diff --git "a/11542/metadata.json" "b/11542/metadata.json" new file mode 100644--- /dev/null +++ "b/11542/metadata.json" @@ -0,0 +1,21717 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "11542", + "quality_score": 0.9077, + "per_segment_quality_scores": [ + { + "start": 65.92, + "end": 68.52, + "probability": 0.8145 + }, + { + "start": 69.16, + "end": 71.2, + "probability": 0.9716 + }, + { + "start": 71.8, + "end": 73.82, + "probability": 0.8736 + }, + { + "start": 77.08, + "end": 78.48, + "probability": 0.8048 + }, + { + "start": 78.6, + "end": 80.14, + "probability": 0.7807 + }, + { + "start": 80.22, + "end": 81.94, + "probability": 0.8974 + }, + { + "start": 82.54, + "end": 84.42, + "probability": 0.9886 + }, + { + "start": 85.16, + "end": 87.9, + "probability": 0.9084 + }, + { + "start": 87.9, + "end": 92.16, + "probability": 0.67 + }, + { + "start": 92.64, + "end": 94.86, + "probability": 0.1676 + }, + { + "start": 95.52, + "end": 97.68, + "probability": 0.961 + }, + { + "start": 98.74, + "end": 103.36, + "probability": 0.7605 + }, + { + "start": 103.96, + "end": 106.96, + "probability": 0.7158 + }, + { + "start": 107.16, + "end": 110.06, + "probability": 0.2922 + }, + { + "start": 110.5, + "end": 112.66, + "probability": 0.807 + }, + { + "start": 113.4, + "end": 117.5, + "probability": 0.6726 + }, + { + "start": 117.7, + "end": 120.02, + "probability": 0.4874 + }, + { + "start": 120.56, + "end": 122.46, + "probability": 0.9036 + }, + { + "start": 123.26, + "end": 125.64, + "probability": 0.7733 + }, + { + "start": 126.18, + "end": 128.82, + "probability": 0.9635 + }, + { + "start": 129.72, + "end": 132.02, + "probability": 0.626 + }, + { + "start": 132.08, + "end": 134.76, + "probability": 0.9679 + }, + { + "start": 135.32, + "end": 139.6, + "probability": 0.5188 + }, + { + "start": 140.24, + "end": 143.76, + "probability": 0.8483 + }, + { + "start": 144.52, + "end": 144.82, + "probability": 0.2953 + }, + { + "start": 145.34, + "end": 148.98, + "probability": 0.9523 + }, + { + "start": 149.0, + "end": 149.0, + "probability": 0.0 + }, + { + "start": 149.4, + "end": 156.94, + "probability": 0.5353 + }, + { + "start": 157.52, + "end": 160.5, + "probability": 0.8872 + }, + { + "start": 161.04, + "end": 163.06, + "probability": 0.2324 + }, + { + "start": 163.48, + "end": 166.66, + "probability": 0.9655 + }, + { + "start": 167.26, + "end": 170.28, + "probability": 0.944 + }, + { + "start": 171.56, + "end": 172.88, + "probability": 0.0988 + }, + { + "start": 173.5, + "end": 178.72, + "probability": 0.8006 + }, + { + "start": 179.28, + "end": 180.98, + "probability": 0.1998 + }, + { + "start": 181.66, + "end": 184.9, + "probability": 0.9777 + }, + { + "start": 185.74, + "end": 188.04, + "probability": 0.7421 + }, + { + "start": 189.12, + "end": 191.28, + "probability": 0.655 + }, + { + "start": 191.88, + "end": 194.1, + "probability": 0.9658 + }, + { + "start": 194.54, + "end": 196.0, + "probability": 0.9819 + }, + { + "start": 196.06, + "end": 196.64, + "probability": 0.6378 + }, + { + "start": 196.8, + "end": 197.32, + "probability": 0.8946 + }, + { + "start": 197.54, + "end": 199.66, + "probability": 0.8618 + }, + { + "start": 199.88, + "end": 200.18, + "probability": 0.4471 + }, + { + "start": 200.78, + "end": 201.3, + "probability": 0.5583 + }, + { + "start": 201.52, + "end": 203.84, + "probability": 0.9084 + }, + { + "start": 204.44, + "end": 205.26, + "probability": 0.6327 + }, + { + "start": 205.56, + "end": 209.1, + "probability": 0.7728 + }, + { + "start": 209.76, + "end": 210.64, + "probability": 0.485 + }, + { + "start": 211.48, + "end": 213.52, + "probability": 0.9005 + }, + { + "start": 226.28, + "end": 229.26, + "probability": 0.7787 + }, + { + "start": 230.12, + "end": 230.58, + "probability": 0.585 + }, + { + "start": 231.32, + "end": 237.12, + "probability": 0.8785 + }, + { + "start": 237.12, + "end": 240.66, + "probability": 0.986 + }, + { + "start": 241.48, + "end": 245.74, + "probability": 0.9852 + }, + { + "start": 246.48, + "end": 247.7, + "probability": 0.779 + }, + { + "start": 247.86, + "end": 251.4, + "probability": 0.943 + }, + { + "start": 251.76, + "end": 254.46, + "probability": 0.7521 + }, + { + "start": 254.68, + "end": 256.42, + "probability": 0.9251 + }, + { + "start": 256.92, + "end": 260.08, + "probability": 0.9964 + }, + { + "start": 260.08, + "end": 264.76, + "probability": 0.8962 + }, + { + "start": 264.86, + "end": 266.2, + "probability": 0.9492 + }, + { + "start": 266.82, + "end": 273.06, + "probability": 0.9868 + }, + { + "start": 273.4, + "end": 280.36, + "probability": 0.7363 + }, + { + "start": 281.04, + "end": 284.9, + "probability": 0.6879 + }, + { + "start": 285.62, + "end": 286.0, + "probability": 0.7805 + }, + { + "start": 286.24, + "end": 288.68, + "probability": 0.9383 + }, + { + "start": 289.04, + "end": 290.3, + "probability": 0.6539 + }, + { + "start": 290.38, + "end": 290.8, + "probability": 0.3052 + }, + { + "start": 290.84, + "end": 292.38, + "probability": 0.785 + }, + { + "start": 295.52, + "end": 297.82, + "probability": 0.7913 + }, + { + "start": 298.4, + "end": 301.52, + "probability": 0.8034 + }, + { + "start": 302.44, + "end": 302.96, + "probability": 0.8543 + }, + { + "start": 303.02, + "end": 306.86, + "probability": 0.9469 + }, + { + "start": 307.14, + "end": 307.56, + "probability": 0.9874 + }, + { + "start": 309.24, + "end": 312.26, + "probability": 0.8354 + }, + { + "start": 312.84, + "end": 313.48, + "probability": 0.6469 + }, + { + "start": 313.54, + "end": 314.7, + "probability": 0.9065 + }, + { + "start": 315.1, + "end": 316.78, + "probability": 0.9574 + }, + { + "start": 317.02, + "end": 318.18, + "probability": 0.8007 + }, + { + "start": 318.36, + "end": 321.26, + "probability": 0.9506 + }, + { + "start": 322.0, + "end": 325.24, + "probability": 0.9642 + }, + { + "start": 325.58, + "end": 326.7, + "probability": 0.8542 + }, + { + "start": 326.98, + "end": 327.98, + "probability": 0.9604 + }, + { + "start": 328.56, + "end": 329.46, + "probability": 0.9436 + }, + { + "start": 329.92, + "end": 330.66, + "probability": 0.9044 + }, + { + "start": 331.04, + "end": 331.34, + "probability": 0.5244 + }, + { + "start": 331.48, + "end": 331.74, + "probability": 0.6655 + }, + { + "start": 331.76, + "end": 335.44, + "probability": 0.9763 + }, + { + "start": 335.72, + "end": 336.9, + "probability": 0.5522 + }, + { + "start": 337.28, + "end": 339.86, + "probability": 0.9082 + }, + { + "start": 340.4, + "end": 342.76, + "probability": 0.9712 + }, + { + "start": 343.16, + "end": 344.8, + "probability": 0.9474 + }, + { + "start": 345.3, + "end": 347.12, + "probability": 0.9946 + }, + { + "start": 347.3, + "end": 347.48, + "probability": 0.4945 + }, + { + "start": 348.1, + "end": 351.2, + "probability": 0.6527 + }, + { + "start": 355.8, + "end": 361.12, + "probability": 0.763 + }, + { + "start": 363.32, + "end": 365.78, + "probability": 0.9001 + }, + { + "start": 366.6, + "end": 367.62, + "probability": 0.8721 + }, + { + "start": 368.88, + "end": 370.46, + "probability": 0.7524 + }, + { + "start": 370.54, + "end": 372.51, + "probability": 0.4992 + }, + { + "start": 372.76, + "end": 376.14, + "probability": 0.8567 + }, + { + "start": 377.22, + "end": 382.98, + "probability": 0.936 + }, + { + "start": 383.84, + "end": 384.88, + "probability": 0.9784 + }, + { + "start": 386.34, + "end": 387.0, + "probability": 0.4685 + }, + { + "start": 387.22, + "end": 390.9, + "probability": 0.9201 + }, + { + "start": 392.26, + "end": 395.34, + "probability": 0.8558 + }, + { + "start": 395.9, + "end": 396.82, + "probability": 0.5052 + }, + { + "start": 398.02, + "end": 398.22, + "probability": 0.95 + }, + { + "start": 400.42, + "end": 402.26, + "probability": 0.9427 + }, + { + "start": 403.22, + "end": 404.84, + "probability": 0.8184 + }, + { + "start": 406.04, + "end": 407.48, + "probability": 0.9932 + }, + { + "start": 408.12, + "end": 414.12, + "probability": 0.9941 + }, + { + "start": 414.82, + "end": 415.4, + "probability": 0.8838 + }, + { + "start": 418.42, + "end": 421.2, + "probability": 0.6548 + }, + { + "start": 421.74, + "end": 424.12, + "probability": 0.8507 + }, + { + "start": 424.14, + "end": 426.26, + "probability": 0.9679 + }, + { + "start": 427.14, + "end": 432.06, + "probability": 0.9719 + }, + { + "start": 432.82, + "end": 434.63, + "probability": 0.9963 + }, + { + "start": 435.86, + "end": 439.62, + "probability": 0.914 + }, + { + "start": 440.6, + "end": 442.2, + "probability": 0.8669 + }, + { + "start": 443.12, + "end": 446.5, + "probability": 0.8303 + }, + { + "start": 446.72, + "end": 449.4, + "probability": 0.3395 + }, + { + "start": 451.7, + "end": 455.46, + "probability": 0.0661 + }, + { + "start": 455.6, + "end": 455.88, + "probability": 0.5668 + }, + { + "start": 455.9, + "end": 457.14, + "probability": 0.8403 + }, + { + "start": 457.2, + "end": 457.77, + "probability": 0.5392 + }, + { + "start": 459.46, + "end": 461.06, + "probability": 0.9616 + }, + { + "start": 461.48, + "end": 462.54, + "probability": 0.0211 + }, + { + "start": 462.86, + "end": 463.24, + "probability": 0.1632 + }, + { + "start": 463.84, + "end": 463.84, + "probability": 0.2003 + }, + { + "start": 463.84, + "end": 463.84, + "probability": 0.1229 + }, + { + "start": 463.84, + "end": 463.84, + "probability": 0.4131 + }, + { + "start": 463.84, + "end": 465.42, + "probability": 0.2092 + }, + { + "start": 466.68, + "end": 467.86, + "probability": 0.7332 + }, + { + "start": 467.98, + "end": 469.06, + "probability": 0.075 + }, + { + "start": 469.2, + "end": 470.54, + "probability": 0.6274 + }, + { + "start": 470.6, + "end": 471.2, + "probability": 0.5273 + }, + { + "start": 471.58, + "end": 472.28, + "probability": 0.366 + }, + { + "start": 473.92, + "end": 474.02, + "probability": 0.6976 + }, + { + "start": 474.98, + "end": 475.08, + "probability": 0.4866 + }, + { + "start": 475.6, + "end": 480.56, + "probability": 0.9829 + }, + { + "start": 481.52, + "end": 483.54, + "probability": 0.8299 + }, + { + "start": 484.54, + "end": 488.68, + "probability": 0.9154 + }, + { + "start": 489.66, + "end": 489.96, + "probability": 0.5438 + }, + { + "start": 490.64, + "end": 491.04, + "probability": 0.7599 + }, + { + "start": 491.74, + "end": 492.74, + "probability": 0.7025 + }, + { + "start": 494.6, + "end": 497.9, + "probability": 0.9883 + }, + { + "start": 498.46, + "end": 499.44, + "probability": 0.5884 + }, + { + "start": 499.98, + "end": 502.2, + "probability": 0.6186 + }, + { + "start": 502.72, + "end": 507.0, + "probability": 0.649 + }, + { + "start": 507.0, + "end": 512.4, + "probability": 0.6979 + }, + { + "start": 513.54, + "end": 515.12, + "probability": 0.6447 + }, + { + "start": 515.22, + "end": 516.28, + "probability": 0.7394 + }, + { + "start": 516.64, + "end": 518.34, + "probability": 0.9352 + }, + { + "start": 518.76, + "end": 521.42, + "probability": 0.9187 + }, + { + "start": 522.22, + "end": 522.78, + "probability": 0.7861 + }, + { + "start": 523.94, + "end": 525.83, + "probability": 0.7926 + }, + { + "start": 526.38, + "end": 527.83, + "probability": 0.9966 + }, + { + "start": 528.32, + "end": 529.88, + "probability": 0.9971 + }, + { + "start": 530.34, + "end": 531.41, + "probability": 0.9739 + }, + { + "start": 532.16, + "end": 535.96, + "probability": 0.9746 + }, + { + "start": 536.4, + "end": 537.46, + "probability": 0.8073 + }, + { + "start": 537.46, + "end": 537.66, + "probability": 0.6513 + }, + { + "start": 537.68, + "end": 538.78, + "probability": 0.9439 + }, + { + "start": 539.26, + "end": 539.87, + "probability": 0.9023 + }, + { + "start": 540.32, + "end": 541.98, + "probability": 0.7242 + }, + { + "start": 542.9, + "end": 546.5, + "probability": 0.977 + }, + { + "start": 546.96, + "end": 549.66, + "probability": 0.9819 + }, + { + "start": 549.78, + "end": 551.29, + "probability": 0.9565 + }, + { + "start": 551.7, + "end": 553.83, + "probability": 0.6042 + }, + { + "start": 554.64, + "end": 561.82, + "probability": 0.9822 + }, + { + "start": 562.66, + "end": 565.98, + "probability": 0.9753 + }, + { + "start": 567.04, + "end": 567.51, + "probability": 0.9757 + }, + { + "start": 567.9, + "end": 569.68, + "probability": 0.0259 + }, + { + "start": 570.24, + "end": 570.28, + "probability": 0.2539 + }, + { + "start": 570.66, + "end": 573.84, + "probability": 0.9794 + }, + { + "start": 574.32, + "end": 579.25, + "probability": 0.7436 + }, + { + "start": 579.52, + "end": 579.52, + "probability": 0.7666 + }, + { + "start": 580.16, + "end": 581.2, + "probability": 0.8486 + }, + { + "start": 581.38, + "end": 585.7, + "probability": 0.9396 + }, + { + "start": 585.84, + "end": 586.28, + "probability": 0.599 + }, + { + "start": 588.72, + "end": 590.34, + "probability": 0.9774 + }, + { + "start": 590.46, + "end": 590.82, + "probability": 0.8475 + }, + { + "start": 591.12, + "end": 592.16, + "probability": 0.5293 + }, + { + "start": 592.76, + "end": 594.12, + "probability": 0.8528 + }, + { + "start": 595.9, + "end": 596.82, + "probability": 0.5557 + }, + { + "start": 597.08, + "end": 597.08, + "probability": 0.5314 + }, + { + "start": 597.08, + "end": 601.62, + "probability": 0.9775 + }, + { + "start": 602.04, + "end": 604.46, + "probability": 0.9844 + }, + { + "start": 604.72, + "end": 609.5, + "probability": 0.9136 + }, + { + "start": 609.68, + "end": 611.91, + "probability": 0.9364 + }, + { + "start": 613.86, + "end": 619.48, + "probability": 0.9834 + }, + { + "start": 619.48, + "end": 625.42, + "probability": 0.969 + }, + { + "start": 625.98, + "end": 628.34, + "probability": 0.6469 + }, + { + "start": 628.9, + "end": 632.48, + "probability": 0.9863 + }, + { + "start": 632.7, + "end": 636.24, + "probability": 0.9978 + }, + { + "start": 636.92, + "end": 638.52, + "probability": 0.9344 + }, + { + "start": 640.06, + "end": 643.7, + "probability": 0.8604 + }, + { + "start": 644.68, + "end": 651.36, + "probability": 0.9822 + }, + { + "start": 651.94, + "end": 657.78, + "probability": 0.9941 + }, + { + "start": 657.9, + "end": 658.68, + "probability": 0.8202 + }, + { + "start": 659.32, + "end": 663.4, + "probability": 0.8926 + }, + { + "start": 664.66, + "end": 671.56, + "probability": 0.9289 + }, + { + "start": 672.18, + "end": 674.9, + "probability": 0.9927 + }, + { + "start": 674.98, + "end": 675.96, + "probability": 0.9399 + }, + { + "start": 676.46, + "end": 676.7, + "probability": 0.7716 + }, + { + "start": 677.34, + "end": 677.92, + "probability": 0.5974 + }, + { + "start": 678.74, + "end": 680.04, + "probability": 0.8823 + }, + { + "start": 682.05, + "end": 684.64, + "probability": 0.6462 + }, + { + "start": 692.74, + "end": 695.2, + "probability": 0.8555 + }, + { + "start": 696.48, + "end": 701.8, + "probability": 0.9867 + }, + { + "start": 702.02, + "end": 703.02, + "probability": 0.9533 + }, + { + "start": 703.74, + "end": 705.18, + "probability": 0.7304 + }, + { + "start": 705.78, + "end": 707.38, + "probability": 0.9335 + }, + { + "start": 708.46, + "end": 712.04, + "probability": 0.9821 + }, + { + "start": 713.38, + "end": 714.06, + "probability": 0.8442 + }, + { + "start": 714.48, + "end": 718.52, + "probability": 0.9954 + }, + { + "start": 719.48, + "end": 722.94, + "probability": 0.9925 + }, + { + "start": 724.22, + "end": 727.12, + "probability": 0.7642 + }, + { + "start": 728.12, + "end": 728.86, + "probability": 0.9714 + }, + { + "start": 729.02, + "end": 733.86, + "probability": 0.8471 + }, + { + "start": 734.78, + "end": 736.9, + "probability": 0.9482 + }, + { + "start": 737.04, + "end": 740.88, + "probability": 0.9844 + }, + { + "start": 740.96, + "end": 741.34, + "probability": 0.7431 + }, + { + "start": 742.7, + "end": 743.18, + "probability": 0.5711 + }, + { + "start": 743.4, + "end": 743.64, + "probability": 0.6784 + }, + { + "start": 744.34, + "end": 744.52, + "probability": 0.9985 + }, + { + "start": 745.9, + "end": 748.22, + "probability": 0.7857 + }, + { + "start": 748.52, + "end": 749.48, + "probability": 0.7094 + }, + { + "start": 749.64, + "end": 752.82, + "probability": 0.9893 + }, + { + "start": 753.4, + "end": 755.48, + "probability": 0.5055 + }, + { + "start": 756.02, + "end": 757.14, + "probability": 0.315 + }, + { + "start": 757.14, + "end": 759.3, + "probability": 0.4002 + }, + { + "start": 759.36, + "end": 759.6, + "probability": 0.4404 + }, + { + "start": 759.8, + "end": 761.52, + "probability": 0.4816 + }, + { + "start": 761.66, + "end": 764.38, + "probability": 0.7316 + }, + { + "start": 764.56, + "end": 768.85, + "probability": 0.9761 + }, + { + "start": 770.28, + "end": 771.74, + "probability": 0.9365 + }, + { + "start": 771.82, + "end": 774.79, + "probability": 0.8607 + }, + { + "start": 776.52, + "end": 780.26, + "probability": 0.9603 + }, + { + "start": 781.24, + "end": 786.0, + "probability": 0.8469 + }, + { + "start": 786.84, + "end": 794.84, + "probability": 0.9408 + }, + { + "start": 795.38, + "end": 796.98, + "probability": 0.763 + }, + { + "start": 797.06, + "end": 801.22, + "probability": 0.9818 + }, + { + "start": 801.98, + "end": 803.24, + "probability": 0.7572 + }, + { + "start": 803.38, + "end": 808.25, + "probability": 0.7471 + }, + { + "start": 808.9, + "end": 809.3, + "probability": 0.5986 + }, + { + "start": 809.36, + "end": 809.72, + "probability": 0.5622 + }, + { + "start": 809.88, + "end": 812.52, + "probability": 0.7687 + }, + { + "start": 813.2, + "end": 820.96, + "probability": 0.9423 + }, + { + "start": 821.14, + "end": 821.68, + "probability": 0.5123 + }, + { + "start": 821.7, + "end": 823.54, + "probability": 0.9174 + }, + { + "start": 823.6, + "end": 825.66, + "probability": 0.8403 + }, + { + "start": 826.54, + "end": 831.84, + "probability": 0.9857 + }, + { + "start": 831.84, + "end": 835.58, + "probability": 0.99 + }, + { + "start": 837.28, + "end": 839.72, + "probability": 0.585 + }, + { + "start": 840.58, + "end": 842.72, + "probability": 0.9565 + }, + { + "start": 843.14, + "end": 847.54, + "probability": 0.9835 + }, + { + "start": 848.16, + "end": 851.22, + "probability": 0.9625 + }, + { + "start": 851.46, + "end": 851.8, + "probability": 0.712 + }, + { + "start": 851.9, + "end": 852.18, + "probability": 0.2495 + }, + { + "start": 852.18, + "end": 853.04, + "probability": 0.263 + }, + { + "start": 853.14, + "end": 856.04, + "probability": 0.9272 + }, + { + "start": 856.82, + "end": 859.32, + "probability": 0.9714 + }, + { + "start": 860.75, + "end": 863.28, + "probability": 0.9036 + }, + { + "start": 864.0, + "end": 868.18, + "probability": 0.6963 + }, + { + "start": 868.68, + "end": 869.18, + "probability": 0.7721 + }, + { + "start": 869.32, + "end": 873.96, + "probability": 0.7777 + }, + { + "start": 875.52, + "end": 878.04, + "probability": 0.9235 + }, + { + "start": 878.8, + "end": 881.22, + "probability": 0.7622 + }, + { + "start": 881.86, + "end": 883.64, + "probability": 0.9766 + }, + { + "start": 884.52, + "end": 884.74, + "probability": 0.8796 + }, + { + "start": 885.6, + "end": 888.78, + "probability": 0.7754 + }, + { + "start": 890.46, + "end": 893.24, + "probability": 0.8229 + }, + { + "start": 894.08, + "end": 895.88, + "probability": 0.9875 + }, + { + "start": 896.68, + "end": 897.88, + "probability": 0.689 + }, + { + "start": 899.54, + "end": 900.64, + "probability": 0.9806 + }, + { + "start": 901.04, + "end": 902.82, + "probability": 0.7161 + }, + { + "start": 911.34, + "end": 913.52, + "probability": 0.4599 + }, + { + "start": 914.1, + "end": 915.28, + "probability": 0.8167 + }, + { + "start": 920.28, + "end": 922.02, + "probability": 0.7753 + }, + { + "start": 922.66, + "end": 925.42, + "probability": 0.9814 + }, + { + "start": 925.72, + "end": 927.22, + "probability": 0.8022 + }, + { + "start": 928.32, + "end": 932.08, + "probability": 0.9924 + }, + { + "start": 932.08, + "end": 937.04, + "probability": 0.9899 + }, + { + "start": 937.36, + "end": 938.96, + "probability": 0.9707 + }, + { + "start": 939.1, + "end": 941.74, + "probability": 0.9753 + }, + { + "start": 941.84, + "end": 943.06, + "probability": 0.7763 + }, + { + "start": 943.42, + "end": 944.22, + "probability": 0.7405 + }, + { + "start": 944.4, + "end": 946.42, + "probability": 0.9072 + }, + { + "start": 946.64, + "end": 948.1, + "probability": 0.9784 + }, + { + "start": 948.72, + "end": 950.24, + "probability": 0.8738 + }, + { + "start": 950.7, + "end": 954.64, + "probability": 0.624 + }, + { + "start": 955.38, + "end": 957.1, + "probability": 0.7397 + }, + { + "start": 957.18, + "end": 958.66, + "probability": 0.9683 + }, + { + "start": 959.06, + "end": 960.82, + "probability": 0.9954 + }, + { + "start": 961.64, + "end": 963.2, + "probability": 0.8855 + }, + { + "start": 963.44, + "end": 965.88, + "probability": 0.9878 + }, + { + "start": 965.98, + "end": 967.0, + "probability": 0.8427 + }, + { + "start": 967.24, + "end": 971.76, + "probability": 0.9811 + }, + { + "start": 972.28, + "end": 974.06, + "probability": 0.9943 + }, + { + "start": 974.78, + "end": 976.14, + "probability": 0.9616 + }, + { + "start": 976.7, + "end": 978.56, + "probability": 0.9884 + }, + { + "start": 979.02, + "end": 980.44, + "probability": 0.9929 + }, + { + "start": 980.58, + "end": 981.4, + "probability": 0.8846 + }, + { + "start": 981.68, + "end": 983.06, + "probability": 0.5423 + }, + { + "start": 983.06, + "end": 983.98, + "probability": 0.5942 + }, + { + "start": 985.3, + "end": 986.16, + "probability": 0.5163 + }, + { + "start": 987.0, + "end": 989.9, + "probability": 0.8195 + }, + { + "start": 990.4, + "end": 992.56, + "probability": 0.5726 + }, + { + "start": 993.42, + "end": 997.16, + "probability": 0.9989 + }, + { + "start": 998.04, + "end": 998.48, + "probability": 0.8267 + }, + { + "start": 999.08, + "end": 1002.34, + "probability": 0.5773 + }, + { + "start": 1002.44, + "end": 1003.12, + "probability": 0.1994 + }, + { + "start": 1003.26, + "end": 1005.14, + "probability": 0.7381 + }, + { + "start": 1006.04, + "end": 1006.76, + "probability": 0.867 + }, + { + "start": 1007.16, + "end": 1008.22, + "probability": 0.6131 + }, + { + "start": 1008.38, + "end": 1008.66, + "probability": 0.0864 + }, + { + "start": 1009.64, + "end": 1010.28, + "probability": 0.5771 + }, + { + "start": 1010.9, + "end": 1012.3, + "probability": 0.6542 + }, + { + "start": 1013.08, + "end": 1016.42, + "probability": 0.7747 + }, + { + "start": 1017.08, + "end": 1019.94, + "probability": 0.9484 + }, + { + "start": 1019.98, + "end": 1021.52, + "probability": 0.9922 + }, + { + "start": 1022.76, + "end": 1023.92, + "probability": 0.6969 + }, + { + "start": 1024.04, + "end": 1025.4, + "probability": 0.7024 + }, + { + "start": 1025.48, + "end": 1028.82, + "probability": 0.9616 + }, + { + "start": 1029.36, + "end": 1029.88, + "probability": 0.9357 + }, + { + "start": 1030.8, + "end": 1034.98, + "probability": 0.9502 + }, + { + "start": 1035.4, + "end": 1036.14, + "probability": 0.7982 + }, + { + "start": 1036.2, + "end": 1037.54, + "probability": 0.9857 + }, + { + "start": 1037.66, + "end": 1037.98, + "probability": 0.9331 + }, + { + "start": 1038.82, + "end": 1040.54, + "probability": 0.6455 + }, + { + "start": 1043.55, + "end": 1044.0, + "probability": 0.2807 + }, + { + "start": 1044.0, + "end": 1044.0, + "probability": 0.3332 + }, + { + "start": 1044.0, + "end": 1044.06, + "probability": 0.2926 + }, + { + "start": 1044.16, + "end": 1045.36, + "probability": 0.4584 + }, + { + "start": 1046.82, + "end": 1049.22, + "probability": 0.6457 + }, + { + "start": 1049.4, + "end": 1049.76, + "probability": 0.7734 + }, + { + "start": 1049.86, + "end": 1051.1, + "probability": 0.6826 + }, + { + "start": 1051.24, + "end": 1051.56, + "probability": 0.8008 + }, + { + "start": 1052.08, + "end": 1053.88, + "probability": 0.9767 + }, + { + "start": 1054.46, + "end": 1059.38, + "probability": 0.9387 + }, + { + "start": 1060.06, + "end": 1062.6, + "probability": 0.7126 + }, + { + "start": 1062.8, + "end": 1063.34, + "probability": 0.6185 + }, + { + "start": 1063.5, + "end": 1064.16, + "probability": 0.9122 + }, + { + "start": 1064.62, + "end": 1065.6, + "probability": 0.8027 + }, + { + "start": 1065.84, + "end": 1066.58, + "probability": 0.7638 + }, + { + "start": 1067.28, + "end": 1069.56, + "probability": 0.7505 + }, + { + "start": 1070.08, + "end": 1071.42, + "probability": 0.8263 + }, + { + "start": 1071.94, + "end": 1074.48, + "probability": 0.9958 + }, + { + "start": 1074.66, + "end": 1075.43, + "probability": 0.5626 + }, + { + "start": 1075.96, + "end": 1077.36, + "probability": 0.7852 + }, + { + "start": 1077.84, + "end": 1078.32, + "probability": 0.8364 + }, + { + "start": 1078.44, + "end": 1081.12, + "probability": 0.9862 + }, + { + "start": 1081.5, + "end": 1084.28, + "probability": 0.9306 + }, + { + "start": 1084.34, + "end": 1088.41, + "probability": 0.9634 + }, + { + "start": 1089.14, + "end": 1089.64, + "probability": 0.9496 + }, + { + "start": 1089.78, + "end": 1090.28, + "probability": 0.564 + }, + { + "start": 1090.76, + "end": 1091.36, + "probability": 0.9844 + }, + { + "start": 1092.64, + "end": 1096.36, + "probability": 0.9622 + }, + { + "start": 1096.68, + "end": 1099.18, + "probability": 0.8604 + }, + { + "start": 1099.68, + "end": 1101.68, + "probability": 0.9697 + }, + { + "start": 1102.48, + "end": 1103.46, + "probability": 0.7852 + }, + { + "start": 1103.58, + "end": 1104.02, + "probability": 0.409 + }, + { + "start": 1104.22, + "end": 1106.12, + "probability": 0.9499 + }, + { + "start": 1106.64, + "end": 1108.2, + "probability": 0.8318 + }, + { + "start": 1108.86, + "end": 1109.32, + "probability": 0.6242 + }, + { + "start": 1109.98, + "end": 1112.68, + "probability": 0.9808 + }, + { + "start": 1113.84, + "end": 1115.64, + "probability": 0.9824 + }, + { + "start": 1116.16, + "end": 1116.52, + "probability": 0.9438 + }, + { + "start": 1116.76, + "end": 1117.3, + "probability": 0.9806 + }, + { + "start": 1117.4, + "end": 1118.94, + "probability": 0.9985 + }, + { + "start": 1119.4, + "end": 1120.58, + "probability": 0.875 + }, + { + "start": 1121.46, + "end": 1122.36, + "probability": 0.9788 + }, + { + "start": 1123.02, + "end": 1126.66, + "probability": 0.9181 + }, + { + "start": 1127.18, + "end": 1127.96, + "probability": 0.7624 + }, + { + "start": 1128.66, + "end": 1130.16, + "probability": 0.9087 + }, + { + "start": 1130.66, + "end": 1132.62, + "probability": 0.9218 + }, + { + "start": 1133.36, + "end": 1136.7, + "probability": 0.9893 + }, + { + "start": 1137.54, + "end": 1141.18, + "probability": 0.9913 + }, + { + "start": 1141.64, + "end": 1143.74, + "probability": 0.8577 + }, + { + "start": 1144.2, + "end": 1145.08, + "probability": 0.9691 + }, + { + "start": 1145.72, + "end": 1146.49, + "probability": 0.8851 + }, + { + "start": 1146.82, + "end": 1147.16, + "probability": 0.4866 + }, + { + "start": 1148.1, + "end": 1150.16, + "probability": 0.8901 + }, + { + "start": 1150.66, + "end": 1152.26, + "probability": 0.9666 + }, + { + "start": 1152.92, + "end": 1154.1, + "probability": 0.9967 + }, + { + "start": 1155.04, + "end": 1156.74, + "probability": 0.9881 + }, + { + "start": 1157.2, + "end": 1158.26, + "probability": 0.5239 + }, + { + "start": 1158.86, + "end": 1163.82, + "probability": 0.9673 + }, + { + "start": 1164.46, + "end": 1166.28, + "probability": 0.1478 + }, + { + "start": 1167.92, + "end": 1168.32, + "probability": 0.3685 + }, + { + "start": 1171.94, + "end": 1172.28, + "probability": 0.227 + }, + { + "start": 1173.44, + "end": 1173.7, + "probability": 0.084 + }, + { + "start": 1173.8, + "end": 1175.22, + "probability": 0.6835 + }, + { + "start": 1175.26, + "end": 1178.36, + "probability": 0.5802 + }, + { + "start": 1178.9, + "end": 1181.8, + "probability": 0.4778 + }, + { + "start": 1182.56, + "end": 1186.04, + "probability": 0.7444 + }, + { + "start": 1188.38, + "end": 1189.04, + "probability": 0.4947 + }, + { + "start": 1189.06, + "end": 1190.22, + "probability": 0.694 + }, + { + "start": 1190.46, + "end": 1191.9, + "probability": 0.7483 + }, + { + "start": 1192.06, + "end": 1193.86, + "probability": 0.7977 + }, + { + "start": 1194.3, + "end": 1195.32, + "probability": 0.9517 + }, + { + "start": 1195.5, + "end": 1197.75, + "probability": 0.99 + }, + { + "start": 1198.12, + "end": 1199.9, + "probability": 0.9832 + }, + { + "start": 1200.86, + "end": 1206.05, + "probability": 0.6915 + }, + { + "start": 1206.92, + "end": 1208.4, + "probability": 0.9207 + }, + { + "start": 1208.54, + "end": 1211.36, + "probability": 0.981 + }, + { + "start": 1211.76, + "end": 1214.66, + "probability": 0.9971 + }, + { + "start": 1214.76, + "end": 1216.62, + "probability": 0.9038 + }, + { + "start": 1217.0, + "end": 1219.54, + "probability": 0.7397 + }, + { + "start": 1220.44, + "end": 1222.0, + "probability": 0.8678 + }, + { + "start": 1222.48, + "end": 1223.52, + "probability": 0.9785 + }, + { + "start": 1223.6, + "end": 1225.7, + "probability": 0.9668 + }, + { + "start": 1226.22, + "end": 1228.52, + "probability": 0.996 + }, + { + "start": 1228.98, + "end": 1231.88, + "probability": 0.7063 + }, + { + "start": 1232.18, + "end": 1235.84, + "probability": 0.9829 + }, + { + "start": 1236.08, + "end": 1238.66, + "probability": 0.7886 + }, + { + "start": 1239.06, + "end": 1243.22, + "probability": 0.4902 + }, + { + "start": 1243.56, + "end": 1245.26, + "probability": 0.5685 + }, + { + "start": 1245.32, + "end": 1246.36, + "probability": 0.8761 + }, + { + "start": 1246.7, + "end": 1248.22, + "probability": 0.906 + }, + { + "start": 1248.66, + "end": 1251.22, + "probability": 0.992 + }, + { + "start": 1252.16, + "end": 1253.82, + "probability": 0.8107 + }, + { + "start": 1254.68, + "end": 1255.34, + "probability": 0.7726 + }, + { + "start": 1255.96, + "end": 1256.62, + "probability": 0.819 + }, + { + "start": 1257.22, + "end": 1259.88, + "probability": 0.8485 + }, + { + "start": 1260.54, + "end": 1264.48, + "probability": 0.8867 + }, + { + "start": 1265.18, + "end": 1267.12, + "probability": 0.8939 + }, + { + "start": 1267.88, + "end": 1269.92, + "probability": 0.6389 + }, + { + "start": 1270.54, + "end": 1274.14, + "probability": 0.6472 + }, + { + "start": 1274.26, + "end": 1278.68, + "probability": 0.5189 + }, + { + "start": 1278.76, + "end": 1279.18, + "probability": 0.6917 + }, + { + "start": 1279.36, + "end": 1281.64, + "probability": 0.991 + }, + { + "start": 1281.88, + "end": 1283.03, + "probability": 0.7987 + }, + { + "start": 1283.26, + "end": 1284.2, + "probability": 0.9494 + }, + { + "start": 1284.98, + "end": 1285.56, + "probability": 0.7805 + }, + { + "start": 1286.18, + "end": 1287.72, + "probability": 0.9762 + }, + { + "start": 1287.96, + "end": 1289.04, + "probability": 0.9392 + }, + { + "start": 1289.26, + "end": 1289.74, + "probability": 0.6638 + }, + { + "start": 1290.52, + "end": 1296.74, + "probability": 0.1596 + }, + { + "start": 1296.74, + "end": 1297.06, + "probability": 0.0316 + }, + { + "start": 1297.06, + "end": 1297.53, + "probability": 0.3258 + }, + { + "start": 1298.66, + "end": 1300.96, + "probability": 0.363 + }, + { + "start": 1300.96, + "end": 1301.84, + "probability": 0.5288 + }, + { + "start": 1302.58, + "end": 1303.8, + "probability": 0.5359 + }, + { + "start": 1307.94, + "end": 1309.66, + "probability": 0.6142 + }, + { + "start": 1310.16, + "end": 1310.9, + "probability": 0.5976 + }, + { + "start": 1312.16, + "end": 1313.56, + "probability": 0.9686 + }, + { + "start": 1313.68, + "end": 1314.3, + "probability": 0.5786 + }, + { + "start": 1314.5, + "end": 1316.8, + "probability": 0.8392 + }, + { + "start": 1317.48, + "end": 1320.5, + "probability": 0.8821 + }, + { + "start": 1322.18, + "end": 1322.88, + "probability": 0.8752 + }, + { + "start": 1323.76, + "end": 1328.52, + "probability": 0.9798 + }, + { + "start": 1329.22, + "end": 1332.73, + "probability": 0.9467 + }, + { + "start": 1333.64, + "end": 1337.32, + "probability": 0.9904 + }, + { + "start": 1337.54, + "end": 1339.66, + "probability": 0.991 + }, + { + "start": 1340.68, + "end": 1341.7, + "probability": 0.3448 + }, + { + "start": 1341.72, + "end": 1342.64, + "probability": 0.9164 + }, + { + "start": 1342.7, + "end": 1344.66, + "probability": 0.9749 + }, + { + "start": 1345.0, + "end": 1349.0, + "probability": 0.71 + }, + { + "start": 1349.94, + "end": 1352.3, + "probability": 0.8596 + }, + { + "start": 1353.34, + "end": 1357.84, + "probability": 0.946 + }, + { + "start": 1357.94, + "end": 1358.8, + "probability": 0.9764 + }, + { + "start": 1360.1, + "end": 1364.33, + "probability": 0.5129 + }, + { + "start": 1366.1, + "end": 1367.22, + "probability": 0.74 + }, + { + "start": 1367.36, + "end": 1368.92, + "probability": 0.9847 + }, + { + "start": 1369.0, + "end": 1371.19, + "probability": 0.7371 + }, + { + "start": 1372.28, + "end": 1375.42, + "probability": 0.8857 + }, + { + "start": 1376.18, + "end": 1377.22, + "probability": 0.9619 + }, + { + "start": 1377.34, + "end": 1381.3, + "probability": 0.9541 + }, + { + "start": 1382.8, + "end": 1383.82, + "probability": 0.0186 + }, + { + "start": 1384.26, + "end": 1384.74, + "probability": 0.5027 + }, + { + "start": 1384.8, + "end": 1388.8, + "probability": 0.6976 + }, + { + "start": 1391.13, + "end": 1393.2, + "probability": 0.6392 + }, + { + "start": 1394.16, + "end": 1396.32, + "probability": 0.3255 + }, + { + "start": 1397.29, + "end": 1399.46, + "probability": 0.9594 + }, + { + "start": 1399.64, + "end": 1399.86, + "probability": 0.053 + }, + { + "start": 1400.74, + "end": 1402.32, + "probability": 0.7414 + }, + { + "start": 1404.1, + "end": 1404.34, + "probability": 0.8541 + }, + { + "start": 1407.36, + "end": 1409.26, + "probability": 0.7036 + }, + { + "start": 1409.38, + "end": 1410.04, + "probability": 0.6562 + }, + { + "start": 1410.1, + "end": 1411.2, + "probability": 0.8771 + }, + { + "start": 1411.56, + "end": 1413.1, + "probability": 0.7495 + }, + { + "start": 1413.38, + "end": 1415.94, + "probability": 0.9376 + }, + { + "start": 1416.08, + "end": 1416.66, + "probability": 0.6007 + }, + { + "start": 1416.68, + "end": 1418.12, + "probability": 0.7986 + }, + { + "start": 1419.1, + "end": 1420.16, + "probability": 0.8338 + }, + { + "start": 1426.1, + "end": 1427.72, + "probability": 0.8264 + }, + { + "start": 1428.7, + "end": 1432.14, + "probability": 0.6855 + }, + { + "start": 1432.86, + "end": 1435.77, + "probability": 0.7347 + }, + { + "start": 1436.14, + "end": 1436.66, + "probability": 0.7278 + }, + { + "start": 1436.8, + "end": 1437.7, + "probability": 0.8085 + }, + { + "start": 1438.74, + "end": 1439.48, + "probability": 0.9251 + }, + { + "start": 1439.58, + "end": 1440.49, + "probability": 0.9214 + }, + { + "start": 1441.2, + "end": 1442.64, + "probability": 0.792 + }, + { + "start": 1443.18, + "end": 1444.66, + "probability": 0.8773 + }, + { + "start": 1445.32, + "end": 1447.06, + "probability": 0.7728 + }, + { + "start": 1447.24, + "end": 1448.96, + "probability": 0.5546 + }, + { + "start": 1449.06, + "end": 1452.18, + "probability": 0.9027 + }, + { + "start": 1453.12, + "end": 1457.26, + "probability": 0.9759 + }, + { + "start": 1457.88, + "end": 1462.08, + "probability": 0.9893 + }, + { + "start": 1462.08, + "end": 1464.52, + "probability": 0.998 + }, + { + "start": 1466.02, + "end": 1469.72, + "probability": 0.9784 + }, + { + "start": 1469.75, + "end": 1474.1, + "probability": 0.9937 + }, + { + "start": 1474.38, + "end": 1475.01, + "probability": 0.7975 + }, + { + "start": 1475.8, + "end": 1476.18, + "probability": 0.7501 + }, + { + "start": 1476.22, + "end": 1482.24, + "probability": 0.8745 + }, + { + "start": 1482.52, + "end": 1484.74, + "probability": 0.8131 + }, + { + "start": 1485.24, + "end": 1487.96, + "probability": 0.7579 + }, + { + "start": 1487.96, + "end": 1493.36, + "probability": 0.9786 + }, + { + "start": 1493.96, + "end": 1496.1, + "probability": 0.8791 + }, + { + "start": 1496.34, + "end": 1499.66, + "probability": 0.9878 + }, + { + "start": 1499.66, + "end": 1503.2, + "probability": 0.9937 + }, + { + "start": 1503.78, + "end": 1507.42, + "probability": 0.882 + }, + { + "start": 1507.54, + "end": 1511.26, + "probability": 0.9907 + }, + { + "start": 1511.82, + "end": 1514.37, + "probability": 0.9932 + }, + { + "start": 1514.6, + "end": 1516.06, + "probability": 0.7167 + }, + { + "start": 1516.54, + "end": 1519.84, + "probability": 0.9947 + }, + { + "start": 1519.98, + "end": 1520.76, + "probability": 0.5363 + }, + { + "start": 1521.5, + "end": 1522.78, + "probability": 0.8448 + }, + { + "start": 1525.36, + "end": 1526.9, + "probability": 0.0503 + }, + { + "start": 1526.98, + "end": 1529.68, + "probability": 0.8724 + }, + { + "start": 1530.3, + "end": 1530.96, + "probability": 0.5324 + }, + { + "start": 1531.76, + "end": 1533.74, + "probability": 0.7415 + }, + { + "start": 1534.64, + "end": 1538.24, + "probability": 0.9878 + }, + { + "start": 1538.54, + "end": 1538.8, + "probability": 0.7672 + }, + { + "start": 1545.6, + "end": 1545.6, + "probability": 0.1065 + }, + { + "start": 1545.6, + "end": 1545.6, + "probability": 0.1702 + }, + { + "start": 1545.6, + "end": 1545.6, + "probability": 0.0261 + }, + { + "start": 1545.6, + "end": 1548.04, + "probability": 0.3276 + }, + { + "start": 1548.28, + "end": 1549.72, + "probability": 0.555 + }, + { + "start": 1550.36, + "end": 1551.68, + "probability": 0.8782 + }, + { + "start": 1552.54, + "end": 1555.76, + "probability": 0.7867 + }, + { + "start": 1556.04, + "end": 1556.16, + "probability": 0.4642 + }, + { + "start": 1556.58, + "end": 1561.14, + "probability": 0.959 + }, + { + "start": 1561.98, + "end": 1562.52, + "probability": 0.0057 + }, + { + "start": 1562.54, + "end": 1566.68, + "probability": 0.9551 + }, + { + "start": 1566.76, + "end": 1567.71, + "probability": 0.9553 + }, + { + "start": 1568.02, + "end": 1571.86, + "probability": 0.9731 + }, + { + "start": 1572.5, + "end": 1573.24, + "probability": 0.6371 + }, + { + "start": 1574.09, + "end": 1577.14, + "probability": 0.0234 + }, + { + "start": 1577.32, + "end": 1577.82, + "probability": 0.5424 + }, + { + "start": 1578.6, + "end": 1581.42, + "probability": 0.9681 + }, + { + "start": 1581.84, + "end": 1582.86, + "probability": 0.79 + }, + { + "start": 1583.98, + "end": 1584.46, + "probability": 0.9513 + }, + { + "start": 1584.98, + "end": 1585.68, + "probability": 0.7332 + }, + { + "start": 1586.22, + "end": 1586.5, + "probability": 0.4102 + }, + { + "start": 1586.58, + "end": 1590.3, + "probability": 0.9625 + }, + { + "start": 1590.84, + "end": 1591.28, + "probability": 0.9067 + }, + { + "start": 1592.38, + "end": 1594.94, + "probability": 0.8589 + }, + { + "start": 1595.56, + "end": 1596.46, + "probability": 0.9753 + }, + { + "start": 1598.08, + "end": 1598.67, + "probability": 0.8198 + }, + { + "start": 1599.88, + "end": 1600.5, + "probability": 0.8483 + }, + { + "start": 1600.82, + "end": 1601.5, + "probability": 0.5565 + }, + { + "start": 1601.95, + "end": 1602.7, + "probability": 0.8084 + }, + { + "start": 1602.86, + "end": 1604.32, + "probability": 0.7682 + }, + { + "start": 1604.34, + "end": 1606.04, + "probability": 0.5825 + }, + { + "start": 1606.76, + "end": 1608.0, + "probability": 0.8363 + }, + { + "start": 1609.6, + "end": 1610.18, + "probability": 0.6892 + }, + { + "start": 1610.88, + "end": 1611.2, + "probability": 0.9576 + }, + { + "start": 1613.68, + "end": 1615.16, + "probability": 0.0313 + }, + { + "start": 1615.16, + "end": 1617.36, + "probability": 0.1002 + }, + { + "start": 1618.0, + "end": 1619.27, + "probability": 0.9572 + }, + { + "start": 1619.86, + "end": 1622.58, + "probability": 0.7553 + }, + { + "start": 1623.0, + "end": 1625.5, + "probability": 0.8987 + }, + { + "start": 1625.76, + "end": 1628.44, + "probability": 0.6282 + }, + { + "start": 1629.44, + "end": 1629.7, + "probability": 0.1154 + }, + { + "start": 1629.92, + "end": 1631.32, + "probability": 0.0778 + }, + { + "start": 1631.42, + "end": 1632.16, + "probability": 0.1929 + }, + { + "start": 1632.18, + "end": 1632.58, + "probability": 0.2346 + }, + { + "start": 1632.64, + "end": 1634.2, + "probability": 0.8049 + }, + { + "start": 1635.12, + "end": 1636.94, + "probability": 0.9729 + }, + { + "start": 1637.34, + "end": 1638.5, + "probability": 0.5889 + }, + { + "start": 1639.04, + "end": 1642.8, + "probability": 0.5614 + }, + { + "start": 1642.8, + "end": 1643.38, + "probability": 0.1978 + }, + { + "start": 1643.6, + "end": 1645.34, + "probability": 0.8679 + }, + { + "start": 1645.46, + "end": 1647.58, + "probability": 0.5695 + }, + { + "start": 1647.8, + "end": 1648.72, + "probability": 0.7052 + }, + { + "start": 1649.46, + "end": 1649.66, + "probability": 0.8856 + }, + { + "start": 1649.8, + "end": 1650.8, + "probability": 0.8148 + }, + { + "start": 1650.88, + "end": 1651.52, + "probability": 0.7041 + }, + { + "start": 1651.86, + "end": 1653.1, + "probability": 0.9792 + }, + { + "start": 1653.84, + "end": 1654.4, + "probability": 0.7287 + }, + { + "start": 1655.18, + "end": 1657.82, + "probability": 0.9846 + }, + { + "start": 1657.84, + "end": 1658.36, + "probability": 0.7169 + }, + { + "start": 1658.86, + "end": 1660.1, + "probability": 0.7835 + }, + { + "start": 1660.1, + "end": 1662.48, + "probability": 0.9925 + }, + { + "start": 1662.76, + "end": 1666.34, + "probability": 0.9912 + }, + { + "start": 1666.72, + "end": 1667.83, + "probability": 0.7465 + }, + { + "start": 1668.02, + "end": 1669.18, + "probability": 0.9814 + }, + { + "start": 1669.92, + "end": 1671.66, + "probability": 0.9873 + }, + { + "start": 1672.38, + "end": 1673.72, + "probability": 0.9857 + }, + { + "start": 1674.62, + "end": 1679.36, + "probability": 0.9443 + }, + { + "start": 1679.44, + "end": 1679.9, + "probability": 0.4132 + }, + { + "start": 1680.26, + "end": 1681.0, + "probability": 0.2428 + }, + { + "start": 1681.12, + "end": 1681.92, + "probability": 0.5531 + }, + { + "start": 1682.56, + "end": 1682.96, + "probability": 0.3499 + }, + { + "start": 1683.3, + "end": 1685.88, + "probability": 0.9883 + }, + { + "start": 1686.06, + "end": 1686.48, + "probability": 0.7535 + }, + { + "start": 1686.58, + "end": 1687.72, + "probability": 0.8518 + }, + { + "start": 1687.96, + "end": 1689.16, + "probability": 0.9695 + }, + { + "start": 1690.28, + "end": 1691.8, + "probability": 0.804 + }, + { + "start": 1691.9, + "end": 1693.0, + "probability": 0.9748 + }, + { + "start": 1693.48, + "end": 1694.38, + "probability": 0.5038 + }, + { + "start": 1694.86, + "end": 1696.24, + "probability": 0.9072 + }, + { + "start": 1696.52, + "end": 1697.12, + "probability": 0.6561 + }, + { + "start": 1697.18, + "end": 1699.86, + "probability": 0.7666 + }, + { + "start": 1700.0, + "end": 1701.32, + "probability": 0.9578 + }, + { + "start": 1701.76, + "end": 1704.46, + "probability": 0.9856 + }, + { + "start": 1704.5, + "end": 1707.82, + "probability": 0.9966 + }, + { + "start": 1708.44, + "end": 1710.08, + "probability": 0.7374 + }, + { + "start": 1710.34, + "end": 1712.68, + "probability": 0.8167 + }, + { + "start": 1713.0, + "end": 1714.52, + "probability": 0.8411 + }, + { + "start": 1714.64, + "end": 1715.16, + "probability": 0.8966 + }, + { + "start": 1715.42, + "end": 1717.88, + "probability": 0.9923 + }, + { + "start": 1718.0, + "end": 1720.26, + "probability": 0.959 + }, + { + "start": 1720.78, + "end": 1721.48, + "probability": 0.9893 + }, + { + "start": 1722.0, + "end": 1722.92, + "probability": 0.7748 + }, + { + "start": 1723.08, + "end": 1724.52, + "probability": 0.855 + }, + { + "start": 1724.92, + "end": 1727.68, + "probability": 0.9978 + }, + { + "start": 1727.82, + "end": 1728.76, + "probability": 0.9347 + }, + { + "start": 1728.8, + "end": 1729.66, + "probability": 0.8693 + }, + { + "start": 1730.14, + "end": 1733.76, + "probability": 0.8242 + }, + { + "start": 1734.48, + "end": 1735.4, + "probability": 0.7012 + }, + { + "start": 1735.48, + "end": 1736.08, + "probability": 0.3929 + }, + { + "start": 1736.16, + "end": 1738.38, + "probability": 0.963 + }, + { + "start": 1738.6, + "end": 1740.12, + "probability": 0.9209 + }, + { + "start": 1740.4, + "end": 1743.8, + "probability": 0.8501 + }, + { + "start": 1743.84, + "end": 1748.12, + "probability": 0.9383 + }, + { + "start": 1748.68, + "end": 1751.54, + "probability": 0.9975 + }, + { + "start": 1751.54, + "end": 1753.32, + "probability": 0.9983 + }, + { + "start": 1754.34, + "end": 1757.0, + "probability": 0.9877 + }, + { + "start": 1757.42, + "end": 1758.92, + "probability": 0.8178 + }, + { + "start": 1759.06, + "end": 1760.46, + "probability": 0.9659 + }, + { + "start": 1760.88, + "end": 1762.68, + "probability": 0.9921 + }, + { + "start": 1762.74, + "end": 1765.7, + "probability": 0.8811 + }, + { + "start": 1765.82, + "end": 1766.54, + "probability": 0.9883 + }, + { + "start": 1766.8, + "end": 1770.38, + "probability": 0.998 + }, + { + "start": 1770.56, + "end": 1772.9, + "probability": 0.9961 + }, + { + "start": 1773.48, + "end": 1775.36, + "probability": 0.9452 + }, + { + "start": 1775.44, + "end": 1775.78, + "probability": 0.5103 + }, + { + "start": 1775.9, + "end": 1778.34, + "probability": 0.9976 + }, + { + "start": 1778.82, + "end": 1780.94, + "probability": 0.9938 + }, + { + "start": 1781.28, + "end": 1782.98, + "probability": 0.8032 + }, + { + "start": 1783.32, + "end": 1784.19, + "probability": 0.3369 + }, + { + "start": 1784.98, + "end": 1786.22, + "probability": 0.5656 + }, + { + "start": 1789.74, + "end": 1791.88, + "probability": 0.8802 + }, + { + "start": 1793.12, + "end": 1797.82, + "probability": 0.9163 + }, + { + "start": 1797.96, + "end": 1801.08, + "probability": 0.9678 + }, + { + "start": 1801.98, + "end": 1804.66, + "probability": 0.9476 + }, + { + "start": 1805.26, + "end": 1810.38, + "probability": 0.9324 + }, + { + "start": 1810.46, + "end": 1811.86, + "probability": 0.9223 + }, + { + "start": 1812.18, + "end": 1812.76, + "probability": 0.7547 + }, + { + "start": 1813.48, + "end": 1817.76, + "probability": 0.9875 + }, + { + "start": 1819.24, + "end": 1821.6, + "probability": 0.9863 + }, + { + "start": 1822.08, + "end": 1823.04, + "probability": 0.897 + }, + { + "start": 1823.16, + "end": 1825.2, + "probability": 0.9834 + }, + { + "start": 1825.66, + "end": 1832.06, + "probability": 0.9731 + }, + { + "start": 1832.28, + "end": 1835.66, + "probability": 0.8519 + }, + { + "start": 1836.18, + "end": 1838.64, + "probability": 0.7497 + }, + { + "start": 1839.2, + "end": 1839.94, + "probability": 0.5571 + }, + { + "start": 1840.1, + "end": 1840.76, + "probability": 0.6941 + }, + { + "start": 1841.2, + "end": 1845.72, + "probability": 0.9521 + }, + { + "start": 1846.02, + "end": 1850.88, + "probability": 0.9647 + }, + { + "start": 1851.9, + "end": 1853.92, + "probability": 0.7422 + }, + { + "start": 1854.26, + "end": 1855.36, + "probability": 0.6596 + }, + { + "start": 1855.54, + "end": 1855.88, + "probability": 0.8768 + }, + { + "start": 1856.04, + "end": 1857.1, + "probability": 0.7203 + }, + { + "start": 1857.22, + "end": 1861.76, + "probability": 0.9815 + }, + { + "start": 1862.0, + "end": 1865.04, + "probability": 0.7411 + }, + { + "start": 1865.16, + "end": 1868.2, + "probability": 0.7612 + }, + { + "start": 1868.34, + "end": 1869.11, + "probability": 0.8872 + }, + { + "start": 1869.4, + "end": 1870.54, + "probability": 0.5268 + }, + { + "start": 1870.6, + "end": 1871.7, + "probability": 0.8334 + }, + { + "start": 1873.86, + "end": 1876.2, + "probability": 0.894 + }, + { + "start": 1877.22, + "end": 1878.7, + "probability": 0.8801 + }, + { + "start": 1879.94, + "end": 1880.92, + "probability": 0.9771 + }, + { + "start": 1881.06, + "end": 1881.86, + "probability": 0.9492 + }, + { + "start": 1882.06, + "end": 1884.61, + "probability": 0.9935 + }, + { + "start": 1885.44, + "end": 1888.68, + "probability": 0.993 + }, + { + "start": 1889.46, + "end": 1891.0, + "probability": 0.9646 + }, + { + "start": 1892.38, + "end": 1894.22, + "probability": 0.8242 + }, + { + "start": 1895.38, + "end": 1896.3, + "probability": 0.8624 + }, + { + "start": 1897.3, + "end": 1900.92, + "probability": 0.8251 + }, + { + "start": 1902.34, + "end": 1907.52, + "probability": 0.9308 + }, + { + "start": 1908.5, + "end": 1913.14, + "probability": 0.9966 + }, + { + "start": 1914.04, + "end": 1916.32, + "probability": 0.7365 + }, + { + "start": 1916.88, + "end": 1920.18, + "probability": 0.5223 + }, + { + "start": 1921.46, + "end": 1924.94, + "probability": 0.6901 + }, + { + "start": 1925.54, + "end": 1926.42, + "probability": 0.8918 + }, + { + "start": 1926.9, + "end": 1929.98, + "probability": 0.9843 + }, + { + "start": 1930.48, + "end": 1933.88, + "probability": 0.994 + }, + { + "start": 1935.0, + "end": 1936.16, + "probability": 0.999 + }, + { + "start": 1936.74, + "end": 1937.02, + "probability": 0.9375 + }, + { + "start": 1937.54, + "end": 1940.14, + "probability": 0.946 + }, + { + "start": 1940.26, + "end": 1940.78, + "probability": 0.6865 + }, + { + "start": 1941.1, + "end": 1942.62, + "probability": 0.7097 + }, + { + "start": 1942.78, + "end": 1942.92, + "probability": 0.8015 + }, + { + "start": 1942.98, + "end": 1951.08, + "probability": 0.9728 + }, + { + "start": 1951.76, + "end": 1952.56, + "probability": 0.8658 + }, + { + "start": 1954.36, + "end": 1954.36, + "probability": 0.0847 + }, + { + "start": 1954.36, + "end": 1955.79, + "probability": 0.4188 + }, + { + "start": 1956.72, + "end": 1960.12, + "probability": 0.4874 + }, + { + "start": 1960.14, + "end": 1965.84, + "probability": 0.6977 + }, + { + "start": 1966.88, + "end": 1969.24, + "probability": 0.8661 + }, + { + "start": 1971.56, + "end": 1972.76, + "probability": 0.7599 + }, + { + "start": 1974.18, + "end": 1978.04, + "probability": 0.9397 + }, + { + "start": 1979.22, + "end": 1980.76, + "probability": 0.9368 + }, + { + "start": 1980.98, + "end": 1983.64, + "probability": 0.5645 + }, + { + "start": 1983.92, + "end": 1984.32, + "probability": 0.8338 + }, + { + "start": 1986.42, + "end": 1988.74, + "probability": 0.7069 + }, + { + "start": 1990.3, + "end": 1995.78, + "probability": 0.9526 + }, + { + "start": 1996.82, + "end": 1997.32, + "probability": 0.5435 + }, + { + "start": 1997.4, + "end": 1998.02, + "probability": 0.9388 + }, + { + "start": 1998.18, + "end": 2000.84, + "probability": 0.8728 + }, + { + "start": 2001.14, + "end": 2001.9, + "probability": 0.6733 + }, + { + "start": 2002.6, + "end": 2005.18, + "probability": 0.9469 + }, + { + "start": 2006.14, + "end": 2008.9, + "probability": 0.9893 + }, + { + "start": 2009.74, + "end": 2012.42, + "probability": 0.9659 + }, + { + "start": 2013.46, + "end": 2015.3, + "probability": 0.8492 + }, + { + "start": 2016.06, + "end": 2017.67, + "probability": 0.8168 + }, + { + "start": 2019.62, + "end": 2023.04, + "probability": 0.9265 + }, + { + "start": 2023.86, + "end": 2025.58, + "probability": 0.7932 + }, + { + "start": 2025.68, + "end": 2027.14, + "probability": 0.9748 + }, + { + "start": 2028.06, + "end": 2030.48, + "probability": 0.9777 + }, + { + "start": 2030.98, + "end": 2032.28, + "probability": 0.988 + }, + { + "start": 2033.32, + "end": 2037.7, + "probability": 0.9946 + }, + { + "start": 2037.7, + "end": 2043.18, + "probability": 0.5707 + }, + { + "start": 2044.04, + "end": 2044.84, + "probability": 0.9772 + }, + { + "start": 2045.02, + "end": 2048.24, + "probability": 0.9795 + }, + { + "start": 2048.78, + "end": 2052.12, + "probability": 0.7476 + }, + { + "start": 2052.98, + "end": 2056.98, + "probability": 0.9849 + }, + { + "start": 2057.44, + "end": 2057.7, + "probability": 0.7243 + }, + { + "start": 2057.92, + "end": 2064.58, + "probability": 0.9433 + }, + { + "start": 2064.64, + "end": 2065.9, + "probability": 0.9824 + }, + { + "start": 2066.44, + "end": 2069.32, + "probability": 0.9273 + }, + { + "start": 2069.92, + "end": 2071.82, + "probability": 0.8333 + }, + { + "start": 2073.88, + "end": 2075.98, + "probability": 0.696 + }, + { + "start": 2076.5, + "end": 2077.86, + "probability": 0.7417 + }, + { + "start": 2078.8, + "end": 2080.18, + "probability": 0.6613 + }, + { + "start": 2080.3, + "end": 2081.51, + "probability": 0.3142 + }, + { + "start": 2082.28, + "end": 2089.24, + "probability": 0.5257 + }, + { + "start": 2090.72, + "end": 2091.42, + "probability": 0.3845 + }, + { + "start": 2091.52, + "end": 2091.52, + "probability": 0.5513 + }, + { + "start": 2091.52, + "end": 2092.48, + "probability": 0.2145 + }, + { + "start": 2093.48, + "end": 2094.66, + "probability": 0.8979 + }, + { + "start": 2095.72, + "end": 2097.46, + "probability": 0.1196 + }, + { + "start": 2099.32, + "end": 2100.22, + "probability": 0.7417 + }, + { + "start": 2101.84, + "end": 2102.5, + "probability": 0.7999 + }, + { + "start": 2103.96, + "end": 2109.68, + "probability": 0.9782 + }, + { + "start": 2110.24, + "end": 2111.98, + "probability": 0.9399 + }, + { + "start": 2113.12, + "end": 2114.0, + "probability": 0.9459 + }, + { + "start": 2114.66, + "end": 2115.38, + "probability": 0.9863 + }, + { + "start": 2116.26, + "end": 2118.98, + "probability": 0.9751 + }, + { + "start": 2120.7, + "end": 2122.04, + "probability": 0.9393 + }, + { + "start": 2122.92, + "end": 2124.18, + "probability": 0.7862 + }, + { + "start": 2125.32, + "end": 2126.16, + "probability": 0.7071 + }, + { + "start": 2127.02, + "end": 2127.86, + "probability": 0.8796 + }, + { + "start": 2128.82, + "end": 2130.32, + "probability": 0.585 + }, + { + "start": 2131.26, + "end": 2132.02, + "probability": 0.9217 + }, + { + "start": 2133.14, + "end": 2134.32, + "probability": 0.9963 + }, + { + "start": 2135.06, + "end": 2137.3, + "probability": 0.9635 + }, + { + "start": 2139.2, + "end": 2141.0, + "probability": 0.9728 + }, + { + "start": 2142.2, + "end": 2144.18, + "probability": 0.7294 + }, + { + "start": 2145.16, + "end": 2147.2, + "probability": 0.91 + }, + { + "start": 2148.16, + "end": 2148.68, + "probability": 0.7736 + }, + { + "start": 2150.42, + "end": 2151.98, + "probability": 0.9585 + }, + { + "start": 2152.7, + "end": 2154.2, + "probability": 0.9832 + }, + { + "start": 2155.06, + "end": 2159.68, + "probability": 0.9807 + }, + { + "start": 2160.44, + "end": 2164.88, + "probability": 0.9951 + }, + { + "start": 2165.86, + "end": 2168.04, + "probability": 0.9183 + }, + { + "start": 2168.86, + "end": 2171.18, + "probability": 0.97 + }, + { + "start": 2172.5, + "end": 2175.98, + "probability": 0.7779 + }, + { + "start": 2177.82, + "end": 2178.6, + "probability": 0.8224 + }, + { + "start": 2179.3, + "end": 2179.9, + "probability": 0.9161 + }, + { + "start": 2181.42, + "end": 2184.04, + "probability": 0.9329 + }, + { + "start": 2184.68, + "end": 2185.7, + "probability": 0.8557 + }, + { + "start": 2186.42, + "end": 2188.9, + "probability": 0.8213 + }, + { + "start": 2190.46, + "end": 2192.12, + "probability": 0.7725 + }, + { + "start": 2193.0, + "end": 2195.24, + "probability": 0.9801 + }, + { + "start": 2196.52, + "end": 2198.14, + "probability": 0.9592 + }, + { + "start": 2199.0, + "end": 2202.7, + "probability": 0.9945 + }, + { + "start": 2203.48, + "end": 2204.92, + "probability": 0.9849 + }, + { + "start": 2206.22, + "end": 2209.15, + "probability": 0.9981 + }, + { + "start": 2210.46, + "end": 2215.42, + "probability": 0.965 + }, + { + "start": 2216.1, + "end": 2218.52, + "probability": 0.9886 + }, + { + "start": 2219.8, + "end": 2220.74, + "probability": 0.929 + }, + { + "start": 2221.46, + "end": 2224.76, + "probability": 0.9924 + }, + { + "start": 2225.9, + "end": 2228.4, + "probability": 0.9663 + }, + { + "start": 2229.3, + "end": 2230.06, + "probability": 0.7614 + }, + { + "start": 2230.88, + "end": 2231.54, + "probability": 0.9569 + }, + { + "start": 2232.34, + "end": 2234.92, + "probability": 0.9845 + }, + { + "start": 2235.68, + "end": 2237.0, + "probability": 0.8391 + }, + { + "start": 2237.66, + "end": 2238.68, + "probability": 0.5502 + }, + { + "start": 2239.32, + "end": 2239.62, + "probability": 0.9014 + }, + { + "start": 2240.96, + "end": 2242.76, + "probability": 0.7842 + }, + { + "start": 2243.12, + "end": 2245.2, + "probability": 0.8458 + }, + { + "start": 2245.7, + "end": 2245.72, + "probability": 0.0198 + }, + { + "start": 2245.72, + "end": 2250.84, + "probability": 0.8202 + }, + { + "start": 2251.24, + "end": 2252.01, + "probability": 0.5346 + }, + { + "start": 2252.74, + "end": 2255.46, + "probability": 0.8746 + }, + { + "start": 2255.46, + "end": 2256.06, + "probability": 0.15 + }, + { + "start": 2256.06, + "end": 2257.62, + "probability": 0.5742 + }, + { + "start": 2285.04, + "end": 2285.88, + "probability": 0.6431 + }, + { + "start": 2287.24, + "end": 2291.14, + "probability": 0.8866 + }, + { + "start": 2292.2, + "end": 2294.16, + "probability": 0.9058 + }, + { + "start": 2295.14, + "end": 2304.6, + "probability": 0.98 + }, + { + "start": 2305.28, + "end": 2306.54, + "probability": 0.9128 + }, + { + "start": 2307.36, + "end": 2309.04, + "probability": 0.913 + }, + { + "start": 2310.0, + "end": 2313.84, + "probability": 0.9912 + }, + { + "start": 2314.54, + "end": 2316.14, + "probability": 0.8412 + }, + { + "start": 2316.68, + "end": 2317.44, + "probability": 0.7745 + }, + { + "start": 2317.62, + "end": 2322.68, + "probability": 0.6079 + }, + { + "start": 2322.82, + "end": 2324.22, + "probability": 0.9819 + }, + { + "start": 2325.22, + "end": 2333.62, + "probability": 0.8806 + }, + { + "start": 2334.28, + "end": 2334.54, + "probability": 0.3493 + }, + { + "start": 2334.6, + "end": 2335.11, + "probability": 0.7038 + }, + { + "start": 2337.42, + "end": 2340.82, + "probability": 0.9931 + }, + { + "start": 2341.98, + "end": 2342.67, + "probability": 0.5942 + }, + { + "start": 2343.8, + "end": 2347.52, + "probability": 0.9379 + }, + { + "start": 2348.06, + "end": 2349.02, + "probability": 0.9897 + }, + { + "start": 2349.78, + "end": 2350.58, + "probability": 0.7361 + }, + { + "start": 2350.98, + "end": 2355.92, + "probability": 0.868 + }, + { + "start": 2356.7, + "end": 2359.04, + "probability": 0.964 + }, + { + "start": 2359.78, + "end": 2360.34, + "probability": 0.6422 + }, + { + "start": 2361.02, + "end": 2364.4, + "probability": 0.9806 + }, + { + "start": 2365.6, + "end": 2369.14, + "probability": 0.9411 + }, + { + "start": 2370.28, + "end": 2373.56, + "probability": 0.5193 + }, + { + "start": 2373.92, + "end": 2376.7, + "probability": 0.9985 + }, + { + "start": 2377.74, + "end": 2382.9, + "probability": 0.8281 + }, + { + "start": 2384.18, + "end": 2388.0, + "probability": 0.9937 + }, + { + "start": 2388.88, + "end": 2389.34, + "probability": 0.4251 + }, + { + "start": 2390.08, + "end": 2392.82, + "probability": 0.9963 + }, + { + "start": 2393.64, + "end": 2394.14, + "probability": 0.6482 + }, + { + "start": 2395.82, + "end": 2400.18, + "probability": 0.9969 + }, + { + "start": 2401.38, + "end": 2402.0, + "probability": 0.6125 + }, + { + "start": 2402.56, + "end": 2404.76, + "probability": 0.6116 + }, + { + "start": 2405.18, + "end": 2409.06, + "probability": 0.9388 + }, + { + "start": 2409.84, + "end": 2410.2, + "probability": 0.8082 + }, + { + "start": 2411.08, + "end": 2415.78, + "probability": 0.9185 + }, + { + "start": 2417.08, + "end": 2418.04, + "probability": 0.9744 + }, + { + "start": 2418.56, + "end": 2419.24, + "probability": 0.91 + }, + { + "start": 2420.34, + "end": 2424.62, + "probability": 0.9894 + }, + { + "start": 2425.26, + "end": 2429.56, + "probability": 0.9665 + }, + { + "start": 2429.56, + "end": 2433.26, + "probability": 0.9971 + }, + { + "start": 2433.54, + "end": 2437.48, + "probability": 0.9851 + }, + { + "start": 2438.0, + "end": 2440.28, + "probability": 0.7974 + }, + { + "start": 2440.94, + "end": 2444.62, + "probability": 0.9813 + }, + { + "start": 2445.54, + "end": 2446.26, + "probability": 0.9107 + }, + { + "start": 2446.9, + "end": 2450.08, + "probability": 0.988 + }, + { + "start": 2450.08, + "end": 2453.56, + "probability": 0.9971 + }, + { + "start": 2454.26, + "end": 2455.22, + "probability": 0.9963 + }, + { + "start": 2455.86, + "end": 2456.72, + "probability": 0.9939 + }, + { + "start": 2457.58, + "end": 2460.62, + "probability": 0.9836 + }, + { + "start": 2460.62, + "end": 2464.1, + "probability": 0.9973 + }, + { + "start": 2465.42, + "end": 2465.64, + "probability": 0.2265 + }, + { + "start": 2466.2, + "end": 2468.4, + "probability": 0.9865 + }, + { + "start": 2468.98, + "end": 2471.86, + "probability": 0.9045 + }, + { + "start": 2472.68, + "end": 2475.52, + "probability": 0.5979 + }, + { + "start": 2476.72, + "end": 2477.82, + "probability": 0.7359 + }, + { + "start": 2478.38, + "end": 2482.52, + "probability": 0.9955 + }, + { + "start": 2483.58, + "end": 2486.46, + "probability": 0.9746 + }, + { + "start": 2486.46, + "end": 2489.94, + "probability": 0.9935 + }, + { + "start": 2490.38, + "end": 2491.14, + "probability": 0.9726 + }, + { + "start": 2492.4, + "end": 2496.64, + "probability": 0.9694 + }, + { + "start": 2497.56, + "end": 2500.7, + "probability": 0.8533 + }, + { + "start": 2501.46, + "end": 2504.16, + "probability": 0.9879 + }, + { + "start": 2505.26, + "end": 2508.24, + "probability": 0.9934 + }, + { + "start": 2509.24, + "end": 2510.48, + "probability": 0.9778 + }, + { + "start": 2511.34, + "end": 2515.58, + "probability": 0.999 + }, + { + "start": 2515.8, + "end": 2520.22, + "probability": 0.999 + }, + { + "start": 2520.76, + "end": 2521.74, + "probability": 0.879 + }, + { + "start": 2523.08, + "end": 2526.5, + "probability": 0.9867 + }, + { + "start": 2527.14, + "end": 2527.9, + "probability": 0.7465 + }, + { + "start": 2528.4, + "end": 2529.5, + "probability": 0.8591 + }, + { + "start": 2529.62, + "end": 2530.86, + "probability": 0.7244 + }, + { + "start": 2531.32, + "end": 2532.82, + "probability": 0.9106 + }, + { + "start": 2533.3, + "end": 2534.22, + "probability": 0.695 + }, + { + "start": 2534.58, + "end": 2537.98, + "probability": 0.5686 + }, + { + "start": 2537.98, + "end": 2538.46, + "probability": 0.6554 + }, + { + "start": 2539.36, + "end": 2541.28, + "probability": 0.9758 + }, + { + "start": 2541.52, + "end": 2542.76, + "probability": 0.9926 + }, + { + "start": 2543.38, + "end": 2546.78, + "probability": 0.9905 + }, + { + "start": 2547.02, + "end": 2547.76, + "probability": 0.4082 + }, + { + "start": 2548.28, + "end": 2548.8, + "probability": 0.3981 + }, + { + "start": 2548.98, + "end": 2552.08, + "probability": 0.6935 + }, + { + "start": 2552.24, + "end": 2552.9, + "probability": 0.5417 + }, + { + "start": 2552.92, + "end": 2553.36, + "probability": 0.9077 + }, + { + "start": 2554.12, + "end": 2558.76, + "probability": 0.9474 + }, + { + "start": 2560.14, + "end": 2563.36, + "probability": 0.8945 + }, + { + "start": 2565.34, + "end": 2566.14, + "probability": 0.9858 + }, + { + "start": 2566.26, + "end": 2566.58, + "probability": 0.0602 + }, + { + "start": 2567.78, + "end": 2568.14, + "probability": 0.6308 + }, + { + "start": 2568.24, + "end": 2569.94, + "probability": 0.8757 + }, + { + "start": 2571.16, + "end": 2572.12, + "probability": 0.7892 + }, + { + "start": 2572.48, + "end": 2575.36, + "probability": 0.9703 + }, + { + "start": 2576.36, + "end": 2577.82, + "probability": 0.6703 + }, + { + "start": 2587.2, + "end": 2587.2, + "probability": 0.4357 + }, + { + "start": 2587.2, + "end": 2589.58, + "probability": 0.8604 + }, + { + "start": 2589.92, + "end": 2591.48, + "probability": 0.5596 + }, + { + "start": 2594.0, + "end": 2596.34, + "probability": 0.3998 + }, + { + "start": 2598.32, + "end": 2601.26, + "probability": 0.9181 + }, + { + "start": 2604.56, + "end": 2604.56, + "probability": 0.4673 + }, + { + "start": 2606.66, + "end": 2608.22, + "probability": 0.6177 + }, + { + "start": 2608.94, + "end": 2611.74, + "probability": 0.998 + }, + { + "start": 2612.66, + "end": 2613.64, + "probability": 0.8235 + }, + { + "start": 2614.98, + "end": 2620.42, + "probability": 0.9393 + }, + { + "start": 2620.78, + "end": 2623.44, + "probability": 0.7469 + }, + { + "start": 2624.62, + "end": 2632.98, + "probability": 0.9375 + }, + { + "start": 2634.32, + "end": 2636.6, + "probability": 0.9982 + }, + { + "start": 2637.28, + "end": 2638.7, + "probability": 0.9949 + }, + { + "start": 2639.4, + "end": 2644.54, + "probability": 0.9843 + }, + { + "start": 2646.54, + "end": 2647.42, + "probability": 0.6242 + }, + { + "start": 2647.6, + "end": 2652.2, + "probability": 0.9801 + }, + { + "start": 2653.12, + "end": 2654.76, + "probability": 0.9011 + }, + { + "start": 2655.62, + "end": 2658.18, + "probability": 0.8806 + }, + { + "start": 2659.02, + "end": 2661.02, + "probability": 0.8855 + }, + { + "start": 2662.11, + "end": 2665.88, + "probability": 0.9834 + }, + { + "start": 2667.28, + "end": 2667.82, + "probability": 0.6583 + }, + { + "start": 2667.96, + "end": 2676.16, + "probability": 0.9861 + }, + { + "start": 2676.82, + "end": 2680.32, + "probability": 0.7058 + }, + { + "start": 2681.4, + "end": 2684.06, + "probability": 0.9914 + }, + { + "start": 2684.92, + "end": 2686.68, + "probability": 0.9409 + }, + { + "start": 2688.06, + "end": 2689.84, + "probability": 0.9559 + }, + { + "start": 2693.22, + "end": 2694.68, + "probability": 0.8979 + }, + { + "start": 2695.18, + "end": 2697.43, + "probability": 0.9307 + }, + { + "start": 2698.4, + "end": 2700.01, + "probability": 0.9001 + }, + { + "start": 2700.16, + "end": 2700.81, + "probability": 0.5018 + }, + { + "start": 2700.98, + "end": 2703.2, + "probability": 0.8787 + }, + { + "start": 2704.24, + "end": 2706.1, + "probability": 0.9108 + }, + { + "start": 2707.62, + "end": 2711.56, + "probability": 0.9419 + }, + { + "start": 2713.0, + "end": 2716.08, + "probability": 0.8472 + }, + { + "start": 2716.08, + "end": 2718.12, + "probability": 0.9956 + }, + { + "start": 2718.82, + "end": 2719.16, + "probability": 0.4352 + }, + { + "start": 2720.26, + "end": 2720.88, + "probability": 0.8652 + }, + { + "start": 2721.06, + "end": 2724.46, + "probability": 0.9668 + }, + { + "start": 2724.46, + "end": 2730.46, + "probability": 0.8695 + }, + { + "start": 2732.04, + "end": 2732.74, + "probability": 0.8679 + }, + { + "start": 2734.62, + "end": 2736.92, + "probability": 0.6916 + }, + { + "start": 2738.36, + "end": 2745.88, + "probability": 0.9205 + }, + { + "start": 2746.0, + "end": 2747.06, + "probability": 0.4859 + }, + { + "start": 2748.92, + "end": 2752.34, + "probability": 0.7141 + }, + { + "start": 2753.34, + "end": 2757.86, + "probability": 0.9327 + }, + { + "start": 2758.76, + "end": 2761.24, + "probability": 0.9963 + }, + { + "start": 2762.9, + "end": 2768.06, + "probability": 0.9826 + }, + { + "start": 2768.12, + "end": 2774.96, + "probability": 0.9885 + }, + { + "start": 2775.04, + "end": 2776.2, + "probability": 0.9206 + }, + { + "start": 2776.32, + "end": 2778.96, + "probability": 0.9648 + }, + { + "start": 2779.7, + "end": 2785.88, + "probability": 0.892 + }, + { + "start": 2786.9, + "end": 2788.54, + "probability": 0.6579 + }, + { + "start": 2789.8, + "end": 2792.68, + "probability": 0.8228 + }, + { + "start": 2793.34, + "end": 2798.64, + "probability": 0.8253 + }, + { + "start": 2799.26, + "end": 2803.4, + "probability": 0.9561 + }, + { + "start": 2803.96, + "end": 2807.86, + "probability": 0.9118 + }, + { + "start": 2808.46, + "end": 2812.9, + "probability": 0.8528 + }, + { + "start": 2813.52, + "end": 2814.5, + "probability": 0.5678 + }, + { + "start": 2814.7, + "end": 2820.92, + "probability": 0.755 + }, + { + "start": 2821.86, + "end": 2823.74, + "probability": 0.746 + }, + { + "start": 2824.74, + "end": 2825.0, + "probability": 0.3061 + }, + { + "start": 2825.4, + "end": 2829.82, + "probability": 0.7987 + }, + { + "start": 2830.28, + "end": 2834.36, + "probability": 0.9246 + }, + { + "start": 2834.92, + "end": 2837.44, + "probability": 0.9501 + }, + { + "start": 2837.68, + "end": 2838.06, + "probability": 0.8384 + }, + { + "start": 2839.04, + "end": 2842.58, + "probability": 0.9558 + }, + { + "start": 2843.22, + "end": 2844.58, + "probability": 0.3416 + }, + { + "start": 2845.3, + "end": 2847.04, + "probability": 0.7038 + }, + { + "start": 2848.64, + "end": 2853.24, + "probability": 0.9773 + }, + { + "start": 2853.98, + "end": 2855.16, + "probability": 0.8337 + }, + { + "start": 2856.54, + "end": 2858.74, + "probability": 0.8301 + }, + { + "start": 2858.82, + "end": 2859.64, + "probability": 0.7356 + }, + { + "start": 2859.94, + "end": 2861.14, + "probability": 0.7663 + }, + { + "start": 2861.26, + "end": 2866.74, + "probability": 0.9507 + }, + { + "start": 2869.58, + "end": 2874.76, + "probability": 0.9185 + }, + { + "start": 2874.8, + "end": 2875.44, + "probability": 0.8244 + }, + { + "start": 2877.82, + "end": 2880.8, + "probability": 0.8257 + }, + { + "start": 2896.14, + "end": 2898.0, + "probability": 0.5219 + }, + { + "start": 2899.3, + "end": 2902.16, + "probability": 0.9388 + }, + { + "start": 2902.36, + "end": 2903.74, + "probability": 0.9373 + }, + { + "start": 2904.9, + "end": 2906.62, + "probability": 0.9959 + }, + { + "start": 2907.18, + "end": 2908.99, + "probability": 0.8222 + }, + { + "start": 2909.84, + "end": 2912.76, + "probability": 0.9963 + }, + { + "start": 2913.48, + "end": 2916.76, + "probability": 0.9341 + }, + { + "start": 2917.76, + "end": 2919.38, + "probability": 0.8963 + }, + { + "start": 2920.6, + "end": 2922.6, + "probability": 0.9875 + }, + { + "start": 2923.32, + "end": 2926.1, + "probability": 0.9825 + }, + { + "start": 2927.4, + "end": 2928.74, + "probability": 0.4387 + }, + { + "start": 2928.84, + "end": 2928.84, + "probability": 0.4402 + }, + { + "start": 2928.84, + "end": 2930.6, + "probability": 0.8992 + }, + { + "start": 2930.72, + "end": 2933.58, + "probability": 0.9654 + }, + { + "start": 2935.24, + "end": 2936.82, + "probability": 0.9836 + }, + { + "start": 2936.96, + "end": 2939.54, + "probability": 0.9946 + }, + { + "start": 2941.91, + "end": 2944.56, + "probability": 0.9867 + }, + { + "start": 2945.78, + "end": 2946.96, + "probability": 0.8336 + }, + { + "start": 2948.38, + "end": 2954.22, + "probability": 0.9241 + }, + { + "start": 2955.12, + "end": 2960.08, + "probability": 0.9706 + }, + { + "start": 2960.28, + "end": 2966.96, + "probability": 0.9796 + }, + { + "start": 2968.14, + "end": 2971.26, + "probability": 0.952 + }, + { + "start": 2972.26, + "end": 2973.32, + "probability": 0.9951 + }, + { + "start": 2974.2, + "end": 2979.18, + "probability": 0.9356 + }, + { + "start": 2980.52, + "end": 2984.9, + "probability": 0.8281 + }, + { + "start": 2986.0, + "end": 2988.44, + "probability": 0.9989 + }, + { + "start": 2989.3, + "end": 2990.88, + "probability": 0.9316 + }, + { + "start": 2991.6, + "end": 2992.4, + "probability": 0.8992 + }, + { + "start": 2993.5, + "end": 2996.04, + "probability": 0.9933 + }, + { + "start": 2998.68, + "end": 3004.45, + "probability": 0.9927 + }, + { + "start": 3005.64, + "end": 3006.62, + "probability": 0.6369 + }, + { + "start": 3007.22, + "end": 3008.78, + "probability": 0.9683 + }, + { + "start": 3009.58, + "end": 3011.82, + "probability": 0.9127 + }, + { + "start": 3012.46, + "end": 3014.24, + "probability": 0.9862 + }, + { + "start": 3015.16, + "end": 3019.54, + "probability": 0.9077 + }, + { + "start": 3019.78, + "end": 3023.14, + "probability": 0.9851 + }, + { + "start": 3026.24, + "end": 3029.3, + "probability": 0.9988 + }, + { + "start": 3031.06, + "end": 3034.64, + "probability": 0.9307 + }, + { + "start": 3035.12, + "end": 3036.57, + "probability": 0.9829 + }, + { + "start": 3037.22, + "end": 3038.34, + "probability": 0.9424 + }, + { + "start": 3039.08, + "end": 3041.22, + "probability": 0.9965 + }, + { + "start": 3041.92, + "end": 3044.42, + "probability": 0.9468 + }, + { + "start": 3045.02, + "end": 3045.64, + "probability": 0.6294 + }, + { + "start": 3045.82, + "end": 3049.68, + "probability": 0.992 + }, + { + "start": 3049.68, + "end": 3055.18, + "probability": 0.9894 + }, + { + "start": 3055.7, + "end": 3058.26, + "probability": 0.9928 + }, + { + "start": 3058.8, + "end": 3060.58, + "probability": 0.9941 + }, + { + "start": 3060.88, + "end": 3061.24, + "probability": 0.7393 + }, + { + "start": 3062.16, + "end": 3063.5, + "probability": 0.7242 + }, + { + "start": 3064.3, + "end": 3066.12, + "probability": 0.9958 + }, + { + "start": 3066.88, + "end": 3067.3, + "probability": 0.5969 + }, + { + "start": 3067.48, + "end": 3068.22, + "probability": 0.8649 + }, + { + "start": 3068.7, + "end": 3069.92, + "probability": 0.9211 + }, + { + "start": 3070.02, + "end": 3073.05, + "probability": 0.61 + }, + { + "start": 3074.54, + "end": 3074.92, + "probability": 0.3595 + }, + { + "start": 3075.34, + "end": 3079.88, + "probability": 0.7856 + }, + { + "start": 3080.06, + "end": 3083.76, + "probability": 0.9956 + }, + { + "start": 3084.36, + "end": 3085.0, + "probability": 0.6899 + }, + { + "start": 3085.92, + "end": 3088.14, + "probability": 0.6092 + }, + { + "start": 3089.54, + "end": 3089.68, + "probability": 0.578 + }, + { + "start": 3089.68, + "end": 3090.06, + "probability": 0.2015 + }, + { + "start": 3090.06, + "end": 3092.54, + "probability": 0.9562 + }, + { + "start": 3093.3, + "end": 3095.62, + "probability": 0.8145 + }, + { + "start": 3095.7, + "end": 3100.74, + "probability": 0.9176 + }, + { + "start": 3101.84, + "end": 3105.2, + "probability": 0.8638 + }, + { + "start": 3106.14, + "end": 3107.88, + "probability": 0.7365 + }, + { + "start": 3108.56, + "end": 3109.58, + "probability": 0.7957 + }, + { + "start": 3110.22, + "end": 3114.36, + "probability": 0.7084 + }, + { + "start": 3114.94, + "end": 3117.48, + "probability": 0.6674 + }, + { + "start": 3117.52, + "end": 3120.12, + "probability": 0.8461 + }, + { + "start": 3120.66, + "end": 3121.32, + "probability": 0.815 + }, + { + "start": 3122.06, + "end": 3126.0, + "probability": 0.9076 + }, + { + "start": 3126.4, + "end": 3128.04, + "probability": 0.8382 + }, + { + "start": 3128.16, + "end": 3129.24, + "probability": 0.9616 + }, + { + "start": 3129.46, + "end": 3130.14, + "probability": 0.7144 + }, + { + "start": 3130.16, + "end": 3133.24, + "probability": 0.9286 + }, + { + "start": 3134.02, + "end": 3137.68, + "probability": 0.8396 + }, + { + "start": 3138.26, + "end": 3139.12, + "probability": 0.9933 + }, + { + "start": 3139.6, + "end": 3141.28, + "probability": 0.8471 + }, + { + "start": 3141.66, + "end": 3144.38, + "probability": 0.9785 + }, + { + "start": 3144.56, + "end": 3145.79, + "probability": 0.8939 + }, + { + "start": 3148.28, + "end": 3151.73, + "probability": 0.5432 + }, + { + "start": 3152.14, + "end": 3155.0, + "probability": 0.9746 + }, + { + "start": 3156.72, + "end": 3157.06, + "probability": 0.7587 + }, + { + "start": 3159.36, + "end": 3161.18, + "probability": 0.9205 + }, + { + "start": 3161.58, + "end": 3162.32, + "probability": 0.7894 + }, + { + "start": 3163.11, + "end": 3167.9, + "probability": 0.9658 + }, + { + "start": 3168.54, + "end": 3170.16, + "probability": 0.9397 + }, + { + "start": 3170.68, + "end": 3172.0, + "probability": 0.6056 + }, + { + "start": 3172.22, + "end": 3178.56, + "probability": 0.9604 + }, + { + "start": 3178.94, + "end": 3179.42, + "probability": 0.674 + }, + { + "start": 3179.56, + "end": 3179.78, + "probability": 0.7705 + }, + { + "start": 3179.86, + "end": 3180.95, + "probability": 0.9136 + }, + { + "start": 3181.84, + "end": 3183.32, + "probability": 0.9893 + }, + { + "start": 3184.02, + "end": 3185.62, + "probability": 0.9591 + }, + { + "start": 3186.18, + "end": 3187.04, + "probability": 0.9576 + }, + { + "start": 3187.6, + "end": 3189.59, + "probability": 0.9663 + }, + { + "start": 3190.26, + "end": 3193.88, + "probability": 0.7689 + }, + { + "start": 3194.02, + "end": 3194.32, + "probability": 0.398 + }, + { + "start": 3194.34, + "end": 3195.38, + "probability": 0.7264 + }, + { + "start": 3195.42, + "end": 3195.6, + "probability": 0.4639 + }, + { + "start": 3195.64, + "end": 3198.46, + "probability": 0.7529 + }, + { + "start": 3198.46, + "end": 3200.36, + "probability": 0.9922 + }, + { + "start": 3201.28, + "end": 3202.46, + "probability": 0.9895 + }, + { + "start": 3203.04, + "end": 3205.56, + "probability": 0.8521 + }, + { + "start": 