diff --git "a/14425/metadata.json" "b/14425/metadata.json" new file mode 100644--- /dev/null +++ "b/14425/metadata.json" @@ -0,0 +1,47582 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "14425", + "quality_score": 0.8757, + "per_segment_quality_scores": [ + { + "start": 7.98, + "end": 10.12, + "probability": 0.8371 + }, + { + "start": 10.94, + "end": 13.06, + "probability": 0.9888 + }, + { + "start": 14.3, + "end": 15.78, + "probability": 0.8291 + }, + { + "start": 16.86, + "end": 18.9, + "probability": 0.6274 + }, + { + "start": 19.84, + "end": 20.36, + "probability": 0.3918 + }, + { + "start": 22.08, + "end": 22.43, + "probability": 0.7425 + }, + { + "start": 24.0, + "end": 26.1, + "probability": 0.9685 + }, + { + "start": 26.8, + "end": 31.48, + "probability": 0.9771 + }, + { + "start": 32.18, + "end": 32.44, + "probability": 0.0738 + }, + { + "start": 32.44, + "end": 36.34, + "probability": 0.8459 + }, + { + "start": 37.74, + "end": 39.32, + "probability": 0.8143 + }, + { + "start": 39.42, + "end": 43.4, + "probability": 0.944 + }, + { + "start": 44.24, + "end": 50.42, + "probability": 0.8679 + }, + { + "start": 50.84, + "end": 54.22, + "probability": 0.9287 + }, + { + "start": 54.74, + "end": 56.16, + "probability": 0.7734 + }, + { + "start": 56.3, + "end": 61.24, + "probability": 0.941 + }, + { + "start": 61.24, + "end": 65.98, + "probability": 0.7562 + }, + { + "start": 66.02, + "end": 66.98, + "probability": 0.9867 + }, + { + "start": 68.84, + "end": 69.48, + "probability": 0.4862 + }, + { + "start": 70.02, + "end": 71.1, + "probability": 0.7259 + }, + { + "start": 71.26, + "end": 72.08, + "probability": 0.716 + }, + { + "start": 72.66, + "end": 75.6, + "probability": 0.9036 + }, + { + "start": 76.5, + "end": 79.32, + "probability": 0.8765 + }, + { + "start": 80.16, + "end": 82.0, + "probability": 0.9408 + }, + { + "start": 82.88, + "end": 85.16, + "probability": 0.8145 + }, + { + "start": 86.62, + "end": 89.84, + "probability": 0.7483 + }, + { + "start": 90.4, + "end": 93.78, + "probability": 0.9927 + }, + { + "start": 94.7, + "end": 99.76, + "probability": 0.9763 + }, + { + "start": 101.04, + "end": 101.4, + "probability": 0.5707 + }, + { + "start": 105.7, + "end": 108.38, + "probability": 0.5816 + }, + { + "start": 109.44, + "end": 116.24, + "probability": 0.9795 + }, + { + "start": 117.88, + "end": 118.6, + "probability": 0.7978 + }, + { + "start": 119.7, + "end": 122.52, + "probability": 0.3939 + }, + { + "start": 122.52, + "end": 124.42, + "probability": 0.976 + }, + { + "start": 125.08, + "end": 125.22, + "probability": 0.0999 + }, + { + "start": 126.46, + "end": 127.42, + "probability": 0.959 + }, + { + "start": 127.5, + "end": 128.56, + "probability": 0.6729 + }, + { + "start": 128.58, + "end": 131.18, + "probability": 0.9747 + }, + { + "start": 131.8, + "end": 137.76, + "probability": 0.9904 + }, + { + "start": 138.24, + "end": 138.54, + "probability": 0.7234 + }, + { + "start": 138.66, + "end": 139.38, + "probability": 0.6812 + }, + { + "start": 139.62, + "end": 140.74, + "probability": 0.8217 + }, + { + "start": 141.92, + "end": 144.12, + "probability": 0.9666 + }, + { + "start": 144.44, + "end": 145.76, + "probability": 0.814 + }, + { + "start": 146.3, + "end": 147.6, + "probability": 0.7751 + }, + { + "start": 148.62, + "end": 151.36, + "probability": 0.9775 + }, + { + "start": 152.0, + "end": 155.54, + "probability": 0.9994 + }, + { + "start": 157.54, + "end": 158.2, + "probability": 0.4529 + }, + { + "start": 159.18, + "end": 163.96, + "probability": 0.9911 + }, + { + "start": 164.16, + "end": 167.04, + "probability": 0.996 + }, + { + "start": 167.9, + "end": 173.58, + "probability": 0.9945 + }, + { + "start": 175.1, + "end": 181.84, + "probability": 0.7451 + }, + { + "start": 182.76, + "end": 184.62, + "probability": 0.8212 + }, + { + "start": 185.94, + "end": 189.08, + "probability": 0.9117 + }, + { + "start": 190.02, + "end": 193.6, + "probability": 0.9224 + }, + { + "start": 193.6, + "end": 197.36, + "probability": 0.9738 + }, + { + "start": 198.58, + "end": 198.78, + "probability": 0.6146 + }, + { + "start": 198.9, + "end": 199.82, + "probability": 0.8897 + }, + { + "start": 199.88, + "end": 200.42, + "probability": 0.2515 + }, + { + "start": 200.48, + "end": 203.18, + "probability": 0.9299 + }, + { + "start": 203.44, + "end": 205.7, + "probability": 0.9823 + }, + { + "start": 206.22, + "end": 209.38, + "probability": 0.9032 + }, + { + "start": 209.64, + "end": 212.08, + "probability": 0.9739 + }, + { + "start": 212.92, + "end": 214.7, + "probability": 0.9912 + }, + { + "start": 214.82, + "end": 216.38, + "probability": 0.9237 + }, + { + "start": 216.86, + "end": 217.64, + "probability": 0.8241 + }, + { + "start": 217.98, + "end": 223.3, + "probability": 0.9124 + }, + { + "start": 223.98, + "end": 225.96, + "probability": 0.8935 + }, + { + "start": 226.6, + "end": 228.02, + "probability": 0.8955 + }, + { + "start": 228.66, + "end": 231.6, + "probability": 0.7831 + }, + { + "start": 232.22, + "end": 234.9, + "probability": 0.9309 + }, + { + "start": 235.16, + "end": 238.06, + "probability": 0.9797 + }, + { + "start": 238.2, + "end": 240.14, + "probability": 0.9941 + }, + { + "start": 240.42, + "end": 242.96, + "probability": 0.9901 + }, + { + "start": 244.48, + "end": 245.58, + "probability": 0.7652 + }, + { + "start": 246.34, + "end": 246.96, + "probability": 0.5605 + }, + { + "start": 248.24, + "end": 252.36, + "probability": 0.9945 + }, + { + "start": 252.92, + "end": 256.62, + "probability": 0.9984 + }, + { + "start": 257.34, + "end": 260.2, + "probability": 0.9271 + }, + { + "start": 260.9, + "end": 264.14, + "probability": 0.8534 + }, + { + "start": 264.42, + "end": 264.92, + "probability": 0.5605 + }, + { + "start": 265.08, + "end": 266.68, + "probability": 0.8501 + }, + { + "start": 266.82, + "end": 267.54, + "probability": 0.0411 + }, + { + "start": 267.64, + "end": 271.02, + "probability": 0.7798 + }, + { + "start": 271.12, + "end": 274.2, + "probability": 0.8623 + }, + { + "start": 274.26, + "end": 274.8, + "probability": 0.668 + }, + { + "start": 275.76, + "end": 278.91, + "probability": 0.995 + }, + { + "start": 280.02, + "end": 281.6, + "probability": 0.9616 + }, + { + "start": 281.88, + "end": 282.24, + "probability": 0.8047 + }, + { + "start": 282.84, + "end": 283.82, + "probability": 0.8406 + }, + { + "start": 284.14, + "end": 285.62, + "probability": 0.9436 + }, + { + "start": 285.88, + "end": 288.26, + "probability": 0.8461 + }, + { + "start": 288.46, + "end": 290.38, + "probability": 0.6917 + }, + { + "start": 290.6, + "end": 291.88, + "probability": 0.6242 + }, + { + "start": 291.96, + "end": 292.7, + "probability": 0.4725 + }, + { + "start": 293.42, + "end": 294.74, + "probability": 0.4919 + }, + { + "start": 295.58, + "end": 297.9, + "probability": 0.7455 + }, + { + "start": 298.08, + "end": 298.8, + "probability": 0.9761 + }, + { + "start": 298.96, + "end": 299.7, + "probability": 0.9541 + }, + { + "start": 299.9, + "end": 301.16, + "probability": 0.8624 + }, + { + "start": 301.56, + "end": 303.42, + "probability": 0.9885 + }, + { + "start": 305.33, + "end": 310.06, + "probability": 0.9477 + }, + { + "start": 310.74, + "end": 311.7, + "probability": 0.7253 + }, + { + "start": 312.7, + "end": 315.48, + "probability": 0.9927 + }, + { + "start": 316.52, + "end": 318.94, + "probability": 0.9585 + }, + { + "start": 319.94, + "end": 321.4, + "probability": 0.5805 + }, + { + "start": 322.22, + "end": 322.94, + "probability": 0.8934 + }, + { + "start": 323.7, + "end": 325.5, + "probability": 0.9725 + }, + { + "start": 325.54, + "end": 326.86, + "probability": 0.8103 + }, + { + "start": 327.12, + "end": 327.56, + "probability": 0.3948 + }, + { + "start": 327.94, + "end": 329.56, + "probability": 0.8123 + }, + { + "start": 329.92, + "end": 332.24, + "probability": 0.776 + }, + { + "start": 332.98, + "end": 334.3, + "probability": 0.1078 + }, + { + "start": 334.8, + "end": 335.24, + "probability": 0.3059 + }, + { + "start": 335.62, + "end": 338.16, + "probability": 0.9842 + }, + { + "start": 339.14, + "end": 339.74, + "probability": 0.8258 + }, + { + "start": 339.76, + "end": 340.64, + "probability": 0.9178 + }, + { + "start": 340.84, + "end": 345.5, + "probability": 0.8922 + }, + { + "start": 345.88, + "end": 350.14, + "probability": 0.7671 + }, + { + "start": 351.46, + "end": 355.34, + "probability": 0.9946 + }, + { + "start": 355.92, + "end": 359.68, + "probability": 0.9735 + }, + { + "start": 360.04, + "end": 362.78, + "probability": 0.8351 + }, + { + "start": 363.94, + "end": 367.12, + "probability": 0.9724 + }, + { + "start": 367.38, + "end": 369.22, + "probability": 0.8255 + }, + { + "start": 369.26, + "end": 369.46, + "probability": 0.1802 + }, + { + "start": 369.54, + "end": 371.62, + "probability": 0.8292 + }, + { + "start": 371.84, + "end": 372.86, + "probability": 0.2701 + }, + { + "start": 372.94, + "end": 374.64, + "probability": 0.7402 + }, + { + "start": 375.4, + "end": 378.8, + "probability": 0.901 + }, + { + "start": 379.52, + "end": 380.28, + "probability": 0.6163 + }, + { + "start": 382.52, + "end": 382.52, + "probability": 0.1101 + }, + { + "start": 382.52, + "end": 384.94, + "probability": 0.8184 + }, + { + "start": 385.5, + "end": 387.68, + "probability": 0.9937 + }, + { + "start": 390.14, + "end": 394.98, + "probability": 0.9884 + }, + { + "start": 395.22, + "end": 396.5, + "probability": 0.711 + }, + { + "start": 397.3, + "end": 402.84, + "probability": 0.9954 + }, + { + "start": 403.54, + "end": 406.36, + "probability": 0.9979 + }, + { + "start": 407.14, + "end": 409.34, + "probability": 0.9966 + }, + { + "start": 409.58, + "end": 411.5, + "probability": 0.9954 + }, + { + "start": 411.88, + "end": 413.44, + "probability": 0.9907 + }, + { + "start": 413.5, + "end": 415.98, + "probability": 0.9646 + }, + { + "start": 416.66, + "end": 420.6, + "probability": 0.9776 + }, + { + "start": 420.98, + "end": 422.88, + "probability": 0.8927 + }, + { + "start": 423.4, + "end": 423.58, + "probability": 0.7874 + }, + { + "start": 423.72, + "end": 424.84, + "probability": 0.9884 + }, + { + "start": 425.6, + "end": 427.94, + "probability": 0.9553 + }, + { + "start": 428.28, + "end": 434.36, + "probability": 0.9961 + }, + { + "start": 435.04, + "end": 435.72, + "probability": 0.6451 + }, + { + "start": 435.88, + "end": 441.0, + "probability": 0.986 + }, + { + "start": 441.44, + "end": 443.78, + "probability": 0.3281 + }, + { + "start": 443.78, + "end": 444.3, + "probability": 0.5977 + }, + { + "start": 444.48, + "end": 445.92, + "probability": 0.6733 + }, + { + "start": 446.18, + "end": 450.06, + "probability": 0.9756 + }, + { + "start": 450.2, + "end": 452.72, + "probability": 0.9979 + }, + { + "start": 452.72, + "end": 454.88, + "probability": 0.9983 + }, + { + "start": 457.2, + "end": 460.56, + "probability": 0.9595 + }, + { + "start": 461.56, + "end": 465.68, + "probability": 0.9673 + }, + { + "start": 466.28, + "end": 467.6, + "probability": 0.8352 + }, + { + "start": 468.34, + "end": 474.98, + "probability": 0.8425 + }, + { + "start": 475.08, + "end": 476.6, + "probability": 0.9945 + }, + { + "start": 477.14, + "end": 478.32, + "probability": 0.989 + }, + { + "start": 478.94, + "end": 481.3, + "probability": 0.9269 + }, + { + "start": 482.22, + "end": 486.76, + "probability": 0.9968 + }, + { + "start": 487.38, + "end": 488.39, + "probability": 0.9966 + }, + { + "start": 489.06, + "end": 492.44, + "probability": 0.8979 + }, + { + "start": 492.44, + "end": 494.44, + "probability": 0.8296 + }, + { + "start": 495.14, + "end": 497.66, + "probability": 0.8308 + }, + { + "start": 497.82, + "end": 499.84, + "probability": 0.9803 + }, + { + "start": 500.32, + "end": 506.86, + "probability": 0.991 + }, + { + "start": 507.62, + "end": 509.44, + "probability": 0.9878 + }, + { + "start": 509.96, + "end": 513.2, + "probability": 0.8461 + }, + { + "start": 513.62, + "end": 514.16, + "probability": 0.3083 + }, + { + "start": 514.3, + "end": 517.52, + "probability": 0.9087 + }, + { + "start": 517.64, + "end": 522.34, + "probability": 0.9641 + }, + { + "start": 522.48, + "end": 524.86, + "probability": 0.7169 + }, + { + "start": 525.0, + "end": 526.64, + "probability": 0.8271 + }, + { + "start": 527.28, + "end": 528.17, + "probability": 0.6632 + }, + { + "start": 529.36, + "end": 532.54, + "probability": 0.9291 + }, + { + "start": 533.06, + "end": 534.92, + "probability": 0.7661 + }, + { + "start": 535.02, + "end": 536.16, + "probability": 0.8753 + }, + { + "start": 536.62, + "end": 540.82, + "probability": 0.9614 + }, + { + "start": 541.42, + "end": 544.76, + "probability": 0.9814 + }, + { + "start": 545.34, + "end": 546.41, + "probability": 0.6581 + }, + { + "start": 546.56, + "end": 548.93, + "probability": 0.9653 + }, + { + "start": 550.9, + "end": 551.62, + "probability": 0.8862 + }, + { + "start": 553.27, + "end": 557.5, + "probability": 0.9761 + }, + { + "start": 557.6, + "end": 562.9, + "probability": 0.9906 + }, + { + "start": 562.96, + "end": 563.86, + "probability": 0.9111 + }, + { + "start": 563.92, + "end": 566.06, + "probability": 0.8247 + }, + { + "start": 566.84, + "end": 571.24, + "probability": 0.9712 + }, + { + "start": 571.82, + "end": 579.38, + "probability": 0.9338 + }, + { + "start": 580.82, + "end": 583.44, + "probability": 0.8486 + }, + { + "start": 583.46, + "end": 585.22, + "probability": 0.863 + }, + { + "start": 585.3, + "end": 587.2, + "probability": 0.9756 + }, + { + "start": 587.2, + "end": 587.84, + "probability": 0.7038 + }, + { + "start": 588.22, + "end": 588.66, + "probability": 0.7993 + }, + { + "start": 588.76, + "end": 590.44, + "probability": 0.6205 + }, + { + "start": 590.48, + "end": 590.74, + "probability": 0.2954 + }, + { + "start": 591.38, + "end": 591.66, + "probability": 0.7638 + }, + { + "start": 592.16, + "end": 595.3, + "probability": 0.9294 + }, + { + "start": 595.64, + "end": 596.14, + "probability": 0.6339 + }, + { + "start": 596.74, + "end": 598.02, + "probability": 0.8668 + }, + { + "start": 598.56, + "end": 600.32, + "probability": 0.7599 + }, + { + "start": 600.72, + "end": 603.34, + "probability": 0.2687 + }, + { + "start": 603.34, + "end": 606.5, + "probability": 0.813 + }, + { + "start": 606.8, + "end": 608.8, + "probability": 0.9619 + }, + { + "start": 608.8, + "end": 612.24, + "probability": 0.8298 + }, + { + "start": 612.38, + "end": 613.12, + "probability": 0.3013 + }, + { + "start": 615.3, + "end": 618.62, + "probability": 0.5544 + }, + { + "start": 618.78, + "end": 619.16, + "probability": 0.4826 + }, + { + "start": 619.28, + "end": 622.42, + "probability": 0.7142 + }, + { + "start": 624.0, + "end": 627.2, + "probability": 0.3369 + }, + { + "start": 627.22, + "end": 627.82, + "probability": 0.6691 + }, + { + "start": 628.2, + "end": 632.3, + "probability": 0.9951 + }, + { + "start": 632.66, + "end": 636.52, + "probability": 0.7961 + }, + { + "start": 636.96, + "end": 637.58, + "probability": 0.69 + }, + { + "start": 637.82, + "end": 638.6, + "probability": 0.9262 + }, + { + "start": 639.34, + "end": 641.84, + "probability": 0.9497 + }, + { + "start": 641.88, + "end": 646.83, + "probability": 0.8555 + }, + { + "start": 647.42, + "end": 649.92, + "probability": 0.9337 + }, + { + "start": 649.98, + "end": 650.98, + "probability": 0.8846 + }, + { + "start": 651.06, + "end": 652.8, + "probability": 0.4786 + }, + { + "start": 652.9, + "end": 656.52, + "probability": 0.6484 + }, + { + "start": 656.54, + "end": 657.22, + "probability": 0.9374 + }, + { + "start": 657.7, + "end": 665.2, + "probability": 0.938 + }, + { + "start": 665.5, + "end": 666.68, + "probability": 0.8248 + }, + { + "start": 666.78, + "end": 667.68, + "probability": 0.8569 + }, + { + "start": 667.72, + "end": 668.26, + "probability": 0.7987 + }, + { + "start": 669.28, + "end": 669.5, + "probability": 0.6914 + }, + { + "start": 670.42, + "end": 672.96, + "probability": 0.8676 + }, + { + "start": 673.74, + "end": 675.3, + "probability": 0.7769 + }, + { + "start": 675.56, + "end": 677.0, + "probability": 0.7788 + }, + { + "start": 677.1, + "end": 678.88, + "probability": 0.9709 + }, + { + "start": 678.88, + "end": 681.14, + "probability": 0.53 + }, + { + "start": 681.22, + "end": 681.88, + "probability": 0.8782 + }, + { + "start": 682.56, + "end": 686.8, + "probability": 0.6811 + }, + { + "start": 687.02, + "end": 688.48, + "probability": 0.7515 + }, + { + "start": 689.18, + "end": 690.6, + "probability": 0.0535 + }, + { + "start": 691.26, + "end": 692.08, + "probability": 0.6391 + }, + { + "start": 692.16, + "end": 694.54, + "probability": 0.4873 + }, + { + "start": 697.52, + "end": 698.22, + "probability": 0.3128 + }, + { + "start": 698.24, + "end": 703.04, + "probability": 0.6735 + }, + { + "start": 703.04, + "end": 706.6, + "probability": 0.6095 + }, + { + "start": 706.62, + "end": 708.6, + "probability": 0.7681 + }, + { + "start": 709.34, + "end": 711.46, + "probability": 0.9658 + }, + { + "start": 712.22, + "end": 712.5, + "probability": 0.7491 + }, + { + "start": 713.83, + "end": 715.52, + "probability": 0.2197 + }, + { + "start": 716.04, + "end": 716.94, + "probability": 0.3487 + }, + { + "start": 717.18, + "end": 721.8, + "probability": 0.9766 + }, + { + "start": 721.82, + "end": 722.64, + "probability": 0.7237 + }, + { + "start": 722.68, + "end": 723.84, + "probability": 0.634 + }, + { + "start": 725.28, + "end": 726.8, + "probability": 0.7661 + }, + { + "start": 726.92, + "end": 731.24, + "probability": 0.9532 + }, + { + "start": 734.48, + "end": 734.48, + "probability": 0.2079 + }, + { + "start": 734.48, + "end": 738.52, + "probability": 0.7778 + }, + { + "start": 738.94, + "end": 739.34, + "probability": 0.5272 + }, + { + "start": 740.02, + "end": 744.38, + "probability": 0.3646 + }, + { + "start": 744.6, + "end": 746.98, + "probability": 0.697 + }, + { + "start": 747.02, + "end": 752.36, + "probability": 0.5653 + }, + { + "start": 752.42, + "end": 754.7, + "probability": 0.7398 + }, + { + "start": 754.7, + "end": 757.24, + "probability": 0.9395 + }, + { + "start": 758.65, + "end": 760.78, + "probability": 0.8529 + }, + { + "start": 761.1, + "end": 762.16, + "probability": 0.8667 + }, + { + "start": 762.94, + "end": 764.32, + "probability": 0.1004 + }, + { + "start": 764.32, + "end": 766.4, + "probability": 0.5097 + }, + { + "start": 766.64, + "end": 767.46, + "probability": 0.8545 + }, + { + "start": 768.04, + "end": 768.76, + "probability": 0.3465 + }, + { + "start": 768.86, + "end": 770.06, + "probability": 0.9391 + }, + { + "start": 770.52, + "end": 771.94, + "probability": 0.9432 + }, + { + "start": 772.02, + "end": 773.16, + "probability": 0.9438 + }, + { + "start": 773.58, + "end": 777.08, + "probability": 0.963 + }, + { + "start": 777.66, + "end": 780.1, + "probability": 0.9488 + }, + { + "start": 780.28, + "end": 781.36, + "probability": 0.6839 + }, + { + "start": 781.7, + "end": 782.82, + "probability": 0.8008 + }, + { + "start": 784.12, + "end": 787.12, + "probability": 0.9624 + }, + { + "start": 787.42, + "end": 788.82, + "probability": 0.9003 + }, + { + "start": 789.76, + "end": 791.4, + "probability": 0.6771 + }, + { + "start": 791.44, + "end": 792.12, + "probability": 0.86 + }, + { + "start": 792.4, + "end": 793.92, + "probability": 0.5289 + }, + { + "start": 794.02, + "end": 794.76, + "probability": 0.8687 + }, + { + "start": 796.4, + "end": 799.12, + "probability": 0.6864 + }, + { + "start": 802.24, + "end": 807.4, + "probability": 0.8185 + }, + { + "start": 808.46, + "end": 812.9, + "probability": 0.9523 + }, + { + "start": 812.9, + "end": 816.84, + "probability": 0.7527 + }, + { + "start": 818.06, + "end": 819.72, + "probability": 0.7706 + }, + { + "start": 820.12, + "end": 820.58, + "probability": 0.9731 + }, + { + "start": 820.72, + "end": 823.42, + "probability": 0.9595 + }, + { + "start": 824.3, + "end": 825.28, + "probability": 0.6833 + }, + { + "start": 829.4, + "end": 832.66, + "probability": 0.7292 + }, + { + "start": 834.38, + "end": 838.56, + "probability": 0.9398 + }, + { + "start": 838.56, + "end": 844.7, + "probability": 0.9897 + }, + { + "start": 844.82, + "end": 848.72, + "probability": 0.7709 + }, + { + "start": 848.88, + "end": 850.56, + "probability": 0.7876 + }, + { + "start": 850.94, + "end": 851.9, + "probability": 0.9696 + }, + { + "start": 852.18, + "end": 853.1, + "probability": 0.9744 + }, + { + "start": 854.66, + "end": 858.7, + "probability": 0.9657 + }, + { + "start": 860.08, + "end": 864.72, + "probability": 0.6289 + }, + { + "start": 864.82, + "end": 867.48, + "probability": 0.7915 + }, + { + "start": 867.5, + "end": 869.88, + "probability": 0.9839 + }, + { + "start": 871.22, + "end": 875.26, + "probability": 0.9936 + }, + { + "start": 875.32, + "end": 877.86, + "probability": 0.9225 + }, + { + "start": 878.7, + "end": 879.58, + "probability": 0.7852 + }, + { + "start": 880.56, + "end": 882.74, + "probability": 0.8303 + }, + { + "start": 882.74, + "end": 885.22, + "probability": 0.9668 + }, + { + "start": 885.9, + "end": 888.96, + "probability": 0.9078 + }, + { + "start": 888.96, + "end": 892.6, + "probability": 0.9468 + }, + { + "start": 893.76, + "end": 897.16, + "probability": 0.9871 + }, + { + "start": 897.22, + "end": 899.76, + "probability": 0.8783 + }, + { + "start": 902.7, + "end": 903.44, + "probability": 0.949 + }, + { + "start": 903.46, + "end": 904.22, + "probability": 0.4712 + }, + { + "start": 905.3, + "end": 906.36, + "probability": 0.9062 + }, + { + "start": 906.96, + "end": 908.6, + "probability": 0.8558 + }, + { + "start": 909.42, + "end": 910.88, + "probability": 0.5643 + }, + { + "start": 910.92, + "end": 913.98, + "probability": 0.9619 + }, + { + "start": 914.14, + "end": 918.18, + "probability": 0.9841 + }, + { + "start": 918.94, + "end": 921.06, + "probability": 0.996 + }, + { + "start": 921.18, + "end": 924.6, + "probability": 0.9231 + }, + { + "start": 924.6, + "end": 927.32, + "probability": 0.8934 + }, + { + "start": 928.04, + "end": 931.62, + "probability": 0.9369 + }, + { + "start": 932.68, + "end": 934.68, + "probability": 0.693 + }, + { + "start": 934.68, + "end": 937.1, + "probability": 0.9886 + }, + { + "start": 937.28, + "end": 938.48, + "probability": 0.7128 + }, + { + "start": 939.06, + "end": 940.26, + "probability": 0.9922 + }, + { + "start": 940.28, + "end": 943.1, + "probability": 0.8044 + }, + { + "start": 943.18, + "end": 945.48, + "probability": 0.7301 + }, + { + "start": 946.6, + "end": 946.94, + "probability": 0.3996 + }, + { + "start": 947.02, + "end": 949.24, + "probability": 0.8366 + }, + { + "start": 949.6, + "end": 952.46, + "probability": 0.8975 + }, + { + "start": 953.22, + "end": 954.54, + "probability": 0.9939 + }, + { + "start": 955.08, + "end": 957.2, + "probability": 0.9611 + }, + { + "start": 958.44, + "end": 962.82, + "probability": 0.9098 + }, + { + "start": 962.98, + "end": 966.54, + "probability": 0.4833 + }, + { + "start": 967.88, + "end": 970.42, + "probability": 0.782 + }, + { + "start": 970.42, + "end": 974.32, + "probability": 0.7865 + }, + { + "start": 976.7, + "end": 978.82, + "probability": 0.7914 + }, + { + "start": 978.88, + "end": 980.06, + "probability": 0.9144 + }, + { + "start": 980.72, + "end": 982.84, + "probability": 0.8906 + }, + { + "start": 983.7, + "end": 985.26, + "probability": 0.5222 + }, + { + "start": 985.26, + "end": 987.4, + "probability": 0.8285 + }, + { + "start": 987.44, + "end": 989.86, + "probability": 0.8936 + }, + { + "start": 990.6, + "end": 991.5, + "probability": 0.702 + }, + { + "start": 991.78, + "end": 994.56, + "probability": 0.851 + }, + { + "start": 995.8, + "end": 996.8, + "probability": 0.7397 + }, + { + "start": 997.52, + "end": 1000.0, + "probability": 0.7717 + }, + { + "start": 1000.12, + "end": 1000.94, + "probability": 0.69 + }, + { + "start": 1001.84, + "end": 1004.44, + "probability": 0.8864 + }, + { + "start": 1004.58, + "end": 1007.96, + "probability": 0.8859 + }, + { + "start": 1008.12, + "end": 1012.28, + "probability": 0.9113 + }, + { + "start": 1014.06, + "end": 1016.9, + "probability": 0.7938 + }, + { + "start": 1016.9, + "end": 1019.92, + "probability": 0.9888 + }, + { + "start": 1019.92, + "end": 1023.2, + "probability": 0.9902 + }, + { + "start": 1028.38, + "end": 1031.22, + "probability": 0.7212 + }, + { + "start": 1031.22, + "end": 1033.92, + "probability": 0.8506 + }, + { + "start": 1035.22, + "end": 1039.24, + "probability": 0.8916 + }, + { + "start": 1039.86, + "end": 1041.6, + "probability": 0.9611 + }, + { + "start": 1041.88, + "end": 1043.22, + "probability": 0.774 + }, + { + "start": 1043.58, + "end": 1046.66, + "probability": 0.7037 + }, + { + "start": 1047.14, + "end": 1048.33, + "probability": 0.4363 + }, + { + "start": 1048.38, + "end": 1049.38, + "probability": 0.9432 + }, + { + "start": 1049.6, + "end": 1051.0, + "probability": 0.5562 + }, + { + "start": 1051.04, + "end": 1051.38, + "probability": 0.799 + }, + { + "start": 1051.62, + "end": 1056.32, + "probability": 0.9756 + }, + { + "start": 1056.46, + "end": 1057.7, + "probability": 0.7978 + }, + { + "start": 1058.1, + "end": 1058.42, + "probability": 0.5409 + }, + { + "start": 1059.36, + "end": 1060.44, + "probability": 0.9556 + }, + { + "start": 1061.0, + "end": 1061.34, + "probability": 0.7523 + }, + { + "start": 1061.46, + "end": 1063.64, + "probability": 0.9713 + }, + { + "start": 1063.94, + "end": 1064.2, + "probability": 0.3263 + }, + { + "start": 1065.36, + "end": 1065.96, + "probability": 0.5702 + }, + { + "start": 1066.04, + "end": 1066.34, + "probability": 0.4321 + }, + { + "start": 1066.56, + "end": 1068.52, + "probability": 0.8216 + }, + { + "start": 1068.66, + "end": 1070.36, + "probability": 0.4969 + }, + { + "start": 1071.0, + "end": 1072.99, + "probability": 0.3053 + }, + { + "start": 1074.62, + "end": 1074.62, + "probability": 0.1006 + }, + { + "start": 1074.62, + "end": 1076.06, + "probability": 0.9458 + }, + { + "start": 1076.79, + "end": 1080.52, + "probability": 0.5731 + }, + { + "start": 1081.02, + "end": 1082.8, + "probability": 0.9715 + }, + { + "start": 1083.54, + "end": 1085.6, + "probability": 0.6191 + }, + { + "start": 1086.38, + "end": 1089.56, + "probability": 0.9882 + }, + { + "start": 1090.16, + "end": 1093.34, + "probability": 0.9711 + }, + { + "start": 1093.34, + "end": 1097.28, + "probability": 0.9644 + }, + { + "start": 1097.28, + "end": 1099.86, + "probability": 0.9676 + }, + { + "start": 1099.86, + "end": 1100.74, + "probability": 0.516 + }, + { + "start": 1101.02, + "end": 1104.2, + "probability": 0.5915 + }, + { + "start": 1104.3, + "end": 1104.82, + "probability": 0.9489 + }, + { + "start": 1104.9, + "end": 1105.42, + "probability": 0.6165 + }, + { + "start": 1105.44, + "end": 1106.58, + "probability": 0.9734 + }, + { + "start": 1107.56, + "end": 1109.6, + "probability": 0.993 + }, + { + "start": 1110.0, + "end": 1110.7, + "probability": 0.9422 + }, + { + "start": 1110.8, + "end": 1111.38, + "probability": 0.812 + }, + { + "start": 1111.46, + "end": 1113.94, + "probability": 0.9484 + }, + { + "start": 1114.08, + "end": 1115.06, + "probability": 0.6394 + }, + { + "start": 1115.5, + "end": 1116.78, + "probability": 0.9366 + }, + { + "start": 1117.26, + "end": 1119.88, + "probability": 0.8809 + }, + { + "start": 1120.48, + "end": 1120.76, + "probability": 0.5368 + }, + { + "start": 1120.84, + "end": 1122.08, + "probability": 0.9167 + }, + { + "start": 1122.46, + "end": 1123.32, + "probability": 0.9537 + }, + { + "start": 1123.82, + "end": 1126.78, + "probability": 0.8901 + }, + { + "start": 1126.92, + "end": 1127.16, + "probability": 0.7163 + }, + { + "start": 1127.26, + "end": 1129.49, + "probability": 0.916 + }, + { + "start": 1129.78, + "end": 1133.18, + "probability": 0.9762 + }, + { + "start": 1133.54, + "end": 1136.36, + "probability": 0.7705 + }, + { + "start": 1136.66, + "end": 1137.74, + "probability": 0.639 + }, + { + "start": 1138.34, + "end": 1139.2, + "probability": 0.9333 + }, + { + "start": 1139.36, + "end": 1140.1, + "probability": 0.9507 + }, + { + "start": 1140.94, + "end": 1144.38, + "probability": 0.9854 + }, + { + "start": 1144.66, + "end": 1146.84, + "probability": 0.9938 + }, + { + "start": 1146.98, + "end": 1148.4, + "probability": 0.6506 + }, + { + "start": 1149.24, + "end": 1151.2, + "probability": 0.7818 + }, + { + "start": 1151.44, + "end": 1153.66, + "probability": 0.8958 + }, + { + "start": 1153.98, + "end": 1156.9, + "probability": 0.7781 + }, + { + "start": 1157.22, + "end": 1158.3, + "probability": 0.7458 + }, + { + "start": 1158.3, + "end": 1158.67, + "probability": 0.908 + }, + { + "start": 1159.44, + "end": 1162.5, + "probability": 0.9439 + }, + { + "start": 1162.84, + "end": 1166.42, + "probability": 0.9842 + }, + { + "start": 1166.54, + "end": 1166.98, + "probability": 0.1428 + }, + { + "start": 1167.3, + "end": 1168.14, + "probability": 0.9023 + }, + { + "start": 1168.26, + "end": 1171.14, + "probability": 0.9858 + }, + { + "start": 1171.6, + "end": 1174.12, + "probability": 0.7056 + }, + { + "start": 1174.5, + "end": 1175.74, + "probability": 0.8052 + }, + { + "start": 1175.9, + "end": 1177.46, + "probability": 0.9845 + }, + { + "start": 1177.94, + "end": 1179.86, + "probability": 0.9793 + }, + { + "start": 1180.5, + "end": 1181.94, + "probability": 0.8561 + }, + { + "start": 1182.28, + "end": 1183.72, + "probability": 0.3906 + }, + { + "start": 1183.88, + "end": 1184.38, + "probability": 0.6997 + }, + { + "start": 1184.62, + "end": 1186.04, + "probability": 0.9111 + }, + { + "start": 1186.34, + "end": 1186.82, + "probability": 0.6925 + }, + { + "start": 1187.7, + "end": 1190.18, + "probability": 0.9906 + }, + { + "start": 1190.62, + "end": 1193.74, + "probability": 0.9807 + }, + { + "start": 1194.3, + "end": 1200.4, + "probability": 0.7531 + }, + { + "start": 1204.22, + "end": 1207.1, + "probability": 0.4305 + }, + { + "start": 1207.86, + "end": 1213.32, + "probability": 0.7997 + }, + { + "start": 1214.02, + "end": 1215.99, + "probability": 0.8687 + }, + { + "start": 1216.26, + "end": 1216.76, + "probability": 0.7579 + }, + { + "start": 1216.96, + "end": 1219.24, + "probability": 0.5755 + }, + { + "start": 1219.72, + "end": 1220.86, + "probability": 0.9299 + }, + { + "start": 1221.54, + "end": 1222.94, + "probability": 0.8083 + }, + { + "start": 1223.18, + "end": 1223.36, + "probability": 0.1177 + }, + { + "start": 1224.44, + "end": 1228.24, + "probability": 0.8338 + }, + { + "start": 1228.36, + "end": 1228.92, + "probability": 0.4621 + }, + { + "start": 1228.98, + "end": 1229.82, + "probability": 0.8716 + }, + { + "start": 1230.3, + "end": 1232.88, + "probability": 0.9832 + }, + { + "start": 1232.94, + "end": 1237.28, + "probability": 0.814 + }, + { + "start": 1237.34, + "end": 1238.5, + "probability": 0.0793 + }, + { + "start": 1239.76, + "end": 1245.4, + "probability": 0.511 + }, + { + "start": 1246.88, + "end": 1249.2, + "probability": 0.7488 + }, + { + "start": 1252.26, + "end": 1255.24, + "probability": 0.8629 + }, + { + "start": 1255.98, + "end": 1257.14, + "probability": 0.6901 + }, + { + "start": 1257.32, + "end": 1260.56, + "probability": 0.8893 + }, + { + "start": 1261.38, + "end": 1262.94, + "probability": 0.9995 + }, + { + "start": 1263.58, + "end": 1265.7, + "probability": 0.979 + }, + { + "start": 1266.44, + "end": 1268.14, + "probability": 0.7128 + }, + { + "start": 1268.24, + "end": 1271.12, + "probability": 0.8211 + }, + { + "start": 1271.12, + "end": 1275.34, + "probability": 0.8885 + }, + { + "start": 1275.5, + "end": 1276.66, + "probability": 0.8369 + }, + { + "start": 1276.68, + "end": 1277.26, + "probability": 0.1782 + }, + { + "start": 1277.48, + "end": 1277.94, + "probability": 0.6733 + }, + { + "start": 1278.44, + "end": 1279.0, + "probability": 0.5428 + }, + { + "start": 1279.4, + "end": 1279.88, + "probability": 0.8446 + }, + { + "start": 1280.16, + "end": 1280.88, + "probability": 0.7851 + }, + { + "start": 1281.12, + "end": 1282.1, + "probability": 0.8899 + }, + { + "start": 1282.34, + "end": 1283.2, + "probability": 0.8873 + }, + { + "start": 1283.3, + "end": 1284.02, + "probability": 0.9558 + }, + { + "start": 1284.12, + "end": 1284.6, + "probability": 0.3252 + }, + { + "start": 1284.62, + "end": 1285.78, + "probability": 0.9226 + }, + { + "start": 1285.94, + "end": 1286.58, + "probability": 0.697 + }, + { + "start": 1286.64, + "end": 1287.14, + "probability": 0.7686 + }, + { + "start": 1287.3, + "end": 1288.0, + "probability": 0.969 + }, + { + "start": 1288.08, + "end": 1288.48, + "probability": 0.9533 + }, + { + "start": 1288.6, + "end": 1289.0, + "probability": 0.5899 + }, + { + "start": 1289.44, + "end": 1293.14, + "probability": 0.9877 + }, + { + "start": 1293.5, + "end": 1294.28, + "probability": 0.952 + }, + { + "start": 1294.72, + "end": 1295.63, + "probability": 0.8154 + }, + { + "start": 1296.04, + "end": 1298.14, + "probability": 0.9866 + }, + { + "start": 1298.46, + "end": 1300.63, + "probability": 0.9856 + }, + { + "start": 1300.88, + "end": 1301.98, + "probability": 0.889 + }, + { + "start": 1302.22, + "end": 1305.22, + "probability": 0.8328 + }, + { + "start": 1305.58, + "end": 1307.36, + "probability": 0.7528 + }, + { + "start": 1308.02, + "end": 1310.98, + "probability": 0.9574 + }, + { + "start": 1311.46, + "end": 1312.5, + "probability": 0.7407 + }, + { + "start": 1312.72, + "end": 1313.93, + "probability": 0.8337 + }, + { + "start": 1314.58, + "end": 1315.47, + "probability": 0.9747 + }, + { + "start": 1315.74, + "end": 1316.49, + "probability": 0.9626 + }, + { + "start": 1317.16, + "end": 1319.36, + "probability": 0.846 + }, + { + "start": 1319.62, + "end": 1321.84, + "probability": 0.9875 + }, + { + "start": 1322.2, + "end": 1322.6, + "probability": 0.9281 + }, + { + "start": 1322.78, + "end": 1323.54, + "probability": 0.9733 + }, + { + "start": 1323.86, + "end": 1326.62, + "probability": 0.9766 + }, + { + "start": 1326.88, + "end": 1328.4, + "probability": 0.8351 + }, + { + "start": 1328.7, + "end": 1330.3, + "probability": 0.8906 + }, + { + "start": 1330.38, + "end": 1332.72, + "probability": 0.9246 + }, + { + "start": 1332.96, + "end": 1336.34, + "probability": 0.9313 + }, + { + "start": 1336.68, + "end": 1339.22, + "probability": 0.986 + }, + { + "start": 1339.46, + "end": 1339.98, + "probability": 0.5471 + }, + { + "start": 1340.26, + "end": 1342.6, + "probability": 0.3415 + }, + { + "start": 1342.62, + "end": 1343.38, + "probability": 0.7126 + }, + { + "start": 1343.44, + "end": 1345.88, + "probability": 0.8049 + }, + { + "start": 1346.6, + "end": 1346.6, + "probability": 0.0766 + }, + { + "start": 1346.6, + "end": 1347.28, + "probability": 0.6872 + }, + { + "start": 1347.46, + "end": 1351.3, + "probability": 0.7033 + }, + { + "start": 1351.86, + "end": 1354.06, + "probability": 0.3881 + }, + { + "start": 1354.78, + "end": 1359.72, + "probability": 0.8213 + }, + { + "start": 1360.66, + "end": 1363.2, + "probability": 0.3228 + }, + { + "start": 1364.7, + "end": 1368.8, + "probability": 0.1645 + }, + { + "start": 1368.96, + "end": 1372.18, + "probability": 0.0122 + }, + { + "start": 1375.12, + "end": 1379.22, + "probability": 0.1557 + }, + { + "start": 1379.62, + "end": 1381.31, + "probability": 0.3749 + }, + { + "start": 1381.38, + "end": 1382.79, + "probability": 0.0917 + }, + { + "start": 1383.98, + "end": 1385.62, + "probability": 0.229 + }, + { + "start": 1386.32, + "end": 1388.3, + "probability": 0.0919 + }, + { + "start": 1388.3, + "end": 1388.36, + "probability": 0.0627 + }, + { + "start": 1388.36, + "end": 1388.36, + "probability": 0.0188 + }, + { + "start": 1388.38, + "end": 1391.14, + "probability": 0.0619 + }, + { + "start": 1391.14, + "end": 1392.48, + "probability": 0.0268 + }, + { + "start": 1393.54, + "end": 1394.31, + "probability": 0.046 + }, + { + "start": 1395.62, + "end": 1397.4, + "probability": 0.0522 + }, + { + "start": 1410.25, + "end": 1412.9, + "probability": 0.0081 + }, + { + "start": 1412.9, + "end": 1415.04, + "probability": 0.0507 + }, + { + "start": 1415.04, + "end": 1417.56, + "probability": 0.2015 + }, + { + "start": 1417.56, + "end": 1418.2, + "probability": 0.0421 + }, + { + "start": 1418.2, + "end": 1420.29, + "probability": 0.0251 + }, + { + "start": 1421.16, + "end": 1421.3, + "probability": 0.092 + }, + { + "start": 1422.08, + "end": 1426.52, + "probability": 0.097 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.0, + "end": 1431.0, + "probability": 0.0 + }, + { + "start": 1431.1, + "end": 1431.26, + "probability": 0.0692 + }, + { + "start": 1431.26, + "end": 1431.26, + "probability": 0.1193 + }, + { + "start": 1431.26, + "end": 1432.7, + "probability": 0.1598 + }, + { + "start": 1433.34, + "end": 1435.16, + "probability": 0.5988 + }, + { + "start": 1435.24, + "end": 1435.86, + "probability": 0.521 + }, + { + "start": 1435.9, + "end": 1438.72, + "probability": 0.9494 + }, + { + "start": 1439.12, + "end": 1441.53, + "probability": 0.7339 + }, + { + "start": 1441.88, + "end": 1443.24, + "probability": 0.4699 + }, + { + "start": 1443.24, + "end": 1443.28, + "probability": 0.5478 + }, + { + "start": 1443.4, + "end": 1445.1, + "probability": 0.4755 + }, + { + "start": 1445.34, + "end": 1450.12, + "probability": 0.4351 + }, + { + "start": 1450.22, + "end": 1454.24, + "probability": 0.6786 + }, + { + "start": 1454.8, + "end": 1456.16, + "probability": 0.6187 + }, + { + "start": 1456.5, + "end": 1458.68, + "probability": 0.6569 + }, + { + "start": 1459.36, + "end": 1459.72, + "probability": 0.2868 + }, + { + "start": 1459.72, + "end": 1463.86, + "probability": 0.4953 + }, + { + "start": 1463.86, + "end": 1470.8, + "probability": 0.9277 + }, + { + "start": 1471.48, + "end": 1476.4, + "probability": 0.9587 + }, + { + "start": 1477.8, + "end": 1479.12, + "probability": 0.8127 + }, + { + "start": 1483.56, + "end": 1484.32, + "probability": 0.7385 + }, + { + "start": 1484.4, + "end": 1489.88, + "probability": 0.6744 + }, + { + "start": 1491.22, + "end": 1492.2, + "probability": 0.2994 + }, + { + "start": 1492.2, + "end": 1493.02, + "probability": 0.7784 + }, + { + "start": 1495.64, + "end": 1498.52, + "probability": 0.6061 + }, + { + "start": 1499.24, + "end": 1499.84, + "probability": 0.8842 + }, + { + "start": 1500.36, + "end": 1503.02, + "probability": 0.7373 + }, + { + "start": 1503.62, + "end": 1508.08, + "probability": 0.9221 + }, + { + "start": 1508.52, + "end": 1510.32, + "probability": 0.9101 + }, + { + "start": 1510.86, + "end": 1512.32, + "probability": 0.9976 + }, + { + "start": 1512.9, + "end": 1518.08, + "probability": 0.9329 + }, + { + "start": 1518.52, + "end": 1519.6, + "probability": 0.7334 + }, + { + "start": 1520.12, + "end": 1521.32, + "probability": 0.9897 + }, + { + "start": 1521.92, + "end": 1526.54, + "probability": 0.9869 + }, + { + "start": 1527.06, + "end": 1529.44, + "probability": 0.8446 + }, + { + "start": 1530.64, + "end": 1531.16, + "probability": 0.5319 + }, + { + "start": 1531.52, + "end": 1533.2, + "probability": 0.5061 + }, + { + "start": 1533.28, + "end": 1535.66, + "probability": 0.9565 + }, + { + "start": 1536.92, + "end": 1538.5, + "probability": 0.8132 + }, + { + "start": 1540.2, + "end": 1543.44, + "probability": 0.7709 + }, + { + "start": 1545.46, + "end": 1549.74, + "probability": 0.9935 + }, + { + "start": 1549.74, + "end": 1554.0, + "probability": 0.9766 + }, + { + "start": 1555.34, + "end": 1556.49, + "probability": 0.5061 + }, + { + "start": 1558.12, + "end": 1562.74, + "probability": 0.9701 + }, + { + "start": 1562.74, + "end": 1567.92, + "probability": 0.9912 + }, + { + "start": 1568.68, + "end": 1573.96, + "probability": 0.972 + }, + { + "start": 1573.96, + "end": 1578.86, + "probability": 0.9994 + }, + { + "start": 1579.82, + "end": 1582.62, + "probability": 0.9934 + }, + { + "start": 1584.32, + "end": 1587.54, + "probability": 0.9076 + }, + { + "start": 1587.58, + "end": 1590.2, + "probability": 0.9031 + }, + { + "start": 1590.7, + "end": 1593.64, + "probability": 0.7009 + }, + { + "start": 1594.26, + "end": 1595.12, + "probability": 0.9434 + }, + { + "start": 1595.9, + "end": 1598.92, + "probability": 0.9438 + }, + { + "start": 1599.74, + "end": 1604.52, + "probability": 0.9272 + }, + { + "start": 1605.92, + "end": 1610.84, + "probability": 0.9907 + }, + { + "start": 1611.12, + "end": 1612.0, + "probability": 0.4002 + }, + { + "start": 1612.44, + "end": 1613.86, + "probability": 0.7957 + }, + { + "start": 1614.7, + "end": 1617.32, + "probability": 0.9868 + }, + { + "start": 1618.26, + "end": 1621.32, + "probability": 0.9896 + }, + { + "start": 1621.44, + "end": 1622.24, + "probability": 0.8176 + }, + { + "start": 1622.32, + "end": 1628.12, + "probability": 0.9775 + }, + { + "start": 1629.0, + "end": 1629.42, + "probability": 0.5057 + }, + { + "start": 1630.32, + "end": 1632.68, + "probability": 0.812 + }, + { + "start": 1633.34, + "end": 1638.18, + "probability": 0.9152 + }, + { + "start": 1639.6, + "end": 1640.66, + "probability": 0.4989 + }, + { + "start": 1640.76, + "end": 1641.34, + "probability": 0.599 + }, + { + "start": 1642.18, + "end": 1643.52, + "probability": 0.9329 + }, + { + "start": 1643.56, + "end": 1644.2, + "probability": 0.783 + }, + { + "start": 1644.24, + "end": 1645.98, + "probability": 0.9528 + }, + { + "start": 1647.74, + "end": 1649.24, + "probability": 0.8058 + }, + { + "start": 1649.32, + "end": 1654.4, + "probability": 0.9863 + }, + { + "start": 1654.98, + "end": 1658.84, + "probability": 0.9726 + }, + { + "start": 1659.7, + "end": 1660.72, + "probability": 0.9867 + }, + { + "start": 1661.74, + "end": 1666.6, + "probability": 0.9775 + }, + { + "start": 1667.8, + "end": 1673.78, + "probability": 0.8905 + }, + { + "start": 1674.06, + "end": 1674.34, + "probability": 0.5267 + }, + { + "start": 1674.42, + "end": 1679.5, + "probability": 0.9902 + }, + { + "start": 1679.88, + "end": 1687.08, + "probability": 0.9089 + }, + { + "start": 1688.24, + "end": 1688.62, + "probability": 0.7043 + }, + { + "start": 1689.12, + "end": 1689.84, + "probability": 0.9705 + }, + { + "start": 1690.04, + "end": 1694.62, + "probability": 0.9867 + }, + { + "start": 1694.62, + "end": 1699.32, + "probability": 0.9876 + }, + { + "start": 1699.74, + "end": 1701.54, + "probability": 0.9979 + }, + { + "start": 1701.72, + "end": 1702.04, + "probability": 0.1857 + }, + { + "start": 1702.04, + "end": 1703.06, + "probability": 0.9152 + }, + { + "start": 1703.14, + "end": 1704.42, + "probability": 0.7465 + }, + { + "start": 1704.9, + "end": 1707.06, + "probability": 0.6797 + }, + { + "start": 1712.68, + "end": 1714.3, + "probability": 0.6974 + }, + { + "start": 1715.18, + "end": 1715.28, + "probability": 0.9653 + }, + { + "start": 1716.3, + "end": 1719.1, + "probability": 0.5402 + }, + { + "start": 1719.82, + "end": 1726.38, + "probability": 0.9782 + }, + { + "start": 1727.2, + "end": 1730.16, + "probability": 0.9911 + }, + { + "start": 1731.48, + "end": 1733.38, + "probability": 0.5814 + }, + { + "start": 1733.92, + "end": 1738.62, + "probability": 0.9579 + }, + { + "start": 1738.96, + "end": 1743.28, + "probability": 0.9595 + }, + { + "start": 1743.34, + "end": 1747.42, + "probability": 0.9927 + }, + { + "start": 1748.12, + "end": 1752.38, + "probability": 0.9819 + }, + { + "start": 1753.06, + "end": 1756.9, + "probability": 0.7582 + }, + { + "start": 1757.3, + "end": 1761.32, + "probability": 0.7608 + }, + { + "start": 1761.62, + "end": 1764.42, + "probability": 0.9984 + }, + { + "start": 1764.42, + "end": 1766.96, + "probability": 0.9788 + }, + { + "start": 1767.28, + "end": 1768.84, + "probability": 0.9708 + }, + { + "start": 1769.22, + "end": 1769.58, + "probability": 0.6985 + }, + { + "start": 1770.78, + "end": 1772.16, + "probability": 0.4083 + }, + { + "start": 1772.94, + "end": 1774.76, + "probability": 0.6257 + }, + { + "start": 1776.26, + "end": 1780.88, + "probability": 0.4854 + }, + { + "start": 1780.88, + "end": 1781.4, + "probability": 0.5214 + }, + { + "start": 1781.42, + "end": 1781.94, + "probability": 0.7396 + }, + { + "start": 1781.98, + "end": 1783.08, + "probability": 0.736 + }, + { + "start": 1783.16, + "end": 1784.24, + "probability": 0.7147 + }, + { + "start": 1784.98, + "end": 1787.6, + "probability": 0.8774 + }, + { + "start": 1787.92, + "end": 1793.86, + "probability": 0.9948 + }, + { + "start": 1794.36, + "end": 1797.44, + "probability": 0.9734 + }, + { + "start": 1798.22, + "end": 1802.1, + "probability": 0.8138 + }, + { + "start": 1802.8, + "end": 1807.44, + "probability": 0.9919 + }, + { + "start": 1808.4, + "end": 1812.36, + "probability": 0.9905 + }, + { + "start": 1812.44, + "end": 1815.58, + "probability": 0.999 + }, + { + "start": 1816.28, + "end": 1820.7, + "probability": 0.9359 + }, + { + "start": 1820.76, + "end": 1821.52, + "probability": 0.7986 + }, + { + "start": 1821.68, + "end": 1824.24, + "probability": 0.995 + }, + { + "start": 1824.24, + "end": 1827.1, + "probability": 0.9771 + }, + { + "start": 1827.56, + "end": 1830.14, + "probability": 0.9519 + }, + { + "start": 1830.16, + "end": 1832.18, + "probability": 0.9081 + }, + { + "start": 1832.56, + "end": 1835.98, + "probability": 0.9834 + }, + { + "start": 1836.24, + "end": 1839.18, + "probability": 0.9915 + }, + { + "start": 1840.36, + "end": 1844.76, + "probability": 0.9976 + }, + { + "start": 1845.08, + "end": 1846.22, + "probability": 0.8402 + }, + { + "start": 1846.22, + "end": 1846.58, + "probability": 0.7671 + }, + { + "start": 1846.6, + "end": 1847.08, + "probability": 0.7036 + }, + { + "start": 1847.28, + "end": 1848.16, + "probability": 0.9297 + }, + { + "start": 1848.7, + "end": 1849.74, + "probability": 0.7056 + }, + { + "start": 1851.04, + "end": 1856.3, + "probability": 0.9924 + }, + { + "start": 1857.08, + "end": 1859.02, + "probability": 0.8797 + }, + { + "start": 1860.64, + "end": 1861.98, + "probability": 0.9991 + }, + { + "start": 1862.6, + "end": 1867.36, + "probability": 0.9985 + }, + { + "start": 1868.08, + "end": 1871.72, + "probability": 0.7762 + }, + { + "start": 1871.72, + "end": 1873.48, + "probability": 0.9263 + }, + { + "start": 1873.58, + "end": 1878.46, + "probability": 0.8898 + }, + { + "start": 1878.62, + "end": 1880.36, + "probability": 0.9951 + }, + { + "start": 1881.03, + "end": 1883.96, + "probability": 0.9613 + }, + { + "start": 1884.58, + "end": 1887.98, + "probability": 0.9562 + }, + { + "start": 1888.88, + "end": 1890.62, + "probability": 0.7824 + }, + { + "start": 1890.82, + "end": 1892.96, + "probability": 0.9785 + }, + { + "start": 1893.16, + "end": 1897.2, + "probability": 0.9756 + }, + { + "start": 1897.72, + "end": 1900.26, + "probability": 0.9656 + }, + { + "start": 1901.06, + "end": 1902.6, + "probability": 0.7484 + }, + { + "start": 1904.8, + "end": 1906.82, + "probability": 0.4893 + }, + { + "start": 1907.14, + "end": 1908.32, + "probability": 0.6595 + }, + { + "start": 1908.32, + "end": 1908.88, + "probability": 0.5512 + }, + { + "start": 1909.12, + "end": 1911.78, + "probability": 0.3055 + }, + { + "start": 1912.38, + "end": 1913.3, + "probability": 0.8014 + }, + { + "start": 1913.64, + "end": 1917.68, + "probability": 0.9789 + }, + { + "start": 1917.9, + "end": 1920.3, + "probability": 0.9463 + }, + { + "start": 1920.48, + "end": 1923.14, + "probability": 0.9766 + }, + { + "start": 1923.4, + "end": 1926.66, + "probability": 0.9503 + }, + { + "start": 1927.2, + "end": 1928.36, + "probability": 0.917 + }, + { + "start": 1928.42, + "end": 1933.0, + "probability": 0.4568 + }, + { + "start": 1933.46, + "end": 1938.1, + "probability": 0.764 + }, + { + "start": 1938.1, + "end": 1940.86, + "probability": 0.9163 + }, + { + "start": 1941.44, + "end": 1942.32, + "probability": 0.6655 + }, + { + "start": 1942.76, + "end": 1948.26, + "probability": 0.6133 + }, + { + "start": 1948.48, + "end": 1948.48, + "probability": 0.0369 + }, + { + "start": 1948.48, + "end": 1949.34, + "probability": 0.475 + }, + { + "start": 1949.72, + "end": 1951.82, + "probability": 0.902 + }, + { + "start": 1952.36, + "end": 1954.3, + "probability": 0.8132 + }, + { + "start": 1954.5, + "end": 1958.3, + "probability": 0.99 + }, + { + "start": 1961.14, + "end": 1961.2, + "probability": 0.2662 + }, + { + "start": 1961.2, + "end": 1961.2, + "probability": 0.039 + }, + { + "start": 1961.2, + "end": 1962.2, + "probability": 0.148 + }, + { + "start": 1962.2, + "end": 1963.7, + "probability": 0.7964 + }, + { + "start": 1964.0, + "end": 1965.52, + "probability": 0.8353 + }, + { + "start": 1969.44, + "end": 1974.02, + "probability": 0.6999 + }, + { + "start": 1974.7, + "end": 1975.88, + "probability": 0.7302 + }, + { + "start": 1976.16, + "end": 1976.68, + "probability": 0.2483 + }, + { + "start": 1976.94, + "end": 1977.24, + "probability": 0.3492 + }, + { + "start": 1977.36, + "end": 1979.42, + "probability": 0.7256 + }, + { + "start": 1979.48, + "end": 1980.22, + "probability": 0.5884 + }, + { + "start": 1980.66, + "end": 1982.44, + "probability": 0.9976 + }, + { + "start": 1983.4, + "end": 1984.76, + "probability": 0.9941 + }, + { + "start": 1985.5, + "end": 1986.0, + "probability": 0.8125 + }, + { + "start": 1986.1, + "end": 1986.66, + "probability": 0.3926 + }, + { + "start": 1989.18, + "end": 1990.88, + "probability": 0.9466 + }, + { + "start": 1991.16, + "end": 1993.7, + "probability": 0.8529 + }, + { + "start": 1993.7, + "end": 1994.94, + "probability": 0.3353 + }, + { + "start": 1995.02, + "end": 1996.98, + "probability": 0.7279 + }, + { + "start": 1997.04, + "end": 1997.8, + "probability": 0.3659 + }, + { + "start": 1997.8, + "end": 2000.24, + "probability": 0.7729 + }, + { + "start": 2000.46, + "end": 2001.68, + "probability": 0.8276 + }, + { + "start": 2002.06, + "end": 2006.58, + "probability": 0.9233 + }, + { + "start": 2007.6, + "end": 2007.7, + "probability": 0.208 + }, + { + "start": 2007.7, + "end": 2009.02, + "probability": 0.1921 + }, + { + "start": 2009.08, + "end": 2010.12, + "probability": 0.3417 + }, + { + "start": 2010.18, + "end": 2010.68, + "probability": 0.5192 + }, + { + "start": 2010.98, + "end": 2011.43, + "probability": 0.9169 + }, + { + "start": 2011.7, + "end": 2012.5, + "probability": 0.9741 + }, + { + "start": 2012.58, + "end": 2013.0, + "probability": 0.7691 + }, + { + "start": 2013.64, + "end": 2014.04, + "probability": 0.9664 + }, + { + "start": 2014.26, + "end": 2016.12, + "probability": 0.9702 + }, + { + "start": 2016.3, + "end": 2017.74, + "probability": 0.8665 + }, + { + "start": 2018.78, + "end": 2021.14, + "probability": 0.8699 + }, + { + "start": 2022.86, + "end": 2025.64, + "probability": 0.0799 + }, + { + "start": 2028.3, + "end": 2029.14, + "probability": 0.0264 + }, + { + "start": 2029.38, + "end": 2029.46, + "probability": 0.0408 + }, + { + "start": 2029.46, + "end": 2029.46, + "probability": 0.2936 + }, + { + "start": 2029.46, + "end": 2029.46, + "probability": 0.1669 + }, + { + "start": 2029.46, + "end": 2033.0, + "probability": 0.8576 + }, + { + "start": 2033.66, + "end": 2034.82, + "probability": 0.7561 + }, + { + "start": 2034.94, + "end": 2035.76, + "probability": 0.7453 + }, + { + "start": 2035.82, + "end": 2036.54, + "probability": 0.1814 + }, + { + "start": 2036.66, + "end": 2039.59, + "probability": 0.5195 + }, + { + "start": 2040.08, + "end": 2045.66, + "probability": 0.9603 + }, + { + "start": 2046.16, + "end": 2047.92, + "probability": 0.9418 + }, + { + "start": 2048.02, + "end": 2048.48, + "probability": 0.8264 + }, + { + "start": 2049.18, + "end": 2051.44, + "probability": 0.0292 + }, + { + "start": 2051.44, + "end": 2051.44, + "probability": 0.0898 + }, + { + "start": 2051.44, + "end": 2051.44, + "probability": 0.2077 + }, + { + "start": 2051.44, + "end": 2053.84, + "probability": 0.8698 + }, + { + "start": 2054.16, + "end": 2055.86, + "probability": 0.2371 + }, + { + "start": 2055.94, + "end": 2056.08, + "probability": 0.0084 + }, + { + "start": 2056.3, + "end": 2057.34, + "probability": 0.092 + }, + { + "start": 2057.96, + "end": 2060.2, + "probability": 0.8075 + }, + { + "start": 2061.14, + "end": 2062.32, + "probability": 0.9976 + }, + { + "start": 2063.04, + "end": 2064.62, + "probability": 0.6879 + }, + { + "start": 2065.82, + "end": 2066.66, + "probability": 0.7642 + }, + { + "start": 2067.04, + "end": 2068.66, + "probability": 0.969 + }, + { + "start": 2069.08, + "end": 2072.18, + "probability": 0.9468 + }, + { + "start": 2072.46, + "end": 2074.64, + "probability": 0.9365 + }, + { + "start": 2075.24, + "end": 2080.26, + "probability": 0.9961 + }, + { + "start": 2080.82, + "end": 2082.94, + "probability": 0.8023 + }, + { + "start": 2083.58, + "end": 2088.62, + "probability": 0.9741 + }, + { + "start": 2089.16, + "end": 2092.46, + "probability": 0.8289 + }, + { + "start": 2093.08, + "end": 2098.68, + "probability": 0.7901 + }, + { + "start": 2098.76, + "end": 2100.84, + "probability": 0.5975 + }, + { + "start": 2101.22, + "end": 2101.58, + "probability": 0.3572 + }, + { + "start": 2101.76, + "end": 2104.8, + "probability": 0.9172 + }, + { + "start": 2105.22, + "end": 2107.46, + "probability": 0.6035 + }, + { + "start": 2108.98, + "end": 2110.56, + "probability": 0.7557 + }, + { + "start": 2111.2, + "end": 2112.9, + "probability": 0.9967 + }, + { + "start": 2112.9, + "end": 2116.02, + "probability": 0.9454 + }, + { + "start": 2116.56, + "end": 2118.08, + "probability": 0.8445 + }, + { + "start": 2118.52, + "end": 2121.58, + "probability": 0.8917 + }, + { + "start": 2122.06, + "end": 2124.04, + "probability": 0.9636 + }, + { + "start": 2124.44, + "end": 2129.44, + "probability": 0.9929 + }, + { + "start": 2131.72, + "end": 2132.04, + "probability": 0.0295 + }, + { + "start": 2133.0, + "end": 2134.08, + "probability": 0.9429 + }, + { + "start": 2135.38, + "end": 2137.66, + "probability": 0.5632 + }, + { + "start": 2139.44, + "end": 2144.02, + "probability": 0.98 + }, + { + "start": 2144.16, + "end": 2145.72, + "probability": 0.8989 + }, + { + "start": 2146.48, + "end": 2147.94, + "probability": 0.9899 + }, + { + "start": 2148.78, + "end": 2149.48, + "probability": 0.5695 + }, + { + "start": 2150.3, + "end": 2151.88, + "probability": 0.8306 + }, + { + "start": 2152.54, + "end": 2154.64, + "probability": 0.9775 + }, + { + "start": 2155.7, + "end": 2159.52, + "probability": 0.965 + }, + { + "start": 2160.06, + "end": 2161.86, + "probability": 0.8009 + }, + { + "start": 2163.56, + "end": 2166.48, + "probability": 0.9233 + }, + { + "start": 2167.36, + "end": 2170.02, + "probability": 0.7525 + }, + { + "start": 2171.42, + "end": 2172.96, + "probability": 0.6898 + }, + { + "start": 2173.64, + "end": 2175.82, + "probability": 0.9526 + }, + { + "start": 2175.82, + "end": 2179.72, + "probability": 0.9558 + }, + { + "start": 2180.6, + "end": 2184.24, + "probability": 0.8392 + }, + { + "start": 2185.02, + "end": 2188.22, + "probability": 0.9908 + }, + { + "start": 2188.96, + "end": 2191.1, + "probability": 0.9414 + }, + { + "start": 2192.18, + "end": 2196.76, + "probability": 0.9966 + }, + { + "start": 2197.46, + "end": 2199.96, + "probability": 0.5575 + }, + { + "start": 2200.9, + "end": 2202.8, + "probability": 0.9221 + }, + { + "start": 2203.76, + "end": 2207.98, + "probability": 0.7757 + }, + { + "start": 2208.78, + "end": 2209.7, + "probability": 0.474 + }, + { + "start": 2211.06, + "end": 2215.12, + "probability": 0.9037 + }, + { + "start": 2216.28, + "end": 2217.66, + "probability": 0.7328 + }, + { + "start": 2217.76, + "end": 2221.18, + "probability": 0.9067 + }, + { + "start": 2221.76, + "end": 2225.22, + "probability": 0.9493 + }, + { + "start": 2226.12, + "end": 2228.44, + "probability": 0.9806 + }, + { + "start": 2228.44, + "end": 2231.2, + "probability": 0.676 + }, + { + "start": 2232.3, + "end": 2236.02, + "probability": 0.9728 + }, + { + "start": 2236.76, + "end": 2240.0, + "probability": 0.9624 + }, + { + "start": 2240.3, + "end": 2240.92, + "probability": 0.7574 + }, + { + "start": 2241.5, + "end": 2242.12, + "probability": 0.807 + }, + { + "start": 2243.22, + "end": 2245.76, + "probability": 0.7534 + }, + { + "start": 2246.38, + "end": 2250.36, + "probability": 0.9766 + }, + { + "start": 2250.8, + "end": 2253.0, + "probability": 0.9653 + }, + { + "start": 2253.88, + "end": 2257.8, + "probability": 0.9836 + }, + { + "start": 2258.18, + "end": 2258.46, + "probability": 0.6645 + }, + { + "start": 2258.94, + "end": 2259.62, + "probability": 0.4095 + }, + { + "start": 2259.82, + "end": 2264.76, + "probability": 0.916 + }, + { + "start": 2264.78, + "end": 2265.3, + "probability": 0.4145 + }, + { + "start": 2265.36, + "end": 2267.5, + "probability": 0.5083 + }, + { + "start": 2267.62, + "end": 2267.98, + "probability": 0.9048 + }, + { + "start": 2268.36, + "end": 2270.48, + "probability": 0.9265 + }, + { + "start": 2270.92, + "end": 2273.54, + "probability": 0.5446 + }, + { + "start": 2274.44, + "end": 2277.58, + "probability": 0.8555 + }, + { + "start": 2278.3, + "end": 2282.24, + "probability": 0.989 + }, + { + "start": 2282.64, + "end": 2284.4, + "probability": 0.7295 + }, + { + "start": 2284.72, + "end": 2288.72, + "probability": 0.5912 + }, + { + "start": 2289.16, + "end": 2293.38, + "probability": 0.9471 + }, + { + "start": 2293.72, + "end": 2294.28, + "probability": 0.95 + }, + { + "start": 2294.64, + "end": 2295.16, + "probability": 0.4486 + }, + { + "start": 2295.18, + "end": 2295.48, + "probability": 0.937 + }, + { + "start": 2296.28, + "end": 2297.58, + "probability": 0.9551 + }, + { + "start": 2297.78, + "end": 2300.26, + "probability": 0.9241 + }, + { + "start": 2300.34, + "end": 2302.28, + "probability": 0.7401 + }, + { + "start": 2302.5, + "end": 2307.0, + "probability": 0.9311 + }, + { + "start": 2307.88, + "end": 2308.52, + "probability": 0.8744 + }, + { + "start": 2308.96, + "end": 2310.04, + "probability": 0.708 + }, + { + "start": 2310.46, + "end": 2311.47, + "probability": 0.4622 + }, + { + "start": 2311.56, + "end": 2315.02, + "probability": 0.8613 + }, + { + "start": 2315.16, + "end": 2315.9, + "probability": 0.9956 + }, + { + "start": 2316.94, + "end": 2318.18, + "probability": 0.9922 + }, + { + "start": 2319.18, + "end": 2321.38, + "probability": 0.5049 + }, + { + "start": 2321.42, + "end": 2321.42, + "probability": 0.8837 + }, + { + "start": 2321.46, + "end": 2321.9, + "probability": 0.9075 + }, + { + "start": 2322.36, + "end": 2324.8, + "probability": 0.6256 + }, + { + "start": 2325.7, + "end": 2327.68, + "probability": 0.9031 + }, + { + "start": 2328.22, + "end": 2330.74, + "probability": 0.9671 + }, + { + "start": 2331.92, + "end": 2332.68, + "probability": 0.698 + }, + { + "start": 2332.74, + "end": 2333.16, + "probability": 0.7491 + }, + { + "start": 2333.28, + "end": 2336.32, + "probability": 0.8944 + }, + { + "start": 2336.88, + "end": 2338.56, + "probability": 0.9409 + }, + { + "start": 2338.94, + "end": 2341.7, + "probability": 0.994 + }, + { + "start": 2342.28, + "end": 2344.8, + "probability": 0.9225 + }, + { + "start": 2345.58, + "end": 2349.06, + "probability": 0.9563 + }, + { + "start": 2350.06, + "end": 2352.96, + "probability": 0.988 + }, + { + "start": 2353.78, + "end": 2357.18, + "probability": 0.9298 + }, + { + "start": 2357.26, + "end": 2358.62, + "probability": 0.8415 + }, + { + "start": 2359.38, + "end": 2362.08, + "probability": 0.8502 + }, + { + "start": 2362.78, + "end": 2363.6, + "probability": 0.9226 + }, + { + "start": 2364.28, + "end": 2371.04, + "probability": 0.8469 + }, + { + "start": 2371.32, + "end": 2375.64, + "probability": 0.8945 + }, + { + "start": 2376.74, + "end": 2378.6, + "probability": 0.9358 + }, + { + "start": 2379.18, + "end": 2383.22, + "probability": 0.9552 + }, + { + "start": 2383.96, + "end": 2385.6, + "probability": 0.9929 + }, + { + "start": 2385.84, + "end": 2386.76, + "probability": 0.8265 + }, + { + "start": 2387.22, + "end": 2389.38, + "probability": 0.7395 + }, + { + "start": 2389.88, + "end": 2394.56, + "probability": 0.8768 + }, + { + "start": 2394.66, + "end": 2397.68, + "probability": 0.9681 + }, + { + "start": 2397.82, + "end": 2398.02, + "probability": 0.729 + }, + { + "start": 2398.22, + "end": 2398.5, + "probability": 0.041 + }, + { + "start": 2398.68, + "end": 2399.68, + "probability": 0.402 + }, + { + "start": 2401.68, + "end": 2403.36, + "probability": 0.1289 + }, + { + "start": 2403.36, + "end": 2403.52, + "probability": 0.2425 + }, + { + "start": 2405.1, + "end": 2406.02, + "probability": 0.1916 + }, + { + "start": 2407.18, + "end": 2412.01, + "probability": 0.1007 + }, + { + "start": 2414.86, + "end": 2420.08, + "probability": 0.1047 + }, + { + "start": 2420.08, + "end": 2421.93, + "probability": 0.0612 + }, + { + "start": 2422.92, + "end": 2423.6, + "probability": 0.1132 + }, + { + "start": 2425.26, + "end": 2426.82, + "probability": 0.1115 + }, + { + "start": 2427.74, + "end": 2431.18, + "probability": 0.042 + }, + { + "start": 2438.38, + "end": 2438.82, + "probability": 0.0275 + }, + { + "start": 2438.82, + "end": 2442.36, + "probability": 0.0402 + }, + { + "start": 2445.7, + "end": 2446.12, + "probability": 0.0031 + }, + { + "start": 2448.44, + "end": 2448.64, + "probability": 0.0002 + }, + { + "start": 2477.88, + "end": 2478.42, + "probability": 0.1593 + }, + { + "start": 2478.8, + "end": 2483.12, + "probability": 0.9924 + }, + { + "start": 2483.4, + "end": 2484.28, + "probability": 0.7176 + }, + { + "start": 2484.44, + "end": 2485.78, + "probability": 0.7323 + }, + { + "start": 2488.15, + "end": 2490.99, + "probability": 0.6754 + }, + { + "start": 2492.46, + "end": 2494.68, + "probability": 0.9803 + }, + { + "start": 2494.68, + "end": 2498.18, + "probability": 0.9963 + }, + { + "start": 2499.6, + "end": 2500.14, + "probability": 0.9416 + }, + { + "start": 2501.74, + "end": 2502.74, + "probability": 0.9482 + }, + { + "start": 2502.92, + "end": 2503.5, + "probability": 0.6469 + }, + { + "start": 2504.4, + "end": 2506.98, + "probability": 0.9929 + }, + { + "start": 2508.28, + "end": 2510.4, + "probability": 0.4327 + }, + { + "start": 2510.64, + "end": 2515.88, + "probability": 0.9544 + }, + { + "start": 2516.72, + "end": 2518.02, + "probability": 0.9609 + }, + { + "start": 2518.3, + "end": 2518.96, + "probability": 0.816 + }, + { + "start": 2519.12, + "end": 2524.74, + "probability": 0.989 + }, + { + "start": 2524.96, + "end": 2526.52, + "probability": 0.9982 + }, + { + "start": 2527.36, + "end": 2530.98, + "probability": 0.9716 + }, + { + "start": 2531.56, + "end": 2533.84, + "probability": 0.9834 + }, + { + "start": 2534.78, + "end": 2538.74, + "probability": 0.7636 + }, + { + "start": 2539.26, + "end": 2539.94, + "probability": 0.9073 + }, + { + "start": 2540.66, + "end": 2541.5, + "probability": 0.5506 + }, + { + "start": 2541.6, + "end": 2544.95, + "probability": 0.9901 + }, + { + "start": 2545.6, + "end": 2548.04, + "probability": 0.7994 + }, + { + "start": 2548.86, + "end": 2553.58, + "probability": 0.938 + }, + { + "start": 2554.46, + "end": 2558.04, + "probability": 0.9296 + }, + { + "start": 2558.32, + "end": 2560.58, + "probability": 0.9949 + }, + { + "start": 2561.6, + "end": 2563.44, + "probability": 0.7722 + }, + { + "start": 2563.68, + "end": 2565.32, + "probability": 0.9709 + }, + { + "start": 2566.04, + "end": 2566.72, + "probability": 0.9524 + }, + { + "start": 2566.8, + "end": 2568.8, + "probability": 0.9955 + }, + { + "start": 2569.26, + "end": 2573.18, + "probability": 0.8973 + }, + { + "start": 2573.76, + "end": 2576.2, + "probability": 0.7696 + }, + { + "start": 2576.26, + "end": 2578.52, + "probability": 0.9976 + }, + { + "start": 2578.58, + "end": 2579.02, + "probability": 0.9393 + }, + { + "start": 2580.1, + "end": 2582.82, + "probability": 0.7466 + }, + { + "start": 2583.06, + "end": 2584.71, + "probability": 0.9635 + }, + { + "start": 2585.3, + "end": 2587.56, + "probability": 0.9719 + }, + { + "start": 2588.12, + "end": 2588.72, + "probability": 0.7666 + }, + { + "start": 2589.28, + "end": 2589.98, + "probability": 0.976 + }, + { + "start": 2590.92, + "end": 2592.65, + "probability": 0.7341 + }, + { + "start": 2593.8, + "end": 2599.88, + "probability": 0.9788 + }, + { + "start": 2600.1, + "end": 2601.88, + "probability": 0.9764 + }, + { + "start": 2602.16, + "end": 2603.68, + "probability": 0.695 + }, + { + "start": 2603.88, + "end": 2605.52, + "probability": 0.9861 + }, + { + "start": 2605.96, + "end": 2610.58, + "probability": 0.7499 + }, + { + "start": 2611.3, + "end": 2616.04, + "probability": 0.7493 + }, + { + "start": 2616.64, + "end": 2618.28, + "probability": 0.0909 + }, + { + "start": 2619.08, + "end": 2622.24, + "probability": 0.3416 + }, + { + "start": 2622.94, + "end": 2624.5, + "probability": 0.4567 + }, + { + "start": 2625.82, + "end": 2628.3, + "probability": 0.8802 + }, + { + "start": 2629.53, + "end": 2633.78, + "probability": 0.2951 + }, + { + "start": 2634.04, + "end": 2637.3, + "probability": 0.5084 + }, + { + "start": 2637.44, + "end": 2638.32, + "probability": 0.6826 + }, + { + "start": 2638.42, + "end": 2639.22, + "probability": 0.7921 + }, + { + "start": 2639.52, + "end": 2640.96, + "probability": 0.9376 + }, + { + "start": 2641.04, + "end": 2644.68, + "probability": 0.879 + }, + { + "start": 2645.28, + "end": 2646.08, + "probability": 0.4943 + }, + { + "start": 2646.22, + "end": 2647.92, + "probability": 0.8229 + }, + { + "start": 2648.14, + "end": 2649.24, + "probability": 0.0365 + }, + { + "start": 2649.48, + "end": 2650.94, + "probability": 0.5709 + }, + { + "start": 2651.38, + "end": 2654.44, + "probability": 0.9531 + }, + { + "start": 2654.68, + "end": 2656.04, + "probability": 0.9941 + }, + { + "start": 2656.16, + "end": 2656.98, + "probability": 0.7759 + }, + { + "start": 2657.62, + "end": 2659.72, + "probability": 0.9036 + }, + { + "start": 2660.04, + "end": 2660.52, + "probability": 0.9824 + }, + { + "start": 2661.14, + "end": 2664.28, + "probability": 0.5342 + }, + { + "start": 2664.4, + "end": 2667.38, + "probability": 0.9105 + }, + { + "start": 2667.38, + "end": 2668.86, + "probability": 0.8174 + }, + { + "start": 2669.46, + "end": 2670.54, + "probability": 0.7837 + }, + { + "start": 2670.6, + "end": 2671.16, + "probability": 0.3762 + }, + { + "start": 2671.32, + "end": 2674.56, + "probability": 0.9851 + }, + { + "start": 2675.7, + "end": 2678.72, + "probability": 0.9749 + }, + { + "start": 2678.96, + "end": 2680.28, + "probability": 0.9097 + }, + { + "start": 2681.6, + "end": 2684.8, + "probability": 0.6679 + }, + { + "start": 2685.48, + "end": 2686.66, + "probability": 0.7888 + }, + { + "start": 2687.78, + "end": 2691.56, + "probability": 0.8908 + }, + { + "start": 2692.72, + "end": 2694.1, + "probability": 0.876 + }, + { + "start": 2694.36, + "end": 2695.08, + "probability": 0.6455 + }, + { + "start": 2695.58, + "end": 2697.78, + "probability": 0.9404 + }, + { + "start": 2697.88, + "end": 2699.54, + "probability": 0.9438 + }, + { + "start": 2700.18, + "end": 2702.68, + "probability": 0.8806 + }, + { + "start": 2704.26, + "end": 2710.62, + "probability": 0.9056 + }, + { + "start": 2711.0, + "end": 2713.82, + "probability": 0.8715 + }, + { + "start": 2715.06, + "end": 2716.02, + "probability": 0.657 + }, + { + "start": 2716.78, + "end": 2718.56, + "probability": 0.5814 + }, + { + "start": 2720.24, + "end": 2722.6, + "probability": 0.7539 + }, + { + "start": 2723.12, + "end": 2725.24, + "probability": 0.8785 + }, + { + "start": 2725.6, + "end": 2729.88, + "probability": 0.9919 + }, + { + "start": 2730.16, + "end": 2732.5, + "probability": 0.8851 + }, + { + "start": 2733.76, + "end": 2734.19, + "probability": 0.537 + }, + { + "start": 2734.64, + "end": 2734.86, + "probability": 0.7163 + }, + { + "start": 2735.56, + "end": 2736.52, + "probability": 0.39 + }, + { + "start": 2737.08, + "end": 2737.54, + "probability": 0.2369 + }, + { + "start": 2737.56, + "end": 2742.48, + "probability": 0.8487 + }, + { + "start": 2742.58, + "end": 2744.14, + "probability": 0.6283 + }, + { + "start": 2745.46, + "end": 2747.12, + "probability": 0.975 + }, + { + "start": 2747.92, + "end": 2752.36, + "probability": 0.9657 + }, + { + "start": 2753.32, + "end": 2756.42, + "probability": 0.974 + }, + { + "start": 2757.24, + "end": 2761.88, + "probability": 0.9642 + }, + { + "start": 2762.54, + "end": 2766.64, + "probability": 0.9893 + }, + { + "start": 2767.52, + "end": 2769.82, + "probability": 0.9943 + }, + { + "start": 2770.8, + "end": 2773.54, + "probability": 0.9975 + }, + { + "start": 2774.3, + "end": 2778.84, + "probability": 0.9862 + }, + { + "start": 2779.26, + "end": 2779.62, + "probability": 0.802 + }, + { + "start": 2780.58, + "end": 2783.84, + "probability": 0.728 + }, + { + "start": 2783.84, + "end": 2787.0, + "probability": 0.8413 + }, + { + "start": 2787.72, + "end": 2789.38, + "probability": 0.8639 + }, + { + "start": 2790.36, + "end": 2794.02, + "probability": 0.9559 + }, + { + "start": 2794.9, + "end": 2799.14, + "probability": 0.9949 + }, + { + "start": 2799.14, + "end": 2803.7, + "probability": 0.9619 + }, + { + "start": 2804.6, + "end": 2805.78, + "probability": 0.9946 + }, + { + "start": 2806.64, + "end": 2808.26, + "probability": 0.8183 + }, + { + "start": 2808.94, + "end": 2813.53, + "probability": 0.9783 + }, + { + "start": 2813.64, + "end": 2817.5, + "probability": 0.992 + }, + { + "start": 2817.72, + "end": 2820.64, + "probability": 0.7512 + }, + { + "start": 2821.46, + "end": 2822.48, + "probability": 0.7663 + }, + { + "start": 2823.1, + "end": 2824.36, + "probability": 0.9897 + }, + { + "start": 2826.59, + "end": 2827.25, + "probability": 0.356 + }, + { + "start": 2827.52, + "end": 2832.36, + "probability": 0.8677 + }, + { + "start": 2832.52, + "end": 2834.2, + "probability": 0.9332 + }, + { + "start": 2834.72, + "end": 2836.1, + "probability": 0.8586 + }, + { + "start": 2837.02, + "end": 2837.5, + "probability": 0.3457 + }, + { + "start": 2837.66, + "end": 2842.04, + "probability": 0.9926 + }, + { + "start": 2842.76, + "end": 2844.54, + "probability": 0.8988 + }, + { + "start": 2845.14, + "end": 2847.68, + "probability": 0.9972 + }, + { + "start": 2848.2, + "end": 2851.62, + "probability": 0.9801 + }, + { + "start": 2852.82, + "end": 2857.54, + "probability": 0.9851 + }, + { + "start": 2857.6, + "end": 2863.68, + "probability": 0.9794 + }, + { + "start": 2864.16, + "end": 2868.1, + "probability": 0.9801 + }, + { + "start": 2868.72, + "end": 2871.44, + "probability": 0.9966 + }, + { + "start": 2872.54, + "end": 2873.98, + "probability": 0.9833 + }, + { + "start": 2874.86, + "end": 2876.32, + "probability": 0.5091 + }, + { + "start": 2877.32, + "end": 2879.24, + "probability": 0.7971 + }, + { + "start": 2880.12, + "end": 2882.54, + "probability": 0.7081 + }, + { + "start": 2883.08, + "end": 2886.56, + "probability": 0.9927 + }, + { + "start": 2887.64, + "end": 2891.18, + "probability": 0.9596 + }, + { + "start": 2892.02, + "end": 2895.82, + "probability": 0.9829 + }, + { + "start": 2895.82, + "end": 2900.86, + "probability": 0.8843 + }, + { + "start": 2901.86, + "end": 2904.9, + "probability": 0.9959 + }, + { + "start": 2905.62, + "end": 2907.64, + "probability": 0.9987 + }, + { + "start": 2908.38, + "end": 2910.56, + "probability": 0.9258 + }, + { + "start": 2913.7, + "end": 2914.82, + "probability": 0.5116 + }, + { + "start": 2915.94, + "end": 2917.32, + "probability": 0.2789 + }, + { + "start": 2920.72, + "end": 2923.34, + "probability": 0.4789 + }, + { + "start": 2923.4, + "end": 2924.22, + "probability": 0.7438 + }, + { + "start": 2924.32, + "end": 2927.21, + "probability": 0.7873 + }, + { + "start": 2927.82, + "end": 2930.64, + "probability": 0.9963 + }, + { + "start": 2930.64, + "end": 2933.92, + "probability": 0.9932 + }, + { + "start": 2934.14, + "end": 2939.18, + "probability": 0.9877 + }, + { + "start": 2939.94, + "end": 2940.14, + "probability": 0.1816 + }, + { + "start": 2940.14, + "end": 2943.6, + "probability": 0.8577 + }, + { + "start": 2944.16, + "end": 2948.96, + "probability": 0.7217 + }, + { + "start": 2949.1, + "end": 2952.22, + "probability": 0.9246 + }, + { + "start": 2952.72, + "end": 2956.02, + "probability": 0.9868 + }, + { + "start": 2956.02, + "end": 2958.9, + "probability": 0.8321 + }, + { + "start": 2959.58, + "end": 2961.02, + "probability": 0.6649 + }, + { + "start": 2961.76, + "end": 2964.1, + "probability": 0.8644 + }, + { + "start": 2964.24, + "end": 2965.6, + "probability": 0.8279 + }, + { + "start": 2965.66, + "end": 2971.74, + "probability": 0.9839 + }, + { + "start": 2971.82, + "end": 2972.6, + "probability": 0.7462 + }, + { + "start": 2972.88, + "end": 2973.54, + "probability": 0.6035 + }, + { + "start": 2973.68, + "end": 2979.24, + "probability": 0.6556 + }, + { + "start": 2980.5, + "end": 2982.78, + "probability": 0.8437 + }, + { + "start": 2984.24, + "end": 2984.96, + "probability": 0.5775 + }, + { + "start": 2986.2, + "end": 2987.54, + "probability": 0.8882 + }, + { + "start": 2988.24, + "end": 2990.7, + "probability": 0.7212 + }, + { + "start": 2992.86, + "end": 2994.26, + "probability": 0.679 + }, + { + "start": 2999.61, + "end": 3004.14, + "probability": 0.5578 + }, + { + "start": 3004.44, + "end": 3006.82, + "probability": 0.9345 + }, + { + "start": 3008.38, + "end": 3008.92, + "probability": 0.7578 + }, + { + "start": 3008.98, + "end": 3010.0, + "probability": 0.5845 + }, + { + "start": 3010.18, + "end": 3015.72, + "probability": 0.9961 + }, + { + "start": 3016.5, + "end": 3022.2, + "probability": 0.9977 + }, + { + "start": 3022.64, + "end": 3023.8, + "probability": 0.9496 + }, + { + "start": 3024.34, + "end": 3027.86, + "probability": 0.9893 + }, + { + "start": 3028.86, + "end": 3029.66, + "probability": 0.82 + }, + { + "start": 3029.78, + "end": 3035.42, + "probability": 0.9849 + }, + { + "start": 3035.91, + "end": 3038.64, + "probability": 0.9943 + }, + { + "start": 3038.64, + "end": 3040.72, + "probability": 0.999 + }, + { + "start": 3041.32, + "end": 3041.4, + "probability": 0.4469 + }, + { + "start": 3041.48, + "end": 3041.64, + "probability": 0.7789 + }, + { + "start": 3041.68, + "end": 3044.46, + "probability": 0.9934 + }, + { + "start": 3044.46, + "end": 3048.82, + "probability": 0.9937 + }, + { + "start": 3048.94, + "end": 3052.54, + "probability": 0.9177 + }, + { + "start": 3052.82, + "end": 3053.04, + "probability": 0.65 + }, + { + "start": 3053.12, + "end": 3054.58, + "probability": 0.8879 + }, + { + "start": 3054.82, + "end": 3056.54, + "probability": 0.9439 + }, + { + "start": 3057.16, + "end": 3061.88, + "probability": 0.5234 + }, + { + "start": 3062.8, + "end": 3065.64, + "probability": 0.8521 + }, + { + "start": 3066.08, + "end": 3067.52, + "probability": 0.9595 + }, + { + "start": 3069.22, + "end": 3071.38, + "probability": 0.5259 + }, + { + "start": 3071.38, + "end": 3073.0, + "probability": 0.883 + }, + { + "start": 3073.04, + "end": 3076.02, + "probability": 0.9665 + }, + { + "start": 3077.06, + "end": 3079.18, + "probability": 0.6713 + }, + { + "start": 3079.66, + "end": 3080.78, + "probability": 0.7653 + }, + { + "start": 3080.9, + "end": 3081.94, + "probability": 0.9547 + }, + { + "start": 3082.06, + "end": 3083.2, + "probability": 0.9001 + }, + { + "start": 3084.1, + "end": 3085.88, + "probability": 0.8785 + }, + { + "start": 3087.44, + "end": 3092.4, + "probability": 0.9648 + }, + { + "start": 3092.52, + "end": 3097.62, + "probability": 0.9087 + }, + { + "start": 3098.04, + "end": 3102.54, + "probability": 0.9949 + }, + { + "start": 3103.34, + "end": 3104.66, + "probability": 0.2069 + }, + { + "start": 3104.82, + "end": 3105.74, + "probability": 0.9284 + }, + { + "start": 3105.86, + "end": 3106.66, + "probability": 0.8673 + }, + { + "start": 3106.86, + "end": 3112.94, + "probability": 0.994 + }, + { + "start": 3113.12, + "end": 3114.86, + "probability": 0.7655 + }, + { + "start": 3115.6, + "end": 3118.42, + "probability": 0.9877 + }, + { + "start": 3119.2, + "end": 3120.76, + "probability": 0.9507 + }, + { + "start": 3120.92, + "end": 3122.96, + "probability": 0.9965 + }, + { + "start": 3123.0, + "end": 3124.08, + "probability": 0.831 + }, + { + "start": 3125.48, + "end": 3132.42, + "probability": 0.998 + }, + { + "start": 3133.16, + "end": 3136.52, + "probability": 0.9966 + }, + { + "start": 3136.52, + "end": 3142.24, + "probability": 0.9961 + }, + { + "start": 3142.3, + "end": 3145.12, + "probability": 0.9824 + }, + { + "start": 3145.6, + "end": 3147.58, + "probability": 0.9776 + }, + { + "start": 3147.94, + "end": 3149.7, + "probability": 0.9257 + }, + { + "start": 3150.62, + "end": 3153.52, + "probability": 0.99 + }, + { + "start": 3154.22, + "end": 3155.6, + "probability": 0.7935 + }, + { + "start": 3155.66, + "end": 3157.02, + "probability": 0.9858 + }, + { + "start": 3157.26, + "end": 3157.72, + "probability": 0.6653 + }, + { + "start": 3158.48, + "end": 3158.62, + "probability": 0.6004 + }, + { + "start": 3158.72, + "end": 3159.24, + "probability": 0.861 + }, + { + "start": 3159.36, + "end": 3164.44, + "probability": 0.9912 + }, + { + "start": 3164.44, + "end": 3169.72, + "probability": 0.97 + }, + { + "start": 3169.78, + "end": 3171.36, + "probability": 0.9349 + }, + { + "start": 3171.76, + "end": 3172.08, + "probability": 0.5119 + }, + { + "start": 3172.1, + "end": 3173.92, + "probability": 0.8755 + }, + { + "start": 3179.3, + "end": 3179.98, + "probability": 0.561 + }, + { + "start": 3180.06, + "end": 3180.2, + "probability": 0.405 + }, + { + "start": 3180.32, + "end": 3180.72, + "probability": 0.6831 + }, + { + "start": 3180.86, + "end": 3181.22, + "probability": 0.5028 + }, + { + "start": 3181.49, + "end": 3186.02, + "probability": 0.8997 + }, + { + "start": 3186.12, + "end": 3189.74, + "probability": 0.929 + }, + { + "start": 3189.74, + "end": 3192.44, + "probability": 0.7434 + }, + { + "start": 3192.9, + "end": 3193.98, + "probability": 0.7641 + }, + { + "start": 3194.32, + "end": 3197.64, + "probability": 0.9917 + }, + { + "start": 3197.94, + "end": 3199.92, + "probability": 0.8836 + }, + { + "start": 3200.8, + "end": 3201.84, + "probability": 0.9529 + }, + { + "start": 3201.88, + "end": 3203.66, + "probability": 0.9757 + }, + { + "start": 3203.98, + "end": 3207.12, + "probability": 0.7008 + }, + { + "start": 3207.54, + "end": 3208.76, + "probability": 0.8732 + }, + { + "start": 3208.8, + "end": 3209.56, + "probability": 0.5413 + }, + { + "start": 3209.92, + "end": 3210.38, + "probability": 0.71 + }, + { + "start": 3210.5, + "end": 3212.28, + "probability": 0.7939 + }, + { + "start": 3212.36, + "end": 3215.52, + "probability": 0.6355 + }, + { + "start": 3215.62, + "end": 3217.31, + "probability": 0.9934 + }, + { + "start": 3217.92, + "end": 3220.58, + "probability": 0.9028 + }, + { + "start": 3221.18, + "end": 3223.12, + "probability": 0.7847 + }, + { + "start": 3223.42, + "end": 3223.96, + "probability": 0.8199 + }, + { + "start": 3224.0, + "end": 