diff --git "a/115913/metadata.json" "b/115913/metadata.json" new file mode 100644--- /dev/null +++ "b/115913/metadata.json" @@ -0,0 +1,15792 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "115913", + "quality_score": 0.8263, + "per_segment_quality_scores": [ + { + "start": 0.1, + "end": 2.1, + "probability": 0.0554 + }, + { + "start": 2.1, + "end": 2.76, + "probability": 0.1179 + }, + { + "start": 4.7, + "end": 5.72, + "probability": 0.0302 + }, + { + "start": 64.64, + "end": 65.52, + "probability": 0.2228 + }, + { + "start": 65.86, + "end": 66.64, + "probability": 0.7392 + }, + { + "start": 67.8, + "end": 71.06, + "probability": 0.7677 + }, + { + "start": 71.72, + "end": 75.18, + "probability": 0.9849 + }, + { + "start": 75.18, + "end": 78.62, + "probability": 0.9878 + }, + { + "start": 78.76, + "end": 80.04, + "probability": 0.6477 + }, + { + "start": 81.62, + "end": 83.1, + "probability": 0.8555 + }, + { + "start": 83.34, + "end": 85.33, + "probability": 0.4039 + }, + { + "start": 86.02, + "end": 88.18, + "probability": 0.7756 + }, + { + "start": 88.94, + "end": 90.18, + "probability": 0.9928 + }, + { + "start": 100.1, + "end": 101.3, + "probability": 0.8392 + }, + { + "start": 101.84, + "end": 102.98, + "probability": 0.8228 + }, + { + "start": 104.82, + "end": 106.86, + "probability": 0.702 + }, + { + "start": 107.48, + "end": 108.41, + "probability": 0.9954 + }, + { + "start": 109.88, + "end": 111.4, + "probability": 0.9729 + }, + { + "start": 112.24, + "end": 113.18, + "probability": 0.9877 + }, + { + "start": 114.4, + "end": 115.84, + "probability": 0.8696 + }, + { + "start": 116.56, + "end": 118.88, + "probability": 0.7607 + }, + { + "start": 119.9, + "end": 120.94, + "probability": 0.7443 + }, + { + "start": 121.02, + "end": 122.18, + "probability": 0.9233 + }, + { + "start": 122.24, + "end": 123.52, + "probability": 0.9738 + }, + { + "start": 125.48, + "end": 126.08, + "probability": 0.7015 + }, + { + "start": 126.34, + "end": 127.52, + "probability": 0.1781 + }, + { + "start": 127.96, + "end": 130.1, + "probability": 0.9626 + }, + { + "start": 131.8, + "end": 132.48, + "probability": 0.6177 + }, + { + "start": 135.48, + "end": 140.16, + "probability": 0.8503 + }, + { + "start": 140.76, + "end": 141.94, + "probability": 0.8504 + }, + { + "start": 142.28, + "end": 144.18, + "probability": 0.6306 + }, + { + "start": 145.04, + "end": 148.22, + "probability": 0.9593 + }, + { + "start": 148.22, + "end": 152.4, + "probability": 0.8418 + }, + { + "start": 152.42, + "end": 153.92, + "probability": 0.6477 + }, + { + "start": 154.48, + "end": 155.2, + "probability": 0.675 + }, + { + "start": 155.3, + "end": 157.26, + "probability": 0.6758 + }, + { + "start": 157.26, + "end": 159.44, + "probability": 0.4108 + }, + { + "start": 159.44, + "end": 160.38, + "probability": 0.7125 + }, + { + "start": 160.94, + "end": 162.62, + "probability": 0.7543 + }, + { + "start": 162.66, + "end": 164.24, + "probability": 0.7536 + }, + { + "start": 164.58, + "end": 165.72, + "probability": 0.9657 + }, + { + "start": 165.86, + "end": 166.28, + "probability": 0.9781 + }, + { + "start": 166.4, + "end": 166.98, + "probability": 0.4674 + }, + { + "start": 167.66, + "end": 171.62, + "probability": 0.8955 + }, + { + "start": 171.72, + "end": 174.38, + "probability": 0.9956 + }, + { + "start": 175.0, + "end": 177.6, + "probability": 0.8698 + }, + { + "start": 177.7, + "end": 179.52, + "probability": 0.9908 + }, + { + "start": 179.52, + "end": 182.06, + "probability": 0.9915 + }, + { + "start": 182.08, + "end": 185.06, + "probability": 0.8531 + }, + { + "start": 185.12, + "end": 186.38, + "probability": 0.3322 + }, + { + "start": 186.98, + "end": 188.6, + "probability": 0.7349 + }, + { + "start": 188.62, + "end": 188.94, + "probability": 0.4209 + }, + { + "start": 188.98, + "end": 192.94, + "probability": 0.8005 + }, + { + "start": 193.0, + "end": 194.94, + "probability": 0.9829 + }, + { + "start": 194.94, + "end": 198.7, + "probability": 0.9269 + }, + { + "start": 198.78, + "end": 201.74, + "probability": 0.826 + }, + { + "start": 201.74, + "end": 205.44, + "probability": 0.9882 + }, + { + "start": 206.22, + "end": 208.66, + "probability": 0.8305 + }, + { + "start": 209.21, + "end": 211.28, + "probability": 0.8848 + }, + { + "start": 211.36, + "end": 212.69, + "probability": 0.6646 + }, + { + "start": 213.3, + "end": 215.36, + "probability": 0.8722 + }, + { + "start": 215.38, + "end": 217.86, + "probability": 0.897 + }, + { + "start": 217.94, + "end": 219.92, + "probability": 0.8146 + }, + { + "start": 220.66, + "end": 223.02, + "probability": 0.9916 + }, + { + "start": 223.02, + "end": 225.38, + "probability": 0.9987 + }, + { + "start": 225.58, + "end": 227.16, + "probability": 0.8352 + }, + { + "start": 227.72, + "end": 230.72, + "probability": 0.985 + }, + { + "start": 231.18, + "end": 231.94, + "probability": 0.7697 + }, + { + "start": 232.14, + "end": 235.18, + "probability": 0.9461 + }, + { + "start": 235.18, + "end": 238.92, + "probability": 0.9945 + }, + { + "start": 240.24, + "end": 243.2, + "probability": 0.9125 + }, + { + "start": 243.36, + "end": 247.12, + "probability": 0.9113 + }, + { + "start": 247.12, + "end": 250.7, + "probability": 0.7323 + }, + { + "start": 250.76, + "end": 251.3, + "probability": 0.5295 + }, + { + "start": 251.88, + "end": 253.5, + "probability": 0.699 + }, + { + "start": 253.66, + "end": 256.56, + "probability": 0.9136 + }, + { + "start": 256.56, + "end": 260.94, + "probability": 0.9584 + }, + { + "start": 261.38, + "end": 266.72, + "probability": 0.7446 + }, + { + "start": 266.82, + "end": 267.32, + "probability": 0.4339 + }, + { + "start": 267.4, + "end": 267.52, + "probability": 0.1663 + }, + { + "start": 267.6, + "end": 267.88, + "probability": 0.6896 + }, + { + "start": 267.9, + "end": 268.64, + "probability": 0.7354 + }, + { + "start": 268.7, + "end": 271.46, + "probability": 0.8783 + }, + { + "start": 271.56, + "end": 273.94, + "probability": 0.8272 + }, + { + "start": 274.04, + "end": 274.86, + "probability": 0.4711 + }, + { + "start": 274.96, + "end": 275.58, + "probability": 0.7212 + }, + { + "start": 275.62, + "end": 276.36, + "probability": 0.6626 + }, + { + "start": 276.52, + "end": 277.18, + "probability": 0.8306 + }, + { + "start": 277.68, + "end": 278.8, + "probability": 0.9375 + }, + { + "start": 279.2, + "end": 283.36, + "probability": 0.7312 + }, + { + "start": 283.5, + "end": 283.84, + "probability": 0.9832 + }, + { + "start": 283.98, + "end": 284.76, + "probability": 0.9772 + }, + { + "start": 285.08, + "end": 285.72, + "probability": 0.801 + }, + { + "start": 285.76, + "end": 286.86, + "probability": 0.8689 + }, + { + "start": 287.28, + "end": 289.52, + "probability": 0.852 + }, + { + "start": 289.94, + "end": 293.82, + "probability": 0.9873 + }, + { + "start": 293.9, + "end": 294.3, + "probability": 0.8365 + }, + { + "start": 295.04, + "end": 295.44, + "probability": 0.2952 + }, + { + "start": 295.76, + "end": 296.9, + "probability": 0.7035 + }, + { + "start": 296.92, + "end": 301.62, + "probability": 0.985 + }, + { + "start": 302.2, + "end": 303.98, + "probability": 0.6815 + }, + { + "start": 304.6, + "end": 309.09, + "probability": 0.9495 + }, + { + "start": 309.54, + "end": 312.84, + "probability": 0.9479 + }, + { + "start": 313.68, + "end": 315.2, + "probability": 0.9771 + }, + { + "start": 315.38, + "end": 317.66, + "probability": 0.9844 + }, + { + "start": 317.88, + "end": 321.18, + "probability": 0.7631 + }, + { + "start": 321.84, + "end": 323.92, + "probability": 0.9512 + }, + { + "start": 324.42, + "end": 325.8, + "probability": 0.8781 + }, + { + "start": 325.86, + "end": 329.14, + "probability": 0.9553 + }, + { + "start": 329.2, + "end": 333.28, + "probability": 0.6812 + }, + { + "start": 333.42, + "end": 338.28, + "probability": 0.9736 + }, + { + "start": 338.28, + "end": 338.66, + "probability": 0.6674 + }, + { + "start": 338.88, + "end": 340.76, + "probability": 0.9858 + }, + { + "start": 340.78, + "end": 342.94, + "probability": 0.9919 + }, + { + "start": 343.46, + "end": 346.54, + "probability": 0.9824 + }, + { + "start": 346.96, + "end": 350.14, + "probability": 0.9735 + }, + { + "start": 350.22, + "end": 351.16, + "probability": 0.9556 + }, + { + "start": 351.84, + "end": 356.12, + "probability": 0.9907 + }, + { + "start": 356.32, + "end": 360.14, + "probability": 0.8755 + }, + { + "start": 360.22, + "end": 362.96, + "probability": 0.8853 + }, + { + "start": 362.96, + "end": 364.88, + "probability": 0.9915 + }, + { + "start": 365.46, + "end": 368.02, + "probability": 0.9748 + }, + { + "start": 368.02, + "end": 371.56, + "probability": 0.9954 + }, + { + "start": 371.56, + "end": 373.24, + "probability": 0.8685 + }, + { + "start": 373.32, + "end": 374.52, + "probability": 0.8378 + }, + { + "start": 375.1, + "end": 376.82, + "probability": 0.9019 + }, + { + "start": 376.88, + "end": 378.5, + "probability": 0.6986 + }, + { + "start": 378.6, + "end": 380.9, + "probability": 0.9757 + }, + { + "start": 382.24, + "end": 383.08, + "probability": 0.4478 + }, + { + "start": 383.3, + "end": 385.66, + "probability": 0.9535 + }, + { + "start": 385.66, + "end": 390.18, + "probability": 0.9105 + }, + { + "start": 390.78, + "end": 392.0, + "probability": 0.8983 + }, + { + "start": 392.32, + "end": 394.4, + "probability": 0.8943 + }, + { + "start": 394.92, + "end": 396.34, + "probability": 0.791 + }, + { + "start": 396.44, + "end": 398.26, + "probability": 0.759 + }, + { + "start": 398.26, + "end": 400.58, + "probability": 0.8831 + }, + { + "start": 401.26, + "end": 403.49, + "probability": 0.7514 + }, + { + "start": 405.38, + "end": 408.78, + "probability": 0.931 + }, + { + "start": 408.78, + "end": 413.54, + "probability": 0.8579 + }, + { + "start": 414.02, + "end": 416.68, + "probability": 0.9133 + }, + { + "start": 416.82, + "end": 419.34, + "probability": 0.9688 + }, + { + "start": 419.36, + "end": 422.52, + "probability": 0.9303 + }, + { + "start": 422.68, + "end": 423.54, + "probability": 0.9716 + }, + { + "start": 424.26, + "end": 425.98, + "probability": 0.9573 + }, + { + "start": 426.24, + "end": 427.9, + "probability": 0.7969 + }, + { + "start": 428.04, + "end": 429.66, + "probability": 0.8785 + }, + { + "start": 429.78, + "end": 431.9, + "probability": 0.757 + }, + { + "start": 432.66, + "end": 434.72, + "probability": 0.8548 + }, + { + "start": 434.82, + "end": 435.96, + "probability": 0.9201 + }, + { + "start": 436.42, + "end": 437.26, + "probability": 0.8462 + }, + { + "start": 437.44, + "end": 439.7, + "probability": 0.8384 + }, + { + "start": 441.22, + "end": 442.4, + "probability": 0.9791 + }, + { + "start": 442.9, + "end": 445.12, + "probability": 0.9584 + }, + { + "start": 445.52, + "end": 445.96, + "probability": 0.8985 + }, + { + "start": 446.4, + "end": 447.92, + "probability": 0.5076 + }, + { + "start": 448.04, + "end": 449.86, + "probability": 0.9902 + }, + { + "start": 450.52, + "end": 452.66, + "probability": 0.9304 + }, + { + "start": 453.38, + "end": 454.84, + "probability": 0.8457 + }, + { + "start": 455.34, + "end": 457.08, + "probability": 0.7475 + }, + { + "start": 457.8, + "end": 458.28, + "probability": 0.8563 + }, + { + "start": 458.32, + "end": 459.58, + "probability": 0.9144 + }, + { + "start": 459.96, + "end": 461.38, + "probability": 0.9684 + }, + { + "start": 462.26, + "end": 465.08, + "probability": 0.9855 + }, + { + "start": 465.54, + "end": 468.92, + "probability": 0.9736 + }, + { + "start": 469.84, + "end": 473.32, + "probability": 0.9559 + }, + { + "start": 473.48, + "end": 479.24, + "probability": 0.9883 + }, + { + "start": 479.76, + "end": 483.7, + "probability": 0.9774 + }, + { + "start": 484.14, + "end": 485.16, + "probability": 0.777 + }, + { + "start": 485.72, + "end": 488.08, + "probability": 0.7734 + }, + { + "start": 488.7, + "end": 490.97, + "probability": 0.959 + }, + { + "start": 491.22, + "end": 493.3, + "probability": 0.8244 + }, + { + "start": 493.32, + "end": 493.92, + "probability": 0.7578 + }, + { + "start": 494.06, + "end": 496.9, + "probability": 0.8685 + }, + { + "start": 497.3, + "end": 498.1, + "probability": 0.6383 + }, + { + "start": 498.54, + "end": 499.38, + "probability": 0.7036 + }, + { + "start": 499.88, + "end": 503.56, + "probability": 0.98 + }, + { + "start": 503.66, + "end": 504.44, + "probability": 0.9204 + }, + { + "start": 504.5, + "end": 505.02, + "probability": 0.9642 + }, + { + "start": 505.02, + "end": 506.2, + "probability": 0.9255 + }, + { + "start": 506.3, + "end": 506.88, + "probability": 0.9015 + }, + { + "start": 506.98, + "end": 508.3, + "probability": 0.9937 + }, + { + "start": 508.44, + "end": 509.24, + "probability": 0.696 + }, + { + "start": 509.54, + "end": 511.3, + "probability": 0.6757 + }, + { + "start": 511.92, + "end": 514.94, + "probability": 0.9861 + }, + { + "start": 515.12, + "end": 515.83, + "probability": 0.7952 + }, + { + "start": 516.12, + "end": 517.26, + "probability": 0.7913 + }, + { + "start": 518.4, + "end": 522.56, + "probability": 0.9977 + }, + { + "start": 523.42, + "end": 525.92, + "probability": 0.9291 + }, + { + "start": 526.64, + "end": 528.78, + "probability": 0.8007 + }, + { + "start": 529.54, + "end": 533.1, + "probability": 0.9143 + }, + { + "start": 533.5, + "end": 537.78, + "probability": 0.9501 + }, + { + "start": 538.22, + "end": 539.28, + "probability": 0.9468 + }, + { + "start": 539.84, + "end": 542.34, + "probability": 0.8537 + }, + { + "start": 543.06, + "end": 544.82, + "probability": 0.9868 + }, + { + "start": 545.3, + "end": 546.22, + "probability": 0.7517 + }, + { + "start": 546.5, + "end": 547.42, + "probability": 0.9775 + }, + { + "start": 548.64, + "end": 552.42, + "probability": 0.815 + }, + { + "start": 552.56, + "end": 554.86, + "probability": 0.9886 + }, + { + "start": 556.02, + "end": 556.64, + "probability": 0.678 + }, + { + "start": 556.72, + "end": 560.88, + "probability": 0.8691 + }, + { + "start": 561.08, + "end": 561.4, + "probability": 0.6076 + }, + { + "start": 561.48, + "end": 562.36, + "probability": 0.9842 + }, + { + "start": 562.96, + "end": 564.0, + "probability": 0.7213 + }, + { + "start": 564.1, + "end": 564.78, + "probability": 0.7906 + }, + { + "start": 564.84, + "end": 565.42, + "probability": 0.7856 + }, + { + "start": 565.5, + "end": 566.52, + "probability": 0.6422 + }, + { + "start": 567.36, + "end": 571.44, + "probability": 0.8561 + }, + { + "start": 572.26, + "end": 575.28, + "probability": 0.7571 + }, + { + "start": 575.4, + "end": 576.59, + "probability": 0.9933 + }, + { + "start": 577.38, + "end": 577.48, + "probability": 0.6526 + }, + { + "start": 578.02, + "end": 579.46, + "probability": 0.0255 + }, + { + "start": 580.66, + "end": 581.4, + "probability": 0.2053 + }, + { + "start": 581.4, + "end": 583.12, + "probability": 0.591 + }, + { + "start": 583.14, + "end": 584.2, + "probability": 0.918 + }, + { + "start": 584.94, + "end": 586.76, + "probability": 0.6108 + }, + { + "start": 588.88, + "end": 592.98, + "probability": 0.2644 + }, + { + "start": 595.56, + "end": 598.18, + "probability": 0.7684 + }, + { + "start": 599.88, + "end": 600.56, + "probability": 0.7849 + }, + { + "start": 619.84, + "end": 622.3, + "probability": 0.7667 + }, + { + "start": 630.64, + "end": 632.8, + "probability": 0.7817 + }, + { + "start": 632.88, + "end": 634.42, + "probability": 0.9625 + }, + { + "start": 638.02, + "end": 639.06, + "probability": 0.5622 + }, + { + "start": 639.76, + "end": 640.56, + "probability": 0.4768 + }, + { + "start": 640.8, + "end": 644.32, + "probability": 0.9847 + }, + { + "start": 645.94, + "end": 648.1, + "probability": 0.9748 + }, + { + "start": 648.3, + "end": 650.26, + "probability": 0.9976 + }, + { + "start": 651.02, + "end": 651.76, + "probability": 0.4952 + }, + { + "start": 653.68, + "end": 654.52, + "probability": 0.8623 + }, + { + "start": 654.68, + "end": 660.16, + "probability": 0.974 + }, + { + "start": 661.52, + "end": 662.52, + "probability": 0.6283 + }, + { + "start": 663.56, + "end": 666.86, + "probability": 0.8525 + }, + { + "start": 667.48, + "end": 671.66, + "probability": 0.9595 + }, + { + "start": 672.82, + "end": 678.14, + "probability": 0.9749 + }, + { + "start": 678.14, + "end": 683.18, + "probability": 0.9946 + }, + { + "start": 683.9, + "end": 686.44, + "probability": 0.8189 + }, + { + "start": 687.28, + "end": 691.14, + "probability": 0.9463 + }, + { + "start": 692.54, + "end": 697.44, + "probability": 0.9993 + }, + { + "start": 698.12, + "end": 698.84, + "probability": 0.9721 + }, + { + "start": 701.36, + "end": 706.88, + "probability": 0.9943 + }, + { + "start": 707.62, + "end": 713.9, + "probability": 0.9834 + }, + { + "start": 714.78, + "end": 714.88, + "probability": 0.2788 + }, + { + "start": 715.9, + "end": 716.58, + "probability": 0.8924 + }, + { + "start": 717.12, + "end": 718.42, + "probability": 0.8701 + }, + { + "start": 720.76, + "end": 720.76, + "probability": 0.0094 + }, + { + "start": 720.76, + "end": 725.52, + "probability": 0.9702 + }, + { + "start": 727.56, + "end": 728.82, + "probability": 0.7732 + }, + { + "start": 729.58, + "end": 730.76, + "probability": 0.9784 + }, + { + "start": 731.56, + "end": 734.2, + "probability": 0.996 + }, + { + "start": 734.74, + "end": 736.84, + "probability": 0.984 + }, + { + "start": 737.18, + "end": 742.28, + "probability": 0.9655 + }, + { + "start": 742.7, + "end": 744.0, + "probability": 0.9855 + }, + { + "start": 744.52, + "end": 747.42, + "probability": 0.9775 + }, + { + "start": 748.14, + "end": 749.38, + "probability": 0.9822 + }, + { + "start": 750.26, + "end": 753.56, + "probability": 0.7915 + }, + { + "start": 754.36, + "end": 755.3, + "probability": 0.8577 + }, + { + "start": 756.02, + "end": 757.36, + "probability": 0.9719 + }, + { + "start": 758.02, + "end": 758.7, + "probability": 0.4988 + }, + { + "start": 759.46, + "end": 762.44, + "probability": 0.9692 + }, + { + "start": 763.78, + "end": 764.38, + "probability": 0.9565 + }, + { + "start": 765.02, + "end": 768.56, + "probability": 0.9985 + }, + { + "start": 768.92, + "end": 770.22, + "probability": 0.9516 + }, + { + "start": 771.2, + "end": 772.02, + "probability": 0.6549 + }, + { + "start": 772.58, + "end": 777.26, + "probability": 0.9984 + }, + { + "start": 777.82, + "end": 781.84, + "probability": 0.9675 + }, + { + "start": 782.9, + "end": 785.36, + "probability": 0.9932 + }, + { + "start": 785.68, + "end": 786.34, + "probability": 0.3749 + }, + { + "start": 786.54, + "end": 788.58, + "probability": 0.7686 + }, + { + "start": 788.94, + "end": 792.0, + "probability": 0.967 + }, + { + "start": 793.32, + "end": 794.28, + "probability": 0.9645 + }, + { + "start": 794.82, + "end": 796.92, + "probability": 0.8704 + }, + { + "start": 797.36, + "end": 798.82, + "probability": 0.7601 + }, + { + "start": 799.78, + "end": 800.48, + "probability": 0.9347 + }, + { + "start": 801.88, + "end": 802.3, + "probability": 0.9549 + }, + { + "start": 803.28, + "end": 806.1, + "probability": 0.9749 + }, + { + "start": 806.44, + "end": 807.34, + "probability": 0.854 + }, + { + "start": 807.72, + "end": 809.02, + "probability": 0.99 + }, + { + "start": 809.74, + "end": 812.84, + "probability": 0.9161 + }, + { + "start": 813.32, + "end": 819.98, + "probability": 0.9963 + }, + { + "start": 820.54, + "end": 823.42, + "probability": 0.9722 + }, + { + "start": 824.42, + "end": 829.88, + "probability": 0.987 + }, + { + "start": 830.44, + "end": 833.34, + "probability": 0.949 + }, + { + "start": 833.86, + "end": 834.36, + "probability": 0.8428 + }, + { + "start": 834.92, + "end": 837.18, + "probability": 0.9642 + }, + { + "start": 838.38, + "end": 839.66, + "probability": 0.9203 + }, + { + "start": 840.58, + "end": 843.48, + "probability": 0.9794 + }, + { + "start": 844.36, + "end": 849.44, + "probability": 0.9929 + }, + { + "start": 850.22, + "end": 854.82, + "probability": 0.9956 + }, + { + "start": 855.3, + "end": 855.88, + "probability": 0.9406 + }, + { + "start": 856.32, + "end": 858.1, + "probability": 0.9902 + }, + { + "start": 860.82, + "end": 864.04, + "probability": 0.991 + }, + { + "start": 864.76, + "end": 866.06, + "probability": 0.7065 + }, + { + "start": 867.02, + "end": 874.9, + "probability": 0.9663 + }, + { + "start": 876.38, + "end": 880.36, + "probability": 0.9871 + }, + { + "start": 880.82, + "end": 882.22, + "probability": 0.9934 + }, + { + "start": 882.52, + "end": 883.48, + "probability": 0.875 + }, + { + "start": 884.01, + "end": 884.8, + "probability": 0.9272 + }, + { + "start": 886.04, + "end": 890.14, + "probability": 0.9973 + }, + { + "start": 891.3, + "end": 896.92, + "probability": 0.9946 + }, + { + "start": 898.36, + "end": 899.14, + "probability": 0.5977 + }, + { + "start": 899.92, + "end": 904.98, + "probability": 0.937 + }, + { + "start": 919.0, + "end": 921.82, + "probability": 0.9612 + }, + { + "start": 924.59, + "end": 929.0, + "probability": 0.669 + }, + { + "start": 930.46, + "end": 936.26, + "probability": 0.9822 + }, + { + "start": 937.26, + "end": 941.1, + "probability": 0.9949 + }, + { + "start": 942.79, + "end": 946.18, + "probability": 0.9717 + }, + { + "start": 947.6, + "end": 951.04, + "probability": 0.9969 + }, + { + "start": 951.08, + "end": 954.26, + "probability": 0.9793 + }, + { + "start": 954.36, + "end": 955.33, + "probability": 0.8443 + }, + { + "start": 956.1, + "end": 963.56, + "probability": 0.9857 + }, + { + "start": 963.56, + "end": 971.16, + "probability": 0.9907 + }, + { + "start": 972.48, + "end": 974.04, + "probability": 