diff --git "a/2415/metadata.json" "b/2415/metadata.json" new file mode 100644--- /dev/null +++ "b/2415/metadata.json" @@ -0,0 +1,25822 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "2415", + "quality_score": 0.9348, + "per_segment_quality_scores": [ + { + "start": 25.46, + "end": 27.76, + "probability": 0.1044 + }, + { + "start": 28.46, + "end": 30.04, + "probability": 0.0376 + }, + { + "start": 30.18, + "end": 30.2, + "probability": 0.0129 + }, + { + "start": 30.2, + "end": 31.24, + "probability": 0.0635 + }, + { + "start": 32.58, + "end": 33.48, + "probability": 0.1166 + }, + { + "start": 34.3, + "end": 36.44, + "probability": 0.0964 + }, + { + "start": 84.72, + "end": 85.88, + "probability": 0.6883 + }, + { + "start": 86.14, + "end": 87.16, + "probability": 0.7313 + }, + { + "start": 88.06, + "end": 91.24, + "probability": 0.9944 + }, + { + "start": 91.32, + "end": 96.62, + "probability": 0.9772 + }, + { + "start": 96.88, + "end": 99.84, + "probability": 0.4114 + }, + { + "start": 101.26, + "end": 101.84, + "probability": 0.3485 + }, + { + "start": 102.46, + "end": 103.46, + "probability": 0.7455 + }, + { + "start": 104.68, + "end": 109.36, + "probability": 0.8374 + }, + { + "start": 110.14, + "end": 113.9, + "probability": 0.906 + }, + { + "start": 114.42, + "end": 115.86, + "probability": 0.8839 + }, + { + "start": 120.8, + "end": 123.28, + "probability": 0.7637 + }, + { + "start": 124.98, + "end": 126.8, + "probability": 0.0759 + }, + { + "start": 127.78, + "end": 128.58, + "probability": 0.4109 + }, + { + "start": 129.54, + "end": 130.42, + "probability": 0.4983 + }, + { + "start": 131.34, + "end": 132.58, + "probability": 0.6393 + }, + { + "start": 135.12, + "end": 137.44, + "probability": 0.9173 + }, + { + "start": 139.3, + "end": 140.4, + "probability": 0.4548 + }, + { + "start": 142.76, + "end": 145.78, + "probability": 0.7829 + }, + { + "start": 146.06, + "end": 147.78, + "probability": 0.7444 + }, + { + "start": 148.74, + "end": 152.78, + "probability": 0.9139 + }, + { + "start": 153.34, + "end": 154.98, + "probability": 0.9954 + }, + { + "start": 155.7, + "end": 156.5, + "probability": 0.5474 + }, + { + "start": 156.98, + "end": 160.58, + "probability": 0.8774 + }, + { + "start": 161.12, + "end": 164.04, + "probability": 0.8756 + }, + { + "start": 164.16, + "end": 166.4, + "probability": 0.9365 + }, + { + "start": 167.16, + "end": 169.46, + "probability": 0.9911 + }, + { + "start": 169.46, + "end": 173.52, + "probability": 0.9971 + }, + { + "start": 173.66, + "end": 174.5, + "probability": 0.5244 + }, + { + "start": 175.28, + "end": 177.32, + "probability": 0.9988 + }, + { + "start": 177.32, + "end": 181.74, + "probability": 0.971 + }, + { + "start": 182.6, + "end": 187.92, + "probability": 0.9948 + }, + { + "start": 188.54, + "end": 190.9, + "probability": 0.9764 + }, + { + "start": 190.9, + "end": 194.88, + "probability": 0.9862 + }, + { + "start": 195.06, + "end": 195.62, + "probability": 0.364 + }, + { + "start": 195.68, + "end": 200.18, + "probability": 0.8394 + }, + { + "start": 200.58, + "end": 201.48, + "probability": 0.4189 + }, + { + "start": 201.6, + "end": 202.58, + "probability": 0.7053 + }, + { + "start": 202.94, + "end": 207.56, + "probability": 0.9642 + }, + { + "start": 207.7, + "end": 211.0, + "probability": 0.9419 + }, + { + "start": 211.48, + "end": 214.6, + "probability": 0.9963 + }, + { + "start": 214.96, + "end": 218.14, + "probability": 0.8245 + }, + { + "start": 218.42, + "end": 218.52, + "probability": 0.6752 + }, + { + "start": 218.96, + "end": 219.34, + "probability": 0.5646 + }, + { + "start": 219.54, + "end": 224.54, + "probability": 0.686 + }, + { + "start": 224.72, + "end": 226.09, + "probability": 0.3615 + }, + { + "start": 228.28, + "end": 229.94, + "probability": 0.4292 + }, + { + "start": 230.86, + "end": 231.1, + "probability": 0.4728 + }, + { + "start": 231.26, + "end": 234.1, + "probability": 0.9885 + }, + { + "start": 234.1, + "end": 238.06, + "probability": 0.9482 + }, + { + "start": 238.74, + "end": 241.5, + "probability": 0.9592 + }, + { + "start": 242.06, + "end": 242.42, + "probability": 0.5722 + }, + { + "start": 243.28, + "end": 243.32, + "probability": 0.041 + }, + { + "start": 243.32, + "end": 246.92, + "probability": 0.961 + }, + { + "start": 247.88, + "end": 248.98, + "probability": 0.8471 + }, + { + "start": 249.58, + "end": 250.62, + "probability": 0.9431 + }, + { + "start": 251.58, + "end": 253.56, + "probability": 0.7618 + }, + { + "start": 254.52, + "end": 255.02, + "probability": 0.5816 + }, + { + "start": 255.98, + "end": 257.86, + "probability": 0.9863 + }, + { + "start": 258.66, + "end": 260.48, + "probability": 0.8955 + }, + { + "start": 261.64, + "end": 266.08, + "probability": 0.9961 + }, + { + "start": 266.08, + "end": 269.42, + "probability": 0.9974 + }, + { + "start": 270.66, + "end": 274.06, + "probability": 0.8754 + }, + { + "start": 274.58, + "end": 274.96, + "probability": 0.7504 + }, + { + "start": 275.94, + "end": 277.04, + "probability": 0.9346 + }, + { + "start": 277.84, + "end": 281.96, + "probability": 0.9929 + }, + { + "start": 282.64, + "end": 282.94, + "probability": 0.0363 + }, + { + "start": 283.12, + "end": 283.9, + "probability": 0.6602 + }, + { + "start": 284.06, + "end": 286.12, + "probability": 0.7116 + }, + { + "start": 286.56, + "end": 291.08, + "probability": 0.8147 + }, + { + "start": 291.08, + "end": 291.88, + "probability": 0.6732 + }, + { + "start": 292.42, + "end": 294.44, + "probability": 0.9061 + }, + { + "start": 295.28, + "end": 298.18, + "probability": 0.3133 + }, + { + "start": 299.18, + "end": 299.28, + "probability": 0.0041 + }, + { + "start": 299.78, + "end": 299.94, + "probability": 0.1298 + }, + { + "start": 299.94, + "end": 300.64, + "probability": 0.2595 + }, + { + "start": 301.44, + "end": 302.08, + "probability": 0.277 + }, + { + "start": 302.82, + "end": 303.4, + "probability": 0.5637 + }, + { + "start": 303.44, + "end": 305.93, + "probability": 0.317 + }, + { + "start": 308.12, + "end": 309.78, + "probability": 0.4995 + }, + { + "start": 312.44, + "end": 312.54, + "probability": 0.1466 + }, + { + "start": 312.54, + "end": 312.54, + "probability": 0.1577 + }, + { + "start": 312.54, + "end": 312.54, + "probability": 0.1975 + }, + { + "start": 312.54, + "end": 316.58, + "probability": 0.6367 + }, + { + "start": 316.58, + "end": 322.6, + "probability": 0.8373 + }, + { + "start": 323.6, + "end": 326.35, + "probability": 0.3188 + }, + { + "start": 327.88, + "end": 334.32, + "probability": 0.8676 + }, + { + "start": 335.34, + "end": 339.04, + "probability": 0.7405 + }, + { + "start": 339.6, + "end": 342.74, + "probability": 0.9861 + }, + { + "start": 342.86, + "end": 345.34, + "probability": 0.8404 + }, + { + "start": 346.36, + "end": 353.3, + "probability": 0.6894 + }, + { + "start": 354.04, + "end": 356.34, + "probability": 0.9164 + }, + { + "start": 356.44, + "end": 358.92, + "probability": 0.9145 + }, + { + "start": 359.98, + "end": 362.72, + "probability": 0.8336 + }, + { + "start": 362.9, + "end": 365.84, + "probability": 0.8608 + }, + { + "start": 366.18, + "end": 367.04, + "probability": 0.2734 + }, + { + "start": 367.98, + "end": 372.82, + "probability": 0.9719 + }, + { + "start": 372.82, + "end": 376.78, + "probability": 0.9914 + }, + { + "start": 377.12, + "end": 378.58, + "probability": 0.8666 + }, + { + "start": 379.0, + "end": 379.2, + "probability": 0.4168 + }, + { + "start": 379.3, + "end": 379.86, + "probability": 0.5212 + }, + { + "start": 379.92, + "end": 381.68, + "probability": 0.7904 + }, + { + "start": 381.94, + "end": 387.06, + "probability": 0.7447 + }, + { + "start": 387.46, + "end": 387.68, + "probability": 0.5718 + }, + { + "start": 388.18, + "end": 388.76, + "probability": 0.6065 + }, + { + "start": 389.42, + "end": 391.72, + "probability": 0.9406 + }, + { + "start": 392.26, + "end": 392.56, + "probability": 0.2204 + }, + { + "start": 392.56, + "end": 394.84, + "probability": 0.7744 + }, + { + "start": 395.96, + "end": 397.0, + "probability": 0.7648 + }, + { + "start": 397.12, + "end": 399.92, + "probability": 0.8755 + }, + { + "start": 400.04, + "end": 401.36, + "probability": 0.9969 + }, + { + "start": 402.22, + "end": 403.68, + "probability": 0.967 + }, + { + "start": 404.7, + "end": 406.04, + "probability": 0.7608 + }, + { + "start": 406.58, + "end": 408.3, + "probability": 0.7263 + }, + { + "start": 409.22, + "end": 412.78, + "probability": 0.9061 + }, + { + "start": 413.64, + "end": 415.63, + "probability": 0.3858 + }, + { + "start": 416.38, + "end": 417.02, + "probability": 0.5484 + }, + { + "start": 417.12, + "end": 418.0, + "probability": 0.9115 + }, + { + "start": 418.22, + "end": 418.92, + "probability": 0.3483 + }, + { + "start": 419.0, + "end": 419.5, + "probability": 0.2528 + }, + { + "start": 420.3, + "end": 423.1, + "probability": 0.9862 + }, + { + "start": 424.3, + "end": 424.95, + "probability": 0.9907 + }, + { + "start": 425.54, + "end": 427.28, + "probability": 0.402 + }, + { + "start": 427.9, + "end": 432.06, + "probability": 0.9189 + }, + { + "start": 432.25, + "end": 436.99, + "probability": 0.7488 + }, + { + "start": 438.28, + "end": 441.14, + "probability": 0.9938 + }, + { + "start": 441.58, + "end": 442.38, + "probability": 0.8649 + }, + { + "start": 442.88, + "end": 443.26, + "probability": 0.6542 + }, + { + "start": 443.3, + "end": 446.82, + "probability": 0.9394 + }, + { + "start": 447.3, + "end": 450.06, + "probability": 0.9824 + }, + { + "start": 450.98, + "end": 453.12, + "probability": 0.807 + }, + { + "start": 453.68, + "end": 454.08, + "probability": 0.9647 + }, + { + "start": 454.68, + "end": 455.36, + "probability": 0.8644 + }, + { + "start": 455.72, + "end": 456.14, + "probability": 0.7104 + }, + { + "start": 456.34, + "end": 458.79, + "probability": 0.5623 + }, + { + "start": 459.66, + "end": 460.5, + "probability": 0.074 + }, + { + "start": 460.5, + "end": 462.28, + "probability": 0.5175 + }, + { + "start": 463.1, + "end": 466.62, + "probability": 0.9557 + }, + { + "start": 467.06, + "end": 467.28, + "probability": 0.2581 + }, + { + "start": 468.34, + "end": 469.42, + "probability": 0.2072 + }, + { + "start": 470.58, + "end": 473.68, + "probability": 0.6362 + }, + { + "start": 476.56, + "end": 478.28, + "probability": 0.2807 + }, + { + "start": 478.4, + "end": 479.58, + "probability": 0.0805 + }, + { + "start": 480.14, + "end": 481.4, + "probability": 0.3247 + }, + { + "start": 482.38, + "end": 482.48, + "probability": 0.0071 + }, + { + "start": 484.26, + "end": 488.26, + "probability": 0.6677 + }, + { + "start": 488.86, + "end": 493.76, + "probability": 0.7558 + }, + { + "start": 493.78, + "end": 499.3, + "probability": 0.9705 + }, + { + "start": 499.48, + "end": 501.12, + "probability": 0.1033 + }, + { + "start": 501.12, + "end": 501.78, + "probability": 0.091 + }, + { + "start": 502.1, + "end": 503.92, + "probability": 0.2454 + }, + { + "start": 504.46, + "end": 506.9, + "probability": 0.7226 + }, + { + "start": 508.2, + "end": 509.5, + "probability": 0.9647 + }, + { + "start": 509.6, + "end": 509.92, + "probability": 0.546 + }, + { + "start": 510.88, + "end": 512.1, + "probability": 0.5152 + }, + { + "start": 516.82, + "end": 517.56, + "probability": 0.7177 + }, + { + "start": 518.26, + "end": 521.84, + "probability": 0.998 + }, + { + "start": 522.76, + "end": 526.6, + "probability": 0.9631 + }, + { + "start": 526.7, + "end": 529.68, + "probability": 0.9711 + }, + { + "start": 530.74, + "end": 535.94, + "probability": 0.9741 + }, + { + "start": 535.94, + "end": 539.08, + "probability": 0.9984 + }, + { + "start": 540.22, + "end": 541.3, + "probability": 0.8527 + }, + { + "start": 541.72, + "end": 545.74, + "probability": 0.9904 + }, + { + "start": 546.0, + "end": 549.16, + "probability": 0.9946 + }, + { + "start": 549.32, + "end": 551.62, + "probability": 0.9972 + }, + { + "start": 552.34, + "end": 554.7, + "probability": 0.9531 + }, + { + "start": 555.18, + "end": 555.18, + "probability": 0.5737 + }, + { + "start": 555.18, + "end": 559.14, + "probability": 0.9873 + }, + { + "start": 559.8, + "end": 560.46, + "probability": 0.7951 + }, + { + "start": 561.24, + "end": 562.18, + "probability": 0.6799 + }, + { + "start": 562.5, + "end": 563.28, + "probability": 0.3531 + }, + { + "start": 563.38, + "end": 566.28, + "probability": 0.9775 + }, + { + "start": 567.85, + "end": 570.74, + "probability": 0.8426 + }, + { + "start": 570.9, + "end": 575.58, + "probability": 0.9855 + }, + { + "start": 575.96, + "end": 580.36, + "probability": 0.9982 + }, + { + "start": 580.4, + "end": 583.82, + "probability": 0.7995 + }, + { + "start": 584.92, + "end": 588.88, + "probability": 0.7991 + }, + { + "start": 588.98, + "end": 589.28, + "probability": 0.7053 + }, + { + "start": 589.6, + "end": 591.62, + "probability": 0.8875 + }, + { + "start": 591.8, + "end": 593.18, + "probability": 0.9703 + }, + { + "start": 593.82, + "end": 593.98, + "probability": 0.5256 + }, + { + "start": 594.02, + "end": 594.76, + "probability": 0.9658 + }, + { + "start": 594.9, + "end": 597.1, + "probability": 0.9199 + }, + { + "start": 597.24, + "end": 601.54, + "probability": 0.9197 + }, + { + "start": 601.54, + "end": 602.24, + "probability": 0.8141 + }, + { + "start": 602.34, + "end": 604.58, + "probability": 0.8998 + }, + { + "start": 605.2, + "end": 607.94, + "probability": 0.9258 + }, + { + "start": 607.98, + "end": 611.08, + "probability": 0.9856 + }, + { + "start": 611.14, + "end": 615.88, + "probability": 0.9914 + }, + { + "start": 616.3, + "end": 619.1, + "probability": 0.9985 + }, + { + "start": 619.6, + "end": 621.22, + "probability": 0.998 + }, + { + "start": 621.28, + "end": 624.0, + "probability": 0.9635 + }, + { + "start": 624.52, + "end": 625.52, + "probability": 0.8949 + }, + { + "start": 626.34, + "end": 629.78, + "probability": 0.9774 + }, + { + "start": 630.06, + "end": 630.64, + "probability": 0.0713 + }, + { + "start": 631.06, + "end": 635.2, + "probability": 0.8639 + }, + { + "start": 635.74, + "end": 636.34, + "probability": 0.7107 + }, + { + "start": 637.08, + "end": 639.84, + "probability": 0.5817 + }, + { + "start": 640.72, + "end": 640.72, + "probability": 0.0037 + }, + { + "start": 640.72, + "end": 640.72, + "probability": 0.0142 + }, + { + "start": 640.72, + "end": 642.46, + "probability": 0.294 + }, + { + "start": 642.46, + "end": 644.32, + "probability": 0.6603 + }, + { + "start": 644.54, + "end": 648.02, + "probability": 0.8325 + }, + { + "start": 648.02, + "end": 648.04, + "probability": 0.0765 + }, + { + "start": 648.04, + "end": 648.94, + "probability": 0.6733 + }, + { + "start": 649.96, + "end": 650.64, + "probability": 0.5895 + }, + { + "start": 651.3, + "end": 653.08, + "probability": 0.9281 + }, + { + "start": 653.16, + "end": 654.78, + "probability": 0.7965 + }, + { + "start": 655.54, + "end": 658.46, + "probability": 0.9935 + }, + { + "start": 659.0, + "end": 660.8, + "probability": 0.7671 + }, + { + "start": 661.32, + "end": 662.5, + "probability": 0.9562 + }, + { + "start": 663.06, + "end": 669.22, + "probability": 0.9752 + }, + { + "start": 669.7, + "end": 671.52, + "probability": 0.651 + }, + { + "start": 672.26, + "end": 675.34, + "probability": 0.8633 + }, + { + "start": 675.96, + "end": 680.08, + "probability": 0.9958 + }, + { + "start": 680.08, + "end": 683.6, + "probability": 0.8312 + }, + { + "start": 684.26, + "end": 686.32, + "probability": 0.9247 + }, + { + "start": 687.12, + "end": 691.98, + "probability": 0.9809 + }, + { + "start": 692.44, + "end": 694.1, + "probability": 0.8391 + }, + { + "start": 694.82, + "end": 698.16, + "probability": 0.9398 + }, + { + "start": 698.8, + "end": 703.58, + "probability": 0.996 + }, + { + "start": 705.0, + "end": 706.58, + "probability": 0.9341 + }, + { + "start": 707.24, + "end": 709.52, + "probability": 0.7402 + }, + { + "start": 710.04, + "end": 711.52, + "probability": 0.8979 + }, + { + "start": 712.18, + "end": 712.36, + "probability": 0.842 + }, + { + "start": 712.98, + "end": 716.74, + "probability": 0.9898 + }, + { + "start": 717.24, + "end": 723.1, + "probability": 0.9556 + }, + { + "start": 723.62, + "end": 725.0, + "probability": 0.8719 + }, + { + "start": 725.7, + "end": 730.06, + "probability": 0.9274 + }, + { + "start": 732.65, + "end": 736.1, + "probability": 0.9907 + }, + { + "start": 736.92, + "end": 737.42, + "probability": 0.9719 + }, + { + "start": 738.06, + "end": 740.34, + "probability": 0.9793 + }, + { + "start": 741.02, + "end": 742.52, + "probability": 0.676 + }, + { + "start": 743.1, + "end": 744.9, + "probability": 0.9258 + }, + { + "start": 745.14, + "end": 745.48, + "probability": 0.6306 + }, + { + "start": 745.9, + "end": 747.88, + "probability": 0.9987 + }, + { + "start": 748.7, + "end": 749.92, + "probability": 0.8922 + }, + { + "start": 750.46, + "end": 755.58, + "probability": 0.9824 + }, + { + "start": 756.06, + "end": 762.64, + "probability": 0.9595 + }, + { + "start": 762.96, + "end": 765.85, + "probability": 0.5903 + }, + { + "start": 767.1, + "end": 771.26, + "probability": 0.8932 + }, + { + "start": 772.22, + "end": 774.82, + "probability": 0.5314 + }, + { + "start": 775.18, + "end": 775.8, + "probability": 0.8057 + }, + { + "start": 776.4, + "end": 778.36, + "probability": 0.9514 + }, + { + "start": 781.16, + "end": 784.4, + "probability": 0.7401 + }, + { + "start": 786.14, + "end": 790.76, + "probability": 0.9679 + }, + { + "start": 792.08, + "end": 795.12, + "probability": 0.8459 + }, + { + "start": 796.44, + "end": 799.88, + "probability": 0.9966 + }, + { + "start": 801.38, + "end": 802.12, + "probability": 0.8593 + }, + { + "start": 802.68, + "end": 804.9, + "probability": 0.8946 + }, + { + "start": 805.78, + "end": 814.26, + "probability": 0.9056 + }, + { + "start": 815.1, + "end": 818.16, + "probability": 0.9715 + }, + { + "start": 820.14, + "end": 822.22, + "probability": 0.7871 + }, + { + "start": 823.04, + "end": 824.38, + "probability": 0.6267 + }, + { + "start": 825.22, + "end": 826.28, + "probability": 0.8374 + }, + { + "start": 828.72, + "end": 830.78, + "probability": 0.6335 + }, + { + "start": 831.84, + "end": 835.7, + "probability": 0.9901 + }, + { + "start": 837.54, + "end": 838.94, + "probability": 0.7145 + }, + { + "start": 839.52, + "end": 841.38, + "probability": 0.5016 + }, + { + "start": 842.68, + "end": 846.73, + "probability": 0.863 + }, + { + "start": 848.34, + "end": 851.3, + "probability": 0.9005 + }, + { + "start": 852.34, + "end": 855.82, + "probability": 0.9727 + }, + { + "start": 860.2, + "end": 860.68, + "probability": 0.8047 + }, + { + "start": 861.52, + "end": 865.74, + "probability": 0.9972 + }, + { + "start": 865.84, + "end": 869.75, + "probability": 0.9906 + }, + { + "start": 870.96, + "end": 875.86, + "probability": 0.9918 + }, + { + "start": 876.7, + "end": 877.86, + "probability": 0.9542 + }, + { + "start": 878.88, + "end": 882.04, + "probability": 0.996 + }, + { + "start": 882.04, + "end": 887.72, + "probability": 0.9924 + }, + { + "start": 890.66, + "end": 893.26, + "probability": 0.5552 + }, + { + "start": 893.9, + "end": 896.28, + "probability": 0.57 + }, + { + "start": 897.04, + "end": 899.2, + "probability": 0.5239 + }, + { + "start": 899.9, + "end": 902.52, + "probability": 0.9929 + }, + { + "start": 902.62, + "end": 905.18, + "probability": 0.8885 + }, + { + "start": 905.36, + "end": 906.0, + "probability": 0.8502 + }, + { + "start": 906.76, + "end": 910.02, + "probability": 0.1375 + }, + { + "start": 910.02, + "end": 911.86, + "probability": 0.3985 + }, + { + "start": 911.86, + "end": 915.94, + "probability": 0.7294 + }, + { + "start": 916.06, + "end": 918.22, + "probability": 0.9808 + }, + { + "start": 918.4, + "end": 920.64, + "probability": 0.8676 + }, + { + "start": 920.96, + "end": 922.98, + "probability": 0.835 + }, + { + "start": 923.62, + "end": 924.5, + "probability": 0.8398 + }, + { + "start": 925.76, + "end": 929.9, + "probability": 0.8777 + }, + { + "start": 931.88, + "end": 933.18, + "probability": 0.456 + }, + { + "start": 933.24, + "end": 934.14, + "probability": 0.4966 + }, + { + "start": 935.82, + "end": 937.8, + "probability": 0.958 + }, + { + "start": 938.82, + "end": 940.84, + "probability": 0.8856 + }, + { + "start": 941.73, + "end": 942.98, + "probability": 0.6826 + }, + { + "start": 943.32, + "end": 946.52, + "probability": 0.971 + }, + { + "start": 947.2, + "end": 950.44, + "probability": 0.9705 + }, + { + "start": 951.3, + "end": 951.62, + "probability": 0.8199 + }, + { + "start": 952.44, + "end": 952.54, + "probability": 0.6001 + }, + { + "start": 954.04, + "end": 956.1, + "probability": 0.9594 + }, + { + "start": 956.9, + "end": 958.88, + "probability": 0.9403 + }, + { + "start": 959.52, + "end": 962.7, + "probability": 0.8343 + }, + { + "start": 963.58, + "end": 964.48, + "probability": 0.9852 + }, + { + "start": 965.8, + "end": 968.76, + "probability": 0.9926 + }, + { + "start": 969.42, + "end": 971.62, + "probability": 0.8299 + }, + { + "start": 972.28, + "end": 973.48, + "probability": 0.9216 + }, + { + "start": 973.92, + "end": 974.4, + "probability": 0.5318 + }, + { + "start": 975.16, + "end": 975.48, + "probability": 0.4254 + }, + { + "start": 976.2, + "end": 976.96, + "probability": 0.5506 + }, + { + "start": 977.5, + "end": 980.12, + "probability": 0.4304 + }, + { + "start": 980.44, + "end": 981.88, + "probability": 0.5077 + }, + { + "start": 981.88, + "end": 981.94, + "probability": 0.6104 + }, + { + "start": 981.94, + "end": 983.23, + "probability": 0.6968 + }, + { + "start": 985.72, + "end": 986.32, + "probability": 0.2398 + }, + { + "start": 986.34, + "end": 990.06, + "probability": 0.6866 + }, + { + "start": 990.18, + "end": 990.96, + "probability": 0.7681 + }, + { + "start": 991.26, + "end": 992.96, + "probability": 0.9771 + }, + { + "start": 993.6, + "end": 995.9, + "probability": 0.9554 + }, + { + "start": 995.92, + "end": 996.88, + "probability": 0.6844 + }, + { + "start": 997.46, + "end": 998.4, + "probability": 0.8979 + }, + { + "start": 1000.01, + "end": 1000.22, + "probability": 0.1601 + }, + { + "start": 1000.22, + "end": 1000.22, + "probability": 0.0409 + }, + { + "start": 1000.22, + "end": 1000.98, + "probability": 0.2439 + }, + { + "start": 1000.98, + "end": 1002.05, + "probability": 0.5455 + }, + { + "start": 1002.88, + "end": 1005.08, + "probability": 0.8116 + }, + { + "start": 1005.36, + "end": 1008.68, + "probability": 0.6527 + }, + { + "start": 1010.22, + "end": 1013.42, + "probability": 0.6069 + }, + { + "start": 1013.52, + "end": 1014.02, + "probability": 0.6953 + }, + { + "start": 1015.44, + "end": 1016.04, + "probability": 0.8444 + }, + { + "start": 1016.6, + "end": 1017.68, + "probability": 0.9918 + }, + { + "start": 1018.4, + "end": 1019.14, + "probability": 0.9056 + }, + { + "start": 1019.42, + "end": 1020.34, + "probability": 0.999 + }, + { + "start": 1021.16, + "end": 1021.74, + "probability": 0.9653 + }, + { + "start": 1022.22, + "end": 1023.24, + "probability": 0.9868 + }, + { + "start": 1023.98, + "end": 1027.28, + "probability": 0.6497 + }, + { + "start": 1030.8, + "end": 1030.8, + "probability": 0.0113 + }, + { + "start": 1030.8, + "end": 1030.8, + "probability": 0.0415 + }, + { + "start": 1030.8, + "end": 1031.32, + "probability": 0.0184 + }, + { + "start": 1031.32, + "end": 1031.32, + "probability": 0.129 + }, + { + "start": 1031.32, + "end": 1032.6, + "probability": 0.5167 + }, + { + "start": 1032.96, + "end": 1035.42, + "probability": 0.5822 + }, + { + "start": 1036.06, + "end": 1036.6, + "probability": 0.4457 + }, + { + "start": 1036.78, + "end": 1038.74, + "probability": 0.7123 + }, + { + "start": 1038.84, + "end": 1039.6, + "probability": 0.7571 + }, + { + "start": 1040.38, + "end": 1041.77, + "probability": 0.6025 + }, + { + "start": 1042.24, + "end": 1044.38, + "probability": 0.7938 + }, + { + "start": 1044.46, + "end": 1046.92, + "probability": 0.6517 + }, + { + "start": 1047.02, + "end": 1047.74, + "probability": 0.9678 + }, + { + "start": 1048.18, + "end": 1048.8, + "probability": 0.2773 + }, + { + "start": 1048.8, + "end": 1049.22, + "probability": 0.1873 + }, + { + "start": 1049.3, + "end": 1050.72, + "probability": 0.6199 + }, + { + "start": 1050.86, + "end": 1054.08, + "probability": 0.9544 + }, + { + "start": 1054.08, + "end": 1058.15, + "probability": 0.988 + }, + { + "start": 1059.8, + "end": 1060.08, + "probability": 0.9496 + }, + { + "start": 1060.56, + "end": 1061.76, + "probability": 0.833 + }, + { + "start": 1061.96, + "end": 1063.18, + "probability": 0.8226 + }, + { + "start": 1063.26, + "end": 1065.04, + "probability": 0.582 + }, + { + "start": 1065.2, + "end": 1065.82, + "probability": 0.8682 + }, + { + "start": 1066.5, + "end": 1067.6, + "probability": 0.8367 + }, + { + "start": 1068.16, + "end": 1070.33, + "probability": 0.9902 + }, + { + "start": 1070.98, + "end": 1073.28, + "probability": 0.9824 + }, + { + "start": 1074.04, + "end": 1077.54, + "probability": 0.9502 + }, + { + "start": 1078.94, + "end": 1079.8, + "probability": 0.3519 + }, + { + "start": 1079.8, + "end": 1079.8, + "probability": 0.5846 + }, + { + "start": 1079.8, + "end": 1082.32, + "probability": 0.71 + }, + { + "start": 1082.4, + "end": 1083.24, + "probability": 0.6467 + }, + { + "start": 1083.28, + "end": 1083.74, + "probability": 0.4234 + }, + { + "start": 1083.74, + "end": 1086.76, + "probability": 0.9431 + }, + { + "start": 1087.34, + "end": 1091.08, + "probability": 0.991 + }, + { + "start": 1091.48, + "end": 1093.18, + "probability": 0.8827 + }, + { + "start": 1093.76, + "end": 1094.22, + "probability": 0.7038 + }, + { + "start": 1095.06, + "end": 1096.0, + "probability": 0.1749 + }, + { + "start": 1096.3, + "end": 1097.72, + "probability": 0.5659 + }, + { + "start": 1099.02, + "end": 1104.4, + "probability": 0.7722 + }, + { + "start": 1106.76, + "end": 1108.14, + "probability": 0.7195 + }, + { + "start": 1108.4, + "end": 1109.1, + "probability": 0.3688 + }, + { + "start": 1109.48, + "end": 1111.82, + "probability": 0.849 + }, + { + "start": 1112.56, + "end": 1114.88, + "probability": 0.87 + }, + { + "start": 1115.2, + "end": 1116.52, + "probability": 0.9293 + }, + { + "start": 1117.12, + "end": 1121.14, + "probability": 0.9951 + }, + { + "start": 1121.52, + "end": 1125.18, + "probability": 0.6127 + }, + { + "start": 1125.56, + "end": 1126.36, + "probability": 0.2728 + }, + { + "start": 1126.66, + "end": 1128.62, + "probability": 0.197 + }, + { + "start": 1131.42, + "end": 1131.94, + "probability": 0.4986 + }, + { + "start": 1135.14, + "end": 1137.38, + "probability": 0.4281 + }, + { + "start": 1137.5, + "end": 1138.4, + "probability": 0.6318 + }, + { + "start": 1138.58, + "end": 1140.62, + "probability": 0.9216 + }, + { + "start": 1140.92, + "end": 1141.12, + "probability": 0.4409 + }, + { + "start": 1141.2, + "end": 1143.22, + "probability": 0.5423 + }, + { + "start": 1143.82, + "end": 1144.48, + "probability": 0.572 + }, + { + "start": 1144.48, + "end": 1147.98, + "probability": 0.761 + }, + { + "start": 1148.54, + "end": 1151.22, + "probability": 0.699 + }, + { + "start": 1153.46, + "end": 1153.76, + "probability": 0.6618 + }, + { + "start": 1154.44, + "end": 1155.08, + "probability": 0.4887 + }, + { + "start": 1156.86, + "end": 1157.54, + "probability": 0.2373 + }, + { + "start": 1157.54, + "end": 1160.1, + "probability": 0.6091 + }, + { + "start": 1160.74, + "end": 1162.12, + "probability": 0.8555 + }, + { + "start": 1162.94, + "end": 1163.48, + "probability": 0.7606 + }, + { + "start": 1163.86, + "end": 1164.84, + "probability": 0.6854 + }, + { + "start": 1165.56, + "end": 1168.16, + "probability": 0.3673 + }, + { + "start": 1168.16, + "end": 1170.28, + "probability": 0.5506 + }, + { + "start": 1171.84, + "end": 1175.8, + "probability": 0.9301 + }, + { + "start": 1176.7, + "end": 1177.76, + "probability": 0.7098 + }, + { + "start": 1178.74, + "end": 1183.78, + "probability": 0.9452 + }, + { + "start": 1184.62, + "end": 1185.86, + "probability": 0.8146 + }, + { + "start": 1186.52, + "end": 1189.46, + "probability": 0.9359 + }, + { + "start": 1189.74, + "end": 1191.32, + "probability": 0.9791 + }, + { + "start": 1192.38, + "end": 1192.6, + "probability": 0.6679 + }, + { + "start": 1193.1, + "end": 1195.76, + "probability": 0.8753 + }, + { + "start": 1197.22, + "end": 1199.64, + "probability": 0.9717 + }, + { + "start": 1200.3, + "end": 1205.98, + "probability": 0.8406 + }, + { + "start": 1207.04, + "end": 1207.68, + "probability": 0.0957 + }, + { + "start": 1208.48, + "end": 1210.5, + "probability": 0.7572 + }, + { + "start": 1211.24, + "end": 1215.16, + "probability": 0.8704 + }, + { + "start": 1216.06, + "end": 1217.98, + "probability": 0.9716 + }, + { + "start": 1219.6, + "end": 1222.31, + "probability": 0.9954 + }, + { + "start": 1223.42, + "end": 1226.18, + "probability": 0.9695 + }, + { + "start": 1226.84, + "end": 1228.82, + "probability": 0.9966 + }, + { + "start": 1229.48, + "end": 1232.02, + "probability": 0.9137 + }, + { + "start": 1232.66, + "end": 1234.48, + "probability": 0.9001 + }, + { + "start": 1235.0, + "end": 1239.35, + "probability": 0.9945 + }, + { + "start": 1240.28, + "end": 1241.96, + "probability": 0.9909 + }, + { + "start": 1242.14, + "end": 1243.8, + "probability": 0.565 + }, + { + "start": 1244.2, + "end": 1247.9, + "probability": 0.6869 + }, + { + "start": 1249.78, + "end": 1250.04, + "probability": 0.2445 + }, + { + "start": 1250.1, + "end": 1250.68, + "probability": 0.7849 + }, + { + "start": 1250.82, + "end": 1253.38, + "probability": 0.9925 + }, + { + "start": 1253.38, + "end": 1256.52, + "probability": 0.9978 + }, + { + "start": 1257.42, + "end": 1259.6, + "probability": 0.6705 + }, + { + "start": 1260.2, + "end": 1265.26, + "probability": 0.984 + }, + { + "start": 1265.26, + "end": 1267.62, + "probability": 0.9963 + }, + { + "start": 1268.48, + "end": 1270.86, + "probability": 0.9852 + }, + { + "start": 1271.3, + "end": 1273.94, + "probability": 0.993 + }, + { + "start": 1274.34, + "end": 1278.26, + "probability": 0.9792 + }, + { + "start": 1278.96, + "end": 1280.54, + "probability": 0.8423 + }, + { + "start": 1280.62, + "end": 1284.06, + "probability": 0.9969 + }, + { + "start": 1284.52, + "end": 1288.36, + "probability": 0.9967 + }, + { + "start": 1288.5, + "end": 1293.08, + "probability": 0.9941 + }, + { + "start": 1293.32, + "end": 1293.84, + "probability": 0.7733 + }, + { + "start": 1294.16, + "end": 1295.22, + "probability": 0.7058 + }, + { + "start": 1295.32, + "end": 1298.28, + "probability": 0.9806 + }, + { + "start": 1298.58, + "end": 1301.11, + "probability": 0.997 + }, + { + "start": 1302.2, + "end": 1302.9, + "probability": 0.8947 + }, + { + "start": 1303.2, + "end": 1304.92, + "probability": 0.9988 + }, + { + "start": 1304.96, + "end": 1305.14, + "probability": 0.8085 + }, + { + "start": 1305.76, + "end": 1307.0, + "probability": 0.7876 + }, + { + "start": 1307.3, + "end": 1308.6, + "probability": 0.879 + }, + { + "start": 1309.16, + "end": 1311.26, + "probability": 0.6992 + }, + { + "start": 1311.84, + "end": 1313.6, + "probability": 0.9125 + }, + { + "start": 1314.06, + "end": 1314.84, + "probability": 0.6023 + }, + { + "start": 1315.04, + "end": 1316.04, + "probability": 0.7079 + }, + { + "start": 1316.16, + "end": 1320.72, + "probability": 0.894 + }, + { + "start": 1321.2, + "end": 1325.56, + "probability": 0.9604 + }, + { + "start": 1326.48, + "end": 1329.66, + "probability": 0.9814 + }, + { + "start": 1330.6, + "end": 1333.94, + "probability": 0.9893 + }, + { + "start": 1335.2, + "end": 1339.78, + "probability": 0.9961 + }, + { + "start": 1340.28, + "end": 1344.4, + "probability": 0.8589 + }, + { + "start": 1345.26, + "end": 1349.88, + "probability": 0.993 + }, + { + "start": 1350.92, + "end": 1352.38, + "probability": 0.9948 + }, + { + "start": 1352.66, + "end": 1354.76, + "probability": 0.36 + }, + { + "start": 1355.46, + "end": 1359.48, + "probability": 0.8506 + }, + { + "start": 1360.0, + "end": 1361.78, + "probability": 0.979 + }, + { + "start": 1363.98, + "end": 1364.82, + "probability": 0.5201 + }, + { + "start": 1365.58, + "end": 1368.96, + "probability": 0.793 + }, + { + "start": 1369.08, + "end": 1372.62, + "probability": 0.9771 + }, + { + "start": 1373.08, + "end": 1376.54, + "probability": 0.8855 + }, + { + "start": 1377.88, + "end": 1378.85, + "probability": 0.9844 + }, + { + "start": 1379.76, + "end": 1380.92, + "probability": 0.7299 + }, + { + "start": 1381.72, + "end": 1384.52, + "probability": 0.9756 + }, + { + "start": 1386.16, + "end": 1390.12, + "probability": 0.9883 + }, + { + "start": 1390.74, + "end": 1393.68, + "probability": 0.4241 + }, + { + "start": 1393.84, + "end": 1396.08, + "probability": 0.9971 + }, + { + "start": 1396.44, + "end": 1400.74, + "probability": 0.9705 + }, + { + "start": 1401.26, + "end": 1402.08, + "probability": 0.8649 + }, + { + "start": 1402.26, + "end": 1403.77, + "probability": 0.6289 + }, + { + "start": 1404.1, + "end": 1405.9, + "probability": 0.8879 + }, + { + "start": 1406.26, + "end": 1406.61, + "probability": 0.9196 + }, + { + "start": 1408.58, + "end": 1411.7, + "probability": 0.8535 + }, + { + "start": 1412.18, + "end": 1413.5, + "probability": 0.9824 + }, + { + "start": 1413.76, + "end": 1416.23, + "probability": 0.8782 + }, + { + "start": 1416.88, + "end": 1419.26, + "probability": 0.9156 + }, + { + "start": 1420.36, + "end": 1424.42, + "probability": 0.9582 + }, + { + "start": 1425.68, + "end": 1429.42, + "probability": 0.9346 + }, + { + "start": 1429.56, + "end": 1430.58, + "probability": 0.5777 + }, + { + "start": 1431.24, + "end": 1433.7, + "probability": 0.9076 + }, + { + "start": 1434.14, + "end": 1435.5, + "probability": 0.9105 + }, + { + "start": 1435.58, + "end": 1436.34, + "probability": 0.7157 + }, + { + "start": 1436.76, + "end": 1438.48, + "probability": 0.9846 + }, + { + "start": 1438.48, + "end": 1440.7, + "probability": 0.9912 + }, + { + "start": 1441.28, + "end": 1442.28, + "probability": 0.763 + }, + { + "start": 1442.7, + "end": 1443.94, + "probability": 0.6794 + }, + { + "start": 1444.56, + "end": 1445.7, + "probability": 0.8282 + }, + { + "start": 1446.78, + "end": 1450.5, + "probability": 0.9816 + }, + { + "start": 1451.14, + "end": 1453.97, + "probability": 0.8078 + }, + { + "start": 1455.56, + "end": 1456.54, + "probability": 0.6266 + }, + { + "start": 1456.82, + "end": 1458.92, + "probability": 0.9773 + }, + { + "start": 1459.48, + "end": 1460.02, + "probability": 0.4696 + }, + { + "start": 1460.34, + "end": 1463.02, + "probability": 0.9827 + }, + { + "start": 1463.64, + "end": 1464.18, + "probability": 0.7928 + }, + { + "start": 1465.04, + "end": 1470.1, + "probability": 0.7954 + }, + { + "start": 1471.22, + "end": 1472.23, + "probability": 0.9165 + }, + { + "start": 1473.08, + "end": 1473.84, + "probability": 0.5211 + }, + { + "start": 1474.38, + "end": 1475.74, + "probability": 0.9146 + }, + { + "start": 1476.54, + "end": 1480.04, + "probability": 0.8599 + }, + { + "start": 1480.4, + "end": 1483.22, + "probability": 0.915 + }, + { + "start": 1484.08, + "end": 1486.54, + "probability": 0.6101 + }, + { + "start": 1488.08, + "end": 1488.7, + "probability": 0.921 + }, + { + "start": 1489.62, + "end": 1492.52, + "probability": 0.8241 + }, + { + "start": 1493.72, + "end": 1497.1, + "probability": 0.9771 + }, + { + "start": 1498.1, + "end": 1500.4, + "probability": 0.8358 + }, + { + "start": 1502.06, + "end": 1505.1, + "probability": 0.8399 + }, + { + "start": 1506.76, + "end": 1510.92, + "probability": 0.9673 + }, + { + "start": 1511.88, + "end": 1517.86, + "probability": 0.966 + }, + { + "start": 1518.0, + "end": 1519.52, + "probability": 0.9568 + }, + { + "start": 1520.04, + "end": 1525.18, + "probability": 0.8831 + }, + { + "start": 1525.3, + "end": 1528.68, + "probability": 0.9614 + }, + { + "start": 1530.34, + "end": 1531.26, + "probability": 0.8 + }, + { + "start": 1531.32, + "end": 1533.16, + "probability": 0.6684 + }, + { + "start": 1533.44, + "end": 1535.02, + "probability": 0.5796 + }, + { + "start": 1535.06, + "end": 1537.29, + "probability": 0.9723 + }, + { + "start": 1537.8, + "end": 1540.28, + "probability": 0.9907 + }, + { + "start": 1540.5, + "end": 1541.2, + "probability": 0.9053 + }, + { + "start": 1542.1, + "end": 1544.1, + "probability": 0.8731 + }, + { + "start": 1545.0, + "end": 1545.96, + "probability": 0.9838 + }, + { + "start": 1546.28, + "end": 1546.9, + "probability": 0.8144 + }, + { + "start": 1547.22, + "end": 1548.02, + "probability": 0.9698 + }, + { + "start": 1548.46, + "end": 1549.14, + "probability": 0.7468 + }, + { + "start": 1549.3, + "end": 1549.76, + "probability": 0.9778 + }, + { + "start": 1550.54, + "end": 1551.4, + "probability": 0.8783 + }, + { + "start": 1551.64, + "end": 1551.92, + "probability": 0.8864 + }, + { + "start": 1551.98, + "end": 1556.98, + "probability": 0.9941 + }, + { + "start": 1557.4, + "end": 1559.6, + "probability": 0.9919 + }, + { + "start": 1560.08, + "end": 1561.94, + "probability": 0.7957 + }, + { + "start": 1562.5, + "end": 1565.02, + "probability": 0.4822 + }, + { + "start": 1565.5, + "end": 1568.68, + "probability": 0.985 + }, + { + "start": 1569.5, + "end": 1572.84, + "probability": 0.9857 + }, + { + "start": 1573.86, + "end": 1574.16, + "probability": 0.6999 + }, + { + "start": 1574.44, + "end": 1575.0, + "probability": 0.7487 + }, + { + "start": 1575.72, + "end": 1577.4, + "probability": 0.6604 + }, + { + "start": 1578.24, + "end": 1578.58, + "probability": 0.9581 + }, + { + "start": 1579.38, + "end": 1580.86, + "probability": 0.8898 + }, + { + "start": 1580.98, + "end": 1583.27, + "probability": 0.7446 + }, + { + "start": 1583.86, + "end": 1584.76, + "probability": 0.6383 + }, + { + "start": 1585.32, + "end": 1585.7, + "probability": 0.4247 + }, + { + "start": 1585.74, + "end": 1586.2, + "probability": 0.5204 + }, + { + "start": 1586.74, + "end": 1590.1, + "probability": 0.8479 + }, + { + "start": 1590.44, + "end": 1592.42, + "probability": 0.7115 + }, + { + "start": 1593.28, + "end": 1597.78, + "probability": 0.9478 + }, + { + "start": 1597.78, + "end": 1601.8, + "probability": 0.9952 + }, + { + "start": 1601.92, + "end": 1602.82, + "probability": 0.9065 + }, + { + "start": 1603.44, + "end": 1605.2, + "probability": 0.7493 + }, + { + "start": 1605.74, + "end": 1608.36, + "probability": 0.9863 + }, + { + "start": 1608.92, + "end": 1612.56, + "probability": 0.9909 + }, + { + "start": 1612.56, + "end": 1615.76, + "probability": 0.9967 + }, + { + "start": 1616.14, + "end": 1619.68, + "probability": 0.9658 + }, + { + "start": 1620.34, + "end": 1621.78, + "probability": 0.9894 + }, + { + "start": 1621.98, + "end": 1624.24, + "probability": 0.7374 + }, + { + "start": 1624.32, + "end": 1624.72, + "probability": 0.723 + }, + { + "start": 1625.56, + "end": 1629.06, + "probability": 0.6917 + }, + { + "start": 1629.56, + "end": 1633.86, + "probability": 0.9131 + }, + { + "start": 1634.3, + "end": 1635.62, + "probability": 0.9736 + }, + { + "start": 1635.98, + "end": 1640.7, + "probability": 0.9824 + }, + { + "start": 1641.6, + "end": 1643.84, + "probability": 0.8105 + }, + { + "start": 1644.32, + "end": 1648.1, + "probability": 0.9893 + }, + { + "start": 1648.1, + "end": 1652.64, + "probability": 0.9974 + }, + { + "start": 1652.66, + "end": 1656.48, + "probability": 0.7561 + }, + { + "start": 1657.18, + "end": 1659.74, + "probability": 0.9244 + }, + { + "start": 1660.06, + "end": 1664.1, + "probability": 0.9193 + }, + { + "start": 1664.1, + "end": 1667.4, + "probability": 0.9891 + }, + { + "start": 1667.92, + "end": 1668.44, + "probability": 0.6701 + }, + { + "start": 1668.82, + "end": 1672.4, + "probability": 0.73 + }, + { + "start": 1673.88, + "end": 1674.58, + "probability": 0.5989 + }, + { + "start": 1674.84, + "end": 1681.42, + "probability": 0.8929 + }, + { + "start": 1681.7, + "end": 1682.14, + "probability": 0.7499 + }, + { + "start": 1685.9, + "end": 1687.72, + "probability": 0.6604 + }, + { + "start": 1687.72, + "end": 1688.72, + "probability": 0.661 + }, + { + "start": 1689.86, + "end": 1691.26, + "probability": 0.8026 + }, + { + "start": 1691.38, + "end": 1693.48, + "probability": 0.9754 + }, + { + "start": 1693.6, + "end": 1695.58, + "probability": 0.8115 + }, + { + "start": 1696.42, + "end": 1698.8, + "probability": 0.9124 + }, + { + "start": 1699.88, + "end": 1702.4, + "probability": 0.9272 + }, + { + "start": 1702.88, + "end": 1706.56, + "probability": 0.7955 + }, + { + "start": 1707.26, + "end": 1707.42, + "probability": 0.8091 + }, + { + "start": 1707.54, + "end": 1708.02, + "probability": 0.732 + }, + { + "start": 1708.16, + "end": 1712.04, + "probability": 0.9888 + }, + { + "start": 1713.02, + "end": 1717.96, + "probability": 0.9928 + }, + { + "start": 1718.64, + "end": 1720.5, + "probability": 0.9041 + }, + { + "start": 1721.18, + "end": 1721.96, + "probability": 0.4949 + }, + { + "start": 1722.64, + "end": 1723.38, + "probability": 0.785 + }, + { + "start": 1724.16, + "end": 1726.32, + "probability": 0.902 + }, + { + "start": 1726.92, + "end": 1728.62, + "probability": 0.9954 + }, + { + "start": 1729.6, + "end": 1731.02, + "probability": 0.8118 + }, + { + "start": 1731.26, + "end": 1731.46, + "probability": 0.3859 + }, + { + "start": 1732.7, + "end": 1734.14, + "probability": 0.5443 + }, + { + "start": 1735.06, + "end": 1738.22, + "probability": 0.9382 + }, + { + "start": 1738.54, + "end": 1739.08, + "probability": 0.6439 + }, + { + "start": 1740.0, + "end": 1740.6, + "probability": 0.0211 + }, + { + "start": 1741.85, + "end": 1742.94, + "probability": 0.9878 + }, + { + "start": 1747.42, + "end": 1747.86, + "probability": 0.4357 + }, + { + "start": 1749.04, + "end": 1751.45, + "probability": 0.8057 + }, + { + "start": 1752.43, + "end": 1755.92, + "probability": 0.7477 + }, + { + "start": 1757.08, + "end": 1761.06, + "probability": 0.7384 + }, + { + "start": 1763.14, + "end": 1765.76, + "probability": 0.9248 + }, + { + "start": 1765.76, + "end": 1768.68, + "probability": 0.7042 + }, + { + "start": 1768.92, + "end": 1771.58, + "probability": 0.605 + }, + { + "start": 1772.82, + "end": 1773.04, + "probability": 0.3948 + }, + { + "start": 1773.1, + "end": 1777.26, + "probability": 0.9966 + }, + { + "start": 1778.34, + "end": 1780.34, + "probability": 0.6643 + }, + { + "start": 1780.48, + "end": 1783.18, + "probability": 0.9844 + }, + { + "start": 1784.56, + "end": 1790.14, + "probability": 0.9876 + }, + { + "start": 1791.28, + "end": 1795.82, + "probability": 0.8605 + }, + { + "start": 1796.7, + "end": 1798.88, + "probability": 0.9751 + }, + { + "start": 1799.7, + "end": 1801.1, + "probability": 0.7466 + }, + { + "start": 1801.78, + "end": 1802.96, + "probability": 0.9726 + }, + { + "start": 1805.36, + "end": 1805.78, + "probability": 0.7555 + }, + { + "start": 1806.92, + "end": 1807.78, + "probability": 0.3874 + }, + { + "start": 1808.08, + "end": 1808.18, + "probability": 0.3017 + }, + { + "start": 1809.52, + "end": 1810.34, + "probability": 0.7833 + }, + { + "start": 1811.56, + "end": 1812.54, + "probability": 0.859 + }, + { + "start": 1813.94, + "end": 1818.26, + "probability": 0.9968 + }, + { + "start": 1818.26, + "end": 1821.6, + "probability": 0.9968 + }, + { + "start": 1822.36, + "end": 1824.94, + "probability": 0.9992 + }, + { + "start": 1825.7, + "end": 1827.82, + "probability": 0.9902 + }, + { + "start": 1827.92, + "end": 1829.94, + "probability": 0.9964 + }, + { + "start": 1830.02, + "end": 1830.66, + "probability": 0.6705 + }, + { + "start": 1831.58, + "end": 1837.24, + "probability": 0.9768 + }, + { + "start": 1837.9, + "end": 1840.92, + "probability": 0.8427 + }, + { + "start": 1841.5, + "end": 1844.52, + "probability": 0.9709 + }, + { + "start": 1844.66, + "end": 1849.96, + "probability": 0.9741 + }, + { + "start": 1850.5, + "end": 1854.1, + "probability": 0.9959 + }, + { + "start": 1854.72, + "end": 1855.06, + "probability": 0.5929 + }, + { + "start": 1855.14, + "end": 1855.74, + "probability": 0.5161 + }, + { + "start": 1855.82, + "end": 1857.76, + "probability": 0.7851 + }, + { + "start": 1858.1, + "end": 1859.28, + "probability": 0.9971 + }, + { + "start": 1860.56, + "end": 1864.73, + "probability": 0.9277 + }, + { + "start": 1865.24, + "end": 1867.6, + "probability": 0.9489 + }, + { + "start": 1868.38, + "end": 1869.7, + "probability": 0.9884 + }, + { + "start": 1870.28, + "end": 1871.58, + "probability": 0.7127 + }, + { + "start": 1872.64, + "end": 1873.24, + "probability": 0.6605 + }, + { + "start": 1873.94, + "end": 1875.1, + "probability": 0.8652 + }, + { + "start": 1876.8, + "end": 1877.88, + "probability": 0.4819 + }, + { + "start": 1879.22, + "end": 1879.66, + "probability": 0.5094 + }, + { + "start": 1879.74, + "end": 1880.42, + "probability": 0.719 + }, + { + "start": 1881.04, + "end": 1881.24, + "probability": 0.6544 + }, + { + "start": 1882.96, + "end": 1885.54, + "probability": 0.8414 + }, + { + "start": 1886.86, + "end": 1889.78, + "probability": 0.9787 + }, + { + "start": 1891.08, + "end": 1892.16, + "probability": 0.9969 + }, + { + "start": 1893.24, + "end": 1894.98, + "probability": 0.9656 + }, + { + "start": 1895.78, + "end": 1897.88, + "probability": 0.8846 + }, + { + "start": 1898.82, + "end": 1899.86, + "probability": 0.6388 + }, + { + "start": 1900.26, + "end": 1902.1, + "probability": 0.8248 + }, + { + "start": 1902.84, + "end": 1904.32, + "probability": 0.9895 + }, + { + "start": 1905.54, + "end": 1906.04, + "probability": 0.9962 + }, + { + "start": 1906.9, + "end": 1909.26, + "probability": 0.8618 + }, + { + "start": 1909.84, + "end": 1910.78, + "probability": 0.9988 + }, + { + "start": 1911.32, + "end": 1913.16, + "probability": 0.9803 + }, + { + "start": 1913.74, + "end": 1915.24, + "probability": 0.7935 + }, + { + "start": 1916.44, + "end": 1917.82, + "probability": 0.8748 + }, + { + "start": 1918.76, + "end": 1919.5, + "probability": 0.9971 + }, + { + "start": 