 + }, + { + "start": 14641.68, + "end": 14643.58, + "probability": 0.0797 + }, + { + "start": 14646.5, + "end": 14650.06, + "probability": 0.0211 + }, + { + "start": 14650.06, + "end": 14652.36, + "probability": 0.0885 + }, + { + "start": 14655.82, + "end": 14657.66, + "probability": 0.2057 + }, + { + "start": 14663.38, + "end": 14663.48, + "probability": 0.1882 + }, + { + "start": 14664.02, + "end": 14666.28, + "probability": 0.0502 + }, + { + "start": 14666.28, + "end": 14669.91, + "probability": 0.3263 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.0, + "end": 14695.0, + "probability": 0.0 + }, + { + "start": 14695.12, + "end": 14695.12, + "probability": 0.0142 + }, + { + "start": 14695.12, + "end": 14698.86, + "probability": 0.7598 + }, + { + "start": 14698.86, + "end": 14704.44, + "probability": 0.7718 + }, + { + "start": 14704.96, + "end": 14706.6, + "probability": 0.3801 + }, + { + "start": 14707.16, + "end": 14708.34, + "probability": 0.6321 + }, + { + "start": 14708.94, + "end": 14712.08, + "probability": 0.7782 + }, + { + "start": 14712.28, + "end": 14714.4, + "probability": 0.7879 + }, + { + "start": 14715.84, + "end": 14717.8, + "probability": 0.5771 + }, + { + "start": 14720.43, + "end": 14720.5, + "probability": 0.3584 + }, + { + "start": 14720.5, + "end": 14722.06, + "probability": 0.3603 + }, + { + "start": 14724.2, + "end": 14724.96, + "probability": 0.8573 + }, + { + "start": 14726.98, + "end": 14728.56, + "probability": 0.7897 + }, + { + "start": 14729.24, + "end": 14730.21, + "probability": 0.8216 + }, + { + "start": 14731.86, + "end": 14733.98, + "probability": 0.3541 + }, + { + "start": 14734.54, + "end": 14740.4, + "probability": 0.9838 + }, + { + "start": 14740.5, + "end": 14743.7, + "probability": 0.7202 + }, + { + "start": 14744.74, + "end": 14747.8, + "probability": 0.8656 + }, + { + "start": 14747.88, + "end": 14750.86, + "probability": 0.9974 + }, + { + "start": 14751.94, + "end": 14756.08, + "probability": 0.9606 + }, + { + "start": 14756.82, + "end": 14760.02, + "probability": 0.9511 + }, + { + "start": 14760.02, + "end": 14762.7, + "probability": 0.7778 + }, + { + "start": 14763.18, + "end": 14766.68, + "probability": 0.9294 + }, + { + "start": 14767.72, + "end": 14770.82, + "probability": 0.5859 + }, + { + "start": 14770.82, + "end": 14771.44, + "probability": 0.6291 + }, + { + "start": 14771.52, + "end": 14777.16, + "probability": 0.9572 + }, + { + "start": 14777.28, + "end": 14781.5, + "probability": 0.9609 + }, + { + "start": 14782.48, + "end": 14784.72, + "probability": 0.9321 + }, + { + "start": 14784.72, + "end": 14787.02, + "probability": 0.7841 + }, + { + "start": 14787.64, + "end": 14789.68, + "probability": 0.7506 + }, + { + "start": 14790.24, + "end": 14796.26, + "probability": 0.9106 + }, + { + "start": 14796.26, + "end": 14799.79, + "probability": 0.9839 + }, + { + "start": 14800.6, + "end": 14804.92, + "probability": 0.9953 + }, + { + "start": 14804.92, + "end": 14807.98, + "probability": 0.9933 + }, + { + "start": 14808.4, + "end": 14808.92, + "probability": 0.8253 + }, + { + "start": 14809.52, + "end": 14810.6, + "probability": 0.9507 + }, + { + "start": 14811.22, + "end": 14814.46, + "probability": 0.9957 + }, + { + "start": 14814.46, + "end": 14818.34, + "probability": 0.9862 + }, + { + "start": 14819.26, + "end": 14819.94, + "probability": 0.7615 + }, + { + "start": 14820.18, + "end": 14823.86, + "probability": 0.9846 + }, + { + "start": 14823.86, + "end": 14827.74, + "probability": 0.9651 + }, + { + "start": 14828.44, + "end": 14828.92, + "probability": 0.7529 + }, + { + "start": 14829.02, + "end": 14830.84, + "probability": 0.8889 + }, + { + "start": 14831.34, + "end": 14833.96, + "probability": 0.9363 + }, + { + "start": 14834.54, + "end": 14836.14, + "probability": 0.9604 + }, + { + "start": 14836.66, + "end": 14837.34, + "probability": 0.9755 + }, + { + "start": 14837.9, + "end": 14841.82, + "probability": 0.992 + }, + { + "start": 14842.34, + "end": 14844.34, + "probability": 0.9965 + }, + { + "start": 14845.04, + "end": 14846.58, + "probability": 0.8605 + }, + { + "start": 14847.42, + "end": 14849.2, + "probability": 0.575 + }, + { + "start": 14849.76, + "end": 14852.52, + "probability": 0.9909 + }, + { + "start": 14853.04, + "end": 14854.72, + "probability": 0.9767 + }, + { + "start": 14855.36, + "end": 14857.84, + "probability": 0.9995 + }, + { + "start": 14858.84, + "end": 14860.16, + "probability": 0.7442 + }, + { + "start": 14860.76, + "end": 14862.58, + "probability": 0.8864 + }, + { + "start": 14863.14, + "end": 14866.26, + "probability": 0.9734 + }, + { + "start": 14867.18, + "end": 14870.28, + "probability": 0.9753 + }, + { + "start": 14871.12, + "end": 14873.94, + "probability": 0.7555 + }, + { + "start": 14874.98, + "end": 14877.96, + "probability": 0.9374 + }, + { + "start": 14877.96, + "end": 14879.42, + "probability": 0.8925 + }, + { + "start": 14880.28, + "end": 14883.54, + "probability": 