diff --git "a/125687/metadata.json" "b/125687/metadata.json" new file mode 100644--- /dev/null +++ "b/125687/metadata.json" @@ -0,0 +1,26107 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "125687", + "quality_score": 0.8891, + "per_segment_quality_scores": [ + { + "start": 52.7, + "end": 53.7, + "probability": 0.0593 + }, + { + "start": 53.82, + "end": 55.64, + "probability": 0.9059 + }, + { + "start": 55.88, + "end": 59.76, + "probability": 0.8533 + }, + { + "start": 60.3, + "end": 67.68, + "probability": 0.9673 + }, + { + "start": 67.78, + "end": 70.0, + "probability": 0.9491 + }, + { + "start": 70.08, + "end": 70.82, + "probability": 0.6599 + }, + { + "start": 71.66, + "end": 74.2, + "probability": 0.9591 + }, + { + "start": 74.32, + "end": 76.7, + "probability": 0.9938 + }, + { + "start": 76.88, + "end": 77.34, + "probability": 0.7091 + }, + { + "start": 77.46, + "end": 78.38, + "probability": 0.987 + }, + { + "start": 79.28, + "end": 80.4, + "probability": 0.8794 + }, + { + "start": 81.48, + "end": 81.58, + "probability": 0.7107 + }, + { + "start": 81.58, + "end": 82.8, + "probability": 0.6761 + }, + { + "start": 82.94, + "end": 83.98, + "probability": 0.7965 + }, + { + "start": 84.1, + "end": 85.26, + "probability": 0.882 + }, + { + "start": 85.42, + "end": 86.48, + "probability": 0.9386 + }, + { + "start": 87.08, + "end": 92.75, + "probability": 0.7199 + }, + { + "start": 96.58, + "end": 100.78, + "probability": 0.2859 + }, + { + "start": 100.86, + "end": 101.1, + "probability": 0.051 + }, + { + "start": 101.66, + "end": 104.7, + "probability": 0.0431 + }, + { + "start": 104.7, + "end": 104.7, + "probability": 0.0782 + }, + { + "start": 104.7, + "end": 104.7, + "probability": 0.0108 + }, + { + "start": 104.7, + "end": 105.3, + "probability": 0.0375 + }, + { + "start": 106.04, + "end": 106.4, + "probability": 0.5646 + }, + { + "start": 110.88, + "end": 111.9, + "probability": 0.0584 + }, + { + "start": 112.86, + "end": 114.87, + "probability": 0.0245 + }, + { + "start": 116.46, + "end": 116.9, + "probability": 0.0182 + }, + { + "start": 116.9, + "end": 117.94, + "probability": 0.0609 + }, + { + "start": 118.6, + "end": 119.92, + "probability": 0.0324 + }, + { + "start": 120.65, + "end": 120.77, + "probability": 0.0579 + }, + { + "start": 120.88, + "end": 120.88, + "probability": 0.0135 + }, + { + "start": 120.88, + "end": 121.06, + "probability": 0.1518 + }, + { + "start": 121.58, + "end": 121.98, + "probability": 0.565 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.38, + "end": 123.74, + "probability": 0.7746 + }, + { + "start": 123.82, + "end": 126.0, + "probability": 0.9854 + }, + { + "start": 138.8, + "end": 139.38, + "probability": 0.7317 + }, + { + "start": 139.74, + "end": 141.06, + "probability": 0.7621 + }, + { + "start": 141.72, + "end": 142.98, + "probability": 0.7698 + }, + { + "start": 144.2, + "end": 146.14, + "probability": 0.589 + }, + { + "start": 146.58, + "end": 148.5, + "probability": 0.945 + }, + { + "start": 149.7, + "end": 153.47, + "probability": 0.9873 + }, + { + "start": 153.56, + "end": 156.6, + "probability": 0.9746 + }, + { + "start": 157.62, + "end": 160.42, + "probability": 0.9993 + }, + { + "start": 160.5, + "end": 163.78, + "probability": 0.9694 + }, + { + "start": 164.58, + "end": 168.74, + "probability": 0.996 + }, + { + "start": 169.58, + "end": 169.94, + "probability": 0.6518 + }, + { + "start": 170.48, + "end": 174.42, + "probability": 0.9956 + }, + { + "start": 175.36, + "end": 177.5, + "probability": 0.9962 + }, + { + "start": 178.12, + "end": 181.38, + "probability": 0.9924 + }, + { + "start": 182.1, + "end": 183.68, + "probability": 0.6688 + }, + { + "start": 184.46, + "end": 185.82, + "probability": 0.9978 + }, + { + "start": 186.36, + "end": 187.92, + "probability": 0.967 + }, + { + "start": 188.74, + "end": 191.66, + "probability": 0.9858 + }, + { + "start": 192.38, + "end": 195.04, + "probability": 0.9547 + }, + { + "start": 195.64, + "end": 199.28, + "probability": 0.9702 + }, + { + "start": 200.0, + "end": 203.64, + "probability": 0.9958 + }, + { + "start": 203.64, + "end": 208.22, + "probability": 0.9934 + }, + { + "start": 208.44, + "end": 208.82, + "probability": 0.3503 + }, + { + "start": 208.82, + "end": 209.1, + "probability": 0.6294 + }, + { + "start": 209.26, + "end": 211.92, + "probability": 0.9694 + }, + { + "start": 212.44, + "end": 214.4, + "probability": 0.9295 + }, + { + "start": 214.6, + "end": 216.46, + "probability": 0.4759 + }, + { + "start": 216.5, + "end": 216.9, + "probability": 0.9456 + }, + { + "start": 221.08, + "end": 222.6, + "probability": 0.7412 + }, + { + "start": 223.64, + "end": 224.24, + "probability": 0.882 + }, + { + "start": 224.72, + "end": 225.28, + "probability": 0.698 + }, + { + "start": 225.34, + "end": 226.46, + "probability": 0.8311 + }, + { + "start": 226.88, + "end": 230.16, + "probability": 0.98 + }, + { + "start": 230.82, + "end": 235.34, + "probability": 0.9756 + }, + { + "start": 235.34, + "end": 238.22, + "probability": 0.9616 + }, + { + "start": 239.2, + "end": 242.12, + "probability": 0.9146 + }, + { + "start": 242.22, + "end": 243.82, + "probability": 0.9521 + }, + { + "start": 245.14, + "end": 248.06, + "probability": 0.9808 + }, + { + "start": 248.22, + "end": 249.54, + "probability": 0.9834 + }, + { + "start": 250.06, + "end": 252.64, + "probability": 0.9601 + }, + { + "start": 253.42, + "end": 255.36, + "probability": 0.957 + }, + { + "start": 256.18, + "end": 261.22, + "probability": 0.986 + }, + { + "start": 262.18, + "end": 264.56, + "probability": 0.9836 + }, + { + "start": 265.32, + "end": 269.36, + "probability": 0.9891 + }, + { + "start": 269.54, + "end": 273.44, + "probability": 0.9235 + }, + { + "start": 274.3, + "end": 276.94, + "probability": 0.9362 + }, + { + "start": 277.66, + "end": 280.62, + "probability": 0.9827 + }, + { + "start": 281.24, + "end": 283.98, + "probability": 0.8231 + }, + { + "start": 284.92, + "end": 287.71, + "probability": 0.8352 + }, + { + "start": 288.22, + "end": 290.32, + "probability": 0.8962 + }, + { + "start": 291.12, + "end": 293.18, + "probability": 0.9535 + }, + { + "start": 293.72, + "end": 295.7, + "probability": 0.992 + }, + { + "start": 297.08, + "end": 299.88, + "probability": 0.9976 + }, + { + "start": 300.54, + "end": 303.14, + "probability": 0.7617 + }, + { + "start": 303.18, + "end": 304.02, + "probability": 0.5938 + }, + { + "start": 304.32, + "end": 305.12, + "probability": 0.9938 + }, + { + "start": 305.54, + "end": 306.66, + "probability": 0.818 + }, + { + "start": 307.14, + "end": 308.18, + "probability": 0.988 + }, + { + "start": 308.3, + "end": 308.6, + "probability": 0.9375 + }, + { + "start": 308.84, + "end": 309.48, + "probability": 0.9037 + }, + { + "start": 309.54, + "end": 310.04, + "probability": 0.9279 + }, + { + "start": 310.24, + "end": 312.02, + "probability": 0.6907 + }, + { + "start": 312.24, + "end": 312.5, + "probability": 0.1681 + }, + { + "start": 312.52, + "end": 313.74, + "probability": 0.8062 + }, + { + "start": 313.88, + "end": 314.42, + "probability": 0.8929 + }, + { + "start": 319.84, + "end": 322.56, + "probability": 0.6224 + }, + { + "start": 323.46, + "end": 326.52, + "probability": 0.9753 + }, + { + "start": 327.6, + "end": 332.64, + "probability": 0.6419 + }, + { + "start": 333.96, + "end": 334.48, + "probability": 0.9885 + }, + { + "start": 335.66, + "end": 337.62, + "probability": 0.6437 + }, + { + "start": 339.0, + "end": 342.94, + "probability": 0.6764 + }, + { + "start": 343.6, + "end": 346.68, + "probability": 0.7048 + }, + { + "start": 347.2, + "end": 351.12, + "probability": 0.9841 + }, + { + "start": 351.78, + "end": 353.78, + "probability": 0.998 + }, + { + "start": 354.5, + "end": 355.6, + "probability": 0.937 + }, + { + "start": 355.84, + "end": 357.26, + "probability": 0.9439 + }, + { + "start": 358.42, + "end": 359.86, + "probability": 0.6115 + }, + { + "start": 360.38, + "end": 364.16, + "probability": 0.7626 + }, + { + "start": 365.38, + "end": 366.02, + "probability": 0.2978 + }, + { + "start": 367.78, + "end": 370.24, + "probability": 0.4981 + }, + { + "start": 371.64, + "end": 373.42, + "probability": 0.6482 + }, + { + "start": 374.52, + "end": 376.08, + "probability": 0.5214 + }, + { + "start": 376.66, + "end": 378.77, + "probability": 0.9577 + }, + { + "start": 379.88, + "end": 383.94, + "probability": 0.7082 + }, + { + "start": 384.48, + "end": 386.38, + "probability": 0.7769 + }, + { + "start": 387.06, + "end": 388.18, + "probability": 0.9536 + }, + { + "start": 388.92, + "end": 391.02, + "probability": 0.95 + }, + { + "start": 391.64, + "end": 392.42, + "probability": 0.9063 + }, + { + "start": 392.82, + "end": 397.12, + "probability": 0.9106 + }, + { + "start": 397.74, + "end": 398.82, + "probability": 0.993 + }, + { + "start": 399.5, + "end": 403.76, + "probability": 0.9323 + }, + { + "start": 404.28, + "end": 406.04, + "probability": 0.9351 + }, + { + "start": 406.44, + "end": 410.34, + "probability": 0.943 + }, + { + "start": 411.98, + "end": 411.98, + "probability": 0.0526 + }, + { + "start": 417.72, + "end": 421.64, + "probability": 0.446 + }, + { + "start": 422.04, + "end": 426.96, + "probability": 0.6368 + }, + { + "start": 427.28, + "end": 428.96, + "probability": 0.6746 + }, + { + "start": 429.36, + "end": 430.44, + "probability": 0.6972 + }, + { + "start": 430.82, + "end": 431.4, + "probability": 0.8299 + }, + { + "start": 431.48, + "end": 431.9, + "probability": 0.9102 + }, + { + "start": 431.98, + "end": 433.06, + "probability": 0.7068 + }, + { + "start": 433.12, + "end": 433.52, + "probability": 0.7706 + }, + { + "start": 433.7, + "end": 435.0, + "probability": 0.9559 + }, + { + "start": 435.5, + "end": 436.56, + "probability": 0.9648 + }, + { + "start": 438.96, + "end": 440.34, + "probability": 0.6573 + }, + { + "start": 440.48, + "end": 441.34, + "probability": 0.7669 + }, + { + "start": 441.9, + "end": 442.6, + "probability": 0.9321 + }, + { + "start": 442.64, + "end": 445.3, + "probability": 0.9844 + }, + { + "start": 445.3, + "end": 449.29, + "probability": 0.9987 + }, + { + "start": 449.96, + "end": 452.04, + "probability": 0.9957 + }, + { + "start": 452.08, + "end": 453.74, + "probability": 0.9392 + }, + { + "start": 454.3, + "end": 457.12, + "probability": 0.9984 + }, + { + "start": 457.44, + "end": 459.96, + "probability": 0.9985 + }, + { + "start": 460.06, + "end": 461.18, + "probability": 0.8809 + }, + { + "start": 462.0, + "end": 465.6, + "probability": 0.9946 + }, + { + "start": 466.2, + "end": 468.8, + "probability": 0.9974 + }, + { + "start": 469.18, + "end": 470.26, + "probability": 0.9678 + }, + { + "start": 470.36, + "end": 472.42, + "probability": 0.9846 + }, + { + "start": 472.5, + "end": 477.18, + "probability": 0.9982 + }, + { + "start": 477.74, + "end": 479.84, + "probability": 0.9918 + }, + { + "start": 479.96, + "end": 483.04, + "probability": 0.9558 + }, + { + "start": 483.04, + "end": 488.44, + "probability": 0.9888 + }, + { + "start": 488.58, + "end": 490.26, + "probability": 0.7246 + }, + { + "start": 490.78, + "end": 493.16, + "probability": 0.9816 + }, + { + "start": 493.52, + "end": 495.62, + "probability": 0.906 + }, + { + "start": 495.9, + "end": 496.7, + "probability": 0.4157 + }, + { + "start": 497.04, + "end": 497.9, + "probability": 0.9238 + }, + { + "start": 498.2, + "end": 501.63, + "probability": 0.987 + }, + { + "start": 501.78, + "end": 503.32, + "probability": 0.9937 + }, + { + "start": 503.32, + "end": 505.7, + "probability": 0.983 + }, + { + "start": 506.02, + "end": 507.44, + "probability": 0.7967 + }, + { + "start": 507.78, + "end": 509.94, + "probability": 0.9765 + }, + { + "start": 510.26, + "end": 513.82, + "probability": 0.9919 + }, + { + "start": 514.42, + "end": 517.76, + "probability": 0.8342 + }, + { + "start": 518.28, + "end": 520.86, + "probability": 0.9813 + }, + { + "start": 521.4, + "end": 527.44, + "probability": 0.9862 + }, + { + "start": 527.94, + "end": 530.04, + "probability": 0.8732 + }, + { + "start": 530.3, + "end": 532.08, + "probability": 0.9933 + }, + { + "start": 532.46, + "end": 535.22, + "probability": 0.9947 + }, + { + "start": 536.5, + "end": 536.96, + "probability": 0.5384 + }, + { + "start": 537.06, + "end": 540.16, + "probability": 0.9728 + }, + { + "start": 544.46, + "end": 546.0, + "probability": 0.7835 + }, + { + "start": 547.02, + "end": 547.64, + "probability": 0.7766 + }, + { + "start": 547.68, + "end": 548.58, + "probability": 0.8137 + }, + { + "start": 548.66, + "end": 551.2, + "probability": 0.9676 + }, + { + "start": 551.2, + "end": 554.18, + "probability": 0.9935 + }, + { + "start": 554.68, + "end": 557.58, + "probability": 0.9264 + }, + { + "start": 557.58, + "end": 560.72, + "probability": 0.9979 + }, + { + "start": 561.46, + "end": 564.74, + "probability": 0.9914 + }, + { + "start": 565.22, + "end": 568.8, + "probability": 0.998 + }, + { + "start": 569.42, + "end": 571.44, + "probability": 0.8727 + }, + { + "start": 571.54, + "end": 573.28, + "probability": 0.9939 + }, + { + "start": 573.44, + "end": 574.52, + "probability": 0.9086 + }, + { + "start": 575.12, + "end": 576.46, + "probability": 0.7712 + }, + { + "start": 576.98, + "end": 580.12, + "probability": 0.9621 + }, + { + "start": 580.74, + "end": 582.2, + "probability": 0.986 + }, + { + "start": 582.3, + "end": 583.86, + "probability": 0.7617 + }, + { + "start": 584.02, + "end": 585.76, + "probability": 0.9871 + }, + { + "start": 586.4, + "end": 587.36, + "probability": 0.9809 + }, + { + "start": 587.62, + "end": 588.24, + "probability": 0.7454 + }, + { + "start": 588.72, + "end": 590.3, + "probability": 0.9763 + }, + { + "start": 590.44, + "end": 594.28, + "probability": 0.9674 + }, + { + "start": 594.82, + "end": 597.38, + "probability": 0.9647 + }, + { + "start": 597.92, + "end": 600.07, + "probability": 0.8998 + }, + { + "start": 600.78, + "end": 602.08, + "probability": 0.9794 + }, + { + "start": 602.5, + "end": 603.12, + "probability": 0.9062 + }, + { + "start": 603.22, + "end": 603.78, + "probability": 0.6958 + }, + { + "start": 603.86, + "end": 607.84, + "probability": 0.9455 + }, + { + "start": 608.42, + "end": 611.64, + "probability": 0.9865 + }, + { + "start": 612.08, + "end": 613.32, + "probability": 0.9493 + }, + { + "start": 613.38, + "end": 615.16, + "probability": 0.9449 + }, + { + "start": 615.66, + "end": 619.44, + "probability": 0.9977 + }, + { + "start": 619.92, + "end": 622.44, + "probability": 0.9437 + }, + { + "start": 623.08, + "end": 624.72, + "probability": 0.9926 + }, + { + "start": 624.94, + "end": 626.76, + "probability": 0.998 + }, + { + "start": 627.22, + "end": 628.92, + "probability": 0.995 + }, + { + "start": 629.26, + "end": 632.2, + "probability": 0.9727 + }, + { + "start": 632.58, + "end": 635.1, + "probability": 0.995 + }, + { + "start": 635.76, + "end": 640.38, + "probability": 0.9609 + }, + { + "start": 640.82, + "end": 641.86, + "probability": 0.6601 + }, + { + "start": 641.94, + "end": 642.68, + "probability": 0.871 + }, + { + "start": 642.86, + "end": 644.6, + "probability": 0.8318 + }, + { + "start": 645.06, + "end": 646.58, + "probability": 0.9937 + }, + { + "start": 646.7, + "end": 648.9, + "probability": 0.9647 + }, + { + "start": 649.54, + "end": 651.68, + "probability": 0.9471 + }, + { + "start": 652.16, + "end": 653.84, + "probability": 0.8168 + }, + { + "start": 654.0, + "end": 655.46, + "probability": 0.9809 + }, + { + "start": 656.08, + "end": 657.26, + "probability": 0.9387 + }, + { + "start": 657.4, + "end": 658.78, + "probability": 0.9779 + }, + { + "start": 659.26, + "end": 659.9, + "probability": 0.5268 + }, + { + "start": 660.46, + "end": 663.64, + "probability": 0.9858 + }, + { + "start": 664.92, + "end": 667.46, + "probability": 0.3539 + }, + { + "start": 668.02, + "end": 670.88, + "probability": 0.9775 + }, + { + "start": 671.3, + "end": 673.58, + "probability": 0.9927 + }, + { + "start": 674.0, + "end": 675.66, + "probability": 0.9574 + }, + { + "start": 676.18, + "end": 676.89, + "probability": 0.5415 + }, + { + "start": 677.16, + "end": 679.96, + "probability": 0.8027 + }, + { + "start": 680.5, + "end": 682.78, + "probability": 0.8354 + }, + { + "start": 683.08, + "end": 683.22, + "probability": 0.7836 + }, + { + "start": 683.32, + "end": 684.1, + "probability": 0.7017 + }, + { + "start": 684.42, + "end": 689.04, + "probability": 0.947 + }, + { + "start": 690.36, + "end": 691.46, + "probability": 0.6604 + }, + { + "start": 691.56, + "end": 694.86, + "probability": 0.6974 + }, + { + "start": 694.94, + "end": 696.44, + "probability": 0.4648 + }, + { + "start": 696.72, + "end": 697.48, + "probability": 0.6356 + }, + { + "start": 698.16, + "end": 701.14, + "probability": 0.9419 + }, + { + "start": 701.22, + "end": 701.9, + "probability": 0.8477 + }, + { + "start": 702.64, + "end": 703.62, + "probability": 0.9993 + }, + { + "start": 704.38, + "end": 705.0, + "probability": 0.8564 + }, + { + "start": 710.78, + "end": 710.84, + "probability": 0.1565 + }, + { + "start": 710.84, + "end": 710.84, + "probability": 0.0926 + }, + { + "start": 710.84, + "end": 710.84, + "probability": 0.2922 + }, + { + "start": 738.84, + "end": 741.14, + "probability": 0.7073 + }, + { + "start": 742.08, + "end": 744.14, + "probability": 0.9928 + }, + { + "start": 744.14, + "end": 748.05, + "probability": 0.98 + }, + { + "start": 749.24, + "end": 750.92, + "probability": 0.0106 + }, + { + "start": 750.92, + "end": 753.92, + "probability": 0.9809 + }, + { + "start": 754.06, + "end": 757.72, + "probability": 0.9805 + }, + { + "start": 758.18, + "end": 760.86, + "probability": 0.9022 + }, + { + "start": 761.38, + "end": 762.76, + "probability": 0.2141 + }, + { + "start": 763.08, + "end": 765.0, + "probability": 0.9855 + }, + { + "start": 765.0, + "end": 767.52, + "probability": 0.9341 + }, + { + "start": 768.0, + "end": 769.94, + "probability": 0.7802 + }, + { + "start": 770.86, + "end": 776.46, + "probability": 0.9722 + }, + { + "start": 776.46, + "end": 781.02, + "probability": 0.9668 + }, + { + "start": 781.52, + "end": 786.26, + "probability": 0.9922 + }, + { + "start": 786.4, + "end": 789.68, + "probability": 0.9873 + }, + { + "start": 789.7, + "end": 792.8, + "probability": 0.9956 + }, + { + "start": 793.34, + "end": 795.16, + "probability": 0.9777 + }, + { + "start": 795.9, + "end": 800.84, + "probability": 0.8329 + }, + { + "start": 801.42, + "end": 803.24, + "probability": 0.9375 + }, + { + "start": 803.3, + "end": 803.66, + "probability": 0.5778 + }, + { + "start": 803.7, + "end": 805.26, + "probability": 0.9928 + }, + { + "start": 805.32, + "end": 807.42, + "probability": 0.9664 + }, + { + "start": 807.68, + "end": 809.12, + "probability": 0.9891 + }, + { + "start": 809.76, + "end": 813.56, + "probability": 0.9888 + }, + { + "start": 813.76, + "end": 815.82, + "probability": 0.7773 + }, + { + "start": 815.96, + "end": 819.74, + "probability": 0.7453 + }, + { + "start": 820.7, + "end": 822.66, + "probability": 0.7878 + }, + { + "start": 822.7, + "end": 824.22, + "probability": 0.817 + }, + { + "start": 824.26, + "end": 825.02, + "probability": 0.8139 + }, + { + "start": 825.54, + "end": 827.22, + "probability": 0.7737 + }, + { + "start": 827.22, + "end": 829.02, + "probability": 0.9837 + }, + { + "start": 829.08, + "end": 831.7, + "probability": 0.9946 + }, + { + "start": 831.7, + "end": 833.78, + "probability": 0.9817 + }, + { + "start": 834.36, + "end": 837.44, + "probability": 0.8118 + }, + { + "start": 837.44, + "end": 843.35, + "probability": 0.8208 + }, + { + "start": 844.82, + "end": 847.86, + "probability": 0.9694 + }, + { + "start": 847.86, + "end": 851.14, + "probability": 0.7755 + }, + { + "start": 851.14, + "end": 854.14, + "probability": 0.9823 + }, + { + "start": 854.18, + "end": 857.0, + "probability": 0.984 + }, + { + "start": 857.16, + "end": 859.36, + "probability": 0.961 + }, + { + "start": 860.14, + "end": 863.0, + "probability": 0.9502 + }, + { + "start": 863.0, + "end": 866.1, + "probability": 0.9783 + }, + { + "start": 866.7, + "end": 868.88, + "probability": 0.8528 + }, + { + "start": 869.78, + "end": 873.08, + "probability": 0.9395 + }, + { + "start": 873.1, + "end": 875.56, + "probability": 0.9747 + }, + { + "start": 876.28, + "end": 876.74, + "probability": 0.6523 + }, + { + "start": 876.86, + "end": 879.38, + "probability": 0.9941 + }, + { + "start": 879.42, + "end": 881.72, + "probability": 0.9543 + }, + { + "start": 881.72, + "end": 884.1, + "probability": 0.9266 + }, + { + "start": 884.2, + "end": 884.56, + "probability": 0.7677 + }, + { + "start": 885.26, + "end": 888.3, + "probability": 0.743 + }, + { + "start": 888.3, + "end": 892.64, + "probability": 0.9554 + }, + { + "start": 892.64, + "end": 895.56, + "probability": 0.9968 + }, + { + "start": 895.64, + "end": 897.96, + "probability": 0.7198 + }, + { + "start": 898.22, + "end": 900.94, + "probability": 0.3807 + }, + { + "start": 901.1, + "end": 903.78, + "probability": 0.9562 + }, + { + "start": 904.0, + "end": 906.64, + "probability": 0.8621 + }, + { + "start": 907.92, + "end": 909.78, + "probability": 0.9258 + }, + { + "start": 909.9, + "end": 911.88, + "probability": 0.8335 + }, + { + "start": 911.96, + "end": 913.24, + "probability": 0.6846 + }, + { + "start": 913.32, + "end": 917.36, + "probability": 0.5414 + }, + { + "start": 917.36, + "end": 920.52, + "probability": 0.8582 + }, + { + "start": 920.52, + "end": 924.12, + "probability": 0.9977 + }, + { + "start": 924.22, + "end": 925.02, + "probability": 0.64 + }, + { + "start": 925.38, + "end": 927.68, + "probability": 0.8217 + }, + { + "start": 927.68, + "end": 930.33, + "probability": 0.9816 + }, + { + "start": 931.2, + "end": 933.14, + "probability": 0.9871 + }, + { + "start": 933.56, + "end": 933.72, + "probability": 0.0237 + }, + { + "start": 933.78, + "end": 937.2, + "probability": 0.9811 + }, + { + "start": 937.2, + "end": 939.94, + "probability": 0.8731 + }, + { + "start": 940.54, + "end": 943.56, + "probability": 0.9047 + }, + { + "start": 944.24, + "end": 944.9, + "probability": 0.8671 + }, + { + "start": 945.02, + "end": 947.34, + "probability": 0.8356 + }, + { + "start": 947.9, + "end": 949.74, + "probability": 0.9331 + }, + { + "start": 951.6, + "end": 951.6, + "probability": 0.3714 + }, + { + "start": 951.6, + "end": 953.62, + "probability": 0.2731 + }, + { + "start": 953.62, + "end": 956.68, + "probability": 0.9811 + }, + { + "start": 956.84, + "end": 958.64, + "probability": 0.5658 + }, + { + "start": 959.34, + "end": 961.74, + "probability": 0.9583 + }, + { + "start": 961.74, + "end": 964.26, + "probability": 0.9523 + }, + { + "start": 964.26, + "end": 967.06, + "probability": 0.9475 + }, + { + "start": 967.64, + "end": 969.04, + "probability": 0.987 + }, + { + "start": 969.14, + "end": 972.9, + "probability": 0.9967 + }, + { + "start": 973.04, + "end": 973.46, + "probability": 0.6832 + }, + { + "start": 973.54, + "end": 974.0, + "probability": 0.928 + }, + { + "start": 974.6, + "end": 976.5, + "probability": 0.622 + }, + { + "start": 976.58, + "end": 979.44, + "probability": 0.8553 + }, + { + "start": 979.46, + "end": 979.88, + "probability": 0.947 + }, + { + "start": 980.84, + "end": 983.42, + "probability": 0.657 + }, + { + "start": 983.6, + "end": 987.62, + "probability": 0.7628 + }, + { + "start": 987.62, + "end": 991.8, + "probability": 0.9811 + }, + { + "start": 991.91, + "end": 995.44, + "probability": 0.7135 + }, + { + "start": 995.44, + "end": 998.94, + "probability": 0.6166 + }, + { + "start": 998.94, + "end": 1002.24, + "probability": 0.9495 + }, + { + "start": 1002.52, + "end": 1004.66, + "probability": 0.706 + }, + { + "start": 1005.5, + "end": 1007.72, + "probability": 0.9746 + }, + { + "start": 1008.34, + "end": 1011.78, + "probability": 0.6734 + }, + { + "start": 1011.78, + "end": 1014.3, + "probability": 0.9637 + }, + { + "start": 1014.3, + "end": 1017.84, + "probability": 0.9087 + }, + { + "start": 1017.9, + "end": 1021.94, + "probability": 0.8842 + }, + { + "start": 1022.34, + "end": 1023.62, + "probability": 0.9887 + }, + { + "start": 1024.16, + "end": 1025.88, + "probability": 0.9737 + }, + { + "start": 1026.6, + "end": 1029.06, + "probability": 0.9001 + }, + { + "start": 1029.32, + "end": 1032.1, + "probability": 0.9588 + }, + { + "start": 1043.82, + "end": 1045.97, + "probability": 0.8217 + }, + { + "start": 1048.8, + "end": 1050.7, + "probability": 0.8211 + }, + { + "start": 1051.58, + "end": 1053.4, + "probability": 0.9749 + }, + { + "start": 1055.08, + "end": 1056.68, + "probability": 0.9948 + }, + { + "start": 1057.66, + "end": 1058.38, + "probability": 0.9495 + }, + { + "start": 1060.0, + "end": 1063.46, + "probability": 0.9324 + }, + { + "start": 1066.68, + "end": 1068.98, + "probability": 0.9803 + }, + { + "start": 1069.1, + "end": 1070.48, + "probability": 0.9741 + }, + { + "start": 1070.48, + "end": 1072.48, + "probability": 0.8994 + }, + { + "start": 1079.86, + "end": 1080.58, + "probability": 0.8847 + }, + { + "start": 1082.4, + "end": 1084.59, + "probability": 0.9761 + }, + { + "start": 1086.7, + "end": 1088.6, + "probability": 0.5802 + }, + { + "start": 1089.96, + "end": 1090.3, + "probability": 0.0074 + }, + { + "start": 1091.62, + "end": 1092.32, + "probability": 0.4739 + }, + { + "start": 1093.0, + "end": 1095.88, + "probability": 0.9631 + }, + { + "start": 1098.78, + "end": 1100.7, + "probability": 0.9981 + }, + { + "start": 1100.82, + "end": 1101.66, + "probability": 0.7791 + }, + { + "start": 1101.9, + "end": 1103.23, + "probability": 0.8633 + }, + { + "start": 1103.52, + "end": 1105.24, + "probability": 0.8881 + }, + { + "start": 1107.2, + "end": 1109.5, + "probability": 0.9929 + }, + { + "start": 1113.84, + "end": 1117.3, + "probability": 0.9025 + }, + { + "start": 1117.34, + "end": 1119.46, + "probability": 0.9932 + }, + { + "start": 1121.52, + "end": 1122.44, + "probability": 0.8257 + }, + { + "start": 1125.5, + "end": 1127.0, + "probability": 0.9988 + }, + { + "start": 1129.0, + "end": 1130.98, + "probability": 0.9146 + }, + { + "start": 1131.12, + "end": 1132.06, + "probability": 0.2883 + }, + { + "start": 1133.28, + "end": 1134.18, + "probability": 0.7969 + }, + { + "start": 1135.48, + "end": 1136.7, + "probability": 0.8346 + }, + { + "start": 1137.24, + "end": 1138.59, + "probability": 0.0604 + }, + { + "start": 1139.0, + "end": 1140.82, + "probability": 0.2371 + }, + { + "start": 1140.96, + "end": 1142.54, + "probability": 0.5127 + }, + { + "start": 1144.32, + "end": 1145.74, + "probability": 0.9214 + }, + { + "start": 1145.94, + "end": 1146.58, + "probability": 0.3685 + }, + { + "start": 1147.4, + "end": 1148.28, + "probability": 0.4333 + }, + { + "start": 1148.64, + "end": 1149.56, + "probability": 0.1012 + }, + { + "start": 1149.78, + "end": 1152.02, + "probability": 0.4718 + }, + { + "start": 1152.12, + "end": 1152.46, + "probability": 0.9288 + }, + { + "start": 1152.9, + "end": 1153.24, + "probability": 0.7012 + }, + { + "start": 1153.64, + "end": 1155.28, + "probability": 0.9432 + }, + { + "start": 1155.68, + "end": 1157.5, + "probability": 0.378 + }, + { + "start": 1158.3, + "end": 1160.8, + "probability": 0.4781 + }, + { + "start": 1160.82, + "end": 1161.28, + "probability": 0.6573 + }, + { + "start": 1161.36, + "end": 1163.37, + "probability": 0.952 + }, + { + "start": 1164.44, + "end": 1166.39, + "probability": 0.2333 + }, + { + "start": 1166.72, + "end": 1167.96, + "probability": 0.0571 + }, + { + "start": 1168.0, + "end": 1169.2, + "probability": 0.3262 + }, + { + "start": 1169.72, + "end": 1173.88, + "probability": 0.0242 + }, + { + "start": 1174.44, + "end": 1174.62, + "probability": 0.0491 + }, + { + "start": 1174.62, + "end": 1175.4, + "probability": 0.5996 + }, + { + "start": 1175.5, + "end": 1176.5, + "probability": 0.7603 + }, + { + "start": 1176.9, + "end": 1178.14, + "probability": 0.6289 + }, + { + "start": 1178.8, + "end": 1181.38, + "probability": 0.7516 + }, + { + "start": 1183.88, + "end": 1184.28, + "probability": 0.1134 + }, + { + "start": 1185.64, + "end": 1186.0, + "probability": 0.0039 + }, + { + "start": 1186.46, + "end": 1188.08, + "probability": 0.0625 + }, + { + "start": 1188.58, + "end": 1189.44, + "probability": 0.1178 + }, + { + "start": 1190.28, + "end": 1191.92, + "probability": 0.9961 + }, + { + "start": 1191.92, + "end": 1194.4, + "probability": 0.8817 + }, + { + "start": 1194.44, + "end": 1194.92, + "probability": 0.819 + }, + { + "start": 1195.2, + "end": 1196.97, + "probability": 0.9984 + }, + { + "start": 1198.32, + "end": 1201.34, + "probability": 0.9669 + }, + { + "start": 1203.04, + "end": 1203.78, + "probability": 0.9973 + }, + { + "start": 1205.78, + "end": 1207.52, + "probability": 0.9893 + }, + { + "start": 1208.46, + "end": 1209.5, + "probability": 0.9737 + }, + { + "start": 1210.38, + "end": 1211.86, + "probability": 0.9501 + }, + { + "start": 1213.6, + "end": 1215.76, + "probability": 0.9988 + }, + { + "start": 1217.34, + "end": 1218.88, + "probability": 0.9983 + }, + { + "start": 1221.58, + "end": 1224.92, + "probability": 0.9472 + }, + { + "start": 1225.98, + "end": 1229.9, + "probability": 0.855 + }, + { + "start": 1230.04, + "end": 1232.62, + "probability": 0.7114 + }, + { + "start": 1232.66, + "end": 1233.68, + "probability": 0.9506 + }, + { + "start": 1233.92, + "end": 1235.82, + "probability": 0.766 + }, + { + "start": 1235.92, + "end": 1236.66, + "probability": 0.7412 + }, + { + "start": 1238.28, + "end": 1242.15, + "probability": 0.9686 + }, + { + "start": 1243.6, + "end": 1246.36, + "probability": 0.9639 + }, + { + "start": 1247.24, + "end": 1248.8, + "probability": 0.9532 + }, + { + "start": 1251.16, + "end": 1252.92, + "probability": 0.9931 + }, + { + "start": 1254.16, + "end": 1256.03, + "probability": 0.9964 + }, + { + "start": 1257.38, + "end": 1260.42, + "probability": 0.9935 + }, + { + "start": 1261.36, + "end": 1263.92, + "probability": 0.9966 + }, + { + "start": 1266.16, + "end": 1267.18, + "probability": 0.9651 + }, + { + "start": 1268.26, + "end": 1269.02, + "probability": 0.5634 + }, + { + "start": 1271.24, + "end": 1273.04, + "probability": 0.6782 + }, + { + "start": 1275.12, + "end": 1276.82, + "probability": 0.8131 + }, + { + "start": 1277.24, + "end": 1278.06, + "probability": 0.6898 + }, + { + "start": 1278.18, + "end": 1279.16, + "probability": 0.9243 + }, + { + "start": 1279.52, + "end": 1280.62, + "probability": 0.6973 + }, + { + "start": 1280.86, + "end": 1282.6, + "probability": 0.8045 + }, + { + "start": 1283.38, + "end": 1287.72, + "probability": 0.89 + }, + { + "start": 1287.76, + "end": 1288.88, + "probability": 0.9985 + }, + { + "start": 1289.84, + "end": 1290.72, + "probability": 0.8578 + }, + { + "start": 1292.04, + "end": 1293.34, + "probability": 0.9313 + }, + { + "start": 1294.38, + "end": 1296.18, + "probability": 0.9512 + }, + { + "start": 1296.38, + "end": 1298.62, + "probability": 0.9307 + }, + { + "start": 1298.76, + "end": 1299.92, + "probability": 0.9953 + }, + { + "start": 1300.5, + "end": 1301.56, + "probability": 0.7419 + }, + { + "start": 1302.1, + "end": 1302.88, + "probability": 0.9341 + }, + { + "start": 1303.62, + "end": 1307.46, + "probability": 0.9146 + }, + { + "start": 1308.22, + "end": 1310.82, + "probability": 0.9697 + }, + { + "start": 1311.14, + "end": 1311.56, + "probability": 0.7858 + }, + { + "start": 1311.74, + "end": 1312.52, + "probability": 0.5568 + }, + { + "start": 1312.56, + "end": 1315.06, + "probability": 0.959 + }, + { + "start": 1332.52, + "end": 1333.78, + "probability": 0.9454 + }, + { + "start": 1333.92, + "end": 1335.49, + "probability": 0.6817 + }, + { + "start": 1335.9, + "end": 1337.7, + "probability": 0.8747 + }, + { + "start": 1339.13, + "end": 1344.18, + "probability": 0.9741 + }, + { + "start": 1345.16, + "end": 1345.98, + "probability": 0.9105 + }, + { + "start": 1346.18, + "end": 1347.24, + "probability": 0.929 + }, + { + "start": 1347.38, + "end": 1348.22, + "probability": 0.5522 + }, + { + "start": 1349.0, + "end": 1349.64, + "probability": 0.5281 + }, + { + "start": 1350.44, + "end": 1353.86, + "probability": 0.9734 + }, + { + "start": 1354.89, + "end": 1356.28, + "probability": 0.9724 + }, + { + "start": 1356.5, + "end": 1357.3, + "probability": 0.9641 + }, + { + "start": 1357.4, + "end": 1361.8, + "probability": 0.9805 + }, + { + "start": 1361.86, + "end": 1367.94, + "probability": 0.9722 + }, + { + "start": 1368.02, + "end": 1368.52, + "probability": 0.4131 + }, + { + "start": 1368.84, + "end": 1369.72, + "probability": 0.8338 + }, + { + "start": 1369.74, + "end": 1370.48, + "probability": 0.8153 + }, + { + "start": 1372.58, + "end": 1373.56, + "probability": 0.9476 + }, + { + "start": 1374.34, + "end": 1375.86, + "probability": 0.8716 + }, + { + "start": 1376.58, + "end": 1377.32, + "probability": 0.9792 + }, + { + "start": 1377.46, + "end": 1379.56, + "probability": 0.8141 + }, + { + "start": 1379.6, + "end": 1380.06, + "probability": 0.346 + }, + { + "start": 1380.28, + "end": 1380.54, + "probability": 0.8482 + }, + { + "start": 1380.7, + "end": 1380.86, + "probability": 0.5344 + }, + { + "start": 1380.86, + "end": 1381.32, + "probability": 0.9782 + }, + { + "start": 1381.58, + "end": 1381.8, + "probability": 0.8944 + }, + { + "start": 1382.22, + "end": 1382.56, + "probability": 0.8772 + }, + { + "start": 1387.34, + "end": 1388.62, + "probability": 0.8953 + }, + { + "start": 1388.68, + "end": 1391.26, + "probability": 0.876 + }, + { + "start": 1391.34, + "end": 1393.2, + "probability": 0.9984 + }, + { + "start": 1393.24, + "end": 1395.21, + "probability": 0.9492 + }, + { + "start": 1395.28, + "end": 1399.1, + "probability": 0.9639 + }, + { + "start": 1401.56, + "end": 1403.56, + "probability": 0.4524 + }, + { + "start": 1403.72, + "end": 1405.22, + "probability": 0.8901 + }, + { + "start": 1405.64, + "end": 1407.52, + "probability": 0.996 + }, + { + "start": 1408.46, + "end": 1409.38, + "probability": 0.7483 + }, + { + "start": 1410.0, + "end": 1411.3, + "probability": 0.9614 + }, + { + "start": 1412.32, + "end": 1415.06, + "probability": 0.9834 + }, + { + "start": 1416.56, + "end": 1420.32, + "probability": 0.9253 + }, + { + "start": 1420.32, + "end": 1422.68, + "probability": 0.9961 + }, + { + "start": 1423.78, + "end": 1426.1, + "probability": 0.943 + }, + { + "start": 1426.5, + "end": 1428.8, + "probability": 0.9284 + }, + { + "start": 1429.74, + "end": 1432.54, + "probability": 0.9917 + }, + { + "start": 1433.18, + "end": 1434.28, + "probability": 0.992 + }, + { + "start": 1436.0, + "end": 1440.98, + "probability": 0.9911 + }, + { + "start": 1441.9, + "end": 1444.34, + "probability": 0.9797 + }, + { + "start": 1445.08, + "end": 1447.42, + "probability": 0.9941 + }, + { + "start": 1447.78, + "end": 1450.36, + "probability": 0.9905 + }, + { + "start": 1451.76, + "end": 1453.86, + "probability": 0.9768 + }, + { + "start": 1455.1, + "end": 1456.84, + "probability": 0.9834 + }, + { + "start": 1457.48, + "end": 1458.94, + "probability": 0.9514 + }, + { + "start": 1459.44, + "end": 1461.96, + "probability": 0.978 + }, + { + "start": 1464.44, + "end": 1465.9, + "probability": 0.9834 + }, + { + "start": 1467.16, + "end": 1468.54, + "probability": 0.9923 + }, + { + "start": 1469.52, + "end": 1471.3, + "probability": 0.9702 + }, + { + "start": 1471.9, + "end": 1475.28, + "probability": 0.9849 + }, + { + "start": 1476.84, + "end": 1480.04, + "probability": 0.9982 + }, + { + "start": 1480.96, + "end": 1482.86, + "probability": 0.9406 + }, + { + "start": 1483.36, + "end": 1485.4, + "probability": 0.9946 + }, + { + "start": 1485.74, + "end": 1486.26, + "probability": 0.8579 + }, + { + "start": 1486.32, + "end": 1488.04, + "probability": 0.949 + }, + { + "start": 1489.56, + "end": 1491.52, + "probability": 0.9935 + }, + { + "start": 1491.62, + "end": 1494.38, + "probability": 0.9875 + }, + { + "start": 1494.38, + "end": 1497.6, + "probability": 0.995 + }, + { + "start": 1498.92, + "end": 1500.94, + "probability": 0.9756 + }, + { + "start": 1501.42, + "end": 1503.14, + "probability": 0.9966 + }, + { + "start": 1504.3, + "end": 1506.2, + "probability": 0.7927 + }, + { + "start": 1506.28, + "end": 1506.6, + "probability": 0.808 + }, + { + "start": 1507.1, + "end": 1508.96, + "probability": 0.9308 + }, + { + "start": 1509.34, + "end": 1510.86, + "probability": 0.659 + }, + { + "start": 1511.08, + "end": 1512.66, + "probability": 0.9661 + }, + { + "start": 1514.24, + "end": 1517.04, + "probability": 0.9868 + }, + { + "start": 1517.74, + "end": 1519.0, + "probability": 0.9819 + }, + { + "start": 1519.38, + "end": 1521.7, + "probability": 0.989 + }, + { + "start": 1522.2, + "end": 1526.78, + "probability": 0.9937 + }, + { + "start": 1527.12, + "end": 1528.36, + "probability": 0.9666 + }, + { + "start": 1529.88, + "end": 1531.18, + "probability": 0.9958 + }, + { + "start": 1531.24, + "end": 1531.94, + "probability": 0.6364 + }, + { + "start": 1532.64, + "end": 1534.04, + "probability": 0.8103 + }, + { + "start": 1534.74, + "end": 1536.04, + "probability": 0.9566 + }, + { + "start": 1536.3, + "end": 1540.78, + "probability": 0.9763 + }, + { + "start": 1540.8, + "end": 1541.22, + "probability": 0.9302 + }, + { + "start": 1541.84, + "end": 1542.66, + "probability": 0.8245 + }, + { + "start": 1544.86, + "end": 1547.78, + "probability": 0.999 + }, + { + "start": 1547.78, + "end": 1550.98, + "probability": 0.9992 + }, + { + "start": 1551.1, + "end": 1552.86, + "probability": 0.9991 + }, + { + "start": 1554.56, + "end": 1557.38, + "probability": 0.9875 + }, + { + "start": 1557.64, + "end": 1559.4, + "probability": 0.9735 + }, + { + "start": 1561.22, + "end": 1563.46, + "probability": 0.9492 + }, + { + "start": 1564.98, + "end": 1568.88, + "probability": 0.9893 + }, + { + "start": 1570.3, + "end": 1570.54, + "probability": 0.4455 + }, + { + "start": 1570.56, + "end": 1571.14, + "probability": 0.7513 + }, + { + "start": 1571.5, + "end": 1573.04, + "probability": 0.9006 + }, + { + "start": 1573.16, + "end": 1577.04, + "probability": 0.9644 + }, + { + "start": 1577.52, + "end": 1581.08, + "probability": 0.9929 + }, + { + "start": 1583.26, + "end": 1583.94, + "probability": 0.6185 + }, + { + "start": 1584.9, + "end": 1587.34, + "probability": 0.9927 + }, + { + "start": 1587.34, + "end": 1590.26, + "probability": 0.9162 + }, + { + "start": 1591.28, + "end": 1594.84, + "probability": 0.9707 + }, + { + "start": 1595.88, + "end": 1599.68, + "probability": 0.999 + }, + { + "start": 1600.2, + "end": 1601.58, + "probability": 0.8639 + }, + { + "start": 1602.28, + "end": 1603.84, + "probability": 0.8674 + }, + { + "start": 1605.1, + "end": 1609.06, + "probability": 0.994 + }, + { + "start": 1611.02, + "end": 1612.34, + "probability": 0.9148 + }, + { + "start": 1612.8, + "end": 1613.42, + "probability": 0.5758 + }, + { + "start": 1613.5, + "end": 1615.66, + "probability": 0.9719 + }, + { + "start": 1616.02, + "end": 1616.96, + "probability": 0.9526 + }, + { + "start": 1617.82, + "end": 1619.84, + "probability": 0.9828 + }, + { + "start": 1620.36, + "end": 1621.62, + "probability": 0.9962 + }, + { + "start": 1622.66, + "end": 1625.22, + "probability": 0.9919 + }, + { + "start": 1626.24, + "end": 1629.68, + "probability": 0.9802 + }, + { + "start": 1630.02, + "end": 1631.46, + "probability": 0.8831 + }, + { + "start": 1632.26, + "end": 1637.8, + "probability": 0.9961 + }, + { + "start": 1638.6, + "end": 1641.54, + "probability": 0.8848 + }, + { + "start": 1642.06, + "end": 1642.5, + "probability": 0.9442 + }, + { + "start": 1643.04, + "end": 1644.48, + "probability": 0.9189 + }, + { + "start": 1644.58, + "end": 1646.98, + "probability": 0.9454 + }, + { + "start": 1655.1, + "end": 1656.19, + "probability": 0.7789 + }, + { + "start": 1657.48, + "end": 1661.04, + "probability": 0.9834 + }, + { + "start": 1661.32, + "end": 1662.98, + "probability": 0.7965 + }, + { + "start": 1663.42, + "end": 1665.12, + "probability": 0.9182 + }, + { + "start": 1665.22, + "end": 1668.24, + "probability": 0.9175 + }, + { + "start": 1669.1, + "end": 1670.24, + "probability": 0.9945 + }, + { + "start": 1670.3, + "end": 1673.35, + "probability": 0.9003 + }, + { + "start": 1674.82, + "end": 1676.7, + "probability": 0.829 + }, + { + "start": 1676.7, + "end": 1677.0, + "probability": 0.6538 + }, + { + "start": 1677.32, + "end": 1680.88, + "probability": 0.9828 + }, + { + "start": 1681.52, + "end": 1684.34, + "probability": 0.9971 + }, + { + "start": 1685.12, + "end": 1686.8, + "probability": 0.9819 + }, + { + "start": 1687.62, + "end": 1690.7, + "probability": 0.917 + }, + { + "start": 1690.7, + "end": 1693.9, + "probability": 0.9968 + }, + { + "start": 1694.86, + "end": 1698.0, + "probability": 0.9909 + }, + { + "start": 1698.0, + "end": 1701.6, + "probability": 0.9603 + }, + { + "start": 1702.56, + "end": 1705.68, + "probability": 0.988 + }, + { + "start": 1705.78, + "end": 1708.27, + "probability": 0.9878 + }, + { + "start": 1709.02, + "end": 1711.48, + "probability": 0.9497 + }, + { + "start": 1711.58, + "end": 1714.92, + "probability": 0.9914 + }, + { + "start": 1715.5, + "end": 1719.32, + "probability": 0.9887 + }, + { + "start": 1719.86, + "end": 1724.26, + "probability": 0.8457 + }, + { + "start": 1724.6, + "end": 1728.16, + "probability": 0.996 + }, + { + "start": 1728.98, + "end": 1730.72, + "probability": 0.9507 + }, + { + "start": 1730.86, + "end": 1734.09, + "probability": 0.9933 + }, + { + "start": 1734.14, + "end": 1737.26, + "probability": 0.9976 + }, + { + "start": 1738.7, + "end": 1741.82, + "probability": 0.9907 + }, + { + "start": 1742.34, + "end": 1745.14, + "probability": 0.9262 + }, + { + "start": 1745.36, + "end": 1748.12, + "probability": 0.9502 + }, + { + "start": 1748.82, + "end": 1750.46, + "probability": 0.7751 + }, + { + "start": 1750.64, + "end": 1753.18, + "probability": 0.9323 + }, + { + "start": 1753.84, + "end": 1756.92, + "probability": 0.9595 + }, + { + "start": 1758.16, + "end": 1760.5, + "probability": 0.9899 + }, + { + "start": 