1920.98, + "end": 1923.88, + "probability": 0.987 + }, + { + "start": 1924.18, + "end": 1924.72, + "probability": 0.9832 + }, + { + "start": 1925.92, + "end": 1926.61, + "probability": 0.7123 + }, + { + "start": 1927.46, + "end": 1930.44, + "probability": 0.9966 + }, + { + "start": 1930.66, + "end": 1931.78, + "probability": 0.7357 + }, + { + "start": 1932.62, + "end": 1934.2, + "probability": 0.9937 + }, + { + "start": 1934.66, + "end": 1934.86, + "probability": 0.9817 + }, + { + "start": 1935.24, + "end": 1935.66, + "probability": 0.7432 + }, + { + "start": 1936.64, + "end": 1937.86, + "probability": 0.7832 + }, + { + "start": 1938.06, + "end": 1939.96, + "probability": 0.9912 + }, + { + "start": 1940.84, + "end": 1942.54, + "probability": 0.9913 + }, + { + "start": 1942.84, + "end": 1943.2, + "probability": 0.7476 + }, + { + "start": 1943.56, + "end": 1944.14, + "probability": 0.8356 + }, + { + "start": 1945.1, + "end": 1946.16, + "probability": 0.9607 + }, + { + "start": 1946.26, + "end": 1947.58, + "probability": 0.7202 + }, + { + "start": 1949.6, + "end": 1950.24, + "probability": 0.999 + }, + { + "start": 1954.42, + "end": 1955.68, + "probability": 0.8525 + }, + { + "start": 1956.42, + "end": 1957.64, + "probability": 0.6125 + }, + { + "start": 1958.46, + "end": 1959.88, + "probability": 0.7701 + }, + { + "start": 1960.32, + "end": 1964.04, + "probability": 0.8169 + }, + { + "start": 1964.06, + "end": 1965.75, + "probability": 0.9321 + }, + { + "start": 1966.86, + "end": 1968.32, + "probability": 0.6434 + }, + { + "start": 1969.04, + "end": 1970.72, + "probability": 0.8644 + }, + { + "start": 1971.24, + "end": 1977.94, + "probability": 0.9944 + }, + { + "start": 1978.52, + "end": 1980.94, + "probability": 0.9954 + }, + { + "start": 1980.94, + "end": 1983.0, + "probability": 0.9992 + }, + { + "start": 1983.52, + "end": 1983.96, + "probability": 0.931 + }, + { + "start": 1984.22, + "end": 1985.12, + "probability": 0.8515 + }, + { + "start": 1985.3, + "end": 1987.12, + "probability": 0.9883 + }, + { + "start": 1988.36, + "end": 1993.62, + "probability": 0.9893 + }, + { + "start": 1993.76, + "end": 1997.58, + "probability": 0.9925 + }, + { + "start": 1998.38, + "end": 2001.94, + "probability": 0.9552 + }, + { + "start": 2002.58, + "end": 2005.14, + "probability": 0.8723 + }, + { + "start": 2005.34, + "end": 2010.08, + "probability": 0.9863 + }, + { + "start": 2010.42, + "end": 2011.08, + "probability": 0.9782 + }, + { + "start": 2011.76, + "end": 2012.5, + "probability": 0.9076 + }, + { + "start": 2013.62, + "end": 2017.48, + "probability": 0.1391 + }, + { + "start": 2017.48, + "end": 2019.48, + "probability": 0.9405 + }, + { + "start": 2019.48, + "end": 2023.26, + "probability": 0.9971 + }, + { + "start": 2023.36, + "end": 2025.2, + "probability": 0.8989 + }, + { + "start": 2025.34, + "end": 2028.42, + "probability": 0.9028 + }, + { + "start": 2028.82, + "end": 2029.16, + "probability": 0.0548 + }, + { + "start": 2029.16, + "end": 2030.66, + "probability": 0.704 + }, + { + "start": 2031.02, + "end": 2033.06, + "probability": 0.9347 + }, + { + "start": 2033.44, + "end": 2035.14, + "probability": 0.8169 + }, + { + "start": 2035.54, + "end": 2039.52, + "probability": 0.9008 + }, + { + "start": 2039.62, + "end": 2041.26, + "probability": 0.8297 + }, + { + "start": 2041.94, + "end": 2042.14, + "probability": 0.6426 + }, + { + "start": 2042.48, + "end": 2044.52, + "probability": 0.3562 + }, + { + "start": 2044.52, + "end": 2046.32, + "probability": 0.8049 + }, + { + "start": 2046.88, + "end": 2047.99, + "probability": 0.9907 + }, + { + "start": 2049.0, + "end": 2050.56, + "probability": 0.7944 + }, + { + "start": 2050.58, + "end": 2051.64, + "probability": 0.7519 + }, + { + "start": 2053.12, + "end": 2054.84, + "probability": 0.9966 + }, + { + "start": 2055.78, + "end": 2057.46, + "probability": 0.5334 + }, + { + "start": 2059.54, + "end": 2060.24, + "probability": 0.6582 + }, + { + "start": 2060.3, + "end": 2061.22, + "probability": 0.7518 + }, + { + "start": 2061.32, + "end": 2061.76, + "probability": 0.3955 + }, + { + "start": 2061.8, + "end": 2064.12, + "probability": 0.8306 + }, + { + "start": 2065.36, + "end": 2069.7, + "probability": 0.9728 + }, + { + "start": 2070.12, + "end": 2074.06, + "probability": 0.9967 + }, + { + "start": 2074.2, + "end": 2075.58, + "probability": 0.9829 + }, + { + "start": 2076.74, + "end": 2080.82, + "probability": 0.9541 + }, + { + "start": 2081.34, + "end": 2086.04, + "probability": 0.917 + }, + { + "start": 2086.5, + "end": 2088.56, + "probability": 0.6362 + }, + { + "start": 2089.12, + "end": 2089.66, + "probability": 0.9371 + }, + { + "start": 2090.34, + "end": 2090.84, + "probability": 0.353 + }, + { + "start": 2090.9, + "end": 2094.16, + "probability": 0.8354 + }, + { + "start": 2094.62, + "end": 2095.37, + "probability": 0.7925 + }, + { + "start": 2095.68, + "end": 2099.2, + "probability": 0.7657 + }, + { + "start": 2099.28, + "end": 2100.66, + "probability": 0.5659 + }, + { + "start": 2101.32, + "end": 2102.26, + "probability": 0.8338 + }, + { + "start": 2103.62, + "end": 2104.12, + "probability": 0.7538 + }, + { + "start": 2104.22, + "end": 2105.86, + "probability": 0.8566 + }, + { + "start": 2105.94, + "end": 2108.32, + "probability": 0.9059 + }, + { + "start": 2109.16, + "end": 2110.72, + "probability": 0.772 + }, + { + "start": 2110.96, + "end": 2111.88, + "probability": 0.5712 + }, + { + "start": 2111.92, + "end": 2113.4, + "probability": 0.6783 + }, + { + "start": 2113.5, + "end": 2116.66, + "probability": 0.8838 + }, + { + "start": 2117.14, + "end": 2121.06, + "probability": 0.9959 + }, + { + "start": 2121.62, + "end": 2124.78, + "probability": 0.9702 + }, + { + "start": 2125.18, + "end": 2126.5, + "probability": 0.5418 + }, + { + "start": 2126.62, + "end": 2127.77, + "probability": 0.9727 + }, + { + "start": 2128.34, + "end": 2128.92, + "probability": 0.6962 + }, + { + "start": 2129.5, + "end": 2131.78, + "probability": 0.9607 + }, + { + "start": 2132.54, + "end": 2136.26, + "probability": 0.9476 + }, + { + "start": 2136.88, + "end": 2138.0, + "probability": 0.9868 + }, + { + "start": 2138.6, + "end": 2138.8, + "probability": 0.9994 + }, + { + "start": 2139.52, + "end": 2140.22, + "probability": 0.8454 + }, + { + "start": 2142.1, + "end": 2142.82, + "probability": 0.1544 + }, + { + "start": 2143.44, + "end": 2145.22, + "probability": 0.3134 + }, + { + "start": 2145.8, + "end": 2146.04, + "probability": 0.4976 + }, + { + "start": 2147.0, + "end": 2148.7, + "probability": 0.4611 + }, + { + "start": 2148.76, + "end": 2150.5, + "probability": 0.366 + }, + { + "start": 2150.62, + "end": 2151.76, + "probability": 0.614 + }, + { + "start": 2152.3, + "end": 2159.04, + "probability": 0.699 + }, + { + "start": 2159.94, + "end": 2161.04, + "probability": 0.913 + }, + { + "start": 2161.82, + "end": 2162.18, + "probability": 0.3524 + }, + { + "start": 2162.24, + "end": 2165.64, + "probability": 0.9303 + }, + { + "start": 2166.0, + "end": 2167.54, + "probability": 0.92 + }, + { + "start": 2168.3, + "end": 2169.92, + "probability": 0.8939 + }, + { + "start": 2170.46, + "end": 2173.72, + "probability": 0.9753 + }, + { + "start": 2174.48, + "end": 2176.42, + "probability": 0.9681 + }, + { + "start": 2177.46, + "end": 2178.84, + "probability": 0.7515 + }, + { + "start": 2179.74, + "end": 2181.88, + "probability": 0.5078 + }, + { + "start": 2182.62, + "end": 2185.58, + "probability": 0.8537 + }, + { + "start": 2186.2, + "end": 2187.44, + "probability": 0.9703 + }, + { + "start": 2187.76, + "end": 2194.54, + "probability": 0.9499 + }, + { + "start": 2195.1, + "end": 2196.8, + "probability": 0.8701 + }, + { + "start": 2196.94, + "end": 2201.94, + "probability": 0.9781 + }, + { + "start": 2202.02, + "end": 2205.44, + "probability": 0.994 + }, + { + "start": 2205.76, + "end": 2207.88, + "probability": 0.9391 + }, + { + "start": 2208.5, + "end": 2210.14, + "probability": 0.6921 + }, + { + "start": 2210.76, + "end": 2212.72, + "probability": 0.8589 + }, + { + "start": 2212.9, + "end": 2213.56, + "probability": 0.6627 + }, + { + "start": 2213.7, + "end": 2215.9, + "probability": 0.9098 + }, + { + "start": 2216.06, + "end": 2220.0, + "probability": 0.9924 + }, + { + "start": 2220.86, + "end": 2222.73, + "probability": 0.8201 + }, + { + "start": 2223.82, + "end": 2228.99, + "probability": 0.9773 + }, + { + "start": 2229.66, + "end": 2232.0, + "probability": 0.9979 + }, + { + "start": 2232.76, + "end": 2235.12, + "probability": 0.9979 + }, + { + "start": 2235.72, + "end": 2237.2, + "probability": 0.9911 + }, + { + "start": 2237.94, + "end": 2239.14, + "probability": 0.9513 + }, + { + "start": 2239.38, + "end": 2239.86, + "probability": 0.9626 + }, + { + "start": 2239.96, + "end": 2241.1, + "probability": 0.8782 + }, + { + "start": 2242.52, + "end": 2245.84, + "probability": 0.9863 + }, + { + "start": 2246.12, + "end": 2246.92, + "probability": 0.8587 + }, + { + "start": 2247.16, + "end": 2248.56, + "probability": 0.9814 + }, + { + "start": 2248.66, + "end": 2250.98, + "probability": 0.9121 + }, + { + "start": 2251.04, + "end": 2253.46, + "probability": 0.9977 + }, + { + "start": 2253.9, + "end": 2256.4, + "probability": 0.8882 + }, + { + "start": 2256.62, + "end": 2259.26, + "probability": 0.9565 + }, + { + "start": 2259.68, + "end": 2260.7, + "probability": 0.812 + }, + { + "start": 2261.26, + "end": 2263.94, + "probability": 0.999 + }, + { + "start": 2264.48, + "end": 2265.28, + "probability": 0.9231 + }, + { + "start": 2265.38, + "end": 2267.04, + "probability": 0.8896 + }, + { + "start": 2267.58, + "end": 2270.18, + "probability": 0.9886 + }, + { + "start": 2270.8, + "end": 2273.12, + "probability": 0.9869 + }, + { + "start": 2274.16, + "end": 2275.16, + "probability": 0.9178 + }, + { + "start": 2275.34, + "end": 2280.18, + "probability": 0.9921 + }, + { + "start": 2280.72, + "end": 2283.74, + "probability": 0.9945 + }, + { + "start": 2284.34, + "end": 2285.9, + "probability": 0.9827 + }, + { + "start": 2287.08, + "end": 2289.5, + "probability": 0.9916 + }, + { + "start": 2290.1, + "end": 2293.14, + "probability": 0.9865 + }, + { + "start": 2293.88, + "end": 2296.14, + "probability": 0.4137 + }, + { + "start": 2296.5, + "end": 2303.08, + "probability": 0.799 + }, + { + "start": 2303.28, + "end": 2304.14, + "probability": 0.6319 + }, + { + "start": 2304.22, + "end": 2305.0, + "probability": 0.743 + }, + { + "start": 2305.92, + "end": 2306.94, + "probability": 0.9347 + }, + { + "start": 2307.46, + "end": 2309.08, + "probability": 0.9777 + }, + { + "start": 2309.8, + "end": 2312.06, + "probability": 0.9312 + }, + { + "start": 2312.62, + "end": 2315.04, + "probability": 0.8047 + }, + { + "start": 2315.8, + "end": 2316.6, + "probability": 0.9528 + }, + { + "start": 2317.8, + "end": 2318.94, + "probability": 0.8167 + }, + { + "start": 2319.32, + "end": 2321.48, + "probability": 0.9656 + }, + { + "start": 2323.32, + "end": 2326.22, + "probability": 0.6556 + }, + { + "start": 2326.86, + "end": 2331.04, + "probability": 0.9281 + }, + { + "start": 2331.62, + "end": 2335.96, + "probability": 0.9949 + }, + { + "start": 2338.03, + "end": 2342.06, + "probability": 0.9989 + }, + { + "start": 2342.06, + "end": 2347.08, + "probability": 0.999 + }, + { + "start": 2347.44, + "end": 2348.7, + "probability": 0.8868 + }, + { + "start": 2350.02, + "end": 2353.62, + "probability": 0.9912 + }, + { + "start": 2354.26, + "end": 2356.1, + "probability": 0.9976 + }, + { + "start": 2356.86, + "end": 2362.26, + "probability": 0.9797 + }, + { + "start": 2363.22, + "end": 2363.6, + "probability": 0.5281 + }, + { + "start": 2365.12, + "end": 2366.46, + "probability": 0.9944 + }, + { + "start": 2367.88, + "end": 2370.88, + "probability": 0.7995 + }, + { + "start": 2371.28, + "end": 2373.59, + "probability": 0.9878 + }, + { + "start": 2374.5, + "end": 2379.78, + "probability": 0.8499 + }, + { + "start": 2380.28, + "end": 2382.36, + "probability": 0.7676 + }, + { + "start": 2383.1, + "end": 2388.3, + "probability": 0.8732 + }, + { + "start": 2388.92, + "end": 2391.86, + "probability": 0.8546 + }, + { + "start": 2392.68, + "end": 2394.0, + "probability": 0.9946 + }, + { + "start": 2394.54, + "end": 2395.82, + "probability": 0.9482 + }, + { + "start": 2396.48, + "end": 2397.74, + "probability": 0.9537 + }, + { + "start": 2398.34, + "end": 2399.6, + "probability": 0.8281 + }, + { + "start": 2400.24, + "end": 2401.98, + "probability": 0.9072 + }, + { + "start": 2402.2, + "end": 2403.68, + "probability": 0.3892 + }, + { + "start": 2403.94, + "end": 2405.86, + "probability": 0.08 + }, + { + "start": 2406.96, + "end": 2407.4, + "probability": 0.535 + }, + { + "start": 2407.86, + "end": 2408.14, + "probability": 0.8274 + }, + { + "start": 2408.26, + "end": 2411.94, + "probability": 0.9849 + }, + { + "start": 2411.94, + "end": 2414.98, + "probability": 0.9781 + }, + { + "start": 2415.88, + "end": 2416.96, + "probability": 0.0492 + }, + { + "start": 2418.0, + "end": 2422.46, + "probability": 0.8531 + }, + { + "start": 2422.98, + "end": 2423.04, + "probability": 0.0058 + }, + { + "start": 2423.04, + "end": 2427.13, + "probability": 0.7353 + }, + { + "start": 2428.68, + "end": 2428.7, + "probability": 0.0105 + }, + { + "start": 2428.72, + "end": 2433.28, + "probability": 0.8044 + }, + { + "start": 2433.84, + "end": 2434.8, + "probability": 0.8687 + }, + { + "start": 2443.74, + "end": 2444.82, + "probability": 0.545 + }, + { + "start": 2445.6, + "end": 2445.6, + "probability": 0.1799 + }, + { + "start": 2445.6, + "end": 2446.28, + "probability": 0.6447 + }, + { + "start": 2446.38, + "end": 2449.74, + "probability": 0.8993 + }, + { + "start": 2451.02, + "end": 2455.32, + "probability": 0.9619 + }, + { + "start": 2456.5, + "end": 2458.83, + "probability": 0.5938 + }, + { + "start": 2459.46, + "end": 2460.66, + "probability": 0.7585 + }, + { + "start": 2460.74, + "end": 2462.98, + "probability": 0.9838 + }, + { + "start": 2463.64, + "end": 2465.36, + "probability": 0.9792 + }, + { + "start": 2466.0, + "end": 2469.98, + "probability": 0.802 + }, + { + "start": 2470.26, + "end": 2475.0, + "probability": 0.668 + }, + { + "start": 2475.0, + "end": 2477.46, + "probability": 0.9294 + }, + { + "start": 2478.4, + "end": 2480.98, + "probability": 0.986 + }, + { + "start": 2481.22, + "end": 2482.28, + "probability": 0.8818 + }, + { + "start": 2482.34, + "end": 2484.28, + "probability": 0.9453 + }, + { + "start": 2485.54, + "end": 2486.66, + "probability": 0.9778 + }, + { + "start": 2486.88, + "end": 2489.4, + "probability": 0.9844 + }, + { + "start": 2489.4, + "end": 2491.48, + "probability": 0.9493 + }, + { + "start": 2492.78, + "end": 2494.74, + "probability": 0.3944 + }, + { + "start": 2494.78, + "end": 2497.59, + "probability": 0.9961 + }, + { + "start": 2498.66, + "end": 2501.1, + "probability": 0.6904 + }, + { + "start": 2501.8, + "end": 2502.18, + "probability": 0.4611 + }, + { + "start": 2502.2, + "end": 2504.12, + "probability": 0.979 + }, + { + "start": 2504.12, + "end": 2506.78, + "probability": 0.9331 + }, + { + "start": 2506.92, + "end": 2508.78, + "probability": 0.835 + }, + { + "start": 2509.44, + "end": 2510.98, + "probability": 0.9878 + }, + { + "start": 2512.94, + "end": 2515.78, + "probability": 0.974 + }, + { + "start": 2516.22, + "end": 2519.54, + "probability": 0.9976 + }, + { + "start": 2520.2, + "end": 2520.72, + "probability": 0.459 + }, + { + "start": 2520.84, + "end": 2521.58, + "probability": 0.7453 + }, + { + "start": 2521.74, + "end": 2524.25, + "probability": 0.8593 + }, + { + "start": 2525.02, + "end": 2525.6, + "probability": 0.7588 + }, + { + "start": 2526.66, + "end": 2527.5, + "probability": 0.7156 + }, + { + "start": 2527.54, + "end": 2528.6, + "probability": 0.6526 + }, + { + "start": 2528.9, + "end": 2529.58, + "probability": 0.7246 + }, + { + "start": 2530.26, + "end": 2533.56, + "probability": 0.9946 + }, + { + "start": 2534.26, + "end": 2534.8, + "probability": 0.9207 + }, + { + "start": 2535.86, + "end": 2537.08, + "probability": 0.9666 + }, + { + "start": 2537.64, + "end": 2540.06, + "probability": 0.7591 + }, + { + "start": 2547.08, + "end": 2551.02, + "probability": 0.9556 + }, + { + "start": 2555.64, + "end": 2557.2, + "probability": 0.931 + }, + { + "start": 2557.28, + "end": 2559.08, + "probability": 0.962 + }, + { + "start": 2559.54, + "end": 2563.64, + "probability": 0.8957 + }, + { + "start": 2564.24, + "end": 2570.6, + "probability": 0.8882 + }, + { + "start": 2570.86, + "end": 2571.12, + "probability": 0.7607 + }, + { + "start": 2571.32, + "end": 2572.1, + "probability": 0.6639 + }, + { + "start": 2572.6, + "end": 2573.16, + "probability": 0.7676 + }, + { + "start": 2573.22, + "end": 2574.22, + "probability": 0.4404 + }, + { + "start": 2574.46, + "end": 2578.26, + "probability": 0.9017 + }, + { + "start": 2578.48, + "end": 2580.06, + "probability": 0.3318 + }, + { + "start": 2580.32, + "end": 2581.76, + "probability": 0.9431 + }, + { + "start": 2582.62, + "end": 2586.14, + "probability": 0.3971 + }, + { + "start": 2586.72, + "end": 2588.76, + "probability": 0.944 + }, + { + "start": 2588.76, + "end": 2592.02, + "probability": 0.9933 + }, + { + "start": 2592.72, + "end": 2594.4, + "probability": 0.5383 + }, + { + "start": 2594.68, + "end": 2598.12, + "probability": 0.572 + }, + { + "start": 2598.74, + "end": 2600.64, + "probability": 0.9924 + }, + { + "start": 2601.16, + "end": 2604.12, + "probability": 0.5287 + }, + { + "start": 2604.76, + "end": 2606.36, + "probability": 0.1857 + }, + { + "start": 2606.48, + "end": 2607.76, + "probability": 0.3988 + }, + { + "start": 2608.72, + "end": 2612.68, + "probability": 0.9584 + }, + { + "start": 2613.26, + "end": 2615.26, + "probability": 0.9993 + }, + { + "start": 2615.26, + "end": 2618.58, + "probability": 0.967 + }, + { + "start": 2619.08, + "end": 2620.54, + "probability": 0.9406 + }, + { + "start": 2620.6, + "end": 2622.66, + "probability": 0.7889 + }, + { + "start": 2623.3, + "end": 2624.26, + "probability": 0.0105 + }, + { + "start": 2625.9, + "end": 2627.18, + "probability": 0.1612 + }, + { + "start": 2628.87, + "end": 2634.04, + "probability": 0.9877 + }, + { + "start": 2634.3, + "end": 2638.36, + "probability": 0.9097 + }, + { + "start": 2640.07, + "end": 2642.46, + "probability": 0.5037 + }, + { + "start": 2642.64, + "end": 2644.62, + "probability": 0.9052 + }, + { + "start": 2645.66, + "end": 2647.88, + "probability": 0.8455 + }, + { + "start": 2648.5, + "end": 2649.58, + "probability": 0.4818 + }, + { + "start": 2650.18, + "end": 2652.34, + "probability": 0.6891 + }, + { + "start": 2654.82, + "end": 2656.84, + "probability": 0.4239 + }, + { + "start": 2658.4, + "end": 2659.64, + "probability": 0.7703 + }, + { + "start": 2659.84, + "end": 2660.9, + "probability": 0.7942 + }, + { + "start": 2661.86, + "end": 2662.92, + "probability": 0.6944 + }, + { + "start": 2663.66, + "end": 2666.75, + "probability": 0.9923 + }, + { + "start": 2667.04, + "end": 2669.16, + "probability": 0.9039 + }, + { + "start": 2669.84, + "end": 2672.62, + "probability": 0.9096 + }, + { + "start": 2672.62, + "end": 2675.48, + "probability": 0.9585 + }, + { + "start": 2675.6, + "end": 2680.18, + "probability": 0.9962 + }, + { + "start": 2681.42, + "end": 2684.24, + "probability": 0.9917 + }, + { + "start": 2684.24, + "end": 2687.38, + "probability": 0.9972 + }, + { + "start": 2687.84, + "end": 2689.88, + "probability": 0.9219 + }, + { + "start": 2689.88, + "end": 2691.98, + "probability": 0.997 + }, + { + "start": 2692.9, + "end": 2695.7, + "probability": 0.9992 + }, + { + "start": 2695.8, + "end": 2698.68, + "probability": 0.9907 + }, + { + "start": 2700.9, + "end": 2704.96, + "probability": 0.9875 + }, + { + "start": 2704.96, + "end": 2708.6, + "probability": 0.989 + }, + { + "start": 2709.06, + "end": 2709.4, + "probability": 0.5077 + }, + { + "start": 2709.6, + "end": 2711.62, + "probability": 0.8623 + }, + { + "start": 2711.62, + "end": 2714.22, + "probability": 0.9791 + }, + { + "start": 2714.32, + "end": 2714.74, + "probability": 0.6167 + }, + { + "start": 2714.86, + "end": 2715.24, + "probability": 0.902 + }, + { + "start": 2715.36, + "end": 2716.64, + "probability": 0.8982 + }, + { + "start": 2717.44, + "end": 2719.66, + "probability": 0.9822 + }, + { + "start": 2719.66, + "end": 2721.96, + "probability": 0.968 + }, + { + "start": 2722.54, + "end": 2723.82, + "probability": 0.742 + }, + { + "start": 2724.42, + "end": 2726.2, + "probability": 0.8961 + }, + { + "start": 2726.88, + "end": 2727.14, + "probability": 0.785 + }, + { + "start": 2727.9, + "end": 2732.92, + "probability": 0.7934 + }, + { + "start": 2733.06, + "end": 2733.55, + "probability": 0.5806 + }, + { + "start": 2734.16, + "end": 2737.82, + "probability": 0.6203 + }, + { + "start": 2738.33, + "end": 2740.06, + "probability": 0.7143 + }, + { + "start": 2741.12, + "end": 2742.84, + "probability": 0.9404 + }, + { + "start": 2744.22, + "end": 2745.36, + "probability": 0.916 + }, + { + "start": 2748.52, + "end": 2750.12, + "probability": 0.9874 + }, + { + "start": 2751.5, + "end": 2754.16, + "probability": 0.9962 + }, + { + "start": 2755.42, + "end": 2755.9, + "probability": 0.9054 + }, + { + "start": 2757.24, + "end": 2759.72, + "probability": 0.9676 + }, + { + "start": 2760.98, + "end": 2765.12, + "probability": 0.9969 + }, + { + "start": 2765.7, + "end": 2767.28, + "probability": 0.8827 + }, + { + "start": 2767.98, + "end": 2769.64, + "probability": 0.9961 + }, + { + "start": 2770.26, + "end": 2774.98, + "probability": 0.9866 + }, + { + "start": 2776.86, + "end": 2782.0, + "probability": 0.9963 + }, + { + "start": 2782.0, + "end": 2788.52, + "probability": 0.9993 + }, + { + "start": 2789.14, + "end": 2794.46, + "probability": 0.9937 + }, + { + "start": 2794.46, + "end": 2799.22, + "probability": 0.9966 + }, + { + "start": 2800.7, + "end": 2802.06, + "probability": 0.998 + }, + { + "start": 2802.98, + "end": 2807.44, + "probability": 0.9728 + }, + { + "start": 2808.04, + "end": 2812.36, + "probability": 0.9948 + }, + { + "start": 2813.12, + "end": 2814.38, + "probability": 0.9868 + }, + { + "start": 2814.92, + "end": 2819.1, + "probability": 0.9884 + }, + { + "start": 2819.68, + "end": 2824.48, + "probability": 0.9854 + }, + { + "start": 2825.04, + "end": 2828.64, + "probability": 0.9312 + }, + { + "start": 2829.22, + "end": 2832.14, + "probability": 0.5049 + }, + { + "start": 2833.5, + "end": 2834.54, + "probability": 0.8661 + }, + { + "start": 2835.18, + "end": 2836.76, + "probability": 0.9891 + }, + { + "start": 2837.72, + "end": 2839.6, + "probability": 0.7943 + }, + { + "start": 2840.14, + "end": 2841.74, + "probability": 0.6934 + }, + { + "start": 2842.94, + "end": 2844.98, + "probability": 0.9919 + }, + { + "start": 2845.7, + "end": 2846.9, + "probability": 0.985 + }, + { + "start": 2847.5, + "end": 2849.0, + "probability": 0.9891 + }, + { + "start": 2849.82, + "end": 2851.58, + "probability": 0.9917 + }, + { + "start": 2852.14, + "end": 2852.94, + "probability": 0.9838 + }, + { + "start": 2853.78, + "end": 2854.5, + "probability": 0.9647 + }, + { + "start": 2855.02, + "end": 2855.88, + "probability": 0.9874 + }, + { + "start": 2856.62, + "end": 2858.3, + "probability": 0.9829 + }, + { + "start": 2858.96, + "end": 2859.74, + "probability": 0.36 + }, + { + "start": 2860.5, + "end": 2862.19, + "probability": 0.9958 + }, + { + "start": 2862.84, + "end": 2866.28, + "probability": 0.9591 + }, + { + "start": 2867.98, + "end": 2868.8, + "probability": 0.9614 + }, + { + "start": 2870.0, + "end": 2871.22, + "probability": 0.7922 + }, + { + "start": 2872.26, + "end": 2874.46, + "probability": 0.8136 + }, + { + "start": 2875.02, + "end": 2878.14, + "probability": 0.9907 + }, + { + "start": 2879.14, + "end": 2882.1, + "probability": 0.9347 + }, + { + "start": 2883.04, + "end": 2888.08, + "probability": 0.9811 + }, + { + "start": 2888.84, + "end": 2891.28, + "probability": 0.9225 + }, + { + "start": 2892.26, + "end": 2896.8, + "probability": 0.9908 + }, + { + "start": 2898.3, + "end": 2902.28, + "probability": 0.9961 + }, + { + "start": 2902.82, + "end": 2904.54, + "probability": 0.8038 + }, + { + "start": 2905.32, + "end": 2906.84, + "probability": 0.6456 + }, + { + "start": 2907.38, + "end": 2909.38, + "probability": 0.9941 + }, + { + "start": 2910.02, + "end": 2912.82, + "probability": 0.629 + }, + { + "start": 2913.52, + "end": 2916.52, + "probability": 0.9946 + }, + { + "start": 2917.48, + "end": 2921.06, + "probability": 0.8855 + }, + { + "start": 2921.98, + "end": 2923.98, + "probability": 0.8648 + }, + { + "start": 2925.32, + "end": 2929.62, + "probability": 0.9746 + }, + { + "start": 2930.0, + "end": 2934.18, + "probability": 0.9854 + }, + { + "start": 2934.72, + "end": 2935.42, + "probability": 0.7363 + }, + { + "start": 2936.38, + "end": 2939.46, + "probability": 0.9594 + }, + { + "start": 2940.06, + "end": 2941.13, + "probability": 0.6762 + }, + { + "start": 2948.92, + "end": 2950.1, + "probability": 0.7434 + }, + { + "start": 2950.7, + "end": 2954.36, + "probability": 0.9982 + }, + { + "start": 2954.88, + "end": 2961.98, + "probability": 0.9874 + }, + { + "start": 2962.72, + "end": 2966.5, + "probability": 0.9325 + }, + { + "start": 2967.34, + "end": 2972.08, + "probability": 0.4957 + }, + { + "start": 2972.66, + "end": 2975.84, + "probability": 0.9378 + }, + { + "start": 2976.54, + "end": 2977.74, + "probability": 0.9469 + }, + { + "start": 2978.3, + "end": 2982.78, + "probability": 0.9941 + }, + { + "start": 2983.36, + "end": 2984.24, + "probability": 0.9849 + }, + { + "start": 2985.16, + "end": 2986.18, + "probability": 0.9926 + }, + { + "start": 2987.26, + "end": 2990.38, + "probability": 0.7117 + }, + { + "start": 2991.04, + "end": 2996.34, + "probability": 0.969 + }, + { + "start": 2997.48, + "end": 3002.18, + "probability": 0.9937 + }, + { + "start": 3003.48, + "end": 3004.46, + "probability": 0.3194 + }, + { + "start": 3004.94, + "end": 3005.64, + "probability": 0.877 + }, + { + "start": 3006.08, + "end": 3008.3, + "probability": 0.9363 + }, + { + "start": 3008.98, + "end": 3009.18, + "probability": 0.6986 + }, + { + "start": 3017.46, + "end": 3018.04, + "probability": 0.7006 + }, + { + "start": 3018.66, + "end": 3023.28, + "probability": 0.9645 + }, + { + "start": 3023.38, + "end": 3023.88, + "probability": 0.0679 + }, + { + "start": 3024.66, + "end": 3027.66, + "probability": 0.8047 + }, + { + "start": 3028.78, + "end": 3031.04, + "probability": 0.9386 + }, + { + "start": 3031.46, + "end": 3033.32, + "probability": 0.6976 + }, + { + "start": 3034.85, + "end": 3035.28, + "probability": 0.5788 + }, + { + "start": 3036.16, + "end": 3040.0, + "probability": 0.8691 + }, + { + "start": 3040.74, + "end": 3042.36, + "probability": 0.9424 + }, + { + "start": 3043.86, + "end": 3044.54, + "probability": 0.7994 + }, + { + "start": 3045.16, + "end": 3046.98, + "probability": 0.7735 + }, + { + "start": 3048.3, + "end": 3051.62, + "probability": 0.733 + }, + { + "start": 3052.7, + "end": 3053.76, + "probability": 0.4626 + }, + { + "start": 3053.86, + "end": 3056.06, + "probability": 0.9925 + }, + { + "start": 3056.14, + "end": 3057.76, + "probability": 0.9675 + }, + { + "start": 3057.8, + "end": 3059.26, + "probability": 0.8597 + }, + { + "start": 3060.44, + "end": 3061.64, + "probability": 0.9205 + }, + { + "start": 3062.58, + "end": 3063.6, + "probability": 0.8704 + }, + { + "start": 3064.38, + "end": 3067.7, + "probability": 0.9517 + }, + { + "start": 3068.93, + "end": 3073.12, + "probability": 0.9922 + }, + { + "start": 3073.96, + "end": 3077.3, + "probability": 0.9768 + }, + { + "start": 3078.32, + "end": 3080.44, + "probability": 0.9964 + }, + { + "start": 3081.24, + "end": 3084.32, + "probability": 0.9752 + }, + { + "start": 3084.84, + "end": 3085.46, + "probability": 0.9255 + }, + { + "start": 3086.8, + "end": 3088.86, + "probability": 0.9763 + }, + { + "start": 3090.3, + "end": 3093.64, + "probability": 0.9784 + }, + { + "start": 3094.54, + "end": 3096.36, + "probability": 0.9982 + }, + { + "start": 3096.88, + "end": 3098.79, + "probability": 0.9373 + }, + { + "start": 3099.44, + "end": 3102.64, + "probability": 0.9924 + }, + { + "start": 3103.68, + "end": 3106.36, + "probability": 0.8765 + }, + { + "start": 3106.5, + "end": 3110.7, + "probability": 0.933 + }, + { + "start": 3111.42, + "end": 3115.66, + "probability": 0.9932 + }, + { + "start": 3116.74, + "end": 3117.24, + "probability": 0.8678 + }, + { + "start": 3117.42, + "end": 3118.84, + "probability": 0.6753 + }, + { + "start": 3118.86, + "end": 3120.43, + "probability": 0.9868 + }, + { + "start": 3121.3, + "end": 3124.98, + "probability": 0.9855 + }, + { + "start": 3126.58, + "end": 3131.64, + "probability": 0.9988 + }, + { + "start": 3131.84, + "end": 3132.08, + "probability": 0.7807 + }, + { + "start": 3133.36, + "end": 3136.56, + "probability": 0.7051 + }, + { + "start": 3137.26, + "end": 3140.5, + "probability": 0.6831 + }, + { + "start": 3141.2, + "end": 3141.96, + "probability": 0.4085 + }, + { + "start": 3142.36, + "end": 3143.04, + "probability": 0.5846 + }, + { + "start": 3144.96, + "end": 3150.7, + "probability": 0.9474 + }, + { + "start": 3151.3, + "end": 3154.46, + "probability": 0.7763 + }, + { + "start": 3156.54, + "end": 3157.62, + "probability": 0.7908 + }, + { + "start": 3159.26, + "end": 3160.56, + "probability": 0.7337 + }, + { + "start": 3162.06, + "end": 3162.92, + "probability": 0.7988 + }, + { + "start": 3163.88, + "end": 3166.52, + "probability": 0.8046 + }, + { + "start": 3166.7, + "end": 3167.42, + "probability": 0.8172 + }, + { + "start": 3167.82, + "end": 3170.08, + "probability": 0.9404 + }, + { + "start": 3171.22, + "end": 3177.76, + "probability": 0.749 + }, + { + "start": 3178.46, + "end": 3180.98, + "probability": 0.9962 + }, + { + "start": 3181.92, + "end": 3186.92, + "probability": 0.9338 + }, + { + "start": 3187.84, + "end": 3189.6, + "probability": 0.9886 + }, + { + "start": 3190.24, + "end": 3194.38, + "probability": 0.9863 + }, + { + "start": 3194.38, + "end": 3198.26, + "probability": 0.9448 + }, + { + "start": 3199.48, + "end": 3204.02, + "probability": 0.9837 + }, + { + "start": 3204.7, + "end": 3207.52, + "probability": 0.9103 + }, + { + "start": 3208.0, + "end": 3210.06, + "probability": 0.9482 + }, + { + "start": 3210.7, + "end": 3215.06, + "probability": 0.9507 + }, + { + "start": 3215.88, + "end": 3219.4, + "probability": 0.9841 + }, + { + "start": 3220.14, + "end": 3221.54, + "probability": 0.9825 + }, + { + "start": 3222.3, + "end": 3225.74, + "probability": 0.9951 + }, + { + "start": 3225.75, + "end": 3229.78, + "probability": 0.9938 + }, + { + "start": 3230.94, + "end": 3231.74, + "probability": 0.7584 + }, + { + "start": 3232.9, + "end": 3234.46, + "probability": 0.7639 + }, + { + "start": 3234.94, + "end": 3237.28, + "probability": 0.8118 + }, + { + "start": 3237.28, + "end": 3237.48, + "probability": 0.2973 + }, + { + "start": 3237.56, + "end": 3238.24, + "probability": 0.7708 + }, + { + "start": 3238.44, + "end": 3240.7, + "probability": 0.9596 + }, + { + "start": 3241.14, + "end": 3243.6, + "probability": 0.9585 + }, + { + "start": 3244.0, + "end": 3245.84, + "probability": 0.9014 + }, + { + "start": 3246.72, + "end": 3247.66, + "probability": 0.6271 + }, + { + "start": 3248.14, + "end": 3250.26, + "probability": 0.7118 + }, + { + "start": 3251.84, + "end": 3253.76, + "probability": 0.8104 + }, + { + "start": 3254.36, + "end": 3259.82, + "probability": 0.8274 + }, + { + "start": 3259.86, + "end": 3261.4, + "probability": 0.8489 + }, + { + "start": 3261.92, + "end": 3266.72, + "probability": 0.9784 + }, + { + "start": 3267.32, + "end": 3268.46, + "probability": 0.9764 + }, + { + "start": 3268.88, + "end": 3269.96, + "probability": 0.5087 + }, + { + "start": 3270.48, + "end": 3271.66, + "probability": 0.6162 + }, + { + "start": 3271.9, + "end": 3272.14, + "probability": 0.7306 + }, + { + "start": 3282.78, + "end": 3285.0, + "probability": 0.9351 + }, + { + "start": 3290.07, + "end": 3291.52, + "probability": 0.058 + }, + { + "start": 3292.28, + "end": 3294.2, + "probability": 0.0065 + }, + { + "start": 3295.06, + "end": 3295.76, + "probability": 0.0242 + }, + { + "start": 3299.68, + "end": 3300.92, + "probability": 0.1253 + }, + { + "start": 3302.96, + "end": 3305.02, + "probability": 0.0337 + }, + { + "start": 3305.02, + "end": 3305.56, + "probability": 0.0605 + }, + { + "start": 3305.96, + "end": 3306.7, + "probability": 0.071 + }, + { + "start": 3306.72, + "end": 3308.88, + "probability": 0.1738 + }, + { + "start": 3309.64, + "end": 3310.28, + "probability": 0.0187 + }, + { + "start": 3312.42, + "end": 3313.96, + "probability": 0.0189 + }, + { + "start": 3323.8, + "end": 3325.48, + "probability": 0.1026 + }, + { + "start": 3326.9, + "end": 3328.76, + "probability": 0.13 + }, + { + "start": 3329.68, + "end": 3329.98, + "probability": 0.2458 + }, + { + "start": 3330.62, + "end": 3332.52, + "probability": 0.1535 + }, + { + "start": 3332.8, + "end": 3337.6, + "probability": 0.1466 + }, + { + "start": 3346.02, + "end": 3347.48, + "probability": 0.0843 + }, + { + "start": 3350.16, + "end": 3352.06, + "probability": 0.0856 + }, + { + "start": 3353.51, + "end": 3353.64, + "probability": 0.0322 + }, + { + "start": 3353.64, + "end": 3353.64, + "probability": 0.0489 + }, + { + "start": 3353.64, + "end": 3353.86, + "probability": 0.0404 + }, + { + "start": 3354.0, + "end": 3355.86, + "probability": 0.0365 + }, + { + "start": 3356.0, + "end": 3356.0, + "probability": 0.0 + }, + { + "start": 3356.0, + "end": 3356.0, + "probability": 0.0 + }, + { + "start": 3357.18, + "end": 3358.1, + "probability": 0.1911 + }, + { + "start": 3358.1, + "end": 3358.22, + "probability": 0.1532 + }, + { + "start": 3358.22, + "end": 3358.22, + "probability": 0.1009 + }, + { + "start": 3358.22, + "end": 3358.22, + "probability": 0.1138 + }, + { + "start": 3358.22, + "end": 3363.12, + "probability": 0.7957 + }, + { + "start": 3364.72, + "end": 3371.0, + "probability": 0.9211 + }, + { + "start": 3373.4, + "end": 3375.16, + "probability": 0.3825 + }, + { + "start": 3376.3, + "end": 3379.78, + "probability": 0.8388 + }, + { + "start": 3380.66, + "end": 3382.82, + "probability": 0.8268 + }, + { + "start": 3383.64, + "end": 3389.1, + "probability": 0.9912 + }, + { + "start": 3389.22, + "end": 3390.74, + "probability": 0.8339 + }, + { + "start": 3391.06, + "end": 3392.42, + "probability": 0.412 + }, + { + "start": 3392.42, + "end": 3394.46, + "probability": 0.9668 + }, + { + "start": 3394.54, + "end": 3394.84, + "probability": 0.839 + }, + { + "start": 3394.94, + "end": 3398.64, + "probability": 0.9889 + }, + { + "start": 3399.54, + "end": 3400.5, + "probability": 0.8638 + }, + { + "start": 3400.92, + "end": 3401.24, + "probability": 0.8649 + }, + { + "start": 3401.9, + "end": 3403.42, + "probability": 0.6797 + }, + { + "start": 3404.38, + "end": 3405.26, + "probability": 0.8816 + }, + { + "start": 3406.82, + "end": 3408.02, + "probability": 0.9749 + }, + { + "start": 3409.7, + "end": 3410.88, + "probability": 0.8069 + }, + { + "start": 3411.78, + "end": 3415.7, + "probability": 0.9155 + }, + { + "start": 3417.0, + "end": 3419.5, + "probability": 0.9746 + }, + { + "start": 3420.94, + "end": 3424.48, + "probability": 0.9759 + }, + { + "start": 3424.58, + "end": 3425.8, + "probability": 0.7732 + }, + { + "start": 3426.58, + "end": 3427.98, + "probability": 0.7396 + }, + { + "start": 3428.82, + "end": 3430.44, + "probability": 0.9792 + }, + { + "start": 3430.82, + "end": 3432.16, + "probability": 0.5881 + }, + { + "start": 3433.38, + "end": 3435.26, + "probability": 0.9944 + }, + { + "start": 3436.14, + "end": 3438.16, + "probability": 0.9847 + }, + { + "start": 3438.26, + "end": 3441.22, + "probability": 0.9677 + }, + { + "start": 3441.22, + "end": 3444.08, + "probability": 0.996 + }, + { + "start": 3444.16, + "end": 3448.37, + "probability": 0.8662 + }, + { + "start": 3449.44, + "end": 3451.48, + "probability": 0.7029 + }, + { + "start": 3451.94, + "end": 3453.12, + "probability": 0.9489 + }, + { + "start": 3453.22, + "end": 3453.52, + "probability": 0.8558 + }, + { + "start": 3454.0, + "end": 3456.26, + "probability": 0.6643 + }, + { + "start": 3457.74, + "end": 3460.3, + "probability": 0.9812 + }, + { + "start": 3461.5, + "end": 3464.16, + "probability": 0.9832 + }, + { + "start": 3464.86, + "end": 3469.36, + "probability": 0.9844 + }, + { + "start": 3469.4, + "end": 3469.88, + "probability": 0.7869 + }, + { + "start": 3470.74, + "end": 3472.08, + "probability": 0.9927 + }, + { + "start": 3473.84, + "end": 3476.46, + "probability": 0.9939 + }, + { + "start": 3476.46, + "end": 3481.08, + "probability": 0.957 + }, + { + "start": 3481.82, + "end": 3482.34, + "probability": 0.9712 + }, + { + "start": 3482.82, + "end": 3483.34, + "probability": 0.9876 + }, + { + "start": 3483.94, + "end": 3484.44, + "probability": 0.6883 + }, + { + "start": 3484.44, + "end": 3484.92, + "probability": 0.5051 + }, + { + "start": 3486.44, + "end": 3488.94, + "probability": 0.9719 + }, + { + "start": 3488.98, + "end": 3489.46, + "probability": 0.6196 + }, + { + "start": 3490.28, + "end": 3495.06, + "probability": 0.9902 + }, + { + "start": 3496.78, + "end": 3499.2, + "probability": 0.9546 + }, + { + "start": 3500.1, + "end": 3501.88, + "probability": 0.9843 + }, + { + "start": 3503.28, + "end": 3506.66, + "probability": 0.9877 + }, + { + "start": 3506.66, + "end": 3510.58, + "probability": 0.8597 + }, + { + "start": 3511.94, + "end": 3513.3, + "probability": 0.9891 + }, + { + "start": 3513.52, + "end": 3516.84, + "probability": 0.9897 + }, + { + "start": 3516.92, + "end": 3519.88, + "probability": 0.9966 + }, + { + "start": 3520.52, + "end": 3521.52, + "probability": 0.9753 + }, + { + "start": 3522.62, + "end": 3524.22, + "probability": 0.9966 + }, + { + "start": 3524.99, + "end": 3525.58, + "probability": 0.9798 + }, + { + "start": 3526.24, + "end": 3529.74, + "probability": 0.8527 + }, + { + "start": 3530.06, + "end": 3531.98, + "probability": 0.9995 + }, + { + "start": 3532.72, + "end": 3535.18, + "probability": 0.9711 + }, + { + "start": 3536.2, + "end": 3539.74, + "probability": 0.9873 + }, + { + "start": 3541.16, + "end": 3543.56, + "probability": 0.9942 + }, + { + "start": 3544.46, + "end": 3545.42, + "probability": 0.5158 + }, + { + "start": 3546.76, + "end": 3548.1, + "probability": 0.8933 + }, + { + "start": 3548.74, + "end": 3550.48, + "probability": 0.854 + }, + { + "start": 3552.2, + "end": 3555.7, + "probability": 0.7661 + }, + { + "start": 3556.22, + "end": 3557.78, + "probability": 0.9648 + }, + { + "start": 3558.3, + "end": 3559.0, + "probability": 0.9572 + }, + { + "start": 3560.12, + "end": 3562.8, + "probability": 0.7536 + }, + { + "start": 3563.96, + "end": 3567.02, + "probability": 0.9985 + }, + { + "start": 3568.54, + "end": 3570.02, + "probability": 0.7543 + }, + { + "start": 3570.62, + "end": 3572.48, + "probability": 0.9832 + }, + { + "start": 3572.96, + "end": 3575.08, + "probability": 0.7788 + }, + { + "start": 3575.56, + "end": 3578.62, + "probability": 0.8534 + }, + { + "start": 3579.18, + "end": 3579.66, + "probability": 0.9937 + }, + { + "start": 3581.96, + "end": 3583.44, + "probability": 0.9019 + }, + { + "start": 3584.58, + "end": 3586.64, + "probability": 0.8811 + }, + { + "start": 3586.86, + "end": 3588.9, + "probability": 0.8604 + }, + { + "start": 3589.62, + "end": 3591.16, + "probability": 0.9959 + }, + { + "start": 3591.86, + "end": 3593.24, + "probability": 0.9666 + }, + { + "start": 3593.6, + "end": 3594.66, + "probability": 0.7114 + }, + { + "start": 3596.34, + "end": 3598.3, + "probability": 0.9982 + }, + { + "start": 3598.98, + "end": 3601.26, + "probability": 0.9557 + }, + { + "start": 3601.74, + "end": 3603.64, + "probability": 0.9722 + }, + { + "start": 3605.06, + "end": 3609.08, + "probability": 0.8741 + }, + { + "start": 3609.36, + "end": 3609.8, + "probability": 0.6297 + }, + { + "start": 3611.12, + "end": 3614.58, + "probability": 0.9867 + }, + { + "start": 3615.26, + "end": 3617.94, + "probability": 0.8508 + }, + { + "start": 3618.76, + "end": 3620.72, + "probability": 0.9369 + }, + { + "start": 3621.2, + "end": 3621.2, + "probability": 0.5574 + }, + { + "start": 3621.2, + "end": 3623.72, + "probability": 0.9268 + }, + { + "start": 3624.36, + "end": 3624.46, + "probability": 0.7527 + }, + { + "start": 3625.58, + "end": 3626.9, + "probability": 0.9766 + }, + { + "start": 3627.36, + "end": 3630.47, + "probability": 0.4569 + }, + { + "start": 3630.72, + "end": 3631.22, + "probability": 0.7328 + }, + { + "start": 3631.68, + "end": 3632.48, + "probability": 0.9319 + }, + { + "start": 3632.62, + "end": 3632.9, + "probability": 0.4998 + }, + { + "start": 3633.4, + "end": 3633.74, + "probability": 0.2491 + }, + { + "start": 3633.74, + "end": 3635.08, + "probability": 0.3906 + }, + { + "start": 3635.18, + "end": 3635.38, + "probability": 0.9198 + }, + { + "start": 3635.44, + "end": 3638.02, + "probability": 0.8475 + }, + { + "start": 3638.14, + "end": 3639.6, + "probability": 0.7741 + }, + { + "start": 3640.02, + "end": 3642.0, + "probability": 0.7412 + }, + { + "start": 3642.1, + "end": 3646.52, + "probability": 0.8726 + }, + { + "start": 3646.66, + "end": 3648.14, + "probability": 0.7815 + }, + { + "start": 3648.32, + "end": 3649.72, + "probability": 0.8438 + }, + { + "start": 3650.62, + "end": 3653.06, + "probability": 0.9866 + }, + { + "start": 3654.04, + "end": 3654.64, + "probability": 0.8596 + }, + { + "start": 3655.68, + "end": 3656.17, + "probability": 0.6185 + }, + { + "start": 3657.22, + "end": 3659.78, + "probability": 0.9854 + }, + { + "start": 3659.88, + "end": 3660.32, + "probability": 0.4749 + }, + { + "start": 3661.0, + "end": 3662.28, + "probability": 0.8667 + }, + { + "start": 3662.54, + "end": 3662.64, + "probability": 0.769 + }, + { + "start": 3662.84, + "end": 3663.2, + "probability": 0.7686 + }, + { + "start": 3663.32, + "end": 3667.42, + "probability": 0.9941 + }, + { + "start": 3668.12, + "end": 3669.82, + "probability": 0.9613 + }, + { + "start": 3670.16, + "end": 3672.56, + "probability": 0.7468 + }, + { + "start": 3673.04, + "end": 3674.54, + "probability": 0.7274 + }, + { + "start": 3674.6, + "end": 3677.26, + "probability": 0.9858 + }, + { + "start": 3677.74, + "end": 3679.41, + "probability": 0.9437 + }, + { + "start": 3679.62, + "end": 3680.45, + "probability": 0.8007 + }, + { + "start": 3681.76, + "end": 3683.28, + "probability": 0.92 + }, + { + "start": 3683.72, + "end": 3685.48, + "probability": 0.9311 + }, + { + "start": 3686.18, + "end": 3688.62, + "probability": 0.6656 + }, + { + "start": 3688.84, + "end": 3690.6, + "probability": 0.7242 + }, + { + "start": 3690.84, + "end": 3692.66, + "probability": 0.9927 + }, + { + "start": 3692.84, + "end": 3696.74, + "probability": 0.9932 + }, + { + "start": 3697.76, + "end": 3698.94, + "probability": 0.9035 + }, + { + "start": 3699.44, + "end": 3704.18, + "probability": 0.9468 + }, + { + "start": 3704.76, + "end": 3708.3, + "probability": 0.9617 + }, + { + "start": 3708.48, + "end": 3710.22, + "probability": 0.98 + }, + { + "start": 3710.96, + "end": 3712.7, + "probability": 0.8906 + }, + { + "start": 3713.08, + "end": 3714.5, + "probability": 0.9024 + }, + { + "start": 3714.96, + "end": 3717.08, + "probability": 0.9841 + }, + { + "start": 3717.5, + "end": 3720.22, + "probability": 0.8836 + }, + { + "start": 3721.58, + "end": 3722.12, + "probability": 0.6721 + }, + { + "start": 3722.32, + "end": 3727.16, + "probability": 0.9584 + }, + { + "start": 3727.8, + "end": 3731.48, + "probability": 0.9819 + }, + { + "start": 3731.64, + "end": 3733.16, + "probability": 0.9111 + }, + { + "start": 3733.94, + "end": 3737.0, + "probability": 0.8666 + }, + { + "start": 3737.98, + "end": 3741.0, + "probability": 0.9938 + }, + { + "start": 3741.02, + "end": 3744.86, + "probability": 0.974 + }, + { + "start": 3744.94, + "end": 3745.76, + "probability": 0.5533 + }, + { + "start": 3745.92, + "end": 3746.08, + "probability": 0.3361 + }, + { + "start": 3746.38, + "end": 3747.02, + "probability": 0.7809 + }, + { + "start": 3747.46, + "end": 3748.74, + "probability": 0.1555 + }, + { + "start": 3749.62, + "end": 3751.44, + "probability": 0.9961 + }, + { + "start": 3751.56, + "end": 3752.08, + "probability": 0.806 + }, + { + "start": 3752.32, + "end": 3757.9, + "probability": 0.8115 + }, + { + "start": 3759.04, + "end": 3760.5, + "probability": 0.9976 + }, + { + "start": 3760.92, + "end": 3765.2, + "probability": 0.9094 + }, + { + "start": 3765.62, + "end": 3769.42, + "probability": 0.9787 + }, + { + "start": 3770.82, + "end": 3772.7, + "probability": 0.4681 + }, + { + "start": 3772.92, + "end": 3773.44, + "probability": 0.6002 + }, + { + "start": 3774.12, + "end": 3774.58, + "probability": 0.1832 + }, + { + "start": 3775.34, + "end": 3777.98, + "probability": 0.7995 + }, + { + "start": 3778.4, + "end": 3781.02, + "probability": 0.7711 + }, + { + "start": 3782.02, + "end": 3784.08, + "probability": 0.9935 + }, + { + "start": 3784.6, + "end": 3784.98, + "probability": 0.958 + }, + { + "start": 3786.3, + "end": 3787.76, + "probability": 0.9092 + }, + { + "start": 3789.1, + "end": 3790.66, + "probability": 0.7448 + }, + { + "start": 3791.02, + "end": 3791.54, + "probability": 0.7395 + }, + { + "start": 3791.68, + "end": 3795.62, + "probability": 0.9532 + }, + { + "start": 3796.42, + "end": 3799.04, + "probability": 0.5704 + }, + { + "start": 3799.92, + "end": 3802.3, + "probability": 0.8951 + }, + { + "start": 3803.16, + "end": 3804.06, + "probability": 0.9771 + }, + { + "start": 3804.3, + "end": 3808.4, + "probability": 0.9107 + }, + { + "start": 3808.84, + "end": 3809.26, + "probability": 0.7239 + }, + { + "start": 3811.18, + "end": 3812.02, + "probability": 0.3204 + }, + { + "start": 3813.04, + "end": 3814.37, + "probability": 0.4993 + }, + { + "start": 3814.58, + "end": 