3224.63, + "probability": 0.9756 + }, + { + "start": 3225.44, + "end": 3229.12, + "probability": 0.9927 + }, + { + "start": 3229.42, + "end": 3230.54, + "probability": 0.8164 + }, + { + "start": 3230.68, + "end": 3231.02, + "probability": 0.77 + }, + { + "start": 3234.5, + "end": 3235.48, + "probability": 0.826 + }, + { + "start": 3235.6, + "end": 3237.08, + "probability": 0.9717 + }, + { + "start": 3237.34, + "end": 3238.7, + "probability": 0.8765 + }, + { + "start": 3238.8, + "end": 3242.44, + "probability": 0.8347 + }, + { + "start": 3245.12, + "end": 3245.34, + "probability": 0.7266 + }, + { + "start": 3245.52, + "end": 3247.78, + "probability": 0.9692 + }, + { + "start": 3247.9, + "end": 3249.6, + "probability": 0.657 + }, + { + "start": 3249.74, + "end": 3252.1, + "probability": 0.6855 + }, + { + "start": 3252.86, + "end": 3255.01, + "probability": 0.9194 + }, + { + "start": 3256.08, + "end": 3256.82, + "probability": 0.7402 + }, + { + "start": 3257.38, + "end": 3261.12, + "probability": 0.9776 + }, + { + "start": 3261.12, + "end": 3265.98, + "probability": 0.8755 + }, + { + "start": 3266.82, + "end": 3268.8, + "probability": 0.8201 + }, + { + "start": 3269.84, + "end": 3271.62, + "probability": 0.7701 + }, + { + "start": 3272.78, + "end": 3277.98, + "probability": 0.9194 + }, + { + "start": 3279.8, + "end": 3285.94, + "probability": 0.8571 + }, + { + "start": 3286.04, + "end": 3289.54, + "probability": 0.9881 + }, + { + "start": 3289.7, + "end": 3294.38, + "probability": 0.9806 + }, + { + "start": 3295.52, + "end": 3301.06, + "probability": 0.9705 + }, + { + "start": 3301.9, + "end": 3304.1, + "probability": 0.9051 + }, + { + "start": 3304.92, + "end": 3305.84, + "probability": 0.9624 + }, + { + "start": 3306.78, + "end": 3310.36, + "probability": 0.9806 + }, + { + "start": 3310.98, + "end": 3311.89, + "probability": 0.9352 + }, + { + "start": 3312.98, + "end": 3316.28, + "probability": 0.9443 + }, + { + "start": 3317.08, + "end": 3318.28, + "probability": 0.6506 + }, + { + "start": 3318.9, + "end": 3319.1, + "probability": 0.4702 + }, + { + "start": 3319.2, + "end": 3321.44, + "probability": 0.9741 + }, + { + "start": 3321.78, + "end": 3326.22, + "probability": 0.9897 + }, + { + "start": 3326.56, + "end": 3327.58, + "probability": 0.5611 + }, + { + "start": 3328.86, + "end": 3329.8, + "probability": 0.8088 + }, + { + "start": 3330.32, + "end": 3333.46, + "probability": 0.8923 + }, + { + "start": 3334.2, + "end": 3336.44, + "probability": 0.9615 + }, + { + "start": 3337.2, + "end": 3340.48, + "probability": 0.9211 + }, + { + "start": 3340.66, + "end": 3342.18, + "probability": 0.8924 + }, + { + "start": 3343.12, + "end": 3347.08, + "probability": 0.8096 + }, + { + "start": 3347.78, + "end": 3349.28, + "probability": 0.9526 + }, + { + "start": 3350.6, + "end": 3351.62, + "probability": 0.8647 + }, + { + "start": 3353.12, + "end": 3353.78, + "probability": 0.9443 + }, + { + "start": 3353.9, + "end": 3360.0, + "probability": 0.9481 + }, + { + "start": 3360.56, + "end": 3361.32, + "probability": 0.837 + }, + { + "start": 3362.42, + "end": 3365.04, + "probability": 0.9209 + }, + { + "start": 3365.82, + "end": 3371.64, + "probability": 0.9455 + }, + { + "start": 3371.76, + "end": 3373.0, + "probability": 0.923 + }, + { + "start": 3374.08, + "end": 3375.64, + "probability": 0.9215 + }, + { + "start": 3376.22, + "end": 3377.17, + "probability": 0.5199 + }, + { + "start": 3378.48, + "end": 3380.2, + "probability": 0.9949 + }, + { + "start": 3380.72, + "end": 3384.44, + "probability": 0.8169 + }, + { + "start": 3385.2, + "end": 3386.86, + "probability": 0.9393 + }, + { + "start": 3387.58, + "end": 3389.26, + "probability": 0.8786 + }, + { + "start": 3389.8, + "end": 3392.07, + "probability": 0.9232 + }, + { + "start": 3392.94, + "end": 3395.02, + "probability": 0.8686 + }, + { + "start": 3395.82, + "end": 3397.36, + "probability": 0.859 + }, + { + "start": 3397.98, + "end": 3403.36, + "probability": 0.9961 + }, + { + "start": 3403.9, + "end": 3406.9, + "probability": 0.9486 + }, + { + "start": 3407.52, + "end": 3408.52, + "probability": 0.6887 + }, + { + "start": 3409.14, + "end": 3410.65, + "probability": 0.9911 + }, + { + "start": 3411.26, + "end": 3413.76, + "probability": 0.9607 + }, + { + "start": 3414.7, + "end": 3416.18, + "probability": 0.6934 + }, + { + "start": 3418.18, + "end": 3422.04, + "probability": 0.9819 + }, + { + "start": 3422.56, + "end": 3423.74, + "probability": 0.8985 + }, + { + "start": 3424.64, + "end": 3428.26, + "probability": 0.9701 + }, + { + "start": 3428.94, + "end": 3432.22, + "probability": 0.9938 + }, + { + "start": 3432.42, + "end": 3434.8, + "probability": 0.9875 + }, + { + "start": 3435.24, + "end": 3436.46, + "probability": 0.9463 + }, + { + "start": 3437.06, + "end": 3439.64, + "probability": 0.9907 + }, + { + "start": 3440.22, + "end": 3442.26, + "probability": 0.8402 + }, + { + "start": 3442.94, + "end": 3446.6, + "probability": 0.9785 + }, + { + "start": 3447.06, + "end": 3448.72, + "probability": 0.9917 + }, + { + "start": 3449.68, + "end": 3450.44, + "probability": 0.916 + }, + { + "start": 3450.6, + "end": 3452.38, + "probability": 0.7591 + }, + { + "start": 3453.12, + "end": 3454.83, + "probability": 0.9382 + }, + { + "start": 3455.88, + "end": 3458.3, + "probability": 0.7552 + }, + { + "start": 3460.32, + "end": 3461.74, + "probability": 0.9233 + }, + { + "start": 3462.5, + "end": 3463.9, + "probability": 0.9913 + }, + { + "start": 3463.92, + "end": 3466.88, + "probability": 0.9576 + }, + { + "start": 3467.56, + "end": 3468.92, + "probability": 0.9788 + }, + { + "start": 3469.0, + "end": 3470.88, + "probability": 0.8167 + }, + { + "start": 3470.96, + "end": 3472.78, + "probability": 0.7854 + }, + { + "start": 3472.86, + "end": 3477.48, + "probability": 0.8755 + }, + { + "start": 3478.18, + "end": 3481.0, + "probability": 0.9906 + }, + { + "start": 3481.6, + "end": 3485.4, + "probability": 0.9727 + }, + { + "start": 3485.96, + "end": 3486.76, + "probability": 0.3979 + }, + { + "start": 3487.5, + "end": 3492.07, + "probability": 0.905 + }, + { + "start": 3492.8, + "end": 3495.8, + "probability": 0.9305 + }, + { + "start": 3496.6, + "end": 3500.78, + "probability": 0.9086 + }, + { + "start": 3501.44, + "end": 3504.76, + "probability": 0.9753 + }, + { + "start": 3504.76, + "end": 3508.12, + "probability": 0.9896 + }, + { + "start": 3508.66, + "end": 3513.3, + "probability": 0.9778 + }, + { + "start": 3513.7, + "end": 3514.85, + "probability": 0.8061 + }, + { + "start": 3515.52, + "end": 3517.18, + "probability": 0.9979 + }, + { + "start": 3518.36, + "end": 3520.04, + "probability": 0.645 + }, + { + "start": 3520.22, + "end": 3520.22, + "probability": 0.0877 + }, + { + "start": 3520.22, + "end": 3520.66, + "probability": 0.7833 + }, + { + "start": 3521.04, + "end": 3521.6, + "probability": 0.8821 + }, + { + "start": 3522.08, + "end": 3522.48, + "probability": 0.8705 + }, + { + "start": 3523.22, + "end": 3525.08, + "probability": 0.9897 + }, + { + "start": 3525.6, + "end": 3527.86, + "probability": 0.9775 + }, + { + "start": 3528.56, + "end": 3529.68, + "probability": 0.7085 + }, + { + "start": 3530.42, + "end": 3532.18, + "probability": 0.7642 + }, + { + "start": 3532.8, + "end": 3535.48, + "probability": 0.9888 + }, + { + "start": 3535.86, + "end": 3536.36, + "probability": 0.8363 + }, + { + "start": 3536.42, + "end": 3537.1, + "probability": 0.5017 + }, + { + "start": 3537.7, + "end": 3538.5, + "probability": 0.7155 + }, + { + "start": 3539.16, + "end": 3544.82, + "probability": 0.9922 + }, + { + "start": 3544.9, + "end": 3545.75, + "probability": 0.9587 + }, + { + "start": 3546.46, + "end": 3547.3, + "probability": 0.9219 + }, + { + "start": 3548.02, + "end": 3549.84, + "probability": 0.7514 + }, + { + "start": 3550.98, + "end": 3552.38, + "probability": 0.6469 + }, + { + "start": 3553.04, + "end": 3554.08, + "probability": 0.9805 + }, + { + "start": 3554.16, + "end": 3555.2, + "probability": 0.9683 + }, + { + "start": 3555.28, + "end": 3555.9, + "probability": 0.9503 + }, + { + "start": 3556.92, + "end": 3559.06, + "probability": 0.9822 + }, + { + "start": 3559.66, + "end": 3560.96, + "probability": 0.995 + }, + { + "start": 3561.66, + "end": 3562.74, + "probability": 0.9785 + }, + { + "start": 3563.3, + "end": 3565.68, + "probability": 0.9731 + }, + { + "start": 3566.92, + "end": 3567.74, + "probability": 0.8933 + }, + { + "start": 3568.38, + "end": 3571.62, + "probability": 0.8372 + }, + { + "start": 3572.14, + "end": 3576.78, + "probability": 0.9554 + }, + { + "start": 3576.86, + "end": 3579.34, + "probability": 0.9697 + }, + { + "start": 3580.3, + "end": 3584.36, + "probability": 0.7262 + }, + { + "start": 3584.92, + "end": 3587.7, + "probability": 0.9946 + }, + { + "start": 3588.28, + "end": 3589.6, + "probability": 0.7177 + }, + { + "start": 3589.74, + "end": 3590.28, + "probability": 0.9374 + }, + { + "start": 3590.4, + "end": 3593.32, + "probability": 0.969 + }, + { + "start": 3593.48, + "end": 3596.94, + "probability": 0.9956 + }, + { + "start": 3597.38, + "end": 3598.68, + "probability": 0.726 + }, + { + "start": 3599.24, + "end": 3602.42, + "probability": 0.995 + }, + { + "start": 3603.12, + "end": 3607.0, + "probability": 0.9954 + }, + { + "start": 3607.64, + "end": 3609.08, + "probability": 0.506 + }, + { + "start": 3609.79, + "end": 3616.21, + "probability": 0.9881 + }, + { + "start": 3617.28, + "end": 3617.28, + "probability": 0.0577 + }, + { + "start": 3617.28, + "end": 3617.28, + "probability": 0.1524 + }, + { + "start": 3617.38, + "end": 3619.91, + "probability": 0.4857 + }, + { + "start": 3620.48, + "end": 3624.74, + "probability": 0.952 + }, + { + "start": 3625.34, + "end": 3626.84, + "probability": 0.8948 + }, + { + "start": 3627.06, + "end": 3630.32, + "probability": 0.9317 + }, + { + "start": 3630.86, + "end": 3634.2, + "probability": 0.9414 + }, + { + "start": 3634.48, + "end": 3635.44, + "probability": 0.7992 + }, + { + "start": 3635.84, + "end": 3638.58, + "probability": 0.8965 + }, + { + "start": 3639.1, + "end": 3641.0, + "probability": 0.8882 + }, + { + "start": 3641.1, + "end": 3644.62, + "probability": 0.9814 + }, + { + "start": 3644.92, + "end": 3648.04, + "probability": 0.8683 + }, + { + "start": 3648.84, + "end": 3652.66, + "probability": 0.997 + }, + { + "start": 3653.02, + "end": 3656.08, + "probability": 0.9938 + }, + { + "start": 3657.3, + "end": 3659.1, + "probability": 0.9171 + }, + { + "start": 3659.76, + "end": 3660.44, + "probability": 0.9406 + }, + { + "start": 3661.0, + "end": 3664.56, + "probability": 0.9455 + }, + { + "start": 3664.82, + "end": 3665.94, + "probability": 0.9937 + }, + { + "start": 3666.48, + "end": 3670.26, + "probability": 0.9855 + }, + { + "start": 3671.4, + "end": 3673.05, + "probability": 0.9569 + }, + { + "start": 3673.42, + "end": 3674.94, + "probability": 0.6568 + }, + { + "start": 3675.87, + "end": 3678.5, + "probability": 0.4847 + }, + { + "start": 3678.82, + "end": 3681.54, + "probability": 0.422 + }, + { + "start": 3681.6, + "end": 3683.25, + "probability": 0.7044 + }, + { + "start": 3683.68, + "end": 3686.7, + "probability": 0.8099 + }, + { + "start": 3687.48, + "end": 3689.22, + "probability": 0.4293 + }, + { + "start": 3689.52, + "end": 3690.82, + "probability": 0.8945 + }, + { + "start": 3691.54, + "end": 3693.1, + "probability": 0.9838 + }, + { + "start": 3693.68, + "end": 3694.94, + "probability": 0.8346 + }, + { + "start": 3695.54, + "end": 3697.76, + "probability": 0.585 + }, + { + "start": 3698.0, + "end": 3700.62, + "probability": 0.595 + }, + { + "start": 3700.98, + "end": 3702.21, + "probability": 0.3466 + }, + { + "start": 3702.38, + "end": 3704.6, + "probability": 0.5702 + }, + { + "start": 3704.62, + "end": 3705.44, + "probability": 0.9502 + }, + { + "start": 3705.5, + "end": 3706.26, + "probability": 0.7756 + }, + { + "start": 3706.74, + "end": 3710.1, + "probability": 0.847 + }, + { + "start": 3711.06, + "end": 3714.54, + "probability": 0.5002 + }, + { + "start": 3715.12, + "end": 3715.44, + "probability": 0.5031 + }, + { + "start": 3716.16, + "end": 3717.96, + "probability": 0.9551 + }, + { + "start": 3718.94, + "end": 3719.66, + "probability": 0.6782 + }, + { + "start": 3719.84, + "end": 3722.67, + "probability": 0.7462 + }, + { + "start": 3724.46, + "end": 3727.06, + "probability": 0.72 + }, + { + "start": 3727.72, + "end": 3729.42, + "probability": 0.9357 + }, + { + "start": 3730.28, + "end": 3734.92, + "probability": 0.9894 + }, + { + "start": 3735.42, + "end": 3736.52, + "probability": 0.9341 + }, + { + "start": 3736.6, + "end": 3737.64, + "probability": 0.9785 + }, + { + "start": 3738.2, + "end": 3742.26, + "probability": 0.9614 + }, + { + "start": 3742.38, + "end": 3743.56, + "probability": 0.9745 + }, + { + "start": 3744.02, + "end": 3744.58, + "probability": 0.8536 + }, + { + "start": 3745.56, + "end": 3747.24, + "probability": 0.723 + }, + { + "start": 3748.0, + "end": 3748.94, + "probability": 0.9161 + }, + { + "start": 3748.96, + "end": 3750.68, + "probability": 0.8572 + }, + { + "start": 3751.18, + "end": 3752.82, + "probability": 0.5626 + }, + { + "start": 3753.42, + "end": 3758.48, + "probability": 0.8989 + }, + { + "start": 3758.76, + "end": 3763.36, + "probability": 0.8246 + }, + { + "start": 3763.9, + "end": 3764.6, + "probability": 0.3037 + }, + { + "start": 3764.76, + "end": 3766.54, + "probability": 0.8358 + }, + { + "start": 3766.54, + "end": 3769.44, + "probability": 0.7147 + }, + { + "start": 3769.68, + "end": 3770.22, + "probability": 0.6385 + }, + { + "start": 3770.86, + "end": 3772.96, + "probability": 0.9727 + }, + { + "start": 3772.96, + "end": 3776.66, + "probability": 0.9952 + }, + { + "start": 3776.98, + "end": 3779.5, + "probability": 0.9313 + }, + { + "start": 3780.04, + "end": 3782.52, + "probability": 0.9307 + }, + { + "start": 3782.82, + "end": 3785.56, + "probability": 0.8809 + }, + { + "start": 3786.05, + "end": 3789.7, + "probability": 0.9675 + }, + { + "start": 3790.5, + "end": 3793.56, + "probability": 0.5213 + }, + { + "start": 3794.26, + "end": 3796.11, + "probability": 0.9987 + }, + { + "start": 3797.94, + "end": 3800.66, + "probability": 0.6816 + }, + { + "start": 3800.94, + "end": 3801.4, + "probability": 0.5042 + }, + { + "start": 3801.48, + "end": 3802.34, + "probability": 0.8472 + }, + { + "start": 3802.36, + "end": 3809.88, + "probability": 0.8585 + }, + { + "start": 3811.3, + "end": 3813.86, + "probability": 0.9983 + }, + { + "start": 3814.5, + "end": 3815.86, + "probability": 0.8654 + }, + { + "start": 3815.96, + "end": 3817.82, + "probability": 0.7996 + }, + { + "start": 3820.87, + "end": 3823.32, + "probability": 0.9621 + }, + { + "start": 3823.36, + "end": 3824.58, + "probability": 0.8125 + }, + { + "start": 3824.84, + "end": 3825.96, + "probability": 0.6943 + }, + { + "start": 3826.94, + "end": 3828.7, + "probability": 0.4218 + }, + { + "start": 3828.82, + "end": 3830.54, + "probability": 0.7723 + }, + { + "start": 3831.7, + "end": 3833.14, + "probability": 0.9464 + }, + { + "start": 3833.18, + "end": 3835.83, + "probability": 0.9341 + }, + { + "start": 3836.86, + "end": 3837.08, + "probability": 0.8249 + }, + { + "start": 3839.02, + "end": 3844.74, + "probability": 0.7857 + }, + { + "start": 3844.74, + "end": 3852.34, + "probability": 0.685 + }, + { + "start": 3852.38, + "end": 3852.94, + "probability": 0.6253 + }, + { + "start": 3853.58, + "end": 3855.12, + "probability": 0.9879 + }, + { + "start": 3855.62, + "end": 3857.7, + "probability": 0.8277 + }, + { + "start": 3858.14, + "end": 3859.3, + "probability": 0.9544 + }, + { + "start": 3862.26, + "end": 3864.26, + "probability": 0.7649 + }, + { + "start": 3865.68, + "end": 3866.5, + "probability": 0.5314 + }, + { + "start": 3867.14, + "end": 3867.66, + "probability": 0.4086 + }, + { + "start": 3871.66, + "end": 3874.26, + "probability": 0.9989 + }, + { + "start": 3874.26, + "end": 3876.94, + "probability": 0.9893 + }, + { + "start": 3877.2, + "end": 3880.78, + "probability": 0.9272 + }, + { + "start": 3881.7, + "end": 3882.46, + "probability": 0.66 + }, + { + "start": 3883.12, + "end": 3886.78, + "probability": 0.9979 + }, + { + "start": 3887.88, + "end": 3890.08, + "probability": 0.8178 + }, + { + "start": 3890.72, + "end": 3893.84, + "probability": 0.9928 + }, + { + "start": 3895.32, + "end": 3896.14, + "probability": 0.3131 + }, + { + "start": 3896.58, + "end": 3901.3, + "probability": 0.633 + }, + { + "start": 3902.44, + "end": 3906.56, + "probability": 0.71 + }, + { + "start": 3907.44, + "end": 3908.22, + "probability": 0.8557 + }, + { + "start": 3909.16, + "end": 3910.66, + "probability": 0.8369 + }, + { + "start": 3911.68, + "end": 3913.46, + "probability": 0.8881 + }, + { + "start": 3915.28, + "end": 3919.68, + "probability": 0.9777 + }, + { + "start": 3919.74, + "end": 3924.58, + "probability": 0.8096 + }, + { + "start": 3925.9, + "end": 3927.48, + "probability": 0.1814 + }, + { + "start": 3928.0, + "end": 3929.0, + "probability": 0.6519 + }, + { + "start": 3929.12, + "end": 3930.48, + "probability": 0.7834 + }, + { + "start": 3930.56, + "end": 3931.76, + "probability": 0.3639 + }, + { + "start": 3932.32, + "end": 3935.56, + "probability": 0.7709 + }, + { + "start": 3936.56, + "end": 3938.72, + "probability": 0.6927 + }, + { + "start": 3938.94, + "end": 3941.64, + "probability": 0.656 + }, + { + "start": 3942.74, + "end": 3944.24, + "probability": 0.455 + }, + { + "start": 3944.52, + "end": 3948.14, + "probability": 0.9595 + }, + { + "start": 3949.16, + "end": 3949.44, + "probability": 0.4613 + }, + { + "start": 3949.48, + "end": 3955.46, + "probability": 0.9313 + }, + { + "start": 3956.0, + "end": 3956.66, + "probability": 0.8218 + }, + { + "start": 3956.78, + "end": 3960.04, + "probability": 0.9421 + }, + { + "start": 3960.04, + "end": 3964.36, + "probability": 0.9355 + }, + { + "start": 3965.14, + "end": 3967.3, + "probability": 0.8755 + }, + { + "start": 3967.72, + "end": 3970.38, + "probability": 0.9152 + }, + { + "start": 3971.54, + "end": 3975.92, + "probability": 0.9644 + }, + { + "start": 3975.96, + "end": 3976.84, + "probability": 0.8267 + }, + { + "start": 3978.1, + "end": 3978.28, + "probability": 0.0178 + }, + { + "start": 3978.44, + "end": 3978.98, + "probability": 0.5424 + }, + { + "start": 3979.18, + "end": 3980.82, + "probability": 0.7918 + }, + { + "start": 3980.96, + "end": 3985.78, + "probability": 0.8711 + }, + { + "start": 3986.36, + "end": 3989.12, + "probability": 0.8477 + }, + { + "start": 3990.74, + "end": 3995.6, + "probability": 0.9079 + }, + { + "start": 3996.5, + "end": 4000.88, + "probability": 0.7391 + }, + { + "start": 4000.88, + "end": 4004.88, + "probability": 0.9259 + }, + { + "start": 4005.02, + "end": 4007.5, + "probability": 0.8172 + }, + { + "start": 4008.26, + "end": 4013.2, + "probability": 0.9582 + }, + { + "start": 4013.46, + "end": 4013.66, + "probability": 0.0145 + }, + { + "start": 4014.54, + "end": 4016.06, + "probability": 0.8472 + }, + { + "start": 4016.1, + "end": 4019.45, + "probability": 0.6796 + }, + { + "start": 4020.44, + "end": 4026.22, + "probability": 0.9777 + }, + { + "start": 4026.84, + "end": 4031.62, + "probability": 0.8606 + }, + { + "start": 4031.62, + "end": 4036.66, + "probability": 0.8898 + }, + { + "start": 4037.02, + "end": 4040.52, + "probability": 0.8535 + }, + { + "start": 4042.2, + "end": 4043.72, + "probability": 0.6476 + }, + { + "start": 4043.86, + "end": 4046.42, + "probability": 0.9883 + }, + { + "start": 4046.98, + "end": 4047.86, + "probability": 0.9629 + }, + { + "start": 4048.0, + "end": 4050.84, + "probability": 0.9219 + }, + { + "start": 4050.84, + "end": 4054.18, + "probability": 0.899 + }, + { + "start": 4054.76, + "end": 4060.06, + "probability": 0.9947 + }, + { + "start": 4060.1, + "end": 4062.44, + "probability": 0.8984 + }, + { + "start": 4063.7, + "end": 4064.0, + "probability": 0.0712 + }, + { + "start": 4064.7, + "end": 4069.12, + "probability": 0.9275 + }, + { + "start": 4069.12, + "end": 4073.98, + "probability": 0.9214 + }, + { + "start": 4074.12, + "end": 4077.68, + "probability": 0.8922 + }, + { + "start": 4078.6, + "end": 4083.86, + "probability": 0.7729 + }, + { + "start": 4083.86, + "end": 4090.46, + "probability": 0.9634 + }, + { + "start": 4091.0, + "end": 4093.06, + "probability": 0.9147 + }, + { + "start": 4093.86, + "end": 4096.88, + "probability": 0.5126 + }, + { + "start": 4097.5, + "end": 4099.44, + "probability": 0.9404 + }, + { + "start": 4100.24, + "end": 4104.34, + "probability": 0.9319 + }, + { + "start": 4104.72, + "end": 4109.32, + "probability": 0.6837 + }, + { + "start": 4109.32, + "end": 4113.12, + "probability": 0.9438 + }, + { + "start": 4113.12, + "end": 4116.68, + "probability": 0.9863 + }, + { + "start": 4117.22, + "end": 4120.2, + "probability": 0.9883 + }, + { + "start": 4120.2, + "end": 4123.1, + "probability": 0.8254 + }, + { + "start": 4123.12, + "end": 4124.2, + "probability": 0.7013 + }, + { + "start": 4124.3, + "end": 4125.24, + "probability": 0.8679 + }, + { + "start": 4126.42, + "end": 4127.5, + "probability": 0.3646 + }, + { + "start": 4127.6, + "end": 4129.06, + "probability": 0.8302 + }, + { + "start": 4129.26, + "end": 4133.3, + "probability": 0.8149 + }, + { + "start": 4133.92, + "end": 4136.3, + "probability": 0.9968 + }, + { + "start": 4136.3, + "end": 4140.2, + "probability": 0.9984 + }, + { + "start": 4141.46, + "end": 4144.44, + "probability": 0.8577 + }, + { + "start": 4144.54, + "end": 4148.56, + "probability": 0.9206 + }, + { + "start": 4148.68, + "end": 4149.42, + "probability": 0.4223 + }, + { + "start": 4150.02, + "end": 4152.66, + "probability": 0.9785 + }, + { + "start": 4154.24, + "end": 4154.88, + "probability": 0.3967 + }, + { + "start": 4155.1, + "end": 4158.48, + "probability": 0.7607 + }, + { + "start": 4160.5, + "end": 4165.04, + "probability": 0.8707 + }, + { + "start": 4165.52, + "end": 4166.38, + "probability": 0.8025 + }, + { + "start": 4166.9, + "end": 4167.7, + "probability": 0.6649 + }, + { + "start": 4168.74, + "end": 4171.82, + "probability": 0.5224 + }, + { + "start": 4171.88, + "end": 4173.58, + "probability": 0.8242 + }, + { + "start": 4174.22, + "end": 4176.78, + "probability": 0.759 + }, + { + "start": 4179.25, + "end": 4183.2, + "probability": 0.8959 + }, + { + "start": 4183.88, + "end": 4186.89, + "probability": 0.4714 + }, + { + "start": 4187.32, + "end": 4189.54, + "probability": 0.6022 + }, + { + "start": 4190.56, + "end": 4191.14, + "probability": 0.7388 + }, + { + "start": 4191.22, + "end": 4192.14, + "probability": 0.918 + }, + { + "start": 4192.14, + "end": 4195.41, + "probability": 0.562 + }, + { + "start": 4197.52, + "end": 4198.93, + "probability": 0.963 + }, + { + "start": 4199.96, + "end": 4202.78, + "probability": 0.9634 + }, + { + "start": 4202.88, + "end": 4206.38, + "probability": 0.96 + }, + { + "start": 4207.02, + "end": 4209.98, + "probability": 0.8958 + }, + { + "start": 4210.46, + "end": 4212.92, + "probability": 0.9685 + }, + { + "start": 4213.58, + "end": 4214.76, + "probability": 0.4592 + }, + { + "start": 4215.2, + "end": 4216.2, + "probability": 0.9017 + }, + { + "start": 4216.3, + "end": 4217.02, + "probability": 0.8487 + }, + { + "start": 4217.16, + "end": 4221.44, + "probability": 0.7195 + }, + { + "start": 4222.5, + "end": 4224.44, + "probability": 0.7664 + }, + { + "start": 4224.94, + "end": 4226.52, + "probability": 0.479 + }, + { + "start": 4226.72, + "end": 4228.36, + "probability": 0.9001 + }, + { + "start": 4228.52, + "end": 4229.38, + "probability": 0.7073 + }, + { + "start": 4230.04, + "end": 4230.64, + "probability": 0.9695 + }, + { + "start": 4231.9, + "end": 4239.02, + "probability": 0.9783 + }, + { + "start": 4239.7, + "end": 4244.3, + "probability": 0.9645 + }, + { + "start": 4245.84, + "end": 4246.54, + "probability": 0.8622 + }, + { + "start": 4246.92, + "end": 4247.96, + "probability": 0.9766 + }, + { + "start": 4248.16, + "end": 4252.54, + "probability": 0.8287 + }, + { + "start": 4253.12, + "end": 4255.7, + "probability": 0.9938 + }, + { + "start": 4255.7, + "end": 4259.14, + "probability": 0.9921 + }, + { + "start": 4260.24, + "end": 4263.62, + "probability": 0.9781 + }, + { + "start": 4264.22, + "end": 4265.49, + "probability": 0.3856 + }, + { + "start": 4265.88, + "end": 4269.24, + "probability": 0.9289 + }, + { + "start": 4269.4, + "end": 4271.12, + "probability": 0.9792 + }, + { + "start": 4271.98, + "end": 4276.34, + "probability": 0.9923 + }, + { + "start": 4276.66, + "end": 4278.62, + "probability": 0.9985 + }, + { + "start": 4279.52, + "end": 4280.38, + "probability": 0.8915 + }, + { + "start": 4280.66, + "end": 4283.68, + "probability": 0.9963 + }, + { + "start": 4283.76, + "end": 4284.68, + "probability": 0.8281 + }, + { + "start": 4284.84, + "end": 4285.58, + "probability": 0.6777 + }, + { + "start": 4286.64, + "end": 4290.34, + "probability": 0.9565 + }, + { + "start": 4291.06, + "end": 4292.12, + "probability": 0.8748 + }, + { + "start": 4292.68, + "end": 4294.42, + "probability": 0.9277 + }, + { + "start": 4294.58, + "end": 4297.26, + "probability": 0.9922 + }, + { + "start": 4297.26, + "end": 4300.16, + "probability": 0.9919 + }, + { + "start": 4300.84, + "end": 4301.52, + "probability": 0.9098 + }, + { + "start": 4301.86, + "end": 4302.9, + "probability": 0.7921 + }, + { + "start": 4303.1, + "end": 4306.9, + "probability": 0.9841 + }, + { + "start": 4307.12, + "end": 4309.26, + "probability": 0.9668 + }, + { + "start": 4309.26, + "end": 4311.92, + "probability": 0.9988 + }, + { + "start": 4312.68, + "end": 4315.34, + "probability": 0.8903 + }, + { + "start": 4316.0, + "end": 4319.3, + "probability": 0.9722 + }, + { + "start": 4319.62, + "end": 4322.76, + "probability": 0.9929 + }, + { + "start": 4323.32, + "end": 4327.04, + "probability": 0.9741 + }, + { + "start": 4327.1, + "end": 4327.68, + "probability": 0.8671 + }, + { + "start": 4328.12, + "end": 4329.3, + "probability": 0.7321 + }, + { + "start": 4329.74, + "end": 4330.28, + "probability": 0.9606 + }, + { + "start": 4331.96, + "end": 4334.52, + "probability": 0.9541 + }, + { + "start": 4334.86, + "end": 4335.96, + "probability": 0.8043 + }, + { + "start": 4336.04, + "end": 4336.72, + "probability": 0.8834 + }, + { + "start": 4336.96, + "end": 4337.4, + "probability": 0.9897 + }, + { + "start": 4337.86, + "end": 4338.86, + "probability": 0.7328 + }, + { + "start": 4338.9, + "end": 4340.62, + "probability": 0.9888 + }, + { + "start": 4340.74, + "end": 4344.82, + "probability": 0.9481 + }, + { + "start": 4345.7, + "end": 4346.66, + "probability": 0.6348 + }, + { + "start": 4346.94, + "end": 4347.24, + "probability": 0.442 + }, + { + "start": 4347.24, + "end": 4347.5, + "probability": 0.6455 + }, + { + "start": 4347.64, + "end": 4348.22, + "probability": 0.8765 + }, + { + "start": 4348.38, + "end": 4349.54, + "probability": 0.8902 + }, + { + "start": 4350.88, + "end": 4352.52, + "probability": 0.542 + }, + { + "start": 4353.46, + "end": 4355.44, + "probability": 0.8791 + }, + { + "start": 4356.58, + "end": 4359.22, + "probability": 0.9649 + }, + { + "start": 4359.96, + "end": 4365.96, + "probability": 0.8255 + }, + { + "start": 4366.54, + "end": 4369.28, + "probability": 0.9303 + }, + { + "start": 4369.82, + "end": 4375.64, + "probability": 0.9958 + }, + { + "start": 4376.14, + "end": 4379.8, + "probability": 0.9997 + }, + { + "start": 4382.92, + "end": 4383.6, + "probability": 0.3513 + }, + { + "start": 4384.6, + "end": 4386.36, + "probability": 0.4976 + }, + { + "start": 4386.58, + "end": 4388.66, + "probability": 0.4722 + }, + { + "start": 4394.96, + "end": 4395.94, + "probability": 0.3672 + }, + { + "start": 4396.82, + "end": 4397.26, + "probability": 0.6786 + }, + { + "start": 4397.48, + "end": 4397.66, + "probability": 0.8043 + }, + { + "start": 4397.78, + "end": 4401.02, + "probability": 0.8082 + }, + { + "start": 4401.24, + "end": 4401.6, + "probability": 0.6653 + }, + { + "start": 4401.66, + "end": 4404.84, + "probability": 0.9733 + }, + { + "start": 4405.64, + "end": 4410.96, + "probability": 0.991 + }, + { + "start": 4411.66, + "end": 4415.54, + "probability": 0.8899 + }, + { + "start": 4415.66, + "end": 4416.58, + "probability": 0.7357 + }, + { + "start": 4417.16, + "end": 4421.58, + "probability": 0.6758 + }, + { + "start": 4421.76, + "end": 4426.34, + "probability": 0.756 + }, + { + "start": 4426.94, + "end": 4427.52, + "probability": 0.9166 + }, + { + "start": 4428.84, + "end": 4429.74, + "probability": 0.3956 + }, + { + "start": 4429.96, + "end": 4435.06, + "probability": 0.9807 + }, + { + "start": 4435.06, + "end": 4438.68, + "probability": 0.8188 + }, + { + "start": 4438.92, + "end": 4440.6, + "probability": 0.6543 + }, + { + "start": 4441.32, + "end": 4442.76, + "probability": 0.9737 + }, + { + "start": 4443.4, + "end": 4448.52, + "probability": 0.9775 + }, + { + "start": 4448.92, + "end": 4452.04, + "probability": 0.6408 + }, + { + "start": 4452.26, + "end": 4454.54, + "probability": 0.9912 + }, + { + "start": 4455.26, + "end": 4456.76, + "probability": 0.4773 + }, + { + "start": 4457.5, + "end": 4459.73, + "probability": 0.9709 + }, + { + "start": 4460.86, + "end": 4461.64, + "probability": 0.9124 + }, + { + "start": 4461.82, + "end": 4462.48, + "probability": 0.4828 + }, + { + "start": 4462.6, + "end": 4464.86, + "probability": 0.9469 + }, + { + "start": 4465.68, + "end": 4469.33, + "probability": 0.9938 + }, + { + "start": 4470.32, + "end": 4471.04, + "probability": 0.9215 + }, + { + "start": 4471.22, + "end": 4471.88, + "probability": 0.7175 + }, + { + "start": 4472.4, + "end": 4474.36, + "probability": 0.9688 + }, + { + "start": 4474.88, + "end": 4476.5, + "probability": 0.7474 + }, + { + "start": 4477.2, + "end": 4478.22, + "probability": 0.0595 + }, + { + "start": 4478.22, + "end": 4482.0, + "probability": 0.9681 + }, + { + "start": 4482.06, + "end": 4482.74, + "probability": 0.804 + }, + { + "start": 4483.3, + "end": 4484.56, + "probability": 0.9787 + }, + { + "start": 4485.12, + "end": 4488.9, + "probability": 0.9414 + }, + { + "start": 4489.02, + "end": 4489.94, + "probability": 0.6261 + }, + { + "start": 4489.98, + "end": 4490.34, + "probability": 0.6399 + }, + { + "start": 4493.72, + "end": 4495.04, + "probability": 0.8228 + }, + { + "start": 4495.12, + "end": 4496.86, + "probability": 0.8583 + }, + { + "start": 4497.16, + "end": 4498.68, + "probability": 0.5743 + }, + { + "start": 4499.08, + "end": 4502.54, + "probability": 0.8709 + }, + { + "start": 4503.12, + "end": 4504.32, + "probability": 0.9658 + }, + { + "start": 4505.02, + "end": 4506.62, + "probability": 0.9552 + }, + { + "start": 4507.1, + "end": 4508.48, + "probability": 0.9288 + }, + { + "start": 4508.72, + "end": 4510.14, + "probability": 0.9664 + }, + { + "start": 4510.28, + "end": 4511.08, + "probability": 0.8826 + }, + { + "start": 4511.32, + "end": 4512.06, + "probability": 0.9614 + }, + { + "start": 4512.14, + "end": 4512.82, + "probability": 0.8961 + }, + { + "start": 4513.24, + "end": 4514.23, + "probability": 0.8334 + }, + { + "start": 4514.52, + "end": 4516.42, + "probability": 0.9461 + }, + { + "start": 4517.2, + "end": 4519.0, + "probability": 0.8269 + }, + { + "start": 4519.82, + "end": 4525.46, + "probability": 0.9629 + }, + { + "start": 4525.46, + "end": 4530.98, + "probability": 0.9731 + }, + { + "start": 4531.56, + "end": 4534.9, + "probability": 0.9952 + }, + { + "start": 4534.98, + "end": 4535.58, + "probability": 0.7797 + }, + { + "start": 4536.16, + "end": 4537.88, + "probability": 0.9331 + }, + { + "start": 4538.2, + "end": 4539.86, + "probability": 0.9951 + }, + { + "start": 4540.24, + "end": 4541.22, + "probability": 0.9619 + }, + { + "start": 4541.36, + "end": 4542.4, + "probability": 0.9815 + }, + { + "start": 4542.58, + "end": 4545.71, + "probability": 0.9438 + }, + { + "start": 4546.5, + "end": 4548.12, + "probability": 0.9828 + }, + { + "start": 4548.92, + "end": 4551.2, + "probability": 0.9862 + }, + { + "start": 4551.54, + "end": 4554.24, + "probability": 0.9365 + }, + { + "start": 4554.84, + "end": 4555.78, + "probability": 0.944 + }, + { + "start": 4556.0, + "end": 4558.12, + "probability": 0.9897 + }, + { + "start": 4559.06, + "end": 4564.02, + "probability": 0.6797 + }, + { + "start": 4564.02, + "end": 4567.1, + "probability": 0.9185 + }, + { + "start": 4567.68, + "end": 4568.84, + "probability": 0.6634 + }, + { + "start": 4569.54, + "end": 4574.02, + "probability": 0.953 + }, + { + "start": 4574.66, + "end": 4579.2, + "probability": 0.9987 + }, + { + "start": 4579.92, + "end": 4581.72, + "probability": 0.8404 + }, + { + "start": 4582.7, + "end": 4585.48, + "probability": 0.959 + }, + { + "start": 4585.48, + "end": 4588.04, + "probability": 0.9959 + }, + { + "start": 4589.18, + "end": 4593.56, + "probability": 0.959 + }, + { + "start": 4593.96, + "end": 4595.54, + "probability": 0.9916 + }, + { + "start": 4596.02, + "end": 4597.8, + "probability": 0.8049 + }, + { + "start": 4598.2, + "end": 4599.18, + "probability": 0.7923 + }, + { + "start": 4599.34, + "end": 4600.06, + "probability": 0.6824 + }, + { + "start": 4600.64, + "end": 4603.06, + "probability": 0.9982 + }, + { + "start": 4603.82, + "end": 4605.42, + "probability": 0.9854 + }, + { + "start": 4605.78, + "end": 4608.72, + "probability": 0.9966 + }, + { + "start": 4608.88, + "end": 4611.56, + "probability": 0.9502 + }, + { + "start": 4612.38, + "end": 4615.94, + "probability": 0.9067 + }, + { + "start": 4616.04, + "end": 4617.72, + "probability": 0.9603 + }, + { + "start": 4617.8, + "end": 4619.02, + "probability": 0.9465 + }, + { + "start": 4619.08, + "end": 4620.56, + "probability": 0.9375 + }, + { + "start": 4621.12, + "end": 4623.48, + "probability": 0.9639 + }, + { + "start": 4623.58, + "end": 4624.8, + "probability": 0.8316 + }, + { + "start": 4625.64, + "end": 4627.2, + "probability": 0.973 + }, + { + "start": 4627.34, + "end": 4628.88, + "probability": 0.5925 + }, + { + "start": 4629.38, + "end": 4631.65, + "probability": 0.9927 + }, + { + "start": 4631.66, + "end": 4634.0, + "probability": 0.9988 + }, + { + "start": 4634.74, + "end": 4638.56, + "probability": 0.9202 + }, + { + "start": 4639.08, + "end": 4641.22, + "probability": 0.9749 + }, + { + "start": 4641.36, + "end": 4642.3, + "probability": 0.9183 + }, + { + "start": 4642.5, + "end": 4647.3, + "probability": 0.9966 + }, + { + "start": 4647.3, + "end": 4650.82, + "probability": 0.9915 + }, + { + "start": 4651.42, + "end": 4655.06, + "probability": 0.9888 + }, + { + "start": 4655.58, + "end": 4656.0, + "probability": 0.6608 + }, + { + "start": 4656.08, + "end": 4657.0, + "probability": 0.7502 + }, + { + "start": 4657.52, + "end": 4658.02, + "probability": 0.9147 + }, + { + "start": 4658.6, + "end": 4660.17, + "probability": 0.6452 + }, + { + "start": 4661.68, + "end": 4663.84, + "probability": 0.789 + }, + { + "start": 4664.66, + "end": 4665.86, + "probability": 0.521 + }, + { + "start": 4666.86, + "end": 4668.17, + "probability": 0.9924 + }, + { + "start": 4669.5, + "end": 4670.1, + "probability": 0.696 + }, + { + "start": 4671.78, + "end": 4672.96, + "probability": 0.2642 + }, + { + "start": 4672.96, + "end": 4673.6, + "probability": 0.2798 + }, + { + "start": 4674.18, + "end": 4675.94, + "probability": 0.6727 + }, + { + "start": 4676.04, + "end": 4677.86, + "probability": 0.6832 + }, + { + "start": 4677.92, + "end": 4678.64, + "probability": 0.7897 + }, + { + "start": 4679.04, + "end": 4679.7, + "probability": 0.8578 + }, + { + "start": 4680.58, + "end": 4684.44, + "probability": 0.8166 + }, + { + "start": 4684.5, + "end": 4687.36, + "probability": 0.7822 + }, + { + "start": 4689.4, + "end": 4691.0, + "probability": 0.7834 + }, + { + "start": 4691.34, + "end": 4692.72, + "probability": 0.9248 + }, + { + "start": 4692.86, + "end": 4693.36, + "probability": 0.8422 + }, + { + "start": 4694.18, + "end": 4695.38, + "probability": 0.9657 + }, + { + "start": 4696.52, + "end": 4696.52, + "probability": 0.4848 + }, + { + "start": 4696.56, + "end": 4697.86, + "probability": 0.6633 + }, + { + "start": 4697.86, + "end": 4699.98, + "probability": 0.9886 + }, + { + "start": 4700.38, + "end": 4702.36, + "probability": 0.5271 + }, + { + "start": 4702.42, + "end": 4703.32, + "probability": 0.6681 + }, + { + "start": 4703.48, + "end": 4705.16, + "probability": 0.2645 + }, + { + "start": 4706.93, + "end": 4707.84, + "probability": 0.2333 + }, + { + "start": 4708.58, + "end": 4709.1, + "probability": 0.0005 + }, + { + "start": 4709.1, + "end": 4710.42, + "probability": 0.1845 + }, + { + "start": 4710.8, + "end": 4711.14, + "probability": 0.2064 + }, + { + "start": 4711.14, + "end": 4711.92, + "probability": 0.021 + }, + { + "start": 4711.96, + "end": 4712.24, + "probability": 0.0892 + }, + { + "start": 4712.24, + "end": 4712.24, + "probability": 0.1628 + }, + { + "start": 4712.24, + "end": 4714.3, + "probability": 0.1103 + }, + { + "start": 4714.56, + "end": 4716.5, + "probability": 0.362 + }, + { + "start": 4716.58, + "end": 4717.89, + "probability": 0.6916 + }, + { + "start": 4717.98, + "end": 4719.99, + "probability": 0.8384 + }, + { + "start": 4720.6, + "end": 4723.64, + "probability": 0.9624 + }, + { + "start": 4723.88, + "end": 4724.34, + "probability": 0.0745 + }, + { + "start": 4724.34, + "end": 4725.15, + "probability": 0.7166 + }, + { + "start": 4725.28, + "end": 4729.2, + "probability": 0.1984 + }, + { + "start": 4729.3, + "end": 4730.97, + "probability": 0.0602 + }, + { + "start": 4731.38, + "end": 4733.68, + "probability": 0.0054 + }, + { + "start": 4733.68, + "end": 4735.24, + "probability": 0.4203 + }, + { + "start": 4735.24, + "end": 4735.84, + "probability": 0.4068 + }, + { + "start": 4735.92, + "end": 4736.4, + "probability": 0.3255 + }, + { + "start": 4736.4, + "end": 4738.54, + "probability": 0.9009 + }, + { + "start": 4738.88, + "end": 4741.2, + "probability": 0.9248 + }, + { + "start": 4741.26, + "end": 4742.38, + "probability": 0.8794 + }, + { + "start": 4742.58, + "end": 4743.6, + "probability": 0.998 + }, + { + "start": 4744.34, + "end": 4745.6, + "probability": 0.6004 + }, + { + "start": 4746.04, + "end": 4748.46, + "probability": 0.542 + }, + { + "start": 4748.66, + "end": 4750.28, + "probability": 0.8841 + }, + { + "start": 4750.54, + "end": 4751.2, + "probability": 0.2408 + }, + { + "start": 4751.42, + "end": 4751.6, + "probability": 0.3174 + }, + { + "start": 4751.66, + "end": 4753.54, + "probability": 0.8857 + }, + { + "start": 4753.72, + "end": 4754.88, + "probability": 0.6869 + }, + { + "start": 4755.52, + "end": 4757.08, + "probability": 0.7802 + }, + { + "start": 4757.82, + "end": 4759.3, + "probability": 0.8569 + }, + { + "start": 4759.44, + "end": 4761.38, + "probability": 0.8781 + }, + { + "start": 4761.66, + "end": 4763.18, + "probability": 0.5336 + }, + { + "start": 4763.24, + "end": 4763.86, + "probability": 0.8923 + }, + { + "start": 4764.32, + "end": 4765.5, + "probability": 0.6775 + }, + { + "start": 4765.58, + "end": 4766.62, + "probability": 0.8896 + }, + { + "start": 4767.08, + "end": 4769.76, + "probability": 0.7915 + }, + { + "start": 4769.84, + "end": 4770.02, + "probability": 0.8232 + }, + { + "start": 4770.82, + "end": 4772.46, + "probability": 0.2438 + }, + { + "start": 4773.02, + "end": 4774.34, + "probability": 0.3245 + }, + { + "start": 4774.46, + "end": 4775.4, + "probability": 0.6821 + }, + { + "start": 4775.6, + "end": 4777.62, + "probability": 0.5171 + }, + { + "start": 4777.7, + "end": 4778.12, + "probability": 0.7908 + }, + { + "start": 4778.42, + "end": 4779.5, + "probability": 0.4802 + }, + { + "start": 4780.2, + "end": 4780.78, + "probability": 0.3395 + }, + { + "start": 4780.78, + "end": 4783.4, + "probability": 0.5685 + }, + { + "start": 4783.98, + "end": 4786.76, + "probability": 0.8892 + }, + { + "start": 4786.94, + "end": 4787.78, + "probability": 0.6782 + }, + { + "start": 4788.62, + "end": 4790.2, + "probability": 0.6531 + }, + { + "start": 4791.3, + "end": 4791.74, + "probability": 0.7726 + }, + { + "start": 4792.28, + "end": 4794.12, + "probability": 0.7837 + }, + { + "start": 4794.86, + "end": 4797.06, + "probability": 0.9844 + }, + { + "start": 4797.06, + "end": 4797.64, + "probability": 0.384 + }, + { + "start": 4797.94, + "end": 4798.76, + "probability": 0.9351 + }, + { + "start": 4799.5, + "end": 4800.08, + "probability": 0.9291 + }, + { + "start": 4801.54, + "end": 4807.6, + "probability": 0.9641 + }, + { + "start": 4808.26, + "end": 4809.78, + "probability": 0.6532 + }, + { + "start": 4811.44, + "end": 4812.92, + "probability": 0.5496 + }, + { + "start": 4813.6, + "end": 4815.22, + "probability": 0.6616 + }, + { + "start": 4816.4, + "end": 4818.16, + "probability": 0.9054 + }, + { + "start": 4818.92, + "end": 4820.08, + "probability": 0.9831 + }, + { + "start": 4821.92, + "end": 4822.46, + "probability": 0.8774 + }, + { + "start": 4823.06, + "end": 4825.68, + "probability": 0.8535 + }, + { + "start": 4826.82, + "end": 4827.86, + "probability": 0.9478 + }, + { + "start": 4828.72, + "end": 4830.14, + "probability": 0.9082 + }, + { + "start": 4831.54, + "end": 4833.84, + "probability": 0.9581 + }, + { + "start": 4833.86, + "end": 4834.86, + "probability": 0.9354 + }, + { + "start": 4835.12, + "end": 4835.66, + "probability": 0.7003 + }, + { + "start": 4835.76, + "end": 4835.97, + "probability": 0.0072 + }, + { + "start": 4836.32, + "end": 4838.78, + "probability": 0.8862 + }, + { + "start": 4839.16, + "end": 4839.66, + "probability": 0.5944 + }, + { + "start": 4840.12, + "end": 4841.02, + "probability": 0.8503 + }, + { + "start": 4842.04, + "end": 4843.38, + "probability": 0.686 + }, + { + "start": 4845.1, + "end": 4847.94, + "probability": 0.9318 + }, + { + "start": 4849.24, + "end": 4850.4, + "probability": 0.591 + }, + { + "start": 4851.94, + "end": 4853.3, + "probability": 0.6921 + }, + { + "start": 4853.7, + "end": 4855.26, + "probability": 0.9274 + }, + { + "start": 4856.36, + "end": 4856.94, + "probability": 0.854 + }, + { + "start": 4857.52, + "end": 4857.98, + "probability": 0.6653 + }, + { + "start": 4858.02, + "end": 4861.98, + "probability": 0.9016 + }, + { + "start": 4862.84, + "end": 4864.26, + "probability": 0.4939 + }, + { + "start": 4865.24, + "end": 4867.44, + "probability": 0.6803 + }, + { + "start": 4867.58, + "end": 4869.44, + "probability": 0.9058 + }, + { + "start": 4869.66, + "end": 4873.26, + "probability": 0.9346 + }, + { + "start": 4873.32, + "end": 4873.94, + "probability": 0.5839 + }, + { + "start": 4874.14, + "end": 4875.28, + "probability": 0.7784 + }, + { + "start": 4875.76, + "end": 4879.78, + "probability": 0.5272 + }, + { + "start": 4880.14, + "end": 4882.98, + "probability": 0.9673 + }, + { + "start": 4883.3, + "end": 4884.54, + "probability": 0.6382 + }, + { + "start": 4885.5, + "end": 4886.62, + "probability": 0.8094 + }, + { + "start": 4888.16, + "end": 4888.88, + "probability": 0.8891 + }, + { + "start": 4889.0, + "end": 4889.94, + "probability": 0.8847 + }, + { + "start": 4890.06, + "end": 4892.19, + "probability": 0.9404 + }, + { + "start": 4892.4, + "end": 4892.84, + "probability": 0.6558 + }, + { + "start": 4892.96, + "end": 4893.72, + "probability": 0.8728 + }, + { + "start": 4893.78, + "end": 4896.9, + "probability": 0.9947 + }, + { + "start": 4897.76, + "end": 4901.84, + "probability": 0.7865 + }, + { + "start": 4902.3, + "end": 4904.68, + "probability": 0.9073 + }, + { + "start": 4904.8, + "end": 4905.56, + "probability": 0.7838 + }, + { + "start": 4905.74, + "end": 4906.52, + "probability": 0.5516 + }, + { + "start": 4906.76, + "end": 4908.52, + "probability": 0.9858 + }, + { + "start": 4909.02, + "end": 4911.11, + "probability": 0.9912 + }, + { + "start": 4911.2, + "end": 4911.68, + "probability": 0.3042 + }, + { + "start": 4911.78, + "end": 4913.96, + "probability": 0.8035 + }, + { + "start": 4914.02, + "end": 4916.04, + "probability": 0.827 + }, + { + "start": 4916.68, + "end": 4919.12, + "probability": 0.7009 + }, + { + "start": 4920.86, + "end": 4922.92, + "probability": 0.8423 + }, + { + "start": 4922.98, + "end": 4923.64, + "probability": 0.8719 + }, + { + "start": 4923.78, + "end": 4926.76, + "probability": 0.8545 + }, + { + "start": 4927.72, + "end": 4928.1, + "probability": 0.8055 + }, + { + "start": 4928.56, + "end": 4931.08, + "probability": 0.6772 + }, + { + "start": 4931.96, + "end": 4935.26, + "probability": 0.9479 + }, + { + "start": 4935.56, + "end": 4936.0, + "probability": 0.4886 + }, + { + "start": 4936.02, + "end": 4937.0, + "probability": 0.9299 + }, + { + "start": 4937.12, + "end": 4937.94, + "probability": 0.1743 + }, + { + "start": 4938.34, + "end": 4940.54, + "probability": 0.559 + }, + { + "start": 4940.62, + "end": 4943.18, + "probability": 0.4711 + }, + { + "start": 4944.94, + "end": 4946.54, + "probability": 0.7092 + }, + { + "start": 4947.1, + "end": 4948.04, + "probability": 0.6173 + }, + { + "start": 4948.46, + "end": 4949.06, + "probability": 0.6875 + }, + { + "start": 4949.62, + "end": 4951.45, + "probability": 0.8687 + }, + { + "start": 4953.04, + "end": 4953.84, + "probability": 0.6617 + }, + { + "start": 4954.84, + "end": 4956.52, + "probability": 0.8234 + }, + { + "start": 4956.64, + "end": 4957.06, + "probability": 0.681 + }, + { + "start": 4957.74, + "end": 4959.18, + "probability": 0.3139 + }, + { + "start": 4959.2, + "end": 4961.04, + "probability": 0.8013 + }, + { + "start": 4961.12, + "end": 4962.86, + "probability": 0.6915 + }, + { + "start": 4964.76, + "end": 4966.88, + "probability": 0.8745 + }, + { + "start": 4968.7, + "end": 4971.64, + "probability": 0.9904 + }, + { + "start": 4973.46, + "end": 4974.32, + "probability": 0.9587 + }, + { + "start": 4975.22, + "end": 4978.38, + "probability": 0.8285 + }, + { + "start": 4981.52, + "end": 4982.58, + "probability": 0.5696 + }, + { + "start": 4984.6, + "end": 4986.04, + "probability": 0.8716 + }, + { + "start": 4987.96, + "end": 4988.54, + "probability": 0.6371 + }, + { + "start": 4988.54, + "end": 4989.56, + "probability": 0.8438 + }, + { + "start": 4989.78, + "end": 4992.66, + "probability": 0.8723 + }, + { + "start": 4992.96, + "end": 4998.56, + "probability": 0.9089 + }, + { + "start": 4998.98, + "end": 5000.16, + "probability": 0.6031 + }, + { + "start": 5000.98, + "end": 5002.78, + "probability": 0.841 + }, + { + "start": 5006.9, + "end": 5007.38, + "probability": 0.4066 + }, + { + "start": 5008.72, + "end": 5011.52, + "probability": 0.9878 + }, + { + "start": 5013.25, + "end": 5015.94, + "probability": 0.2134 + }, + { + "start": 5016.82, + "end": 5018.22, + "probability": 0.8178 + }, + { + "start": 5018.98, + "end": 5020.0, + "probability": 0.8389 + }, + { + "start": 5021.48, + "end": 5023.62, + "probability": 0.9964 + }, + { + "start": 5023.88, + "end": 5027.38, + "probability": 0.5914 + }, + { + "start": 5027.42, + "end": 5027.9, + "probability": 0.6954 + }, + { + "start": 5028.72, + "end": 5030.52, + "probability": 0.8735 + }, + { + "start": 5030.94, + "end": 5032.62, + "probability": 0.8835 + }, + { + "start": 5032.66, + "end": 5034.04, + "probability": 0.8313 + }, + { + "start": 5034.6, + "end": 5035.3, + "probability": 0.3095 + }, + { + "start": 5035.78, + "end": 5035.9, + "probability": 0.5674 + }, + { + "start": 5037.34, + "end": 5039.2, + "probability": 0.563 + }, + { + "start": 5039.22, + "end": 5039.56, + "probability": 0.6456 + }, + { + "start": 5040.94, + "end": 5043.14, + "probability": 0.8737 + }, + { + "start": 5044.24, + "end": 5045.06, + "probability": 0.8137 + }, + { + "start": 5045.16, + "end": 5046.36, + "probability": 0.9685 + }, + { + "start": 5046.66, + "end": 5047.22, + "probability": 0.8269 + }, + { + "start": 5047.5, + "end": 5047.94, + "probability": 0.2923 + }, + { + "start": 5048.42, + "end": 5048.84, + "probability": 0.4395 + }, + { + "start": 5049.16, + "end": 5050.94, + "probability": 0.5399 + }, + { + "start": 5051.14, + "end": 5052.2, + "probability": 0.9937 + }, + { + "start": 5052.24, + "end": 5053.16, + "probability": 0.8892 + }, + { + "start": 5054.88, + "end": 5056.3, + "probability": 0.8739 + }, + { + "start": 5056.34, + "end": 5058.58, + "probability": 0.9172 + }, + { + "start": 5058.66, + "end": 5060.4, + "probability": 0.9322 + }, + { + "start": 5061.66, + "end": 5062.37, + "probability": 0.9301 + }, + { + "start": 5064.32, + "end": 5064.93, + "probability": 0.8491 + }, + { + "start": 5065.36, + "end": 5066.46, + "probability": 0.3334 + }, + { + "start": 5066.8, + "end": 5069.5, + "probability": 0.9819 + }, + { + "start": 5070.08, + "end": 5074.28, + "probability": 0.9089 + }, + { + "start": 5075.14, + "end": 5078.7, + "probability": 0.7773 + }, + { + "start": 5079.98, + "end": 5080.98, + "probability": 0.3335 + }, + { + "start": 5081.74, + "end": 5083.28, + "probability": 0.9797 + }, + { + "start": 5083.72, + "end": 5084.0, + "probability": 0.6127 + }, + { + "start": 5084.06, + "end": 5086.59, + "probability": 0.9113 + }, + { + "start": 5088.0, + "end": 5091.24, + "probability": 0.9402 + }, + { + "start": 5091.96, + "end": 5093.0, + "probability": 0.8666 + }, + { + "start": 5093.42, + "end": 5095.0, + "probability": 0.8051 + }, + { + "start": 5095.0, + "end": 5096.78, + "probability": 0.8951 + }, + { + "start": 5097.02, + "end": 5098.2, + "probability": 0.9941 + }, + { + "start": 5098.3, + "end": 5098.66, + "probability": 0.7711 + }, + { + "start": 5098.66, + "end": 5101.5, + "probability": 0.9723 + }, + { + "start": 5102.3, + "end": 5102.9, + "probability": 0.86 + }, + { + "start": 5103.0, + "end": 5104.48, + "probability": 0.8148 + }, + { + "start": 5104.56, + "end": 5106.83, + "probability": 0.9746 + }, + { + "start": 5107.22, + "end": 5108.9, + "probability": 0.8517 + }, + { + "start": 5109.18, + "end": 5114.08, + "probability": 0.8995 + }, + { + "start": 5115.12, + "end": 5118.64, + "probability": 0.9868 + }, + { + "start": 5119.2, + "end": 5120.86, + "probability": 0.9883 + }, + { + "start": 5121.68, + "end": 5127.82, + "probability": 0.9718 + }, + { + "start": 5128.6, + "end": 5131.06, + "probability": 0.974 + }, + { + "start": 5131.88, + "end": 5136.84, + "probability": 0.9751 + }, + { + "start": 5137.8, + "end": 5140.62, + "probability": 0.9689 + }, + { + "start": 5141.12, + "end": 5142.66, + "probability": 0.7475 + }, + { + "start": 5143.12, + "end": 5143.12, + "probability": 0.0305 + }, + { + "start": 5143.12, + "end": 5146.96, + "probability": 0.6492 + }, + { + "start": 5147.06, + "end": 5148.02, + "probability": 0.954 + }, + { + "start": 5148.76, + "end": 5149.48, + "probability": 0.691 + }, + { + "start": 5150.64, + "end": 5152.3, + "probability": 0.7343 + }, + { + "start": 5152.48, + "end": 5152.48, + "probability": 0.5144 + }, + { + "start": 5152.48, + "end": 5153.1, + "probability": 0.7758 + }, + { + "start": 5153.22, + "end": 5154.5, + "probability": 0.9375 + }, + { + "start": 5154.84, + "end": 5156.22, + "probability": 0.6666 + }, + { + "start": 5156.3, + "end": 5156.92, + "probability": 0.7261 + }, + { + "start": 5157.52, + "end": 5160.3, + "probability": 0.7325 + }, + { + "start": 5160.54, + "end": 5161.62, + "probability": 0.537 + }, + { + "start": 5161.98, + "end": 5162.66, + "probability": 0.6053 + }, + { + "start": 5162.88, + "end": 5163.9, + "probability": 0.8445 + }, + { + "start": 5164.46, + "end": 5168.98, + "probability": 0.9832 + }, + { + "start": 5168.98, + "end": 5175.08, + "probability": 0.9858 + }, + { + "start": 5175.14, + "end": 5178.22, + "probability": 0.9514 + }, + { + "start": 5179.14, + "end": 5184.04, + "probability": 0.9938 + }, + { + "start": 5184.04, + "end": 5188.02, + "probability": 0.9964 + }, + { + "start": 5188.32, + "end": 5193.12, + "probability": 0.9941 + }, + { + "start": 5194.34, + "end": 5202.18, + "probability": 0.9666 + }, + { + "start": 5202.28, + "end": 5204.04, + "probability": 0.8958 + }, + { + "start": 5205.32, + "end": 5206.84, + "probability": 0.621 + }, + { + "start": 5207.0, + "end": 5207.48, + "probability": 0.9539 + }, + { + "start": 5207.56, + "end": 5210.14, + "probability": 0.9304 + }, + { + "start": 5210.2, + "end": 5214.68, + "probability": 0.9463 + }, + { + "start": 5214.92, + "end": 5215.24, + "probability": 0.81 + }, + { + "start": 5215.3, + "end": 5216.0, + "probability": 0.6985 + }, + { + "start": 5216.96, + "end": 5221.58, + "probability": 0.8945 + }, + { + "start": 5222.14, + "end": 5224.26, + "probability": 0.963 + }, + { + "start": 5224.84, + "end": 5229.06, + "probability": 0.9838 + }, + { + "start": 5229.4, + "end": 5230.84, + "probability": 0.9935 + }, + { + "start": 5231.3, + "end": 5233.06, + "probability": 0.9962 + }, + { + "start": 5233.78, + "end": 5236.18, + "probability": 0.9817 + }, + { + "start": 5236.22, + "end": 5236.55, + "probability": 0.4642 + }, + { + "start": 5237.86, + "end": 5242.44, + "probability": 0.957 + }, + { + "start": 5242.54, + "end": 5243.4, + "probability": 0.8066 + }, + { + "start": 5243.46, + "end": 5244.4, + "probability": 0.7695 + }, + { + "start": 5244.92, + "end": 5246.28, + "probability": 0.3192 + }, + { + "start": 5246.36, + "end": 5246.91, + "probability": 0.6299 + }, + { + "start": 5247.64, + "end": 5249.26, + "probability": 0.942 + }, + { + "start": 5249.62, + "end": 5250.94, + "probability": 0.5853 + }, + { + "start": 5251.2, + "end": 5252.06, + "probability": 0.9445 + }, + { + "start": 5252.62, + "end": 5253.94, + "probability": 0.9596 + }, + { + "start": 5254.22, + "end": 5258.24, + "probability": 0.9757 + }, + { + "start": 5258.32, + "end": 5261.34, + "probability": 0.9489 + }, + { + "start": 5261.64, + "end": 5267.56, + "probability": 0.9938 + }, + { + "start": 5267.57, + "end": 5271.82, + "probability": 0.9942 + }, + { + "start": 5272.1, + "end": 5272.36, + "probability": 0.3081 + }, + { + "start": 5272.46, + "end": 5272.52, + "probability": 0.3191 + }, + { + "start": 5272.64, + "end": 5274.02, + "probability": 0.8475 + }, + { + "start": 5274.78, + "end": 5277.26, + "probability": 0.9408 + }, + { + "start": 5277.46, + "end": 5280.56, + "probability": 0.8313 + }, + { + "start": 5280.7, + "end": 5281.5, + "probability": 0.7457 + }, + { + "start": 5282.08, + "end": 5288.37, + "probability": 0.9816 + }, + { + "start": 5289.2, + "end": 5291.09, + "probability": 0.9324 + }, + { + "start": 5291.72, + "end": 5292.64, + "probability": 0.0006 + }, + { + "start": 5295.05, + "end": 5297.08, + "probability": 0.7607 + }, + { + "start": 5298.08, + "end": 5299.19, + "probability": 0.5163 + }, + { + "start": 5299.36, + "end": 5301.6, + "probability": 0.3177 + }, + { + "start": 5301.68, + "end": 5302.38, + "probability": 0.6075 + }, + { + "start": 5302.48, + "end": 5303.04, + "probability": 0.7926 + }, + { + "start": 5303.48, + "end": 5304.98, + "probability": 0.8818 + }, + { + "start": 5305.88, + "end": 5307.3, + "probability": 0.7798 + }, + { + "start": 5307.9, + "end": 5309.46, + "probability": 0.8903 + }, + { + "start": 5310.28, + "end": 5311.52, + "probability": 0.7701 + }, + { + "start": 5312.38, + "end": 5315.14, + "probability": 0.9176 + }, + { + "start": 5315.38, + "end": 5316.36, + "probability": 0.2858 + }, + { + "start": 5317.72, + "end": 5318.02, + "probability": 0.3993 + }, + { + "start": 5318.2, + "end": 5320.5, + "probability": 0.7418 + }, + { + "start": 5320.52, + "end": 5321.0, + "probability": 0.6158 + }, + { + "start": 5321.08, + "end": 5322.04, + "probability": 0.9356 + }, + { + "start": 5322.44, + "end": 5323.22, + "probability": 0.8364 + }, + { + "start": 5324.64, + "end": 5327.0, + "probability": 0.8766 + }, + { + "start": 5327.52, + "end": 5329.44, + "probability": 0.562 + }, + { + "start": 5329.98, + "end": 5331.3, + "probability": 0.7094 + }, + { + "start": 5331.38, + "end": 5333.92, + "probability": 0.9129 + }, + { + "start": 5334.04, + "end": 5335.94, + "probability": 0.9971 + }, + { + "start": 5336.68, + "end": 5337.66, + "probability": 0.6931 + }, + { + "start": 5337.78, + "end": 5338.5, + "probability": 0.937 + }, + { + "start": 5338.52, + "end": 5339.3, + "probability": 0.9336 + }, + { + "start": 5340.08, + "end": 5340.82, + "probability": 0.5513 + }, + { + "start": 5340.88, + "end": 5343.96, + "probability": 0.8922 + }, + { + "start": 5344.54, + "end": 5347.94, + "probability": 0.9138 + }, + { + "start": 5348.34, + "end": 5350.36, + "probability": 0.7144 + }, + { + "start": 5350.4, + "end": 5351.76, + "probability": 0.6809 + }, + { + "start": 5352.16, + "end": 5352.3, + "probability": 0.4857 + }, + { + "start": 5352.38, + "end": 5352.98, + "probability": 0.6404 + }, + { + "start": 5353.06, + "end": 5354.86, + "probability": 0.8598 + }, + { + "start": 5355.67, + "end": 5358.22, + "probability": 0.9124 + }, + { + "start": 5358.58, + "end": 5359.3, + "probability": 0.8345 + }, + { + "start": 5359.64, + "end": 5361.38, + "probability": 0.9339 + }, + { + "start": 5361.78, + "end": 5362.78, + "probability": 0.7584 + }, + { + "start": 5363.77, + "end": 5365.78, + "probability": 0.64 + }, + { + "start": 5365.9, + "end": 5367.08, + "probability": 0.8633 + }, + { + "start": 5367.4, + "end": 5367.94, + "probability": 0.2703 + }, + { + "start": 5368.44, + "end": 5370.3, + "probability": 0.751 + }, + { + "start": 5370.4, + "end": 5371.1, + "probability": 0.9043 + }, + { + "start": 5371.16, + "end": 5372.14, + "probability": 0.9476 + }, + { + "start": 5372.24, + "end": 5373.62, + "probability": 0.8091 + }, + { + "start": 5374.28, + "end": 5377.72, + "probability": 0.9422 + }, + { + "start": 5377.72, + "end": 5383.34, + "probability": 0.8787 + }, + { + "start": 5383.46, + "end": 5383.62, + "probability": 0.5491 + }, + { + "start": 5384.53, + "end": 5388.92, + "probability": 0.9907 + }, + { + "start": 5389.48, + "end": 5391.06, + "probability": 0.7341 + }, + { + "start": 5391.5, + "end": 5393.22, + "probability": 0.5489 + }, + { + "start": 5393.76, + "end": 5394.46, + "probability": 0.6828 + }, + { + "start": 5394.8, + "end": 5395.86, + "probability": 0.8246 + }, + { + "start": 5395.94, + "end": 5397.86, + "probability": 0.7488 + }, + { + "start": 5398.18, + "end": 5402.48, + "probability": 0.9676 + }, + { + "start": 5402.5, + "end": 5405.96, + "probability": 0.9959 + }, + { + "start": 5406.36, + "end": 5406.78, + "probability": 0.7152 + }, + { + "start": 5406.86, + "end": 5410.22, + "probability": 0.9907 + }, + { + "start": 5410.4, + "end": 5411.94, + "probability": 0.6912 + }, + { + "start": 5412.34, + "end": 5413.78, + "probability": 0.7437 + }, + { + "start": 5414.26, + "end": 5415.08, + "probability": 0.6718 + }, + { + "start": 5415.08, + "end": 5415.56, + "probability": 0.5841 + }, + { + "start": 5415.68, + "end": 5416.2, + "probability": 0.6634 + }, + { + "start": 5416.2, + "end": 5416.82, + "probability": 0.8359 + }, + { + "start": 5416.92, + "end": 5417.56, + "probability": 0.7456 + }, + { + "start": 5419.74, + "end": 5422.88, + "probability": 0.0497 + }, + { + "start": 5431.86, + "end": 5436.2, + "probability": 0.0701 + }, + { + "start": 5436.72, + "end": 5438.78, + "probability": 0.0189 + }, + { + "start": 5438.78, + "end": 5439.94, + "probability": 0.2196 + }, + { + "start": 5440.3, + "end": 5440.96, + "probability": 0.0724 + }, + { + "start": 5441.06, + "end": 5441.6, + "probability": 0.3623 + }, + { + "start": 5445.0, + "end": 5447.2, + "probability": 0.0089 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.0, + "end": 5518.0, + "probability": 0.0 + }, + { + "start": 5518.3, + "end": 5518.4, + "probability": 0.108 + }, + { + "start": 5518.4, + "end": 5518.4, + "probability": 0.0147 + }, + { + "start": 5518.4, + "end": 5518.4, + "probability": 0.2307 + }, + { + "start": 5518.4, + "end": 5519.76, + "probability": 0.887 + }, + { + "start": 5520.28, + "end": 5523.34, + "probability": 0.6615 + }, + { + "start": 5524.18, + "end": 5526.72, + "probability": 0.7432 + }, + { + "start": 5527.12, + "end": 5528.88, + "probability": 0.9202 + }, + { + "start": 5529.12, + "end": 5529.22, + "probability": 0.4345 + }, + { + "start": 5530.44, + "end": 5532.28, + "probability": 0.8222 + }, + { + "start": 5532.56, + "end": 5533.46, + "probability": 0.5857 + }, + { + "start": 5533.58, + "end": 5534.76, + "probability": 0.9379 + }, + { + "start": 5535.2, + "end": 5535.64, + "probability": 0.3582 + }, + { + "start": 5535.72, + "end": 5536.8, + "probability": 0.7303 + }, + { + "start": 5537.6, + "end": 5538.98, + "probability": 0.8996 + }, + { + "start": 5539.16, + "end": 5541.04, + "probability": 0.9497 + }, + { + "start": 5544.16, + "end": 5544.16, + "probability": 0.2179 + }, + { + "start": 5544.58, + "end": 5545.96, + "probability": 0.6365 + }, + { + "start": 5547.28, + "end": 5548.91, + "probability": 0.7507 + }, + { + "start": 5549.04, + "end": 5549.68, + "probability": 0.9716 + }, + { + "start": 5549.72, + "end": 5552.82, + "probability": 0.976 + }, + { + "start": 5553.94, + "end": 5554.2, + "probability": 0.8593 + }, + { + "start": 5554.26, + "end": 5555.92, + "probability": 0.991 + }, + { + "start": 5556.04, + "end": 5557.46, + "probability": 0.3751 + }, + { + "start": 5557.46, + "end": 5560.8, + "probability": 0.7936 + }, + { + "start": 5561.16, + "end": 5564.72, + "probability": 0.9448 + }, + { + "start": 5566.9, + "end": 5567.74, + "probability": 0.7639 + }, + { + "start": 5567.8, + "end": 5569.64, + "probability": 0.7102 + }, + { + "start": 5569.9, + "end": 5570.1, + "probability": 0.298 + }, + { + "start": 5570.22, + "end": 5570.34, + "probability": 0.2917 + }, + { + "start": 5570.48, + "end": 5572.94, + "probability": 0.8695 + }, + { + "start": 5572.96, + "end": 5574.12, + "probability": 0.8411 + }, + { + "start": 5574.7, + "end": 5578.86, + "probability": 0.9461 + }, + { + "start": 5578.94, + "end": 5580.66, + "probability": 0.573 + }, + { + "start": 5580.82, + "end": 5582.7, + "probability": 0.4214 + }, + { + "start": 5584.06, + "end": 5588.18, + "probability": 0.9123 + }, + { + "start": 5588.68, + "end": 5589.72, + "probability": 0.4102 + }, + { + "start": 5589.84, + "end": 5591.72, + "probability": 0.9797 + }, + { + "start": 5592.42, + "end": 5594.08, + "probability": 0.9226 + }, + { + "start": 5594.18, + "end": 5596.17, + "probability": 0.8758 + }, + { + "start": 5596.74, + "end": 5599.04, + "probability": 0.547 + }, + { + "start": 5599.38, + "end": 5603.36, + "probability": 0.809 + }, + { + "start": 5603.76, + "end": 5604.78, + "probability": 0.6596 + }, + { + "start": 5605.04, + "end": 5608.66, + "probability": 0.4176 + }, + { + "start": 5608.66, + "end": 5609.46, + "probability": 0.0756 + }, + { + "start": 5609.46, + "end": 5613.16, + "probability": 0.9138 + }, + { + "start": 5613.6, + "end": 5614.32, + "probability": 0.8573 + }, + { + "start": 5615.32, + "end": 5617.46, + "probability": 0.6802 + }, + { + "start": 5617.98, + "end": 5621.0, + "probability": 0.9495 + }, + { + "start": 5621.38, + "end": 5622.56, + "probability": 0.5232 + }, + { + "start": 5622.62, + "end": 5623.74, + "probability": 0.4505 + }, + { + "start": 5624.22, + "end": 5628.04, + "probability": 0.8698 + }, + { + "start": 5628.34, + "end": 5630.96, + "probability": 0.9845 + }, + { + "start": 5630.98, + "end": 5634.58, + "probability": 0.9903 + }, + { + "start": 5635.08, + "end": 5640.18, + "probability": 0.9515 + }, + { + "start": 5640.36, + "end": 5643.83, + "probability": 0.5838 + }, + { + "start": 5644.16, + "end": 5644.86, + "probability": 0.7727 + }, + { + "start": 5644.96, + "end": 5645.56, + "probability": 0.9714 + }, + { + "start": 5645.68, + "end": 5646.34, + "probability": 0.9687 + }, + { + "start": 5646.42, + "end": 5648.58, + "probability": 0.9497 + }, + { + "start": 5649.06, + "end": 5650.24, + "probability": 0.6654 + }, + { + "start": 5650.78, + "end": 5653.82, + "probability": 0.9426 + }, + { + "start": 5654.3, + "end": 5655.22, + "probability": 0.3954 + }, + { + "start": 5655.42, + "end": 5656.22, + "probability": 0.3935 + }, + { + "start": 5656.38, + "end": 5657.74, + "probability": 0.5483 + }, + { + "start": 5658.53, + "end": 5659.72, + "probability": 0.9751 + }, + { + "start": 5660.98, + "end": 5665.42, + "probability": 0.8041 + }, + { + "start": 5665.5, + "end": 5667.52, + "probability": 0.9114 + }, + { + "start": 5667.6, + "end": 5670.3, + "probability": 0.8656 + }, + { + "start": 5670.42, + "end": 5671.88, + "probability": 0.8564 + }, + { + "start": 5672.08, + "end": 5676.94, + "probability": 0.7976 + }, + { + "start": 5677.3, + "end": 5680.36, + "probability": 0.9585 + }, + { + "start": 5680.36, + "end": 5684.32, + "probability": 0.9927 + }, + { + "start": 5685.36, + "end": 5686.52, + "probability": 0.5818 + }, + { + "start": 5687.3, + "end": 5689.36, + "probability": 0.9803 + }, + { + "start": 5689.5, + "end": 5693.22, + "probability": 0.7204 + }, + { + "start": 5693.8, + "end": 5696.52, + "probability": 0.7466 + }, + { + "start": 5696.64, + "end": 5697.42, + "probability": 0.6372 + }, + { + "start": 5697.42, + "end": 5699.38, + "probability": 0.6303 + }, + { + "start": 5699.5, + "end": 5702.3, + "probability": 0.8897 + }, + { + "start": 5702.6, + "end": 5702.8, + "probability": 0.5633 + }, + { + "start": 5702.9, + "end": 5704.04, + "probability": 0.5398 + }, + { + "start": 5704.7, + "end": 5710.94, + "probability": 0.9219 + }, + { + "start": 5711.48, + "end": 5714.11, + "probability": 0.9725 + }, + { + "start": 5714.8, + "end": 5716.66, + "probability": 0.7048 + }, + { + "start": 5716.72, + "end": 5720.34, + "probability": 0.9268 + }, + { + "start": 5720.8, + "end": 5723.28, + "probability": 0.9721 + }, + { + "start": 5723.28, + "end": 5726.4, + "probability": 0.874 + }, + { + "start": 5727.0, + "end": 5727.62, + "probability": 0.4566 + }, + { + "start": 5728.26, + "end": 5728.9, + "probability": 0.3071 + }, + { + "start": 5729.78, + "end": 5734.06, + "probability": 0.9563 + }, + { + "start": 5734.42, + "end": 5740.22, + "probability": 0.9075 + }, + { + "start": 5740.62, + "end": 5743.08, + "probability": 0.9842 + }, + { + "start": 5743.46, + "end": 5747.18, + "probability": 0.8415 + }, + { + "start": 5747.5, + "end": 5750.74, + "probability": 0.8919 + }, + { + "start": 5750.88, + "end": 5751.58, + "probability": 0.9709 + }, + { + "start": 5751.66, + "end": 5752.46, + "probability": 0.9174 + }, + { + "start": 5752.88, + "end": 5754.04, + "probability": 0.8255 + }, + { + "start": 5754.32, + "end": 5758.46, + "probability": 0.7407 + }, + { + "start": 5759.0, + "end": 5759.84, + "probability": 0.4278 + }, + { + "start": 5759.98, + "end": 5760.74, + "probability": 0.7652 + }, + { + "start": 5760.86, + "end": 5761.72, + "probability": 0.7444 + }, + { + "start": 5762.2, + "end": 5764.18, + "probability": 0.9631 + }, + { + "start": 5764.8, + "end": 5765.08, + "probability": 0.547 + }, + { + "start": 5765.26, + "end": 5765.78, + "probability": 0.7111 + }, + { + "start": 5765.82, + "end": 5770.2, + "probability": 0.9692 + }, + { + "start": 5770.88, + "end": 5771.5, + "probability": 0.6253 + }, + { + "start": 5771.58, + "end": 5773.84, + "probability": 0.9282 + }, + { + "start": 5774.26, + "end": 5779.76, + "probability": 0.9429 + }, + { + "start": 5780.14, + "end": 5786.36, + "probability": 0.9758 + }, + { + "start": 5786.9, + "end": 5788.18, + "probability": 0.9717 + }, + { + "start": 5788.94, + "end": 5789.5, + "probability": 0.8306 + }, + { + "start": 5789.58, + "end": 5790.8, + "probability": 0.8387 + }, + { + "start": 5790.86, + "end": 5791.76, + "probability": 0.9436 + }, + { + "start": 5792.12, + "end": 5793.59, + "probability": 0.9813 + }, + { + "start": 5793.9, + "end": 5795.1, + "probability": 0.8588 + }, + { + "start": 5795.58, + "end": 5797.58, + "probability": 0.9663 + }, + { + "start": 5797.64, + "end": 5800.2, + "probability": 0.6937 + }, + { + "start": 5800.62, + "end": 5802.5, + "probability": 0.9298 + }, + { + "start": 5802.88, + "end": 5804.12, + "probability": 0.9264 + }, + { + "start": 5804.38, + "end": 5809.28, + "probability": 0.8856 + }, + { + "start": 5809.68, + "end": 5810.96, + "probability": 0.9602 + }, + { + "start": 5811.46, + "end": 5812.85, + "probability": 0.8937 + }, + { + "start": 5813.34, + "end": 5815.98, + "probability": 0.7551 + }, + { + "start": 5816.36, + "end": 5818.26, + "probability": 0.8976 + }, + { + "start": 5818.56, + "end": 5819.16, + "probability": 0.4572 + }, + { + "start": 5819.58, + "end": 5820.02, + "probability": 0.8468 + }, + { + "start": 5820.64, + "end": 5823.32, + "probability": 0.9601 + }, + { + "start": 5823.98, + "end": 5829.98, + "probability": 0.7963 + }, + { + "start": 5830.56, + "end": 5833.14, + "probability": 0.8109 + }, + { + "start": 5833.42, + "end": 5835.66, + "probability": 0.8781 + }, + { + "start": 5835.66, + "end": 5836.16, + "probability": 0.3435 + }, + { + "start": 5836.7, + "end": 5837.55, + "probability": 0.8193 + }, + { + "start": 5838.32, + "end": 5840.26, + "probability": 0.9549 + }, + { + "start": 5841.26, + "end": 5844.66, + "probability": 0.822 + }, + { + "start": 5845.18, + "end": 5846.21, + "probability": 0.2769 + }, + { + "start": 5846.76, + "end": 5847.1, + "probability": 0.7468 + }, + { + "start": 5847.14, + "end": 5847.46, + "probability": 0.709 + }, + { + "start": 5847.46, + "end": 5847.56, + "probability": 0.5887 + }, + { + "start": 5847.8, + "end": 5850.86, + "probability": 0.8841 + }, + { + "start": 5851.5, + "end": 5855.62, + "probability": 0.8435 + }, + { + "start": 5855.68, + "end": 5856.03, + "probability": 0.2873 + }, + { + "start": 5856.16, + "end": 5856.96, + "probability": 0.6765 + }, + { + "start": 5857.28, + "end": 5858.36, + "probability": 0.5949 + }, + { + "start": 5859.94, + "end": 5860.86, + "probability": 0.7703 + }, + { + "start": 5861.48, + "end": 5867.42, + "probability": 0.8823 + }, + { + "start": 5868.2, + "end": 5869.43, + "probability": 0.7778 + }, + { + "start": 5869.9, + "end": 5872.24, + "probability": 0.965 + }, + { + "start": 5872.34, + "end": 5875.02, + "probability": 0.9155 + }, + { + "start": 5875.7, + "end": 5879.76, + "probability": 0.797 + }, + { + "start": 5880.22, + "end": 5883.26, + "probability": 0.8058 + }, + { + "start": 5883.66, + "end": 5885.06, + "probability": 0.8195 + }, + { + "start": 5885.66, + "end": 5889.62, + "probability": 0.9897 + }, + { + "start": 5890.12, + "end": 5893.14, + "probability": 0.9719 + }, + { + "start": 5894.2, + "end": 5895.66, + "probability": 0.6667 + }, + { + "start": 5895.7, + "end": 5896.62, + "probability": 0.6629 + }, + { + "start": 5897.38, + "end": 5899.42, + "probability": 0.9035 + }, + { + "start": 5900.0, + "end": 5903.52, + "probability": 0.8497 + }, + { + "start": 5903.52, + "end": 5906.28, + "probability": 0.9965 + }, + { + "start": 5906.82, + "end": 5907.78, + "probability": 0.7021 + }, + { + "start": 5908.34, + "end": 5913.18, + "probability": 0.991 + }, + { + "start": 5913.96, + "end": 5917.48, + "probability": 0.9528 + }, + { + "start": 5917.98, + "end": 5918.66, + "probability": 0.6681 + }, + { + "start": 5918.98, + "end": 5921.14, + "probability": 0.9508 + }, + { + "start": 5921.6, + "end": 5922.46, + "probability": 0.6782 + }, + { + "start": 5922.88, + "end": 5923.48, + "probability": 0.4072 + }, + { + "start": 5923.52, + "end": 5923.82, + "probability": 0.4413 + }, + { + "start": 5923.96, + "end": 5924.08, + "probability": 0.1312 + }, + { + "start": 5924.22, + "end": 5925.64, + "probability": 0.7323 + }, + { + "start": 5926.26, + "end": 5927.88, + "probability": 0.9936 + }, + { + "start": 5928.3, + "end": 5931.61, + "probability": 0.9641 + }, + { + "start": 5932.08, + "end": 5933.1, + "probability": 0.9419 + }, + { + "start": 5933.68, + "end": 5937.66, + "probability": 0.9586 + }, + { + "start": 5938.04, + "end": 5941.22, + "probability": 0.5325 + }, + { + "start": 5941.7, + "end": 5945.2, + "probability": 0.956 + }, + { + "start": 5945.34, + "end": 5946.34, + "probability": 0.9715 + }, + { + "start": 5946.84, + "end": 5948.28, + "probability": 0.891 + }, + { + "start": 5948.64, + "end": 5950.18, + "probability": 0.9692 + }, + { + "start": 5950.88, + "end": 5952.24, + "probability": 0.9699 + }, + { + "start": 5952.66, + "end": 5954.98, + "probability": 0.9948 + }, + { + "start": 5955.4, + "end": 5955.84, + "probability": 0.5882 + }, + { + "start": 5955.84, + "end": 5956.7, + "probability": 0.6434 + }, + { + "start": 5957.3, + "end": 5957.66, + "probability": 0.7738 + }, + { + "start": 5957.72, + "end": 5959.92, + "probability": 0.9241 + }, + { + "start": 5959.92, + "end": 5961.08, + "probability": 0.6351 + }, + { + "start": 5962.11, + "end": 5964.48, + "probability": 0.8536 + }, + { + "start": 5965.04, + "end": 5965.92, + "probability": 0.7336 + }, + { + "start": 5966.06, + "end": 5967.08, + "probability": 0.8615 + }, + { + "start": 5967.46, + "end": 5969.98, + "probability": 0.9409 + }, + { + "start": 5970.56, + "end": 5972.44, + "probability": 0.7931 + }, + { + "start": 5973.1, + "end": 5975.36, + "probability": 0.8278 + }, + { + "start": 5975.7, + "end": 5975.84, + "probability": 0.2742 + }, + { + "start": 5976.02, + "end": 5979.14, + "probability": 0.9769 + }, + { + "start": 5979.3, + "end": 5980.38, + "probability": 0.9336 + }, + { + "start": 5980.8, + "end": 5981.8, + "probability": 0.9661 + }, + { + "start": 5982.42, + "end": 5984.52, + "probability": 0.8113 + }, + { + "start": 5984.92, + "end": 5986.06, + "probability": 0.8096 + }, + { + "start": 5986.42, + "end": 5987.44, + "probability": 0.7976 + }, + { + "start": 5988.0, + "end": 5991.44, + "probability": 0.7586 + }, + { + "start": 5991.76, + "end": 5992.76, + "probability": 0.9382 + }, + { + "start": 5993.26, + "end": 5994.7, + "probability": 0.9209 + }, + { + "start": 5995.18, + "end": 6001.98, + "probability": 0.993 + }, + { + "start": 6002.54, + "end": 6003.68, + "probability": 0.7842 + }, + { + "start": 6004.3, + "end": 6005.82, + "probability": 0.8596 + }, + { + "start": 6006.12, + "end": 6007.28, + "probability": 0.8638 + }, + { + "start": 6007.52, + "end": 6008.28, + "probability": 0.6873 + }, + { + "start": 6009.26, + "end": 6013.08, + "probability": 0.8278 + }, + { + "start": 6013.8, + "end": 6013.98, + "probability": 0.2579 + }, + { + "start": 6014.06, + "end": 6015.34, + "probability": 0.9495 + }, + { + "start": 6015.7, + "end": 6020.2, + "probability": 0.9734 + }, + { + "start": 6020.94, + "end": 6023.42, + "probability": 0.9557 + }, + { + "start": 6023.92, + "end": 6026.05, + "probability": 0.9792 + }, + { + "start": 6026.24, + "end": 6029.34, + "probability": 0.8577 + }, + { + "start": 6029.78, + "end": 6030.02, + "probability": 0.2866 + }, + { + "start": 6030.18, + "end": 6031.3, + "probability": 0.7847 + }, + { + "start": 6031.42, + "end": 6032.38, + "probability": 0.6135 + }, + { + "start": 6032.86, + "end": 6034.54, + "probability": 0.9143 + }, + { + "start": 6034.6, + "end": 6035.0, + "probability": 0.4081 + }, + { + "start": 6035.62, + "end": 6036.5, + "probability": 0.9697 + }, + { + "start": 6043.08, + "end": 6044.32, + "probability": 0.0341 + }, + { + "start": 6044.32, + "end": 6044.32, + "probability": 0.4672 + }, + { + "start": 6044.32, + "end": 6044.8, + "probability": 0.4635 + }, + { + "start": 6044.9, + "end": 6046.96, + "probability": 0.8757 + }, + { + "start": 6047.76, + "end": 6049.4, + "probability": 0.9127 + }, + { + "start": 6049.94, + "end": 6051.44, + "probability": 0.74 + }, + { + "start": 6052.24, + "end": 6056.08, + "probability": 0.9764 + }, + { + "start": 6056.66, + "end": 6057.78, + "probability": 0.7306 + }, + { + "start": 6057.94, + "end": 6058.64, + "probability": 0.6197 + }, + { + "start": 6058.88, + "end": 6060.14, + "probability": 0.682 + }, + { + "start": 6060.66, + "end": 6063.5, + "probability": 0.8768 + }, + { + "start": 6063.9, + "end": 6064.76, + "probability": 0.8776 + }, + { + "start": 6065.14, + "end": 6066.8, + "probability": 0.9705 + }, + { + "start": 6067.26, + "end": 6068.2, + "probability": 0.5847 + }, + { + "start": 6068.34, + "end": 6070.22, + "probability": 0.7053 + }, + { + "start": 6070.68, + "end": 6075.16, + "probability": 0.7726 + }, + { + "start": 6076.08, + "end": 6079.96, + "probability": 0.6296 + }, + { + "start": 6080.48, + "end": 6083.18, + "probability": 0.6843 + }, + { + "start": 6083.54, + "end": 6084.94, + "probability": 0.7816 + }, + { + "start": 6085.38, + "end": 6085.84, + "probability": 0.8048 + }, + { + "start": 6086.04, + "end": 6087.02, + "probability": 0.5869 + }, + { + "start": 6087.28, + "end": 6091.8, + "probability": 0.5559 + }, + { + "start": 6092.5, + "end": 6095.74, + "probability": 0.8721 + }, + { + "start": 6096.14, + "end": 6096.72, + "probability": 0.9119 + }, + { + "start": 6096.96, + "end": 6101.5, + "probability": 0.6484 + }, + { + "start": 6103.86, + "end": 6106.96, + "probability": 0.871 + }, + { + "start": 6107.5, + "end": 6109.0, + "probability": 0.7997 + }, + { + "start": 6110.22, + "end": 6114.08, + "probability": 0.948 + }, + { + "start": 6115.08, + "end": 6117.08, + "probability": 0.9163 + }, + { + "start": 6119.18, + "end": 6119.26, + "probability": 0.3777 + }, + { + "start": 6119.36, + "end": 6120.02, + "probability": 0.6502 + }, + { + "start": 6120.08, + "end": 6121.79, + "probability": 0.8687 + }, + { + "start": 6122.02, + "end": 6123.47, + "probability": 0.9075 + }, + { + "start": 6123.72, + "end": 6124.92, + "probability": 0.7368 + }, + { + "start": 6126.42, + "end": 6126.42, + "probability": 0.1569 + }, + { + "start": 6126.42, + "end": 6127.08, + "probability": 0.7315 + }, + { + "start": 6128.0, + "end": 6130.62, + "probability": 0.4594 + }, + { + "start": 6130.74, + "end": 6132.05, + "probability": 0.5091 + }, + { + "start": 6132.86, + "end": 6134.04, + "probability": 0.8584 + }, + { + "start": 6134.14, + "end": 6134.54, + "probability": 0.7363 + }, + { + "start": 6134.66, + "end": 6137.13, + "probability": 0.6172 + }, + { + "start": 6137.44, + "end": 6140.52, + "probability": 0.5379 + }, + { + "start": 6140.52, + "end": 6142.26, + "probability": 0.7139 + }, + { + "start": 6143.48, + "end": 6147.64, + "probability": 0.9679 + }, + { + "start": 6148.8, + "end": 6152.02, + "probability": 0.5329 + }, + { + "start": 6152.68, + "end": 6153.56, + "probability": 0.6536 + }, + { + "start": 6154.96, + "end": 6155.94, + "probability": 0.8745 + }, + { + "start": 6156.26, + "end": 6156.92, + "probability": 0.6224 + }, + { + "start": 6158.3, + "end": 6161.38, + "probability": 0.8718 + }, + { + "start": 6161.66, + "end": 6164.36, + "probability": 0.7651 + }, + { + "start": 6164.48, + "end": 6165.5, + "probability": 0.8761 + }, + { + "start": 6168.28, + "end": 6168.92, + "probability": 0.1157 + }, + { + "start": 6168.92, + "end": 6170.18, + "probability": 0.9308 + }, + { + "start": 6170.28, + "end": 6172.04, + "probability": 0.9694 + }, + { + "start": 6172.12, + "end": 6174.88, + "probability": 0.8636 + }, + { + "start": 6175.64, + "end": 6178.74, + "probability": 0.9673 + }, + { + "start": 6180.52, + "end": 6180.52, + "probability": 0.5815 + }, + { + "start": 6180.52, + "end": 