diff --git "a/14769/metadata.json" "b/14769/metadata.json" new file mode 100644--- /dev/null +++ "b/14769/metadata.json" @@ -0,0 +1,14022 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "14769", + "quality_score": 0.8979, + "per_segment_quality_scores": [ + { + "start": 2.26, + "end": 5.9, + "probability": 0.903 + }, + { + "start": 6.7, + "end": 8.08, + "probability": 0.8398 + }, + { + "start": 8.9, + "end": 10.74, + "probability": 0.5818 + }, + { + "start": 11.74, + "end": 13.98, + "probability": 0.7577 + }, + { + "start": 14.84, + "end": 19.44, + "probability": 0.9941 + }, + { + "start": 19.66, + "end": 19.96, + "probability": 0.9387 + }, + { + "start": 20.26, + "end": 20.96, + "probability": 0.7773 + }, + { + "start": 21.3, + "end": 22.66, + "probability": 0.9368 + }, + { + "start": 22.78, + "end": 24.24, + "probability": 0.8756 + }, + { + "start": 24.7, + "end": 26.7, + "probability": 0.9893 + }, + { + "start": 26.7, + "end": 29.92, + "probability": 0.9611 + }, + { + "start": 30.46, + "end": 33.94, + "probability": 0.986 + }, + { + "start": 34.48, + "end": 35.94, + "probability": 0.4707 + }, + { + "start": 36.08, + "end": 37.74, + "probability": 0.699 + }, + { + "start": 38.04, + "end": 38.22, + "probability": 0.6993 + }, + { + "start": 39.4, + "end": 39.82, + "probability": 0.4944 + }, + { + "start": 40.06, + "end": 40.34, + "probability": 0.8115 + }, + { + "start": 40.46, + "end": 46.52, + "probability": 0.8378 + }, + { + "start": 46.56, + "end": 47.76, + "probability": 0.5687 + }, + { + "start": 48.56, + "end": 50.92, + "probability": 0.7466 + }, + { + "start": 51.26, + "end": 52.28, + "probability": 0.6802 + }, + { + "start": 52.36, + "end": 53.38, + "probability": 0.9157 + }, + { + "start": 53.48, + "end": 53.78, + "probability": 0.8104 + }, + { + "start": 53.86, + "end": 54.32, + "probability": 0.6883 + }, + { + "start": 54.72, + "end": 55.5, + "probability": 0.9709 + }, + { + "start": 57.94, + "end": 62.19, + "probability": 0.5966 + }, + { + "start": 64.3, + "end": 64.93, + "probability": 0.9741 + }, + { + "start": 65.42, + "end": 65.78, + "probability": 0.1779 + }, + { + "start": 66.36, + "end": 67.16, + "probability": 0.6589 + }, + { + "start": 67.16, + "end": 67.18, + "probability": 0.1799 + }, + { + "start": 67.18, + "end": 67.18, + "probability": 0.3217 + }, + { + "start": 67.18, + "end": 67.22, + "probability": 0.0851 + }, + { + "start": 67.36, + "end": 67.98, + "probability": 0.479 + }, + { + "start": 68.14, + "end": 69.68, + "probability": 0.8687 + }, + { + "start": 71.85, + "end": 73.9, + "probability": 0.7821 + }, + { + "start": 74.22, + "end": 77.6, + "probability": 0.9907 + }, + { + "start": 77.86, + "end": 78.78, + "probability": 0.8869 + }, + { + "start": 78.84, + "end": 79.32, + "probability": 0.7345 + }, + { + "start": 79.44, + "end": 79.62, + "probability": 0.7532 + }, + { + "start": 80.42, + "end": 82.3, + "probability": 0.8799 + }, + { + "start": 83.38, + "end": 87.74, + "probability": 0.7281 + }, + { + "start": 87.92, + "end": 88.92, + "probability": 0.7583 + }, + { + "start": 89.46, + "end": 91.14, + "probability": 0.8674 + }, + { + "start": 91.68, + "end": 92.52, + "probability": 0.8353 + }, + { + "start": 92.98, + "end": 93.22, + "probability": 0.7837 + }, + { + "start": 93.52, + "end": 95.42, + "probability": 0.7953 + }, + { + "start": 96.7, + "end": 97.26, + "probability": 0.1832 + }, + { + "start": 97.44, + "end": 98.56, + "probability": 0.174 + }, + { + "start": 98.56, + "end": 100.56, + "probability": 0.7319 + }, + { + "start": 101.2, + "end": 102.3, + "probability": 0.5135 + }, + { + "start": 102.42, + "end": 103.76, + "probability": 0.9402 + }, + { + "start": 104.18, + "end": 106.64, + "probability": 0.9792 + }, + { + "start": 107.48, + "end": 108.22, + "probability": 0.8584 + }, + { + "start": 108.32, + "end": 108.9, + "probability": 0.8071 + }, + { + "start": 108.98, + "end": 115.08, + "probability": 0.8295 + }, + { + "start": 115.68, + "end": 119.74, + "probability": 0.9352 + }, + { + "start": 119.82, + "end": 122.48, + "probability": 0.876 + }, + { + "start": 122.82, + "end": 125.36, + "probability": 0.9936 + }, + { + "start": 125.96, + "end": 128.02, + "probability": 0.7661 + }, + { + "start": 129.12, + "end": 129.72, + "probability": 0.1208 + }, + { + "start": 129.8, + "end": 131.26, + "probability": 0.1986 + }, + { + "start": 131.34, + "end": 135.2, + "probability": 0.7686 + }, + { + "start": 135.38, + "end": 137.0, + "probability": 0.6454 + }, + { + "start": 137.0, + "end": 139.27, + "probability": 0.1434 + }, + { + "start": 140.58, + "end": 140.82, + "probability": 0.4732 + }, + { + "start": 141.02, + "end": 141.46, + "probability": 0.1497 + }, + { + "start": 141.46, + "end": 141.46, + "probability": 0.0408 + }, + { + "start": 141.46, + "end": 141.46, + "probability": 0.1483 + }, + { + "start": 141.46, + "end": 141.46, + "probability": 0.044 + }, + { + "start": 141.46, + "end": 141.46, + "probability": 0.1854 + }, + { + "start": 141.46, + "end": 141.46, + "probability": 0.0747 + }, + { + "start": 141.46, + "end": 143.23, + "probability": 0.5932 + }, + { + "start": 143.44, + "end": 144.12, + "probability": 0.8453 + }, + { + "start": 144.36, + "end": 146.62, + "probability": 0.4104 + }, + { + "start": 147.16, + "end": 148.34, + "probability": 0.7033 + }, + { + "start": 148.42, + "end": 149.62, + "probability": 0.6453 + }, + { + "start": 149.7, + "end": 152.34, + "probability": 0.3488 + }, + { + "start": 152.74, + "end": 152.84, + "probability": 0.3688 + }, + { + "start": 152.84, + "end": 156.62, + "probability": 0.5521 + }, + { + "start": 157.28, + "end": 157.68, + "probability": 0.7509 + }, + { + "start": 157.76, + "end": 159.26, + "probability": 0.8665 + }, + { + "start": 159.5, + "end": 160.04, + "probability": 0.7928 + }, + { + "start": 160.18, + "end": 163.86, + "probability": 0.9961 + }, + { + "start": 163.96, + "end": 166.86, + "probability": 0.9995 + }, + { + "start": 167.0, + "end": 167.72, + "probability": 0.3279 + }, + { + "start": 168.02, + "end": 168.2, + "probability": 0.183 + }, + { + "start": 168.5, + "end": 169.44, + "probability": 0.8534 + }, + { + "start": 169.54, + "end": 170.54, + "probability": 0.7924 + }, + { + "start": 170.62, + "end": 173.84, + "probability": 0.9926 + }, + { + "start": 175.18, + "end": 176.1, + "probability": 0.7646 + }, + { + "start": 176.7, + "end": 179.22, + "probability": 0.993 + }, + { + "start": 180.68, + "end": 182.12, + "probability": 0.6863 + }, + { + "start": 182.92, + "end": 186.12, + "probability": 0.8968 + }, + { + "start": 186.5, + "end": 187.5, + "probability": 0.8966 + }, + { + "start": 187.98, + "end": 190.26, + "probability": 0.9589 + }, + { + "start": 190.48, + "end": 192.82, + "probability": 0.9664 + }, + { + "start": 193.16, + "end": 195.0, + "probability": 0.9978 + }, + { + "start": 195.74, + "end": 199.62, + "probability": 0.9976 + }, + { + "start": 200.62, + "end": 203.26, + "probability": 0.8815 + }, + { + "start": 203.36, + "end": 205.32, + "probability": 0.992 + }, + { + "start": 205.86, + "end": 207.64, + "probability": 0.9736 + }, + { + "start": 208.38, + "end": 210.98, + "probability": 0.9977 + }, + { + "start": 211.34, + "end": 211.64, + "probability": 0.9479 + }, + { + "start": 212.66, + "end": 215.36, + "probability": 0.9827 + }, + { + "start": 215.48, + "end": 217.34, + "probability": 0.9917 + }, + { + "start": 218.18, + "end": 218.54, + "probability": 0.7933 + }, + { + "start": 218.72, + "end": 219.56, + "probability": 0.9688 + }, + { + "start": 219.82, + "end": 222.46, + "probability": 0.9849 + }, + { + "start": 222.86, + "end": 225.27, + "probability": 0.9897 + }, + { + "start": 225.42, + "end": 230.0, + "probability": 0.9916 + }, + { + "start": 230.12, + "end": 230.84, + "probability": 0.8502 + }, + { + "start": 231.44, + "end": 231.96, + "probability": 0.8965 + }, + { + "start": 232.64, + "end": 237.04, + "probability": 0.8654 + }, + { + "start": 237.04, + "end": 241.42, + "probability": 0.9683 + }, + { + "start": 242.28, + "end": 244.78, + "probability": 0.9792 + }, + { + "start": 245.42, + "end": 246.62, + "probability": 0.6126 + }, + { + "start": 246.82, + "end": 247.94, + "probability": 0.9357 + }, + { + "start": 248.2, + "end": 249.54, + "probability": 0.9616 + }, + { + "start": 249.88, + "end": 255.84, + "probability": 0.9919 + }, + { + "start": 256.3, + "end": 263.96, + "probability": 0.9884 + }, + { + "start": 264.44, + "end": 264.72, + "probability": 0.5002 + }, + { + "start": 264.8, + "end": 268.22, + "probability": 0.9845 + }, + { + "start": 268.22, + "end": 273.54, + "probability": 0.9938 + }, + { + "start": 273.54, + "end": 279.16, + "probability": 0.9984 + }, + { + "start": 279.88, + "end": 280.24, + "probability": 0.6165 + }, + { + "start": 280.3, + "end": 282.82, + "probability": 0.9613 + }, + { + "start": 283.42, + "end": 287.43, + "probability": 0.9914 + }, + { + "start": 287.78, + "end": 290.44, + "probability": 0.998 + }, + { + "start": 292.16, + "end": 294.12, + "probability": 0.7788 + }, + { + "start": 294.76, + "end": 297.06, + "probability": 0.9403 + }, + { + "start": 297.06, + "end": 297.43, + "probability": 0.5356 + }, + { + "start": 297.94, + "end": 300.3, + "probability": 0.6631 + }, + { + "start": 300.3, + "end": 300.56, + "probability": 0.6692 + }, + { + "start": 300.82, + "end": 304.52, + "probability": 0.9136 + }, + { + "start": 304.94, + "end": 307.64, + "probability": 0.9976 + }, + { + "start": 308.34, + "end": 311.9, + "probability": 0.7692 + }, + { + "start": 312.0, + "end": 313.67, + "probability": 0.9952 + }, + { + "start": 314.18, + "end": 314.78, + "probability": 0.9631 + }, + { + "start": 315.34, + "end": 316.38, + "probability": 0.6289 + }, + { + "start": 316.5, + "end": 321.32, + "probability": 0.9941 + }, + { + "start": 322.28, + "end": 326.68, + "probability": 0.7605 + }, + { + "start": 327.38, + "end": 329.08, + "probability": 0.8591 + }, + { + "start": 329.78, + "end": 334.64, + "probability": 0.9353 + }, + { + "start": 334.76, + "end": 336.18, + "probability": 0.9606 + }, + { + "start": 337.46, + "end": 339.14, + "probability": 0.8734 + }, + { + "start": 340.46, + "end": 341.06, + "probability": 0.773 + }, + { + "start": 341.14, + "end": 343.0, + "probability": 0.819 + }, + { + "start": 344.5, + "end": 345.14, + "probability": 0.5733 + }, + { + "start": 345.16, + "end": 349.04, + "probability": 0.9725 + }, + { + "start": 349.56, + "end": 352.56, + "probability": 0.9885 + }, + { + "start": 352.82, + "end": 353.6, + "probability": 0.8815 + }, + { + "start": 353.7, + "end": 356.0, + "probability": 0.7498 + }, + { + "start": 356.56, + "end": 357.06, + "probability": 0.6141 + }, + { + "start": 357.1, + "end": 357.34, + "probability": 0.7532 + }, + { + "start": 357.46, + "end": 357.46, + "probability": 0.248 + }, + { + "start": 357.46, + "end": 359.33, + "probability": 0.698 + }, + { + "start": 360.28, + "end": 364.62, + "probability": 0.9731 + }, + { + "start": 365.28, + "end": 367.46, + "probability": 0.8921 + }, + { + "start": 367.52, + "end": 369.06, + "probability": 0.9307 + }, + { + "start": 369.14, + "end": 371.26, + "probability": 0.7287 + }, + { + "start": 371.32, + "end": 372.12, + "probability": 0.9951 + }, + { + "start": 372.8, + "end": 374.22, + "probability": 0.9977 + }, + { + "start": 374.96, + "end": 377.26, + "probability": 0.7267 + }, + { + "start": 377.4, + "end": 378.66, + "probability": 0.9814 + }, + { + "start": 379.32, + "end": 380.48, + "probability": 0.9346 + }, + { + "start": 381.02, + "end": 381.94, + "probability": 0.8489 + }, + { + "start": 382.24, + "end": 383.68, + "probability": 0.9525 + }, + { + "start": 384.44, + "end": 386.88, + "probability": 0.9148 + }, + { + "start": 387.64, + "end": 395.04, + "probability": 0.9683 + }, + { + "start": 395.36, + "end": 398.16, + "probability": 0.916 + }, + { + "start": 398.98, + "end": 400.6, + "probability": 0.9737 + }, + { + "start": 401.0, + "end": 403.18, + "probability": 0.6659 + }, + { + "start": 403.7, + "end": 406.44, + "probability": 0.9947 + }, + { + "start": 406.96, + "end": 410.2, + "probability": 0.9952 + }, + { + "start": 410.52, + "end": 411.4, + "probability": 0.9045 + }, + { + "start": 411.64, + "end": 412.42, + "probability": 0.9026 + }, + { + "start": 412.9, + "end": 414.9, + "probability": 0.9771 + }, + { + "start": 415.36, + "end": 418.16, + "probability": 0.9936 + }, + { + "start": 418.88, + "end": 420.42, + "probability": 0.9834 + }, + { + "start": 420.96, + "end": 423.76, + "probability": 0.7236 + }, + { + "start": 423.76, + "end": 427.68, + "probability": 0.9941 + }, + { + "start": 428.24, + "end": 429.12, + "probability": 0.9052 + }, + { + "start": 429.64, + "end": 430.78, + "probability": 0.942 + }, + { + "start": 431.08, + "end": 432.68, + "probability": 0.9894 + }, + { + "start": 433.06, + "end": 435.06, + "probability": 0.978 + }, + { + "start": 435.14, + "end": 436.64, + "probability": 0.7338 + }, + { + "start": 437.08, + "end": 438.64, + "probability": 0.8434 + }, + { + "start": 438.8, + "end": 438.98, + "probability": 0.7405 + }, + { + "start": 439.4, + "end": 440.0, + "probability": 0.5356 + }, + { + "start": 440.26, + "end": 441.04, + "probability": 0.9707 + }, + { + "start": 444.2, + "end": 444.84, + "probability": 0.1831 + }, + { + "start": 445.54, + "end": 447.52, + "probability": 0.6727 + }, + { + "start": 453.7, + "end": 456.12, + "probability": 0.7229 + }, + { + "start": 456.9, + "end": 462.0, + "probability": 0.8232 + }, + { + "start": 462.94, + "end": 466.48, + "probability": 0.9681 + }, + { + "start": 466.5, + "end": 468.18, + "probability": 0.983 + }, + { + "start": 468.18, + "end": 472.22, + "probability": 0.5057 + }, + { + "start": 473.22, + "end": 477.84, + "probability": 0.9953 + }, + { + "start": 478.24, + "end": 481.68, + "probability": 0.8621 + }, + { + "start": 482.64, + "end": 485.74, + "probability": 0.998 + }, + { + "start": 486.38, + "end": 487.06, + "probability": 0.7864 + }, + { + "start": 487.88, + "end": 488.9, + "probability": 0.7626 + }, + { + "start": 489.76, + "end": 492.06, + "probability": 0.9871 + }, + { + "start": 492.68, + "end": 498.56, + "probability": 0.8795 + }, + { + "start": 499.16, + "end": 499.7, + "probability": 0.8191 + }, + { + "start": 501.36, + "end": 503.46, + "probability": 0.6013 + }, + { + "start": 503.98, + "end": 506.34, + "probability": 0.9851 + }, + { + "start": 507.24, + "end": 507.44, + "probability": 0.9905 + }, + { + "start": 509.7, + "end": 510.72, + "probability": 0.8605 + }, + { + "start": 513.98, + "end": 516.86, + "probability": 0.623 + }, + { + "start": 517.66, + "end": 518.2, + "probability": 0.7629 + }, + { + "start": 519.12, + "end": 520.6, + "probability": 0.7198 + }, + { + "start": 520.6, + "end": 520.78, + "probability": 0.4386 + }, + { + "start": 520.78, + "end": 521.26, + "probability": 0.7139 + }, + { + "start": 521.3, + "end": 522.66, + "probability": 0.8595 + }, + { + "start": 522.9, + "end": 532.2, + "probability": 0.9932 + }, + { + "start": 532.82, + "end": 537.84, + "probability": 0.9969 + }, + { + "start": 538.76, + "end": 542.64, + "probability": 0.9907 + }, + { + "start": 542.84, + "end": 546.5, + "probability": 0.9985 + }, + { + "start": 547.04, + "end": 549.5, + "probability": 0.9973 + }, + { + "start": 550.16, + "end": 552.31, + "probability": 0.9967 + }, + { + "start": 553.2, + "end": 555.44, + "probability": 0.8702 + }, + { + "start": 556.8, + "end": 564.04, + "probability": 0.9971 + }, + { + "start": 564.78, + "end": 568.46, + "probability": 0.9969 + }, + { + "start": 569.38, + "end": 570.26, + "probability": 0.6027 + }, + { + "start": 570.56, + "end": 572.56, + "probability": 0.9073 + }, + { + "start": 573.04, + "end": 578.08, + "probability": 0.9902 + }, + { + "start": 578.08, + "end": 581.52, + "probability": 0.9702 + }, + { + "start": 581.72, + "end": 587.64, + "probability": 0.9951 + }, + { + "start": 588.02, + "end": 588.22, + "probability": 0.6218 + }, + { + "start": 588.82, + "end": 589.24, + "probability": 0.6083 + }, + { + "start": 589.3, + "end": 589.86, + "probability": 0.8613 + }, + { + "start": 590.46, + "end": 591.9, + "probability": 0.5993 + }, + { + "start": 592.48, + "end": 594.08, + "probability": 0.2551 + }, + { + "start": 594.94, + "end": 595.36, + "probability": 0.2749 + }, + { + "start": 595.52, + "end": 596.74, + "probability": 0.0641 + }, + { + "start": 599.76, + "end": 602.5, + "probability": 0.165 + }, + { + "start": 602.5, + "end": 606.78, + "probability": 0.1741 + }, + { + "start": 607.0, + "end": 611.94, + "probability": 0.897 + }, + { + "start": 612.12, + "end": 612.52, + "probability": 0.4513 + }, + { + "start": 612.64, + "end": 615.34, + "probability": 0.9888 + }, + { + "start": 615.86, + "end": 617.4, + "probability": 0.7293 + }, + { + "start": 617.62, + "end": 619.62, + "probability": 0.5927 + }, + { + "start": 620.1, + "end": 621.2, + "probability": 0.9987 + }, + { + "start": 621.84, + "end": 625.66, + "probability": 0.775 + }, + { + "start": 626.28, + "end": 628.7, + "probability": 0.8428 + }, + { + "start": 629.58, + "end": 630.98, + "probability": 0.8339 + }, + { + "start": 631.3, + "end": 635.1, + "probability": 0.9026 + }, + { + "start": 635.22, + "end": 635.5, + "probability": 0.5897 + }, + { + "start": 635.52, + "end": 635.96, + "probability": 0.5453 + }, + { + "start": 636.3, + "end": 637.04, + "probability": 0.5251 + }, + { + "start": 637.08, + "end": 638.86, + "probability": 0.9529 + }, + { + "start": 639.98, + "end": 640.32, + "probability": 0.1948 + }, + { + "start": 640.32, + "end": 640.32, + "probability": 0.0721 + }, + { + "start": 640.32, + "end": 641.9, + "probability": 0.557 + }, + { + "start": 642.08, + "end": 643.12, + "probability": 0.7523 + }, + { + "start": 643.22, + "end": 644.36, + "probability": 0.5406 + }, + { + "start": 645.34, + "end": 649.72, + "probability": 0.9767 + }, + { + "start": 649.86, + "end": 652.72, + "probability": 0.9536 + }, + { + "start": 652.72, + "end": 657.1, + "probability": 0.9629 + }, + { + "start": 657.22, + "end": 659.44, + "probability": 0.7533 + }, + { + "start": 659.66, + "end": 660.68, + "probability": 0.7322 + }, + { + "start": 661.16, + "end": 662.1, + "probability": 0.9981 + }, + { + "start": 662.84, + "end": 664.24, + "probability": 0.9797 + }, + { + "start": 664.84, + "end": 666.6, + "probability": 0.9939 + }, + { + "start": 666.6, + "end": 669.34, + "probability": 0.9917 + }, + { + "start": 669.88, + "end": 671.67, + "probability": 0.9487 + }, + { + "start": 672.7, + "end": 674.54, + "probability": 0.8867 + }, + { + "start": 674.7, + "end": 675.76, + "probability": 0.8386 + }, + { + "start": 675.9, + "end": 678.02, + "probability": 0.9209 + }, + { + "start": 678.6, + "end": 679.4, + "probability": 0.4634 + }, + { + "start": 679.7, + "end": 680.58, + "probability": 0.4907 + }, + { + "start": 681.1, + "end": 682.9, + "probability": 0.9143 + }, + { + "start": 684.02, + "end": 684.3, + "probability": 0.8535 + }, + { + "start": 684.48, + "end": 686.96, + "probability": 0.9833 + }, + { + "start": 687.18, + "end": 691.34, + "probability": 0.989 + }, + { + "start": 691.4, + "end": 695.18, + "probability": 0.9094 + }, + { + "start": 695.34, + "end": 697.14, + "probability": 0.9857 + }, + { + "start": 697.62, + "end": 698.6, + "probability": 0.7379 + }, + { + "start": 698.72, + "end": 703.68, + "probability": 0.9507 + }, + { + "start": 703.98, + "end": 704.92, + "probability": 0.82 + }, + { + "start": 705.06, + "end": 706.42, + "probability": 0.8756 + }, + { + "start": 706.88, + "end": 707.68, + "probability": 0.7 + }, + { + "start": 708.22, + "end": 710.69, + "probability": 0.8384 + }, + { + "start": 711.74, + "end": 713.66, + "probability": 0.7328 + }, + { + "start": 714.22, + "end": 714.84, + "probability": 0.504 + }, + { + "start": 715.52, + "end": 717.22, + "probability": 0.6056 + }, + { + "start": 721.48, + "end": 722.38, + "probability": 0.4145 + }, + { + "start": 722.48, + "end": 724.14, + "probability": 0.7717 + }, + { + "start": 724.7, + "end": 725.98, + "probability": 0.7254 + }, + { + "start": 726.12, + "end": 726.3, + "probability": 0.714 + }, + { + "start": 726.9, + "end": 728.52, + "probability": 0.7631 + }, + { + "start": 728.62, + "end": 730.28, + "probability": 0.7068 + }, + { + "start": 730.78, + "end": 732.5, + "probability": 0.7627 + }, + { + "start": 738.64, + "end": 740.75, + "probability": 0.4413 + }, + { + "start": 741.38, + "end": 742.94, + "probability": 0.8932 + }, + { + "start": 743.94, + "end": 746.74, + "probability": 0.754 + }, + { + "start": 746.74, + "end": 749.96, + "probability": 0.9914 + }, + { + "start": 750.28, + "end": 750.66, + "probability": 0.7043 + }, + { + "start": 751.64, + "end": 753.3, + "probability": 0.287 + }, + { + "start": 753.34, + "end": 760.12, + "probability": 0.746 + }, + { + "start": 761.82, + "end": 763.8, + "probability": 0.9424 + }, + { + "start": 764.46, + "end": 767.82, + "probability": 0.9717 + }, + { + "start": 767.82, + "end": 771.34, + "probability": 0.7354 + }, + { + "start": 772.12, + "end": 774.96, + "probability": 0.9058 + }, + { + "start": 775.58, + "end": 778.06, + "probability": 0.9839 + }, + { + "start": 778.48, + "end": 782.18, + "probability": 0.9909 + }, + { + "start": 782.38, + "end": 782.96, + "probability": 0.878 + }, + { + "start": 783.14, + "end": 783.64, + "probability": 0.3259 + }, + { + "start": 784.1, + "end": 785.6, + "probability": 0.9034 + }, + { + "start": 786.14, + "end": 788.22, + "probability": 0.9753 + }, + { + "start": 788.84, + "end": 790.4, + "probability": 0.8635 + }, + { + "start": 790.52, + "end": 791.5, + "probability": 0.9115 + }, + { + "start": 791.86, + "end": 792.77, + "probability": 0.9828 + }, + { + "start": 793.34, + "end": 795.8, + "probability": 0.796 + }, + { + "start": 796.1, + "end": 796.8, + "probability": 0.9946 + }, + { + "start": 796.92, + "end": 797.92, + "probability": 0.9976 + }, + { + "start": 798.52, + "end": 801.2, + "probability": 0.8514 + }, + { + "start": 801.36, + "end": 803.7, + "probability": 0.9594 + }, + { + "start": 804.5, + "end": 805.76, + "probability": 0.9414 + }, + { + "start": 806.42, + "end": 809.56, + "probability": 0.9961 + }, + { + "start": 809.56, + "end": 812.1, + "probability": 0.981 + }, + { + "start": 812.6, + "end": 815.92, + "probability": 0.9619 + }, + { + "start": 816.22, + "end": 817.22, + "probability": 0.9127 + }, + { + "start": 818.14, + "end": 819.18, + "probability": 0.7008 + }, + { + "start": 819.26, + "end": 820.74, + "probability": 0.9573 + }, + { + "start": 820.76, + "end": 821.3, + "probability": 0.965 + }, + { + "start": 821.88, + "end": 823.98, + "probability": 0.6236 + }, + { + "start": 824.86, + "end": 828.3, + "probability": 0.9854 + }, + { + "start": 828.98, + "end": 831.24, + "probability": 0.2336 + }, + { + "start": 831.66, + "end": 831.92, + "probability": 0.8287 + }, + { + "start": 832.02, + "end": 833.54, + "probability": 0.988 + }, + { + "start": 833.64, + "end": 834.84, + "probability": 0.9834 + }, + { + "start": 835.24, + "end": 835.68, + "probability": 0.6079 + }, + { + "start": 835.7, + "end": 836.2, + "probability": 0.9476 + }, + { + "start": 836.5, + "end": 837.38, + "probability": 0.9471 + }, + { + "start": 837.74, + "end": 839.48, + "probability": 0.8888 + }, + { + "start": 839.9, + "end": 841.74, + "probability": 0.9277 + }, + { + "start": 842.3, + "end": 844.8, + "probability": 0.9465 + }, + { + "start": 845.26, + "end": 846.54, + "probability": 0.9689 + }, + { + "start": 846.9, + "end": 848.42, + "probability": 0.9867 + }, + { + "start": 848.6, + "end": 849.56, + "probability": 0.9941 + }, + { + "start": 849.6, + "end": 850.44, + "probability": 0.8979 + }, + { + "start": 850.72, + "end": 852.84, + "probability": 0.9979 + }, + { + "start": 853.26, + "end": 856.96, + "probability": 0.9367 + }, + { + "start": 857.3, + "end": 857.9, + "probability": 0.8265 + }, + { + "start": 858.3, + "end": 860.1, + "probability": 0.9697 + }, + { + "start": 860.7, + "end": 861.28, + "probability": 0.9715 + }, + { + "start": 861.38, + "end": 862.96, + "probability": 0.4411 + }, + { + "start": 862.98, + "end": 864.24, + "probability": 0.8818 + }, + { + "start": 864.42, + "end": 865.94, + "probability": 0.9741 + }, + { + "start": 866.64, + "end": 869.04, + "probability": 0.8601 + }, + { + "start": 870.84, + "end": 872.44, + "probability": 0.6894 + }, + { + "start": 873.58, + "end": 874.76, + "probability": 