3815.86, + "probability": 0.857 + }, + { + "start": 3815.94, + "end": 3816.64, + "probability": 0.047 + }, + { + "start": 3817.02, + "end": 3819.54, + "probability": 0.9016 + }, + { + "start": 3820.0, + "end": 3822.98, + "probability": 0.8664 + }, + { + "start": 3826.34, + "end": 3827.46, + "probability": 0.2509 + }, + { + "start": 3827.78, + "end": 3828.58, + "probability": 0.1794 + }, + { + "start": 3830.92, + "end": 3836.64, + "probability": 0.3975 + }, + { + "start": 3838.54, + "end": 3840.4, + "probability": 0.9149 + }, + { + "start": 3840.88, + "end": 3844.27, + "probability": 0.9901 + }, + { + "start": 3844.54, + "end": 3844.64, + "probability": 0.242 + }, + { + "start": 3844.88, + "end": 3846.96, + "probability": 0.9041 + }, + { + "start": 3847.3, + "end": 3847.54, + "probability": 0.7741 + }, + { + "start": 3848.16, + "end": 3850.56, + "probability": 0.8085 + }, + { + "start": 3850.56, + "end": 3853.96, + "probability": 0.9838 + }, + { + "start": 3855.04, + "end": 3855.84, + "probability": 0.5493 + }, + { + "start": 3856.52, + "end": 3858.7, + "probability": 0.985 + }, + { + "start": 3858.96, + "end": 3860.48, + "probability": 0.8813 + }, + { + "start": 3861.22, + "end": 3865.14, + "probability": 0.9899 + }, + { + "start": 3866.04, + "end": 3866.36, + "probability": 0.5676 + }, + { + "start": 3866.66, + "end": 3866.8, + "probability": 0.7632 + }, + { + "start": 3867.08, + "end": 3869.06, + "probability": 0.9526 + }, + { + "start": 3869.24, + "end": 3870.42, + "probability": 0.9725 + }, + { + "start": 3870.72, + "end": 3871.84, + "probability": 0.4705 + }, + { + "start": 3872.08, + "end": 3875.22, + "probability": 0.9534 + }, + { + "start": 3875.8, + "end": 3876.0, + "probability": 0.5582 + }, + { + "start": 3876.1, + "end": 3877.04, + "probability": 0.7399 + }, + { + "start": 3877.52, + "end": 3879.48, + "probability": 0.4067 + }, + { + "start": 3879.64, + "end": 3880.39, + "probability": 0.6548 + }, + { + "start": 3881.04, + "end": 3881.84, + "probability": 0.3019 + }, + { + "start": 3882.48, + "end": 3882.91, + "probability": 0.8457 + }, + { + "start": 3883.38, + "end": 3885.66, + "probability": 0.9813 + }, + { + "start": 3886.4, + "end": 3888.58, + "probability": 0.8801 + }, + { + "start": 3889.28, + "end": 3890.66, + "probability": 0.7463 + }, + { + "start": 3891.52, + "end": 3894.52, + "probability": 0.9941 + }, + { + "start": 3894.94, + "end": 3902.42, + "probability": 0.7795 + }, + { + "start": 3902.52, + "end": 3903.46, + "probability": 0.8348 + }, + { + "start": 3903.98, + "end": 3905.8, + "probability": 0.9915 + }, + { + "start": 3907.66, + "end": 3913.88, + "probability": 0.9888 + }, + { + "start": 3913.94, + "end": 3917.78, + "probability": 0.987 + }, + { + "start": 3918.64, + "end": 3922.42, + "probability": 0.8613 + }, + { + "start": 3923.78, + "end": 3926.38, + "probability": 0.6272 + }, + { + "start": 3926.78, + "end": 3928.16, + "probability": 0.5625 + }, + { + "start": 3928.36, + "end": 3929.04, + "probability": 0.8215 + }, + { + "start": 3929.26, + "end": 3930.36, + "probability": 0.9047 + }, + { + "start": 3930.5, + "end": 3934.02, + "probability": 0.9897 + }, + { + "start": 3934.82, + "end": 3938.72, + "probability": 0.9938 + }, + { + "start": 3939.7, + "end": 3942.74, + "probability": 0.9985 + }, + { + "start": 3942.84, + "end": 3944.04, + "probability": 0.751 + }, + { + "start": 3944.06, + "end": 3944.68, + "probability": 0.7297 + }, + { + "start": 3944.96, + "end": 3945.41, + "probability": 0.9531 + }, + { + "start": 3945.68, + "end": 3947.42, + "probability": 0.8649 + }, + { + "start": 3947.52, + "end": 3948.78, + "probability": 0.9478 + }, + { + "start": 3949.68, + "end": 3950.92, + "probability": 0.8482 + }, + { + "start": 3951.14, + "end": 3955.22, + "probability": 0.9873 + }, + { + "start": 3955.5, + "end": 3960.46, + "probability": 0.9936 + }, + { + "start": 3961.46, + "end": 3961.88, + "probability": 0.5068 + }, + { + "start": 3962.0, + "end": 3962.72, + "probability": 0.7125 + }, + { + "start": 3962.74, + "end": 3969.28, + "probability": 0.9746 + }, + { + "start": 3970.0, + "end": 3972.24, + "probability": 0.9348 + }, + { + "start": 3972.84, + "end": 3975.42, + "probability": 0.9813 + }, + { + "start": 3976.14, + "end": 3979.72, + "probability": 0.981 + }, + { + "start": 3980.06, + "end": 3983.1, + "probability": 0.8589 + }, + { + "start": 3983.2, + "end": 3984.48, + "probability": 0.8932 + }, + { + "start": 3984.96, + "end": 3986.46, + "probability": 0.936 + }, + { + "start": 3986.64, + "end": 3988.44, + "probability": 0.5319 + }, + { + "start": 3988.44, + "end": 3989.0, + "probability": 0.5116 + }, + { + "start": 3989.36, + "end": 3990.3, + "probability": 0.9593 + }, + { + "start": 3990.4, + "end": 3991.03, + "probability": 0.6373 + }, + { + "start": 3992.36, + "end": 3994.64, + "probability": 0.949 + }, + { + "start": 3996.1, + "end": 3996.62, + "probability": 0.716 + }, + { + "start": 3996.72, + "end": 3999.67, + "probability": 0.9827 + }, + { + "start": 3999.74, + "end": 4002.72, + "probability": 0.9919 + }, + { + "start": 4003.84, + "end": 4006.46, + "probability": 0.9431 + }, + { + "start": 4007.48, + "end": 4012.28, + "probability": 0.9951 + }, + { + "start": 4013.4, + "end": 4016.68, + "probability": 0.9271 + }, + { + "start": 4017.08, + "end": 4021.1, + "probability": 0.985 + }, + { + "start": 4021.1, + "end": 4021.2, + "probability": 0.4089 + }, + { + "start": 4022.0, + "end": 4023.16, + "probability": 0.8577 + }, + { + "start": 4023.7, + "end": 4024.48, + "probability": 0.8755 + }, + { + "start": 4025.54, + "end": 4028.28, + "probability": 0.2188 + }, + { + "start": 4029.62, + "end": 4037.7, + "probability": 0.9674 + }, + { + "start": 4039.22, + "end": 4043.32, + "probability": 0.9928 + }, + { + "start": 4045.44, + "end": 4050.26, + "probability": 0.9971 + }, + { + "start": 4051.62, + "end": 4053.68, + "probability": 0.9658 + }, + { + "start": 4053.86, + "end": 4056.88, + "probability": 0.9938 + }, + { + "start": 4058.6, + "end": 4060.1, + "probability": 0.9956 + }, + { + "start": 4060.52, + "end": 4061.14, + "probability": 0.5415 + }, + { + "start": 4061.28, + "end": 4061.66, + "probability": 0.5051 + }, + { + "start": 4061.72, + "end": 4062.66, + "probability": 0.981 + }, + { + "start": 4062.9, + "end": 4064.16, + "probability": 0.7345 + }, + { + "start": 4065.24, + "end": 4071.26, + "probability": 0.9767 + }, + { + "start": 4071.36, + "end": 4072.36, + "probability": 0.9753 + }, + { + "start": 4073.6, + "end": 4073.6, + "probability": 0.3889 + }, + { + "start": 4073.78, + "end": 4074.7, + "probability": 0.8931 + }, + { + "start": 4074.76, + "end": 4078.44, + "probability": 0.9624 + }, + { + "start": 4079.34, + "end": 4081.68, + "probability": 0.9976 + }, + { + "start": 4082.38, + "end": 4084.28, + "probability": 0.9912 + }, + { + "start": 4084.94, + "end": 4086.35, + "probability": 0.932 + }, + { + "start": 4088.22, + "end": 4091.08, + "probability": 0.862 + }, + { + "start": 4092.04, + "end": 4094.16, + "probability": 0.9958 + }, + { + "start": 4094.16, + "end": 4097.7, + "probability": 0.9971 + }, + { + "start": 4098.3, + "end": 4099.46, + "probability": 0.9741 + }, + { + "start": 4100.18, + "end": 4102.08, + "probability": 0.9808 + }, + { + "start": 4102.34, + "end": 4106.22, + "probability": 0.9953 + }, + { + "start": 4107.22, + "end": 4109.94, + "probability": 0.995 + }, + { + "start": 4109.94, + "end": 4111.96, + "probability": 0.9883 + }, + { + "start": 4113.0, + "end": 4115.3, + "probability": 0.9918 + }, + { + "start": 4116.26, + "end": 4120.12, + "probability": 0.9938 + }, + { + "start": 4121.0, + "end": 4122.44, + "probability": 0.9801 + }, + { + "start": 4122.64, + "end": 4124.26, + "probability": 0.9801 + }, + { + "start": 4125.46, + "end": 4126.24, + "probability": 0.7887 + }, + { + "start": 4126.4, + "end": 4127.18, + "probability": 0.7371 + }, + { + "start": 4127.26, + "end": 4129.72, + "probability": 0.9119 + }, + { + "start": 4130.38, + "end": 4131.44, + "probability": 0.5608 + }, + { + "start": 4132.14, + "end": 4133.78, + "probability": 0.98 + }, + { + "start": 4133.86, + "end": 4135.43, + "probability": 0.9944 + }, + { + "start": 4136.38, + "end": 4140.14, + "probability": 0.9959 + }, + { + "start": 4140.98, + "end": 4143.16, + "probability": 0.9982 + }, + { + "start": 4144.12, + "end": 4144.54, + "probability": 0.6168 + }, + { + "start": 4144.66, + "end": 4147.88, + "probability": 0.9899 + }, + { + "start": 4147.88, + "end": 4152.74, + "probability": 0.9968 + }, + { + "start": 4154.34, + "end": 4154.5, + "probability": 0.1885 + }, + { + "start": 4154.56, + "end": 4155.36, + "probability": 0.7558 + }, + { + "start": 4155.58, + "end": 4160.44, + "probability": 0.968 + }, + { + "start": 4161.06, + "end": 4162.76, + "probability": 0.9907 + }, + { + "start": 4164.0, + "end": 4165.78, + "probability": 0.9803 + }, + { + "start": 4165.78, + "end": 4167.84, + "probability": 0.9989 + }, + { + "start": 4168.56, + "end": 4171.02, + "probability": 0.9407 + }, + { + "start": 4171.96, + "end": 4173.74, + "probability": 0.9946 + }, + { + "start": 4175.12, + "end": 4180.34, + "probability": 0.9966 + }, + { + "start": 4180.96, + "end": 4183.44, + "probability": 0.9819 + }, + { + "start": 4184.36, + "end": 4187.62, + "probability": 0.9845 + }, + { + "start": 4187.74, + "end": 4188.9, + "probability": 0.7364 + }, + { + "start": 4189.64, + "end": 4192.04, + "probability": 0.9819 + }, + { + "start": 4192.52, + "end": 4193.4, + "probability": 0.3052 + }, + { + "start": 4194.18, + "end": 4194.84, + "probability": 0.8101 + }, + { + "start": 4196.54, + "end": 4197.26, + "probability": 0.8391 + }, + { + "start": 4198.14, + "end": 4199.16, + "probability": 0.7034 + }, + { + "start": 4199.42, + "end": 4205.12, + "probability": 0.8794 + }, + { + "start": 4205.3, + "end": 4207.82, + "probability": 0.9083 + }, + { + "start": 4208.36, + "end": 4212.84, + "probability": 0.9812 + }, + { + "start": 4213.04, + "end": 4216.52, + "probability": 0.9143 + }, + { + "start": 4217.16, + "end": 4219.68, + "probability": 0.9655 + }, + { + "start": 4220.26, + "end": 4222.46, + "probability": 0.9623 + }, + { + "start": 4222.56, + "end": 4227.56, + "probability": 0.9005 + }, + { + "start": 4229.06, + "end": 4229.82, + "probability": 0.9321 + }, + { + "start": 4230.04, + "end": 4230.8, + "probability": 0.6958 + }, + { + "start": 4230.96, + "end": 4233.26, + "probability": 0.9912 + }, + { + "start": 4234.34, + "end": 4236.42, + "probability": 0.9902 + }, + { + "start": 4236.42, + "end": 4238.26, + "probability": 0.958 + }, + { + "start": 4238.3, + "end": 4239.28, + "probability": 0.5238 + }, + { + "start": 4239.32, + "end": 4241.2, + "probability": 0.8162 + }, + { + "start": 4242.72, + "end": 4245.46, + "probability": 0.722 + }, + { + "start": 4246.14, + "end": 4246.44, + "probability": 0.9847 + }, + { + "start": 4247.1, + "end": 4249.02, + "probability": 0.9604 + }, + { + "start": 4249.56, + "end": 4252.16, + "probability": 0.8411 + }, + { + "start": 4252.32, + "end": 4253.9, + "probability": 0.6539 + }, + { + "start": 4254.42, + "end": 4255.92, + "probability": 0.8765 + }, + { + "start": 4256.54, + "end": 4262.1, + "probability": 0.8427 + }, + { + "start": 4262.24, + "end": 4264.36, + "probability": 0.8476 + }, + { + "start": 4266.46, + "end": 4272.02, + "probability": 0.9641 + }, + { + "start": 4272.44, + "end": 4274.78, + "probability": 0.8545 + }, + { + "start": 4274.92, + "end": 4276.61, + "probability": 0.9171 + }, + { + "start": 4277.16, + "end": 4278.1, + "probability": 0.0583 + }, + { + "start": 4278.7, + "end": 4281.22, + "probability": 0.1792 + }, + { + "start": 4281.38, + "end": 4282.12, + "probability": 0.5087 + }, + { + "start": 4282.64, + "end": 4283.78, + "probability": 0.5946 + }, + { + "start": 4284.14, + "end": 4286.18, + "probability": 0.8213 + }, + { + "start": 4286.66, + "end": 4288.38, + "probability": 0.7876 + }, + { + "start": 4289.68, + "end": 4293.16, + "probability": 0.6567 + }, + { + "start": 4293.97, + "end": 4297.24, + "probability": 0.6422 + }, + { + "start": 4297.5, + "end": 4298.88, + "probability": 0.7515 + }, + { + "start": 4299.36, + "end": 4300.12, + "probability": 0.8663 + }, + { + "start": 4301.3, + "end": 4303.68, + "probability": 0.9292 + }, + { + "start": 4304.76, + "end": 4306.78, + "probability": 0.5895 + }, + { + "start": 4309.61, + "end": 4315.68, + "probability": 0.9755 + }, + { + "start": 4316.54, + "end": 4318.06, + "probability": 0.9604 + }, + { + "start": 4318.88, + "end": 4324.4, + "probability": 0.9105 + }, + { + "start": 4324.86, + "end": 4328.16, + "probability": 0.98 + }, + { + "start": 4328.8, + "end": 4330.98, + "probability": 0.9436 + }, + { + "start": 4332.48, + "end": 4335.06, + "probability": 0.9456 + }, + { + "start": 4335.78, + "end": 4337.62, + "probability": 0.9967 + }, + { + "start": 4337.72, + "end": 4340.76, + "probability": 0.8722 + }, + { + "start": 4341.24, + "end": 4343.06, + "probability": 0.8362 + }, + { + "start": 4344.24, + "end": 4345.4, + "probability": 0.7205 + }, + { + "start": 4345.66, + "end": 4346.32, + "probability": 0.694 + }, + { + "start": 4346.56, + "end": 4348.26, + "probability": 0.9382 + }, + { + "start": 4348.4, + "end": 4349.22, + "probability": 0.7311 + }, + { + "start": 4349.36, + "end": 4351.16, + "probability": 0.9709 + }, + { + "start": 4352.08, + "end": 4355.1, + "probability": 0.9869 + }, + { + "start": 4355.62, + "end": 4357.34, + "probability": 0.9967 + }, + { + "start": 4357.98, + "end": 4359.0, + "probability": 0.8905 + }, + { + "start": 4359.46, + "end": 4359.8, + "probability": 0.6357 + }, + { + "start": 4360.6, + "end": 4361.42, + "probability": 0.7265 + }, + { + "start": 4362.16, + "end": 4364.22, + "probability": 0.9476 + }, + { + "start": 4365.16, + "end": 4371.92, + "probability": 0.992 + }, + { + "start": 4372.62, + "end": 4377.4, + "probability": 0.9909 + }, + { + "start": 4378.06, + "end": 4382.28, + "probability": 0.9907 + }, + { + "start": 4384.06, + "end": 4386.52, + "probability": 0.9818 + }, + { + "start": 4387.34, + "end": 4388.2, + "probability": 0.7434 + }, + { + "start": 4389.2, + "end": 4390.46, + "probability": 0.9858 + }, + { + "start": 4392.1, + "end": 4397.38, + "probability": 0.9735 + }, + { + "start": 4398.0, + "end": 4400.3, + "probability": 0.8924 + }, + { + "start": 4401.5, + "end": 4406.6, + "probability": 0.9924 + }, + { + "start": 4407.26, + "end": 4409.88, + "probability": 0.9985 + }, + { + "start": 4410.48, + "end": 4416.54, + "probability": 0.9801 + }, + { + "start": 4416.54, + "end": 4422.26, + "probability": 0.9929 + }, + { + "start": 4422.34, + "end": 4425.24, + "probability": 0.9967 + }, + { + "start": 4426.36, + "end": 4426.98, + "probability": 0.8718 + }, + { + "start": 4428.04, + "end": 4429.38, + "probability": 0.725 + }, + { + "start": 4429.58, + "end": 4430.5, + "probability": 0.9604 + }, + { + "start": 4430.6, + "end": 4434.42, + "probability": 0.9892 + }, + { + "start": 4435.8, + "end": 4438.06, + "probability": 0.9868 + }, + { + "start": 4438.66, + "end": 4440.44, + "probability": 0.8249 + }, + { + "start": 4441.58, + "end": 4442.04, + "probability": 0.8978 + }, + { + "start": 4443.12, + "end": 4445.9, + "probability": 0.9932 + }, + { + "start": 4446.96, + "end": 4447.92, + "probability": 0.9858 + }, + { + "start": 4447.96, + "end": 4448.98, + "probability": 0.7734 + }, + { + "start": 4449.18, + "end": 4451.82, + "probability": 0.8151 + }, + { + "start": 4452.68, + "end": 4453.86, + "probability": 0.9785 + }, + { + "start": 4454.66, + "end": 4457.68, + "probability": 0.9683 + }, + { + "start": 4458.46, + "end": 4460.7, + "probability": 0.9608 + }, + { + "start": 4461.92, + "end": 4468.6, + "probability": 0.9508 + }, + { + "start": 4470.1, + "end": 4472.04, + "probability": 0.6669 + }, + { + "start": 4472.08, + "end": 4472.76, + "probability": 0.8049 + }, + { + "start": 4472.9, + "end": 4475.26, + "probability": 0.9875 + }, + { + "start": 4475.6, + "end": 4477.16, + "probability": 0.8881 + }, + { + "start": 4478.0, + "end": 4478.84, + "probability": 0.9728 + }, + { + "start": 4479.68, + "end": 4482.96, + "probability": 0.9935 + }, + { + "start": 4483.86, + "end": 4485.66, + "probability": 0.7979 + }, + { + "start": 4485.84, + "end": 4489.8, + "probability": 0.9865 + }, + { + "start": 4489.82, + "end": 4491.9, + "probability": 0.8965 + }, + { + "start": 4492.44, + "end": 4495.28, + "probability": 0.9817 + }, + { + "start": 4495.96, + "end": 4500.4, + "probability": 0.978 + }, + { + "start": 4500.54, + "end": 4500.86, + "probability": 0.7586 + }, + { + "start": 4501.8, + "end": 4503.34, + "probability": 0.925 + }, + { + "start": 4504.5, + "end": 4507.92, + "probability": 0.9601 + }, + { + "start": 4508.18, + "end": 4508.66, + "probability": 0.6928 + }, + { + "start": 4521.72, + "end": 4522.88, + "probability": 0.5504 + }, + { + "start": 4523.82, + "end": 4530.0, + "probability": 0.9805 + }, + { + "start": 4530.26, + "end": 4533.92, + "probability": 0.8594 + }, + { + "start": 4535.0, + "end": 4535.36, + "probability": 0.5542 + }, + { + "start": 4535.42, + "end": 4538.08, + "probability": 0.9897 + }, + { + "start": 4538.08, + "end": 4540.82, + "probability": 0.9983 + }, + { + "start": 4542.08, + "end": 4545.46, + "probability": 0.8019 + }, + { + "start": 4545.86, + "end": 4549.74, + "probability": 0.9953 + }, + { + "start": 4550.08, + "end": 4553.38, + "probability": 0.991 + }, + { + "start": 4554.24, + "end": 4555.96, + "probability": 0.6302 + }, + { + "start": 4556.12, + "end": 4556.78, + "probability": 0.8082 + }, + { + "start": 4556.98, + "end": 4560.42, + "probability": 0.9541 + }, + { + "start": 4560.62, + "end": 4563.76, + "probability": 0.9821 + }, + { + "start": 4563.89, + "end": 4565.79, + "probability": 0.9911 + }, + { + "start": 4567.24, + "end": 4568.34, + "probability": 0.7711 + }, + { + "start": 4568.4, + "end": 4570.04, + "probability": 0.983 + }, + { + "start": 4570.38, + "end": 4571.5, + "probability": 0.993 + }, + { + "start": 4571.98, + "end": 4576.64, + "probability": 0.9906 + }, + { + "start": 4577.92, + "end": 4580.28, + "probability": 0.9951 + }, + { + "start": 4580.42, + "end": 4584.04, + "probability": 0.9879 + }, + { + "start": 4584.1, + "end": 4586.76, + "probability": 0.8654 + }, + { + "start": 4587.28, + "end": 4590.2, + "probability": 0.979 + }, + { + "start": 4591.14, + "end": 4594.24, + "probability": 0.9896 + }, + { + "start": 4594.68, + "end": 4596.64, + "probability": 0.8331 + }, + { + "start": 4597.08, + "end": 4598.52, + "probability": 0.9966 + }, + { + "start": 4600.56, + "end": 4601.68, + "probability": 0.9551 + }, + { + "start": 4602.04, + "end": 4604.3, + "probability": 0.9557 + }, + { + "start": 4604.44, + "end": 4606.0, + "probability": 0.8857 + }, + { + "start": 4606.54, + "end": 4610.06, + "probability": 0.9902 + }, + { + "start": 4610.12, + "end": 4610.54, + "probability": 0.5742 + }, + { + "start": 4610.6, + "end": 4611.98, + "probability": 0.9509 + }, + { + "start": 4612.5, + "end": 4613.94, + "probability": 0.9859 + }, + { + "start": 4614.9, + "end": 4620.96, + "probability": 0.9926 + }, + { + "start": 4621.44, + "end": 4623.4, + "probability": 0.8028 + }, + { + "start": 4623.46, + "end": 4626.18, + "probability": 0.9844 + }, + { + "start": 4626.58, + "end": 4629.3, + "probability": 0.9856 + }, + { + "start": 4630.5, + "end": 4633.7, + "probability": 0.9709 + }, + { + "start": 4633.7, + "end": 4636.64, + "probability": 0.9637 + }, + { + "start": 4637.34, + "end": 4637.7, + "probability": 0.3373 + }, + { + "start": 4637.8, + "end": 4638.18, + "probability": 0.95 + }, + { + "start": 4638.26, + "end": 4643.24, + "probability": 0.9766 + }, + { + "start": 4643.78, + "end": 4646.6, + "probability": 0.9968 + }, + { + "start": 4647.0, + "end": 4649.96, + "probability": 0.9989 + }, + { + "start": 4650.5, + "end": 4652.84, + "probability": 0.9997 + }, + { + "start": 4653.02, + "end": 4654.94, + "probability": 0.9707 + }, + { + "start": 4655.56, + "end": 4658.24, + "probability": 0.9335 + }, + { + "start": 4658.44, + "end": 4659.76, + "probability": 0.9534 + }, + { + "start": 4660.12, + "end": 4661.3, + "probability": 0.9102 + }, + { + "start": 4662.76, + "end": 4666.76, + "probability": 0.919 + }, + { + "start": 4666.9, + "end": 4668.74, + "probability": 0.8587 + }, + { + "start": 4669.84, + "end": 4671.04, + "probability": 0.6625 + }, + { + "start": 4671.58, + "end": 4677.96, + "probability": 0.9884 + }, + { + "start": 4678.02, + "end": 4678.86, + "probability": 0.9679 + }, + { + "start": 4679.22, + "end": 4680.32, + "probability": 0.9328 + }, + { + "start": 4680.48, + "end": 4681.28, + "probability": 0.6313 + }, + { + "start": 4681.82, + "end": 4684.66, + "probability": 0.9956 + }, + { + "start": 4685.52, + "end": 4685.62, + "probability": 0.4918 + }, + { + "start": 4685.62, + "end": 4685.62, + "probability": 0.7356 + }, + { + "start": 4685.62, + "end": 4686.52, + "probability": 0.6654 + }, + { + "start": 4686.62, + "end": 4688.9, + "probability": 0.8069 + }, + { + "start": 4691.11, + "end": 4694.04, + "probability": 0.7489 + }, + { + "start": 4694.78, + "end": 4698.64, + "probability": 0.9797 + }, + { + "start": 4700.22, + "end": 4705.76, + "probability": 0.9668 + }, + { + "start": 4706.8, + "end": 4709.12, + "probability": 0.7462 + }, + { + "start": 4709.74, + "end": 4710.14, + "probability": 0.7356 + }, + { + "start": 4710.66, + "end": 4713.8, + "probability": 0.8431 + }, + { + "start": 4714.36, + "end": 4720.58, + "probability": 0.9355 + }, + { + "start": 4720.93, + "end": 4722.2, + "probability": 0.8998 + }, + { + "start": 4722.98, + "end": 4725.48, + "probability": 0.8944 + }, + { + "start": 4726.34, + "end": 4729.44, + "probability": 0.8477 + }, + { + "start": 4730.3, + "end": 4732.06, + "probability": 0.9197 + }, + { + "start": 4732.7, + "end": 4733.76, + "probability": 0.8642 + }, + { + "start": 4734.02, + "end": 4735.54, + "probability": 0.5826 + }, + { + "start": 4736.0, + "end": 4736.66, + "probability": 0.7126 + }, + { + "start": 4736.76, + "end": 4737.78, + "probability": 0.9653 + }, + { + "start": 4738.5, + "end": 4740.86, + "probability": 0.9646 + }, + { + "start": 4741.42, + "end": 4742.08, + "probability": 0.7217 + }, + { + "start": 4742.8, + "end": 4743.98, + "probability": 0.9946 + }, + { + "start": 4744.16, + "end": 4745.36, + "probability": 0.9122 + }, + { + "start": 4745.4, + "end": 4749.3, + "probability": 0.9938 + }, + { + "start": 4749.78, + "end": 4751.53, + "probability": 0.9948 + }, + { + "start": 4752.14, + "end": 4753.28, + "probability": 0.9525 + }, + { + "start": 4753.38, + "end": 4754.86, + "probability": 0.6018 + }, + { + "start": 4755.44, + "end": 4757.9, + "probability": 0.9952 + }, + { + "start": 4757.96, + "end": 4761.74, + "probability": 0.9979 + }, + { + "start": 4763.1, + "end": 4763.82, + "probability": 0.8325 + }, + { + "start": 4764.38, + "end": 4767.5, + "probability": 0.9982 + }, + { + "start": 4767.76, + "end": 4769.26, + "probability": 0.9873 + }, + { + "start": 4769.34, + "end": 4769.44, + "probability": 0.7116 + }, + { + "start": 4769.82, + "end": 4770.4, + "probability": 0.784 + }, + { + "start": 4770.48, + "end": 4771.32, + "probability": 0.9823 + }, + { + "start": 4772.82, + "end": 4777.82, + "probability": 0.9548 + }, + { + "start": 4777.92, + "end": 4779.06, + "probability": 0.8016 + }, + { + "start": 4779.84, + "end": 4781.7, + "probability": 0.9986 + }, + { + "start": 4781.96, + "end": 4784.55, + "probability": 0.9521 + }, + { + "start": 4785.6, + "end": 4788.73, + "probability": 0.9885 + }, + { + "start": 4789.52, + "end": 4791.34, + "probability": 0.9181 + }, + { + "start": 4791.82, + "end": 4794.2, + "probability": 0.5508 + }, + { + "start": 4794.6, + "end": 4795.22, + "probability": 0.7665 + }, + { + "start": 4796.91, + "end": 4800.9, + "probability": 0.948 + }, + { + "start": 4801.36, + "end": 4804.74, + "probability": 0.9973 + }, + { + "start": 4804.74, + "end": 4807.74, + "probability": 0.9764 + }, + { + "start": 4807.86, + "end": 4809.28, + "probability": 0.6639 + }, + { + "start": 4809.82, + "end": 4812.34, + "probability": 0.9878 + }, + { + "start": 4813.38, + "end": 4815.94, + "probability": 0.9757 + }, + { + "start": 4816.74, + "end": 4818.18, + "probability": 0.7612 + }, + { + "start": 4818.28, + "end": 4818.58, + "probability": 0.9408 + }, + { + "start": 4818.68, + "end": 4819.54, + "probability": 0.916 + }, + { + "start": 4819.88, + "end": 4822.22, + "probability": 0.9861 + }, + { + "start": 4822.54, + "end": 4824.28, + "probability": 0.9915 + }, + { + "start": 4825.28, + "end": 4828.24, + "probability": 0.7629 + }, + { + "start": 4829.46, + "end": 4832.49, + "probability": 0.5445 + }, + { + "start": 4833.1, + "end": 4836.1, + "probability": 0.9915 + }, + { + "start": 4836.48, + "end": 4838.76, + "probability": 0.9924 + }, + { + "start": 4838.88, + "end": 4840.0, + "probability": 0.8839 + }, + { + "start": 4840.42, + "end": 4844.0, + "probability": 0.9943 + }, + { + "start": 4845.46, + "end": 4848.04, + "probability": 0.9172 + }, + { + "start": 4848.66, + "end": 4851.78, + "probability": 0.9486 + }, + { + "start": 4852.2, + "end": 4852.88, + "probability": 0.8103 + }, + { + "start": 4854.1, + "end": 4858.48, + "probability": 0.9969 + }, + { + "start": 4859.6, + "end": 4862.06, + "probability": 0.8232 + }, + { + "start": 4862.6, + "end": 4866.0, + "probability": 0.9916 + }, + { + "start": 4866.84, + "end": 4870.86, + "probability": 0.9905 + }, + { + "start": 4872.34, + "end": 4877.84, + "probability": 0.9912 + }, + { + "start": 4878.02, + "end": 4878.58, + "probability": 0.6842 + }, + { + "start": 4879.34, + "end": 4882.44, + "probability": 0.9886 + }, + { + "start": 4882.44, + "end": 4886.6, + "probability": 0.9707 + }, + { + "start": 4887.32, + "end": 4890.54, + "probability": 0.9791 + }, + { + "start": 4890.54, + "end": 4893.08, + "probability": 0.9642 + }, + { + "start": 4893.7, + "end": 4899.36, + "probability": 0.9951 + }, + { + "start": 4899.66, + "end": 4902.44, + "probability": 0.8777 + }, + { + "start": 4902.76, + "end": 4905.4, + "probability": 0.9946 + }, + { + "start": 4905.56, + "end": 4906.52, + "probability": 0.9492 + }, + { + "start": 4906.94, + "end": 4909.68, + "probability": 0.9783 + }, + { + "start": 4910.0, + "end": 4910.8, + "probability": 0.7632 + }, + { + "start": 4911.56, + "end": 4913.32, + "probability": 0.7294 + }, + { + "start": 4914.32, + "end": 4915.68, + "probability": 0.9874 + }, + { + "start": 4916.54, + "end": 4917.02, + "probability": 0.8757 + }, + { + "start": 4918.54, + "end": 4922.44, + "probability": 0.7456 + }, + { + "start": 4922.64, + "end": 4923.6, + "probability": 0.4694 + }, + { + "start": 4924.38, + "end": 4924.44, + "probability": 0.0193 + }, + { + "start": 4924.44, + "end": 4926.2, + "probability": 0.8063 + }, + { + "start": 4946.88, + "end": 4948.18, + "probability": 0.6701 + }, + { + "start": 4948.36, + "end": 4948.36, + "probability": 0.4119 + }, + { + "start": 4948.42, + "end": 4949.02, + "probability": 0.8119 + }, + { + "start": 4949.22, + "end": 4950.28, + "probability": 0.7148 + }, + { + "start": 4952.11, + "end": 4955.2, + "probability": 0.985 + }, + { + "start": 4955.2, + "end": 4958.44, + "probability": 0.9518 + }, + { + "start": 4959.52, + "end": 4960.94, + "probability": 0.9209 + }, + { + "start": 4961.93, + "end": 4964.78, + "probability": 0.9635 + }, + { + "start": 4966.76, + "end": 4967.86, + "probability": 0.9595 + }, + { + "start": 4968.3, + "end": 4970.94, + "probability": 0.9982 + }, + { + "start": 4971.4, + "end": 4974.6, + "probability": 0.7694 + }, + { + "start": 4975.34, + "end": 4976.9, + "probability": 0.9971 + }, + { + "start": 4978.56, + "end": 4979.09, + "probability": 0.9129 + }, + { + "start": 4980.82, + "end": 4984.3, + "probability": 0.9988 + }, + { + "start": 4984.9, + "end": 4985.9, + "probability": 0.8955 + }, + { + "start": 4986.74, + "end": 4993.6, + "probability": 0.9203 + }, + { + "start": 4994.88, + "end": 4999.54, + "probability": 0.9916 + }, + { + "start": 5000.14, + "end": 5001.36, + "probability": 0.6951 + }, + { + "start": 5001.9, + "end": 5002.98, + "probability": 0.5955 + }, + { + "start": 5003.7, + "end": 5005.78, + "probability": 0.0528 + }, + { + "start": 5006.62, + "end": 5007.92, + "probability": 0.4557 + }, + { + "start": 5008.38, + "end": 5009.26, + "probability": 0.9621 + }, + { + "start": 5010.24, + "end": 5011.2, + "probability": 0.8829 + }, + { + "start": 5011.4, + "end": 5016.74, + "probability": 0.9962 + }, + { + "start": 5016.74, + "end": 5020.08, + "probability": 0.9534 + }, + { + "start": 5022.2, + "end": 5023.4, + "probability": 0.1302 + }, + { + "start": 5023.64, + "end": 5028.08, + "probability": 0.9824 + }, + { + "start": 5028.24, + "end": 5029.82, + "probability": 0.9951 + }, + { + "start": 5030.38, + "end": 5031.02, + "probability": 0.6229 + }, + { + "start": 5031.36, + "end": 5032.74, + "probability": 0.9229 + }, + { + "start": 5032.82, + "end": 5033.34, + "probability": 0.4743 + }, + { + "start": 5033.44, + "end": 5034.08, + "probability": 0.9294 + }, + { + "start": 5035.66, + "end": 5039.62, + "probability": 0.9692 + }, + { + "start": 5039.68, + "end": 5040.4, + "probability": 0.632 + }, + { + "start": 5040.52, + "end": 5041.13, + "probability": 0.5513 + }, + { + "start": 5041.46, + "end": 5042.52, + "probability": 0.7507 + }, + { + "start": 5043.16, + "end": 5047.44, + "probability": 0.9744 + }, + { + "start": 5047.58, + "end": 5048.49, + "probability": 0.5026 + }, + { + "start": 5049.5, + "end": 5051.46, + "probability": 0.9885 + }, + { + "start": 5052.22, + "end": 5052.76, + "probability": 0.9166 + }, + { + "start": 5052.94, + "end": 5053.4, + "probability": 0.8933 + }, + { + "start": 5053.56, + "end": 5054.28, + "probability": 0.9807 + }, + { + "start": 5054.4, + "end": 5055.16, + "probability": 0.8583 + }, + { + "start": 5055.58, + "end": 5056.68, + "probability": 0.9441 + }, + { + "start": 5057.38, + "end": 5060.86, + "probability": 0.9958 + }, + { + "start": 5061.5, + "end": 5062.94, + "probability": 0.7339 + }, + { + "start": 5063.52, + "end": 5064.36, + "probability": 0.6288 + }, + { + "start": 5064.98, + "end": 5067.98, + "probability": 0.9791 + }, + { + "start": 5068.66, + "end": 5072.14, + "probability": 0.9823 + }, + { + "start": 5073.1, + "end": 5074.94, + "probability": 0.933 + }, + { + "start": 5075.94, + "end": 5079.02, + "probability": 0.7378 + }, + { + "start": 5079.52, + "end": 5084.26, + "probability": 0.8486 + }, + { + "start": 5084.42, + "end": 5085.1, + "probability": 0.8701 + }, + { + "start": 5085.52, + "end": 5087.02, + "probability": 0.9696 + }, + { + "start": 5087.74, + "end": 5088.68, + "probability": 0.9857 + }, + { + "start": 5089.48, + "end": 5091.48, + "probability": 0.7021 + }, + { + "start": 5092.6, + "end": 5099.44, + "probability": 0.8816 + }, + { + "start": 5100.1, + "end": 5102.92, + "probability": 0.9919 + }, + { + "start": 5103.28, + "end": 5105.28, + "probability": 0.6655 + }, + { + "start": 5106.04, + "end": 5108.52, + "probability": 0.9746 + }, + { + "start": 5108.52, + "end": 5114.48, + "probability": 0.9426 + }, + { + "start": 5114.5, + "end": 5118.2, + "probability": 0.7108 + }, + { + "start": 5118.64, + "end": 5119.14, + "probability": 0.8045 + }, + { + "start": 5119.3, + "end": 5119.82, + "probability": 0.605 + }, + { + "start": 5121.2, + "end": 5126.1, + "probability": 0.8579 + }, + { + "start": 5126.84, + "end": 5130.32, + "probability": 0.9256 + }, + { + "start": 5130.32, + "end": 5132.48, + "probability": 0.8613 + }, + { + "start": 5133.42, + "end": 5134.42, + "probability": 0.9827 + }, + { + "start": 5135.94, + "end": 5140.74, + "probability": 0.947 + }, + { + "start": 5141.86, + "end": 5143.66, + "probability": 0.777 + }, + { + "start": 5143.96, + "end": 5145.9, + "probability": 0.9758 + }, + { + "start": 5146.56, + "end": 5147.22, + "probability": 0.6527 + }, + { + "start": 5147.9, + "end": 5156.58, + "probability": 0.9744 + }, + { + "start": 5157.0, + "end": 5158.4, + "probability": 0.9054 + }, + { + "start": 5159.76, + "end": 5162.84, + "probability": 0.9888 + }, + { + "start": 5162.84, + "end": 5164.22, + "probability": 0.7389 + }, + { + "start": 5164.84, + "end": 5165.64, + "probability": 0.9755 + }, + { + "start": 5166.96, + "end": 5173.32, + "probability": 0.9646 + }, + { + "start": 5174.18, + "end": 5179.28, + "probability": 0.9714 + }, + { + "start": 5179.28, + "end": 5181.66, + "probability": 0.9969 + }, + { + "start": 5182.34, + "end": 5183.32, + "probability": 0.8588 + }, + { + "start": 5183.58, + "end": 5184.52, + "probability": 0.9818 + }, + { + "start": 5184.74, + "end": 5185.8, + "probability": 0.8135 + }, + { + "start": 5186.26, + "end": 5187.26, + "probability": 0.5213 + }, + { + "start": 5187.6, + "end": 5188.63, + "probability": 0.9966 + }, + { + "start": 5189.68, + "end": 5193.52, + "probability": 0.988 + }, + { + "start": 5193.55, + "end": 5198.04, + "probability": 0.9453 + }, + { + "start": 5198.76, + "end": 5201.44, + "probability": 0.7653 + }, + { + "start": 5202.34, + "end": 5209.64, + "probability": 0.9489 + }, + { + "start": 5210.56, + "end": 5210.84, + "probability": 0.9153 + }, + { + "start": 5211.4, + "end": 5212.78, + "probability": 0.9854 + }, + { + "start": 5213.6, + "end": 5215.4, + "probability": 0.785 + }, + { + "start": 5216.26, + "end": 5220.7, + "probability": 0.9641 + }, + { + "start": 5221.62, + "end": 5224.96, + "probability": 0.9774 + }, + { + "start": 5225.08, + "end": 5226.8, + "probability": 0.9341 + }, + { + "start": 5228.2, + "end": 5230.1, + "probability": 0.9873 + }, + { + "start": 5230.86, + "end": 5233.52, + "probability": 0.9797 + }, + { + "start": 5233.52, + "end": 5237.8, + "probability": 0.9937 + }, + { + "start": 5238.22, + "end": 5241.66, + "probability": 0.9909 + }, + { + "start": 5242.74, + "end": 5242.98, + "probability": 0.4836 + }, + { + "start": 5244.64, + "end": 5246.94, + "probability": 0.8534 + }, + { + "start": 5248.06, + "end": 5248.77, + "probability": 0.8696 + }, + { + "start": 5249.14, + "end": 5251.21, + "probability": 0.9448 + }, + { + "start": 5252.12, + "end": 5253.9, + "probability": 0.5426 + }, + { + "start": 5254.44, + "end": 5255.02, + "probability": 0.9559 + }, + { + "start": 5255.66, + "end": 5256.76, + "probability": 0.43 + }, + { + "start": 5257.24, + "end": 5258.7, + "probability": 0.3841 + }, + { + "start": 5258.72, + "end": 5258.88, + "probability": 0.8235 + }, + { + "start": 5269.2, + "end": 5270.36, + "probability": 0.6257 + }, + { + "start": 5270.8, + "end": 5270.82, + "probability": 0.387 + }, + { + "start": 5270.82, + "end": 5271.46, + "probability": 0.8332 + }, + { + "start": 5271.56, + "end": 5272.8, + "probability": 0.805 + }, + { + "start": 5274.26, + "end": 5280.38, + "probability": 0.9963 + }, + { + "start": 5280.48, + "end": 5285.54, + "probability": 0.9578 + }, + { + "start": 5287.72, + "end": 5289.06, + "probability": 0.7435 + }, + { + "start": 5290.26, + "end": 5293.06, + "probability": 0.9978 + }, + { + "start": 5294.0, + "end": 5297.88, + "probability": 0.9951 + }, + { + "start": 5298.76, + "end": 5301.66, + "probability": 0.9956 + }, + { + "start": 5302.3, + "end": 5306.33, + "probability": 0.9883 + }, + { + "start": 5306.92, + "end": 5312.62, + "probability": 0.9992 + }, + { + "start": 5312.8, + "end": 5315.82, + "probability": 0.9958 + }, + { + "start": 5317.16, + "end": 5317.72, + "probability": 0.7826 + }, + { + "start": 5317.84, + "end": 5318.08, + "probability": 0.6353 + }, + { + "start": 5318.12, + "end": 5319.02, + "probability": 0.621 + }, + { + "start": 5319.02, + "end": 5322.16, + "probability": 0.9067 + }, + { + "start": 5322.72, + "end": 5327.16, + "probability": 0.9761 + }, + { + "start": 5328.9, + "end": 5330.08, + "probability": 0.8209 + }, + { + "start": 5330.16, + "end": 5331.04, + "probability": 0.9798 + }, + { + "start": 5331.24, + "end": 5333.7, + "probability": 0.933 + }, + { + "start": 5334.46, + "end": 5335.44, + "probability": 0.9919 + }, + { + "start": 5337.18, + "end": 5340.54, + "probability": 0.9941 + }, + { + "start": 5341.8, + "end": 5345.54, + "probability": 0.6655 + }, + { + "start": 5345.66, + "end": 5347.96, + "probability": 0.7558 + }, + { + "start": 5348.86, + "end": 5352.53, + "probability": 0.8721 + }, + { + "start": 5354.2, + "end": 5360.44, + "probability": 0.9889 + }, + { + "start": 5361.34, + "end": 5365.08, + "probability": 0.8713 + }, + { + "start": 5365.08, + "end": 5371.42, + "probability": 0.9754 + }, + { + "start": 5372.26, + "end": 5376.74, + "probability": 0.9979 + }, + { + "start": 5376.88, + "end": 5377.26, + "probability": 0.7132 + }, + { + "start": 5377.92, + "end": 5380.72, + "probability": 0.9517 + }, + { + "start": 5381.86, + "end": 5382.3, + "probability": 0.8671 + }, + { + "start": 5386.36, + "end": 5390.96, + "probability": 0.8976 + }, + { + "start": 5392.46, + "end": 5395.66, + "probability": 0.9936 + }, + { + "start": 5395.66, + "end": 5399.7, + "probability": 0.9909 + }, + { + "start": 5400.18, + "end": 5403.53, + "probability": 0.9973 + }, + { + "start": 5404.28, + "end": 5406.82, + "probability": 0.9885 + }, + { + "start": 5407.56, + "end": 5412.4, + "probability": 0.9533 + }, + { + "start": 5412.4, + "end": 5416.96, + "probability": 0.9931 + }, + { + "start": 5418.64, + "end": 5423.58, + "probability": 0.8409 + }, + { + "start": 5424.06, + "end": 5425.44, + "probability": 0.9132 + }, + { + "start": 5428.56, + "end": 5434.46, + "probability": 0.7589 + }, + { + "start": 5434.46, + "end": 5440.86, + "probability": 0.9984 + }, + { + "start": 5442.3, + "end": 5447.6, + "probability": 0.7726 + }, + { + "start": 5448.12, + "end": 5456.38, + "probability": 0.9922 + }, + { + "start": 5456.38, + "end": 5461.9, + "probability": 0.9989 + }, + { + "start": 5462.44, + "end": 5467.82, + "probability": 0.9202 + }, + { + "start": 5468.36, + "end": 5472.02, + "probability": 0.9552 + }, + { + "start": 5473.76, + "end": 5473.76, + "probability": 0.3077 + }, + { + "start": 5474.08, + "end": 5475.08, + "probability": 0.65 + }, + { + "start": 5475.14, + "end": 5480.34, + "probability": 0.9551 + }, + { + "start": 5480.34, + "end": 5486.84, + "probability": 0.9796 + }, + { + "start": 5489.38, + "end": 5493.62, + "probability": 0.944 + }, + { + "start": 5493.62, + "end": 5496.38, + "probability": 0.9863 + }, + { + "start": 5498.1, + "end": 5503.74, + "probability": 0.8889 + }, + { + "start": 5505.7, + "end": 5511.62, + "probability": 0.9847 + }, + { + "start": 5511.62, + "end": 5517.42, + "probability": 0.9884 + }, + { + "start": 5518.38, + "end": 5519.4, + "probability": 0.8225 + }, + { + "start": 5520.38, + "end": 5523.24, + "probability": 0.908 + }, + { + "start": 5526.18, + "end": 5528.12, + "probability": 0.9949 + }, + { + "start": 5528.54, + "end": 5529.64, + "probability": 0.9804 + }, + { + "start": 5530.38, + "end": 5534.36, + "probability": 0.9962 + }, + { + "start": 5536.18, + "end": 5537.16, + "probability": 0.894 + }, + { + "start": 5537.8, + "end": 5541.12, + "probability": 0.9261 + }, + { + "start": 5542.12, + "end": 5546.04, + "probability": 0.8516 + }, + { + "start": 5547.72, + "end": 5555.6, + "probability": 0.9845 + }, + { + "start": 5556.5, + "end": 5560.44, + "probability": 0.9888 + }, + { + "start": 5561.04, + "end": 5565.38, + "probability": 0.8097 + }, + { + "start": 5566.5, + "end": 5568.56, + "probability": 0.9949 + }, + { + "start": 5570.42, + "end": 5574.54, + "probability": 0.9941 + }, + { + "start": 5574.54, + "end": 5578.94, + "probability": 0.9922 + }, + { + "start": 5579.66, + "end": 5582.54, + "probability": 0.9957 + }, + { + "start": 5583.44, + "end": 5586.65, + "probability": 0.8895 + }, + { + "start": 5586.8, + "end": 5589.12, + "probability": 0.9943 + }, + { + "start": 5590.5, + "end": 5594.06, + "probability": 0.9254 + }, + { + "start": 5594.94, + "end": 5595.44, + "probability": 0.7317 + }, + { + "start": 5595.5, + "end": 5596.66, + "probability": 0.9771 + }, + { + "start": 5596.96, + "end": 5600.58, + "probability": 0.9709 + }, + { + "start": 5601.32, + "end": 5606.86, + "probability": 0.9503 + }, + { + "start": 5607.44, + "end": 5613.72, + "probability": 0.992 + }, + { + "start": 5615.35, + "end": 5615.96, + "probability": 0.0519 + }, + { + "start": 5615.96, + "end": 5619.16, + "probability": 0.972 + }, + { + "start": 5619.92, + "end": 5621.1, + "probability": 0.992 + }, + { + "start": 5621.94, + "end": 5625.0, + "probability": 0.996 + }, + { + "start": 5625.56, + "end": 5627.56, + "probability": 0.9946 + }, + { + "start": 5628.74, + "end": 5629.56, + "probability": 0.746 + }, + { + "start": 5631.7, + "end": 5633.24, + "probability": 0.9479 + }, + { + "start": 5634.26, + "end": 5636.94, + "probability": 0.9922 + }, + { + "start": 5637.58, + "end": 5640.94, + "probability": 0.957 + }, + { + "start": 5641.96, + "end": 5642.16, + "probability": 0.6953 + }, + { + "start": 5643.54, + "end": 5652.24, + "probability": 0.8013 + }, + { + "start": 5653.48, + "end": 5656.72, + "probability": 0.9586 + }, + { + "start": 5657.24, + "end": 5660.84, + "probability": 0.8477 + }, + { + "start": 5663.16, + "end": 5663.86, + "probability": 0.6342 + }, + { + "start": 5663.96, + "end": 5665.2, + "probability": 0.9422 + }, + { + "start": 5665.48, + "end": 5667.68, + "probability": 0.9812 + }, + { + "start": 5668.76, + "end": 5672.54, + "probability": 0.9937 + }, + { + "start": 5673.5, + "end": 5674.46, + "probability": 0.9781 + }, + { + "start": 5675.02, + "end": 5676.18, + "probability": 0.9691 + }, + { + "start": 5677.48, + "end": 5681.36, + "probability": 0.999 + }, + { + "start": 5681.38, + "end": 5688.76, + "probability": 0.9989 + }, + { + "start": 5688.76, + "end": 5694.48, + "probability": 0.9993 + }, + { + "start": 5695.96, + "end": 5697.18, + "probability": 0.6121 + }, + { + "start": 5697.28, + "end": 5698.44, + "probability": 0.8713 + }, + { + "start": 5698.5, + "end": 5704.02, + "probability": 0.9952 + }, + { + "start": 5705.64, + "end": 5707.9, + "probability": 0.9937 + }, + { + "start": 5708.66, + "end": 5712.08, + "probability": 0.8785 + }, + { + "start": 5712.08, + "end": 5715.6, + "probability": 0.9991 + }, + { + "start": 5716.06, + "end": 5721.16, + "probability": 0.9846 + }, + { + "start": 5722.62, + "end": 5723.8, + "probability": 0.8765 + }, + { + "start": 5724.32, + "end": 5728.26, + "probability": 0.9443 + }, + { + "start": 5729.1, + "end": 5732.52, + "probability": 0.9498 + }, + { + "start": 5733.4, + "end": 5738.4, + "probability": 0.912 + }, + { + "start": 5739.46, + "end": 5740.92, + "probability": 0.9405 + }, + { + "start": 5742.32, + "end": 5746.22, + "probability": 0.9981 + }, + { + "start": 5746.22, + "end": 5749.7, + "probability": 0.9448 + }, + { + "start": 5750.68, + "end": 5754.64, + "probability": 0.9881 + }, + { + "start": 5755.68, + "end": 5756.86, + "probability": 0.9329 + }, + { + "start": 5757.56, + "end": 5761.44, + "probability": 0.9023 + }, + { + "start": 5763.14, + "end": 5770.97, + "probability": 0.9556 + }, + { + "start": 5771.62, + "end": 5774.16, + "probability": 0.9441 + }, + { + "start": 5775.18, + "end": 5776.26, + "probability": 0.8384 + }, + { + "start": 5776.68, + "end": 5780.86, + "probability": 0.9971 + }, + { + "start": 5782.58, + "end": 5784.92, + "probability": 0.7212 + }, + { + "start": 5785.8, + "end": 5789.68, + "probability": 0.9995 + }, + { + "start": 5789.81, + "end": 5795.14, + "probability": 0.999 + }, + { + "start": 5795.24, + "end": 5795.58, + "probability": 0.6731 + }, + { + "start": 5796.16, + "end": 5797.18, + "probability": 0.5961 + }, + { + "start": 5797.26, + "end": 5799.06, + "probability": 0.579 + }, + { + "start": 5799.2, + "end": 5802.34, + "probability": 0.999 + }, + { + "start": 5802.6, + "end": 5805.54, + "probability": 0.6873 + }, + { + "start": 5805.78, + "end": 5807.7, + "probability": 0.5968 + }, + { + "start": 5811.38, + "end": 5816.22, + "probability": 0.5614 + }, + { + "start": 5816.3, + "end": 5819.48, + "probability": 0.9574 + }, + { + "start": 5820.1, + "end": 5823.16, + "probability": 0.9948 + }, + { + "start": 5823.92, + "end": 5824.31, + "probability": 0.4608 + }, + { + "start": 5824.66, + "end": 5827.46, + "probability": 0.7271 + }, + { + "start": 5827.48, + "end": 5829.42, + "probability": 0.732 + }, + { + "start": 5829.42, + "end": 5832.42, + "probability": 0.2448 + }, + { + "start": 5832.6, + "end": 5833.18, + "probability": 0.6757 + }, + { + "start": 5833.48, + "end": 5835.5, + "probability": 0.811 + }, + { + "start": 5837.04, + "end": 5839.32, + "probability": 0.7471 + }, + { + "start": 5839.82, + "end": 5841.38, + "probability": 0.7863 + }, + { + "start": 5842.16, + "end": 5842.74, + "probability": 0.8734 + }, + { + "start": 5843.2, + "end": 5844.3, + "probability": 0.6095 + }, + { + "start": 5844.42, + "end": 5847.85, + "probability": 0.9932 + }, + { + "start": 5848.62, + "end": 5849.32, + "probability": 0.6786 + }, + { + "start": 5852.86, + "end": 5856.44, + "probability": 0.8663 + }, + { + "start": 5856.8, + "end": 5856.8, + "probability": 0.2788 + }, + { + "start": 5856.8, + "end": 5861.18, + "probability": 0.9869 + }, + { + "start": 5861.28, + "end": 5863.28, + "probability": 0.8765 + }, + { + "start": 5863.8, + "end": 5870.48, + "probability": 0.9785 + }, + { + "start": 5870.6, + "end": 5873.44, + "probability": 0.8582 + }, + { + "start": 5874.71, + "end": 5875.88, + "probability": 0.7563 + }, + { + "start": 5875.98, + "end": 5879.5, + "probability": 0.9958 + }, + { + "start": 5879.5, + "end": 5882.84, + "probability": 0.9547 + }, + { + "start": 5883.78, + "end": 5884.5, + "probability": 0.5381 + }, + { + "start": 5885.08, + "end": 5886.12, + "probability": 0.9826 + }, + { + "start": 5886.38, + "end": 5887.38, + "probability": 0.8266 + }, + { + "start": 5888.2, + "end": 5889.08, + "probability": 0.8805 + }, + { + "start": 5889.32, + "end": 5890.54, + "probability": 0.6628 + }, + { + "start": 5890.72, + "end": 5895.7, + "probability": 0.9985 + }, + { + "start": 5895.7, + "end": 5900.82, + "probability": 0.9924 + }, + { + "start": 5901.86, + "end": 5904.08, + "probability": 0.9983 + }, + { + "start": 5904.08, + "end": 5906.52, + "probability": 0.9955 + }, + { + "start": 5907.44, + "end": 5912.48, + "probability": 0.9979 + }, + { + "start": 5912.48, + "end": 5919.06, + "probability": 0.9985 + }, + { + "start": 5919.72, + "end": 5921.92, + "probability": 0.9998 + }, + { + "start": 5922.08, + "end": 5924.94, + "probability": 0.9992 + }, + { + "start": 5925.48, + "end": 5927.08, + "probability": 0.9601 + }, + { + "start": 5928.06, + "end": 5928.98, + "probability": 0.8542 + }, + { + "start": 5929.32, + "end": 5930.1, + "probability": 0.5836 + }, + { + "start": 5930.28, + "end": 5933.18, + "probability": 0.9447 + }, + { + "start": 5934.9, + "end": 5939.82, + "probability": 0.9929 + }, + { + "start": 5941.7, + "end": 5946.56, + "probability": 0.8457 + }, + { + "start": 5946.62, + "end": 5947.32, + "probability": 0.7826 + }, + { + "start": 5948.12, + "end": 5952.46, + "probability": 0.9933 + }, + { + "start": 5952.46, + "end": 5957.28, + "probability": 0.9855 + }, + { + "start": 5958.06, + "end": 5963.36, + "probability": 0.9918 + }, + { + "start": 5963.42, + "end": 5965.2, + "probability": 0.9867 + }, + { + "start": 5966.44, + "end": 5973.58, + "probability": 0.9948 + }, + { + "start": 5973.74, + "end": 5976.38, + "probability": 0.9952 + }, + { + "start": 5977.68, + "end": 5978.56, + "probability": 0.725 + }, + { + "start": 5979.36, + "end": 5981.6, + "probability": 0.9228 + }, + { + "start": 5982.26, + "end": 5983.72, + "probability": 0.9014 + }, + { + "start": 5984.76, + "end": 5986.26, + "probability": 0.9841 + }, + { + "start": 5986.9, + "end": 5988.66, + "probability": 0.9321 + }, + { + "start": 5989.52, + "end": 5991.54, + "probability": 0.6575 + }, + { + "start": 5991.58, + "end": 5992.24, + "probability": 0.7034 + }, + { + "start": 5992.38, + "end": 5995.5, + "probability": 0.9971 + }, + { + "start": 5996.2, + "end": 5998.9, + "probability": 0.7197 + }, + { + "start": 5999.54, + "end": 6002.06, + "probability": 0.9958 + }, + { + "start": 6002.52, + "end": 6005.16, + "probability": 0.9802 + }, + { + "start": 6005.94, + "end": 6007.5, + "probability": 0.9595 + }, + { + "start": 6009.22, + "end": 6013.7, + "probability": 0.9732 + }, + { + "start": 6013.84, + "end": 6017.76, + "probability": 0.999 + }, + { + "start": 6019.32, + "end": 6021.36, + "probability": 0.9958 + }, + { + "start": 6021.48, + "end": 6022.6, + "probability": 0.7638 + }, + { + "start": 6022.88, + "end": 6024.14, + "probability": 0.8943 + }, + { + "start": 6025.32, + "end": 6031.94, + "probability": 0.9985 + }, + { + "start": 6031.94, + "end": 6040.28, + "probability": 0.9993 + }, + { + "start": 6041.74, + "end": 6042.34, + "probability": 0.6819 + }, + { + "start": 6042.7, + "end": 6047.62, + "probability": 0.9951 + }, + { + "start": 6047.78, + "end": 6051.32, + "probability": 0.8991 + }, + { + "start": 6052.68, + "end": 6060.6, + "probability": 0.9919 + }, + { + "start": 6061.68, + "end": 6066.6, + "probability": 0.9318 + }, + { + "start": 6067.02, + "end": 6068.02, + "probability": 0.7373 + }, + { + "start": 6068.6, + "end": 6070.64, + "probability": 0.7928 + }, + { + "start": 6071.76, + "end": 6072.92, + "probability": 0.6958 + }, + { + "start": 6073.57, + "end": 6079.2, + "probability": 0.7942 + }, + { + "start": 6079.2, + "end": 6083.62, + "probability": 0.9955 + }, + { + "start": 6084.54, + "end": 6085.46, + "probability": 0.9959 + }, + { + "start": 6086.45, + "end": 6089.52, + "probability": 0.6641 + }, + { + "start": 6090.4, + "end": 6095.26, + "probability": 0.9971 + }, + { + "start": 6095.9, + "end": 6097.8, + "probability": 0.9893 + }, + { + "start": 6098.04, + "end": 6104.76, + "probability": 0.9927 + }, + { + "start": 6104.76, + "end": 6109.3, + "probability": 0.9919 + }, + { + "start": 6109.78, + "end": 6110.36, + "probability": 0.6997 + }, + { + "start": 6111.16, + "end": 6112.44, + "probability": 0.7276 + }, + { + "start": 6113.42, + "end": 6116.33, + "probability": 0.837 + }, + { + "start": 6117.4, + "end": 6120.44, + "probability": 0.9324 + }, + { + "start": 6121.1, + "end": 6121.2, + "probability": 0.0212 + }, + { + "start": 6121.2, + "end": 6124.0, + "probability": 0.927 + }, + { + "start": 6124.54, + "end": 6127.01, + "probability": 0.8671 + }, + { + "start": 6143.14, + "end": 6143.98, + "probability": 0.6365 + }, + { + "start": 6144.2, + "end": 6144.22, + "probability": 0.5941 + }, + { + "start": 6144.22, + "end": 6144.88, + "probability": 0.8528 + }, + { + "start": 6145.02, + "end": 6146.16, + "probability": 0.8035 + }, + { + "start": 6147.12, + "end": 6147.84, + "probability": 0.9135 + }, + { + "start": 6147.9, + "end": 6151.4, + "probability": 0.9925 + }, + { + "start": 6152.34, + "end": 6154.34, + "probability": 0.9932 + }, + { + "start": 6154.46, + "end": 6159.0, + "probability": 0.9718 + }, + { + "start": 6159.16, + "end": 6160.08, + "probability": 0.7937 + }, + { + "start": 6160.24, + "end": 6162.16, + "probability": 0.9909 + }, + { + "start": 6162.98, + "end": 6164.2, + "probability": 0.837 + }, + { + "start": 6164.3, + "end": 6167.44, + "probability": 0.9687 + }, + { + "start": 6168.14, + "end": 6170.98, + "probability": 0.6605 + }, + { + "start": 6171.12, + "end": 6172.49, + "probability": 0.9608 + }, + { + "start": 6173.24, + "end": 6176.3, + "probability": 0.9977 + }, + { + "start": 6176.36, + "end": 6179.14, + "probability": 0.9917 + }, + { + "start": 6179.74, + "end": 6181.26, + "probability": 0.8859 + }, + { + "start": 6182.26, + "end": 6185.5, + "probability": 0.9869 + }, + { + "start": 6186.32, + "end": 6188.78, + "probability": 0.8184 + }, + { + "start": 6189.5, + "end": 6191.26, + "probability": 0.9989 + }, + { + "start": 6191.88, + "end": 6193.1, + "probability": 0.9937 + }, + { + "start": 6193.32, + "end": 6196.78, + "probability": 0.9766 + }, + { + "start": 6196.86, + "end": 6197.58, + "probability": 0.7409 + }, + { + "start": 6198.48, + "end": 6199.94, + "probability": 0.9362 + }, + { + "start": 6200.14, + "end": 6200.94, + "probability": 0.8434 + }, + { + "start": 6201.5, + "end": 6204.62, + "probability": 0.7012 + }, + { + "start": 6205.18, + "end": 6207.44, + "probability": 0.83 + }, + { + "start": 6207.48, + "end": 6208.8, + "probability": 0.9946 + }, + { + "start": 6209.0, + "end": 6210.0, + "probability": 0.9535 + }, + { + "start": 6210.52, + "end": 6214.2, + "probability": 0.9349 + }, + { + "start": 6215.06, + "end": 6219.1, + "probability": 0.9857 + }, + { + "start": 6219.7, + "end": 6222.18, + "probability": 0.9591 + }, + { + "start": 6223.2, + "end": 6226.6, + "probability": 0.9966 + }, + { + "start": 6226.82, + "end": 6229.46, + "probability": 0.8844 + }, + { + "start": 6229.56, + "end": 6233.12, + "probability": 0.9989 + }, + { + "start": 6233.12, + "end": 6237.2, + "probability": 0.9645 + }, + { + "start": 6237.58, + "end": 6239.2, + "probability": 0.9883 + }, + { + "start": 6240.14, + "end": 6241.86, + "probability": 0.9311 + }, + { + "start": 6242.1, + "end": 6243.31, + "probability": 0.644 + }, + { + "start": 6243.64, + "end": 6247.94, + "probability": 0.8034 + }, + { + "start": 6248.68, + "end": 6252.44, + "probability": 0.982 + }, + { + "start": 6253.79, + "end": 6257.96, + "probability": 0.9538 + }, + { + "start": 6257.98, + "end": 6259.32, + "probability": 0.8693 + }, + { + "start": 6260.26, + "end": 6262.2, + "probability": 0.99 + }, + { + "start": 6263.0, + "end": 6266.34, + "probability": 0.7147 + }, + { + "start": 6267.6, + "end": 6269.55, + "probability": 0.9126 + }, + { + "start": 6270.76, + "end": 6273.12, + "probability": 0.8931 + }, + { + "start": 6274.08, + "end": 6275.7, + "probability": 0.9834 + }, + { + "start": 6275.82, + "end": 6277.04, + "probability": 0.9985 + }, + { + "start": 6277.72, + "end": 6280.9, + "probability": 0.8473 + }, + { + "start": 6281.36, + "end": 6287.08, + "probability": 0.9265 + }, + { + "start": 6288.14, + "end": 6290.02, + "probability": 0.9375 + }, + { + "start": 6291.1, + "end": 6292.68, + "probability": 0.9681 + }, + { + "start": 6292.78, + "end": 6295.28, + "probability": 0.8207 + }, + { + "start": 6296.28, + "end": 6299.16, + "probability": 0.992 + }, + { + "start": 6299.4, + "end": 6300.26, + "probability": 0.7328 + }, + { + "start": 6300.68, + "end": 6302.54, + "probability": 0.9829 + }, + { + "start": 6303.02, + "end": 6303.56, + "probability": 0.9583 + }, + { + "start": 6304.6, + "end": 6305.32, + "probability": 0.7676 + }, + { + "start": 6306.12, + "end": 6307.3, + "probability": 0.9893 + }, + { + "start": 6308.34, + "end": 6310.88, + "probability": 0.8326 + }, + { + "start": 6312.28, + "end": 6316.88, + "probability": 0.8455 + }, + { + "start": 6317.36, + "end": 6318.05, + "probability": 0.6478 + }, + { + "start": 6319.18, + "end": 6319.76, + "probability": 0.7586 + }, + { + "start": 6320.26, + "end": 6321.32, + "probability": 0.8075 + }, + { + "start": 6321.36, + "end": 6323.7, + "probability": 0.9323 + }, + { + "start": 6324.02, + "end": 6325.52, + "probability": 0.9995 + }, + { + "start": 6326.08, + "end": 6327.2, + "probability": 0.8767 + }, + { + "start": 6327.8, + "end": 6329.4, + "probability": 0.8281 + }, + { + "start": 6330.1, + "end": 6332.34, + "probability": 0.9846 + }, + { + "start": 6332.82, + "end": 6333.32, + "probability": 0.3534 + }, + { + "start": 6334.18, + "end": 6335.78, + "probability": 0.9028 + }, + { + "start": 6336.32, + "end": 6338.96, + "probability": 0.9526 + }, + { + "start": 6339.66, + "end": 6339.98, + "probability": 0.6485 + }, + { + "start": 6340.86, + "end": 6344.39, + "probability": 0.9417 + }, + { + "start": 6345.18, + "end": 6346.64, + "probability": 0.9156 + }, + { + "start": 6346.8, + "end": 6353.94, + "probability": 0.8938 + }, + { + "start": 6354.14, + "end": 6359.12, + "probability": 0.9907 + }, + { + "start": 6359.82, + "end": 6363.64, + "probability": 0.7492 + }, + { + "start": 6363.8, + "end": 6368.04, + "probability": 0.9779 + }, + { + "start": 6368.64, + "end": 6370.84, + "probability": 0.9845 + }, + { + "start": 6371.3, + "end": 6371.96, + "probability": 0.8625 + }, + { + "start": 6373.0, + "end": 6374.94, + "probability": 0.7572 + }, + { + "start": 6376.8, + "end": 6376.82, + "probability": 0.0152 + }, + { + "start": 6376.9, + "end": 6378.32, + "probability": 0.4189 + }, + { + "start": 6379.68, + "end": 6380.76, + "probability": 0.7443 + }, + { + "start": 6380.8, + "end": 6381.42, + "probability": 0.9499 + }, + { + "start": 6382.0, + "end": 6385.48, + "probability": 0.8551 + }, + { + "start": 6385.76, + "end": 6387.56, + "probability": 0.9333 + }, + { + "start": 6388.32, + "end": 6389.0, + "probability": 0.8589 + }, + { + "start": 6389.7, + "end": 6391.22, + "probability": 0.4311 + }, + { + "start": 6391.38, + "end": 6393.56, + "probability": 0.9911 + }, + { + "start": 6393.56, + "end": 6396.96, + "probability": 0.9946 + }, + { + "start": 6397.44, + "end": 6400.8, + "probability": 0.9902 + }, + { + "start": 6400.96, + "end": 6401.86, + "probability": 0.5929 + }, + { + "start": 6402.4, + "end": 6403.48, + "probability": 0.9963 + }, + { + "start": 6404.0, + "end": 6404.74, + "probability": 0.642 + }, + { + "start": 6405.32, + "end": 6405.62, + "probability": 0.8381 + }, + { + "start": 6405.72, + "end": 6407.78, + "probability": 0.9305 + }, + { + "start": 6408.18, + "end": 6408.94, + "probability": 0.9028 + }, + { + "start": 6409.04, + "end": 6410.62, + "probability": 0.9928 + }, + { + "start": 6411.0, + "end": 6411.94, + "probability": 0.9446 + }, + { + "start": 6412.04, + "end": 6416.94, + "probability": 0.998 + }, + { + "start": 6418.14, + "end": 6420.82, + "probability": 0.9976 + }, + { + "start": 6421.08, + "end": 6424.28, + "probability": 0.9927 + }, + { + "start": 6424.7, + "end": 6425.76, + "probability": 0.9885 + }, + { + "start": 6425.94, + "end": 6426.52, + "probability": 0.9807 + }, + { + "start": 6426.78, + "end": 6427.72, + "probability": 0.9648 + }, + { + "start": 6428.14, + "end": 6429.76, + "probability": 0.9781 + }, + { + "start": 6430.26, + "end": 6430.68, + "probability": 0.6954 + }, + { + "start": 6431.3, + "end": 6433.74, + "probability": 0.9706 + }, + { + "start": 6434.64, + "end": 6437.0, + "probability": 0.9371 + }, + { + "start": 6437.56, + "end": 6439.98, + "probability": 0.7026 + }, + { + "start": 6440.42, + "end": 6441.66, + "probability": 0.8004 + }, + { + "start": 6441.98, + "end": 6444.54, + "probability": 0.9788 + }, + { + "start": 6444.64, + "end": 6447.72, + "probability": 0.9272 + }, + { + "start": 6448.0, + "end": 6449.42, + "probability": 0.7668 + }, + { + "start": 6449.58, + "end": 6453.48, + "probability": 0.9728 + }, + { + "start": 6454.3, + "end": 6457.9, + "probability": 0.8752 + }, + { + "start": 6458.54, + "end": 6460.12, + "probability": 0.9309 + }, + { + "start": 6460.48, + "end": 6461.18, + "probability": 0.9633 + }, + { + "start": 6461.42, + "end": 6462.14, + "probability": 0.8885 + }, + { + "start": 6462.42, + "end": 6467.22, + "probability": 0.993 + }, + { + "start": 6467.92, + "end": 6468.92, + "probability": 0.9961 + }, + { + "start": 6469.48, + "end": 6469.92, + "probability": 0.4388 + }, + { + "start": 6470.08, + "end": 6472.0, + "probability": 0.9924 + }, + { + "start": 6472.08, + "end": 6473.14, + "probability": 0.7522 + }, + { + "start": 6473.48, + "end": 6477.18, + "probability": 0.9587 + }, + { + "start": 6477.46, + "end": 6484.6, + "probability": 0.9472 + }, + { + "start": 6485.48, + "end": 6487.72, + "probability": 0.6879 + }, + { + "start": 6488.12, + "end": 6488.58, + "probability": 0.7648 + }, + { + "start": 6488.78, + "end": 6490.68, + "probability": 0.9883 + }, + { + "start": 6490.72, + "end": 6491.48, + "probability": 0.8624 + }, + { + "start": 6492.38, + "end": 6493.44, + "probability": 0.975 + }, + { + "start": 6494.42, + "end": 6498.6, + "probability": 0.9203 + }, + { + "start": 6499.36, + "end": 6503.6, + "probability": 0.952 + }, + { + "start": 6503.98, + "end": 6507.3, + "probability": 0.992 + }, + { + "start": 6507.34, + "end": 6508.3, + "probability": 0.7517 + }, + { + "start": 6508.32, + "end": 6508.72, + "probability": 0.9421 + }, + { + "start": 6509.06, + "end": 6510.0, + "probability": 0.8634 + }, + { + "start": 6512.63, + "end": 6514.9, + "probability": 0.9446 + }, + { + "start": 6515.32, + "end": 6516.22, + "probability": 0.5707 + }, + { + "start": 6516.66, + "end": 6517.24, + "probability": 0.8811 + }, + { + "start": 6517.64, + "end": 6521.9, + "probability": 0.9877 + }, + { + "start": 6522.46, + "end": 6525.88, + "probability": 0.9724 + }, + { + "start": 6526.38, + "end": 6528.08, + "probability": 0.9956 + }, + { + "start": 6530.2, + "end": 6533.04, + "probability": 0.6651 + }, + { + "start": 6533.4, + "end": 6534.58, + "probability": 0.9736 + }, + { + "start": 6535.92, + "end": 6541.64, + "probability": 0.735 + }, + { + "start": 6541.8, + "end": 6542.08, + "probability": 0.4351 + }, + { + "start": 6542.42, + "end": 6543.24, + "probability": 0.73 + }, + { + "start": 6543.5, + "end": 6547.16, + "probability": 0.7404 + }, + { + "start": 6548.18, + "end": 6550.07, + "probability": 0.9094 + }, + { + "start": 6550.58, + "end": 6551.56, + "probability": 0.9584 + }, + { + "start": 6552.22, + "end": 6553.0, + "probability": 0.9338 + }, + { + "start": 6553.88, + "end": 6555.7, + "probability": 0.9871 + }, + { + "start": 6556.26, + "end": 6556.86, + "probability": 0.9342 + }, + { + "start": 6558.82, + "end": 6559.82, + "probability": 0.9314 + }, + { + "start": 6561.94, + "end": 6565.18, + "probability": 0.9106 + }, + { + "start": 6565.58, + "end": 6566.84, + "probability": 0.6571 + }, + { + "start": 6567.9, + "end": 6569.48, + "probability": 0.4885 + }, + { + "start": 6570.3, + "end": 6572.96, + "probability": 0.8478 + }, + { + "start": 6573.52, + "end": 6574.7, + "probability": 0.9705 + }, + { + "start": 6574.84, + "end": 6576.18, + "probability": 0.7769 + }, + { + "start": 6576.8, + "end": 6578.52, + "probability": 0.4812 + }, + { + "start": 6578.88, + "end": 6580.94, + "probability": 0.9881 + }, + { + "start": 6580.98, + "end": 6582.62, + "probability": 0.8571 + }, + { + "start": 6582.68, + "end": 6585.12, + "probability": 0.9976 + }, + { + "start": 6585.54, + "end": 6588.32, + "probability": 0.9775 + }, + { + "start": 6588.7, + "end": 6589.44, + "probability": 0.9956 + }, + { + "start": 6589.98, + "end": 6591.06, + "probability": 0.8706 + }, + { + "start": 6591.18, + "end": 6592.75, + "probability": 0.8735 + }, + { + "start": 6593.91, + "end": 6594.54, + "probability": 0.5997 + }, + { + "start": 6595.02, + "end": 6598.88, + "probability": 0.9727 + }, + { + "start": 6599.74, + "end": 6600.36, + "probability": 0.8906 + }, + { + "start": 6600.74, + "end": 6602.16, + "probability": 0.9806 + }, + { + "start": 6602.5, + "end": 6603.98, + "probability": 0.983 + }, + { + "start": 6604.42, + "end": 6607.2, + "probability": 0.9835 + }, + { + "start": 6607.78, + "end": 6610.24, + "probability": 0.8606 + }, + { + "start": 6610.68, + "end": 6614.08, + "probability": 0.8288 + }, + { + "start": 6615.1, + "end": 6615.64, + "probability": 0.0185 + }, + { + "start": 6617.46, + "end": 6617.66, + "probability": 0.4736 + }, + { + "start": 6617.82, + "end": 6618.82, + "probability": 0.9906 + }, + { + "start": 6618.98, + "end": 6620.96, + "probability": 0.9756 + }, + { + "start": 6621.78, + "end": 6622.1, + "probability": 0.9248 + }, + { + "start": 6622.12, + "end": 6626.88, + "probability": 0.9974 + }, + { + "start": 6627.2, + "end": 6629.58, + "probability": 0.9966 + }, + { + "start": 6630.08, + "end": 6633.78, + "probability": 0.9775 + }, + { + "start": 6633.94, + "end": 6637.86, + "probability": 0.9394 + }, + { + "start": 6638.38, + "end": 6640.15, + "probability": 0.9263 + }, + { + "start": 6640.78, + "end": 6642.34, + "probability": 0.9976 + }, + { + "start": 6642.66, + "end": 6643.6, + "probability": 0.9744 + }, + { + "start": 6643.96, + "end": 6646.26, + "probability": 0.9818 + }, + { + "start": 6646.64, + "end": 6647.7, + "probability": 0.9434 + }, + { + "start": 6648.26, + "end": 6649.8, + "probability": 0.9504 + }, + { + "start": 6650.3, + "end": 6652.54, + "probability": 0.9277 + }, + { + "start": 6652.64, + "end": 6656.12, + "probability": 0.9762 + }, + { + "start": 6656.5, + "end": 6657.32, + "probability": 0.967 + }, + { + "start": 6658.1, + "end": 6660.61, + "probability": 0.9879 + }, + { + "start": 6661.24, + "end": 6666.74, + "probability": 0.9211 + }, + { + "start": 6666.74, + "end": 6666.74, + "probability": 0.0075 + }, + { + "start": 6666.74, + "end": 6667.12, + "probability": 0.4251 + }, + { + "start": 6667.44, + "end": 6668.53, + "probability": 0.8682 + }, + { + "start": 6669.02, + "end": 6670.12, + "probability": 0.9771 + }, + { + "start": 6670.26, + "end": 6671.42, + "probability": 0.9941 + }, + { + "start": 6671.5, + "end": 6674.68, + "probability": 0.8775 + }, + { + "start": 6675.18, + "end": 6675.97, + "probability": 0.96 + }, + { + "start": 6676.82, + "end": 6681.24, + "probability": 0.7976 + }, + { + "start": 6681.84, + "end": 6683.2, + "probability": 0.9569 + }, + { + "start": 6683.82, + "end": 6685.02, + "probability": 0.9235 + }, + { + "start": 6685.56, + "end": 6687.16, + "probability": 0.999 + }, + { + "start": 6687.62, + "end": 6689.5, + "probability": 0.998 + }, + { + "start": 6689.96, + "end": 6693.92, + "probability": 0.9977 + }, + { + "start": 6694.56, + "end": 6698.02, + "probability": 0.9097 + }, + { + "start": 6698.64, + "end": 6700.88, + "probability": 0.8289 + }, + { + "start": 6701.56, + "end": 6702.32, + "probability": 0.4122 + }, + { + "start": 6702.48, + "end": 6705.64, + "probability": 0.7847 + }, + { + "start": 6705.98, + "end": 6708.08, + "probability": 0.9987 + }, + { + "start": 6708.44, + "end": 6712.24, + "probability": 0.9423 + }, + { + "start": 6712.66, + "end": 6713.1, + "probability": 0.7686 + }, + { + "start": 6713.38, + "end": 6716.98, + "probability": 0.9763 + }, + { + "start": 6716.98, + "end": 6719.58, + "probability": 0.9862 + }, + { + "start": 6720.14, + "end": 6720.64, + "probability": 0.8004 + }, + { + "start": 6721.64, + "end": 6723.24, + "probability": 0.9792 + }, + { + "start": 6723.98, + "end": 6725.18, + "probability": 0.9951 + }, + { + "start": 6725.72, + "end": 6726.0, + "probability": 0.7344 + }, + { + "start": 6726.74, + "end": 6728.06, + "probability": 0.8211 + }, + { + "start": 6729.36, + "end": 6732.06, + "probability": 0.7917 + }, + { + "start": 6732.4, + "end": 6734.46, + "probability": 0.7575 + }, + { + "start": 6735.14, + "end": 6737.7, + "probability": 0.9611 + }, + { + "start": 6737.96, + "end": 6738.12, + "probability": 0.4883 + }, + { + "start": 6739.98, + "end": 6740.54, + "probability": 0.7773 + }, + { + "start": 6742.08, + "end": 6744.52, + "probability": 0.5763 + }, + { + "start": 6745.94, + "end": 6747.14, + "probability": 0.6975 + }, + { + "start": 6748.18, + "end": 6749.58, + "probability": 0.9419 + }, + { + "start": 6749.68, + "end": 6750.32, + "probability": 0.9397 + }, + { + "start": 6770.24, + "end": 6771.6, + "probability": 0.7705 + }, + { + "start": 6773.52, + "end": 6776.58, + "probability": 0.9922 + }, + { + "start": 6777.24, + "end": 6778.0, + "probability": 0.6457 + }, + { + "start": 6779.12, + "end": 6779.78, + "probability": 0.784 + }, + { + "start": 6780.36, + "end": 6781.42, + "probability": 0.5509 + }, + { + "start": 6782.52, + "end": 6784.18, + "probability": 0.3841 + }, + { + "start": 6784.78, + "end": 6786.06, + "probability": 0.6902 + }, + { + "start": 6787.22, + "end": 6788.17, + "probability": 0.614 + }, + { + "start": 6788.4, + "end": 6789.12, + "probability": 0.8355 + }, + { + "start": 6789.22, + "end": 6790.28, + "probability": 0.9081 + }, + { + "start": 6791.8, + "end": 6792.86, + "probability": 0.8676 + }, + { + "start": 6793.02, + "end": 6794.7, + "probability": 0.9222 + }, + { + "start": 6794.84, + "end": 6794.84, + "probability": 0.5923 + }, + { + "start": 6795.44, + "end": 6795.8, + "probability": 0.9831 + }, + { + "start": 6796.36, + "end": 6797.54, + "probability": 0.7646 + }, + { + "start": 6797.68, + "end": 6801.24, + "probability": 0.9819 + }, + { + "start": 6801.4, + "end": 6802.7, + "probability": 0.9972 + }, + { + "start": 6803.1, + "end": 6804.12, + "probability": 0.8151 + }, + { + "start": 6804.34, + "end": 6806.38, + "probability": 0.6112 + }, + { + "start": 6806.78, + "end": 6808.25, + "probability": 0.9552 + }, + { + "start": 6808.88, + "end": 6809.76, + "probability": 0.9042 + }, + { + "start": 6809.86, + "end": 6810.68, + "probability": 0.6518 + }, + { + "start": 6810.78, + "end": 6811.88, + "probability": 0.8167 + }, + { + "start": 6812.3, + "end": 6815.48, + "probability": 0.842 + }, + { + "start": 6816.34, + "end": 6820.34, + "probability": 0.5104 + }, + { + "start": 6820.48, + "end": 6824.92, + "probability": 0.934 + }, + { + "start": 6824.92, + "end": 6826.78, + "probability": 0.984 + }, + { + "start": 6827.7, + "end": 6828.64, + "probability": 0.958 + }, + { + "start": 6828.92, + "end": 6832.51, + "probability": 0.9982 + }, + { + "start": 6832.98, + "end": 6833.96, + "probability": 0.5498 + }, + { + "start": 6835.14, + "end": 6836.42, + "probability": 0.9966 + }, + { + "start": 6836.54, + "end": 6836.86, + "probability": 0.7078 + }, + { + "start": 6836.9, + "end": 6840.34, + "probability": 0.9984 + }, + { + "start": 6840.82, + "end": 6841.18, + "probability": 0.5746 + }, + { + "start": 6841.28, + "end": 6845.02, + "probability": 0.9682 + }, + { + "start": 6845.22, + "end": 6846.26, + "probability": 0.9902 + }, + { + "start": 6847.44, + "end": 6849.82, + "probability": 0.8133 + }, + { + "start": 6850.64, + "end": 6853.86, + "probability": 0.7598 + }, + { + "start": 6854.72, + "end": 6855.88, + "probability": 0.9093 + }, + { + "start": 6856.94, + "end": 6858.76, + "probability": 0.9715 + }, + { + "start": 6859.42, + "end": 6865.9, + "probability": 0.967 + }, + { + "start": 6866.76, + "end": 6868.37, + "probability": 0.9978 + }, + { + "start": 6868.4, + "end": 6869.86, + "probability": 0.9489 + }, + { + "start": 6871.22, + "end": 6875.08, + "probability": 0.9292 + }, + { + "start": 6875.18, + "end": 6876.76, + "probability": 0.9946 + }, + { + "start": 6877.22, + "end": 6877.85, + "probability": 0.9709 + }, + { + "start": 6878.08, + "end": 6879.3, + "probability": 0.9958 + }, + { + "start": 6880.52, + "end": 6882.28, + "probability": 0.558 + }, + { + "start": 6882.48, + "end": 6884.7, + "probability": 0.6458 + }, + { + "start": 6885.32, + "end": 6887.94, + "probability": 0.9869 + }, + { + "start": 6887.94, + "end": 6891.36, + "probability": 0.9458 + }, + { + "start": 6891.42, + "end": 6894.54, + "probability": 0.9596 + }, + { + "start": 6895.3, + "end": 6899.18, + "probability": 0.4935 + }, + { + "start": 6900.46, + "end": 6901.84, + "probability": 0.9536 + }, + { + "start": 6902.04, + "end": 6903.24, + "probability": 0.8142 + }, + { + "start": 6903.26, + "end": 6907.24, + "probability": 0.9815 + }, + { + "start": 6907.8, + "end": 6908.92, + "probability": 0.5344 + }, + { + "start": 6909.5, + "end": 6912.12, + "probability": 0.9044 + }, + { + "start": 6913.6, + "end": 6916.36, + "probability": 0.9841 + }, + { + "start": 6917.84, + "end": 6918.93, + "probability": 0.9561 + }, + { + "start": 6919.32, + "end": 6920.55, + "probability": 0.9885 + }, + { + "start": 6920.9, + "end": 6922.56, + "probability": 0.9784 + }, + { + "start": 6922.62, + "end": 6923.82, + "probability": 0.8402 + }, + { + "start": 6925.16, + "end": 6928.9, + "probability": 0.991 + }, + { + "start": 6929.52, + "end": 6930.94, + "probability": 0.9508 + }, + { + "start": 6931.04, + "end": 6932.48, + "probability": 0.5927 + }, + { + "start": 6932.72, + "end": 6933.86, + "probability": 0.991 + }, + { + "start": 6934.46, + "end": 6935.1, + "probability": 0.9758 + }, + { + "start": 6936.02, + "end": 6937.54, + "probability": 0.7109 + }, + { + "start": 6937.94, + "end": 6939.78, + "probability": 0.9946 + }, + { + "start": 6939.78, + "end": 6942.78, + "probability": 0.9823 + }, + { + "start": 6943.3, + "end": 6947.8, + "probability": 0.9088 + }, + { + "start": 6948.58, + "end": 6949.84, + "probability": 0.9087 + }, + { + "start": 6951.46, + "end": 6952.28, + "probability": 0.9509 + }, + { + "start": 6953.18, + "end": 6955.03, + "probability": 0.9805 + }, + { + "start": 6955.3, + "end": 6957.58, + "probability": 0.7004 + }, + { + "start": 6958.44, + "end": 6960.7, + "probability": 0.5868 + }, + { + "start": 6961.16, + "end": 6963.76, + "probability": 0.9956 + }, + { + "start": 6964.78, + "end": 6965.66, + "probability": 0.6571 + }, + { + "start": 6966.38, + "end": 6968.46, + "probability": 0.9033 + }, + { + "start": 6970.14, + "end": 6971.9, + "probability": 0.9563 + }, + { + "start": 6972.12, + "end": 6976.54, + "probability": 0.8745 + }, + { + "start": 6976.54, + "end": 6980.86, + "probability": 0.9118 + }, + { + "start": 6980.94, + "end": 6981.44, + "probability": 0.463 + }, + { + "start": 6982.02, + "end": 6984.84, + "probability": 0.5371 + }, + { + "start": 6986.14, + "end": 6986.7, + "probability": 0.8351 + }, + { + "start": 6988.18, + "end": 6990.7, + "probability": 0.7849 + }, + { + "start": 6991.36, + "end": 6992.04, + "probability": 0.9009 + }, + { + "start": 6992.36, + "end": 6993.96, + "probability": 0.8643 + }, + { + "start": 6994.24, + "end": 6995.76, + "probability": 0.9634 + }, + { + "start": 6995.88, + "end": 6997.56, + "probability": 0.8561 + }, + { + "start": 6997.98, + "end": 6998.4, + "probability": 0.5549 + }, + { + "start": 6998.54, + "end": 6999.26, + "probability": 0.5247 + }, + { + "start": 7000.7, + "end": 7003.14, + "probability": 0.9648 + }, + { + "start": 7004.06, + "end": 7005.3, + "probability": 0.8942 + }, + { + "start": 7006.31, + "end": 7009.17, + "probability": 0.9753 + }, + { + "start": 7010.02, + "end": 7011.8, + "probability": 0.7476 + }, + { + "start": 7013.48, + "end": 7019.32, + "probability": 0.9514 + }, + { + "start": 7019.94, + "end": 7023.54, + "probability": 0.9889 + }, + { + "start": 7023.54, + "end": 7027.54, + "probability": 0.9934 + }, + { + "start": 7027.8, + "end": 7030.48, + "probability": 0.873 + }, + { + "start": 7031.02, + "end": 7031.04, + "probability": 0.0189 + }, + { + "start": 7031.04, + "end": 7032.14, + "probability": 0.979 + }, + { + "start": 7032.14, + "end": 7040.02, + "probability": 0.9182 + }, + { + "start": 7040.02, + "end": 7046.06, + "probability": 0.9449 + }, + { + "start": 7046.18, + "end": 7048.58, + "probability": 0.7476 + }, + { + "start": 7049.98, + "end": 7051.36, + "probability": 0.8313 + }, + { + "start": 7051.36, + "end": 7052.3, + "probability": 0.7521 + }, + { + "start": 7052.36, + "end": 7053.01, + "probability": 0.924 + }, + { + "start": 7054.06, + "end": 7061.18, + "probability": 0.9877 + }, + { + "start": 7061.24, + "end": 7063.18, + "probability": 0.593 + }, + { + "start": 7063.38, + "end": 7065.2, + "probability": 0.9812 + }, + { + "start": 7065.84, + "end": 7070.36, + "probability": 0.7822 + }, + { + "start": 7071.12, + "end": 7075.46, + "probability": 0.9045 + }, + { + "start": 7076.2, + "end": 7079.7, + "probability": 0.9834 + }, + { + "start": 7080.68, + "end": 7086.14, + "probability": 0.9515 + }, + { + "start": 7086.16, + "end": 7088.16, + "probability": 0.9429 + }, + { + "start": 7088.58, + "end": 7089.48, + "probability": 0.9849 + }, + { + "start": 7089.84, + "end": 7091.98, + "probability": 0.9951 + }, + { + "start": 7092.3, + "end": 7094.6, + "probability": 0.9917 + }, + { + "start": 7094.74, + "end": 7095.76, + "probability": 0.8184 + }, + { + "start": 7096.82, + "end": 7098.38, + "probability": 0.6827 + }, + { + "start": 7099.86, + "end": 7100.4, + "probability": 0.9524 + }, + { + "start": 7101.06, + "end": 7102.08, + "probability": 0.8135 + }, + { + "start": 7102.66, + "end": 7106.36, + "probability": 0.9192 + }, + { + "start": 7106.52, + "end": 7107.9, + "probability": 0.9482 + }, + { + "start": 7108.24, + "end": 7109.23, + "probability": 0.9648 + }, + { + "start": 7109.96, + "end": 7110.84, + "probability": 0.667 + }, + { + "start": 7111.16, + "end": 7115.02, + "probability": 0.8142 + }, + { + "start": 7115.42, + "end": 7118.36, + "probability": 0.9666 + }, + { + "start": 7119.36, + "end": 7121.44, + "probability": 0.9922 + }, + { + "start": 7122.44, + "end": 7123.24, + "probability": 0.8592 + }, + { + "start": 7123.36, + "end": 7123.98, + "probability": 0.9197 + }, + { + "start": 7124.26, + "end": 7126.04, + "probability": 0.932 + }, + { + "start": 7126.5, + "end": 7127.0, + "probability": 0.6635 + }, + { + "start": 7128.44, + "end": 7129.94, + "probability": 0.7155 + }, + { + "start": 7130.36, + "end": 7132.4, + "probability": 0.8905 + }, + { + "start": 7132.94, + "end": 7134.24, + "probability": 0.9196 + }, + { + "start": 7135.28, + "end": 7138.02, + "probability": 0.8784 + }, + { + "start": 7138.12, + "end": 7141.3, + "probability": 0.9109 + }, + { + "start": 7141.36, + "end": 7142.82, + "probability": 0.5824 + }, + { + "start": 7142.86, + "end": 7144.26, + "probability": 0.6595 + }, + { + "start": 7144.68, + "end": 7145.67, + "probability": 0.9917 + }, + { + "start": 7146.02, + "end": 7147.29, + "probability": 0.9629 + }, + { + "start": 7148.08, + "end": 7151.42, + "probability": 0.9793 + }, + { + "start": 7151.8, + "end": 7156.0, + "probability": 0.9735 + }, + { + "start": 7156.28, + "end": 7158.56, + "probability": 0.929 + }, + { + "start": 7159.3, + "end": 7162.74, + "probability": 0.9829 + }, + { + "start": 7162.92, + "end": 7170.06, + "probability": 0.9654 + }, + { + "start": 7170.22, + "end": 7173.28, + "probability": 0.9695 + }, + { + "start": 7173.52, + "end": 7175.68, + "probability": 0.9195 + }, + { + "start": 7175.72, + "end": 7178.36, + "probability": 0.6742 + }, + { + "start": 7178.42, + "end": 7181.36, + "probability": 0.9594 + }, + { + "start": 7181.36, + "end": 7185.24, + "probability": 0.9022 + }, + { + "start": 7185.32, + "end": 7187.82, + "probability": 0.8479 + }, + { + "start": 7188.64, + "end": 7189.24, + "probability": 0.9603 + }, + { + "start": 7189.82, + "end": 7190.44, + "probability": 0.4977 + }, + { + "start": 7190.52, + "end": 7193.08, + "probability": 0.9785 + }, + { + "start": 7194.12, + "end": 7194.76, + "probability": 0.3256 + }, + { + "start": 7194.96, + "end": 7197.1, + "probability": 0.9189 + }, + { + "start": 7198.75, + "end": 7200.72, + "probability": 0.8015 + }, + { + "start": 7201.3, + "end": 7202.78, + "probability": 0.7137 + }, + { + "start": 7203.2, + "end": 7205.74, + "probability": 0.9831 + }, + { + "start": 7206.2, + "end": 7207.48, + "probability": 0.5004 + }, + { + "start": 7208.18, + "end": 7210.52, + "probability": 0.8914 + }, + { + "start": 7211.3, + "end": 7213.72, + "probability": 0.9545 + }, + { + "start": 7214.14, + "end": 7216.82, + "probability": 0.9498 + }, + { + "start": 7217.34, + "end": 7218.74, + "probability": 0.2476 + }, + { + "start": 7219.56, + "end": 7221.44, + "probability": 0.8901 + }, + { + "start": 7222.04, + "end": 7224.04, + "probability": 0.9956 + }, + { + "start": 7224.14, + "end": 7224.94, + "probability": 0.7948 + }, + { + "start": 7225.0, + "end": 7227.04, + "probability": 0.5989 + }, + { + "start": 7227.06, + "end": 7228.64, + "probability": 0.3558 + }, + { + "start": 7231.16, + "end": 7233.1, + "probability": 0.2677 + }, + { + "start": 7233.82, + "end": 7234.32, + "probability": 0.2923 + }, + { + "start": 7235.0, + "end": 7236.12, + "probability": 0.5828 + }, + { + "start": 7236.24, + "end": 7241.2, + "probability": 0.667 + }, + { + "start": 7241.68, + "end": 7244.66, + "probability": 0.8936 + }, + { + "start": 7245.0, + "end": 7246.82, + "probability": 0.8792 + }, + { + "start": 7247.78, + "end": 7251.26, + "probability": 0.8265 + }, + { + "start": 7251.76, + "end": 7254.66, + "probability": 0.7714 + }, + { + "start": 7254.74, + "end": 7257.24, + "probability": 0.9268 + }, + { + "start": 7258.72, + "end": 7261.48, + "probability": 0.9672 + }, + { + "start": 7262.06, + "end": 7264.68, + "probability": 0.979 + }, + { + "start": 7265.24, + "end": 7267.36, + "probability": 0.9726 + }, + { + "start": 7267.54, + "end": 7269.06, + "probability": 0.8225 + }, + { + "start": 7269.98, + "end": 7269.98, + "probability": 0.049 + }, + { + "start": 7269.98, + "end": 7272.1, + "probability": 0.79 + }, + { + "start": 7272.3, + "end": 7275.22, + "probability": 0.9319 + }, + { + "start": 7275.68, + "end": 7277.6, + "probability": 0.8514 + }, + { + "start": 7278.16, + "end": 7280.52, + "probability": 0.8519 + }, + { + "start": 7280.94, + "end": 7283.68, + "probability": 0.8159 + }, + { + "start": 7284.26, + "end": 7286.84, + "probability": 0.749 + }, + { + "start": 7287.82, + "end": 7288.36, + "probability": 0.8386 + }, + { + "start": 7289.42, + "end": 7290.08, + "probability": 0.9956 + }, + { + "start": 7290.68, + "end": 7294.08, + "probability": 0.7603 + }, + { + "start": 7297.44, + "end": 7302.06, + "probability": 0.5585 + }, + { + "start": 7302.1, + "end": 7302.84, + "probability": 0.3814 + }, + { + "start": 7309.7, + "end": 7310.24, + "probability": 0.1277 + }, + { + "start": 7310.8, + "end": 7310.8, + "probability": 0.2152 + }, + { + "start": 7310.8, + "end": 7311.38, + "probability": 0.5562 + }, + { + "start": 7312.26, + "end": 7314.92, + "probability": 0.8025 + }, + { + "start": 7315.74, + "end": 7318.66, + "probability": 0.9101 + }, + { + "start": 7319.14, + "end": 7321.5, + "probability": 0.8831 + }, + { + "start": 7321.56, + "end": 7323.01, + "probability": 0.9823 + }, + { + "start": 7324.28, + "end": 7327.32, + "probability": 0.7631 + }, + { + "start": 7328.44, + "end": 7332.2, + "probability": 0.8894 + }, + { + "start": 7332.44, + "end": 7337.37, + "probability": 0.9865 + }, + { + "start": 7338.08, + "end": 7338.96, + "probability": 0.513 + }, + { + "start": 7338.96, + "end": 7342.36, + "probability": 0.9383 + }, + { + "start": 7342.36, + "end": 7344.74, + "probability": 0.7559 + }, + { + "start": 7345.6, + "end": 7346.76, + "probability": 0.6304 + }, + { + "start": 7347.06, + "end": 7350.88, + "probability": 0.9919 + }, + { + "start": 7351.08, + "end": 7353.84, + "probability": 0.9933 + }, + { + "start": 7353.94, + "end": 7358.78, + "probability": 0.7531 + }, + { + "start": 7359.66, + "end": 7363.92, + "probability": 0.662 + }, + { + "start": 7364.76, + "end": 7365.38, + "probability": 0.5943 + }, + { + "start": 7366.3, + "end": 7368.54, + "probability": 0.79 + }, + { + "start": 7368.92, + "end": 7371.7, + "probability": 0.6213 + }, + { + "start": 7372.04, + "end": 7374.04, + "probability": 0.7644 + }, + { + "start": 7374.84, + "end": 7375.5, + "probability": 0.452 + }, + { + "start": 7376.96, + "end": 7381.06, + "probability": 0.811 + }, + { + "start": 7382.0, + "end": 7386.28, + "probability": 0.8796 + }, + { + "start": 7386.52, + "end": 7387.5, + "probability": 0.8284 + }, + { + "start": 7388.34, + "end": 7393.84, + "probability": 0.9868 + }, + { + "start": 7394.54, + "end": 7394.96, + "probability": 0.801 + }, + { + "start": 7395.26, + "end": 7396.8, + "probability": 0.9809 + }, + { + "start": 7397.28, + "end": 7398.56, + "probability": 0.9774 + }, + { + "start": 7398.74, + "end": 7401.38, + "probability": 0.9902 + }, + { + "start": 7402.1, + "end": 7403.0, + "probability": 0.9414 + }, + { + "start": 7403.18, + "end": 7406.06, + "probability": 0.9769 + }, + { + "start": 7406.48, + "end": 7408.2, + "probability": 0.9277 + }, + { + "start": 7408.74, + "end": 7409.62, + "probability": 0.9567 + }, + { + "start": 7410.42, + "end": 7413.1, + "probability": 0.9009 + }, + { + "start": 7413.74, + "end": 7416.13, + "probability": 0.9973 + }, + { + "start": 7416.26, + "end": 7418.32, + "probability": 0.8211 + }, + { + "start": 7419.94, + "end": 7422.02, + "probability": 0.066 + }, + { + "start": 7422.02, + "end": 7423.52, + "probability": 0.9329 + }, + { + "start": 7423.78, + "end": 7427.34, + "probability": 0.9894 + }, + { + "start": 7427.92, + "end": 7431.08, + "probability": 0.9568 + }, + { + "start": 7431.9, + "end": 7433.9, + "probability": 0.958 + }, + { + "start": 7434.08, + "end": 7438.2, + "probability": 0.9969 + }, + { + "start": 7438.46, + "end": 7443.34, + "probability": 0.9966 + }, + { + "start": 7444.26, + "end": 7448.06, + "probability": 0.9995 + }, + { + "start": 7448.22, + "end": 7449.06, + "probability": 0.8745 + }, + { + "start": 7449.18, + "end": 7451.8, + "probability": 0.9792 + }, + { + "start": 7452.38, + "end": 7455.5, + "probability": 0.98 + }, + { + "start": 7455.56, + "end": 7459.98, + "probability": 0.9568 + }, + { + "start": 7460.22, + "end": 7462.14, + "probability": 0.9624 + }, + { + "start": 7462.78, + "end": 7463.98, + "probability": 0.9699 + }, + { + "start": 7464.74, + "end": 7465.54, + "probability": 0.856 + }, + { + "start": 7466.6, + "end": 7467.16, + "probability": 0.8709 + }, + { + "start": 7467.76, + "end": 7468.96, + "probability": 0.991 + }, + { + "start": 7469.76, + "end": 7474.1, + "probability": 0.9927 + }, + { + "start": 7474.64, + "end": 7476.14, + "probability": 0.9683 + }, + { + "start": 7476.24, + "end": 7479.54, + "probability": 0.9966 + }, + { + "start": 7480.4, + "end": 7481.98, + "probability": 0.8057 + }, + { + "start": 7482.18, + "end": 7484.14, + "probability": 0.971 + }, + { + "start": 7484.56, + "end": 7488.1, + "probability": 0.958 + }, + { + "start": 7488.34, + "end": 7488.64, + "probability": 0.5016 + }, + { + "start": 7489.22, + "end": 7491.92, + "probability": 0.916 + }, + { + "start": 7492.56, + "end": 7494.0, + "probability": 0.8682 + }, + { + "start": 7494.18, + "end": 7496.74, + "probability": 0.9427 + }, + { + "start": 7497.42, + "end": 7500.68, + "probability": 0.8888 + }, + { + "start": 7501.38, + "end": 7503.6, + "probability": 0.9371 + }, + { + "start": 7504.28, + "end": 7507.56, + "probability": 0.9637 + }, + { + "start": 7508.88, + "end": 7510.26, + "probability": 0.9731 + }, + { + "start": 7510.38, + "end": 7515.1, + "probability": 0.9899 + }, + { + "start": 7515.1, + "end": 7520.16, + "probability": 0.9405 + }, + { + "start": 7521.12, + "end": 7521.91, + "probability": 0.7795 + }, + { + "start": 7522.44, + "end": 7523.36, + "probability": 0.4819 + }, + { + "start": 7523.4, + "end": 7523.88, + "probability": 0.908 + }, + { + "start": 7524.38, + "end": 7526.3, + "probability": 0.5735 + }, + { + "start": 7526.76, + "end": 7531.46, + "probability": 0.972 + }, + { + "start": 7531.54, + "end": 7537.2, + "probability": 0.9358 + }, + { + "start": 7537.52, + "end": 7538.3, + "probability": 0.969 + }, + { + "start": 7538.58, + "end": 7543.05, + "probability": 0.9867 + }, + { + "start": 7543.68, + "end": 7546.04, + "probability": 0.9948 + }, + { + "start": 7546.18, + "end": 7546.94, + "probability": 0.9873 + }, + { + "start": 7547.04, + "end": 7547.96, + "probability": 0.7344 + }, + { + "start": 7548.4, + "end": 7549.2, + "probability": 0.9374 + }, + { + "start": 7549.28, + "end": 7550.34, + "probability": 0.7348 + }, + { + "start": 7550.96, + "end": 7552.14, + "probability": 0.9766 + }, + { + "start": 7552.26, + "end": 7555.2, + "probability": 0.9463 + }, + { + "start": 7555.68, + "end": 7557.36, + "probability": 0.9404 + }, + { + "start": 7557.48, + "end": 7562.6, + "probability": 0.9924 + }, + { + "start": 7562.76, + "end": 7563.98, + "probability": 0.7344 + }, + { + "start": 7564.12, + "end": 7564.5, + "probability": 0.9867 + }, + { + "start": 7565.38, + "end": 7567.98, + "probability": 0.9837 + }, + { + "start": 7568.18, + "end": 7572.12, + "probability": 0.9793 + }, + { + "start": 7573.28, + "end": 7573.5, + "probability": 0.6712 + }, + { + "start": 7573.58, + "end": 7577.18, + "probability": 0.8029 + }, + { + "start": 7577.22, + "end": 7583.38, + "probability": 0.9618 + }, + { + "start": 7583.56, + "end": 7585.66, + "probability": 0.9807 + }, + { + "start": 7586.04, + "end": 7587.2, + "probability": 0.9927 + }, + { + "start": 7587.62, + "end": 7589.46, + "probability": 0.9751 + }, + { + "start": 7589.54, + "end": 7590.54, + "probability": 0.9224 + }, + { + "start": 7591.16, + "end": 7592.17, + "probability": 0.9751 + }, + { + "start": 7592.26, + "end": 7593.94, + "probability": 0.9937 + }, + { + "start": 7594.48, + "end": 7599.48, + "probability": 0.9555 + }, + { + "start": 7599.48, + "end": 7603.0, + "probability": 0.9946 + }, + { + "start": 7604.08, + "end": 7607.56, + "probability": 0.9955 + }, + { + "start": 7607.66, + "end": 7609.42, + "probability": 0.8145 + }, + { + "start": 7610.06, + "end": 7612.84, + "probability": 0.9951 + }, + { + "start": 7612.94, + "end": 7615.74, + "probability": 0.98 + }, + { + "start": 7616.36, + "end": 7618.0, + "probability": 0.9347 + }, + { + "start": 7618.88, + "end": 7620.52, + "probability": 0.4938 + }, + { + "start": 7621.06, + "end": 7625.08, + "probability": 0.9931 + }, + { + "start": 7625.14, + "end": 7626.44, + "probability": 0.7634 + }, + { + "start": 7626.98, + "end": 7628.84, + "probability": 0.8879 + }, + { + "start": 7629.34, + "end": 7631.34, + "probability": 0.4999 + }, + { + "start": 7631.46, + "end": 7632.84, + "probability": 0.752 + }, + { + "start": 7633.06, + "end": 7635.44, + "probability": 0.9932 + }, + { + "start": 7636.1, + "end": 7636.96, + "probability": 0.913 + }, + { + "start": 7637.1, + "end": 7641.82, + "probability": 0.9733 + }, + { + "start": 7641.82, + "end": 7647.68, + "probability": 0.9948 + }, + { + "start": 7648.22, + "end": 7650.06, + "probability": 0.6851 + }, + { + "start": 7650.1, + "end": 7653.96, + "probability": 0.981 + }, + { + "start": 7654.06, + "end": 7655.66, + "probability": 0.9442 + }, + { + "start": 7656.08, + "end": 7658.54, + "probability": 0.9401 + }, + { + "start": 7659.1, + "end": 7665.46, + "probability": 0.9956 + }, + { + "start": 7666.06, + "end": 7666.86, + "probability": 0.9666 + }, + { + "start": 7667.02, + "end": 7668.52, + "probability": 0.9956 + }, + { + "start": 7669.12, + "end": 7669.7, + "probability": 0.6484 + }, + { + "start": 7669.84, + "end": 7672.88, + "probability": 0.9861 + }, + { + "start": 7672.94, + "end": 7678.5, + "probability": 0.9919 + }, + { + "start": 7679.02, + "end": 7680.17, + "probability": 0.9937 + }, + { + "start": 7681.26, + "end": 7682.62, + "probability": 0.8203 + }, + { + "start": 7682.9, + "end": 7684.48, + "probability": 0.9883 + }, + { + "start": 7685.1, + "end": 7687.72, + "probability": 0.9959 + }, + { + "start": 7688.46, + "end": 7692.38, + "probability": 0.9589 + }, + { + "start": 7692.8, + "end": 7696.22, + "probability": 0.9929 + }, + { + "start": 7696.22, + "end": 7700.54, + "probability": 0.957 + }, + { + "start": 7701.36, + "end": 7703.04, + "probability": 0.9155 + }, + { + "start": 7703.08, + "end": 7707.22, + "probability": 0.9954 + }, + { + "start": 7708.1, + "end": 7710.38, + "probability": 0.9867 + }, + { + "start": 7710.74, + "end": 7711.56, + "probability": 0.6593 + }, + { + "start": 7711.66, + "end": 7713.74, + "probability": 0.9767 + }, + { + "start": 7714.5, + "end": 7718.09, + "probability": 0.7736 + }, + { + "start": 7718.78, + "end": 7720.44, + "probability": 0.9952 + }, + { + "start": 7720.56, + "end": 7724.48, + "probability": 0.9773 + }, + { + "start": 7725.1, + "end": 7727.44, + "probability": 0.9661 + }, + { + "start": 7727.64, + "end": 7728.0, + "probability": 0.6746 + }, + { + "start": 7728.44, + "end": 7729.2, + "probability": 0.9786 + }, + { + "start": 7729.38, + "end": 7729.96, + "probability": 0.9764 + }, + { + "start": 7730.32, + "end": 7731.52, + "probability": 0.9947 + }, + { + "start": 7732.0, + "end": 7733.0, + "probability": 0.7522 + }, + { + "start": 7733.58, + "end": 7738.66, + "probability": 0.9661 + }, + { + "start": 7738.84, + "end": 7746.18, + "probability": 0.9951 + }, + { + "start": 7746.58, + "end": 7752.06, + "probability": 0.9995 + }, + { + "start": 7752.4, + "end": 7756.47, + "probability": 0.8228 + }, + { + "start": 7756.8, + "end": 7757.16, + "probability": 0.3368 + }, + { + "start": 7757.74, + "end": 7760.68, + "probability": 0.9576 + }, + { + "start": 7761.24, + "end": 7763.58, + "probability": 0.9149 + }, + { + "start": 7763.72, + "end": 