diff --git "a/14118/metadata.json" "b/14118/metadata.json" new file mode 100644--- /dev/null +++ "b/14118/metadata.json" @@ -0,0 +1,28262 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "14118", + "quality_score": 0.8737, + "per_segment_quality_scores": [ + { + "start": 25.28, + "end": 26.4, + "probability": 0.0254 + }, + { + "start": 26.4, + "end": 26.44, + "probability": 0.2452 + }, + { + "start": 27.1, + "end": 27.14, + "probability": 0.1165 + }, + { + "start": 36.62, + "end": 36.62, + "probability": 0.0252 + }, + { + "start": 36.62, + "end": 36.62, + "probability": 0.2257 + }, + { + "start": 36.62, + "end": 36.62, + "probability": 0.069 + }, + { + "start": 36.62, + "end": 36.62, + "probability": 0.0724 + }, + { + "start": 36.62, + "end": 36.62, + "probability": 0.0157 + }, + { + "start": 36.62, + "end": 36.62, + "probability": 0.0447 + }, + { + "start": 36.62, + "end": 36.62, + "probability": 0.0896 + }, + { + "start": 36.62, + "end": 36.62, + "probability": 0.034 + }, + { + "start": 78.28, + "end": 81.3, + "probability": 0.4464 + }, + { + "start": 81.66, + "end": 82.8, + "probability": 0.4706 + }, + { + "start": 82.96, + "end": 84.38, + "probability": 0.5801 + }, + { + "start": 84.44, + "end": 85.86, + "probability": 0.9789 + }, + { + "start": 86.24, + "end": 87.02, + "probability": 0.7172 + }, + { + "start": 87.04, + "end": 88.26, + "probability": 0.7832 + }, + { + "start": 88.88, + "end": 94.58, + "probability": 0.9148 + }, + { + "start": 95.16, + "end": 96.9, + "probability": 0.3095 + }, + { + "start": 97.74, + "end": 100.44, + "probability": 0.941 + }, + { + "start": 100.74, + "end": 101.08, + "probability": 0.7737 + }, + { + "start": 101.34, + "end": 101.76, + "probability": 0.5784 + }, + { + "start": 101.88, + "end": 104.36, + "probability": 0.8989 + }, + { + "start": 104.8, + "end": 105.98, + "probability": 0.9734 + }, + { + "start": 106.42, + "end": 108.06, + "probability": 0.6196 + }, + { + "start": 108.7, + "end": 109.92, + "probability": 0.1237 + }, + { + "start": 110.3, + "end": 112.54, + "probability": 0.4118 + }, + { + "start": 113.14, + "end": 114.04, + "probability": 0.9368 + }, + { + "start": 115.02, + "end": 116.1, + "probability": 0.146 + }, + { + "start": 116.1, + "end": 116.64, + "probability": 0.6958 + }, + { + "start": 117.98, + "end": 118.51, + "probability": 0.4962 + }, + { + "start": 119.66, + "end": 122.12, + "probability": 0.8949 + }, + { + "start": 126.0, + "end": 126.52, + "probability": 0.4597 + }, + { + "start": 126.56, + "end": 129.02, + "probability": 0.6139 + }, + { + "start": 129.02, + "end": 130.38, + "probability": 0.5201 + }, + { + "start": 130.54, + "end": 131.92, + "probability": 0.8905 + }, + { + "start": 132.64, + "end": 132.86, + "probability": 0.4728 + }, + { + "start": 134.08, + "end": 135.32, + "probability": 0.3193 + }, + { + "start": 135.6, + "end": 136.92, + "probability": 0.772 + }, + { + "start": 137.32, + "end": 138.72, + "probability": 0.5057 + }, + { + "start": 138.76, + "end": 139.26, + "probability": 0.8041 + }, + { + "start": 143.9, + "end": 144.06, + "probability": 0.194 + }, + { + "start": 144.06, + "end": 144.92, + "probability": 0.4379 + }, + { + "start": 145.38, + "end": 145.76, + "probability": 0.4127 + }, + { + "start": 145.98, + "end": 146.82, + "probability": 0.7898 + }, + { + "start": 146.98, + "end": 150.12, + "probability": 0.8805 + }, + { + "start": 152.34, + "end": 155.42, + "probability": 0.7213 + }, + { + "start": 155.5, + "end": 157.2, + "probability": 0.8604 + }, + { + "start": 157.24, + "end": 157.7, + "probability": 0.9395 + }, + { + "start": 157.7, + "end": 158.82, + "probability": 0.8227 + }, + { + "start": 158.86, + "end": 161.48, + "probability": 0.9749 + }, + { + "start": 162.5, + "end": 163.78, + "probability": 0.568 + }, + { + "start": 164.96, + "end": 170.28, + "probability": 0.6787 + }, + { + "start": 170.94, + "end": 180.92, + "probability": 0.9626 + }, + { + "start": 182.38, + "end": 183.08, + "probability": 0.8851 + }, + { + "start": 183.16, + "end": 184.52, + "probability": 0.8606 + }, + { + "start": 184.82, + "end": 187.76, + "probability": 0.7703 + }, + { + "start": 187.92, + "end": 188.36, + "probability": 0.6656 + }, + { + "start": 189.3, + "end": 191.04, + "probability": 0.9779 + }, + { + "start": 192.28, + "end": 194.76, + "probability": 0.666 + }, + { + "start": 196.42, + "end": 204.32, + "probability": 0.7024 + }, + { + "start": 205.56, + "end": 206.76, + "probability": 0.7013 + }, + { + "start": 207.34, + "end": 211.8, + "probability": 0.9489 + }, + { + "start": 213.04, + "end": 214.52, + "probability": 0.9604 + }, + { + "start": 216.84, + "end": 219.32, + "probability": 0.747 + }, + { + "start": 220.2, + "end": 221.88, + "probability": 0.8347 + }, + { + "start": 221.98, + "end": 225.8, + "probability": 0.9102 + }, + { + "start": 226.38, + "end": 228.68, + "probability": 0.7092 + }, + { + "start": 228.84, + "end": 231.76, + "probability": 0.99 + }, + { + "start": 232.0, + "end": 233.2, + "probability": 0.6531 + }, + { + "start": 233.2, + "end": 234.12, + "probability": 0.7056 + }, + { + "start": 234.26, + "end": 234.6, + "probability": 0.6758 + }, + { + "start": 234.8, + "end": 235.3, + "probability": 0.5353 + }, + { + "start": 235.32, + "end": 236.76, + "probability": 0.8299 + }, + { + "start": 237.58, + "end": 238.26, + "probability": 0.5836 + }, + { + "start": 238.84, + "end": 240.64, + "probability": 0.9314 + }, + { + "start": 241.52, + "end": 241.9, + "probability": 0.4489 + }, + { + "start": 241.96, + "end": 242.88, + "probability": 0.6039 + }, + { + "start": 243.04, + "end": 244.18, + "probability": 0.8659 + }, + { + "start": 244.26, + "end": 247.64, + "probability": 0.9939 + }, + { + "start": 247.82, + "end": 253.18, + "probability": 0.7959 + }, + { + "start": 253.26, + "end": 255.44, + "probability": 0.8231 + }, + { + "start": 255.96, + "end": 257.28, + "probability": 0.9606 + }, + { + "start": 258.6, + "end": 262.96, + "probability": 0.9762 + }, + { + "start": 263.06, + "end": 263.88, + "probability": 0.8591 + }, + { + "start": 265.16, + "end": 265.6, + "probability": 0.8729 + }, + { + "start": 267.02, + "end": 271.98, + "probability": 0.7928 + }, + { + "start": 272.5, + "end": 278.0, + "probability": 0.9927 + }, + { + "start": 279.38, + "end": 283.92, + "probability": 0.9976 + }, + { + "start": 283.92, + "end": 289.18, + "probability": 0.9876 + }, + { + "start": 289.94, + "end": 294.04, + "probability": 0.9758 + }, + { + "start": 294.08, + "end": 296.46, + "probability": 0.9834 + }, + { + "start": 296.8, + "end": 302.42, + "probability": 0.9969 + }, + { + "start": 303.12, + "end": 306.44, + "probability": 0.9973 + }, + { + "start": 306.44, + "end": 312.04, + "probability": 0.9921 + }, + { + "start": 313.12, + "end": 317.34, + "probability": 0.9937 + }, + { + "start": 318.16, + "end": 318.72, + "probability": 0.5047 + }, + { + "start": 318.74, + "end": 319.94, + "probability": 0.7595 + }, + { + "start": 320.5, + "end": 324.54, + "probability": 0.7749 + }, + { + "start": 327.7, + "end": 328.08, + "probability": 0.4426 + }, + { + "start": 328.12, + "end": 328.86, + "probability": 0.6936 + }, + { + "start": 329.1, + "end": 333.14, + "probability": 0.9652 + }, + { + "start": 333.68, + "end": 336.8, + "probability": 0.6478 + }, + { + "start": 337.36, + "end": 339.74, + "probability": 0.9897 + }, + { + "start": 340.2, + "end": 344.0, + "probability": 0.8841 + }, + { + "start": 344.3, + "end": 345.92, + "probability": 0.9294 + }, + { + "start": 346.56, + "end": 350.62, + "probability": 0.9795 + }, + { + "start": 351.28, + "end": 353.96, + "probability": 0.6394 + }, + { + "start": 354.48, + "end": 357.5, + "probability": 0.8865 + }, + { + "start": 358.02, + "end": 361.4, + "probability": 0.9908 + }, + { + "start": 362.86, + "end": 368.62, + "probability": 0.8384 + }, + { + "start": 369.22, + "end": 371.82, + "probability": 0.9909 + }, + { + "start": 372.36, + "end": 374.22, + "probability": 0.9985 + }, + { + "start": 374.34, + "end": 376.84, + "probability": 0.9705 + }, + { + "start": 377.22, + "end": 379.36, + "probability": 0.998 + }, + { + "start": 379.56, + "end": 384.0, + "probability": 0.995 + }, + { + "start": 384.44, + "end": 385.2, + "probability": 0.7462 + }, + { + "start": 385.4, + "end": 386.06, + "probability": 0.7379 + }, + { + "start": 386.14, + "end": 391.46, + "probability": 0.997 + }, + { + "start": 391.8, + "end": 393.06, + "probability": 0.9717 + }, + { + "start": 393.86, + "end": 396.66, + "probability": 0.7246 + }, + { + "start": 396.76, + "end": 397.88, + "probability": 0.9532 + }, + { + "start": 398.28, + "end": 399.44, + "probability": 0.9534 + }, + { + "start": 399.9, + "end": 400.25, + "probability": 0.4578 + }, + { + "start": 400.7, + "end": 402.0, + "probability": 0.9905 + }, + { + "start": 402.18, + "end": 403.4, + "probability": 0.8724 + }, + { + "start": 403.84, + "end": 407.54, + "probability": 0.9212 + }, + { + "start": 408.0, + "end": 408.3, + "probability": 0.7913 + }, + { + "start": 408.54, + "end": 409.94, + "probability": 0.9302 + }, + { + "start": 409.96, + "end": 410.6, + "probability": 0.9806 + }, + { + "start": 410.62, + "end": 412.42, + "probability": 0.8483 + }, + { + "start": 412.9, + "end": 415.58, + "probability": 0.9958 + }, + { + "start": 415.6, + "end": 418.36, + "probability": 0.9866 + }, + { + "start": 418.86, + "end": 422.08, + "probability": 0.7972 + }, + { + "start": 422.34, + "end": 422.9, + "probability": 0.6169 + }, + { + "start": 423.12, + "end": 424.2, + "probability": 0.8682 + }, + { + "start": 424.36, + "end": 426.4, + "probability": 0.7687 + }, + { + "start": 426.4, + "end": 427.9, + "probability": 0.7049 + }, + { + "start": 427.9, + "end": 428.2, + "probability": 0.5172 + }, + { + "start": 428.32, + "end": 428.98, + "probability": 0.833 + }, + { + "start": 429.04, + "end": 430.45, + "probability": 0.8574 + }, + { + "start": 430.58, + "end": 431.62, + "probability": 0.9058 + }, + { + "start": 431.98, + "end": 432.46, + "probability": 0.1409 + }, + { + "start": 433.08, + "end": 439.44, + "probability": 0.6889 + }, + { + "start": 440.16, + "end": 441.7, + "probability": 0.8233 + }, + { + "start": 442.9, + "end": 442.9, + "probability": 0.1435 + }, + { + "start": 442.9, + "end": 443.72, + "probability": 0.7775 + }, + { + "start": 443.88, + "end": 444.94, + "probability": 0.8405 + }, + { + "start": 445.02, + "end": 450.54, + "probability": 0.9716 + }, + { + "start": 451.26, + "end": 455.84, + "probability": 0.7543 + }, + { + "start": 456.52, + "end": 458.64, + "probability": 0.9008 + }, + { + "start": 459.2, + "end": 461.3, + "probability": 0.9629 + }, + { + "start": 462.38, + "end": 467.58, + "probability": 0.9464 + }, + { + "start": 467.58, + "end": 472.96, + "probability": 0.998 + }, + { + "start": 473.52, + "end": 477.16, + "probability": 0.9209 + }, + { + "start": 477.36, + "end": 479.78, + "probability": 0.6407 + }, + { + "start": 480.12, + "end": 481.32, + "probability": 0.9593 + }, + { + "start": 481.84, + "end": 484.72, + "probability": 0.995 + }, + { + "start": 485.18, + "end": 488.96, + "probability": 0.8604 + }, + { + "start": 489.78, + "end": 491.42, + "probability": 0.978 + }, + { + "start": 491.78, + "end": 497.82, + "probability": 0.918 + }, + { + "start": 498.36, + "end": 500.6, + "probability": 0.8433 + }, + { + "start": 500.94, + "end": 501.16, + "probability": 0.7307 + }, + { + "start": 501.7, + "end": 503.51, + "probability": 0.9897 + }, + { + "start": 506.27, + "end": 509.38, + "probability": 0.885 + }, + { + "start": 510.05, + "end": 513.34, + "probability": 0.9415 + }, + { + "start": 513.72, + "end": 514.06, + "probability": 0.7267 + }, + { + "start": 516.36, + "end": 518.46, + "probability": 0.7395 + }, + { + "start": 519.28, + "end": 521.48, + "probability": 0.6414 + }, + { + "start": 522.32, + "end": 528.5, + "probability": 0.9657 + }, + { + "start": 530.08, + "end": 530.7, + "probability": 0.3965 + }, + { + "start": 531.14, + "end": 531.58, + "probability": 0.4491 + }, + { + "start": 531.6, + "end": 534.24, + "probability": 0.987 + }, + { + "start": 534.82, + "end": 536.44, + "probability": 0.9912 + }, + { + "start": 537.14, + "end": 539.92, + "probability": 0.8755 + }, + { + "start": 540.62, + "end": 542.68, + "probability": 0.9879 + }, + { + "start": 543.28, + "end": 548.92, + "probability": 0.989 + }, + { + "start": 549.62, + "end": 550.52, + "probability": 0.9478 + }, + { + "start": 550.6, + "end": 553.5, + "probability": 0.9902 + }, + { + "start": 553.56, + "end": 555.73, + "probability": 0.9966 + }, + { + "start": 556.68, + "end": 559.12, + "probability": 0.8586 + }, + { + "start": 559.26, + "end": 560.16, + "probability": 0.6939 + }, + { + "start": 560.64, + "end": 564.2, + "probability": 0.9235 + }, + { + "start": 564.66, + "end": 567.62, + "probability": 0.9963 + }, + { + "start": 568.28, + "end": 569.4, + "probability": 0.8661 + }, + { + "start": 569.54, + "end": 569.96, + "probability": 0.5341 + }, + { + "start": 570.02, + "end": 571.96, + "probability": 0.6406 + }, + { + "start": 572.16, + "end": 574.08, + "probability": 0.7671 + }, + { + "start": 576.54, + "end": 578.08, + "probability": 0.8439 + }, + { + "start": 578.14, + "end": 582.28, + "probability": 0.9565 + }, + { + "start": 582.46, + "end": 585.68, + "probability": 0.8821 + }, + { + "start": 587.0, + "end": 589.08, + "probability": 0.6897 + }, + { + "start": 590.74, + "end": 594.84, + "probability": 0.9851 + }, + { + "start": 595.14, + "end": 598.3, + "probability": 0.945 + }, + { + "start": 598.74, + "end": 603.78, + "probability": 0.9357 + }, + { + "start": 604.06, + "end": 605.68, + "probability": 0.5218 + }, + { + "start": 606.44, + "end": 608.02, + "probability": 0.8193 + }, + { + "start": 608.12, + "end": 609.06, + "probability": 0.9876 + }, + { + "start": 609.4, + "end": 610.0, + "probability": 0.5117 + }, + { + "start": 610.78, + "end": 612.94, + "probability": 0.9322 + }, + { + "start": 613.48, + "end": 615.62, + "probability": 0.8155 + }, + { + "start": 615.7, + "end": 617.94, + "probability": 0.9554 + }, + { + "start": 618.3, + "end": 620.22, + "probability": 0.978 + }, + { + "start": 620.36, + "end": 621.96, + "probability": 0.917 + }, + { + "start": 622.08, + "end": 626.0, + "probability": 0.903 + }, + { + "start": 626.16, + "end": 628.72, + "probability": 0.983 + }, + { + "start": 629.32, + "end": 630.28, + "probability": 0.9355 + }, + { + "start": 630.4, + "end": 634.74, + "probability": 0.9863 + }, + { + "start": 635.34, + "end": 638.62, + "probability": 0.8743 + }, + { + "start": 639.84, + "end": 643.8, + "probability": 0.8098 + }, + { + "start": 644.24, + "end": 650.4, + "probability": 0.9644 + }, + { + "start": 650.68, + "end": 651.54, + "probability": 0.9753 + }, + { + "start": 652.82, + "end": 653.36, + "probability": 0.5934 + }, + { + "start": 653.5, + "end": 655.18, + "probability": 0.7442 + }, + { + "start": 659.16, + "end": 659.16, + "probability": 0.0971 + }, + { + "start": 659.16, + "end": 660.94, + "probability": 0.6376 + }, + { + "start": 661.5, + "end": 661.66, + "probability": 0.256 + }, + { + "start": 662.1, + "end": 663.56, + "probability": 0.6224 + }, + { + "start": 665.18, + "end": 665.78, + "probability": 0.5992 + }, + { + "start": 666.04, + "end": 666.82, + "probability": 0.5938 + }, + { + "start": 667.0, + "end": 668.34, + "probability": 0.9681 + }, + { + "start": 668.94, + "end": 669.54, + "probability": 0.7414 + }, + { + "start": 670.6, + "end": 673.14, + "probability": 0.9616 + }, + { + "start": 673.66, + "end": 676.4, + "probability": 0.8397 + }, + { + "start": 676.94, + "end": 679.64, + "probability": 0.9694 + }, + { + "start": 679.8, + "end": 681.36, + "probability": 0.9951 + }, + { + "start": 681.86, + "end": 683.16, + "probability": 0.3547 + }, + { + "start": 683.24, + "end": 683.52, + "probability": 0.3654 + }, + { + "start": 683.68, + "end": 684.86, + "probability": 0.7079 + }, + { + "start": 685.42, + "end": 686.62, + "probability": 0.6789 + }, + { + "start": 687.18, + "end": 687.77, + "probability": 0.9871 + }, + { + "start": 687.92, + "end": 689.6, + "probability": 0.9498 + }, + { + "start": 690.04, + "end": 693.1, + "probability": 0.9236 + }, + { + "start": 693.62, + "end": 696.62, + "probability": 0.9622 + }, + { + "start": 696.96, + "end": 697.16, + "probability": 0.8175 + }, + { + "start": 697.18, + "end": 697.78, + "probability": 0.6412 + }, + { + "start": 697.78, + "end": 699.26, + "probability": 0.9741 + }, + { + "start": 699.7, + "end": 700.74, + "probability": 0.8806 + }, + { + "start": 701.18, + "end": 703.98, + "probability": 0.9769 + }, + { + "start": 704.5, + "end": 705.72, + "probability": 0.8877 + }, + { + "start": 705.78, + "end": 708.86, + "probability": 0.8799 + }, + { + "start": 708.96, + "end": 714.59, + "probability": 0.9429 + }, + { + "start": 715.76, + "end": 719.78, + "probability": 0.9777 + }, + { + "start": 720.28, + "end": 721.24, + "probability": 0.9113 + }, + { + "start": 721.72, + "end": 722.5, + "probability": 0.5639 + }, + { + "start": 723.1, + "end": 723.72, + "probability": 0.7098 + }, + { + "start": 723.82, + "end": 726.94, + "probability": 0.9561 + }, + { + "start": 727.34, + "end": 727.98, + "probability": 0.9143 + }, + { + "start": 728.26, + "end": 728.68, + "probability": 0.9179 + }, + { + "start": 729.22, + "end": 732.6, + "probability": 0.9333 + }, + { + "start": 733.08, + "end": 736.02, + "probability": 0.9214 + }, + { + "start": 736.16, + "end": 737.04, + "probability": 0.8567 + }, + { + "start": 737.12, + "end": 740.08, + "probability": 0.6744 + }, + { + "start": 740.12, + "end": 740.68, + "probability": 0.8448 + }, + { + "start": 740.88, + "end": 741.88, + "probability": 0.9615 + }, + { + "start": 742.18, + "end": 743.22, + "probability": 0.9674 + }, + { + "start": 743.54, + "end": 745.3, + "probability": 0.6899 + }, + { + "start": 745.36, + "end": 746.82, + "probability": 0.8968 + }, + { + "start": 747.32, + "end": 750.06, + "probability": 0.9943 + }, + { + "start": 750.32, + "end": 750.56, + "probability": 0.666 + }, + { + "start": 750.76, + "end": 751.12, + "probability": 0.8842 + }, + { + "start": 751.78, + "end": 752.4, + "probability": 0.7642 + }, + { + "start": 752.62, + "end": 755.88, + "probability": 0.9619 + }, + { + "start": 755.92, + "end": 756.58, + "probability": 0.7765 + }, + { + "start": 759.12, + "end": 760.9, + "probability": 0.86 + }, + { + "start": 761.74, + "end": 762.38, + "probability": 0.5862 + }, + { + "start": 762.52, + "end": 763.36, + "probability": 0.9513 + }, + { + "start": 763.56, + "end": 765.82, + "probability": 0.9985 + }, + { + "start": 765.82, + "end": 768.48, + "probability": 0.8319 + }, + { + "start": 769.4, + "end": 770.9, + "probability": 0.924 + }, + { + "start": 771.22, + "end": 771.52, + "probability": 0.9668 + }, + { + "start": 771.76, + "end": 773.76, + "probability": 0.9077 + }, + { + "start": 773.78, + "end": 776.53, + "probability": 0.8429 + }, + { + "start": 777.0, + "end": 778.38, + "probability": 0.7087 + }, + { + "start": 779.08, + "end": 780.62, + "probability": 0.8315 + }, + { + "start": 780.74, + "end": 783.32, + "probability": 0.9922 + }, + { + "start": 784.2, + "end": 786.74, + "probability": 0.9878 + }, + { + "start": 787.2, + "end": 791.26, + "probability": 0.8668 + }, + { + "start": 791.38, + "end": 792.38, + "probability": 0.7714 + }, + { + "start": 792.52, + "end": 793.42, + "probability": 0.8898 + }, + { + "start": 793.58, + "end": 797.54, + "probability": 0.9448 + }, + { + "start": 797.98, + "end": 799.54, + "probability": 0.6959 + }, + { + "start": 799.62, + "end": 801.78, + "probability": 0.9404 + }, + { + "start": 802.12, + "end": 802.4, + "probability": 0.7643 + }, + { + "start": 802.88, + "end": 803.22, + "probability": 0.4584 + }, + { + "start": 804.41, + "end": 806.18, + "probability": 0.7023 + }, + { + "start": 806.18, + "end": 806.38, + "probability": 0.4404 + }, + { + "start": 808.82, + "end": 810.24, + "probability": 0.6375 + }, + { + "start": 811.32, + "end": 813.86, + "probability": 0.9065 + }, + { + "start": 814.46, + "end": 815.28, + "probability": 0.1333 + }, + { + "start": 815.28, + "end": 815.9, + "probability": 0.818 + }, + { + "start": 815.94, + "end": 817.1, + "probability": 0.795 + }, + { + "start": 817.72, + "end": 818.44, + "probability": 0.3415 + }, + { + "start": 819.28, + "end": 822.42, + "probability": 0.8721 + }, + { + "start": 823.24, + "end": 826.3, + "probability": 0.9017 + }, + { + "start": 826.92, + "end": 827.18, + "probability": 0.9561 + }, + { + "start": 828.36, + "end": 830.4, + "probability": 0.9529 + }, + { + "start": 831.26, + "end": 831.84, + "probability": 0.7771 + }, + { + "start": 833.76, + "end": 834.9, + "probability": 0.6943 + }, + { + "start": 835.5, + "end": 836.06, + "probability": 0.8391 + }, + { + "start": 836.82, + "end": 839.08, + "probability": 0.9302 + }, + { + "start": 839.76, + "end": 840.1, + "probability": 0.6417 + }, + { + "start": 841.46, + "end": 844.14, + "probability": 0.9746 + }, + { + "start": 845.74, + "end": 847.05, + "probability": 0.8286 + }, + { + "start": 847.98, + "end": 850.81, + "probability": 0.9971 + }, + { + "start": 852.6, + "end": 853.3, + "probability": 0.9294 + }, + { + "start": 854.38, + "end": 856.5, + "probability": 0.9281 + }, + { + "start": 857.84, + "end": 863.1, + "probability": 0.6598 + }, + { + "start": 863.54, + "end": 864.26, + "probability": 0.3943 + }, + { + "start": 864.88, + "end": 869.7, + "probability": 0.9784 + }, + { + "start": 870.02, + "end": 870.56, + "probability": 0.7629 + }, + { + "start": 871.18, + "end": 871.85, + "probability": 0.8926 + }, + { + "start": 872.16, + "end": 876.48, + "probability": 0.7227 + }, + { + "start": 879.4, + "end": 880.54, + "probability": 0.8349 + }, + { + "start": 887.92, + "end": 888.02, + "probability": 0.271 + }, + { + "start": 888.76, + "end": 889.16, + "probability": 0.4121 + }, + { + "start": 889.62, + "end": 891.34, + "probability": 0.7618 + }, + { + "start": 892.74, + "end": 897.44, + "probability": 0.7497 + }, + { + "start": 899.92, + "end": 905.54, + "probability": 0.9546 + }, + { + "start": 906.2, + "end": 909.1, + "probability": 0.9793 + }, + { + "start": 910.04, + "end": 911.28, + "probability": 0.8292 + }, + { + "start": 912.8, + "end": 915.42, + "probability": 0.6653 + }, + { + "start": 916.42, + "end": 918.02, + "probability": 0.9592 + }, + { + "start": 918.02, + "end": 919.64, + "probability": 0.7141 + }, + { + "start": 919.68, + "end": 920.52, + "probability": 0.9324 + }, + { + "start": 921.86, + "end": 922.54, + "probability": 0.3038 + }, + { + "start": 923.28, + "end": 927.14, + "probability": 0.7908 + }, + { + "start": 927.9, + "end": 931.22, + "probability": 0.9766 + }, + { + "start": 932.9, + "end": 935.16, + "probability": 0.9336 + }, + { + "start": 936.22, + "end": 938.3, + "probability": 0.7099 + }, + { + "start": 939.44, + "end": 941.9, + "probability": 0.9811 + }, + { + "start": 944.22, + "end": 945.98, + "probability": 0.9691 + }, + { + "start": 947.1, + "end": 953.06, + "probability": 0.9742 + }, + { + "start": 953.7, + "end": 954.58, + "probability": 0.692 + }, + { + "start": 955.36, + "end": 956.36, + "probability": 0.9034 + }, + { + "start": 956.84, + "end": 958.08, + "probability": 0.9779 + }, + { + "start": 958.46, + "end": 959.42, + "probability": 0.886 + }, + { + "start": 959.92, + "end": 964.66, + "probability": 0.697 + }, + { + "start": 965.9, + "end": 965.9, + "probability": 0.2486 + }, + { + "start": 965.9, + "end": 966.51, + "probability": 0.7947 + }, + { + "start": 967.6, + "end": 971.22, + "probability": 0.9434 + }, + { + "start": 971.6, + "end": 972.52, + "probability": 0.6159 + }, + { + "start": 973.0, + "end": 975.2, + "probability": 0.8474 + }, + { + "start": 976.2, + "end": 977.15, + "probability": 0.7839 + }, + { + "start": 978.04, + "end": 980.98, + "probability": 0.9839 + }, + { + "start": 981.22, + "end": 984.64, + "probability": 0.9873 + }, + { + "start": 985.44, + "end": 987.62, + "probability": 0.9603 + }, + { + "start": 988.58, + "end": 992.08, + "probability": 0.9054 + }, + { + "start": 992.28, + "end": 993.34, + "probability": 0.6924 + }, + { + "start": 993.46, + "end": 995.04, + "probability": 0.9631 + }, + { + "start": 995.52, + "end": 1001.22, + "probability": 0.9048 + }, + { + "start": 1001.64, + "end": 1002.6, + "probability": 0.894 + }, + { + "start": 1003.68, + "end": 1004.76, + "probability": 0.6311 + }, + { + "start": 1005.36, + "end": 1007.3, + "probability": 0.9753 + }, + { + "start": 1009.2, + "end": 1010.9, + "probability": 0.8218 + }, + { + "start": 1011.7, + "end": 1015.44, + "probability": 0.939 + }, + { + "start": 1015.72, + "end": 1019.48, + "probability": 0.8677 + }, + { + "start": 1019.78, + "end": 1020.24, + "probability": 0.2978 + }, + { + "start": 1020.84, + "end": 1021.74, + "probability": 0.7465 + }, + { + "start": 1022.98, + "end": 1025.66, + "probability": 0.9653 + }, + { + "start": 1025.66, + "end": 1028.1, + "probability": 0.9976 + }, + { + "start": 1028.3, + "end": 1029.3, + "probability": 0.997 + }, + { + "start": 1030.0, + "end": 1032.12, + "probability": 0.9399 + }, + { + "start": 1035.18, + "end": 1035.18, + "probability": 0.0004 + }, + { + "start": 1037.08, + "end": 1037.08, + "probability": 0.0075 + }, + { + "start": 1037.08, + "end": 1040.7, + "probability": 0.8144 + }, + { + "start": 1041.44, + "end": 1041.54, + "probability": 0.4052 + }, + { + "start": 1041.56, + "end": 1042.26, + "probability": 0.8268 + }, + { + "start": 1042.48, + "end": 1047.02, + "probability": 0.9333 + }, + { + "start": 1048.64, + "end": 1051.5, + "probability": 0.9793 + }, + { + "start": 1052.28, + "end": 1052.96, + "probability": 0.7266 + }, + { + "start": 1053.22, + "end": 1056.08, + "probability": 0.9458 + }, + { + "start": 1056.74, + "end": 1059.46, + "probability": 0.9675 + }, + { + "start": 1060.06, + "end": 1061.8, + "probability": 0.877 + }, + { + "start": 1062.44, + "end": 1065.54, + "probability": 0.9639 + }, + { + "start": 1066.02, + "end": 1069.18, + "probability": 0.9868 + }, + { + "start": 1070.12, + "end": 1071.2, + "probability": 0.6084 + }, + { + "start": 1071.34, + "end": 1072.4, + "probability": 0.8238 + }, + { + "start": 1072.48, + "end": 1074.94, + "probability": 0.7976 + }, + { + "start": 1075.08, + "end": 1076.82, + "probability": 0.9729 + }, + { + "start": 1077.74, + "end": 1079.18, + "probability": 0.6646 + }, + { + "start": 1079.48, + "end": 1079.8, + "probability": 0.7478 + }, + { + "start": 1080.56, + "end": 1082.52, + "probability": 0.7579 + }, + { + "start": 1085.44, + "end": 1086.38, + "probability": 0.6825 + }, + { + "start": 1086.56, + "end": 1087.38, + "probability": 0.8029 + }, + { + "start": 1087.46, + "end": 1093.6, + "probability": 0.9762 + }, + { + "start": 1093.7, + "end": 1095.67, + "probability": 0.9967 + }, + { + "start": 1096.46, + "end": 1099.34, + "probability": 0.989 + }, + { + "start": 1099.52, + "end": 1101.84, + "probability": 0.6082 + }, + { + "start": 1102.0, + "end": 1105.52, + "probability": 0.9854 + }, + { + "start": 1105.52, + "end": 1109.52, + "probability": 0.992 + }, + { + "start": 1110.02, + "end": 1110.64, + "probability": 0.929 + }, + { + "start": 1112.34, + "end": 1113.0, + "probability": 0.3646 + }, + { + "start": 1113.08, + "end": 1113.64, + "probability": 0.606 + }, + { + "start": 1113.92, + "end": 1114.8, + "probability": 0.9064 + }, + { + "start": 1114.9, + "end": 1116.48, + "probability": 0.9771 + }, + { + "start": 1116.62, + "end": 1118.42, + "probability": 0.9932 + }, + { + "start": 1119.14, + "end": 1121.12, + "probability": 0.9922 + }, + { + "start": 1121.62, + "end": 1123.76, + "probability": 0.7656 + }, + { + "start": 1125.94, + "end": 1129.54, + "probability": 0.7934 + }, + { + "start": 1130.08, + "end": 1132.58, + "probability": 0.9167 + }, + { + "start": 1133.34, + "end": 1136.42, + "probability": 0.9104 + }, + { + "start": 1137.02, + "end": 1138.66, + "probability": 0.6475 + }, + { + "start": 1138.74, + "end": 1140.3, + "probability": 0.9829 + }, + { + "start": 1140.82, + "end": 1141.96, + "probability": 0.0684 + }, + { + "start": 1142.28, + "end": 1142.58, + "probability": 0.0775 + }, + { + "start": 1142.58, + "end": 1142.96, + "probability": 0.76 + }, + { + "start": 1143.12, + "end": 1144.28, + "probability": 0.9109 + }, + { + "start": 1144.54, + "end": 1145.3, + "probability": 0.2831 + }, + { + "start": 1145.64, + "end": 1147.08, + "probability": 0.7114 + }, + { + "start": 1147.84, + "end": 1151.78, + "probability": 0.9583 + }, + { + "start": 1152.14, + "end": 1152.7, + "probability": 0.9731 + }, + { + "start": 1153.6, + "end": 1157.74, + "probability": 0.9512 + }, + { + "start": 1158.6, + "end": 1162.04, + "probability": 0.9686 + }, + { + "start": 1162.56, + "end": 1164.68, + "probability": 0.7466 + }, + { + "start": 1165.24, + "end": 1166.9, + "probability": 0.9575 + }, + { + "start": 1167.44, + "end": 1168.02, + "probability": 0.9042 + }, + { + "start": 1168.12, + "end": 1169.44, + "probability": 0.9319 + }, + { + "start": 1171.02, + "end": 1171.52, + "probability": 0.8142 + }, + { + "start": 1171.58, + "end": 1174.48, + "probability": 0.9041 + }, + { + "start": 1174.6, + "end": 1176.0, + "probability": 0.8798 + }, + { + "start": 1176.56, + "end": 1178.52, + "probability": 0.8947 + }, + { + "start": 1178.98, + "end": 1181.4, + "probability": 0.8799 + }, + { + "start": 1181.84, + "end": 1182.22, + "probability": 0.8706 + }, + { + "start": 1182.3, + "end": 1188.02, + "probability": 0.8739 + }, + { + "start": 1188.12, + "end": 1190.24, + "probability": 0.8646 + }, + { + "start": 1191.22, + "end": 1193.82, + "probability": 0.7186 + }, + { + "start": 1194.88, + "end": 1195.98, + "probability": 0.2701 + }, + { + "start": 1196.62, + "end": 1196.88, + "probability": 0.6406 + }, + { + "start": 1197.58, + "end": 1199.0, + "probability": 0.9098 + }, + { + "start": 1199.16, + "end": 1201.58, + "probability": 0.9561 + }, + { + "start": 1201.74, + "end": 1202.23, + "probability": 0.9531 + }, + { + "start": 1203.52, + "end": 1204.84, + "probability": 0.9183 + }, + { + "start": 1204.96, + "end": 1207.3, + "probability": 0.9054 + }, + { + "start": 1207.98, + "end": 1209.44, + "probability": 0.6251 + }, + { + "start": 1209.92, + "end": 1214.44, + "probability": 0.9819 + }, + { + "start": 1215.72, + "end": 1217.78, + "probability": 0.9941 + }, + { + "start": 1217.88, + "end": 1218.82, + "probability": 0.7568 + }, + { + "start": 1219.54, + "end": 1221.98, + "probability": 0.6649 + }, + { + "start": 1222.06, + "end": 1222.8, + "probability": 0.7623 + }, + { + "start": 1223.08, + "end": 1224.96, + "probability": 0.5654 + }, + { + "start": 1225.04, + "end": 1225.38, + "probability": 0.5389 + }, + { + "start": 1225.83, + "end": 1228.12, + "probability": 0.4604 + }, + { + "start": 1228.12, + "end": 1229.98, + "probability": 0.1657 + }, + { + "start": 1230.18, + "end": 1231.34, + "probability": 0.7559 + }, + { + "start": 1231.68, + "end": 1233.4, + "probability": 0.7925 + }, + { + "start": 1233.48, + "end": 1234.4, + "probability": 0.7962 + }, + { + "start": 1234.82, + "end": 1236.22, + "probability": 0.9795 + }, + { + "start": 1236.36, + "end": 1239.42, + "probability": 0.981 + }, + { + "start": 1240.72, + "end": 1242.1, + "probability": 0.1432 + }, + { + "start": 1242.2, + "end": 1242.94, + "probability": 0.9795 + }, + { + "start": 1243.18, + "end": 1244.08, + "probability": 0.7437 + }, + { + "start": 1244.16, + "end": 1244.84, + "probability": 0.6739 + }, + { + "start": 1245.06, + "end": 1246.9, + "probability": 0.4233 + }, + { + "start": 1246.9, + "end": 1249.53, + "probability": 0.874 + }, + { + "start": 1249.88, + "end": 1250.85, + "probability": 0.9908 + }, + { + "start": 1251.12, + "end": 1251.54, + "probability": 0.28 + }, + { + "start": 1251.96, + "end": 1255.62, + "probability": 0.9891 + }, + { + "start": 1256.6, + "end": 1258.54, + "probability": 0.9989 + }, + { + "start": 1258.98, + "end": 1262.16, + "probability": 0.921 + }, + { + "start": 1262.3, + "end": 1263.76, + "probability": 0.9378 + }, + { + "start": 1264.24, + "end": 1265.74, + "probability": 0.9757 + }, + { + "start": 1265.76, + "end": 1269.56, + "probability": 0.9498 + }, + { + "start": 1270.18, + "end": 1273.42, + "probability": 0.5747 + }, + { + "start": 1273.9, + "end": 1277.82, + "probability": 0.9289 + }, + { + "start": 1279.48, + "end": 1281.38, + "probability": 0.993 + }, + { + "start": 1282.34, + "end": 1285.44, + "probability": 0.8422 + }, + { + "start": 1285.44, + "end": 1289.06, + "probability": 0.9972 + }, + { + "start": 1289.5, + "end": 1290.88, + "probability": 0.8352 + }, + { + "start": 1290.94, + "end": 1294.24, + "probability": 0.988 + }, + { + "start": 1294.76, + "end": 1297.42, + "probability": 0.9836 + }, + { + "start": 1298.32, + "end": 1298.94, + "probability": 0.7424 + }, + { + "start": 1299.14, + "end": 1299.64, + "probability": 0.628 + }, + { + "start": 1299.86, + "end": 1300.12, + "probability": 0.8497 + }, + { + "start": 1300.22, + "end": 1301.38, + "probability": 0.9696 + }, + { + "start": 1301.74, + "end": 1303.14, + "probability": 0.9761 + }, + { + "start": 1303.46, + "end": 1304.18, + "probability": 0.489 + }, + { + "start": 1304.22, + "end": 1304.56, + "probability": 0.8308 + }, + { + "start": 1304.66, + "end": 1306.72, + "probability": 0.9358 + }, + { + "start": 1307.42, + "end": 1309.52, + "probability": 0.9747 + }, + { + "start": 1310.16, + "end": 1311.34, + "probability": 0.5968 + }, + { + "start": 1318.6, + "end": 1319.44, + "probability": 0.5722 + }, + { + "start": 1321.0, + "end": 1324.16, + "probability": 0.9773 + }, + { + "start": 1324.34, + "end": 1325.32, + "probability": 0.6485 + }, + { + "start": 1325.52, + "end": 1326.1, + "probability": 0.7887 + }, + { + "start": 1326.18, + "end": 1326.56, + "probability": 0.8556 + }, + { + "start": 1327.66, + "end": 1328.9, + "probability": 0.9336 + }, + { + "start": 1329.88, + "end": 1333.41, + "probability": 0.8896 + }, + { + "start": 1335.38, + "end": 1337.58, + "probability": 0.8676 + }, + { + "start": 1338.36, + "end": 1340.08, + "probability": 0.5862 + }, + { + "start": 1341.12, + "end": 1342.4, + "probability": 0.9254 + }, + { + "start": 1342.48, + "end": 1343.56, + "probability": 0.7709 + }, + { + "start": 1343.62, + "end": 1346.84, + "probability": 0.9856 + }, + { + "start": 1347.62, + "end": 1348.8, + "probability": 0.4921 + }, + { + "start": 1348.96, + "end": 1351.28, + "probability": 0.9574 + }, + { + "start": 1351.86, + "end": 1353.78, + "probability": 0.9707 + }, + { + "start": 1353.78, + "end": 1353.92, + "probability": 0.7091 + }, + { + "start": 1354.78, + "end": 1356.8, + "probability": 0.9832 + }, + { + "start": 1357.62, + "end": 1361.4, + "probability": 0.4782 + }, + { + "start": 1361.98, + "end": 1362.32, + "probability": 0.437 + }, + { + "start": 1363.0, + "end": 1363.34, + "probability": 0.5505 + }, + { + "start": 1365.6, + "end": 1366.5, + "probability": 0.6318 + }, + { + "start": 1367.66, + "end": 1372.86, + "probability": 0.7091 + }, + { + "start": 1373.62, + "end": 1376.16, + "probability": 0.9945 + }, + { + "start": 1377.16, + "end": 1379.64, + "probability": 0.9957 + }, + { + "start": 1380.26, + "end": 1382.24, + "probability": 0.8992 + }, + { + "start": 1382.84, + "end": 1384.6, + "probability": 0.9542 + }, + { + "start": 1384.84, + "end": 1385.72, + "probability": 0.9641 + }, + { + "start": 1385.9, + "end": 1387.0, + "probability": 0.8903 + }, + { + "start": 1387.76, + "end": 1389.6, + "probability": 0.9888 + }, + { + "start": 1389.6, + "end": 1393.88, + "probability": 0.8063 + }, + { + "start": 1394.76, + "end": 1395.08, + "probability": 0.6559 + }, + { + "start": 1395.16, + "end": 1398.7, + "probability": 0.8694 + }, + { + "start": 1398.98, + "end": 1400.22, + "probability": 0.5268 + }, + { + "start": 1400.56, + "end": 1402.26, + "probability": 0.556 + }, + { + "start": 1402.56, + "end": 1405.04, + "probability": 0.9002 + }, + { + "start": 1405.72, + "end": 1410.1, + "probability": 0.8584 + }, + { + "start": 1410.44, + "end": 1412.72, + "probability": 0.9912 + }, + { + "start": 1412.72, + "end": 1416.24, + "probability": 0.9756 + }, + { + "start": 1416.42, + "end": 1423.42, + "probability": 0.9937 + }, + { + "start": 1424.36, + "end": 1427.88, + "probability": 0.9978 + }, + { + "start": 1428.52, + "end": 1431.33, + "probability": 0.998 + }, + { + "start": 1431.66, + "end": 1434.6, + "probability": 0.945 + }, + { + "start": 1434.82, + "end": 1437.74, + "probability": 0.75 + }, + { + "start": 1437.8, + "end": 1439.78, + "probability": 0.6849 + }, + { + "start": 1440.16, + "end": 1441.72, + "probability": 0.6752 + }, + { + "start": 1441.78, + "end": 1444.28, + "probability": 0.8997 + }, + { + "start": 1444.38, + "end": 1444.66, + "probability": 0.8438 + }, + { + "start": 1445.72, + "end": 1446.16, + "probability": 0.6448 + }, + { + "start": 1446.22, + "end": 1448.56, + "probability": 0.9782 + }, + { + "start": 1448.78, + "end": 1450.32, + "probability": 0.9444 + }, + { + "start": 1450.78, + "end": 1452.62, + "probability": 0.468 + }, + { + "start": 1453.12, + "end": 1457.36, + "probability": 0.9735 + }, + { + "start": 1457.52, + "end": 1462.44, + "probability": 0.9302 + }, + { + "start": 1462.84, + "end": 1462.94, + "probability": 0.6936 + }, + { + "start": 1463.08, + "end": 1463.46, + "probability": 0.8296 + }, + { + "start": 1464.0, + "end": 1465.38, + "probability": 0.8516 + }, + { + "start": 1465.8, + "end": 1467.02, + "probability": 0.7864 + }, + { + "start": 1467.54, + "end": 1468.72, + "probability": 0.3557 + }, + { + "start": 1469.94, + "end": 1470.48, + "probability": 0.2449 + }, + { + "start": 1470.48, + "end": 1470.48, + "probability": 0.0098 + }, + { + "start": 1470.48, + "end": 1470.76, + "probability": 0.3978 + }, + { + "start": 1470.96, + "end": 1472.0, + "probability": 0.8171 + }, + { + "start": 1472.24, + "end": 1473.12, + "probability": 0.4105 + }, + { + "start": 1473.16, + "end": 1478.38, + "probability": 0.9922 + }, + { + "start": 1478.7, + "end": 1481.45, + "probability": 0.8921 + }, + { + "start": 1482.0, + "end": 1484.34, + "probability": 0.7484 + }, + { + "start": 1486.42, + "end": 1489.32, + "probability": 0.8285 + }, + { + "start": 1490.02, + "end": 1492.94, + "probability": 0.985 + }, + { + "start": 1493.08, + "end": 1493.88, + "probability": 0.8036 + }, + { + "start": 1493.94, + "end": 1495.56, + "probability": 0.9927 + }, + { + "start": 1496.3, + "end": 1497.3, + "probability": 0.5 + }, + { + "start": 1497.4, + "end": 1499.27, + "probability": 0.9541 + }, + { + "start": 1499.76, + "end": 1500.37, + "probability": 0.769 + }, + { + "start": 1500.54, + "end": 1500.96, + "probability": 0.6818 + }, + { + "start": 1501.2, + "end": 1501.46, + "probability": 0.5323 + }, + { + "start": 1502.54, + "end": 1504.27, + "probability": 0.9968 + }, + { + "start": 1505.05, + "end": 1506.1, + "probability": 0.926 + }, + { + "start": 1507.26, + "end": 1509.9, + "probability": 0.8928 + }, + { + "start": 1514.18, + "end": 1514.58, + "probability": 0.0221 + }, + { + "start": 1517.24, + "end": 1517.4, + "probability": 0.0392 + }, + { + "start": 1517.4, + "end": 1517.4, + "probability": 0.16 + }, + { + "start": 1517.4, + "end": 1520.82, + "probability": 0.8556 + }, + { + "start": 1520.9, + "end": 1521.32, + "probability": 0.509 + }, + { + "start": 1521.62, + "end": 1522.2, + "probability": 0.6113 + }, + { + "start": 1522.26, + "end": 1525.16, + "probability": 0.6764 + }, + { + "start": 1525.22, + "end": 1525.54, + "probability": 0.846 + }, + { + "start": 1525.78, + "end": 1527.56, + "probability": 0.6514 + }, + { + "start": 1527.56, + "end": 1532.0, + "probability": 0.9481 + }, + { + "start": 1532.96, + "end": 1534.36, + "probability": 0.1663 + }, + { + "start": 1534.36, + "end": 1534.7, + "probability": 0.2751 + }, + { + "start": 1534.74, + "end": 1537.1, + "probability": 0.7907 + }, + { + "start": 1537.5, + "end": 1539.32, + "probability": 0.9619 + }, + { + "start": 1539.96, + "end": 1541.48, + "probability": 0.9344 + }, + { + "start": 1541.92, + "end": 1544.4, + "probability": 0.6923 + }, + { + "start": 1545.0, + "end": 1545.34, + "probability": 0.3234 + }, + { + "start": 1546.13, + "end": 1547.32, + "probability": 0.5319 + }, + { + "start": 1547.46, + "end": 1549.8, + "probability": 0.9741 + }, + { + "start": 1551.94, + "end": 1551.96, + "probability": 0.01 + }, + { + "start": 1551.96, + "end": 1554.72, + "probability": 0.7898 + }, + { + "start": 1555.46, + "end": 1557.74, + "probability": 0.9645 + }, + { + "start": 1559.06, + "end": 1559.98, + "probability": 0.624 + }, + { + "start": 1560.1, + "end": 1560.1, + "probability": 0.4467 + }, + { + "start": 1560.1, + "end": 1561.6, + "probability": 0.7463 + }, + { + "start": 1562.0, + "end": 1564.64, + "probability": 0.9234 + }, + { + "start": 1564.98, + "end": 1566.72, + "probability": 0.8051 + }, + { + "start": 1566.78, + "end": 1567.8, + "probability": 0.8707 + }, + { + "start": 1568.02, + "end": 1573.58, + "probability": 0.9773 + }, + { + "start": 1573.88, + "end": 1577.14, + "probability": 0.9209 + }, + { + "start": 1577.54, + "end": 1583.31, + "probability": 0.7408 + }, + { + "start": 1585.07, + "end": 1589.68, + "probability": 0.9249 + }, + { + "start": 1589.68, + "end": 1595.22, + "probability": 0.8558 + }, + { + "start": 1595.28, + "end": 1597.48, + "probability": 0.9243 + }, + { + "start": 1598.62, + "end": 1604.76, + "probability": 0.9102 + }, + { + "start": 1604.86, + "end": 1605.26, + "probability": 0.4828 + }, + { + "start": 1606.41, + "end": 1609.34, + "probability": 0.9939 + }, + { + "start": 1610.28, + "end": 1614.2, + "probability": 0.9951 + }, + { + "start": 1614.42, + "end": 1616.34, + "probability": 0.9095 + }, + { + "start": 1616.96, + "end": 1618.58, + "probability": 0.9888 + }, + { + "start": 1619.04, + "end": 1625.76, + "probability": 0.9601 + }, + { + "start": 1625.76, + "end": 1630.46, + "probability": 0.9811 + }, + { + "start": 1631.56, + "end": 1632.1, + "probability": 0.8063 + }, + { + "start": 1632.2, + "end": 1632.94, + "probability": 0.6297 + }, + { + "start": 1633.0, + "end": 1634.19, + "probability": 0.9185 + }, + { + "start": 1635.72, + "end": 1637.62, + "probability": 0.6792 + }, + { + "start": 1638.31, + "end": 1643.78, + "probability": 0.986 + }, + { + "start": 1644.64, + "end": 1650.48, + "probability": 0.9458 + }, + { + "start": 1650.58, + "end": 1652.58, + "probability": 0.8571 + }, + { + "start": 1654.26, + "end": 1655.18, + "probability": 0.8162 + }, + { + "start": 1656.22, + "end": 1660.64, + "probability": 0.9868 + }, + { + "start": 1661.7, + "end": 1665.58, + "probability": 0.799 + }, + { + "start": 1666.52, + "end": 1669.16, + "probability": 0.3339 + }, + { + "start": 1670.7, + "end": 1671.62, + "probability": 0.1708 + }, + { + "start": 1671.78, + "end": 1671.9, + "probability": 0.2018 + }, + { + "start": 1671.94, + "end": 1672.36, + "probability": 0.7387 + }, + { + "start": 1672.44, + "end": 1673.94, + "probability": 0.7258 + }, + { + "start": 1674.3, + "end": 1676.6, + "probability": 0.9889 + }, + { + "start": 1676.7, + "end": 1677.42, + "probability": 0.9025 + }, + { + "start": 1677.52, + "end": 