6183.6, + "probability": 0.7203 + }, + { + "start": 6183.72, + "end": 6191.14, + "probability": 0.9763 + }, + { + "start": 6191.36, + "end": 6193.1, + "probability": 0.815 + }, + { + "start": 6194.68, + "end": 6194.78, + "probability": 0.2849 + }, + { + "start": 6194.78, + "end": 6195.22, + "probability": 0.4631 + }, + { + "start": 6195.4, + "end": 6196.48, + "probability": 0.566 + }, + { + "start": 6196.9, + "end": 6197.4, + "probability": 0.9112 + }, + { + "start": 6197.62, + "end": 6197.98, + "probability": 0.9335 + }, + { + "start": 6198.34, + "end": 6198.9, + "probability": 0.894 + }, + { + "start": 6198.98, + "end": 6199.8, + "probability": 0.6871 + }, + { + "start": 6200.22, + "end": 6202.02, + "probability": 0.786 + }, + { + "start": 6202.06, + "end": 6202.86, + "probability": 0.4862 + }, + { + "start": 6203.24, + "end": 6204.54, + "probability": 0.6263 + }, + { + "start": 6205.14, + "end": 6209.42, + "probability": 0.9337 + }, + { + "start": 6210.18, + "end": 6211.48, + "probability": 0.743 + }, + { + "start": 6212.52, + "end": 6212.8, + "probability": 0.83 + }, + { + "start": 6212.92, + "end": 6216.88, + "probability": 0.7614 + }, + { + "start": 6216.88, + "end": 6222.0, + "probability": 0.8064 + }, + { + "start": 6222.0, + "end": 6223.26, + "probability": 0.1527 + }, + { + "start": 6223.76, + "end": 6227.6, + "probability": 0.9107 + }, + { + "start": 6227.6, + "end": 6231.38, + "probability": 0.9711 + }, + { + "start": 6233.06, + "end": 6234.62, + "probability": 0.6013 + }, + { + "start": 6234.86, + "end": 6235.2, + "probability": 0.3162 + }, + { + "start": 6235.32, + "end": 6235.82, + "probability": 0.4779 + }, + { + "start": 6235.84, + "end": 6236.36, + "probability": 0.7731 + }, + { + "start": 6236.74, + "end": 6237.74, + "probability": 0.493 + }, + { + "start": 6239.3, + "end": 6243.24, + "probability": 0.0331 + }, + { + "start": 6257.7, + "end": 6260.49, + "probability": 0.0104 + }, + { + "start": 6261.66, + "end": 6264.36, + "probability": 0.099 + }, + { + "start": 6264.98, + "end": 6265.12, + "probability": 0.0 + }, + { + "start": 6273.86, + "end": 6274.62, + "probability": 0.0737 + }, + { + "start": 6274.62, + "end": 6274.62, + "probability": 0.0657 + }, + { + "start": 6274.86, + "end": 6276.16, + "probability": 0.2012 + }, + { + "start": 6276.4, + "end": 6278.8, + "probability": 0.0207 + }, + { + "start": 6279.59, + "end": 6280.81, + "probability": 0.1299 + }, + { + "start": 6281.68, + "end": 6285.12, + "probability": 0.0271 + }, + { + "start": 6285.5, + "end": 6287.3, + "probability": 0.0438 + }, + { + "start": 6288.06, + "end": 6290.92, + "probability": 0.2855 + }, + { + "start": 6291.82, + "end": 6299.04, + "probability": 0.0922 + }, + { + "start": 6300.12, + "end": 6301.38, + "probability": 0.3879 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6326.0, + "end": 6326.0, + "probability": 0.0 + }, + { + "start": 6328.02, + "end": 6329.66, + "probability": 0.5407 + }, + { + "start": 6329.72, + "end": 6331.26, + "probability": 0.1996 + }, + { + "start": 6331.36, + "end": 6333.08, + "probability": 0.7025 + }, + { + "start": 6333.12, + "end": 6333.2, + "probability": 0.3485 + }, + { + "start": 6333.2, + "end": 6334.14, + "probability": 0.4663 + }, + { + "start": 6335.04, + "end": 6336.98, + "probability": 0.4202 + }, + { + "start": 6337.02, + "end": 6339.52, + "probability": 0.9924 + }, + { + "start": 6341.78, + "end": 6343.96, + "probability": 0.9808 + }, + { + "start": 6344.04, + "end": 6348.06, + "probability": 0.9649 + }, + { + "start": 6348.06, + "end": 6351.12, + "probability": 0.9985 + }, + { + "start": 6351.8, + "end": 6353.88, + "probability": 0.6197 + }, + { + "start": 6355.08, + "end": 6355.46, + "probability": 0.4893 + }, + { + "start": 6356.48, + "end": 6358.02, + "probability": 0.8224 + }, + { + "start": 6358.12, + "end": 6363.92, + "probability": 0.991 + }, + { + "start": 6364.44, + "end": 6367.04, + "probability": 0.8349 + }, + { + "start": 6367.84, + "end": 6369.38, + "probability": 0.8608 + }, + { + "start": 6369.98, + "end": 6374.16, + "probability": 0.9427 + }, + { + "start": 6375.7, + "end": 6378.78, + "probability": 0.979 + }, + { + "start": 6379.44, + "end": 6381.04, + "probability": 0.9278 + }, + { + "start": 6381.14, + "end": 6383.0, + "probability": 0.9119 + }, + { + "start": 6383.46, + "end": 6384.68, + "probability": 0.9808 + }, + { + "start": 6385.61, + "end": 6389.8, + "probability": 0.9819 + }, + { + "start": 6391.92, + "end": 6394.76, + "probability": 0.8354 + }, + { + "start": 6395.38, + "end": 6398.34, + "probability": 0.9825 + }, + { + "start": 6399.32, + "end": 6403.04, + "probability": 0.9401 + }, + { + "start": 6403.54, + "end": 6404.06, + "probability": 0.8687 + }, + { + "start": 6404.28, + "end": 6407.62, + "probability": 0.9761 + }, + { + "start": 6408.62, + "end": 6412.78, + "probability": 0.9671 + }, + { + "start": 6413.3, + "end": 6421.04, + "probability": 0.9958 + }, + { + "start": 6422.66, + "end": 6427.2, + "probability": 0.9977 + }, + { + "start": 6428.0, + "end": 6432.44, + "probability": 0.943 + }, + { + "start": 6434.1, + "end": 6434.84, + "probability": 0.7674 + }, + { + "start": 6434.96, + "end": 6435.76, + "probability": 0.7475 + }, + { + "start": 6435.88, + "end": 6437.56, + "probability": 0.9462 + }, + { + "start": 6437.64, + "end": 6438.56, + "probability": 0.8633 + }, + { + "start": 6439.18, + "end": 6441.59, + "probability": 0.8163 + }, + { + "start": 6442.14, + "end": 6444.24, + "probability": 0.8321 + }, + { + "start": 6446.36, + "end": 6447.66, + "probability": 0.3601 + }, + { + "start": 6449.7, + "end": 6449.7, + "probability": 0.0432 + }, + { + "start": 6449.7, + "end": 6451.98, + "probability": 0.8916 + }, + { + "start": 6452.12, + "end": 6452.9, + "probability": 0.6821 + }, + { + "start": 6452.98, + "end": 6453.4, + "probability": 0.5804 + }, + { + "start": 6454.04, + "end": 6457.02, + "probability": 0.7878 + }, + { + "start": 6458.36, + "end": 6463.72, + "probability": 0.9937 + }, + { + "start": 6464.2, + "end": 6465.46, + "probability": 0.9065 + }, + { + "start": 6467.06, + "end": 6473.54, + "probability": 0.9397 + }, + { + "start": 6473.58, + "end": 6475.8, + "probability": 0.9562 + }, + { + "start": 6475.9, + "end": 6476.32, + "probability": 0.6789 + }, + { + "start": 6476.44, + "end": 6476.88, + "probability": 0.9148 + }, + { + "start": 6478.46, + "end": 6480.12, + "probability": 0.7038 + }, + { + "start": 6480.76, + "end": 6484.64, + "probability": 0.9913 + }, + { + "start": 6485.64, + "end": 6493.86, + "probability": 0.9907 + }, + { + "start": 6494.3, + "end": 6498.84, + "probability": 0.8171 + }, + { + "start": 6498.84, + "end": 6502.56, + "probability": 0.9861 + }, + { + "start": 6502.56, + "end": 6506.1, + "probability": 0.9893 + }, + { + "start": 6508.3, + "end": 6508.74, + "probability": 0.575 + }, + { + "start": 6508.92, + "end": 6515.64, + "probability": 0.9915 + }, + { + "start": 6515.64, + "end": 6522.88, + "probability": 0.9846 + }, + { + "start": 6523.3, + "end": 6523.8, + "probability": 0.8543 + }, + { + "start": 6528.26, + "end": 6530.74, + "probability": 0.8605 + }, + { + "start": 6531.02, + "end": 6531.9, + "probability": 0.7679 + }, + { + "start": 6533.12, + "end": 6535.12, + "probability": 0.9934 + }, + { + "start": 6535.56, + "end": 6539.46, + "probability": 0.9812 + }, + { + "start": 6539.64, + "end": 6540.38, + "probability": 0.8655 + }, + { + "start": 6540.72, + "end": 6541.72, + "probability": 0.8706 + }, + { + "start": 6541.76, + "end": 6542.32, + "probability": 0.9829 + }, + { + "start": 6542.46, + "end": 6542.68, + "probability": 0.0561 + }, + { + "start": 6542.78, + "end": 6544.96, + "probability": 0.7225 + }, + { + "start": 6545.12, + "end": 6545.84, + "probability": 0.645 + }, + { + "start": 6546.48, + "end": 6548.16, + "probability": 0.9579 + }, + { + "start": 6548.46, + "end": 6551.88, + "probability": 0.9752 + }, + { + "start": 6553.2, + "end": 6557.54, + "probability": 0.9903 + }, + { + "start": 6557.92, + "end": 6563.72, + "probability": 0.9961 + }, + { + "start": 6564.26, + "end": 6565.88, + "probability": 0.9958 + }, + { + "start": 6566.42, + "end": 6568.18, + "probability": 0.9997 + }, + { + "start": 6569.82, + "end": 6572.94, + "probability": 0.8855 + }, + { + "start": 6573.28, + "end": 6575.4, + "probability": 0.9505 + }, + { + "start": 6575.42, + "end": 6578.04, + "probability": 0.591 + }, + { + "start": 6578.64, + "end": 6581.58, + "probability": 0.9861 + }, + { + "start": 6582.36, + "end": 6585.32, + "probability": 0.9917 + }, + { + "start": 6585.7, + "end": 6586.64, + "probability": 0.952 + }, + { + "start": 6586.74, + "end": 6590.52, + "probability": 0.9706 + }, + { + "start": 6590.88, + "end": 6593.16, + "probability": 0.9939 + }, + { + "start": 6593.58, + "end": 6595.34, + "probability": 0.7266 + }, + { + "start": 6595.4, + "end": 6596.76, + "probability": 0.8817 + }, + { + "start": 6597.14, + "end": 6600.37, + "probability": 0.9776 + }, + { + "start": 6600.98, + "end": 6601.12, + "probability": 0.0077 + }, + { + "start": 6601.8, + "end": 6605.68, + "probability": 0.9312 + }, + { + "start": 6606.94, + "end": 6607.92, + "probability": 0.9058 + }, + { + "start": 6608.66, + "end": 6610.88, + "probability": 0.776 + }, + { + "start": 6611.4, + "end": 6612.92, + "probability": 0.6917 + }, + { + "start": 6613.74, + "end": 6615.38, + "probability": 0.62 + }, + { + "start": 6616.16, + "end": 6623.28, + "probability": 0.9715 + }, + { + "start": 6624.54, + "end": 6627.3, + "probability": 0.9255 + }, + { + "start": 6628.2, + "end": 6631.64, + "probability": 0.9256 + }, + { + "start": 6632.2, + "end": 6634.54, + "probability": 0.8644 + }, + { + "start": 6634.86, + "end": 6637.78, + "probability": 0.9944 + }, + { + "start": 6638.04, + "end": 6639.74, + "probability": 0.9607 + }, + { + "start": 6640.26, + "end": 6644.78, + "probability": 0.9932 + }, + { + "start": 6645.18, + "end": 6646.4, + "probability": 0.9651 + }, + { + "start": 6648.85, + "end": 6649.5, + "probability": 0.1158 + }, + { + "start": 6649.5, + "end": 6654.86, + "probability": 0.9379 + }, + { + "start": 6654.86, + "end": 6660.98, + "probability": 0.9949 + }, + { + "start": 6663.06, + "end": 6667.72, + "probability": 0.9968 + }, + { + "start": 6667.88, + "end": 6668.86, + "probability": 0.8065 + }, + { + "start": 6669.68, + "end": 6675.72, + "probability": 0.763 + }, + { + "start": 6676.64, + "end": 6677.72, + "probability": 0.3383 + }, + { + "start": 6677.76, + "end": 6683.38, + "probability": 0.9885 + }, + { + "start": 6683.66, + "end": 6685.36, + "probability": 0.896 + }, + { + "start": 6686.5, + "end": 6692.98, + "probability": 0.9985 + }, + { + "start": 6693.12, + "end": 6694.3, + "probability": 0.8617 + }, + { + "start": 6695.4, + "end": 6697.26, + "probability": 0.9172 + }, + { + "start": 6697.52, + "end": 6698.06, + "probability": 0.4919 + }, + { + "start": 6698.16, + "end": 6698.6, + "probability": 0.5559 + }, + { + "start": 6698.92, + "end": 6700.58, + "probability": 0.7741 + }, + { + "start": 6700.82, + "end": 6702.37, + "probability": 0.7355 + }, + { + "start": 6703.38, + "end": 6708.44, + "probability": 0.9922 + }, + { + "start": 6708.68, + "end": 6710.18, + "probability": 0.9656 + }, + { + "start": 6710.5, + "end": 6712.12, + "probability": 0.7867 + }, + { + "start": 6712.8, + "end": 6715.4, + "probability": 0.9823 + }, + { + "start": 6715.94, + "end": 6717.74, + "probability": 0.959 + }, + { + "start": 6717.74, + "end": 6720.5, + "probability": 0.9937 + }, + { + "start": 6721.04, + "end": 6724.72, + "probability": 0.9576 + }, + { + "start": 6725.5, + "end": 6726.32, + "probability": 0.7577 + }, + { + "start": 6727.18, + "end": 6728.38, + "probability": 0.9668 + }, + { + "start": 6729.66, + "end": 6730.92, + "probability": 0.9926 + }, + { + "start": 6731.44, + "end": 6733.72, + "probability": 0.9132 + }, + { + "start": 6733.9, + "end": 6736.04, + "probability": 0.9746 + }, + { + "start": 6737.22, + "end": 6739.76, + "probability": 0.9755 + }, + { + "start": 6739.9, + "end": 6742.34, + "probability": 0.9783 + }, + { + "start": 6742.74, + "end": 6746.94, + "probability": 0.991 + }, + { + "start": 6746.94, + "end": 6751.38, + "probability": 0.9834 + }, + { + "start": 6751.84, + "end": 6752.98, + "probability": 0.9708 + }, + { + "start": 6754.0, + "end": 6755.61, + "probability": 0.9837 + }, + { + "start": 6757.4, + "end": 6760.0, + "probability": 0.9783 + }, + { + "start": 6760.9, + "end": 6763.6, + "probability": 0.9043 + }, + { + "start": 6764.2, + "end": 6766.26, + "probability": 0.3141 + }, + { + "start": 6768.88, + "end": 6769.08, + "probability": 0.1428 + }, + { + "start": 6769.08, + "end": 6771.7, + "probability": 0.8038 + }, + { + "start": 6772.18, + "end": 6772.67, + "probability": 0.9346 + }, + { + "start": 6772.76, + "end": 6775.54, + "probability": 0.9742 + }, + { + "start": 6775.9, + "end": 6777.28, + "probability": 0.9856 + }, + { + "start": 6778.66, + "end": 6782.82, + "probability": 0.9478 + }, + { + "start": 6784.0, + "end": 6785.88, + "probability": 0.8026 + }, + { + "start": 6786.74, + "end": 6791.04, + "probability": 0.9847 + }, + { + "start": 6791.66, + "end": 6796.12, + "probability": 0.9963 + }, + { + "start": 6796.12, + "end": 6799.64, + "probability": 0.9327 + }, + { + "start": 6799.86, + "end": 6800.4, + "probability": 0.6526 + }, + { + "start": 6800.58, + "end": 6806.82, + "probability": 0.9697 + }, + { + "start": 6806.82, + "end": 6812.48, + "probability": 0.9977 + }, + { + "start": 6813.6, + "end": 6814.78, + "probability": 0.9976 + }, + { + "start": 6814.8, + "end": 6817.12, + "probability": 0.9777 + }, + { + "start": 6817.54, + "end": 6819.13, + "probability": 0.8856 + }, + { + "start": 6819.56, + "end": 6821.7, + "probability": 0.9985 + }, + { + "start": 6821.84, + "end": 6823.72, + "probability": 0.9729 + }, + { + "start": 6823.86, + "end": 6824.64, + "probability": 0.7748 + }, + { + "start": 6825.76, + "end": 6828.56, + "probability": 0.9966 + }, + { + "start": 6830.36, + "end": 6834.14, + "probability": 0.9195 + }, + { + "start": 6834.38, + "end": 6839.08, + "probability": 0.9184 + }, + { + "start": 6839.24, + "end": 6842.08, + "probability": 0.9684 + }, + { + "start": 6842.82, + "end": 6848.98, + "probability": 0.8348 + }, + { + "start": 6849.08, + "end": 6850.08, + "probability": 0.6633 + }, + { + "start": 6850.34, + "end": 6851.56, + "probability": 0.8384 + }, + { + "start": 6851.98, + "end": 6854.56, + "probability": 0.9889 + }, + { + "start": 6854.7, + "end": 6857.56, + "probability": 0.9455 + }, + { + "start": 6857.72, + "end": 6858.68, + "probability": 0.9757 + }, + { + "start": 6858.76, + "end": 6859.72, + "probability": 0.6875 + }, + { + "start": 6860.14, + "end": 6861.48, + "probability": 0.9585 + }, + { + "start": 6861.62, + "end": 6862.58, + "probability": 0.9436 + }, + { + "start": 6862.64, + "end": 6863.2, + "probability": 0.7844 + }, + { + "start": 6863.6, + "end": 6864.26, + "probability": 0.7532 + }, + { + "start": 6864.3, + "end": 6868.8, + "probability": 0.9849 + }, + { + "start": 6869.02, + "end": 6873.1, + "probability": 0.7494 + }, + { + "start": 6873.82, + "end": 6874.66, + "probability": 0.9068 + }, + { + "start": 6874.72, + "end": 6876.66, + "probability": 0.7482 + }, + { + "start": 6876.78, + "end": 6882.04, + "probability": 0.9615 + }, + { + "start": 6896.08, + "end": 6896.86, + "probability": 0.596 + }, + { + "start": 6898.34, + "end": 6898.98, + "probability": 0.8758 + }, + { + "start": 6900.84, + "end": 6902.04, + "probability": 0.8894 + }, + { + "start": 6902.18, + "end": 6906.08, + "probability": 0.9609 + }, + { + "start": 6908.44, + "end": 6913.0, + "probability": 0.9989 + }, + { + "start": 6914.06, + "end": 6915.64, + "probability": 0.9945 + }, + { + "start": 6916.32, + "end": 6920.12, + "probability": 0.9519 + }, + { + "start": 6920.74, + "end": 6925.04, + "probability": 0.8488 + }, + { + "start": 6926.2, + "end": 6928.0, + "probability": 0.9855 + }, + { + "start": 6929.4, + "end": 6932.48, + "probability": 0.8275 + }, + { + "start": 6933.28, + "end": 6933.76, + "probability": 0.6578 + }, + { + "start": 6934.62, + "end": 6936.18, + "probability": 0.9968 + }, + { + "start": 6938.44, + "end": 6942.7, + "probability": 0.9427 + }, + { + "start": 6943.92, + "end": 6946.02, + "probability": 0.8279 + }, + { + "start": 6946.98, + "end": 6947.74, + "probability": 0.6165 + }, + { + "start": 6948.66, + "end": 6951.38, + "probability": 0.9776 + }, + { + "start": 6952.16, + "end": 6954.78, + "probability": 0.7815 + }, + { + "start": 6954.78, + "end": 6957.02, + "probability": 0.9984 + }, + { + "start": 6958.14, + "end": 6960.76, + "probability": 0.8949 + }, + { + "start": 6961.46, + "end": 6964.88, + "probability": 0.9993 + }, + { + "start": 6965.72, + "end": 6967.54, + "probability": 0.9394 + }, + { + "start": 6968.54, + "end": 6971.62, + "probability": 0.905 + }, + { + "start": 6972.32, + "end": 6973.3, + "probability": 0.6044 + }, + { + "start": 6973.4, + "end": 6977.04, + "probability": 0.9043 + }, + { + "start": 6978.0, + "end": 6982.12, + "probability": 0.998 + }, + { + "start": 6982.84, + "end": 6984.78, + "probability": 0.9145 + }, + { + "start": 6985.66, + "end": 6987.68, + "probability": 0.8245 + }, + { + "start": 6987.8, + "end": 6990.68, + "probability": 0.9461 + }, + { + "start": 6991.48, + "end": 6993.6, + "probability": 0.9979 + }, + { + "start": 6994.28, + "end": 6997.76, + "probability": 0.9941 + }, + { + "start": 6998.7, + "end": 6999.2, + "probability": 0.7733 + }, + { + "start": 7000.3, + "end": 7005.4, + "probability": 0.9542 + }, + { + "start": 7005.54, + "end": 7011.56, + "probability": 0.9631 + }, + { + "start": 7012.3, + "end": 7013.32, + "probability": 0.5952 + }, + { + "start": 7013.38, + "end": 7016.52, + "probability": 0.9797 + }, + { + "start": 7016.88, + "end": 7019.18, + "probability": 0.9918 + }, + { + "start": 7019.42, + "end": 7021.06, + "probability": 0.9398 + }, + { + "start": 7021.22, + "end": 7022.72, + "probability": 0.7435 + }, + { + "start": 7025.58, + "end": 7027.44, + "probability": 0.9911 + }, + { + "start": 7028.0, + "end": 7030.07, + "probability": 0.9332 + }, + { + "start": 7030.86, + "end": 7038.56, + "probability": 0.6733 + }, + { + "start": 7038.7, + "end": 7041.74, + "probability": 0.3842 + }, + { + "start": 7042.2, + "end": 7046.35, + "probability": 0.9712 + }, + { + "start": 7046.54, + "end": 7047.68, + "probability": 0.8033 + }, + { + "start": 7047.98, + "end": 7050.84, + "probability": 0.9234 + }, + { + "start": 7051.2, + "end": 7054.08, + "probability": 0.976 + }, + { + "start": 7054.28, + "end": 7057.12, + "probability": 0.9987 + }, + { + "start": 7057.68, + "end": 7059.72, + "probability": 0.9927 + }, + { + "start": 7059.82, + "end": 7060.64, + "probability": 0.9041 + }, + { + "start": 7061.2, + "end": 7065.92, + "probability": 0.9792 + }, + { + "start": 7065.98, + "end": 7068.74, + "probability": 0.8876 + }, + { + "start": 7069.1, + "end": 7070.24, + "probability": 0.6642 + }, + { + "start": 7071.56, + "end": 7072.58, + "probability": 0.3309 + }, + { + "start": 7073.74, + "end": 7075.64, + "probability": 0.1439 + }, + { + "start": 7076.36, + "end": 7079.0, + "probability": 0.0591 + }, + { + "start": 7080.14, + "end": 7081.16, + "probability": 0.0353 + }, + { + "start": 7091.84, + "end": 7093.98, + "probability": 0.2639 + }, + { + "start": 7094.6, + "end": 7095.24, + "probability": 0.4243 + }, + { + "start": 7096.08, + "end": 7103.3, + "probability": 0.9669 + }, + { + "start": 7103.3, + "end": 7108.74, + "probability": 0.9941 + }, + { + "start": 7108.84, + "end": 7110.36, + "probability": 0.7638 + }, + { + "start": 7110.92, + "end": 7113.24, + "probability": 0.9043 + }, + { + "start": 7114.16, + "end": 7114.54, + "probability": 0.7416 + }, + { + "start": 7115.62, + "end": 7117.52, + "probability": 0.8914 + }, + { + "start": 7118.16, + "end": 7119.8, + "probability": 0.9268 + }, + { + "start": 7120.44, + "end": 7124.18, + "probability": 0.9549 + }, + { + "start": 7124.2, + "end": 7127.68, + "probability": 0.995 + }, + { + "start": 7128.1, + "end": 7129.16, + "probability": 0.6504 + }, + { + "start": 7129.46, + "end": 7134.14, + "probability": 0.8124 + }, + { + "start": 7134.24, + "end": 7137.0, + "probability": 0.9498 + }, + { + "start": 7137.54, + "end": 7141.54, + "probability": 0.9966 + }, + { + "start": 7142.04, + "end": 7143.76, + "probability": 0.5822 + }, + { + "start": 7143.88, + "end": 7144.5, + "probability": 0.8553 + }, + { + "start": 7144.62, + "end": 7146.22, + "probability": 0.6614 + }, + { + "start": 7148.2, + "end": 7153.02, + "probability": 0.8654 + }, + { + "start": 7153.02, + "end": 7156.14, + "probability": 0.9938 + }, + { + "start": 7156.64, + "end": 7161.62, + "probability": 0.68 + }, + { + "start": 7163.14, + "end": 7165.44, + "probability": 0.9594 + }, + { + "start": 7166.46, + "end": 7168.12, + "probability": 0.8872 + }, + { + "start": 7169.22, + "end": 7172.24, + "probability": 0.9955 + }, + { + "start": 7172.84, + "end": 7174.5, + "probability": 0.9056 + }, + { + "start": 7175.06, + "end": 7176.52, + "probability": 0.9173 + }, + { + "start": 7177.32, + "end": 7180.78, + "probability": 0.9895 + }, + { + "start": 7181.22, + "end": 7183.96, + "probability": 0.9346 + }, + { + "start": 7185.0, + "end": 7188.94, + "probability": 0.9755 + }, + { + "start": 7189.7, + "end": 7191.63, + "probability": 0.9932 + }, + { + "start": 7192.66, + "end": 7195.1, + "probability": 0.9943 + }, + { + "start": 7196.06, + "end": 7201.06, + "probability": 0.8693 + }, + { + "start": 7201.76, + "end": 7203.02, + "probability": 0.8766 + }, + { + "start": 7204.6, + "end": 7205.02, + "probability": 0.7859 + }, + { + "start": 7206.0, + "end": 7207.6, + "probability": 0.6256 + }, + { + "start": 7209.08, + "end": 7212.68, + "probability": 0.9979 + }, + { + "start": 7212.68, + "end": 7217.74, + "probability": 0.9912 + }, + { + "start": 7219.1, + "end": 7221.56, + "probability": 0.9987 + }, + { + "start": 7222.38, + "end": 7225.8, + "probability": 0.9996 + }, + { + "start": 7226.38, + "end": 7227.98, + "probability": 0.9967 + }, + { + "start": 7228.8, + "end": 7231.28, + "probability": 0.9976 + }, + { + "start": 7231.8, + "end": 7235.8, + "probability": 0.977 + }, + { + "start": 7237.18, + "end": 7241.64, + "probability": 0.9818 + }, + { + "start": 7243.3, + "end": 7246.94, + "probability": 0.7698 + }, + { + "start": 7247.5, + "end": 7252.08, + "probability": 0.9677 + }, + { + "start": 7253.42, + "end": 7254.36, + "probability": 0.7463 + }, + { + "start": 7255.26, + "end": 7257.6, + "probability": 0.9605 + }, + { + "start": 7258.04, + "end": 7259.25, + "probability": 0.9439 + }, + { + "start": 7259.34, + "end": 7260.24, + "probability": 0.9041 + }, + { + "start": 7260.78, + "end": 7262.58, + "probability": 0.9395 + }, + { + "start": 7263.1, + "end": 7264.58, + "probability": 0.9292 + }, + { + "start": 7265.82, + "end": 7266.96, + "probability": 0.9709 + }, + { + "start": 7268.12, + "end": 7269.86, + "probability": 0.9469 + }, + { + "start": 7270.5, + "end": 7276.06, + "probability": 0.9374 + }, + { + "start": 7277.36, + "end": 7278.38, + "probability": 0.9247 + }, + { + "start": 7279.54, + "end": 7281.4, + "probability": 0.9097 + }, + { + "start": 7282.4, + "end": 7284.07, + "probability": 0.9685 + }, + { + "start": 7284.9, + "end": 7286.8, + "probability": 0.9453 + }, + { + "start": 7287.34, + "end": 7289.9, + "probability": 0.9658 + }, + { + "start": 7291.32, + "end": 7293.24, + "probability": 0.9787 + }, + { + "start": 7293.94, + "end": 7298.88, + "probability": 0.9125 + }, + { + "start": 7299.42, + "end": 7300.08, + "probability": 0.6404 + }, + { + "start": 7301.16, + "end": 7303.54, + "probability": 0.9486 + }, + { + "start": 7304.24, + "end": 7307.98, + "probability": 0.9951 + }, + { + "start": 7308.06, + "end": 7308.94, + "probability": 0.8359 + }, + { + "start": 7309.1, + "end": 7309.5, + "probability": 0.5862 + }, + { + "start": 7310.64, + "end": 7312.04, + "probability": 0.828 + }, + { + "start": 7313.12, + "end": 7315.54, + "probability": 0.9941 + }, + { + "start": 7315.54, + "end": 7319.54, + "probability": 0.9966 + }, + { + "start": 7320.62, + "end": 7326.24, + "probability": 0.9912 + }, + { + "start": 7326.88, + "end": 7327.38, + "probability": 0.248 + }, + { + "start": 7328.46, + "end": 7329.12, + "probability": 0.6592 + }, + { + "start": 7329.72, + "end": 7330.82, + "probability": 0.7928 + }, + { + "start": 7332.06, + "end": 7335.2, + "probability": 0.92 + }, + { + "start": 7335.2, + "end": 7340.82, + "probability": 0.983 + }, + { + "start": 7342.34, + "end": 7346.78, + "probability": 0.8923 + }, + { + "start": 7347.3, + "end": 7349.2, + "probability": 0.7515 + }, + { + "start": 7349.62, + "end": 7350.76, + "probability": 0.9512 + }, + { + "start": 7351.22, + "end": 7354.56, + "probability": 0.9125 + }, + { + "start": 7355.94, + "end": 7361.18, + "probability": 0.9935 + }, + { + "start": 7362.5, + "end": 7365.44, + "probability": 0.9858 + }, + { + "start": 7366.24, + "end": 7368.5, + "probability": 0.8779 + }, + { + "start": 7369.36, + "end": 7371.3, + "probability": 0.8035 + }, + { + "start": 7371.9, + "end": 7372.88, + "probability": 0.8051 + }, + { + "start": 7374.28, + "end": 7377.52, + "probability": 0.9938 + }, + { + "start": 7378.36, + "end": 7380.02, + "probability": 0.9583 + }, + { + "start": 7380.72, + "end": 7382.0, + "probability": 0.7751 + }, + { + "start": 7383.36, + "end": 7385.36, + "probability": 0.6807 + }, + { + "start": 7386.84, + "end": 7389.76, + "probability": 0.9543 + }, + { + "start": 7391.4, + "end": 7394.32, + "probability": 0.991 + }, + { + "start": 7395.36, + "end": 7398.68, + "probability": 0.9985 + }, + { + "start": 7398.68, + "end": 7402.86, + "probability": 0.9957 + }, + { + "start": 7405.14, + "end": 7406.98, + "probability": 0.9539 + }, + { + "start": 7407.65, + "end": 7409.5, + "probability": 0.7013 + }, + { + "start": 7410.58, + "end": 7413.98, + "probability": 0.8999 + }, + { + "start": 7413.98, + "end": 7417.9, + "probability": 0.9012 + }, + { + "start": 7419.34, + "end": 7423.48, + "probability": 0.9832 + }, + { + "start": 7424.1, + "end": 7425.94, + "probability": 0.969 + }, + { + "start": 7427.3, + "end": 7430.14, + "probability": 0.8866 + }, + { + "start": 7431.4, + "end": 7434.74, + "probability": 0.8795 + }, + { + "start": 7434.8, + "end": 7436.06, + "probability": 0.8804 + }, + { + "start": 7436.48, + "end": 7438.6, + "probability": 0.9163 + }, + { + "start": 7439.7, + "end": 7441.54, + "probability": 0.5734 + }, + { + "start": 7442.56, + "end": 7444.48, + "probability": 0.5912 + }, + { + "start": 7445.56, + "end": 7449.88, + "probability": 0.8497 + }, + { + "start": 7450.54, + "end": 7453.46, + "probability": 0.8982 + }, + { + "start": 7454.28, + "end": 7457.8, + "probability": 0.9912 + }, + { + "start": 7458.44, + "end": 7459.9, + "probability": 0.9692 + }, + { + "start": 7460.08, + "end": 7460.92, + "probability": 0.9635 + }, + { + "start": 7470.4, + "end": 7470.68, + "probability": 0.4213 + }, + { + "start": 7472.62, + "end": 7474.44, + "probability": 0.8629 + }, + { + "start": 7475.48, + "end": 7476.32, + "probability": 0.717 + }, + { + "start": 7477.32, + "end": 7484.4, + "probability": 0.8389 + }, + { + "start": 7484.88, + "end": 7486.7, + "probability": 0.7682 + }, + { + "start": 7486.78, + "end": 7492.6, + "probability": 0.9406 + }, + { + "start": 7493.6, + "end": 7493.96, + "probability": 0.4638 + }, + { + "start": 7495.28, + "end": 7495.84, + "probability": 0.4055 + }, + { + "start": 7496.34, + "end": 7500.4, + "probability": 0.9785 + }, + { + "start": 7500.52, + "end": 7501.8, + "probability": 0.8214 + }, + { + "start": 7502.1, + "end": 7506.14, + "probability": 0.8197 + }, + { + "start": 7506.58, + "end": 7508.52, + "probability": 0.8865 + }, + { + "start": 7509.14, + "end": 7512.78, + "probability": 0.72 + }, + { + "start": 7516.78, + "end": 7519.02, + "probability": 0.6054 + }, + { + "start": 7520.1, + "end": 7524.06, + "probability": 0.9852 + }, + { + "start": 7524.24, + "end": 7532.4, + "probability": 0.6657 + }, + { + "start": 7532.4, + "end": 7538.96, + "probability": 0.9689 + }, + { + "start": 7540.3, + "end": 7541.34, + "probability": 0.7549 + }, + { + "start": 7542.28, + "end": 7544.96, + "probability": 0.9047 + }, + { + "start": 7545.8, + "end": 7550.96, + "probability": 0.9778 + }, + { + "start": 7552.5, + "end": 7555.84, + "probability": 0.9675 + }, + { + "start": 7556.14, + "end": 7561.46, + "probability": 0.9214 + }, + { + "start": 7562.72, + "end": 7566.72, + "probability": 0.9692 + }, + { + "start": 7567.8, + "end": 7572.86, + "probability": 0.9639 + }, + { + "start": 7572.86, + "end": 7577.6, + "probability": 0.9966 + }, + { + "start": 7578.38, + "end": 7580.84, + "probability": 0.7115 + }, + { + "start": 7581.36, + "end": 7582.98, + "probability": 0.8077 + }, + { + "start": 7584.64, + "end": 7590.36, + "probability": 0.9915 + }, + { + "start": 7591.38, + "end": 7592.56, + "probability": 0.9556 + }, + { + "start": 7594.98, + "end": 7597.36, + "probability": 0.8516 + }, + { + "start": 7598.98, + "end": 7601.18, + "probability": 0.7991 + }, + { + "start": 7602.22, + "end": 7606.46, + "probability": 0.94 + }, + { + "start": 7607.2, + "end": 7611.52, + "probability": 0.9472 + }, + { + "start": 7613.2, + "end": 7614.22, + "probability": 0.9709 + }, + { + "start": 7614.34, + "end": 7615.26, + "probability": 0.6425 + }, + { + "start": 7615.72, + "end": 7620.0, + "probability": 0.8479 + }, + { + "start": 7620.0, + "end": 7624.7, + "probability": 0.984 + }, + { + "start": 7625.94, + "end": 7631.36, + "probability": 0.9855 + }, + { + "start": 7632.36, + "end": 7634.64, + "probability": 0.9573 + }, + { + "start": 7635.26, + "end": 7637.2, + "probability": 0.9644 + }, + { + "start": 7638.1, + "end": 7640.62, + "probability": 0.8295 + }, + { + "start": 7641.82, + "end": 7642.04, + "probability": 0.2235 + }, + { + "start": 7642.22, + "end": 7646.92, + "probability": 0.8816 + }, + { + "start": 7647.96, + "end": 7653.12, + "probability": 0.9911 + }, + { + "start": 7653.76, + "end": 7657.22, + "probability": 0.9893 + }, + { + "start": 7658.32, + "end": 7663.48, + "probability": 0.993 + }, + { + "start": 7663.94, + "end": 7668.56, + "probability": 0.9902 + }, + { + "start": 7669.08, + "end": 7669.96, + "probability": 0.959 + }, + { + "start": 7671.16, + "end": 7675.86, + "probability": 0.9424 + }, + { + "start": 7676.74, + "end": 7683.02, + "probability": 0.9162 + }, + { + "start": 7683.66, + "end": 7689.66, + "probability": 0.9851 + }, + { + "start": 7690.3, + "end": 7690.64, + "probability": 0.5451 + }, + { + "start": 7690.7, + "end": 7694.3, + "probability": 0.9086 + }, + { + "start": 7694.38, + "end": 7695.26, + "probability": 0.7109 + }, + { + "start": 7695.84, + "end": 7697.46, + "probability": 0.6938 + }, + { + "start": 7698.36, + "end": 7699.66, + "probability": 0.8616 + }, + { + "start": 7700.32, + "end": 7701.08, + "probability": 0.3891 + }, + { + "start": 7701.82, + "end": 7703.46, + "probability": 0.956 + }, + { + "start": 7704.46, + "end": 7705.52, + "probability": 0.6702 + }, + { + "start": 7706.02, + "end": 7706.76, + "probability": 0.9252 + }, + { + "start": 7707.18, + "end": 7710.08, + "probability": 0.8524 + }, + { + "start": 7710.6, + "end": 7712.28, + "probability": 0.8058 + }, + { + "start": 7713.74, + "end": 7719.46, + "probability": 0.9915 + }, + { + "start": 7719.46, + "end": 7725.0, + "probability": 0.882 + }, + { + "start": 7725.98, + "end": 7726.56, + "probability": 0.6294 + }, + { + "start": 7726.76, + "end": 7731.64, + "probability": 0.938 + }, + { + "start": 7732.76, + "end": 7734.16, + "probability": 0.7474 + }, + { + "start": 7735.04, + "end": 7739.28, + "probability": 0.9336 + }, + { + "start": 7739.44, + "end": 7739.66, + "probability": 0.2297 + }, + { + "start": 7739.98, + "end": 7743.74, + "probability": 0.8697 + }, + { + "start": 7745.73, + "end": 7748.2, + "probability": 0.6754 + }, + { + "start": 7749.12, + "end": 7750.42, + "probability": 0.9604 + }, + { + "start": 7750.6, + "end": 7751.5, + "probability": 0.9185 + }, + { + "start": 7751.68, + "end": 7753.16, + "probability": 0.9832 + }, + { + "start": 7753.18, + "end": 7754.02, + "probability": 0.936 + }, + { + "start": 7754.14, + "end": 7756.5, + "probability": 0.5791 + }, + { + "start": 7757.18, + "end": 7761.26, + "probability": 0.9355 + }, + { + "start": 7761.98, + "end": 7762.41, + "probability": 0.6439 + }, + { + "start": 7762.76, + "end": 7764.22, + "probability": 0.8014 + }, + { + "start": 7764.3, + "end": 7765.4, + "probability": 0.859 + }, + { + "start": 7765.48, + "end": 7766.14, + "probability": 0.6828 + }, + { + "start": 7766.48, + "end": 7767.8, + "probability": 0.8787 + }, + { + "start": 7768.46, + "end": 7774.76, + "probability": 0.9434 + }, + { + "start": 7775.44, + "end": 7778.26, + "probability": 0.8232 + }, + { + "start": 7778.26, + "end": 7780.52, + "probability": 0.9932 + }, + { + "start": 7780.66, + "end": 7785.28, + "probability": 0.8676 + }, + { + "start": 7785.46, + "end": 7787.18, + "probability": 0.9966 + }, + { + "start": 7787.46, + "end": 7788.04, + "probability": 0.8853 + }, + { + "start": 7788.12, + "end": 7791.12, + "probability": 0.8292 + }, + { + "start": 7791.34, + "end": 7796.78, + "probability": 0.9753 + }, + { + "start": 7797.24, + "end": 7798.9, + "probability": 0.7681 + }, + { + "start": 7799.4, + "end": 7800.14, + "probability": 0.6209 + }, + { + "start": 7800.2, + "end": 7802.42, + "probability": 0.972 + }, + { + "start": 7803.72, + "end": 7809.62, + "probability": 0.8641 + }, + { + "start": 7810.24, + "end": 7811.4, + "probability": 0.9762 + }, + { + "start": 7812.18, + "end": 7815.44, + "probability": 0.9569 + }, + { + "start": 7816.14, + "end": 7817.08, + "probability": 0.9071 + }, + { + "start": 7817.26, + "end": 7818.18, + "probability": 0.7454 + }, + { + "start": 7818.42, + "end": 7820.68, + "probability": 0.9048 + }, + { + "start": 7821.42, + "end": 7822.12, + "probability": 0.9337 + }, + { + "start": 7822.24, + "end": 7823.94, + "probability": 0.8128 + }, + { + "start": 7824.14, + "end": 7824.46, + "probability": 0.3765 + }, + { + "start": 7824.58, + "end": 7825.0, + "probability": 0.9037 + }, + { + "start": 7825.5, + "end": 7826.14, + "probability": 0.9224 + }, + { + "start": 7826.42, + "end": 7828.64, + "probability": 0.9085 + }, + { + "start": 7828.68, + "end": 7830.3, + "probability": 0.9524 + }, + { + "start": 7830.82, + "end": 7831.32, + "probability": 0.9362 + }, + { + "start": 7831.42, + "end": 7832.52, + "probability": 0.9822 + }, + { + "start": 7832.94, + "end": 7834.84, + "probability": 0.8649 + }, + { + "start": 7834.9, + "end": 7835.49, + "probability": 0.9697 + }, + { + "start": 7836.28, + "end": 7836.8, + "probability": 0.8814 + }, + { + "start": 7836.94, + "end": 7837.66, + "probability": 0.5739 + }, + { + "start": 7837.66, + "end": 7839.02, + "probability": 0.5061 + }, + { + "start": 7839.08, + "end": 7845.72, + "probability": 0.8817 + }, + { + "start": 7845.98, + "end": 7846.98, + "probability": 0.9449 + }, + { + "start": 7847.14, + "end": 7847.7, + "probability": 0.7532 + }, + { + "start": 7848.02, + "end": 7852.66, + "probability": 0.9031 + }, + { + "start": 7853.4, + "end": 7857.82, + "probability": 0.9802 + }, + { + "start": 7857.98, + "end": 7859.38, + "probability": 0.7577 + }, + { + "start": 7859.92, + "end": 7862.46, + "probability": 0.9806 + }, + { + "start": 7862.7, + "end": 7862.92, + "probability": 0.716 + }, + { + "start": 7863.0, + "end": 7863.56, + "probability": 0.4961 + }, + { + "start": 7863.56, + "end": 7864.92, + "probability": 0.6359 + }, + { + "start": 7864.96, + "end": 7865.3, + "probability": 0.2081 + }, + { + "start": 7865.48, + "end": 7866.08, + "probability": 0.8231 + }, + { + "start": 7866.52, + "end": 7867.66, + "probability": 0.9813 + }, + { + "start": 7868.2, + "end": 7869.0, + "probability": 0.8116 + }, + { + "start": 7870.12, + "end": 7872.26, + "probability": 0.995 + }, + { + "start": 7873.0, + "end": 7874.0, + "probability": 0.9808 + }, + { + "start": 7874.82, + "end": 7876.13, + "probability": 0.5608 + }, + { + "start": 7876.84, + "end": 7877.42, + "probability": 0.4401 + }, + { + "start": 7878.31, + "end": 7880.49, + "probability": 0.8848 + }, + { + "start": 7880.72, + "end": 7883.54, + "probability": 0.9538 + }, + { + "start": 7883.64, + "end": 7886.62, + "probability": 0.998 + }, + { + "start": 7887.82, + "end": 7889.1, + "probability": 0.8372 + }, + { + "start": 7889.18, + "end": 7890.58, + "probability": 0.8077 + }, + { + "start": 7891.06, + "end": 7892.84, + "probability": 0.9151 + }, + { + "start": 7893.54, + "end": 7894.42, + "probability": 0.7053 + }, + { + "start": 7894.94, + "end": 7895.56, + "probability": 0.686 + }, + { + "start": 7895.58, + "end": 7899.3, + "probability": 0.7982 + }, + { + "start": 7899.84, + "end": 7904.48, + "probability": 0.9246 + }, + { + "start": 7904.6, + "end": 7908.54, + "probability": 0.9084 + }, + { + "start": 7908.62, + "end": 7909.14, + "probability": 0.482 + }, + { + "start": 7909.2, + "end": 7909.52, + "probability": 0.1985 + }, + { + "start": 7909.52, + "end": 7910.2, + "probability": 0.2508 + }, + { + "start": 7910.2, + "end": 7914.34, + "probability": 0.9193 + }, + { + "start": 7915.04, + "end": 7916.88, + "probability": 0.9261 + }, + { + "start": 7916.96, + "end": 7917.6, + "probability": 0.6475 + }, + { + "start": 7917.72, + "end": 7921.82, + "probability": 0.9816 + }, + { + "start": 7922.42, + "end": 7925.15, + "probability": 0.9064 + }, + { + "start": 7925.78, + "end": 7928.0, + "probability": 0.9982 + }, + { + "start": 7928.1, + "end": 7930.52, + "probability": 0.7941 + }, + { + "start": 7930.62, + "end": 7931.26, + "probability": 0.5699 + }, + { + "start": 7931.38, + "end": 7935.26, + "probability": 0.9701 + }, + { + "start": 7935.64, + "end": 7937.8, + "probability": 0.8354 + }, + { + "start": 7938.08, + "end": 7938.6, + "probability": 0.8726 + }, + { + "start": 7938.74, + "end": 7939.98, + "probability": 0.8907 + }, + { + "start": 7940.54, + "end": 7941.76, + "probability": 0.7282 + }, + { + "start": 7941.86, + "end": 7942.06, + "probability": 0.7693 + }, + { + "start": 7942.78, + "end": 7944.72, + "probability": 0.8111 + }, + { + "start": 7945.06, + "end": 7946.16, + "probability": 0.7911 + }, + { + "start": 7946.62, + "end": 7953.44, + "probability": 0.9472 + }, + { + "start": 7954.24, + "end": 7956.0, + "probability": 0.8187 + }, + { + "start": 7960.68, + "end": 7963.48, + "probability": 0.0526 + }, + { + "start": 7964.44, + "end": 7966.68, + "probability": 0.6402 + }, + { + "start": 7968.0, + "end": 7972.54, + "probability": 0.9388 + }, + { + "start": 7972.66, + "end": 7977.12, + "probability": 0.7496 + }, + { + "start": 7977.66, + "end": 7980.06, + "probability": 0.88 + }, + { + "start": 7980.18, + "end": 7981.92, + "probability": 0.8682 + }, + { + "start": 7982.54, + "end": 7985.6, + "probability": 0.9742 + }, + { + "start": 7986.48, + "end": 7988.0, + "probability": 0.9827 + }, + { + "start": 7988.62, + "end": 7989.72, + "probability": 0.9245 + }, + { + "start": 7990.14, + "end": 7990.28, + "probability": 0.582 + }, + { + "start": 7990.42, + "end": 7991.44, + "probability": 0.944 + }, + { + "start": 7991.54, + "end": 7995.66, + "probability": 0.9767 + }, + { + "start": 7995.66, + "end": 8002.44, + "probability": 0.9924 + }, + { + "start": 8003.58, + "end": 8006.98, + "probability": 0.9644 + }, + { + "start": 8006.98, + "end": 8009.76, + "probability": 0.9933 + }, + { + "start": 8010.3, + "end": 8012.4, + "probability": 0.8999 + }, + { + "start": 8013.12, + "end": 8014.1, + "probability": 0.7919 + }, + { + "start": 8014.56, + "end": 8019.06, + "probability": 0.8256 + }, + { + "start": 8019.52, + "end": 8023.96, + "probability": 0.8081 + }, + { + "start": 8024.64, + "end": 8028.58, + "probability": 0.9746 + }, + { + "start": 8028.58, + "end": 8033.98, + "probability": 0.8304 + }, + { + "start": 8034.44, + "end": 8037.9, + "probability": 0.942 + }, + { + "start": 8038.62, + "end": 8043.1, + "probability": 0.8516 + }, + { + "start": 8043.1, + "end": 8047.82, + "probability": 0.9669 + }, + { + "start": 8048.28, + "end": 8053.54, + "probability": 0.9424 + }, + { + "start": 8053.56, + "end": 8053.78, + "probability": 0.1856 + }, + { + "start": 8053.78, + "end": 8056.6, + "probability": 0.9476 + }, + { + "start": 8057.61, + "end": 8060.64, + "probability": 0.7437 + }, + { + "start": 8060.94, + "end": 8063.56, + "probability": 0.9172 + }, + { + "start": 8063.72, + "end": 8065.28, + "probability": 0.7 + }, + { + "start": 8065.38, + "end": 8066.36, + "probability": 0.2532 + }, + { + "start": 8066.76, + "end": 8070.07, + "probability": 0.8171 + }, + { + "start": 8070.54, + "end": 8071.92, + "probability": 0.787 + }, + { + "start": 8072.14, + "end": 8072.6, + "probability": 0.9043 + }, + { + "start": 8073.0, + "end": 8075.34, + "probability": 0.3602 + }, + { + "start": 8076.06, + "end": 8076.06, + "probability": 0.4637 + }, + { + "start": 8076.2, + "end": 8076.76, + "probability": 0.9487 + }, + { + "start": 8078.1, + "end": 8081.84, + "probability": 0.9586 + }, + { + "start": 8081.88, + "end": 8084.48, + "probability": 0.9825 + }, + { + "start": 8085.16, + "end": 8085.74, + "probability": 0.7273 + }, + { + "start": 8086.08, + "end": 8088.44, + "probability": 0.986 + }, + { + "start": 8088.44, + "end": 8092.14, + "probability": 0.8501 + }, + { + "start": 8092.82, + "end": 8097.1, + "probability": 0.9939 + }, + { + "start": 8097.1, + "end": 8101.3, + "probability": 0.9946 + }, + { + "start": 8102.08, + "end": 8103.52, + "probability": 0.7731 + }, + { + "start": 8103.72, + "end": 8108.52, + "probability": 0.9939 + }, + { + "start": 8109.18, + "end": 8111.2, + "probability": 0.9784 + }, + { + "start": 8111.84, + "end": 8118.14, + "probability": 0.9365 + }, + { + "start": 8118.2, + "end": 8124.52, + "probability": 0.9961 + }, + { + "start": 8125.06, + "end": 8128.5, + "probability": 0.8518 + }, + { + "start": 8129.46, + "end": 8130.5, + "probability": 0.7357 + }, + { + "start": 8131.42, + "end": 8135.6, + "probability": 0.9937 + }, + { + "start": 8136.06, + "end": 8137.84, + "probability": 0.9884 + }, + { + "start": 8138.72, + "end": 8142.78, + "probability": 0.96 + }, + { + "start": 8142.78, + "end": 8147.72, + "probability": 0.9795 + }, + { + "start": 8148.32, + "end": 8150.36, + "probability": 0.418 + }, + { + "start": 8150.76, + "end": 8153.62, + "probability": 0.9678 + }, + { + "start": 8154.26, + "end": 8158.86, + "probability": 0.9323 + }, + { + "start": 8159.04, + "end": 8161.5, + "probability": 0.9988 + }, + { + "start": 8162.22, + "end": 8163.92, + "probability": 0.7719 + }, + { + "start": 8164.32, + "end": 8168.92, + "probability": 0.9585 + }, + { + "start": 8170.66, + "end": 8172.26, + "probability": 0.9102 + }, + { + "start": 8173.14, + "end": 8175.4, + "probability": 0.97 + }, + { + "start": 8176.18, + "end": 8177.32, + "probability": 0.3233 + }, + { + "start": 8177.32, + "end": 8177.5, + "probability": 0.4119 + }, + { + "start": 8177.5, + "end": 8178.42, + "probability": 0.5211 + }, + { + "start": 8179.46, + "end": 8180.12, + "probability": 0.4125 + }, + { + "start": 8180.14, + "end": 8183.8, + "probability": 0.9912 + }, + { + "start": 8183.8, + "end": 8187.42, + "probability": 0.9066 + }, + { + "start": 8187.64, + "end": 8190.56, + "probability": 0.9012 + }, + { + "start": 8193.21, + "end": 8195.6, + "probability": 0.9665 + }, + { + "start": 8195.7, + "end": 8196.66, + "probability": 0.4866 + }, + { + "start": 8197.04, + "end": 8199.8, + "probability": 0.9963 + }, + { + "start": 8199.94, + "end": 8201.2, + "probability": 0.6488 + }, + { + "start": 8201.88, + "end": 8203.06, + "probability": 0.8701 + }, + { + "start": 8203.1, + "end": 8204.3, + "probability": 0.9713 + }, + { + "start": 8205.28, + "end": 8208.64, + "probability": 0.4823 + }, + { + "start": 8209.0, + "end": 8209.78, + "probability": 0.6227 + }, + { + "start": 8209.84, + "end": 8210.42, + "probability": 0.559 + }, + { + "start": 8210.46, + "end": 8211.04, + "probability": 0.6704 + }, + { + "start": 8211.04, + "end": 8211.5, + "probability": 0.7801 + }, + { + "start": 8211.58, + "end": 8212.6, + "probability": 0.6469 + }, + { + "start": 8215.9, + "end": 8215.9, + "probability": 0.2264 + }, + { + "start": 8219.3, + "end": 8221.24, + "probability": 0.3629 + }, + { + "start": 8225.22, + "end": 8227.96, + "probability": 0.9689 + }, + { + "start": 8227.96, + "end": 8232.2, + "probability": 0.6666 + }, + { + "start": 8232.78, + "end": 8232.98, + "probability": 0.7413 + }, + { + "start": 8233.96, + "end": 8237.8, + "probability": 0.9909 + }, + { + "start": 8238.1, + "end": 8238.66, + "probability": 0.7777 + }, + { + "start": 8239.24, + "end": 8240.5, + "probability": 0.8042 + }, + { + "start": 8240.66, + "end": 8245.12, + "probability": 0.9926 + }, + { + "start": 8245.86, + "end": 8248.86, + "probability": 0.9937 + }, + { + "start": 8249.26, + "end": 8252.92, + "probability": 0.6769 + }, + { + "start": 8253.48, + "end": 8254.93, + "probability": 0.7866 + }, + { + "start": 8256.32, + "end": 8257.0, + "probability": 0.5967 + }, + { + "start": 8259.04, + "end": 8260.22, + "probability": 0.104 + }, + { + "start": 8272.9, + "end": 8273.92, + "probability": 0.7435 + }, + { + "start": 8276.52, + "end": 8277.84, + "probability": 0.6284 + }, + { + "start": 8278.5, + "end": 8280.52, + "probability": 0.9244 + }, + { + "start": 8280.6, + "end": 8281.02, + "probability": 0.4502 + }, + { + "start": 8281.32, + "end": 8282.22, + "probability": 0.9674 + }, + { + "start": 8283.28, + "end": 8285.44, + "probability": 0.9518 + }, + { + "start": 8286.66, + "end": 8287.32, + "probability": 0.6446 + }, + { + "start": 8287.34, + "end": 8288.18, + "probability": 0.7542 + }, + { + "start": 8288.24, + "end": 8292.1, + "probability": 0.8831 + }, + { + "start": 8292.56, + "end": 8295.36, + "probability": 0.9212 + }, + { + "start": 8295.56, + "end": 8296.26, + "probability": 0.9238 + }, + { + "start": 8296.3, + "end": 8296.94, + "probability": 0.9612 + }, + { + "start": 8297.64, + "end": 8299.0, + "probability": 0.8789 + }, + { + "start": 8300.32, + "end": 8302.46, + "probability": 0.8647 + }, + { + "start": 8303.62, + "end": 8304.2, + "probability": 0.5629 + }, + { + "start": 8304.28, + "end": 8304.72, + "probability": 0.8245 + }, + { + "start": 8304.86, + "end": 8307.14, + "probability": 0.8085 + }, + { + "start": 8307.42, + "end": 8308.79, + "probability": 0.994 + }, + { + "start": 8310.2, + "end": 8313.78, + "probability": 0.9595 + }, + { + "start": 8315.62, + "end": 8317.56, + "probability": 0.9795 + }, + { + "start": 8317.66, + "end": 8319.34, + "probability": 0.9922 + }, + { + "start": 8319.6, + "end": 8321.02, + "probability": 0.7998 + }, + { + "start": 8322.2, + "end": 8322.46, + "probability": 0.4478 + }, + { + "start": 8322.54, + "end": 8324.88, + "probability": 0.7632 + }, + { + "start": 8324.88, + "end": 8328.82, + "probability": 0.9485 + }, + { + "start": 8328.94, + "end": 8331.38, + "probability": 0.9878 + }, + { + "start": 8332.34, + "end": 8333.42, + "probability": 0.4399 + }, + { + "start": 8333.48, + "end": 8334.0, + "probability": 0.6086 + }, + { + "start": 8334.14, + "end": 8335.44, + "probability": 0.9819 + }, + { + "start": 8336.64, + "end": 8338.24, + "probability": 0.9873 + }, + { + "start": 8338.64, + "end": 8339.06, + "probability": 0.2801 + }, + { + "start": 8339.06, + "end": 8340.84, + "probability": 0.8872 + }, + { + "start": 8340.94, + "end": 8342.44, + "probability": 0.8 + }, + { + "start": 8343.16, + "end": 8345.08, + "probability": 0.7777 + }, + { + "start": 8345.84, + "end": 8346.44, + "probability": 0.9628 + }, + { + "start": 8346.52, + "end": 8346.98, + "probability": 0.7707 + }, + { + "start": 8347.02, + "end": 8349.41, + "probability": 0.9251 + }, + { + "start": 8349.48, + "end": 8350.22, + "probability": 0.8289 + }, + { + "start": 8351.72, + "end": 8354.08, + "probability": 0.971 + }, + { + "start": 8355.38, + "end": 8356.22, + "probability": 0.7 + }, + { + "start": 8356.52, + "end": 8359.5, + "probability": 0.9301 + }, + { + "start": 8359.56, + "end": 8362.5, + "probability": 0.9909 + }, + { + "start": 8363.2, + "end": 8364.94, + "probability": 0.8763 + }, + { + "start": 8365.46, + "end": 8368.58, + "probability": 0.1799 + }, + { + "start": 8368.92, + "end": 8369.92, + "probability": 0.8385 + }, + { + "start": 8370.22, + "end": 8371.34, + "probability": 0.7194 + }, + { + "start": 8371.86, + "end": 8372.92, + "probability": 0.9201 + }, + { + "start": 8372.94, + "end": 8373.28, + "probability": 0.4538 + }, + { + "start": 8373.42, + "end": 8374.56, + "probability": 0.555 + }, + { + "start": 8375.02, + "end": 8376.78, + "probability": 0.9883 + }, + { + "start": 8376.92, + "end": 8376.96, + "probability": 0.2271 + }, + { + "start": 8377.0, + "end": 8378.51, + "probability": 0.637 + }, + { + "start": 8378.92, + "end": 8379.04, + "probability": 0.459 + }, + { + "start": 8379.12, + "end": 8381.22, + "probability": 0.8864 + }, + { + "start": 8381.36, + "end": 8381.74, + "probability": 0.0684 + }, + { + "start": 8381.74, + "end": 8381.84, + "probability": 0.3086 + }, + { + "start": 8382.2, + "end": 8383.22, + "probability": 0.6616 + }, + { + "start": 8383.26, + "end": 8384.22, + "probability": 0.8143 + }, + { + "start": 8384.3, + "end": 8385.29, + "probability": 0.8878 + }, + { + "start": 8385.44, + "end": 8385.74, + "probability": 0.3511 + }, + { + "start": 8385.76, + "end": 8386.28, + "probability": 0.736 + }, + { + "start": 8386.36, + "end": 8389.3, + "probability": 0.9894 + }, + { + "start": 8389.68, + "end": 8390.24, + "probability": 0.8894 + }, + { + "start": 8391.06, + "end": 8394.5, + "probability": 0.9529 + }, + { + "start": 8395.64, + "end": 8398.42, + "probability": 0.9596 + }, + { + "start": 8399.06, + "end": 8400.6, + "probability": 0.5803 + }, + { + "start": 8401.62, + "end": 8402.48, + "probability": 0.9037 + }, + { + "start": 8403.16, + "end": 8403.62, + "probability": 0.4956 + }, + { + "start": 8403.92, + "end": 8404.54, + "probability": 0.5962 + }, + { + "start": 8404.86, + "end": 8406.52, + "probability": 0.9052 + }, + { + "start": 8406.76, + "end": 8407.06, + "probability": 0.6635 + }, + { + "start": 8407.08, + "end": 8408.38, + "probability": 0.9395 + }, + { + "start": 8408.82, + "end": 8409.36, + "probability": 0.8275 + }, + { + "start": 8409.48, + "end": 8410.32, + "probability": 0.5975 + }, + { + "start": 8410.9, + "end": 8412.64, + "probability": 0.3728 + }, + { + "start": 8412.96, + "end": 8413.32, + "probability": 0.7582 + }, + { + "start": 8413.4, + "end": 8414.24, + "probability": 0.8979 + }, + { + "start": 8414.26, + "end": 8416.68, + "probability": 0.4942 + }, + { + "start": 8417.18, + "end": 8417.54, + "probability": 0.523 + }, + { + "start": 8417.6, + "end": 8420.22, + "probability": 0.4974 + }, + { + "start": 8420.3, + "end": 8423.28, + "probability": 0.7007 + }, + { + "start": 8424.1, + "end": 8425.38, + "probability": 0.9585 + }, + { + "start": 8426.1, + "end": 8427.76, + "probability": 0.8319 + }, + { + "start": 8428.18, + "end": 8429.36, + "probability": 0.4568 + }, + { + "start": 8430.42, + "end": 8431.87, + "probability": 0.5423 + }, + { + "start": 8432.02, + "end": 8433.18, + "probability": 0.7822 + }, + { + "start": 8433.54, + "end": 8434.98, + "probability": 0.7059 + }, + { + "start": 8436.04, + "end": 8440.88, + "probability": 0.9718 + }, + { + "start": 8441.88, + "end": 8443.32, + "probability": 0.9956 + }, + { + "start": 8444.12, + "end": 8444.98, + "probability": 0.7816 + }, + { + "start": 8445.66, + "end": 8446.34, + "probability": 0.9026 + }, + { + "start": 8446.78, + "end": 8447.78, + "probability": 0.808 + }, + { + "start": 8448.12, + "end": 8449.6, + "probability": 0.8628 + }, + { + "start": 8449.92, + "end": 8450.6, + "probability": 0.9814 + }, + { + "start": 8450.74, + "end": 8451.53, + "probability": 0.5195 + }, + { + "start": 8451.84, + "end": 8453.34, + "probability": 0.7332 + }, + { + "start": 8453.88, + "end": 8455.44, + "probability": 0.0525 + }, + { + "start": 8455.54, + "end": 8457.64, + "probability": 0.6002 + }, + { + "start": 8458.62, + "end": 8460.4, + "probability": 0.9471 + }, + { + "start": 8460.62, + "end": 8463.28, + "probability": 0.7976 + }, + { + "start": 8463.56, + "end": 8466.2, + "probability": 0.5753 + }, + { + "start": 8467.36, + "end": 8468.31, + "probability": 0.9937 + }, + { + "start": 8469.32, + "end": 8470.2, + "probability": 0.9287 + }, + { + "start": 8470.28, + "end": 8471.26, + "probability": 0.5259 + }, + { + "start": 8471.92, + "end": 8473.32, + "probability": 0.8197 + }, + { + "start": 8473.56, + "end": 8474.72, + "probability": 0.6891 + }, + { + "start": 8474.78, + "end": 8475.12, + "probability": 0.9705 + }, + { + "start": 8476.58, + "end": 8478.94, + "probability": 0.1284 + }, + { + "start": 8479.1, + "end": 8479.95, + "probability": 0.0861 + }, + { + "start": 8481.28, + "end": 8482.34, + "probability": 0.6717 + }, + { + "start": 8483.12, + "end": 8485.2, + "probability": 0.1865 + }, + { + "start": 8485.4, + "end": 8486.62, + "probability": 0.6726 + }, + { + "start": 8486.92, + "end": 8489.16, + "probability": 0.4891 + }, + { + "start": 8489.5, + "end": 8493.24, + "probability": 0.8833 + }, + { + "start": 8493.5, + "end": 8495.38, + "probability": 0.9185 + }, + { + "start": 8496.38, + "end": 8497.56, + "probability": 0.9219 + }, + { + "start": 8497.7, + "end": 8499.07, + "probability": 0.966 + }, + { + "start": 8500.24, + "end": 8502.72, + "probability": 0.8792 + }, + { + "start": 8502.78, + "end": 8507.14, + "probability": 0.9583 + }, + { + "start": 8507.34, + "end": 8508.88, + "probability": 0.9391 + }, + { + "start": 8508.94, + "end": 8510.08, + "probability": 0.6017 + }, + { + "start": 8510.64, + "end": 8512.42, + "probability": 0.7052 + }, + { + "start": 8513.12, + "end": 8517.12, + "probability": 0.9673 + }, + { + "start": 8517.2, + "end": 8517.38, + "probability": 0.5857 + }, + { + "start": 8517.42, + "end": 8518.78, + "probability": 0.6634 + }, + { + "start": 8519.26, + "end": 8519.64, + "probability": 0.6217 + }, + { + "start": 8520.12, + "end": 8521.9, + "probability": 0.7187 + }, + { + "start": 8522.58, + "end": 8524.65, + "probability": 0.8252 + }, + { + "start": 8524.92, + "end": 8527.44, + "probability": 0.6994 + }, + { + "start": 8527.74, + "end": 8528.72, + "probability": 0.8244 + }, + { + "start": 8530.0, + "end": 8531.18, + "probability": 0.314 + }, + { + "start": 8531.5, + "end": 8533.6, + "probability": 0.7061 + }, + { + "start": 8534.32, + "end": 8535.64, + "probability": 0.9695 + }, + { + "start": 8536.34, + "end": 8537.26, + "probability": 0.8666 + }, + { + "start": 8538.86, + "end": 8542.92, + "probability": 0.2519 + }, + { + "start": 8543.12, + "end": 8547.64, + "probability": 0.7077 + }, + { + "start": 8548.16, + "end": 8549.46, + "probability": 0.8604 + }, + { + "start": 8550.22, + "end": 8550.34, + "probability": 0.6484 + }, + { + "start": 8550.46, + "end": 8551.13, + "probability": 0.621 + }, + { + "start": 8551.82, + "end": 8552.65, + "probability": 0.4195 + }, + { + "start": 8553.64, + "end": 8556.46, + "probability": 0.9002 + }, + { + "start": 8556.46, + "end": 8558.48, + "probability": 0.8775 + }, + { + "start": 8558.78, + "end": 8560.0, + "probability": 0.9413 + }, + { + "start": 8561.0, + "end": 8561.7, + "probability": 0.9014 + }, + { + "start": 8562.22, + "end": 8564.16, + "probability": 0.6632 + }, + { + "start": 8564.44, + "end": 8566.7, + "probability": 0.6152 + }, + { + "start": 8567.28, + "end": 8569.12, + "probability": 0.9657 + }, + { + "start": 8569.38, + "end": 8570.74, + "probability": 0.8833 + }, + { + "start": 8571.56, + "end": 8572.9, + "probability": 0.7949 + }, + { + "start": 8573.28, + "end": 8575.98, + "probability": 0.8244 + }, + { + "start": 8576.64, + "end": 8578.0, + "probability": 0.9883 + }, + { + "start": 8578.64, + "end": 8580.92, + "probability": 0.8912 + }, + { + "start": 8581.62, + "end": 8585.18, + "probability": 0.9854 + }, + { + "start": 8585.82, + "end": 8587.88, + "probability": 0.9469 + }, + { + "start": 8588.02, + "end": 8589.62, + "probability": 0.7568 + }, + { + "start": 8589.84, + "end": 8590.86, + "probability": 0.6861 + }, + { + "start": 8591.06, + "end": 8591.82, + "probability": 0.8079 + }, + { + "start": 8592.0, + "end": 8593.46, + "probability": 0.9062 + }, + { + "start": 8593.5, + "end": 8594.32, + "probability": 0.9761 + }, + { + "start": 8595.12, + "end": 8595.78, + "probability": 0.8096 + }, + { + "start": 8596.04, + "end": 8597.64, + "probability": 0.674 + }, + { + "start": 8597.74, + "end": 8598.92, + "probability": 0.9788 + }, + { + "start": 8599.1, + "end": 8602.32, + "probability": 0.9939 + }, + { + "start": 8602.46, + "end": 8604.08, + "probability": 0.9922 + }, + { + "start": 8604.92, + "end": 8606.3, + "probability": 0.4576 + }, + { + "start": 8606.38, + "end": 8607.26, + "probability": 0.9014 + }, + { + "start": 8607.34, + "end": 8609.6, + "probability": 0.8552 + }, + { + "start": 8609.84, + "end": 8612.34, + "probability": 0.9424 + }, + { + "start": 8613.2, + "end": 8613.8, + "probability": 0.965 + }, + { + "start": 8615.09, + "end": 8618.9, + "probability": 0.7942 + }, + { + "start": 8619.52, + "end": 8620.82, + "probability": 0.1289 + }, + { + "start": 8620.88, + "end": 8621.5, + "probability": 0.4244 + }, + { + "start": 8621.62, + "end": 8622.14, + "probability": 0.8839 + }, + { + "start": 8622.24, + "end": 8622.72, + "probability": 0.7672 + }, + { + "start": 8622.76, + "end": 8623.04, + "probability": 0.7821 + }, + { + "start": 8623.2, + "end": 8624.05, + "probability": 0.5665 + }, + { + "start": 8624.68, + "end": 8625.82, + "probability": 0.8944 + }, + { + "start": 8625.92, + "end": 8626.51, + "probability": 0.9963 + }, + { + "start": 8627.1, + "end": 8628.24, + "probability": 0.7531 + }, + { + "start": 8629.18, + "end": 8631.1, + "probability": 0.0916 + }, + { + "start": 8631.56, + "end": 8632.02, + "probability": 0.0772 + }, + { + "start": 8632.99, + "end": 8635.08, + "probability": 0.6346 + }, + { + "start": 8635.22, + "end": 8639.0, + "probability": 0.679 + }, + { + "start": 8639.44, + "end": 8641.26, + "probability": 0.6171 + }, + { + "start": 8641.36, + "end": 8643.68, + "probability": 0.6706 + }, + { + "start": 8644.22, + "end": 8646.22, + "probability": 0.897 + }, + { + "start": 8646.36, + "end": 8647.41, + "probability": 0.9703 + }, + { + "start": 8648.74, + "end": 8652.58, + "probability": 0.9666 + }, + { + "start": 8652.86, + "end": 8653.04, + "probability": 0.5228 + }, + { + "start": 8653.22, + "end": 8654.0, + "probability": 0.704 + }, + { + "start": 8654.08, + "end": 8654.76, + "probability": 0.877 + }, + { + "start": 8654.76, + "end": 8656.24, + "probability": 0.7651 + }, + { + "start": 8656.96, + "end": 8658.06, + "probability": 0.5298 + }, + { + "start": 8658.24, + "end": 8659.67, + "probability": 0.9943 + }, + { + "start": 8660.44, + "end": 8664.18, + "probability": 0.7813 + }, + { + "start": 8664.76, + "end": 8666.38, + "probability": 0.9946 + }, + { + "start": 8666.84, + "end": 8668.88, + "probability": 0.9702 + }, + { + "start": 8668.94, + "end": 8669.16, + "probability": 0.6586 + }, + { + "start": 8669.44, + "end": 8669.78, + "probability": 0.8285 + }, + { + "start": 8669.92, + "end": 8670.2, + "probability": 0.6773 + }, + { + "start": 8670.26, + "end": 8670.72, + "probability": 0.6552 + }, + { + "start": 8671.34, + "end": 8672.74, + "probability": 0.6832 + }, + { + "start": 8673.26, + "end": 8674.3, + "probability": 0.4883 + }, + { + "start": 8674.48, + "end": 8677.04, + "probability": 0.9409 + }, + { + "start": 8677.5, + "end": 8680.06, + "probability": 0.9902 + }, + { + "start": 8680.12, + "end": 8684.01, + "probability": 0.4989 + }, + { + "start": 8684.76, + "end": 8686.16, + "probability": 0.6274 + }, + { + "start": 8686.76, + "end": 8687.22, + "probability": 0.4513 + }, + { + "start": 8687.78, + "end": 8690.94, + "probability": 0.7301 + }, + { + "start": 8691.2, + "end": 8695.28, + "probability": 0.7398 + }, + { + "start": 8695.28, + "end": 8696.38, + "probability": 0.67 + }, + { + "start": 8696.74, + "end": 8698.34, + "probability": 0.8867 + }, + { + "start": 8699.04, + "end": 8700.44, + "probability": 0.9116 + }, + { + "start": 8700.52, + "end": 8704.8, + "probability": 0.8376 + }, + { + "start": 8704.9, + "end": 8706.84, + "probability": 0.8107 + }, + { + "start": 8707.32, + "end": 8709.36, + "probability": 0.2538 + }, + { + "start": 8709.44, + "end": 8712.06, + "probability": 0.9038 + }, + { + "start": 8712.99, + "end": 8716.02, + "probability": 0.3024 + }, + { + "start": 8716.22, + "end": 8716.38, + "probability": 0.2311 + }, + { + "start": 8716.38, + "end": 8716.88, + "probability": 0.1776 + }, + { + "start": 8717.08, + "end": 8718.0, + "probability": 0.4793 + }, + { + "start": 8718.14, + "end": 8720.84, + "probability": 0.8005 + }, + { + "start": 8721.74, + "end": 8723.74, + "probability": 0.7981 + }, + { + "start": 8723.82, + "end": 8725.93, + "probability": 0.4872 + }, + { + "start": 8726.14, + "end": 8728.54, + "probability": 0.3041 + }, + { + "start": 8728.64, + "end": 8730.34, + "probability": 0.8444 + }, + { + "start": 8730.9, + "end": 8732.34, + "probability": 0.7893 + }, + { + "start": 8732.56, + "end": 8734.78, + "probability": 0.7057 + }, + { + "start": 8735.18, + "end": 8736.16, + "probability": 0.9746 + }, + { + "start": 8736.62, + "end": 8737.82, + "probability": 0.9279 + }, + { + "start": 8738.32, + "end": 8740.04, + "probability": 0.9307 + }, + { + "start": 8740.62, + "end": 8741.22, + "probability": 0.6367 + }, + { + "start": 8741.3, + "end": 8742.01, + "probability": 0.5763 + }, + { + "start": 8742.26, + "end": 8743.72, + "probability": 0.8863 + }, + { + "start": 8744.04, + "end": 8746.14, + "probability": 0.9888 + }, + { + "start": 8746.14, + "end": 8746.68, + "probability": 0.705 + }, + { + "start": 8747.1, + "end": 8748.32, + "probability": 0.2515 + }, + { + "start": 8748.48, + "end": 8749.4, + "probability": 0.7064 + }, + { + "start": 8749.68, + "end": 8751.86, + "probability": 0.3239 + }, + { + "start": 8752.0, + "end": 8754.32, + "probability": 0.7898 + }, + { + "start": 8755.16, + "end": 8758.08, + "probability": 0.8021 + }, + { + "start": 8758.92, + "end": 8759.4, + "probability": 0.5035 + }, + { + "start": 8759.42, + "end": 8763.96, + "probability": 0.5994 + }, + { + "start": 8763.98, + "end": 8765.22, + "probability": 0.8851 + }, + { + "start": 8767.56, + "end": 8770.1, + "probability": 0.5274 + }, + { + "start": 8771.28, + "end": 8773.4, + "probability": 0.8786 + }, + { + "start": 8774.14, + "end": 8777.08, + "probability": 0.8116 + }, + { + "start": 8778.16, + "end": 8780.26, + "probability": 0.9651 + }, + { + "start": 8782.58, + "end": 8785.55, + "probability": 0.7889 + }, + { + "start": 8786.44, + "end": 8786.56, + "probability": 0.0002 + }, + { + "start": 8789.36, + "end": 8790.3, + "probability": 0.2833 + }, + { + "start": 8790.94, + "end": 8796.94, + "probability": 0.0646 + }, + { + "start": 8797.12, + "end": 8798.13, + "probability": 0.3597 + }, + { + "start": 8799.06, + "end": 8799.72, + "probability": 0.4529 + }, + { + "start": 8799.92, + "end": 8801.28, + "probability": 0.2859 + }, + { + "start": 8801.66, + "end": 8803.02, + "probability": 0.2963 + }, + { + "start": 8803.46, + "end": 8804.6, + "probability": 0.4571 + }, + { + "start": 8804.86, + "end": 8806.0, + "probability": 0.2447 + }, + { + "start": 8806.1, + "end": 8807.98, + "probability": 0.7475 + }, + { + "start": 8808.16, + "end": 8810.08, + "probability": 0.5039 + }, + { + "start": 8810.72, + "end": 8811.84, + "probability": 0.1865 + }, + { + "start": 8811.88, + "end": 8812.88, + "probability": 0.4206 + }, + { + "start": 8812.92, + "end": 8815.88, + "probability": 0.8044 + }, + { + "start": 8815.98, + "end": 8817.17, + "probability": 0.1543 + }, + { + "start": 8817.46, + "end": 8818.82, + "probability": 0.409 + }, + { + "start": 8818.92, + "end": 8820.6, + "probability": 0.053 + }, + { + "start": 8820.86, + "end": 8822.6, + "probability": 0.6995 + }, + { + "start": 8823.04, + "end": 8823.8, + "probability": 0.7394 + }, + { + "start": 8824.36, + "end": 8825.86, + "probability": 0.8195 + }, + { + "start": 8829.06, + "end": 8829.34, + "probability": 0.2547 + }, + { + "start": 8832.0, + "end": 8833.4, + "probability": 0.5863 + }, + { + "start": 8833.48, + "end": 8836.32, + "probability": 0.9407 + }, + { + "start": 8837.08, + "end": 8837.56, + "probability": 0.3487 + }, + { + "start": 8838.5, + "end": 8843.02, + "probability": 0.5649 + }, + { + "start": 8843.02, + "end": 8846.12, + "probability": 0.3785 + }, + { + "start": 8846.34, + "end": 8847.48, + "probability": 0.4733 + }, + { + "start": 8847.6, + "end": 8849.22, + "probability": 0.3705 + }, + { + "start": 8849.22, + "end": 8850.38, + "probability": 0.2605 + }, + { + "start": 8851.28, + "end": 8852.5, + "probability": 0.652 + }, + { + "start": 8852.58, + "end": 8853.32, + "probability": 0.6104 + }, + { + "start": 8853.46, + "end": 8854.34, + "probability": 0.8029 + }, + { + "start": 8855.6, + "end": 8856.99, + "probability": 0.3761 + }, + { + "start": 8858.19, + "end": 8859.2, + "probability": 0.0855 + }, + { + "start": 8861.33, + "end": 8865.3, + "probability": 0.4378 + }, + { + "start": 8865.66, + "end": 8867.9, + "probability": 0.9579 + }, + { + "start": 8869.08, + "end": 8872.38, + "probability": 0.6006 + }, + { + "start": 8873.77, + "end": 8876.36, + "probability": 0.881 + }, + { + "start": 8876.4, + "end": 8877.3, + "probability": 0.8677 + }, + { + "start": 8878.18, + "end": 8879.04, + "probability": 0.4985 + }, + { + "start": 8879.16, + "end": 8882.12, + "probability": 0.903 + }, + { + "start": 8882.9, + "end": 8887.88, + "probability": 0.765 + }, + { + "start": 8889.06, + "end": 8889.58, + "probability": 0.5252 + }, + { + "start": 8889.64, + "end": 8891.56, + "probability": 0.9532 + }, + { + "start": 8891.56, + "end": 8894.74, + "probability": 0.9181 + }, + { + "start": 8895.94, + "end": 8898.62, + "probability": 0.7467 + }, + { + "start": 8898.78, + "end": 8902.26, + "probability": 0.6062 + }, + { + "start": 8903.26, + "end": 8905.66, + "probability": 0.9463 + }, + { + "start": 8905.66, + "end": 8908.3, + "probability": 0.76 + }, + { + "start": 8909.1, + "end": 8911.8, + "probability": 0.6989 + }, + { + "start": 8911.8, + "end": 8914.18, + "probability": 0.7007 + }, + { + "start": 8914.52, + "end": 8914.52, + "probability": 0.06 + }, + { + "start": 8914.52, + "end": 8916.58, + "probability": 0.6973 + }, + { + "start": 8917.68, + "end": 8918.7, + "probability": 0.355 + }, + { + "start": 8922.58, + "end": 8924.26, + "probability": 0.1331 + }, + { + "start": 8924.26, + "end": 8924.89, + "probability": 0.4526 + }, + { + "start": 8925.1, + "end": 8926.66, + "probability": 0.6245 + }, + { + "start": 8926.74, + "end": 8931.64, + "probability": 0.2516 + }, + { + "start": 8932.78, + "end": 8936.36, + "probability": 0.5544 + }, + { + "start": 8936.36, + "end": 8939.74, + "probability": 0.6372 + }, + { + "start": 8940.98, + "end": 8945.48, + "probability": 0.6431 + }, + { + "start": 8945.72, + "end": 8946.62, + "probability": 0.7672 + }, + { + "start": 8946.78, + "end": 8946.78, + "probability": 0.1181 + }, + { + "start": 8946.78, + "end": 8948.48, + "probability": 0.3667 + }, + { + "start": 8948.8, + "end": 8950.1, + "probability": 0.7029 + }, + { + "start": 8950.22, + "end": 8954.44, + "probability": 0.7759 + }, + { + "start": 8955.06, + "end": 8955.98, + "probability": 0.5558 + }, + { + "start": 8956.34, + "end": 8957.24, + "probability": 0.3453 + }, + { + "start": 8957.4, + "end": 8960.26, + "probability": 0.5687 + }, + { + "start": 8960.38, + "end": 8963.84, + "probability": 0.5835 + }, + { + "start": 8963.84, + "end": 8964.6, + "probability": 0.881 + }, + { + "start": 8965.4, + "end": 8965.46, + "probability": 0.0409 + }, + { + "start": 8965.46, + "end": 8966.23, + "probability": 0.818 + }, + { + "start": 8966.84, + "end": 8967.72, + "probability": 0.797 + }, + { + "start": 8967.8, + "end": 8968.82, + "probability": 0.8856 + }, + { + "start": 8969.32, + "end": 8971.16, + "probability": 0.5677 + }, + { + "start": 8971.32, + "end": 8974.64, + "probability": 0.8225 + }, + { + "start": 8974.72, + "end": 8976.04, + "probability": 0.4186 + }, + { + "start": 8976.08, + "end": 8976.44, + "probability": 0.1272 + }, + { + "start": 8976.44, + "end": 8976.86, + "probability": 0.4001 + }, + { + "start": 8977.0, + "end": 8982.12, + "probability": 0.9316 + }, + { + "start": 8982.94, + "end": 8984.28, + "probability": 0.7664 + }, + { + "start": 8986.9, + "end": 8989.42, + "probability": 0.9821 + }, + { + "start": 8990.74, + "end": 8992.98, + "probability": 0.5938 + }, + { + "start": 8993.0, + "end": 8993.36, + "probability": 0.4424 + }, + { + "start": 8993.94, + "end": 8998.94, + "probability": 0.9172 + }, + { + "start": 8998.96, + "end": 9001.76, + "probability": 0.7106 + }, + { + "start": 9002.18, + "end": 9003.36, + "probability": 0.4165 + }, + { + "start": 9003.66, + "end": 9010.06, + "probability": 0.5213 + }, + { + "start": 9010.4, + "end": 9011.12, + "probability": 0.6872 + }, + { + "start": 9011.12, + "end": 9011.58, + "probability": 0.1496 + }, + { + "start": 9011.58, + "end": 9012.08, + "probability": 0.4496 + }, + { + "start": 9012.08, + "end": 9012.56, + "probability": 0.4344 + }, + { + "start": 9012.56, + "end": 9013.26, + "probability": 0.742 + }, + { + "start": 9015.22, + "end": 9020.78, + "probability": 0.1303 + }, + { + "start": 9022.58, + "end": 9024.1, + "probability": 0.0396 + }, + { + "start": 9026.44, + "end": 9029.76, + "probability": 0.5585 + }, + { + "start": 9030.1, + "end": 9031.1, + "probability": 0.6717 + }, + { + "start": 9031.16, + "end": 9033.12, + "probability": 0.856 + }, + { + "start": 9033.54, + "end": 9034.92, + "probability": 0.9766 + }, + { + "start": 9035.58, + "end": 9037.32, + "probability": 0.9868 + }, + { + "start": 9037.98, + "end": 9040.2, + "probability": 0.9749 + }, + { + "start": 9040.2, + "end": 9042.53, + "probability": 0.4564 + }, + { + "start": 9043.12, + "end": 9044.22, + "probability": 0.7089 + }, + { + "start": 9044.88, + "end": 9046.04, + "probability": 0.4153 + }, + { + "start": 9046.26, + "end": 9046.76, + "probability": 0.475 + }, + { + "start": 9047.32, + "end": 9049.86, + "probability": 0.8997 + }, + { + "start": 9051.94, + "end": 9053.36, + "probability": 0.7236 + }, + { + "start": 9055.0, + "end": 9058.66, + "probability": 0.9886 + }, + { + "start": 9059.22, + "end": 9060.94, + "probability": 0.7235 + }, + { + "start": 9061.66, + "end": 9062.56, + "probability": 0.8548 + }, + { + "start": 9063.7, + "end": 9065.42, + "probability": 0.6361 + }, + { + "start": 9067.2, + "end": 9068.3, + "probability": 0.7821 + }, + { + "start": 9086.99, + "end": 9090.22, + "probability": 0.9399 + }, + { + "start": 9091.26, + "end": 9093.59, + "probability": 0.8137 + }, + { + "start": 9094.44, + "end": 9096.06, + "probability": 0.2229 + }, + { + "start": 9096.66, + "end": 9099.76, + "probability": 0.5739 + }, + { + "start": 9100.84, + "end": 9102.66, + "probability": 0.997 + }, + { + "start": 9102.72, + "end": 9104.88, + "probability": 0.8956 + }, + { + "start": 9106.46, + "end": 9109.18, + "probability": 0.9985 + }, + { + "start": 9109.78, + "end": 9110.62, + "probability": 0.9726 + }, + { + "start": 9111.6, + "end": 9112.5, + "probability": 0.3035 + }, + { + "start": 9112.6, + "end": 9112.9, + "probability": 0.6486 + }, + { + "start": 9113.0, + "end": 9115.86, + "probability": 0.9043 + }, + { + "start": 9116.5, + "end": 9118.22, + "probability": 0.7758 + }, + { + "start": 9119.32, + "end": 9123.46, + "probability": 0.9922 + }, + { + "start": 9123.46, + "end": 9125.62, + "probability": 0.5882 + }, + { + "start": 9126.5, + "end": 9129.56, + "probability": 0.9001 + }, + { + "start": 9130.16, + "end": 9131.38, + "probability": 0.7205 + }, + { + "start": 9132.22, + "end": 9134.5, + "probability": 0.9599 + }, + { + "start": 9135.46, + "end": 9137.48, + "probability": 0.8493 + }, + { + "start": 9138.88, + "end": 9143.2, + "probability": 0.9852 + }, + { + "start": 9143.2, + "end": 9146.94, + "probability": 0.9297 + }, + { + "start": 9147.66, + "end": 9148.66, + "probability": 0.6806 + }, + { + "start": 9149.72, + "end": 9153.78, + "probability": 0.8753 + }, + { + "start": 9154.38, + "end": 9156.28, + "probability": 0.7297 + }, + { + "start": 9158.18, + "end": 9161.96, + "probability": 0.8686 + }, + { + "start": 9162.54, + "end": 9165.0, + "probability": 0.7736 + }, + { + "start": 9165.62, + "end": 9168.48, + "probability": 0.9908 + }, + { + "start": 9169.16, + "end": 9170.74, + "probability": 0.9589 + }, + { + "start": 9171.34, + "end": 9172.6, + "probability": 0.9027 + }, + { + "start": 9173.34, + "end": 9175.1, + "probability": 0.9782 + }, + { + "start": 9175.22, + "end": 9176.2, + "probability": 0.7368 + }, + { + "start": 9176.66, + "end": 9181.34, + "probability": 0.9796 + }, + { + "start": 9182.38, + "end": 9186.5, + "probability": 0.8178 + }, + { + "start": 9187.18, + "end": 9190.38, + "probability": 0.8592 + }, + { + "start": 9190.92, + "end": 9193.94, + "probability": 0.9905 + }, + { + "start": 9193.94, + "end": 9196.12, + "probability": 0.787 + }, + { + "start": 9197.08, + "end": 9200.45, + "probability": 0.9445 + }, + { + "start": 9200.56, + "end": 9204.22, + "probability": 0.9795 + }, + { + "start": 9204.66, + "end": 9205.66, + "probability": 0.7881 + }, + { + "start": 9205.78, + "end": 9210.3, + "probability": 0.9705 + }, + { + "start": 9210.3, + "end": 9214.0, + "probability": 0.8921 + }, + { + "start": 9215.08, + "end": 9218.02, + "probability": 0.9052 + }, + { + "start": 9218.64, + "end": 9221.08, + "probability": 0.9728 + }, + { + "start": 9223.06, + "end": 9225.18, + "probability": 0.5977 + }, + { + "start": 9226.38, + "end": 9229.1, + "probability": 0.8818 + }, + { + "start": 9229.24, + "end": 9230.64, + "probability": 0.9377 + }, + { + "start": 9231.2, + "end": 9232.24, + "probability": 0.9772 + }, + { + "start": 9232.84, + "end": 9235.78, + "probability": 0.8998 + }, + { + "start": 9236.5, + "end": 9238.62, + "probability": 0.3865 + }, + { + "start": 9239.28, + "end": 9240.4, + "probability": 0.6613 + }, + { + "start": 9240.98, + "end": 9242.14, + "probability": 0.8487 + }, + { + "start": 9242.62, + "end": 9244.7, + "probability": 0.7896 + }, + { + "start": 9245.24, + "end": 9247.02, + "probability": 0.8413 + }, + { + "start": 9248.18, + "end": 9251.3, + "probability": 0.937 + }, + { + "start": 9251.3, + "end": 9256.32, + "probability": 0.9957 + }, + { + "start": 9257.7, + "end": 9264.4, + "probability": 0.7952 + }, + { + "start": 9265.0, + "end": 9268.2, + "probability": 0.9927 + }, + { + "start": 9269.34, + "end": 9271.2, + "probability": 0.9612 + }, + { + "start": 9271.58, + "end": 9274.8, + "probability": 0.9305 + }, + { + "start": 9275.32, + "end": 9277.28, + "probability": 0.9766 + }, + { + "start": 9278.02, + "end": 9282.7, + "probability": 0.7044 + }, + { + "start": 9282.7, + "end": 9286.94, + "probability": 0.9855 + }, + { + "start": 9287.94, + "end": 9289.62, + "probability": 0.9608 + }, + { + "start": 9289.62, + "end": 9291.4, + "probability": 0.7745 + }, + { + "start": 9292.48, + "end": 9297.2, + "probability": 0.9487 + }, + { + "start": 9297.88, + "end": 9299.5, + "probability": 0.4885 + }, + { + "start": 9301.66, + "end": 9303.88, + "probability": 0.9419 + }, + { + "start": 9304.76, + "end": 9308.8, + "probability": 0.8153 + }, + { + "start": 9308.98, + "end": 9310.7, + "probability": 0.8173 + }, + { + "start": 9311.32, + "end": 9312.54, + "probability": 0.7983 + }, + { + "start": 9313.06, + "end": 9317.94, + "probability": 0.8918 + }, + { + "start": 9318.3, + "end": 9320.58, + "probability": 0.9614 + }, + { + "start": 9321.66, + "end": 9321.92, + "probability": 0.829 + }, + { + "start": 9321.96, + "end": 9322.54, + "probability": 0.6345 + }, + { + "start": 9322.6, + "end": 9323.58, + "probability": 0.9646 + }, + { + "start": 9323.96, + "end": 9325.56, + "probability": 0.5169 + }, + { + "start": 9325.7, + "end": 9326.06, + "probability": 0.8319 + }, + { + "start": 9326.6, + "end": 9329.78, + "probability": 0.748 + }, + { + "start": 9330.54, + "end": 9334.36, + "probability": 0.9285 + }, + { + "start": 9335.42, + "end": 9338.34, + "probability": 0.5646 + }, + { + "start": 9339.02, + "end": 9343.34, + "probability": 0.9449 + }, + { + "start": 9343.34, + "end": 9346.54, + "probability": 0.9086 + }, + { + "start": 9347.8, + "end": 9349.28, + "probability": 0.9733 + }, + { + "start": 9350.44, + "end": 9353.48, + "probability": 0.9944 + }, + { + "start": 9354.44, + "end": 9356.58, + "probability": 0.9839 + }, + { + "start": 9357.14, + "end": 9358.46, + "probability": 0.9839 + }, + { + "start": 9359.36, + "end": 9360.92, + "probability": 0.9384 + }, + { + "start": 9361.48, + "end": 9363.98, + "probability": 0.9626 + }, + { + "start": 9364.5, + "end": 9368.08, + "probability": 0.9242 + }, + { + "start": 9369.36, + "end": 9371.66, + "probability": 0.929 + }, + { + "start": 9372.68, + "end": 9374.58, + "probability": 0.9373 + }, + { + "start": 9375.24, + "end": 9376.28, + "probability": 0.6949 + }, + { + "start": 9376.32, + "end": 9377.54, + "probability": 0.4308 + }, + { + "start": 9377.64, + "end": 9380.54, + "probability": 0.9451 + }, + { + "start": 9380.54, + "end": 9385.12, + "probability": 0.9474 + }, + { + "start": 9385.82, + "end": 9387.24, + "probability": 0.9426 + }, + { + "start": 9388.22, + "end": 9389.96, + "probability": 0.7585 + }, + { + "start": 9390.3, + "end": 9391.6, + "probability": 0.7149 + }, + { + "start": 9392.52, + "end": 9396.53, + "probability": 0.7047 + }, + { + "start": 9397.02, + "end": 9397.34, + "probability": 0.8807 + }, + { + "start": 9397.42, + "end": 9399.38, + "probability": 0.9673 + }, + { + "start": 9400.46, + "end": 9402.08, + "probability": 0.9954 + }, + { + "start": 9402.96, + "end": 9406.42, + "probability": 0.8784 + }, + { + "start": 9406.82, + "end": 9407.76, + "probability": 0.563 + }, + { + "start": 9408.54, + "end": 9410.3, + "probability": 0.8962 + }, + { + "start": 9410.44, + "end": 9410.92, + "probability": 0.4351 + }, + { + "start": 9411.32, + "end": 9414.92, + "probability": 0.7944 + }, + { + "start": 9414.98, + "end": 9415.94, + "probability": 0.6723 + }, + { + "start": 9416.2, + "end": 9417.36, + "probability": 0.9158 + }, + { + "start": 9418.76, + "end": 9419.32, + "probability": 0.4367 + }, + { + "start": 9419.52, + "end": 9421.02, + "probability": 0.9503 + }, + { + "start": 9421.28, + "end": 9425.84, + "probability": 0.7358 + }, + { + "start": 9426.84, + "end": 9430.06, + "probability": 0.9458 + }, + { + "start": 9430.94, + "end": 9437.19, + "probability": 0.8539 + }, + { + "start": 9438.38, + "end": 9441.42, + "probability": 0.967 + }, + { + "start": 