7766.16, + "probability": 0.7167 + }, + { + "start": 7766.36, + "end": 7767.12, + "probability": 0.6672 + }, + { + "start": 7767.88, + "end": 7769.2, + "probability": 0.8787 + }, + { + "start": 7769.8, + "end": 7777.14, + "probability": 0.9946 + }, + { + "start": 7777.14, + "end": 7782.66, + "probability": 0.9914 + }, + { + "start": 7782.86, + "end": 7786.4, + "probability": 0.9744 + }, + { + "start": 7787.22, + "end": 7792.28, + "probability": 0.9562 + }, + { + "start": 7792.8, + "end": 7794.94, + "probability": 0.9967 + }, + { + "start": 7796.96, + "end": 7800.34, + "probability": 0.6212 + }, + { + "start": 7801.62, + "end": 7804.72, + "probability": 0.993 + }, + { + "start": 7805.86, + "end": 7808.38, + "probability": 0.7588 + }, + { + "start": 7808.66, + "end": 7810.2, + "probability": 0.5672 + }, + { + "start": 7810.76, + "end": 7812.06, + "probability": 0.849 + }, + { + "start": 7812.64, + "end": 7817.26, + "probability": 0.8823 + }, + { + "start": 7818.14, + "end": 7819.08, + "probability": 0.7749 + }, + { + "start": 7820.2, + "end": 7824.58, + "probability": 0.8876 + }, + { + "start": 7824.58, + "end": 7830.08, + "probability": 0.9989 + }, + { + "start": 7830.08, + "end": 7834.04, + "probability": 0.9679 + }, + { + "start": 7834.62, + "end": 7836.54, + "probability": 0.9956 + }, + { + "start": 7836.64, + "end": 7839.28, + "probability": 0.9796 + }, + { + "start": 7839.7, + "end": 7842.92, + "probability": 0.9298 + }, + { + "start": 7843.68, + "end": 7848.28, + "probability": 0.9935 + }, + { + "start": 7848.42, + "end": 7851.12, + "probability": 0.9189 + }, + { + "start": 7851.34, + "end": 7852.58, + "probability": 0.9824 + }, + { + "start": 7852.66, + "end": 7854.82, + "probability": 0.7185 + }, + { + "start": 7855.32, + "end": 7858.4, + "probability": 0.9867 + }, + { + "start": 7858.72, + "end": 7862.84, + "probability": 0.9956 + }, + { + "start": 7863.2, + "end": 7865.52, + "probability": 0.9669 + }, + { + "start": 7865.72, + "end": 7869.36, + "probability": 0.9263 + }, + { + "start": 7869.78, + "end": 7873.88, + "probability": 0.9953 + }, + { + "start": 7874.24, + "end": 7874.56, + "probability": 0.7466 + }, + { + "start": 7875.64, + "end": 7879.08, + "probability": 0.8348 + }, + { + "start": 7880.08, + "end": 7882.6, + "probability": 0.7837 + }, + { + "start": 7884.68, + "end": 7884.82, + "probability": 0.6243 + }, + { + "start": 7885.76, + "end": 7887.18, + "probability": 0.5598 + }, + { + "start": 7887.28, + "end": 7887.76, + "probability": 0.8723 + }, + { + "start": 7888.26, + "end": 7889.1, + "probability": 0.5984 + }, + { + "start": 7889.1, + "end": 7889.46, + "probability": 0.7656 + }, + { + "start": 7889.94, + "end": 7890.5, + "probability": 0.9043 + }, + { + "start": 7891.02, + "end": 7891.14, + "probability": 0.5132 + }, + { + "start": 7891.84, + "end": 7894.07, + "probability": 0.6491 + }, + { + "start": 7894.46, + "end": 7895.78, + "probability": 0.7129 + }, + { + "start": 7899.26, + "end": 7901.08, + "probability": 0.7492 + }, + { + "start": 7901.52, + "end": 7903.98, + "probability": 0.331 + }, + { + "start": 7904.06, + "end": 7904.45, + "probability": 0.6852 + }, + { + "start": 7905.26, + "end": 7906.32, + "probability": 0.1734 + }, + { + "start": 7908.71, + "end": 7911.56, + "probability": 0.7299 + }, + { + "start": 7911.66, + "end": 7914.58, + "probability": 0.9062 + }, + { + "start": 7915.32, + "end": 7916.92, + "probability": 0.8398 + }, + { + "start": 7917.6, + "end": 7919.54, + "probability": 0.9979 + }, + { + "start": 7919.9, + "end": 7921.44, + "probability": 0.7319 + }, + { + "start": 7921.86, + "end": 7923.0, + "probability": 0.9 + }, + { + "start": 7923.88, + "end": 7924.4, + "probability": 0.9668 + }, + { + "start": 7925.46, + "end": 7927.38, + "probability": 0.6413 + }, + { + "start": 7927.38, + "end": 7928.58, + "probability": 0.3887 + }, + { + "start": 7929.88, + "end": 7930.72, + "probability": 0.6098 + }, + { + "start": 7931.12, + "end": 7932.1, + "probability": 0.3488 + }, + { + "start": 7932.66, + "end": 7934.76, + "probability": 0.8909 + }, + { + "start": 7935.96, + "end": 7939.56, + "probability": 0.9837 + }, + { + "start": 7939.64, + "end": 7940.98, + "probability": 0.7249 + }, + { + "start": 7941.86, + "end": 7942.94, + "probability": 0.7407 + }, + { + "start": 7946.64, + "end": 7948.2, + "probability": 0.8296 + }, + { + "start": 7948.34, + "end": 7949.88, + "probability": 0.4307 + }, + { + "start": 7949.98, + "end": 7950.64, + "probability": 0.7531 + }, + { + "start": 7950.84, + "end": 7953.32, + "probability": 0.3139 + }, + { + "start": 7953.42, + "end": 7954.12, + "probability": 0.7168 + }, + { + "start": 7955.04, + "end": 7956.32, + "probability": 0.9371 + }, + { + "start": 7957.14, + "end": 7957.46, + "probability": 0.9907 + }, + { + "start": 7958.68, + "end": 7960.52, + "probability": 0.6755 + }, + { + "start": 7961.2, + "end": 7963.34, + "probability": 0.7026 + }, + { + "start": 7963.46, + "end": 7966.0, + "probability": 0.7235 + }, + { + "start": 7966.58, + "end": 7967.88, + "probability": 0.8079 + }, + { + "start": 7968.56, + "end": 7971.88, + "probability": 0.9709 + }, + { + "start": 7971.88, + "end": 7975.32, + "probability": 0.8306 + }, + { + "start": 7975.46, + "end": 7978.12, + "probability": 0.9665 + }, + { + "start": 7978.92, + "end": 7982.62, + "probability": 0.9793 + }, + { + "start": 7983.54, + "end": 7983.92, + "probability": 0.7083 + }, + { + "start": 7984.36, + "end": 7987.64, + "probability": 0.7953 + }, + { + "start": 7988.32, + "end": 7989.22, + "probability": 0.5926 + }, + { + "start": 7989.26, + "end": 7989.8, + "probability": 0.8761 + }, + { + "start": 7990.12, + "end": 7991.48, + "probability": 0.7869 + }, + { + "start": 7991.64, + "end": 7994.44, + "probability": 0.9692 + }, + { + "start": 7994.52, + "end": 7999.22, + "probability": 0.9401 + }, + { + "start": 7999.66, + "end": 8002.44, + "probability": 0.9958 + }, + { + "start": 8002.44, + "end": 8005.56, + "probability": 0.8541 + }, + { + "start": 8005.72, + "end": 8008.08, + "probability": 0.8032 + }, + { + "start": 8008.52, + "end": 8010.44, + "probability": 0.8365 + }, + { + "start": 8011.5, + "end": 8012.61, + "probability": 0.721 + }, + { + "start": 8015.8, + "end": 8016.52, + "probability": 0.929 + }, + { + "start": 8017.34, + "end": 8018.34, + "probability": 0.4287 + }, + { + "start": 8019.64, + "end": 8020.56, + "probability": 0.3188 + }, + { + "start": 8020.56, + "end": 8023.13, + "probability": 0.0372 + }, + { + "start": 8027.4, + "end": 8028.86, + "probability": 0.124 + }, + { + "start": 8032.04, + "end": 8032.76, + "probability": 0.5479 + }, + { + "start": 8032.96, + "end": 8034.88, + "probability": 0.8058 + }, + { + "start": 8035.98, + "end": 8038.38, + "probability": 0.8654 + }, + { + "start": 8039.94, + "end": 8044.46, + "probability": 0.9713 + }, + { + "start": 8045.58, + "end": 8048.22, + "probability": 0.3456 + }, + { + "start": 8049.64, + "end": 8052.62, + "probability": 0.9143 + }, + { + "start": 8052.98, + "end": 8054.47, + "probability": 0.9489 + }, + { + "start": 8054.78, + "end": 8055.56, + "probability": 0.9343 + }, + { + "start": 8081.58, + "end": 8083.96, + "probability": 0.6969 + }, + { + "start": 8084.36, + "end": 8084.36, + "probability": 0.4748 + }, + { + "start": 8084.36, + "end": 8084.98, + "probability": 0.8546 + }, + { + "start": 8085.18, + "end": 8086.16, + "probability": 0.6616 + }, + { + "start": 8087.14, + "end": 8087.7, + "probability": 0.9083 + }, + { + "start": 8087.76, + "end": 8093.52, + "probability": 0.9915 + }, + { + "start": 8093.68, + "end": 8098.1, + "probability": 0.9918 + }, + { + "start": 8099.08, + "end": 8101.12, + "probability": 0.3263 + }, + { + "start": 8101.54, + "end": 8102.3, + "probability": 0.0809 + }, + { + "start": 8102.32, + "end": 8104.38, + "probability": 0.6751 + }, + { + "start": 8104.44, + "end": 8106.7, + "probability": 0.2968 + }, + { + "start": 8106.84, + "end": 8109.0, + "probability": 0.674 + }, + { + "start": 8109.37, + "end": 8111.92, + "probability": 0.7633 + }, + { + "start": 8112.12, + "end": 8116.36, + "probability": 0.9657 + }, + { + "start": 8116.36, + "end": 8117.81, + "probability": 0.9299 + }, + { + "start": 8118.34, + "end": 8120.0, + "probability": 0.8096 + }, + { + "start": 8120.56, + "end": 8124.44, + "probability": 0.8063 + }, + { + "start": 8124.84, + "end": 8126.94, + "probability": 0.9876 + }, + { + "start": 8128.0, + "end": 8134.84, + "probability": 0.9686 + }, + { + "start": 8136.03, + "end": 8139.08, + "probability": 0.907 + }, + { + "start": 8139.88, + "end": 8142.62, + "probability": 0.9254 + }, + { + "start": 8143.22, + "end": 8147.58, + "probability": 0.933 + }, + { + "start": 8147.64, + "end": 8149.82, + "probability": 0.9424 + }, + { + "start": 8150.5, + "end": 8151.56, + "probability": 0.676 + }, + { + "start": 8151.9, + "end": 8152.58, + "probability": 0.9021 + }, + { + "start": 8152.66, + "end": 8158.04, + "probability": 0.9955 + }, + { + "start": 8158.4, + "end": 8158.94, + "probability": 0.5787 + }, + { + "start": 8159.12, + "end": 8164.98, + "probability": 0.9799 + }, + { + "start": 8165.04, + "end": 8168.66, + "probability": 0.983 + }, + { + "start": 8169.8, + "end": 8172.16, + "probability": 0.633 + }, + { + "start": 8172.56, + "end": 8175.12, + "probability": 0.7837 + }, + { + "start": 8175.56, + "end": 8176.02, + "probability": 0.8843 + }, + { + "start": 8176.06, + "end": 8177.64, + "probability": 0.9652 + }, + { + "start": 8177.8, + "end": 8179.74, + "probability": 0.8885 + }, + { + "start": 8180.34, + "end": 8182.79, + "probability": 0.9744 + }, + { + "start": 8183.7, + "end": 8188.78, + "probability": 0.7956 + }, + { + "start": 8189.8, + "end": 8192.21, + "probability": 0.9227 + }, + { + "start": 8193.18, + "end": 8194.5, + "probability": 0.5005 + }, + { + "start": 8195.14, + "end": 8198.94, + "probability": 0.9858 + }, + { + "start": 8199.52, + "end": 8201.96, + "probability": 0.5387 + }, + { + "start": 8202.08, + "end": 8204.86, + "probability": 0.7318 + }, + { + "start": 8205.4, + "end": 8208.35, + "probability": 0.9641 + }, + { + "start": 8209.08, + "end": 8210.04, + "probability": 0.8379 + }, + { + "start": 8210.82, + "end": 8214.8, + "probability": 0.8465 + }, + { + "start": 8215.26, + "end": 8217.26, + "probability": 0.9815 + }, + { + "start": 8217.88, + "end": 8221.32, + "probability": 0.8847 + }, + { + "start": 8221.9, + "end": 8222.46, + "probability": 0.9039 + }, + { + "start": 8223.62, + "end": 8223.98, + "probability": 0.5973 + }, + { + "start": 8224.02, + "end": 8224.74, + "probability": 0.7027 + }, + { + "start": 8224.92, + "end": 8226.16, + "probability": 0.6912 + }, + { + "start": 8226.52, + "end": 8233.3, + "probability": 0.9986 + }, + { + "start": 8233.44, + "end": 8237.46, + "probability": 0.9827 + }, + { + "start": 8237.98, + "end": 8239.52, + "probability": 0.897 + }, + { + "start": 8239.66, + "end": 8241.08, + "probability": 0.9789 + }, + { + "start": 8242.1, + "end": 8246.2, + "probability": 0.9962 + }, + { + "start": 8246.26, + "end": 8249.38, + "probability": 0.9822 + }, + { + "start": 8249.74, + "end": 8251.12, + "probability": 0.7701 + }, + { + "start": 8251.55, + "end": 8256.72, + "probability": 0.9397 + }, + { + "start": 8257.92, + "end": 8260.36, + "probability": 0.9144 + }, + { + "start": 8260.46, + "end": 8262.22, + "probability": 0.6356 + }, + { + "start": 8263.04, + "end": 8265.22, + "probability": 0.9849 + }, + { + "start": 8265.34, + "end": 8268.56, + "probability": 0.931 + }, + { + "start": 8269.36, + "end": 8271.36, + "probability": 0.8595 + }, + { + "start": 8272.76, + "end": 8275.92, + "probability": 0.9824 + }, + { + "start": 8276.84, + "end": 8278.11, + "probability": 0.9479 + }, + { + "start": 8278.88, + "end": 8280.9, + "probability": 0.9938 + }, + { + "start": 8282.2, + "end": 8282.96, + "probability": 0.7456 + }, + { + "start": 8283.22, + "end": 8287.56, + "probability": 0.9912 + }, + { + "start": 8288.18, + "end": 8291.92, + "probability": 0.9839 + }, + { + "start": 8292.36, + "end": 8294.44, + "probability": 0.9929 + }, + { + "start": 8295.08, + "end": 8298.82, + "probability": 0.9958 + }, + { + "start": 8298.82, + "end": 8303.48, + "probability": 0.7147 + }, + { + "start": 8304.12, + "end": 8306.56, + "probability": 0.9968 + }, + { + "start": 8306.68, + "end": 8310.38, + "probability": 0.9362 + }, + { + "start": 8311.08, + "end": 8312.0, + "probability": 0.9235 + }, + { + "start": 8313.04, + "end": 8319.04, + "probability": 0.9961 + }, + { + "start": 8319.06, + "end": 8323.78, + "probability": 0.9975 + }, + { + "start": 8324.24, + "end": 8331.96, + "probability": 0.9097 + }, + { + "start": 8332.9, + "end": 8335.9, + "probability": 0.9332 + }, + { + "start": 8336.7, + "end": 8337.78, + "probability": 0.8448 + }, + { + "start": 8337.92, + "end": 8338.9, + "probability": 0.9461 + }, + { + "start": 8339.12, + "end": 8341.02, + "probability": 0.5832 + }, + { + "start": 8342.02, + "end": 8344.74, + "probability": 0.9865 + }, + { + "start": 8345.4, + "end": 8347.0, + "probability": 0.9824 + }, + { + "start": 8350.12, + "end": 8352.48, + "probability": 0.9599 + }, + { + "start": 8353.14, + "end": 8355.56, + "probability": 0.9779 + }, + { + "start": 8356.2, + "end": 8357.28, + "probability": 0.8883 + }, + { + "start": 8357.62, + "end": 8359.0, + "probability": 0.9891 + }, + { + "start": 8359.38, + "end": 8360.76, + "probability": 0.9124 + }, + { + "start": 8361.26, + "end": 8362.68, + "probability": 0.9915 + }, + { + "start": 8363.44, + "end": 8364.94, + "probability": 0.8076 + }, + { + "start": 8365.48, + "end": 8368.8, + "probability": 0.7404 + }, + { + "start": 8369.14, + "end": 8372.01, + "probability": 0.9741 + }, + { + "start": 8374.32, + "end": 8377.8, + "probability": 0.9145 + }, + { + "start": 8378.36, + "end": 8381.92, + "probability": 0.9953 + }, + { + "start": 8382.36, + "end": 8383.9, + "probability": 0.8158 + }, + { + "start": 8384.64, + "end": 8385.8, + "probability": 0.7529 + }, + { + "start": 8386.3, + "end": 8390.28, + "probability": 0.9919 + }, + { + "start": 8391.66, + "end": 8394.88, + "probability": 0.9566 + }, + { + "start": 8395.46, + "end": 8396.04, + "probability": 0.9032 + }, + { + "start": 8396.14, + "end": 8396.66, + "probability": 0.8308 + }, + { + "start": 8396.78, + "end": 8399.22, + "probability": 0.9911 + }, + { + "start": 8399.62, + "end": 8402.34, + "probability": 0.9706 + }, + { + "start": 8402.86, + "end": 8404.12, + "probability": 0.9969 + }, + { + "start": 8404.68, + "end": 8405.68, + "probability": 0.9734 + }, + { + "start": 8406.46, + "end": 8412.78, + "probability": 0.9977 + }, + { + "start": 8412.78, + "end": 8417.24, + "probability": 0.9991 + }, + { + "start": 8418.02, + "end": 8419.96, + "probability": 0.7639 + }, + { + "start": 8420.52, + "end": 8425.72, + "probability": 0.7792 + }, + { + "start": 8426.38, + "end": 8428.5, + "probability": 0.8348 + }, + { + "start": 8429.4, + "end": 8430.32, + "probability": 0.7584 + }, + { + "start": 8431.82, + "end": 8433.18, + "probability": 0.9336 + }, + { + "start": 8433.32, + "end": 8436.94, + "probability": 0.7727 + }, + { + "start": 8437.92, + "end": 8441.76, + "probability": 0.986 + }, + { + "start": 8442.34, + "end": 8443.84, + "probability": 0.998 + }, + { + "start": 8444.46, + "end": 8445.82, + "probability": 0.6197 + }, + { + "start": 8445.86, + "end": 8450.06, + "probability": 0.9747 + }, + { + "start": 8450.74, + "end": 8453.1, + "probability": 0.9925 + }, + { + "start": 8454.22, + "end": 8455.14, + "probability": 0.8432 + }, + { + "start": 8455.7, + "end": 8457.86, + "probability": 0.8988 + }, + { + "start": 8458.3, + "end": 8461.44, + "probability": 0.9915 + }, + { + "start": 8461.88, + "end": 8463.54, + "probability": 0.9917 + }, + { + "start": 8464.36, + "end": 8465.92, + "probability": 0.6561 + }, + { + "start": 8466.76, + "end": 8467.7, + "probability": 0.7061 + }, + { + "start": 8468.34, + "end": 8471.26, + "probability": 0.9759 + }, + { + "start": 8471.36, + "end": 8472.42, + "probability": 0.9757 + }, + { + "start": 8473.16, + "end": 8476.28, + "probability": 0.8833 + }, + { + "start": 8476.6, + "end": 8479.56, + "probability": 0.9849 + }, + { + "start": 8480.16, + "end": 8483.24, + "probability": 0.9504 + }, + { + "start": 8483.34, + "end": 8484.52, + "probability": 0.96 + }, + { + "start": 8485.14, + "end": 8486.23, + "probability": 0.998 + }, + { + "start": 8486.84, + "end": 8487.68, + "probability": 0.9966 + }, + { + "start": 8488.04, + "end": 8489.18, + "probability": 0.7871 + }, + { + "start": 8489.66, + "end": 8492.5, + "probability": 0.9248 + }, + { + "start": 8494.16, + "end": 8496.26, + "probability": 0.8343 + }, + { + "start": 8497.12, + "end": 8499.88, + "probability": 0.9884 + }, + { + "start": 8500.44, + "end": 8502.7, + "probability": 0.9595 + }, + { + "start": 8503.34, + "end": 8504.04, + "probability": 0.9133 + }, + { + "start": 8505.64, + "end": 8507.46, + "probability": 0.9712 + }, + { + "start": 8508.08, + "end": 8508.44, + "probability": 0.9028 + }, + { + "start": 8508.88, + "end": 8510.28, + "probability": 0.9985 + }, + { + "start": 8511.02, + "end": 8511.02, + "probability": 0.0267 + }, + { + "start": 8511.64, + "end": 8515.85, + "probability": 0.9603 + }, + { + "start": 8516.44, + "end": 8520.58, + "probability": 0.8556 + }, + { + "start": 8520.66, + "end": 8521.7, + "probability": 0.5256 + }, + { + "start": 8522.18, + "end": 8523.8, + "probability": 0.8623 + }, + { + "start": 8524.14, + "end": 8527.42, + "probability": 0.7054 + }, + { + "start": 8529.32, + "end": 8531.58, + "probability": 0.501 + }, + { + "start": 8532.6, + "end": 8533.84, + "probability": 0.4569 + }, + { + "start": 8534.52, + "end": 8535.02, + "probability": 0.7564 + }, + { + "start": 8535.02, + "end": 8537.36, + "probability": 0.9816 + }, + { + "start": 8537.5, + "end": 8538.18, + "probability": 0.5273 + }, + { + "start": 8539.22, + "end": 8542.68, + "probability": 0.918 + }, + { + "start": 8542.8, + "end": 8543.36, + "probability": 0.7214 + }, + { + "start": 8543.5, + "end": 8547.12, + "probability": 0.9741 + }, + { + "start": 8547.48, + "end": 8548.46, + "probability": 0.9437 + }, + { + "start": 8549.18, + "end": 8551.3, + "probability": 0.9936 + }, + { + "start": 8551.76, + "end": 8551.96, + "probability": 0.6761 + }, + { + "start": 8552.84, + "end": 8554.52, + "probability": 0.5142 + }, + { + "start": 8554.7, + "end": 8555.6, + "probability": 0.9132 + }, + { + "start": 8556.0, + "end": 8556.66, + "probability": 0.8237 + }, + { + "start": 8557.28, + "end": 8558.1, + "probability": 0.8237 + }, + { + "start": 8558.32, + "end": 8558.76, + "probability": 0.8985 + }, + { + "start": 8559.32, + "end": 8561.88, + "probability": 0.9871 + }, + { + "start": 8561.96, + "end": 8562.58, + "probability": 0.745 + }, + { + "start": 8562.94, + "end": 8564.9, + "probability": 0.9121 + }, + { + "start": 8565.72, + "end": 8566.52, + "probability": 0.6556 + }, + { + "start": 8566.72, + "end": 8569.0, + "probability": 0.9749 + }, + { + "start": 8569.56, + "end": 8571.48, + "probability": 0.777 + }, + { + "start": 8572.96, + "end": 8573.92, + "probability": 0.7126 + }, + { + "start": 8577.74, + "end": 8578.24, + "probability": 0.7549 + }, + { + "start": 8578.36, + "end": 8580.73, + "probability": 0.8133 + }, + { + "start": 8580.8, + "end": 8582.12, + "probability": 0.4875 + }, + { + "start": 8582.34, + "end": 8583.2, + "probability": 0.6116 + }, + { + "start": 8583.52, + "end": 8584.86, + "probability": 0.9457 + }, + { + "start": 8585.62, + "end": 8586.26, + "probability": 0.9304 + }, + { + "start": 8586.28, + "end": 8586.92, + "probability": 0.9314 + }, + { + "start": 8587.56, + "end": 8590.28, + "probability": 0.9289 + }, + { + "start": 8592.3, + "end": 8598.74, + "probability": 0.8733 + }, + { + "start": 8598.98, + "end": 8600.1, + "probability": 0.5822 + }, + { + "start": 8600.8, + "end": 8601.5, + "probability": 0.9473 + }, + { + "start": 8602.26, + "end": 8602.67, + "probability": 0.9956 + }, + { + "start": 8603.66, + "end": 8605.7, + "probability": 0.8813 + }, + { + "start": 8605.76, + "end": 8607.1, + "probability": 0.9387 + }, + { + "start": 8607.18, + "end": 8607.73, + "probability": 0.7307 + }, + { + "start": 8608.64, + "end": 8614.06, + "probability": 0.7671 + }, + { + "start": 8614.48, + "end": 8615.4, + "probability": 0.9287 + }, + { + "start": 8615.98, + "end": 8617.06, + "probability": 0.7744 + }, + { + "start": 8618.02, + "end": 8618.96, + "probability": 0.9907 + }, + { + "start": 8619.6, + "end": 8621.82, + "probability": 0.9927 + }, + { + "start": 8621.9, + "end": 8623.22, + "probability": 0.7631 + }, + { + "start": 8623.54, + "end": 8624.76, + "probability": 0.7514 + }, + { + "start": 8624.82, + "end": 8625.34, + "probability": 0.8228 + }, + { + "start": 8625.92, + "end": 8627.32, + "probability": 0.9753 + }, + { + "start": 8628.24, + "end": 8629.52, + "probability": 0.9828 + }, + { + "start": 8630.04, + "end": 8631.56, + "probability": 0.8805 + }, + { + "start": 8631.64, + "end": 8632.86, + "probability": 0.6386 + }, + { + "start": 8633.54, + "end": 8634.22, + "probability": 0.8432 + }, + { + "start": 8635.6, + "end": 8636.92, + "probability": 0.7282 + }, + { + "start": 8637.06, + "end": 8638.0, + "probability": 0.8898 + }, + { + "start": 8638.08, + "end": 8639.96, + "probability": 0.7948 + }, + { + "start": 8640.3, + "end": 8640.74, + "probability": 0.9091 + }, + { + "start": 8640.84, + "end": 8641.22, + "probability": 0.8545 + }, + { + "start": 8641.32, + "end": 8644.2, + "probability": 0.9868 + }, + { + "start": 8644.24, + "end": 8645.55, + "probability": 0.998 + }, + { + "start": 8645.94, + "end": 8648.16, + "probability": 0.9909 + }, + { + "start": 8649.24, + "end": 8651.52, + "probability": 0.9887 + }, + { + "start": 8652.12, + "end": 8653.24, + "probability": 0.9498 + }, + { + "start": 8653.84, + "end": 8655.72, + "probability": 0.9823 + }, + { + "start": 8656.46, + "end": 8659.32, + "probability": 0.9912 + }, + { + "start": 8659.94, + "end": 8661.24, + "probability": 0.9943 + }, + { + "start": 8661.8, + "end": 8665.08, + "probability": 0.9788 + }, + { + "start": 8665.26, + "end": 8665.54, + "probability": 0.7619 + }, + { + "start": 8666.14, + "end": 8668.18, + "probability": 0.7529 + }, + { + "start": 8668.32, + "end": 8669.0, + "probability": 0.4975 + }, + { + "start": 8669.06, + "end": 8669.65, + "probability": 0.9255 + }, + { + "start": 8673.3, + "end": 8674.72, + "probability": 0.8875 + }, + { + "start": 8675.84, + "end": 8676.46, + "probability": 0.4866 + }, + { + "start": 8676.52, + "end": 8677.42, + "probability": 0.8813 + }, + { + "start": 8687.92, + "end": 8687.92, + "probability": 0.1261 + }, + { + "start": 8687.92, + "end": 8688.42, + "probability": 0.2262 + }, + { + "start": 8688.54, + "end": 8689.18, + "probability": 0.7637 + }, + { + "start": 8691.54, + "end": 8694.42, + "probability": 0.9233 + }, + { + "start": 8694.7, + "end": 8695.78, + "probability": 0.6865 + }, + { + "start": 8695.94, + "end": 8696.98, + "probability": 0.5136 + }, + { + "start": 8697.12, + "end": 8701.36, + "probability": 0.8985 + }, + { + "start": 8701.46, + "end": 8702.4, + "probability": 0.9902 + }, + { + "start": 8703.1, + "end": 8704.48, + "probability": 0.9736 + }, + { + "start": 8705.0, + "end": 8707.88, + "probability": 0.9965 + }, + { + "start": 8708.6, + "end": 8711.52, + "probability": 0.999 + }, + { + "start": 8711.52, + "end": 8716.26, + "probability": 0.9846 + }, + { + "start": 8717.39, + "end": 8719.62, + "probability": 0.9849 + }, + { + "start": 8719.88, + "end": 8720.3, + "probability": 0.713 + }, + { + "start": 8721.06, + "end": 8726.14, + "probability": 0.9972 + }, + { + "start": 8726.2, + "end": 8726.56, + "probability": 0.8672 + }, + { + "start": 8726.64, + "end": 8727.88, + "probability": 0.8988 + }, + { + "start": 8727.96, + "end": 8731.02, + "probability": 0.8958 + }, + { + "start": 8731.72, + "end": 8737.3, + "probability": 0.936 + }, + { + "start": 8737.3, + "end": 8741.09, + "probability": 0.9958 + }, + { + "start": 8741.48, + "end": 8741.48, + "probability": 0.1334 + }, + { + "start": 8741.6, + "end": 8744.38, + "probability": 0.9152 + }, + { + "start": 8744.38, + "end": 8744.38, + "probability": 0.1395 + }, + { + "start": 8744.58, + "end": 8746.71, + "probability": 0.8492 + }, + { + "start": 8747.14, + "end": 8748.94, + "probability": 0.9888 + }, + { + "start": 8749.14, + "end": 8750.54, + "probability": 0.9652 + }, + { + "start": 8751.52, + "end": 8752.66, + "probability": 0.7114 + }, + { + "start": 8753.73, + "end": 8758.54, + "probability": 0.981 + }, + { + "start": 8759.83, + "end": 8761.7, + "probability": 0.7534 + }, + { + "start": 8762.1, + "end": 8764.18, + "probability": 0.9645 + }, + { + "start": 8765.0, + "end": 8765.7, + "probability": 0.9263 + }, + { + "start": 8766.52, + "end": 8771.14, + "probability": 0.9821 + }, + { + "start": 8771.68, + "end": 8772.5, + "probability": 0.8381 + }, + { + "start": 8772.54, + "end": 8775.52, + "probability": 0.95 + }, + { + "start": 8776.1, + "end": 8778.4, + "probability": 0.9922 + }, + { + "start": 8778.56, + "end": 8782.66, + "probability": 0.9723 + }, + { + "start": 8783.24, + "end": 8785.54, + "probability": 0.8799 + }, + { + "start": 8786.16, + "end": 8791.6, + "probability": 0.9445 + }, + { + "start": 8792.06, + "end": 8792.52, + "probability": 0.4063 + }, + { + "start": 8792.64, + "end": 8801.76, + "probability": 0.9769 + }, + { + "start": 8801.9, + "end": 8802.32, + "probability": 0.8849 + }, + { + "start": 8802.5, + "end": 8803.24, + "probability": 0.8674 + }, + { + "start": 8803.36, + "end": 8804.0, + "probability": 0.9398 + }, + { + "start": 8804.24, + "end": 8809.1, + "probability": 0.9879 + }, + { + "start": 8809.3, + "end": 8810.2, + "probability": 0.8561 + }, + { + "start": 8810.74, + "end": 8812.22, + "probability": 0.9387 + }, + { + "start": 8813.32, + "end": 8815.98, + "probability": 0.9711 + }, + { + "start": 8815.98, + "end": 8820.58, + "probability": 0.9699 + }, + { + "start": 8820.58, + "end": 8823.86, + "probability": 0.9966 + }, + { + "start": 8824.7, + "end": 8825.2, + "probability": 0.7844 + }, + { + "start": 8825.56, + "end": 8826.28, + "probability": 0.8667 + }, + { + "start": 8826.34, + "end": 8830.32, + "probability": 0.9767 + }, + { + "start": 8830.44, + "end": 8831.12, + "probability": 0.711 + }, + { + "start": 8832.18, + "end": 8835.14, + "probability": 0.9989 + }, + { + "start": 8835.56, + "end": 8836.6, + "probability": 0.7802 + }, + { + "start": 8838.82, + "end": 8843.56, + "probability": 0.9752 + }, + { + "start": 8843.56, + "end": 8850.47, + "probability": 0.9953 + }, + { + "start": 8851.94, + "end": 8853.94, + "probability": 0.779 + }, + { + "start": 8854.22, + "end": 8861.0, + "probability": 0.8343 + }, + { + "start": 8861.06, + "end": 8866.13, + "probability": 0.9768 + }, + { + "start": 8867.62, + "end": 8869.76, + "probability": 0.7553 + }, + { + "start": 8870.0, + "end": 8873.48, + "probability": 0.9951 + }, + { + "start": 8873.7, + "end": 8878.12, + "probability": 0.9973 + }, + { + "start": 8878.6, + "end": 8881.04, + "probability": 0.9962 + }, + { + "start": 8881.64, + "end": 8883.88, + "probability": 0.8698 + }, + { + "start": 8885.64, + "end": 8888.78, + "probability": 0.7747 + }, + { + "start": 8890.34, + "end": 8890.92, + "probability": 0.5403 + }, + { + "start": 8891.08, + "end": 8891.74, + "probability": 0.706 + }, + { + "start": 8891.84, + "end": 8893.84, + "probability": 0.9448 + }, + { + "start": 8894.24, + "end": 8896.68, + "probability": 0.9703 + }, + { + "start": 8898.24, + "end": 8901.16, + "probability": 0.9413 + }, + { + "start": 8901.24, + "end": 8903.38, + "probability": 0.9969 + }, + { + "start": 8903.48, + "end": 8908.58, + "probability": 0.9648 + }, + { + "start": 8908.78, + "end": 8910.85, + "probability": 0.9854 + }, + { + "start": 8911.56, + "end": 8917.74, + "probability": 0.995 + }, + { + "start": 8918.78, + "end": 8923.38, + "probability": 0.6876 + }, + { + "start": 8923.8, + "end": 8923.9, + "probability": 0.5344 + }, + { + "start": 8924.2, + "end": 8924.66, + "probability": 0.9386 + }, + { + "start": 8924.7, + "end": 8927.04, + "probability": 0.8581 + }, + { + "start": 8927.12, + "end": 8931.34, + "probability": 0.9963 + }, + { + "start": 8931.34, + "end": 8934.71, + "probability": 0.9951 + }, + { + "start": 8935.0, + "end": 8936.0, + "probability": 0.9659 + }, + { + "start": 8936.54, + "end": 8939.4, + "probability": 0.9933 + }, + { + "start": 8941.29, + "end": 8945.02, + "probability": 0.9821 + }, + { + "start": 8945.02, + "end": 8948.1, + "probability": 0.9965 + }, + { + "start": 8949.18, + "end": 8952.88, + "probability": 0.9458 + }, + { + "start": 8952.94, + "end": 8954.46, + "probability": 0.9085 + }, + { + "start": 8954.54, + "end": 8957.56, + "probability": 0.9274 + }, + { + "start": 8958.26, + "end": 8958.98, + "probability": 0.7242 + }, + { + "start": 8960.74, + "end": 8961.24, + "probability": 0.7991 + }, + { + "start": 8961.34, + "end": 8962.0, + "probability": 0.8809 + }, + { + "start": 8962.0, + "end": 8964.66, + "probability": 0.7915 + }, + { + "start": 8965.44, + "end": 8970.48, + "probability": 0.9953 + }, + { + "start": 8970.58, + "end": 8970.96, + "probability": 0.6449 + }, + { + "start": 8972.0, + "end": 8973.86, + "probability": 0.9187 + }, + { + "start": 8974.46, + "end": 8979.28, + "probability": 0.9901 + }, + { + "start": 8979.44, + "end": 8985.14, + "probability": 0.9722 + }, + { + "start": 8986.26, + "end": 8991.41, + "probability": 0.9323 + }, + { + "start": 8992.3, + "end": 8999.96, + "probability": 0.9405 + }, + { + "start": 9000.12, + "end": 9005.02, + "probability": 0.9099 + }, + { + "start": 9007.56, + "end": 9010.02, + "probability": 0.9956 + }, + { + "start": 9010.5, + "end": 9010.9, + "probability": 0.5459 + }, + { + "start": 9010.94, + "end": 9012.98, + "probability": 0.9326 + }, + { + "start": 9013.1, + "end": 9016.28, + "probability": 0.9972 + }, + { + "start": 9017.12, + "end": 9020.22, + "probability": 0.9885 + }, + { + "start": 9020.22, + "end": 9023.46, + "probability": 0.998 + }, + { + "start": 9024.04, + "end": 9027.5, + "probability": 0.9971 + }, + { + "start": 9027.6, + "end": 9032.52, + "probability": 0.9878 + }, + { + "start": 9032.68, + "end": 9033.64, + "probability": 0.9568 + }, + { + "start": 9033.72, + "end": 9036.74, + "probability": 0.9609 + }, + { + "start": 9036.98, + "end": 9045.24, + "probability": 0.995 + }, + { + "start": 9045.7, + "end": 9050.11, + "probability": 0.9953 + }, + { + "start": 9052.22, + "end": 9055.2, + "probability": 0.8183 + }, + { + "start": 9055.26, + "end": 9056.24, + "probability": 0.564 + }, + { + "start": 9056.34, + "end": 9060.42, + "probability": 0.9904 + }, + { + "start": 9061.56, + "end": 9065.54, + "probability": 0.9967 + }, + { + "start": 9066.36, + "end": 9068.76, + "probability": 0.9303 + }, + { + "start": 9068.84, + "end": 9069.6, + "probability": 0.7482 + }, + { + "start": 9069.68, + "end": 9073.02, + "probability": 0.9824 + }, + { + "start": 9073.3, + "end": 9074.2, + "probability": 0.9083 + }, + { + "start": 9074.44, + "end": 9075.48, + "probability": 0.9729 + }, + { + "start": 9075.64, + "end": 9076.82, + "probability": 0.9272 + }, + { + "start": 9077.22, + "end": 9079.74, + "probability": 0.9858 + }, + { + "start": 9081.8, + "end": 9086.9, + "probability": 0.9984 + }, + { + "start": 9086.98, + "end": 9092.28, + "probability": 0.937 + }, + { + "start": 9092.68, + "end": 9096.33, + "probability": 0.9978 + }, + { + "start": 9097.1, + "end": 9100.96, + "probability": 0.957 + }, + { + "start": 9101.6, + "end": 9107.18, + "probability": 0.9046 + }, + { + "start": 9107.18, + "end": 9111.44, + "probability": 0.9893 + }, + { + "start": 9112.6, + "end": 9113.52, + "probability": 0.7696 + }, + { + "start": 9113.64, + "end": 9113.96, + "probability": 0.424 + }, + { + "start": 9114.16, + "end": 9117.32, + "probability": 0.9567 + }, + { + "start": 9117.64, + "end": 9119.22, + "probability": 0.8685 + }, + { + "start": 9120.02, + "end": 9121.88, + "probability": 0.6527 + }, + { + "start": 9122.02, + "end": 9122.48, + "probability": 0.8375 + }, + { + "start": 9122.6, + "end": 9124.6, + "probability": 0.9387 + }, + { + "start": 9125.1, + "end": 9128.08, + "probability": 0.9897 + }, + { + "start": 9128.22, + "end": 9128.76, + "probability": 0.8055 + }, + { + "start": 9129.36, + "end": 9130.68, + "probability": 0.9705 + }, + { + "start": 9131.56, + "end": 9132.6, + "probability": 0.7367 + }, + { + "start": 9132.8, + "end": 9133.18, + "probability": 0.3273 + }, + { + "start": 9133.38, + "end": 9137.24, + "probability": 0.9681 + }, + { + "start": 9137.98, + "end": 9141.1, + "probability": 0.9873 + }, + { + "start": 9141.22, + "end": 9144.17, + "probability": 0.8419 + }, + { + "start": 9145.22, + "end": 9148.76, + "probability": 0.7371 + }, + { + "start": 9148.96, + "end": 9153.84, + "probability": 0.9644 + }, + { + "start": 9154.26, + "end": 9157.82, + "probability": 0.9852 + }, + { + "start": 9158.36, + "end": 9161.14, + "probability": 0.5038 + }, + { + "start": 9161.14, + "end": 9165.04, + "probability": 0.9956 + }, + { + "start": 9165.46, + "end": 9170.8, + "probability": 0.994 + }, + { + "start": 9171.22, + "end": 9172.18, + "probability": 0.9262 + }, + { + "start": 9172.26, + "end": 9172.6, + "probability": 0.9492 + }, + { + "start": 9174.0, + "end": 9175.06, + "probability": 0.8455 + }, + { + "start": 9175.22, + "end": 9177.7, + "probability": 0.9649 + }, + { + "start": 9177.78, + "end": 9178.32, + "probability": 0.94 + }, + { + "start": 9178.64, + "end": 9178.98, + "probability": 0.9826 + }, + { + "start": 9179.04, + "end": 9179.54, + "probability": 0.9794 + }, + { + "start": 9179.64, + "end": 9180.0, + "probability": 0.5245 + }, + { + "start": 9180.12, + "end": 9184.94, + "probability": 0.9144 + }, + { + "start": 9185.04, + "end": 9189.54, + "probability": 0.9931 + }, + { + "start": 9190.58, + "end": 9191.06, + "probability": 0.9524 + }, + { + "start": 9191.12, + "end": 9193.42, + "probability": 0.9885 + }, + { + "start": 9193.46, + "end": 9198.42, + "probability": 0.9943 + }, + { + "start": 9199.08, + "end": 9203.74, + "probability": 0.9701 + }, + { + "start": 9204.46, + "end": 9205.92, + "probability": 0.751 + }, + { + "start": 9205.96, + "end": 9208.86, + "probability": 0.987 + }, + { + "start": 9209.08, + "end": 9210.62, + "probability": 0.9017 + }, + { + "start": 9211.2, + "end": 9215.48, + "probability": 0.946 + }, + { + "start": 9215.68, + "end": 9217.88, + "probability": 0.9614 + }, + { + "start": 9217.98, + "end": 9220.64, + "probability": 0.989 + }, + { + "start": 9221.46, + "end": 9224.28, + "probability": 0.9989 + }, + { + "start": 9224.74, + "end": 9225.66, + "probability": 0.9845 + }, + { + "start": 9226.14, + "end": 9229.0, + "probability": 0.9963 + }, + { + "start": 9229.78, + "end": 9232.88, + "probability": 0.9986 + }, + { + "start": 9232.88, + "end": 9236.86, + "probability": 0.9971 + }, + { + "start": 9237.64, + "end": 9240.8, + "probability": 0.9123 + }, + { + "start": 9241.6, + "end": 9242.62, + "probability": 0.9977 + }, + { + "start": 9243.38, + "end": 9245.9, + "probability": 0.9865 + }, + { + "start": 9246.54, + "end": 9248.38, + "probability": 0.9839 + }, + { + "start": 9249.16, + "end": 9254.6, + "probability": 0.9666 + }, + { + "start": 9255.3, + "end": 9256.0, + "probability": 0.8284 + }, + { + "start": 9256.08, + "end": 9258.08, + "probability": 0.9566 + }, + { + "start": 9258.56, + "end": 9263.88, + "probability": 0.9955 + }, + { + "start": 9264.42, + "end": 9266.08, + "probability": 0.9883 + }, + { + "start": 9266.7, + "end": 9267.28, + "probability": 0.7543 + }, + { + "start": 9268.0, + "end": 9269.62, + "probability": 0.9649 + }, + { + "start": 9270.44, + "end": 9275.36, + "probability": 0.8392 + }, + { + "start": 9275.86, + "end": 9282.5, + "probability": 0.9535 + }, + { + "start": 9283.02, + "end": 9284.28, + "probability": 0.9219 + }, + { + "start": 9284.7, + "end": 9288.02, + "probability": 0.8821 + }, + { + "start": 9288.2, + "end": 9292.24, + "probability": 0.992 + }, + { + "start": 9292.24, + "end": 9296.06, + "probability": 0.9958 + }, + { + "start": 9296.84, + "end": 9299.74, + "probability": 0.9881 + }, + { + "start": 9299.94, + "end": 9301.86, + "probability": 0.9131 + }, + { + "start": 9302.22, + "end": 9306.1, + "probability": 0.9972 + }, + { + "start": 9306.1, + "end": 9309.92, + "probability": 0.9843 + }, + { + "start": 9310.28, + "end": 9312.24, + "probability": 0.9854 + }, + { + "start": 9312.74, + "end": 9319.26, + "probability": 0.7476 + }, + { + "start": 9319.88, + "end": 9324.16, + "probability": 0.7715 + }, + { + "start": 9324.74, + "end": 9326.2, + "probability": 0.5453 + }, + { + "start": 9326.5, + "end": 9329.04, + "probability": 0.8322 + }, + { + "start": 9329.1, + "end": 9329.9, + "probability": 0.932 + }, + { + "start": 9330.5, + "end": 9333.72, + "probability": 0.9971 + }, + { + "start": 9333.72, + "end": 9337.64, + "probability": 0.9883 + }, + { + "start": 9337.78, + "end": 9340.02, + "probability": 0.8969 + }, + { + "start": 9340.54, + "end": 9343.72, + "probability": 0.9724 + }, + { + "start": 9343.72, + "end": 9349.8, + "probability": 0.9861 + }, + { + "start": 9350.28, + "end": 9352.14, + "probability": 0.6316 + }, + { + "start": 9352.3, + "end": 9353.74, + "probability": 0.9968 + }, + { + "start": 9353.86, + "end": 9355.56, + "probability": 0.8241 + }, + { + "start": 9356.1, + "end": 9356.62, + "probability": 0.8226 + }, + { + "start": 9357.14, + "end": 9358.0, + "probability": 0.8081 + }, + { + "start": 9358.64, + "end": 9362.74, + "probability": 0.8892 + }, + { + "start": 9364.06, + "end": 9367.1, + "probability": 0.9879 + }, + { + "start": 9367.18, + "end": 9372.92, + "probability": 0.9853 + }, + { + "start": 9373.38, + "end": 9373.78, + "probability": 0.2465 + }, + { + "start": 9373.94, + "end": 9378.46, + "probability": 0.9777 + }, + { + "start": 9378.5, + "end": 9379.79, + "probability": 0.9576 + }, + { + "start": 9380.24, + "end": 9380.62, + "probability": 0.8832 + }, + { + "start": 9380.66, + "end": 9380.98, + "probability": 0.9382 + }, + { + "start": 9381.02, + "end": 9383.67, + "probability": 0.996 + }, + { + "start": 9384.66, + "end": 9387.92, + "probability": 0.9947 + }, + { + "start": 9387.92, + "end": 9392.32, + "probability": 0.999 + }, + { + "start": 9392.34, + "end": 9395.1, + "probability": 0.9947 + }, + { + "start": 9395.5, + "end": 9397.98, + "probability": 0.9592 + }, + { + "start": 9398.96, + "end": 9400.24, + "probability": 0.9814 + }, + { + "start": 9400.44, + "end": 9401.46, + "probability": 0.9885 + }, + { + "start": 9401.74, + "end": 9402.3, + "probability": 0.723 + }, + { + "start": 9402.58, + "end": 9404.44, + "probability": 0.765 + }, + { + "start": 9405.0, + "end": 9407.1, + "probability": 0.8172 + }, + { + "start": 9407.62, + "end": 9408.43, + "probability": 0.9406 + }, + { + "start": 9408.74, + "end": 9410.23, + "probability": 0.0704 + }, + { + "start": 9410.48, + "end": 9411.94, + "probability": 0.7952 + }, + { + "start": 9413.64, + "end": 9417.62, + "probability": 0.8631 + }, + { + "start": 9418.34, + "end": 9419.74, + "probability": 0.5306 + }, + { + "start": 9421.32, + "end": 9426.64, + "probability": 0.8628 + }, + { + "start": 9427.04, + "end": 9427.7, + "probability": 0.5143 + }, + { + "start": 9427.74, + "end": 9430.08, + "probability": 0.9976 + }, + { + "start": 9430.3, + "end": 9431.28, + "probability": 0.8453 + }, + { + "start": 9432.54, + "end": 9434.62, + "probability": 0.6912 + }, + { + "start": 9434.82, + "end": 9434.82, + "probability": 0.0299 + }, + { + "start": 9436.14, + "end": 9438.34, + "probability": 0.8728 + }, + { + "start": 9438.62, + "end": 9440.96, + "probability": 0.9931 + }, + { + "start": 9441.16, + "end": 9444.24, + "probability": 0.9504 + }, + { + "start": 9444.34, + "end": 9448.14, + "probability": 0.9951 + }, + { + "start": 9448.74, + "end": 9450.98, + "probability": 0.9912 + }, + { + "start": 9451.12, + "end": 9451.72, + "probability": 0.8121 + }, + { + "start": 9451.8, + "end": 9452.93, + "probability": 0.9573 + }, + { + "start": 9453.48, + "end": 9454.34, + "probability": 0.9812 + }, + { + "start": 9454.54, + "end": 9455.76, + "probability": 0.9422 + }, + { + "start": 9456.36, + "end": 9458.56, + "probability": 0.9968 + }, + { + "start": 9458.56, + "end": 9461.56, + "probability": 0.9648 + }, + { + "start": 9461.64, + "end": 9463.36, + "probability": 0.8934 + }, + { + "start": 9464.0, + "end": 9467.94, + "probability": 0.9952 + }, + { + "start": 9469.32, + "end": 9471.34, + "probability": 0.736 + }, + { + "start": 9471.82, + "end": 9474.02, + "probability": 0.5955 + }, + { + "start": 9474.24, + "end": 9477.4, + "probability": 0.9854 + }, + { + "start": 9477.98, + "end": 9480.36, + "probability": 0.7919 + }, + { + "start": 9480.94, + "end": 9483.38, + "probability": 0.9949 + }, + { + "start": 9484.1, + "end": 9485.92, + "probability": 0.9835 + }, + { + "start": 9486.54, + "end": 9487.54, + "probability": 0.8152 + }, + { + "start": 9488.48, + "end": 9490.42, + "probability": 0.9333 + }, + { + "start": 9490.84, + "end": 9492.56, + "probability": 0.9733 + }, + { + "start": 9492.66, + "end": 9492.92, + "probability": 0.7697 + }, + { + "start": 9493.64, + "end": 9494.02, + "probability": 0.6257 + }, + { + "start": 9494.92, + "end": 9496.94, + "probability": 0.7493 + }, + { + "start": 9497.4, + "end": 9498.4, + "probability": 0.9275 + }, + { + "start": 9499.06, + "end": 9501.53, + "probability": 0.2613 + }, + { + "start": 9503.16, + "end": 9503.94, + "probability": 0.323 + }, + { + "start": 9504.66, + "end": 9505.38, + "probability": 0.351 + }, + { + "start": 9525.8, + "end": 9525.98, + "probability": 0.0395 + }, + { + "start": 9525.98, + "end": 9526.33, + "probability": 0.0905 + }, + { + "start": 9528.34, + "end": 9528.34, + "probability": 0.3151 + }, + { + "start": 9528.34, + "end": 9529.46, + "probability": 0.176 + }, + { + "start": 9530.4, + "end": 9531.89, + "probability": 0.557 + }, + { + "start": 9532.04, + "end": 9533.34, + "probability": 0.8946 + }, + { + "start": 9535.98, + "end": 9537.7, + "probability": 0.7429 + }, + { + "start": 9555.02, + "end": 9556.78, + "probability": 0.9139 + }, + { + "start": 9556.98, + "end": 9560.3, + "probability": 0.7408 + }, + { + "start": 9561.86, + "end": 9562.84, + "probability": 0.7834 + }, + { + "start": 9567.0, + "end": 9568.8, + "probability": 0.9586 + }, + { + "start": 9569.52, + "end": 9571.36, + "probability": 0.8617 + }, + { + "start": 9574.42, + "end": 9576.16, + "probability": 0.7523 + }, + { + "start": 9578.01, + "end": 9581.94, + "probability": 0.8978 + }, + { + "start": 9582.22, + "end": 9584.14, + "probability": 0.9249 + }, + { + "start": 9584.9, + "end": 9586.4, + "probability": 0.8553 + }, + { + "start": 9587.22, + "end": 9588.82, + "probability": 0.2927 + }, + { + "start": 9589.89, + "end": 9591.25, + "probability": 0.7731 + }, + { + "start": 9591.8, + "end": 9594.06, + "probability": 0.8425 + }, + { + "start": 9594.28, + "end": 9594.94, + "probability": 0.4274 + }, + { + "start": 9595.36, + "end": 9596.9, + "probability": 0.5123 + }, + { + "start": 9596.96, + "end": 9598.24, + "probability": 0.1288 + }, + { + "start": 9598.24, + "end": 9598.78, + "probability": 0.4681 + }, + { + "start": 9599.36, + "end": 9601.28, + "probability": 0.794 + }, + { + "start": 9601.34, + "end": 9603.0, + "probability": 0.8145 + }, + { + "start": 9603.16, + "end": 9605.12, + "probability": 0.8694 + }, + { + "start": 9607.02, + "end": 9609.94, + "probability": 0.9785 + }, + { + "start": 9610.14, + "end": 9611.98, + "probability": 0.5007 + }, + { + "start": 9612.0, + "end": 9612.7, + "probability": 0.7071 + }, + { + "start": 9613.04, + "end": 9614.02, + "probability": 0.7563 + }, + { + "start": 9614.2, + "end": 9617.8, + "probability": 0.8989 + }, + { + "start": 9618.94, + "end": 9623.08, + "probability": 0.9797 + }, + { + "start": 9624.42, + "end": 9625.5, + "probability": 0.848 + }, + { + "start": 9627.73, + "end": 9629.76, + "probability": 0.4848 + }, + { + "start": 9629.76, + "end": 9631.7, + "probability": 0.5396 + }, + { + "start": 9632.49, + "end": 9634.7, + "probability": 0.4352 + }, + { + "start": 9635.78, + "end": 9637.56, + "probability": 0.9019 + }, + { + "start": 9638.7, + "end": 9641.76, + "probability": 0.9751 + }, + { + "start": 9641.96, + "end": 9643.4, + "probability": 0.9946 + }, + { + "start": 9643.54, + "end": 9645.2, + "probability": 0.9569 + }, + { + "start": 9646.22, + "end": 9646.6, + "probability": 0.5497 + }, + { + "start": 9647.0, + "end": 9649.84, + "probability": 0.8453 + }, + { + "start": 9650.42, + "end": 9652.32, + "probability": 0.651 + }, + { + "start": 9654.06, + "end": 9655.18, + "probability": 0.9141 + }, + { + "start": 9656.7, + "end": 9660.28, + "probability": 0.8184 + }, + { + "start": 9660.36, + "end": 9661.2, + "probability": 0.955 + }, + { + "start": 9662.98, + "end": 9665.38, + "probability": 0.9889 + }, + { + "start": 9665.5, + "end": 9666.32, + "probability": 0.9399 + }, + { + "start": 9667.14, + "end": 9668.18, + "probability": 0.9971 + }, + { + "start": 9670.64, + "end": 9675.22, + "probability": 0.9695 + }, + { + "start": 9675.88, + "end": 9676.66, + "probability": 0.6228 + }, + { + "start": 9678.5, + "end": 9680.58, + "probability": 0.5592 + }, + { + "start": 9682.36, + "end": 9684.54, + "probability": 0.9814 + }, + { + "start": 9686.34, + "end": 9686.34, + "probability": 0.3117 + }, + { + "start": 9686.34, + "end": 9687.74, + "probability": 0.6688 + }, + { + "start": 9687.76, + "end": 9688.68, + "probability": 0.5966 + }, + { + "start": 9688.78, + "end": 9690.34, + "probability": 0.2787 + }, + { + "start": 9694.5, + "end": 9701.44, + "probability": 0.3253 + }, + { + "start": 9701.44, + "end": 9704.38, + "probability": 0.985 + }, + { + "start": 9706.48, + "end": 9707.76, + "probability": 0.7443 + }, + { + "start": 9708.6, + "end": 9710.36, + "probability": 0.7017 + }, + { + "start": 9710.68, + "end": 