0.8773 + }, + { + "start": 875.44, + "end": 876.08, + "probability": 0.8608 + }, + { + "start": 876.72, + "end": 878.96, + "probability": 0.9051 + }, + { + "start": 879.62, + "end": 881.3, + "probability": 0.8418 + }, + { + "start": 881.9, + "end": 883.18, + "probability": 0.6783 + }, + { + "start": 884.06, + "end": 886.6, + "probability": 0.9948 + }, + { + "start": 887.56, + "end": 890.22, + "probability": 0.7991 + }, + { + "start": 890.64, + "end": 891.26, + "probability": 0.9651 + }, + { + "start": 896.06, + "end": 898.3, + "probability": 0.5054 + }, + { + "start": 898.48, + "end": 899.94, + "probability": 0.8236 + }, + { + "start": 900.12, + "end": 900.34, + "probability": 0.4682 + }, + { + "start": 900.42, + "end": 902.2, + "probability": 0.9155 + }, + { + "start": 902.32, + "end": 902.84, + "probability": 0.8869 + }, + { + "start": 903.28, + "end": 905.3, + "probability": 0.6188 + }, + { + "start": 905.34, + "end": 908.04, + "probability": 0.2962 + }, + { + "start": 908.62, + "end": 909.0, + "probability": 0.1469 + }, + { + "start": 909.32, + "end": 913.76, + "probability": 0.6014 + }, + { + "start": 913.78, + "end": 915.5, + "probability": 0.9009 + }, + { + "start": 915.84, + "end": 918.61, + "probability": 0.9805 + }, + { + "start": 919.14, + "end": 920.36, + "probability": 0.5734 + }, + { + "start": 921.12, + "end": 922.82, + "probability": 0.931 + }, + { + "start": 923.02, + "end": 925.62, + "probability": 0.6398 + }, + { + "start": 927.81, + "end": 934.16, + "probability": 0.3121 + }, + { + "start": 934.4, + "end": 935.66, + "probability": 0.5837 + }, + { + "start": 935.96, + "end": 936.52, + "probability": 0.2492 + }, + { + "start": 936.52, + "end": 937.2, + "probability": 0.1558 + }, + { + "start": 937.42, + "end": 937.78, + "probability": 0.1442 + }, + { + "start": 937.96, + "end": 939.62, + "probability": 0.8985 + }, + { + "start": 940.32, + "end": 941.4, + "probability": 0.1403 + }, + { + "start": 942.02, + "end": 943.18, + "probability": 0.59 + }, + { + "start": 943.34, + "end": 943.66, + "probability": 0.264 + }, + { + "start": 944.06, + "end": 944.42, + "probability": 0.0435 + }, + { + "start": 945.0, + "end": 945.6, + "probability": 0.5381 + }, + { + "start": 945.84, + "end": 946.44, + "probability": 0.1079 + }, + { + "start": 948.06, + "end": 951.52, + "probability": 0.2602 + }, + { + "start": 951.72, + "end": 952.76, + "probability": 0.5082 + }, + { + "start": 953.08, + "end": 955.8, + "probability": 0.5604 + }, + { + "start": 956.78, + "end": 958.18, + "probability": 0.7144 + }, + { + "start": 963.9, + "end": 964.62, + "probability": 0.7507 + }, + { + "start": 964.74, + "end": 965.99, + "probability": 0.9083 + }, + { + "start": 966.52, + "end": 969.42, + "probability": 0.7749 + }, + { + "start": 969.6, + "end": 972.39, + "probability": 0.9736 + }, + { + "start": 972.76, + "end": 973.46, + "probability": 0.9493 + }, + { + "start": 973.54, + "end": 974.1, + "probability": 0.8137 + }, + { + "start": 974.24, + "end": 974.98, + "probability": 0.9948 + }, + { + "start": 975.14, + "end": 977.28, + "probability": 0.8452 + }, + { + "start": 978.04, + "end": 981.02, + "probability": 0.8098 + }, + { + "start": 981.3, + "end": 983.52, + "probability": 0.9944 + }, + { + "start": 983.86, + "end": 986.02, + "probability": 0.9835 + }, + { + "start": 986.96, + "end": 989.7, + "probability": 0.9761 + }, + { + "start": 990.48, + "end": 992.32, + "probability": 0.9033 + }, + { + "start": 992.48, + "end": 995.32, + "probability": 0.2506 + }, + { + "start": 995.32, + "end": 998.5, + "probability": 0.6134 + }, + { + "start": 999.27, + "end": 1005.73, + "probability": 0.7121 + }, + { + "start": 1006.5, + "end": 1011.26, + "probability": 0.989 + }, + { + "start": 1011.38, + "end": 1014.78, + "probability": 0.9607 + }, + { + "start": 1014.78, + "end": 1017.88, + "probability": 0.9948 + }, + { + "start": 1018.26, + "end": 1018.52, + "probability": 0.4069 + }, + { + "start": 1018.76, + "end": 1020.58, + "probability": 0.996 + }, + { + "start": 1020.64, + "end": 1021.76, + "probability": 0.7491 + }, + { + "start": 1022.4, + "end": 1025.12, + "probability": 0.9958 + }, + { + "start": 1025.12, + "end": 1027.14, + "probability": 0.9849 + }, + { + "start": 1027.92, + "end": 1031.73, + "probability": 0.9912 + }, + { + "start": 1032.22, + "end": 1036.5, + "probability": 0.9932 + }, + { + "start": 1036.82, + "end": 1038.48, + "probability": 0.029 + }, + { + "start": 1038.66, + "end": 1040.08, + "probability": 0.6248 + }, + { + "start": 1040.08, + "end": 1042.3, + "probability": 0.8511 + }, + { + "start": 1042.56, + "end": 1045.54, + "probability": 0.8688 + }, + { + "start": 1046.5, + "end": 1047.06, + "probability": 0.7441 + }, + { + "start": 1047.82, + "end": 1050.52, + "probability": 0.7373 + }, + { + "start": 1051.04, + "end": 1052.84, + "probability": 0.6849 + }, + { + "start": 1052.9, + "end": 1053.52, + "probability": 0.5589 + }, + { + "start": 1053.66, + "end": 1054.86, + "probability": 0.7966 + }, + { + "start": 1055.3, + "end": 1056.14, + "probability": 0.7632 + }, + { + "start": 1056.24, + "end": 1057.48, + "probability": 0.9287 + }, + { + "start": 1057.54, + "end": 1058.58, + "probability": 0.9846 + }, + { + "start": 1058.7, + "end": 1065.28, + "probability": 0.8537 + }, + { + "start": 1065.42, + "end": 1067.26, + "probability": 0.7643 + }, + { + "start": 1068.16, + "end": 1071.06, + "probability": 0.8701 + }, + { + "start": 1072.24, + "end": 1074.88, + "probability": 0.9217 + }, + { + "start": 1075.48, + "end": 1080.02, + "probability": 0.9987 + }, + { + "start": 1080.64, + "end": 1081.86, + "probability": 0.9315 + }, + { + "start": 1082.02, + "end": 1085.16, + "probability": 0.9501 + }, + { + "start": 1085.76, + "end": 1088.08, + "probability": 0.8569 + }, + { + "start": 1088.68, + "end": 1091.1, + "probability": 0.9219 + }, + { + "start": 1091.78, + "end": 1092.42, + "probability": 0.7406 + }, + { + "start": 1092.56, + "end": 1097.04, + "probability": 0.9501 + }, + { + "start": 1097.64, + "end": 1102.86, + "probability": 0.9785 + }, + { + "start": 1103.88, + "end": 1104.76, + "probability": 0.7473 + }, + { + "start": 1104.84, + "end": 1105.28, + "probability": 0.8158 + }, + { + "start": 1105.74, + "end": 1106.96, + "probability": 0.8999 + }, + { + "start": 1107.16, + "end": 1108.3, + "probability": 0.9897 + }, + { + "start": 1108.42, + "end": 1108.9, + "probability": 0.8631 + }, + { + "start": 1109.46, + "end": 1112.82, + "probability": 0.8946 + }, + { + "start": 1113.16, + "end": 1117.22, + "probability": 0.9833 + }, + { + "start": 1117.6, + "end": 1123.18, + "probability": 0.9914 + }, + { + "start": 1123.18, + "end": 1127.3, + "probability": 0.7608 + }, + { + "start": 1127.73, + "end": 1132.14, + "probability": 0.96 + }, + { + "start": 1132.2, + "end": 1137.92, + "probability": 0.628 + }, + { + "start": 1138.8, + "end": 1138.98, + "probability": 0.1439 + }, + { + "start": 1138.98, + "end": 1140.34, + "probability": 0.6707 + }, + { + "start": 1141.04, + "end": 1147.14, + "probability": 0.8694 + }, + { + "start": 1147.36, + "end": 1147.36, + "probability": 0.0839 + }, + { + "start": 1147.36, + "end": 1147.6, + "probability": 0.8896 + }, + { + "start": 1152.68, + "end": 1155.22, + "probability": 0.5068 + }, + { + "start": 1155.22, + "end": 1158.8, + "probability": 0.8967 + }, + { + "start": 1159.4, + "end": 1160.64, + "probability": 0.7295 + }, + { + "start": 1160.98, + "end": 1165.1, + "probability": 0.9854 + }, + { + "start": 1165.78, + "end": 1167.0, + "probability": 0.9207 + }, + { + "start": 1167.74, + "end": 1170.62, + "probability": 0.9006 + }, + { + "start": 1171.16, + "end": 1175.02, + "probability": 0.9681 + }, + { + "start": 1175.8, + "end": 1175.94, + "probability": 0.7902 + }, + { + "start": 1175.98, + "end": 1176.56, + "probability": 0.7316 + }, + { + "start": 1176.74, + "end": 1178.64, + "probability": 0.8183 + }, + { + "start": 1179.4, + "end": 1180.18, + "probability": 0.3752 + }, + { + "start": 1180.76, + "end": 1185.22, + "probability": 0.5205 + }, + { + "start": 1185.7, + "end": 1187.68, + "probability": 0.9174 + }, + { + "start": 1187.76, + "end": 1188.78, + "probability": 0.8283 + }, + { + "start": 1188.96, + "end": 1193.18, + "probability": 0.8965 + }, + { + "start": 1193.18, + "end": 1195.92, + "probability": 0.9855 + }, + { + "start": 1196.8, + "end": 1202.1, + "probability": 0.954 + }, + { + "start": 1202.36, + "end": 1207.84, + "probability": 0.9845 + }, + { + "start": 1207.94, + "end": 1209.24, + "probability": 0.7979 + }, + { + "start": 1209.76, + "end": 1215.98, + "probability": 0.9896 + }, + { + "start": 1216.36, + "end": 1217.7, + "probability": 0.7653 + }, + { + "start": 1217.78, + "end": 1219.7, + "probability": 0.988 + }, + { + "start": 1220.2, + "end": 1222.8, + "probability": 0.9789 + }, + { + "start": 1223.3, + "end": 1226.12, + "probability": 0.8912 + }, + { + "start": 1226.12, + "end": 1230.42, + "probability": 0.9112 + }, + { + "start": 1230.9, + "end": 1232.6, + "probability": 0.7289 + }, + { + "start": 1233.46, + "end": 1237.44, + "probability": 0.9983 + }, + { + "start": 1238.22, + "end": 1240.68, + "probability": 0.7924 + }, + { + "start": 1241.64, + "end": 1242.38, + "probability": 0.5894 + }, + { + "start": 1242.52, + "end": 1245.18, + "probability": 0.9242 + }, + { + "start": 1245.18, + "end": 1248.22, + "probability": 0.937 + }, + { + "start": 1248.62, + "end": 1250.24, + "probability": 0.8299 + }, + { + "start": 1250.62, + "end": 1250.88, + "probability": 0.7873 + }, + { + "start": 1251.44, + "end": 1251.94, + "probability": 0.6066 + }, + { + "start": 1252.02, + "end": 1253.5, + "probability": 0.9854 + }, + { + "start": 1253.92, + "end": 1257.32, + "probability": 0.8638 + }, + { + "start": 1257.94, + "end": 1262.0, + "probability": 0.9662 + }, + { + "start": 1262.0, + "end": 1264.46, + "probability": 0.8667 + }, + { + "start": 1264.68, + "end": 1270.58, + "probability": 0.9455 + }, + { + "start": 1271.14, + "end": 1274.91, + "probability": 0.7158 + }, + { + "start": 1275.78, + "end": 1276.16, + "probability": 0.398 + }, + { + "start": 1276.46, + "end": 1279.94, + "probability": 0.9867 + }, + { + "start": 1280.7, + "end": 1282.74, + "probability": 0.8981 + }, + { + "start": 1283.1, + "end": 1286.68, + "probability": 0.9666 + }, + { + "start": 1286.76, + "end": 1289.74, + "probability": 0.9731 + }, + { + "start": 1290.06, + "end": 1295.48, + "probability": 0.8357 + }, + { + "start": 1295.54, + "end": 1299.04, + "probability": 0.6696 + }, + { + "start": 1299.44, + "end": 1300.49, + "probability": 0.5859 + }, + { + "start": 1301.66, + "end": 1302.66, + "probability": 0.987 + }, + { + "start": 1307.48, + "end": 1312.02, + "probability": 0.9761 + }, + { + "start": 1312.28, + "end": 1315.86, + "probability": 0.8826 + }, + { + "start": 1316.64, + "end": 1317.88, + "probability": 0.0941 + }, + { + "start": 1319.09, + "end": 1323.18, + "probability": 0.818 + }, + { + "start": 1323.87, + "end": 1328.92, + "probability": 0.8273 + }, + { + "start": 1329.86, + "end": 1332.58, + "probability": 0.9635 + }, + { + "start": 1333.36, + "end": 1335.64, + "probability": 0.8494 + }, + { + "start": 1336.44, + "end": 1338.44, + "probability": 0.737 + }, + { + "start": 1338.52, + "end": 1343.58, + "probability": 0.8412 + }, + { + "start": 1343.68, + "end": 1343.7, + "probability": 0.0771 + }, + { + "start": 1346.02, + "end": 1351.0, + "probability": 0.9188 + }, + { + "start": 1351.34, + "end": 1352.2, + "probability": 0.2603 + }, + { + "start": 1352.2, + "end": 1353.88, + "probability": 0.4255 + }, + { + "start": 1354.04, + "end": 1357.32, + "probability": 0.8923 + }, + { + "start": 1357.78, + "end": 1360.5, + "probability": 0.9857 + }, + { + "start": 1361.46, + "end": 1365.12, + "probability": 0.7495 + }, + { + "start": 1365.8, + "end": 1367.64, + "probability": 0.7373 + }, + { + "start": 1368.44, + "end": 1373.54, + "probability": 0.9523 + }, + { + "start": 1373.66, + "end": 1378.21, + "probability": 0.9796 + }, + { + "start": 1379.38, + "end": 1385.44, + "probability": 0.9058 + }, + { + "start": 1386.74, + "end": 1387.58, + "probability": 0.9146 + }, + { + "start": 1388.11, + "end": 1390.84, + "probability": 0.573 + }, + { + "start": 1391.48, + "end": 1393.32, + "probability": 0.4868 + }, + { + "start": 1393.88, + "end": 1394.6, + "probability": 0.8572 + }, + { + "start": 1395.3, + "end": 1399.38, + "probability": 0.9586 + }, + { + "start": 1399.9, + "end": 1406.42, + "probability": 0.9931 + }, + { + "start": 1406.86, + "end": 1408.96, + "probability": 0.8175 + }, + { + "start": 1409.74, + "end": 1411.26, + "probability": 0.6191 + }, + { + "start": 1411.9, + "end": 1416.0, + "probability": 0.8918 + }, + { + "start": 1416.32, + "end": 1417.62, + "probability": 0.9734 + }, + { + "start": 1418.18, + "end": 1420.32, + "probability": 0.8142 + }, + { + "start": 1420.36, + "end": 1423.58, + "probability": 0.7998 + }, + { + "start": 1423.92, + "end": 1424.9, + "probability": 0.8944 + }, + { + "start": 1424.98, + "end": 1426.68, + "probability": 0.9604 + }, + { + "start": 1426.9, + "end": 1432.94, + "probability": 0.6206 + }, + { + "start": 1433.64, + "end": 1434.5, + "probability": 0.284 + }, + { + "start": 1434.5, + "end": 1435.64, + "probability": 0.3791 + }, + { + "start": 1435.76, + "end": 1438.74, + "probability": 0.7593 + }, + { + "start": 1439.62, + "end": 1441.16, + "probability": 0.8593 + }, + { + "start": 1441.36, + "end": 1443.94, + "probability": 0.6973 + }, + { + "start": 1444.5, + "end": 1445.62, + "probability": 0.9074 + }, + { + "start": 1446.28, + "end": 1448.86, + "probability": 0.9933 + }, + { + "start": 1449.24, + "end": 1452.56, + "probability": 0.9149 + }, + { + "start": 1453.22, + "end": 1456.18, + "probability": 0.9626 + }, + { + "start": 1456.42, + "end": 1456.64, + "probability": 0.3558 + }, + { + "start": 1457.26, + "end": 1457.74, + "probability": 0.5964 + }, + { + "start": 1458.64, + "end": 1459.42, + "probability": 0.3123 + }, + { + "start": 1459.54, + "end": 1461.38, + "probability": 0.9878 + }, + { + "start": 1461.66, + "end": 1463.36, + "probability": 0.9718 + }, + { + "start": 1463.5, + "end": 1464.18, + "probability": 0.6416 + }, + { + "start": 1464.8, + "end": 1465.82, + "probability": 0.6978 + }, + { + "start": 1467.57, + "end": 1469.56, + "probability": 0.9288 + }, + { + "start": 1469.56, + "end": 1472.62, + "probability": 0.4884 + }, + { + "start": 1473.14, + "end": 1473.5, + "probability": 0.3003 + }, + { + "start": 1474.98, + "end": 1477.1, + "probability": 0.5436 + }, + { + "start": 1477.54, + "end": 1481.22, + "probability": 0.5101 + }, + { + "start": 1481.26, + "end": 1481.36, + "probability": 0.8015 + }, + { + "start": 1482.86, + "end": 1487.22, + "probability": 0.962 + }, + { + "start": 1487.46, + "end": 1488.24, + "probability": 0.9059 + }, + { + "start": 1489.16, + "end": 1493.24, + "probability": 0.9845 + }, + { + "start": 1493.24, + "end": 1496.36, + "probability": 0.995 + }, + { + "start": 1496.8, + "end": 1501.44, + "probability": 0.9945 + }, + { + "start": 1501.58, + "end": 1505.12, + "probability": 0.8704 + }, + { + "start": 1505.44, + "end": 1506.22, + "probability": 0.6817 + }, + { + "start": 1506.44, + "end": 1508.52, + "probability": 0.9628 + }, + { + "start": 1508.62, + "end": 1510.06, + "probability": 0.6128 + }, + { + "start": 1510.1, + "end": 1510.86, + "probability": 0.0378 + }, + { + "start": 1512.52, + "end": 1517.2, + "probability": 0.6754 + }, + { + "start": 1517.68, + "end": 1519.42, + "probability": 0.1571 + }, + { + "start": 1521.2, + "end": 1522.54, + "probability": 0.1712 + }, + { + "start": 1522.92, + "end": 1522.92, + "probability": 0.479 + }, + { + "start": 1522.92, + "end": 1524.0, + "probability": 0.0967 + }, + { + "start": 1524.02, + "end": 1526.58, + "probability": 0.9963 + }, + { + "start": 1526.64, + "end": 1529.6, + "probability": 0.8926 + }, + { + "start": 1529.98, + "end": 1530.62, + "probability": 0.7715 + }, + { + "start": 1531.02, + "end": 1533.84, + "probability": 0.8938 + }, + { + "start": 1534.36, + "end": 1536.4, + "probability": 0.9469 + }, + { + "start": 1537.72, + "end": 1540.22, + "probability": 0.6844 + }, + { + "start": 1540.64, + "end": 1542.17, + "probability": 0.9788 + }, + { + "start": 1544.84, + "end": 1547.18, + "probability": 0.5646 + }, + { + "start": 1552.06, + "end": 1553.38, + "probability": 0.6548 + }, + { + "start": 1554.68, + "end": 1557.02, + "probability": 0.974 + }, + { + "start": 1557.78, + "end": 1562.82, + "probability": 0.7292 + }, + { + "start": 1563.38, + "end": 1568.16, + "probability": 0.8718 + }, + { + "start": 1568.68, + "end": 1570.34, + "probability": 0.3117 + }, + { + "start": 1571.24, + "end": 1571.88, + "probability": 0.9129 + }, + { + "start": 1572.12, + "end": 1573.14, + "probability": 0.8831 + }, + { + "start": 1573.48, + "end": 1577.04, + "probability": 0.9038 + }, + { + "start": 1577.52, + "end": 1579.56, + "probability": 0.9507 + }, + { + "start": 1580.27, + "end": 1582.94, + "probability": 0.9875 + }, + { + "start": 1583.66, + "end": 1586.68, + "probability": 0.9634 + }, + { + "start": 1587.6, + "end": 1589.66, + "probability": 0.6069 + }, + { + "start": 1590.46, + "end": 1590.54, + "probability": 0.0012 + }, + { + "start": 1592.3, + "end": 1593.0, + "probability": 0.1522 + }, + { + "start": 1593.04, + "end": 1593.16, + "probability": 0.1464 + }, + { + "start": 1593.22, + "end": 1593.7, + "probability": 0.0641 + }, + { + "start": 1593.96, + "end": 1594.62, + "probability": 0.191 + }, + { + "start": 1594.72, + "end": 1595.92, + "probability": 0.2266 + }, + { + "start": 1598.16, + "end": 1600.74, + "probability": 0.748 + }, + { + "start": 1601.34, + "end": 1603.34, + "probability": 0.8107 + }, + { + "start": 1603.98, + "end": 1605.7, + "probability": 0.9695 + }, + { + "start": 1606.22, + "end": 1608.04, + "probability": 0.9864 + }, + { + "start": 1608.46, + "end": 1612.52, + "probability": 0.9837 + }, + { + "start": 1613.04, + "end": 1615.18, + "probability": 0.7521 + }, + { + "start": 1615.76, + "end": 1618.08, + "probability": 0.7652 + }, + { + "start": 1618.7, + "end": 1622.82, + "probability": 0.993 + }, + { + "start": 1623.86, + "end": 1630.38, + "probability": 0.697 + }, + { + "start": 1630.8, + "end": 1632.86, + "probability": 0.851 + }, + { + "start": 1633.84, + "end": 1636.04, + "probability": 0.7878 + }, + { + "start": 1636.66, + "end": 1638.76, + "probability": 0.6743 + }, + { + "start": 1639.86, + "end": 1642.1, + "probability": 0.608 + }, + { + "start": 1642.78, + "end": 1644.52, + "probability": 0.8168 + }, + { + "start": 1644.8, + "end": 1649.04, + "probability": 0.8348 + }, + { + "start": 1649.7, + "end": 1650.34, + "probability": 0.5598 + }, + { + "start": 1650.66, + "end": 1651.46, + "probability": 0.7658 + }, + { + "start": 1651.88, + "end": 1653.84, + "probability": 0.7816 + }, + { + "start": 1654.52, + "end": 1657.02, + "probability": 0.8294 + }, + { + "start": 1658.06, + "end": 1659.7, + "probability": 0.5763 + }, + { + "start": 1660.12, + "end": 1660.56, + "probability": 0.6614 + }, + { + "start": 1660.78, + "end": 1661.88, + "probability": 0.8654 + }, + { + "start": 1662.08, + "end": 1663.74, + "probability": 0.5379 + }, + { + "start": 1664.42, + "end": 1668.24, + "probability": 0.8325 + }, + { + "start": 1668.72, + "end": 1670.56, + "probability": 0.223 + }, + { + "start": 1673.2, + "end": 1674.26, + "probability": 0.2808 + }, + { + "start": 1676.88, + "end": 1678.16, + "probability": 0.5509 + }, + { + "start": 1678.18, + "end": 1678.94, + "probability": 0.3037 + }, + { + "start": 1679.8, + "end": 1683.26, + "probability": 0.9907 + }, + { + "start": 1683.78, + "end": 1686.54, + "probability": 0.9997 + }, + { + "start": 1687.06, + "end": 1693.02, + "probability": 0.9836 + }, + { + "start": 1693.28, + "end": 1694.86, + "probability": 0.9957 + }, + { + "start": 1695.28, + "end": 1697.14, + "probability": 0.9977 + }, + { + "start": 1697.72, + "end": 1700.46, + "probability": 0.9897 + }, + { + "start": 1700.86, + "end": 1703.48, + "probability": 0.9583 + }, + { + "start": 1704.04, + "end": 1706.88, + "probability": 0.9345 + }, + { + "start": 1706.98, + "end": 1707.36, + "probability": 0.705 + }, + { + "start": 1707.46, + "end": 1710.02, + "probability": 0.898 + }, + { + "start": 1710.38, + "end": 1711.96, + "probability": 0.995 + }, + { + "start": 1712.46, + "end": 1713.36, + "probability": 0.6708 + }, + { + "start": 1714.92, + "end": 1715.63, + "probability": 0.3548 + }, + { + "start": 1715.86, + "end": 1719.48, + "probability": 0.9929 + }, + { + "start": 1719.78, + "end": 1722.48, + "probability": 0.7759 + }, + { + "start": 1722.9, + "end": 1725.04, + "probability": 0.9443 + }, + { + "start": 1725.48, + "end": 1728.1, + "probability": 0.9753 + }, + { + "start": 1728.6, + "end": 1729.36, + "probability": 0.6868 + }, + { + "start": 1729.5, + "end": 1730.69, + "probability": 0.9091 + }, + { + "start": 1731.02, + "end": 1733.42, + "probability": 0.9693 + }, + { + "start": 1733.72, + "end": 1735.54, + "probability": 0.9799 + }, + { + "start": 1735.78, + "end": 1737.84, + "probability": 0.8375 + }, + { + "start": 1738.18, + "end": 1740.38, + "probability": 0.9929 + }, + { + "start": 1740.76, + "end": 1743.9, + "probability": 0.9986 + }, + { + "start": 1744.04, + "end": 1745.2, + "probability": 0.9937 + }, + { + "start": 1745.6, + "end": 1748.7, + "probability": 0.894 + }, + { + "start": 1748.7, + "end": 1751.6, + "probability": 0.9933 + }, + { + "start": 1751.92, + "end": 1752.52, + "probability": 0.8197 + }, + { + "start": 1752.6, + "end": 1755.28, + "probability": 0.8965 + }, + { + "start": 1755.6, + "end": 1760.12, + "probability": 0.9982 + }, + { + "start": 1760.56, + "end": 1761.91, + "probability": 0.835 + }, + { + "start": 1762.08, + "end": 1764.44, + "probability": 0.8708 + }, + { + "start": 1764.52, + "end": 1764.86, + "probability": 0.8635 + }, + { + "start": 1765.58, + "end": 1768.0, + "probability": 0.9777 + }, + { + "start": 1769.54, + "end": 1772.44, + "probability": 0.8251 + }, + { + "start": 1772.96, + "end": 1774.88, + "probability": 0.9698 + }, + { + "start": 1775.42, + "end": 1777.15, + "probability": 0.842 + }, + { + "start": 1777.4, + "end": 1778.18, + "probability": 0.2666 + }, + { + "start": 1778.97, + "end": 1783.7, + "probability": 0.9548 + }, + { + "start": 1784.2, + "end": 1785.56, + "probability": 0.9947 + }, + { + "start": 1785.64, + "end": 1787.67, + "probability": 0.8191 + }, + { + "start": 1788.6, + "end": 1790.08, + "probability": 0.1083 + }, + { + "start": 1790.54, + "end": 1792.85, + "probability": 0.9921 + }, + { + "start": 1793.32, + "end": 1795.2, + "probability": 0.8817 + }, + { + "start": 1795.56, + "end": 1797.01, + "probability": 0.9924 + }, + { + "start": 1798.56, + "end": 1800.68, + "probability": 0.7743 + }, + { + "start": 1801.28, + "end": 1801.78, + "probability": 0.3521 + }, + { + "start": 1801.82, + "end": 1803.18, + "probability": 0.5038 + }, + { + "start": 1803.24, + "end": 1803.92, + "probability": 0.7429 + }, + { + "start": 1804.04, + "end": 1806.74, + "probability": 0.5453 + }, + { + "start": 1807.24, + "end": 1807.56, + "probability": 0.5889 + }, + { + "start": 1807.68, + "end": 1808.06, + "probability": 0.072 + }, + { + "start": 1808.26, + "end": 1809.1, + "probability": 0.332 + }, + { + "start": 1809.48, + "end": 1809.98, + "probability": 0.5514 + }, + { + "start": 1810.06, + "end": 1811.08, + "probability": 0.3687 + }, + { + "start": 1811.36, + "end": 1812.6, + "probability": 0.3434 + }, + { + "start": 1818.53, + "end": 1820.02, + "probability": 0.5509 + }, + { + "start": 1820.1, + "end": 1821.74, + "probability": 0.7476 + }, + { + "start": 1821.74, + "end": 1827.7, + "probability": 0.8612 + }, + { + "start": 1828.52, + "end": 1829.54, + "probability": 0.9637 + }, + { + "start": 1830.28, + "end": 1834.42, + "probability": 0.7098 + }, + { + "start": 1836.92, + "end": 1838.96, + "probability": 0.4596 + }, + { + "start": 1838.96, + "end": 1846.86, + "probability": 0.943 + }, + { + "start": 1847.64, + "end": 1849.5, + "probability": 0.9917 + }, + { + "start": 1850.12, + "end": 1852.83, + "probability": 0.9861 + }, + { + "start": 1853.4, + "end": 1856.32, + "probability": 0.9133 + }, + { + "start": 1856.52, + "end": 1857.64, + "probability": 0.6747 + }, + { + "start": 1858.24, + "end": 1861.69, + "probability": 0.7889 + }, + { + "start": 1863.0, + "end": 1865.33, + "probability": 0.8953 + }, + { + "start": 1867.02, + "end": 1867.56, + "probability": 0.9423 + }, + { + "start": 1868.06, + "end": 1868.94, + "probability": 0.8184 + }, + { + "start": 1869.84, + "end": 1872.96, + "probability": 0.4998 + }, + { + "start": 1873.06, + "end": 1878.32, + "probability": 0.8447 + }, + { + "start": 1879.02, + "end": 1883.3, + "probability": 0.9312 + }, + { + "start": 1883.42, + "end": 1885.38, + "probability": 0.9294 + }, + { + "start": 1886.3, + "end": 1888.52, + "probability": 0.4958 + }, + { + "start": 1893.38, + "end": 1896.06, + "probability": 0.664 + }, + { + "start": 1896.6, + "end": 1899.4, + "probability": 0.9696 + }, + { + "start": 1900.98, + "end": 1901.1, + "probability": 0.3283 + }, + { + "start": 1901.24, + "end": 1902.52, + "probability": 0.881 + }, + { + "start": 1902.58, + "end": 1905.22, + "probability": 0.9 + }, + { + "start": 1905.48, + "end": 1906.84, + "probability": 0.9406 + }, + { + "start": 1906.92, + "end": 1907.44, + "probability": 0.8663 + }, + { + "start": 1907.94, + "end": 1908.8, + "probability": 0.8453 + }, + { + "start": 1910.64, + "end": 1912.44, + "probability": 0.4012 + }, + { + "start": 1913.3, + "end": 1915.64, + "probability": 0.9912 + }, + { + "start": 1915.64, + "end": 1915.7, + "probability": 0.0087 + }, + { + "start": 1915.98, + "end": 1916.28, + "probability": 0.6413 + }, + { + "start": 1916.28, + "end": 1916.84, + "probability": 0.3733 + }, + { + "start": 1916.84, + "end": 1920.36, + "probability": 0.9873 + }, + { + "start": 1920.52, + "end": 1920.82, + "probability": 0.9187 + }, + { + "start": 1920.92, + "end": 1923.05, + "probability": 0.9719 + }, + { + "start": 1923.38, + "end": 1923.8, + "probability": 0.9175 + }, + { + "start": 1924.8, + "end": 1926.02, + "probability": 0.655 + }, + { + "start": 1926.68, + "end": 1927.04, + "probability": 0.5436 + }, + { + "start": 1927.1, + "end": 1928.02, + "probability": 0.7817 + }, + { + "start": 1928.54, + "end": 1933.76, + "probability": 0.8193 + }, + { + "start": 1934.78, + "end": 1937.36, + "probability": 0.587 + }, + { + "start": 1937.48, + "end": 1937.48, + "probability": 0.4655 + }, + { + "start": 1937.48, + "end": 1937.96, + "probability": 0.9395 + }, + { + "start": 1938.42, + "end": 1940.88, + "probability": 0.9801 + }, + { + "start": 1942.44, + "end": 1944.68, + "probability": 0.988 + }, + { + "start": 1945.48, + "end": 1946.72, + "probability": 0.8257 + }, + { + "start": 1947.44, + "end": 1948.5, + "probability": 0.7094 + }, + { + "start": 1949.34, + "end": 1952.76, + "probability": 0.8439 + }, + { + "start": 1953.94, + "end": 1956.18, + "probability": 0.9507 + }, + { + "start": 1956.94, + "end": 1958.52, + "probability": 0.9954 + }, + { + "start": 1959.34, + "end": 1963.26, + "probability": 0.9926 + }, + { + "start": 1963.26, + "end": 1967.78, + "probability": 0.9757 + }, + { + "start": 1967.94, + "end": 1968.94, + "probability": 0.9979 + }, + { + "start": 1969.48, + "end": 1970.96, + "probability": 0.9412 + }, + { + "start": 1971.6, + "end": 1974.48, + "probability": 0.9054 + }, + { + "start": 1975.08, + "end": 1977.36, + "probability": 0.8624 + }, + { + "start": 1977.78, + "end": 1980.22, + "probability": 0.6092 + }, + { + "start": 1980.92, + "end": 1983.82, + "probability": 0.9949 + }, + { + "start": 1984.94, + "end": 1985.72, + "probability": 0.467 + }, + { + "start": 1986.24, + "end": 1986.88, + "probability": 0.918 + }, + { + "start": 1987.76, + "end": 1992.16, + "probability": 0.982 + }, + { + "start": 1992.72, + "end": 1995.62, + "probability": 0.9964 + }, + { + "start": 1996.14, + "end": 1997.26, + "probability": 0.9927 + }, + { + "start": 1998.04, + "end": 1999.33, + "probability": 0.9941 + }, + { + "start": 2000.64, + "end": 2002.06, + "probability": 0.8428 + }, + { + "start": 2002.58, + "end": 2008.76, + "probability": 0.9858 + }, + { + "start": 2009.28, + "end": 2011.08, + "probability": 0.9332 + }, + { + "start": 2011.5, + "end": 2015.42, + "probability": 0.9589 + }, + { + "start": 2015.44, + "end": 2020.74, + "probability": 0.8989 + }, + { + "start": 2020.82, + "end": 2022.32, + "probability": 0.9525 + }, + { + "start": 2022.54, + "end": 2023.4, + "probability": 0.6474 + }, + { + "start": 2023.4, + "end": 2026.78, + "probability": 0.9935 + }, + { + "start": 2027.56, + "end": 2030.6, + "probability": 0.8376 + }, + { + "start": 2031.14, + "end": 2032.44, + "probability": 0.3449 + }, + { + "start": 2032.6, + "end": 2033.41, + "probability": 0.6171 + }, + { + "start": 2033.64, + "end": 2035.4, + "probability": 0.271 + }, + { + "start": 2035.58, + "end": 2037.84, + "probability": 0.6308 + }, + { + "start": 2038.0, + "end": 2039.35, + "probability": 0.6895 + }, + { + "start": 2039.92, + "end": 2041.2, + "probability": 0.7885 + }, + { + "start": 2041.96, + "end": 2044.58, + "probability": 0.4641 + }, + { + "start": 2046.37, + "end": 2049.8, + "probability": 0.3634 + }, + { + "start": 2050.4, + "end": 2051.3, + "probability": 0.7197 + }, + { + "start": 2052.02, + "end": 2053.26, + "probability": 0.3592 + }, + { + "start": 2054.22, + "end": 2055.04, + "probability": 0.6915 + }, + { + "start": 2055.1, + "end": 2061.0, + "probability": 0.8119 + }, + { + "start": 2062.02, + "end": 2064.4, + "probability": 0.7847 + }, + { + "start": 2065.82, + "end": 2071.62, + "probability": 0.9969 + }, + { + "start": 2071.8, + "end": 2077.7, + "probability": 0.9717 + }, + { + "start": 2077.88, + "end": 2078.78, + "probability": 0.814 + }, + { + "start": 2079.18, + "end": 2083.2, + "probability": 0.8135 + }, + { + "start": 2084.66, + "end": 2087.12, + "probability": 0.799 + }, + { + "start": 2088.12, + "end": 2090.92, + "probability": 0.9597 + }, + { + "start": 2091.8, + "end": 2098.58, + "probability": 0.8096 + }, + { + "start": 2099.6, + "end": 2099.78, + "probability": 0.2177 + }, + { + "start": 2099.82, + "end": 2104.1, + "probability": 0.8574 + }, + { + "start": 2104.18, + "end": 2110.38, + "probability": 0.9449 + }, + { + "start": 2110.96, + "end": 2111.84, + "probability": 0.9063 + }, + { + "start": 2112.02, + "end": 2114.84, + "probability": 0.964 + }, + { + "start": 2114.84, + "end": 2119.63, + "probability": 0.995 + }, + { + "start": 2120.38, + "end": 2124.28, + "probability": 0.9972 + }, + { + "start": 2124.38, + "end": 2124.62, + "probability": 0.3007 + }, + { + "start": 2125.3, + "end": 2126.84, + "probability": 0.4997 + }, + { + "start": 2127.86, + "end": 2132.04, + "probability": 0.8147 + }, + { + "start": 2132.72, + "end": 2135.66, + "probability": 0.4196 + }, + { + "start": 2136.74, + "end": 2138.98, + "probability": 0.364 + }, + { + "start": 2139.4, + "end": 2139.4, + "probability": 0.5986 + }, + { + "start": 2139.46, + "end": 2147.4, + "probability": 0.9765 + }, + { + "start": 2147.4, + "end": 2152.36, + "probability": 0.793 + }, + { + "start": 2152.96, + "end": 2155.82, + "probability": 0.7611 + }, + { + "start": 2156.42, + "end": 2160.5, + "probability": 0.9364 + }, + { + "start": 2161.12, + "end": 2163.06, + "probability": 0.7942 + }, + { + "start": 2164.0, + "end": 2165.38, + "probability": 0.9838 + }, + { + "start": 2165.84, + "end": 2168.02, + "probability": 0.8824 + }, + { + "start": 2168.12, + "end": 2169.18, + "probability": 0.8227 + }, + { + "start": 2169.48, + "end": 2170.52, + "probability": 0.9467 + }, + { + "start": 2171.48, + "end": 2173.62, + "probability": 0.8061 + }, + { + "start": 2173.68, + "end": 2176.3, + "probability": 0.9708 + }, + { + "start": 2176.3, + "end": 2179.38, + "probability": 0.616 + }, + { + "start": 2179.48, + "end": 2182.82, + "probability": 0.8665 + }, + { + "start": 2182.94, + "end": 2183.76, + "probability": 0.6326 + }, + { + "start": 2184.24, + "end": 2185.6, + "probability": 0.6817 + }, + { + "start": 2185.78, + "end": 2189.18, + "probability": 0.9706 + }, + { + "start": 2189.5, + "end": 2192.81, + "probability": 0.9959 + }, + { + "start": 2192.96, + "end": 2196.78, + "probability": 0.9626 + }, + { + "start": 2197.26, + "end": 2199.02, + "probability": 0.7799 + }, + { + "start": 2199.44, + "end": 2200.62, + "probability": 0.7169 + }, + { + "start": 2201.12, + "end": 2205.32, + "probability": 0.9824 + }, + { + "start": 2205.86, + "end": 2209.16, + "probability": 0.8056 + }, + { + "start": 2209.58, + "end": 2213.52, + "probability": 0.989 + }, + { + "start": 2213.64, + "end": 2214.04, + "probability": 0.8116 + }, + { + "start": 2214.86, + "end": 2215.48, + "probability": 0.7332 + }, + { + "start": 2215.9, + "end": 2216.98, + "probability": 0.9954 + }, + { + "start": 2217.78, + "end": 2219.02, + "probability": 0.6609 + }, + { + "start": 2219.58, + "end": 2221.96, + "probability": 0.9937 + }, + { + "start": 2223.0, + "end": 2223.66, + "probability": 0.2957 + }, + { + "start": 2223.76, + "end": 2224.74, + "probability": 0.7959 + }, + { + "start": 2225.46, + "end": 2227.76, + "probability": 0.9552 + }, + { + "start": 2228.98, + "end": 2230.84, + "probability": 0.5324 + }, + { + "start": 2231.58, + "end": 2232.36, + "probability": 0.7787 + }, + { + "start": 2232.52, + "end": 2233.96, + "probability": 0.6548 + }, + { + "start": 2234.06, + "end": 2234.82, + "probability": 0.4219 + }, + { + "start": 2235.04, + "end": 2235.54, + "probability": 0.9046 + }, + { + "start": 2235.6, + "end": 2236.24, + "probability": 0.9163 + }, + { + "start": 2236.86, + "end": 2237.6, + "probability": 0.708 + }, + { + "start": 2238.36, + "end": 2241.54, + "probability": 0.8516 + }, + { + "start": 2241.92, + "end": 2245.3, + "probability": 0.4283 + }, + { + "start": 2245.56, + "end": 2245.94, + "probability": 0.5352 + }, + { + "start": 2246.06, + "end": 2247.94, + "probability": 0.3489 + }, + { + "start": 2248.22, + "end": 2248.28, + "probability": 0.0162 + }, + { + "start": 2248.28, + "end": 2249.3, + "probability": 0.6077 + }, + { + "start": 2249.7, + "end": 2252.7, + "probability": 0.6233 + }, + { + "start": 2254.14, + "end": 2259.74, + "probability": 0.8804 + }, + { + "start": 2259.74, + "end": 2264.84, + "probability": 0.7802 + }, + { + "start": 2265.28, + "end": 2266.34, + "probability": 0.5425 + }, + { + "start": 2267.06, + "end": 2267.78, + "probability": 0.744 + }, + { + "start": 2268.34, + "end": 2274.12, + "probability": 0.9229 + }, + { + "start": 2274.28, + "end": 2276.62, + "probability": 0.9434 + }, + { + "start": 2277.04, + "end": 2279.5, + "probability": 0.9255 + }, + { + "start": 2279.5, + "end": 2279.9, + "probability": 0.4934 + }, + { + "start": 2280.46, + "end": 2281.84, + "probability": 0.6443 + }, + { + "start": 2282.56, + "end": 2283.42, + "probability": 0.5328 + }, + { + "start": 2283.48, + "end": 2288.1, + "probability": 0.893 + }, + { + "start": 2288.24, + "end": 2289.0, + "probability": 0.2158 + }, + { + "start": 2291.2, + "end": 2291.64, + "probability": 0.6483 + }, + { + "start": 2292.24, + "end": 2293.1, + "probability": 0.7784 + }, + { + "start": 2293.36, + "end": 2295.34, + "probability": 0.4465 + }, + { + "start": 2295.64, + "end": 2296.8, + "probability": 0.9033 + }, + { + "start": 2297.06, + "end": 2302.64, + "probability": 0.9773 + }, + { + "start": 2302.92, + "end": 2303.18, + "probability": 0.804 + }, + { + "start": 2304.38, + "end": 2306.16, + "probability": 0.7433 + }, + { + "start": 2306.68, + "end": 2309.04, + "probability": 0.7647 + }, + { + "start": 2309.74, + "end": 2311.48, + "probability": 0.7911 + }, + { + "start": 2312.18, + "end": 2318.22, + "probability": 0.8453 + }, + { + "start": 2318.22, + "end": 2324.42, + "probability": 0.8676 + }, + { + "start": 2325.24, + "end": 2325.68, + "probability": 0.4392 + }, + { + "start": 2326.44, + "end": 2330.98, + "probability": 0.9736 + }, + { + "start": 2331.74, + "end": 2332.86, + "probability": 0.9678 + }, + { + "start": 2333.1, + "end": 2334.32, + "probability": 0.6475 + }, + { + "start": 2336.82, + "end": 2339.58, + "probability": 0.7364 + }, + { + "start": 2340.66, + "end": 2347.63, + "probability": 0.7204 + }, + { + "start": 2347.9, + "end": 2351.34, + "probability": 0.9292 + }, + { + "start": 2351.98, + "end": 2353.46, + "probability": 0.6235 + }, + { + "start": 2354.1, + "end": 2357.1, + "probability": 0.8438 + }, + { + "start": 2358.5, + "end": 2360.0, + "probability": 0.4952 + }, + { + "start": 2360.86, + "end": 2366.76, + "probability": 0.6347 + }, + { + "start": 2367.52, + "end": 2368.34, + "probability": 0.7947 + }, + { + "start": 2369.54, + "end": 2369.96, + "probability": 0.5319 + }, + { + "start": 2370.06, + "end": 2372.84, + "probability": 0.9614 + }, + { + "start": 2372.9, + "end": 2373.33, + "probability": 0.8314 + }, + { + "start": 2374.28, + "end": 2375.02, + "probability": 0.9328 + }, + { + "start": 2376.9, + "end": 2379.66, + "probability": 0.8284 + }, + { + "start": 2380.24, + "end": 2382.04, + "probability": 0.7086 + }, + { + "start": 2382.34, + "end": 2385.36, + "probability": 0.6445 + }, + { + "start": 2386.14, + "end": 2386.92, + "probability": 0.895 + }, + { + "start": 2387.28, + "end": 2389.42, + "probability": 0.9675 + }, + { + "start": 2389.82, + "end": 2390.84, + "probability": 0.1729 + }, + { + "start": 2390.84, + "end": 2392.22, + "probability": 0.904 + }, + { + "start": 2392.58, + "end": 2395.28, + "probability": 0.929 + }, + { + "start": 2395.64, + "end": 2396.46, + "probability": 0.7608 + }, + { + "start": 2397.68, + "end": 2399.94, + "probability": 0.9179 + }, + { + "start": 2400.94, + "end": 2402.08, + "probability": 0.7083 + }, + { + "start": 2402.44, + "end": 2404.6, + "probability": 0.811 + }, + { + "start": 2404.76, + "end": 2405.5, + "probability": 0.6304 + }, + { + "start": 2405.9, + "end": 2406.46, + "probability": 0.848 + }, + { + "start": 2406.58, + "end": 2406.68, + "probability": 0.1538 + }, + { + "start": 2406.68, + "end": 2409.36, + "probability": 0.9056 + }, + { + "start": 2409.64, + "end": 2414.1, + "probability": 0.9271 + }, + { + "start": 2414.28, + "end": 2418.92, + "probability": 0.969 + }, + { + "start": 2419.2, + "end": 2422.11, + "probability": 0.8788 + }, + { + "start": 2422.7, + "end": 2425.64, + "probability": 0.9096 + }, + { + "start": 2426.56, + "end": 2429.28, + "probability": 0.9301 + }, + { + "start": 2429.5, + "end": 2429.98, + "probability": 0.8298 + }, + { + "start": 2430.3, + "end": 2430.64, + "probability": 0.6279 + }, + { + "start": 2430.84, + "end": 2433.4, + "probability": 0.9653 + }, + { + "start": 2433.66, + "end": 2436.26, + "probability": 0.9924 + }, + { + "start": 2436.8, + "end": 2438.79, + "probability": 0.9602 + }, + { + "start": 2439.24, + "end": 2440.1, + "probability": 0.9878 + }, + { + "start": 2440.72, + "end": 2440.9, + "probability": 0.0033 + }, + { + "start": 2442.64, + "end": 2443.66, + "probability": 0.2886 + }, + { + "start": 2444.18, + "end": 2445.66, + "probability": 0.739 + }, + { + "start": 2445.76, + "end": 2446.26, + "probability": 0.075 + }, + { + "start": 2446.6, + "end": 2448.92, + "probability": 0.9604 + }, + { + "start": 2449.12, + "end": 2449.61, + "probability": 0.8319 + }, + { + "start": 2449.96, + "end": 2453.9, + "probability": 0.5372 + }, + { + "start": 2454.58, + "end": 2455.54, + "probability": 0.6873 + }, + { + "start": 2455.54, + "end": 2457.76, + "probability": 0.6744 + }, + { + "start": 2458.18, + "end": 2459.02, + "probability": 0.5558 + }, + { + "start": 2459.2, + "end": 2459.6, + "probability": 0.5327 + }, + { + "start": 2471.94, + "end": 2472.74, + "probability": 0.6496 + }, + { + "start": 2472.82, + "end": 2473.8, + "probability": 0.8311 + }, + { + "start": 2474.0, + "end": 2474.96, + "probability": 0.982 + }, + { + "start": 2475.78, + "end": 2476.44, + "probability": 0.7405 + }, + { + "start": 2476.82, + "end": 2479.79, + "probability": 0.9972 + }, + { + "start": 2480.9, + "end": 2482.98, + "probability": 0.6423 + }, + { + "start": 2483.22, + "end": 2488.54, + "probability": 0.9734 + }, + { + "start": 2488.54, + "end": 2495.98, + "probability": 0.9557 + }, + { + "start": 2496.6, + "end": 2499.06, + "probability": 0.9759 + }, + { + "start": 2499.68, + "end": 2507.68, + "probability": 0.9256 + }, + { + "start": 2508.8, + "end": 2511.06, + "probability": 0.9233 + }, + { + "start": 2511.58, + "end": 2513.48, + "probability": 0.9218 + }, + { + "start": 2513.58, + "end": 2516.44, + "probability": 0.6034 + }, + { + "start": 2516.58, + "end": 2520.86, + "probability": 0.7441 + }, + { + "start": 2520.92, + "end": 2521.32, + "probability": 0.397 + }, + { + "start": 2521.72, + "end": 2523.5, + "probability": 0.9818 + }, + { + "start": 2524.06, + "end": 2525.35, + "probability": 0.6504 + }, + { + "start": 2526.66, + "end": 2528.14, + "probability": 0.9862 + }, + { + "start": 2529.32, + "end": 2529.66, + "probability": 0.4982 + }, + { + "start": 2531.02, + "end": 2532.08, + "probability": 0.8635 + }, + { + "start": 2532.62, + "end": 2536.58, + "probability": 0.9665 + }, + { + "start": 2536.98, + "end": 2541.18, + "probability": 0.9824 + }, + { + "start": 2541.3, + "end": 2545.04, + "probability": 0.9434 + }, + { + "start": 2545.3, + "end": 2546.06, + "probability": 0.632 + }, + { + "start": 2546.7, + "end": 2550.12, + "probability": 0.9501 + }, + { + "start": 2550.94, + "end": 2553.82, + "probability": 0.9205 + }, + { + "start": 2554.84, + "end": 2556.32, + "probability": 0.7404 + }, + { + "start": 2556.94, + "end": 2558.5, + "probability": 0.7398 + }, + { + "start": 2560.94, + "end": 2562.7, + "probability": 0.9484 + }, + { + "start": 2562.84, + "end": 2565.54, + "probability": 0.9293 + }, + { + "start": 2565.66, + "end": 2568.06, + "probability": 0.7822 + }, + { + "start": 2569.32, + "end": 2572.64, + "probability": 0.5699 + }, + { + "start": 2572.86, + "end": 2573.76, + "probability": 0.8649 + }, + { + "start": 2574.74, + "end": 2580.58, + "probability": 0.9902 + }, + { + "start": 2582.44, + "end": 2586.2, + "probability": 0.7013 + }, + { + "start": 2586.5, + "end": 2590.16, + "probability": 0.699 + }, + { + "start": 2591.6, + "end": 2593.86, + "probability": 0.8239 + }, + { + "start": 2593.94, + "end": 2597.36, + "probability": 0.7323 + }, + { + "start": 2598.0, + "end": 2603.58, + "probability": 0.807 + }, + { + "start": 2605.18, + "end": 2607.7, + "probability": 0.9929 + }, + { + "start": 2608.44, + "end": 2610.02, + "probability": 0.7583 + }, + { + "start": 2610.7, + "end": 2614.14, + "probability": 0.9695 + }, + { + "start": 2615.38, + "end": 2618.86, + "probability": 0.9126 + }, + { + "start": 2618.86, + "end": 2622.16, + "probability": 0.9917 + }, + { + "start": 2622.84, + "end": 2628.4, + "probability": 0.9135 + }, + { + "start": 2629.08, + "end": 2632.24, + "probability": 0.9521 + }, + { + "start": 2632.98, + "end": 2633.0, + "probability": 0.8999 + }, + { + "start": 2633.54, + "end": 2638.08, + "probability": 0.9977 + }, + { + "start": 2638.76, + "end": 2639.98, + "probability": 0.7164 + }, + { + "start": 2640.46, + "end": 2644.74, + "probability": 0.9146 + }, + { + "start": 2645.14, + "end": 2647.74, + "probability": 0.6687 + }, + { + "start": 2648.06, + "end": 2652.24, + "probability": 0.9186 + }, + { + "start": 2652.72, + "end": 2653.94, + "probability": 0.8517 + }, + { + "start": 2654.26, + "end": 2656.22, + "probability": 0.5901 + }, + { + "start": 2657.08, + "end": 2657.79, + "probability": 0.4651 + }, + { + "start": 2658.6, + "end": 2663.24, + "probability": 0.4835 + }, + { + "start": 2663.48, + "end": 2664.4, + "probability": 0.7184 + }, + { + "start": 2664.8, + "end": 2667.32, + "probability": 0.9679 + }, + { + "start": 2667.34, + "end": 2670.62, + "probability": 0.7942 + }, + { + "start": 2671.46, + "end": 2676.32, + "probability": 0.8423 + }, + { + "start": 2677.1, + "end": 2679.5, + "probability": 0.6434 + }, + { + "start": 2680.76, + "end": 2682.42, + "probability": 0.9961 + }, + { + "start": 2683.7, + "end": 2686.6, + "probability": 0.8706 + }, + { + "start": 2688.6, + "end": 2691.48, + "probability": 0.7804 + }, + { + "start": 2692.46, + "end": 2693.16, + "probability": 0.0083 + }, + { + "start": 2693.16, + "end": 2695.04, + "probability": 0.095 + }, + { + "start": 2695.9, + "end": 2701.52, + "probability": 0.9777 + }, + { + "start": 2702.42, + "end": 2706.0, + "probability": 0.9938 + }, + { + "start": 2707.44, + "end": 2711.84, + "probability": 0.8949 + }, + { + "start": 2711.84, + "end": 2714.32, + "probability": 0.9523 + }, + { + "start": 2714.88, + "end": 2720.1, + "probability": 0.9937 + }, + { + "start": 2720.86, + "end": 2723.94, + "probability": 0.7385 + }, + { + "start": 2724.52, + "end": 2727.14, + "probability": 0.9875 + }, + { + "start": 2727.54, + "end": 2728.12, + "probability": 0.1593 + }, + { + "start": 2728.4, + "end": 2729.96, + "probability": 0.5652 + }, + { + "start": 2730.06, + "end": 2733.77, + "probability": 0.917 + }, + { + "start": 2735.14, + "end": 2736.74, + "probability": 0.3911 + }, + { + "start": 2736.94, + "end": 2738.7, + "probability": 0.4877 + }, + { + "start": 2740.48, + "end": 2746.38, + "probability": 0.8869 + }, + { + "start": 2747.58, + "end": 2748.06, + "probability": 0.4919 + }, + { + "start": 2748.1, + "end": 2749.92, + "probability": 0.9688 + }, + { + "start": 2750.02, + "end": 2752.5, + "probability": 0.9867 + }, + { + "start": 2753.22, + "end": 2753.86, + "probability": 0.475 + }, + { + "start": 2754.14, + "end": 2755.08, + "probability": 0.6761 + }, + { + "start": 2763.06, + "end": 2763.06, + "probability": 0.2133 + }, + { + "start": 2763.06, + "end": 2763.94, + "probability": 0.5751 + }, + { + "start": 2764.12, + "end": 2764.12, + "probability": 0.3948 + }, + { + "start": 2764.12, + "end": 2770.82, + "probability": 0.7983 + }, + { + "start": 2770.82, + "end": 2777.86, + "probability": 0.9858 + }, + { + "start": 2779.5, + "end": 2782.5, + "probability": 0.9938 + }, + { + "start": 2783.16, + "end": 2789.74, + "probability": 0.8325 + }, + { + "start": 2790.36, + "end": 2794.74, + "probability": 0.9851 + }, + { + "start": 2795.38, + "end": 2799.7, + "probability": 0.9388 + }, + { + "start": 2800.7, + "end": 2806.84, + "probability": 0.9443 + }, + { + "start": 2807.86, + "end": 2815.26, + "probability": 0.8912 + }, + { + "start": 2815.94, + "end": 2818.62, + "probability": 0.7278 + }, + { + "start": 2819.28, + "end": 2821.6, + "probability": 0.7633 + }, + { + "start": 2822.46, + "end": 2827.28, + "probability": 0.6967 + }, + { + "start": 2828.2, + "end": 2831.58, + "probability": 0.9832 + }, + { + "start": 2832.28, + "end": 2834.7, + "probability": 0.9661 + }, + { + "start": 2834.86, + "end": 2837.18, + "probability": 0.9742 + }, + { + "start": 2837.94, + "end": 2843.66, + "probability": 0.977 + }, + { + "start": 2844.52, + "end": 2848.38, + "probability": 0.9896 + }, + { + "start": 2848.54, + "end": 2850.36, + "probability": 0.8232 + }, + { + "start": 2850.56, + "end": 2852.2, + "probability": 0.9741 + }, + { + "start": 2852.6, + "end": 2852.96, + "probability": 0.6515 + }, + { + "start": 2852.96, + "end": 2855.36, + "probability": 0.775 + }, + { + "start": 2856.08, + "end": 2860.32, + "probability": 0.9081 + }, + { + "start": 2860.86, + "end": 2864.42, + "probability": 0.9822 + }, + { + "start": 2865.0, + "end": 2865.8, + "probability": 0.9575 + }, + { + "start": 2866.64, + "end": 2867.92, + "probability": 0.7676 + }, + { + "start": 2868.82, + "end": 2871.32, + "probability": 0.7988 + }, + { + "start": 2872.36, + "end": 2877.6, + "probability": 0.9626 + }, + { + "start": 2878.54, + "end": 2880.58, + "probability": 0.6418 + }, + { + "start": 2881.22, + "end": 2885.42, + "probability": 0.9746 + }, + { + "start": 2886.06, + "end": 2887.1, + "probability": 0.7399 + }, + { + "start": 2887.66, + "end": 2893.65, + "probability": 0.7236 + }, + { + "start": 2894.4, + "end": 2896.64, + "probability": 0.8665 + }, + { + "start": 2896.68, + "end": 2901.14, + "probability": 0.942 + }, + { + "start": 2901.56, + "end": 2903.92, + "probability": 0.9534 + }, + { + "start": 2904.5, + "end": 2905.76, + "probability": 0.7163 + }, + { + "start": 2906.16, + "end": 2907.4, + "probability": 0.9261 + }, + { + "start": 2907.6, + "end": 2910.68, + "probability": 0.9189 + }, + { + "start": 2911.36, + "end": 2913.54, + "probability": 0.679 + }, + { + "start": 2914.1, + "end": 2919.42, + "probability": 0.912 + }, + { + "start": 2919.94, + "end": 2925.18, + "probability": 0.8686 + }, + { + "start": 2925.8, + "end": 2926.44, + "probability": 0.866 + }, + { + "start": 2928.84, + "end": 2931.22, + "probability": 0.6881 + }, + { + "start": 2932.76, + "end": 2935.88, + "probability": 0.9861 + }, + { + "start": 2936.4, + "end": 2938.28, + "probability": 0.8553 + }, + { + "start": 