1678.22, + "probability": 0.7744 + }, + { + "start": 1678.32, + "end": 1678.76, + "probability": 0.6115 + }, + { + "start": 1678.9, + "end": 1679.7, + "probability": 0.4895 + }, + { + "start": 1681.56, + "end": 1681.56, + "probability": 0.8066 + }, + { + "start": 1682.12, + "end": 1683.4, + "probability": 0.3094 + }, + { + "start": 1683.4, + "end": 1683.4, + "probability": 0.3807 + }, + { + "start": 1683.4, + "end": 1683.4, + "probability": 0.7892 + }, + { + "start": 1683.4, + "end": 1687.16, + "probability": 0.9883 + }, + { + "start": 1687.18, + "end": 1687.84, + "probability": 0.8103 + }, + { + "start": 1688.32, + "end": 1688.96, + "probability": 0.9766 + }, + { + "start": 1689.44, + "end": 1690.84, + "probability": 0.8595 + }, + { + "start": 1691.28, + "end": 1692.28, + "probability": 0.8237 + }, + { + "start": 1692.38, + "end": 1692.9, + "probability": 0.881 + }, + { + "start": 1693.44, + "end": 1696.66, + "probability": 0.9894 + }, + { + "start": 1697.44, + "end": 1698.5, + "probability": 0.6465 + }, + { + "start": 1699.78, + "end": 1702.14, + "probability": 0.6367 + }, + { + "start": 1703.6, + "end": 1706.42, + "probability": 0.079 + }, + { + "start": 1706.56, + "end": 1708.52, + "probability": 0.05 + }, + { + "start": 1710.42, + "end": 1711.62, + "probability": 0.0242 + }, + { + "start": 1711.64, + "end": 1711.64, + "probability": 0.0355 + }, + { + "start": 1711.64, + "end": 1711.64, + "probability": 0.0039 + }, + { + "start": 1711.64, + "end": 1711.64, + "probability": 0.1874 + }, + { + "start": 1711.64, + "end": 1711.64, + "probability": 0.1441 + }, + { + "start": 1711.64, + "end": 1711.64, + "probability": 0.1364 + }, + { + "start": 1711.84, + "end": 1713.0, + "probability": 0.4722 + }, + { + "start": 1713.42, + "end": 1719.34, + "probability": 0.8799 + }, + { + "start": 1719.46, + "end": 1720.74, + "probability": 0.9941 + }, + { + "start": 1721.24, + "end": 1729.1, + "probability": 0.9781 + }, + { + "start": 1729.26, + "end": 1731.48, + "probability": 0.8844 + }, + { + "start": 1731.48, + "end": 1731.48, + "probability": 0.2217 + }, + { + "start": 1731.48, + "end": 1732.5, + "probability": 0.6121 + }, + { + "start": 1735.33, + "end": 1739.42, + "probability": 0.7446 + }, + { + "start": 1740.52, + "end": 1741.26, + "probability": 0.6847 + }, + { + "start": 1741.56, + "end": 1741.78, + "probability": 0.5463 + }, + { + "start": 1742.04, + "end": 1743.3, + "probability": 0.621 + }, + { + "start": 1743.44, + "end": 1745.4, + "probability": 0.8411 + }, + { + "start": 1745.52, + "end": 1745.94, + "probability": 0.7884 + }, + { + "start": 1746.26, + "end": 1746.34, + "probability": 0.0095 + }, + { + "start": 1747.0, + "end": 1752.18, + "probability": 0.961 + }, + { + "start": 1752.52, + "end": 1757.58, + "probability": 0.9062 + }, + { + "start": 1758.2, + "end": 1764.74, + "probability": 0.9836 + }, + { + "start": 1764.86, + "end": 1765.76, + "probability": 0.8742 + }, + { + "start": 1766.0, + "end": 1766.8, + "probability": 0.6815 + }, + { + "start": 1767.22, + "end": 1768.86, + "probability": 0.7606 + }, + { + "start": 1768.96, + "end": 1769.94, + "probability": 0.45 + }, + { + "start": 1770.5, + "end": 1771.94, + "probability": 0.1026 + }, + { + "start": 1771.94, + "end": 1775.24, + "probability": 0.8242 + }, + { + "start": 1776.24, + "end": 1781.74, + "probability": 0.7499 + }, + { + "start": 1781.86, + "end": 1787.84, + "probability": 0.9423 + }, + { + "start": 1787.96, + "end": 1790.88, + "probability": 0.9636 + }, + { + "start": 1791.54, + "end": 1792.32, + "probability": 0.6627 + }, + { + "start": 1792.92, + "end": 1794.16, + "probability": 0.2971 + }, + { + "start": 1794.18, + "end": 1796.3, + "probability": 0.8785 + }, + { + "start": 1796.46, + "end": 1798.38, + "probability": 0.9916 + }, + { + "start": 1798.94, + "end": 1801.04, + "probability": 0.8745 + }, + { + "start": 1801.62, + "end": 1803.96, + "probability": 0.9665 + }, + { + "start": 1803.96, + "end": 1806.32, + "probability": 0.9961 + }, + { + "start": 1806.88, + "end": 1812.46, + "probability": 0.9631 + }, + { + "start": 1812.6, + "end": 1820.64, + "probability": 0.8618 + }, + { + "start": 1820.82, + "end": 1822.94, + "probability": 0.7923 + }, + { + "start": 1823.26, + "end": 1824.22, + "probability": 0.9619 + }, + { + "start": 1824.36, + "end": 1824.88, + "probability": 0.6905 + }, + { + "start": 1825.0, + "end": 1825.68, + "probability": 0.8965 + }, + { + "start": 1825.82, + "end": 1827.32, + "probability": 0.8766 + }, + { + "start": 1827.78, + "end": 1829.98, + "probability": 0.9108 + }, + { + "start": 1830.16, + "end": 1830.7, + "probability": 0.5827 + }, + { + "start": 1830.74, + "end": 1831.46, + "probability": 0.7274 + }, + { + "start": 1831.6, + "end": 1833.3, + "probability": 0.9208 + }, + { + "start": 1833.32, + "end": 1833.36, + "probability": 0.3547 + }, + { + "start": 1833.44, + "end": 1835.58, + "probability": 0.9117 + }, + { + "start": 1836.44, + "end": 1841.3, + "probability": 0.8508 + }, + { + "start": 1841.3, + "end": 1846.3, + "probability": 0.765 + }, + { + "start": 1848.44, + "end": 1850.22, + "probability": 0.7566 + }, + { + "start": 1851.72, + "end": 1853.38, + "probability": 0.7495 + }, + { + "start": 1854.12, + "end": 1855.48, + "probability": 0.2185 + }, + { + "start": 1856.46, + "end": 1858.34, + "probability": 0.8908 + }, + { + "start": 1868.18, + "end": 1870.7, + "probability": 0.0479 + }, + { + "start": 1871.61, + "end": 1873.4, + "probability": 0.0524 + }, + { + "start": 1873.76, + "end": 1874.9, + "probability": 0.3678 + }, + { + "start": 1874.96, + "end": 1875.24, + "probability": 0.0382 + }, + { + "start": 1875.34, + "end": 1876.38, + "probability": 0.0107 + }, + { + "start": 1879.84, + "end": 1881.1, + "probability": 0.1334 + }, + { + "start": 1881.96, + "end": 1882.44, + "probability": 0.0961 + }, + { + "start": 1882.58, + "end": 1884.36, + "probability": 0.0128 + }, + { + "start": 1912.2, + "end": 1913.32, + "probability": 0.5759 + }, + { + "start": 1914.98, + "end": 1915.78, + "probability": 0.979 + }, + { + "start": 1916.2, + "end": 1917.34, + "probability": 0.4708 + }, + { + "start": 1921.12, + "end": 1921.9, + "probability": 0.9478 + }, + { + "start": 1922.08, + "end": 1922.08, + "probability": 0.4455 + }, + { + "start": 1922.24, + "end": 1923.6, + "probability": 0.9723 + }, + { + "start": 1923.8, + "end": 1924.14, + "probability": 0.8153 + }, + { + "start": 1925.7, + "end": 1925.72, + "probability": 0.2366 + }, + { + "start": 1926.28, + "end": 1929.1, + "probability": 0.9434 + }, + { + "start": 1930.94, + "end": 1932.0, + "probability": 0.9667 + }, + { + "start": 1932.84, + "end": 1936.0, + "probability": 0.8469 + }, + { + "start": 1936.64, + "end": 1939.16, + "probability": 0.867 + }, + { + "start": 1939.5, + "end": 1939.7, + "probability": 0.6589 + }, + { + "start": 1939.84, + "end": 1940.54, + "probability": 0.8059 + }, + { + "start": 1940.68, + "end": 1942.48, + "probability": 0.9193 + }, + { + "start": 1942.58, + "end": 1943.8, + "probability": 0.6179 + }, + { + "start": 1943.94, + "end": 1944.4, + "probability": 0.768 + }, + { + "start": 1944.9, + "end": 1948.16, + "probability": 0.8449 + }, + { + "start": 1949.4, + "end": 1952.96, + "probability": 0.9908 + }, + { + "start": 1953.14, + "end": 1955.84, + "probability": 0.0558 + }, + { + "start": 1957.08, + "end": 1959.84, + "probability": 0.985 + }, + { + "start": 1961.16, + "end": 1962.08, + "probability": 0.8191 + }, + { + "start": 1962.24, + "end": 1965.28, + "probability": 0.8517 + }, + { + "start": 1966.76, + "end": 1967.22, + "probability": 0.629 + }, + { + "start": 1968.28, + "end": 1971.3, + "probability": 0.9973 + }, + { + "start": 1972.32, + "end": 1976.1, + "probability": 0.8384 + }, + { + "start": 1976.6, + "end": 1977.98, + "probability": 0.8764 + }, + { + "start": 1981.32, + "end": 1985.24, + "probability": 0.9156 + }, + { + "start": 1985.92, + "end": 1989.56, + "probability": 0.9528 + }, + { + "start": 1990.64, + "end": 1993.82, + "probability": 0.9708 + }, + { + "start": 1994.7, + "end": 1998.52, + "probability": 0.9863 + }, + { + "start": 1999.32, + "end": 2003.94, + "probability": 0.9924 + }, + { + "start": 2004.1, + "end": 2009.0, + "probability": 0.9976 + }, + { + "start": 2010.22, + "end": 2013.68, + "probability": 0.9976 + }, + { + "start": 2013.68, + "end": 2017.78, + "probability": 0.9976 + }, + { + "start": 2018.44, + "end": 2020.6, + "probability": 0.9924 + }, + { + "start": 2020.6, + "end": 2023.62, + "probability": 0.9953 + }, + { + "start": 2024.14, + "end": 2026.58, + "probability": 0.7366 + }, + { + "start": 2026.74, + "end": 2029.74, + "probability": 0.9556 + }, + { + "start": 2029.74, + "end": 2032.3, + "probability": 0.9954 + }, + { + "start": 2033.82, + "end": 2034.66, + "probability": 0.9932 + }, + { + "start": 2035.74, + "end": 2036.94, + "probability": 0.9365 + }, + { + "start": 2037.02, + "end": 2038.88, + "probability": 0.8409 + }, + { + "start": 2039.66, + "end": 2048.44, + "probability": 0.9196 + }, + { + "start": 2049.65, + "end": 2053.16, + "probability": 0.9491 + }, + { + "start": 2053.94, + "end": 2055.94, + "probability": 0.9452 + }, + { + "start": 2056.96, + "end": 2057.6, + "probability": 0.8569 + }, + { + "start": 2057.8, + "end": 2058.1, + "probability": 0.701 + }, + { + "start": 2058.5, + "end": 2063.34, + "probability": 0.9532 + }, + { + "start": 2063.5, + "end": 2066.36, + "probability": 0.7993 + }, + { + "start": 2067.7, + "end": 2071.4, + "probability": 0.9963 + }, + { + "start": 2072.4, + "end": 2075.28, + "probability": 0.9869 + }, + { + "start": 2076.2, + "end": 2080.09, + "probability": 0.9984 + }, + { + "start": 2080.66, + "end": 2083.0, + "probability": 0.8757 + }, + { + "start": 2083.16, + "end": 2083.28, + "probability": 0.5145 + }, + { + "start": 2083.86, + "end": 2085.44, + "probability": 0.8413 + }, + { + "start": 2086.62, + "end": 2089.52, + "probability": 0.9046 + }, + { + "start": 2089.6, + "end": 2090.16, + "probability": 0.8257 + }, + { + "start": 2090.34, + "end": 2090.88, + "probability": 0.5848 + }, + { + "start": 2091.9, + "end": 2093.77, + "probability": 0.7313 + }, + { + "start": 2097.86, + "end": 2098.46, + "probability": 0.4639 + }, + { + "start": 2100.0, + "end": 2100.74, + "probability": 0.5505 + }, + { + "start": 2101.85, + "end": 2107.5, + "probability": 0.9242 + }, + { + "start": 2108.34, + "end": 2112.42, + "probability": 0.6111 + }, + { + "start": 2114.52, + "end": 2115.86, + "probability": 0.9017 + }, + { + "start": 2116.48, + "end": 2117.12, + "probability": 0.5376 + }, + { + "start": 2121.52, + "end": 2122.84, + "probability": 0.5044 + }, + { + "start": 2134.32, + "end": 2134.32, + "probability": 0.0575 + }, + { + "start": 2134.32, + "end": 2137.26, + "probability": 0.5828 + }, + { + "start": 2137.94, + "end": 2140.02, + "probability": 0.9836 + }, + { + "start": 2140.66, + "end": 2141.3, + "probability": 0.8364 + }, + { + "start": 2141.48, + "end": 2148.42, + "probability": 0.995 + }, + { + "start": 2149.88, + "end": 2154.62, + "probability": 0.9731 + }, + { + "start": 2154.7, + "end": 2156.26, + "probability": 0.6721 + }, + { + "start": 2158.76, + "end": 2160.58, + "probability": 0.6975 + }, + { + "start": 2169.36, + "end": 2169.36, + "probability": 0.011 + }, + { + "start": 2171.18, + "end": 2171.86, + "probability": 0.0169 + }, + { + "start": 2173.18, + "end": 2176.28, + "probability": 0.0484 + }, + { + "start": 2176.28, + "end": 2178.98, + "probability": 0.806 + }, + { + "start": 2179.8, + "end": 2183.9, + "probability": 0.5003 + }, + { + "start": 2184.32, + "end": 2187.06, + "probability": 0.9254 + }, + { + "start": 2187.24, + "end": 2188.86, + "probability": 0.8554 + }, + { + "start": 2189.96, + "end": 2192.3, + "probability": 0.9187 + }, + { + "start": 2193.04, + "end": 2194.38, + "probability": 0.9775 + }, + { + "start": 2195.5, + "end": 2196.06, + "probability": 0.0998 + }, + { + "start": 2197.54, + "end": 2198.24, + "probability": 0.669 + }, + { + "start": 2198.78, + "end": 2198.78, + "probability": 0.6064 + }, + { + "start": 2199.12, + "end": 2200.4, + "probability": 0.8988 + }, + { + "start": 2200.68, + "end": 2201.38, + "probability": 0.5691 + }, + { + "start": 2201.68, + "end": 2202.86, + "probability": 0.7961 + }, + { + "start": 2203.52, + "end": 2204.4, + "probability": 0.4234 + }, + { + "start": 2205.3, + "end": 2206.32, + "probability": 0.9907 + }, + { + "start": 2206.84, + "end": 2207.3, + "probability": 0.3254 + }, + { + "start": 2213.52, + "end": 2214.06, + "probability": 0.6195 + }, + { + "start": 2216.48, + "end": 2217.16, + "probability": 0.7185 + }, + { + "start": 2218.7, + "end": 2221.42, + "probability": 0.9365 + }, + { + "start": 2221.46, + "end": 2222.44, + "probability": 0.952 + }, + { + "start": 2222.86, + "end": 2226.02, + "probability": 0.9764 + }, + { + "start": 2226.52, + "end": 2227.64, + "probability": 0.2972 + }, + { + "start": 2228.4, + "end": 2231.84, + "probability": 0.981 + }, + { + "start": 2233.78, + "end": 2237.04, + "probability": 0.998 + }, + { + "start": 2237.04, + "end": 2241.84, + "probability": 0.9621 + }, + { + "start": 2243.26, + "end": 2245.56, + "probability": 0.7832 + }, + { + "start": 2245.6, + "end": 2249.76, + "probability": 0.9929 + }, + { + "start": 2250.38, + "end": 2252.42, + "probability": 0.9963 + }, + { + "start": 2252.62, + "end": 2253.5, + "probability": 0.9558 + }, + { + "start": 2254.36, + "end": 2257.82, + "probability": 0.9333 + }, + { + "start": 2258.58, + "end": 2261.38, + "probability": 0.9909 + }, + { + "start": 2261.9, + "end": 2264.16, + "probability": 0.9987 + }, + { + "start": 2265.7, + "end": 2267.98, + "probability": 0.7712 + }, + { + "start": 2268.8, + "end": 2273.52, + "probability": 0.9746 + }, + { + "start": 2274.26, + "end": 2276.21, + "probability": 0.7791 + }, + { + "start": 2276.84, + "end": 2281.88, + "probability": 0.9819 + }, + { + "start": 2282.38, + "end": 2285.08, + "probability": 0.9972 + }, + { + "start": 2285.12, + "end": 2286.38, + "probability": 0.9052 + }, + { + "start": 2288.24, + "end": 2290.75, + "probability": 0.9972 + }, + { + "start": 2292.74, + "end": 2293.48, + "probability": 0.7284 + }, + { + "start": 2293.7, + "end": 2296.31, + "probability": 0.7863 + }, + { + "start": 2296.9, + "end": 2299.58, + "probability": 0.9778 + }, + { + "start": 2299.68, + "end": 2299.78, + "probability": 0.6967 + }, + { + "start": 2300.16, + "end": 2301.2, + "probability": 0.807 + }, + { + "start": 2301.4, + "end": 2302.57, + "probability": 0.9114 + }, + { + "start": 2303.54, + "end": 2305.7, + "probability": 0.9358 + }, + { + "start": 2306.0, + "end": 2307.4, + "probability": 0.9835 + }, + { + "start": 2308.4, + "end": 2311.12, + "probability": 0.8479 + }, + { + "start": 2313.46, + "end": 2315.12, + "probability": 0.8283 + }, + { + "start": 2318.22, + "end": 2322.0, + "probability": 0.9751 + }, + { + "start": 2322.5, + "end": 2326.96, + "probability": 0.9054 + }, + { + "start": 2327.04, + "end": 2327.26, + "probability": 0.2663 + }, + { + "start": 2327.32, + "end": 2327.85, + "probability": 0.6199 + }, + { + "start": 2329.02, + "end": 2330.64, + "probability": 0.9902 + }, + { + "start": 2330.7, + "end": 2334.42, + "probability": 0.8226 + }, + { + "start": 2334.98, + "end": 2335.5, + "probability": 0.9918 + }, + { + "start": 2340.78, + "end": 2341.66, + "probability": 0.4913 + }, + { + "start": 2341.84, + "end": 2344.38, + "probability": 0.988 + }, + { + "start": 2345.68, + "end": 2349.12, + "probability": 0.7992 + }, + { + "start": 2349.12, + "end": 2352.84, + "probability": 0.9938 + }, + { + "start": 2353.54, + "end": 2354.5, + "probability": 0.8418 + }, + { + "start": 2354.52, + "end": 2356.66, + "probability": 0.994 + }, + { + "start": 2356.66, + "end": 2361.1, + "probability": 0.9959 + }, + { + "start": 2361.36, + "end": 2361.62, + "probability": 0.3906 + }, + { + "start": 2361.68, + "end": 2361.78, + "probability": 0.2776 + }, + { + "start": 2362.64, + "end": 2364.04, + "probability": 0.9126 + }, + { + "start": 2365.2, + "end": 2369.42, + "probability": 0.6599 + }, + { + "start": 2371.28, + "end": 2376.54, + "probability": 0.9377 + }, + { + "start": 2377.46, + "end": 2378.68, + "probability": 0.9954 + }, + { + "start": 2379.72, + "end": 2380.86, + "probability": 0.9997 + }, + { + "start": 2381.48, + "end": 2385.56, + "probability": 0.999 + }, + { + "start": 2388.66, + "end": 2389.8, + "probability": 0.572 + }, + { + "start": 2390.3, + "end": 2391.98, + "probability": 0.906 + }, + { + "start": 2392.7, + "end": 2394.7, + "probability": 0.8921 + }, + { + "start": 2395.18, + "end": 2396.23, + "probability": 0.5229 + }, + { + "start": 2396.78, + "end": 2400.14, + "probability": 0.6112 + }, + { + "start": 2402.9, + "end": 2403.98, + "probability": 0.8305 + }, + { + "start": 2404.84, + "end": 2413.7, + "probability": 0.9689 + }, + { + "start": 2413.86, + "end": 2415.22, + "probability": 0.6898 + }, + { + "start": 2415.32, + "end": 2418.16, + "probability": 0.8755 + }, + { + "start": 2419.06, + "end": 2419.82, + "probability": 0.8862 + }, + { + "start": 2429.04, + "end": 2429.16, + "probability": 0.8066 + }, + { + "start": 2429.88, + "end": 2435.16, + "probability": 0.667 + }, + { + "start": 2437.99, + "end": 2438.48, + "probability": 0.0627 + }, + { + "start": 2438.74, + "end": 2441.2, + "probability": 0.6541 + }, + { + "start": 2441.48, + "end": 2446.42, + "probability": 0.853 + }, + { + "start": 2447.12, + "end": 2450.46, + "probability": 0.9976 + }, + { + "start": 2452.2, + "end": 2452.86, + "probability": 0.8317 + }, + { + "start": 2459.92, + "end": 2461.62, + "probability": 0.7803 + }, + { + "start": 2462.86, + "end": 2464.14, + "probability": 0.5205 + }, + { + "start": 2464.96, + "end": 2468.48, + "probability": 0.7034 + }, + { + "start": 2469.58, + "end": 2469.58, + "probability": 0.0527 + }, + { + "start": 2469.58, + "end": 2472.14, + "probability": 0.7776 + }, + { + "start": 2472.72, + "end": 2473.54, + "probability": 0.5205 + }, + { + "start": 2474.36, + "end": 2476.04, + "probability": 0.9469 + }, + { + "start": 2478.16, + "end": 2481.38, + "probability": 0.7464 + }, + { + "start": 2481.42, + "end": 2482.42, + "probability": 0.7438 + }, + { + "start": 2484.0, + "end": 2489.44, + "probability": 0.8721 + }, + { + "start": 2490.3, + "end": 2491.68, + "probability": 0.9471 + }, + { + "start": 2492.86, + "end": 2494.02, + "probability": 0.8967 + }, + { + "start": 2495.2, + "end": 2496.62, + "probability": 0.0988 + }, + { + "start": 2499.69, + "end": 2502.4, + "probability": 0.7887 + }, + { + "start": 2503.94, + "end": 2505.76, + "probability": 0.8791 + }, + { + "start": 2507.98, + "end": 2508.54, + "probability": 0.7921 + }, + { + "start": 2508.66, + "end": 2509.4, + "probability": 0.7257 + }, + { + "start": 2509.52, + "end": 2511.24, + "probability": 0.9922 + }, + { + "start": 2511.41, + "end": 2512.88, + "probability": 0.9951 + }, + { + "start": 2513.06, + "end": 2514.12, + "probability": 0.8079 + }, + { + "start": 2515.14, + "end": 2516.88, + "probability": 0.7212 + }, + { + "start": 2516.94, + "end": 2518.32, + "probability": 0.9502 + }, + { + "start": 2518.4, + "end": 2519.78, + "probability": 0.9812 + }, + { + "start": 2520.02, + "end": 2522.66, + "probability": 0.9949 + }, + { + "start": 2523.7, + "end": 2526.22, + "probability": 0.9819 + }, + { + "start": 2528.1, + "end": 2532.06, + "probability": 0.955 + }, + { + "start": 2532.1, + "end": 2533.09, + "probability": 0.9834 + }, + { + "start": 2533.48, + "end": 2533.68, + "probability": 0.4307 + }, + { + "start": 2533.7, + "end": 2535.52, + "probability": 0.9419 + }, + { + "start": 2535.7, + "end": 2536.44, + "probability": 0.85 + }, + { + "start": 2536.52, + "end": 2537.26, + "probability": 0.8835 + }, + { + "start": 2537.9, + "end": 2543.32, + "probability": 0.9695 + }, + { + "start": 2543.6, + "end": 2546.26, + "probability": 0.9691 + }, + { + "start": 2546.82, + "end": 2551.2, + "probability": 0.7321 + }, + { + "start": 2551.6, + "end": 2553.04, + "probability": 0.8426 + }, + { + "start": 2553.32, + "end": 2554.18, + "probability": 0.8062 + }, + { + "start": 2556.1, + "end": 2556.42, + "probability": 0.7464 + }, + { + "start": 2556.54, + "end": 2558.16, + "probability": 0.9248 + }, + { + "start": 2558.24, + "end": 2559.08, + "probability": 0.7443 + }, + { + "start": 2559.34, + "end": 2560.1, + "probability": 0.6464 + }, + { + "start": 2560.2, + "end": 2561.72, + "probability": 0.6694 + }, + { + "start": 2562.26, + "end": 2566.2, + "probability": 0.9071 + }, + { + "start": 2566.88, + "end": 2567.47, + "probability": 0.926 + }, + { + "start": 2568.66, + "end": 2572.88, + "probability": 0.9651 + }, + { + "start": 2573.56, + "end": 2575.82, + "probability": 0.9055 + }, + { + "start": 2576.52, + "end": 2577.52, + "probability": 0.6007 + }, + { + "start": 2577.76, + "end": 2582.3, + "probability": 0.9712 + }, + { + "start": 2582.44, + "end": 2585.78, + "probability": 0.9764 + }, + { + "start": 2585.9, + "end": 2586.46, + "probability": 0.5336 + }, + { + "start": 2586.78, + "end": 2587.62, + "probability": 0.7889 + }, + { + "start": 2588.32, + "end": 2589.12, + "probability": 0.6591 + }, + { + "start": 2592.0, + "end": 2592.02, + "probability": 0.0943 + }, + { + "start": 2592.02, + "end": 2594.28, + "probability": 0.9673 + }, + { + "start": 2594.4, + "end": 2595.56, + "probability": 0.9365 + }, + { + "start": 2595.6, + "end": 2596.32, + "probability": 0.8017 + }, + { + "start": 2596.36, + "end": 2596.84, + "probability": 0.8429 + }, + { + "start": 2599.82, + "end": 2600.0, + "probability": 0.3025 + }, + { + "start": 2600.0, + "end": 2600.22, + "probability": 0.3437 + }, + { + "start": 2600.82, + "end": 2606.2, + "probability": 0.8314 + }, + { + "start": 2606.74, + "end": 2609.6, + "probability": 0.9561 + }, + { + "start": 2610.4, + "end": 2612.58, + "probability": 0.9599 + }, + { + "start": 2612.66, + "end": 2613.12, + "probability": 0.5989 + }, + { + "start": 2614.46, + "end": 2614.5, + "probability": 0.0163 + }, + { + "start": 2623.94, + "end": 2624.12, + "probability": 0.1509 + }, + { + "start": 2632.06, + "end": 2632.76, + "probability": 0.0229 + }, + { + "start": 2632.98, + "end": 2633.16, + "probability": 0.1343 + }, + { + "start": 2633.16, + "end": 2637.6, + "probability": 0.1597 + }, + { + "start": 2638.44, + "end": 2638.48, + "probability": 0.6676 + }, + { + "start": 2657.16, + "end": 2658.1, + "probability": 0.0233 + }, + { + "start": 2659.08, + "end": 2660.38, + "probability": 0.6745 + }, + { + "start": 2661.06, + "end": 2662.72, + "probability": 0.6485 + }, + { + "start": 2662.9, + "end": 2663.86, + "probability": 0.9347 + }, + { + "start": 2664.0, + "end": 2667.8, + "probability": 0.9572 + }, + { + "start": 2667.88, + "end": 2671.68, + "probability": 0.9964 + }, + { + "start": 2672.64, + "end": 2677.24, + "probability": 0.9956 + }, + { + "start": 2678.0, + "end": 2683.26, + "probability": 0.9707 + }, + { + "start": 2683.7, + "end": 2685.24, + "probability": 0.9213 + }, + { + "start": 2685.6, + "end": 2687.82, + "probability": 0.9726 + }, + { + "start": 2689.0, + "end": 2692.9, + "probability": 0.9985 + }, + { + "start": 2693.54, + "end": 2697.28, + "probability": 0.9973 + }, + { + "start": 2697.82, + "end": 2698.02, + "probability": 0.7628 + }, + { + "start": 2699.32, + "end": 2703.84, + "probability": 0.7979 + }, + { + "start": 2704.96, + "end": 2708.54, + "probability": 0.9672 + }, + { + "start": 2709.68, + "end": 2714.4, + "probability": 0.9951 + }, + { + "start": 2714.58, + "end": 2717.22, + "probability": 0.9271 + }, + { + "start": 2718.14, + "end": 2721.94, + "probability": 0.9767 + }, + { + "start": 2721.94, + "end": 2726.06, + "probability": 0.8421 + }, + { + "start": 2727.16, + "end": 2730.84, + "probability": 0.9529 + }, + { + "start": 2731.6, + "end": 2733.74, + "probability": 0.9851 + }, + { + "start": 2735.32, + "end": 2737.6, + "probability": 0.9404 + }, + { + "start": 2738.38, + "end": 2741.46, + "probability": 0.7268 + }, + { + "start": 2742.12, + "end": 2742.6, + "probability": 0.7933 + }, + { + "start": 2743.46, + "end": 2744.42, + "probability": 0.77 + }, + { + "start": 2744.5, + "end": 2747.06, + "probability": 0.9519 + }, + { + "start": 2747.14, + "end": 2748.96, + "probability": 0.9243 + }, + { + "start": 2749.4, + "end": 2750.28, + "probability": 0.9761 + }, + { + "start": 2751.48, + "end": 2754.04, + "probability": 0.98 + }, + { + "start": 2754.98, + "end": 2756.8, + "probability": 0.993 + }, + { + "start": 2756.96, + "end": 2757.42, + "probability": 0.5083 + }, + { + "start": 2757.94, + "end": 2762.22, + "probability": 0.9407 + }, + { + "start": 2763.44, + "end": 2764.6, + "probability": 0.721 + }, + { + "start": 2764.66, + "end": 2769.3, + "probability": 0.9958 + }, + { + "start": 2771.16, + "end": 2772.7, + "probability": 0.7371 + }, + { + "start": 2772.96, + "end": 2773.98, + "probability": 0.7953 + }, + { + "start": 2775.3, + "end": 2775.6, + "probability": 0.8145 + }, + { + "start": 2776.42, + "end": 2777.14, + "probability": 0.5683 + }, + { + "start": 2777.24, + "end": 2780.48, + "probability": 0.9678 + }, + { + "start": 2780.96, + "end": 2782.97, + "probability": 0.9316 + }, + { + "start": 2783.56, + "end": 2786.36, + "probability": 0.9039 + }, + { + "start": 2787.28, + "end": 2791.36, + "probability": 0.9968 + }, + { + "start": 2791.36, + "end": 2794.42, + "probability": 0.9973 + }, + { + "start": 2794.44, + "end": 2796.1, + "probability": 0.8663 + }, + { + "start": 2796.64, + "end": 2797.44, + "probability": 0.7839 + }, + { + "start": 2797.54, + "end": 2798.7, + "probability": 0.9201 + }, + { + "start": 2798.74, + "end": 2801.64, + "probability": 0.7282 + }, + { + "start": 2802.42, + "end": 2805.64, + "probability": 0.9335 + }, + { + "start": 2806.36, + "end": 2806.66, + "probability": 0.7169 + }, + { + "start": 2806.82, + "end": 2807.2, + "probability": 0.7128 + }, + { + "start": 2807.68, + "end": 2809.78, + "probability": 0.9146 + }, + { + "start": 2812.32, + "end": 2813.76, + "probability": 0.9565 + }, + { + "start": 2814.1, + "end": 2815.72, + "probability": 0.6885 + }, + { + "start": 2815.88, + "end": 2817.48, + "probability": 0.6209 + }, + { + "start": 2818.58, + "end": 2819.0, + "probability": 0.8936 + }, + { + "start": 2819.94, + "end": 2820.66, + "probability": 0.6986 + }, + { + "start": 2820.74, + "end": 2824.28, + "probability": 0.9956 + }, + { + "start": 2825.0, + "end": 2825.78, + "probability": 0.579 + }, + { + "start": 2826.26, + "end": 2827.02, + "probability": 0.8151 + }, + { + "start": 2827.44, + "end": 2829.84, + "probability": 0.9797 + }, + { + "start": 2830.32, + "end": 2831.72, + "probability": 0.0646 + }, + { + "start": 2831.96, + "end": 2835.26, + "probability": 0.9867 + }, + { + "start": 2835.8, + "end": 2837.76, + "probability": 0.9658 + }, + { + "start": 2837.98, + "end": 2838.36, + "probability": 0.694 + }, + { + "start": 2838.58, + "end": 2839.6, + "probability": 0.7258 + }, + { + "start": 2839.7, + "end": 2841.31, + "probability": 0.9385 + }, + { + "start": 2841.46, + "end": 2842.9, + "probability": 0.8913 + }, + { + "start": 2843.82, + "end": 2845.74, + "probability": 0.5465 + }, + { + "start": 2846.12, + "end": 2847.4, + "probability": 0.6142 + }, + { + "start": 2847.4, + "end": 2849.66, + "probability": 0.7954 + }, + { + "start": 2849.86, + "end": 2851.02, + "probability": 0.9187 + }, + { + "start": 2851.18, + "end": 2851.8, + "probability": 0.7613 + }, + { + "start": 2851.94, + "end": 2854.38, + "probability": 0.9918 + }, + { + "start": 2854.54, + "end": 2855.78, + "probability": 0.3852 + }, + { + "start": 2855.9, + "end": 2856.32, + "probability": 0.8397 + }, + { + "start": 2856.76, + "end": 2857.72, + "probability": 0.7715 + }, + { + "start": 2859.0, + "end": 2859.92, + "probability": 0.6861 + }, + { + "start": 2860.6, + "end": 2866.12, + "probability": 0.9776 + }, + { + "start": 2866.96, + "end": 2870.41, + "probability": 0.9927 + }, + { + "start": 2870.56, + "end": 2874.0, + "probability": 0.9919 + }, + { + "start": 2875.0, + "end": 2880.06, + "probability": 0.9359 + }, + { + "start": 2880.92, + "end": 2882.12, + "probability": 0.5967 + }, + { + "start": 2882.46, + "end": 2884.76, + "probability": 0.9731 + }, + { + "start": 2886.8, + "end": 2887.34, + "probability": 0.5552 + }, + { + "start": 2887.8, + "end": 2888.85, + "probability": 0.8584 + }, + { + "start": 2890.02, + "end": 2893.22, + "probability": 0.9635 + }, + { + "start": 2893.28, + "end": 2894.18, + "probability": 0.746 + }, + { + "start": 2894.38, + "end": 2895.06, + "probability": 0.595 + }, + { + "start": 2895.98, + "end": 2896.98, + "probability": 0.7409 + }, + { + "start": 2897.18, + "end": 2899.9, + "probability": 0.9443 + }, + { + "start": 2900.9, + "end": 2902.02, + "probability": 0.8645 + }, + { + "start": 2902.14, + "end": 2904.96, + "probability": 0.9487 + }, + { + "start": 2905.72, + "end": 2907.48, + "probability": 0.9849 + }, + { + "start": 2908.14, + "end": 2911.1, + "probability": 0.96 + }, + { + "start": 2912.06, + "end": 2913.98, + "probability": 0.9946 + }, + { + "start": 2914.7, + "end": 2917.02, + "probability": 0.984 + }, + { + "start": 2917.7, + "end": 2919.8, + "probability": 0.999 + }, + { + "start": 2920.56, + "end": 2921.3, + "probability": 0.7911 + }, + { + "start": 2922.62, + "end": 2925.92, + "probability": 0.991 + }, + { + "start": 2925.92, + "end": 2928.28, + "probability": 0.9888 + }, + { + "start": 2928.62, + "end": 2930.2, + "probability": 0.9706 + }, + { + "start": 2931.14, + "end": 2932.42, + "probability": 0.7998 + }, + { + "start": 2932.94, + "end": 2936.96, + "probability": 0.8848 + }, + { + "start": 2937.44, + "end": 2938.26, + "probability": 0.9976 + }, + { + "start": 2938.8, + "end": 2940.62, + "probability": 0.8418 + }, + { + "start": 2941.42, + "end": 2942.64, + "probability": 0.8436 + }, + { + "start": 2942.82, + "end": 2946.92, + "probability": 0.9684 + }, + { + "start": 2946.92, + "end": 2949.42, + "probability": 0.976 + }, + { + "start": 2950.44, + "end": 2952.32, + "probability": 0.9284 + }, + { + "start": 2952.92, + "end": 2953.32, + "probability": 0.817 + }, + { + "start": 2954.12, + "end": 2960.16, + "probability": 0.9933 + }, + { + "start": 2961.0, + "end": 2965.82, + "probability": 0.9302 + }, + { + "start": 2966.42, + "end": 2967.18, + "probability": 0.8458 + }, + { + "start": 2967.76, + "end": 2970.26, + "probability": 0.9099 + }, + { + "start": 2970.86, + "end": 2974.76, + "probability": 0.9768 + }, + { + "start": 2975.4, + "end": 2979.66, + "probability": 0.8986 + }, + { + "start": 2980.08, + "end": 2986.1, + "probability": 0.9233 + }, + { + "start": 2986.84, + "end": 2993.24, + "probability": 0.9935 + }, + { + "start": 2994.52, + "end": 2996.94, + "probability": 0.8827 + }, + { + "start": 2997.6, + "end": 2999.46, + "probability": 0.7171 + }, + { + "start": 3001.08, + "end": 3008.8, + "probability": 0.9921 + }, + { + "start": 3009.2, + "end": 3009.76, + "probability": 0.1574 + }, + { + "start": 3010.36, + "end": 3011.24, + "probability": 0.9555 + }, + { + "start": 3012.04, + "end": 3015.98, + "probability": 0.747 + }, + { + "start": 3016.66, + "end": 3017.9, + "probability": 0.9458 + }, + { + "start": 3018.76, + "end": 3022.12, + "probability": 0.9343 + }, + { + "start": 3022.84, + "end": 3023.92, + "probability": 0.5108 + }, + { + "start": 3024.04, + "end": 3025.26, + "probability": 0.7638 + }, + { + "start": 3025.36, + "end": 3028.36, + "probability": 0.9849 + }, + { + "start": 3029.3, + "end": 3030.02, + "probability": 0.9537 + }, + { + "start": 3030.14, + "end": 3034.4, + "probability": 0.9716 + }, + { + "start": 3034.59, + "end": 3038.18, + "probability": 0.962 + }, + { + "start": 3038.64, + "end": 3042.34, + "probability": 0.9486 + }, + { + "start": 3042.42, + "end": 3044.22, + "probability": 0.8713 + }, + { + "start": 3044.6, + "end": 3045.66, + "probability": 0.6412 + }, + { + "start": 3046.08, + "end": 3047.12, + "probability": 0.8385 + }, + { + "start": 3047.66, + "end": 3049.3, + "probability": 0.9594 + }, + { + "start": 3049.48, + "end": 3052.74, + "probability": 0.9482 + }, + { + "start": 3052.74, + "end": 3055.94, + "probability": 0.9976 + }, + { + "start": 3057.8, + "end": 3058.54, + "probability": 0.7627 + }, + { + "start": 3060.34, + "end": 3061.0, + "probability": 0.7013 + }, + { + "start": 3061.26, + "end": 3061.54, + "probability": 0.7814 + }, + { + "start": 3063.32, + "end": 3067.2, + "probability": 0.9799 + }, + { + "start": 3069.02, + "end": 3070.5, + "probability": 0.6309 + }, + { + "start": 3070.64, + "end": 3071.46, + "probability": 0.9283 + }, + { + "start": 3071.7, + "end": 3073.66, + "probability": 0.9 + }, + { + "start": 3074.02, + "end": 3075.66, + "probability": 0.7754 + }, + { + "start": 3076.0, + "end": 3077.74, + "probability": 0.5774 + }, + { + "start": 3078.62, + "end": 3081.08, + "probability": 0.8703 + }, + { + "start": 3081.26, + "end": 3083.83, + "probability": 0.9978 + }, + { + "start": 3084.52, + "end": 3086.12, + "probability": 0.948 + }, + { + "start": 3086.58, + "end": 3086.84, + "probability": 0.6567 + }, + { + "start": 3087.88, + "end": 3088.58, + "probability": 0.5401 + }, + { + "start": 3089.74, + "end": 3093.58, + "probability": 0.7406 + }, + { + "start": 3097.3, + "end": 3098.72, + "probability": 0.6021 + }, + { + "start": 3098.82, + "end": 3099.76, + "probability": 0.741 + }, + { + "start": 3099.86, + "end": 3101.92, + "probability": 0.9413 + }, + { + "start": 3101.92, + "end": 3106.96, + "probability": 0.7623 + }, + { + "start": 3108.74, + "end": 3112.02, + "probability": 0.9202 + }, + { + "start": 3112.02, + "end": 3115.96, + "probability": 0.9531 + }, + { + "start": 3116.76, + "end": 3119.04, + "probability": 0.9187 + }, + { + "start": 3119.04, + "end": 3122.5, + "probability": 0.9952 + }, + { + "start": 3124.12, + "end": 3124.12, + "probability": 0.0041 + }, + { + "start": 3124.12, + "end": 3126.8, + "probability": 0.8748 + }, + { + "start": 3127.54, + "end": 3128.18, + "probability": 0.9224 + }, + { + "start": 3129.02, + "end": 3129.02, + "probability": 0.0731 + }, + { + "start": 3129.22, + "end": 3133.68, + "probability": 0.6842 + }, + { + "start": 3134.2, + "end": 3135.01, + "probability": 0.6705 + }, + { + "start": 3135.9, + "end": 3139.22, + "probability": 0.5507 + }, + { + "start": 3139.22, + "end": 3142.68, + "probability": 0.9971 + }, + { + "start": 3143.46, + "end": 3145.22, + "probability": 0.8431 + }, + { + "start": 3145.88, + "end": 3149.12, + "probability": 0.9324 + }, + { + "start": 3149.32, + "end": 3151.72, + "probability": 0.9383 + }, + { + "start": 3152.46, + "end": 3156.16, + "probability": 0.9911 + }, + { + "start": 3157.32, + "end": 3160.84, + "probability": 0.9507 + }, + { + "start": 3160.84, + "end": 3163.78, + "probability": 0.965 + }, + { + "start": 3164.68, + "end": 3168.98, + "probability": 0.7203 + }, + { + "start": 3169.26, + "end": 3170.46, + "probability": 0.0479 + }, + { + "start": 3170.46, + "end": 3170.96, + "probability": 0.6918 + }, + { + "start": 3171.04, + "end": 3171.68, + "probability": 0.4365 + }, + { + "start": 3172.64, + "end": 3178.04, + "probability": 0.6591 + }, + { + "start": 3178.04, + "end": 3180.03, + "probability": 0.6391 + }, + { + "start": 3182.38, + "end": 3183.3, + "probability": 0.0022 + }, + { + "start": 3183.38, + "end": 3186.56, + "probability": 0.9551 + }, + { + "start": 3187.48, + "end": 3189.0, + "probability": 0.5767 + }, + { + "start": 3189.3, + "end": 3189.7, + "probability": 0.8414 + }, + { + "start": 3190.88, + "end": 3193.28, + "probability": 0.5262 + }, + { + "start": 3193.3, + "end": 3194.12, + "probability": 0.6844 + }, + { + "start": 3194.18, + "end": 3194.7, + "probability": 0.7254 + }, + { + "start": 3197.47, + "end": 3201.6, + "probability": 0.7811 + }, + { + "start": 3201.6, + "end": 3204.06, + "probability": 0.9813 + }, + { + "start": 3205.14, + "end": 3206.0, + "probability": 0.8403 + }, + { + "start": 3206.26, + "end": 3208.52, + "probability": 0.9934 + }, + { + "start": 3208.96, + "end": 3211.04, + "probability": 0.9581 + }, + { + "start": 3211.42, + "end": 3211.68, + "probability": 0.8781 + }, + { + "start": 3211.74, + "end": 3217.46, + "probability": 0.9726 + }, + { + "start": 3218.52, + "end": 3222.54, + "probability": 0.8633 + }, + { + "start": 3223.06, + "end": 3228.4, + "probability": 0.9912 + }, + { + "start": 3228.96, + "end": 3229.28, + "probability": 0.5345 + }, + { + "start": 3230.16, + "end": 3234.06, + "probability": 0.9813 + }, + { + "start": 3235.3, + "end": 3236.82, + "probability": 0.5302 + }, + { + "start": 3238.42, + "end": 3238.9, + "probability": 0.8177 + }, + { + "start": 3239.66, + "end": 3244.02, + "probability": 0.7637 + }, + { + "start": 3245.16, + "end": 3247.58, + "probability": 0.9668 + }, + { + "start": 3248.54, + "end": 3250.32, + "probability": 0.944 + }, + { + "start": 3251.3, + "end": 3252.36, + "probability": 0.7681 + }, + { + "start": 3252.96, + "end": 3255.78, + "probability": 0.9952 + }, + { + "start": 3256.5, + "end": 3257.2, + "probability": 0.8402 + }, + { + "start": 3257.86, + "end": 3260.46, + "probability": 0.9867 + }, + { + "start": 3261.02, + "end": 3263.6, + "probability": 0.9588 + }, + { + "start": 3264.38, + "end": 3266.8, + "probability": 0.8996 + }, + { + "start": 3266.9, + "end": 3269.36, + "probability": 0.8937 + }, + { + "start": 3269.88, + "end": 3274.08, + "probability": 0.991 + }, + { + "start": 3274.68, + "end": 3275.7, + "probability": 0.974 + }, + { + "start": 3275.7, + "end": 3276.76, + "probability": 0.7689 + }, + { + "start": 3277.3, + "end": 3279.2, + "probability": 0.9018 + }, + { + "start": 3279.44, + "end": 3281.74, + "probability": 0.9253 + }, + { + "start": 3282.82, + "end": 3284.76, + "probability": 0.7963 + }, + { + "start": 3286.12, + "end": 3287.44, + "probability": 0.7381 + }, + { + "start": 3288.74, + "end": 3290.02, + "probability": 0.9775 + }, + { + "start": 3290.6, + "end": 3291.28, + "probability": 0.96 + }, + { + "start": 3291.64, + "end": 3292.56, + "probability": 0.8765 + }, + { + "start": 3292.68, + "end": 3294.42, + "probability": 0.9489 + }, + { + "start": 3295.16, + "end": 3296.84, + "probability": 0.9674 + }, + { + "start": 3297.9, + "end": 3298.36, + "probability": 0.9565 + }, + { + "start": 3299.02, + "end": 3302.42, + "probability": 0.9831 + }, + { + "start": 3302.42, + "end": 3306.2, + "probability": 0.875 + }, + { + "start": 3306.74, + "end": 3307.54, + "probability": 0.5275 + }, + { + "start": 3308.22, + "end": 3308.6, + "probability": 0.4197 + }, + { + "start": 3309.06, + "end": 3312.96, + "probability": 0.9622 + }, + { + "start": 3313.14, + "end": 3317.36, + "probability": 0.7465 + }, + { + "start": 3317.48, + "end": 3320.48, + "probability": 0.9923 + }, + { + "start": 3321.22, + "end": 3322.26, + "probability": 0.6316 + }, + { + "start": 3322.78, + "end": 3323.56, + "probability": 0.6537 + }, + { + "start": 3324.7, + "end": 3328.8, + "probability": 0.7669 + }, + { + "start": 3328.92, + "end": 3330.14, + "probability": 0.7238 + }, + { + "start": 3330.74, + "end": 3336.44, + "probability": 0.843 + }, + { + "start": 3337.28, + "end": 3337.66, + "probability": 0.7437 + }, + { + "start": 3337.84, + "end": 3341.14, + "probability": 0.9845 + }, + { + "start": 3341.9, + "end": 3343.32, + "probability": 0.7901 + }, + { + "start": 3343.38, + "end": 3345.36, + "probability": 0.917 + }, + { + "start": 3345.86, + "end": 3347.54, + "probability": 0.7857 + }, + { + "start": 3347.78, + "end": 3349.2, + "probability": 0.2963 + }, + { + "start": 3351.08, + "end": 3353.24, + "probability": 0.22 + }, + { + "start": 3354.08, + "end": 3355.78, + "probability": 0.8185 + }, + { + "start": 3355.92, + "end": 3361.7, + "probability": 0.9371 + }, + { + "start": 3361.72, + "end": 3364.7, + "probability": 0.9487 + }, + { + "start": 3366.81, + "end": 3367.61, + "probability": 0.3368 + }, + { + "start": 3371.77, + "end": 3377.06, + "probability": 0.9772 + }, + { + "start": 3377.66, + "end": 3382.1, + "probability": 0.9548 + }, + { + "start": 3382.9, + "end": 3384.94, + "probability": 0.9951 + }, + { + "start": 3385.62, + "end": 3387.5, + "probability": 0.9162 + }, + { + "start": 3389.12, + "end": 3391.14, + "probability": 0.9584 + }, + { + "start": 3391.34, + "end": 3391.44, + "probability": 0.4353 + }, + { + "start": 3391.64, + "end": 3394.1, + "probability": 0.9762 + }, + { + "start": 3394.6, + "end": 3396.28, + "probability": 0.9888 + }, + { + "start": 3397.6, + "end": 3399.78, + "probability": 0.9368 + }, + { + "start": 3402.7, + "end": 3405.2, + "probability": 0.8984 + }, + { + "start": 3405.74, + "end": 3407.04, + "probability": 0.7171 + }, + { + "start": 3407.08, + "end": 3411.58, + "probability": 0.9921 + }, + { + "start": 3412.12, + "end": 3412.34, + "probability": 0.8626 + }, + { + "start": 3412.74, + "end": 3413.98, + "probability": 0.9937 + }, + { + "start": 3414.12, + "end": 3414.98, + "probability": 0.9917 + }, + { + "start": 3415.56, + "end": 3416.88, + "probability": 0.9967 + }, + { + "start": 3417.98, + "end": 3421.86, + "probability": 0.7543 + }, + { + "start": 3422.8, + "end": 3427.12, + "probability": 0.9733 + }, + { + "start": 3427.7, + "end": 3428.68, + "probability": 0.8637 + }, + { + "start": 3429.36, + "end": 3432.74, + "probability": 0.9942 + }, + { + "start": 3433.92, + "end": 3435.14, + "probability": 0.9393 + }, + { + "start": 3436.44, + "end": 3437.18, + "probability": 0.6022 + }, + { + "start": 3438.68, + "end": 3442.62, + "probability": 0.6987 + }, + { + "start": 3443.38, + "end": 3445.3, + "probability": 0.6091 + }, + { + "start": 3445.3, + "end": 3451.12, + "probability": 0.9897 + }, + { + "start": 3451.32, + "end": 3454.06, + "probability": 0.7848 + }, + { + "start": 3454.6, + "end": 3456.64, + "probability": 0.9913 + }, + { + "start": 3456.92, + "end": 3460.0, + "probability": 0.9262 + }, + { + "start": 3460.62, + "end": 3460.86, + "probability": 0.5241 + }, + { + "start": 3461.1, + "end": 3461.32, + "probability": 0.8838 + }, + { + "start": 3461.96, + "end": 3462.4, + "probability": 0.9517 + }, + { + "start": 3462.48, + "end": 3464.62, + "probability": 0.9432 + }, + { + "start": 3465.0, + "end": 3467.17, + "probability": 0.7737 + }, + { + "start": 3468.16, + "end": 3469.42, + "probability": 0.9567 + }, + { + "start": 3469.56, + "end": 3471.9, + "probability": 0.9553 + }, + { + "start": 3473.06, + "end": 3473.58, + "probability": 0.8095 + }, + { + "start": 3473.66, + "end": 3476.18, + "probability": 0.6687 + }, + { + "start": 3476.9, + "end": 3478.02, + "probability": 0.9948 + }, + { + "start": 3478.56, + "end": 3480.32, + "probability": 0.9902 + }, + { + "start": 3481.48, + "end": 3482.58, + "probability": 0.8551 + }, + { + "start": 3482.96, + "end": 3483.82, + "probability": 0.8693 + }, + { + "start": 3484.3, + "end": 3486.76, + "probability": 0.9634 + }, + { + "start": 3487.78, + "end": 3488.4, + "probability": 0.4389 + }, + { + "start": 3488.66, + "end": 3490.64, + "probability": 0.9957 + }, + { + "start": 3490.9, + "end": 3491.84, + "probability": 0.8126 + }, + { + "start": 3492.32, + "end": 3495.12, + "probability": 0.9875 + }, + { + "start": 3495.5, + "end": 3498.7, + "probability": 0.974 + }, + { + "start": 