1760.7, + "end": 1763.12, + "probability": 0.8343 + }, + { + "start": 1763.72, + "end": 1767.28, + "probability": 0.8596 + }, + { + "start": 1768.1, + "end": 1773.19, + "probability": 0.9935 + }, + { + "start": 1773.36, + "end": 1775.48, + "probability": 0.8221 + }, + { + "start": 1775.94, + "end": 1781.24, + "probability": 0.9578 + }, + { + "start": 1781.78, + "end": 1785.28, + "probability": 0.9829 + }, + { + "start": 1785.74, + "end": 1787.76, + "probability": 0.7003 + }, + { + "start": 1788.16, + "end": 1790.64, + "probability": 0.9577 + }, + { + "start": 1791.66, + "end": 1793.56, + "probability": 0.9574 + }, + { + "start": 1793.84, + "end": 1794.9, + "probability": 0.7909 + }, + { + "start": 1795.0, + "end": 1799.26, + "probability": 0.9814 + }, + { + "start": 1799.94, + "end": 1802.54, + "probability": 0.9658 + }, + { + "start": 1802.54, + "end": 1805.06, + "probability": 0.9978 + }, + { + "start": 1805.56, + "end": 1808.2, + "probability": 0.9455 + }, + { + "start": 1808.2, + "end": 1813.72, + "probability": 0.9491 + }, + { + "start": 1814.52, + "end": 1817.56, + "probability": 0.9728 + }, + { + "start": 1817.82, + "end": 1819.62, + "probability": 0.9848 + }, + { + "start": 1820.22, + "end": 1824.02, + "probability": 0.9967 + }, + { + "start": 1824.08, + "end": 1828.18, + "probability": 0.9913 + }, + { + "start": 1828.98, + "end": 1831.52, + "probability": 0.9988 + }, + { + "start": 1831.92, + "end": 1834.6, + "probability": 0.981 + }, + { + "start": 1835.3, + "end": 1839.5, + "probability": 0.9985 + }, + { + "start": 1840.18, + "end": 1842.8, + "probability": 0.9905 + }, + { + "start": 1843.26, + "end": 1844.22, + "probability": 0.9169 + }, + { + "start": 1844.28, + "end": 1846.24, + "probability": 0.9931 + }, + { + "start": 1846.58, + "end": 1850.26, + "probability": 0.9799 + }, + { + "start": 1850.26, + "end": 1854.02, + "probability": 0.9956 + }, + { + "start": 1854.82, + "end": 1860.88, + "probability": 0.8949 + }, + { + "start": 1861.3, + "end": 1863.82, + "probability": 0.9973 + }, + { + "start": 1865.46, + "end": 1870.14, + "probability": 0.9759 + }, + { + "start": 1870.66, + "end": 1871.08, + "probability": 0.8299 + }, + { + "start": 1871.46, + "end": 1872.28, + "probability": 0.8261 + }, + { + "start": 1872.42, + "end": 1875.4, + "probability": 0.8813 + }, + { + "start": 1875.88, + "end": 1879.74, + "probability": 0.9763 + }, + { + "start": 1880.1, + "end": 1881.84, + "probability": 0.8562 + }, + { + "start": 1882.18, + "end": 1886.74, + "probability": 0.9865 + }, + { + "start": 1887.16, + "end": 1887.62, + "probability": 0.7674 + }, + { + "start": 1887.8, + "end": 1891.08, + "probability": 0.7271 + }, + { + "start": 1891.86, + "end": 1892.84, + "probability": 0.6409 + }, + { + "start": 1894.24, + "end": 1894.96, + "probability": 0.4355 + }, + { + "start": 1895.78, + "end": 1897.08, + "probability": 0.9131 + }, + { + "start": 1898.4, + "end": 1899.1, + "probability": 0.7952 + }, + { + "start": 1899.64, + "end": 1901.84, + "probability": 0.9913 + }, + { + "start": 1902.5, + "end": 1903.74, + "probability": 0.9984 + }, + { + "start": 1904.5, + "end": 1906.64, + "probability": 0.906 + }, + { + "start": 1907.26, + "end": 1907.88, + "probability": 0.4535 + }, + { + "start": 1908.48, + "end": 1909.9, + "probability": 0.8665 + }, + { + "start": 1910.06, + "end": 1910.62, + "probability": 0.8961 + }, + { + "start": 1910.94, + "end": 1912.46, + "probability": 0.9733 + }, + { + "start": 1913.5, + "end": 1917.0, + "probability": 0.906 + }, + { + "start": 1917.64, + "end": 1918.68, + "probability": 0.9932 + }, + { + "start": 1922.52, + "end": 1923.64, + "probability": 0.9968 + }, + { + "start": 1925.92, + "end": 1926.54, + "probability": 0.8313 + }, + { + "start": 1927.26, + "end": 1927.76, + "probability": 0.2608 + }, + { + "start": 1927.8, + "end": 1928.36, + "probability": 0.9529 + }, + { + "start": 1933.6, + "end": 1935.18, + "probability": 0.859 + }, + { + "start": 1940.36, + "end": 1940.86, + "probability": 0.7394 + }, + { + "start": 1942.16, + "end": 1943.58, + "probability": 0.736 + }, + { + "start": 1943.58, + "end": 1946.88, + "probability": 0.7822 + }, + { + "start": 1946.94, + "end": 1947.6, + "probability": 0.8705 + }, + { + "start": 1947.8, + "end": 1950.34, + "probability": 0.7277 + }, + { + "start": 1950.34, + "end": 1952.02, + "probability": 0.9797 + }, + { + "start": 1952.3, + "end": 1952.92, + "probability": 0.9293 + }, + { + "start": 1954.09, + "end": 1960.54, + "probability": 0.9501 + }, + { + "start": 1960.64, + "end": 1963.02, + "probability": 0.9314 + }, + { + "start": 1963.9, + "end": 1966.88, + "probability": 0.9937 + }, + { + "start": 1968.38, + "end": 1972.95, + "probability": 0.9971 + }, + { + "start": 1973.6, + "end": 1976.8, + "probability": 0.9719 + }, + { + "start": 1978.64, + "end": 1981.94, + "probability": 0.8945 + }, + { + "start": 1982.82, + "end": 1986.06, + "probability": 0.9601 + }, + { + "start": 1986.28, + "end": 1989.28, + "probability": 0.988 + }, + { + "start": 1990.16, + "end": 1992.2, + "probability": 0.9414 + }, + { + "start": 1992.28, + "end": 1993.48, + "probability": 0.7362 + }, + { + "start": 1993.6, + "end": 1993.9, + "probability": 0.734 + }, + { + "start": 1994.22, + "end": 1995.54, + "probability": 0.623 + }, + { + "start": 1996.88, + "end": 1997.82, + "probability": 0.8876 + }, + { + "start": 1998.16, + "end": 1999.02, + "probability": 0.963 + }, + { + "start": 1999.14, + "end": 2001.08, + "probability": 0.9525 + }, + { + "start": 2002.1, + "end": 2003.94, + "probability": 0.8972 + }, + { + "start": 2004.32, + "end": 2006.08, + "probability": 0.9735 + }, + { + "start": 2008.86, + "end": 2010.12, + "probability": 0.7493 + }, + { + "start": 2010.28, + "end": 2014.3, + "probability": 0.9261 + }, + { + "start": 2014.3, + "end": 2016.6, + "probability": 0.9888 + }, + { + "start": 2017.12, + "end": 2018.98, + "probability": 0.9712 + }, + { + "start": 2019.54, + "end": 2023.02, + "probability": 0.9287 + }, + { + "start": 2023.16, + "end": 2023.98, + "probability": 0.859 + }, + { + "start": 2024.48, + "end": 2027.9, + "probability": 0.9922 + }, + { + "start": 2028.5, + "end": 2032.12, + "probability": 0.9832 + }, + { + "start": 2032.72, + "end": 2033.96, + "probability": 0.9725 + }, + { + "start": 2034.98, + "end": 2035.7, + "probability": 0.7164 + }, + { + "start": 2035.82, + "end": 2036.54, + "probability": 0.8882 + }, + { + "start": 2037.02, + "end": 2037.44, + "probability": 0.8376 + }, + { + "start": 2037.56, + "end": 2038.06, + "probability": 0.9718 + }, + { + "start": 2038.2, + "end": 2039.04, + "probability": 0.9155 + }, + { + "start": 2039.14, + "end": 2039.86, + "probability": 0.7695 + }, + { + "start": 2040.24, + "end": 2041.48, + "probability": 0.9943 + }, + { + "start": 2041.54, + "end": 2043.64, + "probability": 0.9956 + }, + { + "start": 2044.32, + "end": 2047.44, + "probability": 0.9726 + }, + { + "start": 2047.86, + "end": 2049.64, + "probability": 0.9835 + }, + { + "start": 2050.1, + "end": 2053.5, + "probability": 0.9895 + }, + { + "start": 2054.1, + "end": 2055.72, + "probability": 0.9333 + }, + { + "start": 2056.36, + "end": 2058.02, + "probability": 0.9736 + }, + { + "start": 2058.04, + "end": 2059.6, + "probability": 0.8686 + }, + { + "start": 2060.08, + "end": 2061.0, + "probability": 0.714 + }, + { + "start": 2062.96, + "end": 2064.34, + "probability": 0.9919 + }, + { + "start": 2065.72, + "end": 2067.14, + "probability": 0.8196 + }, + { + "start": 2067.66, + "end": 2069.68, + "probability": 0.9384 + }, + { + "start": 2070.88, + "end": 2072.5, + "probability": 0.8907 + }, + { + "start": 2072.94, + "end": 2075.26, + "probability": 0.7562 + }, + { + "start": 2075.5, + "end": 2079.1, + "probability": 0.9965 + }, + { + "start": 2079.76, + "end": 2080.82, + "probability": 0.7804 + }, + { + "start": 2081.54, + "end": 2085.54, + "probability": 0.9919 + }, + { + "start": 2086.4, + "end": 2090.76, + "probability": 0.8067 + }, + { + "start": 2090.84, + "end": 2091.72, + "probability": 0.4851 + }, + { + "start": 2092.3, + "end": 2093.62, + "probability": 0.963 + }, + { + "start": 2093.82, + "end": 2096.08, + "probability": 0.993 + }, + { + "start": 2096.7, + "end": 2097.52, + "probability": 0.989 + }, + { + "start": 2098.32, + "end": 2100.08, + "probability": 0.9175 + }, + { + "start": 2100.5, + "end": 2104.06, + "probability": 0.9881 + }, + { + "start": 2104.12, + "end": 2105.12, + "probability": 0.6187 + }, + { + "start": 2105.72, + "end": 2107.24, + "probability": 0.9871 + }, + { + "start": 2107.94, + "end": 2111.64, + "probability": 0.9951 + }, + { + "start": 2112.18, + "end": 2112.42, + "probability": 0.87 + }, + { + "start": 2115.74, + "end": 2116.42, + "probability": 0.7529 + }, + { + "start": 2117.14, + "end": 2120.44, + "probability": 0.7731 + }, + { + "start": 2120.64, + "end": 2121.88, + "probability": 0.3371 + }, + { + "start": 2122.0, + "end": 2122.82, + "probability": 0.8549 + }, + { + "start": 2123.62, + "end": 2128.84, + "probability": 0.7119 + }, + { + "start": 2128.92, + "end": 2129.98, + "probability": 0.914 + }, + { + "start": 2131.02, + "end": 2132.98, + "probability": 0.6917 + }, + { + "start": 2135.44, + "end": 2138.54, + "probability": 0.4887 + }, + { + "start": 2138.86, + "end": 2139.98, + "probability": 0.7935 + }, + { + "start": 2140.0, + "end": 2142.14, + "probability": 0.7121 + }, + { + "start": 2143.16, + "end": 2144.62, + "probability": 0.9922 + }, + { + "start": 2146.66, + "end": 2147.66, + "probability": 0.8596 + }, + { + "start": 2148.78, + "end": 2150.9, + "probability": 0.8098 + }, + { + "start": 2151.0, + "end": 2151.92, + "probability": 0.6336 + }, + { + "start": 2152.4, + "end": 2154.6, + "probability": 0.7463 + }, + { + "start": 2154.72, + "end": 2156.98, + "probability": 0.7407 + }, + { + "start": 2158.3, + "end": 2159.88, + "probability": 0.8931 + }, + { + "start": 2160.34, + "end": 2162.19, + "probability": 0.8107 + }, + { + "start": 2163.04, + "end": 2166.24, + "probability": 0.991 + }, + { + "start": 2167.32, + "end": 2169.26, + "probability": 0.9578 + }, + { + "start": 2170.14, + "end": 2172.66, + "probability": 0.988 + }, + { + "start": 2173.56, + "end": 2175.42, + "probability": 0.7497 + }, + { + "start": 2175.62, + "end": 2176.86, + "probability": 0.9541 + }, + { + "start": 2177.36, + "end": 2179.42, + "probability": 0.9897 + }, + { + "start": 2180.0, + "end": 2183.76, + "probability": 0.9944 + }, + { + "start": 2196.1, + "end": 2198.39, + "probability": 0.9937 + }, + { + "start": 2198.52, + "end": 2198.52, + "probability": 0.1156 + }, + { + "start": 2198.52, + "end": 2198.52, + "probability": 0.0473 + }, + { + "start": 2198.52, + "end": 2198.98, + "probability": 0.0427 + }, + { + "start": 2199.74, + "end": 2203.98, + "probability": 0.5417 + }, + { + "start": 2204.38, + "end": 2207.14, + "probability": 0.9849 + }, + { + "start": 2207.76, + "end": 2210.7, + "probability": 0.9834 + }, + { + "start": 2211.66, + "end": 2217.66, + "probability": 0.9872 + }, + { + "start": 2218.86, + "end": 2222.0, + "probability": 0.9675 + }, + { + "start": 2222.84, + "end": 2225.94, + "probability": 0.9977 + }, + { + "start": 2226.22, + "end": 2227.17, + "probability": 0.5444 + }, + { + "start": 2228.02, + "end": 2230.84, + "probability": 0.8623 + }, + { + "start": 2231.32, + "end": 2232.68, + "probability": 0.9862 + }, + { + "start": 2233.72, + "end": 2237.08, + "probability": 0.9944 + }, + { + "start": 2237.78, + "end": 2241.0, + "probability": 0.8285 + }, + { + "start": 2241.94, + "end": 2245.32, + "probability": 0.9926 + }, + { + "start": 2246.86, + "end": 2249.12, + "probability": 0.9969 + }, + { + "start": 2249.12, + "end": 2252.5, + "probability": 0.9985 + }, + { + "start": 2254.14, + "end": 2256.14, + "probability": 0.9717 + }, + { + "start": 2257.42, + "end": 2258.56, + "probability": 0.5394 + }, + { + "start": 2259.1, + "end": 2261.84, + "probability": 0.9329 + }, + { + "start": 2262.96, + "end": 2267.08, + "probability": 0.9924 + }, + { + "start": 2267.88, + "end": 2270.78, + "probability": 0.999 + }, + { + "start": 2271.54, + "end": 2273.34, + "probability": 0.9634 + }, + { + "start": 2273.96, + "end": 2276.14, + "probability": 0.8868 + }, + { + "start": 2276.68, + "end": 2277.6, + "probability": 0.9983 + }, + { + "start": 2278.6, + "end": 2281.56, + "probability": 0.9976 + }, + { + "start": 2282.12, + "end": 2283.8, + "probability": 0.9936 + }, + { + "start": 2284.54, + "end": 2288.68, + "probability": 0.9851 + }, + { + "start": 2289.9, + "end": 2294.92, + "probability": 0.9836 + }, + { + "start": 2295.5, + "end": 2298.68, + "probability": 0.9897 + }, + { + "start": 2299.06, + "end": 2302.82, + "probability": 0.9951 + }, + { + "start": 2303.48, + "end": 2304.18, + "probability": 0.999 + }, + { + "start": 2305.38, + "end": 2307.4, + "probability": 0.9852 + }, + { + "start": 2308.32, + "end": 2310.56, + "probability": 0.8895 + }, + { + "start": 2310.88, + "end": 2312.78, + "probability": 0.661 + }, + { + "start": 2313.42, + "end": 2315.54, + "probability": 0.9958 + }, + { + "start": 2316.0, + "end": 2321.16, + "probability": 0.9521 + }, + { + "start": 2321.8, + "end": 2325.84, + "probability": 0.9966 + }, + { + "start": 2327.9, + "end": 2331.12, + "probability": 0.9868 + }, + { + "start": 2331.56, + "end": 2334.84, + "probability": 0.9987 + }, + { + "start": 2335.46, + "end": 2337.08, + "probability": 0.9796 + }, + { + "start": 2337.5, + "end": 2339.4, + "probability": 0.9958 + }, + { + "start": 2340.16, + "end": 2342.8, + "probability": 0.9922 + }, + { + "start": 2343.14, + "end": 2346.94, + "probability": 0.9935 + }, + { + "start": 2347.3, + "end": 2347.86, + "probability": 0.864 + }, + { + "start": 2349.3, + "end": 2353.84, + "probability": 0.897 + }, + { + "start": 2354.4, + "end": 2356.5, + "probability": 0.99 + }, + { + "start": 2357.36, + "end": 2358.5, + "probability": 0.9941 + }, + { + "start": 2359.48, + "end": 2361.46, + "probability": 0.9966 + }, + { + "start": 2362.54, + "end": 2363.76, + "probability": 0.8853 + }, + { + "start": 2364.24, + "end": 2368.16, + "probability": 0.996 + }, + { + "start": 2368.68, + "end": 2372.78, + "probability": 0.9873 + }, + { + "start": 2373.82, + "end": 2375.4, + "probability": 0.8242 + }, + { + "start": 2375.98, + "end": 2378.64, + "probability": 0.9976 + }, + { + "start": 2383.18, + "end": 2383.68, + "probability": 0.7118 + }, + { + "start": 2384.78, + "end": 2386.04, + "probability": 0.6816 + }, + { + "start": 2387.22, + "end": 2387.82, + "probability": 0.4574 + }, + { + "start": 2388.28, + "end": 2389.58, + "probability": 0.9767 + }, + { + "start": 2389.6, + "end": 2390.22, + "probability": 0.9128 + }, + { + "start": 2390.64, + "end": 2391.98, + "probability": 0.9676 + }, + { + "start": 2392.44, + "end": 2393.08, + "probability": 0.9475 + }, + { + "start": 2393.54, + "end": 2394.58, + "probability": 0.9978 + }, + { + "start": 2394.58, + "end": 2395.12, + "probability": 0.7931 + }, + { + "start": 2395.46, + "end": 2396.9, + "probability": 0.832 + }, + { + "start": 2397.08, + "end": 2397.68, + "probability": 0.694 + }, + { + "start": 2398.22, + "end": 2399.38, + "probability": 0.9676 + }, + { + "start": 2400.16, + "end": 2402.1, + "probability": 0.7861 + }, + { + "start": 2411.9, + "end": 2414.14, + "probability": 0.2473 + }, + { + "start": 2417.72, + "end": 2418.84, + "probability": 0.6941 + }, + { + "start": 2418.94, + "end": 2420.0, + "probability": 0.9392 + }, + { + "start": 2420.92, + "end": 2421.46, + "probability": 0.8308 + }, + { + "start": 2422.12, + "end": 2423.26, + "probability": 0.9419 + }, + { + "start": 2423.32, + "end": 2424.76, + "probability": 0.8545 + }, + { + "start": 2425.54, + "end": 2427.18, + "probability": 0.999 + }, + { + "start": 2427.82, + "end": 2431.14, + "probability": 0.8458 + }, + { + "start": 2431.84, + "end": 2432.75, + "probability": 0.742 + }, + { + "start": 2433.5, + "end": 2439.6, + "probability": 0.9982 + }, + { + "start": 2440.38, + "end": 2443.78, + "probability": 0.9717 + }, + { + "start": 2444.16, + "end": 2446.28, + "probability": 0.9904 + }, + { + "start": 2447.32, + "end": 2450.28, + "probability": 0.9816 + }, + { + "start": 2451.4, + "end": 2453.92, + "probability": 0.9775 + }, + { + "start": 2455.18, + "end": 2457.7, + "probability": 0.7313 + }, + { + "start": 2458.46, + "end": 2459.78, + "probability": 0.8793 + }, + { + "start": 2460.4, + "end": 2462.02, + "probability": 0.9601 + }, + { + "start": 2462.76, + "end": 2463.8, + "probability": 0.9027 + }, + { + "start": 2464.48, + "end": 2468.72, + "probability": 0.8987 + }, + { + "start": 2469.02, + "end": 2469.52, + "probability": 0.7567 + }, + { + "start": 2469.96, + "end": 2471.9, + "probability": 0.8083 + }, + { + "start": 2473.22, + "end": 2476.36, + "probability": 0.5917 + }, + { + "start": 2477.4, + "end": 2477.92, + "probability": 0.7066 + }, + { + "start": 2478.46, + "end": 2483.2, + "probability": 0.9971 + }, + { + "start": 2483.6, + "end": 2484.0, + "probability": 0.9706 + }, + { + "start": 2486.24, + "end": 2487.3, + "probability": 0.991 + }, + { + "start": 2488.08, + "end": 2488.5, + "probability": 0.7036 + }, + { + "start": 2489.98, + "end": 2491.88, + "probability": 0.6872 + }, + { + "start": 2492.36, + "end": 2493.72, + "probability": 0.9671 + }, + { + "start": 2494.26, + "end": 2498.14, + "probability": 0.9946 + }, + { + "start": 2498.74, + "end": 2500.45, + "probability": 0.9976 + }, + { + "start": 2501.08, + "end": 2503.76, + "probability": 0.9919 + }, + { + "start": 2504.96, + "end": 2508.94, + "probability": 0.9985 + }, + { + "start": 2508.94, + "end": 2514.06, + "probability": 0.8809 + }, + { + "start": 2515.88, + "end": 2517.1, + "probability": 0.7852 + }, + { + "start": 2518.1, + "end": 2518.3, + "probability": 0.9525 + }, + { + "start": 2519.88, + "end": 2520.6, + "probability": 0.8061 + }, + { + "start": 2521.36, + "end": 2523.06, + "probability": 0.9895 + }, + { + "start": 2523.68, + "end": 2524.33, + "probability": 0.9433 + }, + { + "start": 2525.52, + "end": 2526.18, + "probability": 0.885 + }, + { + "start": 2526.54, + "end": 2529.06, + "probability": 0.9928 + }, + { + "start": 2529.88, + "end": 2532.16, + "probability": 0.9862 + }, + { + "start": 2533.22, + "end": 2534.62, + "probability": 0.8712 + }, + { + "start": 2536.94, + "end": 2538.4, + "probability": 0.8267 + }, + { + "start": 2539.48, + "end": 2541.36, + "probability": 0.9292 + }, + { + "start": 2541.44, + "end": 2543.18, + "probability": 0.976 + }, + { + "start": 2544.02, + "end": 2546.5, + "probability": 0.7885 + }, + { + "start": 2548.54, + "end": 2551.2, + "probability": 0.6602 + }, + { + "start": 2551.72, + "end": 2553.06, + "probability": 0.6501 + }, + { + "start": 2553.9, + "end": 2557.5, + "probability": 0.9607 + }, + { + "start": 2558.36, + "end": 2560.56, + "probability": 0.9833 + }, + { + "start": 2561.24, + "end": 2563.78, + "probability": 0.9827 + }, + { + "start": 2564.58, + "end": 2566.82, + "probability": 0.9395 + }, + { + "start": 2567.54, + "end": 2567.88, + "probability": 0.2864 + }, + { + "start": 2567.88, + "end": 2567.98, + "probability": 0.0758 + }, + { + "start": 2568.64, + "end": 2569.84, + "probability": 0.9806 + }, + { + "start": 2570.24, + "end": 2571.72, + "probability": 0.9945 + }, + { + "start": 2572.08, + "end": 2573.5, + "probability": 0.7229 + }, + { + "start": 2574.02, + "end": 2575.17, + "probability": 0.9961 + }, + { + "start": 2576.32, + "end": 2577.44, + "probability": 0.3326 + }, + { + "start": 2581.48, + "end": 2586.3, + "probability": 0.9735 + }, + { + "start": 2586.7, + "end": 2588.36, + "probability": 0.8055 + }, + { + "start": 2588.88, + "end": 2589.9, + "probability": 0.9079 + }, + { + "start": 2590.1, + "end": 2593.0, + "probability": 0.9973 + }, + { + "start": 2593.5, + "end": 2597.28, + "probability": 0.984 + }, + { + "start": 2597.62, + "end": 2601.64, + "probability": 0.9957 + }, + { + "start": 2602.26, + "end": 2604.5, + "probability": 0.9969 + }, + { + "start": 2605.04, + "end": 2605.88, + "probability": 0.8921 + }, + { + "start": 2606.5, + "end": 2608.74, + "probability": 0.924 + }, + { + "start": 2608.8, + "end": 2609.88, + "probability": 0.8469 + }, + { + "start": 2610.22, + "end": 2610.5, + "probability": 0.8383 + }, + { + "start": 2611.22, + "end": 2611.52, + "probability": 0.633 + }, + { + "start": 2612.28, + "end": 2613.74, + "probability": 0.5711 + }, + { + "start": 2615.92, + "end": 2617.2, + "probability": 0.9369 + }, + { + "start": 2619.14, + "end": 2619.98, + "probability": 0.5143 + }, + { + "start": 2621.14, + "end": 2622.76, + "probability": 0.1772 + }, + { + "start": 2624.76, + "end": 2626.73, + "probability": 0.8079 + }, + { + "start": 2626.88, + "end": 2629.16, + "probability": 0.7334 + }, + { + "start": 2629.94, + "end": 2629.98, + "probability": 0.2582 + }, + { + "start": 2629.98, + "end": 2629.98, + "probability": 0.6299 + }, + { + "start": 2629.98, + "end": 2632.1, + "probability": 0.0352 + }, + { + "start": 2632.4, + "end": 2636.18, + "probability": 0.2286 + }, + { + "start": 2636.26, + "end": 2636.6, + "probability": 0.1386 + }, + { + "start": 2637.58, + "end": 2639.44, + "probability": 0.0683 + }, + { + "start": 2639.62, + "end": 2645.42, + "probability": 0.0545 + }, + { + "start": 2645.46, + "end": 2655.92, + "probability": 0.84 + }, + { + "start": 2658.04, + "end": 2662.54, + "probability": 0.949 + }, + { + "start": 2663.84, + "end": 2665.8, + "probability": 0.8959 + }, + { + "start": 2666.58, + "end": 2670.6, + "probability": 0.9683 + }, + { + "start": 2673.36, + "end": 2675.68, + "probability": 0.9513 + }, + { + "start": 2676.38, + "end": 2679.18, + "probability": 0.9028 + }, + { + "start": 2680.88, + "end": 2686.32, + "probability": 0.9634 + }, + { + "start": 2690.74, + "end": 2692.68, + "probability": 0.3579 + }, + { + "start": 2694.08, + "end": 2695.66, + "probability": 0.115 + }, + { + "start": 2695.66, + "end": 2697.12, + "probability": 0.5725 + }, + { + "start": 2697.18, + "end": 2698.34, + "probability": 0.3119 + }, + { + "start": 2698.72, + "end": 2700.46, + "probability": 0.8679 + }, + { + "start": 2700.58, + "end": 2701.84, + "probability": 0.8512 + }, + { + "start": 2701.92, + "end": 2702.9, + "probability": 0.5645 + }, + { + "start": 2703.16, + "end": 2704.1, + "probability": 0.8354 + }, + { + "start": 2704.48, + "end": 2705.74, + "probability": 0.306 + }, + { + "start": 2705.86, + "end": 2707.76, + "probability": 0.3825 + }, + { + "start": 2708.52, + "end": 2708.68, + "probability": 0.4331 + }, + { + "start": 2714.92, + "end": 2718.3, + "probability": 0.9961 + }, + { + "start": 2719.3, + "end": 2721.38, + "probability": 0.7523 + }, + { + "start": 2722.6, + "end": 2725.2, + "probability": 0.9952 + }, + { + "start": 2726.7, + "end": 2728.88, + "probability": 0.9423 + }, + { + "start": 2729.94, + "end": 2730.96, + "probability": 0.3342 + }, + { + "start": 2732.26, + "end": 2733.96, + "probability": 0.8639 + }, + { + "start": 2735.8, + "end": 2737.22, + "probability": 0.8182 + }, + { + "start": 2739.86, + "end": 2743.28, + "probability": 0.9501 + }, + { + "start": 2745.96, + "end": 2748.74, + "probability": 0.9346 + }, + { + "start": 2751.38, + "end": 2759.6, + "probability": 0.9167 + }, + { + "start": 2761.08, + "end": 2761.58, + "probability": 0.8818 + }, + { + "start": 2762.7, + "end": 2767.54, + "probability": 0.9995 + }, + { + "start": 2768.94, + "end": 2773.0, + "probability": 0.9931 + }, + { + "start": 2773.62, + "end": 2775.98, + "probability": 0.8387 + }, + { + "start": 2777.1, + "end": 2778.92, + "probability": 0.7648 + }, + { + "start": 2779.18, + "end": 2780.86, + "probability": 0.9921 + }, + { + "start": 2781.52, + "end": 2782.88, + "probability": 0.9342 + }, + { + "start": 2783.68, + "end": 2789.78, + "probability": 0.7903 + }, + { + "start": 2791.28, + "end": 2792.74, + "probability": 0.885 + }, + { + "start": 2794.14, + "end": 2796.8, + "probability": 0.9883 + }, + { + "start": 2798.18, + "end": 2799.18, + "probability": 0.8271 + }, + { + "start": 2800.7, + "end": 2805.3, + "probability": 0.9759 + }, + { + "start": 2806.76, + "end": 2811.02, + "probability": 0.9612 + }, + { + "start": 2811.8, + "end": 2816.02, + "probability": 0.9789 + }, + { + "start": 2816.76, + "end": 2817.58, + "probability": 0.701 + }, + { + "start": 2818.16, + "end": 2818.74, + "probability": 0.8864 + }, + { + "start": 2820.66, + "end": 2826.16, + "probability": 0.9497 + }, + { + "start": 2826.22, + "end": 2829.39, + "probability": 0.9717 + }, + { + "start": 2829.76, + "end": 2831.16, + "probability": 0.7124 + }, + { + "start": 2832.8, + "end": 2837.66, + "probability": 0.9595 + }, + { + "start": 2838.26, + "end": 2838.86, + "probability": 0.8383 + }, + { + "start": 2840.26, + "end": 2840.56, + "probability": 0.8118 + }, + { + "start": 2841.12, + "end": 2843.02, + "probability": 0.9412 + }, + { + "start": 2867.34, + "end": 2869.12, + "probability": 0.7193 + }, + { + "start": 2869.48, + "end": 2870.14, + "probability": 0.818 + }, + { + "start": 2870.46, + "end": 2871.26, + "probability": 0.8129 + }, + { + "start": 2871.6, + "end": 2871.6, + "probability": 0.7251 + }, + { + "start": 2872.02, + "end": 2872.8, + "probability": 0.8979 + }, + { + "start": 2872.86, + "end": 2875.46, + "probability": 0.9129 + }, + { + "start": 2875.92, + "end": 2878.12, + "probability": 0.7461 + }, + { + "start": 2878.88, + "end": 2880.7, + "probability": 0.0299 + }, + { + "start": 2886.48, + "end": 2886.68, + "probability": 0.0823 + }, + { + "start": 2886.68, + "end": 2886.68, + "probability": 0.0397 + }, + { + "start": 2886.68, + "end": 2886.68, + "probability": 0.3181 + }, + { + "start": 2886.68, + "end": 2886.68, + "probability": 0.1409 + }, + { + "start": 2886.68, + "end": 2886.68, + "probability": 0.3365 + }, + { + "start": 2886.68, + "end": 2886.68, + "probability": 0.1982 + }, + { + "start": 2886.68, + "end": 2889.88, + "probability": 0.7485 + }, + { + "start": 2891.18, + "end": 2892.26, + "probability": 0.8479 + }, + { + "start": 2892.78, + "end": 2893.82, + "probability": 0.8091 + }, + { + "start": 2894.34, + "end": 2895.72, + "probability": 0.9377 + }, + { + "start": 2896.48, + "end": 2897.82, + "probability": 0.569 + }, + { + "start": 2898.64, + "end": 2901.9, + "probability": 0.9555 + }, + { + "start": 2901.9, + "end": 2907.3, + "probability": 0.9506 + }, + { + "start": 2907.84, + "end": 2913.28, + "probability": 0.0198 + }, + { + "start": 2913.28, + "end": 2913.28, + "probability": 0.013 + }, + { + "start": 2913.28, + "end": 2913.28, + "probability": 0.0728 + }, + { + "start": 2913.28, + "end": 2913.28, + "probability": 0.1476 + }, + { + "start": 2913.28, + "end": 2917.04, + "probability": 0.9812 + }, + { + "start": 2917.04, + "end": 2923.18, + "probability": 0.4989 + }, + { + "start": 2924.3, + "end": 2924.36, + "probability": 0.0964 + }, + { + "start": 2924.36, + "end": 2926.08, + "probability": 0.5859 + }, + { + "start": 2926.68, + "end": 2927.1, + "probability": 0.0302 + }, + { + "start": 2927.1, + "end": 2927.1, + "probability": 0.4438 + }, + { + "start": 2927.1, + "end": 2927.1, + "probability": 0.4664 + }, + { + "start": 2927.1, + "end": 2928.68, + "probability": 0.3784 + }, + { + "start": 2928.68, + "end": 2933.67, + "probability": 0.8833 + }, + { + "start": 2933.9, + "end": 2935.54, + "probability": 0.0427 + }, + { + "start": 2936.4, + "end": 2936.88, + "probability": 0.0083 + }, + { + "start": 2936.94, + "end": 2937.92, + "probability": 0.1441 + }, + { + "start": 2937.92, + "end": 2938.82, + "probability": 0.1152 + }, + { + "start": 2939.14, + "end": 2943.26, + "probability": 0.8698 + }, + { + "start": 2944.62, + "end": 2947.24, + "probability": 0.8054 + }, + { + "start": 2947.88, + "end": 2950.74, + "probability": 0.9599 + }, + { + "start": 2950.84, + "end": 2951.92, + "probability": 0.9613 + }, + { + "start": 2952.56, + "end": 2956.84, + "probability": 0.8747 + }, + { + "start": 2958.22, + "end": 2960.64, + "probability": 0.9948 + }, + { + "start": 2960.72, + "end": 2963.32, + "probability": 0.9969 + }, + { + "start": 2964.0, + "end": 2969.32, + "probability": 0.9093 + }, + { + "start": 2969.9, + "end": 2973.5, + "probability": 0.9567 + }, + { + "start": 2974.22, + "end": 2974.76, + "probability": 0.562 + }, + { + "start": 2975.7, + "end": 2978.18, + "probability": 0.7205 + }, + { + "start": 2978.26, + "end": 2979.58, + "probability": 0.8216 + }, + { + "start": 2980.0, + "end": 2982.47, + "probability": 0.9703 + }, + { + "start": 2983.2, + "end": 2984.4, + "probability": 0.9645 + }, + { + "start": 2984.78, + "end": 2986.04, + "probability": 0.9023 + }, + { + "start": 2986.98, + "end": 2990.3, + "probability": 0.8743 + }, + { + "start": 2990.84, + "end": 2995.3, + "probability": 0.856 + }, + { + "start": 2995.32, + "end": 2996.52, + "probability": 0.9144 + }, + { + "start": 2997.9, + "end": 2999.22, + "probability": 0.9617 + }, + { + "start": 2999.36, + "end": 3000.16, + "probability": 0.8828 + }, + { + "start": 3000.76, + "end": 3001.28, + "probability": 0.6958 + }, + { + "start": 3002.0, + "end": 3003.1, + "probability": 0.8431 + }, + { + "start": 3004.28, + "end": 3008.66, + "probability": 0.9895 + }, + { + "start": 3010.12, + "end": 3011.16, + "probability": 0.6907 + }, + { + "start": 3011.26, + "end": 3011.48, + "probability": 0.9088 + }, + { + "start": 3011.62, + "end": 3016.16, + "probability": 0.988 + }, + { + "start": 3016.44, + "end": 3017.64, + "probability": 0.9237 + }, + { + "start": 3018.02, + "end": 3019.6, + "probability": 0.9956 + }, + { + "start": 3020.06, + "end": 3022.6, + "probability": 0.8838 + }, + { + "start": 3023.56, + "end": 3025.66, + "probability": 0.5331 + }, + { + "start": 3025.76, + "end": 3028.54, + "probability": 0.9753 + }, + { + "start": 3029.2, + "end": 3032.02, + "probability": 0.9653 + }, + { + "start": 3032.94, + "end": 3037.06, + "probability": 0.7562 + }, + { + "start": 3037.12, + "end": 3038.4, + "probability": 0.9639 + }, + { + "start": 3038.66, + "end": 3039.3, + "probability": 0.4132 + }, + { + "start": 3039.38, + "end": 3040.56, + "probability": 0.9433 + }, + { + "start": 3040.62, + "end": 3041.34, + "probability": 0.6695 + }, + { + "start": 3041.46, + "end": 3042.08, + "probability": 0.8969 + }, + { + "start": 3042.16, + "end": 3043.3, + "probability": 0.6873 + }, + { + "start": 3044.18, + "end": 3046.0, + "probability": 0.8738 + }, + { + "start": 3046.24, + "end": 3046.86, + "probability": 0.9454 + }, + { + "start": 3046.96, + "end": 3048.72, + "probability": 0.9727 + }, + { + "start": 3050.24, + "end": 3053.4, + "probability": 0.9991 + }, + { + "start": 3053.94, + "end": 3058.62, + "probability": 0.9832 + }, + { + "start": 3059.16, + "end": 3062.2, + "probability": 0.9893 + }, + { + "start": 3062.98, + "end": 3064.83, + "probability": 0.9985 + }, + { + "start": 3066.44, + "end": 3067.66, + "probability": 0.7362 + }, + { + "start": 3068.2, + "end": 3070.12, + "probability": 0.9586 + }, + { + "start": 3070.52, + "end": 3072.76, + "probability": 0.9264 + }, + { + "start": 3072.84, + "end": 3073.16, + "probability": 0.5109 + }, + { + "start": 3073.66, + "end": 3073.66, + "probability": 0.4403 + }, + { + "start": 3074.32, + "end": 3075.58, + "probability": 0.8226 + }, + { + "start": 3091.46, + "end": 3095.1, + "probability": 0.7454 + }, + { + "start": 3095.44, + "end": 3095.82, + "probability": 0.4049 + }, + { + "start": 3095.9, + "end": 3096.66, + "probability": 0.7277 + }, + { + "start": 3096.86, + "end": 3097.92, + "probability": 0.7217 + }, + { + "start": 3098.41, + "end": 3100.65, + "probability": 0.9985 + }, + { + "start": 3100.84, + "end": 3102.4, + "probability": 0.8993 + }, + { + "start": 3103.28, + "end": 3106.14, + "probability": 0.6717 + }, + { + "start": 3106.74, + "end": 3109.94, + "probability": 0.9159 + }, + { + "start": 3110.5, + "end": 3115.08, + "probability": 0.9604 + }, + { + "start": 3115.66, + "end": 3117.6, + "probability": 0.9142 + }, + { + "start": 3118.14, + "end": 3121.96, + "probability": 0.944 + }, + { + "start": 3122.7, + "end": 3123.96, + "probability": 0.8353 + }, + { + "start": 3124.58, + "end": 3125.88, + "probability": 0.9732 + }, + { + "start": 3126.06, + "end": 3127.5, + "probability": 0.5714 + }, + { + "start": 3127.64, + "end": 3131.18, + "probability": 0.8908 + }, + { + "start": 3131.46, + "end": 3135.92, + "probability": 0.9931 + }, + { + "start": 3137.32, + "end": 3142.9, + "probability": 0.8658 + }, + { + "start": 3143.02, + "end": 3143.54, + "probability": 0.3546 + }, + { + "start": 3143.62, + "end": 3148.36, + "probability": 0.9019 + }, + { + "start": 3148.46, + "end": 3149.94, + "probability": 0.9835 + }, + { + "start": 3151.0, + "end": 3156.04, + "probability": 0.9766 + }, + { + "start": 3156.26, + "end": 3158.96, + "probability": 0.8369 + }, + { + "start": 3159.7, + "end": 3161.72, + "probability": 0.6621 + }, + { + "start": 3162.12, + "end": 3165.48, + "probability": 0.976 + }, + { + "start": 3166.36, + "end": 3172.94, + "probability": 0.9097 + }, + { + "start": 3173.18, + "end": 3175.94, + "probability": 0.9722 + }, + { + "start": 3176.72, + "end": 3179.82, + "probability": 0.9458 + }, + { + "start": 3180.7, + "end": 3182.45, + "probability": 0.6745 + }, + { + "start": 3182.66, + "end": 3184.86, + "probability": 0.8931 + }, + { + "start": 3184.98, + "end": 3185.84, + "probability": 0.8683 + }, + { + "start": 3186.24, + "end": 3187.28, + "probability": 0.946 + }, + { + "start": 3188.38, + "end": 3189.4, + "probability": 0.9614 + }, + { + "start": 3189.56, + "end": 3190.86, + "probability": 0.8806 + }, + { + "start": 3191.34, + "end": 3192.1, + "probability": 0.6111 + }, + { + "start": 3193.46, + "end": 3200.56, + "probability": 0.967 + }, + { + "start": 3201.36, + "end": 3203.84, + "probability": 0.9198 + }, + { + "start": 3204.32, + "end": 3206.86, + "probability": 0.9466 + }, + { + "start": 3207.76, + "end": 3211.54, + "probability": 0.9609 + }, + { + "start": 3212.22, + "end": 3215.54, + "probability": 0.9617 + }, + { + "start": 3216.1, + "end": 3220.16, + "probability": 0.9585 + }, + { + "start": 3220.5, + "end": 3221.7, + "probability": 0.902 + }, + { + "start": 3222.46, + "end": 3225.88, + "probability": 0.9762 + }, + { + "start": 3227.08, + "end": 3232.72, + "probability": 0.9907 + }, + { + "start": 3233.94, + "end": 3234.9, + "probability": 0.8041 + }, + { + "start": 3235.48, + "end": 3236.74, + "probability": 0.7757 + }, + { + "start": 3237.38, + "end": 3238.54, + "probability": 0.8521 + }, + { + "start": 3238.66, + "end": 3239.52, + "probability": 0.9013 + }, + { + "start": 3239.62, + "end": 3240.06, + "probability": 0.8229 + }, + { + "start": 3240.26, + "end": 3243.54, + "probability": 0.9941 + }, + { + "start": 3244.28, + "end": 3246.96, + "probability": 0.9655 + }, + { + "start": 3246.96, + "end": 3250.76, + "probability": 0.9924 + }, + { + "start": 3251.74, + "end": 3255.98, + "probability": 0.987 + }, + { + "start": 3256.46, + "end": 3259.22, + "probability": 0.9691 + }, + { + "start": 3260.22, + "end": 3264.5, + "probability": 0.9791 + }, + { + "start": 3264.5, + "end": 3269.98, + "probability": 0.8958 + }, + { + "start": 3270.08, + "end": 3271.52, + "probability": 0.7919 + }, + { + "start": 3272.12, + "end": 3273.44, + "probability": 0.9445 + }, + { + "start": 3273.6, + "end": 3277.6, + "probability": 0.9209 + }, + { + "start": 3278.02, + "end": 3284.06, + "probability": 0.9432 + }, + { + "start": 3284.7, + "end": 3285.46, + "probability": 0.2937 + }, + { + "start": 3285.5, + "end": 3288.46, + "probability": 0.6815 + }, + { + "start": 3288.48, + "end": 3292.38, + "probability": 0.7614 + }, + { + "start": 3293.0, + "end": 3296.06, + "probability": 0.9839 + }, + { + "start": 3296.54, + "end": 3296.88, + "probability": 0.8088 + }, + { + "start": 3297.5, + "end": 3298.06, + "probability": 0.7529 + }, + { + "start": 3298.2, + "end": 3299.54, + "probability": 0.8514 + }, + { + "start": 3302.3, + "end": 3303.04, + "probability": 0.5078 + }, + { + "start": 3303.3, + "end": 3306.1, + "probability": 0.2838 + }, + { + "start": 3322.6, + "end": 3322.6, + "probability": 0.3735 + }, + { + "start": 3322.6, + "end": 3322.6, + "probability": 0.0537 + }, + { + "start": 3322.6, + "end": 3323.38, + "probability": 0.8884 + }, + { + "start": 3324.5, + "end": 3325.48, + "probability": 0.9167 + }, + { + "start": 3325.58, + "end": 3326.6, + "probability": 0.9946 + }, + { + "start": 3327.42, + "end": 3328.03, + "probability": 0.9465 + }, + { + "start": 3328.64, + "end": 3331.72, + "probability": 0.8475 + }, + { + "start": 3331.86, + "end": 3333.22, + "probability": 0.8892 + }, + { + "start": 3333.28, + "end": 3336.32, + "probability": 0.9839 + }, + { + "start": 3336.38, + "end": 3336.63, + "probability": 0.8533 + }, + { + "start": 3337.36, + "end": 3340.88, + "probability": 0.8985 + }, + { + "start": 3341.14, + "end": 3342.52, + "probability": 0.8433 + }, + { + "start": 3342.72, + "end": 3344.32, + "probability": 0.979 + }, + { + "start": 3344.54, + "end": 3347.1, + "probability": 0.5927 + }, + { + "start": 3347.48, + "end": 3347.96, + "probability": 0.8887 + }, + { + "start": 3348.2, + "end": 3349.1, + "probability": 0.8598 + }, + { + "start": 3349.2, + "end": 3352.42, + "probability": 0.5073 + }, + { + "start": 3352.54, + "end": 3356.58, + "probability": 0.7943 + }, + { + "start": 3357.0, + "end": 3358.39, + "probability": 0.9287 + }, + { + "start": 3359.23, + "end": 3364.07, + "probability": 0.7941 + }, + { + "start": 3364.87, + "end": 3364.87, + "probability": 0.0524 + }, + { + "start": 3364.87, + "end": 3368.35, + "probability": 0.3407 + }, + { + "start": 3368.41, + "end": 3368.75, + "probability": 0.1369 + }, + { + "start": 3369.43, + "end": 3369.85, + "probability": 0.0158 + }, + { + "start": 3369.99, + "end": 3371.17, + "probability": 0.7915 + }, + { + "start": 3371.91, + "end": 3375.11, + "probability": 0.6382 + }, + { + "start": 3375.17, + "end": 3378.31, + "probability": 0.9001 + }, + { + "start": 3378.63, + "end": 3379.95, + "probability": 0.7106 + }, + { + "start": 3380.35, + "end": 3382.25, + "probability": 0.1328 + }, + { + "start": 3382.25, + "end": 3382.35, + "probability": 0.1919 + }, + { + "start": 3382.47, + "end": 3385.77, + "probability": 0.2218 + }, + { + "start": 3385.77, + "end": 3389.15, + "probability": 0.5051 + }, + { + "start": 3389.91, + "end": 3390.59, + "probability": 0.7515 + }, + { + "start": 3390.59, + "end": 3392.15, + "probability": 0.8682 + }, + { + "start": 3400.37, + "end": 3400.71, + "probability": 0.3619 + }, + { + "start": 3413.19, + "end": 3413.91, + "probability": 0.2123 + }, + { + "start": 3413.91, + "end": 3415.93, + "probability": 0.5513 + }, + { + "start": 3416.55, + "end": 3420.63, + "probability": 0.0947 + }, + { + "start": 3420.63, + "end": 3420.63, + "probability": 0.5626 + }, + { + "start": 3420.63, + "end": 3422.0, + "probability": 0.0406 + }, + { + "start": 3423.07, + "end": 3426.95, + "probability": 0.0121 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.0, + "end": 3500.0, + "probability": 0.0 + }, + { + "start": 3500.98, + "end": 3500.98, + "probability": 0.0635 + }, + { + "start": 3500.98, + "end": 3504.44, + "probability": 0.0876 + }, + { + "start": 3504.44, + "end": 3508.3, + "probability": 0.9952 + }, + { + "start": 3508.5, + "end": 3515.66, + "probability": 0.7903 + }, + { + "start": 3516.1, + "end": 3518.68, + "probability": 0.9316 + }, + { + "start": 3519.1, + "end": 3520.84, + "probability": 0.4984 + }, + { + "start": 3521.12, + "end": 3522.44, + "probability": 0.7856 + }, + { + "start": 3522.5, + "end": 3525.44, + "probability": 0.4492 + }, + { + "start": 3525.52, + "end": 3528.6, + "probability": 0.4956 + }, + { + "start": 3529.04, + "end": 3530.68, + "probability": 0.8818 + }, + { + "start": 3530.88, + "end": 3534.04, + "probability": 0.9498 + }, + { + "start": 3534.4, + "end": 3535.58, + "probability": 0.6105 + }, + { + "start": 3535.72, + "end": 3539.14, + "probability": 0.9465 + }, + { + "start": 3539.48, + "end": 3543.58, + "probability": 0.9473 + }, + { + "start": 3544.08, + "end": 3545.16, + "probability": 0.8523 + }, + { + "start": 3545.28, + "end": 3547.74, + "probability": 0.9626 + }, + { + "start": 3547.84, + "end": 3549.04, + "probability": 0.9692 + }, + { + "start": 3549.14, + "end": 3551.7, + "probability": 0.9953 + }, + { + "start": 3552.0, + "end": 3556.66, + "probability": 0.8442 + }, + { + "start": 3557.46, + "end": 3560.3, + "probability": 0.9961 + }, + { + "start": 3560.76, + "end": 3563.64, + "probability": 0.9856 + }, + { + "start": 3563.82, + "end": 3567.64, + "probability": 0.9756 + }, + { + "start": 3567.92, + "end": 3570.16, + "probability": 0.9001 + }, + { + "start": 3570.74, + "end": 3570.74, + "probability": 0.6894 + }, + { + "start": 3570.74, + "end": 3571.36, + "probability": 0.4987 + }, + { + "start": 3571.44, + "end": 3574.26, + "probability": 0.9937 + }, + { + "start": 3574.68, + "end": 3576.12, + "probability": 0.7974 + }, + { + "start": 3576.3, + "end": 3579.03, + "probability": 0.9771 + }, + { + "start": 3579.36, + "end": 3581.24, + "probability": 0.9486 + }, + { + "start": 3581.76, + "end": 3583.86, + "probability": 0.5316 + }, + { + "start": 3583.96, + "end": 3584.26, + "probability": 0.7377 + }, + { + "start": 3585.28, + "end": 3587.2, + "probability": 0.9357 + }, + { + "start": 3587.68, + "end": 3587.88, + "probability": 0.04 + }, + { + "start": 3591.22, + "end": 3592.24, + "probability": 0.1844 + }, + { + "start": 3595.42, + "end": 3597.14, + "probability": 0.4121 + }, + { + "start": 3597.14, + "end": 3597.21, + "probability": 0.2103 + }, + { + "start": 3598.62, + "end": 3598.8, + "probability": 0.2051 + }, + { + "start": 3598.8, + "end": 3600.42, + "probability": 0.4523 + }, + { + "start": 3600.48, + "end": 3602.0, + "probability": 0.0809 + }, + { + "start": 3602.22, + "end": 3602.24, + "probability": 0.0895 + }, + { + "start": 3602.24, + "end": 3603.18, + "probability": 0.6021 + }, + { + "start": 3603.84, + "end": 3606.56, + "probability": 0.1518 + }, + { + "start": 3606.56, + "end": 3606.84, + "probability": 0.2545 + }, + { + "start": 3607.3, + "end": 