9441.92, + "end": 9443.12, + "probability": 0.8315 + }, + { + "start": 9443.38, + "end": 9446.32, + "probability": 0.9324 + }, + { + "start": 9446.88, + "end": 9447.64, + "probability": 0.5282 + }, + { + "start": 9447.64, + "end": 9451.92, + "probability": 0.6974 + }, + { + "start": 9452.24, + "end": 9453.26, + "probability": 0.9657 + }, + { + "start": 9455.42, + "end": 9458.54, + "probability": 0.7425 + }, + { + "start": 9458.76, + "end": 9459.52, + "probability": 0.7546 + }, + { + "start": 9459.54, + "end": 9460.1, + "probability": 0.7974 + }, + { + "start": 9460.54, + "end": 9461.84, + "probability": 0.8005 + }, + { + "start": 9462.2, + "end": 9463.18, + "probability": 0.8679 + }, + { + "start": 9463.2, + "end": 9466.3, + "probability": 0.2364 + }, + { + "start": 9467.36, + "end": 9467.74, + "probability": 0.3827 + }, + { + "start": 9467.84, + "end": 9469.39, + "probability": 0.7612 + }, + { + "start": 9469.5, + "end": 9469.84, + "probability": 0.6737 + }, + { + "start": 9469.92, + "end": 9470.52, + "probability": 0.8316 + }, + { + "start": 9470.68, + "end": 9472.2, + "probability": 0.7852 + }, + { + "start": 9472.42, + "end": 9473.96, + "probability": 0.9078 + }, + { + "start": 9474.64, + "end": 9475.19, + "probability": 0.9515 + }, + { + "start": 9475.88, + "end": 9477.28, + "probability": 0.9847 + }, + { + "start": 9477.62, + "end": 9478.82, + "probability": 0.8067 + }, + { + "start": 9478.96, + "end": 9479.86, + "probability": 0.6186 + }, + { + "start": 9480.32, + "end": 9482.62, + "probability": 0.9438 + }, + { + "start": 9484.08, + "end": 9484.98, + "probability": 0.7638 + }, + { + "start": 9485.08, + "end": 9489.18, + "probability": 0.7957 + }, + { + "start": 9489.42, + "end": 9491.26, + "probability": 0.8787 + }, + { + "start": 9491.4, + "end": 9491.96, + "probability": 0.4937 + }, + { + "start": 9492.34, + "end": 9493.78, + "probability": 0.5018 + }, + { + "start": 9494.86, + "end": 9496.94, + "probability": 0.8675 + }, + { + "start": 9498.0, + "end": 9499.94, + "probability": 0.9113 + }, + { + "start": 9500.28, + "end": 9501.64, + "probability": 0.9176 + }, + { + "start": 9501.7, + "end": 9504.36, + "probability": 0.9158 + }, + { + "start": 9504.94, + "end": 9506.2, + "probability": 0.991 + }, + { + "start": 9506.32, + "end": 9508.08, + "probability": 0.9534 + }, + { + "start": 9508.96, + "end": 9511.5, + "probability": 0.99 + }, + { + "start": 9511.62, + "end": 9513.5, + "probability": 0.9548 + }, + { + "start": 9514.14, + "end": 9516.5, + "probability": 0.9644 + }, + { + "start": 9517.24, + "end": 9518.88, + "probability": 0.99 + }, + { + "start": 9518.94, + "end": 9519.28, + "probability": 0.7439 + }, + { + "start": 9519.38, + "end": 9520.24, + "probability": 0.7902 + }, + { + "start": 9520.4, + "end": 9520.68, + "probability": 0.9551 + }, + { + "start": 9521.2, + "end": 9523.5, + "probability": 0.9294 + }, + { + "start": 9523.5, + "end": 9526.04, + "probability": 0.7662 + }, + { + "start": 9526.12, + "end": 9526.52, + "probability": 0.3222 + }, + { + "start": 9526.64, + "end": 9527.3, + "probability": 0.8401 + }, + { + "start": 9528.2, + "end": 9529.84, + "probability": 0.3513 + }, + { + "start": 9529.84, + "end": 9529.91, + "probability": 0.4256 + }, + { + "start": 9530.6, + "end": 9532.54, + "probability": 0.629 + }, + { + "start": 9532.68, + "end": 9534.42, + "probability": 0.5116 + }, + { + "start": 9534.98, + "end": 9536.78, + "probability": 0.6751 + }, + { + "start": 9537.46, + "end": 9538.36, + "probability": 0.9341 + }, + { + "start": 9538.44, + "end": 9542.34, + "probability": 0.7206 + }, + { + "start": 9542.4, + "end": 9543.98, + "probability": 0.9551 + }, + { + "start": 9544.06, + "end": 9545.35, + "probability": 0.6334 + }, + { + "start": 9545.38, + "end": 9546.86, + "probability": 0.8687 + }, + { + "start": 9547.1, + "end": 9547.74, + "probability": 0.084 + }, + { + "start": 9549.02, + "end": 9550.1, + "probability": 0.0635 + }, + { + "start": 9552.16, + "end": 9553.4, + "probability": 0.1812 + }, + { + "start": 9553.98, + "end": 9554.32, + "probability": 0.6528 + }, + { + "start": 9554.4, + "end": 9556.38, + "probability": 0.7139 + }, + { + "start": 9556.46, + "end": 9557.6, + "probability": 0.856 + }, + { + "start": 9557.66, + "end": 9558.92, + "probability": 0.9341 + }, + { + "start": 9559.52, + "end": 9559.68, + "probability": 0.804 + }, + { + "start": 9559.78, + "end": 9560.54, + "probability": 0.7869 + }, + { + "start": 9560.68, + "end": 9560.88, + "probability": 0.8144 + }, + { + "start": 9560.88, + "end": 9562.06, + "probability": 0.9911 + }, + { + "start": 9562.7, + "end": 9565.34, + "probability": 0.9478 + }, + { + "start": 9565.59, + "end": 9567.36, + "probability": 0.839 + }, + { + "start": 9567.48, + "end": 9569.42, + "probability": 0.8172 + }, + { + "start": 9569.92, + "end": 9570.9, + "probability": 0.868 + }, + { + "start": 9570.96, + "end": 9572.0, + "probability": 0.9333 + }, + { + "start": 9572.14, + "end": 9572.98, + "probability": 0.8807 + }, + { + "start": 9573.54, + "end": 9575.2, + "probability": 0.5855 + }, + { + "start": 9575.32, + "end": 9576.88, + "probability": 0.7011 + }, + { + "start": 9577.34, + "end": 9578.96, + "probability": 0.9593 + }, + { + "start": 9579.1, + "end": 9580.74, + "probability": 0.5846 + }, + { + "start": 9580.74, + "end": 9581.48, + "probability": 0.6954 + }, + { + "start": 9582.28, + "end": 9585.2, + "probability": 0.7232 + }, + { + "start": 9585.5, + "end": 9587.08, + "probability": 0.5322 + }, + { + "start": 9587.08, + "end": 9589.68, + "probability": 0.6476 + }, + { + "start": 9589.8, + "end": 9595.24, + "probability": 0.965 + }, + { + "start": 9595.58, + "end": 9600.06, + "probability": 0.6789 + }, + { + "start": 9600.36, + "end": 9600.9, + "probability": 0.8682 + }, + { + "start": 9601.02, + "end": 9601.48, + "probability": 0.8186 + }, + { + "start": 9601.66, + "end": 9601.96, + "probability": 0.8589 + }, + { + "start": 9602.12, + "end": 9603.58, + "probability": 0.9961 + }, + { + "start": 9603.68, + "end": 9604.54, + "probability": 0.793 + }, + { + "start": 9605.16, + "end": 9605.4, + "probability": 0.7379 + }, + { + "start": 9605.52, + "end": 9606.42, + "probability": 0.8935 + }, + { + "start": 9606.52, + "end": 9607.52, + "probability": 0.882 + }, + { + "start": 9607.6, + "end": 9608.36, + "probability": 0.8012 + }, + { + "start": 9608.44, + "end": 9608.86, + "probability": 0.9338 + }, + { + "start": 9608.94, + "end": 9610.14, + "probability": 0.9438 + }, + { + "start": 9610.44, + "end": 9612.8, + "probability": 0.8924 + }, + { + "start": 9613.36, + "end": 9614.46, + "probability": 0.8003 + }, + { + "start": 9614.66, + "end": 9616.28, + "probability": 0.7177 + }, + { + "start": 9616.4, + "end": 9616.72, + "probability": 0.7578 + }, + { + "start": 9616.8, + "end": 9617.34, + "probability": 0.5953 + }, + { + "start": 9617.76, + "end": 9619.64, + "probability": 0.9404 + }, + { + "start": 9620.22, + "end": 9621.76, + "probability": 0.9116 + }, + { + "start": 9621.9, + "end": 9623.46, + "probability": 0.8713 + }, + { + "start": 9623.56, + "end": 9624.28, + "probability": 0.9503 + }, + { + "start": 9624.66, + "end": 9625.82, + "probability": 0.6385 + }, + { + "start": 9626.14, + "end": 9627.62, + "probability": 0.9253 + }, + { + "start": 9627.74, + "end": 9628.34, + "probability": 0.7362 + }, + { + "start": 9628.82, + "end": 9629.28, + "probability": 0.1352 + }, + { + "start": 9629.32, + "end": 9629.5, + "probability": 0.4756 + }, + { + "start": 9629.64, + "end": 9632.46, + "probability": 0.959 + }, + { + "start": 9632.78, + "end": 9634.06, + "probability": 0.9937 + }, + { + "start": 9634.14, + "end": 9635.54, + "probability": 0.6581 + }, + { + "start": 9635.9, + "end": 9639.16, + "probability": 0.9703 + }, + { + "start": 9639.56, + "end": 9639.8, + "probability": 0.4402 + }, + { + "start": 9639.94, + "end": 9641.12, + "probability": 0.6845 + }, + { + "start": 9641.7, + "end": 9644.42, + "probability": 0.9106 + }, + { + "start": 9644.84, + "end": 9646.36, + "probability": 0.8634 + }, + { + "start": 9646.82, + "end": 9648.62, + "probability": 0.903 + }, + { + "start": 9649.06, + "end": 9649.38, + "probability": 0.8506 + }, + { + "start": 9649.6, + "end": 9650.53, + "probability": 0.9254 + }, + { + "start": 9651.2, + "end": 9652.4, + "probability": 0.8493 + }, + { + "start": 9652.44, + "end": 9655.13, + "probability": 0.9335 + }, + { + "start": 9655.26, + "end": 9656.58, + "probability": 0.8676 + }, + { + "start": 9656.78, + "end": 9658.4, + "probability": 0.971 + }, + { + "start": 9658.86, + "end": 9660.28, + "probability": 0.8651 + }, + { + "start": 9660.36, + "end": 9661.28, + "probability": 0.8137 + }, + { + "start": 9661.38, + "end": 9662.16, + "probability": 0.9863 + }, + { + "start": 9663.5, + "end": 9664.74, + "probability": 0.7351 + }, + { + "start": 9665.06, + "end": 9667.7, + "probability": 0.8732 + }, + { + "start": 9668.58, + "end": 9671.56, + "probability": 0.9086 + }, + { + "start": 9671.56, + "end": 9673.5, + "probability": 0.6292 + }, + { + "start": 9673.72, + "end": 9677.16, + "probability": 0.5472 + }, + { + "start": 9677.46, + "end": 9678.24, + "probability": 0.7536 + }, + { + "start": 9679.98, + "end": 9681.34, + "probability": 0.5155 + }, + { + "start": 9682.1, + "end": 9683.18, + "probability": 0.7759 + }, + { + "start": 9693.16, + "end": 9695.5, + "probability": 0.5099 + }, + { + "start": 9695.58, + "end": 9698.62, + "probability": 0.7187 + }, + { + "start": 9699.46, + "end": 9699.94, + "probability": 0.3057 + }, + { + "start": 9717.2, + "end": 9719.22, + "probability": 0.5087 + }, + { + "start": 9719.5, + "end": 9720.89, + "probability": 0.6345 + }, + { + "start": 9721.72, + "end": 9732.04, + "probability": 0.9831 + }, + { + "start": 9733.2, + "end": 9733.3, + "probability": 0.0118 + }, + { + "start": 9733.88, + "end": 9733.98, + "probability": 0.9957 + }, + { + "start": 9734.68, + "end": 9736.42, + "probability": 0.99 + }, + { + "start": 9737.24, + "end": 9739.6, + "probability": 0.9749 + }, + { + "start": 9739.72, + "end": 9740.96, + "probability": 0.8628 + }, + { + "start": 9741.08, + "end": 9742.1, + "probability": 0.8814 + }, + { + "start": 9742.5, + "end": 9749.58, + "probability": 0.9932 + }, + { + "start": 9750.42, + "end": 9751.52, + "probability": 0.5635 + }, + { + "start": 9752.22, + "end": 9753.68, + "probability": 0.1863 + }, + { + "start": 9758.3, + "end": 9761.24, + "probability": 0.4754 + }, + { + "start": 9761.28, + "end": 9767.14, + "probability": 0.7612 + }, + { + "start": 9768.44, + "end": 9770.36, + "probability": 0.9529 + }, + { + "start": 9771.24, + "end": 9772.7, + "probability": 0.955 + }, + { + "start": 9775.6, + "end": 9778.62, + "probability": 0.9702 + }, + { + "start": 9779.92, + "end": 9782.05, + "probability": 0.8594 + }, + { + "start": 9782.94, + "end": 9784.16, + "probability": 0.9393 + }, + { + "start": 9784.94, + "end": 9788.6, + "probability": 0.8986 + }, + { + "start": 9789.18, + "end": 9789.95, + "probability": 0.7739 + }, + { + "start": 9791.0, + "end": 9795.26, + "probability": 0.9888 + }, + { + "start": 9796.26, + "end": 9800.7, + "probability": 0.9916 + }, + { + "start": 9800.94, + "end": 9802.78, + "probability": 0.9016 + }, + { + "start": 9803.8, + "end": 9808.12, + "probability": 0.9956 + }, + { + "start": 9808.84, + "end": 9816.34, + "probability": 0.9913 + }, + { + "start": 9817.56, + "end": 9819.96, + "probability": 0.9954 + }, + { + "start": 9820.52, + "end": 9822.86, + "probability": 0.9694 + }, + { + "start": 9823.74, + "end": 9825.2, + "probability": 0.7939 + }, + { + "start": 9826.26, + "end": 9831.46, + "probability": 0.9914 + }, + { + "start": 9832.28, + "end": 9835.0, + "probability": 0.9962 + }, + { + "start": 9835.72, + "end": 9840.44, + "probability": 0.9875 + }, + { + "start": 9841.54, + "end": 9845.6, + "probability": 0.9849 + }, + { + "start": 9845.6, + "end": 9850.22, + "probability": 0.9651 + }, + { + "start": 9851.51, + "end": 9857.58, + "probability": 0.8956 + }, + { + "start": 9857.58, + "end": 9862.86, + "probability": 0.9869 + }, + { + "start": 9863.46, + "end": 9866.74, + "probability": 0.8505 + }, + { + "start": 9867.5, + "end": 9867.7, + "probability": 0.3349 + }, + { + "start": 9868.36, + "end": 9871.4, + "probability": 0.6382 + }, + { + "start": 9871.92, + "end": 9873.1, + "probability": 0.9619 + }, + { + "start": 9875.34, + "end": 9876.82, + "probability": 0.5195 + }, + { + "start": 9877.9, + "end": 9880.4, + "probability": 0.8399 + }, + { + "start": 9880.46, + "end": 9882.02, + "probability": 0.981 + }, + { + "start": 9882.28, + "end": 9882.9, + "probability": 0.7898 + }, + { + "start": 9882.96, + "end": 9883.88, + "probability": 0.632 + }, + { + "start": 9884.42, + "end": 9887.6, + "probability": 0.8853 + }, + { + "start": 9887.94, + "end": 9893.88, + "probability": 0.8754 + }, + { + "start": 9893.88, + "end": 9897.62, + "probability": 0.9964 + }, + { + "start": 9897.9, + "end": 9899.42, + "probability": 0.9635 + }, + { + "start": 9900.54, + "end": 9904.6, + "probability": 0.7577 + }, + { + "start": 9905.28, + "end": 9906.88, + "probability": 0.9586 + }, + { + "start": 9908.36, + "end": 9910.12, + "probability": 0.8933 + }, + { + "start": 9910.14, + "end": 9911.08, + "probability": 0.9125 + }, + { + "start": 9911.24, + "end": 9911.86, + "probability": 0.7932 + }, + { + "start": 9911.88, + "end": 9912.5, + "probability": 0.0583 + }, + { + "start": 9912.9, + "end": 9917.98, + "probability": 0.9632 + }, + { + "start": 9918.62, + "end": 9922.18, + "probability": 0.9985 + }, + { + "start": 9923.1, + "end": 9928.72, + "probability": 0.9985 + }, + { + "start": 9929.64, + "end": 9935.42, + "probability": 0.999 + }, + { + "start": 9935.42, + "end": 9940.8, + "probability": 0.9917 + }, + { + "start": 9941.24, + "end": 9943.06, + "probability": 0.814 + }, + { + "start": 9943.88, + "end": 9949.6, + "probability": 0.9937 + }, + { + "start": 9949.9, + "end": 9951.22, + "probability": 0.9409 + }, + { + "start": 9952.18, + "end": 9953.48, + "probability": 0.8164 + }, + { + "start": 9954.26, + "end": 9956.06, + "probability": 0.9824 + }, + { + "start": 9956.52, + "end": 9962.04, + "probability": 0.985 + }, + { + "start": 9962.04, + "end": 9965.84, + "probability": 0.8599 + }, + { + "start": 9966.7, + "end": 9970.4, + "probability": 0.7521 + }, + { + "start": 9971.28, + "end": 9976.62, + "probability": 0.9957 + }, + { + "start": 9978.58, + "end": 9981.52, + "probability": 0.9889 + }, + { + "start": 9981.52, + "end": 9986.74, + "probability": 0.8803 + }, + { + "start": 9987.44, + "end": 9990.64, + "probability": 0.9856 + }, + { + "start": 9990.78, + "end": 9991.94, + "probability": 0.887 + }, + { + "start": 9992.62, + "end": 9997.0, + "probability": 0.9795 + }, + { + "start": 9998.04, + "end": 9999.86, + "probability": 0.8682 + }, + { + "start": 10000.46, + "end": 10004.06, + "probability": 0.9941 + }, + { + "start": 10004.66, + "end": 10007.84, + "probability": 0.8249 + }, + { + "start": 10008.4, + "end": 10014.56, + "probability": 0.9858 + }, + { + "start": 10015.48, + "end": 10020.76, + "probability": 0.9804 + }, + { + "start": 10020.76, + "end": 10025.8, + "probability": 0.9995 + }, + { + "start": 10026.4, + "end": 10031.54, + "probability": 0.9982 + }, + { + "start": 10032.6, + "end": 10035.58, + "probability": 0.9936 + }, + { + "start": 10035.58, + "end": 10041.26, + "probability": 0.9949 + }, + { + "start": 10041.3, + "end": 10046.32, + "probability": 0.991 + }, + { + "start": 10047.34, + "end": 10051.5, + "probability": 0.9878 + }, + { + "start": 10051.8, + "end": 10054.06, + "probability": 0.923 + }, + { + "start": 10055.12, + "end": 10060.16, + "probability": 0.9915 + }, + { + "start": 10060.16, + "end": 10064.04, + "probability": 0.972 + }, + { + "start": 10065.26, + "end": 10070.24, + "probability": 0.9751 + }, + { + "start": 10070.66, + "end": 10076.14, + "probability": 0.9933 + }, + { + "start": 10076.14, + "end": 10081.34, + "probability": 0.9992 + }, + { + "start": 10081.94, + "end": 10086.38, + "probability": 0.7075 + }, + { + "start": 10087.22, + "end": 10092.31, + "probability": 0.9931 + }, + { + "start": 10092.46, + "end": 10096.9, + "probability": 0.9738 + }, + { + "start": 10098.3, + "end": 10099.44, + "probability": 0.7476 + }, + { + "start": 10099.54, + "end": 10103.78, + "probability": 0.9784 + }, + { + "start": 10104.38, + "end": 10111.52, + "probability": 0.9984 + }, + { + "start": 10112.94, + "end": 10116.48, + "probability": 0.8751 + }, + { + "start": 10117.36, + "end": 10121.04, + "probability": 0.9906 + }, + { + "start": 10121.04, + "end": 10128.32, + "probability": 0.9658 + }, + { + "start": 10128.32, + "end": 10133.14, + "probability": 0.999 + }, + { + "start": 10133.66, + "end": 10135.64, + "probability": 0.9692 + }, + { + "start": 10136.22, + "end": 10140.88, + "probability": 0.9816 + }, + { + "start": 10148.22, + "end": 10150.58, + "probability": 0.7288 + }, + { + "start": 10151.58, + "end": 10151.9, + "probability": 0.6899 + }, + { + "start": 10152.34, + "end": 10152.69, + "probability": 0.4065 + }, + { + "start": 10154.02, + "end": 10155.56, + "probability": 0.4436 + }, + { + "start": 10156.66, + "end": 10160.14, + "probability": 0.6677 + }, + { + "start": 10161.0, + "end": 10166.82, + "probability": 0.9788 + }, + { + "start": 10167.62, + "end": 10168.56, + "probability": 0.9731 + }, + { + "start": 10169.36, + "end": 10173.9, + "probability": 0.8685 + }, + { + "start": 10174.52, + "end": 10176.36, + "probability": 0.8625 + }, + { + "start": 10177.96, + "end": 10184.0, + "probability": 0.9967 + }, + { + "start": 10184.38, + "end": 10186.92, + "probability": 0.9891 + }, + { + "start": 10187.34, + "end": 10188.21, + "probability": 0.6565 + }, + { + "start": 10188.82, + "end": 10189.4, + "probability": 0.8895 + }, + { + "start": 10189.72, + "end": 10193.4, + "probability": 0.9468 + }, + { + "start": 10193.96, + "end": 10194.38, + "probability": 0.4096 + }, + { + "start": 10194.6, + "end": 10195.06, + "probability": 0.7317 + }, + { + "start": 10195.36, + "end": 10195.76, + "probability": 0.7993 + }, + { + "start": 10196.5, + "end": 10197.94, + "probability": 0.8745 + }, + { + "start": 10199.26, + "end": 10205.84, + "probability": 0.9525 + }, + { + "start": 10206.58, + "end": 10207.44, + "probability": 0.5894 + }, + { + "start": 10208.6, + "end": 10209.2, + "probability": 0.9502 + }, + { + "start": 10209.32, + "end": 10209.88, + "probability": 0.4831 + }, + { + "start": 10209.94, + "end": 10213.32, + "probability": 0.9536 + }, + { + "start": 10214.16, + "end": 10216.12, + "probability": 0.9332 + }, + { + "start": 10217.76, + "end": 10221.8, + "probability": 0.9957 + }, + { + "start": 10222.12, + "end": 10223.86, + "probability": 0.7325 + }, + { + "start": 10224.92, + "end": 10227.66, + "probability": 0.8042 + }, + { + "start": 10229.04, + "end": 10230.18, + "probability": 0.7717 + }, + { + "start": 10231.78, + "end": 10232.49, + "probability": 0.8694 + }, + { + "start": 10233.06, + "end": 10233.64, + "probability": 0.8144 + }, + { + "start": 10233.7, + "end": 10234.72, + "probability": 0.9307 + }, + { + "start": 10235.2, + "end": 10235.84, + "probability": 0.8721 + }, + { + "start": 10237.04, + "end": 10237.98, + "probability": 0.8087 + }, + { + "start": 10238.18, + "end": 10238.44, + "probability": 0.5148 + }, + { + "start": 10238.54, + "end": 10239.34, + "probability": 0.9781 + }, + { + "start": 10240.26, + "end": 10243.12, + "probability": 0.7955 + }, + { + "start": 10243.22, + "end": 10244.86, + "probability": 0.9948 + }, + { + "start": 10246.4, + "end": 10248.36, + "probability": 0.6395 + }, + { + "start": 10248.44, + "end": 10249.32, + "probability": 0.9824 + }, + { + "start": 10249.78, + "end": 10251.82, + "probability": 0.996 + }, + { + "start": 10252.08, + "end": 10253.7, + "probability": 0.9419 + }, + { + "start": 10254.38, + "end": 10256.5, + "probability": 0.9391 + }, + { + "start": 10256.5, + "end": 10257.62, + "probability": 0.9382 + }, + { + "start": 10257.76, + "end": 10258.84, + "probability": 0.9553 + }, + { + "start": 10260.8, + "end": 10261.76, + "probability": 0.7689 + }, + { + "start": 10261.98, + "end": 10262.76, + "probability": 0.9673 + }, + { + "start": 10262.88, + "end": 10264.72, + "probability": 0.9622 + }, + { + "start": 10265.36, + "end": 10266.54, + "probability": 0.7348 + }, + { + "start": 10266.62, + "end": 10270.66, + "probability": 0.7481 + }, + { + "start": 10271.48, + "end": 10272.38, + "probability": 0.749 + }, + { + "start": 10272.94, + "end": 10275.82, + "probability": 0.8738 + }, + { + "start": 10276.9, + "end": 10277.5, + "probability": 0.5245 + }, + { + "start": 10277.66, + "end": 10279.96, + "probability": 0.9792 + }, + { + "start": 10280.14, + "end": 10283.1, + "probability": 0.8407 + }, + { + "start": 10283.36, + "end": 10284.9, + "probability": 0.2893 + }, + { + "start": 10285.4, + "end": 10288.66, + "probability": 0.9097 + }, + { + "start": 10288.72, + "end": 10291.88, + "probability": 0.9077 + }, + { + "start": 10292.19, + "end": 10295.29, + "probability": 0.2532 + }, + { + "start": 10295.98, + "end": 10297.77, + "probability": 0.8264 + }, + { + "start": 10298.92, + "end": 10300.16, + "probability": 0.514 + }, + { + "start": 10300.18, + "end": 10302.38, + "probability": 0.9475 + }, + { + "start": 10302.56, + "end": 10304.89, + "probability": 0.9058 + }, + { + "start": 10305.32, + "end": 10305.63, + "probability": 0.4979 + }, + { + "start": 10306.44, + "end": 10308.27, + "probability": 0.91 + }, + { + "start": 10309.92, + "end": 10310.24, + "probability": 0.0884 + }, + { + "start": 10310.24, + "end": 10310.24, + "probability": 0.1177 + }, + { + "start": 10310.24, + "end": 10310.94, + "probability": 0.5647 + }, + { + "start": 10310.94, + "end": 10312.66, + "probability": 0.3537 + }, + { + "start": 10312.78, + "end": 10314.18, + "probability": 0.688 + }, + { + "start": 10314.5, + "end": 10316.3, + "probability": 0.6966 + }, + { + "start": 10316.72, + "end": 10321.6, + "probability": 0.9783 + }, + { + "start": 10323.14, + "end": 10323.58, + "probability": 0.4003 + }, + { + "start": 10324.6, + "end": 10325.48, + "probability": 0.0408 + }, + { + "start": 10325.48, + "end": 10326.24, + "probability": 0.0868 + }, + { + "start": 10328.54, + "end": 10328.8, + "probability": 0.4712 + }, + { + "start": 10328.8, + "end": 10329.3, + "probability": 0.1164 + }, + { + "start": 10329.3, + "end": 10331.94, + "probability": 0.1496 + }, + { + "start": 10333.1, + "end": 10334.1, + "probability": 0.411 + }, + { + "start": 10334.12, + "end": 10335.12, + "probability": 0.4101 + }, + { + "start": 10335.24, + "end": 10336.48, + "probability": 0.8929 + }, + { + "start": 10336.96, + "end": 10338.88, + "probability": 0.8377 + }, + { + "start": 10340.88, + "end": 10341.0, + "probability": 0.1237 + }, + { + "start": 10341.62, + "end": 10345.22, + "probability": 0.1002 + }, + { + "start": 10345.22, + "end": 10345.51, + "probability": 0.3011 + }, + { + "start": 10345.88, + "end": 10346.56, + "probability": 0.9337 + }, + { + "start": 10346.68, + "end": 10349.54, + "probability": 0.9185 + }, + { + "start": 10350.24, + "end": 10352.78, + "probability": 0.8585 + }, + { + "start": 10353.0, + "end": 10354.44, + "probability": 0.3751 + }, + { + "start": 10354.66, + "end": 10356.34, + "probability": 0.8472 + }, + { + "start": 10356.84, + "end": 10357.96, + "probability": 0.7603 + }, + { + "start": 10359.22, + "end": 10360.58, + "probability": 0.1636 + }, + { + "start": 10360.98, + "end": 10361.62, + "probability": 0.5477 + }, + { + "start": 10361.76, + "end": 10362.7, + "probability": 0.7815 + }, + { + "start": 10362.84, + "end": 10363.26, + "probability": 0.6011 + }, + { + "start": 10364.2, + "end": 10364.84, + "probability": 0.9639 + }, + { + "start": 10364.94, + "end": 10367.16, + "probability": 0.7181 + }, + { + "start": 10367.16, + "end": 10367.86, + "probability": 0.7763 + }, + { + "start": 10367.94, + "end": 10368.88, + "probability": 0.9386 + }, + { + "start": 10368.94, + "end": 10369.04, + "probability": 0.0179 + }, + { + "start": 10369.04, + "end": 10371.58, + "probability": 0.4787 + }, + { + "start": 10371.92, + "end": 10373.42, + "probability": 0.8626 + }, + { + "start": 10373.56, + "end": 10377.28, + "probability": 0.8416 + }, + { + "start": 10377.68, + "end": 10382.04, + "probability": 0.6121 + }, + { + "start": 10382.38, + "end": 10386.94, + "probability": 0.8372 + }, + { + "start": 10387.12, + "end": 10388.42, + "probability": 0.9583 + }, + { + "start": 10389.2, + "end": 10391.46, + "probability": 0.6671 + }, + { + "start": 10392.64, + "end": 10395.42, + "probability": 0.5093 + }, + { + "start": 10396.02, + "end": 10398.94, + "probability": 0.919 + }, + { + "start": 10399.02, + "end": 10400.92, + "probability": 0.8438 + }, + { + "start": 10400.98, + "end": 10402.78, + "probability": 0.0321 + }, + { + "start": 10405.9, + "end": 10409.18, + "probability": 0.0748 + }, + { + "start": 10410.2, + "end": 10415.02, + "probability": 0.3529 + }, + { + "start": 10415.72, + "end": 10416.16, + "probability": 0.4903 + }, + { + "start": 10416.42, + "end": 10417.84, + "probability": 0.5621 + }, + { + "start": 10421.43, + "end": 10423.6, + "probability": 0.0644 + }, + { + "start": 10423.86, + "end": 10431.36, + "probability": 0.044 + }, + { + "start": 10431.42, + "end": 10432.22, + "probability": 0.1656 + }, + { + "start": 10435.96, + "end": 10441.82, + "probability": 0.0421 + }, + { + "start": 10442.2, + "end": 10444.44, + "probability": 0.1856 + }, + { + "start": 10444.58, + "end": 10444.58, + "probability": 0.287 + }, + { + "start": 10444.66, + "end": 10445.44, + "probability": 0.023 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.12, + "end": 10486.34, + "probability": 0.0012 + }, + { + "start": 10489.56, + "end": 10489.64, + "probability": 0.0009 + }, + { + "start": 10490.16, + "end": 10495.5, + "probability": 0.4695 + }, + { + "start": 10500.56, + "end": 10501.87, + "probability": 0.081 + }, + { + "start": 10503.04, + "end": 10503.5, + "probability": 0.1611 + }, + { + "start": 10503.54, + "end": 10503.92, + "probability": 0.0829 + }, + { + "start": 10503.92, + "end": 10504.36, + "probability": 0.2674 + }, + { + "start": 10504.42, + "end": 10505.22, + "probability": 0.1065 + }, + { + "start": 10507.52, + "end": 10511.56, + "probability": 0.1003 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10629.0, + "end": 10629.0, + "probability": 0.0 + }, + { + "start": 10633.08, + "end": 10633.18, + "probability": 0.1768 + }, + { + "start": 10633.74, + "end": 10637.62, + "probability": 0.5342 + }, + { + "start": 10637.74, + "end": 10641.3, + "probability": 0.9832 + }, + { + "start": 10641.76, + "end": 10644.36, + "probability": 0.9248 + }, + { + "start": 10644.36, + "end": 10646.94, + "probability": 0.9963 + }, + { + "start": 10647.36, + "end": 10650.96, + "probability": 0.9734 + }, + { + "start": 10651.62, + "end": 10652.36, + "probability": 0.6159 + }, + { + "start": 10654.0, + "end": 10656.66, + "probability": 0.7079 + }, + { + "start": 10656.66, + "end": 10658.92, + "probability": 0.0459 + }, + { + "start": 10659.44, + "end": 10664.18, + "probability": 0.0442 + }, + { + "start": 10665.62, + "end": 10667.34, + "probability": 0.1734 + }, + { + "start": 10673.6, + "end": 10674.0, + "probability": 0.1118 + }, + { + "start": 10685.06, + "end": 10690.56, + "probability": 0.1833 + }, + { + "start": 10690.84, + "end": 10691.28, + "probability": 0.151 + }, + { + "start": 10691.9, + "end": 10693.6, + "probability": 0.3312 + }, + { + "start": 10693.8, + "end": 10696.76, + "probability": 0.2923 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.0, + "end": 10749.0, + "probability": 0.0 + }, + { + "start": 10749.24, + "end": 10749.46, + "probability": 0.1292 + }, + { + "start": 10750.95, + "end": 10756.0, + "probability": 0.8114 + }, + { + "start": 10756.6, + "end": 10758.48, + "probability": 0.8811 + }, + { + "start": 10759.02, + "end": 10759.92, + "probability": 0.7253 + }, + { + "start": 10760.54, + "end": 10762.52, + "probability": 0.9741 + }, + { + "start": 10763.12, + "end": 10767.42, + "probability": 0.6934 + }, + { + "start": 10768.02, + "end": 10769.52, + "probability": 0.9435 + }, + { + "start": 10769.7, + "end": 10773.44, + "probability": 0.764 + }, + { + "start": 10774.52, + "end": 10778.04, + "probability": 0.9832 + }, + { + "start": 10779.46, + "end": 10782.89, + "probability": 0.9702 + }, + { + "start": 10784.0, + "end": 10785.04, + "probability": 0.686 + }, + { + "start": 10785.84, + "end": 10786.56, + "probability": 0.7743 + }, + { + "start": 10787.12, + "end": 10789.82, + "probability": 0.4936 + }, + { + "start": 10789.84, + "end": 10790.66, + "probability": 0.8269 + }, + { + "start": 10792.2, + "end": 10792.56, + "probability": 0.7617 + }, + { + "start": 10793.2, + "end": 10795.24, + "probability": 0.7673 + }, + { + "start": 10795.74, + "end": 10797.68, + "probability": 0.9895 + }, + { + "start": 10798.22, + "end": 10800.24, + "probability": 0.9837 + }, + { + "start": 10800.8, + "end": 10805.26, + "probability": 0.9541 + }, + { + "start": 10806.46, + "end": 10807.64, + "probability": 0.6368 + }, + { + "start": 10808.26, + "end": 10812.06, + "probability": 0.5381 + }, + { + "start": 10812.76, + "end": 10817.08, + "probability": 0.949 + }, + { + "start": 10817.86, + "end": 10821.8, + "probability": 0.9559 + }, + { + "start": 10821.94, + "end": 10822.42, + "probability": 0.5036 + }, + { + "start": 10822.64, + "end": 10825.83, + "probability": 0.958 + }, + { + "start": 10826.22, + "end": 10832.72, + "probability": 0.9656 + }, + { + "start": 10833.0, + "end": 10833.86, + "probability": 0.4599 + }, + { + "start": 10834.02, + "end": 10835.6, + "probability": 0.9355 + }, + { + "start": 10836.14, + "end": 10840.34, + "probability": 0.9619 + }, + { + "start": 10840.34, + "end": 10845.52, + "probability": 0.9825 + }, + { + "start": 10845.86, + "end": 10848.44, + "probability": 0.9907 + }, + { + "start": 10849.52, + "end": 10850.16, + "probability": 0.3623 + }, + { + "start": 10850.76, + "end": 10851.06, + "probability": 0.3988 + }, + { + "start": 10851.34, + "end": 10853.0, + "probability": 0.9169 + }, + { + "start": 10853.58, + "end": 10854.1, + "probability": 0.9054 + }, + { + "start": 10855.02, + "end": 10858.6, + "probability": 0.9768 + }, + { + "start": 10859.34, + "end": 10862.34, + "probability": 0.9289 + }, + { + "start": 10863.28, + "end": 10865.18, + "probability": 0.9236 + }, + { + "start": 10867.16, + "end": 10868.28, + "probability": 0.9751 + }, + { + "start": 10869.8, + "end": 10874.46, + "probability": 0.2321 + }, + { + "start": 10875.16, + "end": 10876.18, + "probability": 0.0732 + }, + { + "start": 10876.18, + "end": 10876.18, + "probability": 0.027 + }, + { + "start": 10876.18, + "end": 10878.45, + "probability": 0.5166 + }, + { + "start": 10880.16, + "end": 10881.42, + "probability": 0.5927 + }, + { + "start": 10882.57, + "end": 10888.29, + "probability": 0.0783 + }, + { + "start": 10890.44, + "end": 10890.44, + "probability": 0.1729 + }, + { + "start": 10890.44, + "end": 10890.44, + "probability": 0.2095 + }, + { + "start": 10890.44, + "end": 10890.44, + "probability": 0.2663 + }, + { + "start": 10890.44, + "end": 10892.86, + "probability": 0.741 + }, + { + "start": 10893.06, + "end": 10893.54, + "probability": 0.2174 + }, + { + "start": 10893.66, + "end": 10894.57, + "probability": 0.5219 + }, + { + "start": 10895.22, + "end": 10896.88, + "probability": 0.9551 + }, + { + "start": 10897.06, + "end": 10897.72, + "probability": 0.8323 + }, + { + "start": 10897.88, + "end": 10898.4, + "probability": 0.6887 + }, + { + "start": 10898.42, + "end": 10900.08, + "probability": 0.9326 + }, + { + "start": 10900.34, + "end": 10901.96, + "probability": 0.7245 + }, + { + "start": 10902.06, + "end": 10902.76, + "probability": 0.2982 + }, + { + "start": 10903.02, + "end": 10905.18, + "probability": 0.937 + }, + { + "start": 10905.26, + "end": 10908.74, + "probability": 0.9915 + }, + { + "start": 10909.04, + "end": 10910.36, + "probability": 0.9597 + }, + { + "start": 10911.04, + "end": 10912.54, + "probability": 0.9346 + }, + { + "start": 10912.64, + "end": 10913.72, + "probability": 0.98 + }, + { + "start": 10913.96, + "end": 10918.65, + "probability": 0.8787 + }, + { + "start": 10919.95, + "end": 10923.22, + "probability": 0.7035 + }, + { + "start": 10923.78, + "end": 10926.04, + "probability": 0.5985 + }, + { + "start": 10926.3, + "end": 10927.89, + "probability": 0.3527 + }, + { + "start": 10929.18, + "end": 10932.44, + "probability": 0.2953 + }, + { + "start": 10933.0, + "end": 10935.44, + "probability": 0.6233 + }, + { + "start": 10936.14, + "end": 10938.32, + "probability": 0.9143 + }, + { + "start": 10939.24, + "end": 10942.9, + "probability": 0.1522 + }, + { + "start": 10943.54, + "end": 10944.04, + "probability": 0.741 + }, + { + "start": 10944.08, + "end": 10945.36, + "probability": 0.8959 + }, + { + "start": 10945.84, + "end": 10946.3, + "probability": 0.8027 + }, + { + "start": 10946.5, + "end": 10948.3, + "probability": 0.9354 + }, + { + "start": 10949.06, + "end": 10951.7, + "probability": 0.9155 + }, + { + "start": 10952.86, + "end": 10959.6, + "probability": 0.959 + }, + { + "start": 10961.42, + "end": 10963.28, + "probability": 0.9159 + }, + { + "start": 10963.84, + "end": 10965.96, + "probability": 0.9064 + }, + { + "start": 10966.14, + "end": 10967.04, + "probability": 0.8542 + }, + { + "start": 10967.38, + "end": 10971.42, + "probability": 0.7711 + }, + { + "start": 10971.88, + "end": 10974.06, + "probability": 0.5805 + }, + { + "start": 10974.66, + "end": 10976.36, + "probability": 0.8049 + }, + { + "start": 10976.5, + "end": 10978.5, + "probability": 0.8498 + }, + { + "start": 10978.78, + "end": 10981.52, + "probability": 0.9563 + }, + { + "start": 10981.9, + "end": 10986.02, + "probability": 0.9575 + }, + { + "start": 10986.38, + "end": 10990.44, + "probability": 0.566 + }, + { + "start": 10990.7, + "end": 10992.7, + "probability": 0.9274 + }, + { + "start": 10993.32, + "end": 10993.78, + "probability": 0.4863 + }, + { + "start": 10993.84, + "end": 10994.46, + "probability": 0.6449 + }, + { + "start": 10994.52, + "end": 10996.18, + "probability": 0.9637 + }, + { + "start": 10996.64, + "end": 10999.04, + "probability": 0.7847 + }, + { + "start": 10999.04, + "end": 11003.54, + "probability": 0.7695 + }, + { + "start": 11004.0, + "end": 11006.98, + "probability": 0.9265 + }, + { + "start": 11007.38, + "end": 11007.64, + "probability": 0.3505 + }, + { + "start": 11008.18, + "end": 11009.46, + "probability": 0.2287 + }, + { + "start": 11009.94, + "end": 11011.72, + "probability": 0.6575 + }, + { + "start": 11012.08, + "end": 11013.06, + "probability": 0.2945 + }, + { + "start": 11013.38, + "end": 11015.52, + "probability": 0.9061 + }, + { + "start": 11015.62, + "end": 11016.42, + "probability": 0.8224 + }, + { + "start": 11016.62, + "end": 11017.98, + "probability": 0.8 + }, + { + "start": 11018.32, + "end": 11020.0, + "probability": 0.7671 + }, + { + "start": 11020.38, + "end": 11021.3, + "probability": 0.9235 + }, + { + "start": 11021.98, + "end": 11023.46, + "probability": 0.7717 + }, + { + "start": 11023.52, + "end": 11026.66, + "probability": 0.8073 + }, + { + "start": 11027.56, + "end": 11027.62, + "probability": 0.0029 + }, + { + "start": 11027.62, + "end": 11028.32, + "probability": 0.463 + }, + { + "start": 11028.78, + "end": 11031.42, + "probability": 0.0261 + }, + { + "start": 11031.42, + "end": 11035.2, + "probability": 0.88 + }, + { + "start": 11035.4, + "end": 11038.44, + "probability": 0.8096 + }, + { + "start": 11038.76, + "end": 11039.33, + "probability": 0.9791 + }, + { + "start": 11040.28, + "end": 11041.24, + "probability": 0.2655 + }, + { + "start": 11041.46, + "end": 11043.5, + "probability": 0.4634 + }, + { + "start": 11043.66, + "end": 11043.66, + "probability": 0.1379 + }, + { + "start": 11043.84, + "end": 11044.14, + "probability": 0.1485 + }, + { + "start": 11044.14, + "end": 11044.42, + "probability": 0.4845 + }, + { + "start": 11044.6, + "end": 11048.02, + "probability": 0.7975 + }, + { + "start": 11048.1, + "end": 11049.62, + "probability": 0.7396 + }, + { + "start": 11049.62, + "end": 11050.04, + "probability": 0.4387 + }, + { + "start": 11050.18, + "end": 11052.26, + "probability": 0.7588 + }, + { + "start": 11052.98, + "end": 11055.36, + "probability": 0.8923 + }, + { + "start": 11055.74, + "end": 11057.0, + "probability": 0.0324 + }, + { + "start": 11057.22, + "end": 11057.96, + "probability": 0.41 + }, + { + "start": 11058.18, + "end": 11059.88, + "probability": 0.4995 + }, + { + "start": 11061.3, + "end": 11062.54, + "probability": 0.1252 + }, + { + "start": 11064.62, + "end": 11068.42, + "probability": 0.0566 + }, + { + "start": 11068.42, + "end": 11069.52, + "probability": 0.0733 + }, + { + "start": 11069.66, + "end": 11072.04, + "probability": 0.0616 + }, + { + "start": 11072.52, + "end": 11072.96, + "probability": 0.1369 + }, + { + "start": 11073.32, + "end": 11078.24, + "probability": 0.6195 + }, + { + "start": 11079.26, + "end": 11081.62, + "probability": 0.83 + }, + { + "start": 11081.7, + "end": 11082.82, + "probability": 0.9663 + }, + { + "start": 11082.94, + "end": 11083.6, + "probability": 0.4711 + }, + { + "start": 11085.88, + "end": 11088.05, + "probability": 0.5098 + }, + { + "start": 11096.34, + "end": 11099.16, + "probability": 0.1879 + }, + { + "start": 11099.16, + "end": 11099.54, + "probability": 0.8015 + }, + { + "start": 11099.66, + "end": 11099.9, + "probability": 0.5641 + }, + { + "start": 11100.08, + "end": 11107.16, + "probability": 0.9733 + }, + { + "start": 11107.84, + "end": 11113.44, + "probability": 0.9844 + }, + { + "start": 11113.7, + "end": 11116.92, + "probability": 0.9258 + }, + { + "start": 11117.34, + "end": 11119.0, + "probability": 0.6507 + }, + { + "start": 11119.56, + "end": 11121.64, + "probability": 0.9575 + }, + { + "start": 11122.04, + "end": 11124.08, + "probability": 0.6623 + }, + { + "start": 11125.12, + "end": 11126.2, + "probability": 0.9646 + }, + { + "start": 11126.5, + "end": 11126.9, + "probability": 0.637 + }, + { + "start": 11127.0, + "end": 11129.52, + "probability": 0.9622 + }, + { + "start": 11129.64, + "end": 11130.58, + "probability": 0.8586 + }, + { + "start": 11130.76, + "end": 11133.94, + "probability": 0.9318 + }, + { + "start": 11134.2, + "end": 11135.34, + "probability": 0.1521 + }, + { + "start": 11135.5, + "end": 11136.98, + "probability": 0.1007 + }, + { + "start": 11138.04, + "end": 11139.51, + "probability": 0.0046 + }, + { + "start": 11140.06, + "end": 11143.42, + "probability": 0.1163 + }, + { + "start": 11143.98, + "end": 11145.62, + "probability": 0.0855 + }, + { + "start": 11145.78, + "end": 11148.76, + "probability": 0.0244 + }, + { + "start": 11148.98, + "end": 11151.84, + "probability": 0.6401 + }, + { + "start": 11152.36, + "end": 11155.86, + "probability": 0.8694 + }, + { + "start": 11157.56, + "end": 11161.58, + "probability": 0.0718 + }, + { + "start": 11162.56, + "end": 11163.62, + "probability": 0.6749 + }, + { + "start": 11163.78, + "end": 11167.16, + "probability": 0.9761 + }, + { + "start": 11167.78, + "end": 11169.74, + "probability": 0.9976 + }, + { + "start": 11170.06, + "end": 11171.16, + "probability": 0.8418 + }, + { + "start": 11172.38, + "end": 11172.8, + "probability": 0.014 + }, + { + "start": 11172.8, + "end": 11173.62, + "probability": 0.7552 + }, + { + "start": 11173.86, + "end": 11175.32, + "probability": 0.0555 + }, + { + "start": 11175.56, + "end": 11176.65, + "probability": 0.4273 + }, + { + "start": 11177.44, + "end": 11180.84, + "probability": 0.9221 + }, + { + "start": 11181.12, + "end": 11181.28, + "probability": 0.3659 + }, + { + "start": 11181.52, + "end": 11184.02, + "probability": 0.6135 + }, + { + "start": 11184.24, + "end": 11187.86, + "probability": 0.8218 + }, + { + "start": 11188.4, + "end": 11189.42, + "probability": 0.7551 + }, + { + "start": 11191.38, + "end": 11192.52, + "probability": 0.906 + }, + { + "start": 11200.18, + "end": 11202.82, + "probability": 0.6386 + }, + { + "start": 11202.9, + "end": 11206.56, + "probability": 0.6606 + }, + { + "start": 11206.68, + "end": 11207.38, + "probability": 0.097 + }, + { + "start": 11207.38, + "end": 11209.36, + "probability": 0.3977 + }, + { + "start": 11210.34, + "end": 11215.13, + "probability": 0.7913 + }, + { + "start": 11215.72, + "end": 11217.76, + "probability": 0.4326 + }, + { + "start": 11218.66, + "end": 11218.72, + "probability": 0.1386 + }, + { + "start": 11218.84, + "end": 11224.2, + "probability": 0.8899 + }, + { + "start": 11224.2, + "end": 11224.58, + "probability": 0.5471 + }, + { + "start": 11226.0, + "end": 11227.82, + "probability": 0.2164 + }, + { + "start": 11228.06, + "end": 11229.72, + "probability": 0.9141 + }, + { + "start": 11230.04, + "end": 11230.68, + "probability": 0.6012 + }, + { + "start": 11230.88, + "end": 11230.88, + "probability": 0.0871 + }, + { + "start": 11231.22, + "end": 11231.22, + "probability": 0.1309 + }, + { + "start": 11231.22, + "end": 11231.78, + "probability": 0.2216 + }, + { + "start": 11231.98, + "end": 11232.61, + "probability": 0.6529 + }, + { + "start": 11233.82, + "end": 11235.82, + "probability": 0.0345 + }, + { + "start": 11236.7, + "end": 11239.02, + "probability": 0.3606 + }, + { + "start": 11241.54, + "end": 11244.56, + "probability": 0.9902 + }, + { + "start": 11244.62, + "end": 11246.06, + "probability": 0.8318 + }, + { + "start": 11246.06, + "end": 11246.86, + "probability": 0.5114 + }, + { + "start": 11247.32, + "end": 11248.78, + "probability": 0.4479 + }, + { + "start": 11248.94, + "end": 11250.0, + "probability": 0.8187 + }, + { + "start": 11251.48, + "end": 11253.22, + "probability": 0.6637 + }, + { + "start": 11253.28, + "end": 11253.6, + "probability": 0.3371 + }, + { + "start": 11253.6, + "end": 11254.64, + "probability": 0.228 + }, + { + "start": 11254.96, + "end": 11256.64, + "probability": 0.4622 + }, + { + "start": 11258.68, + "end": 11262.05, + "probability": 0.487 + }, + { + "start": 11262.1, + "end": 11266.32, + "probability": 0.4414 + }, + { + "start": 11266.64, + "end": 11267.38, + "probability": 0.1508 + }, + { + "start": 11269.38, + "end": 11273.96, + "probability": 0.9366 + }, + { + "start": 11273.96, + "end": 11278.8, + "probability": 0.9919 + }, + { + "start": 11278.84, + "end": 11280.3, + "probability": 0.8952 + }, + { + "start": 11280.4, + "end": 11283.26, + "probability": 0.9961 + }, + { + "start": 11283.26, + "end": 11287.02, + "probability": 0.9946 + }, + { + "start": 11291.94, + "end": 11299.59, + "probability": 0.7449 + }, + { + "start": 11300.6, + "end": 11301.22, + "probability": 0.0893 + }, + { + "start": 11301.22, + "end": 11301.22, + "probability": 0.4536 + }, + { + "start": 11301.22, + "end": 11301.22, + "probability": 0.0611 + }, + { + "start": 11301.22, + "end": 11301.57, + "probability": 0.1772 + }, + { + "start": 11302.3, + "end": 11302.62, + "probability": 0.6064 + }, + { + "start": 11305.24, + "end": 11305.76, + "probability": 0.0285 + }, + { + "start": 11306.36, + "end": 11306.38, + "probability": 0.0517 + }, + { + "start": 11306.38, + "end": 11307.81, + "probability": 0.135 + }, + { + "start": 11308.92, + "end": 11308.92, + "probability": 0.063 + }, + { + "start": 11310.28, + "end": 11313.0, + "probability": 0.8865 + }, + { + "start": 11313.28, + "end": 11314.26, + "probability": 0.5292 + }, + { + "start": 11314.54, + "end": 11315.2, + "probability": 0.1978 + }, + { + "start": 11315.2, + "end": 11318.64, + "probability": 0.1044 + }, + { + "start": 11320.64, + "end": 11323.9, + "probability": 0.9869 + }, + { + "start": 11324.34, + "end": 11325.39, + "probability": 0.8431 + }, + { + "start": 11325.6, + "end": 11325.97, + "probability": 0.5675 + }, + { + "start": 11327.8, + "end": 11328.92, + "probability": 0.4252 + }, + { + "start": 11328.92, + "end": 11335.41, + "probability": 0.9868 + }, + { + "start": 11336.24, + "end": 11336.64, + "probability": 0.0697 + }, + { + "start": 11336.64, + "end": 11338.08, + "probability": 0.1221 + }, + { + "start": 11338.34, + "end": 11340.2, + "probability": 0.5424 + }, + { + "start": 11340.5, + "end": 11341.1, + "probability": 0.8022 + }, + { + "start": 11341.14, + "end": 11342.0, + "probability": 0.1667 + }, + { + "start": 11342.0, + "end": 11342.7, + "probability": 0.3037 + }, + { + "start": 11343.46, + "end": 11347.37, + "probability": 0.6276 + }, + { + "start": 11347.86, + "end": 11351.66, + "probability": 0.16 + }, + { + "start": 11351.66, + "end": 11356.48, + "probability": 0.3827 + }, + { + "start": 11356.54, + "end": 11357.67, + "probability": 0.1976 + }, + { + "start": 11361.75, + "end": 11364.34, + "probability": 0.1036 + }, + { + "start": 11364.7, + "end": 11364.78, + "probability": 0.0335 + }, + { + "start": 11364.78, + "end": 11364.78, + "probability": 0.0329 + }, + { + "start": 11364.78, + "end": 11364.78, + "probability": 0.3659 + }, + { + "start": 11364.78, + "end": 11366.28, + "probability": 0.6282 + }, + { + "start": 11366.69, + "end": 11368.51, + "probability": 0.7603 + }, + { + "start": 11369.76, + "end": 11371.34, + "probability": 0.4173 + }, + { + "start": 11371.6, + "end": 11373.0, + "probability": 0.9441 + }, + { + "start": 11373.58, + "end": 11373.58, + "probability": 0.5023 + }, + { + "start": 11373.58, + "end": 11375.49, + "probability": 0.5622 + }, + { + "start": 11375.56, + "end": 11378.16, + "probability": 0.9625 + }, + { + "start": 11378.36, + "end": 11381.36, + "probability": 0.9811 + }, + { + "start": 11381.36, + "end": 11382.38, + "probability": 0.6001 + }, + { + "start": 11382.38, + "end": 11382.77, + "probability": 0.3546 + }, + { + "start": 11385.81, + "end": 11386.18, + "probability": 0.0501 + }, + { + "start": 11386.18, + "end": 11388.02, + "probability": 0.9062 + }, + { + "start": 11388.36, + "end": 11391.7, + "probability": 0.7741 + }, + { + "start": 11392.66, + "end": 11393.22, + "probability": 0.7478 + }, + { + "start": 11393.38, + "end": 11394.53, + "probability": 0.9713 + }, + { + "start": 11394.84, + "end": 11397.22, + "probability": 0.9657 + }, + { + "start": 11399.17, + "end": 11400.26, + "probability": 0.1792 + }, + { + "start": 11400.26, + "end": 11400.26, + "probability": 0.0043 + }, + { + "start": 11400.26, + "end": 11400.26, + "probability": 0.0231 + }, + { + "start": 11400.26, + "end": 11402.46, + "probability": 0.7571 + }, + { + "start": 11403.34, + "end": 11405.32, + "probability": 0.8875 + }, + { + "start": 11406.0, + "end": 11407.34, + "probability": 0.8835 + }, + { + "start": 11407.48, + "end": 11411.04, + "probability": 0.5439 + }, + { + "start": 11412.2, + "end": 11412.5, + "probability": 0.0351 + }, + { + "start": 11412.5, + "end": 11414.08, + "probability": 0.5563 + }, + { + "start": 11414.62, + "end": 11416.06, + "probability": 0.7128 + }, + { + "start": 11419.21, + "end": 11422.72, + "probability": 0.5784 + }, + { + "start": 11423.0, + "end": 11423.7, + "probability": 0.2393 + }, + { + "start": 11424.14, + "end": 11424.44, + "probability": 0.4771 + }, + { + "start": 11424.44, + "end": 11424.44, + "probability": 0.1504 + }, + { + "start": 11424.44, + "end": 11426.54, + "probability": 0.2501 + }, + { + "start": 11426.8, + "end": 11426.9, + "probability": 0.4406 + }, + { + "start": 11427.2, + "end": 11427.78, + "probability": 0.3925 + }, + { + "start": 11427.94, + "end": 11429.74, + "probability": 0.4308 + }, + { + "start": 11430.3, + "end": 11430.66, + "probability": 0.737 + }, + { + "start": 11430.82, + "end": 11434.4, + "probability": 0.9863 + }, + { + "start": 11435.3, + "end": 11438.06, + "probability": 0.998 + }, + { + "start": 11439.04, + "end": 11443.72, + "probability": 0.9713 + }, + { + "start": 11444.48, + "end": 11446.28, + "probability": 0.7823 + }, + { + "start": 11446.82, + "end": 11448.98, + "probability": 0.8648 + }, + { + "start": 11449.56, + "end": 11450.82, + "probability": 0.8081 + }, + { + "start": 11451.53, + "end": 11457.12, + "probability": 0.8853 + }, + { + "start": 11457.22, + "end": 11458.98, + "probability": 0.8334 + }, + { + "start": 11459.22, + "end": 11461.02, + "probability": 0.8272 + }, + { + "start": 11462.08, + "end": 11462.32, + "probability": 0.0798 + }, + { + "start": 11462.32, + "end": 11463.72, + "probability": 0.2876 + }, + { + "start": 11466.24, + "end": 11468.34, + "probability": 0.8013 + }, + { + "start": 11468.34, + "end": 11469.38, + "probability": 0.9708 + }, + { + "start": 11469.92, + "end": 11471.62, + "probability": 0.9065 + }, + { + "start": 11471.64, + "end": 11474.94, + "probability": 0.8511 + }, + { + "start": 11475.2, + "end": 11479.38, + "probability": 0.0872 + }, + { + "start": 11480.0, + "end": 11482.56, + "probability": 0.5666 + }, + { + "start": 11482.8, + "end": 11485.64, + "probability": 0.7298 + }, + { + "start": 11485.68, + "end": 11486.78, + "probability": 0.2662 + }, + { + "start": 11490.26, + "end": 11490.3, + "probability": 0.0159 + }, + { + "start": 11491.18, + "end": 11491.48, + "probability": 0.0102 + }, + { + "start": 11492.52, + "end": 11493.04, + "probability": 0.2157 + }, + { + "start": 11493.04, + "end": 11493.04, + "probability": 0.0286 + }, + { + "start": 11493.04, + "end": 11493.12, + "probability": 0.1726 + }, + { + "start": 11493.12, + "end": 11493.18, + "probability": 0.1661 + }, + { + "start": 11493.18, + "end": 11494.58, + "probability": 0.2875 + }, + { + "start": 11495.04, + "end": 11496.58, + "probability": 0.8246 + }, + { + "start": 11496.86, + "end": 11499.86, + "probability": 0.0272 + }, + { + "start": 11501.7, + "end": 11503.58, + "probability": 0.4218 + }, + { + "start": 11503.7, + "end": 11505.56, + "probability": 0.3056 + }, + { + "start": 11505.66, + "end": 11508.74, + "probability": 0.6858 + }, + { + "start": 11510.35, + "end": 11512.3, + "probability": 0.9214 + }, + { + "start": 11512.48, + "end": 11513.0, + "probability": 0.3689 + }, + { + "start": 11513.16, + "end": 11513.78, + "probability": 0.9035 + }, + { + "start": 11513.88, + "end": 11514.88, + "probability": 0.9814 + }, + { + "start": 11515.06, + "end": 11523.62, + "probability": 0.7431 + }, + { + "start": 11523.82, + "end": 11524.42, + "probability": 0.2196 + }, + { + "start": 11524.64, + "end": 11526.76, + "probability": 0.6931 + }, + { + "start": 11526.88, + "end": 11527.42, + "probability": 0.4281 + }, + { + "start": 11527.48, + "end": 11528.56, + "probability": 0.9688 + }, + { + "start": 11529.32, + "end": 11531.34, + "probability": 0.5351 + }, + { + "start": 11531.66, + "end": 11533.06, + "probability": 0.6582 + }, + { + "start": 11533.22, + "end": 11534.46, + "probability": 0.0547 + }, + { + "start": 11534.6, + "end": 11536.12, + "probability": 0.726 + }, + { + "start": 11537.04, + "end": 11537.72, + "probability": 0.8772 + }, + { + "start": 11538.66, + "end": 11539.62, + "probability": 0.7915 + }, + { + "start": 11540.44, + "end": 11542.54, + "probability": 0.9181 + }, + { + "start": 11544.87, + "end": 11549.0, + "probability": 0.3033 + }, + { + "start": 11549.12, + "end": 11550.36, + "probability": 0.634 + }, + { + "start": 11550.36, + "end": 11553.04, + "probability": 0.5603 + }, + { + "start": 11553.12, + "end": 11554.04, + "probability": 0.5057 + }, + { + "start": 11554.04, + "end": 11554.72, + "probability": 0.7026 + }, + { + "start": 11555.66, + "end": 11556.28, + "probability": 0.0566 + }, + { + "start": 11556.88, + "end": 11559.46, + "probability": 0.6036 + }, + { + "start": 11559.64, + "end": 11562.58, + "probability": 0.5026 + }, + { + "start": 11563.84, + "end": 11565.92, + "probability": 0.0129 + }, + { + "start": 11567.08, + "end": 11568.16, + "probability": 0.1522 + }, + { + "start": 11568.76, + "end": 11569.02, + "probability": 0.1815 + }, + { + "start": 11569.36, + "end": 11570.22, + "probability": 0.483 + }, + { + "start": 11574.52, + "end": 11574.82, + "probability": 0.0572 + }, + { + "start": 11574.82, + "end": 11576.26, + "probability": 0.0791 + }, + { + "start": 11576.96, + "end": 11580.89, + "probability": 0.7286 + }, + { + "start": 11581.8, + "end": 11583.6, + "probability": 0.023 + }, + { + "start": 11583.6, + "end": 11585.44, + "probability": 0.2286 + }, + { + "start": 11585.58, + "end": 11586.42, + "probability": 0.1733 + }, + { + "start": 11587.08, + "end": 11593.12, + "probability": 0.9048 + }, + { + "start": 11593.54, + "end": 11595.55, + "probability": 0.3236 + }, + { + "start": 11595.78, + "end": 11596.88, + "probability": 0.2687 + }, + { + "start": 11598.86, + "end": 11599.3, + "probability": 0.5657 + }, + { + "start": 11599.5, + "end": 11601.8, + "probability": 0.8296 + }, + { + "start": 11602.38, + "end": 11604.04, + "probability": 0.6324 + }, + { + "start": 11604.52, + "end": 11607.82, + "probability": 0.2933 + }, + { + "start": 11608.81, + "end": 11614.08, + "probability": 0.7461 + }, + { + "start": 11614.12, + "end": 11616.54, + "probability": 0.9191 + }, + { + "start": 11616.68, + "end": 11616.68, + "probability": 0.02 + }, + { + "start": 11616.68, + "end": 11618.7, + "probability": 0.309 + }, + { + "start": 11619.2, + "end": 11620.8, + "probability": 0.87 + }, + { + "start": 11620.8, + "end": 11624.2, + "probability": 0.9963 + }, + { + "start": 11624.5, + "end": 11625.96, + "probability": 0.2196 + }, + { + "start": 11626.18, + "end": 11627.18, + "probability": 0.5732 + }, + { + "start": 11627.36, + "end": 11629.16, + "probability": 0.6692 + }, + { + "start": 11629.64, + "end": 11633.56, + "probability": 0.9122 + }, + { + "start": 11634.04, + "end": 11634.38, + "probability": 0.4588 + }, + { + "start": 11634.38, + "end": 11634.66, + "probability": 0.6257 + }, + { + "start": 11635.22, + "end": 11635.88, + "probability": 0.1103 + }, + { + "start": 11637.04, + "end": 11640.4, + "probability": 0.9923 + }, + { + "start": 11640.4, + "end": 11642.5, + "probability": 0.9979 + }, + { + "start": 11644.02, + "end": 11647.28, + "probability": 0.9881 + }, + { + "start": 11647.28, + "end": 11652.62, + "probability": 0.9368 + }, + { + "start": 11653.2, + "end": 11655.94, + "probability": 0.9714 + }, + { + "start": 11656.04, + "end": 11660.14, + "probability": 0.9644 + }, + { + "start": 11660.76, + "end": 11664.6, + "probability": 0.9746 + }, + { + "start": 11664.6, + "end": 11666.96, + "probability": 0.993 + }, + { + "start": 11667.54, + "end": 11670.7, + "probability": 0.9921 + }, + { + "start": 11671.9, + "end": 11673.82, + "probability": 0.7037 + }, + { + "start": 11674.5, + "end": 11679.96, + "probability": 0.4589 + }, + { + "start": 11680.62, + "end": 11684.9, + "probability": 0.6591 + }, + { + "start": 11685.64, + "end": 11692.16, + "probability": 0.9828 + }, + { + "start": 11692.66, + "end": 11694.32, + "probability": 0.9809 + }, + { + "start": 11695.02, + "end": 11703.9, + "probability": 0.8335 + }, + { + "start": 11703.9, + "end": 11709.4, + "probability": 0.9971 + }, + { + "start": 11709.58, + "end": 11711.06, + "probability": 0.9366 + }, + { + "start": 11712.82, + "end": 11713.38, + "probability": 0.9471 + }, + { + "start": 11713.96, + "end": 11714.56, + "probability": 0.2871 + }, + { + "start": 11716.65, + "end": 11725.18, + "probability": 0.983 + }, + { + "start": 11725.18, + "end": 11734.04, + "probability": 0.9981 + }, + { + "start": 11734.7, + "end": 11737.66, + "probability": 0.8723 + }, + { + "start": 11738.16, + "end": 11738.93, + "probability": 0.8695 + }, + { + "start": 11739.84, + "end": 11741.04, + "probability": 0.6744 + }, + { + "start": 11741.18, + "end": 11742.84, + "probability": 0.2886 + }, + { + "start": 11742.84, + "end": 11742.98, + "probability": 0.0464 + }, + { + "start": 11743.1, + "end": 11746.96, + "probability": 0.9789 + }, + { + "start": 11747.38, + "end": 11748.45, + "probability": 0.8462 + }, + { + "start": 11748.62, + "end": 11751.22, + "probability": 0.2767 + }, + { + "start": 11751.46, + "end": 11753.3, + "probability": 0.1424 + }, + { + "start": 11753.44, + "end": 11754.0, + "probability": 0.0161 + }, + { + "start": 11754.1, + "end": 11756.98, + "probability": 0.1714 + }, + { + "start": 11757.16, + "end": 11762.4, + "probability": 0.6659 + }, + { + "start": 11763.56, + "end": 11766.62, + "probability": 0.3405 + }, + { + "start": 11766.62, + "end": 11766.8, + "probability": 0.0726 + }, + { + "start": 11766.92, + "end": 11767.64, + "probability": 0.0357 + }, + { + "start": 11768.1, + "end": 11769.64, + "probability": 0.1788 + }, + { + "start": 11769.78, + "end": 11770.67, + "probability": 0.0336 + }, + { + "start": 11772.24, + "end": 11774.0, + "probability": 0.5485 + }, + { + "start": 11774.6, + "end": 11779.82, + "probability": 0.671 + }, + { + "start": 11779.92, + "end": 11780.44, + "probability": 0.6329 + }, + { + "start": 11780.56, + "end": 11780.98, + "probability": 0.9285 + }, + { + "start": 11781.18, + "end": 11782.66, + "probability": 0.3373 + }, + { + "start": 11782.7, + "end": 11784.02, + "probability": 0.2242 + }, + { + "start": 11784.02, + "end": 11784.6, + "probability": 0.6797 + }, + { + "start": 11784.98, + "end": 11786.23, + "probability": 0.8786 + }, + { + "start": 11787.32, + "end": 11788.18, + "probability": 0.3222 + }, + { + "start": 11788.52, + "end": 11788.86, + "probability": 0.5427 + }, + { + "start": 11788.88, + "end": 11789.58, + "probability": 0.3683 + }, + { + "start": 11789.94, + "end": 11791.88, + "probability": 0.2798 + }, + { + "start": 11792.48, + "end": 11792.98, + "probability": 0.1461 + }, + { + "start": 11792.98, + "end": 11793.98, + "probability": 0.659 + }, + { + "start": 11794.4, + "end": 11797.26, + "probability": 0.8925 + }, + { + "start": 11798.06, + "end": 11798.58, + "probability": 0.3525 + }, + { + "start": 11800.38, + "end": 11804.64, + "probability": 0.2909 + }, + { + "start": 11804.82, + "end": 11805.86, + "probability": 0.3119 + }, + { + "start": 11807.44, + "end": 11808.5, + "probability": 0.387 + }, + { + "start": 11808.54, + "end": 11809.56, + "probability": 0.0164 + }, + { + "start": 11811.72, + "end": 11813.28, + "probability": 0.7749 + }, + { + "start": 11813.38, + "end": 11819.14, + "probability": 0.9369 + }, + { + "start": 11819.24, + "end": 11822.84, + "probability": 0.9691 + }, + { + "start": 11822.84, + "end": 11826.78, + "probability": 0.9934 + }, + { + "start": 11827.42, + "end": 11829.78, + "probability": 0.897 + }, + { + "start": 11830.3, + "end": 11834.2, + "probability": 0.9242 + }, + { + "start": 11834.7, + "end": 11838.18, + "probability": 0.9888 + }, + { + "start": 11838.78, + "end": 11839.38, + "probability": 0.4954 + }, + { + "start": 11839.38, + "end": 11844.16, + "probability": 0.8297 + }, + { + "start": 11844.84, + "end": 11847.9, + "probability": 0.8484 + }, + { + "start": 11847.94, + "end": 11848.78, + "probability": 0.4129 + }, + { + "start": 11848.84, + "end": 11849.84, + "probability": 0.8493 + }, + { + "start": 11853.1, + "end": 11854.62, + "probability": 0.6532 + }, + { + "start": 11854.74, + "end": 11857.42, + "probability": 0.9683 + }, + { + "start": 11857.5, + "end": 11862.18, + "probability": 0.8077 + }, + { + "start": 11863.36, + "end": 11867.12, + "probability": 0.7302 + }, + { + "start": 11867.96, + "end": 11872.42, + "probability": 0.8057 + }, + { + "start": 11872.88, + "end": 11874.16, + "probability": 0.7129 + }, + { + "start": 11874.36, + "end": 11874.72, + "probability": 0.9883 + }, + { + "start": 11875.46, + "end": 11876.73, + "probability": 0.9016 + }, + { + "start": 11877.36, + "end": 11878.44, + "probability": 0.6744 + }, + { + "start": 11878.88, + "end": 11880.62, + "probability": 0.8655 + }, + { + "start": 11881.0, + "end": 11882.74, + "probability": 0.9231 + }, + { + "start": 11882.74, + "end": 11884.04, + "probability": 0.8522 + }, + { + "start": 11884.48, + "end": 11885.82, + "probability": 0.7406 + }, + { + "start": 11886.52, + "end": 11887.82, + "probability": 0.0937 + }, + { + "start": 11888.06, + "end": 11889.12, + "probability": 0.0292 + }, + { + "start": 11889.28, + "end": 11890.16, + "probability": 0.0448 + }, + { + "start": 11890.78, + "end": 11892.36, + "probability": 0.5506 + }, + { + "start": 11892.48, + "end": 11893.24, + "probability": 0.7947 + }, + { + "start": 11893.4, + "end": 11894.33, + "probability": 0.4188 + }, + { + "start": 11895.32, + "end": 11898.46, + "probability": 0.4019 + }, + { + "start": 11899.9, + "end": 11900.7, + "probability": 0.6075 + }, + { + "start": 11901.26, + "end": 11901.96, + "probability": 0.7548 + }, + { + "start": 11902.36, + "end": 11902.64, + "probability": 0.0187 + }, + { + "start": 11903.96, + "end": 11905.58, + "probability": 0.3516 + }, + { + "start": 11905.78, + "end": 11905.9, + "probability": 0.4747 + }, + { + "start": 11906.02, + "end": 11911.82, + "probability": 0.9341 + }, + { + "start": 11911.88, + "end": 11912.46, + "probability": 0.7197 + }, + { + "start": 11912.58, + "end": 11916.26, + "probability": 0.9253 + }, + { + "start": 11916.28, + "end": 11916.96, + "probability": 0.8907 + }, + { + "start": 11917.44, + "end": 11921.95, + "probability": 0.4129 + }, + { + "start": 11922.4, + "end": 11922.42, + "probability": 0.3429 + }, + { + "start": 11922.42, + "end": 11928.32, + "probability": 0.7499 + }, + { + "start": 11928.42, + "end": 11931.26, + "probability": 0.9434 + }, + { + "start": 11931.34, + "end": 11933.94, + "probability": 0.8735 + }, + { + "start": 11934.4, + "end": 11937.84, + "probability": 0.9969 + }, + { + "start": 11937.92, + "end": 11940.3, + "probability": 0.5178 + }, + { + "start": 11940.36, + "end": 11942.89, + "probability": 0.713 + }, + { + "start": 11944.34, + "end": 11949.7, + "probability": 0.0624 + }, + { + "start": 11952.22, + "end": 11953.64, + "probability": 0.0092 + }, + { + "start": 11954.62, + "end": 11957.84, + "probability": 0.0379 + }, + { + "start": 11959.7, + "end": 11961.14, + "probability": 0.615 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12060.0, + "end": 12060.0, + "probability": 0.0 + }, + { + "start": 12073.82, + "end": 12074.54, + "probability": 0.4832 + }, + { + "start": 12074.54, + "end": 12082.56, + "probability": 0.9839 + }, + { + "start": 12082.66, + "end": 12082.66, + "probability": 0.1504 + }, + { + "start": 12082.9, + "end": 12083.9, + "probability": 0.948 + }, + { + "start": 12084.12, + "end": 12088.12, + "probability": 0.8572 + }, + { + "start": 12088.36, + "end": 12089.7, + "probability": 0.3726 + }, + { + "start": 12091.5, + "end": 12091.88, + "probability": 0.072 + }, + { + "start": 12092.1, + "end": 12092.44, + "probability": 0.5259 + }, + { + "start": 12092.44, + "end": 12092.44, + "probability": 0.2651 + }, + { + "start": 12092.44, + "end": 12093.4, + "probability": 0.3921 + }, + { + "start": 12093.62, + "end": 12096.68, + "probability": 0.6619 + }, + { + "start": 12097.72, + "end": 12098.94, + "probability": 0.8542 + }, + { + "start": 12101.12, + "end": 12104.76, + "probability": 0.333 + }, + { + "start": 12105.16, + "end": 12107.32, + "probability": 0.6927 + }, + { + "start": 12108.8, + "end": 12110.08, + "probability": 0.8857 + }, + { + "start": 12110.28, + "end": 12112.78, + "probability": 0.7646 + }, + { + "start": 12113.18, + "end": 12113.96, + "probability": 0.7059 + }, + { + "start": 12117.4, + "end": 12120.9, + "probability": 0.0784 + }, + { + "start": 12121.34, + "end": 12123.16, + "probability": 0.7678 + }, + { + "start": 12123.76, + "end": 12124.26, + "probability": 0.7476 + }, + { + "start": 12124.8, + "end": 12125.04, + "probability": 0.3899 + }, + { + "start": 12125.1, + "end": 12127.92, + "probability": 0.9729 + }, + { + "start": 12128.7, + "end": 12132.28, + "probability": 0.877 + }, + { + "start": 12134.96, + "end": 12136.48, + "probability": 0.0456 + }, + { + "start": 12136.48, + "end": 12139.67, + "probability": 0.1317 + }, + { + "start": 12141.29, + "end": 12143.36, + "probability": 0.8968 + }, + { + "start": 12143.88, + "end": 12144.58, + "probability": 0.3103 + }, + { + "start": 12145.42, + "end": 12146.94, + "probability": 0.9069 + }, + { + "start": 12148.12, + "end": 12150.6, + "probability": 0.8889 + }, + { + "start": 12153.02, + "end": 12155.14, + "probability": 0.1862 + }, + { + "start": 12155.72, + "end": 12155.76, + "probability": 0.1781 + }, + { + "start": 12155.76, + "end": 12157.02, + "probability": 0.1623 + }, + { + "start": 12158.17, + "end": 12158.24, + "probability": 0.041 + }, + { + "start": 12158.24, + "end": 12160.34, + "probability": 0.0803 + }, + { + "start": 12162.76, + "end": 12167.4, + "probability": 0.6279 + }, + { + "start": 12167.48, + "end": 12167.72, + "probability": 0.8302 + }, + { + "start": 12168.02, + "end": 12171.06, + "probability": 0.8562 + }, + { + "start": 12171.06, + "end": 12171.44, + "probability": 0.8811 + }, + { + "start": 12172.5, + "end": 12174.36, + "probability": 0.9552 + }, + { + "start": 12174.62, + "end": 12175.66, + "probability": 0.9807 + }, + { + "start": 12176.5, + "end": 12177.72, + "probability": 0.9816 + }, + { + "start": 12177.82, + "end": 12178.66, + "probability": 0.9651 + }, + { + "start": 12178.74, + "end": 12179.08, + "probability": 0.8078 + }, + { + "start": 12179.36, + "end": 12180.52, + "probability": 0.2132 + }, + { + "start": 12181.1, + "end": 12182.06, + "probability": 0.49 + }, + { + "start": 12182.22, + "end": 12185.14, + "probability": 0.9627 + }, + { + "start": 12185.14, + "end": 12188.98, + "probability": 0.9883 + }, + { + "start": 12190.44, + "end": 12193.94, + "probability": 0.3183 + }, + { + "start": 12196.2, + "end": 12198.5, + "probability": 0.6391 + }, + { + "start": 12198.74, + "end": 12199.97, + "probability": 0.8528 + }, + { + "start": 12205.86, + "end": 12211.12, + "probability": 0.243 + }, + { + "start": 12213.04, + "end": 12216.46, + "probability": 0.0219 + }, + { + "start": 12216.46, + "end": 12217.7, + "probability": 0.4863 + }, + { + "start": 12217.7, + "end": 12217.86, + "probability": 0.6075 + }, + { + "start": 12217.92, + "end": 12220.6, + "probability": 0.8192 + }, + { + "start": 12220.82, + "end": 12223.46, + "probability": 0.085 + }, + { + "start": 12223.56, + "end": 12224.38, + "probability": 0.6808 + }, + { + "start": 12224.58, + "end": 12224.58, + "probability": 0.7104 + }, + { + "start": 12224.6, + "end": 12225.64, + "probability": 0.9628 + }, + { + "start": 12225.94, + "end": 12227.32, + "probability": 0.8657 + }, + { + "start": 12227.42, + "end": 12232.4, + "probability": 0.9927 + }, + { + "start": 12232.42, + "end": 12234.14, + "probability": 0.8629 + }, + { + "start": 12234.66, + "end": 12238.14, + "probability": 0.6963 + }, + { + "start": 12238.8, + "end": 12240.58, + "probability": 0.043 + }, + { + "start": 12243.69, + "end": 12244.68, + "probability": 0.0611 + }, + { + "start": 12244.68, + "end": 12246.62, + "probability": 0.5065 + }, + { + "start": 12247.12, + "end": 12247.86, + "probability": 0.0509 + }, + { + "start": 12248.84, + "end": 12249.74, + "probability": 0.0696 + }, + { + "start": 12258.26, + "end": 12263.32, + "probability": 0.6981 + }, + { + "start": 12263.9, + "end": 12266.52, + "probability": 0.7645 + }, + { + "start": 12266.92, + "end": 12269.6, + "probability": 0.6811 + }, + { + "start": 12269.6, + "end": 12271.68, + "probability": 0.7277 + }, + { + "start": 12272.16, + "end": 12274.08, + "probability": 0.9876 + }, + { + "start": 12277.02, + "end": 12278.18, + "probability": 0.6208 + }, + { + "start": 12280.52, + "end": 12284.52, + "probability": 0.9831 + }, + { + "start": 12287.24, + "end": 12289.3, + "probability": 0.4035 + }, + { + "start": 12293.24, + "end": 12296.24, + "probability": 0.4839 + }, + { + "start": 12296.52, + "end": 12301.94, + "probability": 0.7289 + }, + { + "start": 12301.94, + "end": 12306.36, + "probability": 0.8675 + }, + { + "start": 12306.36, + "end": 12307.28, + "probability": 0.6963 + }, + { + "start": 12307.44, + "end": 12308.56, + "probability": 0.4355 + }, + { + "start": 12309.02, + "end": 12312.22, + "probability": 0.9761 + }, + { + "start": 12312.98, + "end": 12313.86, + "probability": 0.697 + }, + { + "start": 12314.02, + "end": 12317.8, + "probability": 0.7122 + }, + { + "start": 12320.38, + "end": 12320.5, + "probability": 0.1995 + }, + { + "start": 12320.5, + "end": 12323.84, + "probability": 0.983 + }, + { + "start": 12330.26, + "end": 12333.0, + "probability": 0.9871 + }, + { + "start": 12355.54, + "end": 12355.54, + "probability": 0.1404 + }, + { + "start": 12355.54, + "end": 12361.02, + "probability": 0.6832 + }, + { + "start": 12361.02, + "end": 12367.76, + "probability": 0.9113 + }, + { + "start": 12368.5, + "end": 12368.9, + "probability": 0.6149 + }, + { + "start": 12369.16, + "end": 12372.1, + "probability": 0.7391 + }, + { + "start": 12372.74, + "end": 12377.44, + "probability": 0.9653 + }, + { + "start": 12378.12, + "end": 12383.52, + "probability": 0.9061 + }, + { + "start": 12384.36, + "end": 12387.1, + "probability": 0.8791 + }, + { + "start": 12389.48, + "end": 12391.92, + "probability": 0.7764 + }, + { + "start": 12392.64, + "end": 12395.68, + "probability": 0.9005 + }, + { + "start": 12396.28, + "end": 12399.9, + "probability": 0.35 + }, + { + "start": 12401.14, + "end": 12403.9, + "probability": 0.7536 + }, + { + "start": 12403.9, + "end": 12407.2, + "probability": 0.9799 + }, + { + "start": 12408.24, + "end": 12412.82, + "probability": 0.981 + }, + { + "start": 12414.76, + "end": 12419.58, + "probability": 0.5658 + }, + { + "start": 12419.9, + "end": 12427.2, + "probability": 0.7881 + }, + { + "start": 12427.34, + "end": 12427.78, + "probability": 0.7556 + }, + { + "start": 12428.4, + "end": 12429.3, + "probability": 0.3358 + }, + { + "start": 12430.26, + "end": 12431.3, + "probability": 0.4433 + }, + { + "start": 12432.0, + "end": 12434.5, + "probability": 0.8874 + }, + { + "start": 12434.6, + "end": 12439.14, + "probability": 0.8496 + }, + { + "start": 12440.06, + "end": 12441.2, + "probability": 0.9762 + }, + { + "start": 12441.72, + "end": 12446.84, + "probability": 0.7982 + }, + { + "start": 12447.46, + "end": 12453.42, + "probability": 0.8808 + }, + { + "start": 12454.36, + "end": 12459.48, + "probability": 0.9648 + }, + { + "start": 12460.1, + "end": 12462.0, + "probability": 0.9058 + }, + { + "start": 12462.62, + "end": 12464.36, + "probability": 0.7996 + }, + { + "start": 12464.88, + "end": 12471.12, + "probability": 0.8762 + }, + { + "start": 12472.14, + "end": 12479.34, + "probability": 0.9728 + }, + { + "start": 12479.98, + "end": 12485.08, + "probability": 0.893 + }, + { + "start": 12485.62, + "end": 12487.34, + "probability": 0.748 + }, + { + "start": 12487.88, + "end": 12489.16, + "probability": 0.8885 + }, + { + "start": 12489.98, + "end": 12494.62, + "probability": 0.9431 + }, + { + "start": 12495.22, + "end": 12497.17, + "probability": 0.5522 + }, + { + "start": 12497.7, + "end": 12498.4, + "probability": 0.6031 + }, + { + "start": 12498.96, + "end": 12501.44, + "probability": 0.8155 + }, + { + "start": 12502.08, + "end": 12504.02, + "probability": 0.8403 + }, + { + "start": 12504.22, + "end": 12505.24, + "probability": 0.7624 + }, + { + "start": 12505.3, + "end": 12514.07, + "probability": 0.7304 + }, + { + "start": 12514.46, + "end": 12522.9, + "probability": 0.9395 + }, + { + "start": 12523.76, + "end": 12526.16, + "probability": 0.6453 + }, + { + "start": 12526.84, + "end": 12531.04, + "probability": 0.9651 + }, + { + "start": 12531.04, + "end": 12535.46, + "probability": 0.9827 + }, + { + "start": 12537.28, + "end": 12538.98, + "probability": 0.9008 + }, + { + "start": 12541.06, + "end": 12547.58, + "probability": 0.9641 + }, + { + "start": 12547.86, + "end": 12553.5, + "probability": 0.8886 + }, + { + "start": 12554.52, + "end": 12559.5, + "probability": 0.7984 + }, + { + "start": 12559.5, + "end": 12565.94, + "probability": 0.9469 + }, + { + "start": 12566.44, + "end": 12571.5, + "probability": 0.9782 + }, + { + "start": 12572.18, + "end": 12572.8, + "probability": 0.6911 + }, + { + "start": 12572.94, + "end": 12577.7, + "probability": 0.8277 + }, + { + "start": 12577.7, + "end": 12582.58, + "probability": 0.9133 + }, + { + "start": 12582.8, + "end": 12586.16, + "probability": 0.8715 + }, + { + "start": 12586.78, + "end": 12591.42, + "probability": 0.9589 + }, + { + "start": 12592.16, + "end": 12597.86, + "probability": 0.7755 + }, + { + "start": 12598.48, + "end": 12603.56, + "probability": 0.5674 + }, + { + "start": 12604.08, + "end": 12610.04, + "probability": 0.9902 + }, + { + "start": 12610.88, + "end": 12616.12, + "probability": 0.9727 + }, + { + "start": 12616.72, + "end": 12621.3, + "probability": 0.9207 + }, + { + "start": 12621.56, + "end": 12622.96, + "probability": 0.9445 + }, + { + "start": 12623.56, + "end": 12624.88, + "probability": 0.7768 + }, + { + "start": 12626.7, + "end": 12629.08, + "probability": 0.8854 + }, + { + "start": 12629.62, + "end": 12630.6, + "probability": 0.8398 + }, + { + "start": 12631.12, + "end": 12640.38, + "probability": 0.9688 + }, + { + "start": 12641.06, + "end": 12642.46, + "probability": 0.9605 + }, + { + "start": 12642.64, + "end": 12649.98, + "probability": 0.983 + }, + { + "start": 12650.7, + "end": 12655.68, + "probability": 0.8457 + }, + { + "start": 12656.54, + "end": 12663.28, + "probability": 0.9685 + }, + { + "start": 12663.76, + "end": 12664.28, + "probability": 0.2909 + }, + { + "start": 12664.94, + "end": 12674.08, + "probability": 0.9272 + }, + { + "start": 12674.74, + "end": 12677.98, + "probability": 0.3591 + }, + { + "start": 12679.26, + "end": 12680.07, + "probability": 0.6493 + }, + { + "start": 12681.04, + "end": 12682.78, + "probability": 0.8887 + }, + { + "start": 12683.96, + "end": 12684.78, + "probability": 0.5827 + }, + { + "start": 12687.04, + "end": 12691.44, + "probability": 0.9038 + }, + { + "start": 12691.66, + "end": 12692.34, + "probability": 0.8999 + }, + { + "start": 12693.66, + "end": 12695.04, + "probability": 0.5326 + }, + { + "start": 12695.32, + "end": 12702.82, + "probability": 0.6516 + }, + { + "start": 12703.72, + "end": 12713.56, + "probability": 0.5536 + }, + { + "start": 12714.54, + "end": 12715.36, + "probability": 0.781 + }, + { + "start": 12716.34, + "end": 12720.78, + "probability": 0.8989 + }, + { + "start": 12721.16, + "end": 12724.31, + "probability": 0.9517 + }, + { + "start": 12725.04, + "end": 12729.62, + "probability": 0.9627 + }, + { + "start": 12730.16, + "end": 12733.04, + "probability": 0.1304 + }, + { + "start": 12733.66, + "end": 12736.58, + "probability": 0.7842 + }, + { + "start": 12737.14, + "end": 12737.74, + "probability": 0.5758 + }, + { + "start": 12738.26, + "end": 12741.52, + "probability": 0.9631 + }, + { + "start": 12742.2, + "end": 12745.78, + "probability": 0.9468 + }, + { + "start": 12747.32, + "end": 12755.1, + "probability": 0.9574 + }, + { + "start": 12755.62, + "end": 12757.22, + "probability": 0.9827 + }, + { + "start": 12757.76, + "end": 12759.98, + "probability": 0.8092 + }, + { + "start": 12760.3, + "end": 12768.18, + "probability": 0.7693 + }, + { + "start": 12768.72, + "end": 12769.54, + "probability": 0.7006 + }, + { + "start": 12770.26, + "end": 12771.26, + "probability": 0.466 + }, + { + "start": 12771.84, + "end": 12772.86, + "probability": 0.7927 + }, + { + "start": 12773.38, + "end": 12776.12, + "probability": 0.7336 + }, + { + "start": 12777.88, + "end": 12780.2, + "probability": 0.6534 + }, + { + "start": 12784.8, + "end": 12787.02, + "probability": 0.9593 + }, + { + "start": 12787.3, + "end": 12790.14, + "probability": 0.7483 + }, + { + "start": 12790.8, + "end": 12794.54, + "probability": 0.9204 + }, + { + "start": 12794.54, + "end": 12798.52, + "probability": 0.7675 + }, + { + "start": 12798.9, + "end": 12800.32, + "probability": 0.9907 + }, + { + "start": 12801.26, + "end": 12809.16, + "probability": 0.857 + }, + { + "start": 12810.04, + "end": 12813.02, + "probability": 0.7984 + }, + { + "start": 12814.18, + "end": 12818.12, + "probability": 0.7221 + }, + { + "start": 12818.7, + "end": 12822.42, + "probability": 0.9774 + }, + { + "start": 12822.6, + "end": 12828.16, + "probability": 0.7669 + }, + { + "start": 12828.78, + "end": 12834.58, + "probability": 0.9785 + }, + { + "start": 12835.28, + "end": 12841.3, + "probability": 0.949 + }, + { + "start": 12841.64, + "end": 12847.06, + "probability": 0.8962 + }, + { + "start": 12847.68, + "end": 12851.12, + "probability": 0.9064 + }, + { + "start": 12851.22, + "end": 12858.1, + "probability": 0.8171 + }, + { + "start": 12858.1, + "end": 12864.18, + "probability": 0.9505 + }, + { + "start": 12864.78, + "end": 12868.92, + "probability": 0.6988 + }, + { + "start": 12868.92, + "end": 12875.04, + "probability": 0.8827 + }, + { + "start": 12875.98, + "end": 12879.02, + "probability": 0.6619 + }, + { + "start": 12879.38, + "end": 12886.08, + "probability": 0.8341 + }, + { + "start": 12886.94, + "end": 12893.06, + "probability": 0.551 + }, + { + "start": 12893.24, + "end": 12894.08, + "probability": 0.437 + }, + { + "start": 12895.12, + "end": 12895.98, + "probability": 0.8178 + }, + { + "start": 12896.66, + "end": 12897.44, + "probability": 0.7497 + }, + { + "start": 12897.96, + "end": 12905.74, + "probability": 0.9451 + }, + { + "start": 12906.04, + "end": 12913.74, + "probability": 0.8081 + }, + { + "start": 12914.86, + "end": 12918.1, + "probability": 0.8141 + }, + { + "start": 12918.42, + "end": 12925.32, + "probability": 0.8706 + }, + { + "start": 12925.32, + "end": 12930.92, + "probability": 0.8272 + }, + { + "start": 12931.62, + "end": 12933.14, + "probability": 0.5005 + }, + { + "start": 12933.84, + "end": 12938.22, + "probability": 0.3885 + }, + { + "start": 12941.38, + "end": 12946.02, + "probability": 0.8629 + }, + { + "start": 12947.9, + "end": 12952.88, + "probability": 0.9791 + }, + { + "start": 12953.52, + "end": 12955.2, + "probability": 0.801 + }, + { + "start": 12955.86, + "end": 12959.68, + "probability": 0.9666 + }, + { + "start": 12959.68, + "end": 12966.36, + "probability": 0.9347 + }, + { + "start": 12966.94, + "end": 12971.04, + "probability": 0.996 + }, + { + "start": 12971.74, + "end": 12977.14, + "probability": 0.9763 + }, + { + "start": 12977.14, + "end": 12982.0, + "probability": 0.9313 + }, + { + "start": 12982.6, + "end": 12983.86, + "probability": 0.7009 + }, + { + "start": 12984.64, + "end": 12988.26, + "probability": 0.9805 + }, + { + "start": 12989.02, + "end": 12996.72, + "probability": 0.9202 + }, + { + "start": 12996.72, + "end": 13003.3, + "probability": 0.9932 + }, + { + "start": 13004.08, + "end": 13009.08, + "probability": 0.8522 + }, + { + "start": 13009.56, + "end": 13015.62, + "probability": 0.9799 + }, + { + "start": 13015.76, + "end": 13020.42, + "probability": 0.767 + }, + { + "start": 13020.42, + "end": 13026.02, + "probability": 0.5147 + }, + { + "start": 13026.6, + "end": 13026.68, + "probability": 0.0342 + }, + { + "start": 13026.68, + "end": 13028.8, + "probability": 0.9613 + }, + { + "start": 13028.88, + "end": 13031.04, + "probability": 0.8296 + }, + { + "start": 