3206.26, + "end": 3207.24, + "probability": 0.9677 + }, + { + "start": 3207.8, + "end": 3208.38, + "probability": 0.7324 + }, + { + "start": 3208.7, + "end": 3210.04, + "probability": 0.7047 + }, + { + "start": 3210.48, + "end": 3212.38, + "probability": 0.9938 + }, + { + "start": 3212.94, + "end": 3218.08, + "probability": 0.9585 + }, + { + "start": 3218.96, + "end": 3219.96, + "probability": 0.9697 + }, + { + "start": 3220.04, + "end": 3222.06, + "probability": 0.9387 + }, + { + "start": 3223.22, + "end": 3223.88, + "probability": 0.6557 + }, + { + "start": 3224.7, + "end": 3228.06, + "probability": 0.8656 + }, + { + "start": 3228.06, + "end": 3232.1, + "probability": 0.9956 + }, + { + "start": 3232.26, + "end": 3234.9, + "probability": 0.812 + }, + { + "start": 3234.98, + "end": 3235.5, + "probability": 0.6133 + }, + { + "start": 3235.56, + "end": 3237.66, + "probability": 0.7117 + }, + { + "start": 3237.92, + "end": 3238.9, + "probability": 0.5603 + }, + { + "start": 3239.46, + "end": 3240.4, + "probability": 0.7351 + }, + { + "start": 3240.52, + "end": 3241.24, + "probability": 0.7593 + }, + { + "start": 3241.54, + "end": 3242.9, + "probability": 0.8674 + }, + { + "start": 3243.4, + "end": 3243.76, + "probability": 0.422 + }, + { + "start": 3243.88, + "end": 3244.92, + "probability": 0.8473 + }, + { + "start": 3245.0, + "end": 3245.2, + "probability": 0.6888 + }, + { + "start": 3245.26, + "end": 3245.86, + "probability": 0.5493 + }, + { + "start": 3246.2, + "end": 3248.08, + "probability": 0.9872 + }, + { + "start": 3248.12, + "end": 3251.54, + "probability": 0.9236 + }, + { + "start": 3252.98, + "end": 3255.04, + "probability": 0.9983 + }, + { + "start": 3256.0, + "end": 3258.8, + "probability": 0.8574 + }, + { + "start": 3259.42, + "end": 3262.76, + "probability": 0.9974 + }, + { + "start": 3263.06, + "end": 3265.24, + "probability": 0.8509 + }, + { + "start": 3265.8, + "end": 3267.04, + "probability": 0.9656 + }, + { + "start": 3267.18, + "end": 3269.3, + "probability": 0.9924 + }, + { + "start": 3269.48, + "end": 3270.64, + "probability": 0.8241 + }, + { + "start": 3271.36, + "end": 3274.18, + "probability": 0.7396 + }, + { + "start": 3274.56, + "end": 3278.02, + "probability": 0.9453 + }, + { + "start": 3278.42, + "end": 3280.74, + "probability": 0.8521 + }, + { + "start": 3280.94, + "end": 3281.2, + "probability": 0.579 + }, + { + "start": 3281.36, + "end": 3281.92, + "probability": 0.6716 + }, + { + "start": 3282.62, + "end": 3284.9, + "probability": 0.6022 + }, + { + "start": 3285.7, + "end": 3286.98, + "probability": 0.9558 + }, + { + "start": 3287.12, + "end": 3289.8, + "probability": 0.9341 + }, + { + "start": 3290.18, + "end": 3291.08, + "probability": 0.8877 + }, + { + "start": 3291.24, + "end": 3293.48, + "probability": 0.9625 + }, + { + "start": 3293.74, + "end": 3294.46, + "probability": 0.9708 + }, + { + "start": 3295.56, + "end": 3295.72, + "probability": 0.6809 + }, + { + "start": 3297.08, + "end": 3298.84, + "probability": 0.6958 + }, + { + "start": 3299.06, + "end": 3301.92, + "probability": 0.8468 + }, + { + "start": 3302.04, + "end": 3305.18, + "probability": 0.8351 + }, + { + "start": 3305.58, + "end": 3305.96, + "probability": 0.9543 + }, + { + "start": 3306.76, + "end": 3307.22, + "probability": 0.7781 + }, + { + "start": 3307.76, + "end": 3308.44, + "probability": 0.651 + }, + { + "start": 3309.84, + "end": 3310.68, + "probability": 0.8795 + }, + { + "start": 3311.48, + "end": 3314.02, + "probability": 0.7465 + }, + { + "start": 3314.04, + "end": 3315.34, + "probability": 0.8271 + }, + { + "start": 3316.44, + "end": 3318.2, + "probability": 0.7654 + }, + { + "start": 3318.84, + "end": 3320.74, + "probability": 0.9399 + }, + { + "start": 3321.98, + "end": 3324.34, + "probability": 0.6731 + }, + { + "start": 3326.34, + "end": 3327.84, + "probability": 0.9958 + }, + { + "start": 3328.56, + "end": 3331.2, + "probability": 0.6975 + }, + { + "start": 3333.89, + "end": 3336.14, + "probability": 0.094 + }, + { + "start": 3337.42, + "end": 3337.92, + "probability": 0.104 + }, + { + "start": 3339.38, + "end": 3340.92, + "probability": 0.7809 + }, + { + "start": 3341.44, + "end": 3342.66, + "probability": 0.8618 + }, + { + "start": 3342.7, + "end": 3346.26, + "probability": 0.9837 + }, + { + "start": 3351.22, + "end": 3354.86, + "probability": 0.377 + }, + { + "start": 3356.06, + "end": 3357.36, + "probability": 0.9482 + }, + { + "start": 3357.68, + "end": 3358.54, + "probability": 0.9844 + }, + { + "start": 3362.86, + "end": 3362.86, + "probability": 0.04 + }, + { + "start": 3362.86, + "end": 3365.64, + "probability": 0.0986 + }, + { + "start": 3366.18, + "end": 3367.5, + "probability": 0.75 + }, + { + "start": 3369.06, + "end": 3369.08, + "probability": 0.2422 + }, + { + "start": 3371.18, + "end": 3373.1, + "probability": 0.9628 + }, + { + "start": 3374.76, + "end": 3375.5, + "probability": 0.9254 + }, + { + "start": 3376.5, + "end": 3384.52, + "probability": 0.9878 + }, + { + "start": 3384.92, + "end": 3386.38, + "probability": 0.0074 + }, + { + "start": 3387.24, + "end": 3388.62, + "probability": 0.9532 + }, + { + "start": 3388.92, + "end": 3390.46, + "probability": 0.9593 + }, + { + "start": 3391.16, + "end": 3393.0, + "probability": 0.9585 + }, + { + "start": 3393.6, + "end": 3394.6, + "probability": 0.5532 + }, + { + "start": 3394.86, + "end": 3395.42, + "probability": 0.786 + }, + { + "start": 3395.52, + "end": 3397.14, + "probability": 0.9274 + }, + { + "start": 3397.78, + "end": 3398.58, + "probability": 0.9673 + }, + { + "start": 3398.9, + "end": 3399.78, + "probability": 0.8 + }, + { + "start": 3399.86, + "end": 3401.08, + "probability": 0.6857 + }, + { + "start": 3401.22, + "end": 3403.52, + "probability": 0.8928 + }, + { + "start": 3404.72, + "end": 3409.64, + "probability": 0.9958 + }, + { + "start": 3410.54, + "end": 3411.74, + "probability": 0.9736 + }, + { + "start": 3412.5, + "end": 3413.96, + "probability": 0.9895 + }, + { + "start": 3414.62, + "end": 3415.86, + "probability": 0.9417 + }, + { + "start": 3416.68, + "end": 3420.82, + "probability": 0.6904 + }, + { + "start": 3421.92, + "end": 3423.98, + "probability": 0.9217 + }, + { + "start": 3425.28, + "end": 3427.44, + "probability": 0.9832 + }, + { + "start": 3427.78, + "end": 3428.12, + "probability": 0.3993 + }, + { + "start": 3428.18, + "end": 3428.76, + "probability": 0.7394 + }, + { + "start": 3428.8, + "end": 3429.58, + "probability": 0.9805 + }, + { + "start": 3430.6, + "end": 3434.84, + "probability": 0.8384 + }, + { + "start": 3434.84, + "end": 3439.24, + "probability": 0.9824 + }, + { + "start": 3439.24, + "end": 3442.88, + "probability": 0.7922 + }, + { + "start": 3444.24, + "end": 3447.03, + "probability": 0.9445 + }, + { + "start": 3448.0, + "end": 3450.36, + "probability": 0.8577 + }, + { + "start": 3451.38, + "end": 3453.52, + "probability": 0.7173 + }, + { + "start": 3456.44, + "end": 3458.88, + "probability": 0.8994 + }, + { + "start": 3459.58, + "end": 3460.36, + "probability": 0.8287 + }, + { + "start": 3461.38, + "end": 3463.94, + "probability": 0.6028 + }, + { + "start": 3464.5, + "end": 3467.06, + "probability": 0.9031 + }, + { + "start": 3467.88, + "end": 3472.28, + "probability": 0.9834 + }, + { + "start": 3472.28, + "end": 3474.98, + "probability": 0.9839 + }, + { + "start": 3476.2, + "end": 3477.9, + "probability": 0.828 + }, + { + "start": 3478.5, + "end": 3481.12, + "probability": 0.9676 + }, + { + "start": 3481.28, + "end": 3483.86, + "probability": 0.6187 + }, + { + "start": 3484.9, + "end": 3485.56, + "probability": 0.9172 + }, + { + "start": 3485.7, + "end": 3486.36, + "probability": 0.8986 + }, + { + "start": 3486.58, + "end": 3487.08, + "probability": 0.8444 + }, + { + "start": 3487.58, + "end": 3489.18, + "probability": 0.9753 + }, + { + "start": 3492.14, + "end": 3492.82, + "probability": 0.8127 + }, + { + "start": 3493.64, + "end": 3497.44, + "probability": 0.9902 + }, + { + "start": 3497.66, + "end": 3498.94, + "probability": 0.8745 + }, + { + "start": 3499.08, + "end": 3500.48, + "probability": 0.7522 + }, + { + "start": 3501.26, + "end": 3502.38, + "probability": 0.9482 + }, + { + "start": 3502.46, + "end": 3504.02, + "probability": 0.95 + }, + { + "start": 3504.3, + "end": 3507.24, + "probability": 0.9865 + }, + { + "start": 3507.24, + "end": 3511.24, + "probability": 0.9617 + }, + { + "start": 3511.9, + "end": 3513.7, + "probability": 0.9737 + }, + { + "start": 3514.44, + "end": 3516.06, + "probability": 0.9715 + }, + { + "start": 3516.66, + "end": 3518.9, + "probability": 0.8506 + }, + { + "start": 3519.66, + "end": 3520.44, + "probability": 0.9872 + }, + { + "start": 3521.26, + "end": 3524.18, + "probability": 0.9598 + }, + { + "start": 3526.69, + "end": 3530.48, + "probability": 0.787 + }, + { + "start": 3531.22, + "end": 3532.1, + "probability": 0.8854 + }, + { + "start": 3532.36, + "end": 3534.7, + "probability": 0.8431 + }, + { + "start": 3535.34, + "end": 3538.38, + "probability": 0.9583 + }, + { + "start": 3538.94, + "end": 3543.88, + "probability": 0.9851 + }, + { + "start": 3544.85, + "end": 3549.0, + "probability": 0.9941 + }, + { + "start": 3549.66, + "end": 3551.82, + "probability": 0.7946 + }, + { + "start": 3552.4, + "end": 3555.39, + "probability": 0.9896 + }, + { + "start": 3556.08, + "end": 3557.54, + "probability": 0.8464 + }, + { + "start": 3557.56, + "end": 3558.9, + "probability": 0.6847 + }, + { + "start": 3559.0, + "end": 3560.0, + "probability": 0.9834 + }, + { + "start": 3560.78, + "end": 3561.98, + "probability": 0.7554 + }, + { + "start": 3562.66, + "end": 3568.2, + "probability": 0.8984 + }, + { + "start": 3568.78, + "end": 3570.26, + "probability": 0.8765 + }, + { + "start": 3570.44, + "end": 3571.16, + "probability": 0.8106 + }, + { + "start": 3571.3, + "end": 3575.46, + "probability": 0.8831 + }, + { + "start": 3576.1, + "end": 3579.1, + "probability": 0.9124 + }, + { + "start": 3579.38, + "end": 3580.34, + "probability": 0.9791 + }, + { + "start": 3580.42, + "end": 3582.74, + "probability": 0.9937 + }, + { + "start": 3584.64, + "end": 3585.56, + "probability": 0.4481 + }, + { + "start": 3587.54, + "end": 3588.48, + "probability": 0.9496 + }, + { + "start": 3588.64, + "end": 3593.56, + "probability": 0.6393 + }, + { + "start": 3593.9, + "end": 3595.1, + "probability": 0.9586 + }, + { + "start": 3595.12, + "end": 3595.34, + "probability": 0.5708 + }, + { + "start": 3596.08, + "end": 3598.56, + "probability": 0.8435 + }, + { + "start": 3599.24, + "end": 3601.02, + "probability": 0.6604 + }, + { + "start": 3601.1, + "end": 3601.6, + "probability": 0.7586 + }, + { + "start": 3601.7, + "end": 3604.18, + "probability": 0.9824 + }, + { + "start": 3604.3, + "end": 3605.4, + "probability": 0.7605 + }, + { + "start": 3605.8, + "end": 3606.5, + "probability": 0.486 + }, + { + "start": 3607.16, + "end": 3610.34, + "probability": 0.7313 + }, + { + "start": 3611.22, + "end": 3613.28, + "probability": 0.8201 + }, + { + "start": 3613.86, + "end": 3614.58, + "probability": 0.785 + }, + { + "start": 3614.64, + "end": 3615.82, + "probability": 0.4882 + }, + { + "start": 3615.82, + "end": 3616.18, + "probability": 0.4617 + }, + { + "start": 3616.2, + "end": 3616.44, + "probability": 0.7583 + }, + { + "start": 3617.02, + "end": 3618.08, + "probability": 0.7919 + }, + { + "start": 3618.66, + "end": 3623.78, + "probability": 0.9964 + }, + { + "start": 3624.62, + "end": 3626.42, + "probability": 0.736 + }, + { + "start": 3626.88, + "end": 3630.28, + "probability": 0.9684 + }, + { + "start": 3631.98, + "end": 3634.72, + "probability": 0.9416 + }, + { + "start": 3634.72, + "end": 3636.9, + "probability": 0.9971 + }, + { + "start": 3638.12, + "end": 3642.62, + "probability": 0.9399 + }, + { + "start": 3643.36, + "end": 3644.62, + "probability": 0.9194 + }, + { + "start": 3646.4, + "end": 3649.44, + "probability": 0.9944 + }, + { + "start": 3650.14, + "end": 3651.2, + "probability": 0.8154 + }, + { + "start": 3651.72, + "end": 3652.7, + "probability": 0.7479 + }, + { + "start": 3653.28, + "end": 3656.78, + "probability": 0.9318 + }, + { + "start": 3657.4, + "end": 3660.42, + "probability": 0.7932 + }, + { + "start": 3660.54, + "end": 3662.22, + "probability": 0.796 + }, + { + "start": 3663.04, + "end": 3666.62, + "probability": 0.6554 + }, + { + "start": 3666.92, + "end": 3670.82, + "probability": 0.9699 + }, + { + "start": 3670.82, + "end": 3673.05, + "probability": 0.9689 + }, + { + "start": 3673.32, + "end": 3676.84, + "probability": 0.8106 + }, + { + "start": 3676.94, + "end": 3679.54, + "probability": 0.8333 + }, + { + "start": 3680.14, + "end": 3682.98, + "probability": 0.9274 + }, + { + "start": 3684.13, + "end": 3687.4, + "probability": 0.5548 + }, + { + "start": 3687.84, + "end": 3689.28, + "probability": 0.6541 + }, + { + "start": 3689.28, + "end": 3691.46, + "probability": 0.6812 + }, + { + "start": 3691.48, + "end": 3692.22, + "probability": 0.715 + }, + { + "start": 3694.04, + "end": 3695.3, + "probability": 0.7534 + }, + { + "start": 3695.32, + "end": 3697.4, + "probability": 0.8432 + }, + { + "start": 3697.96, + "end": 3704.42, + "probability": 0.9077 + }, + { + "start": 3704.42, + "end": 3708.0, + "probability": 0.9934 + }, + { + "start": 3708.6, + "end": 3709.44, + "probability": 0.4043 + }, + { + "start": 3710.38, + "end": 3716.68, + "probability": 0.97 + }, + { + "start": 3717.18, + "end": 3718.28, + "probability": 0.8866 + }, + { + "start": 3718.44, + "end": 3719.1, + "probability": 0.7184 + }, + { + "start": 3719.18, + "end": 3719.4, + "probability": 0.7304 + }, + { + "start": 3720.18, + "end": 3721.68, + "probability": 0.8862 + }, + { + "start": 3722.34, + "end": 3724.26, + "probability": 0.7653 + }, + { + "start": 3724.8, + "end": 3726.64, + "probability": 0.7894 + }, + { + "start": 3727.94, + "end": 3731.38, + "probability": 0.8878 + }, + { + "start": 3732.06, + "end": 3735.98, + "probability": 0.9027 + }, + { + "start": 3736.26, + "end": 3737.24, + "probability": 0.8216 + }, + { + "start": 3737.96, + "end": 3744.58, + "probability": 0.9424 + }, + { + "start": 3744.58, + "end": 3748.82, + "probability": 0.9636 + }, + { + "start": 3749.14, + "end": 3750.52, + "probability": 0.9783 + }, + { + "start": 3751.08, + "end": 3753.04, + "probability": 0.6608 + }, + { + "start": 3753.1, + "end": 3755.36, + "probability": 0.8989 + }, + { + "start": 3755.86, + "end": 3756.81, + "probability": 0.9236 + }, + { + "start": 3757.18, + "end": 3758.0, + "probability": 0.9769 + }, + { + "start": 3758.4, + "end": 3763.56, + "probability": 0.967 + }, + { + "start": 3764.0, + "end": 3768.44, + "probability": 0.7406 + }, + { + "start": 3769.42, + "end": 3769.8, + "probability": 0.7725 + }, + { + "start": 3770.6, + "end": 3772.6, + "probability": 0.5395 + }, + { + "start": 3773.41, + "end": 3779.26, + "probability": 0.8494 + }, + { + "start": 3779.64, + "end": 3780.04, + "probability": 0.7997 + }, + { + "start": 3780.12, + "end": 3780.72, + "probability": 0.6903 + }, + { + "start": 3781.44, + "end": 3783.72, + "probability": 0.8543 + }, + { + "start": 3783.82, + "end": 3785.28, + "probability": 0.9228 + }, + { + "start": 3785.34, + "end": 3788.48, + "probability": 0.6849 + }, + { + "start": 3788.94, + "end": 3794.56, + "probability": 0.9844 + }, + { + "start": 3794.56, + "end": 3800.18, + "probability": 0.9447 + }, + { + "start": 3801.06, + "end": 3801.36, + "probability": 0.527 + }, + { + "start": 3802.45, + "end": 3806.86, + "probability": 0.9339 + }, + { + "start": 3807.64, + "end": 3808.62, + "probability": 0.6932 + }, + { + "start": 3809.54, + "end": 3810.92, + "probability": 0.9521 + }, + { + "start": 3811.58, + "end": 3812.56, + "probability": 0.8056 + }, + { + "start": 3812.92, + "end": 3814.68, + "probability": 0.8649 + }, + { + "start": 3826.78, + "end": 3828.56, + "probability": 0.569 + }, + { + "start": 3830.86, + "end": 3832.7, + "probability": 0.84 + }, + { + "start": 3833.88, + "end": 3835.34, + "probability": 0.5886 + }, + { + "start": 3835.94, + "end": 3837.98, + "probability": 0.905 + }, + { + "start": 3838.16, + "end": 3842.36, + "probability": 0.9836 + }, + { + "start": 3843.98, + "end": 3845.56, + "probability": 0.9826 + }, + { + "start": 3847.38, + "end": 3848.9, + "probability": 0.7629 + }, + { + "start": 3848.9, + "end": 3849.44, + "probability": 0.5673 + }, + { + "start": 3849.66, + "end": 3851.2, + "probability": 0.972 + }, + { + "start": 3851.86, + "end": 3852.66, + "probability": 0.5978 + }, + { + "start": 3854.02, + "end": 3855.4, + "probability": 0.318 + }, + { + "start": 3855.4, + "end": 3858.0, + "probability": 0.7151 + }, + { + "start": 3859.24, + "end": 3860.38, + "probability": 0.6778 + }, + { + "start": 3862.19, + "end": 3864.36, + "probability": 0.6198 + }, + { + "start": 3865.08, + "end": 3866.22, + "probability": 0.4811 + }, + { + "start": 3866.42, + "end": 3871.4, + "probability": 0.9889 + }, + { + "start": 3871.8, + "end": 3871.8, + "probability": 0.0001 + }, + { + "start": 3872.58, + "end": 3874.46, + "probability": 0.9915 + }, + { + "start": 3875.86, + "end": 3878.12, + "probability": 0.8472 + }, + { + "start": 3879.72, + "end": 3880.99, + "probability": 0.7165 + }, + { + "start": 3882.78, + "end": 3884.14, + "probability": 0.9697 + }, + { + "start": 3884.8, + "end": 3887.36, + "probability": 0.9347 + }, + { + "start": 3888.44, + "end": 3889.86, + "probability": 0.9983 + }, + { + "start": 3890.18, + "end": 3890.36, + "probability": 0.4679 + }, + { + "start": 3890.42, + "end": 3891.46, + "probability": 0.9161 + }, + { + "start": 3891.74, + "end": 3893.32, + "probability": 0.8156 + }, + { + "start": 3893.32, + "end": 3896.12, + "probability": 0.9948 + }, + { + "start": 3896.96, + "end": 3899.82, + "probability": 0.9856 + }, + { + "start": 3900.14, + "end": 3900.56, + "probability": 0.3383 + }, + { + "start": 3901.44, + "end": 3901.86, + "probability": 0.929 + }, + { + "start": 3902.48, + "end": 3905.32, + "probability": 0.6029 + }, + { + "start": 3905.32, + "end": 3906.34, + "probability": 0.8257 + }, + { + "start": 3907.2, + "end": 3908.46, + "probability": 0.9888 + }, + { + "start": 3909.2, + "end": 3910.38, + "probability": 0.8396 + }, + { + "start": 3910.44, + "end": 3913.14, + "probability": 0.7041 + }, + { + "start": 3913.18, + "end": 3915.04, + "probability": 0.4553 + }, + { + "start": 3915.24, + "end": 3917.02, + "probability": 0.3022 + }, + { + "start": 3917.62, + "end": 3918.56, + "probability": 0.4976 + }, + { + "start": 3918.76, + "end": 3919.72, + "probability": 0.706 + }, + { + "start": 3919.98, + "end": 3920.4, + "probability": 0.4835 + }, + { + "start": 3921.06, + "end": 3921.2, + "probability": 0.9867 + }, + { + "start": 3921.74, + "end": 3923.96, + "probability": 0.8367 + }, + { + "start": 3924.68, + "end": 3926.56, + "probability": 0.6862 + }, + { + "start": 3926.58, + "end": 3927.52, + "probability": 0.7043 + }, + { + "start": 3927.62, + "end": 3930.6, + "probability": 0.9613 + }, + { + "start": 3931.6, + "end": 3935.42, + "probability": 0.8466 + }, + { + "start": 3936.08, + "end": 3938.92, + "probability": 0.9912 + }, + { + "start": 3939.74, + "end": 3941.21, + "probability": 0.682 + }, + { + "start": 3941.44, + "end": 3942.22, + "probability": 0.7277 + }, + { + "start": 3943.24, + "end": 3947.32, + "probability": 0.7803 + }, + { + "start": 3947.98, + "end": 3950.44, + "probability": 0.9088 + }, + { + "start": 3951.56, + "end": 3952.56, + "probability": 0.9445 + }, + { + "start": 3953.16, + "end": 3955.22, + "probability": 0.9137 + }, + { + "start": 3956.56, + "end": 3958.32, + "probability": 0.9899 + }, + { + "start": 3958.34, + "end": 3960.62, + "probability": 0.9735 + }, + { + "start": 3961.62, + "end": 3963.74, + "probability": 0.986 + }, + { + "start": 3964.54, + "end": 3966.54, + "probability": 0.9685 + }, + { + "start": 3967.38, + "end": 3969.6, + "probability": 0.9604 + }, + { + "start": 3970.4, + "end": 3973.14, + "probability": 0.9795 + }, + { + "start": 3974.06, + "end": 3975.14, + "probability": 0.9638 + }, + { + "start": 3976.14, + "end": 3977.52, + "probability": 0.8599 + }, + { + "start": 3978.44, + "end": 3984.14, + "probability": 0.9344 + }, + { + "start": 3984.8, + "end": 3986.28, + "probability": 0.8792 + }, + { + "start": 3987.14, + "end": 3988.42, + "probability": 0.8592 + }, + { + "start": 3989.14, + "end": 3992.26, + "probability": 0.9601 + }, + { + "start": 3992.98, + "end": 3994.82, + "probability": 0.9414 + }, + { + "start": 3995.1, + "end": 3995.4, + "probability": 0.6158 + }, + { + "start": 3996.26, + "end": 3998.76, + "probability": 0.8675 + }, + { + "start": 3999.54, + "end": 4002.87, + "probability": 0.9121 + }, + { + "start": 4003.18, + "end": 4003.92, + "probability": 0.7088 + }, + { + "start": 4004.6, + "end": 4005.76, + "probability": 0.6074 + }, + { + "start": 4006.36, + "end": 4008.84, + "probability": 0.6387 + }, + { + "start": 4010.1, + "end": 4012.08, + "probability": 0.8915 + }, + { + "start": 4013.52, + "end": 4016.86, + "probability": 0.9897 + }, + { + "start": 4017.48, + "end": 4019.4, + "probability": 0.9299 + }, + { + "start": 4020.14, + "end": 4022.66, + "probability": 0.9725 + }, + { + "start": 4023.78, + "end": 4024.96, + "probability": 0.9742 + }, + { + "start": 4026.16, + "end": 4027.0, + "probability": 0.4726 + }, + { + "start": 4028.04, + "end": 4031.6, + "probability": 0.0333 + }, + { + "start": 4034.86, + "end": 4038.04, + "probability": 0.0438 + }, + { + "start": 4038.04, + "end": 4038.46, + "probability": 0.119 + }, + { + "start": 4039.72, + "end": 4039.82, + "probability": 0.3665 + }, + { + "start": 4049.78, + "end": 4051.46, + "probability": 0.3118 + }, + { + "start": 4051.46, + "end": 4054.64, + "probability": 0.6022 + }, + { + "start": 4054.72, + "end": 4056.68, + "probability": 0.8562 + }, + { + "start": 4057.36, + "end": 4060.37, + "probability": 0.9578 + }, + { + "start": 4061.24, + "end": 4064.18, + "probability": 0.8122 + }, + { + "start": 4065.04, + "end": 4065.34, + "probability": 0.6498 + }, + { + "start": 4066.76, + "end": 4067.32, + "probability": 0.6573 + }, + { + "start": 4067.92, + "end": 4069.88, + "probability": 0.7692 + }, + { + "start": 4071.08, + "end": 4071.48, + "probability": 0.8331 + }, + { + "start": 4073.04, + "end": 4074.02, + "probability": 0.8394 + }, + { + "start": 4074.94, + "end": 4076.26, + "probability": 0.1249 + }, + { + "start": 4077.54, + "end": 4079.88, + "probability": 0.8199 + }, + { + "start": 4080.38, + "end": 4082.4, + "probability": 0.2492 + }, + { + "start": 4082.64, + "end": 4084.7, + "probability": 0.7073 + }, + { + "start": 4085.52, + "end": 4086.98, + "probability": 0.7262 + }, + { + "start": 4087.13, + "end": 4090.2, + "probability": 0.7083 + }, + { + "start": 4090.46, + "end": 4090.76, + "probability": 0.6339 + }, + { + "start": 4090.94, + "end": 4093.26, + "probability": 0.9531 + }, + { + "start": 4093.72, + "end": 4096.8, + "probability": 0.932 + }, + { + "start": 4097.54, + "end": 4098.96, + "probability": 0.8871 + }, + { + "start": 4100.64, + "end": 4101.94, + "probability": 0.7124 + }, + { + "start": 4102.84, + "end": 4103.4, + "probability": 0.6807 + }, + { + "start": 4103.64, + "end": 4105.92, + "probability": 0.7748 + }, + { + "start": 4107.2, + "end": 4109.46, + "probability": 0.8814 + }, + { + "start": 4110.3, + "end": 4111.16, + "probability": 0.9615 + }, + { + "start": 4111.32, + "end": 4114.84, + "probability": 0.5247 + }, + { + "start": 4115.42, + "end": 4119.76, + "probability": 0.7918 + }, + { + "start": 4120.5, + "end": 4127.56, + "probability": 0.8221 + }, + { + "start": 4128.12, + "end": 4133.56, + "probability": 0.9819 + }, + { + "start": 4133.56, + "end": 4140.14, + "probability": 0.022 + }, + { + "start": 4140.14, + "end": 4140.14, + "probability": 0.0297 + }, + { + "start": 4140.16, + "end": 4140.58, + "probability": 0.1139 + }, + { + "start": 4140.58, + "end": 4142.8, + "probability": 0.6368 + }, + { + "start": 4143.0, + "end": 4147.12, + "probability": 0.833 + }, + { + "start": 4147.16, + "end": 4150.12, + "probability": 0.9013 + }, + { + "start": 4150.94, + "end": 4154.46, + "probability": 0.9402 + }, + { + "start": 4155.16, + "end": 4156.48, + "probability": 0.8365 + }, + { + "start": 4157.64, + "end": 4159.87, + "probability": 0.8413 + }, + { + "start": 4160.9, + "end": 4162.58, + "probability": 0.6729 + }, + { + "start": 4162.62, + "end": 4163.54, + "probability": 0.6394 + }, + { + "start": 4164.1, + "end": 4167.22, + "probability": 0.9634 + }, + { + "start": 4168.36, + "end": 4172.24, + "probability": 0.7308 + }, + { + "start": 4173.02, + "end": 4175.42, + "probability": 0.4666 + }, + { + "start": 4175.82, + "end": 4179.12, + "probability": 0.952 + }, + { + "start": 4179.12, + "end": 4180.58, + "probability": 0.752 + }, + { + "start": 4180.62, + "end": 4181.66, + "probability": 0.8071 + }, + { + "start": 4182.04, + "end": 4189.14, + "probability": 0.9868 + }, + { + "start": 4189.24, + "end": 4195.74, + "probability": 0.9854 + }, + { + "start": 4196.3, + "end": 4201.88, + "probability": 0.9902 + }, + { + "start": 4202.79, + "end": 4203.22, + "probability": 0.7375 + }, + { + "start": 4204.06, + "end": 4204.94, + "probability": 0.8123 + }, + { + "start": 4205.04, + "end": 4206.41, + "probability": 0.9847 + }, + { + "start": 4206.72, + "end": 4208.8, + "probability": 0.736 + }, + { + "start": 4208.9, + "end": 4211.14, + "probability": 0.9945 + }, + { + "start": 4211.34, + "end": 4213.28, + "probability": 0.7822 + }, + { + "start": 4213.38, + "end": 4215.34, + "probability": 0.6849 + }, + { + "start": 4215.4, + "end": 4215.84, + "probability": 0.8565 + }, + { + "start": 4215.94, + "end": 4221.12, + "probability": 0.9783 + }, + { + "start": 4221.64, + "end": 4228.3, + "probability": 0.9399 + }, + { + "start": 4228.58, + "end": 4229.12, + "probability": 0.5167 + }, + { + "start": 4229.12, + "end": 4229.72, + "probability": 0.7276 + }, + { + "start": 4229.94, + "end": 4232.38, + "probability": 0.985 + }, + { + "start": 4232.58, + "end": 4234.32, + "probability": 0.7626 + }, + { + "start": 4235.28, + "end": 4241.46, + "probability": 0.4927 + }, + { + "start": 4241.98, + "end": 4243.4, + "probability": 0.657 + }, + { + "start": 4244.2, + "end": 4248.6, + "probability": 0.8443 + }, + { + "start": 4249.04, + "end": 4252.46, + "probability": 0.7098 + }, + { + "start": 4252.76, + "end": 4254.08, + "probability": 0.8087 + }, + { + "start": 4254.6, + "end": 4257.2, + "probability": 0.9977 + }, + { + "start": 4257.76, + "end": 4258.84, + "probability": 0.9746 + }, + { + "start": 4259.4, + "end": 4261.64, + "probability": 0.8687 + }, + { + "start": 4262.06, + "end": 4264.52, + "probability": 0.9106 + }, + { + "start": 4264.66, + "end": 4265.08, + "probability": 0.7178 + }, + { + "start": 4265.94, + "end": 4269.98, + "probability": 0.7599 + }, + { + "start": 4271.59, + "end": 4273.69, + "probability": 0.9229 + }, + { + "start": 4275.04, + "end": 4275.08, + "probability": 0.071 + }, + { + "start": 4275.08, + "end": 4278.0, + "probability": 0.7241 + }, + { + "start": 4279.22, + "end": 4283.2, + "probability": 0.9565 + }, + { + "start": 4283.2, + "end": 4288.28, + "probability": 0.9824 + }, + { + "start": 4289.74, + "end": 4291.74, + "probability": 0.9907 + }, + { + "start": 4291.74, + "end": 4296.22, + "probability": 0.9823 + }, + { + "start": 4296.82, + "end": 4300.18, + "probability": 0.8581 + }, + { + "start": 4300.28, + "end": 4301.66, + "probability": 0.994 + }, + { + "start": 4301.82, + "end": 4302.86, + "probability": 0.9665 + }, + { + "start": 4303.36, + "end": 4304.12, + "probability": 0.7341 + }, + { + "start": 4304.18, + "end": 4305.55, + "probability": 0.9912 + }, + { + "start": 4305.72, + "end": 4308.92, + "probability": 0.991 + }, + { + "start": 4309.78, + "end": 4313.46, + "probability": 0.9963 + }, + { + "start": 4313.46, + "end": 4318.46, + "probability": 0.9951 + }, + { + "start": 4318.76, + "end": 4319.96, + "probability": 0.7617 + }, + { + "start": 4320.5, + "end": 4322.8, + "probability": 0.9932 + }, + { + "start": 4323.52, + "end": 4326.38, + "probability": 0.9658 + }, + { + "start": 4326.94, + "end": 4328.38, + "probability": 0.7896 + }, + { + "start": 4329.08, + "end": 4330.9, + "probability": 0.9731 + }, + { + "start": 4331.44, + "end": 4335.58, + "probability": 0.987 + }, + { + "start": 4335.94, + "end": 4337.0, + "probability": 0.8581 + }, + { + "start": 4337.14, + "end": 4338.58, + "probability": 0.9927 + }, + { + "start": 4338.66, + "end": 4341.54, + "probability": 0.937 + }, + { + "start": 4341.96, + "end": 4345.5, + "probability": 0.9908 + }, + { + "start": 4345.76, + "end": 4348.76, + "probability": 0.8934 + }, + { + "start": 4349.16, + "end": 4352.34, + "probability": 0.9756 + }, + { + "start": 4352.76, + "end": 4356.4, + "probability": 0.4256 + }, + { + "start": 4357.02, + "end": 4358.7, + "probability": 0.8312 + }, + { + "start": 4359.14, + "end": 4362.24, + "probability": 0.9111 + }, + { + "start": 4362.4, + "end": 4364.32, + "probability": 0.9914 + }, + { + "start": 4364.36, + "end": 4366.6, + "probability": 0.9849 + }, + { + "start": 4369.42, + "end": 4373.02, + "probability": 0.8795 + }, + { + "start": 4373.48, + "end": 4377.32, + "probability": 0.5274 + }, + { + "start": 4379.7, + "end": 4380.02, + "probability": 0.0927 + }, + { + "start": 4380.02, + "end": 4383.46, + "probability": 0.8524 + }, + { + "start": 4383.56, + "end": 4384.94, + "probability": 0.8494 + }, + { + "start": 4385.58, + "end": 4389.12, + "probability": 0.8564 + }, + { + "start": 4389.3, + "end": 4389.58, + "probability": 0.6795 + }, + { + "start": 4389.98, + "end": 4391.42, + "probability": 0.8184 + }, + { + "start": 4392.32, + "end": 4392.62, + "probability": 0.4298 + }, + { + "start": 4393.44, + "end": 4394.96, + "probability": 0.7234 + }, + { + "start": 4396.52, + "end": 4400.52, + "probability": 0.9487 + }, + { + "start": 4401.26, + "end": 4405.68, + "probability": 0.9421 + }, + { + "start": 4406.82, + "end": 4410.04, + "probability": 0.8595 + }, + { + "start": 4410.18, + "end": 4412.32, + "probability": 0.8683 + }, + { + "start": 4412.86, + "end": 4414.54, + "probability": 0.9834 + }, + { + "start": 4414.68, + "end": 4416.92, + "probability": 0.9966 + }, + { + "start": 4417.89, + "end": 4422.44, + "probability": 0.9897 + }, + { + "start": 4423.78, + "end": 4426.1, + "probability": 0.9545 + }, + { + "start": 4426.82, + "end": 4427.9, + "probability": 0.9868 + }, + { + "start": 4428.64, + "end": 4428.96, + "probability": 0.3546 + }, + { + "start": 4430.16, + "end": 4432.46, + "probability": 0.9926 + }, + { + "start": 4433.5, + "end": 4435.3, + "probability": 0.979 + }, + { + "start": 4435.4, + "end": 4436.1, + "probability": 0.5177 + }, + { + "start": 4436.34, + "end": 4439.7, + "probability": 0.9919 + }, + { + "start": 4440.74, + "end": 4441.74, + "probability": 0.8047 + }, + { + "start": 4442.26, + "end": 4442.72, + "probability": 0.7526 + }, + { + "start": 4442.9, + "end": 4444.01, + "probability": 0.8446 + }, + { + "start": 4444.1, + "end": 4449.86, + "probability": 0.9002 + }, + { + "start": 4450.62, + "end": 4453.0, + "probability": 0.684 + }, + { + "start": 4453.14, + "end": 4455.44, + "probability": 0.7629 + }, + { + "start": 4455.64, + "end": 4458.32, + "probability": 0.8718 + }, + { + "start": 4459.04, + "end": 4465.2, + "probability": 0.9465 + }, + { + "start": 4465.3, + "end": 4468.3, + "probability": 0.8667 + }, + { + "start": 4469.63, + "end": 4472.99, + "probability": 0.6033 + }, + { + "start": 4475.08, + "end": 4476.38, + "probability": 0.2732 + }, + { + "start": 4476.69, + "end": 4481.56, + "probability": 0.7949 + }, + { + "start": 4481.56, + "end": 4483.92, + "probability": 0.9866 + }, + { + "start": 4483.98, + "end": 4485.08, + "probability": 0.8331 + }, + { + "start": 4485.26, + "end": 4485.66, + "probability": 0.5486 + }, + { + "start": 4486.14, + "end": 4489.88, + "probability": 0.665 + }, + { + "start": 4489.98, + "end": 4491.78, + "probability": 0.9775 + }, + { + "start": 4492.39, + "end": 4495.36, + "probability": 0.8907 + }, + { + "start": 4496.14, + "end": 4497.48, + "probability": 0.6633 + }, + { + "start": 4498.2, + "end": 4499.18, + "probability": 0.5202 + }, + { + "start": 4499.24, + "end": 4499.74, + "probability": 0.3946 + }, + { + "start": 4499.78, + "end": 4502.52, + "probability": 0.981 + }, + { + "start": 4503.26, + "end": 4504.6, + "probability": 0.9165 + }, + { + "start": 4504.68, + "end": 4506.46, + "probability": 0.9717 + }, + { + "start": 4506.94, + "end": 4510.46, + "probability": 0.884 + }, + { + "start": 4511.04, + "end": 4513.52, + "probability": 0.9365 + }, + { + "start": 4513.86, + "end": 4516.54, + "probability": 0.6667 + }, + { + "start": 4516.6, + "end": 4520.2, + "probability": 0.957 + }, + { + "start": 4520.28, + "end": 4520.48, + "probability": 0.7926 + }, + { + "start": 4520.58, + "end": 4521.29, + "probability": 0.6313 + }, + { + "start": 4521.98, + "end": 4523.63, + "probability": 0.5688 + }, + { + "start": 4523.82, + "end": 4526.02, + "probability": 0.5499 + }, + { + "start": 4526.24, + "end": 4526.54, + "probability": 0.2688 + }, + { + "start": 4526.9, + "end": 4527.3, + "probability": 0.7175 + }, + { + "start": 4527.38, + "end": 4528.5, + "probability": 0.6695 + }, + { + "start": 4528.84, + "end": 4529.22, + "probability": 0.8129 + }, + { + "start": 4529.32, + "end": 4531.08, + "probability": 0.5425 + }, + { + "start": 4531.7, + "end": 4535.54, + "probability": 0.7881 + }, + { + "start": 4535.94, + "end": 4537.02, + "probability": 0.503 + }, + { + "start": 4537.32, + "end": 4538.28, + "probability": 0.3262 + }, + { + "start": 4538.72, + "end": 4542.1, + "probability": 0.8029 + }, + { + "start": 4542.66, + "end": 4546.38, + "probability": 0.9644 + }, + { + "start": 4546.79, + "end": 4550.96, + "probability": 0.8716 + }, + { + "start": 4551.08, + "end": 4553.48, + "probability": 0.9858 + }, + { + "start": 4554.32, + "end": 4557.5, + "probability": 0.9963 + }, + { + "start": 4558.06, + "end": 4560.84, + "probability": 0.9907 + }, + { + "start": 4560.86, + "end": 4562.0, + "probability": 0.9702 + }, + { + "start": 4562.44, + "end": 4566.56, + "probability": 0.959 + }, + { + "start": 4567.2, + "end": 4569.38, + "probability": 0.8164 + }, + { + "start": 4569.54, + "end": 4570.22, + "probability": 0.5008 + }, + { + "start": 4570.3, + "end": 4573.68, + "probability": 0.9573 + }, + { + "start": 4573.76, + "end": 4575.36, + "probability": 0.9799 + }, + { + "start": 4576.06, + "end": 4576.56, + "probability": 0.3755 + }, + { + "start": 4576.64, + "end": 4579.02, + "probability": 0.5197 + }, + { + "start": 4579.38, + "end": 4580.68, + "probability": 0.8561 + }, + { + "start": 4580.96, + "end": 4581.18, + "probability": 0.8037 + }, + { + "start": 4582.66, + "end": 4584.1, + "probability": 0.8528 + }, + { + "start": 4584.44, + "end": 4586.4, + "probability": 0.9954 + }, + { + "start": 4587.12, + "end": 4589.94, + "probability": 0.3619 + }, + { + "start": 4590.16, + "end": 4590.44, + "probability": 0.3725 + }, + { + "start": 4590.48, + "end": 4590.72, + "probability": 0.7086 + }, + { + "start": 4591.42, + "end": 4596.66, + "probability": 0.8855 + }, + { + "start": 4596.76, + "end": 4597.94, + "probability": 0.8932 + }, + { + "start": 4598.14, + "end": 4598.94, + "probability": 0.5718 + }, + { + "start": 4599.7, + "end": 4601.5, + "probability": 0.8688 + }, + { + "start": 4601.66, + "end": 4604.18, + "probability": 0.7536 + }, + { + "start": 4604.5, + "end": 4606.8, + "probability": 0.8931 + }, + { + "start": 4607.86, + "end": 4613.12, + "probability": 0.9014 + }, + { + "start": 4615.06, + "end": 4616.04, + "probability": 0.7733 + }, + { + "start": 4616.24, + "end": 4617.74, + "probability": 0.1961 + }, + { + "start": 4618.58, + "end": 4620.26, + "probability": 0.6534 + }, + { + "start": 4620.82, + "end": 4622.94, + "probability": 0.804 + }, + { + "start": 4623.36, + "end": 4623.94, + "probability": 0.4017 + }, + { + "start": 4624.2, + "end": 4625.16, + "probability": 0.7695 + }, + { + "start": 4625.22, + "end": 4628.88, + "probability": 0.9823 + }, + { + "start": 4628.88, + "end": 4632.1, + "probability": 0.9485 + }, + { + "start": 4633.3, + "end": 4634.94, + "probability": 0.9319 + }, + { + "start": 4635.48, + "end": 4640.38, + "probability": 0.9863 + }, + { + "start": 4641.14, + "end": 4642.98, + "probability": 0.9697 + }, + { + "start": 4643.66, + "end": 4645.58, + "probability": 0.9846 + }, + { + "start": 4646.64, + "end": 4651.42, + "probability": 0.9894 + }, + { + "start": 4652.04, + "end": 4653.38, + "probability": 0.9736 + }, + { + "start": 4654.6, + "end": 4657.46, + "probability": 0.9956 + }, + { + "start": 4658.16, + "end": 4658.94, + "probability": 0.8502 + }, + { + "start": 4659.74, + "end": 4661.68, + "probability": 0.9524 + }, + { + "start": 4661.76, + "end": 4663.06, + "probability": 0.9914 + }, + { + "start": 4663.98, + "end": 4664.76, + "probability": 0.6935 + }, + { + "start": 4665.8, + "end": 4670.38, + "probability": 0.9113 + }, + { + "start": 4671.3, + "end": 4672.18, + "probability": 0.7583 + }, + { + "start": 4673.14, + "end": 4675.4, + "probability": 0.8213 + }, + { + "start": 4675.52, + "end": 4676.76, + "probability": 0.734 + }, + { + "start": 4677.5, + "end": 4680.08, + "probability": 0.6602 + }, + { + "start": 4680.6, + "end": 4685.6, + "probability": 0.7796 + }, + { + "start": 4686.34, + "end": 4687.02, + "probability": 0.4947 + }, + { + "start": 4688.26, + "end": 4690.5, + "probability": 0.8068 + }, + { + "start": 4691.64, + "end": 4696.14, + "probability": 0.946 + }, + { + "start": 4697.64, + "end": 4700.6, + "probability": 0.9915 + }, + { + "start": 4701.6, + "end": 4704.12, + "probability": 0.8332 + }, + { + "start": 4705.16, + "end": 4707.47, + "probability": 0.9946 + }, + { + "start": 4708.26, + "end": 4710.08, + "probability": 0.9095 + }, + { + "start": 4710.82, + "end": 4713.98, + "probability": 0.9845 + }, + { + "start": 4714.2, + "end": 4714.4, + "probability": 0.8348 + }, + { + "start": 4714.54, + "end": 