0.83 + }, + { + "start": 14884.24, + "end": 14886.7, + "probability": 0.9866 + }, + { + "start": 14887.3, + "end": 14890.16, + "probability": 0.9858 + }, + { + "start": 14890.92, + "end": 14891.9, + "probability": 0.8317 + }, + { + "start": 14891.94, + "end": 14894.33, + "probability": 0.9804 + }, + { + "start": 14894.98, + "end": 14896.42, + "probability": 0.9424 + }, + { + "start": 14896.42, + "end": 14899.26, + "probability": 0.9911 + }, + { + "start": 14899.76, + "end": 14901.46, + "probability": 0.9631 + }, + { + "start": 14902.18, + "end": 14902.42, + "probability": 0.2329 + }, + { + "start": 14902.5, + "end": 14906.02, + "probability": 0.8967 + }, + { + "start": 14906.02, + "end": 14909.74, + "probability": 0.939 + }, + { + "start": 14911.88, + "end": 14915.94, + "probability": 0.9686 + }, + { + "start": 14915.94, + "end": 14919.48, + "probability": 0.9459 + }, + { + "start": 14920.2, + "end": 14924.96, + "probability": 0.9957 + }, + { + "start": 14925.38, + "end": 14926.78, + "probability": 0.8036 + }, + { + "start": 14927.32, + "end": 14932.02, + "probability": 0.9882 + }, + { + "start": 14932.6, + "end": 14933.1, + "probability": 0.6212 + }, + { + "start": 14933.2, + "end": 14936.9, + "probability": 0.966 + }, + { + "start": 14937.0, + "end": 14937.38, + "probability": 0.7139 + }, + { + "start": 14937.86, + "end": 14939.62, + "probability": 0.5713 + }, + { + "start": 14939.86, + "end": 14941.24, + "probability": 0.7622 + }, + { + "start": 14941.28, + "end": 14944.41, + "probability": 0.8779 + }, + { + "start": 14946.32, + "end": 14947.17, + "probability": 0.9012 + }, + { + "start": 14947.36, + "end": 14948.08, + "probability": 0.8284 + }, + { + "start": 14948.18, + "end": 14950.56, + "probability": 0.6945 + }, + { + "start": 14951.44, + "end": 14952.5, + "probability": 0.8294 + }, + { + "start": 14953.62, + "end": 14954.68, + "probability": 0.9054 + }, + { + "start": 14956.36, + "end": 14958.92, + "probability": 0.518 + }, + { + "start": 14960.34, + "end": 14962.28, + "probability": 0.8167 + }, + { + "start": 14963.54, + "end": 14964.14, + "probability": 0.9368 + }, + { + "start": 14966.26, + "end": 14967.56, + "probability": 0.858 + }, + { + "start": 14969.32, + "end": 14969.94, + "probability": 0.8625 + }, + { + "start": 14971.46, + "end": 14973.44, + "probability": 0.4232 + }, + { + "start": 14974.52, + "end": 14976.12, + "probability": 0.6637 + }, + { + "start": 14978.66, + "end": 14979.76, + "probability": 0.3849 + }, + { + "start": 14980.4, + "end": 14982.66, + "probability": 0.8511 + }, + { + "start": 14996.18, + "end": 14997.25, + "probability": 0.7644 + }, + { + "start": 14998.62, + "end": 14999.32, + "probability": 0.6824 + }, + { + "start": 15000.24, + "end": 15001.34, + "probability": 0.6829 + }, + { + "start": 15001.34, + "end": 15002.2, + "probability": 0.582 + }, + { + "start": 15002.36, + "end": 15003.6, + "probability": 0.9647 + }, + { + "start": 15003.76, + "end": 15004.66, + "probability": 0.9703 + }, + { + "start": 15005.94, + "end": 15007.16, + "probability": 0.7349 + }, + { + "start": 15007.98, + "end": 15009.58, + "probability": 0.7329 + }, + { + "start": 15010.34, + "end": 15012.5, + "probability": 0.5935 + }, + { + "start": 15013.58, + "end": 15014.28, + "probability": 0.8671 + }, + { + "start": 15014.36, + "end": 15015.0, + "probability": 0.5069 + }, + { + "start": 15015.16, + "end": 15016.38, + "probability": 0.7071 + }, + { + "start": 15016.44, + "end": 15017.08, + "probability": 0.8063 + }, + { + "start": 15018.38, + "end": 15020.02, + "probability": 0.9766 + }, + { + "start": 15020.88, + "end": 15021.58, + "probability": 0.9586 + }, + { + "start": 15021.62, + "end": 15022.54, + "probability": 0.9707 + }, + { + "start": 15022.6, + "end": 15025.18, + "probability": 0.9185 + }, + { + "start": 15026.54, + "end": 15028.46, + "probability": 0.9016 + }, + { + "start": 15029.14, + "end": 15032.14, + "probability": 0.9432 + }, + { + "start": 15032.46, + "end": 15033.38, + "probability": 0.9612 + }, + { + "start": 15034.27, + "end": 15037.94, + "probability": 0.4839 + }, + { + "start": 15038.12, + "end": 15039.36, + "probability": 0.8796 + }, + { + "start": 15039.44, + "end": 15042.5, + "probability": 0.9194 + }, + { + "start": 15044.16, + "end": 15048.28, + "probability": 0.7084 + }, + { + "start": 15049.1, + "end": 15049.98, + "probability": 0.4697 + }, + { + "start": 15049.98, + "end": 15050.02, + "probability": 0.3766 + }, + { + "start": 15050.02, + "end": 15050.7, + "probability": 0.7961 + }, + { + "start": 15050.74, + "end": 15051.88, + "probability": 0.5981 + }, + { + "start": 15051.88, + "end": 15054.46, + "probability": 0.9974 + }, + { + "start": 15055.74, + "end": 15056.5, + "probability": 0.7383 + }, + { + "start": 15057.82, + "end": 15058.76, + "probability": 0.6926 + }, + { + "start": 15058.76, + "end": 15058.9, + "probability": 0.5703 + }, + { + "start": 15059.28, + "end": 15059.98, + "probability": 0.9368 + }, + { + "start": 15059.98, + "end": 15060.92, + "probability": 0.9662 + }, + { + "start": 15061.0, + "end": 15061.59, + "probability": 0.9033 + }, + { + "start": 15061.64, + "end": 15063.04, + "probability": 0.9917 + }, + { + "start": 15063.36, + "end": 15065.46, + "probability": 0.9294 + }, + { + "start": 15065.52, + "end": 15066.4, + "probability": 0.9919 + }, + { + "start": 15066.5, + "end": 15067.28, + "probability": 0.9106 + }, + { + "start": 15068.58, + "end": 15071.36, + "probability": 0.6921 + }, + { + "start": 15072.42, + "end": 15074.52, + "probability": 0.7396 + }, + { + "start": 15074.6, + "end": 15075.5, + "probability": 0.7153 + }, + { + "start": 15077.25, + "end": 15078.78, + "probability": 0.1355 + }, + { + "start": 15078.78, + "end": 15079.28, + "probability": 0.1499 + }, + { + "start": 15080.0, + "end": 15080.92, + "probability": 0.6302 + }, + { + "start": 15081.72, + "end": 15082.18, + "probability": 0.8739 + }, + { + "start": 15082.26, + "end": 15082.98, + "probability": 0.9724 + }, + { + "start": 15083.08, + "end": 15087.82, + "probability": 0.9304 + }, + { + "start": 15088.78, + "end": 15090.2, + "probability": 0.9438 + }, + { + "start": 15090.36, + "end": 15095.64, + "probability": 0.8251 + }, + { + "start": 15095.7, + "end": 15096.43, + "probability": 0.9705 + }, + { + "start": 15096.92, + "end": 15098.93, + "probability": 0.6917 + }, + { + "start": 15099.82, + "end": 15101.5, + "probability": 0.8643 + }, + { + "start": 15102.56, + "end": 15103.22, + "probability": 0.7555 + }, + { + "start": 15103.44, + "end": 15104.0, + "probability": 0.5607 + }, + { + "start": 15104.06, + "end": 15105.04, + "probability": 0.9497 + }, + { + "start": 15106.08, + "end": 15108.32, + "probability": 0.8984 + }, + { + "start": 15109.08, + "end": 15109.77, + "probability": 0.5377 + }, + { + "start": 15110.04, + "end": 15110.9, + "probability": 0.6593 + }, + { + "start": 15110.96, + "end": 15111.44, + "probability": 0.4456 + }, + { + "start": 15111.66, + "end": 15112.26, + "probability": 0.7516 + }, + { + "start": 15112.26, + "end": 15112.6, + "probability": 0.7684 + }, + { + "start": 15113.02, + "end": 15114.04, + "probability": 0.9847 + }, + { + "start": 15115.0, + "end": 15118.42, + "probability": 0.9395 + }, + { + "start": 15118.94, + "end": 15119.76, + "probability": 0.9792 + }, + { + "start": 15121.48, + "end": 15125.88, + "probability": 0.8921 + }, + { + "start": 15126.54, + "end": 15128.16, + "probability": 0.9979 + }, + { + "start": 15129.0, + "end": 15131.24, + "probability": 0.9932 + }, + { + "start": 15132.0, + "end": 15132.64, + "probability": 0.8846 + }, + { + "start": 15133.78, + "end": 15134.8, + "probability": 0.7344 + }, + { + "start": 15134.9, + "end": 15135.58, + "probability": 0.707 + }, + { + "start": 15135.64, + "end": 15137.18, + "probability": 0.8177 + }, + { + "start": 15137.62, + "end": 15138.5, + "probability": 0.937 + }, + { + "start": 15139.74, + "end": 15141.92, + "probability": 0.6516 + }, + { + "start": 15142.15, + "end": 15144.84, + "probability": 0.6355 + }, + { + "start": 15144.92, + "end": 15147.28, + "probability": 0.7359 + }, + { + "start": 15147.44, + "end": 15151.18, + "probability": 0.7593 + }, + { + "start": 15151.18, + "end": 15151.18, + "probability": 0.0153 + }, + { + "start": 15151.18, + "end": 15151.18, + "probability": 0.0339 + }, + { + "start": 15151.18, + "end": 15151.18, + "probability": 0.0541 + }, + { + "start": 15151.18, + "end": 15153.16, + "probability": 0.6361 + }, + { + "start": 15153.34, + "end": 15153.48, + "probability": 0.2598 + }, + { + "start": 15153.62, + "end": 15155.2, + "probability": 0.9524 + }, + { + "start": 15155.62, + "end": 15156.39, + "probability": 0.9946 + }, + { + "start": 15156.56, + "end": 15156.64, + "probability": 0.42 + }, + { + "start": 15156.76, + "end": 15156.92, + "probability": 0.9626 + }, + { + "start": 15157.18, + "end": 15157.7, + "probability": 0.8643 + }, + { + "start": 15157.76, + "end": 15158.26, + "probability": 0.906 + }, + { + "start": 15160.04, + "end": 15161.76, + "probability": 0.9031 + }, + { + "start": 15162.98, + "end": 15163.12, + "probability": 0.8313 + }, + { + "start": 15163.16, + "end": 15164.84, + "probability": 0.9932 + }, + { + "start": 15164.84, + "end": 15166.0, + "probability": 0.9718 + }, + { + "start": 15166.62, + "end": 15168.44, + "probability": 0.9909 + }, + { + "start": 15169.08, + "end": 15170.76, + "probability": 0.9937 + }, + { + "start": 15171.36, + "end": 15174.98, + "probability": 0.9229 + }, + { + "start": 15175.08, + "end": 15175.42, + "probability": 0.9828 + }, + { + "start": 15175.68, + "end": 15177.82, + "probability": 0.6901 + }, + { + "start": 15177.86, + "end": 15179.12, + "probability": 0.9924 + }, + { + "start": 15179.54, + "end": 15181.52, + "probability": 0.9805 + }, + { + "start": 15182.06, + "end": 15182.98, + "probability": 0.8723 + }, + { + "start": 15183.64, + "end": 15185.02, + "probability": 0.9901 + }, + { + "start": 