0.8536 + }, + { + "start": 974.44, + "end": 975.54, + "probability": 0.7603 + }, + { + "start": 975.8, + "end": 977.0, + "probability": 0.9569 + }, + { + "start": 977.14, + "end": 980.88, + "probability": 0.9799 + }, + { + "start": 981.36, + "end": 984.86, + "probability": 0.9814 + }, + { + "start": 985.56, + "end": 989.56, + "probability": 0.9081 + }, + { + "start": 990.44, + "end": 995.0, + "probability": 0.9898 + }, + { + "start": 995.94, + "end": 998.08, + "probability": 0.9468 + }, + { + "start": 998.64, + "end": 1000.68, + "probability": 0.7872 + }, + { + "start": 1001.04, + "end": 1003.74, + "probability": 0.9304 + }, + { + "start": 1004.34, + "end": 1006.26, + "probability": 0.9941 + }, + { + "start": 1006.9, + "end": 1008.52, + "probability": 0.8729 + }, + { + "start": 1009.24, + "end": 1015.4, + "probability": 0.963 + }, + { + "start": 1016.14, + "end": 1017.02, + "probability": 0.9556 + }, + { + "start": 1018.02, + "end": 1022.14, + "probability": 0.9707 + }, + { + "start": 1023.16, + "end": 1025.42, + "probability": 0.9883 + }, + { + "start": 1025.92, + "end": 1026.92, + "probability": 0.8042 + }, + { + "start": 1027.4, + "end": 1030.08, + "probability": 0.9458 + }, + { + "start": 1030.42, + "end": 1033.6, + "probability": 0.9658 + }, + { + "start": 1034.98, + "end": 1035.64, + "probability": 0.9412 + }, + { + "start": 1036.0, + "end": 1041.34, + "probability": 0.9678 + }, + { + "start": 1042.2, + "end": 1045.48, + "probability": 0.9819 + }, + { + "start": 1045.82, + "end": 1046.3, + "probability": 0.6572 + }, + { + "start": 1046.66, + "end": 1051.8, + "probability": 0.9902 + }, + { + "start": 1052.42, + "end": 1052.76, + "probability": 0.5515 + }, + { + "start": 1052.78, + "end": 1053.9, + "probability": 0.8053 + }, + { + "start": 1054.08, + "end": 1059.84, + "probability": 0.9862 + }, + { + "start": 1060.34, + "end": 1064.24, + "probability": 0.9746 + }, + { + "start": 1065.28, + "end": 1066.6, + "probability": 0.8822 + }, + { + "start": 1066.98, + "end": 1072.1, + "probability": 0.9525 + }, + { + "start": 1072.1, + "end": 1077.8, + "probability": 0.9905 + }, + { + "start": 1078.38, + "end": 1082.4, + "probability": 0.8743 + }, + { + "start": 1083.62, + "end": 1086.76, + "probability": 0.959 + }, + { + "start": 1087.34, + "end": 1092.24, + "probability": 0.897 + }, + { + "start": 1092.3, + "end": 1094.53, + "probability": 0.9528 + }, + { + "start": 1095.44, + "end": 1098.06, + "probability": 0.8934 + }, + { + "start": 1098.5, + "end": 1100.42, + "probability": 0.9507 + }, + { + "start": 1101.1, + "end": 1102.76, + "probability": 0.9123 + }, + { + "start": 1103.28, + "end": 1108.12, + "probability": 0.7508 + }, + { + "start": 1108.88, + "end": 1111.94, + "probability": 0.7751 + }, + { + "start": 1112.86, + "end": 1114.38, + "probability": 0.9206 + }, + { + "start": 1115.52, + "end": 1117.62, + "probability": 0.8384 + }, + { + "start": 1117.9, + "end": 1121.1, + "probability": 0.9984 + }, + { + "start": 1121.1, + "end": 1123.88, + "probability": 0.487 + }, + { + "start": 1124.7, + "end": 1127.04, + "probability": 0.9401 + }, + { + "start": 1128.06, + "end": 1129.96, + "probability": 0.7478 + }, + { + "start": 1130.62, + "end": 1132.0, + "probability": 0.8674 + }, + { + "start": 1132.78, + "end": 1139.38, + "probability": 0.8783 + }, + { + "start": 1139.8, + "end": 1140.94, + "probability": 0.6274 + }, + { + "start": 1141.14, + "end": 1149.72, + "probability": 0.9966 + }, + { + "start": 1150.38, + "end": 1151.52, + "probability": 0.8464 + }, + { + "start": 1152.2, + "end": 1153.82, + "probability": 0.998 + }, + { + "start": 1154.78, + "end": 1160.6, + "probability": 0.9969 + }, + { + "start": 1161.2, + "end": 1164.0, + "probability": 0.953 + }, + { + "start": 1165.76, + "end": 1168.38, + "probability": 0.9907 + }, + { + "start": 1168.38, + "end": 1171.02, + "probability": 0.9871 + }, + { + "start": 1171.52, + "end": 1173.52, + "probability": 0.8173 + }, + { + "start": 1174.48, + "end": 1177.2, + "probability": 0.9744 + }, + { + "start": 1177.56, + "end": 1180.24, + "probability": 0.7296 + }, + { + "start": 1180.94, + "end": 1182.02, + "probability": 0.9401 + }, + { + "start": 1183.16, + "end": 1187.82, + "probability": 0.938 + }, + { + "start": 1189.0, + "end": 1190.58, + "probability": 0.9775 + }, + { + "start": 1190.66, + "end": 1191.94, + "probability": 0.9856 + }, + { + "start": 1193.04, + "end": 1199.0, + "probability": 0.9681 + }, + { + "start": 1199.98, + "end": 1201.56, + "probability": 0.8366 + }, + { + "start": 1202.02, + "end": 1203.51, + "probability": 0.9861 + }, + { + "start": 1203.96, + "end": 1208.4, + "probability": 0.9935 + }, + { + "start": 1208.4, + "end": 1213.76, + "probability": 0.9951 + }, + { + "start": 1214.52, + "end": 1217.84, + "probability": 0.9707 + }, + { + "start": 1218.16, + "end": 1221.2, + "probability": 0.9966 + }, + { + "start": 1221.48, + "end": 1226.42, + "probability": 0.9961 + }, + { + "start": 1226.44, + "end": 1226.66, + "probability": 0.4009 + }, + { + "start": 1226.7, + "end": 1230.56, + "probability": 0.9448 + }, + { + "start": 1230.7, + "end": 1230.96, + "probability": 0.737 + }, + { + "start": 1231.18, + "end": 1232.14, + "probability": 0.5262 + }, + { + "start": 1232.46, + "end": 1234.52, + "probability": 0.8378 + }, + { + "start": 1234.54, + "end": 1235.18, + "probability": 0.8589 + }, + { + "start": 1245.24, + "end": 1248.06, + "probability": 0.8039 + }, + { + "start": 1248.9, + "end": 1250.3, + "probability": 0.8303 + }, + { + "start": 1250.48, + "end": 1251.4, + "probability": 0.7335 + }, + { + "start": 1253.24, + "end": 1255.38, + "probability": 0.9941 + }, + { + "start": 1256.18, + "end": 1257.94, + "probability": 0.9872 + }, + { + "start": 1259.22, + "end": 1263.58, + "probability": 0.935 + }, + { + "start": 1265.22, + "end": 1267.1, + "probability": 0.8856 + }, + { + "start": 1268.38, + "end": 1272.4, + "probability": 0.9943 + }, + { + "start": 1272.54, + "end": 1274.74, + "probability": 0.6752 + }, + { + "start": 1275.4, + "end": 1278.48, + "probability": 0.9499 + }, + { + "start": 1279.26, + "end": 1285.84, + "probability": 0.9524 + }, + { + "start": 1287.3, + "end": 1288.36, + "probability": 0.9899 + }, + { + "start": 1289.16, + "end": 1294.04, + "probability": 0.9954 + }, + { + "start": 1294.82, + "end": 1298.88, + "probability": 0.9921 + }, + { + "start": 1300.0, + "end": 1302.74, + "probability": 0.9503 + }, + { + "start": 1304.11, + "end": 1306.08, + "probability": 0.9674 + }, + { + "start": 1307.6, + "end": 1308.2, + "probability": 0.7526 + }, + { + "start": 1308.96, + "end": 1310.48, + "probability": 0.9702 + }, + { + "start": 1311.46, + "end": 1312.7, + "probability": 0.8178 + }, + { + "start": 1313.84, + "end": 1315.06, + "probability": 0.9886 + }, + { + "start": 1315.14, + "end": 1318.38, + "probability": 0.6935 + }, + { + "start": 1319.14, + "end": 1321.7, + "probability": 0.9043 + }, + { + "start": 1323.08, + "end": 1326.94, + "probability": 0.9683 + }, + { + "start": 1327.9, + "end": 1332.48, + "probability": 0.9232 + }, + { + "start": 1333.1, + "end": 1336.6, + "probability": 0.7109 + }, + { + "start": 1338.08, + "end": 1339.0, + "probability": 0.9061 + }, + { + "start": 1339.78, + "end": 1341.06, + "probability": 0.9602 + }, + { + "start": 1341.74, + "end": 1344.1, + "probability": 0.9619 + }, + { + "start": 1345.0, + "end": 1349.62, + "probability": 0.9856 + }, + { + "start": 1350.7, + "end": 1355.72, + "probability": 0.997 + }, + { + "start": 1356.16, + "end": 1357.02, + "probability": 0.9654 + }, + { + "start": 1357.48, + "end": 1359.44, + "probability": 0.9976 + }, + { + "start": 1359.98, + "end": 1360.62, + "probability": 0.7889 + }, + { + "start": 1361.22, + "end": 1362.98, + "probability": 0.9744 + }, + { + "start": 1363.64, + "end": 1365.98, + "probability": 0.9801 + }, + { + "start": 1366.76, + "end": 1368.66, + "probability": 0.6638 + }, + { + "start": 1369.2, + "end": 1370.51, + "probability": 0.9497 + }, + { + "start": 1371.34, + "end": 1372.52, + "probability": 0.9413 + }, + { + "start": 1373.78, + "end": 1374.68, + "probability": 0.8016 + }, + { + "start": 1375.32, + "end": 1377.48, + "probability": 0.9258 + }, + { + "start": 1378.7, + "end": 1381.22, + "probability": 0.8625 + }, + { + "start": 1382.8, + "end": 1387.42, + "probability": 0.8688 + }, + { + "start": 1388.02, + "end": 1390.56, + "probability": 0.9714 + }, + { + "start": 1391.42, + "end": 1394.66, + "probability": 0.9777 + }, + { + "start": 1395.54, + "end": 1398.96, + "probability": 0.9547 + }, + { + "start": 1400.1, + "end": 1402.3, + "probability": 0.9906 + }, + { + "start": 1402.78, + "end": 1403.55, + "probability": 0.9875 + }, + { + "start": 1404.72, + "end": 1406.44, + "probability": 0.9914 + }, + { + "start": 1407.8, + "end": 1409.58, + "probability": 0.9915 + }, + { + "start": 1410.3, + "end": 1411.02, + "probability": 0.6394 + }, + { + "start": 1412.12, + "end": 1415.5, + "probability": 0.9987 + }, + { + "start": 1416.12, + "end": 1416.98, + "probability": 0.9608 + }, + { + "start": 1417.12, + "end": 1417.76, + "probability": 0.9085 + }, + { + "start": 1418.82, + "end": 1419.78, + "probability": 0.9351 + }, + { + "start": 1420.82, + "end": 1422.74, + "probability": 0.9971 + }, + { + "start": 1424.5, + "end": 1425.62, + "probability": 0.4205 + }, + { + "start": 1426.36, + "end": 1429.14, + "probability": 0.9751 + }, + { + "start": 1429.62, + "end": 1430.98, + "probability": 0.6643 + }, + { + "start": 1432.46, + "end": 1434.56, + "probability": 0.9222 + }, + { + "start": 1435.3, + "end": 1436.28, + "probability": 0.9078 + }, + { + "start": 1437.18, + "end": 1440.0, + "probability": 0.9287 + }, + { + "start": 1440.92, + "end": 1442.88, + "probability": 0.9989 + }, + { + "start": 1444.68, + "end": 1447.48, + "probability": 0.9361 + }, + { + "start": 1448.0, + "end": 1448.44, + "probability": 0.8455 + }, + { + "start": 1450.68, + "end": 1457.0, + "probability": 0.9519 + }, + { + "start": 1458.04, + "end": 1463.42, + "probability": 0.9749 + }, + { + "start": 1463.42, + "end": 1468.9, + "probability": 0.9993 + }, + { + "start": 1469.7, + "end": 1472.44, + "probability": 0.9888 + }, + { + "start": 1472.9, + "end": 1474.9, + "probability": 0.9946 + }, + { + "start": 1475.88, + "end": 1480.18, + "probability": 0.9375 + }, + { + "start": 1481.08, + "end": 1484.2, + "probability": 0.9894 + }, + { + "start": 1485.6, + "end": 1489.16, + "probability": 0.9912 + }, + { + "start": 1489.86, + "end": 1490.58, + "probability": 0.6132 + }, + { + "start": 1491.08, + "end": 1492.54, + "probability": 0.9917 + }, + { + "start": 1492.9, + "end": 1495.54, + "probability": 0.9827 + }, + { + "start": 1496.28, + "end": 1499.54, + "probability": 0.9874 + }, + { + "start": 1500.46, + "end": 1503.18, + "probability": 0.9932 + }, + { + "start": 1503.9, + "end": 1507.38, + "probability": 0.9661 + }, + { + "start": 1507.92, + "end": 1511.3, + "probability": 0.9628 + }, + { + "start": 1512.76, + "end": 1513.84, + "probability": 0.8943 + }, + { + "start": 1516.74, + "end": 1519.1, + "probability": 0.9469 + }, + { + "start": 1519.68, + "end": 1521.37, + "probability": 0.8604 + }, + { + "start": 1522.26, + "end": 1524.48, + "probability": 0.9281 + }, + { + "start": 1525.1, + "end": 1526.18, + "probability": 0.9148 + }, + { + "start": 1526.44, + "end": 1528.8, + "probability": 0.0639 + }, + { + "start": 1529.02, + "end": 1529.72, + "probability": 0.9103 + }, + { + "start": 1530.66, + "end": 1531.24, + "probability": 0.7632 + }, + { + "start": 1532.74, + "end": 1534.63, + "probability": 0.9956 + }, + { + "start": 1535.44, + "end": 1536.48, + "probability": 0.9814 + }, + { + "start": 1537.02, + "end": 1540.04, + "probability": 0.9573 + }, + { + "start": 1540.7, + "end": 1541.22, + "probability": 0.9089 + }, + { + "start": 1541.4, + "end": 1543.24, + "probability": 0.805 + }, + { + "start": 1543.68, + "end": 1546.72, + "probability": 0.9961 + }, + { + "start": 1546.72, + "end": 1551.34, + "probability": 0.9801 + }, + { + "start": 1551.86, + "end": 1552.4, + "probability": 0.748 + }, + { + "start": 1553.1, + "end": 1553.86, + "probability": 0.5276 + }, + { + "start": 1554.08, + "end": 1555.22, + "probability": 0.9532 + }, + { + "start": 1555.3, + "end": 1556.16, + "probability": 0.9454 + }, + { + "start": 1556.18, + "end": 1559.08, + "probability": 0.983 + }, + { + "start": 1559.18, + "end": 1559.56, + "probability": 0.3659 + }, + { + "start": 1559.62, + "end": 1561.08, + "probability": 0.0688 + }, + { + "start": 1561.16, + "end": 1561.26, + "probability": 0.0153 + }, + { + "start": 1561.26, + "end": 1561.62, + "probability": 0.7421 + }, + { + "start": 1562.44, + "end": 1562.72, + "probability": 0.5457 + }, + { + "start": 1562.84, + "end": 1569.42, + "probability": 0.9942 + }, + { + "start": 1569.56, + "end": 1573.08, + "probability": 0.9917 + }, + { + "start": 1573.28, + "end": 1582.98, + "probability": 0.9906 + }, + { + "start": 1584.0, + "end": 1584.38, + "probability": 0.5294 + }, + { + "start": 1584.84, + "end": 1591.58, + "probability": 0.0034 + }, + { + "start": 1596.22, + "end": 1601.38, + "probability": 0.6361 + }, + { + "start": 1601.64, + "end": 1604.14, + "probability": 0.8408 + }, + { + "start": 1604.76, + "end": 1608.0, + "probability": 0.9171 + }, + { + "start": 1609.08, + "end": 1611.08, + "probability": 0.859 + }, + { + "start": 1612.28, + "end": 1612.86, + "probability": 0.0436 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.0, + "end": 1704.0, + "probability": 0.0 + }, + { + "start": 1704.18, + "end": 1704.42, + "probability": 0.2711 + }, + { + "start": 1705.38, + "end": 1709.86, + "probability": 0.9828 + }, + { + "start": 1709.86, + "end": 1713.2, + "probability": 0.9619 + }, + { + "start": 1713.96, + "end": 1714.5, + "probability": 0.1568 + }, + { + "start": 1715.18, + "end": 1715.46, + "probability": 0.0017 + }, + { + "start": 1715.66, + "end": 1723.04, + "probability": 0.9734 + }, + { + "start": 1723.04, + "end": 1726.7, + "probability": 0.9963 + }, + { + "start": 1727.3, + "end": 1731.4, + "probability": 0.96 + }, + { + "start": 1731.4, + "end": 1734.22, + "probability": 0.9597 + }, + { + "start": 1734.8, + "end": 1738.52, + "probability": 0.9432 + }, + { + "start": 1739.06, + "end": 1739.86, + "probability": 0.8641 + }, + { + "start": 1740.46, + "end": 1741.84, + "probability": 0.7451 + }, + { + "start": 1744.36, + "end": 1749.26, + "probability": 0.9982 + }, + { + "start": 1749.82, + "end": 1751.74, + "probability": 0.976 + }, + { + "start": 1752.3, + "end": 1754.82, + "probability": 0.8747 + }, + { + "start": 1755.36, + "end": 1760.14, + "probability": 0.9816 + }, + { + "start": 1760.64, + "end": 1764.52, + "probability": 0.9835 + }, + { + "start": 1764.72, + "end": 1765.04, + "probability": 0.6989 + }, + { + "start": 1765.64, + "end": 1770.18, + "probability": 0.969 + }, + { + "start": 1770.62, + "end": 1774.1, + "probability": 0.9904 + }, + { + "start": 1774.1, + "end": 1778.44, + "probability": 0.9349 + }, + { + "start": 1778.82, + "end": 1782.1, + "probability": 0.9751 + }, + { + "start": 1782.96, + "end": 1786.22, + "probability": 0.973 + }, + { + "start": 1786.22, + "end": 1792.5, + "probability": 0.9362 + }, + { + "start": 1793.0, + "end": 1793.3, + "probability": 0.5281 + }, + { + "start": 1793.48, + "end": 1797.0, + "probability": 0.9793 + }, + { + "start": 1797.56, + "end": 1800.62, + "probability": 0.7754 + }, + { + "start": 1801.1, + "end": 1805.52, + "probability": 0.9863 + }, + { + "start": 1805.7, + "end": 1806.86, + "probability": 0.9683 + }, + { + "start": 1808.94, + "end": 1809.5, + "probability": 0.5138 + }, + { + "start": 1810.04, + "end": 1811.3, + "probability": 0.6453 + }, + { + "start": 1812.26, + "end": 1816.0, + "probability": 0.9003 + }, + { + "start": 1816.0, + "end": 1820.6, + "probability": 0.97 + }, + { + "start": 1821.32, + "end": 1821.56, + "probability": 0.0741 + }, + { + "start": 1824.46, + "end": 1828.08, + "probability": 0.9885 + }, + { + "start": 1828.08, + "end": 1830.82, + "probability": 0.8939 + }, + { + "start": 1831.34, + "end": 1831.8, + "probability": 0.6796 + }, + { + "start": 1832.96, + "end": 1833.71, + "probability": 0.9561 + }, + { + "start": 1834.18, + "end": 1835.84, + "probability": 0.9907 + }, + { + "start": 1837.3, + "end": 1837.6, + "probability": 0.88 + }, + { + "start": 1838.18, + "end": 1842.88, + "probability": 0.9974 + }, + { + "start": 1842.88, + "end": 1849.5, + "probability": 0.9914 + }, + { + "start": 1850.04, + "end": 1853.38, + "probability": 0.97 + }, + { + "start": 1853.98, + "end": 1858.34, + "probability": 0.9845 + }, + { + "start": 1858.34, + "end": 1861.32, + "probability": 0.9953 + }, + { + "start": 1861.66, + "end": 1866.16, + "probability": 0.9587 + }, + { + "start": 1866.76, + "end": 1869.38, + "probability": 0.991 + }, + { + "start": 1869.84, + "end": 1870.64, + "probability": 0.8486 + }, + { + "start": 1871.0, + "end": 1874.18, + "probability": 0.9798 + }, + { + "start": 1874.18, + "end": 1878.7, + "probability": 0.9613 + }, + { + "start": 1879.64, + "end": 1883.54, + "probability": 0.9852 + }, + { + "start": 1883.54, + "end": 1888.28, + "probability": 0.7426 + }, + { + "start": 1888.66, + "end": 1888.68, + "probability": 0.3647 + }, + { + "start": 1888.68, + "end": 1893.92, + "probability": 0.9662 + }, + { + "start": 1894.44, + "end": 1896.24, + "probability": 0.8291 + }, + { + "start": 1896.64, + "end": 1898.62, + "probability": 0.8177 + }, + { + "start": 1899.26, + "end": 1902.88, + "probability": 0.9741 + }, + { + "start": 1902.88, + "end": 1906.32, + "probability": 0.8319 + }, + { + "start": 1907.12, + "end": 1908.9, + "probability": 0.9112 + }, + { + "start": 1910.2, + "end": 1913.34, + "probability": 0.9341 + }, + { + "start": 1913.34, + "end": 1915.58, + "probability": 0.9679 + }, + { + "start": 1916.42, + "end": 1918.2, + "probability": 0.9976 + }, + { + "start": 1918.28, + "end": 1922.12, + "probability": 0.9738 + }, + { + "start": 1923.04, + "end": 1923.64, + "probability": 0.6794 + }, + { + "start": 1924.12, + "end": 1929.04, + "probability": 0.9131 + }, + { + "start": 1929.22, + "end": 1931.36, + "probability": 0.4722 + }, + { + "start": 1931.88, + "end": 1933.14, + "probability": 0.8541 + }, + { + "start": 1934.06, + "end": 1935.42, + "probability": 0.9857 + }, + { + "start": 1936.34, + "end": 1939.14, + "probability": 0.9402 + }, + { + "start": 1939.66, + "end": 1943.24, + "probability": 0.9561 + }, + { + "start": 1943.24, + "end": 1946.0, + "probability": 0.8212 + }, + { + "start": 1946.42, + "end": 1951.68, + "probability": 0.9502 + }, + { + "start": 1952.14, + "end": 1953.9, + "probability": 0.9114 + }, + { + "start": 1954.42, + "end": 1957.38, + "probability": 0.9371 + }, + { + "start": 1957.98, + "end": 1961.62, + "probability": 0.9161 + }, + { + "start": 1961.62, + "end": 1967.16, + "probability": 0.8755 + }, + { + "start": 1967.64, + "end": 1970.64, + "probability": 0.8486 + }, + { + "start": 1971.22, + "end": 1974.14, + "probability": 0.998 + }, + { + "start": 1974.14, + "end": 1977.42, + "probability": 0.8883 + }, + { + "start": 1977.86, + "end": 1982.08, + "probability": 0.7637 + }, + { + "start": 1982.26, + "end": 1983.82, + "probability": 0.9017 + }, + { + "start": 1984.36, + "end": 1987.64, + "probability": 0.9484 + }, + { + "start": 1988.24, + "end": 1989.86, + "probability": 0.8665 + }, + { + "start": 1990.32, + "end": 1991.84, + "probability": 0.9459 + }, + { + "start": 1992.26, + "end": 1994.72, + "probability": 0.8707 + }, + { + "start": 1994.72, + "end": 1996.63, + "probability": 0.6277 + }, + { + "start": 1996.82, + "end": 1997.96, + "probability": 0.8651 + }, + { + "start": 1998.58, + "end": 1999.6, + "probability": 0.8148 + }, + { + "start": 1999.72, + "end": 2000.38, + "probability": 0.6077 + }, + { + "start": 2000.74, + "end": 2003.82, + "probability": 0.6865 + }, + { + "start": 2004.5, + "end": 2008.92, + "probability": 0.9946 + }, + { + "start": 2009.42, + "end": 2013.38, + "probability": 0.995 + }, + { + "start": 2013.38, + "end": 2018.14, + "probability": 0.9873 + }, + { + "start": 2018.22, + "end": 2020.78, + "probability": 0.7037 + }, + { + "start": 2020.9, + "end": 2023.62, + "probability": 0.8015 + }, + { + "start": 2024.22, + "end": 2026.16, + "probability": 0.9629 + }, + { + "start": 2026.22, + "end": 2029.4, + "probability": 0.9668 + }, + { + "start": 2029.54, + "end": 2030.54, + "probability": 0.862 + }, + { + "start": 2030.96, + "end": 2033.22, + "probability": 0.9015 + }, + { + "start": 2033.64, + "end": 2035.54, + "probability": 0.9678 + }, + { + "start": 2036.06, + "end": 2037.16, + "probability": 0.7579 + }, + { + "start": 2037.2, + "end": 2038.56, + "probability": 0.7588 + }, + { + "start": 2038.7, + "end": 2039.62, + "probability": 0.9526 + }, + { + "start": 2039.74, + "end": 2042.56, + "probability": 0.7637 + }, + { + "start": 2042.96, + "end": 2044.94, + "probability": 0.5499 + }, + { + "start": 2044.94, + "end": 2047.0, + "probability": 0.8044 + }, + { + "start": 2047.52, + "end": 2048.42, + "probability": 0.9695 + }, + { + "start": 2049.94, + "end": 2052.34, + "probability": 0.8471 + }, + { + "start": 2053.04, + "end": 2055.7, + "probability": 0.9061 + }, + { + "start": 2056.3, + "end": 2058.48, + "probability": 0.8994 + }, + { + "start": 2059.0, + "end": 2064.12, + "probability": 0.9321 + }, + { + "start": 2064.22, + "end": 2064.74, + "probability": 0.7529 + }, + { + "start": 2070.9, + "end": 2075.62, + "probability": 0.6653 + }, + { + "start": 2076.44, + "end": 2083.04, + "probability": 0.7525 + }, + { + "start": 