9711.47, + "probability": 0.9101 + }, + { + "start": 9711.64, + "end": 9714.56, + "probability": 0.5912 + }, + { + "start": 9714.78, + "end": 9717.12, + "probability": 0.4636 + }, + { + "start": 9723.28, + "end": 9727.52, + "probability": 0.8574 + }, + { + "start": 9727.8, + "end": 9732.52, + "probability": 0.9707 + }, + { + "start": 9732.6, + "end": 9732.9, + "probability": 0.8603 + }, + { + "start": 9732.94, + "end": 9733.32, + "probability": 0.651 + }, + { + "start": 9733.44, + "end": 9734.12, + "probability": 0.8285 + }, + { + "start": 9734.28, + "end": 9735.22, + "probability": 0.7706 + }, + { + "start": 9735.38, + "end": 9737.26, + "probability": 0.9438 + }, + { + "start": 9737.86, + "end": 9743.92, + "probability": 0.8937 + }, + { + "start": 9744.58, + "end": 9747.24, + "probability": 0.7889 + }, + { + "start": 9747.6, + "end": 9748.28, + "probability": 0.7004 + }, + { + "start": 9748.76, + "end": 9752.72, + "probability": 0.9736 + }, + { + "start": 9752.86, + "end": 9755.12, + "probability": 0.7967 + }, + { + "start": 9755.54, + "end": 9756.46, + "probability": 0.9833 + }, + { + "start": 9757.18, + "end": 9760.16, + "probability": 0.768 + }, + { + "start": 9760.36, + "end": 9761.52, + "probability": 0.9407 + }, + { + "start": 9761.72, + "end": 9762.04, + "probability": 0.7456 + }, + { + "start": 9762.26, + "end": 9763.7, + "probability": 0.9754 + }, + { + "start": 9766.56, + "end": 9772.7, + "probability": 0.9871 + }, + { + "start": 9772.8, + "end": 9773.5, + "probability": 0.6468 + }, + { + "start": 9773.92, + "end": 9774.6, + "probability": 0.7546 + }, + { + "start": 9776.04, + "end": 9777.92, + "probability": 0.8768 + }, + { + "start": 9778.64, + "end": 9779.18, + "probability": 0.7739 + }, + { + "start": 9780.4, + "end": 9782.32, + "probability": 0.7935 + }, + { + "start": 9782.6, + "end": 9784.22, + "probability": 0.9082 + }, + { + "start": 9785.0, + "end": 9785.84, + "probability": 0.9844 + }, + { + "start": 9786.58, + "end": 9788.04, + "probability": 0.9401 + }, + { + "start": 9788.64, + "end": 9791.66, + "probability": 0.6269 + }, + { + "start": 9792.44, + "end": 9793.46, + "probability": 0.572 + }, + { + "start": 9793.54, + "end": 9794.04, + "probability": 0.5179 + }, + { + "start": 9794.78, + "end": 9798.4, + "probability": 0.8955 + }, + { + "start": 9798.8, + "end": 9799.68, + "probability": 0.7343 + }, + { + "start": 9800.28, + "end": 9803.42, + "probability": 0.9268 + }, + { + "start": 9804.6, + "end": 9811.1, + "probability": 0.8951 + }, + { + "start": 9811.2, + "end": 9813.65, + "probability": 0.978 + }, + { + "start": 9815.42, + "end": 9817.73, + "probability": 0.8737 + }, + { + "start": 9818.56, + "end": 9819.86, + "probability": 0.974 + }, + { + "start": 9820.84, + "end": 9826.14, + "probability": 0.9946 + }, + { + "start": 9827.26, + "end": 9831.46, + "probability": 0.8955 + }, + { + "start": 9831.58, + "end": 9832.14, + "probability": 0.5641 + }, + { + "start": 9832.48, + "end": 9834.36, + "probability": 0.9207 + }, + { + "start": 9836.1, + "end": 9839.02, + "probability": 0.9847 + }, + { + "start": 9839.18, + "end": 9842.22, + "probability": 0.9681 + }, + { + "start": 9843.8, + "end": 9847.52, + "probability": 0.7888 + }, + { + "start": 9848.16, + "end": 9850.14, + "probability": 0.988 + }, + { + "start": 9850.84, + "end": 9852.58, + "probability": 0.9054 + }, + { + "start": 9853.1, + "end": 9856.84, + "probability": 0.8815 + }, + { + "start": 9857.38, + "end": 9862.84, + "probability": 0.998 + }, + { + "start": 9862.84, + "end": 9870.18, + "probability": 0.9984 + }, + { + "start": 9870.94, + "end": 9871.78, + "probability": 0.9203 + }, + { + "start": 9874.3, + "end": 9876.6, + "probability": 0.8278 + }, + { + "start": 9878.52, + "end": 9880.26, + "probability": 0.9941 + }, + { + "start": 9881.58, + "end": 9885.68, + "probability": 0.9675 + }, + { + "start": 9885.78, + "end": 9887.32, + "probability": 0.9664 + }, + { + "start": 9887.54, + "end": 9888.28, + "probability": 0.6672 + }, + { + "start": 9888.42, + "end": 9890.82, + "probability": 0.9393 + }, + { + "start": 9891.28, + "end": 9891.92, + "probability": 0.7743 + }, + { + "start": 9893.14, + "end": 9897.24, + "probability": 0.9941 + }, + { + "start": 9897.84, + "end": 9898.86, + "probability": 0.8976 + }, + { + "start": 9899.34, + "end": 9899.7, + "probability": 0.7491 + }, + { + "start": 9901.12, + "end": 9902.26, + "probability": 0.9166 + }, + { + "start": 9902.66, + "end": 9904.44, + "probability": 0.625 + }, + { + "start": 9904.58, + "end": 9907.15, + "probability": 0.9119 + }, + { + "start": 9907.78, + "end": 9908.62, + "probability": 0.9694 + }, + { + "start": 9909.18, + "end": 9910.42, + "probability": 0.9966 + }, + { + "start": 9912.12, + "end": 9913.7, + "probability": 0.9982 + }, + { + "start": 9914.44, + "end": 9915.18, + "probability": 0.9179 + }, + { + "start": 9915.72, + "end": 9916.46, + "probability": 0.9585 + }, + { + "start": 9917.06, + "end": 9918.88, + "probability": 0.9697 + }, + { + "start": 9919.46, + "end": 9921.76, + "probability": 0.983 + }, + { + "start": 9922.3, + "end": 9923.82, + "probability": 0.9985 + }, + { + "start": 9924.94, + "end": 9926.66, + "probability": 0.9592 + }, + { + "start": 9927.46, + "end": 9928.6, + "probability": 0.9966 + }, + { + "start": 9929.16, + "end": 9929.68, + "probability": 0.9741 + }, + { + "start": 9930.26, + "end": 9932.54, + "probability": 0.9805 + }, + { + "start": 9934.12, + "end": 9939.12, + "probability": 0.9574 + }, + { + "start": 9940.48, + "end": 9943.42, + "probability": 0.8716 + }, + { + "start": 9943.94, + "end": 9946.44, + "probability": 0.824 + }, + { + "start": 9947.38, + "end": 9950.56, + "probability": 0.9006 + }, + { + "start": 9950.9, + "end": 9951.7, + "probability": 0.9696 + }, + { + "start": 9952.12, + "end": 9952.68, + "probability": 0.9143 + }, + { + "start": 9953.1, + "end": 9955.1, + "probability": 0.8328 + }, + { + "start": 9955.44, + "end": 9957.92, + "probability": 0.9899 + }, + { + "start": 9959.46, + "end": 9961.26, + "probability": 0.9941 + }, + { + "start": 9962.44, + "end": 9964.24, + "probability": 0.6398 + }, + { + "start": 9964.36, + "end": 9965.02, + "probability": 0.8148 + }, + { + "start": 9965.5, + "end": 9968.48, + "probability": 0.9296 + }, + { + "start": 9968.9, + "end": 9969.88, + "probability": 0.998 + }, + { + "start": 9970.08, + "end": 9971.36, + "probability": 0.9968 + }, + { + "start": 9971.78, + "end": 9972.24, + "probability": 0.8196 + }, + { + "start": 9972.36, + "end": 9975.05, + "probability": 0.9077 + }, + { + "start": 9975.94, + "end": 9979.42, + "probability": 0.9866 + }, + { + "start": 9980.74, + "end": 9981.48, + "probability": 0.9388 + }, + { + "start": 9981.66, + "end": 9982.46, + "probability": 0.8967 + }, + { + "start": 9982.84, + "end": 9985.86, + "probability": 0.9909 + }, + { + "start": 9986.7, + "end": 9988.08, + "probability": 0.9883 + }, + { + "start": 9989.28, + "end": 9991.82, + "probability": 0.2384 + }, + { + "start": 9992.4, + "end": 9995.08, + "probability": 0.5599 + }, + { + "start": 9995.68, + "end": 9999.0, + "probability": 0.8451 + }, + { + "start": 10000.52, + "end": 10001.16, + "probability": 0.8148 + }, + { + "start": 10001.8, + "end": 10004.08, + "probability": 0.7579 + }, + { + "start": 10005.2, + "end": 10007.48, + "probability": 0.6397 + }, + { + "start": 10007.64, + "end": 10010.66, + "probability": 0.6302 + }, + { + "start": 10011.04, + "end": 10014.1, + "probability": 0.8434 + }, + { + "start": 10014.22, + "end": 10017.14, + "probability": 0.916 + }, + { + "start": 10017.76, + "end": 10020.62, + "probability": 0.9844 + }, + { + "start": 10020.62, + "end": 10023.74, + "probability": 0.9941 + }, + { + "start": 10023.82, + "end": 10024.02, + "probability": 0.7986 + }, + { + "start": 10024.58, + "end": 10026.02, + "probability": 0.5628 + }, + { + "start": 10026.26, + "end": 10026.6, + "probability": 0.2521 + }, + { + "start": 10026.68, + "end": 10027.32, + "probability": 0.3578 + }, + { + "start": 10027.62, + "end": 10030.84, + "probability": 0.6274 + }, + { + "start": 10030.84, + "end": 10033.9, + "probability": 0.7861 + }, + { + "start": 10034.24, + "end": 10036.08, + "probability": 0.9902 + }, + { + "start": 10036.56, + "end": 10037.06, + "probability": 0.5015 + }, + { + "start": 10037.58, + "end": 10039.32, + "probability": 0.6398 + }, + { + "start": 10040.14, + "end": 10041.8, + "probability": 0.8754 + }, + { + "start": 10041.92, + "end": 10043.64, + "probability": 0.9774 + }, + { + "start": 10043.66, + "end": 10044.82, + "probability": 0.8722 + }, + { + "start": 10045.18, + "end": 10045.3, + "probability": 0.1673 + }, + { + "start": 10045.3, + "end": 10046.52, + "probability": 0.6097 + }, + { + "start": 10046.74, + "end": 10048.74, + "probability": 0.9501 + }, + { + "start": 10049.36, + "end": 10051.98, + "probability": 0.9897 + }, + { + "start": 10052.4, + "end": 10055.76, + "probability": 0.7788 + }, + { + "start": 10056.02, + "end": 10057.46, + "probability": 0.8504 + }, + { + "start": 10057.9, + "end": 10059.56, + "probability": 0.7471 + }, + { + "start": 10059.86, + "end": 10061.52, + "probability": 0.9336 + }, + { + "start": 10061.76, + "end": 10062.73, + "probability": 0.9819 + }, + { + "start": 10063.44, + "end": 10064.86, + "probability": 0.9727 + }, + { + "start": 10065.22, + "end": 10066.86, + "probability": 0.9985 + }, + { + "start": 10067.26, + "end": 10067.84, + "probability": 0.9273 + }, + { + "start": 10067.94, + "end": 10069.55, + "probability": 0.9982 + }, + { + "start": 10070.52, + "end": 10072.66, + "probability": 0.9938 + }, + { + "start": 10073.22, + "end": 10076.28, + "probability": 0.9915 + }, + { + "start": 10076.66, + "end": 10080.44, + "probability": 0.9876 + }, + { + "start": 10080.66, + "end": 10081.96, + "probability": 0.9626 + }, + { + "start": 10082.26, + "end": 10083.08, + "probability": 0.6113 + }, + { + "start": 10083.78, + "end": 10084.78, + "probability": 0.9915 + }, + { + "start": 10084.84, + "end": 10085.34, + "probability": 0.8896 + }, + { + "start": 10085.54, + "end": 10086.7, + "probability": 0.9899 + }, + { + "start": 10087.48, + "end": 10089.88, + "probability": 0.994 + }, + { + "start": 10090.5, + "end": 10091.94, + "probability": 0.9894 + }, + { + "start": 10092.7, + "end": 10095.68, + "probability": 0.9961 + }, + { + "start": 10099.07, + "end": 10100.38, + "probability": 0.7493 + }, + { + "start": 10101.18, + "end": 10102.64, + "probability": 0.816 + }, + { + "start": 10103.38, + "end": 10109.3, + "probability": 0.9819 + }, + { + "start": 10110.4, + "end": 10113.2, + "probability": 0.748 + }, + { + "start": 10114.04, + "end": 10115.54, + "probability": 0.9329 + }, + { + "start": 10116.14, + "end": 10119.78, + "probability": 0.9193 + }, + { + "start": 10120.82, + "end": 10122.92, + "probability": 0.6517 + }, + { + "start": 10123.72, + "end": 10124.72, + "probability": 0.537 + }, + { + "start": 10125.54, + "end": 10126.56, + "probability": 0.1759 + }, + { + "start": 10126.62, + "end": 10129.32, + "probability": 0.4109 + }, + { + "start": 10129.42, + "end": 10129.94, + "probability": 0.1255 + }, + { + "start": 10130.2, + "end": 10131.88, + "probability": 0.4518 + }, + { + "start": 10131.92, + "end": 10132.44, + "probability": 0.3744 + }, + { + "start": 10132.92, + "end": 10134.34, + "probability": 0.1896 + }, + { + "start": 10134.42, + "end": 10135.06, + "probability": 0.4267 + }, + { + "start": 10137.12, + "end": 10138.68, + "probability": 0.7878 + }, + { + "start": 10139.38, + "end": 10143.78, + "probability": 0.8888 + }, + { + "start": 10144.46, + "end": 10146.6, + "probability": 0.4899 + }, + { + "start": 10147.78, + "end": 10149.24, + "probability": 0.9215 + }, + { + "start": 10149.36, + "end": 10150.78, + "probability": 0.909 + }, + { + "start": 10150.98, + "end": 10152.38, + "probability": 0.5837 + }, + { + "start": 10152.4, + "end": 10153.38, + "probability": 0.7799 + }, + { + "start": 10153.64, + "end": 10156.0, + "probability": 0.3474 + }, + { + "start": 10156.26, + "end": 10158.98, + "probability": 0.9049 + }, + { + "start": 10160.04, + "end": 10165.98, + "probability": 0.9927 + }, + { + "start": 10166.1, + "end": 10170.24, + "probability": 0.9091 + }, + { + "start": 10170.78, + "end": 10172.34, + "probability": 0.9714 + }, + { + "start": 10173.4, + "end": 10174.94, + "probability": 0.8381 + }, + { + "start": 10175.28, + "end": 10175.76, + "probability": 0.9077 + }, + { + "start": 10176.48, + "end": 10177.02, + "probability": 0.6561 + }, + { + "start": 10177.34, + "end": 10179.04, + "probability": 0.9963 + }, + { + "start": 10179.14, + "end": 10180.48, + "probability": 0.7522 + }, + { + "start": 10180.78, + "end": 10181.28, + "probability": 0.9695 + }, + { + "start": 10181.86, + "end": 10185.56, + "probability": 0.9932 + }, + { + "start": 10185.6, + "end": 10189.1, + "probability": 0.9951 + }, + { + "start": 10189.6, + "end": 10193.0, + "probability": 0.9918 + }, + { + "start": 10193.68, + "end": 10195.42, + "probability": 0.9398 + }, + { + "start": 10195.8, + "end": 10200.9, + "probability": 0.9979 + }, + { + "start": 10201.5, + "end": 10202.2, + "probability": 0.8059 + }, + { + "start": 10202.28, + "end": 10204.05, + "probability": 0.9966 + }, + { + "start": 10204.36, + "end": 10206.12, + "probability": 0.9912 + }, + { + "start": 10206.9, + "end": 10207.8, + "probability": 0.8018 + }, + { + "start": 10208.32, + "end": 10209.98, + "probability": 0.9847 + }, + { + "start": 10209.98, + "end": 10213.7, + "probability": 0.9883 + }, + { + "start": 10213.94, + "end": 10218.0, + "probability": 0.1085 + }, + { + "start": 10218.0, + "end": 10221.04, + "probability": 0.8675 + }, + { + "start": 10221.04, + "end": 10226.38, + "probability": 0.9963 + }, + { + "start": 10226.82, + "end": 10227.66, + "probability": 0.9111 + }, + { + "start": 10228.26, + "end": 10229.3, + "probability": 0.9492 + }, + { + "start": 10229.4, + "end": 10229.82, + "probability": 0.792 + }, + { + "start": 10229.98, + "end": 10230.5, + "probability": 0.5437 + }, + { + "start": 10230.9, + "end": 10232.2, + "probability": 0.9883 + }, + { + "start": 10232.6, + "end": 10233.12, + "probability": 0.76 + }, + { + "start": 10233.4, + "end": 10235.46, + "probability": 0.8483 + }, + { + "start": 10235.74, + "end": 10240.66, + "probability": 0.959 + }, + { + "start": 10240.72, + "end": 10241.38, + "probability": 0.7457 + }, + { + "start": 10242.26, + "end": 10242.26, + "probability": 0.6982 + }, + { + "start": 10248.68, + "end": 10251.6, + "probability": 0.8931 + }, + { + "start": 10252.82, + "end": 10253.3, + "probability": 0.3062 + }, + { + "start": 10253.44, + "end": 10254.16, + "probability": 0.6293 + }, + { + "start": 10255.4, + "end": 10256.28, + "probability": 0.8998 + }, + { + "start": 10256.56, + "end": 10257.46, + "probability": 0.8298 + }, + { + "start": 10267.63, + "end": 10269.88, + "probability": 0.6278 + }, + { + "start": 10271.4, + "end": 10275.62, + "probability": 0.8124 + }, + { + "start": 10275.68, + "end": 10279.44, + "probability": 0.901 + }, + { + "start": 10282.44, + "end": 10283.78, + "probability": 0.8337 + }, + { + "start": 10283.98, + "end": 10286.14, + "probability": 0.9071 + }, + { + "start": 10286.58, + "end": 10288.14, + "probability": 0.9901 + }, + { + "start": 10288.74, + "end": 10292.36, + "probability": 0.898 + }, + { + "start": 10293.82, + "end": 10295.38, + "probability": 0.7233 + }, + { + "start": 10296.1, + "end": 10298.42, + "probability": 0.956 + }, + { + "start": 10299.06, + "end": 10299.86, + "probability": 0.8569 + }, + { + "start": 10300.58, + "end": 10302.18, + "probability": 0.9863 + }, + { + "start": 10302.24, + "end": 10304.7, + "probability": 0.8752 + }, + { + "start": 10305.28, + "end": 10306.91, + "probability": 0.9624 + }, + { + "start": 10307.68, + "end": 10310.2, + "probability": 0.9719 + }, + { + "start": 10310.2, + "end": 10312.26, + "probability": 0.9932 + }, + { + "start": 10313.44, + "end": 10314.8, + "probability": 0.8682 + }, + { + "start": 10314.9, + "end": 10316.01, + "probability": 0.9985 + }, + { + "start": 10316.26, + "end": 10318.34, + "probability": 0.8115 + }, + { + "start": 10319.5, + "end": 10320.9, + "probability": 0.7801 + }, + { + "start": 10321.42, + "end": 10326.22, + "probability": 0.9491 + }, + { + "start": 10326.22, + "end": 10326.76, + "probability": 0.6192 + }, + { + "start": 10327.32, + "end": 10328.98, + "probability": 0.8992 + }, + { + "start": 10329.68, + "end": 10332.66, + "probability": 0.9694 + }, + { + "start": 10333.34, + "end": 10335.12, + "probability": 0.7051 + }, + { + "start": 10335.18, + "end": 10338.9, + "probability": 0.9099 + }, + { + "start": 10339.76, + "end": 10342.74, + "probability": 0.0766 + }, + { + "start": 10342.92, + "end": 10343.58, + "probability": 0.5995 + }, + { + "start": 10343.74, + "end": 10344.9, + "probability": 0.7395 + }, + { + "start": 10345.1, + "end": 10346.58, + "probability": 0.4841 + }, + { + "start": 10346.78, + "end": 10349.96, + "probability": 0.5894 + }, + { + "start": 10350.76, + "end": 10351.7, + "probability": 0.6567 + }, + { + "start": 10351.7, + "end": 10351.7, + "probability": 0.0918 + }, + { + "start": 10351.7, + "end": 10354.52, + "probability": 0.75 + }, + { + "start": 10354.98, + "end": 10357.4, + "probability": 0.953 + }, + { + "start": 10357.5, + "end": 10358.02, + "probability": 0.5611 + }, + { + "start": 10358.04, + "end": 10359.24, + "probability": 0.8404 + }, + { + "start": 10359.68, + "end": 10362.92, + "probability": 0.9415 + }, + { + "start": 10363.72, + "end": 10366.76, + "probability": 0.9955 + }, + { + "start": 10367.28, + "end": 10372.98, + "probability": 0.985 + }, + { + "start": 10373.09, + "end": 10374.6, + "probability": 0.7739 + }, + { + "start": 10375.06, + "end": 10375.42, + "probability": 0.4246 + }, + { + "start": 10375.56, + "end": 10376.06, + "probability": 0.5606 + }, + { + "start": 10376.72, + "end": 10377.44, + "probability": 0.7733 + }, + { + "start": 10377.66, + "end": 10378.38, + "probability": 0.962 + }, + { + "start": 10378.68, + "end": 10379.06, + "probability": 0.6595 + }, + { + "start": 10379.32, + "end": 10380.14, + "probability": 0.7985 + }, + { + "start": 10380.14, + "end": 10380.8, + "probability": 0.446 + }, + { + "start": 10381.08, + "end": 10382.3, + "probability": 0.9608 + }, + { + "start": 10382.4, + "end": 10382.86, + "probability": 0.6124 + }, + { + "start": 10383.02, + "end": 10385.92, + "probability": 0.9615 + }, + { + "start": 10386.44, + "end": 10387.1, + "probability": 0.074 + }, + { + "start": 10387.22, + "end": 10389.0, + "probability": 0.6478 + }, + { + "start": 10389.36, + "end": 10389.76, + "probability": 0.59 + }, + { + "start": 10389.78, + "end": 10390.26, + "probability": 0.4468 + }, + { + "start": 10390.3, + "end": 10393.32, + "probability": 0.8743 + }, + { + "start": 10393.32, + "end": 10395.98, + "probability": 0.2391 + }, + { + "start": 10396.84, + "end": 10399.66, + "probability": 0.7041 + }, + { + "start": 10400.44, + "end": 10404.0, + "probability": 0.9689 + }, + { + "start": 10404.06, + "end": 10404.53, + "probability": 0.1507 + }, + { + "start": 10405.34, + "end": 10406.48, + "probability": 0.1072 + }, + { + "start": 10406.72, + "end": 10409.04, + "probability": 0.8135 + }, + { + "start": 10409.76, + "end": 10414.86, + "probability": 0.9971 + }, + { + "start": 10414.9, + "end": 10415.32, + "probability": 0.6318 + }, + { + "start": 10415.82, + "end": 10418.82, + "probability": 0.6531 + }, + { + "start": 10419.34, + "end": 10421.24, + "probability": 0.4044 + }, + { + "start": 10422.14, + "end": 10424.98, + "probability": 0.6807 + }, + { + "start": 10425.16, + "end": 10427.38, + "probability": 0.729 + }, + { + "start": 10428.06, + "end": 10432.32, + "probability": 0.4633 + }, + { + "start": 10432.66, + "end": 10433.26, + "probability": 0.4616 + }, + { + "start": 10433.32, + "end": 10437.56, + "probability": 0.9907 + }, + { + "start": 10438.18, + "end": 10439.31, + "probability": 0.9912 + }, + { + "start": 10440.14, + "end": 10443.44, + "probability": 0.8916 + }, + { + "start": 10443.74, + "end": 10447.48, + "probability": 0.77 + }, + { + "start": 10447.5, + "end": 10447.5, + "probability": 0.2749 + }, + { + "start": 10447.56, + "end": 10448.06, + "probability": 0.5171 + }, + { + "start": 10448.38, + "end": 10450.16, + "probability": 0.8416 + }, + { + "start": 10450.28, + "end": 10451.7, + "probability": 0.9437 + }, + { + "start": 10452.22, + "end": 10452.3, + "probability": 0.5092 + }, + { + "start": 10452.34, + "end": 10455.5, + "probability": 0.8633 + }, + { + "start": 10455.58, + "end": 10456.96, + "probability": 0.6469 + }, + { + "start": 10457.4, + "end": 10458.24, + "probability": 0.4009 + }, + { + "start": 10458.24, + "end": 10461.82, + "probability": 0.7302 + }, + { + "start": 10462.26, + "end": 10463.94, + "probability": 0.4338 + }, + { + "start": 10464.24, + "end": 10465.66, + "probability": 0.0523 + }, + { + "start": 10465.82, + "end": 10466.39, + "probability": 0.6895 + }, + { + "start": 10466.52, + "end": 10467.56, + "probability": 0.6897 + }, + { + "start": 10467.9, + "end": 10471.44, + "probability": 0.8975 + }, + { + "start": 10471.74, + "end": 10472.32, + "probability": 0.7524 + }, + { + "start": 10472.68, + "end": 10473.82, + "probability": 0.9489 + }, + { + "start": 10474.36, + "end": 10475.52, + "probability": 0.7986 + }, + { + "start": 10475.92, + "end": 10477.04, + "probability": 0.4369 + }, + { + "start": 10477.34, + "end": 10478.76, + "probability": 0.8795 + }, + { + "start": 10478.92, + "end": 10479.36, + "probability": 0.7623 + }, + { + "start": 10479.54, + "end": 10481.98, + "probability": 0.915 + }, + { + "start": 10483.05, + "end": 10483.99, + "probability": 0.0368 + }, + { + "start": 10484.55, + "end": 10487.24, + "probability": 0.7215 + }, + { + "start": 10487.48, + "end": 10489.54, + "probability": 0.3593 + }, + { + "start": 10491.36, + "end": 10493.98, + "probability": 0.3623 + }, + { + "start": 10494.5, + "end": 10495.52, + "probability": 0.6138 + }, + { + "start": 10495.8, + "end": 10496.22, + "probability": 0.7161 + }, + { + "start": 10496.26, + "end": 10496.48, + "probability": 0.7798 + }, + { + "start": 10496.74, + "end": 10496.94, + "probability": 0.3165 + }, + { + "start": 10496.98, + "end": 10498.68, + "probability": 0.9642 + }, + { + "start": 10498.78, + "end": 10499.88, + "probability": 0.9939 + }, + { + "start": 10499.92, + "end": 10500.12, + "probability": 0.8221 + }, + { + "start": 10500.14, + "end": 10500.82, + "probability": 0.8983 + }, + { + "start": 10500.96, + "end": 10501.42, + "probability": 0.8391 + }, + { + "start": 10501.74, + "end": 10502.98, + "probability": 0.6235 + }, + { + "start": 10503.26, + "end": 10503.9, + "probability": 0.4723 + }, + { + "start": 10504.3, + "end": 10504.4, + "probability": 0.4589 + }, + { + "start": 10504.52, + "end": 10504.92, + "probability": 0.8729 + }, + { + "start": 10505.16, + "end": 10505.85, + "probability": 0.9451 + }, + { + "start": 10505.92, + "end": 10507.06, + "probability": 0.7637 + }, + { + "start": 10507.14, + "end": 10508.9, + "probability": 0.7998 + }, + { + "start": 10509.26, + "end": 10509.98, + "probability": 0.9798 + }, + { + "start": 10510.42, + "end": 10513.72, + "probability": 0.979 + }, + { + "start": 10513.84, + "end": 10516.5, + "probability": 0.9969 + }, + { + "start": 10516.5, + "end": 10518.9, + "probability": 0.9401 + }, + { + "start": 10519.18, + "end": 10520.56, + "probability": 0.9805 + }, + { + "start": 10520.72, + "end": 10521.16, + "probability": 0.7792 + }, + { + "start": 10521.82, + "end": 10522.46, + "probability": 0.2769 + }, + { + "start": 10522.46, + "end": 10523.28, + "probability": 0.1625 + }, + { + "start": 10523.48, + "end": 10525.4, + "probability": 0.4843 + }, + { + "start": 10525.94, + "end": 10527.38, + "probability": 0.5646 + }, + { + "start": 10528.54, + "end": 10531.82, + "probability": 0.5102 + }, + { + "start": 10532.48, + "end": 10533.09, + "probability": 0.0829 + }, + { + "start": 10536.02, + "end": 10538.28, + "probability": 0.3348 + }, + { + "start": 10538.84, + "end": 10539.86, + "probability": 0.2587 + }, + { + "start": 10540.8, + "end": 10542.2, + "probability": 0.4749 + }, + { + "start": 10548.76, + "end": 10551.36, + "probability": 0.7552 + }, + { + "start": 10553.64, + "end": 10555.32, + "probability": 0.9383 + }, + { + "start": 10556.66, + "end": 10557.86, + "probability": 0.8475 + }, + { + "start": 10558.78, + "end": 10561.37, + "probability": 0.992 + }, + { + "start": 10561.92, + "end": 10563.22, + "probability": 0.8435 + }, + { + "start": 10564.88, + "end": 10565.84, + "probability": 0.7642 + }, + { + "start": 10566.06, + "end": 10569.27, + "probability": 0.9914 + }, + { + "start": 10570.82, + "end": 10571.68, + "probability": 0.6907 + }, + { + "start": 10571.84, + "end": 10573.02, + "probability": 0.4291 + }, + { + "start": 10573.12, + "end": 10576.4, + "probability": 0.949 + }, + { + "start": 10576.98, + "end": 10578.6, + "probability": 0.9939 + }, + { + "start": 10579.26, + "end": 10580.28, + "probability": 0.9653 + }, + { + "start": 10580.66, + "end": 10581.32, + "probability": 0.9647 + }, + { + "start": 10581.8, + "end": 10582.82, + "probability": 0.9133 + }, + { + "start": 10582.84, + "end": 10589.01, + "probability": 0.9922 + }, + { + "start": 10589.1, + "end": 10589.76, + "probability": 0.756 + }, + { + "start": 10590.08, + "end": 10590.68, + "probability": 0.4945 + }, + { + "start": 10590.8, + "end": 10592.68, + "probability": 0.8159 + }, + { + "start": 10594.12, + "end": 10596.02, + "probability": 0.9951 + }, + { + "start": 10596.54, + "end": 10602.78, + "probability": 0.9925 + }, + { + "start": 10604.5, + "end": 10607.29, + "probability": 0.6724 + }, + { + "start": 10608.74, + "end": 10610.94, + "probability": 0.7936 + }, + { + "start": 10612.1, + "end": 10613.66, + "probability": 0.9491 + }, + { + "start": 10615.26, + "end": 10617.18, + "probability": 0.7789 + }, + { + "start": 10618.18, + "end": 10623.2, + "probability": 0.7394 + }, + { + "start": 10624.44, + "end": 10626.19, + "probability": 0.7817 + }, + { + "start": 10627.28, + "end": 10629.12, + "probability": 0.6273 + }, + { + "start": 10629.74, + "end": 10634.44, + "probability": 0.9302 + }, + { + "start": 10635.32, + "end": 10637.1, + "probability": 0.9023 + }, + { + "start": 10637.9, + "end": 10640.16, + "probability": 0.9871 + }, + { + "start": 10641.32, + "end": 10642.76, + "probability": 0.9868 + }, + { + "start": 10645.0, + "end": 10646.26, + "probability": 0.7282 + }, + { + "start": 10647.6, + "end": 10649.04, + "probability": 0.9951 + }, + { + "start": 10650.3, + "end": 10655.0, + "probability": 0.8882 + }, + { + "start": 10655.86, + "end": 10659.74, + "probability": 0.9734 + }, + { + "start": 10661.14, + "end": 10662.06, + "probability": 0.9788 + }, + { + "start": 10663.42, + "end": 10665.3, + "probability": 0.9888 + }, + { + "start": 10665.8, + "end": 10670.34, + "probability": 0.9818 + }, + { + "start": 10671.16, + "end": 10672.08, + "probability": 0.6012 + }, + { + "start": 10673.12, + "end": 10675.76, + "probability": 0.9756 + }, + { + "start": 10677.42, + "end": 10680.74, + "probability": 0.9603 + }, + { + "start": 10681.34, + "end": 10682.78, + "probability": 0.9135 + }, + { + "start": 10683.48, + "end": 10684.07, + "probability": 0.9658 + }, + { + "start": 10685.38, + "end": 10686.42, + "probability": 0.3178 + }, + { + "start": 10687.66, + "end": 10688.5, + "probability": 0.6611 + }, + { + "start": 10689.68, + "end": 10694.26, + "probability": 0.993 + }, + { + "start": 10694.28, + "end": 10697.44, + "probability": 0.9996 + }, + { + "start": 10698.0, + "end": 10699.54, + "probability": 0.5627 + }, + { + "start": 10700.34, + "end": 10705.58, + "probability": 0.6504 + }, + { + "start": 10705.66, + "end": 10706.54, + "probability": 0.8091 + }, + { + "start": 10708.46, + "end": 10709.72, + "probability": 0.0303 + }, + { + "start": 10711.86, + "end": 10714.96, + "probability": 0.0284 + }, + { + "start": 10732.42, + "end": 10733.94, + "probability": 0.6347 + }, + { + "start": 10736.26, + "end": 10737.38, + "probability": 0.8114 + }, + { + "start": 10738.24, + "end": 10739.64, + "probability": 0.7456 + }, + { + "start": 10740.88, + "end": 10742.96, + "probability": 0.5393 + }, + { + "start": 10744.18, + "end": 10745.64, + "probability": 0.8958 + }, + { + "start": 10745.74, + "end": 10748.98, + "probability": 0.9956 + }, + { + "start": 10749.9, + "end": 10752.08, + "probability": 0.1136 + }, + { + "start": 10752.6, + "end": 10755.34, + "probability": 0.9985 + }, + { + "start": 10756.66, + "end": 10757.92, + "probability": 0.999 + }, + { + "start": 10758.2, + "end": 10760.52, + "probability": 0.9887 + }, + { + "start": 10761.32, + "end": 10766.0, + "probability": 0.4744 + }, + { + "start": 10766.36, + "end": 10768.06, + "probability": 0.9376 + }, + { + "start": 10768.26, + "end": 10769.74, + "probability": 0.6436 + }, + { + "start": 10770.26, + "end": 10773.5, + "probability": 0.9982 + }, + { + "start": 10774.92, + "end": 10776.58, + "probability": 0.8398 + }, + { + "start": 10777.32, + "end": 10782.46, + "probability": 0.9744 + }, + { + "start": 10783.36, + "end": 10783.96, + "probability": 0.9252 + }, + { + "start": 10785.12, + "end": 10786.82, + "probability": 0.9307 + }, + { + "start": 10787.5, + "end": 10788.54, + "probability": 0.9725 + }, + { + "start": 10788.58, + "end": 10788.84, + "probability": 0.7417 + }, + { + "start": 10788.92, + "end": 10789.18, + "probability": 0.6404 + }, + { + "start": 10789.74, + "end": 10790.7, + "probability": 0.9063 + }, + { + "start": 10803.29, + "end": 10807.08, + "probability": 0.7454 + }, + { + "start": 10807.28, + "end": 10810.64, + "probability": 0.6048 + }, + { + "start": 10810.78, + "end": 10811.98, + "probability": 0.9227 + }, + { + "start": 10816.78, + "end": 10817.4, + "probability": 0.6236 + }, + { + "start": 10825.66, + "end": 10827.58, + "probability": 0.427 + }, + { + "start": 10830.2, + "end": 10830.78, + "probability": 0.4294 + }, + { + "start": 10832.18, + "end": 10834.26, + "probability": 0.9327 + }, + { + "start": 10835.48, + "end": 10836.44, + "probability": 0.9343 + }, + { + "start": 10837.56, + "end": 10838.26, + "probability": 0.6379 + }, + { + "start": 10839.84, + "end": 10840.6, + "probability": 0.6053 + }, + { + "start": 10840.62, + "end": 10842.06, + "probability": 0.7481 + }, + { + "start": 10842.18, + "end": 10842.56, + "probability": 0.854 + }, + { + "start": 10842.74, + "end": 10843.74, + "probability": 0.9077 + }, + { + "start": 10843.82, + "end": 10844.9, + "probability": 0.9634 + }, + { + "start": 10845.44, + "end": 10846.38, + "probability": 0.8481 + }, + { + "start": 10846.96, + "end": 10850.28, + "probability": 0.5876 + }, + { + "start": 10852.24, + "end": 10852.88, + "probability": 0.6349 + }, + { + "start": 10853.58, + "end": 10854.35, + "probability": 0.7329 + }, + { + "start": 10854.74, + "end": 10855.78, + "probability": 0.1189 + }, + { + "start": 10856.46, + "end": 10858.16, + "probability": 0.6589 + }, + { + "start": 10859.42, + "end": 10861.1, + "probability": 0.9747 + }, + { + "start": 10861.88, + "end": 10862.6, + "probability": 0.5723 + }, + { + "start": 10864.44, + "end": 10867.92, + "probability": 0.9874 + }, + { + "start": 10869.34, + "end": 10870.42, + "probability": 0.9787 + }, + { + "start": 10872.14, + "end": 10873.12, + "probability": 0.8271 + }, + { + "start": 10874.56, + "end": 10876.5, + "probability": 0.8859 + }, + { + "start": 10877.92, + "end": 10880.45, + "probability": 0.8162 + }, + { + "start": 10882.64, + "end": 10884.24, + "probability": 0.9687 + }, + { + "start": 10885.28, + "end": 10886.92, + "probability": 0.8524 + }, + { + "start": 10887.74, + "end": 10889.34, + "probability": 0.9819 + }, + { + "start": 10889.88, + "end": 10891.68, + "probability": 0.9469 + }, + { + "start": 10891.7, + "end": 10892.18, + "probability": 0.7986 + }, + { + "start": 10893.94, + "end": 10894.5, + "probability": 0.7581 + }, + { + "start": 10895.46, + "end": 10896.32, + "probability": 0.8685 + }, + { + "start": 10897.02, + "end": 10898.28, + "probability": 0.6781 + }, + { + "start": 10900.04, + "end": 10904.58, + "probability": 0.9285 + }, + { + "start": 10905.86, + "end": 10907.86, + "probability": 0.6481 + }, + { + "start": 10908.74, + "end": 10909.8, + "probability": 0.9769 + }, + { + "start": 10910.94, + "end": 10911.56, + "probability": 0.9764 + }, + { + "start": 10912.82, + "end": 10913.74, + "probability": 0.8908 + }, + { + "start": 10914.4, + "end": 10916.22, + "probability": 0.8481 + }, + { + "start": 10916.38, + "end": 10916.84, + "probability": 0.9153 + }, + { + "start": 10917.0, + "end": 10917.64, + "probability": 0.7416 + }, + { + "start": 10917.96, + "end": 10918.34, + "probability": 0.9244 + }, + { + "start": 10920.3, + "end": 10922.34, + "probability": 0.6411 + }, + { + "start": 10922.46, + "end": 10922.99, + "probability": 0.7053 + }, + { + "start": 10924.34, + "end": 10927.46, + "probability": 0.9048 + }, + { + "start": 10927.52, + "end": 10929.36, + "probability": 0.7441 + }, + { + "start": 10931.66, + "end": 10932.2, + "probability": 0.2687 + }, + { + "start": 10933.8, + "end": 10934.6, + "probability": 0.8855 + }, + { + "start": 10935.4, + "end": 10937.3, + "probability": 0.8676 + }, + { + "start": 10938.28, + "end": 10940.18, + "probability": 0.9556 + }, + { + "start": 10940.76, + "end": 10944.08, + "probability": 0.9929 + }, + { + "start": 10945.12, + "end": 10945.6, + "probability": 0.8732 + }, + { + "start": 10946.58, + "end": 10948.96, + "probability": 0.8787 + }, + { + "start": 10949.78, + "end": 10952.7, + "probability": 0.9908 + }, + { + "start": 10954.06, + "end": 10956.32, + "probability": 0.8845 + }, + { + "start": 10957.62, + "end": 10960.6, + "probability": 0.9738 + }, + { + "start": 10960.86, + "end": 10962.9, + "probability": 0.5898 + }, + { + "start": 10964.38, + "end": 10968.26, + "probability": 0.9937 + }, + { + "start": 10968.92, + "end": 10971.26, + "probability": 0.9748 + }, + { + "start": 10972.1, + "end": 10973.32, + "probability": 0.6198 + }, + { + "start": 10974.22, + "end": 10975.58, + "probability": 0.7118 + }, + { + "start": 10976.2, + "end": 10976.78, + "probability": 0.2478 + }, + { + "start": 10978.36, + "end": 10978.96, + "probability": 0.321 + }, + { + "start": 10979.1, + "end": 10979.62, + "probability": 0.6158 + }, + { + "start": 10979.72, + "end": 10980.58, + "probability": 0.7649 + }, + { + "start": 10980.62, + "end": 10981.57, + "probability": 0.8982 + }, + { + "start": 10981.94, + "end": 10982.66, + "probability": 0.7944 + }, + { + "start": 10982.84, + "end": 10985.2, + "probability": 0.9872 + }, + { + "start": 10986.24, + "end": 10990.6, + "probability": 0.9536 + }, + { + "start": 10992.02, + "end": 10993.8, + "probability": 0.9099 + }, + { + "start": 10994.26, + "end": 10998.96, + "probability": 0.688 + }, + { + "start": 11000.12, + "end": 11002.7, + "probability": 0.9126 + }, + { + "start": 11004.3, + "end": 11007.78, + "probability": 0.9893 + }, + { + "start": 11008.58, + "end": 11010.86, + "probability": 0.996 + }, + { + "start": 11011.54, + "end": 11013.26, + "probability": 0.8448 + }, + { + "start": 11015.14, + "end": 11018.4, + "probability": 0.6944 + }, + { + "start": 11019.32, + "end": 11021.1, + "probability": 0.9932 + }, + { + "start": 11021.48, + "end": 11026.5, + "probability": 0.9751 + }, + { + "start": 11026.62, + "end": 11027.28, + "probability": 0.8394 + }, + { + "start": 11028.04, + "end": 11030.3, + "probability": 0.877 + }, + { + "start": 11030.82, + "end": 11031.38, + "probability": 0.7693 + }, + { + "start": 11031.78, + "end": 11032.93, + "probability": 0.9692 + }, + { + "start": 11034.4, + "end": 11038.4, + "probability": 0.7342 + }, + { + "start": 11039.08, + "end": 11042.28, + "probability": 0.8564 + }, + { + "start": 11042.46, + "end": 11044.98, + "probability": 0.6135 + }, + { + "start": 11045.76, + "end": 11046.36, + "probability": 0.502 + }, + { + "start": 11046.48, + "end": 11046.66, + "probability": 0.5377 + }, + { + "start": 11047.26, + "end": 11048.04, + "probability": 0.5364 + }, + { + "start": 11048.26, + "end": 11048.76, + "probability": 0.9358 + }, + { + "start": 11049.92, + "end": 11051.08, + "probability": 0.8201 + }, + { + "start": 11051.3, + "end": 11052.16, + "probability": 0.9731 + }, + { + "start": 11052.26, + "end": 11056.66, + "probability": 0.8465 + }, + { + "start": 11057.34, + "end": 11057.44, + "probability": 0.4996 + }, + { + "start": 11057.78, + "end": 11058.64, + "probability": 0.438 + }, + { + "start": 11059.76, + "end": 11061.22, + "probability": 0.9917 + }, + { + "start": 11061.8, + "end": 11063.56, + "probability": 0.8851 + }, + { + "start": 11064.3, + "end": 11066.52, + "probability": 0.9983 + }, + { + "start": 11067.26, + "end": 11070.42, + "probability": 0.969 + }, + { + "start": 11070.66, + "end": 11071.9, + "probability": 0.9559 + }, + { + "start": 11072.8, + "end": 11073.68, + "probability": 0.6984 + }, + { + "start": 11073.94, + "end": 11078.36, + "probability": 0.6408 + }, + { + "start": 11079.48, + "end": 11083.06, + "probability": 0.9149 + }, + { + "start": 11083.96, + "end": 11086.52, + "probability": 0.9959 + }, + { + "start": 11086.58, + "end": 11090.14, + "probability": 0.8872 + }, + { + "start": 11090.76, + "end": 11091.82, + "probability": 0.778 + }, + { + "start": 11092.0, + "end": 11093.64, + "probability": 0.8903 + }, + { + "start": 11094.24, + "end": 11097.72, + "probability": 0.9421 + }, + { + "start": 11098.02, + "end": 11098.22, + "probability": 0.5699 + }, + { + "start": 11098.3, + "end": 11099.78, + "probability": 0.4847 + }, + { + "start": 11100.18, + "end": 11102.18, + "probability": 0.4835 + }, + { + "start": 11102.74, + "end": 11103.62, + "probability": 0.665 + }, + { + "start": 11117.06, + "end": 11118.0, + "probability": 0.4884 + }, + { + "start": 11118.68, + "end": 11119.82, + "probability": 0.822 + }, + { + "start": 11120.86, + "end": 11122.1, + "probability": 0.9341 + }, + { + "start": 11122.88, + "end": 11126.2, + "probability": 0.9541 + }, + { + "start": 11127.2, + "end": 11128.16, + "probability": 0.9227 + }, + { + "start": 11128.86, + "end": 11129.56, + "probability": 0.5463 + }, + { + "start": 11132.38, + "end": 11134.34, + "probability": 0.7598 + }, + { + "start": 11134.5, + "end": 11135.24, + "probability": 0.8854 + }, + { + "start": 11136.52, + "end": 11137.66, + "probability": 0.9694 + }, + { + "start": 11137.76, + "end": 11138.8, + "probability": 0.8516 + }, + { + "start": 11140.3, + "end": 11141.85, + "probability": 0.9653 + }, + { + "start": 11143.16, + "end": 11146.32, + "probability": 0.8907 + }, + { + "start": 11147.6, + "end": 11150.46, + "probability": 0.8431 + }, + { + "start": 11151.48, + "end": 11156.06, + "probability": 0.9412 + }, + { + "start": 11157.12, + "end": 11162.74, + "probability": 0.9968 + }, + { + "start": 11164.74, + "end": 11166.64, + "probability": 0.9446 + }, + { + "start": 11168.04, + "end": 11170.68, + "probability": 0.9437 + }, + { + "start": 11171.02, + "end": 11171.84, + "probability": 0.9113 + }, + { + "start": 11174.06, + "end": 11177.16, + "probability": 0.9917 + }, + { + "start": 11179.08, + "end": 11180.2, + "probability": 0.7195 + }, + { + "start": 11181.46, + "end": 11182.82, + "probability": 0.9951 + }, + { + "start": 11185.0, + "end": 11186.38, + "probability": 0.9945 + }, + { + "start": 11186.96, + "end": 11187.74, + "probability": 0.8308 + }, + { + "start": 11190.28, + "end": 11190.98, + "probability": 0.7709 + }, + { + "start": 11191.06, + "end": 11192.64, + "probability": 0.7561 + }, + { + "start": 11192.78, + "end": 11193.78, + "probability": 0.6882 + }, + { + "start": 11195.2, + "end": 11196.18, + "probability": 0.9834 + }, + { + "start": 11197.1, + "end": 11198.18, + "probability": 0.8034 + }, + { + "start": 11198.98, + "end": 11200.58, + "probability": 0.7243 + }, + { + "start": 11201.58, + "end": 11201.94, + "probability": 0.7246 + }, + { + "start": 11204.16, + "end": 11205.6, + "probability": 0.8342 + }, + { + "start": 11207.1, + "end": 11210.02, + "probability": 0.4599 + }, + { + "start": 11210.76, + "end": 11214.22, + "probability": 0.9676 + }, + { + "start": 11214.34, + "end": 11215.02, + "probability": 0.7856 + }, + { + "start": 11217.2, + "end": 11217.76, + "probability": 0.9141 + }, + { + "start": 11219.36, + "end": 11222.34, + "probability": 0.9976 + }, + { + "start": 11223.62, + "end": 11223.94, + "probability": 0.4188 + }, + { + "start": 11225.42, + "end": 11228.36, + "probability": 0.9915 + }, + { + "start": 11229.48, + "end": 11230.18, + "probability": 0.9246 + }, + { + "start": 11231.2, + "end": 11232.76, + "probability": 0.4779 + }, + { + "start": 11233.66, + "end": 11237.02, + "probability": 0.9862 + }, + { + "start": 11238.06, + "end": 11240.88, + "probability": 0.9983 + }, + { + "start": 11241.58, + "end": 11242.46, + "probability": 0.5137 + }, + { + "start": 11243.44, + "end": 11245.52, + "probability": 0.8863 + }, + { + "start": 11246.04, + "end": 11247.52, + "probability": 0.9579 + }, + { + "start": 11247.92, + "end": 11249.06, + "probability": 0.9362 + }, + { + "start": 11249.52, + "end": 11250.52, + "probability": 0.812 + }, + { + "start": 11250.58, + "end": 11252.09, + "probability": 0.625 + }, + { + "start": 11252.76, + "end": 11253.39, + "probability": 0.8933 + }, + { + "start": 11255.48, + "end": 11256.74, + "probability": 0.9584 + }, + { + "start": 11258.64, + "end": 11260.82, + "probability": 0.981 + }, + { + "start": 11262.7, + "end": 11264.56, + "probability": 0.7171 + }, + { + "start": 11265.62, + "end": 11268.78, + "probability": 0.9939 + }, + { + "start": 11270.08, + "end": 11273.94, + "probability": 0.9869 + }, + { + "start": 11275.88, + "end": 11277.06, + "probability": 0.7104 + }, + { + "start": 11278.22, + "end": 11279.26, + "probability": 0.7673 + }, + { + "start": 11279.4, + "end": 11282.2, + "probability": 0.8242 + }, + { + "start": 11283.3, + "end": 11284.08, + "probability": 0.7044 + }, + { + "start": 11285.18, + "end": 11285.64, + "probability": 0.9473 + }, + { + "start": 11286.74, + "end": 11287.84, + "probability": 0.9884 + }, + { + "start": 11288.42, + "end": 11291.31, + "probability": 0.9152 + }, + { + "start": 11292.06, + "end": 11292.98, + "probability": 0.6466 + }, + { + "start": 11295.2, + "end": 11297.14, + "probability": 0.9336 + }, + { + "start": 11298.56, + "end": 11299.7, + "probability": 0.7221 + }, + { + "start": 11302.78, + "end": 11304.32, + "probability": 0.8449 + }, + { + "start": 11306.04, + "end": 11310.38, + "probability": 0.9803 + }, + { + "start": 11310.54, + "end": 11311.1, + "probability": 0.7477 + }, + { + "start": 11312.94, + "end": 11314.42, + "probability": 0.9808 + }, + { + "start": 11314.66, + "end": 11315.46, + "probability": 0.6231 + }, + { + "start": 11316.58, + "end": 11319.38, + "probability": 0.986 + }, + { + "start": 11320.44, + "end": 11321.6, + "probability": 0.9775 + }, + { + "start": 11322.56, + "end": 11326.22, + "probability": 0.9766 + }, + { + "start": 11327.32, + "end": 11329.9, + "probability": 0.6627 + }, + { + "start": 11330.58, + "end": 11333.1, + "probability": 0.5839 + }, + { + "start": 11333.48, + "end": 11335.7, + "probability": 0.9784 + }, + { + "start": 11336.62, + "end": 11336.84, + "probability": 0.7237 + }, + { + "start": 11337.48, + "end": 11338.62, + "probability": 0.4099 + }, + { + "start": 11339.42, + "end": 11340.94, + "probability": 0.936 + }, + { + "start": 11341.44, + "end": 11343.17, + "probability": 0.9215 + }, + { + "start": 11343.68, + "end": 11345.0, + "probability": 0.9805 + }, + { + "start": 11345.16, + "end": 11346.56, + "probability": 0.5157 + }, + { + "start": 11346.74, + "end": 11349.76, + "probability": 0.7169 + }, + { + "start": 11350.24, + "end": 11351.08, + "probability": 0.7486 + }, + { + "start": 11352.18, + "end": 11352.94, + "probability": 0.726 + }, + { + "start": 11369.7, + "end": 11370.92, + "probability": 0.6342 + }, + { + "start": 11371.34, + "end": 11371.34, + "probability": 0.3163 + }, + { + "start": 11371.34, + "end": 11371.86, + "probability": 0.8172 + }, + { + "start": 11371.94, + "end": 11372.82, + "probability": 0.6469 + }, + { + "start": 11374.34, + "end": 11376.1, + "probability": 0.9238 + }, + { + "start": 11376.68, + "end": 11379.32, + "probability": 0.9924 + }, + { + "start": 11380.66, + "end": 11383.36, + "probability": 0.9905 + }, + { + "start": 11385.22, + "end": 11386.88, + "probability": 0.9961 + }, + { + "start": 11388.2, + "end": 11389.22, + "probability": 0.9117 + }, + { + "start": 11389.8, + "end": 11392.12, + "probability": 0.9415 + }, + { + "start": 11393.38, + "end": 11396.94, + "probability": 0.9657 + }, + { + "start": 11398.46, + "end": 11401.64, + "probability": 0.9739 + }, + { + "start": 11402.16, + "end": 11402.9, + "probability": 0.9299 + }, + { + "start": 11403.68, + "end": 11406.3, + "probability": 0.9905 + }, + { + "start": 11407.18, + "end": 11410.5, + "probability": 0.9971 + }, + { + "start": 11411.56, + "end": 11414.7, + "probability": 0.9587 + }, + { + "start": 11414.8, + "end": 11419.6, + "probability": 0.9946 + }, + { + "start": 11420.78, + "end": 11422.46, + "probability": 0.9863 + }, + { + "start": 11423.64, + "end": 11426.52, + "probability": 0.979 + }, + { + "start": 11427.1, + "end": 11431.14, + "probability": 0.9947 + }, + { + "start": 11431.94, + "end": 11433.22, + "probability": 0.9234 + }, + { + "start": 11434.42, + "end": 11441.5, + "probability": 0.9917 + }, + { + "start": 11441.5, + "end": 11444.26, + "probability": 0.998 + }, + { + "start": 11445.94, + "end": 11447.4, + "probability": 0.6946 + }, + { + "start": 11448.68, + "end": 11453.28, + "probability": 0.99 + }, + { + "start": 11454.96, + "end": 11456.0, + "probability": 0.8789 + }, + { + "start": 11456.98, + "end": 11459.8, + "probability": 0.885 + }, + { + "start": 11462.66, + "end": 11465.14, + "probability": 0.8346 + }, + { + "start": 11467.14, + "end": 11468.26, + "probability": 0.9423 + }, + { + "start": 11469.5, + "end": 