15185.36, + "end": 15186.02, + "probability": 0.891 + }, + { + "start": 15186.62, + "end": 15187.46, + "probability": 0.8869 + }, + { + "start": 15187.64, + "end": 15191.28, + "probability": 0.9575 + }, + { + "start": 15191.4, + "end": 15193.32, + "probability": 0.9611 + }, + { + "start": 15193.9, + "end": 15196.08, + "probability": 0.8592 + }, + { + "start": 15196.48, + "end": 15197.24, + "probability": 0.9873 + }, + { + "start": 15197.44, + "end": 15197.66, + "probability": 0.8132 + }, + { + "start": 15197.8, + "end": 15198.16, + "probability": 0.3712 + }, + { + "start": 15198.22, + "end": 15198.7, + "probability": 0.9527 + }, + { + "start": 15198.84, + "end": 15200.5, + "probability": 0.9177 + }, + { + "start": 15200.96, + "end": 15201.58, + "probability": 0.9231 + }, + { + "start": 15201.62, + "end": 15202.6, + "probability": 0.9274 + }, + { + "start": 15202.66, + "end": 15204.84, + "probability": 0.9939 + }, + { + "start": 15205.6, + "end": 15207.66, + "probability": 0.9064 + }, + { + "start": 15208.28, + "end": 15211.04, + "probability": 0.973 + }, + { + "start": 15211.46, + "end": 15212.4, + "probability": 0.5889 + }, + { + "start": 15212.86, + "end": 15215.18, + "probability": 0.9283 + }, + { + "start": 15215.74, + "end": 15216.3, + "probability": 0.889 + }, + { + "start": 15216.76, + "end": 15218.44, + "probability": 0.9473 + }, + { + "start": 15218.5, + "end": 15219.4, + "probability": 0.8877 + }, + { + "start": 15219.5, + "end": 15221.01, + "probability": 0.9386 + }, + { + "start": 15221.86, + "end": 15222.72, + "probability": 0.8086 + }, + { + "start": 15223.18, + "end": 15224.16, + "probability": 0.6362 + }, + { + "start": 15224.28, + "end": 15229.12, + "probability": 0.9326 + }, + { + "start": 15245.56, + "end": 15245.84, + "probability": 0.7426 + }, + { + "start": 15246.22, + "end": 15246.76, + "probability": 0.4978 + }, + { + "start": 15246.8, + "end": 15247.32, + "probability": 0.7488 + }, + { + "start": 15247.4, + "end": 15248.04, + "probability": 0.7308 + }, + { + "start": 15248.14, + "end": 15248.92, + "probability": 0.6299 + }, + { + "start": 15249.04, + "end": 15250.36, + "probability": 0.9968 + }, + { + "start": 15251.92, + "end": 15252.14, + "probability": 0.5078 + }, + { + "start": 15252.22, + "end": 15257.34, + "probability": 0.9332 + }, + { + "start": 15258.06, + "end": 15262.04, + "probability": 0.8002 + }, + { + "start": 15262.66, + "end": 15269.72, + "probability": 0.9752 + }, + { + "start": 15269.9, + "end": 15270.44, + "probability": 0.8073 + }, + { + "start": 15270.9, + "end": 15274.74, + "probability": 0.9933 + }, + { + "start": 15275.12, + "end": 15278.7, + "probability": 0.9854 + }, + { + "start": 15279.26, + "end": 15282.26, + "probability": 0.9815 + }, + { + "start": 15283.32, + "end": 15287.92, + "probability": 0.9948 + }, + { + "start": 15288.18, + "end": 15290.24, + "probability": 0.1851 + }, + { + "start": 15290.86, + "end": 15292.58, + "probability": 0.0261 + }, + { + "start": 15292.58, + "end": 15293.6, + "probability": 0.1246 + }, + { + "start": 15294.1, + "end": 15296.16, + "probability": 0.1682 + }, + { + "start": 15296.58, + "end": 15297.5, + "probability": 0.2563 + }, + { + "start": 15297.5, + "end": 15297.76, + "probability": 0.186 + }, + { + "start": 15297.76, + "end": 15298.92, + "probability": 0.4433 + }, + { + "start": 15299.38, + "end": 15301.09, + "probability": 0.5026 + }, + { + "start": 15301.44, + "end": 15302.4, + "probability": 0.2933 + }, + { + "start": 15302.4, + "end": 15304.92, + "probability": 0.1985 + }, + { + "start": 15305.1, + "end": 15305.72, + "probability": 0.8693 + }, + { + "start": 15305.82, + "end": 15306.9, + "probability": 0.8391 + }, + { + "start": 15307.06, + "end": 15307.4, + "probability": 0.6443 + }, + { + "start": 15307.5, + "end": 15308.7, + "probability": 0.9569 + }, + { + "start": 15308.82, + "end": 15310.16, + "probability": 0.8534 + }, + { + "start": 15310.2, + "end": 15312.08, + "probability": 0.8628 + }, + { + "start": 15312.42, + "end": 15313.58, + "probability": 0.9137 + }, + { + "start": 15313.84, + "end": 15318.02, + "probability": 0.9113 + }, + { + "start": 15318.02, + "end": 15321.3, + "probability": 0.9963 + }, + { + "start": 15321.44, + "end": 15322.26, + "probability": 0.8496 + }, + { + "start": 15322.72, + "end": 15323.82, + "probability": 0.6973 + }, + { + "start": 15324.02, + "end": 15326.54, + "probability": 0.9907 + }, + { + "start": 15327.1, + "end": 15327.8, + "probability": 0.7208 + }, + { + "start": 15328.22, + "end": 15330.92, + "probability": 0.908 + }, + { + "start": 15331.22, + "end": 15333.82, + "probability": 0.9924 + }, + { + "start": 15334.3, + "end": 15336.44, + "probability": 0.9976 + }, + { + "start": 15336.78, + "end": 15337.78, + "probability": 0.9715 + }, + { + "start": 15338.64, + "end": 15340.72, + "probability": 0.9904 + }, + { + "start": 15341.36, + "end": 15342.4, + "probability": 0.3554 + }, + { + "start": 15342.5, + "end": 