2084.38, + "end": 2085.46, + "probability": 0.7848 + }, + { + "start": 2086.58, + "end": 2087.68, + "probability": 0.2899 + }, + { + "start": 2087.68, + "end": 2088.1, + "probability": 0.3653 + }, + { + "start": 2088.16, + "end": 2088.48, + "probability": 0.1746 + }, + { + "start": 2090.6, + "end": 2093.8, + "probability": 0.0715 + }, + { + "start": 2094.36, + "end": 2094.6, + "probability": 0.6713 + }, + { + "start": 2095.0, + "end": 2097.02, + "probability": 0.6029 + }, + { + "start": 2099.0, + "end": 2099.36, + "probability": 0.3005 + }, + { + "start": 2102.73, + "end": 2104.84, + "probability": 0.7944 + }, + { + "start": 2110.28, + "end": 2112.08, + "probability": 0.6482 + }, + { + "start": 2113.62, + "end": 2115.3, + "probability": 0.9379 + }, + { + "start": 2116.54, + "end": 2118.78, + "probability": 0.7528 + }, + { + "start": 2119.76, + "end": 2121.26, + "probability": 0.9756 + }, + { + "start": 2121.34, + "end": 2122.9, + "probability": 0.9984 + }, + { + "start": 2123.54, + "end": 2124.36, + "probability": 0.9797 + }, + { + "start": 2126.44, + "end": 2131.4, + "probability": 0.8989 + }, + { + "start": 2132.52, + "end": 2134.96, + "probability": 0.9121 + }, + { + "start": 2135.62, + "end": 2139.3, + "probability": 0.8705 + }, + { + "start": 2139.66, + "end": 2141.08, + "probability": 0.6991 + }, + { + "start": 2141.12, + "end": 2142.1, + "probability": 0.7912 + }, + { + "start": 2142.46, + "end": 2144.42, + "probability": 0.8495 + }, + { + "start": 2145.76, + "end": 2146.9, + "probability": 0.9255 + }, + { + "start": 2148.06, + "end": 2152.32, + "probability": 0.9834 + }, + { + "start": 2154.18, + "end": 2156.42, + "probability": 0.9976 + }, + { + "start": 2160.96, + "end": 2163.16, + "probability": 0.9993 + }, + { + "start": 2164.5, + "end": 2167.84, + "probability": 0.9983 + }, + { + "start": 2169.14, + "end": 2172.46, + "probability": 0.9598 + }, + { + "start": 2173.88, + "end": 2180.36, + "probability": 0.9985 + }, + { + "start": 2183.7, + "end": 2184.7, + "probability": 0.7933 + }, + { + "start": 2186.34, + "end": 2187.96, + "probability": 0.0938 + }, + { + "start": 2188.84, + "end": 2190.66, + "probability": 0.7589 + }, + { + "start": 2191.84, + "end": 2194.98, + "probability": 0.7364 + }, + { + "start": 2197.7, + "end": 2199.28, + "probability": 0.8897 + }, + { + "start": 2200.06, + "end": 2203.56, + "probability": 0.9886 + }, + { + "start": 2204.62, + "end": 2210.76, + "probability": 0.9496 + }, + { + "start": 2211.38, + "end": 2213.42, + "probability": 0.9775 + }, + { + "start": 2216.1, + "end": 2220.1, + "probability": 0.8086 + }, + { + "start": 2220.78, + "end": 2222.68, + "probability": 0.9927 + }, + { + "start": 2223.14, + "end": 2226.1, + "probability": 0.8816 + }, + { + "start": 2226.26, + "end": 2227.26, + "probability": 0.9673 + }, + { + "start": 2227.82, + "end": 2232.36, + "probability": 0.8205 + }, + { + "start": 2233.5, + "end": 2236.8, + "probability": 0.9701 + }, + { + "start": 2237.34, + "end": 2238.48, + "probability": 0.4533 + }, + { + "start": 2239.42, + "end": 2244.34, + "probability": 0.9915 + }, + { + "start": 2245.9, + "end": 2247.5, + "probability": 0.9463 + }, + { + "start": 2249.06, + "end": 2250.14, + "probability": 0.9399 + }, + { + "start": 2250.82, + "end": 2256.34, + "probability": 0.9989 + }, + { + "start": 2261.9, + "end": 2265.42, + "probability": 0.9974 + }, + { + "start": 2267.26, + "end": 2269.12, + "probability": 0.858 + }, + { + "start": 2270.08, + "end": 2271.72, + "probability": 0.8535 + }, + { + "start": 2272.62, + "end": 2276.34, + "probability": 0.9971 + }, + { + "start": 2277.04, + "end": 2278.22, + "probability": 0.9664 + }, + { + "start": 2279.1, + "end": 2281.84, + "probability": 0.9686 + }, + { + "start": 2282.58, + "end": 2283.44, + "probability": 0.5182 + }, + { + "start": 2284.1, + "end": 2285.7, + "probability": 0.8865 + }, + { + "start": 2289.37, + "end": 2293.02, + "probability": 0.941 + }, + { + "start": 2294.04, + "end": 2295.9, + "probability": 0.8561 + }, + { + "start": 2296.48, + "end": 2296.6, + "probability": 0.9048 + }, + { + "start": 2296.72, + "end": 2299.4, + "probability": 0.8538 + }, + { + "start": 2299.48, + "end": 2300.76, + "probability": 0.9773 + }, + { + "start": 2301.64, + "end": 2303.2, + "probability": 0.8215 + }, + { + "start": 2304.1, + "end": 2306.2, + "probability": 0.9958 + }, + { + "start": 2307.3, + "end": 2309.84, + "probability": 0.7934 + }, + { + "start": 2312.96, + "end": 2314.57, + "probability": 0.9855 + }, + { + "start": 2316.92, + "end": 2320.78, + "probability": 0.9987 + }, + { + "start": 2320.78, + "end": 2325.75, + "probability": 0.9941 + }, + { + "start": 2326.58, + "end": 2328.62, + "probability": 0.8622 + }, + { + "start": 2329.8, + "end": 2330.78, + "probability": 0.9921 + }, + { + "start": 2331.38, + "end": 2332.76, + "probability": 0.9874 + }, + { + "start": 2334.12, + "end": 2335.28, + "probability": 0.9785 + }, + { + "start": 2336.22, + "end": 2341.26, + "probability": 0.9983 + }, + { + "start": 2342.42, + "end": 2345.4, + "probability": 0.9938 + }, + { + "start": 2349.92, + "end": 2351.82, + "probability": 0.7384 + }, + { + "start": 2352.62, + "end": 2355.2, + "probability": 0.8711 + }, + { + "start": 2355.94, + "end": 2357.52, + "probability": 0.6959 + }, + { + "start": 2358.9, + "end": 2362.02, + "probability": 0.8315 + }, + { + "start": 2364.04, + "end": 2366.32, + "probability": 0.9961 + }, + { + "start": 2367.06, + "end": 2370.54, + "probability": 0.7384 + }, + { + "start": 2371.7, + "end": 2373.48, + "probability": 0.8661 + }, + { + "start": 2375.42, + "end": 2378.3, + "probability": 0.9024 + }, + { + "start": 2382.68, + "end": 2386.54, + "probability": 0.9942 + }, + { + "start": 2388.93, + "end": 2391.16, + "probability": 0.9988 + }, + { + "start": 2391.7, + "end": 2393.65, + "probability": 0.9863 + }, + { + "start": 2396.3, + "end": 2403.38, + "probability": 0.9958 + }, + { + "start": 2404.58, + "end": 2407.48, + "probability": 0.772 + }, + { + "start": 2407.66, + "end": 2408.42, + "probability": 0.5836 + }, + { + "start": 2408.74, + "end": 2410.08, + "probability": 0.8757 + }, + { + "start": 2412.16, + "end": 2413.33, + "probability": 0.9922 + }, + { + "start": 2414.48, + "end": 2420.22, + "probability": 0.9976 + }, + { + "start": 2421.4, + "end": 2424.24, + "probability": 0.8933 + }, + { + "start": 2425.22, + "end": 2430.32, + "probability": 0.9955 + }, + { + "start": 2431.08, + "end": 2434.86, + "probability": 0.9938 + }, + { + "start": 2434.96, + "end": 2435.48, + "probability": 0.8961 + }, + { + "start": 2435.86, + "end": 2436.48, + "probability": 0.7348 + }, + { + "start": 2437.48, + "end": 2439.78, + "probability": 0.839 + }, + { + "start": 2452.02, + "end": 2452.02, + "probability": 0.6302 + }, + { + "start": 2452.02, + "end": 2453.1, + "probability": 0.6633 + }, + { + "start": 2453.68, + "end": 2457.88, + "probability": 0.6097 + }, + { + "start": 2459.3, + "end": 2460.62, + "probability": 0.9941 + }, + { + "start": 2461.7, + "end": 2464.38, + "probability": 0.9067 + }, + { + "start": 2465.6, + "end": 2468.78, + "probability": 0.9774 + }, + { + "start": 2469.8, + "end": 2471.12, + "probability": 0.6309 + }, + { + "start": 2471.76, + "end": 2473.83, + "probability": 0.6438 + }, + { + "start": 2474.52, + "end": 2475.95, + "probability": 0.9409 + }, + { + "start": 2476.94, + "end": 2478.48, + "probability": 0.9648 + }, + { + "start": 2478.92, + "end": 2482.19, + "probability": 0.944 + }, + { + "start": 2482.8, + "end": 2483.2, + "probability": 0.0675 + }, + { + "start": 2483.2, + "end": 2484.32, + "probability": 0.8726 + }, + { + "start": 2485.28, + "end": 2487.66, + "probability": 0.7541 + }, + { + "start": 2488.42, + "end": 2489.82, + "probability": 0.9237 + }, + { + "start": 2490.6, + "end": 2492.34, + "probability": 0.8849 + }, + { + "start": 2492.88, + "end": 2495.14, + "probability": 0.8706 + }, + { + "start": 2496.52, + "end": 2497.62, + "probability": 0.9211 + }, + { + "start": 2497.78, + "end": 2498.36, + "probability": 0.5054 + }, + { + "start": 2498.38, + "end": 2499.11, + "probability": 0.9424 + }, + { + "start": 2499.38, + "end": 2500.3, + "probability": 0.844 + }, + { + "start": 2500.66, + "end": 2501.14, + "probability": 0.9238 + }, + { + "start": 2501.3, + "end": 2502.46, + "probability": 0.6765 + }, + { + "start": 2502.54, + "end": 2502.64, + "probability": 0.2753 + }, + { + "start": 2502.74, + "end": 2503.38, + "probability": 0.835 + }, + { + "start": 2503.68, + "end": 2506.2, + "probability": 0.6029 + }, + { + "start": 2506.2, + "end": 2507.6, + "probability": 0.9433 + }, + { + "start": 2508.12, + "end": 2509.93, + "probability": 0.8815 + }, + { + "start": 2510.3, + "end": 2511.08, + "probability": 0.7349 + }, + { + "start": 2511.16, + "end": 2511.56, + "probability": 0.6136 + }, + { + "start": 2511.72, + "end": 2511.82, + "probability": 0.5918 + }, + { + "start": 2511.82, + "end": 2511.82, + "probability": 0.4517 + }, + { + "start": 2511.88, + "end": 2513.28, + "probability": 0.978 + }, + { + "start": 2514.06, + "end": 2516.18, + "probability": 0.762 + }, + { + "start": 2516.24, + "end": 2517.66, + "probability": 0.8275 + }, + { + "start": 2517.66, + "end": 2518.24, + "probability": 0.5348 + }, + { + "start": 2518.54, + "end": 2519.23, + "probability": 0.688 + }, + { + "start": 2520.26, + "end": 2521.6, + "probability": 0.6268 + }, + { + "start": 2522.4, + "end": 2522.78, + "probability": 0.7054 + }, + { + "start": 2523.78, + "end": 2525.3, + "probability": 0.7913 + }, + { + "start": 2525.36, + "end": 2525.8, + "probability": 0.9014 + }, + { + "start": 2526.62, + "end": 2528.9, + "probability": 0.7578 + }, + { + "start": 2530.36, + "end": 2531.54, + "probability": 0.9429 + }, + { + "start": 2532.32, + "end": 2535.08, + "probability": 0.9303 + }, + { + "start": 2535.54, + "end": 2536.02, + "probability": 0.552 + }, + { + "start": 2536.96, + "end": 2538.26, + "probability": 0.982 + }, + { + "start": 2539.08, + "end": 2541.84, + "probability": 0.951 + }, + { + "start": 2542.74, + "end": 2543.52, + "probability": 0.6488 + }, + { + "start": 2544.32, + "end": 2545.0, + "probability": 0.4761 + }, + { + "start": 2545.5, + "end": 2547.08, + "probability": 0.8881 + }, + { + "start": 2547.72, + "end": 2551.08, + "probability": 0.738 + }, + { + "start": 2551.78, + "end": 2553.54, + "probability": 0.4872 + }, + { + "start": 2554.36, + "end": 2558.34, + "probability": 0.8595 + }, + { + "start": 2558.98, + "end": 2559.48, + "probability": 0.0813 + }, + { + "start": 2560.43, + "end": 2560.88, + "probability": 0.1562 + }, + { + "start": 2561.4, + "end": 2562.5, + "probability": 0.147 + }, + { + "start": 2562.52, + "end": 2563.46, + "probability": 0.0922 + }, + { + "start": 2563.64, + "end": 2563.76, + "probability": 0.3107 + }, + { + "start": 2563.98, + "end": 2564.3, + "probability": 0.0629 + }, + { + "start": 2564.3, + "end": 2564.3, + "probability": 0.1539 + }, + { + "start": 2564.64, + "end": 2566.25, + "probability": 0.1578 + }, + { + "start": 2566.6, + "end": 2571.12, + "probability": 0.629 + }, + { + "start": 2571.42, + "end": 2571.5, + "probability": 0.5109 + }, + { + "start": 2571.62, + "end": 2575.77, + "probability": 0.9732 + }, + { + "start": 2576.42, + "end": 2577.06, + "probability": 0.7595 + }, + { + "start": 2578.02, + "end": 2580.14, + "probability": 0.5616 + }, + { + "start": 2580.7, + "end": 2582.74, + "probability": 0.9709 + }, + { + "start": 2582.94, + "end": 2585.44, + "probability": 0.9806 + }, + { + "start": 2586.2, + "end": 2589.9, + "probability": 0.6382 + }, + { + "start": 2590.3, + "end": 2591.36, + "probability": 0.867 + }, + { + "start": 2591.96, + "end": 2592.16, + "probability": 0.8006 + }, + { + "start": 2592.22, + "end": 2593.7, + "probability": 0.9248 + }, + { + "start": 2594.14, + "end": 2596.86, + "probability": 0.9966 + }, + { + "start": 2597.3, + "end": 2600.84, + "probability": 0.9857 + }, + { + "start": 2602.12, + "end": 2603.04, + "probability": 0.6978 + }, + { + "start": 2603.44, + "end": 2607.76, + "probability": 0.7713 + }, + { + "start": 2608.9, + "end": 2610.4, + "probability": 0.7952 + }, + { + "start": 2610.9, + "end": 2612.82, + "probability": 0.9473 + }, + { + "start": 2613.04, + "end": 2614.4, + "probability": 0.987 + }, + { + "start": 2615.22, + "end": 2617.4, + "probability": 0.96 + }, + { + "start": 2617.58, + "end": 2619.06, + "probability": 0.802 + }, + { + "start": 2619.94, + "end": 2621.96, + "probability": 0.7464 + }, + { + "start": 2622.52, + "end": 2623.58, + "probability": 0.7156 + }, + { + "start": 2624.54, + "end": 2626.48, + "probability": 0.0895 + }, + { + "start": 2628.0, + "end": 2630.0, + "probability": 0.6653 + }, + { + "start": 2630.08, + "end": 2632.94, + "probability": 0.7418 + }, + { + "start": 2633.28, + "end": 2635.32, + "probability": 0.8848 + }, + { + "start": 2635.86, + "end": 2637.78, + "probability": 0.8759 + }, + { + "start": 2638.8, + "end": 2640.34, + "probability": 0.9344 + }, + { + "start": 2640.78, + "end": 2643.44, + "probability": 0.4795 + }, + { + "start": 2643.64, + "end": 2645.53, + "probability": 0.7065 + }, + { + "start": 2646.12, + "end": 2649.34, + "probability": 0.685 + }, + { + "start": 2650.16, + "end": 2650.8, + "probability": 0.6722 + }, + { + "start": 2651.44, + "end": 2653.76, + "probability": 0.7654 + }, + { + "start": 2654.46, + "end": 2656.82, + "probability": 0.3635 + }, + { + "start": 2657.18, + "end": 2658.64, + "probability": 0.038 + }, + { + "start": 2661.04, + "end": 2663.22, + "probability": 0.8173 + }, + { + "start": 2663.55, + "end": 2666.78, + "probability": 0.8936 + }, + { + "start": 2666.88, + "end": 2668.0, + "probability": 0.9363 + }, + { + "start": 2668.18, + "end": 2668.96, + "probability": 0.6305 + }, + { + "start": 2669.22, + "end": 2672.47, + "probability": 0.632 + }, + { + "start": 2673.54, + "end": 2675.78, + "probability": 0.7309 + }, + { + "start": 2677.68, + "end": 2678.59, + "probability": 0.6809 + }, + { + "start": 2679.75, + "end": 2681.74, + "probability": 0.7843 + }, + { + "start": 2682.16, + "end": 2682.68, + "probability": 0.811 + }, + { + "start": 2683.88, + "end": 2687.04, + "probability": 0.5419 + }, + { + "start": 2687.84, + "end": 2688.86, + "probability": 0.8269 + }, + { + "start": 2689.7, + "end": 2692.58, + "probability": 0.9405 + }, + { + "start": 2693.36, + "end": 2694.7, + "probability": 0.9531 + }, + { + "start": 2695.0, + "end": 2697.78, + "probability": 0.9632 + }, + { + "start": 2697.92, + "end": 2700.2, + "probability": 0.8002 + }, + { + "start": 2700.52, + "end": 2702.18, + "probability": 0.9283 + }, + { + "start": 2702.98, + "end": 2705.9, + "probability": 0.74 + }, + { + "start": 2707.18, + "end": 2708.1, + "probability": 0.4973 + }, + { + "start": 2709.5, + "end": 2711.3, + "probability": 0.9521 + }, + { + "start": 2712.18, + "end": 2717.12, + "probability": 0.8929 + }, + { + "start": 2717.24, + "end": 2718.65, + "probability": 0.6487 + }, + { + "start": 2719.56, + "end": 2720.76, + "probability": 0.9426 + }, + { + "start": 2721.14, + "end": 2721.34, + "probability": 0.6552 + }, + { + "start": 2721.76, + "end": 2722.1, + "probability": 0.5195 + }, + { + "start": 2722.38, + "end": 2723.42, + "probability": 0.8113 + }, + { + "start": 2726.02, + "end": 2726.5, + "probability": 0.76 + }, + { + "start": 2726.56, + "end": 2729.44, + "probability": 0.7079 + }, + { + "start": 2729.46, + "end": 2729.82, + "probability": 0.3578 + }, + { + "start": 2729.9, + "end": 2730.76, + "probability": 0.7144 + }, + { + "start": 2731.4, + "end": 2735.04, + "probability": 0.9032 + }, + { + "start": 2735.16, + "end": 2735.46, + "probability": 0.7614 + }, + { + "start": 2735.5, + "end": 2737.54, + "probability": 0.8661 + }, + { + "start": 2738.66, + "end": 2739.14, + "probability": 0.9406 + }, + { + "start": 2740.02, + "end": 2740.88, + "probability": 0.7913 + }, + { + "start": 2741.46, + "end": 2745.18, + "probability": 0.9876 + }, + { + "start": 2746.36, + "end": 2747.65, + "probability": 0.9749 + }, + { + "start": 2748.72, + "end": 2750.02, + "probability": 0.9824 + }, + { + "start": 2750.12, + "end": 2750.66, + "probability": 0.8709 + }, + { + "start": 2750.76, + "end": 2752.52, + "probability": 0.9317 + }, + { + "start": 2753.02, + "end": 2755.58, + "probability": 0.8314 + }, + { + "start": 2755.58, + "end": 2757.32, + "probability": 0.642 + }, + { + "start": 2759.26, + "end": 2759.3, + "probability": 0.0264 + }, + { + "start": 2759.3, + "end": 2760.7, + "probability": 0.2532 + }, + { + "start": 2760.72, + "end": 2761.94, + "probability": 0.7326 + }, + { + "start": 2762.34, + "end": 2763.76, + "probability": 0.9474 + }, + { + "start": 2763.86, + "end": 2765.14, + "probability": 0.6303 + }, + { + "start": 2766.3, + "end": 2768.96, + "probability": 0.8509 + }, + { + "start": 2770.02, + "end": 2772.94, + "probability": 0.949 + }, + { + "start": 2773.74, + "end": 2776.28, + "probability": 0.9182 + }, + { + "start": 2776.36, + "end": 2778.42, + "probability": 0.9625 + }, + { + "start": 2778.94, + "end": 2780.0, + "probability": 0.6363 + }, + { + "start": 2780.68, + "end": 2782.88, + "probability": 0.7127 + }, + { + "start": 2782.96, + "end": 2786.61, + "probability": 0.5323 + }, + { + "start": 2787.12, + "end": 2788.72, + "probability": 0.8015 + }, + { + "start": 2788.74, + "end": 2788.88, + "probability": 0.5619 + }, + { + "start": 2788.96, + "end": 2791.16, + "probability": 0.6238 + }, + { + "start": 2791.24, + "end": 2792.46, + "probability": 0.9596 + }, + { + "start": 2795.88, + "end": 2797.12, + "probability": 0.5461 + }, + { + "start": 2799.68, + "end": 2802.44, + "probability": 0.5172 + }, + { + "start": 2803.61, + "end": 2805.2, + "probability": 0.9109 + }, + { + "start": 2805.28, + "end": 2806.28, + "probability": 0.4873 + }, + { + "start": 2806.6, + "end": 2807.12, + "probability": 0.1736 + }, + { + "start": 2807.26, + "end": 2808.27, + "probability": 0.2191 + }, + { + "start": 2808.68, + "end": 2808.7, + "probability": 0.0677 + }, + { + "start": 2808.7, + "end": 2810.56, + "probability": 0.9038 + }, + { + "start": 2812.22, + "end": 2814.52, + "probability": 0.877 + }, + { + "start": 2814.78, + "end": 2815.36, + "probability": 0.1032 + }, + { + "start": 2816.36, + "end": 2816.46, + "probability": 0.1036 + }, + { + "start": 2816.48, + "end": 2817.96, + "probability": 0.3109 + }, + { + "start": 2818.2, + "end": 2819.48, + "probability": 0.5173 + }, + { + "start": 2819.48, + "end": 2820.14, + "probability": 0.4825 + }, + { + "start": 2820.26, + "end": 2821.8, + "probability": 0.7356 + }, + { + "start": 2822.0, + "end": 2824.54, + "probability": 0.4372 + }, + { + "start": 2824.56, + "end": 2825.32, + "probability": 0.6237 + }, + { + "start": 2826.04, + "end": 2827.68, + "probability": 0.6407 + }, + { + "start": 2829.32, + "end": 2829.32, + "probability": 0.5475 + }, + { + "start": 2829.32, + "end": 2830.24, + "probability": 0.5363 + }, + { + "start": 2830.36, + "end": 2834.4, + "probability": 0.7236 + }, + { + "start": 2834.64, + "end": 2835.6, + "probability": 0.7735 + }, + { + "start": 2836.14, + "end": 2838.86, + "probability": 0.7213 + }, + { + "start": 2839.42, + "end": 2841.44, + "probability": 0.9961 + }, + { + "start": 2841.6, + "end": 2842.08, + "probability": 0.4609 + }, + { + "start": 2842.36, + "end": 2842.62, + "probability": 0.4597 + }, + { + "start": 2843.78, + "end": 2845.88, + "probability": 0.7831 + }, + { + "start": 2846.04, + "end": 2848.52, + "probability": 0.6502 + }, + { + "start": 2850.1, + "end": 2854.42, + "probability": 0.9954 + }, + { + "start": 2854.96, + "end": 2857.9, + "probability": 0.9911 + }, + { + "start": 2858.68, + "end": 2862.21, + "probability": 0.8881 + }, + { + "start": 2863.78, + "end": 2865.16, + "probability": 0.9847 + }, + { + "start": 2866.38, + "end": 2867.8, + "probability": 0.9967 + }, + { + "start": 2868.66, + "end": 2872.24, + "probability": 0.9953 + }, + { + "start": 2872.24, + "end": 2876.24, + "probability": 0.9945 + }, + { + "start": 2876.88, + "end": 2880.66, + "probability": 0.9873 + }, + { + "start": 2880.96, + "end": 2883.22, + "probability": 0.9937 + }, + { + "start": 2884.12, + "end": 2886.82, + "probability": 0.7641 + }, + { + "start": 2887.6, + "end": 2889.04, + "probability": 0.8398 + }, + { + "start": 2889.44, + "end": 2890.4, + "probability": 0.9063 + }, + { + "start": 2890.5, + "end": 2894.9, + "probability": 0.9625 + }, + { + "start": 2895.62, + "end": 2897.24, + "probability": 0.9933 + }, + { + "start": 2897.88, + "end": 2899.48, + "probability": 0.9982 + }, + { + "start": 2900.08, + "end": 2903.46, + "probability": 0.9827 + }, + { + "start": 2904.02, + "end": 2905.58, + "probability": 0.9884 + }, + { + "start": 2905.96, + "end": 2907.98, + "probability": 0.9941 + }, + { + "start": 2908.32, + "end": 2911.72, + "probability": 0.9972 + }, + { + "start": 2912.42, + "end": 2913.56, + "probability": 0.9275 + }, + { + "start": 2915.28, + "end": 2919.72, + "probability": 0.9768 + }, + { + "start": 2919.72, + "end": 2924.12, + "probability": 0.9918 + }, + { + "start": 2924.64, + "end": 2927.38, + "probability": 0.9505 + }, + { + "start": 2928.06, + "end": 2932.08, + "probability": 0.992 + }, + { + "start": 2932.26, + "end": 2933.48, + "probability": 0.8258 + }, + { + "start": 2934.24, + "end": 2936.34, + "probability": 0.9363 + }, + { + "start": 2937.02, + "end": 2940.06, + "probability": 0.9871 + }, + { + "start": 2941.28, + "end": 2946.06, + "probability": 0.9846 + }, + { + "start": 2946.56, + "end": 2947.32, + "probability": 0.9297 + }, + { + "start": 2948.4, + "end": 