11471.34, + "probability": 0.777 + }, + { + "start": 11472.78, + "end": 11474.48, + "probability": 0.9713 + }, + { + "start": 11476.26, + "end": 11481.76, + "probability": 0.9626 + }, + { + "start": 11482.36, + "end": 11484.42, + "probability": 0.9717 + }, + { + "start": 11485.42, + "end": 11488.58, + "probability": 0.9974 + }, + { + "start": 11488.58, + "end": 11494.1, + "probability": 0.9933 + }, + { + "start": 11494.12, + "end": 11498.26, + "probability": 0.9946 + }, + { + "start": 11499.2, + "end": 11502.58, + "probability": 0.293 + }, + { + "start": 11502.58, + "end": 11503.51, + "probability": 0.4468 + }, + { + "start": 11504.38, + "end": 11508.86, + "probability": 0.9921 + }, + { + "start": 11509.78, + "end": 11511.74, + "probability": 0.9982 + }, + { + "start": 11512.92, + "end": 11513.9, + "probability": 0.9949 + }, + { + "start": 11514.62, + "end": 11516.3, + "probability": 0.9956 + }, + { + "start": 11517.26, + "end": 11518.32, + "probability": 0.9911 + }, + { + "start": 11519.02, + "end": 11520.02, + "probability": 0.7275 + }, + { + "start": 11520.56, + "end": 11521.34, + "probability": 0.6405 + }, + { + "start": 11522.34, + "end": 11522.88, + "probability": 0.8643 + }, + { + "start": 11523.7, + "end": 11527.26, + "probability": 0.8216 + }, + { + "start": 11528.36, + "end": 11529.94, + "probability": 0.959 + }, + { + "start": 11532.26, + "end": 11536.04, + "probability": 0.7133 + }, + { + "start": 11537.02, + "end": 11538.52, + "probability": 0.9881 + }, + { + "start": 11539.16, + "end": 11540.43, + "probability": 0.9927 + }, + { + "start": 11541.0, + "end": 11541.78, + "probability": 0.7092 + }, + { + "start": 11543.06, + "end": 11544.1, + "probability": 0.9907 + }, + { + "start": 11544.6, + "end": 11546.06, + "probability": 0.9938 + }, + { + "start": 11546.78, + "end": 11549.2, + "probability": 0.6819 + }, + { + "start": 11549.84, + "end": 11551.0, + "probability": 0.9557 + }, + { + "start": 11552.02, + "end": 11554.04, + "probability": 0.9196 + }, + { + "start": 11554.98, + "end": 11562.1, + "probability": 0.9241 + }, + { + "start": 11562.88, + "end": 11568.74, + "probability": 0.9917 + }, + { + "start": 11569.72, + "end": 11571.24, + "probability": 0.6888 + }, + { + "start": 11572.1, + "end": 11572.88, + "probability": 0.9051 + }, + { + "start": 11572.92, + "end": 11574.78, + "probability": 0.9783 + }, + { + "start": 11575.94, + "end": 11579.12, + "probability": 0.9741 + }, + { + "start": 11579.12, + "end": 11584.4, + "probability": 0.9947 + }, + { + "start": 11584.92, + "end": 11585.3, + "probability": 0.7387 + }, + { + "start": 11585.4, + "end": 11586.32, + "probability": 0.5362 + }, + { + "start": 11586.52, + "end": 11588.18, + "probability": 0.5603 + }, + { + "start": 11588.2, + "end": 11589.94, + "probability": 0.5358 + }, + { + "start": 11605.3, + "end": 11609.68, + "probability": 0.7434 + }, + { + "start": 11611.72, + "end": 11613.59, + "probability": 0.6566 + }, + { + "start": 11615.2, + "end": 11616.66, + "probability": 0.8508 + }, + { + "start": 11617.56, + "end": 11619.68, + "probability": 0.985 + }, + { + "start": 11620.52, + "end": 11622.32, + "probability": 0.9971 + }, + { + "start": 11623.14, + "end": 11625.16, + "probability": 0.9912 + }, + { + "start": 11626.08, + "end": 11628.28, + "probability": 0.8741 + }, + { + "start": 11628.88, + "end": 11631.6, + "probability": 0.9696 + }, + { + "start": 11632.5, + "end": 11633.78, + "probability": 0.8479 + }, + { + "start": 11634.6, + "end": 11637.24, + "probability": 0.9946 + }, + { + "start": 11638.14, + "end": 11638.52, + "probability": 0.9025 + }, + { + "start": 11639.06, + "end": 11640.94, + "probability": 0.8793 + }, + { + "start": 11641.7, + "end": 11645.96, + "probability": 0.9926 + }, + { + "start": 11646.9, + "end": 11650.72, + "probability": 0.8695 + }, + { + "start": 11651.38, + "end": 11655.9, + "probability": 0.8044 + }, + { + "start": 11656.02, + "end": 11656.9, + "probability": 0.7157 + }, + { + "start": 11657.74, + "end": 11659.16, + "probability": 0.9152 + }, + { + "start": 11660.16, + "end": 11666.94, + "probability": 0.9667 + }, + { + "start": 11667.64, + "end": 11672.66, + "probability": 0.996 + }, + { + "start": 11673.78, + "end": 11673.96, + "probability": 0.5151 + }, + { + "start": 11674.6, + "end": 11675.98, + "probability": 0.9993 + }, + { + "start": 11678.56, + "end": 11680.42, + "probability": 0.9783 + }, + { + "start": 11681.14, + "end": 11682.26, + "probability": 0.6527 + }, + { + "start": 11683.04, + "end": 11689.14, + "probability": 0.9902 + }, + { + "start": 11689.22, + "end": 11690.62, + "probability": 0.9601 + }, + { + "start": 11690.64, + "end": 11695.32, + "probability": 0.9688 + }, + { + "start": 11696.26, + "end": 11697.36, + "probability": 0.7695 + }, + { + "start": 11697.9, + "end": 11699.52, + "probability": 0.9741 + }, + { + "start": 11699.54, + "end": 11703.2, + "probability": 0.9073 + }, + { + "start": 11703.88, + "end": 11707.47, + "probability": 0.9821 + }, + { + "start": 11707.76, + "end": 11708.58, + "probability": 0.8109 + }, + { + "start": 11709.06, + "end": 11710.72, + "probability": 0.9826 + }, + { + "start": 11711.48, + "end": 11712.86, + "probability": 0.811 + }, + { + "start": 11713.66, + "end": 11716.54, + "probability": 0.9971 + }, + { + "start": 11717.6, + "end": 11722.6, + "probability": 0.9774 + }, + { + "start": 11722.6, + "end": 11727.94, + "probability": 0.8029 + }, + { + "start": 11728.46, + "end": 11735.56, + "probability": 0.9794 + }, + { + "start": 11735.82, + "end": 11740.18, + "probability": 0.8384 + }, + { + "start": 11740.62, + "end": 11741.48, + "probability": 0.9673 + }, + { + "start": 11741.58, + "end": 11744.92, + "probability": 0.9912 + }, + { + "start": 11744.98, + "end": 11746.66, + "probability": 0.9457 + }, + { + "start": 11747.64, + "end": 11752.84, + "probability": 0.9546 + }, + { + "start": 11754.06, + "end": 11754.58, + "probability": 0.7049 + }, + { + "start": 11754.72, + "end": 11761.64, + "probability": 0.9837 + }, + { + "start": 11762.32, + "end": 11763.04, + "probability": 0.2533 + }, + { + "start": 11763.04, + "end": 11767.28, + "probability": 0.9272 + }, + { + "start": 11767.76, + "end": 11770.22, + "probability": 0.8477 + }, + { + "start": 11770.72, + "end": 11772.86, + "probability": 0.9821 + }, + { + "start": 11773.58, + "end": 11774.64, + "probability": 0.9487 + }, + { + "start": 11774.76, + "end": 11775.46, + "probability": 0.8724 + }, + { + "start": 11776.24, + "end": 11777.6, + "probability": 0.9817 + }, + { + "start": 11777.74, + "end": 11778.62, + "probability": 0.9001 + }, + { + "start": 11779.54, + "end": 11782.5, + "probability": 0.8657 + }, + { + "start": 11782.5, + "end": 11783.38, + "probability": 0.9744 + }, + { + "start": 11783.84, + "end": 11785.18, + "probability": 0.9871 + }, + { + "start": 11785.84, + "end": 11787.98, + "probability": 0.9789 + }, + { + "start": 11788.58, + "end": 11790.7, + "probability": 0.8989 + }, + { + "start": 11791.1, + "end": 11792.44, + "probability": 0.9404 + }, + { + "start": 11793.26, + "end": 11795.22, + "probability": 0.9772 + }, + { + "start": 11795.6, + "end": 11798.41, + "probability": 0.9979 + }, + { + "start": 11798.78, + "end": 11801.43, + "probability": 0.9961 + }, + { + "start": 11802.18, + "end": 11804.08, + "probability": 0.939 + }, + { + "start": 11804.34, + "end": 11806.0, + "probability": 0.9961 + }, + { + "start": 11806.38, + "end": 11808.14, + "probability": 0.975 + }, + { + "start": 11808.54, + "end": 11813.98, + "probability": 0.9935 + }, + { + "start": 11814.64, + "end": 11816.28, + "probability": 0.8333 + }, + { + "start": 11816.72, + "end": 11817.8, + "probability": 0.6251 + }, + { + "start": 11818.0, + "end": 11823.48, + "probability": 0.9934 + }, + { + "start": 11823.76, + "end": 11827.26, + "probability": 0.9424 + }, + { + "start": 11828.64, + "end": 11832.08, + "probability": 0.9424 + }, + { + "start": 11832.28, + "end": 11834.54, + "probability": 0.9891 + }, + { + "start": 11834.74, + "end": 11835.44, + "probability": 0.5997 + }, + { + "start": 11835.9, + "end": 11835.9, + "probability": 0.1812 + }, + { + "start": 11835.9, + "end": 11835.98, + "probability": 0.0545 + }, + { + "start": 11835.98, + "end": 11836.76, + "probability": 0.5188 + }, + { + "start": 11837.76, + "end": 11838.92, + "probability": 0.9198 + }, + { + "start": 11839.76, + "end": 11844.4, + "probability": 0.979 + }, + { + "start": 11844.48, + "end": 11845.59, + "probability": 0.7191 + }, + { + "start": 11846.38, + "end": 11848.74, + "probability": 0.9916 + }, + { + "start": 11849.26, + "end": 11851.86, + "probability": 0.9676 + }, + { + "start": 11852.68, + "end": 11855.74, + "probability": 0.9847 + }, + { + "start": 11856.24, + "end": 11857.63, + "probability": 0.8007 + }, + { + "start": 11858.34, + "end": 11860.4, + "probability": 0.9632 + }, + { + "start": 11860.7, + "end": 11861.92, + "probability": 0.9487 + }, + { + "start": 11862.24, + "end": 11864.04, + "probability": 0.5932 + }, + { + "start": 11864.1, + "end": 11867.16, + "probability": 0.8773 + }, + { + "start": 11867.78, + "end": 11868.04, + "probability": 0.7251 + }, + { + "start": 11870.94, + "end": 11872.66, + "probability": 0.5473 + }, + { + "start": 11872.66, + "end": 11873.56, + "probability": 0.638 + }, + { + "start": 11874.56, + "end": 11875.22, + "probability": 0.6141 + }, + { + "start": 11883.64, + "end": 11884.88, + "probability": 0.6414 + }, + { + "start": 11885.42, + "end": 11885.91, + "probability": 0.9955 + }, + { + "start": 11887.42, + "end": 11891.18, + "probability": 0.9743 + }, + { + "start": 11892.08, + "end": 11892.9, + "probability": 0.9741 + }, + { + "start": 11893.06, + "end": 11897.42, + "probability": 0.873 + }, + { + "start": 11898.28, + "end": 11900.32, + "probability": 0.9771 + }, + { + "start": 11900.48, + "end": 11902.16, + "probability": 0.0674 + }, + { + "start": 11902.16, + "end": 11902.44, + "probability": 0.8923 + }, + { + "start": 11904.18, + "end": 11907.04, + "probability": 0.9067 + }, + { + "start": 11909.12, + "end": 11910.64, + "probability": 0.9766 + }, + { + "start": 11911.08, + "end": 11912.04, + "probability": 0.8546 + }, + { + "start": 11912.1, + "end": 11913.5, + "probability": 0.9906 + }, + { + "start": 11914.92, + "end": 11915.28, + "probability": 0.6321 + }, + { + "start": 11915.34, + "end": 11916.14, + "probability": 0.9271 + }, + { + "start": 11916.18, + "end": 11920.62, + "probability": 0.9545 + }, + { + "start": 11921.58, + "end": 11922.44, + "probability": 0.4923 + }, + { + "start": 11923.4, + "end": 11926.62, + "probability": 0.8426 + }, + { + "start": 11927.14, + "end": 11928.14, + "probability": 0.9471 + }, + { + "start": 11928.98, + "end": 11930.48, + "probability": 0.8991 + }, + { + "start": 11931.18, + "end": 11933.98, + "probability": 0.9759 + }, + { + "start": 11936.46, + "end": 11937.49, + "probability": 0.3603 + }, + { + "start": 11938.56, + "end": 11939.49, + "probability": 0.9793 + }, + { + "start": 11940.4, + "end": 11942.22, + "probability": 0.947 + }, + { + "start": 11943.4, + "end": 11945.2, + "probability": 0.8671 + }, + { + "start": 11946.32, + "end": 11947.76, + "probability": 0.9812 + }, + { + "start": 11948.68, + "end": 11951.92, + "probability": 0.9124 + }, + { + "start": 11952.86, + "end": 11953.4, + "probability": 0.617 + }, + { + "start": 11953.46, + "end": 11955.92, + "probability": 0.9522 + }, + { + "start": 11956.46, + "end": 11958.48, + "probability": 0.9748 + }, + { + "start": 11959.24, + "end": 11962.36, + "probability": 0.9939 + }, + { + "start": 11964.32, + "end": 11965.64, + "probability": 0.96 + }, + { + "start": 11966.32, + "end": 11972.68, + "probability": 0.9482 + }, + { + "start": 11973.32, + "end": 11974.16, + "probability": 0.9886 + }, + { + "start": 11975.0, + "end": 11976.34, + "probability": 0.7839 + }, + { + "start": 11976.86, + "end": 11979.18, + "probability": 0.752 + }, + { + "start": 11979.8, + "end": 11980.84, + "probability": 0.7355 + }, + { + "start": 11981.38, + "end": 11982.74, + "probability": 0.9622 + }, + { + "start": 11983.28, + "end": 11983.9, + "probability": 0.0064 + }, + { + "start": 11984.7, + "end": 11991.02, + "probability": 0.9257 + }, + { + "start": 11991.84, + "end": 11993.22, + "probability": 0.9924 + }, + { + "start": 11994.05, + "end": 11996.73, + "probability": 0.6685 + }, + { + "start": 11997.62, + "end": 12000.84, + "probability": 0.991 + }, + { + "start": 12001.72, + "end": 12003.84, + "probability": 0.8777 + }, + { + "start": 12004.44, + "end": 12006.96, + "probability": 0.9811 + }, + { + "start": 12006.96, + "end": 12008.68, + "probability": 0.9913 + }, + { + "start": 12009.7, + "end": 12011.44, + "probability": 0.4629 + }, + { + "start": 12011.62, + "end": 12014.78, + "probability": 0.964 + }, + { + "start": 12015.04, + "end": 12016.6, + "probability": 0.9946 + }, + { + "start": 12017.96, + "end": 12019.56, + "probability": 0.8789 + }, + { + "start": 12020.2, + "end": 12023.68, + "probability": 0.7695 + }, + { + "start": 12024.68, + "end": 12027.46, + "probability": 0.9839 + }, + { + "start": 12028.4, + "end": 12031.46, + "probability": 0.9463 + }, + { + "start": 12032.78, + "end": 12034.58, + "probability": 0.9855 + }, + { + "start": 12035.18, + "end": 12036.24, + "probability": 0.7984 + }, + { + "start": 12036.92, + "end": 12039.3, + "probability": 0.9748 + }, + { + "start": 12039.84, + "end": 12041.7, + "probability": 0.894 + }, + { + "start": 12042.26, + "end": 12048.7, + "probability": 0.9735 + }, + { + "start": 12048.72, + "end": 12049.58, + "probability": 0.8267 + }, + { + "start": 12050.28, + "end": 12053.58, + "probability": 0.868 + }, + { + "start": 12053.82, + "end": 12057.12, + "probability": 0.777 + }, + { + "start": 12057.94, + "end": 12060.0, + "probability": 0.8921 + }, + { + "start": 12060.6, + "end": 12061.06, + "probability": 0.7662 + }, + { + "start": 12061.74, + "end": 12062.46, + "probability": 0.5555 + }, + { + "start": 12063.0, + "end": 12064.6, + "probability": 0.4937 + }, + { + "start": 12065.74, + "end": 12066.64, + "probability": 0.4554 + }, + { + "start": 12071.14, + "end": 12072.41, + "probability": 0.8373 + }, + { + "start": 12080.84, + "end": 12080.86, + "probability": 0.1154 + }, + { + "start": 12080.86, + "end": 12080.86, + "probability": 0.0701 + }, + { + "start": 12080.86, + "end": 12080.88, + "probability": 0.064 + }, + { + "start": 12080.88, + "end": 12080.88, + "probability": 0.1355 + }, + { + "start": 12080.9, + "end": 12080.9, + "probability": 0.1919 + }, + { + "start": 12080.9, + "end": 12080.92, + "probability": 0.0031 + }, + { + "start": 12098.24, + "end": 12100.46, + "probability": 0.9966 + }, + { + "start": 12102.92, + "end": 12107.46, + "probability": 0.9653 + }, + { + "start": 12108.72, + "end": 12110.6, + "probability": 0.6398 + }, + { + "start": 12111.66, + "end": 12114.97, + "probability": 0.979 + }, + { + "start": 12118.29, + "end": 12121.76, + "probability": 0.9836 + }, + { + "start": 12123.52, + "end": 12124.68, + "probability": 0.4229 + }, + { + "start": 12125.14, + "end": 12125.72, + "probability": 0.0047 + }, + { + "start": 12129.3, + "end": 12135.32, + "probability": 0.8315 + }, + { + "start": 12137.0, + "end": 12139.52, + "probability": 0.9905 + }, + { + "start": 12141.42, + "end": 12144.42, + "probability": 0.8094 + }, + { + "start": 12145.38, + "end": 12146.7, + "probability": 0.9757 + }, + { + "start": 12146.98, + "end": 12148.64, + "probability": 0.9812 + }, + { + "start": 12150.7, + "end": 12155.2, + "probability": 0.9968 + }, + { + "start": 12155.62, + "end": 12155.64, + "probability": 0.0038 + }, + { + "start": 12156.7, + "end": 12162.32, + "probability": 0.8962 + }, + { + "start": 12162.98, + "end": 12163.96, + "probability": 0.9206 + }, + { + "start": 12165.06, + "end": 12167.22, + "probability": 0.7663 + }, + { + "start": 12167.82, + "end": 12173.38, + "probability": 0.8921 + }, + { + "start": 12174.64, + "end": 12176.24, + "probability": 0.9993 + }, + { + "start": 12176.96, + "end": 12177.28, + "probability": 0.9902 + }, + { + "start": 12179.94, + "end": 12181.2, + "probability": 0.9337 + }, + { + "start": 12183.48, + "end": 12184.42, + "probability": 0.6627 + }, + { + "start": 12185.0, + "end": 12186.3, + "probability": 0.9465 + }, + { + "start": 12188.16, + "end": 12190.14, + "probability": 0.9832 + }, + { + "start": 12190.38, + "end": 12191.82, + "probability": 0.9934 + }, + { + "start": 12191.94, + "end": 12196.16, + "probability": 0.9953 + }, + { + "start": 12197.16, + "end": 12198.44, + "probability": 0.9795 + }, + { + "start": 12199.92, + "end": 12202.34, + "probability": 0.998 + }, + { + "start": 12203.78, + "end": 12205.06, + "probability": 0.9773 + }, + { + "start": 12205.7, + "end": 12208.67, + "probability": 0.977 + }, + { + "start": 12209.9, + "end": 12210.9, + "probability": 0.836 + }, + { + "start": 12212.4, + "end": 12216.56, + "probability": 0.9833 + }, + { + "start": 12217.56, + "end": 12218.96, + "probability": 0.5792 + }, + { + "start": 12219.74, + "end": 12222.28, + "probability": 0.9898 + }, + { + "start": 12223.34, + "end": 12226.52, + "probability": 0.9834 + }, + { + "start": 12226.88, + "end": 12229.18, + "probability": 0.991 + }, + { + "start": 12231.82, + "end": 12235.64, + "probability": 0.4339 + }, + { + "start": 12236.34, + "end": 12239.62, + "probability": 0.8042 + }, + { + "start": 12240.6, + "end": 12244.26, + "probability": 0.9807 + }, + { + "start": 12245.68, + "end": 12246.6, + "probability": 0.7722 + }, + { + "start": 12246.78, + "end": 12249.16, + "probability": 0.9814 + }, + { + "start": 12250.02, + "end": 12250.32, + "probability": 0.8617 + }, + { + "start": 12250.46, + "end": 12252.08, + "probability": 0.9467 + }, + { + "start": 12252.48, + "end": 12253.96, + "probability": 0.9912 + }, + { + "start": 12254.58, + "end": 12255.48, + "probability": 0.9541 + }, + { + "start": 12258.0, + "end": 12259.46, + "probability": 0.7245 + }, + { + "start": 12261.0, + "end": 12261.96, + "probability": 0.8749 + }, + { + "start": 12262.82, + "end": 12263.68, + "probability": 0.9905 + }, + { + "start": 12264.08, + "end": 12265.78, + "probability": 0.9828 + }, + { + "start": 12266.5, + "end": 12267.14, + "probability": 0.8344 + }, + { + "start": 12267.78, + "end": 12270.18, + "probability": 0.7901 + }, + { + "start": 12271.44, + "end": 12272.64, + "probability": 0.9494 + }, + { + "start": 12272.82, + "end": 12273.58, + "probability": 0.9556 + }, + { + "start": 12274.04, + "end": 12274.64, + "probability": 0.8922 + }, + { + "start": 12274.7, + "end": 12275.6, + "probability": 0.9919 + }, + { + "start": 12276.0, + "end": 12276.62, + "probability": 0.4909 + }, + { + "start": 12277.26, + "end": 12280.28, + "probability": 0.8058 + }, + { + "start": 12280.4, + "end": 12282.9, + "probability": 0.9792 + }, + { + "start": 12284.34, + "end": 12285.76, + "probability": 0.5338 + }, + { + "start": 12286.98, + "end": 12287.34, + "probability": 0.0109 + }, + { + "start": 12287.34, + "end": 12289.94, + "probability": 0.9008 + }, + { + "start": 12290.36, + "end": 12290.54, + "probability": 0.0808 + }, + { + "start": 12291.14, + "end": 12294.9, + "probability": 0.9814 + }, + { + "start": 12294.9, + "end": 12298.08, + "probability": 0.9886 + }, + { + "start": 12298.6, + "end": 12300.24, + "probability": 0.9601 + }, + { + "start": 12300.32, + "end": 12300.76, + "probability": 0.8772 + }, + { + "start": 12301.42, + "end": 12302.5, + "probability": 0.7328 + }, + { + "start": 12303.22, + "end": 12304.7, + "probability": 0.9502 + }, + { + "start": 12304.8, + "end": 12305.9, + "probability": 0.8232 + }, + { + "start": 12306.02, + "end": 12311.14, + "probability": 0.9321 + }, + { + "start": 12311.68, + "end": 12313.74, + "probability": 0.9382 + }, + { + "start": 12313.78, + "end": 12315.16, + "probability": 0.9325 + }, + { + "start": 12315.36, + "end": 12316.54, + "probability": 0.905 + }, + { + "start": 12316.68, + "end": 12320.66, + "probability": 0.9852 + }, + { + "start": 12321.06, + "end": 12321.34, + "probability": 0.7063 + }, + { + "start": 12322.32, + "end": 12324.32, + "probability": 0.7736 + }, + { + "start": 12343.68, + "end": 12344.34, + "probability": 0.8589 + }, + { + "start": 12354.94, + "end": 12356.8, + "probability": 0.7833 + }, + { + "start": 12358.0, + "end": 12362.44, + "probability": 0.94 + }, + { + "start": 12364.18, + "end": 12366.58, + "probability": 0.9796 + }, + { + "start": 12367.18, + "end": 12368.84, + "probability": 0.9966 + }, + { + "start": 12369.52, + "end": 12372.12, + "probability": 0.9622 + }, + { + "start": 12373.48, + "end": 12374.6, + "probability": 0.7218 + }, + { + "start": 12376.08, + "end": 12378.38, + "probability": 0.8458 + }, + { + "start": 12380.06, + "end": 12383.44, + "probability": 0.9854 + }, + { + "start": 12383.44, + "end": 12386.04, + "probability": 0.9255 + }, + { + "start": 12388.18, + "end": 12391.4, + "probability": 0.9569 + }, + { + "start": 12392.62, + "end": 12394.4, + "probability": 0.7754 + }, + { + "start": 12395.98, + "end": 12400.58, + "probability": 0.9715 + }, + { + "start": 12401.1, + "end": 12405.16, + "probability": 0.9731 + }, + { + "start": 12407.16, + "end": 12410.18, + "probability": 0.9495 + }, + { + "start": 12410.33, + "end": 12415.2, + "probability": 0.9827 + }, + { + "start": 12415.92, + "end": 12418.68, + "probability": 0.9777 + }, + { + "start": 12419.68, + "end": 12421.8, + "probability": 0.9726 + }, + { + "start": 12423.48, + "end": 12425.72, + "probability": 0.9968 + }, + { + "start": 12426.48, + "end": 12430.16, + "probability": 0.9982 + }, + { + "start": 12430.96, + "end": 12435.58, + "probability": 0.9917 + }, + { + "start": 12436.34, + "end": 12439.38, + "probability": 0.9979 + }, + { + "start": 12439.94, + "end": 12442.5, + "probability": 0.9104 + }, + { + "start": 12444.1, + "end": 12445.34, + "probability": 0.7628 + }, + { + "start": 12446.66, + "end": 12449.2, + "probability": 0.9268 + }, + { + "start": 12449.86, + "end": 12452.54, + "probability": 0.9974 + }, + { + "start": 12453.38, + "end": 12454.9, + "probability": 0.9899 + }, + { + "start": 12456.08, + "end": 12457.04, + "probability": 0.8802 + }, + { + "start": 12457.28, + "end": 12458.42, + "probability": 0.9558 + }, + { + "start": 12458.56, + "end": 12459.4, + "probability": 0.8793 + }, + { + "start": 12459.66, + "end": 12461.03, + "probability": 0.6656 + }, + { + "start": 12462.26, + "end": 12465.94, + "probability": 0.9143 + }, + { + "start": 12465.94, + "end": 12468.58, + "probability": 0.9961 + }, + { + "start": 12469.42, + "end": 12471.24, + "probability": 0.8753 + }, + { + "start": 12472.6, + "end": 12475.74, + "probability": 0.9958 + }, + { + "start": 12476.48, + "end": 12477.76, + "probability": 0.9974 + }, + { + "start": 12478.06, + "end": 12478.58, + "probability": 0.8648 + }, + { + "start": 12478.68, + "end": 12479.1, + "probability": 0.7203 + }, + { + "start": 12479.2, + "end": 12479.78, + "probability": 0.9163 + }, + { + "start": 12479.9, + "end": 12480.62, + "probability": 0.8033 + }, + { + "start": 12482.06, + "end": 12483.96, + "probability": 0.9681 + }, + { + "start": 12484.7, + "end": 12486.88, + "probability": 0.7577 + }, + { + "start": 12487.46, + "end": 12489.94, + "probability": 0.9982 + }, + { + "start": 12489.94, + "end": 12492.84, + "probability": 0.9992 + }, + { + "start": 12494.18, + "end": 12495.6, + "probability": 0.756 + }, + { + "start": 12496.28, + "end": 12497.02, + "probability": 0.8307 + }, + { + "start": 12497.96, + "end": 12498.82, + "probability": 0.9462 + }, + { + "start": 12499.34, + "end": 12502.38, + "probability": 0.7724 + }, + { + "start": 12504.08, + "end": 12505.52, + "probability": 0.6499 + }, + { + "start": 12505.66, + "end": 12507.76, + "probability": 0.993 + }, + { + "start": 12507.9, + "end": 12512.88, + "probability": 0.9335 + }, + { + "start": 12513.46, + "end": 12516.88, + "probability": 0.9937 + }, + { + "start": 12517.88, + "end": 12520.26, + "probability": 0.9886 + }, + { + "start": 12521.7, + "end": 12524.8, + "probability": 0.9871 + }, + { + "start": 12525.22, + "end": 12529.66, + "probability": 0.9834 + }, + { + "start": 12529.66, + "end": 12532.76, + "probability": 0.9963 + }, + { + "start": 12533.72, + "end": 12536.94, + "probability": 0.9964 + }, + { + "start": 12537.16, + "end": 12538.88, + "probability": 0.6697 + }, + { + "start": 12539.3, + "end": 12540.21, + "probability": 0.9342 + }, + { + "start": 12541.54, + "end": 12544.28, + "probability": 0.9925 + }, + { + "start": 12544.84, + "end": 12548.26, + "probability": 0.9973 + }, + { + "start": 12548.7, + "end": 12550.52, + "probability": 0.9927 + }, + { + "start": 12551.04, + "end": 12553.18, + "probability": 0.9559 + }, + { + "start": 12553.18, + "end": 12555.6, + "probability": 0.7498 + }, + { + "start": 12556.1, + "end": 12557.04, + "probability": 0.8022 + }, + { + "start": 12557.46, + "end": 12560.58, + "probability": 0.9893 + }, + { + "start": 12561.06, + "end": 12563.96, + "probability": 0.998 + }, + { + "start": 12564.24, + "end": 12565.03, + "probability": 0.9976 + }, + { + "start": 12565.68, + "end": 12567.36, + "probability": 0.9452 + }, + { + "start": 12567.78, + "end": 12568.08, + "probability": 0.8656 + }, + { + "start": 12568.74, + "end": 12569.26, + "probability": 0.6312 + }, + { + "start": 12570.58, + "end": 12572.32, + "probability": 0.8574 + }, + { + "start": 12575.54, + "end": 12577.6, + "probability": 0.4905 + }, + { + "start": 12578.68, + "end": 12578.94, + "probability": 0.3911 + }, + { + "start": 12596.0, + "end": 12598.48, + "probability": 0.6343 + }, + { + "start": 12600.58, + "end": 12603.62, + "probability": 0.778 + }, + { + "start": 12604.5, + "end": 12605.1, + "probability": 0.7029 + }, + { + "start": 12610.1, + "end": 12615.44, + "probability": 0.8526 + }, + { + "start": 12616.8, + "end": 12618.61, + "probability": 0.9424 + }, + { + "start": 12621.34, + "end": 12624.76, + "probability": 0.9567 + }, + { + "start": 12624.76, + "end": 12628.18, + "probability": 0.7339 + }, + { + "start": 12628.76, + "end": 12630.4, + "probability": 0.9979 + }, + { + "start": 12630.46, + "end": 12631.38, + "probability": 0.8155 + }, + { + "start": 12631.88, + "end": 12633.52, + "probability": 0.974 + }, + { + "start": 12634.68, + "end": 12639.38, + "probability": 0.7526 + }, + { + "start": 12640.7, + "end": 12644.66, + "probability": 0.9888 + }, + { + "start": 12645.42, + "end": 12648.46, + "probability": 0.9874 + }, + { + "start": 12649.48, + "end": 12652.52, + "probability": 0.9897 + }, + { + "start": 12653.4, + "end": 12655.34, + "probability": 0.9015 + }, + { + "start": 12657.14, + "end": 12662.94, + "probability": 0.9646 + }, + { + "start": 12663.88, + "end": 12666.76, + "probability": 0.8364 + }, + { + "start": 12668.02, + "end": 12669.54, + "probability": 0.649 + }, + { + "start": 12672.5, + "end": 12674.36, + "probability": 0.9905 + }, + { + "start": 12675.22, + "end": 12677.66, + "probability": 0.972 + }, + { + "start": 12678.48, + "end": 12679.7, + "probability": 0.9846 + }, + { + "start": 12681.12, + "end": 12681.82, + "probability": 0.8677 + }, + { + "start": 12683.32, + "end": 12688.08, + "probability": 0.7759 + }, + { + "start": 12689.02, + "end": 12692.48, + "probability": 0.9863 + }, + { + "start": 12693.88, + "end": 12695.42, + "probability": 0.9748 + }, + { + "start": 12696.66, + "end": 12697.38, + "probability": 0.6858 + }, + { + "start": 12698.48, + "end": 12701.78, + "probability": 0.5851 + }, + { + "start": 12702.78, + "end": 12704.84, + "probability": 0.6132 + }, + { + "start": 12706.5, + "end": 12709.8, + "probability": 0.6819 + }, + { + "start": 12709.92, + "end": 12710.31, + "probability": 0.9497 + }, + { + "start": 12712.36, + "end": 12715.72, + "probability": 0.8429 + }, + { + "start": 12716.54, + "end": 12719.32, + "probability": 0.9888 + }, + { + "start": 12720.44, + "end": 12721.26, + "probability": 0.823 + }, + { + "start": 12722.1, + "end": 12723.82, + "probability": 0.8624 + }, + { + "start": 12724.1, + "end": 12724.56, + "probability": 0.6748 + }, + { + "start": 12725.68, + "end": 12727.8, + "probability": 0.9927 + }, + { + "start": 12728.42, + "end": 12729.02, + "probability": 0.9606 + }, + { + "start": 12730.0, + "end": 12734.6, + "probability": 0.9819 + }, + { + "start": 12735.26, + "end": 12737.26, + "probability": 0.9893 + }, + { + "start": 12737.82, + "end": 12739.04, + "probability": 0.9847 + }, + { + "start": 12739.56, + "end": 12743.22, + "probability": 0.3236 + }, + { + "start": 12744.08, + "end": 12748.08, + "probability": 0.9956 + }, + { + "start": 12749.28, + "end": 12750.56, + "probability": 0.7608 + }, + { + "start": 12752.02, + "end": 12752.66, + "probability": 0.9487 + }, + { + "start": 12753.24, + "end": 12753.79, + "probability": 0.9058 + }, + { + "start": 12754.92, + "end": 12757.39, + "probability": 0.6736 + }, + { + "start": 12758.4, + "end": 12761.68, + "probability": 0.7897 + }, + { + "start": 12763.32, + "end": 12765.42, + "probability": 0.8509 + }, + { + "start": 12765.96, + "end": 12768.36, + "probability": 0.8521 + }, + { + "start": 12769.46, + "end": 12771.18, + "probability": 0.8508 + }, + { + "start": 12772.2, + "end": 12777.08, + "probability": 0.9434 + }, + { + "start": 12777.6, + "end": 12779.62, + "probability": 0.9967 + }, + { + "start": 12780.64, + "end": 12782.22, + "probability": 0.978 + }, + { + "start": 12782.92, + "end": 12786.91, + "probability": 0.9596 + }, + { + "start": 12787.68, + "end": 12792.46, + "probability": 0.9731 + }, + { + "start": 12794.49, + "end": 12799.56, + "probability": 0.7416 + }, + { + "start": 12800.16, + "end": 12805.2, + "probability": 0.9908 + }, + { + "start": 12806.6, + "end": 12809.62, + "probability": 0.6798 + }, + { + "start": 12810.2, + "end": 12813.9, + "probability": 0.9433 + }, + { + "start": 12814.42, + "end": 12815.26, + "probability": 0.8682 + }, + { + "start": 12816.7, + "end": 12817.98, + "probability": 0.7881 + }, + { + "start": 12818.72, + "end": 12819.52, + "probability": 0.8257 + }, + { + "start": 12820.5, + "end": 12822.1, + "probability": 0.8291 + }, + { + "start": 12823.26, + "end": 12824.46, + "probability": 0.9934 + }, + { + "start": 12825.54, + "end": 12827.02, + "probability": 0.7516 + }, + { + "start": 12827.1, + "end": 12830.6, + "probability": 0.973 + }, + { + "start": 12831.56, + "end": 12832.92, + "probability": 0.9937 + }, + { + "start": 12834.08, + "end": 12836.58, + "probability": 0.9982 + }, + { + "start": 12837.72, + "end": 12839.22, + "probability": 0.8249 + }, + { + "start": 12840.68, + "end": 12843.1, + "probability": 0.7422 + }, + { + "start": 12843.82, + "end": 12844.82, + "probability": 0.8217 + }, + { + "start": 12845.34, + "end": 12847.34, + "probability": 0.9723 + }, + { + "start": 12847.76, + "end": 12848.68, + "probability": 0.6121 + }, + { + "start": 12849.04, + "end": 12851.18, + "probability": 0.896 + }, + { + "start": 12851.32, + "end": 12851.98, + "probability": 0.5101 + }, + { + "start": 12852.04, + "end": 12853.68, + "probability": 0.8484 + }, + { + "start": 12854.1, + "end": 12856.86, + "probability": 0.8418 + }, + { + "start": 12857.78, + "end": 12859.84, + "probability": 0.9455 + }, + { + "start": 12860.64, + "end": 12864.38, + "probability": 0.9573 + }, + { + "start": 12864.76, + "end": 12866.84, + "probability": 0.717 + }, + { + "start": 12867.3, + "end": 12868.16, + "probability": 0.98 + }, + { + "start": 12868.6, + "end": 12869.02, + "probability": 0.491 + }, + { + "start": 12870.0, + "end": 12872.3, + "probability": 0.7406 + }, + { + "start": 12872.94, + "end": 12875.34, + "probability": 0.9495 + }, + { + "start": 12877.42, + "end": 12878.68, + "probability": 0.8184 + }, + { + "start": 12878.84, + "end": 12879.74, + "probability": 0.5056 + }, + { + "start": 12879.76, + "end": 12883.2, + "probability": 0.7821 + }, + { + "start": 12883.32, + "end": 12884.54, + "probability": 0.7487 + }, + { + "start": 12892.94, + "end": 12893.04, + "probability": 0.0488 + }, + { + "start": 12893.04, + "end": 12893.04, + "probability": 0.0539 + }, + { + "start": 12893.04, + "end": 12893.14, + "probability": 0.5583 + }, + { + "start": 12893.88, + "end": 12893.88, + "probability": 0.5846 + }, + { + "start": 12893.88, + "end": 12898.25, + "probability": 0.4816 + }, + { + "start": 12898.32, + "end": 12901.72, + "probability": 0.9819 + }, + { + "start": 12901.72, + "end": 12904.88, + "probability": 0.952 + }, + { + "start": 12905.44, + "end": 12908.02, + "probability": 0.9291 + }, + { + "start": 12910.78, + "end": 12910.98, + "probability": 0.7972 + }, + { + "start": 12912.28, + "end": 12917.14, + "probability": 0.285 + }, + { + "start": 12917.76, + "end": 12919.78, + "probability": 0.4762 + }, + { + "start": 12927.43, + "end": 12928.1, + "probability": 0.1043 + }, + { + "start": 12928.26, + "end": 12931.24, + "probability": 0.7215 + }, + { + "start": 12932.54, + "end": 12938.54, + "probability": 0.7419 + }, + { + "start": 12940.06, + "end": 12944.18, + "probability": 0.533 + }, + { + "start": 12945.48, + "end": 12948.32, + "probability": 0.9867 + }, + { + "start": 12950.3, + "end": 12951.34, + "probability": 0.8501 + }, + { + "start": 12953.54, + "end": 12954.82, + "probability": 0.7388 + }, + { + "start": 12954.92, + "end": 12958.26, + "probability": 0.9554 + }, + { + "start": 12959.12, + "end": 12963.88, + "probability": 0.9831 + }, + { + "start": 12964.22, + "end": 12965.36, + "probability": 0.9165 + }, + { + "start": 12966.1, + "end": 12970.5, + "probability": 0.964 + }, + { + "start": 12971.84, + "end": 12972.38, + "probability": 0.009 + }, + { + "start": 12974.24, + "end": 12974.47, + "probability": 0.0805 + }, + { + "start": 12975.64, + "end": 12977.08, + "probability": 0.5265 + }, + { + "start": 12977.92, + "end": 12979.22, + "probability": 0.5994 + }, + { + "start": 12980.12, + "end": 12981.02, + "probability": 0.5385 + }, + { + "start": 12981.66, + "end": 12983.48, + "probability": 0.8967 + }, + { + "start": 12984.06, + "end": 12986.36, + "probability": 0.9619 + }, + { + "start": 12987.52, + "end": 12988.26, + "probability": 0.6656 + }, + { + "start": 12989.12, + "end": 12990.1, + "probability": 0.9266 + }, + { + "start": 12990.56, + "end": 12993.16, + "probability": 0.8609 + }, + { + "start": 12994.22, + "end": 12994.66, + "probability": 0.7335 + }, + { + "start": 12994.74, + "end": 12995.02, + "probability": 0.6218 + }, + { + "start": 12995.42, + "end": 12996.57, + "probability": 0.6958 + }, + { + "start": 12997.72, + "end": 13000.02, + "probability": 0.7532 + }, + { + "start": 13000.12, + "end": 13001.26, + "probability": 0.6648 + }, + { + "start": 13001.62, + "end": 13002.36, + "probability": 0.9462 + }, + { + "start": 13003.02, + "end": 13004.74, + "probability": 0.0907 + }, + { + "start": 13004.82, + "end": 13005.76, + "probability": 0.5956 + }, + { + "start": 13010.12, + "end": 13010.66, + "probability": 0.3261 + }, + { + "start": 13016.44, + "end": 13017.49, + "probability": 0.268 + }, + { + "start": 13018.46, + "end": 13019.3, + "probability": 0.2884 + }, + { + "start": 13023.42, + "end": 13027.54, + "probability": 0.7192 + }, + { + "start": 13028.94, + "end": 13029.72, + "probability": 0.9929 + }, + { + "start": 13030.84, + "end": 13032.64, + "probability": 0.954 + }, + { + "start": 13034.86, + "end": 13038.36, + "probability": 0.9661 + }, + { + "start": 13038.68, + "end": 13040.46, + "probability": 0.9701 + }, + { + "start": 13041.86, + "end": 13045.42, + "probability": 0.9965 + }, + { + "start": 13046.74, + "end": 13049.84, + "probability": 0.9944 + }, + { + "start": 13050.9, + "end": 13054.4, + "probability": 0.9944 + }, + { + "start": 13056.02, + "end": 13063.38, + "probability": 0.9886 + }, + { + "start": 13064.24, + "end": 13069.16, + "probability": 0.9977 + }, + { + "start": 13069.9, + "end": 13077.74, + "probability": 0.9897 + }, + { + "start": 13077.88, + "end": 13078.54, + "probability": 0.8719 + }, + { + "start": 13079.32, + "end": 13080.65, + "probability": 0.9717 + }, + { + "start": 13081.58, + "end": 13082.72, + "probability": 0.7993 + }, + { + "start": 13083.62, + "end": 13084.68, + "probability": 0.6302 + }, + { + "start": 13085.54, + "end": 13086.58, + "probability": 0.7332 + }, + { + "start": 13087.18, + "end": 13089.46, + "probability": 0.7891 + }, + { + "start": 13090.38, + "end": 13092.06, + "probability": 0.8435 + }, + { + "start": 13092.68, + "end": 13096.96, + "probability": 0.9456 + }, + { + "start": 13098.42, + "end": 13106.08, + "probability": 0.9683 + }, + { + "start": 13106.76, + "end": 13107.48, + "probability": 0.6177 + }, + { + "start": 13108.54, + "end": 13110.76, + "probability": 0.8306 + }, + { + "start": 13111.76, + "end": 13113.18, + "probability": 0.915 + }, + { + "start": 13114.46, + "end": 13114.46, + "probability": 0.2524 + }, + { + "start": 13114.46, + "end": 13114.46, + "probability": 0.939 + }, + { + "start": 13114.46, + "end": 13118.14, + "probability": 0.9971 + }, + { + "start": 13119.58, + "end": 13122.96, + "probability": 0.9854 + }, + { + "start": 13124.76, + "end": 13127.56, + "probability": 0.8594 + }, + { + "start": 13128.14, + "end": 13131.63, + "probability": 0.9932 + }, + { + "start": 13132.38, + "end": 13133.44, + "probability": 0.7357 + }, + { + "start": 13133.92, + "end": 13140.9, + "probability": 0.9896 + }, + { + "start": 13141.54, + "end": 13142.98, + "probability": 0.9648 + }, + { + "start": 13143.64, + "end": 13147.44, + "probability": 0.9032 + }, + { + "start": 13148.38, + "end": 13154.4, + "probability": 0.875 + }, + { + "start": 13155.5, + "end": 13156.52, + "probability": 0.937 + }, + { + "start": 13157.1, + "end": 13159.24, + "probability": 0.9946 + }, + { + "start": 13159.68, + "end": 13160.94, + "probability": 0.9922 + }, + { + "start": 13161.56, + "end": 13165.78, + "probability": 0.787 + }, + { + "start": 13165.84, + "end": 13167.54, + "probability": 0.9941 + }, + { + "start": 13168.24, + "end": 13170.76, + "probability": 0.7513 + }, + { + "start": 13171.88, + "end": 13176.32, + "probability": 0.993 + }, + { + "start": 13177.08, + "end": 13180.18, + "probability": 0.9852 + }, + { + "start": 13181.0, + "end": 13182.84, + "probability": 0.9386 + }, + { + "start": 13184.24, + "end": 13186.52, + "probability": 0.8425 + }, + { + "start": 13187.28, + "end": 13190.44, + "probability": 0.9834 + }, + { + "start": 13190.84, + "end": 13192.32, + "probability": 0.7626 + }, + { + "start": 13193.04, + "end": 13196.84, + "probability": 0.9771 + }, + { + "start": 13196.84, + "end": 13200.5, + "probability": 0.9879 + }, + { + "start": 13200.66, + "end": 13201.64, + "probability": 0.6358 + }, + { + "start": 13202.14, + "end": 13203.2, + "probability": 0.6938 + }, + { + "start": 13203.34, + "end": 13210.04, + "probability": 0.9318 + }, + { + "start": 13210.04, + "end": 13215.44, + "probability": 0.9946 + }, + { + "start": 13216.0, + "end": 13222.26, + "probability": 0.9952 + }, + { + "start": 13222.9, + "end": 13225.14, + "probability": 0.97 + }, + { + "start": 13225.62, + "end": 13226.36, + "probability": 0.6959 + }, + { + "start": 13226.68, + "end": 13227.58, + "probability": 0.8912 + }, + { + "start": 13228.16, + "end": 13228.72, + "probability": 0.5542 + }, + { + "start": 13228.74, + "end": 13231.94, + "probability": 0.9622 + }, + { + "start": 13232.46, + "end": 13235.42, + "probability": 0.992 + }, + { + "start": 13236.54, + "end": 13237.02, + "probability": 0.5717 + }, + { + "start": 13237.44, + "end": 13241.1, + "probability": 0.6436 + }, + { + "start": 13249.15, + "end": 13251.1, + "probability": 0.8429 + }, + { + "start": 13258.12, + "end": 13258.12, + "probability": 0.3119 + }, + { + "start": 13258.12, + "end": 13258.12, + "probability": 0.0269 + }, + { + "start": 13258.12, + "end": 13258.98, + "probability": 0.4733 + }, + { + "start": 13258.98, + "end": 13260.42, + "probability": 0.3267 + }, + { + "start": 13260.8, + "end": 13262.28, + "probability": 0.8494 + }, + { + "start": 13264.4, + "end": 13265.94, + "probability": 0.2457 + }, + { + "start": 13266.58, + "end": 13267.0, + "probability": 0.3232 + }, + { + "start": 13267.58, + "end": 13269.72, + "probability": 0.7551 + }, + { + "start": 13269.9, + "end": 13270.46, + "probability": 0.8242 + }, + { + "start": 13272.54, + "end": 13272.92, + "probability": 0.6685 + }, + { + "start": 13273.04, + "end": 13277.44, + "probability": 0.9764 + }, + { + "start": 13277.62, + "end": 13278.28, + "probability": 0.9893 + }, + { + "start": 13279.06, + "end": 13281.08, + "probability": 0.9994 + }, + { + "start": 13282.14, + "end": 13283.34, + "probability": 0.6133 + }, + { + "start": 13283.44, + "end": 13285.06, + "probability": 0.9053 + }, + { + "start": 13285.84, + "end": 13288.74, + "probability": 0.9528 + }, + { + "start": 13290.38, + "end": 13292.74, + "probability": 0.9417 + }, + { + "start": 13293.28, + "end": 13295.1, + "probability": 0.9619 + }, + { + "start": 13295.72, + "end": 13296.36, + "probability": 0.698 + }, + { + "start": 13297.26, + "end": 13301.04, + "probability": 0.9342 + }, + { + "start": 13301.34, + "end": 13301.96, + "probability": 0.1617 + }, + { + "start": 13302.82, + "end": 13305.0, + "probability": 0.9279 + }, + { + "start": 13305.1, + "end": 13306.52, + "probability": 0.9312 + }, + { + "start": 13306.86, + "end": 13307.29, + "probability": 0.8408 + }, + { + "start": 13308.02, + "end": 13309.58, + "probability": 0.7114 + }, + { + "start": 13309.74, + "end": 13310.92, + "probability": 0.3212 + }, + { + "start": 13310.96, + "end": 13311.9, + "probability": 0.2147 + }, + { + "start": 13312.0, + "end": 13314.18, + "probability": 0.5808 + }, + { + "start": 13314.98, + "end": 13318.3, + "probability": 0.9948 + }, + { + "start": 13318.84, + "end": 13319.52, + "probability": 0.835 + }, + { + "start": 13320.4, + "end": 13322.96, + "probability": 0.79 + }, + { + "start": 13323.44, + "end": 13324.5, + "probability": 0.9797 + }, + { + "start": 13324.7, + "end": 13325.08, + "probability": 0.9469 + }, + { + "start": 13325.58, + "end": 13326.6, + "probability": 0.7964 + }, + { + "start": 13328.34, + "end": 13328.92, + "probability": 0.1384 + }, + { + "start": 13329.42, + "end": 13333.06, + "probability": 0.8441 + }, + { + "start": 13333.8, + "end": 13335.06, + "probability": 0.8367 + }, + { + "start": 13335.16, + "end": 13337.62, + "probability": 0.973 + }, + { + "start": 13339.52, + "end": 13343.85, + "probability": 0.9863 + }, + { + "start": 13344.7, + "end": 13346.24, + "probability": 0.8519 + }, + { + "start": 13347.26, + "end": 13352.2, + "probability": 0.9894 + }, + { + "start": 13352.42, + "end": 13354.56, + "probability": 0.9988 + }, + { + "start": 13356.24, + "end": 13356.24, + "probability": 0.3044 + }, + { + "start": 13356.24, + "end": 13357.42, + "probability": 0.5609 + }, + { + "start": 13357.56, + "end": 13358.52, + "probability": 0.7841 + }, + { + "start": 13359.56, + "end": 13359.68, + "probability": 0.1063 + }, + { + "start": 13359.68, + "end": 13362.28, + "probability": 0.985 + }, + { + "start": 13363.26, + "end": 13368.1, + "probability": 0.9781 + }, + { + "start": 13368.76, + "end": 13372.32, + "probability": 0.9004 + }, + { + "start": 13372.6, + "end": 13374.08, + "probability": 0.6883 + }, + { + "start": 13374.34, + "end": 13375.06, + "probability": 0.8386 + }, + { + "start": 13375.38, + "end": 13377.32, + "probability": 0.6126 + }, + { + "start": 13377.98, + "end": 13378.52, + "probability": 0.4962 + }, + { + "start": 13378.88, + "end": 13381.46, + "probability": 0.8665 + }, + { + "start": 13383.36, + "end": 13384.78, + "probability": 0.8473 + }, + { + "start": 13386.14, + "end": 13388.98, + "probability": 0.917 + }, + { + "start": 13389.08, + "end": 13391.58, + "probability": 0.497 + }, + { + "start": 13391.9, + "end": 13392.56, + "probability": 0.6736 + }, + { + "start": 13393.48, + "end": 13397.0, + "probability": 0.9985 + }, + { + "start": 13397.12, + "end": 13401.92, + "probability": 0.9971 + }, + { + "start": 13402.96, + "end": 13406.68, + "probability": 0.4531 + }, + { + "start": 13408.18, + "end": 13411.86, + "probability": 0.9927 + }, + { + "start": 13411.88, + "end": 13415.36, + "probability": 0.6659 + }, + { + "start": 13415.58, + "end": 13417.2, + "probability": 0.6832 + }, + { + "start": 13417.36, + "end": 13417.84, + "probability": 0.6861 + }, + { + "start": 13418.14, + "end": 13419.09, + "probability": 0.6436 + }, + { + "start": 13419.9, + "end": 13422.21, + "probability": 0.8039 + }, + { + "start": 13423.66, + "end": 13425.54, + "probability": 0.9961 + }, + { + "start": 13426.18, + "end": 13427.5, + "probability": 0.5916 + }, + { + "start": 13428.46, + "end": 13431.62, + "probability": 0.9111 + }, + { + "start": 13432.38, + "end": 13435.14, + "probability": 0.9602 + }, + { + "start": 13435.68, + "end": 13436.79, + "probability": 0.3822 + }, + { + "start": 13437.62, + "end": 13438.58, + "probability": 0.2168 + }, + { + "start": 13438.68, + "end": 13440.42, + "probability": 0.4789 + }, + { + "start": 13440.5, + "end": 13442.56, + "probability": 0.0911 + }, + { + "start": 13443.54, + "end": 13445.7, + "probability": 0.9069 + }, + { + "start": 13450.38, + "end": 13452.56, + "probability": 0.201 + }, + { + "start": 13452.72, + "end": 13453.24, + "probability": 0.634 + }, + { + "start": 13453.84, + "end": 13454.8, + "probability": 0.616 + }, + { + "start": 13456.2, + "end": 13456.2, + "probability": 0.0908 + }, + { + "start": 13456.34, + "end": 13457.24, + "probability": 0.8519 + }, + { + "start": 13457.54, + "end": 13459.34, + "probability": 0.3263 + }, + { + "start": 13460.66, + "end": 13464.24, + "probability": 0.9406 + }, + { + "start": 13465.5, + "end": 13468.38, + "probability": 0.9985 + }, + { + "start": 13469.38, + "end": 13471.66, + "probability": 0.9904 + }, + { + "start": 13472.38, + "end": 13473.08, + "probability": 0.8924 + }, + { + "start": 13473.84, + "end": 13477.04, + "probability": 0.9692 + }, + { + "start": 13477.64, + "end": 13478.44, + "probability": 0.9346 + }, + { + "start": 13478.56, + "end": 13480.1, + "probability": 0.0148 + }, + { + "start": 13482.92, + "end": 13484.06, + "probability": 