3499.0, + "end": 3500.1, + "probability": 0.8949 + }, + { + "start": 3500.78, + "end": 3504.24, + "probability": 0.9616 + }, + { + "start": 3504.88, + "end": 3505.36, + "probability": 0.9932 + }, + { + "start": 3506.4, + "end": 3507.24, + "probability": 0.9425 + }, + { + "start": 3507.62, + "end": 3514.64, + "probability": 0.9868 + }, + { + "start": 3515.02, + "end": 3518.08, + "probability": 0.998 + }, + { + "start": 3519.06, + "end": 3520.86, + "probability": 0.8925 + }, + { + "start": 3521.74, + "end": 3524.6, + "probability": 0.854 + }, + { + "start": 3524.98, + "end": 3527.42, + "probability": 0.704 + }, + { + "start": 3527.7, + "end": 3529.56, + "probability": 0.6087 + }, + { + "start": 3531.48, + "end": 3535.5, + "probability": 0.9551 + }, + { + "start": 3536.06, + "end": 3538.38, + "probability": 0.8532 + }, + { + "start": 3539.44, + "end": 3540.62, + "probability": 0.6913 + }, + { + "start": 3541.64, + "end": 3546.0, + "probability": 0.8815 + }, + { + "start": 3546.7, + "end": 3548.44, + "probability": 0.6111 + }, + { + "start": 3549.0, + "end": 3551.94, + "probability": 0.85 + }, + { + "start": 3552.34, + "end": 3552.94, + "probability": 0.3976 + }, + { + "start": 3553.2, + "end": 3556.16, + "probability": 0.5369 + }, + { + "start": 3556.72, + "end": 3559.54, + "probability": 0.8557 + }, + { + "start": 3559.54, + "end": 3564.14, + "probability": 0.9836 + }, + { + "start": 3564.92, + "end": 3570.8, + "probability": 0.9525 + }, + { + "start": 3571.28, + "end": 3573.44, + "probability": 0.9231 + }, + { + "start": 3575.02, + "end": 3575.9, + "probability": 0.6795 + }, + { + "start": 3576.72, + "end": 3578.64, + "probability": 0.6474 + }, + { + "start": 3580.06, + "end": 3582.06, + "probability": 0.4604 + }, + { + "start": 3582.14, + "end": 3584.1, + "probability": 0.6484 + }, + { + "start": 3584.12, + "end": 3587.32, + "probability": 0.9688 + }, + { + "start": 3587.86, + "end": 3588.86, + "probability": 0.7956 + }, + { + "start": 3589.6, + "end": 3590.92, + "probability": 0.8973 + }, + { + "start": 3591.64, + "end": 3596.76, + "probability": 0.4556 + }, + { + "start": 3596.76, + "end": 3598.34, + "probability": 0.9475 + }, + { + "start": 3598.8, + "end": 3601.36, + "probability": 0.773 + }, + { + "start": 3601.92, + "end": 3602.16, + "probability": 0.582 + }, + { + "start": 3602.24, + "end": 3604.08, + "probability": 0.8328 + }, + { + "start": 3604.38, + "end": 3606.54, + "probability": 0.6382 + }, + { + "start": 3607.16, + "end": 3610.5, + "probability": 0.6212 + }, + { + "start": 3610.9, + "end": 3614.46, + "probability": 0.4614 + }, + { + "start": 3615.3, + "end": 3616.24, + "probability": 0.8578 + }, + { + "start": 3616.96, + "end": 3617.3, + "probability": 0.7193 + }, + { + "start": 3618.36, + "end": 3622.42, + "probability": 0.4677 + }, + { + "start": 3622.6, + "end": 3623.6, + "probability": 0.6222 + }, + { + "start": 3623.76, + "end": 3627.0, + "probability": 0.9855 + }, + { + "start": 3627.92, + "end": 3629.32, + "probability": 0.7403 + }, + { + "start": 3629.4, + "end": 3629.94, + "probability": 0.7571 + }, + { + "start": 3630.16, + "end": 3633.16, + "probability": 0.795 + }, + { + "start": 3634.08, + "end": 3636.02, + "probability": 0.5138 + }, + { + "start": 3637.55, + "end": 3642.46, + "probability": 0.9627 + }, + { + "start": 3643.66, + "end": 3644.26, + "probability": 0.6838 + }, + { + "start": 3646.56, + "end": 3648.9, + "probability": 0.9229 + }, + { + "start": 3649.0, + "end": 3651.09, + "probability": 0.5874 + }, + { + "start": 3652.32, + "end": 3659.84, + "probability": 0.4622 + }, + { + "start": 3661.14, + "end": 3662.26, + "probability": 0.6496 + }, + { + "start": 3663.28, + "end": 3667.08, + "probability": 0.9099 + }, + { + "start": 3667.16, + "end": 3669.46, + "probability": 0.9119 + }, + { + "start": 3670.36, + "end": 3676.64, + "probability": 0.7183 + }, + { + "start": 3676.68, + "end": 3679.76, + "probability": 0.8868 + }, + { + "start": 3679.78, + "end": 3679.98, + "probability": 0.9054 + }, + { + "start": 3680.44, + "end": 3683.26, + "probability": 0.9847 + }, + { + "start": 3684.22, + "end": 3686.98, + "probability": 0.6972 + }, + { + "start": 3692.14, + "end": 3695.72, + "probability": 0.8945 + }, + { + "start": 3697.0, + "end": 3705.94, + "probability": 0.615 + }, + { + "start": 3706.78, + "end": 3711.6, + "probability": 0.4602 + }, + { + "start": 3713.82, + "end": 3719.74, + "probability": 0.3795 + }, + { + "start": 3720.34, + "end": 3724.04, + "probability": 0.6267 + }, + { + "start": 3724.04, + "end": 3725.82, + "probability": 0.7467 + }, + { + "start": 3725.96, + "end": 3728.12, + "probability": 0.9121 + }, + { + "start": 3729.1, + "end": 3730.68, + "probability": 0.866 + }, + { + "start": 3731.54, + "end": 3736.2, + "probability": 0.7869 + }, + { + "start": 3736.8, + "end": 3738.62, + "probability": 0.9343 + }, + { + "start": 3739.28, + "end": 3741.86, + "probability": 0.9661 + }, + { + "start": 3742.42, + "end": 3746.88, + "probability": 0.9244 + }, + { + "start": 3747.38, + "end": 3749.9, + "probability": 0.9979 + }, + { + "start": 3750.4, + "end": 3752.68, + "probability": 0.9871 + }, + { + "start": 3752.82, + "end": 3755.08, + "probability": 0.8528 + }, + { + "start": 3755.66, + "end": 3758.0, + "probability": 0.887 + }, + { + "start": 3758.7, + "end": 3760.86, + "probability": 0.5177 + }, + { + "start": 3761.44, + "end": 3763.5, + "probability": 0.9642 + }, + { + "start": 3764.08, + "end": 3768.76, + "probability": 0.9823 + }, + { + "start": 3771.04, + "end": 3772.46, + "probability": 0.6446 + }, + { + "start": 3773.54, + "end": 3774.98, + "probability": 0.9727 + }, + { + "start": 3785.48, + "end": 3788.06, + "probability": 0.7608 + }, + { + "start": 3790.1, + "end": 3791.28, + "probability": 0.918 + }, + { + "start": 3791.7, + "end": 3796.22, + "probability": 0.9952 + }, + { + "start": 3797.08, + "end": 3798.9, + "probability": 0.9802 + }, + { + "start": 3800.1, + "end": 3804.28, + "probability": 0.9966 + }, + { + "start": 3804.94, + "end": 3810.28, + "probability": 0.9579 + }, + { + "start": 3811.98, + "end": 3817.44, + "probability": 0.8407 + }, + { + "start": 3817.44, + "end": 3821.28, + "probability": 0.9939 + }, + { + "start": 3822.18, + "end": 3823.26, + "probability": 0.6376 + }, + { + "start": 3823.94, + "end": 3825.78, + "probability": 0.979 + }, + { + "start": 3825.78, + "end": 3827.86, + "probability": 0.9193 + }, + { + "start": 3828.58, + "end": 3833.14, + "probability": 0.9472 + }, + { + "start": 3834.32, + "end": 3838.3, + "probability": 0.945 + }, + { + "start": 3838.3, + "end": 3842.58, + "probability": 0.6567 + }, + { + "start": 3843.76, + "end": 3844.14, + "probability": 0.6888 + }, + { + "start": 3844.52, + "end": 3845.02, + "probability": 0.7086 + }, + { + "start": 3845.5, + "end": 3847.46, + "probability": 0.757 + }, + { + "start": 3848.98, + "end": 3848.98, + "probability": 0.0008 + }, + { + "start": 3850.02, + "end": 3851.52, + "probability": 0.7134 + }, + { + "start": 3851.68, + "end": 3852.88, + "probability": 0.8 + }, + { + "start": 3853.56, + "end": 3855.56, + "probability": 0.9809 + }, + { + "start": 3855.62, + "end": 3857.74, + "probability": 0.9899 + }, + { + "start": 3858.46, + "end": 3862.78, + "probability": 0.9351 + }, + { + "start": 3863.54, + "end": 3864.0, + "probability": 0.1832 + }, + { + "start": 3864.4, + "end": 3866.66, + "probability": 0.987 + }, + { + "start": 3867.14, + "end": 3871.54, + "probability": 0.7242 + }, + { + "start": 3871.74, + "end": 3877.14, + "probability": 0.8551 + }, + { + "start": 3877.66, + "end": 3878.2, + "probability": 0.4627 + }, + { + "start": 3878.22, + "end": 3878.38, + "probability": 0.7711 + }, + { + "start": 3878.46, + "end": 3882.06, + "probability": 0.7431 + }, + { + "start": 3882.18, + "end": 3882.99, + "probability": 0.9495 + }, + { + "start": 3883.88, + "end": 3887.94, + "probability": 0.9759 + }, + { + "start": 3888.6, + "end": 3892.72, + "probability": 0.934 + }, + { + "start": 3893.12, + "end": 3894.66, + "probability": 0.8223 + }, + { + "start": 3895.96, + "end": 3896.06, + "probability": 0.0764 + }, + { + "start": 3896.5, + "end": 3898.33, + "probability": 0.6914 + }, + { + "start": 3898.98, + "end": 3901.74, + "probability": 0.9857 + }, + { + "start": 3902.34, + "end": 3907.32, + "probability": 0.9814 + }, + { + "start": 3908.28, + "end": 3908.32, + "probability": 0.3531 + }, + { + "start": 3908.52, + "end": 3909.14, + "probability": 0.5045 + }, + { + "start": 3909.66, + "end": 3912.24, + "probability": 0.994 + }, + { + "start": 3912.24, + "end": 3915.52, + "probability": 0.9958 + }, + { + "start": 3916.56, + "end": 3918.52, + "probability": 0.7438 + }, + { + "start": 3919.1, + "end": 3922.6, + "probability": 0.9287 + }, + { + "start": 3922.94, + "end": 3923.72, + "probability": 0.8031 + }, + { + "start": 3924.44, + "end": 3926.78, + "probability": 0.9851 + }, + { + "start": 3927.4, + "end": 3933.46, + "probability": 0.9215 + }, + { + "start": 3934.26, + "end": 3934.46, + "probability": 0.016 + }, + { + "start": 3934.82, + "end": 3936.24, + "probability": 0.7906 + }, + { + "start": 3936.84, + "end": 3938.2, + "probability": 0.9362 + }, + { + "start": 3938.72, + "end": 3942.06, + "probability": 0.9669 + }, + { + "start": 3942.94, + "end": 3945.38, + "probability": 0.8178 + }, + { + "start": 3946.24, + "end": 3949.98, + "probability": 0.9819 + }, + { + "start": 3950.16, + "end": 3951.74, + "probability": 0.9922 + }, + { + "start": 3952.48, + "end": 3956.3, + "probability": 0.9345 + }, + { + "start": 3956.3, + "end": 3960.78, + "probability": 0.9954 + }, + { + "start": 3960.98, + "end": 3964.14, + "probability": 0.868 + }, + { + "start": 3964.62, + "end": 3966.02, + "probability": 0.9132 + }, + { + "start": 3966.58, + "end": 3972.26, + "probability": 0.8175 + }, + { + "start": 3973.66, + "end": 3975.72, + "probability": 0.7859 + }, + { + "start": 3977.14, + "end": 3978.34, + "probability": 0.7238 + }, + { + "start": 3978.62, + "end": 3981.74, + "probability": 0.957 + }, + { + "start": 3982.04, + "end": 3983.84, + "probability": 0.9561 + }, + { + "start": 3984.18, + "end": 3985.06, + "probability": 0.8614 + }, + { + "start": 3985.4, + "end": 3990.49, + "probability": 0.9501 + }, + { + "start": 3991.48, + "end": 3993.72, + "probability": 0.9665 + }, + { + "start": 3993.84, + "end": 3997.04, + "probability": 0.9072 + }, + { + "start": 3998.18, + "end": 4002.3, + "probability": 0.9575 + }, + { + "start": 4002.3, + "end": 4005.74, + "probability": 0.8309 + }, + { + "start": 4006.28, + "end": 4011.82, + "probability": 0.967 + }, + { + "start": 4012.26, + "end": 4016.44, + "probability": 0.9598 + }, + { + "start": 4017.06, + "end": 4019.26, + "probability": 0.888 + }, + { + "start": 4020.14, + "end": 4023.44, + "probability": 0.6585 + }, + { + "start": 4024.04, + "end": 4026.72, + "probability": 0.9753 + }, + { + "start": 4027.12, + "end": 4028.5, + "probability": 0.8962 + }, + { + "start": 4028.58, + "end": 4031.63, + "probability": 0.7861 + }, + { + "start": 4032.98, + "end": 4034.4, + "probability": 0.4534 + }, + { + "start": 4035.2, + "end": 4036.11, + "probability": 0.9861 + }, + { + "start": 4036.44, + "end": 4040.88, + "probability": 0.8435 + }, + { + "start": 4042.16, + "end": 4042.54, + "probability": 0.7547 + }, + { + "start": 4042.64, + "end": 4045.64, + "probability": 0.9698 + }, + { + "start": 4046.3, + "end": 4048.22, + "probability": 0.8003 + }, + { + "start": 4048.8, + "end": 4053.46, + "probability": 0.9784 + }, + { + "start": 4054.24, + "end": 4059.08, + "probability": 0.9901 + }, + { + "start": 4059.08, + "end": 4062.04, + "probability": 0.9745 + }, + { + "start": 4062.66, + "end": 4065.62, + "probability": 0.965 + }, + { + "start": 4065.62, + "end": 4069.4, + "probability": 0.9994 + }, + { + "start": 4069.96, + "end": 4072.64, + "probability": 0.9938 + }, + { + "start": 4073.64, + "end": 4078.94, + "probability": 0.9925 + }, + { + "start": 4080.36, + "end": 4081.04, + "probability": 0.8831 + }, + { + "start": 4081.14, + "end": 4081.74, + "probability": 0.8192 + }, + { + "start": 4081.86, + "end": 4086.28, + "probability": 0.9741 + }, + { + "start": 4086.68, + "end": 4087.26, + "probability": 0.7303 + }, + { + "start": 4087.9, + "end": 4091.5, + "probability": 0.9542 + }, + { + "start": 4092.1, + "end": 4093.04, + "probability": 0.7169 + }, + { + "start": 4093.88, + "end": 4094.88, + "probability": 0.7495 + }, + { + "start": 4095.28, + "end": 4098.32, + "probability": 0.9623 + }, + { + "start": 4099.62, + "end": 4102.76, + "probability": 0.9371 + }, + { + "start": 4103.28, + "end": 4108.38, + "probability": 0.9929 + }, + { + "start": 4108.38, + "end": 4112.02, + "probability": 0.9984 + }, + { + "start": 4112.84, + "end": 4116.28, + "probability": 0.9907 + }, + { + "start": 4117.1, + "end": 4117.82, + "probability": 0.6942 + }, + { + "start": 4118.16, + "end": 4123.86, + "probability": 0.9272 + }, + { + "start": 4124.04, + "end": 4124.32, + "probability": 0.6014 + }, + { + "start": 4125.24, + "end": 4127.24, + "probability": 0.7416 + }, + { + "start": 4127.8, + "end": 4130.52, + "probability": 0.9793 + }, + { + "start": 4131.44, + "end": 4136.98, + "probability": 0.9959 + }, + { + "start": 4136.98, + "end": 4141.55, + "probability": 0.9988 + }, + { + "start": 4144.36, + "end": 4148.04, + "probability": 0.9744 + }, + { + "start": 4148.04, + "end": 4149.8, + "probability": 0.8055 + }, + { + "start": 4149.92, + "end": 4150.76, + "probability": 0.4997 + }, + { + "start": 4150.92, + "end": 4152.16, + "probability": 0.411 + }, + { + "start": 4152.16, + "end": 4156.72, + "probability": 0.942 + }, + { + "start": 4157.26, + "end": 4161.76, + "probability": 0.9263 + }, + { + "start": 4162.22, + "end": 4163.48, + "probability": 0.7943 + }, + { + "start": 4164.3, + "end": 4167.84, + "probability": 0.446 + }, + { + "start": 4168.34, + "end": 4171.98, + "probability": 0.9904 + }, + { + "start": 4171.98, + "end": 4178.56, + "probability": 0.9945 + }, + { + "start": 4179.22, + "end": 4180.48, + "probability": 0.9537 + }, + { + "start": 4181.1, + "end": 4185.32, + "probability": 0.8074 + }, + { + "start": 4185.54, + "end": 4188.54, + "probability": 0.9399 + }, + { + "start": 4188.6, + "end": 4190.3, + "probability": 0.9973 + }, + { + "start": 4190.3, + "end": 4193.08, + "probability": 0.9942 + }, + { + "start": 4193.84, + "end": 4194.56, + "probability": 0.8605 + }, + { + "start": 4195.08, + "end": 4197.66, + "probability": 0.999 + }, + { + "start": 4197.7, + "end": 4198.33, + "probability": 0.8938 + }, + { + "start": 4198.82, + "end": 4202.98, + "probability": 0.999 + }, + { + "start": 4204.02, + "end": 4204.36, + "probability": 0.7544 + }, + { + "start": 4204.46, + "end": 4207.4, + "probability": 0.993 + }, + { + "start": 4209.16, + "end": 4210.92, + "probability": 0.8383 + }, + { + "start": 4210.98, + "end": 4212.34, + "probability": 0.9407 + }, + { + "start": 4212.54, + "end": 4214.96, + "probability": 0.9901 + }, + { + "start": 4215.64, + "end": 4217.04, + "probability": 0.9855 + }, + { + "start": 4219.02, + "end": 4222.98, + "probability": 0.9912 + }, + { + "start": 4223.98, + "end": 4224.78, + "probability": 0.9161 + }, + { + "start": 4226.08, + "end": 4233.9, + "probability": 0.9638 + }, + { + "start": 4235.93, + "end": 4237.34, + "probability": 0.9966 + }, + { + "start": 4237.58, + "end": 4241.14, + "probability": 0.9895 + }, + { + "start": 4242.18, + "end": 4244.84, + "probability": 0.9447 + }, + { + "start": 4245.82, + "end": 4248.9, + "probability": 0.7213 + }, + { + "start": 4249.46, + "end": 4249.82, + "probability": 0.9761 + }, + { + "start": 4251.42, + "end": 4252.92, + "probability": 0.8025 + }, + { + "start": 4254.2, + "end": 4260.66, + "probability": 0.9749 + }, + { + "start": 4260.82, + "end": 4262.0, + "probability": 0.9554 + }, + { + "start": 4262.1, + "end": 4262.72, + "probability": 0.9855 + }, + { + "start": 4262.76, + "end": 4263.82, + "probability": 0.8682 + }, + { + "start": 4264.6, + "end": 4268.58, + "probability": 0.9004 + }, + { + "start": 4269.4, + "end": 4274.02, + "probability": 0.9106 + }, + { + "start": 4274.16, + "end": 4275.96, + "probability": 0.9011 + }, + { + "start": 4276.44, + "end": 4277.64, + "probability": 0.7713 + }, + { + "start": 4278.08, + "end": 4279.74, + "probability": 0.9041 + }, + { + "start": 4279.74, + "end": 4283.8, + "probability": 0.9726 + }, + { + "start": 4284.54, + "end": 4285.72, + "probability": 0.5039 + }, + { + "start": 4286.24, + "end": 4289.54, + "probability": 0.92 + }, + { + "start": 4289.76, + "end": 4290.2, + "probability": 0.8805 + }, + { + "start": 4290.74, + "end": 4292.88, + "probability": 0.964 + }, + { + "start": 4293.54, + "end": 4297.02, + "probability": 0.9476 + }, + { + "start": 4297.16, + "end": 4299.68, + "probability": 0.8362 + }, + { + "start": 4299.78, + "end": 4300.3, + "probability": 0.8929 + }, + { + "start": 4300.34, + "end": 4307.98, + "probability": 0.9609 + }, + { + "start": 4308.12, + "end": 4309.3, + "probability": 0.9032 + }, + { + "start": 4309.76, + "end": 4311.2, + "probability": 0.8296 + }, + { + "start": 4311.86, + "end": 4312.52, + "probability": 0.2964 + }, + { + "start": 4312.76, + "end": 4313.56, + "probability": 0.9681 + }, + { + "start": 4313.6, + "end": 4314.22, + "probability": 0.7736 + }, + { + "start": 4314.3, + "end": 4316.3, + "probability": 0.8087 + }, + { + "start": 4317.02, + "end": 4322.82, + "probability": 0.9208 + }, + { + "start": 4323.36, + "end": 4327.2, + "probability": 0.8066 + }, + { + "start": 4327.66, + "end": 4329.94, + "probability": 0.8233 + }, + { + "start": 4331.28, + "end": 4333.34, + "probability": 0.8512 + }, + { + "start": 4333.56, + "end": 4335.96, + "probability": 0.8979 + }, + { + "start": 4336.5, + "end": 4338.68, + "probability": 0.9954 + }, + { + "start": 4338.74, + "end": 4341.62, + "probability": 0.9709 + }, + { + "start": 4342.84, + "end": 4345.86, + "probability": 0.7437 + }, + { + "start": 4346.7, + "end": 4351.2, + "probability": 0.9722 + }, + { + "start": 4351.6, + "end": 4352.92, + "probability": 0.9285 + }, + { + "start": 4352.96, + "end": 4358.76, + "probability": 0.967 + }, + { + "start": 4359.6, + "end": 4363.46, + "probability": 0.8477 + }, + { + "start": 4364.84, + "end": 4368.4, + "probability": 0.9141 + }, + { + "start": 4369.04, + "end": 4370.64, + "probability": 0.8064 + }, + { + "start": 4370.86, + "end": 4372.1, + "probability": 0.9078 + }, + { + "start": 4373.62, + "end": 4375.5, + "probability": 0.616 + }, + { + "start": 4376.02, + "end": 4378.46, + "probability": 0.9841 + }, + { + "start": 4379.04, + "end": 4381.54, + "probability": 0.7996 + }, + { + "start": 4382.24, + "end": 4385.66, + "probability": 0.9771 + }, + { + "start": 4386.42, + "end": 4387.86, + "probability": 0.8857 + }, + { + "start": 4387.98, + "end": 4388.46, + "probability": 0.9318 + }, + { + "start": 4388.56, + "end": 4393.04, + "probability": 0.937 + }, + { + "start": 4393.12, + "end": 4393.42, + "probability": 0.8228 + }, + { + "start": 4394.22, + "end": 4395.34, + "probability": 0.8615 + }, + { + "start": 4396.04, + "end": 4398.88, + "probability": 0.8835 + }, + { + "start": 4398.92, + "end": 4402.9, + "probability": 0.8293 + }, + { + "start": 4403.56, + "end": 4405.52, + "probability": 0.7938 + }, + { + "start": 4406.55, + "end": 4410.0, + "probability": 0.9786 + }, + { + "start": 4410.08, + "end": 4412.42, + "probability": 0.9372 + }, + { + "start": 4412.96, + "end": 4414.32, + "probability": 0.7561 + }, + { + "start": 4415.0, + "end": 4416.98, + "probability": 0.9847 + }, + { + "start": 4417.08, + "end": 4419.86, + "probability": 0.795 + }, + { + "start": 4420.02, + "end": 4420.96, + "probability": 0.7914 + }, + { + "start": 4421.98, + "end": 4424.54, + "probability": 0.6215 + }, + { + "start": 4425.4, + "end": 4427.02, + "probability": 0.9878 + }, + { + "start": 4427.64, + "end": 4432.32, + "probability": 0.9072 + }, + { + "start": 4432.78, + "end": 4435.62, + "probability": 0.9891 + }, + { + "start": 4437.56, + "end": 4440.42, + "probability": 0.8961 + }, + { + "start": 4441.3, + "end": 4446.26, + "probability": 0.5736 + }, + { + "start": 4446.82, + "end": 4451.4, + "probability": 0.9456 + }, + { + "start": 4452.4, + "end": 4453.2, + "probability": 0.6344 + }, + { + "start": 4453.28, + "end": 4454.04, + "probability": 0.7708 + }, + { + "start": 4454.42, + "end": 4455.12, + "probability": 0.7213 + }, + { + "start": 4455.3, + "end": 4455.62, + "probability": 0.5784 + }, + { + "start": 4455.8, + "end": 4456.48, + "probability": 0.8086 + }, + { + "start": 4456.56, + "end": 4457.34, + "probability": 0.965 + }, + { + "start": 4457.46, + "end": 4458.64, + "probability": 0.8674 + }, + { + "start": 4459.06, + "end": 4461.5, + "probability": 0.9753 + }, + { + "start": 4462.1, + "end": 4463.82, + "probability": 0.9089 + }, + { + "start": 4464.44, + "end": 4466.74, + "probability": 0.9949 + }, + { + "start": 4467.52, + "end": 4474.74, + "probability": 0.8398 + }, + { + "start": 4475.64, + "end": 4478.16, + "probability": 0.7485 + }, + { + "start": 4478.92, + "end": 4481.9, + "probability": 0.8478 + }, + { + "start": 4482.32, + "end": 4488.1, + "probability": 0.9736 + }, + { + "start": 4489.04, + "end": 4490.2, + "probability": 0.991 + }, + { + "start": 4490.52, + "end": 4492.12, + "probability": 0.8328 + }, + { + "start": 4492.67, + "end": 4495.92, + "probability": 0.9919 + }, + { + "start": 4496.4, + "end": 4502.1, + "probability": 0.9789 + }, + { + "start": 4502.2, + "end": 4504.6, + "probability": 0.6603 + }, + { + "start": 4504.96, + "end": 4505.4, + "probability": 0.7519 + }, + { + "start": 4506.17, + "end": 4510.16, + "probability": 0.9911 + }, + { + "start": 4510.24, + "end": 4512.14, + "probability": 0.9383 + }, + { + "start": 4513.82, + "end": 4515.84, + "probability": 0.9837 + }, + { + "start": 4516.02, + "end": 4516.88, + "probability": 0.9953 + }, + { + "start": 4517.06, + "end": 4518.38, + "probability": 0.8505 + }, + { + "start": 4518.78, + "end": 4521.4, + "probability": 0.9431 + }, + { + "start": 4521.68, + "end": 4524.64, + "probability": 0.6379 + }, + { + "start": 4524.7, + "end": 4527.54, + "probability": 0.9131 + }, + { + "start": 4527.64, + "end": 4529.16, + "probability": 0.9787 + }, + { + "start": 4530.02, + "end": 4531.9, + "probability": 0.963 + }, + { + "start": 4531.94, + "end": 4534.12, + "probability": 0.8979 + }, + { + "start": 4534.48, + "end": 4535.28, + "probability": 0.9648 + }, + { + "start": 4535.42, + "end": 4537.64, + "probability": 0.9839 + }, + { + "start": 4538.82, + "end": 4540.1, + "probability": 0.5593 + }, + { + "start": 4540.56, + "end": 4543.15, + "probability": 0.9851 + }, + { + "start": 4544.0, + "end": 4545.46, + "probability": 0.8402 + }, + { + "start": 4545.56, + "end": 4546.36, + "probability": 0.8248 + }, + { + "start": 4546.8, + "end": 4550.94, + "probability": 0.9478 + }, + { + "start": 4551.12, + "end": 4552.02, + "probability": 0.9985 + }, + { + "start": 4552.64, + "end": 4555.96, + "probability": 0.833 + }, + { + "start": 4557.04, + "end": 4559.44, + "probability": 0.989 + }, + { + "start": 4559.44, + "end": 4563.54, + "probability": 0.9933 + }, + { + "start": 4563.88, + "end": 4567.39, + "probability": 0.9895 + }, + { + "start": 4568.64, + "end": 4569.76, + "probability": 0.8339 + }, + { + "start": 4570.54, + "end": 4572.18, + "probability": 0.5898 + }, + { + "start": 4572.32, + "end": 4575.62, + "probability": 0.9721 + }, + { + "start": 4575.7, + "end": 4577.06, + "probability": 0.6266 + }, + { + "start": 4577.36, + "end": 4581.34, + "probability": 0.875 + }, + { + "start": 4581.34, + "end": 4586.3, + "probability": 0.9682 + }, + { + "start": 4586.8, + "end": 4589.58, + "probability": 0.9657 + }, + { + "start": 4589.78, + "end": 4591.32, + "probability": 0.9635 + }, + { + "start": 4591.7, + "end": 4592.3, + "probability": 0.7979 + }, + { + "start": 4593.82, + "end": 4594.68, + "probability": 0.8757 + }, + { + "start": 4595.12, + "end": 4598.86, + "probability": 0.8936 + }, + { + "start": 4599.56, + "end": 4600.48, + "probability": 0.5518 + }, + { + "start": 4600.58, + "end": 4602.7, + "probability": 0.9977 + }, + { + "start": 4604.04, + "end": 4607.94, + "probability": 0.6249 + }, + { + "start": 4609.6, + "end": 4610.14, + "probability": 0.0246 + }, + { + "start": 4610.14, + "end": 4612.16, + "probability": 0.4584 + }, + { + "start": 4612.76, + "end": 4613.42, + "probability": 0.6025 + }, + { + "start": 4626.94, + "end": 4630.3, + "probability": 0.7886 + }, + { + "start": 4630.8, + "end": 4633.7, + "probability": 0.7351 + }, + { + "start": 4635.0, + "end": 4636.9, + "probability": 0.9971 + }, + { + "start": 4637.06, + "end": 4639.1, + "probability": 0.9523 + }, + { + "start": 4639.22, + "end": 4639.94, + "probability": 0.8995 + }, + { + "start": 4640.66, + "end": 4641.48, + "probability": 0.8312 + }, + { + "start": 4641.56, + "end": 4642.1, + "probability": 0.4676 + }, + { + "start": 4642.12, + "end": 4643.9, + "probability": 0.9588 + }, + { + "start": 4644.56, + "end": 4644.68, + "probability": 0.8333 + }, + { + "start": 4645.2, + "end": 4647.22, + "probability": 0.8551 + }, + { + "start": 4648.3, + "end": 4652.0, + "probability": 0.2654 + }, + { + "start": 4652.0, + "end": 4652.97, + "probability": 0.5016 + }, + { + "start": 4653.62, + "end": 4654.58, + "probability": 0.4878 + }, + { + "start": 4654.72, + "end": 4655.62, + "probability": 0.6587 + }, + { + "start": 4656.64, + "end": 4661.76, + "probability": 0.8109 + }, + { + "start": 4664.12, + "end": 4665.24, + "probability": 0.9396 + }, + { + "start": 4666.38, + "end": 4667.46, + "probability": 0.7399 + }, + { + "start": 4668.68, + "end": 4673.26, + "probability": 0.981 + }, + { + "start": 4674.84, + "end": 4679.16, + "probability": 0.9734 + }, + { + "start": 4681.28, + "end": 4682.74, + "probability": 0.9795 + }, + { + "start": 4683.26, + "end": 4685.76, + "probability": 0.9933 + }, + { + "start": 4687.96, + "end": 4691.6, + "probability": 0.9449 + }, + { + "start": 4691.64, + "end": 4696.52, + "probability": 0.9753 + }, + { + "start": 4698.48, + "end": 4702.22, + "probability": 0.8726 + }, + { + "start": 4704.16, + "end": 4705.84, + "probability": 0.9513 + }, + { + "start": 4707.58, + "end": 4708.72, + "probability": 0.9254 + }, + { + "start": 4710.48, + "end": 4712.32, + "probability": 0.9276 + }, + { + "start": 4713.2, + "end": 4716.62, + "probability": 0.9973 + }, + { + "start": 4717.24, + "end": 4719.52, + "probability": 0.9871 + }, + { + "start": 4719.54, + "end": 4720.76, + "probability": 0.4943 + }, + { + "start": 4720.9, + "end": 4722.72, + "probability": 0.5746 + }, + { + "start": 4722.82, + "end": 4723.66, + "probability": 0.9206 + }, + { + "start": 4724.04, + "end": 4725.82, + "probability": 0.8675 + }, + { + "start": 4727.9, + "end": 4730.88, + "probability": 0.9496 + }, + { + "start": 4731.7, + "end": 4733.5, + "probability": 0.9915 + }, + { + "start": 4734.02, + "end": 4735.0, + "probability": 0.8521 + }, + { + "start": 4735.3, + "end": 4736.54, + "probability": 0.9749 + }, + { + "start": 4736.94, + "end": 4738.36, + "probability": 0.9565 + }, + { + "start": 4739.64, + "end": 4743.44, + "probability": 0.9849 + }, + { + "start": 4745.96, + "end": 4747.18, + "probability": 0.9819 + }, + { + "start": 4748.34, + "end": 4750.68, + "probability": 0.9943 + }, + { + "start": 4751.58, + "end": 4755.38, + "probability": 0.9123 + }, + { + "start": 4759.28, + "end": 4760.9, + "probability": 0.9893 + }, + { + "start": 4762.32, + "end": 4763.72, + "probability": 0.7111 + }, + { + "start": 4765.84, + "end": 4766.82, + "probability": 0.9856 + }, + { + "start": 4767.38, + "end": 4769.3, + "probability": 0.9872 + }, + { + "start": 4770.66, + "end": 4772.16, + "probability": 0.9966 + }, + { + "start": 4772.56, + "end": 4775.0, + "probability": 0.9945 + }, + { + "start": 4777.92, + "end": 4779.7, + "probability": 0.9561 + }, + { + "start": 4779.82, + "end": 4782.62, + "probability": 0.6695 + }, + { + "start": 4783.68, + "end": 4783.84, + "probability": 0.0436 + }, + { + "start": 4783.86, + "end": 4784.97, + "probability": 0.3735 + }, + { + "start": 4786.4, + "end": 4789.98, + "probability": 0.879 + }, + { + "start": 4790.58, + "end": 4795.58, + "probability": 0.9782 + }, + { + "start": 4797.44, + "end": 4801.9, + "probability": 0.9563 + }, + { + "start": 4802.1, + "end": 4804.38, + "probability": 0.988 + }, + { + "start": 4806.6, + "end": 4808.06, + "probability": 0.9988 + }, + { + "start": 4808.62, + "end": 4810.5, + "probability": 0.9902 + }, + { + "start": 4812.02, + "end": 4814.62, + "probability": 0.9646 + }, + { + "start": 4815.18, + "end": 4816.75, + "probability": 0.9927 + }, + { + "start": 4818.88, + "end": 4821.14, + "probability": 0.9728 + }, + { + "start": 4823.0, + "end": 4823.48, + "probability": 0.5352 + }, + { + "start": 4824.5, + "end": 4827.94, + "probability": 0.9889 + }, + { + "start": 4828.52, + "end": 4830.5, + "probability": 0.9285 + }, + { + "start": 4831.66, + "end": 4835.2, + "probability": 0.9521 + }, + { + "start": 4837.16, + "end": 4838.84, + "probability": 0.9994 + }, + { + "start": 4840.06, + "end": 4842.16, + "probability": 0.5286 + }, + { + "start": 4842.88, + "end": 4843.34, + "probability": 0.2844 + }, + { + "start": 4843.94, + "end": 4847.02, + "probability": 0.9818 + }, + { + "start": 4848.24, + "end": 4851.1, + "probability": 0.9984 + }, + { + "start": 4851.62, + "end": 4856.48, + "probability": 0.9915 + }, + { + "start": 4858.5, + "end": 4859.92, + "probability": 0.8091 + }, + { + "start": 4861.44, + "end": 4862.38, + "probability": 0.667 + }, + { + "start": 4863.3, + "end": 4866.9, + "probability": 0.9881 + }, + { + "start": 4867.38, + "end": 4868.54, + "probability": 0.8389 + }, + { + "start": 4869.84, + "end": 4872.24, + "probability": 0.9844 + }, + { + "start": 4872.72, + "end": 4875.76, + "probability": 0.9882 + }, + { + "start": 4875.86, + "end": 4876.12, + "probability": 0.7935 + }, + { + "start": 4877.1, + "end": 4879.31, + "probability": 0.9136 + }, + { + "start": 4879.36, + "end": 4879.74, + "probability": 0.5608 + }, + { + "start": 4880.14, + "end": 4881.72, + "probability": 0.9355 + }, + { + "start": 4881.96, + "end": 4882.84, + "probability": 0.7854 + }, + { + "start": 4897.76, + "end": 4898.92, + "probability": 0.5184 + }, + { + "start": 4898.92, + "end": 4899.84, + "probability": 0.6963 + }, + { + "start": 4900.58, + "end": 4902.76, + "probability": 0.8365 + }, + { + "start": 4903.54, + "end": 4907.5, + "probability": 0.6856 + }, + { + "start": 4908.2, + "end": 4908.52, + "probability": 0.0703 + }, + { + "start": 4908.52, + "end": 4909.64, + "probability": 0.8275 + }, + { + "start": 4909.74, + "end": 4911.5, + "probability": 0.8726 + }, + { + "start": 4912.36, + "end": 4912.8, + "probability": 0.7611 + }, + { + "start": 4914.12, + "end": 4916.99, + "probability": 0.7147 + }, + { + "start": 4917.52, + "end": 4920.1, + "probability": 0.9332 + }, + { + "start": 4920.74, + "end": 4921.14, + "probability": 0.7401 + }, + { + "start": 4921.24, + "end": 4925.68, + "probability": 0.712 + }, + { + "start": 4926.56, + "end": 4928.5, + "probability": 0.9567 + }, + { + "start": 4928.5, + "end": 4930.8, + "probability": 0.9175 + }, + { + "start": 4931.28, + "end": 4933.3, + "probability": 0.9681 + }, + { + "start": 4934.38, + "end": 4935.7, + "probability": 0.9385 + }, + { + "start": 4936.42, + "end": 4936.84, + "probability": 0.8618 + }, + { + "start": 4937.22, + "end": 4940.26, + "probability": 0.9585 + }, + { + "start": 4941.02, + "end": 4942.3, + "probability": 0.9751 + }, + { + "start": 4943.32, + "end": 4945.0, + "probability": 0.9753 + }, + { + "start": 4946.46, + "end": 4947.9, + "probability": 0.6854 + }, + { + "start": 4948.3, + "end": 4949.88, + "probability": 0.9254 + }, + { + "start": 4950.62, + "end": 4953.18, + "probability": 0.9634 + }, + { + "start": 4953.9, + "end": 4956.5, + "probability": 0.9674 + }, + { + "start": 4956.5, + "end": 4959.44, + "probability": 0.9873 + }, + { + "start": 4959.88, + "end": 4963.08, + "probability": 0.9865 + }, + { + "start": 4963.86, + "end": 4968.54, + "probability": 0.956 + }, + { + "start": 4969.1, + "end": 4972.66, + "probability": 0.9863 + }, + { + "start": 4972.68, + "end": 4975.72, + "probability": 0.9453 + }, + { + "start": 4976.22, + "end": 4978.44, + "probability": 0.9909 + }, + { + "start": 4978.82, + "end": 4980.76, + "probability": 0.9253 + }, + { + "start": 4981.62, + "end": 4986.34, + "probability": 0.9538 + }, + { + "start": 4987.0, + "end": 4989.9, + "probability": 0.9458 + }, + { + "start": 4989.9, + "end": 4993.44, + "probability": 0.999 + }, + { + "start": 4993.96, + "end": 4998.0, + "probability": 0.8018 + }, + { + "start": 4998.0, + "end": 5003.14, + "probability": 0.9944 + }, + { + "start": 5003.68, + "end": 5007.42, + "probability": 0.9879 + }, + { + "start": 5008.14, + "end": 5009.56, + "probability": 0.9976 + }, + { + "start": 5010.06, + "end": 5011.76, + "probability": 0.9985 + }, + { + "start": 5012.4, + "end": 5017.04, + "probability": 0.9746 + }, + { + "start": 5017.56, + "end": 5018.48, + "probability": 0.7361 + }, + { + "start": 5018.54, + "end": 5019.8, + "probability": 0.9876 + }, + { + "start": 5020.08, + "end": 5024.9, + "probability": 0.9697 + }, + { + "start": 5026.46, + "end": 5027.04, + "probability": 0.7811 + }, + { + "start": 5027.06, + "end": 5027.68, + "probability": 0.8976 + }, + { + "start": 5027.82, + "end": 5030.52, + "probability": 0.9922 + }, + { + "start": 5030.52, + "end": 5033.38, + "probability": 0.9941 + }, + { + "start": 5034.54, + "end": 5036.86, + "probability": 0.9858 + }, + { + "start": 5037.46, + "end": 5040.82, + "probability": 0.9736 + }, + { + "start": 5041.8, + "end": 5045.42, + "probability": 0.9604 + }, + { + "start": 5046.46, + "end": 5048.44, + "probability": 0.9987 + }, + { + "start": 5048.62, + "end": 5050.8, + "probability": 0.9819 + }, + { + "start": 5051.34, + "end": 5053.2, + "probability": 0.8736 + }, + { + "start": 5054.28, + "end": 5056.66, + "probability": 0.9598 + }, + { + "start": 5057.52, + "end": 5060.24, + "probability": 0.9824 + }, + { + "start": 5060.24, + "end": 5062.64, + "probability": 0.9946 + }, + { + "start": 5063.38, + "end": 5064.38, + "probability": 0.9706 + }, + { + "start": 5065.36, + "end": 5066.8, + "probability": 0.9385 + }, + { + "start": 5067.94, + "end": 5069.4, + "probability": 0.9977 + }, + { + "start": 5070.16, + "end": 5073.48, + "probability": 0.9119 + }, + { + "start": 5073.74, + "end": 5076.72, + "probability": 0.9775 + }, + { + "start": 5077.72, + "end": 5081.34, + "probability": 0.7985 + }, + { + "start": 5082.38, + "end": 5083.39, + "probability": 0.9883 + }, + { + "start": 5083.84, + "end": 5086.24, + "probability": 0.664 + }, + { + "start": 5086.74, + "end": 5088.66, + "probability": 0.9951 + }, + { + "start": 5089.8, + "end": 5091.68, + "probability": 0.8447 + }, + { + "start": 5092.2, + "end": 5093.92, + "probability": 0.984 + }, + { + "start": 5095.3, + "end": 5096.78, + "probability": 0.9606 + }, + { + "start": 5096.84, + "end": 5099.94, + "probability": 0.985 + }, + { + "start": 5100.02, + "end": 5100.78, + "probability": 0.8355 + }, + { + "start": 5101.3, + "end": 5102.94, + "probability": 0.6696 + }, + { + "start": 5103.84, + "end": 5105.74, + "probability": 0.7464 + }, + { + "start": 5106.7, + "end": 5112.46, + "probability": 0.9192 + }, + { + "start": 5112.98, + "end": 5114.38, + "probability": 0.9929 + }, + { + "start": 5114.92, + "end": 5119.34, + "probability": 0.9941 + }, + { + "start": 5120.4, + "end": 5122.72, + "probability": 0.9961 + }, + { + "start": 5123.46, + "end": 5124.5, + "probability": 0.6469 + }, + { + "start": 5124.9, + "end": 5130.0, + "probability": 0.994 + }, + { + "start": 5130.08, + "end": 5131.01, + "probability": 0.9976 + }, + { + "start": 5131.72, + "end": 5135.42, + "probability": 0.5576 + }, + { + "start": 5135.66, + "end": 5136.29, + "probability": 0.7428 + }, + { + "start": 5139.44, + "end": 5139.93, + "probability": 0.6325 + }, + { + "start": 5140.4, + "end": 5140.8, + "probability": 0.4983 + }, + { + "start": 5141.0, + "end": 5146.96, + "probability": 0.9803 + }, + { + "start": 5147.02, + "end": 5148.96, + "probability": 0.934 + }, + { + "start": 5149.3, + "end": 5150.12, + "probability": 0.9739 + }, + { + "start": 5150.42, + "end": 5154.02, + "probability": 0.9902 + }, + { + "start": 5154.56, + "end": 5155.4, + "probability": 0.337 + }, + { + "start": 5156.74, + "end": 5159.12, + "probability": 0.9528 + }, + { + "start": 5159.14, + "end": 5160.1, + "probability": 0.816 + }, + { + "start": 5160.2, + "end": 5162.36, + "probability": 0.7847 + }, + { + "start": 5162.36, + "end": 5164.58, + "probability": 0.9673 + }, + { + "start": 5164.66, + "end": 5167.0, + "probability": 0.9907 + }, + { + "start": 5167.3, + "end": 5169.88, + "probability": 0.9956 + }, + { + "start": 5169.88, + "end": 5169.98, + "probability": 0.5547 + }, + { + "start": 5170.78, + "end": 5173.92, + "probability": 0.9885 + }, + { + "start": 5173.92, + "end": 5174.88, + "probability": 0.5222 + }, + { + "start": 5177.74, + "end": 5178.18, + "probability": 0.4572 + }, + { + "start": 5178.3, + "end": 5180.24, + "probability": 0.9312 + }, + { + "start": 5180.24, + "end": 5182.14, + "probability": 0.9971 + }, + { + "start": 5182.36, + "end": 5183.66, + "probability": 0.9969 + }, + { + "start": 5184.0, + "end": 5185.93, + "probability": 0.8234 + }, + { + "start": 5186.34, + "end": 5187.38, + "probability": 0.882 + }, + { + "start": 5187.86, + "end": 5189.89, + "probability": 0.9835 + }, + { + "start": 5190.46, + "end": 5191.38, + "probability": 0.9819 + }, + { + "start": 5191.94, + "end": 5196.16, + "probability": 0.9784 + }, + { + "start": 5196.58, + "end": 5197.5, + "probability": 0.9143 + }, + { + "start": 5198.18, + "end": 5199.36, + "probability": 0.5663 + }, + { + "start": 5199.96, + "end": 5202.72, + "probability": 0.9712 + }, + { + "start": 5203.2, + "end": 5203.56, + "probability": 0.7406 + }, + { + "start": 5203.64, + "end": 5205.36, + "probability": 0.6884 + }, + { + "start": 5205.46, + "end": 5208.02, + "probability": 0.9588 + }, + { + "start": 5208.98, + "end": 5209.94, + "probability": 0.6314 + }, + { + "start": 5210.08, + "end": 5210.18, + "probability": 0.8855 + }, + { + "start": 5218.84, + "end": 5219.44, + "probability": 0.5158 + }, + { + "start": 5220.46, + "end": 5221.22, + "probability": 0.8131 + }, + { + "start": 5222.06, + "end": 5224.34, + "probability": 0.7255 + }, + { + "start": 5225.4, + "end": 5227.08, + "probability": 0.9777 + }, + { + "start": 5228.18, + "end": 5231.34, + "probability": 0.9786 + }, + { + "start": 5231.96, + "end": 5234.32, + "probability": 0.9759 + }, + { + "start": 5235.12, + "end": 5235.88, + "probability": 0.9066 + }, + { + "start": 5236.4, + "end": 5239.5, + "probability": 0.9558 + }, + { + "start": 5240.42, + "end": 5243.68, + "probability": 0.9834 + }, + { + "start": 5244.34, + "end": 5245.1, + "probability": 0.9238 + }, + { + "start": 5245.9, + "end": 5251.28, + "probability": 0.952 + }, + { + "start": 5251.96, + "end": 5254.8, + "probability": 0.965 + }, + { + "start": 5255.36, + "end": 5256.8, + "probability": 0.7406 + }, + { + "start": 5257.4, + "end": 5258.88, + "probability": 0.8603 + }, + { + "start": 5259.4, + "end": 5263.3, + "probability": 0.9771 + }, + { + "start": 5264.32, + "end": 5269.24, + "probability": 0.9917 + }, + { + "start": 5269.72, + "end": 5271.38, + "probability": 0.6757 + }, + { + "start": 5272.24, + "end": 5273.3, + "probability": 0.5687 + }, + { + "start": 5273.7, + "end": 5274.4, + "probability": 0.8481 + }, + { + "start": 5275.32, + "end": 5276.46, + "probability": 0.9761 + }, + { + "start": 5277.28, + "end": 5278.36, + "probability": 0.7803 + }, + { + "start": 5278.5, + "end": 5284.98, + "probability": 0.9438 + }, + { + "start": 5285.6, + "end": 5286.54, + "probability": 0.9638 + }, + { + "start": 5286.62, + "end": 5289.64, + "probability": 0.9793 + }, + { + "start": 5289.98, + "end": 5291.46, + "probability": 0.8118 + }, + { + "start": 5292.18, + "end": 5296.08, + "probability": 0.9295 + }, + { + "start": 5296.08, + "end": 5300.28, + "probability": 0.9438 + }, + { + "start": 5301.06, + "end": 5304.82, + "probability": 0.9231 + }, + { + "start": 5306.03, + "end": 5310.12, + "probability": 0.999 + }, + { + "start": 5310.28, + "end": 5314.24, + "probability": 0.9259 + }, + { + "start": 5314.26, + "end": 5320.78, + "probability": 0.9569 + }, + { + "start": 5321.74, + "end": 5326.38, + "probability": 0.9153 + }, + { + "start": 5327.22, + "end": 5329.84, + "probability": 0.8732 + }, + { + "start": 5329.96, + "end": 5334.92, + "probability": 0.9939 + }, + { + "start": 5335.46, + "end": 5339.27, + "probability": 0.9973 + }, + { + "start": 5340.3, + "end": 5344.5, + "probability": 0.8173 + }, + { + "start": 5345.14, + "end": 5346.7, + "probability": 0.6243 + }, + { + "start": 5347.02, + "end": 5348.83, + "probability": 0.9941 + }, + { + "start": 5349.38, + "end": 5351.36, + "probability": 0.8837 + }, + { + "start": 5355.98, + "end": 5358.76, + "probability": 0.6665 + }, + { + "start": 5359.18, + "end": 5363.5, + "probability": 0.9858 + }, + { + "start": 5363.96, + "end": 5368.22, + "probability": 0.936 + }, + { + "start": 5368.22, + "end": 5372.86, + "probability": 0.9951 + }, + { + "start": 5373.3, + "end": 5374.88, + "probability": 0.9855 + }, + { + "start": 5375.44, + "end": 5376.96, + "probability": 0.6933 + }, + { + "start": 5377.52, + "end": 5380.56, + "probability": 0.9883 + }, + { + "start": 5381.34, + "end": 5384.78, + "probability": 0.9253 + }, + { + "start": 5385.62, + "end": 5387.01, + "probability": 0.9829 + }, + { + "start": 5388.3, + "end": 5392.26, + "probability": 0.991 + }, + { + "start": 5393.36, + "end": 5398.16, + "probability": 0.9722 + }, + { + "start": 5398.6, + "end": 5401.68, + "probability": 0.9855 + }, + { + "start": 5401.68, + "end": 5405.64, + "probability": 0.8559 + }, + { + "start": 5407.4, + "end": 5409.16, + "probability": 0.9509 + }, + { + "start": 5409.78, + "end": 5411.24, + "probability": 0.4954 + }, + { + "start": 5411.94, + "end": 5412.6, + "probability": 0.751 + }, + { + "start": 5413.48, + "end": 5416.18, + "probability": 0.7519 + }, + { + "start": 5417.36, + "end": 5421.34, + "probability": 0.9492 + }, + { + "start": 5421.34, + "end": 5427.06, + "probability": 0.9806 + }, + { + "start": 5427.6, + "end": 5435.26, + "probability": 0.9987 + }, + { + "start": 5436.14, + "end": 5438.96, + "probability": 0.9979 + }, + { + "start": 5438.96, + "end": 5444.08, + "probability": 0.995 + }, + { + "start": 5444.3, + "end": 5445.74, + "probability": 0.9468 + }, + { + "start": 5446.16, + "end": 5448.68, + "probability": 0.9369 + }, + { + "start": 5448.92, + "end": 5451.34, + "probability": 0.6824 + }, + { + "start": 5451.44, + "end": 5454.74, + "probability": 0.8822 + }, + { + "start": 5468.32, + "end": 5472.02, + "probability": 0.6952 + }, + { + "start": 5472.82, + "end": 5477.2, + "probability": 0.9204 + }, + { + "start": 5477.2, + "end": 5482.64, + "probability": 0.9823 + }, + { + "start": 5483.06, + "end": 5485.42, + "probability": 0.9937 + }, + { + "start": 5486.14, + "end": 5495.54, + "probability": 