2938.7, + "end": 2942.26, + "probability": 0.7067 + }, + { + "start": 2942.64, + "end": 2947.82, + "probability": 0.9919 + }, + { + "start": 2948.62, + "end": 2953.52, + "probability": 0.9076 + }, + { + "start": 2954.3, + "end": 2957.16, + "probability": 0.5315 + }, + { + "start": 2957.94, + "end": 2961.36, + "probability": 0.7205 + }, + { + "start": 2961.36, + "end": 2961.98, + "probability": 0.8608 + }, + { + "start": 2962.12, + "end": 2962.12, + "probability": 0.2766 + }, + { + "start": 2962.12, + "end": 2963.66, + "probability": 0.7268 + }, + { + "start": 2963.84, + "end": 2964.56, + "probability": 0.9066 + }, + { + "start": 2964.72, + "end": 2965.88, + "probability": 0.9711 + }, + { + "start": 2966.46, + "end": 2966.74, + "probability": 0.0025 + }, + { + "start": 2967.56, + "end": 2970.5, + "probability": 0.7991 + }, + { + "start": 2970.66, + "end": 2973.08, + "probability": 0.8428 + }, + { + "start": 2973.32, + "end": 2974.62, + "probability": 0.9602 + }, + { + "start": 2975.02, + "end": 2978.92, + "probability": 0.966 + }, + { + "start": 2979.12, + "end": 2984.56, + "probability": 0.9801 + }, + { + "start": 2984.92, + "end": 2988.92, + "probability": 0.9789 + }, + { + "start": 2989.28, + "end": 2990.86, + "probability": 0.8565 + }, + { + "start": 2991.26, + "end": 2994.9, + "probability": 0.9873 + }, + { + "start": 2995.26, + "end": 2997.78, + "probability": 0.8822 + }, + { + "start": 2998.08, + "end": 2999.06, + "probability": 0.6814 + }, + { + "start": 2999.24, + "end": 2999.58, + "probability": 0.6605 + }, + { + "start": 2999.68, + "end": 3000.58, + "probability": 0.9803 + }, + { + "start": 3001.02, + "end": 3003.22, + "probability": 0.8398 + }, + { + "start": 3003.5, + "end": 3004.5, + "probability": 0.7162 + }, + { + "start": 3005.28, + "end": 3011.2, + "probability": 0.8297 + }, + { + "start": 3012.22, + "end": 3013.28, + "probability": 0.4897 + }, + { + "start": 3013.98, + "end": 3015.2, + "probability": 0.1596 + }, + { + "start": 3016.64, + "end": 3018.8, + "probability": 0.4043 + }, + { + "start": 3020.14, + "end": 3024.64, + "probability": 0.386 + }, + { + "start": 3024.82, + "end": 3026.32, + "probability": 0.9917 + }, + { + "start": 3026.42, + "end": 3026.82, + "probability": 0.6435 + }, + { + "start": 3026.92, + "end": 3029.56, + "probability": 0.9114 + }, + { + "start": 3030.16, + "end": 3031.6, + "probability": 0.4317 + }, + { + "start": 3033.2, + "end": 3035.66, + "probability": 0.6991 + }, + { + "start": 3036.26, + "end": 3038.12, + "probability": 0.659 + }, + { + "start": 3038.73, + "end": 3041.44, + "probability": 0.2234 + }, + { + "start": 3041.68, + "end": 3042.26, + "probability": 0.4064 + }, + { + "start": 3042.26, + "end": 3042.46, + "probability": 0.3304 + }, + { + "start": 3043.06, + "end": 3043.96, + "probability": 0.6667 + }, + { + "start": 3044.34, + "end": 3046.8, + "probability": 0.9915 + }, + { + "start": 3050.36, + "end": 3052.28, + "probability": 0.7617 + }, + { + "start": 3052.4, + "end": 3057.04, + "probability": 0.7605 + }, + { + "start": 3057.04, + "end": 3063.4, + "probability": 0.9911 + }, + { + "start": 3063.54, + "end": 3064.62, + "probability": 0.7449 + }, + { + "start": 3065.06, + "end": 3067.4, + "probability": 0.6094 + }, + { + "start": 3068.13, + "end": 3071.18, + "probability": 0.5851 + }, + { + "start": 3071.66, + "end": 3073.12, + "probability": 0.843 + }, + { + "start": 3073.26, + "end": 3074.1, + "probability": 0.5482 + }, + { + "start": 3074.58, + "end": 3075.74, + "probability": 0.8643 + }, + { + "start": 3075.94, + "end": 3077.6, + "probability": 0.8339 + }, + { + "start": 3078.06, + "end": 3085.82, + "probability": 0.9763 + }, + { + "start": 3086.2, + "end": 3087.16, + "probability": 0.9149 + }, + { + "start": 3087.36, + "end": 3089.5, + "probability": 0.8926 + }, + { + "start": 3089.54, + "end": 3091.5, + "probability": 0.7753 + }, + { + "start": 3091.72, + "end": 3093.76, + "probability": 0.9413 + }, + { + "start": 3094.28, + "end": 3095.5, + "probability": 0.9009 + }, + { + "start": 3095.62, + "end": 3097.04, + "probability": 0.7673 + }, + { + "start": 3097.5, + "end": 3098.74, + "probability": 0.8672 + }, + { + "start": 3099.6, + "end": 3100.12, + "probability": 0.7375 + }, + { + "start": 3101.28, + "end": 3103.56, + "probability": 0.5655 + }, + { + "start": 3104.36, + "end": 3109.66, + "probability": 0.7495 + }, + { + "start": 3110.12, + "end": 3113.06, + "probability": 0.5566 + }, + { + "start": 3113.06, + "end": 3116.68, + "probability": 0.8035 + }, + { + "start": 3117.26, + "end": 3119.56, + "probability": 0.553 + }, + { + "start": 3120.38, + "end": 3122.14, + "probability": 0.5285 + }, + { + "start": 3123.04, + "end": 3123.56, + "probability": 0.2559 + }, + { + "start": 3124.82, + "end": 3124.88, + "probability": 0.0524 + }, + { + "start": 3126.7, + "end": 3132.3, + "probability": 0.0453 + }, + { + "start": 3134.36, + "end": 3135.12, + "probability": 0.0197 + }, + { + "start": 3135.12, + "end": 3135.12, + "probability": 0.1332 + }, + { + "start": 3135.12, + "end": 3135.12, + "probability": 0.1766 + }, + { + "start": 3135.12, + "end": 3135.22, + "probability": 0.0619 + }, + { + "start": 3135.78, + "end": 3138.14, + "probability": 0.4962 + }, + { + "start": 3138.64, + "end": 3139.84, + "probability": 0.3066 + }, + { + "start": 3142.04, + "end": 3149.2, + "probability": 0.6419 + }, + { + "start": 3150.02, + "end": 3151.36, + "probability": 0.8489 + }, + { + "start": 3151.9, + "end": 3155.2, + "probability": 0.7528 + }, + { + "start": 3155.94, + "end": 3156.58, + "probability": 0.3236 + }, + { + "start": 3158.1, + "end": 3160.72, + "probability": 0.5767 + }, + { + "start": 3161.58, + "end": 3163.47, + "probability": 0.6936 + }, + { + "start": 3164.72, + "end": 3168.2, + "probability": 0.8477 + }, + { + "start": 3169.94, + "end": 3173.26, + "probability": 0.9582 + }, + { + "start": 3173.38, + "end": 3173.98, + "probability": 0.5962 + }, + { + "start": 3174.16, + "end": 3175.24, + "probability": 0.7679 + }, + { + "start": 3175.68, + "end": 3180.6, + "probability": 0.8698 + }, + { + "start": 3181.02, + "end": 3182.04, + "probability": 0.7815 + }, + { + "start": 3182.08, + "end": 3183.54, + "probability": 0.8868 + }, + { + "start": 3183.66, + "end": 3187.32, + "probability": 0.9648 + }, + { + "start": 3190.7, + "end": 3195.92, + "probability": 0.9182 + }, + { + "start": 3196.94, + "end": 3199.96, + "probability": 0.9973 + }, + { + "start": 3200.3, + "end": 3205.34, + "probability": 0.9759 + }, + { + "start": 3206.16, + "end": 3206.6, + "probability": 0.7475 + }, + { + "start": 3206.86, + "end": 3208.94, + "probability": 0.9816 + }, + { + "start": 3208.94, + "end": 3212.08, + "probability": 0.9881 + }, + { + "start": 3212.6, + "end": 3215.76, + "probability": 0.8574 + }, + { + "start": 3216.26, + "end": 3220.6, + "probability": 0.9962 + }, + { + "start": 3220.84, + "end": 3226.78, + "probability": 0.9951 + }, + { + "start": 3227.76, + "end": 3232.24, + "probability": 0.9947 + }, + { + "start": 3233.16, + "end": 3236.32, + "probability": 0.9972 + }, + { + "start": 3236.6, + "end": 3238.28, + "probability": 0.9882 + }, + { + "start": 3239.76, + "end": 3245.66, + "probability": 0.9976 + }, + { + "start": 3245.76, + "end": 3247.06, + "probability": 0.8609 + }, + { + "start": 3247.74, + "end": 3248.42, + "probability": 0.6988 + }, + { + "start": 3248.94, + "end": 3251.5, + "probability": 0.8969 + }, + { + "start": 3251.82, + "end": 3253.5, + "probability": 0.8506 + }, + { + "start": 3253.68, + "end": 3255.66, + "probability": 0.9897 + }, + { + "start": 3255.94, + "end": 3256.86, + "probability": 0.7541 + }, + { + "start": 3256.9, + "end": 3258.88, + "probability": 0.8046 + }, + { + "start": 3259.36, + "end": 3261.36, + "probability": 0.9816 + }, + { + "start": 3261.68, + "end": 3266.56, + "probability": 0.9972 + }, + { + "start": 3266.56, + "end": 3269.4, + "probability": 0.999 + }, + { + "start": 3271.08, + "end": 3275.66, + "probability": 0.9886 + }, + { + "start": 3276.6, + "end": 3280.32, + "probability": 0.9619 + }, + { + "start": 3280.86, + "end": 3284.84, + "probability": 0.949 + }, + { + "start": 3285.32, + "end": 3288.8, + "probability": 0.9516 + }, + { + "start": 3288.8, + "end": 3291.86, + "probability": 0.9071 + }, + { + "start": 3293.18, + "end": 3293.58, + "probability": 0.6929 + }, + { + "start": 3293.62, + "end": 3294.08, + "probability": 0.9582 + }, + { + "start": 3294.18, + "end": 3296.68, + "probability": 0.9771 + }, + { + "start": 3297.16, + "end": 3299.68, + "probability": 0.9951 + }, + { + "start": 3300.2, + "end": 3306.3, + "probability": 0.9143 + }, + { + "start": 3308.74, + "end": 3309.4, + "probability": 0.5905 + }, + { + "start": 3309.74, + "end": 3313.68, + "probability": 0.9701 + }, + { + "start": 3313.68, + "end": 3316.3, + "probability": 0.9792 + }, + { + "start": 3316.48, + "end": 3320.24, + "probability": 0.9956 + }, + { + "start": 3320.98, + "end": 3322.58, + "probability": 0.871 + }, + { + "start": 3322.8, + "end": 3325.14, + "probability": 0.9966 + }, + { + "start": 3325.74, + "end": 3328.24, + "probability": 0.9904 + }, + { + "start": 3328.36, + "end": 3331.56, + "probability": 0.9248 + }, + { + "start": 3331.66, + "end": 3332.78, + "probability": 0.92 + }, + { + "start": 3334.12, + "end": 3336.02, + "probability": 0.9605 + }, + { + "start": 3336.18, + "end": 3341.64, + "probability": 0.9734 + }, + { + "start": 3342.18, + "end": 3344.58, + "probability": 0.9828 + }, + { + "start": 3344.58, + "end": 3346.78, + "probability": 0.9899 + }, + { + "start": 3346.88, + "end": 3349.2, + "probability": 0.8676 + }, + { + "start": 3351.08, + "end": 3352.62, + "probability": 0.925 + }, + { + "start": 3352.72, + "end": 3353.02, + "probability": 0.9075 + }, + { + "start": 3353.22, + "end": 3357.74, + "probability": 0.7722 + }, + { + "start": 3359.16, + "end": 3359.68, + "probability": 0.8715 + }, + { + "start": 3359.88, + "end": 3364.06, + "probability": 0.9985 + }, + { + "start": 3364.06, + "end": 3367.58, + "probability": 0.999 + }, + { + "start": 3368.08, + "end": 3369.96, + "probability": 0.999 + }, + { + "start": 3370.16, + "end": 3374.34, + "probability": 0.998 + }, + { + "start": 3375.04, + "end": 3377.95, + "probability": 0.9941 + }, + { + "start": 3378.06, + "end": 3386.08, + "probability": 0.9899 + }, + { + "start": 3387.2, + "end": 3389.34, + "probability": 0.8322 + }, + { + "start": 3389.62, + "end": 3393.88, + "probability": 0.9568 + }, + { + "start": 3393.88, + "end": 3397.98, + "probability": 0.991 + }, + { + "start": 3398.66, + "end": 3402.44, + "probability": 0.9959 + }, + { + "start": 3403.04, + "end": 3405.54, + "probability": 0.9758 + }, + { + "start": 3406.78, + "end": 3410.56, + "probability": 0.9148 + }, + { + "start": 3410.68, + "end": 3414.48, + "probability": 0.7726 + }, + { + "start": 3415.22, + "end": 3417.62, + "probability": 0.982 + }, + { + "start": 3417.62, + "end": 3420.28, + "probability": 0.9424 + }, + { + "start": 3420.38, + "end": 3421.82, + "probability": 0.9272 + }, + { + "start": 3422.26, + "end": 3424.62, + "probability": 0.9879 + }, + { + "start": 3424.62, + "end": 3427.5, + "probability": 0.998 + }, + { + "start": 3428.18, + "end": 3428.6, + "probability": 0.4387 + }, + { + "start": 3428.7, + "end": 3431.46, + "probability": 0.9918 + }, + { + "start": 3431.46, + "end": 3435.08, + "probability": 0.9988 + }, + { + "start": 3435.66, + "end": 3438.0, + "probability": 0.9574 + }, + { + "start": 3438.18, + "end": 3440.32, + "probability": 0.9974 + }, + { + "start": 3440.44, + "end": 3442.86, + "probability": 0.9903 + }, + { + "start": 3442.86, + "end": 3450.56, + "probability": 0.9837 + }, + { + "start": 3451.4, + "end": 3451.86, + "probability": 0.7087 + }, + { + "start": 3453.14, + "end": 3458.02, + "probability": 0.9968 + }, + { + "start": 3458.24, + "end": 3459.14, + "probability": 0.9453 + }, + { + "start": 3459.48, + "end": 3461.96, + "probability": 0.9727 + }, + { + "start": 3462.88, + "end": 3466.1, + "probability": 0.9786 + }, + { + "start": 3466.42, + "end": 3468.84, + "probability": 0.9834 + }, + { + "start": 3468.84, + "end": 3471.78, + "probability": 0.9963 + }, + { + "start": 3472.18, + "end": 3473.56, + "probability": 0.9894 + }, + { + "start": 3474.2, + "end": 3478.16, + "probability": 0.9771 + }, + { + "start": 3478.28, + "end": 3482.92, + "probability": 0.8729 + }, + { + "start": 3483.04, + "end": 3488.3, + "probability": 0.9871 + }, + { + "start": 3488.3, + "end": 3492.2, + "probability": 0.9913 + }, + { + "start": 3492.92, + "end": 3493.48, + "probability": 0.4249 + }, + { + "start": 3493.66, + "end": 3496.12, + "probability": 0.9904 + }, + { + "start": 3496.38, + "end": 3500.14, + "probability": 0.8875 + }, + { + "start": 3500.45, + "end": 3500.82, + "probability": 0.4862 + }, + { + "start": 3500.92, + "end": 3501.2, + "probability": 0.8075 + }, + { + "start": 3501.7, + "end": 3502.44, + "probability": 0.9441 + }, + { + "start": 3502.54, + "end": 3502.84, + "probability": 0.4237 + }, + { + "start": 3502.9, + "end": 3506.68, + "probability": 0.8433 + }, + { + "start": 3506.68, + "end": 3507.1, + "probability": 0.4982 + }, + { + "start": 3508.64, + "end": 3510.47, + "probability": 0.9859 + }, + { + "start": 3510.74, + "end": 3515.28, + "probability": 0.9982 + }, + { + "start": 3515.48, + "end": 3517.28, + "probability": 0.985 + }, + { + "start": 3518.06, + "end": 3520.62, + "probability": 0.9854 + }, + { + "start": 3520.62, + "end": 3524.02, + "probability": 0.979 + }, + { + "start": 3524.32, + "end": 3525.86, + "probability": 0.9475 + }, + { + "start": 3525.92, + "end": 3527.78, + "probability": 0.8376 + }, + { + "start": 3527.84, + "end": 3529.68, + "probability": 0.8024 + }, + { + "start": 3530.04, + "end": 3532.2, + "probability": 0.9624 + }, + { + "start": 3532.2, + "end": 3535.46, + "probability": 0.968 + }, + { + "start": 3535.7, + "end": 3538.26, + "probability": 0.932 + }, + { + "start": 3539.14, + "end": 3542.02, + "probability": 0.9949 + }, + { + "start": 3542.08, + "end": 3546.18, + "probability": 0.9498 + }, + { + "start": 3546.6, + "end": 3548.28, + "probability": 0.9021 + }, + { + "start": 3549.68, + "end": 3552.9, + "probability": 0.9909 + }, + { + "start": 3552.9, + "end": 3556.88, + "probability": 0.9992 + }, + { + "start": 3556.88, + "end": 3560.4, + "probability": 0.9991 + }, + { + "start": 3561.12, + "end": 3564.6, + "probability": 0.9991 + }, + { + "start": 3564.76, + "end": 3570.4, + "probability": 0.9933 + }, + { + "start": 3570.56, + "end": 3574.0, + "probability": 0.9722 + }, + { + "start": 3574.2, + "end": 3574.32, + "probability": 0.4276 + }, + { + "start": 3574.44, + "end": 3577.16, + "probability": 0.9425 + }, + { + "start": 3578.02, + "end": 3580.48, + "probability": 0.8943 + }, + { + "start": 3580.6, + "end": 3583.32, + "probability": 0.9845 + }, + { + "start": 3583.82, + "end": 3586.78, + "probability": 0.9131 + }, + { + "start": 3587.36, + "end": 3590.62, + "probability": 0.9827 + }, + { + "start": 3590.76, + "end": 3593.85, + "probability": 0.9819 + }, + { + "start": 3594.02, + "end": 3596.86, + "probability": 0.9976 + }, + { + "start": 3597.3, + "end": 3599.04, + "probability": 0.4988 + }, + { + "start": 3599.14, + "end": 3601.14, + "probability": 0.9228 + }, + { + "start": 3602.32, + "end": 3605.48, + "probability": 0.9357 + }, + { + "start": 3606.1, + "end": 3609.86, + "probability": 0.9762 + }, + { + "start": 3610.34, + "end": 3613.64, + "probability": 0.9872 + }, + { + "start": 3614.34, + "end": 3617.54, + "probability": 0.9874 + }, + { + "start": 3617.62, + "end": 3619.08, + "probability": 0.9937 + }, + { + "start": 3621.02, + "end": 3623.14, + "probability": 0.2361 + }, + { + "start": 3623.16, + "end": 3626.56, + "probability": 0.9907 + }, + { + "start": 3626.9, + "end": 3628.4, + "probability": 0.9759 + }, + { + "start": 3628.5, + "end": 3629.76, + "probability": 0.966 + }, + { + "start": 3630.26, + "end": 3633.02, + "probability": 0.9785 + }, + { + "start": 3634.36, + "end": 3635.1, + "probability": 0.8136 + }, + { + "start": 3635.28, + "end": 3636.14, + "probability": 0.6691 + }, + { + "start": 3636.2, + "end": 3636.54, + "probability": 0.3637 + }, + { + "start": 3636.8, + "end": 3641.56, + "probability": 0.965 + }, + { + "start": 3641.86, + "end": 3642.22, + "probability": 0.7706 + }, + { + "start": 3642.3, + "end": 3642.74, + "probability": 0.946 + }, + { + "start": 3642.94, + "end": 3644.34, + "probability": 0.8467 + }, + { + "start": 3644.44, + "end": 3647.22, + "probability": 0.9486 + }, + { + "start": 3648.44, + "end": 3652.46, + "probability": 0.9514 + }, + { + "start": 3653.08, + "end": 3661.6, + "probability": 0.9976 + }, + { + "start": 3661.7, + "end": 3665.8, + "probability": 0.973 + }, + { + "start": 3666.42, + "end": 3667.68, + "probability": 0.7685 + }, + { + "start": 3668.16, + "end": 3669.28, + "probability": 0.7462 + }, + { + "start": 3669.54, + "end": 3671.32, + "probability": 0.7406 + }, + { + "start": 3671.76, + "end": 3673.14, + "probability": 0.807 + }, + { + "start": 3673.3, + "end": 3674.72, + "probability": 0.918 + }, + { + "start": 3674.82, + "end": 3676.2, + "probability": 0.5777 + }, + { + "start": 3676.58, + "end": 3677.7, + "probability": 0.7886 + }, + { + "start": 3677.96, + "end": 3679.58, + "probability": 0.95 + }, + { + "start": 3679.72, + "end": 3683.0, + "probability": 0.6646 + }, + { + "start": 3683.54, + "end": 3685.12, + "probability": 0.9153 + }, + { + "start": 3685.2, + "end": 3685.58, + "probability": 0.7822 + }, + { + "start": 3685.62, + "end": 3686.64, + "probability": 0.9213 + }, + { + "start": 3686.94, + "end": 3688.24, + "probability": 0.8957 + }, + { + "start": 3688.28, + "end": 3689.3, + "probability": 0.748 + }, + { + "start": 3689.32, + "end": 3689.94, + "probability": 0.6809 + }, + { + "start": 3690.16, + "end": 3690.56, + "probability": 0.8079 + }, + { + "start": 3690.92, + "end": 3691.92, + "probability": 0.6912 + }, + { + "start": 3692.34, + "end": 3694.04, + "probability": 0.9858 + }, + { + "start": 3694.28, + "end": 3695.74, + "probability": 0.7174 + }, + { + "start": 3696.48, + "end": 3700.02, + "probability": 0.9794 + }, + { + "start": 3700.6, + "end": 3701.28, + "probability": 0.9067 + }, + { + "start": 3701.5, + "end": 3702.08, + "probability": 0.9427 + }, + { + "start": 3702.26, + "end": 3705.28, + "probability": 0.9373 + }, + { + "start": 3705.86, + "end": 3711.02, + "probability": 0.9934 + }, + { + "start": 3711.08, + "end": 3713.56, + "probability": 0.9868 + }, + { + "start": 3713.92, + "end": 3716.4, + "probability": 0.83 + }, + { + "start": 3716.48, + "end": 3716.92, + "probability": 0.8468 + }, + { + "start": 3717.08, + "end": 3717.26, + "probability": 0.9414 + }, + { + "start": 3717.72, + "end": 3720.26, + "probability": 0.8887 + }, + { + "start": 3720.4, + "end": 3720.92, + "probability": 0.4994 + }, + { + "start": 3721.0, + "end": 3722.24, + "probability": 0.9609 + }, + { + "start": 3723.7, + "end": 3724.9, + "probability": 0.835 + }, + { + "start": 3725.02, + "end": 3725.32, + "probability": 0.5719 + }, + { + "start": 3725.4, + "end": 3730.36, + "probability": 0.8247 + }, + { + "start": 3731.64, + "end": 3733.78, + "probability": 0.9756 + }, + { + "start": 3734.12, + "end": 3736.98, + "probability": 0.985 + }, + { + "start": 3736.98, + "end": 3740.56, + "probability": 0.9741 + }, + { + "start": 3740.78, + "end": 3741.08, + "probability": 0.6821 + }, + { + "start": 3743.4, + "end": 3745.92, + "probability": 0.7863 + }, + { + "start": 3757.26, + "end": 3758.52, + "probability": 0.3854 + }, + { + "start": 3762.42, + "end": 3763.0, + "probability": 0.5282 + }, + { + "start": 3763.04, + "end": 3763.98, + "probability": 0.6405 + }, + { + "start": 3764.16, + "end": 3766.06, + "probability": 0.8899 + }, + { + "start": 3766.16, + "end": 3766.94, + "probability": 0.9366 + }, + { + "start": 3767.02, + "end": 3768.26, + "probability": 0.804 + }, + { + "start": 3768.46, + "end": 3772.74, + "probability": 0.9916 + }, + { + "start": 3773.34, + "end": 3778.78, + "probability": 0.9928 + }, + { + "start": 3779.6, + "end": 3784.2, + "probability": 0.9718 + }, + { + "start": 3785.12, + "end": 3785.62, + "probability": 0.7271 + }, + { + "start": 3785.94, + "end": 3787.34, + "probability": 0.8913 + }, + { + "start": 3787.48, + "end": 3789.09, + "probability": 0.9857 + }, + { + "start": 3789.2, + "end": 3790.1, + "probability": 0.4817 + }, + { + "start": 3790.28, + "end": 3795.08, + "probability": 0.9609 + }, + { + "start": 3795.64, + "end": 3797.28, + "probability": 0.8989 + }, + { + "start": 3797.46, + "end": 3798.26, + "probability": 0.4973 + }, + { + "start": 3798.32, + "end": 3802.78, + "probability": 0.8029 + }, + { + "start": 3803.64, + "end": 3805.62, + "probability": 0.9795 + }, + { + "start": 3805.8, + "end": 3808.57, + "probability": 0.9053 + }, + { + "start": 3809.52, + "end": 3812.58, + "probability": 0.9974 + }, + { + "start": 3812.7, + "end": 3813.1, + "probability": 0.7632 + }, + { + "start": 3813.38, + "end": 3813.84, + "probability": 0.4838 + }, + { + "start": 3814.04, + "end": 3815.84, + "probability": 0.5769 + }, + { + "start": 3821.76, + "end": 3824.36, + "probability": 0.626 + }, + { + "start": 3825.12, + "end": 3825.9, + "probability": 0.8034 + }, + { + "start": 3826.5, + "end": 3829.26, + "probability": 0.9707 + }, + { + "start": 3830.76, + "end": 3832.28, + "probability": 0.9927 + }, + { + "start": 3832.42, + "end": 3835.08, + "probability": 0.9663 + }, + { + "start": 3836.62, + "end": 3840.74, + "probability": 0.9849 + }, + { + "start": 3841.48, + "end": 3847.72, + "probability": 0.9946 + }, + { + "start": 3847.72, + "end": 3857.54, + "probability": 0.9987 + }, + { + "start": 3858.46, + "end": 3863.08, + "probability": 0.9599 + }, + { + "start": 3863.44, + "end": 3864.54, + "probability": 0.7916 + }, + { + "start": 3864.92, + "end": 3867.4, + "probability": 0.8332 + }, + { + "start": 3867.62, + "end": 3870.16, + "probability": 0.8044 + }, + { + "start": 3870.76, + "end": 3876.42, + "probability": 0.9572 + }, + { + "start": 3877.0, + "end": 3881.84, + "probability": 0.9875 + }, + { + "start": 3882.04, + "end": 3884.42, + "probability": 0.9938 + }, + { + "start": 3884.62, + "end": 3889.44, + "probability": 0.8709 + }, + { + "start": 3890.38, + "end": 3891.32, + "probability": 0.832 + }, + { + "start": 3891.66, + "end": 3893.24, + "probability": 0.9478 + }, + { + "start": 3893.82, + "end": 3898.48, + "probability": 0.9355 + }, + { + "start": 3898.96, + "end": 3902.06, + "probability": 0.8188 + }, + { + "start": 3902.14, + "end": 3907.5, + "probability": 0.9958 + }, + { + "start": 3907.58, + "end": 3908.34, + "probability": 0.8437 + }, + { + "start": 3908.58, + "end": 3913.2, + "probability": 0.984 + }, + { + "start": 3913.38, + "end": 3913.58, + "probability": 0.7804 + }, + { + "start": 3913.92, + "end": 3914.98, + "probability": 0.7327 + }, + { + "start": 3915.56, + "end": 3915.68, + "probability": 0.0738 + }, + { + "start": 3915.68, + "end": 3916.22, + "probability": 0.3219 + }, + { + "start": 3917.48, + "end": 3919.92, + "probability": 0.6807 + }, + { + "start": 3922.44, + "end": 3925.02, + "probability": 0.7408 + }, + { + "start": 3925.06, + "end": 3925.52, + "probability": 0.7728 + }, + { + "start": 3927.1, + "end": 3928.14, + "probability": 0.0756 + }, + { + "start": 3928.7, + "end": 3929.38, + "probability": 0.3719 + }, + { + "start": 3930.94, + "end": 3931.62, + "probability": 0.5988 + }, + { + "start": 3932.06, + "end": 3934.06, + "probability": 0.1675 + }, + { + "start": 3941.44, + "end": 3942.56, + "probability": 0.0427 + }, + { + "start": 3945.64, + "end": 3946.32, + "probability": 0.3115 + }, + { + "start": 3946.32, + "end": 3946.32, + "probability": 0.4493 + }, + { + "start": 3946.32, + "end": 3946.32, + "probability": 0.4518 + }, + { + "start": 3946.32, + "end": 3946.34, + "probability": 0.4482 + }, + { + "start": 3946.34, + "end": 3947.4, + "probability": 0.4279 + }, + { + "start": 3947.4, + "end": 3947.4, + "probability": 0.4696 + }, + { + "start": 3947.4, + "end": 3947.4, + "probability": 0.4193 + }, + { + "start": 3947.4, + "end": 3948.06, + "probability": 0.1326 + }, + { + "start": 3948.34, + "end": 3948.72, + "probability": 0.0157 + }, + { + "start": 3950.28, + "end": 3951.16, + "probability": 0.0623 + }, + { + "start": 3954.11, + "end": 3956.22, + "probability": 0.3273 + }, + { + "start": 3956.38, + "end": 3957.48, + "probability": 0.054 + }, + { + "start": 3957.48, + "end": 3958.93, + "probability": 0.3309 + }, + { + "start": 3963.86, + "end": 3964.78, + "probability": 0.4481 + }, + { + "start": 3974.16, + "end": 3975.68, + "probability": 0.5717 + }, + { + "start": 3976.86, + "end": 3976.86, + "probability": 0.5443 + }, + { + "start": 3976.86, + "end": 3977.64, + "probability": 0.13 + }, + { + "start": 3977.76, + "end": 3979.09, + "probability": 0.4009 + }, + { + "start": 3979.42, + "end": 3981.26, + "probability": 0.5278 + }, + { + "start": 3981.54, + "end": 3981.74, + "probability": 0.6382 + }, + { + "start": 3983.38, + "end": 3991.58, + "probability": 0.9649 + }, + { + "start": 3992.68, + "end": 3993.38, + "probability": 0.9696 + }, + { + "start": 3994.02, + "end": 3996.66, + "probability": 0.9827 + }, + { + "start": 3997.06, + "end": 3998.56, + "probability": 0.9135 + }, + { + "start": 3999.16, + "end": 4005.7, + "probability": 0.9659 + }, + { + "start": 4006.77, + "end": 4008.82, + "probability": 0.282 + }, + { + "start": 4008.82, + "end": 4011.22, + "probability": 0.8523 + }, + { + "start": 4011.84, + "end": 4016.66, + "probability": 0.9896 + }, + { + "start": 4016.66, + "end": 4020.28, + "probability": 0.9816 + }, + { + "start": 4020.36, + "end": 4023.48, + "probability": 0.9665 + }, + { + "start": 4024.76, + "end": 4025.36, + "probability": 0.5851 + }, + { + "start": 4026.06, + "end": 4029.68, + "probability": 0.9885 + }, + { + "start": 4029.92, + "end": 4031.08, + "probability": 0.6926 + }, + { + "start": 4031.24, + "end": 4033.42, + "probability": 0.9857 + }, + { + "start": 4033.82, + "end": 4034.64, + "probability": 0.9822 + }, + { + "start": 4035.0, + "end": 4035.74, + "probability": 0.7399 + }, + { + "start": 4036.12, + "end": 4038.68, + "probability": 0.9932 + }, + { + "start": 4039.06, + "end": 4041.55, + "probability": 0.9956 + }, + { + "start": 4041.96, + "end": 4042.22, + "probability": 0.575 + }, + { + "start": 4042.26, + "end": 4047.4, + "probability": 0.9793 + }, + { + "start": 4047.4, + "end": 4050.44, + "probability": 0.9868 + }, + { + "start": 4050.8, + "end": 4051.42, + "probability": 0.7758 + }, + { + "start": 4052.22, + "end": 4053.36, + "probability": 0.8074 + }, + { + "start": 4053.74, + "end": 4055.12, + "probability": 0.9802 + }, + { + "start": 4055.2, + "end": 4056.84, + "probability": 0.9658 + }, + { + "start": 4057.83, + "end": 4061.4, + "probability": 0.7549 + }, + { + "start": 4061.5, + "end": 4063.98, + "probability": 0.9343 + }, + { + "start": 4064.54, + "end": 4067.44, + "probability": 0.9321 + }, + { + "start": 4068.56, + "end": 4070.94, + "probability": 0.7633 + }, + { + "start": 4071.68, + "end": 4074.6, + "probability": 0.876 + }, + { + "start": 4075.1, + "end": 4076.73, + "probability": 0.9644 + }, + { + "start": 4077.24, + "end": 4079.9, + "probability": 0.9951 + }, + { + "start": 4079.9, + "end": 4083.8, + "probability": 0.9912 + }, + { + "start": 4083.86, + "end": 4086.96, + "probability": 0.9479 + }, + { + "start": 4088.2, + "end": 4090.04, + "probability": 0.8625 + }, + { + "start": 4090.18, + "end": 4090.86, + "probability": 0.829 + }, + { + "start": 4091.16, + "end": 4095.5, + "probability": 0.993 + }, + { + "start": 4095.96, + "end": 4099.14, + "probability": 0.9615 + }, + { + "start": 4099.3, + "end": 4100.36, + "probability": 0.6457 + }, + { + "start": 4101.57, + "end": 4109.42, + "probability": 0.9629 + }, + { + "start": 4109.94, + "end": 4110.36, + "probability": 0.8893 + }, + { + "start": 4111.06, + "end": 4114.6, + "probability": 0.9901 + }, + { + "start": 4115.38, + "end": 4119.24, + "probability": 0.9949 + }, + { + "start": 4120.91, + "end": 4128.54, + "probability": 0.7967 + }, + { + "start": 4129.22, + "end": 4133.48, + "probability": 0.9866 + }, + { + "start": 4133.48, + "end": 4136.86, + "probability": 0.9938 + }, + { + "start": 4137.14, + "end": 4144.04, + "probability": 0.9939 + }, + { + "start": 4144.56, + "end": 4146.84, + "probability": 0.6059 + }, + { + "start": 4147.38, + "end": 4151.06, + "probability": 0.7319 + }, + { + "start": 4151.18, + "end": 4152.18, + "probability": 0.901 + }, + { + "start": 4152.54, + "end": 4154.02, + "probability": 0.9027 + }, + { + "start": 4154.58, + "end": 4158.62, + "probability": 0.7098 + }, + { + "start": 4158.72, + "end": 4159.98, + "probability": 0.7006 + }, + { + "start": 4160.62, + "end": 4162.34, + "probability": 0.9355 + }, + { + "start": 4162.84, + "end": 4168.1, + "probability": 0.9145 + }, + { + "start": 4168.28, + "end": 4170.08, + "probability": 0.96 + }, + { + "start": 4170.2, + "end": 4171.24, + "probability": 0.9834 + }, + { + "start": 4171.34, + "end": 4173.13, + "probability": 0.9829 + }, + { + "start": 4173.3, + "end": 4175.62, + "probability": 0.9988 + }, + { + "start": 4175.62, + "end": 4178.42, + "probability": 0.9813 + }, + { + "start": 4178.86, + "end": 4183.64, + "probability": 0.9906 + }, + { + "start": 4184.1, + "end": 4187.1, + "probability": 0.9823 + }, + { + "start": 4187.14, + "end": 4188.4, + "probability": 0.6714 + }, + { + "start": 4189.14, + "end": 4191.28, + "probability": 0.9928 + }, + { + "start": 4191.86, + "end": 4193.24, + "probability": 0.8245 + }, + { + "start": 4193.3, + "end": 4194.26, + "probability": 0.7358 + }, + { + "start": 4194.58, + "end": 4199.84, + "probability": 0.9668 + }, + { + "start": 4204.52, + "end": 4207.58, + "probability": 0.8317 + }, + { + "start": 4208.12, + "end": 4209.84, + "probability": 0.9103 + }, + { + "start": 4210.46, + "end": 4213.4, + "probability": 0.8317 + }, + { + "start": 4213.5, + "end": 4214.88, + "probability": 0.8962 + }, + { + "start": 4215.2, + "end": 4217.12, + "probability": 0.9498 + }, + { + "start": 4217.52, + "end": 4220.34, + "probability": 0.9948 + }, + { + "start": 4220.34, + "end": 4222.94, + "probability": 0.9965 + }, + { + "start": 4223.3, + "end": 4226.24, + "probability": 0.9863 + }, + { + "start": 4226.84, + "end": 4230.36, + "probability": 0.979 + }, + { + "start": 4231.15, + "end": 4232.64, + "probability": 0.8679 + }, + { + "start": 4233.24, + "end": 4237.34, + "probability": 0.9948 + }, + { + "start": 4238.46, + "end": 4243.92, + "probability": 0.9797 + }, + { + "start": 4244.44, + "end": 4246.92, + "probability": 0.8701 + }, + { + "start": 4248.06, + "end": 4251.09, + "probability": 0.9836 + }, + { + "start": 4251.54, + "end": 4253.64, + "probability": 0.9426 + }, + { + "start": 4253.72, + "end": 4261.18, + "probability": 0.8477 + }, + { + "start": 4261.56, + "end": 4263.58, + "probability": 0.9845 + }, + { + "start": 4263.66, + "end": 4264.22, + "probability": 0.9797 + }, + { + "start": 4264.34, + "end": 4265.34, + "probability": 0.9743 + }, + { + "start": 4266.02, + "end": 4267.5, + "probability": 0.6719 + }, + { + "start": 4268.04, + "end": 4271.0, + "probability": 0.9048 + }, + { + "start": 4271.34, + "end": 4276.32, + "probability": 0.9586 + }, + { + "start": 4276.84, + "end": 4283.34, + "probability": 0.7034 + }, + { + "start": 4283.52, + "end": 4285.12, + "probability": 0.8783 + }, + { + "start": 4285.52, + "end": 4286.38, + "probability": 0.7271 + }, + { + "start": 4286.42, + "end": 4287.44, + "probability": 0.6363 + }, + { + "start": 4287.48, + "end": 4290.4, + "probability": 0.9292 + }, + { + "start": 4290.78, + "end": 4291.92, + "probability": 0.5408 + }, + { + "start": 4292.44, + "end": 4294.3, + "probability": 0.7554 + }, + { + "start": 4294.56, + "end": 4297.66, + "probability": 0.7321 + }, + { + "start": 4297.72, + "end": 4299.02, + "probability": 0.8584 + }, + { + "start": 4299.44, + "end": 4306.22, + "probability": 0.8068 + }, + { + "start": 4307.18, + "end": 4309.82, + "probability": 0.8311 + }, + { + "start": 4309.9, + "end": 4312.74, + "probability": 0.9773 + }, + { + "start": 4312.86, + "end": 4313.6, + "probability": 0.9555 + }, + { + "start": 4313.74, + "end": 4314.48, + "probability": 0.7472 + }, + { + "start": 4315.0, + "end": 4317.05, + "probability": 0.9902 + }, + { + "start": 4318.46, + "end": 4320.24, + "probability": 0.9216 + }, + { + "start": 4320.34, + "end": 4324.64, + "probability": 0.9829 + }, + { + "start": 4325.06, + "end": 4326.54, + "probability": 0.8529 + }, + { + "start": 4326.64, + "end": 4327.42, + "probability": 0.7957 + }, + { + "start": 4327.5, + "end": 4328.84, + "probability": 0.9103 + }, + { + "start": 4329.18, + "end": 4332.82, + "probability": 0.9892 + }, + { + "start": 4332.82, + "end": 4336.74, + "probability": 0.9901 + }, + { + "start": 4337.22, + "end": 4337.32, + "probability": 0.3907 + }, + { + "start": 4337.5, + "end": 4342.3, + "probability": 0.9562 + }, + { + "start": 4343.18, + "end": 4346.9, + "probability": 0.7616 + }, + { + "start": 4347.06, + "end": 4353.4, + "probability": 0.9908 + }, + { + "start": 4353.4, + "end": 4357.06, + "probability": 0.9986 + }, + { + "start": 4357.06, + "end": 4362.38, + "probability": 0.9993 + }, + { + "start": 4362.5, + "end": 4363.54, + "probability": 0.7978 + }, + { + "start": 4363.64, + "end": 4364.86, + "probability": 0.7835 + }, + { + "start": 4365.32, + "end": 4369.2, + "probability": 0.9614 + }, + { + "start": 4369.5, + "end": 4372.78, + "probability": 0.9904 + }, + { + "start": 4373.12, + "end": 4373.8, + "probability": 0.9519 + }, + { + "start": 4373.84, + "end": 4379.62, + "probability": 0.9206 + }, + { + "start": 4380.32, + "end": 4382.88, + "probability": 0.8804 + }, + { + "start": 4383.72, + "end": 4388.22, + "probability": 0.7277 + }, + { + "start": 4389.5, + "end": 4389.72, + "probability": 0.3433 + }, + { + "start": 4390.42, + "end": 4394.12, + "probability": 0.9973 + }, + { + "start": 4394.26, + "end": 4397.48, + "probability": 0.9132 + }, + { + "start": 4398.3, + "end": 4402.94, + "probability": 0.998 + }, + { + "start": 4403.68, + "end": 4406.3, + "probability": 0.9226 + }, + { + "start": 4406.36, + "end": 4408.14, + "probability": 0.69 + }, + { + "start": 4408.26, + "end": 4411.58, + "probability": 0.984 + }, + { + "start": 4411.66, + "end": 4412.84, + "probability": 0.9335 + }, + { + "start": 4413.06, + "end": 4418.02, + "probability": 0.9757 + }, + { + "start": 4418.54, + "end": 4422.2, + "probability": 0.8468 + }, + { + "start": 4422.66, + "end": 4424.92, + "probability": 0.9961 + }, + { + "start": 4425.36, + "end": 4427.26, + "probability": 0.9144 + }, + { + "start": 4427.56, + "end": 4429.14, + "probability": 0.9657 + }, + { + "start": 4429.44, + "end": 4432.64, + "probability": 0.9648 + }, + { + "start": 4432.78, + "end": 4434.59, + "probability": 0.9932 + }, + { + "start": 4435.42, + "end": 4438.14, + "probability": 0.9977 + }, + { + "start": 4438.54, + "end": 4439.66, + "probability": 0.6126 + }, + { + "start": 4439.84, + "end": 4442.62, + "probability": 0.9743 + }, + { + "start": 4442.9, + "end": 4443.9, + "probability": 0.8834 + }, + { + "start": 4444.02, + "end": 4447.59, + "probability": 0.9603 + }, + { + "start": 4448.8, + "end": 4449.64, + "probability": 0.7575 + }, + { + "start": 4449.82, + "end": 4452.04, + "probability": 0.9243 + }, + { + "start": 4452.08, + "end": 4454.99, + "probability": 0.9866 + }, + { + "start": 4455.54, + "end": 4457.5, + "probability": 0.9971 + }, + { + "start": 4457.56, + "end": 4461.42, + "probability": 0.9928 + }, + { + "start": 4461.64, + "end": 4465.42, + "probability": 0.9744 + }, + { + "start": 4466.2, + "end": 4468.06, + "probability": 0.7423 + }, + { + "start": 4468.5, + "end": 4471.46, + "probability": 0.9634 + }, + { + "start": 4471.6, + "end": 4472.46, + "probability": 0.9938 + }, + { + "start": 4473.08, + "end": 4473.92, + "probability": 0.7208 + }, + { + "start": 4473.98, + "end": 4477.94, + "probability": 0.831 + }, + { + "start": 4477.98, + "end": 4482.42, + "probability": 0.9923 + }, + { + "start": 4482.5, + "end": 4483.64, + "probability": 0.771 + }, + { + "start": 4484.02, + "end": 4486.24, + "probability": 0.9674 + }, + { + "start": 4486.56, + "end": 4487.2, + "probability": 0.0856 + }, + { + "start": 4488.14, + "end": 4489.24, + "probability": 0.2291 + }, + { + "start": 4489.96, + "end": 4491.4, + "probability": 0.647 + }, + { + "start": 4491.46, + "end": 4492.0, + "probability": 0.8743 + }, + { + "start": 4492.04, + "end": 4494.04, + "probability": 0.9238 + }, + { + "start": 4494.08, + "end": 4497.04, + "probability": 0.889 + }, + { + "start": 4497.12, + "end": 4497.58, + "probability": 0.9917 + }, + { + "start": 4499.66, + "end": 4502.98, + "probability": 0.9956 + }, + { + "start": 4503.74, + "end": 4505.4, + "probability": 0.7604 + }, + { + "start": 4505.54, + "end": 4510.58, + "probability": 0.9695 + }, + { + "start": 4510.92, + "end": 4513.66, + "probability": 0.9834 + }, + { + "start": 4513.66, + "end": 4516.08, + "probability": 0.9968 + }, + { + "start": 4517.08, + "end": 4517.5, + "probability": 0.6006 + }, + { + "start": 4517.94, + "end": 4523.58, + "probability": 0.8246 + }, + { + "start": 4523.98, + "end": 4525.76, + "probability": 0.8787 + }, + { + "start": 4526.1, + "end": 4529.4, + "probability": 0.968 + }, + { + "start": 4529.72, + "end": 4533.84, + "probability": 0.9759 + }, + { + "start": 4535.15, + "end": 4537.4, + "probability": 0.7072 + }, + { + "start": 4537.72, + "end": 4541.12, + "probability": 0.7705 + }, + { + "start": 4541.82, + "end": 4543.58, + "probability": 0.9861 + }, + { + "start": 4543.84, + "end": 4544.42, + "probability": 0.9145 + }, + { + "start": 4544.52, + "end": 4544.86, + "probability": 0.5475 + }, + { + "start": 4545.12, + "end": 4545.88, + "probability": 0.8539 + }, + { + "start": 4546.04, + "end": 4549.24, + "probability": 0.8497 + }, + { + "start": 4549.32, + "end": 4549.72, + "probability": 0.5534 + }, + { + "start": 4550.5, + "end": 4552.24, + "probability": 0.9824 + }, + { + "start": 4552.32, + "end": 4552.48, + "probability": 0.2605 + }, + { + "start": 4552.56, + "end": 4555.1, + "probability": 0.9919 + }, + { + "start": 4555.1, + "end": 4558.09, + "probability": 0.9706 + }, + { + "start": 4558.84, + "end": 4560.14, + "probability": 0.8221 + }, + { + "start": 4560.38, + "end": 4561.2, + "probability": 0.8871 + }, + { + "start": 4561.48, + "end": 4562.55, + "probability": 0.9171 + }, + { + "start": 4563.04, + "end": 4566.24, + "probability": 0.7266 + }, + { + "start": 4567.56, + "end": 4570.68, + "probability": 0.9131 + }, + { + "start": 4571.12, + "end": 4573.5, + "probability": 0.7439 + }, + { + "start": 4573.94, + "end": 4576.52, + "probability": 0.9957 + }, + { + "start": 4576.52, + "end": 4580.92, + "probability": 0.9532 + }, + { + "start": 4581.34, + "end": 4582.52, + "probability": 0.9348 + }, + { + "start": 4583.06, + "end": 4584.24, + "probability": 0.376 + }, + { + "start": 4584.38, + "end": 4584.88, + "probability": 0.5759 + }, + { + "start": 4585.32, + "end": 4587.48, + "probability": 0.9558 + }, + { + "start": 4587.56, + "end": 4590.04, + "probability": 0.9731 + }, + { + "start": 4590.16, + "end": 4593.04, + "probability": 0.9695 + }, + { + "start": 4593.92, + "end": 4595.68, + "probability": 0.9565 + }, + { + "start": 4595.72, + "end": 4597.68, + "probability": 0.9526 + }, + { + "start": 4598.02, + "end": 4599.52, + "probability": 0.9917 + }, + { + "start": 4599.58, + "end": 4602.28, + "probability": 0.7571 + }, + { + "start": 4602.46, + "end": 4603.8, + "probability": 0.7908 + }, + { + "start": 4603.86, + "end": 4606.44, + "probability": 0.9618 + }, + { + "start": 4606.78, + "end": 4608.84, + "probability": 0.8715 + }, + { + "start": 4608.98, + "end": 4609.96, + "probability": 0.9303 + }, + { + "start": 4610.34, + "end": 4614.04, + "probability": 0.9575 + }, + { + "start": 4614.72, + "end": 4619.04, + "probability": 0.9542 + }, + { + "start": 4619.06, + "end": 4623.14, + "probability": 0.9814 + }, + { + "start": 4623.86, + "end": 4624.84, + "probability": 0.6562 + }, + { + "start": 4626.12, + "end": 4630.26, + "probability": 0.9391 + }, + { + "start": 4630.92, + "end": 4631.54, + "probability": 0.9222 + }, + { + "start": 4631.62, + "end": 4633.78, + "probability": 0.9864 + }, + { + "start": 4634.06, + "end": 4634.58, + "probability": 0.7227 + }, + { + "start": 4634.66, + "end": 4636.2, + "probability": 0.9902 + }, + { + "start": 4636.94, + "end": 4641.38, + "probability": 0.9712 + }, + { + "start": 4641.46, + "end": 4643.86, + "probability": 0.9531 + }, + { + "start": 4644.02, + "end": 4646.04, + "probability": 0.9754 + }, + { + "start": 4646.84, + "end": 4648.32, + "probability": 0.962 + }, + { + "start": 4648.52, + "end": 4649.24, + "probability": 0.8744 + }, + { + "start": 4649.24, + "end": 4650.92, + "probability": 0.9976 + }, + { + "start": 4651.5, + "end": 4654.76, + "probability": 0.9833 + }, + { + "start": 4655.14, + "end": 4656.42, + "probability": 0.9907 + }, + { + "start": 4656.64, + "end": 4657.48, + "probability": 0.9737 + }, + { + "start": 4657.6, + "end": 4660.18, + "probability": 0.7899 + }, + { + "start": 4660.18, + "end": 4664.08, + "probability": 0.8836 + }, + { + "start": 4664.36, + "end": 4666.3, + "probability": 0.9907 + }, + { + "start": 4666.54, + "end": 4668.8, + "probability": 0.9941 + }, + { + "start": 4669.22, + "end": 4670.6, + "probability": 0.9878 + }, + { + "start": 4670.92, + "end": 4671.8, + "probability": 0.9497 + }, + { + "start": 4672.0, + "end": 4672.96, + "probability": 0.8237 + }, + { + "start": 4673.32, + "end": 4677.86, + "probability": 0.9982 + }, + { + "start": 4678.5, + "end": 4681.76, + "probability": 0.9952 + }, + { + "start": 4681.76, + "end": 4684.92, + "probability": 0.9655 + }, + { + "start": 4685.28, + "end": 4687.84, + "probability": 0.9588 + }, + { + "start": 4687.84, + "end": 4690.14, + "probability": 0.9951 + }, + { + "start": 4690.6, + "end": 4691.36, + "probability": 0.8832 + }, + { + "start": 4692.16, + "end": 4693.4, + "probability": 0.7218 + }, + { + "start": 4693.48, + "end": 4697.9, + "probability": 0.9924 + }, + { + "start": 4698.36, + "end": 4701.12, + "probability": 0.8887 + }, + { + "start": 4701.8, + "end": 4704.9, + "probability": 0.9604 + }, + { + "start": 4704.92, + "end": 4707.02, + "probability": 0.9831 + }, + { + "start": 4707.4, + "end": 4707.8, + "probability": 0.7335 + }, + { + "start": 4708.02, + "end": 4708.4, + "probability": 0.6201 + }, + { + "start": 4709.88, + "end": 4712.26, + "probability": 0.8569 + }, + { + "start": 4712.36, + "end": 4714.02, + "probability": 0.771 + }, + { + "start": 4717.32, + "end": 4717.72, + "probability": 0.9681 + }, + { + "start": 4719.16, + "end": 4719.38, + "probability": 0.5301 + }, + { + "start": 4723.92, + "end": 4729.76, + "probability": 0.9023 + }, + { + "start": 4730.8, + "end": 4731.84, + "probability": 0.3323 + }, + { + "start": 4732.1, + "end": 4733.34, + "probability": 0.9813 + }, + { + "start": 4734.2, + "end": 4736.28, + "probability": 0.9003 + }, + { + "start": 4736.48, + "end": 4738.18, + "probability": 0.8369 + }, + { + "start": 4740.66, + "end": 4741.84, + "probability": 0.7715 + }, + { + "start": 4757.34, + "end": 4760.3, + "probability": 0.6357 + }, + { + "start": 4760.3, + "end": 4760.76, + "probability": 0.722 + }, + { + "start": 4760.88, + "end": 4761.26, + "probability": 0.073 + }, + { + "start": 4762.82, + "end": 4764.2, + "probability": 0.7649 + }, + { + "start": 4767.28, + "end": 4772.18, + "probability": 0.7549 + }, + { + "start": 4772.44, + "end": 4773.72, + "probability": 0.9883 + }, + { + "start": 4774.02, + "end": 4776.06, + "probability": 0.9408 + }, + { + "start": 4778.58, + "end": 4781.56, + "probability": 0.518 + }, + { + "start": 4790.06, + "end": 4790.98, + "probability": 0.5694 + }, + { + "start": 4791.12, + "end": 4794.46, + "probability": 0.991 + }, + { + "start": 4795.22, + "end": 4798.3, + "probability": 0.9801 + }, + { + "start": 4798.3, + "end": 4801.22, + "probability": 0.4851 + }, + { + "start": 4801.48, + "end": 4802.88, + "probability": 0.1274 + }, + { + "start": 4802.98, + "end": 4803.76, + "probability": 0.5848 + }, + { + "start": 4805.66, + "end": 4806.5, + "probability": 0.7621 + }, + { + "start": 4806.56, + "end": 4808.38, + "probability": 0.9902 + }, + { + "start": 4808.38, + "end": 4810.5, + "probability": 0.802 + }, + { + "start": 4810.62, + "end": 4812.36, + "probability": 0.37 + }, + { + "start": 4813.12, + "end": 4820.16, + "probability": 0.9971 + }, + { + "start": 4820.16, + "end": 4824.48, + "probability": 0.9691 + }, + { + "start": 4825.12, + "end": 4826.06, + "probability": 0.6821 + }, + { + "start": 4826.2, + "end": 4827.22, + "probability": 0.8123 + }, + { + "start": 4827.26, + "end": 4828.66, + "probability": 0.9721 + }, + { + "start": 4829.8, + "end": 4832.44, + "probability": 0.6874 + }, + { + "start": 4833.3, + "end": 4836.7, + "probability": 0.9742 + }, + { + "start": 4837.16, + "end": 4839.72, + "probability": 0.7893 + }, + { + "start": 4840.99, + "end": 4841.4, + "probability": 0.9463 + }, + { + "start": 4843.84, + "end": 4844.76, + "probability": 0.5602 + }, + { + "start": 4846.92, + "end": 4847.02, + "probability": 0.4728 + }, + { + "start": 4847.19, + "end": 4847.62, + "probability": 0.5665 + }, + { + "start": 4848.58, + "end": 4849.28, + "probability": 0.9403 + }, + { + "start": 4849.86, + "end": 4850.64, + "probability": 0.9574 + }, + { + "start": 4850.74, + "end": 4853.58, + "probability": 0.9902 + }, + { + "start": 4853.58, + "end": 4857.9, + "probability": 0.7302 + }, + { + "start": 4857.92, + "end": 4861.98, + "probability": 0.9662 + }, + { + "start": 4862.68, + "end": 4865.94, + "probability": 0.9845 + }, + { + "start": 4865.94, + "end": 4870.8, + "probability": 0.9958 + }, + { + "start": 4872.06, + "end": 4874.26, + "probability": 0.9103 + }, + { + "start": 4874.34, + "end": 4876.58, + "probability": 0.9945 + }, + { + "start": 4877.16, + "end": 4879.36, + "probability": 0.9877 + }, + { + "start": 4879.72, + "end": 4883.42, + "probability": 0.97 + }, + { + "start": 4883.58, + "end": 4884.7, + "probability": 0.8905 + }, + { + "start": 4885.28, + "end": 4888.9, + "probability": 0.9028 + }, + { + "start": 4888.9, + "end": 4891.82, + "probability": 0.988 + }, + { + "start": 4892.76, + "end": 4898.02, + "probability": 0.9191 + }, + { + "start": 4898.74, + "end": 4901.34, + "probability": 0.9705 + }, + { + "start": 4902.46, + "end": 4903.06, + "probability": 0.7422 + }, + { + "start": 4903.14, + "end": 4904.38, + "probability": 0.7836 + }, + { + "start": 4904.44, + "end": 4906.7, + "probability": 0.9865 + }, + { + "start": 4907.66, + "end": 4907.68, + "probability": 0.9487 + }, + { + "start": 4909.06, + "end": 4911.74, + "probability": 0.9817 + }, + { + "start": 4911.98, + "end": 4914.1, + "probability": 0.7903 + }, + { + "start": 4914.86, + "end": 4918.26, + "probability": 0.731 + }, + { + "start": 4918.38, + "end": 4918.94, + "probability": 0.7667 + }, + { + "start": 4918.96, + "end": 4921.94, + "probability": 0.9925 + }, + { + "start": 4922.18, + "end": 4924.98, + "probability": 0.9985 + }, + { + "start": 4925.62, + "end": 4928.26, + "probability": 0.9904 + }, + { + "start": 4928.26, + "end": 4931.12, + "probability": 0.997 + }, + { + "start": 4932.62, + "end": 4934.98, + "probability": 0.7473 + }, + { + "start": 4934.98, + "end": 4937.32, + "probability": 0.9832 + }, + { + "start": 4937.88, + "end": 4940.22, + "probability": 0.9966 + }, + { + "start": 4940.74, + "end": 4944.42, + "probability": 0.9946 + }, + { + "start": 4945.94, + "end": 4949.62, + "probability": 0.9963 + }, + { + "start": 4949.8, + "end": 4951.68, + "probability": 0.6659 + }, + { + "start": 4952.44, + "end": 4958.02, + "probability": 0.7615 + }, + { + "start": 4958.02, + "end": 4961.32, + "probability": 0.8269 + }, + { + "start": 4961.32, + "end": 4964.2, + "probability": 0.9917 + }, + { + "start": 4965.32, + "end": 4970.42, + "probability": 0.9479 + }, + { + "start": 4970.42, + "end": 4974.42, + "probability": 0.9961 + }, + { + "start": 4974.82, + "end": 4979.64, + "probability": 0.9587 + }, + { + "start": 4980.74, + "end": 4982.2, + "probability": 0.7789 + }, + { + "start": 4982.54, + "end": 4986.88, + "probability": 0.96 + }, + { + "start": 4987.4, + "end": 4988.66, + "probability": 0.8847 + }, + { + "start": 4989.2, + "end": 4989.64, + "probability": 0.7259 + }, + { + "start": 4989.98, + "end": 4991.19, + "probability": 0.6051 + }, + { + "start": 4991.24, + "end": 4991.9, + "probability": 0.747 + }, + { + "start": 4992.48, + "end": 4999.86, + "probability": 0.9264 + }, + { + "start": 5003.52, + "end": 5004.5, + "probability": 0.3829 + }, + { + "start": 5005.14, + "end": 5005.64, + "probability": 0.6402 + }, + { + "start": 5010.3, + "end": 5012.26, + "probability": 