3609.11, + "probability": 0.3292 + }, + { + "start": 3609.34, + "end": 3611.78, + "probability": 0.049 + }, + { + "start": 3611.98, + "end": 3611.98, + "probability": 0.0626 + }, + { + "start": 3613.24, + "end": 3615.52, + "probability": 0.4635 + }, + { + "start": 3616.16, + "end": 3617.18, + "probability": 0.0283 + }, + { + "start": 3617.2, + "end": 3617.26, + "probability": 0.0303 + }, + { + "start": 3617.64, + "end": 3617.92, + "probability": 0.2348 + }, + { + "start": 3617.98, + "end": 3618.02, + "probability": 0.1056 + }, + { + "start": 3618.58, + "end": 3618.88, + "probability": 0.0288 + }, + { + "start": 3618.9, + "end": 3619.56, + "probability": 0.1074 + }, + { + "start": 3619.96, + "end": 3622.52, + "probability": 0.2531 + }, + { + "start": 3622.92, + "end": 3624.47, + "probability": 0.1322 + }, + { + "start": 3625.06, + "end": 3625.62, + "probability": 0.5683 + }, + { + "start": 3625.62, + "end": 3626.28, + "probability": 0.2808 + }, + { + "start": 3626.28, + "end": 3626.88, + "probability": 0.1407 + }, + { + "start": 3626.88, + "end": 3628.9, + "probability": 0.1206 + }, + { + "start": 3629.24, + "end": 3631.88, + "probability": 0.0959 + }, + { + "start": 3631.88, + "end": 3631.88, + "probability": 0.0903 + }, + { + "start": 3631.88, + "end": 3631.88, + "probability": 0.0325 + }, + { + "start": 3631.88, + "end": 3631.88, + "probability": 0.2403 + }, + { + "start": 3631.88, + "end": 3638.42, + "probability": 0.6 + }, + { + "start": 3638.58, + "end": 3641.32, + "probability": 0.9814 + }, + { + "start": 3642.26, + "end": 3642.96, + "probability": 0.7658 + }, + { + "start": 3643.6, + "end": 3645.81, + "probability": 0.99 + }, + { + "start": 3645.94, + "end": 3649.1, + "probability": 0.9932 + }, + { + "start": 3649.74, + "end": 3651.04, + "probability": 0.9694 + }, + { + "start": 3651.92, + "end": 3654.76, + "probability": 0.9996 + }, + { + "start": 3655.32, + "end": 3658.42, + "probability": 0.9989 + }, + { + "start": 3659.0, + "end": 3661.62, + "probability": 0.9507 + }, + { + "start": 3662.4, + "end": 3663.94, + "probability": 0.9987 + }, + { + "start": 3664.76, + "end": 3666.78, + "probability": 0.465 + }, + { + "start": 3667.24, + "end": 3667.99, + "probability": 0.7525 + }, + { + "start": 3668.04, + "end": 3669.0, + "probability": 0.7201 + }, + { + "start": 3669.58, + "end": 3671.08, + "probability": 0.9186 + }, + { + "start": 3671.84, + "end": 3673.88, + "probability": 0.997 + }, + { + "start": 3674.42, + "end": 3675.94, + "probability": 0.8292 + }, + { + "start": 3676.46, + "end": 3678.58, + "probability": 0.7878 + }, + { + "start": 3679.7, + "end": 3681.28, + "probability": 0.9963 + }, + { + "start": 3681.8, + "end": 3684.06, + "probability": 0.9746 + }, + { + "start": 3684.54, + "end": 3687.64, + "probability": 0.9817 + }, + { + "start": 3687.64, + "end": 3689.98, + "probability": 0.9529 + }, + { + "start": 3690.94, + "end": 3691.62, + "probability": 0.8943 + }, + { + "start": 3692.22, + "end": 3694.86, + "probability": 0.9967 + }, + { + "start": 3695.28, + "end": 3696.02, + "probability": 0.9958 + }, + { + "start": 3697.0, + "end": 3699.96, + "probability": 0.9869 + }, + { + "start": 3700.54, + "end": 3703.06, + "probability": 0.9865 + }, + { + "start": 3703.4, + "end": 3703.85, + "probability": 0.9449 + }, + { + "start": 3704.5, + "end": 3705.62, + "probability": 0.9827 + }, + { + "start": 3705.7, + "end": 3709.02, + "probability": 0.9766 + }, + { + "start": 3709.74, + "end": 3710.86, + "probability": 0.9713 + }, + { + "start": 3711.9, + "end": 3714.64, + "probability": 0.9458 + }, + { + "start": 3716.1, + "end": 3718.04, + "probability": 0.9303 + }, + { + "start": 3718.8, + "end": 3720.27, + "probability": 0.791 + }, + { + "start": 3721.18, + "end": 3722.78, + "probability": 0.8105 + }, + { + "start": 3723.58, + "end": 3724.7, + "probability": 0.9521 + }, + { + "start": 3725.72, + "end": 3727.34, + "probability": 0.6217 + }, + { + "start": 3728.42, + "end": 3729.26, + "probability": 0.9038 + }, + { + "start": 3730.56, + "end": 3732.08, + "probability": 0.7706 + }, + { + "start": 3732.78, + "end": 3738.94, + "probability": 0.9976 + }, + { + "start": 3739.78, + "end": 3742.18, + "probability": 0.998 + }, + { + "start": 3742.78, + "end": 3743.04, + "probability": 0.8538 + }, + { + "start": 3743.8, + "end": 3747.68, + "probability": 0.9896 + }, + { + "start": 3748.68, + "end": 3752.0, + "probability": 0.9976 + }, + { + "start": 3752.28, + "end": 3754.38, + "probability": 0.9818 + }, + { + "start": 3755.5, + "end": 3757.34, + "probability": 0.9844 + }, + { + "start": 3757.7, + "end": 3759.76, + "probability": 0.9741 + }, + { + "start": 3760.52, + "end": 3761.64, + "probability": 0.8076 + }, + { + "start": 3762.4, + "end": 3764.18, + "probability": 0.9796 + }, + { + "start": 3764.7, + "end": 3766.68, + "probability": 0.9979 + }, + { + "start": 3767.36, + "end": 3771.38, + "probability": 0.9932 + }, + { + "start": 3771.92, + "end": 3773.14, + "probability": 0.8962 + }, + { + "start": 3773.72, + "end": 3775.22, + "probability": 0.9514 + }, + { + "start": 3776.04, + "end": 3778.22, + "probability": 0.9985 + }, + { + "start": 3779.42, + "end": 3780.2, + "probability": 0.9849 + }, + { + "start": 3781.44, + "end": 3783.0, + "probability": 0.8979 + }, + { + "start": 3783.7, + "end": 3786.22, + "probability": 0.9858 + }, + { + "start": 3787.42, + "end": 3789.48, + "probability": 0.866 + }, + { + "start": 3790.06, + "end": 3790.74, + "probability": 0.9668 + }, + { + "start": 3790.9, + "end": 3791.44, + "probability": 0.567 + }, + { + "start": 3791.56, + "end": 3792.44, + "probability": 0.8136 + }, + { + "start": 3792.86, + "end": 3796.18, + "probability": 0.9971 + }, + { + "start": 3797.02, + "end": 3798.32, + "probability": 0.9814 + }, + { + "start": 3798.76, + "end": 3803.14, + "probability": 0.9876 + }, + { + "start": 3803.14, + "end": 3806.72, + "probability": 0.9989 + }, + { + "start": 3807.02, + "end": 3808.16, + "probability": 0.8884 + }, + { + "start": 3808.68, + "end": 3810.36, + "probability": 0.9943 + }, + { + "start": 3810.66, + "end": 3810.88, + "probability": 0.0217 + }, + { + "start": 3810.88, + "end": 3811.2, + "probability": 0.7832 + }, + { + "start": 3812.82, + "end": 3814.48, + "probability": 0.9543 + }, + { + "start": 3831.56, + "end": 3831.56, + "probability": 0.1256 + }, + { + "start": 3831.56, + "end": 3831.66, + "probability": 0.2164 + }, + { + "start": 3838.86, + "end": 3841.08, + "probability": 0.6649 + }, + { + "start": 3842.04, + "end": 3843.14, + "probability": 0.653 + }, + { + "start": 3843.24, + "end": 3843.86, + "probability": 0.8384 + }, + { + "start": 3844.06, + "end": 3849.06, + "probability": 0.953 + }, + { + "start": 3850.66, + "end": 3851.94, + "probability": 0.4519 + }, + { + "start": 3852.42, + "end": 3853.42, + "probability": 0.6941 + }, + { + "start": 3853.78, + "end": 3855.37, + "probability": 0.9616 + }, + { + "start": 3856.8, + "end": 3858.92, + "probability": 0.9995 + }, + { + "start": 3858.92, + "end": 3862.58, + "probability": 0.9541 + }, + { + "start": 3863.34, + "end": 3865.72, + "probability": 0.986 + }, + { + "start": 3865.8, + "end": 3866.5, + "probability": 0.3214 + }, + { + "start": 3866.56, + "end": 3868.52, + "probability": 0.9352 + }, + { + "start": 3868.84, + "end": 3869.6, + "probability": 0.7417 + }, + { + "start": 3870.34, + "end": 3871.26, + "probability": 0.3526 + }, + { + "start": 3871.26, + "end": 3873.32, + "probability": 0.8268 + }, + { + "start": 3873.44, + "end": 3875.24, + "probability": 0.908 + }, + { + "start": 3875.4, + "end": 3875.88, + "probability": 0.7756 + }, + { + "start": 3876.06, + "end": 3877.28, + "probability": 0.9414 + }, + { + "start": 3877.4, + "end": 3878.14, + "probability": 0.7322 + }, + { + "start": 3878.24, + "end": 3878.48, + "probability": 0.4515 + }, + { + "start": 3879.0, + "end": 3880.06, + "probability": 0.0234 + }, + { + "start": 3880.42, + "end": 3881.51, + "probability": 0.5981 + }, + { + "start": 3882.24, + "end": 3883.44, + "probability": 0.1613 + }, + { + "start": 3883.66, + "end": 3885.76, + "probability": 0.579 + }, + { + "start": 3885.92, + "end": 3888.08, + "probability": 0.8081 + }, + { + "start": 3888.38, + "end": 3889.92, + "probability": 0.8888 + }, + { + "start": 3889.92, + "end": 3892.66, + "probability": 0.7628 + }, + { + "start": 3892.68, + "end": 3893.66, + "probability": 0.7133 + }, + { + "start": 3893.86, + "end": 3894.22, + "probability": 0.1459 + }, + { + "start": 3894.3, + "end": 3895.5, + "probability": 0.8535 + }, + { + "start": 3895.5, + "end": 3896.14, + "probability": 0.2826 + }, + { + "start": 3896.16, + "end": 3897.36, + "probability": 0.5565 + }, + { + "start": 3897.44, + "end": 3900.28, + "probability": 0.0916 + }, + { + "start": 3900.32, + "end": 3903.36, + "probability": 0.0501 + }, + { + "start": 3904.36, + "end": 3904.64, + "probability": 0.0401 + }, + { + "start": 3904.64, + "end": 3904.82, + "probability": 0.1841 + }, + { + "start": 3905.4, + "end": 3905.5, + "probability": 0.1566 + }, + { + "start": 3905.72, + "end": 3905.72, + "probability": 0.3436 + }, + { + "start": 3905.72, + "end": 3905.72, + "probability": 0.1206 + }, + { + "start": 3905.72, + "end": 3905.72, + "probability": 0.1913 + }, + { + "start": 3905.72, + "end": 3905.72, + "probability": 0.0907 + }, + { + "start": 3905.72, + "end": 3907.24, + "probability": 0.5815 + }, + { + "start": 3907.78, + "end": 3908.63, + "probability": 0.5447 + }, + { + "start": 3910.44, + "end": 3911.64, + "probability": 0.0371 + }, + { + "start": 3911.64, + "end": 3912.84, + "probability": 0.4885 + }, + { + "start": 3913.0, + "end": 3915.72, + "probability": 0.8078 + }, + { + "start": 3915.8, + "end": 3916.38, + "probability": 0.6273 + }, + { + "start": 3916.42, + "end": 3917.02, + "probability": 0.6376 + }, + { + "start": 3917.06, + "end": 3918.0, + "probability": 0.5336 + }, + { + "start": 3918.12, + "end": 3921.84, + "probability": 0.9637 + }, + { + "start": 3921.84, + "end": 3922.26, + "probability": 0.1939 + }, + { + "start": 3922.26, + "end": 3922.52, + "probability": 0.2165 + }, + { + "start": 3923.04, + "end": 3925.04, + "probability": 0.9086 + }, + { + "start": 3925.46, + "end": 3927.74, + "probability": 0.9491 + }, + { + "start": 3928.42, + "end": 3930.46, + "probability": 0.8717 + }, + { + "start": 3930.56, + "end": 3931.08, + "probability": 0.5316 + }, + { + "start": 3931.28, + "end": 3931.94, + "probability": 0.6803 + }, + { + "start": 3932.82, + "end": 3934.2, + "probability": 0.4268 + }, + { + "start": 3934.3, + "end": 3934.56, + "probability": 0.738 + }, + { + "start": 3934.66, + "end": 3936.08, + "probability": 0.9735 + }, + { + "start": 3936.52, + "end": 3937.93, + "probability": 0.9626 + }, + { + "start": 3938.3, + "end": 3942.04, + "probability": 0.5988 + }, + { + "start": 3942.72, + "end": 3944.78, + "probability": 0.3723 + }, + { + "start": 3945.04, + "end": 3949.02, + "probability": 0.9692 + }, + { + "start": 3949.66, + "end": 3950.94, + "probability": 0.8221 + }, + { + "start": 3951.42, + "end": 3953.56, + "probability": 0.8687 + }, + { + "start": 3954.3, + "end": 3954.84, + "probability": 0.8528 + }, + { + "start": 3954.94, + "end": 3958.16, + "probability": 0.7433 + }, + { + "start": 3958.92, + "end": 3960.28, + "probability": 0.8044 + }, + { + "start": 3960.52, + "end": 3961.68, + "probability": 0.7163 + }, + { + "start": 3962.68, + "end": 3964.2, + "probability": 0.9885 + }, + { + "start": 3964.3, + "end": 3966.06, + "probability": 0.8976 + }, + { + "start": 3966.14, + "end": 3969.46, + "probability": 0.8153 + }, + { + "start": 3969.6, + "end": 3974.78, + "probability": 0.9599 + }, + { + "start": 3974.9, + "end": 3978.16, + "probability": 0.8253 + }, + { + "start": 3978.9, + "end": 3979.2, + "probability": 0.5928 + }, + { + "start": 3979.22, + "end": 3983.46, + "probability": 0.9529 + }, + { + "start": 3983.74, + "end": 3987.28, + "probability": 0.947 + }, + { + "start": 3988.02, + "end": 3988.64, + "probability": 0.9727 + }, + { + "start": 3988.78, + "end": 3990.28, + "probability": 0.9858 + }, + { + "start": 3990.96, + "end": 3992.7, + "probability": 0.7283 + }, + { + "start": 3993.2, + "end": 3995.12, + "probability": 0.96 + }, + { + "start": 3995.2, + "end": 3996.73, + "probability": 0.9016 + }, + { + "start": 3997.62, + "end": 3997.62, + "probability": 0.0769 + }, + { + "start": 3997.62, + "end": 3997.62, + "probability": 0.1362 + }, + { + "start": 3997.62, + "end": 4000.03, + "probability": 0.692 + }, + { + "start": 4000.56, + "end": 4000.72, + "probability": 0.5847 + }, + { + "start": 4000.72, + "end": 4002.16, + "probability": 0.4943 + }, + { + "start": 4002.3, + "end": 4002.79, + "probability": 0.5728 + }, + { + "start": 4003.22, + "end": 4005.96, + "probability": 0.7734 + }, + { + "start": 4008.38, + "end": 4009.98, + "probability": 0.5416 + }, + { + "start": 4010.5, + "end": 4011.3, + "probability": 0.7962 + }, + { + "start": 4011.3, + "end": 4011.3, + "probability": 0.3148 + }, + { + "start": 4011.3, + "end": 4011.66, + "probability": 0.4408 + }, + { + "start": 4012.18, + "end": 4012.22, + "probability": 0.0024 + }, + { + "start": 4012.22, + "end": 4013.92, + "probability": 0.9899 + }, + { + "start": 4014.32, + "end": 4014.84, + "probability": 0.5383 + }, + { + "start": 4015.04, + "end": 4015.36, + "probability": 0.3549 + }, + { + "start": 4015.36, + "end": 4016.46, + "probability": 0.7276 + }, + { + "start": 4016.9, + "end": 4018.1, + "probability": 0.0241 + }, + { + "start": 4033.32, + "end": 4033.38, + "probability": 0.0874 + }, + { + "start": 4042.12, + "end": 4042.7, + "probability": 0.0126 + }, + { + "start": 4045.16, + "end": 4045.3, + "probability": 0.0083 + }, + { + "start": 4045.3, + "end": 4045.3, + "probability": 0.1904 + }, + { + "start": 4045.3, + "end": 4045.32, + "probability": 0.0897 + }, + { + "start": 4045.32, + "end": 4046.7, + "probability": 0.1088 + }, + { + "start": 4046.92, + "end": 4048.84, + "probability": 0.0497 + }, + { + "start": 4050.84, + "end": 4054.4, + "probability": 0.0717 + }, + { + "start": 4054.76, + "end": 4054.86, + "probability": 0.0287 + }, + { + "start": 4057.04, + "end": 4057.4, + "probability": 0.0284 + }, + { + "start": 4057.52, + "end": 4057.84, + "probability": 0.2532 + }, + { + "start": 4057.84, + "end": 4059.8, + "probability": 0.0174 + }, + { + "start": 4059.8, + "end": 4062.58, + "probability": 0.2195 + }, + { + "start": 4062.8, + "end": 4064.12, + "probability": 0.4127 + }, + { + "start": 4064.12, + "end": 4064.44, + "probability": 0.2031 + }, + { + "start": 4064.44, + "end": 4070.16, + "probability": 0.5273 + }, + { + "start": 4070.28, + "end": 4072.84, + "probability": 0.0116 + }, + { + "start": 4085.25, + "end": 4086.7, + "probability": 0.0353 + }, + { + "start": 4086.7, + "end": 4088.38, + "probability": 0.0214 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4099.0, + "end": 4099.0, + "probability": 0.0 + }, + { + "start": 4100.52, + "end": 4104.08, + "probability": 0.6974 + }, + { + "start": 4105.63, + "end": 4106.18, + "probability": 0.1003 + }, + { + "start": 4106.18, + "end": 4107.38, + "probability": 0.1211 + }, + { + "start": 4107.38, + "end": 4108.56, + "probability": 0.1425 + }, + { + "start": 4112.1, + "end": 4114.64, + "probability": 0.0665 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4222.0, + "end": 4222.0, + "probability": 0.0 + }, + { + "start": 4226.92, + "end": 4227.82, + "probability": 0.4836 + }, + { + "start": 4229.08, + "end": 4231.24, + "probability": 0.6772 + }, + { + "start": 4231.64, + "end": 4235.86, + "probability": 0.9687 + }, + { + "start": 4235.92, + "end": 4237.28, + "probability": 0.6959 + }, + { + "start": 4237.6, + "end": 4239.38, + "probability": 0.9619 + }, + { + "start": 4240.94, + "end": 4242.6, + "probability": 0.9097 + }, + { + "start": 4243.74, + "end": 4244.58, + "probability": 0.886 + }, + { + "start": 4245.28, + "end": 4246.64, + "probability": 0.8096 + }, + { + "start": 4248.7, + "end": 4249.1, + "probability": 0.9041 + }, + { + "start": 4249.2, + "end": 4249.88, + "probability": 0.5239 + }, + { + "start": 4251.68, + "end": 4252.52, + "probability": 0.659 + }, + { + "start": 4254.58, + "end": 4257.28, + "probability": 0.9218 + }, + { + "start": 4258.54, + "end": 4263.18, + "probability": 0.9134 + }, + { + "start": 4264.5, + "end": 4268.78, + "probability": 0.9861 + }, + { + "start": 4272.6, + "end": 4274.06, + "probability": 0.7371 + }, + { + "start": 4275.82, + "end": 4276.96, + "probability": 0.8316 + }, + { + "start": 4277.08, + "end": 4278.76, + "probability": 0.9965 + }, + { + "start": 4279.12, + "end": 4279.78, + "probability": 0.7055 + }, + { + "start": 4280.84, + "end": 4284.06, + "probability": 0.8978 + }, + { + "start": 4284.14, + "end": 4285.12, + "probability": 0.7654 + }, + { + "start": 4286.56, + "end": 4288.92, + "probability": 0.998 + }, + { + "start": 4289.72, + "end": 4292.84, + "probability": 0.9995 + }, + { + "start": 4293.68, + "end": 4294.88, + "probability": 0.7587 + }, + { + "start": 4295.88, + "end": 4296.66, + "probability": 0.731 + }, + { + "start": 4297.44, + "end": 4298.58, + "probability": 0.9762 + }, + { + "start": 4298.58, + "end": 4301.38, + "probability": 0.8286 + }, + { + "start": 4302.52, + "end": 4308.42, + "probability": 0.9814 + }, + { + "start": 4308.64, + "end": 4309.04, + "probability": 0.8297 + }, + { + "start": 4309.7, + "end": 4310.14, + "probability": 0.7731 + }, + { + "start": 4311.88, + "end": 4314.1, + "probability": 0.9912 + }, + { + "start": 4314.12, + "end": 4314.66, + "probability": 0.755 + }, + { + "start": 4315.14, + "end": 4315.24, + "probability": 0.0891 + }, + { + "start": 4315.24, + "end": 4315.24, + "probability": 0.3409 + }, + { + "start": 4315.24, + "end": 4315.86, + "probability": 0.5448 + }, + { + "start": 4316.38, + "end": 4319.72, + "probability": 0.9976 + }, + { + "start": 4319.76, + "end": 4320.92, + "probability": 0.2369 + }, + { + "start": 4321.32, + "end": 4321.8, + "probability": 0.7023 + }, + { + "start": 4322.34, + "end": 4326.38, + "probability": 0.6061 + }, + { + "start": 4331.8, + "end": 4332.44, + "probability": 0.6838 + }, + { + "start": 4332.52, + "end": 4333.86, + "probability": 0.6592 + }, + { + "start": 4334.24, + "end": 4337.1, + "probability": 0.771 + }, + { + "start": 4337.12, + "end": 4342.24, + "probability": 0.6968 + }, + { + "start": 4344.04, + "end": 4349.7, + "probability": 0.1162 + }, + { + "start": 4350.32, + "end": 4350.46, + "probability": 0.0135 + }, + { + "start": 4351.1, + "end": 4351.58, + "probability": 0.6075 + }, + { + "start": 4357.1, + "end": 4357.73, + "probability": 0.5509 + }, + { + "start": 4358.16, + "end": 4359.92, + "probability": 0.5025 + }, + { + "start": 4360.1, + "end": 4364.22, + "probability": 0.8625 + }, + { + "start": 4364.62, + "end": 4365.58, + "probability": 0.6883 + }, + { + "start": 4366.0, + "end": 4368.92, + "probability": 0.8747 + }, + { + "start": 4368.92, + "end": 4371.96, + "probability": 0.9955 + }, + { + "start": 4372.22, + "end": 4374.51, + "probability": 0.3461 + }, + { + "start": 4375.56, + "end": 4376.72, + "probability": 0.6512 + }, + { + "start": 4376.74, + "end": 4378.28, + "probability": 0.3811 + }, + { + "start": 4378.34, + "end": 4381.16, + "probability": 0.753 + }, + { + "start": 4383.0, + "end": 4385.06, + "probability": 0.5025 + }, + { + "start": 4385.16, + "end": 4385.56, + "probability": 0.7536 + }, + { + "start": 4386.48, + "end": 4386.92, + "probability": 0.6988 + }, + { + "start": 4387.02, + "end": 4388.06, + "probability": 0.6886 + }, + { + "start": 4388.26, + "end": 4392.26, + "probability": 0.7431 + }, + { + "start": 4392.4, + "end": 4393.14, + "probability": 0.6623 + }, + { + "start": 4393.94, + "end": 4396.7, + "probability": 0.7294 + }, + { + "start": 4399.54, + "end": 4404.16, + "probability": 0.9491 + }, + { + "start": 4404.16, + "end": 4404.74, + "probability": 0.4551 + }, + { + "start": 4405.56, + "end": 4406.82, + "probability": 0.9327 + }, + { + "start": 4408.6, + "end": 4409.74, + "probability": 0.737 + }, + { + "start": 4410.54, + "end": 4411.68, + "probability": 0.8905 + }, + { + "start": 4411.8, + "end": 4415.38, + "probability": 0.9339 + }, + { + "start": 4415.38, + "end": 4418.38, + "probability": 0.6442 + }, + { + "start": 4418.52, + "end": 4419.66, + "probability": 0.5534 + }, + { + "start": 4419.88, + "end": 4422.9, + "probability": 0.8237 + }, + { + "start": 4423.42, + "end": 4426.58, + "probability": 0.9937 + }, + { + "start": 4427.2, + "end": 4429.4, + "probability": 0.9531 + }, + { + "start": 4429.4, + "end": 4431.9, + "probability": 0.9904 + }, + { + "start": 4432.74, + "end": 4436.28, + "probability": 0.8198 + }, + { + "start": 4436.76, + "end": 4439.16, + "probability": 0.8332 + }, + { + "start": 4439.68, + "end": 4442.34, + "probability": 0.9086 + }, + { + "start": 4442.34, + "end": 4444.9, + "probability": 0.974 + }, + { + "start": 4445.52, + "end": 4446.76, + "probability": 0.7476 + }, + { + "start": 4446.78, + "end": 4447.56, + "probability": 0.6615 + }, + { + "start": 4447.68, + "end": 4450.3, + "probability": 0.8968 + }, + { + "start": 4451.02, + "end": 4452.64, + "probability": 0.9163 + }, + { + "start": 4452.72, + "end": 4455.22, + "probability": 0.929 + }, + { + "start": 4456.08, + "end": 4460.08, + "probability": 0.9272 + }, + { + "start": 4460.16, + "end": 4460.56, + "probability": 0.8436 + }, + { + "start": 4461.16, + "end": 4463.42, + "probability": 0.769 + }, + { + "start": 4463.46, + "end": 4464.98, + "probability": 0.7617 + }, + { + "start": 4465.7, + "end": 4466.34, + "probability": 0.836 + }, + { + "start": 4466.44, + "end": 4468.46, + "probability": 0.9781 + }, + { + "start": 4468.52, + "end": 4468.98, + "probability": 0.7774 + }, + { + "start": 4469.08, + "end": 4469.92, + "probability": 0.8256 + }, + { + "start": 4470.42, + "end": 4472.62, + "probability": 0.9611 + }, + { + "start": 4472.62, + "end": 4477.34, + "probability": 0.9878 + }, + { + "start": 4478.72, + "end": 4481.84, + "probability": 0.7614 + }, + { + "start": 4481.92, + "end": 4483.94, + "probability": 0.7891 + }, + { + "start": 4484.6, + "end": 4487.08, + "probability": 0.9423 + }, + { + "start": 4487.1, + "end": 4489.52, + "probability": 0.8722 + }, + { + "start": 4489.64, + "end": 4495.34, + "probability": 0.7605 + }, + { + "start": 4495.84, + "end": 4497.8, + "probability": 0.9889 + }, + { + "start": 4497.8, + "end": 4499.76, + "probability": 0.9959 + }, + { + "start": 4500.32, + "end": 4504.04, + "probability": 0.9814 + }, + { + "start": 4504.6, + "end": 4507.5, + "probability": 0.9295 + }, + { + "start": 4508.36, + "end": 4509.02, + "probability": 0.6002 + }, + { + "start": 4509.4, + "end": 4511.94, + "probability": 0.9771 + }, + { + "start": 4512.02, + "end": 4512.96, + "probability": 0.9739 + }, + { + "start": 4513.54, + "end": 4515.6, + "probability": 0.8628 + }, + { + "start": 4515.68, + "end": 4520.04, + "probability": 0.9203 + }, + { + "start": 4520.6, + "end": 4523.08, + "probability": 0.8294 + }, + { + "start": 4523.14, + "end": 4523.48, + "probability": 0.8175 + }, + { + "start": 4523.62, + "end": 4527.1, + "probability": 0.7313 + }, + { + "start": 4527.1, + "end": 4529.04, + "probability": 0.9852 + }, + { + "start": 4529.16, + "end": 4532.48, + "probability": 0.9641 + }, + { + "start": 4532.48, + "end": 4535.04, + "probability": 0.9856 + }, + { + "start": 4535.84, + "end": 4536.3, + "probability": 0.6952 + }, + { + "start": 4536.94, + "end": 4539.56, + "probability": 0.9948 + }, + { + "start": 4539.62, + "end": 4542.04, + "probability": 0.9802 + }, + { + "start": 4542.76, + "end": 4546.26, + "probability": 0.7885 + }, + { + "start": 4547.5, + "end": 4550.28, + "probability": 0.964 + }, + { + "start": 4550.28, + "end": 4553.14, + "probability": 0.9965 + }, + { + "start": 4553.86, + "end": 4554.9, + "probability": 0.696 + }, + { + "start": 4554.9, + "end": 4555.14, + "probability": 0.2862 + }, + { + "start": 4555.2, + "end": 4558.3, + "probability": 0.9871 + }, + { + "start": 4558.98, + "end": 4561.96, + "probability": 0.9143 + }, + { + "start": 4563.0, + "end": 4565.92, + "probability": 0.9751 + }, + { + "start": 4565.92, + "end": 4569.02, + "probability": 0.9688 + }, + { + "start": 4570.28, + "end": 4570.88, + "probability": 0.7193 + }, + { + "start": 4571.18, + "end": 4573.9, + "probability": 0.9482 + }, + { + "start": 4587.5, + "end": 4588.96, + "probability": 0.856 + }, + { + "start": 4590.24, + "end": 4590.76, + "probability": 0.8833 + }, + { + "start": 4592.34, + "end": 4594.99, + "probability": 0.9135 + }, + { + "start": 4598.6, + "end": 4599.56, + "probability": 0.9974 + }, + { + "start": 4601.26, + "end": 4606.16, + "probability": 0.9983 + }, + { + "start": 4606.98, + "end": 4610.24, + "probability": 0.915 + }, + { + "start": 4612.18, + "end": 4613.24, + "probability": 0.7036 + }, + { + "start": 4613.92, + "end": 4615.15, + "probability": 0.9756 + }, + { + "start": 4616.68, + "end": 4619.14, + "probability": 0.9963 + }, + { + "start": 4620.66, + "end": 4622.98, + "probability": 0.9297 + }, + { + "start": 4623.72, + "end": 4625.14, + "probability": 0.9174 + }, + { + "start": 4626.04, + "end": 4627.02, + "probability": 0.9076 + }, + { + "start": 4630.26, + "end": 4631.52, + "probability": 0.9674 + }, + { + "start": 4632.88, + "end": 4635.32, + "probability": 0.993 + }, + { + "start": 4635.32, + "end": 4638.42, + "probability": 0.7589 + }, + { + "start": 4641.84, + "end": 4643.56, + "probability": 0.9984 + }, + { + "start": 4645.02, + "end": 4650.02, + "probability": 0.9414 + }, + { + "start": 4651.68, + "end": 4653.86, + "probability": 0.9942 + }, + { + "start": 4656.22, + "end": 4660.16, + "probability": 0.9976 + }, + { + "start": 4660.16, + "end": 4662.92, + "probability": 0.9936 + }, + { + "start": 4664.74, + "end": 4664.76, + "probability": 0.2798 + }, + { + "start": 4665.3, + "end": 4665.42, + "probability": 0.5091 + }, + { + "start": 4665.42, + "end": 4667.58, + "probability": 0.9412 + }, + { + "start": 4668.82, + "end": 4669.36, + "probability": 0.8553 + }, + { + "start": 4671.12, + "end": 4673.6, + "probability": 0.9956 + }, + { + "start": 4674.7, + "end": 4677.68, + "probability": 0.9961 + }, + { + "start": 4678.28, + "end": 4679.14, + "probability": 0.8369 + }, + { + "start": 4681.38, + "end": 4681.96, + "probability": 0.8792 + }, + { + "start": 4683.26, + "end": 4686.26, + "probability": 0.8266 + }, + { + "start": 4687.3, + "end": 4689.28, + "probability": 0.9919 + }, + { + "start": 4689.82, + "end": 4690.41, + "probability": 0.816 + }, + { + "start": 4690.68, + "end": 4691.45, + "probability": 0.9906 + }, + { + "start": 4693.72, + "end": 4694.58, + "probability": 0.5402 + }, + { + "start": 4695.7, + "end": 4702.46, + "probability": 0.95 + }, + { + "start": 4702.88, + "end": 4705.52, + "probability": 0.9964 + }, + { + "start": 4708.12, + "end": 4713.14, + "probability": 0.9988 + }, + { + "start": 4713.72, + "end": 4715.22, + "probability": 0.9958 + }, + { + "start": 4715.84, + "end": 4716.78, + "probability": 0.8301 + }, + { + "start": 4720.12, + "end": 4720.84, + "probability": 0.5989 + }, + { + "start": 4721.76, + "end": 4723.9, + "probability": 0.9992 + }, + { + "start": 4724.44, + "end": 4726.56, + "probability": 0.9949 + }, + { + "start": 4727.58, + "end": 4731.26, + "probability": 0.9905 + }, + { + "start": 4732.82, + "end": 4734.13, + "probability": 0.7316 + }, + { + "start": 4736.02, + "end": 4737.76, + "probability": 0.946 + }, + { + "start": 4738.52, + "end": 4739.54, + "probability": 0.4331 + }, + { + "start": 4739.84, + "end": 4741.86, + "probability": 0.7222 + }, + { + "start": 4742.58, + "end": 4744.92, + "probability": 0.7681 + }, + { + "start": 4746.52, + "end": 4747.32, + "probability": 0.6055 + }, + { + "start": 4747.32, + "end": 4754.06, + "probability": 0.993 + }, + { + "start": 4755.58, + "end": 4757.46, + "probability": 0.9781 + }, + { + "start": 4758.7, + "end": 4761.34, + "probability": 0.9084 + }, + { + "start": 4762.98, + "end": 4767.92, + "probability": 0.9868 + }, + { + "start": 4768.54, + "end": 4768.78, + "probability": 0.7412 + }, + { + "start": 4770.2, + "end": 4770.7, + "probability": 0.8556 + }, + { + "start": 4771.56, + "end": 4772.78, + "probability": 0.8758 + }, + { + "start": 4783.86, + "end": 4785.14, + "probability": 0.5393 + }, + { + "start": 4785.22, + "end": 4786.2, + "probability": 0.6078 + }, + { + "start": 4786.68, + "end": 4795.68, + "probability": 0.9898 + }, + { + "start": 4796.06, + "end": 4797.8, + "probability": 0.7033 + }, + { + "start": 4797.8, + "end": 4803.0, + "probability": 0.9858 + }, + { + "start": 4803.0, + "end": 4808.1, + "probability": 0.9911 + }, + { + "start": 4808.96, + "end": 4811.2, + "probability": 0.7094 + }, + { + "start": 4812.32, + "end": 4814.26, + "probability": 0.9051 + }, + { + "start": 4814.66, + "end": 4817.67, + "probability": 0.9188 + }, + { + "start": 4818.32, + "end": 4821.66, + "probability": 0.8306 + }, + { + "start": 4822.12, + "end": 4823.62, + "probability": 0.974 + }, + { + "start": 4825.16, + "end": 4826.52, + "probability": 0.9131 + }, + { + "start": 4827.26, + "end": 4830.56, + "probability": 0.9829 + }, + { + "start": 4831.2, + "end": 4833.88, + "probability": 0.9941 + }, + { + "start": 4834.66, + "end": 4836.24, + "probability": 0.705 + }, + { + "start": 4836.98, + "end": 4841.28, + "probability": 0.9383 + }, + { + "start": 4841.98, + "end": 4843.86, + "probability": 0.9487 + }, + { + "start": 4844.08, + "end": 4845.82, + "probability": 0.9954 + }, + { + "start": 4846.36, + "end": 4849.88, + "probability": 0.8987 + }, + { + "start": 4850.16, + "end": 4851.16, + "probability": 0.9024 + }, + { + "start": 4851.6, + "end": 4852.28, + "probability": 0.8829 + }, + { + "start": 4852.44, + "end": 4853.5, + "probability": 0.9635 + }, + { + "start": 4853.5, + "end": 4854.02, + "probability": 0.9769 + }, + { + "start": 4855.46, + "end": 4860.4, + "probability": 0.9249 + }, + { + "start": 4860.78, + "end": 4862.5, + "probability": 0.5026 + }, + { + "start": 4862.82, + "end": 4863.84, + "probability": 0.972 + }, + { + "start": 4864.24, + "end": 4865.16, + "probability": 0.9427 + }, + { + "start": 4865.62, + "end": 4867.42, + "probability": 0.9966 + }, + { + "start": 4867.54, + "end": 4870.14, + "probability": 0.9637 + }, + { + "start": 4871.86, + "end": 4874.56, + "probability": 0.9548 + }, + { + "start": 4874.84, + "end": 4875.62, + "probability": 0.5743 + }, + { + "start": 4875.76, + "end": 4876.3, + "probability": 0.3983 + }, + { + "start": 4876.64, + "end": 4877.8, + "probability": 0.908 + }, + { + "start": 4878.34, + "end": 4879.04, + "probability": 0.7379 + }, + { + "start": 4880.14, + "end": 4886.12, + "probability": 0.979 + }, + { + "start": 4887.6, + "end": 4889.62, + "probability": 0.9982 + }, + { + "start": 4890.04, + "end": 4891.75, + "probability": 0.9184 + }, + { + "start": 4892.7, + "end": 4894.3, + "probability": 0.9323 + }, + { + "start": 4894.84, + "end": 4896.26, + "probability": 0.952 + }, + { + "start": 4896.86, + "end": 4897.54, + "probability": 0.9963 + }, + { + "start": 4898.54, + "end": 4900.38, + "probability": 0.9958 + }, + { + "start": 4900.7, + "end": 4903.76, + "probability": 0.9885 + }, + { + "start": 4904.42, + "end": 4905.06, + "probability": 0.7667 + }, + { + "start": 4905.78, + "end": 4908.3, + "probability": 0.6598 + }, + { + "start": 4909.04, + "end": 4909.9, + "probability": 0.6836 + }, + { + "start": 4910.02, + "end": 4910.4, + "probability": 0.9307 + }, + { + "start": 4910.54, + "end": 4911.42, + "probability": 0.668 + }, + { + "start": 4911.44, + "end": 4912.98, + "probability": 0.4793 + }, + { + "start": 4913.82, + "end": 4914.16, + "probability": 0.9005 + }, + { + "start": 4915.14, + "end": 4917.34, + "probability": 0.9212 + }, + { + "start": 4918.06, + "end": 4919.14, + "probability": 0.8586 + }, + { + "start": 4919.52, + "end": 4923.06, + "probability": 0.7856 + }, + { + "start": 4923.76, + "end": 4924.58, + "probability": 0.8823 + }, + { + "start": 4925.42, + "end": 4928.9, + "probability": 0.9829 + }, + { + "start": 4929.68, + "end": 4932.52, + "probability": 0.9557 + }, + { + "start": 4932.8, + "end": 4933.28, + "probability": 0.9707 + }, + { + "start": 4934.42, + "end": 4938.98, + "probability": 0.379 + }, + { + "start": 4939.6, + "end": 4941.38, + "probability": 0.9854 + }, + { + "start": 4942.12, + "end": 4944.42, + "probability": 0.9185 + }, + { + "start": 4944.64, + "end": 4946.46, + "probability": 0.6528 + }, + { + "start": 4946.7, + "end": 4947.8, + "probability": 0.8431 + }, + { + "start": 4948.3, + "end": 4950.64, + "probability": 0.8758 + }, + { + "start": 4951.16, + "end": 4954.16, + "probability": 0.82 + }, + { + "start": 4954.82, + "end": 4957.34, + "probability": 0.9645 + }, + { + "start": 4957.84, + "end": 4959.5, + "probability": 0.8575 + }, + { + "start": 4960.3, + "end": 4961.26, + "probability": 0.9971 + }, + { + "start": 4962.19, + "end": 4967.3, + "probability": 0.6559 + }, + { + "start": 4967.96, + "end": 4969.5, + "probability": 0.5038 + }, + { + "start": 4969.52, + "end": 4972.54, + "probability": 0.9763 + }, + { + "start": 4972.78, + "end": 4973.44, + "probability": 0.7266 + }, + { + "start": 4973.48, + "end": 4974.09, + "probability": 0.8927 + }, + { + "start": 4974.28, + "end": 4974.62, + "probability": 0.816 + }, + { + "start": 4975.06, + "end": 4976.2, + "probability": 0.9858 + }, + { + "start": 4976.28, + "end": 4976.74, + "probability": 0.9223 + }, + { + "start": 4976.92, + "end": 4977.48, + "probability": 0.6636 + }, + { + "start": 4978.18, + "end": 4978.96, + "probability": 0.4463 + }, + { + "start": 4980.2, + "end": 4980.78, + "probability": 0.3456 + }, + { + "start": 4982.1, + "end": 4985.76, + "probability": 0.9891 + }, + { + "start": 4986.16, + "end": 4988.6, + "probability": 0.9945 + }, + { + "start": 4989.1, + "end": 4991.26, + "probability": 0.9721 + }, + { + "start": 4991.26, + "end": 4996.68, + "probability": 0.868 + }, + { + "start": 4996.82, + "end": 4997.08, + "probability": 0.7836 + }, + { + "start": 4997.78, + "end": 4998.26, + "probability": 0.8375 + }, + { + "start": 4999.5, + "end": 5001.2, + "probability": 0.7646 + }, + { + "start": 5001.86, + "end": 5003.22, + "probability": 0.9518 + }, + { + "start": 5003.62, + "end": 5004.12, + "probability": 0.773 + }, + { + "start": 5004.26, + "end": 5005.56, + "probability": 0.9923 + }, + { + "start": 5005.7, + "end": 5006.3, + "probability": 0.9181 + }, + { + "start": 5007.3, + "end": 5008.38, + "probability": 0.9417 + }, + { + "start": 5013.04, + "end": 5014.16, + "probability": 0.791 + }, + { + "start": 5014.62, + "end": 5014.84, + "probability": 0.7785 + }, + { + "start": 5017.92, + "end": 5018.02, + "probability": 0.78 + }, + { + "start": 5020.78, + "end": 5021.68, + "probability": 0.4634 + }, + { + "start": 5022.92, + "end": 5030.1, + "probability": 0.278 + }, + { + "start": 5030.18, + "end": 5031.98, + "probability": 0.0059 + }, + { + "start": 5032.26, + "end": 5032.26, + "probability": 0.1242 + }, + { + "start": 5032.26, + "end": 5033.78, + "probability": 0.067 + }, + { + "start": 5034.34, + "end": 5034.62, + "probability": 0.0785 + }, + { + "start": 5034.62, + "end": 5037.57, + "probability": 0.2597 + }, + { + "start": 5042.6, + "end": 5045.3, + "probability": 0.6533 + }, + { + "start": 5047.04, + "end": 5052.42, + "probability": 0.9955 + }, + { + "start": 5052.46, + "end": 5057.16, + "probability": 0.9971 + }, + { + "start": 5057.74, + "end": 5059.32, + "probability": 0.8313 + }, + { + "start": 5059.8, + "end": 5060.96, + "probability": 0.9368 + }, + { + "start": 5061.04, + "end": 5063.22, + "probability": 0.9979 + }, + { + "start": 5063.94, + "end": 5069.28, + "probability": 0.7879 + }, + { + "start": 5069.34, + "end": 5070.12, + "probability": 0.4749 + }, + { + "start": 5070.2, + "end": 5072.88, + "probability": 0.6569 + }, + { + "start": 5073.34, + "end": 5074.6, + "probability": 0.9723 + }, + { + "start": 5074.68, + "end": 5075.76, + "probability": 0.7945 + }, + { + "start": 5076.1, + "end": 5084.06, + "probability": 0.9629 + }, + { + "start": 5084.82, + "end": 5085.22, + "probability": 0.0358 + }, + { + "start": 5085.22, + "end": 5085.22, + "probability": 0.2048 + }, + { + "start": 5085.22, + "end": 5087.12, + "probability": 0.33 + }, + { + "start": 5087.2, + "end": 5090.38, + "probability": 0.8911 + }, + { + "start": 5090.42, + "end": 5094.38, + "probability": 0.981 + }, + { + "start": 5094.62, + "end": 5099.16, + "probability": 0.8882 + }, + { + "start": 5099.76, + "end": 5101.24, + "probability": 0.6378 + }, + { + "start": 5101.98, + "end": 5103.22, + "probability": 0.8349 + }, + { + "start": 5103.58, + "end": 5108.0, + "probability": 0.9858 + }, + { + "start": 5108.24, + "end": 5110.36, + "probability": 0.9775 + }, + { + "start": 5110.68, + "end": 5112.54, + "probability": 0.9821 + }, + { + "start": 5112.96, + "end": 5115.26, + "probability": 0.8989 + }, + { + "start": 5115.28, + "end": 5121.0, + "probability": 0.8413 + }, + { + "start": 5121.0, + "end": 5126.24, + "probability": 0.9846 + }, + { + "start": 5127.16, + "end": 5127.32, + "probability": 0.1928 + }, + { + "start": 5127.32, + "end": 5127.6, + "probability": 0.3809 + }, + { + "start": 5127.6, + "end": 5127.6, + "probability": 0.3128 + }, + { + "start": 5127.6, + "end": 5128.16, + "probability": 0.4043 + }, + { + "start": 5129.04, + "end": 5130.3, + "probability": 0.4089 + }, + { + "start": 5132.26, + "end": 5136.34, + "probability": 0.408 + }, + { + "start": 5136.34, + "end": 5138.28, + "probability": 0.2788 + }, + { + "start": 5138.28, + "end": 5138.28, + "probability": 0.0934 + }, + { + "start": 5138.28, + "end": 5138.7, + "probability": 0.6376 + }, + { + "start": 5140.7, + "end": 5145.18, + "probability": 0.2809 + }, + { + "start": 5145.4, + "end": 5146.0, + "probability": 0.2724 + }, + { + "start": 5146.3, + "end": 5150.2, + "probability": 0.4702 + }, + { + "start": 5150.34, + "end": 5151.34, + "probability": 0.1331 + }, + { + "start": 5151.46, + "end": 5152.46, + "probability": 0.1534 + }, + { + "start": 5152.48, + "end": 5153.94, + "probability": 0.0702 + }, + { + "start": 5154.24, + "end": 5155.82, + "probability": 0.0452 + }, + { + "start": 5156.06, + "end": 5156.12, + "probability": 0.4729 + }, + { + "start": 5156.44, + "end": 5156.82, + "probability": 0.234 + }, + { + "start": 5156.82, + "end": 5162.02, + "probability": 0.9111 + }, + { + "start": 5162.02, + "end": 5165.94, + "probability": 0.9043 + }, + { + "start": 5166.5, + "end": 5172.3, + "probability": 0.8663 + }, + { + "start": 5172.86, + "end": 5173.66, + "probability": 0.6068 + }, + { + "start": 5173.8, + "end": 5178.26, + "probability": 0.9882 + }, + { + "start": 5178.74, + "end": 5178.74, + "probability": 0.194 + }, + { + "start": 5178.74, + "end": 5180.58, + "probability": 0.8738 + }, + { + "start": 5181.24, + "end": 5182.9, + "probability": 0.2109 + }, + { + "start": 5183.12, + "end": 5183.8, + "probability": 0.5754 + }, + { + "start": 5183.8, + "end": 5184.08, + "probability": 0.0423 + }, + { + "start": 5184.2, + "end": 5188.2, + "probability": 0.9294 + }, + { + "start": 5188.54, + "end": 5188.74, + "probability": 0.0427 + }, + { + "start": 5188.74, + "end": 5192.4, + "probability": 0.0832 + }, + { + "start": 5192.56, + "end": 5194.34, + "probability": 0.5607 + }, + { + "start": 5194.52, + "end": 5196.58, + "probability": 0.7999 + }, + { + "start": 5196.8, + "end": 5199.28, + "probability": 0.6375 + }, + { + "start": 5199.62, + "end": 5201.86, + "probability": 0.9753 + }, + { + "start": 5202.02, + "end": 5203.42, + "probability": 0.8892 + }, + { + "start": 5203.74, + "end": 5205.82, + "probability": 0.9595 + }, + { + "start": 5205.98, + "end": 5207.16, + "probability": 0.9094 + }, + { + "start": 5207.32, + "end": 5208.44, + "probability": 0.9734 + }, + { + "start": 5208.9, + "end": 5214.02, + "probability": 0.9983 + }, + { + "start": 5214.34, + "end": 5218.3, + "probability": 0.9989 + }, + { + "start": 5218.3, + "end": 5222.54, + "probability": 0.7801 + }, + { + "start": 5222.68, + "end": 5225.6, + "probability": 0.9308 + }, + { + "start": 5226.44, + "end": 5227.2, + "probability": 0.5925 + }, + { + "start": 5227.24, + "end": 5227.7, + "probability": 0.8219 + }, + { + "start": 5227.76, + "end": 5228.76, + "probability": 0.9476 + }, + { + "start": 5228.84, + "end": 5231.52, + "probability": 0.7016 + }, + { + "start": 5231.94, + "end": 5234.6, + "probability": 0.9866 + }, + { + "start": 5234.78, + "end": 5236.64, + "probability": 0.9615 + }, + { + "start": 5237.04, + "end": 5237.98, + "probability": 0.9602 + }, + { + "start": 5238.44, + "end": 5239.5, + "probability": 0.4976 + }, + { + "start": 5239.6, + "end": 5240.22, + "probability": 0.6284 + }, + { + "start": 5240.34, + "end": 5240.76, + "probability": 0.0767 + }, + { + "start": 5240.76, + "end": 5240.76, + "probability": 0.0611 + }, + { + "start": 5240.76, + "end": 5242.06, + "probability": 0.5025 + }, + { + "start": 5242.06, + "end": 5243.84, + "probability": 0.4539 + }, + { + "start": 5244.0, + "end": 5244.98, + "probability": 0.8071 + }, + { + "start": 5245.22, + "end": 5247.0, + "probability": 0.3888 + }, + { + "start": 5247.08, + "end": 5248.24, + "probability": 0.2925 + }, + { + "start": 5248.24, + "end": 5248.24, + "probability": 0.219 + }, + { + "start": 5248.24, + "end": 5249.54, + "probability": 0.6261 + }, + { + "start": 5249.64, + "end": 5251.44, + "probability": 0.8687 + }, + { + "start": 5251.46, + "end": 5253.48, + "probability": 0.5013 + }, + { + "start": 5254.14, + "end": 5256.7, + "probability": 0.2897 + }, + { + "start": 5256.98, + "end": 5258.06, + "probability": 0.5893 + }, + { + "start": 5258.22, + "end": 5259.53, + "probability": 0.2444 + }, + { + "start": 5259.78, + "end": 5261.16, + "probability": 0.2234 + }, + { + "start": 5261.16, + "end": 5262.08, + "probability": 0.3928 + }, + { + "start": 5263.32, + "end": 5267.38, + "probability": 0.4795 + }, + { + "start": 5268.02, + "end": 5270.3, + "probability": 0.5466 + }, + { + "start": 5270.58, + "end": 5271.98, + "probability": 0.5787 + }, + { + "start": 5271.98, + "end": 