0.9915 + }, + { + "start": 5496.38, + "end": 5500.48, + "probability": 0.8698 + }, + { + "start": 5501.22, + "end": 5502.34, + "probability": 0.3665 + }, + { + "start": 5502.44, + "end": 5504.34, + "probability": 0.5686 + }, + { + "start": 5504.64, + "end": 5512.54, + "probability": 0.9809 + }, + { + "start": 5512.6, + "end": 5513.48, + "probability": 0.8653 + }, + { + "start": 5514.42, + "end": 5517.02, + "probability": 0.9708 + }, + { + "start": 5517.08, + "end": 5522.2, + "probability": 0.9901 + }, + { + "start": 5522.36, + "end": 5524.36, + "probability": 0.9917 + }, + { + "start": 5525.58, + "end": 5527.1, + "probability": 0.7415 + }, + { + "start": 5527.5, + "end": 5529.66, + "probability": 0.9795 + }, + { + "start": 5530.8, + "end": 5533.9, + "probability": 0.9938 + }, + { + "start": 5534.08, + "end": 5537.78, + "probability": 0.9879 + }, + { + "start": 5539.6, + "end": 5543.32, + "probability": 0.9531 + }, + { + "start": 5543.44, + "end": 5548.9, + "probability": 0.9924 + }, + { + "start": 5549.0, + "end": 5550.52, + "probability": 0.9525 + }, + { + "start": 5551.34, + "end": 5553.02, + "probability": 0.9588 + }, + { + "start": 5553.2, + "end": 5555.78, + "probability": 0.9479 + }, + { + "start": 5556.24, + "end": 5560.38, + "probability": 0.9814 + }, + { + "start": 5560.7, + "end": 5563.26, + "probability": 0.9448 + }, + { + "start": 5564.52, + "end": 5570.44, + "probability": 0.978 + }, + { + "start": 5570.62, + "end": 5571.96, + "probability": 0.9828 + }, + { + "start": 5572.56, + "end": 5574.3, + "probability": 0.9679 + }, + { + "start": 5574.44, + "end": 5580.66, + "probability": 0.9763 + }, + { + "start": 5581.7, + "end": 5583.12, + "probability": 0.9173 + }, + { + "start": 5584.35, + "end": 5585.68, + "probability": 0.3282 + }, + { + "start": 5585.68, + "end": 5585.96, + "probability": 0.5393 + }, + { + "start": 5585.98, + "end": 5588.26, + "probability": 0.8301 + }, + { + "start": 5588.54, + "end": 5588.66, + "probability": 0.5743 + }, + { + "start": 5588.74, + "end": 5590.84, + "probability": 0.9685 + }, + { + "start": 5590.88, + "end": 5593.7, + "probability": 0.7476 + }, + { + "start": 5594.94, + "end": 5599.58, + "probability": 0.9719 + }, + { + "start": 5600.38, + "end": 5603.6, + "probability": 0.9969 + }, + { + "start": 5603.6, + "end": 5608.28, + "probability": 0.7477 + }, + { + "start": 5608.42, + "end": 5612.14, + "probability": 0.937 + }, + { + "start": 5612.42, + "end": 5619.38, + "probability": 0.9941 + }, + { + "start": 5619.38, + "end": 5627.84, + "probability": 0.9983 + }, + { + "start": 5628.24, + "end": 5629.74, + "probability": 0.9968 + }, + { + "start": 5629.96, + "end": 5630.5, + "probability": 0.5019 + }, + { + "start": 5631.14, + "end": 5633.34, + "probability": 0.9963 + }, + { + "start": 5634.12, + "end": 5635.24, + "probability": 0.4865 + }, + { + "start": 5635.42, + "end": 5635.62, + "probability": 0.858 + }, + { + "start": 5635.82, + "end": 5639.54, + "probability": 0.8683 + }, + { + "start": 5639.7, + "end": 5642.1, + "probability": 0.8904 + }, + { + "start": 5642.16, + "end": 5643.04, + "probability": 0.8532 + }, + { + "start": 5643.04, + "end": 5646.24, + "probability": 0.9829 + }, + { + "start": 5646.28, + "end": 5649.26, + "probability": 0.9976 + }, + { + "start": 5650.14, + "end": 5651.06, + "probability": 0.7866 + }, + { + "start": 5651.1, + "end": 5652.68, + "probability": 0.3395 + }, + { + "start": 5652.84, + "end": 5653.86, + "probability": 0.914 + }, + { + "start": 5653.96, + "end": 5656.66, + "probability": 0.9097 + }, + { + "start": 5657.16, + "end": 5663.38, + "probability": 0.9927 + }, + { + "start": 5663.38, + "end": 5668.84, + "probability": 0.9908 + }, + { + "start": 5669.08, + "end": 5671.46, + "probability": 0.8589 + }, + { + "start": 5672.16, + "end": 5678.72, + "probability": 0.9022 + }, + { + "start": 5678.94, + "end": 5679.76, + "probability": 0.6756 + }, + { + "start": 5679.84, + "end": 5686.94, + "probability": 0.9792 + }, + { + "start": 5687.02, + "end": 5691.14, + "probability": 0.9915 + }, + { + "start": 5691.98, + "end": 5694.34, + "probability": 0.9171 + }, + { + "start": 5694.44, + "end": 5695.64, + "probability": 0.8613 + }, + { + "start": 5695.84, + "end": 5701.24, + "probability": 0.9954 + }, + { + "start": 5701.24, + "end": 5707.08, + "probability": 0.9913 + }, + { + "start": 5707.72, + "end": 5709.04, + "probability": 0.9907 + }, + { + "start": 5709.36, + "end": 5711.51, + "probability": 0.9603 + }, + { + "start": 5713.19, + "end": 5718.08, + "probability": 0.9988 + }, + { + "start": 5718.62, + "end": 5722.98, + "probability": 0.9961 + }, + { + "start": 5723.16, + "end": 5726.86, + "probability": 0.9817 + }, + { + "start": 5727.92, + "end": 5734.62, + "probability": 0.9961 + }, + { + "start": 5735.94, + "end": 5738.94, + "probability": 0.9753 + }, + { + "start": 5739.14, + "end": 5740.22, + "probability": 0.9066 + }, + { + "start": 5740.26, + "end": 5741.62, + "probability": 0.7818 + }, + { + "start": 5742.16, + "end": 5745.04, + "probability": 0.9956 + }, + { + "start": 5746.2, + "end": 5747.96, + "probability": 0.5106 + }, + { + "start": 5749.48, + "end": 5750.78, + "probability": 0.5408 + }, + { + "start": 5751.74, + "end": 5754.38, + "probability": 0.9904 + }, + { + "start": 5754.4, + "end": 5759.97, + "probability": 0.9674 + }, + { + "start": 5761.62, + "end": 5764.5, + "probability": 0.9924 + }, + { + "start": 5764.54, + "end": 5766.2, + "probability": 0.9884 + }, + { + "start": 5766.5, + "end": 5768.02, + "probability": 0.9263 + }, + { + "start": 5769.44, + "end": 5771.84, + "probability": 0.9825 + }, + { + "start": 5771.84, + "end": 5777.5, + "probability": 0.8108 + }, + { + "start": 5777.62, + "end": 5778.68, + "probability": 0.7978 + }, + { + "start": 5778.78, + "end": 5781.54, + "probability": 0.9448 + }, + { + "start": 5781.68, + "end": 5787.86, + "probability": 0.9921 + }, + { + "start": 5788.08, + "end": 5788.86, + "probability": 0.7516 + }, + { + "start": 5789.0, + "end": 5792.28, + "probability": 0.9765 + }, + { + "start": 5792.82, + "end": 5797.12, + "probability": 0.9961 + }, + { + "start": 5797.14, + "end": 5798.76, + "probability": 0.947 + }, + { + "start": 5799.46, + "end": 5801.88, + "probability": 0.9318 + }, + { + "start": 5802.32, + "end": 5802.94, + "probability": 0.6898 + }, + { + "start": 5803.24, + "end": 5806.14, + "probability": 0.9661 + }, + { + "start": 5806.32, + "end": 5808.44, + "probability": 0.9858 + }, + { + "start": 5809.04, + "end": 5812.52, + "probability": 0.7805 + }, + { + "start": 5812.82, + "end": 5815.8, + "probability": 0.5929 + }, + { + "start": 5816.4, + "end": 5819.1, + "probability": 0.9513 + }, + { + "start": 5819.84, + "end": 5823.12, + "probability": 0.7235 + }, + { + "start": 5823.18, + "end": 5824.18, + "probability": 0.8579 + }, + { + "start": 5824.42, + "end": 5828.9, + "probability": 0.9852 + }, + { + "start": 5830.06, + "end": 5831.72, + "probability": 0.5472 + }, + { + "start": 5832.0, + "end": 5833.3, + "probability": 0.6723 + }, + { + "start": 5834.28, + "end": 5835.18, + "probability": 0.8092 + }, + { + "start": 5835.86, + "end": 5837.7, + "probability": 0.9685 + }, + { + "start": 5837.92, + "end": 5839.06, + "probability": 0.3012 + }, + { + "start": 5839.34, + "end": 5842.43, + "probability": 0.0787 + }, + { + "start": 5842.98, + "end": 5845.14, + "probability": 0.9621 + }, + { + "start": 5848.4, + "end": 5852.8, + "probability": 0.0522 + }, + { + "start": 5852.8, + "end": 5854.32, + "probability": 0.1099 + }, + { + "start": 5856.22, + "end": 5856.72, + "probability": 0.1681 + }, + { + "start": 5856.72, + "end": 5857.42, + "probability": 0.4167 + }, + { + "start": 5857.88, + "end": 5858.75, + "probability": 0.8041 + }, + { + "start": 5859.78, + "end": 5863.0, + "probability": 0.9372 + }, + { + "start": 5863.22, + "end": 5867.18, + "probability": 0.9299 + }, + { + "start": 5867.42, + "end": 5870.08, + "probability": 0.1436 + }, + { + "start": 5870.08, + "end": 5870.9, + "probability": 0.6103 + }, + { + "start": 5871.02, + "end": 5871.76, + "probability": 0.9015 + }, + { + "start": 5871.9, + "end": 5873.04, + "probability": 0.2284 + }, + { + "start": 5873.26, + "end": 5876.06, + "probability": 0.6836 + }, + { + "start": 5876.52, + "end": 5879.52, + "probability": 0.992 + }, + { + "start": 5879.52, + "end": 5882.34, + "probability": 0.9605 + }, + { + "start": 5882.8, + "end": 5888.32, + "probability": 0.9874 + }, + { + "start": 5888.32, + "end": 5893.4, + "probability": 0.9826 + }, + { + "start": 5893.7, + "end": 5894.06, + "probability": 0.709 + }, + { + "start": 5894.18, + "end": 5896.86, + "probability": 0.9654 + }, + { + "start": 5897.08, + "end": 5897.85, + "probability": 0.3188 + }, + { + "start": 5898.12, + "end": 5900.36, + "probability": 0.95 + }, + { + "start": 5900.6, + "end": 5904.28, + "probability": 0.9072 + }, + { + "start": 5904.64, + "end": 5907.6, + "probability": 0.6686 + }, + { + "start": 5907.68, + "end": 5908.62, + "probability": 0.8457 + }, + { + "start": 5908.76, + "end": 5910.54, + "probability": 0.6449 + }, + { + "start": 5910.74, + "end": 5911.88, + "probability": 0.5712 + }, + { + "start": 5912.1, + "end": 5917.5, + "probability": 0.9526 + }, + { + "start": 5917.8, + "end": 5921.22, + "probability": 0.853 + }, + { + "start": 5921.98, + "end": 5923.26, + "probability": 0.1778 + }, + { + "start": 5924.34, + "end": 5931.06, + "probability": 0.322 + }, + { + "start": 5931.32, + "end": 5936.29, + "probability": 0.6076 + }, + { + "start": 5936.94, + "end": 5937.72, + "probability": 0.3751 + }, + { + "start": 5937.72, + "end": 5938.34, + "probability": 0.5328 + }, + { + "start": 5938.76, + "end": 5940.34, + "probability": 0.9636 + }, + { + "start": 5941.36, + "end": 5941.52, + "probability": 0.0327 + }, + { + "start": 5943.14, + "end": 5943.78, + "probability": 0.3649 + }, + { + "start": 5943.78, + "end": 5944.54, + "probability": 0.4074 + }, + { + "start": 5944.68, + "end": 5945.76, + "probability": 0.4898 + }, + { + "start": 5945.78, + "end": 5948.18, + "probability": 0.6641 + }, + { + "start": 5948.26, + "end": 5949.88, + "probability": 0.5978 + }, + { + "start": 5950.12, + "end": 5950.58, + "probability": 0.0761 + }, + { + "start": 5950.86, + "end": 5955.82, + "probability": 0.809 + }, + { + "start": 5956.0, + "end": 5956.46, + "probability": 0.6978 + }, + { + "start": 5956.46, + "end": 5957.32, + "probability": 0.315 + }, + { + "start": 5957.7, + "end": 5958.22, + "probability": 0.7994 + }, + { + "start": 5959.28, + "end": 5963.4, + "probability": 0.2359 + }, + { + "start": 5963.7, + "end": 5966.46, + "probability": 0.5837 + }, + { + "start": 5966.48, + "end": 5968.54, + "probability": 0.8691 + }, + { + "start": 5968.72, + "end": 5970.54, + "probability": 0.9818 + }, + { + "start": 5971.52, + "end": 5973.82, + "probability": 0.0923 + }, + { + "start": 5974.68, + "end": 5975.48, + "probability": 0.776 + }, + { + "start": 5975.83, + "end": 5979.26, + "probability": 0.6355 + }, + { + "start": 5979.54, + "end": 5983.52, + "probability": 0.4354 + }, + { + "start": 5983.64, + "end": 5985.04, + "probability": 0.1114 + }, + { + "start": 5985.7, + "end": 5987.84, + "probability": 0.5767 + }, + { + "start": 5988.08, + "end": 5988.97, + "probability": 0.8472 + }, + { + "start": 5990.1, + "end": 5991.08, + "probability": 0.5352 + }, + { + "start": 5991.46, + "end": 5993.36, + "probability": 0.665 + }, + { + "start": 5993.42, + "end": 5994.44, + "probability": 0.8347 + }, + { + "start": 5994.52, + "end": 5997.24, + "probability": 0.9775 + }, + { + "start": 5997.38, + "end": 5998.52, + "probability": 0.8598 + }, + { + "start": 5999.98, + "end": 6000.6, + "probability": 0.6359 + }, + { + "start": 6000.72, + "end": 6002.07, + "probability": 0.5432 + }, + { + "start": 6004.98, + "end": 6008.22, + "probability": 0.8619 + }, + { + "start": 6009.42, + "end": 6010.8, + "probability": 0.8531 + }, + { + "start": 6011.18, + "end": 6013.38, + "probability": 0.8297 + }, + { + "start": 6014.22, + "end": 6015.86, + "probability": 0.6523 + }, + { + "start": 6015.86, + "end": 6019.22, + "probability": 0.5972 + }, + { + "start": 6019.86, + "end": 6025.66, + "probability": 0.9644 + }, + { + "start": 6026.48, + "end": 6030.12, + "probability": 0.9937 + }, + { + "start": 6030.12, + "end": 6032.86, + "probability": 0.9907 + }, + { + "start": 6034.44, + "end": 6036.26, + "probability": 0.8385 + }, + { + "start": 6037.42, + "end": 6039.78, + "probability": 0.9954 + }, + { + "start": 6039.94, + "end": 6041.16, + "probability": 0.9983 + }, + { + "start": 6041.34, + "end": 6045.38, + "probability": 0.9985 + }, + { + "start": 6046.08, + "end": 6049.3, + "probability": 0.9653 + }, + { + "start": 6049.86, + "end": 6053.84, + "probability": 0.9841 + }, + { + "start": 6054.46, + "end": 6058.76, + "probability": 0.9929 + }, + { + "start": 6059.8, + "end": 6061.32, + "probability": 0.9849 + }, + { + "start": 6062.58, + "end": 6064.28, + "probability": 0.9921 + }, + { + "start": 6065.2, + "end": 6067.8, + "probability": 0.9846 + }, + { + "start": 6067.8, + "end": 6070.38, + "probability": 0.9995 + }, + { + "start": 6071.08, + "end": 6072.7, + "probability": 0.9681 + }, + { + "start": 6072.9, + "end": 6075.92, + "probability": 0.9989 + }, + { + "start": 6075.92, + "end": 6079.08, + "probability": 0.8696 + }, + { + "start": 6079.64, + "end": 6082.4, + "probability": 0.9888 + }, + { + "start": 6083.1, + "end": 6085.04, + "probability": 0.5215 + }, + { + "start": 6085.3, + "end": 6087.25, + "probability": 0.8683 + }, + { + "start": 6087.36, + "end": 6090.84, + "probability": 0.9348 + }, + { + "start": 6092.12, + "end": 6095.64, + "probability": 0.9004 + }, + { + "start": 6096.36, + "end": 6097.78, + "probability": 0.9702 + }, + { + "start": 6100.3, + "end": 6103.64, + "probability": 0.3389 + }, + { + "start": 6113.7, + "end": 6114.32, + "probability": 0.0578 + }, + { + "start": 6114.75, + "end": 6118.48, + "probability": 0.5404 + }, + { + "start": 6118.98, + "end": 6122.56, + "probability": 0.9548 + }, + { + "start": 6123.46, + "end": 6125.27, + "probability": 0.9977 + }, + { + "start": 6126.0, + "end": 6127.5, + "probability": 0.4403 + }, + { + "start": 6127.5, + "end": 6127.5, + "probability": 0.3404 + }, + { + "start": 6127.5, + "end": 6127.5, + "probability": 0.2032 + }, + { + "start": 6127.5, + "end": 6130.5, + "probability": 0.5079 + }, + { + "start": 6131.14, + "end": 6132.72, + "probability": 0.8533 + }, + { + "start": 6135.02, + "end": 6135.92, + "probability": 0.7701 + }, + { + "start": 6153.48, + "end": 6155.08, + "probability": 0.4969 + }, + { + "start": 6155.36, + "end": 6156.28, + "probability": 0.9097 + }, + { + "start": 6156.42, + "end": 6156.74, + "probability": 0.3607 + }, + { + "start": 6156.82, + "end": 6158.24, + "probability": 0.4663 + }, + { + "start": 6158.84, + "end": 6160.72, + "probability": 0.8792 + }, + { + "start": 6161.24, + "end": 6164.34, + "probability": 0.9816 + }, + { + "start": 6164.92, + "end": 6168.02, + "probability": 0.9547 + }, + { + "start": 6168.58, + "end": 6172.58, + "probability": 0.9806 + }, + { + "start": 6173.46, + "end": 6177.7, + "probability": 0.8811 + }, + { + "start": 6178.02, + "end": 6179.74, + "probability": 0.6089 + }, + { + "start": 6180.52, + "end": 6183.54, + "probability": 0.9256 + }, + { + "start": 6184.68, + "end": 6186.28, + "probability": 0.8483 + }, + { + "start": 6187.62, + "end": 6189.98, + "probability": 0.9301 + }, + { + "start": 6190.1, + "end": 6191.28, + "probability": 0.7585 + }, + { + "start": 6191.4, + "end": 6192.5, + "probability": 0.9927 + }, + { + "start": 6193.4, + "end": 6194.8, + "probability": 0.7747 + }, + { + "start": 6195.64, + "end": 6197.7, + "probability": 0.9809 + }, + { + "start": 6198.12, + "end": 6200.22, + "probability": 0.8008 + }, + { + "start": 6200.38, + "end": 6205.56, + "probability": 0.9834 + }, + { + "start": 6206.52, + "end": 6208.92, + "probability": 0.7739 + }, + { + "start": 6209.98, + "end": 6216.78, + "probability": 0.9034 + }, + { + "start": 6217.38, + "end": 6218.9, + "probability": 0.7916 + }, + { + "start": 6219.14, + "end": 6219.88, + "probability": 0.9679 + }, + { + "start": 6219.98, + "end": 6220.54, + "probability": 0.7229 + }, + { + "start": 6220.76, + "end": 6224.34, + "probability": 0.9553 + }, + { + "start": 6225.32, + "end": 6227.98, + "probability": 0.9731 + }, + { + "start": 6228.86, + "end": 6230.06, + "probability": 0.829 + }, + { + "start": 6231.7, + "end": 6237.02, + "probability": 0.9866 + }, + { + "start": 6237.02, + "end": 6240.12, + "probability": 0.9966 + }, + { + "start": 6240.76, + "end": 6244.68, + "probability": 0.9946 + }, + { + "start": 6244.68, + "end": 6248.13, + "probability": 0.9502 + }, + { + "start": 6248.9, + "end": 6254.16, + "probability": 0.9793 + }, + { + "start": 6254.3, + "end": 6256.1, + "probability": 0.8944 + }, + { + "start": 6256.62, + "end": 6258.22, + "probability": 0.6722 + }, + { + "start": 6258.58, + "end": 6259.18, + "probability": 0.9443 + }, + { + "start": 6259.36, + "end": 6263.26, + "probability": 0.9937 + }, + { + "start": 6263.78, + "end": 6269.68, + "probability": 0.896 + }, + { + "start": 6269.94, + "end": 6276.08, + "probability": 0.992 + }, + { + "start": 6276.2, + "end": 6280.14, + "probability": 0.9474 + }, + { + "start": 6280.24, + "end": 6282.02, + "probability": 0.9956 + }, + { + "start": 6282.54, + "end": 6284.46, + "probability": 0.9545 + }, + { + "start": 6285.18, + "end": 6288.36, + "probability": 0.9318 + }, + { + "start": 6289.06, + "end": 6290.88, + "probability": 0.9284 + }, + { + "start": 6291.3, + "end": 6292.46, + "probability": 0.9641 + }, + { + "start": 6292.96, + "end": 6293.7, + "probability": 0.3162 + }, + { + "start": 6293.8, + "end": 6294.7, + "probability": 0.8822 + }, + { + "start": 6294.86, + "end": 6296.7, + "probability": 0.8336 + }, + { + "start": 6298.24, + "end": 6299.8, + "probability": 0.962 + }, + { + "start": 6300.02, + "end": 6302.2, + "probability": 0.939 + }, + { + "start": 6302.42, + "end": 6305.26, + "probability": 0.9709 + }, + { + "start": 6305.26, + "end": 6308.22, + "probability": 0.9933 + }, + { + "start": 6308.76, + "end": 6310.24, + "probability": 0.7781 + }, + { + "start": 6311.66, + "end": 6317.3, + "probability": 0.9688 + }, + { + "start": 6318.26, + "end": 6324.48, + "probability": 0.993 + }, + { + "start": 6325.24, + "end": 6328.5, + "probability": 0.9358 + }, + { + "start": 6328.5, + "end": 6332.22, + "probability": 0.9968 + }, + { + "start": 6333.46, + "end": 6334.6, + "probability": 0.9836 + }, + { + "start": 6336.02, + "end": 6337.27, + "probability": 0.9974 + }, + { + "start": 6337.96, + "end": 6342.04, + "probability": 0.9021 + }, + { + "start": 6342.66, + "end": 6347.64, + "probability": 0.9675 + }, + { + "start": 6348.34, + "end": 6350.08, + "probability": 0.8212 + }, + { + "start": 6350.74, + "end": 6353.68, + "probability": 0.9957 + }, + { + "start": 6354.16, + "end": 6355.7, + "probability": 0.8953 + }, + { + "start": 6356.04, + "end": 6356.54, + "probability": 0.7286 + }, + { + "start": 6356.66, + "end": 6358.02, + "probability": 0.9606 + }, + { + "start": 6358.58, + "end": 6359.58, + "probability": 0.9688 + }, + { + "start": 6360.24, + "end": 6362.86, + "probability": 0.6961 + }, + { + "start": 6363.4, + "end": 6365.1, + "probability": 0.9136 + }, + { + "start": 6365.82, + "end": 6367.9, + "probability": 0.9243 + }, + { + "start": 6368.84, + "end": 6374.42, + "probability": 0.9147 + }, + { + "start": 6375.0, + "end": 6375.48, + "probability": 0.5911 + }, + { + "start": 6375.48, + "end": 6376.73, + "probability": 0.761 + }, + { + "start": 6377.14, + "end": 6379.02, + "probability": 0.7556 + }, + { + "start": 6380.2, + "end": 6381.8, + "probability": 0.8699 + }, + { + "start": 6403.76, + "end": 6403.96, + "probability": 0.378 + }, + { + "start": 6404.06, + "end": 6404.86, + "probability": 0.5072 + }, + { + "start": 6405.44, + "end": 6406.16, + "probability": 0.9561 + }, + { + "start": 6407.04, + "end": 6410.66, + "probability": 0.8054 + }, + { + "start": 6411.82, + "end": 6417.64, + "probability": 0.9963 + }, + { + "start": 6417.92, + "end": 6420.58, + "probability": 0.9832 + }, + { + "start": 6420.74, + "end": 6421.44, + "probability": 0.8248 + }, + { + "start": 6422.46, + "end": 6425.04, + "probability": 0.7 + }, + { + "start": 6426.0, + "end": 6428.4, + "probability": 0.9125 + }, + { + "start": 6429.0, + "end": 6430.9, + "probability": 0.8136 + }, + { + "start": 6431.66, + "end": 6433.66, + "probability": 0.9533 + }, + { + "start": 6434.1, + "end": 6434.82, + "probability": 0.9186 + }, + { + "start": 6435.58, + "end": 6437.6, + "probability": 0.9771 + }, + { + "start": 6437.84, + "end": 6439.24, + "probability": 0.9991 + }, + { + "start": 6439.82, + "end": 6440.74, + "probability": 0.6885 + }, + { + "start": 6441.0, + "end": 6441.22, + "probability": 0.6727 + }, + { + "start": 6441.3, + "end": 6444.0, + "probability": 0.9817 + }, + { + "start": 6444.18, + "end": 6449.68, + "probability": 0.9901 + }, + { + "start": 6450.32, + "end": 6452.94, + "probability": 0.759 + }, + { + "start": 6453.74, + "end": 6457.38, + "probability": 0.9005 + }, + { + "start": 6457.94, + "end": 6462.9, + "probability": 0.9798 + }, + { + "start": 6463.72, + "end": 6466.74, + "probability": 0.9385 + }, + { + "start": 6467.12, + "end": 6467.7, + "probability": 0.5991 + }, + { + "start": 6467.8, + "end": 6472.04, + "probability": 0.8413 + }, + { + "start": 6473.08, + "end": 6473.98, + "probability": 0.8178 + }, + { + "start": 6474.52, + "end": 6475.54, + "probability": 0.853 + }, + { + "start": 6475.66, + "end": 6478.36, + "probability": 0.9607 + }, + { + "start": 6480.34, + "end": 6482.16, + "probability": 0.0325 + }, + { + "start": 6482.16, + "end": 6483.8, + "probability": 0.5287 + }, + { + "start": 6484.66, + "end": 6489.0, + "probability": 0.9819 + }, + { + "start": 6489.0, + "end": 6493.01, + "probability": 0.9976 + }, + { + "start": 6494.4, + "end": 6501.6, + "probability": 0.994 + }, + { + "start": 6501.68, + "end": 6502.5, + "probability": 0.7831 + }, + { + "start": 6503.12, + "end": 6505.14, + "probability": 0.9722 + }, + { + "start": 6506.12, + "end": 6507.76, + "probability": 0.8805 + }, + { + "start": 6508.64, + "end": 6510.26, + "probability": 0.0874 + }, + { + "start": 6511.36, + "end": 6513.44, + "probability": 0.9699 + }, + { + "start": 6515.3, + "end": 6517.38, + "probability": 0.008 + }, + { + "start": 6517.42, + "end": 6517.9, + "probability": 0.185 + }, + { + "start": 6518.04, + "end": 6520.28, + "probability": 0.7987 + }, + { + "start": 6520.3, + "end": 6522.9, + "probability": 0.9122 + }, + { + "start": 6523.66, + "end": 6525.86, + "probability": 0.9985 + }, + { + "start": 6526.42, + "end": 6530.36, + "probability": 0.9824 + }, + { + "start": 6530.48, + "end": 6534.3, + "probability": 0.9983 + }, + { + "start": 6534.56, + "end": 6536.92, + "probability": 0.9913 + }, + { + "start": 6537.74, + "end": 6541.4, + "probability": 0.9771 + }, + { + "start": 6541.54, + "end": 6547.88, + "probability": 0.9863 + }, + { + "start": 6548.06, + "end": 6548.9, + "probability": 0.9829 + }, + { + "start": 6549.12, + "end": 6550.6, + "probability": 0.7763 + }, + { + "start": 6550.8, + "end": 6551.9, + "probability": 0.8638 + }, + { + "start": 6552.62, + "end": 6556.12, + "probability": 0.9224 + }, + { + "start": 6556.64, + "end": 6560.84, + "probability": 0.9941 + }, + { + "start": 6561.56, + "end": 6568.16, + "probability": 0.9924 + }, + { + "start": 6568.7, + "end": 6571.28, + "probability": 0.9501 + }, + { + "start": 6571.64, + "end": 6575.44, + "probability": 0.994 + }, + { + "start": 6575.44, + "end": 6578.5, + "probability": 0.9911 + }, + { + "start": 6578.56, + "end": 6582.54, + "probability": 0.9819 + }, + { + "start": 6582.9, + "end": 6585.94, + "probability": 0.9958 + }, + { + "start": 6586.06, + "end": 6587.36, + "probability": 0.8862 + }, + { + "start": 6588.02, + "end": 6590.48, + "probability": 0.8749 + }, + { + "start": 6590.6, + "end": 6594.72, + "probability": 0.9958 + }, + { + "start": 6595.02, + "end": 6595.46, + "probability": 0.699 + }, + { + "start": 6595.54, + "end": 6597.74, + "probability": 0.7936 + }, + { + "start": 6597.94, + "end": 6601.3, + "probability": 0.8753 + }, + { + "start": 6602.3, + "end": 6603.66, + "probability": 0.8614 + }, + { + "start": 6604.42, + "end": 6607.66, + "probability": 0.9914 + }, + { + "start": 6608.36, + "end": 6611.66, + "probability": 0.9928 + }, + { + "start": 6612.26, + "end": 6615.22, + "probability": 0.9788 + }, + { + "start": 6615.94, + "end": 6622.1, + "probability": 0.9518 + }, + { + "start": 6622.4, + "end": 6623.18, + "probability": 0.6462 + }, + { + "start": 6623.5, + "end": 6624.18, + "probability": 0.9517 + }, + { + "start": 6624.58, + "end": 6626.88, + "probability": 0.994 + }, + { + "start": 6627.26, + "end": 6632.94, + "probability": 0.9923 + }, + { + "start": 6633.56, + "end": 6636.54, + "probability": 0.9687 + }, + { + "start": 6636.78, + "end": 6641.52, + "probability": 0.9465 + }, + { + "start": 6641.86, + "end": 6643.42, + "probability": 0.949 + }, + { + "start": 6643.5, + "end": 6644.52, + "probability": 0.8882 + }, + { + "start": 6644.9, + "end": 6646.72, + "probability": 0.975 + }, + { + "start": 6646.88, + "end": 6648.08, + "probability": 0.9696 + }, + { + "start": 6648.46, + "end": 6650.6, + "probability": 0.9974 + }, + { + "start": 6650.66, + "end": 6653.28, + "probability": 0.9949 + }, + { + "start": 6653.28, + "end": 6655.78, + "probability": 0.9976 + }, + { + "start": 6656.36, + "end": 6656.48, + "probability": 0.5891 + }, + { + "start": 6656.56, + "end": 6658.32, + "probability": 0.5012 + }, + { + "start": 6658.56, + "end": 6661.24, + "probability": 0.9486 + }, + { + "start": 6675.32, + "end": 6677.76, + "probability": 0.8919 + }, + { + "start": 6677.92, + "end": 6678.62, + "probability": 0.9685 + }, + { + "start": 6679.84, + "end": 6681.9, + "probability": 0.7538 + }, + { + "start": 6683.56, + "end": 6684.52, + "probability": 0.9496 + }, + { + "start": 6685.74, + "end": 6687.38, + "probability": 0.7608 + }, + { + "start": 6688.6, + "end": 6693.78, + "probability": 0.9504 + }, + { + "start": 6694.8, + "end": 6696.74, + "probability": 0.9431 + }, + { + "start": 6699.32, + "end": 6700.7, + "probability": 0.7669 + }, + { + "start": 6700.76, + "end": 6702.66, + "probability": 0.9324 + }, + { + "start": 6702.92, + "end": 6704.06, + "probability": 0.944 + }, + { + "start": 6705.16, + "end": 6709.14, + "probability": 0.9214 + }, + { + "start": 6709.86, + "end": 6711.34, + "probability": 0.9837 + }, + { + "start": 6713.84, + "end": 6718.06, + "probability": 0.9413 + }, + { + "start": 6718.22, + "end": 6718.8, + "probability": 0.6595 + }, + { + "start": 6720.68, + "end": 6723.34, + "probability": 0.7315 + }, + { + "start": 6723.42, + "end": 6726.78, + "probability": 0.8953 + }, + { + "start": 6726.82, + "end": 6728.88, + "probability": 0.8995 + }, + { + "start": 6729.96, + "end": 6732.62, + "probability": 0.943 + }, + { + "start": 6732.9, + "end": 6736.16, + "probability": 0.9777 + }, + { + "start": 6737.54, + "end": 6741.48, + "probability": 0.8859 + }, + { + "start": 6741.48, + "end": 6747.54, + "probability": 0.9799 + }, + { + "start": 6748.26, + "end": 6750.23, + "probability": 0.9878 + }, + { + "start": 6751.8, + "end": 6753.74, + "probability": 0.7555 + }, + { + "start": 6754.46, + "end": 6760.04, + "probability": 0.9946 + }, + { + "start": 6760.04, + "end": 6765.7, + "probability": 0.999 + }, + { + "start": 6766.12, + "end": 6766.7, + "probability": 0.8098 + }, + { + "start": 6766.94, + "end": 6767.96, + "probability": 0.9172 + }, + { + "start": 6768.08, + "end": 6768.54, + "probability": 0.7327 + }, + { + "start": 6768.74, + "end": 6775.14, + "probability": 0.7992 + }, + { + "start": 6775.14, + "end": 6775.14, + "probability": 0.0215 + }, + { + "start": 6775.14, + "end": 6776.66, + "probability": 0.4561 + }, + { + "start": 6776.66, + "end": 6780.48, + "probability": 0.9954 + }, + { + "start": 6781.5, + "end": 6782.48, + "probability": 0.8027 + }, + { + "start": 6782.54, + "end": 6784.42, + "probability": 0.9835 + }, + { + "start": 6784.44, + "end": 6785.68, + "probability": 0.4077 + }, + { + "start": 6786.48, + "end": 6792.7, + "probability": 0.9538 + }, + { + "start": 6792.86, + "end": 6793.3, + "probability": 0.637 + }, + { + "start": 6794.72, + "end": 6797.88, + "probability": 0.938 + }, + { + "start": 6797.94, + "end": 6799.5, + "probability": 0.9349 + }, + { + "start": 6799.82, + "end": 6799.96, + "probability": 0.8861 + }, + { + "start": 6800.08, + "end": 6802.74, + "probability": 0.9656 + }, + { + "start": 6802.8, + "end": 6806.2, + "probability": 0.9872 + }, + { + "start": 6807.06, + "end": 6809.9, + "probability": 0.9924 + }, + { + "start": 6810.36, + "end": 6811.32, + "probability": 0.7591 + }, + { + "start": 6811.48, + "end": 6813.28, + "probability": 0.8984 + }, + { + "start": 6813.72, + "end": 6816.06, + "probability": 0.998 + }, + { + "start": 6816.22, + "end": 6818.3, + "probability": 0.9807 + }, + { + "start": 6819.98, + "end": 6822.78, + "probability": 0.6132 + }, + { + "start": 6823.88, + "end": 6824.92, + "probability": 0.882 + }, + { + "start": 6825.06, + "end": 6825.78, + "probability": 0.9656 + }, + { + "start": 6825.94, + "end": 6827.3, + "probability": 0.8412 + }, + { + "start": 6827.38, + "end": 6828.22, + "probability": 0.9194 + }, + { + "start": 6828.48, + "end": 6830.14, + "probability": 0.5758 + }, + { + "start": 6830.26, + "end": 6830.94, + "probability": 0.5324 + }, + { + "start": 6830.98, + "end": 6832.12, + "probability": 0.9692 + }, + { + "start": 6832.36, + "end": 6834.24, + "probability": 0.9211 + }, + { + "start": 6834.76, + "end": 6837.26, + "probability": 0.9827 + }, + { + "start": 6837.34, + "end": 6839.96, + "probability": 0.9917 + }, + { + "start": 6840.5, + "end": 6842.4, + "probability": 0.9812 + }, + { + "start": 6842.56, + "end": 6844.74, + "probability": 0.9813 + }, + { + "start": 6845.2, + "end": 6845.96, + "probability": 0.7617 + }, + { + "start": 6846.9, + "end": 6848.8, + "probability": 0.9668 + }, + { + "start": 6848.86, + "end": 6852.92, + "probability": 0.8727 + }, + { + "start": 6853.64, + "end": 6854.46, + "probability": 0.5863 + }, + { + "start": 6854.72, + "end": 6854.92, + "probability": 0.1915 + }, + { + "start": 6855.22, + "end": 6857.04, + "probability": 0.9946 + }, + { + "start": 6857.1, + "end": 6858.8, + "probability": 0.7434 + }, + { + "start": 6859.32, + "end": 6861.68, + "probability": 0.9813 + }, + { + "start": 6861.72, + "end": 6863.78, + "probability": 0.9965 + }, + { + "start": 6864.26, + "end": 6865.77, + "probability": 0.9788 + }, + { + "start": 6866.76, + "end": 6868.18, + "probability": 0.8184 + }, + { + "start": 6869.28, + "end": 6871.8, + "probability": 0.9728 + }, + { + "start": 6872.08, + "end": 6876.66, + "probability": 0.9897 + }, + { + "start": 6877.14, + "end": 6878.84, + "probability": 0.8367 + }, + { + "start": 6879.3, + "end": 6880.94, + "probability": 0.967 + }, + { + "start": 6881.48, + "end": 6883.92, + "probability": 0.9976 + }, + { + "start": 6884.64, + "end": 6890.24, + "probability": 0.9967 + }, + { + "start": 6890.86, + "end": 6891.8, + "probability": 0.8792 + }, + { + "start": 6891.9, + "end": 6892.76, + "probability": 0.8923 + }, + { + "start": 6892.82, + "end": 6894.36, + "probability": 0.9895 + }, + { + "start": 6894.84, + "end": 6895.68, + "probability": 0.808 + }, + { + "start": 6896.26, + "end": 6900.48, + "probability": 0.9839 + }, + { + "start": 6900.86, + "end": 6902.41, + "probability": 0.9868 + }, + { + "start": 6902.6, + "end": 6906.1, + "probability": 0.8889 + }, + { + "start": 6906.8, + "end": 6911.84, + "probability": 0.9618 + }, + { + "start": 6912.18, + "end": 6912.86, + "probability": 0.6312 + }, + { + "start": 6914.3, + "end": 6919.4, + "probability": 0.9548 + }, + { + "start": 6919.5, + "end": 6921.92, + "probability": 0.8103 + }, + { + "start": 6922.16, + "end": 6928.06, + "probability": 0.947 + }, + { + "start": 6928.06, + "end": 6932.56, + "probability": 0.9945 + }, + { + "start": 6932.74, + "end": 6936.36, + "probability": 0.8779 + }, + { + "start": 6936.86, + "end": 6939.34, + "probability": 0.9722 + }, + { + "start": 6940.24, + "end": 6943.88, + "probability": 0.6743 + }, + { + "start": 6944.96, + "end": 6946.1, + "probability": 0.8527 + }, + { + "start": 6946.26, + "end": 6948.88, + "probability": 0.9275 + }, + { + "start": 6949.5, + "end": 6952.42, + "probability": 0.9438 + }, + { + "start": 6952.56, + "end": 6954.8, + "probability": 0.8654 + }, + { + "start": 6955.32, + "end": 6956.72, + "probability": 0.9647 + }, + { + "start": 6957.14, + "end": 6958.81, + "probability": 0.9887 + }, + { + "start": 6959.2, + "end": 6962.46, + "probability": 0.9722 + }, + { + "start": 6962.62, + "end": 6968.88, + "probability": 0.9912 + }, + { + "start": 6969.16, + "end": 6971.72, + "probability": 0.7556 + }, + { + "start": 6971.9, + "end": 6972.18, + "probability": 0.4611 + }, + { + "start": 6972.34, + "end": 6973.48, + "probability": 0.8392 + }, + { + "start": 6973.6, + "end": 6974.16, + "probability": 0.7036 + }, + { + "start": 6974.32, + "end": 6975.54, + "probability": 0.9516 + }, + { + "start": 6981.92, + "end": 6981.92, + "probability": 0.0197 + }, + { + "start": 6981.92, + "end": 6981.92, + "probability": 0.0312 + }, + { + "start": 6981.92, + "end": 6981.92, + "probability": 0.0786 + }, + { + "start": 6981.92, + "end": 6982.0, + "probability": 0.1816 + }, + { + "start": 7009.64, + "end": 7010.42, + "probability": 0.2515 + }, + { + "start": 7011.54, + "end": 7012.64, + "probability": 0.5466 + }, + { + "start": 7013.66, + "end": 7016.08, + "probability": 0.75 + }, + { + "start": 7017.16, + "end": 7019.47, + "probability": 0.967 + }, + { + "start": 7020.18, + "end": 7021.52, + "probability": 0.9658 + }, + { + "start": 7023.36, + "end": 7024.84, + "probability": 0.8633 + }, + { + "start": 7025.48, + "end": 7027.89, + "probability": 0.8002 + }, + { + "start": 7028.28, + "end": 7030.16, + "probability": 0.8979 + }, + { + "start": 7030.44, + "end": 7031.3, + "probability": 0.8423 + }, + { + "start": 7031.38, + "end": 7032.0, + "probability": 0.9531 + }, + { + "start": 7033.48, + "end": 7034.94, + "probability": 0.7366 + }, + { + "start": 7036.06, + "end": 7037.6, + "probability": 0.8635 + }, + { + "start": 7038.16, + "end": 7040.38, + "probability": 0.9894 + }, + { + "start": 7040.6, + "end": 7043.44, + "probability": 0.9889 + }, + { + "start": 7044.82, + "end": 7045.52, + "probability": 0.736 + }, + { + "start": 7047.02, + "end": 7048.98, + "probability": 0.9681 + }, + { + "start": 7051.74, + "end": 7056.02, + "probability": 0.9404 + }, + { + "start": 7058.64, + "end": 7059.92, + "probability": 0.823 + }, + { + "start": 7060.06, + "end": 7061.04, + "probability": 0.8865 + }, + { + "start": 7061.26, + "end": 7061.92, + "probability": 0.8823 + }, + { + "start": 7062.04, + "end": 7063.6, + "probability": 0.9631 + }, + { + "start": 7063.7, + "end": 7064.24, + "probability": 0.8302 + }, + { + "start": 7065.54, + "end": 7070.14, + "probability": 0.9577 + }, + { + "start": 7070.26, + "end": 7070.64, + "probability": 0.5918 + }, + { + "start": 7073.32, + "end": 7075.8, + "probability": 0.887 + }, + { + "start": 7076.08, + "end": 7077.74, + "probability": 0.7411 + }, + { + "start": 7078.34, + "end": 7079.44, + "probability": 0.9535 + }, + { + "start": 7081.94, + "end": 7083.02, + "probability": 0.7735 + }, + { + "start": 7083.2, + "end": 7087.14, + "probability": 0.9919 + }, + { + "start": 7087.22, + "end": 7087.92, + "probability": 0.7539 + }, + { + "start": 7088.04, + "end": 7089.36, + "probability": 0.9292 + }, + { + "start": 7089.53, + "end": 7092.24, + "probability": 0.8315 + }, + { + "start": 7093.38, + "end": 7097.18, + "probability": 0.9607 + }, + { + "start": 7097.64, + "end": 7099.7, + "probability": 0.9659 + }, + { + "start": 7101.0, + "end": 7103.99, + "probability": 0.9795 + }, + { + "start": 7104.94, + "end": 7104.94, + "probability": 0.007 + }, + { + "start": 7105.12, + "end": 7107.48, + "probability": 0.4826 + }, + { + "start": 7107.48, + "end": 7110.3, + "probability": 0.0276 + }, + { + "start": 7110.3, + "end": 7111.38, + "probability": 0.0809 + }, + { + "start": 7111.66, + "end": 7113.66, + "probability": 0.8304 + }, + { + "start": 7113.9, + "end": 7115.18, + "probability": 0.9215 + }, + { + "start": 7115.44, + "end": 7116.62, + "probability": 0.7023 + }, + { + "start": 7117.86, + "end": 7118.94, + "probability": 0.4046 + }, + { + "start": 7119.44, + "end": 7121.36, + "probability": 0.6241 + }, + { + "start": 7121.86, + "end": 7125.46, + "probability": 0.8054 + }, + { + "start": 7125.64, + "end": 7126.94, + "probability": 0.9734 + }, + { + "start": 7127.2, + "end": 7130.1, + "probability": 0.8177 + }, + { + "start": 7131.14, + "end": 7134.49, + "probability": 0.7198 + }, + { + "start": 7135.58, + "end": 7137.52, + "probability": 0.9922 + }, + { + "start": 7138.3, + "end": 7140.76, + "probability": 0.9961 + }, + { + "start": 7142.18, + "end": 7143.02, + "probability": 0.6524 + }, + { + "start": 7143.1, + "end": 7144.32, + "probability": 0.8621 + }, + { + "start": 7144.78, + "end": 7144.78, + "probability": 0.4267 + }, + { + "start": 7144.78, + "end": 7148.94, + "probability": 0.6606 + }, + { + "start": 7149.4, + "end": 7150.4, + "probability": 0.333 + }, + { + "start": 7150.54, + "end": 7152.8, + "probability": 0.3981 + }, + { + "start": 7152.8, + "end": 7153.5, + "probability": 0.3043 + }, + { + "start": 7153.5, + "end": 7155.12, + "probability": 0.1242 + }, + { + "start": 7155.48, + "end": 7155.48, + "probability": 0.2702 + }, + { + "start": 7155.48, + "end": 7157.38, + "probability": 0.6964 + }, + { + "start": 7157.44, + "end": 7159.26, + "probability": 0.6412 + }, + { + "start": 7159.26, + "end": 7160.82, + "probability": 0.9373 + }, + { + "start": 7161.1, + "end": 7161.94, + "probability": 0.9434 + }, + { + "start": 7162.22, + "end": 7164.24, + "probability": 0.902 + }, + { + "start": 7164.36, + "end": 7164.92, + "probability": 0.7952 + }, + { + "start": 7165.0, + "end": 7166.72, + "probability": 0.3421 + }, + { + "start": 7166.88, + "end": 7171.04, + "probability": 0.7014 + }, + { + "start": 7171.68, + "end": 7172.0, + "probability": 0.5709 + }, + { + "start": 7172.06, + "end": 7172.88, + "probability": 0.9629 + }, + { + "start": 7173.36, + "end": 7175.28, + "probability": 0.9526 + }, + { + "start": 7175.4, + "end": 7179.55, + "probability": 0.9512 + }, + { + "start": 7180.14, + "end": 7182.4, + "probability": 0.9897 + }, + { + "start": 7182.82, + "end": 7184.93, + "probability": 0.9902 + }, + { + "start": 7185.26, + "end": 7187.06, + "probability": 0.0016 + }, + { + "start": 7187.06, + "end": 7187.26, + "probability": 0.0296 + }, + { + "start": 7187.26, + "end": 7187.26, + "probability": 0.0106 + }, + { + "start": 7187.26, + "end": 7192.0, + "probability": 0.6316 + }, + { + "start": 7192.22, + "end": 7192.71, + "probability": 0.7803 + }, + { + "start": 7192.94, + "end": 7194.39, + "probability": 0.6892 + }, + { + "start": 7194.76, + "end": 7195.5, + "probability": 0.5124 + }, + { + "start": 7196.12, + "end": 7196.44, + "probability": 0.019 + }, + { + "start": 7196.62, + "end": 7197.5, + "probability": 0.1119 + }, + { + "start": 7198.08, + "end": 7199.28, + "probability": 0.1361 + }, + { + "start": 7199.28, + "end": 7200.2, + "probability": 0.3917 + }, + { + "start": 7200.36, + "end": 7201.02, + "probability": 0.2918 + }, + { + "start": 7201.1, + "end": 7202.72, + "probability": 0.7782 + }, + { + "start": 7202.88, + "end": 7203.96, + "probability": 0.707 + }, + { + "start": 7203.98, + "end": 7205.18, + "probability": 0.6905 + }, + { + "start": 7205.48, + "end": 7208.96, + "probability": 0.8348 + }, + { + "start": 7209.32, + "end": 7209.52, + "probability": 0.8532 + }, + { + "start": 7218.78, + "end": 7219.92, + "probability": 0.5508 + }, + { + "start": 7220.2, + "end": 7220.54, + "probability": 0.2943 + }, + { + "start": 7220.86, + "end": 7221.58, + "probability": 0.7376 + }, + { + "start": 7221.66, + "end": 7228.12, + "probability": 0.9783 + }, + { + "start": 7229.8, + "end": 7231.8, + "probability": 0.8696 + }, + { + "start": 7232.56, + "end": 7236.4, + "probability": 0.9944 + }, + { + "start": 7236.4, + "end": 7239.15, + "probability": 0.9973 + }, + { + "start": 7239.58, + "end": 7241.52, + "probability": 0.9989 + }, + { + "start": 7243.76, + "end": 7244.8, + "probability": 0.894 + }, + { + "start": 7245.26, + "end": 7248.18, + "probability": 0.9693 + }, + { + "start": 7248.48, + "end": 7250.76, + "probability": 0.9793 + }, + { + "start": 7251.2, + "end": 7255.44, + "probability": 0.9783 + }, + { + "start": 7255.86, + "end": 7256.56, + "probability": 0.6207 + }, + { + "start": 7256.58, + "end": 7262.26, + "probability": 0.9508 + }, + { + "start": 7262.62, + "end": 7268.48, + "probability": 0.9897 + }, + { + "start": 7268.94, + "end": 7271.26, + "probability": 0.9974 + }, + { + "start": 7271.38, + "end": 7272.98, + "probability": 0.9098 + }, + { + "start": 7273.22, + "end": 7277.52, + "probability": 0.9961 + }, + { + "start": 7278.98, + "end": 7285.8, + "probability": 0.959 + }, + { + "start": 7285.8, + "end": 7293.1, + "probability": 0.9976 + }, + { + "start": 7293.46, + "end": 7297.6, + "probability": 0.9734 + }, + { + "start": 7298.28, + "end": 7300.29, + "probability": 0.9908 + }, + { + "start": 7300.38, + "end": 7304.42, + "probability": 0.9733 + }, + { + "start": 7304.62, + "end": 7306.76, + "probability": 0.8217 + }, + { + "start": 7306.9, + "end": 7310.57, + "probability": 0.8893 + }, + { + "start": 7311.34, + "end": 7316.62, + "probability": 0.993 + }, + { + "start": 7316.78, + "end": 7318.01, + "probability": 0.8521 + }, + { + "start": 7318.44, + "end": 7321.98, + "probability": 0.9459 + }, + { + "start": 7322.02, + "end": 7323.46, + "probability": 0.9094 + }, + { + "start": 7323.6, + "end": 7324.48, + "probability": 0.6976 + }, + { + "start": 7324.82, + "end": 7328.2, + "probability": 0.9365 + }, + { + "start": 7328.8, + "end": 7332.52, + "probability": 0.8448 + }, + { + "start": 7333.2, + "end": 7337.38, + "probability": 0.9892 + }, + { + "start": 7338.06, + "end": 7341.74, + "probability": 0.8032 + }, + { + "start": 7343.12, + "end": 7346.14, + "probability": 0.794 + }, + { + "start": 7346.82, + "end": 7348.68, + "probability": 0.9925 + }, + { + "start": 7348.82, + "end": 7354.56, + "probability": 0.9124 + }, + { + "start": 7354.56, + "end": 7359.56, + "probability": 0.994 + }, + { + "start": 7360.82, + "end": 7362.9, + "probability": 0.4534 + }, + { + "start": 7362.96, + "end": 7364.46, + "probability": 0.9795 + }, + { + "start": 7364.52, + "end": 7365.65, + "probability": 0.6786 + }, + { + "start": 7367.26, + "end": 7372.86, + "probability": 0.9937 + }, + { + "start": 7373.18, + "end": 7380.04, + "probability": 0.9494 + }, + { + "start": 7380.84, + "end": 7382.8, + "probability": 0.9824 + }, + { + "start": 7383.18, + "end": 7384.86, + "probability": 0.8632 + }, + { + "start": 7385.0, + "end": 7387.0, + "probability": 0.9987 + }, + { + "start": 7387.08, + "end": 7389.38, + "probability": 0.986 + }, + { + "start": 7389.78, + "end": 7397.22, + "probability": 0.8105 + }, + { + "start": 7397.22, + "end": 7402.92, + "probability": 0.9973 + }, + { + "start": 7403.6, + "end": 7408.52, + "probability": 0.9646 + }, + { + "start": 7408.88, + "end": 7409.22, + "probability": 0.7834 + }, + { + "start": 7409.34, + "end": 7413.1, + "probability": 0.9712 + }, + { + "start": 7413.18, + "end": 7414.43, + "probability": 0.9105 + }, + { + "start": 7415.04, + "end": 7417.8, + "probability": 0.9069 + }, + { + "start": 7418.24, + "end": 7419.4, + "probability": 0.6841 + }, + { + "start": 7420.0, + "end": 7420.8, + "probability": 0.7041 + }, + { + "start": 7421.2, + "end": 7425.28, + "probability": 0.9375 + }, + { + "start": 7425.72, + "end": 7426.86, + "probability": 0.8589 + }, + { + "start": 7428.1, + "end": 7433.0, + "probability": 0.9717 + }, + { + "start": 7433.06, + "end": 7436.62, + "probability": 0.9606 + }, + { + "start": 7437.12, + "end": 7437.88, + "probability": 0.6657 + }, + { + "start": 7437.98, + "end": 7439.66, + "probability": 0.7618 + }, + { + "start": 7439.88, + "end": 7444.98, + "probability": 0.9849 + }, + { + "start": 7444.98, + "end": 7449.74, + "probability": 0.9989 + }, + { + "start": 7449.88, + "end": 7452.0, + "probability": 0.8734 + }, + { + "start": 7452.72, + "end": 7453.97, + "probability": 0.6462 + }, + { + "start": 7455.34, + "end": 7459.32, + "probability": 0.9899 + }, + { + "start": 7459.32, + "end": 7463.98, + "probability": 0.9836 + }, + { + "start": 7465.12, + "end": 7466.2, + "probability": 0.7696 + }, + { + "start": 7466.28, + "end": 7467.8, + "probability": 0.4191 + }, + { + "start": 7467.88, + "end": 7468.42, + "probability": 0.7612 + }, + { + "start": 7468.7, + "end": 7469.88, + "probability": 0.6204 + }, + { + "start": 7469.98, + "end": 7470.24, + "probability": 0.7834 + }, + { + "start": 7471.82, + "end": 7473.44, + "probability": 0.9055 + }, + { + "start": 7474.08, + "end": 7475.56, + "probability": 0.9177 + }, + { + "start": 7475.76, + "end": 7478.61, + "probability": 0.9871 + }, + { + "start": 7479.24, + "end": 7485.22, + "probability": 0.9756 + }, + { + "start": 7485.52, + "end": 7487.96, + "probability": 0.9918 + }, + { + "start": 7489.0, + "end": 7491.14, + "probability": 0.8759 + }, + { + "start": 7491.62, + "end": 7496.48, + "probability": 0.9623 + }, + { + "start": 7496.58, + "end": 7497.4, + "probability": 0.6362 + }, + { + "start": 7497.44, + "end": 7500.2, + "probability": 0.8689 + }, + { + "start": 7501.14, + "end": 7504.74, + "probability": 0.9971 + }, + { + "start": 7504.74, + "end": 7509.54, + "probability": 0.937 + }, + { + "start": 7509.62, + "end": 7512.74, + "probability": 0.9899 + }, + { + "start": 7512.88, + "end": 7514.28, + "probability": 0.9343 + }, + { + "start": 7514.7, + "end": 7515.49, + "probability": 0.6606 + }, + { + "start": 7515.84, + "end": 7519.92, + "probability": 0.981 + }, + { + "start": 7520.08, + "end": 7524.24, + "probability": 0.9933 + }, + { + "start": 7524.4, + "end": 7526.18, + "probability": 0.9754 + }, + { + "start": 7526.68, + "end": 7527.43, + "probability": 0.8659 + }, + { + "start": 7527.74, + "end": 7529.42, + "probability": 0.9663 + }, + { + "start": 7530.02, + "end": 7533.04, + "probability": 0.837 + }, + { + "start": 7533.04, + "end": 7536.94, + "probability": 0.9777 + }, + { + "start": 7536.96, + "end": 7537.4, + "probability": 0.4218 + }, + { + "start": 7537.52, + "end": 7540.18, + "probability": 0.9958 + }, + { + "start": 7543.76, + "end": 7550.44, + "probability": 0.9975 + }, + { + "start": 7550.8, + "end": 7553.36, + "probability": 0.7509 + }, + { + "start": 7554.11, + "end": 7558.46, + "probability": 0.9899 + }, + { + "start": 7558.9, + "end": 7562.74, + "probability": 0.9191 + }, + { + "start": 7563.2, + "end": 7565.64, + "probability": 0.7476 + }, + { + "start": 7565.76, + "end": 7569.08, + "probability": 0.9747 + }, + { + "start": 7569.12, + "end": 7573.82, + "probability": 0.9395 + }, + { + "start": 7574.48, + "end": 7577.38, + "probability": 0.981 + }, + { + "start": 7577.84, + "end": 7585.06, + "probability": 0.9894 + }, + { + "start": 7585.68, + "end": 7587.46, + "probability": 0.979 + }, + { + "start": 7587.98, + "end": 7589.4, + "probability": 0.9346 + }, + { + "start": 7590.01, + "end": 7593.22, + "probability": 0.9769 + }, + { + "start": 7593.38, + "end": 7594.16, + "probability": 0.863 + }, + { + "start": 7594.56, + "end": 7596.92, + "probability": 0.9945 + }, + { + "start": 7597.04, + "end": 7598.14, + "probability": 0.9814 + }, + { + "start": 7598.62, + "end": 7600.18, + "probability": 0.8283 + }, + { + "start": 7600.4, + "end": 7602.4, + "probability": 0.9725 + }, + { + "start": 7602.5, + "end": 7605.36, + "probability": 0.9061 + }, + { + "start": 7605.42, + "end": 7606.21, + "probability": 0.893 + }, + { + "start": 7606.48, + "end": 7611.62, + "probability": 0.6928 + }, + { + "start": 7611.82, + "end": 7612.0, + "probability": 0.6989 + }, + { + "start": 7612.6, + "end": 7615.14, + "probability": 0.9739 + }, + { + "start": 7615.2, + "end": 7617.98, + "probability": 0.994 + }, + { + "start": 7618.02, + "end": 7621.3, + "probability": 0.9635 + }, + { + "start": 7621.44, + "end": 7622.26, + "probability": 0.8403 + }, + { + "start": 7622.62, + "end": 7627.72, + "probability": 0.9631 + }, + { + "start": 7627.78, + "end": 7629.34, + "probability": 0.8577 + }, + { + "start": 7629.74, + "end": 7630.98, + "probability": 0.9565 + }, + { + "start": 7631.28, + "end": 7636.02, + "probability": 0.8534 + }, + { + "start": 7637.16, + "end": 7638.34, + "probability": 0.7366 + }, + { + "start": 7638.98, + "end": 7641.24, + "probability": 0.8605 + }, + { + "start": 7641.9, + "end": 7648.94, + "probability": 0.9922 + }, + { + "start": 7649.12, + "end": 7649.98, + "probability": 0.978 + }, + { + "start": 7650.14, + "end": 7651.18, + "probability": 0.9805 + }, + { + "start": 7651.7, + "end": 7652.98, + "probability": 0.9818 + }, + { + "start": 7653.0, + "end": 7655.5, + "probability": 0.9574 + }, + { + "start": 7655.58, + "end": 7656.1, + "probability": 0.755 + }, + { + "start": 7656.62, + "end": 7657.28, + "probability": 0.3171 + }, + { + "start": 7657.62, + "end": 7661.16, + "probability": 0.9906 + }, + { + "start": 7661.16, + "end": 7665.98, + "probability": 0.9983 + }, + { + "start": 7666.58, + "end": 7667.04, + "probability": 0.7181 + }, + { + "start": 7667.2, + "end": 7667.48, + "probability": 0.9441 + }, + { + "start": 7667.52, + "end": 7670.52, + "probability": 0.8774 + }, + { + "start": 7670.98, + "end": 7673.62, + "probability": 0.9581 + }, + { + "start": 7674.08, + "end": 7674.3, + "probability": 0.407 + }, + { + "start": 7674.38, + "end": 7676.14, + "probability": 0.8153 + }, + { + "start": 7676.22, + "end": 7677.24, + "probability": 0.2813 + }, + { + "start": 7677.32, + "end": 7682.2, + "probability": 0.9732 + }, + { + "start": 7682.34, + "end": 7684.18, + "probability": 0.6898 + }, + { + "start": 7684.5, + "end": 7687.82, + "probability": 0.7783 + }, + { + "start": 7687.92, + "end": 7690.26, + "probability": 0.9835 + }, + { + "start": 7690.7, + "end": 7691.07, + "probability": 0.1681 + }, + { + "start": 7692.75, + "end": 7695.0, + "probability": 0.6086 + }, + { + "start": 7695.26, + "end": 7696.86, + "probability": 0.5229 + }, + { + "start": 7696.94, + "end": 7698.66, + "probability": 0.1119 + }, + { + "start": 7701.94, + "end": 7702.48, + "probability": 0.2261 + }, + { + "start": 7702.68, + "end": 7702.86, + "probability": 0.7563 + }, + { + "start": 7703.04, + "end": 7703.38, + "probability": 0.3857 + }, + { + "start": 7703.52, + "end": 7706.03, + "probability": 0.501 + }, + { + "start": 7706.32, + "end": 7708.4, + "probability": 0.6595 + }, + { + "start": 7708.44, + "end": 7708.58, + "probability": 0.3788 + }, + { + "start": 7708.82, + "end": 7711.36, + "probability": 0.7535 + }, + { + "start": 7712.48, + "end": 7716.14, + "probability": 0.9557 + }, + { + "start": 7716.86, + "end": 7719.3, + "probability": 0.9746 + }, + { + "start": 7720.12, + "end": 7720.22, + "probability": 0.8499 + }, + { + "start": 7730.92, + "end": 7735.3, + "probability": 0.1309 + }, + { + "start": 7736.02, + "end": 7736.56, + "probability": 0.0183 + }, + { + "start": 7742.42, + "end": 7743.14, + "probability": 0.5008 + }, + { + "start": 7747.4, + "end": 7750.7, + "probability": 0.7684 + }, + { + "start": 7751.02, + "end": 7755.64, + "probability": 0.827 + }, + { + "start": 7756.44, + "end": 7759.78, + "probability": 0.1272 + }, + { + "start": 7760.18, + "end": 7761.9, + "probability": 0.4862 + }, + { + "start": 7762.18, + "end": 7765.24, + "probability": 0.9612 + }, + { + "start": 7767.1, + "end": 7769.04, + "probability": 0.4973 + }, + { + "start": 7769.24, + "end": 7770.42, + "probability": 0.5412 + }, + { + "start": 7771.31, + "end": 7773.01, + "probability": 0.8386 + }, + { + "start": 7780.28, + "end": 7780.76, + "probability": 0.808 + }, + { + "start": 7781.04, + "end": 7786.48, + "probability": 0.9943 + }, + { + "start": 7787.4, + "end": 7791.9, + "probability": 0.9954 + }, + { + "start": 7792.48, + "end": 7792.72, + "probability": 0.9641 + }, + { + "start": 7793.96, + "end": 7795.32, + "probability": 0.9813 + }, + { + "start": 7795.7, + "end": 7798.58, + "probability": 0.9917 + }, + { + "start": 7799.28, + "end": 7801.14, + "probability": 0.8865 + }, + { + "start": 7801.96, + "end": 7804.34, + "probability": 0.9827 + }, + { + "start": 7804.34, + "end": 7807.78, + "probability": 0.9379 + }, + { + "start": 7808.42, + "end": 7810.5, + "probability": 0.7526 + }, + { + "start": 7811.46, + "end": 7815.92, + "probability": 0.994 + }, + { + "start": 7816.74, + "end": 7817.24, + "probability": 0.5124 + }, + { + "start": 7817.38, + "end": 7817.64, + "probability": 0.7974 + }, + { + "start": 7817.78, + "end": 7818.62, + "probability": 0.9112 + }, + { + "start": 7818.7, + "end": 7821.24, + "probability": 0.8731 + }, + { + "start": 7821.76, + "end": 7822.94, + "probability": 0.8855 + }, + { + "start": 7823.16, + "end": 7825.1, + "probability": 0.9612 + }, + { + "start": 7825.72, + "end": 7827.64, + "probability": 0.5588 + }, + { + "start": 7828.2, + "end": 7830.7, + "probability": 0.9423 + }, + { + "start": 7831.7, + "end": 7834.56, + "probability": 0.9819 + }, + { + "start": 7834.56, + "end": 7838.44, + "probability": 0.9944 + }, + { + "start": 7839.76, + "end": 7842.22, + "probability": 0.8887 + }, + { + "start": 7842.22, + "end": 7845.0, + "probability": 0.9006 + }, + { + "start": 7845.52, + "end": 7848.4, + "probability": 0.9988 + }, + { + "start": 7848.4, + "end": 7851.46, + "probability": 0.9853 + }, + { + "start": 7852.3, + "end": 7853.18, + "probability": 0.6804 + }, + { + "start": 7853.3, + "end": 7853.98, + "probability": 0.9225 + }, + { + "start": 7854.34, + "end": 7858.14, + "probability": 0.9915 + }, + { + "start": 7858.24, + "end": 7859.76, + "probability": 0.755 + }, + { + "start": 7860.14, + "end": 7862.64, + "probability": 0.9514 + }, + { + "start": 7864.32, + "end": 7864.4, + "probability": 0.2927 + }, + { + "start": 7864.5, + "end": 7865.86, + "probability": 0.7194 + }, + { + "start": 7866.02, + "end": 7869.26, + "probability": 0.932 + }, + { + "start": 7870.06, + "end": 7873.64, + "probability": 0.9706 + }, + { + "start": 7873.96, + "end": 7874.34, + "probability": 0.6686 + }, + { + "start": 7875.38, + "end": 7878.3, + "probability": 0.9855 + }, + { + "start": 7878.82, + "end": 7880.12, + "probability": 0.7966 + }, + { + "start": 7881.32, + "end": 7885.24, + "probability": 0.9912 + }, + { + "start": 7885.24, + "end": 7889.36, + "probability": 0.9839 + }, + { + "start": 7890.24, + "end": 7892.07, + "probability": 0.4988 + }, + { + "start": 7893.54, + "end": 7897.65, + "probability": 0.9346 + }, + { + "start": 7898.04, + "end": 7900.04, + "probability": 0.7291 + }, + { + "start": 7900.98, + "end": 7901.9, + "probability": 0.7344 + }, + { + "start": 7901.94, + "end": 7904.2, + "probability": 0.9774 + }, + { + "start": 7904.3, + "end": 7905.48, + "probability": 0.9034 + }, + { + "start": 7906.2, + "end": 7911.1, + "probability": 0.9582 + }, + { + "start": 7911.1, + "end": 7916.28, + "probability": 0.9993 + }, + { + "start": 7917.16, + "end": 7918.3, + "probability": 0.9377 + }, + { + "start": 7920.22, + "end": 7922.52, + "probability": 0.9846 + }, + { + "start": 7923.0, + "end": 7927.72, + "probability": 0.8131 + }, + { + "start": 7928.2, + "end": 7932.5, + "probability": 0.8915 + }, + { + "start": 7947.8, + "end": 7949.3, + "probability": 0.4421 + }, + { + "start": 7949.5, + "end": 7949.5, + "probability": 0.436 + }, + { + "start": 7949.5, + "end": 7950.08, + "probability": 0.8095 + }, + { + "start": 7950.2, + "end": 7951.4, + "probability": 0.7437 + }, + { + "start": 7952.36, + "end": 7955.16, + "probability": 0.9954 + }, + { + "start": 7955.34, + "end": 7956.22, + "probability": 0.9724 + }, + { + "start": 7956.32, + "end": 7957.36, + "probability": 0.9232 + }, + { + "start": 7957.42, + "end": 7958.7, + "probability": 0.879 + }, + { + "start": 7959.56, + "end": 7959.86, + "probability": 0.9813 + }, + { + "start": 7960.48, + "end": 7962.88, + "probability": 0.9884 + }, + { + "start": 7962.96, + "end": 7963.94, + "probability": 0.9176 + }, + { + "start": 7964.08, + "end": 7964.98, + "probability": 0.9183 + }, + { + "start": 7965.12, + "end": 7965.46, + "probability": 0.9093 + }, + { + "start": 7965.96, + "end": 7966.74, + "probability": 0.9115 + }, + { + "start": 7967.56, + "end": 7972.98, + "probability": 0.8714 + }, + { + "start": 7974.64, + "end": 7979.42, + "probability": 0.9993 + }, + { + "start": 7979.62, + "end": 7980.98, + "probability": 0.8934 + }, + { + "start": 7981.58, + "end": 7983.34, + "probability": 0.9574 + }, + { + "start": 7984.06, + "end": 7987.43, + "probability": 0.9844 + }, + { + "start": 7988.14, + "end": 7993.14, + "probability": 0.9798 + }, + { + "start": 7994.36, + "end": 7996.7, + "probability": 0.9928 + }, + { + "start": 7996.86, + "end": 8000.22, + "probability": 0.9976 + }, + { + "start": 8000.42, + "end": 8001.56, + "probability": 0.9922 + }, + { + "start": 8001.78, + "end": 8002.98, + "probability": 0.9927 + }, + { + "start": 8003.62, + "end": 8004.66, + "probability": 0.9832 + }, + { + "start": 8005.8, + "end": 8006.98, + "probability": 0.7769 + }, + { + "start": 8007.1, + "end": 8010.72, + "probability": 0.9446 + }, + { + "start": 8011.44, + "end": 8014.02, + "probability": 0.988 + }, + { + "start": 8014.1, + "end": 8018.14, + "probability": 0.9919 + }, + { + "start": 8019.06, + "end": 8020.72, + "probability": 0.948 + }, + { + "start": 8021.18, + "end": 8024.46, + "probability": 0.9926 + }, + { + "start": 8024.46, + "end": 8026.82, + "probability": 0.9954 + }, + { + "start": 8027.6, + "end": 8032.42, + "probability": 0.8735 + }, + { + "start": 8033.64, + "end": 8036.76, + "probability": 0.9888 + }, + { + "start": 8037.06, + "end": 8039.42, + "probability": 0.9964 + }, + { + "start": 8039.78, + "end": 8045.76, + "probability": 0.98 + }, + { + "start": 8046.24, + "end": 8048.92, + "probability": 0.9901 + }, + { + "start": 8049.82, + "end": 8050.16, + "probability": 0.4659 + }, + { + "start": 8050.24, + "end": 8051.2, + "probability": 0.635 + }, + { + "start": 8051.32, + "end": 8054.26, + "probability": 0.9731 + }, + { + "start": 8055.44, + "end": 8060.64, + "probability": 0.9932 + }, + { + "start": 8061.16, + "end": 8064.4, + "probability": 0.938 + }, + { + "start": 8065.1, + "end": 8066.9, + "probability": 0.999 + }, + { + "start": 8067.64, + "end": 8070.14, + "probability": 0.6878 + }, + { + "start": 8070.7, + "end": 8071.9, + "probability": 0.9545 + }, + { + "start": 8071.92, + "end": 8072.5, + "probability": 0.7537 + }, + { + "start": 8072.52, + "end": 8073.2, + "probability": 0.7391 + }, + { + "start": 8073.76, + "end": 8075.66, + "probability": 0.8089 + }, + { + "start": 8076.14, + "end": 8076.8, + "probability": 0.9336 + }, + { + "start": 8076.88, + "end": 8080.84, + "probability": 0.9938 + }, + { + "start": 8082.46, + "end": 8083.34, + "probability": 0.872 + }, + { + "start": 8083.5, + "end": 8086.4, + "probability": 0.8813 + }, + { + "start": 8086.74, + "end": 8088.12, + "probability": 0.8651 + }, + { + "start": 8088.86, + "end": 8089.52, + "probability": 0.8538 + }, + { + "start": 8090.34, + "end": 8092.06, + "probability": 0.9899 + }, + { + "start": 8092.6, + "end": 8093.92, + "probability": 0.9465 + }, + { + "start": 8094.34, + "end": 8095.76, + "probability": 0.9605 + }, + { + "start": 8096.14, + "end": 8097.62, + "probability": 0.9741 + }, + { + "start": 8098.24, + "end": 8102.78, + "probability": 0.9915 + }, + { + "start": 8104.98, + "end": 8109.46, + "probability": 0.9957 + }, + { + "start": 8110.0, + "end": 8113.72, + "probability": 0.9785 + }, + { + "start": 8114.16, + "end": 8116.48, + "probability": 0.9553 + }, + { + "start": 8118.68, + "end": 8120.14, + "probability": 0.5547 + }, + { + "start": 8120.24, + "end": 8121.42, + "probability": 0.8486 + }, + { + "start": 8121.68, + "end": 8124.08, + "probability": 0.8845 + }, + { + "start": 8124.18, + "end": 8126.14, + "probability": 0.9551 + }, + { + "start": 8126.84, + "end": 8128.58, + "probability": 0.9282 + }, + { + "start": 8129.26, + "end": 8132.02, + "probability": 0.3499 + }, + { + "start": 8133.64, + "end": 8143.58, + "probability": 0.9938 + }, + { + "start": 8144.22, + "end": 8148.42, + "probability": 0.8 + }, + { + "start": 8149.12, + "end": 8151.92, + "probability": 0.9844 + }, + { + "start": 8153.0, + "end": 8159.72, + "probability": 0.9329 + }, + { + "start": 8164.84, + "end": 8171.12, + "probability": 0.8965 + }, + { + "start": 8172.2, + "end": 8175.7, + "probability": 0.9937 + }, + { + "start": 8176.18, + "end": 8184.3, + "probability": 0.9963 + }, + { + "start": 8184.86, + "end": 8187.52, + "probability": 0.9708 + }, + { + "start": 8188.52, + "end": 8190.44, + "probability": 0.8119 + }, + { + "start": 8190.64, + "end": 8193.52, + "probability": 0.8114 + }, + { + "start": 8194.3, + "end": 8198.46, + "probability": 0.9819 + }, + { + "start": 8198.46, + "end": 8203.5, + "probability": 0.991 + }, + { + "start": 8204.22, + "end": 8208.5, + "probability": 0.9967 + }, + { + "start": 8209.5, + "end": 8212.86, + "probability": 0.8753 + }, + { + "start": 8213.8, + "end": 8215.62, + "probability": 0.9334 + }, + { + "start": 8216.32, + "end": 8219.6, + "probability": 0.952 + }, + { + "start": 8219.68, + "end": 8221.42, + "probability": 0.9269 + }, + { + "start": 8222.6, + "end": 8224.18, + "probability": 0.9884 + }, + { + "start": 8225.16, + "end": 8229.24, + "probability": 0.9917 + }, + { + "start": 8229.4, + "end": 8231.52, + "probability": 0.9974 + }, + { + "start": 8231.52, + "end": 8235.06, + "probability": 0.9979 + }, + { + "start": 8236.14, + "end": 8237.32, + "probability": 0.8807 + }, + { + "start": 8238.14, + "end": 8242.98, + "probability": 0.9997 + }, + { + "start": 8243.1, + "end": 8243.74, + "probability": 0.6652 + }, + { + "start": 8244.92, + "end": 8248.74, + "probability": 0.974 + }, + { + "start": 8248.74, + "end": 8252.44, + "probability": 0.9985 + }, + { + "start": 8252.58, + "end": 8253.6, + "probability": 0.9954 + }, + { + "start": 8254.0, + "end": 8255.28, + "probability": 0.9736 + }, + { + "start": 8256.44, + "end": 8260.3, + "probability": 0.9917 + }, + { + "start": 8260.3, + "end": 8263.62, + "probability": 0.9387 + }, + { + "start": 8264.16, + "end": 8265.68, + "probability": 0.963 + }, + { + "start": 8265.8, + "end": 8268.18, + "probability": 0.9893 + }, + { + "start": 8268.8, + "end": 8269.16, + "probability": 0.7378 + }, + { + "start": 8269.26, + "end": 8270.2, + "probability": 0.9432 + }, + { + "start": 8270.22, + "end": 8276.86, + "probability": 0.9974 + }, + { + "start": 8277.44, + "end": 8278.89, + "probability": 0.8989 + }, + { + "start": 8279.56, + "end": 8281.16, + "probability": 0.4599 + }, + { + "start": 8282.42, + "end": 8287.18, + "probability": 0.9893 + }, + { + "start": 8287.18, + "end": 8291.62, + "probability": 0.9978 + }, + { + "start": 8291.98, + "end": 8292.52, + "probability": 0.8464 + }, + { + "start": 8292.56, + "end": 8293.28, + "probability": 0.7118 + }, + { + "start": 8293.8, + "end": 8297.98, + "probability": 0.9837 + }, + { + "start": 8298.66, + "end": 8300.52, + "probability": 0.9879 + }, + { + "start": 8301.14, + "end": 8303.68, + "probability": 0.9746 + }, + { + "start": 8304.28, + "end": 8307.28, + "probability": 0.9931 + }, + { + "start": 8307.8, + "end": 8309.82, + "probability": 0.9409 + }, + { + "start": 8310.2, + "end": 8312.36, + "probability": 0.9248 + }, + { + "start": 8312.46, + "end": 8315.94, + "probability": 0.9597 + }, + { + "start": 8317.3, + "end": 8320.44, + "probability": 0.9987 + }, + { + "start": 8320.44, + "end": 8323.54, + "probability": 0.9993 + }, + { + "start": 8324.26, + "end": 8326.2, + "probability": 0.9823 + }, + { + "start": 8326.2, + "end": 8329.09, + "probability": 0.9973 + }, + { + "start": 8330.04, + "end": 8334.32, + "probability": 0.9945 + }, + { + "start": 8334.32, + "end": 8338.58, + "probability": 0.9981 + }, + { + "start": 8338.58, + "end": 8341.62, + "probability": 0.9491 + }, + { + "start": 8342.22, + "end": 8345.24, + "probability": 0.995 + }, + { + "start": 8346.38, + "end": 8347.72, + "probability": 0.8939 + }, + { + "start": 8347.98, + "end": 8351.48, + "probability": 0.9908 + }, + { + "start": 8351.48, + "end": 8355.22, + "probability": 0.9951 + }, + { + "start": 8356.12, + "end": 8360.0, + "probability": 0.9693 + }, + { + "start": 8360.6, + "end": 8364.12, + "probability": 0.9927 + }, + { + "start": 8364.38, + "end": 8365.64, + "probability": 0.5196 + }, + { + "start": 8365.72, + "end": 8369.46, + "probability": 0.9977 + }, + { + "start": 8369.68, + "end": 8371.3, + "probability": 0.7412 + }, + { + "start": 8371.7, + "end": 8374.78, + "probability": 0.998 + }, + { + "start": 8374.78, + "end": 8377.94, + "probability": 0.8924 + }, + { + "start": 8378.02, + "end": 8379.34, + "probability": 0.567 + }, + { + "start": 8379.34, + "end": 8384.28, + "probability": 0.964 + }, + { + "start": 8384.28, + "end": 8387.68, + "probability": 0.9803 + }, + { + "start": 8389.16, + "end": 8393.28, + "probability": 0.9696 + }, + { + "start": 8393.58, + "end": 8395.5, + "probability": 0.9909 + }, + { + "start": 8395.6, + "end": 8397.6, + "probability": 0.9392 + }, + { + "start": 8398.44, + "end": 8402.24, + "probability": 0.9882 + }, + { + "start": 8402.5, + "end": 8406.08, + "probability": 0.8732 + }, + { + "start": 8406.74, + "end": 8409.48, + "probability": 0.9495 + }, + { + "start": 8409.7, + "end": 8413.78, + "probability": 0.9966 + }, + { + "start": 8414.42, + "end": 8418.8, + "probability": 0.9865 + }, + { + "start": 8418.88, + "end": 8425.42, + "probability": 0.9813 + }, + { + "start": 8425.86, + "end": 8431.54, + "probability": 0.9852 + }, + { + "start": 8431.68, + "end": 8433.58, + "probability": 0.9541 + }, + { + "start": 8434.22, + "end": 8436.38, + "probability": 0.9568 + }, + { + "start": 8436.5, + "end": 8439.76, + "probability": 0.9157 + }, + { + "start": 8440.9, + "end": 8444.34, + "probability": 0.9893 + }, + { + "start": 8445.27, + "end": 8447.6, + "probability": 0.981 + }, + { + "start": 8447.6, + "end": 8449.86, + "probability": 0.9845 + }, + { + "start": 8449.88, + "end": 8455.28, + "probability": 0.9937 + }, + { + "start": 8456.06, + "end": 8460.08, + "probability": 0.9893 + }, + { + "start": 8460.08, + "end": 8463.22, + "probability": 0.996 + }, + { + "start": 8463.22, + "end": 8466.72, + "probability": 0.9823 + }, + { + "start": 8467.46, + "end": 8471.48, + "probability": 0.966 + }, + { + "start": 8472.5, + "end": 8476.32, + "probability": 0.9678 + }, + { + "start": 8476.46, + "end": 8478.32, + "probability": 0.837 + }, + { + "start": 8478.82, + "end": 8482.32, + "probability": 0.9404 + }, + { + "start": 8484.2, + "end": 8486.26, + "probability": 0.9613 + }, + { + "start": 8486.48, + "end": 8491.62, + "probability": 0.9985 + }, + { + "start": 8492.1, + "end": 8493.78, + "probability": 0.6304 + }, + { + "start": 8494.42, + "end": 8498.04, + "probability": 0.8512 + }, + { + "start": 8498.66, + "end": 8502.34, + "probability": 0.9809 + }, + { + "start": 8502.52, + "end": 8506.28, + "probability": 0.7983 + }, + { + "start": 8506.64, + "end": 8510.74, + "probability": 0.9651 + }, + { + "start": 8510.92, + "end": 8514.8, + "probability": 0.9837 + }, + { + "start": 8515.82, + "end": 8518.56, + "probability": 0.9659 + }, + { + "start": 8518.56, + "end": 8522.22, + "probability": 0.9752 + }, + { + "start": 8523.2, + "end": 8525.06, + "probability": 0.9742 + }, + { + "start": 8525.4, + "end": 8525.88, + "probability": 0.8074 + }, + { + "start": 8525.96, + "end": 8526.66, + "probability": 0.8657 + }, + { + "start": 8527.12, + "end": 8534.46, + "probability": 0.9921 + }, + { + "start": 8534.46, + "end": 8539.64, + "probability": 0.9832 + }, + { + "start": 8541.34, + "end": 8542.68, + "probability": 0.6403 + }, + { + "start": 8542.86, + "end": 8546.78, + "probability": 0.9667 + }, + { + "start": 8546.78, + "end": 8549.6, + "probability": 0.8145 + }, + { + "start": 8549.68, + "end": 8551.68, + "probability": 0.7239 + }, + { + "start": 8551.78, + "end": 8553.06, + "probability": 0.9794 + }, + { + "start": 8553.36, + "end": 8554.76, + "probability": 0.9696 + }, + { + "start": 8554.82, + "end": 8556.08, + "probability": 0.9791 + }, + { + "start": 8556.32, + "end": 8557.8, + "probability": 0.9858 + }, + { + "start": 8558.14, + "end": 8560.12, + "probability": 0.8172 + }, + { + "start": 8560.2, + "end": 8562.9, + "probability": 0.9678 + }, + { + "start": 8563.32, + "end": 8566.28, + "probability": 0.8642 + }, + { + "start": 8567.06, + "end": 8567.46, + "probability": 0.5339 + }, + { + "start": 8567.58, + "end": 8568.62, + "probability": 0.6706 + }, + { + "start": 8568.76, + "end": 8570.14, + "probability": 0.7217 + }, + { + "start": 8570.26, + "end": 8571.58, + "probability": 0.9151 + }, + { + "start": 8572.12, + "end": 8577.0, + "probability": 0.8833 + }, + { + "start": 8577.6, + "end": 8578.68, + "probability": 0.9625 + }, + { + "start": 8579.97, + "end": 8583.02, + "probability": 0.9766 + }, + { + "start": 8583.54, + "end": 8584.84, + "probability": 0.7736 + }, + { + "start": 8585.0, + "end": 8587.48, + "probability": 0.9769 + }, + { + "start": 8588.04, + "end": 8591.54, + "probability": 0.9066 + }, + { + "start": 8592.1, + "end": 8596.92, + "probability": 0.9561 + }, + { + "start": 8596.94, + "end": 8597.34, + "probability": 0.7521 + }, + { + "start": 8597.62, + "end": 8598.68, + "probability": 0.1953 + }, + { + "start": 8598.76, + "end": 8603.76, + "probability": 0.8188 + }, + { + "start": 8613.64, + "end": 8616.06, + "probability": 0.5621 + }, + { + "start": 8617.26, + "end": 8622.38, + "probability": 0.9274 + }, + { + "start": 8622.74, + "end": 8623.64, + "probability": 0.9054 + }, + { + "start": 8623.76, + "end": 8629.04, + "probability": 0.9824 + }, + { + "start": 8629.04, + "end": 8633.22, + "probability": 0.9958 + }, + { + "start": 8633.42, + "end": 8636.74, + "probability": 0.994 + }, + { + "start": 8637.06, + "end": 8639.36, + "probability": 0.9399 + }, + { + "start": 8640.08, + "end": 8642.04, + "probability": 0.9053 + }, + { + "start": 8642.38, + "end": 8646.18, + "probability": 0.9927 + }, + { + "start": 8647.04, + "end": 8652.46, + "probability": 0.9662 + }, + { + "start": 8652.76, + "end": 8656.38, + "probability": 0.9919 + }, + { + "start": 8657.02, + "end": 8661.48, + "probability": 0.9126 + }, + { + "start": 8661.86, + "end": 8663.4, + "probability": 0.9508 + }, + { + "start": 8663.46, + "end": 8664.42, + "probability": 0.9319 + }, + { + "start": 8664.52, + "end": 8666.98, + "probability": 0.9873 + }, + { + "start": 8669.22, + "end": 8671.04, + "probability": 0.7845 + }, + { + "start": 8671.9, + "end": 8678.14, + "probability": 0.9934 + }, + { + "start": 8678.32, + "end": 8678.72, + "probability": 0.9403 + }, + { + "start": 8678.94, + "end": 8680.68, + "probability": 0.9947 + }, + { + "start": 8680.76, + "end": 8682.52, + "probability": 0.9012 + }, + { + "start": 8683.16, + "end": 8688.21, + "probability": 0.9641 + }, + { + "start": 8689.9, + "end": 8696.88, + "probability": 0.994 + }, + { + "start": 8697.42, + "end": 8700.34, + "probability": 0.9974 + }, + { + "start": 8701.82, + "end": 8706.92, + "probability": 0.9984 + }, + { + "start": 8706.98, + "end": 8709.26, + "probability": 0.9293 + }, + { + "start": 8709.48, + "end": 8713.02, + "probability": 0.9986 + }, + { + "start": 8713.02, + "end": 8716.1, + "probability": 0.9949 + }, + { + "start": 8718.25, + "end": 8720.24, + "probability": 0.7826 + }, + { + "start": 8720.6, + "end": 8720.86, + "probability": 0.7826 + }, + { + "start": 8721.16, + "end": 8723.38, + "probability": 0.9767 + }, + { + "start": 8724.58, + "end": 8727.28, + "probability": 0.9837 + }, + { + "start": 8727.42, + "end": 8728.66, + "probability": 0.7323 + }, + { + "start": 8728.78, + "end": 8729.32, + "probability": 0.7203 + }, + { + "start": 8730.04, + "end": 8733.66, + "probability": 0.546 + }, + { + "start": 8733.98, + "end": 8735.66, + "probability": 0.9589 + }, + { + "start": 8736.42, + "end": 8740.79, + "probability": 0.9463 + }, + { + "start": 8741.32, + "end": 8742.56, + "probability": 0.6485 + }, + { + "start": 8742.94, + "end": 8743.84, + "probability": 0.9716 + }, + { + "start": 8744.04, + "end": 8744.74, + "probability": 0.8044 + }, + { + "start": 8745.26, + "end": 8749.32, + "probability": 0.9948 + }, + { + "start": 8750.08, + "end": 8750.98, + "probability": 0.9122 + }, + { + "start": 8751.4, + "end": 8752.14, + "probability": 0.87 + }, + { + "start": 8752.2, + "end": 8754.34, + "probability": 0.9966 + }, + { + "start": 8754.34, + "end": 8757.48, + "probability": 0.9931 + }, + { + "start": 8757.76, + "end": 8762.91, + "probability": 0.8964 + }, + { + "start": 8763.38, + "end": 8764.68, + "probability": 0.8795 + }, + { + "start": 8765.38, + "end": 8766.62, + "probability": 0.8977 + }, + { + "start": 8766.92, + "end": 8767.74, + "probability": 0.7262 + }, + { + "start": 8767.78, + "end": 8772.72, + "probability": 0.9575 + }, + { + "start": 8773.28, + "end": 8776.02, + "probability": 0.9438 + }, + { + "start": 8776.46, + "end": 8778.58, + "probability": 0.9401 + }, + { + "start": 8779.06, + "end": 8782.66, + "probability": 0.9763 + }, + { + "start": 8782.72, + "end": 8783.27, + "probability": 0.9775 + }, + { + "start": 8783.48, + "end": 8783.96, + "probability": 0.6264 + }, + { + "start": 8784.96, + "end": 8788.66, + "probability": 0.9719 + }, + { + "start": 8788.66, + "end": 8793.98, + "probability": 0.9888 + }, + { + "start": 8794.84, + "end": 8799.32, + "probability": 0.9958 + }, + { + "start": 8799.32, + "end": 8803.79, + "probability": 0.9961 + }, + { + "start": 8803.92, + "end": 8806.15, + "probability": 0.771 + }, + { + "start": 8806.92, + "end": 8810.58, + "probability": 0.9978 + }, + { + "start": 8810.58, + "end": 8816.18, + "probability": 0.9957 + }, + { + "start": 8816.32, + "end": 8817.0, + "probability": 0.5911 + }, + { + "start": 8817.34, + "end": 8822.08, + "probability": 0.9904 + }, + { + "start": 8822.48, + "end": 8826.84, + "probability": 0.7521 + }, + { + "start": 8827.16, + "end": 8830.78, + "probability": 0.9539 + }, + { + "start": 8831.18, + "end": 8833.94, + "probability": 0.9918 + }, + { + "start": 8833.94, + "end": 8838.78, + "probability": 0.9946 + }, + { + "start": 8838.88, + "end": 8840.07, + "probability": 0.782 + }, + { + "start": 8840.24, + "end": 8841.54, + "probability": 0.856 + }, + { + "start": 8841.84, + "end": 8842.94, + "probability": 0.98 + }, + { + "start": 8843.0, + "end": 8843.92, + "probability": 0.7711 + }, + { + "start": 8844.1, + "end": 8845.74, + "probability": 0.9776 + }, + { + "start": 8845.84, + "end": 8848.9, + "probability": 0.9965 + }, + { + "start": 8849.18, + "end": 8852.43, + "probability": 0.9808 + }, + { + "start": 8853.2, + "end": 8858.22, + "probability": 0.9715 + }, + { + "start": 8858.4, + "end": 8860.54, + "probability": 0.8403 + }, + { + "start": 8860.62, + "end": 8862.78, + "probability": 0.9862 + }, + { + "start": 8863.34, + "end": 8866.88, + "probability": 0.9961 + }, + { + "start": 8867.2, + "end": 8868.1, + "probability": 0.9963 + }, + { + "start": 8868.72, + "end": 8870.4, + "probability": 0.998 + }, + { + "start": 8870.64, + "end": 8871.68, + "probability": 0.9125 + }, + { + "start": 8872.02, + "end": 8876.2, + "probability": 0.9399 + }, + { + "start": 8876.4, + "end": 8877.18, + "probability": 0.9001 + }, + { + "start": 8877.3, + "end": 8879.84, + "probability": 0.9961 + }, + { + "start": 8879.84, + "end": 8882.36, + "probability": 0.9985 + }, + { + "start": 8882.84, + "end": 8887.08, + "probability": 0.9814 + }, + { + "start": 8887.08, + "end": 8890.02, + "probability": 0.9673 + }, + { + "start": 8890.12, + "end": 8891.08, + "probability": 0.7474 + }, + { + "start": 8891.92, + "end": 8892.5, + "probability": 0.6387 + }, + { + "start": 8892.76, + "end": 8898.72, + "probability": 0.9914 + }, + { + "start": 8898.9, + "end": 8900.52, + "probability": 0.8609 + }, + { + "start": 8901.32, + "end": 8905.48, + "probability": 0.8952 + }, + { + "start": 8906.02, + "end": 8910.9, + "probability": 0.915 + }, + { + "start": 8911.58, + "end": 8912.52, + "probability": 0.9307 + }, + { + "start": 8912.62, + "end": 8914.66, + "probability": 0.9194 + }, + { + "start": 8915.06, + "end": 8919.68, + "probability": 0.9976 + }, + { + "start": 8919.76, + "end": 8920.16, + "probability": 0.6895 + }, + { + "start": 8920.22, + "end": 8925.3, + "probability": 0.9976 + }, + { + "start": 8926.2, + "end": 8927.9, + "probability": 0.8185 + }, + { + "start": 8928.1, + "end": 8928.72, + "probability": 0.1352 + }, + { + "start": 8928.72, + "end": 8930.23, + "probability": 0.8631 + }, + { + "start": 8930.56, + "end": 8934.9, + "probability": 0.7209 + }, + { + "start": 8935.08, + "end": 8939.02, + "probability": 0.9829 + }, + { + "start": 8939.1, + "end": 8939.56, + "probability": 0.2578 + }, + { + "start": 8940.18, + "end": 8942.52, + "probability": 0.9436 + }, + { + "start": 8942.7, + "end": 8945.14, + "probability": 0.9989 + }, + { + "start": 8945.42, + "end": 8948.04, + "probability": 0.9622 + }, + { + "start": 8948.12, + "end": 8948.94, + "probability": 0.6065 + }, + { + "start": 8949.14, + "end": 8949.92, + "probability": 0.3917 + }, + { + "start": 8949.92, + "end": 8950.4, + "probability": 0.4823 + }, + { + "start": 8950.4, + "end": 8952.49, + "probability": 0.9788 + }, + { + "start": 8952.54, + "end": 8953.08, + "probability": 0.4898 + }, + { + "start": 8954.14, + "end": 8957.76, + "probability": 0.7876 + }, + { + "start": 8958.42, + "end": 8965.9, + "probability": 0.9822 + }, + { + "start": 8966.2, + "end": 8966.58, + "probability": 0.7197 + }, + { + "start": 8966.8, + "end": 8967.86, + "probability": 0.6786 + }, + { + "start": 8967.96, + "end": 8972.62, + "probability": 0.7553 + }, + { + "start": 8973.14, + "end": 8977.16, + "probability": 0.9022 + }, + { + "start": 8977.4, + "end": 8979.16, + "probability": 0.2146 + }, + { + "start": 8979.64, + "end": 8983.02, + "probability": 0.8574 + }, + { + "start": 8983.64, + "end": 8984.31, + "probability": 0.9741 + }, + { + "start": 9002.5, + "end": 9003.56, + "probability": 0.7426 + }, + { + "start": 9003.94, + "end": 9009.08, + "probability": 0.1301 + }, + { + "start": 9009.08, + "end": 9009.78, + "probability": 0.0409 + }, + { + "start": 9009.92, + "end": 9010.44, + "probability": 0.0364 + }, + { + "start": 9010.44, + "end": 9017.58, + "probability": 0.3223 + }, + { + "start": 9020.2, + "end": 9020.88, + "probability": 0.2477 + }, + { + "start": 9021.48, + "end": 9024.96, + "probability": 0.052 + }, + { + "start": 9025.81, + "end": 9026.68, + "probability": 0.1323 + }, + { + "start": 9026.68, + "end": 9027.76, + "probability": 0.05 + }, + { + "start": 9030.29, + "end": 9031.54, + "probability": 0.0126 + }, + { + "start": 9033.18, + "end": 9033.82, + "probability": 0.209 + }, + { + "start": 9034.14, + "end": 9034.2, + "probability": 0.0001 + }, + { + "start": 9061.27, + "end": 9062.66, + "probability": 0.0565 + }, + { + "start": 9062.68, + "end": 9062.78, + "probability": 0.0332 + }, + { + "start": 9062.78, + "end": 9063.38, + "probability": 0.2479 + }, + { + "start": 9063.38, + "end": 9063.38, + "probability": 0.3183 + }, + { + "start": 9063.38, + "end": 9063.38, + "probability": 0.3431 + }, + { + "start": 9063.38, + "end": 9063.38, + "probability": 0.1041 + }, + { + "start": 9073.0, + "end": 9073.0, + "probability": 0.0 + }, + { + "start": 9073.0, + "end": 9073.0, + "probability": 0.0 + }, + { + "start": 9073.0, + "end": 9073.0, + "probability": 0.0 + }, + { + "start": 9073.0, + "end": 9073.0, + "probability": 0.0 + }, + { + "start": 9073.22, + "end": 9073.28, + "probability": 0.0908 + }, + { + "start": 9073.28, + "end": 9077.0, + "probability": 0.9799 + }, + { + "start": 9079.02, + "end": 9081.8, + "probability": 0.8873 + }, + { + "start": 9083.82, + "end": 9087.76, + "probability": 0.9755 + }, + { + "start": 9090.26, + "end": 9095.9, + "probability": 0.9753 + }, + { + "start": 9096.74, + "end": 9099.82, + "probability": 0.8779 + }, + { + "start": 9100.32, + "end": 9105.59, + "probability": 0.9851 + }, + { + "start": 9107.22, + "end": 9108.7, + "probability": 0.5691 + }, + { + "start": 9109.5, + "end": 9110.56, + "probability": 0.9061 + }, + { + "start": 9111.24, + "end": 9115.82, + "probability": 0.8511 + }, + { + "start": 9115.82, + "end": 9119.66, + "probability": 0.9871 + }, + { + "start": 9122.7, + "end": 9124.1, + "probability": 0.9022 + }, + { + "start": 9125.28, + "end": 9126.4, + "probability": 0.617 + }, + { + "start": 9127.78, + "end": 9130.48, + "probability": 0.9945 + }, + { + "start": 9131.34, + "end": 9133.58, + "probability": 0.8809 + }, + { + "start": 9134.16, + "end": 9141.62, + "probability": 0.9506 + }, + { + "start": 9142.78, + "end": 9146.76, + "probability": 0.9014 + }, + { + "start": 9147.24, + "end": 9147.98, + "probability": 0.5078 + }, + { + "start": 9148.08, + "end": 9148.66, + "probability": 0.798 + }, + { + "start": 9149.8, + "end": 9151.44, + "probability": 0.7723 + }, + { + "start": 9152.82, + "end": 9152.82, + "probability": 0.0586 + }, + { + "start": 9152.82, + "end": 9154.96, + "probability": 0.8831 + }, + { + "start": 9156.2, + "end": 9159.7, + "probability": 0.8901 + }, + { + "start": 9160.26, + "end": 9165.26, + "probability": 0.9849 + }, + { + "start": 9169.58, + "end": 9169.58, + "probability": 0.1524 + }, + { + "start": 9169.58, + "end": 9170.36, + "probability": 0.2144 + }, + { + "start": 9171.66, + "end": 9172.84, + "probability": 0.6093 + }, + { + "start": 9172.92, + "end": 9173.18, + "probability": 0.8503 + }, + { + "start": 9173.28, + "end": 9174.6, + "probability": 0.6578 + }, + { + "start": 9175.06, + "end": 9176.48, + "probability": 0.9404 + }, + { + "start": 9176.52, + "end": 9177.08, + "probability": 0.7469 + }, + { + "start": 9177.14, + "end": 9177.8, + "probability": 0.823 + }, + { + "start": 9177.88, + "end": 9179.32, + "probability": 0.8595 + }, + { + "start": 9180.36, + "end": 9186.62, + "probability": 0.847 + }, + { + "start": 9187.0, + "end": 9188.88, + "probability": 0.7646 + }, + { + "start": 9189.96, + "end": 9192.5, + "probability": 0.7644 + }, + { + "start": 9192.7, + "end": 9199.08, + "probability": 0.8925 + }, + { + "start": 9199.52, + "end": 9201.22, + "probability": 0.834 + }, + { + "start": 9201.36, + "end": 9206.1, + "probability": 0.9431 + }, + { + "start": 9206.38, + "end": 9212.84, + "probability": 0.9755 + }, + { + "start": 9214.58, + "end": 9214.98, + "probability": 0.4849 + }, + { + "start": 9215.04, + "end": 9219.52, + "probability": 0.9386 + }, + { + "start": 9219.78, + "end": 9220.76, + "probability": 0.8894 + }, + { + "start": 9221.48, + "end": 9224.22, + "probability": 0.9392 + }, + { + "start": 9225.08, + "end": 9227.68, + "probability": 0.8048 + }, + { + "start": 9228.82, + "end": 9231.12, + "probability": 0.9902 + }, + { + "start": 9232.04, + "end": 9235.32, + "probability": 0.6265 + }, + { + "start": 9235.98, + "end": 9236.22, + "probability": 0.9649 + }, + { + "start": 9237.04, + "end": 9238.98, + "probability": 0.5321 + }, + { + "start": 9239.2, + "end": 9240.9, + "probability": 0.9948 + }, + { + "start": 9241.64, + "end": 9245.4, + "probability": 0.9521 + }, + { + "start": 9246.1, + "end": 9249.12, + "probability": 0.7682 + }, + { + "start": 9249.58, + "end": 9252.84, + "probability": 0.9167 + }, + { + "start": 9253.54, + "end": 9257.4, + "probability": 0.7855 + }, + { + "start": 9258.56, + "end": 9261.04, + "probability": 0.9121 + }, + { + "start": 9261.76, + "end": 9268.32, + "probability": 0.9844 + }, + { + "start": 9269.6, + "end": 9270.48, + "probability": 0.5011 + }, + { + "start": 9270.98, + "end": 9272.7, + "probability": 0.9424 + }, + { + "start": 9272.86, + "end": 9273.9, + "probability": 0.9615 + }, + { + "start": 9274.76, + "end": 9280.12, + "probability": 0.9757 + }, + { + "start": 9280.64, + "end": 9281.7, + "probability": 0.908 + }, + { + "start": 9282.22, + "end": 9289.04, + "probability": 0.9629 + }, + { + "start": 9291.62, + "end": 9294.96, + "probability": 0.3946 + }, + { + "start": 9295.84, + "end": 9295.9, + "probability": 0.3704 + }, + { + "start": 9295.96, + "end": 9296.7, + "probability": 0.586 + }, + { + "start": 9297.98, + "end": 9301.54, + "probability": 0.946 + }, + { + "start": 9302.54, + "end": 9304.34, + "probability": 0.9576 + }, + { + "start": 9304.76, + "end": 9308.14, + "probability": 0.9454 + }, + { + "start": 9308.92, + "end": 9312.7, + "probability": 0.8682 + }, + { + "start": 9312.84, + "end": 9314.08, + "probability": 0.9901 + }, + { + "start": 9315.1, + "end": 9319.66, + "probability": 0.8857 + }, + { + "start": 9320.46, + "end": 9322.42, + "probability": 0.9403 + }, + { + "start": 9323.78, + "end": 9324.59, + "probability": 0.9863 + }, + { + "start": 9325.4, + "end": 9328.88, + "probability": 0.9847 + }, + { + "start": 9332.04, + "end": 9335.08, + "probability": 0.9475 + }, + { + "start": 9335.18, + "end": 9336.48, + "probability": 0.9053 + }, + { + "start": 9337.22, + "end": 9338.62, + "probability": 0.8199 + }, + { + "start": 9339.0, + "end": 9342.7, + "probability": 0.7354 + }, + { + "start": 9343.76, + "end": 9346.36, + "probability": 0.4781 + }, + { + "start": 9347.04, + "end": 9348.74, + "probability": 0.3592 + }, + { + "start": 9350.48, + "end": 9353.48, + "probability": 0.9389 + }, + { + "start": 9354.22, + "end": 9359.48, + "probability": 0.9576 + }, + { + "start": 9361.3, + "end": 9362.7, + "probability": 0.7543 + }, + { + "start": 9362.9, + "end": 9365.8, + "probability": 0.9368 + }, + { + "start": 9366.76, + "end": 9369.8, + "probability": 0.9332 + }, + { + "start": 9371.34, + "end": 9374.2, + "probability": 0.9948 + }, + { + "start": 9374.6, + "end": 9378.32, + "probability": 0.9886 + }, + { + "start": 9378.68, + "end": 9379.32, + "probability": 0.6491 + }, + { + "start": 9379.56, + "end": 9379.98, + "probability": 0.4639 + }, + { + "start": 9381.4, + "end": 9381.94, + "probability": 0.9001 + }, + { + "start": 9382.22, + "end": 9382.54, + "probability": 0.733 + }, + { + "start": 9382.86, + "end": 