4715.6, + "probability": 0.9539 + }, + { + "start": 4716.06, + "end": 4717.78, + "probability": 0.939 + }, + { + "start": 4718.22, + "end": 4719.46, + "probability": 0.9729 + }, + { + "start": 4720.5, + "end": 4721.92, + "probability": 0.9031 + }, + { + "start": 4722.04, + "end": 4722.46, + "probability": 0.447 + }, + { + "start": 4722.58, + "end": 4724.64, + "probability": 0.828 + }, + { + "start": 4725.24, + "end": 4729.44, + "probability": 0.9485 + }, + { + "start": 4730.24, + "end": 4734.92, + "probability": 0.9868 + }, + { + "start": 4735.22, + "end": 4736.96, + "probability": 0.8043 + }, + { + "start": 4737.62, + "end": 4738.82, + "probability": 0.9734 + }, + { + "start": 4738.98, + "end": 4740.12, + "probability": 0.8253 + }, + { + "start": 4741.06, + "end": 4743.46, + "probability": 0.8853 + }, + { + "start": 4744.02, + "end": 4745.56, + "probability": 0.9257 + }, + { + "start": 4746.0, + "end": 4747.34, + "probability": 0.9404 + }, + { + "start": 4747.4, + "end": 4747.74, + "probability": 0.4763 + }, + { + "start": 4748.74, + "end": 4750.14, + "probability": 0.9753 + }, + { + "start": 4750.24, + "end": 4750.85, + "probability": 0.8146 + }, + { + "start": 4751.74, + "end": 4755.32, + "probability": 0.9878 + }, + { + "start": 4755.84, + "end": 4758.56, + "probability": 0.6212 + }, + { + "start": 4759.08, + "end": 4760.06, + "probability": 0.9595 + }, + { + "start": 4760.88, + "end": 4764.2, + "probability": 0.9604 + }, + { + "start": 4765.3, + "end": 4767.18, + "probability": 0.995 + }, + { + "start": 4769.02, + "end": 4770.58, + "probability": 0.9149 + }, + { + "start": 4772.7, + "end": 4773.97, + "probability": 0.9564 + }, + { + "start": 4774.88, + "end": 4777.69, + "probability": 0.9196 + }, + { + "start": 4778.34, + "end": 4780.08, + "probability": 0.9742 + }, + { + "start": 4780.52, + "end": 4782.08, + "probability": 0.9752 + }, + { + "start": 4782.34, + "end": 4784.0, + "probability": 0.9691 + }, + { + "start": 4784.62, + "end": 4786.76, + "probability": 0.8877 + }, + { + "start": 4787.34, + "end": 4789.7, + "probability": 0.9211 + }, + { + "start": 4790.54, + "end": 4793.14, + "probability": 0.973 + }, + { + "start": 4793.6, + "end": 4794.92, + "probability": 0.9564 + }, + { + "start": 4796.06, + "end": 4798.06, + "probability": 0.9951 + }, + { + "start": 4798.94, + "end": 4801.92, + "probability": 0.8882 + }, + { + "start": 4802.84, + "end": 4805.2, + "probability": 0.5209 + }, + { + "start": 4805.28, + "end": 4809.16, + "probability": 0.9961 + }, + { + "start": 4810.48, + "end": 4816.4, + "probability": 0.981 + }, + { + "start": 4816.8, + "end": 4818.17, + "probability": 0.9985 + }, + { + "start": 4819.46, + "end": 4821.32, + "probability": 0.9524 + }, + { + "start": 4821.9, + "end": 4825.08, + "probability": 0.7734 + }, + { + "start": 4825.74, + "end": 4828.44, + "probability": 0.9155 + }, + { + "start": 4828.58, + "end": 4831.11, + "probability": 0.9886 + }, + { + "start": 4832.66, + "end": 4834.56, + "probability": 0.9299 + }, + { + "start": 4836.34, + "end": 4838.16, + "probability": 0.9917 + }, + { + "start": 4838.56, + "end": 4840.36, + "probability": 0.7861 + }, + { + "start": 4840.96, + "end": 4841.02, + "probability": 0.2017 + }, + { + "start": 4841.02, + "end": 4841.74, + "probability": 0.3349 + }, + { + "start": 4842.24, + "end": 4845.1, + "probability": 0.9904 + }, + { + "start": 4845.1, + "end": 4848.12, + "probability": 0.9774 + }, + { + "start": 4849.16, + "end": 4849.89, + "probability": 0.9733 + }, + { + "start": 4850.08, + "end": 4851.2, + "probability": 0.9514 + }, + { + "start": 4851.32, + "end": 4853.72, + "probability": 0.9673 + }, + { + "start": 4854.22, + "end": 4856.02, + "probability": 0.7692 + }, + { + "start": 4856.46, + "end": 4858.58, + "probability": 0.9979 + }, + { + "start": 4858.62, + "end": 4861.58, + "probability": 0.98 + }, + { + "start": 4861.96, + "end": 4862.3, + "probability": 0.809 + }, + { + "start": 4863.1, + "end": 4864.92, + "probability": 0.8348 + }, + { + "start": 4866.0, + "end": 4867.06, + "probability": 0.9874 + }, + { + "start": 4867.7, + "end": 4869.42, + "probability": 0.8496 + }, + { + "start": 4894.52, + "end": 4896.14, + "probability": 0.476 + }, + { + "start": 4897.98, + "end": 4899.9, + "probability": 0.9858 + }, + { + "start": 4901.52, + "end": 4903.46, + "probability": 0.9102 + }, + { + "start": 4904.68, + "end": 4906.54, + "probability": 0.9968 + }, + { + "start": 4907.78, + "end": 4912.32, + "probability": 0.8425 + }, + { + "start": 4913.2, + "end": 4914.38, + "probability": 0.8911 + }, + { + "start": 4915.94, + "end": 4919.28, + "probability": 0.8543 + }, + { + "start": 4920.48, + "end": 4922.3, + "probability": 0.9628 + }, + { + "start": 4923.24, + "end": 4924.92, + "probability": 0.9822 + }, + { + "start": 4925.8, + "end": 4928.3, + "probability": 0.9907 + }, + { + "start": 4929.04, + "end": 4931.46, + "probability": 0.9263 + }, + { + "start": 4933.6, + "end": 4936.36, + "probability": 0.7657 + }, + { + "start": 4937.72, + "end": 4939.82, + "probability": 0.9851 + }, + { + "start": 4940.8, + "end": 4942.64, + "probability": 0.6862 + }, + { + "start": 4943.8, + "end": 4946.26, + "probability": 0.9564 + }, + { + "start": 4947.82, + "end": 4949.0, + "probability": 0.9866 + }, + { + "start": 4949.92, + "end": 4951.2, + "probability": 0.9802 + }, + { + "start": 4952.18, + "end": 4953.74, + "probability": 0.715 + }, + { + "start": 4954.62, + "end": 4955.12, + "probability": 0.848 + }, + { + "start": 4956.58, + "end": 4958.26, + "probability": 0.6514 + }, + { + "start": 4959.54, + "end": 4962.26, + "probability": 0.9899 + }, + { + "start": 4963.86, + "end": 4969.6, + "probability": 0.7576 + }, + { + "start": 4970.82, + "end": 4972.7, + "probability": 0.9811 + }, + { + "start": 4973.62, + "end": 4975.4, + "probability": 0.7837 + }, + { + "start": 4976.24, + "end": 4977.02, + "probability": 0.6879 + }, + { + "start": 4977.16, + "end": 4979.02, + "probability": 0.9029 + }, + { + "start": 4979.54, + "end": 4980.31, + "probability": 0.1665 + }, + { + "start": 4981.06, + "end": 4981.4, + "probability": 0.5181 + }, + { + "start": 4982.68, + "end": 4984.26, + "probability": 0.7735 + }, + { + "start": 4985.34, + "end": 4989.88, + "probability": 0.7412 + }, + { + "start": 4991.2, + "end": 4993.8, + "probability": 0.8787 + }, + { + "start": 4994.98, + "end": 4997.18, + "probability": 0.9953 + }, + { + "start": 4997.76, + "end": 4998.26, + "probability": 0.9031 + }, + { + "start": 4999.38, + "end": 5000.72, + "probability": 0.9681 + }, + { + "start": 5001.4, + "end": 5003.84, + "probability": 0.9698 + }, + { + "start": 5004.86, + "end": 5005.68, + "probability": 0.9974 + }, + { + "start": 5006.82, + "end": 5007.5, + "probability": 0.9463 + }, + { + "start": 5008.4, + "end": 5010.0, + "probability": 0.9148 + }, + { + "start": 5010.5, + "end": 5013.04, + "probability": 0.853 + }, + { + "start": 5013.26, + "end": 5017.44, + "probability": 0.9443 + }, + { + "start": 5018.28, + "end": 5021.02, + "probability": 0.9377 + }, + { + "start": 5021.22, + "end": 5021.92, + "probability": 0.7708 + }, + { + "start": 5022.16, + "end": 5026.82, + "probability": 0.9811 + }, + { + "start": 5027.26, + "end": 5027.68, + "probability": 0.7773 + }, + { + "start": 5029.06, + "end": 5030.44, + "probability": 0.822 + }, + { + "start": 5031.22, + "end": 5033.6, + "probability": 0.8382 + }, + { + "start": 5034.37, + "end": 5036.0, + "probability": 0.9914 + }, + { + "start": 5036.76, + "end": 5040.78, + "probability": 0.9924 + }, + { + "start": 5041.44, + "end": 5043.24, + "probability": 0.9916 + }, + { + "start": 5044.26, + "end": 5047.42, + "probability": 0.9653 + }, + { + "start": 5048.22, + "end": 5048.78, + "probability": 0.8342 + }, + { + "start": 5049.64, + "end": 5050.12, + "probability": 0.8422 + }, + { + "start": 5050.8, + "end": 5051.98, + "probability": 0.9549 + }, + { + "start": 5052.8, + "end": 5054.06, + "probability": 0.9682 + }, + { + "start": 5054.94, + "end": 5057.74, + "probability": 0.9751 + }, + { + "start": 5058.28, + "end": 5059.4, + "probability": 0.6642 + }, + { + "start": 5060.18, + "end": 5063.56, + "probability": 0.9894 + }, + { + "start": 5063.56, + "end": 5067.14, + "probability": 0.9476 + }, + { + "start": 5067.78, + "end": 5069.92, + "probability": 0.9966 + }, + { + "start": 5070.48, + "end": 5071.34, + "probability": 0.9624 + }, + { + "start": 5072.12, + "end": 5074.92, + "probability": 0.9325 + }, + { + "start": 5075.78, + "end": 5078.25, + "probability": 0.6729 + }, + { + "start": 5078.3, + "end": 5079.58, + "probability": 0.4458 + }, + { + "start": 5080.44, + "end": 5083.68, + "probability": 0.9915 + }, + { + "start": 5085.1, + "end": 5086.78, + "probability": 0.5399 + }, + { + "start": 5087.24, + "end": 5088.8, + "probability": 0.5066 + }, + { + "start": 5088.98, + "end": 5093.64, + "probability": 0.8085 + }, + { + "start": 5094.24, + "end": 5095.1, + "probability": 0.8213 + }, + { + "start": 5095.7, + "end": 5097.74, + "probability": 0.5828 + }, + { + "start": 5097.9, + "end": 5099.76, + "probability": 0.8337 + }, + { + "start": 5100.42, + "end": 5100.8, + "probability": 0.4608 + }, + { + "start": 5101.5, + "end": 5103.18, + "probability": 0.8487 + }, + { + "start": 5105.96, + "end": 5109.82, + "probability": 0.8335 + }, + { + "start": 5111.22, + "end": 5113.94, + "probability": 0.8697 + }, + { + "start": 5115.54, + "end": 5116.74, + "probability": 0.8969 + }, + { + "start": 5121.62, + "end": 5123.98, + "probability": 0.6891 + }, + { + "start": 5125.26, + "end": 5126.62, + "probability": 0.6458 + }, + { + "start": 5126.82, + "end": 5128.3, + "probability": 0.9932 + }, + { + "start": 5128.52, + "end": 5132.78, + "probability": 0.9901 + }, + { + "start": 5133.68, + "end": 5135.4, + "probability": 0.9866 + }, + { + "start": 5136.4, + "end": 5139.06, + "probability": 0.8796 + }, + { + "start": 5139.38, + "end": 5139.56, + "probability": 0.2402 + }, + { + "start": 5141.16, + "end": 5142.04, + "probability": 0.3949 + }, + { + "start": 5142.84, + "end": 5143.99, + "probability": 0.9801 + }, + { + "start": 5146.34, + "end": 5146.88, + "probability": 0.5336 + }, + { + "start": 5148.4, + "end": 5151.06, + "probability": 0.992 + }, + { + "start": 5152.08, + "end": 5156.78, + "probability": 0.9878 + }, + { + "start": 5157.86, + "end": 5159.28, + "probability": 0.8575 + }, + { + "start": 5160.32, + "end": 5160.66, + "probability": 0.8228 + }, + { + "start": 5160.72, + "end": 5162.32, + "probability": 0.7695 + }, + { + "start": 5162.74, + "end": 5163.56, + "probability": 0.8445 + }, + { + "start": 5164.7, + "end": 5165.68, + "probability": 0.9954 + }, + { + "start": 5166.48, + "end": 5167.62, + "probability": 0.979 + }, + { + "start": 5168.48, + "end": 5169.54, + "probability": 0.9377 + }, + { + "start": 5169.6, + "end": 5172.38, + "probability": 0.9839 + }, + { + "start": 5173.44, + "end": 5177.42, + "probability": 0.7439 + }, + { + "start": 5178.48, + "end": 5181.12, + "probability": 0.912 + }, + { + "start": 5181.28, + "end": 5181.72, + "probability": 0.678 + }, + { + "start": 5182.96, + "end": 5184.02, + "probability": 0.9059 + }, + { + "start": 5187.58, + "end": 5188.56, + "probability": 0.8679 + }, + { + "start": 5188.58, + "end": 5188.58, + "probability": 0.7931 + }, + { + "start": 5188.66, + "end": 5191.0, + "probability": 0.9076 + }, + { + "start": 5197.16, + "end": 5197.46, + "probability": 0.0327 + }, + { + "start": 5197.46, + "end": 5197.46, + "probability": 0.0193 + }, + { + "start": 5197.46, + "end": 5199.88, + "probability": 0.9312 + }, + { + "start": 5200.12, + "end": 5204.38, + "probability": 0.6904 + }, + { + "start": 5205.72, + "end": 5210.86, + "probability": 0.9377 + }, + { + "start": 5211.76, + "end": 5213.04, + "probability": 0.7319 + }, + { + "start": 5213.46, + "end": 5214.2, + "probability": 0.9873 + }, + { + "start": 5214.58, + "end": 5215.64, + "probability": 0.6393 + }, + { + "start": 5216.74, + "end": 5217.9, + "probability": 0.9771 + }, + { + "start": 5218.58, + "end": 5219.82, + "probability": 0.998 + }, + { + "start": 5220.72, + "end": 5222.52, + "probability": 0.9713 + }, + { + "start": 5223.16, + "end": 5228.92, + "probability": 0.9948 + }, + { + "start": 5230.32, + "end": 5231.78, + "probability": 0.973 + }, + { + "start": 5233.18, + "end": 5235.18, + "probability": 0.7942 + }, + { + "start": 5236.1, + "end": 5238.07, + "probability": 0.8477 + }, + { + "start": 5239.3, + "end": 5239.92, + "probability": 0.7826 + }, + { + "start": 5240.52, + "end": 5241.72, + "probability": 0.8659 + }, + { + "start": 5242.54, + "end": 5246.26, + "probability": 0.8945 + }, + { + "start": 5246.46, + "end": 5246.86, + "probability": 0.8293 + }, + { + "start": 5248.66, + "end": 5252.41, + "probability": 0.8123 + }, + { + "start": 5253.94, + "end": 5254.84, + "probability": 0.8375 + }, + { + "start": 5267.56, + "end": 5268.12, + "probability": 0.5484 + }, + { + "start": 5271.98, + "end": 5272.74, + "probability": 0.4264 + }, + { + "start": 5274.14, + "end": 5275.74, + "probability": 0.8627 + }, + { + "start": 5276.94, + "end": 5279.6, + "probability": 0.8596 + }, + { + "start": 5281.14, + "end": 5282.54, + "probability": 0.9985 + }, + { + "start": 5283.34, + "end": 5286.44, + "probability": 0.9002 + }, + { + "start": 5287.16, + "end": 5288.16, + "probability": 0.9618 + }, + { + "start": 5289.0, + "end": 5292.26, + "probability": 0.7432 + }, + { + "start": 5293.04, + "end": 5294.0, + "probability": 0.7971 + }, + { + "start": 5294.44, + "end": 5297.38, + "probability": 0.9214 + }, + { + "start": 5297.6, + "end": 5299.38, + "probability": 0.8568 + }, + { + "start": 5300.72, + "end": 5303.56, + "probability": 0.9771 + }, + { + "start": 5304.22, + "end": 5305.97, + "probability": 0.9127 + }, + { + "start": 5306.98, + "end": 5309.18, + "probability": 0.9969 + }, + { + "start": 5309.8, + "end": 5311.56, + "probability": 0.9823 + }, + { + "start": 5312.3, + "end": 5315.6, + "probability": 0.9965 + }, + { + "start": 5316.46, + "end": 5320.28, + "probability": 0.985 + }, + { + "start": 5321.94, + "end": 5324.58, + "probability": 0.9958 + }, + { + "start": 5325.2, + "end": 5327.22, + "probability": 0.9237 + }, + { + "start": 5328.26, + "end": 5329.97, + "probability": 0.9989 + }, + { + "start": 5330.94, + "end": 5335.04, + "probability": 0.8914 + }, + { + "start": 5335.22, + "end": 5335.64, + "probability": 0.4667 + }, + { + "start": 5337.36, + "end": 5339.38, + "probability": 0.9983 + }, + { + "start": 5340.9, + "end": 5346.18, + "probability": 0.8698 + }, + { + "start": 5346.28, + "end": 5346.7, + "probability": 0.8075 + }, + { + "start": 5346.78, + "end": 5346.96, + "probability": 0.4484 + }, + { + "start": 5347.06, + "end": 5349.38, + "probability": 0.9966 + }, + { + "start": 5349.58, + "end": 5350.72, + "probability": 0.9842 + }, + { + "start": 5351.88, + "end": 5354.72, + "probability": 0.9761 + }, + { + "start": 5355.42, + "end": 5361.8, + "probability": 0.978 + }, + { + "start": 5362.34, + "end": 5365.29, + "probability": 0.999 + }, + { + "start": 5365.36, + "end": 5369.34, + "probability": 0.9992 + }, + { + "start": 5369.8, + "end": 5372.0, + "probability": 0.9086 + }, + { + "start": 5372.48, + "end": 5374.68, + "probability": 0.6204 + }, + { + "start": 5375.22, + "end": 5376.32, + "probability": 0.9229 + }, + { + "start": 5378.54, + "end": 5378.9, + "probability": 0.7778 + }, + { + "start": 5379.02, + "end": 5379.34, + "probability": 0.5907 + }, + { + "start": 5379.8, + "end": 5380.7, + "probability": 0.6744 + }, + { + "start": 5380.9, + "end": 5381.66, + "probability": 0.8513 + }, + { + "start": 5381.9, + "end": 5387.78, + "probability": 0.9806 + }, + { + "start": 5388.04, + "end": 5393.52, + "probability": 0.9688 + }, + { + "start": 5394.64, + "end": 5396.22, + "probability": 0.8234 + }, + { + "start": 5396.22, + "end": 5397.26, + "probability": 0.9968 + }, + { + "start": 5397.32, + "end": 5399.04, + "probability": 0.9032 + }, + { + "start": 5399.52, + "end": 5400.32, + "probability": 0.8436 + }, + { + "start": 5400.42, + "end": 5402.32, + "probability": 0.9737 + }, + { + "start": 5402.74, + "end": 5405.36, + "probability": 0.9819 + }, + { + "start": 5406.54, + "end": 5409.82, + "probability": 0.998 + }, + { + "start": 5410.22, + "end": 5413.97, + "probability": 0.7974 + }, + { + "start": 5414.54, + "end": 5416.28, + "probability": 0.9813 + }, + { + "start": 5416.28, + "end": 5418.64, + "probability": 0.9983 + }, + { + "start": 5419.5, + "end": 5420.3, + "probability": 0.9173 + }, + { + "start": 5420.8, + "end": 5422.7, + "probability": 0.9964 + }, + { + "start": 5422.92, + "end": 5424.82, + "probability": 0.8503 + }, + { + "start": 5425.32, + "end": 5427.34, + "probability": 0.9277 + }, + { + "start": 5427.52, + "end": 5427.96, + "probability": 0.765 + }, + { + "start": 5428.02, + "end": 5428.3, + "probability": 0.9233 + }, + { + "start": 5428.4, + "end": 5429.88, + "probability": 0.9795 + }, + { + "start": 5430.22, + "end": 5432.68, + "probability": 0.9146 + }, + { + "start": 5433.04, + "end": 5438.34, + "probability": 0.9405 + }, + { + "start": 5438.46, + "end": 5438.86, + "probability": 0.4454 + }, + { + "start": 5439.56, + "end": 5440.8, + "probability": 0.549 + }, + { + "start": 5440.96, + "end": 5445.12, + "probability": 0.9796 + }, + { + "start": 5445.8, + "end": 5447.02, + "probability": 0.998 + }, + { + "start": 5447.98, + "end": 5450.75, + "probability": 0.8808 + }, + { + "start": 5451.52, + "end": 5452.88, + "probability": 0.9912 + }, + { + "start": 5455.08, + "end": 5458.48, + "probability": 0.6866 + }, + { + "start": 5459.0, + "end": 5460.58, + "probability": 0.9403 + }, + { + "start": 5460.76, + "end": 5462.08, + "probability": 0.8184 + }, + { + "start": 5462.56, + "end": 5465.52, + "probability": 0.9777 + }, + { + "start": 5466.0, + "end": 5468.34, + "probability": 0.9906 + }, + { + "start": 5468.34, + "end": 5471.56, + "probability": 0.939 + }, + { + "start": 5472.1, + "end": 5474.92, + "probability": 0.9888 + }, + { + "start": 5475.34, + "end": 5477.14, + "probability": 0.5197 + }, + { + "start": 5477.26, + "end": 5479.49, + "probability": 0.8975 + }, + { + "start": 5480.76, + "end": 5481.74, + "probability": 0.7239 + }, + { + "start": 5486.17, + "end": 5488.02, + "probability": 0.6772 + }, + { + "start": 5488.18, + "end": 5491.44, + "probability": 0.3989 + }, + { + "start": 5492.28, + "end": 5492.56, + "probability": 0.0407 + }, + { + "start": 5492.56, + "end": 5492.56, + "probability": 0.0164 + }, + { + "start": 5492.56, + "end": 5492.62, + "probability": 0.0816 + }, + { + "start": 5492.62, + "end": 5494.2, + "probability": 0.1022 + }, + { + "start": 5494.26, + "end": 5495.9, + "probability": 0.8793 + }, + { + "start": 5496.7, + "end": 5499.94, + "probability": 0.8403 + }, + { + "start": 5500.5, + "end": 5502.2, + "probability": 0.0079 + }, + { + "start": 5502.2, + "end": 5502.8, + "probability": 0.0204 + }, + { + "start": 5503.64, + "end": 5505.81, + "probability": 0.8662 + }, + { + "start": 5506.56, + "end": 5509.98, + "probability": 0.0226 + }, + { + "start": 5511.02, + "end": 5513.56, + "probability": 0.9935 + }, + { + "start": 5514.16, + "end": 5515.94, + "probability": 0.9982 + }, + { + "start": 5516.48, + "end": 5517.42, + "probability": 0.8413 + }, + { + "start": 5517.48, + "end": 5520.02, + "probability": 0.9015 + }, + { + "start": 5520.3, + "end": 5520.88, + "probability": 0.9861 + }, + { + "start": 5522.1, + "end": 5522.42, + "probability": 0.7343 + }, + { + "start": 5523.49, + "end": 5524.64, + "probability": 0.8542 + }, + { + "start": 5525.36, + "end": 5526.56, + "probability": 0.9595 + }, + { + "start": 5527.36, + "end": 5529.9, + "probability": 0.9803 + }, + { + "start": 5531.0, + "end": 5533.92, + "probability": 0.7425 + }, + { + "start": 5534.36, + "end": 5536.02, + "probability": 0.8447 + }, + { + "start": 5536.64, + "end": 5538.92, + "probability": 0.8243 + }, + { + "start": 5540.48, + "end": 5543.74, + "probability": 0.9205 + }, + { + "start": 5543.84, + "end": 5547.64, + "probability": 0.8944 + }, + { + "start": 5553.22, + "end": 5554.72, + "probability": 0.2437 + }, + { + "start": 5564.54, + "end": 5565.22, + "probability": 0.5626 + }, + { + "start": 5565.78, + "end": 5566.54, + "probability": 0.6977 + }, + { + "start": 5567.16, + "end": 5569.98, + "probability": 0.9048 + }, + { + "start": 5570.9, + "end": 5571.94, + "probability": 0.878 + }, + { + "start": 5572.82, + "end": 5575.7, + "probability": 0.9824 + }, + { + "start": 5576.04, + "end": 5579.64, + "probability": 0.9944 + }, + { + "start": 5580.38, + "end": 5584.7, + "probability": 0.8519 + }, + { + "start": 5585.16, + "end": 5588.6, + "probability": 0.9894 + }, + { + "start": 5588.6, + "end": 5592.06, + "probability": 0.9963 + }, + { + "start": 5592.3, + "end": 5593.44, + "probability": 0.8836 + }, + { + "start": 5593.72, + "end": 5595.28, + "probability": 0.773 + }, + { + "start": 5595.58, + "end": 5596.46, + "probability": 0.8936 + }, + { + "start": 5597.38, + "end": 5598.66, + "probability": 0.7894 + }, + { + "start": 5598.84, + "end": 5601.06, + "probability": 0.8506 + }, + { + "start": 5601.58, + "end": 5604.96, + "probability": 0.9868 + }, + { + "start": 5605.48, + "end": 5608.66, + "probability": 0.98 + }, + { + "start": 5609.62, + "end": 5611.36, + "probability": 0.9941 + }, + { + "start": 5611.82, + "end": 5613.32, + "probability": 0.9624 + }, + { + "start": 5613.88, + "end": 5615.96, + "probability": 0.9941 + }, + { + "start": 5616.36, + "end": 5618.68, + "probability": 0.9917 + }, + { + "start": 5619.26, + "end": 5621.5, + "probability": 0.7742 + }, + { + "start": 5621.98, + "end": 5624.46, + "probability": 0.9481 + }, + { + "start": 5624.88, + "end": 5626.12, + "probability": 0.8145 + }, + { + "start": 5626.58, + "end": 5629.62, + "probability": 0.9917 + }, + { + "start": 5629.62, + "end": 5632.64, + "probability": 0.9813 + }, + { + "start": 5633.2, + "end": 5635.16, + "probability": 0.9666 + }, + { + "start": 5635.34, + "end": 5636.92, + "probability": 0.9916 + }, + { + "start": 5637.08, + "end": 5639.43, + "probability": 0.9757 + }, + { + "start": 5640.24, + "end": 5640.58, + "probability": 0.4928 + }, + { + "start": 5640.88, + "end": 5646.08, + "probability": 0.995 + }, + { + "start": 5647.02, + "end": 5649.36, + "probability": 0.9976 + }, + { + "start": 5649.36, + "end": 5652.02, + "probability": 0.9976 + }, + { + "start": 5652.68, + "end": 5654.72, + "probability": 0.9978 + }, + { + "start": 5655.2, + "end": 5659.0, + "probability": 0.9958 + }, + { + "start": 5660.06, + "end": 5661.78, + "probability": 0.8992 + }, + { + "start": 5661.94, + "end": 5664.14, + "probability": 0.7048 + }, + { + "start": 5664.3, + "end": 5667.9, + "probability": 0.9538 + }, + { + "start": 5668.3, + "end": 5672.4, + "probability": 0.9708 + }, + { + "start": 5672.62, + "end": 5674.0, + "probability": 0.8786 + }, + { + "start": 5674.54, + "end": 5675.42, + "probability": 0.6885 + }, + { + "start": 5675.5, + "end": 5678.58, + "probability": 0.8937 + }, + { + "start": 5679.92, + "end": 5682.44, + "probability": 0.9459 + }, + { + "start": 5682.94, + "end": 5685.24, + "probability": 0.8518 + }, + { + "start": 5685.3, + "end": 5692.78, + "probability": 0.9369 + }, + { + "start": 5693.28, + "end": 5695.66, + "probability": 0.9897 + }, + { + "start": 5695.74, + "end": 5700.8, + "probability": 0.8849 + }, + { + "start": 5700.86, + "end": 5701.06, + "probability": 0.4773 + }, + { + "start": 5701.2, + "end": 5706.4, + "probability": 0.9751 + }, + { + "start": 5707.22, + "end": 5709.79, + "probability": 0.9926 + }, + { + "start": 5710.78, + "end": 5711.56, + "probability": 0.9167 + }, + { + "start": 5712.18, + "end": 5714.1, + "probability": 0.9539 + }, + { + "start": 5714.92, + "end": 5717.36, + "probability": 0.971 + }, + { + "start": 5717.96, + "end": 5721.48, + "probability": 0.9966 + }, + { + "start": 5721.84, + "end": 5725.52, + "probability": 0.9848 + }, + { + "start": 5726.16, + "end": 5728.38, + "probability": 0.8979 + }, + { + "start": 5729.14, + "end": 5730.04, + "probability": 0.5867 + }, + { + "start": 5730.32, + "end": 5730.92, + "probability": 0.9035 + }, + { + "start": 5731.24, + "end": 5732.68, + "probability": 0.9829 + }, + { + "start": 5733.08, + "end": 5734.18, + "probability": 0.9841 + }, + { + "start": 5734.36, + "end": 5737.86, + "probability": 0.9731 + }, + { + "start": 5738.78, + "end": 5738.9, + "probability": 0.8671 + }, + { + "start": 5739.6, + "end": 5740.46, + "probability": 0.8536 + }, + { + "start": 5741.02, + "end": 5742.06, + "probability": 0.9983 + }, + { + "start": 5743.1, + "end": 5744.76, + "probability": 0.0698 + }, + { + "start": 5746.52, + "end": 5751.66, + "probability": 0.0655 + }, + { + "start": 5752.24, + "end": 5753.8, + "probability": 0.104 + }, + { + "start": 5754.58, + "end": 5755.14, + "probability": 0.7555 + }, + { + "start": 5755.22, + "end": 5762.9, + "probability": 0.818 + }, + { + "start": 5764.14, + "end": 5765.84, + "probability": 0.9988 + }, + { + "start": 5766.44, + "end": 5767.28, + "probability": 0.9249 + }, + { + "start": 5767.86, + "end": 5768.64, + "probability": 0.3566 + }, + { + "start": 5769.12, + "end": 5771.72, + "probability": 0.8251 + }, + { + "start": 5771.8, + "end": 5772.4, + "probability": 0.9751 + }, + { + "start": 5772.52, + "end": 5773.52, + "probability": 0.9288 + }, + { + "start": 5773.64, + "end": 5775.08, + "probability": 0.8574 + }, + { + "start": 5775.34, + "end": 5776.6, + "probability": 0.4257 + }, + { + "start": 5777.34, + "end": 5782.26, + "probability": 0.964 + }, + { + "start": 5782.76, + "end": 5784.38, + "probability": 0.9939 + }, + { + "start": 5784.74, + "end": 5786.62, + "probability": 0.9551 + }, + { + "start": 5787.04, + "end": 5789.0, + "probability": 0.9927 + }, + { + "start": 5789.32, + "end": 5792.56, + "probability": 0.9961 + }, + { + "start": 5792.98, + "end": 5793.9, + "probability": 0.9954 + }, + { + "start": 5794.98, + "end": 5795.3, + "probability": 0.0123 + }, + { + "start": 5795.3, + "end": 5795.3, + "probability": 0.1936 + }, + { + "start": 5795.3, + "end": 5796.5, + "probability": 0.7702 + }, + { + "start": 5797.38, + "end": 5798.89, + "probability": 0.8663 + }, + { + "start": 5805.23, + "end": 5805.58, + "probability": 0.0195 + }, + { + "start": 5805.94, + "end": 5806.04, + "probability": 0.0128 + }, + { + "start": 5806.04, + "end": 5806.04, + "probability": 0.0869 + }, + { + "start": 5806.04, + "end": 5806.04, + "probability": 0.0277 + }, + { + "start": 5806.04, + "end": 5807.52, + "probability": 0.1769 + }, + { + "start": 5808.54, + "end": 5810.36, + "probability": 0.8002 + }, + { + "start": 5810.5, + "end": 5811.92, + "probability": 0.8888 + }, + { + "start": 5814.24, + "end": 5816.76, + "probability": 0.9872 + }, + { + "start": 5816.88, + "end": 5818.42, + "probability": 0.9756 + }, + { + "start": 5819.0, + "end": 5821.44, + "probability": 0.9854 + }, + { + "start": 5821.78, + "end": 5826.96, + "probability": 0.9965 + }, + { + "start": 5827.48, + "end": 5830.4, + "probability": 0.9942 + }, + { + "start": 5830.8, + "end": 5831.84, + "probability": 0.6135 + }, + { + "start": 5832.18, + "end": 5832.7, + "probability": 0.9551 + }, + { + "start": 5832.8, + "end": 5834.04, + "probability": 0.9432 + }, + { + "start": 5834.12, + "end": 5834.62, + "probability": 0.598 + }, + { + "start": 5835.5, + "end": 5839.44, + "probability": 0.9806 + }, + { + "start": 5839.76, + "end": 5841.0, + "probability": 0.9681 + }, + { + "start": 5841.18, + "end": 5841.5, + "probability": 0.7005 + }, + { + "start": 5842.34, + "end": 5844.28, + "probability": 0.728 + }, + { + "start": 5845.34, + "end": 5846.26, + "probability": 0.7035 + }, + { + "start": 5847.74, + "end": 5849.56, + "probability": 0.8669 + }, + { + "start": 5856.46, + "end": 5856.66, + "probability": 0.2056 + }, + { + "start": 5856.66, + "end": 5857.4, + "probability": 0.5312 + }, + { + "start": 5857.62, + "end": 5858.14, + "probability": 0.4545 + }, + { + "start": 5858.16, + "end": 5859.62, + "probability": 0.9734 + }, + { + "start": 5860.12, + "end": 5861.7, + "probability": 0.7184 + }, + { + "start": 5861.94, + "end": 5863.92, + "probability": 0.8635 + }, + { + "start": 5864.7, + "end": 5865.38, + "probability": 0.9905 + }, + { + "start": 5869.06, + "end": 5869.61, + "probability": 0.9568 + }, + { + "start": 5869.64, + "end": 5870.3, + "probability": 0.9652 + }, + { + "start": 5870.38, + "end": 5872.68, + "probability": 0.4346 + }, + { + "start": 5873.26, + "end": 5876.58, + "probability": 0.9867 + }, + { + "start": 5876.58, + "end": 5879.6, + "probability": 0.8361 + }, + { + "start": 5879.74, + "end": 5882.44, + "probability": 0.9058 + }, + { + "start": 5883.04, + "end": 5886.78, + "probability": 0.9897 + }, + { + "start": 5886.78, + "end": 5892.18, + "probability": 0.9648 + }, + { + "start": 5892.3, + "end": 5896.88, + "probability": 0.867 + }, + { + "start": 5896.92, + "end": 5897.77, + "probability": 0.7029 + }, + { + "start": 5898.46, + "end": 5901.82, + "probability": 0.9303 + }, + { + "start": 5902.42, + "end": 5904.32, + "probability": 0.9961 + }, + { + "start": 5904.38, + "end": 5906.34, + "probability": 0.97 + }, + { + "start": 5907.82, + "end": 5910.18, + "probability": 0.9961 + }, + { + "start": 5911.56, + "end": 5911.98, + "probability": 0.6283 + }, + { + "start": 5912.04, + "end": 5913.94, + "probability": 0.9982 + }, + { + "start": 5914.52, + "end": 5915.84, + "probability": 0.841 + }, + { + "start": 5916.06, + "end": 5917.03, + "probability": 0.8373 + }, + { + "start": 5917.36, + "end": 5917.78, + "probability": 0.9215 + }, + { + "start": 5917.86, + "end": 5918.32, + "probability": 0.9034 + }, + { + "start": 5918.66, + "end": 5921.48, + "probability": 0.9761 + }, + { + "start": 5921.48, + "end": 5924.58, + "probability": 0.8918 + }, + { + "start": 5924.86, + "end": 5925.5, + "probability": 0.5215 + }, + { + "start": 5925.54, + "end": 5926.4, + "probability": 0.8601 + }, + { + "start": 5926.7, + "end": 5927.9, + "probability": 0.73 + }, + { + "start": 5928.54, + "end": 5929.48, + "probability": 0.8682 + }, + { + "start": 5929.6, + "end": 5930.56, + "probability": 0.8866 + }, + { + "start": 5930.82, + "end": 5931.48, + "probability": 0.9705 + }, + { + "start": 5931.82, + "end": 5932.12, + "probability": 0.8682 + }, + { + "start": 5932.5, + "end": 5933.24, + "probability": 0.9675 + }, + { + "start": 5933.46, + "end": 5936.23, + "probability": 0.9656 + }, + { + "start": 5937.62, + "end": 5938.4, + "probability": 0.9427 + }, + { + "start": 5939.0, + "end": 5941.84, + "probability": 0.7823 + }, + { + "start": 5942.5, + "end": 5944.18, + "probability": 0.9492 + }, + { + "start": 5944.3, + "end": 5945.24, + "probability": 0.5563 + }, + { + "start": 5945.42, + "end": 5945.76, + "probability": 0.7985 + }, + { + "start": 5945.84, + "end": 5946.46, + "probability": 0.7471 + }, + { + "start": 5946.74, + "end": 5951.98, + "probability": 0.9211 + }, + { + "start": 5952.08, + "end": 5952.86, + "probability": 0.6673 + }, + { + "start": 5952.9, + "end": 5953.94, + "probability": 0.7656 + }, + { + "start": 5954.38, + "end": 5956.42, + "probability": 0.8305 + }, + { + "start": 5956.62, + "end": 5957.72, + "probability": 0.5776 + }, + { + "start": 5957.8, + "end": 5961.12, + "probability": 0.9075 + }, + { + "start": 5961.8, + "end": 5962.5, + "probability": 0.6855 + }, + { + "start": 5962.62, + "end": 5963.8, + "probability": 0.8371 + }, + { + "start": 5964.48, + "end": 5965.3, + "probability": 0.775 + }, + { + "start": 5965.5, + "end": 5966.74, + "probability": 0.9596 + }, + { + "start": 5966.83, + "end": 5971.76, + "probability": 0.2123 + }, + { + "start": 5972.12, + "end": 5973.3, + "probability": 0.0417 + }, + { + "start": 5973.54, + "end": 5974.17, + "probability": 0.0738 + }, + { + "start": 5975.28, + "end": 5975.28, + "probability": 0.005 + }, + { + "start": 5975.28, + "end": 5977.6, + "probability": 0.6276 + }, + { + "start": 5977.74, + "end": 5981.4, + "probability": 0.9633 + }, + { + "start": 5981.68, + "end": 5985.24, + "probability": 0.8362 + }, + { + "start": 5985.32, + "end": 5990.58, + "probability": 0.9706 + }, + { + "start": 5991.16, + "end": 5994.16, + "probability": 0.9624 + }, + { + "start": 5994.68, + "end": 5997.66, + "probability": 0.9932 + }, + { + "start": 5998.68, + "end": 6003.02, + "probability": 0.9976 + }, + { + "start": 6003.78, + "end": 6007.04, + "probability": 0.9634 + }, + { + "start": 6008.08, + "end": 6012.12, + "probability": 0.014 + }, + { + "start": 6012.7, + "end": 6013.46, + "probability": 0.0375 + }, + { + "start": 6013.48, + "end": 6018.58, + "probability": 0.067 + }, + { + "start": 6022.82, + "end": 6027.07, + "probability": 0.1593 + }, + { + "start": 6031.58, + "end": 6032.04, + "probability": 0.0949 + }, + { + "start": 6032.22, + "end": 6033.95, + "probability": 0.0682 + }, + { + "start": 6034.06, + "end": 6034.06, + "probability": 0.0206 + }, + { + "start": 6034.58, + "end": 6035.64, + "probability": 0.0288 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.0, + "end": 6108.0, + "probability": 0.0 + }, + { + "start": 6108.1, + "end": 6108.24, + "probability": 0.3977 + }, + { + "start": 6108.28, + "end": 6108.28, + "probability": 0.1798 + }, + { + "start": 6108.28, + "end": 6108.66, + "probability": 0.1018 + }, + { + "start": 6110.0, + "end": 6112.12, + "probability": 0.9829 + }, + { + "start": 6112.6, + "end": 6113.58, + "probability": 0.8377 + }, + { + "start": 6114.54, + "end": 6116.24, + "probability": 0.9891 + }, + { + "start": 6117.16, + "end": 6117.9, + "probability": 0.9116 + }, + { + "start": 6118.26, + "end": 6121.44, + "probability": 0.9446 + }, + { + "start": 6121.6, + "end": 6121.94, + "probability": 0.6037 + }, + { + "start": 6122.8, + "end": 6123.38, + "probability": 0.8099 + }, + { + "start": 6123.92, + "end": 6125.62, + "probability": 0.9756 + }, + { + "start": 6126.6, + "end": 6126.96, + "probability": 0.811 + }, + { + "start": 6127.36, + "end": 6128.84, + "probability": 0.9233 + }, + { + "start": 6129.78, + "end": 6132.74, + "probability": 0.9912 + }, + { + "start": 6133.22, + "end": 6133.66, + "probability": 0.589 + }, + { + "start": 6134.56, + "end": 6137.06, + "probability": 0.9132 + }, + { + "start": 6139.0, + "end": 6141.2, + "probability": 0.9667 + }, + { + "start": 6142.78, + "end": 6146.84, + "probability": 0.9375 + }, + { + "start": 6147.4, + "end": 6149.36, + "probability": 0.9305 + }, + { + "start": 6149.96, + "end": 6152.42, + "probability": 0.7488 + }, + { + "start": 6153.01, + "end": 6155.36, + "probability": 0.9878 + }, + { + "start": 6155.88, + "end": 6158.34, + "probability": 0.9943 + }, + { + "start": 6159.32, + "end": 6160.44, + "probability": 0.9243 + }, + { + "start": 6160.98, + "end": 6163.98, + "probability": 0.8275 + }, + { + "start": 6164.72, + "end": 6165.47, + "probability": 0.9122 + }, + { + "start": 6166.98, + "end": 6167.46, + "probability": 0.9115 + }, + { + "start": 6167.56, + "end": 6168.5, + "probability": 0.8878 + }, + { + "start": 6168.58, + "end": 6169.7, + "probability": 0.8575 + }, + { + "start": 6169.76, + "end": 6170.94, + "probability": 0.8907 + }, + { + "start": 6171.78, + "end": 6173.64, + "probability": 0.8527 + }, + { + "start": 6173.72, + "end": 6174.52, + "probability": 0.4497 + }, + { + "start": 6175.78, + "end": 6179.44, + "probability": 0.9189 + }, + { + "start": 6179.58, + "end": 6180.92, + "probability": 0.855 + }, + { + "start": 6181.46, + "end": 6181.98, + "probability": 0.6729 + }, + { + "start": 6182.58, + "end": 6183.48, + "probability": 0.8109 + }, + { + "start": 6185.26, + "end": 6185.87, + "probability": 0.3656 + }, + { + "start": 6186.62, + "end": 6190.48, + "probability": 0.9421 + }, + { + "start": 6191.04, + "end": 6191.74, + "probability": 0.9811 + }, + { + "start": 6192.62, + "end": 6192.88, + "probability": 0.7694 + }, + { + "start": 6192.96, + "end": 6196.92, + "probability": 0.8851 + }, + { + "start": 6197.2, + "end": 6198.48, + "probability": 0.9863 + }, + { + "start": 6200.4, + "end": 6201.38, + "probability": 0.9966 + }, + { + "start": 6201.52, + "end": 6202.22, + "probability": 0.8126 + }, + { + "start": 6202.88, + "end": 6205.12, + "probability": 0.9683 + }, + { + "start": 6205.18, + "end": 6208.18, + "probability": 0.9412 + }, + { + "start": 6208.26, + "end": 6209.04, + "probability": 0.9054 + }, + { + "start": 6210.0, + "end": 6212.42, + "probability": 0.9644 + }, + { + "start": 6213.62, + "end": 6215.62, + "probability": 0.8248 + }, + { + "start": 6216.26, + "end": 6218.28, + "probability": 0.9213 + }, + { + "start": 6219.66, + "end": 6221.66, + "probability": 0.9714 + }, + { + "start": 6222.64, + "end": 6225.24, + "probability": 0.9577 + }, + { + "start": 6225.94, + "end": 6228.2, + "probability": 0.7021 + }, + { + "start": 6229.18, + "end": 6230.14, + "probability": 0.8144 + }, + { + "start": 6230.36, + "end": 6232.78, + "probability": 0.9495 + }, + { + "start": 6234.48, + "end": 6235.66, + "probability": 0.9678 + }, + { + "start": 6237.56, + "end": 6238.22, + "probability": 0.9023 + }, + { + "start": 6238.56, + "end": 6240.58, + "probability": 0.9825 + }, + { + "start": 6240.7, + "end": 6242.68, + "probability": 0.9917 + }, + { + "start": 6243.92, + "end": 6245.46, + "probability": 0.9961 + }, + { + "start": 6245.5, + "end": 6247.42, + "probability": 0.9909 + }, + { + "start": 6247.96, + "end": 6250.52, + "probability": 0.9829 + }, + { + "start": 6251.04, + "end": 6251.46, + "probability": 0.5505 + }, + { + "start": 6251.5, + "end": 6252.54, + "probability": 0.9985 + }, + { + "start": 6252.8, + "end": 6256.16, + "probability": 0.9978 + }, + { + "start": 6256.2, + "end": 6257.2, + "probability": 0.8501 + }, + { + "start": 6258.56, + "end": 6262.0, + "probability": 0.5061 + }, + { + "start": 6262.2, + "end": 6263.7, + "probability": 0.9783 + }, + { + "start": 6265.52, + "end": 6266.78, + "probability": 0.9941 + }, + { + "start": 6267.38, + "end": 6270.68, + "probability": 0.9418 + }, + { + "start": 6271.44, + "end": 6273.72, + "probability": 0.7971 + }, + { + "start": 6273.86, + "end": 