5274.78, + "probability": 0.62 + }, + { + "start": 5275.3, + "end": 5277.29, + "probability": 0.2077 + }, + { + "start": 5277.42, + "end": 5278.44, + "probability": 0.1158 + }, + { + "start": 5278.56, + "end": 5279.79, + "probability": 0.2312 + }, + { + "start": 5280.58, + "end": 5281.8, + "probability": 0.0709 + }, + { + "start": 5283.12, + "end": 5283.2, + "probability": 0.0039 + }, + { + "start": 5283.2, + "end": 5283.88, + "probability": 0.3734 + }, + { + "start": 5284.14, + "end": 5285.74, + "probability": 0.3426 + }, + { + "start": 5285.76, + "end": 5290.48, + "probability": 0.0737 + }, + { + "start": 5291.34, + "end": 5291.86, + "probability": 0.1427 + }, + { + "start": 5292.0, + "end": 5293.06, + "probability": 0.0409 + }, + { + "start": 5293.06, + "end": 5295.7, + "probability": 0.5342 + }, + { + "start": 5295.74, + "end": 5296.56, + "probability": 0.0451 + }, + { + "start": 5299.82, + "end": 5300.62, + "probability": 0.1555 + }, + { + "start": 5301.48, + "end": 5305.94, + "probability": 0.1992 + }, + { + "start": 5306.72, + "end": 5309.26, + "probability": 0.7224 + }, + { + "start": 5310.48, + "end": 5313.32, + "probability": 0.6775 + }, + { + "start": 5315.14, + "end": 5316.68, + "probability": 0.1849 + }, + { + "start": 5316.94, + "end": 5318.6, + "probability": 0.1758 + }, + { + "start": 5318.6, + "end": 5318.6, + "probability": 0.1416 + }, + { + "start": 5318.6, + "end": 5318.88, + "probability": 0.3157 + }, + { + "start": 5320.02, + "end": 5321.4, + "probability": 0.9102 + }, + { + "start": 5321.94, + "end": 5324.4, + "probability": 0.937 + }, + { + "start": 5325.24, + "end": 5326.9, + "probability": 0.7814 + }, + { + "start": 5328.02, + "end": 5328.22, + "probability": 0.0173 + }, + { + "start": 5330.54, + "end": 5330.92, + "probability": 0.0611 + }, + { + "start": 5331.04, + "end": 5333.4, + "probability": 0.6018 + }, + { + "start": 5333.58, + "end": 5335.16, + "probability": 0.6631 + }, + { + "start": 5335.16, + "end": 5336.28, + "probability": 0.9036 + }, + { + "start": 5336.46, + "end": 5338.32, + "probability": 0.6927 + }, + { + "start": 5338.4, + "end": 5340.48, + "probability": 0.8666 + }, + { + "start": 5340.5, + "end": 5343.26, + "probability": 0.9316 + }, + { + "start": 5343.26, + "end": 5344.0, + "probability": 0.0885 + }, + { + "start": 5344.02, + "end": 5344.54, + "probability": 0.5257 + }, + { + "start": 5344.54, + "end": 5350.5, + "probability": 0.7002 + }, + { + "start": 5351.26, + "end": 5352.54, + "probability": 0.7651 + }, + { + "start": 5353.26, + "end": 5358.74, + "probability": 0.9772 + }, + { + "start": 5359.4, + "end": 5360.02, + "probability": 0.3472 + }, + { + "start": 5361.12, + "end": 5366.56, + "probability": 0.964 + }, + { + "start": 5367.3, + "end": 5372.58, + "probability": 0.9959 + }, + { + "start": 5373.08, + "end": 5373.8, + "probability": 0.7566 + }, + { + "start": 5375.16, + "end": 5378.24, + "probability": 0.997 + }, + { + "start": 5379.22, + "end": 5381.4, + "probability": 0.9995 + }, + { + "start": 5382.06, + "end": 5384.14, + "probability": 0.9907 + }, + { + "start": 5384.82, + "end": 5386.76, + "probability": 0.9961 + }, + { + "start": 5387.7, + "end": 5388.42, + "probability": 0.8759 + }, + { + "start": 5388.86, + "end": 5389.95, + "probability": 0.9836 + }, + { + "start": 5390.58, + "end": 5392.84, + "probability": 0.9927 + }, + { + "start": 5393.84, + "end": 5395.92, + "probability": 0.9862 + }, + { + "start": 5396.14, + "end": 5397.52, + "probability": 0.805 + }, + { + "start": 5398.3, + "end": 5401.52, + "probability": 0.9604 + }, + { + "start": 5402.14, + "end": 5404.7, + "probability": 0.9854 + }, + { + "start": 5405.38, + "end": 5406.9, + "probability": 0.7415 + }, + { + "start": 5407.34, + "end": 5407.66, + "probability": 0.8958 + }, + { + "start": 5408.78, + "end": 5412.56, + "probability": 0.9974 + }, + { + "start": 5413.1, + "end": 5417.48, + "probability": 0.9815 + }, + { + "start": 5418.34, + "end": 5419.98, + "probability": 0.9796 + }, + { + "start": 5422.13, + "end": 5423.28, + "probability": 0.564 + }, + { + "start": 5423.28, + "end": 5425.94, + "probability": 0.7779 + }, + { + "start": 5426.6, + "end": 5427.92, + "probability": 0.9197 + }, + { + "start": 5428.4, + "end": 5429.6, + "probability": 0.9592 + }, + { + "start": 5430.12, + "end": 5433.18, + "probability": 0.9892 + }, + { + "start": 5433.72, + "end": 5437.58, + "probability": 0.9758 + }, + { + "start": 5438.4, + "end": 5439.28, + "probability": 0.8349 + }, + { + "start": 5439.88, + "end": 5442.26, + "probability": 0.9891 + }, + { + "start": 5443.22, + "end": 5443.44, + "probability": 0.5204 + }, + { + "start": 5443.58, + "end": 5444.18, + "probability": 0.8284 + }, + { + "start": 5444.66, + "end": 5445.96, + "probability": 0.9 + }, + { + "start": 5446.36, + "end": 5448.76, + "probability": 0.9207 + }, + { + "start": 5449.24, + "end": 5450.04, + "probability": 0.8765 + }, + { + "start": 5450.56, + "end": 5453.96, + "probability": 0.9919 + }, + { + "start": 5454.46, + "end": 5456.66, + "probability": 0.9874 + }, + { + "start": 5457.39, + "end": 5460.4, + "probability": 0.5295 + }, + { + "start": 5460.78, + "end": 5462.28, + "probability": 0.7167 + }, + { + "start": 5462.3, + "end": 5462.94, + "probability": 0.8831 + }, + { + "start": 5463.36, + "end": 5467.6, + "probability": 0.2289 + }, + { + "start": 5467.6, + "end": 5467.6, + "probability": 0.0956 + }, + { + "start": 5467.6, + "end": 5470.5, + "probability": 0.813 + }, + { + "start": 5470.7, + "end": 5474.78, + "probability": 0.9765 + }, + { + "start": 5475.24, + "end": 5475.84, + "probability": 0.1965 + }, + { + "start": 5475.86, + "end": 5476.12, + "probability": 0.0338 + }, + { + "start": 5476.12, + "end": 5482.82, + "probability": 0.8113 + }, + { + "start": 5483.02, + "end": 5487.14, + "probability": 0.8132 + }, + { + "start": 5487.68, + "end": 5491.08, + "probability": 0.9961 + }, + { + "start": 5491.08, + "end": 5493.98, + "probability": 0.9591 + }, + { + "start": 5495.92, + "end": 5496.6, + "probability": 0.541 + }, + { + "start": 5497.52, + "end": 5498.64, + "probability": 0.6794 + }, + { + "start": 5499.6, + "end": 5500.9, + "probability": 0.9065 + }, + { + "start": 5501.82, + "end": 5504.38, + "probability": 0.9779 + }, + { + "start": 5504.54, + "end": 5506.7, + "probability": 0.7181 + }, + { + "start": 5507.44, + "end": 5508.78, + "probability": 0.9666 + }, + { + "start": 5509.44, + "end": 5513.96, + "probability": 0.9947 + }, + { + "start": 5513.96, + "end": 5514.44, + "probability": 0.2391 + }, + { + "start": 5514.44, + "end": 5518.76, + "probability": 0.9163 + }, + { + "start": 5518.76, + "end": 5520.28, + "probability": 0.1573 + }, + { + "start": 5520.36, + "end": 5524.5, + "probability": 0.9451 + }, + { + "start": 5524.9, + "end": 5528.68, + "probability": 0.9926 + }, + { + "start": 5528.92, + "end": 5531.84, + "probability": 0.9961 + }, + { + "start": 5532.44, + "end": 5535.76, + "probability": 0.9757 + }, + { + "start": 5535.9, + "end": 5535.9, + "probability": 0.4693 + }, + { + "start": 5535.9, + "end": 5537.96, + "probability": 0.7817 + }, + { + "start": 5537.96, + "end": 5541.1, + "probability": 0.8672 + }, + { + "start": 5541.44, + "end": 5545.1, + "probability": 0.7947 + }, + { + "start": 5545.18, + "end": 5546.24, + "probability": 0.367 + }, + { + "start": 5546.24, + "end": 5547.6, + "probability": 0.6796 + }, + { + "start": 5547.76, + "end": 5550.68, + "probability": 0.8476 + }, + { + "start": 5550.94, + "end": 5553.04, + "probability": 0.6962 + }, + { + "start": 5553.18, + "end": 5554.66, + "probability": 0.9206 + }, + { + "start": 5554.92, + "end": 5555.08, + "probability": 0.162 + }, + { + "start": 5555.08, + "end": 5556.18, + "probability": 0.9076 + }, + { + "start": 5557.3, + "end": 5559.24, + "probability": 0.3539 + }, + { + "start": 5559.24, + "end": 5559.64, + "probability": 0.4197 + }, + { + "start": 5560.58, + "end": 5564.04, + "probability": 0.8014 + }, + { + "start": 5564.3, + "end": 5566.04, + "probability": 0.6987 + }, + { + "start": 5566.16, + "end": 5567.08, + "probability": 0.6766 + }, + { + "start": 5567.12, + "end": 5568.4, + "probability": 0.754 + }, + { + "start": 5568.54, + "end": 5569.7, + "probability": 0.874 + }, + { + "start": 5570.48, + "end": 5572.66, + "probability": 0.6584 + }, + { + "start": 5572.78, + "end": 5573.76, + "probability": 0.6535 + }, + { + "start": 5574.04, + "end": 5574.98, + "probability": 0.9237 + }, + { + "start": 5575.1, + "end": 5575.72, + "probability": 0.8842 + }, + { + "start": 5576.4, + "end": 5577.22, + "probability": 0.9661 + }, + { + "start": 5577.74, + "end": 5581.84, + "probability": 0.6776 + }, + { + "start": 5581.84, + "end": 5585.22, + "probability": 0.9899 + }, + { + "start": 5585.7, + "end": 5586.98, + "probability": 0.6225 + }, + { + "start": 5587.76, + "end": 5591.26, + "probability": 0.9921 + }, + { + "start": 5591.36, + "end": 5592.54, + "probability": 0.7022 + }, + { + "start": 5592.74, + "end": 5593.42, + "probability": 0.8582 + }, + { + "start": 5593.52, + "end": 5594.52, + "probability": 0.8868 + }, + { + "start": 5595.56, + "end": 5598.0, + "probability": 0.9633 + }, + { + "start": 5598.0, + "end": 5600.04, + "probability": 0.9627 + }, + { + "start": 5600.22, + "end": 5602.66, + "probability": 0.7958 + }, + { + "start": 5602.74, + "end": 5605.68, + "probability": 0.9333 + }, + { + "start": 5605.68, + "end": 5608.56, + "probability": 0.7568 + }, + { + "start": 5608.66, + "end": 5610.72, + "probability": 0.8257 + }, + { + "start": 5611.16, + "end": 5612.28, + "probability": 0.6574 + }, + { + "start": 5612.42, + "end": 5613.7, + "probability": 0.9857 + }, + { + "start": 5613.82, + "end": 5614.02, + "probability": 0.5818 + }, + { + "start": 5614.68, + "end": 5615.36, + "probability": 0.7824 + }, + { + "start": 5615.58, + "end": 5616.96, + "probability": 0.902 + }, + { + "start": 5633.74, + "end": 5633.74, + "probability": 0.2413 + }, + { + "start": 5633.74, + "end": 5636.34, + "probability": 0.7861 + }, + { + "start": 5637.22, + "end": 5641.92, + "probability": 0.9874 + }, + { + "start": 5643.64, + "end": 5644.4, + "probability": 0.5947 + }, + { + "start": 5646.52, + "end": 5649.36, + "probability": 0.9953 + }, + { + "start": 5650.0, + "end": 5653.6, + "probability": 0.8642 + }, + { + "start": 5654.36, + "end": 5658.58, + "probability": 0.9965 + }, + { + "start": 5659.38, + "end": 5663.46, + "probability": 0.9825 + }, + { + "start": 5664.3, + "end": 5666.92, + "probability": 0.9493 + }, + { + "start": 5667.4, + "end": 5670.74, + "probability": 0.9995 + }, + { + "start": 5671.32, + "end": 5673.16, + "probability": 0.7515 + }, + { + "start": 5674.22, + "end": 5675.88, + "probability": 0.9009 + }, + { + "start": 5676.9, + "end": 5678.13, + "probability": 0.9328 + }, + { + "start": 5678.94, + "end": 5680.26, + "probability": 0.748 + }, + { + "start": 5680.64, + "end": 5681.3, + "probability": 0.8658 + }, + { + "start": 5682.24, + "end": 5687.02, + "probability": 0.9757 + }, + { + "start": 5687.62, + "end": 5690.64, + "probability": 0.9958 + }, + { + "start": 5691.26, + "end": 5692.4, + "probability": 0.9983 + }, + { + "start": 5693.98, + "end": 5694.3, + "probability": 0.5468 + }, + { + "start": 5694.32, + "end": 5695.24, + "probability": 0.9875 + }, + { + "start": 5695.4, + "end": 5697.46, + "probability": 0.9932 + }, + { + "start": 5697.62, + "end": 5701.42, + "probability": 0.9919 + }, + { + "start": 5702.32, + "end": 5706.5, + "probability": 0.9087 + }, + { + "start": 5707.44, + "end": 5710.84, + "probability": 0.9638 + }, + { + "start": 5711.0, + "end": 5714.46, + "probability": 0.9867 + }, + { + "start": 5715.7, + "end": 5721.04, + "probability": 0.9811 + }, + { + "start": 5722.4, + "end": 5725.22, + "probability": 0.9908 + }, + { + "start": 5726.5, + "end": 5730.86, + "probability": 0.9972 + }, + { + "start": 5732.32, + "end": 5736.62, + "probability": 0.9923 + }, + { + "start": 5739.28, + "end": 5744.18, + "probability": 0.9971 + }, + { + "start": 5745.4, + "end": 5749.7, + "probability": 0.9973 + }, + { + "start": 5750.8, + "end": 5751.78, + "probability": 0.8339 + }, + { + "start": 5752.34, + "end": 5752.36, + "probability": 0.6597 + }, + { + "start": 5752.92, + "end": 5753.82, + "probability": 0.995 + }, + { + "start": 5755.02, + "end": 5758.52, + "probability": 0.9973 + }, + { + "start": 5759.28, + "end": 5761.32, + "probability": 0.9946 + }, + { + "start": 5762.5, + "end": 5765.8, + "probability": 0.8709 + }, + { + "start": 5766.56, + "end": 5769.88, + "probability": 0.9955 + }, + { + "start": 5769.88, + "end": 5773.24, + "probability": 0.9897 + }, + { + "start": 5773.64, + "end": 5774.56, + "probability": 0.7928 + }, + { + "start": 5775.34, + "end": 5775.9, + "probability": 0.8388 + }, + { + "start": 5777.0, + "end": 5779.98, + "probability": 0.9888 + }, + { + "start": 5781.08, + "end": 5785.52, + "probability": 0.9977 + }, + { + "start": 5786.16, + "end": 5786.46, + "probability": 0.765 + }, + { + "start": 5788.16, + "end": 5788.66, + "probability": 0.7636 + }, + { + "start": 5789.1, + "end": 5789.56, + "probability": 0.7869 + }, + { + "start": 5790.26, + "end": 5791.78, + "probability": 0.8165 + }, + { + "start": 5808.94, + "end": 5811.06, + "probability": 0.6829 + }, + { + "start": 5811.58, + "end": 5815.58, + "probability": 0.9604 + }, + { + "start": 5815.64, + "end": 5817.48, + "probability": 0.9611 + }, + { + "start": 5817.88, + "end": 5819.34, + "probability": 0.9116 + }, + { + "start": 5820.28, + "end": 5824.16, + "probability": 0.9941 + }, + { + "start": 5825.04, + "end": 5828.72, + "probability": 0.7838 + }, + { + "start": 5829.58, + "end": 5831.44, + "probability": 0.9125 + }, + { + "start": 5832.0, + "end": 5834.36, + "probability": 0.9586 + }, + { + "start": 5834.42, + "end": 5838.8, + "probability": 0.9974 + }, + { + "start": 5838.8, + "end": 5843.54, + "probability": 0.9759 + }, + { + "start": 5844.26, + "end": 5845.62, + "probability": 0.9877 + }, + { + "start": 5846.28, + "end": 5848.64, + "probability": 0.9829 + }, + { + "start": 5849.18, + "end": 5850.96, + "probability": 0.9252 + }, + { + "start": 5852.08, + "end": 5857.62, + "probability": 0.9801 + }, + { + "start": 5858.22, + "end": 5859.98, + "probability": 0.999 + }, + { + "start": 5860.48, + "end": 5865.18, + "probability": 0.9978 + }, + { + "start": 5866.38, + "end": 5866.92, + "probability": 0.8579 + }, + { + "start": 5867.52, + "end": 5868.9, + "probability": 0.9417 + }, + { + "start": 5868.98, + "end": 5872.42, + "probability": 0.98 + }, + { + "start": 5873.06, + "end": 5877.2, + "probability": 0.9922 + }, + { + "start": 5877.78, + "end": 5881.0, + "probability": 0.9823 + }, + { + "start": 5881.58, + "end": 5886.56, + "probability": 0.9609 + }, + { + "start": 5886.82, + "end": 5887.86, + "probability": 0.8781 + }, + { + "start": 5887.92, + "end": 5888.6, + "probability": 0.7825 + }, + { + "start": 5888.62, + "end": 5893.72, + "probability": 0.9885 + }, + { + "start": 5894.2, + "end": 5896.48, + "probability": 0.8341 + }, + { + "start": 5896.58, + "end": 5897.36, + "probability": 0.3231 + }, + { + "start": 5897.78, + "end": 5901.52, + "probability": 0.8479 + }, + { + "start": 5901.52, + "end": 5903.5, + "probability": 0.8864 + }, + { + "start": 5904.34, + "end": 5906.66, + "probability": 0.9238 + }, + { + "start": 5907.36, + "end": 5908.6, + "probability": 0.9779 + }, + { + "start": 5908.68, + "end": 5910.28, + "probability": 0.9963 + }, + { + "start": 5910.66, + "end": 5911.78, + "probability": 0.9547 + }, + { + "start": 5912.7, + "end": 5914.14, + "probability": 0.9374 + }, + { + "start": 5914.34, + "end": 5916.37, + "probability": 0.7305 + }, + { + "start": 5916.96, + "end": 5918.9, + "probability": 0.992 + }, + { + "start": 5920.02, + "end": 5920.82, + "probability": 0.9117 + }, + { + "start": 5921.5, + "end": 5922.44, + "probability": 0.9769 + }, + { + "start": 5923.36, + "end": 5924.92, + "probability": 0.9976 + }, + { + "start": 5926.61, + "end": 5930.44, + "probability": 0.8779 + }, + { + "start": 5930.66, + "end": 5932.46, + "probability": 0.9736 + }, + { + "start": 5933.36, + "end": 5935.66, + "probability": 0.9312 + }, + { + "start": 5935.84, + "end": 5936.22, + "probability": 0.4768 + }, + { + "start": 5936.28, + "end": 5937.33, + "probability": 0.9976 + }, + { + "start": 5938.1, + "end": 5940.34, + "probability": 0.7368 + }, + { + "start": 5941.16, + "end": 5943.88, + "probability": 0.978 + }, + { + "start": 5944.44, + "end": 5945.12, + "probability": 0.9656 + }, + { + "start": 5946.14, + "end": 5948.8, + "probability": 0.9229 + }, + { + "start": 5949.72, + "end": 5952.8, + "probability": 0.9009 + }, + { + "start": 5953.32, + "end": 5954.04, + "probability": 0.8229 + }, + { + "start": 5954.56, + "end": 5959.8, + "probability": 0.9862 + }, + { + "start": 5960.32, + "end": 5964.48, + "probability": 0.9967 + }, + { + "start": 5965.06, + "end": 5967.8, + "probability": 0.9442 + }, + { + "start": 5968.4, + "end": 5970.12, + "probability": 0.9371 + }, + { + "start": 5971.26, + "end": 5972.68, + "probability": 0.7352 + }, + { + "start": 5973.06, + "end": 5978.14, + "probability": 0.7245 + }, + { + "start": 5978.18, + "end": 5980.06, + "probability": 0.2202 + }, + { + "start": 5980.26, + "end": 5983.92, + "probability": 0.9702 + }, + { + "start": 5984.3, + "end": 5986.68, + "probability": 0.6131 + }, + { + "start": 5987.06, + "end": 5987.76, + "probability": 0.7549 + }, + { + "start": 5987.9, + "end": 5990.08, + "probability": 0.9014 + }, + { + "start": 5990.36, + "end": 5996.3, + "probability": 0.9976 + }, + { + "start": 5996.42, + "end": 5998.36, + "probability": 0.8144 + }, + { + "start": 5998.44, + "end": 5999.02, + "probability": 0.7597 + }, + { + "start": 6000.78, + "end": 6001.16, + "probability": 0.2998 + }, + { + "start": 6001.16, + "end": 6002.92, + "probability": 0.5082 + }, + { + "start": 6018.32, + "end": 6019.32, + "probability": 0.3016 + }, + { + "start": 6019.32, + "end": 6021.3, + "probability": 0.6773 + }, + { + "start": 6022.32, + "end": 6024.57, + "probability": 0.9943 + }, + { + "start": 6025.5, + "end": 6028.4, + "probability": 0.9651 + }, + { + "start": 6029.6, + "end": 6033.48, + "probability": 0.7202 + }, + { + "start": 6034.24, + "end": 6036.02, + "probability": 0.9985 + }, + { + "start": 6036.64, + "end": 6037.84, + "probability": 0.764 + }, + { + "start": 6038.48, + "end": 6039.62, + "probability": 0.5269 + }, + { + "start": 6040.84, + "end": 6043.86, + "probability": 0.9473 + }, + { + "start": 6044.66, + "end": 6046.94, + "probability": 0.9915 + }, + { + "start": 6047.04, + "end": 6048.2, + "probability": 0.8731 + }, + { + "start": 6048.28, + "end": 6049.48, + "probability": 0.9551 + }, + { + "start": 6049.54, + "end": 6052.04, + "probability": 0.9971 + }, + { + "start": 6052.1, + "end": 6054.12, + "probability": 0.9296 + }, + { + "start": 6054.88, + "end": 6056.42, + "probability": 0.9603 + }, + { + "start": 6056.48, + "end": 6057.01, + "probability": 0.8652 + }, + { + "start": 6057.4, + "end": 6058.24, + "probability": 0.9192 + }, + { + "start": 6058.32, + "end": 6061.14, + "probability": 0.9954 + }, + { + "start": 6061.7, + "end": 6061.98, + "probability": 0.5275 + }, + { + "start": 6062.3, + "end": 6064.1, + "probability": 0.996 + }, + { + "start": 6064.56, + "end": 6065.34, + "probability": 0.8152 + }, + { + "start": 6065.92, + "end": 6069.14, + "probability": 0.9866 + }, + { + "start": 6069.9, + "end": 6071.74, + "probability": 0.99 + }, + { + "start": 6071.86, + "end": 6072.97, + "probability": 0.9895 + }, + { + "start": 6073.32, + "end": 6074.16, + "probability": 0.9976 + }, + { + "start": 6074.54, + "end": 6077.78, + "probability": 0.9951 + }, + { + "start": 6077.78, + "end": 6081.38, + "probability": 0.9976 + }, + { + "start": 6081.82, + "end": 6084.44, + "probability": 0.9188 + }, + { + "start": 6084.52, + "end": 6084.88, + "probability": 0.5399 + }, + { + "start": 6084.96, + "end": 6085.3, + "probability": 0.6865 + }, + { + "start": 6085.86, + "end": 6086.84, + "probability": 0.9558 + }, + { + "start": 6087.62, + "end": 6089.06, + "probability": 0.9751 + }, + { + "start": 6090.52, + "end": 6092.38, + "probability": 0.6756 + }, + { + "start": 6092.48, + "end": 6095.46, + "probability": 0.9226 + }, + { + "start": 6095.62, + "end": 6096.66, + "probability": 0.3415 + }, + { + "start": 6096.8, + "end": 6097.72, + "probability": 0.5625 + }, + { + "start": 6097.98, + "end": 6100.4, + "probability": 0.6318 + }, + { + "start": 6100.48, + "end": 6101.88, + "probability": 0.9803 + }, + { + "start": 6102.22, + "end": 6102.36, + "probability": 0.5351 + }, + { + "start": 6102.78, + "end": 6104.22, + "probability": 0.9095 + }, + { + "start": 6104.28, + "end": 6104.52, + "probability": 0.7436 + }, + { + "start": 6104.62, + "end": 6105.14, + "probability": 0.6773 + }, + { + "start": 6105.16, + "end": 6105.32, + "probability": 0.7451 + }, + { + "start": 6105.42, + "end": 6105.5, + "probability": 0.7458 + }, + { + "start": 6105.64, + "end": 6105.86, + "probability": 0.8038 + }, + { + "start": 6106.14, + "end": 6106.7, + "probability": 0.9025 + }, + { + "start": 6106.76, + "end": 6107.24, + "probability": 0.7647 + }, + { + "start": 6107.3, + "end": 6108.26, + "probability": 0.9701 + }, + { + "start": 6108.62, + "end": 6109.53, + "probability": 0.8643 + }, + { + "start": 6110.08, + "end": 6111.98, + "probability": 0.946 + }, + { + "start": 6112.98, + "end": 6116.68, + "probability": 0.964 + }, + { + "start": 6116.96, + "end": 6117.3, + "probability": 0.9128 + }, + { + "start": 6117.94, + "end": 6122.04, + "probability": 0.5124 + }, + { + "start": 6123.58, + "end": 6126.04, + "probability": 0.9136 + }, + { + "start": 6126.48, + "end": 6128.42, + "probability": 0.9868 + }, + { + "start": 6128.82, + "end": 6130.84, + "probability": 0.9961 + }, + { + "start": 6130.92, + "end": 6133.04, + "probability": 0.6797 + }, + { + "start": 6133.14, + "end": 6135.04, + "probability": 0.563 + }, + { + "start": 6135.7, + "end": 6138.22, + "probability": 0.9955 + }, + { + "start": 6138.22, + "end": 6141.12, + "probability": 0.8179 + }, + { + "start": 6141.58, + "end": 6144.54, + "probability": 0.958 + }, + { + "start": 6144.88, + "end": 6146.7, + "probability": 0.9971 + }, + { + "start": 6147.26, + "end": 6149.88, + "probability": 0.9778 + }, + { + "start": 6152.04, + "end": 6152.48, + "probability": 0.4098 + }, + { + "start": 6152.58, + "end": 6152.86, + "probability": 0.3664 + }, + { + "start": 6152.86, + "end": 6154.58, + "probability": 0.5924 + }, + { + "start": 6154.8, + "end": 6161.06, + "probability": 0.732 + }, + { + "start": 6162.28, + "end": 6164.74, + "probability": 0.936 + }, + { + "start": 6164.82, + "end": 6166.38, + "probability": 0.9984 + }, + { + "start": 6166.68, + "end": 6169.32, + "probability": 0.9969 + }, + { + "start": 6171.97, + "end": 6177.14, + "probability": 0.9798 + }, + { + "start": 6177.58, + "end": 6178.48, + "probability": 0.5219 + }, + { + "start": 6178.68, + "end": 6184.12, + "probability": 0.8338 + }, + { + "start": 6184.44, + "end": 6185.82, + "probability": 0.5511 + }, + { + "start": 6186.66, + "end": 6187.42, + "probability": 0.6544 + }, + { + "start": 6187.78, + "end": 6189.46, + "probability": 0.978 + }, + { + "start": 6189.58, + "end": 6191.06, + "probability": 0.9183 + }, + { + "start": 6191.5, + "end": 6194.24, + "probability": 0.7933 + }, + { + "start": 6194.5, + "end": 6195.46, + "probability": 0.7142 + }, + { + "start": 6195.58, + "end": 6195.98, + "probability": 0.9298 + }, + { + "start": 6196.02, + "end": 6198.4, + "probability": 0.9895 + }, + { + "start": 6198.86, + "end": 6200.5, + "probability": 0.9297 + }, + { + "start": 6200.96, + "end": 6202.58, + "probability": 0.418 + }, + { + "start": 6202.9, + "end": 6203.93, + "probability": 0.9932 + }, + { + "start": 6204.36, + "end": 6205.9, + "probability": 0.6397 + }, + { + "start": 6209.2, + "end": 6210.94, + "probability": 0.923 + }, + { + "start": 6220.84, + "end": 6221.16, + "probability": 0.3502 + }, + { + "start": 6221.2, + "end": 6223.68, + "probability": 0.8237 + }, + { + "start": 6225.08, + "end": 6225.52, + "probability": 0.8736 + }, + { + "start": 6226.56, + "end": 6229.26, + "probability": 0.8971 + }, + { + "start": 6230.68, + "end": 6232.46, + "probability": 0.9739 + }, + { + "start": 6234.1, + "end": 6235.1, + "probability": 0.6874 + }, + { + "start": 6236.22, + "end": 6238.84, + "probability": 0.8056 + }, + { + "start": 6240.24, + "end": 6243.72, + "probability": 0.986 + }, + { + "start": 6245.16, + "end": 6246.2, + "probability": 0.9812 + }, + { + "start": 6249.04, + "end": 6251.92, + "probability": 0.8492 + }, + { + "start": 6253.34, + "end": 6255.7, + "probability": 0.9987 + }, + { + "start": 6255.96, + "end": 6258.18, + "probability": 0.9858 + }, + { + "start": 6259.96, + "end": 6260.92, + "probability": 0.983 + }, + { + "start": 6263.34, + "end": 6267.12, + "probability": 0.4012 + }, + { + "start": 6267.68, + "end": 6270.16, + "probability": 0.915 + }, + { + "start": 6271.14, + "end": 6274.38, + "probability": 0.7704 + }, + { + "start": 6274.62, + "end": 6277.24, + "probability": 0.937 + }, + { + "start": 6277.82, + "end": 6280.3, + "probability": 0.9604 + }, + { + "start": 6281.1, + "end": 6282.14, + "probability": 0.9476 + }, + { + "start": 6282.92, + "end": 6283.72, + "probability": 0.944 + }, + { + "start": 6283.78, + "end": 6284.6, + "probability": 0.9863 + }, + { + "start": 6284.84, + "end": 6285.62, + "probability": 0.8441 + }, + { + "start": 6286.12, + "end": 6287.54, + "probability": 0.9673 + }, + { + "start": 6287.72, + "end": 6288.78, + "probability": 0.9111 + }, + { + "start": 6289.68, + "end": 6292.28, + "probability": 0.8608 + }, + { + "start": 6292.4, + "end": 6292.9, + "probability": 0.909 + }, + { + "start": 6293.44, + "end": 6296.56, + "probability": 0.9631 + }, + { + "start": 6297.58, + "end": 6302.48, + "probability": 0.9863 + }, + { + "start": 6302.94, + "end": 6303.96, + "probability": 0.8622 + }, + { + "start": 6304.24, + "end": 6306.4, + "probability": 0.8047 + }, + { + "start": 6307.12, + "end": 6309.6, + "probability": 0.9851 + }, + { + "start": 6309.9, + "end": 6310.64, + "probability": 0.9622 + }, + { + "start": 6311.46, + "end": 6312.5, + "probability": 0.9834 + }, + { + "start": 6312.72, + "end": 6315.12, + "probability": 0.9464 + }, + { + "start": 6315.92, + "end": 6317.0, + "probability": 0.8976 + }, + { + "start": 6317.06, + "end": 6317.8, + "probability": 0.9897 + }, + { + "start": 6317.92, + "end": 6318.86, + "probability": 0.8145 + }, + { + "start": 6318.92, + "end": 6320.14, + "probability": 0.9424 + }, + { + "start": 6320.94, + "end": 6327.02, + "probability": 0.9362 + }, + { + "start": 6327.46, + "end": 6328.98, + "probability": 0.9883 + }, + { + "start": 6329.06, + "end": 6333.04, + "probability": 0.9575 + }, + { + "start": 6333.18, + "end": 6333.68, + "probability": 0.9478 + }, + { + "start": 6334.32, + "end": 6337.4, + "probability": 0.9884 + }, + { + "start": 6338.22, + "end": 6338.86, + "probability": 0.9545 + }, + { + "start": 6339.4, + "end": 6340.76, + "probability": 0.7285 + }, + { + "start": 6341.18, + "end": 6341.84, + "probability": 0.6781 + }, + { + "start": 6342.18, + "end": 6343.14, + "probability": 0.9548 + }, + { + "start": 6344.16, + "end": 6344.44, + "probability": 0.454 + }, + { + "start": 6345.52, + "end": 6349.34, + "probability": 0.9717 + }, + { + "start": 6349.38, + "end": 6352.3, + "probability": 0.9912 + }, + { + "start": 6352.94, + "end": 6355.74, + "probability": 0.9914 + }, + { + "start": 6355.78, + "end": 6356.42, + "probability": 0.5126 + }, + { + "start": 6356.58, + "end": 6358.36, + "probability": 0.8972 + }, + { + "start": 6359.36, + "end": 6364.14, + "probability": 0.9869 + }, + { + "start": 6364.34, + "end": 6365.08, + "probability": 0.8913 + }, + { + "start": 6365.14, + "end": 6366.64, + "probability": 0.8935 + }, + { + "start": 6367.86, + "end": 6370.32, + "probability": 0.8402 + }, + { + "start": 6370.4, + "end": 6375.46, + "probability": 0.9025 + }, + { + "start": 6376.66, + "end": 6378.68, + "probability": 0.9863 + }, + { + "start": 6379.52, + "end": 6382.32, + "probability": 0.9651 + }, + { + "start": 6383.06, + "end": 6385.85, + "probability": 0.8979 + }, + { + "start": 6386.24, + "end": 6387.26, + "probability": 0.8534 + }, + { + "start": 6387.76, + "end": 6389.46, + "probability": 0.9747 + }, + { + "start": 6390.08, + "end": 6392.0, + "probability": 0.8522 + }, + { + "start": 6392.06, + "end": 6394.54, + "probability": 0.9827 + }, + { + "start": 6394.54, + "end": 6398.1, + "probability": 0.9618 + }, + { + "start": 6398.8, + "end": 6399.16, + "probability": 0.5966 + }, + { + "start": 6399.82, + "end": 6401.06, + "probability": 0.9751 + }, + { + "start": 6405.2, + "end": 6406.22, + "probability": 0.4963 + }, + { + "start": 6407.0, + "end": 6408.94, + "probability": 0.8064 + }, + { + "start": 6409.78, + "end": 6412.04, + "probability": 0.699 + }, + { + "start": 6412.68, + "end": 6413.56, + "probability": 0.8322 + }, + { + "start": 6417.86, + "end": 6421.96, + "probability": 0.7241 + }, + { + "start": 6422.5, + "end": 6426.34, + "probability": 0.9968 + }, + { + "start": 6428.1, + "end": 6429.32, + "probability": 0.8131 + }, + { + "start": 6429.46, + "end": 6432.5, + "probability": 0.8459 + }, + { + "start": 6433.7, + "end": 6438.44, + "probability": 0.7027 + }, + { + "start": 6439.44, + "end": 6445.82, + "probability": 0.8616 + }, + { + "start": 6445.9, + "end": 6447.0, + "probability": 0.7976 + }, + { + "start": 6447.1, + "end": 6448.14, + "probability": 0.3249 + }, + { + "start": 6455.2, + "end": 6456.88, + "probability": 0.9658 + }, + { + "start": 6458.38, + "end": 6461.68, + "probability": 0.9955 + }, + { + "start": 6462.72, + "end": 6468.1, + "probability": 0.998 + }, + { + "start": 6468.76, + "end": 6469.58, + "probability": 0.7903 + }, + { + "start": 6470.08, + "end": 6472.08, + "probability": 0.9751 + }, + { + "start": 6472.66, + "end": 6476.06, + "probability": 0.9988 + }, + { + "start": 6476.2, + "end": 6476.76, + "probability": 0.8052 + }, + { + "start": 6478.35, + "end": 6480.38, + "probability": 0.8215 + }, + { + "start": 6480.42, + "end": 6481.0, + "probability": 0.8752 + }, + { + "start": 6481.62, + "end": 6482.76, + "probability": 0.96 + }, + { + "start": 6483.36, + "end": 6484.08, + "probability": 0.8311 + }, + { + "start": 6486.64, + "end": 6489.2, + "probability": 0.0987 + }, + { + "start": 6491.12, + "end": 6493.52, + "probability": 0.1555 + }, + { + "start": 6494.68, + "end": 6494.8, + "probability": 0.0043 + }, + { + "start": 6503.56, + "end": 6506.1, + "probability": 0.5981 + }, + { + "start": 6506.5, + "end": 6509.18, + "probability": 0.9291 + }, + { + "start": 6509.4, + "end": 6511.09, + "probability": 0.9978 + }, + { + "start": 6511.46, + "end": 6512.74, + "probability": 0.9827 + }, + { + "start": 6513.54, + "end": 6517.46, + "probability": 0.8738 + }, + { + "start": 6518.64, + "end": 6521.48, + "probability": 0.7081 + }, + { + "start": 6521.58, + "end": 6523.06, + "probability": 0.4707 + }, + { + "start": 6523.32, + "end": 6523.32, + "probability": 0.2441 + }, + { + "start": 6523.38, + "end": 6523.9, + "probability": 0.3094 + }, + { + "start": 6524.0, + "end": 6530.82, + "probability": 0.516 + }, + { + "start": 6532.2, + "end": 6535.42, + "probability": 0.9812 + }, + { + "start": 6536.22, + "end": 6537.66, + "probability": 0.791 + }, + { + "start": 6539.16, + "end": 6541.9, + "probability": 0.9933 + }, + { + "start": 6542.4, + "end": 6545.84, + "probability": 0.9794 + }, + { + "start": 6547.02, + "end": 6554.68, + "probability": 0.9941 + }, + { + "start": 6555.8, + "end": 6556.62, + "probability": 0.7808 + }, + { + "start": 6558.26, + "end": 6564.02, + "probability": 0.999 + }, + { + "start": 6564.02, + "end": 6571.36, + "probability": 0.998 + }, + { + "start": 6571.92, + "end": 6574.22, + "probability": 0.9931 + }, + { + "start": 6574.76, + "end": 6581.38, + "probability": 0.899 + }, + { + "start": 6582.68, + "end": 6584.5, + "probability": 0.5153 + }, + { + "start": 6585.74, + "end": 6587.62, + "probability": 0.9951 + }, + { + "start": 6588.24, + "end": 6593.22, + "probability": 0.9854 + }, + { + "start": 6594.46, + "end": 6597.16, + "probability": 0.9929 + }, + { + "start": 6597.38, + "end": 6600.62, + "probability": 0.9816 + }, + { + "start": 6601.08, + "end": 6603.82, + "probability": 0.9829 + }, + { + "start": 6605.16, + "end": 6606.74, + "probability": 0.953 + }, + { + "start": 6607.12, + "end": 6613.66, + "probability": 0.9705 + }, + { + "start": 6614.38, + "end": 6616.08, + "probability": 0.9844 + }, + { + "start": 6617.32, + "end": 6620.06, + "probability": 0.9548 + }, + { + "start": 6620.58, + "end": 6626.86, + "probability": 0.9637 + }, + { + "start": 6627.54, + "end": 6633.06, + "probability": 0.9956 + }, + { + "start": 6633.34, + "end": 6636.9, + "probability": 0.9784 + }, + { + "start": 6636.9, + "end": 6642.22, + "probability": 0.9945 + }, + { + "start": 6642.8, + "end": 6646.44, + "probability": 0.9782 + }, + { + "start": 6646.5, + "end": 6652.44, + "probability": 0.9985 + }, + { + "start": 6652.76, + "end": 6654.26, + "probability": 0.5844 + }, + { + "start": 6654.38, + "end": 6661.7, + "probability": 0.9949 + }, + { + "start": 6661.8, + "end": 6667.44, + "probability": 0.9963 + }, + { + "start": 6668.48, + "end": 6670.32, + "probability": 0.9303 + }, + { + "start": 6670.82, + "end": 6673.92, + "probability": 0.9917 + }, + { + "start": 6674.34, + "end": 6681.44, + "probability": 0.9963 + }, + { + "start": 6682.2, + "end": 6685.64, + "probability": 0.8649 + }, + { + "start": 6686.22, + "end": 6691.14, + "probability": 0.9981 + }, + { + "start": 6691.72, + "end": 6692.7, + "probability": 0.8684 + }, + { + "start": 6693.46, + "end": 6694.12, + "probability": 0.5447 + }, + { + "start": 6694.54, + "end": 6698.96, + "probability": 0.9944 + }, + { + "start": 6698.96, + "end": 6702.34, + "probability": 0.9972 + }, + { + "start": 6702.96, + "end": 6706.48, + "probability": 0.9987 + }, + { + "start": 6706.48, + "end": 6711.32, + "probability": 0.9809 + }, + { + "start": 6711.96, + "end": 6714.86, + "probability": 0.9951 + }, + { + "start": 6715.48, + "end": 6716.24, + "probability": 0.7981 + }, + { + "start": 6717.4, + "end": 6719.86, + "probability": 0.9542 + }, + { + "start": 6719.92, + "end": 6723.66, + "probability": 0.9985 + }, + { + "start": 6723.8, + "end": 6724.08, + "probability": 0.7293 + }, + { + "start": 6726.3, + "end": 6726.98, + "probability": 0.458 + }, + { + "start": 6727.0, + "end": 6728.7, + "probability": 0.7207 + }, + { + "start": 6755.36, + "end": 6756.84, + "probability": 0.5583 + }, + { + "start": 6758.04, + "end": 6761.34, + "probability": 0.9413 + }, + { + "start": 6761.72, + "end": 6762.82, + "probability": 0.5672 + }, + { + "start": 6762.88, + "end": 6766.1, + "probability": 0.9296 + }, + { + "start": 6767.06, + "end": 6771.46, + "probability": 0.9765 + }, + { + "start": 6773.06, + "end": 6776.72, + "probability": 0.9976 + }, + { + "start": 6776.72, + "end": 6779.0, + "probability": 0.5705 + }, + { + "start": 6779.18, + "end": 6779.52, + "probability": 0.8051 + }, + { + "start": 6779.6, + "end": 6780.26, + "probability": 0.562 + }, + { + "start": 6780.42, + "end": 6780.72, + "probability": 0.3099 + }, + { + "start": 6780.84, + "end": 6784.08, + "probability": 0.9868 + }, + { + "start": 6784.16, + "end": 6784.38, + "probability": 0.0145 + }, + { + "start": 6784.46, + "end": 6788.16, + "probability": 0.9976 + }, + { + "start": 6788.64, + "end": 6792.08, + "probability": 0.9471 + }, + { + "start": 6793.2, + "end": 6795.69, + "probability": 0.9957 + }, + { + "start": 6795.8, + "end": 6796.46, + "probability": 0.9832 + }, + { + "start": 6796.52, + "end": 6797.56, + "probability": 0.9515 + }, + { + "start": 6797.74, + "end": 6799.55, + "probability": 0.8929 + }, + { + "start": 6800.56, + "end": 6805.58, + "probability": 0.9332 + }, + { + "start": 6806.68, + "end": 6808.22, + "probability": 0.6772 + }, + { + "start": 6808.44, + "end": 6810.54, + "probability": 0.9394 + }, + { + "start": 6810.88, + "end": 6811.82, + "probability": 0.9792 + }, + { + "start": 6811.88, + "end": 6812.82, + "probability": 0.8918 + }, + { + "start": 6813.24, + "end": 6817.72, + "probability": 0.9883 + }, + { + "start": 6819.02, + "end": 6821.96, + "probability": 0.9927 + }, + { + "start": 6821.96, + "end": 6823.38, + "probability": 0.6645 + }, + { + "start": 6824.31, + "end": 6830.08, + "probability": 0.8761 + }, + { + "start": 6831.78, + "end": 6834.72, + "probability": 0.9907 + }, + { + "start": 6834.72, + "end": 6838.02, + "probability": 0.9988 + }, + { + "start": 6839.46, + "end": 6841.82, + "probability": 0.8639 + }, + { + "start": 6841.88, + "end": 6844.12, + "probability": 0.9904 + }, + { + "start": 6845.66, + "end": 6848.78, + "probability": 0.9941 + }, + { + "start": 6849.94, + "end": 6851.44, + "probability": 0.9563 + }, + { + "start": 6854.32, + "end": 6855.48, + "probability": 0.8315 + }, + { + "start": 6856.08, + "end": 6860.52, + "probability": 0.9929 + }, + { + "start": 6860.52, + "end": 6865.16, + "probability": 0.9958 + }, + { + "start": 6865.52, + "end": 6867.28, + "probability": 0.9747 + }, + { + "start": 6868.28, + "end": 6872.06, + "probability": 0.8231 + }, + { + "start": 6873.5, + "end": 6874.62, + "probability": 0.9863 + }, + { + "start": 6876.14, + "end": 6879.32, + "probability": 0.8921 + }, + { + "start": 6879.98, + "end": 6884.0, + "probability": 0.9821 + }, + { + "start": 6885.3, + "end": 6887.34, + "probability": 0.6618 + }, + { + "start": 6887.56, + "end": 6890.44, + "probability": 0.9236 + }, + { + "start": 6891.38, + "end": 6895.5, + "probability": 0.9937 + }, + { + "start": 6896.66, + "end": 6898.78, + "probability": 0.9094 + }, + { + "start": 6900.56, + "end": 6902.52, + "probability": 0.98 + }, + { + "start": 6903.32, + "end": 6903.54, + "probability": 0.2683 + }, + { + "start": 6903.54, + "end": 6908.86, + "probability": 0.9895 + }, + { + "start": 6910.04, + "end": 6911.1, + "probability": 0.916 + }, + { + "start": 6912.48, + "end": 6916.3, + "probability": 0.9743 + }, + { + "start": 6916.38, + "end": 6917.2, + "probability": 0.6921 + }, + { + "start": 6917.34, + "end": 6917.8, + "probability": 0.8179 + }, + { + "start": 6918.38, + "end": 6921.86, + "probability": 0.9342 + }, + { + "start": 6922.52, + "end": 6924.18, + "probability": 0.9941 + }, + { + "start": 6924.54, + "end": 6927.98, + "probability": 0.9777 + }, + { + "start": 6928.52, + "end": 6929.58, + "probability": 0.6064 + }, + { + "start": 6931.36, + "end": 6932.96, + "probability": 0.8104 + }, + { + "start": 6933.36, + "end": 6936.56, + "probability": 0.9946 + }, + { + "start": 6936.56, + "end": 6939.26, + "probability": 0.9161 + }, + { + "start": 6939.86, + "end": 6945.16, + "probability": 0.999 + }, + { + "start": 6945.98, + "end": 6946.52, + "probability": 0.7397 + }, + { + "start": 6948.1, + "end": 6950.3, + "probability": 0.9756 + }, + { + "start": 6951.88, + "end": 6952.36, + "probability": 0.0976 + }, + { + "start": 6954.72, + "end": 6955.42, + "probability": 0.0561 + }, + { + "start": 6959.44, + "end": 6961.55, + "probability": 0.3615 + }, + { + "start": 6969.16, + "end": 6969.16, + "probability": 0.2865 + }, + { + "start": 6969.16, + "end": 6970.8, + "probability": 0.4852 + }, + { + "start": 6971.14, + "end": 6972.64, + "probability": 0.6475 + }, + { + "start": 6973.5, + "end": 6974.6, + "probability": 0.9911 + }, + { + "start": 6975.34, + "end": 6978.1, + "probability": 0.9807 + }, + { + "start": 6978.74, + "end": 6980.84, + "probability": 0.9866 + }, + { + "start": 6981.64, + "end": 6985.56, + "probability": 0.8558 + }, + { + "start": 6986.52, + "end": 6987.8, + "probability": 0.915 + }, + { + "start": 6988.32, + "end": 6991.52, + "probability": 0.987 + }, + { + "start": 6992.04, + "end": 6995.08, + "probability": 0.9955 + }, + { + "start": 6996.12, + "end": 6999.9, + "probability": 0.7756 + }, + { + "start": 7000.8, + "end": 7001.36, + "probability": 0.9343 + }, + { + "start": 7002.64, + "end": 7005.18, + "probability": 0.9958 + }, + { + "start": 7006.14, + "end": 7008.46, + "probability": 0.9901 + }, + { + "start": 7009.26, + "end": 7012.26, + "probability": 0.8955 + }, + { + "start": 7013.04, + "end": 7015.48, + "probability": 0.8274 + }, + { + "start": 7016.3, + "end": 7017.68, + "probability": 0.9757 + }, + { + "start": 7017.7, + "end": 7021.0, + "probability": 0.9872 + }, + { + "start": 7021.38, + "end": 7021.82, + "probability": 0.7684 + }, + { + "start": 7023.2, + "end": 7027.76, + "probability": 0.9785 + }, + { + "start": 7029.08, + "end": 7031.72, + "probability": 0.948 + }, + { + "start": 7032.84, + "end": 7033.28, + "probability": 0.5662 + }, + { + "start": 7034.0, + "end": 7037.9, + "probability": 0.8955 + }, + { + "start": 7037.94, + "end": 7038.44, + "probability": 0.7875 + }, + { + "start": 7039.94, + "end": 7041.3, + "probability": 0.9182 + }, + { + "start": 7042.32, + "end": 7043.5, + "probability": 0.9958 + }, + { + "start": 7044.58, + "end": 7049.48, + "probability": 0.8127 + }, + { + "start": 7050.3, + "end": 7055.16, + "probability": 0.9889 + }, + { + "start": 7055.5, + "end": 7061.68, + "probability": 0.9274 + }, + { + "start": 7061.84, + "end": 7062.84, + "probability": 0.7088 + }, + { + "start": 7063.34, + "end": 7064.28, + "probability": 0.9721 + }, + { + "start": 7064.42, + "end": 7067.46, + "probability": 0.9806 + }, + { + "start": 7068.4, + "end": 7069.48, + "probability": 0.8186 + }, + { + "start": 7070.36, + "end": 7072.14, + "probability": 0.9568 + }, + { + "start": 7072.36, + "end": 7076.46, + "probability": 0.9374 + }, + { + "start": 7076.46, + "end": 7078.48, + "probability": 0.9953 + }, + { + "start": 7079.86, + "end": 7080.94, + "probability": 0.996 + }, + { + "start": 7081.2, + "end": 7082.16, + "probability": 0.9907 + }, + { + "start": 7082.32, + "end": 7083.44, + "probability": 0.9854 + }, + { + "start": 7084.5, + "end": 7085.64, + "probability": 0.5451 + }, + { + "start": 7086.16, + "end": 7087.28, + "probability": 0.9934 + }, + { + "start": 