13031.38, + "end": 13031.96, + "probability": 0.5538 + }, + { + "start": 13031.96, + "end": 13034.3, + "probability": 0.8167 + }, + { + "start": 13034.46, + "end": 13036.78, + "probability": 0.7555 + }, + { + "start": 13037.42, + "end": 13038.7, + "probability": 0.9514 + }, + { + "start": 13042.12, + "end": 13046.3, + "probability": 0.9644 + }, + { + "start": 13046.78, + "end": 13050.9, + "probability": 0.9837 + }, + { + "start": 13051.5, + "end": 13055.4, + "probability": 0.9984 + }, + { + "start": 13055.64, + "end": 13064.18, + "probability": 0.951 + }, + { + "start": 13064.42, + "end": 13064.86, + "probability": 0.4492 + }, + { + "start": 13064.92, + "end": 13070.06, + "probability": 0.9431 + }, + { + "start": 13070.34, + "end": 13072.12, + "probability": 0.9841 + }, + { + "start": 13073.52, + "end": 13074.06, + "probability": 0.1163 + }, + { + "start": 13093.46, + "end": 13094.42, + "probability": 0.0696 + }, + { + "start": 13094.42, + "end": 13094.42, + "probability": 0.1097 + }, + { + "start": 13094.42, + "end": 13094.42, + "probability": 0.1102 + }, + { + "start": 13094.42, + "end": 13094.42, + "probability": 0.0332 + }, + { + "start": 13094.42, + "end": 13095.2, + "probability": 0.0662 + }, + { + "start": 13095.2, + "end": 13097.88, + "probability": 0.5165 + }, + { + "start": 13102.22, + "end": 13102.48, + "probability": 0.014 + }, + { + "start": 13102.68, + "end": 13103.56, + "probability": 0.1699 + }, + { + "start": 13104.14, + "end": 13104.16, + "probability": 0.0973 + }, + { + "start": 13104.16, + "end": 13107.44, + "probability": 0.0514 + }, + { + "start": 13107.64, + "end": 13108.14, + "probability": 0.1554 + }, + { + "start": 13108.38, + "end": 13108.54, + "probability": 0.1813 + }, + { + "start": 13110.22, + "end": 13110.6, + "probability": 0.2242 + }, + { + "start": 13111.58, + "end": 13114.18, + "probability": 0.8523 + }, + { + "start": 13114.26, + "end": 13118.22, + "probability": 0.905 + }, + { + "start": 13119.6, + "end": 13120.6, + "probability": 0.8155 + }, + { + "start": 13121.42, + "end": 13125.92, + "probability": 0.0586 + }, + { + "start": 13126.32, + "end": 13129.08, + "probability": 0.9954 + }, + { + "start": 13129.14, + "end": 13131.18, + "probability": 0.9773 + }, + { + "start": 13131.24, + "end": 13134.16, + "probability": 0.2425 + }, + { + "start": 13134.16, + "end": 13136.86, + "probability": 0.5766 + }, + { + "start": 13137.0, + "end": 13137.22, + "probability": 0.7482 + }, + { + "start": 13137.28, + "end": 13139.58, + "probability": 0.5572 + }, + { + "start": 13140.82, + "end": 13143.56, + "probability": 0.9839 + }, + { + "start": 13144.4, + "end": 13149.48, + "probability": 0.9834 + }, + { + "start": 13150.22, + "end": 13152.62, + "probability": 0.894 + }, + { + "start": 13153.02, + "end": 13158.5, + "probability": 0.9604 + }, + { + "start": 13159.42, + "end": 13161.8, + "probability": 0.9456 + }, + { + "start": 13162.3, + "end": 13165.16, + "probability": 0.6263 + }, + { + "start": 13165.78, + "end": 13166.98, + "probability": 0.8464 + }, + { + "start": 13168.4, + "end": 13172.24, + "probability": 0.9386 + }, + { + "start": 13172.24, + "end": 13177.04, + "probability": 0.9585 + }, + { + "start": 13177.76, + "end": 13180.88, + "probability": 0.9252 + }, + { + "start": 13182.34, + "end": 13187.24, + "probability": 0.8387 + }, + { + "start": 13187.78, + "end": 13192.08, + "probability": 0.9915 + }, + { + "start": 13193.26, + "end": 13195.14, + "probability": 0.9914 + }, + { + "start": 13195.84, + "end": 13199.82, + "probability": 0.9878 + }, + { + "start": 13199.82, + "end": 13203.8, + "probability": 0.8585 + }, + { + "start": 13204.94, + "end": 13205.7, + "probability": 0.4754 + }, + { + "start": 13206.62, + "end": 13207.9, + "probability": 0.9263 + }, + { + "start": 13208.56, + "end": 13211.96, + "probability": 0.9746 + }, + { + "start": 13212.38, + "end": 13216.66, + "probability": 0.9956 + }, + { + "start": 13216.72, + "end": 13222.86, + "probability": 0.6737 + }, + { + "start": 13223.52, + "end": 13227.6, + "probability": 0.7657 + }, + { + "start": 13228.2, + "end": 13231.52, + "probability": 0.9665 + }, + { + "start": 13232.14, + "end": 13233.36, + "probability": 0.9119 + }, + { + "start": 13234.36, + "end": 13239.24, + "probability": 0.9705 + }, + { + "start": 13239.78, + "end": 13240.08, + "probability": 0.9792 + }, + { + "start": 13240.74, + "end": 13242.32, + "probability": 0.9967 + }, + { + "start": 13242.98, + "end": 13243.8, + "probability": 0.9318 + }, + { + "start": 13244.32, + "end": 13244.62, + "probability": 0.9991 + }, + { + "start": 13245.46, + "end": 13249.78, + "probability": 0.8133 + }, + { + "start": 13250.22, + "end": 13253.44, + "probability": 0.9712 + }, + { + "start": 13254.2, + "end": 13255.2, + "probability": 0.8355 + }, + { + "start": 13255.72, + "end": 13256.9, + "probability": 0.9557 + }, + { + "start": 13257.7, + "end": 13260.28, + "probability": 0.936 + }, + { + "start": 13260.28, + "end": 13264.82, + "probability": 0.9733 + }, + { + "start": 13265.34, + "end": 13269.78, + "probability": 0.9941 + }, + { + "start": 13270.5, + "end": 13271.84, + "probability": 0.912 + }, + { + "start": 13272.32, + "end": 13277.6, + "probability": 0.9874 + }, + { + "start": 13277.6, + "end": 13283.02, + "probability": 0.8757 + }, + { + "start": 13283.54, + "end": 13286.24, + "probability": 0.9443 + }, + { + "start": 13286.76, + "end": 13290.24, + "probability": 0.9987 + }, + { + "start": 13290.24, + "end": 13293.68, + "probability": 0.9991 + }, + { + "start": 13294.44, + "end": 13297.96, + "probability": 0.6895 + }, + { + "start": 13298.12, + "end": 13300.3, + "probability": 0.1348 + }, + { + "start": 13301.06, + "end": 13303.52, + "probability": 0.5219 + }, + { + "start": 13303.76, + "end": 13309.1, + "probability": 0.6885 + }, + { + "start": 13309.72, + "end": 13310.74, + "probability": 0.5839 + }, + { + "start": 13310.92, + "end": 13314.04, + "probability": 0.5779 + }, + { + "start": 13314.22, + "end": 13315.98, + "probability": 0.7845 + }, + { + "start": 13316.62, + "end": 13317.62, + "probability": 0.3275 + }, + { + "start": 13317.62, + "end": 13318.78, + "probability": 0.4542 + }, + { + "start": 13319.38, + "end": 13319.38, + "probability": 0.2832 + }, + { + "start": 13319.38, + "end": 13319.38, + "probability": 0.1732 + }, + { + "start": 13319.38, + "end": 13321.5, + "probability": 0.4182 + }, + { + "start": 13321.7, + "end": 13323.64, + "probability": 0.4533 + }, + { + "start": 13324.36, + "end": 13325.82, + "probability": 0.4614 + }, + { + "start": 13326.34, + "end": 13328.95, + "probability": 0.835 + }, + { + "start": 13330.66, + "end": 13330.66, + "probability": 0.0122 + }, + { + "start": 13330.66, + "end": 13330.82, + "probability": 0.4312 + }, + { + "start": 13330.92, + "end": 13332.34, + "probability": 0.5131 + }, + { + "start": 13332.34, + "end": 13333.13, + "probability": 0.8776 + }, + { + "start": 13335.68, + "end": 13339.12, + "probability": 0.9676 + }, + { + "start": 13340.98, + "end": 13350.78, + "probability": 0.9624 + }, + { + "start": 13351.58, + "end": 13359.22, + "probability": 0.9931 + }, + { + "start": 13359.3, + "end": 13364.9, + "probability": 0.8346 + }, + { + "start": 13365.1, + "end": 13369.84, + "probability": 0.9832 + }, + { + "start": 13373.96, + "end": 13380.26, + "probability": 0.9946 + }, + { + "start": 13380.8, + "end": 13388.48, + "probability": 0.9611 + }, + { + "start": 13390.16, + "end": 13396.1, + "probability": 0.7898 + }, + { + "start": 13396.1, + "end": 13401.18, + "probability": 0.9216 + }, + { + "start": 13402.16, + "end": 13402.68, + "probability": 0.7588 + }, + { + "start": 13403.46, + "end": 13405.32, + "probability": 0.9254 + }, + { + "start": 13405.38, + "end": 13406.84, + "probability": 0.9795 + }, + { + "start": 13407.6, + "end": 13409.08, + "probability": 0.4902 + }, + { + "start": 13409.78, + "end": 13412.24, + "probability": 0.9708 + }, + { + "start": 13412.84, + "end": 13415.1, + "probability": 0.9977 + }, + { + "start": 13415.1, + "end": 13417.54, + "probability": 0.6525 + }, + { + "start": 13418.24, + "end": 13420.58, + "probability": 0.3439 + }, + { + "start": 13421.96, + "end": 13424.04, + "probability": 0.8477 + }, + { + "start": 13425.18, + "end": 13425.34, + "probability": 0.0145 + }, + { + "start": 13433.77, + "end": 13435.7, + "probability": 0.2972 + }, + { + "start": 13435.82, + "end": 13436.12, + "probability": 0.0324 + }, + { + "start": 13436.12, + "end": 13436.64, + "probability": 0.0606 + }, + { + "start": 13437.32, + "end": 13441.02, + "probability": 0.5714 + }, + { + "start": 13441.54, + "end": 13443.94, + "probability": 0.9258 + }, + { + "start": 13443.94, + "end": 13447.94, + "probability": 0.8527 + }, + { + "start": 13453.98, + "end": 13457.8, + "probability": 0.9106 + }, + { + "start": 13458.36, + "end": 13460.08, + "probability": 0.7886 + }, + { + "start": 13460.32, + "end": 13461.34, + "probability": 0.6912 + }, + { + "start": 13461.54, + "end": 13461.92, + "probability": 0.632 + }, + { + "start": 13462.76, + "end": 13466.64, + "probability": 0.7986 + }, + { + "start": 13467.2, + "end": 13469.52, + "probability": 0.7288 + }, + { + "start": 13469.7, + "end": 13472.22, + "probability": 0.8934 + }, + { + "start": 13472.76, + "end": 13476.38, + "probability": 0.8516 + }, + { + "start": 13477.02, + "end": 13478.68, + "probability": 0.2885 + }, + { + "start": 13479.56, + "end": 13481.83, + "probability": 0.7444 + }, + { + "start": 13483.12, + "end": 13484.12, + "probability": 0.6171 + }, + { + "start": 13485.8, + "end": 13488.22, + "probability": 0.6463 + }, + { + "start": 13491.6, + "end": 13491.86, + "probability": 0.2382 + }, + { + "start": 13492.02, + "end": 13493.52, + "probability": 0.8427 + }, + { + "start": 13493.62, + "end": 13495.2, + "probability": 0.8016 + }, + { + "start": 13495.8, + "end": 13497.2, + "probability": 0.5005 + }, + { + "start": 13497.58, + "end": 13498.4, + "probability": 0.6207 + }, + { + "start": 13498.48, + "end": 13498.82, + "probability": 0.7726 + }, + { + "start": 13498.9, + "end": 13499.48, + "probability": 0.698 + }, + { + "start": 13499.5, + "end": 13500.14, + "probability": 0.8496 + }, + { + "start": 13500.32, + "end": 13501.62, + "probability": 0.8348 + }, + { + "start": 13501.78, + "end": 13502.1, + "probability": 0.3969 + }, + { + "start": 13503.14, + "end": 13504.29, + "probability": 0.9788 + }, + { + "start": 13505.48, + "end": 13511.16, + "probability": 0.6229 + }, + { + "start": 13511.68, + "end": 13514.7, + "probability": 0.8219 + }, + { + "start": 13514.86, + "end": 13516.16, + "probability": 0.6187 + }, + { + "start": 13516.66, + "end": 13520.44, + "probability": 0.3824 + }, + { + "start": 13522.66, + "end": 13522.66, + "probability": 0.0438 + }, + { + "start": 13522.66, + "end": 13523.5, + "probability": 0.2157 + }, + { + "start": 13524.76, + "end": 13524.98, + "probability": 0.485 + }, + { + "start": 13525.32, + "end": 13530.82, + "probability": 0.9707 + }, + { + "start": 13531.36, + "end": 13531.9, + "probability": 0.6992 + }, + { + "start": 13533.2, + "end": 13536.14, + "probability": 0.9692 + }, + { + "start": 13536.28, + "end": 13537.78, + "probability": 0.9209 + }, + { + "start": 13537.94, + "end": 13542.12, + "probability": 0.9922 + }, + { + "start": 13543.02, + "end": 13544.02, + "probability": 0.4586 + }, + { + "start": 13545.18, + "end": 13546.72, + "probability": 0.4878 + }, + { + "start": 13547.36, + "end": 13550.04, + "probability": 0.9873 + }, + { + "start": 13550.16, + "end": 13551.36, + "probability": 0.84 + }, + { + "start": 13552.44, + "end": 13553.64, + "probability": 0.9019 + }, + { + "start": 13554.26, + "end": 13556.26, + "probability": 0.9666 + }, + { + "start": 13556.78, + "end": 13559.78, + "probability": 0.9145 + }, + { + "start": 13559.92, + "end": 13560.2, + "probability": 0.7349 + }, + { + "start": 13560.24, + "end": 13561.0, + "probability": 0.6954 + }, + { + "start": 13561.76, + "end": 13563.58, + "probability": 0.9888 + }, + { + "start": 13564.66, + "end": 13567.86, + "probability": 0.9961 + }, + { + "start": 13567.86, + "end": 13572.04, + "probability": 0.9888 + }, + { + "start": 13572.2, + "end": 13576.79, + "probability": 0.9927 + }, + { + "start": 13579.06, + "end": 13580.6, + "probability": 0.753 + }, + { + "start": 13582.5, + "end": 13584.74, + "probability": 0.8335 + }, + { + "start": 13585.78, + "end": 13588.78, + "probability": 0.8696 + }, + { + "start": 13589.42, + "end": 13593.94, + "probability": 0.99 + }, + { + "start": 13594.58, + "end": 13595.5, + "probability": 0.8741 + }, + { + "start": 13596.94, + "end": 13597.29, + "probability": 0.8877 + }, + { + "start": 13598.14, + "end": 13600.26, + "probability": 0.9854 + }, + { + "start": 13600.42, + "end": 13603.12, + "probability": 0.98 + }, + { + "start": 13603.88, + "end": 13606.78, + "probability": 0.7831 + }, + { + "start": 13607.86, + "end": 13610.86, + "probability": 0.922 + }, + { + "start": 13612.16, + "end": 13615.4, + "probability": 0.9443 + }, + { + "start": 13617.02, + "end": 13620.32, + "probability": 0.9592 + }, + { + "start": 13620.56, + "end": 13623.46, + "probability": 0.9138 + }, + { + "start": 13624.28, + "end": 13626.2, + "probability": 0.9209 + }, + { + "start": 13627.1, + "end": 13629.6, + "probability": 0.9642 + }, + { + "start": 13630.16, + "end": 13632.4, + "probability": 0.7231 + }, + { + "start": 13632.52, + "end": 13634.76, + "probability": 0.998 + }, + { + "start": 13635.28, + "end": 13636.48, + "probability": 0.9906 + }, + { + "start": 13638.6, + "end": 13642.54, + "probability": 0.9084 + }, + { + "start": 13643.38, + "end": 13645.98, + "probability": 0.9733 + }, + { + "start": 13646.86, + "end": 13648.42, + "probability": 0.9872 + }, + { + "start": 13648.54, + "end": 13649.98, + "probability": 0.9526 + }, + { + "start": 13650.2, + "end": 13650.62, + "probability": 0.8251 + }, + { + "start": 13651.44, + "end": 13652.74, + "probability": 0.9988 + }, + { + "start": 13653.6, + "end": 13654.62, + "probability": 0.5134 + }, + { + "start": 13654.82, + "end": 13655.16, + "probability": 0.4469 + }, + { + "start": 13655.26, + "end": 13656.48, + "probability": 0.9235 + }, + { + "start": 13656.62, + "end": 13657.94, + "probability": 0.9858 + }, + { + "start": 13659.16, + "end": 13661.24, + "probability": 0.961 + }, + { + "start": 13661.32, + "end": 13661.82, + "probability": 0.8495 + }, + { + "start": 13661.9, + "end": 13663.16, + "probability": 0.9888 + }, + { + "start": 13663.28, + "end": 13663.7, + "probability": 0.6092 + }, + { + "start": 13664.44, + "end": 13665.6, + "probability": 0.967 + }, + { + "start": 13666.16, + "end": 13668.82, + "probability": 0.6527 + }, + { + "start": 13669.36, + "end": 13670.34, + "probability": 0.9932 + }, + { + "start": 13671.02, + "end": 13672.12, + "probability": 0.9362 + }, + { + "start": 13672.16, + "end": 13675.04, + "probability": 0.9644 + }, + { + "start": 13675.12, + "end": 13676.07, + "probability": 0.7319 + }, + { + "start": 13676.66, + "end": 13678.38, + "probability": 0.8553 + }, + { + "start": 13678.96, + "end": 13680.72, + "probability": 0.8578 + }, + { + "start": 13681.06, + "end": 13685.74, + "probability": 0.9213 + }, + { + "start": 13686.2, + "end": 13686.74, + "probability": 0.6796 + }, + { + "start": 13686.82, + "end": 13687.94, + "probability": 0.9629 + }, + { + "start": 13689.28, + "end": 13692.26, + "probability": 0.9513 + }, + { + "start": 13692.34, + "end": 13695.22, + "probability": 0.7926 + }, + { + "start": 13695.36, + "end": 13695.9, + "probability": 0.5688 + }, + { + "start": 13695.94, + "end": 13697.56, + "probability": 0.9539 + }, + { + "start": 13699.22, + "end": 13700.74, + "probability": 0.9243 + }, + { + "start": 13700.78, + "end": 13701.18, + "probability": 0.8116 + }, + { + "start": 13701.24, + "end": 13703.24, + "probability": 0.8241 + }, + { + "start": 13703.3, + "end": 13705.22, + "probability": 0.9696 + }, + { + "start": 13706.44, + "end": 13710.12, + "probability": 0.8048 + }, + { + "start": 13710.12, + "end": 13713.3, + "probability": 0.9121 + }, + { + "start": 13714.42, + "end": 13715.06, + "probability": 0.5966 + }, + { + "start": 13715.14, + "end": 13715.44, + "probability": 0.6696 + }, + { + "start": 13715.62, + "end": 13716.74, + "probability": 0.8178 + }, + { + "start": 13716.82, + "end": 13718.24, + "probability": 0.9258 + }, + { + "start": 13718.7, + "end": 13720.26, + "probability": 0.9811 + }, + { + "start": 13720.26, + "end": 13720.98, + "probability": 0.8676 + }, + { + "start": 13721.26, + "end": 13727.38, + "probability": 0.9787 + }, + { + "start": 13727.7, + "end": 13728.78, + "probability": 0.6465 + }, + { + "start": 13729.34, + "end": 13731.35, + "probability": 0.9985 + }, + { + "start": 13732.26, + "end": 13733.34, + "probability": 0.3623 + }, + { + "start": 13733.5, + "end": 13736.42, + "probability": 0.9846 + }, + { + "start": 13736.54, + "end": 13737.12, + "probability": 0.9213 + }, + { + "start": 13738.24, + "end": 13740.82, + "probability": 0.9923 + }, + { + "start": 13741.36, + "end": 13744.52, + "probability": 0.9602 + }, + { + "start": 13745.56, + "end": 13746.8, + "probability": 0.5732 + }, + { + "start": 13747.12, + "end": 13748.48, + "probability": 0.9293 + }, + { + "start": 13748.5, + "end": 13751.28, + "probability": 0.9766 + }, + { + "start": 13751.44, + "end": 13752.83, + "probability": 0.5303 + }, + { + "start": 13754.7, + "end": 13757.32, + "probability": 0.7691 + }, + { + "start": 13760.16, + "end": 13763.26, + "probability": 0.9624 + }, + { + "start": 13763.26, + "end": 13766.24, + "probability": 0.9607 + }, + { + "start": 13766.4, + "end": 13767.34, + "probability": 0.3997 + }, + { + "start": 13767.76, + "end": 13770.02, + "probability": 0.6181 + }, + { + "start": 13770.32, + "end": 13773.24, + "probability": 0.498 + }, + { + "start": 13773.64, + "end": 13775.6, + "probability": 0.9791 + }, + { + "start": 13776.28, + "end": 13783.44, + "probability": 0.9736 + }, + { + "start": 13784.2, + "end": 13785.32, + "probability": 0.9604 + }, + { + "start": 13785.94, + "end": 13788.62, + "probability": 0.9954 + }, + { + "start": 13788.62, + "end": 13792.4, + "probability": 0.9984 + }, + { + "start": 13793.02, + "end": 13794.1, + "probability": 0.7485 + }, + { + "start": 13794.4, + "end": 13795.24, + "probability": 0.626 + }, + { + "start": 13795.72, + "end": 13796.8, + "probability": 0.7048 + }, + { + "start": 13797.06, + "end": 13801.54, + "probability": 0.7321 + }, + { + "start": 13801.86, + "end": 13802.42, + "probability": 0.687 + }, + { + "start": 13802.72, + "end": 13806.72, + "probability": 0.947 + }, + { + "start": 13807.22, + "end": 13807.98, + "probability": 0.6163 + }, + { + "start": 13808.46, + "end": 13810.9, + "probability": 0.9872 + }, + { + "start": 13811.22, + "end": 13813.04, + "probability": 0.5601 + }, + { + "start": 13813.6, + "end": 13815.24, + "probability": 0.6993 + }, + { + "start": 13815.68, + "end": 13817.62, + "probability": 0.899 + }, + { + "start": 13817.64, + "end": 13818.62, + "probability": 0.9829 + }, + { + "start": 13819.04, + "end": 13820.28, + "probability": 0.8781 + }, + { + "start": 13821.32, + "end": 13822.92, + "probability": 0.8157 + }, + { + "start": 13824.02, + "end": 13824.54, + "probability": 0.8232 + }, + { + "start": 13825.48, + "end": 13827.96, + "probability": 0.92 + }, + { + "start": 13828.74, + "end": 13830.36, + "probability": 0.967 + }, + { + "start": 13831.36, + "end": 13834.3, + "probability": 0.7578 + }, + { + "start": 13835.3, + "end": 13837.81, + "probability": 0.8402 + }, + { + "start": 13838.32, + "end": 13838.86, + "probability": 0.6324 + }, + { + "start": 13839.46, + "end": 13840.16, + "probability": 0.8648 + }, + { + "start": 13840.38, + "end": 13843.62, + "probability": 0.6851 + }, + { + "start": 13843.72, + "end": 13844.48, + "probability": 0.9744 + }, + { + "start": 13844.94, + "end": 13846.16, + "probability": 0.9761 + }, + { + "start": 13846.74, + "end": 13848.28, + "probability": 0.8525 + }, + { + "start": 13848.54, + "end": 13848.74, + "probability": 0.5333 + }, + { + "start": 13848.86, + "end": 13850.24, + "probability": 0.6858 + }, + { + "start": 13851.12, + "end": 13854.08, + "probability": 0.7027 + }, + { + "start": 13854.46, + "end": 13855.42, + "probability": 0.726 + }, + { + "start": 13855.76, + "end": 13856.84, + "probability": 0.7996 + }, + { + "start": 13857.88, + "end": 13861.66, + "probability": 0.9664 + }, + { + "start": 13861.66, + "end": 13865.64, + "probability": 0.9984 + }, + { + "start": 13866.12, + "end": 13867.12, + "probability": 0.8024 + }, + { + "start": 13867.18, + "end": 13869.64, + "probability": 0.9792 + }, + { + "start": 13871.06, + "end": 13871.24, + "probability": 0.3332 + }, + { + "start": 13871.88, + "end": 13872.16, + "probability": 0.371 + }, + { + "start": 13872.16, + "end": 13873.42, + "probability": 0.7849 + }, + { + "start": 13873.62, + "end": 13875.82, + "probability": 0.9299 + }, + { + "start": 13876.52, + "end": 13877.6, + "probability": 0.6955 + }, + { + "start": 13877.76, + "end": 13879.38, + "probability": 0.9888 + }, + { + "start": 13880.46, + "end": 13882.16, + "probability": 0.6304 + }, + { + "start": 13882.38, + "end": 13885.66, + "probability": 0.9943 + }, + { + "start": 13885.66, + "end": 13890.42, + "probability": 0.9813 + }, + { + "start": 13890.6, + "end": 13892.58, + "probability": 0.8806 + }, + { + "start": 13892.7, + "end": 13893.14, + "probability": 0.7649 + }, + { + "start": 13893.42, + "end": 13901.2, + "probability": 0.9058 + }, + { + "start": 13901.32, + "end": 13903.45, + "probability": 0.8921 + }, + { + "start": 13903.68, + "end": 13903.86, + "probability": 0.7225 + }, + { + "start": 13903.92, + "end": 13904.88, + "probability": 0.8132 + }, + { + "start": 13905.46, + "end": 13909.72, + "probability": 0.7499 + }, + { + "start": 13910.3, + "end": 13911.38, + "probability": 0.9927 + }, + { + "start": 13912.2, + "end": 13913.42, + "probability": 0.835 + }, + { + "start": 13914.4, + "end": 13917.66, + "probability": 0.9912 + }, + { + "start": 13918.2, + "end": 13922.06, + "probability": 0.9454 + }, + { + "start": 13922.5, + "end": 13929.02, + "probability": 0.807 + }, + { + "start": 13929.16, + "end": 13931.34, + "probability": 0.7165 + }, + { + "start": 13931.36, + "end": 13934.16, + "probability": 0.7241 + }, + { + "start": 13935.06, + "end": 13937.32, + "probability": 0.6226 + }, + { + "start": 13937.52, + "end": 13939.44, + "probability": 0.7155 + }, + { + "start": 13940.26, + "end": 13941.12, + "probability": 0.6671 + }, + { + "start": 13942.0, + "end": 13943.12, + "probability": 0.6593 + }, + { + "start": 13944.08, + "end": 13944.48, + "probability": 0.9045 + }, + { + "start": 13945.36, + "end": 13947.6, + "probability": 0.8966 + }, + { + "start": 13947.84, + "end": 13950.4, + "probability": 0.7451 + }, + { + "start": 13950.5, + "end": 13954.18, + "probability": 0.9561 + }, + { + "start": 13955.28, + "end": 13957.26, + "probability": 0.9663 + }, + { + "start": 13958.02, + "end": 13963.24, + "probability": 0.9638 + }, + { + "start": 13963.24, + "end": 13966.96, + "probability": 0.9833 + }, + { + "start": 13967.48, + "end": 13969.89, + "probability": 0.7455 + }, + { + "start": 13970.6, + "end": 13971.42, + "probability": 0.9312 + }, + { + "start": 13972.12, + "end": 13977.22, + "probability": 0.9387 + }, + { + "start": 13977.92, + "end": 13978.76, + "probability": 0.6679 + }, + { + "start": 13978.88, + "end": 13981.12, + "probability": 0.9209 + }, + { + "start": 13981.48, + "end": 13983.62, + "probability": 0.6283 + }, + { + "start": 13985.12, + "end": 13986.12, + "probability": 0.6429 + }, + { + "start": 13986.26, + "end": 13987.84, + "probability": 0.7138 + }, + { + "start": 13988.8, + "end": 13991.74, + "probability": 0.5007 + }, + { + "start": 13992.66, + "end": 13995.86, + "probability": 0.5789 + }, + { + "start": 13996.56, + "end": 14000.84, + "probability": 0.9873 + }, + { + "start": 14000.84, + "end": 14005.0, + "probability": 0.9883 + }, + { + "start": 14005.42, + "end": 14007.6, + "probability": 0.9904 + }, + { + "start": 14007.6, + "end": 14009.7, + "probability": 0.9605 + }, + { + "start": 14009.76, + "end": 14010.67, + "probability": 0.9156 + }, + { + "start": 14011.04, + "end": 14013.34, + "probability": 0.9198 + }, + { + "start": 14014.8, + "end": 14016.56, + "probability": 0.9664 + }, + { + "start": 14016.82, + "end": 14018.5, + "probability": 0.8652 + }, + { + "start": 14019.72, + "end": 14023.77, + "probability": 0.9512 + }, + { + "start": 14024.54, + "end": 14027.78, + "probability": 0.8896 + }, + { + "start": 14028.5, + "end": 14031.1, + "probability": 0.9872 + }, + { + "start": 14031.86, + "end": 14032.46, + "probability": 0.7964 + }, + { + "start": 14033.32, + "end": 14036.34, + "probability": 0.7134 + }, + { + "start": 14037.7, + "end": 14038.26, + "probability": 0.763 + }, + { + "start": 14038.48, + "end": 14041.1, + "probability": 0.9749 + }, + { + "start": 14041.1, + "end": 14045.42, + "probability": 0.8927 + }, + { + "start": 14045.62, + "end": 14047.12, + "probability": 0.9843 + }, + { + "start": 14047.26, + "end": 14047.96, + "probability": 0.8314 + }, + { + "start": 14048.56, + "end": 14051.08, + "probability": 0.6654 + }, + { + "start": 14051.64, + "end": 14053.48, + "probability": 0.8239 + }, + { + "start": 14054.06, + "end": 14058.52, + "probability": 0.9639 + }, + { + "start": 14058.64, + "end": 14060.14, + "probability": 0.8958 + }, + { + "start": 14060.54, + "end": 14061.9, + "probability": 0.9195 + }, + { + "start": 14062.34, + "end": 14063.59, + "probability": 0.9971 + }, + { + "start": 14064.04, + "end": 14065.3, + "probability": 0.1536 + }, + { + "start": 14065.3, + "end": 14067.45, + "probability": 0.8141 + }, + { + "start": 14068.74, + "end": 14074.42, + "probability": 0.5548 + }, + { + "start": 14074.68, + "end": 14078.16, + "probability": 0.8776 + }, + { + "start": 14091.94, + "end": 14094.5, + "probability": 0.4563 + }, + { + "start": 14096.78, + "end": 14097.74, + "probability": 0.6696 + }, + { + "start": 14099.98, + "end": 14101.56, + "probability": 0.8625 + }, + { + "start": 14102.78, + "end": 14109.02, + "probability": 0.9367 + }, + { + "start": 14110.1, + "end": 14112.1, + "probability": 0.9647 + }, + { + "start": 14112.7, + "end": 14113.78, + "probability": 0.9585 + }, + { + "start": 14114.6, + "end": 14115.4, + "probability": 0.3545 + }, + { + "start": 14116.84, + "end": 14120.26, + "probability": 0.7438 + }, + { + "start": 14123.62, + "end": 14129.54, + "probability": 0.9976 + }, + { + "start": 14129.69, + "end": 14138.08, + "probability": 0.945 + }, + { + "start": 14138.98, + "end": 14142.74, + "probability": 0.8687 + }, + { + "start": 14144.32, + "end": 14146.1, + "probability": 0.9918 + }, + { + "start": 14146.72, + "end": 14147.5, + "probability": 0.9849 + }, + { + "start": 14148.56, + "end": 14150.42, + "probability": 0.9989 + }, + { + "start": 14150.96, + "end": 14154.92, + "probability": 0.988 + }, + { + "start": 14154.92, + "end": 14160.26, + "probability": 0.9901 + }, + { + "start": 14161.25, + "end": 14171.13, + "probability": 0.9463 + }, + { + "start": 14171.86, + "end": 14175.86, + "probability": 0.9815 + }, + { + "start": 14176.9, + "end": 14180.46, + "probability": 0.9884 + }, + { + "start": 14180.46, + "end": 14185.9, + "probability": 0.9828 + }, + { + "start": 14188.94, + "end": 14192.12, + "probability": 0.8269 + }, + { + "start": 14193.1, + "end": 14195.78, + "probability": 0.9886 + }, + { + "start": 14196.68, + "end": 14198.08, + "probability": 0.7178 + }, + { + "start": 14198.8, + "end": 14203.58, + "probability": 0.9624 + }, + { + "start": 14204.68, + "end": 14205.42, + "probability": 0.89 + }, + { + "start": 14206.24, + "end": 14211.84, + "probability": 0.9893 + }, + { + "start": 14211.84, + "end": 14217.04, + "probability": 0.9366 + }, + { + "start": 14217.8, + "end": 14219.02, + "probability": 0.7884 + }, + { + "start": 14219.58, + "end": 14223.56, + "probability": 0.9768 + }, + { + "start": 14223.56, + "end": 14227.86, + "probability": 0.9199 + }, + { + "start": 14228.06, + "end": 14228.4, + "probability": 0.1095 + }, + { + "start": 14228.66, + "end": 14232.22, + "probability": 0.1607 + }, + { + "start": 14233.28, + "end": 14234.98, + "probability": 0.9814 + }, + { + "start": 14235.6, + "end": 14238.42, + "probability": 0.9617 + }, + { + "start": 14239.04, + "end": 14241.78, + "probability": 0.9246 + }, + { + "start": 14242.8, + "end": 14245.88, + "probability": 0.5097 + }, + { + "start": 14246.38, + "end": 14246.88, + "probability": 0.2808 + }, + { + "start": 14247.04, + "end": 14247.38, + "probability": 0.3201 + }, + { + "start": 14247.56, + "end": 14248.16, + "probability": 0.2167 + }, + { + "start": 14248.26, + "end": 14251.14, + "probability": 0.7719 + }, + { + "start": 14253.94, + "end": 14258.44, + "probability": 0.9767 + }, + { + "start": 14259.22, + "end": 14261.32, + "probability": 0.9559 + }, + { + "start": 14261.38, + "end": 14265.62, + "probability": 0.996 + }, + { + "start": 14266.6, + "end": 14271.3, + "probability": 0.9937 + }, + { + "start": 14271.48, + "end": 14272.92, + "probability": 0.6416 + }, + { + "start": 14273.28, + "end": 14273.38, + "probability": 0.1711 + }, + { + "start": 14273.48, + "end": 14274.51, + "probability": 0.3644 + }, + { + "start": 14274.7, + "end": 14275.76, + "probability": 0.1903 + }, + { + "start": 14275.88, + "end": 14276.9, + "probability": 0.6849 + }, + { + "start": 14277.06, + "end": 14279.52, + "probability": 0.9556 + }, + { + "start": 14280.04, + "end": 14282.82, + "probability": 0.9809 + }, + { + "start": 14283.0, + "end": 14283.41, + "probability": 0.2915 + }, + { + "start": 14284.22, + "end": 14284.77, + "probability": 0.1172 + }, + { + "start": 14284.98, + "end": 14285.26, + "probability": 0.5405 + }, + { + "start": 14285.36, + "end": 14286.44, + "probability": 0.5758 + }, + { + "start": 14286.72, + "end": 14287.7, + "probability": 0.4626 + }, + { + "start": 14287.84, + "end": 14288.16, + "probability": 0.6129 + }, + { + "start": 14288.16, + "end": 14289.23, + "probability": 0.2114 + }, + { + "start": 14289.84, + "end": 14294.06, + "probability": 0.5758 + }, + { + "start": 14295.34, + "end": 14296.36, + "probability": 0.3945 + }, + { + "start": 14296.84, + "end": 14299.16, + "probability": 0.7025 + }, + { + "start": 14299.46, + "end": 14300.62, + "probability": 0.8903 + }, + { + "start": 14301.62, + "end": 14306.82, + "probability": 0.9946 + }, + { + "start": 14308.12, + "end": 14309.78, + "probability": 0.6028 + }, + { + "start": 14310.94, + "end": 14312.7, + "probability": 0.8682 + }, + { + "start": 14313.26, + "end": 14318.0, + "probability": 0.9971 + }, + { + "start": 14318.1, + "end": 14324.34, + "probability": 0.9935 + }, + { + "start": 14325.16, + "end": 14327.54, + "probability": 0.8271 + }, + { + "start": 14327.66, + "end": 14329.3, + "probability": 0.7695 + }, + { + "start": 14329.9, + "end": 14335.62, + "probability": 0.9551 + }, + { + "start": 14335.76, + "end": 14339.06, + "probability": 0.9958 + }, + { + "start": 14339.06, + "end": 14344.08, + "probability": 0.9958 + }, + { + "start": 14344.7, + "end": 14345.96, + "probability": 0.5509 + }, + { + "start": 14346.3, + "end": 14354.1, + "probability": 0.9915 + }, + { + "start": 14356.62, + "end": 14360.12, + "probability": 0.9944 + }, + { + "start": 14363.54, + "end": 14368.48, + "probability": 0.6497 + }, + { + "start": 14370.36, + "end": 14372.6, + "probability": 0.62 + }, + { + "start": 14374.08, + "end": 14376.84, + "probability": 0.983 + }, + { + "start": 14377.82, + "end": 14381.12, + "probability": 0.9826 + }, + { + "start": 14381.74, + "end": 14383.54, + "probability": 0.9847 + }, + { + "start": 14384.62, + "end": 14388.8, + "probability": 0.9227 + }, + { + "start": 14389.56, + "end": 14395.18, + "probability": 0.994 + }, + { + "start": 14395.96, + "end": 14398.22, + "probability": 0.4871 + }, + { + "start": 14398.68, + "end": 14399.26, + "probability": 0.7906 + }, + { + "start": 14400.98, + "end": 14406.62, + "probability": 0.9535 + }, + { + "start": 14406.62, + "end": 14412.82, + "probability": 0.9906 + }, + { + "start": 14413.82, + "end": 14414.58, + "probability": 0.908 + }, + { + "start": 14415.2, + "end": 14421.08, + "probability": 0.8853 + }, + { + "start": 14421.64, + "end": 14425.12, + "probability": 0.9847 + }, + { + "start": 14426.96, + "end": 14429.66, + "probability": 0.8829 + }, + { + "start": 14430.2, + "end": 14436.16, + "probability": 0.9668 + }, + { + "start": 14436.62, + "end": 14437.3, + "probability": 0.9159 + }, + { + "start": 14438.36, + "end": 14444.24, + "probability": 0.9357 + }, + { + "start": 14444.5, + "end": 14446.06, + "probability": 0.8092 + }, + { + "start": 14446.26, + "end": 14448.24, + "probability": 0.9905 + }, + { + "start": 14448.62, + "end": 14449.3, + "probability": 0.7035 + }, + { + "start": 14449.88, + "end": 14450.99, + "probability": 0.8976 + }, + { + "start": 14452.16, + "end": 14454.77, + "probability": 0.9834 + }, + { + "start": 14455.7, + "end": 14456.65, + "probability": 0.9296 + }, + { + "start": 14457.06, + "end": 14458.52, + "probability": 0.9271 + }, + { + "start": 14458.98, + "end": 14459.76, + "probability": 0.8834 + }, + { + "start": 14460.06, + "end": 14463.84, + "probability": 0.936 + }, + { + "start": 14464.72, + "end": 14465.9, + "probability": 0.7222 + }, + { + "start": 14466.52, + "end": 14472.86, + "probability": 0.9909 + }, + { + "start": 14473.42, + "end": 14474.36, + "probability": 0.9365 + }, + { + "start": 14474.5, + "end": 14481.78, + "probability": 0.9668 + }, + { + "start": 14481.82, + "end": 14482.63, + "probability": 0.9138 + }, + { + "start": 14483.12, + "end": 14485.04, + "probability": 0.8368 + }, + { + "start": 14485.66, + "end": 14488.16, + "probability": 0.9839 + }, + { + "start": 14488.6, + "end": 14489.2, + "probability": 0.7597 + }, + { + "start": 14489.3, + "end": 14491.64, + "probability": 0.9656 + }, + { + "start": 14491.94, + "end": 14494.82, + "probability": 0.9848 + }, + { + "start": 14496.52, + "end": 14501.12, + "probability": 0.9961 + }, + { + "start": 14501.48, + "end": 14502.38, + "probability": 0.8455 + }, + { + "start": 14502.48, + "end": 14504.58, + "probability": 0.9985 + }, + { + "start": 14505.58, + "end": 14506.58, + "probability": 0.9139 + }, + { + "start": 14507.46, + "end": 14509.46, + "probability": 0.9756 + }, + { + "start": 14510.58, + "end": 14512.82, + "probability": 0.8245 + }, + { + "start": 14512.94, + "end": 14516.24, + "probability": 0.9245 + }, + { + "start": 14516.92, + "end": 14519.48, + "probability": 0.9876 + }, + { + "start": 14519.58, + "end": 14520.8, + "probability": 0.9917 + }, + { + "start": 14521.12, + "end": 14527.24, + "probability": 0.9844 + }, + { + "start": 14527.26, + "end": 14531.16, + "probability": 0.8989 + }, + { + "start": 14532.58, + "end": 14533.16, + "probability": 0.8262 + }, + { + "start": 14533.24, + "end": 14540.72, + "probability": 0.9868 + }, + { + "start": 14540.82, + "end": 14541.85, + "probability": 0.8934 + }, + { + "start": 14542.06, + "end": 14543.78, + "probability": 0.9942 + }, + { + "start": 14544.5, + "end": 14549.36, + "probability": 0.9932 + }, + { + "start": 14549.9, + "end": 14550.98, + "probability": 0.9956 + }, + { + "start": 14551.58, + "end": 14556.28, + "probability": 0.9514 + }, + { + "start": 14557.4, + "end": 14559.62, + "probability": 0.9648 + }, + { + "start": 14560.14, + "end": 14561.7, + "probability": 0.6641 + }, + { + "start": 14561.84, + "end": 14562.82, + "probability": 0.9111 + }, + { + "start": 14563.7, + "end": 14567.65, + "probability": 0.9932 + }, + { + "start": 14568.54, + "end": 14570.6, + "probability": 0.9602 + }, + { + "start": 14570.68, + "end": 14572.65, + "probability": 0.9419 + }, + { + "start": 14573.98, + "end": 14575.08, + "probability": 0.7586 + }, + { + "start": 14575.26, + "end": 14576.82, + "probability": 0.9862 + }, + { + "start": 14576.98, + "end": 14578.24, + "probability": 0.9044 + }, + { + "start": 14578.34, + "end": 14579.22, + "probability": 0.9886 + }, + { + "start": 14579.84, + "end": 14581.2, + "probability": 0.9468 + }, + { + "start": 14582.0, + "end": 14588.02, + "probability": 0.9763 + }, + { + "start": 14590.28, + "end": 14592.66, + "probability": 0.7061 + }, + { + "start": 14593.26, + "end": 14598.24, + "probability": 0.9922 + }, + { + "start": 14598.6, + "end": 14603.39, + "probability": 0.9938 + }, + { + "start": 14603.42, + "end": 14608.94, + "probability": 0.9973 + }, + { + "start": 14609.74, + "end": 14614.58, + "probability": 0.8812 + }, + { + "start": 14615.26, + "end": 14616.6, + "probability": 0.95 + }, + { + "start": 14617.4, + "end": 14619.2, + "probability": 0.8376 + }, + { + "start": 14620.48, + "end": 14624.6, + "probability": 0.9539 + }, + { + "start": 14625.18, + "end": 14626.87, + "probability": 0.9688 + }, + { + "start": 14628.5, + "end": 14630.26, + "probability": 0.9941 + }, + { + "start": 14631.26, + "end": 14634.84, + "probability": 0.5504 + }, + { + "start": 14636.9, + "end": 14640.2, + "probability": 0.5684 + }, + { + "start": 14640.42, + "end": 14645.64, + "probability": 0.8372 + }, + { + "start": 14646.16, + "end": 14648.58, + "probability": 0.8981 + }, + { + "start": 14649.54, + "end": 14651.14, + "probability": 0.832 + }, + { + "start": 14651.24, + "end": 14654.8, + "probability": 0.7548 + }, + { + "start": 14655.76, + "end": 14658.94, + "probability": 0.9737 + }, + { + "start": 14659.0, + "end": 14659.7, + "probability": 0.7449 + }, + { + "start": 14659.84, + "end": 14661.08, + "probability": 0.7391 + }, + { + "start": 14661.08, + "end": 14662.64, + "probability": 0.7411 + }, + { + "start": 14662.68, + "end": 14663.54, + "probability": 0.9433 + }, + { + "start": 14663.66, + "end": 14664.8, + "probability": 0.8508 + }, + { + "start": 14664.9, + "end": 14665.18, + "probability": 0.461 + }, + { + "start": 14665.32, + "end": 14666.34, + "probability": 0.6598 + }, + { + "start": 14666.42, + "end": 14667.42, + "probability": 0.624 + }, + { + "start": 14669.51, + "end": 14675.84, + "probability": 0.9856 + }, + { + "start": 14676.9, + "end": 14680.62, + "probability": 0.7362 + }, + { + "start": 14681.16, + "end": 14685.76, + "probability": 0.9868 + }, + { + "start": 14686.78, + "end": 14692.26, + "probability": 0.9993 + }, + { + "start": 14692.92, + "end": 14695.82, + "probability": 0.9938 + }, + { + "start": 14696.16, + "end": 14697.16, + "probability": 0.9968 + }, + { + "start": 14697.48, + "end": 14698.7, + "probability": 0.868 + }, + { + "start": 14699.08, + "end": 14701.16, + "probability": 0.9896 + }, + { + "start": 14701.46, + "end": 14704.32, + "probability": 0.979 + }, + { + "start": 14704.34, + "end": 14705.07, + "probability": 0.9318 + }, + { + "start": 14706.16, + "end": 14707.24, + "probability": 0.9289 + }, + { + "start": 14707.38, + "end": 14710.56, + "probability": 0.9462 + }, + { + "start": 14710.7, + "end": 14711.5, + "probability": 0.9023 + }, + { + "start": 14711.56, + "end": 14712.56, + "probability": 0.9775 + }, + { + "start": 14713.1, + "end": 14718.74, + "probability": 0.9786 + }, + { + "start": 14719.28, + "end": 14720.72, + "probability": 0.9966 + }, + { + "start": 14721.04, + "end": 14723.2, + "probability": 0.995 + }, + { + "start": 14723.96, + "end": 14725.68, + "probability": 0.6108 + }, + { + "start": 14725.74, + "end": 14728.18, + "probability": 0.9651 + }, + { + "start": 14729.14, + "end": 14730.68, + "probability": 0.9806 + }, + { + "start": 14731.6, + "end": 14736.86, + "probability": 0.9514 + }, + { + "start": 14737.42, + "end": 14741.94, + "probability": 0.6667 + }, + { + "start": 14742.3, + "end": 14743.64, + "probability": 0.93 + }, + { + "start": 14743.78, + "end": 14746.1, + "probability": 0.9389 + }, + { + "start": 14746.34, + "end": 14748.77, + "probability": 0.965 + }, + { + "start": 14749.1, + "end": 14750.98, + "probability": 0.9617 + }, + { + "start": 14751.14, + "end": 14754.46, + "probability": 0.984 + }, + { + "start": 14754.62, + "end": 14757.14, + "probability": 0.9924 + }, + { + "start": 14757.74, + "end": 14760.02, + "probability": 0.9869 + }, + { + "start": 14760.48, + "end": 14767.64, + "probability": 0.9986 + }, + { + "start": 14767.84, + "end": 14769.24, + "probability": 0.788 + }, + { + "start": 14769.64, + "end": 14773.76, + "probability": 0.982 + }, + { + "start": 14773.82, + "end": 14776.45, + "probability": 0.989 + }, + { + "start": 14776.72, + "end": 14778.56, + "probability": 0.9939 + }, + { + "start": 14778.98, + "end": 14781.76, + "probability": 0.9683 + }, + { + "start": 14781.76, + "end": 14787.12, + "probability": 0.8406 + }, + { + "start": 14787.26, + "end": 14789.84, + "probability": 0.8724 + }, + { + "start": 14791.22, + "end": 14795.86, + "probability": 0.7669 + }, + { + "start": 14797.9, + "end": 14800.84, + "probability": 0.1818 + }, + { + "start": 14800.88, + "end": 14803.5, + "probability": 0.8897 + }, + { + "start": 14819.62, + "end": 14822.74, + "probability": 0.6462 + }, + { + "start": 14823.8, + "end": 14827.9, + "probability": 0.923 + }, + { + "start": 14829.0, + "end": 14832.26, + "probability": 0.813 + }, + { + "start": 14833.26, + "end": 14834.26, + "probability": 0.7125 + }, + { + "start": 14834.34, + "end": 14837.62, + "probability": 0.9977 + }, + { + "start": 14837.76, + "end": 14838.4, + "probability": 0.7249 + }, + { + "start": 14838.92, + "end": 14840.91, + "probability": 0.8943 + }, + { + "start": 14841.6, + "end": 14845.07, + "probability": 0.9409 + }, + { + "start": 14845.92, + "end": 14847.5, + "probability": 0.7137 + }, + { + "start": 14848.48, + "end": 14852.74, + "probability": 0.9429 + }, + { + "start": 14853.72, + "end": 14854.68, + "probability": 0.2182 + }, + { + "start": 14855.3, + "end": 14858.84, + "probability": 0.859 + }, + { + "start": 14859.3, + "end": 14864.22, + "probability": 0.8265 + }, + { + "start": 14864.22, + "end": 14864.68, + "probability": 0.5313 + }, + { + "start": 14865.32, + "end": 14870.72, + "probability": 0.7622 + }, + { + "start": 14871.36, + "end": 14874.94, + "probability": 0.9972 + }, + { + "start": 14874.94, + "end": 14878.14, + "probability": 0.9761 + }, + { + "start": 14878.56, + "end": 14878.56, + "probability": 0.5798 + }, + { + "start": 14879.62, + "end": 14883.22, + "probability": 0.9941 + }, + { + "start": 14883.22, + "end": 14886.42, + "probability": 0.9966 + }, + { + "start": 14886.56, + "end": 14890.6, + "probability": 0.9311 + }, + { + "start": 14890.6, + "end": 14894.0, + "probability": 0.9547 + }, + { + "start": 14894.44, + "end": 14896.08, + "probability": 0.8024 + }, + { + "start": 14896.38, + "end": 14896.76, + "probability": 0.5858 + }, + { + "start": 14897.4, + "end": 14899.46, + "probability": 0.9601 + }, + { + "start": 14900.54, + "end": 14904.74, + "probability": 0.2789 + }, + { + "start": 14904.78, + "end": 14905.12, + "probability": 0.3017 + }, + { + "start": 14905.76, + "end": 14907.2, + "probability": 0.7882 + }, + { + "start": 14907.3, + "end": 14908.94, + "probability": 0.4737 + }, + { + "start": 14909.42, + "end": 14912.0, + "probability": 0.7869 + }, + { + "start": 14912.7, + "end": 14915.44, + "probability": 0.6304 + }, + { + "start": 14916.06, + "end": 14919.74, + "probability": 0.2568 + }, + { + "start": 14919.9, + "end": 14921.2, + "probability": 0.7653 + }, + { + "start": 14921.66, + "end": 14924.54, + "probability": 0.9658 + }, + { + "start": 14924.9, + "end": 14925.2, + "probability": 0.6376 + }, + { + "start": 14926.18, + "end": 14929.18, + "probability": 0.9429 + }, + { + "start": 14930.04, + "end": 14933.5, + "probability": 0.9896 + }, + { + "start": 14933.54, + "end": 14937.14, + "probability": 0.7998 + }, + { + "start": 14937.48, + "end": 14938.82, + "probability": 0.7852 + }, + { + "start": 14939.34, + "end": 14942.92, + "probability": 0.9155 + }, + { + "start": 14944.4, + "end": 14944.88, + "probability": 0.7858 + }, + { + "start": 14944.98, + "end": 14947.1, + "probability": 0.6371 + }, + { + "start": 14948.04, + "end": 14952.08, + "probability": 0.7717 + }, + { + "start": 14952.22, + "end": 14953.32, + "probability": 0.9188 + }, + { + "start": 14953.6, + "end": 14955.22, + "probability": 0.7448 + }, + { + "start": 14955.74, + "end": 14958.74, + "probability": 0.8584 + }, + { + "start": 14959.26, + "end": 14960.52, + "probability": 0.7471 + }, + { + "start": 14961.56, + "end": 14962.7, + "probability": 0.2408 + }, + { + "start": 14963.24, + "end": 14963.4, + "probability": 0.3098 + }, + { + "start": 14964.44, + "end": 14967.28, + "probability": 0.2494 + }, + { + "start": 14967.54, + "end": 14970.76, + "probability": 0.735 + }, + { + "start": 14971.04, + "end": 14972.22, + "probability": 0.9194 + }, + { + "start": 14972.36, + "end": 14974.12, + "probability": 0.9003 + }, + { + "start": 14974.22, + "end": 14975.76, + "probability": 0.863 + }, + { + "start": 14976.12, + "end": 14977.34, + "probability": 0.8977 + }, + { + "start": 14977.76, + "end": 14985.32, + "probability": 0.9798 + }, + { + "start": 14985.42, + "end": 14985.86, + "probability": 0.3612 + }, + { + "start": 14986.56, + "end": 14991.28, + "probability": 0.9959 + }, + { + "start": 14991.28, + "end": 14996.26, + "probability": 0.8321 + }, + { + "start": 14996.6, + "end": 14997.7, + "probability": 0.9967 + }, + { + "start": 14998.34, + "end": 14999.9, + "probability": 0.9564 + }, + { + "start": 15000.04, + "end": 15002.96, + "probability": 0.6445 + }, + { + "start": 15003.48, + "end": 15004.54, + "probability": 0.9259 + }, + { + "start": 15005.12, + "end": 15007.24, + "probability": 0.8699 + }, + { + "start": 15007.68, + "end": 15010.0, + "probability": 0.728 + }, + { + "start": 15024.6, + "end": 15026.06, + "probability": 0.6501 + }, + { + "start": 15026.06, + "end": 15026.06, + "probability": 0.0413 + }, + { + "start": 15026.06, + "end": 15026.06, + "probability": 0.064 + }, + { + "start": 15026.06, + "end": 15026.06, + "probability": 0.1087 + }, + { + "start": 15026.06, + "end": 15026.56, + "probability": 0.0717 + }, + { + "start": 15026.7, + "end": 15028.92, + "probability": 0.4468 + }, + { + "start": 15029.02, + "end": 15030.66, + "probability": 0.7629 + }, + { + "start": 15031.36, + "end": 15032.52, + "probability": 0.4712 + }, + { + "start": 15032.82, + "end": 15033.94, + "probability": 0.4082 + }, + { + "start": 15033.94, + "end": 15034.1, + "probability": 0.2029 + }, + { + "start": 15034.1, + "end": 15036.3, + "probability": 0.4558 + }, + { + "start": 15036.32, + "end": 15036.32, + "probability": 0.3366 + }, + { + "start": 15036.32, + "end": 15036.58, + "probability": 0.7337 + }, + { + "start": 15036.6, + "end": 15039.54, + "probability": 0.35 + }, + { + "start": 15041.44, + "end": 15044.12, + "probability": 0.6519 + }, + { + "start": 15047.07, + "end": 15048.41, + "probability": 0.9675 + }, + { + "start": 15049.04, + "end": 15052.24, + "probability": 0.7444 + }, + { + "start": 15053.65, + "end": 15055.36, + "probability": 0.848 + }, + { + "start": 15055.46, + "end": 15056.84, + "probability": 0.9617 + }, + { + "start": 15056.92, + "end": 15058.2, + "probability": 0.4559 + }, + { + "start": 15058.26, + "end": 15061.26, + "probability": 0.9102 + }, + { + "start": 15061.48, + "end": 15062.31, + "probability": 0.9478 + }, + { + "start": 15062.46, + "end": 15064.56, + "probability": 0.9666 + }, + { + "start": 15065.1, + "end": 15068.18, + "probability": 0.968 + }, + { + "start": 15068.58, + "end": 15069.12, + "probability": 0.9174 + }, + { + "start": 15069.18, + "end": 15071.82, + "probability": 0.9395 + }, + { + "start": 15072.14, + "end": 15073.68, + "probability": 0.8332 + }, + { + "start": 15073.98, + "end": 15074.98, + "probability": 0.9061 + }, + { + "start": 15074.98, + "end": 15076.32, + "probability": 0.8328 + }, + { + "start": 15076.34, + "end": 15078.12, + "probability": 0.8981 + }, + { + "start": 15078.14, + "end": 15079.16, + "probability": 0.6492 + }, + { + "start": 15079.24, + "end": 15079.68, + "probability": 0.4045 + }, + { + "start": 15079.7, + "end": 15083.88, + "probability": 0.5273 + }, + { + "start": 15084.1, + "end": 15084.82, + "probability": 0.3784 + }, + { + "start": 15085.44, + "end": 15086.89, + "probability": 0.9897 + }, + { + "start": 15087.12, + "end": 15088.26, + "probability": 0.6511 + }, + { + "start": 15088.76, + "end": 15089.48, + "probability": 0.8711 + }, + { + "start": 15089.56, + "end": 15090.68, + "probability": 0.9764 + }, + { + "start": 15094.88, + "end": 15095.66, + "probability": 0.1906 + }, + { + "start": 15097.1, + "end": 15098.94, + "probability": 0.2209 + }, + { + "start": 15101.88, + "end": 15104.46, + "probability": 0.1855 + }, + { + "start": 15104.46, + "end": 15105.06, + "probability": 0.0763 + }, + { + "start": 15105.32, + "end": 15107.8, + "probability": 0.2703 + }, + { + "start": 15108.28, + "end": 15108.28, + "probability": 0.5143 + }, + { + "start": 15108.28, + "end": 15110.32, + "probability": 0.6157 + }, + { + "start": 15110.84, + "end": 15111.94, + "probability": 0.5016 + }, + { + "start": 15112.18, + "end": 15112.92, + "probability": 0.5992 + }, + { + "start": 15112.94, + "end": 15115.0, + "probability": 0.9514 + }, + { + "start": 15115.14, + "end": 15116.14, + "probability": 0.5218 + }, + { + "start": 15116.3, + "end": 15117.22, + "probability": 0.0965 + }, + { + "start": 15117.22, + "end": 15120.74, + "probability": 0.8472 + }, + { + "start": 15121.32, + "end": 15123.58, + "probability": 0.9494 + }, + { + "start": 15125.6, + "end": 15126.76, + "probability": 0.0669 + }, + { + "start": 15126.76, + "end": 15127.3, + "probability": 0.5823 + }, + { + "start": 15127.52, + "end": 15127.82, + "probability": 0.2658 + }, + { + "start": 15128.02, + "end": 15128.28, + "probability": 0.5329 + }, + { + "start": 15128.28, + "end": 15132.92, + "probability": 0.2055 + }, + { + "start": 15133.12, + "end": 15135.7, + "probability": 0.0806 + }, + { + "start": 15141.54, + "end": 15143.79, + "probability": 0.106 + }, + { + "start": 15144.3, + "end": 15146.96, + "probability": 0.3971 + }, + { + "start": 15147.04, + "end": 15150.8, + "probability": 0.8591 + }, + { + "start": 15150.82, + "end": 15150.94, + "probability": 0.2632 + }, + { + "start": 15151.56, + "end": 15153.3, + "probability": 0.8577 + }, + { + "start": 15153.84, + "end": 15154.74, + "probability": 0.9074 + }, + { + "start": 15155.28, + "end": 15159.1, + "probability": 0.9854 + }, + { + "start": 15159.76, + "end": 15162.68, + "probability": 0.8616 + }, + { + "start": 15163.64, + "end": 15165.44, + "probability": 0.7235 + }, + { + "start": 15165.6, + "end": 15168.34, + "probability": 0.9875 + }, + { + "start": 15168.34, + "end": 15169.62, + "probability": 0.133 + }, + { + "start": 15169.78, + "end": 15170.78, + "probability": 0.1267 + }, + { + "start": 15171.26, + "end": 15177.04, + "probability": 0.1332 + }, + { + "start": 15177.04, + "end": 15179.37, + "probability": 0.0716 + }, + { + "start": 15180.52, + "end": 15181.86, + "probability": 0.1072 + }, + { + "start": 15182.26, + "end": 15183.36, + "probability": 0.3589 + }, + { + "start": 15183.96, + "end": 15184.74, + "probability": 0.8113 + }, + { + "start": 15185.38, + "end": 15187.16, + "probability": 0.6155 + }, + { + "start": 15187.16, + "end": 15188.48, + "probability": 0.729 + }, + { + "start": 15188.62, + "end": 15190.04, + "probability": 0.7629 + }, + { + "start": 15190.16, + "end": 15191.1, + "probability": 0.9451 + }, + { + "start": 15193.04, + "end": 15196.6, + "probability": 0.8469 + }, + { + "start": 15197.06, + "end": 15199.74, + "probability": 0.8316 + }, + { + "start": 15200.22, + "end": 15204.46, + "probability": 0.9617 + }, + { + "start": 15204.74, + "end": 15206.0, + "probability": 0.9739 + }, + { + "start": 15206.2, + "end": 15213.82, + "probability": 0.9399 + }, + { + "start": 15215.08, + "end": 15221.32, + "probability": 0.9896 + }, + { + "start": 15221.9, + "end": 15224.24, + "probability": 0.6174 + }, + { + "start": 15227.2, + "end": 15228.2, + "probability": 0.5735 + }, + { + "start": 15228.26, + "end": 15232.6, + "probability": 0.8106 + }, + { + "start": 15233.04, + "end": 15236.22, + "probability": 0.6514 + }, + { + "start": 15236.34, + "end": 15237.26, + "probability": 0.5012 + }, + { + "start": 15237.34, + "end": 15239.39, + "probability": 0.6809 + }, + { + "start": 15239.64, + "end": 15241.3, + "probability": 0.7919 + }, + { + "start": 15242.14, + "end": 15244.54, + "probability": 0.8838 + }, + { + "start": 15244.94, + "end": 15248.66, + "probability": 0.6006 + }, + { + "start": 15248.66, + "end": 15250.86, + "probability": 0.2015 + }, + { + "start": 15251.02, + "end": 15251.98, + "probability": 0.3139 + }, + { + "start": 15252.04, + "end": 15252.74, + "probability": 0.5681 + }, + { + "start": 15254.94, + "end": 15256.36, + "probability": 0.8083 + }, + { + "start": 15256.5, + "end": 15259.67, + "probability": 0.8592 + }, + { + "start": 15259.84, + "end": 15262.98, + "probability": 0.9665 + }, + { + "start": 15263.86, + "end": 15266.9, + "probability": 0.8569 + }, + { + "start": 15266.98, + "end": 15268.6, + "probability": 0.3844 + }, + { + "start": 15268.6, + "end": 15268.7, + "probability": 0.7037 + }, + { + "start": 15269.78, + "end": 15271.0, + "probability": 0.5988 + }, + { + "start": 15271.16, + "end": 15272.36, + "probability": 0.7143 + }, + { + "start": 15272.94, + "end": 15274.81, + "probability": 0.8604 + }, + { + "start": 15275.78, + "end": 15276.56, + "probability": 0.1151 + }, + { + "start": 15277.18, + "end": 15278.2, + "probability": 0.9917 + }, + { + "start": 15279.02, + "end": 15279.78, + "probability": 0.7749 + }, + { + "start": 15280.52, + "end": 15281.18, + "probability": 0.0201 + }, + { + "start": 15281.18, + "end": 15281.18, + "probability": 0.1578 + }, + { + "start": 15281.18, + "end": 15281.18, + "probability": 0.3108 + }, + { + "start": 15281.18, + "end": 15281.18, + "probability": 0.2736 + }, + { + "start": 15281.18, + "end": 15281.18, + "probability": 0.068 + }, + { + "start": 15281.18, + "end": 15284.38, + "probability": 0.4049 + }, + { + "start": 15285.42, + "end": 15287.16, + "probability": 0.655 + }, + { + "start": 15287.38, + "end": 15289.52, + "probability": 0.8518 + }, + { + "start": 15289.72, + "end": 15290.76, + "probability": 0.4527 + }, + { + "start": 15291.36, + "end": 15292.54, + "probability": 0.7406 + }, + { + "start": 15294.0, + "end": 15295.3, + "probability": 0.4986 + }, + { + "start": 15295.46, + "end": 15296.04, + "probability": 0.4849 + }, + { + "start": 15311.44, + "end": 15312.46, + "probability": 0.3159 + }, + { + "start": 15312.58, + "end": 15314.2, + "probability": 0.652 + }, + { + "start": 15314.34, + "end": 15315.42, + "probability": 0.66 + }, + { + "start": 15315.66, + "end": 15317.18, + "probability": 0.861 + }, + { + "start": 15317.2, + "end": 15319.74, + "probability": 0.6721 + }, + { + "start": 15319.82, + "end": 15324.82, + "probability": 0.9741 + }, + { + "start": 15326.46, + "end": 15327.51, + "probability": 0.5595 + }, + { + "start": 15328.84, + "end": 15333.32, + "probability": 0.9936 + }, + { + "start": 15335.16, + "end": 15335.92, + "probability": 0.3366 + }, + { + "start": 15336.62, + "end": 15340.98, + "probability": 0.9944 + }, + { + "start": 15341.14, + "end": 15349.8, + "probability": 0.9812 + }, + { + "start": 15350.74, + "end": 15353.42, + "probability": 0.9966 + }, + { + "start": 15354.64, + "end": 15359.8, + "probability": 0.7411 + }, + { + "start": 15360.98, + "end": 15367.12, + "probability": 0.9914 + }, + { + "start": 15369.02, + "end": 15372.86, + "probability": 0.7572 + }, + { + "start": 15373.78, + "end": 15373.88, + "probability": 0.9985 + }, + { + "start": 15374.76, + "end": 15376.85, + "probability": 0.9834 + }, + { + "start": 15378.36, + "end": 15381.2, + "probability": 0.9033 + }, + { + "start": 15381.38, + "end": 15382.48, + "probability": 0.9893 + }, + { + "start": 15383.4, + "end": 15389.82, + "probability": 0.9973 + }, + { + "start": 15391.4, + "end": 15392.4, + "probability": 0.9694 + }, + { + "start": 15392.58, + "end": 15396.36, + "probability": 0.9705 + }, + { + "start": 15397.14, + "end": 15398.53, + "probability": 0.9707 + }, + { + "start": 15399.62, + "end": 15403.66, + "probability": 0.9936 + }, + { + "start": 15403.66, + "end": 15406.72, + "probability": 0.7619 + }, + { + "start": 15408.1, + "end": 15413.7, + "probability": 0.9412 + }, + { + "start": 15413.88, + "end": 15417.78, + "probability": 0.9333 + }, + { + "start": 15418.96, + "end": 15425.62, + "probability": 0.9814 + }, + { + "start": 15426.3, + "end": 15430.88, + "probability": 0.987 + }, + { + "start": 15433.22, + "end": 15436.78, + "probability": 0.8735 + }, + { + "start": 15437.76, + "end": 15439.82, + "probability": 0.7806 + }, + { + "start": 15441.3, + "end": 15445.08, + "probability": 0.9978 + }, + { + "start": 15445.56, + "end": 15447.3, + "probability": 0.9634 + }, + { + "start": 15447.42, + "end": 15448.92, + "probability": 0.998 + }, + { + "start": 15449.78, + "end": 15451.78, + "probability": 0.9633 + }, + { + "start": 15451.82, + "end": 15453.98, + "probability": 0.9656 + }, + { + "start": 15455.14, + "end": 15456.7, + "probability": 0.9253 + }, + { + "start": 15456.88, + "end": 15461.32, + "probability": 0.9707 + }, + { + "start": 15462.0, + "end": 15463.28, + "probability": 0.8354 + }, + { + "start": 15464.9, + "end": 15468.38, + "probability": 0.8421 + }, + { + "start": 15469.16, + "end": 15472.26, + "probability": 0.9634 + }, + { + "start": 15472.26, + "end": 15475.98, + "probability": 0.9952 + }, + { + "start": 15476.86, + "end": 15478.5, + "probability": 0.7187 + }, + { + "start": 15479.86, + "end": 15482.36, + "probability": 0.8158 + }, + { + "start": 15483.58, + "end": 15485.2, + "probability": 0.7662 + }, + { + "start": 15486.74, + "end": 15489.62, + "probability": 0.9829 + }, + { + "start": 15491.56, + "end": 15494.04, + "probability": 0.8141 + }, + { + "start": 15495.14, + "end": 15497.12, + "probability": 0.8662 + }, + { + "start": 15499.06, + "end": 15501.36, + "probability": 0.9371 + }, + { + "start": 15502.02, + "end": 15505.66, + "probability": 0.9344 + }, + { + "start": 15506.54, + "end": 15508.02, + "probability": 0.9562 + }, + { + "start": 15509.6, + "end": 15514.06, + "probability": 0.8734 + }, + { + "start": 15515.4, + "end": 15516.92, + "probability": 0.9816 + }, + { + "start": 15520.24, + "end": 15523.64, + "probability": 0.6055 + }, + { + "start": 15524.5, + "end": 15527.58, + "probability": 0.9805 + }, + { + "start": 15528.58, + "end": 15534.4, + "probability": 0.9874 + }, + { + "start": 15536.0, + "end": 15540.94, + "probability": 0.994 + }, + { + "start": 15541.9, + "end": 15543.94, + "probability": 0.9775 + }, + { + "start": 15545.66, + "end": 15548.46, + "probability": 0.8192 + }, + { + "start": 15548.9, + "end": 15549.7, + "probability": 0.8303 + }, + { + "start": 15552.16, + "end": 15553.48, + "probability": 0.23 + }, + { + "start": 15554.36, + "end": 15562.76, + "probability": 0.9736 + }, + { + "start": 15562.76, + "end": 15569.56, + "probability": 0.9744 + }, + { + "start": 15570.34, + "end": 15573.2, + "probability": 0.9907 + }, + { + "start": 15573.88, + "end": 15577.18, + "probability": 0.7785 + }, + { + "start": 15577.84, + "end": 15580.52, + "probability": 0.8881 + }, + { + "start": 15580.86, + "end": 15582.2, + "probability": 0.909 + }, + { + "start": 15582.28, + "end": 15582.74, + "probability": 0.6796 + }, + { + "start": 15583.22, + "end": 15583.48, + "probability": 0.7741 + }, + { + "start": 15584.28, + "end": 15584.6, + "probability": 0.5138 + }, + { + "start": 15585.32, + "end": 15586.58, + "probability": 0.8218 + }, + { + "start": 15586.68, + "end": 15588.44, + "probability": 0.9416 + }, + { + "start": 15608.28, + "end": 15611.28, + "probability": 0.8651 + }, + { + "start": 15612.26, + "end": 15614.08, + "probability": 0.6555 + }, + { + "start": 15614.64, + "end": 15617.95, + "probability": 0.8732 + }, + { + "start": 15620.12, + "end": 15622.24, + "probability": 0.7648 + }, + { + "start": 15623.64, + "end": 15623.68, + "probability": 0.1632 + }, + { + "start": 15624.24, + "end": 15625.12, + "probability": 0.6702 + }, + { + "start": 15626.32, + "end": 15626.74, + "probability": 0.7264 + }, + { + "start": 15628.17, + "end": 15633.56, + "probability": 0.9902 + }, + { + "start": 15633.78, + "end": 15634.66, + "probability": 0.7423 + }, + { + "start": 15635.96, + "end": 15638.76, + "probability": 0.8173 + }, + { + "start": 15640.48, + "end": 15644.82, + "probability": 0.7729 + }, + { + "start": 15646.46, + "end": 15650.46, + "probability": 0.9238 + }, + { + "start": 15651.26, + "end": 15653.64, + "probability": 0.8338 + }, + { + "start": 15654.52, + "end": 15656.1, + "probability": 0.9519 + }, + { + "start": 15657.42, + "end": 15658.82, + "probability": 0.9938 + }, + { + "start": 15659.42, + "end": 15661.04, + "probability": 0.9927 + }, + { + "start": 15661.16, + "end": 15666.04, + "probability": 0.9833 + }, + { + "start": 15666.2, + "end": 15667.08, + "probability": 0.9197 + }, + { + "start": 15667.84, + "end": 15669.36, + "probability": 0.7658 + }, + { + "start": 15670.16, + "end": 15674.15, + "probability": 0.9956 + }, + { + "start": 15674.8, + "end": 15677.94, + "probability": 0.7449 + }, + { + "start": 15678.34, + "end": 15680.86, + "probability": 0.9237 + }, + { + "start": 15681.72, + "end": 15683.72, + "probability": 0.9861 + }, + { + "start": 15684.48, + "end": 15687.74, + "probability": 0.9963 + }, + { + "start": 15688.64, + "end": 15690.94, + "probability": 0.6042 + }, + { + "start": 15691.84, + "end": 15693.68, + "probability": 0.8636 + }, + { + "start": 15693.92, + "end": 15695.02, + "probability": 0.9455 + }, + { + "start": 15695.64, + "end": 15699.32, + "probability": 0.8803 + }, + { + "start": 15699.92, + "end": 15704.5, + "probability": 0.9585 + }, + { + "start": 15705.2, + "end": 15705.74, + "probability": 0.8404 + }, + { + "start": 15706.46, + "end": 15707.92, + "probability": 0.9634 + }, + { + "start": 15708.02, + "end": 15710.08, + "probability": 0.2421 + }, + { + "start": 15710.08, + "end": 15710.88, + "probability": 0.2593 + }, + { + "start": 15711.64, + "end": 15714.2, + "probability": 0.9966 + }, + { + "start": 15714.2, + "end": 15717.9, + "probability": 0.9962 + }, + { + "start": 15718.58, + "end": 15721.04, + "probability": 0.8214 + }, + { + "start": 15721.66, + "end": 15723.36, + "probability": 0.8795 + }, + { + "start": 15723.82, + "end": 15725.48, + "probability": 0.888 + }, + { + "start": 15725.56, + "end": 15726.2, + "probability": 0.9775 + }, + { + "start": 15726.9, + "end": 15728.8, + "probability": 0.9141 + }, + { + "start": 15729.06, + "end": 15730.3, + "probability": 0.9032 + }, + { + "start": 15730.66, + "end": 15733.07, + "probability": 0.98 + }, + { + "start": 15733.8, + "end": 15739.28, + "probability": 0.9635 + }, + { + "start": 15739.64, + "end": 15742.2, + "probability": 0.828 + }, + { + "start": 15742.24, + "end": 15742.64, + "probability": 0.75 + }, + { + "start": 15742.68, + "end": 15743.82, + "probability": 0.8592 + }, + { + "start": 15744.18, + "end": 15747.4, + "probability": 0.9907 + }, + { + "start": 15747.76, + "end": 15748.52, + "probability": 0.9498 + }, + { + "start": 15748.56, + "end": 15751.38, + "probability": 0.9847 + }, + { + "start": 15751.38, + "end": 15754.5, + "probability": 0.998 + }, + { + "start": 15754.6, + "end": 15755.1, + "probability": 0.4795 + }, + { + "start": 15755.52, + "end": 15759.0, + "probability": 0.9867 + }, + { + "start": 15759.0, + "end": 15762.12, + "probability": 0.9965 + }, + { + "start": 15762.46, + "end": 15762.94, + "probability": 0.6203 + }, + { + "start": 15763.38, + "end": 15766.48, + "probability": 0.9692 + }, + { + "start": 15766.84, + "end": 15768.26, + "probability": 0.9265 + }, + { + "start": 15768.32, + "end": 15770.9, + "probability": 0.9577 + }, + { + "start": 15771.18, + "end": 15775.1, + "probability": 0.8838 + }, + { + "start": 15775.32, + "end": 15776.17, + "probability": 0.9554 + }, + { + "start": 15776.54, + "end": 15777.4, + "probability": 0.9421 + }, + { + "start": 15777.72, + "end": 15778.24, + "probability": 0.8325 + }, + { + "start": 15779.32, + "end": 15782.5, + "probability": 0.9653 + }, + { + "start": 15782.78, + "end": 15784.82, + "probability": 0.9172 + }, + { + "start": 15785.06, + "end": 15785.3, + "probability": 0.7759 + }, + { + "start": 15785.3, + "end": 15786.56, + "probability": 0.7486 + }, + { + "start": 15786.7, + "end": 15790.58, + "probability": 0.9523 + }, + { + "start": 15792.14, + "end": 15793.44, + "probability": 0.5645 + }, + { + "start": 15794.28, + "end": 15795.9, + "probability": 0.939 + }, + { + "start": 15796.06, + "end": 15799.76, + "probability": 0.9597 + }, + { + "start": 15799.94, + "end": 15800.24, + "probability": 0.401 + }, + { + "start": 15800.52, + "end": 15803.61, + "probability": 0.7786 + }, + { + "start": 15804.42, + "end": 15809.2, + "probability": 0.9756 + }, + { + "start": 15809.2, + "end": 15812.64, + "probability": 0.9731 + }, + { + "start": 15813.18, + "end": 15815.02, + "probability": 0.7946 + }, + { + "start": 15815.86, + "end": 15819.08, + "probability": 0.9625 + }, + { + "start": 15819.4, + "end": 15823.88, + "probability": 0.9001 + }, + { + "start": 15824.06, + "end": 15824.78, + "probability": 0.9106 + }, + { + "start": 15824.98, + "end": 15826.08, + "probability": 0.9491 + }, + { + "start": 15826.28, + "end": 15826.5, + "probability": 0.8002 + }, + { + "start": 15827.1, + "end": 15828.83, + "probability": 0.5452 + }, + { + "start": 15829.12, + "end": 15831.2, + "probability": 0.9912 + }, + { + "start": 15831.74, + "end": 15832.76, + "probability": 0.5984 + }, + { + "start": 15833.22, + "end": 15833.74, + "probability": 0.5465 + }, + { + "start": 15834.0, + "end": 15834.3, + "probability": 0.6721 + }, + { + "start": 15834.3, + "end": 15834.3, + "probability": 0.5344 + }, + { + "start": 15834.3, + "end": 15834.4, + "probability": 0.565 + }, + { + "start": 15841.42, + "end": 15842.64, + "probability": 0.8494 + }, + { + "start": 15842.66, + "end": 15843.1, + "probability": 0.6131 + }, + { + "start": 15843.1, + "end": 15843.78, + "probability": 0.8771 + }, + { + "start": 15844.34, + "end": 15847.32, + "probability": 0.896 + }, + { + "start": 15854.28, + "end": 15855.92, + "probability": 0.6458 + }, + { + "start": 15856.08, + "end": 15856.76, + "probability": 0.8588 + }, + { + "start": 15856.86, + "end": 15858.16, + "probability": 0.7645 + }, + { + "start": 15858.66, + "end": 15861.62, + "probability": 0.9766 + }, + { + "start": 15862.14, + "end": 15864.6, + "probability": 0.7832 + }, + { + "start": 15865.14, + "end": 15867.96, + "probability": 0.8921 + }, + { + "start": 15868.42, + "end": 15870.3, + "probability": 0.9888 + }, + { + "start": 15870.92, + "end": 15872.28, + "probability": 0.8892 + }, + { + "start": 15872.34, + "end": 15873.36, + "probability": 0.866 + }, + { + "start": 15873.48, + "end": 15874.16, + "probability": 0.7273 + }, + { + "start": 15874.84, + "end": 15875.7, + "probability": 0.4851 + }, + { + "start": 15875.96, + "end": 15876.78, + "probability": 0.1228 + }, + { + "start": 15877.04, + "end": 15878.14, + "probability": 0.8064 + }, + { + "start": 15878.26, + "end": 15882.04, + "probability": 0.9512 + }, + { + "start": 15882.24, + "end": 15886.38, + "probability": 0.9881 + }, + { + "start": 15886.58, + "end": 15887.68, + "probability": 0.9176 + }, + { + "start": 15888.48, + "end": 15894.68, + "probability": 0.5695 + }, + { + "start": 15894.86, + "end": 15896.64, + "probability": 0.5016 + }, + { + "start": 15896.64, + "end": 15896.64, + "probability": 0.2622 + }, + { + "start": 15896.64, + "end": 15899.37, + "probability": 0.4838 + }, + { + "start": 15900.44, + "end": 15901.84, + "probability": 0.7278 + }, + { + "start": 15901.98, + "end": 15905.68, + "probability": 0.8909 + }, + { + "start": 15906.42, + "end": 15913.26, + "probability": 0.9992 + }, + { + "start": 15913.62, + "end": 15915.84, + "probability": 0.9945 + }, + { + "start": 15915.94, + "end": 15916.8, + "probability": 0.791 + }, + { + "start": 15917.18, + "end": 15921.18, + "probability": 0.9897 + }, + { + "start": 15921.18, + "end": 15924.22, + "probability": 0.997 + }, + { + "start": 15925.24, + "end": 15929.26, + "probability": 0.9023 + }, + { + "start": 15929.39, + "end": 15931.94, + "probability": 0.7767 + }, + { + "start": 15932.02, + "end": 15932.8, + "probability": 0.0785 + }, + { + "start": 15932.84, + "end": 15932.94, + "probability": 0.2649 + }, + { + "start": 15932.94, + "end": 15936.52, + "probability": 0.8289 + }, + { + "start": 15937.22, + "end": 15940.08, + "probability": 0.962 + }, + { + "start": 15940.1, + "end": 15940.98, + "probability": 0.5665 + }, + { + "start": 15941.47, + "end": 15944.56, + "probability": 0.8848 + }, + { + "start": 15944.66, + "end": 15945.34, + "probability": 0.8052 + }, + { + "start": 15946.32, + "end": 15947.4, + "probability": 0.8638 + }, + { + "start": 15947.4, + "end": 15953.7, + "probability": 0.9568 + }, + { + "start": 15954.04, + "end": 15955.2, + "probability": 0.6771 + }, + { + "start": 15955.8, + "end": 15955.96, + "probability": 0.1227 + }, + { + "start": 15955.96, + "end": 15956.74, + "probability": 0.2258 + }, + { + "start": 15956.74, + "end": 15957.85, + "probability": 0.6908 + }, + { + "start": 15957.98, + "end": 15958.84, + "probability": 0.4536 + }, + { + "start": 15958.9, + "end": 15961.96, + "probability": 0.5927 + }, + { + "start": 15962.1, + "end": 15962.74, + "probability": 0.824 + }, + { + "start": 15962.74, + "end": 15964.26, + "probability": 0.9407 + }, + { + "start": 15964.54, + "end": 15965.68, + "probability": 0.981 + }, + { + "start": 15965.78, + "end": 15967.26, + "probability": 0.9374 + }, + { + "start": 15968.66, + "end": 15969.8, + "probability": 0.1588 + }, + { + "start": 15969.8, + "end": 15971.46, + "probability": 0.3613 + }, + { + "start": 15971.46, + "end": 15976.58, + "probability": 0.9988 + }, + { + "start": 15976.7, + "end": 15977.56, + "probability": 0.826 + }, + { + "start": 15977.64, + "end": 15982.72, + "probability": 0.9917 + }, + { + "start": 15982.94, + "end": 15983.34, + "probability": 0.3382 + }, + { + "start": 15983.44, + "end": 15983.48, + "probability": 0.5771 + }, + { + "start": 15983.48, + "end": 15983.48, + "probability": 0.3582 + }, + { + "start": 15983.48, + "end": 15985.68, + "probability": 0.6879 + }, + { + "start": 15985.68, + "end": 15986.46, + "probability": 0.757 + }, + { + "start": 15987.32, + "end": 15988.82, + "probability": 0.934 + }, + { + "start": 15989.04, + "end": 15992.48, + "probability": 0.9108 + }, + { + "start": 15992.74, + "end": 15994.64, + "probability": 0.943 + }, + { + "start": 15994.7, + "end": 15995.6, + "probability": 0.9741 + }, + { + "start": 15995.64, + "end": 15996.84, + "probability": 0.6641 + }, + { + "start": 15997.18, + "end": 16000.5, + "probability": 0.9917 + }, + { + "start": 16000.8, + "end": 16001.8, + "probability": 0.8337 + }, + { + "start": 16001.88, + "end": 16003.18, + "probability": 0.65 + }, + { + "start": 16003.44, + "end": 16008.51, + "probability": 0.7584 + }, + { + "start": 16008.8, + "end": 16010.14, + "probability": 0.7776 + }, + { + "start": 16010.48, + "end": 16012.58, + "probability": 0.9845 + }, + { + "start": 16012.88, + "end": 16015.36, + "probability": 0.7422 + }, + { + "start": 16015.58, + "end": 16017.12, + "probability": 0.888 + }, + { + "start": 16017.24, + "end": 16017.92, + "probability": 0.9497 + }, + { + "start": 16018.24, + "end": 16019.42, + "probability": 0.8375 + }, + { + "start": 16019.6, + "end": 16020.8, + "probability": 0.752 + }, + { + "start": 16021.3, + "end": 16029.34, + "probability": 0.9868 + }, + { + "start": 16029.54, + "end": 16033.94, + "probability": 0.9703 + }, + { + "start": 16034.22, + "end": 16036.7, + "probability": 0.9951 + }, + { + "start": 16037.02, + "end": 16038.38, + "probability": 0.926 + }, + { + "start": 16038.56, + "end": 16041.18, + "probability": 0.9625 + }, + { + "start": 16041.18, + "end": 16044.36, + "probability": 0.8904 + }, + { + "start": 16044.72, + "end": 16046.18, + "probability": 0.7521 + }, + { + "start": 16046.48, + "end": 16049.48, + "probability": 0.9421 + }, + { + "start": 16049.84, + "end": 16051.58, + "probability": 0.9385 + }, + { + "start": 16051.96, + "end": 16053.48, + "probability": 0.9651 + }, + { + "start": 16054.04, + "end": 16058.18, + "probability": 0.9534 + }, + { + "start": 16058.26, + "end": 16059.76, + "probability": 0.6356 + }, + { + "start": 16060.18, + "end": 16062.11, + "probability": 0.8777 + }, + { + "start": 16062.6, + "end": 16064.56, + "probability": 0.8462 + }, + { + "start": 16064.64, + "end": 16065.72, + "probability": 0.6985 + }, + { + "start": 16066.22, + "end": 16067.3, + "probability": 0.8736 + }, + { + "start": 16067.46, + "end": 16068.5, + "probability": 0.8852 + }, + { + "start": 16068.94, + "end": 16069.9, + "probability": 0.9155 + }, + { + "start": 16070.12, + "end": 16072.23, + "probability": 0.8223 + }, + { + "start": 16072.9, + "end": 16078.78, + "probability": 0.9287 + }, + { + "start": 16079.06, + "end": 16084.88, + "probability": 0.9883 + }, + { + "start": 16085.44, + "end": 16086.76, + "probability": 0.9688 + }, + { + "start": 16086.94, + "end": 16089.34, + "probability": 0.9534 + }, + { + "start": 16089.34, + "end": 16091.8, + "probability": 0.9434 + }, + { + "start": 16092.2, + "end": 16096.56, + "probability": 0.9705 + }, + { + "start": 16096.74, + "end": 16097.26, + "probability": 0.8019 + }, + { + "start": 16097.74, + "end": 16099.96, + "probability": 0.5792 + }, + { + "start": 16100.88, + "end": 16102.74, + "probability": 0.9836 + }, + { + "start": 16110.64, + "end": 16111.42, + "probability": 0.579 + }, + { + "start": 16111.46, + "end": 16111.98, + "probability": 0.8221 + }, + { + "start": 16112.18, + "end": 16113.72, + "probability": 0.7094 + }, + { + "start": 16113.92, + "end": 16115.0, + "probability": 0.6447 + }, + { + "start": 16115.32, + "end": 16115.6, + "probability": 0.5808 + }, + { + "start": 16120.65, + "end": 16122.89, + "probability": 0.5246 + }, + { + "start": 16123.1, + "end": 16126.04, + "probability": 0.8426 + }, + { + "start": 16126.42, + "end": 16127.94, + "probability": 0.9277 + }, + { + "start": 16128.26, + "end": 16131.24, + "probability": 0.941 + }, + { + "start": 16131.36, + "end": 16133.18, + "probability": 0.9966 + }, + { + "start": 16133.64, + "end": 16137.0, + "probability": 0.9873 + }, + { + "start": 16137.08, + "end": 16137.95, + "probability": 0.9786 + }, + { + "start": 16138.56, + "end": 16143.28, + "probability": 0.8621 + }, + { + "start": 16143.72, + "end": 16145.37, + "probability": 0.9966 + }, + { + "start": 16146.42, + "end": 16147.54, + "probability": 0.8628 + }, + { + "start": 16148.6, + "end": 16151.08, + "probability": 0.7692 + }, + { + "start": 16151.62, + "end": 16155.88, + "probability": 0.968 + }, + { + "start": 16156.86, + "end": 16158.22, + "probability": 0.938 + }, + { + "start": 16159.32, + "end": 16160.82, + "probability": 0.7971 + }, + { + "start": 16160.86, + "end": 16162.26, + "probability": 0.9768 + }, + { + "start": 16162.28, + "end": 16163.26, + "probability": 0.953 + }, + { + "start": 16164.08, + "end": 16164.79, + "probability": 0.9691 + }, + { + "start": 16166.16, + "end": 16169.14, + "probability": 0.9902 + }, + { + "start": 16169.2, + "end": 16170.62, + "probability": 0.8334 + }, + { + "start": 16170.98, + "end": 16171.98, + "probability": 0.9897 + }, + { + "start": 16172.28, + "end": 16173.4, + "probability": 0.2431 + }, + { + "start": 16173.6, + "end": 16179.52, + "probability": 0.9725 + }, + { + "start": 16179.54, + "end": 16179.66, + "probability": 0.2524 + }, + { + "start": 16179.8, + "end": 16181.14, + "probability": 0.8214 + }, + { + "start": 16181.68, + "end": 16187.2, + "probability": 0.97 + }, + { + "start": 16187.42, + "end": 16189.68, + "probability": 0.9425 + }, + { + "start": 16191.34, + "end": 16195.38, + "probability": 0.9941 + }, + { + "start": 16195.6, + "end": 16197.06, + "probability": 0.9355 + }, + { + "start": 16197.82, + "end": 16200.32, + "probability": 0.995 + }, + { + "start": 16200.36, + "end": 16202.16, + "probability": 0.829 + }, + { + "start": 16202.84, + "end": 16203.28, + "probability": 0.7368 + }, + { + "start": 16203.44, + "end": 16205.14, + "probability": 0.9119 + }, + { + "start": 16205.18, + "end": 16206.36, + "probability": 0.7225 + }, + { + "start": 16206.54, + "end": 16209.04, + "probability": 0.9238 + }, + { + "start": 16209.1, + "end": 16212.32, + "probability": 0.9907 + }, + { + "start": 16212.76, + "end": 16214.4, + "probability": 0.9165 + }, + { + "start": 16215.6, + "end": 16219.8, + "probability": 0.9957 + }, + { + "start": 16220.68, + "end": 16221.44, + "probability": 0.8506 + }, + { + "start": 16222.2, + "end": 16226.72, + "probability": 0.9937 + }, + { + "start": 16227.36, + "end": 16229.14, + "probability": 0.8741 + }, + { + "start": 16229.94, + "end": 16231.36, + "probability": 0.9582 + }, + { + "start": 16231.46, + "end": 16233.44, + "probability": 0.9951 + }, + { + "start": 16233.68, + "end": 16233.96, + "probability": 0.381 + }, + { + "start": 16234.04, + "end": 16235.3, + "probability": 0.6846 + }, + { + "start": 16235.4, + "end": 16235.89, + "probability": 0.9598 + }, + { + "start": 16236.06, + "end": 16236.55, + "probability": 0.8353 + }, + { + "start": 16237.16, + "end": 16239.1, + "probability": 0.9446 + }, + { + "start": 16239.58, + "end": 16242.42, + "probability": 0.9719 + }, + { + "start": 16242.88, + "end": 16246.62, + "probability": 0.9927 + }, + { + "start": 16246.62, + "end": 16250.62, + "probability": 0.9955 + }, + { + "start": 16250.82, + "end": 16255.58, + "probability": 0.9867 + }, + { + "start": 16255.66, + "end": 16256.64, + "probability": 0.8742 + }, + { + "start": 16256.9, + "end": 16258.78, + "probability": 0.9204 + }, + { + "start": 16258.9, + "end": 16263.62, + "probability": 0.9966 + }, + { + "start": 16263.66, + "end": 16264.45, + "probability": 0.9546 + }, + { + "start": 16264.66, + "end": 16266.4, + "probability": 0.8832 + }, + { + "start": 16267.08, + "end": 16269.64, + "probability": 0.9424 + }, + { + "start": 16270.62, + "end": 16272.05, + "probability": 0.9829 + }, + { + "start": 16272.2, + "end": 16275.38, + "probability": 0.9039 + }, + { + "start": 16275.48, + "end": 16276.12, + "probability": 0.6919 + }, + { + "start": 16276.72, + "end": 16280.78, + "probability": 0.9227 + }, + { + "start": 16280.78, + "end": 16284.63, + "probability": 0.7553 + }, + { + "start": 16285.4, + "end": 16288.5, + "probability": 0.8804 + }, + { + "start": 16288.54, + "end": 16290.72, + "probability": 0.998 + }, + { + "start": 16291.24, + "end": 16293.32, + "probability": 0.9377 + }, + { + "start": 16293.9, + "end": 16294.16, + "probability": 0.8042 + }, + { + "start": 16294.26, + "end": 16296.5, + "probability": 0.9811 + }, + { + "start": 16297.24, + "end": 16303.46, + "probability": 0.9897 + }, + { + "start": 16304.92, + "end": 16305.8, + "probability": 0.6944 + }, + { + "start": 16305.9, + "end": 16308.4, + "probability": 0.998 + }, + { + "start": 16308.4, + "end": 16312.94, + "probability": 0.9111 + }, + { + "start": 16313.2, + "end": 16314.23, + "probability": 0.8987 + }, + { + "start": 16314.74, + "end": 16317.22, + "probability": 0.9929 + }, + { + "start": 16317.54, + "end": 16321.68, + "probability": 0.9985 + }, + { + "start": 16322.08, + "end": 16326.84, + "probability": 0.9945 + }, + { + "start": 16327.12, + "end": 16328.34, + "probability": 0.8189 + }, + { + "start": 16328.88, + "end": 16331.56, + "probability": 0.8854 + }, + { + "start": 16332.26, + "end": 16335.48, + "probability": 0.9716 + }, + { + "start": 16336.16, + "end": 16340.8, + "probability": 0.9951 + }, + { + "start": 16340.84, + "end": 16343.04, + "probability": 0.9825 + }, + { + "start": 16343.26, + "end": 16343.6, + "probability": 0.9413 + }, + { + "start": 16343.68, + "end": 16344.2, + "probability": 0.8293 + }, + { + "start": 16345.04, + "end": 16346.08, + "probability": 0.911 + }, + { + "start": 16346.7, + "end": 16348.06, + "probability": 0.673 + }, + { + "start": 16348.14, + "end": 16350.76, + "probability": 0.7036 + }, + { + "start": 16351.02, + "end": 16354.32, + "probability": 0.6693 + }, + { + "start": 16355.72, + "end": 16355.9, + "probability": 0.5781 + }, + { + "start": 16355.9, + "end": 16356.38, + "probability": 0.4445 + }, + { + "start": 16356.46, + "end": 16357.74, + "probability": 0.9534 + }, + { + "start": 16358.08, + "end": 16359.76, + "probability": 0.8939 + }, + { + "start": 16359.8, + "end": 16361.04, + "probability": 0.4521 + }, + { + "start": 16361.08, + "end": 16362.58, + "probability": 0.9722 + }, + { + "start": 16362.8, + "end": 16364.3, + "probability": 0.9531 + }, + { + "start": 16364.4, + "end": 16366.52, + "probability": 0.9968 + }, + { + "start": 16367.2, + "end": 16370.62, + "probability": 0.9961 + }, + { + "start": 16370.94, + "end": 16372.68, + "probability": 0.9881 + }, + { + "start": 16373.06, + "end": 16378.0, + "probability": 0.9901 + }, + { + "start": 16378.4, + "end": 16379.12, + "probability": 0.9331 + }, + { + "start": 16380.4, + "end": 16382.44, + "probability": 0.9967 + }, + { + "start": 16383.16, + "end": 16384.12, + "probability": 0.9395 + }, + { + "start": 16384.52, + "end": 16387.04, + "probability": 0.621 + }, + { + "start": 16387.72, + "end": 16389.4, + "probability": 0.9924 + }, + { + "start": 16390.71, + "end": 16392.94, + "probability": 0.7878 + }, + { + "start": 16393.9, + "end": 16395.0, + "probability": 0.6094 + }, + { + "start": 16395.04, + "end": 16397.66, + "probability": 0.8643 + }, + { + "start": 16399.06, + "end": 16399.86, + "probability": 0.9029 + }, + { + "start": 16401.86, + "end": 16401.92, + "probability": 0.2744 + }, + { + "start": 16401.92, + "end": 16402.32, + "probability": 0.5196 + }, + { + "start": 16402.42, + "end": 16403.18, + "probability": 0.6669 + }, + { + "start": 16403.34, + "end": 16404.36, + "probability": 0.7803 + }, + { + "start": 16404.42, + "end": 16406.82, + "probability": 0.8333 + }, + { + "start": 16407.8, + "end": 16409.72, + "probability": 0.9336 + }, + { + "start": 16409.94, + "end": 16411.38, + "probability": 0.903 + }, + { + "start": 16411.46, + "end": 16412.14, + "probability": 0.5646 + }, + { + "start": 16413.24, + "end": 16415.58, + "probability": 0.9807 + }, + { + "start": 16415.58, + "end": 16417.74, + "probability": 0.7916 + }, + { + "start": 16418.9, + "end": 16419.76, + "probability": 0.9924 + }, + { + "start": 16421.92, + "end": 16422.54, + "probability": 0.3566 + }, + { + "start": 16422.84, + "end": 16424.6, + "probability": 0.9834 + }, + { + "start": 16424.6, + "end": 16425.1, + "probability": 0.938 + }, + { + "start": 16425.28, + "end": 16425.8, + "probability": 0.8684 + }, + { + "start": 16426.2, + "end": 16427.8, + "probability": 0.4322 + }, + { + "start": 16427.94, + "end": 16429.0, + "probability": 0.8904 + }, + { + "start": 16429.12, + "end": 16429.96, + "probability": 0.8654 + }, + { + "start": 16431.5, + "end": 16434.42, + "probability": 0.924 + }, + { + "start": 16435.5, + "end": 16438.24, + "probability": 0.003 + }, + { + "start": 16438.24, + "end": 16438.86, + "probability": 0.3357 + }, + { + "start": 16438.98, + "end": 16440.7, + "probability": 0.475 + }, + { + "start": 16440.84, + "end": 16441.14, + "probability": 0.8486 + }, + { + "start": 16441.64, + "end": 16442.98, + "probability": 0.9585 + }, + { + "start": 16443.2, + "end": 16445.42, + "probability": 0.9299 + }, + { + "start": 16445.5, + "end": 16446.34, + "probability": 0.7514 + }, + { + "start": 16446.52, + "end": 16447.36, + "probability": 0.9896 + }, + { + "start": 16448.3, + "end": 16450.08, + "probability": 0.6544 + }, + { + "start": 16452.18, + "end": 16455.24, + "probability": 0.9325 + }, + { + "start": 16455.62, + "end": 16456.56, + "probability": 0.8347 + }, + { + "start": 16456.64, + "end": 16459.34, + "probability": 0.5576 + }, + { + "start": 16459.84, + "end": 16460.96, + "probability": 0.8036 + }, + { + "start": 16461.14, + "end": 16462.52, + "probability": 0.7804 + }, + { + "start": 16462.56, + "end": 16463.77, + "probability": 0.8923 + }, + { + "start": 16464.72, + "end": 16465.38, + "probability": 0.0098 + }, + { + "start": 16465.38, + "end": 16466.38, + "probability": 0.7319 + }, + { + "start": 16466.46, + "end": 16467.74, + "probability": 0.7832 + }, + { + "start": 16467.76, + "end": 16468.3, + "probability": 0.5306 + }, + { + "start": 16468.38, + "end": 16469.01, + "probability": 0.8592 + }, + { + "start": 16469.88, + "end": 16471.16, + "probability": 0.4094 + }, + { + "start": 16471.94, + "end": 16472.46, + "probability": 0.9819 + }, + { + "start": 16472.84, + "end": 16476.06, + "probability": 0.835 + }, + { + "start": 16476.42, + "end": 16477.06, + "probability": 0.8502 + }, + { + "start": 16477.2, + "end": 16478.1, + "probability": 0.9865 + }, + { + "start": 16478.4, + "end": 16479.22, + "probability": 0.7119 + }, + { + "start": 16479.6, + "end": 16481.1, + "probability": 0.8871 + }, + { + "start": 16481.14, + "end": 16482.68, + "probability": 0.6908 + }, + { + "start": 16482.78, + "end": 16483.04, + "probability": 0.5314 + }, + { + "start": 16483.1, + "end": 16483.24, + "probability": 0.6178 + }, + { + "start": 16483.38, + "end": 16483.9, + "probability": 0.3228 + }, + { + "start": 16484.3, + "end": 16484.72, + "probability": 0.0132 + }, + { + "start": 16485.54, + "end": 16485.91, + "probability": 0.8269 + }, + { + "start": 16486.2, + "end": 16487.62, + "probability": 0.6796 + }, + { + "start": 16488.24, + "end": 16490.74, + "probability": 0.1937 + }, + { + "start": 16490.74, + "end": 16491.54, + "probability": 0.0494 + }, + { + "start": 16491.54, + "end": 16493.66, + "probability": 0.9631 + }, + { + "start": 16493.7, + "end": 16494.22, + "probability": 0.6465 + }, + { + "start": 16494.3, + "end": 16497.14, + "probability": 0.4552 + }, + { + "start": 16497.18, + "end": 16497.7, + "probability": 0.5818 + }, + { + "start": 16497.72, + "end": 16498.24, + "probability": 0.4663 + }, + { + "start": 16498.5, + "end": 16500.24, + "probability": 0.6589 + }, + { + "start": 16500.98, + "end": 16502.3, + "probability": 0.6689 + }, + { + "start": 16502.56, + "end": 16503.94, + "probability": 0.7435 + }, + { + "start": 16503.96, + "end": 16505.39, + "probability": 0.7776 + }, + { + "start": 16506.0, + "end": 16506.89, + "probability": 0.9315 + }, + { + "start": 16508.14, + "end": 16511.86, + "probability": 0.6881 + }, + { + "start": 16511.98, + "end": 16513.08, + "probability": 0.5836 + }, + { + "start": 16513.14, + "end": 16513.88, + "probability": 0.6066 + }, + { + "start": 16513.88, + "end": 16514.34, + "probability": 0.3616 + }, + { + "start": 16514.52, + "end": 16515.06, + "probability": 0.7807 + }, + { + "start": 16515.2, + "end": 16515.56, + "probability": 0.9006 + }, + { + "start": 16515.92, + "end": 16516.3, + "probability": 0.9118 + }, + { + "start": 16516.78, + "end": 16517.49, + "probability": 0.7725 + }, + { + "start": 16517.86, + "end": 16519.98, + "probability": 0.9004 + }, + { + "start": 16521.0, + "end": 16523.86, + "probability": 0.8713 + }, + { + "start": 16524.72, + "end": 16524.74, + "probability": 0.3314 + }, + { + "start": 16524.84, + "end": 16528.6, + "probability": 0.7567 + }, + { + "start": 16528.76, + "end": 16529.2, + "probability": 0.6662 + }, + { + "start": 16529.96, + "end": 16532.92, + "probability": 0.9236 + }, + { + "start": 16533.26, + "end": 16537.36, + "probability": 0.9863 + }, + { + "start": 16538.12, + "end": 16539.6, + "probability": 0.9795 + }, + { + "start": 16539.64, + "end": 16543.36, + "probability": 0.91 + }, + { + "start": 16543.4, + "end": 16544.36, + "probability": 0.9507 + }, + { + "start": 16545.42, + "end": 16548.48, + "probability": 0.9762 + }, + { + "start": 16548.98, + "end": 16550.68, + "probability": 0.9006 + }, + { + "start": 16550.78, + "end": 16551.13, + "probability": 0.8608 + }, + { + "start": 16552.58, + "end": 16554.72, + "probability": 0.9474 + }, + { + "start": 16554.94, + "end": 16558.12, + "probability": 0.9851 + }, + { + "start": 16558.82, + "end": 16562.48, + "probability": 0.7557 + }, + { + "start": 16563.12, + "end": 16565.38, + "probability": 0.9591 + }, + { + "start": 16565.68, + "end": 16566.57, + "probability": 0.9946 + }, + { + "start": 16566.74, + "end": 16568.02, + "probability": 0.8115 + }, + { + "start": 16568.14, + "end": 16568.58, + "probability": 0.7508 + }, + { + "start": 16568.66, + "end": 16569.14, + "probability": 0.6391 + }, + { + "start": 16569.3, + "end": 16569.8, + "probability": 0.5116 + }, + { + "start": 16570.24, + "end": 16571.36, + "probability": 0.7634 + }, + { + "start": 16571.9, + "end": 16575.02, + "probability": 0.3808 + }, + { + "start": 16575.88, + "end": 16579.62, + "probability": 0.665 + }, + { + "start": 16579.74, + "end": 16584.74, + "probability": 0.9246 + }, + { + "start": 16585.4, + "end": 16585.82, + "probability": 0.7608 + }, + { + "start": 16586.4, + "end": 16589.33, + "probability": 0.9674 + }, + { + "start": 16589.88, + "end": 16590.74, + "probability": 0.8516 + }, + { + "start": 16590.86, + "end": 16592.46, + "probability": 0.6726 + }, + { + "start": 16592.62, + "end": 16596.17, + "probability": 0.7483 + }, + { + "start": 16596.76, + "end": 16598.18, + "probability": 0.8999 + }, + { + "start": 16598.38, + "end": 16600.52, + "probability": 0.8492 + }, + { + "start": 16601.98, + "end": 16601.98, + "probability": 0.5858 + }, + { + "start": 16602.14, + "end": 16603.54, + "probability": 0.8123 + }, + { + "start": 16604.18, + "end": 16606.04, + "probability": 0.5032 + }, + { + "start": 16607.08, + "end": 16608.0, + "probability": 0.6739 + }, + { + "start": 16608.12, + "end": 16609.64, + "probability": 0.667 + }, + { + "start": 16609.66, + "end": 16610.22, + "probability": 0.3133 + }, + { + "start": 16611.2, + "end": 16615.22, + "probability": 0.949 + }, + { + "start": 16616.18, + "end": 16619.42, + "probability": 0.7444 + }, + { + "start": 16619.42, + "end": 16620.26, + "probability": 0.5381 + }, + { + "start": 16621.46, + "end": 16622.9, + "probability": 0.37 + }, + { + "start": 16623.28, + "end": 16625.14, + "probability": 0.6508 + }, + { + "start": 16627.04, + "end": 16629.09, + "probability": 0.7479 + }, + { + "start": 16629.56, + "end": 16631.45, + "probability": 0.4231 + }, + { + "start": 16631.88, + "end": 16632.24, + "probability": 0.3208 + }, + { + "start": 16632.64, + "end": 16634.52, + "probability": 0.191 + }, + { + "start": 16634.56, + "end": 16636.12, + "probability": 0.8561 + }, + { + "start": 16636.26, + "end": 16638.7, + "probability": 0.9615 + }, + { + "start": 16639.06, + "end": 16639.5, + "probability": 0.8512 + }, + { + "start": 16639.96, + "end": 16641.86, + "probability": 0.8706 + }, + { + "start": 16641.92, + "end": 16644.12, + "probability": 0.9927 + }, + { + "start": 16644.16, + "end": 16647.7, + "probability": 0.9895 + }, + { + "start": 16648.0, + "end": 16650.42, + "probability": 0.9468 + }, + { + "start": 16652.42, + "end": 16653.8, + "probability": 0.0093 + }, + { + "start": 16653.88, + "end": 16654.56, + "probability": 0.1299 + }, + { + "start": 16654.94, + "end": 16658.18, + "probability": 0.1211 + }, + { + "start": 16658.18, + "end": 16659.14, + "probability": 0.1584 + }, + { + "start": 16659.18, + "end": 16659.82, + "probability": 0.5616 + }, + { + "start": 16659.98, + "end": 16662.02, + "probability": 0.6578 + }, + { + "start": 16662.44, + "end": 16663.58, + "probability": 0.7734 + }, + { + "start": 16663.9, + "end": 16667.02, + "probability": 0.5021 + }, + { + "start": 16667.24, + "end": 16668.69, + "probability": 0.9731 + }, + { + "start": 16669.02, + "end": 16674.08, + "probability": 0.5829 + }, + { + "start": 16674.88, + "end": 16677.72, + "probability": 0.2226 + }, + { + "start": 16677.72, + "end": 16679.1, + "probability": 0.1058 + }, + { + "start": 16679.1, + "end": 16680.46, + "probability": 0.6076 + }, + { + "start": 16681.04, + "end": 16683.72, + "probability": 0.5565 + }, + { + "start": 16683.78, + "end": 16684.04, + "probability": 0.3193 + }, + { + "start": 16684.04, + "end": 16684.78, + "probability": 0.195 + }, + { + "start": 16686.22, + "end": 16687.82, + "probability": 0.2069 + }, + { + "start": 16688.36, + "end": 16691.4, + "probability": 0.682 + }, + { + "start": 16691.6, + "end": 16691.94, + "probability": 0.809 + }, + { + "start": 16691.96, + "end": 16696.12, + "probability": 0.8811 + }, + { + "start": 16696.12, + "end": 16698.22, + "probability": 0.875 + }, + { + "start": 16698.3, + "end": 16699.62, + "probability": 0.7401 + }, + { + "start": 16699.66, + "end": 16700.68, + "probability": 0.2393 + }, + { + "start": 16700.89, + "end": 16702.44, + "probability": 0.5318 + }, + { + "start": 16702.62, + "end": 16702.86, + "probability": 0.4509 + }, + { + "start": 16702.98, + "end": 16704.2, + "probability": 0.4197 + }, + { + "start": 16705.64, + "end": 16707.96, + "probability": 0.4739 + }, + { + "start": 16709.3, + "end": 16710.22, + "probability": 0.7751 + }, + { + "start": 16710.3, + "end": 16714.02, + "probability": 0.7961 + }, + { + "start": 16714.12, + "end": 16714.4, + "probability": 0.5695 + }, + { + "start": 16714.46, + "end": 16715.68, + "probability": 0.6806 + }, + { + "start": 16715.9, + "end": 16716.82, + "probability": 0.9329 + }, + { + "start": 16716.9, + "end": 16718.74, + "probability": 0.9844 + }, + { + "start": 16719.46, + "end": 16721.02, + "probability": 0.9805 + }, + { + "start": 16722.0, + "end": 16723.42, + "probability": 0.9346 + }, + { + "start": 16724.08, + "end": 16726.12, + "probability": 0.9287 + }, + { + "start": 16726.78, + "end": 16728.9, + "probability": 0.9824 + }, + { + "start": 16729.74, + "end": 16731.5, + "probability": 0.637 + }, + { + "start": 16731.96, + "end": 16732.14, + "probability": 0.4351 + }, + { + "start": 16732.94, + "end": 16735.18, + "probability": 0.9677 + }, + { + "start": 16736.28, + "end": 16739.16, + "probability": 0.9727 + }, + { + "start": 16740.18, + "end": 16741.78, + "probability": 0.6749 + }, + { + "start": 16742.86, + "end": 16744.79, + "probability": 0.9375 + }, + { + "start": 16745.74, + "end": 16748.12, + "probability": 0.8906 + }, + { + "start": 16748.88, + "end": 16749.66, + "probability": 0.9641 + }, + { + "start": 16750.66, + "end": 16751.28, + "probability": 0.5025 + }, + { + "start": 16751.56, + "end": 16751.7, + "probability": 0.6568 + }, + { + "start": 16751.84, + "end": 16754.24, + "probability": 0.9893 + }, + { + "start": 16754.64, + "end": 16760.48, + "probability": 0.988 + }, + { + "start": 16761.88, + "end": 16762.73, + "probability": 0.6391 + }, + { + "start": 16763.78, + "end": 16765.44, + "probability": 0.7279 + }, + { + "start": 16766.94, + "end": 16767.58, + "probability": 0.7213 + }, + { + "start": 16768.25, + "end": 16771.1, + "probability": 0.7838 + }, + { + "start": 16771.74, + "end": 16772.3, + "probability": 0.9586 + }, + { + "start": 16772.56, + "end": 16773.16, + "probability": 0.5091 + }, + { + "start": 16773.24, + "end": 16775.82, + "probability": 0.9631 + }, + { + "start": 16776.82, + "end": 16779.14, + "probability": 0.7977 + }, + { + "start": 16779.76, + "end": 16782.24, + "probability": 0.5804 + }, + { + "start": 16782.68, + "end": 16783.02, + "probability": 0.0111 + }, + { + "start": 16783.2, + "end": 16785.76, + "probability": 0.6034 + }, + { + "start": 16785.84, + "end": 16787.5, + "probability": 0.167 + }, + { + "start": 16787.52, + "end": 16790.0, + "probability": 0.1429 + }, + { + "start": 16790.14, + "end": 16791.18, + "probability": 0.4539 + }, + { + "start": 16792.0, + "end": 16792.66, + "probability": 0.4716 + }, + { + "start": 16793.08, + "end": 16793.26, + "probability": 0.7939 + }, + { + "start": 16794.1, + "end": 16795.88, + "probability": 0.4342 + }, + { + "start": 16796.86, + "end": 16797.86, + "probability": 0.3855 + }, + { + "start": 16797.86, + "end": 16798.48, + "probability": 0.1886 + }, + { + "start": 16798.48, + "end": 16798.52, + "probability": 0.2061 + }, + { + "start": 16798.58, + "end": 16799.26, + "probability": 0.7388 + }, + { + "start": 16799.42, + "end": 16801.34, + "probability": 0.8315 + }, + { + "start": 16802.04, + "end": 16804.68, + "probability": 0.5821 + }, + { + "start": 16805.14, + "end": 16805.48, + "probability": 0.3704 + }, + { + "start": 16805.76, + "end": 16805.8, + "probability": 0.1466 + }, + { + "start": 16805.8, + "end": 16805.8, + "probability": 0.1301 + }, + { + "start": 16805.8, + "end": 16808.74, + "probability": 0.6753 + }, + { + "start": 16808.94, + "end": 16810.92, + "probability": 0.9331 + }, + { + "start": 16811.74, + "end": 16815.38, + "probability": 0.9658 + }, + { + "start": 16816.46, + "end": 16817.54, + "probability": 0.3606 + }, + { + "start": 16817.62, + "end": 16818.08, + "probability": 0.44 + }, + { + "start": 16818.08, + "end": 16819.02, + "probability": 0.1693 + }, + { + "start": 16819.28, + "end": 16822.54, + "probability": 0.8566 + }, + { + "start": 16822.82, + "end": 16824.02, + "probability": 0.9033 + }, + { + "start": 16824.62, + "end": 16826.6, + "probability": 0.9927 + }, + { + "start": 16826.7, + "end": 16828.5, + "probability": 0.9968 + }, + { + "start": 16828.86, + "end": 16831.4, + "probability": 0.7876 + }, + { + "start": 16832.3, + "end": 16835.38, + "probability": 0.9939 + }, + { + "start": 16835.64, + "end": 16837.44, + "probability": 0.9403 + }, + { + "start": 16837.7, + "end": 16839.26, + "probability": 0.9732 + }, + { + "start": 16839.56, + "end": 16839.98, + "probability": 0.9723 + }, + { + "start": 16841.14, + "end": 16841.68, + "probability": 0.007 + }, + { + "start": 16843.18, + "end": 16843.68, + "probability": 0.0011 + }, + { + "start": 16843.68, + "end": 16843.82, + "probability": 0.0698 + }, + { + "start": 16843.82, + "end": 16844.24, + "probability": 0.5553 + }, + { + "start": 16844.98, + "end": 16847.42, + "probability": 0.2751 + }, + { + "start": 16848.34, + "end": 16850.36, + "probability": 0.7893 + }, + { + "start": 16850.5, + "end": 16851.74, + "probability": 0.193 + }, + { + "start": 16852.26, + "end": 16852.76, + "probability": 0.0047 + }, + { + "start": 16852.76, + "end": 16853.8, + "probability": 0.2607 + }, + { + "start": 16853.88, + "end": 16858.72, + "probability": 0.4895 + }, + { + "start": 16859.5, + "end": 16860.62, + "probability": 0.3264 + }, + { + "start": 16861.26, + "end": 16863.0, + "probability": 0.7979 + }, + { + "start": 16863.6, + "end": 16865.7, + "probability": 0.9911 + }, + { + "start": 16866.24, + "end": 16867.3, + "probability": 0.7863 + }, + { + "start": 16868.28, + "end": 16871.56, + "probability": 0.6742 + }, + { + "start": 16872.08, + "end": 16873.84, + "probability": 0.6643 + }, + { + "start": 16874.2, + "end": 16874.98, + "probability": 0.5987 + }, + { + "start": 16875.28, + "end": 16877.86, + "probability": 0.8417 + }, + { + "start": 16878.8, + "end": 16879.3, + "probability": 0.4632 + }, + { + "start": 16880.4, + "end": 16882.32, + "probability": 0.4245 + }, + { + "start": 16882.32, + "end": 16884.22, + "probability": 0.6387 + }, + { + "start": 16886.94, + "end": 16887.66, + "probability": 0.6619 + }, + { + "start": 16888.4, + "end": 16889.94, + "probability": 0.6304 + }, + { + "start": 16890.5, + "end": 16891.7, + "probability": 0.9338 + }, + { + "start": 16892.06, + "end": 16894.48, + "probability": 0.4606 + }, + { + "start": 16894.58, + "end": 16895.88, + "probability": 0.7225 + }, + { + "start": 16896.22, + "end": 16898.52, + "probability": 0.9323 + }, + { + "start": 16898.94, + "end": 16900.26, + "probability": 0.0922 + }, + { + "start": 16900.64, + "end": 16903.68, + "probability": 0.811 + }, + { + "start": 16904.32, + "end": 16906.28, + "probability": 0.9913 + }, + { + "start": 16907.3, + "end": 16909.46, + "probability": 0.6443 + }, + { + "start": 16910.38, + "end": 16913.76, + "probability": 0.8613 + }, + { + "start": 16915.02, + "end": 16916.54, + "probability": 0.6477 + }, + { + "start": 16917.84, + "end": 16923.33, + "probability": 0.9158 + }, + { + "start": 16924.3, + "end": 16927.78, + "probability": 0.9885 + }, + { + "start": 16927.92, + "end": 16928.48, + "probability": 0.7697 + }, + { + "start": 16929.06, + "end": 16930.3, + "probability": 0.9742 + }, + { + "start": 16931.98, + "end": 16932.66, + "probability": 0.49 + }, + { + "start": 16933.84, + "end": 16938.0, + "probability": 0.9886 + }, + { + "start": 16938.0, + "end": 16942.74, + "probability": 0.9911 + }, + { + "start": 16943.78, + "end": 16946.42, + "probability": 0.8597 + }, + { + "start": 16947.2, + "end": 16952.32, + "probability": 0.9827 + }, + { + "start": 16954.28, + "end": 16957.56, + "probability": 0.9587 + }, + { + "start": 16957.56, + "end": 16962.16, + "probability": 0.8952 + }, + { + "start": 16963.14, + "end": 16967.96, + "probability": 0.9643 + }, + { + "start": 16968.2, + "end": 16969.22, + "probability": 0.6938 + }, + { + "start": 16969.36, + "end": 16970.42, + "probability": 0.8224 + }, + { + "start": 16972.16, + "end": 16974.9, + "probability": 0.9873 + }, + { + "start": 16975.88, + "end": 16978.26, + "probability": 0.7976 + }, + { + "start": 16979.08, + "end": 16981.28, + "probability": 0.9864 + }, + { + "start": 16982.74, + "end": 16989.36, + "probability": 0.9712 + }, + { + "start": 16990.08, + "end": 16993.38, + "probability": 0.7778 + }, + { + "start": 16994.56, + "end": 16998.06, + "probability": 0.9941 + }, + { + "start": 16999.18, + "end": 17002.14, + "probability": 0.949 + }, + { + "start": 17003.22, + "end": 17006.32, + "probability": 0.8006 + }, + { + "start": 17006.94, + "end": 17009.66, + "probability": 0.9272 + }, + { + "start": 17010.82, + "end": 17012.54, + "probability": 0.7318 + }, + { + "start": 17012.92, + "end": 17014.64, + "probability": 0.9659 + }, + { + "start": 17015.28, + "end": 17017.92, + "probability": 0.9777 + }, + { + "start": 17019.26, + "end": 17022.42, + "probability": 0.998 + }, + { + "start": 17022.42, + "end": 17026.76, + "probability": 0.9631 + }, + { + "start": 17027.46, + "end": 17028.98, + "probability": 0.9489 + }, + { + "start": 17030.24, + "end": 17031.4, + "probability": 0.8173 + }, + { + "start": 17032.12, + "end": 17036.16, + "probability": 0.9903 + }, + { + "start": 17036.96, + "end": 17037.82, + "probability": 0.9002 + }, + { + "start": 17038.34, + "end": 17038.58, + "probability": 0.7406 + }, + { + "start": 17039.72, + "end": 17040.22, + "probability": 0.5097 + }, + { + "start": 17040.42, + "end": 17041.58, + "probability": 0.6836 + }, + { + "start": 17042.88, + "end": 17043.28, + "probability": 0.4165 + }, + { + "start": 17045.46, + "end": 17045.7, + "probability": 0.1845 + }, + { + "start": 17045.7, + "end": 17046.64, + "probability": 0.7389 + }, + { + "start": 17047.02, + "end": 17047.55, + "probability": 0.3253 + }, + { + "start": 17048.62, + "end": 17050.72, + "probability": 0.2786 + }, + { + "start": 17050.72, + "end": 17051.7, + "probability": 0.5256 + }, + { + "start": 17052.9, + "end": 17053.48, + "probability": 0.4632 + }, + { + "start": 17053.48, + "end": 17054.7, + "probability": 0.2841 + }, + { + "start": 17055.42, + "end": 17056.86, + "probability": 0.1556 + }, + { + "start": 17057.48, + "end": 17060.3, + "probability": 0.0195 + }, + { + "start": 17071.32, + "end": 17072.52, + "probability": 0.0024 + }, + { + "start": 17073.42, + "end": 17074.88, + "probability": 0.4726 + }, + { + "start": 17075.34, + "end": 17077.0, + "probability": 0.0527 + }, + { + "start": 17077.0, + "end": 17077.58, + "probability": 0.1394 + }, + { + "start": 17079.28, + "end": 17081.46, + "probability": 0.0869 + }, + { + "start": 17084.93, + "end": 17086.42, + "probability": 0.1626 + }, + { + "start": 17086.9, + "end": 17087.28, + "probability": 0.0535 + }, + { + "start": 17087.34, + "end": 17087.34, + "probability": 0.0814 + }, + { + "start": 17087.36, + "end": 17089.36, + "probability": 0.1226 + }, + { + "start": 17089.9, + "end": 17089.9, + "probability": 0.1497 + }, + { + "start": 17089.92, + "end": 17090.88, + "probability": 0.0387 + }, + { + "start": 17090.88, + "end": 17090.88, + "probability": 0.1087 + }, + { + "start": 17090.88, + "end": 17090.88, + "probability": 0.2234 + }, + { + "start": 17090.88, + "end": 17090.88, + "probability": 0.3243 + }, + { + "start": 17090.88, + "end": 17092.0, + "probability": 0.1342 + }, + { + "start": 17095.0, + "end": 17095.0, + "probability": 0.0236 + }, + { + "start": 17095.0, + "end": 17095.32, + "probability": 0.1108 + }, + { + "start": 17095.32, + "end": 17095.42, + "probability": 0.0763 + }, + { + "start": 17095.42, + "end": 17095.42, + "probability": 0.0371 + }, + { + "start": 17095.42, + "end": 17095.42, + "probability": 0.0923 + }, + { + "start": 17095.42, + "end": 17095.84, + "probability": 0.1304 + }, + { + "start": 17096.82, + "end": 17098.12, + "probability": 0.3812 + }, + { + "start": 17098.22, + "end": 17098.22, + "probability": 0.7487 + }, + { + "start": 17098.22, + "end": 17098.7, + "probability": 0.6904 + }, + { + "start": 17098.8, + "end": 17099.18, + "probability": 0.8255 + }, + { + "start": 17099.3, + "end": 17100.04, + "probability": 0.4107 + }, + { + "start": 17100.7, + "end": 17107.16, + "probability": 0.978 + }, + { + "start": 17107.62, + "end": 17108.62, + "probability": 0.786 + }, + { + "start": 17108.72, + "end": 17110.18, + "probability": 0.7961 + }, + { + "start": 17110.92, + "end": 17116.1, + "probability": 0.6224 + }, + { + "start": 17116.72, + "end": 17119.35, + "probability": 0.7722 + }, + { + "start": 17119.58, + "end": 17124.5, + "probability": 0.8436 + }, + { + "start": 17124.6, + "end": 17125.9, + "probability": 0.9269 + }, + { + "start": 17126.5, + "end": 17131.44, + "probability": 0.991 + }, + { + "start": 17131.76, + "end": 17133.9, + "probability": 0.9966 + }, + { + "start": 17133.9, + "end": 17138.0, + "probability": 0.999 + }, + { + "start": 17138.14, + "end": 17139.78, + "probability": 0.6148 + }, + { + "start": 17139.84, + "end": 17141.3, + "probability": 0.957 + }, + { + "start": 17141.76, + "end": 17143.58, + "probability": 0.8429 + }, + { + "start": 17143.9, + "end": 17146.56, + "probability": 0.9226 + }, + { + "start": 17146.76, + "end": 17150.1, + "probability": 0.7845 + }, + { + "start": 17150.2, + "end": 17154.2, + "probability": 0.9204 + }, + { + "start": 17154.72, + "end": 17157.5, + "probability": 0.644 + }, + { + "start": 17158.12, + "end": 17159.76, + "probability": 0.6777 + }, + { + "start": 17159.98, + "end": 17160.78, + "probability": 0.877 + }, + { + "start": 17160.88, + "end": 17163.82, + "probability": 0.8363 + }, + { + "start": 17164.32, + "end": 17165.8, + "probability": 0.9408 + }, + { + "start": 17165.9, + "end": 17166.86, + "probability": 0.9937 + }, + { + "start": 17167.4, + "end": 17167.6, + "probability": 0.729 + }, + { + "start": 17167.72, + "end": 17170.77, + "probability": 0.9967 + }, + { + "start": 17171.42, + "end": 17174.66, + "probability": 0.9976 + }, + { + "start": 17175.02, + "end": 17176.22, + "probability": 0.9204 + }, + { + "start": 17176.36, + "end": 17177.3, + "probability": 0.9565 + }, + { + "start": 17177.98, + "end": 17181.04, + "probability": 0.8579 + }, + { + "start": 17181.98, + "end": 17184.38, + "probability": 0.9946 + }, + { + "start": 17184.82, + "end": 17185.56, + "probability": 0.3212 + }, + { + "start": 17185.62, + "end": 17187.4, + "probability": 0.6317 + }, + { + "start": 17187.6, + "end": 17187.6, + "probability": 0.4149 + }, + { + "start": 17188.1, + "end": 17189.58, + "probability": 0.9138 + }, + { + "start": 17189.64, + "end": 17190.76, + "probability": 0.3386 + }, + { + "start": 17190.76, + "end": 17190.76, + "probability": 0.7757 + }, + { + "start": 17190.82, + "end": 17192.62, + "probability": 0.9124 + }, + { + "start": 17192.76, + "end": 17193.62, + "probability": 0.5562 + }, + { + "start": 17193.62, + "end": 17193.68, + "probability": 0.6259 + }, + { + "start": 17193.68, + "end": 17194.76, + "probability": 0.9212 + }, + { + "start": 17194.82, + "end": 17195.32, + "probability": 0.8429 + }, + { + "start": 17196.06, + "end": 17197.18, + "probability": 0.9109 + }, + { + "start": 17197.62, + "end": 17200.74, + "probability": 0.0492 + }, + { + "start": 17200.74, + "end": 17201.91, + "probability": 0.1525 + }, + { + "start": 17202.6, + "end": 17203.88, + "probability": 0.5446 + }, + { + "start": 17204.32, + "end": 17205.66, + "probability": 0.6778 + }, + { + "start": 17205.78, + "end": 17208.26, + "probability": 0.7938 + }, + { + "start": 17208.42, + "end": 17209.22, + "probability": 0.7759 + }, + { + "start": 17209.28, + "end": 17210.12, + "probability": 0.8453 + }, + { + "start": 17210.18, + "end": 17211.34, + "probability": 0.9202 + }, + { + "start": 17211.98, + "end": 17214.96, + "probability": 0.8818 + }, + { + "start": 17215.68, + "end": 17218.72, + "probability": 0.8706 + }, + { + "start": 17219.1, + "end": 17220.62, + "probability": 0.9951 + }, + { + "start": 17221.02, + "end": 17225.42, + "probability": 0.991 + }, + { + "start": 17225.46, + "end": 17225.84, + "probability": 0.9326 + }, + { + "start": 17226.98, + "end": 17227.98, + "probability": 0.3544 + }, + { + "start": 17228.62, + "end": 17229.94, + "probability": 0.5662 + }, + { + "start": 17231.48, + "end": 17232.92, + "probability": 0.2138 + }, + { + "start": 17233.3, + "end": 17234.34, + "probability": 0.0551 + }, + { + "start": 17236.68, + "end": 17239.0, + "probability": 0.2442 + }, + { + "start": 17239.68, + "end": 17241.32, + "probability": 0.252 + }, + { + "start": 17242.08, + "end": 17245.42, + "probability": 0.2027 + }, + { + "start": 17245.84, + "end": 17246.26, + "probability": 0.248 + }, + { + "start": 17246.36, + "end": 17246.86, + "probability": 0.6093 + }, + { + "start": 17247.02, + "end": 17249.86, + "probability": 0.2369 + }, + { + "start": 17249.88, + "end": 17254.2, + "probability": 0.6893 + }, + { + "start": 17254.82, + "end": 17256.02, + "probability": 0.3885 + }, + { + "start": 17256.34, + "end": 17258.7, + "probability": 0.5677 + }, + { + "start": 17261.46, + "end": 17262.0, + "probability": 0.6055 + }, + { + "start": 17262.12, + "end": 17265.92, + "probability": 0.8691 + }, + { + "start": 17266.0, + "end": 17267.04, + "probability": 0.9856 + }, + { + "start": 17267.28, + "end": 17268.66, + "probability": 0.8426 + }, + { + "start": 17269.16, + "end": 17271.34, + "probability": 0.7983 + }, + { + "start": 17271.76, + "end": 17273.8, + "probability": 0.7129 + }, + { + "start": 17273.9, + "end": 17275.46, + "probability": 0.7925 + }, + { + "start": 17277.66, + "end": 17281.18, + "probability": 0.1503 + }, + { + "start": 17282.82, + "end": 17283.76, + "probability": 0.3839 + }, + { + "start": 17297.64, + "end": 17298.6, + "probability": 0.0498 + }, + { + "start": 17298.6, + "end": 17301.26, + "probability": 0.0171 + }, + { + "start": 17301.78, + "end": 17303.86, + "probability": 0.4441 + }, + { + "start": 17303.98, + "end": 17307.5, + "probability": 0.6637 + }, + { + "start": 17308.04, + "end": 17310.1, + "probability": 0.7573 + }, + { + "start": 17310.3, + "end": 17314.52, + "probability": 0.593 + }, + { + "start": 17315.5, + "end": 17320.06, + "probability": 0.7333 + }, + { + "start": 17320.06, + "end": 17325.86, + "probability": 0.9094 + }, + { + "start": 17326.18, + "end": 17326.44, + "probability": 0.0002 + }, + { + "start": 17327.86, + "end": 17331.62, + "probability": 0.0526 + }, + { + "start": 17335.34, + "end": 17336.96, + "probability": 0.0647 + }, + { + "start": 17337.36, + "end": 17337.36, + "probability": 0.106 + }, + { + "start": 17337.36, + "end": 17337.36, + "probability": 0.0631 + }, + { + "start": 17337.36, + "end": 17338.39, + "probability": 0.0097 + }, + { + "start": 17339.02, + "end": 17342.33, + "probability": 0.1445 + }, + { + "start": 17343.02, + "end": 17343.02, + "probability": 0.0284 + }, + { + "start": 17343.02, + "end": 17344.06, + "probability": 0.4587 + }, + { + "start": 17344.16, + "end": 17346.96, + "probability": 0.7428 + }, + { + "start": 17346.96, + "end": 17351.22, + "probability": 0.9685 + }, + { + "start": 17352.22, + "end": 17354.68, + "probability": 0.9948 + }, + { + "start": 17354.78, + "end": 17355.72, + "probability": 0.7641 + }, + { + "start": 17356.46, + "end": 17358.02, + "probability": 0.6217 + }, + { + "start": 17359.48, + "end": 17365.68, + "probability": 0.9333 + }, + { + "start": 17365.68, + "end": 17368.16, + "probability": 0.9891 + }, + { + "start": 17368.22, + "end": 17369.16, + "probability": 0.9444 + }, + { + "start": 17369.78, + "end": 17370.92, + "probability": 0.8959 + }, + { + "start": 17371.98, + "end": 17374.16, + "probability": 0.731 + }, + { + "start": 17375.48, + "end": 17376.18, + "probability": 0.9658 + }, + { + "start": 17376.92, + "end": 17377.92, + "probability": 0.6635 + }, + { + "start": 17377.98, + "end": 17383.46, + "probability": 0.8369 + }, + { + "start": 17384.06, + "end": 17385.2, + "probability": 0.9247 + }, + { + "start": 17386.08, + "end": 17389.6, + "probability": 0.946 + }, + { + "start": 17390.92, + "end": 17392.56, + "probability": 0.9349 + }, + { + "start": 17392.96, + "end": 17394.32, + "probability": 0.5942 + }, + { + "start": 17397.86, + "end": 17401.1, + "probability": 0.791 + }, + { + "start": 17413.44, + "end": 17415.22, + "probability": 0.5558 + }, + { + "start": 17415.22, + "end": 17417.5, + "probability": 0.7392 + }, + { + "start": 17417.98, + "end": 17420.15, + "probability": 0.7162 + }, + { + "start": 17420.98, + "end": 17424.93, + "probability": 0.957 + }, + { + "start": 17427.52, + "end": 17428.2, + "probability": 0.5483 + }, + { + "start": 17428.9, + "end": 17434.84, + "probability": 0.7527 + }, + { + "start": 17435.3, + "end": 17441.26, + "probability": 0.9084 + }, + { + "start": 17441.4, + "end": 17448.74, + "probability": 0.9883 + }, + { + "start": 17449.28, + "end": 17451.26, + "probability": 0.976 + }, + { + "start": 17452.34, + "end": 17453.82, + "probability": 0.77 + }, + { + "start": 17454.48, + "end": 17455.98, + "probability": 0.9452 + }, + { + "start": 17456.98, + "end": 17459.52, + "probability": 0.8145 + }, + { + "start": 17461.32, + "end": 17464.12, + "probability": 0.9904 + }, + { + "start": 17464.2, + "end": 17465.18, + "probability": 0.9791 + }, + { + "start": 17465.6, + "end": 17466.44, + "probability": 0.9579 + }, + { + "start": 17466.52, + "end": 17466.96, + "probability": 0.9214 + }, + { + "start": 17468.06, + "end": 17468.9, + "probability": 0.7001 + }, + { + "start": 17469.48, + "end": 17472.56, + "probability": 0.9951 + }, + { + "start": 17473.82, + "end": 17479.94, + "probability": 0.9691 + }, + { + "start": 17480.3, + "end": 17481.94, + "probability": 0.747 + }, + { + "start": 17482.04, + "end": 17487.18, + "probability": 0.806 + }, + { + "start": 17487.56, + "end": 17488.84, + "probability": 0.9155 + }, + { + "start": 17489.22, + "end": 17490.68, + "probability": 0.991 + }, + { + "start": 17491.58, + "end": 17493.28, + "probability": 0.9292 + }, + { + "start": 17493.74, + "end": 17502.52, + "probability": 0.6793 + }, + { + "start": 17502.96, + "end": 17504.62, + "probability": 0.9426 + }, + { + "start": 17505.02, + "end": 17507.58, + "probability": 0.9951 + }, + { + "start": 17508.08, + "end": 17510.0, + "probability": 0.9751 + }, + { + "start": 17510.94, + "end": 17515.08, + "probability": 0.9584 + }, + { + "start": 17515.46, + "end": 17517.86, + "probability": 0.7061 + }, + { + "start": 17518.32, + "end": 17520.24, + "probability": 0.888 + }, + { + "start": 17520.34, + "end": 17521.86, + "probability": 0.6842 + }, + { + "start": 17522.6, + "end": 17527.4, + "probability": 0.982 + }, + { + "start": 17527.58, + "end": 17530.41, + "probability": 0.9972 + }, + { + "start": 17530.9, + "end": 17532.62, + "probability": 0.8521 + }, + { + "start": 17532.74, + "end": 17533.54, + "probability": 0.7565 + }, + { + "start": 17534.0, + "end": 17535.08, + "probability": 0.995 + }, + { + "start": 17535.34, + "end": 17536.8, + "probability": 0.85 + }, + { + "start": 17537.32, + "end": 17540.58, + "probability": 0.962 + }, + { + "start": 17541.28, + "end": 17541.78, + "probability": 0.724 + }, + { + "start": 17543.67, + "end": 17548.82, + "probability": 0.932 + }, + { + "start": 17549.5, + "end": 17550.54, + "probability": 0.793 + }, + { + "start": 17551.28, + "end": 17556.78, + "probability": 0.9878 + }, + { + "start": 17557.6, + "end": 17558.58, + "probability": 0.8799 + }, + { + "start": 17559.42, + "end": 17561.58, + "probability": 0.8436 + }, + { + "start": 17562.16, + "end": 17562.78, + "probability": 0.5772 + }, + { + "start": 17562.82, + "end": 17563.58, + "probability": 0.7225 + }, + { + "start": 17563.94, + "end": 17565.34, + "probability": 0.5104 + }, + { + "start": 17565.38, + "end": 17566.0, + "probability": 0.7762 + }, + { + "start": 17566.3, + "end": 17567.34, + "probability": 0.8635 + }, + { + "start": 17567.98, + "end": 17569.3, + "probability": 0.2168 + }, + { + "start": 17569.84, + "end": 17571.72, + "probability": 0.732 + }, + { + "start": 17572.16, + "end": 17574.34, + "probability": 0.9528 + }, + { + "start": 17574.46, + "end": 17575.22, + "probability": 0.9551 + }, + { + "start": 17575.8, + "end": 17578.76, + "probability": 0.7053 + }, + { + "start": 17579.3, + "end": 17582.46, + "probability": 0.9795 + }, + { + "start": 17582.58, + "end": 17584.78, + "probability": 0.9974 + }, + { + "start": 17585.3, + "end": 17587.06, + "probability": 0.8663 + }, + { + "start": 17587.71, + "end": 17590.56, + "probability": 0.998 + }, + { + "start": 17591.32, + "end": 17594.18, + "probability": 0.8306 + }, + { + "start": 17594.22, + "end": 17595.92, + "probability": 0.9756 + }, + { + "start": 17596.48, + "end": 17598.4, + "probability": 0.557 + }, + { + "start": 17599.42, + "end": 17600.46, + "probability": 0.6903 + }, + { + "start": 17600.66, + "end": 17602.42, + "probability": 0.9442 + }, + { + "start": 17602.5, + "end": 17604.86, + "probability": 0.8544 + }, + { + "start": 17604.94, + "end": 17606.7, + "probability": 0.7971 + }, + { + "start": 17607.26, + "end": 17608.6, + "probability": 0.8612 + }, + { + "start": 17608.8, + "end": 17610.16, + "probability": 0.9482 + }, + { + "start": 17610.26, + "end": 17610.64, + "probability": 0.8779 + }, + { + "start": 17611.08, + "end": 17615.14, + "probability": 0.9878 + }, + { + "start": 17615.96, + "end": 17617.64, + "probability": 0.5868 + }, + { + "start": 17617.94, + "end": 17618.73, + "probability": 0.8428 + }, + { + "start": 17619.34, + "end": 17622.94, + "probability": 0.5935 + }, + { + "start": 17623.78, + "end": 17627.02, + "probability": 0.9005 + }, + { + "start": 17627.24, + "end": 17629.84, + "probability": 0.9799 + }, + { + "start": 17629.92, + "end": 17630.12, + "probability": 0.9312 + }, + { + "start": 17630.24, + "end": 17633.72, + "probability": 0.9673 + }, + { + "start": 17633.86, + "end": 17634.62, + "probability": 0.8979 + }, + { + "start": 17636.26, + "end": 17637.3, + "probability": 0.8022 + }, + { + "start": 17637.42, + "end": 17639.5, + "probability": 0.9849 + }, + { + "start": 17640.08, + "end": 17641.5, + "probability": 0.9105 + }, + { + "start": 17641.82, + "end": 17643.08, + "probability": 0.9778 + }, + { + "start": 17643.16, + "end": 17646.68, + "probability": 0.9746 + }, + { + "start": 17646.98, + "end": 17649.16, + "probability": 0.5883 + }, + { + "start": 17649.16, + "end": 17649.32, + "probability": 0.3826 + }, + { + "start": 17649.44, + "end": 17650.26, + "probability": 0.3598 + }, + { + "start": 17650.28, + "end": 17653.41, + "probability": 0.9585 + }, + { + "start": 17653.5, + "end": 17657.06, + "probability": 0.7476 + }, + { + "start": 17657.4, + "end": 17660.1, + "probability": 0.864 + }, + { + "start": 17660.62, + "end": 17661.42, + "probability": 0.3444 + }, + { + "start": 17661.88, + "end": 17662.65, + "probability": 0.5352 + }, + { + "start": 17663.02, + "end": 17666.0, + "probability": 0.98 + }, + { + "start": 17666.1, + "end": 17667.82, + "probability": 0.978 + }, + { + "start": 17667.9, + "end": 17668.66, + "probability": 0.5709 + }, + { + "start": 17669.02, + "end": 17670.12, + "probability": 0.7891 + }, + { + "start": 17670.18, + "end": 17670.86, + "probability": 0.7857 + }, + { + "start": 17670.94, + "end": 17675.54, + "probability": 0.9885 + }, + { + "start": 17675.92, + "end": 17680.8, + "probability": 0.9969 + }, + { + "start": 17681.38, + "end": 17682.6, + "probability": 0.3665 + }, + { + "start": 17683.1, + "end": 17683.54, + "probability": 0.5347 + }, + { + "start": 17683.6, + "end": 17684.6, + "probability": 0.3416 + }, + { + "start": 17684.68, + "end": 17687.78, + "probability": 0.8513 + }, + { + "start": 17688.48, + "end": 17692.66, + "probability": 0.8318 + }, + { + "start": 17694.46, + "end": 17696.66, + "probability": 0.8767 + }, + { + "start": 17697.62, + "end": 17698.2, + "probability": 0.229 + }, + { + "start": 17698.76, + "end": 17700.02, + "probability": 0.9667 + }, + { + "start": 17700.78, + "end": 17701.3, + "probability": 0.1294 + }, + { + "start": 17705.38, + "end": 17706.02, + "probability": 0.5074 + }, + { + "start": 17706.02, + "end": 17706.2, + "probability": 0.1509 + }, + { + "start": 17706.2, + "end": 17706.72, + "probability": 0.5855 + }, + { + "start": 17707.58, + "end": 17708.24, + "probability": 0.1446 + }, + { + "start": 17709.25, + "end": 17712.08, + "probability": 0.5082 + }, + { + "start": 17725.34, + "end": 17726.1, + "probability": 0.3625 + }, + { + "start": 17726.1, + "end": 17727.58, + "probability": 0.6649 + }, + { + "start": 17731.94, + "end": 17735.5, + "probability": 0.7334 + }, + { + "start": 17736.0, + "end": 17739.24, + "probability": 0.9605 + }, + { + "start": 17740.36, + "end": 17741.3, + "probability": 0.6278 + }, + { + "start": 17741.72, + "end": 17745.5, + "probability": 0.935 + }, + { + "start": 17745.5, + "end": 17750.42, + "probability": 0.9718 + }, + { + "start": 17750.9, + "end": 17752.18, + "probability": 0.55 + }, + { + "start": 17753.02, + "end": 17754.7, + "probability": 0.9268 + }, + { + "start": 17755.6, + "end": 17756.64, + "probability": 0.7521 + }, + { + "start": 17756.78, + "end": 17757.94, + "probability": 0.9184 + }, + { + "start": 17758.4, + "end": 17761.8, + "probability": 0.9629 + }, + { + "start": 17763.2, + "end": 17763.92, + "probability": 0.4846 + }, + { + "start": 17766.6, + "end": 17771.72, + "probability": 0.9597 + }, + { + "start": 17772.22, + "end": 17775.54, + "probability": 0.5908 + }, + { + "start": 17776.12, + "end": 17777.9, + "probability": 0.7588 + }, + { + "start": 17778.72, + "end": 17779.4, + "probability": 0.6981 + }, + { + "start": 17779.64, + "end": 17780.58, + "probability": 0.6541 + }, + { + "start": 17780.74, + "end": 17782.94, + "probability": 0.9928 + }, + { + "start": 17783.74, + "end": 17784.56, + "probability": 0.8091 + }, + { + "start": 17787.38, + "end": 17788.5, + "probability": 0.7529 + }, + { + "start": 17790.08, + "end": 17791.28, + "probability": 0.6613 + }, + { + "start": 17791.68, + "end": 17794.18, + "probability": 0.8758 + }, + { + "start": 17794.18, + "end": 17797.94, + "probability": 0.9913 + }, + { + "start": 17798.5, + "end": 17799.36, + "probability": 0.5928 + }, + { + "start": 17800.18, + "end": 17805.17, + "probability": 0.9482 + }, + { + "start": 17806.02, + "end": 17807.58, + "probability": 0.8304 + }, + { + "start": 17808.1, + "end": 17812.3, + "probability": 0.994 + }, + { + "start": 17813.24, + "end": 17816.42, + "probability": 0.9597 + }, + { + "start": 17816.98, + "end": 17818.1, + "probability": 0.9146 + }, + { + "start": 17818.84, + "end": 17821.54, + "probability": 0.9919 + }, + { + "start": 17822.6, + "end": 17823.9, + "probability": 0.9651 + }, + { + "start": 17825.5, + "end": 17827.5, + "probability": 0.9982 + }, + { + "start": 17827.5, + "end": 17831.46, + "probability": 0.9819 + }, + { + "start": 17832.4, + "end": 17833.78, + "probability": 0.9867 + }, + { + "start": 17833.9, + "end": 17834.88, + "probability": 0.9927 + }, + { + "start": 17835.16, + "end": 17835.54, + "probability": 0.3618 + }, + { + "start": 17836.04, + "end": 17837.26, + "probability": 0.8027 + }, + { + "start": 17838.02, + "end": 17841.04, + "probability": 0.9961 + }, + { + "start": 17841.74, + "end": 17842.46, + "probability": 0.9543 + }, + { + "start": 17842.54, + "end": 17842.8, + "probability": 0.9426 + }, + { + "start": 17842.84, + "end": 17843.28, + "probability": 0.7673 + }, + { + "start": 17843.34, + "end": 17843.66, + "probability": 0.7196 + }, + { + "start": 17843.98, + "end": 17844.43, + "probability": 0.9593 + }, + { + "start": 17844.72, + "end": 17845.65, + "probability": 0.5853 + }, + { + "start": 17846.44, + "end": 17847.66, + "probability": 0.9111 + }, + { + "start": 17847.66, + "end": 17849.04, + "probability": 0.6094 + }, + { + "start": 17849.38, + "end": 17850.42, + "probability": 0.9868 + }, + { + "start": 17850.6, + "end": 17851.4, + "probability": 0.966 + }, + { + "start": 17851.92, + "end": 17856.24, + "probability": 0.9922 + }, + { + "start": 17856.82, + "end": 17858.08, + "probability": 0.9795 + }, + { + "start": 17858.22, + "end": 17858.82, + "probability": 0.9277 + }, + { + "start": 17858.88, + "end": 17859.92, + "probability": 0.8823 + }, + { + "start": 17861.28, + "end": 17863.7, + "probability": 0.987 + }, + { + "start": 17864.06, + "end": 17865.92, + "probability": 0.8599 + }, + { + "start": 17866.5, + "end": 17868.34, + "probability": 0.8785 + }, + { + "start": 17868.94, + "end": 17870.32, + "probability": 0.6685 + }, + { + "start": 17870.32, + "end": 17870.32, + "probability": 0.1917 + }, + { + "start": 17870.44, + "end": 17871.5, + "probability": 0.8564 + }, + { + "start": 17871.94, + "end": 17873.82, + "probability": 0.9819 + }, + { + "start": 17874.16, + "end": 17875.16, + "probability": 0.7617 + }, + { + "start": 17875.6, + "end": 17876.86, + "probability": 0.9961 + }, + { + "start": 17878.48, + "end": 17881.12, + "probability": 0.7127 + }, + { + "start": 17881.58, + "end": 17883.1, + "probability": 0.5957 + }, + { + "start": 17883.44, + "end": 17885.46, + "probability": 0.8503 + }, + { + "start": 17885.6, + "end": 17886.86, + "probability": 0.7114 + }, + { + "start": 17887.14, + "end": 17888.4, + "probability": 0.3838 + }, + { + "start": 17888.44, + "end": 17889.84, + "probability": 0.4105 + }, + { + "start": 17890.04, + "end": 17892.48, + "probability": 0.9851 + }, + { + "start": 17892.76, + "end": 17892.76, + "probability": 0.5058 + }, + { + "start": 17892.96, + "end": 17894.9, + "probability": 0.9802 + }, + { + "start": 17895.6, + "end": 17897.42, + "probability": 0.9762 + }, + { + "start": 17897.88, + "end": 17900.5, + "probability": 0.9305 + }, + { + "start": 17900.6, + "end": 17901.4, + "probability": 0.7718 + }, + { + "start": 17901.52, + "end": 17901.9, + "probability": 0.786 + }, + { + "start": 17902.18, + "end": 17903.54, + "probability": 0.7247 + }, + { + "start": 17903.64, + "end": 17904.34, + "probability": 0.7974 + }, + { + "start": 17904.94, + "end": 17906.94, + "probability": 0.6207 + }, + { + "start": 17912.49, + "end": 17915.1, + "probability": 0.7203 + }, + { + "start": 17915.88, + "end": 17919.84, + "probability": 0.9768 + }, + { + "start": 17921.16, + "end": 17925.77, + "probability": 0.998 + }, + { + "start": 17925.82, + "end": 17928.06, + "probability": 0.9986 + }, + { + "start": 17928.54, + "end": 17936.76, + "probability": 0.9787 + }, + { + "start": 17937.42, + "end": 17939.88, + "probability": 0.9441 + }, + { + "start": 17940.08, + "end": 17940.9, + "probability": 0.7618 + }, + { + "start": 17941.34, + "end": 17943.34, + "probability": 0.8403 + }, + { + "start": 17943.42, + "end": 17943.97, + "probability": 0.562 + }, + { + "start": 17944.63, + "end": 17948.18, + "probability": 0.8433 + }, + { + "start": 17948.78, + "end": 17949.48, + "probability": 0.9164 + }, + { + "start": 17949.54, + "end": 17950.52, + "probability": 0.9323 + }, + { + "start": 17950.6, + "end": 17951.34, + "probability": 0.7307 + }, + { + "start": 17951.58, + "end": 17956.78, + "probability": 0.9791 + }, + { + "start": 17957.52, + "end": 17957.82, + "probability": 0.6519 + }, + { + "start": 17957.96, + "end": 17959.92, + "probability": 0.9116 + }, + { + "start": 17960.0, + "end": 17960.8, + "probability": 0.8832 + }, + { + "start": 17960.88, + "end": 17962.74, + "probability": 0.8086 + }, + { + "start": 17963.34, + "end": 17964.24, + "probability": 0.9316 + }, + { + "start": 17964.32, + "end": 17970.78, + "probability": 0.9651 + }, + { + "start": 17970.9, + "end": 17973.18, + "probability": 0.5705 + }, + { + "start": 17973.56, + "end": 17974.42, + "probability": 0.7681 + }, + { + "start": 17974.92, + "end": 17975.44, + "probability": 0.3244 + }, + { + "start": 17975.78, + "end": 17976.72, + "probability": 0.7044 + }, + { + "start": 17977.26, + "end": 17977.54, + "probability": 0.7097 + }, + { + "start": 17977.72, + "end": 17980.76, + "probability": 0.6232 + }, + { + "start": 17980.76, + "end": 17985.3, + "probability": 0.9331 + }, + { + "start": 17986.12, + "end": 17987.5, + "probability": 0.6117 + }, + { + "start": 17987.66, + "end": 17989.32, + "probability": 0.8674 + }, + { + "start": 17989.54, + "end": 17990.36, + "probability": 0.7912 + }, + { + "start": 17990.44, + "end": 17991.18, + "probability": 0.7619 + }, + { + "start": 17991.26, + "end": 17991.56, + "probability": 0.7016 + }, + { + "start": 17992.58, + "end": 17993.06, + "probability": 0.8931 + }, + { + "start": 18012.22, + "end": 18013.06, + "probability": 0.3488 + }, + { + "start": 18013.06, + "end": 18013.06, + "probability": 0.6422 + }, + { + "start": 18013.06, + "end": 18014.42, + "probability": 0.4296 + }, + { + "start": 18014.56, + "end": 18015.3, + "probability": 0.5091 + }, + { + "start": 18015.9, + "end": 18019.28, + "probability": 0.3597 + }, + { + "start": 18019.28, + "end": 18024.2, + "probability": 0.6861 + }, + { + "start": 18024.96, + "end": 18028.84, + "probability": 0.9181 + }, + { + "start": 18029.48, + "end": 18031.38, + "probability": 0.7781 + }, + { + "start": 18034.75, + "end": 18038.18, + "probability": 0.7843 + }, + { + "start": 18038.84, + "end": 18041.08, + "probability": 0.955 + }, + { + "start": 18041.8, + "end": 18042.28, + "probability": 0.0701 + }, + { + "start": 18042.28, + "end": 18045.78, + "probability": 0.5482 + }, + { + "start": 18046.56, + "end": 18049.82, + "probability": 0.794 + }, + { + "start": 18050.16, + "end": 18051.92, + "probability": 0.9538 + }, + { + "start": 18052.08, + "end": 18052.64, + "probability": 0.8809 + }, + { + "start": 18064.92, + "end": 18067.66, + "probability": 0.7524 + }, + { + "start": 18068.4, + "end": 18071.26, + "probability": 0.9333 + }, + { + "start": 18071.36, + "end": 18072.14, + "probability": 0.9735 + }, + { + "start": 18073.38, + "end": 18075.3, + "probability": 0.8705 + }, + { + "start": 18076.1, + "end": 18079.62, + "probability": 0.9963 + }, + { + "start": 18079.62, + "end": 18086.48, + "probability": 0.9573 + }, + { + "start": 18088.26, + "end": 18090.12, + "probability": 0.9628 + }, + { + "start": 18091.7, + "end": 18093.44, + "probability": 0.7743 + }, + { + "start": 18094.54, + "end": 18100.4, + "probability": 0.9798 + }, + { + "start": 18100.4, + "end": 18106.2, + "probability": 0.9974 + }, + { + "start": 18108.28, + "end": 18111.66, + "probability": 0.8901 + }, + { + "start": 18112.4, + "end": 18114.72, + "probability": 0.9882 + }, + { + "start": 18116.16, + "end": 18120.54, + "probability": 0.9901 + }, + { + "start": 18122.2, + "end": 18126.9, + "probability": 0.9948 + }, + { + "start": 18127.86, + "end": 18129.36, + "probability": 0.9067 + }, + { + "start": 18130.6, + "end": 18131.98, + "probability": 0.9752 + }, + { + "start": 18132.9, + "end": 18134.9, + "probability": 0.8491 + }, + { + "start": 18136.06, + "end": 18137.58, + "probability": 0.987 + }, + { + "start": 18138.88, + "end": 18142.66, + "probability": 0.9554 + }, + { + "start": 18143.52, + "end": 18149.4, + "probability": 0.9966 + }, + { + "start": 18150.32, + "end": 18151.02, + "probability": 0.7772 + }, + { + "start": 18152.24, + "end": 18154.88, + "probability": 0.9783 + }, + { + "start": 18155.68, + "end": 18159.42, + "probability": 0.9756 + }, + { + "start": 18160.16, + "end": 18168.06, + "probability": 0.9719 + }, + { + "start": 18168.06, + "end": 18168.5, + "probability": 0.4299 + }, + { + "start": 18169.26, + "end": 18170.06, + "probability": 0.7493 + }, + { + "start": 18170.12, + "end": 18173.72, + "probability": 0.7436 + }, + { + "start": 18173.78, + "end": 18174.48, + "probability": 0.5154 + }, + { + "start": 18175.84, + "end": 18178.82, + "probability": 0.98 + }, + { + "start": 18178.88, + "end": 18180.52, + "probability": 0.9028 + }, + { + "start": 18180.62, + "end": 18186.08, + "probability": 0.9759 + }, + { + "start": 18188.24, + "end": 18190.6, + "probability": 0.8564 + }, + { + "start": 18190.7, + "end": 18196.42, + "probability": 0.9655 + }, + { + "start": 18196.86, + "end": 18197.35, + "probability": 0.8862 + }, + { + "start": 18198.12, + "end": 18199.06, + "probability": 0.7709 + }, + { + "start": 18199.9, + "end": 18202.34, + "probability": 0.8339 + }, + { + "start": 18203.18, + "end": 18213.0, + "probability": 0.9908 + }, + { + "start": 18213.12, + "end": 18215.34, + "probability": 0.9053 + }, + { + "start": 18215.46, + "end": 18216.84, + "probability": 0.9329 + }, + { + "start": 18217.98, + "end": 18222.7, + "probability": 0.9269 + }, + { + "start": 18223.94, + "end": 18224.64, + "probability": 0.8236 + }, + { + "start": 18225.54, + "end": 18227.5, + "probability": 0.9966 + }, + { + "start": 18228.92, + "end": 18229.48, + "probability": 0.9185 + }, + { + "start": 18229.74, + "end": 18233.1, + "probability": 0.9843 + }, + { + "start": 18236.44, + "end": 18238.16, + "probability": 0.6858 + }, + { + "start": 18238.44, + "end": 18242.64, + "probability": 0.8658 + }, + { + "start": 18243.78, + "end": 18245.08, + "probability": 0.9215 + }, + { + "start": 18245.22, + "end": 18247.9, + "probability": 0.9029 + }, + { + "start": 18249.56, + "end": 18253.64, + "probability": 0.9746 + }, + { + "start": 18255.16, + "end": 18258.36, + "probability": 0.9857 + }, + { + "start": 18259.6, + "end": 18266.36, + "probability": 0.9845 + }, + { + "start": 18266.36, + "end": 18273.06, + "probability": 0.9958 + }, + { + "start": 18273.06, + "end": 18280.14, + "probability": 0.9785 + }, + { + "start": 18280.66, + "end": 18282.18, + "probability": 0.9259 + }, + { + "start": 18282.78, + "end": 18283.84, + "probability": 0.9641 + }, + { + "start": 18284.38, + "end": 18285.99, + "probability": 0.9592 + }, + { + "start": 18286.52, + "end": 18294.56, + "probability": 0.9707 + }, + { + "start": 18294.64, + "end": 18298.06, + "probability": 0.9921 + }, + { + "start": 18298.72, + "end": 18302.8, + "probability": 0.9951 + }, + { + "start": 18303.24, + "end": 18308.76, + "probability": 0.986 + }, + { + "start": 18308.96, + "end": 18310.04, + "probability": 0.9714 + }, + { + "start": 18311.14, + "end": 18313.08, + "probability": 0.9923 + }, + { + "start": 18313.14, + "end": 18316.66, + "probability": 0.9884 + }, + { + "start": 18317.1, + "end": 18319.46, + "probability": 0.9485 + }, + { + "start": 18320.2, + "end": 18326.74, + "probability": 0.9961 + }, + { + "start": 18327.2, + "end": 18329.0, + "probability": 0.9147 + }, + { + "start": 18329.54, + "end": 18331.5, + "probability": 0.5641 + }, + { + "start": 18333.56, + "end": 18335.88, + "probability": 0.8263 + }, + { + "start": 18336.24, + "end": 18337.38, + "probability": 0.5662 + }, + { + "start": 18337.4, + "end": 18337.98, + "probability": 0.9245 + }, + { + "start": 18338.76, + "end": 18342.02, + "probability": 0.8551 + }, + { + "start": 18342.1, + "end": 18344.14, + "probability": 0.7739 + }, + { + "start": 18344.24, + "end": 18345.78, + "probability": 0.8942 + }, + { + "start": 18346.1, + "end": 18347.08, + "probability": 0.9377 + }, + { + "start": 18347.66, + "end": 18348.08, + "probability": 0.9124 + }, + { + "start": 18348.9, + "end": 18349.58, + "probability": 0.5045 + }, + { + "start": 18350.52, + "end": 18355.26, + "probability": 0.8418 + }, + { + "start": 18355.26, + "end": 18360.6, + "probability": 0.9929 + }, + { + "start": 18362.53, + "end": 18367.25, + "probability": 0.8662 + }, + { + "start": 18368.06, + "end": 18371.56, + "probability": 0.9956 + }, + { + "start": 18372.08, + "end": 18374.16, + "probability": 0.8108 + }, + { + "start": 18374.5, + "end": 18375.44, + "probability": 0.968 + }, + { + "start": 18375.9, + "end": 18378.68, + "probability": 0.9798 + }, + { + "start": 18378.86, + "end": 18383.14, + "probability": 0.9594 + }, + { + "start": 18383.14, + "end": 18387.56, + "probability": 0.7752 + }, + { + "start": 18387.92, + "end": 18388.12, + "probability": 0.6598 + }, + { + "start": 18388.7, + "end": 18389.74, + "probability": 0.7613 + }, + { + "start": 18390.28, + "end": 18393.08, + "probability": 0.9897 + }, + { + "start": 18407.92, + "end": 18408.62, + "probability": 0.6142 + }, + { + "start": 18417.54, + "end": 18419.52, + "probability": 0.6474 + }, + { + "start": 18420.44, + "end": 18429.22, + "probability": 0.9919 + }, + { + "start": 18430.24, + "end": 18432.74, + "probability": 0.7086 + }, + { + "start": 18433.48, + "end": 18436.12, + "probability": 0.9792 + }, + { + "start": 18436.24, + "end": 18438.22, + "probability": 0.4631 + }, + { + "start": 18439.04, + "end": 18441.36, + "probability": 0.7839 + }, + { + "start": 18442.12, + "end": 18446.78, + "probability": 0.8462 + }, + { + "start": 18446.84, + "end": 18448.06, + "probability": 0.8194 + }, + { + "start": 18448.32, + "end": 18449.12, + "probability": 0.8054 + }, + { + "start": 18449.82, + "end": 18454.38, + "probability": 0.9701 + }, + { + "start": 18454.72, + "end": 18456.18, + "probability": 0.9735 + }, + { + "start": 18456.7, + "end": 18457.18, + "probability": 0.8552 + }, + { + "start": 18457.88, + "end": 18458.76, + "probability": 0.6058 + }, + { + "start": 18459.54, + "end": 18463.04, + "probability": 0.9205 + }, + { + "start": 18464.06, + "end": 18464.88, + "probability": 0.8899 + }, + { + "start": 18465.58, + "end": 18470.64, + "probability": 0.9681 + }, + { + "start": 18471.08, + "end": 18472.26, + "probability": 0.8664 + }, + { + "start": 18473.06, + "end": 18478.18, + "probability": 0.9041 + }, + { + "start": 18478.92, + "end": 18484.72, + "probability": 0.998 + }, + { + "start": 18484.85, + "end": 18488.96, + "probability": 0.9831 + }, + { + "start": 18490.86, + "end": 18494.76, + "probability": 0.9846 + }, + { + "start": 18495.4, + "end": 18498.12, + "probability": 0.6911 + }, + { + "start": 18499.02, + "end": 18503.3, + "probability": 0.9931 + }, + { + "start": 18503.92, + "end": 18507.22, + "probability": 0.9862 + }, + { + "start": 18507.6, + "end": 18508.22, + "probability": 0.6307 + }, + { + "start": 18508.82, + "end": 18512.22, + "probability": 0.7153 + }, + { + "start": 18512.54, + "end": 18513.06, + "probability": 0.7545 + }, + { + "start": 18513.16, + "end": 18514.88, + "probability": 0.9939 + }, + { + "start": 18515.18, + "end": 18515.61, + "probability": 0.9618 + }, + { + "start": 18516.42, + "end": 18517.76, + "probability": 0.9625 + }, + { + "start": 18518.1, + "end": 18519.12, + "probability": 0.9019 + }, + { + "start": 18519.9, + "end": 18521.16, + "probability": 0.9839 + }, + { + "start": 18521.76, + "end": 18523.84, + "probability": 0.5864 + }, + { + "start": 18523.94, + "end": 18524.58, + "probability": 0.3556 + }, + { + "start": 18525.76, + "end": 18527.46, + "probability": 0.7005 + }, + { + "start": 18527.98, + "end": 18531.42, + "probability": 0.9395 + }, + { + "start": 18531.92, + "end": 18533.38, + "probability": 0.9099 + }, + { + "start": 18533.98, + "end": 18534.35, + "probability": 0.3165 + }, + { + "start": 18535.38, + "end": 18537.12, + "probability": 0.8391 + }, + { + "start": 18537.58, + "end": 18539.93, + "probability": 0.6072 + }, + { + "start": 18540.16, + "end": 18540.9, + "probability": 0.7045 + }, + { + "start": 18541.78, + "end": 18543.18, + "probability": 0.9172 + }, + { + "start": 18543.38, + "end": 18544.36, + "probability": 0.5889 + }, + { + "start": 18544.7, + "end": 18545.2, + "probability": 0.9052 + }, + { + "start": 18545.5, + "end": 18545.98, + "probability": 0.8036 + }, + { + "start": 18546.06, + "end": 18546.56, + "probability": 0.6522 + }, + { + "start": 18546.92, + "end": 18548.42, + "probability": 0.9435 + }, + { + "start": 18549.24, + "end": 18553.32, + "probability": 0.8242 + }, + { + "start": 18553.74, + "end": 18556.76, + "probability": 0.8182 + }, + { + "start": 18557.34, + "end": 18560.46, + "probability": 0.9841 + }, + { + "start": 18560.86, + "end": 18562.94, + "probability": 0.801 + }, + { + "start": 18565.18, + "end": 18568.08, + "probability": 0.7656 + }, + { + "start": 18568.12, + "end": 18568.96, + "probability": 0.9738 + }, + { + "start": 18570.18, + "end": 18573.58, + "probability": 0.8686 + }, + { + "start": 18574.72, + "end": 18575.98, + "probability": 0.855 + }, + { + "start": 18576.62, + "end": 18577.66, + "probability": 0.946 + }, + { + "start": 18577.76, + "end": 18579.46, + "probability": 0.6798 + }, + { + "start": 18579.54, + "end": 18580.16, + "probability": 0.5415 + }, + { + "start": 18580.62, + "end": 18581.8, + "probability": 0.7894 + }, + { + "start": 18581.96, + "end": 18583.37, + "probability": 0.9272 + }, + { + "start": 18583.96, + "end": 18585.08, + "probability": 0.9879 + }, + { + "start": 18585.34, + "end": 18586.1, + "probability": 0.9548 + }, + { + "start": 18586.42, + "end": 18591.6, + "probability": 0.9069 + }, + { + "start": 18592.14, + "end": 18594.17, + "probability": 0.6401 + }, + { + "start": 18594.7, + "end": 18597.26, + "probability": 0.9468 + }, + { + "start": 18597.8, + "end": 18598.06, + "probability": 0.8407 + }, + { + "start": 18598.96, + "end": 18601.92, + "probability": 0.7306 + }, + { + "start": 18602.52, + "end": 18604.78, + "probability": 0.9565 + }, + { + "start": 18606.18, + "end": 18608.1, + "probability": 0.8238 + }, + { + "start": 18609.04, + "end": 18610.84, + "probability": 0.8245 + }, + { + "start": 18630.2, + "end": 18630.92, + "probability": 0.5199 + }, + { + "start": 18631.1, + "end": 18632.5, + "probability": 0.6169 + }, + { + "start": 18632.62, + "end": 18636.56, + "probability": 0.9416 + }, + { + "start": 18636.7, + "end": 18640.88, + "probability": 0.7193 + }, + { + "start": 18642.4, + "end": 18645.28, + "probability": 0.9051 + }, + { + "start": 18646.04, + "end": 18648.46, + "probability": 0.5422 + }, + { + "start": 18649.34, + "end": 18651.88, + "probability": 0.968 + }, + { + "start": 18652.4, + "end": 18652.88, + "probability": 0.6819 + }, + { + "start": 18653.1, + "end": 18654.58, + "probability": 0.9824 + }, + { + "start": 18655.72, + "end": 18657.0, + "probability": 0.9673 + }, + { + "start": 18657.66, + "end": 18659.4, + "probability": 0.9783 + }, + { + "start": 18659.5, + "end": 18661.56, + "probability": 0.9979 + }, + { + "start": 18662.14, + "end": 18664.18, + "probability": 0.9891 + }, + { + "start": 18664.36, + "end": 18665.4, + "probability": 0.7707 + }, + { + "start": 18665.6, + "end": 18666.39, + "probability": 0.9082 + }, + { + "start": 18667.32, + "end": 18668.63, + "probability": 0.7432 + }, + { + "start": 18669.64, + "end": 18672.04, + "probability": 0.9934 + }, + { + "start": 18672.72, + "end": 18676.62, + "probability": 0.7769 + }, + { + "start": 18677.62, + "end": 18680.56, + "probability": 0.9721 + }, + { + "start": 18680.68, + "end": 18682.92, + "probability": 0.9072 + }, + { + "start": 18684.44, + "end": 18686.9, + "probability": 0.9827 + }, + { + "start": 18687.82, + "end": 18689.32, + "probability": 0.8902 + }, + { + "start": 18689.92, + "end": 18691.64, + "probability": 0.9949 + }, + { + "start": 18692.72, + "end": 18694.36, + "probability": 0.6172 + }, + { + "start": 18695.1, + "end": 18695.78, + "probability": 0.5164 + }, + { + "start": 18697.02, + "end": 18699.9, + "probability": 0.4109 + }, + { + "start": 18700.76, + "end": 18701.22, + "probability": 0.6107 + }, + { + "start": 18702.1, + "end": 18702.88, + "probability": 0.7175 + }, + { + "start": 18703.66, + "end": 18704.66, + "probability": 0.4195 + }, + { + "start": 18704.66, + "end": 18710.16, + "probability": 0.9932 + }, + { + "start": 18710.7, + "end": 18711.62, + "probability": 0.9832 + }, + { + "start": 18712.0, + "end": 18714.48, + "probability": 0.936 + }, + { + "start": 18715.62, + "end": 18717.74, + "probability": 0.9793 + }, + { + "start": 18718.32, + "end": 18720.58, + "probability": 0.9824 + }, + { + "start": 18720.94, + "end": 18722.82, + "probability": 0.9565 + }, + { + "start": 18723.8, + "end": 18726.34, + "probability": 0.998 + }, + { + "start": 18726.54, + "end": 18727.16, + "probability": 0.6331 + }, + { + "start": 18727.38, + "end": 18728.66, + "probability": 0.394 + }, + { + "start": 18729.06, + "end": 18729.82, + "probability": 0.7725 + }, + { + "start": 18729.86, + "end": 18731.86, + "probability": 0.6676 + }, + { + "start": 18731.94, + "end": 18733.66, + "probability": 0.9241 + }, + { + "start": 18733.7, + "end": 18734.76, + "probability": 0.9391 + }, + { + "start": 18734.86, + "end": 18736.72, + "probability": 0.9785 + }, + { + "start": 18737.16, + "end": 18737.54, + "probability": 0.6609 + }, + { + "start": 18737.68, + "end": 18737.82, + "probability": 0.945 + }, + { + "start": 18737.82, + "end": 18738.1, + "probability": 0.8373 + }, + { + "start": 18738.62, + "end": 18739.5, + "probability": 0.8056 + }, + { + "start": 18740.52, + "end": 18742.1, + "probability": 0.6179 + }, + { + "start": 18742.1, + "end": 18742.46, + "probability": 0.1688 + }, + { + "start": 18742.6, + "end": 18743.98, + "probability": 0.9973 + }, + { + "start": 18744.08, + "end": 18746.7, + "probability": 0.973 + }, + { + "start": 18747.42, + "end": 18750.06, + "probability": 0.9777 + }, + { + "start": 18750.96, + "end": 18754.6, + "probability": 0.9623 + }, + { + "start": 18755.26, + "end": 18755.89, + "probability": 0.9626 + }, + { + "start": 18756.12, + "end": 18757.5, + "probability": 0.9951 + }, + { + "start": 18758.08, + "end": 18759.9, + "probability": 0.9298 + }, + { + "start": 18760.04, + "end": 18761.14, + "probability": 0.4393 + }, + { + "start": 18761.64, + "end": 18763.62, + "probability": 0.7476 + }, + { + "start": 18764.48, + "end": 18767.18, + "probability": 0.8953 + }, + { + "start": 18767.26, + "end": 18768.92, + "probability": 0.9806 + }, + { + "start": 18769.44, + "end": 18773.02, + "probability": 0.936 + }, + { + "start": 18773.06, + "end": 18773.24, + "probability": 0.7542 + }, + { + "start": 18773.64, + "end": 18774.5, + "probability": 0.9542 + }, + { + "start": 18775.38, + "end": 18779.9, + "probability": 0.9106 + }, + { + "start": 18780.72, + "end": 18782.14, + "probability": 0.7837 + }, + { + "start": 18783.6, + "end": 18788.14, + "probability": 0.9984 + }, + { + "start": 18788.26, + "end": 18789.42, + "probability": 0.7681 + }, + { + "start": 18790.22, + "end": 18791.44, + "probability": 0.916 + }, + { + "start": 18791.94, + "end": 18792.96, + "probability": 0.9818 + }, + { + "start": 18794.06, + "end": 18795.29, + "probability": 0.812 + }, + { + "start": 18796.3, + "end": 18797.71, + "probability": 0.9219 + }, + { + "start": 18798.86, + "end": 18799.68, + "probability": 0.9255 + }, + { + "start": 18799.8, + "end": 18801.96, + "probability": 0.8925 + }, + { + "start": 18802.58, + "end": 18804.94, + "probability": 0.8821 + }, + { + "start": 18805.06, + "end": 18807.76, + "probability": 0.804 + }, + { + "start": 18808.62, + "end": 18810.6, + "probability": 0.9971 + }, + { + "start": 18811.52, + "end": 18812.94, + "probability": 0.9686 + }, + { + "start": 18813.3, + "end": 18816.3, + "probability": 0.9418 + }, + { + "start": 18816.62, + "end": 18818.21, + "probability": 0.8793 + }, + { + "start": 18818.32, + "end": 18820.54, + "probability": 0.9891 + }, + { + "start": 18821.08, + "end": 18823.1, + "probability": 0.6642 + }, + { + "start": 18823.92, + "end": 18824.48, + "probability": 0.9344 + }, + { + "start": 18824.58, + "end": 18827.24, + "probability": 0.9806 + }, + { + "start": 18827.32, + "end": 18827.72, + "probability": 0.5055 + }, + { + "start": 18828.58, + "end": 18829.82, + "probability": 0.7732 + }, + { + "start": 18831.7, + "end": 18832.46, + "probability": 0.7586 + }, + { + "start": 18832.58, + "end": 18834.28, + "probability": 0.9614 + }, + { + "start": 18834.32, + "end": 18834.54, + "probability": 0.1559 + }, + { + "start": 18834.6, + "end": 18837.28, + "probability": 0.7791 + }, + { + "start": 18838.02, + "end": 18840.7, + "probability": 0.9803 + }, + { + "start": 18841.48, + "end": 18844.72, + "probability": 0.9883 + }, + { + "start": 18845.88, + "end": 18849.54, + "probability": 0.9517 + }, + { + "start": 18850.16, + "end": 18854.58, + "probability": 0.9683 + }, + { + "start": 18855.04, + "end": 18859.12, + "probability": 0.998 + }, + { + "start": 18859.48, + "end": 18863.5, + "probability": 0.8427 + }, + { + "start": 18863.84, + "end": 18866.12, + "probability": 0.9905 + }, + { + "start": 18866.34, + "end": 18866.72, + "probability": 0.8271 + }, + { + "start": 18867.08, + "end": 18869.12, + "probability": 0.6565 + }, + { + "start": 18869.66, + "end": 18874.72, + "probability": 0.9808 + }, + { + "start": 18875.14, + "end": 18877.88, + "probability": 0.6292 + }, + { + "start": 18880.86, + "end": 18881.22, + "probability": 0.734 + }, + { + "start": 18902.58, + "end": 18903.98, + "probability": 0.6849 + }, + { + "start": 18906.94, + "end": 18908.54, + "probability": 0.6042 + }, + { + "start": 18911.12, + "end": 18912.24, + "probability": 0.9958 + }, + { + "start": 18914.72, + "end": 18918.14, + "probability": 0.7905 + }, + { + "start": 18919.02, + "end": 18919.82, + "probability": 0.9557 + }, + { + "start": 18921.22, + "end": 18922.04, + "probability": 0.7959 + }, + { + "start": 18923.02, + "end": 18924.64, + "probability": 0.5678 + }, + { + "start": 18925.84, + "end": 18928.54, + "probability": 0.843 + }, + { + "start": 18929.48, + "end": 18935.59, + "probability": 0.9756 + }, + { + "start": 18936.14, + "end": 18938.73, + "probability": 0.8017 + }, + { + "start": 18939.4, + "end": 18940.1, + "probability": 0.8098 + }, + { + "start": 18943.0, + "end": 18943.4, + "probability": 0.7934 + }, + { + "start": 18944.76, + "end": 18945.18, + "probability": 0.5134 + }, + { + "start": 18946.16, + "end": 18949.12, + "probability": 0.9342 + }, + { + "start": 18950.36, + "end": 18951.02, + "probability": 0.8085 + }, + { + "start": 18952.7, + "end": 18954.76, + "probability": 0.6728 + }, + { + "start": 18955.6, + "end": 18961.4, + "probability": 0.8698 + }, + { + "start": 18962.52, + "end": 18964.12, + "probability": 0.7727 + }, + { + "start": 18965.6, + "end": 18968.16, + "probability": 0.9943 + }, + { + "start": 18969.7, + "end": 18974.86, + "probability": 0.7724 + }, + { + "start": 18975.52, + "end": 18976.7, + "probability": 0.9862 + }, + { + "start": 18977.42, + "end": 18980.78, + "probability": 0.9649 + }, + { + "start": 18984.0, + "end": 18984.58, + "probability": 0.5953 + }, + { + "start": 18986.1, + "end": 18990.28, + "probability": 0.8886 + }, + { + "start": 18991.44, + "end": 18993.1, + "probability": 0.724 + }, + { + "start": 18993.82, + "end": 18996.16, + "probability": 0.946 + }, + { + "start": 18997.14, + "end": 19003.9, + "probability": 0.9827 + }, + { + "start": 19004.49, + "end": 19008.24, + "probability": 0.9984 + }, + { + "start": 19008.92, + "end": 19009.8, + "probability": 0.9719 + }, + { + "start": 19010.52, + "end": 19012.26, + "probability": 0.9188 + }, + { + "start": 19014.6, + "end": 19021.08, + "probability": 0.9974 + }, + { + "start": 19022.24, + "end": 19023.58, + "probability": 0.7653 + }, + { + "start": 19024.64, + "end": 19025.8, + "probability": 0.9499 + }, + { + "start": 19026.5, + "end": 19027.58, + "probability": 0.9963 + }, + { + "start": 19028.62, + "end": 19034.06, + "probability": 0.9929 + }, + { + "start": 19034.68, + "end": 19036.8, + "probability": 0.9301 + }, + { + "start": 19038.3, + "end": 19046.0, + "probability": 0.9538 + }, + { + "start": 19046.44, + "end": 19049.38, + "probability": 0.9197 + }, + { + "start": 19050.02, + "end": 19050.88, + "probability": 0.6395 + }, + { + "start": 19051.78, + "end": 19053.86, + "probability": 0.8577 + }, + { + "start": 19054.5, + "end": 19055.16, + "probability": 0.6643 + }, + { + "start": 19056.0, + "end": 19056.58, + "probability": 0.8913 + }, + { + "start": 19057.76, + "end": 19064.66, + "probability": 0.972 + }, + { + "start": 19064.66, + "end": 19069.28, + "probability": 0.8423 + }, + { + "start": 19069.98, + "end": 19070.6, + "probability": 0.5574 + }, + { + "start": 19071.32, + "end": 19073.14, + "probability": 0.9836 + }, + { + "start": 19073.72, + "end": 19075.79, + "probability": 0.9897 + }, + { + "start": 19076.94, + "end": 19082.3, + "probability": 0.9646 + }, + { + "start": 19082.38, + "end": 19083.52, + "probability": 0.985 + }, + { + "start": 19085.42, + "end": 19090.0, + "probability": 0.9694 + }, + { + "start": 19090.98, + "end": 19095.6, + "probability": 0.7569 + }, + { + "start": 19096.24, + "end": 19099.2, + "probability": 0.9652 + }, + { + "start": 19100.26, + "end": 19101.3, + "probability": 0.5597 + }, + { + "start": 19101.4, + "end": 19103.58, + "probability": 0.9922 + }, + { + "start": 19104.14, + "end": 19105.86, + "probability": 0.643 + }, + { + "start": 19106.38, + "end": 19109.72, + "probability": 0.6725 + }, + { + "start": 19110.72, + "end": 19113.68, + "probability": 0.9382 + }, + { + "start": 19114.68, + "end": 19117.82, + "probability": 0.8951 + }, + { + "start": 19118.82, + "end": 19119.22, + "probability": 0.9954 + }, + { + "start": 19120.0, + "end": 19121.76, + "probability": 0.8173 + }, + { + "start": 19123.1, + "end": 19123.74, + "probability": 0.3736 + }, + { + "start": 19124.34, + "end": 19126.88, + "probability": 0.8847 + }, + { + "start": 19127.42, + "end": 19132.15, + "probability": 0.9304 + }, + { + "start": 19133.56, + "end": 19139.1, + "probability": 0.978 + }, + { + "start": 19140.26, + "end": 19140.72, + "probability": 0.9069 + }, + { + "start": 19141.38, + "end": 19142.14, + "probability": 0.7914 + }, + { + "start": 19142.82, + "end": 19145.4, + "probability": 0.8903 + }, + { + "start": 19145.88, + "end": 19147.22, + "probability": 0.9871 + }, + { + "start": 19148.08, + "end": 19150.46, + "probability": 0.8833 + }, + { + "start": 19151.08, + "end": 19153.24, + "probability": 0.7178 + }, + { + "start": 19154.04, + "end": 19154.96, + "probability": 0.8438 + }, + { + "start": 19156.48, + "end": 19158.48, + "probability": 0.8559 + }, + { + "start": 19160.3, + "end": 19162.26, + "probability": 0.8635 + }, + { + "start": 19163.26, + "end": 19166.62, + "probability": 0.9928 + }, + { + "start": 19167.7, + "end": 19171.02, + "probability": 0.9706 + }, + { + "start": 19171.22, + "end": 19173.86, + "probability": 0.9521 + }, + { + "start": 19174.06, + "end": 19176.46, + "probability": 0.901 + }, + { + "start": 19177.06, + "end": 19177.84, + "probability": 0.8372 + }, + { + "start": 19178.5, + "end": 19181.86, + "probability": 0.9581 + }, + { + "start": 19182.44, + "end": 19186.06, + "probability": 0.9302 + }, + { + "start": 19186.84, + "end": 19189.72, + "probability": 0.9783 + }, + { + "start": 19190.56, + "end": 19197.42, + "probability": 0.9586 + }, + { + "start": 19198.52, + "end": 19199.92, + "probability": 0.9018 + }, + { + "start": 19200.52, + "end": 19201.22, + "probability": 0.3808 + }, + { + "start": 19201.74, + "end": 19203.66, + "probability": 0.9731 + }, + { + "start": 19204.2, + "end": 19205.42, + "probability": 0.9872 + }, + { + "start": 19205.96, + "end": 19209.26, + "probability": 0.9521 + }, + { + "start": 19209.38, + "end": 19212.9, + "probability": 0.7827 + }, + { + "start": 19213.22, + "end": 19216.76, + "probability": 0.9255 + }, + { + "start": 19217.46, + "end": 19218.82, + "probability": 0.8946 + }, + { + "start": 19219.42, + "end": 19225.08, + "probability": 0.9846 + }, + { + "start": 19225.74, + "end": 19230.54, + "probability": 0.9005 + }, + { + "start": 19231.32, + "end": 19232.59, + "probability": 0.8072 + }, + { + "start": 19233.32, + "end": 19239.46, + "probability": 0.9377 + }, + { + "start": 19240.42, + "end": 19245.16, + "probability": 0.8935 + }, + { + "start": 19245.94, + "end": 19247.72, + "probability": 0.7961 + }, + { + "start": 19248.5, + "end": 19252.5, + "probability": 0.9604 + }, + { + "start": 19252.98, + "end": 19254.72, + "probability": 0.9291 + }, + { + "start": 19255.3, + "end": 19256.28, + "probability": 0.7791 + }, + { + "start": 19256.88, + "end": 19257.8, + "probability": 0.9563 + }, + { + "start": 19258.64, + "end": 19262.18, + "probability": 0.8785 + }, + { + "start": 19263.0, + "end": 19264.14, + "probability": 0.9229 + }, + { + "start": 19264.8, + "end": 19265.84, + "probability": 0.6338 + }, + { + "start": 19266.38, + "end": 19271.88, + "probability": 0.9717 + }, + { + "start": 19272.84, + "end": 19277.14, + "probability": 0.898 + }, + { + "start": 19277.74, + "end": 19278.62, + "probability": 0.6591 + }, + { + "start": 19279.26, + "end": 19282.66, + "probability": 0.9873 + }, + { + "start": 19285.46, + "end": 19288.56, + "probability": 0.874 + }, + { + "start": 19289.38, + "end": 19295.24, + "probability": 0.9276 + }, + { + "start": 19296.62, + "end": 19297.6, + "probability": 0.9559 + }, + { + "start": 19297.68, + "end": 19302.67, + "probability": 0.9901 + }, + { + "start": 19303.06, + "end": 19305.11, + "probability": 0.8549 + }, + { + "start": 19305.98, + "end": 19307.44, + "probability": 0.9518 + }, + { + "start": 19308.54, + "end": 19314.34, + "probability": 0.949 + }, + { + "start": 19314.42, + "end": 19316.66, + "probability": 0.4971 + }, + { + "start": 19317.08, + "end": 19319.4, + "probability": 0.9097 + }, + { + "start": 19320.08, + "end": 19320.81, + "probability": 0.4778 + }, + { + "start": 