6275.66, + "probability": 0.9645 + }, + { + "start": 6276.06, + "end": 6277.86, + "probability": 0.9922 + }, + { + "start": 6279.06, + "end": 6279.2, + "probability": 0.1786 + }, + { + "start": 6281.1, + "end": 6281.14, + "probability": 0.3815 + }, + { + "start": 6281.14, + "end": 6282.38, + "probability": 0.6394 + }, + { + "start": 6282.56, + "end": 6284.08, + "probability": 0.9904 + }, + { + "start": 6285.26, + "end": 6288.06, + "probability": 0.9787 + }, + { + "start": 6288.26, + "end": 6288.7, + "probability": 0.8442 + }, + { + "start": 6289.86, + "end": 6291.52, + "probability": 0.8751 + }, + { + "start": 6291.72, + "end": 6292.56, + "probability": 0.9177 + }, + { + "start": 6292.68, + "end": 6293.24, + "probability": 0.952 + }, + { + "start": 6293.84, + "end": 6294.32, + "probability": 0.834 + }, + { + "start": 6295.5, + "end": 6296.54, + "probability": 0.9924 + }, + { + "start": 6297.7, + "end": 6298.1, + "probability": 0.991 + }, + { + "start": 6299.2, + "end": 6299.57, + "probability": 0.6416 + }, + { + "start": 6300.48, + "end": 6302.02, + "probability": 0.9965 + }, + { + "start": 6302.1, + "end": 6302.86, + "probability": 0.9235 + }, + { + "start": 6302.92, + "end": 6306.38, + "probability": 0.9971 + }, + { + "start": 6307.66, + "end": 6309.12, + "probability": 0.956 + }, + { + "start": 6309.2, + "end": 6310.18, + "probability": 0.9252 + }, + { + "start": 6311.26, + "end": 6311.86, + "probability": 0.7954 + }, + { + "start": 6312.42, + "end": 6313.62, + "probability": 0.7562 + }, + { + "start": 6313.72, + "end": 6314.5, + "probability": 0.9596 + }, + { + "start": 6314.6, + "end": 6315.13, + "probability": 0.9707 + }, + { + "start": 6315.6, + "end": 6316.2, + "probability": 0.9921 + }, + { + "start": 6316.9, + "end": 6318.18, + "probability": 0.9927 + }, + { + "start": 6318.72, + "end": 6321.18, + "probability": 0.9922 + }, + { + "start": 6321.7, + "end": 6323.92, + "probability": 0.9902 + }, + { + "start": 6326.19, + "end": 6328.6, + "probability": 0.7021 + }, + { + "start": 6329.16, + "end": 6329.38, + "probability": 0.7926 + }, + { + "start": 6330.22, + "end": 6331.86, + "probability": 0.9224 + }, + { + "start": 6332.32, + "end": 6333.38, + "probability": 0.8558 + }, + { + "start": 6334.74, + "end": 6336.06, + "probability": 0.9634 + }, + { + "start": 6336.16, + "end": 6337.42, + "probability": 0.9873 + }, + { + "start": 6337.8, + "end": 6339.24, + "probability": 0.9912 + }, + { + "start": 6339.42, + "end": 6341.26, + "probability": 0.5389 + }, + { + "start": 6341.99, + "end": 6342.06, + "probability": 0.0015 + }, + { + "start": 6342.06, + "end": 6342.62, + "probability": 0.2587 + }, + { + "start": 6342.62, + "end": 6344.86, + "probability": 0.8873 + }, + { + "start": 6345.24, + "end": 6347.64, + "probability": 0.9916 + }, + { + "start": 6348.28, + "end": 6349.3, + "probability": 0.7872 + }, + { + "start": 6350.16, + "end": 6350.76, + "probability": 0.9521 + }, + { + "start": 6351.68, + "end": 6351.72, + "probability": 0.2061 + }, + { + "start": 6351.82, + "end": 6355.56, + "probability": 0.9546 + }, + { + "start": 6356.18, + "end": 6358.24, + "probability": 0.8991 + }, + { + "start": 6358.36, + "end": 6360.02, + "probability": 0.604 + }, + { + "start": 6360.18, + "end": 6360.9, + "probability": 0.7452 + }, + { + "start": 6362.2, + "end": 6363.12, + "probability": 0.9145 + }, + { + "start": 6364.4, + "end": 6365.1, + "probability": 0.7729 + }, + { + "start": 6366.32, + "end": 6367.5, + "probability": 0.9672 + }, + { + "start": 6367.92, + "end": 6368.88, + "probability": 0.9649 + }, + { + "start": 6368.96, + "end": 6369.84, + "probability": 0.9479 + }, + { + "start": 6369.96, + "end": 6370.94, + "probability": 0.2737 + }, + { + "start": 6371.38, + "end": 6372.88, + "probability": 0.958 + }, + { + "start": 6373.5, + "end": 6376.52, + "probability": 0.9778 + }, + { + "start": 6377.26, + "end": 6378.9, + "probability": 0.9959 + }, + { + "start": 6379.64, + "end": 6383.08, + "probability": 0.9832 + }, + { + "start": 6383.48, + "end": 6385.77, + "probability": 0.998 + }, + { + "start": 6386.5, + "end": 6388.91, + "probability": 0.9858 + }, + { + "start": 6390.22, + "end": 6390.48, + "probability": 0.7147 + }, + { + "start": 6392.22, + "end": 6394.44, + "probability": 0.809 + }, + { + "start": 6395.36, + "end": 6397.16, + "probability": 0.9971 + }, + { + "start": 6397.32, + "end": 6401.72, + "probability": 0.825 + }, + { + "start": 6401.72, + "end": 6407.72, + "probability": 0.5911 + }, + { + "start": 6408.7, + "end": 6411.36, + "probability": 0.4887 + }, + { + "start": 6412.56, + "end": 6413.28, + "probability": 0.6848 + }, + { + "start": 6415.04, + "end": 6415.88, + "probability": 0.2431 + }, + { + "start": 6423.74, + "end": 6423.74, + "probability": 0.0081 + }, + { + "start": 6423.74, + "end": 6423.76, + "probability": 0.0081 + }, + { + "start": 6423.76, + "end": 6423.78, + "probability": 0.0181 + }, + { + "start": 6423.78, + "end": 6423.78, + "probability": 0.1061 + }, + { + "start": 6423.78, + "end": 6423.78, + "probability": 0.111 + }, + { + "start": 6434.28, + "end": 6434.6, + "probability": 0.2713 + }, + { + "start": 6435.32, + "end": 6435.92, + "probability": 0.1651 + }, + { + "start": 6436.62, + "end": 6437.44, + "probability": 0.6036 + }, + { + "start": 6438.32, + "end": 6439.06, + "probability": 0.5446 + }, + { + "start": 6439.16, + "end": 6441.25, + "probability": 0.9463 + }, + { + "start": 6442.88, + "end": 6443.06, + "probability": 0.7087 + }, + { + "start": 6443.72, + "end": 6444.44, + "probability": 0.7668 + }, + { + "start": 6444.84, + "end": 6449.54, + "probability": 0.7686 + }, + { + "start": 6450.58, + "end": 6451.96, + "probability": 0.8823 + }, + { + "start": 6452.5, + "end": 6456.06, + "probability": 0.7468 + }, + { + "start": 6457.06, + "end": 6458.76, + "probability": 0.7402 + }, + { + "start": 6459.44, + "end": 6464.12, + "probability": 0.9448 + }, + { + "start": 6465.08, + "end": 6468.52, + "probability": 0.9685 + }, + { + "start": 6469.6, + "end": 6471.36, + "probability": 0.0474 + }, + { + "start": 6472.12, + "end": 6474.0, + "probability": 0.9964 + }, + { + "start": 6475.0, + "end": 6476.7, + "probability": 0.596 + }, + { + "start": 6477.56, + "end": 6480.32, + "probability": 0.1883 + }, + { + "start": 6481.1, + "end": 6485.38, + "probability": 0.7446 + }, + { + "start": 6485.38, + "end": 6488.86, + "probability": 0.2952 + }, + { + "start": 6496.92, + "end": 6499.22, + "probability": 0.0436 + }, + { + "start": 6499.28, + "end": 6501.6, + "probability": 0.6213 + }, + { + "start": 6502.2, + "end": 6503.02, + "probability": 0.2517 + }, + { + "start": 6513.5, + "end": 6514.04, + "probability": 0.3163 + }, + { + "start": 6523.72, + "end": 6524.36, + "probability": 0.5733 + }, + { + "start": 6524.54, + "end": 6525.4, + "probability": 0.7254 + }, + { + "start": 6525.74, + "end": 6533.7, + "probability": 0.966 + }, + { + "start": 6536.13, + "end": 6538.24, + "probability": 0.8904 + }, + { + "start": 6538.26, + "end": 6540.46, + "probability": 0.7785 + }, + { + "start": 6540.96, + "end": 6542.0, + "probability": 0.3764 + }, + { + "start": 6544.58, + "end": 6549.02, + "probability": 0.7769 + }, + { + "start": 6551.08, + "end": 6554.72, + "probability": 0.6577 + }, + { + "start": 6555.06, + "end": 6555.92, + "probability": 0.658 + }, + { + "start": 6556.22, + "end": 6559.88, + "probability": 0.9805 + }, + { + "start": 6560.06, + "end": 6560.26, + "probability": 0.8225 + }, + { + "start": 6563.88, + "end": 6569.74, + "probability": 0.994 + }, + { + "start": 6570.36, + "end": 6573.96, + "probability": 0.9714 + }, + { + "start": 6575.02, + "end": 6578.46, + "probability": 0.8973 + }, + { + "start": 6578.62, + "end": 6580.32, + "probability": 0.7633 + }, + { + "start": 6580.88, + "end": 6582.94, + "probability": 0.9826 + }, + { + "start": 6583.36, + "end": 6587.88, + "probability": 0.9924 + }, + { + "start": 6588.2, + "end": 6588.54, + "probability": 0.5478 + }, + { + "start": 6588.7, + "end": 6591.86, + "probability": 0.9375 + }, + { + "start": 6592.32, + "end": 6598.9, + "probability": 0.991 + }, + { + "start": 6598.9, + "end": 6602.7, + "probability": 0.9941 + }, + { + "start": 6603.36, + "end": 6607.08, + "probability": 0.998 + }, + { + "start": 6607.22, + "end": 6611.1, + "probability": 0.9683 + }, + { + "start": 6611.98, + "end": 6615.64, + "probability": 0.9765 + }, + { + "start": 6616.62, + "end": 6619.28, + "probability": 0.9927 + }, + { + "start": 6619.7, + "end": 6621.6, + "probability": 0.9366 + }, + { + "start": 6621.68, + "end": 6622.54, + "probability": 0.9689 + }, + { + "start": 6623.48, + "end": 6625.66, + "probability": 0.9949 + }, + { + "start": 6626.32, + "end": 6629.26, + "probability": 0.9824 + }, + { + "start": 6629.26, + "end": 6632.54, + "probability": 0.999 + }, + { + "start": 6632.82, + "end": 6633.84, + "probability": 0.9727 + }, + { + "start": 6634.42, + "end": 6636.12, + "probability": 0.9443 + }, + { + "start": 6636.92, + "end": 6638.23, + "probability": 0.8743 + }, + { + "start": 6638.78, + "end": 6643.4, + "probability": 0.9907 + }, + { + "start": 6644.02, + "end": 6645.16, + "probability": 0.862 + }, + { + "start": 6645.66, + "end": 6646.78, + "probability": 0.9563 + }, + { + "start": 6646.88, + "end": 6650.44, + "probability": 0.9946 + }, + { + "start": 6650.82, + "end": 6653.46, + "probability": 0.8665 + }, + { + "start": 6653.8, + "end": 6656.08, + "probability": 0.9614 + }, + { + "start": 6656.44, + "end": 6661.28, + "probability": 0.96 + }, + { + "start": 6661.6, + "end": 6662.96, + "probability": 0.9729 + }, + { + "start": 6663.3, + "end": 6664.98, + "probability": 0.9019 + }, + { + "start": 6665.08, + "end": 6665.5, + "probability": 0.8633 + }, + { + "start": 6665.56, + "end": 6666.22, + "probability": 0.9393 + }, + { + "start": 6666.68, + "end": 6667.32, + "probability": 0.9237 + }, + { + "start": 6667.56, + "end": 6668.66, + "probability": 0.9971 + }, + { + "start": 6669.14, + "end": 6671.16, + "probability": 0.9744 + }, + { + "start": 6671.56, + "end": 6672.56, + "probability": 0.9771 + }, + { + "start": 6673.38, + "end": 6674.6, + "probability": 0.9834 + }, + { + "start": 6675.42, + "end": 6677.0, + "probability": 0.9692 + }, + { + "start": 6677.12, + "end": 6678.56, + "probability": 0.9943 + }, + { + "start": 6681.48, + "end": 6683.64, + "probability": 0.674 + }, + { + "start": 6683.64, + "end": 6684.67, + "probability": 0.8136 + }, + { + "start": 6685.52, + "end": 6690.05, + "probability": 0.9958 + }, + { + "start": 6691.42, + "end": 6694.12, + "probability": 0.9647 + }, + { + "start": 6695.0, + "end": 6701.33, + "probability": 0.9969 + }, + { + "start": 6701.92, + "end": 6704.54, + "probability": 0.9986 + }, + { + "start": 6704.96, + "end": 6707.74, + "probability": 0.9973 + }, + { + "start": 6708.2, + "end": 6709.18, + "probability": 0.981 + }, + { + "start": 6709.74, + "end": 6712.7, + "probability": 0.9849 + }, + { + "start": 6713.06, + "end": 6714.86, + "probability": 0.9973 + }, + { + "start": 6716.7, + "end": 6719.4, + "probability": 0.9734 + }, + { + "start": 6720.06, + "end": 6720.56, + "probability": 0.8682 + }, + { + "start": 6721.9, + "end": 6724.07, + "probability": 0.9954 + }, + { + "start": 6724.44, + "end": 6725.66, + "probability": 0.9668 + }, + { + "start": 6726.68, + "end": 6730.42, + "probability": 0.953 + }, + { + "start": 6730.58, + "end": 6732.06, + "probability": 0.9576 + }, + { + "start": 6734.26, + "end": 6737.2, + "probability": 0.9971 + }, + { + "start": 6737.8, + "end": 6741.2, + "probability": 0.9972 + }, + { + "start": 6741.6, + "end": 6742.48, + "probability": 0.9699 + }, + { + "start": 6742.68, + "end": 6743.38, + "probability": 0.9059 + }, + { + "start": 6743.7, + "end": 6744.7, + "probability": 0.9797 + }, + { + "start": 6744.96, + "end": 6746.56, + "probability": 0.909 + }, + { + "start": 6746.84, + "end": 6748.62, + "probability": 0.9927 + }, + { + "start": 6749.18, + "end": 6750.56, + "probability": 0.986 + }, + { + "start": 6751.24, + "end": 6755.52, + "probability": 0.9958 + }, + { + "start": 6755.82, + "end": 6758.86, + "probability": 0.9933 + }, + { + "start": 6759.28, + "end": 6760.9, + "probability": 0.9896 + }, + { + "start": 6761.36, + "end": 6761.86, + "probability": 0.4464 + }, + { + "start": 6761.98, + "end": 6762.46, + "probability": 0.5253 + }, + { + "start": 6762.98, + "end": 6767.0, + "probability": 0.9917 + }, + { + "start": 6767.52, + "end": 6768.28, + "probability": 0.9922 + }, + { + "start": 6768.94, + "end": 6770.74, + "probability": 0.9038 + }, + { + "start": 6770.82, + "end": 6773.98, + "probability": 0.9979 + }, + { + "start": 6774.42, + "end": 6777.6, + "probability": 0.9136 + }, + { + "start": 6777.72, + "end": 6779.2, + "probability": 0.8524 + }, + { + "start": 6779.73, + "end": 6785.9, + "probability": 0.8983 + }, + { + "start": 6786.08, + "end": 6789.02, + "probability": 0.9883 + }, + { + "start": 6790.5, + "end": 6791.37, + "probability": 0.7335 + }, + { + "start": 6791.48, + "end": 6793.92, + "probability": 0.8822 + }, + { + "start": 6794.5, + "end": 6799.78, + "probability": 0.9596 + }, + { + "start": 6800.28, + "end": 6802.54, + "probability": 0.7774 + }, + { + "start": 6803.04, + "end": 6804.82, + "probability": 0.9204 + }, + { + "start": 6805.36, + "end": 6808.12, + "probability": 0.9532 + }, + { + "start": 6808.4, + "end": 6810.32, + "probability": 0.8757 + }, + { + "start": 6810.84, + "end": 6814.02, + "probability": 0.9943 + }, + { + "start": 6814.24, + "end": 6817.28, + "probability": 0.9956 + }, + { + "start": 6817.3, + "end": 6820.04, + "probability": 0.9811 + }, + { + "start": 6820.64, + "end": 6822.74, + "probability": 0.9399 + }, + { + "start": 6822.88, + "end": 6822.88, + "probability": 0.1734 + }, + { + "start": 6823.02, + "end": 6825.04, + "probability": 0.6698 + }, + { + "start": 6825.16, + "end": 6826.02, + "probability": 0.98 + }, + { + "start": 6826.6, + "end": 6827.96, + "probability": 0.9263 + }, + { + "start": 6827.96, + "end": 6831.04, + "probability": 0.973 + }, + { + "start": 6831.62, + "end": 6834.8, + "probability": 0.8837 + }, + { + "start": 6835.36, + "end": 6836.5, + "probability": 0.9843 + }, + { + "start": 6836.94, + "end": 6837.76, + "probability": 0.7544 + }, + { + "start": 6838.28, + "end": 6838.7, + "probability": 0.8122 + }, + { + "start": 6839.24, + "end": 6840.3, + "probability": 0.9727 + }, + { + "start": 6840.54, + "end": 6843.02, + "probability": 0.9055 + }, + { + "start": 6843.42, + "end": 6844.04, + "probability": 0.8506 + }, + { + "start": 6844.64, + "end": 6847.02, + "probability": 0.6595 + }, + { + "start": 6847.38, + "end": 6849.78, + "probability": 0.5304 + }, + { + "start": 6860.96, + "end": 6863.64, + "probability": 0.848 + }, + { + "start": 6864.24, + "end": 6864.24, + "probability": 0.4213 + }, + { + "start": 6864.24, + "end": 6864.88, + "probability": 0.716 + }, + { + "start": 6865.22, + "end": 6866.82, + "probability": 0.9713 + }, + { + "start": 6867.18, + "end": 6868.35, + "probability": 0.8693 + }, + { + "start": 6869.22, + "end": 6870.44, + "probability": 0.7847 + }, + { + "start": 6872.52, + "end": 6875.26, + "probability": 0.8482 + }, + { + "start": 6877.24, + "end": 6878.36, + "probability": 0.781 + }, + { + "start": 6879.8, + "end": 6883.28, + "probability": 0.9612 + }, + { + "start": 6884.04, + "end": 6887.46, + "probability": 0.9922 + }, + { + "start": 6888.12, + "end": 6890.04, + "probability": 0.902 + }, + { + "start": 6890.08, + "end": 6891.88, + "probability": 0.9473 + }, + { + "start": 6892.1, + "end": 6892.28, + "probability": 0.5104 + }, + { + "start": 6892.44, + "end": 6892.78, + "probability": 0.7438 + }, + { + "start": 6892.9, + "end": 6893.54, + "probability": 0.7799 + }, + { + "start": 6904.16, + "end": 6904.52, + "probability": 0.0986 + }, + { + "start": 6904.52, + "end": 6905.36, + "probability": 0.1052 + }, + { + "start": 6905.4, + "end": 6907.2, + "probability": 0.057 + }, + { + "start": 6907.2, + "end": 6907.48, + "probability": 0.0278 + }, + { + "start": 6907.48, + "end": 6907.58, + "probability": 0.0415 + }, + { + "start": 6910.2, + "end": 6911.76, + "probability": 0.1252 + }, + { + "start": 6911.76, + "end": 6914.24, + "probability": 0.0784 + }, + { + "start": 6914.66, + "end": 6915.36, + "probability": 0.0457 + }, + { + "start": 6915.72, + "end": 6917.65, + "probability": 0.0949 + }, + { + "start": 6919.18, + "end": 6921.04, + "probability": 0.0133 + }, + { + "start": 6922.58, + "end": 6924.56, + "probability": 0.0082 + }, + { + "start": 6936.66, + "end": 6937.38, + "probability": 0.1721 + }, + { + "start": 6940.7, + "end": 6942.58, + "probability": 0.049 + }, + { + "start": 6946.46, + "end": 6947.88, + "probability": 0.3717 + }, + { + "start": 6948.76, + "end": 6950.04, + "probability": 0.0121 + }, + { + "start": 6950.04, + "end": 6950.32, + "probability": 0.0599 + }, + { + "start": 6950.94, + "end": 6952.24, + "probability": 0.0178 + }, + { + "start": 6956.32, + "end": 6959.58, + "probability": 0.1072 + }, + { + "start": 6960.28, + "end": 6960.42, + "probability": 0.0405 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6961.0, + "end": 6961.0, + "probability": 0.0 + }, + { + "start": 6962.36, + "end": 6963.38, + "probability": 0.6951 + }, + { + "start": 6964.48, + "end": 6967.08, + "probability": 0.858 + }, + { + "start": 6967.66, + "end": 6971.2, + "probability": 0.8143 + }, + { + "start": 6972.0, + "end": 6974.5, + "probability": 0.9092 + }, + { + "start": 6975.1, + "end": 6976.02, + "probability": 0.8356 + }, + { + "start": 6976.84, + "end": 6979.88, + "probability": 0.9679 + }, + { + "start": 6981.42, + "end": 6982.9, + "probability": 0.8337 + }, + { + "start": 6984.52, + "end": 6985.02, + "probability": 0.7868 + }, + { + "start": 6985.6, + "end": 6986.9, + "probability": 0.8884 + }, + { + "start": 6989.04, + "end": 6989.5, + "probability": 0.8366 + }, + { + "start": 6989.82, + "end": 6991.62, + "probability": 0.4865 + }, + { + "start": 6991.72, + "end": 6993.35, + "probability": 0.9966 + }, + { + "start": 6994.24, + "end": 6995.34, + "probability": 0.9604 + }, + { + "start": 6995.46, + "end": 6996.16, + "probability": 0.7621 + }, + { + "start": 6996.48, + "end": 6997.56, + "probability": 0.7217 + }, + { + "start": 6998.06, + "end": 7001.0, + "probability": 0.9844 + }, + { + "start": 7002.22, + "end": 7003.92, + "probability": 0.7635 + }, + { + "start": 7005.24, + "end": 7007.42, + "probability": 0.9346 + }, + { + "start": 7009.71, + "end": 7013.28, + "probability": 0.8828 + }, + { + "start": 7014.56, + "end": 7016.08, + "probability": 0.7193 + }, + { + "start": 7017.1, + "end": 7019.22, + "probability": 0.9081 + }, + { + "start": 7020.46, + "end": 7021.8, + "probability": 0.9844 + }, + { + "start": 7022.34, + "end": 7023.18, + "probability": 0.9806 + }, + { + "start": 7023.82, + "end": 7025.74, + "probability": 0.9989 + }, + { + "start": 7026.3, + "end": 7029.22, + "probability": 0.604 + }, + { + "start": 7030.44, + "end": 7035.28, + "probability": 0.638 + }, + { + "start": 7035.9, + "end": 7036.44, + "probability": 0.8566 + }, + { + "start": 7037.08, + "end": 7042.32, + "probability": 0.966 + }, + { + "start": 7042.74, + "end": 7047.16, + "probability": 0.9728 + }, + { + "start": 7047.42, + "end": 7050.36, + "probability": 0.9611 + }, + { + "start": 7050.58, + "end": 7051.74, + "probability": 0.6329 + }, + { + "start": 7052.16, + "end": 7053.15, + "probability": 0.3305 + }, + { + "start": 7053.92, + "end": 7056.04, + "probability": 0.7274 + }, + { + "start": 7057.22, + "end": 7059.3, + "probability": 0.9968 + }, + { + "start": 7060.16, + "end": 7060.96, + "probability": 0.808 + }, + { + "start": 7061.82, + "end": 7067.96, + "probability": 0.9517 + }, + { + "start": 7069.82, + "end": 7070.28, + "probability": 0.7633 + }, + { + "start": 7071.48, + "end": 7072.6, + "probability": 0.9468 + }, + { + "start": 7072.62, + "end": 7074.12, + "probability": 0.9226 + }, + { + "start": 7074.46, + "end": 7074.82, + "probability": 0.8266 + }, + { + "start": 7074.88, + "end": 7076.64, + "probability": 0.9895 + }, + { + "start": 7078.66, + "end": 7079.84, + "probability": 0.87 + }, + { + "start": 7080.34, + "end": 7081.04, + "probability": 0.8452 + }, + { + "start": 7081.1, + "end": 7082.62, + "probability": 0.9253 + }, + { + "start": 7082.78, + "end": 7083.52, + "probability": 0.6276 + }, + { + "start": 7083.52, + "end": 7086.4, + "probability": 0.8513 + }, + { + "start": 7087.0, + "end": 7089.56, + "probability": 0.8168 + }, + { + "start": 7090.58, + "end": 7093.56, + "probability": 0.5276 + }, + { + "start": 7094.3, + "end": 7095.6, + "probability": 0.4629 + }, + { + "start": 7095.66, + "end": 7099.48, + "probability": 0.8523 + }, + { + "start": 7100.06, + "end": 7101.72, + "probability": 0.7021 + }, + { + "start": 7101.72, + "end": 7102.92, + "probability": 0.9437 + }, + { + "start": 7104.0, + "end": 7105.04, + "probability": 0.8877 + }, + { + "start": 7105.96, + "end": 7107.66, + "probability": 0.9282 + }, + { + "start": 7108.14, + "end": 7108.84, + "probability": 0.7431 + }, + { + "start": 7109.36, + "end": 7110.0, + "probability": 0.6863 + }, + { + "start": 7110.04, + "end": 7110.7, + "probability": 0.8938 + }, + { + "start": 7110.78, + "end": 7111.46, + "probability": 0.6475 + }, + { + "start": 7111.54, + "end": 7112.5, + "probability": 0.8473 + }, + { + "start": 7113.24, + "end": 7117.52, + "probability": 0.9753 + }, + { + "start": 7118.06, + "end": 7120.62, + "probability": 0.9985 + }, + { + "start": 7121.26, + "end": 7123.06, + "probability": 0.7775 + }, + { + "start": 7124.0, + "end": 7125.1, + "probability": 0.8599 + }, + { + "start": 7125.3, + "end": 7125.72, + "probability": 0.7137 + }, + { + "start": 7126.02, + "end": 7126.7, + "probability": 0.894 + }, + { + "start": 7127.12, + "end": 7128.8, + "probability": 0.8772 + }, + { + "start": 7129.24, + "end": 7133.68, + "probability": 0.744 + }, + { + "start": 7134.84, + "end": 7135.38, + "probability": 0.4922 + }, + { + "start": 7135.68, + "end": 7135.88, + "probability": 0.5088 + }, + { + "start": 7135.88, + "end": 7136.36, + "probability": 0.6687 + }, + { + "start": 7137.88, + "end": 7140.8, + "probability": 0.8945 + }, + { + "start": 7141.5, + "end": 7142.72, + "probability": 0.9215 + }, + { + "start": 7143.16, + "end": 7144.04, + "probability": 0.9638 + }, + { + "start": 7144.08, + "end": 7145.32, + "probability": 0.7268 + }, + { + "start": 7146.28, + "end": 7148.76, + "probability": 0.9664 + }, + { + "start": 7148.78, + "end": 7149.98, + "probability": 0.9308 + }, + { + "start": 7150.04, + "end": 7151.52, + "probability": 0.934 + }, + { + "start": 7153.04, + "end": 7155.42, + "probability": 0.7087 + }, + { + "start": 7157.2, + "end": 7160.34, + "probability": 0.8581 + }, + { + "start": 7164.5, + "end": 7167.96, + "probability": 0.7155 + }, + { + "start": 7168.56, + "end": 7169.44, + "probability": 0.7521 + }, + { + "start": 7170.02, + "end": 7170.36, + "probability": 0.8857 + }, + { + "start": 7177.4, + "end": 7179.2, + "probability": 0.7545 + }, + { + "start": 7180.56, + "end": 7181.2, + "probability": 0.8857 + }, + { + "start": 7181.72, + "end": 7184.2, + "probability": 0.978 + }, + { + "start": 7184.74, + "end": 7185.3, + "probability": 0.7746 + }, + { + "start": 7186.52, + "end": 7187.66, + "probability": 0.9197 + }, + { + "start": 7189.94, + "end": 7193.48, + "probability": 0.8379 + }, + { + "start": 7194.54, + "end": 7194.92, + "probability": 0.8908 + }, + { + "start": 7195.0, + "end": 7195.42, + "probability": 0.6883 + }, + { + "start": 7195.6, + "end": 7197.46, + "probability": 0.851 + }, + { + "start": 7197.54, + "end": 7198.86, + "probability": 0.8375 + }, + { + "start": 7199.88, + "end": 7200.68, + "probability": 0.8719 + }, + { + "start": 7201.74, + "end": 7204.64, + "probability": 0.8478 + }, + { + "start": 7207.16, + "end": 7208.98, + "probability": 0.9849 + }, + { + "start": 7210.22, + "end": 7210.92, + "probability": 0.9071 + }, + { + "start": 7212.48, + "end": 7213.86, + "probability": 0.5987 + }, + { + "start": 7214.72, + "end": 7216.96, + "probability": 0.9377 + }, + { + "start": 7218.04, + "end": 7222.52, + "probability": 0.9845 + }, + { + "start": 7224.02, + "end": 7225.94, + "probability": 0.8949 + }, + { + "start": 7226.6, + "end": 7228.56, + "probability": 0.9552 + }, + { + "start": 7230.28, + "end": 7232.3, + "probability": 0.9621 + }, + { + "start": 7233.64, + "end": 7235.36, + "probability": 0.9975 + }, + { + "start": 7237.46, + "end": 7239.0, + "probability": 0.9995 + }, + { + "start": 7240.08, + "end": 7241.46, + "probability": 0.7957 + }, + { + "start": 7243.24, + "end": 7243.61, + "probability": 0.6812 + }, + { + "start": 7243.82, + "end": 7245.36, + "probability": 0.9083 + }, + { + "start": 7245.36, + "end": 7245.9, + "probability": 0.5857 + }, + { + "start": 7246.22, + "end": 7251.88, + "probability": 0.9543 + }, + { + "start": 7252.42, + "end": 7254.28, + "probability": 0.76 + }, + { + "start": 7256.28, + "end": 7259.1, + "probability": 0.842 + }, + { + "start": 7260.74, + "end": 7264.98, + "probability": 0.9012 + }, + { + "start": 7265.64, + "end": 7266.42, + "probability": 0.5348 + }, + { + "start": 7267.28, + "end": 7268.78, + "probability": 0.9651 + }, + { + "start": 7270.24, + "end": 7271.88, + "probability": 0.9923 + }, + { + "start": 7272.44, + "end": 7273.98, + "probability": 0.9836 + }, + { + "start": 7274.98, + "end": 7277.42, + "probability": 0.9169 + }, + { + "start": 7278.46, + "end": 7282.48, + "probability": 0.7986 + }, + { + "start": 7283.02, + "end": 7287.12, + "probability": 0.932 + }, + { + "start": 7288.48, + "end": 7290.62, + "probability": 0.7006 + }, + { + "start": 7290.62, + "end": 7293.68, + "probability": 0.963 + }, + { + "start": 7295.64, + "end": 7296.46, + "probability": 0.5714 + }, + { + "start": 7296.52, + "end": 7297.2, + "probability": 0.5504 + }, + { + "start": 7297.32, + "end": 7298.32, + "probability": 0.7139 + }, + { + "start": 7298.7, + "end": 7302.18, + "probability": 0.8871 + }, + { + "start": 7303.04, + "end": 7305.86, + "probability": 0.8464 + }, + { + "start": 7305.86, + "end": 7311.16, + "probability": 0.9653 + }, + { + "start": 7312.8, + "end": 7314.58, + "probability": 0.5178 + }, + { + "start": 7315.0, + "end": 7315.28, + "probability": 0.3474 + }, + { + "start": 7315.4, + "end": 7317.62, + "probability": 0.8085 + }, + { + "start": 7317.96, + "end": 7321.6, + "probability": 0.9785 + }, + { + "start": 7322.52, + "end": 7323.78, + "probability": 0.78 + }, + { + "start": 7323.86, + "end": 7324.33, + "probability": 0.6573 + }, + { + "start": 7324.68, + "end": 7324.78, + "probability": 0.4763 + }, + { + "start": 7324.8, + "end": 7325.38, + "probability": 0.9683 + }, + { + "start": 7330.6, + "end": 7330.6, + "probability": 0.2072 + }, + { + "start": 7330.6, + "end": 7331.5, + "probability": 0.1491 + }, + { + "start": 7331.68, + "end": 7332.2, + "probability": 0.7787 + }, + { + "start": 7332.8, + "end": 7337.82, + "probability": 0.8032 + }, + { + "start": 7339.22, + "end": 7342.68, + "probability": 0.9342 + }, + { + "start": 7343.68, + "end": 7349.18, + "probability": 0.782 + }, + { + "start": 7350.98, + "end": 7354.7, + "probability": 0.9965 + }, + { + "start": 7355.4, + "end": 7357.22, + "probability": 0.9239 + }, + { + "start": 7358.38, + "end": 7359.02, + "probability": 0.5764 + }, + { + "start": 7359.12, + "end": 7362.46, + "probability": 0.8571 + }, + { + "start": 7362.9, + "end": 7364.02, + "probability": 0.8923 + }, + { + "start": 7364.54, + "end": 7365.58, + "probability": 0.3296 + }, + { + "start": 7366.18, + "end": 7367.86, + "probability": 0.9897 + }, + { + "start": 7368.4, + "end": 7371.04, + "probability": 0.9867 + }, + { + "start": 7371.04, + "end": 7373.3, + "probability": 0.9598 + }, + { + "start": 7373.46, + "end": 7375.66, + "probability": 0.7134 + }, + { + "start": 7376.26, + "end": 7378.26, + "probability": 0.7385 + }, + { + "start": 7378.92, + "end": 7379.28, + "probability": 0.6842 + }, + { + "start": 7379.82, + "end": 7379.94, + "probability": 0.2965 + }, + { + "start": 7380.14, + "end": 7381.6, + "probability": 0.8171 + }, + { + "start": 7381.7, + "end": 7384.24, + "probability": 0.6537 + }, + { + "start": 7384.44, + "end": 7385.86, + "probability": 0.7858 + }, + { + "start": 7387.32, + "end": 7387.38, + "probability": 0.0704 + }, + { + "start": 7387.38, + "end": 7388.5, + "probability": 0.6248 + }, + { + "start": 7389.02, + "end": 7389.3, + "probability": 0.5329 + }, + { + "start": 7389.46, + "end": 7394.42, + "probability": 0.7305 + }, + { + "start": 7394.6, + "end": 7395.94, + "probability": 0.9417 + }, + { + "start": 7400.98, + "end": 7402.14, + "probability": 0.6505 + }, + { + "start": 7404.34, + "end": 7407.82, + "probability": 0.975 + }, + { + "start": 7409.84, + "end": 7414.76, + "probability": 0.8538 + }, + { + "start": 7415.94, + "end": 7421.54, + "probability": 0.9734 + }, + { + "start": 7423.88, + "end": 7424.8, + "probability": 0.6158 + }, + { + "start": 7425.84, + "end": 7430.72, + "probability": 0.8342 + }, + { + "start": 7431.5, + "end": 7437.28, + "probability": 0.8733 + }, + { + "start": 7438.62, + "end": 7440.94, + "probability": 0.8262 + }, + { + "start": 7441.02, + "end": 7442.18, + "probability": 0.9651 + }, + { + "start": 7443.08, + "end": 7444.8, + "probability": 0.9721 + }, + { + "start": 7445.72, + "end": 7449.3, + "probability": 0.9714 + }, + { + "start": 7450.64, + "end": 7452.52, + "probability": 0.8497 + }, + { + "start": 7452.86, + "end": 7454.3, + "probability": 0.9224 + }, + { + "start": 7454.84, + "end": 7455.7, + "probability": 0.703 + }, + { + "start": 7457.62, + "end": 7462.82, + "probability": 0.9779 + }, + { + "start": 7462.82, + "end": 7465.64, + "probability": 0.4381 + }, + { + "start": 7466.56, + "end": 7466.56, + "probability": 0.474 + }, + { + "start": 7466.56, + "end": 7467.18, + "probability": 0.7206 + }, + { + "start": 7468.12, + "end": 7469.82, + "probability": 0.6247 + }, + { + "start": 7470.52, + "end": 7472.04, + "probability": 0.6578 + }, + { + "start": 7472.98, + "end": 7474.78, + "probability": 0.5416 + }, + { + "start": 7475.28, + "end": 7479.08, + "probability": 0.9119 + }, + { + "start": 7479.62, + "end": 7480.54, + "probability": 0.8336 + }, + { + "start": 7483.91, + "end": 7487.26, + "probability": 0.127 + }, + { + "start": 7514.34, + "end": 7517.06, + "probability": 0.804 + }, + { + "start": 7517.96, + "end": 7518.28, + "probability": 0.5829 + }, + { + "start": 7518.42, + "end": 7522.72, + "probability": 0.7514 + }, + { + "start": 7523.74, + "end": 7527.7, + "probability": 0.9725 + }, + { + "start": 7529.84, + "end": 7530.44, + "probability": 0.8162 + }, + { + "start": 7532.73, + "end": 7532.94, + "probability": 0.0218 + }, + { + "start": 7532.94, + "end": 7532.94, + "probability": 0.1018 + }, + { + "start": 7532.94, + "end": 7534.38, + "probability": 0.0642 + }, + { + "start": 7535.54, + "end": 7536.88, + "probability": 0.6647 + }, + { + "start": 7537.0, + "end": 7538.65, + "probability": 0.9915 + }, + { + "start": 7539.32, + "end": 7540.76, + "probability": 0.6137 + }, + { + "start": 7542.26, + "end": 7546.66, + "probability": 0.9421 + }, + { + "start": 7547.02, + "end": 7549.32, + "probability": 0.9387 + }, + { + "start": 7550.28, + "end": 7555.9, + "probability": 0.9932 + }, + { + "start": 7556.88, + "end": 7562.92, + "probability": 0.9134 + }, + { + "start": 7563.44, + "end": 7564.16, + "probability": 0.3393 + }, + { + "start": 7564.58, + "end": 7569.06, + "probability": 0.9723 + }, + { + "start": 7569.86, + "end": 7570.58, + "probability": 0.6805 + }, + { + "start": 7573.04, + "end": 7574.2, + "probability": 0.5151 + }, + { + "start": 7576.4, + "end": 7577.54, + "probability": 0.9274 + }, + { + "start": 7579.16, + "end": 7580.08, + "probability": 0.6702 + }, + { + "start": 7584.94, + "end": 7586.38, + "probability": 0.8943 + }, + { + "start": 7587.92, + "end": 7590.52, + "probability": 0.8296 + }, + { + "start": 7595.9, + "end": 7599.04, + "probability": 0.7206 + }, + { + "start": 7600.16, + "end": 7600.34, + "probability": 0.248 + }, + { + "start": 7601.94, + "end": 7602.48, + "probability": 0.6205 + }, + { + "start": 7607.78, + "end": 7610.78, + "probability": 0.9701 + }, + { + "start": 7611.66, + "end": 7614.2, + "probability": 0.9767 + }, + { + "start": 7616.32, + "end": 7616.56, + "probability": 0.8167 + }, + { + "start": 7617.32, + "end": 7617.68, + "probability": 0.8809 + }, + { + "start": 7620.1, + "end": 7621.7, + "probability": 0.9775 + }, + { + "start": 7623.06, + "end": 7624.02, + "probability": 0.683 + }, + { + "start": 7626.78, + "end": 7628.74, + "probability": 0.8759 + }, + { + "start": 7632.06, + "end": 7633.02, + "probability": 0.9465 + }, + { + "start": 7634.52, + "end": 7636.28, + "probability": 0.6761 + }, + { + "start": 7639.96, + "end": 7641.1, + "probability": 0.7262 + }, + { + "start": 7641.98, + "end": 7643.34, + "probability": 0.9914 + }, + { + "start": 7644.08, + "end": 7645.68, + "probability": 0.9961 + }, + { + "start": 7646.8, + "end": 7651.38, + "probability": 0.9935 + }, + { + "start": 7652.42, + "end": 7655.22, + "probability": 0.9338 + }, + { + "start": 7655.35, + "end": 7657.97, + "probability": 0.9912 + }, + { + "start": 7658.2, + "end": 7662.14, + "probability": 0.9395 + }, + { + "start": 7663.9, + "end": 7665.54, + "probability": 0.57 + }, + { + "start": 7666.54, + "end": 7668.94, + "probability": 0.9973 + }, + { + "start": 7669.62, + "end": 7669.9, + "probability": 0.7708 + }, + { + "start": 7671.18, + "end": 7672.68, + "probability": 0.7732 + }, + { + "start": 7673.52, + "end": 7677.04, + "probability": 0.9528 + }, + { + "start": 7679.08, + "end": 7679.96, + "probability": 0.9948 + }, + { + "start": 7682.9, + "end": 7684.46, + "probability": 0.8449 + }, + { + "start": 7686.96, + "end": 7687.16, + "probability": 0.1866 + }, + { + "start": 7690.7, + "end": 7693.1, + "probability": 0.8964 + }, + { + "start": 7694.52, + "end": 7695.22, + "probability": 0.7153 + }, + { + "start": 7696.86, + "end": 7698.48, + "probability": 0.9545 + }, + { + "start": 7699.04, + "end": 7701.03, + "probability": 0.9865 + }, + { + "start": 7704.44, + "end": 7710.82, + "probability": 0.9457 + }, + { + "start": 7715.72, + "end": 7717.3, + "probability": 0.6453 + }, + { + "start": 7717.82, + "end": 7723.64, + "probability": 0.7191 + }, + { + "start": 7724.52, + "end": 7725.27, + "probability": 0.915 + }, + { + "start": 7726.52, + "end": 7730.68, + "probability": 0.96 + }, + { + "start": 7733.38, + "end": 7735.24, + "probability": 0.976 + }, + { + "start": 7735.66, + "end": 7738.96, + "probability": 0.9257 + }, + { + "start": 7738.96, + "end": 7741.76, + "probability": 0.7336 + }, + { + "start": 7742.6, + "end": 7744.32, + "probability": 0.9712 + }, + { + "start": 7746.2, + "end": 7748.5, + "probability": 0.7366 + }, + { + "start": 7749.46, + "end": 7750.86, + "probability": 0.979 + }, + { + "start": 7753.6, + "end": 7756.38, + "probability": 0.9807 + }, + { + "start": 7757.5, + "end": 7758.94, + "probability": 0.9697 + }, + { + "start": 7760.16, + "end": 7762.64, + "probability": 0.9062 + }, + { + "start": 7764.9, + "end": 7767.3, + "probability": 0.9574 + }, + { + "start": 7768.14, + "end": 7769.18, + "probability": 0.8205 + }, + { + "start": 7771.66, + "end": 7775.4, + "probability": 0.9972 + }, + { + "start": 7776.48, + "end": 7778.96, + "probability": 0.8324 + }, + { + "start": 7779.7, + "end": 7780.25, + "probability": 0.9229 + }, + { + "start": 7781.78, + "end": 7783.94, + "probability": 0.7419 + }, + { + "start": 7784.06, + "end": 7785.3, + "probability": 0.8548 + }, + { + "start": 7785.4, + "end": 7786.68, + "probability": 0.6743 + }, + { + "start": 7788.42, + "end": 7790.32, + "probability": 0.9556 + }, + { + "start": 7793.04, + "end": 7794.78, + "probability": 0.7101 + }, + { + "start": 7795.9, + "end": 7797.34, + "probability": 0.6387 + }, + { + "start": 7798.88, + "end": 7799.99, + "probability": 0.9316 + }, + { + "start": 7801.26, + "end": 7802.0, + "probability": 0.965 + }, + { + "start": 7803.06, + "end": 7805.64, + "probability": 0.6156 + }, + { + "start": 7807.56, + "end": 7810.98, + "probability": 0.9713 + }, + { + "start": 7811.64, + "end": 7812.5, + "probability": 0.8312 + }, + { + "start": 7813.5, + "end": 7818.52, + "probability": 0.9685 + }, + { + "start": 7818.72, + "end": 7821.26, + "probability": 0.9671 + }, + { + "start": 7822.78, + "end": 7823.74, + "probability": 0.7726 + }, + { + "start": 7824.42, + "end": 7826.16, + "probability": 0.9126 + }, + { + "start": 7827.08, + "end": 7828.96, + "probability": 0.9669 + }, + { + "start": 7829.98, + "end": 7833.34, + "probability": 0.9775 + }, + { + "start": 7834.34, + "end": 7834.76, + "probability": 0.687 + }, + { + "start": 7835.02, + "end": 7835.5, + "probability": 0.8544 + }, + { + "start": 7837.12, + "end": 7839.1, + "probability": 0.9783 + }, + { + "start": 7839.88, + "end": 7840.3, + "probability": 0.4868 + }, + { + "start": 7840.52, + "end": 7841.92, + "probability": 0.7362 + }, + { + "start": 7843.86, + "end": 7847.33, + "probability": 0.7499 + }, + { + "start": 7848.96, + "end": 7850.3, + "probability": 0.699 + }, + { + "start": 7850.44, + "end": 7850.74, + "probability": 0.8686 + }, + { + "start": 7853.28, + "end": 7853.54, + "probability": 0.3947 + }, + { + "start": 7853.72, + "end": 7856.21, + "probability": 0.4201 + }, + { + "start": 7857.88, + "end": 7858.54, + "probability": 0.7996 + }, + { + "start": 7859.4, + "end": 7860.24, + "probability": 0.2313 + }, + { + "start": 7861.42, + "end": 7862.46, + "probability": 0.0854 + }, + { + "start": 7862.68, + "end": 7866.24, + "probability": 0.7704 + }, + { + "start": 7866.84, + "end": 7868.4, + "probability": 0.9512 + }, + { + "start": 7869.4, + "end": 7870.48, + "probability": 0.7515 + }, + { + "start": 7871.46, + "end": 7873.94, + "probability": 0.8617 + }, + { + "start": 7876.96, + "end": 7880.6, + "probability": 0.9599 + }, + { + "start": 7881.48, + "end": 7882.02, + "probability": 0.2386 + }, + { + "start": 7882.78, + "end": 7886.04, + "probability": 