2949.8, + "probability": 0.8457 + }, + { + "start": 2950.86, + "end": 2951.62, + "probability": 0.5088 + }, + { + "start": 2952.42, + "end": 2956.26, + "probability": 0.973 + }, + { + "start": 2956.72, + "end": 2957.28, + "probability": 0.2936 + }, + { + "start": 2957.9, + "end": 2961.7, + "probability": 0.9419 + }, + { + "start": 2962.02, + "end": 2963.4, + "probability": 0.9665 + }, + { + "start": 2963.88, + "end": 2965.62, + "probability": 0.9855 + }, + { + "start": 2966.44, + "end": 2970.54, + "probability": 0.7793 + }, + { + "start": 2971.38, + "end": 2972.2, + "probability": 0.9995 + }, + { + "start": 2973.14, + "end": 2974.9, + "probability": 0.9393 + }, + { + "start": 2975.02, + "end": 2975.78, + "probability": 0.8956 + }, + { + "start": 2975.88, + "end": 2976.72, + "probability": 0.862 + }, + { + "start": 2977.5, + "end": 2979.1, + "probability": 0.8589 + }, + { + "start": 2979.78, + "end": 2982.12, + "probability": 0.9547 + }, + { + "start": 2982.78, + "end": 2987.78, + "probability": 0.9835 + }, + { + "start": 2987.78, + "end": 2993.0, + "probability": 0.9998 + }, + { + "start": 2993.86, + "end": 2998.86, + "probability": 0.9977 + }, + { + "start": 2999.06, + "end": 3000.24, + "probability": 0.5869 + }, + { + "start": 3002.74, + "end": 3007.78, + "probability": 0.9974 + }, + { + "start": 3008.62, + "end": 3010.04, + "probability": 0.7817 + }, + { + "start": 3010.88, + "end": 3012.14, + "probability": 0.9518 + }, + { + "start": 3012.72, + "end": 3014.69, + "probability": 0.9977 + }, + { + "start": 3015.44, + "end": 3016.8, + "probability": 0.8256 + }, + { + "start": 3017.86, + "end": 3019.24, + "probability": 0.8865 + }, + { + "start": 3019.76, + "end": 3022.1, + "probability": 0.4517 + }, + { + "start": 3023.18, + "end": 3023.67, + "probability": 0.9391 + }, + { + "start": 3024.76, + "end": 3027.54, + "probability": 0.9666 + }, + { + "start": 3028.24, + "end": 3029.28, + "probability": 0.9342 + }, + { + "start": 3029.44, + "end": 3030.56, + "probability": 0.9905 + }, + { + "start": 3031.0, + "end": 3033.0, + "probability": 0.9973 + }, + { + "start": 3034.08, + "end": 3038.84, + "probability": 0.9379 + }, + { + "start": 3039.96, + "end": 3044.3, + "probability": 0.9662 + }, + { + "start": 3045.14, + "end": 3045.74, + "probability": 0.8863 + }, + { + "start": 3046.68, + "end": 3047.2, + "probability": 0.7112 + }, + { + "start": 3047.9, + "end": 3049.64, + "probability": 0.6156 + }, + { + "start": 3050.36, + "end": 3056.48, + "probability": 0.9948 + }, + { + "start": 3058.74, + "end": 3062.21, + "probability": 0.8841 + }, + { + "start": 3062.86, + "end": 3064.34, + "probability": 0.9771 + }, + { + "start": 3064.88, + "end": 3067.46, + "probability": 0.9894 + }, + { + "start": 3067.94, + "end": 3072.06, + "probability": 0.9839 + }, + { + "start": 3072.54, + "end": 3075.13, + "probability": 0.8277 + }, + { + "start": 3075.4, + "end": 3076.34, + "probability": 0.6912 + }, + { + "start": 3076.88, + "end": 3077.36, + "probability": 0.4854 + }, + { + "start": 3077.88, + "end": 3079.91, + "probability": 0.9429 + }, + { + "start": 3080.98, + "end": 3086.58, + "probability": 0.9386 + }, + { + "start": 3087.26, + "end": 3090.78, + "probability": 0.8962 + }, + { + "start": 3092.32, + "end": 3093.72, + "probability": 0.6261 + }, + { + "start": 3093.94, + "end": 3094.66, + "probability": 0.7575 + }, + { + "start": 3095.16, + "end": 3098.6, + "probability": 0.9741 + }, + { + "start": 3100.02, + "end": 3102.7, + "probability": 0.9573 + }, + { + "start": 3103.52, + "end": 3106.4, + "probability": 0.9933 + }, + { + "start": 3107.6, + "end": 3109.1, + "probability": 0.5603 + }, + { + "start": 3110.58, + "end": 3111.46, + "probability": 0.924 + }, + { + "start": 3112.06, + "end": 3112.86, + "probability": 0.9583 + }, + { + "start": 3113.3, + "end": 3116.72, + "probability": 0.9862 + }, + { + "start": 3117.24, + "end": 3120.14, + "probability": 0.8309 + }, + { + "start": 3120.72, + "end": 3122.16, + "probability": 0.9585 + }, + { + "start": 3123.84, + "end": 3126.22, + "probability": 0.9972 + }, + { + "start": 3127.04, + "end": 3129.05, + "probability": 0.9991 + }, + { + "start": 3129.86, + "end": 3131.96, + "probability": 0.999 + }, + { + "start": 3132.54, + "end": 3135.64, + "probability": 0.9985 + }, + { + "start": 3136.3, + "end": 3137.14, + "probability": 0.9546 + }, + { + "start": 3138.0, + "end": 3139.84, + "probability": 0.9897 + }, + { + "start": 3140.6, + "end": 3143.58, + "probability": 0.9849 + }, + { + "start": 3145.84, + "end": 3149.24, + "probability": 0.6849 + }, + { + "start": 3150.56, + "end": 3151.52, + "probability": 0.9761 + }, + { + "start": 3155.04, + "end": 3156.0, + "probability": 0.4285 + }, + { + "start": 3158.78, + "end": 3159.58, + "probability": 0.3985 + }, + { + "start": 3160.06, + "end": 3161.54, + "probability": 0.604 + }, + { + "start": 3173.66, + "end": 3176.54, + "probability": 0.746 + }, + { + "start": 3177.54, + "end": 3181.36, + "probability": 0.8017 + }, + { + "start": 3181.84, + "end": 3182.96, + "probability": 0.8877 + }, + { + "start": 3183.58, + "end": 3185.18, + "probability": 0.6915 + }, + { + "start": 3185.18, + "end": 3185.18, + "probability": 0.657 + }, + { + "start": 3185.18, + "end": 3186.58, + "probability": 0.8051 + }, + { + "start": 3187.4, + "end": 3188.94, + "probability": 0.4934 + }, + { + "start": 3189.04, + "end": 3192.12, + "probability": 0.5834 + }, + { + "start": 3192.12, + "end": 3193.2, + "probability": 0.8572 + }, + { + "start": 3193.3, + "end": 3196.1, + "probability": 0.2796 + }, + { + "start": 3197.74, + "end": 3198.76, + "probability": 0.1584 + }, + { + "start": 3200.12, + "end": 3200.52, + "probability": 0.5951 + }, + { + "start": 3201.92, + "end": 3206.4, + "probability": 0.8952 + }, + { + "start": 3206.88, + "end": 3213.68, + "probability": 0.9886 + }, + { + "start": 3214.3, + "end": 3216.12, + "probability": 0.9655 + }, + { + "start": 3216.66, + "end": 3219.92, + "probability": 0.9635 + }, + { + "start": 3220.48, + "end": 3223.06, + "probability": 0.7053 + }, + { + "start": 3223.6, + "end": 3228.18, + "probability": 0.9882 + }, + { + "start": 3228.74, + "end": 3233.48, + "probability": 0.9976 + }, + { + "start": 3234.36, + "end": 3240.66, + "probability": 0.9835 + }, + { + "start": 3240.88, + "end": 3241.52, + "probability": 0.9837 + }, + { + "start": 3241.64, + "end": 3242.24, + "probability": 0.9801 + }, + { + "start": 3242.36, + "end": 3242.98, + "probability": 0.9329 + }, + { + "start": 3243.34, + "end": 3244.9, + "probability": 0.5493 + }, + { + "start": 3245.54, + "end": 3248.82, + "probability": 0.9878 + }, + { + "start": 3249.82, + "end": 3253.02, + "probability": 0.9971 + }, + { + "start": 3253.38, + "end": 3257.54, + "probability": 0.9612 + }, + { + "start": 3257.6, + "end": 3258.94, + "probability": 0.696 + }, + { + "start": 3259.36, + "end": 3264.18, + "probability": 0.9663 + }, + { + "start": 3264.86, + "end": 3268.68, + "probability": 0.9926 + }, + { + "start": 3269.56, + "end": 3271.1, + "probability": 0.6355 + }, + { + "start": 3271.44, + "end": 3275.18, + "probability": 0.7294 + }, + { + "start": 3282.5, + "end": 3286.76, + "probability": 0.8757 + }, + { + "start": 3287.04, + "end": 3289.56, + "probability": 0.9617 + }, + { + "start": 3290.04, + "end": 3292.4, + "probability": 0.9966 + }, + { + "start": 3292.82, + "end": 3297.08, + "probability": 0.999 + }, + { + "start": 3297.86, + "end": 3301.98, + "probability": 0.9738 + }, + { + "start": 3302.46, + "end": 3306.72, + "probability": 0.9867 + }, + { + "start": 3307.88, + "end": 3308.02, + "probability": 0.3286 + }, + { + "start": 3308.64, + "end": 3312.54, + "probability": 0.9415 + }, + { + "start": 3313.42, + "end": 3317.92, + "probability": 0.9204 + }, + { + "start": 3318.36, + "end": 3323.5, + "probability": 0.9874 + }, + { + "start": 3324.4, + "end": 3328.88, + "probability": 0.9463 + }, + { + "start": 3329.62, + "end": 3331.48, + "probability": 0.8785 + }, + { + "start": 3332.06, + "end": 3333.6, + "probability": 0.8289 + }, + { + "start": 3334.12, + "end": 3336.02, + "probability": 0.6678 + }, + { + "start": 3336.36, + "end": 3337.98, + "probability": 0.551 + }, + { + "start": 3338.64, + "end": 3343.68, + "probability": 0.9863 + }, + { + "start": 3343.68, + "end": 3349.28, + "probability": 0.9981 + }, + { + "start": 3349.88, + "end": 3353.26, + "probability": 0.9022 + }, + { + "start": 3353.42, + "end": 3354.0, + "probability": 0.7663 + }, + { + "start": 3354.44, + "end": 3358.0, + "probability": 0.8138 + }, + { + "start": 3360.8, + "end": 3362.22, + "probability": 0.7352 + }, + { + "start": 3362.26, + "end": 3362.38, + "probability": 0.0876 + }, + { + "start": 3363.3, + "end": 3363.66, + "probability": 0.1883 + }, + { + "start": 3364.26, + "end": 3364.32, + "probability": 0.024 + }, + { + "start": 3364.32, + "end": 3364.66, + "probability": 0.6316 + }, + { + "start": 3364.7, + "end": 3368.61, + "probability": 0.7309 + }, + { + "start": 3369.62, + "end": 3371.64, + "probability": 0.7498 + }, + { + "start": 3371.78, + "end": 3373.96, + "probability": 0.525 + }, + { + "start": 3374.1, + "end": 3375.24, + "probability": 0.5943 + }, + { + "start": 3375.34, + "end": 3376.62, + "probability": 0.5459 + }, + { + "start": 3376.74, + "end": 3379.32, + "probability": 0.9728 + }, + { + "start": 3379.4, + "end": 3381.08, + "probability": 0.6356 + }, + { + "start": 3381.18, + "end": 3385.42, + "probability": 0.958 + }, + { + "start": 3386.16, + "end": 3387.66, + "probability": 0.9374 + }, + { + "start": 3390.8, + "end": 3391.9, + "probability": 0.0063 + }, + { + "start": 3393.16, + "end": 3393.82, + "probability": 0.4642 + }, + { + "start": 3393.82, + "end": 3394.84, + "probability": 0.5561 + }, + { + "start": 3396.46, + "end": 3399.4, + "probability": 0.9647 + }, + { + "start": 3400.52, + "end": 3406.46, + "probability": 0.9602 + }, + { + "start": 3406.8, + "end": 3410.84, + "probability": 0.9758 + }, + { + "start": 3410.94, + "end": 3411.7, + "probability": 0.877 + }, + { + "start": 3411.8, + "end": 3413.12, + "probability": 0.8165 + }, + { + "start": 3413.64, + "end": 3416.48, + "probability": 0.9612 + }, + { + "start": 3417.48, + "end": 3418.4, + "probability": 0.9482 + }, + { + "start": 3419.86, + "end": 3421.4, + "probability": 0.9323 + }, + { + "start": 3421.6, + "end": 3421.84, + "probability": 0.5582 + }, + { + "start": 3421.9, + "end": 3422.3, + "probability": 0.8214 + }, + { + "start": 3422.36, + "end": 3423.22, + "probability": 0.7346 + }, + { + "start": 3423.36, + "end": 3423.98, + "probability": 0.8131 + }, + { + "start": 3424.1, + "end": 3426.84, + "probability": 0.9976 + }, + { + "start": 3428.3, + "end": 3429.71, + "probability": 0.9834 + }, + { + "start": 3430.7, + "end": 3433.56, + "probability": 0.9854 + }, + { + "start": 3435.38, + "end": 3436.32, + "probability": 0.4933 + }, + { + "start": 3437.45, + "end": 3443.0, + "probability": 0.999 + }, + { + "start": 3443.94, + "end": 3445.36, + "probability": 0.8041 + }, + { + "start": 3445.4, + "end": 3449.08, + "probability": 0.765 + }, + { + "start": 3449.26, + "end": 3451.54, + "probability": 0.9893 + }, + { + "start": 3452.6, + "end": 3454.16, + "probability": 0.799 + }, + { + "start": 3454.22, + "end": 3456.38, + "probability": 0.8806 + }, + { + "start": 3457.74, + "end": 3460.32, + "probability": 0.8712 + }, + { + "start": 3462.14, + "end": 3463.8, + "probability": 0.9737 + }, + { + "start": 3463.92, + "end": 3464.96, + "probability": 0.8993 + }, + { + "start": 3465.16, + "end": 3467.76, + "probability": 0.9775 + }, + { + "start": 3468.0, + "end": 3472.96, + "probability": 0.9712 + }, + { + "start": 3474.16, + "end": 3476.38, + "probability": 0.9502 + }, + { + "start": 3477.04, + "end": 3479.78, + "probability": 0.998 + }, + { + "start": 3481.98, + "end": 3483.0, + "probability": 0.6825 + }, + { + "start": 3483.06, + "end": 3485.56, + "probability": 0.9877 + }, + { + "start": 3485.66, + "end": 3487.3, + "probability": 0.9557 + }, + { + "start": 3487.6, + "end": 3488.56, + "probability": 0.9591 + }, + { + "start": 3488.7, + "end": 3489.72, + "probability": 0.7563 + }, + { + "start": 3489.88, + "end": 3493.86, + "probability": 0.9863 + }, + { + "start": 3496.44, + "end": 3497.98, + "probability": 0.744 + }, + { + "start": 3499.02, + "end": 3501.18, + "probability": 0.7399 + }, + { + "start": 3501.28, + "end": 3503.51, + "probability": 0.9966 + }, + { + "start": 3503.78, + "end": 3506.98, + "probability": 0.9875 + }, + { + "start": 3506.98, + "end": 3509.38, + "probability": 0.991 + }, + { + "start": 3509.94, + "end": 3512.1, + "probability": 0.8922 + }, + { + "start": 3514.26, + "end": 3516.14, + "probability": 0.9959 + }, + { + "start": 3516.82, + "end": 3517.73, + "probability": 0.7483 + }, + { + "start": 3518.06, + "end": 3519.7, + "probability": 0.6052 + }, + { + "start": 3520.24, + "end": 3522.02, + "probability": 0.9967 + }, + { + "start": 3522.14, + "end": 3526.39, + "probability": 0.9916 + }, + { + "start": 3526.56, + "end": 3530.88, + "probability": 0.9048 + }, + { + "start": 3531.52, + "end": 3534.02, + "probability": 0.9689 + }, + { + "start": 3535.9, + "end": 3539.26, + "probability": 0.9946 + }, + { + "start": 3539.3, + "end": 3540.66, + "probability": 0.9467 + }, + { + "start": 3540.98, + "end": 3543.08, + "probability": 0.9905 + }, + { + "start": 3544.16, + "end": 3546.18, + "probability": 0.9795 + }, + { + "start": 3547.18, + "end": 3547.24, + "probability": 0.0124 + }, + { + "start": 3547.24, + "end": 3550.04, + "probability": 0.9499 + }, + { + "start": 3550.52, + "end": 3553.1, + "probability": 0.979 + }, + { + "start": 3553.36, + "end": 3555.26, + "probability": 0.9874 + }, + { + "start": 3555.4, + "end": 3555.64, + "probability": 0.5072 + }, + { + "start": 3556.26, + "end": 3561.76, + "probability": 0.7407 + }, + { + "start": 3562.54, + "end": 3562.82, + "probability": 0.64 + }, + { + "start": 3563.88, + "end": 3564.88, + "probability": 0.2903 + }, + { + "start": 3565.94, + "end": 3567.24, + "probability": 0.6172 + }, + { + "start": 3567.28, + "end": 3567.68, + "probability": 0.5635 + }, + { + "start": 3569.12, + "end": 3569.74, + "probability": 0.7675 + }, + { + "start": 3571.08, + "end": 3571.76, + "probability": 0.7302 + }, + { + "start": 3571.88, + "end": 3574.14, + "probability": 0.8261 + }, + { + "start": 3574.14, + "end": 3574.48, + "probability": 0.4726 + }, + { + "start": 3574.5, + "end": 3574.9, + "probability": 0.9047 + }, + { + "start": 3574.96, + "end": 3575.38, + "probability": 0.6735 + }, + { + "start": 3577.95, + "end": 3579.48, + "probability": 0.4307 + }, + { + "start": 3579.48, + "end": 3580.24, + "probability": 0.7448 + }, + { + "start": 3580.88, + "end": 3581.14, + "probability": 0.4251 + }, + { + "start": 3581.22, + "end": 3581.7, + "probability": 0.685 + }, + { + "start": 3581.8, + "end": 3583.08, + "probability": 0.8368 + }, + { + "start": 3583.16, + "end": 3584.12, + "probability": 0.8432 + }, + { + "start": 3584.8, + "end": 3585.56, + "probability": 0.9408 + }, + { + "start": 3585.62, + "end": 3588.32, + "probability": 0.6543 + }, + { + "start": 3588.36, + "end": 3589.14, + "probability": 0.6895 + }, + { + "start": 3589.22, + "end": 3589.62, + "probability": 0.3671 + }, + { + "start": 3590.3, + "end": 3592.48, + "probability": 0.6403 + }, + { + "start": 3592.72, + "end": 3593.8, + "probability": 0.6962 + }, + { + "start": 3601.02, + "end": 3603.78, + "probability": 0.6128 + }, + { + "start": 3607.12, + "end": 3608.92, + "probability": 0.7285 + }, + { + "start": 3608.94, + "end": 3610.68, + "probability": 0.521 + }, + { + "start": 3610.86, + "end": 3611.36, + "probability": 0.8169 + }, + { + "start": 3611.44, + "end": 3611.96, + "probability": 0.5293 + }, + { + "start": 3612.0, + "end": 3612.48, + "probability": 0.6897 + }, + { + "start": 3612.58, + "end": 3612.95, + "probability": 0.7345 + }, + { + "start": 3613.7, + "end": 3615.12, + "probability": 0.5599 + }, + { + "start": 3616.02, + "end": 3616.02, + "probability": 0.0036 + }, + { + "start": 3624.08, + "end": 3626.22, + "probability": 0.2595 + }, + { + "start": 3629.08, + "end": 3629.1, + "probability": 0.2902 + }, + { + "start": 3629.1, + "end": 3630.08, + "probability": 0.6661 + }, + { + "start": 3635.81, + "end": 3638.08, + "probability": 0.8449 + }, + { + "start": 3645.24, + "end": 3646.46, + "probability": 0.5999 + }, + { + "start": 3647.76, + "end": 3649.34, + "probability": 0.7693 + }, + { + "start": 3650.88, + "end": 3652.22, + "probability": 0.4589 + }, + { + "start": 3654.56, + "end": 3656.44, + "probability": 0.8608 + }, + { + "start": 3658.08, + "end": 3659.44, + "probability": 0.7999 + }, + { + "start": 3659.72, + "end": 3663.6, + "probability": 0.8364 + }, + { + "start": 3664.66, + "end": 3665.96, + "probability": 0.9753 + }, + { + "start": 3666.24, + "end": 3667.98, + "probability": 0.8616 + }, + { + "start": 3668.9, + "end": 3671.36, + "probability": 0.959 + }, + { + "start": 3673.12, + "end": 3677.7, + "probability": 0.9854 + }, + { + "start": 3677.78, + "end": 3678.16, + "probability": 0.8485 + }, + { + "start": 3679.42, + "end": 3681.08, + "probability": 0.8945 + }, + { + "start": 3681.94, + "end": 3686.5, + "probability": 0.8893 + }, + { + "start": 3688.34, + "end": 3691.32, + "probability": 0.9995 + }, + { + "start": 3692.0, + "end": 3694.42, + "probability": 0.9644 + }, + { + "start": 3696.0, + "end": 3696.56, + "probability": 0.8312 + }, + { + "start": 3697.56, + "end": 3698.84, + "probability": 0.8242 + }, + { + "start": 3699.22, + "end": 3703.18, + "probability": 0.9917 + }, + { + "start": 3706.26, + "end": 3710.06, + "probability": 0.7852 + }, + { + "start": 3710.72, + "end": 3713.69, + "probability": 0.9869 + }, + { + "start": 3714.92, + "end": 3720.02, + "probability": 0.9942 + }, + { + "start": 3721.36, + "end": 3724.7, + "probability": 0.9964 + }, + { + "start": 3725.46, + "end": 3727.88, + "probability": 0.8173 + }, + { + "start": 3729.04, + "end": 3730.24, + "probability": 0.8815 + }, + { + "start": 3731.28, + "end": 3734.26, + "probability": 0.9252 + }, + { + "start": 3735.5, + "end": 3738.06, + "probability": 0.9713 + }, + { + "start": 3741.3, + "end": 3744.78, + "probability": 0.9899 + }, + { + "start": 3745.28, + "end": 3746.76, + "probability": 0.962 + }, + { + "start": 3748.8, + "end": 3751.2, + "probability": 0.8776 + }, + { + "start": 3752.16, + "end": 3757.8, + "probability": 0.9989 + }, + { + "start": 3758.1, + "end": 3760.02, + "probability": 0.9303 + }, + { + "start": 3761.0, + "end": 3764.12, + "probability": 0.9765 + }, + { + "start": 3764.8, + "end": 3768.16, + "probability": 0.9554 + }, + { + "start": 3768.2, + "end": 3772.06, + "probability": 0.9934 + }, + { + "start": 3773.08, + "end": 3774.52, + "probability": 0.5738 + }, + { + "start": 3776.8, + "end": 3778.14, + "probability": 0.3596 + }, + { + "start": 3779.6, + "end": 3780.44, + "probability": 0.7447 + }, + { + "start": 3780.72, + "end": 3783.78, + "probability": 0.9941 + }, + { + "start": 3784.14, + "end": 3784.24, + "probability": 0.3898 + }, + { + "start": 3785.0, + "end": 3786.34, + "probability": 0.7515 + }, + { + "start": 3788.99, + "end": 3791.8, + "probability": 0.8123 + }, + { + "start": 3791.9, + "end": 3793.32, + "probability": 0.8951 + }, + { + "start": 3793.88, + "end": 3797.52, + "probability": 0.8085 + }, + { + "start": 3799.12, + "end": 3800.28, + "probability": 0.8844 + }, + { + "start": 3801.32, + "end": 3804.98, + "probability": 0.9429 + }, + { + "start": 3806.86, + "end": 3810.64, + "probability": 0.841 + }, + { + "start": 3811.68, + "end": 3814.8, + "probability": 0.998 + }, + { + "start": 3816.08, + "end": 3818.44, + "probability": 0.8218 + }, + { + "start": 3819.54, + "end": 3822.52, + "probability": 0.9604 + }, + { + "start": 3824.28, + "end": 3826.64, + "probability": 0.8392 + }, + { + "start": 3829.38, + "end": 3831.76, + "probability": 0.9979 + }, + { + "start": 3832.08, + "end": 3833.72, + "probability": 0.8387 + }, + { + "start": 3834.58, + "end": 3836.91, + "probability": 0.9306 + }, + { + "start": 3838.04, + "end": 3843.1, + "probability": 0.9971 + }, + { + "start": 3844.06, + "end": 3846.39, + "probability": 0.9902 + }, + { + "start": 3849.92, + "end": 3851.18, + "probability": 0.9572 + }, + { + "start": 3851.38, + "end": 3857.1, + "probability": 0.9917 + }, + { + "start": 3857.26, + "end": 3858.88, + "probability": 0.8506 + }, + { + "start": 3860.52, + "end": 3862.34, + "probability": 0.8725 + }, + { + "start": 3865.06, + "end": 3867.54, + "probability": 0.9937 + }, + { + "start": 3868.52, + "end": 3871.64, + "probability": 0.8701 + }, + { + "start": 3875.5, + "end": 3878.26, + "probability": 0.9416 + }, + { + "start": 3879.64, + "end": 3883.88, + "probability": 0.9893 + }, + { + "start": 3885.74, + "end": 3889.22, + "probability": 0.9638 + }, + { + "start": 3889.22, + "end": 3893.22, + "probability": 0.9958 + }, + { + "start": 3893.66, + "end": 3897.36, + "probability": 0.9429 + }, + { + "start": 3904.92, + "end": 3907.96, + "probability": 0.9905 + }, + { + "start": 3909.18, + "end": 3911.89, + "probability": 0.9954 + }, + { + "start": 3913.26, + "end": 3914.5, + "probability": 0.2632 + }, + { + "start": 3920.62, + "end": 3923.56, + "probability": 0.9522 + }, + { + "start": 3924.82, + "end": 3928.36, + "probability": 0.9959 + }, + { + "start": 3929.22, + "end": 3931.22, + "probability": 0.9606 + }, + { + "start": 3932.32, + "end": 3938.14, + "probability": 0.9698 + }, + { + "start": 3939.4, + "end": 3942.32, + "probability": 0.9941 + }, + { + "start": 3942.84, + "end": 3944.84, + "probability": 