19321.22, + "end": 19321.54, + "probability": 0.5566 + }, + { + "start": 19322.06, + "end": 19325.58, + "probability": 0.9976 + }, + { + "start": 19326.24, + "end": 19328.24, + "probability": 0.9976 + }, + { + "start": 19328.86, + "end": 19333.98, + "probability": 0.9101 + }, + { + "start": 19334.54, + "end": 19337.44, + "probability": 0.8998 + }, + { + "start": 19338.1, + "end": 19340.88, + "probability": 0.9925 + }, + { + "start": 19341.1, + "end": 19344.88, + "probability": 0.9595 + }, + { + "start": 19344.88, + "end": 19348.74, + "probability": 0.9305 + }, + { + "start": 19348.92, + "end": 19353.42, + "probability": 0.9363 + }, + { + "start": 19354.56, + "end": 19355.46, + "probability": 0.8459 + }, + { + "start": 19356.64, + "end": 19357.39, + "probability": 0.985 + }, + { + "start": 19358.72, + "end": 19360.42, + "probability": 0.9796 + }, + { + "start": 19361.88, + "end": 19365.74, + "probability": 0.7806 + }, + { + "start": 19366.78, + "end": 19369.18, + "probability": 0.9891 + }, + { + "start": 19371.44, + "end": 19375.02, + "probability": 0.9814 + }, + { + "start": 19375.56, + "end": 19376.54, + "probability": 0.986 + }, + { + "start": 19377.24, + "end": 19378.5, + "probability": 0.9971 + }, + { + "start": 19379.96, + "end": 19382.74, + "probability": 0.5581 + }, + { + "start": 19383.78, + "end": 19386.98, + "probability": 0.7241 + }, + { + "start": 19388.12, + "end": 19390.18, + "probability": 0.9142 + }, + { + "start": 19392.7, + "end": 19399.48, + "probability": 0.869 + }, + { + "start": 19400.8, + "end": 19405.4, + "probability": 0.9772 + }, + { + "start": 19405.52, + "end": 19408.08, + "probability": 0.6431 + }, + { + "start": 19408.78, + "end": 19409.76, + "probability": 0.605 + }, + { + "start": 19411.16, + "end": 19411.96, + "probability": 0.7914 + }, + { + "start": 19412.86, + "end": 19415.08, + "probability": 0.8464 + }, + { + "start": 19416.2, + "end": 19419.8, + "probability": 0.9764 + }, + { + "start": 19420.62, + "end": 19421.73, + "probability": 0.9338 + }, + { + "start": 19422.7, + "end": 19424.06, + "probability": 0.973 + }, + { + "start": 19426.2, + "end": 19428.48, + "probability": 0.7394 + }, + { + "start": 19429.24, + "end": 19429.88, + "probability": 0.4568 + }, + { + "start": 19431.08, + "end": 19432.04, + "probability": 0.9647 + }, + { + "start": 19433.8, + "end": 19438.88, + "probability": 0.906 + }, + { + "start": 19439.62, + "end": 19441.62, + "probability": 0.9569 + }, + { + "start": 19442.64, + "end": 19443.14, + "probability": 0.9011 + }, + { + "start": 19444.22, + "end": 19446.86, + "probability": 0.9765 + }, + { + "start": 19447.4, + "end": 19449.74, + "probability": 0.9468 + }, + { + "start": 19450.54, + "end": 19454.4, + "probability": 0.6983 + }, + { + "start": 19455.24, + "end": 19456.3, + "probability": 0.7563 + }, + { + "start": 19456.54, + "end": 19464.06, + "probability": 0.8335 + }, + { + "start": 19465.32, + "end": 19466.48, + "probability": 0.9838 + }, + { + "start": 19468.32, + "end": 19469.0, + "probability": 0.5583 + }, + { + "start": 19470.12, + "end": 19473.2, + "probability": 0.987 + }, + { + "start": 19474.22, + "end": 19478.36, + "probability": 0.955 + }, + { + "start": 19479.42, + "end": 19483.54, + "probability": 0.9735 + }, + { + "start": 19484.4, + "end": 19484.74, + "probability": 0.8942 + }, + { + "start": 19486.48, + "end": 19487.5, + "probability": 0.6743 + }, + { + "start": 19487.77, + "end": 19490.5, + "probability": 0.0507 + }, + { + "start": 19490.54, + "end": 19492.3, + "probability": 0.1574 + }, + { + "start": 19493.1, + "end": 19495.6, + "probability": 0.8569 + }, + { + "start": 19495.86, + "end": 19499.96, + "probability": 0.5864 + }, + { + "start": 19500.62, + "end": 19503.88, + "probability": 0.6584 + }, + { + "start": 19504.24, + "end": 19505.44, + "probability": 0.6747 + }, + { + "start": 19505.46, + "end": 19505.94, + "probability": 0.4151 + }, + { + "start": 19506.16, + "end": 19506.96, + "probability": 0.3613 + }, + { + "start": 19507.24, + "end": 19509.57, + "probability": 0.5803 + }, + { + "start": 19509.72, + "end": 19510.42, + "probability": 0.6291 + }, + { + "start": 19510.94, + "end": 19511.73, + "probability": 0.8708 + }, + { + "start": 19512.22, + "end": 19515.52, + "probability": 0.3318 + }, + { + "start": 19516.06, + "end": 19517.12, + "probability": 0.9614 + }, + { + "start": 19517.6, + "end": 19519.38, + "probability": 0.9655 + }, + { + "start": 19519.54, + "end": 19520.88, + "probability": 0.9946 + }, + { + "start": 19521.52, + "end": 19523.24, + "probability": 0.5373 + }, + { + "start": 19523.96, + "end": 19528.94, + "probability": 0.8086 + }, + { + "start": 19529.58, + "end": 19531.72, + "probability": 0.785 + }, + { + "start": 19532.38, + "end": 19535.35, + "probability": 0.9191 + }, + { + "start": 19535.56, + "end": 19536.74, + "probability": 0.7405 + }, + { + "start": 19538.88, + "end": 19540.6, + "probability": 0.9519 + }, + { + "start": 19540.64, + "end": 19546.18, + "probability": 0.7565 + }, + { + "start": 19547.4, + "end": 19547.52, + "probability": 0.7915 + }, + { + "start": 19549.6, + "end": 19550.44, + "probability": 0.9532 + }, + { + "start": 19551.02, + "end": 19554.46, + "probability": 0.9347 + }, + { + "start": 19554.62, + "end": 19555.38, + "probability": 0.8804 + }, + { + "start": 19556.2, + "end": 19557.32, + "probability": 0.9119 + }, + { + "start": 19557.98, + "end": 19562.9, + "probability": 0.9746 + }, + { + "start": 19563.36, + "end": 19565.58, + "probability": 0.6066 + }, + { + "start": 19565.66, + "end": 19567.46, + "probability": 0.595 + }, + { + "start": 19567.78, + "end": 19568.98, + "probability": 0.8411 + }, + { + "start": 19569.52, + "end": 19573.04, + "probability": 0.9038 + }, + { + "start": 19573.18, + "end": 19577.36, + "probability": 0.8932 + }, + { + "start": 19577.46, + "end": 19578.5, + "probability": 0.9019 + }, + { + "start": 19579.08, + "end": 19582.38, + "probability": 0.3395 + }, + { + "start": 19582.52, + "end": 19583.02, + "probability": 0.6834 + }, + { + "start": 19583.86, + "end": 19587.04, + "probability": 0.4794 + }, + { + "start": 19588.0, + "end": 19589.54, + "probability": 0.6324 + }, + { + "start": 19589.88, + "end": 19590.64, + "probability": 0.4311 + }, + { + "start": 19590.9, + "end": 19592.24, + "probability": 0.6846 + }, + { + "start": 19592.68, + "end": 19594.2, + "probability": 0.6182 + }, + { + "start": 19594.2, + "end": 19597.94, + "probability": 0.8253 + }, + { + "start": 19597.96, + "end": 19599.08, + "probability": 0.885 + }, + { + "start": 19599.56, + "end": 19602.62, + "probability": 0.8099 + }, + { + "start": 19603.12, + "end": 19605.36, + "probability": 0.9798 + }, + { + "start": 19605.5, + "end": 19607.48, + "probability": 0.775 + }, + { + "start": 19607.6, + "end": 19609.08, + "probability": 0.972 + }, + { + "start": 19610.1, + "end": 19613.72, + "probability": 0.9253 + }, + { + "start": 19613.82, + "end": 19617.66, + "probability": 0.0694 + }, + { + "start": 19617.9, + "end": 19618.02, + "probability": 0.4664 + }, + { + "start": 19618.6, + "end": 19619.82, + "probability": 0.9259 + }, + { + "start": 19622.22, + "end": 19623.5, + "probability": 0.4886 + }, + { + "start": 19633.74, + "end": 19636.86, + "probability": 0.4795 + }, + { + "start": 19637.54, + "end": 19638.84, + "probability": 0.9919 + }, + { + "start": 19639.46, + "end": 19640.22, + "probability": 0.8119 + }, + { + "start": 19641.24, + "end": 19642.2, + "probability": 0.7504 + }, + { + "start": 19642.38, + "end": 19643.18, + "probability": 0.8699 + }, + { + "start": 19643.4, + "end": 19644.04, + "probability": 0.7081 + }, + { + "start": 19644.36, + "end": 19647.38, + "probability": 0.9966 + }, + { + "start": 19647.86, + "end": 19648.92, + "probability": 0.7657 + }, + { + "start": 19649.18, + "end": 19652.46, + "probability": 0.8326 + }, + { + "start": 19652.96, + "end": 19655.84, + "probability": 0.2583 + }, + { + "start": 19656.12, + "end": 19659.54, + "probability": 0.8171 + }, + { + "start": 19660.14, + "end": 19664.38, + "probability": 0.9831 + }, + { + "start": 19665.2, + "end": 19668.32, + "probability": 0.9772 + }, + { + "start": 19672.04, + "end": 19674.06, + "probability": 0.9023 + }, + { + "start": 19674.72, + "end": 19675.64, + "probability": 0.7418 + }, + { + "start": 19676.28, + "end": 19678.82, + "probability": 0.9713 + }, + { + "start": 19678.9, + "end": 19680.24, + "probability": 0.978 + }, + { + "start": 19681.92, + "end": 19685.76, + "probability": 0.9189 + }, + { + "start": 19687.36, + "end": 19689.28, + "probability": 0.9766 + }, + { + "start": 19690.34, + "end": 19691.44, + "probability": 0.8898 + }, + { + "start": 19692.52, + "end": 19700.14, + "probability": 0.8632 + }, + { + "start": 19700.78, + "end": 19702.8, + "probability": 0.9792 + }, + { + "start": 19703.28, + "end": 19703.96, + "probability": 0.7993 + }, + { + "start": 19704.1, + "end": 19704.94, + "probability": 0.707 + }, + { + "start": 19705.94, + "end": 19710.64, + "probability": 0.9128 + }, + { + "start": 19711.28, + "end": 19712.62, + "probability": 0.628 + }, + { + "start": 19713.16, + "end": 19714.28, + "probability": 0.9178 + }, + { + "start": 19714.96, + "end": 19716.08, + "probability": 0.697 + }, + { + "start": 19716.42, + "end": 19718.68, + "probability": 0.9946 + }, + { + "start": 19719.46, + "end": 19720.87, + "probability": 0.9246 + }, + { + "start": 19722.26, + "end": 19725.22, + "probability": 0.9873 + }, + { + "start": 19726.14, + "end": 19730.78, + "probability": 0.9869 + }, + { + "start": 19731.58, + "end": 19732.82, + "probability": 0.9746 + }, + { + "start": 19733.34, + "end": 19735.74, + "probability": 0.9691 + }, + { + "start": 19736.42, + "end": 19741.94, + "probability": 0.9607 + }, + { + "start": 19743.14, + "end": 19744.26, + "probability": 0.9741 + }, + { + "start": 19745.18, + "end": 19750.84, + "probability": 0.9065 + }, + { + "start": 19751.42, + "end": 19753.26, + "probability": 0.9487 + }, + { + "start": 19754.32, + "end": 19756.04, + "probability": 0.8596 + }, + { + "start": 19757.0, + "end": 19761.18, + "probability": 0.9112 + }, + { + "start": 19761.92, + "end": 19765.32, + "probability": 0.8956 + }, + { + "start": 19765.84, + "end": 19766.54, + "probability": 0.8064 + }, + { + "start": 19767.06, + "end": 19769.76, + "probability": 0.579 + }, + { + "start": 19770.48, + "end": 19775.96, + "probability": 0.9962 + }, + { + "start": 19777.08, + "end": 19780.66, + "probability": 0.7242 + }, + { + "start": 19781.68, + "end": 19784.18, + "probability": 0.8472 + }, + { + "start": 19784.88, + "end": 19790.02, + "probability": 0.8796 + }, + { + "start": 19790.68, + "end": 19791.86, + "probability": 0.9538 + }, + { + "start": 19792.89, + "end": 19795.96, + "probability": 0.8624 + }, + { + "start": 19796.72, + "end": 19799.02, + "probability": 0.704 + }, + { + "start": 19799.64, + "end": 19800.6, + "probability": 0.9333 + }, + { + "start": 19801.22, + "end": 19803.01, + "probability": 0.6031 + }, + { + "start": 19805.34, + "end": 19809.62, + "probability": 0.6882 + }, + { + "start": 19810.62, + "end": 19813.24, + "probability": 0.8442 + }, + { + "start": 19814.36, + "end": 19815.16, + "probability": 0.9561 + }, + { + "start": 19815.84, + "end": 19816.4, + "probability": 0.8106 + }, + { + "start": 19817.72, + "end": 19818.7, + "probability": 0.9822 + }, + { + "start": 19819.96, + "end": 19821.52, + "probability": 0.816 + }, + { + "start": 19822.2, + "end": 19826.94, + "probability": 0.9647 + }, + { + "start": 19827.7, + "end": 19829.0, + "probability": 0.9642 + }, + { + "start": 19830.24, + "end": 19831.56, + "probability": 0.8793 + }, + { + "start": 19831.72, + "end": 19833.54, + "probability": 0.7876 + }, + { + "start": 19833.72, + "end": 19834.98, + "probability": 0.7654 + }, + { + "start": 19835.7, + "end": 19838.46, + "probability": 0.9393 + }, + { + "start": 19839.62, + "end": 19840.72, + "probability": 0.8282 + }, + { + "start": 19842.26, + "end": 19843.4, + "probability": 0.8254 + }, + { + "start": 19844.98, + "end": 19849.46, + "probability": 0.8506 + }, + { + "start": 19850.42, + "end": 19854.54, + "probability": 0.9153 + }, + { + "start": 19856.12, + "end": 19861.18, + "probability": 0.7955 + }, + { + "start": 19863.02, + "end": 19863.72, + "probability": 0.8981 + }, + { + "start": 19864.9, + "end": 19866.6, + "probability": 0.8776 + }, + { + "start": 19867.74, + "end": 19869.0, + "probability": 0.6646 + }, + { + "start": 19870.76, + "end": 19871.7, + "probability": 0.8103 + }, + { + "start": 19872.7, + "end": 19873.72, + "probability": 0.8562 + }, + { + "start": 19874.62, + "end": 19878.26, + "probability": 0.9544 + }, + { + "start": 19879.44, + "end": 19882.08, + "probability": 0.8892 + }, + { + "start": 19882.5, + "end": 19883.46, + "probability": 0.5391 + }, + { + "start": 19883.96, + "end": 19889.48, + "probability": 0.9907 + }, + { + "start": 19890.1, + "end": 19891.34, + "probability": 0.8098 + }, + { + "start": 19892.16, + "end": 19892.78, + "probability": 0.5706 + }, + { + "start": 19893.32, + "end": 19897.36, + "probability": 0.8723 + }, + { + "start": 19897.8, + "end": 19898.18, + "probability": 0.1634 + }, + { + "start": 19898.34, + "end": 19898.6, + "probability": 0.072 + }, + { + "start": 19898.6, + "end": 19907.32, + "probability": 0.9453 + }, + { + "start": 19908.12, + "end": 19909.2, + "probability": 0.694 + }, + { + "start": 19909.26, + "end": 19910.42, + "probability": 0.8532 + }, + { + "start": 19911.48, + "end": 19916.06, + "probability": 0.9988 + }, + { + "start": 19916.06, + "end": 19919.46, + "probability": 0.9985 + }, + { + "start": 19919.52, + "end": 19919.86, + "probability": 0.696 + }, + { + "start": 19919.98, + "end": 19920.38, + "probability": 0.9487 + }, + { + "start": 19920.84, + "end": 19922.06, + "probability": 0.8608 + }, + { + "start": 19922.54, + "end": 19927.32, + "probability": 0.979 + }, + { + "start": 19927.32, + "end": 19930.4, + "probability": 0.7287 + }, + { + "start": 19930.56, + "end": 19930.86, + "probability": 0.7407 + }, + { + "start": 19931.2, + "end": 19931.22, + "probability": 0.3739 + }, + { + "start": 19931.22, + "end": 19934.58, + "probability": 0.7421 + }, + { + "start": 19934.82, + "end": 19936.44, + "probability": 0.9482 + }, + { + "start": 19937.14, + "end": 19938.92, + "probability": 0.5696 + }, + { + "start": 19939.6, + "end": 19945.72, + "probability": 0.796 + }, + { + "start": 19947.2, + "end": 19948.98, + "probability": 0.8735 + }, + { + "start": 19950.14, + "end": 19954.44, + "probability": 0.9305 + }, + { + "start": 19954.92, + "end": 19958.28, + "probability": 0.9819 + }, + { + "start": 19958.44, + "end": 19958.76, + "probability": 0.5581 + }, + { + "start": 19959.18, + "end": 19960.06, + "probability": 0.6006 + }, + { + "start": 19960.06, + "end": 19960.4, + "probability": 0.3518 + }, + { + "start": 19960.58, + "end": 19963.3, + "probability": 0.8337 + }, + { + "start": 19963.3, + "end": 19966.4, + "probability": 0.7328 + }, + { + "start": 19966.46, + "end": 19966.68, + "probability": 0.8702 + }, + { + "start": 19967.62, + "end": 19969.42, + "probability": 0.7879 + }, + { + "start": 19969.6, + "end": 19971.42, + "probability": 0.8665 + }, + { + "start": 19972.0, + "end": 19975.7, + "probability": 0.7681 + }, + { + "start": 19976.14, + "end": 19976.94, + "probability": 0.8792 + }, + { + "start": 19977.56, + "end": 19979.18, + "probability": 0.6266 + }, + { + "start": 19979.76, + "end": 19979.9, + "probability": 0.6607 + }, + { + "start": 19983.82, + "end": 19985.32, + "probability": 0.1593 + }, + { + "start": 19999.3, + "end": 20001.95, + "probability": 0.5881 + }, + { + "start": 20004.67, + "end": 20007.76, + "probability": 0.538 + }, + { + "start": 20007.82, + "end": 20008.08, + "probability": 0.3951 + }, + { + "start": 20008.16, + "end": 20011.39, + "probability": 0.7631 + }, + { + "start": 20012.26, + "end": 20015.3, + "probability": 0.8878 + }, + { + "start": 20015.9, + "end": 20016.7, + "probability": 0.8185 + }, + { + "start": 20017.74, + "end": 20019.06, + "probability": 0.8011 + }, + { + "start": 20019.82, + "end": 20021.46, + "probability": 0.5746 + }, + { + "start": 20021.46, + "end": 20025.44, + "probability": 0.9617 + }, + { + "start": 20026.26, + "end": 20026.52, + "probability": 0.0016 + }, + { + "start": 20028.08, + "end": 20028.2, + "probability": 0.0993 + }, + { + "start": 20028.2, + "end": 20028.58, + "probability": 0.1746 + }, + { + "start": 20028.74, + "end": 20029.92, + "probability": 0.361 + }, + { + "start": 20029.92, + "end": 20030.88, + "probability": 0.6167 + }, + { + "start": 20031.0, + "end": 20031.0, + "probability": 0.5241 + }, + { + "start": 20031.42, + "end": 20033.9, + "probability": 0.8302 + }, + { + "start": 20034.86, + "end": 20037.56, + "probability": 0.8769 + }, + { + "start": 20038.2, + "end": 20039.84, + "probability": 0.5784 + }, + { + "start": 20047.84, + "end": 20048.42, + "probability": 0.6372 + }, + { + "start": 20049.34, + "end": 20050.66, + "probability": 0.5242 + }, + { + "start": 20064.6, + "end": 20065.64, + "probability": 0.5995 + }, + { + "start": 20067.32, + "end": 20070.3, + "probability": 0.8052 + }, + { + "start": 20075.22, + "end": 20076.28, + "probability": 0.5813 + }, + { + "start": 20079.24, + "end": 20081.29, + "probability": 0.9011 + }, + { + "start": 20083.66, + "end": 20088.4, + "probability": 0.9627 + }, + { + "start": 20090.04, + "end": 20091.78, + "probability": 0.6938 + }, + { + "start": 20092.86, + "end": 20095.28, + "probability": 0.9871 + }, + { + "start": 20097.06, + "end": 20098.88, + "probability": 0.7946 + }, + { + "start": 20101.2, + "end": 20103.46, + "probability": 0.8383 + }, + { + "start": 20104.84, + "end": 20105.54, + "probability": 0.6047 + }, + { + "start": 20106.94, + "end": 20107.66, + "probability": 0.9039 + }, + { + "start": 20111.32, + "end": 20114.52, + "probability": 0.9844 + }, + { + "start": 20114.52, + "end": 20117.84, + "probability": 0.9976 + }, + { + "start": 20119.32, + "end": 20120.46, + "probability": 0.9016 + }, + { + "start": 20122.04, + "end": 20123.86, + "probability": 0.9606 + }, + { + "start": 20124.08, + "end": 20124.56, + "probability": 0.8129 + }, + { + "start": 20124.62, + "end": 20126.96, + "probability": 0.9375 + }, + { + "start": 20127.78, + "end": 20128.22, + "probability": 0.9816 + }, + { + "start": 20131.24, + "end": 20134.66, + "probability": 0.9824 + }, + { + "start": 20136.76, + "end": 20137.91, + "probability": 0.9548 + }, + { + "start": 20139.08, + "end": 20142.48, + "probability": 0.9641 + }, + { + "start": 20144.04, + "end": 20145.2, + "probability": 0.83 + }, + { + "start": 20147.3, + "end": 20148.84, + "probability": 0.715 + }, + { + "start": 20149.4, + "end": 20150.38, + "probability": 0.8301 + }, + { + "start": 20152.42, + "end": 20155.58, + "probability": 0.9799 + }, + { + "start": 20157.4, + "end": 20158.2, + "probability": 0.9915 + }, + { + "start": 20159.32, + "end": 20162.56, + "probability": 0.745 + }, + { + "start": 20163.28, + "end": 20165.44, + "probability": 0.9088 + }, + { + "start": 20166.4, + "end": 20167.2, + "probability": 0.7508 + }, + { + "start": 20168.6, + "end": 20171.66, + "probability": 0.9796 + }, + { + "start": 20173.56, + "end": 20176.36, + "probability": 0.9964 + }, + { + "start": 20177.4, + "end": 20182.1, + "probability": 0.9556 + }, + { + "start": 20183.96, + "end": 20186.78, + "probability": 0.695 + }, + { + "start": 20188.46, + "end": 20190.14, + "probability": 0.6248 + }, + { + "start": 20191.42, + "end": 20194.06, + "probability": 0.9303 + }, + { + "start": 20194.54, + "end": 20195.3, + "probability": 0.737 + }, + { + "start": 20195.4, + "end": 20196.5, + "probability": 0.8967 + }, + { + "start": 20197.4, + "end": 20199.48, + "probability": 0.8495 + }, + { + "start": 20200.04, + "end": 20206.58, + "probability": 0.9212 + }, + { + "start": 20207.56, + "end": 20209.24, + "probability": 0.83 + }, + { + "start": 20209.88, + "end": 20211.48, + "probability": 0.5398 + }, + { + "start": 20212.66, + "end": 20212.92, + "probability": 0.6396 + }, + { + "start": 20215.26, + "end": 20216.28, + "probability": 0.9635 + }, + { + "start": 20217.4, + "end": 20220.36, + "probability": 0.9009 + }, + { + "start": 20223.36, + "end": 20226.06, + "probability": 0.9789 + }, + { + "start": 20227.14, + "end": 20227.38, + "probability": 0.9419 + }, + { + "start": 20230.1, + "end": 20231.04, + "probability": 0.9963 + }, + { + "start": 20232.7, + "end": 20237.2, + "probability": 0.9638 + }, + { + "start": 20239.24, + "end": 20241.2, + "probability": 0.8089 + }, + { + "start": 20241.58, + "end": 20243.7, + "probability": 0.9944 + }, + { + "start": 20243.8, + "end": 20244.96, + "probability": 0.6987 + }, + { + "start": 20245.02, + "end": 20246.66, + "probability": 0.9659 + }, + { + "start": 20248.08, + "end": 20248.64, + "probability": 0.9801 + }, + { + "start": 20249.6, + "end": 20250.42, + "probability": 0.5209 + }, + { + "start": 20252.7, + "end": 20255.1, + "probability": 0.7271 + }, + { + "start": 20256.62, + "end": 20258.1, + "probability": 0.7355 + }, + { + "start": 20259.72, + "end": 20261.33, + "probability": 0.9724 + }, + { + "start": 20262.18, + "end": 20264.12, + "probability": 0.8059 + }, + { + "start": 20264.5, + "end": 20264.68, + "probability": 0.9196 + }, + { + "start": 20265.78, + "end": 20268.1, + "probability": 0.6274 + }, + { + "start": 20268.14, + "end": 20269.56, + "probability": 0.7672 + }, + { + "start": 20270.28, + "end": 20272.7, + "probability": 0.8451 + }, + { + "start": 20273.98, + "end": 20276.01, + "probability": 0.8367 + }, + { + "start": 20276.54, + "end": 20279.4, + "probability": 0.9596 + }, + { + "start": 20280.86, + "end": 20281.36, + "probability": 0.9014 + }, + { + "start": 20282.32, + "end": 20284.32, + "probability": 0.7529 + }, + { + "start": 20284.94, + "end": 20286.06, + "probability": 0.8573 + }, + { + "start": 20286.14, + "end": 20286.78, + "probability": 0.8542 + }, + { + "start": 20286.8, + "end": 20287.82, + "probability": 0.6518 + }, + { + "start": 20288.22, + "end": 20295.9, + "probability": 0.9941 + }, + { + "start": 20296.9, + "end": 20299.52, + "probability": 0.88 + }, + { + "start": 20302.06, + "end": 20304.92, + "probability": 0.9849 + }, + { + "start": 20305.16, + "end": 20306.8, + "probability": 0.9837 + }, + { + "start": 20306.9, + "end": 20307.92, + "probability": 0.8659 + }, + { + "start": 20308.76, + "end": 20311.4, + "probability": 0.9249 + }, + { + "start": 20311.8, + "end": 20312.8, + "probability": 0.9794 + }, + { + "start": 20314.24, + "end": 20317.04, + "probability": 0.998 + }, + { + "start": 20317.1, + "end": 20317.88, + "probability": 0.9071 + }, + { + "start": 20318.0, + "end": 20319.2, + "probability": 0.8528 + }, + { + "start": 20319.24, + "end": 20320.56, + "probability": 0.9478 + }, + { + "start": 20320.8, + "end": 20323.08, + "probability": 0.9518 + }, + { + "start": 20323.7, + "end": 20326.08, + "probability": 0.9263 + }, + { + "start": 20326.86, + "end": 20329.92, + "probability": 0.9867 + }, + { + "start": 20330.36, + "end": 20335.34, + "probability": 0.9913 + }, + { + "start": 20336.02, + "end": 20339.14, + "probability": 0.92 + }, + { + "start": 20339.28, + "end": 20339.76, + "probability": 0.9616 + }, + { + "start": 20340.32, + "end": 20345.0, + "probability": 0.801 + }, + { + "start": 20345.6, + "end": 20348.86, + "probability": 0.9243 + }, + { + "start": 20350.2, + "end": 20352.2, + "probability": 0.9897 + }, + { + "start": 20352.42, + "end": 20353.74, + "probability": 0.8909 + }, + { + "start": 20353.98, + "end": 20354.94, + "probability": 0.8739 + }, + { + "start": 20355.06, + "end": 20357.42, + "probability": 0.9639 + }, + { + "start": 20359.28, + "end": 20360.34, + "probability": 0.9233 + }, + { + "start": 20361.5, + "end": 20361.5, + "probability": 0.1641 + }, + { + "start": 20361.5, + "end": 20364.2, + "probability": 0.8854 + }, + { + "start": 20365.24, + "end": 20370.96, + "probability": 0.9864 + }, + { + "start": 20371.08, + "end": 20373.08, + "probability": 0.8427 + }, + { + "start": 20373.7, + "end": 20375.28, + "probability": 0.9816 + }, + { + "start": 20375.66, + "end": 20376.52, + "probability": 0.9534 + }, + { + "start": 20377.82, + "end": 20379.02, + "probability": 0.8347 + }, + { + "start": 20379.3, + "end": 20385.46, + "probability": 0.9951 + }, + { + "start": 20386.72, + "end": 20388.38, + "probability": 0.9036 + }, + { + "start": 20388.8, + "end": 20394.46, + "probability": 0.9953 + }, + { + "start": 20395.3, + "end": 20399.16, + "probability": 0.9622 + }, + { + "start": 20399.32, + "end": 20400.54, + "probability": 0.7317 + }, + { + "start": 20400.72, + "end": 20401.52, + "probability": 0.7849 + }, + { + "start": 20403.91, + "end": 20406.86, + "probability": 0.7257 + }, + { + "start": 20407.58, + "end": 20412.02, + "probability": 0.9346 + }, + { + "start": 20412.68, + "end": 20414.04, + "probability": 0.936 + }, + { + "start": 20414.3, + "end": 20416.86, + "probability": 0.9497 + }, + { + "start": 20417.4, + "end": 20418.75, + "probability": 0.8018 + }, + { + "start": 20419.46, + "end": 20422.62, + "probability": 0.9676 + }, + { + "start": 20423.06, + "end": 20424.98, + "probability": 0.9617 + }, + { + "start": 20425.14, + "end": 20425.32, + "probability": 0.381 + }, + { + "start": 20425.32, + "end": 20426.64, + "probability": 0.9039 + }, + { + "start": 20427.08, + "end": 20431.88, + "probability": 0.9951 + }, + { + "start": 20431.88, + "end": 20435.2, + "probability": 0.964 + }, + { + "start": 20435.7, + "end": 20437.52, + "probability": 0.8545 + }, + { + "start": 20437.58, + "end": 20437.9, + "probability": 0.7184 + }, + { + "start": 20438.06, + "end": 20440.96, + "probability": 0.8976 + }, + { + "start": 20441.18, + "end": 20442.68, + "probability": 0.978 + }, + { + "start": 20443.72, + "end": 20445.98, + "probability": 0.9504 + }, + { + "start": 20446.12, + "end": 20447.58, + "probability": 0.9954 + }, + { + "start": 20447.62, + "end": 20448.86, + "probability": 0.8683 + }, + { + "start": 20448.94, + "end": 20451.96, + "probability": 0.7113 + }, + { + "start": 20452.38, + "end": 20454.0, + "probability": 0.8755 + }, + { + "start": 20454.64, + "end": 20455.7, + "probability": 0.9309 + }, + { + "start": 20456.22, + "end": 20458.14, + "probability": 0.996 + }, + { + "start": 20458.54, + "end": 20460.0, + "probability": 0.9868 + }, + { + "start": 20460.6, + "end": 20463.8, + "probability": 0.8719 + }, + { + "start": 20464.06, + "end": 20467.58, + "probability": 0.976 + }, + { + "start": 20468.56, + "end": 20470.94, + "probability": 0.8789 + }, + { + "start": 20471.16, + "end": 20473.98, + "probability": 0.6251 + }, + { + "start": 20474.34, + "end": 20475.28, + "probability": 0.6268 + }, + { + "start": 20475.84, + "end": 20477.6, + "probability": 0.9757 + }, + { + "start": 20477.98, + "end": 20480.76, + "probability": 0.9003 + }, + { + "start": 20481.12, + "end": 20488.1, + "probability": 0.9924 + }, + { + "start": 20488.76, + "end": 20489.36, + "probability": 0.8693 + }, + { + "start": 20490.18, + "end": 20491.5, + "probability": 0.9886 + }, + { + "start": 20492.3, + "end": 20495.52, + "probability": 0.9368 + }, + { + "start": 20496.04, + "end": 20498.4, + "probability": 0.931 + }, + { + "start": 20499.1, + "end": 20501.9, + "probability": 0.9114 + }, + { + "start": 20502.52, + "end": 20506.58, + "probability": 0.9301 + }, + { + "start": 20507.32, + "end": 20508.88, + "probability": 0.5623 + }, + { + "start": 20509.76, + "end": 20512.47, + "probability": 0.8979 + }, + { + "start": 20525.72, + "end": 20526.46, + "probability": 0.7208 + }, + { + "start": 20527.64, + "end": 20529.4, + "probability": 0.8365 + }, + { + "start": 20530.44, + "end": 20531.32, + "probability": 0.7808 + }, + { + "start": 20532.32, + "end": 20537.0, + "probability": 0.9905 + }, + { + "start": 20538.96, + "end": 20540.04, + "probability": 0.6256 + }, + { + "start": 20540.18, + "end": 20545.04, + "probability": 0.8271 + }, + { + "start": 20546.9, + "end": 20553.52, + "probability": 0.9939 + }, + { + "start": 20554.72, + "end": 20555.56, + "probability": 0.871 + }, + { + "start": 20556.4, + "end": 20558.3, + "probability": 0.9912 + }, + { + "start": 20558.78, + "end": 20560.2, + "probability": 0.8667 + }, + { + "start": 20560.4, + "end": 20560.88, + "probability": 0.6882 + }, + { + "start": 20561.24, + "end": 20566.84, + "probability": 0.8392 + }, + { + "start": 20567.0, + "end": 20567.6, + "probability": 0.7271 + }, + { + "start": 20568.86, + "end": 20571.04, + "probability": 0.7408 + }, + { + "start": 20571.9, + "end": 20573.26, + "probability": 0.974 + }, + { + "start": 20574.46, + "end": 20575.02, + "probability": 0.7792 + }, + { + "start": 20575.08, + "end": 20575.5, + "probability": 0.4806 + }, + { + "start": 20575.54, + "end": 20576.04, + "probability": 0.8403 + }, + { + "start": 20576.2, + "end": 20579.02, + "probability": 0.9919 + }, + { + "start": 20581.48, + "end": 20581.98, + "probability": 0.9243 + }, + { + "start": 20583.0, + "end": 20585.52, + "probability": 0.9255 + }, + { + "start": 20588.1, + "end": 20593.22, + "probability": 0.9837 + }, + { + "start": 20594.18, + "end": 20595.68, + "probability": 0.9946 + }, + { + "start": 20597.76, + "end": 20597.76, + "probability": 0.8281 + }, + { + "start": 20599.7, + "end": 20600.6, + "probability": 0.6389 + }, + { + "start": 20602.0, + "end": 20603.16, + "probability": 0.8313 + }, + { + "start": 20603.84, + "end": 20605.56, + "probability": 0.628 + }, + { + "start": 20606.79, + "end": 20608.86, + "probability": 0.5579 + }, + { + "start": 20609.62, + "end": 20609.76, + "probability": 0.1198 + }, + { + "start": 20610.64, + "end": 20612.66, + "probability": 0.9604 + }, + { + "start": 20613.24, + "end": 20617.26, + "probability": 0.8143 + }, + { + "start": 20619.52, + "end": 20622.36, + "probability": 0.9908 + }, + { + "start": 20623.86, + "end": 20626.32, + "probability": 0.7452 + }, + { + "start": 20626.7, + "end": 20627.69, + "probability": 0.9832 + }, + { + "start": 20631.52, + "end": 20635.48, + "probability": 0.9367 + }, + { + "start": 20636.48, + "end": 20637.32, + "probability": 0.9766 + }, + { + "start": 20639.32, + "end": 20639.9, + "probability": 0.4303 + }, + { + "start": 20641.2, + "end": 20643.9, + "probability": 0.9646 + }, + { + "start": 20645.2, + "end": 20646.9, + "probability": 0.8254 + }, + { + "start": 20649.12, + "end": 20650.16, + "probability": 0.5983 + }, + { + "start": 20650.26, + "end": 20655.1, + "probability": 0.9814 + }, + { + "start": 20656.26, + "end": 20656.98, + "probability": 0.9607 + }, + { + "start": 20658.4, + "end": 20659.36, + "probability": 0.7737 + }, + { + "start": 20663.5, + "end": 20667.42, + "probability": 0.9717 + }, + { + "start": 20668.2, + "end": 20670.7, + "probability": 0.8156 + }, + { + "start": 20671.14, + "end": 20673.38, + "probability": 0.9335 + }, + { + "start": 20674.4, + "end": 20675.18, + "probability": 0.8269 + }, + { + "start": 20677.44, + "end": 20678.02, + "probability": 0.7099 + }, + { + "start": 20679.4, + "end": 20681.18, + "probability": 0.9888 + }, + { + "start": 20681.72, + "end": 20682.06, + "probability": 0.7776 + }, + { + "start": 20683.88, + "end": 20684.88, + "probability": 0.8742 + }, + { + "start": 20686.84, + "end": 20688.02, + "probability": 0.8599 + }, + { + "start": 20688.66, + "end": 20690.2, + "probability": 0.9946 + }, + { + "start": 20693.22, + "end": 20693.7, + "probability": 0.6008 + }, + { + "start": 20695.22, + "end": 20697.7, + "probability": 0.8417 + }, + { + "start": 20701.56, + "end": 20702.48, + "probability": 0.9472 + }, + { + "start": 20703.28, + "end": 20705.64, + "probability": 0.9827 + }, + { + "start": 20707.02, + "end": 20707.5, + "probability": 0.5994 + }, + { + "start": 20709.76, + "end": 20711.98, + "probability": 0.9954 + }, + { + "start": 20712.7, + "end": 20714.74, + "probability": 0.9985 + }, + { + "start": 20715.34, + "end": 20718.06, + "probability": 0.953 + }, + { + "start": 20718.34, + "end": 20719.06, + "probability": 0.5641 + }, + { + "start": 20719.74, + "end": 20721.8, + "probability": 0.9634 + }, + { + "start": 20722.98, + "end": 20725.2, + "probability": 0.9389 + }, + { + "start": 20725.36, + "end": 20731.36, + "probability": 0.9675 + }, + { + "start": 20732.0, + "end": 20732.48, + "probability": 0.7952 + }, + { + "start": 20737.96, + "end": 20739.04, + "probability": 0.4267 + }, + { + "start": 20740.78, + "end": 20742.32, + "probability": 0.7573 + }, + { + "start": 20745.58, + "end": 20746.78, + "probability": 0.7736 + }, + { + "start": 20748.22, + "end": 20751.26, + "probability": 0.6465 + }, + { + "start": 20751.64, + "end": 20753.28, + "probability": 0.8931 + }, + { + "start": 20755.21, + "end": 20756.52, + "probability": 0.8223 + }, + { + "start": 20756.6, + "end": 20757.32, + "probability": 0.5384 + }, + { + "start": 20757.34, + "end": 20762.02, + "probability": 0.955 + }, + { + "start": 20762.74, + "end": 20763.32, + "probability": 0.0367 + }, + { + "start": 20763.84, + "end": 20765.58, + "probability": 0.0597 + }, + { + "start": 20766.3, + "end": 20768.02, + "probability": 0.947 + }, + { + "start": 20768.98, + "end": 20772.04, + "probability": 0.6375 + }, + { + "start": 20772.8, + "end": 20780.2, + "probability": 0.964 + }, + { + "start": 20781.0, + "end": 20784.17, + "probability": 0.867 + }, + { + "start": 20785.92, + "end": 20788.34, + "probability": 0.915 + }, + { + "start": 20788.34, + "end": 20790.73, + "probability": 0.9761 + }, + { + "start": 20791.3, + "end": 20794.74, + "probability": 0.8201 + }, + { + "start": 20795.5, + "end": 20798.34, + "probability": 0.9058 + }, + { + "start": 20800.06, + "end": 20802.92, + "probability": 0.7573 + }, + { + "start": 20803.7, + "end": 20804.96, + "probability": 0.8568 + }, + { + "start": 20805.62, + "end": 20806.46, + "probability": 0.5477 + }, + { + "start": 20807.02, + "end": 20808.6, + "probability": 0.7689 + }, + { + "start": 20808.7, + "end": 20813.16, + "probability": 0.4979 + }, + { + "start": 20814.12, + "end": 20815.84, + "probability": 0.9079 + }, + { + "start": 20816.52, + "end": 20819.28, + "probability": 0.7642 + }, + { + "start": 20820.06, + "end": 20821.46, + "probability": 0.7706 + }, + { + "start": 20822.98, + "end": 20825.32, + "probability": 0.9581 + }, + { + "start": 20825.36, + "end": 20825.78, + "probability": 0.331 + }, + { + "start": 20825.82, + "end": 20828.8, + "probability": 0.9164 + }, + { + "start": 20829.58, + "end": 20830.78, + "probability": 0.8592 + }, + { + "start": 20833.57, + "end": 20835.72, + "probability": 0.9343 + }, + { + "start": 20839.93, + "end": 20845.38, + "probability": 0.3361 + }, + { + "start": 20846.91, + "end": 20849.04, + "probability": 0.8924 + }, + { + "start": 20849.7, + "end": 20853.06, + "probability": 0.6695 + }, + { + "start": 20853.5, + "end": 20857.82, + "probability": 0.7913 + }, + { + "start": 20857.9, + "end": 20858.62, + "probability": 0.6356 + }, + { + "start": 20859.36, + "end": 20861.1, + "probability": 0.7658 + }, + { + "start": 20861.3, + "end": 20861.92, + "probability": 0.7141 + }, + { + "start": 20862.7, + "end": 20863.9, + "probability": 0.9176 + }, + { + "start": 20864.12, + "end": 20865.26, + "probability": 0.8907 + }, + { + "start": 20865.32, + "end": 20865.82, + "probability": 0.837 + }, + { + "start": 20865.94, + "end": 20867.88, + "probability": 0.9404 + }, + { + "start": 20869.76, + "end": 20872.04, + "probability": 0.8572 + }, + { + "start": 20872.2, + "end": 20875.08, + "probability": 0.8716 + }, + { + "start": 20876.48, + "end": 20879.18, + "probability": 0.7765 + }, + { + "start": 20879.18, + "end": 20882.22, + "probability": 0.817 + }, + { + "start": 20882.42, + "end": 20883.68, + "probability": 0.873 + }, + { + "start": 20884.34, + "end": 20886.0, + "probability": 0.1048 + }, + { + "start": 20886.92, + "end": 20889.3, + "probability": 0.7085 + }, + { + "start": 20889.71, + "end": 20892.62, + "probability": 0.931 + }, + { + "start": 20893.3, + "end": 20894.38, + "probability": 0.9822 + }, + { + "start": 20895.24, + "end": 20897.26, + "probability": 0.6242 + }, + { + "start": 20899.44, + "end": 20902.76, + "probability": 0.9311 + }, + { + "start": 20905.8, + "end": 20907.82, + "probability": 0.9453 + }, + { + "start": 20907.88, + "end": 20909.24, + "probability": 0.9837 + }, + { + "start": 20910.02, + "end": 20913.7, + "probability": 0.8944 + }, + { + "start": 20913.7, + "end": 20919.12, + "probability": 0.9595 + }, + { + "start": 20920.84, + "end": 20922.02, + "probability": 0.7773 + }, + { + "start": 20923.78, + "end": 20925.06, + "probability": 0.7381 + }, + { + "start": 20925.6, + "end": 20929.88, + "probability": 0.8779 + }, + { + "start": 20933.22, + "end": 20933.7, + "probability": 0.805 + }, + { + "start": 20934.1, + "end": 20935.06, + "probability": 0.5497 + }, + { + "start": 20935.06, + "end": 20935.77, + "probability": 0.9814 + }, + { + "start": 20935.92, + "end": 20939.18, + "probability": 0.8353 + }, + { + "start": 20939.9, + "end": 20942.18, + "probability": 0.9053 + }, + { + "start": 20943.77, + "end": 20943.84, + "probability": 0.0026 + }, + { + "start": 20943.84, + "end": 20944.72, + "probability": 0.5223 + }, + { + "start": 20945.06, + "end": 20947.84, + "probability": 0.6569 + }, + { + "start": 20948.72, + "end": 20951.62, + "probability": 0.7046 + }, + { + "start": 20953.0, + "end": 20954.06, + "probability": 0.4609 + }, + { + "start": 20954.24, + "end": 20955.66, + "probability": 0.9066 + }, + { + "start": 20956.26, + "end": 20957.82, + "probability": 0.7991 + }, + { + "start": 20957.96, + "end": 20959.18, + "probability": 0.5426 + }, + { + "start": 20959.26, + "end": 20962.25, + "probability": 0.8282 + }, + { + "start": 20962.96, + "end": 20963.54, + "probability": 0.5002 + }, + { + "start": 20963.68, + "end": 20964.89, + "probability": 0.9115 + }, + { + "start": 20965.06, + "end": 20967.7, + "probability": 0.9866 + }, + { + "start": 20968.68, + "end": 20971.18, + "probability": 0.9269 + }, + { + "start": 20971.44, + "end": 20973.1, + "probability": 0.8195 + }, + { + "start": 20973.8, + "end": 20974.64, + "probability": 0.9832 + }, + { + "start": 20974.74, + "end": 20976.92, + "probability": 0.9323 + }, + { + "start": 20977.56, + "end": 20978.28, + "probability": 0.5689 + }, + { + "start": 20978.5, + "end": 20980.44, + "probability": 0.8624 + }, + { + "start": 20980.6, + "end": 20981.9, + "probability": 0.5419 + }, + { + "start": 20981.98, + "end": 20983.62, + "probability": 0.8545 + }, + { + "start": 20984.38, + "end": 20985.44, + "probability": 0.834 + }, + { + "start": 20986.32, + "end": 20988.55, + "probability": 0.9946 + }, + { + "start": 20989.44, + "end": 20990.7, + "probability": 0.9517 + }, + { + "start": 20990.9, + "end": 20991.5, + "probability": 0.9194 + }, + { + "start": 20992.04, + "end": 20994.26, + "probability": 0.7938 + }, + { + "start": 20994.66, + "end": 20994.86, + "probability": 0.0302 + }, + { + "start": 20994.86, + "end": 20996.22, + "probability": 0.4974 + }, + { + "start": 20996.4, + "end": 20998.0, + "probability": 0.9963 + }, + { + "start": 20999.58, + "end": 20999.96, + "probability": 0.9197 + }, + { + "start": 21002.84, + "end": 21003.4, + "probability": 0.5242 + }, + { + "start": 21004.7, + "end": 21006.12, + "probability": 0.7272 + }, + { + "start": 21007.48, + "end": 21009.84, + "probability": 0.5343 + }, + { + "start": 21010.06, + "end": 21010.88, + "probability": 0.8261 + }, + { + "start": 21012.04, + "end": 21015.44, + "probability": 0.5836 + }, + { + "start": 21015.44, + "end": 21016.66, + "probability": 0.4828 + }, + { + "start": 21016.84, + "end": 21020.16, + "probability": 0.7995 + }, + { + "start": 21020.7, + "end": 21023.22, + "probability": 0.8901 + }, + { + "start": 21023.22, + "end": 21023.36, + "probability": 0.8524 + }, + { + "start": 21028.14, + "end": 21029.22, + "probability": 0.7606 + }, + { + "start": 21029.42, + "end": 21030.0, + "probability": 0.8987 + }, + { + "start": 21030.12, + "end": 21032.24, + "probability": 0.8248 + }, + { + "start": 21032.5, + "end": 21034.64, + "probability": 0.8893 + }, + { + "start": 21034.74, + "end": 21036.24, + "probability": 0.967 + }, + { + "start": 21036.96, + "end": 21042.42, + "probability": 0.9871 + }, + { + "start": 21043.34, + "end": 21046.98, + "probability": 0.9883 + }, + { + "start": 21047.18, + "end": 21050.14, + "probability": 0.7586 + }, + { + "start": 21051.82, + "end": 21056.6, + "probability": 0.9238 + }, + { + "start": 21057.46, + "end": 21059.16, + "probability": 0.937 + }, + { + "start": 21059.34, + "end": 21064.24, + "probability": 0.723 + }, + { + "start": 21064.36, + "end": 21064.56, + "probability": 0.6485 + }, + { + "start": 21064.64, + "end": 21067.26, + "probability": 0.9896 + }, + { + "start": 21068.52, + "end": 21069.46, + "probability": 0.7484 + }, + { + "start": 21069.6, + "end": 21071.7, + "probability": 0.9759 + }, + { + "start": 21071.72, + "end": 21073.36, + "probability": 0.651 + }, + { + "start": 21074.46, + "end": 21085.46, + "probability": 0.9875 + }, + { + "start": 21087.22, + "end": 21089.66, + "probability": 0.8046 + }, + { + "start": 21091.36, + "end": 21097.9, + "probability": 0.9399 + }, + { + "start": 21099.12, + "end": 21099.78, + "probability": 0.7692 + }, + { + "start": 21100.44, + "end": 21101.24, + "probability": 0.9983 + }, + { + "start": 21102.16, + "end": 21103.36, + "probability": 0.9971 + }, + { + "start": 21104.68, + "end": 21112.02, + "probability": 0.9946 + }, + { + "start": 21112.94, + "end": 21113.48, + "probability": 0.7832 + }, + { + "start": 21114.72, + "end": 21116.74, + "probability": 0.9613 + }, + { + "start": 21117.7, + "end": 21118.56, + "probability": 0.9666 + }, + { + "start": 21119.16, + "end": 21122.86, + "probability": 0.7054 + }, + { + "start": 21123.74, + "end": 21129.4, + "probability": 0.7987 + }, + { + "start": 21130.14, + "end": 21132.16, + "probability": 0.8257 + }, + { + "start": 21132.48, + "end": 21132.68, + "probability": 0.569 + }, + { + "start": 21132.82, + "end": 21134.26, + "probability": 0.6814 + }, + { + "start": 21134.26, + "end": 21136.46, + "probability": 0.7899 + }, + { + "start": 21136.96, + "end": 21137.78, + "probability": 0.9007 + }, + { + "start": 21137.8, + "end": 21140.92, + "probability": 0.9787 + }, + { + "start": 21141.3, + "end": 21141.98, + "probability": 0.9395 + }, + { + "start": 21142.38, + "end": 21144.34, + "probability": 0.9507 + }, + { + "start": 21144.7, + "end": 21146.38, + "probability": 0.7522 + }, + { + "start": 21147.12, + "end": 21152.26, + "probability": 0.1104 + }, + { + "start": 21157.9, + "end": 21157.98, + "probability": 0.0532 + }, + { + "start": 21168.14, + "end": 21170.38, + "probability": 0.6582 + }, + { + "start": 21170.48, + "end": 21174.34, + "probability": 0.5587 + }, + { + "start": 21183.82, + "end": 21185.28, + "probability": 0.8144 + }, + { + "start": 21185.94, + "end": 21189.0, + "probability": 0.8809 + }, + { + "start": 21189.64, + "end": 21191.88, + "probability": 0.9613 + }, + { + "start": 21192.38, + "end": 21194.83, + "probability": 0.7808 + }, + { + "start": 21195.74, + "end": 21197.42, + "probability": 0.1562 + }, + { + "start": 21199.48, + "end": 21199.48, + "probability": 0.0821 + }, + { + "start": 21199.48, + "end": 21199.48, + "probability": 0.016 + }, + { + "start": 21199.48, + "end": 21199.48, + "probability": 0.1149 + }, + { + "start": 21199.48, + "end": 21199.48, + "probability": 0.0394 + }, + { + "start": 21199.48, + "end": 21202.32, + "probability": 0.544 + }, + { + "start": 21204.64, + "end": 21206.74, + "probability": 0.5952 + }, + { + "start": 21207.34, + "end": 21211.02, + "probability": 0.7757 + }, + { + "start": 21211.3, + "end": 21212.56, + "probability": 0.4952 + }, + { + "start": 21213.12, + "end": 21214.3, + "probability": 0.8959 + }, + { + "start": 21219.54, + "end": 21221.04, + "probability": 0.6555 + }, + { + "start": 21226.82, + "end": 21227.42, + "probability": 0.4566 + }, + { + "start": 21227.62, + "end": 21230.74, + "probability": 0.7996 + }, + { + "start": 21231.96, + "end": 21238.9, + "probability": 0.9666 + }, + { + "start": 21239.78, + "end": 21242.92, + "probability": 0.9763 + }, + { + "start": 21244.04, + "end": 21245.92, + "probability": 0.9277 + }, + { + "start": 21246.04, + "end": 21247.12, + "probability": 0.9561 + }, + { + "start": 21247.52, + "end": 21251.68, + "probability": 0.9682 + }, + { + "start": 21252.72, + "end": 21257.18, + "probability": 0.9851 + }, + { + "start": 21258.0, + "end": 21260.42, + "probability": 0.896 + }, + { + "start": 21260.68, + "end": 21262.22, + "probability": 0.963 + }, + { + "start": 21263.04, + "end": 21264.24, + "probability": 0.965 + }, + { + "start": 21264.5, + "end": 21268.52, + "probability": 0.9753 + }, + { + "start": 21270.58, + "end": 21276.9, + "probability": 0.985 + }, + { + "start": 21276.92, + "end": 21282.38, + "probability": 0.9985 + }, + { + "start": 21283.82, + "end": 21284.26, + "probability": 0.7264 + }, + { + "start": 21284.4, + "end": 21285.92, + "probability": 0.9325 + }, + { + "start": 21286.28, + "end": 21287.2, + "probability": 0.7942 + }, + { + "start": 21287.26, + "end": 21288.34, + "probability": 0.9594 + }, + { + "start": 21288.46, + "end": 21291.62, + "probability": 0.9937 + }, + { + "start": 21292.34, + "end": 21295.0, + "probability": 0.9148 + }, + { + "start": 21295.52, + "end": 21296.96, + "probability": 0.8646 + }, + { + "start": 21298.02, + "end": 21301.12, + "probability": 0.8777 + }, + { + "start": 21302.88, + "end": 21305.48, + "probability": 0.9355 + }, + { + "start": 21306.7, + "end": 21311.1, + "probability": 0.9751 + }, + { + "start": 21312.66, + "end": 21318.4, + "probability": 0.9981 + }, + { + "start": 21318.64, + "end": 21323.36, + "probability": 0.991 + }, + { + "start": 21324.44, + "end": 21329.12, + "probability": 0.9979 + }, + { + "start": 21329.2, + "end": 21330.22, + "probability": 0.8995 + }, + { + "start": 21330.4, + "end": 21332.35, + "probability": 0.9983 + }, + { + "start": 21333.84, + "end": 21333.84, + "probability": 0.0977 + }, + { + "start": 21333.84, + "end": 21335.82, + "probability": 0.7056 + }, + { + "start": 21336.66, + "end": 21342.04, + "probability": 0.9836 + }, + { + "start": 21343.24, + "end": 21347.64, + "probability": 0.9101 + }, + { + "start": 21348.62, + "end": 21351.18, + "probability": 0.9799 + }, + { + "start": 21351.24, + "end": 21353.32, + "probability": 0.5302 + }, + { + "start": 21355.14, + "end": 21360.78, + "probability": 0.9955 + }, + { + "start": 21361.52, + "end": 21361.94, + "probability": 0.4974 + }, + { + "start": 21362.98, + "end": 21367.5, + "probability": 0.9971 + }, + { + "start": 21367.58, + "end": 21368.94, + "probability": 0.8511 + }, + { + "start": 21370.54, + "end": 21374.64, + "probability": 0.9591 + }, + { + "start": 21374.74, + "end": 21377.9, + "probability": 0.9847 + }, + { + "start": 21377.9, + "end": 21381.76, + "probability": 0.8823 + }, + { + "start": 21381.9, + "end": 21383.54, + "probability": 0.7914 + }, + { + "start": 21385.24, + "end": 21390.8, + "probability": 0.9916 + }, + { + "start": 21391.54, + "end": 21392.32, + "probability": 0.7529 + }, + { + "start": 21392.4, + "end": 21393.7, + "probability": 0.8743 + }, + { + "start": 21393.82, + "end": 21394.8, + "probability": 0.8655 + }, + { + "start": 21395.0, + "end": 21397.2, + "probability": 0.9945 + }, + { + "start": 21399.18, + "end": 21402.66, + "probability": 0.9961 + }, + { + "start": 21403.46, + "end": 21406.22, + "probability": 0.9824 + }, + { + "start": 21406.8, + "end": 21410.64, + "probability": 0.9879 + }, + { + "start": 21411.3, + "end": 21415.82, + "probability": 0.9802 + }, + { + "start": 21415.86, + "end": 21418.24, + "probability": 0.9978 + }, + { + "start": 21419.32, + "end": 21422.74, + "probability": 0.6675 + }, + { + "start": 21423.74, + "end": 21425.68, + "probability": 0.9865 + }, + { + "start": 21425.84, + "end": 21427.08, + "probability": 0.9795 + }, + { + "start": 21427.18, + "end": 21429.02, + "probability": 0.9297 + }, + { + "start": 21429.54, + "end": 21433.14, + "probability": 0.9942 + }, + { + "start": 21433.6, + "end": 21434.66, + "probability": 0.9622 + }, + { + "start": 21435.3, + "end": 21442.1, + "probability": 0.9972 + }, + { + "start": 21442.98, + "end": 21444.56, + "probability": 0.9206 + }, + { + "start": 21444.76, + "end": 21445.82, + "probability": 0.7686 + }, + { + "start": 21445.98, + "end": 21446.2, + "probability": 0.8401 + }, + { + "start": 21446.36, + "end": 21448.8, + "probability": 0.7337 + }, + { + "start": 21449.28, + "end": 21453.88, + "probability": 0.9634 + }, + { + "start": 21454.44, + "end": 21457.4, + "probability": 0.9753 + }, + { + "start": 21458.36, + "end": 21461.52, + "probability": 0.9287 + }, + { + "start": 21462.54, + "end": 21463.02, + "probability": 0.399 + }, + { + "start": 21463.34, + "end": 21468.82, + "probability": 0.9897 + }, + { + "start": 21468.82, + "end": 21471.82, + "probability": 0.9864 + }, + { + "start": 21472.56, + "end": 21474.86, + "probability": 0.8718 + }, + { + "start": 21475.62, + "end": 21477.12, + "probability": 0.9875 + }, + { + "start": 21478.5, + "end": 21482.34, + "probability": 0.8794 + }, + { + "start": 21483.1, + "end": 21486.5, + "probability": 0.998 + }, + { + "start": 21486.64, + "end": 21492.58, + "probability": 0.9971 + }, + { + "start": 21492.74, + "end": 21495.2, + "probability": 0.9678 + }, + { + "start": 21495.66, + "end": 21496.0, + "probability": 0.7856 + }, + { + "start": 21496.08, + "end": 21498.3, + "probability": 0.7647 + }, + { + "start": 21498.88, + "end": 21502.22, + "probability": 0.8978 + }, + { + "start": 21503.32, + "end": 21506.46, + "probability": 0.936 + }, + { + "start": 21506.56, + "end": 21507.41, + "probability": 0.9594 + }, + { + "start": 21507.56, + "end": 21511.78, + "probability": 0.9126 + }, + { + "start": 21513.04, + "end": 21514.56, + "probability": 0.873 + }, + { + "start": 21537.1, + "end": 21538.32, + "probability": 0.2876 + }, + { + "start": 21539.4, + "end": 21539.66, + "probability": 0.6584 + }, + { + "start": 21542.1, + "end": 21545.62, + "probability": 0.9431 + }, + { + "start": 21547.22, + "end": 21549.68, + "probability": 0.9613 + }, + { + "start": 21549.9, + "end": 21554.1, + "probability": 0.8928 + }, + { + "start": 21555.0, + "end": 21557.5, + "probability": 0.8087 + }, + { + "start": 21557.54, + "end": 21559.32, + "probability": 0.6741 + }, + { + "start": 21559.44, + "end": 21562.31, + "probability": 0.9937 + }, + { + "start": 21566.8, + "end": 21569.92, + "probability": 0.628 + }, + { + "start": 21571.08, + "end": 21575.46, + "probability": 0.9443 + }, + { + "start": 21576.12, + "end": 21579.12, + "probability": 0.9723 + }, + { + "start": 21579.74, + "end": 21585.32, + "probability": 0.9853 + }, + { + "start": 21586.54, + "end": 21589.8, + "probability": 0.8323 + }, + { + "start": 21591.18, + "end": 21594.66, + "probability": 0.9973 + }, + { + "start": 21596.32, + "end": 21599.12, + "probability": 0.9295 + }, + { + "start": 21599.96, + "end": 21605.02, + "probability": 0.9732 + }, + { + "start": 21606.24, + "end": 21608.4, + "probability": 0.9854 + }, + { + "start": 21608.58, + "end": 21615.02, + "probability": 0.9573 + }, + { + "start": 21616.74, + "end": 21623.28, + "probability": 0.9947 + }, + { + "start": 21623.78, + "end": 21625.3, + "probability": 0.6577 + }, + { + "start": 21626.04, + "end": 21629.86, + "probability": 0.9968 + }, + { + "start": 21630.68, + "end": 21633.64, + "probability": 0.9873 + }, + { + "start": 21634.06, + "end": 21637.08, + "probability": 0.6181 + }, + { + "start": 21637.82, + "end": 21640.56, + "probability": 0.9949 + }, + { + "start": 21641.3, + "end": 21644.08, + "probability": 0.9678 + }, + { + "start": 21644.16, + "end": 21646.54, + "probability": 0.9961 + }, + { + "start": 21647.08, + "end": 21650.82, + "probability": 0.9905 + }, + { + "start": 21652.9, + "end": 21653.65, + "probability": 0.8945 + }, + { + "start": 21654.06, + "end": 21656.04, + "probability": 0.9072 + }, + { + "start": 21656.34, + "end": 21657.92, + "probability": 0.9976 + }, + { + "start": 21658.18, + "end": 21658.64, + "probability": 0.5123 + }, + { + "start": 21658.7, + "end": 21658.8, + "probability": 0.5229 + }, + { + "start": 21659.64, + "end": 21661.44, + "probability": 0.9708 + }, + { + "start": 21662.12, + "end": 21665.92, + "probability": 0.7611 + }, + { + "start": 21666.82, + "end": 21667.8, + "probability": 0.945 + }, + { + "start": 21669.02, + "end": 21672.88, + "probability": 0.9231 + }, + { + "start": 21673.54, + "end": 21676.62, + "probability": 0.9922 + }, + { + "start": 21677.22, + "end": 21678.1, + "probability": 0.9121 + }, + { + "start": 21678.96, + "end": 21681.38, + "probability": 0.9965 + }, + { + "start": 21681.56, + "end": 21682.36, + "probability": 0.8737 + }, + { + "start": 21683.14, + "end": 21683.98, + "probability": 0.9778 + }, + { + "start": 21684.88, + "end": 21687.54, + "probability": 0.9541 + }, + { + "start": 21688.3, + "end": 21692.06, + "probability": 0.994 + }, + { + "start": 21692.72, + "end": 21698.72, + "probability": 0.9868 + }, + { + "start": 21699.32, + "end": 21700.34, + "probability": 0.9941 + }, + { + "start": 21700.86, + "end": 21701.94, + "probability": 0.757 + }, + { + "start": 21702.48, + "end": 21703.7, + "probability": 0.824 + }, + { + "start": 21703.88, + "end": 21707.37, + "probability": 0.993 + }, + { + "start": 21707.92, + "end": 21708.44, + "probability": 0.7051 + }, + { + "start": 21708.56, + "end": 21709.9, + "probability": 0.9538 + }, + { + "start": 21710.8, + "end": 21713.28, + "probability": 0.9255 + }, + { + "start": 21714.42, + "end": 21716.21, + "probability": 0.735 + }, + { + "start": 21716.84, + "end": 21718.52, + "probability": 0.188 + }, + { + "start": 21719.06, + "end": 21720.14, + "probability": 0.8545 + }, + { + "start": 21720.54, + "end": 21722.06, + "probability": 0.9185 + }, + { + "start": 21722.5, + "end": 21723.04, + "probability": 0.5384 + }, + { + "start": 21724.12, + "end": 21726.66, + "probability": 0.8993 + }, + { + "start": 21727.36, + "end": 21729.16, + "probability": 0.906 + }, + { + "start": 21730.0, + "end": 21733.08, + "probability": 0.9414 + }, + { + "start": 21733.6, + "end": 21735.94, + "probability": 0.7222 + }, + { + "start": 21736.94, + "end": 21739.46, + "probability": 0.9242 + }, + { + "start": 21740.66, + "end": 21741.42, + "probability": 0.6009 + }, + { + "start": 21741.96, + "end": 21743.64, + "probability": 0.9426 + }, + { + "start": 21744.16, + "end": 21747.26, + "probability": 0.9803 + }, + { + "start": 21748.14, + "end": 21748.82, + "probability": 0.8515 + }, + { + "start": 21749.56, + "end": 21749.82, + "probability": 0.7853 + }, + { + "start": 21750.62, + "end": 21753.5, + "probability": 0.9863 + }, + { + "start": 21753.9, + "end": 21756.0, + "probability": 0.9518 + }, + { + "start": 21756.74, + "end": 21758.68, + "probability": 0.9885 + }, + { + "start": 21759.1, + "end": 21760.74, + "probability": 0.9718 + }, + { + "start": 21761.2, + "end": 21764.48, + "probability": 0.9933 + }, + { + "start": 21764.58, + "end": 21766.36, + "probability": 0.9965 + }, + { + "start": 21766.78, + "end": 21767.44, + "probability": 0.8251 + }, + { + "start": 21767.9, + "end": 21768.96, + "probability": 0.9638 + }, + { + "start": 21769.06, + "end": 21770.12, + "probability": 0.6638 + }, + { + "start": 21771.14, + "end": 21774.44, + "probability": 0.9588 + }, + { + "start": 21774.92, + "end": 21776.54, + "probability": 0.993 + }, + { + "start": 21777.38, + "end": 21778.64, + "probability": 0.9754 + }, + { + "start": 21779.24, + "end": 21780.66, + "probability": 0.978 + }, + { + "start": 21782.6, + "end": 21782.78, + "probability": 0.8955 + }, + { + "start": 21783.78, + "end": 21784.38, + "probability": 0.5079 + }, + { + "start": 21784.9, + "end": 21791.8, + "probability": 0.9849 + }, + { + "start": 21792.04, + "end": 21795.07, + "probability": 0.9785 + }, + { + "start": 21795.46, + "end": 21798.3, + "probability": 0.9386 + }, + { + "start": 21798.42, + "end": 21798.94, + "probability": 0.8148 + }, + { + "start": 21802.22, + "end": 21806.64, + "probability": 0.9994 + }, + { + "start": 21807.44, + "end": 21813.24, + "probability": 0.9576 + }, + { + "start": 21813.24, + "end": 21818.1, + "probability": 0.9084 + }, + { + "start": 21818.1, + "end": 21818.9, + "probability": 0.8263 + }, + { + "start": 21819.42, + "end": 21822.06, + "probability": 0.9467 + }, + { + "start": 21822.08, + "end": 21825.76, + "probability": 0.9678 + }, + { + "start": 21825.88, + "end": 21826.38, + "probability": 0.833 + }, + { + "start": 21826.48, + "end": 21826.94, + "probability": 0.5927 + }, + { + "start": 21826.98, + "end": 21827.44, + "probability": 0.3907 + }, + { + "start": 21828.72, + "end": 21833.0, + "probability": 0.8723 + }, + { + "start": 21833.44, + "end": 21834.95, + "probability": 0.9137 + }, + { + "start": 21835.4, + "end": 21836.5, + "probability": 0.8543 + }, + { + "start": 21836.66, + "end": 21838.66, + "probability": 0.9069 + }, + { + "start": 21839.26, + "end": 21840.14, + "probability": 0.8221 + }, + { + "start": 21840.34, + "end": 21843.72, + "probability": 0.7887 + }, + { + "start": 21843.74, + "end": 21846.12, + "probability": 0.9867 + }, + { + "start": 21846.22, + "end": 21846.8, + "probability": 0.863 + }, + { + "start": 21846.94, + "end": 21847.86, + "probability": 0.7961 + }, + { + "start": 21848.48, + "end": 21850.13, + "probability": 0.9984 + }, + { + "start": 21850.52, + "end": 21852.2, + "probability": 0.8433 + }, + { + "start": 21852.68, + "end": 21853.74, + "probability": 0.9878 + }, + { + "start": 21856.38, + "end": 21857.2, + "probability": 0.9597 + }, + { + "start": 21857.68, + "end": 21858.56, + "probability": 0.9712 + }, + { + "start": 21858.64, + "end": 21859.4, + "probability": 0.9443 + }, + { + "start": 21859.88, + "end": 21863.56, + "probability": 0.9688 + }, + { + "start": 21863.72, + "end": 21866.14, + "probability": 0.8934 + }, + { + "start": 21866.56, + "end": 21867.23, + "probability": 0.7615 + }, + { + "start": 21867.78, + "end": 21868.9, + "probability": 0.9233 + }, + { + "start": 21869.3, + "end": 21870.9, + "probability": 0.9271 + }, + { + "start": 21871.7, + "end": 21874.21, + "probability": 0.9907 + }, + { + "start": 21874.88, + "end": 21876.75, + "probability": 0.9943 + }, + { + "start": 21877.26, + "end": 21878.16, + "probability": 0.9843 + }, + { + "start": 21879.04, + "end": 21884.9, + "probability": 0.9604 + }, + { + "start": 21884.98, + "end": 21886.1, + "probability": 0.7356 + }, + { + "start": 21886.52, + "end": 21889.88, + "probability": 0.9712 + }, + { + "start": 21890.62, + "end": 21892.78, + "probability": 0.9136 + }, + { + "start": 21893.2, + "end": 21893.78, + "probability": 0.5976 + }, + { + "start": 21894.72, + "end": 21896.24, + "probability": 0.9021 + }, + { + "start": 21896.84, + "end": 21899.84, + "probability": 0.9893 + }, + { + "start": 21899.84, + "end": 21903.28, + "probability": 0.9873 + }, + { + "start": 21904.1, + "end": 21908.1, + "probability": 0.9646 + }, + { + "start": 21908.58, + "end": 21912.22, + "probability": 0.9254 + }, + { + "start": 21912.64, + "end": 21913.96, + "probability": 0.7143 + }, + { + "start": 21914.76, + "end": 21916.54, + "probability": 0.9741 + }, + { + "start": 21917.24, + "end": 21920.92, + "probability": 0.9937 + }, + { + "start": 21921.6, + "end": 21923.0, + "probability": 0.9482 + }, + { + "start": 21923.44, + "end": 21925.4, + "probability": 0.907 + }, + { + "start": 21926.12, + "end": 21928.29, + "probability": 0.5029 + }, + { + "start": 21929.02, + "end": 21930.22, + "probability": 0.998 + }, + { + "start": 21930.32, + "end": 21933.68, + "probability": 0.7996 + }, + { + "start": 21934.16, + "end": 21938.08, + "probability": 0.9544 + }, + { + "start": 21938.62, + "end": 21940.94, + "probability": 0.9867 + }, + { + "start": 21941.86, + "end": 21943.04, + "probability": 0.9747 + }, + { + "start": 21943.32, + "end": 21945.82, + "probability": 0.9834 + }, + { + "start": 21946.36, + "end": 21947.4, + "probability": 0.7997 + }, + { + "start": 21947.7, + "end": 21950.72, + "probability": 0.9474 + }, + { + "start": 21951.12, + "end": 21951.7, + "probability": 0.8793 + }, + { + "start": 21952.24, + "end": 21954.5, + "probability": 0.9814 + }, + { + "start": 21954.6, + "end": 21954.96, + "probability": 0.5897 + }, + { + "start": 21955.02, + "end": 21961.08, + "probability": 0.7486 + }, + { + "start": 21961.76, + "end": 21966.04, + "probability": 0.9607 + }, + { + "start": 21966.6, + "end": 21970.18, + "probability": 0.9938 + }, + { + "start": 21970.72, + "end": 21972.86, + "probability": 0.9819 + }, + { + "start": 21972.9, + "end": 21974.5, + "probability": 0.7938 + }, + { + "start": 21975.68, + "end": 21979.42, + "probability": 0.841 + }, + { + "start": 21980.1, + "end": 21980.56, + "probability": 0.9615 + }, + { + "start": 21981.1, + "end": 21982.97, + "probability": 0.8336 + }, + { + "start": 21983.66, + "end": 21987.02, + "probability": 0.9678 + }, + { + "start": 21987.54, + "end": 21989.96, + "probability": 0.9292 + }, + { + "start": 21990.68, + "end": 21991.92, + "probability": 0.9507 + }, + { + "start": 21992.62, + "end": 21996.8, + "probability": 0.7887 + }, + { + "start": 21997.72, + "end": 22000.12, + "probability": 0.9772 + }, + { + "start": 22000.2, + "end": 22002.7, + "probability": 0.8828 + }, + { + "start": 22003.18, + "end": 22004.14, + "probability": 0.9826 + }, + { + "start": 22004.64, + "end": 22007.96, + "probability": 0.9565 + }, + { + "start": 22008.46, + "end": 22014.18, + "probability": 0.9414 + }, + { + "start": 22014.56, + "end": 22017.36, + "probability": 0.7705 + }, + { + "start": 22020.56, + "end": 22020.72, + "probability": 0.1143 + }, + { + "start": 22020.72, + "end": 22025.78, + "probability": 0.9066 + }, + { + "start": 22026.38, + "end": 22030.12, + "probability": 0.9249 + }, + { + "start": 22030.46, + "end": 22033.52, + "probability": 0.9412 + }, + { + "start": 22033.66, + "end": 22034.5, + "probability": 0.7177 + }, + { + "start": 22034.98, + "end": 22039.46, + "probability": 0.8358 + }, + { + "start": 22039.46, + "end": 22043.78, + "probability": 0.9832 + }, + { + "start": 22044.8, + "end": 22045.48, + "probability": 0.966 + }, + { + "start": 22047.32, + "end": 22047.78, + "probability": 0.8975 + }, + { + "start": 22047.92, + "end": 22051.32, + "probability": 0.8048 + }, + { + "start": 22051.32, + "end": 22054.76, + "probability": 0.986 + }, + { + "start": 22055.32, + "end": 22056.36, + "probability": 0.6229 + }, + { + "start": 22056.5, + "end": 22060.46, + "probability": 0.9786 + }, + { + "start": 22060.76, + "end": 22065.14, + "probability": 0.9795 + }, + { + "start": 22065.28, + "end": 22066.6, + "probability": 0.6964 + }, + { + "start": 22067.64, + "end": 22071.17, + "probability": 0.9653 + }, + { + "start": 22071.82, + "end": 22072.74, + "probability": 0.9028 + }, + { + "start": 22072.9, + "end": 22074.02, + "probability": 0.5215 + }, + { + "start": 22074.52, + "end": 22077.26, + "probability": 0.7686 + }, + { + "start": 22077.32, + "end": 22078.56, + "probability": 0.9451 + }, + { + "start": 22078.7, + "end": 22079.06, + "probability": 0.9214 + }, + { + "start": 22079.1, + "end": 22079.92, + "probability": 0.9538 + }, + { + "start": 22080.72, + "end": 22083.18, + "probability": 0.9274 + }, + { + "start": 22083.94, + "end": 22086.74, + "probability": 0.9446 + }, + { + "start": 22088.77, + "end": 22089.48, + "probability": 0.1191 + }, + { + "start": 22089.48, + "end": 22090.46, + "probability": 0.7392 + }, + { + "start": 22091.06, + "end": 22092.44, + "probability": 0.601 + }, + { + "start": 22092.68, + "end": 22092.88, + "probability": 0.384 + }, + { + "start": 22093.72, + "end": 22096.08, + "probability": 0.7357 + }, + { + "start": 22096.22, + "end": 22097.17, + "probability": 0.9253 + }, + { + "start": 22097.42, + "end": 22098.7, + "probability": 0.9069 + }, + { + "start": 22099.1, + "end": 22108.1, + "probability": 0.9739 + }, + { + "start": 22108.64, + "end": 22109.1, + "probability": 0.41 + }, + { + "start": 22109.16, + "end": 22114.02, + "probability": 0.9896 + }, + { + "start": 22114.74, + "end": 22116.92, + "probability": 0.9982 + }, + { + "start": 22117.46, + "end": 22121.42, + "probability": 0.9655 + }, + { + "start": 22121.98, + "end": 22125.92, + "probability": 0.9459 + }, + { + "start": 22125.96, + "end": 22128.74, + "probability": 0.853 + }, + { + "start": 22129.18, + "end": 22131.58, + "probability": 0.8941 + }, + { + "start": 22131.68, + "end": 22134.02, + "probability": 0.9857 + }, + { + "start": 22134.56, + "end": 22136.32, + "probability": 0.9941 + }, + { + "start": 22136.76, + "end": 22137.81, + "probability": 0.6699 + }, + { + "start": 22138.34, + "end": 22141.28, + "probability": 0.9935 + }, + { + "start": 22142.0, + "end": 22144.52, + "probability": 0.9462 + }, + { + "start": 22144.96, + "end": 22147.16, + "probability": 0.897 + }, + { + "start": 22148.17, + "end": 22150.28, + "probability": 0.6451 + }, + { + "start": 22150.5, + "end": 22152.38, + "probability": 0.9502 + }, + { + "start": 22152.98, + "end": 22153.94, + "probability": 0.6367 + }, + { + "start": 22155.28, + "end": 22159.88, + "probability": 0.9736 + }, + { + "start": 22160.5, + "end": 22164.4, + "probability": 0.8215 + }, + { + "start": 22164.78, + "end": 22165.78, + "probability": 0.8823 + }, + { + "start": 22166.48, + "end": 22170.06, + "probability": 0.9094 + }, + { + "start": 22170.72, + "end": 22175.1, + "probability": 0.9736 + }, + { + "start": 22175.5, + "end": 22178.94, + "probability": 0.9929 + }, + { + "start": 22179.0, + "end": 22181.22, + "probability": 0.5554 + }, + { + "start": 22181.3, + "end": 22182.14, + "probability": 0.9697 + }, + { + "start": 22182.74, + "end": 22185.82, + "probability": 0.8674 + }, + { + "start": 22186.62, + "end": 22189.98, + "probability": 0.8422 + }, + { + "start": 22190.58, + "end": 22191.42, + "probability": 0.9821 + }, + { + "start": 22192.14, + "end": 22194.1, + "probability": 0.978 + }, + { + "start": 22198.56, + "end": 22199.46, + "probability": 0.9101 + }, + { + "start": 22200.0, + "end": 22204.22, + "probability": 0.7801 + }, + { + "start": 22204.78, + "end": 22206.06, + "probability": 0.4093 + }, + { + "start": 22206.8, + "end": 22208.92, + "probability": 0.8384 + }, + { + "start": 22209.24, + "end": 22213.68, + "probability": 0.9966 + }, + { + "start": 22214.06, + "end": 22216.1, + "probability": 0.8849 + }, + { + "start": 22216.4, + "end": 22220.0, + "probability": 0.9667 + }, + { + "start": 22220.52, + "end": 22222.32, + "probability": 0.9941 + }, + { + "start": 22223.12, + "end": 22225.34, + "probability": 0.936 + }, + { + "start": 22225.9, + "end": 22228.62, + "probability": 0.9757 + }, + { + "start": 22229.26, + "end": 22235.36, + "probability": 0.9653 + }, + { + "start": 22235.44, + "end": 22236.02, + "probability": 0.9651 + }, + { + "start": 22236.14, + "end": 22237.62, + "probability": 0.6955 + }, + { + "start": 22237.74, + "end": 22238.56, + "probability": 0.9829 + }, + { + "start": 22239.06, + "end": 22239.64, + "probability": 0.7459 + }, + { + "start": 22239.76, + "end": 22240.57, + "probability": 0.3377 + }, + { + "start": 22241.8, + "end": 22243.86, + "probability": 0.7177 + }, + { + "start": 22244.94, + "end": 22246.2, + "probability": 0.8955 + }, + { + "start": 22247.2, + "end": 22248.7, + "probability": 0.3233 + }, + { + "start": 22248.7, + "end": 22251.18, + "probability": 0.6952 + }, + { + "start": 22251.24, + "end": 22253.26, + "probability": 0.9912 + }, + { + "start": 22253.26, + "end": 22256.06, + "probability": 0.9831 + }, + { + "start": 22257.4, + "end": 22261.76, + "probability": 0.7746 + }, + { + "start": 22261.76, + "end": 22262.12, + "probability": 0.7235 + }, + { + "start": 22262.36, + "end": 22264.52, + "probability": 0.927 + }, + { + "start": 22264.78, + "end": 22265.22, + "probability": 0.5278 + }, + { + "start": 22265.5, + "end": 22265.7, + "probability": 0.8403 + }, + { + "start": 22265.98, + "end": 22266.6, + "probability": 0.3547 + }, + { + "start": 22267.5, + "end": 22268.04, + "probability": 0.8787 + }, + { + "start": 22268.76, + "end": 22270.36, + "probability": 0.8817 + }, + { + "start": 22271.32, + "end": 22273.06, + "probability": 0.7184 + }, + { + "start": 22274.72, + "end": 22277.44, + "probability": 0.9933 + }, + { + "start": 22278.58, + "end": 22280.53, + "probability": 0.4816 + }, + { + "start": 22280.66, + "end": 22281.16, + "probability": 0.8606 + }, + { + "start": 22281.9, + "end": 22282.16, + "probability": 0.1307 + }, + { + "start": 22285.2, + "end": 22285.9, + "probability": 0.3674 + }, + { + "start": 22288.35, + "end": 22291.26, + "probability": 0.1549 + }, + { + "start": 22295.12, + "end": 22297.72, + "probability": 0.5958 + }, + { + "start": 22297.74, + "end": 22298.36, + "probability": 0.3779 + }, + { + "start": 22298.48, + "end": 22302.04, + "probability": 0.991 + }, + { + "start": 22302.92, + "end": 22304.36, + "probability": 0.8499 + }, + { + "start": 22305.12, + "end": 22305.94, + "probability": 0.8748 + }, + { + "start": 22306.0, + "end": 22309.11, + "probability": 0.8789 + }, + { + "start": 22309.6, + "end": 22312.64, + "probability": 0.9135 + }, + { + "start": 22313.46, + "end": 22315.52, + "probability": 0.2685 + }, + { + "start": 22315.52, + "end": 22316.94, + "probability": 0.6995 + }, + { + "start": 22317.98, + "end": 22319.92, + "probability": 0.6742 + }, + { + "start": 22320.86, + "end": 22322.2, + "probability": 0.3932 + }, + { + "start": 22322.92, + "end": 22325.62, + "probability": 0.6452 + }, + { + "start": 22343.5, + "end": 22345.02, + "probability": 0.4739 + }, + { + "start": 22345.02, + "end": 22345.12, + "probability": 0.8594 + }, + { + "start": 22345.84, + "end": 22346.38, + "probability": 0.4463 + }, + { + "start": 22347.85, + "end": 22351.03, + "probability": 0.9904 + }, + { + "start": 22352.78, + "end": 22354.7, + "probability": 0.9744 + }, + { + "start": 22356.14, + "end": 22357.46, + "probability": 0.9836 + }, + { + "start": 22357.62, + "end": 22358.76, + "probability": 0.6706 + }, + { + "start": 22359.82, + "end": 22361.9, + "probability": 0.847 + }, + { + "start": 22362.7, + "end": 22363.48, + "probability": 0.8346 + }, + { + "start": 22364.92, + "end": 22367.38, + "probability": 0.9865 + }, + { + "start": 22368.14, + "end": 22370.78, + "probability": 0.9946 + }, + { + "start": 22372.56, + "end": 22374.26, + "probability": 0.9928 + }, + { + "start": 22376.93, + "end": 22381.62, + "probability": 0.917 + }, + { + "start": 22382.8, + "end": 22386.5, + "probability": 0.9057 + }, + { + "start": 22387.9, + "end": 22390.0, + "probability": 0.9707 + }, + { + "start": 22390.52, + "end": 22391.14, + "probability": 0.8679 + }, + { + "start": 22392.48, + "end": 22394.8, + "probability": 0.9552 + }, + { + "start": 22394.88, + "end": 22396.62, + "probability": 0.8248 + }, + { + "start": 22398.02, + "end": 22401.46, + "probability": 0.9292 + }, + { + "start": 22402.18, + "end": 22403.56, + "probability": 0.9133 + }, + { + "start": 22404.88, + "end": 22409.46, + "probability": 0.9785 + }, + { + "start": 22409.52, + "end": 22410.28, + "probability": 0.9616 + }, + { + "start": 22411.36, + "end": 22413.74, + "probability": 0.9875 + }, + { + "start": 22414.54, + "end": 22419.16, + "probability": 0.9042 + }, + { + "start": 22419.76, + "end": 22420.76, + "probability": 0.7921 + }, + { + "start": 22421.06, + "end": 22421.86, + "probability": 0.898 + }, + { + "start": 22421.96, + "end": 22422.64, + "probability": 0.8183 + }, + { + "start": 22422.7, + "end": 22423.56, + "probability": 0.948 + }, + { + "start": 22424.38, + "end": 22430.6, + "probability": 0.9455 + }, + { + "start": 22432.98, + "end": 22435.08, + "probability": 0.8761 + }, + { + "start": 22435.74, + "end": 22436.63, + "probability": 0.8892 + }, + { + "start": 22438.5, + "end": 22443.6, + "probability": 0.9733 + }, + { + "start": 22445.36, + "end": 22447.04, + "probability": 0.7145 + }, + { + "start": 22447.72, + "end": 22448.58, + "probability": 0.6963 + }, + { + "start": 22448.66, + "end": 22449.52, + "probability": 0.9788 + }, + { + "start": 22449.62, + "end": 22450.4, + "probability": 0.98 + }, + { + "start": 22450.84, + "end": 22452.2, + "probability": 0.6619 + }, + { + "start": 22452.56, + "end": 22453.62, + "probability": 0.4165 + }, + { + "start": 22454.8, + "end": 22456.7, + "probability": 0.8485 + }, + { + "start": 22457.86, + "end": 22459.96, + "probability": 0.7507 + }, + { + "start": 22460.87, + "end": 22462.9, + "probability": 0.9749 + }, + { + "start": 22463.66, + "end": 22464.72, + "probability": 0.9832 + }, + { + "start": 22465.32, + "end": 22467.66, + "probability": 0.9982 + }, + { + "start": 22468.7, + "end": 22471.48, + "probability": 0.998 + }, + { + "start": 22472.2, + "end": 22477.32, + "probability": 0.981 + }, + { + "start": 22478.06, + "end": 22479.16, + "probability": 0.9912 + }, + { + "start": 22479.86, + "end": 22484.86, + "probability": 0.9787 + }, + { + "start": 22485.9, + "end": 22488.34, + "probability": 0.986 + }, + { + "start": 22489.4, + "end": 22491.54, + "probability": 0.9964 + }, + { + "start": 22491.54, + "end": 22494.54, + "probability": 0.791 + }, + { + "start": 22494.58, + "end": 22495.44, + "probability": 0.8427 + }, + { + "start": 22496.34, + "end": 22499.64, + "probability": 0.9662 + }, + { + "start": 22500.54, + "end": 22504.02, + "probability": 0.9599 + }, + { + "start": 22504.06, + "end": 22505.92, + "probability": 0.7905 + }, + { + "start": 22506.36, + "end": 22506.64, + "probability": 0.9596 + }, + { + "start": 22506.98, + "end": 22507.59, + "probability": 0.9954 + }, + { + "start": 22508.58, + "end": 22509.3, + "probability": 0.8794 + }, + { + "start": 22509.86, + "end": 22515.2, + "probability": 0.8595 + }, + { + "start": 22515.84, + "end": 22517.46, + "probability": 0.8986 + }, + { + "start": 22517.5, + "end": 22521.44, + "probability": 0.9938 + }, + { + "start": 22522.6, + "end": 22523.5, + "probability": 0.9429 + }, + { + "start": 22524.0, + "end": 22525.42, + "probability": 0.9953 + }, + { + "start": 22526.74, + "end": 22530.86, + "probability": 0.9885 + }, + { + "start": 22531.66, + "end": 22534.24, + "probability": 0.9969 + }, + { + "start": 22535.06, + "end": 22536.3, + "probability": 0.9314 + }, + { + "start": 22536.88, + "end": 22537.56, + "probability": 0.7628 + }, + { + "start": 22538.6, + "end": 22539.05, + "probability": 0.9151 + }, + { + "start": 22539.3, + "end": 22540.54, + "probability": 0.8949 + }, + { + "start": 22540.62, + "end": 22544.3, + "probability": 0.7312 + }, + { + "start": 22544.98, + "end": 22548.86, + "probability": 0.8043 + }, + { + "start": 22549.84, + "end": 22550.58, + "probability": 0.602 + }, + { + "start": 22551.46, + "end": 22553.0, + "probability": 0.9306 + }, + { + "start": 22553.12, + "end": 22555.65, + "probability": 0.859 + }, + { + "start": 22555.94, + "end": 22556.76, + "probability": 0.6021 + }, + { + "start": 22557.74, + "end": 22560.54, + "probability": 0.6826 + }, + { + "start": 22560.82, + "end": 22561.14, + "probability": 0.5821 + }, + { + "start": 22562.52, + "end": 22563.3, + "probability": 0.8677 + }, + { + "start": 22564.26, + "end": 22566.42, + "probability": 0.9324 + }, + { + "start": 22567.42, + "end": 22568.01, + "probability": 0.7934 + }, + { + "start": 22568.26, + "end": 22569.73, + "probability": 0.7153 + }, + { + "start": 22571.88, + "end": 22573.98, + "probability": 0.9901 + }, + { + "start": 22574.86, + "end": 22577.4, + "probability": 0.958 + }, + { + "start": 22577.42, + "end": 22579.26, + "probability": 0.8594 + }, + { + "start": 22580.38, + "end": 22581.2, + "probability": 0.7482 + }, + { + "start": 22581.96, + "end": 22583.48, + "probability": 0.9987 + }, + { + "start": 22584.2, + "end": 22586.3, + "probability": 0.8973 + }, + { + "start": 22587.34, + "end": 22588.7, + "probability": 0.999 + }, + { + "start": 22589.28, + "end": 22590.88, + "probability": 0.511 + }, + { + "start": 22592.2, + "end": 22593.06, + "probability": 0.6666 + }, + { + "start": 22593.86, + "end": 22598.16, + "probability": 0.9844 + }, + { + "start": 22599.06, + "end": 22600.5, + "probability": 0.9645 + }, + { + "start": 22600.62, + "end": 22603.16, + "probability": 0.9725 + }, + { + "start": 22604.04, + "end": 22605.01, + "probability": 0.6349 + }, + { + "start": 22605.3, + "end": 22607.88, + "probability": 0.696 + }, + { + "start": 22608.26, + "end": 22610.52, + "probability": 0.9719 + }, + { + "start": 22612.62, + "end": 22616.74, + "probability": 0.5728 + }, + { + "start": 22617.9, + "end": 22619.58, + "probability": 0.6949 + }, + { + "start": 22621.02, + "end": 22623.48, + "probability": 0.9681 + }, + { + "start": 22623.58, + "end": 22624.38, + "probability": 0.8628 + }, + { + "start": 22625.18, + "end": 22625.86, + "probability": 0.7275 + }, + { + "start": 22627.26, + "end": 22628.2, + "probability": 0.8879 + }, + { + "start": 22628.3, + "end": 22632.24, + "probability": 0.41 + }, + { + "start": 22633.18, + "end": 22635.16, + "probability": 0.9946 + }, + { + "start": 22636.0, + "end": 22637.52, + "probability": 0.7871 + }, + { + "start": 22638.18, + "end": 22639.84, + "probability": 0.9834 + }, + { + "start": 22640.7, + "end": 22641.48, + "probability": 0.8341 + }, + { + "start": 22641.54, + "end": 22642.46, + "probability": 0.8667 + }, + { + "start": 22642.74, + "end": 22644.26, + "probability": 0.8132 + }, + { + "start": 22645.22, + "end": 22647.02, + "probability": 0.8719 + }, + { + "start": 22647.46, + "end": 22647.62, + "probability": 0.7165 + }, + { + "start": 22647.66, + "end": 22648.62, + "probability": 0.8253 + }, + { + "start": 22650.34, + "end": 22651.18, + "probability": 0.9337 + }, + { + "start": 22651.22, + "end": 22654.1, + "probability": 0.9045 + }, + { + "start": 22655.44, + "end": 22659.14, + "probability": 0.786 + }, + { + "start": 22660.68, + "end": 22664.68, + "probability": 0.906 + }, + { + "start": 22664.68, + "end": 22667.04, + "probability": 0.9808 + }, + { + "start": 22668.26, + "end": 22668.92, + "probability": 0.6332 + }, + { + "start": 22670.08, + "end": 22671.62, + "probability": 0.7429 + }, + { + "start": 22673.68, + "end": 22677.1, + "probability": 0.932 + }, + { + "start": 22677.62, + "end": 22680.18, + "probability": 0.9399 + }, + { + "start": 22681.58, + "end": 22687.2, + "probability": 0.8277 + }, + { + "start": 22687.86, + "end": 22690.96, + "probability": 0.7972 + }, + { + "start": 22692.0, + "end": 22694.22, + "probability": 0.8778 + }, + { + "start": 22694.26, + "end": 22694.94, + "probability": 0.881 + }, + { + "start": 22695.66, + "end": 22698.06, + "probability": 0.9765 + }, + { + "start": 22698.54, + "end": 22701.14, + "probability": 0.9717 + }, + { + "start": 22701.24, + "end": 22701.82, + "probability": 0.7146 + }, + { + "start": 22702.76, + "end": 22705.95, + "probability": 0.9168 + }, + { + "start": 22707.08, + "end": 22707.98, + "probability": 