0.9712 + }, + { + "start": 7887.92, + "end": 7888.84, + "probability": 0.9172 + }, + { + "start": 7890.4, + "end": 7893.78, + "probability": 0.992 + }, + { + "start": 7896.48, + "end": 7898.16, + "probability": 0.8726 + }, + { + "start": 7898.3, + "end": 7902.2, + "probability": 0.9945 + }, + { + "start": 7902.44, + "end": 7909.7, + "probability": 0.9761 + }, + { + "start": 7910.94, + "end": 7914.12, + "probability": 0.9914 + }, + { + "start": 7914.23, + "end": 7919.18, + "probability": 0.99 + }, + { + "start": 7919.24, + "end": 7923.74, + "probability": 0.9706 + }, + { + "start": 7923.82, + "end": 7925.78, + "probability": 0.5365 + }, + { + "start": 7927.74, + "end": 7929.42, + "probability": 0.7503 + }, + { + "start": 7930.34, + "end": 7931.94, + "probability": 0.8846 + }, + { + "start": 7932.58, + "end": 7933.8, + "probability": 0.6475 + }, + { + "start": 7935.86, + "end": 7938.52, + "probability": 0.9801 + }, + { + "start": 7939.78, + "end": 7941.64, + "probability": 0.999 + }, + { + "start": 7943.54, + "end": 7945.29, + "probability": 0.8558 + }, + { + "start": 7946.96, + "end": 7947.28, + "probability": 0.7833 + }, + { + "start": 7947.92, + "end": 7948.2, + "probability": 0.5642 + }, + { + "start": 7948.84, + "end": 7948.96, + "probability": 0.7897 + }, + { + "start": 7949.5, + "end": 7949.52, + "probability": 0.4377 + }, + { + "start": 7949.52, + "end": 7950.34, + "probability": 0.5604 + }, + { + "start": 7950.9, + "end": 7954.12, + "probability": 0.9861 + }, + { + "start": 7955.3, + "end": 7955.96, + "probability": 0.9687 + }, + { + "start": 7957.0, + "end": 7959.68, + "probability": 0.9772 + }, + { + "start": 7959.84, + "end": 7962.6, + "probability": 0.3909 + }, + { + "start": 7962.6, + "end": 7965.32, + "probability": 0.9983 + }, + { + "start": 7965.44, + "end": 7967.64, + "probability": 0.6516 + }, + { + "start": 7968.2, + "end": 7972.82, + "probability": 0.9983 + }, + { + "start": 7973.66, + "end": 7974.8, + "probability": 0.9106 + }, + { + "start": 7974.98, + "end": 7975.44, + "probability": 0.3069 + }, + { + "start": 7976.45, + "end": 7977.86, + "probability": 0.9956 + }, + { + "start": 7979.06, + "end": 7980.24, + "probability": 0.7537 + }, + { + "start": 7981.85, + "end": 7984.48, + "probability": 0.9258 + }, + { + "start": 7985.24, + "end": 7986.25, + "probability": 0.9906 + }, + { + "start": 7990.08, + "end": 7990.78, + "probability": 0.8266 + }, + { + "start": 7991.42, + "end": 7994.4, + "probability": 0.9995 + }, + { + "start": 7995.5, + "end": 7997.8, + "probability": 0.9973 + }, + { + "start": 7998.32, + "end": 8001.4, + "probability": 0.8264 + }, + { + "start": 8002.68, + "end": 8004.06, + "probability": 0.8793 + }, + { + "start": 8004.26, + "end": 8006.45, + "probability": 0.8315 + }, + { + "start": 8008.12, + "end": 8010.94, + "probability": 0.8367 + }, + { + "start": 8011.14, + "end": 8012.53, + "probability": 0.9946 + }, + { + "start": 8013.66, + "end": 8015.41, + "probability": 0.9639 + }, + { + "start": 8016.26, + "end": 8017.64, + "probability": 0.8605 + }, + { + "start": 8018.46, + "end": 8021.12, + "probability": 0.9478 + }, + { + "start": 8021.74, + "end": 8023.58, + "probability": 0.9951 + }, + { + "start": 8024.26, + "end": 8030.06, + "probability": 0.9329 + }, + { + "start": 8031.16, + "end": 8035.56, + "probability": 0.7658 + }, + { + "start": 8035.68, + "end": 8038.2, + "probability": 0.9272 + }, + { + "start": 8039.42, + "end": 8044.34, + "probability": 0.9945 + }, + { + "start": 8044.38, + "end": 8047.56, + "probability": 0.6894 + }, + { + "start": 8047.94, + "end": 8048.98, + "probability": 0.8834 + }, + { + "start": 8049.72, + "end": 8052.02, + "probability": 0.9407 + }, + { + "start": 8052.12, + "end": 8054.36, + "probability": 0.7951 + }, + { + "start": 8054.96, + "end": 8055.86, + "probability": 0.7497 + }, + { + "start": 8056.46, + "end": 8058.88, + "probability": 0.9451 + }, + { + "start": 8058.96, + "end": 8059.82, + "probability": 0.9153 + }, + { + "start": 8060.3, + "end": 8063.9, + "probability": 0.9872 + }, + { + "start": 8064.42, + "end": 8065.64, + "probability": 0.8654 + }, + { + "start": 8066.46, + "end": 8071.28, + "probability": 0.9658 + }, + { + "start": 8071.74, + "end": 8074.3, + "probability": 0.9712 + }, + { + "start": 8075.94, + "end": 8079.68, + "probability": 0.7197 + }, + { + "start": 8080.22, + "end": 8082.73, + "probability": 0.9727 + }, + { + "start": 8083.88, + "end": 8085.04, + "probability": 0.8462 + }, + { + "start": 8085.8, + "end": 8088.14, + "probability": 0.9447 + }, + { + "start": 8088.78, + "end": 8090.54, + "probability": 0.9227 + }, + { + "start": 8092.52, + "end": 8096.68, + "probability": 0.891 + }, + { + "start": 8097.24, + "end": 8099.2, + "probability": 0.0639 + }, + { + "start": 8099.6, + "end": 8103.52, + "probability": 0.869 + }, + { + "start": 8104.52, + "end": 8106.9, + "probability": 0.7592 + }, + { + "start": 8107.38, + "end": 8109.54, + "probability": 0.2231 + }, + { + "start": 8109.88, + "end": 8110.85, + "probability": 0.1677 + }, + { + "start": 8111.22, + "end": 8112.46, + "probability": 0.4282 + }, + { + "start": 8112.56, + "end": 8114.32, + "probability": 0.8088 + }, + { + "start": 8115.86, + "end": 8117.12, + "probability": 0.9932 + }, + { + "start": 8117.98, + "end": 8118.78, + "probability": 0.8303 + }, + { + "start": 8120.04, + "end": 8120.1, + "probability": 0.5709 + }, + { + "start": 8120.18, + "end": 8120.76, + "probability": 0.7407 + }, + { + "start": 8120.86, + "end": 8123.72, + "probability": 0.9575 + }, + { + "start": 8124.46, + "end": 8125.02, + "probability": 0.5988 + }, + { + "start": 8125.66, + "end": 8128.94, + "probability": 0.9399 + }, + { + "start": 8129.34, + "end": 8129.91, + "probability": 0.7426 + }, + { + "start": 8130.54, + "end": 8130.75, + "probability": 0.1134 + }, + { + "start": 8131.2, + "end": 8134.28, + "probability": 0.9784 + }, + { + "start": 8134.4, + "end": 8136.27, + "probability": 0.949 + }, + { + "start": 8136.5, + "end": 8137.62, + "probability": 0.6585 + }, + { + "start": 8137.7, + "end": 8138.06, + "probability": 0.9791 + }, + { + "start": 8138.54, + "end": 8139.06, + "probability": 0.8824 + }, + { + "start": 8139.87, + "end": 8142.52, + "probability": 0.9769 + }, + { + "start": 8143.32, + "end": 8146.72, + "probability": 0.8171 + }, + { + "start": 8147.28, + "end": 8152.36, + "probability": 0.9744 + }, + { + "start": 8153.36, + "end": 8153.46, + "probability": 0.6249 + }, + { + "start": 8153.46, + "end": 8154.22, + "probability": 0.5893 + }, + { + "start": 8154.6, + "end": 8156.76, + "probability": 0.9135 + }, + { + "start": 8156.9, + "end": 8158.24, + "probability": 0.9324 + }, + { + "start": 8159.16, + "end": 8162.34, + "probability": 0.8665 + }, + { + "start": 8162.44, + "end": 8169.59, + "probability": 0.9919 + }, + { + "start": 8171.12, + "end": 8172.92, + "probability": 0.9736 + }, + { + "start": 8173.56, + "end": 8174.46, + "probability": 0.576 + }, + { + "start": 8174.9, + "end": 8179.3, + "probability": 0.9878 + }, + { + "start": 8179.38, + "end": 8180.26, + "probability": 0.9779 + }, + { + "start": 8180.36, + "end": 8181.42, + "probability": 0.8273 + }, + { + "start": 8181.84, + "end": 8185.36, + "probability": 0.9707 + }, + { + "start": 8186.1, + "end": 8188.15, + "probability": 0.9884 + }, + { + "start": 8189.22, + "end": 8194.84, + "probability": 0.992 + }, + { + "start": 8196.04, + "end": 8199.86, + "probability": 0.8131 + }, + { + "start": 8200.76, + "end": 8205.8, + "probability": 0.9727 + }, + { + "start": 8205.86, + "end": 8210.62, + "probability": 0.9771 + }, + { + "start": 8211.42, + "end": 8214.34, + "probability": 0.9711 + }, + { + "start": 8214.58, + "end": 8214.88, + "probability": 0.4653 + }, + { + "start": 8214.96, + "end": 8217.18, + "probability": 0.9938 + }, + { + "start": 8217.28, + "end": 8219.34, + "probability": 0.7736 + }, + { + "start": 8220.3, + "end": 8223.72, + "probability": 0.9876 + }, + { + "start": 8224.28, + "end": 8225.76, + "probability": 0.9564 + }, + { + "start": 8225.82, + "end": 8228.22, + "probability": 0.6092 + }, + { + "start": 8228.8, + "end": 8231.84, + "probability": 0.9407 + }, + { + "start": 8232.02, + "end": 8234.62, + "probability": 0.9079 + }, + { + "start": 8235.22, + "end": 8236.38, + "probability": 0.7583 + }, + { + "start": 8237.02, + "end": 8240.76, + "probability": 0.8314 + }, + { + "start": 8241.22, + "end": 8243.54, + "probability": 0.9946 + }, + { + "start": 8244.42, + "end": 8245.84, + "probability": 0.9215 + }, + { + "start": 8245.86, + "end": 8246.3, + "probability": 0.6603 + }, + { + "start": 8246.32, + "end": 8247.68, + "probability": 0.9594 + }, + { + "start": 8247.76, + "end": 8248.35, + "probability": 0.8878 + }, + { + "start": 8248.92, + "end": 8252.42, + "probability": 0.8624 + }, + { + "start": 8252.48, + "end": 8256.22, + "probability": 0.981 + }, + { + "start": 8256.38, + "end": 8256.72, + "probability": 0.8595 + }, + { + "start": 8256.8, + "end": 8257.91, + "probability": 0.9565 + }, + { + "start": 8258.46, + "end": 8261.08, + "probability": 0.9448 + }, + { + "start": 8261.66, + "end": 8262.59, + "probability": 0.7488 + }, + { + "start": 8262.88, + "end": 8267.82, + "probability": 0.8936 + }, + { + "start": 8268.2, + "end": 8270.18, + "probability": 0.9531 + }, + { + "start": 8270.34, + "end": 8271.46, + "probability": 0.8722 + }, + { + "start": 8271.6, + "end": 8272.32, + "probability": 0.5355 + }, + { + "start": 8272.78, + "end": 8273.86, + "probability": 0.8921 + }, + { + "start": 8274.28, + "end": 8276.44, + "probability": 0.9959 + }, + { + "start": 8276.94, + "end": 8278.92, + "probability": 0.9798 + }, + { + "start": 8279.44, + "end": 8283.8, + "probability": 0.9966 + }, + { + "start": 8284.3, + "end": 8285.34, + "probability": 0.8863 + }, + { + "start": 8285.92, + "end": 8288.82, + "probability": 0.9758 + }, + { + "start": 8289.26, + "end": 8291.56, + "probability": 0.9994 + }, + { + "start": 8291.98, + "end": 8292.86, + "probability": 0.896 + }, + { + "start": 8293.0, + "end": 8294.06, + "probability": 0.9735 + }, + { + "start": 8294.76, + "end": 8298.98, + "probability": 0.7044 + }, + { + "start": 8299.3, + "end": 8303.4, + "probability": 0.9708 + }, + { + "start": 8303.58, + "end": 8306.64, + "probability": 0.9779 + }, + { + "start": 8306.82, + "end": 8307.55, + "probability": 0.7647 + }, + { + "start": 8307.76, + "end": 8308.43, + "probability": 0.9937 + }, + { + "start": 8309.2, + "end": 8310.39, + "probability": 0.9739 + }, + { + "start": 8310.82, + "end": 8313.74, + "probability": 0.9912 + }, + { + "start": 8313.74, + "end": 8317.82, + "probability": 0.9283 + }, + { + "start": 8317.92, + "end": 8318.69, + "probability": 0.7616 + }, + { + "start": 8319.18, + "end": 8321.94, + "probability": 0.9961 + }, + { + "start": 8322.64, + "end": 8324.06, + "probability": 0.986 + }, + { + "start": 8324.36, + "end": 8328.72, + "probability": 0.9755 + }, + { + "start": 8329.14, + "end": 8331.28, + "probability": 0.9527 + }, + { + "start": 8331.88, + "end": 8333.02, + "probability": 0.8184 + }, + { + "start": 8333.18, + "end": 8335.36, + "probability": 0.9939 + }, + { + "start": 8335.72, + "end": 8336.64, + "probability": 0.9095 + }, + { + "start": 8336.96, + "end": 8338.2, + "probability": 0.8113 + }, + { + "start": 8338.5, + "end": 8340.02, + "probability": 0.9445 + }, + { + "start": 8340.46, + "end": 8342.08, + "probability": 0.9956 + }, + { + "start": 8342.9, + "end": 8348.57, + "probability": 0.9354 + }, + { + "start": 8349.98, + "end": 8355.1, + "probability": 0.9784 + }, + { + "start": 8355.6, + "end": 8357.06, + "probability": 0.7252 + }, + { + "start": 8357.64, + "end": 8362.28, + "probability": 0.8982 + }, + { + "start": 8362.98, + "end": 8364.28, + "probability": 0.5174 + }, + { + "start": 8364.8, + "end": 8366.42, + "probability": 0.8625 + }, + { + "start": 8366.98, + "end": 8368.52, + "probability": 0.9909 + }, + { + "start": 8369.26, + "end": 8372.06, + "probability": 0.9884 + }, + { + "start": 8372.4, + "end": 8372.82, + "probability": 0.7666 + }, + { + "start": 8373.56, + "end": 8375.59, + "probability": 0.9891 + }, + { + "start": 8376.46, + "end": 8378.3, + "probability": 0.9973 + }, + { + "start": 8378.34, + "end": 8382.92, + "probability": 0.9367 + }, + { + "start": 8383.28, + "end": 8388.82, + "probability": 0.9884 + }, + { + "start": 8388.86, + "end": 8390.72, + "probability": 0.8793 + }, + { + "start": 8391.16, + "end": 8392.5, + "probability": 0.657 + }, + { + "start": 8393.0, + "end": 8394.76, + "probability": 0.7742 + }, + { + "start": 8394.82, + "end": 8396.06, + "probability": 0.8794 + }, + { + "start": 8396.48, + "end": 8398.5, + "probability": 0.9675 + }, + { + "start": 8398.96, + "end": 8399.52, + "probability": 0.8283 + }, + { + "start": 8400.36, + "end": 8402.46, + "probability": 0.9974 + }, + { + "start": 8402.8, + "end": 8403.94, + "probability": 0.6658 + }, + { + "start": 8404.0, + "end": 8406.74, + "probability": 0.79 + }, + { + "start": 8407.06, + "end": 8408.48, + "probability": 0.9917 + }, + { + "start": 8409.02, + "end": 8409.7, + "probability": 0.9937 + }, + { + "start": 8414.56, + "end": 8417.14, + "probability": 0.9843 + }, + { + "start": 8418.0, + "end": 8419.52, + "probability": 0.8571 + }, + { + "start": 8419.6, + "end": 8420.74, + "probability": 0.8362 + }, + { + "start": 8421.16, + "end": 8423.76, + "probability": 0.982 + }, + { + "start": 8424.14, + "end": 8427.76, + "probability": 0.9933 + }, + { + "start": 8428.7, + "end": 8431.82, + "probability": 0.9612 + }, + { + "start": 8431.92, + "end": 8434.5, + "probability": 0.7758 + }, + { + "start": 8434.82, + "end": 8435.58, + "probability": 0.8994 + }, + { + "start": 8435.7, + "end": 8436.3, + "probability": 0.8942 + }, + { + "start": 8436.62, + "end": 8440.14, + "probability": 0.9709 + }, + { + "start": 8440.48, + "end": 8440.98, + "probability": 0.918 + }, + { + "start": 8441.06, + "end": 8441.6, + "probability": 0.5872 + }, + { + "start": 8441.66, + "end": 8442.76, + "probability": 0.8663 + }, + { + "start": 8443.14, + "end": 8444.42, + "probability": 0.8394 + }, + { + "start": 8444.94, + "end": 8445.58, + "probability": 0.6647 + }, + { + "start": 8445.62, + "end": 8448.66, + "probability": 0.8527 + }, + { + "start": 8448.96, + "end": 8450.6, + "probability": 0.9968 + }, + { + "start": 8451.0, + "end": 8453.64, + "probability": 0.9895 + }, + { + "start": 8453.78, + "end": 8455.94, + "probability": 0.9988 + }, + { + "start": 8456.4, + "end": 8456.68, + "probability": 0.7251 + }, + { + "start": 8457.1, + "end": 8458.76, + "probability": 0.7393 + }, + { + "start": 8459.0, + "end": 8461.02, + "probability": 0.8184 + }, + { + "start": 8461.56, + "end": 8464.06, + "probability": 0.7438 + }, + { + "start": 8466.26, + "end": 8468.64, + "probability": 0.9773 + }, + { + "start": 8470.32, + "end": 8471.3, + "probability": 0.3571 + }, + { + "start": 8472.88, + "end": 8474.66, + "probability": 0.154 + }, + { + "start": 8474.96, + "end": 8475.3, + "probability": 0.6743 + }, + { + "start": 8484.9, + "end": 8485.12, + "probability": 0.452 + }, + { + "start": 8488.46, + "end": 8489.14, + "probability": 0.5274 + }, + { + "start": 8489.26, + "end": 8490.3, + "probability": 0.5901 + }, + { + "start": 8490.6, + "end": 8492.84, + "probability": 0.8868 + }, + { + "start": 8494.5, + "end": 8501.8, + "probability": 0.9903 + }, + { + "start": 8502.44, + "end": 8504.06, + "probability": 0.9718 + }, + { + "start": 8504.88, + "end": 8506.96, + "probability": 0.9728 + }, + { + "start": 8508.4, + "end": 8511.78, + "probability": 0.8467 + }, + { + "start": 8512.44, + "end": 8513.8, + "probability": 0.9596 + }, + { + "start": 8513.9, + "end": 8516.58, + "probability": 0.9398 + }, + { + "start": 8516.66, + "end": 8518.3, + "probability": 0.9868 + }, + { + "start": 8519.48, + "end": 8522.37, + "probability": 0.9962 + }, + { + "start": 8523.2, + "end": 8524.82, + "probability": 0.9665 + }, + { + "start": 8526.42, + "end": 8528.34, + "probability": 0.9735 + }, + { + "start": 8529.1, + "end": 8530.76, + "probability": 0.998 + }, + { + "start": 8531.52, + "end": 8536.1, + "probability": 0.9861 + }, + { + "start": 8537.34, + "end": 8540.56, + "probability": 0.9738 + }, + { + "start": 8542.22, + "end": 8543.48, + "probability": 0.9829 + }, + { + "start": 8544.28, + "end": 8545.38, + "probability": 0.9653 + }, + { + "start": 8545.96, + "end": 8546.6, + "probability": 0.778 + }, + { + "start": 8547.44, + "end": 8547.9, + "probability": 0.3915 + }, + { + "start": 8548.04, + "end": 8551.16, + "probability": 0.9562 + }, + { + "start": 8552.4, + "end": 8556.5, + "probability": 0.9922 + }, + { + "start": 8559.12, + "end": 8561.04, + "probability": 0.1583 + }, + { + "start": 8561.6, + "end": 8561.9, + "probability": 0.5276 + }, + { + "start": 8562.76, + "end": 8565.68, + "probability": 0.773 + }, + { + "start": 8566.78, + "end": 8570.1, + "probability": 0.8552 + }, + { + "start": 8571.38, + "end": 8571.82, + "probability": 0.6705 + }, + { + "start": 8572.66, + "end": 8573.34, + "probability": 0.8507 + }, + { + "start": 8574.34, + "end": 8579.52, + "probability": 0.952 + }, + { + "start": 8580.64, + "end": 8584.78, + "probability": 0.994 + }, + { + "start": 8585.33, + "end": 8586.34, + "probability": 0.6991 + }, + { + "start": 8588.18, + "end": 8588.98, + "probability": 0.8944 + }, + { + "start": 8589.7, + "end": 8589.97, + "probability": 0.9569 + }, + { + "start": 8591.42, + "end": 8592.92, + "probability": 0.9932 + }, + { + "start": 8593.64, + "end": 8594.1, + "probability": 0.7153 + }, + { + "start": 8595.54, + "end": 8598.56, + "probability": 0.9976 + }, + { + "start": 8599.04, + "end": 8599.86, + "probability": 0.9772 + }, + { + "start": 8600.4, + "end": 8601.32, + "probability": 0.8448 + }, + { + "start": 8601.88, + "end": 8603.66, + "probability": 0.9198 + }, + { + "start": 8604.12, + "end": 8605.22, + "probability": 0.9935 + }, + { + "start": 8606.28, + "end": 8607.48, + "probability": 0.6337 + }, + { + "start": 8608.43, + "end": 8610.58, + "probability": 0.9031 + }, + { + "start": 8610.8, + "end": 8611.84, + "probability": 0.7806 + }, + { + "start": 8613.16, + "end": 8615.58, + "probability": 0.6662 + }, + { + "start": 8616.1, + "end": 8618.34, + "probability": 0.8522 + }, + { + "start": 8618.54, + "end": 8618.86, + "probability": 0.6759 + }, + { + "start": 8620.16, + "end": 8621.61, + "probability": 0.8281 + }, + { + "start": 8623.16, + "end": 8625.08, + "probability": 0.7926 + }, + { + "start": 8626.26, + "end": 8627.02, + "probability": 0.6611 + }, + { + "start": 8628.72, + "end": 8629.54, + "probability": 0.6687 + }, + { + "start": 8631.8, + "end": 8633.54, + "probability": 0.9769 + }, + { + "start": 8634.08, + "end": 8635.96, + "probability": 0.9805 + }, + { + "start": 8636.44, + "end": 8638.14, + "probability": 0.9988 + }, + { + "start": 8638.84, + "end": 8640.36, + "probability": 0.822 + }, + { + "start": 8641.22, + "end": 8644.08, + "probability": 0.9843 + }, + { + "start": 8644.34, + "end": 8645.98, + "probability": 0.9249 + }, + { + "start": 8646.06, + "end": 8647.32, + "probability": 0.6953 + }, + { + "start": 8647.76, + "end": 8650.22, + "probability": 0.8943 + }, + { + "start": 8651.26, + "end": 8653.28, + "probability": 0.6588 + }, + { + "start": 8653.84, + "end": 8654.62, + "probability": 0.9673 + }, + { + "start": 8655.18, + "end": 8656.15, + "probability": 0.8611 + }, + { + "start": 8657.84, + "end": 8659.92, + "probability": 0.9009 + }, + { + "start": 8660.2, + "end": 8661.76, + "probability": 0.9974 + }, + { + "start": 8662.16, + "end": 8663.64, + "probability": 0.8745 + }, + { + "start": 8664.52, + "end": 8665.26, + "probability": 0.7512 + }, + { + "start": 8665.38, + "end": 8668.18, + "probability": 0.8749 + }, + { + "start": 8668.84, + "end": 8670.82, + "probability": 0.908 + }, + { + "start": 8671.18, + "end": 8672.32, + "probability": 0.5411 + }, + { + "start": 8672.76, + "end": 8674.4, + "probability": 0.8867 + }, + { + "start": 8674.92, + "end": 8675.42, + "probability": 0.6434 + }, + { + "start": 8676.02, + "end": 8678.24, + "probability": 0.9083 + }, + { + "start": 8679.08, + "end": 8681.48, + "probability": 0.9863 + }, + { + "start": 8681.74, + "end": 8681.98, + "probability": 0.8616 + }, + { + "start": 8682.1, + "end": 8683.44, + "probability": 0.6649 + }, + { + "start": 8683.6, + "end": 8689.24, + "probability": 0.8807 + }, + { + "start": 8689.24, + "end": 8689.48, + "probability": 0.4286 + }, + { + "start": 8690.18, + "end": 8690.68, + "probability": 0.6202 + }, + { + "start": 8691.4, + "end": 8691.86, + "probability": 0.7839 + }, + { + "start": 8693.46, + "end": 8696.2, + "probability": 0.8928 + }, + { + "start": 8696.24, + "end": 8696.7, + "probability": 0.8181 + }, + { + "start": 8698.12, + "end": 8698.66, + "probability": 0.8163 + }, + { + "start": 8698.86, + "end": 8700.52, + "probability": 0.5549 + }, + { + "start": 8701.06, + "end": 8702.38, + "probability": 0.7851 + }, + { + "start": 8702.9, + "end": 8704.51, + "probability": 0.7232 + }, + { + "start": 8706.2, + "end": 8708.76, + "probability": 0.5483 + }, + { + "start": 8710.24, + "end": 8711.96, + "probability": 0.9827 + }, + { + "start": 8713.16, + "end": 8713.32, + "probability": 0.3063 + }, + { + "start": 8714.02, + "end": 8714.74, + "probability": 0.5165 + }, + { + "start": 8716.56, + "end": 8716.66, + "probability": 0.3965 + }, + { + "start": 8734.0, + "end": 8734.0, + "probability": 0.2973 + }, + { + "start": 8734.0, + "end": 8735.84, + "probability": 0.6708 + }, + { + "start": 8736.72, + "end": 8738.66, + "probability": 0.9811 + }, + { + "start": 8739.5, + "end": 8740.14, + "probability": 0.8433 + }, + { + "start": 8741.02, + "end": 8742.12, + "probability": 0.9193 + }, + { + "start": 8742.78, + "end": 8743.42, + "probability": 0.8628 + }, + { + "start": 8744.48, + "end": 8750.84, + "probability": 0.911 + }, + { + "start": 8751.72, + "end": 8753.04, + "probability": 0.9927 + }, + { + "start": 8754.18, + "end": 8756.44, + "probability": 0.9971 + }, + { + "start": 8756.7, + "end": 8758.26, + "probability": 0.7724 + }, + { + "start": 8759.3, + "end": 8760.94, + "probability": 0.9748 + }, + { + "start": 8762.22, + "end": 8762.86, + "probability": 0.9362 + }, + { + "start": 8763.98, + "end": 8767.12, + "probability": 0.8867 + }, + { + "start": 8767.36, + "end": 8771.3, + "probability": 0.6876 + }, + { + "start": 8771.4, + "end": 8773.98, + "probability": 0.9932 + }, + { + "start": 8774.54, + "end": 8775.42, + "probability": 0.7486 + }, + { + "start": 8775.76, + "end": 8777.46, + "probability": 0.9797 + }, + { + "start": 8778.18, + "end": 8782.36, + "probability": 0.988 + }, + { + "start": 8783.9, + "end": 8786.38, + "probability": 0.7589 + }, + { + "start": 8787.58, + "end": 8790.42, + "probability": 0.997 + }, + { + "start": 8790.6, + "end": 8791.5, + "probability": 0.9398 + }, + { + "start": 8791.6, + "end": 8792.6, + "probability": 0.8122 + }, + { + "start": 8792.72, + "end": 8794.42, + "probability": 0.9388 + }, + { + "start": 8797.8, + "end": 8802.74, + "probability": 0.9945 + }, + { + "start": 8803.02, + "end": 8803.18, + "probability": 0.5203 + }, + { + "start": 8803.18, + "end": 8806.66, + "probability": 0.9131 + }, + { + "start": 8807.6, + "end": 8809.36, + "probability": 0.1753 + }, + { + "start": 8811.76, + "end": 8811.78, + "probability": 0.2596 + }, + { + "start": 8811.78, + "end": 8812.0, + "probability": 0.1089 + }, + { + "start": 8812.0, + "end": 8812.1, + "probability": 0.3137 + }, + { + "start": 8812.2, + "end": 8820.94, + "probability": 0.8795 + }, + { + "start": 8821.54, + "end": 8823.14, + "probability": 0.8986 + }, + { + "start": 8823.68, + "end": 8826.98, + "probability": 0.9813 + }, + { + "start": 8826.98, + "end": 8827.54, + "probability": 0.8728 + }, + { + "start": 8828.28, + "end": 8834.44, + "probability": 0.9947 + }, + { + "start": 8835.1, + "end": 8843.3, + "probability": 0.9756 + }, + { + "start": 8843.52, + "end": 8846.5, + "probability": 0.921 + }, + { + "start": 8847.22, + "end": 8849.9, + "probability": 0.9992 + }, + { + "start": 8850.32, + "end": 8850.8, + "probability": 0.8384 + }, + { + "start": 8851.12, + "end": 8852.08, + "probability": 0.887 + }, + { + "start": 8852.12, + "end": 8854.26, + "probability": 0.4922 + }, + { + "start": 8854.8, + "end": 8858.88, + "probability": 0.7884 + }, + { + "start": 8859.06, + "end": 8859.64, + "probability": 0.7327 + }, + { + "start": 8859.72, + "end": 8865.3, + "probability": 0.7205 + }, + { + "start": 8865.44, + "end": 8866.91, + "probability": 0.8125 + }, + { + "start": 8867.44, + "end": 8867.82, + "probability": 0.2541 + }, + { + "start": 8868.26, + "end": 8868.96, + "probability": 0.6306 + }, + { + "start": 8869.26, + "end": 8871.42, + "probability": 0.9709 + }, + { + "start": 8872.14, + "end": 8874.08, + "probability": 0.8922 + }, + { + "start": 8874.34, + "end": 8875.4, + "probability": 0.985 + }, + { + "start": 8875.46, + "end": 8876.16, + "probability": 0.5911 + }, + { + "start": 8876.58, + "end": 8880.6, + "probability": 0.7259 + }, + { + "start": 8881.66, + "end": 8884.64, + "probability": 0.6604 + }, + { + "start": 8885.36, + "end": 8887.9, + "probability": 0.9971 + }, + { + "start": 8888.12, + "end": 8892.38, + "probability": 0.9992 + }, + { + "start": 8892.6, + "end": 8893.04, + "probability": 0.7521 + }, + { + "start": 8893.78, + "end": 8893.96, + "probability": 0.4056 + }, + { + "start": 8894.06, + "end": 8895.5, + "probability": 0.9951 + }, + { + "start": 8895.68, + "end": 8899.32, + "probability": 0.8526 + }, + { + "start": 8899.54, + "end": 8901.48, + "probability": 0.3741 + }, + { + "start": 8901.78, + "end": 8907.68, + "probability": 0.9876 + }, + { + "start": 8907.9, + "end": 8910.22, + "probability": 0.831 + }, + { + "start": 8910.72, + "end": 8917.1, + "probability": 0.9925 + }, + { + "start": 8917.62, + "end": 8920.14, + "probability": 0.8983 + }, + { + "start": 8920.92, + "end": 8927.0, + "probability": 0.8014 + }, + { + "start": 8927.66, + "end": 8930.22, + "probability": 0.1384 + }, + { + "start": 8930.4, + "end": 8933.8, + "probability": 0.7408 + }, + { + "start": 8934.48, + "end": 8936.28, + "probability": 0.4124 + }, + { + "start": 8937.48, + "end": 8938.08, + "probability": 0.428 + }, + { + "start": 8938.22, + "end": 8939.12, + "probability": 0.8674 + }, + { + "start": 8939.74, + "end": 8942.44, + "probability": 0.5955 + }, + { + "start": 8942.44, + "end": 8944.1, + "probability": 0.5646 + }, + { + "start": 8944.22, + "end": 8949.88, + "probability": 0.4565 + }, + { + "start": 8949.96, + "end": 8951.32, + "probability": 0.8335 + }, + { + "start": 8951.42, + "end": 8953.34, + "probability": 0.6781 + }, + { + "start": 8954.04, + "end": 8955.6, + "probability": 0.932 + }, + { + "start": 8956.22, + "end": 8958.92, + "probability": 0.9795 + }, + { + "start": 8959.06, + "end": 8959.9, + "probability": 0.7079 + }, + { + "start": 8960.4, + "end": 8962.3, + "probability": 0.3238 + }, + { + "start": 8962.3, + "end": 8963.18, + "probability": 0.7688 + }, + { + "start": 8963.26, + "end": 8968.63, + "probability": 0.9902 + }, + { + "start": 8970.68, + "end": 8972.1, + "probability": 0.9691 + }, + { + "start": 8972.18, + "end": 8975.02, + "probability": 0.5817 + }, + { + "start": 8975.12, + "end": 8976.0, + "probability": 0.9103 + }, + { + "start": 8976.36, + "end": 8978.16, + "probability": 0.8232 + }, + { + "start": 8978.78, + "end": 8981.84, + "probability": 0.9829 + }, + { + "start": 8982.38, + "end": 8983.26, + "probability": 0.9928 + }, + { + "start": 8983.88, + "end": 8984.94, + "probability": 0.6348 + }, + { + "start": 8985.02, + "end": 8989.02, + "probability": 0.9862 + }, + { + "start": 8989.5, + "end": 8990.42, + "probability": 0.7936 + }, + { + "start": 8990.98, + "end": 8994.84, + "probability": 0.7241 + }, + { + "start": 8995.46, + "end": 9000.38, + "probability": 0.9446 + }, + { + "start": 9000.98, + "end": 9002.56, + "probability": 0.9919 + }, + { + "start": 9003.1, + "end": 9004.74, + "probability": 0.951 + }, + { + "start": 9005.48, + "end": 9011.68, + "probability": 0.7952 + }, + { + "start": 9012.5, + "end": 9016.34, + "probability": 0.9792 + }, + { + "start": 9016.96, + "end": 9020.86, + "probability": 0.6698 + }, + { + "start": 9021.48, + "end": 9022.38, + "probability": 0.746 + }, + { + "start": 9022.6, + "end": 9024.41, + "probability": 0.9932 + }, + { + "start": 9024.84, + "end": 9031.34, + "probability": 0.8442 + }, + { + "start": 9031.5, + "end": 9032.5, + "probability": 0.5807 + }, + { + "start": 9033.1, + "end": 9033.66, + "probability": 0.0936 + }, + { + "start": 9034.04, + "end": 9036.76, + "probability": 0.3527 + }, + { + "start": 9038.16, + "end": 9039.08, + "probability": 0.8532 + }, + { + "start": 9039.28, + "end": 9040.52, + "probability": 0.965 + }, + { + "start": 9040.76, + "end": 9041.68, + "probability": 0.9578 + }, + { + "start": 9042.02, + "end": 9042.55, + "probability": 0.8139 + }, + { + "start": 9044.02, + "end": 9044.02, + "probability": 0.0254 + }, + { + "start": 9044.1, + "end": 9045.54, + "probability": 0.779 + }, + { + "start": 9045.7, + "end": 9048.98, + "probability": 0.6681 + }, + { + "start": 9049.2, + "end": 9052.62, + "probability": 0.8721 + }, + { + "start": 9053.16, + "end": 9053.76, + "probability": 0.9364 + }, + { + "start": 9054.84, + "end": 9055.84, + "probability": 0.9757 + }, + { + "start": 9056.44, + "end": 9058.06, + "probability": 0.9272 + }, + { + "start": 9058.66, + "end": 9059.14, + "probability": 0.8436 + }, + { + "start": 9061.37, + "end": 9064.36, + "probability": 0.6735 + }, + { + "start": 9065.0, + "end": 9067.0, + "probability": 0.8352 + }, + { + "start": 9067.72, + "end": 9071.34, + "probability": 0.9141 + }, + { + "start": 9071.34, + "end": 9074.64, + "probability": 0.9754 + }, + { + "start": 9075.54, + "end": 9076.17, + "probability": 0.9444 + }, + { + "start": 9076.48, + "end": 9076.92, + "probability": 0.966 + }, + { + "start": 9077.46, + "end": 9077.95, + "probability": 0.7272 + }, + { + "start": 9078.44, + "end": 9079.96, + "probability": 0.6573 + }, + { + "start": 9081.24, + "end": 9082.38, + "probability": 0.8699 + }, + { + "start": 9083.3, + "end": 9083.86, + "probability": 0.9146 + }, + { + "start": 9083.92, + "end": 9084.9, + "probability": 0.8528 + }, + { + "start": 9085.12, + "end": 9087.0, + "probability": 0.9348 + }, + { + "start": 9087.44, + "end": 9092.12, + "probability": 0.9961 + }, + { + "start": 9092.2, + "end": 9093.54, + "probability": 0.74 + }, + { + "start": 9094.24, + "end": 9095.88, + "probability": 0.7409 + }, + { + "start": 9096.22, + "end": 9097.98, + "probability": 0.7423 + }, + { + "start": 9098.46, + "end": 9099.92, + "probability": 0.8715 + }, + { + "start": 9101.1, + "end": 9103.02, + "probability": 0.8247 + }, + { + "start": 9103.64, + "end": 9104.38, + "probability": 0.522 + }, + { + "start": 9104.5, + "end": 9104.88, + "probability": 0.8641 + }, + { + "start": 9105.02, + "end": 9105.78, + "probability": 0.7422 + }, + { + "start": 9105.88, + "end": 9106.24, + "probability": 0.3759 + }, + { + "start": 9106.88, + "end": 9110.6, + "probability": 0.9435 + }, + { + "start": 9110.88, + "end": 9111.54, + "probability": 0.9968 + }, + { + "start": 9112.42, + "end": 9115.34, + "probability": 0.9221 + }, + { + "start": 9116.86, + "end": 9118.08, + "probability": 0.7037 + }, + { + "start": 9118.1, + "end": 9118.94, + "probability": 0.9683 + }, + { + "start": 9119.76, + "end": 9122.74, + "probability": 0.8104 + }, + { + "start": 9124.06, + "end": 9126.96, + "probability": 0.9941 + }, + { + "start": 9127.92, + "end": 9130.18, + "probability": 0.9771 + }, + { + "start": 9130.94, + "end": 9135.32, + "probability": 0.8525 + }, + { + "start": 9135.68, + "end": 9137.22, + "probability": 0.992 + }, + { + "start": 9137.41, + "end": 9139.07, + "probability": 0.7959 + }, + { + "start": 9140.12, + "end": 9141.14, + "probability": 0.6514 + }, + { + "start": 9141.56, + "end": 9142.56, + "probability": 0.9063 + }, + { + "start": 9142.86, + "end": 9143.44, + "probability": 0.895 + }, + { + "start": 9144.02, + "end": 9144.46, + "probability": 0.4943 + }, + { + "start": 9144.58, + "end": 9147.27, + "probability": 0.9897 + }, + { + "start": 9148.22, + "end": 9151.44, + "probability": 0.9823 + }, + { + "start": 9151.86, + "end": 9153.1, + "probability": 0.9624 + }, + { + "start": 9153.86, + "end": 9154.92, + "probability": 0.993 + }, + { + "start": 9155.78, + "end": 9156.4, + "probability": 0.9191 + }, + { + "start": 9156.9, + "end": 9159.9, + "probability": 0.9453 + }, + { + "start": 9160.4, + "end": 9161.84, + "probability": 0.4302 + }, + { + "start": 9162.33, + "end": 9163.96, + "probability": 0.9209 + }, + { + "start": 9164.14, + "end": 9164.46, + "probability": 0.5061 + }, + { + "start": 9164.58, + "end": 9164.86, + "probability": 0.6385 + }, + { + "start": 9164.9, + "end": 9165.36, + "probability": 0.9373 + }, + { + "start": 9165.6, + "end": 9168.86, + "probability": 0.9905 + }, + { + "start": 9168.88, + "end": 9172.16, + "probability": 0.969 + }, + { + "start": 9172.24, + "end": 9176.36, + "probability": 0.9737 + }, + { + "start": 9177.12, + "end": 9178.4, + "probability": 0.9693 + }, + { + "start": 9178.86, + "end": 9180.92, + "probability": 0.8855 + }, + { + "start": 9181.92, + "end": 9181.94, + "probability": 0.0481 + }, + { + "start": 9182.02, + "end": 9182.9, + "probability": 0.8593 + }, + { + "start": 9183.0, + "end": 9183.26, + "probability": 0.5814 + }, + { + "start": 9183.4, + "end": 9184.2, + "probability": 0.9376 + }, + { + "start": 9184.68, + "end": 9186.02, + "probability": 0.9963 + }, + { + "start": 9186.5, + "end": 9187.22, + "probability": 0.868 + }, + { + "start": 9187.3, + "end": 9193.8, + "probability": 0.9541 + }, + { + "start": 9194.5, + "end": 9195.88, + "probability": 0.7401 + }, + { + "start": 9197.46, + "end": 9198.86, + "probability": 0.2784 + }, + { + "start": 9198.98, + "end": 9200.14, + "probability": 0.951 + }, + { + "start": 9200.9, + "end": 9202.82, + "probability": 0.9758 + }, + { + "start": 9203.36, + "end": 9207.62, + "probability": 0.998 + }, + { + "start": 9207.86, + "end": 9210.62, + "probability": 0.7482 + }, + { + "start": 9211.08, + "end": 9212.38, + "probability": 0.7149 + }, + { + "start": 9212.5, + "end": 9213.44, + "probability": 0.9954 + }, + { + "start": 9214.08, + "end": 9216.1, + "probability": 0.9421 + }, + { + "start": 9216.7, + "end": 9219.36, + "probability": 0.9648 + }, + { + "start": 9220.14, + "end": 9220.9, + "probability": 0.9605 + }, + { + "start": 9221.88, + "end": 9223.2, + "probability": 0.4605 + }, + { + "start": 9223.3, + "end": 9224.54, + "probability": 0.8601 + }, + { + "start": 9224.98, + "end": 9226.16, + "probability": 0.6155 + }, + { + "start": 9226.24, + "end": 9226.88, + "probability": 0.8636 + }, + { + "start": 9227.14, + "end": 9227.26, + "probability": 0.7683 + }, + { + "start": 9228.14, + "end": 9228.98, + "probability": 0.9812 + }, + { + "start": 9229.04, + "end": 9235.28, + "probability": 0.9974 + }, + { + "start": 9235.86, + "end": 9238.06, + "probability": 0.7995 + }, + { + "start": 9238.76, + "end": 9239.82, + "probability": 0.5119 + }, + { + "start": 9241.0, + "end": 9245.32, + "probability": 0.9438 + }, + { + "start": 9246.14, + "end": 9246.48, + "probability": 0.834 + }, + { + "start": 9246.58, + "end": 9247.42, + "probability": 0.7136 + }, + { + "start": 9247.7, + "end": 9249.16, + "probability": 0.9963 + }, + { + "start": 9249.7, + "end": 9249.98, + "probability": 0.9486 + }, + { + "start": 9250.8, + "end": 9252.48, + "probability": 0.9976 + }, + { + "start": 9252.48, + "end": 9255.16, + "probability": 0.6519 + }, + { + "start": 9255.3, + "end": 9256.52, + "probability": 0.5647 + }, + { + "start": 9256.86, + "end": 9257.72, + "probability": 0.0417 + }, + { + "start": 9257.88, + "end": 9257.88, + "probability": 0.0577 + }, + { + "start": 9257.88, + "end": 9258.06, + "probability": 0.0655 + }, + { + "start": 9258.06, + "end": 9258.46, + "probability": 0.2147 + }, + { + "start": 9258.64, + "end": 9261.7, + "probability": 0.8629 + }, + { + "start": 9263.9, + "end": 9264.32, + "probability": 0.7208 + }, + { + "start": 9264.42, + "end": 9267.32, + "probability": 0.8376 + }, + { + "start": 9267.5, + "end": 9268.28, + "probability": 0.6829 + }, + { + "start": 9268.4, + "end": 9270.68, + "probability": 0.9927 + }, + { + "start": 9271.78, + "end": 9272.82, + "probability": 0.802 + }, + { + "start": 9273.5, + "end": 9274.48, + "probability": 0.6359 + }, + { + "start": 9274.6, + "end": 9275.36, + "probability": 0.9635 + }, + { + "start": 9275.66, + "end": 9276.66, + "probability": 0.9194 + }, + { + "start": 9277.0, + "end": 9279.28, + "probability": 0.9728 + }, + { + "start": 9279.4, + "end": 9279.94, + "probability": 0.8756 + }, + { + "start": 9280.0, + "end": 9282.3, + "probability": 0.8588 + }, + { + "start": 9282.94, + "end": 9285.96, + "probability": 0.9824 + }, + { + "start": 9286.38, + "end": 9286.64, + "probability": 0.418 + }, + { + "start": 9287.7, + "end": 9292.34, + "probability": 0.9424 + }, + { + "start": 9293.1, + "end": 9294.74, + "probability": 0.9985 + }, + { + "start": 9295.78, + "end": 9296.24, + "probability": 0.7041 + }, + { + "start": 9297.06, + "end": 9298.06, + "probability": 0.9495 + }, + { + "start": 9298.42, + "end": 9299.96, + "probability": 0.8062 + }, + { + "start": 9300.08, + "end": 9300.96, + "probability": 0.9865 + }, + { + "start": 9301.04, + "end": 9301.2, + "probability": 0.6924 + }, + { + "start": 9302.18, + "end": 9304.88, + "probability": 0.9753 + }, + { + "start": 9305.68, + "end": 9307.52, + "probability": 0.9949 + }, + { + "start": 9309.08, + "end": 9309.4, + "probability": 0.5154 + }, + { + "start": 9309.94, + "end": 9313.58, + "probability": 0.7344 + }, + { + "start": 9314.46, + "end": 9314.46, + "probability": 0.1243 + }, + { + "start": 9314.46, + "end": 9315.18, + "probability": 0.1218 + }, + { + "start": 9315.58, + "end": 9316.4, + "probability": 0.6918 + }, + { + "start": 9316.7, + "end": 9317.18, + "probability": 0.5699 + }, + { + "start": 9317.18, + "end": 