0.6472 + }, + { + "start": 13484.12, + "end": 13490.0, + "probability": 0.9829 + }, + { + "start": 13490.62, + "end": 13491.78, + "probability": 0.7924 + }, + { + "start": 13492.6, + "end": 13494.22, + "probability": 0.8656 + }, + { + "start": 13494.72, + "end": 13497.04, + "probability": 0.9472 + }, + { + "start": 13497.1, + "end": 13501.87, + "probability": 0.9766 + }, + { + "start": 13503.44, + "end": 13504.04, + "probability": 0.3886 + }, + { + "start": 13504.04, + "end": 13504.8, + "probability": 0.5423 + }, + { + "start": 13505.58, + "end": 13508.24, + "probability": 0.5254 + }, + { + "start": 13508.88, + "end": 13510.78, + "probability": 0.7009 + }, + { + "start": 13510.94, + "end": 13516.6, + "probability": 0.952 + }, + { + "start": 13517.04, + "end": 13517.9, + "probability": 0.8765 + }, + { + "start": 13519.68, + "end": 13523.3, + "probability": 0.9441 + }, + { + "start": 13525.12, + "end": 13526.5, + "probability": 0.8292 + }, + { + "start": 13526.96, + "end": 13527.53, + "probability": 0.8914 + }, + { + "start": 13528.3, + "end": 13529.38, + "probability": 0.9385 + }, + { + "start": 13529.74, + "end": 13530.62, + "probability": 0.8325 + }, + { + "start": 13531.28, + "end": 13532.2, + "probability": 0.9541 + }, + { + "start": 13532.84, + "end": 13533.16, + "probability": 0.6013 + }, + { + "start": 13538.04, + "end": 13540.42, + "probability": 0.6919 + }, + { + "start": 13541.4, + "end": 13544.26, + "probability": 0.565 + }, + { + "start": 13560.52, + "end": 13561.92, + "probability": 0.8086 + }, + { + "start": 13563.58, + "end": 13566.66, + "probability": 0.8964 + }, + { + "start": 13567.95, + "end": 13571.12, + "probability": 0.9933 + }, + { + "start": 13572.66, + "end": 13576.3, + "probability": 0.6388 + }, + { + "start": 13576.6, + "end": 13576.62, + "probability": 0.7891 + }, + { + "start": 13579.5, + "end": 13580.8, + "probability": 0.6695 + }, + { + "start": 13581.81, + "end": 13585.92, + "probability": 0.9612 + }, + { + "start": 13586.64, + "end": 13587.24, + "probability": 0.9468 + }, + { + "start": 13588.44, + "end": 13588.89, + "probability": 0.8842 + }, + { + "start": 13589.2, + "end": 13590.42, + "probability": 0.6698 + }, + { + "start": 13590.48, + "end": 13591.48, + "probability": 0.7161 + }, + { + "start": 13591.94, + "end": 13592.28, + "probability": 0.8127 + }, + { + "start": 13592.32, + "end": 13592.78, + "probability": 0.745 + }, + { + "start": 13592.92, + "end": 13593.84, + "probability": 0.5808 + }, + { + "start": 13596.26, + "end": 13600.28, + "probability": 0.4526 + }, + { + "start": 13600.28, + "end": 13601.3, + "probability": 0.821 + }, + { + "start": 13602.68, + "end": 13603.74, + "probability": 0.7346 + }, + { + "start": 13604.86, + "end": 13606.86, + "probability": 0.1931 + }, + { + "start": 13608.6, + "end": 13610.57, + "probability": 0.7457 + }, + { + "start": 13611.4, + "end": 13614.54, + "probability": 0.2468 + }, + { + "start": 13615.12, + "end": 13615.44, + "probability": 0.1263 + }, + { + "start": 13615.92, + "end": 13618.24, + "probability": 0.1854 + }, + { + "start": 13620.66, + "end": 13623.36, + "probability": 0.8481 + }, + { + "start": 13624.56, + "end": 13624.86, + "probability": 0.3912 + }, + { + "start": 13625.44, + "end": 13627.9, + "probability": 0.9443 + }, + { + "start": 13630.27, + "end": 13632.56, + "probability": 0.3079 + }, + { + "start": 13634.48, + "end": 13636.68, + "probability": 0.579 + }, + { + "start": 13638.26, + "end": 13641.44, + "probability": 0.0991 + }, + { + "start": 13643.32, + "end": 13650.98, + "probability": 0.9974 + }, + { + "start": 13653.38, + "end": 13656.54, + "probability": 0.9181 + }, + { + "start": 13657.48, + "end": 13659.14, + "probability": 0.9941 + }, + { + "start": 13660.14, + "end": 13660.4, + "probability": 0.8379 + }, + { + "start": 13662.28, + "end": 13664.42, + "probability": 0.9252 + }, + { + "start": 13666.32, + "end": 13670.96, + "probability": 0.9859 + }, + { + "start": 13671.44, + "end": 13673.82, + "probability": 0.9938 + }, + { + "start": 13674.38, + "end": 13675.18, + "probability": 0.9144 + }, + { + "start": 13676.34, + "end": 13677.6, + "probability": 0.9917 + }, + { + "start": 13677.82, + "end": 13678.62, + "probability": 0.891 + }, + { + "start": 13678.72, + "end": 13683.31, + "probability": 0.9791 + }, + { + "start": 13684.02, + "end": 13684.5, + "probability": 0.5975 + }, + { + "start": 13685.42, + "end": 13689.38, + "probability": 0.9963 + }, + { + "start": 13690.92, + "end": 13694.96, + "probability": 0.9377 + }, + { + "start": 13695.96, + "end": 13697.79, + "probability": 0.691 + }, + { + "start": 13698.2, + "end": 13701.9, + "probability": 0.9964 + }, + { + "start": 13702.02, + "end": 13703.86, + "probability": 0.9941 + }, + { + "start": 13705.28, + "end": 13706.34, + "probability": 0.8458 + }, + { + "start": 13707.06, + "end": 13707.88, + "probability": 0.161 + }, + { + "start": 13709.9, + "end": 13713.7, + "probability": 0.8091 + }, + { + "start": 13715.68, + "end": 13719.6, + "probability": 0.6532 + }, + { + "start": 13720.32, + "end": 13722.26, + "probability": 0.9915 + }, + { + "start": 13723.18, + "end": 13724.32, + "probability": 0.8943 + }, + { + "start": 13724.46, + "end": 13726.08, + "probability": 0.8113 + }, + { + "start": 13726.5, + "end": 13727.69, + "probability": 0.8269 + }, + { + "start": 13728.72, + "end": 13731.5, + "probability": 0.9005 + }, + { + "start": 13732.26, + "end": 13733.14, + "probability": 0.9951 + }, + { + "start": 13733.74, + "end": 13734.73, + "probability": 0.7607 + }, + { + "start": 13735.02, + "end": 13736.32, + "probability": 0.9689 + }, + { + "start": 13737.08, + "end": 13739.44, + "probability": 0.9495 + }, + { + "start": 13740.16, + "end": 13742.98, + "probability": 0.8633 + }, + { + "start": 13745.15, + "end": 13747.54, + "probability": 0.6462 + }, + { + "start": 13748.48, + "end": 13750.0, + "probability": 0.9076 + }, + { + "start": 13750.7, + "end": 13753.64, + "probability": 0.9763 + }, + { + "start": 13754.84, + "end": 13756.2, + "probability": 0.7883 + }, + { + "start": 13756.76, + "end": 13760.02, + "probability": 0.8292 + }, + { + "start": 13760.02, + "end": 13762.3, + "probability": 0.9086 + }, + { + "start": 13762.4, + "end": 13763.92, + "probability": 0.9875 + }, + { + "start": 13764.78, + "end": 13765.51, + "probability": 0.9946 + }, + { + "start": 13768.12, + "end": 13770.06, + "probability": 0.8152 + }, + { + "start": 13770.86, + "end": 13773.48, + "probability": 0.979 + }, + { + "start": 13773.68, + "end": 13774.76, + "probability": 0.8514 + }, + { + "start": 13776.24, + "end": 13777.56, + "probability": 0.944 + }, + { + "start": 13778.38, + "end": 13779.12, + "probability": 0.9388 + }, + { + "start": 13780.53, + "end": 13785.34, + "probability": 0.4906 + }, + { + "start": 13785.34, + "end": 13788.28, + "probability": 0.9381 + }, + { + "start": 13789.7, + "end": 13790.22, + "probability": 0.9297 + }, + { + "start": 13790.78, + "end": 13791.38, + "probability": 0.9777 + }, + { + "start": 13792.5, + "end": 13793.12, + "probability": 0.9336 + }, + { + "start": 13793.46, + "end": 13797.46, + "probability": 0.9611 + }, + { + "start": 13797.6, + "end": 13799.32, + "probability": 0.8692 + }, + { + "start": 13799.88, + "end": 13804.98, + "probability": 0.9816 + }, + { + "start": 13805.16, + "end": 13805.74, + "probability": 0.8138 + }, + { + "start": 13806.06, + "end": 13807.5, + "probability": 0.8787 + }, + { + "start": 13807.68, + "end": 13811.14, + "probability": 0.9777 + }, + { + "start": 13812.26, + "end": 13814.44, + "probability": 0.8198 + }, + { + "start": 13815.14, + "end": 13816.14, + "probability": 0.9558 + }, + { + "start": 13816.9, + "end": 13821.21, + "probability": 0.9938 + }, + { + "start": 13821.34, + "end": 13823.0, + "probability": 0.9954 + }, + { + "start": 13823.94, + "end": 13825.82, + "probability": 0.9174 + }, + { + "start": 13826.42, + "end": 13827.26, + "probability": 0.7097 + }, + { + "start": 13827.26, + "end": 13829.72, + "probability": 0.8552 + }, + { + "start": 13830.0, + "end": 13830.9, + "probability": 0.6816 + }, + { + "start": 13830.9, + "end": 13831.68, + "probability": 0.4475 + }, + { + "start": 13831.74, + "end": 13832.16, + "probability": 0.4943 + }, + { + "start": 13832.66, + "end": 13832.76, + "probability": 0.8676 + }, + { + "start": 13833.88, + "end": 13834.14, + "probability": 0.2986 + }, + { + "start": 13834.18, + "end": 13835.64, + "probability": 0.8379 + }, + { + "start": 13836.32, + "end": 13837.08, + "probability": 0.9565 + }, + { + "start": 13837.18, + "end": 13841.28, + "probability": 0.8623 + }, + { + "start": 13841.28, + "end": 13842.02, + "probability": 0.3979 + }, + { + "start": 13842.04, + "end": 13842.38, + "probability": 0.6068 + }, + { + "start": 13842.46, + "end": 13843.32, + "probability": 0.4706 + }, + { + "start": 13843.54, + "end": 13847.64, + "probability": 0.9784 + }, + { + "start": 13862.22, + "end": 13864.6, + "probability": 0.9262 + }, + { + "start": 13864.88, + "end": 13867.42, + "probability": 0.6808 + }, + { + "start": 13868.82, + "end": 13872.52, + "probability": 0.9702 + }, + { + "start": 13872.52, + "end": 13876.0, + "probability": 0.9911 + }, + { + "start": 13877.1, + "end": 13879.34, + "probability": 0.798 + }, + { + "start": 13879.44, + "end": 13882.48, + "probability": 0.9763 + }, + { + "start": 13883.5, + "end": 13886.8, + "probability": 0.9854 + }, + { + "start": 13887.12, + "end": 13891.28, + "probability": 0.9915 + }, + { + "start": 13891.86, + "end": 13893.1, + "probability": 0.9647 + }, + { + "start": 13894.38, + "end": 13896.06, + "probability": 0.9893 + }, + { + "start": 13896.06, + "end": 13897.98, + "probability": 0.8451 + }, + { + "start": 13898.06, + "end": 13902.6, + "probability": 0.9907 + }, + { + "start": 13903.1, + "end": 13905.64, + "probability": 0.8389 + }, + { + "start": 13905.76, + "end": 13908.18, + "probability": 0.9921 + }, + { + "start": 13909.26, + "end": 13911.72, + "probability": 0.988 + }, + { + "start": 13911.9, + "end": 13914.32, + "probability": 0.8173 + }, + { + "start": 13914.5, + "end": 13915.22, + "probability": 0.6974 + }, + { + "start": 13915.94, + "end": 13917.04, + "probability": 0.3056 + }, + { + "start": 13917.34, + "end": 13917.8, + "probability": 0.1346 + }, + { + "start": 13917.88, + "end": 13918.5, + "probability": 0.5429 + }, + { + "start": 13918.66, + "end": 13919.22, + "probability": 0.45 + }, + { + "start": 13935.04, + "end": 13935.04, + "probability": 0.1583 + }, + { + "start": 13935.04, + "end": 13937.1, + "probability": 0.6196 + }, + { + "start": 13938.5, + "end": 13947.68, + "probability": 0.9726 + }, + { + "start": 13948.3, + "end": 13949.36, + "probability": 0.8656 + }, + { + "start": 13950.04, + "end": 13954.54, + "probability": 0.9979 + }, + { + "start": 13955.14, + "end": 13956.04, + "probability": 0.7497 + }, + { + "start": 13956.55, + "end": 13958.36, + "probability": 0.8255 + }, + { + "start": 13959.14, + "end": 13961.36, + "probability": 0.719 + }, + { + "start": 13962.58, + "end": 13966.64, + "probability": 0.8241 + }, + { + "start": 13967.44, + "end": 13968.68, + "probability": 0.8639 + }, + { + "start": 13969.52, + "end": 13973.26, + "probability": 0.9874 + }, + { + "start": 13974.08, + "end": 13974.98, + "probability": 0.8947 + }, + { + "start": 13976.7, + "end": 13976.96, + "probability": 0.4541 + }, + { + "start": 13978.06, + "end": 13979.9, + "probability": 0.9937 + }, + { + "start": 13981.72, + "end": 13986.34, + "probability": 0.9839 + }, + { + "start": 13986.46, + "end": 13988.0, + "probability": 0.9895 + }, + { + "start": 13988.82, + "end": 13990.18, + "probability": 0.9302 + }, + { + "start": 13991.02, + "end": 13991.78, + "probability": 0.6543 + }, + { + "start": 13993.18, + "end": 13998.66, + "probability": 0.9917 + }, + { + "start": 13999.64, + "end": 14002.36, + "probability": 0.8722 + }, + { + "start": 14002.98, + "end": 14005.35, + "probability": 0.9929 + }, + { + "start": 14006.52, + "end": 14008.1, + "probability": 0.9628 + }, + { + "start": 14009.04, + "end": 14010.64, + "probability": 0.6338 + }, + { + "start": 14010.64, + "end": 14011.02, + "probability": 0.977 + }, + { + "start": 14011.8, + "end": 14013.44, + "probability": 0.8399 + }, + { + "start": 14013.48, + "end": 14017.48, + "probability": 0.9942 + }, + { + "start": 14018.12, + "end": 14022.02, + "probability": 0.9875 + }, + { + "start": 14023.1, + "end": 14024.48, + "probability": 0.9421 + }, + { + "start": 14025.64, + "end": 14032.18, + "probability": 0.9824 + }, + { + "start": 14033.14, + "end": 14035.38, + "probability": 0.6816 + }, + { + "start": 14035.92, + "end": 14039.36, + "probability": 0.8988 + }, + { + "start": 14039.96, + "end": 14041.78, + "probability": 0.919 + }, + { + "start": 14042.2, + "end": 14042.42, + "probability": 0.5121 + }, + { + "start": 14042.42, + "end": 14043.02, + "probability": 0.451 + }, + { + "start": 14043.08, + "end": 14044.24, + "probability": 0.3556 + }, + { + "start": 14044.24, + "end": 14044.94, + "probability": 0.9587 + }, + { + "start": 14065.06, + "end": 14065.66, + "probability": 0.6522 + }, + { + "start": 14066.4, + "end": 14067.42, + "probability": 0.871 + }, + { + "start": 14067.58, + "end": 14069.02, + "probability": 0.6277 + }, + { + "start": 14069.22, + "end": 14071.12, + "probability": 0.9938 + }, + { + "start": 14071.54, + "end": 14073.74, + "probability": 0.9367 + }, + { + "start": 14074.91, + "end": 14075.92, + "probability": 0.6564 + }, + { + "start": 14077.1, + "end": 14081.23, + "probability": 0.4795 + }, + { + "start": 14081.98, + "end": 14082.08, + "probability": 0.7643 + }, + { + "start": 14082.54, + "end": 14083.14, + "probability": 0.7725 + }, + { + "start": 14083.9, + "end": 14085.68, + "probability": 0.9855 + }, + { + "start": 14086.38, + "end": 14090.54, + "probability": 0.8641 + }, + { + "start": 14090.96, + "end": 14092.1, + "probability": 0.7178 + }, + { + "start": 14092.98, + "end": 14095.34, + "probability": 0.9019 + }, + { + "start": 14096.1, + "end": 14097.62, + "probability": 0.748 + }, + { + "start": 14098.7, + "end": 14101.94, + "probability": 0.8087 + }, + { + "start": 14102.74, + "end": 14104.14, + "probability": 0.8712 + }, + { + "start": 14104.82, + "end": 14105.74, + "probability": 0.7568 + }, + { + "start": 14106.62, + "end": 14108.75, + "probability": 0.7288 + }, + { + "start": 14109.78, + "end": 14110.02, + "probability": 0.1039 + }, + { + "start": 14110.02, + "end": 14111.36, + "probability": 0.7946 + }, + { + "start": 14111.88, + "end": 14112.88, + "probability": 0.6342 + }, + { + "start": 14113.36, + "end": 14115.18, + "probability": 0.9971 + }, + { + "start": 14115.72, + "end": 14119.72, + "probability": 0.7969 + }, + { + "start": 14119.84, + "end": 14122.32, + "probability": 0.5264 + }, + { + "start": 14123.08, + "end": 14126.28, + "probability": 0.9458 + }, + { + "start": 14126.82, + "end": 14127.52, + "probability": 0.8098 + }, + { + "start": 14127.76, + "end": 14130.82, + "probability": 0.9691 + }, + { + "start": 14131.34, + "end": 14133.24, + "probability": 0.9475 + }, + { + "start": 14134.3, + "end": 14137.78, + "probability": 0.6693 + }, + { + "start": 14137.8, + "end": 14142.54, + "probability": 0.753 + }, + { + "start": 14142.86, + "end": 14146.58, + "probability": 0.5677 + }, + { + "start": 14146.94, + "end": 14149.36, + "probability": 0.8231 + }, + { + "start": 14149.88, + "end": 14150.98, + "probability": 0.9413 + }, + { + "start": 14151.42, + "end": 14152.76, + "probability": 0.8736 + }, + { + "start": 14153.14, + "end": 14154.3, + "probability": 0.8023 + }, + { + "start": 14154.66, + "end": 14155.18, + "probability": 0.5966 + }, + { + "start": 14155.7, + "end": 14160.44, + "probability": 0.979 + }, + { + "start": 14160.96, + "end": 14161.3, + "probability": 0.9014 + }, + { + "start": 14162.0, + "end": 14162.92, + "probability": 0.9763 + }, + { + "start": 14164.34, + "end": 14164.86, + "probability": 0.8145 + }, + { + "start": 14166.14, + "end": 14167.44, + "probability": 0.8368 + }, + { + "start": 14167.88, + "end": 14169.36, + "probability": 0.9214 + }, + { + "start": 14169.9, + "end": 14170.16, + "probability": 0.8682 + }, + { + "start": 14170.54, + "end": 14171.24, + "probability": 0.9392 + }, + { + "start": 14171.38, + "end": 14173.92, + "probability": 0.9148 + }, + { + "start": 14174.42, + "end": 14175.18, + "probability": 0.9146 + }, + { + "start": 14175.88, + "end": 14180.74, + "probability": 0.9987 + }, + { + "start": 14181.66, + "end": 14182.36, + "probability": 0.9059 + }, + { + "start": 14183.22, + "end": 14187.64, + "probability": 0.7974 + }, + { + "start": 14188.34, + "end": 14189.72, + "probability": 0.9094 + }, + { + "start": 14190.36, + "end": 14191.94, + "probability": 0.9474 + }, + { + "start": 14192.36, + "end": 14195.24, + "probability": 0.9469 + }, + { + "start": 14195.76, + "end": 14199.32, + "probability": 0.8613 + }, + { + "start": 14199.86, + "end": 14200.3, + "probability": 0.7281 + }, + { + "start": 14201.06, + "end": 14202.64, + "probability": 0.9215 + }, + { + "start": 14202.86, + "end": 14206.54, + "probability": 0.9442 + }, + { + "start": 14207.16, + "end": 14209.12, + "probability": 0.8932 + }, + { + "start": 14209.64, + "end": 14210.26, + "probability": 0.6779 + }, + { + "start": 14211.22, + "end": 14213.04, + "probability": 0.8137 + }, + { + "start": 14213.64, + "end": 14215.57, + "probability": 0.8661 + }, + { + "start": 14216.68, + "end": 14218.18, + "probability": 0.9436 + }, + { + "start": 14218.7, + "end": 14221.48, + "probability": 0.9729 + }, + { + "start": 14222.08, + "end": 14223.4, + "probability": 0.7919 + }, + { + "start": 14224.04, + "end": 14224.48, + "probability": 0.8785 + }, + { + "start": 14224.92, + "end": 14228.2, + "probability": 0.963 + }, + { + "start": 14228.5, + "end": 14229.76, + "probability": 0.9972 + }, + { + "start": 14230.44, + "end": 14232.02, + "probability": 0.9054 + }, + { + "start": 14232.52, + "end": 14235.72, + "probability": 0.8702 + }, + { + "start": 14237.08, + "end": 14239.76, + "probability": 0.6646 + }, + { + "start": 14241.9, + "end": 14243.62, + "probability": 0.6769 + }, + { + "start": 14244.38, + "end": 14245.04, + "probability": 0.8506 + }, + { + "start": 14245.72, + "end": 14246.4, + "probability": 0.8333 + }, + { + "start": 14246.96, + "end": 14247.52, + "probability": 0.7583 + }, + { + "start": 14248.08, + "end": 14248.77, + "probability": 0.8857 + }, + { + "start": 14248.9, + "end": 14249.82, + "probability": 0.6562 + }, + { + "start": 14251.0, + "end": 14257.62, + "probability": 0.9552 + }, + { + "start": 14258.14, + "end": 14261.86, + "probability": 0.8572 + }, + { + "start": 14262.22, + "end": 14267.3, + "probability": 0.8862 + }, + { + "start": 14267.94, + "end": 14271.7, + "probability": 0.7402 + }, + { + "start": 14272.18, + "end": 14276.28, + "probability": 0.8341 + }, + { + "start": 14276.28, + "end": 14279.14, + "probability": 0.9917 + }, + { + "start": 14279.66, + "end": 14281.1, + "probability": 0.9999 + }, + { + "start": 14282.04, + "end": 14285.26, + "probability": 0.9595 + }, + { + "start": 14285.5, + "end": 14285.84, + "probability": 0.6192 + }, + { + "start": 14286.06, + "end": 14286.06, + "probability": 0.5546 + }, + { + "start": 14286.12, + "end": 14287.16, + "probability": 0.4754 + }, + { + "start": 14287.78, + "end": 14288.6, + "probability": 0.8895 + }, + { + "start": 14309.46, + "end": 14310.26, + "probability": 0.7409 + }, + { + "start": 14311.2, + "end": 14312.76, + "probability": 0.7846 + }, + { + "start": 14314.28, + "end": 14317.86, + "probability": 0.9124 + }, + { + "start": 14318.88, + "end": 14320.16, + "probability": 0.8284 + }, + { + "start": 14321.6, + "end": 14322.54, + "probability": 0.8444 + }, + { + "start": 14323.12, + "end": 14325.28, + "probability": 0.8692 + }, + { + "start": 14326.12, + "end": 14331.14, + "probability": 0.8464 + }, + { + "start": 14331.42, + "end": 14333.16, + "probability": 0.984 + }, + { + "start": 14334.1, + "end": 14334.94, + "probability": 0.8698 + }, + { + "start": 14335.08, + "end": 14335.74, + "probability": 0.8835 + }, + { + "start": 14335.84, + "end": 14340.9, + "probability": 0.9893 + }, + { + "start": 14340.9, + "end": 14345.36, + "probability": 0.9863 + }, + { + "start": 14346.46, + "end": 14347.36, + "probability": 0.6226 + }, + { + "start": 14347.58, + "end": 14351.14, + "probability": 0.9298 + }, + { + "start": 14351.86, + "end": 14358.2, + "probability": 0.9444 + }, + { + "start": 14358.72, + "end": 14364.06, + "probability": 0.9086 + }, + { + "start": 14365.6, + "end": 14366.98, + "probability": 0.9166 + }, + { + "start": 14367.18, + "end": 14367.94, + "probability": 0.469 + }, + { + "start": 14368.06, + "end": 14368.9, + "probability": 0.3643 + }, + { + "start": 14369.98, + "end": 14370.52, + "probability": 0.9539 + }, + { + "start": 14370.72, + "end": 14371.86, + "probability": 0.9596 + }, + { + "start": 14371.96, + "end": 14376.18, + "probability": 0.8977 + }, + { + "start": 14376.18, + "end": 14377.66, + "probability": 0.9733 + }, + { + "start": 14380.88, + "end": 14381.52, + "probability": 0.0843 + }, + { + "start": 14381.52, + "end": 14382.42, + "probability": 0.359 + }, + { + "start": 14382.62, + "end": 14384.42, + "probability": 0.9782 + }, + { + "start": 14385.0, + "end": 14386.4, + "probability": 0.9281 + }, + { + "start": 14387.02, + "end": 14388.14, + "probability": 0.7146 + }, + { + "start": 14388.32, + "end": 14389.02, + "probability": 0.7555 + }, + { + "start": 14389.64, + "end": 14392.71, + "probability": 0.5501 + }, + { + "start": 14393.92, + "end": 14396.54, + "probability": 0.8262 + }, + { + "start": 14397.22, + "end": 14399.48, + "probability": 0.822 + }, + { + "start": 14400.2, + "end": 14403.92, + "probability": 0.9006 + }, + { + "start": 14404.46, + "end": 14407.36, + "probability": 0.8955 + }, + { + "start": 14408.18, + "end": 14410.36, + "probability": 0.9969 + }, + { + "start": 14410.44, + "end": 14411.08, + "probability": 0.6538 + }, + { + "start": 14414.48, + "end": 14416.26, + "probability": 0.8457 + }, + { + "start": 14416.38, + "end": 14417.18, + "probability": 0.9013 + }, + { + "start": 14417.54, + "end": 14417.82, + "probability": 0.8147 + }, + { + "start": 14418.24, + "end": 14418.72, + "probability": 0.6322 + }, + { + "start": 14418.82, + "end": 14420.18, + "probability": 0.9529 + }, + { + "start": 14420.92, + "end": 14421.7, + "probability": 0.6321 + }, + { + "start": 14422.34, + "end": 14423.46, + "probability": 0.9534 + }, + { + "start": 14424.58, + "end": 14427.94, + "probability": 0.9839 + }, + { + "start": 14428.6, + "end": 14430.3, + "probability": 0.9927 + }, + { + "start": 14430.58, + "end": 14431.66, + "probability": 0.9771 + }, + { + "start": 14432.1, + "end": 14435.02, + "probability": 0.9933 + }, + { + "start": 14435.62, + "end": 14436.82, + "probability": 0.9939 + }, + { + "start": 14437.34, + "end": 14438.24, + "probability": 0.9642 + }, + { + "start": 14439.38, + "end": 14444.32, + "probability": 0.9097 + }, + { + "start": 14444.86, + "end": 14446.16, + "probability": 0.8857 + }, + { + "start": 14446.76, + "end": 14447.08, + "probability": 0.871 + }, + { + "start": 14448.06, + "end": 14449.68, + "probability": 0.6518 + }, + { + "start": 14450.0, + "end": 14451.29, + "probability": 0.8451 + }, + { + "start": 14451.9, + "end": 14452.66, + "probability": 0.6083 + }, + { + "start": 14453.3, + "end": 14454.56, + "probability": 0.699 + }, + { + "start": 14455.16, + "end": 14456.56, + "probability": 0.9381 + }, + { + "start": 14457.44, + "end": 14458.36, + "probability": 0.9794 + }, + { + "start": 14459.0, + "end": 14459.9, + "probability": 0.7549 + }, + { + "start": 14460.54, + "end": 14461.82, + "probability": 0.9914 + }, + { + "start": 14461.98, + "end": 14463.12, + "probability": 0.6768 + }, + { + "start": 14463.98, + "end": 14465.3, + "probability": 0.8915 + }, + { + "start": 14465.38, + "end": 14466.2, + "probability": 0.5798 + }, + { + "start": 14466.36, + "end": 14469.32, + "probability": 0.9766 + }, + { + "start": 14469.88, + "end": 14473.36, + "probability": 0.8844 + }, + { + "start": 14473.8, + "end": 14474.98, + "probability": 0.9772 + }, + { + "start": 14475.54, + "end": 14476.68, + "probability": 0.967 + }, + { + "start": 14476.98, + "end": 14477.76, + "probability": 0.7609 + }, + { + "start": 14478.66, + "end": 14479.58, + "probability": 0.913 + }, + { + "start": 14480.66, + "end": 14482.24, + "probability": 0.5493 + }, + { + "start": 14482.48, + "end": 14483.34, + "probability": 0.9077 + }, + { + "start": 14483.88, + "end": 14486.36, + "probability": 0.9912 + }, + { + "start": 14486.64, + "end": 14487.3, + "probability": 0.8305 + }, + { + "start": 14487.98, + "end": 14489.16, + "probability": 0.8639 + }, + { + "start": 14489.6, + "end": 14490.68, + "probability": 0.98 + }, + { + "start": 14491.02, + "end": 14495.21, + "probability": 0.9985 + }, + { + "start": 14495.6, + "end": 14498.28, + "probability": 0.8686 + }, + { + "start": 14499.0, + "end": 14499.12, + "probability": 0.0675 + }, + { + "start": 14499.12, + "end": 14499.42, + "probability": 0.3663 + }, + { + "start": 14499.98, + "end": 14501.12, + "probability": 0.9865 + }, + { + "start": 14501.66, + "end": 14502.58, + "probability": 0.9732 + }, + { + "start": 14503.1, + "end": 14506.47, + "probability": 0.6699 + }, + { + "start": 14507.14, + "end": 14509.26, + "probability": 0.891 + }, + { + "start": 14509.54, + "end": 14509.68, + "probability": 0.4199 + }, + { + "start": 14509.82, + "end": 14509.82, + "probability": 0.6719 + }, + { + "start": 14510.06, + "end": 14510.72, + "probability": 0.8833 + }, + { + "start": 14510.82, + "end": 14511.5, + "probability": 0.9426 + }, + { + "start": 14512.0, + "end": 14514.8, + "probability": 0.7354 + }, + { + "start": 14515.38, + "end": 14517.25, + "probability": 0.9852 + }, + { + "start": 14517.9, + "end": 14521.32, + "probability": 0.7902 + }, + { + "start": 14521.4, + "end": 14524.84, + "probability": 0.9174 + }, + { + "start": 14525.22, + "end": 14526.36, + "probability": 0.9333 + }, + { + "start": 14526.74, + "end": 14527.36, + "probability": 0.5061 + }, + { + "start": 14527.36, + "end": 14528.18, + "probability": 0.3927 + }, + { + "start": 14536.82, + "end": 14537.0, + "probability": 0.2916 + }, + { + "start": 14537.06, + "end": 14537.88, + "probability": 0.5642 + }, + { + "start": 14538.52, + "end": 14541.96, + "probability": 0.7487 + }, + { + "start": 14542.06, + "end": 14542.54, + "probability": 0.787 + }, + { + "start": 14542.68, + "end": 14544.56, + "probability": 0.9795 + }, + { + "start": 14545.6, + "end": 14549.18, + "probability": 0.886 + }, + { + "start": 14549.88, + "end": 14552.76, + "probability": 0.9805 + }, + { + "start": 14552.9, + "end": 14555.92, + "probability": 0.9992 + }, + { + "start": 14555.92, + "end": 14559.16, + "probability": 0.9989 + }, + { + "start": 14559.3, + "end": 14560.26, + "probability": 0.481 + }, + { + "start": 14560.68, + "end": 14564.62, + "probability": 0.9985 + }, + { + "start": 14564.76, + "end": 14568.12, + "probability": 0.9687 + }, + { + "start": 14568.82, + "end": 14572.26, + "probability": 0.9996 + }, + { + "start": 14572.94, + "end": 14576.18, + "probability": 0.9601 + }, + { + "start": 14577.64, + "end": 14579.92, + "probability": 0.9912 + }, + { + "start": 14580.02, + "end": 14580.38, + "probability": 0.4475 + }, + { + "start": 14580.54, + "end": 14581.62, + "probability": 0.8545 + }, + { + "start": 14582.48, + "end": 14588.22, + "probability": 0.9266 + }, + { + "start": 14589.4, + "end": 14593.38, + "probability": 0.8237 + }, + { + "start": 14593.54, + "end": 14594.66, + "probability": 0.5229 + }, + { + "start": 14594.8, + "end": 14597.76, + "probability": 0.9243 + }, + { + "start": 14600.1, + "end": 14600.1, + "probability": 0.019 + }, + { + "start": 14600.1, + "end": 14600.1, + "probability": 0.082 + }, + { + "start": 14600.1, + "end": 14600.56, + "probability": 0.4053 + }, + { + "start": 14600.68, + "end": 14602.74, + "probability": 0.7652 + }, + { + "start": 14603.4, + "end": 14604.34, + "probability": 0.6275 + }, + { + "start": 14604.46, + "end": 14607.5, + "probability": 0.9844 + }, + { + "start": 14607.78, + "end": 14612.74, + "probability": 0.9793 + }, + { + "start": 14614.97, + "end": 14616.93, + "probability": 0.6705 + }, + { + "start": 14618.68, + "end": 14620.22, + "probability": 0.9819 + }, + { + "start": 14620.22, + "end": 14622.76, + "probability": 0.9849 + }, + { + "start": 14622.76, + "end": 14626.46, + "probability": 0.9863 + }, + { + "start": 14627.22, + "end": 14629.44, + "probability": 0.9289 + }, + { + "start": 14630.3, + "end": 14630.3, + "probability": 0.0042 + }, + { + "start": 14630.3, + "end": 14634.3, + "probability": 0.9972 + }, + { + "start": 14634.88, + "end": 14638.54, + "probability": 0.9927 + }, + { + "start": 14638.84, + "end": 14640.7, + "probability": 0.8945 + }, + { + "start": 14641.44, + "end": 14645.3, + "probability": 0.9839 + }, + { + "start": 14645.32, + "end": 14650.18, + "probability": 0.9702 + }, + { + "start": 14650.84, + "end": 14653.46, + "probability": 0.7983 + }, + { + "start": 14655.12, + "end": 14656.67, + "probability": 0.5949 + }, + { + "start": 14656.72, + "end": 14656.9, + "probability": 0.7794 + }, + { + "start": 14656.98, + "end": 14662.3, + "probability": 0.8545 + }, + { + "start": 14663.38, + "end": 14664.99, + "probability": 0.6223 + }, + { + "start": 14665.3, + "end": 14666.21, + "probability": 0.4858 + }, + { + "start": 14666.42, + "end": 14666.86, + "probability": 0.8432 + }, + { + "start": 14666.98, + "end": 14669.14, + "probability": 0.7548 + }, + { + "start": 14669.38, + "end": 14671.4, + "probability": 0.0921 + }, + { + "start": 14671.46, + "end": 14675.68, + "probability": 0.8929 + }, + { + "start": 14676.0, + "end": 14677.72, + "probability": 0.5149 + }, + { + "start": 14678.68, + "end": 14679.42, + "probability": 0.4969 + }, + { + "start": 14681.4, + "end": 14681.5, + "probability": 0.1234 + }, + { + "start": 14681.5, + "end": 14681.5, + "probability": 0.1658 + }, + { + "start": 14681.5, + "end": 14681.5, + "probability": 0.0411 + }, + { + "start": 14681.5, + "end": 14682.04, + "probability": 0.0746 + }, + { + "start": 14682.74, + "end": 14684.6, + "probability": 0.7901 + }, + { + "start": 14685.22, + "end": 14689.66, + "probability": 0.9917 + }, + { + "start": 14690.9, + "end": 14692.78, + "probability": 0.9538 + }, + { + "start": 14693.34, + "end": 14694.76, + "probability": 0.7756 + }, + { + "start": 14695.5, + "end": 14699.0, + "probability": 0.9812 + }, + { + "start": 14699.98, + "end": 14701.86, + "probability": 0.9899 + }, + { + "start": 14702.42, + "end": 14704.58, + "probability": 0.7218 + }, + { + "start": 14705.44, + "end": 14708.1, + "probability": 0.9916 + }, + { + "start": 14708.58, + "end": 14710.94, + "probability": 0.8632 + }, + { + "start": 14711.2, + "end": 14714.44, + "probability": 0.9803 + }, + { + "start": 14714.5, + "end": 14718.24, + "probability": 0.9843 + }, + { + "start": 14718.5, + "end": 14719.74, + "probability": 0.8011 + }, + { + "start": 14720.58, + "end": 14722.86, + "probability": 0.7342 + }, + { + "start": 14724.05, + "end": 14726.12, + "probability": 0.8696 + }, + { + "start": 14726.44, + "end": 14730.32, + "probability": 0.8947 + }, + { + "start": 14730.78, + "end": 14730.78, + "probability": 0.5209 + }, + { + "start": 14730.78, + "end": 14730.9, + "probability": 0.0811 + }, + { + "start": 14730.9, + "end": 14731.54, + "probability": 0.2972 + }, + { + "start": 14732.98, + "end": 14736.14, + "probability": 0.9937 + }, + { + "start": 14736.14, + "end": 14739.58, + "probability": 0.9938 + }, + { + "start": 14740.74, + "end": 14743.88, + "probability": 0.9958 + }, + { + "start": 14744.52, + "end": 14748.22, + "probability": 0.9995 + }, + { + "start": 14749.0, + "end": 14752.32, + "probability": 0.999 + }, + { + "start": 14752.32, + "end": 14756.66, + "probability": 0.994 + }, + { + "start": 14757.34, + "end": 14760.54, + "probability": 0.8881 + }, + { + "start": 14761.14, + "end": 14762.76, + "probability": 0.9976 + }, + { + "start": 14762.88, + "end": 14764.34, + "probability": 0.9663 + }, + { + "start": 14764.46, + "end": 14767.32, + "probability": 0.9955 + }, + { + "start": 14767.86, + "end": 14770.4, + "probability": 0.9883 + }, + { + "start": 14770.92, + "end": 14775.82, + "probability": 0.9983 + }, + { + "start": 14775.82, + "end": 14779.18, + "probability": 0.9997 + }, + { + "start": 14779.26, + "end": 14779.62, + "probability": 0.782 + }, + { + "start": 14780.14, + "end": 14780.66, + "probability": 0.372 + }, + { + "start": 14780.66, + "end": 14781.26, + "probability": 0.3754 + }, + { + "start": 14798.2, + "end": 14798.32, + "probability": 0.2469 + }, + { + "start": 14798.32, + "end": 14798.32, + "probability": 0.0498 + }, + { + "start": 14798.32, + "end": 14800.22, + "probability": 0.6241 + }, + { + "start": 14802.08, + "end": 14809.0, + "probability": 0.9195 + }, + { + "start": 14810.86, + "end": 14814.14, + "probability": 0.9785 + }, + { + "start": 14814.62, + "end": 14821.28, + "probability": 0.7653 + }, + { + "start": 14821.54, + "end": 14823.44, + "probability": 0.8278 + }, + { + "start": 14823.52, + "end": 14824.36, + "probability": 0.9651 + }, + { + "start": 14825.26, + "end": 14827.96, + "probability": 0.9925 + }, + { + "start": 14829.48, + "end": 14829.96, + "probability": 0.7507 + }, + { + "start": 14831.32, + "end": 14834.98, + "probability": 0.9875 + }, + { + "start": 14835.92, + "end": 14836.8, + "probability": 0.8214 + }, + { + "start": 14837.88, + "end": 14841.1, + "probability": 0.8722 + }, + { + "start": 14841.26, + "end": 14847.92, + "probability": 0.9928 + }, + { + "start": 14851.62, + "end": 14855.62, + "probability": 0.997 + }, + { + "start": 14857.41, + "end": 14862.06, + "probability": 0.9839 + }, + { + "start": 14863.88, + "end": 14865.5, + "probability": 0.5836 + }, + { + "start": 14866.32, + "end": 14869.02, + "probability": 0.7019 + }, + { + "start": 14869.36, + "end": 14870.7, + "probability": 0.1966 + }, + { + "start": 14870.7, + "end": 14871.38, + "probability": 0.6415 + }, + { + "start": 14871.46, + "end": 14874.28, + "probability": 0.9286 + }, + { + "start": 14875.72, + "end": 14875.82, + "probability": 0.2537 + }, + { + "start": 14877.76, + "end": 14878.84, + "probability": 0.6938 + }, + { + "start": 14879.46, + "end": 14880.8, + "probability": 0.9414 + }, + { + "start": 14881.34, + "end": 14882.32, + "probability": 0.7475 + }, + { + "start": 14882.6, + "end": 14883.8, + "probability": 0.987 + }, + { + "start": 14886.48, + "end": 14890.22, + "probability": 0.9885 + }, + { + "start": 14891.04, + "end": 14895.92, + "probability": 0.988 + }, + { + "start": 14896.46, + "end": 14897.26, + "probability": 0.5623 + }, + { + "start": 14898.28, + "end": 14900.12, + "probability": 0.9922 + }, + { + "start": 14902.36, + "end": 14905.3, + "probability": 0.7808 + }, + { + "start": 14906.76, + "end": 14908.42, + "probability": 0.9989 + }, + { + "start": 14908.98, + "end": 14909.84, + "probability": 0.917 + }, + { + "start": 14910.8, + "end": 14914.98, + "probability": 0.8282 + }, + { + "start": 14916.28, + "end": 14918.66, + "probability": 0.9941 + }, + { + "start": 14920.98, + "end": 14922.94, + "probability": 0.8287 + }, + { + "start": 14924.82, + "end": 14926.86, + "probability": 0.9958 + }, + { + "start": 14928.88, + "end": 14930.06, + "probability": 0.5793 + }, + { + "start": 14931.48, + "end": 14932.54, + "probability": 0.9515 + }, + { + "start": 14932.6, + "end": 14933.22, + "probability": 0.5466 + }, + { + "start": 14933.4, + "end": 14937.5, + "probability": 0.9665 + }, + { + "start": 14937.5, + "end": 14945.24, + "probability": 0.9502 + }, + { + "start": 14945.7, + "end": 14948.68, + "probability": 0.8347 + }, + { + "start": 14948.8, + "end": 14949.48, + "probability": 0.2887 + }, + { + "start": 14949.48, + "end": 14950.3, + "probability": 0.98 + }, + { + "start": 14951.48, + "end": 14953.56, + "probability": 0.9639 + }, + { + "start": 14954.72, + "end": 14957.14, + "probability": 0.855 + }, + { + "start": 14957.82, + "end": 14959.12, + "probability": 0.9604 + }, + { + "start": 14960.02, + "end": 14963.44, + "probability": 0.974 + }, + { + "start": 14964.52, + "end": 14964.68, + "probability": 0.9263 + }, + { + "start": 14966.02, + "end": 14968.06, + "probability": 0.7824 + }, + { + "start": 14968.28, + "end": 14975.14, + "probability": 0.9164 + }, + { + "start": 14976.95, + "end": 14980.82, + "probability": 0.8714 + }, + { + "start": 14981.22, + "end": 14981.88, + "probability": 0.7211 + }, + { + "start": 14982.34, + "end": 14983.44, + "probability": 0.887 + }, + { + "start": 14983.78, + "end": 14984.64, + "probability": 0.9424 + }, + { + "start": 14985.48, + "end": 14985.68, + "probability": 0.8608 + }, + { + "start": 14986.66, + "end": 14990.3, + "probability": 0.9578 + }, + { + "start": 14990.44, + "end": 14993.2, + "probability": 0.9373 + }, + { + "start": 14993.48, + "end": 14993.68, + "probability": 0.8043 + }, + { + "start": 14994.52, + "end": 14994.96, + "probability": 0.6692 + }, + { + "start": 14995.26, + "end": 14997.04, + "probability": 0.6553 + }, + { + "start": 15012.34, + "end": 15012.48, + "probability": 0.3467 + }, + { + "start": 15019.76, + "end": 15020.42, + "probability": 0.6127 + }, + { + "start": 15022.46, + "end": 15023.22, + "probability": 0.7137 + }, + { + "start": 15029.18, + "end": 15030.6, + "probability": 0.7471 + }, + { + "start": 15032.2, + "end": 15033.58, + "probability": 0.9429 + }, + { + "start": 15035.04, + "end": 15037.36, + "probability": 0.9348 + }, + { + "start": 15037.44, + "end": 15038.36, + "probability": 0.8198 + }, + { + "start": 15039.0, + "end": 15040.13, + "probability": 0.9141 + }, + { + "start": 15041.44, + "end": 15043.08, + "probability": 0.8005 + }, + { + "start": 15043.36, + "end": 15043.92, + "probability": 0.5724 + }, + { + "start": 15044.08, + "end": 15044.88, + "probability": 0.7902 + }, + { + "start": 15045.74, + "end": 15046.68, + "probability": 0.8541 + }, + { + "start": 15048.22, + "end": 15051.1, + "probability": 0.9522 + }, + { + "start": 15051.88, + "end": 15052.3, + "probability": 0.7781 + }, + { + "start": 15052.82, + "end": 15053.14, + "probability": 0.7502 + }, + { + "start": 15054.48, + "end": 15055.46, + "probability": 0.4968 + }, + { + "start": 15056.74, + "end": 15058.56, + "probability": 0.8949 + }, + { + "start": 15059.96, + "end": 15060.92, + "probability": 0.583 + }, + { + "start": 15061.5, + "end": 15062.76, + "probability": 0.9833 + }, + { + "start": 15063.96, + "end": 15065.62, + "probability": 0.9647 + }, + { + "start": 15066.5, + "end": 15070.06, + "probability": 0.7736 + }, + { + "start": 15070.38, + "end": 15076.64, + "probability": 0.9751 + }, + { + "start": 15077.9, + "end": 15080.31, + "probability": 0.9971 + }, + { + "start": 15080.44, + "end": 15081.7, + "probability": 0.8025 + }, + { + "start": 15082.3, + "end": 15082.68, + "probability": 0.5003 + }, + { + "start": 15083.54, + "end": 15086.44, + "probability": 0.9877 + }, + { + "start": 15087.86, + "end": 15092.16, + "probability": 0.8738 + }, + { + "start": 15093.04, + "end": 15095.06, + "probability": 0.9241 + }, + { + "start": 15095.92, + "end": 15097.06, + "probability": 0.6613 + }, + { + "start": 15097.54, + "end": 15098.7, + "probability": 0.9116 + }, + { + "start": 15098.72, + "end": 15099.52, + "probability": 0.9968 + }, + { + "start": 15100.06, + "end": 15101.72, + "probability": 0.9828 + }, + { + "start": 15102.01, + "end": 15104.5, + "probability": 0.1986 + }, + { + "start": 15105.04, + "end": 15107.34, + "probability": 0.8809 + }, + { + "start": 15107.6, + "end": 15108.54, + "probability": 0.9644 + }, + { + "start": 15108.62, + "end": 15109.66, + "probability": 0.8467 + }, + { + "start": 15110.02, + "end": 15111.46, + "probability": 0.7152 + }, + { + "start": 15112.4, + "end": 15114.4, + "probability": 0.7998 + }, + { + "start": 15114.46, + "end": 15116.78, + "probability": 0.9373 + }, + { + "start": 15117.32, + "end": 15121.1, + "probability": 0.6204 + }, + { + "start": 15122.38, + "end": 15126.69, + "probability": 0.666 + }, + { + "start": 15129.64, + "end": 15132.24, + "probability": 0.9783 + }, + { + "start": 15133.48, + "end": 15135.07, + "probability": 0.6511 + }, + { + "start": 15135.24, + "end": 15136.48, + "probability": 0.9634 + }, + { + "start": 15137.78, + "end": 15138.52, + "probability": 0.7266 + }, + { + "start": 15139.52, + "end": 15140.18, + "probability": 0.0089 + }, + { + "start": 15141.5, + "end": 15141.76, + "probability": 0.0865 + }, + { + "start": 15141.76, + "end": 15142.58, + "probability": 0.3309 + }, + { + "start": 15143.58, + "end": 15144.48, + "probability": 0.7499 + }, + { + "start": 15145.78, + "end": 15146.94, + "probability": 0.7476 + }, + { + "start": 15147.58, + "end": 15150.9, + "probability": 0.9241 + }, + { + "start": 15151.46, + "end": 15154.08, + "probability": 0.9783 + }, + { + "start": 15155.36, + "end": 15157.94, + "probability": 0.9802 + }, + { + "start": 15158.76, + "end": 15159.38, + "probability": 0.3927 + }, + { + "start": 15160.54, + "end": 15163.92, + "probability": 0.9502 + }, + { + "start": 15164.42, + "end": 15165.74, + "probability": 0.7378 + }, + { + "start": 15166.54, + "end": 15167.58, + "probability": 0.6368 + }, + { + "start": 15168.02, + "end": 15169.92, + "probability": 0.8795 + }, + { + "start": 15170.96, + "end": 15174.24, + "probability": 0.9966 + }, + { + "start": 15175.04, + "end": 15176.86, + "probability": 0.937 + }, + { + "start": 15177.54, + "end": 15178.17, + "probability": 0.9829 + }, + { + "start": 15178.56, + "end": 15180.8, + "probability": 0.8249 + }, + { + "start": 15181.86, + "end": 15184.28, + "probability": 0.9973 + }, + { + "start": 15184.88, + "end": 15185.7, + "probability": 0.9203 + }, + { + "start": 15186.72, + "end": 15187.88, + "probability": 0.9496 + }, + { + "start": 15188.54, + "end": 15189.32, + "probability": 0.981 + }, + { + "start": 15190.08, + "end": 15190.8, + "probability": 0.8926 + }, + { + "start": 15191.62, + "end": 15191.84, + "probability": 0.6942 + }, + { + "start": 15193.2, + "end": 15194.84, + "probability": 0.7119 + }, + { + "start": 15195.82, + "end": 15198.62, + "probability": 0.9438 + }, + { + "start": 15199.52, + "end": 15200.54, + "probability": 0.9418 + }, + { + "start": 15200.66, + "end": 15202.02, + "probability": 0.7627 + }, + { + "start": 15202.48, + "end": 15203.04, + "probability": 0.9777 + }, + { + "start": 15204.08, + "end": 15204.55, + "probability": 0.991 + }, + { + "start": 15205.84, + "end": 15208.18, + "probability": 0.9596 + }, + { + "start": 15208.92, + "end": 15210.0, + "probability": 0.9849 + }, + { + "start": 15210.58, + "end": 15211.62, + "probability": 0.913 + }, + { + "start": 15212.22, + "end": 15213.0, + "probability": 0.9679 + }, + { + "start": 15213.66, + "end": 15214.24, + "probability": 0.9055 + }, + { + "start": 15215.56, + "end": 15217.7, + "probability": 0.6657 + }, + { + "start": 15220.18, + "end": 15221.42, + "probability": 0.8113 + }, + { + "start": 15222.36, + "end": 15223.68, + "probability": 0.9972 + }, + { + "start": 15225.0, + "end": 15226.97, + "probability": 0.9658 + }, + { + "start": 15229.28, + "end": 15231.38, + "probability": 0.7255 + }, + { + "start": 15231.96, + "end": 15232.26, + "probability": 0.7702 + }, + { + "start": 15233.26, + "end": 15234.68, + "probability": 0.9866 + }, + { + "start": 15235.64, + "end": 15237.14, + "probability": 0.8929 + }, + { + "start": 15238.22, + "end": 15238.68, + "probability": 0.5776 + }, + { + "start": 15238.94, + "end": 15240.0, + "probability": 0.6571 + }, + { + "start": 15240.68, + "end": 15241.11, + "probability": 0.4202 + }, + { + "start": 15242.86, + "end": 15243.62, + "probability": 0.9912 + }, + { + "start": 15243.68, + "end": 15244.46, + "probability": 0.9788 + }, + { + "start": 15245.5, + "end": 15246.38, + "probability": 0.7955 + }, + { + "start": 15247.6, + "end": 15249.74, + "probability": 0.9918 + }, + { + "start": 15250.44, + "end": 15251.7, + "probability": 0.9878 + }, + { + "start": 15253.34, + "end": 15256.08, + "probability": 0.0379 + }, + { + "start": 15257.06, + "end": 15257.83, + "probability": 0.3338 + }, + { + "start": 15259.36, + "end": 15260.54, + "probability": 0.8562 + }, + { + "start": 15261.16, + "end": 15262.1, + "probability": 0.9713 + }, + { + "start": 15262.34, + "end": 15262.62, + "probability": 0.9418 + }, + { + "start": 15262.94, + "end": 15268.42, + "probability": 0.9855 + }, + { + "start": 15269.26, + "end": 15270.74, + "probability": 0.7835 + }, + { + "start": 15271.28, + "end": 15272.82, + "probability": 0.9398 + }, + { + "start": 15273.46, + "end": 15275.62, + "probability": 0.9113 + }, + { + "start": 15276.09, + "end": 15276.7, + "probability": 0.6803 + }, + { + "start": 15277.1, + "end": 15277.86, + "probability": 0.5933 + }, + { + "start": 15278.28, + "end": 15281.58, + "probability": 0.6917 + }, + { + "start": 15281.8, + "end": 15283.8, + "probability": 0.6832 + }, + { + "start": 15284.86, + "end": 15286.04, + "probability": 0.6749 + }, + { + "start": 15286.16, + "end": 15287.0, + "probability": 0.5088 + }, + { + "start": 15287.12, + "end": 15291.38, + "probability": 0.8862 + }, + { + "start": 15291.68, + "end": 15293.96, + "probability": 0.8106 + }, + { + "start": 15295.3, + "end": 15300.72, + "probability": 0.7635 + }, + { + "start": 15300.78, + "end": 15307.22, + "probability": 0.0689 + }, + { + "start": 15308.2, + "end": 15308.42, + "probability": 0.1882 + }, + { + "start": 15308.96, + "end": 15311.36, + "probability": 0.0142 + }, + { + "start": 15315.24, + "end": 15315.34, + "probability": 0.444 + }, + { + "start": 15316.32, + "end": 15316.84, + "probability": 0.0301 + } + ], + "segments_count": 5161, + "words_count": 26289, + "avg_words_per_segment": 5.0938, + "avg_segment_duration": 2.1711, + "avg_words_per_minute": 102.9591, + "plenum_id": "2415", + "duration": 15320.06, + "title": null, + "plenum_date": "2009-06-09" +} \ No newline at end of file