9383.42, + "probability": 0.8575 + }, + { + "start": 9384.18, + "end": 9385.48, + "probability": 0.6967 + }, + { + "start": 9385.72, + "end": 9387.64, + "probability": 0.8923 + }, + { + "start": 9387.7, + "end": 9389.5, + "probability": 0.9149 + }, + { + "start": 9391.98, + "end": 9391.98, + "probability": 0.0054 + }, + { + "start": 9394.26, + "end": 9394.4, + "probability": 0.0933 + }, + { + "start": 9394.4, + "end": 9394.4, + "probability": 0.0703 + }, + { + "start": 9394.4, + "end": 9395.48, + "probability": 0.5757 + }, + { + "start": 9420.22, + "end": 9421.82, + "probability": 0.5032 + }, + { + "start": 9421.82, + "end": 9422.7, + "probability": 0.5781 + }, + { + "start": 9423.3, + "end": 9426.08, + "probability": 0.5122 + }, + { + "start": 9427.5, + "end": 9429.3, + "probability": 0.6722 + }, + { + "start": 9430.14, + "end": 9436.5, + "probability": 0.9402 + }, + { + "start": 9437.24, + "end": 9438.56, + "probability": 0.9824 + }, + { + "start": 9438.64, + "end": 9440.74, + "probability": 0.8196 + }, + { + "start": 9440.8, + "end": 9444.3, + "probability": 0.9772 + }, + { + "start": 9444.84, + "end": 9446.18, + "probability": 0.8212 + }, + { + "start": 9446.82, + "end": 9449.88, + "probability": 0.7749 + }, + { + "start": 9449.98, + "end": 9451.92, + "probability": 0.8595 + }, + { + "start": 9453.02, + "end": 9454.74, + "probability": 0.7509 + }, + { + "start": 9455.34, + "end": 9456.78, + "probability": 0.9798 + }, + { + "start": 9457.36, + "end": 9458.7, + "probability": 0.6831 + }, + { + "start": 9458.82, + "end": 9459.42, + "probability": 0.5291 + }, + { + "start": 9460.74, + "end": 9464.6, + "probability": 0.9553 + }, + { + "start": 9465.4, + "end": 9466.72, + "probability": 0.9941 + }, + { + "start": 9466.9, + "end": 9468.08, + "probability": 0.9565 + }, + { + "start": 9469.0, + "end": 9469.34, + "probability": 0.7646 + }, + { + "start": 9469.4, + "end": 9471.32, + "probability": 0.9824 + }, + { + "start": 9471.58, + "end": 9473.78, + "probability": 0.9739 + }, + { + "start": 9474.58, + "end": 9478.3, + "probability": 0.9236 + }, + { + "start": 9478.84, + "end": 9480.0, + "probability": 0.75 + }, + { + "start": 9480.78, + "end": 9482.71, + "probability": 0.9961 + }, + { + "start": 9484.06, + "end": 9487.6, + "probability": 0.7696 + }, + { + "start": 9488.16, + "end": 9494.16, + "probability": 0.5688 + }, + { + "start": 9494.28, + "end": 9495.58, + "probability": 0.8594 + }, + { + "start": 9496.24, + "end": 9498.71, + "probability": 0.8786 + }, + { + "start": 9499.78, + "end": 9502.3, + "probability": 0.8112 + }, + { + "start": 9502.82, + "end": 9506.44, + "probability": 0.6951 + }, + { + "start": 9507.28, + "end": 9508.44, + "probability": 0.877 + }, + { + "start": 9509.34, + "end": 9510.16, + "probability": 0.8241 + }, + { + "start": 9510.26, + "end": 9512.54, + "probability": 0.8054 + }, + { + "start": 9512.7, + "end": 9513.1, + "probability": 0.7757 + }, + { + "start": 9513.58, + "end": 9515.2, + "probability": 0.7612 + }, + { + "start": 9515.34, + "end": 9518.16, + "probability": 0.8763 + }, + { + "start": 9519.0, + "end": 9520.96, + "probability": 0.9762 + }, + { + "start": 9521.44, + "end": 9525.19, + "probability": 0.9753 + }, + { + "start": 9525.86, + "end": 9529.58, + "probability": 0.9901 + }, + { + "start": 9530.06, + "end": 9535.12, + "probability": 0.9398 + }, + { + "start": 9536.0, + "end": 9536.44, + "probability": 0.998 + }, + { + "start": 9537.04, + "end": 9539.62, + "probability": 0.9973 + }, + { + "start": 9539.78, + "end": 9543.01, + "probability": 0.9867 + }, + { + "start": 9543.56, + "end": 9548.94, + "probability": 0.9974 + }, + { + "start": 9549.78, + "end": 9551.82, + "probability": 0.899 + }, + { + "start": 9552.66, + "end": 9555.1, + "probability": 0.876 + }, + { + "start": 9555.66, + "end": 9557.14, + "probability": 0.812 + }, + { + "start": 9557.84, + "end": 9561.06, + "probability": 0.5953 + }, + { + "start": 9561.18, + "end": 9565.8, + "probability": 0.9972 + }, + { + "start": 9566.56, + "end": 9570.82, + "probability": 0.9877 + }, + { + "start": 9571.28, + "end": 9573.66, + "probability": 0.9957 + }, + { + "start": 9575.32, + "end": 9579.92, + "probability": 0.9945 + }, + { + "start": 9580.5, + "end": 9582.86, + "probability": 0.9951 + }, + { + "start": 9582.9, + "end": 9585.17, + "probability": 0.9971 + }, + { + "start": 9585.28, + "end": 9588.24, + "probability": 0.9614 + }, + { + "start": 9589.16, + "end": 9591.4, + "probability": 0.7369 + }, + { + "start": 9591.44, + "end": 9596.72, + "probability": 0.9234 + }, + { + "start": 9596.92, + "end": 9599.44, + "probability": 0.9575 + }, + { + "start": 9600.0, + "end": 9606.84, + "probability": 0.984 + }, + { + "start": 9607.0, + "end": 9607.68, + "probability": 0.7877 + }, + { + "start": 9607.84, + "end": 9608.24, + "probability": 0.697 + }, + { + "start": 9608.82, + "end": 9610.08, + "probability": 0.692 + }, + { + "start": 9611.62, + "end": 9613.7, + "probability": 0.3309 + }, + { + "start": 9614.56, + "end": 9615.58, + "probability": 0.8039 + }, + { + "start": 9616.04, + "end": 9619.2, + "probability": 0.8793 + }, + { + "start": 9619.96, + "end": 9621.52, + "probability": 0.5608 + }, + { + "start": 9621.82, + "end": 9625.28, + "probability": 0.9507 + }, + { + "start": 9625.34, + "end": 9634.34, + "probability": 0.754 + }, + { + "start": 9634.48, + "end": 9636.0, + "probability": 0.9636 + }, + { + "start": 9636.56, + "end": 9638.32, + "probability": 0.6904 + }, + { + "start": 9639.1, + "end": 9642.12, + "probability": 0.9862 + }, + { + "start": 9642.12, + "end": 9646.36, + "probability": 0.9938 + }, + { + "start": 9646.82, + "end": 9648.26, + "probability": 0.9042 + }, + { + "start": 9648.74, + "end": 9651.44, + "probability": 0.9946 + }, + { + "start": 9652.04, + "end": 9653.4, + "probability": 0.6736 + }, + { + "start": 9653.5, + "end": 9655.49, + "probability": 0.3869 + }, + { + "start": 9656.1, + "end": 9661.34, + "probability": 0.838 + }, + { + "start": 9661.34, + "end": 9663.74, + "probability": 0.7218 + }, + { + "start": 9664.4, + "end": 9666.98, + "probability": 0.398 + }, + { + "start": 9667.32, + "end": 9668.82, + "probability": 0.9883 + }, + { + "start": 9669.8, + "end": 9676.02, + "probability": 0.9618 + }, + { + "start": 9676.52, + "end": 9676.68, + "probability": 0.0021 + }, + { + "start": 9676.68, + "end": 9679.5, + "probability": 0.4138 + }, + { + "start": 9680.9, + "end": 9684.04, + "probability": 0.8364 + }, + { + "start": 9685.28, + "end": 9685.94, + "probability": 0.7649 + }, + { + "start": 9686.0, + "end": 9686.7, + "probability": 0.6278 + }, + { + "start": 9686.78, + "end": 9687.76, + "probability": 0.3498 + }, + { + "start": 9687.9, + "end": 9688.42, + "probability": 0.826 + }, + { + "start": 9688.42, + "end": 9689.56, + "probability": 0.0405 + }, + { + "start": 9690.1, + "end": 9691.14, + "probability": 0.4931 + }, + { + "start": 9691.22, + "end": 9692.52, + "probability": 0.9282 + }, + { + "start": 9692.62, + "end": 9694.58, + "probability": 0.8878 + }, + { + "start": 9694.8, + "end": 9698.7, + "probability": 0.9004 + }, + { + "start": 9698.7, + "end": 9704.94, + "probability": 0.9551 + }, + { + "start": 9705.32, + "end": 9709.08, + "probability": 0.6922 + }, + { + "start": 9709.28, + "end": 9709.86, + "probability": 0.5848 + }, + { + "start": 9710.26, + "end": 9710.88, + "probability": 0.6845 + }, + { + "start": 9711.62, + "end": 9711.92, + "probability": 0.5001 + }, + { + "start": 9712.02, + "end": 9712.02, + "probability": 0.2363 + }, + { + "start": 9712.02, + "end": 9715.0, + "probability": 0.9741 + }, + { + "start": 9715.0, + "end": 9717.24, + "probability": 0.4858 + }, + { + "start": 9718.04, + "end": 9722.8, + "probability": 0.8144 + }, + { + "start": 9723.38, + "end": 9725.97, + "probability": 0.8906 + }, + { + "start": 9727.54, + "end": 9729.52, + "probability": 0.5013 + }, + { + "start": 9729.54, + "end": 9729.72, + "probability": 0.0393 + }, + { + "start": 9729.72, + "end": 9730.18, + "probability": 0.301 + }, + { + "start": 9730.22, + "end": 9730.22, + "probability": 0.297 + }, + { + "start": 9730.44, + "end": 9731.88, + "probability": 0.7763 + }, + { + "start": 9732.02, + "end": 9734.4, + "probability": 0.7261 + }, + { + "start": 9734.54, + "end": 9735.3, + "probability": 0.9806 + }, + { + "start": 9735.82, + "end": 9740.76, + "probability": 0.8601 + }, + { + "start": 9741.62, + "end": 9744.68, + "probability": 0.8262 + }, + { + "start": 9744.86, + "end": 9746.82, + "probability": 0.6816 + }, + { + "start": 9747.66, + "end": 9753.42, + "probability": 0.8529 + }, + { + "start": 9753.5, + "end": 9754.18, + "probability": 0.162 + }, + { + "start": 9754.24, + "end": 9754.82, + "probability": 0.6599 + }, + { + "start": 9755.4, + "end": 9755.86, + "probability": 0.5936 + }, + { + "start": 9756.04, + "end": 9758.52, + "probability": 0.9902 + }, + { + "start": 9758.58, + "end": 9759.2, + "probability": 0.9104 + }, + { + "start": 9759.28, + "end": 9761.52, + "probability": 0.9702 + }, + { + "start": 9761.68, + "end": 9761.96, + "probability": 0.7696 + }, + { + "start": 9762.04, + "end": 9763.64, + "probability": 0.9938 + }, + { + "start": 9763.8, + "end": 9764.52, + "probability": 0.5479 + }, + { + "start": 9764.52, + "end": 9765.0, + "probability": 0.755 + }, + { + "start": 9765.42, + "end": 9768.8, + "probability": 0.9725 + }, + { + "start": 9769.32, + "end": 9770.22, + "probability": 0.9891 + }, + { + "start": 9770.42, + "end": 9774.0, + "probability": 0.9245 + }, + { + "start": 9774.18, + "end": 9778.1, + "probability": 0.9891 + }, + { + "start": 9779.88, + "end": 9780.56, + "probability": 0.865 + }, + { + "start": 9780.62, + "end": 9782.66, + "probability": 0.8826 + }, + { + "start": 9782.88, + "end": 9783.88, + "probability": 0.994 + }, + { + "start": 9784.02, + "end": 9785.14, + "probability": 0.9544 + }, + { + "start": 9785.24, + "end": 9788.94, + "probability": 0.9262 + }, + { + "start": 9789.06, + "end": 9790.34, + "probability": 0.2796 + }, + { + "start": 9790.36, + "end": 9790.88, + "probability": 0.7377 + }, + { + "start": 9791.34, + "end": 9793.26, + "probability": 0.7884 + }, + { + "start": 9793.34, + "end": 9797.64, + "probability": 0.9951 + }, + { + "start": 9798.16, + "end": 9803.14, + "probability": 0.9938 + }, + { + "start": 9803.26, + "end": 9803.88, + "probability": 0.9951 + }, + { + "start": 9804.62, + "end": 9806.98, + "probability": 0.3824 + }, + { + "start": 9807.68, + "end": 9809.5, + "probability": 0.5839 + }, + { + "start": 9809.98, + "end": 9812.96, + "probability": 0.6704 + }, + { + "start": 9813.38, + "end": 9813.9, + "probability": 0.3621 + }, + { + "start": 9814.28, + "end": 9814.72, + "probability": 0.5969 + }, + { + "start": 9814.8, + "end": 9819.56, + "probability": 0.9141 + }, + { + "start": 9819.96, + "end": 9822.46, + "probability": 0.8721 + }, + { + "start": 9823.14, + "end": 9824.7, + "probability": 0.8041 + }, + { + "start": 9824.74, + "end": 9826.41, + "probability": 0.2202 + }, + { + "start": 9827.34, + "end": 9827.78, + "probability": 0.026 + }, + { + "start": 9828.16, + "end": 9829.52, + "probability": 0.9211 + }, + { + "start": 9829.58, + "end": 9832.1, + "probability": 0.7475 + }, + { + "start": 9832.4, + "end": 9833.04, + "probability": 0.4966 + }, + { + "start": 9833.06, + "end": 9833.46, + "probability": 0.8103 + }, + { + "start": 9833.76, + "end": 9835.0, + "probability": 0.9932 + }, + { + "start": 9835.18, + "end": 9836.52, + "probability": 0.6409 + }, + { + "start": 9836.52, + "end": 9839.8, + "probability": 0.8965 + }, + { + "start": 9840.56, + "end": 9841.26, + "probability": 0.9737 + }, + { + "start": 9841.36, + "end": 9842.66, + "probability": 0.8381 + }, + { + "start": 9842.68, + "end": 9843.7, + "probability": 0.314 + }, + { + "start": 9843.8, + "end": 9844.82, + "probability": 0.3348 + }, + { + "start": 9845.24, + "end": 9847.88, + "probability": 0.9622 + }, + { + "start": 9848.04, + "end": 9849.76, + "probability": 0.8062 + }, + { + "start": 9849.84, + "end": 9850.57, + "probability": 0.9723 + }, + { + "start": 9851.48, + "end": 9852.2, + "probability": 0.3253 + }, + { + "start": 9852.28, + "end": 9854.78, + "probability": 0.9631 + }, + { + "start": 9856.01, + "end": 9858.62, + "probability": 0.9004 + }, + { + "start": 9858.7, + "end": 9862.24, + "probability": 0.9906 + }, + { + "start": 9862.32, + "end": 9862.98, + "probability": 0.5288 + }, + { + "start": 9863.78, + "end": 9866.57, + "probability": 0.9557 + }, + { + "start": 9867.52, + "end": 9868.78, + "probability": 0.9038 + }, + { + "start": 9868.78, + "end": 9869.64, + "probability": 0.9302 + }, + { + "start": 9869.92, + "end": 9872.0, + "probability": 0.8584 + }, + { + "start": 9872.16, + "end": 9875.12, + "probability": 0.8813 + }, + { + "start": 9875.26, + "end": 9878.82, + "probability": 0.9839 + }, + { + "start": 9878.86, + "end": 9880.78, + "probability": 0.6447 + }, + { + "start": 9880.9, + "end": 9881.44, + "probability": 0.2736 + }, + { + "start": 9881.44, + "end": 9883.02, + "probability": 0.7388 + }, + { + "start": 9883.02, + "end": 9883.46, + "probability": 0.5264 + }, + { + "start": 9883.64, + "end": 9884.92, + "probability": 0.9922 + }, + { + "start": 9885.02, + "end": 9885.62, + "probability": 0.7837 + }, + { + "start": 9885.68, + "end": 9887.6, + "probability": 0.3702 + }, + { + "start": 9887.78, + "end": 9888.86, + "probability": 0.3502 + }, + { + "start": 9889.16, + "end": 9891.34, + "probability": 0.6407 + }, + { + "start": 9891.82, + "end": 9892.94, + "probability": 0.1043 + }, + { + "start": 9892.96, + "end": 9894.02, + "probability": 0.0634 + }, + { + "start": 9894.02, + "end": 9895.68, + "probability": 0.5778 + }, + { + "start": 9895.68, + "end": 9896.82, + "probability": 0.9634 + }, + { + "start": 9896.9, + "end": 9897.86, + "probability": 0.3133 + }, + { + "start": 9897.86, + "end": 9898.24, + "probability": 0.4621 + }, + { + "start": 9898.24, + "end": 9900.14, + "probability": 0.6113 + }, + { + "start": 9900.24, + "end": 9902.08, + "probability": 0.9397 + }, + { + "start": 9902.76, + "end": 9903.56, + "probability": 0.524 + }, + { + "start": 9903.88, + "end": 9904.64, + "probability": 0.8806 + }, + { + "start": 9906.43, + "end": 9908.12, + "probability": 0.9886 + }, + { + "start": 9909.0, + "end": 9912.16, + "probability": 0.9263 + }, + { + "start": 9912.86, + "end": 9913.7, + "probability": 0.471 + }, + { + "start": 9914.0, + "end": 9914.4, + "probability": 0.2854 + }, + { + "start": 9914.46, + "end": 9915.32, + "probability": 0.7035 + }, + { + "start": 9915.4, + "end": 9916.7, + "probability": 0.8059 + }, + { + "start": 9917.5, + "end": 9922.28, + "probability": 0.8399 + }, + { + "start": 9922.84, + "end": 9928.06, + "probability": 0.9945 + }, + { + "start": 9928.12, + "end": 9930.22, + "probability": 0.5207 + }, + { + "start": 9930.58, + "end": 9934.42, + "probability": 0.96 + }, + { + "start": 9934.46, + "end": 9935.36, + "probability": 0.5275 + }, + { + "start": 9935.88, + "end": 9937.02, + "probability": 0.7634 + }, + { + "start": 9937.18, + "end": 9937.8, + "probability": 0.7683 + }, + { + "start": 9938.0, + "end": 9939.04, + "probability": 0.9584 + }, + { + "start": 9939.46, + "end": 9941.86, + "probability": 0.9814 + }, + { + "start": 9941.86, + "end": 9945.14, + "probability": 0.9824 + }, + { + "start": 9945.3, + "end": 9948.16, + "probability": 0.8105 + }, + { + "start": 9948.24, + "end": 9948.76, + "probability": 0.6909 + }, + { + "start": 9949.12, + "end": 9950.34, + "probability": 0.8986 + }, + { + "start": 9950.36, + "end": 9951.26, + "probability": 0.7231 + }, + { + "start": 9951.72, + "end": 9952.52, + "probability": 0.7421 + }, + { + "start": 9952.64, + "end": 9953.42, + "probability": 0.9245 + }, + { + "start": 9953.54, + "end": 9955.96, + "probability": 0.8363 + }, + { + "start": 9956.04, + "end": 9958.28, + "probability": 0.8936 + }, + { + "start": 9959.88, + "end": 9961.16, + "probability": 0.8137 + }, + { + "start": 9961.66, + "end": 9965.04, + "probability": 0.6227 + }, + { + "start": 9965.34, + "end": 9967.32, + "probability": 0.7676 + }, + { + "start": 9967.42, + "end": 9970.56, + "probability": 0.6635 + }, + { + "start": 9971.0, + "end": 9975.3, + "probability": 0.9917 + }, + { + "start": 9976.58, + "end": 9978.64, + "probability": 0.7491 + }, + { + "start": 9979.17, + "end": 9980.08, + "probability": 0.6296 + }, + { + "start": 9980.08, + "end": 9983.32, + "probability": 0.8092 + }, + { + "start": 9983.64, + "end": 9984.67, + "probability": 0.9954 + }, + { + "start": 9984.78, + "end": 9986.22, + "probability": 0.9622 + }, + { + "start": 9986.54, + "end": 9988.33, + "probability": 0.9771 + }, + { + "start": 9988.74, + "end": 9992.92, + "probability": 0.992 + }, + { + "start": 9992.92, + "end": 9997.46, + "probability": 0.9961 + }, + { + "start": 9997.92, + "end": 10001.2, + "probability": 0.9974 + }, + { + "start": 10001.32, + "end": 10003.82, + "probability": 0.9244 + }, + { + "start": 10003.84, + "end": 10004.06, + "probability": 0.6287 + }, + { + "start": 10004.6, + "end": 10006.7, + "probability": 0.6071 + }, + { + "start": 10006.84, + "end": 10009.51, + "probability": 0.8322 + }, + { + "start": 10016.56, + "end": 10017.8, + "probability": 0.5729 + }, + { + "start": 10017.88, + "end": 10018.24, + "probability": 0.8079 + }, + { + "start": 10018.98, + "end": 10023.88, + "probability": 0.6341 + }, + { + "start": 10024.58, + "end": 10026.3, + "probability": 0.9177 + }, + { + "start": 10026.56, + "end": 10028.44, + "probability": 0.7218 + }, + { + "start": 10028.5, + "end": 10032.26, + "probability": 0.97 + }, + { + "start": 10033.07, + "end": 10036.64, + "probability": 0.992 + }, + { + "start": 10037.06, + "end": 10041.34, + "probability": 0.9929 + }, + { + "start": 10041.84, + "end": 10042.88, + "probability": 0.9971 + }, + { + "start": 10043.74, + "end": 10046.02, + "probability": 0.9943 + }, + { + "start": 10047.26, + "end": 10048.76, + "probability": 0.957 + }, + { + "start": 10048.96, + "end": 10050.32, + "probability": 0.9918 + }, + { + "start": 10050.78, + "end": 10052.66, + "probability": 0.9769 + }, + { + "start": 10053.4, + "end": 10055.18, + "probability": 0.7236 + }, + { + "start": 10056.11, + "end": 10058.34, + "probability": 0.9971 + }, + { + "start": 10059.08, + "end": 10060.24, + "probability": 0.9948 + }, + { + "start": 10061.74, + "end": 10064.26, + "probability": 0.9954 + }, + { + "start": 10065.76, + "end": 10066.36, + "probability": 0.9164 + }, + { + "start": 10066.42, + "end": 10067.64, + "probability": 0.9238 + }, + { + "start": 10067.72, + "end": 10072.04, + "probability": 0.9832 + }, + { + "start": 10072.84, + "end": 10077.76, + "probability": 0.9297 + }, + { + "start": 10078.76, + "end": 10080.32, + "probability": 0.9941 + }, + { + "start": 10081.94, + "end": 10084.86, + "probability": 0.9075 + }, + { + "start": 10085.48, + "end": 10088.0, + "probability": 0.9878 + }, + { + "start": 10089.66, + "end": 10092.99, + "probability": 0.9648 + }, + { + "start": 10093.06, + "end": 10094.96, + "probability": 0.922 + }, + { + "start": 10095.08, + "end": 10095.69, + "probability": 0.5016 + }, + { + "start": 10095.84, + "end": 10097.76, + "probability": 0.5364 + }, + { + "start": 10097.92, + "end": 10099.82, + "probability": 0.9946 + }, + { + "start": 10099.92, + "end": 10100.74, + "probability": 0.9563 + }, + { + "start": 10101.78, + "end": 10102.34, + "probability": 0.9291 + }, + { + "start": 10102.44, + "end": 10105.76, + "probability": 0.9067 + }, + { + "start": 10106.32, + "end": 10108.24, + "probability": 0.9912 + }, + { + "start": 10108.84, + "end": 10111.36, + "probability": 0.9895 + }, + { + "start": 10111.6, + "end": 10113.26, + "probability": 0.9435 + }, + { + "start": 10114.52, + "end": 10117.64, + "probability": 0.846 + }, + { + "start": 10119.5, + "end": 10120.74, + "probability": 0.9475 + }, + { + "start": 10121.52, + "end": 10121.78, + "probability": 0.4291 + }, + { + "start": 10121.84, + "end": 10122.88, + "probability": 0.941 + }, + { + "start": 10122.9, + "end": 10125.68, + "probability": 0.937 + }, + { + "start": 10126.52, + "end": 10127.92, + "probability": 0.9896 + }, + { + "start": 10128.92, + "end": 10132.7, + "probability": 0.461 + }, + { + "start": 10133.42, + "end": 10135.78, + "probability": 0.4584 + }, + { + "start": 10136.86, + "end": 10139.42, + "probability": 0.9772 + }, + { + "start": 10139.6, + "end": 10141.64, + "probability": 0.9939 + }, + { + "start": 10141.78, + "end": 10143.58, + "probability": 0.9927 + }, + { + "start": 10144.34, + "end": 10145.52, + "probability": 0.5389 + }, + { + "start": 10146.08, + "end": 10148.46, + "probability": 0.9778 + }, + { + "start": 10149.2, + "end": 10151.5, + "probability": 0.9476 + }, + { + "start": 10152.36, + "end": 10153.46, + "probability": 0.6372 + }, + { + "start": 10154.48, + "end": 10157.42, + "probability": 0.8977 + }, + { + "start": 10157.98, + "end": 10159.22, + "probability": 0.9482 + }, + { + "start": 10159.26, + "end": 10160.0, + "probability": 0.8674 + }, + { + "start": 10160.06, + "end": 10160.72, + "probability": 0.9039 + }, + { + "start": 10161.0, + "end": 10161.75, + "probability": 0.835 + }, + { + "start": 10162.82, + "end": 10164.94, + "probability": 0.9128 + }, + { + "start": 10165.68, + "end": 10167.32, + "probability": 0.9417 + }, + { + "start": 10167.92, + "end": 10172.08, + "probability": 0.9732 + }, + { + "start": 10172.84, + "end": 10174.76, + "probability": 0.9978 + }, + { + "start": 10175.68, + "end": 10177.64, + "probability": 0.9969 + }, + { + "start": 10178.38, + "end": 10181.54, + "probability": 0.9894 + }, + { + "start": 10182.94, + "end": 10183.54, + "probability": 0.9326 + }, + { + "start": 10183.98, + "end": 10186.9, + "probability": 0.9961 + }, + { + "start": 10187.26, + "end": 10192.14, + "probability": 0.9966 + }, + { + "start": 10193.14, + "end": 10194.86, + "probability": 0.429 + }, + { + "start": 10195.08, + "end": 10195.6, + "probability": 0.7626 + }, + { + "start": 10195.7, + "end": 10196.2, + "probability": 0.8309 + }, + { + "start": 10196.34, + "end": 10197.08, + "probability": 0.3575 + }, + { + "start": 10197.54, + "end": 10198.88, + "probability": 0.962 + }, + { + "start": 10200.28, + "end": 10201.26, + "probability": 0.9025 + }, + { + "start": 10201.74, + "end": 10202.78, + "probability": 0.8618 + }, + { + "start": 10203.08, + "end": 10205.06, + "probability": 0.9838 + }, + { + "start": 10205.12, + "end": 10205.96, + "probability": 0.9248 + }, + { + "start": 10205.98, + "end": 10206.94, + "probability": 0.8336 + }, + { + "start": 10207.04, + "end": 10209.18, + "probability": 0.9641 + }, + { + "start": 10209.72, + "end": 10214.22, + "probability": 0.9932 + }, + { + "start": 10214.36, + "end": 10215.52, + "probability": 0.9 + }, + { + "start": 10216.12, + "end": 10217.92, + "probability": 0.9535 + }, + { + "start": 10218.84, + "end": 10222.16, + "probability": 0.9751 + }, + { + "start": 10222.74, + "end": 10222.9, + "probability": 0.2664 + }, + { + "start": 10223.7, + "end": 10226.84, + "probability": 0.9872 + }, + { + "start": 10227.64, + "end": 10232.48, + "probability": 0.9917 + }, + { + "start": 10232.5, + "end": 10237.46, + "probability": 0.9971 + }, + { + "start": 10237.94, + "end": 10239.1, + "probability": 0.5147 + }, + { + "start": 10239.66, + "end": 10241.12, + "probability": 0.9867 + }, + { + "start": 10241.58, + "end": 10243.19, + "probability": 0.9373 + }, + { + "start": 10244.12, + "end": 10245.54, + "probability": 0.9523 + }, + { + "start": 10245.6, + "end": 10248.74, + "probability": 0.9913 + }, + { + "start": 10248.8, + "end": 10249.68, + "probability": 0.948 + }, + { + "start": 10249.8, + "end": 10250.96, + "probability": 0.8099 + }, + { + "start": 10251.02, + "end": 10254.94, + "probability": 0.9834 + }, + { + "start": 10255.22, + "end": 10257.96, + "probability": 0.9808 + }, + { + "start": 10258.62, + "end": 10259.98, + "probability": 0.9922 + }, + { + "start": 10260.5, + "end": 10262.74, + "probability": 0.9984 + }, + { + "start": 10263.32, + "end": 10264.42, + "probability": 0.6358 + }, + { + "start": 10265.14, + "end": 10267.22, + "probability": 0.955 + }, + { + "start": 10267.42, + "end": 10269.06, + "probability": 0.9897 + }, + { + "start": 10269.26, + "end": 10271.54, + "probability": 0.9858 + }, + { + "start": 10272.22, + "end": 10272.98, + "probability": 0.9766 + }, + { + "start": 10274.88, + "end": 10274.98, + "probability": 0.7408 + }, + { + "start": 10276.24, + "end": 10278.98, + "probability": 0.9844 + }, + { + "start": 10279.16, + "end": 10281.12, + "probability": 0.9705 + }, + { + "start": 10281.38, + "end": 10283.06, + "probability": 0.3366 + }, + { + "start": 10283.12, + "end": 10284.4, + "probability": 0.8794 + }, + { + "start": 10285.22, + "end": 10285.36, + "probability": 0.1285 + }, + { + "start": 10285.36, + "end": 10285.8, + "probability": 0.3506 + }, + { + "start": 10285.88, + "end": 10286.12, + "probability": 0.6902 + }, + { + "start": 10286.2, + "end": 10287.02, + "probability": 0.8253 + }, + { + "start": 10287.08, + "end": 10290.38, + "probability": 0.9065 + }, + { + "start": 10290.7, + "end": 10291.1, + "probability": 0.8984 + }, + { + "start": 10291.82, + "end": 10292.27, + "probability": 0.2796 + }, + { + "start": 10292.32, + "end": 10295.94, + "probability": 0.9871 + }, + { + "start": 10296.62, + "end": 10298.48, + "probability": 0.941 + }, + { + "start": 10299.16, + "end": 10300.96, + "probability": 0.8847 + }, + { + "start": 10301.92, + "end": 10305.76, + "probability": 0.9769 + }, + { + "start": 10306.32, + "end": 10308.54, + "probability": 0.9857 + }, + { + "start": 10309.16, + "end": 10310.76, + "probability": 0.984 + }, + { + "start": 10310.96, + "end": 10312.58, + "probability": 0.9974 + }, + { + "start": 10312.7, + "end": 10316.22, + "probability": 0.9728 + }, + { + "start": 10316.42, + "end": 10321.32, + "probability": 0.97 + }, + { + "start": 10321.7, + "end": 10323.42, + "probability": 0.9166 + }, + { + "start": 10323.86, + "end": 10326.12, + "probability": 0.9966 + }, + { + "start": 10326.58, + "end": 10328.94, + "probability": 0.9668 + }, + { + "start": 10329.88, + "end": 10330.77, + "probability": 0.9042 + }, + { + "start": 10331.7, + "end": 10333.44, + "probability": 0.9679 + }, + { + "start": 10333.68, + "end": 10335.5, + "probability": 0.9989 + }, + { + "start": 10335.98, + "end": 10337.02, + "probability": 0.7092 + }, + { + "start": 10338.02, + "end": 10338.3, + "probability": 0.4441 + }, + { + "start": 10338.68, + "end": 10340.1, + "probability": 0.9232 + }, + { + "start": 10340.44, + "end": 10344.3, + "probability": 0.9907 + }, + { + "start": 10344.3, + "end": 10347.08, + "probability": 0.967 + }, + { + "start": 10347.44, + "end": 10348.0, + "probability": 0.6426 + }, + { + "start": 10348.24, + "end": 10348.78, + "probability": 0.9392 + }, + { + "start": 10348.82, + "end": 10351.14, + "probability": 0.669 + }, + { + "start": 10351.38, + "end": 10351.6, + "probability": 0.0735 + }, + { + "start": 10351.72, + "end": 10353.48, + "probability": 0.6737 + }, + { + "start": 10354.24, + "end": 10356.44, + "probability": 0.7814 + }, + { + "start": 10356.46, + "end": 10358.88, + "probability": 0.9141 + }, + { + "start": 10359.18, + "end": 10359.38, + "probability": 0.8455 + }, + { + "start": 10370.72, + "end": 10371.76, + "probability": 0.8081 + }, + { + "start": 10372.58, + "end": 10374.8, + "probability": 0.6304 + }, + { + "start": 10375.58, + "end": 10378.08, + "probability": 0.9983 + }, + { + "start": 10378.58, + "end": 10379.99, + "probability": 0.8152 + }, + { + "start": 10382.46, + "end": 10384.82, + "probability": 0.8622 + }, + { + "start": 10385.86, + "end": 10391.5, + "probability": 0.9941 + }, + { + "start": 10392.68, + "end": 10394.12, + "probability": 0.7508 + }, + { + "start": 10394.14, + "end": 10398.34, + "probability": 0.9473 + }, + { + "start": 10398.34, + "end": 10401.36, + "probability": 0.9536 + }, + { + "start": 10401.42, + "end": 10401.68, + "probability": 0.7463 + }, + { + "start": 10402.5, + "end": 10405.12, + "probability": 0.8129 + }, + { + "start": 10405.38, + "end": 10406.08, + "probability": 0.7215 + }, + { + "start": 10406.44, + "end": 10408.22, + "probability": 0.8844 + }, + { + "start": 10408.7, + "end": 10410.88, + "probability": 0.8657 + }, + { + "start": 10411.06, + "end": 10411.82, + "probability": 0.047 + }, + { + "start": 10412.16, + "end": 10412.58, + "probability": 0.555 + }, + { + "start": 10413.14, + "end": 10415.0, + "probability": 0.8836 + }, + { + "start": 10419.13, + "end": 10421.99, + "probability": 0.5173 + }, + { + "start": 10423.08, + "end": 10425.92, + "probability": 0.9396 + }, + { + "start": 10427.0, + "end": 10429.88, + "probability": 0.9005 + }, + { + "start": 10431.0, + "end": 10434.68, + "probability": 0.9814 + }, + { + "start": 10435.44, + "end": 10438.9, + "probability": 0.9829 + }, + { + "start": 10440.26, + "end": 10442.48, + "probability": 0.4719 + }, + { + "start": 10442.62, + "end": 10443.38, + "probability": 0.6778 + }, + { + "start": 10443.84, + "end": 10448.06, + "probability": 0.9041 + }, + { + "start": 10449.62, + "end": 10450.14, + "probability": 0.7434 + }, + { + "start": 10450.22, + "end": 10451.04, + "probability": 0.6182 + }, + { + "start": 10451.16, + "end": 10451.92, + "probability": 0.8942 + }, + { + "start": 10452.0, + "end": 10453.18, + "probability": 0.8021 + }, + { + "start": 10453.4, + "end": 10455.64, + "probability": 0.811 + }, + { + "start": 10455.76, + "end": 10456.52, + "probability": 0.8739 + }, + { + "start": 10457.42, + "end": 10459.9, + "probability": 0.9648 + }, + { + "start": 10459.9, + "end": 10464.68, + "probability": 0.8144 + }, + { + "start": 10465.2, + "end": 10466.35, + "probability": 0.1864 + }, + { + "start": 10467.84, + "end": 10471.38, + "probability": 0.9626 + }, + { + "start": 10472.02, + "end": 10472.9, + "probability": 0.8057 + }, + { + "start": 10473.42, + "end": 10475.32, + "probability": 0.9815 + }, + { + "start": 10478.12, + "end": 10480.72, + "probability": 0.981 + }, + { + "start": 10481.92, + "end": 10483.46, + "probability": 0.8672 + }, + { + "start": 10484.62, + "end": 10490.0, + "probability": 0.7044 + }, + { + "start": 10490.5, + "end": 10492.0, + "probability": 0.9508 + }, + { + "start": 10492.44, + "end": 10497.66, + "probability": 0.777 + }, + { + "start": 10498.24, + "end": 10500.04, + "probability": 0.9656 + }, + { + "start": 10501.12, + "end": 10501.74, + "probability": 0.7476 + }, + { + "start": 10502.04, + "end": 10503.08, + "probability": 0.6182 + }, + { + "start": 10503.58, + "end": 10506.5, + "probability": 0.9731 + }, + { + "start": 10507.62, + "end": 10509.94, + "probability": 0.9856 + }, + { + "start": 10510.7, + "end": 10510.86, + "probability": 0.1965 + }, + { + "start": 10512.94, + "end": 10515.88, + "probability": 0.6434 + }, + { + "start": 10516.54, + "end": 10518.3, + "probability": 0.9843 + }, + { + "start": 10518.82, + "end": 10521.96, + "probability": 0.9842 + }, + { + "start": 10523.16, + "end": 10524.28, + "probability": 0.7729 + }, + { + "start": 10524.5, + "end": 10525.5, + "probability": 0.9719 + }, + { + "start": 10525.62, + "end": 10528.3, + "probability": 0.9464 + }, + { + "start": 10529.44, + "end": 10530.96, + "probability": 0.9692 + }, + { + "start": 10531.4, + "end": 10535.48, + "probability": 0.9971 + }, + { + "start": 10536.66, + "end": 10540.21, + "probability": 0.9648 + }, + { + "start": 10541.22, + "end": 10542.8, + "probability": 0.8544 + }, + { + "start": 10543.32, + "end": 10544.36, + "probability": 0.9796 + }, + { + "start": 10544.98, + "end": 10548.44, + "probability": 0.984 + }, + { + "start": 10548.82, + "end": 10550.76, + "probability": 0.7784 + }, + { + "start": 10553.22, + "end": 10556.58, + "probability": 0.9949 + }, + { + "start": 10556.58, + "end": 10560.62, + "probability": 0.9989 + }, + { + "start": 10561.2, + "end": 10562.4, + "probability": 0.752 + }, + { + "start": 10562.98, + "end": 10564.46, + "probability": 0.9508 + }, + { + "start": 10564.46, + "end": 10565.52, + "probability": 0.656 + }, + { + "start": 10565.96, + "end": 10567.04, + "probability": 0.9105 + }, + { + "start": 10568.7, + "end": 10571.34, + "probability": 0.9119 + }, + { + "start": 10571.96, + "end": 10576.58, + "probability": 0.993 + }, + { + "start": 10577.22, + "end": 10581.72, + "probability": 0.9919 + }, + { + "start": 10582.32, + "end": 10585.16, + "probability": 0.9245 + }, + { + "start": 10585.96, + "end": 10586.36, + "probability": 0.5062 + }, + { + "start": 10586.38, + "end": 10587.92, + "probability": 0.7375 + }, + { + "start": 10588.38, + "end": 10593.24, + "probability": 0.9952 + }, + { + "start": 10593.24, + "end": 10598.32, + "probability": 0.8121 + }, + { + "start": 10599.56, + "end": 10602.32, + "probability": 0.869 + }, + { + "start": 10603.26, + "end": 10604.44, + "probability": 0.9578 + }, + { + "start": 10605.84, + "end": 10610.92, + "probability": 0.9802 + }, + { + "start": 10611.24, + "end": 10612.04, + "probability": 0.852 + }, + { + "start": 10613.0, + "end": 10614.66, + "probability": 0.9913 + }, + { + "start": 10615.3, + "end": 10619.12, + "probability": 0.9426 + }, + { + "start": 10619.8, + "end": 10623.54, + "probability": 0.8791 + }, + { + "start": 10624.1, + "end": 10627.18, + "probability": 0.9963 + }, + { + "start": 10628.38, + "end": 10633.12, + "probability": 0.9956 + }, + { + "start": 10633.76, + "end": 10636.14, + "probability": 0.9897 + }, + { + "start": 10637.72, + "end": 10641.56, + "probability": 0.6201 + }, + { + "start": 10642.12, + "end": 10646.3, + "probability": 0.7852 + }, + { + "start": 10646.82, + "end": 10648.16, + "probability": 0.9632 + }, + { + "start": 10648.84, + "end": 10651.12, + "probability": 0.9634 + }, + { + "start": 10651.62, + "end": 10653.88, + "probability": 0.9638 + }, + { + "start": 10655.66, + "end": 10657.36, + "probability": 0.7827 + }, + { + "start": 10657.54, + "end": 10664.24, + "probability": 0.9797 + }, + { + "start": 10665.06, + "end": 10668.18, + "probability": 0.9907 + }, + { + "start": 10669.84, + "end": 10673.04, + "probability": 0.9966 + }, + { + "start": 10673.18, + "end": 10673.9, + "probability": 0.8238 + }, + { + "start": 10674.42, + "end": 10675.34, + "probability": 0.9819 + }, + { + "start": 10676.52, + "end": 10678.32, + "probability": 0.8683 + }, + { + "start": 10678.9, + "end": 10685.28, + "probability": 0.9854 + }, + { + "start": 10686.2, + "end": 10689.24, + "probability": 0.9631 + }, + { + "start": 10689.24, + "end": 10691.86, + "probability": 0.9837 + }, + { + "start": 10692.56, + "end": 10693.96, + "probability": 0.9478 + }, + { + "start": 10694.56, + "end": 10697.2, + "probability": 0.8516 + }, + { + "start": 10697.76, + "end": 10699.16, + "probability": 0.9768 + }, + { + "start": 10699.8, + "end": 10700.52, + "probability": 0.8291 + }, + { + "start": 10700.62, + "end": 10701.92, + "probability": 0.9705 + }, + { + "start": 10702.02, + "end": 10707.42, + "probability": 0.9845 + }, + { + "start": 10707.82, + "end": 10708.92, + "probability": 0.9523 + }, + { + "start": 10709.08, + "end": 10709.76, + "probability": 0.7741 + }, + { + "start": 10710.9, + "end": 10712.3, + "probability": 0.8909 + }, + { + "start": 10713.04, + "end": 10716.12, + "probability": 0.9164 + }, + { + "start": 10717.34, + "end": 10726.22, + "probability": 0.9952 + }, + { + "start": 10726.8, + "end": 10730.24, + "probability": 0.785 + }, + { + "start": 10730.98, + "end": 10736.66, + "probability": 0.8892 + }, + { + "start": 10737.38, + "end": 10739.14, + "probability": 0.7933 + }, + { + "start": 10739.26, + "end": 10740.0, + "probability": 0.4114 + }, + { + "start": 10740.06, + "end": 10740.28, + "probability": 0.5492 + }, + { + "start": 10740.38, + "end": 10741.02, + "probability": 0.4677 + }, + { + "start": 10741.24, + "end": 10742.48, + "probability": 0.5789 + }, + { + "start": 10742.8, + "end": 10746.62, + "probability": 0.99 + }, + { + "start": 10746.7, + "end": 10747.12, + "probability": 0.8635 + }, + { + "start": 10747.28, + "end": 10750.5, + "probability": 0.99 + }, + { + "start": 10750.6, + "end": 10751.68, + "probability": 0.701 + }, + { + "start": 10751.68, + "end": 10752.68, + "probability": 0.7077 + }, + { + "start": 10753.08, + "end": 10756.36, + "probability": 0.8115 + }, + { + "start": 10756.5, + "end": 10757.8, + "probability": 0.7852 + }, + { + "start": 10757.8, + "end": 10759.1, + "probability": 0.412 + }, + { + "start": 10759.12, + "end": 10761.82, + "probability": 0.8942 + }, + { + "start": 10762.56, + "end": 10764.61, + "probability": 0.4957 + }, + { + "start": 10764.7, + "end": 10769.28, + "probability": 0.7255 + }, + { + "start": 10770.3, + "end": 10775.32, + "probability": 0.9927 + }, + { + "start": 10775.66, + "end": 10776.86, + "probability": 0.2884 + }, + { + "start": 10777.08, + "end": 10777.94, + "probability": 0.7934 + }, + { + "start": 10783.24, + "end": 10783.8, + "probability": 0.6875 + }, + { + "start": 10783.84, + "end": 10785.26, + "probability": 0.7165 + }, + { + "start": 10785.4, + "end": 10788.08, + "probability": 0.7645 + }, + { + "start": 10789.0, + "end": 10793.2, + "probability": 0.9551 + }, + { + "start": 10793.92, + "end": 10798.74, + "probability": 0.9326 + }, + { + "start": 10798.74, + "end": 10801.9, + "probability": 0.9912 + }, + { + "start": 10802.46, + "end": 10804.96, + "probability": 0.7328 + }, + { + "start": 10805.54, + "end": 10805.92, + "probability": 0.9121 + }, + { + "start": 10806.78, + "end": 10807.42, + "probability": 0.987 + }, + { + "start": 10808.76, + "end": 10813.28, + "probability": 0.9835 + }, + { + "start": 10813.36, + "end": 10816.94, + "probability": 0.7956 + }, + { + "start": 10817.6, + "end": 10821.26, + "probability": 0.9967 + }, + { + "start": 10821.26, + "end": 10826.94, + "probability": 0.997 + }, + { + "start": 10827.68, + "end": 10830.9, + "probability": 0.9823 + }, + { + "start": 10830.9, + "end": 10836.8, + "probability": 0.947 + }, + { + "start": 10837.24, + "end": 10840.12, + "probability": 0.9166 + }, + { + "start": 10841.34, + "end": 10844.32, + "probability": 0.9857 + }, + { + "start": 10844.4, + "end": 10848.38, + "probability": 0.9958 + }, + { + "start": 10849.3, + "end": 10851.5, + "probability": 0.851 + }, + { + "start": 10851.96, + "end": 10859.48, + "probability": 0.9696 + }, + { + "start": 10860.02, + "end": 10866.7, + "probability": 0.994 + }, + { + "start": 10867.14, + "end": 10868.42, + "probability": 0.7572 + }, + { + "start": 10869.0, + "end": 10873.9, + "probability": 0.9651 + }, + { + "start": 10874.12, + "end": 10876.6, + "probability": 0.6938 + }, + { + "start": 10877.14, + "end": 10880.04, + "probability": 0.7629 + }, + { + "start": 10889.5, + "end": 10889.56, + "probability": 0.0222 + }, + { + "start": 10889.56, + "end": 10890.98, + "probability": 0.7822 + }, + { + "start": 10891.52, + "end": 10893.6, + "probability": 0.6533 + }, + { + "start": 10893.74, + "end": 10894.94, + "probability": 0.8261 + }, + { + "start": 10895.68, + "end": 10897.64, + "probability": 0.7219 + }, + { + "start": 10899.5, + "end": 10901.04, + "probability": 0.0196 + }, + { + "start": 10902.02, + "end": 10902.3, + "probability": 0.0038 + }, + { + "start": 10902.4, + "end": 10902.4, + "probability": 0.1271 + }, + { + "start": 10902.4, + "end": 10902.4, + "probability": 0.0537 + }, + { + "start": 10902.4, + "end": 10902.4, + "probability": 0.1401 + }, + { + "start": 10902.5, + "end": 10903.54, + "probability": 0.5242 + }, + { + "start": 10903.7, + "end": 10904.6, + "probability": 0.8477 + }, + { + "start": 10904.72, + "end": 10905.58, + "probability": 0.9285 + }, + { + "start": 10905.64, + "end": 10907.42, + "probability": 0.855 + }, + { + "start": 10908.24, + "end": 10910.14, + "probability": 0.7319 + }, + { + "start": 10910.44, + "end": 10914.39, + "probability": 0.995 + }, + { + "start": 10915.82, + "end": 10921.3, + "probability": 0.9996 + }, + { + "start": 10921.42, + "end": 10922.04, + "probability": 0.8956 + }, + { + "start": 10922.16, + "end": 10922.62, + "probability": 0.7053 + }, + { + "start": 10922.68, + "end": 10927.3, + "probability": 0.9713 + }, + { + "start": 10928.42, + "end": 10930.58, + "probability": 0.9954 + }, + { + "start": 10930.7, + "end": 10933.52, + "probability": 0.9992 + }, + { + "start": 10934.45, + "end": 10938.37, + "probability": 0.9744 + }, + { + "start": 10939.68, + "end": 10944.02, + "probability": 0.9904 + }, + { + "start": 10944.26, + "end": 10948.82, + "probability": 0.9105 + }, + { + "start": 10949.66, + "end": 10952.88, + "probability": 0.9347 + }, + { + "start": 10953.36, + "end": 10955.0, + "probability": 0.5067 + }, + { + "start": 10955.06, + "end": 10956.67, + "probability": 0.6318 + }, + { + "start": 10957.38, + "end": 10958.26, + "probability": 0.7786 + }, + { + "start": 10959.02, + "end": 10965.52, + "probability": 0.9959 + }, + { + "start": 10965.54, + "end": 10970.1, + "probability": 0.9807 + }, + { + "start": 10970.5, + "end": 10973.42, + "probability": 0.9951 + }, + { + "start": 10973.5, + "end": 10975.71, + "probability": 0.9646 + }, + { + "start": 10976.1, + "end": 10979.51, + "probability": 0.9869 + }, + { + "start": 10980.16, + "end": 10983.42, + "probability": 0.9811 + }, + { + "start": 10983.62, + "end": 10988.64, + "probability": 0.9185 + }, + { + "start": 10989.22, + "end": 10996.64, + "probability": 0.9985 + }, + { + "start": 10997.66, + "end": 10998.76, + "probability": 0.884 + }, + { + "start": 10998.96, + "end": 10999.62, + "probability": 0.7778 + }, + { + "start": 10999.72, + "end": 11000.95, + "probability": 0.3047 + }, + { + "start": 11002.06, + "end": 11008.62, + "probability": 0.8964 + }, + { + "start": 11009.44, + "end": 11013.14, + "probability": 0.9707 + }, + { + "start": 11013.2, + "end": 11017.12, + "probability": 0.9816 + }, + { + "start": 11017.3, + "end": 11021.44, + "probability": 0.9956 + }, + { + "start": 11021.5, + "end": 11026.0, + "probability": 0.9874 + }, + { + "start": 11026.16, + "end": 11027.12, + "probability": 0.9539 + }, + { + "start": 11027.24, + "end": 11028.54, + "probability": 0.9534 + }, + { + "start": 11028.88, + "end": 11030.5, + "probability": 0.8497 + }, + { + "start": 11030.58, + "end": 11035.6, + "probability": 0.9934 + }, + { + "start": 11035.72, + "end": 11036.62, + "probability": 0.9954 + }, + { + "start": 11036.72, + "end": 11037.8, + "probability": 0.9868 + }, + { + "start": 11038.16, + "end": 11041.43, + "probability": 0.983 + }, + { + "start": 11042.28, + "end": 11043.3, + "probability": 0.9614 + }, + { + "start": 11044.0, + "end": 11047.06, + "probability": 0.9895 + }, + { + "start": 11047.06, + "end": 11052.86, + "probability": 0.9343 + }, + { + "start": 11053.28, + "end": 11054.3, + "probability": 0.9224 + }, + { + "start": 11054.6, + "end": 11055.6, + "probability": 0.6878 + }, + { + "start": 11055.9, + "end": 11058.34, + "probability": 0.9229 + }, + { + "start": 11059.02, + "end": 11064.06, + "probability": 0.9883 + }, + { + "start": 11064.58, + "end": 11068.24, + "probability": 0.9971 + }, + { + "start": 11068.3, + "end": 11072.56, + "probability": 0.9933 + }, + { + "start": 11073.18, + "end": 11074.82, + "probability": 0.9006 + }, + { + "start": 11075.3, + "end": 11080.84, + "probability": 