7087.36, + "end": 7091.36, + "probability": 0.8245 + }, + { + "start": 7092.64, + "end": 7096.74, + "probability": 0.9285 + }, + { + "start": 7097.42, + "end": 7099.82, + "probability": 0.9949 + }, + { + "start": 7100.96, + "end": 7105.34, + "probability": 0.9982 + }, + { + "start": 7106.04, + "end": 7107.6, + "probability": 0.9845 + }, + { + "start": 7108.64, + "end": 7111.12, + "probability": 0.8341 + }, + { + "start": 7111.94, + "end": 7114.5, + "probability": 0.9804 + }, + { + "start": 7115.18, + "end": 7117.2, + "probability": 0.9517 + }, + { + "start": 7117.98, + "end": 7119.46, + "probability": 0.9752 + }, + { + "start": 7120.14, + "end": 7125.4, + "probability": 0.9741 + }, + { + "start": 7126.68, + "end": 7127.84, + "probability": 0.9101 + }, + { + "start": 7128.82, + "end": 7133.04, + "probability": 0.9941 + }, + { + "start": 7133.44, + "end": 7136.96, + "probability": 0.8989 + }, + { + "start": 7137.1, + "end": 7137.5, + "probability": 0.8163 + }, + { + "start": 7138.92, + "end": 7140.02, + "probability": 0.7499 + }, + { + "start": 7140.98, + "end": 7143.54, + "probability": 0.865 + }, + { + "start": 7144.24, + "end": 7144.88, + "probability": 0.827 + }, + { + "start": 7146.36, + "end": 7149.32, + "probability": 0.7493 + }, + { + "start": 7149.94, + "end": 7152.1, + "probability": 0.8258 + }, + { + "start": 7153.16, + "end": 7154.38, + "probability": 0.9737 + }, + { + "start": 7155.9, + "end": 7159.76, + "probability": 0.9741 + }, + { + "start": 7160.6, + "end": 7167.04, + "probability": 0.9961 + }, + { + "start": 7167.84, + "end": 7170.36, + "probability": 0.8059 + }, + { + "start": 7170.86, + "end": 7174.26, + "probability": 0.9966 + }, + { + "start": 7174.46, + "end": 7175.0, + "probability": 0.4033 + }, + { + "start": 7175.98, + "end": 7178.82, + "probability": 0.8217 + }, + { + "start": 7178.98, + "end": 7179.2, + "probability": 0.7825 + }, + { + "start": 7179.96, + "end": 7182.9, + "probability": 0.6856 + }, + { + "start": 7183.08, + "end": 7184.22, + "probability": 0.1427 + }, + { + "start": 7184.24, + "end": 7185.08, + "probability": 0.6368 + }, + { + "start": 7185.42, + "end": 7186.82, + "probability": 0.6866 + }, + { + "start": 7188.81, + "end": 7192.8, + "probability": 0.4832 + }, + { + "start": 7192.94, + "end": 7193.24, + "probability": 0.7137 + }, + { + "start": 7193.28, + "end": 7195.7, + "probability": 0.9658 + }, + { + "start": 7202.8, + "end": 7204.14, + "probability": 0.8056 + }, + { + "start": 7205.08, + "end": 7207.34, + "probability": 0.8883 + }, + { + "start": 7209.8, + "end": 7214.76, + "probability": 0.9893 + }, + { + "start": 7216.88, + "end": 7217.7, + "probability": 0.7466 + }, + { + "start": 7218.48, + "end": 7219.46, + "probability": 0.8661 + }, + { + "start": 7220.68, + "end": 7224.58, + "probability": 0.6609 + }, + { + "start": 7225.64, + "end": 7226.18, + "probability": 0.9565 + }, + { + "start": 7226.7, + "end": 7228.19, + "probability": 0.9863 + }, + { + "start": 7229.36, + "end": 7231.14, + "probability": 0.592 + }, + { + "start": 7232.74, + "end": 7233.56, + "probability": 0.6198 + }, + { + "start": 7236.22, + "end": 7238.8, + "probability": 0.9618 + }, + { + "start": 7239.96, + "end": 7240.54, + "probability": 0.8571 + }, + { + "start": 7241.26, + "end": 7241.72, + "probability": 0.893 + }, + { + "start": 7242.88, + "end": 7243.92, + "probability": 0.9648 + }, + { + "start": 7244.86, + "end": 7245.4, + "probability": 0.958 + }, + { + "start": 7247.0, + "end": 7251.28, + "probability": 0.9941 + }, + { + "start": 7252.28, + "end": 7257.98, + "probability": 0.9976 + }, + { + "start": 7258.66, + "end": 7261.86, + "probability": 0.9878 + }, + { + "start": 7262.46, + "end": 7265.42, + "probability": 0.9766 + }, + { + "start": 7265.94, + "end": 7267.34, + "probability": 0.9789 + }, + { + "start": 7268.06, + "end": 7270.44, + "probability": 0.9941 + }, + { + "start": 7271.02, + "end": 7272.1, + "probability": 0.6155 + }, + { + "start": 7274.96, + "end": 7276.68, + "probability": 0.8315 + }, + { + "start": 7278.62, + "end": 7280.74, + "probability": 0.9834 + }, + { + "start": 7282.86, + "end": 7285.64, + "probability": 0.9989 + }, + { + "start": 7287.24, + "end": 7288.0, + "probability": 0.8833 + }, + { + "start": 7288.88, + "end": 7289.46, + "probability": 0.9832 + }, + { + "start": 7290.58, + "end": 7291.36, + "probability": 0.9874 + }, + { + "start": 7293.5, + "end": 7295.14, + "probability": 0.954 + }, + { + "start": 7296.76, + "end": 7299.34, + "probability": 0.9032 + }, + { + "start": 7301.22, + "end": 7303.92, + "probability": 0.9784 + }, + { + "start": 7306.54, + "end": 7307.1, + "probability": 0.4732 + }, + { + "start": 7308.38, + "end": 7309.46, + "probability": 0.9868 + }, + { + "start": 7310.58, + "end": 7311.22, + "probability": 0.9947 + }, + { + "start": 7312.14, + "end": 7313.28, + "probability": 0.998 + }, + { + "start": 7313.9, + "end": 7316.34, + "probability": 0.9971 + }, + { + "start": 7317.04, + "end": 7319.82, + "probability": 0.8161 + }, + { + "start": 7322.64, + "end": 7325.3, + "probability": 0.8003 + }, + { + "start": 7327.74, + "end": 7328.34, + "probability": 0.995 + }, + { + "start": 7331.02, + "end": 7335.8, + "probability": 0.9946 + }, + { + "start": 7337.34, + "end": 7340.93, + "probability": 0.7076 + }, + { + "start": 7342.36, + "end": 7343.3, + "probability": 0.5862 + }, + { + "start": 7344.42, + "end": 7349.7, + "probability": 0.9963 + }, + { + "start": 7350.4, + "end": 7352.56, + "probability": 0.999 + }, + { + "start": 7353.08, + "end": 7356.68, + "probability": 0.9941 + }, + { + "start": 7357.32, + "end": 7360.1, + "probability": 0.8391 + }, + { + "start": 7360.92, + "end": 7361.52, + "probability": 0.9589 + }, + { + "start": 7363.32, + "end": 7365.48, + "probability": 0.8197 + }, + { + "start": 7366.66, + "end": 7367.8, + "probability": 0.8751 + }, + { + "start": 7368.58, + "end": 7370.38, + "probability": 0.986 + }, + { + "start": 7370.96, + "end": 7374.62, + "probability": 0.94 + }, + { + "start": 7375.4, + "end": 7376.58, + "probability": 0.9746 + }, + { + "start": 7377.14, + "end": 7378.96, + "probability": 0.6556 + }, + { + "start": 7380.34, + "end": 7381.08, + "probability": 0.7706 + }, + { + "start": 7382.1, + "end": 7383.2, + "probability": 0.9697 + }, + { + "start": 7384.1, + "end": 7388.86, + "probability": 0.9922 + }, + { + "start": 7389.14, + "end": 7390.04, + "probability": 0.9768 + }, + { + "start": 7390.56, + "end": 7391.86, + "probability": 0.9752 + }, + { + "start": 7392.4, + "end": 7395.6, + "probability": 0.4528 + }, + { + "start": 7395.76, + "end": 7396.82, + "probability": 0.7292 + }, + { + "start": 7396.84, + "end": 7396.84, + "probability": 0.3822 + }, + { + "start": 7396.84, + "end": 7397.96, + "probability": 0.7846 + }, + { + "start": 7398.26, + "end": 7398.62, + "probability": 0.4725 + }, + { + "start": 7398.62, + "end": 7399.66, + "probability": 0.9365 + }, + { + "start": 7400.1, + "end": 7400.1, + "probability": 0.6192 + }, + { + "start": 7400.1, + "end": 7400.38, + "probability": 0.2373 + }, + { + "start": 7400.8, + "end": 7401.16, + "probability": 0.8368 + }, + { + "start": 7401.22, + "end": 7401.34, + "probability": 0.4451 + }, + { + "start": 7401.34, + "end": 7402.1, + "probability": 0.8629 + }, + { + "start": 7402.54, + "end": 7403.8, + "probability": 0.9542 + }, + { + "start": 7403.82, + "end": 7405.66, + "probability": 0.9725 + }, + { + "start": 7406.22, + "end": 7407.48, + "probability": 0.4343 + }, + { + "start": 7407.48, + "end": 7408.9, + "probability": 0.6796 + }, + { + "start": 7411.32, + "end": 7411.52, + "probability": 0.3627 + }, + { + "start": 7411.68, + "end": 7411.74, + "probability": 0.2823 + }, + { + "start": 7411.74, + "end": 7411.74, + "probability": 0.2468 + }, + { + "start": 7411.74, + "end": 7411.74, + "probability": 0.424 + }, + { + "start": 7411.74, + "end": 7411.88, + "probability": 0.6433 + }, + { + "start": 7412.68, + "end": 7415.78, + "probability": 0.7686 + }, + { + "start": 7415.82, + "end": 7416.28, + "probability": 0.929 + }, + { + "start": 7416.32, + "end": 7416.54, + "probability": 0.9226 + }, + { + "start": 7420.38, + "end": 7422.0, + "probability": 0.8088 + }, + { + "start": 7422.0, + "end": 7424.54, + "probability": 0.004 + }, + { + "start": 7425.08, + "end": 7426.82, + "probability": 0.1218 + }, + { + "start": 7426.98, + "end": 7427.12, + "probability": 0.0732 + }, + { + "start": 7427.12, + "end": 7427.12, + "probability": 0.192 + }, + { + "start": 7427.4, + "end": 7429.12, + "probability": 0.5305 + }, + { + "start": 7429.88, + "end": 7430.34, + "probability": 0.6932 + }, + { + "start": 7430.9, + "end": 7431.52, + "probability": 0.6962 + }, + { + "start": 7431.74, + "end": 7431.94, + "probability": 0.9526 + }, + { + "start": 7432.5, + "end": 7433.74, + "probability": 0.8693 + }, + { + "start": 7445.16, + "end": 7446.6, + "probability": 0.7616 + }, + { + "start": 7447.72, + "end": 7449.58, + "probability": 0.8042 + }, + { + "start": 7451.1, + "end": 7453.42, + "probability": 0.8419 + }, + { + "start": 7454.84, + "end": 7456.2, + "probability": 0.9922 + }, + { + "start": 7457.48, + "end": 7464.04, + "probability": 0.9873 + }, + { + "start": 7464.74, + "end": 7465.44, + "probability": 0.9393 + }, + { + "start": 7466.3, + "end": 7469.84, + "probability": 0.8557 + }, + { + "start": 7470.04, + "end": 7470.68, + "probability": 0.5823 + }, + { + "start": 7470.86, + "end": 7472.0, + "probability": 0.8285 + }, + { + "start": 7473.56, + "end": 7474.64, + "probability": 0.7661 + }, + { + "start": 7475.28, + "end": 7477.78, + "probability": 0.9819 + }, + { + "start": 7478.72, + "end": 7479.61, + "probability": 0.9336 + }, + { + "start": 7480.62, + "end": 7482.98, + "probability": 0.998 + }, + { + "start": 7483.9, + "end": 7485.4, + "probability": 0.9768 + }, + { + "start": 7486.32, + "end": 7487.5, + "probability": 0.988 + }, + { + "start": 7487.62, + "end": 7488.36, + "probability": 0.49 + }, + { + "start": 7488.46, + "end": 7491.7, + "probability": 0.6534 + }, + { + "start": 7492.36, + "end": 7493.0, + "probability": 0.858 + }, + { + "start": 7493.64, + "end": 7494.78, + "probability": 0.9847 + }, + { + "start": 7495.62, + "end": 7500.86, + "probability": 0.9805 + }, + { + "start": 7501.9, + "end": 7502.66, + "probability": 0.9946 + }, + { + "start": 7502.74, + "end": 7503.48, + "probability": 0.6583 + }, + { + "start": 7505.04, + "end": 7505.92, + "probability": 0.419 + }, + { + "start": 7506.36, + "end": 7506.72, + "probability": 0.4969 + }, + { + "start": 7506.72, + "end": 7507.12, + "probability": 0.5501 + }, + { + "start": 7507.5, + "end": 7507.94, + "probability": 0.4014 + }, + { + "start": 7507.94, + "end": 7509.0, + "probability": 0.1911 + }, + { + "start": 7509.3, + "end": 7510.26, + "probability": 0.8497 + }, + { + "start": 7510.34, + "end": 7511.14, + "probability": 0.443 + }, + { + "start": 7511.54, + "end": 7516.68, + "probability": 0.9252 + }, + { + "start": 7516.94, + "end": 7520.6, + "probability": 0.959 + }, + { + "start": 7520.62, + "end": 7521.46, + "probability": 0.3799 + }, + { + "start": 7521.5, + "end": 7522.46, + "probability": 0.7488 + }, + { + "start": 7523.32, + "end": 7529.9, + "probability": 0.993 + }, + { + "start": 7530.98, + "end": 7534.02, + "probability": 0.9915 + }, + { + "start": 7535.06, + "end": 7536.64, + "probability": 0.9978 + }, + { + "start": 7537.5, + "end": 7538.56, + "probability": 0.9387 + }, + { + "start": 7539.14, + "end": 7540.04, + "probability": 0.9987 + }, + { + "start": 7540.74, + "end": 7543.1, + "probability": 0.9699 + }, + { + "start": 7543.12, + "end": 7548.1, + "probability": 0.9639 + }, + { + "start": 7549.2, + "end": 7550.41, + "probability": 0.9946 + }, + { + "start": 7551.54, + "end": 7554.02, + "probability": 0.9832 + }, + { + "start": 7554.06, + "end": 7554.96, + "probability": 0.5053 + }, + { + "start": 7555.2, + "end": 7556.84, + "probability": 0.8052 + }, + { + "start": 7557.46, + "end": 7559.18, + "probability": 0.938 + }, + { + "start": 7561.06, + "end": 7563.8, + "probability": 0.9974 + }, + { + "start": 7566.12, + "end": 7566.96, + "probability": 0.8339 + }, + { + "start": 7567.02, + "end": 7568.34, + "probability": 0.9918 + }, + { + "start": 7568.42, + "end": 7569.32, + "probability": 0.84 + }, + { + "start": 7570.46, + "end": 7574.54, + "probability": 0.9987 + }, + { + "start": 7574.54, + "end": 7578.89, + "probability": 0.9945 + }, + { + "start": 7579.98, + "end": 7581.92, + "probability": 0.9814 + }, + { + "start": 7582.86, + "end": 7586.1, + "probability": 0.9697 + }, + { + "start": 7586.54, + "end": 7588.6, + "probability": 0.998 + }, + { + "start": 7590.5, + "end": 7594.96, + "probability": 0.9736 + }, + { + "start": 7595.78, + "end": 7599.28, + "probability": 0.9177 + }, + { + "start": 7599.96, + "end": 7601.26, + "probability": 0.967 + }, + { + "start": 7601.8, + "end": 7603.36, + "probability": 0.9725 + }, + { + "start": 7603.92, + "end": 7608.32, + "probability": 0.9259 + }, + { + "start": 7609.34, + "end": 7610.28, + "probability": 0.9 + }, + { + "start": 7610.38, + "end": 7616.16, + "probability": 0.9915 + }, + { + "start": 7616.66, + "end": 7620.36, + "probability": 0.9072 + }, + { + "start": 7620.36, + "end": 7625.6, + "probability": 0.9994 + }, + { + "start": 7627.4, + "end": 7631.76, + "probability": 0.9748 + }, + { + "start": 7632.72, + "end": 7637.24, + "probability": 0.9701 + }, + { + "start": 7637.74, + "end": 7638.5, + "probability": 0.5453 + }, + { + "start": 7639.28, + "end": 7642.56, + "probability": 0.9765 + }, + { + "start": 7642.88, + "end": 7643.82, + "probability": 0.9653 + }, + { + "start": 7644.24, + "end": 7646.1, + "probability": 0.9663 + }, + { + "start": 7646.92, + "end": 7651.92, + "probability": 0.9766 + }, + { + "start": 7651.92, + "end": 7652.34, + "probability": 0.2726 + }, + { + "start": 7652.46, + "end": 7652.58, + "probability": 0.4228 + }, + { + "start": 7652.88, + "end": 7655.9, + "probability": 0.9732 + }, + { + "start": 7656.52, + "end": 7659.54, + "probability": 0.9951 + }, + { + "start": 7659.54, + "end": 7663.9, + "probability": 0.9727 + }, + { + "start": 7664.06, + "end": 7664.32, + "probability": 0.6827 + }, + { + "start": 7664.82, + "end": 7665.12, + "probability": 0.478 + }, + { + "start": 7665.18, + "end": 7667.74, + "probability": 0.6843 + }, + { + "start": 7668.32, + "end": 7671.42, + "probability": 0.7478 + }, + { + "start": 7672.74, + "end": 7677.56, + "probability": 0.9096 + }, + { + "start": 7678.22, + "end": 7679.88, + "probability": 0.7885 + }, + { + "start": 7679.94, + "end": 7680.32, + "probability": 0.7501 + }, + { + "start": 7680.4, + "end": 7681.5, + "probability": 0.9712 + }, + { + "start": 7681.96, + "end": 7682.6, + "probability": 0.8854 + }, + { + "start": 7683.72, + "end": 7686.34, + "probability": 0.6574 + }, + { + "start": 7686.34, + "end": 7688.36, + "probability": 0.9152 + }, + { + "start": 7688.5, + "end": 7689.1, + "probability": 0.7564 + }, + { + "start": 7689.1, + "end": 7689.38, + "probability": 0.5681 + }, + { + "start": 7691.36, + "end": 7691.62, + "probability": 0.407 + }, + { + "start": 7692.3, + "end": 7692.44, + "probability": 0.4971 + }, + { + "start": 7692.88, + "end": 7694.02, + "probability": 0.7558 + }, + { + "start": 7694.72, + "end": 7697.83, + "probability": 0.9674 + }, + { + "start": 7698.22, + "end": 7699.36, + "probability": 0.7801 + }, + { + "start": 7699.4, + "end": 7700.36, + "probability": 0.9674 + }, + { + "start": 7700.62, + "end": 7703.02, + "probability": 0.7409 + }, + { + "start": 7704.08, + "end": 7706.66, + "probability": 0.7438 + }, + { + "start": 7707.9, + "end": 7711.88, + "probability": 0.9899 + }, + { + "start": 7712.94, + "end": 7715.76, + "probability": 0.8531 + }, + { + "start": 7716.92, + "end": 7721.06, + "probability": 0.99 + }, + { + "start": 7721.26, + "end": 7723.66, + "probability": 0.9951 + }, + { + "start": 7726.2, + "end": 7728.72, + "probability": 0.9609 + }, + { + "start": 7729.3, + "end": 7732.04, + "probability": 0.9985 + }, + { + "start": 7732.72, + "end": 7734.18, + "probability": 0.7689 + }, + { + "start": 7734.28, + "end": 7734.66, + "probability": 0.3831 + }, + { + "start": 7735.86, + "end": 7742.12, + "probability": 0.9871 + }, + { + "start": 7742.9, + "end": 7744.2, + "probability": 0.8237 + }, + { + "start": 7744.88, + "end": 7746.18, + "probability": 0.9333 + }, + { + "start": 7747.94, + "end": 7748.36, + "probability": 0.684 + }, + { + "start": 7748.4, + "end": 7752.4, + "probability": 0.8847 + }, + { + "start": 7753.1, + "end": 7755.4, + "probability": 0.9895 + }, + { + "start": 7756.4, + "end": 7763.92, + "probability": 0.9248 + }, + { + "start": 7763.98, + "end": 7764.92, + "probability": 0.8644 + }, + { + "start": 7765.18, + "end": 7768.22, + "probability": 0.8927 + }, + { + "start": 7768.78, + "end": 7771.1, + "probability": 0.9134 + }, + { + "start": 7771.24, + "end": 7772.17, + "probability": 0.9883 + }, + { + "start": 7773.78, + "end": 7776.18, + "probability": 0.9973 + }, + { + "start": 7776.94, + "end": 7778.62, + "probability": 0.9994 + }, + { + "start": 7779.32, + "end": 7781.68, + "probability": 0.9966 + }, + { + "start": 7781.78, + "end": 7783.24, + "probability": 0.9751 + }, + { + "start": 7785.56, + "end": 7788.54, + "probability": 0.9131 + }, + { + "start": 7789.38, + "end": 7791.32, + "probability": 0.9721 + }, + { + "start": 7791.9, + "end": 7793.44, + "probability": 0.7294 + }, + { + "start": 7793.98, + "end": 7795.72, + "probability": 0.7917 + }, + { + "start": 7797.32, + "end": 7800.3, + "probability": 0.9934 + }, + { + "start": 7800.3, + "end": 7806.04, + "probability": 0.8699 + }, + { + "start": 7807.34, + "end": 7808.2, + "probability": 0.9267 + }, + { + "start": 7808.72, + "end": 7811.44, + "probability": 0.9544 + }, + { + "start": 7812.38, + "end": 7814.26, + "probability": 0.7561 + }, + { + "start": 7815.16, + "end": 7819.26, + "probability": 0.9976 + }, + { + "start": 7819.86, + "end": 7820.58, + "probability": 0.8274 + }, + { + "start": 7821.0, + "end": 7823.69, + "probability": 0.9807 + }, + { + "start": 7825.2, + "end": 7828.3, + "probability": 0.9689 + }, + { + "start": 7829.04, + "end": 7832.08, + "probability": 0.9918 + }, + { + "start": 7832.94, + "end": 7835.66, + "probability": 0.9946 + }, + { + "start": 7836.56, + "end": 7838.56, + "probability": 0.8122 + }, + { + "start": 7839.54, + "end": 7842.9, + "probability": 0.8655 + }, + { + "start": 7843.64, + "end": 7845.0, + "probability": 0.9282 + }, + { + "start": 7845.96, + "end": 7847.18, + "probability": 0.9678 + }, + { + "start": 7847.88, + "end": 7849.4, + "probability": 0.5734 + }, + { + "start": 7850.1, + "end": 7852.86, + "probability": 0.9953 + }, + { + "start": 7853.92, + "end": 7855.08, + "probability": 0.8247 + }, + { + "start": 7856.68, + "end": 7858.98, + "probability": 0.6793 + }, + { + "start": 7859.54, + "end": 7861.66, + "probability": 0.9985 + }, + { + "start": 7861.66, + "end": 7864.9, + "probability": 0.8475 + }, + { + "start": 7865.46, + "end": 7869.08, + "probability": 0.7916 + }, + { + "start": 7869.12, + "end": 7873.14, + "probability": 0.9873 + }, + { + "start": 7875.58, + "end": 7876.82, + "probability": 0.2491 + }, + { + "start": 7880.05, + "end": 7882.6, + "probability": 0.5497 + }, + { + "start": 7884.18, + "end": 7888.12, + "probability": 0.9233 + }, + { + "start": 7888.9, + "end": 7890.58, + "probability": 0.8926 + }, + { + "start": 7891.36, + "end": 7897.4, + "probability": 0.9917 + }, + { + "start": 7898.36, + "end": 7898.64, + "probability": 0.2345 + }, + { + "start": 7898.82, + "end": 7902.32, + "probability": 0.9973 + }, + { + "start": 7903.16, + "end": 7905.74, + "probability": 0.8149 + }, + { + "start": 7906.68, + "end": 7909.34, + "probability": 0.9115 + }, + { + "start": 7909.88, + "end": 7911.72, + "probability": 0.9652 + }, + { + "start": 7912.54, + "end": 7913.14, + "probability": 0.545 + }, + { + "start": 7913.4, + "end": 7915.12, + "probability": 0.619 + }, + { + "start": 7915.76, + "end": 7917.08, + "probability": 0.7852 + }, + { + "start": 7917.84, + "end": 7922.4, + "probability": 0.9965 + }, + { + "start": 7923.04, + "end": 7925.72, + "probability": 0.9982 + }, + { + "start": 7926.54, + "end": 7929.96, + "probability": 0.7282 + }, + { + "start": 7930.42, + "end": 7930.72, + "probability": 0.9716 + }, + { + "start": 7931.72, + "end": 7934.0, + "probability": 0.9297 + }, + { + "start": 7934.58, + "end": 7936.12, + "probability": 0.8808 + }, + { + "start": 7936.36, + "end": 7938.38, + "probability": 0.98 + }, + { + "start": 7938.62, + "end": 7939.0, + "probability": 0.9021 + }, + { + "start": 7940.32, + "end": 7942.64, + "probability": 0.8413 + }, + { + "start": 7942.7, + "end": 7945.4, + "probability": 0.8109 + }, + { + "start": 7946.04, + "end": 7951.74, + "probability": 0.4392 + }, + { + "start": 7963.62, + "end": 7964.7, + "probability": 0.8937 + }, + { + "start": 7965.34, + "end": 7966.96, + "probability": 0.8883 + }, + { + "start": 7967.82, + "end": 7968.86, + "probability": 0.9599 + }, + { + "start": 7969.46, + "end": 7970.84, + "probability": 0.7224 + }, + { + "start": 7971.7, + "end": 7974.04, + "probability": 0.8902 + }, + { + "start": 7974.82, + "end": 7976.82, + "probability": 0.187 + }, + { + "start": 7977.44, + "end": 7979.54, + "probability": 0.9751 + }, + { + "start": 7980.16, + "end": 7984.46, + "probability": 0.9903 + }, + { + "start": 7985.14, + "end": 7991.64, + "probability": 0.9877 + }, + { + "start": 7991.72, + "end": 7992.3, + "probability": 0.5065 + }, + { + "start": 7992.3, + "end": 7992.66, + "probability": 0.675 + }, + { + "start": 7993.2, + "end": 7994.26, + "probability": 0.9765 + }, + { + "start": 7994.54, + "end": 7995.22, + "probability": 0.8983 + }, + { + "start": 7995.48, + "end": 7996.22, + "probability": 0.9542 + }, + { + "start": 7996.74, + "end": 7996.82, + "probability": 0.0165 + }, + { + "start": 7996.82, + "end": 8001.06, + "probability": 0.8104 + }, + { + "start": 8001.64, + "end": 8004.66, + "probability": 0.7983 + }, + { + "start": 8004.66, + "end": 8007.96, + "probability": 0.5109 + }, + { + "start": 8008.32, + "end": 8010.3, + "probability": 0.9595 + }, + { + "start": 8010.72, + "end": 8011.52, + "probability": 0.9154 + }, + { + "start": 8011.56, + "end": 8012.18, + "probability": 0.434 + }, + { + "start": 8012.38, + "end": 8012.74, + "probability": 0.0759 + }, + { + "start": 8012.88, + "end": 8013.04, + "probability": 0.4109 + }, + { + "start": 8013.24, + "end": 8013.36, + "probability": 0.6987 + }, + { + "start": 8013.48, + "end": 8013.88, + "probability": 0.7626 + }, + { + "start": 8014.0, + "end": 8014.9, + "probability": 0.573 + }, + { + "start": 8014.94, + "end": 8015.68, + "probability": 0.6319 + }, + { + "start": 8015.84, + "end": 8017.0, + "probability": 0.955 + }, + { + "start": 8017.12, + "end": 8017.24, + "probability": 0.9297 + }, + { + "start": 8017.34, + "end": 8023.4, + "probability": 0.9397 + }, + { + "start": 8023.62, + "end": 8024.5, + "probability": 0.9729 + }, + { + "start": 8025.74, + "end": 8028.72, + "probability": 0.6639 + }, + { + "start": 8028.76, + "end": 8033.18, + "probability": 0.9071 + }, + { + "start": 8033.4, + "end": 8035.08, + "probability": 0.6093 + }, + { + "start": 8036.08, + "end": 8036.84, + "probability": 0.9023 + }, + { + "start": 8037.2, + "end": 8039.68, + "probability": 0.9004 + }, + { + "start": 8040.02, + "end": 8041.0, + "probability": 0.8018 + }, + { + "start": 8041.12, + "end": 8043.7, + "probability": 0.8982 + }, + { + "start": 8044.32, + "end": 8047.82, + "probability": 0.9674 + }, + { + "start": 8048.38, + "end": 8052.36, + "probability": 0.9907 + }, + { + "start": 8052.46, + "end": 8056.96, + "probability": 0.9928 + }, + { + "start": 8057.1, + "end": 8059.06, + "probability": 0.938 + }, + { + "start": 8059.4, + "end": 8060.18, + "probability": 0.8869 + }, + { + "start": 8060.88, + "end": 8061.88, + "probability": 0.7765 + }, + { + "start": 8062.36, + "end": 8064.1, + "probability": 0.9847 + }, + { + "start": 8064.58, + "end": 8065.8, + "probability": 0.9442 + }, + { + "start": 8066.08, + "end": 8066.92, + "probability": 0.9692 + }, + { + "start": 8067.26, + "end": 8068.42, + "probability": 0.8184 + }, + { + "start": 8070.32, + "end": 8070.62, + "probability": 0.0038 + }, + { + "start": 8070.78, + "end": 8072.16, + "probability": 0.9225 + }, + { + "start": 8072.38, + "end": 8077.78, + "probability": 0.9539 + }, + { + "start": 8078.08, + "end": 8082.12, + "probability": 0.9122 + }, + { + "start": 8082.98, + "end": 8085.42, + "probability": 0.6982 + }, + { + "start": 8085.52, + "end": 8088.68, + "probability": 0.9771 + }, + { + "start": 8088.82, + "end": 8089.92, + "probability": 0.6503 + }, + { + "start": 8090.18, + "end": 8092.08, + "probability": 0.9966 + }, + { + "start": 8092.5, + "end": 8094.02, + "probability": 0.8715 + }, + { + "start": 8094.4, + "end": 8096.4, + "probability": 0.9968 + }, + { + "start": 8097.34, + "end": 8098.34, + "probability": 0.998 + }, + { + "start": 8099.62, + "end": 8102.8, + "probability": 0.9617 + }, + { + "start": 8102.9, + "end": 8107.24, + "probability": 0.9789 + }, + { + "start": 8107.56, + "end": 8107.68, + "probability": 0.2597 + }, + { + "start": 8107.7, + "end": 8109.42, + "probability": 0.8664 + }, + { + "start": 8109.74, + "end": 8111.58, + "probability": 0.7321 + }, + { + "start": 8111.66, + "end": 8113.52, + "probability": 0.991 + }, + { + "start": 8114.2, + "end": 8117.62, + "probability": 0.9946 + }, + { + "start": 8118.2, + "end": 8122.3, + "probability": 0.9817 + }, + { + "start": 8122.42, + "end": 8124.5, + "probability": 0.9932 + }, + { + "start": 8125.06, + "end": 8126.54, + "probability": 0.9872 + }, + { + "start": 8126.84, + "end": 8128.27, + "probability": 0.6783 + }, + { + "start": 8128.68, + "end": 8130.56, + "probability": 0.9766 + }, + { + "start": 8131.22, + "end": 8134.06, + "probability": 0.7979 + }, + { + "start": 8134.06, + "end": 8134.8, + "probability": 0.37 + }, + { + "start": 8135.16, + "end": 8137.26, + "probability": 0.9866 + }, + { + "start": 8137.8, + "end": 8138.48, + "probability": 0.8741 + }, + { + "start": 8138.86, + "end": 8139.93, + "probability": 0.7298 + }, + { + "start": 8140.56, + "end": 8142.46, + "probability": 0.3873 + }, + { + "start": 8143.08, + "end": 8144.79, + "probability": 0.9503 + }, + { + "start": 8145.38, + "end": 8147.96, + "probability": 0.9619 + }, + { + "start": 8151.16, + "end": 8153.72, + "probability": 0.8442 + }, + { + "start": 8154.14, + "end": 8154.53, + "probability": 0.6154 + }, + { + "start": 8155.1, + "end": 8157.28, + "probability": 0.9639 + }, + { + "start": 8157.6, + "end": 8161.64, + "probability": 0.9946 + }, + { + "start": 8162.08, + "end": 8164.2, + "probability": 0.9985 + }, + { + "start": 8164.2, + "end": 8166.54, + "probability": 0.9971 + }, + { + "start": 8166.9, + "end": 8168.2, + "probability": 0.5866 + }, + { + "start": 8168.72, + "end": 8172.7, + "probability": 0.9917 + }, + { + "start": 8172.7, + "end": 8175.38, + "probability": 0.9932 + }, + { + "start": 8175.72, + "end": 8177.66, + "probability": 0.7085 + }, + { + "start": 8177.66, + "end": 8180.38, + "probability": 0.994 + }, + { + "start": 8180.96, + "end": 8184.68, + "probability": 0.9958 + }, + { + "start": 8185.0, + "end": 8188.36, + "probability": 0.8854 + }, + { + "start": 8188.64, + "end": 8192.8, + "probability": 0.9905 + }, + { + "start": 8193.16, + "end": 8194.9, + "probability": 0.9724 + }, + { + "start": 8195.0, + "end": 8195.48, + "probability": 0.5963 + }, + { + "start": 8195.52, + "end": 8195.88, + "probability": 0.8738 + }, + { + "start": 8196.36, + "end": 8197.06, + "probability": 0.8532 + }, + { + "start": 8197.5, + "end": 8198.68, + "probability": 0.8443 + }, + { + "start": 8198.96, + "end": 8198.96, + "probability": 0.4475 + }, + { + "start": 8198.96, + "end": 8201.2, + "probability": 0.9926 + }, + { + "start": 8201.58, + "end": 8203.16, + "probability": 0.9885 + }, + { + "start": 8203.28, + "end": 8203.8, + "probability": 0.7201 + }, + { + "start": 8204.02, + "end": 8205.78, + "probability": 0.1087 + }, + { + "start": 8206.32, + "end": 8207.5, + "probability": 0.5575 + }, + { + "start": 8207.7, + "end": 8210.6, + "probability": 0.6659 + }, + { + "start": 8210.72, + "end": 8211.94, + "probability": 0.6676 + }, + { + "start": 8214.28, + "end": 8216.68, + "probability": 0.5849 + }, + { + "start": 8217.36, + "end": 8219.98, + "probability": 0.3544 + }, + { + "start": 8220.72, + "end": 8220.96, + "probability": 0.5703 + }, + { + "start": 8223.66, + "end": 8225.56, + "probability": 0.7961 + }, + { + "start": 8225.62, + "end": 8227.68, + "probability": 0.9984 + }, + { + "start": 8227.8, + "end": 8228.84, + "probability": 0.9589 + }, + { + "start": 8229.6, + "end": 8231.96, + "probability": 0.8495 + }, + { + "start": 8232.58, + "end": 8233.48, + "probability": 0.9014 + }, + { + "start": 8234.84, + "end": 8237.52, + "probability": 0.9957 + }, + { + "start": 8238.02, + "end": 8239.08, + "probability": 0.9214 + }, + { + "start": 8240.44, + "end": 8241.08, + "probability": 0.7437 + }, + { + "start": 8241.6, + "end": 8248.22, + "probability": 0.9873 + }, + { + "start": 8249.18, + "end": 8252.42, + "probability": 0.9919 + }, + { + "start": 8253.16, + "end": 8255.9, + "probability": 0.8021 + }, + { + "start": 8256.02, + "end": 8260.0, + "probability": 0.969 + }, + { + "start": 8261.06, + "end": 8265.14, + "probability": 0.9382 + }, + { + "start": 8265.8, + "end": 8267.91, + "probability": 0.7551 + }, + { + "start": 8269.12, + "end": 8271.88, + "probability": 0.8843 + }, + { + "start": 8272.46, + "end": 8276.16, + "probability": 0.8694 + }, + { + "start": 8276.58, + "end": 8281.28, + "probability": 0.9871 + }, + { + "start": 8282.3, + "end": 8283.4, + "probability": 0.5914 + }, + { + "start": 8283.5, + "end": 8285.22, + "probability": 0.9871 + }, + { + "start": 8285.46, + "end": 8288.14, + "probability": 0.981 + }, + { + "start": 8288.72, + "end": 8289.36, + "probability": 0.9304 + }, + { + "start": 8290.7, + "end": 8294.34, + "probability": 0.9972 + }, + { + "start": 8294.8, + "end": 8297.92, + "probability": 0.986 + }, + { + "start": 8297.92, + "end": 8300.38, + "probability": 0.9973 + }, + { + "start": 8301.02, + "end": 8303.94, + "probability": 0.9633 + }, + { + "start": 8304.4, + "end": 8304.8, + "probability": 0.7412 + }, + { + "start": 8304.94, + "end": 8305.28, + "probability": 0.9041 + }, + { + "start": 8305.4, + "end": 8306.32, + "probability": 0.9739 + }, + { + "start": 8306.92, + "end": 8309.14, + "probability": 0.9515 + }, + { + "start": 8309.28, + "end": 8312.44, + "probability": 0.9724 + }, + { + "start": 8313.0, + "end": 8316.7, + "probability": 0.9307 + }, + { + "start": 8317.64, + "end": 8319.3, + "probability": 0.5231 + }, + { + "start": 8319.68, + "end": 8322.32, + "probability": 0.9973 + }, + { + "start": 8323.14, + "end": 8327.1, + "probability": 0.8882 + }, + { + "start": 8327.16, + "end": 8328.02, + "probability": 0.8715 + }, + { + "start": 8328.86, + "end": 8332.02, + "probability": 0.8967 + }, + { + "start": 8332.02, + "end": 8335.84, + "probability": 0.9989 + }, + { + "start": 8336.38, + "end": 8339.3, + "probability": 0.9478 + }, + { + "start": 8340.26, + "end": 8343.66, + "probability": 0.9574 + }, + { + "start": 8344.34, + "end": 8345.58, + "probability": 0.7893 + }, + { + "start": 8346.06, + "end": 8346.55, + "probability": 0.9855 + }, + { + "start": 8346.94, + "end": 8349.56, + "probability": 0.9968 + }, + { + "start": 8349.58, + "end": 8352.64, + "probability": 0.9995 + }, + { + "start": 8353.2, + "end": 8356.12, + "probability": 0.9921 + }, + { + "start": 8356.8, + "end": 8359.6, + "probability": 0.968 + }, + { + "start": 8359.6, + "end": 8362.68, + "probability": 0.9368 + }, + { + "start": 8363.48, + "end": 8366.42, + "probability": 0.9742 + }, + { + "start": 8367.32, + "end": 8370.44, + "probability": 0.9971 + }, + { + "start": 8371.16, + "end": 8374.56, + "probability": 0.9758 + }, + { + "start": 8375.28, + "end": 8379.5, + "probability": 0.9977 + }, + { + "start": 8379.96, + "end": 8383.5, + "probability": 0.9656 + }, + { + "start": 8384.14, + "end": 8386.3, + "probability": 0.9961 + }, + { + "start": 8386.96, + "end": 8391.5, + "probability": 0.9236 + }, + { + "start": 8392.24, + "end": 8394.78, + "probability": 0.9918 + }, + { + "start": 8395.42, + "end": 8399.54, + "probability": 0.9976 + }, + { + "start": 8400.14, + "end": 8401.78, + "probability": 0.9945 + }, + { + "start": 8402.62, + "end": 8405.28, + "probability": 0.9839 + }, + { + "start": 8405.8, + "end": 8411.26, + "probability": 0.9987 + }, + { + "start": 8412.28, + "end": 8415.0, + "probability": 0.9868 + }, + { + "start": 8415.7, + "end": 8419.84, + "probability": 0.9885 + }, + { + "start": 8420.0, + "end": 8420.4, + "probability": 0.653 + }, + { + "start": 8420.6, + "end": 8421.58, + "probability": 0.8188 + }, + { + "start": 8422.2, + "end": 8423.9, + "probability": 0.963 + }, + { + "start": 8424.56, + "end": 8428.52, + "probability": 0.993 + }, + { + "start": 8429.08, + "end": 8431.8, + "probability": 0.9944 + }, + { + "start": 8432.28, + "end": 8434.42, + "probability": 0.887 + }, + { + "start": 8434.44, + "end": 8435.8, + "probability": 0.9763 + }, + { + "start": 8436.88, + "end": 8439.66, + "probability": 0.8259 + }, + { + "start": 8440.06, + "end": 8442.6, + "probability": 0.9792 + }, + { + "start": 8443.1, + "end": 8444.76, + "probability": 0.9724 + }, + { + "start": 8445.24, + "end": 8446.74, + "probability": 0.8126 + }, + { + "start": 8446.88, + "end": 8450.74, + "probability": 0.9974 + }, + { + "start": 8451.82, + "end": 8454.6, + "probability": 0.9 + }, + { + "start": 8454.78, + "end": 8457.3, + "probability": 0.9658 + }, + { + "start": 8457.96, + "end": 8458.82, + "probability": 0.7872 + }, + { + "start": 8458.96, + "end": 8459.82, + "probability": 0.856 + }, + { + "start": 8460.38, + "end": 8463.32, + "probability": 0.9827 + }, + { + "start": 8463.9, + "end": 8465.92, + "probability": 0.9557 + }, + { + "start": 8466.36, + "end": 8467.59, + "probability": 0.8018 + }, + { + "start": 8467.92, + "end": 8469.96, + "probability": 0.9917 + }, + { + "start": 8470.44, + "end": 8472.5, + "probability": 0.8169 + }, + { + "start": 8472.6, + "end": 8475.62, + "probability": 0.9781 + }, + { + "start": 8476.3, + "end": 8478.94, + "probability": 0.9898 + }, + { + "start": 8479.8, + "end": 8481.74, + "probability": 0.9977 + }, + { + "start": 8482.08, + "end": 8482.76, + "probability": 0.0547 + }, + { + "start": 8482.76, + "end": 8483.7, + "probability": 0.598 + }, + { + "start": 8484.78, + "end": 8489.52, + "probability": 0.936 + }, + { + "start": 8489.92, + "end": 8490.14, + "probability": 0.753 + }, + { + "start": 8490.46, + "end": 8491.52, + "probability": 0.7945 + }, + { + "start": 8491.8, + "end": 8493.06, + "probability": 0.8866 + }, + { + "start": 8516.38, + "end": 8518.84, + "probability": 0.757 + }, + { + "start": 8519.66, + "end": 8522.86, + "probability": 0.9546 + }, + { + "start": 8523.94, + "end": 8526.12, + "probability": 0.9833 + }, + { + "start": 8526.3, + "end": 8527.12, + "probability": 0.8204 + }, + { + "start": 8527.2, + "end": 8528.1, + "probability": 0.7591 + }, + { + "start": 8528.72, + "end": 8530.34, + "probability": 0.7586 + }, + { + "start": 8530.42, + "end": 8531.68, + "probability": 0.9899 + }, + { + "start": 8532.34, + "end": 8535.96, + "probability": 0.9502 + }, + { + "start": 8536.38, + "end": 8537.38, + "probability": 0.9507 + }, + { + "start": 8537.48, + "end": 8540.04, + "probability": 0.9373 + }, + { + "start": 8540.64, + "end": 8542.75, + "probability": 0.8 + }, + { + "start": 8543.2, + "end": 8544.6, + "probability": 0.7871 + }, + { + "start": 8544.74, + "end": 8545.46, + "probability": 0.9555 + }, + { + "start": 8545.9, + "end": 8546.08, + "probability": 0.0001 + }, + { + "start": 8546.08, + "end": 8552.5, + "probability": 0.9488 + }, + { + "start": 8552.94, + "end": 8554.58, + "probability": 0.8381 + }, + { + "start": 8555.12, + "end": 8555.6, + "probability": 0.2112 + }, + { + "start": 8557.68, + "end": 8559.82, + "probability": 0.1382 + }, + { + "start": 8561.32, + "end": 8562.34, + "probability": 0.0858 + }, + { + "start": 8563.8, + "end": 8564.04, + "probability": 0.0077 + }, + { + "start": 8564.04, + "end": 8564.04, + "probability": 0.1114 + }, + { + "start": 8564.04, + "end": 8564.04, + "probability": 0.6319 + }, + { + "start": 8564.04, + "end": 8564.04, + "probability": 0.0867 + }, + { + "start": 8564.04, + "end": 8564.04, + "probability": 0.2921 + }, + { + "start": 8564.04, + "end": 8565.27, + "probability": 0.8376 + }, + { + "start": 8566.66, + "end": 8570.06, + "probability": 0.8428 + }, + { + "start": 8570.88, + "end": 8570.92, + "probability": 0.1093 + }, + { + "start": 8570.92, + "end": 8572.77, + "probability": 0.7657 + }, + { + "start": 8573.32, + "end": 8575.34, + "probability": 0.3921 + }, + { + "start": 8575.38, + "end": 8577.12, + "probability": 0.4479 + }, + { + "start": 8578.72, + "end": 8579.84, + "probability": 0.3221 + }, + { + "start": 8579.84, + "end": 8580.14, + "probability": 0.2811 + }, + { + "start": 8580.4, + "end": 8583.03, + "probability": 0.7971 + }, + { + "start": 8583.56, + "end": 8583.64, + "probability": 0.1215 + }, + { + "start": 8583.64, + "end": 8585.4, + "probability": 0.8397 + }, + { + "start": 8585.4, + "end": 8585.8, + "probability": 0.0225 + }, + { + "start": 8586.22, + "end": 8587.88, + "probability": 0.6739 + }, + { + "start": 8588.0, + "end": 8589.52, + "probability": 0.9604 + }, + { + "start": 8589.8, + "end": 8591.3, + "probability": 0.8093 + }, + { + "start": 8591.84, + "end": 8594.48, + "probability": 0.873 + }, + { + "start": 8594.86, + "end": 8597.15, + "probability": 0.1743 + }, + { + "start": 8598.56, + "end": 8599.62, + "probability": 0.9135 + }, + { + "start": 8599.98, + "end": 8603.0, + "probability": 0.8937 + }, + { + "start": 8603.12, + "end": 8603.96, + "probability": 0.9348 + }, + { + "start": 8604.72, + "end": 8605.98, + "probability": 0.7049 + }, + { + "start": 8606.18, + "end": 8609.7, + "probability": 0.9388 + }, + { + "start": 8609.82, + "end": 8610.94, + "probability": 0.8763 + }, + { + "start": 8611.08, + "end": 8611.96, + "probability": 0.8613 + }, + { + "start": 8612.1, + "end": 8613.18, + "probability": 0.9053 + }, + { + "start": 8613.96, + "end": 8613.96, + "probability": 0.2373 + }, + { + "start": 8613.96, + "end": 8616.6, + "probability": 0.9924 + }, + { + "start": 8616.6, + "end": 8619.48, + "probability": 0.9968 + }, + { + "start": 8619.6, + "end": 8621.16, + "probability": 0.8475 + }, + { + "start": 8621.82, + "end": 8624.82, + "probability": 0.7456 + }, + { + "start": 8625.48, + "end": 8626.6, + "probability": 0.7261 + }, + { + "start": 8626.66, + "end": 8627.48, + "probability": 0.9058 + }, + { + "start": 8627.78, + "end": 8628.14, + "probability": 0.1766 + }, + { + "start": 8628.16, + "end": 8629.28, + "probability": 0.8577 + }, + { + "start": 8629.32, + "end": 8629.76, + "probability": 0.9175 + }, + { + "start": 8630.64, + "end": 8630.64, + "probability": 0.1089 + }, + { + "start": 8630.64, + "end": 8632.48, + "probability": 0.8496 + }, + { + "start": 8633.14, + "end": 8635.92, + "probability": 0.557 + }, + { + "start": 8636.42, + "end": 8638.38, + "probability": 0.7384 + }, + { + "start": 8638.82, + "end": 8640.68, + "probability": 0.9753 + }, + { + "start": 8641.3, + "end": 8641.62, + "probability": 0.0724 + }, + { + "start": 8641.86, + "end": 8645.24, + "probability": 0.9832 + }, + { + "start": 8645.82, + "end": 8645.82, + "probability": 0.0566 + }, + { + "start": 8645.82, + "end": 8647.06, + "probability": 0.9084 + }, + { + "start": 8647.88, + "end": 8653.06, + "probability": 0.9639 + }, + { + "start": 8653.66, + "end": 8655.26, + "probability": 0.9314 + }, + { + "start": 8655.96, + "end": 8657.6, + "probability": 0.6935 + }, + { + "start": 8658.12, + "end": 8659.34, + "probability": 0.9485 + }, + { + "start": 8659.44, + "end": 8662.12, + "probability": 0.8496 + }, + { + "start": 8662.12, + "end": 8662.12, + "probability": 0.369 + }, + { + "start": 8662.12, + "end": 8664.13, + "probability": 0.3709 + }, + { + "start": 8664.38, + "end": 8666.82, + "probability": 0.7503 + }, + { + "start": 8667.0, + "end": 8667.54, + "probability": 0.2167 + }, + { + "start": 8670.52, + "end": 8670.72, + "probability": 0.0345 + }, + { + "start": 8670.72, + "end": 8670.78, + "probability": 0.0348 + }, + { + "start": 8670.78, + "end": 8670.78, + "probability": 0.2253 + }, + { + "start": 8670.78, + "end": 8670.78, + "probability": 0.0489 + }, + { + "start": 8670.78, + "end": 8672.49, + "probability": 0.2217 + }, + { + "start": 8672.96, + "end": 8673.24, + "probability": 0.922 + }, + { + "start": 8673.84, + "end": 8674.14, + "probability": 0.3073 + }, + { + "start": 8674.78, + "end": 8676.66, + "probability": 0.3215 + }, + { + "start": 8676.88, + "end": 8677.96, + "probability": 0.0606 + }, + { + "start": 8678.58, + "end": 8679.76, + "probability": 0.3424 + }, + { + "start": 8679.92, + "end": 8682.78, + "probability": 0.9365 + }, + { + "start": 8682.88, + "end": 8684.8, + "probability": 0.8131 + }, + { + "start": 8684.8, + "end": 8687.28, + "probability": 0.8163 + }, + { + "start": 8687.4, + "end": 8687.42, + "probability": 0.3138 + }, + { + "start": 8687.42, + "end": 8693.64, + "probability": 0.889 + }, + { + "start": 8694.84, + "end": 8697.18, + "probability": 0.9717 + }, + { + "start": 8697.24, + "end": 8698.04, + "probability": 0.9637 + }, + { + "start": 8698.3, + "end": 8698.68, + "probability": 0.1039 + }, + { + "start": 8699.06, + "end": 8700.66, + "probability": 0.756 + }, + { + "start": 8700.66, + "end": 8703.32, + "probability": 0.9347 + }, + { + "start": 8703.5, + "end": 8705.08, + "probability": 0.9864 + }, + { + "start": 8705.1, + "end": 8706.88, + "probability": 0.6992 + }, + { + "start": 8706.94, + "end": 8708.26, + "probability": 0.7331 + }, + { + "start": 8709.18, + "end": 8709.62, + "probability": 0.0301 + }, + { + "start": 8709.62, + "end": 8710.7, + "probability": 0.7353 + }, + { + "start": 8710.72, + "end": 