0.5326 + }, + { + "start": 3945.82, + "end": 3945.9, + "probability": 0.3503 + }, + { + "start": 3945.94, + "end": 3946.84, + "probability": 0.936 + }, + { + "start": 3949.66, + "end": 3956.22, + "probability": 0.9965 + }, + { + "start": 3956.8, + "end": 3958.14, + "probability": 0.9622 + }, + { + "start": 3958.84, + "end": 3963.1, + "probability": 0.9589 + }, + { + "start": 3964.3, + "end": 3966.14, + "probability": 0.9362 + }, + { + "start": 3967.48, + "end": 3969.14, + "probability": 0.9042 + }, + { + "start": 3969.36, + "end": 3970.48, + "probability": 0.3139 + }, + { + "start": 3971.02, + "end": 3971.24, + "probability": 0.4911 + }, + { + "start": 3971.94, + "end": 3972.88, + "probability": 0.8711 + }, + { + "start": 3974.38, + "end": 3977.1, + "probability": 0.792 + }, + { + "start": 3977.42, + "end": 3978.72, + "probability": 0.6722 + }, + { + "start": 3979.26, + "end": 3979.6, + "probability": 0.898 + }, + { + "start": 3987.62, + "end": 3991.22, + "probability": 0.7273 + }, + { + "start": 3992.78, + "end": 3993.72, + "probability": 0.9661 + }, + { + "start": 3994.32, + "end": 3994.83, + "probability": 0.9901 + }, + { + "start": 3996.0, + "end": 3996.76, + "probability": 0.7098 + }, + { + "start": 3996.96, + "end": 3998.36, + "probability": 0.8813 + }, + { + "start": 3998.46, + "end": 4003.44, + "probability": 0.9456 + }, + { + "start": 4004.6, + "end": 4007.22, + "probability": 0.0858 + }, + { + "start": 4007.22, + "end": 4010.28, + "probability": 0.9987 + }, + { + "start": 4011.04, + "end": 4012.74, + "probability": 0.8966 + }, + { + "start": 4013.46, + "end": 4015.86, + "probability": 0.9923 + }, + { + "start": 4016.54, + "end": 4020.75, + "probability": 0.9951 + }, + { + "start": 4021.26, + "end": 4023.74, + "probability": 0.9002 + }, + { + "start": 4023.74, + "end": 4027.18, + "probability": 0.9964 + }, + { + "start": 4028.16, + "end": 4031.72, + "probability": 0.9705 + }, + { + "start": 4031.72, + "end": 4037.02, + "probability": 0.9814 + }, + { + "start": 4038.02, + "end": 4038.82, + "probability": 0.6767 + }, + { + "start": 4039.52, + "end": 4039.98, + "probability": 0.5532 + }, + { + "start": 4040.78, + "end": 4042.58, + "probability": 0.8315 + }, + { + "start": 4042.78, + "end": 4047.26, + "probability": 0.9934 + }, + { + "start": 4048.32, + "end": 4051.58, + "probability": 0.929 + }, + { + "start": 4052.48, + "end": 4056.22, + "probability": 0.9891 + }, + { + "start": 4057.08, + "end": 4058.46, + "probability": 0.9289 + }, + { + "start": 4058.64, + "end": 4063.96, + "probability": 0.8237 + }, + { + "start": 4064.54, + "end": 4065.84, + "probability": 0.9683 + }, + { + "start": 4065.96, + "end": 4066.74, + "probability": 0.7929 + }, + { + "start": 4066.82, + "end": 4067.7, + "probability": 0.9014 + }, + { + "start": 4068.48, + "end": 4071.94, + "probability": 0.9827 + }, + { + "start": 4071.94, + "end": 4075.54, + "probability": 0.9796 + }, + { + "start": 4075.8, + "end": 4076.68, + "probability": 0.5302 + }, + { + "start": 4076.96, + "end": 4078.38, + "probability": 0.9268 + }, + { + "start": 4078.96, + "end": 4081.48, + "probability": 0.9985 + }, + { + "start": 4081.98, + "end": 4083.36, + "probability": 0.8267 + }, + { + "start": 4083.78, + "end": 4090.72, + "probability": 0.9956 + }, + { + "start": 4091.4, + "end": 4097.0, + "probability": 0.9893 + }, + { + "start": 4097.02, + "end": 4104.58, + "probability": 0.9826 + }, + { + "start": 4105.34, + "end": 4107.72, + "probability": 0.9993 + }, + { + "start": 4108.58, + "end": 4113.14, + "probability": 0.8202 + }, + { + "start": 4114.2, + "end": 4114.5, + "probability": 0.6279 + }, + { + "start": 4115.22, + "end": 4115.32, + "probability": 0.9997 + }, + { + "start": 4120.08, + "end": 4120.9, + "probability": 0.5519 + }, + { + "start": 4121.84, + "end": 4123.36, + "probability": 0.969 + }, + { + "start": 4123.76, + "end": 4126.2, + "probability": 0.8206 + }, + { + "start": 4126.28, + "end": 4126.38, + "probability": 0.7622 + }, + { + "start": 4128.26, + "end": 4128.7, + "probability": 0.7602 + }, + { + "start": 4129.16, + "end": 4133.06, + "probability": 0.9989 + }, + { + "start": 4133.08, + "end": 4136.82, + "probability": 0.9662 + }, + { + "start": 4137.06, + "end": 4140.38, + "probability": 0.9666 + }, + { + "start": 4141.34, + "end": 4144.96, + "probability": 0.9119 + }, + { + "start": 4145.4, + "end": 4147.24, + "probability": 0.9865 + }, + { + "start": 4148.08, + "end": 4149.36, + "probability": 0.8245 + }, + { + "start": 4149.54, + "end": 4150.74, + "probability": 0.9014 + }, + { + "start": 4151.28, + "end": 4153.64, + "probability": 0.8181 + }, + { + "start": 4153.68, + "end": 4158.1, + "probability": 0.9929 + }, + { + "start": 4158.68, + "end": 4162.6, + "probability": 0.9933 + }, + { + "start": 4162.6, + "end": 4167.26, + "probability": 0.9458 + }, + { + "start": 4167.98, + "end": 4170.18, + "probability": 0.966 + }, + { + "start": 4170.28, + "end": 4173.1, + "probability": 0.9607 + }, + { + "start": 4173.56, + "end": 4178.16, + "probability": 0.9817 + }, + { + "start": 4178.88, + "end": 4181.32, + "probability": 0.9635 + }, + { + "start": 4181.94, + "end": 4183.64, + "probability": 0.8849 + }, + { + "start": 4184.82, + "end": 4186.04, + "probability": 0.9912 + }, + { + "start": 4186.52, + "end": 4189.66, + "probability": 0.7839 + }, + { + "start": 4189.76, + "end": 4189.78, + "probability": 0.6065 + }, + { + "start": 4189.9, + "end": 4191.5, + "probability": 0.52 + }, + { + "start": 4192.22, + "end": 4193.94, + "probability": 0.2125 + }, + { + "start": 4202.46, + "end": 4202.58, + "probability": 0.5184 + }, + { + "start": 4205.62, + "end": 4206.62, + "probability": 0.7409 + }, + { + "start": 4207.34, + "end": 4208.5, + "probability": 0.5345 + }, + { + "start": 4209.76, + "end": 4210.38, + "probability": 0.402 + }, + { + "start": 4212.24, + "end": 4213.68, + "probability": 0.6641 + }, + { + "start": 4214.3, + "end": 4216.02, + "probability": 0.8947 + }, + { + "start": 4217.03, + "end": 4221.2, + "probability": 0.9331 + }, + { + "start": 4221.48, + "end": 4222.3, + "probability": 0.9012 + }, + { + "start": 4225.38, + "end": 4226.24, + "probability": 0.8627 + }, + { + "start": 4226.38, + "end": 4227.54, + "probability": 0.9837 + }, + { + "start": 4227.76, + "end": 4229.16, + "probability": 0.6611 + }, + { + "start": 4232.08, + "end": 4233.42, + "probability": 0.7479 + }, + { + "start": 4236.12, + "end": 4237.34, + "probability": 0.9226 + }, + { + "start": 4237.48, + "end": 4240.32, + "probability": 0.9993 + }, + { + "start": 4240.44, + "end": 4241.78, + "probability": 0.9718 + }, + { + "start": 4242.16, + "end": 4242.58, + "probability": 0.2336 + }, + { + "start": 4243.38, + "end": 4243.8, + "probability": 0.5938 + }, + { + "start": 4243.9, + "end": 4245.88, + "probability": 0.984 + }, + { + "start": 4246.96, + "end": 4250.44, + "probability": 0.9744 + }, + { + "start": 4251.16, + "end": 4251.84, + "probability": 0.8549 + }, + { + "start": 4253.06, + "end": 4253.72, + "probability": 0.9852 + }, + { + "start": 4254.78, + "end": 4256.02, + "probability": 0.7798 + }, + { + "start": 4256.66, + "end": 4257.34, + "probability": 0.543 + }, + { + "start": 4259.14, + "end": 4259.96, + "probability": 0.79 + }, + { + "start": 4261.62, + "end": 4263.56, + "probability": 0.8694 + }, + { + "start": 4264.2, + "end": 4265.96, + "probability": 0.9887 + }, + { + "start": 4266.68, + "end": 4268.52, + "probability": 0.9782 + }, + { + "start": 4269.74, + "end": 4271.88, + "probability": 0.9873 + }, + { + "start": 4275.46, + "end": 4279.18, + "probability": 0.8076 + }, + { + "start": 4279.36, + "end": 4279.72, + "probability": 0.5587 + }, + { + "start": 4279.86, + "end": 4281.0, + "probability": 0.8859 + }, + { + "start": 4281.64, + "end": 4282.68, + "probability": 0.9873 + }, + { + "start": 4283.72, + "end": 4285.1, + "probability": 0.8364 + }, + { + "start": 4286.12, + "end": 4287.98, + "probability": 0.9897 + }, + { + "start": 4289.26, + "end": 4292.44, + "probability": 0.9821 + }, + { + "start": 4292.56, + "end": 4293.5, + "probability": 0.9623 + }, + { + "start": 4293.56, + "end": 4295.52, + "probability": 0.9713 + }, + { + "start": 4295.72, + "end": 4297.18, + "probability": 0.9967 + }, + { + "start": 4297.7, + "end": 4298.76, + "probability": 0.9991 + }, + { + "start": 4300.2, + "end": 4305.28, + "probability": 0.9879 + }, + { + "start": 4305.9, + "end": 4308.4, + "probability": 0.9982 + }, + { + "start": 4308.92, + "end": 4309.96, + "probability": 0.9692 + }, + { + "start": 4310.8, + "end": 4312.08, + "probability": 0.7577 + }, + { + "start": 4313.3, + "end": 4313.42, + "probability": 0.9692 + }, + { + "start": 4314.16, + "end": 4319.18, + "probability": 0.9746 + }, + { + "start": 4320.04, + "end": 4320.68, + "probability": 0.9213 + }, + { + "start": 4320.76, + "end": 4321.54, + "probability": 0.7459 + }, + { + "start": 4322.04, + "end": 4324.14, + "probability": 0.8085 + }, + { + "start": 4324.94, + "end": 4329.6, + "probability": 0.987 + }, + { + "start": 4330.04, + "end": 4331.6, + "probability": 0.7687 + }, + { + "start": 4331.92, + "end": 4332.6, + "probability": 0.8232 + }, + { + "start": 4334.48, + "end": 4340.04, + "probability": 0.9519 + }, + { + "start": 4340.96, + "end": 4348.72, + "probability": 0.9854 + }, + { + "start": 4350.28, + "end": 4352.3, + "probability": 0.999 + }, + { + "start": 4354.46, + "end": 4355.94, + "probability": 0.6206 + }, + { + "start": 4356.02, + "end": 4356.74, + "probability": 0.5352 + }, + { + "start": 4356.82, + "end": 4357.39, + "probability": 0.6023 + }, + { + "start": 4361.35, + "end": 4361.89, + "probability": 0.2951 + }, + { + "start": 4363.68, + "end": 4369.14, + "probability": 0.978 + }, + { + "start": 4369.86, + "end": 4370.14, + "probability": 0.7385 + }, + { + "start": 4370.98, + "end": 4372.34, + "probability": 0.999 + }, + { + "start": 4373.0, + "end": 4377.9, + "probability": 0.9767 + }, + { + "start": 4379.02, + "end": 4381.1, + "probability": 0.9494 + }, + { + "start": 4381.82, + "end": 4385.08, + "probability": 0.9421 + }, + { + "start": 4386.36, + "end": 4389.84, + "probability": 0.999 + }, + { + "start": 4389.94, + "end": 4391.06, + "probability": 0.993 + }, + { + "start": 4391.68, + "end": 4392.86, + "probability": 0.9466 + }, + { + "start": 4393.48, + "end": 4394.68, + "probability": 0.7111 + }, + { + "start": 4395.66, + "end": 4398.44, + "probability": 0.9767 + }, + { + "start": 4399.08, + "end": 4400.0, + "probability": 0.8542 + }, + { + "start": 4401.46, + "end": 4403.1, + "probability": 0.8056 + }, + { + "start": 4404.66, + "end": 4405.44, + "probability": 0.9977 + }, + { + "start": 4406.12, + "end": 4407.54, + "probability": 0.9633 + }, + { + "start": 4408.52, + "end": 4410.32, + "probability": 0.9355 + }, + { + "start": 4411.52, + "end": 4413.14, + "probability": 0.9827 + }, + { + "start": 4413.26, + "end": 4417.2, + "probability": 0.9619 + }, + { + "start": 4419.1, + "end": 4420.38, + "probability": 0.994 + }, + { + "start": 4422.06, + "end": 4423.1, + "probability": 0.8396 + }, + { + "start": 4425.14, + "end": 4426.94, + "probability": 0.7687 + }, + { + "start": 4427.98, + "end": 4430.7, + "probability": 0.6845 + }, + { + "start": 4431.36, + "end": 4432.48, + "probability": 0.886 + }, + { + "start": 4432.84, + "end": 4432.94, + "probability": 0.1252 + }, + { + "start": 4433.52, + "end": 4434.2, + "probability": 0.853 + }, + { + "start": 4435.38, + "end": 4435.8, + "probability": 0.5003 + }, + { + "start": 4436.8, + "end": 4437.9, + "probability": 0.8072 + }, + { + "start": 4438.06, + "end": 4439.16, + "probability": 0.825 + }, + { + "start": 4439.88, + "end": 4440.93, + "probability": 0.9867 + }, + { + "start": 4441.56, + "end": 4443.96, + "probability": 0.9569 + }, + { + "start": 4445.16, + "end": 4450.16, + "probability": 0.9793 + }, + { + "start": 4452.36, + "end": 4453.8, + "probability": 0.998 + }, + { + "start": 4454.46, + "end": 4457.18, + "probability": 0.9679 + }, + { + "start": 4458.2, + "end": 4459.16, + "probability": 0.7184 + }, + { + "start": 4459.68, + "end": 4460.74, + "probability": 0.7298 + }, + { + "start": 4461.86, + "end": 4463.1, + "probability": 0.9927 + }, + { + "start": 4464.04, + "end": 4465.58, + "probability": 0.9492 + }, + { + "start": 4465.66, + "end": 4468.54, + "probability": 0.9451 + }, + { + "start": 4469.18, + "end": 4470.11, + "probability": 0.6524 + }, + { + "start": 4471.12, + "end": 4473.72, + "probability": 0.9672 + }, + { + "start": 4474.44, + "end": 4475.32, + "probability": 0.6388 + }, + { + "start": 4476.88, + "end": 4477.74, + "probability": 0.9095 + }, + { + "start": 4480.22, + "end": 4482.56, + "probability": 0.9839 + }, + { + "start": 4482.62, + "end": 4486.04, + "probability": 0.9968 + }, + { + "start": 4487.18, + "end": 4489.02, + "probability": 0.9523 + }, + { + "start": 4489.48, + "end": 4492.36, + "probability": 0.6938 + }, + { + "start": 4493.28, + "end": 4494.64, + "probability": 0.9124 + }, + { + "start": 4495.4, + "end": 4500.5, + "probability": 0.9739 + }, + { + "start": 4501.4, + "end": 4504.22, + "probability": 0.9095 + }, + { + "start": 4504.86, + "end": 4507.88, + "probability": 0.938 + }, + { + "start": 4509.6, + "end": 4510.88, + "probability": 0.9729 + }, + { + "start": 4512.38, + "end": 4512.68, + "probability": 0.9597 + }, + { + "start": 4514.08, + "end": 4516.44, + "probability": 0.9785 + }, + { + "start": 4517.26, + "end": 4519.82, + "probability": 0.9689 + }, + { + "start": 4520.48, + "end": 4522.98, + "probability": 0.968 + }, + { + "start": 4523.36, + "end": 4524.2, + "probability": 0.9803 + }, + { + "start": 4525.02, + "end": 4526.04, + "probability": 0.8938 + }, + { + "start": 4527.04, + "end": 4527.56, + "probability": 0.6765 + }, + { + "start": 4528.12, + "end": 4531.74, + "probability": 0.8783 + }, + { + "start": 4531.84, + "end": 4533.58, + "probability": 0.8528 + }, + { + "start": 4534.62, + "end": 4535.92, + "probability": 0.9932 + }, + { + "start": 4536.08, + "end": 4537.46, + "probability": 0.9801 + }, + { + "start": 4538.04, + "end": 4540.7, + "probability": 0.9966 + }, + { + "start": 4541.24, + "end": 4543.72, + "probability": 0.9932 + }, + { + "start": 4544.66, + "end": 4546.76, + "probability": 0.9669 + }, + { + "start": 4547.34, + "end": 4549.6, + "probability": 0.9913 + }, + { + "start": 4549.6, + "end": 4552.16, + "probability": 0.9097 + }, + { + "start": 4553.0, + "end": 4554.68, + "probability": 0.9795 + }, + { + "start": 4555.56, + "end": 4556.97, + "probability": 0.9912 + }, + { + "start": 4557.6, + "end": 4561.68, + "probability": 0.9403 + }, + { + "start": 4561.86, + "end": 4562.36, + "probability": 0.7153 + }, + { + "start": 4562.36, + "end": 4562.36, + "probability": 0.6812 + }, + { + "start": 4562.42, + "end": 4565.26, + "probability": 0.9763 + }, + { + "start": 4565.44, + "end": 4567.18, + "probability": 0.964 + }, + { + "start": 4567.18, + "end": 4567.2, + "probability": 0.3857 + }, + { + "start": 4567.22, + "end": 4569.04, + "probability": 0.9858 + }, + { + "start": 4569.54, + "end": 4570.14, + "probability": 0.42 + }, + { + "start": 4570.14, + "end": 4572.06, + "probability": 0.8525 + }, + { + "start": 4572.06, + "end": 4573.46, + "probability": 0.6313 + }, + { + "start": 4574.36, + "end": 4576.72, + "probability": 0.8792 + }, + { + "start": 4577.84, + "end": 4579.08, + "probability": 0.736 + }, + { + "start": 4579.18, + "end": 4580.28, + "probability": 0.7866 + }, + { + "start": 4580.58, + "end": 4581.9, + "probability": 0.7786 + }, + { + "start": 4582.08, + "end": 4586.0, + "probability": 0.6844 + }, + { + "start": 4586.96, + "end": 4586.96, + "probability": 0.0003 + }, + { + "start": 4586.96, + "end": 4590.02, + "probability": 0.8748 + }, + { + "start": 4592.02, + "end": 4594.64, + "probability": 0.8702 + }, + { + "start": 4594.82, + "end": 4599.81, + "probability": 0.7128 + }, + { + "start": 4602.3, + "end": 4607.94, + "probability": 0.0715 + }, + { + "start": 4608.82, + "end": 4612.4, + "probability": 0.3003 + }, + { + "start": 4613.84, + "end": 4623.84, + "probability": 0.0172 + }, + { + "start": 4625.1, + "end": 4627.18, + "probability": 0.0942 + }, + { + "start": 4627.98, + "end": 4634.48, + "probability": 0.0473 + }, + { + "start": 4636.98, + "end": 4639.04, + "probability": 0.0627 + }, + { + "start": 4639.04, + "end": 4641.86, + "probability": 0.0697 + }, + { + "start": 4642.0, + "end": 4642.52, + "probability": 0.0138 + }, + { + "start": 4642.52, + "end": 4644.1, + "probability": 0.0932 + }, + { + "start": 4645.54, + "end": 4645.78, + "probability": 0.0893 + }, + { + "start": 4648.12, + "end": 4651.52, + "probability": 0.0171 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.0, + "end": 4652.0, + "probability": 0.0 + }, + { + "start": 4652.1, + "end": 4652.1, + "probability": 0.0414 + }, + { + "start": 4652.1, + "end": 4652.1, + "probability": 0.0392 + }, + { + "start": 4652.1, + "end": 4652.54, + "probability": 0.3292 + }, + { + "start": 4654.88, + "end": 4658.74, + "probability": 0.9797 + }, + { + "start": 4658.74, + "end": 4661.92, + "probability": 0.9957 + }, + { + "start": 4662.94, + "end": 4665.98, + "probability": 0.9912 + }, + { + "start": 4665.98, + "end": 4669.62, + "probability": 0.9982 + }, + { + "start": 4670.04, + "end": 4670.96, + "probability": 0.9766 + }, + { + "start": 4671.22, + "end": 4672.32, + "probability": 0.8181 + }, + { + "start": 4673.04, + "end": 4674.6, + "probability": 0.9751 + }, + { + "start": 4674.66, + "end": 4676.46, + "probability": 0.973 + }, + { + "start": 4678.24, + "end": 4683.48, + "probability": 0.9794 + }, + { + "start": 4684.9, + "end": 4691.32, + "probability": 0.996 + }, + { + "start": 4692.34, + "end": 4696.2, + "probability": 0.9962 + }, + { + "start": 4696.32, + "end": 4697.06, + "probability": 0.9822 + }, + { + "start": 4698.06, + "end": 4701.6, + "probability": 0.98 + }, + { + "start": 4702.12, + "end": 4704.76, + "probability": 0.9807 + }, + { + "start": 4705.64, + "end": 4708.48, + "probability": 0.9933 + }, + { + "start": 4708.98, + "end": 4712.44, + "probability": 0.9837 + }, + { + "start": 4712.44, + "end": 4715.84, + "probability": 0.9976 + }, + { + "start": 4716.7, + "end": 4720.52, + "probability": 0.998 + }, + { + "start": 4721.22, + "end": 4721.78, + "probability": 0.8549 + }, + { + "start": 4722.28, + "end": 4723.68, + "probability": 0.9727 + }, + { + "start": 4723.74, + "end": 4725.28, + "probability": 0.9256 + }, + { + "start": 4725.98, + "end": 4727.84, + "probability": 0.999 + }, + { + "start": 4728.74, + "end": 4733.78, + "probability": 0.9432 + }, + { + "start": 4735.04, + "end": 4738.8, + "probability": 0.9518 + }, + { + "start": 4739.32, + "end": 4741.98, + "probability": 0.9943 + }, + { + "start": 4742.66, + "end": 4746.34, + "probability": 0.9985 + }, + { + "start": 4747.12, + "end": 4751.74, + "probability": 0.9859 + }, + { + "start": 4752.32, + "end": 4755.36, + "probability": 0.98 + }, + { + "start": 4756.08, + "end": 4760.98, + "probability": 0.9973 + }, + { + "start": 4762.2, + "end": 4765.06, + "probability": 0.9927 + }, + { + "start": 4765.82, + "end": 4769.7, + "probability": 0.9985 + }, + { + "start": 4769.7, + "end": 4772.82, + "probability": 0.987 + }, + { + "start": 4773.4, + "end": 4776.4, + "probability": 0.9905 + }, + { + "start": 4776.46, + "end": 4780.26, + "probability": 0.9993 + }, + { + "start": 4781.44, + "end": 4781.7, + "probability": 0.6025 + }, + { + "start": 4782.98, + "end": 4784.4, + "probability": 0.8253 + }, + { + "start": 4784.56, + "end": 4784.56, + "probability": 0.4404 + }, + { + "start": 4784.56, + "end": 4784.96, + "probability": 0.7795 + }, + { + "start": 4786.62, + "end": 4788.4, + "probability": 0.8144 + }, + { + "start": 4788.42, + "end": 4788.79, + "probability": 0.9753 + }, + { + "start": 4789.73, + "end": 4792.0, + "probability": 0.9202 + }, + { + "start": 4792.06, + "end": 4793.98, + "probability": 0.9142 + }, + { + "start": 4794.12, + "end": 4794.47, + "probability": 0.8788 + }, + { + "start": 4795.16, + "end": 4796.48, + "probability": 0.9768 + }, + { + "start": 4797.54, + "end": 4799.32, + "probability": 0.9197 + }, + { + "start": 4799.52, + "end": 4800.06, + "probability": 0.5559 + }, + { + "start": 4800.06, + "end": 4803.16, + "probability": 0.5723 + }, + { + "start": 4803.6, + "end": 4803.92, + "probability": 0.2038 + }, + { + "start": 4805.28, + "end": 4805.52, + "probability": 0.4063 + }, + { + "start": 4805.62, + "end": 4806.3, + "probability": 0.1308 + }, + { + "start": 4806.66, + "end": 4806.92, + "probability": 0.524 + }, + { + "start": 4807.02, + "end": 4809.7, + "probability": 0.6089 + }, + { + "start": 4810.62, + "end": 4811.62, + "probability": 0.9023 + }, + { + "start": 4812.18, + "end": 4812.38, + "probability": 0.7612 + }, + { + "start": 4812.38, + "end": 4812.87, + "probability": 0.2901 + }, + { + "start": 4813.46, + "end": 4818.7, + "probability": 0.9924 + }, + { + "start": 4818.74, + "end": 4819.76, + "probability": 0.046 + }, + { + "start": 4819.76, + "end": 4823.84, + "probability": 0.9376 + }, + { + "start": 4823.96, + "end": 4825.36, + "probability": 0.6638 + }, + { + "start": 4825.84, + "end": 4825.84, + "probability": 0.0478 + }, + { + "start": 4825.84, + "end": 4829.8, + "probability": 0.8104 + }, + { + "start": 4829.86, + "end": 4830.75, + "probability": 0.2969 + }, + { + "start": 4831.38, + "end": 4832.18, + "probability": 0.2918 + }, + { + "start": 4832.18, + "end": 4834.36, + "probability": 0.6134 + }, + { + "start": 4834.44, + "end": 4836.02, + "probability": 0.7033 + }, + { + "start": 4836.8, + "end": 4839.65, + "probability": 