9320.14, + "probability": 0.6469 + }, + { + "start": 9321.06, + "end": 9325.44, + "probability": 0.8638 + }, + { + "start": 9326.36, + "end": 9326.76, + "probability": 0.6115 + }, + { + "start": 9327.36, + "end": 9328.19, + "probability": 0.943 + }, + { + "start": 9329.12, + "end": 9330.8, + "probability": 0.9835 + }, + { + "start": 9331.32, + "end": 9337.14, + "probability": 0.8866 + }, + { + "start": 9337.82, + "end": 9340.24, + "probability": 0.9809 + }, + { + "start": 9340.34, + "end": 9341.16, + "probability": 0.604 + }, + { + "start": 9341.26, + "end": 9345.18, + "probability": 0.9078 + }, + { + "start": 9346.62, + "end": 9347.64, + "probability": 0.8243 + }, + { + "start": 9348.26, + "end": 9348.8, + "probability": 0.9963 + }, + { + "start": 9349.36, + "end": 9352.74, + "probability": 0.9528 + }, + { + "start": 9353.5, + "end": 9357.12, + "probability": 0.6908 + }, + { + "start": 9357.66, + "end": 9359.24, + "probability": 0.9885 + }, + { + "start": 9360.0, + "end": 9365.72, + "probability": 0.9895 + }, + { + "start": 9365.72, + "end": 9369.94, + "probability": 0.9972 + }, + { + "start": 9370.02, + "end": 9372.22, + "probability": 0.9657 + }, + { + "start": 9372.28, + "end": 9373.28, + "probability": 0.8986 + }, + { + "start": 9373.38, + "end": 9374.06, + "probability": 0.956 + }, + { + "start": 9374.54, + "end": 9376.86, + "probability": 0.9552 + }, + { + "start": 9377.46, + "end": 9380.84, + "probability": 0.9621 + }, + { + "start": 9381.6, + "end": 9383.36, + "probability": 0.8904 + }, + { + "start": 9383.9, + "end": 9387.0, + "probability": 0.9613 + }, + { + "start": 9387.56, + "end": 9389.9, + "probability": 0.9668 + }, + { + "start": 9390.58, + "end": 9391.28, + "probability": 0.8976 + }, + { + "start": 9392.18, + "end": 9393.68, + "probability": 0.9556 + }, + { + "start": 9394.52, + "end": 9395.6, + "probability": 0.9858 + }, + { + "start": 9396.48, + "end": 9396.7, + "probability": 0.9961 + }, + { + "start": 9397.26, + "end": 9399.98, + "probability": 0.9101 + }, + { + "start": 9400.4, + "end": 9404.5, + "probability": 0.9906 + }, + { + "start": 9405.28, + "end": 9408.26, + "probability": 0.9517 + }, + { + "start": 9409.1, + "end": 9411.12, + "probability": 0.9961 + }, + { + "start": 9411.7, + "end": 9415.63, + "probability": 0.8985 + }, + { + "start": 9416.58, + "end": 9419.78, + "probability": 0.9604 + }, + { + "start": 9420.26, + "end": 9421.44, + "probability": 0.5617 + }, + { + "start": 9422.04, + "end": 9423.45, + "probability": 0.5056 + }, + { + "start": 9424.54, + "end": 9426.04, + "probability": 0.6662 + }, + { + "start": 9426.04, + "end": 9426.42, + "probability": 0.5269 + }, + { + "start": 9426.9, + "end": 9428.3, + "probability": 0.9618 + }, + { + "start": 9429.02, + "end": 9431.7, + "probability": 0.9946 + }, + { + "start": 9432.08, + "end": 9434.2, + "probability": 0.9972 + }, + { + "start": 9434.36, + "end": 9434.9, + "probability": 0.4944 + }, + { + "start": 9434.96, + "end": 9440.98, + "probability": 0.978 + }, + { + "start": 9441.52, + "end": 9441.72, + "probability": 0.748 + }, + { + "start": 9441.96, + "end": 9444.84, + "probability": 0.7472 + }, + { + "start": 9445.36, + "end": 9450.1, + "probability": 0.7576 + }, + { + "start": 9450.96, + "end": 9452.78, + "probability": 0.8111 + }, + { + "start": 9453.28, + "end": 9453.66, + "probability": 0.4933 + }, + { + "start": 9453.82, + "end": 9455.78, + "probability": 0.8476 + }, + { + "start": 9458.1, + "end": 9458.86, + "probability": 0.8692 + }, + { + "start": 9460.52, + "end": 9463.98, + "probability": 0.7377 + }, + { + "start": 9464.72, + "end": 9465.48, + "probability": 0.7412 + }, + { + "start": 9465.62, + "end": 9469.46, + "probability": 0.9728 + }, + { + "start": 9469.46, + "end": 9470.27, + "probability": 0.904 + }, + { + "start": 9470.54, + "end": 9470.78, + "probability": 0.2432 + }, + { + "start": 9470.84, + "end": 9470.98, + "probability": 0.0368 + }, + { + "start": 9471.1, + "end": 9474.0, + "probability": 0.7341 + }, + { + "start": 9474.12, + "end": 9475.3, + "probability": 0.8994 + }, + { + "start": 9475.38, + "end": 9477.38, + "probability": 0.9805 + }, + { + "start": 9477.44, + "end": 9478.48, + "probability": 0.7231 + }, + { + "start": 9478.58, + "end": 9480.8, + "probability": 0.6798 + }, + { + "start": 9481.62, + "end": 9482.22, + "probability": 0.4917 + }, + { + "start": 9482.22, + "end": 9483.16, + "probability": 0.9014 + }, + { + "start": 9483.78, + "end": 9486.36, + "probability": 0.9758 + }, + { + "start": 9486.56, + "end": 9487.18, + "probability": 0.6257 + }, + { + "start": 9487.34, + "end": 9487.94, + "probability": 0.7692 + }, + { + "start": 9487.94, + "end": 9488.36, + "probability": 0.8462 + }, + { + "start": 9489.22, + "end": 9491.5, + "probability": 0.8055 + }, + { + "start": 9491.84, + "end": 9492.18, + "probability": 0.4082 + }, + { + "start": 9492.18, + "end": 9492.25, + "probability": 0.4111 + }, + { + "start": 9492.74, + "end": 9494.24, + "probability": 0.9322 + }, + { + "start": 9494.82, + "end": 9495.72, + "probability": 0.9622 + }, + { + "start": 9495.8, + "end": 9498.42, + "probability": 0.6516 + }, + { + "start": 9498.68, + "end": 9500.26, + "probability": 0.9977 + }, + { + "start": 9501.56, + "end": 9503.36, + "probability": 0.9312 + }, + { + "start": 9503.72, + "end": 9504.6, + "probability": 0.9124 + }, + { + "start": 9505.24, + "end": 9505.48, + "probability": 0.7722 + }, + { + "start": 9505.48, + "end": 9506.32, + "probability": 0.9648 + }, + { + "start": 9507.24, + "end": 9507.54, + "probability": 0.734 + }, + { + "start": 9507.64, + "end": 9509.38, + "probability": 0.9174 + }, + { + "start": 9509.44, + "end": 9512.24, + "probability": 0.9789 + }, + { + "start": 9512.36, + "end": 9513.58, + "probability": 0.9934 + }, + { + "start": 9513.7, + "end": 9517.32, + "probability": 0.8378 + }, + { + "start": 9518.26, + "end": 9519.84, + "probability": 0.4071 + }, + { + "start": 9519.94, + "end": 9520.96, + "probability": 0.6829 + }, + { + "start": 9521.1, + "end": 9521.62, + "probability": 0.7486 + }, + { + "start": 9521.72, + "end": 9522.98, + "probability": 0.8009 + }, + { + "start": 9523.06, + "end": 9527.98, + "probability": 0.6935 + }, + { + "start": 9527.98, + "end": 9531.2, + "probability": 0.9907 + }, + { + "start": 9531.38, + "end": 9531.92, + "probability": 0.5785 + }, + { + "start": 9532.96, + "end": 9533.84, + "probability": 0.6992 + }, + { + "start": 9534.04, + "end": 9534.48, + "probability": 0.9264 + }, + { + "start": 9534.58, + "end": 9535.56, + "probability": 0.8193 + }, + { + "start": 9535.66, + "end": 9538.54, + "probability": 0.9272 + }, + { + "start": 9538.96, + "end": 9542.16, + "probability": 0.9924 + }, + { + "start": 9542.72, + "end": 9547.76, + "probability": 0.993 + }, + { + "start": 9548.73, + "end": 9552.38, + "probability": 0.996 + }, + { + "start": 9552.44, + "end": 9555.06, + "probability": 0.9509 + }, + { + "start": 9555.48, + "end": 9555.74, + "probability": 0.7782 + }, + { + "start": 9556.72, + "end": 9557.26, + "probability": 0.5349 + }, + { + "start": 9558.4, + "end": 9559.78, + "probability": 0.9961 + }, + { + "start": 9560.04, + "end": 9561.12, + "probability": 0.9668 + }, + { + "start": 9561.44, + "end": 9561.74, + "probability": 0.8397 + }, + { + "start": 9561.74, + "end": 9563.44, + "probability": 0.8673 + }, + { + "start": 9564.42, + "end": 9565.2, + "probability": 0.8757 + }, + { + "start": 9565.58, + "end": 9567.02, + "probability": 0.9841 + }, + { + "start": 9567.26, + "end": 9569.9, + "probability": 0.9514 + }, + { + "start": 9570.56, + "end": 9571.02, + "probability": 0.8004 + }, + { + "start": 9574.48, + "end": 9577.28, + "probability": 0.7582 + }, + { + "start": 9577.96, + "end": 9582.1, + "probability": 0.9924 + }, + { + "start": 9582.12, + "end": 9583.48, + "probability": 0.9813 + }, + { + "start": 9583.74, + "end": 9588.18, + "probability": 0.9577 + }, + { + "start": 9588.54, + "end": 9591.26, + "probability": 0.9973 + }, + { + "start": 9591.92, + "end": 9593.08, + "probability": 0.915 + }, + { + "start": 9593.16, + "end": 9594.4, + "probability": 0.9577 + }, + { + "start": 9594.62, + "end": 9596.93, + "probability": 0.9923 + }, + { + "start": 9597.94, + "end": 9598.67, + "probability": 0.7881 + }, + { + "start": 9599.34, + "end": 9602.64, + "probability": 0.9108 + }, + { + "start": 9603.26, + "end": 9607.08, + "probability": 0.9976 + }, + { + "start": 9607.08, + "end": 9610.8, + "probability": 0.989 + }, + { + "start": 9611.3, + "end": 9613.02, + "probability": 0.8599 + }, + { + "start": 9613.76, + "end": 9618.02, + "probability": 0.9891 + }, + { + "start": 9618.16, + "end": 9619.04, + "probability": 0.8819 + }, + { + "start": 9619.38, + "end": 9620.68, + "probability": 0.7748 + }, + { + "start": 9621.1, + "end": 9623.68, + "probability": 0.97 + }, + { + "start": 9623.82, + "end": 9624.7, + "probability": 0.7559 + }, + { + "start": 9624.78, + "end": 9625.74, + "probability": 0.9429 + }, + { + "start": 9626.0, + "end": 9630.0, + "probability": 0.8098 + }, + { + "start": 9631.6, + "end": 9634.42, + "probability": 0.9949 + }, + { + "start": 9634.52, + "end": 9634.78, + "probability": 0.4477 + }, + { + "start": 9635.16, + "end": 9638.8, + "probability": 0.9097 + }, + { + "start": 9639.56, + "end": 9643.74, + "probability": 0.8032 + }, + { + "start": 9644.26, + "end": 9645.54, + "probability": 0.6207 + }, + { + "start": 9645.62, + "end": 9647.66, + "probability": 0.7014 + }, + { + "start": 9647.82, + "end": 9650.36, + "probability": 0.6208 + }, + { + "start": 9650.88, + "end": 9653.48, + "probability": 0.9607 + }, + { + "start": 9655.13, + "end": 9655.6, + "probability": 0.1568 + }, + { + "start": 9655.6, + "end": 9656.18, + "probability": 0.6258 + }, + { + "start": 9657.82, + "end": 9659.2, + "probability": 0.878 + }, + { + "start": 9659.64, + "end": 9660.14, + "probability": 0.6969 + }, + { + "start": 9660.46, + "end": 9661.7, + "probability": 0.8672 + }, + { + "start": 9663.26, + "end": 9664.4, + "probability": 0.8377 + }, + { + "start": 9666.98, + "end": 9667.95, + "probability": 0.0495 + }, + { + "start": 9668.16, + "end": 9669.1, + "probability": 0.2572 + }, + { + "start": 9674.66, + "end": 9674.76, + "probability": 0.3686 + }, + { + "start": 9674.76, + "end": 9674.76, + "probability": 0.0531 + }, + { + "start": 9674.76, + "end": 9674.76, + "probability": 0.127 + }, + { + "start": 9674.76, + "end": 9675.26, + "probability": 0.317 + }, + { + "start": 9675.8, + "end": 9677.14, + "probability": 0.8115 + }, + { + "start": 9677.2, + "end": 9680.48, + "probability": 0.9155 + }, + { + "start": 9680.48, + "end": 9681.36, + "probability": 0.7907 + }, + { + "start": 9681.82, + "end": 9684.92, + "probability": 0.8157 + }, + { + "start": 9685.34, + "end": 9687.78, + "probability": 0.0129 + }, + { + "start": 9688.36, + "end": 9689.08, + "probability": 0.6668 + }, + { + "start": 9689.46, + "end": 9690.2, + "probability": 0.7268 + }, + { + "start": 9717.02, + "end": 9721.62, + "probability": 0.2436 + }, + { + "start": 9723.5, + "end": 9725.28, + "probability": 0.3196 + }, + { + "start": 9725.32, + "end": 9725.9, + "probability": 0.2997 + }, + { + "start": 9726.52, + "end": 9726.62, + "probability": 0.2827 + }, + { + "start": 9728.37, + "end": 9730.74, + "probability": 0.4678 + }, + { + "start": 9743.88, + "end": 9745.28, + "probability": 0.1268 + }, + { + "start": 9746.56, + "end": 9748.7, + "probability": 0.1466 + }, + { + "start": 9750.18, + "end": 9753.9, + "probability": 0.034 + }, + { + "start": 9753.9, + "end": 9754.18, + "probability": 0.1209 + }, + { + "start": 9754.18, + "end": 9754.18, + "probability": 0.1843 + }, + { + "start": 9757.69, + "end": 9759.08, + "probability": 0.0757 + }, + { + "start": 9759.08, + "end": 9760.06, + "probability": 0.0239 + }, + { + "start": 9760.06, + "end": 9761.78, + "probability": 0.2228 + }, + { + "start": 9763.12, + "end": 9763.56, + "probability": 0.0759 + }, + { + "start": 9764.66, + "end": 9765.56, + "probability": 0.026 + }, + { + "start": 9765.56, + "end": 9766.08, + "probability": 0.1815 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9789.0, + "end": 9789.0, + "probability": 0.0 + }, + { + "start": 9790.32, + "end": 9793.98, + "probability": 0.5956 + }, + { + "start": 9794.84, + "end": 9796.5, + "probability": 0.7748 + }, + { + "start": 9798.38, + "end": 9801.32, + "probability": 0.7837 + }, + { + "start": 9802.3, + "end": 9804.78, + "probability": 0.8705 + }, + { + "start": 9806.4, + "end": 9807.83, + "probability": 0.804 + }, + { + "start": 9810.77, + "end": 9814.44, + "probability": 0.7608 + }, + { + "start": 9816.16, + "end": 9816.96, + "probability": 0.8412 + }, + { + "start": 9818.02, + "end": 9821.8, + "probability": 0.8104 + }, + { + "start": 9822.22, + "end": 9824.0, + "probability": 0.9657 + }, + { + "start": 9824.24, + "end": 9825.34, + "probability": 0.9338 + }, + { + "start": 9826.84, + "end": 9832.56, + "probability": 0.946 + }, + { + "start": 9833.1, + "end": 9834.8, + "probability": 0.7445 + }, + { + "start": 9835.84, + "end": 9837.34, + "probability": 0.5053 + }, + { + "start": 9839.3, + "end": 9843.26, + "probability": 0.8612 + }, + { + "start": 9844.06, + "end": 9850.84, + "probability": 0.8386 + }, + { + "start": 9852.9, + "end": 9853.68, + "probability": 0.9811 + }, + { + "start": 9854.2, + "end": 9857.42, + "probability": 0.9478 + }, + { + "start": 9858.72, + "end": 9859.98, + "probability": 0.7177 + }, + { + "start": 9861.22, + "end": 9862.36, + "probability": 0.0086 + }, + { + "start": 9863.14, + "end": 9864.6, + "probability": 0.9664 + }, + { + "start": 9865.2, + "end": 9866.2, + "probability": 0.7536 + }, + { + "start": 9867.44, + "end": 9868.82, + "probability": 0.9668 + }, + { + "start": 9869.26, + "end": 9869.89, + "probability": 0.9838 + }, + { + "start": 9871.1, + "end": 9873.98, + "probability": 0.9938 + }, + { + "start": 9875.0, + "end": 9876.06, + "probability": 0.8194 + }, + { + "start": 9876.82, + "end": 9877.9, + "probability": 0.8667 + }, + { + "start": 9879.48, + "end": 9884.06, + "probability": 0.8296 + }, + { + "start": 9885.18, + "end": 9887.46, + "probability": 0.8596 + }, + { + "start": 9888.36, + "end": 9894.16, + "probability": 0.9737 + }, + { + "start": 9895.22, + "end": 9897.66, + "probability": 0.9795 + }, + { + "start": 9898.64, + "end": 9900.7, + "probability": 0.9969 + }, + { + "start": 9901.54, + "end": 9902.26, + "probability": 0.8444 + }, + { + "start": 9902.62, + "end": 9905.01, + "probability": 0.8922 + }, + { + "start": 9906.12, + "end": 9908.96, + "probability": 0.7619 + }, + { + "start": 9909.74, + "end": 9911.92, + "probability": 0.6999 + }, + { + "start": 9914.16, + "end": 9916.28, + "probability": 0.7261 + }, + { + "start": 9916.36, + "end": 9920.82, + "probability": 0.8988 + }, + { + "start": 9921.12, + "end": 9924.52, + "probability": 0.9232 + }, + { + "start": 9926.64, + "end": 9929.96, + "probability": 0.9775 + }, + { + "start": 9931.18, + "end": 9932.76, + "probability": 0.4986 + }, + { + "start": 9933.22, + "end": 9941.06, + "probability": 0.8921 + }, + { + "start": 9941.82, + "end": 9944.94, + "probability": 0.8254 + }, + { + "start": 9946.44, + "end": 9948.86, + "probability": 0.9963 + }, + { + "start": 9948.86, + "end": 9952.34, + "probability": 0.899 + }, + { + "start": 9953.06, + "end": 9955.56, + "probability": 0.9928 + }, + { + "start": 9956.76, + "end": 9961.44, + "probability": 0.993 + }, + { + "start": 9964.88, + "end": 9967.18, + "probability": 0.9883 + }, + { + "start": 9968.14, + "end": 9968.44, + "probability": 0.7209 + }, + { + "start": 9972.58, + "end": 9973.18, + "probability": 0.2099 + }, + { + "start": 9974.14, + "end": 9975.7, + "probability": 0.6184 + }, + { + "start": 9976.62, + "end": 9978.86, + "probability": 0.6148 + }, + { + "start": 9979.64, + "end": 9981.86, + "probability": 0.9855 + }, + { + "start": 9983.68, + "end": 9985.84, + "probability": 0.9 + }, + { + "start": 9986.64, + "end": 9988.37, + "probability": 0.9458 + }, + { + "start": 9990.56, + "end": 9994.08, + "probability": 0.7163 + }, + { + "start": 9995.41, + "end": 10001.7, + "probability": 0.9277 + }, + { + "start": 10002.5, + "end": 10003.92, + "probability": 0.9691 + }, + { + "start": 10005.14, + "end": 10006.98, + "probability": 0.6686 + }, + { + "start": 10008.2, + "end": 10010.56, + "probability": 0.9185 + }, + { + "start": 10011.4, + "end": 10012.56, + "probability": 0.5097 + }, + { + "start": 10014.8, + "end": 10017.28, + "probability": 0.8466 + }, + { + "start": 10033.02, + "end": 10033.24, + "probability": 0.2657 + }, + { + "start": 10033.34, + "end": 10035.55, + "probability": 0.5791 + }, + { + "start": 10036.64, + "end": 10039.32, + "probability": 0.9625 + }, + { + "start": 10039.9, + "end": 10043.46, + "probability": 0.9901 + }, + { + "start": 10044.3, + "end": 10045.0, + "probability": 0.7952 + }, + { + "start": 10045.16, + "end": 10045.82, + "probability": 0.8666 + }, + { + "start": 10046.1, + "end": 10050.46, + "probability": 0.8247 + }, + { + "start": 10051.28, + "end": 10057.44, + "probability": 0.9176 + }, + { + "start": 10057.78, + "end": 10063.9, + "probability": 0.971 + }, + { + "start": 10065.32, + "end": 10066.04, + "probability": 0.4323 + }, + { + "start": 10066.14, + "end": 10069.88, + "probability": 0.9924 + }, + { + "start": 10069.96, + "end": 10075.23, + "probability": 0.9726 + }, + { + "start": 10076.72, + "end": 10077.36, + "probability": 0.9327 + }, + { + "start": 10077.9, + "end": 10082.8, + "probability": 0.9626 + }, + { + "start": 10085.06, + "end": 10086.96, + "probability": 0.9003 + }, + { + "start": 10087.16, + "end": 10090.11, + "probability": 0.9918 + }, + { + "start": 10090.82, + "end": 10092.62, + "probability": 0.9971 + }, + { + "start": 10093.4, + "end": 10096.8, + "probability": 0.6704 + }, + { + "start": 10097.7, + "end": 10103.96, + "probability": 0.9921 + }, + { + "start": 10104.76, + "end": 10105.5, + "probability": 0.775 + }, + { + "start": 10105.92, + "end": 10108.26, + "probability": 0.9629 + }, + { + "start": 10108.66, + "end": 10115.32, + "probability": 0.95 + }, + { + "start": 10115.82, + "end": 10117.62, + "probability": 0.9185 + }, + { + "start": 10118.24, + "end": 10121.28, + "probability": 0.9334 + }, + { + "start": 10121.9, + "end": 10122.18, + "probability": 0.5064 + }, + { + "start": 10122.34, + "end": 10123.56, + "probability": 0.9422 + }, + { + "start": 10124.52, + "end": 10126.24, + "probability": 0.8628 + }, + { + "start": 10126.38, + "end": 10128.81, + "probability": 0.7727 + }, + { + "start": 10129.94, + "end": 10130.4, + "probability": 0.665 + }, + { + "start": 10131.02, + "end": 10131.92, + "probability": 0.8503 + }, + { + "start": 10132.68, + "end": 10134.34, + "probability": 0.7854 + }, + { + "start": 10135.16, + "end": 10139.64, + "probability": 0.9326 + }, + { + "start": 10140.0, + "end": 10140.78, + "probability": 0.6653 + }, + { + "start": 10141.28, + "end": 10141.86, + "probability": 0.9196 + }, + { + "start": 10142.28, + "end": 10142.72, + "probability": 0.9857 + }, + { + "start": 10143.46, + "end": 10146.6, + "probability": 0.9683 + }, + { + "start": 10147.38, + "end": 10149.28, + "probability": 0.9626 + }, + { + "start": 10149.74, + "end": 10151.72, + "probability": 0.7677 + }, + { + "start": 10153.0, + "end": 10157.36, + "probability": 0.9685 + }, + { + "start": 10157.74, + "end": 10158.44, + "probability": 0.7844 + }, + { + "start": 10159.12, + "end": 10164.48, + "probability": 0.9771 + }, + { + "start": 10164.48, + "end": 10169.06, + "probability": 0.9982 + }, + { + "start": 10169.36, + "end": 10170.06, + "probability": 0.8972 + }, + { + "start": 10170.46, + "end": 10171.84, + "probability": 0.8199 + }, + { + "start": 10172.18, + "end": 10172.94, + "probability": 0.7841 + }, + { + "start": 10173.32, + "end": 10176.54, + "probability": 0.9376 + }, + { + "start": 10178.6, + "end": 10183.18, + "probability": 0.9985 + }, + { + "start": 10188.18, + "end": 10189.98, + "probability": 0.8247 + }, + { + "start": 10190.82, + "end": 10190.92, + "probability": 0.2799 + }, + { + "start": 10190.92, + "end": 10192.36, + "probability": 0.8268 + }, + { + "start": 10192.6, + "end": 10195.9, + "probability": 0.9477 + }, + { + "start": 10196.42, + "end": 10202.89, + "probability": 0.9836 + }, + { + "start": 10203.78, + "end": 10205.78, + "probability": 0.8185 + }, + { + "start": 10213.56, + "end": 10214.96, + "probability": 0.899 + }, + { + "start": 10215.12, + "end": 10216.88, + "probability": 0.9902 + }, + { + "start": 10216.96, + "end": 10217.32, + "probability": 0.8762 + }, + { + "start": 10218.1, + "end": 10222.48, + "probability": 0.9612 + }, + { + "start": 10222.96, + "end": 10223.9, + "probability": 0.754 + }, + { + "start": 10225.52, + "end": 10227.76, + "probability": 0.9663 + }, + { + "start": 10227.8, + "end": 10229.58, + "probability": 0.9463 + }, + { + "start": 10230.08, + "end": 10230.62, + "probability": 0.8264 + }, + { + "start": 10230.72, + "end": 10231.88, + "probability": 0.6545 + }, + { + "start": 10232.04, + "end": 10233.78, + "probability": 0.9774 + }, + { + "start": 10234.42, + "end": 10236.86, + "probability": 0.9538 + }, + { + "start": 10238.48, + "end": 10240.56, + "probability": 0.9716 + }, + { + "start": 10241.16, + "end": 10242.76, + "probability": 0.9525 + }, + { + "start": 10244.6, + "end": 10246.2, + "probability": 0.9023 + }, + { + "start": 10246.34, + "end": 10248.07, + "probability": 0.6688 + }, + { + "start": 10249.28, + "end": 10250.36, + "probability": 0.6107 + }, + { + "start": 10251.34, + "end": 10253.22, + "probability": 0.9023 + }, + { + "start": 10254.02, + "end": 10259.09, + "probability": 0.7752 + }, + { + "start": 10259.68, + "end": 10264.7, + "probability": 0.995 + }, + { + "start": 10265.14, + "end": 10269.52, + "probability": 0.9968 + }, + { + "start": 10269.92, + "end": 10275.06, + "probability": 0.9812 + }, + { + "start": 10275.14, + "end": 10275.48, + "probability": 0.5663 + }, + { + "start": 10275.78, + "end": 10276.4, + "probability": 0.8491 + }, + { + "start": 10276.96, + "end": 10278.59, + "probability": 0.8617 + }, + { + "start": 10279.24, + "end": 10282.72, + "probability": 0.8931 + }, + { + "start": 10283.34, + "end": 10285.78, + "probability": 0.9913 + }, + { + "start": 10286.08, + "end": 10287.62, + "probability": 0.7383 + }, + { + "start": 10287.68, + "end": 10288.68, + "probability": 0.9537 + }, + { + "start": 10288.98, + "end": 10289.9, + "probability": 0.9324 + }, + { + "start": 10290.64, + "end": 10293.88, + "probability": 0.8149 + }, + { + "start": 10294.36, + "end": 10296.36, + "probability": 0.6798 + }, + { + "start": 10297.12, + "end": 10298.36, + "probability": 0.9775 + }, + { + "start": 10299.02, + "end": 10303.22, + "probability": 0.9856 + }, + { + "start": 10303.22, + "end": 10307.1, + "probability": 0.9844 + }, + { + "start": 10307.68, + "end": 10308.06, + "probability": 0.6512 + }, + { + "start": 10308.7, + "end": 10310.06, + "probability": 0.8798 + }, + { + "start": 10310.88, + "end": 10315.4, + "probability": 0.9776 + }, + { + "start": 10316.0, + "end": 10316.34, + "probability": 0.3776 + }, + { + "start": 10316.7, + "end": 10318.5, + "probability": 0.745 + }, + { + "start": 10319.68, + "end": 10321.26, + "probability": 0.9347 + }, + { + "start": 10322.88, + "end": 10326.04, + "probability": 0.908 + }, + { + "start": 10327.94, + "end": 10328.7, + "probability": 0.1342 + }, + { + "start": 10348.38, + "end": 10351.76, + "probability": 0.6511 + }, + { + "start": 10353.02, + "end": 10357.26, + "probability": 0.8809 + }, + { + "start": 10357.64, + "end": 10358.76, + "probability": 0.8687 + }, + { + "start": 10358.86, + "end": 10359.54, + "probability": 0.8189 + }, + { + "start": 10359.66, + "end": 10367.48, + "probability": 0.6571 + }, + { + "start": 10368.01, + "end": 10377.02, + "probability": 0.9508 + }, + { + "start": 10378.42, + "end": 10381.46, + "probability": 0.9712 + }, + { + "start": 10382.02, + "end": 10383.18, + "probability": 0.9839 + }, + { + "start": 10384.0, + "end": 10387.0, + "probability": 0.81 + }, + { + "start": 10387.66, + "end": 10390.08, + "probability": 0.9441 + }, + { + "start": 10391.16, + "end": 10391.84, + "probability": 0.7093 + }, + { + "start": 10392.42, + "end": 10397.0, + "probability": 0.975 + }, + { + "start": 10398.06, + "end": 10403.08, + "probability": 0.978 + }, + { + "start": 10404.47, + "end": 10411.3, + "probability": 0.9854 + }, + { + "start": 10412.06, + "end": 10413.88, + "probability": 0.7974 + }, + { + "start": 10414.64, + "end": 10417.62, + "probability": 0.9753 + }, + { + "start": 10418.74, + "end": 10423.36, + "probability": 0.9755 + }, + { + "start": 10424.36, + "end": 10425.82, + "probability": 0.694 + }, + { + "start": 10426.52, + "end": 10429.94, + "probability": 0.9973 + }, + { + "start": 10430.54, + "end": 10432.38, + "probability": 0.9971 + }, + { + "start": 10433.36, + "end": 10435.54, + "probability": 0.8845 + }, + { + "start": 10436.56, + "end": 10437.34, + "probability": 0.6722 + }, + { + "start": 10438.18, + "end": 10442.72, + "probability": 0.9941 + }, + { + "start": 10443.74, + "end": 10448.78, + "probability": 0.9842 + }, + { + "start": 10449.84, + "end": 10454.5, + "probability": 0.9632 + }, + { + "start": 10455.18, + "end": 10456.16, + "probability": 0.9006 + }, + { + "start": 10457.3, + "end": 10462.8, + "probability": 0.5416 + }, + { + "start": 10463.58, + "end": 10464.58, + "probability": 0.7481 + }, + { + "start": 10465.2, + "end": 10471.26, + "probability": 0.9599 + }, + { + "start": 10471.84, + "end": 10473.38, + "probability": 0.9127 + }, + { + "start": 10474.44, + "end": 10478.78, + "probability": 0.979 + }, + { + "start": 10479.34, + "end": 10479.98, + "probability": 0.688 + }, + { + "start": 10480.34, + "end": 10487.3, + "probability": 0.8269 + }, + { + "start": 10487.3, + "end": 10494.86, + "probability": 0.8432 + }, + { + "start": 10495.66, + "end": 10496.72, + "probability": 0.7499 + }, + { + "start": 10497.38, + "end": 10502.14, + "probability": 0.988 + }, + { + "start": 10502.14, + "end": 10506.54, + "probability": 0.9412 + }, + { + "start": 10507.56, + "end": 10511.54, + "probability": 0.8549 + }, + { + "start": 10511.54, + "end": 10513.76, + "probability": 0.6627 + }, + { + "start": 10514.36, + "end": 10517.6, + "probability": 0.9879 + }, + { + "start": 10517.6, + "end": 10522.16, + "probability": 0.9858 + }, + { + "start": 10522.7, + "end": 10525.78, + "probability": 0.9936 + }, + { + "start": 10526.46, + "end": 10528.78, + "probability": 0.9623 + }, + { + "start": 10529.48, + "end": 10530.62, + "probability": 0.8009 + }, + { + "start": 10531.54, + "end": 10534.84, + "probability": 0.8304 + }, + { + "start": 10536.02, + "end": 10539.46, + "probability": 0.9764 + }, + { + "start": 10540.56, + "end": 10545.56, + "probability": 0.9922 + }, + { + "start": 10546.72, + "end": 10549.6, + "probability": 0.9878 + }, + { + "start": 10549.62, + "end": 10553.62, + "probability": 0.7902 + }, + { + "start": 10554.48, + "end": 10555.54, + "probability": 0.9053 + }, + { + "start": 10556.36, + "end": 10563.24, + "probability": 0.7968 + }, + { + "start": 10565.14, + "end": 10566.64, + "probability": 0.7415 + }, + { + "start": 10567.34, + "end": 10569.92, + "probability": 0.8441 + }, + { + "start": 10570.58, + "end": 10575.74, + "probability": 0.9282 + }, + { + "start": 10576.12, + "end": 10579.34, + "probability": 0.9171 + }, + { + "start": 10579.96, + "end": 10581.92, + "probability": 0.988 + }, + { + "start": 10582.48, + "end": 10583.02, + "probability": 0.6709 + }, + { + "start": 10584.24, + "end": 10584.92, + "probability": 0.7971 + }, + { + "start": 10585.78, + "end": 10586.86, + "probability": 0.653 + }, + { + "start": 10587.72, + "end": 10589.6, + "probability": 0.9844 + }, + { + "start": 10590.18, + "end": 10594.04, + "probability": 0.9943 + }, + { + "start": 10594.04, + "end": 10597.84, + "probability": 0.8716 + }, + { + "start": 10598.4, + "end": 10604.78, + "probability": 0.9758 + }, + { + "start": 10605.52, + "end": 10607.86, + "probability": 0.9458 + }, + { + "start": 10608.88, + "end": 10613.0, + "probability": 0.9315 + }, + { + "start": 10614.06, + "end": 10616.2, + "probability": 0.8826 + }, + { + "start": 10616.82, + "end": 10621.68, + "probability": 0.9332 + }, + { + "start": 10622.42, + "end": 10624.18, + "probability": 0.9288 + }, + { + "start": 10624.66, + "end": 10627.88, + "probability": 0.8135 + }, + { + "start": 10628.58, + "end": 10633.94, + "probability": 0.8228 + }, + { + "start": 10634.4, + "end": 10637.8, + "probability": 0.8937 + }, + { + "start": 10638.46, + "end": 10638.86, + "probability": 0.7577 + }, + { + "start": 10639.94, + "end": 10642.76, + "probability": 0.7443 + }, + { + "start": 10643.16, + "end": 10644.54, + "probability": 0.7326 + }, + { + "start": 10653.52, + "end": 10664.76, + "probability": 0.6854 + }, + { + "start": 10667.48, + "end": 10668.96, + "probability": 0.4372 + }, + { + "start": 10670.8, + "end": 10673.06, + "probability": 0.9841 + }, + { + "start": 10673.06, + "end": 10675.4, + "probability": 0.9883 + }, + { + "start": 10675.52, + "end": 10676.66, + "probability": 0.7777 + }, + { + "start": 10678.34, + "end": 10680.54, + "probability": 0.9862 + }, + { + "start": 10682.34, + "end": 10684.28, + "probability": 0.9002 + }, + { + "start": 10685.52, + "end": 10688.18, + "probability": 0.9992 + }, + { + "start": 10689.12, + "end": 10692.42, + "probability": 0.9955 + }, + { + "start": 10693.74, + "end": 10696.2, + "probability": 0.8151 + }, + { + "start": 10697.06, + "end": 10700.78, + "probability": 0.9198 + }, + { + "start": 10702.6, + "end": 10705.1, + "probability": 0.8118 + }, + { + "start": 10706.26, + "end": 10710.06, + "probability": 0.9993 + }, + { + "start": 10710.78, + "end": 10711.64, + "probability": 0.8038 + }, + { + "start": 10713.28, + "end": 10720.1, + "probability": 0.9243 + }, + { + "start": 10720.32, + "end": 10720.86, + "probability": 0.834 + }, + { + "start": 10721.5, + "end": 10723.7, + "probability": 0.7008 + }, + { + "start": 10724.66, + "end": 10725.96, + "probability": 0.9229 + }, + { + "start": 10727.76, + "end": 10729.72, + "probability": 0.729 + }, + { + "start": 10731.04, + "end": 10731.48, + "probability": 0.878 + }, + { + "start": 10734.12, + "end": 10735.76, + "probability": 0.9866 + }, + { + "start": 10736.28, + "end": 10739.94, + "probability": 0.9823 + }, + { + "start": 10741.04, + "end": 10743.34, + "probability": 0.7727 + }, + { + "start": 10745.38, + "end": 10747.86, + "probability": 0.965 + }, + { + "start": 10748.74, + "end": 10750.45, + "probability": 0.7806 + }, + { + "start": 10751.96, + "end": 10753.38, + "probability": 0.8725 + }, + { + "start": 10754.56, + "end": 10756.38, + "probability": 0.8406 + }, + { + "start": 10757.4, + "end": 10759.22, + "probability": 0.9704 + }, + { + "start": 10759.9, + "end": 10762.56, + "probability": 0.9701 + }, + { + "start": 10763.32, + "end": 10766.16, + "probability": 0.918 + }, + { + "start": 10768.0, + "end": 10769.58, + "probability": 0.9035 + }, + { + "start": 10770.72, + "end": 10774.46, + "probability": 0.9971 + }, + { + "start": 10775.18, + "end": 10776.1, + "probability": 0.8995 + }, + { + "start": 10776.46, + "end": 10777.96, + "probability": 0.906 + }, + { + "start": 10778.1, + "end": 10778.4, + "probability": 0.648 + }, + { + "start": 10779.58, + "end": 10780.1, + "probability": 0.6633 + }, + { + "start": 10780.8, + "end": 10782.96, + "probability": 0.9912 + }, + { + "start": 10784.36, + "end": 10785.08, + "probability": 0.9653 + }, + { + "start": 10785.5, + "end": 10785.98, + "probability": 0.8708 + }, + { + "start": 10786.18, + "end": 10787.0, + "probability": 0.7303 + }, + { + "start": 10787.1, + "end": 10790.6, + "probability": 0.9885 + }, + { + "start": 10790.7, + "end": 10792.04, + "probability": 0.7009 + }, + { + "start": 10792.8, + "end": 10793.98, + "probability": 0.9897 + }, + { + "start": 10794.26, + "end": 10795.82, + "probability": 0.5705 + }, + { + "start": 10795.88, + "end": 10798.58, + "probability": 0.8226 + }, + { + "start": 10799.28, + "end": 10799.64, + "probability": 0.7988 + }, + { + "start": 10799.68, + "end": 10800.0, + "probability": 0.9592 + }, + { + "start": 10800.2, + "end": 10800.8, + "probability": 0.7746 + }, + { + "start": 10800.86, + "end": 10802.04, + "probability": 0.9868 + }, + { + "start": 10802.06, + "end": 10803.59, + "probability": 0.9143 + }, + { + "start": 10803.9, + "end": 10806.67, + "probability": 0.96 + }, + { + "start": 10807.18, + "end": 10808.58, + "probability": 0.7953 + }, + { + "start": 10809.34, + "end": 10810.38, + "probability": 0.8185 + }, + { + "start": 10810.5, + "end": 10811.12, + "probability": 0.97 + }, + { + "start": 10811.48, + "end": 10811.92, + "probability": 0.8239 + }, + { + "start": 10811.96, + "end": 10813.66, + "probability": 0.7861 + }, + { + "start": 10814.5, + "end": 10815.78, + "probability": 0.8434 + }, + { + "start": 10816.82, + "end": 10817.4, + "probability": 0.2844 + }, + { + "start": 10819.28, + "end": 10820.06, + "probability": 0.536 + }, + { + "start": 10820.12, + "end": 10821.3, + "probability": 0.9703 + }, + { + "start": 10821.38, + "end": 10822.46, + "probability": 0.9538 + }, + { + "start": 10822.58, + "end": 10825.46, + "probability": 0.8472 + }, + { + "start": 10825.54, + "end": 10826.12, + "probability": 0.8219 + }, + { + "start": 10827.04, + "end": 10828.9, + "probability": 0.9956 + }, + { + "start": 10829.92, + "end": 10831.16, + "probability": 0.6271 + }, + { + "start": 10831.78, + "end": 10836.4, + "probability": 0.9962 + }, + { + "start": 10836.68, + "end": 10837.58, + "probability": 0.9197 + }, + { + "start": 10838.22, + "end": 10838.32, + "probability": 0.3214 + }, + { + "start": 10838.5, + "end": 10844.34, + "probability": 0.9951 + }, + { + "start": 10845.08, + "end": 10845.8, + "probability": 0.7885 + }, + { + "start": 10845.9, + "end": 10847.12, + "probability": 0.9102 + }, + { + "start": 10847.22, + "end": 10848.62, + "probability": 0.9082 + }, + { + "start": 10849.24, + "end": 10850.41, + "probability": 0.9555 + }, + { + "start": 10850.88, + "end": 10852.58, + "probability": 0.911 + }, + { + "start": 10853.12, + "end": 10855.64, + "probability": 0.7065 + }, + { + "start": 10856.2, + "end": 10860.56, + "probability": 0.9503 + }, + { + "start": 10861.02, + "end": 10862.14, + "probability": 0.9678 + }, + { + "start": 10862.5, + "end": 10863.04, + "probability": 0.7493 + }, + { + "start": 10863.08, + "end": 10863.6, + "probability": 0.9894 + }, + { + "start": 10865.08, + "end": 10866.78, + "probability": 0.6696 + }, + { + "start": 10867.82, + "end": 10869.88, + "probability": 0.8914 + }, + { + "start": 10871.06, + "end": 10873.88, + "probability": 0.9038 + }, + { + "start": 10874.6, + "end": 10876.2, + "probability": 0.8996 + }, + { + "start": 10877.5, + "end": 10880.28, + "probability": 0.9823 + }, + { + "start": 10893.78, + "end": 10893.88, + "probability": 0.513 + }, + { + "start": 10893.88, + "end": 10894.98, + "probability": 0.5327 + }, + { + "start": 10897.02, + "end": 10899.7, + "probability": 0.6985 + }, + { + "start": 10900.76, + "end": 10905.06, + "probability": 0.9918 + }, + { + "start": 10905.06, + "end": 10909.82, + "probability": 0.9956 + }, + { + "start": 10910.92, + "end": 10915.3, + "probability": 0.998 + }, + { + "start": 10915.3, + "end": 10920.24, + "probability": 0.8983 + }, + { + "start": 10921.34, + "end": 10927.12, + "probability": 0.9972 + }, + { + "start": 10927.72, + "end": 10929.3, + "probability": 0.9058 + }, + { + "start": 10929.7, + "end": 10933.98, + "probability": 0.9581 + }, + { + "start": 10933.98, + "end": 10937.24, + "probability": 0.993 + }, + { + "start": 10938.18, + "end": 10938.98, + "probability": 0.9395 + }, + { + "start": 10939.64, + "end": 10943.98, + "probability": 0.8714 + }, + { + "start": 10944.26, + "end": 10947.86, + "probability": 0.9819 + }, + { + "start": 10949.14, + "end": 10952.96, + "probability": 0.9974 + }, + { + "start": 10953.46, + "end": 10956.4, + "probability": 0.9741 + }, + { + "start": 10956.4, + "end": 10960.06, + "probability": 0.962 + }, + { + "start": 10960.44, + "end": 10965.58, + "probability": 0.9818 + }, + { + "start": 10965.92, + "end": 10968.68, + "probability": 0.9875 + }, + { + "start": 10970.3, + "end": 10973.74, + "probability": 0.9944 + }, + { + "start": 10974.3, + "end": 10980.0, + "probability": 0.9838 + }, + { + "start": 10980.32, + "end": 10981.18, + "probability": 0.7192 + }, + { + "start": 10982.56, + "end": 10984.94, + "probability": 0.7725 + }, + { + "start": 10985.72, + "end": 10987.92, + "probability": 0.783 + }, + { + "start": 10988.58, + "end": 10991.78, + "probability": 0.9774 + }, + { + "start": 10991.78, + "end": 10995.24, + "probability": 0.9448 + }, + { + "start": 10995.4, + "end": 11000.12, + "probability": 0.9304 + }, + { + "start": 11000.12, + "end": 11004.76, + "probability": 0.9953 + }, + { + "start": 11007.26, + "end": 11009.78, + "probability": 0.9248 + }, + { + "start": 11010.5, + "end": 11012.74, + "probability": 0.4494 + }, + { + "start": 11012.74, + "end": 11015.3, + "probability": 0.9951 + }, + { + "start": 11015.62, + "end": 11015.62, + "probability": 0.3323 + }, + { + "start": 11017.0, + "end": 11019.48, + "probability": 0.7523 + }, + { + "start": 11020.1, + "end": 11020.98, + "probability": 0.5021 + }, + { + "start": 11021.12, + "end": 11024.08, + "probability": 0.9239 + }, + { + "start": 11024.14, + "end": 11024.2, + "probability": 0.0145 + }, + { + "start": 11024.2, + "end": 11026.52, + "probability": 0.5107 + }, + { + "start": 11026.88, + "end": 11031.98, + "probability": 0.7381 + }, + { + "start": 11032.08, + "end": 11032.94, + "probability": 0.7737 + }, + { + "start": 11033.84, + "end": 11034.1, + "probability": 0.3765 + }, + { + "start": 11034.16, + "end": 11036.84, + "probability": 0.9847 + }, + { + "start": 11037.72, + "end": 11038.2, + "probability": 0.7999 + }, + { + "start": 11038.3, + "end": 11040.4, + "probability": 0.0597 + }, + { + "start": 11041.96, + "end": 11043.08, + "probability": 0.6928 + }, + { + "start": 11043.3, + "end": 11043.52, + "probability": 0.7432 + }, + { + "start": 11043.62, + "end": 11044.58, + "probability": 0.6923 + }, + { + "start": 11044.66, + "end": 11045.4, + "probability": 0.7552 + }, + { + "start": 11045.4, + "end": 11046.52, + "probability": 0.9404 + }, + { + "start": 11046.98, + "end": 11049.3, + "probability": 0.9321 + }, + { + "start": 11049.82, + "end": 11051.32, + "probability": 0.931 + }, + { + "start": 11051.52, + "end": 11053.82, + "probability": 0.9721 + }, + { + "start": 11054.8, + "end": 11055.1, + "probability": 0.4095 + }, + { + "start": 11055.28, + "end": 11059.0, + "probability": 0.9484 + }, + { + "start": 11059.0, + "end": 11064.8, + "probability": 0.9215 + }, + { + "start": 11065.54, + "end": 11071.62, + "probability": 0.9897 + }, + { + "start": 11072.74, + "end": 11080.18, + "probability": 0.9442 + }, + { + "start": 11080.22, + "end": 11083.4, + "probability": 0.9941 + }, + { + "start": 11084.6, + "end": 11089.64, + "probability": 0.991 + }, + { + "start": 11089.64, + "end": 11093.94, + "probability": 0.9959 + }, + { + "start": 11094.44, + "end": 11096.78, + "probability": 0.9902 + }, + { + "start": 11097.32, + "end": 11099.22, + "probability": 0.9409 + }, + { + "start": 11100.02, + "end": 11105.63, + "probability": 0.9883 + }, + { + "start": 11106.04, + "end": 11112.44, + "probability": 0.9462 + }, + { + "start": 11112.44, + "end": 11116.0, + "probability": 0.9974 + }, + { + "start": 11116.76, + "end": 11122.36, + "probability": 0.9886 + }, + { + "start": 11122.36, + "end": 11127.36, + "probability": 0.989 + }, + { + "start": 11128.44, + "end": 11132.28, + "probability": 0.6865 + }, + { + "start": 11133.54, + "end": 11138.82, + "probability": 0.9899 + }, + { + "start": 11139.5, + "end": 11140.28, + "probability": 0.7319 + }, + { + "start": 11140.42, + "end": 11141.24, + "probability": 0.8448 + }, + { + "start": 11141.36, + "end": 11145.1, + "probability": 0.9773 + }, + { + "start": 11146.44, + "end": 11146.96, + "probability": 0.652 + }, + { + "start": 11147.5, + "end": 11148.0, + "probability": 0.7559 + }, + { + "start": 11148.5, + "end": 11150.16, + "probability": 0.8925 + }, + { + "start": 11150.24, + "end": 11155.16, + "probability": 0.9097 + }, + { + "start": 11155.58, + "end": 11159.44, + "probability": 0.9551 + }, + { + "start": 11160.74, + "end": 11165.24, + "probability": 0.8628 + }, + { + "start": 11166.9, + "end": 11169.28, + "probability": 0.8035 + }, + { + "start": 11170.16, + "end": 11172.88, + "probability": 0.9668 + }, + { + "start": 11173.88, + "end": 11178.56, + "probability": 0.9822 + }, + { + "start": 11179.14, + "end": 11183.52, + "probability": 0.9719 + }, + { + "start": 11183.82, + "end": 11188.24, + "probability": 0.9962 + }, + { + "start": 11188.24, + "end": 11194.94, + "probability": 0.9607 + }, + { + "start": 11195.34, + "end": 11195.62, + "probability": 0.6101 + }, + { + "start": 11195.94, + "end": 11196.46, + "probability": 0.4269 + }, + { + "start": 11196.66, + "end": 11198.78, + "probability": 0.3943 + }, + { + "start": 11198.96, + "end": 11200.04, + "probability": 0.655 + }, + { + "start": 11200.32, + "end": 11201.5, + "probability": 0.9452 + }, + { + "start": 11201.6, + "end": 11204.66, + "probability": 0.951 + }, + { + "start": 11204.7, + "end": 11205.98, + "probability": 0.988 + }, + { + "start": 11206.16, + "end": 11208.49, + "probability": 0.9056 + }, + { + "start": 11208.98, + "end": 11210.62, + "probability": 0.9775 + }, + { + "start": 11210.78, + "end": 11218.46, + "probability": 0.9973 + }, + { + "start": 11219.48, + "end": 11220.2, + "probability": 0.7942 + }, + { + "start": 11220.82, + "end": 11223.46, + "probability": 0.8067 + }, + { + "start": 11223.92, + "end": 11225.92, + "probability": 0.825 + }, + { + "start": 11227.64, + "end": 11230.0, + "probability": 0.998 + }, + { + "start": 11230.68, + "end": 11231.96, + "probability": 0.8076 + }, + { + "start": 11237.72, + "end": 11240.24, + "probability": 0.7071 + }, + { + "start": 11240.82, + "end": 11241.94, + "probability": 0.699 + }, + { + "start": 11242.0, + "end": 11244.2, + "probability": 0.935 + }, + { + "start": 11244.28, + "end": 11245.76, + "probability": 0.9844 + }, + { + "start": 11245.98, + "end": 11247.46, + "probability": 0.7804 + }, + { + "start": 11248.32, + "end": 11251.4, + "probability": 0.9887 + }, + { + "start": 11251.58, + "end": 11256.3, + "probability": 0.6881 + }, + { + "start": 11257.9, + "end": 11259.54, + "probability": 0.572 + }, + { + "start": 11260.32, + "end": 11261.02, + "probability": 0.7198 + }, + { + "start": 11261.14, + "end": 11263.42, + "probability": 0.8744 + }, + { + "start": 11264.12, + "end": 11268.86, + "probability": 0.936 + }, + { + "start": 11269.0, + "end": 11270.42, + "probability": 0.7414 + }, + { + "start": 11270.54, + "end": 11271.3, + "probability": 0.5023 + }, + { + "start": 11271.36, + "end": 11273.38, + "probability": 0.9692 + }, + { + "start": 11273.46, + "end": 11274.68, + "probability": 0.8875 + }, + { + "start": 11274.72, + "end": 11274.74, + "probability": 0.856 + }, + { + "start": 11275.28, + "end": 11276.74, + "probability": 0.5921 + }, + { + "start": 11277.24, + "end": 11280.28, + "probability": 0.9875 + }, + { + "start": 11280.38, + "end": 11284.96, + "probability": 0.7861 + }, + { + "start": 11285.12, + "end": 11286.76, + "probability": 0.8604 + }, + { + "start": 11287.87, + "end": 11291.92, + "probability": 0.9782 + }, + { + "start": 11292.48, + "end": 11296.26, + "probability": 0.8922 + }, + { + "start": 11296.32, + "end": 11296.54, + "probability": 0.658 + }, + { + "start": 11296.88, + "end": 11298.86, + "probability": 0.9604 + }, + { + "start": 11299.9, + "end": 11302.82, + "probability": 0.7285 + }, + { + "start": 11302.82, + "end": 11303.78, + "probability": 0.8469 + }, + { + "start": 11304.52, + "end": 11306.94, + "probability": 0.6744 + }, + { + "start": 11307.56, + "end": 11309.18, + "probability": 0.7611 + }, + { + "start": 11310.27, + "end": 11316.98, + "probability": 0.218 + }, + { + "start": 11331.82, + "end": 11332.0, + "probability": 0.0399 + }, + { + "start": 11332.0, + "end": 11335.22, + "probability": 0.7418 + }, + { + "start": 11336.12, + "end": 11337.26, + "probability": 0.6031 + }, + { + "start": 11338.9, + "end": 11344.46, + "probability": 0.3736 + }, + { + "start": 11345.68, + "end": 11345.88, + "probability": 0.7716 + }, + { + "start": 11347.74, + "end": 11350.58, + "probability": 0.6299 + }, + { + "start": 11351.12, + "end": 11353.26, + "probability": 0.0066 + }, + { + "start": 11356.06, + "end": 11356.76, + "probability": 0.2922 + }, + { + "start": 11357.1, + "end": 11357.78, + "probability": 0.813 + }, + { + "start": 11358.48, + "end": 11359.32, + "probability": 0.5922 + }, + { + "start": 11363.02, + "end": 11369.56, + "probability": 0.669 + }, + { + "start": 11379.52, + "end": 11380.92, + "probability": 0.5175 + }, + { + "start": 11381.4, + "end": 11382.0, + "probability": 0.7936 + }, + { + "start": 11382.48, + "end": 11382.9, + "probability": 0.3008 + }, + { + "start": 11383.52, + "end": 11387.02, + "probability": 0.9569 + }, + { + "start": 11387.3, + "end": 11391.36, + "probability": 0.5938 + }, + { + "start": 11391.76, + "end": 11393.4, + "probability": 0.9373 + }, + { + "start": 11393.44, + "end": 11394.04, + "probability": 0.8912 + }, + { + "start": 11394.56, + "end": 11397.1, + "probability": 0.5605 + }, + { + "start": 11397.2, + "end": 11398.56, + "probability": 0.4803 + }, + { + "start": 11398.92, + "end": 11400.28, + "probability": 0.528 + }, + { + "start": 11415.08, + "end": 11417.56, + "probability": 0.4597 + }, + { + "start": 11417.56, + "end": 11418.54, + "probability": 0.536 + }, + { + "start": 11419.3, + "end": 11421.74, + "probability": 0.3747 + }, + { + "start": 11422.53, + "end": 11428.48, + "probability": 0.7863 + }, + { + "start": 11428.48, + "end": 11434.34, + "probability": 0.7891 + }, + { + "start": 11434.84, + "end": 11436.16, + "probability": 0.9993 + }, + { + "start": 11436.84, + "end": 11437.4, + "probability": 0.9907 + }, + { + "start": 11438.24, + "end": 11442.42, + "probability": 0.8396 + }, + { + "start": 11443.98, + "end": 11450.2, + "probability": 0.6318 + }, + { + "start": 11450.72, + "end": 11454.56, + "probability": 0.6055 + }, + { + "start": 11454.62, + "end": 11455.8, + "probability": 0.6471 + }, + { + "start": 11455.86, + "end": 11457.04, + "probability": 0.9409 + }, + { + "start": 11457.9, + "end": 11460.84, + "probability": 0.3679 + }, + { + "start": 11461.7, + "end": 11461.78, + "probability": 0.2273 + }, + { + "start": 11462.94, + "end": 11464.0, + "probability": 0.7602 + }, + { + "start": 11464.74, + "end": 11469.02, + "probability": 0.5873 + }, + { + "start": 11469.52, + "end": 11469.9, + "probability": 0.5119 + }, + { + "start": 11469.9, + "end": 11469.9, + "probability": 0.4954 + }, + { + "start": 11470.0, + "end": 11473.94, + "probability": 0.5227 + }, + { + "start": 11474.8, + "end": 11477.14, + "probability": 0.941 + }, + { + "start": 11478.06, + "end": 11482.56, + "probability": 0.9971 + }, + { + "start": 11482.62, + "end": 11487.16, + "probability": 0.9957 + }, + { + "start": 11487.34, + "end": 11490.14, + "probability": 0.9924 + }, + { + "start": 11490.9, + "end": 11495.1, + "probability": 0.8787 + }, + { + "start": 11495.46, + "end": 11498.2, + "probability": 0.8679 + }, + { + "start": 11498.96, + "end": 11502.72, + "probability": 0.9054 + }, + { + "start": 11503.66, + "end": 11505.44, + "probability": 0.7354 + }, + { + "start": 11505.8, + "end": 11507.26, + "probability": 0.936 + }, + { + "start": 11507.5, + "end": 11510.14, + "probability": 0.9515 + }, + { + "start": 11510.88, + "end": 11514.16, + "probability": 0.9843 + }, + { + "start": 11514.16, + "end": 11517.46, + "probability": 0.9912 + }, + { + "start": 11517.62, + "end": 11524.04, + "probability": 0.9628 + }, + { + "start": 11524.04, + "end": 11527.14, + "probability": 0.9348 + }, + { + "start": 11527.26, + "end": 11529.96, + "probability": 0.9385 + }, + { + "start": 11530.98, + "end": 11536.32, + "probability": 0.9685 + }, + { + "start": 11536.32, + "end": 11544.3, + "probability": 0.995 + }, + { + "start": 11545.02, + "end": 11546.52, + "probability": 0.743 + }, + { + "start": 11546.6, + "end": 11549.66, + "probability": 0.781 + }, + { + "start": 11549.84, + "end": 11552.38, + "probability": 0.9531 + }, + { + "start": 11553.06, + "end": 11557.14, + "probability": 0.8687 + }, + { + "start": 11557.62, + "end": 11559.2, + "probability": 0.7119 + }, + { + "start": 11559.52, + "end": 11565.04, + "probability": 0.9933 + }, + { + "start": 11565.38, + "end": 11567.62, + "probability": 0.9095 + }, + { + "start": 11568.08, + "end": 11572.08, + "probability": 0.9926 + }, + { + "start": 11572.82, + "end": 11575.21, + "probability": 0.9429 + }, + { + "start": 11576.08, + "end": 11578.16, + "probability": 0.4488 + }, + { + "start": 11578.28, + "end": 11583.34, + "probability": 0.9048 + }, + { + "start": 11583.88, + "end": 11587.77, + "probability": 0.9721 + }, + { + "start": 11587.98, + "end": 11590.14, + "probability": 0.9709 + }, + { + "start": 11590.7, + "end": 11591.24, + "probability": 0.5965 + }, + { + "start": 11591.44, + "end": 11596.24, + "probability": 0.98 + }, + { + "start": 11597.02, + "end": 11598.64, + "probability": 0.2019 + }, + { + "start": 11598.64, + "end": 11600.74, + "probability": 0.5054 + }, + { + "start": 11601.76, + "end": 11608.28, + "probability": 0.859 + }, + { + "start": 11608.68, + "end": 11612.08, + "probability": 0.8569 + }, + { + "start": 11613.18, + "end": 11617.18, + "probability": 0.7596 + }, + { + "start": 11618.14, + "end": 11623.1, + "probability": 0.904 + }, + { + "start": 11623.54, + "end": 11625.24, + "probability": 0.898 + }, + { + "start": 11626.28, + "end": 11632.9, + "probability": 0.8972 + }, + { + "start": 11633.44, + "end": 11639.8, + "probability": 0.9684 + }, + { + "start": 11640.04, + "end": 11640.64, + "probability": 0.6661 + }, + { + "start": 11640.98, + "end": 11641.22, + "probability": 0.6333 + }, + { + "start": 11642.14, + "end": 11642.38, + "probability": 0.4138 + }, + { + "start": 11642.44, + "end": 11645.96, + "probability": 0.9832 + }, + { + "start": 11646.02, + "end": 11648.54, + "probability": 0.9654 + }, + { + "start": 11648.7, + "end": 11649.38, + "probability": 0.1416 + }, + { + "start": 11651.12, + "end": 11657.26, + "probability": 0.9857 + }, + { + "start": 11658.12, + "end": 11658.48, + "probability": 0.3212 + }, + { + "start": 11658.68, + "end": 11662.96, + "probability": 0.8633 + }, + { + "start": 11665.28, + "end": 11668.32, + "probability": 0.9823 + }, + { + "start": 11669.74, + "end": 11673.08, + "probability": 0.8096 + }, + { + "start": 11674.04, + "end": 11676.36, + "probability": 0.7957 + }, + { + "start": 11677.38, + "end": 11678.2, + "probability": 0.723 + }, + { + "start": 11679.42, + "end": 11686.14, + "probability": 0.9258 + }, + { + "start": 11698.32, + "end": 11700.76, + "probability": 0.7021 + }, + { + "start": 11701.88, + "end": 11705.4, + "probability": 0.8894 + }, + { + "start": 11706.32, + "end": 11709.82, + "probability": 0.9771 + }, + { + "start": 11709.98, + "end": 11711.98, + "probability": 0.9414 + }, + { + "start": 11712.64, + "end": 11713.56, + "probability": 0.9836 + }, + { + "start": 11713.74, + "end": 11716.72, + "probability": 0.9619 + }, + { + "start": 11717.88, + "end": 11719.1, + "probability": 0.6354 + }, + { + "start": 11719.3, + "end": 11721.16, + "probability": 0.8921 + }, + { + "start": 11721.32, + "end": 11725.82, + "probability": 0.9707 + }, + { + "start": 11726.48, + "end": 11730.04, + "probability": 0.9622 + }, + { + "start": 11730.46, + "end": 11735.82, + "probability": 0.9756 + }, + { + "start": 11735.82, + "end": 11741.7, + "probability": 0.9642 + }, + { + "start": 11741.7, + "end": 11745.21, + "probability": 0.9951 + }, + { + "start": 11745.54, + "end": 11747.73, + "probability": 0.9948 + }, + { + "start": 11747.92, + "end": 11749.18, + "probability": 0.4207 + }, + { + "start": 11749.82, + "end": 11753.38, + "probability": 0.8738 + }, + { + "start": 11753.38, + "end": 11757.98, + "probability": 0.9989 + }, + { + "start": 11758.7, + "end": 11765.8, + "probability": 0.9963 + }, + { + "start": 11766.42, + "end": 11771.18, + "probability": 0.9847 + }, + { + "start": 11771.34, + "end": 11772.74, + "probability": 0.7051 + }, + { + "start": 11772.82, + "end": 11776.17, + "probability": 0.9863 + }, + { + "start": 11777.2, + "end": 11779.52, + "probability": 0.9972 + }, + { + "start": 11780.16, + "end": 11783.22, + "probability": 0.9721 + }, + { + "start": 11783.44, + "end": 11788.04, + "probability": 0.794 + }, + { + "start": 11788.72, + "end": 11793.3, + "probability": 0.9848 + }, + { + "start": 11793.32, + "end": 11796.04, + "probability": 0.9519 + }, + { + "start": 11796.94, + "end": 11800.56, + "probability": 0.9774 + }, + { + "start": 11801.44, + "end": 11802.5, + "probability": 0.9966 + }, + { + "start": 11805.44, + "end": 11811.06, + "probability": 0.9943 + }, + { + "start": 11812.52, + "end": 11817.48, + "probability": 0.873 + }, + { + "start": 11818.18, + "end": 11820.88, + "probability": 0.699 + }, + { + "start": 11821.42, + "end": 11826.4, + "probability": 0.9717 + }, + { + "start": 11826.96, + "end": 11834.14, + "probability": 0.9849 + }, + { + "start": 11834.56, + "end": 11839.22, + "probability": 0.9958 + }, + { + "start": 11839.34, + "end": 11842.6, + "probability": 0.9956 + }, + { + "start": 11843.06, + "end": 11843.86, + "probability": 0.812 + }, + { + "start": 11844.76, + "end": 11846.32, + "probability": 0.7987 + }, + { + "start": 11846.76, + "end": 11848.26, + "probability": 0.9796 + }, + { + "start": 11848.66, + "end": 11850.08, + "probability": 0.8606 + }, + { + "start": 11850.36, + "end": 11851.83, + "probability": 0.9945 + }, + { + "start": 11852.66, + "end": 11857.56, + "probability": 0.8757 + }, + { + "start": 11857.56, + "end": 11859.2, + "probability": 0.8146 + }, + { + "start": 11860.02, + "end": 11863.96, + "probability": 0.9056 + }, + { + "start": 11864.58, + "end": 11866.28, + "probability": 0.5804 + }, + { + "start": 11866.46, + "end": 11874.12, + "probability": 0.9189 + }, + { + "start": 11874.12, + "end": 11881.18, + "probability": 0.9097 + }, + { + "start": 11882.08, + "end": 11883.66, + "probability": 0.712 + }, + { + "start": 11885.22, + "end": 11887.26, + "probability": 0.9361 + }, + { + "start": 11887.76, + "end": 11890.64, + "probability": 0.9053 + }, + { + "start": 11890.78, + "end": 11894.64, + "probability": 0.8334 + }, + { + "start": 11895.08, + "end": 11895.88, + "probability": 0.8461 + }, + { + "start": 11896.04, + "end": 11901.24, + "probability": 0.918 + }, + { + "start": 11902.3, + "end": 11906.02, + "probability": 0.8799 + }, + { + "start": 11906.18, + "end": 11911.54, + "probability": 0.9918 + }, + { + "start": 11912.06, + "end": 11915.6, + "probability": 0.9941 + }, + { + "start": 11916.08, + "end": 11916.32, + "probability": 0.3529 + }, + { + "start": 11916.48, + "end": 11917.58, + "probability": 0.9271 + }, + { + "start": 11918.88, + "end": 11920.38, + "probability": 0.7227 + }, + { + "start": 11920.62, + "end": 11924.42, + "probability": 0.9788 + }, + { + "start": 11924.48, + "end": 11924.84, + "probability": 0.4752 + }, + { + "start": 11924.9, + "end": 11926.04, + "probability": 0.9103 + }, + { + "start": 11926.1, + "end": 11928.96, + "probability": 0.5338 + }, + { + "start": 11929.64, + "end": 11931.0, + "probability": 0.0793 + }, + { + "start": 11931.56, + "end": 11932.36, + "probability": 0.9076 + }, + { + "start": 11933.1, + "end": 11933.18, + "probability": 0.0779 + }, + { + "start": 11933.18, + "end": 11933.54, + "probability": 0.4502 + }, + { + "start": 11933.54, + "end": 11934.1, + "probability": 0.4475 + }, + { + "start": 11934.66, + "end": 11937.24, + "probability": 0.6205 + }, + { + "start": 11937.42, + "end": 11939.74, + "probability": 0.0581 + }, + { + "start": 11940.14, + "end": 11940.4, + "probability": 0.5552 + }, + { + "start": 11940.82, + "end": 11944.0, + "probability": 0.978 + }, + { + "start": 11944.74, + "end": 11948.5, + "probability": 0.9487 + }, + { + "start": 11948.84, + "end": 11951.32, + "probability": 0.9905 + }, + { + "start": 11952.0, + "end": 11952.92, + "probability": 0.8882 + }, + { + "start": 11953.08, + "end": 11955.1, + "probability": 0.9133 + }, + { + "start": 11974.61, + "end": 11980.94, + "probability": 0.2157 + }, + { + "start": 11981.56, + "end": 11985.46, + "probability": 0.7711 + }, + { + "start": 11985.72, + "end": 11987.26, + "probability": 0.1794 + }, + { + "start": 11987.66, + "end": 11990.6, + "probability": 0.6326 + }, + { + "start": 11990.9, + "end": 11993.72, + "probability": 0.2508 + }, + { + "start": 11994.34, + "end": 11994.96, + "probability": 0.0522 + }, + { + "start": 11995.4, + "end": 11997.88, + "probability": 0.082 + }, + { + "start": 11997.88, + "end": 11997.88, + "probability": 0.045 + }, + { + "start": 11997.88, + "end": 12005.16, + "probability": 0.1569 + }, + { + "start": 12007.91, + "end": 12009.66, + "probability": 0.04 + }, + { + "start": 12011.28, + "end": 12013.48, + "probability": 0.083 + }, + { + "start": 12014.12, + "end": 12015.84, + "probability": 0.2407 + }, + { + "start": 12015.84, + "end": 12018.64, + "probability": 0.2092 + }, + { + "start": 12018.64, + "end": 12020.06, + "probability": 0.2135 + }, + { + "start": 12023.94, + "end": 12026.74, + "probability": 0.0315 + }, + { + "start": 12026.88, + "end": 12026.98, + "probability": 0.0314 + }, + { + "start": 12027.0, + "end": 12027.0, + "probability": 0.0 + }, + { + "start": 12027.0, + "end": 12027.0, + "probability": 0.0 + }, + { + "start": 12027.0, + "end": 12027.0, + "probability": 0.0 + }, + { + "start": 12027.0, + "end": 12027.0, + "probability": 0.0 + }, + { + "start": 12027.0, + "end": 12027.0, + "probability": 0.0 + }, + { + "start": 12027.0, + "end": 12027.0, + "probability": 0.0 + }, + { + "start": 12027.3, + "end": 12028.32, + "probability": 0.3932 + }, + { + "start": 12028.32, + "end": 12028.32, + "probability": 0.2438 + }, + { + "start": 12028.32, + "end": 12028.34, + "probability": 0.2071 + }, + { + "start": 12028.34, + "end": 12028.43, + "probability": 0.2277 + }, + { + "start": 12028.8, + "end": 12029.73, + "probability": 0.1906 + }, + { + "start": 12030.36, + "end": 12030.6, + "probability": 0.7648 + }, + { + "start": 12031.14, + "end": 12036.14, + "probability": 0.957 + }, + { + "start": 12036.22, + "end": 12037.98, + "probability": 0.9932 + }, + { + "start": 12039.12, + "end": 12042.96, + "probability": 0.9875 + }, + { + "start": 12043.1, + "end": 12044.24, + "probability": 0.8083 + }, + { + "start": 12044.82, + "end": 12047.4, + "probability": 0.7383 + }, + { + "start": 12047.44, + "end": 12052.24, + "probability": 0.8324 + }, + { + "start": 12053.26, + "end": 12055.18, + "probability": 0.8436 + }, + { + "start": 12055.8, + "end": 12057.58, + "probability": 0.9786 + }, + { + "start": 12058.38, + "end": 12059.92, + "probability": 0.857 + }, + { + "start": 12061.06, + "end": 12062.04, + "probability": 0.8439 + }, + { + "start": 12062.36, + "end": 12066.02, + "probability": 0.8289 + }, + { + "start": 12066.46, + "end": 12068.36, + "probability": 0.9463 + }, + { + "start": 12068.5, + "end": 12069.56, + "probability": 0.8577 + }, + { + "start": 12070.32, + "end": 12075.72, + "probability": 0.9694 + }, + { + "start": 12076.54, + "end": 12079.78, + "probability": 0.6884 + }, + { + "start": 12080.32, + "end": 12081.24, + "probability": 0.9869 + }, + { + "start": 12082.04, + "end": 12085.56, + "probability": 0.6844 + }, + { + "start": 12086.82, + "end": 12090.42, + "probability": 0.706 + }, + { + "start": 12090.66, + "end": 12095.8, + "probability": 0.8879 + }, + { + "start": 12096.22, + "end": 12100.52, + "probability": 0.9407 + }, + { + "start": 12101.82, + "end": 12102.06, + "probability": 0.7575 + }, + { + "start": 12103.02, + "end": 12104.7, + "probability": 0.982 + }, + { + "start": 12106.18, + "end": 12110.46, + "probability": 0.9092 + }, + { + "start": 12110.46, + "end": 12110.56, + "probability": 0.0003 + }, + { + "start": 12111.32, + "end": 12113.36, + "probability": 0.6653 + }, + { + "start": 12113.38, + "end": 12116.46, + "probability": 0.9932 + }, + { + "start": 12116.54, + "end": 12118.36, + "probability": 0.8042 + }, + { + "start": 12118.44, + "end": 12120.9, + "probability": 0.986 + }, + { + "start": 12120.96, + "end": 12121.8, + "probability": 0.8725 + }, + { + "start": 12122.5, + "end": 12124.2, + "probability": 0.9662 + }, + { + "start": 12124.2, + "end": 12127.32, + "probability": 0.0737 + }, + { + "start": 12127.32, + "end": 12127.68, + "probability": 0.6736 + }, + { + "start": 12128.52, + "end": 12128.82, + "probability": 0.763 + }, + { + "start": 12128.96, + "end": 12130.4, + "probability": 0.7738 + }, + { + "start": 12130.78, + "end": 12132.45, + "probability": 0.9468 + }, + { + "start": 12133.12, + "end": 12133.64, + "probability": 0.9257 + }, + { + "start": 12134.4, + "end": 12135.54, + "probability": 0.9118 + }, + { + "start": 12136.98, + "end": 12139.42, + "probability": 0.9453 + }, + { + "start": 12139.92, + "end": 12140.29, + "probability": 0.8911 + }, + { + "start": 12140.48, + "end": 12141.18, + "probability": 0.8612 + }, + { + "start": 12141.48, + "end": 12142.06, + "probability": 0.5881 + }, + { + "start": 12142.36, + "end": 12143.45, + "probability": 0.6272 + }, + { + "start": 12144.76, + "end": 12148.94, + "probability": 0.9398 + }, + { + "start": 12149.82, + "end": 12150.14, + "probability": 0.8902 + }, + { + "start": 12151.62, + "end": 12157.88, + "probability": 0.9988 + }, + { + "start": 12158.68, + "end": 12161.06, + "probability": 0.9715 + }, + { + "start": 12162.92, + "end": 12163.26, + "probability": 0.9257 + }, + { + "start": 12163.94, + "end": 12164.34, + "probability": 0.7865 + }, + { + "start": 12165.58, + "end": 12169.04, + "probability": 0.7495 + }, + { + "start": 12169.94, + "end": 12170.41, + "probability": 0.8646 + }, + { + "start": 12170.84, + "end": 12174.24, + "probability": 0.9164 + }, + { + "start": 12175.62, + "end": 12178.82, + "probability": 0.8371 + }, + { + "start": 12179.74, + "end": 12180.78, + "probability": 0.5495 + }, + { + "start": 12181.48, + "end": 12181.94, + "probability": 0.7202 + }, + { + "start": 12182.66, + "end": 12183.52, + "probability": 0.8238 + }, + { + "start": 12184.4, + "end": 12187.6, + "probability": 0.9673 + }, + { + "start": 12188.48, + "end": 12192.24, + "probability": 0.9609 + }, + { + "start": 12193.28, + "end": 12194.4, + "probability": 0.7402 + }, + { + "start": 12195.18, + "end": 12197.1, + "probability": 0.9732 + }, + { + "start": 12197.92, + "end": 12198.1, + "probability": 0.9855 + }, + { + "start": 12199.4, + "end": 12200.2, + "probability": 0.8775 + }, + { + "start": 12200.88, + "end": 12203.48, + "probability": 0.9952 + }, + { + "start": 12203.76, + "end": 12206.18, + "probability": 0.8765 + }, + { + "start": 12207.66, + "end": 12209.84, + "probability": 0.9765 + }, + { + "start": 12211.22, + "end": 12213.86, + "probability": 0.9385 + }, + { + "start": 12214.44, + "end": 12216.3, + "probability": 0.8277 + }, + { + "start": 12217.66, + "end": 12221.1, + "probability": 0.8438 + }, + { + "start": 12221.74, + "end": 12223.04, + "probability": 0.9331 + }, + { + "start": 12223.64, + "end": 12224.7, + "probability": 0.8376 + }, + { + "start": 12225.66, + "end": 12226.34, + "probability": 0.6211 + }, + { + "start": 12227.1, + "end": 12229.32, + "probability": 0.9668 + }, + { + "start": 12229.96, + "end": 12231.06, + "probability": 0.939 + }, + { + "start": 12231.82, + "end": 12232.32, + "probability": 0.7285 + }, + { + "start": 12232.82, + "end": 12234.34, + "probability": 0.8614 + }, + { + "start": 12235.44, + "end": 12236.84, + "probability": 0.8519 + }, + { + "start": 12238.12, + "end": 12239.04, + "probability": 0.6815 + }, + { + "start": 12239.08, + "end": 12240.36, + "probability": 0.8645 + }, + { + "start": 12240.44, + "end": 12240.96, + "probability": 0.7917 + }, + { + "start": 12241.1, + "end": 12241.58, + "probability": 0.8913 + }, + { + "start": 12242.34, + "end": 12242.88, + "probability": 0.8125 + }, + { + "start": 12243.44, + "end": 12243.85, + "probability": 0.8425 + }, + { + "start": 12245.06, + "end": 12245.72, + "probability": 0.8377 + }, + { + "start": 12246.0, + "end": 12246.52, + "probability": 0.917 + }, + { + "start": 12247.04, + "end": 12247.58, + "probability": 0.9069 + }, + { + "start": 12249.38, + "end": 12250.7, + "probability": 0.9521 + }, + { + "start": 12251.18, + "end": 12252.78, + "probability": 0.7189 + }, + { + "start": 12253.18, + "end": 12253.44, + "probability": 0.8429 + }, + { + "start": 12253.72, + "end": 12254.63, + "probability": 0.9579 + }, + { + "start": 12255.14, + "end": 12256.94, + "probability": 0.8928 + }, + { + "start": 12257.74, + "end": 12259.22, + "probability": 0.9027 + }, + { + "start": 12260.26, + "end": 12264.76, + "probability": 0.8829 + }, + { + "start": 12266.16, + "end": 12268.04, + "probability": 0.9922 + }, + { + "start": 12269.0, + "end": 12274.52, + "probability": 0.9836 + }, + { + "start": 12274.86, + "end": 12276.73, + "probability": 0.5089 + }, + { + "start": 12277.3, + "end": 12277.86, + "probability": 0.9057 + }, + { + "start": 12278.42, + "end": 12279.16, + "probability": 0.7383 + }, + { + "start": 12280.1, + "end": 12282.22, + "probability": 0.9938 + }, + { + "start": 12283.96, + "end": 12284.46, + "probability": 0.9881 + }, + { + "start": 12285.56, + "end": 12287.88, + "probability": 0.9741 + }, + { + "start": 12289.46, + "end": 12291.42, + "probability": 0.5643 + }, + { + "start": 12292.0, + "end": 12294.82, + "probability": 0.8617 + }, + { + "start": 12295.62, + "end": 12297.8, + "probability": 0.8521 + }, + { + "start": 12299.46, + "end": 12301.26, + "probability": 0.9866 + }, + { + "start": 12302.56, + "end": 12303.44, + "probability": 0.8271 + }, + { + "start": 12303.5, + "end": 12306.02, + "probability": 0.9797 + }, + { + "start": 12306.7, + "end": 12308.42, + "probability": 0.6295 + }, + { + "start": 12309.6, + "end": 12315.24, + "probability": 0.913 + }, + { + "start": 12315.62, + "end": 12316.4, + "probability": 0.9434 + }, + { + "start": 12317.58, + "end": 12318.84, + "probability": 0.9941 + }, + { + "start": 12319.82, + "end": 12320.48, + "probability": 0.8917 + }, + { + "start": 12321.16, + "end": 12321.84, + "probability": 0.9864 + }, + { + "start": 12322.46, + "end": 12327.44, + "probability": 0.9961 + }, + { + "start": 12328.16, + "end": 12330.64, + "probability": 0.8317 + }, + { + "start": 12331.06, + "end": 12333.22, + "probability": 0.8656 + }, + { + "start": 12336.36, + "end": 12340.05, + "probability": 0.9938 + }, + { + "start": 12340.78, + "end": 12342.04, + "probability": 0.6641 + }, + { + "start": 12342.56, + "end": 12343.54, + "probability": 0.8921 + }, + { + "start": 12343.6, + "end": 12344.9, + "probability": 0.8378 + }, + { + "start": 12345.86, + "end": 12346.98, + "probability": 0.6518 + }, + { + "start": 12347.56, + "end": 12348.36, + "probability": 0.9502 + }, + { + "start": 12348.48, + "end": 12350.06, + "probability": 0.993 + }, + { + "start": 12350.78, + "end": 12352.24, + "probability": 0.9573 + }, + { + "start": 12352.7, + "end": 12353.98, + "probability": 0.5848 + }, + { + "start": 12353.98, + "end": 12354.74, + "probability": 0.7539 + }, + { + "start": 12354.86, + "end": 12354.98, + "probability": 0.0567 + }, + { + "start": 12355.0, + "end": 12360.02, + "probability": 0.883 + }, + { + "start": 12360.02, + "end": 12362.9, + "probability": 0.9583 + }, + { + "start": 12363.52, + "end": 12368.26, + "probability": 0.8498 + }, + { + "start": 12368.7, + "end": 12368.94, + "probability": 0.5635 + }, + { + "start": 12369.88, + "end": 12373.62, + "probability": 0.9546 + }, + { + "start": 12374.5, + "end": 12375.0, + "probability": 0.7668 + }, + { + "start": 12376.72, + "end": 12377.38, + "probability": 0.8397 + }, + { + "start": 12377.6, + "end": 12378.18, + "probability": 0.6788 + }, + { + "start": 12378.22, + "end": 12378.63, + "probability": 0.0519 + }, + { + "start": 12380.26, + "end": 12381.56, + "probability": 0.9662 + }, + { + "start": 12382.62, + "end": 12385.38, + "probability": 0.9879 + }, + { + "start": 12386.44, + "end": 12387.54, + "probability": 0.5427 + }, + { + "start": 12387.76, + "end": 12388.44, + "probability": 0.6084 + }, + { + "start": 12388.94, + "end": 12390.62, + "probability": 0.6786 + }, + { + "start": 12390.75, + "end": 12392.66, + "probability": 0.9482 + }, + { + "start": 12393.02, + "end": 12396.4, + "probability": 0.671 + }, + { + "start": 12397.16, + "end": 12398.04, + "probability": 0.9471 + }, + { + "start": 12398.28, + "end": 12399.3, + "probability": 0.5605 + }, + { + "start": 12399.48, + "end": 12400.2, + "probability": 0.8226 + }, + { + "start": 12401.02, + "end": 12405.7, + "probability": 0.8615 + }, + { + "start": 12406.44, + "end": 12408.98, + "probability": 0.4773 + }, + { + "start": 12409.6, + "end": 12411.98, + "probability": 0.8102 + }, + { + "start": 12412.82, + "end": 12413.36, + "probability": 0.8035 + }, + { + "start": 12414.32, + "end": 12415.26, + "probability": 0.7793 + }, + { + "start": 12415.76, + "end": 12418.5, + "probability": 0.988 + }, + { + "start": 12419.24, + "end": 12420.68, + "probability": 0.98 + }, + { + "start": 12421.22, + "end": 12423.7, + "probability": 0.9354 + }, + { + "start": 12424.16, + "end": 12426.36, + "probability": 0.9084 + }, + { + "start": 12426.36, + "end": 12427.4, + "probability": 0.7933 + }, + { + "start": 12427.62, + "end": 12429.14, + "probability": 0.7578 + }, + { + "start": 12429.26, + "end": 12431.08, + "probability": 0.96 + }, + { + "start": 12431.2, + "end": 12433.15, + "probability": 0.8337 + }, + { + "start": 12433.8, + "end": 12435.54, + "probability": 0.9038 + }, + { + "start": 12436.56, + "end": 12440.34, + "probability": 0.7706 + }, + { + "start": 12441.16, + "end": 12444.42, + "probability": 0.9634 + }, + { + "start": 12446.82, + "end": 12448.28, + "probability": 0.9917 + }, + { + "start": 12448.7, + "end": 12449.6, + "probability": 0.8711 + }, + { + "start": 12450.28, + "end": 12453.8, + "probability": 0.9508 + }, + { + "start": 12454.28, + "end": 12454.7, + "probability": 0.4911 + }, + { + "start": 12454.76, + "end": 12455.84, + "probability": 0.7595 + }, + { + "start": 12457.3, + "end": 12460.32, + "probability": 0.9775 + }, + { + "start": 12461.98, + "end": 12463.82, + "probability": 0.9342 + }, + { + "start": 12464.58, + "end": 12465.26, + "probability": 0.8672 + }, + { + "start": 12466.02, + "end": 12466.96, + "probability": 0.8077 + }, + { + "start": 12468.36, + "end": 12469.36, + "probability": 0.972 + }, + { + "start": 12470.2, + "end": 12472.2, + "probability": 0.9222 + }, + { + "start": 12472.94, + "end": 12475.22, + "probability": 0.9313 + }, + { + "start": 12475.56, + "end": 12477.6, + "probability": 0.6688 + }, + { + "start": 12478.06, + "end": 12480.74, + "probability": 0.8678 + }, + { + "start": 12480.84, + "end": 12482.71, + "probability": 0.8628 + }, + { + "start": 12483.58, + "end": 12485.56, + "probability": 0.9959 + }, + { + "start": 12486.52, + "end": 12488.18, + "probability": 0.9919 + }, + { + "start": 12491.16, + "end": 12494.24, + "probability": 0.9862 + }, + { + "start": 12494.8, + "end": 12495.2, + "probability": 0.5812 + }, + { + "start": 12496.0, + "end": 12498.12, + "probability": 0.9442 + }, + { + "start": 12499.62, + "end": 12501.58, + "probability": 0.9828 + }, + { + "start": 12502.5, + "end": 12503.32, + "probability": 0.7926 + }, + { + "start": 12504.5, + "end": 12505.94, + "probability": 0.9367 + }, + { + "start": 12506.94, + "end": 12507.96, + "probability": 0.931 + }, + { + "start": 12508.34, + "end": 12513.74, + "probability": 0.9857 + }, + { + "start": 12514.24, + "end": 12515.16, + "probability": 0.9448 + }, + { + "start": 12516.48, + "end": 12518.72, + "probability": 0.9448 + }, + { + "start": 12519.54, + "end": 12521.44, + "probability": 0.9795 + }, + { + "start": 12521.64, + "end": 12523.86, + "probability": 0.9676 + }, + { + "start": 12525.08, + "end": 12526.22, + "probability": 0.9801 + }, + { + "start": 12527.08, + "end": 12529.62, + "probability": 0.0902 + }, + { + "start": 12530.26, + "end": 12532.1, + "probability": 0.788 + }, + { + "start": 12533.02, + "end": 12534.48, + "probability": 0.9729 + }, + { + "start": 12535.14, + "end": 12538.4, + "probability": 0.9932 + }, + { + "start": 12538.46, + "end": 12539.06, + "probability": 0.8607 + }, + { + "start": 12539.24, + "end": 12539.62, + "probability": 0.7786 + }, + { + "start": 12540.68, + "end": 12541.34, + "probability": 0.3158 + }, + { + "start": 12547.06, + "end": 12547.94, + "probability": 0.0497 + }, + { + "start": 12547.94, + "end": 12550.38, + "probability": 0.6033 + }, + { + "start": 12551.36, + "end": 12554.14, + "probability": 0.7344 + }, + { + "start": 12555.3, + "end": 12560.62, + "probability": 0.2737 + }, + { + "start": 12561.32, + "end": 12563.38, + "probability": 0.8721 + }, + { + "start": 12564.8, + "end": 12566.78, + "probability": 0.7188 + }, + { + "start": 12568.68, + "end": 12568.8, + "probability": 0.0175 + }, + { + "start": 12572.62, + "end": 12573.96, + "probability": 0.514 + }, + { + "start": 12574.2, + "end": 12574.44, + "probability": 0.2677 + }, + { + "start": 12574.44, + "end": 12575.21, + "probability": 0.3537 + }, + { + "start": 12576.94, + "end": 12577.34, + "probability": 0.9461 + }, + { + "start": 12577.46, + "end": 12578.7, + "probability": 0.8177 + }, + { + "start": 12579.1, + "end": 12583.98, + "probability": 0.1508 + }, + { + "start": 12585.98, + "end": 12590.42, + "probability": 0.3378 + }, + { + "start": 12591.08, + "end": 12594.3, + "probability": 0.1077 + }, + { + "start": 12594.62, + "end": 12594.99, + "probability": 0.1793 + }, + { + "start": 12595.9, + "end": 12596.28, + "probability": 0.0522 + }, + { + "start": 12598.6, + "end": 12599.46, + "probability": 0.6644 + }, + { + "start": 12599.6, + "end": 12601.9, + "probability": 0.0747 + }, + { + "start": 12602.04, + "end": 12603.04, + "probability": 0.2024 + }, + { + "start": 12603.8, + "end": 12605.82, + "probability": 0.5533 + }, + { + "start": 12605.82, + "end": 12607.56, + "probability": 0.6217 + }, + { + "start": 12609.68, + "end": 12610.82, + "probability": 0.7263 + }, + { + "start": 12610.9, + "end": 12611.92, + "probability": 0.4971 + }, + { + "start": 12612.0, + "end": 12613.6, + "probability": 0.7915 + }, + { + "start": 12613.84, + "end": 12614.82, + "probability": 0.6776 + }, + { + "start": 12615.58, + "end": 12622.18, + "probability": 0.7848 + }, + { + "start": 12622.32, + "end": 12624.42, + "probability": 0.0852 + }, + { + "start": 12624.86, + "end": 12626.34, + "probability": 0.7329 + }, + { + "start": 12629.2, + "end": 12633.54, + "probability": 0.6409 + }, + { + "start": 12633.62, + "end": 12638.22, + "probability": 0.7336 + }, + { + "start": 12638.77, + "end": 12641.84, + "probability": 0.6119 + }, + { + "start": 12641.88, + "end": 12642.02, + "probability": 0.762 + }, + { + "start": 12643.22, + "end": 12645.14, + "probability": 0.5581 + }, + { + "start": 12647.82, + "end": 12648.14, + "probability": 0.1397 + }, + { + "start": 12648.14, + "end": 12648.3, + "probability": 0.154 + }, + { + "start": 12649.14, + "end": 12650.8, + "probability": 0.9045 + }, + { + "start": 12651.36, + "end": 12652.0, + "probability": 0.8186 + }, + { + "start": 12652.72, + "end": 12654.34, + "probability": 0.4335 + }, + { + "start": 12656.06, + "end": 12658.52, + "probability": 0.7498 + }, + { + "start": 12659.58, + "end": 12663.88, + "probability": 0.6762 + }, + { + "start": 12679.28, + "end": 12679.44, + "probability": 0.0087 + } + ], + "segments_count": 4340, + "words_count": 21379, + "avg_words_per_segment": 4.926, + "avg_segment_duration": 2.093, + "avg_words_per_minute": 100.3152, + "plenum_id": "11542", + "duration": 12787.09, + "title": null, + "plenum_date": "2011-01-11" +} \ No newline at end of file