8711.22, + "probability": 0.7523 + }, + { + "start": 8711.64, + "end": 8713.54, + "probability": 0.4216 + }, + { + "start": 8713.6, + "end": 8716.94, + "probability": 0.5383 + }, + { + "start": 8716.98, + "end": 8719.82, + "probability": 0.8259 + }, + { + "start": 8720.2, + "end": 8723.24, + "probability": 0.2012 + }, + { + "start": 8724.83, + "end": 8727.68, + "probability": 0.7387 + }, + { + "start": 8727.74, + "end": 8729.2, + "probability": 0.9165 + }, + { + "start": 8729.32, + "end": 8729.84, + "probability": 0.83 + }, + { + "start": 8730.1, + "end": 8732.48, + "probability": 0.3222 + }, + { + "start": 8733.36, + "end": 8737.76, + "probability": 0.3659 + }, + { + "start": 8737.96, + "end": 8740.31, + "probability": 0.2151 + }, + { + "start": 8741.42, + "end": 8743.12, + "probability": 0.564 + }, + { + "start": 8743.4, + "end": 8743.94, + "probability": 0.4979 + }, + { + "start": 8744.18, + "end": 8746.0, + "probability": 0.3207 + }, + { + "start": 8746.98, + "end": 8747.8, + "probability": 0.5876 + }, + { + "start": 8747.8, + "end": 8747.91, + "probability": 0.7959 + }, + { + "start": 8748.56, + "end": 8750.94, + "probability": 0.366 + }, + { + "start": 8750.94, + "end": 8751.74, + "probability": 0.1031 + }, + { + "start": 8751.86, + "end": 8753.3, + "probability": 0.4918 + }, + { + "start": 8754.16, + "end": 8756.92, + "probability": 0.6787 + }, + { + "start": 8757.28, + "end": 8758.9, + "probability": 0.3631 + }, + { + "start": 8758.9, + "end": 8758.9, + "probability": 0.0249 + }, + { + "start": 8758.9, + "end": 8760.28, + "probability": 0.9707 + }, + { + "start": 8760.32, + "end": 8762.25, + "probability": 0.9798 + }, + { + "start": 8762.66, + "end": 8767.82, + "probability": 0.8897 + }, + { + "start": 8768.28, + "end": 8769.94, + "probability": 0.6067 + }, + { + "start": 8770.1, + "end": 8771.94, + "probability": 0.975 + }, + { + "start": 8774.34, + "end": 8774.86, + "probability": 0.2496 + }, + { + "start": 8775.06, + "end": 8783.14, + "probability": 0.9445 + }, + { + "start": 8783.32, + "end": 8783.92, + "probability": 0.8095 + }, + { + "start": 8784.0, + "end": 8784.58, + "probability": 0.9542 + }, + { + "start": 8785.44, + "end": 8787.66, + "probability": 0.9632 + }, + { + "start": 8787.8, + "end": 8788.98, + "probability": 0.7597 + }, + { + "start": 8789.04, + "end": 8790.0, + "probability": 0.6223 + }, + { + "start": 8790.26, + "end": 8791.58, + "probability": 0.5991 + }, + { + "start": 8792.62, + "end": 8793.8, + "probability": 0.6584 + }, + { + "start": 8794.14, + "end": 8796.92, + "probability": 0.9663 + }, + { + "start": 8797.06, + "end": 8797.9, + "probability": 0.9863 + }, + { + "start": 8799.35, + "end": 8803.78, + "probability": 0.7718 + }, + { + "start": 8804.88, + "end": 8809.38, + "probability": 0.6923 + }, + { + "start": 8809.6, + "end": 8810.16, + "probability": 0.8082 + }, + { + "start": 8810.24, + "end": 8811.26, + "probability": 0.9474 + }, + { + "start": 8811.3, + "end": 8811.64, + "probability": 0.7267 + }, + { + "start": 8811.94, + "end": 8812.72, + "probability": 0.1169 + }, + { + "start": 8812.76, + "end": 8813.46, + "probability": 0.6316 + }, + { + "start": 8813.64, + "end": 8813.96, + "probability": 0.2703 + }, + { + "start": 8814.02, + "end": 8817.3, + "probability": 0.937 + }, + { + "start": 8819.48, + "end": 8821.14, + "probability": 0.7291 + }, + { + "start": 8821.16, + "end": 8824.0, + "probability": 0.0504 + }, + { + "start": 8824.0, + "end": 8824.14, + "probability": 0.0167 + }, + { + "start": 8824.48, + "end": 8824.72, + "probability": 0.4429 + }, + { + "start": 8824.84, + "end": 8829.38, + "probability": 0.9209 + }, + { + "start": 8830.48, + "end": 8831.18, + "probability": 0.9904 + }, + { + "start": 8831.56, + "end": 8835.88, + "probability": 0.9475 + }, + { + "start": 8836.74, + "end": 8837.48, + "probability": 0.6657 + }, + { + "start": 8837.8, + "end": 8840.06, + "probability": 0.9943 + }, + { + "start": 8840.48, + "end": 8844.81, + "probability": 0.9402 + }, + { + "start": 8845.12, + "end": 8845.68, + "probability": 0.8371 + }, + { + "start": 8846.88, + "end": 8848.9, + "probability": 0.9946 + }, + { + "start": 8849.0, + "end": 8849.96, + "probability": 0.9547 + }, + { + "start": 8850.02, + "end": 8850.92, + "probability": 0.955 + }, + { + "start": 8851.26, + "end": 8852.32, + "probability": 0.9951 + }, + { + "start": 8853.38, + "end": 8855.12, + "probability": 0.8361 + }, + { + "start": 8856.1, + "end": 8860.16, + "probability": 0.9645 + }, + { + "start": 8862.12, + "end": 8868.58, + "probability": 0.8483 + }, + { + "start": 8868.58, + "end": 8873.4, + "probability": 0.8794 + }, + { + "start": 8873.78, + "end": 8874.9, + "probability": 0.4531 + }, + { + "start": 8875.56, + "end": 8875.96, + "probability": 0.8302 + }, + { + "start": 8876.82, + "end": 8878.92, + "probability": 0.025 + }, + { + "start": 8878.92, + "end": 8878.92, + "probability": 0.0524 + }, + { + "start": 8878.92, + "end": 8879.78, + "probability": 0.0467 + }, + { + "start": 8880.3, + "end": 8882.66, + "probability": 0.6845 + }, + { + "start": 8883.32, + "end": 8884.64, + "probability": 0.7926 + }, + { + "start": 8885.54, + "end": 8888.78, + "probability": 0.5148 + }, + { + "start": 8888.98, + "end": 8889.62, + "probability": 0.2401 + }, + { + "start": 8890.36, + "end": 8892.4, + "probability": 0.6533 + }, + { + "start": 8893.18, + "end": 8894.2, + "probability": 0.8687 + }, + { + "start": 8894.62, + "end": 8895.74, + "probability": 0.7964 + }, + { + "start": 8896.34, + "end": 8897.32, + "probability": 0.9199 + }, + { + "start": 8897.98, + "end": 8899.8, + "probability": 0.9679 + }, + { + "start": 8900.26, + "end": 8902.26, + "probability": 0.9547 + }, + { + "start": 8915.06, + "end": 8916.28, + "probability": 0.2167 + }, + { + "start": 8916.28, + "end": 8916.28, + "probability": 0.0286 + }, + { + "start": 8916.28, + "end": 8916.28, + "probability": 0.051 + }, + { + "start": 8916.28, + "end": 8916.28, + "probability": 0.3252 + }, + { + "start": 8916.28, + "end": 8916.28, + "probability": 0.1519 + }, + { + "start": 8916.28, + "end": 8917.66, + "probability": 0.3933 + }, + { + "start": 8918.5, + "end": 8919.48, + "probability": 0.6993 + }, + { + "start": 8920.3, + "end": 8922.98, + "probability": 0.9657 + }, + { + "start": 8922.98, + "end": 8925.22, + "probability": 0.2191 + }, + { + "start": 8925.28, + "end": 8925.98, + "probability": 0.031 + }, + { + "start": 8925.98, + "end": 8930.64, + "probability": 0.969 + }, + { + "start": 8931.1, + "end": 8932.12, + "probability": 0.7123 + }, + { + "start": 8932.26, + "end": 8937.6, + "probability": 0.9944 + }, + { + "start": 8938.64, + "end": 8941.42, + "probability": 0.9498 + }, + { + "start": 8942.02, + "end": 8944.94, + "probability": 0.9258 + }, + { + "start": 8945.5, + "end": 8948.28, + "probability": 0.9953 + }, + { + "start": 8948.86, + "end": 8949.16, + "probability": 0.4964 + }, + { + "start": 8949.72, + "end": 8951.16, + "probability": 0.7396 + }, + { + "start": 8952.38, + "end": 8954.46, + "probability": 0.8597 + }, + { + "start": 8955.0, + "end": 8962.28, + "probability": 0.98 + }, + { + "start": 8962.88, + "end": 8963.62, + "probability": 0.7406 + }, + { + "start": 8964.32, + "end": 8966.04, + "probability": 0.9321 + }, + { + "start": 8966.28, + "end": 8969.58, + "probability": 0.9915 + }, + { + "start": 8970.78, + "end": 8970.8, + "probability": 0.1364 + }, + { + "start": 8970.8, + "end": 8973.32, + "probability": 0.5547 + }, + { + "start": 8973.68, + "end": 8974.5, + "probability": 0.755 + }, + { + "start": 8975.08, + "end": 8975.9, + "probability": 0.9687 + }, + { + "start": 8976.5, + "end": 8977.0, + "probability": 0.3665 + }, + { + "start": 8977.0, + "end": 8978.18, + "probability": 0.8553 + }, + { + "start": 8979.84, + "end": 8982.54, + "probability": 0.3787 + }, + { + "start": 8990.44, + "end": 8990.44, + "probability": 0.0201 + }, + { + "start": 8990.44, + "end": 8990.44, + "probability": 0.1646 + }, + { + "start": 8990.44, + "end": 8990.44, + "probability": 0.0758 + }, + { + "start": 8990.44, + "end": 8990.44, + "probability": 0.0214 + }, + { + "start": 8990.44, + "end": 8990.44, + "probability": 0.1023 + }, + { + "start": 9018.9, + "end": 9020.68, + "probability": 0.8337 + }, + { + "start": 9022.46, + "end": 9023.5, + "probability": 0.9706 + }, + { + "start": 9024.28, + "end": 9025.94, + "probability": 0.9917 + }, + { + "start": 9026.96, + "end": 9028.02, + "probability": 0.83 + }, + { + "start": 9029.28, + "end": 9031.76, + "probability": 0.9924 + }, + { + "start": 9032.56, + "end": 9035.34, + "probability": 0.9919 + }, + { + "start": 9036.9, + "end": 9038.12, + "probability": 0.9689 + }, + { + "start": 9039.4, + "end": 9041.2, + "probability": 0.9934 + }, + { + "start": 9042.3, + "end": 9044.1, + "probability": 0.9839 + }, + { + "start": 9045.72, + "end": 9049.52, + "probability": 0.9932 + }, + { + "start": 9050.6, + "end": 9052.06, + "probability": 0.9927 + }, + { + "start": 9053.48, + "end": 9056.16, + "probability": 0.9482 + }, + { + "start": 9056.92, + "end": 9058.46, + "probability": 0.9941 + }, + { + "start": 9059.46, + "end": 9060.64, + "probability": 0.6794 + }, + { + "start": 9061.56, + "end": 9067.18, + "probability": 0.9989 + }, + { + "start": 9067.4, + "end": 9070.72, + "probability": 0.9287 + }, + { + "start": 9072.46, + "end": 9073.9, + "probability": 0.9982 + }, + { + "start": 9075.36, + "end": 9075.74, + "probability": 0.9927 + }, + { + "start": 9076.84, + "end": 9080.8, + "probability": 0.7273 + }, + { + "start": 9082.72, + "end": 9084.58, + "probability": 0.8872 + }, + { + "start": 9086.14, + "end": 9088.02, + "probability": 0.8426 + }, + { + "start": 9089.5, + "end": 9091.0, + "probability": 0.9956 + }, + { + "start": 9091.92, + "end": 9093.52, + "probability": 0.9561 + }, + { + "start": 9095.34, + "end": 9096.14, + "probability": 0.9836 + }, + { + "start": 9097.2, + "end": 9101.12, + "probability": 0.9897 + }, + { + "start": 9104.2, + "end": 9105.94, + "probability": 0.9018 + }, + { + "start": 9106.08, + "end": 9107.31, + "probability": 0.8185 + }, + { + "start": 9107.46, + "end": 9110.86, + "probability": 0.6385 + }, + { + "start": 9111.34, + "end": 9114.48, + "probability": 0.9478 + }, + { + "start": 9115.26, + "end": 9117.5, + "probability": 0.928 + }, + { + "start": 9118.56, + "end": 9122.12, + "probability": 0.9932 + }, + { + "start": 9123.68, + "end": 9125.26, + "probability": 0.7352 + }, + { + "start": 9126.28, + "end": 9128.44, + "probability": 0.9959 + }, + { + "start": 9129.6, + "end": 9131.17, + "probability": 0.8616 + }, + { + "start": 9132.88, + "end": 9133.78, + "probability": 0.9679 + }, + { + "start": 9134.84, + "end": 9136.52, + "probability": 0.998 + }, + { + "start": 9137.32, + "end": 9137.9, + "probability": 0.9445 + }, + { + "start": 9138.98, + "end": 9141.26, + "probability": 0.9907 + }, + { + "start": 9142.34, + "end": 9144.86, + "probability": 0.9517 + }, + { + "start": 9146.2, + "end": 9147.94, + "probability": 0.5005 + }, + { + "start": 9148.06, + "end": 9148.7, + "probability": 0.9028 + }, + { + "start": 9149.52, + "end": 9152.92, + "probability": 0.9312 + }, + { + "start": 9153.42, + "end": 9154.42, + "probability": 0.9731 + }, + { + "start": 9155.34, + "end": 9156.26, + "probability": 0.502 + }, + { + "start": 9157.28, + "end": 9158.76, + "probability": 0.9941 + }, + { + "start": 9160.1, + "end": 9162.94, + "probability": 0.9417 + }, + { + "start": 9166.68, + "end": 9168.1, + "probability": 0.9541 + }, + { + "start": 9169.96, + "end": 9170.32, + "probability": 0.7753 + }, + { + "start": 9170.9, + "end": 9174.98, + "probability": 0.9065 + }, + { + "start": 9175.5, + "end": 9177.26, + "probability": 0.9878 + }, + { + "start": 9178.06, + "end": 9181.22, + "probability": 0.9099 + }, + { + "start": 9181.98, + "end": 9185.4, + "probability": 0.8128 + }, + { + "start": 9186.48, + "end": 9190.06, + "probability": 0.9175 + }, + { + "start": 9191.44, + "end": 9192.64, + "probability": 0.6644 + }, + { + "start": 9193.66, + "end": 9194.96, + "probability": 0.9598 + }, + { + "start": 9195.5, + "end": 9197.02, + "probability": 0.9819 + }, + { + "start": 9197.72, + "end": 9200.78, + "probability": 0.9668 + }, + { + "start": 9201.16, + "end": 9202.72, + "probability": 0.8628 + }, + { + "start": 9203.08, + "end": 9203.6, + "probability": 0.9086 + }, + { + "start": 9204.56, + "end": 9204.92, + "probability": 0.2647 + }, + { + "start": 9204.96, + "end": 9207.52, + "probability": 0.6289 + }, + { + "start": 9228.34, + "end": 9228.94, + "probability": 0.2507 + }, + { + "start": 9231.74, + "end": 9232.7, + "probability": 0.5747 + }, + { + "start": 9234.26, + "end": 9236.6, + "probability": 0.8867 + }, + { + "start": 9237.68, + "end": 9238.64, + "probability": 0.5896 + }, + { + "start": 9240.04, + "end": 9241.1, + "probability": 0.9041 + }, + { + "start": 9242.24, + "end": 9245.14, + "probability": 0.9935 + }, + { + "start": 9245.8, + "end": 9246.86, + "probability": 0.8841 + }, + { + "start": 9247.86, + "end": 9250.86, + "probability": 0.085 + }, + { + "start": 9250.86, + "end": 9251.58, + "probability": 0.0832 + }, + { + "start": 9252.26, + "end": 9253.34, + "probability": 0.6624 + }, + { + "start": 9254.2, + "end": 9255.94, + "probability": 0.8969 + }, + { + "start": 9256.62, + "end": 9257.18, + "probability": 0.8974 + }, + { + "start": 9257.54, + "end": 9257.9, + "probability": 0.4062 + }, + { + "start": 9258.22, + "end": 9259.22, + "probability": 0.5041 + }, + { + "start": 9259.66, + "end": 9260.76, + "probability": 0.8921 + }, + { + "start": 9261.5, + "end": 9265.56, + "probability": 0.1366 + }, + { + "start": 9265.56, + "end": 9270.04, + "probability": 0.9197 + }, + { + "start": 9270.82, + "end": 9272.76, + "probability": 0.932 + }, + { + "start": 9273.48, + "end": 9275.09, + "probability": 0.8795 + }, + { + "start": 9275.52, + "end": 9276.97, + "probability": 0.8941 + }, + { + "start": 9277.76, + "end": 9278.82, + "probability": 0.9424 + }, + { + "start": 9280.0, + "end": 9285.9, + "probability": 0.9773 + }, + { + "start": 9287.22, + "end": 9292.5, + "probability": 0.7858 + }, + { + "start": 9293.28, + "end": 9294.68, + "probability": 0.8205 + }, + { + "start": 9295.28, + "end": 9297.26, + "probability": 0.9664 + }, + { + "start": 9298.72, + "end": 9303.26, + "probability": 0.5228 + }, + { + "start": 9303.26, + "end": 9306.88, + "probability": 0.967 + }, + { + "start": 9307.32, + "end": 9309.0, + "probability": 0.9988 + }, + { + "start": 9309.02, + "end": 9310.72, + "probability": 0.9934 + }, + { + "start": 9311.26, + "end": 9311.98, + "probability": 0.7467 + }, + { + "start": 9312.96, + "end": 9313.66, + "probability": 0.7502 + }, + { + "start": 9314.28, + "end": 9315.48, + "probability": 0.8078 + }, + { + "start": 9316.44, + "end": 9318.48, + "probability": 0.8434 + }, + { + "start": 9319.42, + "end": 9321.33, + "probability": 0.9883 + }, + { + "start": 9321.98, + "end": 9324.1, + "probability": 0.8503 + }, + { + "start": 9324.64, + "end": 9325.5, + "probability": 0.9264 + }, + { + "start": 9326.34, + "end": 9331.34, + "probability": 0.9529 + }, + { + "start": 9331.88, + "end": 9333.74, + "probability": 0.9553 + }, + { + "start": 9334.72, + "end": 9336.8, + "probability": 0.9717 + }, + { + "start": 9337.1, + "end": 9339.38, + "probability": 0.9707 + }, + { + "start": 9339.8, + "end": 9342.66, + "probability": 0.9306 + }, + { + "start": 9343.68, + "end": 9345.36, + "probability": 0.8197 + }, + { + "start": 9345.46, + "end": 9347.42, + "probability": 0.8439 + }, + { + "start": 9347.8, + "end": 9350.94, + "probability": 0.7607 + }, + { + "start": 9350.94, + "end": 9354.52, + "probability": 0.998 + }, + { + "start": 9355.02, + "end": 9355.9, + "probability": 0.7904 + }, + { + "start": 9356.52, + "end": 9358.58, + "probability": 0.9705 + }, + { + "start": 9359.42, + "end": 9361.2, + "probability": 0.9882 + }, + { + "start": 9361.3, + "end": 9363.06, + "probability": 0.9969 + }, + { + "start": 9363.84, + "end": 9368.32, + "probability": 0.9282 + }, + { + "start": 9368.8, + "end": 9372.04, + "probability": 0.9924 + }, + { + "start": 9372.66, + "end": 9376.34, + "probability": 0.9083 + }, + { + "start": 9376.78, + "end": 9380.14, + "probability": 0.9929 + }, + { + "start": 9380.84, + "end": 9381.36, + "probability": 0.676 + }, + { + "start": 9381.46, + "end": 9382.08, + "probability": 0.7445 + }, + { + "start": 9382.2, + "end": 9383.1, + "probability": 0.9295 + }, + { + "start": 9383.6, + "end": 9383.9, + "probability": 0.2735 + }, + { + "start": 9384.9, + "end": 9385.6, + "probability": 0.825 + }, + { + "start": 9385.94, + "end": 9389.32, + "probability": 0.8996 + }, + { + "start": 9389.32, + "end": 9393.28, + "probability": 0.9846 + }, + { + "start": 9393.88, + "end": 9394.54, + "probability": 0.9801 + }, + { + "start": 9395.26, + "end": 9396.22, + "probability": 0.8791 + }, + { + "start": 9396.92, + "end": 9398.38, + "probability": 0.9471 + }, + { + "start": 9399.18, + "end": 9400.56, + "probability": 0.9316 + }, + { + "start": 9401.54, + "end": 9403.41, + "probability": 0.4773 + }, + { + "start": 9403.62, + "end": 9405.28, + "probability": 0.8708 + }, + { + "start": 9406.48, + "end": 9408.9, + "probability": 0.5546 + }, + { + "start": 9409.7, + "end": 9411.06, + "probability": 0.8965 + }, + { + "start": 9411.54, + "end": 9412.34, + "probability": 0.038 + }, + { + "start": 9412.6, + "end": 9415.16, + "probability": 0.216 + }, + { + "start": 9415.94, + "end": 9417.3, + "probability": 0.1352 + }, + { + "start": 9417.3, + "end": 9417.58, + "probability": 0.136 + }, + { + "start": 9417.74, + "end": 9419.44, + "probability": 0.0817 + }, + { + "start": 9419.58, + "end": 9420.72, + "probability": 0.1864 + }, + { + "start": 9420.9, + "end": 9421.7, + "probability": 0.2473 + }, + { + "start": 9421.92, + "end": 9423.96, + "probability": 0.6207 + }, + { + "start": 9424.16, + "end": 9425.34, + "probability": 0.3931 + }, + { + "start": 9425.96, + "end": 9429.93, + "probability": 0.9525 + }, + { + "start": 9430.04, + "end": 9432.48, + "probability": 0.3154 + }, + { + "start": 9433.4, + "end": 9434.52, + "probability": 0.0126 + }, + { + "start": 9435.3, + "end": 9436.94, + "probability": 0.0192 + }, + { + "start": 9436.98, + "end": 9439.48, + "probability": 0.1961 + }, + { + "start": 9439.8, + "end": 9440.24, + "probability": 0.1579 + }, + { + "start": 9440.58, + "end": 9440.58, + "probability": 0.0685 + }, + { + "start": 9440.58, + "end": 9445.38, + "probability": 0.7033 + }, + { + "start": 9445.94, + "end": 9448.21, + "probability": 0.3614 + }, + { + "start": 9448.86, + "end": 9452.06, + "probability": 0.5731 + }, + { + "start": 9452.7, + "end": 9453.72, + "probability": 0.6583 + }, + { + "start": 9455.06, + "end": 9455.66, + "probability": 0.2965 + }, + { + "start": 9465.36, + "end": 9465.9, + "probability": 0.0085 + }, + { + "start": 9470.4, + "end": 9475.1, + "probability": 0.6249 + }, + { + "start": 9475.22, + "end": 9476.26, + "probability": 0.5098 + }, + { + "start": 9476.26, + "end": 9477.48, + "probability": 0.4989 + }, + { + "start": 9477.82, + "end": 9482.62, + "probability": 0.408 + }, + { + "start": 9489.0, + "end": 9489.96, + "probability": 0.0319 + }, + { + "start": 9489.96, + "end": 9491.12, + "probability": 0.0087 + }, + { + "start": 9496.32, + "end": 9500.06, + "probability": 0.0527 + }, + { + "start": 9501.05, + "end": 9503.68, + "probability": 0.0073 + }, + { + "start": 9504.42, + "end": 9504.42, + "probability": 0.0227 + }, + { + "start": 9504.42, + "end": 9504.42, + "probability": 0.0818 + }, + { + "start": 9504.42, + "end": 9504.98, + "probability": 0.2096 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9552.24, + "end": 9553.42, + "probability": 0.0007 + }, + { + "start": 9564.14, + "end": 9564.96, + "probability": 0.2914 + }, + { + "start": 9594.58, + "end": 9595.14, + "probability": 0.1021 + }, + { + "start": 9602.3, + "end": 9604.69, + "probability": 0.0973 + }, + { + "start": 9604.7, + "end": 9608.34, + "probability": 0.0384 + }, + { + "start": 9609.28, + "end": 9613.92, + "probability": 0.0548 + }, + { + "start": 9615.96, + "end": 9619.14, + "probability": 0.0325 + }, + { + "start": 9620.68, + "end": 9622.66, + "probability": 0.0527 + }, + { + "start": 9623.44, + "end": 9624.66, + "probability": 0.1364 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9625.0, + "end": 9625.0, + "probability": 0.0 + }, + { + "start": 9659.16, + "end": 9661.2, + "probability": 0.0562 + }, + { + "start": 9661.66, + "end": 9662.6, + "probability": 0.0079 + }, + { + "start": 9662.6, + "end": 9664.46, + "probability": 0.0316 + }, + { + "start": 9664.46, + "end": 9664.46, + "probability": 0.2254 + }, + { + "start": 9664.46, + "end": 9664.78, + "probability": 0.0358 + }, + { + "start": 9687.52, + "end": 9691.26, + "probability": 0.0828 + }, + { + "start": 9691.63, + "end": 9693.42, + "probability": 0.0421 + }, + { + "start": 9695.9, + "end": 9698.28, + "probability": 0.1044 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.0, + "end": 9760.0, + "probability": 0.0 + }, + { + "start": 9760.26, + "end": 9760.26, + "probability": 0.1502 + }, + { + "start": 9760.26, + "end": 9760.4, + "probability": 0.3164 + }, + { + "start": 9761.54, + "end": 9762.12, + "probability": 0.5792 + }, + { + "start": 9762.18, + "end": 9762.76, + "probability": 0.5885 + }, + { + "start": 9763.34, + "end": 9767.56, + "probability": 0.9907 + }, + { + "start": 9768.16, + "end": 9771.22, + "probability": 0.9479 + }, + { + "start": 9771.4, + "end": 9774.0, + "probability": 0.8907 + }, + { + "start": 9774.64, + "end": 9776.28, + "probability": 0.9576 + }, + { + "start": 9776.84, + "end": 9777.56, + "probability": 0.7979 + }, + { + "start": 9777.66, + "end": 9779.44, + "probability": 0.9302 + }, + { + "start": 9779.5, + "end": 9781.32, + "probability": 0.9683 + }, + { + "start": 9781.78, + "end": 9782.64, + "probability": 0.6358 + }, + { + "start": 9782.76, + "end": 9782.76, + "probability": 0.6907 + }, + { + "start": 9782.76, + "end": 9784.18, + "probability": 0.8403 + }, + { + "start": 9784.52, + "end": 9786.14, + "probability": 0.6773 + }, + { + "start": 9786.98, + "end": 9789.86, + "probability": 0.8574 + }, + { + "start": 9790.5, + "end": 9792.16, + "probability": 0.3062 + }, + { + "start": 9793.1, + "end": 9795.38, + "probability": 0.4591 + }, + { + "start": 9795.38, + "end": 9795.94, + "probability": 0.6746 + }, + { + "start": 9796.56, + "end": 9797.28, + "probability": 0.5862 + }, + { + "start": 9817.88, + "end": 9818.8, + "probability": 0.684 + }, + { + "start": 9819.54, + "end": 9820.5, + "probability": 0.6893 + }, + { + "start": 9823.02, + "end": 9824.0, + "probability": 0.7029 + }, + { + "start": 9824.66, + "end": 9825.94, + "probability": 0.9971 + }, + { + "start": 9826.66, + "end": 9828.48, + "probability": 0.998 + }, + { + "start": 9828.62, + "end": 9833.09, + "probability": 0.9954 + }, + { + "start": 9833.92, + "end": 9835.88, + "probability": 0.9971 + }, + { + "start": 9837.42, + "end": 9839.7, + "probability": 0.532 + }, + { + "start": 9840.4, + "end": 9842.7, + "probability": 0.8687 + }, + { + "start": 9843.38, + "end": 9844.78, + "probability": 0.8495 + }, + { + "start": 9845.42, + "end": 9846.84, + "probability": 0.9142 + }, + { + "start": 9847.36, + "end": 9851.6, + "probability": 0.936 + }, + { + "start": 9852.4, + "end": 9852.88, + "probability": 0.7483 + }, + { + "start": 9855.42, + "end": 9859.68, + "probability": 0.9961 + }, + { + "start": 9860.24, + "end": 9860.44, + "probability": 0.7502 + }, + { + "start": 9861.38, + "end": 9864.04, + "probability": 0.8027 + }, + { + "start": 9864.66, + "end": 9869.48, + "probability": 0.9933 + }, + { + "start": 9870.52, + "end": 9877.4, + "probability": 0.9779 + }, + { + "start": 9878.02, + "end": 9882.52, + "probability": 0.9595 + }, + { + "start": 9883.2, + "end": 9887.96, + "probability": 0.9803 + }, + { + "start": 9888.92, + "end": 9895.38, + "probability": 0.9918 + }, + { + "start": 9895.98, + "end": 9897.64, + "probability": 0.9954 + }, + { + "start": 9898.24, + "end": 9901.56, + "probability": 0.9763 + }, + { + "start": 9902.6, + "end": 9906.2, + "probability": 0.9844 + }, + { + "start": 9906.98, + "end": 9913.52, + "probability": 0.9468 + }, + { + "start": 9914.28, + "end": 9915.78, + "probability": 0.8514 + }, + { + "start": 9916.6, + "end": 9922.48, + "probability": 0.9614 + }, + { + "start": 9923.02, + "end": 9923.74, + "probability": 0.999 + }, + { + "start": 9924.6, + "end": 9927.5, + "probability": 0.988 + }, + { + "start": 9928.48, + "end": 9933.28, + "probability": 0.9944 + }, + { + "start": 9933.96, + "end": 9936.96, + "probability": 0.991 + }, + { + "start": 9939.46, + "end": 9944.48, + "probability": 0.9801 + }, + { + "start": 9944.48, + "end": 9949.44, + "probability": 0.9988 + }, + { + "start": 9950.74, + "end": 9956.84, + "probability": 0.9918 + }, + { + "start": 9957.5, + "end": 9960.1, + "probability": 0.9788 + }, + { + "start": 9961.62, + "end": 9962.68, + "probability": 0.6679 + }, + { + "start": 9964.5, + "end": 9967.72, + "probability": 0.9544 + }, + { + "start": 9968.12, + "end": 9968.96, + "probability": 0.8706 + }, + { + "start": 9969.14, + "end": 9970.6, + "probability": 0.9894 + }, + { + "start": 9972.2, + "end": 9975.8, + "probability": 0.9808 + }, + { + "start": 9976.34, + "end": 9977.48, + "probability": 0.8591 + }, + { + "start": 9978.02, + "end": 9980.72, + "probability": 0.9924 + }, + { + "start": 9981.04, + "end": 9986.38, + "probability": 0.9985 + }, + { + "start": 9986.66, + "end": 9987.36, + "probability": 0.8551 + }, + { + "start": 9988.86, + "end": 9991.08, + "probability": 0.9898 + }, + { + "start": 9991.6, + "end": 9994.84, + "probability": 0.9965 + }, + { + "start": 9995.5, + "end": 9997.7, + "probability": 0.8776 + }, + { + "start": 9998.12, + "end": 9999.44, + "probability": 0.898 + }, + { + "start": 9999.9, + "end": 10001.24, + "probability": 0.9834 + }, + { + "start": 10001.66, + "end": 10002.94, + "probability": 0.9589 + }, + { + "start": 10003.76, + "end": 10005.62, + "probability": 0.9606 + }, + { + "start": 10007.0, + "end": 10008.24, + "probability": 0.9837 + }, + { + "start": 10008.72, + "end": 10009.96, + "probability": 0.9927 + }, + { + "start": 10013.82, + "end": 10015.0, + "probability": 0.9521 + }, + { + "start": 10015.96, + "end": 10018.32, + "probability": 0.8523 + }, + { + "start": 10018.9, + "end": 10021.18, + "probability": 0.1561 + }, + { + "start": 10022.94, + "end": 10025.52, + "probability": 0.6907 + }, + { + "start": 10035.0, + "end": 10037.34, + "probability": 0.6555 + }, + { + "start": 10037.5, + "end": 10039.32, + "probability": 0.9756 + }, + { + "start": 10040.32, + "end": 10043.44, + "probability": 0.9917 + }, + { + "start": 10044.46, + "end": 10049.5, + "probability": 0.9186 + }, + { + "start": 10050.12, + "end": 10051.54, + "probability": 0.9878 + }, + { + "start": 10052.38, + "end": 10053.8, + "probability": 0.9611 + }, + { + "start": 10054.6, + "end": 10056.58, + "probability": 0.7911 + }, + { + "start": 10056.66, + "end": 10057.52, + "probability": 0.8777 + }, + { + "start": 10057.64, + "end": 10063.4, + "probability": 0.9941 + }, + { + "start": 10064.14, + "end": 10067.55, + "probability": 0.9722 + }, + { + "start": 10067.94, + "end": 10069.17, + "probability": 0.8664 + }, + { + "start": 10070.16, + "end": 10075.16, + "probability": 0.9262 + }, + { + "start": 10075.3, + "end": 10079.32, + "probability": 0.945 + }, + { + "start": 10080.04, + "end": 10085.02, + "probability": 0.9896 + }, + { + "start": 10085.28, + "end": 10087.8, + "probability": 0.9861 + }, + { + "start": 10088.38, + "end": 10088.87, + "probability": 0.5127 + }, + { + "start": 10089.42, + "end": 10092.08, + "probability": 0.8295 + }, + { + "start": 10092.66, + "end": 10095.16, + "probability": 0.9883 + }, + { + "start": 10095.6, + "end": 10099.22, + "probability": 0.9917 + }, + { + "start": 10099.42, + "end": 10099.58, + "probability": 0.4969 + }, + { + "start": 10099.7, + "end": 10100.4, + "probability": 0.7454 + }, + { + "start": 10100.92, + "end": 10102.66, + "probability": 0.9617 + }, + { + "start": 10103.08, + "end": 10106.31, + "probability": 0.9915 + }, + { + "start": 10106.74, + "end": 10107.28, + "probability": 0.4367 + }, + { + "start": 10107.5, + "end": 10108.68, + "probability": 0.9648 + }, + { + "start": 10110.53, + "end": 10112.47, + "probability": 0.6287 + }, + { + "start": 10112.72, + "end": 10113.42, + "probability": 0.815 + }, + { + "start": 10113.52, + "end": 10114.38, + "probability": 0.8455 + }, + { + "start": 10114.7, + "end": 10116.12, + "probability": 0.8892 + }, + { + "start": 10117.08, + "end": 10118.4, + "probability": 0.6494 + }, + { + "start": 10118.5, + "end": 10122.32, + "probability": 0.8053 + }, + { + "start": 10122.56, + "end": 10124.6, + "probability": 0.8142 + }, + { + "start": 10125.16, + "end": 10127.1, + "probability": 0.8316 + }, + { + "start": 10127.62, + "end": 10129.62, + "probability": 0.9141 + }, + { + "start": 10129.68, + "end": 10130.82, + "probability": 0.891 + }, + { + "start": 10131.26, + "end": 10133.48, + "probability": 0.9852 + }, + { + "start": 10133.98, + "end": 10140.07, + "probability": 0.9943 + }, + { + "start": 10140.76, + "end": 10143.74, + "probability": 0.9933 + }, + { + "start": 10144.06, + "end": 10147.6, + "probability": 0.9944 + }, + { + "start": 10147.96, + "end": 10150.88, + "probability": 0.9761 + }, + { + "start": 10151.36, + "end": 10152.04, + "probability": 0.9772 + }, + { + "start": 10152.86, + "end": 10153.56, + "probability": 0.8044 + }, + { + "start": 10153.62, + "end": 10154.66, + "probability": 0.8784 + }, + { + "start": 10154.96, + "end": 10160.24, + "probability": 0.8488 + }, + { + "start": 10160.84, + "end": 10161.84, + "probability": 0.8134 + }, + { + "start": 10162.14, + "end": 10163.44, + "probability": 0.984 + }, + { + "start": 10163.5, + "end": 10167.28, + "probability": 0.9792 + }, + { + "start": 10167.86, + "end": 10169.02, + "probability": 0.8371 + }, + { + "start": 10169.14, + "end": 10169.88, + "probability": 0.9405 + }, + { + "start": 10170.74, + "end": 10174.34, + "probability": 0.9789 + }, + { + "start": 10175.08, + "end": 10177.16, + "probability": 0.7732 + }, + { + "start": 10177.26, + "end": 10177.77, + "probability": 0.6016 + }, + { + "start": 10178.8, + "end": 10180.3, + "probability": 0.9639 + }, + { + "start": 10181.4, + "end": 10182.9, + "probability": 0.9797 + }, + { + "start": 10185.46, + "end": 10187.98, + "probability": 0.8814 + }, + { + "start": 10188.98, + "end": 10191.2, + "probability": 0.9587 + }, + { + "start": 10192.06, + "end": 10197.38, + "probability": 0.9856 + }, + { + "start": 10198.42, + "end": 10201.68, + "probability": 0.8198 + }, + { + "start": 10202.32, + "end": 10203.3, + "probability": 0.8545 + }, + { + "start": 10203.4, + "end": 10204.88, + "probability": 0.9847 + }, + { + "start": 10205.28, + "end": 10206.08, + "probability": 0.8222 + }, + { + "start": 10206.52, + "end": 10208.5, + "probability": 0.7244 + }, + { + "start": 10208.78, + "end": 10210.38, + "probability": 0.8544 + }, + { + "start": 10210.9, + "end": 10211.96, + "probability": 0.994 + }, + { + "start": 10213.18, + "end": 10214.14, + "probability": 0.9618 + }, + { + "start": 10214.86, + "end": 10217.26, + "probability": 0.6968 + }, + { + "start": 10217.94, + "end": 10219.76, + "probability": 0.8758 + }, + { + "start": 10220.52, + "end": 10222.36, + "probability": 0.9788 + }, + { + "start": 10222.8, + "end": 10224.36, + "probability": 0.9486 + }, + { + "start": 10225.0, + "end": 10225.66, + "probability": 0.662 + }, + { + "start": 10226.24, + "end": 10226.64, + "probability": 0.8418 + }, + { + "start": 10227.8, + "end": 10228.31, + "probability": 0.8613 + }, + { + "start": 10228.68, + "end": 10229.38, + "probability": 0.9651 + }, + { + "start": 10230.42, + "end": 10231.5, + "probability": 0.9137 + }, + { + "start": 10232.1, + "end": 10234.8, + "probability": 0.9692 + }, + { + "start": 10235.76, + "end": 10240.48, + "probability": 0.87 + }, + { + "start": 10241.22, + "end": 10241.7, + "probability": 0.6635 + }, + { + "start": 10242.24, + "end": 10245.48, + "probability": 0.7424 + }, + { + "start": 10246.68, + "end": 10249.24, + "probability": 0.9755 + }, + { + "start": 10250.56, + "end": 10252.22, + "probability": 0.9962 + }, + { + "start": 10253.04, + "end": 10253.34, + "probability": 0.3663 + }, + { + "start": 10254.02, + "end": 10255.7, + "probability": 0.8787 + }, + { + "start": 10256.4, + "end": 10258.16, + "probability": 0.9572 + }, + { + "start": 10259.2, + "end": 10261.94, + "probability": 0.9367 + }, + { + "start": 10262.88, + "end": 10263.94, + "probability": 0.7599 + }, + { + "start": 10266.36, + "end": 10268.22, + "probability": 0.9758 + }, + { + "start": 10268.94, + "end": 10272.32, + "probability": 0.9753 + }, + { + "start": 10273.52, + "end": 10273.98, + "probability": 0.5251 + }, + { + "start": 10274.5, + "end": 10276.7, + "probability": 0.823 + }, + { + "start": 10277.74, + "end": 10278.86, + "probability": 0.9317 + }, + { + "start": 10279.36, + "end": 10282.6, + "probability": 0.9595 + }, + { + "start": 10283.14, + "end": 10283.48, + "probability": 0.6364 + }, + { + "start": 10285.06, + "end": 10285.38, + "probability": 0.2622 + }, + { + "start": 10285.4, + "end": 10288.52, + "probability": 0.9224 + }, + { + "start": 10290.12, + "end": 10291.62, + "probability": 0.1763 + }, + { + "start": 10295.5, + "end": 10296.96, + "probability": 0.4061 + }, + { + "start": 10297.2, + "end": 10300.04, + "probability": 0.8438 + }, + { + "start": 10300.04, + "end": 10301.54, + "probability": 0.4884 + }, + { + "start": 10301.68, + "end": 10303.86, + "probability": 0.7847 + }, + { + "start": 10307.16, + "end": 10308.22, + "probability": 0.525 + }, + { + "start": 10308.36, + "end": 10308.7, + "probability": 0.7542 + }, + { + "start": 10308.92, + "end": 10309.64, + "probability": 0.5307 + }, + { + "start": 10309.78, + "end": 10311.48, + "probability": 0.842 + }, + { + "start": 10311.98, + "end": 10314.36, + "probability": 0.2952 + }, + { + "start": 10314.56, + "end": 10314.72, + "probability": 0.1785 + }, + { + "start": 10314.76, + "end": 10316.63, + "probability": 0.1516 + }, + { + "start": 10317.02, + "end": 10317.44, + "probability": 0.4555 + }, + { + "start": 10317.52, + "end": 10321.16, + "probability": 0.2501 + }, + { + "start": 10321.6, + "end": 10323.54, + "probability": 0.2193 + }, + { + "start": 10323.54, + "end": 10324.66, + "probability": 0.4448 + }, + { + "start": 10324.7, + "end": 10326.54, + "probability": 0.7692 + }, + { + "start": 10327.24, + "end": 10328.4, + "probability": 0.702 + }, + { + "start": 10331.74, + "end": 10332.3, + "probability": 0.1041 + }, + { + "start": 10332.58, + "end": 10333.02, + "probability": 0.6086 + }, + { + "start": 10333.48, + "end": 10335.73, + "probability": 0.3596 + }, + { + "start": 10337.04, + "end": 10337.38, + "probability": 0.863 + }, + { + "start": 10337.85, + "end": 10338.06, + "probability": 0.0365 + }, + { + "start": 10338.06, + "end": 10338.38, + "probability": 0.6868 + }, + { + "start": 10338.52, + "end": 10339.26, + "probability": 0.3131 + }, + { + "start": 10339.26, + "end": 10339.56, + "probability": 0.6539 + }, + { + "start": 10340.5, + "end": 10343.38, + "probability": 0.1762 + }, + { + "start": 10345.06, + "end": 10346.6, + "probability": 0.0162 + }, + { + "start": 10347.55, + "end": 10349.04, + "probability": 0.0331 + }, + { + "start": 10350.02, + "end": 10355.64, + "probability": 0.0827 + }, + { + "start": 10356.52, + "end": 10358.98, + "probability": 0.1939 + }, + { + "start": 10358.98, + "end": 10361.9, + "probability": 0.2825 + }, + { + "start": 10362.34, + "end": 10363.02, + "probability": 0.056 + }, + { + "start": 10363.08, + "end": 10363.6, + "probability": 0.2855 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.0, + "end": 10379.0, + "probability": 0.0 + }, + { + "start": 10379.08, + "end": 10380.05, + "probability": 0.5024 + }, + { + "start": 10380.46, + "end": 10382.88, + "probability": 0.9824 + }, + { + "start": 10383.24, + "end": 10385.7, + "probability": 0.9733 + }, + { + "start": 10385.7, + "end": 10387.98, + "probability": 0.6179 + }, + { + "start": 10388.0, + "end": 10392.8, + "probability": 0.6962 + }, + { + "start": 10396.6, + "end": 10400.58, + "probability": 0.106 + }, + { + "start": 10400.62, + "end": 10401.5, + "probability": 0.3657 + }, + { + "start": 10401.94, + "end": 10404.88, + "probability": 0.15 + }, + { + "start": 10405.63, + "end": 10409.38, + "probability": 0.643 + }, + { + "start": 10409.54, + "end": 10412.5, + "probability": 0.8374 + }, + { + "start": 10413.12, + "end": 10413.34, + "probability": 0.4659 + }, + { + "start": 10413.98, + "end": 10415.06, + "probability": 0.7621 + }, + { + "start": 10415.9, + "end": 10417.7, + "probability": 0.9607 + }, + { + "start": 10417.76, + "end": 10419.78, + "probability": 0.8343 + }, + { + "start": 10419.92, + "end": 10421.84, + "probability": 0.9897 + }, + { + "start": 10422.0, + "end": 10422.24, + "probability": 0.7676 + }, + { + "start": 10422.68, + "end": 10423.54, + "probability": 0.6875 + }, + { + "start": 10423.64, + "end": 10424.5, + "probability": 0.5415 + }, + { + "start": 10424.62, + "end": 10425.96, + "probability": 0.3565 + }, + { + "start": 10426.56, + "end": 10428.66, + "probability": 0.945 + }, + { + "start": 10428.66, + "end": 10432.24, + "probability": 0.9947 + }, + { + "start": 10432.32, + "end": 10433.24, + "probability": 0.6246 + }, + { + "start": 10433.5, + "end": 10434.98, + "probability": 0.9746 + }, + { + "start": 10435.6, + "end": 10438.15, + "probability": 0.9845 + }, + { + "start": 10438.32, + "end": 10439.28, + "probability": 0.5837 + }, + { + "start": 10439.48, + "end": 10441.3, + "probability": 0.9764 + }, + { + "start": 10441.82, + "end": 10445.86, + "probability": 0.9947 + }, + { + "start": 10446.44, + "end": 10449.52, + "probability": 0.9868 + }, + { + "start": 10449.7, + "end": 10449.94, + "probability": 0.6736 + }, + { + "start": 10450.76, + "end": 10451.1, + "probability": 0.5371 + }, + { + "start": 10451.24, + "end": 10452.25, + "probability": 0.6375 + }, + { + "start": 10452.54, + "end": 10455.64, + "probability": 0.6765 + }, + { + "start": 10455.72, + "end": 10456.28, + "probability": 0.803 + }, + { + "start": 10456.88, + "end": 10460.16, + "probability": 0.97 + }, + { + "start": 10461.04, + "end": 10462.26, + "probability": 0.6828 + }, + { + "start": 10462.58, + "end": 10463.72, + "probability": 0.7492 + }, + { + "start": 10464.32, + "end": 10466.6, + "probability": 0.8964 + }, + { + "start": 10466.6, + "end": 10469.76, + "probability": 0.9928 + }, + { + "start": 10470.24, + "end": 10470.9, + "probability": 0.8572 + }, + { + "start": 10492.66, + "end": 10496.88, + "probability": 0.7059 + }, + { + "start": 10499.22, + "end": 10501.26, + "probability": 0.7034 + }, + { + "start": 10502.1, + "end": 10503.48, + "probability": 0.8053 + }, + { + "start": 10504.04, + "end": 10505.26, + "probability": 0.8381 + }, + { + "start": 10506.28, + "end": 10506.5, + "probability": 0.5035 + }, + { + "start": 10506.5, + "end": 10507.82, + "probability": 0.0816 + }, + { + "start": 10508.04, + "end": 10509.64, + "probability": 0.7065 + }, + { + "start": 10510.48, + "end": 10512.84, + "probability": 0.8623 + }, + { + "start": 10513.52, + "end": 10514.08, + "probability": 0.9039 + }, + { + "start": 10514.24, + "end": 10517.5, + "probability": 0.9747 + }, + { + "start": 10517.5, + "end": 10523.6, + "probability": 0.8852 + }, + { + "start": 10523.68, + "end": 10524.22, + "probability": 0.835 + }, + { + "start": 10524.88, + "end": 10527.44, + "probability": 0.9945 + }, + { + "start": 10527.44, + "end": 10531.04, + "probability": 0.9078 + }, + { + "start": 10532.34, + "end": 10532.52, + "probability": 0.2528 + }, + { + "start": 10532.56, + "end": 10537.06, + "probability": 0.6771 + }, + { + "start": 10537.06, + "end": 10542.16, + "probability": 0.8084 + }, + { + "start": 10543.12, + "end": 10543.34, + "probability": 0.4198 + }, + { + "start": 10543.34, + "end": 10547.0, + "probability": 0.9902 + }, + { + "start": 10548.76, + "end": 10553.54, + "probability": 0.8832 + }, + { + "start": 10553.54, + "end": 10556.52, + "probability": 0.9935 + }, + { + "start": 10557.22, + "end": 10561.14, + "probability": 0.9597 + }, + { + "start": 10563.18, + "end": 10566.88, + "probability": 0.989 + }, + { + "start": 10567.7, + "end": 10568.98, + "probability": 0.8758 + }, + { + "start": 10568.98, + "end": 10573.32, + "probability": 0.9546 + }, + { + "start": 10574.22, + "end": 10577.78, + "probability": 0.9428 + }, + { + "start": 10578.74, + "end": 10581.18, + "probability": 0.9807 + }, + { + "start": 10581.18, + "end": 10585.62, + "probability": 0.8773 + }, + { + "start": 10585.62, + "end": 10586.5, + "probability": 0.1779 + }, + { + "start": 10587.32, + "end": 10590.68, + "probability": 0.9314 + }, + { + "start": 10590.68, + "end": 10595.77, + "probability": 0.8758 + }, + { + "start": 10596.66, + "end": 10599.78, + "probability": 0.6695 + }, + { + "start": 10599.88, + "end": 10601.3, + "probability": 0.9734 + }, + { + "start": 10602.44, + "end": 10603.46, + "probability": 0.8036 + }, + { + "start": 10604.08, + "end": 10605.18, + "probability": 0.1547 + }, + { + "start": 10605.24, + "end": 10606.72, + "probability": 0.3669 + }, + { + "start": 10606.84, + "end": 10608.18, + "probability": 0.9145 + }, + { + "start": 10608.24, + "end": 10609.04, + "probability": 0.6884 + }, + { + "start": 10610.54, + "end": 10612.44, + "probability": 0.9019 + }, + { + "start": 10613.76, + "end": 10616.34, + "probability": 0.9503 + }, + { + "start": 10617.04, + "end": 10619.66, + "probability": 0.6949 + }, + { + "start": 10620.4, + "end": 10621.34, + "probability": 0.506 + }, + { + "start": 10621.46, + "end": 10626.46, + "probability": 0.9362 + }, + { + "start": 10627.42, + "end": 10631.36, + "probability": 0.96 + }, + { + "start": 10632.42, + "end": 10633.88, + "probability": 0.4917 + }, + { + "start": 10634.94, + "end": 10637.68, + "probability": 0.9948 + }, + { + "start": 10638.98, + "end": 