0.7278 + }, + { + "start": 4839.84, + "end": 4842.44, + "probability": 0.8656 + }, + { + "start": 4842.44, + "end": 4842.68, + "probability": 0.13 + }, + { + "start": 4842.68, + "end": 4842.84, + "probability": 0.7133 + }, + { + "start": 4842.84, + "end": 4843.56, + "probability": 0.3401 + }, + { + "start": 4843.68, + "end": 4843.72, + "probability": 0.2982 + }, + { + "start": 4843.72, + "end": 4846.64, + "probability": 0.9732 + }, + { + "start": 4846.72, + "end": 4847.06, + "probability": 0.7514 + }, + { + "start": 4848.22, + "end": 4849.18, + "probability": 0.9863 + }, + { + "start": 4853.68, + "end": 4854.53, + "probability": 0.9667 + }, + { + "start": 4854.8, + "end": 4856.24, + "probability": 0.6668 + }, + { + "start": 4856.54, + "end": 4859.66, + "probability": 0.9549 + }, + { + "start": 4859.8, + "end": 4862.54, + "probability": 0.9914 + }, + { + "start": 4862.54, + "end": 4865.56, + "probability": 0.9954 + }, + { + "start": 4865.62, + "end": 4867.44, + "probability": 0.9951 + }, + { + "start": 4867.44, + "end": 4869.96, + "probability": 0.9891 + }, + { + "start": 4870.6, + "end": 4872.56, + "probability": 0.9771 + }, + { + "start": 4872.68, + "end": 4875.9, + "probability": 0.7838 + }, + { + "start": 4876.28, + "end": 4878.04, + "probability": 0.9978 + }, + { + "start": 4878.64, + "end": 4882.15, + "probability": 0.5768 + }, + { + "start": 4882.46, + "end": 4882.94, + "probability": 0.477 + }, + { + "start": 4883.06, + "end": 4885.28, + "probability": 0.9843 + }, + { + "start": 4885.38, + "end": 4885.82, + "probability": 0.8859 + }, + { + "start": 4885.9, + "end": 4887.3, + "probability": 0.9719 + }, + { + "start": 4887.6, + "end": 4890.64, + "probability": 0.9832 + }, + { + "start": 4890.64, + "end": 4895.02, + "probability": 0.7391 + }, + { + "start": 4895.06, + "end": 4898.62, + "probability": 0.9912 + }, + { + "start": 4899.8, + "end": 4900.94, + "probability": 0.5003 + }, + { + "start": 4901.08, + "end": 4901.46, + "probability": 0.85 + }, + { + "start": 4902.54, + "end": 4905.9, + "probability": 0.9786 + }, + { + "start": 4906.32, + "end": 4907.4, + "probability": 0.998 + }, + { + "start": 4907.94, + "end": 4911.16, + "probability": 0.9838 + }, + { + "start": 4911.32, + "end": 4914.22, + "probability": 0.9932 + }, + { + "start": 4914.58, + "end": 4915.68, + "probability": 0.897 + }, + { + "start": 4916.98, + "end": 4919.46, + "probability": 0.9952 + }, + { + "start": 4919.46, + "end": 4922.4, + "probability": 0.9896 + }, + { + "start": 4922.74, + "end": 4923.46, + "probability": 0.9391 + }, + { + "start": 4924.56, + "end": 4926.14, + "probability": 0.9995 + }, + { + "start": 4926.66, + "end": 4930.56, + "probability": 0.9821 + }, + { + "start": 4930.56, + "end": 4934.1, + "probability": 0.9934 + }, + { + "start": 4935.42, + "end": 4938.04, + "probability": 0.9122 + }, + { + "start": 4938.62, + "end": 4943.24, + "probability": 0.998 + }, + { + "start": 4943.24, + "end": 4947.46, + "probability": 0.9855 + }, + { + "start": 4947.84, + "end": 4948.22, + "probability": 0.5354 + }, + { + "start": 4949.32, + "end": 4949.5, + "probability": 0.1119 + }, + { + "start": 4949.52, + "end": 4950.01, + "probability": 0.5067 + }, + { + "start": 4951.32, + "end": 4954.62, + "probability": 0.7498 + }, + { + "start": 4954.8, + "end": 4956.7, + "probability": 0.999 + }, + { + "start": 4957.42, + "end": 4961.08, + "probability": 0.9971 + }, + { + "start": 4961.5, + "end": 4964.68, + "probability": 0.9768 + }, + { + "start": 4965.18, + "end": 4968.58, + "probability": 0.9943 + }, + { + "start": 4969.02, + "end": 4971.48, + "probability": 0.9906 + }, + { + "start": 4971.48, + "end": 4974.32, + "probability": 0.9941 + }, + { + "start": 4974.64, + "end": 4979.12, + "probability": 0.9497 + }, + { + "start": 4980.18, + "end": 4982.14, + "probability": 0.5555 + }, + { + "start": 4982.64, + "end": 4987.62, + "probability": 0.9961 + }, + { + "start": 4987.98, + "end": 4989.84, + "probability": 0.9841 + }, + { + "start": 4990.52, + "end": 4994.78, + "probability": 0.9188 + }, + { + "start": 4995.24, + "end": 4999.92, + "probability": 0.9932 + }, + { + "start": 5000.36, + "end": 5003.12, + "probability": 0.9836 + }, + { + "start": 5003.54, + "end": 5006.46, + "probability": 0.998 + }, + { + "start": 5007.22, + "end": 5009.44, + "probability": 0.9985 + }, + { + "start": 5009.56, + "end": 5009.84, + "probability": 0.8448 + }, + { + "start": 5009.92, + "end": 5010.76, + "probability": 0.8678 + }, + { + "start": 5011.28, + "end": 5012.62, + "probability": 0.8552 + }, + { + "start": 5013.38, + "end": 5015.92, + "probability": 0.9974 + }, + { + "start": 5015.92, + "end": 5019.82, + "probability": 0.9893 + }, + { + "start": 5021.0, + "end": 5023.72, + "probability": 0.9965 + }, + { + "start": 5023.84, + "end": 5026.22, + "probability": 0.9942 + }, + { + "start": 5027.1, + "end": 5030.34, + "probability": 0.9697 + }, + { + "start": 5030.8, + "end": 5034.92, + "probability": 0.984 + }, + { + "start": 5035.52, + "end": 5036.14, + "probability": 0.736 + }, + { + "start": 5036.7, + "end": 5039.62, + "probability": 0.9745 + }, + { + "start": 5039.62, + "end": 5043.04, + "probability": 0.9955 + }, + { + "start": 5044.04, + "end": 5047.88, + "probability": 0.9861 + }, + { + "start": 5047.94, + "end": 5051.24, + "probability": 0.8934 + }, + { + "start": 5051.24, + "end": 5054.5, + "probability": 0.9973 + }, + { + "start": 5055.04, + "end": 5056.58, + "probability": 0.9862 + }, + { + "start": 5057.42, + "end": 5062.02, + "probability": 0.9874 + }, + { + "start": 5062.8, + "end": 5065.54, + "probability": 0.9904 + }, + { + "start": 5065.54, + "end": 5068.28, + "probability": 0.9814 + }, + { + "start": 5068.28, + "end": 5068.9, + "probability": 0.5213 + }, + { + "start": 5069.68, + "end": 5070.0, + "probability": 0.1744 + }, + { + "start": 5070.0, + "end": 5070.78, + "probability": 0.259 + }, + { + "start": 5071.16, + "end": 5073.26, + "probability": 0.9793 + }, + { + "start": 5073.72, + "end": 5077.59, + "probability": 0.9785 + }, + { + "start": 5077.6, + "end": 5080.5, + "probability": 0.9996 + }, + { + "start": 5081.36, + "end": 5085.5, + "probability": 0.9899 + }, + { + "start": 5086.14, + "end": 5088.94, + "probability": 0.9824 + }, + { + "start": 5089.1, + "end": 5089.36, + "probability": 0.739 + }, + { + "start": 5090.28, + "end": 5092.99, + "probability": 0.8071 + }, + { + "start": 5093.95, + "end": 5096.4, + "probability": 0.7681 + }, + { + "start": 5098.06, + "end": 5100.26, + "probability": 0.8042 + }, + { + "start": 5100.4, + "end": 5101.93, + "probability": 0.9153 + }, + { + "start": 5103.08, + "end": 5103.48, + "probability": 0.1841 + }, + { + "start": 5103.48, + "end": 5104.64, + "probability": 0.4216 + }, + { + "start": 5105.16, + "end": 5109.82, + "probability": 0.8941 + }, + { + "start": 5110.02, + "end": 5112.56, + "probability": 0.5509 + }, + { + "start": 5113.7, + "end": 5114.76, + "probability": 0.5916 + }, + { + "start": 5115.46, + "end": 5116.94, + "probability": 0.6261 + }, + { + "start": 5120.08, + "end": 5121.76, + "probability": 0.8901 + }, + { + "start": 5121.92, + "end": 5127.26, + "probability": 0.6915 + }, + { + "start": 5127.36, + "end": 5128.82, + "probability": 0.6237 + }, + { + "start": 5129.72, + "end": 5132.29, + "probability": 0.9272 + }, + { + "start": 5133.17, + "end": 5135.87, + "probability": 0.8897 + }, + { + "start": 5136.41, + "end": 5139.97, + "probability": 0.8168 + }, + { + "start": 5146.39, + "end": 5146.39, + "probability": 0.5377 + }, + { + "start": 5146.39, + "end": 5147.33, + "probability": 0.0015 + }, + { + "start": 5152.23, + "end": 5153.91, + "probability": 0.0235 + }, + { + "start": 5154.57, + "end": 5156.09, + "probability": 0.4832 + }, + { + "start": 5156.11, + "end": 5158.55, + "probability": 0.804 + }, + { + "start": 5158.63, + "end": 5160.67, + "probability": 0.8498 + }, + { + "start": 5160.95, + "end": 5166.17, + "probability": 0.6704 + }, + { + "start": 5166.17, + "end": 5166.29, + "probability": 0.3675 + }, + { + "start": 5166.57, + "end": 5166.99, + "probability": 0.7637 + }, + { + "start": 5188.74, + "end": 5194.47, + "probability": 0.1296 + }, + { + "start": 5194.83, + "end": 5195.87, + "probability": 0.3709 + }, + { + "start": 5196.03, + "end": 5196.45, + "probability": 0.2391 + }, + { + "start": 5199.13, + "end": 5199.27, + "probability": 0.0005 + }, + { + "start": 5200.09, + "end": 5200.77, + "probability": 0.4278 + }, + { + "start": 5205.09, + "end": 5205.91, + "probability": 0.6165 + }, + { + "start": 5205.91, + "end": 5206.05, + "probability": 0.0336 + }, + { + "start": 5206.15, + "end": 5206.15, + "probability": 0.006 + }, + { + "start": 5206.15, + "end": 5206.41, + "probability": 0.1073 + }, + { + "start": 5213.13, + "end": 5214.89, + "probability": 0.0403 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.0, + "end": 5254.0, + "probability": 0.0 + }, + { + "start": 5254.12, + "end": 5255.16, + "probability": 0.0476 + }, + { + "start": 5255.84, + "end": 5256.2, + "probability": 0.7381 + }, + { + "start": 5257.64, + "end": 5259.04, + "probability": 0.8186 + }, + { + "start": 5259.08, + "end": 5264.28, + "probability": 0.8486 + }, + { + "start": 5265.36, + "end": 5267.52, + "probability": 0.8654 + }, + { + "start": 5267.9, + "end": 5269.14, + "probability": 0.9722 + }, + { + "start": 5269.48, + "end": 5270.92, + "probability": 0.9914 + }, + { + "start": 5272.16, + "end": 5276.98, + "probability": 0.9597 + }, + { + "start": 5278.36, + "end": 5282.5, + "probability": 0.5018 + }, + { + "start": 5283.12, + "end": 5286.44, + "probability": 0.9426 + }, + { + "start": 5287.42, + "end": 5290.2, + "probability": 0.969 + }, + { + "start": 5291.4, + "end": 5295.08, + "probability": 0.9446 + }, + { + "start": 5295.22, + "end": 5298.08, + "probability": 0.9768 + }, + { + "start": 5299.36, + "end": 5302.54, + "probability": 0.8586 + }, + { + "start": 5303.28, + "end": 5307.12, + "probability": 0.1405 + }, + { + "start": 5307.98, + "end": 5308.48, + "probability": 0.6621 + }, + { + "start": 5308.9, + "end": 5313.84, + "probability": 0.9463 + }, + { + "start": 5314.78, + "end": 5316.44, + "probability": 0.7397 + }, + { + "start": 5317.2, + "end": 5320.22, + "probability": 0.7808 + }, + { + "start": 5320.68, + "end": 5324.9, + "probability": 0.9736 + }, + { + "start": 5324.92, + "end": 5328.02, + "probability": 0.6239 + }, + { + "start": 5328.1, + "end": 5329.08, + "probability": 0.9422 + }, + { + "start": 5329.56, + "end": 5331.08, + "probability": 0.9541 + }, + { + "start": 5331.2, + "end": 5333.66, + "probability": 0.915 + }, + { + "start": 5334.66, + "end": 5338.18, + "probability": 0.9958 + }, + { + "start": 5338.3, + "end": 5341.46, + "probability": 0.9749 + }, + { + "start": 5341.62, + "end": 5343.26, + "probability": 0.7036 + }, + { + "start": 5344.08, + "end": 5345.96, + "probability": 0.8523 + }, + { + "start": 5346.22, + "end": 5346.84, + "probability": 0.3823 + }, + { + "start": 5347.46, + "end": 5348.8, + "probability": 0.9169 + }, + { + "start": 5350.02, + "end": 5355.42, + "probability": 0.9717 + }, + { + "start": 5355.42, + "end": 5359.3, + "probability": 0.9984 + }, + { + "start": 5359.42, + "end": 5360.32, + "probability": 0.8348 + }, + { + "start": 5360.46, + "end": 5361.34, + "probability": 0.8882 + }, + { + "start": 5361.48, + "end": 5364.5, + "probability": 0.9968 + }, + { + "start": 5364.66, + "end": 5365.02, + "probability": 0.9121 + }, + { + "start": 5365.14, + "end": 5365.58, + "probability": 0.7823 + }, + { + "start": 5365.7, + "end": 5366.94, + "probability": 0.7967 + }, + { + "start": 5368.14, + "end": 5369.74, + "probability": 0.9076 + }, + { + "start": 5370.5, + "end": 5371.7, + "probability": 0.8548 + }, + { + "start": 5373.16, + "end": 5374.6, + "probability": 0.991 + }, + { + "start": 5375.14, + "end": 5376.64, + "probability": 0.9736 + }, + { + "start": 5376.86, + "end": 5380.26, + "probability": 0.7892 + }, + { + "start": 5381.22, + "end": 5384.16, + "probability": 0.9518 + }, + { + "start": 5384.38, + "end": 5386.0, + "probability": 0.9626 + }, + { + "start": 5386.1, + "end": 5388.92, + "probability": 0.8609 + }, + { + "start": 5389.34, + "end": 5391.16, + "probability": 0.9253 + }, + { + "start": 5391.3, + "end": 5393.48, + "probability": 0.9924 + }, + { + "start": 5393.48, + "end": 5396.32, + "probability": 0.9282 + }, + { + "start": 5396.48, + "end": 5397.46, + "probability": 0.9878 + }, + { + "start": 5397.52, + "end": 5398.74, + "probability": 0.7001 + }, + { + "start": 5399.48, + "end": 5400.27, + "probability": 0.4757 + }, + { + "start": 5401.12, + "end": 5401.8, + "probability": 0.6932 + }, + { + "start": 5402.76, + "end": 5404.28, + "probability": 0.9725 + }, + { + "start": 5404.46, + "end": 5410.06, + "probability": 0.9894 + }, + { + "start": 5410.4, + "end": 5415.7, + "probability": 0.8972 + }, + { + "start": 5416.36, + "end": 5419.58, + "probability": 0.7642 + }, + { + "start": 5420.2, + "end": 5422.73, + "probability": 0.8179 + }, + { + "start": 5422.86, + "end": 5423.97, + "probability": 0.9438 + }, + { + "start": 5424.14, + "end": 5425.18, + "probability": 0.5455 + }, + { + "start": 5425.18, + "end": 5425.68, + "probability": 0.4593 + }, + { + "start": 5425.9, + "end": 5427.95, + "probability": 0.2993 + }, + { + "start": 5428.06, + "end": 5430.46, + "probability": 0.8651 + }, + { + "start": 5430.58, + "end": 5431.68, + "probability": 0.8585 + }, + { + "start": 5432.04, + "end": 5434.68, + "probability": 0.8124 + }, + { + "start": 5434.9, + "end": 5435.28, + "probability": 0.4189 + }, + { + "start": 5435.7, + "end": 5436.4, + "probability": 0.2222 + }, + { + "start": 5436.4, + "end": 5437.12, + "probability": 0.6086 + }, + { + "start": 5438.42, + "end": 5443.0, + "probability": 0.9861 + }, + { + "start": 5443.58, + "end": 5446.46, + "probability": 0.9495 + }, + { + "start": 5446.66, + "end": 5447.12, + "probability": 0.5428 + }, + { + "start": 5447.12, + "end": 5448.9, + "probability": 0.6628 + }, + { + "start": 5448.98, + "end": 5449.22, + "probability": 0.7867 + }, + { + "start": 5449.74, + "end": 5452.5, + "probability": 0.9551 + }, + { + "start": 5453.26, + "end": 5456.84, + "probability": 0.9929 + }, + { + "start": 5457.3, + "end": 5460.8, + "probability": 0.9595 + }, + { + "start": 5460.96, + "end": 5461.64, + "probability": 0.9719 + }, + { + "start": 5461.72, + "end": 5462.88, + "probability": 0.8402 + }, + { + "start": 5463.6, + "end": 5466.84, + "probability": 0.9878 + }, + { + "start": 5466.98, + "end": 5470.98, + "probability": 0.9803 + }, + { + "start": 5471.46, + "end": 5474.68, + "probability": 0.9284 + }, + { + "start": 5474.7, + "end": 5476.38, + "probability": 0.9862 + }, + { + "start": 5477.06, + "end": 5478.16, + "probability": 0.7292 + }, + { + "start": 5478.36, + "end": 5481.28, + "probability": 0.5342 + }, + { + "start": 5482.56, + "end": 5486.06, + "probability": 0.9526 + }, + { + "start": 5486.78, + "end": 5487.5, + "probability": 0.9854 + }, + { + "start": 5489.4, + "end": 5493.4, + "probability": 0.8108 + }, + { + "start": 5493.96, + "end": 5499.55, + "probability": 0.9399 + }, + { + "start": 5500.1, + "end": 5501.26, + "probability": 0.9694 + }, + { + "start": 5501.38, + "end": 5502.3, + "probability": 0.9072 + }, + { + "start": 5502.88, + "end": 5503.46, + "probability": 0.8757 + }, + { + "start": 5504.22, + "end": 5507.19, + "probability": 0.9832 + }, + { + "start": 5508.9, + "end": 5509.1, + "probability": 0.5461 + }, + { + "start": 5509.66, + "end": 5510.17, + "probability": 0.0411 + }, + { + "start": 5511.1, + "end": 5512.44, + "probability": 0.9779 + }, + { + "start": 5513.49, + "end": 5516.74, + "probability": 0.9792 + }, + { + "start": 5517.22, + "end": 5521.14, + "probability": 0.9851 + }, + { + "start": 5521.14, + "end": 5523.56, + "probability": 0.9944 + }, + { + "start": 5523.82, + "end": 5525.82, + "probability": 0.7392 + }, + { + "start": 5527.04, + "end": 5527.52, + "probability": 0.6794 + }, + { + "start": 5528.32, + "end": 5534.76, + "probability": 0.9338 + }, + { + "start": 5535.76, + "end": 5539.8, + "probability": 0.9753 + }, + { + "start": 5540.38, + "end": 5541.48, + "probability": 0.896 + }, + { + "start": 5541.6, + "end": 5547.12, + "probability": 0.9937 + }, + { + "start": 5548.48, + "end": 5550.4, + "probability": 0.9134 + }, + { + "start": 5550.4, + "end": 5550.86, + "probability": 0.9472 + }, + { + "start": 5550.96, + "end": 5553.52, + "probability": 0.7905 + }, + { + "start": 5554.44, + "end": 5555.42, + "probability": 0.841 + }, + { + "start": 5555.52, + "end": 5556.32, + "probability": 0.845 + }, + { + "start": 5556.82, + "end": 5559.9, + "probability": 0.8857 + }, + { + "start": 5560.04, + "end": 5562.54, + "probability": 0.6549 + }, + { + "start": 5562.82, + "end": 5563.18, + "probability": 0.4582 + }, + { + "start": 5563.8, + "end": 5563.92, + "probability": 0.3515 + }, + { + "start": 5563.94, + "end": 5566.16, + "probability": 0.4496 + }, + { + "start": 5566.66, + "end": 5566.88, + "probability": 0.5983 + }, + { + "start": 5567.06, + "end": 5567.62, + "probability": 0.6008 + }, + { + "start": 5567.72, + "end": 5568.18, + "probability": 0.6107 + }, + { + "start": 5568.26, + "end": 5572.24, + "probability": 0.9481 + }, + { + "start": 5572.92, + "end": 5573.9, + "probability": 0.6688 + }, + { + "start": 5574.9, + "end": 5576.94, + "probability": 0.9147 + }, + { + "start": 5577.16, + "end": 5577.44, + "probability": 0.7117 + }, + { + "start": 5577.52, + "end": 5578.65, + "probability": 0.9221 + }, + { + "start": 5578.86, + "end": 5579.48, + "probability": 0.9146 + }, + { + "start": 5580.48, + "end": 5582.28, + "probability": 0.8951 + }, + { + "start": 5582.86, + "end": 5585.14, + "probability": 0.995 + }, + { + "start": 5585.82, + "end": 5590.6, + "probability": 0.9608 + }, + { + "start": 5590.68, + "end": 5593.16, + "probability": 0.8077 + }, + { + "start": 5593.86, + "end": 5597.06, + "probability": 0.9566 + }, + { + "start": 5597.2, + "end": 5598.8, + "probability": 0.3588 + }, + { + "start": 5598.84, + "end": 5602.28, + "probability": 0.8492 + }, + { + "start": 5603.0, + "end": 5606.66, + "probability": 0.8542 + }, + { + "start": 5607.84, + "end": 5611.12, + "probability": 0.9949 + }, + { + "start": 5611.12, + "end": 5614.12, + "probability": 0.9829 + }, + { + "start": 5614.65, + "end": 5617.78, + "probability": 0.5609 + }, + { + "start": 5617.92, + "end": 5619.88, + "probability": 0.9923 + }, + { + "start": 5620.6, + "end": 5622.38, + "probability": 0.9764 + }, + { + "start": 5623.04, + "end": 5625.92, + "probability": 0.9868 + }, + { + "start": 5626.14, + "end": 5626.6, + "probability": 0.8796 + }, + { + "start": 5627.38, + "end": 5632.4, + "probability": 0.9957 + }, + { + "start": 5632.46, + "end": 5632.78, + "probability": 0.9276 + }, + { + "start": 5632.9, + "end": 5638.22, + "probability": 0.9962 + }, + { + "start": 5639.0, + "end": 5640.8, + "probability": 0.983 + }, + { + "start": 5641.44, + "end": 5642.58, + "probability": 0.9629 + }, + { + "start": 5643.16, + "end": 5645.92, + "probability": 0.9578 + }, + { + "start": 5646.1, + "end": 5647.84, + "probability": 0.9634 + }, + { + "start": 5648.72, + "end": 5653.12, + "probability": 0.9781 + }, + { + "start": 5653.98, + "end": 5655.48, + "probability": 0.9871 + }, + { + "start": 5655.52, + "end": 5657.26, + "probability": 0.9648 + }, + { + "start": 5657.76, + "end": 5661.3, + "probability": 0.9732 + }, + { + "start": 5661.44, + "end": 5662.2, + "probability": 0.8398 + }, + { + "start": 5662.6, + "end": 5664.36, + "probability": 0.9875 + }, + { + "start": 5664.88, + "end": 5666.7, + "probability": 0.8701 + }, + { + "start": 5666.7, + "end": 5670.42, + "probability": 0.9851 + }, + { + "start": 5670.7, + "end": 5672.72, + "probability": 0.9558 + }, + { + "start": 5672.92, + "end": 5675.54, + "probability": 0.9458 + }, + { + "start": 5675.54, + "end": 5678.5, + "probability": 0.9399 + }, + { + "start": 5679.04, + "end": 5679.18, + "probability": 0.2593 + }, + { + "start": 5679.18, + "end": 5680.24, + "probability": 0.9642 + }, + { + "start": 5680.9, + "end": 5682.24, + "probability": 0.9895 + }, + { + "start": 5682.36, + "end": 5684.18, + "probability": 0.9287 + }, + { + "start": 5684.96, + "end": 5688.0, + "probability": 0.9927 + }, + { + "start": 5688.5, + "end": 5689.15, + "probability": 0.9695 + }, + { + "start": 5689.48, + "end": 5691.32, + "probability": 0.8784 + }, + { + "start": 5691.78, + "end": 5696.86, + "probability": 0.7073 + }, + { + "start": 5697.82, + "end": 5700.62, + "probability": 0.9783 + }, + { + "start": 5701.1, + "end": 5702.35, + "probability": 0.504 + }, + { + "start": 5702.66, + "end": 5704.82, + "probability": 0.9263 + }, + { + "start": 5705.38, + "end": 5708.78, + "probability": 0.8883 + }, + { + "start": 5708.86, + "end": 5711.14, + "probability": 0.8528 + }, + { + "start": 5711.98, + "end": 5715.14, + "probability": 0.9044 + }, + { + "start": 5715.26, + "end": 5719.66, + "probability": 0.9909 + }, + { + "start": 5720.78, + "end": 5725.38, + "probability": 0.9612 + }, + { + "start": 5726.14, + "end": 5728.84, + "probability": 0.9793 + }, + { + "start": 5728.9, + "end": 5731.71, + "probability": 0.9858 + }, + { + "start": 5732.32, + "end": 5732.7, + "probability": 0.9431 + }, + { + "start": 5732.78, + "end": 5733.66, + "probability": 0.7493 + }, + { + "start": 5733.76, + "end": 5735.45, + "probability": 0.9574 + }, + { + "start": 5736.5, + "end": 5737.66, + "probability": 0.9791 + }, + { + "start": 5737.76, + "end": 5738.64, + "probability": 0.5522 + }, + { + "start": 5739.92, + "end": 