15344.92, + "probability": 0.9823 + }, + { + "start": 15345.3, + "end": 15346.48, + "probability": 0.8053 + }, + { + "start": 15346.9, + "end": 15349.64, + "probability": 0.9512 + }, + { + "start": 15350.12, + "end": 15351.54, + "probability": 0.9521 + }, + { + "start": 15351.8, + "end": 15354.6, + "probability": 0.9824 + }, + { + "start": 15355.24, + "end": 15358.42, + "probability": 0.9845 + }, + { + "start": 15359.4, + "end": 15364.74, + "probability": 0.7087 + }, + { + "start": 15365.04, + "end": 15365.4, + "probability": 0.9731 + }, + { + "start": 15365.46, + "end": 15366.18, + "probability": 0.9942 + }, + { + "start": 15366.54, + "end": 15371.02, + "probability": 0.9977 + }, + { + "start": 15371.02, + "end": 15374.36, + "probability": 0.9956 + }, + { + "start": 15375.34, + "end": 15376.28, + "probability": 0.4337 + }, + { + "start": 15376.42, + "end": 15378.14, + "probability": 0.8774 + }, + { + "start": 15378.56, + "end": 15379.6, + "probability": 0.9845 + }, + { + "start": 15379.96, + "end": 15381.0, + "probability": 0.8062 + }, + { + "start": 15381.34, + "end": 15382.96, + "probability": 0.7966 + }, + { + "start": 15383.48, + "end": 15387.04, + "probability": 0.9967 + }, + { + "start": 15387.42, + "end": 15388.2, + "probability": 0.0117 + }, + { + "start": 15388.82, + "end": 15390.72, + "probability": 0.9536 + }, + { + "start": 15390.86, + "end": 15393.28, + "probability": 0.8286 + }, + { + "start": 15393.52, + "end": 15396.24, + "probability": 0.9958 + }, + { + "start": 15396.86, + "end": 15397.06, + "probability": 0.0539 + }, + { + "start": 15397.08, + "end": 15397.6, + "probability": 0.9124 + }, + { + "start": 15397.7, + "end": 15398.54, + "probability": 0.9036 + }, + { + "start": 15398.82, + "end": 15402.66, + "probability": 0.9673 + }, + { + "start": 15402.66, + "end": 15405.06, + "probability": 0.9901 + }, + { + "start": 15405.5, + "end": 15408.28, + "probability": 0.965 + }, + { + "start": 15408.78, + "end": 15410.74, + "probability": 0.9487 + }, + { + "start": 15410.82, + "end": 15412.48, + "probability": 0.8857 + }, + { + "start": 15412.86, + "end": 15413.54, + "probability": 0.8577 + }, + { + "start": 15413.74, + "end": 15415.76, + "probability": 0.7552 + }, + { + "start": 15416.22, + "end": 15416.84, + "probability": 0.8771 + }, + { + "start": 15417.2, + "end": 15419.56, + "probability": 0.9774 + }, + { + "start": 15419.74, + "end": 15420.26, + "probability": 0.9578 + }, + { + "start": 15421.12, + "end": 15422.62, + "probability": 0.9871 + }, + { + "start": 15423.04, + "end": 15423.54, + "probability": 0.7732 + }, + { + "start": 15423.68, + "end": 15427.46, + "probability": 0.9722 + }, + { + "start": 15427.6, + "end": 15427.92, + "probability": 0.8416 + }, + { + "start": 15428.32, + "end": 15429.47, + "probability": 0.5063 + }, + { + "start": 15429.8, + "end": 15430.3, + "probability": 0.5567 + }, + { + "start": 15430.38, + "end": 15435.34, + "probability": 0.9528 + }, + { + "start": 15436.1, + "end": 15437.59, + "probability": 0.674 + }, + { + "start": 15437.76, + "end": 15441.3, + "probability": 0.5715 + }, + { + "start": 15441.88, + "end": 15444.4, + "probability": 0.3638 + }, + { + "start": 15445.42, + "end": 15446.0, + "probability": 0.6691 + }, + { + "start": 15447.38, + "end": 15448.6, + "probability": 0.2873 + }, + { + "start": 15457.92, + "end": 15465.0, + "probability": 0.6121 + }, + { + "start": 15465.0, + "end": 15469.6, + "probability": 0.3661 + }, + { + "start": 15470.26, + "end": 15470.72, + "probability": 0.3779 + }, + { + "start": 15471.6, + "end": 15476.44, + "probability": 0.1374 + }, + { + "start": 15482.92, + "end": 15486.04, + "probability": 0.102 + }, + { + "start": 15486.04, + "end": 15490.72, + "probability": 0.0908 + }, + { + "start": 15491.62, + "end": 15493.48, + "probability": 0.1884 + }, + { + "start": 15494.66, + "end": 15497.72, + "probability": 0.1178 + }, + { + "start": 15501.82, + "end": 15510.38, + "probability": 0.0462 + }, + { + "start": 15511.04, + "end": 15514.94, + "probability": 0.4684 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.0, + "end": 15532.0, + "probability": 0.0 + }, + { + "start": 15532.2, + "end": 15532.44, + "probability": 0.0236 + }, + { + "start": 15532.44, + "end": 15532.68, + "probability": 0.0757 + }, + { + "start": 15532.68, + "end": 15536.2, + "probability": 0.4131 + }, + { + "start": 15537.0, + "end": 15538.78, + "probability": 0.0665 + }, + { + "start": 15545.92, + "end": 15548.84, + "probability": 0.084 + }, + { + "start": 15548.92, + "end": 15554.36, + "probability": 0.084 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15660.0, + "end": 15660.0, + "probability": 0.0 + }, + { + "start": 15665.6, + "end": 15666.22, + "probability": 0.1273 + }, + { + "start": 15668.56, + "end": 15669.24, + "probability": 0.1243 + }, + { + "start": 15669.24, + "end": 15672.84, + "probability": 0.123 + }, + { + "start": 15676.46, + "end": 15679.23, + "probability": 0.019 + }, + { + "start": 