0.8925 + }, + { + "start": 5012.38, + "end": 5013.08, + "probability": 0.6913 + }, + { + "start": 5014.16, + "end": 5015.5, + "probability": 0.1468 + }, + { + "start": 5020.44, + "end": 5020.9, + "probability": 0.0854 + }, + { + "start": 5023.38, + "end": 5024.5, + "probability": 0.4571 + }, + { + "start": 5025.08, + "end": 5027.76, + "probability": 0.4833 + }, + { + "start": 5028.08, + "end": 5028.62, + "probability": 0.9366 + }, + { + "start": 5029.34, + "end": 5031.96, + "probability": 0.9907 + }, + { + "start": 5032.84, + "end": 5033.48, + "probability": 0.9129 + }, + { + "start": 5034.04, + "end": 5037.34, + "probability": 0.9456 + }, + { + "start": 5039.44, + "end": 5040.06, + "probability": 0.3737 + }, + { + "start": 5058.74, + "end": 5060.58, + "probability": 0.1467 + }, + { + "start": 5077.76, + "end": 5082.68, + "probability": 0.474 + }, + { + "start": 5094.54, + "end": 5095.7, + "probability": 0.0622 + }, + { + "start": 5097.2, + "end": 5100.64, + "probability": 0.016 + }, + { + "start": 5100.76, + "end": 5101.72, + "probability": 0.0383 + }, + { + "start": 5102.9, + "end": 5103.46, + "probability": 0.2184 + }, + { + "start": 5104.31, + "end": 5107.16, + "probability": 0.0502 + }, + { + "start": 5107.74, + "end": 5107.92, + "probability": 0.0317 + }, + { + "start": 5109.3, + "end": 5110.96, + "probability": 0.0127 + }, + { + "start": 5115.36, + "end": 5115.99, + "probability": 0.0785 + }, + { + "start": 5118.28, + "end": 5119.78, + "probability": 0.0135 + }, + { + "start": 5121.28, + "end": 5123.68, + "probability": 0.0918 + }, + { + "start": 5123.68, + "end": 5123.68, + "probability": 0.0352 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.0, + "end": 5124.0, + "probability": 0.0 + }, + { + "start": 5124.14, + "end": 5127.34, + "probability": 0.8606 + }, + { + "start": 5127.94, + "end": 5130.08, + "probability": 0.9229 + }, + { + "start": 5131.1, + "end": 5133.76, + "probability": 0.7013 + }, + { + "start": 5133.76, + "end": 5137.24, + "probability": 0.7325 + }, + { + "start": 5138.2, + "end": 5139.28, + "probability": 0.4542 + }, + { + "start": 5139.5, + "end": 5142.54, + "probability": 0.95 + }, + { + "start": 5142.58, + "end": 5145.36, + "probability": 0.7265 + }, + { + "start": 5161.08, + "end": 5161.36, + "probability": 0.2967 + }, + { + "start": 5161.36, + "end": 5163.2, + "probability": 0.7392 + }, + { + "start": 5164.66, + "end": 5167.56, + "probability": 0.9945 + }, + { + "start": 5167.56, + "end": 5171.38, + "probability": 0.8017 + }, + { + "start": 5172.36, + "end": 5174.52, + "probability": 0.5586 + }, + { + "start": 5175.12, + "end": 5175.32, + "probability": 0.0554 + }, + { + "start": 5176.08, + "end": 5180.0, + "probability": 0.129 + }, + { + "start": 5182.52, + "end": 5188.72, + "probability": 0.7132 + }, + { + "start": 5190.1, + "end": 5193.72, + "probability": 0.9967 + }, + { + "start": 5193.72, + "end": 5198.08, + "probability": 0.9884 + }, + { + "start": 5199.92, + "end": 5203.8, + "probability": 0.9943 + }, + { + "start": 5205.26, + "end": 5209.7, + "probability": 0.9991 + }, + { + "start": 5210.88, + "end": 5213.6, + "probability": 0.999 + }, + { + "start": 5215.08, + "end": 5219.22, + "probability": 0.9576 + }, + { + "start": 5221.42, + "end": 5224.8, + "probability": 0.9642 + }, + { + "start": 5226.78, + "end": 5229.98, + "probability": 0.9863 + }, + { + "start": 5230.9, + "end": 5231.98, + "probability": 0.9668 + }, + { + "start": 5233.34, + "end": 5237.08, + "probability": 0.9614 + }, + { + "start": 5238.2, + "end": 5238.8, + "probability": 0.9875 + }, + { + "start": 5240.1, + "end": 5240.42, + "probability": 0.4126 + }, + { + "start": 5240.48, + "end": 5245.34, + "probability": 0.9917 + }, + { + "start": 5246.06, + "end": 5250.26, + "probability": 0.9963 + }, + { + "start": 5253.08, + "end": 5258.38, + "probability": 0.9341 + }, + { + "start": 5259.3, + "end": 5264.06, + "probability": 0.9941 + }, + { + "start": 5266.7, + "end": 5267.92, + "probability": 0.6934 + }, + { + "start": 5268.34, + "end": 5271.2, + "probability": 0.9743 + }, + { + "start": 5271.54, + "end": 5273.28, + "probability": 0.9096 + }, + { + "start": 5275.24, + "end": 5278.2, + "probability": 0.9935 + }, + { + "start": 5278.2, + "end": 5281.0, + "probability": 0.9816 + }, + { + "start": 5281.98, + "end": 5286.34, + "probability": 0.9941 + }, + { + "start": 5287.04, + "end": 5292.2, + "probability": 0.9745 + }, + { + "start": 5294.18, + "end": 5294.78, + "probability": 0.748 + }, + { + "start": 5294.92, + "end": 5299.66, + "probability": 0.9894 + }, + { + "start": 5300.5, + "end": 5302.48, + "probability": 0.9282 + }, + { + "start": 5303.52, + "end": 5303.94, + "probability": 0.4912 + }, + { + "start": 5305.18, + "end": 5306.72, + "probability": 0.9974 + }, + { + "start": 5307.24, + "end": 5315.18, + "probability": 0.9872 + }, + { + "start": 5316.04, + "end": 5323.86, + "probability": 0.9884 + }, + { + "start": 5323.86, + "end": 5327.14, + "probability": 0.8966 + }, + { + "start": 5327.92, + "end": 5331.48, + "probability": 0.984 + }, + { + "start": 5332.34, + "end": 5333.8, + "probability": 0.9418 + }, + { + "start": 5334.4, + "end": 5338.84, + "probability": 0.9954 + }, + { + "start": 5339.72, + "end": 5343.2, + "probability": 0.9989 + }, + { + "start": 5343.96, + "end": 5347.0, + "probability": 0.7951 + }, + { + "start": 5349.04, + "end": 5352.56, + "probability": 0.9957 + }, + { + "start": 5354.74, + "end": 5356.44, + "probability": 0.7959 + }, + { + "start": 5356.44, + "end": 5359.74, + "probability": 0.9648 + }, + { + "start": 5360.6, + "end": 5363.36, + "probability": 0.9769 + }, + { + "start": 5364.02, + "end": 5366.5, + "probability": 0.9674 + }, + { + "start": 5368.16, + "end": 5368.58, + "probability": 0.2434 + }, + { + "start": 5368.7, + "end": 5371.76, + "probability": 0.9481 + }, + { + "start": 5372.88, + "end": 5376.3, + "probability": 0.9974 + }, + { + "start": 5377.08, + "end": 5382.84, + "probability": 0.9172 + }, + { + "start": 5382.84, + "end": 5386.18, + "probability": 0.9924 + }, + { + "start": 5386.92, + "end": 5390.04, + "probability": 0.9816 + }, + { + "start": 5391.7, + "end": 5394.3, + "probability": 0.5243 + }, + { + "start": 5395.7, + "end": 5401.5, + "probability": 0.1794 + }, + { + "start": 5401.5, + "end": 5401.52, + "probability": 0.0264 + }, + { + "start": 5401.52, + "end": 5401.52, + "probability": 0.2745 + }, + { + "start": 5401.52, + "end": 5401.52, + "probability": 0.5136 + }, + { + "start": 5401.52, + "end": 5403.76, + "probability": 0.2161 + }, + { + "start": 5404.72, + "end": 5405.77, + "probability": 0.8634 + }, + { + "start": 5407.76, + "end": 5410.64, + "probability": 0.5831 + }, + { + "start": 5411.16, + "end": 5411.16, + "probability": 0.0408 + }, + { + "start": 5411.16, + "end": 5412.16, + "probability": 0.5824 + }, + { + "start": 5412.2, + "end": 5413.0, + "probability": 0.7034 + }, + { + "start": 5413.62, + "end": 5414.18, + "probability": 0.8781 + }, + { + "start": 5420.46, + "end": 5420.46, + "probability": 0.0083 + }, + { + "start": 5437.74, + "end": 5438.4, + "probability": 0.0008 + }, + { + "start": 5446.98, + "end": 5449.74, + "probability": 0.3248 + }, + { + "start": 5450.56, + "end": 5453.6, + "probability": 0.9596 + }, + { + "start": 5454.22, + "end": 5458.92, + "probability": 0.6728 + }, + { + "start": 5459.76, + "end": 5462.28, + "probability": 0.0233 + }, + { + "start": 5462.28, + "end": 5462.28, + "probability": 0.0552 + }, + { + "start": 5462.28, + "end": 5462.82, + "probability": 0.1804 + }, + { + "start": 5464.88, + "end": 5465.02, + "probability": 0.2684 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5500.0, + "end": 5500.0, + "probability": 0.0 + }, + { + "start": 5501.35, + "end": 5504.8, + "probability": 0.6353 + }, + { + "start": 5506.42, + "end": 5509.56, + "probability": 0.8177 + }, + { + "start": 5510.5, + "end": 5515.62, + "probability": 0.8039 + }, + { + "start": 5516.46, + "end": 5522.14, + "probability": 0.929 + }, + { + "start": 5523.84, + "end": 5524.44, + "probability": 0.1048 + }, + { + "start": 5526.02, + "end": 5529.68, + "probability": 0.8169 + }, + { + "start": 5530.38, + "end": 5530.72, + "probability": 0.7564 + }, + { + "start": 5531.68, + "end": 5533.62, + "probability": 0.3073 + }, + { + "start": 5534.02, + "end": 5534.92, + "probability": 0.0152 + }, + { + "start": 5534.92, + "end": 5536.08, + "probability": 0.3656 + }, + { + "start": 5536.14, + "end": 5536.74, + "probability": 0.5121 + }, + { + "start": 5536.94, + "end": 5537.84, + "probability": 0.8546 + }, + { + "start": 5537.9, + "end": 5538.64, + "probability": 0.5907 + }, + { + "start": 5538.96, + "end": 5539.58, + "probability": 0.6646 + }, + { + "start": 5540.1, + "end": 5542.15, + "probability": 0.7833 + }, + { + "start": 5542.22, + "end": 5543.84, + "probability": 0.4109 + }, + { + "start": 5544.36, + "end": 5545.51, + "probability": 0.2297 + }, + { + "start": 5547.3, + "end": 5552.82, + "probability": 0.7419 + }, + { + "start": 5553.62, + "end": 5560.04, + "probability": 0.9701 + }, + { + "start": 5560.52, + "end": 5563.84, + "probability": 0.8483 + }, + { + "start": 5563.94, + "end": 5564.66, + "probability": 0.8017 + }, + { + "start": 5564.68, + "end": 5565.74, + "probability": 0.9349 + }, + { + "start": 5566.4, + "end": 5569.38, + "probability": 0.7716 + }, + { + "start": 5570.38, + "end": 5571.7, + "probability": 0.6588 + }, + { + "start": 5572.7, + "end": 5574.58, + "probability": 0.1673 + }, + { + "start": 5575.24, + "end": 5577.48, + "probability": 0.7113 + }, + { + "start": 5578.06, + "end": 5580.04, + "probability": 0.6256 + }, + { + "start": 5580.56, + "end": 5584.4, + "probability": 0.9453 + }, + { + "start": 5584.46, + "end": 5586.66, + "probability": 0.8745 + }, + { + "start": 5587.12, + "end": 5588.52, + "probability": 0.9658 + }, + { + "start": 5589.0, + "end": 5591.56, + "probability": 0.9776 + }, + { + "start": 5592.1, + "end": 5593.5, + "probability": 0.4939 + }, + { + "start": 5594.94, + "end": 5599.52, + "probability": 0.8938 + }, + { + "start": 5600.08, + "end": 5603.42, + "probability": 0.7939 + }, + { + "start": 5603.6, + "end": 5605.21, + "probability": 0.7493 + }, + { + "start": 5605.54, + "end": 5607.62, + "probability": 0.5492 + }, + { + "start": 5608.22, + "end": 5613.7, + "probability": 0.8763 + }, + { + "start": 5614.12, + "end": 5618.48, + "probability": 0.9865 + }, + { + "start": 5619.12, + "end": 5622.08, + "probability": 0.9683 + }, + { + "start": 5622.08, + "end": 5625.52, + "probability": 0.9854 + }, + { + "start": 5625.74, + "end": 5628.2, + "probability": 0.4001 + }, + { + "start": 5628.6, + "end": 5631.52, + "probability": 0.9557 + }, + { + "start": 5631.98, + "end": 5637.4, + "probability": 0.46 + }, + { + "start": 5637.76, + "end": 5640.96, + "probability": 0.9644 + }, + { + "start": 5641.32, + "end": 5642.12, + "probability": 0.7906 + }, + { + "start": 5643.48, + "end": 5644.32, + "probability": 0.9446 + }, + { + "start": 5645.76, + "end": 5648.2, + "probability": 0.8042 + }, + { + "start": 5648.42, + "end": 5650.46, + "probability": 0.5747 + }, + { + "start": 5650.48, + "end": 5652.72, + "probability": 0.621 + }, + { + "start": 5654.02, + "end": 5654.38, + "probability": 0.0019 + }, + { + "start": 5662.72, + "end": 5664.86, + "probability": 0.4321 + }, + { + "start": 5665.2, + "end": 5665.74, + "probability": 0.7418 + }, + { + "start": 5666.22, + "end": 5667.14, + "probability": 0.0393 + }, + { + "start": 5667.34, + "end": 5669.29, + "probability": 0.9456 + }, + { + "start": 5671.48, + "end": 5672.24, + "probability": 0.0283 + }, + { + "start": 5672.56, + "end": 5677.58, + "probability": 0.3382 + }, + { + "start": 5677.74, + "end": 5679.34, + "probability": 0.9002 + }, + { + "start": 5679.46, + "end": 5680.92, + "probability": 0.9867 + }, + { + "start": 5682.66, + "end": 5685.32, + "probability": 0.7201 + }, + { + "start": 5686.14, + "end": 5691.28, + "probability": 0.9745 + }, + { + "start": 5692.18, + "end": 5694.9, + "probability": 0.9766 + }, + { + "start": 5695.8, + "end": 5698.26, + "probability": 0.9915 + }, + { + "start": 5699.52, + "end": 5702.6, + "probability": 0.5631 + }, + { + "start": 5702.62, + "end": 5703.89, + "probability": 0.6201 + }, + { + "start": 5704.96, + "end": 5708.18, + "probability": 0.9773 + }, + { + "start": 5709.08, + "end": 5709.9, + "probability": 0.9773 + }, + { + "start": 5714.9, + "end": 5716.78, + "probability": 0.2442 + }, + { + "start": 5716.98, + "end": 5720.2, + "probability": 0.9827 + }, + { + "start": 5720.3, + "end": 5723.7, + "probability": 0.7069 + }, + { + "start": 5724.3, + "end": 5725.66, + "probability": 0.9957 + }, + { + "start": 5725.8, + "end": 5728.22, + "probability": 0.6183 + }, + { + "start": 5728.84, + "end": 5731.08, + "probability": 0.9854 + }, + { + "start": 5731.68, + "end": 5733.78, + "probability": 0.9539 + }, + { + "start": 5733.84, + "end": 5738.32, + "probability": 0.9812 + }, + { + "start": 5738.38, + "end": 5739.46, + "probability": 0.9985 + }, + { + "start": 5740.02, + "end": 5743.7, + "probability": 0.959 + }, + { + "start": 5745.34, + "end": 5745.42, + "probability": 0.5068 + }, + { + "start": 5745.5, + "end": 5746.16, + "probability": 0.781 + }, + { + "start": 5746.36, + "end": 5752.72, + "probability": 0.9722 + }, + { + "start": 5753.62, + "end": 5757.24, + "probability": 0.9521 + }, + { + "start": 5758.06, + "end": 5763.3, + "probability": 0.8314 + }, + { + "start": 5763.56, + "end": 5764.74, + "probability": 0.5162 + }, + { + "start": 5764.9, + "end": 5765.26, + "probability": 0.7442 + }, + { + "start": 5765.48, + "end": 5766.76, + "probability": 0.4052 + }, + { + "start": 5767.79, + "end": 5769.22, + "probability": 0.5608 + }, + { + "start": 5770.3, + "end": 5775.26, + "probability": 0.7285 + }, + { + "start": 5775.57, + "end": 5776.99, + "probability": 0.5897 + }, + { + "start": 5777.7, + "end": 5780.5, + "probability": 0.7829 + }, + { + "start": 5781.58, + "end": 5782.02, + "probability": 0.8555 + }, + { + "start": 5782.66, + "end": 5783.68, + "probability": 0.8454 + }, + { + "start": 5783.8, + "end": 5785.8, + "probability": 0.9491 + }, + { + "start": 5785.94, + "end": 5790.88, + "probability": 0.6643 + }, + { + "start": 5792.02, + "end": 5796.38, + "probability": 0.8817 + }, + { + "start": 5798.18, + "end": 5806.0, + "probability": 0.9715 + }, + { + "start": 5806.2, + "end": 5809.52, + "probability": 0.9616 + }, + { + "start": 5809.66, + "end": 5810.2, + "probability": 0.7494 + }, + { + "start": 5810.38, + "end": 5819.8, + "probability": 0.9886 + }, + { + "start": 5820.66, + "end": 5824.8, + "probability": 0.981 + }, + { + "start": 5825.94, + "end": 5827.58, + "probability": 0.1995 + }, + { + "start": 5828.62, + "end": 5830.66, + "probability": 0.9525 + }, + { + "start": 5830.9, + "end": 5831.5, + "probability": 0.8076 + }, + { + "start": 5831.58, + "end": 5832.54, + "probability": 0.6109 + }, + { + "start": 5833.1, + "end": 5834.32, + "probability": 0.7516 + }, + { + "start": 5835.02, + "end": 5837.3, + "probability": 0.994 + }, + { + "start": 5838.4, + "end": 5844.96, + "probability": 0.7466 + }, + { + "start": 5845.98, + "end": 5848.42, + "probability": 0.7203 + }, + { + "start": 5849.5, + "end": 5850.82, + "probability": 0.9143 + }, + { + "start": 5850.94, + "end": 5851.16, + "probability": 0.9632 + }, + { + "start": 5851.24, + "end": 5853.9, + "probability": 0.9033 + }, + { + "start": 5854.02, + "end": 5858.24, + "probability": 0.7488 + }, + { + "start": 5859.22, + "end": 5863.04, + "probability": 0.8294 + }, + { + "start": 5863.4, + "end": 5864.48, + "probability": 0.8208 + }, + { + "start": 5865.16, + "end": 5869.02, + "probability": 0.6469 + }, + { + "start": 5869.16, + "end": 5872.68, + "probability": 0.9517 + }, + { + "start": 5873.48, + "end": 5874.26, + "probability": 0.26 + }, + { + "start": 5874.66, + "end": 5877.78, + "probability": 0.8302 + }, + { + "start": 5877.96, + "end": 5878.64, + "probability": 0.9395 + }, + { + "start": 5879.68, + "end": 5880.94, + "probability": 0.8936 + }, + { + "start": 5882.58, + "end": 5885.4, + "probability": 0.7779 + }, + { + "start": 5886.1, + "end": 5890.32, + "probability": 0.9559 + }, + { + "start": 5891.12, + "end": 5891.46, + "probability": 0.4882 + }, + { + "start": 5892.18, + "end": 5895.96, + "probability": 0.957 + }, + { + "start": 5896.08, + "end": 5897.14, + "probability": 0.2886 + }, + { + "start": 5897.26, + "end": 5897.7, + "probability": 0.3229 + }, + { + "start": 5897.94, + "end": 5901.08, + "probability": 0.8323 + }, + { + "start": 5901.84, + "end": 5905.0, + "probability": 0.8325 + }, + { + "start": 5905.56, + "end": 5908.82, + "probability": 0.9554 + }, + { + "start": 5908.88, + "end": 5912.08, + "probability": 0.9186 + }, + { + "start": 5912.68, + "end": 5916.59, + "probability": 0.8783 + }, + { + "start": 5917.26, + "end": 5918.6, + "probability": 0.4522 + }, + { + "start": 5919.44, + "end": 5919.44, + "probability": 0.2543 + }, + { + "start": 5919.44, + "end": 5919.74, + "probability": 0.7064 + }, + { + "start": 5932.36, + "end": 5933.32, + "probability": 0.7671 + }, + { + "start": 5934.24, + "end": 5935.5, + "probability": 0.8869 + }, + { + "start": 5936.22, + "end": 5937.58, + "probability": 0.8778 + }, + { + "start": 5938.5, + "end": 5947.68, + "probability": 0.9817 + }, + { + "start": 5947.82, + "end": 5948.66, + "probability": 0.5664 + }, + { + "start": 5950.0, + "end": 5951.74, + "probability": 0.9689 + }, + { + "start": 5952.36, + "end": 5955.18, + "probability": 0.873 + }, + { + "start": 5955.7, + "end": 5956.9, + "probability": 0.9719 + }, + { + "start": 5957.88, + "end": 5961.96, + "probability": 0.9555 + }, + { + "start": 5962.78, + "end": 5966.8, + "probability": 0.9263 + }, + { + "start": 5967.6, + "end": 5975.18, + "probability": 0.9629 + }, + { + "start": 5975.18, + "end": 5980.12, + "probability": 0.9319 + }, + { + "start": 5981.36, + "end": 5981.8, + "probability": 0.5217 + }, + { + "start": 5981.88, + "end": 5986.82, + "probability": 0.9401 + }, + { + "start": 5987.48, + "end": 5991.78, + "probability": 0.6844 + }, + { + "start": 5991.78, + "end": 5997.22, + "probability": 0.979 + }, + { + "start": 5997.22, + "end": 6005.4, + "probability": 0.7588 + }, + { + "start": 6006.08, + "end": 6007.82, + "probability": 0.6349 + }, + { + "start": 6008.34, + "end": 6012.4, + "probability": 0.6943 + }, + { + "start": 6012.5, + "end": 6013.76, + "probability": 0.813 + }, + { + "start": 6014.26, + "end": 6016.92, + "probability": 0.8386 + }, + { + "start": 6017.68, + "end": 6021.56, + "probability": 0.8837 + }, + { + "start": 6023.42, + "end": 6026.64, + "probability": 0.7474 + }, + { + "start": 6026.8, + "end": 6031.72, + "probability": 0.9036 + }, + { + "start": 6032.5, + "end": 6034.12, + "probability": 0.9844 + }, + { + "start": 6034.2, + "end": 6036.4, + "probability": 0.9791 + }, + { + "start": 6037.02, + "end": 6037.56, + "probability": 0.9072 + }, + { + "start": 6038.14, + "end": 6041.14, + "probability": 0.6863 + }, + { + "start": 6041.86, + "end": 6044.28, + "probability": 0.9568 + }, + { + "start": 6044.54, + "end": 6046.12, + "probability": 0.5992 + }, + { + "start": 6046.64, + "end": 6056.0, + "probability": 0.9666 + }, + { + "start": 6057.72, + "end": 6060.66, + "probability": 0.8647 + }, + { + "start": 6061.18, + "end": 6068.68, + "probability": 0.9863 + }, + { + "start": 6068.82, + "end": 6069.44, + "probability": 0.7258 + }, + { + "start": 6069.88, + "end": 6071.98, + "probability": 0.3967 + }, + { + "start": 6072.46, + "end": 6074.52, + "probability": 0.6494 + }, + { + "start": 6074.92, + "end": 6076.94, + "probability": 0.992 + }, + { + "start": 6078.02, + "end": 6080.12, + "probability": 0.9843 + }, + { + "start": 6081.08, + "end": 6083.94, + "probability": 0.9434 + }, + { + "start": 6084.72, + "end": 6086.94, + "probability": 0.9181 + }, + { + "start": 6087.66, + "end": 6089.3, + "probability": 0.1297 + }, + { + "start": 6089.3, + "end": 6091.24, + "probability": 0.8193 + }, + { + "start": 6091.48, + "end": 6095.62, + "probability": 0.9404 + }, + { + "start": 6096.3, + "end": 6097.92, + "probability": 0.4481 + }, + { + "start": 6098.54, + "end": 6099.8, + "probability": 0.5934 + }, + { + "start": 6101.28, + "end": 6102.28, + "probability": 0.1772 + }, + { + "start": 6103.12, + "end": 6106.0, + "probability": 0.5507 + }, + { + "start": 6106.18, + "end": 6106.66, + "probability": 0.6173 + }, + { + "start": 6107.16, + "end": 6108.3, + "probability": 0.1945 + }, + { + "start": 6110.12, + "end": 6115.52, + "probability": 0.9803 + }, + { + "start": 6116.18, + "end": 6117.7, + "probability": 0.9246 + }, + { + "start": 6118.22, + "end": 6119.72, + "probability": 0.8829 + }, + { + "start": 6120.36, + "end": 6120.68, + "probability": 0.0171 + }, + { + "start": 6121.8, + "end": 6122.86, + "probability": 0.7967 + }, + { + "start": 6124.06, + "end": 6126.6, + "probability": 0.8759 + }, + { + "start": 6129.04, + "end": 6130.1, + "probability": 0.1432 + }, + { + "start": 6132.24, + "end": 6133.12, + "probability": 0.0262 + }, + { + "start": 6144.82, + "end": 6144.82, + "probability": 0.0827 + }, + { + "start": 6144.82, + "end": 6144.82, + "probability": 0.5637 + }, + { + "start": 6144.82, + "end": 6144.82, + "probability": 0.0823 + }, + { + "start": 6144.82, + "end": 6148.0, + "probability": 0.6765 + }, + { + "start": 6148.34, + "end": 6152.52, + "probability": 0.9274 + }, + { + "start": 6153.12, + "end": 6153.52, + "probability": 0.9585 + }, + { + "start": 6154.9, + "end": 6158.58, + "probability": 0.8939 + }, + { + "start": 6160.14, + "end": 6163.92, + "probability": 0.9269 + }, + { + "start": 6164.6, + "end": 6165.72, + "probability": 0.7821 + }, + { + "start": 6169.48, + "end": 6170.26, + "probability": 0.7377 + }, + { + "start": 6178.56, + "end": 6178.56, + "probability": 0.6453 + }, + { + "start": 6187.58, + "end": 6188.82, + "probability": 0.3098 + }, + { + "start": 6189.88, + "end": 6191.1, + "probability": 0.7433 + }, + { + "start": 6192.26, + "end": 6192.76, + "probability": 0.4431 + }, + { + "start": 6194.34, + "end": 6196.06, + "probability": 0.7518 + }, + { + "start": 6196.82, + "end": 6198.78, + "probability": 0.839 + }, + { + "start": 6199.68, + "end": 6202.52, + "probability": 0.7542 + }, + { + "start": 6205.46, + "end": 6206.44, + "probability": 0.2887 + }, + { + "start": 6212.44, + "end": 6214.52, + "probability": 0.662 + }, + { + "start": 6218.74, + "end": 6220.7, + "probability": 0.6988 + }, + { + "start": 6223.6, + "end": 6224.82, + "probability": 0.9101 + }, + { + "start": 6225.32, + "end": 6226.13, + "probability": 0.9781 + }, + { + "start": 6226.5, + "end": 6226.7, + "probability": 0.4807 + }, + { + "start": 6226.82, + "end": 6227.75, + "probability": 0.9743 + }, + { + "start": 6229.14, + "end": 6232.44, + "probability": 0.9836 + }, + { + "start": 6233.14, + "end": 6236.48, + "probability": 0.913 + }, + { + "start": 6238.06, + "end": 6241.48, + "probability": 0.9102 + }, + { + "start": 6241.48, + "end": 6243.09, + "probability": 0.7876 + }, + { + "start": 6247.2, + "end": 6250.04, + "probability": 0.7982 + }, + { + "start": 6251.7, + "end": 6252.2, + "probability": 0.928 + }, + { + "start": 6252.56, + "end": 6253.2, + "probability": 0.7699 + }, + { + "start": 6253.82, + "end": 6255.46, + "probability": 0.93 + }, + { + "start": 6255.46, + "end": 6258.22, + "probability": 0.9771 + }, + { + "start": 6258.76, + "end": 6261.18, + "probability": 0.9073 + }, + { + "start": 6261.18, + "end": 6263.94, + "probability": 0.9948 + }, + { + "start": 6264.58, + "end": 6266.86, + "probability": 0.9594 + }, + { + "start": 6267.5, + "end": 6267.66, + "probability": 0.5565 + }, + { + "start": 6269.58, + "end": 6270.06, + "probability": 0.8074 + }, + { + "start": 6271.72, + "end": 6272.4, + "probability": 0.5812 + }, + { + "start": 6272.92, + "end": 6274.36, + "probability": 0.5718 + }, + { + "start": 6275.28, + "end": 6276.24, + "probability": 0.7827 + }, + { + "start": 6276.4, + "end": 6277.32, + "probability": 0.8298 + }, + { + "start": 6280.21, + "end": 6284.76, + "probability": 0.9335 + }, + { + "start": 6284.76, + "end": 6286.18, + "probability": 0.4448 + }, + { + "start": 6286.48, + "end": 6288.28, + "probability": 0.9195 + }, + { + "start": 6289.5, + "end": 6292.6, + "probability": 0.6731 + }, + { + "start": 6294.1, + "end": 6294.66, + "probability": 0.6499 + }, + { + "start": 6294.72, + "end": 6301.18, + "probability": 0.9154 + }, + { + "start": 6301.52, + "end": 6301.92, + "probability": 0.8101 + }, + { + "start": 6302.48, + "end": 6304.16, + "probability": 0.9836 + }, + { + "start": 6304.9, + "end": 6305.64, + "probability": 0.9793 + }, + { + "start": 6307.92, + "end": 6311.12, + "probability": 0.7135 + }, + { + "start": 6314.96, + "end": 6317.02, + "probability": 0.8077 + }, + { + "start": 6318.38, + "end": 6319.44, + "probability": 0.9942 + }, + { + "start": 6320.34, + "end": 6324.18, + "probability": 0.4707 + }, + { + "start": 6325.14, + "end": 6326.73, + "probability": 0.8017 + }, + { + "start": 6327.98, + "end": 6330.6, + "probability": 0.9247 + }, + { + "start": 6332.1, + "end": 6334.53, + "probability": 0.9668 + }, + { + "start": 6335.84, + "end": 6337.14, + "probability": 0.9823 + }, + { + "start": 6337.46, + "end": 6338.53, + "probability": 0.9141 + }, + { + "start": 6338.74, + "end": 6340.34, + "probability": 0.7432 + }, + { + "start": 6340.38, + "end": 6342.1, + "probability": 0.8305 + }, + { + "start": 6342.42, + "end": 6346.06, + "probability": 0.6227 + }, + { + "start": 6347.02, + "end": 6347.28, + "probability": 0.3311 + }, + { + "start": 6347.28, + "end": 6350.58, + "probability": 0.8802 + }, + { + "start": 6352.36, + "end": 6353.6, + "probability": 0.7995 + }, + { + "start": 6355.38, + "end": 6356.34, + "probability": 0.7616 + }, + { + "start": 6356.95, + "end": 6358.2, + "probability": 0.367 + }, + { + "start": 6358.52, + "end": 6359.56, + "probability": 0.6023 + }, + { + "start": 6361.06, + "end": 6363.66, + "probability": 0.6847 + }, + { + "start": 6364.92, + "end": 6367.44, + "probability": 0.8758 + }, + { + "start": 6368.1, + "end": 6372.64, + "probability": 0.8975 + }, + { + "start": 6373.34, + "end": 6375.08, + "probability": 0.8238 + }, + { + "start": 6375.5, + "end": 6377.5, + "probability": 0.9965 + }, + { + "start": 6379.48, + "end": 6382.3, + "probability": 0.9491 + }, + { + "start": 6383.78, + "end": 6388.34, + "probability": 0.8334 + }, + { + "start": 6388.44, + "end": 6390.1, + "probability": 0.8853 + }, + { + "start": 6390.48, + "end": 6391.24, + "probability": 0.9226 + }, + { + "start": 6391.78, + "end": 6392.3, + "probability": 0.8926 + }, + { + "start": 6393.16, + "end": 6394.8, + "probability": 0.9736 + }, + { + "start": 6394.88, + "end": 6395.42, + "probability": 0.6945 + }, + { + "start": 6395.8, + "end": 6396.68, + "probability": 0.8287 + }, + { + "start": 6397.78, + "end": 6398.4, + "probability": 0.6856 + }, + { + "start": 6398.9, + "end": 6399.26, + "probability": 0.7476 + }, + { + "start": 6399.32, + "end": 6399.82, + "probability": 0.9176 + }, + { + "start": 6400.1, + "end": 6405.44, + "probability": 0.9255 + }, + { + "start": 6406.79, + "end": 6408.9, + "probability": 0.6277 + }, + { + "start": 6409.58, + "end": 6409.8, + "probability": 0.1337 + }, + { + "start": 6410.88, + "end": 6414.8, + "probability": 0.6414 + }, + { + "start": 6415.82, + "end": 6418.46, + "probability": 0.6393 + }, + { + "start": 6418.56, + "end": 6418.94, + "probability": 0.5284 + }, + { + "start": 6419.06, + "end": 6420.22, + "probability": 0.8186 + }, + { + "start": 6420.86, + "end": 6424.18, + "probability": 0.9022 + }, + { + "start": 6424.98, + "end": 6427.96, + "probability": 0.7997 + }, + { + "start": 6428.48, + "end": 6429.28, + "probability": 0.765 + }, + { + "start": 6429.48, + "end": 6430.76, + "probability": 0.9735 + }, + { + "start": 6431.16, + "end": 6434.28, + "probability": 0.9866 + }, + { + "start": 6435.66, + "end": 6437.0, + "probability": 0.7568 + }, + { + "start": 6437.22, + "end": 6438.06, + "probability": 0.7936 + }, + { + "start": 6438.2, + "end": 6440.58, + "probability": 0.9839 + }, + { + "start": 6443.64, + "end": 6446.7, + "probability": 0.6971 + }, + { + "start": 6447.22, + "end": 6450.36, + "probability": 0.7613 + }, + { + "start": 6451.7, + "end": 6453.18, + "probability": 0.5971 + }, + { + "start": 6454.08, + "end": 6455.86, + "probability": 0.5839 + }, + { + "start": 6456.7, + "end": 6458.28, + "probability": 0.9231 + }, + { + "start": 6459.34, + "end": 6460.8, + "probability": 0.9553 + }, + { + "start": 6461.64, + "end": 6465.94, + "probability": 0.646 + }, + { + "start": 6466.36, + "end": 6467.46, + "probability": 0.7633 + }, + { + "start": 6468.8, + "end": 6469.86, + "probability": 0.7967 + }, + { + "start": 6471.5, + "end": 6472.7, + "probability": 0.8138 + }, + { + "start": 6473.1, + "end": 6474.18, + "probability": 0.6835 + }, + { + "start": 6475.06, + "end": 6476.22, + "probability": 0.9836 + }, + { + "start": 6477.58, + "end": 6479.52, + "probability": 0.9539 + }, + { + "start": 6480.56, + "end": 6483.1, + "probability": 0.9118 + }, + { + "start": 6484.3, + "end": 6486.18, + "probability": 0.7986 + }, + { + "start": 6486.44, + "end": 6486.82, + "probability": 0.5088 + }, + { + "start": 6486.94, + "end": 6490.12, + "probability": 0.6099 + }, + { + "start": 6491.28, + "end": 6492.06, + "probability": 0.7331 + }, + { + "start": 6493.06, + "end": 6497.16, + "probability": 0.9448 + }, + { + "start": 6498.3, + "end": 6499.12, + "probability": 0.9618 + }, + { + "start": 6499.52, + "end": 6502.57, + "probability": 0.7809 + }, + { + "start": 6503.36, + "end": 6504.06, + "probability": 0.0952 + }, + { + "start": 6504.78, + "end": 6505.94, + "probability": 0.3038 + }, + { + "start": 6506.02, + "end": 6506.5, + "probability": 0.0029 + }, + { + "start": 6507.24, + "end": 6507.34, + "probability": 0.4963 + }, + { + "start": 6507.68, + "end": 6509.92, + "probability": 0.9371 + }, + { + "start": 6510.82, + "end": 6514.88, + "probability": 0.9744 + }, + { + "start": 6514.92, + "end": 6515.72, + "probability": 0.7713 + }, + { + "start": 6516.66, + "end": 6518.96, + "probability": 0.9818 + }, + { + "start": 6519.24, + "end": 6520.88, + "probability": 0.5409 + }, + { + "start": 6521.7, + "end": 6522.54, + "probability": 0.498 + }, + { + "start": 6522.72, + "end": 6525.08, + "probability": 0.9315 + }, + { + "start": 6525.18, + "end": 6526.18, + "probability": 0.8772 + }, + { + "start": 6526.3, + "end": 6526.7, + "probability": 0.9419 + }, + { + "start": 6528.3, + "end": 6532.14, + "probability": 0.8923 + }, + { + "start": 6532.24, + "end": 6532.38, + "probability": 0.1859 + }, + { + "start": 6532.58, + "end": 6532.76, + "probability": 0.4844 + }, + { + "start": 6532.96, + "end": 6534.58, + "probability": 0.5069 + }, + { + "start": 6536.28, + "end": 6537.6, + "probability": 0.3176 + }, + { + "start": 6537.66, + "end": 6539.32, + "probability": 0.872 + }, + { + "start": 6539.82, + "end": 6541.02, + "probability": 0.9907 + }, + { + "start": 6541.12, + "end": 6542.2, + "probability": 0.545 + }, + { + "start": 6542.46, + "end": 6544.16, + "probability": 0.7692 + }, + { + "start": 6544.74, + "end": 6545.44, + "probability": 0.7661 + }, + { + "start": 6546.06, + "end": 6547.88, + "probability": 0.9243 + }, + { + "start": 6549.16, + "end": 6553.32, + "probability": 0.9432 + }, + { + "start": 6553.74, + "end": 6556.14, + "probability": 0.9174 + }, + { + "start": 6556.34, + "end": 6557.36, + "probability": 0.4264 + }, + { + "start": 6557.44, + "end": 6557.74, + "probability": 0.5443 + }, + { + "start": 6557.92, + "end": 6559.02, + "probability": 0.5111 + }, + { + "start": 6559.02, + "end": 6560.16, + "probability": 0.7211 + }, + { + "start": 6560.82, + "end": 6565.72, + "probability": 0.9977 + }, + { + "start": 6566.2, + "end": 6567.98, + "probability": 0.8858 + }, + { + "start": 6568.5, + "end": 6570.48, + "probability": 0.9877 + }, + { + "start": 6571.06, + "end": 6576.04, + "probability": 0.9522 + }, + { + "start": 6576.12, + "end": 6577.08, + "probability": 0.881 + }, + { + "start": 6578.5, + "end": 6579.34, + "probability": 0.4833 + }, + { + "start": 6580.18, + "end": 6584.48, + "probability": 0.9841 + }, + { + "start": 6585.34, + "end": 6586.88, + "probability": 0.868 + }, + { + "start": 6587.44, + "end": 6592.18, + "probability": 0.9697 + }, + { + "start": 6592.74, + "end": 6593.4, + "probability": 0.8396 + }, + { + "start": 6593.92, + "end": 6596.46, + "probability": 0.9871 + }, + { + "start": 6596.94, + "end": 6597.32, + "probability": 0.703 + }, + { + "start": 6597.94, + "end": 6600.74, + "probability": 0.6985 + }, + { + "start": 6601.26, + "end": 6605.92, + "probability": 0.9863 + }, + { + "start": 6607.7, + "end": 6608.28, + "probability": 0.849 + }, + { + "start": 6615.36, + "end": 6616.3, + "probability": 0.4835 + }, + { + "start": 6616.46, + "end": 6617.68, + "probability": 0.4924 + }, + { + "start": 6619.44, + "end": 6623.34, + "probability": 0.989 + }, + { + "start": 6623.46, + "end": 6624.72, + "probability": 0.978 + }, + { + "start": 6626.34, + "end": 6626.88, + "probability": 0.9655 + }, + { + "start": 6626.94, + "end": 6630.32, + "probability": 0.8249 + }, + { + "start": 6630.48, + "end": 6633.98, + "probability": 0.588 + }, + { + "start": 6635.04, + "end": 6636.94, + "probability": 0.8468 + }, + { + "start": 6637.6, + "end": 6640.12, + "probability": 0.9363 + }, + { + "start": 6640.78, + "end": 6646.36, + "probability": 0.9709 + }, + { + "start": 6646.94, + "end": 6649.3, + "probability": 0.9907 + }, + { + "start": 6649.7, + "end": 6651.77, + "probability": 0.8708 + }, + { + "start": 6652.34, + "end": 6654.04, + "probability": 0.7748 + }, + { + "start": 6654.12, + "end": 6654.94, + "probability": 0.6956 + }, + { + "start": 6655.6, + "end": 6656.98, + "probability": 0.5544 + }, + { + "start": 6657.24, + "end": 6658.84, + "probability": 0.9148 + }, + { + "start": 6658.88, + "end": 6659.36, + "probability": 0.7741 + }, + { + "start": 6659.82, + "end": 6666.34, + "probability": 0.9465 + }, + { + "start": 6666.96, + "end": 6668.06, + "probability": 0.6632 + }, + { + "start": 6669.22, + "end": 6673.28, + "probability": 0.9052 + }, + { + "start": 6673.86, + "end": 6676.94, + "probability": 0.8671 + }, + { + "start": 6676.94, + "end": 6678.94, + "probability": 0.9778 + }, + { + "start": 6679.14, + "end": 6681.04, + "probability": 0.9956 + }, + { + "start": 6681.78, + "end": 6682.88, + "probability": 0.9202 + }, + { + "start": 6683.56, + "end": 6684.14, + "probability": 0.9718 + }, + { + "start": 6684.28, + "end": 6685.04, + "probability": 0.9131 + }, + { + "start": 6685.58, + "end": 6688.12, + "probability": 0.9696 + }, + { + "start": 6688.76, + "end": 6689.9, + "probability": 0.6056 + }, + { + "start": 6690.02, + "end": 6694.94, + "probability": 0.8547 + }, + { + "start": 6695.48, + "end": 6696.52, + "probability": 0.9683 + }, + { + "start": 6697.1, + "end": 6697.88, + "probability": 0.9004 + }, + { + "start": 6698.7, + "end": 6700.1, + "probability": 0.8014 + }, + { + "start": 6700.22, + "end": 6702.1, + "probability": 0.7827 + }, + { + "start": 6702.26, + "end": 6704.18, + "probability": 0.9643 + }, + { + "start": 6704.66, + "end": 6707.08, + "probability": 0.8001 + }, + { + "start": 6707.22, + "end": 6709.18, + "probability": 0.9956 + }, + { + "start": 6709.3, + "end": 6709.72, + "probability": 0.804 + }, + { + "start": 6712.46, + "end": 6716.56, + "probability": 0.9292 + }, + { + "start": 6717.74, + "end": 6720.38, + "probability": 0.916 + }, + { + "start": 6720.62, + "end": 6721.98, + "probability": 0.9367 + }, + { + "start": 6722.46, + "end": 6723.96, + "probability": 0.9551 + }, + { + "start": 6724.08, + "end": 6725.52, + "probability": 0.9795 + }, + { + "start": 6726.16, + "end": 6728.6, + "probability": 0.8413 + }, + { + "start": 6728.66, + "end": 6729.68, + "probability": 0.2899 + }, + { + "start": 6730.3, + "end": 6730.6, + "probability": 0.5758 + }, + { + "start": 6731.28, + "end": 6732.66, + "probability": 0.9636 + }, + { + "start": 6733.3, + "end": 6736.54, + "probability": 0.991 + }, + { + "start": 6736.54, + "end": 6739.76, + "probability": 0.9954 + }, + { + "start": 6740.34, + "end": 6743.3, + "probability": 0.9886 + }, + { + "start": 6743.46, + "end": 6745.22, + "probability": 0.982 + }, + { + "start": 6745.84, + "end": 6749.22, + "probability": 0.9874 + }, + { + "start": 6750.1, + "end": 6751.02, + "probability": 0.9827 + }, + { + "start": 6751.12, + "end": 6753.87, + "probability": 0.9731 + }, + { + "start": 6754.54, + "end": 6755.98, + "probability": 0.9829 + }, + { + "start": 6756.44, + "end": 6760.74, + "probability": 0.7349 + }, + { + "start": 6761.43, + "end": 6764.36, + "probability": 0.8292 + }, + { + "start": 6766.54, + "end": 6768.38, + "probability": 0.8868 + }, + { + "start": 6769.0, + "end": 6773.27, + "probability": 0.9827 + }, + { + "start": 6775.2, + "end": 6776.36, + "probability": 0.8645 + }, + { + "start": 6776.54, + "end": 6780.3, + "probability": 0.9571 + }, + { + "start": 6781.04, + "end": 6782.83, + "probability": 0.9835 + }, + { + "start": 6783.28, + "end": 6783.9, + "probability": 0.9922 + }, + { + "start": 6784.76, + "end": 6787.12, + "probability": 0.8848 + }, + { + "start": 6787.92, + "end": 6790.88, + "probability": 0.9309 + }, + { + "start": 6791.8, + "end": 6796.2, + "probability": 0.9731 + }, + { + "start": 6796.62, + "end": 6798.34, + "probability": 0.9417 + }, + { + "start": 6798.72, + "end": 6800.44, + "probability": 0.957 + }, + { + "start": 6801.22, + "end": 6802.6, + "probability": 0.7171 + }, + { + "start": 6802.8, + "end": 6804.1, + "probability": 0.789 + }, + { + "start": 6804.2, + "end": 6806.64, + "probability": 0.953 + }, + { + "start": 6806.7, + "end": 6808.88, + "probability": 0.9968 + }, + { + "start": 6809.44, + "end": 6811.52, + "probability": 0.9365 + }, + { + "start": 6811.56, + "end": 6812.26, + "probability": 0.7399 + }, + { + "start": 6813.74, + "end": 6817.6, + "probability": 0.8979 + }, + { + "start": 6820.85, + "end": 6824.64, + "probability": 0.9782 + }, + { + "start": 6825.52, + "end": 6825.78, + "probability": 0.7613 + }, + { + "start": 6827.66, + "end": 6829.54, + "probability": 0.8981 + }, + { + "start": 6830.26, + "end": 6836.01, + "probability": 0.8615 + }, + { + "start": 6836.84, + "end": 6839.82, + "probability": 0.5279 + }, + { + "start": 6840.86, + "end": 6842.82, + "probability": 0.8464 + }, + { + "start": 6844.04, + "end": 6847.64, + "probability": 0.8779 + }, + { + "start": 6848.42, + "end": 6849.5, + "probability": 0.984 + }, + { + "start": 6849.56, + "end": 6851.19, + "probability": 0.8708 + }, + { + "start": 6852.42, + "end": 6854.98, + "probability": 0.8142 + }, + { + "start": 6855.66, + "end": 6857.48, + "probability": 0.8485 + }, + { + "start": 6858.34, + "end": 6861.3, + "probability": 0.7598 + }, + { + "start": 6862.02, + "end": 6863.95, + "probability": 0.8678 + }, + { + "start": 6865.62, + "end": 6866.4, + "probability": 0.7159 + }, + { + "start": 6867.34, + "end": 6871.86, + "probability": 0.8807 + }, + { + "start": 6872.64, + "end": 6875.6, + "probability": 0.7271 + }, + { + "start": 6875.7, + "end": 6879.22, + "probability": 0.9961 + }, + { + "start": 6879.3, + "end": 6880.0, + "probability": 0.9221 + }, + { + "start": 6880.26, + "end": 6883.78, + "probability": 0.9508 + }, + { + "start": 6885.44, + "end": 6889.28, + "probability": 0.9593 + }, + { + "start": 6891.04, + "end": 6893.26, + "probability": 0.4909 + }, + { + "start": 6893.38, + "end": 6895.32, + "probability": 0.7651 + }, + { + "start": 6895.5, + "end": 6897.1, + "probability": 0.8416 + }, + { + "start": 6897.66, + "end": 6899.62, + "probability": 0.882 + }, + { + "start": 6899.84, + "end": 6900.38, + "probability": 0.343 + }, + { + "start": 6900.9, + "end": 6903.48, + "probability": 0.9958 + }, + { + "start": 6904.24, + "end": 6904.52, + "probability": 0.7832 + }, + { + "start": 6905.96, + "end": 6907.96, + "probability": 0.9145 + }, + { + "start": 6908.9, + "end": 6911.16, + "probability": 0.7323 + }, + { + "start": 6911.3, + "end": 6916.38, + "probability": 0.9839 + }, + { + "start": 6916.48, + "end": 6916.84, + "probability": 0.8761 + }, + { + "start": 6916.88, + "end": 6917.4, + "probability": 0.9093 + }, + { + "start": 6918.12, + "end": 6921.04, + "probability": 0.8428 + }, + { + "start": 6921.78, + "end": 6926.16, + "probability": 0.7125 + }, + { + "start": 6927.08, + "end": 6928.8, + "probability": 0.7875 + }, + { + "start": 6930.46, + "end": 6934.64, + "probability": 0.7458 + }, + { + "start": 6935.5, + "end": 6936.28, + "probability": 0.8061 + }, + { + "start": 6937.98, + "end": 6938.72, + "probability": 0.6871 + }, + { + "start": 6939.6, + "end": 6941.7, + "probability": 0.7495 + }, + { + "start": 6942.8, + "end": 6943.24, + "probability": 0.5912 + }, + { + "start": 6943.76, + "end": 6947.26, + "probability": 0.8485 + }, + { + "start": 6947.36, + "end": 6951.26, + "probability": 0.7109 + }, + { + "start": 6951.8, + "end": 6952.04, + "probability": 0.7206 + }, + { + "start": 6952.96, + "end": 6954.5, + "probability": 0.7104 + }, + { + "start": 6955.02, + "end": 6956.32, + "probability": 0.884 + }, + { + "start": 6957.7, + "end": 6959.21, + "probability": 0.792 + }, + { + "start": 6960.3, + "end": 6962.84, + "probability": 0.6241 + }, + { + "start": 6963.82, + "end": 6966.02, + "probability": 0.5423 + }, + { + "start": 6966.64, + "end": 6967.68, + "probability": 0.7451 + }, + { + "start": 6969.98, + "end": 6977.54, + "probability": 0.8305 + }, + { + "start": 6980.62, + "end": 6982.22, + "probability": 0.7102 + }, + { + "start": 6982.76, + "end": 6983.68, + "probability": 0.3613 + }, + { + "start": 6983.94, + "end": 6984.67, + "probability": 0.876 + }, + { + "start": 6985.18, + "end": 6985.98, + "probability": 0.8209 + }, + { + "start": 6986.58, + "end": 6987.94, + "probability": 0.7076 + }, + { + "start": 6988.34, + "end": 6989.53, + "probability": 0.5581 + }, + { + "start": 6989.78, + "end": 6992.17, + "probability": 0.446 + }, + { + "start": 6993.88, + "end": 6995.98, + "probability": 0.9924 + }, + { + "start": 6996.22, + "end": 6999.0, + "probability": 0.8956 + }, + { + "start": 6999.1, + "end": 7000.71, + "probability": 0.9614 + }, + { + "start": 7000.9, + "end": 7001.98, + "probability": 0.7994 + }, + { + "start": 7002.24, + "end": 7003.34, + "probability": 0.913 + }, + { + "start": 7004.38, + "end": 7006.84, + "probability": 0.9839 + }, + { + "start": 7007.34, + "end": 7008.38, + "probability": 0.8127 + }, + { + "start": 7009.33, + "end": 7012.48, + "probability": 0.7201 + }, + { + "start": 7013.12, + "end": 7015.96, + "probability": 0.845 + }, + { + "start": 7016.4, + "end": 7021.38, + "probability": 0.7302 + }, + { + "start": 7021.92, + "end": 7025.58, + "probability": 0.8582 + }, + { + "start": 7025.82, + "end": 7027.34, + "probability": 0.9927 + }, + { + "start": 7027.54, + "end": 7029.11, + "probability": 0.9412 + }, + { + "start": 7030.28, + "end": 7031.52, + "probability": 0.6533 + }, + { + "start": 7031.62, + "end": 7034.6, + "probability": 0.9089 + }, + { + "start": 7034.66, + "end": 7035.34, + "probability": 0.8599 + }, + { + "start": 7035.58, + "end": 7036.16, + "probability": 0.8433 + }, + { + "start": 7036.6, + "end": 7038.18, + "probability": 0.9788 + }, + { + "start": 7038.44, + "end": 7041.88, + "probability": 0.9622 + }, + { + "start": 7043.58, + "end": 7044.68, + "probability": 0.8608 + }, + { + "start": 7045.2, + "end": 7046.3, + "probability": 0.6888 + }, + { + "start": 7047.22, + "end": 7048.02, + "probability": 0.9954 + }, + { + "start": 7048.64, + "end": 7051.24, + "probability": 0.792 + }, + { + "start": 7052.6, + "end": 7057.72, + "probability": 0.9712 + }, + { + "start": 7058.24, + "end": 7062.78, + "probability": 0.9751 + }, + { + "start": 7065.74, + "end": 7067.24, + "probability": 0.9364 + }, + { + "start": 7067.62, + "end": 7070.4, + "probability": 0.9914 + }, + { + "start": 7070.8, + "end": 7072.1, + "probability": 0.9123 + }, + { + "start": 7072.9, + "end": 7075.3, + "probability": 0.7668 + }, + { + "start": 7076.34, + "end": 7077.34, + "probability": 0.8499 + }, + { + "start": 7078.32, + "end": 7078.96, + "probability": 0.7802 + }, + { + "start": 7079.92, + "end": 7082.16, + "probability": 0.9637 + }, + { + "start": 7082.92, + "end": 7085.48, + "probability": 0.9951 + }, + { + "start": 7086.26, + "end": 7089.11, + "probability": 0.8996 + }, + { + "start": 7089.42, + "end": 7090.25, + "probability": 0.4933 + }, + { + "start": 7090.78, + "end": 7093.56, + "probability": 0.998 + }, + { + "start": 7094.08, + "end": 7096.08, + "probability": 0.9977 + }, + { + "start": 7096.74, + "end": 7098.34, + "probability": 0.5771 + }, + { + "start": 7099.24, + "end": 7101.5, + "probability": 0.9349 + }, + { + "start": 7102.34, + "end": 7104.82, + "probability": 0.8837 + }, + { + "start": 7105.28, + "end": 7107.06, + "probability": 0.9625 + }, + { + "start": 7107.62, + "end": 7109.76, + "probability": 0.6262 + }, + { + "start": 7110.62, + "end": 7111.58, + "probability": 0.7046 + }, + { + "start": 7111.72, + "end": 7113.56, + "probability": 0.6756 + }, + { + "start": 7114.08, + "end": 7116.02, + "probability": 0.6642 + }, + { + "start": 7116.98, + "end": 7120.78, + "probability": 0.7029 + }, + { + "start": 7121.14, + "end": 7130.4, + "probability": 0.7888 + }, + { + "start": 7130.78, + "end": 7131.64, + "probability": 0.2004 + }, + { + "start": 7132.08, + "end": 7132.5, + "probability": 0.7004 + }, + { + "start": 7133.6, + "end": 7134.3, + "probability": 0.6946 + }, + { + "start": 7134.72, + "end": 7138.58, + "probability": 0.8888 + }, + { + "start": 7139.3, + "end": 7141.73, + "probability": 0.9648 + }, + { + "start": 7142.46, + "end": 7142.64, + "probability": 0.811 + }, + { + "start": 7142.76, + "end": 7143.1, + "probability": 0.8653 + }, + { + "start": 7143.24, + "end": 7143.4, + "probability": 0.7699 + }, + { + "start": 7143.62, + "end": 7143.82, + "probability": 0.8433 + }, + { + "start": 7143.9, + "end": 7144.74, + "probability": 0.9133 + }, + { + "start": 7144.92, + "end": 7145.42, + "probability": 0.8715 + }, + { + "start": 7146.1, + "end": 7146.26, + "probability": 0.2173 + }, + { + "start": 7146.36, + "end": 7148.52, + "probability": 0.9866 + }, + { + "start": 7148.58, + "end": 7151.02, + "probability": 0.9922 + }, + { + "start": 7151.62, + "end": 7153.9, + "probability": 0.9675 + }, + { + "start": 7154.86, + "end": 7154.86, + "probability": 0.0203 + }, + { + "start": 7154.86, + "end": 7155.38, + "probability": 0.1061 + }, + { + "start": 7155.66, + "end": 7156.5, + "probability": 0.374 + }, + { + "start": 7157.36, + "end": 7162.64, + "probability": 0.8012 + }, + { + "start": 7166.44, + "end": 7169.7, + "probability": 0.7753 + }, + { + "start": 7170.72, + "end": 7172.82, + "probability": 0.914 + }, + { + "start": 7173.92, + "end": 7173.92, + "probability": 0.4429 + }, + { + "start": 7175.26, + "end": 7178.1, + "probability": 0.9537 + }, + { + "start": 7178.28, + "end": 7180.82, + "probability": 0.8834 + }, + { + "start": 7182.46, + "end": 7184.34, + "probability": 0.7649 + }, + { + "start": 7185.22, + "end": 7185.42, + "probability": 0.6283 + }, + { + "start": 7186.2, + "end": 7191.04, + "probability": 0.9607 + }, + { + "start": 7192.02, + "end": 7194.34, + "probability": 0.9192 + }, + { + "start": 7195.16, + "end": 7198.78, + "probability": 0.6995 + }, + { + "start": 7199.92, + "end": 7203.24, + "probability": 0.9048 + }, + { + "start": 7206.14, + "end": 7209.56, + "probability": 0.6857 + }, + { + "start": 7210.83, + "end": 7212.48, + "probability": 0.8076 + }, + { + "start": 7212.56, + "end": 7213.42, + "probability": 0.7469 + }, + { + "start": 7213.76, + "end": 7214.76, + "probability": 0.7097 + }, + { + "start": 7215.44, + "end": 7222.84, + "probability": 0.9378 + }, + { + "start": 7222.84, + "end": 7230.38, + "probability": 0.9767 + }, + { + "start": 7232.94, + "end": 7236.26, + "probability": 0.6671 + }, + { + "start": 7236.4, + "end": 7238.56, + "probability": 0.9912 + }, + { + "start": 7239.46, + "end": 7241.82, + "probability": 0.9172 + }, + { + "start": 7243.0, + "end": 7246.92, + "probability": 0.9646 + }, + { + "start": 7247.18, + "end": 7248.02, + "probability": 0.5599 + }, + { + "start": 7248.7, + "end": 7252.84, + "probability": 0.936 + }, + { + "start": 7254.0, + "end": 7256.68, + "probability": 0.9246 + }, + { + "start": 7257.8, + "end": 7260.54, + "probability": 0.9978 + }, + { + "start": 7262.14, + "end": 7267.2, + "probability": 0.8493 + }, + { + "start": 7269.8, + "end": 7273.44, + "probability": 0.897 + }, + { + "start": 7274.38, + "end": 7279.98, + "probability": 0.6182 + }, + { + "start": 7280.56, + "end": 7281.14, + "probability": 0.5777 + }, + { + "start": 7283.16, + "end": 7288.9, + "probability": 0.5221 + }, + { + "start": 7289.76, + "end": 7293.24, + "probability": 