5744.24, + "probability": 0.9539 + }, + { + "start": 5744.98, + "end": 5745.44, + "probability": 0.6419 + }, + { + "start": 5745.64, + "end": 5746.38, + "probability": 0.7679 + }, + { + "start": 5746.5, + "end": 5751.02, + "probability": 0.9375 + }, + { + "start": 5751.1, + "end": 5753.7, + "probability": 0.9141 + }, + { + "start": 5754.26, + "end": 5755.9, + "probability": 0.8529 + }, + { + "start": 5755.9, + "end": 5758.5, + "probability": 0.9509 + }, + { + "start": 5759.08, + "end": 5759.52, + "probability": 0.9078 + }, + { + "start": 5760.26, + "end": 5761.04, + "probability": 0.4615 + }, + { + "start": 5762.46, + "end": 5764.26, + "probability": 0.9814 + }, + { + "start": 5765.54, + "end": 5766.82, + "probability": 0.5033 + }, + { + "start": 5766.82, + "end": 5769.98, + "probability": 0.7362 + }, + { + "start": 5770.04, + "end": 5773.48, + "probability": 0.8574 + }, + { + "start": 5773.62, + "end": 5774.56, + "probability": 0.9348 + }, + { + "start": 5776.32, + "end": 5776.82, + "probability": 0.9338 + }, + { + "start": 5777.36, + "end": 5781.16, + "probability": 0.9274 + }, + { + "start": 5781.16, + "end": 5787.94, + "probability": 0.9377 + }, + { + "start": 5788.04, + "end": 5789.68, + "probability": 0.9707 + }, + { + "start": 5789.92, + "end": 5793.22, + "probability": 0.7952 + }, + { + "start": 5793.56, + "end": 5795.32, + "probability": 0.4955 + }, + { + "start": 5795.98, + "end": 5798.44, + "probability": 0.6655 + }, + { + "start": 5799.17, + "end": 5802.57, + "probability": 0.6078 + }, + { + "start": 5802.88, + "end": 5803.64, + "probability": 0.4789 + }, + { + "start": 5803.76, + "end": 5805.04, + "probability": 0.9902 + }, + { + "start": 5805.44, + "end": 5805.94, + "probability": 0.6124 + }, + { + "start": 5805.94, + "end": 5807.72, + "probability": 0.4797 + }, + { + "start": 5807.96, + "end": 5809.06, + "probability": 0.449 + }, + { + "start": 5809.78, + "end": 5810.78, + "probability": 0.5329 + }, + { + "start": 5812.02, + "end": 5814.34, + "probability": 0.9342 + }, + { + "start": 5814.5, + "end": 5817.42, + "probability": 0.6929 + }, + { + "start": 5818.02, + "end": 5819.52, + "probability": 0.7968 + }, + { + "start": 5819.52, + "end": 5823.02, + "probability": 0.9696 + }, + { + "start": 5823.28, + "end": 5824.14, + "probability": 0.8479 + }, + { + "start": 5824.5, + "end": 5825.09, + "probability": 0.5747 + }, + { + "start": 5825.7, + "end": 5828.12, + "probability": 0.9913 + }, + { + "start": 5828.74, + "end": 5830.54, + "probability": 0.9743 + }, + { + "start": 5830.64, + "end": 5833.84, + "probability": 0.9146 + }, + { + "start": 5834.54, + "end": 5835.48, + "probability": 0.0673 + }, + { + "start": 5837.0, + "end": 5838.14, + "probability": 0.0905 + }, + { + "start": 5838.46, + "end": 5839.84, + "probability": 0.8368 + }, + { + "start": 5840.7, + "end": 5843.21, + "probability": 0.6923 + }, + { + "start": 5844.26, + "end": 5846.1, + "probability": 0.9653 + }, + { + "start": 5846.84, + "end": 5849.78, + "probability": 0.9753 + }, + { + "start": 5849.78, + "end": 5852.6, + "probability": 0.9372 + }, + { + "start": 5852.84, + "end": 5854.02, + "probability": 0.4221 + }, + { + "start": 5854.02, + "end": 5860.72, + "probability": 0.8118 + }, + { + "start": 5861.3, + "end": 5861.74, + "probability": 0.625 + }, + { + "start": 5861.8, + "end": 5862.76, + "probability": 0.9117 + }, + { + "start": 5863.12, + "end": 5866.18, + "probability": 0.9117 + }, + { + "start": 5867.1, + "end": 5872.1, + "probability": 0.706 + }, + { + "start": 5872.64, + "end": 5873.78, + "probability": 0.5165 + }, + { + "start": 5878.52, + "end": 5878.82, + "probability": 0.1221 + }, + { + "start": 5881.18, + "end": 5883.32, + "probability": 0.7074 + }, + { + "start": 5890.14, + "end": 5890.56, + "probability": 0.386 + }, + { + "start": 5891.67, + "end": 5894.28, + "probability": 0.6089 + }, + { + "start": 5895.96, + "end": 5896.6, + "probability": 0.8909 + }, + { + "start": 5896.88, + "end": 5897.62, + "probability": 0.8306 + }, + { + "start": 5898.0, + "end": 5899.16, + "probability": 0.9043 + }, + { + "start": 5899.46, + "end": 5900.68, + "probability": 0.9819 + }, + { + "start": 5900.84, + "end": 5903.06, + "probability": 0.8962 + }, + { + "start": 5903.72, + "end": 5904.54, + "probability": 0.9869 + }, + { + "start": 5905.28, + "end": 5909.6, + "probability": 0.9977 + }, + { + "start": 5909.6, + "end": 5912.48, + "probability": 0.9998 + }, + { + "start": 5913.34, + "end": 5917.64, + "probability": 0.9432 + }, + { + "start": 5918.76, + "end": 5920.26, + "probability": 0.9971 + }, + { + "start": 5920.32, + "end": 5923.04, + "probability": 0.9559 + }, + { + "start": 5923.1, + "end": 5923.54, + "probability": 0.6779 + }, + { + "start": 5923.86, + "end": 5925.61, + "probability": 0.9351 + }, + { + "start": 5926.3, + "end": 5928.86, + "probability": 0.9958 + }, + { + "start": 5929.04, + "end": 5930.24, + "probability": 0.6979 + }, + { + "start": 5930.28, + "end": 5930.94, + "probability": 0.4787 + }, + { + "start": 5931.06, + "end": 5931.43, + "probability": 0.8716 + }, + { + "start": 5932.44, + "end": 5936.64, + "probability": 0.8506 + }, + { + "start": 5937.04, + "end": 5939.7, + "probability": 0.7067 + }, + { + "start": 5940.82, + "end": 5943.26, + "probability": 0.9537 + }, + { + "start": 5943.26, + "end": 5946.44, + "probability": 0.9964 + }, + { + "start": 5947.6, + "end": 5948.24, + "probability": 0.7609 + }, + { + "start": 5948.34, + "end": 5952.66, + "probability": 0.9969 + }, + { + "start": 5957.0, + "end": 5959.18, + "probability": 0.9927 + }, + { + "start": 5960.2, + "end": 5961.6, + "probability": 0.7052 + }, + { + "start": 5962.64, + "end": 5965.66, + "probability": 0.9929 + }, + { + "start": 5966.2, + "end": 5967.78, + "probability": 0.9976 + }, + { + "start": 5968.84, + "end": 5969.62, + "probability": 0.5631 + }, + { + "start": 5970.28, + "end": 5972.48, + "probability": 0.3113 + }, + { + "start": 5972.48, + "end": 5972.78, + "probability": 0.1873 + }, + { + "start": 5972.78, + "end": 5973.86, + "probability": 0.7501 + }, + { + "start": 5974.64, + "end": 5975.28, + "probability": 0.8613 + }, + { + "start": 5975.36, + "end": 5976.48, + "probability": 0.7493 + }, + { + "start": 5976.98, + "end": 5978.2, + "probability": 0.8127 + }, + { + "start": 5978.36, + "end": 5978.94, + "probability": 0.9717 + }, + { + "start": 5979.0, + "end": 5980.68, + "probability": 0.952 + }, + { + "start": 5981.02, + "end": 5981.96, + "probability": 0.782 + }, + { + "start": 5982.5, + "end": 5984.8, + "probability": 0.9839 + }, + { + "start": 5985.52, + "end": 5986.86, + "probability": 0.918 + }, + { + "start": 5987.34, + "end": 5988.68, + "probability": 0.8493 + }, + { + "start": 5989.16, + "end": 5990.62, + "probability": 0.9507 + }, + { + "start": 5990.7, + "end": 5993.11, + "probability": 0.9298 + }, + { + "start": 5993.76, + "end": 5993.98, + "probability": 0.4658 + }, + { + "start": 5994.06, + "end": 5994.73, + "probability": 0.9409 + }, + { + "start": 5995.1, + "end": 5995.4, + "probability": 0.5826 + }, + { + "start": 5995.9, + "end": 5997.46, + "probability": 0.9888 + }, + { + "start": 5997.76, + "end": 5998.82, + "probability": 0.8115 + }, + { + "start": 5999.14, + "end": 6000.84, + "probability": 0.7669 + }, + { + "start": 6000.96, + "end": 6002.3, + "probability": 0.719 + }, + { + "start": 6002.38, + "end": 6005.74, + "probability": 0.7302 + }, + { + "start": 6006.26, + "end": 6008.39, + "probability": 0.9609 + }, + { + "start": 6008.76, + "end": 6009.52, + "probability": 0.7367 + }, + { + "start": 6009.82, + "end": 6012.78, + "probability": 0.9765 + }, + { + "start": 6012.9, + "end": 6014.14, + "probability": 0.6796 + }, + { + "start": 6014.16, + "end": 6015.52, + "probability": 0.7139 + }, + { + "start": 6016.04, + "end": 6016.38, + "probability": 0.8015 + }, + { + "start": 6017.3, + "end": 6019.34, + "probability": 0.7189 + }, + { + "start": 6020.3, + "end": 6021.08, + "probability": 0.2833 + }, + { + "start": 6021.64, + "end": 6021.8, + "probability": 0.3131 + }, + { + "start": 6023.0, + "end": 6023.68, + "probability": 0.82 + }, + { + "start": 6023.82, + "end": 6025.34, + "probability": 0.6035 + }, + { + "start": 6025.42, + "end": 6025.94, + "probability": 0.5442 + }, + { + "start": 6026.14, + "end": 6028.04, + "probability": 0.8368 + }, + { + "start": 6028.44, + "end": 6029.9, + "probability": 0.5017 + }, + { + "start": 6030.38, + "end": 6031.66, + "probability": 0.9214 + }, + { + "start": 6031.72, + "end": 6033.56, + "probability": 0.4993 + }, + { + "start": 6034.2, + "end": 6035.96, + "probability": 0.9919 + }, + { + "start": 6036.82, + "end": 6037.16, + "probability": 0.2061 + }, + { + "start": 6037.84, + "end": 6040.62, + "probability": 0.5116 + }, + { + "start": 6040.88, + "end": 6043.42, + "probability": 0.9548 + }, + { + "start": 6043.92, + "end": 6045.48, + "probability": 0.9935 + }, + { + "start": 6045.86, + "end": 6048.38, + "probability": 0.8736 + }, + { + "start": 6048.72, + "end": 6050.16, + "probability": 0.9107 + }, + { + "start": 6050.54, + "end": 6051.66, + "probability": 0.6348 + }, + { + "start": 6052.04, + "end": 6052.82, + "probability": 0.7641 + }, + { + "start": 6053.3, + "end": 6054.3, + "probability": 0.8907 + }, + { + "start": 6054.36, + "end": 6055.46, + "probability": 0.7436 + }, + { + "start": 6055.78, + "end": 6058.26, + "probability": 0.9636 + }, + { + "start": 6059.86, + "end": 6060.92, + "probability": 0.8188 + }, + { + "start": 6061.88, + "end": 6064.06, + "probability": 0.9165 + }, + { + "start": 6064.42, + "end": 6065.47, + "probability": 0.9517 + }, + { + "start": 6065.74, + "end": 6067.52, + "probability": 0.9709 + }, + { + "start": 6067.82, + "end": 6069.26, + "probability": 0.9917 + }, + { + "start": 6070.78, + "end": 6073.46, + "probability": 0.9668 + }, + { + "start": 6074.28, + "end": 6075.68, + "probability": 0.9556 + }, + { + "start": 6075.76, + "end": 6077.12, + "probability": 0.8904 + }, + { + "start": 6077.78, + "end": 6079.39, + "probability": 0.8053 + }, + { + "start": 6080.1, + "end": 6082.32, + "probability": 0.9254 + }, + { + "start": 6083.06, + "end": 6086.32, + "probability": 0.9922 + }, + { + "start": 6086.96, + "end": 6089.62, + "probability": 0.89 + }, + { + "start": 6090.46, + "end": 6092.25, + "probability": 0.0521 + }, + { + "start": 6093.04, + "end": 6094.08, + "probability": 0.6734 + }, + { + "start": 6094.6, + "end": 6096.06, + "probability": 0.9694 + }, + { + "start": 6096.5, + "end": 6100.02, + "probability": 0.9717 + }, + { + "start": 6100.4, + "end": 6104.7, + "probability": 0.9629 + }, + { + "start": 6104.98, + "end": 6106.66, + "probability": 0.8996 + }, + { + "start": 6106.74, + "end": 6106.98, + "probability": 0.7023 + }, + { + "start": 6107.86, + "end": 6111.58, + "probability": 0.9689 + }, + { + "start": 6111.66, + "end": 6113.56, + "probability": 0.8646 + }, + { + "start": 6115.54, + "end": 6117.64, + "probability": 0.6991 + }, + { + "start": 6119.78, + "end": 6119.86, + "probability": 0.0079 + }, + { + "start": 6119.96, + "end": 6123.96, + "probability": 0.8443 + }, + { + "start": 6124.62, + "end": 6126.92, + "probability": 0.6503 + }, + { + "start": 6126.96, + "end": 6129.18, + "probability": 0.1036 + }, + { + "start": 6129.3, + "end": 6130.42, + "probability": 0.3545 + }, + { + "start": 6130.5, + "end": 6130.64, + "probability": 0.1821 + }, + { + "start": 6133.21, + "end": 6135.2, + "probability": 0.6241 + }, + { + "start": 6135.68, + "end": 6139.26, + "probability": 0.4264 + }, + { + "start": 6141.14, + "end": 6145.58, + "probability": 0.6285 + }, + { + "start": 6146.14, + "end": 6148.56, + "probability": 0.6975 + }, + { + "start": 6148.66, + "end": 6149.88, + "probability": 0.8812 + }, + { + "start": 6150.64, + "end": 6152.5, + "probability": 0.2144 + }, + { + "start": 6153.08, + "end": 6153.38, + "probability": 0.0793 + }, + { + "start": 6154.34, + "end": 6156.44, + "probability": 0.3217 + }, + { + "start": 6156.44, + "end": 6163.62, + "probability": 0.6111 + }, + { + "start": 6164.51, + "end": 6164.86, + "probability": 0.1581 + }, + { + "start": 6165.71, + "end": 6168.72, + "probability": 0.5755 + }, + { + "start": 6168.72, + "end": 6171.42, + "probability": 0.5715 + }, + { + "start": 6171.5, + "end": 6172.32, + "probability": 0.0814 + }, + { + "start": 6173.04, + "end": 6177.04, + "probability": 0.6898 + }, + { + "start": 6177.04, + "end": 6178.62, + "probability": 0.8519 + }, + { + "start": 6178.88, + "end": 6183.12, + "probability": 0.9673 + }, + { + "start": 6184.54, + "end": 6188.4, + "probability": 0.7094 + }, + { + "start": 6188.98, + "end": 6194.02, + "probability": 0.9915 + }, + { + "start": 6195.18, + "end": 6199.52, + "probability": 0.9941 + }, + { + "start": 6200.54, + "end": 6205.66, + "probability": 0.9944 + }, + { + "start": 6206.62, + "end": 6209.88, + "probability": 0.9952 + }, + { + "start": 6210.76, + "end": 6215.98, + "probability": 0.9484 + }, + { + "start": 6215.98, + "end": 6222.2, + "probability": 0.9876 + }, + { + "start": 6222.2, + "end": 6226.74, + "probability": 0.9983 + }, + { + "start": 6228.06, + "end": 6232.02, + "probability": 0.9994 + }, + { + "start": 6232.7, + "end": 6236.92, + "probability": 0.9846 + }, + { + "start": 6237.86, + "end": 6242.38, + "probability": 0.9933 + }, + { + "start": 6243.1, + "end": 6246.34, + "probability": 0.9198 + }, + { + "start": 6247.8, + "end": 6249.88, + "probability": 0.6688 + }, + { + "start": 6250.4, + "end": 6251.56, + "probability": 0.9419 + }, + { + "start": 6251.62, + "end": 6253.4, + "probability": 0.9915 + }, + { + "start": 6253.86, + "end": 6255.96, + "probability": 0.8521 + }, + { + "start": 6256.54, + "end": 6258.86, + "probability": 0.9832 + }, + { + "start": 6259.88, + "end": 6261.98, + "probability": 0.9551 + }, + { + "start": 6262.1, + "end": 6263.28, + "probability": 0.8945 + }, + { + "start": 6263.4, + "end": 6267.28, + "probability": 0.9958 + }, + { + "start": 6267.28, + "end": 6272.12, + "probability": 0.9991 + }, + { + "start": 6272.7, + "end": 6276.0, + "probability": 0.9976 + }, + { + "start": 6276.52, + "end": 6280.44, + "probability": 0.9988 + }, + { + "start": 6281.2, + "end": 6285.24, + "probability": 0.9977 + }, + { + "start": 6285.78, + "end": 6288.82, + "probability": 0.8615 + }, + { + "start": 6289.36, + "end": 6293.44, + "probability": 0.9971 + }, + { + "start": 6293.44, + "end": 6296.6, + "probability": 0.9994 + }, + { + "start": 6297.5, + "end": 6300.32, + "probability": 0.999 + }, + { + "start": 6300.96, + "end": 6304.68, + "probability": 0.8278 + }, + { + "start": 6305.36, + "end": 6307.8, + "probability": 0.9557 + }, + { + "start": 6308.22, + "end": 6312.4, + "probability": 0.9991 + }, + { + "start": 6313.14, + "end": 6316.5, + "probability": 0.9986 + }, + { + "start": 6316.5, + "end": 6321.28, + "probability": 0.9897 + }, + { + "start": 6321.28, + "end": 6325.44, + "probability": 0.9995 + }, + { + "start": 6326.18, + "end": 6329.36, + "probability": 0.9991 + }, + { + "start": 6329.36, + "end": 6333.64, + "probability": 0.999 + }, + { + "start": 6334.76, + "end": 6335.9, + "probability": 0.8458 + }, + { + "start": 6336.42, + "end": 6340.46, + "probability": 0.9712 + }, + { + "start": 6341.16, + "end": 6343.56, + "probability": 0.9658 + }, + { + "start": 6344.38, + "end": 6346.62, + "probability": 0.8252 + }, + { + "start": 6347.2, + "end": 6348.22, + "probability": 0.9767 + }, + { + "start": 6348.86, + "end": 6352.68, + "probability": 0.9995 + }, + { + "start": 6352.68, + "end": 6356.92, + "probability": 0.9991 + }, + { + "start": 6357.76, + "end": 6359.8, + "probability": 0.9958 + }, + { + "start": 6360.52, + "end": 6365.88, + "probability": 0.9974 + }, + { + "start": 6366.08, + "end": 6366.54, + "probability": 0.6145 + }, + { + "start": 6366.82, + "end": 6368.1, + "probability": 0.7703 + }, + { + "start": 6368.18, + "end": 6369.06, + "probability": 0.7548 + }, + { + "start": 6369.66, + "end": 6370.18, + "probability": 0.2884 + }, + { + "start": 6370.8, + "end": 6371.18, + "probability": 0.9295 + }, + { + "start": 6372.46, + "end": 6373.75, + "probability": 0.6631 + }, + { + "start": 6380.6, + "end": 6382.6, + "probability": 0.3686 + }, + { + "start": 6382.94, + "end": 6385.64, + "probability": 0.6291 + }, + { + "start": 6386.46, + "end": 6389.23, + "probability": 0.9814 + }, + { + "start": 6390.56, + "end": 6396.26, + "probability": 0.998 + }, + { + "start": 6396.8, + "end": 6398.66, + "probability": 0.9914 + }, + { + "start": 6399.58, + "end": 6400.34, + "probability": 0.718 + }, + { + "start": 6401.48, + "end": 6403.24, + "probability": 0.6616 + }, + { + "start": 6403.66, + "end": 6404.48, + "probability": 0.4983 + }, + { + "start": 6405.2, + "end": 6406.08, + "probability": 0.5154 + }, + { + "start": 6406.08, + "end": 6410.82, + "probability": 0.8608 + }, + { + "start": 6411.3, + "end": 6412.44, + "probability": 0.6724 + }, + { + "start": 6412.5, + "end": 6414.84, + "probability": 0.9734 + }, + { + "start": 6414.94, + "end": 6415.85, + "probability": 0.9707 + }, + { + "start": 6416.94, + "end": 6419.1, + "probability": 0.9891 + }, + { + "start": 6419.1, + "end": 6422.03, + "probability": 0.8544 + }, + { + "start": 6422.48, + "end": 6423.84, + "probability": 0.4166 + }, + { + "start": 6423.88, + "end": 6424.02, + "probability": 0.3419 + }, + { + "start": 6424.28, + "end": 6424.34, + "probability": 0.3949 + }, + { + "start": 6424.34, + "end": 6426.62, + "probability": 0.6656 + }, + { + "start": 6426.62, + "end": 6428.4, + "probability": 0.2888 + }, + { + "start": 6428.64, + "end": 6429.48, + "probability": 0.8467 + }, + { + "start": 6429.64, + "end": 6431.92, + "probability": 0.9602 + }, + { + "start": 6431.92, + "end": 6435.14, + "probability": 0.2744 + }, + { + "start": 6435.7, + "end": 6436.04, + "probability": 0.3821 + }, + { + "start": 6436.26, + "end": 6441.01, + "probability": 0.8146 + }, + { + "start": 6441.66, + "end": 6442.8, + "probability": 0.7563 + }, + { + "start": 6443.22, + "end": 6444.92, + "probability": 0.9449 + }, + { + "start": 6445.0, + "end": 6445.74, + "probability": 0.8655 + }, + { + "start": 6446.7, + "end": 6448.4, + "probability": 0.9834 + }, + { + "start": 6449.04, + "end": 6451.48, + "probability": 0.9821 + }, + { + "start": 6452.94, + "end": 6454.44, + "probability": 0.9966 + }, + { + "start": 6455.06, + "end": 6456.5, + "probability": 0.9984 + }, + { + "start": 6456.66, + "end": 6458.58, + "probability": 0.5805 + }, + { + "start": 6459.26, + "end": 6462.6, + "probability": 0.9603 + }, + { + "start": 6464.82, + "end": 6465.87, + "probability": 0.7524 + }, + { + "start": 6467.62, + "end": 6471.68, + "probability": 0.9586 + }, + { + "start": 6471.8, + "end": 6474.42, + "probability": 0.9664 + }, + { + "start": 6475.28, + "end": 6477.54, + "probability": 0.9988 + }, + { + "start": 6479.08, + "end": 6482.94, + "probability": 0.965 + }, + { + "start": 6484.36, + "end": 6488.14, + "probability": 0.9943 + }, + { + "start": 6489.16, + "end": 6490.47, + "probability": 0.9893 + }, + { + "start": 6493.82, + "end": 6498.36, + "probability": 0.9207 + }, + { + "start": 6499.66, + "end": 6501.34, + "probability": 0.9543 + }, + { + "start": 6502.34, + "end": 6503.44, + "probability": 0.9758 + }, + { + "start": 6504.14, + "end": 6509.24, + "probability": 0.9968 + }, + { + "start": 6510.28, + "end": 6512.05, + "probability": 0.947 + }, + { + "start": 6513.2, + "end": 6515.08, + "probability": 0.4251 + }, + { + "start": 6515.8, + "end": 6520.04, + "probability": 0.8347 + }, + { + "start": 6521.64, + "end": 6523.5, + "probability": 0.9819 + }, + { + "start": 6524.16, + "end": 6527.7, + "probability": 0.9624 + }, + { + "start": 6528.9, + "end": 6530.88, + "probability": 0.9788 + }, + { + "start": 6531.0, + "end": 6531.1, + "probability": 0.6818 + }, + { + "start": 6531.62, + "end": 6531.8, + "probability": 0.4781 + }, + { + "start": 6531.88, + "end": 6537.46, + "probability": 0.9958 + }, + { + "start": 6538.58, + "end": 6540.46, + "probability": 0.9698 + }, + { + "start": 6541.02, + "end": 6543.5, + "probability": 0.9794 + }, + { + "start": 6544.48, + "end": 6546.78, + "probability": 0.9985 + }, + { + "start": 6546.78, + "end": 6550.06, + "probability": 0.9716 + }, + { + "start": 6550.7, + "end": 6551.9, + "probability": 0.5737 + }, + { + "start": 6552.72, + "end": 6554.76, + "probability": 0.9848 + }, + { + "start": 6554.92, + "end": 6555.98, + "probability": 0.9961 + }, + { + "start": 6556.2, + "end": 6556.76, + "probability": 0.7119 + }, + { + "start": 6557.54, + "end": 6559.18, + "probability": 0.7777 + }, + { + "start": 6561.54, + "end": 6565.9, + "probability": 0.9468 + }, + { + "start": 6566.7, + "end": 6568.9, + "probability": 0.8865 + }, + { + "start": 6570.34, + "end": 6571.11, + "probability": 0.9556 + }, + { + "start": 6571.72, + "end": 6575.68, + "probability": 0.7169 + }, + { + "start": 6576.4, + "end": 6577.72, + "probability": 0.6965 + }, + { + "start": 6577.78, + "end": 6584.42, + "probability": 0.9514 + }, + { + "start": 6584.42, + "end": 6587.06, + "probability": 0.7686 + }, + { + "start": 6587.6, + "end": 6589.08, + "probability": 0.8561 + }, + { + "start": 6590.26, + "end": 6591.26, + "probability": 0.7288 + }, + { + "start": 6591.34, + "end": 6592.34, + "probability": 0.939 + }, + { + "start": 6594.04, + "end": 6595.9, + "probability": 0.9915 + }, + { + "start": 6596.84, + "end": 6599.02, + "probability": 0.974 + }, + { + "start": 6600.7, + "end": 6603.44, + "probability": 0.482 + }, + { + "start": 6605.1, + "end": 6607.78, + "probability": 0.9956 + }, + { + "start": 6609.1, + "end": 6610.08, + "probability": 