0.994 + }, + { + "start": 11081.32, + "end": 11085.26, + "probability": 0.9703 + }, + { + "start": 11085.52, + "end": 11086.58, + "probability": 0.8182 + }, + { + "start": 11088.28, + "end": 11089.82, + "probability": 0.8504 + }, + { + "start": 11090.98, + "end": 11095.24, + "probability": 0.6095 + }, + { + "start": 11095.24, + "end": 11097.72, + "probability": 0.9405 + }, + { + "start": 11098.46, + "end": 11099.52, + "probability": 0.7511 + }, + { + "start": 11099.6, + "end": 11100.14, + "probability": 0.8754 + }, + { + "start": 11100.16, + "end": 11102.84, + "probability": 0.9874 + }, + { + "start": 11102.84, + "end": 11106.58, + "probability": 0.9895 + }, + { + "start": 11106.88, + "end": 11109.3, + "probability": 0.9933 + }, + { + "start": 11109.38, + "end": 11115.74, + "probability": 0.9898 + }, + { + "start": 11116.83, + "end": 11120.2, + "probability": 0.8897 + }, + { + "start": 11120.72, + "end": 11120.72, + "probability": 0.9707 + }, + { + "start": 11120.72, + "end": 11124.26, + "probability": 0.9929 + }, + { + "start": 11124.4, + "end": 11127.08, + "probability": 0.9791 + }, + { + "start": 11128.14, + "end": 11129.86, + "probability": 0.6414 + }, + { + "start": 11130.0, + "end": 11133.08, + "probability": 0.6613 + }, + { + "start": 11133.14, + "end": 11136.26, + "probability": 0.9881 + }, + { + "start": 11136.98, + "end": 11141.22, + "probability": 0.9825 + }, + { + "start": 11141.82, + "end": 11147.44, + "probability": 0.9841 + }, + { + "start": 11147.44, + "end": 11151.6, + "probability": 0.9968 + }, + { + "start": 11151.6, + "end": 11155.42, + "probability": 0.9851 + }, + { + "start": 11155.96, + "end": 11159.96, + "probability": 0.9728 + }, + { + "start": 11161.34, + "end": 11161.74, + "probability": 0.5419 + }, + { + "start": 11161.8, + "end": 11164.04, + "probability": 0.8228 + }, + { + "start": 11164.2, + "end": 11167.44, + "probability": 0.9536 + }, + { + "start": 11167.5, + "end": 11171.78, + "probability": 0.9651 + }, + { + "start": 11172.44, + "end": 11173.64, + "probability": 0.7435 + }, + { + "start": 11173.8, + "end": 11175.82, + "probability": 0.991 + }, + { + "start": 11176.78, + "end": 11177.16, + "probability": 0.6521 + }, + { + "start": 11178.18, + "end": 11179.6, + "probability": 0.9454 + }, + { + "start": 11179.78, + "end": 11181.64, + "probability": 0.9136 + }, + { + "start": 11181.86, + "end": 11183.48, + "probability": 0.9227 + }, + { + "start": 11184.2, + "end": 11186.76, + "probability": 0.5177 + }, + { + "start": 11187.64, + "end": 11188.96, + "probability": 0.9875 + }, + { + "start": 11189.5, + "end": 11194.0, + "probability": 0.9191 + }, + { + "start": 11194.2, + "end": 11198.0, + "probability": 0.9959 + }, + { + "start": 11199.78, + "end": 11201.5, + "probability": 0.4832 + }, + { + "start": 11201.5, + "end": 11202.38, + "probability": 0.7585 + }, + { + "start": 11203.6, + "end": 11205.52, + "probability": 0.6768 + }, + { + "start": 11205.7, + "end": 11209.34, + "probability": 0.6946 + }, + { + "start": 11209.78, + "end": 11211.84, + "probability": 0.9033 + }, + { + "start": 11212.46, + "end": 11212.62, + "probability": 0.0623 + }, + { + "start": 11212.62, + "end": 11213.93, + "probability": 0.7233 + }, + { + "start": 11215.34, + "end": 11219.72, + "probability": 0.9787 + }, + { + "start": 11219.72, + "end": 11223.62, + "probability": 0.9969 + }, + { + "start": 11223.68, + "end": 11224.38, + "probability": 0.9403 + }, + { + "start": 11224.54, + "end": 11228.29, + "probability": 0.9897 + }, + { + "start": 11229.3, + "end": 11230.7, + "probability": 0.6626 + }, + { + "start": 11230.84, + "end": 11231.12, + "probability": 0.7997 + }, + { + "start": 11231.34, + "end": 11232.12, + "probability": 0.7253 + }, + { + "start": 11232.18, + "end": 11233.08, + "probability": 0.7614 + }, + { + "start": 11233.3, + "end": 11235.68, + "probability": 0.9634 + }, + { + "start": 11235.82, + "end": 11237.9, + "probability": 0.992 + }, + { + "start": 11238.36, + "end": 11241.67, + "probability": 0.979 + }, + { + "start": 11241.74, + "end": 11248.0, + "probability": 0.9731 + }, + { + "start": 11248.1, + "end": 11250.88, + "probability": 0.9539 + }, + { + "start": 11251.18, + "end": 11253.85, + "probability": 0.9928 + }, + { + "start": 11254.5, + "end": 11255.54, + "probability": 0.9937 + }, + { + "start": 11255.68, + "end": 11257.12, + "probability": 0.8297 + }, + { + "start": 11258.14, + "end": 11261.68, + "probability": 0.9828 + }, + { + "start": 11262.06, + "end": 11267.36, + "probability": 0.8992 + }, + { + "start": 11267.5, + "end": 11271.72, + "probability": 0.9953 + }, + { + "start": 11272.44, + "end": 11276.2, + "probability": 0.9987 + }, + { + "start": 11276.4, + "end": 11280.56, + "probability": 0.9971 + }, + { + "start": 11280.66, + "end": 11285.16, + "probability": 0.9928 + }, + { + "start": 11286.3, + "end": 11287.22, + "probability": 0.949 + }, + { + "start": 11287.62, + "end": 11291.78, + "probability": 0.9938 + }, + { + "start": 11292.38, + "end": 11295.86, + "probability": 0.9945 + }, + { + "start": 11295.86, + "end": 11299.26, + "probability": 0.9852 + }, + { + "start": 11299.8, + "end": 11302.22, + "probability": 0.8823 + }, + { + "start": 11302.4, + "end": 11304.48, + "probability": 0.9956 + }, + { + "start": 11306.26, + "end": 11309.18, + "probability": 0.9832 + }, + { + "start": 11309.66, + "end": 11310.2, + "probability": 0.6126 + }, + { + "start": 11310.34, + "end": 11314.04, + "probability": 0.9783 + }, + { + "start": 11314.36, + "end": 11315.44, + "probability": 0.9589 + }, + { + "start": 11315.54, + "end": 11318.52, + "probability": 0.9908 + }, + { + "start": 11319.2, + "end": 11320.2, + "probability": 0.7549 + }, + { + "start": 11320.94, + "end": 11321.72, + "probability": 0.8627 + }, + { + "start": 11322.42, + "end": 11323.54, + "probability": 0.8772 + }, + { + "start": 11324.34, + "end": 11329.42, + "probability": 0.9571 + }, + { + "start": 11329.5, + "end": 11331.94, + "probability": 0.9048 + }, + { + "start": 11331.98, + "end": 11333.56, + "probability": 0.9852 + }, + { + "start": 11333.72, + "end": 11336.98, + "probability": 0.9647 + }, + { + "start": 11337.68, + "end": 11340.08, + "probability": 0.9984 + }, + { + "start": 11340.8, + "end": 11342.6, + "probability": 0.8678 + }, + { + "start": 11342.84, + "end": 11344.83, + "probability": 0.9868 + }, + { + "start": 11345.92, + "end": 11349.42, + "probability": 0.9878 + }, + { + "start": 11349.56, + "end": 11350.86, + "probability": 0.9553 + }, + { + "start": 11350.9, + "end": 11352.68, + "probability": 0.9514 + }, + { + "start": 11353.68, + "end": 11354.9, + "probability": 0.984 + }, + { + "start": 11355.1, + "end": 11356.06, + "probability": 0.8808 + }, + { + "start": 11356.56, + "end": 11358.8, + "probability": 0.8265 + }, + { + "start": 11358.88, + "end": 11362.08, + "probability": 0.9907 + }, + { + "start": 11362.96, + "end": 11363.58, + "probability": 0.95 + }, + { + "start": 11363.66, + "end": 11364.94, + "probability": 0.9839 + }, + { + "start": 11365.04, + "end": 11366.74, + "probability": 0.996 + }, + { + "start": 11366.76, + "end": 11367.9, + "probability": 0.9916 + }, + { + "start": 11367.94, + "end": 11369.19, + "probability": 0.7719 + }, + { + "start": 11370.24, + "end": 11372.82, + "probability": 0.8829 + }, + { + "start": 11372.88, + "end": 11376.12, + "probability": 0.9961 + }, + { + "start": 11376.48, + "end": 11379.26, + "probability": 0.9163 + }, + { + "start": 11379.8, + "end": 11385.2, + "probability": 0.9448 + }, + { + "start": 11386.98, + "end": 11390.34, + "probability": 0.9442 + }, + { + "start": 11391.16, + "end": 11395.22, + "probability": 0.9779 + }, + { + "start": 11395.5, + "end": 11396.02, + "probability": 0.7106 + }, + { + "start": 11396.2, + "end": 11402.04, + "probability": 0.986 + }, + { + "start": 11402.2, + "end": 11405.87, + "probability": 0.9951 + }, + { + "start": 11406.02, + "end": 11412.29, + "probability": 0.9903 + }, + { + "start": 11413.48, + "end": 11414.32, + "probability": 0.9073 + }, + { + "start": 11415.86, + "end": 11419.86, + "probability": 0.9984 + }, + { + "start": 11420.42, + "end": 11426.96, + "probability": 0.9966 + }, + { + "start": 11427.14, + "end": 11430.72, + "probability": 0.9966 + }, + { + "start": 11430.72, + "end": 11435.34, + "probability": 0.7421 + }, + { + "start": 11435.98, + "end": 11437.78, + "probability": 0.8387 + }, + { + "start": 11438.26, + "end": 11442.33, + "probability": 0.9794 + }, + { + "start": 11443.0, + "end": 11446.88, + "probability": 0.9988 + }, + { + "start": 11447.76, + "end": 11449.4, + "probability": 0.9285 + }, + { + "start": 11450.7, + "end": 11451.02, + "probability": 0.6184 + }, + { + "start": 11451.08, + "end": 11455.03, + "probability": 0.9967 + }, + { + "start": 11456.58, + "end": 11461.04, + "probability": 0.9968 + }, + { + "start": 11461.38, + "end": 11462.32, + "probability": 0.9463 + }, + { + "start": 11463.58, + "end": 11464.72, + "probability": 0.921 + }, + { + "start": 11464.98, + "end": 11468.58, + "probability": 0.784 + }, + { + "start": 11468.72, + "end": 11473.02, + "probability": 0.9441 + }, + { + "start": 11473.12, + "end": 11473.64, + "probability": 0.8179 + }, + { + "start": 11474.06, + "end": 11475.44, + "probability": 0.9424 + }, + { + "start": 11475.46, + "end": 11476.44, + "probability": 0.9779 + }, + { + "start": 11476.54, + "end": 11479.92, + "probability": 0.8471 + }, + { + "start": 11480.54, + "end": 11482.98, + "probability": 0.9137 + }, + { + "start": 11488.46, + "end": 11492.44, + "probability": 0.4796 + }, + { + "start": 11492.96, + "end": 11494.16, + "probability": 0.9756 + }, + { + "start": 11494.24, + "end": 11497.68, + "probability": 0.998 + }, + { + "start": 11498.34, + "end": 11502.8, + "probability": 0.9956 + }, + { + "start": 11502.9, + "end": 11505.28, + "probability": 0.9656 + }, + { + "start": 11505.4, + "end": 11506.82, + "probability": 0.6227 + }, + { + "start": 11506.88, + "end": 11508.16, + "probability": 0.8075 + }, + { + "start": 11508.88, + "end": 11511.8, + "probability": 0.9956 + }, + { + "start": 11512.5, + "end": 11518.62, + "probability": 0.9971 + }, + { + "start": 11518.98, + "end": 11526.84, + "probability": 0.9837 + }, + { + "start": 11527.39, + "end": 11530.6, + "probability": 0.8368 + }, + { + "start": 11531.1, + "end": 11535.3, + "probability": 0.951 + }, + { + "start": 11535.66, + "end": 11536.68, + "probability": 0.934 + }, + { + "start": 11536.82, + "end": 11540.91, + "probability": 0.9965 + }, + { + "start": 11541.78, + "end": 11544.2, + "probability": 0.9985 + }, + { + "start": 11544.64, + "end": 11546.46, + "probability": 0.9971 + }, + { + "start": 11546.56, + "end": 11548.61, + "probability": 0.999 + }, + { + "start": 11548.88, + "end": 11553.58, + "probability": 0.985 + }, + { + "start": 11554.29, + "end": 11555.54, + "probability": 0.9561 + }, + { + "start": 11555.7, + "end": 11559.84, + "probability": 0.9619 + }, + { + "start": 11559.84, + "end": 11563.92, + "probability": 0.951 + }, + { + "start": 11564.14, + "end": 11567.28, + "probability": 0.9119 + }, + { + "start": 11567.6, + "end": 11570.66, + "probability": 0.9701 + }, + { + "start": 11570.96, + "end": 11572.66, + "probability": 0.9883 + }, + { + "start": 11573.16, + "end": 11575.34, + "probability": 0.937 + }, + { + "start": 11575.62, + "end": 11576.9, + "probability": 0.967 + }, + { + "start": 11577.44, + "end": 11577.96, + "probability": 0.9259 + }, + { + "start": 11578.16, + "end": 11579.74, + "probability": 0.9963 + }, + { + "start": 11579.96, + "end": 11581.08, + "probability": 0.7414 + }, + { + "start": 11581.52, + "end": 11586.46, + "probability": 0.9189 + }, + { + "start": 11587.06, + "end": 11587.22, + "probability": 0.8135 + }, + { + "start": 11587.38, + "end": 11589.12, + "probability": 0.9778 + }, + { + "start": 11589.5, + "end": 11590.42, + "probability": 0.915 + }, + { + "start": 11591.0, + "end": 11592.97, + "probability": 0.9041 + }, + { + "start": 11593.44, + "end": 11595.26, + "probability": 0.9674 + }, + { + "start": 11595.5, + "end": 11597.2, + "probability": 0.9663 + }, + { + "start": 11597.52, + "end": 11598.11, + "probability": 0.9963 + }, + { + "start": 11598.88, + "end": 11601.6, + "probability": 0.9979 + }, + { + "start": 11601.82, + "end": 11603.82, + "probability": 0.7557 + }, + { + "start": 11604.54, + "end": 11604.92, + "probability": 0.4907 + }, + { + "start": 11605.0, + "end": 11606.6, + "probability": 0.9733 + }, + { + "start": 11606.84, + "end": 11608.22, + "probability": 0.8223 + }, + { + "start": 11608.26, + "end": 11609.96, + "probability": 0.9941 + }, + { + "start": 11610.74, + "end": 11617.54, + "probability": 0.9778 + }, + { + "start": 11617.54, + "end": 11622.78, + "probability": 0.998 + }, + { + "start": 11623.3, + "end": 11629.22, + "probability": 0.983 + }, + { + "start": 11629.82, + "end": 11631.3, + "probability": 0.8402 + }, + { + "start": 11631.82, + "end": 11633.62, + "probability": 0.9434 + }, + { + "start": 11634.58, + "end": 11636.12, + "probability": 0.9874 + }, + { + "start": 11636.18, + "end": 11638.19, + "probability": 0.9603 + }, + { + "start": 11638.32, + "end": 11639.64, + "probability": 0.8683 + }, + { + "start": 11640.04, + "end": 11645.26, + "probability": 0.938 + }, + { + "start": 11645.68, + "end": 11647.42, + "probability": 0.9338 + }, + { + "start": 11648.4, + "end": 11653.12, + "probability": 0.6123 + }, + { + "start": 11653.12, + "end": 11660.52, + "probability": 0.9912 + }, + { + "start": 11660.58, + "end": 11664.98, + "probability": 0.9006 + }, + { + "start": 11665.64, + "end": 11668.98, + "probability": 0.9077 + }, + { + "start": 11670.58, + "end": 11672.84, + "probability": 0.9966 + }, + { + "start": 11673.02, + "end": 11673.24, + "probability": 0.8547 + }, + { + "start": 11673.68, + "end": 11674.88, + "probability": 0.9347 + }, + { + "start": 11675.46, + "end": 11676.64, + "probability": 0.873 + }, + { + "start": 11677.0, + "end": 11680.12, + "probability": 0.9995 + }, + { + "start": 11680.66, + "end": 11683.3, + "probability": 0.9941 + }, + { + "start": 11683.38, + "end": 11685.5, + "probability": 0.9769 + }, + { + "start": 11686.26, + "end": 11688.24, + "probability": 0.9994 + }, + { + "start": 11688.76, + "end": 11691.02, + "probability": 0.9303 + }, + { + "start": 11691.14, + "end": 11693.9, + "probability": 0.9539 + }, + { + "start": 11694.94, + "end": 11696.08, + "probability": 0.9331 + }, + { + "start": 11696.5, + "end": 11699.08, + "probability": 0.9177 + }, + { + "start": 11699.6, + "end": 11705.32, + "probability": 0.9827 + }, + { + "start": 11705.32, + "end": 11712.24, + "probability": 0.9919 + }, + { + "start": 11713.3, + "end": 11713.7, + "probability": 0.6773 + }, + { + "start": 11713.74, + "end": 11714.28, + "probability": 0.7612 + }, + { + "start": 11714.32, + "end": 11715.78, + "probability": 0.554 + }, + { + "start": 11716.12, + "end": 11720.52, + "probability": 0.9434 + }, + { + "start": 11720.52, + "end": 11723.74, + "probability": 0.9565 + }, + { + "start": 11724.16, + "end": 11725.12, + "probability": 0.8662 + }, + { + "start": 11725.36, + "end": 11727.07, + "probability": 0.9518 + }, + { + "start": 11727.7, + "end": 11728.02, + "probability": 0.9897 + }, + { + "start": 11728.94, + "end": 11732.24, + "probability": 0.9779 + }, + { + "start": 11733.02, + "end": 11736.84, + "probability": 0.9705 + }, + { + "start": 11737.36, + "end": 11740.1, + "probability": 0.996 + }, + { + "start": 11740.1, + "end": 11744.82, + "probability": 0.9697 + }, + { + "start": 11744.98, + "end": 11746.72, + "probability": 0.7745 + }, + { + "start": 11747.26, + "end": 11749.7, + "probability": 0.9441 + }, + { + "start": 11749.7, + "end": 11752.32, + "probability": 0.9961 + }, + { + "start": 11752.92, + "end": 11757.42, + "probability": 0.9172 + }, + { + "start": 11758.3, + "end": 11764.74, + "probability": 0.9912 + }, + { + "start": 11765.12, + "end": 11765.84, + "probability": 0.4938 + }, + { + "start": 11765.96, + "end": 11771.0, + "probability": 0.7977 + }, + { + "start": 11771.12, + "end": 11778.06, + "probability": 0.9928 + }, + { + "start": 11778.14, + "end": 11783.2, + "probability": 0.9915 + }, + { + "start": 11783.32, + "end": 11787.38, + "probability": 0.9854 + }, + { + "start": 11787.54, + "end": 11793.64, + "probability": 0.981 + }, + { + "start": 11794.2, + "end": 11796.33, + "probability": 0.7481 + }, + { + "start": 11796.58, + "end": 11800.12, + "probability": 0.9826 + }, + { + "start": 11800.3, + "end": 11804.44, + "probability": 0.9886 + }, + { + "start": 11804.58, + "end": 11809.52, + "probability": 0.9922 + }, + { + "start": 11809.52, + "end": 11815.84, + "probability": 0.9907 + }, + { + "start": 11816.0, + "end": 11818.82, + "probability": 0.9927 + }, + { + "start": 11819.04, + "end": 11820.56, + "probability": 0.9861 + }, + { + "start": 11820.64, + "end": 11822.76, + "probability": 0.9937 + }, + { + "start": 11822.78, + "end": 11825.23, + "probability": 0.9917 + }, + { + "start": 11825.78, + "end": 11826.6, + "probability": 0.4323 + }, + { + "start": 11826.66, + "end": 11827.48, + "probability": 0.8831 + }, + { + "start": 11828.66, + "end": 11831.08, + "probability": 0.9957 + }, + { + "start": 11831.28, + "end": 11832.02, + "probability": 0.8913 + }, + { + "start": 11832.46, + "end": 11833.9, + "probability": 0.9883 + }, + { + "start": 11834.74, + "end": 11838.78, + "probability": 0.9621 + }, + { + "start": 11839.16, + "end": 11841.33, + "probability": 0.9988 + }, + { + "start": 11841.54, + "end": 11842.62, + "probability": 0.8036 + }, + { + "start": 11842.98, + "end": 11844.12, + "probability": 0.9749 + }, + { + "start": 11844.2, + "end": 11847.66, + "probability": 0.9893 + }, + { + "start": 11848.1, + "end": 11848.99, + "probability": 0.9854 + }, + { + "start": 11849.52, + "end": 11850.68, + "probability": 0.9867 + }, + { + "start": 11851.42, + "end": 11854.34, + "probability": 0.9091 + }, + { + "start": 11854.54, + "end": 11855.52, + "probability": 0.5122 + }, + { + "start": 11856.06, + "end": 11856.94, + "probability": 0.8068 + }, + { + "start": 11857.02, + "end": 11858.06, + "probability": 0.8625 + }, + { + "start": 11858.68, + "end": 11859.12, + "probability": 0.7164 + }, + { + "start": 11859.14, + "end": 11862.15, + "probability": 0.9246 + }, + { + "start": 11863.12, + "end": 11865.28, + "probability": 0.936 + }, + { + "start": 11865.32, + "end": 11866.04, + "probability": 0.816 + }, + { + "start": 11866.42, + "end": 11867.04, + "probability": 0.8237 + }, + { + "start": 11867.36, + "end": 11869.66, + "probability": 0.9614 + }, + { + "start": 11870.1, + "end": 11872.32, + "probability": 0.964 + }, + { + "start": 11872.38, + "end": 11878.36, + "probability": 0.9795 + }, + { + "start": 11879.0, + "end": 11880.64, + "probability": 0.9297 + }, + { + "start": 11881.06, + "end": 11881.55, + "probability": 0.9438 + }, + { + "start": 11882.34, + "end": 11882.72, + "probability": 0.7398 + }, + { + "start": 11882.96, + "end": 11883.42, + "probability": 0.9237 + }, + { + "start": 11883.58, + "end": 11884.16, + "probability": 0.9776 + }, + { + "start": 11884.46, + "end": 11885.0, + "probability": 0.9613 + }, + { + "start": 11885.04, + "end": 11887.36, + "probability": 0.8829 + }, + { + "start": 11887.84, + "end": 11888.6, + "probability": 0.704 + }, + { + "start": 11888.66, + "end": 11889.72, + "probability": 0.9616 + }, + { + "start": 11889.88, + "end": 11890.59, + "probability": 0.683 + }, + { + "start": 11891.3, + "end": 11896.1, + "probability": 0.9225 + }, + { + "start": 11896.22, + "end": 11896.64, + "probability": 0.9307 + }, + { + "start": 11897.0, + "end": 11899.58, + "probability": 0.8544 + }, + { + "start": 11900.16, + "end": 11904.72, + "probability": 0.9717 + }, + { + "start": 11905.1, + "end": 11909.55, + "probability": 0.9795 + }, + { + "start": 11910.48, + "end": 11911.4, + "probability": 0.9727 + }, + { + "start": 11911.52, + "end": 11912.58, + "probability": 0.99 + }, + { + "start": 11913.38, + "end": 11917.66, + "probability": 0.9989 + }, + { + "start": 11917.66, + "end": 11922.36, + "probability": 0.9943 + }, + { + "start": 11923.1, + "end": 11923.64, + "probability": 0.7043 + }, + { + "start": 11923.72, + "end": 11924.64, + "probability": 0.8428 + }, + { + "start": 11924.8, + "end": 11926.22, + "probability": 0.8958 + }, + { + "start": 11926.6, + "end": 11928.74, + "probability": 0.828 + }, + { + "start": 11928.9, + "end": 11930.32, + "probability": 0.6444 + }, + { + "start": 11930.68, + "end": 11932.72, + "probability": 0.991 + }, + { + "start": 11933.14, + "end": 11936.92, + "probability": 0.9807 + }, + { + "start": 11937.34, + "end": 11940.62, + "probability": 0.9919 + }, + { + "start": 11940.78, + "end": 11941.8, + "probability": 0.9907 + }, + { + "start": 11942.28, + "end": 11946.26, + "probability": 0.9698 + }, + { + "start": 11946.66, + "end": 11949.06, + "probability": 0.9534 + }, + { + "start": 11949.16, + "end": 11949.88, + "probability": 0.7356 + }, + { + "start": 11949.96, + "end": 11951.2, + "probability": 0.7501 + }, + { + "start": 11951.48, + "end": 11952.4, + "probability": 0.3877 + }, + { + "start": 11952.78, + "end": 11957.46, + "probability": 0.9902 + }, + { + "start": 11957.68, + "end": 11962.72, + "probability": 0.9854 + }, + { + "start": 11962.72, + "end": 11965.82, + "probability": 0.9977 + }, + { + "start": 11966.44, + "end": 11971.92, + "probability": 0.9924 + }, + { + "start": 11971.92, + "end": 11975.96, + "probability": 0.9844 + }, + { + "start": 11976.18, + "end": 11978.7, + "probability": 0.98 + }, + { + "start": 11979.06, + "end": 11982.04, + "probability": 0.9992 + }, + { + "start": 11982.56, + "end": 11985.06, + "probability": 0.6263 + }, + { + "start": 11985.76, + "end": 11988.28, + "probability": 0.8774 + }, + { + "start": 11988.44, + "end": 11990.8, + "probability": 0.9985 + }, + { + "start": 11991.24, + "end": 11996.1, + "probability": 0.653 + }, + { + "start": 11996.52, + "end": 11999.42, + "probability": 0.9944 + }, + { + "start": 11999.44, + "end": 11999.88, + "probability": 0.9532 + }, + { + "start": 11999.94, + "end": 12000.94, + "probability": 0.9718 + }, + { + "start": 12001.0, + "end": 12002.1, + "probability": 0.9083 + }, + { + "start": 12002.2, + "end": 12002.54, + "probability": 0.6693 + }, + { + "start": 12002.64, + "end": 12003.12, + "probability": 0.8026 + }, + { + "start": 12003.26, + "end": 12008.74, + "probability": 0.98 + }, + { + "start": 12009.12, + "end": 12009.8, + "probability": 0.8132 + }, + { + "start": 12009.84, + "end": 12010.66, + "probability": 0.7451 + }, + { + "start": 12010.7, + "end": 12014.1, + "probability": 0.9862 + }, + { + "start": 12015.28, + "end": 12020.16, + "probability": 0.9912 + }, + { + "start": 12020.16, + "end": 12024.34, + "probability": 0.9684 + }, + { + "start": 12024.84, + "end": 12026.22, + "probability": 0.8848 + }, + { + "start": 12026.5, + "end": 12029.26, + "probability": 0.8079 + }, + { + "start": 12029.86, + "end": 12036.18, + "probability": 0.9819 + }, + { + "start": 12036.34, + "end": 12038.6, + "probability": 0.9873 + }, + { + "start": 12039.62, + "end": 12041.21, + "probability": 0.9984 + }, + { + "start": 12041.88, + "end": 12043.96, + "probability": 0.9924 + }, + { + "start": 12044.12, + "end": 12044.88, + "probability": 0.5723 + }, + { + "start": 12044.88, + "end": 12047.02, + "probability": 0.9241 + }, + { + "start": 12047.58, + "end": 12048.41, + "probability": 0.9784 + }, + { + "start": 12049.2, + "end": 12052.11, + "probability": 0.9834 + }, + { + "start": 12052.4, + "end": 12052.85, + "probability": 0.9498 + }, + { + "start": 12053.6, + "end": 12057.52, + "probability": 0.974 + }, + { + "start": 12057.6, + "end": 12062.8, + "probability": 0.9875 + }, + { + "start": 12062.8, + "end": 12068.16, + "probability": 0.9472 + }, + { + "start": 12068.66, + "end": 12072.43, + "probability": 0.9875 + }, + { + "start": 12072.72, + "end": 12075.82, + "probability": 0.9654 + }, + { + "start": 12075.86, + "end": 12079.4, + "probability": 0.9968 + }, + { + "start": 12079.46, + "end": 12083.92, + "probability": 0.9431 + }, + { + "start": 12084.32, + "end": 12085.68, + "probability": 0.9419 + }, + { + "start": 12086.16, + "end": 12087.86, + "probability": 0.9873 + }, + { + "start": 12088.02, + "end": 12089.88, + "probability": 0.5733 + }, + { + "start": 12090.48, + "end": 12091.48, + "probability": 0.8646 + }, + { + "start": 12091.82, + "end": 12095.2, + "probability": 0.9784 + }, + { + "start": 12095.58, + "end": 12097.02, + "probability": 0.9858 + }, + { + "start": 12097.52, + "end": 12099.26, + "probability": 0.9976 + }, + { + "start": 12099.96, + "end": 12100.92, + "probability": 0.9628 + }, + { + "start": 12101.32, + "end": 12102.18, + "probability": 0.4875 + }, + { + "start": 12102.28, + "end": 12107.18, + "probability": 0.9711 + }, + { + "start": 12107.44, + "end": 12110.4, + "probability": 0.99 + }, + { + "start": 12110.96, + "end": 12112.86, + "probability": 0.9681 + }, + { + "start": 12112.94, + "end": 12113.4, + "probability": 0.8581 + }, + { + "start": 12113.42, + "end": 12120.78, + "probability": 0.9945 + }, + { + "start": 12120.86, + "end": 12122.77, + "probability": 0.9982 + }, + { + "start": 12123.54, + "end": 12125.02, + "probability": 0.8915 + }, + { + "start": 12125.76, + "end": 12128.62, + "probability": 0.9899 + }, + { + "start": 12128.78, + "end": 12130.1, + "probability": 0.9941 + }, + { + "start": 12130.56, + "end": 12131.42, + "probability": 0.965 + }, + { + "start": 12132.1, + "end": 12134.2, + "probability": 0.9767 + }, + { + "start": 12135.26, + "end": 12137.74, + "probability": 0.9767 + }, + { + "start": 12137.74, + "end": 12142.84, + "probability": 0.5265 + }, + { + "start": 12143.04, + "end": 12144.48, + "probability": 0.7124 + }, + { + "start": 12145.0, + "end": 12146.04, + "probability": 0.8228 + }, + { + "start": 12146.48, + "end": 12148.5, + "probability": 0.9096 + }, + { + "start": 12149.34, + "end": 12150.48, + "probability": 0.9433 + }, + { + "start": 12150.62, + "end": 12152.98, + "probability": 0.9917 + }, + { + "start": 12152.98, + "end": 12156.2, + "probability": 0.9783 + }, + { + "start": 12156.68, + "end": 12158.82, + "probability": 0.8488 + }, + { + "start": 12159.22, + "end": 12163.04, + "probability": 0.917 + }, + { + "start": 12163.52, + "end": 12164.06, + "probability": 0.7607 + }, + { + "start": 12164.42, + "end": 12166.16, + "probability": 0.7417 + }, + { + "start": 12166.26, + "end": 12170.84, + "probability": 0.9974 + }, + { + "start": 12171.2, + "end": 12173.22, + "probability": 0.9824 + }, + { + "start": 12173.5, + "end": 12174.12, + "probability": 0.8586 + }, + { + "start": 12174.24, + "end": 12175.18, + "probability": 0.7207 + }, + { + "start": 12175.66, + "end": 12179.84, + "probability": 0.986 + }, + { + "start": 12179.86, + "end": 12181.34, + "probability": 0.981 + }, + { + "start": 12181.46, + "end": 12183.04, + "probability": 0.6305 + }, + { + "start": 12183.34, + "end": 12188.74, + "probability": 0.9589 + }, + { + "start": 12189.12, + "end": 12192.4, + "probability": 0.9902 + }, + { + "start": 12192.4, + "end": 12197.6, + "probability": 0.9928 + }, + { + "start": 12198.02, + "end": 12200.42, + "probability": 0.9969 + }, + { + "start": 12200.54, + "end": 12203.38, + "probability": 0.9437 + }, + { + "start": 12203.56, + "end": 12204.6, + "probability": 0.7903 + }, + { + "start": 12204.92, + "end": 12206.34, + "probability": 0.9318 + }, + { + "start": 12206.48, + "end": 12210.2, + "probability": 0.877 + }, + { + "start": 12210.84, + "end": 12211.36, + "probability": 0.8259 + }, + { + "start": 12212.58, + "end": 12214.12, + "probability": 0.5888 + }, + { + "start": 12214.16, + "end": 12216.2, + "probability": 0.9224 + }, + { + "start": 12216.76, + "end": 12221.72, + "probability": 0.9673 + }, + { + "start": 12221.98, + "end": 12223.02, + "probability": 0.912 + }, + { + "start": 12223.28, + "end": 12224.56, + "probability": 0.9568 + }, + { + "start": 12224.88, + "end": 12226.62, + "probability": 0.9841 + }, + { + "start": 12226.7, + "end": 12227.5, + "probability": 0.9768 + }, + { + "start": 12227.58, + "end": 12228.48, + "probability": 0.5704 + }, + { + "start": 12228.72, + "end": 12231.74, + "probability": 0.7373 + }, + { + "start": 12232.02, + "end": 12234.16, + "probability": 0.5118 + }, + { + "start": 12234.56, + "end": 12236.14, + "probability": 0.9648 + }, + { + "start": 12236.74, + "end": 12238.22, + "probability": 0.9963 + }, + { + "start": 12238.64, + "end": 12241.0, + "probability": 0.8663 + }, + { + "start": 12241.26, + "end": 12242.64, + "probability": 0.9772 + }, + { + "start": 12243.26, + "end": 12244.22, + "probability": 0.9556 + }, + { + "start": 12244.32, + "end": 12245.92, + "probability": 0.5039 + }, + { + "start": 12245.92, + "end": 12246.38, + "probability": 0.581 + }, + { + "start": 12247.0, + "end": 12250.02, + "probability": 0.9087 + }, + { + "start": 12250.42, + "end": 12252.14, + "probability": 0.9846 + }, + { + "start": 12252.22, + "end": 12257.36, + "probability": 0.9757 + }, + { + "start": 12257.5, + "end": 12263.94, + "probability": 0.9781 + }, + { + "start": 12263.96, + "end": 12266.08, + "probability": 0.9347 + }, + { + "start": 12266.66, + "end": 12268.04, + "probability": 0.755 + }, + { + "start": 12268.34, + "end": 12269.26, + "probability": 0.8499 + }, + { + "start": 12269.42, + "end": 12272.38, + "probability": 0.9911 + }, + { + "start": 12272.76, + "end": 12276.34, + "probability": 0.7012 + }, + { + "start": 12276.96, + "end": 12277.72, + "probability": 0.4554 + }, + { + "start": 12277.84, + "end": 12281.86, + "probability": 0.9946 + }, + { + "start": 12281.94, + "end": 12283.12, + "probability": 0.9844 + }, + { + "start": 12283.36, + "end": 12285.08, + "probability": 0.9683 + }, + { + "start": 12285.26, + "end": 12288.16, + "probability": 0.9947 + }, + { + "start": 12288.16, + "end": 12293.24, + "probability": 0.8101 + }, + { + "start": 12293.64, + "end": 12295.52, + "probability": 0.6979 + }, + { + "start": 12295.52, + "end": 12299.53, + "probability": 0.9671 + }, + { + "start": 12299.76, + "end": 12304.48, + "probability": 0.9618 + }, + { + "start": 12304.48, + "end": 12311.22, + "probability": 0.9859 + }, + { + "start": 12311.96, + "end": 12313.96, + "probability": 0.9979 + }, + { + "start": 12313.96, + "end": 12319.3, + "probability": 0.9935 + }, + { + "start": 12319.5, + "end": 12323.86, + "probability": 0.6347 + }, + { + "start": 12324.78, + "end": 12325.26, + "probability": 0.594 + }, + { + "start": 12325.26, + "end": 12326.54, + "probability": 0.7169 + }, + { + "start": 12326.72, + "end": 12332.38, + "probability": 0.9963 + }, + { + "start": 12332.38, + "end": 12338.44, + "probability": 0.9593 + }, + { + "start": 12338.74, + "end": 12342.48, + "probability": 0.9887 + }, + { + "start": 12342.68, + "end": 12343.02, + "probability": 0.743 + }, + { + "start": 12344.1, + "end": 12345.54, + "probability": 0.7102 + }, + { + "start": 12347.46, + "end": 12349.26, + "probability": 0.68 + }, + { + "start": 12356.56, + "end": 12356.56, + "probability": 0.1849 + }, + { + "start": 12357.24, + "end": 12357.6, + "probability": 0.0864 + }, + { + "start": 12357.6, + "end": 12358.12, + "probability": 0.2187 + }, + { + "start": 12358.82, + "end": 12361.9, + "probability": 0.6281 + }, + { + "start": 12362.86, + "end": 12365.24, + "probability": 0.554 + }, + { + "start": 12366.96, + "end": 12368.28, + "probability": 0.266 + }, + { + "start": 12371.94, + "end": 12372.18, + "probability": 0.4709 + }, + { + "start": 12372.54, + "end": 12373.08, + "probability": 0.6565 + }, + { + "start": 12374.68, + "end": 12374.82, + "probability": 0.7345 + }, + { + "start": 12377.92, + "end": 12380.62, + "probability": 0.8542 + }, + { + "start": 12381.34, + "end": 12384.88, + "probability": 0.7412 + }, + { + "start": 12385.76, + "end": 12388.82, + "probability": 0.9632 + }, + { + "start": 12389.3, + "end": 12390.06, + "probability": 0.3781 + }, + { + "start": 12390.14, + "end": 12391.28, + "probability": 0.7995 + }, + { + "start": 12391.34, + "end": 12392.62, + "probability": 0.4393 + }, + { + "start": 12392.62, + "end": 12395.24, + "probability": 0.1961 + }, + { + "start": 12395.69, + "end": 12400.66, + "probability": 0.4223 + }, + { + "start": 12401.4, + "end": 12405.72, + "probability": 0.7881 + }, + { + "start": 12406.3, + "end": 12411.2, + "probability": 0.5342 + }, + { + "start": 12411.76, + "end": 12414.42, + "probability": 0.8055 + }, + { + "start": 12414.76, + "end": 12417.32, + "probability": 0.9675 + }, + { + "start": 12417.88, + "end": 12419.62, + "probability": 0.0599 + }, + { + "start": 12419.62, + "end": 12420.62, + "probability": 0.6688 + }, + { + "start": 12420.68, + "end": 12425.72, + "probability": 0.9296 + }, + { + "start": 12426.74, + "end": 12429.24, + "probability": 0.9795 + }, + { + "start": 12429.24, + "end": 12432.62, + "probability": 0.9969 + }, + { + "start": 12433.12, + "end": 12435.56, + "probability": 0.5315 + }, + { + "start": 12435.8, + "end": 12436.1, + "probability": 0.7652 + }, + { + "start": 12438.36, + "end": 12440.08, + "probability": 0.6502 + }, + { + "start": 12441.2, + "end": 12442.66, + "probability": 0.416 + }, + { + "start": 12442.68, + "end": 12443.48, + "probability": 0.5305 + }, + { + "start": 12444.42, + "end": 12447.3, + "probability": 0.9492 + }, + { + "start": 12448.08, + "end": 12449.6, + "probability": 0.3244 + }, + { + "start": 12450.38, + "end": 12455.16, + "probability": 0.8352 + }, + { + "start": 12456.1, + "end": 12462.76, + "probability": 0.9121 + }, + { + "start": 12462.8, + "end": 12463.24, + "probability": 0.9115 + }, + { + "start": 12470.62, + "end": 12470.62, + "probability": 0.1648 + }, + { + "start": 12470.68, + "end": 12470.68, + "probability": 0.3071 + }, + { + "start": 12470.89, + "end": 12470.96, + "probability": 0.1656 + }, + { + "start": 12470.96, + "end": 12470.96, + "probability": 0.1064 + }, + { + "start": 12482.88, + "end": 12484.08, + "probability": 0.1624 + }, + { + "start": 12488.14, + "end": 12491.5, + "probability": 0.9762 + }, + { + "start": 12492.32, + "end": 12495.92, + "probability": 0.8557 + }, + { + "start": 12497.21, + "end": 12498.36, + "probability": 0.7277 + }, + { + "start": 12498.44, + "end": 12500.16, + "probability": 0.9572 + }, + { + "start": 12500.3, + "end": 12501.34, + "probability": 0.7162 + }, + { + "start": 12501.9, + "end": 12503.66, + "probability": 0.7393 + }, + { + "start": 12507.22, + "end": 12509.08, + "probability": 0.7688 + }, + { + "start": 12511.57, + "end": 12517.16, + "probability": 0.6962 + }, + { + "start": 12517.98, + "end": 12519.64, + "probability": 0.5232 + }, + { + "start": 12520.22, + "end": 12520.72, + "probability": 0.2107 + }, + { + "start": 12521.46, + "end": 12525.78, + "probability": 0.9411 + }, + { + "start": 12526.6, + "end": 12527.38, + "probability": 0.6406 + }, + { + "start": 12527.5, + "end": 12528.08, + "probability": 0.9095 + }, + { + "start": 12528.14, + "end": 12530.54, + "probability": 0.9832 + }, + { + "start": 12531.18, + "end": 12536.22, + "probability": 0.7154 + }, + { + "start": 12536.28, + "end": 12540.38, + "probability": 0.9868 + }, + { + "start": 12541.34, + "end": 12543.12, + "probability": 0.8216 + }, + { + "start": 12545.4, + "end": 12546.68, + "probability": 0.9088 + }, + { + "start": 12548.04, + "end": 12552.32, + "probability": 0.9609 + }, + { + "start": 12553.86, + "end": 12558.58, + "probability": 0.9548 + }, + { + "start": 12559.6, + "end": 12560.54, + "probability": 0.9307 + }, + { + "start": 12560.76, + "end": 12563.94, + "probability": 0.8759 + }, + { + "start": 12564.6, + "end": 12565.06, + "probability": 0.6979 + }, + { + "start": 12567.0, + "end": 12568.14, + "probability": 0.5973 + }, + { + "start": 12568.22, + "end": 12571.62, + "probability": 0.8914 + }, + { + "start": 12571.78, + "end": 12571.88, + "probability": 0.7375 + }, + { + "start": 12572.76, + "end": 12574.24, + "probability": 0.7678 + }, + { + "start": 12574.34, + "end": 12575.6, + "probability": 0.6608 + }, + { + "start": 12575.74, + "end": 12581.98, + "probability": 0.9582 + }, + { + "start": 12582.32, + "end": 12585.28, + "probability": 0.6898 + }, + { + "start": 12586.22, + "end": 12587.82, + "probability": 0.999 + }, + { + "start": 12589.52, + "end": 12594.96, + "probability": 0.9958 + }, + { + "start": 12596.12, + "end": 12599.74, + "probability": 0.8746 + }, + { + "start": 12600.26, + "end": 12601.08, + "probability": 0.84 + }, + { + "start": 12602.04, + "end": 12603.92, + "probability": 0.63 + }, + { + "start": 12604.82, + "end": 12605.86, + "probability": 0.813 + }, + { + "start": 12606.96, + "end": 12610.6, + "probability": 0.9333 + }, + { + "start": 12611.12, + "end": 12612.96, + "probability": 0.1211 + }, + { + "start": 12613.18, + "end": 12614.38, + "probability": 0.3934 + }, + { + "start": 12616.18, + "end": 12617.88, + "probability": 0.9097 + }, + { + "start": 12619.46, + "end": 12620.38, + "probability": 0.4158 + }, + { + "start": 12620.42, + "end": 12621.38, + "probability": 0.8625 + }, + { + "start": 12621.48, + "end": 12624.36, + "probability": 0.0577 + }, + { + "start": 12624.36, + "end": 12624.36, + "probability": 0.1477 + }, + { + "start": 12624.36, + "end": 12624.85, + "probability": 0.2027 + }, + { + "start": 12625.78, + "end": 12626.42, + "probability": 0.4268 + }, + { + "start": 12627.73, + "end": 12630.07, + "probability": 0.7971 + }, + { + "start": 12631.1, + "end": 12632.8, + "probability": 0.8864 + }, + { + "start": 12634.12, + "end": 12634.91, + "probability": 0.9338 + }, + { + "start": 12636.92, + "end": 12639.02, + "probability": 0.9126 + }, + { + "start": 12641.7, + "end": 12644.12, + "probability": 0.1023 + }, + { + "start": 12644.12, + "end": 12645.1, + "probability": 0.7877 + }, + { + "start": 12645.22, + "end": 12648.24, + "probability": 0.6687 + }, + { + "start": 12648.26, + "end": 12649.14, + "probability": 0.8501 + }, + { + "start": 12650.08, + "end": 12652.14, + "probability": 0.9614 + }, + { + "start": 12653.04, + "end": 12657.94, + "probability": 0.7742 + }, + { + "start": 12658.08, + "end": 12658.74, + "probability": 0.6346 + }, + { + "start": 12658.88, + "end": 12660.48, + "probability": 0.9537 + }, + { + "start": 12660.96, + "end": 12664.7, + "probability": 0.7034 + }, + { + "start": 12665.64, + "end": 12668.74, + "probability": 0.9165 + }, + { + "start": 12669.38, + "end": 12671.76, + "probability": 0.7782 + }, + { + "start": 12672.44, + "end": 12674.88, + "probability": 0.8602 + }, + { + "start": 12675.24, + "end": 12677.72, + "probability": 0.9675 + }, + { + "start": 12678.14, + "end": 12683.2, + "probability": 0.9992 + }, + { + "start": 12686.44, + "end": 12691.42, + "probability": 0.6099 + }, + { + "start": 12691.46, + "end": 12697.5, + "probability": 0.8456 + }, + { + "start": 12697.54, + "end": 12698.76, + "probability": 0.7349 + }, + { + "start": 12699.92, + "end": 12701.66, + "probability": 0.8595 + }, + { + "start": 12702.36, + "end": 12704.24, + "probability": 0.8646 + }, + { + "start": 12705.64, + "end": 12706.74, + "probability": 0.8389 + }, + { + "start": 12707.02, + "end": 12708.16, + "probability": 0.752 + }, + { + "start": 12708.24, + "end": 12710.82, + "probability": 0.597 + }, + { + "start": 12711.89, + "end": 12716.64, + "probability": 0.7386 + }, + { + "start": 12717.74, + "end": 12719.86, + "probability": 0.9897 + }, + { + "start": 12721.0, + "end": 12724.36, + "probability": 0.7944 + }, + { + "start": 12725.2, + "end": 12726.66, + "probability": 0.9751 + }, + { + "start": 12727.28, + "end": 12729.18, + "probability": 0.9016 + }, + { + "start": 12730.24, + "end": 12733.32, + "probability": 0.7856 + }, + { + "start": 12734.0, + "end": 12734.56, + "probability": 0.9157 + }, + { + "start": 12734.62, + "end": 12737.34, + "probability": 0.8486 + }, + { + "start": 12737.44, + "end": 12739.54, + "probability": 0.7306 + }, + { + "start": 12740.08, + "end": 12740.68, + "probability": 0.9318 + }, + { + "start": 12740.76, + "end": 12742.26, + "probability": 0.9951 + }, + { + "start": 12742.82, + "end": 12744.86, + "probability": 0.9839 + }, + { + "start": 12745.18, + "end": 12746.32, + "probability": 0.7572 + }, + { + "start": 12746.62, + "end": 12746.96, + "probability": 0.6902 + }, + { + "start": 12746.96, + "end": 12749.36, + "probability": 0.6067 + }, + { + "start": 12749.82, + "end": 12751.34, + "probability": 0.61 + }, + { + "start": 12751.46, + "end": 12755.74, + "probability": 0.9926 + }, + { + "start": 12756.8, + "end": 12759.02, + "probability": 0.9915 + }, + { + "start": 12760.24, + "end": 12760.76, + "probability": 0.7486 + }, + { + "start": 12762.02, + "end": 12764.9, + "probability": 0.977 + }, + { + "start": 12765.42, + "end": 12768.24, + "probability": 0.9854 + }, + { + "start": 12768.32, + "end": 12771.56, + "probability": 0.9786 + }, + { + "start": 12771.77, + "end": 12775.75, + "probability": 0.9946 + }, + { + "start": 12776.94, + "end": 12777.74, + "probability": 0.5746 + }, + { + "start": 12778.7, + "end": 12780.56, + "probability": 0.978 + }, + { + "start": 12781.82, + "end": 12782.96, + "probability": 0.4997 + }, + { + "start": 12783.08, + "end": 12783.8, + "probability": 0.8347 + }, + { + "start": 12783.92, + "end": 12784.82, + "probability": 0.6086 + }, + { + "start": 12784.9, + "end": 12786.26, + "probability": 0.9156 + }, + { + "start": 12786.38, + "end": 12789.16, + "probability": 0.8888 + }, + { + "start": 12789.52, + "end": 12790.96, + "probability": 0.9111 + }, + { + "start": 12791.4, + "end": 12795.9, + "probability": 0.8268 + }, + { + "start": 12795.9, + "end": 12801.1, + "probability": 0.766 + }, + { + "start": 12801.52, + "end": 12801.94, + "probability": 0.113 + }, + { + "start": 12802.04, + "end": 12806.12, + "probability": 0.9737 + }, + { + "start": 12806.4, + "end": 12808.86, + "probability": 0.9857 + }, + { + "start": 12809.14, + "end": 12810.78, + "probability": 0.9023 + }, + { + "start": 12811.34, + "end": 12816.02, + "probability": 0.666 + }, + { + "start": 12816.22, + "end": 12820.69, + "probability": 0.9943 + }, + { + "start": 12822.38, + "end": 12824.8, + "probability": 0.812 + }, + { + "start": 12827.88, + "end": 12827.98, + "probability": 0.8843 + }, + { + "start": 12829.66, + "end": 12831.14, + "probability": 0.5089 + }, + { + "start": 12834.38, + "end": 12835.56, + "probability": 0.6682 + }, + { + "start": 12836.18, + "end": 12838.26, + "probability": 0.9643 + }, + { + "start": 12838.38, + "end": 12840.7, + "probability": 0.8073 + }, + { + "start": 12841.72, + "end": 12843.16, + "probability": 0.9298 + }, + { + "start": 12843.32, + "end": 12846.12, + "probability": 0.96 + }, + { + "start": 12846.58, + "end": 12850.88, + "probability": 0.7829 + }, + { + "start": 12851.18, + "end": 12857.14, + "probability": 0.9937 + }, + { + "start": 12857.24, + "end": 12863.26, + "probability": 0.9865 + }, + { + "start": 12865.02, + "end": 12866.0, + "probability": 0.8117 + }, + { + "start": 12866.18, + "end": 12867.94, + "probability": 0.9473 + }, + { + "start": 12867.98, + "end": 12868.78, + "probability": 0.8551 + }, + { + "start": 12869.44, + "end": 12875.92, + "probability": 0.9437 + }, + { + "start": 12876.62, + "end": 12877.52, + "probability": 0.7464 + }, + { + "start": 