10642.1, + "probability": 0.7812 + }, + { + "start": 10642.76, + "end": 10644.62, + "probability": 0.3561 + }, + { + "start": 10644.72, + "end": 10646.95, + "probability": 0.569 + }, + { + "start": 10647.18, + "end": 10650.5, + "probability": 0.7686 + }, + { + "start": 10651.18, + "end": 10654.06, + "probability": 0.9866 + }, + { + "start": 10654.82, + "end": 10656.76, + "probability": 0.9885 + }, + { + "start": 10656.76, + "end": 10658.94, + "probability": 0.7119 + }, + { + "start": 10660.04, + "end": 10662.24, + "probability": 0.8938 + }, + { + "start": 10663.15, + "end": 10665.7, + "probability": 0.8511 + }, + { + "start": 10666.38, + "end": 10669.44, + "probability": 0.9678 + }, + { + "start": 10670.6, + "end": 10671.62, + "probability": 0.7454 + }, + { + "start": 10672.04, + "end": 10674.34, + "probability": 0.9618 + }, + { + "start": 10674.34, + "end": 10678.14, + "probability": 0.7397 + }, + { + "start": 10678.26, + "end": 10679.18, + "probability": 0.5342 + }, + { + "start": 10680.0, + "end": 10681.9, + "probability": 0.9979 + }, + { + "start": 10682.64, + "end": 10685.08, + "probability": 0.7057 + }, + { + "start": 10685.24, + "end": 10686.5, + "probability": 0.7164 + }, + { + "start": 10687.26, + "end": 10689.08, + "probability": 0.7368 + }, + { + "start": 10690.0, + "end": 10690.24, + "probability": 0.4702 + }, + { + "start": 10690.6, + "end": 10690.88, + "probability": 0.7622 + }, + { + "start": 10690.9, + "end": 10694.6, + "probability": 0.9835 + }, + { + "start": 10694.6, + "end": 10699.02, + "probability": 0.9636 + }, + { + "start": 10699.14, + "end": 10702.12, + "probability": 0.7624 + }, + { + "start": 10702.68, + "end": 10703.66, + "probability": 0.9373 + }, + { + "start": 10703.92, + "end": 10706.06, + "probability": 0.9903 + }, + { + "start": 10706.76, + "end": 10707.74, + "probability": 0.6379 + }, + { + "start": 10708.36, + "end": 10709.7, + "probability": 0.9795 + }, + { + "start": 10709.82, + "end": 10710.66, + "probability": 0.8606 + }, + { + "start": 10710.9, + "end": 10713.28, + "probability": 0.6519 + }, + { + "start": 10714.16, + "end": 10717.1, + "probability": 0.9219 + }, + { + "start": 10717.36, + "end": 10719.08, + "probability": 0.884 + }, + { + "start": 10720.3, + "end": 10723.9, + "probability": 0.9784 + }, + { + "start": 10723.9, + "end": 10727.02, + "probability": 0.9984 + }, + { + "start": 10727.12, + "end": 10729.2, + "probability": 0.9089 + }, + { + "start": 10729.8, + "end": 10731.1, + "probability": 0.6898 + }, + { + "start": 10731.18, + "end": 10733.54, + "probability": 0.9774 + }, + { + "start": 10735.1, + "end": 10735.76, + "probability": 0.7506 + }, + { + "start": 10736.3, + "end": 10737.06, + "probability": 0.6814 + }, + { + "start": 10738.58, + "end": 10741.52, + "probability": 0.7133 + }, + { + "start": 10742.18, + "end": 10742.9, + "probability": 0.6286 + }, + { + "start": 10742.9, + "end": 10745.52, + "probability": 0.9419 + }, + { + "start": 10745.66, + "end": 10748.16, + "probability": 0.9846 + }, + { + "start": 10748.96, + "end": 10753.52, + "probability": 0.9739 + }, + { + "start": 10754.16, + "end": 10755.96, + "probability": 0.9072 + }, + { + "start": 10756.06, + "end": 10760.0, + "probability": 0.8618 + }, + { + "start": 10760.0, + "end": 10763.9, + "probability": 0.8857 + }, + { + "start": 10765.92, + "end": 10766.22, + "probability": 0.2508 + }, + { + "start": 10766.22, + "end": 10766.7, + "probability": 0.7056 + }, + { + "start": 10767.4, + "end": 10768.9, + "probability": 0.8643 + }, + { + "start": 10769.02, + "end": 10773.24, + "probability": 0.9609 + }, + { + "start": 10773.38, + "end": 10776.86, + "probability": 0.9666 + }, + { + "start": 10776.9, + "end": 10778.7, + "probability": 0.6901 + }, + { + "start": 10781.56, + "end": 10782.26, + "probability": 0.5959 + }, + { + "start": 10782.64, + "end": 10782.76, + "probability": 0.8228 + }, + { + "start": 10783.66, + "end": 10787.9, + "probability": 0.9717 + }, + { + "start": 10787.9, + "end": 10791.36, + "probability": 0.9797 + }, + { + "start": 10791.44, + "end": 10792.14, + "probability": 0.518 + }, + { + "start": 10793.12, + "end": 10796.79, + "probability": 0.9743 + }, + { + "start": 10797.59, + "end": 10798.87, + "probability": 0.6415 + }, + { + "start": 10799.47, + "end": 10800.79, + "probability": 0.669 + }, + { + "start": 10812.91, + "end": 10812.91, + "probability": 0.3405 + }, + { + "start": 10812.91, + "end": 10814.23, + "probability": 0.0093 + }, + { + "start": 10815.21, + "end": 10817.15, + "probability": 0.6573 + }, + { + "start": 10817.29, + "end": 10819.83, + "probability": 0.9793 + }, + { + "start": 10820.29, + "end": 10822.23, + "probability": 0.9929 + }, + { + "start": 10822.25, + "end": 10825.57, + "probability": 0.8199 + }, + { + "start": 10825.67, + "end": 10826.23, + "probability": 0.4175 + }, + { + "start": 10826.67, + "end": 10830.0, + "probability": 0.9598 + }, + { + "start": 10830.81, + "end": 10834.05, + "probability": 0.5758 + }, + { + "start": 10850.69, + "end": 10854.47, + "probability": 0.4415 + }, + { + "start": 10854.65, + "end": 10855.17, + "probability": 0.3142 + }, + { + "start": 10855.27, + "end": 10858.45, + "probability": 0.978 + }, + { + "start": 10859.25, + "end": 10860.35, + "probability": 0.6484 + }, + { + "start": 10860.49, + "end": 10860.59, + "probability": 0.2748 + }, + { + "start": 10861.15, + "end": 10864.11, + "probability": 0.0203 + }, + { + "start": 10870.77, + "end": 10874.31, + "probability": 0.0458 + }, + { + "start": 10875.31, + "end": 10875.55, + "probability": 0.0317 + }, + { + "start": 10875.55, + "end": 10875.97, + "probability": 0.0374 + }, + { + "start": 10876.49, + "end": 10876.55, + "probability": 0.0165 + }, + { + "start": 10876.95, + "end": 10877.09, + "probability": 0.0231 + }, + { + "start": 10877.09, + "end": 10877.09, + "probability": 0.0707 + }, + { + "start": 10877.09, + "end": 10878.19, + "probability": 0.3106 + }, + { + "start": 10878.49, + "end": 10879.61, + "probability": 0.5126 + }, + { + "start": 10900.77, + "end": 10902.35, + "probability": 0.0871 + }, + { + "start": 10903.61, + "end": 10905.01, + "probability": 0.0877 + }, + { + "start": 10905.81, + "end": 10909.35, + "probability": 0.3331 + }, + { + "start": 10909.85, + "end": 10913.55, + "probability": 0.6867 + }, + { + "start": 10914.11, + "end": 10917.59, + "probability": 0.3964 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10924.0, + "probability": 0.0 + }, + { + "start": 10924.0, + "end": 10926.82, + "probability": 0.9665 + }, + { + "start": 10926.82, + "end": 10931.36, + "probability": 0.9818 + }, + { + "start": 10931.36, + "end": 10935.28, + "probability": 0.9919 + }, + { + "start": 10936.1, + "end": 10941.5, + "probability": 0.9792 + }, + { + "start": 10941.92, + "end": 10942.56, + "probability": 0.481 + }, + { + "start": 10943.04, + "end": 10946.14, + "probability": 0.9377 + }, + { + "start": 10946.16, + "end": 10946.88, + "probability": 0.9013 + }, + { + "start": 10946.94, + "end": 10947.64, + "probability": 0.7657 + }, + { + "start": 10948.12, + "end": 10949.34, + "probability": 0.6942 + }, + { + "start": 10949.38, + "end": 10950.28, + "probability": 0.7679 + }, + { + "start": 10951.04, + "end": 10951.84, + "probability": 0.9792 + }, + { + "start": 10952.4, + "end": 10960.44, + "probability": 0.9945 + }, + { + "start": 10960.54, + "end": 10964.3, + "probability": 0.9733 + }, + { + "start": 10964.72, + "end": 10967.46, + "probability": 0.982 + }, + { + "start": 10968.98, + "end": 10972.48, + "probability": 0.8057 + }, + { + "start": 10972.48, + "end": 10975.44, + "probability": 0.9953 + }, + { + "start": 10976.08, + "end": 10976.54, + "probability": 0.719 + }, + { + "start": 10976.68, + "end": 10980.6, + "probability": 0.9779 + }, + { + "start": 10980.6, + "end": 10983.64, + "probability": 0.9979 + }, + { + "start": 10984.38, + "end": 10986.16, + "probability": 0.9731 + }, + { + "start": 10986.62, + "end": 10988.96, + "probability": 0.9965 + }, + { + "start": 10989.3, + "end": 10992.22, + "probability": 0.9988 + }, + { + "start": 10992.7, + "end": 10994.04, + "probability": 0.9683 + }, + { + "start": 10994.38, + "end": 10996.82, + "probability": 0.9987 + }, + { + "start": 10997.94, + "end": 11000.66, + "probability": 0.995 + }, + { + "start": 11001.18, + "end": 11005.58, + "probability": 0.9992 + }, + { + "start": 11005.58, + "end": 11008.54, + "probability": 0.9996 + }, + { + "start": 11009.08, + "end": 11011.62, + "probability": 0.9955 + }, + { + "start": 11012.56, + "end": 11016.22, + "probability": 0.9893 + }, + { + "start": 11016.92, + "end": 11020.26, + "probability": 0.9491 + }, + { + "start": 11020.9, + "end": 11023.65, + "probability": 0.9722 + }, + { + "start": 11024.24, + "end": 11025.64, + "probability": 0.99 + }, + { + "start": 11026.42, + "end": 11026.6, + "probability": 0.5793 + }, + { + "start": 11027.02, + "end": 11030.6, + "probability": 0.9234 + }, + { + "start": 11031.08, + "end": 11032.26, + "probability": 0.8217 + }, + { + "start": 11032.78, + "end": 11035.18, + "probability": 0.9854 + }, + { + "start": 11035.18, + "end": 11038.92, + "probability": 0.9965 + }, + { + "start": 11039.34, + "end": 11042.32, + "probability": 0.919 + }, + { + "start": 11042.78, + "end": 11047.26, + "probability": 0.9517 + }, + { + "start": 11047.26, + "end": 11049.52, + "probability": 0.9473 + }, + { + "start": 11049.9, + "end": 11053.6, + "probability": 0.9797 + }, + { + "start": 11054.5, + "end": 11058.16, + "probability": 0.9861 + }, + { + "start": 11058.52, + "end": 11061.22, + "probability": 0.9581 + }, + { + "start": 11061.76, + "end": 11064.8, + "probability": 0.9985 + }, + { + "start": 11064.8, + "end": 11067.14, + "probability": 0.844 + }, + { + "start": 11067.72, + "end": 11068.18, + "probability": 0.4885 + }, + { + "start": 11068.18, + "end": 11073.38, + "probability": 0.989 + }, + { + "start": 11073.76, + "end": 11077.24, + "probability": 0.9161 + }, + { + "start": 11077.62, + "end": 11080.04, + "probability": 0.9945 + }, + { + "start": 11080.96, + "end": 11084.4, + "probability": 0.9948 + }, + { + "start": 11084.4, + "end": 11087.36, + "probability": 0.9878 + }, + { + "start": 11088.14, + "end": 11089.95, + "probability": 0.5043 + }, + { + "start": 11090.96, + "end": 11092.64, + "probability": 0.9077 + }, + { + "start": 11092.9, + "end": 11097.4, + "probability": 0.9887 + }, + { + "start": 11097.4, + "end": 11101.12, + "probability": 0.6513 + }, + { + "start": 11101.22, + "end": 11102.52, + "probability": 0.5 + }, + { + "start": 11102.94, + "end": 11104.26, + "probability": 0.4613 + }, + { + "start": 11104.5, + "end": 11105.02, + "probability": 0.5202 + }, + { + "start": 11107.46, + "end": 11109.12, + "probability": 0.002 + }, + { + "start": 11117.22, + "end": 11117.38, + "probability": 0.0091 + }, + { + "start": 11117.38, + "end": 11119.18, + "probability": 0.5174 + }, + { + "start": 11119.3, + "end": 11121.5, + "probability": 0.9775 + }, + { + "start": 11121.62, + "end": 11124.3, + "probability": 0.9744 + }, + { + "start": 11125.0, + "end": 11127.38, + "probability": 0.9651 + }, + { + "start": 11127.38, + "end": 11129.98, + "probability": 0.4083 + }, + { + "start": 11130.06, + "end": 11133.78, + "probability": 0.4885 + }, + { + "start": 11149.34, + "end": 11152.02, + "probability": 0.6686 + }, + { + "start": 11152.02, + "end": 11155.12, + "probability": 0.5785 + }, + { + "start": 11155.26, + "end": 11156.2, + "probability": 0.3692 + }, + { + "start": 11157.26, + "end": 11157.72, + "probability": 0.2497 + }, + { + "start": 11158.1, + "end": 11160.18, + "probability": 0.5006 + }, + { + "start": 11160.18, + "end": 11160.62, + "probability": 0.9301 + }, + { + "start": 11161.16, + "end": 11162.42, + "probability": 0.1046 + }, + { + "start": 11163.22, + "end": 11163.22, + "probability": 0.0087 + }, + { + "start": 11163.22, + "end": 11163.22, + "probability": 0.2343 + }, + { + "start": 11163.22, + "end": 11163.22, + "probability": 0.0434 + }, + { + "start": 11163.22, + "end": 11163.22, + "probability": 0.0805 + }, + { + "start": 11163.22, + "end": 11164.06, + "probability": 0.4769 + }, + { + "start": 11164.7, + "end": 11168.66, + "probability": 0.7765 + }, + { + "start": 11168.96, + "end": 11170.08, + "probability": 0.6867 + }, + { + "start": 11170.56, + "end": 11170.58, + "probability": 0.4079 + }, + { + "start": 11170.82, + "end": 11171.82, + "probability": 0.7487 + }, + { + "start": 11172.78, + "end": 11172.88, + "probability": 0.8169 + }, + { + "start": 11174.14, + "end": 11174.36, + "probability": 0.03 + }, + { + "start": 11174.36, + "end": 11176.18, + "probability": 0.6992 + }, + { + "start": 11176.4, + "end": 11176.78, + "probability": 0.4429 + }, + { + "start": 11177.18, + "end": 11177.66, + "probability": 0.8718 + }, + { + "start": 11177.7, + "end": 11180.54, + "probability": 0.9758 + }, + { + "start": 11180.68, + "end": 11185.5, + "probability": 0.7432 + }, + { + "start": 11185.66, + "end": 11188.9, + "probability": 0.7943 + }, + { + "start": 11188.96, + "end": 11189.44, + "probability": 0.9074 + }, + { + "start": 11189.52, + "end": 11189.8, + "probability": 0.8203 + }, + { + "start": 11189.88, + "end": 11190.06, + "probability": 0.5205 + }, + { + "start": 11192.56, + "end": 11194.16, + "probability": 0.0295 + }, + { + "start": 11196.26, + "end": 11197.64, + "probability": 0.0931 + }, + { + "start": 11201.92, + "end": 11206.78, + "probability": 0.1125 + }, + { + "start": 11208.24, + "end": 11210.06, + "probability": 0.0182 + }, + { + "start": 11234.34, + "end": 11235.14, + "probability": 0.0002 + }, + { + "start": 11235.72, + "end": 11240.36, + "probability": 0.9955 + }, + { + "start": 11240.82, + "end": 11244.44, + "probability": 0.9945 + }, + { + "start": 11244.52, + "end": 11248.86, + "probability": 0.8168 + }, + { + "start": 11248.86, + "end": 11251.92, + "probability": 0.9152 + }, + { + "start": 11252.58, + "end": 11253.2, + "probability": 0.6329 + }, + { + "start": 11253.34, + "end": 11255.04, + "probability": 0.6626 + }, + { + "start": 11255.1, + "end": 11258.48, + "probability": 0.9048 + }, + { + "start": 11259.06, + "end": 11260.54, + "probability": 0.6029 + }, + { + "start": 11261.0, + "end": 11263.76, + "probability": 0.9843 + }, + { + "start": 11263.76, + "end": 11266.12, + "probability": 0.9782 + }, + { + "start": 11266.66, + "end": 11268.26, + "probability": 0.7104 + }, + { + "start": 11268.3, + "end": 11269.94, + "probability": 0.9966 + }, + { + "start": 11270.1, + "end": 11271.08, + "probability": 0.8151 + }, + { + "start": 11272.08, + "end": 11275.22, + "probability": 0.9404 + }, + { + "start": 11275.96, + "end": 11280.96, + "probability": 0.7194 + }, + { + "start": 11280.96, + "end": 11285.02, + "probability": 0.9893 + }, + { + "start": 11286.14, + "end": 11289.14, + "probability": 0.9602 + }, + { + "start": 11289.9, + "end": 11292.78, + "probability": 0.9746 + }, + { + "start": 11293.4, + "end": 11294.84, + "probability": 0.888 + }, + { + "start": 11294.9, + "end": 11298.88, + "probability": 0.9932 + }, + { + "start": 11299.6, + "end": 11301.7, + "probability": 0.9673 + }, + { + "start": 11302.08, + "end": 11302.44, + "probability": 0.791 + }, + { + "start": 11302.62, + "end": 11307.1, + "probability": 0.9717 + }, + { + "start": 11308.06, + "end": 11308.54, + "probability": 0.6902 + }, + { + "start": 11308.58, + "end": 11312.4, + "probability": 0.8106 + }, + { + "start": 11313.26, + "end": 11315.64, + "probability": 0.7158 + }, + { + "start": 11315.72, + "end": 11318.22, + "probability": 0.9939 + }, + { + "start": 11318.4, + "end": 11320.62, + "probability": 0.9055 + }, + { + "start": 11321.44, + "end": 11324.68, + "probability": 0.9399 + }, + { + "start": 11324.76, + "end": 11329.18, + "probability": 0.8973 + }, + { + "start": 11329.72, + "end": 11330.28, + "probability": 0.8229 + }, + { + "start": 11330.78, + "end": 11331.28, + "probability": 0.4235 + }, + { + "start": 11331.4, + "end": 11332.76, + "probability": 0.9959 + }, + { + "start": 11333.06, + "end": 11335.72, + "probability": 0.7404 + }, + { + "start": 11336.1, + "end": 11337.64, + "probability": 0.9956 + }, + { + "start": 11337.84, + "end": 11338.48, + "probability": 0.9341 + }, + { + "start": 11338.82, + "end": 11339.34, + "probability": 0.5331 + }, + { + "start": 11339.52, + "end": 11341.3, + "probability": 0.8728 + }, + { + "start": 11341.68, + "end": 11344.9, + "probability": 0.9833 + }, + { + "start": 11344.9, + "end": 11348.12, + "probability": 0.6318 + }, + { + "start": 11348.5, + "end": 11350.78, + "probability": 0.5081 + }, + { + "start": 11362.87, + "end": 11363.6, + "probability": 0.0278 + }, + { + "start": 11363.6, + "end": 11364.81, + "probability": 0.3809 + }, + { + "start": 11365.1, + "end": 11367.62, + "probability": 0.9759 + }, + { + "start": 11368.06, + "end": 11368.68, + "probability": 0.1814 + }, + { + "start": 11369.36, + "end": 11369.48, + "probability": 0.0775 + }, + { + "start": 11369.48, + "end": 11371.98, + "probability": 0.9604 + }, + { + "start": 11371.98, + "end": 11374.52, + "probability": 0.639 + }, + { + "start": 11375.14, + "end": 11378.64, + "probability": 0.3013 + }, + { + "start": 11392.84, + "end": 11397.84, + "probability": 0.7683 + }, + { + "start": 11398.02, + "end": 11399.24, + "probability": 0.7351 + }, + { + "start": 11400.72, + "end": 11401.52, + "probability": 0.0908 + }, + { + "start": 11401.88, + "end": 11402.7, + "probability": 0.4049 + }, + { + "start": 11402.7, + "end": 11402.7, + "probability": 0.0137 + }, + { + "start": 11402.7, + "end": 11402.7, + "probability": 0.0523 + }, + { + "start": 11402.7, + "end": 11402.98, + "probability": 0.2048 + }, + { + "start": 11403.52, + "end": 11406.08, + "probability": 0.9773 + }, + { + "start": 11412.04, + "end": 11413.46, + "probability": 0.0222 + }, + { + "start": 11437.04, + "end": 11441.64, + "probability": 0.0921 + }, + { + "start": 11473.76, + "end": 11473.88, + "probability": 0.0368 + }, + { + "start": 11473.88, + "end": 11475.78, + "probability": 0.6447 + }, + { + "start": 11475.9, + "end": 11477.26, + "probability": 0.6342 + }, + { + "start": 11477.6, + "end": 11478.02, + "probability": 0.8846 + }, + { + "start": 11478.6, + "end": 11483.8, + "probability": 0.8504 + }, + { + "start": 11484.7, + "end": 11488.88, + "probability": 0.8031 + }, + { + "start": 11489.54, + "end": 11493.6, + "probability": 0.691 + }, + { + "start": 11512.7, + "end": 11512.8, + "probability": 0.7183 + }, + { + "start": 11514.38, + "end": 11515.56, + "probability": 0.6635 + }, + { + "start": 11516.26, + "end": 11517.0, + "probability": 0.6726 + }, + { + "start": 11518.54, + "end": 11521.48, + "probability": 0.9722 + }, + { + "start": 11521.48, + "end": 11525.1, + "probability": 0.8618 + }, + { + "start": 11525.96, + "end": 11528.04, + "probability": 0.5692 + }, + { + "start": 11528.08, + "end": 11529.12, + "probability": 0.4552 + }, + { + "start": 11529.34, + "end": 11533.34, + "probability": 0.6944 + }, + { + "start": 11534.36, + "end": 11537.36, + "probability": 0.6284 + }, + { + "start": 11538.23, + "end": 11542.4, + "probability": 0.9583 + }, + { + "start": 11543.04, + "end": 11545.9, + "probability": 0.8734 + }, + { + "start": 11546.98, + "end": 11550.74, + "probability": 0.9945 + }, + { + "start": 11551.76, + "end": 11552.94, + "probability": 0.8704 + }, + { + "start": 11553.84, + "end": 11557.66, + "probability": 0.9323 + }, + { + "start": 11558.92, + "end": 11560.84, + "probability": 0.8269 + }, + { + "start": 11561.5, + "end": 11562.35, + "probability": 0.9321 + }, + { + "start": 11562.5, + "end": 11564.92, + "probability": 0.9902 + }, + { + "start": 11566.24, + "end": 11567.84, + "probability": 0.0329 + }, + { + "start": 11567.84, + "end": 11569.68, + "probability": 0.5884 + }, + { + "start": 11569.68, + "end": 11575.68, + "probability": 0.988 + }, + { + "start": 11575.78, + "end": 11577.5, + "probability": 0.9217 + }, + { + "start": 11578.3, + "end": 11580.24, + "probability": 0.9979 + }, + { + "start": 11580.68, + "end": 11583.46, + "probability": 0.9716 + }, + { + "start": 11583.88, + "end": 11587.0, + "probability": 0.9801 + }, + { + "start": 11587.1, + "end": 11589.42, + "probability": 0.9812 + }, + { + "start": 11590.92, + "end": 11595.38, + "probability": 0.9939 + }, + { + "start": 11595.96, + "end": 11600.42, + "probability": 0.881 + }, + { + "start": 11601.36, + "end": 11603.58, + "probability": 0.9141 + }, + { + "start": 11603.58, + "end": 11606.06, + "probability": 0.978 + }, + { + "start": 11606.8, + "end": 11611.82, + "probability": 0.8627 + }, + { + "start": 11612.6, + "end": 11616.54, + "probability": 0.9937 + }, + { + "start": 11617.04, + "end": 11618.5, + "probability": 0.8376 + }, + { + "start": 11618.98, + "end": 11625.0, + "probability": 0.9878 + }, + { + "start": 11625.4, + "end": 11626.54, + "probability": 0.7959 + }, + { + "start": 11631.6, + "end": 11632.78, + "probability": 0.9878 + }, + { + "start": 11633.3, + "end": 11634.7, + "probability": 0.7402 + }, + { + "start": 11634.76, + "end": 11634.9, + "probability": 0.6252 + }, + { + "start": 11635.18, + "end": 11640.04, + "probability": 0.8906 + }, + { + "start": 11640.58, + "end": 11641.34, + "probability": 0.9588 + }, + { + "start": 11641.46, + "end": 11642.3, + "probability": 0.8871 + }, + { + "start": 11642.76, + "end": 11643.26, + "probability": 0.656 + }, + { + "start": 11643.46, + "end": 11645.2, + "probability": 0.8323 + }, + { + "start": 11646.14, + "end": 11650.38, + "probability": 0.9491 + }, + { + "start": 11650.52, + "end": 11650.86, + "probability": 0.6167 + }, + { + "start": 11650.9, + "end": 11654.08, + "probability": 0.8318 + }, + { + "start": 11654.7, + "end": 11658.34, + "probability": 0.9617 + }, + { + "start": 11658.56, + "end": 11659.44, + "probability": 0.9392 + }, + { + "start": 11659.68, + "end": 11663.61, + "probability": 0.9538 + }, + { + "start": 11664.66, + "end": 11667.74, + "probability": 0.9819 + }, + { + "start": 11667.88, + "end": 11670.6, + "probability": 0.9106 + }, + { + "start": 11671.18, + "end": 11675.02, + "probability": 0.9238 + }, + { + "start": 11675.14, + "end": 11678.3, + "probability": 0.9972 + }, + { + "start": 11678.3, + "end": 11682.68, + "probability": 0.8482 + }, + { + "start": 11682.76, + "end": 11683.88, + "probability": 0.7158 + }, + { + "start": 11684.36, + "end": 11688.62, + "probability": 0.9399 + }, + { + "start": 11689.24, + "end": 11691.02, + "probability": 0.7805 + }, + { + "start": 11692.14, + "end": 11695.02, + "probability": 0.9561 + }, + { + "start": 11695.24, + "end": 11696.22, + "probability": 0.822 + }, + { + "start": 11696.8, + "end": 11698.2, + "probability": 0.8175 + }, + { + "start": 11698.76, + "end": 11699.4, + "probability": 0.7916 + }, + { + "start": 11700.14, + "end": 11701.3, + "probability": 0.4959 + }, + { + "start": 11701.32, + "end": 11703.16, + "probability": 0.8522 + }, + { + "start": 11703.18, + "end": 11706.62, + "probability": 0.9764 + }, + { + "start": 11707.64, + "end": 11711.7, + "probability": 0.943 + }, + { + "start": 11712.16, + "end": 11714.06, + "probability": 0.9515 + }, + { + "start": 11714.14, + "end": 11717.04, + "probability": 0.9445 + }, + { + "start": 11717.62, + "end": 11722.82, + "probability": 0.9805 + }, + { + "start": 11723.62, + "end": 11725.06, + "probability": 0.8428 + }, + { + "start": 11725.2, + "end": 11726.1, + "probability": 0.4992 + }, + { + "start": 11726.48, + "end": 11729.4, + "probability": 0.9797 + }, + { + "start": 11729.46, + "end": 11731.04, + "probability": 0.4743 + }, + { + "start": 11732.92, + "end": 11733.46, + "probability": 0.622 + }, + { + "start": 11733.58, + "end": 11738.16, + "probability": 0.9795 + }, + { + "start": 11738.22, + "end": 11741.52, + "probability": 0.9088 + }, + { + "start": 11741.52, + "end": 11744.08, + "probability": 0.9128 + }, + { + "start": 11744.88, + "end": 11746.33, + "probability": 0.8362 + }, + { + "start": 11746.68, + "end": 11747.08, + "probability": 0.8712 + }, + { + "start": 11747.18, + "end": 11750.96, + "probability": 0.6602 + }, + { + "start": 11751.38, + "end": 11754.52, + "probability": 0.8947 + }, + { + "start": 11754.98, + "end": 11758.88, + "probability": 0.8952 + }, + { + "start": 11759.46, + "end": 11764.14, + "probability": 0.9384 + }, + { + "start": 11765.18, + "end": 11769.24, + "probability": 0.9832 + }, + { + "start": 11769.6, + "end": 11770.78, + "probability": 0.8835 + }, + { + "start": 11771.64, + "end": 11772.4, + "probability": 0.6294 + }, + { + "start": 11772.5, + "end": 11774.96, + "probability": 0.9671 + }, + { + "start": 11774.96, + "end": 11777.22, + "probability": 0.9761 + }, + { + "start": 11777.74, + "end": 11783.56, + "probability": 0.9772 + }, + { + "start": 11783.56, + "end": 11788.58, + "probability": 0.9897 + }, + { + "start": 11789.3, + "end": 11794.4, + "probability": 0.9289 + }, + { + "start": 11794.9, + "end": 11797.54, + "probability": 0.9735 + }, + { + "start": 11798.02, + "end": 11801.2, + "probability": 0.9793 + }, + { + "start": 11801.32, + "end": 11804.64, + "probability": 0.9899 + }, + { + "start": 11804.64, + "end": 11807.48, + "probability": 0.9647 + }, + { + "start": 11808.2, + "end": 11812.14, + "probability": 0.9942 + }, + { + "start": 11812.14, + "end": 11816.64, + "probability": 0.9629 + }, + { + "start": 11817.66, + "end": 11820.12, + "probability": 0.9869 + }, + { + "start": 11820.12, + "end": 11823.56, + "probability": 0.9004 + }, + { + "start": 11823.64, + "end": 11826.84, + "probability": 0.9212 + }, + { + "start": 11827.26, + "end": 11829.33, + "probability": 0.8322 + }, + { + "start": 11830.94, + "end": 11831.7, + "probability": 0.3209 + }, + { + "start": 11832.39, + "end": 11834.42, + "probability": 0.8423 + }, + { + "start": 11836.36, + "end": 11838.7, + "probability": 0.8129 + }, + { + "start": 11839.18, + "end": 11843.26, + "probability": 0.9917 + }, + { + "start": 11843.26, + "end": 11848.04, + "probability": 0.9523 + }, + { + "start": 11848.12, + "end": 11851.0, + "probability": 0.99 + }, + { + "start": 11851.12, + "end": 11854.26, + "probability": 0.9861 + }, + { + "start": 11855.1, + "end": 11857.3, + "probability": 0.8278 + }, + { + "start": 11858.66, + "end": 11861.34, + "probability": 0.9033 + }, + { + "start": 11861.64, + "end": 11865.4, + "probability": 0.0967 + }, + { + "start": 11865.68, + "end": 11867.88, + "probability": 0.4368 + }, + { + "start": 11868.58, + "end": 11868.88, + "probability": 0.3006 + }, + { + "start": 11868.98, + "end": 11869.48, + "probability": 0.5034 + }, + { + "start": 11869.64, + "end": 11871.76, + "probability": 0.5965 + }, + { + "start": 11871.8, + "end": 11875.94, + "probability": 0.9913 + }, + { + "start": 11876.64, + "end": 11879.66, + "probability": 0.9937 + }, + { + "start": 11880.22, + "end": 11883.98, + "probability": 0.9814 + }, + { + "start": 11884.06, + "end": 11888.54, + "probability": 0.9709 + }, + { + "start": 11888.8, + "end": 11889.32, + "probability": 0.7732 + }, + { + "start": 11890.4, + "end": 11890.94, + "probability": 0.764 + }, + { + "start": 11907.86, + "end": 11914.42, + "probability": 0.945 + }, + { + "start": 11914.66, + "end": 11917.82, + "probability": 0.7605 + }, + { + "start": 11918.38, + "end": 11921.16, + "probability": 0.8311 + }, + { + "start": 11921.48, + "end": 11924.96, + "probability": 0.5921 + }, + { + "start": 11925.16, + "end": 11926.98, + "probability": 0.6259 + }, + { + "start": 11927.06, + "end": 11928.34, + "probability": 0.6564 + }, + { + "start": 11928.98, + "end": 11931.12, + "probability": 0.7633 + }, + { + "start": 11931.12, + "end": 11931.7, + "probability": 0.8541 + }, + { + "start": 11932.32, + "end": 11934.24, + "probability": 0.3494 + }, + { + "start": 11936.42, + "end": 11939.74, + "probability": 0.8378 + }, + { + "start": 11939.9, + "end": 11942.42, + "probability": 0.7489 + }, + { + "start": 11944.29, + "end": 11947.14, + "probability": 0.6718 + }, + { + "start": 11947.36, + "end": 11948.52, + "probability": 0.6796 + }, + { + "start": 11948.78, + "end": 11949.24, + "probability": 0.8701 + }, + { + "start": 11951.78, + "end": 11952.34, + "probability": 0.7175 + }, + { + "start": 11952.34, + "end": 11953.1, + "probability": 0.7202 + }, + { + "start": 11954.14, + "end": 11955.48, + "probability": 0.5764 + }, + { + "start": 11955.88, + "end": 11955.98, + "probability": 0.3486 + }, + { + "start": 11956.58, + "end": 11957.92, + "probability": 0.8828 + }, + { + "start": 11958.54, + "end": 11959.24, + "probability": 0.4368 + }, + { + "start": 11959.28, + "end": 11959.7, + "probability": 0.9236 + }, + { + "start": 11966.3, + "end": 11968.0, + "probability": 0.6067 + }, + { + "start": 11968.0, + "end": 11969.96, + "probability": 0.6784 + }, + { + "start": 11970.69, + "end": 11973.54, + "probability": 0.9941 + }, + { + "start": 11973.54, + "end": 11975.27, + "probability": 0.9883 + }, + { + "start": 11975.64, + "end": 11979.88, + "probability": 0.9425 + }, + { + "start": 11979.94, + "end": 11981.3, + "probability": 0.9211 + }, + { + "start": 11981.4, + "end": 11986.72, + "probability": 0.9698 + }, + { + "start": 11987.88, + "end": 11991.68, + "probability": 0.6667 + }, + { + "start": 11992.7, + "end": 11995.72, + "probability": 0.3799 + }, + { + "start": 11996.84, + "end": 11999.14, + "probability": 0.9974 + }, + { + "start": 11999.4, + "end": 12002.18, + "probability": 0.4356 + }, + { + "start": 12002.96, + "end": 12005.88, + "probability": 0.9836 + }, + { + "start": 12006.14, + "end": 12008.59, + "probability": 0.9987 + }, + { + "start": 12009.6, + "end": 12013.02, + "probability": 0.9966 + }, + { + "start": 12013.18, + "end": 12013.86, + "probability": 0.7093 + }, + { + "start": 12013.98, + "end": 12020.48, + "probability": 0.9772 + }, + { + "start": 12020.54, + "end": 12023.87, + "probability": 0.9725 + }, + { + "start": 12024.76, + "end": 12027.9, + "probability": 0.9955 + }, + { + "start": 12027.9, + "end": 12030.62, + "probability": 0.9976 + }, + { + "start": 12031.02, + "end": 12032.28, + "probability": 0.8063 + }, + { + "start": 12032.94, + "end": 12038.5, + "probability": 0.9546 + }, + { + "start": 12038.92, + "end": 12043.52, + "probability": 0.9984 + }, + { + "start": 12044.12, + "end": 12047.2, + "probability": 0.9964 + }, + { + "start": 12048.42, + "end": 12053.56, + "probability": 0.9901 + }, + { + "start": 12054.26, + "end": 12057.96, + "probability": 0.999 + }, + { + "start": 12058.14, + "end": 12058.82, + "probability": 0.7028 + }, + { + "start": 12059.5, + "end": 12061.3, + "probability": 0.9956 + }, + { + "start": 12062.12, + "end": 12065.18, + "probability": 0.9963 + }, + { + "start": 12065.72, + "end": 12066.0, + "probability": 0.0963 + }, + { + "start": 12066.64, + "end": 12066.98, + "probability": 0.6556 + }, + { + "start": 12067.36, + "end": 12071.06, + "probability": 0.9763 + }, + { + "start": 12071.94, + "end": 12073.38, + "probability": 0.9507 + }, + { + "start": 12073.46, + "end": 12074.66, + "probability": 0.9381 + }, + { + "start": 12075.04, + "end": 12077.68, + "probability": 0.9823 + }, + { + "start": 12077.76, + "end": 12081.9, + "probability": 0.9918 + }, + { + "start": 12083.82, + "end": 12086.4, + "probability": 0.7782 + }, + { + "start": 12086.4, + "end": 12093.92, + "probability": 0.9869 + }, + { + "start": 12094.44, + "end": 12096.28, + "probability": 0.9858 + }, + { + "start": 12097.22, + "end": 12101.76, + "probability": 0.9711 + }, + { + "start": 12102.26, + "end": 12105.14, + "probability": 0.999 + }, + { + "start": 12105.78, + "end": 12108.77, + "probability": 0.9934 + }, + { + "start": 12108.94, + "end": 12110.58, + "probability": 0.9912 + }, + { + "start": 12111.14, + "end": 12115.74, + "probability": 0.9753 + }, + { + "start": 12115.74, + "end": 12118.76, + "probability": 0.9518 + }, + { + "start": 12119.26, + "end": 12123.16, + "probability": 0.9982 + }, + { + "start": 12124.06, + "end": 12124.78, + "probability": 0.7885 + }, + { + "start": 12125.12, + "end": 12130.64, + "probability": 0.9728 + }, + { + "start": 12131.12, + "end": 12132.04, + "probability": 0.8253 + }, + { + "start": 12132.3, + "end": 12132.9, + "probability": 0.8838 + }, + { + "start": 12132.9, + "end": 12135.06, + "probability": 0.9886 + }, + { + "start": 12135.54, + "end": 12139.78, + "probability": 0.9611 + }, + { + "start": 12140.24, + "end": 12141.47, + "probability": 0.8988 + }, + { + "start": 12142.84, + "end": 12144.78, + "probability": 0.9883 + }, + { + "start": 12144.82, + "end": 12147.22, + "probability": 0.9878 + }, + { + "start": 12147.48, + "end": 12149.26, + "probability": 0.9899 + }, + { + "start": 12149.38, + "end": 12151.14, + "probability": 0.9714 + }, + { + "start": 12151.54, + "end": 12153.32, + "probability": 0.9922 + }, + { + "start": 12153.78, + "end": 12155.54, + "probability": 0.9902 + }, + { + "start": 12155.62, + "end": 12158.06, + "probability": 0.8926 + }, + { + "start": 12158.16, + "end": 12161.04, + "probability": 0.9849 + }, + { + "start": 12161.12, + "end": 12164.9, + "probability": 0.9803 + }, + { + "start": 12164.96, + "end": 12167.4, + "probability": 0.99 + }, + { + "start": 12168.04, + "end": 12175.44, + "probability": 0.9206 + }, + { + "start": 12176.08, + "end": 12178.18, + "probability": 0.9827 + }, + { + "start": 12178.6, + "end": 12181.68, + "probability": 0.9948 + }, + { + "start": 12182.16, + "end": 12185.1, + "probability": 0.939 + }, + { + "start": 12185.26, + "end": 12190.98, + "probability": 0.9937 + }, + { + "start": 12192.82, + "end": 12193.84, + "probability": 0.9747 + }, + { + "start": 12193.94, + "end": 12196.56, + "probability": 0.9989 + }, + { + "start": 12196.98, + "end": 12201.32, + "probability": 0.9364 + }, + { + "start": 12202.56, + "end": 12205.14, + "probability": 0.7949 + }, + { + "start": 12205.88, + "end": 12207.26, + "probability": 0.9953 + }, + { + "start": 12207.42, + "end": 12209.06, + "probability": 0.037 + }, + { + "start": 12209.16, + "end": 12209.72, + "probability": 0.8442 + }, + { + "start": 12209.8, + "end": 12211.06, + "probability": 0.978 + }, + { + "start": 12211.72, + "end": 12213.26, + "probability": 0.9669 + }, + { + "start": 12213.8, + "end": 12216.8, + "probability": 0.9714 + }, + { + "start": 12216.8, + "end": 12219.54, + "probability": 0.9949 + }, + { + "start": 12220.16, + "end": 12222.22, + "probability": 0.9968 + }, + { + "start": 12222.34, + "end": 12224.14, + "probability": 0.9963 + }, + { + "start": 12224.76, + "end": 12226.28, + "probability": 0.9753 + }, + { + "start": 12226.98, + "end": 12228.26, + "probability": 0.9882 + }, + { + "start": 12228.86, + "end": 12229.82, + "probability": 0.8876 + }, + { + "start": 12230.46, + "end": 12231.96, + "probability": 0.8936 + }, + { + "start": 12232.62, + "end": 12237.16, + "probability": 0.9954 + }, + { + "start": 12237.74, + "end": 12243.2, + "probability": 0.9973 + }, + { + "start": 12243.22, + "end": 12245.0, + "probability": 0.5832 + }, + { + "start": 12245.5, + "end": 12247.2, + "probability": 0.9958 + }, + { + "start": 12248.24, + "end": 12249.64, + "probability": 0.9883 + }, + { + "start": 12250.22, + "end": 12251.44, + "probability": 0.9827 + }, + { + "start": 12251.98, + "end": 12254.5, + "probability": 0.967 + }, + { + "start": 12255.24, + "end": 12258.56, + "probability": 0.9917 + }, + { + "start": 12258.56, + "end": 12261.4, + "probability": 0.9987 + }, + { + "start": 12261.54, + "end": 12266.08, + "probability": 0.9937 + }, + { + "start": 12266.34, + "end": 12267.47, + "probability": 0.9485 + }, + { + "start": 12268.08, + "end": 12271.68, + "probability": 0.9995 + }, + { + "start": 12272.26, + "end": 12273.14, + "probability": 0.611 + }, + { + "start": 12273.3, + "end": 12275.08, + "probability": 0.7155 + }, + { + "start": 12275.16, + "end": 12276.26, + "probability": 0.9785 + }, + { + "start": 12276.96, + "end": 12279.2, + "probability": 0.9321 + }, + { + "start": 12279.64, + "end": 12283.18, + "probability": 0.9891 + }, + { + "start": 12283.36, + "end": 12284.44, + "probability": 0.9685 + }, + { + "start": 12284.92, + "end": 12285.7, + "probability": 0.8839 + }, + { + "start": 12285.8, + "end": 12286.94, + "probability": 0.8504 + }, + { + "start": 12287.1, + "end": 12287.98, + "probability": 0.8168 + }, + { + "start": 12288.0, + "end": 12294.66, + "probability": 0.9602 + }, + { + "start": 12295.06, + "end": 12300.28, + "probability": 0.9865 + }, + { + "start": 12301.3, + "end": 12303.06, + "probability": 0.956 + }, + { + "start": 12303.3, + "end": 12303.7, + "probability": 0.5881 + }, + { + "start": 12303.86, + "end": 12304.46, + "probability": 0.9045 + }, + { + "start": 12304.5, + "end": 12306.58, + "probability": 0.885 + }, + { + "start": 12306.58, + "end": 12309.26, + "probability": 0.9924 + }, + { + "start": 12309.6, + "end": 12311.76, + "probability": 0.9484 + }, + { + "start": 12313.28, + "end": 12313.98, + "probability": 0.0623 + }, + { + "start": 12313.98, + "end": 12315.42, + "probability": 0.8975 + }, + { + "start": 12315.42, + "end": 12318.1, + "probability": 0.9866 + }, + { + "start": 12318.18, + "end": 12319.12, + "probability": 0.7395 + }, + { + "start": 12320.16, + "end": 12322.22, + "probability": 0.7852 + }, + { + "start": 12322.5, + "end": 12324.84, + "probability": 0.5564 + }, + { + "start": 12324.96, + "end": 12328.49, + "probability": 0.9517 + }, + { + "start": 12329.62, + "end": 12333.02, + "probability": 0.2699 + }, + { + "start": 12333.14, + "end": 12333.88, + "probability": 0.4918 + }, + { + "start": 12334.38, + "end": 12337.04, + "probability": 0.8568 + }, + { + "start": 12338.42, + "end": 12340.7, + "probability": 0.9503 + }, + { + "start": 12344.0, + "end": 12344.84, + "probability": 0.229 + }, + { + "start": 12344.84, + "end": 12344.84, + "probability": 0.5833 + }, + { + "start": 12344.84, + "end": 12345.4, + "probability": 0.6541 + }, + { + "start": 12345.62, + "end": 12346.3, + "probability": 0.9398 + }, + { + "start": 12346.54, + "end": 12348.16, + "probability": 0.8888 + }, + { + "start": 12348.4, + "end": 12349.1, + "probability": 0.716 + }, + { + "start": 12349.7, + "end": 12351.94, + "probability": 0.8773 + }, + { + "start": 12375.35, + "end": 12379.1, + "probability": 0.6823 + }, + { + "start": 12380.28, + "end": 12385.78, + "probability": 0.9884 + }, + { + "start": 12386.36, + "end": 12390.52, + "probability": 0.974 + }, + { + "start": 12390.52, + "end": 12394.82, + "probability": 0.9963 + }, + { + "start": 12394.82, + "end": 12399.24, + "probability": 0.999 + }, + { + "start": 12399.76, + "end": 12401.72, + "probability": 0.9378 + }, + { + "start": 12402.2, + "end": 12405.0, + "probability": 0.9959 + }, + { + "start": 12405.0, + "end": 12407.62, + "probability": 0.9958 + }, + { + "start": 12408.98, + "end": 12410.9, + "probability": 0.887 + }, + { + "start": 12411.54, + "end": 12413.2, + "probability": 0.9799 + }, + { + "start": 12413.88, + "end": 12415.9, + "probability": 0.9373 + }, + { + "start": 12416.42, + "end": 12421.98, + "probability": 0.9453 + }, + { + "start": 12422.78, + "end": 12425.88, + "probability": 0.989 + }, + { + "start": 12425.88, + "end": 12429.58, + "probability": 0.995 + }, + { + "start": 12430.56, + "end": 12433.18, + "probability": 0.9988 + }, + { + "start": 12434.08, + "end": 12438.66, + "probability": 0.9879 + }, + { + "start": 12439.06, + "end": 12440.0, + "probability": 0.5686 + }, + { + "start": 12441.04, + "end": 12443.06, + "probability": 0.9874 + }, + { + "start": 12444.04, + "end": 12445.78, + "probability": 0.8163 + }, + { + "start": 12446.2, + "end": 12449.98, + "probability": 0.9969 + }, + { + "start": 12450.52, + "end": 12456.84, + "probability": 0.9922 + }, + { + "start": 12457.78, + "end": 12462.08, + "probability": 0.9974 + }, + { + "start": 12462.68, + "end": 12463.16, + "probability": 0.7491 + }, + { + "start": 12463.78, + "end": 12465.7, + "probability": 0.8688 + }, + { + "start": 12465.78, + "end": 12467.92, + "probability": 0.9933 + }, + { + "start": 12468.68, + "end": 12470.54, + "probability": 0.9989 + }, + { + "start": 12470.7, + "end": 12472.92, + "probability": 0.9437 + }, + { + "start": 12473.8, + "end": 12476.1, + "probability": 0.9961 + }, + { + "start": 12476.72, + "end": 12479.26, + "probability": 0.9874 + }, + { + "start": 12479.82, + "end": 12482.3, + "probability": 0.9614 + }, + { + "start": 12482.74, + "end": 12484.5, + "probability": 0.9546 + }, + { + "start": 12485.02, + "end": 12487.48, + "probability": 0.9992 + }, + { + "start": 12487.48, + "end": 12490.76, + "probability": 0.9984 + }, + { + "start": 12491.36, + "end": 12494.76, + "probability": 0.9696 + }, + { + "start": 12494.76, + "end": 12499.22, + "probability": 0.9336 + }, + { + "start": 12499.58, + "end": 12502.06, + "probability": 0.993 + }, + { + "start": 12502.5, + "end": 12506.16, + "probability": 0.8948 + }, + { + "start": 12506.16, + "end": 12510.92, + "probability": 0.9689 + }, + { + "start": 12511.06, + "end": 12517.02, + "probability": 0.9949 + }, + { + "start": 12517.4, + "end": 12522.22, + "probability": 0.9365 + }, + { + "start": 12522.58, + "end": 12523.06, + "probability": 0.4262 + }, + { + "start": 12523.22, + "end": 12524.6, + "probability": 0.9241 + }, + { + "start": 12524.68, + "end": 12526.2, + "probability": 0.9186 + }, + { + "start": 12526.78, + "end": 12530.64, + "probability": 0.9861 + }, + { + "start": 12530.7, + "end": 12537.64, + "probability": 0.9816 + }, + { + "start": 12538.12, + "end": 12538.36, + "probability": 0.7507 + }, + { + "start": 12539.34, + "end": 12540.6, + "probability": 0.5513 + }, + { + "start": 12540.72, + "end": 12543.84, + "probability": 0.9854 + }, + { + "start": 12544.16, + "end": 12546.48, + "probability": 0.9954 + }, + { + "start": 12547.0, + "end": 12551.42, + "probability": 0.9304 + }, + { + "start": 12551.68, + "end": 12552.58, + "probability": 0.8538 + }, + { + "start": 12554.98, + "end": 12556.1, + "probability": 0.7221 + }, + { + "start": 12556.64, + "end": 12560.36, + "probability": 0.7045 + }, + { + "start": 12560.76, + "end": 12561.66, + "probability": 0.523 + }, + { + "start": 12562.06, + "end": 12564.82, + "probability": 0.9273 + }, + { + "start": 12565.28, + "end": 12565.96, + "probability": 