0.6157 + }, + { + "start": 7294.24, + "end": 7296.72, + "probability": 0.9497 + }, + { + "start": 7296.74, + "end": 7298.32, + "probability": 0.8973 + }, + { + "start": 7298.9, + "end": 7301.82, + "probability": 0.7293 + }, + { + "start": 7302.52, + "end": 7308.16, + "probability": 0.8315 + }, + { + "start": 7309.3, + "end": 7310.7, + "probability": 0.7715 + }, + { + "start": 7311.76, + "end": 7313.08, + "probability": 0.3891 + }, + { + "start": 7317.66, + "end": 7320.82, + "probability": 0.7836 + }, + { + "start": 7321.76, + "end": 7326.63, + "probability": 0.886 + }, + { + "start": 7327.9, + "end": 7330.34, + "probability": 0.8728 + }, + { + "start": 7331.34, + "end": 7333.84, + "probability": 0.9545 + }, + { + "start": 7333.98, + "end": 7338.42, + "probability": 0.8654 + }, + { + "start": 7338.64, + "end": 7341.44, + "probability": 0.9531 + }, + { + "start": 7341.64, + "end": 7343.3, + "probability": 0.9742 + }, + { + "start": 7343.96, + "end": 7345.22, + "probability": 0.235 + }, + { + "start": 7345.5, + "end": 7351.04, + "probability": 0.5621 + }, + { + "start": 7352.3, + "end": 7353.58, + "probability": 0.9767 + }, + { + "start": 7353.72, + "end": 7357.58, + "probability": 0.892 + }, + { + "start": 7357.78, + "end": 7362.48, + "probability": 0.9226 + }, + { + "start": 7365.7, + "end": 7368.84, + "probability": 0.9917 + }, + { + "start": 7369.28, + "end": 7371.8, + "probability": 0.9807 + }, + { + "start": 7372.06, + "end": 7373.3, + "probability": 0.942 + }, + { + "start": 7373.66, + "end": 7374.08, + "probability": 0.5917 + }, + { + "start": 7374.12, + "end": 7375.7, + "probability": 0.9867 + }, + { + "start": 7375.8, + "end": 7376.86, + "probability": 0.9464 + }, + { + "start": 7377.64, + "end": 7381.4, + "probability": 0.5287 + }, + { + "start": 7381.96, + "end": 7383.46, + "probability": 0.7473 + }, + { + "start": 7384.24, + "end": 7384.6, + "probability": 0.9291 + }, + { + "start": 7384.78, + "end": 7391.04, + "probability": 0.9577 + }, + { + "start": 7391.16, + "end": 7391.74, + "probability": 0.9583 + }, + { + "start": 7391.76, + "end": 7392.9, + "probability": 0.9085 + }, + { + "start": 7392.94, + "end": 7395.08, + "probability": 0.9578 + }, + { + "start": 7395.18, + "end": 7396.42, + "probability": 0.7457 + }, + { + "start": 7397.38, + "end": 7398.7, + "probability": 0.9683 + }, + { + "start": 7399.22, + "end": 7400.16, + "probability": 0.8932 + }, + { + "start": 7400.56, + "end": 7401.88, + "probability": 0.5989 + }, + { + "start": 7402.0, + "end": 7404.36, + "probability": 0.9933 + }, + { + "start": 7404.36, + "end": 7406.74, + "probability": 0.9912 + }, + { + "start": 7407.06, + "end": 7408.97, + "probability": 0.6569 + }, + { + "start": 7409.72, + "end": 7411.26, + "probability": 0.926 + }, + { + "start": 7411.78, + "end": 7414.62, + "probability": 0.9219 + }, + { + "start": 7416.18, + "end": 7417.92, + "probability": 0.7477 + }, + { + "start": 7418.1, + "end": 7422.32, + "probability": 0.8003 + }, + { + "start": 7422.32, + "end": 7426.1, + "probability": 0.985 + }, + { + "start": 7427.22, + "end": 7428.56, + "probability": 0.8802 + }, + { + "start": 7428.74, + "end": 7429.62, + "probability": 0.5142 + }, + { + "start": 7429.76, + "end": 7434.52, + "probability": 0.8993 + }, + { + "start": 7435.52, + "end": 7436.26, + "probability": 0.7076 + }, + { + "start": 7436.86, + "end": 7438.92, + "probability": 0.8509 + }, + { + "start": 7448.04, + "end": 7449.04, + "probability": 0.7494 + }, + { + "start": 7449.3, + "end": 7449.66, + "probability": 0.6045 + }, + { + "start": 7449.7, + "end": 7453.92, + "probability": 0.9948 + }, + { + "start": 7454.8, + "end": 7457.56, + "probability": 0.992 + }, + { + "start": 7458.74, + "end": 7463.36, + "probability": 0.9741 + }, + { + "start": 7463.88, + "end": 7467.54, + "probability": 0.9971 + }, + { + "start": 7468.5, + "end": 7471.72, + "probability": 0.9772 + }, + { + "start": 7472.74, + "end": 7473.2, + "probability": 0.7599 + }, + { + "start": 7473.54, + "end": 7476.96, + "probability": 0.9202 + }, + { + "start": 7477.24, + "end": 7477.94, + "probability": 0.7755 + }, + { + "start": 7478.06, + "end": 7481.9, + "probability": 0.905 + }, + { + "start": 7482.0, + "end": 7485.73, + "probability": 0.9899 + }, + { + "start": 7485.92, + "end": 7487.96, + "probability": 0.7412 + }, + { + "start": 7488.1, + "end": 7491.28, + "probability": 0.9978 + }, + { + "start": 7492.68, + "end": 7494.52, + "probability": 0.8534 + }, + { + "start": 7495.44, + "end": 7495.84, + "probability": 0.7468 + }, + { + "start": 7496.0, + "end": 7496.58, + "probability": 0.9707 + }, + { + "start": 7496.96, + "end": 7500.69, + "probability": 0.8945 + }, + { + "start": 7500.98, + "end": 7502.86, + "probability": 0.9985 + }, + { + "start": 7503.1, + "end": 7505.68, + "probability": 0.9991 + }, + { + "start": 7505.68, + "end": 7507.64, + "probability": 0.9958 + }, + { + "start": 7510.68, + "end": 7511.16, + "probability": 0.7424 + }, + { + "start": 7513.26, + "end": 7517.46, + "probability": 0.9882 + }, + { + "start": 7519.62, + "end": 7520.56, + "probability": 0.1734 + }, + { + "start": 7522.4, + "end": 7524.38, + "probability": 0.7819 + }, + { + "start": 7525.34, + "end": 7526.5, + "probability": 0.5093 + }, + { + "start": 7526.54, + "end": 7526.72, + "probability": 0.1064 + }, + { + "start": 7531.0, + "end": 7533.2, + "probability": 0.787 + }, + { + "start": 7533.9, + "end": 7535.2, + "probability": 0.5129 + }, + { + "start": 7535.3, + "end": 7541.84, + "probability": 0.9566 + }, + { + "start": 7542.46, + "end": 7544.64, + "probability": 0.9752 + }, + { + "start": 7546.5, + "end": 7550.14, + "probability": 0.849 + }, + { + "start": 7550.72, + "end": 7551.38, + "probability": 0.6481 + }, + { + "start": 7552.6, + "end": 7555.48, + "probability": 0.8461 + }, + { + "start": 7556.06, + "end": 7557.2, + "probability": 0.7478 + }, + { + "start": 7557.88, + "end": 7564.56, + "probability": 0.9883 + }, + { + "start": 7564.7, + "end": 7566.3, + "probability": 0.7372 + }, + { + "start": 7567.48, + "end": 7569.36, + "probability": 0.9617 + }, + { + "start": 7570.72, + "end": 7575.38, + "probability": 0.7424 + }, + { + "start": 7577.18, + "end": 7577.96, + "probability": 0.6205 + }, + { + "start": 7580.0, + "end": 7582.72, + "probability": 0.9851 + }, + { + "start": 7582.96, + "end": 7585.86, + "probability": 0.6059 + }, + { + "start": 7587.94, + "end": 7592.38, + "probability": 0.9869 + }, + { + "start": 7592.7, + "end": 7594.54, + "probability": 0.9599 + }, + { + "start": 7594.76, + "end": 7595.1, + "probability": 0.8131 + }, + { + "start": 7596.8, + "end": 7601.56, + "probability": 0.8345 + }, + { + "start": 7601.56, + "end": 7606.74, + "probability": 0.941 + }, + { + "start": 7608.72, + "end": 7609.92, + "probability": 0.7109 + }, + { + "start": 7611.3, + "end": 7614.5, + "probability": 0.2545 + }, + { + "start": 7614.52, + "end": 7615.09, + "probability": 0.1759 + }, + { + "start": 7615.46, + "end": 7616.82, + "probability": 0.8101 + }, + { + "start": 7617.26, + "end": 7619.03, + "probability": 0.4212 + }, + { + "start": 7620.54, + "end": 7621.5, + "probability": 0.8389 + }, + { + "start": 7623.34, + "end": 7625.94, + "probability": 0.3326 + }, + { + "start": 7625.98, + "end": 7627.53, + "probability": 0.8491 + }, + { + "start": 7627.72, + "end": 7629.52, + "probability": 0.1448 + }, + { + "start": 7630.28, + "end": 7632.8, + "probability": 0.7613 + }, + { + "start": 7634.64, + "end": 7636.62, + "probability": 0.5193 + }, + { + "start": 7636.66, + "end": 7638.08, + "probability": 0.702 + }, + { + "start": 7638.2, + "end": 7639.7, + "probability": 0.7635 + }, + { + "start": 7640.14, + "end": 7643.8, + "probability": 0.9622 + }, + { + "start": 7645.08, + "end": 7645.76, + "probability": 0.8553 + }, + { + "start": 7645.96, + "end": 7646.55, + "probability": 0.6286 + }, + { + "start": 7647.3, + "end": 7649.98, + "probability": 0.9761 + }, + { + "start": 7650.54, + "end": 7651.34, + "probability": 0.325 + }, + { + "start": 7651.34, + "end": 7651.7, + "probability": 0.7235 + }, + { + "start": 7651.74, + "end": 7653.26, + "probability": 0.7212 + }, + { + "start": 7655.16, + "end": 7657.44, + "probability": 0.6906 + }, + { + "start": 7658.72, + "end": 7665.86, + "probability": 0.4641 + }, + { + "start": 7667.04, + "end": 7668.82, + "probability": 0.8569 + }, + { + "start": 7668.98, + "end": 7673.6, + "probability": 0.5253 + }, + { + "start": 7673.74, + "end": 7675.06, + "probability": 0.6127 + }, + { + "start": 7675.6, + "end": 7677.22, + "probability": 0.8455 + }, + { + "start": 7678.78, + "end": 7681.76, + "probability": 0.9255 + }, + { + "start": 7683.12, + "end": 7685.06, + "probability": 0.9946 + }, + { + "start": 7685.18, + "end": 7685.9, + "probability": 0.788 + }, + { + "start": 7686.02, + "end": 7686.78, + "probability": 0.7136 + }, + { + "start": 7687.04, + "end": 7688.26, + "probability": 0.8893 + }, + { + "start": 7688.88, + "end": 7691.92, + "probability": 0.486 + }, + { + "start": 7693.38, + "end": 7696.46, + "probability": 0.8972 + }, + { + "start": 7697.02, + "end": 7699.14, + "probability": 0.6636 + }, + { + "start": 7699.58, + "end": 7701.04, + "probability": 0.9543 + }, + { + "start": 7702.0, + "end": 7702.98, + "probability": 0.5558 + }, + { + "start": 7704.96, + "end": 7706.25, + "probability": 0.4887 + }, + { + "start": 7707.58, + "end": 7709.88, + "probability": 0.875 + }, + { + "start": 7710.5, + "end": 7711.9, + "probability": 0.8031 + }, + { + "start": 7713.7, + "end": 7714.78, + "probability": 0.6096 + }, + { + "start": 7715.56, + "end": 7716.54, + "probability": 0.887 + }, + { + "start": 7720.02, + "end": 7722.38, + "probability": 0.8009 + }, + { + "start": 7723.04, + "end": 7724.52, + "probability": 0.7813 + }, + { + "start": 7725.36, + "end": 7728.9, + "probability": 0.9797 + }, + { + "start": 7729.29, + "end": 7734.48, + "probability": 0.9971 + }, + { + "start": 7734.58, + "end": 7735.82, + "probability": 0.6166 + }, + { + "start": 7736.44, + "end": 7738.88, + "probability": 0.9774 + }, + { + "start": 7740.08, + "end": 7742.22, + "probability": 0.7236 + }, + { + "start": 7742.42, + "end": 7748.04, + "probability": 0.95 + }, + { + "start": 7750.46, + "end": 7751.75, + "probability": 0.7692 + }, + { + "start": 7753.46, + "end": 7753.66, + "probability": 0.7883 + }, + { + "start": 7754.3, + "end": 7757.12, + "probability": 0.7506 + }, + { + "start": 7757.74, + "end": 7761.28, + "probability": 0.9979 + }, + { + "start": 7761.62, + "end": 7762.76, + "probability": 0.9729 + }, + { + "start": 7763.14, + "end": 7764.86, + "probability": 0.9639 + }, + { + "start": 7765.02, + "end": 7766.52, + "probability": 0.8178 + }, + { + "start": 7766.92, + "end": 7768.24, + "probability": 0.99 + }, + { + "start": 7768.8, + "end": 7772.78, + "probability": 0.9967 + }, + { + "start": 7773.76, + "end": 7776.72, + "probability": 0.4534 + }, + { + "start": 7778.28, + "end": 7780.2, + "probability": 0.6488 + }, + { + "start": 7780.64, + "end": 7781.6, + "probability": 0.797 + }, + { + "start": 7781.74, + "end": 7784.04, + "probability": 0.6843 + }, + { + "start": 7784.64, + "end": 7785.44, + "probability": 0.4916 + }, + { + "start": 7785.52, + "end": 7788.84, + "probability": 0.9897 + }, + { + "start": 7789.8, + "end": 7791.48, + "probability": 0.9608 + }, + { + "start": 7791.68, + "end": 7791.84, + "probability": 0.9424 + }, + { + "start": 7792.38, + "end": 7794.92, + "probability": 0.9851 + }, + { + "start": 7795.7, + "end": 7796.42, + "probability": 0.8467 + }, + { + "start": 7797.88, + "end": 7801.16, + "probability": 0.9424 + }, + { + "start": 7801.68, + "end": 7803.24, + "probability": 0.9137 + }, + { + "start": 7804.32, + "end": 7805.58, + "probability": 0.9763 + }, + { + "start": 7806.38, + "end": 7809.54, + "probability": 0.5549 + }, + { + "start": 7810.12, + "end": 7810.76, + "probability": 0.9589 + }, + { + "start": 7810.9, + "end": 7811.58, + "probability": 0.5878 + }, + { + "start": 7811.64, + "end": 7813.0, + "probability": 0.9968 + }, + { + "start": 7813.8, + "end": 7814.66, + "probability": 0.4785 + }, + { + "start": 7815.7, + "end": 7816.36, + "probability": 0.699 + }, + { + "start": 7816.54, + "end": 7819.83, + "probability": 0.7721 + }, + { + "start": 7820.84, + "end": 7829.78, + "probability": 0.9541 + }, + { + "start": 7830.68, + "end": 7834.0, + "probability": 0.7256 + }, + { + "start": 7834.64, + "end": 7835.9, + "probability": 0.5021 + }, + { + "start": 7836.0, + "end": 7838.71, + "probability": 0.9755 + }, + { + "start": 7840.56, + "end": 7845.44, + "probability": 0.573 + }, + { + "start": 7846.78, + "end": 7852.67, + "probability": 0.995 + }, + { + "start": 7854.22, + "end": 7856.62, + "probability": 0.93 + }, + { + "start": 7857.96, + "end": 7859.36, + "probability": 0.6683 + }, + { + "start": 7862.44, + "end": 7866.46, + "probability": 0.417 + }, + { + "start": 7867.24, + "end": 7871.4, + "probability": 0.6368 + }, + { + "start": 7872.4, + "end": 7873.22, + "probability": 0.6446 + }, + { + "start": 7874.5, + "end": 7880.2, + "probability": 0.9554 + }, + { + "start": 7880.56, + "end": 7881.24, + "probability": 0.5458 + }, + { + "start": 7881.24, + "end": 7882.64, + "probability": 0.6482 + }, + { + "start": 7882.68, + "end": 7883.28, + "probability": 0.7121 + }, + { + "start": 7883.34, + "end": 7884.28, + "probability": 0.6179 + }, + { + "start": 7884.8, + "end": 7886.63, + "probability": 0.7688 + }, + { + "start": 7887.28, + "end": 7889.89, + "probability": 0.6943 + }, + { + "start": 7890.12, + "end": 7890.92, + "probability": 0.3033 + }, + { + "start": 7894.7, + "end": 7895.54, + "probability": 0.6705 + }, + { + "start": 7896.86, + "end": 7899.76, + "probability": 0.9722 + }, + { + "start": 7900.32, + "end": 7900.82, + "probability": 0.7612 + }, + { + "start": 7901.66, + "end": 7902.52, + "probability": 0.7398 + }, + { + "start": 7902.6, + "end": 7903.52, + "probability": 0.8354 + }, + { + "start": 7903.82, + "end": 7904.16, + "probability": 0.6531 + }, + { + "start": 7904.26, + "end": 7907.66, + "probability": 0.9614 + }, + { + "start": 7908.6, + "end": 7909.48, + "probability": 0.2741 + }, + { + "start": 7910.84, + "end": 7915.46, + "probability": 0.8285 + }, + { + "start": 7916.82, + "end": 7920.42, + "probability": 0.8194 + }, + { + "start": 7921.02, + "end": 7922.24, + "probability": 0.3219 + }, + { + "start": 7923.35, + "end": 7926.92, + "probability": 0.776 + }, + { + "start": 7928.1, + "end": 7931.18, + "probability": 0.6155 + }, + { + "start": 7931.54, + "end": 7938.04, + "probability": 0.6019 + }, + { + "start": 7938.5, + "end": 7941.14, + "probability": 0.5035 + }, + { + "start": 7942.02, + "end": 7948.2, + "probability": 0.6263 + }, + { + "start": 7948.2, + "end": 7949.4, + "probability": 0.3421 + }, + { + "start": 7950.04, + "end": 7951.54, + "probability": 0.8065 + }, + { + "start": 7951.62, + "end": 7961.46, + "probability": 0.8891 + }, + { + "start": 7962.16, + "end": 7965.98, + "probability": 0.8484 + }, + { + "start": 7966.52, + "end": 7968.96, + "probability": 0.9517 + }, + { + "start": 7969.16, + "end": 7972.66, + "probability": 0.6078 + }, + { + "start": 7974.14, + "end": 7980.5, + "probability": 0.9109 + }, + { + "start": 7981.72, + "end": 7985.72, + "probability": 0.7147 + }, + { + "start": 7985.94, + "end": 7996.72, + "probability": 0.5745 + }, + { + "start": 8002.04, + "end": 8003.58, + "probability": 0.4955 + }, + { + "start": 8005.6, + "end": 8006.36, + "probability": 0.7001 + }, + { + "start": 8007.36, + "end": 8013.44, + "probability": 0.9764 + }, + { + "start": 8014.36, + "end": 8015.06, + "probability": 0.7628 + }, + { + "start": 8015.22, + "end": 8018.54, + "probability": 0.8266 + }, + { + "start": 8019.72, + "end": 8021.5, + "probability": 0.8502 + }, + { + "start": 8023.48, + "end": 8024.74, + "probability": 0.8072 + }, + { + "start": 8026.38, + "end": 8028.84, + "probability": 0.7153 + }, + { + "start": 8031.42, + "end": 8032.44, + "probability": 0.6598 + }, + { + "start": 8032.58, + "end": 8034.22, + "probability": 0.8223 + }, + { + "start": 8034.3, + "end": 8034.94, + "probability": 0.9868 + }, + { + "start": 8035.16, + "end": 8035.83, + "probability": 0.9549 + }, + { + "start": 8037.08, + "end": 8040.2, + "probability": 0.7457 + }, + { + "start": 8041.96, + "end": 8042.62, + "probability": 0.8258 + }, + { + "start": 8044.56, + "end": 8047.46, + "probability": 0.9756 + }, + { + "start": 8047.92, + "end": 8051.48, + "probability": 0.5519 + }, + { + "start": 8052.54, + "end": 8056.26, + "probability": 0.8474 + }, + { + "start": 8056.86, + "end": 8058.9, + "probability": 0.9751 + }, + { + "start": 8059.74, + "end": 8063.29, + "probability": 0.8516 + }, + { + "start": 8063.84, + "end": 8064.1, + "probability": 0.3771 + }, + { + "start": 8065.54, + "end": 8067.7, + "probability": 0.7293 + }, + { + "start": 8068.48, + "end": 8072.5, + "probability": 0.618 + }, + { + "start": 8072.86, + "end": 8078.48, + "probability": 0.9937 + }, + { + "start": 8079.4, + "end": 8080.52, + "probability": 0.9857 + }, + { + "start": 8081.24, + "end": 8084.44, + "probability": 0.9964 + }, + { + "start": 8085.38, + "end": 8091.02, + "probability": 0.9757 + }, + { + "start": 8091.14, + "end": 8094.06, + "probability": 0.7601 + }, + { + "start": 8094.16, + "end": 8098.5, + "probability": 0.9155 + }, + { + "start": 8099.6, + "end": 8101.96, + "probability": 0.7614 + }, + { + "start": 8102.14, + "end": 8105.36, + "probability": 0.9918 + }, + { + "start": 8106.36, + "end": 8107.72, + "probability": 0.9604 + }, + { + "start": 8108.0, + "end": 8109.7, + "probability": 0.9894 + }, + { + "start": 8110.16, + "end": 8113.4, + "probability": 0.9949 + }, + { + "start": 8114.06, + "end": 8117.38, + "probability": 0.9967 + }, + { + "start": 8117.4, + "end": 8123.29, + "probability": 0.8052 + }, + { + "start": 8123.94, + "end": 8127.46, + "probability": 0.9878 + }, + { + "start": 8128.14, + "end": 8130.06, + "probability": 0.9218 + }, + { + "start": 8130.24, + "end": 8132.86, + "probability": 0.9902 + }, + { + "start": 8133.1, + "end": 8134.02, + "probability": 0.9856 + }, + { + "start": 8134.1, + "end": 8137.92, + "probability": 0.9922 + }, + { + "start": 8137.92, + "end": 8140.32, + "probability": 0.9834 + }, + { + "start": 8141.08, + "end": 8144.22, + "probability": 0.998 + }, + { + "start": 8144.22, + "end": 8147.74, + "probability": 0.9196 + }, + { + "start": 8147.82, + "end": 8149.48, + "probability": 0.9865 + }, + { + "start": 8150.04, + "end": 8150.2, + "probability": 0.6838 + }, + { + "start": 8151.42, + "end": 8151.84, + "probability": 0.5856 + }, + { + "start": 8151.9, + "end": 8152.88, + "probability": 0.6716 + }, + { + "start": 8153.36, + "end": 8155.26, + "probability": 0.7008 + }, + { + "start": 8155.52, + "end": 8157.4, + "probability": 0.7931 + }, + { + "start": 8158.52, + "end": 8161.66, + "probability": 0.853 + }, + { + "start": 8164.04, + "end": 8165.9, + "probability": 0.9731 + }, + { + "start": 8166.32, + "end": 8170.06, + "probability": 0.7005 + }, + { + "start": 8170.68, + "end": 8174.34, + "probability": 0.9715 + }, + { + "start": 8175.24, + "end": 8176.19, + "probability": 0.9865 + }, + { + "start": 8177.34, + "end": 8180.92, + "probability": 0.9937 + }, + { + "start": 8181.0, + "end": 8182.52, + "probability": 0.571 + }, + { + "start": 8183.3, + "end": 8184.98, + "probability": 0.9609 + }, + { + "start": 8185.68, + "end": 8191.1, + "probability": 0.697 + }, + { + "start": 8191.62, + "end": 8193.06, + "probability": 0.979 + }, + { + "start": 8194.66, + "end": 8199.8, + "probability": 0.7721 + }, + { + "start": 8202.0, + "end": 8205.44, + "probability": 0.9792 + }, + { + "start": 8206.82, + "end": 8209.44, + "probability": 0.9285 + }, + { + "start": 8210.14, + "end": 8212.44, + "probability": 0.868 + }, + { + "start": 8213.22, + "end": 8216.2, + "probability": 0.9841 + }, + { + "start": 8216.74, + "end": 8218.84, + "probability": 0.997 + }, + { + "start": 8220.26, + "end": 8222.86, + "probability": 0.8172 + }, + { + "start": 8223.77, + "end": 8227.09, + "probability": 0.9491 + }, + { + "start": 8228.78, + "end": 8229.72, + "probability": 0.9868 + }, + { + "start": 8229.82, + "end": 8233.62, + "probability": 0.9846 + }, + { + "start": 8234.2, + "end": 8235.68, + "probability": 0.9686 + }, + { + "start": 8236.6, + "end": 8240.04, + "probability": 0.9771 + }, + { + "start": 8241.18, + "end": 8245.14, + "probability": 0.9885 + }, + { + "start": 8246.72, + "end": 8247.42, + "probability": 0.5086 + }, + { + "start": 8251.38, + "end": 8252.28, + "probability": 0.8121 + }, + { + "start": 8252.6, + "end": 8252.96, + "probability": 0.4712 + }, + { + "start": 8252.96, + "end": 8254.86, + "probability": 0.9952 + }, + { + "start": 8255.66, + "end": 8257.56, + "probability": 0.9512 + }, + { + "start": 8258.14, + "end": 8261.38, + "probability": 0.9408 + }, + { + "start": 8262.28, + "end": 8265.1, + "probability": 0.9669 + }, + { + "start": 8269.16, + "end": 8274.0, + "probability": 0.6893 + }, + { + "start": 8274.88, + "end": 8276.46, + "probability": 0.7177 + }, + { + "start": 8278.04, + "end": 8278.92, + "probability": 0.3968 + }, + { + "start": 8279.0, + "end": 8283.32, + "probability": 0.7386 + }, + { + "start": 8283.8, + "end": 8285.5, + "probability": 0.8477 + }, + { + "start": 8285.62, + "end": 8287.66, + "probability": 0.7068 + }, + { + "start": 8288.44, + "end": 8290.33, + "probability": 0.9785 + }, + { + "start": 8291.12, + "end": 8295.76, + "probability": 0.9578 + }, + { + "start": 8296.34, + "end": 8300.06, + "probability": 0.936 + }, + { + "start": 8301.1, + "end": 8304.88, + "probability": 0.9279 + }, + { + "start": 8305.92, + "end": 8306.7, + "probability": 0.9572 + }, + { + "start": 8307.38, + "end": 8308.06, + "probability": 0.291 + }, + { + "start": 8308.18, + "end": 8309.06, + "probability": 0.6361 + }, + { + "start": 8309.3, + "end": 8311.3, + "probability": 0.8769 + }, + { + "start": 8311.42, + "end": 8313.06, + "probability": 0.5952 + }, + { + "start": 8314.86, + "end": 8316.64, + "probability": 0.5231 + }, + { + "start": 8317.14, + "end": 8318.66, + "probability": 0.5855 + }, + { + "start": 8318.9, + "end": 8320.4, + "probability": 0.1846 + }, + { + "start": 8320.92, + "end": 8322.81, + "probability": 0.9573 + }, + { + "start": 8323.02, + "end": 8323.92, + "probability": 0.5172 + }, + { + "start": 8324.32, + "end": 8325.54, + "probability": 0.6684 + }, + { + "start": 8325.66, + "end": 8327.24, + "probability": 0.8536 + }, + { + "start": 8327.5, + "end": 8328.44, + "probability": 0.4212 + }, + { + "start": 8328.95, + "end": 8330.54, + "probability": 0.5866 + }, + { + "start": 8331.06, + "end": 8331.52, + "probability": 0.7568 + }, + { + "start": 8331.64, + "end": 8333.56, + "probability": 0.8403 + }, + { + "start": 8333.64, + "end": 8338.94, + "probability": 0.9139 + }, + { + "start": 8339.0, + "end": 8339.24, + "probability": 0.9126 + }, + { + "start": 8339.88, + "end": 8341.04, + "probability": 0.991 + }, + { + "start": 8342.4, + "end": 8344.35, + "probability": 0.9 + }, + { + "start": 8345.2, + "end": 8346.5, + "probability": 0.9068 + }, + { + "start": 8346.94, + "end": 8349.02, + "probability": 0.5243 + }, + { + "start": 8350.14, + "end": 8350.62, + "probability": 0.7634 + }, + { + "start": 8350.86, + "end": 8351.76, + "probability": 0.6412 + }, + { + "start": 8352.64, + "end": 8353.8, + "probability": 0.7268 + }, + { + "start": 8354.16, + "end": 8354.6, + "probability": 0.942 + }, + { + "start": 8355.44, + "end": 8357.98, + "probability": 0.6044 + }, + { + "start": 8359.32, + "end": 8360.48, + "probability": 0.7964 + }, + { + "start": 8360.58, + "end": 8361.62, + "probability": 0.3009 + }, + { + "start": 8361.62, + "end": 8363.38, + "probability": 0.7074 + }, + { + "start": 8363.8, + "end": 8365.12, + "probability": 0.9175 + }, + { + "start": 8365.84, + "end": 8368.38, + "probability": 0.9897 + }, + { + "start": 8369.0, + "end": 8369.1, + "probability": 0.0123 + }, + { + "start": 8369.76, + "end": 8373.86, + "probability": 0.5908 + }, + { + "start": 8374.04, + "end": 8374.9, + "probability": 0.7434 + }, + { + "start": 8386.4, + "end": 8386.42, + "probability": 0.0043 + } + ], + "segments_count": 2801, + "words_count": 14387, + "avg_words_per_segment": 5.1364, + "avg_segment_duration": 2.2701, + "avg_words_per_minute": 102.6301, + "plenum_id": "14769", + "duration": 8410.98, + "title": null, + "plenum_date": "2011-07-12" +} \ No newline at end of file