12878.02, + "end": 12879.1, + "probability": 0.7835 + }, + { + "start": 12879.26, + "end": 12880.7, + "probability": 0.8798 + }, + { + "start": 12881.18, + "end": 12882.52, + "probability": 0.9563 + }, + { + "start": 12882.58, + "end": 12883.46, + "probability": 0.9757 + }, + { + "start": 12883.84, + "end": 12887.74, + "probability": 0.9531 + }, + { + "start": 12888.02, + "end": 12888.64, + "probability": 0.6465 + }, + { + "start": 12889.32, + "end": 12890.2, + "probability": 0.7115 + }, + { + "start": 12892.5, + "end": 12896.18, + "probability": 0.9604 + }, + { + "start": 12897.66, + "end": 12897.98, + "probability": 0.6488 + }, + { + "start": 12898.22, + "end": 12899.98, + "probability": 0.1154 + }, + { + "start": 12900.24, + "end": 12902.5, + "probability": 0.5172 + }, + { + "start": 12902.62, + "end": 12903.38, + "probability": 0.3417 + }, + { + "start": 12903.38, + "end": 12904.7, + "probability": 0.8969 + }, + { + "start": 12913.5, + "end": 12913.5, + "probability": 0.722 + }, + { + "start": 12913.5, + "end": 12913.68, + "probability": 0.0615 + }, + { + "start": 12913.68, + "end": 12913.82, + "probability": 0.0266 + }, + { + "start": 12929.56, + "end": 12929.56, + "probability": 0.1451 + }, + { + "start": 12929.56, + "end": 12932.3, + "probability": 0.1932 + }, + { + "start": 12933.1, + "end": 12936.32, + "probability": 0.9006 + }, + { + "start": 12936.92, + "end": 12937.91, + "probability": 0.6097 + }, + { + "start": 12938.66, + "end": 12942.8, + "probability": 0.9652 + }, + { + "start": 12943.94, + "end": 12944.54, + "probability": 0.0736 + }, + { + "start": 12944.88, + "end": 12946.32, + "probability": 0.3741 + }, + { + "start": 12947.9, + "end": 12951.42, + "probability": 0.9058 + }, + { + "start": 12952.76, + "end": 12954.6, + "probability": 0.7581 + }, + { + "start": 12956.8, + "end": 12958.08, + "probability": 0.8401 + }, + { + "start": 12958.7, + "end": 12959.98, + "probability": 0.9731 + }, + { + "start": 12960.54, + "end": 12962.65, + "probability": 0.3538 + }, + { + "start": 12967.14, + "end": 12969.66, + "probability": 0.8914 + }, + { + "start": 12976.82, + "end": 12977.8, + "probability": 0.6662 + }, + { + "start": 12984.96, + "end": 12986.9, + "probability": 0.5381 + }, + { + "start": 12987.44, + "end": 12988.0, + "probability": 0.6092 + }, + { + "start": 12988.04, + "end": 12989.05, + "probability": 0.9319 + }, + { + "start": 12990.6, + "end": 12992.96, + "probability": 0.4733 + }, + { + "start": 12994.02, + "end": 12996.86, + "probability": 0.7729 + }, + { + "start": 12997.26, + "end": 12998.28, + "probability": 0.9471 + }, + { + "start": 12998.68, + "end": 13001.82, + "probability": 0.7815 + }, + { + "start": 13003.22, + "end": 13005.66, + "probability": 0.9797 + }, + { + "start": 13005.66, + "end": 13009.12, + "probability": 0.989 + }, + { + "start": 13009.98, + "end": 13012.76, + "probability": 0.7759 + }, + { + "start": 13013.64, + "end": 13016.32, + "probability": 0.9385 + }, + { + "start": 13017.04, + "end": 13019.2, + "probability": 0.6767 + }, + { + "start": 13020.02, + "end": 13020.94, + "probability": 0.6841 + }, + { + "start": 13021.08, + "end": 13022.0, + "probability": 0.6996 + }, + { + "start": 13023.16, + "end": 13026.84, + "probability": 0.8818 + }, + { + "start": 13027.7, + "end": 13028.9, + "probability": 0.4789 + }, + { + "start": 13029.28, + "end": 13032.26, + "probability": 0.8683 + }, + { + "start": 13033.1, + "end": 13036.02, + "probability": 0.869 + }, + { + "start": 13036.02, + "end": 13038.56, + "probability": 0.9185 + }, + { + "start": 13038.68, + "end": 13041.9, + "probability": 0.9888 + }, + { + "start": 13042.84, + "end": 13045.22, + "probability": 0.9888 + }, + { + "start": 13045.32, + "end": 13049.44, + "probability": 0.9517 + }, + { + "start": 13050.16, + "end": 13053.08, + "probability": 0.1455 + }, + { + "start": 13053.14, + "end": 13057.1, + "probability": 0.9237 + }, + { + "start": 13057.1, + "end": 13061.88, + "probability": 0.8394 + }, + { + "start": 13062.56, + "end": 13065.78, + "probability": 0.9872 + }, + { + "start": 13065.78, + "end": 13069.41, + "probability": 0.5317 + }, + { + "start": 13070.54, + "end": 13072.92, + "probability": 0.9089 + }, + { + "start": 13072.92, + "end": 13076.56, + "probability": 0.9037 + }, + { + "start": 13077.2, + "end": 13080.2, + "probability": 0.9967 + }, + { + "start": 13081.58, + "end": 13083.14, + "probability": 0.811 + }, + { + "start": 13083.36, + "end": 13085.56, + "probability": 0.4727 + }, + { + "start": 13085.88, + "end": 13092.54, + "probability": 0.9846 + }, + { + "start": 13092.54, + "end": 13096.98, + "probability": 0.7104 + }, + { + "start": 13097.06, + "end": 13099.48, + "probability": 0.999 + }, + { + "start": 13099.48, + "end": 13102.86, + "probability": 0.7272 + }, + { + "start": 13103.76, + "end": 13106.48, + "probability": 0.9666 + }, + { + "start": 13106.6, + "end": 13109.06, + "probability": 0.9987 + }, + { + "start": 13109.06, + "end": 13111.92, + "probability": 0.8623 + }, + { + "start": 13112.6, + "end": 13115.12, + "probability": 0.9973 + }, + { + "start": 13115.12, + "end": 13117.36, + "probability": 0.984 + }, + { + "start": 13117.48, + "end": 13118.96, + "probability": 0.8148 + }, + { + "start": 13119.04, + "end": 13119.98, + "probability": 0.8928 + }, + { + "start": 13120.98, + "end": 13121.7, + "probability": 0.4519 + }, + { + "start": 13121.76, + "end": 13124.72, + "probability": 0.9957 + }, + { + "start": 13125.58, + "end": 13130.0, + "probability": 0.9809 + }, + { + "start": 13131.28, + "end": 13135.28, + "probability": 0.9878 + }, + { + "start": 13135.34, + "end": 13137.24, + "probability": 0.9705 + }, + { + "start": 13137.24, + "end": 13139.76, + "probability": 0.8462 + }, + { + "start": 13140.68, + "end": 13145.5, + "probability": 0.9783 + }, + { + "start": 13146.34, + "end": 13149.46, + "probability": 0.8913 + }, + { + "start": 13150.3, + "end": 13150.76, + "probability": 0.8177 + }, + { + "start": 13151.32, + "end": 13154.58, + "probability": 0.959 + }, + { + "start": 13154.58, + "end": 13156.64, + "probability": 0.9939 + }, + { + "start": 13160.62, + "end": 13162.76, + "probability": 0.6454 + }, + { + "start": 13163.4, + "end": 13165.88, + "probability": 0.9508 + }, + { + "start": 13166.42, + "end": 13170.66, + "probability": 0.9645 + }, + { + "start": 13172.12, + "end": 13174.16, + "probability": 0.8166 + }, + { + "start": 13175.08, + "end": 13178.2, + "probability": 0.8767 + }, + { + "start": 13178.3, + "end": 13183.68, + "probability": 0.9904 + }, + { + "start": 13184.32, + "end": 13189.04, + "probability": 0.991 + }, + { + "start": 13189.58, + "end": 13195.16, + "probability": 0.9857 + }, + { + "start": 13195.32, + "end": 13198.18, + "probability": 0.994 + }, + { + "start": 13202.36, + "end": 13203.28, + "probability": 0.693 + }, + { + "start": 13203.62, + "end": 13205.7, + "probability": 0.7809 + }, + { + "start": 13209.08, + "end": 13209.88, + "probability": 0.7399 + }, + { + "start": 13210.0, + "end": 13210.52, + "probability": 0.9172 + }, + { + "start": 13210.62, + "end": 13211.94, + "probability": 0.9185 + }, + { + "start": 13212.96, + "end": 13215.4, + "probability": 0.9736 + }, + { + "start": 13215.5, + "end": 13217.72, + "probability": 0.9258 + }, + { + "start": 13218.72, + "end": 13219.84, + "probability": 0.5895 + }, + { + "start": 13220.06, + "end": 13221.88, + "probability": 0.7071 + }, + { + "start": 13222.5, + "end": 13224.48, + "probability": 0.8887 + }, + { + "start": 13225.64, + "end": 13228.26, + "probability": 0.9888 + }, + { + "start": 13228.38, + "end": 13230.74, + "probability": 0.8452 + }, + { + "start": 13231.34, + "end": 13232.56, + "probability": 0.9457 + }, + { + "start": 13233.2, + "end": 13234.76, + "probability": 0.8677 + }, + { + "start": 13234.86, + "end": 13237.46, + "probability": 0.9987 + }, + { + "start": 13237.68, + "end": 13238.4, + "probability": 0.9856 + }, + { + "start": 13238.96, + "end": 13241.7, + "probability": 0.1672 + }, + { + "start": 13241.94, + "end": 13242.3, + "probability": 0.2587 + }, + { + "start": 13243.56, + "end": 13247.58, + "probability": 0.9683 + }, + { + "start": 13248.0, + "end": 13248.64, + "probability": 0.0927 + }, + { + "start": 13248.68, + "end": 13253.24, + "probability": 0.6442 + }, + { + "start": 13253.7, + "end": 13256.81, + "probability": 0.8634 + }, + { + "start": 13256.96, + "end": 13257.18, + "probability": 0.5735 + }, + { + "start": 13257.28, + "end": 13263.72, + "probability": 0.9983 + }, + { + "start": 13263.78, + "end": 13263.78, + "probability": 0.2844 + }, + { + "start": 13263.98, + "end": 13264.94, + "probability": 0.7644 + }, + { + "start": 13265.36, + "end": 13266.18, + "probability": 0.8154 + }, + { + "start": 13266.24, + "end": 13267.82, + "probability": 0.9902 + }, + { + "start": 13267.96, + "end": 13270.56, + "probability": 0.9839 + }, + { + "start": 13271.22, + "end": 13272.54, + "probability": 0.905 + }, + { + "start": 13273.18, + "end": 13275.75, + "probability": 0.9223 + }, + { + "start": 13276.38, + "end": 13281.98, + "probability": 0.9321 + }, + { + "start": 13283.56, + "end": 13285.1, + "probability": 0.6922 + }, + { + "start": 13285.14, + "end": 13285.6, + "probability": 0.8773 + }, + { + "start": 13285.8, + "end": 13289.24, + "probability": 0.8003 + }, + { + "start": 13289.38, + "end": 13290.4, + "probability": 0.9862 + }, + { + "start": 13290.5, + "end": 13291.52, + "probability": 0.8481 + }, + { + "start": 13292.0, + "end": 13293.52, + "probability": 0.8374 + }, + { + "start": 13293.62, + "end": 13296.88, + "probability": 0.9957 + }, + { + "start": 13297.62, + "end": 13301.14, + "probability": 0.9829 + }, + { + "start": 13301.7, + "end": 13306.92, + "probability": 0.9977 + }, + { + "start": 13307.36, + "end": 13307.52, + "probability": 0.3243 + }, + { + "start": 13307.58, + "end": 13308.4, + "probability": 0.9109 + }, + { + "start": 13308.64, + "end": 13310.92, + "probability": 0.9928 + }, + { + "start": 13311.04, + "end": 13312.12, + "probability": 0.9292 + }, + { + "start": 13312.22, + "end": 13313.0, + "probability": 0.9058 + }, + { + "start": 13313.08, + "end": 13313.4, + "probability": 0.6834 + }, + { + "start": 13315.7, + "end": 13318.26, + "probability": 0.9112 + }, + { + "start": 13318.52, + "end": 13321.76, + "probability": 0.9666 + }, + { + "start": 13322.34, + "end": 13325.28, + "probability": 0.9824 + }, + { + "start": 13326.24, + "end": 13328.9, + "probability": 0.6804 + }, + { + "start": 13329.54, + "end": 13332.46, + "probability": 0.8035 + }, + { + "start": 13332.56, + "end": 13335.14, + "probability": 0.9294 + }, + { + "start": 13335.26, + "end": 13336.5, + "probability": 0.8327 + }, + { + "start": 13336.84, + "end": 13341.4, + "probability": 0.9873 + }, + { + "start": 13343.28, + "end": 13345.8, + "probability": 0.9185 + }, + { + "start": 13345.98, + "end": 13347.61, + "probability": 0.8161 + }, + { + "start": 13348.5, + "end": 13350.52, + "probability": 0.9711 + }, + { + "start": 13350.68, + "end": 13356.06, + "probability": 0.9829 + }, + { + "start": 13357.2, + "end": 13359.08, + "probability": 0.6159 + }, + { + "start": 13359.56, + "end": 13360.48, + "probability": 0.5384 + }, + { + "start": 13360.82, + "end": 13363.04, + "probability": 0.5509 + }, + { + "start": 13363.58, + "end": 13364.76, + "probability": 0.4857 + }, + { + "start": 13364.76, + "end": 13365.66, + "probability": 0.6501 + }, + { + "start": 13366.38, + "end": 13367.72, + "probability": 0.4969 + }, + { + "start": 13367.74, + "end": 13368.3, + "probability": 0.4998 + }, + { + "start": 13368.92, + "end": 13372.32, + "probability": 0.948 + }, + { + "start": 13372.44, + "end": 13375.22, + "probability": 0.9572 + }, + { + "start": 13375.42, + "end": 13376.9, + "probability": 0.9688 + }, + { + "start": 13376.96, + "end": 13378.06, + "probability": 0.9894 + }, + { + "start": 13378.56, + "end": 13378.92, + "probability": 0.6444 + }, + { + "start": 13378.98, + "end": 13380.38, + "probability": 0.9939 + }, + { + "start": 13380.52, + "end": 13380.68, + "probability": 0.3226 + }, + { + "start": 13380.7, + "end": 13384.22, + "probability": 0.9858 + }, + { + "start": 13384.38, + "end": 13385.28, + "probability": 0.4103 + }, + { + "start": 13385.28, + "end": 13385.46, + "probability": 0.4862 + }, + { + "start": 13385.66, + "end": 13386.96, + "probability": 0.9629 + }, + { + "start": 13387.02, + "end": 13391.18, + "probability": 0.7883 + }, + { + "start": 13391.38, + "end": 13392.54, + "probability": 0.9422 + }, + { + "start": 13392.94, + "end": 13395.22, + "probability": 0.8551 + }, + { + "start": 13396.08, + "end": 13398.82, + "probability": 0.5625 + }, + { + "start": 13399.54, + "end": 13400.48, + "probability": 0.8667 + }, + { + "start": 13400.6, + "end": 13404.02, + "probability": 0.9652 + }, + { + "start": 13404.36, + "end": 13405.72, + "probability": 0.7291 + }, + { + "start": 13406.24, + "end": 13408.24, + "probability": 0.9907 + }, + { + "start": 13409.3, + "end": 13412.6, + "probability": 0.6714 + }, + { + "start": 13413.42, + "end": 13417.54, + "probability": 0.8986 + }, + { + "start": 13417.88, + "end": 13418.78, + "probability": 0.5928 + }, + { + "start": 13419.0, + "end": 13420.44, + "probability": 0.905 + }, + { + "start": 13421.28, + "end": 13423.46, + "probability": 0.7317 + }, + { + "start": 13423.9, + "end": 13425.52, + "probability": 0.9347 + }, + { + "start": 13425.54, + "end": 13427.96, + "probability": 0.8152 + }, + { + "start": 13428.4, + "end": 13429.98, + "probability": 0.9109 + }, + { + "start": 13430.2, + "end": 13434.12, + "probability": 0.9609 + }, + { + "start": 13434.6, + "end": 13437.98, + "probability": 0.9818 + }, + { + "start": 13438.08, + "end": 13441.32, + "probability": 0.9932 + }, + { + "start": 13441.46, + "end": 13442.72, + "probability": 0.9984 + }, + { + "start": 13445.38, + "end": 13449.96, + "probability": 0.7041 + }, + { + "start": 13450.04, + "end": 13450.56, + "probability": 0.7008 + }, + { + "start": 13450.7, + "end": 13452.66, + "probability": 0.9555 + }, + { + "start": 13452.66, + "end": 13455.12, + "probability": 0.9639 + }, + { + "start": 13455.2, + "end": 13456.86, + "probability": 0.9443 + }, + { + "start": 13457.28, + "end": 13460.04, + "probability": 0.8359 + }, + { + "start": 13460.72, + "end": 13462.42, + "probability": 0.875 + }, + { + "start": 13463.34, + "end": 13466.52, + "probability": 0.77 + }, + { + "start": 13467.78, + "end": 13471.18, + "probability": 0.662 + }, + { + "start": 13471.24, + "end": 13474.84, + "probability": 0.9853 + }, + { + "start": 13475.24, + "end": 13480.46, + "probability": 0.8818 + }, + { + "start": 13480.6, + "end": 13480.84, + "probability": 0.699 + }, + { + "start": 13481.3, + "end": 13484.24, + "probability": 0.6638 + }, + { + "start": 13484.46, + "end": 13487.12, + "probability": 0.9007 + }, + { + "start": 13487.82, + "end": 13489.46, + "probability": 0.9541 + }, + { + "start": 13489.7, + "end": 13493.52, + "probability": 0.9671 + }, + { + "start": 13493.58, + "end": 13496.34, + "probability": 0.92 + }, + { + "start": 13496.82, + "end": 13497.98, + "probability": 0.925 + }, + { + "start": 13498.48, + "end": 13499.92, + "probability": 0.8789 + }, + { + "start": 13499.98, + "end": 13500.28, + "probability": 0.8404 + }, + { + "start": 13500.32, + "end": 13502.02, + "probability": 0.8034 + }, + { + "start": 13502.78, + "end": 13509.8, + "probability": 0.9354 + }, + { + "start": 13509.98, + "end": 13511.08, + "probability": 0.8728 + }, + { + "start": 13511.24, + "end": 13512.54, + "probability": 0.9641 + }, + { + "start": 13512.6, + "end": 13512.9, + "probability": 0.4571 + }, + { + "start": 13512.98, + "end": 13514.16, + "probability": 0.868 + }, + { + "start": 13514.16, + "end": 13514.44, + "probability": 0.7059 + }, + { + "start": 13514.54, + "end": 13518.02, + "probability": 0.9851 + }, + { + "start": 13519.46, + "end": 13519.6, + "probability": 0.0598 + }, + { + "start": 13519.64, + "end": 13523.52, + "probability": 0.9948 + }, + { + "start": 13523.6, + "end": 13524.12, + "probability": 0.9073 + }, + { + "start": 13524.12, + "end": 13527.32, + "probability": 0.8154 + }, + { + "start": 13528.44, + "end": 13530.42, + "probability": 0.0754 + }, + { + "start": 13530.42, + "end": 13530.96, + "probability": 0.6686 + }, + { + "start": 13531.58, + "end": 13531.68, + "probability": 0.001 + }, + { + "start": 13532.84, + "end": 13534.42, + "probability": 0.7348 + }, + { + "start": 13534.48, + "end": 13536.46, + "probability": 0.7822 + }, + { + "start": 13537.26, + "end": 13537.92, + "probability": 0.6457 + }, + { + "start": 13539.32, + "end": 13542.84, + "probability": 0.2694 + }, + { + "start": 13542.96, + "end": 13543.18, + "probability": 0.3943 + }, + { + "start": 13543.56, + "end": 13545.8, + "probability": 0.7509 + }, + { + "start": 13546.06, + "end": 13551.4, + "probability": 0.8047 + }, + { + "start": 13551.94, + "end": 13553.6, + "probability": 0.9785 + }, + { + "start": 13559.74, + "end": 13561.36, + "probability": 0.6606 + }, + { + "start": 13562.48, + "end": 13566.66, + "probability": 0.8023 + }, + { + "start": 13566.66, + "end": 13569.08, + "probability": 0.981 + }, + { + "start": 13569.9, + "end": 13570.94, + "probability": 0.4575 + }, + { + "start": 13570.96, + "end": 13572.12, + "probability": 0.8987 + }, + { + "start": 13572.2, + "end": 13574.33, + "probability": 0.9749 + }, + { + "start": 13581.92, + "end": 13583.46, + "probability": 0.7856 + }, + { + "start": 13584.12, + "end": 13587.24, + "probability": 0.8893 + }, + { + "start": 13587.68, + "end": 13587.7, + "probability": 0.5289 + }, + { + "start": 13588.0, + "end": 13591.0, + "probability": 0.9653 + }, + { + "start": 13591.96, + "end": 13593.0, + "probability": 0.6071 + }, + { + "start": 13593.84, + "end": 13597.04, + "probability": 0.9201 + }, + { + "start": 13597.04, + "end": 13601.36, + "probability": 0.848 + }, + { + "start": 13601.82, + "end": 13607.12, + "probability": 0.9729 + }, + { + "start": 13607.66, + "end": 13609.58, + "probability": 0.8194 + }, + { + "start": 13610.58, + "end": 13612.88, + "probability": 0.9807 + }, + { + "start": 13613.3, + "end": 13617.76, + "probability": 0.8988 + }, + { + "start": 13618.66, + "end": 13619.42, + "probability": 0.6847 + }, + { + "start": 13619.56, + "end": 13620.44, + "probability": 0.8672 + }, + { + "start": 13620.86, + "end": 13621.72, + "probability": 0.5701 + }, + { + "start": 13622.4, + "end": 13627.62, + "probability": 0.9608 + }, + { + "start": 13628.16, + "end": 13631.58, + "probability": 0.9954 + }, + { + "start": 13631.58, + "end": 13635.72, + "probability": 0.9515 + }, + { + "start": 13635.88, + "end": 13636.6, + "probability": 0.9973 + }, + { + "start": 13636.94, + "end": 13639.74, + "probability": 0.9242 + }, + { + "start": 13640.66, + "end": 13641.0, + "probability": 0.4923 + }, + { + "start": 13641.08, + "end": 13643.12, + "probability": 0.9355 + }, + { + "start": 13643.18, + "end": 13644.86, + "probability": 0.8803 + }, + { + "start": 13645.0, + "end": 13645.94, + "probability": 0.9961 + }, + { + "start": 13646.68, + "end": 13647.54, + "probability": 0.9704 + }, + { + "start": 13648.36, + "end": 13651.3, + "probability": 0.962 + }, + { + "start": 13651.44, + "end": 13653.02, + "probability": 0.9691 + }, + { + "start": 13653.14, + "end": 13653.38, + "probability": 0.7249 + }, + { + "start": 13653.5, + "end": 13654.76, + "probability": 0.7998 + }, + { + "start": 13655.8, + "end": 13661.1, + "probability": 0.983 + }, + { + "start": 13662.3, + "end": 13663.38, + "probability": 0.8407 + }, + { + "start": 13663.84, + "end": 13667.72, + "probability": 0.9819 + }, + { + "start": 13668.28, + "end": 13669.1, + "probability": 0.8114 + }, + { + "start": 13669.28, + "end": 13671.81, + "probability": 0.909 + }, + { + "start": 13672.8, + "end": 13675.0, + "probability": 0.9918 + }, + { + "start": 13675.56, + "end": 13679.58, + "probability": 0.9922 + }, + { + "start": 13680.48, + "end": 13684.62, + "probability": 0.9369 + }, + { + "start": 13684.62, + "end": 13687.88, + "probability": 0.998 + }, + { + "start": 13688.58, + "end": 13689.1, + "probability": 0.4177 + }, + { + "start": 13689.76, + "end": 13694.64, + "probability": 0.9838 + }, + { + "start": 13694.64, + "end": 13700.4, + "probability": 0.4878 + }, + { + "start": 13701.08, + "end": 13701.84, + "probability": 0.7776 + }, + { + "start": 13702.54, + "end": 13703.96, + "probability": 0.9876 + }, + { + "start": 13705.1, + "end": 13707.66, + "probability": 0.9858 + }, + { + "start": 13708.62, + "end": 13717.5, + "probability": 0.9922 + }, + { + "start": 13717.7, + "end": 13721.56, + "probability": 0.9937 + }, + { + "start": 13722.42, + "end": 13728.98, + "probability": 0.991 + }, + { + "start": 13729.36, + "end": 13731.73, + "probability": 0.9269 + }, + { + "start": 13732.88, + "end": 13736.5, + "probability": 0.9917 + }, + { + "start": 13737.18, + "end": 13740.58, + "probability": 0.996 + }, + { + "start": 13740.94, + "end": 13742.78, + "probability": 0.8141 + }, + { + "start": 13743.7, + "end": 13746.4, + "probability": 0.8647 + }, + { + "start": 13746.8, + "end": 13748.38, + "probability": 0.9878 + }, + { + "start": 13748.84, + "end": 13749.96, + "probability": 0.4265 + }, + { + "start": 13750.3, + "end": 13751.86, + "probability": 0.9856 + }, + { + "start": 13752.0, + "end": 13756.76, + "probability": 0.992 + }, + { + "start": 13756.8, + "end": 13757.18, + "probability": 0.4739 + }, + { + "start": 13757.36, + "end": 13758.9, + "probability": 0.882 + }, + { + "start": 13758.9, + "end": 13763.36, + "probability": 0.9873 + }, + { + "start": 13763.6, + "end": 13766.06, + "probability": 0.9719 + }, + { + "start": 13766.06, + "end": 13769.22, + "probability": 0.9874 + }, + { + "start": 13769.44, + "end": 13773.04, + "probability": 0.9959 + }, + { + "start": 13773.92, + "end": 13777.3, + "probability": 0.9875 + }, + { + "start": 13777.3, + "end": 13782.02, + "probability": 0.9922 + }, + { + "start": 13782.76, + "end": 13783.93, + "probability": 0.8849 + }, + { + "start": 13785.28, + "end": 13786.38, + "probability": 0.8695 + }, + { + "start": 13786.58, + "end": 13790.16, + "probability": 0.9207 + }, + { + "start": 13790.26, + "end": 13795.3, + "probability": 0.9514 + }, + { + "start": 13795.42, + "end": 13796.88, + "probability": 0.7433 + }, + { + "start": 13796.94, + "end": 13798.28, + "probability": 0.642 + }, + { + "start": 13798.96, + "end": 13805.26, + "probability": 0.9833 + }, + { + "start": 13805.42, + "end": 13808.34, + "probability": 0.8799 + }, + { + "start": 13808.52, + "end": 13808.92, + "probability": 0.8635 + }, + { + "start": 13808.98, + "end": 13809.98, + "probability": 0.9839 + }, + { + "start": 13810.1, + "end": 13810.9, + "probability": 0.8358 + }, + { + "start": 13811.56, + "end": 13814.52, + "probability": 0.9952 + }, + { + "start": 13815.36, + "end": 13818.8, + "probability": 0.7949 + }, + { + "start": 13818.8, + "end": 13822.56, + "probability": 0.9834 + }, + { + "start": 13823.18, + "end": 13824.46, + "probability": 0.524 + }, + { + "start": 13825.08, + "end": 13831.24, + "probability": 0.8534 + }, + { + "start": 13831.52, + "end": 13832.24, + "probability": 0.9036 + }, + { + "start": 13832.8, + "end": 13834.74, + "probability": 0.932 + }, + { + "start": 13835.16, + "end": 13835.92, + "probability": 0.5164 + }, + { + "start": 13835.96, + "end": 13836.94, + "probability": 0.9468 + }, + { + "start": 13839.28, + "end": 13841.16, + "probability": 0.9769 + }, + { + "start": 13841.5, + "end": 13843.28, + "probability": 0.6312 + }, + { + "start": 13843.28, + "end": 13844.84, + "probability": 0.7266 + }, + { + "start": 13847.08, + "end": 13850.88, + "probability": 0.6958 + }, + { + "start": 13850.94, + "end": 13852.32, + "probability": 0.8925 + }, + { + "start": 13853.16, + "end": 13856.48, + "probability": 0.9807 + }, + { + "start": 13856.52, + "end": 13860.36, + "probability": 0.9985 + }, + { + "start": 13861.18, + "end": 13862.96, + "probability": 0.8298 + }, + { + "start": 13863.08, + "end": 13863.89, + "probability": 0.9622 + }, + { + "start": 13864.1, + "end": 13866.88, + "probability": 0.9 + }, + { + "start": 13867.34, + "end": 13867.74, + "probability": 0.9613 + }, + { + "start": 13868.38, + "end": 13869.44, + "probability": 0.9683 + }, + { + "start": 13869.54, + "end": 13870.26, + "probability": 0.9456 + }, + { + "start": 13870.72, + "end": 13871.76, + "probability": 0.9783 + }, + { + "start": 13871.76, + "end": 13872.14, + "probability": 0.6693 + }, + { + "start": 13872.22, + "end": 13873.94, + "probability": 0.6198 + }, + { + "start": 13874.44, + "end": 13875.72, + "probability": 0.9803 + }, + { + "start": 13876.02, + "end": 13878.66, + "probability": 0.8079 + }, + { + "start": 13879.04, + "end": 13881.24, + "probability": 0.9785 + }, + { + "start": 13882.2, + "end": 13883.51, + "probability": 0.8555 + }, + { + "start": 13884.1, + "end": 13885.08, + "probability": 0.9304 + }, + { + "start": 13885.14, + "end": 13887.72, + "probability": 0.9747 + }, + { + "start": 13888.12, + "end": 13890.48, + "probability": 0.9792 + }, + { + "start": 13890.6, + "end": 13892.9, + "probability": 0.9689 + }, + { + "start": 13893.1, + "end": 13895.4, + "probability": 0.7358 + }, + { + "start": 13896.46, + "end": 13896.68, + "probability": 0.8 + }, + { + "start": 13896.78, + "end": 13896.94, + "probability": 0.1504 + }, + { + "start": 13897.08, + "end": 13898.41, + "probability": 0.8792 + }, + { + "start": 13898.66, + "end": 13899.84, + "probability": 0.955 + }, + { + "start": 13899.92, + "end": 13900.58, + "probability": 0.7229 + }, + { + "start": 13900.62, + "end": 13904.2, + "probability": 0.8803 + }, + { + "start": 13904.3, + "end": 13908.42, + "probability": 0.9191 + }, + { + "start": 13908.5, + "end": 13910.54, + "probability": 0.8216 + }, + { + "start": 13910.9, + "end": 13911.84, + "probability": 0.428 + }, + { + "start": 13912.0, + "end": 13913.8, + "probability": 0.9188 + }, + { + "start": 13913.98, + "end": 13914.74, + "probability": 0.4635 + }, + { + "start": 13914.86, + "end": 13916.27, + "probability": 0.3488 + }, + { + "start": 13919.56, + "end": 13920.38, + "probability": 0.6608 + }, + { + "start": 13920.96, + "end": 13922.0, + "probability": 0.9386 + }, + { + "start": 13925.84, + "end": 13929.16, + "probability": 0.5469 + }, + { + "start": 13929.22, + "end": 13933.67, + "probability": 0.9971 + }, + { + "start": 13934.16, + "end": 13934.56, + "probability": 0.6729 + }, + { + "start": 13934.56, + "end": 13935.74, + "probability": 0.7184 + }, + { + "start": 13936.12, + "end": 13936.6, + "probability": 0.7808 + }, + { + "start": 13936.7, + "end": 13938.64, + "probability": 0.9795 + }, + { + "start": 13939.14, + "end": 13940.8, + "probability": 0.8081 + }, + { + "start": 13940.9, + "end": 13941.76, + "probability": 0.7931 + }, + { + "start": 13941.82, + "end": 13943.84, + "probability": 0.9274 + }, + { + "start": 13944.0, + "end": 13944.48, + "probability": 0.9392 + }, + { + "start": 13944.56, + "end": 13945.68, + "probability": 0.6552 + }, + { + "start": 13946.48, + "end": 13948.44, + "probability": 0.9402 + }, + { + "start": 13948.48, + "end": 13950.76, + "probability": 0.9141 + }, + { + "start": 13950.98, + "end": 13953.2, + "probability": 0.9408 + }, + { + "start": 13953.26, + "end": 13956.92, + "probability": 0.9989 + }, + { + "start": 13957.0, + "end": 13961.06, + "probability": 0.8027 + }, + { + "start": 13961.22, + "end": 13963.16, + "probability": 0.9943 + }, + { + "start": 13964.06, + "end": 13969.74, + "probability": 0.9263 + }, + { + "start": 13970.34, + "end": 13971.06, + "probability": 0.0386 + }, + { + "start": 13972.3, + "end": 13972.3, + "probability": 0.0291 + }, + { + "start": 13972.42, + "end": 13972.42, + "probability": 0.1049 + }, + { + "start": 13972.42, + "end": 13978.7, + "probability": 0.4162 + }, + { + "start": 13978.9, + "end": 13979.2, + "probability": 0.7313 + }, + { + "start": 13992.45, + "end": 13997.64, + "probability": 0.9524 + }, + { + "start": 13997.64, + "end": 14000.62, + "probability": 0.9979 + }, + { + "start": 14001.2, + "end": 14005.48, + "probability": 0.7998 + }, + { + "start": 14005.98, + "end": 14011.8, + "probability": 0.9316 + }, + { + "start": 14012.38, + "end": 14014.46, + "probability": 0.7498 + }, + { + "start": 14014.84, + "end": 14016.34, + "probability": 0.877 + }, + { + "start": 14017.32, + "end": 14018.94, + "probability": 0.3688 + }, + { + "start": 14019.0, + "end": 14021.06, + "probability": 0.9507 + }, + { + "start": 14021.1, + "end": 14022.74, + "probability": 0.9946 + }, + { + "start": 14022.82, + "end": 14026.24, + "probability": 0.9916 + }, + { + "start": 14026.4, + "end": 14030.14, + "probability": 0.9865 + }, + { + "start": 14030.22, + "end": 14033.56, + "probability": 0.918 + }, + { + "start": 14033.98, + "end": 14034.34, + "probability": 0.8031 + }, + { + "start": 14034.92, + "end": 14037.22, + "probability": 0.9268 + }, + { + "start": 14037.3, + "end": 14039.28, + "probability": 0.978 + }, + { + "start": 14039.86, + "end": 14042.5, + "probability": 0.978 + }, + { + "start": 14043.24, + "end": 14043.98, + "probability": 0.6174 + }, + { + "start": 14044.32, + "end": 14049.52, + "probability": 0.967 + }, + { + "start": 14050.6, + "end": 14053.62, + "probability": 0.6489 + }, + { + "start": 14053.76, + "end": 14058.3, + "probability": 0.9971 + }, + { + "start": 14058.78, + "end": 14062.36, + "probability": 0.9285 + }, + { + "start": 14062.42, + "end": 14063.3, + "probability": 0.7632 + }, + { + "start": 14063.46, + "end": 14064.64, + "probability": 0.8981 + }, + { + "start": 14064.82, + "end": 14065.5, + "probability": 0.8621 + }, + { + "start": 14066.24, + "end": 14067.74, + "probability": 0.9738 + }, + { + "start": 14067.8, + "end": 14068.82, + "probability": 0.877 + }, + { + "start": 14069.04, + "end": 14069.72, + "probability": 0.9004 + }, + { + "start": 14069.82, + "end": 14071.7, + "probability": 0.9653 + }, + { + "start": 14071.78, + "end": 14072.28, + "probability": 0.7574 + }, + { + "start": 14073.24, + "end": 14076.48, + "probability": 0.9244 + }, + { + "start": 14076.94, + "end": 14077.34, + "probability": 0.6024 + }, + { + "start": 14077.4, + "end": 14077.98, + "probability": 0.8406 + }, + { + "start": 14078.48, + "end": 14084.68, + "probability": 0.9639 + }, + { + "start": 14085.38, + "end": 14085.9, + "probability": 0.8176 + }, + { + "start": 14087.28, + "end": 14088.16, + "probability": 0.4743 + }, + { + "start": 14088.26, + "end": 14096.64, + "probability": 0.974 + }, + { + "start": 14098.68, + "end": 14102.02, + "probability": 0.9769 + }, + { + "start": 14102.56, + "end": 14107.34, + "probability": 0.8016 + }, + { + "start": 14107.7, + "end": 14108.76, + "probability": 0.8149 + }, + { + "start": 14109.48, + "end": 14110.76, + "probability": 0.9395 + }, + { + "start": 14110.92, + "end": 14113.68, + "probability": 0.974 + }, + { + "start": 14113.8, + "end": 14115.62, + "probability": 0.9764 + }, + { + "start": 14116.26, + "end": 14121.54, + "probability": 0.9544 + }, + { + "start": 14122.42, + "end": 14126.6, + "probability": 0.953 + }, + { + "start": 14127.88, + "end": 14128.22, + "probability": 0.2644 + }, + { + "start": 14128.22, + "end": 14129.18, + "probability": 0.6482 + }, + { + "start": 14129.3, + "end": 14133.1, + "probability": 0.7968 + }, + { + "start": 14133.1, + "end": 14137.02, + "probability": 0.9384 + }, + { + "start": 14137.38, + "end": 14139.98, + "probability": 0.8741 + }, + { + "start": 14140.12, + "end": 14140.24, + "probability": 0.5155 + }, + { + "start": 14140.36, + "end": 14145.06, + "probability": 0.9972 + }, + { + "start": 14145.06, + "end": 14148.36, + "probability": 0.9717 + }, + { + "start": 14149.54, + "end": 14150.32, + "probability": 0.7217 + }, + { + "start": 14150.48, + "end": 14152.3, + "probability": 0.9438 + }, + { + "start": 14152.4, + "end": 14156.32, + "probability": 0.9868 + }, + { + "start": 14156.84, + "end": 14160.78, + "probability": 0.9855 + }, + { + "start": 14161.42, + "end": 14164.26, + "probability": 0.9213 + }, + { + "start": 14164.26, + "end": 14169.02, + "probability": 0.9593 + }, + { + "start": 14170.34, + "end": 14171.28, + "probability": 0.7592 + }, + { + "start": 14171.58, + "end": 14172.04, + "probability": 0.4786 + }, + { + "start": 14172.04, + "end": 14173.8, + "probability": 0.8567 + }, + { + "start": 14173.96, + "end": 14176.34, + "probability": 0.8135 + }, + { + "start": 14176.84, + "end": 14178.28, + "probability": 0.9934 + }, + { + "start": 14179.08, + "end": 14186.1, + "probability": 0.8838 + }, + { + "start": 14186.96, + "end": 14187.3, + "probability": 0.6969 + }, + { + "start": 14187.4, + "end": 14191.0, + "probability": 0.8651 + }, + { + "start": 14193.5, + "end": 14194.2, + "probability": 0.8373 + }, + { + "start": 14194.44, + "end": 14195.16, + "probability": 0.9123 + }, + { + "start": 14195.18, + "end": 14196.69, + "probability": 0.9561 + }, + { + "start": 14197.44, + "end": 14198.25, + "probability": 0.8062 + }, + { + "start": 14198.96, + "end": 14199.18, + "probability": 0.8146 + }, + { + "start": 14199.3, + "end": 14202.96, + "probability": 0.9918 + }, + { + "start": 14203.1, + "end": 14207.18, + "probability": 0.9758 + }, + { + "start": 14208.0, + "end": 14209.76, + "probability": 0.8489 + }, + { + "start": 14210.64, + "end": 14213.14, + "probability": 0.9935 + }, + { + "start": 14213.26, + "end": 14217.22, + "probability": 0.9917 + }, + { + "start": 14217.46, + "end": 14218.68, + "probability": 0.9913 + }, + { + "start": 14219.14, + "end": 14223.06, + "probability": 0.9909 + }, + { + "start": 14223.06, + "end": 14227.92, + "probability": 0.9862 + }, + { + "start": 14229.4, + "end": 14231.38, + "probability": 0.9961 + }, + { + "start": 14231.84, + "end": 14235.64, + "probability": 0.9398 + }, + { + "start": 14235.68, + "end": 14236.8, + "probability": 0.8399 + }, + { + "start": 14237.22, + "end": 14240.2, + "probability": 0.9958 + }, + { + "start": 14240.92, + "end": 14245.44, + "probability": 0.9937 + }, + { + "start": 14246.1, + "end": 14246.75, + "probability": 0.9429 + }, + { + "start": 14247.06, + "end": 14250.12, + "probability": 0.9749 + }, + { + "start": 14250.32, + "end": 14251.03, + "probability": 0.9091 + }, + { + "start": 14251.24, + "end": 14253.38, + "probability": 0.8274 + }, + { + "start": 14253.5, + "end": 14256.62, + "probability": 0.0712 + }, + { + "start": 14256.62, + "end": 14261.1, + "probability": 0.9909 + }, + { + "start": 14261.26, + "end": 14262.02, + "probability": 0.7576 + }, + { + "start": 14262.28, + "end": 14266.24, + "probability": 0.9935 + }, + { + "start": 14266.42, + "end": 14267.4, + "probability": 0.8105 + }, + { + "start": 14268.12, + "end": 14272.82, + "probability": 0.7814 + }, + { + "start": 14273.3, + "end": 14275.24, + "probability": 0.9288 + }, + { + "start": 14275.3, + "end": 14278.93, + "probability": 0.9649 + }, + { + "start": 14279.76, + "end": 14280.62, + "probability": 0.7277 + }, + { + "start": 14281.28, + "end": 14283.98, + "probability": 0.9447 + }, + { + "start": 14289.98, + "end": 14290.34, + "probability": 0.5469 + }, + { + "start": 14290.48, + "end": 14290.76, + "probability": 0.8707 + }, + { + "start": 14290.88, + "end": 14292.97, + "probability": 0.8899 + }, + { + "start": 14293.06, + "end": 14296.34, + "probability": 0.9891 + }, + { + "start": 14296.42, + "end": 14298.46, + "probability": 0.8829 + }, + { + "start": 14298.64, + "end": 14299.14, + "probability": 0.7656 + }, + { + "start": 14299.42, + "end": 14301.18, + "probability": 0.8959 + }, + { + "start": 14301.36, + "end": 14302.26, + "probability": 0.5721 + }, + { + "start": 14302.9, + "end": 14305.26, + "probability": 0.9794 + }, + { + "start": 14305.36, + "end": 14308.28, + "probability": 0.763 + }, + { + "start": 14308.92, + "end": 14314.58, + "probability": 0.9884 + }, + { + "start": 14314.66, + "end": 14314.96, + "probability": 0.5536 + }, + { + "start": 14315.04, + "end": 14318.0, + "probability": 0.9607 + }, + { + "start": 14318.56, + "end": 14321.82, + "probability": 0.989 + }, + { + "start": 14322.52, + "end": 14325.04, + "probability": 0.7854 + }, + { + "start": 14325.2, + "end": 14326.2, + "probability": 0.8089 + }, + { + "start": 14326.64, + "end": 14326.94, + "probability": 0.7679 + }, + { + "start": 14327.04, + "end": 14327.58, + "probability": 0.8278 + }, + { + "start": 14327.82, + "end": 14330.12, + "probability": 0.9933 + }, + { + "start": 14330.72, + "end": 14336.38, + "probability": 0.8678 + }, + { + "start": 14336.5, + "end": 14337.48, + "probability": 0.8019 + }, + { + "start": 14338.2, + "end": 14344.92, + "probability": 0.9924 + }, + { + "start": 14345.6, + "end": 14350.5, + "probability": 0.9879 + }, + { + "start": 14350.66, + "end": 14353.16, + "probability": 0.9948 + }, + { + "start": 14353.88, + "end": 14355.86, + "probability": 0.9473 + }, + { + "start": 14356.62, + "end": 14357.12, + "probability": 0.8514 + }, + { + "start": 14357.26, + "end": 14361.06, + "probability": 0.9521 + }, + { + "start": 14361.3, + "end": 14364.2, + "probability": 0.9016 + }, + { + "start": 14364.38, + "end": 14366.64, + "probability": 0.9604 + }, + { + "start": 14366.96, + "end": 14369.92, + "probability": 0.9767 + }, + { + "start": 14370.08, + "end": 14371.92, + "probability": 0.8137 + }, + { + "start": 14373.48, + "end": 14376.68, + "probability": 0.8976 + }, + { + "start": 14376.9, + "end": 14378.02, + "probability": 0.5612 + }, + { + "start": 14378.96, + "end": 14380.0, + "probability": 0.9946 + }, + { + "start": 14380.06, + "end": 14380.34, + "probability": 0.7818 + }, + { + "start": 14380.42, + "end": 14384.68, + "probability": 0.959 + }, + { + "start": 14385.42, + "end": 14386.7, + "probability": 0.799 + }, + { + "start": 14387.56, + "end": 14391.12, + "probability": 0.848 + }, + { + "start": 14391.5, + "end": 14392.76, + "probability": 0.9723 + }, + { + "start": 14393.58, + "end": 14397.03, + "probability": 0.961 + }, + { + "start": 14397.2, + "end": 14399.76, + "probability": 0.9961 + }, + { + "start": 14400.56, + "end": 14403.18, + "probability": 0.8696 + }, + { + "start": 14403.36, + "end": 14403.68, + "probability": 0.7111 + }, + { + "start": 14403.72, + "end": 14404.32, + "probability": 0.5692 + }, + { + "start": 14404.82, + "end": 14405.98, + "probability": 0.9402 + }, + { + "start": 14406.02, + "end": 14407.12, + "probability": 0.9908 + }, + { + "start": 14407.18, + "end": 14408.28, + "probability": 0.9839 + }, + { + "start": 14408.3, + "end": 14411.28, + "probability": 0.9692 + }, + { + "start": 14411.7, + "end": 14418.28, + "probability": 0.9293 + }, + { + "start": 14418.54, + "end": 14423.82, + "probability": 0.9897 + }, + { + "start": 14424.48, + "end": 14425.13, + "probability": 0.6055 + }, + { + "start": 14425.82, + "end": 14430.3, + "probability": 0.9928 + }, + { + "start": 14430.78, + "end": 14433.94, + "probability": 0.9953 + }, + { + "start": 14434.3, + "end": 14435.72, + "probability": 0.7778 + }, + { + "start": 14435.8, + "end": 14438.85, + "probability": 0.9853 + }, + { + "start": 14439.02, + "end": 14442.4, + "probability": 0.9094 + }, + { + "start": 14442.98, + "end": 14444.68, + "probability": 0.9424 + }, + { + "start": 14444.74, + "end": 14450.34, + "probability": 0.9575 + }, + { + "start": 14450.48, + "end": 14451.38, + "probability": 0.6772 + }, + { + "start": 14451.44, + "end": 14452.76, + "probability": 0.7703 + }, + { + "start": 14452.8, + "end": 14453.36, + "probability": 0.4053 + }, + { + "start": 14453.64, + "end": 14455.26, + "probability": 0.7487 + }, + { + "start": 14455.42, + "end": 14458.72, + "probability": 0.9738 + }, + { + "start": 14458.92, + "end": 14461.52, + "probability": 0.9784 + }, + { + "start": 14462.28, + "end": 14463.24, + "probability": 0.7439 + }, + { + "start": 14464.5, + "end": 14469.72, + "probability": 0.6339 + }, + { + "start": 14470.0, + "end": 14471.58, + "probability": 0.9792 + }, + { + "start": 14472.18, + "end": 14474.38, + "probability": 0.5027 + }, + { + "start": 14475.22, + "end": 14478.1, + "probability": 0.7727 + }, + { + "start": 14478.52, + "end": 14482.02, + "probability": 0.7509 + }, + { + "start": 14482.46, + "end": 14484.11, + "probability": 0.7636 + }, + { + "start": 14485.04, + "end": 14487.38, + "probability": 0.9559 + }, + { + "start": 14487.58, + "end": 14488.73, + "probability": 0.0543 + }, + { + "start": 14490.38, + "end": 14493.62, + "probability": 0.0944 + }, + { + "start": 14493.62, + "end": 14493.9, + "probability": 0.0366 + }, + { + "start": 14494.44, + "end": 14498.04, + "probability": 0.0306 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14629.0, + "end": 14629.0, + "probability": 0.0 + }, + { + "start": 14635.86, + "end": 14637.92, + "probability": 0.2267 + }, + { + "start": 14638.83, + "end": 14641.62, + "probability": 0.035 + }, + { + "start": 14646.8, + "end": 14652.0, + "probability": 0.1843 + }, + { + "start": 14652.58, + "end": 14656.92, + "probability": 0.2725 + }, + { + "start": 14656.92, + "end": 14657.42, + "probability": 0.2344 + }, + { + "start": 14657.42, + "end": 14658.08, + "probability": 0.0452 + }, + { + "start": 14658.28, + "end": 14659.06, + "probability": 0.0311 + }, + { + "start": 14660.41, + "end": 14661.56, + "probability": 0.0611 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14756.0, + "end": 14756.0, + "probability": 0.0 + }, + { + "start": 14757.0, + "end": 14762.08, + "probability": 0.1156 + }, + { + "start": 14765.46, + "end": 14766.26, + "probability": 0.0847 + }, + { + "start": 14779.96, + "end": 14792.8, + "probability": 0.0484 + }, + { + "start": 14792.8, + "end": 14792.94, + "probability": 0.0551 + }, + { + "start": 14794.06, + "end": 14795.92, + "probability": 0.2681 + }, + { + "start": 14803.54, + "end": 14804.32, + "probability": 0.1611 + }, + { + "start": 14804.32, + "end": 14804.75, + "probability": 0.0655 + }, + { + "start": 14806.17, + "end": 14807.08, + "probability": 0.1242 + }, + { + "start": 14807.94, + "end": 14808.68, + "probability": 0.0871 + }, + { + "start": 14811.44, + "end": 14812.98, + "probability": 0.1641 + }, + { + "start": 14813.78, + "end": 14814.68, + "probability": 0.0149 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.0, + "end": 14887.0, + "probability": 0.0 + }, + { + "start": 14887.24, + "end": 14892.3, + "probability": 0.0369 + }, + { + "start": 14892.78, + "end": 14893.34, + "probability": 0.1985 + }, + { + "start": 14893.6, + "end": 14893.8, + "probability": 0.0575 + }, + { + "start": 14914.12, + "end": 14914.28, + "probability": 0.0688 + }, + { + "start": 14916.99, + "end": 14917.18, + "probability": 0.1647 + }, + { + "start": 14917.31, + "end": 14917.46, + "probability": 0.2658 + }, + { + "start": 14917.46, + "end": 14919.7, + "probability": 0.2601 + }, + { + "start": 14919.7, + "end": 14919.7, + "probability": 0.1208 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + }, + { + "start": 14932.63, + "end": 14932.63, + "probability": 0.0 + } + ], + "segments_count": 5649, + "words_count": 29369, + "avg_words_per_segment": 5.199, + "avg_segment_duration": 1.9935, + "avg_words_per_minute": 118.006, + "plenum_id": "14118", + "duration": 14932.63, + "title": null, + "plenum_date": "2011-06-21" +} \ No newline at end of file