0.7459 + }, + { + "start": 12566.98, + "end": 12568.34, + "probability": 0.813 + }, + { + "start": 12570.32, + "end": 12570.88, + "probability": 0.6966 + }, + { + "start": 12571.6, + "end": 12572.76, + "probability": 0.6078 + }, + { + "start": 12573.58, + "end": 12577.42, + "probability": 0.8542 + }, + { + "start": 12578.0, + "end": 12581.24, + "probability": 0.6647 + }, + { + "start": 12581.24, + "end": 12583.88, + "probability": 0.682 + }, + { + "start": 12585.48, + "end": 12587.96, + "probability": 0.2069 + }, + { + "start": 12589.12, + "end": 12591.06, + "probability": 0.7005 + }, + { + "start": 12591.36, + "end": 12592.28, + "probability": 0.8033 + }, + { + "start": 12595.02, + "end": 12595.86, + "probability": 0.0002 + }, + { + "start": 12609.46, + "end": 12610.08, + "probability": 0.0553 + }, + { + "start": 12610.08, + "end": 12612.34, + "probability": 0.516 + }, + { + "start": 12612.44, + "end": 12616.6, + "probability": 0.896 + }, + { + "start": 12618.84, + "end": 12624.3, + "probability": 0.9669 + }, + { + "start": 12625.04, + "end": 12628.64, + "probability": 0.7 + }, + { + "start": 12628.86, + "end": 12632.24, + "probability": 0.2161 + }, + { + "start": 12633.3, + "end": 12633.84, + "probability": 0.6072 + }, + { + "start": 12633.84, + "end": 12634.82, + "probability": 0.3021 + }, + { + "start": 12634.82, + "end": 12636.72, + "probability": 0.1694 + }, + { + "start": 12647.98, + "end": 12651.12, + "probability": 0.7905 + }, + { + "start": 12651.76, + "end": 12658.06, + "probability": 0.7151 + }, + { + "start": 12658.18, + "end": 12660.1, + "probability": 0.2935 + }, + { + "start": 12661.38, + "end": 12663.78, + "probability": 0.8863 + }, + { + "start": 12663.88, + "end": 12666.04, + "probability": 0.8585 + }, + { + "start": 12667.66, + "end": 12668.16, + "probability": 0.8822 + }, + { + "start": 12668.82, + "end": 12672.38, + "probability": 0.8715 + }, + { + "start": 12673.14, + "end": 12674.4, + "probability": 0.9624 + }, + { + "start": 12675.24, + "end": 12678.58, + "probability": 0.1412 + }, + { + "start": 12679.24, + "end": 12679.36, + "probability": 0.514 + }, + { + "start": 12680.02, + "end": 12682.04, + "probability": 0.4971 + }, + { + "start": 12682.72, + "end": 12685.76, + "probability": 0.7134 + }, + { + "start": 12687.24, + "end": 12689.42, + "probability": 0.9417 + }, + { + "start": 12689.98, + "end": 12691.42, + "probability": 0.8491 + }, + { + "start": 12694.24, + "end": 12696.04, + "probability": 0.7672 + }, + { + "start": 12696.32, + "end": 12698.32, + "probability": 0.9888 + }, + { + "start": 12698.38, + "end": 12700.58, + "probability": 0.9938 + }, + { + "start": 12700.88, + "end": 12704.44, + "probability": 0.9906 + }, + { + "start": 12704.88, + "end": 12706.16, + "probability": 0.6111 + }, + { + "start": 12706.68, + "end": 12710.58, + "probability": 0.9888 + }, + { + "start": 12710.7, + "end": 12713.02, + "probability": 0.9675 + }, + { + "start": 12714.34, + "end": 12719.36, + "probability": 0.9399 + }, + { + "start": 12720.2, + "end": 12721.4, + "probability": 0.6595 + }, + { + "start": 12722.24, + "end": 12725.72, + "probability": 0.9616 + }, + { + "start": 12726.3, + "end": 12729.2, + "probability": 0.9978 + }, + { + "start": 12729.76, + "end": 12733.44, + "probability": 0.9907 + }, + { + "start": 12734.04, + "end": 12736.0, + "probability": 0.9482 + }, + { + "start": 12736.36, + "end": 12741.46, + "probability": 0.9939 + }, + { + "start": 12742.02, + "end": 12743.06, + "probability": 0.9681 + }, + { + "start": 12743.6, + "end": 12748.26, + "probability": 0.9973 + }, + { + "start": 12748.26, + "end": 12751.48, + "probability": 0.9989 + }, + { + "start": 12753.74, + "end": 12757.28, + "probability": 0.9741 + }, + { + "start": 12757.54, + "end": 12762.76, + "probability": 0.8822 + }, + { + "start": 12763.46, + "end": 12764.82, + "probability": 0.9868 + }, + { + "start": 12765.48, + "end": 12771.8, + "probability": 0.9923 + }, + { + "start": 12772.48, + "end": 12773.96, + "probability": 0.7693 + }, + { + "start": 12775.4, + "end": 12776.84, + "probability": 0.9617 + }, + { + "start": 12777.48, + "end": 12780.75, + "probability": 0.9546 + }, + { + "start": 12782.58, + "end": 12783.06, + "probability": 0.0773 + }, + { + "start": 12783.06, + "end": 12786.8, + "probability": 0.7963 + }, + { + "start": 12787.4, + "end": 12791.28, + "probability": 0.9779 + }, + { + "start": 12792.06, + "end": 12797.5, + "probability": 0.9754 + }, + { + "start": 12798.88, + "end": 12801.78, + "probability": 0.8798 + }, + { + "start": 12803.28, + "end": 12804.5, + "probability": 0.6899 + }, + { + "start": 12806.7, + "end": 12809.24, + "probability": 0.6994 + }, + { + "start": 12809.58, + "end": 12810.96, + "probability": 0.7842 + }, + { + "start": 12811.56, + "end": 12812.62, + "probability": 0.0203 + }, + { + "start": 12812.62, + "end": 12815.18, + "probability": 0.2004 + }, + { + "start": 12815.18, + "end": 12815.62, + "probability": 0.048 + }, + { + "start": 12815.74, + "end": 12816.4, + "probability": 0.1686 + }, + { + "start": 12816.56, + "end": 12817.24, + "probability": 0.0294 + }, + { + "start": 12818.94, + "end": 12819.28, + "probability": 0.1038 + }, + { + "start": 12819.28, + "end": 12819.28, + "probability": 0.0563 + }, + { + "start": 12819.28, + "end": 12820.82, + "probability": 0.0605 + }, + { + "start": 12821.46, + "end": 12829.32, + "probability": 0.7881 + }, + { + "start": 12829.4, + "end": 12834.0, + "probability": 0.9401 + }, + { + "start": 12835.38, + "end": 12835.88, + "probability": 0.89 + }, + { + "start": 12844.2, + "end": 12845.06, + "probability": 0.5346 + }, + { + "start": 12854.4, + "end": 12854.48, + "probability": 0.5227 + }, + { + "start": 12854.58, + "end": 12858.76, + "probability": 0.8508 + }, + { + "start": 12858.9, + "end": 12861.08, + "probability": 0.7829 + }, + { + "start": 12861.84, + "end": 12866.46, + "probability": 0.7352 + }, + { + "start": 12867.34, + "end": 12870.2, + "probability": 0.9951 + }, + { + "start": 12871.2, + "end": 12878.2, + "probability": 0.992 + }, + { + "start": 12878.28, + "end": 12879.88, + "probability": 0.9896 + }, + { + "start": 12880.57, + "end": 12883.78, + "probability": 0.9995 + }, + { + "start": 12884.34, + "end": 12885.26, + "probability": 0.5486 + }, + { + "start": 12885.76, + "end": 12886.96, + "probability": 0.792 + }, + { + "start": 12887.42, + "end": 12891.16, + "probability": 0.9863 + }, + { + "start": 12891.68, + "end": 12892.88, + "probability": 0.9617 + }, + { + "start": 12893.4, + "end": 12894.38, + "probability": 0.9375 + }, + { + "start": 12895.08, + "end": 12896.54, + "probability": 0.9951 + }, + { + "start": 12897.54, + "end": 12898.48, + "probability": 0.8594 + }, + { + "start": 12899.12, + "end": 12899.77, + "probability": 0.487 + }, + { + "start": 12900.82, + "end": 12903.98, + "probability": 0.9946 + }, + { + "start": 12903.98, + "end": 12911.68, + "probability": 0.9965 + }, + { + "start": 12912.62, + "end": 12913.66, + "probability": 0.9946 + }, + { + "start": 12915.66, + "end": 12916.26, + "probability": 0.6316 + }, + { + "start": 12916.38, + "end": 12916.86, + "probability": 0.565 + }, + { + "start": 12916.96, + "end": 12919.44, + "probability": 0.9956 + }, + { + "start": 12919.48, + "end": 12922.1, + "probability": 0.9414 + }, + { + "start": 12922.56, + "end": 12926.48, + "probability": 0.8244 + }, + { + "start": 12926.94, + "end": 12928.62, + "probability": 0.3122 + }, + { + "start": 12928.64, + "end": 12930.62, + "probability": 0.9928 + }, + { + "start": 12930.62, + "end": 12932.6, + "probability": 0.9839 + }, + { + "start": 12933.08, + "end": 12936.5, + "probability": 0.9631 + }, + { + "start": 12937.06, + "end": 12940.2, + "probability": 0.9969 + }, + { + "start": 12940.2, + "end": 12942.68, + "probability": 0.9989 + }, + { + "start": 12943.08, + "end": 12945.48, + "probability": 0.9909 + }, + { + "start": 12945.52, + "end": 12948.52, + "probability": 0.988 + }, + { + "start": 12949.02, + "end": 12949.22, + "probability": 0.396 + }, + { + "start": 12949.36, + "end": 12952.6, + "probability": 0.992 + }, + { + "start": 12952.98, + "end": 12954.24, + "probability": 0.9424 + }, + { + "start": 12954.54, + "end": 12957.48, + "probability": 0.9642 + }, + { + "start": 12957.86, + "end": 12960.44, + "probability": 0.9769 + }, + { + "start": 12961.08, + "end": 12962.14, + "probability": 0.8096 + }, + { + "start": 12962.52, + "end": 12964.74, + "probability": 0.9953 + }, + { + "start": 12966.36, + "end": 12967.58, + "probability": 0.4849 + }, + { + "start": 12968.12, + "end": 12971.24, + "probability": 0.878 + }, + { + "start": 12971.24, + "end": 12973.7, + "probability": 0.983 + }, + { + "start": 12973.7, + "end": 12976.48, + "probability": 0.9832 + }, + { + "start": 12976.94, + "end": 12978.62, + "probability": 0.6032 + }, + { + "start": 12979.02, + "end": 12981.68, + "probability": 0.8361 + }, + { + "start": 12981.76, + "end": 12985.3, + "probability": 0.9902 + }, + { + "start": 12985.3, + "end": 12987.86, + "probability": 0.9939 + }, + { + "start": 12989.04, + "end": 12991.64, + "probability": 0.9919 + }, + { + "start": 12992.28, + "end": 12994.32, + "probability": 0.9983 + }, + { + "start": 12994.32, + "end": 12996.3, + "probability": 0.9725 + }, + { + "start": 12996.92, + "end": 12997.56, + "probability": 0.8281 + }, + { + "start": 12997.68, + "end": 13000.2, + "probability": 0.9888 + }, + { + "start": 13000.9, + "end": 13001.46, + "probability": 0.8428 + }, + { + "start": 13001.72, + "end": 13007.92, + "probability": 0.9855 + }, + { + "start": 13008.64, + "end": 13011.48, + "probability": 0.9983 + }, + { + "start": 13011.77, + "end": 13015.38, + "probability": 0.8685 + }, + { + "start": 13015.38, + "end": 13016.29, + "probability": 0.3649 + }, + { + "start": 13017.04, + "end": 13019.3, + "probability": 0.6202 + }, + { + "start": 13019.78, + "end": 13022.6, + "probability": 0.9592 + }, + { + "start": 13022.7, + "end": 13024.18, + "probability": 0.9468 + }, + { + "start": 13024.56, + "end": 13029.8, + "probability": 0.9969 + }, + { + "start": 13029.8, + "end": 13036.36, + "probability": 0.9995 + }, + { + "start": 13037.0, + "end": 13037.86, + "probability": 0.6069 + }, + { + "start": 13037.96, + "end": 13041.51, + "probability": 0.9976 + }, + { + "start": 13041.92, + "end": 13046.94, + "probability": 0.9878 + }, + { + "start": 13047.34, + "end": 13048.64, + "probability": 0.8697 + }, + { + "start": 13048.76, + "end": 13050.0, + "probability": 0.9791 + }, + { + "start": 13050.08, + "end": 13050.32, + "probability": 0.9136 + }, + { + "start": 13050.42, + "end": 13051.62, + "probability": 0.9973 + }, + { + "start": 13052.12, + "end": 13053.14, + "probability": 0.9933 + }, + { + "start": 13054.62, + "end": 13058.44, + "probability": 0.9933 + }, + { + "start": 13058.64, + "end": 13060.16, + "probability": 0.9316 + }, + { + "start": 13061.32, + "end": 13063.04, + "probability": 0.8221 + }, + { + "start": 13063.36, + "end": 13063.92, + "probability": 0.4977 + }, + { + "start": 13064.18, + "end": 13068.4, + "probability": 0.9721 + }, + { + "start": 13068.4, + "end": 13068.68, + "probability": 0.9888 + }, + { + "start": 13069.2, + "end": 13070.14, + "probability": 0.9817 + }, + { + "start": 13070.96, + "end": 13073.24, + "probability": 0.9839 + }, + { + "start": 13073.3, + "end": 13075.3, + "probability": 0.9991 + }, + { + "start": 13075.88, + "end": 13076.36, + "probability": 0.5875 + }, + { + "start": 13076.5, + "end": 13078.02, + "probability": 0.9958 + }, + { + "start": 13078.42, + "end": 13080.66, + "probability": 0.545 + }, + { + "start": 13080.72, + "end": 13081.8, + "probability": 0.874 + }, + { + "start": 13082.18, + "end": 13084.64, + "probability": 0.9368 + }, + { + "start": 13084.7, + "end": 13086.66, + "probability": 0.9675 + }, + { + "start": 13087.24, + "end": 13088.18, + "probability": 0.6003 + }, + { + "start": 13088.32, + "end": 13091.56, + "probability": 0.9845 + }, + { + "start": 13092.66, + "end": 13093.26, + "probability": 0.8235 + }, + { + "start": 13095.5, + "end": 13097.23, + "probability": 0.9415 + }, + { + "start": 13098.84, + "end": 13100.56, + "probability": 0.5311 + }, + { + "start": 13101.14, + "end": 13105.4, + "probability": 0.6439 + }, + { + "start": 13105.56, + "end": 13106.14, + "probability": 0.5188 + }, + { + "start": 13106.26, + "end": 13107.36, + "probability": 0.9338 + }, + { + "start": 13107.38, + "end": 13107.92, + "probability": 0.8181 + }, + { + "start": 13108.56, + "end": 13112.18, + "probability": 0.5456 + }, + { + "start": 13112.92, + "end": 13114.08, + "probability": 0.8487 + }, + { + "start": 13114.22, + "end": 13114.72, + "probability": 0.3775 + }, + { + "start": 13115.2, + "end": 13117.42, + "probability": 0.8129 + }, + { + "start": 13117.84, + "end": 13118.84, + "probability": 0.4326 + }, + { + "start": 13119.34, + "end": 13120.7, + "probability": 0.8945 + }, + { + "start": 13121.32, + "end": 13123.84, + "probability": 0.7304 + }, + { + "start": 13124.86, + "end": 13127.6, + "probability": 0.7884 + }, + { + "start": 13128.64, + "end": 13135.18, + "probability": 0.7049 + }, + { + "start": 13135.28, + "end": 13137.12, + "probability": 0.1915 + }, + { + "start": 13137.56, + "end": 13139.4, + "probability": 0.6255 + }, + { + "start": 13140.06, + "end": 13143.04, + "probability": 0.7909 + }, + { + "start": 13143.72, + "end": 13146.88, + "probability": 0.0194 + }, + { + "start": 13147.98, + "end": 13149.94, + "probability": 0.0377 + }, + { + "start": 13160.4, + "end": 13162.0, + "probability": 0.4201 + }, + { + "start": 13163.5, + "end": 13166.08, + "probability": 0.9243 + }, + { + "start": 13166.7, + "end": 13170.78, + "probability": 0.9937 + }, + { + "start": 13171.7, + "end": 13176.0, + "probability": 0.8407 + }, + { + "start": 13176.34, + "end": 13179.92, + "probability": 0.4947 + }, + { + "start": 13193.5, + "end": 13199.02, + "probability": 0.1747 + }, + { + "start": 13199.02, + "end": 13199.52, + "probability": 0.1576 + }, + { + "start": 13199.52, + "end": 13199.52, + "probability": 0.2135 + }, + { + "start": 13199.52, + "end": 13200.24, + "probability": 0.3848 + }, + { + "start": 13201.24, + "end": 13202.86, + "probability": 0.8705 + }, + { + "start": 13207.34, + "end": 13212.24, + "probability": 0.8486 + }, + { + "start": 13212.42, + "end": 13214.76, + "probability": 0.2332 + }, + { + "start": 13216.34, + "end": 13218.3, + "probability": 0.9237 + }, + { + "start": 13218.46, + "end": 13222.1, + "probability": 0.9922 + }, + { + "start": 13225.74, + "end": 13227.22, + "probability": 0.8621 + }, + { + "start": 13231.8, + "end": 13233.14, + "probability": 0.4202 + }, + { + "start": 13234.44, + "end": 13239.2, + "probability": 0.869 + }, + { + "start": 13239.76, + "end": 13240.22, + "probability": 0.0413 + }, + { + "start": 13240.22, + "end": 13246.18, + "probability": 0.7311 + }, + { + "start": 13246.68, + "end": 13249.0, + "probability": 0.9484 + }, + { + "start": 13249.44, + "end": 13251.62, + "probability": 0.913 + }, + { + "start": 13253.36, + "end": 13253.8, + "probability": 0.8691 + }, + { + "start": 13263.72, + "end": 13265.94, + "probability": 0.6957 + }, + { + "start": 13267.18, + "end": 13268.06, + "probability": 0.5736 + }, + { + "start": 13269.22, + "end": 13274.18, + "probability": 0.9777 + }, + { + "start": 13274.72, + "end": 13279.08, + "probability": 0.4083 + }, + { + "start": 13280.28, + "end": 13280.82, + "probability": 0.6543 + }, + { + "start": 13281.08, + "end": 13285.9, + "probability": 0.789 + }, + { + "start": 13285.98, + "end": 13288.02, + "probability": 0.9544 + }, + { + "start": 13288.02, + "end": 13291.56, + "probability": 0.9711 + }, + { + "start": 13291.7, + "end": 13293.79, + "probability": 0.9977 + }, + { + "start": 13293.95, + "end": 13296.78, + "probability": 0.9362 + }, + { + "start": 13297.48, + "end": 13300.32, + "probability": 0.9772 + }, + { + "start": 13300.32, + "end": 13303.48, + "probability": 0.9508 + }, + { + "start": 13303.64, + "end": 13306.02, + "probability": 0.9835 + }, + { + "start": 13306.78, + "end": 13309.94, + "probability": 0.9932 + }, + { + "start": 13310.1, + "end": 13312.78, + "probability": 0.4126 + }, + { + "start": 13313.15, + "end": 13318.94, + "probability": 0.9985 + }, + { + "start": 13319.54, + "end": 13323.84, + "probability": 0.938 + }, + { + "start": 13324.48, + "end": 13327.48, + "probability": 0.9827 + }, + { + "start": 13327.52, + "end": 13329.78, + "probability": 0.8903 + }, + { + "start": 13330.54, + "end": 13335.48, + "probability": 0.9714 + }, + { + "start": 13336.06, + "end": 13338.32, + "probability": 0.9173 + }, + { + "start": 13338.42, + "end": 13338.94, + "probability": 0.7762 + }, + { + "start": 13339.48, + "end": 13342.32, + "probability": 0.8799 + }, + { + "start": 13342.32, + "end": 13345.12, + "probability": 0.9616 + }, + { + "start": 13346.26, + "end": 13349.62, + "probability": 0.9618 + }, + { + "start": 13349.62, + "end": 13352.38, + "probability": 0.9736 + }, + { + "start": 13353.18, + "end": 13355.9, + "probability": 0.7509 + }, + { + "start": 13355.94, + "end": 13356.7, + "probability": 0.5489 + }, + { + "start": 13357.16, + "end": 13357.56, + "probability": 0.7586 + }, + { + "start": 13357.6, + "end": 13358.3, + "probability": 0.8684 + }, + { + "start": 13358.38, + "end": 13361.38, + "probability": 0.9595 + }, + { + "start": 13363.0, + "end": 13364.88, + "probability": 0.8499 + }, + { + "start": 13364.88, + "end": 13368.28, + "probability": 0.9554 + }, + { + "start": 13368.86, + "end": 13369.34, + "probability": 0.8286 + }, + { + "start": 13369.38, + "end": 13372.14, + "probability": 0.9644 + }, + { + "start": 13372.88, + "end": 13374.4, + "probability": 0.6825 + }, + { + "start": 13375.06, + "end": 13379.08, + "probability": 0.8849 + }, + { + "start": 13379.78, + "end": 13380.08, + "probability": 0.6366 + }, + { + "start": 13380.18, + "end": 13381.54, + "probability": 0.8107 + }, + { + "start": 13381.62, + "end": 13383.22, + "probability": 0.9351 + }, + { + "start": 13383.8, + "end": 13385.1, + "probability": 0.9655 + }, + { + "start": 13386.08, + "end": 13389.34, + "probability": 0.9825 + }, + { + "start": 13389.46, + "end": 13390.92, + "probability": 0.7139 + }, + { + "start": 13391.0, + "end": 13394.42, + "probability": 0.9113 + }, + { + "start": 13394.48, + "end": 13395.08, + "probability": 0.7095 + }, + { + "start": 13395.64, + "end": 13397.86, + "probability": 0.9865 + }, + { + "start": 13398.48, + "end": 13401.16, + "probability": 0.9478 + }, + { + "start": 13401.42, + "end": 13404.68, + "probability": 0.8848 + }, + { + "start": 13405.3, + "end": 13408.16, + "probability": 0.9387 + }, + { + "start": 13408.88, + "end": 13410.0, + "probability": 0.9629 + }, + { + "start": 13410.84, + "end": 13413.22, + "probability": 0.9982 + }, + { + "start": 13413.32, + "end": 13416.7, + "probability": 0.9873 + }, + { + "start": 13416.7, + "end": 13420.84, + "probability": 0.9808 + }, + { + "start": 13421.56, + "end": 13425.12, + "probability": 0.79 + }, + { + "start": 13425.28, + "end": 13429.26, + "probability": 0.997 + }, + { + "start": 13429.26, + "end": 13432.78, + "probability": 0.8602 + }, + { + "start": 13432.88, + "end": 13435.08, + "probability": 0.7739 + }, + { + "start": 13435.08, + "end": 13438.98, + "probability": 0.9971 + }, + { + "start": 13439.82, + "end": 13441.56, + "probability": 0.9829 + }, + { + "start": 13442.16, + "end": 13444.5, + "probability": 0.9561 + }, + { + "start": 13444.82, + "end": 13448.06, + "probability": 0.7392 + }, + { + "start": 13448.72, + "end": 13451.3, + "probability": 0.9206 + }, + { + "start": 13451.48, + "end": 13454.34, + "probability": 0.7704 + }, + { + "start": 13454.34, + "end": 13459.6, + "probability": 0.9866 + }, + { + "start": 13459.62, + "end": 13462.1, + "probability": 0.7521 + }, + { + "start": 13462.86, + "end": 13463.4, + "probability": 0.5825 + }, + { + "start": 13463.5, + "end": 13468.22, + "probability": 0.7307 + }, + { + "start": 13468.4, + "end": 13472.32, + "probability": 0.9897 + }, + { + "start": 13473.46, + "end": 13477.6, + "probability": 0.9704 + }, + { + "start": 13479.2, + "end": 13480.7, + "probability": 0.7785 + }, + { + "start": 13480.8, + "end": 13482.26, + "probability": 0.9902 + }, + { + "start": 13482.86, + "end": 13484.38, + "probability": 0.9205 + }, + { + "start": 13485.7, + "end": 13486.28, + "probability": 0.7555 + }, + { + "start": 13494.38, + "end": 13494.96, + "probability": 0.7368 + }, + { + "start": 13496.28, + "end": 13498.78, + "probability": 0.7512 + }, + { + "start": 13499.64, + "end": 13501.22, + "probability": 0.7504 + }, + { + "start": 13501.86, + "end": 13503.28, + "probability": 0.7493 + }, + { + "start": 13503.3, + "end": 13504.04, + "probability": 0.7273 + }, + { + "start": 13504.38, + "end": 13505.32, + "probability": 0.9508 + }, + { + "start": 13505.32, + "end": 13505.98, + "probability": 0.905 + }, + { + "start": 13506.6, + "end": 13509.12, + "probability": 0.6254 + }, + { + "start": 13509.74, + "end": 13510.56, + "probability": 0.5238 + }, + { + "start": 13510.86, + "end": 13512.18, + "probability": 0.5654 + }, + { + "start": 13512.2, + "end": 13512.82, + "probability": 0.738 + }, + { + "start": 13512.96, + "end": 13514.28, + "probability": 0.9764 + }, + { + "start": 13514.48, + "end": 13515.26, + "probability": 0.8501 + }, + { + "start": 13516.02, + "end": 13516.42, + "probability": 0.8555 + }, + { + "start": 13516.5, + "end": 13517.3, + "probability": 0.9887 + }, + { + "start": 13517.56, + "end": 13524.52, + "probability": 0.9613 + }, + { + "start": 13524.52, + "end": 13528.64, + "probability": 0.8343 + }, + { + "start": 13529.18, + "end": 13533.6, + "probability": 0.3563 + }, + { + "start": 13538.6, + "end": 13539.14, + "probability": 0.0041 + }, + { + "start": 13539.22, + "end": 13540.04, + "probability": 0.0949 + }, + { + "start": 13540.12, + "end": 13541.1, + "probability": 0.375 + }, + { + "start": 13551.02, + "end": 13553.72, + "probability": 0.7636 + }, + { + "start": 13554.28, + "end": 13557.58, + "probability": 0.932 + }, + { + "start": 13558.7, + "end": 13560.84, + "probability": 0.9839 + }, + { + "start": 13561.38, + "end": 13566.44, + "probability": 0.8065 + }, + { + "start": 13567.24, + "end": 13572.38, + "probability": 0.4591 + }, + { + "start": 13575.66, + "end": 13576.26, + "probability": 0.7513 + }, + { + "start": 13578.34, + "end": 13581.56, + "probability": 0.5882 + }, + { + "start": 13582.59, + "end": 13586.98, + "probability": 0.7882 + }, + { + "start": 13587.58, + "end": 13588.34, + "probability": 0.2695 + }, + { + "start": 13589.16, + "end": 13589.56, + "probability": 0.1231 + }, + { + "start": 13590.58, + "end": 13593.42, + "probability": 0.6776 + }, + { + "start": 13593.84, + "end": 13596.98, + "probability": 0.9077 + }, + { + "start": 13596.98, + "end": 13599.86, + "probability": 0.7629 + }, + { + "start": 13600.38, + "end": 13602.46, + "probability": 0.2702 + }, + { + "start": 13604.06, + "end": 13606.68, + "probability": 0.8813 + }, + { + "start": 13606.84, + "end": 13609.5, + "probability": 0.9725 + }, + { + "start": 13611.46, + "end": 13614.14, + "probability": 0.9315 + }, + { + "start": 13614.38, + "end": 13616.04, + "probability": 0.7895 + }, + { + "start": 13616.46, + "end": 13617.02, + "probability": 0.5633 + }, + { + "start": 13617.28, + "end": 13618.5, + "probability": 0.8737 + }, + { + "start": 13637.02, + "end": 13637.74, + "probability": 0.4901 + }, + { + "start": 13637.76, + "end": 13638.44, + "probability": 0.5714 + }, + { + "start": 13638.6, + "end": 13638.86, + "probability": 0.8006 + }, + { + "start": 13638.9, + "end": 13639.76, + "probability": 0.7659 + }, + { + "start": 13639.82, + "end": 13640.5, + "probability": 0.8481 + }, + { + "start": 13640.78, + "end": 13644.96, + "probability": 0.9761 + }, + { + "start": 13645.54, + "end": 13647.6, + "probability": 0.0006 + }, + { + "start": 13647.86, + "end": 13649.66, + "probability": 0.9574 + }, + { + "start": 13650.2, + "end": 13650.26, + "probability": 0.5688 + }, + { + "start": 13652.32, + "end": 13654.47, + "probability": 0.7061 + }, + { + "start": 13655.22, + "end": 13662.11, + "probability": 0.8594 + }, + { + "start": 13662.58, + "end": 13667.12, + "probability": 0.9854 + }, + { + "start": 13667.74, + "end": 13669.32, + "probability": 0.9966 + }, + { + "start": 13669.78, + "end": 13674.6, + "probability": 0.9932 + }, + { + "start": 13674.92, + "end": 13676.7, + "probability": 0.9674 + }, + { + "start": 13677.02, + "end": 13677.79, + "probability": 0.9414 + }, + { + "start": 13678.66, + "end": 13680.87, + "probability": 0.9736 + }, + { + "start": 13681.78, + "end": 13684.42, + "probability": 0.9368 + }, + { + "start": 13684.58, + "end": 13684.88, + "probability": 0.8829 + }, + { + "start": 13684.96, + "end": 13687.18, + "probability": 0.9282 + }, + { + "start": 13687.26, + "end": 13687.86, + "probability": 0.9403 + }, + { + "start": 13687.9, + "end": 13689.32, + "probability": 0.6177 + }, + { + "start": 13690.16, + "end": 13692.96, + "probability": 0.9989 + }, + { + "start": 13692.96, + "end": 13697.08, + "probability": 0.994 + }, + { + "start": 13699.6, + "end": 13703.18, + "probability": 0.9884 + }, + { + "start": 13703.18, + "end": 13706.34, + "probability": 0.9492 + }, + { + "start": 13707.02, + "end": 13710.66, + "probability": 0.9949 + }, + { + "start": 13711.38, + "end": 13712.46, + "probability": 0.8833 + }, + { + "start": 13712.84, + "end": 13716.98, + "probability": 0.7637 + }, + { + "start": 13716.98, + "end": 13721.02, + "probability": 0.9927 + }, + { + "start": 13721.12, + "end": 13722.94, + "probability": 0.629 + }, + { + "start": 13723.48, + "end": 13725.5, + "probability": 0.6992 + }, + { + "start": 13725.52, + "end": 13726.36, + "probability": 0.8358 + }, + { + "start": 13726.42, + "end": 13729.58, + "probability": 0.9896 + }, + { + "start": 13730.5, + "end": 13735.06, + "probability": 0.9822 + }, + { + "start": 13735.06, + "end": 13737.9, + "probability": 0.9931 + }, + { + "start": 13738.48, + "end": 13743.52, + "probability": 0.9951 + }, + { + "start": 13744.0, + "end": 13747.14, + "probability": 0.8121 + }, + { + "start": 13748.6, + "end": 13751.54, + "probability": 0.9946 + }, + { + "start": 13752.58, + "end": 13755.88, + "probability": 0.7243 + }, + { + "start": 13756.02, + "end": 13756.72, + "probability": 0.5034 + }, + { + "start": 13756.82, + "end": 13757.94, + "probability": 0.8162 + }, + { + "start": 13758.06, + "end": 13762.67, + "probability": 0.8834 + }, + { + "start": 13763.72, + "end": 13765.56, + "probability": 0.7966 + }, + { + "start": 13765.68, + "end": 13768.46, + "probability": 0.9937 + }, + { + "start": 13770.42, + "end": 13773.66, + "probability": 0.9914 + }, + { + "start": 13774.08, + "end": 13776.47, + "probability": 0.9885 + }, + { + "start": 13777.28, + "end": 13779.86, + "probability": 0.9852 + }, + { + "start": 13781.12, + "end": 13784.61, + "probability": 0.9606 + }, + { + "start": 13785.5, + "end": 13786.54, + "probability": 0.8485 + }, + { + "start": 13787.32, + "end": 13789.54, + "probability": 0.9973 + }, + { + "start": 13790.18, + "end": 13792.18, + "probability": 0.9374 + }, + { + "start": 13792.5, + "end": 13794.44, + "probability": 0.9183 + }, + { + "start": 13794.96, + "end": 13798.86, + "probability": 0.9723 + }, + { + "start": 13801.64, + "end": 13806.36, + "probability": 0.9886 + }, + { + "start": 13806.78, + "end": 13810.5, + "probability": 0.9847 + }, + { + "start": 13812.0, + "end": 13812.76, + "probability": 0.4725 + }, + { + "start": 13813.5, + "end": 13816.48, + "probability": 0.989 + }, + { + "start": 13817.38, + "end": 13823.2, + "probability": 0.9848 + }, + { + "start": 13823.22, + "end": 13824.86, + "probability": 0.6464 + }, + { + "start": 13825.72, + "end": 13826.52, + "probability": 0.0737 + }, + { + "start": 13826.58, + "end": 13828.16, + "probability": 0.8245 + }, + { + "start": 13828.28, + "end": 13833.88, + "probability": 0.9984 + }, + { + "start": 13834.16, + "end": 13837.46, + "probability": 0.7856 + }, + { + "start": 13837.5, + "end": 13840.04, + "probability": 0.9697 + }, + { + "start": 13840.9, + "end": 13847.32, + "probability": 0.9167 + }, + { + "start": 13847.74, + "end": 13850.9, + "probability": 0.9714 + }, + { + "start": 13851.08, + "end": 13851.78, + "probability": 0.5124 + }, + { + "start": 13852.72, + "end": 13853.46, + "probability": 0.8419 + }, + { + "start": 13853.54, + "end": 13854.3, + "probability": 0.852 + }, + { + "start": 13855.36, + "end": 13855.98, + "probability": 0.8331 + }, + { + "start": 13856.74, + "end": 13860.78, + "probability": 0.9792 + }, + { + "start": 13861.16, + "end": 13862.68, + "probability": 0.9106 + }, + { + "start": 13863.08, + "end": 13865.24, + "probability": 0.9578 + }, + { + "start": 13865.52, + "end": 13865.7, + "probability": 0.4203 + }, + { + "start": 13865.82, + "end": 13870.52, + "probability": 0.9227 + }, + { + "start": 13871.16, + "end": 13873.64, + "probability": 0.9806 + }, + { + "start": 13874.12, + "end": 13876.56, + "probability": 0.8905 + }, + { + "start": 13877.42, + "end": 13879.74, + "probability": 0.7124 + }, + { + "start": 13879.88, + "end": 13882.23, + "probability": 0.745 + }, + { + "start": 13882.7, + "end": 13885.58, + "probability": 0.8848 + }, + { + "start": 13885.64, + "end": 13887.4, + "probability": 0.8761 + }, + { + "start": 13888.02, + "end": 13890.12, + "probability": 0.9531 + }, + { + "start": 13890.54, + "end": 13891.2, + "probability": 0.7816 + }, + { + "start": 13891.36, + "end": 13894.82, + "probability": 0.995 + }, + { + "start": 13895.02, + "end": 13896.14, + "probability": 0.9736 + }, + { + "start": 13896.96, + "end": 13898.96, + "probability": 0.8316 + }, + { + "start": 13899.22, + "end": 13900.08, + "probability": 0.7464 + }, + { + "start": 13900.34, + "end": 13903.02, + "probability": 0.966 + }, + { + "start": 13903.02, + "end": 13906.0, + "probability": 0.9768 + }, + { + "start": 13906.76, + "end": 13913.98, + "probability": 0.8503 + }, + { + "start": 13914.56, + "end": 13918.96, + "probability": 0.9741 + }, + { + "start": 13918.96, + "end": 13925.56, + "probability": 0.9673 + }, + { + "start": 13926.16, + "end": 13927.68, + "probability": 0.229 + }, + { + "start": 13927.7, + "end": 13928.74, + "probability": 0.4548 + }, + { + "start": 13928.76, + "end": 13929.32, + "probability": 0.7761 + }, + { + "start": 13929.44, + "end": 13933.34, + "probability": 0.9631 + }, + { + "start": 13933.44, + "end": 13938.04, + "probability": 0.9961 + }, + { + "start": 13938.04, + "end": 13940.9, + "probability": 0.8056 + }, + { + "start": 13940.9, + "end": 13945.58, + "probability": 0.5859 + }, + { + "start": 13945.64, + "end": 13949.04, + "probability": 0.9238 + }, + { + "start": 13949.12, + "end": 13953.08, + "probability": 0.987 + }, + { + "start": 13953.86, + "end": 13956.82, + "probability": 0.8127 + }, + { + "start": 13956.92, + "end": 13957.16, + "probability": 0.8004 + }, + { + "start": 13958.6, + "end": 13960.86, + "probability": 0.8665 + }, + { + "start": 13962.16, + "end": 13968.92, + "probability": 0.7297 + }, + { + "start": 13968.96, + "end": 13971.3, + "probability": 0.8808 + }, + { + "start": 13994.32, + "end": 14004.52, + "probability": 0.3145 + }, + { + "start": 14004.52, + "end": 14004.52, + "probability": 0.0813 + }, + { + "start": 14004.52, + "end": 14004.52, + "probability": 0.0461 + }, + { + "start": 14004.52, + "end": 14004.62, + "probability": 0.2382 + }, + { + "start": 14007.66, + "end": 14010.08, + "probability": 0.5422 + }, + { + "start": 14011.14, + "end": 14013.32, + "probability": 0.0202 + }, + { + "start": 14013.98, + "end": 14014.16, + "probability": 0.033 + }, + { + "start": 14014.16, + "end": 14014.16, + "probability": 0.3693 + }, + { + "start": 14014.16, + "end": 14014.16, + "probability": 0.0488 + }, + { + "start": 14014.16, + "end": 14015.14, + "probability": 0.0464 + }, + { + "start": 14015.14, + "end": 14019.12, + "probability": 0.7208 + }, + { + "start": 14019.2, + "end": 14020.42, + "probability": 0.5547 + }, + { + "start": 14020.94, + "end": 14024.12, + "probability": 0.8317 + }, + { + "start": 14026.76, + "end": 14028.62, + "probability": 0.6982 + }, + { + "start": 14028.78, + "end": 14029.84, + "probability": 0.6323 + }, + { + "start": 14030.2, + "end": 14033.2, + "probability": 0.8969 + }, + { + "start": 14034.24, + "end": 14035.44, + "probability": 0.5868 + }, + { + "start": 14036.96, + "end": 14037.42, + "probability": 0.7173 + }, + { + "start": 14037.98, + "end": 14040.38, + "probability": 0.9492 + }, + { + "start": 14040.46, + "end": 14041.8, + "probability": 0.4282 + }, + { + "start": 14041.9, + "end": 14043.64, + "probability": 0.9541 + }, + { + "start": 14043.78, + "end": 14044.7, + "probability": 0.759 + }, + { + "start": 14044.82, + "end": 14046.24, + "probability": 0.4572 + }, + { + "start": 14048.42, + "end": 14049.38, + "probability": 0.0564 + }, + { + "start": 14049.38, + "end": 14049.86, + "probability": 0.5996 + }, + { + "start": 14049.86, + "end": 14051.68, + "probability": 0.5173 + }, + { + "start": 14052.1, + "end": 14052.82, + "probability": 0.8812 + }, + { + "start": 14052.88, + "end": 14053.3, + "probability": 0.6704 + }, + { + "start": 14053.38, + "end": 14054.7, + "probability": 0.9692 + }, + { + "start": 14054.7, + "end": 14056.48, + "probability": 0.9669 + }, + { + "start": 14056.54, + "end": 14060.32, + "probability": 0.8154 + }, + { + "start": 14060.46, + "end": 14061.22, + "probability": 0.5486 + }, + { + "start": 14062.34, + "end": 14063.2, + "probability": 0.4875 + }, + { + "start": 14064.46, + "end": 14065.68, + "probability": 0.978 + }, + { + "start": 14067.22, + "end": 14070.52, + "probability": 0.679 + }, + { + "start": 14071.08, + "end": 14071.3, + "probability": 0.029 + }, + { + "start": 14071.3, + "end": 14071.98, + "probability": 0.6231 + }, + { + "start": 14075.82, + "end": 14078.9, + "probability": 0.7789 + }, + { + "start": 14079.76, + "end": 14080.38, + "probability": 0.9628 + }, + { + "start": 14080.38, + "end": 14084.46, + "probability": 0.9151 + }, + { + "start": 14085.08, + "end": 14087.5, + "probability": 0.6984 + }, + { + "start": 14089.4, + "end": 14089.74, + "probability": 0.8946 + }, + { + "start": 14090.08, + "end": 14091.88, + "probability": 0.9562 + }, + { + "start": 14093.06, + "end": 14093.62, + "probability": 0.4242 + }, + { + "start": 14093.72, + "end": 14094.32, + "probability": 0.4455 + }, + { + "start": 14094.6, + "end": 14097.6, + "probability": 0.9718 + }, + { + "start": 14097.84, + "end": 14099.76, + "probability": 0.2704 + }, + { + "start": 14102.28, + "end": 14105.16, + "probability": 0.3129 + }, + { + "start": 14106.38, + "end": 14110.86, + "probability": 0.7329 + }, + { + "start": 14110.9, + "end": 14111.98, + "probability": 0.8538 + }, + { + "start": 14112.1, + "end": 14113.0, + "probability": 0.8945 + }, + { + "start": 14113.54, + "end": 14115.74, + "probability": 0.7384 + }, + { + "start": 14117.14, + "end": 14118.14, + "probability": 0.4409 + }, + { + "start": 14118.54, + "end": 14119.82, + "probability": 0.8666 + }, + { + "start": 14120.6, + "end": 14127.3, + "probability": 0.0456 + }, + { + "start": 14127.3, + "end": 14128.3, + "probability": 0.0735 + }, + { + "start": 14128.3, + "end": 14128.74, + "probability": 0.1545 + }, + { + "start": 14129.06, + "end": 14129.8, + "probability": 0.0101 + }, + { + "start": 14130.84, + "end": 14133.16, + "probability": 0.0842 + }, + { + "start": 14133.64, + "end": 14134.68, + "probability": 0.3096 + }, + { + "start": 14134.94, + "end": 14137.78, + "probability": 0.7911 + }, + { + "start": 14138.12, + "end": 14138.64, + "probability": 0.4355 + }, + { + "start": 14139.22, + "end": 14141.64, + "probability": 0.8235 + }, + { + "start": 14141.76, + "end": 14142.64, + "probability": 0.7623 + }, + { + "start": 14142.92, + "end": 14143.34, + "probability": 0.4522 + }, + { + "start": 14143.58, + "end": 14145.74, + "probability": 0.6984 + }, + { + "start": 14146.42, + "end": 14148.4, + "probability": 0.5158 + }, + { + "start": 14148.98, + "end": 14150.88, + "probability": 0.8224 + }, + { + "start": 14151.88, + "end": 14152.54, + "probability": 0.9045 + }, + { + "start": 14154.04, + "end": 14155.92, + "probability": 0.6899 + }, + { + "start": 14156.54, + "end": 14163.38, + "probability": 0.6892 + }, + { + "start": 14164.38, + "end": 14164.92, + "probability": 0.8328 + }, + { + "start": 14166.48, + "end": 14167.32, + "probability": 0.9843 + }, + { + "start": 14167.94, + "end": 14168.88, + "probability": 0.9447 + }, + { + "start": 14169.94, + "end": 14171.78, + "probability": 0.6117 + }, + { + "start": 14173.04, + "end": 14175.2, + "probability": 0.8994 + }, + { + "start": 14175.36, + "end": 14178.7, + "probability": 0.7646 + }, + { + "start": 14178.88, + "end": 14179.54, + "probability": 0.6392 + }, + { + "start": 14179.6, + "end": 14180.42, + "probability": 0.5445 + }, + { + "start": 14183.62, + "end": 14184.56, + "probability": 0.4577 + }, + { + "start": 14184.64, + "end": 14185.64, + "probability": 0.669 + }, + { + "start": 14185.7, + "end": 14191.3, + "probability": 0.8986 + }, + { + "start": 14191.36, + "end": 14194.24, + "probability": 0.89 + }, + { + "start": 14194.64, + "end": 14198.92, + "probability": 0.4143 + }, + { + "start": 14199.46, + "end": 14200.52, + "probability": 0.7126 + }, + { + "start": 14200.8, + "end": 14203.0, + "probability": 0.1195 + }, + { + "start": 14203.12, + "end": 14205.08, + "probability": 0.6335 + }, + { + "start": 14205.64, + "end": 14207.44, + "probability": 0.8251 + }, + { + "start": 14207.52, + "end": 14208.86, + "probability": 0.3162 + }, + { + "start": 14208.86, + "end": 14209.7, + "probability": 0.567 + }, + { + "start": 14209.78, + "end": 14211.16, + "probability": 0.747 + }, + { + "start": 14211.34, + "end": 14214.0, + "probability": 0.6905 + }, + { + "start": 14214.14, + "end": 14215.6, + "probability": 0.1254 + }, + { + "start": 14215.6, + "end": 14218.32, + "probability": 0.159 + }, + { + "start": 14219.66, + "end": 14221.52, + "probability": 0.9645 + }, + { + "start": 14221.92, + "end": 14222.58, + "probability": 0.9271 + }, + { + "start": 14222.66, + "end": 14226.22, + "probability": 0.822 + }, + { + "start": 14227.96, + "end": 14229.96, + "probability": 0.514 + }, + { + "start": 14230.46, + "end": 14233.68, + "probability": 0.0325 + }, + { + "start": 14234.16, + "end": 14236.54, + "probability": 0.0097 + }, + { + "start": 14238.12, + "end": 14243.94, + "probability": 0.3998 + }, + { + "start": 14243.94, + "end": 14244.72, + "probability": 0.4141 + }, + { + "start": 14245.34, + "end": 14246.7, + "probability": 0.6701 + }, + { + "start": 14247.63, + "end": 14252.88, + "probability": 0.9408 + }, + { + "start": 14255.16, + "end": 14258.56, + "probability": 0.7474 + }, + { + "start": 14259.86, + "end": 14262.32, + "probability": 0.8475 + }, + { + "start": 14263.02, + "end": 14264.52, + "probability": 0.7393 + }, + { + "start": 14265.22, + "end": 14266.36, + "probability": 0.4928 + }, + { + "start": 14266.42, + "end": 14267.04, + "probability": 0.8925 + }, + { + "start": 14268.64, + "end": 14269.42, + "probability": 0.463 + }, + { + "start": 14270.78, + "end": 14272.32, + "probability": 0.038 + }, + { + "start": 14274.96, + "end": 14275.92, + "probability": 0.3616 + }, + { + "start": 14276.88, + "end": 14279.16, + "probability": 0.7001 + }, + { + "start": 14279.4, + "end": 14282.8, + "probability": 0.9718 + }, + { + "start": 14282.8, + "end": 14285.04, + "probability": 0.9003 + }, + { + "start": 14285.12, + "end": 14287.38, + "probability": 0.9897 + }, + { + "start": 14287.5, + "end": 14288.0, + "probability": 0.8693 + }, + { + "start": 14288.6, + "end": 14289.52, + "probability": 0.8507 + }, + { + "start": 14289.68, + "end": 14291.22, + "probability": 0.6048 + }, + { + "start": 14291.32, + "end": 14293.28, + "probability": 0.3951 + }, + { + "start": 14293.4, + "end": 14294.72, + "probability": 0.9272 + }, + { + "start": 14295.36, + "end": 14297.04, + "probability": 0.979 + }, + { + "start": 14297.12, + "end": 14298.84, + "probability": 0.9701 + }, + { + "start": 14298.94, + "end": 14300.6, + "probability": 0.8226 + }, + { + "start": 14301.18, + "end": 14302.3, + "probability": 0.6933 + }, + { + "start": 14305.75, + "end": 14307.44, + "probability": 0.785 + }, + { + "start": 14307.96, + "end": 14311.08, + "probability": 0.9619 + }, + { + "start": 14311.28, + "end": 14312.12, + "probability": 0.674 + }, + { + "start": 14312.66, + "end": 14314.8, + "probability": 0.4454 + }, + { + "start": 14316.38, + "end": 14317.94, + "probability": 0.7595 + }, + { + "start": 14317.94, + "end": 14317.94, + "probability": 0.0917 + }, + { + "start": 14317.94, + "end": 14317.94, + "probability": 0.1763 + }, + { + "start": 14317.94, + "end": 14320.48, + "probability": 0.9407 + }, + { + "start": 14320.48, + "end": 14324.4, + "probability": 0.7713 + }, + { + "start": 14324.88, + "end": 14325.0, + "probability": 0.4901 + }, + { + "start": 14325.9, + "end": 14327.98, + "probability": 0.1003 + }, + { + "start": 14328.0, + "end": 14328.0, + "probability": 0.4793 + }, + { + "start": 14328.62, + "end": 14329.34, + "probability": 0.7769 + }, + { + "start": 14330.26, + "end": 14331.12, + "probability": 0.667 + }, + { + "start": 14332.1, + "end": 14333.3, + "probability": 0.9852 + }, + { + "start": 14333.36, + "end": 14333.88, + "probability": 0.8341 + }, + { + "start": 14334.1, + "end": 14334.44, + "probability": 0.8853 + }, + { + "start": 14334.64, + "end": 14339.14, + "probability": 0.7047 + }, + { + "start": 14340.04, + "end": 14347.64, + "probability": 0.6918 + }, + { + "start": 14347.78, + "end": 14349.08, + "probability": 0.9496 + }, + { + "start": 14349.88, + "end": 14351.46, + "probability": 0.97 + }, + { + "start": 14352.1, + "end": 14352.48, + "probability": 0.2297 + } + ], + "segments_count": 5218, + "words_count": 25922, + "avg_words_per_segment": 4.9678, + "avg_segment_duration": 1.9259, + "avg_words_per_minute": 107.0347, + "plenum_id": "125687", + "duration": 14530.99, + "title": null, + "plenum_date": "2024-03-26" +} \ No newline at end of file