15680.56, + "end": 15684.2, + "probability": 0.1651 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.0, + "end": 15781.0, + "probability": 0.0 + }, + { + "start": 15781.08, + "end": 15781.64, + "probability": 0.4202 + }, + { + "start": 15781.84, + "end": 15785.74, + "probability": 0.5815 + }, + { + "start": 15785.76, + "end": 15787.14, + "probability": 0.8447 + }, + { + "start": 15787.66, + "end": 15788.27, + "probability": 0.5694 + }, + { + "start": 15788.5, + "end": 15789.77, + "probability": 0.9419 + }, + { + "start": 15790.22, + "end": 15791.38, + "probability": 0.8356 + }, + { + "start": 15792.2, + "end": 15792.82, + "probability": 0.6248 + }, + { + "start": 15795.52, + "end": 15797.08, + "probability": 0.7348 + }, + { + "start": 15800.16, + "end": 15800.56, + "probability": 0.8958 + }, + { + "start": 15801.14, + "end": 15806.48, + "probability": 0.9562 + }, + { + "start": 15807.26, + "end": 15810.75, + "probability": 0.7977 + }, + { + "start": 15811.38, + "end": 15812.86, + "probability": 0.1827 + }, + { + "start": 15813.34, + "end": 15814.34, + "probability": 0.6689 + }, + { + "start": 15814.6, + "end": 15815.1, + "probability": 0.6875 + }, + { + "start": 15818.6, + "end": 15819.02, + "probability": 0.284 + }, + { + "start": 15829.9, + "end": 15834.86, + "probability": 0.2804 + }, + { + "start": 15834.98, + "end": 15838.92, + "probability": 0.6851 + }, + { + "start": 15840.02, + "end": 15845.34, + "probability": 0.1972 + }, + { + "start": 15846.28, + "end": 15847.36, + "probability": 0.0396 + }, + { + "start": 15849.55, + "end": 15850.66, + "probability": 0.0722 + }, + { + "start": 15852.34, + "end": 15858.66, + "probability": 0.0334 + }, + { + "start": 15858.66, + "end": 15862.94, + "probability": 0.0943 + }, + { + "start": 15863.04, + "end": 15865.64, + "probability": 0.1076 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.0, + "end": 15901.0, + "probability": 0.0 + }, + { + "start": 15901.02, + "end": 15901.26, + "probability": 0.1484 + }, + { + "start": 15901.26, + "end": 15901.26, + "probability": 0.0867 + }, + { + "start": 15901.26, + "end": 15901.82, + "probability": 0.6499 + }, + { + "start": 15902.3, + "end": 15903.2, + "probability": 0.465 + }, + { + "start": 15903.84, + "end": 15905.44, + "probability": 0.9421 + }, + { + "start": 15906.58, + "end": 15907.46, + "probability": 0.4513 + }, + { + "start": 15907.56, + "end": 15908.46, + "probability": 0.8436 + }, + { + "start": 15909.1, + "end": 15909.1, + "probability": 0.3584 + }, + { + "start": 15909.1, + "end": 15909.34, + "probability": 0.1673 + }, + { + "start": 15909.44, + "end": 15910.54, + "probability": 0.1313 + }, + { + "start": 15910.74, + "end": 15911.84, + "probability": 0.8085 + }, + { + "start": 15912.52, + "end": 15913.38, + "probability": 0.8784 + }, + { + "start": 15913.44, + "end": 15914.26, + "probability": 0.9524 + }, + { + "start": 15914.48, + "end": 15916.1, + "probability": 0.4917 + }, + { + "start": 15916.36, + "end": 15916.9, + "probability": 0.837 + }, + { + "start": 15917.1, + "end": 15920.4, + "probability": 0.8099 + }, + { + "start": 15920.46, + "end": 15921.36, + "probability": 0.5585 + }, + { + "start": 15922.28, + "end": 15922.96, + "probability": 0.6854 + }, + { + "start": 15923.06, + "end": 15924.12, + "probability": 0.8271 + }, + { + "start": 15924.62, + "end": 15925.38, + "probability": 0.7121 + }, + { + "start": 15925.48, + "end": 15926.28, + "probability": 0.9821 + }, + { + "start": 15927.28, + "end": 15933.92, + "probability": 0.9575 + }, + { + "start": 15934.54, + "end": 15936.9, + "probability": 0.6653 + }, + { + "start": 15937.0, + "end": 15943.76, + "probability": 0.9681 + }, + { + "start": 15944.46, + "end": 15948.06, + "probability": 0.9965 + }, + { + "start": 15948.14, + "end": 15948.66, + "probability": 0.7696 + }, + { + "start": 15949.44, + "end": 15951.34, + "probability": 0.9968 + }, + { + "start": 15952.12, + "end": 15955.02, + "probability": 0.9974 + }, + { + "start": 15955.02, + "end": 15958.08, + "probability": 0.9601 + }, + { + "start": 15958.2, + "end": 15962.08, + "probability": 0.988 + }, + { + "start": 15962.96, + "end": 15968.12, + "probability": 0.9832 + }, + { + "start": 15968.9, + "end": 15971.76, + "probability": 0.951 + }, + { + "start": 15973.01, + "end": 15976.92, + "probability": 0.9948 + }, + { + "start": 15976.98, + "end": 15980.04, + "probability": 0.951 + }, + { + "start": 15981.44, + "end": 15983.68, + "probability": 0.7767 + }, + { + "start": 15984.82, + "end": 15986.82, + "probability": 0.9929 + }, + { + "start": 15988.22, + "end": 15989.7, + "probability": 0.8893 + }, + { + "start": 15989.84, + "end": 15992.82, + "probability": 0.9683 + }, + { + "start": 15993.36, + "end": 15995.92, + "probability": 0.9744 + }, + { + "start": 15996.74, + "end": 15998.82, + "probability": 0.9288 + }, + { + "start": 15999.42, + "end": 16000.96, + "probability": 0.9721 + }, + { + "start": 16001.54, + "end": 16003.36, + "probability": 