0.2494 + }, + { + "start": 6611.66, + "end": 6613.82, + "probability": 0.9912 + }, + { + "start": 6614.52, + "end": 6615.74, + "probability": 0.9263 + }, + { + "start": 6616.76, + "end": 6618.98, + "probability": 0.9424 + }, + { + "start": 6619.94, + "end": 6621.54, + "probability": 0.8123 + }, + { + "start": 6622.14, + "end": 6624.98, + "probability": 0.9217 + }, + { + "start": 6625.84, + "end": 6627.0, + "probability": 0.8555 + }, + { + "start": 6627.0, + "end": 6627.6, + "probability": 0.7737 + }, + { + "start": 6628.06, + "end": 6630.07, + "probability": 0.5815 + }, + { + "start": 6631.28, + "end": 6633.84, + "probability": 0.6209 + }, + { + "start": 6636.26, + "end": 6637.08, + "probability": 0.8496 + }, + { + "start": 6643.7, + "end": 6645.72, + "probability": 0.6727 + }, + { + "start": 6646.38, + "end": 6653.2, + "probability": 0.821 + }, + { + "start": 6654.18, + "end": 6655.58, + "probability": 0.8179 + }, + { + "start": 6656.42, + "end": 6657.42, + "probability": 0.6911 + }, + { + "start": 6658.28, + "end": 6659.14, + "probability": 0.9672 + }, + { + "start": 6659.32, + "end": 6664.78, + "probability": 0.9642 + }, + { + "start": 6665.94, + "end": 6667.92, + "probability": 0.5592 + }, + { + "start": 6668.94, + "end": 6670.28, + "probability": 0.9901 + }, + { + "start": 6670.86, + "end": 6674.16, + "probability": 0.9395 + }, + { + "start": 6674.78, + "end": 6677.08, + "probability": 0.9909 + }, + { + "start": 6677.2, + "end": 6678.44, + "probability": 0.9744 + }, + { + "start": 6679.02, + "end": 6680.74, + "probability": 0.7603 + }, + { + "start": 6681.28, + "end": 6682.12, + "probability": 0.7486 + }, + { + "start": 6682.68, + "end": 6683.9, + "probability": 0.5441 + }, + { + "start": 6684.1, + "end": 6686.88, + "probability": 0.87 + }, + { + "start": 6687.04, + "end": 6689.54, + "probability": 0.946 + }, + { + "start": 6689.72, + "end": 6691.34, + "probability": 0.7338 + }, + { + "start": 6691.98, + "end": 6696.26, + "probability": 0.9272 + }, + { + "start": 6697.34, + "end": 6701.0, + "probability": 0.91 + }, + { + "start": 6701.98, + "end": 6702.44, + "probability": 0.5287 + }, + { + "start": 6702.62, + "end": 6703.58, + "probability": 0.8733 + }, + { + "start": 6704.08, + "end": 6708.28, + "probability": 0.9579 + }, + { + "start": 6709.04, + "end": 6710.8, + "probability": 0.8053 + }, + { + "start": 6711.54, + "end": 6713.08, + "probability": 0.9932 + }, + { + "start": 6713.78, + "end": 6715.52, + "probability": 0.9883 + }, + { + "start": 6716.3, + "end": 6720.36, + "probability": 0.9663 + }, + { + "start": 6720.94, + "end": 6724.08, + "probability": 0.8627 + }, + { + "start": 6724.88, + "end": 6726.1, + "probability": 0.9976 + }, + { + "start": 6726.86, + "end": 6727.56, + "probability": 0.9922 + }, + { + "start": 6728.12, + "end": 6729.4, + "probability": 0.8514 + }, + { + "start": 6729.86, + "end": 6732.9, + "probability": 0.9874 + }, + { + "start": 6733.96, + "end": 6735.64, + "probability": 0.8938 + }, + { + "start": 6736.1, + "end": 6739.92, + "probability": 0.9963 + }, + { + "start": 6740.6, + "end": 6742.42, + "probability": 0.9961 + }, + { + "start": 6743.66, + "end": 6743.98, + "probability": 0.8834 + }, + { + "start": 6744.02, + "end": 6748.22, + "probability": 0.9746 + }, + { + "start": 6749.58, + "end": 6752.7, + "probability": 0.9073 + }, + { + "start": 6753.16, + "end": 6754.9, + "probability": 0.9286 + }, + { + "start": 6755.5, + "end": 6757.12, + "probability": 0.9512 + }, + { + "start": 6758.36, + "end": 6758.36, + "probability": 0.0374 + }, + { + "start": 6758.4, + "end": 6762.64, + "probability": 0.9481 + }, + { + "start": 6762.92, + "end": 6764.22, + "probability": 0.994 + }, + { + "start": 6764.8, + "end": 6764.9, + "probability": 0.1255 + }, + { + "start": 6765.2, + "end": 6767.56, + "probability": 0.9972 + }, + { + "start": 6768.4, + "end": 6770.24, + "probability": 0.9901 + }, + { + "start": 6770.86, + "end": 6771.38, + "probability": 0.9259 + }, + { + "start": 6771.86, + "end": 6772.7, + "probability": 0.97 + }, + { + "start": 6773.06, + "end": 6774.76, + "probability": 0.9062 + }, + { + "start": 6774.86, + "end": 6775.62, + "probability": 0.9824 + }, + { + "start": 6775.76, + "end": 6776.96, + "probability": 0.9307 + }, + { + "start": 6777.4, + "end": 6777.54, + "probability": 0.0083 + }, + { + "start": 6778.16, + "end": 6779.98, + "probability": 0.4486 + }, + { + "start": 6780.3, + "end": 6782.02, + "probability": 0.9968 + }, + { + "start": 6783.76, + "end": 6784.8, + "probability": 0.7964 + }, + { + "start": 6785.22, + "end": 6786.98, + "probability": 0.9867 + }, + { + "start": 6787.32, + "end": 6788.03, + "probability": 0.9456 + }, + { + "start": 6788.32, + "end": 6789.22, + "probability": 0.6964 + }, + { + "start": 6789.54, + "end": 6790.22, + "probability": 0.8395 + }, + { + "start": 6790.38, + "end": 6791.14, + "probability": 0.474 + }, + { + "start": 6791.52, + "end": 6792.2, + "probability": 0.7414 + }, + { + "start": 6792.38, + "end": 6793.78, + "probability": 0.905 + }, + { + "start": 6794.4, + "end": 6796.24, + "probability": 0.9985 + }, + { + "start": 6796.46, + "end": 6797.52, + "probability": 0.7122 + }, + { + "start": 6798.04, + "end": 6801.32, + "probability": 0.9562 + }, + { + "start": 6802.2, + "end": 6802.96, + "probability": 0.5327 + }, + { + "start": 6803.54, + "end": 6803.8, + "probability": 0.7149 + }, + { + "start": 6804.96, + "end": 6806.07, + "probability": 0.5044 + }, + { + "start": 6806.1, + "end": 6807.48, + "probability": 0.8255 + }, + { + "start": 6811.0, + "end": 6812.8, + "probability": 0.8663 + }, + { + "start": 6815.54, + "end": 6817.84, + "probability": 0.923 + }, + { + "start": 6818.79, + "end": 6820.3, + "probability": 0.8402 + }, + { + "start": 6821.78, + "end": 6823.82, + "probability": 0.4482 + }, + { + "start": 6825.08, + "end": 6825.5, + "probability": 0.9356 + }, + { + "start": 6828.21, + "end": 6829.55, + "probability": 0.9429 + }, + { + "start": 6831.98, + "end": 6834.28, + "probability": 0.9104 + }, + { + "start": 6836.12, + "end": 6838.8, + "probability": 0.7152 + }, + { + "start": 6838.86, + "end": 6840.08, + "probability": 0.5169 + }, + { + "start": 6841.52, + "end": 6842.03, + "probability": 0.9422 + }, + { + "start": 6842.36, + "end": 6843.7, + "probability": 0.8497 + }, + { + "start": 6844.08, + "end": 6846.35, + "probability": 0.7888 + }, + { + "start": 6846.8, + "end": 6847.88, + "probability": 0.7021 + }, + { + "start": 6848.58, + "end": 6850.54, + "probability": 0.9434 + }, + { + "start": 6851.36, + "end": 6852.3, + "probability": 0.8303 + }, + { + "start": 6853.36, + "end": 6856.02, + "probability": 0.9702 + }, + { + "start": 6856.34, + "end": 6859.84, + "probability": 0.9974 + }, + { + "start": 6860.34, + "end": 6861.38, + "probability": 0.9912 + }, + { + "start": 6861.94, + "end": 6865.38, + "probability": 0.9959 + }, + { + "start": 6865.68, + "end": 6867.52, + "probability": 0.8951 + }, + { + "start": 6868.1, + "end": 6871.78, + "probability": 0.9472 + }, + { + "start": 6872.7, + "end": 6874.82, + "probability": 0.9401 + }, + { + "start": 6874.9, + "end": 6876.94, + "probability": 0.999 + }, + { + "start": 6877.42, + "end": 6879.3, + "probability": 0.9154 + }, + { + "start": 6879.64, + "end": 6882.6, + "probability": 0.9639 + }, + { + "start": 6883.44, + "end": 6885.24, + "probability": 0.3794 + }, + { + "start": 6886.0, + "end": 6887.98, + "probability": 0.944 + }, + { + "start": 6888.78, + "end": 6889.94, + "probability": 0.7625 + }, + { + "start": 6890.48, + "end": 6893.4, + "probability": 0.9976 + }, + { + "start": 6894.34, + "end": 6899.98, + "probability": 0.9861 + }, + { + "start": 6900.46, + "end": 6901.54, + "probability": 0.9079 + }, + { + "start": 6902.08, + "end": 6902.4, + "probability": 0.9543 + }, + { + "start": 6903.12, + "end": 6904.72, + "probability": 0.9693 + }, + { + "start": 6905.56, + "end": 6908.9, + "probability": 0.9941 + }, + { + "start": 6909.82, + "end": 6911.78, + "probability": 0.9879 + }, + { + "start": 6912.24, + "end": 6914.06, + "probability": 0.9732 + }, + { + "start": 6914.4, + "end": 6915.28, + "probability": 0.8327 + }, + { + "start": 6915.84, + "end": 6916.94, + "probability": 0.7916 + }, + { + "start": 6917.42, + "end": 6918.52, + "probability": 0.479 + }, + { + "start": 6919.28, + "end": 6925.5, + "probability": 0.9985 + }, + { + "start": 6926.0, + "end": 6929.82, + "probability": 0.9963 + }, + { + "start": 6930.94, + "end": 6933.2, + "probability": 0.9931 + }, + { + "start": 6933.68, + "end": 6937.5, + "probability": 0.9972 + }, + { + "start": 6937.68, + "end": 6940.56, + "probability": 0.9834 + }, + { + "start": 6941.62, + "end": 6945.58, + "probability": 0.9915 + }, + { + "start": 6945.58, + "end": 6949.14, + "probability": 0.984 + }, + { + "start": 6950.16, + "end": 6954.64, + "probability": 0.9932 + }, + { + "start": 6955.0, + "end": 6958.92, + "probability": 0.9968 + }, + { + "start": 6959.38, + "end": 6963.72, + "probability": 0.9862 + }, + { + "start": 6965.1, + "end": 6965.68, + "probability": 0.8844 + }, + { + "start": 6966.6, + "end": 6972.84, + "probability": 0.9894 + }, + { + "start": 6973.52, + "end": 6976.62, + "probability": 0.8171 + }, + { + "start": 6977.18, + "end": 6979.78, + "probability": 0.9992 + }, + { + "start": 6980.92, + "end": 6982.02, + "probability": 0.9855 + }, + { + "start": 6982.76, + "end": 6985.36, + "probability": 0.991 + }, + { + "start": 6985.48, + "end": 6986.14, + "probability": 0.759 + }, + { + "start": 6986.6, + "end": 6989.84, + "probability": 0.7569 + }, + { + "start": 6990.78, + "end": 6993.78, + "probability": 0.9837 + }, + { + "start": 6994.3, + "end": 6997.54, + "probability": 0.7362 + }, + { + "start": 6998.72, + "end": 7002.72, + "probability": 0.9301 + }, + { + "start": 7002.8, + "end": 7004.1, + "probability": 0.8964 + }, + { + "start": 7004.9, + "end": 7008.12, + "probability": 0.9963 + }, + { + "start": 7009.88, + "end": 7013.46, + "probability": 0.8763 + }, + { + "start": 7013.82, + "end": 7017.62, + "probability": 0.9742 + }, + { + "start": 7018.12, + "end": 7021.38, + "probability": 0.9944 + }, + { + "start": 7022.22, + "end": 7024.76, + "probability": 0.9968 + }, + { + "start": 7025.16, + "end": 7030.52, + "probability": 0.9854 + }, + { + "start": 7030.78, + "end": 7031.8, + "probability": 0.9944 + }, + { + "start": 7032.18, + "end": 7033.0, + "probability": 0.6965 + }, + { + "start": 7033.38, + "end": 7036.42, + "probability": 0.9577 + }, + { + "start": 7036.96, + "end": 7037.3, + "probability": 0.9883 + }, + { + "start": 7038.8, + "end": 7041.18, + "probability": 0.9658 + }, + { + "start": 7041.44, + "end": 7041.66, + "probability": 0.8887 + }, + { + "start": 7042.94, + "end": 7045.92, + "probability": 0.8989 + }, + { + "start": 7046.34, + "end": 7048.22, + "probability": 0.8927 + }, + { + "start": 7049.68, + "end": 7050.18, + "probability": 0.7576 + }, + { + "start": 7051.86, + "end": 7052.66, + "probability": 0.6564 + }, + { + "start": 7052.74, + "end": 7054.5, + "probability": 0.9837 + }, + { + "start": 7060.76, + "end": 7061.86, + "probability": 0.5663 + }, + { + "start": 7061.98, + "end": 7063.32, + "probability": 0.918 + }, + { + "start": 7073.03, + "end": 7075.32, + "probability": 0.8507 + }, + { + "start": 7076.12, + "end": 7076.36, + "probability": 0.2461 + }, + { + "start": 7076.44, + "end": 7079.7, + "probability": 0.8898 + }, + { + "start": 7079.82, + "end": 7081.29, + "probability": 0.9097 + }, + { + "start": 7081.38, + "end": 7082.72, + "probability": 0.1401 + }, + { + "start": 7082.92, + "end": 7085.94, + "probability": 0.9677 + }, + { + "start": 7086.42, + "end": 7089.24, + "probability": 0.7202 + }, + { + "start": 7089.48, + "end": 7090.92, + "probability": 0.5922 + }, + { + "start": 7090.92, + "end": 7091.68, + "probability": 0.0709 + }, + { + "start": 7092.62, + "end": 7094.56, + "probability": 0.8821 + }, + { + "start": 7095.18, + "end": 7095.96, + "probability": 0.8026 + }, + { + "start": 7100.62, + "end": 7101.58, + "probability": 0.7046 + }, + { + "start": 7101.88, + "end": 7103.84, + "probability": 0.601 + }, + { + "start": 7103.98, + "end": 7107.82, + "probability": 0.9893 + }, + { + "start": 7109.56, + "end": 7115.94, + "probability": 0.9933 + }, + { + "start": 7116.82, + "end": 7121.22, + "probability": 0.9899 + }, + { + "start": 7122.08, + "end": 7124.86, + "probability": 0.9985 + }, + { + "start": 7124.86, + "end": 7130.88, + "probability": 0.9974 + }, + { + "start": 7131.14, + "end": 7132.58, + "probability": 0.8281 + }, + { + "start": 7132.78, + "end": 7136.24, + "probability": 0.9862 + }, + { + "start": 7136.64, + "end": 7140.64, + "probability": 0.9962 + }, + { + "start": 7141.72, + "end": 7144.81, + "probability": 0.8021 + }, + { + "start": 7145.94, + "end": 7147.84, + "probability": 0.5093 + }, + { + "start": 7148.2, + "end": 7151.32, + "probability": 0.9957 + }, + { + "start": 7152.2, + "end": 7155.98, + "probability": 0.8638 + }, + { + "start": 7155.98, + "end": 7159.18, + "probability": 0.9772 + }, + { + "start": 7159.8, + "end": 7163.26, + "probability": 0.9967 + }, + { + "start": 7164.04, + "end": 7167.28, + "probability": 0.9917 + }, + { + "start": 7167.34, + "end": 7171.4, + "probability": 0.8408 + }, + { + "start": 7172.74, + "end": 7179.64, + "probability": 0.9782 + }, + { + "start": 7180.14, + "end": 7181.16, + "probability": 0.6175 + }, + { + "start": 7182.0, + "end": 7183.42, + "probability": 0.9731 + }, + { + "start": 7183.48, + "end": 7184.06, + "probability": 0.9652 + }, + { + "start": 7184.28, + "end": 7184.64, + "probability": 0.9803 + }, + { + "start": 7184.76, + "end": 7185.88, + "probability": 0.8572 + }, + { + "start": 7186.36, + "end": 7190.34, + "probability": 0.9971 + }, + { + "start": 7190.86, + "end": 7191.98, + "probability": 0.7309 + }, + { + "start": 7192.08, + "end": 7194.78, + "probability": 0.992 + }, + { + "start": 7195.06, + "end": 7200.34, + "probability": 0.8758 + }, + { + "start": 7201.16, + "end": 7204.38, + "probability": 0.9671 + }, + { + "start": 7205.66, + "end": 7207.4, + "probability": 0.7631 + }, + { + "start": 7208.58, + "end": 7213.58, + "probability": 0.9978 + }, + { + "start": 7214.3, + "end": 7218.29, + "probability": 0.9705 + }, + { + "start": 7218.92, + "end": 7220.6, + "probability": 0.9757 + }, + { + "start": 7221.48, + "end": 7221.88, + "probability": 0.829 + }, + { + "start": 7222.46, + "end": 7223.02, + "probability": 0.9244 + }, + { + "start": 7223.54, + "end": 7224.76, + "probability": 0.9993 + }, + { + "start": 7225.42, + "end": 7229.58, + "probability": 0.9892 + }, + { + "start": 7230.08, + "end": 7235.04, + "probability": 0.9795 + }, + { + "start": 7235.56, + "end": 7237.78, + "probability": 0.9784 + }, + { + "start": 7238.02, + "end": 7238.5, + "probability": 0.6411 + }, + { + "start": 7239.42, + "end": 7241.74, + "probability": 0.8148 + }, + { + "start": 7241.82, + "end": 7243.62, + "probability": 0.8389 + }, + { + "start": 7244.88, + "end": 7245.76, + "probability": 0.9571 + }, + { + "start": 7245.82, + "end": 7246.57, + "probability": 0.8112 + }, + { + "start": 7247.96, + "end": 7249.28, + "probability": 0.9586 + }, + { + "start": 7250.24, + "end": 7253.42, + "probability": 0.9756 + }, + { + "start": 7253.54, + "end": 7256.26, + "probability": 0.4428 + }, + { + "start": 7257.1, + "end": 7259.94, + "probability": 0.6118 + }, + { + "start": 7260.04, + "end": 7262.24, + "probability": 0.4786 + }, + { + "start": 7267.96, + "end": 7269.36, + "probability": 0.2611 + }, + { + "start": 7273.4, + "end": 7276.97, + "probability": 0.3314 + }, + { + "start": 7281.2, + "end": 7282.66, + "probability": 0.1281 + }, + { + "start": 7288.8, + "end": 7291.66, + "probability": 0.3583 + }, + { + "start": 7291.66, + "end": 7293.68, + "probability": 0.5822 + }, + { + "start": 7294.42, + "end": 7294.8, + "probability": 0.7106 + }, + { + "start": 7295.56, + "end": 7295.72, + "probability": 0.1121 + }, + { + "start": 7297.54, + "end": 7300.62, + "probability": 0.682 + }, + { + "start": 7307.48, + "end": 7310.52, + "probability": 0.314 + }, + { + "start": 7315.54, + "end": 7317.24, + "probability": 0.1264 + }, + { + "start": 7318.75, + "end": 7321.66, + "probability": 0.045 + }, + { + "start": 7321.9, + "end": 7327.48, + "probability": 0.031 + }, + { + "start": 7327.76, + "end": 7329.42, + "probability": 0.1243 + }, + { + "start": 7331.44, + "end": 7335.88, + "probability": 0.1432 + }, + { + "start": 7336.34, + "end": 7337.44, + "probability": 0.0683 + }, + { + "start": 7337.44, + "end": 7337.68, + "probability": 0.1447 + }, + { + "start": 7339.86, + "end": 7342.32, + "probability": 0.1421 + }, + { + "start": 7342.44, + "end": 7345.84, + "probability": 0.0748 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7347.0, + "end": 7347.0, + "probability": 0.0 + }, + { + "start": 7352.38, + "end": 7353.76, + "probability": 0.4092 + }, + { + "start": 7354.5, + "end": 7356.32, + "probability": 0.7969 + }, + { + "start": 7357.06, + "end": 7361.84, + "probability": 0.7343 + }, + { + "start": 7362.02, + "end": 7363.18, + "probability": 0.2931 + }, + { + "start": 7363.46, + "end": 7366.12, + "probability": 0.7732 + }, + { + "start": 7366.28, + "end": 7368.04, + "probability": 0.6614 + }, + { + "start": 7368.66, + "end": 7372.64, + "probability": 0.7363 + }, + { + "start": 7373.6, + "end": 7374.82, + "probability": 0.4922 + }, + { + "start": 7375.22, + "end": 7376.66, + "probability": 0.8647 + }, + { + "start": 7376.86, + "end": 7381.36, + "probability": 0.7012 + }, + { + "start": 7382.08, + "end": 7385.48, + "probability": 0.8008 + }, + { + "start": 7385.58, + "end": 7389.9, + "probability": 0.8167 + }, + { + "start": 7390.06, + "end": 7390.74, + "probability": 0.2672 + }, + { + "start": 7390.74, + "end": 7392.28, + "probability": 0.4883 + }, + { + "start": 7393.36, + "end": 7395.2, + "probability": 0.2652 + }, + { + "start": 7398.66, + "end": 7400.56, + "probability": 0.8831 + }, + { + "start": 7400.76, + "end": 7401.1, + "probability": 0.7767 + }, + { + "start": 7401.44, + "end": 7403.05, + "probability": 0.6372 + }, + { + "start": 7403.52, + "end": 7404.2, + "probability": 0.3691 + }, + { + "start": 7406.86, + "end": 7410.84, + "probability": 0.7415 + }, + { + "start": 7410.88, + "end": 7413.84, + "probability": 0.6738 + }, + { + "start": 7414.64, + "end": 7415.24, + "probability": 0.4603 + }, + { + "start": 7415.24, + "end": 7415.38, + "probability": 0.7149 + }, + { + "start": 7416.26, + "end": 7418.84, + "probability": 0.8751 + }, + { + "start": 7420.9, + "end": 7424.72, + "probability": 0.9086 + }, + { + "start": 7424.72, + "end": 7426.54, + "probability": 0.2731 + }, + { + "start": 7426.54, + "end": 7429.59, + "probability": 0.7886 + }, + { + "start": 7429.94, + "end": 7433.86, + "probability": 0.9814 + }, + { + "start": 7439.14, + "end": 7442.4, + "probability": 0.5814 + }, + { + "start": 7442.62, + "end": 7446.8, + "probability": 0.0726 + }, + { + "start": 7447.78, + "end": 7450.32, + "probability": 0.0062 + }, + { + "start": 7453.03, + "end": 7455.29, + "probability": 0.1485 + }, + { + "start": 7457.18, + "end": 7457.18, + "probability": 0.2742 + }, + { + "start": 7457.18, + "end": 7457.18, + "probability": 0.1718 + }, + { + "start": 7457.18, + "end": 7458.28, + "probability": 0.4164 + }, + { + "start": 7458.36, + "end": 7461.76, + "probability": 0.9064 + }, + { + "start": 7461.88, + "end": 7465.0, + "probability": 0.7131 + }, + { + "start": 7465.58, + "end": 7468.24, + "probability": 0.6434 + }, + { + "start": 7468.64, + "end": 7472.48, + "probability": 0.7098 + }, + { + "start": 7472.7, + "end": 7475.63, + "probability": 0.4853 + }, + { + "start": 7476.4, + "end": 7476.86, + "probability": 0.8512 + }, + { + "start": 7477.12, + "end": 7479.12, + "probability": 0.052 + }, + { + "start": 7492.32, + "end": 7494.18, + "probability": 0.2804 + }, + { + "start": 7494.88, + "end": 7497.78, + "probability": 0.5933 + }, + { + "start": 7497.78, + "end": 7498.28, + "probability": 0.3568 + }, + { + "start": 7507.7, + "end": 7513.46, + "probability": 0.1777 + }, + { + "start": 7513.78, + "end": 7517.32, + "probability": 0.0914 + }, + { + "start": 7526.72, + "end": 7527.98, + "probability": 0.0515 + }, + { + "start": 7528.0, + "end": 7528.0, + "probability": 0.0 + }, + { + "start": 7528.0, + "end": 7528.0, + "probability": 0.0 + }, + { + "start": 7528.0, + "end": 7528.0, + "probability": 0.0 + }, + { + "start": 7528.0, + "end": 7528.0, + "probability": 0.0 + }, + { + "start": 7528.0, + "end": 7528.0, + "probability": 0.0 + }, + { + "start": 7528.0, + "end": 7528.0, + "probability": 0.0 + }, + { + "start": 7529.48, + "end": 7530.74, + "probability": 0.0581 + }, + { + "start": 7534.36, + "end": 7536.68, + "probability": 0.8098 + }, + { + "start": 7543.82, + "end": 7545.62, + "probability": 0.0169 + }, + { + "start": 7550.42, + "end": 7553.14, + "probability": 0.536 + }, + { + "start": 7553.56, + "end": 7555.0, + "probability": 0.181 + }, + { + "start": 7555.08, + "end": 7556.04, + "probability": 0.0738 + }, + { + "start": 7558.06, + "end": 7561.24, + "probability": 0.0656 + }, + { + "start": 7561.24, + "end": 7561.92, + "probability": 0.0297 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + }, + { + "start": 7677.07, + "end": 7677.07, + "probability": 0.0 + } + ], + "segments_count": 3155, + "words_count": 15970, + "avg_words_per_segment": 5.0618, + "avg_segment_duration": 1.7208, + "avg_words_per_minute": 124.8132, + "plenum_id": "115913", + "duration": 7677.07, + "title": null, + "plenum_date": "2023-03-29" +} \ No newline at end of file