0.5207 + }, + { + "start": 16003.42, + "end": 16005.64, + "probability": 0.8271 + }, + { + "start": 16006.14, + "end": 16010.64, + "probability": 0.8292 + }, + { + "start": 16010.72, + "end": 16012.16, + "probability": 0.3394 + }, + { + "start": 16013.69, + "end": 16020.34, + "probability": 0.8107 + }, + { + "start": 16020.4, + "end": 16020.86, + "probability": 0.256 + }, + { + "start": 16021.52, + "end": 16022.28, + "probability": 0.9007 + }, + { + "start": 16022.4, + "end": 16025.66, + "probability": 0.9537 + }, + { + "start": 16026.36, + "end": 16029.08, + "probability": 0.991 + }, + { + "start": 16029.62, + "end": 16035.86, + "probability": 0.8829 + }, + { + "start": 16036.28, + "end": 16041.04, + "probability": 0.9305 + }, + { + "start": 16041.78, + "end": 16043.34, + "probability": 0.9884 + }, + { + "start": 16043.88, + "end": 16049.07, + "probability": 0.9778 + }, + { + "start": 16049.48, + "end": 16051.46, + "probability": 0.8508 + }, + { + "start": 16052.14, + "end": 16053.44, + "probability": 0.9631 + }, + { + "start": 16053.56, + "end": 16056.54, + "probability": 0.9347 + }, + { + "start": 16057.02, + "end": 16062.0, + "probability": 0.9182 + }, + { + "start": 16062.08, + "end": 16066.36, + "probability": 0.6657 + }, + { + "start": 16066.44, + "end": 16068.56, + "probability": 0.7582 + }, + { + "start": 16068.72, + "end": 16071.54, + "probability": 0.9744 + }, + { + "start": 16072.68, + "end": 16074.86, + "probability": 0.7147 + }, + { + "start": 16074.88, + "end": 16075.02, + "probability": 0.2489 + }, + { + "start": 16075.1, + "end": 16079.38, + "probability": 0.801 + }, + { + "start": 16079.62, + "end": 16082.26, + "probability": 0.9569 + }, + { + "start": 16082.42, + "end": 16082.84, + "probability": 0.707 + }, + { + "start": 16083.54, + "end": 16087.68, + "probability": 0.7665 + }, + { + "start": 16087.72, + "end": 16088.94, + "probability": 0.9618 + }, + { + "start": 16089.74, + "end": 16092.26, + "probability": 0.7157 + }, + { + "start": 16092.9, + "end": 16097.22, + "probability": 0.4698 + }, + { + "start": 16097.32, + "end": 16103.18, + "probability": 0.9484 + }, + { + "start": 16103.32, + "end": 16104.18, + "probability": 0.9893 + }, + { + "start": 16104.56, + "end": 16107.18, + "probability": 0.9644 + }, + { + "start": 16107.86, + "end": 16109.14, + "probability": 0.9863 + }, + { + "start": 16109.26, + "end": 16111.42, + "probability": 0.9174 + }, + { + "start": 16112.36, + "end": 16113.86, + "probability": 0.8821 + }, + { + "start": 16115.6, + "end": 16117.0, + "probability": 0.9234 + }, + { + "start": 16118.94, + "end": 16120.28, + "probability": 0.9297 + }, + { + "start": 16121.32, + "end": 16123.7, + "probability": 0.9966 + }, + { + "start": 16123.98, + "end": 16128.08, + "probability": 0.9943 + }, + { + "start": 16129.3, + "end": 16131.3, + "probability": 0.5784 + }, + { + "start": 16132.36, + "end": 16136.22, + "probability": 0.9736 + }, + { + "start": 16137.0, + "end": 16138.6, + "probability": 0.9956 + }, + { + "start": 16138.96, + "end": 16144.58, + "probability": 0.9683 + }, + { + "start": 16145.21, + "end": 16149.92, + "probability": 0.8676 + }, + { + "start": 16150.46, + "end": 16153.55, + "probability": 0.9057 + }, + { + "start": 16154.2, + "end": 16157.0, + "probability": 0.7604 + }, + { + "start": 16158.32, + "end": 16162.3, + "probability": 0.9653 + }, + { + "start": 16162.88, + "end": 16163.7, + "probability": 0.8974 + }, + { + "start": 16163.78, + "end": 16164.08, + "probability": 0.7661 + }, + { + "start": 16164.96, + "end": 16166.38, + "probability": 0.6064 + }, + { + "start": 16166.68, + "end": 16170.48, + "probability": 0.6789 + }, + { + "start": 16170.48, + "end": 16171.18, + "probability": 0.3671 + }, + { + "start": 16171.6, + "end": 16172.78, + "probability": 0.0009 + }, + { + "start": 16173.78, + "end": 16174.4, + "probability": 0.5187 + }, + { + "start": 16174.9, + "end": 16179.26, + "probability": 0.8494 + }, + { + "start": 16180.28, + "end": 16180.74, + "probability": 0.2629 + }, + { + "start": 16189.94, + "end": 16190.32, + "probability": 0.3169 + }, + { + "start": 16190.44, + "end": 16191.6, + "probability": 0.4746 + }, + { + "start": 16191.6, + "end": 16191.98, + "probability": 0.7 + }, + { + "start": 16192.1, + "end": 16192.96, + "probability": 0.7516 + }, + { + "start": 16193.08, + "end": 16193.72, + "probability": 0.6785 + }, + { + "start": 16193.84, + "end": 16194.84, + "probability": 0.9763 + }, + { + "start": 16194.96, + "end": 16195.56, + "probability": 0.7191 + }, + { + "start": 16196.34, + "end": 16196.54, + "probability": 0.5103 + }, + { + "start": 16196.64, + "end": 16197.9, + "probability": 0.8503 + }, + { + "start": 16197.96, + "end": 16198.94, + "probability": 0.9844 + }, + { + "start": 16199.14, + "end": 16200.06, + "probability": 0.9868 + }, + { + "start": 16200.12, + "end": 16201.26, + "probability": 0.77 + }, + { + "start": 16202.0, + "end": 16202.96, + "probability": 0.9523 + }, + { + "start": 16203.74, + "end": 16205.58, + "probability": 0.9895 + }, + { + "start": 16205.64, + "end": 16207.36, + "probability": 0.8882 + }, + { + "start": 16208.04, + "end": 16209.74, + "probability": 0.9545 + }, + { + "start": 16209.84, + "end": 16210.62, + "probability": 0.9519 + }, + { + "start": 16210.68, + "end": 16212.0, + "probability": 0.969 + }, + { + "start": 16212.92, + "end": 16216.62, + "probability": 0.9972 + }, + { + "start": 16217.84, + "end": 16217.84, + "probability": 0.4764 + }, + { + "start": 16217.98, + "end": 16219.74, + "probability": 0.6537 + }, + { + "start": 16220.48, + "end": 16220.68, + "probability": 0.7881 + }, + { + "start": 16221.48, + "end": 16222.12, + "probability": 0.1543 + }, + { + "start": 16222.18, + "end": 16223.58, + "probability": 0.8752 + }, + { + "start": 16223.62, + "end": 16224.8, + "probability": 0.8801 + }, + { + "start": 16224.86, + "end": 16226.02, + "probability": 0.9313 + }, + { + "start": 16226.1, + "end": 16231.1, + "probability": 0.9958 + }, + { + "start": 16231.64, + "end": 16235.32, + "probability": 0.7392 + }, + { + "start": 16235.6, + "end": 16237.08, + "probability": 0.2876 + }, + { + "start": 16237.12, + "end": 16238.16, + "probability": 0.7003 + }, + { + "start": 16239.04, + "end": 16241.1, + "probability": 0.7539 + }, + { + "start": 16242.26, + "end": 16242.74, + "probability": 0.9521 + }, + { + "start": 16243.58, + "end": 16244.2, + "probability": 0.8895 + }, + { + "start": 16244.46, + "end": 16249.36, + "probability": 0.9965 + }, + { + "start": 16249.42, + "end": 16250.08, + "probability": 0.627 + }, + { + "start": 16250.22, + "end": 16252.54, + "probability": 0.8351 + }, + { + "start": 16252.62, + "end": 16256.78, + "probability": 0.8848 + }, + { + "start": 16256.78, + "end": 16256.9, + "probability": 0.9533 + }, + { + "start": 16256.96, + "end": 16257.73, + "probability": 0.5042 + }, + { + "start": 16258.12, + "end": 16258.77, + "probability": 0.8745 + }, + { + "start": 16258.92, + "end": 16259.36, + "probability": 0.5421 + }, + { + "start": 16260.22, + "end": 16263.7, + "probability": 0.923 + }, + { + "start": 16263.8, + "end": 16264.98, + "probability": 0.9033 + }, + { + "start": 16265.04, + "end": 16267.28, + "probability": 0.9976 + }, + { + "start": 16267.38, + "end": 16268.1, + "probability": 0.31 + }, + { + "start": 16268.22, + "end": 16270.52, + "probability": 0.6858 + }, + { + "start": 16270.76, + "end": 16271.98, + "probability": 0.9467 + }, + { + "start": 16272.12, + "end": 16272.4, + "probability": 0.5991 + }, + { + "start": 16272.6, + "end": 16273.26, + "probability": 0.6459 + }, + { + "start": 16273.34, + "end": 16274.8, + "probability": 0.8668 + }, + { + "start": 16275.0, + "end": 16276.84, + "probability": 0.9675 + }, + { + "start": 16276.9, + "end": 16277.76, + "probability": 0.8337 + }, + { + "start": 16292.52, + "end": 16293.46, + "probability": 0.2639 + }, + { + "start": 16293.98, + "end": 16295.7, + "probability": 0.1043 + }, + { + "start": 16296.22, + "end": 16297.7, + "probability": 0.0815 + }, + { + "start": 16298.5, + "end": 16299.96, + "probability": 0.1003 + }, + { + "start": 16307.56, + "end": 16309.1, + "probability": 0.0293 + }, + { + "start": 16309.18, + "end": 16310.04, + "probability": 0.0819 + }, + { + "start": 16311.61, + "end": 16312.5, + "probability": 0.0738 + }, + { + "start": 16314.22, + "end": 16314.22, + "probability": 0.0755 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.0, + "end": 16390.0, + "probability": 0.0 + }, + { + "start": 16390.1, + "end": 16390.45, + "probability": 0.0563 + }, + { + "start": 16394.72, + "end": 16398.1, + "probability": 0.7374 + }, + { + "start": 16402.18, + "end": 16404.0, + "probability": 0.836 + }, + { + "start": 16404.38, + "end": 16408.28, + "probability": 0.6382 + }, + { + "start": 16408.92, + "end": 16409.58, + "probability": 0.7403 + }, + { + "start": 16409.62, + "end": 16411.12, + "probability": 0.776 + }, + { + "start": 16411.22, + "end": 16415.52, + "probability": 0.9924 + }, + { + "start": 16415.52, + "end": 16418.52, + "probability": 0.5096 + }, + { + "start": 16418.6, + "end": 16419.62, + "probability": 0.3559 + }, + { + "start": 16419.68, + "end": 16421.26, + "probability": 0.5119 + }, + { + "start": 16422.08, + "end": 16422.48, + "probability": 0.7573 + }, + { + "start": 16422.56, + "end": 16423.62, + "probability": 0.6582 + }, + { + "start": 16423.66, + "end": 16425.06, + "probability": 0.6135 + }, + { + "start": 16425.14, + "end": 16426.36, + "probability": 0.9278 + }, + { + "start": 16426.48, + "end": 16429.76, + "probability": 0.786 + }, + { + "start": 16486.72, + "end": 16486.72, + "probability": 0.0506 + } + ], + "segments_count": 6096, + "words_count": 29964, + "avg_words_per_segment": 4.9154, + "avg_segment_duration": 1.8729, + "avg_words_per_minute": 108.3338, + "plenum_id": "124988", + "duration": 16595.37, + "title": null, + "plenum_date": "2024-03-11" +} \ No newline at end of file