0.8969 + }, + { + "start": 22708.54, + "end": 22710.48, + "probability": 0.994 + }, + { + "start": 22711.28, + "end": 22714.26, + "probability": 0.8883 + }, + { + "start": 22714.4, + "end": 22716.44, + "probability": 0.9003 + }, + { + "start": 22717.0, + "end": 22719.24, + "probability": 0.6987 + }, + { + "start": 22719.72, + "end": 22721.67, + "probability": 0.968 + }, + { + "start": 22722.36, + "end": 22725.7, + "probability": 0.9808 + }, + { + "start": 22726.94, + "end": 22728.32, + "probability": 0.9976 + }, + { + "start": 22729.02, + "end": 22730.8, + "probability": 0.9474 + }, + { + "start": 22730.84, + "end": 22732.66, + "probability": 0.9741 + }, + { + "start": 22732.66, + "end": 22735.54, + "probability": 0.9927 + }, + { + "start": 22736.42, + "end": 22737.33, + "probability": 0.9995 + }, + { + "start": 22738.96, + "end": 22741.44, + "probability": 0.9805 + }, + { + "start": 22742.38, + "end": 22743.94, + "probability": 0.73 + }, + { + "start": 22744.06, + "end": 22744.86, + "probability": 0.9604 + }, + { + "start": 22744.92, + "end": 22746.42, + "probability": 0.9967 + }, + { + "start": 22746.5, + "end": 22746.98, + "probability": 0.8718 + }, + { + "start": 22747.6, + "end": 22749.54, + "probability": 0.9417 + }, + { + "start": 22749.8, + "end": 22751.24, + "probability": 0.6054 + }, + { + "start": 22751.76, + "end": 22753.02, + "probability": 0.6346 + }, + { + "start": 22753.08, + "end": 22754.23, + "probability": 0.7717 + }, + { + "start": 22754.9, + "end": 22755.08, + "probability": 0.687 + }, + { + "start": 22756.08, + "end": 22758.44, + "probability": 0.9505 + }, + { + "start": 22759.7, + "end": 22760.26, + "probability": 0.726 + }, + { + "start": 22761.92, + "end": 22765.6, + "probability": 0.8672 + }, + { + "start": 22766.58, + "end": 22770.12, + "probability": 0.9547 + }, + { + "start": 22770.22, + "end": 22770.78, + "probability": 0.5008 + }, + { + "start": 22773.24, + "end": 22775.04, + "probability": 0.8372 + }, + { + "start": 22776.3, + "end": 22778.3, + "probability": 0.8982 + }, + { + "start": 22778.68, + "end": 22781.04, + "probability": 0.752 + }, + { + "start": 22781.86, + "end": 22783.9, + "probability": 0.7118 + }, + { + "start": 22785.56, + "end": 22786.02, + "probability": 0.7739 + }, + { + "start": 22787.24, + "end": 22788.42, + "probability": 0.6253 + }, + { + "start": 22788.5, + "end": 22789.36, + "probability": 0.3532 + }, + { + "start": 22790.7, + "end": 22791.74, + "probability": 0.8672 + }, + { + "start": 22792.92, + "end": 22793.46, + "probability": 0.9702 + }, + { + "start": 22793.88, + "end": 22795.32, + "probability": 0.9978 + }, + { + "start": 22796.48, + "end": 22799.6, + "probability": 0.998 + }, + { + "start": 22800.06, + "end": 22800.41, + "probability": 0.6202 + }, + { + "start": 22801.12, + "end": 22803.82, + "probability": 0.9349 + }, + { + "start": 22804.48, + "end": 22805.36, + "probability": 0.8789 + }, + { + "start": 22807.26, + "end": 22809.06, + "probability": 0.9834 + }, + { + "start": 22809.28, + "end": 22810.43, + "probability": 0.9624 + }, + { + "start": 22810.74, + "end": 22812.16, + "probability": 0.9377 + }, + { + "start": 22812.72, + "end": 22816.8, + "probability": 0.9045 + }, + { + "start": 22817.16, + "end": 22819.28, + "probability": 0.8828 + }, + { + "start": 22819.34, + "end": 22820.96, + "probability": 0.972 + }, + { + "start": 22821.48, + "end": 22823.44, + "probability": 0.82 + }, + { + "start": 22824.16, + "end": 22825.5, + "probability": 0.9873 + }, + { + "start": 22826.02, + "end": 22826.14, + "probability": 0.491 + }, + { + "start": 22826.18, + "end": 22826.28, + "probability": 0.8168 + }, + { + "start": 22826.44, + "end": 22827.36, + "probability": 0.889 + }, + { + "start": 22827.82, + "end": 22829.58, + "probability": 0.5936 + }, + { + "start": 22830.26, + "end": 22832.54, + "probability": 0.9657 + }, + { + "start": 22832.66, + "end": 22833.96, + "probability": 0.8565 + }, + { + "start": 22834.92, + "end": 22836.12, + "probability": 0.9857 + }, + { + "start": 22837.06, + "end": 22838.11, + "probability": 0.939 + }, + { + "start": 22838.22, + "end": 22839.8, + "probability": 0.9539 + }, + { + "start": 22840.84, + "end": 22843.86, + "probability": 0.9918 + }, + { + "start": 22846.34, + "end": 22849.32, + "probability": 0.9928 + }, + { + "start": 22849.54, + "end": 22850.21, + "probability": 0.884 + }, + { + "start": 22851.16, + "end": 22853.18, + "probability": 0.8391 + }, + { + "start": 22853.28, + "end": 22857.76, + "probability": 0.9849 + }, + { + "start": 22858.2, + "end": 22859.02, + "probability": 0.7684 + }, + { + "start": 22859.38, + "end": 22861.46, + "probability": 0.9944 + }, + { + "start": 22862.28, + "end": 22866.2, + "probability": 0.9631 + }, + { + "start": 22866.3, + "end": 22866.92, + "probability": 0.7342 + }, + { + "start": 22867.36, + "end": 22868.46, + "probability": 0.7058 + }, + { + "start": 22869.1, + "end": 22869.68, + "probability": 0.4617 + }, + { + "start": 22870.24, + "end": 22870.92, + "probability": 0.7007 + }, + { + "start": 22871.18, + "end": 22871.98, + "probability": 0.8214 + }, + { + "start": 22872.12, + "end": 22873.3, + "probability": 0.8916 + }, + { + "start": 22873.52, + "end": 22874.94, + "probability": 0.8417 + }, + { + "start": 22874.96, + "end": 22875.24, + "probability": 0.8755 + }, + { + "start": 22876.24, + "end": 22877.86, + "probability": 0.7634 + }, + { + "start": 22877.96, + "end": 22880.02, + "probability": 0.6408 + }, + { + "start": 22880.56, + "end": 22881.84, + "probability": 0.7245 + }, + { + "start": 22881.86, + "end": 22882.48, + "probability": 0.8666 + }, + { + "start": 22887.94, + "end": 22889.9, + "probability": 0.8254 + }, + { + "start": 22890.04, + "end": 22892.36, + "probability": 0.7891 + }, + { + "start": 22892.38, + "end": 22893.38, + "probability": 0.4859 + }, + { + "start": 22894.98, + "end": 22898.7, + "probability": 0.834 + }, + { + "start": 22898.84, + "end": 22901.3, + "probability": 0.9849 + }, + { + "start": 22901.36, + "end": 22901.64, + "probability": 0.844 + }, + { + "start": 22903.06, + "end": 22904.04, + "probability": 0.9051 + }, + { + "start": 22904.66, + "end": 22905.48, + "probability": 0.9673 + }, + { + "start": 22906.48, + "end": 22907.26, + "probability": 0.4078 + }, + { + "start": 22908.58, + "end": 22910.82, + "probability": 0.4946 + }, + { + "start": 22911.23, + "end": 22914.58, + "probability": 0.6016 + }, + { + "start": 22915.26, + "end": 22915.94, + "probability": 0.9585 + }, + { + "start": 22917.74, + "end": 22918.06, + "probability": 0.7852 + }, + { + "start": 22918.14, + "end": 22922.5, + "probability": 0.9417 + }, + { + "start": 22922.54, + "end": 22923.38, + "probability": 0.8721 + }, + { + "start": 22923.52, + "end": 22923.92, + "probability": 0.5532 + }, + { + "start": 22924.0, + "end": 22925.54, + "probability": 0.8613 + }, + { + "start": 22926.56, + "end": 22928.4, + "probability": 0.7521 + }, + { + "start": 22930.66, + "end": 22932.1, + "probability": 0.7053 + }, + { + "start": 22932.1, + "end": 22936.2, + "probability": 0.9953 + }, + { + "start": 22936.64, + "end": 22937.23, + "probability": 0.5575 + }, + { + "start": 22938.4, + "end": 22939.08, + "probability": 0.7762 + }, + { + "start": 22939.26, + "end": 22941.56, + "probability": 0.5488 + }, + { + "start": 22941.72, + "end": 22944.03, + "probability": 0.7061 + }, + { + "start": 22944.18, + "end": 22944.67, + "probability": 0.644 + }, + { + "start": 22944.96, + "end": 22946.74, + "probability": 0.5915 + }, + { + "start": 22946.84, + "end": 22947.18, + "probability": 0.8736 + }, + { + "start": 22947.24, + "end": 22947.74, + "probability": 0.937 + }, + { + "start": 22948.4, + "end": 22948.97, + "probability": 0.9319 + }, + { + "start": 22949.54, + "end": 22949.86, + "probability": 0.8942 + }, + { + "start": 22950.86, + "end": 22953.32, + "probability": 0.9899 + }, + { + "start": 22953.44, + "end": 22955.36, + "probability": 0.9909 + }, + { + "start": 22955.8, + "end": 22956.74, + "probability": 0.9497 + }, + { + "start": 22957.28, + "end": 22958.52, + "probability": 0.97 + }, + { + "start": 22958.8, + "end": 22959.93, + "probability": 0.9939 + }, + { + "start": 22960.28, + "end": 22961.52, + "probability": 0.9508 + }, + { + "start": 22961.66, + "end": 22962.58, + "probability": 0.4094 + }, + { + "start": 22963.58, + "end": 22968.46, + "probability": 0.9958 + }, + { + "start": 22968.56, + "end": 22970.22, + "probability": 0.9976 + }, + { + "start": 22970.62, + "end": 22973.84, + "probability": 0.8757 + }, + { + "start": 22974.0, + "end": 22974.76, + "probability": 0.4197 + }, + { + "start": 22975.6, + "end": 22975.72, + "probability": 0.0941 + }, + { + "start": 22975.72, + "end": 22975.74, + "probability": 0.0418 + }, + { + "start": 22975.74, + "end": 22977.64, + "probability": 0.7205 + }, + { + "start": 22977.68, + "end": 22979.56, + "probability": 0.8156 + }, + { + "start": 22979.86, + "end": 22982.58, + "probability": 0.4836 + }, + { + "start": 22982.7, + "end": 22984.04, + "probability": 0.7314 + }, + { + "start": 22987.11, + "end": 22988.02, + "probability": 0.6982 + }, + { + "start": 22989.62, + "end": 22991.36, + "probability": 0.9902 + }, + { + "start": 22991.92, + "end": 22992.48, + "probability": 0.9697 + }, + { + "start": 22992.66, + "end": 22992.96, + "probability": 0.3435 + }, + { + "start": 22993.5, + "end": 22995.4, + "probability": 0.9822 + }, + { + "start": 22995.8, + "end": 22997.1, + "probability": 0.9377 + }, + { + "start": 22998.08, + "end": 23000.02, + "probability": 0.9937 + }, + { + "start": 23001.6, + "end": 23004.22, + "probability": 0.7892 + }, + { + "start": 23006.82, + "end": 23008.55, + "probability": 0.4988 + }, + { + "start": 23009.46, + "end": 23010.54, + "probability": 0.9847 + }, + { + "start": 23010.66, + "end": 23011.12, + "probability": 0.7758 + }, + { + "start": 23011.2, + "end": 23011.36, + "probability": 0.6829 + }, + { + "start": 23011.42, + "end": 23012.44, + "probability": 0.9831 + }, + { + "start": 23013.26, + "end": 23016.6, + "probability": 0.9355 + }, + { + "start": 23016.92, + "end": 23017.56, + "probability": 0.6294 + }, + { + "start": 23017.64, + "end": 23019.72, + "probability": 0.8964 + }, + { + "start": 23020.3, + "end": 23022.14, + "probability": 0.8904 + }, + { + "start": 23023.76, + "end": 23026.1, + "probability": 0.7045 + }, + { + "start": 23027.61, + "end": 23029.22, + "probability": 0.7803 + }, + { + "start": 23029.34, + "end": 23030.68, + "probability": 0.7298 + }, + { + "start": 23031.56, + "end": 23033.0, + "probability": 0.9854 + }, + { + "start": 23034.06, + "end": 23036.74, + "probability": 0.686 + }, + { + "start": 23038.34, + "end": 23042.34, + "probability": 0.9762 + }, + { + "start": 23043.48, + "end": 23044.04, + "probability": 0.8882 + }, + { + "start": 23045.8, + "end": 23046.9, + "probability": 0.7825 + }, + { + "start": 23048.06, + "end": 23049.9, + "probability": 0.6506 + }, + { + "start": 23049.9, + "end": 23050.06, + "probability": 0.8207 + }, + { + "start": 23050.16, + "end": 23050.36, + "probability": 0.8702 + }, + { + "start": 23050.44, + "end": 23050.72, + "probability": 0.821 + }, + { + "start": 23051.12, + "end": 23051.53, + "probability": 0.9539 + }, + { + "start": 23053.22, + "end": 23054.26, + "probability": 0.5854 + }, + { + "start": 23054.48, + "end": 23055.96, + "probability": 0.6874 + }, + { + "start": 23056.58, + "end": 23058.06, + "probability": 0.8256 + }, + { + "start": 23058.78, + "end": 23060.1, + "probability": 0.9274 + }, + { + "start": 23060.46, + "end": 23062.24, + "probability": 0.8728 + }, + { + "start": 23063.02, + "end": 23063.74, + "probability": 0.908 + }, + { + "start": 23063.94, + "end": 23068.4, + "probability": 0.9155 + }, + { + "start": 23071.54, + "end": 23072.74, + "probability": 0.9925 + }, + { + "start": 23073.74, + "end": 23074.46, + "probability": 0.6557 + }, + { + "start": 23074.78, + "end": 23078.64, + "probability": 0.8753 + }, + { + "start": 23079.24, + "end": 23081.64, + "probability": 0.7107 + }, + { + "start": 23081.68, + "end": 23082.42, + "probability": 0.7085 + }, + { + "start": 23082.8, + "end": 23083.18, + "probability": 0.7537 + }, + { + "start": 23083.3, + "end": 23083.88, + "probability": 0.7569 + }, + { + "start": 23085.44, + "end": 23088.7, + "probability": 0.9614 + }, + { + "start": 23088.7, + "end": 23091.3, + "probability": 0.714 + }, + { + "start": 23092.04, + "end": 23093.04, + "probability": 0.7864 + }, + { + "start": 23094.16, + "end": 23095.08, + "probability": 0.6997 + }, + { + "start": 23096.0, + "end": 23098.26, + "probability": 0.9208 + }, + { + "start": 23098.64, + "end": 23099.06, + "probability": 0.9631 + }, + { + "start": 23099.92, + "end": 23101.1, + "probability": 0.9941 + }, + { + "start": 23102.08, + "end": 23103.2, + "probability": 0.8098 + }, + { + "start": 23104.58, + "end": 23105.44, + "probability": 0.9213 + }, + { + "start": 23106.76, + "end": 23108.56, + "probability": 0.9863 + }, + { + "start": 23109.36, + "end": 23111.18, + "probability": 0.9873 + }, + { + "start": 23111.34, + "end": 23111.92, + "probability": 0.6162 + }, + { + "start": 23112.28, + "end": 23112.72, + "probability": 0.8969 + }, + { + "start": 23114.14, + "end": 23116.64, + "probability": 0.9799 + }, + { + "start": 23117.26, + "end": 23118.18, + "probability": 0.6627 + }, + { + "start": 23118.26, + "end": 23119.06, + "probability": 0.936 + }, + { + "start": 23119.14, + "end": 23119.54, + "probability": 0.8162 + }, + { + "start": 23119.6, + "end": 23119.92, + "probability": 0.7393 + }, + { + "start": 23120.46, + "end": 23121.22, + "probability": 0.9531 + }, + { + "start": 23125.02, + "end": 23127.8, + "probability": 0.9446 + }, + { + "start": 23128.34, + "end": 23129.84, + "probability": 0.775 + }, + { + "start": 23131.08, + "end": 23131.18, + "probability": 0.1412 + }, + { + "start": 23131.18, + "end": 23131.7, + "probability": 0.2905 + }, + { + "start": 23132.44, + "end": 23136.52, + "probability": 0.7169 + }, + { + "start": 23137.46, + "end": 23138.22, + "probability": 0.823 + }, + { + "start": 23138.92, + "end": 23139.58, + "probability": 0.5488 + }, + { + "start": 23141.46, + "end": 23146.28, + "probability": 0.8457 + }, + { + "start": 23147.7, + "end": 23150.5, + "probability": 0.8187 + }, + { + "start": 23150.62, + "end": 23151.18, + "probability": 0.5758 + }, + { + "start": 23151.62, + "end": 23152.56, + "probability": 0.7713 + }, + { + "start": 23152.62, + "end": 23153.5, + "probability": 0.6935 + }, + { + "start": 23155.4, + "end": 23158.2, + "probability": 0.8469 + }, + { + "start": 23158.28, + "end": 23159.94, + "probability": 0.8062 + }, + { + "start": 23160.8, + "end": 23161.46, + "probability": 0.8483 + }, + { + "start": 23162.26, + "end": 23163.73, + "probability": 0.9849 + }, + { + "start": 23164.62, + "end": 23165.02, + "probability": 0.2587 + }, + { + "start": 23166.98, + "end": 23171.46, + "probability": 0.9326 + }, + { + "start": 23171.66, + "end": 23171.94, + "probability": 0.783 + }, + { + "start": 23172.86, + "end": 23174.04, + "probability": 0.8053 + }, + { + "start": 23175.18, + "end": 23177.74, + "probability": 0.9272 + }, + { + "start": 23178.32, + "end": 23179.48, + "probability": 0.9067 + }, + { + "start": 23180.5, + "end": 23182.94, + "probability": 0.7091 + }, + { + "start": 23183.48, + "end": 23183.7, + "probability": 0.6905 + }, + { + "start": 23185.42, + "end": 23187.58, + "probability": 0.9446 + }, + { + "start": 23188.34, + "end": 23189.04, + "probability": 0.9028 + }, + { + "start": 23190.94, + "end": 23192.92, + "probability": 0.7345 + }, + { + "start": 23193.94, + "end": 23195.7, + "probability": 0.9502 + }, + { + "start": 23196.1, + "end": 23198.09, + "probability": 0.9162 + }, + { + "start": 23199.1, + "end": 23202.32, + "probability": 0.6505 + }, + { + "start": 23202.91, + "end": 23206.96, + "probability": 0.8719 + }, + { + "start": 23207.3, + "end": 23208.92, + "probability": 0.9079 + }, + { + "start": 23209.28, + "end": 23210.42, + "probability": 0.9731 + }, + { + "start": 23210.74, + "end": 23211.3, + "probability": 0.9405 + }, + { + "start": 23211.72, + "end": 23212.51, + "probability": 0.9966 + }, + { + "start": 23213.46, + "end": 23215.54, + "probability": 0.9969 + }, + { + "start": 23217.84, + "end": 23219.76, + "probability": 0.7228 + }, + { + "start": 23221.34, + "end": 23223.72, + "probability": 0.981 + }, + { + "start": 23224.66, + "end": 23226.88, + "probability": 0.5651 + }, + { + "start": 23227.88, + "end": 23229.42, + "probability": 0.9201 + }, + { + "start": 23230.08, + "end": 23233.4, + "probability": 0.9755 + }, + { + "start": 23235.32, + "end": 23238.4, + "probability": 0.9608 + }, + { + "start": 23239.68, + "end": 23240.7, + "probability": 0.859 + }, + { + "start": 23240.88, + "end": 23241.0, + "probability": 0.3966 + }, + { + "start": 23241.3, + "end": 23241.72, + "probability": 0.4496 + }, + { + "start": 23242.21, + "end": 23243.36, + "probability": 0.8993 + }, + { + "start": 23243.66, + "end": 23245.16, + "probability": 0.8147 + }, + { + "start": 23246.6, + "end": 23247.14, + "probability": 0.7652 + }, + { + "start": 23247.22, + "end": 23247.86, + "probability": 0.9701 + }, + { + "start": 23247.98, + "end": 23250.26, + "probability": 0.7987 + }, + { + "start": 23251.6, + "end": 23253.34, + "probability": 0.9564 + }, + { + "start": 23256.4, + "end": 23261.4, + "probability": 0.9885 + }, + { + "start": 23261.54, + "end": 23264.87, + "probability": 0.6956 + }, + { + "start": 23265.56, + "end": 23266.18, + "probability": 0.827 + }, + { + "start": 23266.28, + "end": 23266.88, + "probability": 0.9175 + }, + { + "start": 23266.94, + "end": 23267.06, + "probability": 0.4657 + }, + { + "start": 23268.32, + "end": 23273.2, + "probability": 0.8901 + }, + { + "start": 23275.08, + "end": 23276.48, + "probability": 0.7481 + }, + { + "start": 23277.38, + "end": 23279.94, + "probability": 0.9642 + }, + { + "start": 23280.54, + "end": 23282.02, + "probability": 0.9877 + }, + { + "start": 23282.98, + "end": 23283.52, + "probability": 0.8636 + }, + { + "start": 23283.62, + "end": 23284.06, + "probability": 0.6813 + }, + { + "start": 23284.1, + "end": 23284.94, + "probability": 0.9878 + }, + { + "start": 23285.24, + "end": 23285.94, + "probability": 0.8297 + }, + { + "start": 23286.88, + "end": 23287.42, + "probability": 0.7913 + }, + { + "start": 23288.46, + "end": 23293.08, + "probability": 0.6181 + }, + { + "start": 23293.42, + "end": 23294.48, + "probability": 0.7992 + }, + { + "start": 23295.06, + "end": 23296.8, + "probability": 0.9851 + }, + { + "start": 23297.98, + "end": 23299.47, + "probability": 0.8149 + }, + { + "start": 23300.16, + "end": 23301.16, + "probability": 0.8607 + }, + { + "start": 23301.3, + "end": 23301.68, + "probability": 0.6738 + }, + { + "start": 23302.4, + "end": 23303.12, + "probability": 0.8727 + }, + { + "start": 23303.22, + "end": 23303.62, + "probability": 0.7928 + }, + { + "start": 23304.08, + "end": 23305.02, + "probability": 0.7003 + }, + { + "start": 23305.14, + "end": 23305.84, + "probability": 0.6861 + }, + { + "start": 23306.62, + "end": 23307.48, + "probability": 0.5846 + }, + { + "start": 23308.92, + "end": 23311.9, + "probability": 0.9607 + }, + { + "start": 23313.4, + "end": 23314.17, + "probability": 0.5647 + }, + { + "start": 23314.82, + "end": 23319.24, + "probability": 0.9766 + }, + { + "start": 23320.36, + "end": 23320.9, + "probability": 0.6301 + }, + { + "start": 23320.98, + "end": 23321.58, + "probability": 0.5629 + }, + { + "start": 23321.6, + "end": 23324.38, + "probability": 0.9561 + }, + { + "start": 23325.1, + "end": 23326.6, + "probability": 0.9463 + }, + { + "start": 23326.94, + "end": 23328.44, + "probability": 0.9223 + }, + { + "start": 23328.56, + "end": 23328.68, + "probability": 0.7834 + }, + { + "start": 23328.76, + "end": 23329.38, + "probability": 0.9136 + }, + { + "start": 23330.24, + "end": 23331.72, + "probability": 0.4918 + }, + { + "start": 23332.36, + "end": 23333.06, + "probability": 0.4673 + }, + { + "start": 23333.36, + "end": 23334.38, + "probability": 0.6898 + }, + { + "start": 23334.7, + "end": 23336.86, + "probability": 0.8942 + }, + { + "start": 23337.72, + "end": 23341.0, + "probability": 0.9389 + }, + { + "start": 23341.5, + "end": 23342.74, + "probability": 0.7098 + }, + { + "start": 23343.42, + "end": 23345.2, + "probability": 0.9548 + }, + { + "start": 23345.8, + "end": 23348.28, + "probability": 0.8366 + }, + { + "start": 23348.42, + "end": 23349.92, + "probability": 0.769 + }, + { + "start": 23350.38, + "end": 23352.22, + "probability": 0.7268 + }, + { + "start": 23353.0, + "end": 23354.38, + "probability": 0.9873 + }, + { + "start": 23354.76, + "end": 23356.76, + "probability": 0.9229 + }, + { + "start": 23357.36, + "end": 23359.56, + "probability": 0.8572 + }, + { + "start": 23360.36, + "end": 23362.46, + "probability": 0.9194 + }, + { + "start": 23362.46, + "end": 23364.88, + "probability": 0.8069 + }, + { + "start": 23365.6, + "end": 23368.12, + "probability": 0.9826 + }, + { + "start": 23369.22, + "end": 23370.14, + "probability": 0.6312 + }, + { + "start": 23370.74, + "end": 23372.06, + "probability": 0.9282 + }, + { + "start": 23372.58, + "end": 23378.0, + "probability": 0.8363 + }, + { + "start": 23378.18, + "end": 23379.11, + "probability": 0.9282 + }, + { + "start": 23379.54, + "end": 23380.4, + "probability": 0.988 + }, + { + "start": 23381.12, + "end": 23386.36, + "probability": 0.9261 + }, + { + "start": 23386.58, + "end": 23387.0, + "probability": 0.8406 + }, + { + "start": 23387.16, + "end": 23389.24, + "probability": 0.7128 + }, + { + "start": 23389.98, + "end": 23390.33, + "probability": 0.567 + }, + { + "start": 23390.48, + "end": 23391.55, + "probability": 0.958 + }, + { + "start": 23391.94, + "end": 23392.89, + "probability": 0.6159 + }, + { + "start": 23393.82, + "end": 23394.68, + "probability": 0.6662 + }, + { + "start": 23395.24, + "end": 23397.06, + "probability": 0.7344 + }, + { + "start": 23397.72, + "end": 23402.04, + "probability": 0.915 + }, + { + "start": 23403.38, + "end": 23403.72, + "probability": 0.8334 + }, + { + "start": 23404.12, + "end": 23407.12, + "probability": 0.8857 + }, + { + "start": 23407.38, + "end": 23407.88, + "probability": 0.5933 + }, + { + "start": 23408.74, + "end": 23410.04, + "probability": 0.926 + }, + { + "start": 23411.68, + "end": 23412.3, + "probability": 0.4999 + }, + { + "start": 23413.16, + "end": 23415.33, + "probability": 0.9693 + }, + { + "start": 23416.41, + "end": 23418.04, + "probability": 0.9897 + }, + { + "start": 23418.72, + "end": 23419.82, + "probability": 0.9785 + }, + { + "start": 23419.9, + "end": 23423.2, + "probability": 0.8551 + }, + { + "start": 23423.52, + "end": 23424.34, + "probability": 0.8902 + }, + { + "start": 23424.78, + "end": 23426.04, + "probability": 0.493 + }, + { + "start": 23426.32, + "end": 23427.92, + "probability": 0.678 + }, + { + "start": 23428.64, + "end": 23429.22, + "probability": 0.3226 + }, + { + "start": 23430.1, + "end": 23430.68, + "probability": 0.7363 + }, + { + "start": 23431.3, + "end": 23432.92, + "probability": 0.6105 + }, + { + "start": 23434.69, + "end": 23435.66, + "probability": 0.7313 + }, + { + "start": 23436.72, + "end": 23437.84, + "probability": 0.7284 + }, + { + "start": 23438.06, + "end": 23438.86, + "probability": 0.9629 + }, + { + "start": 23438.92, + "end": 23440.48, + "probability": 0.8389 + }, + { + "start": 23441.36, + "end": 23441.82, + "probability": 0.8443 + }, + { + "start": 23442.56, + "end": 23443.52, + "probability": 0.6533 + }, + { + "start": 23446.62, + "end": 23446.9, + "probability": 0.5001 + }, + { + "start": 23446.9, + "end": 23448.96, + "probability": 0.5393 + }, + { + "start": 23449.42, + "end": 23450.15, + "probability": 0.9089 + }, + { + "start": 23450.46, + "end": 23452.28, + "probability": 0.8293 + }, + { + "start": 23452.46, + "end": 23453.66, + "probability": 0.9036 + }, + { + "start": 23453.88, + "end": 23454.36, + "probability": 0.7387 + }, + { + "start": 23455.26, + "end": 23456.38, + "probability": 0.9604 + }, + { + "start": 23456.62, + "end": 23457.72, + "probability": 0.8794 + }, + { + "start": 23458.68, + "end": 23460.76, + "probability": 0.7373 + }, + { + "start": 23462.34, + "end": 23464.28, + "probability": 0.962 + }, + { + "start": 23464.34, + "end": 23465.1, + "probability": 0.6786 + }, + { + "start": 23465.42, + "end": 23466.38, + "probability": 0.948 + }, + { + "start": 23467.08, + "end": 23469.9, + "probability": 0.7939 + }, + { + "start": 23470.32, + "end": 23472.76, + "probability": 0.8476 + }, + { + "start": 23474.34, + "end": 23478.28, + "probability": 0.9824 + }, + { + "start": 23478.92, + "end": 23479.62, + "probability": 0.8809 + }, + { + "start": 23480.4, + "end": 23481.62, + "probability": 0.8304 + }, + { + "start": 23481.66, + "end": 23482.03, + "probability": 0.8062 + }, + { + "start": 23482.36, + "end": 23483.36, + "probability": 0.8223 + }, + { + "start": 23483.42, + "end": 23484.48, + "probability": 0.8051 + }, + { + "start": 23485.3, + "end": 23490.16, + "probability": 0.9241 + }, + { + "start": 23490.3, + "end": 23491.24, + "probability": 0.8934 + }, + { + "start": 23491.86, + "end": 23492.66, + "probability": 0.5193 + }, + { + "start": 23493.74, + "end": 23494.4, + "probability": 0.926 + }, + { + "start": 23495.16, + "end": 23496.8, + "probability": 0.8445 + }, + { + "start": 23497.6, + "end": 23498.08, + "probability": 0.5185 + }, + { + "start": 23498.16, + "end": 23498.86, + "probability": 0.863 + }, + { + "start": 23499.08, + "end": 23500.6, + "probability": 0.5861 + }, + { + "start": 23500.82, + "end": 23501.35, + "probability": 0.9785 + }, + { + "start": 23501.48, + "end": 23502.38, + "probability": 0.6959 + }, + { + "start": 23502.68, + "end": 23503.06, + "probability": 0.7422 + }, + { + "start": 23503.06, + "end": 23503.8, + "probability": 0.298 + }, + { + "start": 23503.84, + "end": 23505.0, + "probability": 0.808 + }, + { + "start": 23505.76, + "end": 23506.8, + "probability": 0.9155 + }, + { + "start": 23507.04, + "end": 23508.5, + "probability": 0.9796 + }, + { + "start": 23509.54, + "end": 23511.56, + "probability": 0.9285 + }, + { + "start": 23512.12, + "end": 23515.08, + "probability": 0.8531 + }, + { + "start": 23515.64, + "end": 23520.98, + "probability": 0.9805 + }, + { + "start": 23521.42, + "end": 23523.16, + "probability": 0.9678 + }, + { + "start": 23523.34, + "end": 23524.18, + "probability": 0.9156 + }, + { + "start": 23524.88, + "end": 23526.54, + "probability": 0.9741 + }, + { + "start": 23527.34, + "end": 23527.82, + "probability": 0.8519 + }, + { + "start": 23528.28, + "end": 23531.12, + "probability": 0.9951 + }, + { + "start": 23532.26, + "end": 23533.04, + "probability": 0.7118 + }, + { + "start": 23533.2, + "end": 23534.64, + "probability": 0.8392 + }, + { + "start": 23535.02, + "end": 23535.96, + "probability": 0.9473 + }, + { + "start": 23536.38, + "end": 23537.66, + "probability": 0.5716 + }, + { + "start": 23538.0, + "end": 23539.96, + "probability": 0.9622 + }, + { + "start": 23540.32, + "end": 23542.4, + "probability": 0.9409 + }, + { + "start": 23542.8, + "end": 23543.1, + "probability": 0.8643 + }, + { + "start": 23543.2, + "end": 23544.08, + "probability": 0.965 + }, + { + "start": 23544.42, + "end": 23546.64, + "probability": 0.855 + }, + { + "start": 23547.3, + "end": 23549.04, + "probability": 0.8074 + }, + { + "start": 23549.42, + "end": 23550.6, + "probability": 0.8358 + }, + { + "start": 23550.88, + "end": 23553.38, + "probability": 0.9411 + }, + { + "start": 23553.88, + "end": 23554.58, + "probability": 0.9507 + }, + { + "start": 23555.26, + "end": 23558.1, + "probability": 0.737 + }, + { + "start": 23558.36, + "end": 23559.08, + "probability": 0.8138 + }, + { + "start": 23559.18, + "end": 23560.54, + "probability": 0.98 + }, + { + "start": 23561.18, + "end": 23561.56, + "probability": 0.2943 + }, + { + "start": 23561.88, + "end": 23562.3, + "probability": 0.291 + }, + { + "start": 23563.22, + "end": 23564.86, + "probability": 0.8867 + }, + { + "start": 23565.0, + "end": 23565.75, + "probability": 0.9602 + }, + { + "start": 23566.22, + "end": 23567.76, + "probability": 0.7584 + }, + { + "start": 23568.3, + "end": 23568.74, + "probability": 0.9706 + }, + { + "start": 23569.74, + "end": 23570.56, + "probability": 0.9574 + }, + { + "start": 23571.3, + "end": 23572.16, + "probability": 0.559 + }, + { + "start": 23572.88, + "end": 23573.34, + "probability": 0.3248 + }, + { + "start": 23574.28, + "end": 23575.44, + "probability": 0.9436 + }, + { + "start": 23576.36, + "end": 23577.48, + "probability": 0.6642 + }, + { + "start": 23577.58, + "end": 23578.24, + "probability": 0.3439 + }, + { + "start": 23578.3, + "end": 23578.75, + "probability": 0.6454 + }, + { + "start": 23579.36, + "end": 23581.58, + "probability": 0.8516 + }, + { + "start": 23581.62, + "end": 23582.68, + "probability": 0.6976 + }, + { + "start": 23582.68, + "end": 23583.39, + "probability": 0.3368 + }, + { + "start": 23583.88, + "end": 23585.5, + "probability": 0.9841 + }, + { + "start": 23586.02, + "end": 23586.3, + "probability": 0.2969 + }, + { + "start": 23586.42, + "end": 23587.08, + "probability": 0.7428 + }, + { + "start": 23587.52, + "end": 23588.36, + "probability": 0.8127 + }, + { + "start": 23588.82, + "end": 23591.9, + "probability": 0.998 + }, + { + "start": 23593.96, + "end": 23595.6, + "probability": 0.8841 + }, + { + "start": 23595.68, + "end": 23595.88, + "probability": 0.3776 + }, + { + "start": 23595.96, + "end": 23596.86, + "probability": 0.7476 + }, + { + "start": 23597.9, + "end": 23600.7, + "probability": 0.988 + }, + { + "start": 23601.42, + "end": 23603.02, + "probability": 0.7981 + }, + { + "start": 23603.88, + "end": 23607.52, + "probability": 0.5885 + }, + { + "start": 23608.2, + "end": 23609.16, + "probability": 0.8033 + }, + { + "start": 23609.26, + "end": 23610.32, + "probability": 0.923 + }, + { + "start": 23611.34, + "end": 23613.14, + "probability": 0.7717 + }, + { + "start": 23613.68, + "end": 23614.08, + "probability": 0.4867 + }, + { + "start": 23614.9, + "end": 23616.66, + "probability": 0.8502 + }, + { + "start": 23616.84, + "end": 23617.29, + "probability": 0.8195 + }, + { + "start": 23617.98, + "end": 23620.38, + "probability": 0.8618 + }, + { + "start": 23621.1, + "end": 23622.56, + "probability": 0.9673 + }, + { + "start": 23622.66, + "end": 23623.54, + "probability": 0.8719 + }, + { + "start": 23624.26, + "end": 23624.76, + "probability": 0.9432 + }, + { + "start": 23625.38, + "end": 23626.48, + "probability": 0.8175 + }, + { + "start": 23626.48, + "end": 23628.86, + "probability": 0.8124 + }, + { + "start": 23628.94, + "end": 23629.76, + "probability": 0.7034 + }, + { + "start": 23631.72, + "end": 23632.7, + "probability": 0.6606 + }, + { + "start": 23633.08, + "end": 23636.46, + "probability": 0.9436 + }, + { + "start": 23637.82, + "end": 23639.78, + "probability": 0.6082 + }, + { + "start": 23639.78, + "end": 23645.42, + "probability": 0.913 + }, + { + "start": 23645.66, + "end": 23646.22, + "probability": 0.8626 + }, + { + "start": 23646.72, + "end": 23646.94, + "probability": 0.3919 + }, + { + "start": 23647.24, + "end": 23649.86, + "probability": 0.7145 + }, + { + "start": 23650.52, + "end": 23653.04, + "probability": 0.829 + }, + { + "start": 23653.04, + "end": 23655.42, + "probability": 0.9189 + }, + { + "start": 23655.94, + "end": 23656.82, + "probability": 0.8019 + }, + { + "start": 23657.34, + "end": 23658.82, + "probability": 0.8242 + }, + { + "start": 23659.0, + "end": 23661.39, + "probability": 0.5256 + }, + { + "start": 23661.58, + "end": 23663.54, + "probability": 0.5919 + }, + { + "start": 23664.12, + "end": 23666.08, + "probability": 0.7347 + }, + { + "start": 23666.22, + "end": 23668.24, + "probability": 0.6331 + }, + { + "start": 23669.4, + "end": 23671.4, + "probability": 0.7836 + }, + { + "start": 23671.61, + "end": 23672.92, + "probability": 0.7982 + }, + { + "start": 23673.49, + "end": 23676.72, + "probability": 0.9762 + }, + { + "start": 23676.84, + "end": 23677.8, + "probability": 0.7973 + }, + { + "start": 23677.86, + "end": 23678.3, + "probability": 0.744 + }, + { + "start": 23678.36, + "end": 23678.96, + "probability": 0.8594 + }, + { + "start": 23679.02, + "end": 23679.74, + "probability": 0.8398 + }, + { + "start": 23679.8, + "end": 23680.58, + "probability": 0.7013 + }, + { + "start": 23681.04, + "end": 23684.64, + "probability": 0.6836 + }, + { + "start": 23684.7, + "end": 23686.64, + "probability": 0.4936 + }, + { + "start": 23687.0, + "end": 23687.71, + "probability": 0.9907 + }, + { + "start": 23690.22, + "end": 23691.28, + "probability": 0.7509 + }, + { + "start": 23694.98, + "end": 23696.3, + "probability": 0.7721 + }, + { + "start": 23696.32, + "end": 23696.94, + "probability": 0.3666 + }, + { + "start": 23696.98, + "end": 23700.23, + "probability": 0.7815 + }, + { + "start": 23701.3, + "end": 23703.2, + "probability": 0.8464 + }, + { + "start": 23704.04, + "end": 23704.36, + "probability": 0.7752 + }, + { + "start": 23705.18, + "end": 23707.04, + "probability": 0.9277 + }, + { + "start": 23707.14, + "end": 23707.78, + "probability": 0.733 + }, + { + "start": 23707.88, + "end": 23708.82, + "probability": 0.8592 + }, + { + "start": 23709.46, + "end": 23711.6, + "probability": 0.9609 + }, + { + "start": 23713.2, + "end": 23714.8, + "probability": 0.5644 + }, + { + "start": 23716.04, + "end": 23717.82, + "probability": 0.6708 + }, + { + "start": 23718.3, + "end": 23722.54, + "probability": 0.755 + }, + { + "start": 23722.62, + "end": 23723.32, + "probability": 0.8549 + }, + { + "start": 23723.78, + "end": 23724.44, + "probability": 0.9695 + }, + { + "start": 23725.2, + "end": 23725.5, + "probability": 0.7364 + }, + { + "start": 23725.5, + "end": 23727.18, + "probability": 0.8076 + }, + { + "start": 23727.56, + "end": 23729.68, + "probability": 0.9515 + }, + { + "start": 23730.34, + "end": 23731.02, + "probability": 0.9154 + }, + { + "start": 23733.04, + "end": 23736.9, + "probability": 0.8928 + }, + { + "start": 23737.4, + "end": 23738.0, + "probability": 0.6914 + }, + { + "start": 23738.52, + "end": 23740.22, + "probability": 0.6197 + }, + { + "start": 23740.46, + "end": 23742.48, + "probability": 0.8625 + }, + { + "start": 23742.56, + "end": 23745.38, + "probability": 0.9617 + }, + { + "start": 23745.82, + "end": 23748.36, + "probability": 0.9885 + }, + { + "start": 23749.1, + "end": 23751.1, + "probability": 0.8799 + }, + { + "start": 23751.56, + "end": 23753.89, + "probability": 0.8958 + }, + { + "start": 23754.4, + "end": 23755.64, + "probability": 0.7797 + }, + { + "start": 23755.72, + "end": 23756.92, + "probability": 0.5556 + }, + { + "start": 23757.66, + "end": 23759.22, + "probability": 0.6592 + }, + { + "start": 23759.88, + "end": 23761.06, + "probability": 0.6649 + }, + { + "start": 23761.6, + "end": 23763.06, + "probability": 0.9417 + }, + { + "start": 23764.08, + "end": 23766.46, + "probability": 0.764 + }, + { + "start": 23767.58, + "end": 23768.98, + "probability": 0.4884 + }, + { + "start": 23769.9, + "end": 23770.66, + "probability": 0.7359 + }, + { + "start": 23771.24, + "end": 23775.54, + "probability": 0.7566 + }, + { + "start": 23776.06, + "end": 23776.58, + "probability": 0.7965 + }, + { + "start": 23778.36, + "end": 23778.54, + "probability": 0.0017 + }, + { + "start": 23780.34, + "end": 23781.38, + "probability": 0.683 + }, + { + "start": 23782.92, + "end": 23783.86, + "probability": 0.8982 + }, + { + "start": 23785.02, + "end": 23787.92, + "probability": 0.7035 + }, + { + "start": 23790.38, + "end": 23794.32, + "probability": 0.9913 + }, + { + "start": 23795.58, + "end": 23797.42, + "probability": 0.9225 + }, + { + "start": 23798.6, + "end": 23800.25, + "probability": 0.9709 + }, + { + "start": 23802.12, + "end": 23803.02, + "probability": 0.9899 + }, + { + "start": 23803.48, + "end": 23804.1, + "probability": 0.7875 + }, + { + "start": 23804.2, + "end": 23805.66, + "probability": 0.8788 + }, + { + "start": 23805.7, + "end": 23806.32, + "probability": 0.8576 + }, + { + "start": 23807.06, + "end": 23807.58, + "probability": 0.999 + }, + { + "start": 23808.32, + "end": 23808.74, + "probability": 0.5361 + }, + { + "start": 23809.56, + "end": 23811.08, + "probability": 0.7841 + }, + { + "start": 23811.12, + "end": 23813.64, + "probability": 0.8607 + }, + { + "start": 23813.78, + "end": 23815.38, + "probability": 0.811 + }, + { + "start": 23815.44, + "end": 23815.88, + "probability": 0.7268 + }, + { + "start": 23815.9, + "end": 23817.12, + "probability": 0.8312 + }, + { + "start": 23817.98, + "end": 23820.0, + "probability": 0.8237 + }, + { + "start": 23820.42, + "end": 23821.08, + "probability": 0.9739 + }, + { + "start": 23821.6, + "end": 23824.94, + "probability": 0.9856 + }, + { + "start": 23825.26, + "end": 23827.92, + "probability": 0.9277 + }, + { + "start": 23827.98, + "end": 23828.38, + "probability": 0.7167 + }, + { + "start": 23828.74, + "end": 23828.92, + "probability": 0.6338 + }, + { + "start": 23829.48, + "end": 23829.78, + "probability": 0.6463 + }, + { + "start": 23830.32, + "end": 23831.22, + "probability": 0.9893 + }, + { + "start": 23831.66, + "end": 23834.08, + "probability": 0.9505 + }, + { + "start": 23834.22, + "end": 23834.8, + "probability": 0.8455 + }, + { + "start": 23835.24, + "end": 23836.24, + "probability": 0.7526 + }, + { + "start": 23836.58, + "end": 23837.34, + "probability": 0.893 + }, + { + "start": 23837.6, + "end": 23838.3, + "probability": 0.7446 + }, + { + "start": 23838.98, + "end": 23840.42, + "probability": 0.9742 + }, + { + "start": 23841.0, + "end": 23842.16, + "probability": 0.7184 + }, + { + "start": 23842.36, + "end": 23844.27, + "probability": 0.7677 + }, + { + "start": 23844.86, + "end": 23845.82, + "probability": 0.6827 + }, + { + "start": 23846.94, + "end": 23848.68, + "probability": 0.9976 + }, + { + "start": 23849.02, + "end": 23850.0, + "probability": 0.9893 + }, + { + "start": 23850.46, + "end": 23852.71, + "probability": 0.96 + }, + { + "start": 23852.98, + "end": 23855.36, + "probability": 0.9661 + }, + { + "start": 23855.98, + "end": 23858.22, + "probability": 0.8531 + }, + { + "start": 23859.1, + "end": 23860.6, + "probability": 0.8864 + }, + { + "start": 23861.14, + "end": 23863.35, + "probability": 0.9937 + }, + { + "start": 23863.94, + "end": 23864.96, + "probability": 0.9546 + }, + { + "start": 23864.98, + "end": 23865.8, + "probability": 0.9163 + }, + { + "start": 23865.84, + "end": 23866.47, + "probability": 0.8989 + }, + { + "start": 23866.86, + "end": 23868.68, + "probability": 0.9635 + }, + { + "start": 23869.08, + "end": 23870.88, + "probability": 0.8042 + }, + { + "start": 23871.22, + "end": 23872.11, + "probability": 0.9897 + }, + { + "start": 23872.5, + "end": 23873.5, + "probability": 0.8879 + }, + { + "start": 23874.08, + "end": 23876.94, + "probability": 0.7794 + }, + { + "start": 23877.24, + "end": 23878.7, + "probability": 0.8739 + }, + { + "start": 23878.72, + "end": 23880.23, + "probability": 0.9696 + }, + { + "start": 23881.74, + "end": 23883.28, + "probability": 0.9922 + }, + { + "start": 23884.35, + "end": 23885.94, + "probability": 0.8793 + }, + { + "start": 23886.02, + "end": 23888.16, + "probability": 0.7648 + }, + { + "start": 23888.7, + "end": 23891.26, + "probability": 0.9131 + }, + { + "start": 23891.76, + "end": 23892.8, + "probability": 0.7086 + }, + { + "start": 23893.3, + "end": 23897.84, + "probability": 0.9966 + }, + { + "start": 23898.12, + "end": 23900.8, + "probability": 0.9951 + }, + { + "start": 23900.94, + "end": 23901.16, + "probability": 0.8574 + }, + { + "start": 23901.92, + "end": 23903.98, + "probability": 0.3594 + }, + { + "start": 23904.1, + "end": 23906.14, + "probability": 0.7333 + }, + { + "start": 23906.34, + "end": 23909.06, + "probability": 0.7881 + }, + { + "start": 23909.78, + "end": 23911.62, + "probability": 0.6487 + }, + { + "start": 23911.7, + "end": 23913.8, + "probability": 0.8083 + }, + { + "start": 23914.06, + "end": 23915.18, + "probability": 0.9921 + }, + { + "start": 23915.96, + "end": 23916.42, + "probability": 0.9667 + }, + { + "start": 23917.02, + "end": 23918.36, + "probability": 0.877 + }, + { + "start": 23921.57, + "end": 23922.94, + "probability": 0.7164 + }, + { + "start": 23923.46, + "end": 23923.9, + "probability": 0.6076 + }, + { + "start": 23924.98, + "end": 23926.56, + "probability": 0.9803 + }, + { + "start": 23927.5, + "end": 23927.96, + "probability": 0.9618 + }, + { + "start": 23928.34, + "end": 23928.82, + "probability": 0.4373 + }, + { + "start": 23929.98, + "end": 23931.82, + "probability": 0.9709 + }, + { + "start": 23932.24, + "end": 23933.42, + "probability": 0.8828 + }, + { + "start": 23934.14, + "end": 23936.0, + "probability": 0.6449 + }, + { + "start": 23936.52, + "end": 23938.84, + "probability": 0.8369 + }, + { + "start": 23939.8, + "end": 23941.6, + "probability": 0.6208 + }, + { + "start": 23943.18, + "end": 23944.22, + "probability": 0.8999 + }, + { + "start": 23945.42, + "end": 23945.52, + "probability": 0.0988 + }, + { + "start": 23945.52, + "end": 23947.16, + "probability": 0.641 + }, + { + "start": 23947.28, + "end": 23948.44, + "probability": 0.5502 + }, + { + "start": 23949.04, + "end": 23949.67, + "probability": 0.6024 + }, + { + "start": 23949.78, + "end": 23952.24, + "probability": 0.4889 + }, + { + "start": 23952.3, + "end": 23953.24, + "probability": 0.4515 + }, + { + "start": 23953.5, + "end": 23955.18, + "probability": 0.7057 + }, + { + "start": 23956.54, + "end": 23957.02, + "probability": 0.4066 + }, + { + "start": 23957.14, + "end": 23959.78, + "probability": 0.0199 + }, + { + "start": 23959.78, + "end": 23961.18, + "probability": 0.3365 + }, + { + "start": 23961.26, + "end": 23963.08, + "probability": 0.9338 + }, + { + "start": 23963.12, + "end": 23963.28, + "probability": 0.8687 + }, + { + "start": 23963.58, + "end": 23964.64, + "probability": 0.6696 + }, + { + "start": 23964.74, + "end": 23965.36, + "probability": 0.4283 + }, + { + "start": 23965.52, + "end": 23966.24, + "probability": 0.9087 + }, + { + "start": 23966.66, + "end": 23966.9, + "probability": 0.5581 + }, + { + "start": 23967.04, + "end": 23967.9, + "probability": 0.9224 + }, + { + "start": 23967.94, + "end": 23968.3, + "probability": 0.6914 + }, + { + "start": 23968.7, + "end": 23969.46, + "probability": 0.3004 + }, + { + "start": 23969.48, + "end": 23969.5, + "probability": 0.0752 + }, + { + "start": 23969.52, + "end": 23970.42, + "probability": 0.9199 + }, + { + "start": 23970.42, + "end": 23972.7, + "probability": 0.8761 + }, + { + "start": 23973.54, + "end": 23973.8, + "probability": 0.9982 + }, + { + "start": 23974.44, + "end": 23977.76, + "probability": 0.9731 + }, + { + "start": 23979.34, + "end": 23981.04, + "probability": 0.8223 + }, + { + "start": 23981.88, + "end": 23983.5, + "probability": 0.6577 + }, + { + "start": 23985.04, + "end": 23989.5, + "probability": 0.9759 + }, + { + "start": 23989.68, + "end": 23990.06, + "probability": 0.8232 + }, + { + "start": 23990.4, + "end": 23991.01, + "probability": 0.7477 + }, + { + "start": 23992.14, + "end": 23992.78, + "probability": 0.8263 + }, + { + "start": 23993.42, + "end": 23995.3, + "probability": 0.9838 + }, + { + "start": 23995.78, + "end": 23997.44, + "probability": 0.7971 + }, + { + "start": 23998.24, + "end": 24002.52, + "probability": 0.8486 + }, + { + "start": 24003.04, + "end": 24005.16, + "probability": 0.8037 + }, + { + "start": 24005.42, + "end": 24007.74, + "probability": 0.9932 + }, + { + "start": 24008.14, + "end": 24010.94, + "probability": 0.9032 + }, + { + "start": 24011.34, + "end": 24012.21, + "probability": 0.6133 + }, + { + "start": 24012.84, + "end": 24013.76, + "probability": 0.7582 + }, + { + "start": 24013.92, + "end": 24015.06, + "probability": 0.874 + }, + { + "start": 24015.42, + "end": 24016.1, + "probability": 0.8365 + }, + { + "start": 24016.52, + "end": 24018.44, + "probability": 0.3181 + }, + { + "start": 24019.0, + "end": 24020.04, + "probability": 0.506 + }, + { + "start": 24022.04, + "end": 24022.7, + "probability": 0.034 + }, + { + "start": 24022.7, + "end": 24023.26, + "probability": 0.0967 + }, + { + "start": 24023.44, + "end": 24025.88, + "probability": 0.0873 + }, + { + "start": 24026.0, + "end": 24026.82, + "probability": 0.4042 + }, + { + "start": 24027.48, + "end": 24031.18, + "probability": 0.6319 + }, + { + "start": 24031.84, + "end": 24035.66, + "probability": 0.9307 + }, + { + "start": 24036.18, + "end": 24038.66, + "probability": 0.9255 + }, + { + "start": 24039.08, + "end": 24039.94, + "probability": 0.5075 + }, + { + "start": 24039.94, + "end": 24040.66, + "probability": 0.7088 + }, + { + "start": 24041.44, + "end": 24042.92, + "probability": 0.658 + }, + { + "start": 24044.04, + "end": 24045.46, + "probability": 0.9272 + }, + { + "start": 24045.8, + "end": 24050.78, + "probability": 0.9345 + }, + { + "start": 24051.56, + "end": 24052.18, + "probability": 0.6613 + }, + { + "start": 24053.36, + "end": 24054.98, + "probability": 0.8003 + }, + { + "start": 24055.0, + "end": 24056.82, + "probability": 0.9017 + }, + { + "start": 24056.82, + "end": 24056.96, + "probability": 0.2374 + }, + { + "start": 24059.96, + "end": 24060.1, + "probability": 0.1825 + }, + { + "start": 24060.1, + "end": 24060.1, + "probability": 0.0508 + }, + { + "start": 24060.1, + "end": 24060.8, + "probability": 0.3586 + }, + { + "start": 24061.16, + "end": 24062.74, + "probability": 0.5643 + }, + { + "start": 24062.94, + "end": 24063.5, + "probability": 0.4503 + }, + { + "start": 24063.92, + "end": 24066.76, + "probability": 0.4634 + }, + { + "start": 24067.26, + "end": 24067.68, + "probability": 0.393 + }, + { + "start": 24068.48, + "end": 24068.9, + "probability": 0.8129 + }, + { + "start": 24069.08, + "end": 24069.58, + "probability": 0.5063 + }, + { + "start": 24070.2, + "end": 24075.12, + "probability": 0.7871 + }, + { + "start": 24075.12, + "end": 24079.48, + "probability": 0.8862 + }, + { + "start": 24079.9, + "end": 24080.78, + "probability": 0.9813 + }, + { + "start": 24080.86, + "end": 24081.7, + "probability": 0.9278 + }, + { + "start": 24082.06, + "end": 24085.88, + "probability": 0.9302 + }, + { + "start": 24086.54, + "end": 24087.7, + "probability": 0.5525 + }, + { + "start": 24087.7, + "end": 24088.85, + "probability": 0.6919 + }, + { + "start": 24089.52, + "end": 24091.44, + "probability": 0.7603 + }, + { + "start": 24092.32, + "end": 24097.18, + "probability": 0.9885 + }, + { + "start": 24097.24, + "end": 24098.67, + "probability": 0.6595 + }, + { + "start": 24099.04, + "end": 24101.26, + "probability": 0.8516 + }, + { + "start": 24105.46, + "end": 24106.24, + "probability": 0.2707 + }, + { + "start": 24114.6, + "end": 24114.6, + "probability": 0.0425 + }, + { + "start": 24114.6, + "end": 24114.76, + "probability": 0.2741 + }, + { + "start": 24114.82, + "end": 24116.28, + "probability": 0.5834 + }, + { + "start": 24116.28, + "end": 24118.16, + "probability": 0.9524 + }, + { + "start": 24118.5, + "end": 24118.94, + "probability": 0.5425 + }, + { + "start": 24119.2, + "end": 24125.64, + "probability": 0.9346 + }, + { + "start": 24126.2, + "end": 24131.0, + "probability": 0.2122 + }, + { + "start": 24131.0, + "end": 24135.08, + "probability": 0.9091 + }, + { + "start": 24135.72, + "end": 24135.76, + "probability": 0.0003 + }, + { + "start": 24136.32, + "end": 24139.1, + "probability": 0.8067 + }, + { + "start": 24139.88, + "end": 24143.06, + "probability": 0.5855 + }, + { + "start": 24143.1, + "end": 24144.02, + "probability": 0.7285 + }, + { + "start": 24144.8, + "end": 24146.14, + "probability": 0.8501 + }, + { + "start": 24146.18, + "end": 24147.51, + "probability": 0.9235 + }, + { + "start": 24148.48, + "end": 24154.1, + "probability": 0.7305 + }, + { + "start": 24154.92, + "end": 24155.22, + "probability": 0.6767 + }, + { + "start": 24155.4, + "end": 24155.84, + "probability": 0.3734 + }, + { + "start": 24164.42, + "end": 24165.64, + "probability": 0.7878 + }, + { + "start": 24166.26, + "end": 24166.48, + "probability": 0.7337 + }, + { + "start": 24169.74, + "end": 24171.88, + "probability": 0.5976 + }, + { + "start": 24171.92, + "end": 24175.22, + "probability": 0.947 + }, + { + "start": 24178.84, + "end": 24180.28, + "probability": 0.009 + }, + { + "start": 24181.69, + "end": 24186.9, + "probability": 0.9237 + }, + { + "start": 24188.46, + "end": 24190.48, + "probability": 0.6308 + }, + { + "start": 24192.44, + "end": 24198.16, + "probability": 0.8969 + }, + { + "start": 24198.16, + "end": 24202.14, + "probability": 0.989 + }, + { + "start": 24203.92, + "end": 24206.92, + "probability": 0.9855 + }, + { + "start": 24208.42, + "end": 24210.16, + "probability": 0.9558 + }, + { + "start": 24213.68, + "end": 24216.18, + "probability": 0.6064 + }, + { + "start": 24217.58, + "end": 24220.2, + "probability": 0.9622 + }, + { + "start": 24221.92, + "end": 24223.24, + "probability": 0.7186 + }, + { + "start": 24223.94, + "end": 24227.36, + "probability": 0.8195 + }, + { + "start": 24228.8, + "end": 24229.76, + "probability": 0.9595 + }, + { + "start": 24231.68, + "end": 24233.38, + "probability": 0.9375 + }, + { + "start": 24234.94, + "end": 24237.36, + "probability": 0.9191 + }, + { + "start": 24243.2, + "end": 24244.3, + "probability": 0.8235 + }, + { + "start": 24245.16, + "end": 24246.8, + "probability": 0.8764 + }, + { + "start": 24250.86, + "end": 24251.68, + "probability": 0.7071 + }, + { + "start": 24253.12, + "end": 24254.1, + "probability": 0.6663 + }, + { + "start": 24255.1, + "end": 24257.52, + "probability": 0.6151 + }, + { + "start": 24258.32, + "end": 24259.19, + "probability": 0.6255 + }, + { + "start": 24259.94, + "end": 24260.46, + "probability": 0.821 + }, + { + "start": 24262.28, + "end": 24266.28, + "probability": 0.9717 + }, + { + "start": 24267.56, + "end": 24273.34, + "probability": 0.9496 + }, + { + "start": 24274.54, + "end": 24279.02, + "probability": 0.9934 + }, + { + "start": 24281.78, + "end": 24285.82, + "probability": 0.9991 + }, + { + "start": 24285.82, + "end": 24290.28, + "probability": 0.9979 + }, + { + "start": 24291.64, + "end": 24292.34, + "probability": 0.75 + }, + { + "start": 24293.24, + "end": 24296.78, + "probability": 0.967 + }, + { + "start": 24297.7, + "end": 24299.72, + "probability": 0.9971 + }, + { + "start": 24302.14, + "end": 24302.6, + "probability": 0.6766 + }, + { + "start": 24303.66, + "end": 24306.7, + "probability": 0.9968 + }, + { + "start": 24307.48, + "end": 24309.14, + "probability": 0.9637 + }, + { + "start": 24310.44, + "end": 24315.44, + "probability": 0.9937 + }, + { + "start": 24315.62, + "end": 24316.34, + "probability": 0.6123 + }, + { + "start": 24316.58, + "end": 24317.86, + "probability": 0.8839 + }, + { + "start": 24317.94, + "end": 24318.46, + "probability": 0.1923 + }, + { + "start": 24321.84, + "end": 24322.74, + "probability": 0.8351 + }, + { + "start": 24324.26, + "end": 24328.78, + "probability": 0.7364 + }, + { + "start": 24330.14, + "end": 24333.42, + "probability": 0.9678 + }, + { + "start": 24334.82, + "end": 24338.12, + "probability": 0.9726 + }, + { + "start": 24339.74, + "end": 24340.92, + "probability": 0.5859 + }, + { + "start": 24344.0, + "end": 24346.82, + "probability": 0.9038 + }, + { + "start": 24348.06, + "end": 24349.26, + "probability": 0.5339 + }, + { + "start": 24349.36, + "end": 24351.0, + "probability": 0.9978 + }, + { + "start": 24351.3, + "end": 24353.02, + "probability": 0.9951 + }, + { + "start": 24353.04, + "end": 24353.72, + "probability": 0.941 + }, + { + "start": 24355.38, + "end": 24360.26, + "probability": 0.8091 + }, + { + "start": 24360.4, + "end": 24362.06, + "probability": 0.8503 + }, + { + "start": 24363.44, + "end": 24365.34, + "probability": 0.9971 + }, + { + "start": 24367.16, + "end": 24367.66, + "probability": 0.4686 + }, + { + "start": 24367.94, + "end": 24368.06, + "probability": 0.2903 + }, + { + "start": 24368.16, + "end": 24369.18, + "probability": 0.766 + }, + { + "start": 24369.26, + "end": 24373.42, + "probability": 0.8108 + }, + { + "start": 24378.14, + "end": 24380.9, + "probability": 0.9526 + }, + { + "start": 24381.44, + "end": 24383.24, + "probability": 0.9657 + }, + { + "start": 24384.3, + "end": 24385.08, + "probability": 0.8407 + }, + { + "start": 24386.42, + "end": 24389.92, + "probability": 0.8831 + }, + { + "start": 24391.88, + "end": 24392.46, + "probability": 0.7871 + }, + { + "start": 24393.88, + "end": 24394.46, + "probability": 0.9694 + }, + { + "start": 24395.68, + "end": 24396.24, + "probability": 0.9854 + }, + { + "start": 24397.48, + "end": 24402.7, + "probability": 0.9942 + }, + { + "start": 24403.92, + "end": 24405.3, + "probability": 0.9981 + }, + { + "start": 24406.8, + "end": 24408.82, + "probability": 0.9942 + }, + { + "start": 24409.92, + "end": 24410.62, + "probability": 0.4557 + }, + { + "start": 24411.8, + "end": 24412.98, + "probability": 0.7414 + }, + { + "start": 24414.46, + "end": 24417.46, + "probability": 0.9619 + }, + { + "start": 24417.6, + "end": 24418.53, + "probability": 0.9917 + }, + { + "start": 24418.74, + "end": 24420.24, + "probability": 0.9589 + }, + { + "start": 24421.86, + "end": 24424.04, + "probability": 0.833 + }, + { + "start": 24425.14, + "end": 24426.44, + "probability": 0.9026 + }, + { + "start": 24426.9, + "end": 24429.5, + "probability": 0.9632 + }, + { + "start": 24429.56, + "end": 24430.64, + "probability": 0.9197 + }, + { + "start": 24431.82, + "end": 24432.94, + "probability": 0.5464 + }, + { + "start": 24433.88, + "end": 24434.22, + "probability": 0.894 + }, + { + "start": 24435.62, + "end": 24436.74, + "probability": 0.844 + }, + { + "start": 24437.28, + "end": 24440.82, + "probability": 0.9866 + }, + { + "start": 24441.3, + "end": 24441.58, + "probability": 0.6797 + }, + { + "start": 24443.02, + "end": 24445.1, + "probability": 0.7887 + }, + { + "start": 24445.98, + "end": 24449.04, + "probability": 0.9726 + }, + { + "start": 24450.7, + "end": 24453.52, + "probability": 0.9933 + }, + { + "start": 24453.52, + "end": 24456.6, + "probability": 0.9988 + }, + { + "start": 24457.16, + "end": 24463.08, + "probability": 0.9838 + }, + { + "start": 24463.74, + "end": 24465.26, + "probability": 0.8166 + }, + { + "start": 24466.06, + "end": 24467.8, + "probability": 0.8746 + }, + { + "start": 24468.56, + "end": 24469.26, + "probability": 0.7359 + }, + { + "start": 24470.64, + "end": 24474.1, + "probability": 0.9032 + }, + { + "start": 24475.96, + "end": 24478.55, + "probability": 0.9904 + }, + { + "start": 24481.7, + "end": 24482.88, + "probability": 0.8835 + }, + { + "start": 24484.12, + "end": 24487.7, + "probability": 0.8267 + }, + { + "start": 24487.86, + "end": 24489.58, + "probability": 0.9064 + }, + { + "start": 24490.22, + "end": 24491.26, + "probability": 0.6572 + }, + { + "start": 24491.36, + "end": 24492.82, + "probability": 0.9868 + }, + { + "start": 24492.92, + "end": 24493.74, + "probability": 0.9823 + }, + { + "start": 24495.62, + "end": 24500.46, + "probability": 0.7899 + }, + { + "start": 24502.56, + "end": 24506.24, + "probability": 0.5295 + }, + { + "start": 24506.88, + "end": 24511.06, + "probability": 0.9553 + }, + { + "start": 24512.12, + "end": 24516.92, + "probability": 0.9381 + }, + { + "start": 24517.76, + "end": 24519.46, + "probability": 0.9954 + }, + { + "start": 24520.04, + "end": 24521.44, + "probability": 0.7481 + }, + { + "start": 24521.48, + "end": 24526.88, + "probability": 0.8031 + }, + { + "start": 24527.44, + "end": 24528.1, + "probability": 0.6516 + }, + { + "start": 24528.16, + "end": 24529.44, + "probability": 0.8156 + }, + { + "start": 24529.58, + "end": 24535.64, + "probability": 0.9915 + }, + { + "start": 24536.1, + "end": 24536.52, + "probability": 0.5086 + }, + { + "start": 24536.84, + "end": 24538.04, + "probability": 0.7831 + }, + { + "start": 24538.14, + "end": 24538.78, + "probability": 0.7759 + }, + { + "start": 24538.9, + "end": 24541.62, + "probability": 0.9185 + }, + { + "start": 24543.44, + "end": 24543.72, + "probability": 0.177 + }, + { + "start": 24547.3, + "end": 24548.36, + "probability": 0.9482 + }, + { + "start": 24549.16, + "end": 24551.24, + "probability": 0.9868 + }, + { + "start": 24552.4, + "end": 24553.75, + "probability": 0.9941 + }, + { + "start": 24554.48, + "end": 24557.36, + "probability": 0.9966 + }, + { + "start": 24558.5, + "end": 24558.5, + "probability": 0.9517 + }, + { + "start": 24560.1, + "end": 24560.74, + "probability": 0.6993 + }, + { + "start": 24561.5, + "end": 24564.28, + "probability": 0.9534 + }, + { + "start": 24566.04, + "end": 24566.96, + "probability": 0.7881 + }, + { + "start": 24567.76, + "end": 24569.76, + "probability": 0.9722 + }, + { + "start": 24571.93, + "end": 24574.78, + "probability": 0.7579 + }, + { + "start": 24576.46, + "end": 24577.12, + "probability": 0.7554 + }, + { + "start": 24578.46, + "end": 24582.36, + "probability": 0.7871 + }, + { + "start": 24584.76, + "end": 24586.3, + "probability": 0.9828 + }, + { + "start": 24586.38, + "end": 24588.92, + "probability": 0.9941 + }, + { + "start": 24590.76, + "end": 24593.04, + "probability": 0.9766 + }, + { + "start": 24595.6, + "end": 24596.5, + "probability": 0.989 + }, + { + "start": 24597.48, + "end": 24597.9, + "probability": 0.9878 + }, + { + "start": 24599.4, + "end": 24601.98, + "probability": 0.9259 + }, + { + "start": 24602.58, + "end": 24605.42, + "probability": 0.9835 + }, + { + "start": 24605.78, + "end": 24609.06, + "probability": 0.9541 + }, + { + "start": 24609.9, + "end": 24615.92, + "probability": 0.9787 + }, + { + "start": 24619.68, + "end": 24620.6, + "probability": 0.8588 + }, + { + "start": 24621.12, + "end": 24622.98, + "probability": 0.9014 + }, + { + "start": 24624.28, + "end": 24626.7, + "probability": 0.5465 + }, + { + "start": 24628.58, + "end": 24630.6, + "probability": 0.6602 + }, + { + "start": 24631.98, + "end": 24632.32, + "probability": 0.6141 + }, + { + "start": 24632.4, + "end": 24634.88, + "probability": 0.9932 + }, + { + "start": 24634.88, + "end": 24637.64, + "probability": 0.8734 + }, + { + "start": 24638.74, + "end": 24640.48, + "probability": 0.6683 + }, + { + "start": 24641.04, + "end": 24641.62, + "probability": 0.6985 + }, + { + "start": 24643.08, + "end": 24644.34, + "probability": 0.9868 + }, + { + "start": 24645.08, + "end": 24646.14, + "probability": 0.9441 + }, + { + "start": 24646.4, + "end": 24647.52, + "probability": 0.9181 + }, + { + "start": 24647.62, + "end": 24651.98, + "probability": 0.9009 + }, + { + "start": 24652.32, + "end": 24653.54, + "probability": 0.7363 + }, + { + "start": 24653.62, + "end": 24655.58, + "probability": 0.9367 + }, + { + "start": 24656.12, + "end": 24658.5, + "probability": 0.5543 + }, + { + "start": 24659.06, + "end": 24660.14, + "probability": 0.6521 + }, + { + "start": 24660.9, + "end": 24664.8, + "probability": 0.9925 + }, + { + "start": 24665.28, + "end": 24667.32, + "probability": 0.9452 + }, + { + "start": 24670.3, + "end": 24675.06, + "probability": 0.9338 + }, + { + "start": 24675.88, + "end": 24677.82, + "probability": 0.935 + }, + { + "start": 24678.72, + "end": 24679.98, + "probability": 0.8999 + }, + { + "start": 24680.6, + "end": 24681.9, + "probability": 0.8215 + }, + { + "start": 24682.56, + "end": 24684.94, + "probability": 0.9855 + }, + { + "start": 24685.48, + "end": 24686.32, + "probability": 0.4105 + }, + { + "start": 24686.6, + "end": 24687.52, + "probability": 0.8772 + }, + { + "start": 24688.0, + "end": 24690.36, + "probability": 0.8975 + }, + { + "start": 24691.88, + "end": 24693.02, + "probability": 0.9794 + }, + { + "start": 24694.4, + "end": 24696.16, + "probability": 0.6744 + }, + { + "start": 24696.76, + "end": 24699.7, + "probability": 0.988 + }, + { + "start": 24699.8, + "end": 24701.4, + "probability": 0.9586 + }, + { + "start": 24702.3, + "end": 24703.94, + "probability": 0.9785 + }, + { + "start": 24705.18, + "end": 24707.62, + "probability": 0.952 + }, + { + "start": 24708.54, + "end": 24710.26, + "probability": 0.8512 + }, + { + "start": 24710.4, + "end": 24716.42, + "probability": 0.8173 + }, + { + "start": 24716.5, + "end": 24717.95, + "probability": 0.8659 + }, + { + "start": 24718.6, + "end": 24720.04, + "probability": 0.949 + }, + { + "start": 24720.36, + "end": 24721.86, + "probability": 0.9494 + }, + { + "start": 24722.98, + "end": 24723.52, + "probability": 0.758 + }, + { + "start": 24725.06, + "end": 24725.58, + "probability": 0.9194 + }, + { + "start": 24727.68, + "end": 24728.52, + "probability": 0.9858 + }, + { + "start": 24731.68, + "end": 24732.06, + "probability": 0.9424 + }, + { + "start": 24733.02, + "end": 24737.58, + "probability": 0.9945 + }, + { + "start": 24738.22, + "end": 24739.52, + "probability": 0.6839 + }, + { + "start": 24739.96, + "end": 24740.8, + "probability": 0.9927 + }, + { + "start": 24742.56, + "end": 24743.42, + "probability": 0.7598 + }, + { + "start": 24744.46, + "end": 24745.94, + "probability": 0.989 + }, + { + "start": 24746.76, + "end": 24751.44, + "probability": 0.9556 + }, + { + "start": 24753.42, + "end": 24754.92, + "probability": 0.5772 + }, + { + "start": 24757.36, + "end": 24759.98, + "probability": 0.6759 + }, + { + "start": 24762.02, + "end": 24765.66, + "probability": 0.9524 + }, + { + "start": 24766.24, + "end": 24768.98, + "probability": 0.8796 + }, + { + "start": 24769.1, + "end": 24774.14, + "probability": 0.9421 + }, + { + "start": 24775.58, + "end": 24776.56, + "probability": 0.5749 + }, + { + "start": 24777.68, + "end": 24778.68, + "probability": 0.8361 + }, + { + "start": 24780.54, + "end": 24783.4, + "probability": 0.9921 + }, + { + "start": 24784.12, + "end": 24785.68, + "probability": 0.8499 + }, + { + "start": 24786.48, + "end": 24787.2, + "probability": 0.8003 + }, + { + "start": 24787.28, + "end": 24790.22, + "probability": 0.9473 + }, + { + "start": 24790.7, + "end": 24793.44, + "probability": 0.9985 + }, + { + "start": 24794.2, + "end": 24794.96, + "probability": 0.9199 + }, + { + "start": 24795.52, + "end": 24796.52, + "probability": 0.6966 + }, + { + "start": 24797.12, + "end": 24801.2, + "probability": 0.7548 + }, + { + "start": 24801.72, + "end": 24803.02, + "probability": 0.8339 + }, + { + "start": 24803.48, + "end": 24803.68, + "probability": 0.8564 + }, + { + "start": 24804.42, + "end": 24806.06, + "probability": 0.6953 + }, + { + "start": 24806.06, + "end": 24806.58, + "probability": 0.6644 + }, + { + "start": 24806.7, + "end": 24808.12, + "probability": 0.6663 + }, + { + "start": 24808.2, + "end": 24810.0, + "probability": 0.9624 + }, + { + "start": 24814.9, + "end": 24815.6, + "probability": 0.5613 + }, + { + "start": 24834.88, + "end": 24836.08, + "probability": 0.429 + }, + { + "start": 24837.66, + "end": 24838.04, + "probability": 0.8065 + }, + { + "start": 24838.08, + "end": 24840.64, + "probability": 0.6758 + }, + { + "start": 24844.9, + "end": 24846.46, + "probability": 0.9536 + }, + { + "start": 24848.32, + "end": 24849.18, + "probability": 0.4917 + }, + { + "start": 24850.92, + "end": 24851.86, + "probability": 0.9546 + }, + { + "start": 24854.94, + "end": 24858.76, + "probability": 0.9568 + }, + { + "start": 24859.84, + "end": 24863.7, + "probability": 0.9553 + }, + { + "start": 24865.5, + "end": 24866.5, + "probability": 0.7531 + }, + { + "start": 24867.88, + "end": 24868.8, + "probability": 0.858 + }, + { + "start": 24869.36, + "end": 24872.04, + "probability": 0.9366 + }, + { + "start": 24872.62, + "end": 24874.64, + "probability": 0.9221 + }, + { + "start": 24877.24, + "end": 24881.72, + "probability": 0.9316 + }, + { + "start": 24882.48, + "end": 24883.56, + "probability": 0.9828 + }, + { + "start": 24884.46, + "end": 24888.4, + "probability": 0.9736 + }, + { + "start": 24889.58, + "end": 24890.68, + "probability": 0.4697 + }, + { + "start": 24891.56, + "end": 24892.98, + "probability": 0.9764 + }, + { + "start": 24894.04, + "end": 24899.3, + "probability": 0.8814 + }, + { + "start": 24900.1, + "end": 24905.34, + "probability": 0.8902 + }, + { + "start": 24906.06, + "end": 24912.62, + "probability": 0.9354 + }, + { + "start": 24913.96, + "end": 24914.92, + "probability": 0.6561 + }, + { + "start": 24915.48, + "end": 24919.62, + "probability": 0.8186 + }, + { + "start": 24920.14, + "end": 24923.84, + "probability": 0.9415 + }, + { + "start": 24924.86, + "end": 24926.16, + "probability": 0.6653 + }, + { + "start": 24926.24, + "end": 24928.24, + "probability": 0.8015 + }, + { + "start": 24928.52, + "end": 24930.68, + "probability": 0.8955 + }, + { + "start": 24931.12, + "end": 24932.4, + "probability": 0.8664 + }, + { + "start": 24932.86, + "end": 24934.38, + "probability": 0.8668 + }, + { + "start": 24934.68, + "end": 24936.02, + "probability": 0.9181 + }, + { + "start": 24936.46, + "end": 24937.32, + "probability": 0.9878 + }, + { + "start": 24938.12, + "end": 24939.84, + "probability": 0.9896 + }, + { + "start": 24940.4, + "end": 24941.66, + "probability": 0.988 + }, + { + "start": 24943.04, + "end": 24945.42, + "probability": 0.6839 + }, + { + "start": 24945.84, + "end": 24948.7, + "probability": 0.8218 + }, + { + "start": 24949.08, + "end": 24951.02, + "probability": 0.9749 + }, + { + "start": 24952.46, + "end": 24953.38, + "probability": 0.9979 + }, + { + "start": 24955.44, + "end": 24956.62, + "probability": 0.9286 + }, + { + "start": 24959.66, + "end": 24963.16, + "probability": 0.8804 + }, + { + "start": 24965.08, + "end": 24967.34, + "probability": 0.9558 + }, + { + "start": 24968.28, + "end": 24969.56, + "probability": 0.8276 + }, + { + "start": 24970.42, + "end": 24974.48, + "probability": 0.9772 + }, + { + "start": 24975.6, + "end": 24976.64, + "probability": 0.8992 + }, + { + "start": 24977.16, + "end": 24979.62, + "probability": 0.7166 + }, + { + "start": 24980.32, + "end": 24983.4, + "probability": 0.692 + }, + { + "start": 24984.08, + "end": 24984.74, + "probability": 0.8499 + }, + { + "start": 24985.82, + "end": 24989.42, + "probability": 0.6863 + }, + { + "start": 24990.52, + "end": 24992.66, + "probability": 0.9357 + }, + { + "start": 24993.52, + "end": 24995.12, + "probability": 0.8207 + }, + { + "start": 24995.78, + "end": 24997.14, + "probability": 0.9507 + }, + { + "start": 24997.8, + "end": 25000.06, + "probability": 0.7658 + }, + { + "start": 25000.58, + "end": 25002.28, + "probability": 0.9891 + }, + { + "start": 25002.82, + "end": 25005.86, + "probability": 0.8257 + }, + { + "start": 25009.22, + "end": 25012.48, + "probability": 0.8852 + }, + { + "start": 25013.3, + "end": 25014.72, + "probability": 0.9802 + }, + { + "start": 25015.6, + "end": 25016.56, + "probability": 0.8303 + }, + { + "start": 25017.78, + "end": 25018.84, + "probability": 0.9694 + }, + { + "start": 25019.18, + "end": 25022.74, + "probability": 0.9528 + }, + { + "start": 25024.24, + "end": 25026.32, + "probability": 0.6712 + }, + { + "start": 25027.18, + "end": 25027.32, + "probability": 0.613 + }, + { + "start": 25027.48, + "end": 25029.6, + "probability": 0.9475 + }, + { + "start": 25029.82, + "end": 25030.68, + "probability": 0.9604 + }, + { + "start": 25030.8, + "end": 25031.59, + "probability": 0.9365 + }, + { + "start": 25032.02, + "end": 25033.56, + "probability": 0.8091 + }, + { + "start": 25033.88, + "end": 25035.9, + "probability": 0.9469 + }, + { + "start": 25037.62, + "end": 25037.62, + "probability": 0.9824 + }, + { + "start": 25038.44, + "end": 25040.76, + "probability": 0.8572 + }, + { + "start": 25041.18, + "end": 25042.46, + "probability": 0.9624 + }, + { + "start": 25042.86, + "end": 25046.14, + "probability": 0.7789 + }, + { + "start": 25046.32, + "end": 25050.6, + "probability": 0.9857 + }, + { + "start": 25051.5, + "end": 25054.28, + "probability": 0.9135 + }, + { + "start": 25054.8, + "end": 25055.2, + "probability": 0.8933 + }, + { + "start": 25055.52, + "end": 25056.86, + "probability": 0.7524 + }, + { + "start": 25057.64, + "end": 25060.18, + "probability": 0.7158 + }, + { + "start": 25060.9, + "end": 25067.68, + "probability": 0.8706 + }, + { + "start": 25068.4, + "end": 25070.14, + "probability": 0.9456 + }, + { + "start": 25071.71, + "end": 25073.3, + "probability": 0.3296 + }, + { + "start": 25073.74, + "end": 25077.98, + "probability": 0.8857 + }, + { + "start": 25078.6, + "end": 25080.12, + "probability": 0.7135 + }, + { + "start": 25080.52, + "end": 25081.32, + "probability": 0.9934 + }, + { + "start": 25081.76, + "end": 25083.56, + "probability": 0.988 + }, + { + "start": 25083.8, + "end": 25086.12, + "probability": 0.9836 + }, + { + "start": 25087.62, + "end": 25087.62, + "probability": 0.0716 + }, + { + "start": 25087.62, + "end": 25087.62, + "probability": 0.0425 + }, + { + "start": 25087.62, + "end": 25089.02, + "probability": 0.8835 + }, + { + "start": 25089.7, + "end": 25090.4, + "probability": 0.6978 + }, + { + "start": 25091.24, + "end": 25095.0, + "probability": 0.9618 + }, + { + "start": 25095.28, + "end": 25095.8, + "probability": 0.7114 + }, + { + "start": 25097.54, + "end": 25098.54, + "probability": 0.7381 + }, + { + "start": 25098.6, + "end": 25102.87, + "probability": 0.8548 + }, + { + "start": 25103.52, + "end": 25105.92, + "probability": 0.5776 + }, + { + "start": 25106.5, + "end": 25107.08, + "probability": 0.5901 + }, + { + "start": 25107.26, + "end": 25111.18, + "probability": 0.9771 + }, + { + "start": 25111.76, + "end": 25116.44, + "probability": 0.9111 + }, + { + "start": 25119.88, + "end": 25121.22, + "probability": 0.9434 + }, + { + "start": 25121.22, + "end": 25123.16, + "probability": 0.4896 + }, + { + "start": 25127.48, + "end": 25131.58, + "probability": 0.988 + }, + { + "start": 25131.96, + "end": 25136.34, + "probability": 0.9783 + }, + { + "start": 25138.12, + "end": 25141.22, + "probability": 0.8813 + }, + { + "start": 25141.8, + "end": 25148.4, + "probability": 0.9904 + }, + { + "start": 25149.08, + "end": 25149.64, + "probability": 0.7804 + }, + { + "start": 25150.14, + "end": 25151.08, + "probability": 0.6821 + }, + { + "start": 25151.32, + "end": 25153.7, + "probability": 0.8125 + }, + { + "start": 25155.62, + "end": 25156.38, + "probability": 0.8983 + }, + { + "start": 25156.5, + "end": 25160.94, + "probability": 0.8078 + }, + { + "start": 25161.16, + "end": 25164.1, + "probability": 0.8472 + }, + { + "start": 25164.22, + "end": 25168.42, + "probability": 0.9558 + }, + { + "start": 25169.0, + "end": 25170.5, + "probability": 0.6822 + }, + { + "start": 25171.1, + "end": 25178.46, + "probability": 0.8185 + }, + { + "start": 25178.78, + "end": 25179.98, + "probability": 0.944 + }, + { + "start": 25180.34, + "end": 25183.02, + "probability": 0.9535 + }, + { + "start": 25183.52, + "end": 25186.3, + "probability": 0.9721 + }, + { + "start": 25188.86, + "end": 25192.14, + "probability": 0.7697 + }, + { + "start": 25194.48, + "end": 25195.54, + "probability": 0.981 + }, + { + "start": 25197.02, + "end": 25198.66, + "probability": 0.7091 + }, + { + "start": 25199.36, + "end": 25204.78, + "probability": 0.8739 + }, + { + "start": 25206.04, + "end": 25207.62, + "probability": 0.9105 + }, + { + "start": 25207.94, + "end": 25209.9, + "probability": 0.8962 + }, + { + "start": 25211.92, + "end": 25212.4, + "probability": 0.7708 + }, + { + "start": 25213.74, + "end": 25214.42, + "probability": 0.713 + }, + { + "start": 25215.26, + "end": 25216.22, + "probability": 0.9781 + }, + { + "start": 25216.62, + "end": 25217.64, + "probability": 0.9873 + }, + { + "start": 25218.0, + "end": 25219.24, + "probability": 0.8098 + }, + { + "start": 25219.64, + "end": 25225.86, + "probability": 0.9493 + }, + { + "start": 25226.06, + "end": 25226.87, + "probability": 0.558 + }, + { + "start": 25227.46, + "end": 25230.88, + "probability": 0.9134 + }, + { + "start": 25231.88, + "end": 25234.08, + "probability": 0.6599 + }, + { + "start": 25234.3, + "end": 25235.72, + "probability": 0.6427 + }, + { + "start": 25240.46, + "end": 25245.28, + "probability": 0.9579 + }, + { + "start": 25245.96, + "end": 25247.62, + "probability": 0.4902 + }, + { + "start": 25248.96, + "end": 25251.04, + "probability": 0.3972 + }, + { + "start": 25252.22, + "end": 25255.58, + "probability": 0.897 + }, + { + "start": 25258.02, + "end": 25260.68, + "probability": 0.7345 + }, + { + "start": 25261.2, + "end": 25263.46, + "probability": 0.8299 + }, + { + "start": 25265.76, + "end": 25269.14, + "probability": 0.7734 + }, + { + "start": 25269.94, + "end": 25274.4, + "probability": 0.9781 + }, + { + "start": 25274.4, + "end": 25280.3, + "probability": 0.9969 + }, + { + "start": 25280.86, + "end": 25283.28, + "probability": 0.3339 + }, + { + "start": 25284.46, + "end": 25289.06, + "probability": 0.816 + }, + { + "start": 25289.86, + "end": 25292.74, + "probability": 0.9777 + }, + { + "start": 25294.12, + "end": 25297.06, + "probability": 0.8586 + }, + { + "start": 25297.7, + "end": 25301.98, + "probability": 0.9984 + }, + { + "start": 25302.96, + "end": 25304.04, + "probability": 0.7457 + }, + { + "start": 25304.12, + "end": 25307.46, + "probability": 0.7548 + }, + { + "start": 25307.94, + "end": 25310.26, + "probability": 0.8644 + }, + { + "start": 25310.9, + "end": 25314.44, + "probability": 0.7486 + }, + { + "start": 25315.08, + "end": 25316.74, + "probability": 0.7689 + }, + { + "start": 25317.78, + "end": 25319.08, + "probability": 0.822 + }, + { + "start": 25319.94, + "end": 25322.06, + "probability": 0.9633 + }, + { + "start": 25323.12, + "end": 25325.32, + "probability": 0.7065 + }, + { + "start": 25325.86, + "end": 25329.3, + "probability": 0.9147 + }, + { + "start": 25330.22, + "end": 25332.34, + "probability": 0.9829 + }, + { + "start": 25333.0, + "end": 25334.3, + "probability": 0.2314 + }, + { + "start": 25335.1, + "end": 25335.62, + "probability": 0.7863 + }, + { + "start": 25335.94, + "end": 25337.47, + "probability": 0.2429 + }, + { + "start": 25338.6, + "end": 25340.72, + "probability": 0.3697 + }, + { + "start": 25342.16, + "end": 25344.66, + "probability": 0.522 + }, + { + "start": 25344.68, + "end": 25346.78, + "probability": 0.2262 + }, + { + "start": 25346.78, + "end": 25348.51, + "probability": 0.7925 + }, + { + "start": 25349.3, + "end": 25350.78, + "probability": 0.1631 + }, + { + "start": 25351.18, + "end": 25351.66, + "probability": 0.0654 + }, + { + "start": 25352.12, + "end": 25352.3, + "probability": 0.3323 + }, + { + "start": 25352.3, + "end": 25353.88, + "probability": 0.3744 + }, + { + "start": 25354.0, + "end": 25357.14, + "probability": 0.159 + }, + { + "start": 25357.7, + "end": 25358.74, + "probability": 0.6584 + }, + { + "start": 25359.6, + "end": 25361.66, + "probability": 0.7796 + }, + { + "start": 25363.0, + "end": 25366.84, + "probability": 0.7301 + }, + { + "start": 25368.22, + "end": 25369.46, + "probability": 0.0757 + }, + { + "start": 25370.2, + "end": 25370.86, + "probability": 0.648 + }, + { + "start": 25370.98, + "end": 25376.1, + "probability": 0.5474 + }, + { + "start": 25377.87, + "end": 25380.28, + "probability": 0.3214 + }, + { + "start": 25380.48, + "end": 25382.3, + "probability": 0.9814 + }, + { + "start": 25382.36, + "end": 25384.56, + "probability": 0.7838 + }, + { + "start": 25384.76, + "end": 25385.38, + "probability": 0.9103 + }, + { + "start": 25386.44, + "end": 25388.08, + "probability": 0.8519 + }, + { + "start": 25388.22, + "end": 25388.82, + "probability": 0.8718 + }, + { + "start": 25389.22, + "end": 25391.68, + "probability": 0.9847 + }, + { + "start": 25392.32, + "end": 25395.56, + "probability": 0.8433 + }, + { + "start": 25396.42, + "end": 25402.02, + "probability": 0.6783 + }, + { + "start": 25402.92, + "end": 25404.82, + "probability": 0.7327 + }, + { + "start": 25405.62, + "end": 25406.54, + "probability": 0.8315 + }, + { + "start": 25406.82, + "end": 25410.62, + "probability": 0.9658 + }, + { + "start": 25411.12, + "end": 25411.32, + "probability": 0.8431 + }, + { + "start": 25412.52, + "end": 25413.16, + "probability": 0.3418 + }, + { + "start": 25413.34, + "end": 25413.8, + "probability": 0.062 + }, + { + "start": 25414.22, + "end": 25414.7, + "probability": 0.973 + }, + { + "start": 25415.4, + "end": 25417.98, + "probability": 0.8511 + }, + { + "start": 25418.66, + "end": 25418.88, + "probability": 0.0532 + }, + { + "start": 25419.1, + "end": 25419.64, + "probability": 0.5584 + }, + { + "start": 25420.38, + "end": 25423.74, + "probability": 0.6592 + }, + { + "start": 25424.46, + "end": 25424.94, + "probability": 0.3023 + }, + { + "start": 25426.78, + "end": 25429.56, + "probability": 0.904 + }, + { + "start": 25433.92, + "end": 25437.48, + "probability": 0.7958 + }, + { + "start": 25437.88, + "end": 25440.08, + "probability": 0.9697 + }, + { + "start": 25440.6, + "end": 25442.33, + "probability": 0.8086 + }, + { + "start": 25443.24, + "end": 25443.76, + "probability": 0.7437 + }, + { + "start": 25443.9, + "end": 25444.32, + "probability": 0.7651 + }, + { + "start": 25444.56, + "end": 25445.02, + "probability": 0.8636 + }, + { + "start": 25445.36, + "end": 25447.33, + "probability": 0.9788 + }, + { + "start": 25447.8, + "end": 25448.14, + "probability": 0.6833 + }, + { + "start": 25448.2, + "end": 25452.86, + "probability": 0.7345 + }, + { + "start": 25453.4, + "end": 25455.66, + "probability": 0.8379 + }, + { + "start": 25455.98, + "end": 25457.48, + "probability": 0.9941 + }, + { + "start": 25457.94, + "end": 25460.76, + "probability": 0.7185 + }, + { + "start": 25463.12, + "end": 25465.42, + "probability": 0.2639 + }, + { + "start": 25466.0, + "end": 25466.7, + "probability": 0.8121 + }, + { + "start": 25467.06, + "end": 25472.0, + "probability": 0.9421 + }, + { + "start": 25472.36, + "end": 25473.48, + "probability": 0.9092 + }, + { + "start": 25473.9, + "end": 25473.9, + "probability": 0.3784 + }, + { + "start": 25473.92, + "end": 25475.96, + "probability": 0.6439 + }, + { + "start": 25476.58, + "end": 25478.66, + "probability": 0.9443 + }, + { + "start": 25478.98, + "end": 25480.66, + "probability": 0.5361 + }, + { + "start": 25480.9, + "end": 25481.84, + "probability": 0.892 + }, + { + "start": 25482.64, + "end": 25485.48, + "probability": 0.7986 + }, + { + "start": 25494.4, + "end": 25495.54, + "probability": 0.6426 + }, + { + "start": 25496.98, + "end": 25498.74, + "probability": 0.8252 + }, + { + "start": 25499.02, + "end": 25503.76, + "probability": 0.9655 + }, + { + "start": 25503.98, + "end": 25504.78, + "probability": 0.665 + }, + { + "start": 25505.84, + "end": 25507.72, + "probability": 0.9328 + }, + { + "start": 25509.36, + "end": 25511.6, + "probability": 0.8676 + }, + { + "start": 25513.0, + "end": 25517.02, + "probability": 0.9795 + }, + { + "start": 25517.02, + "end": 25520.82, + "probability": 0.9985 + }, + { + "start": 25520.88, + "end": 25521.85, + "probability": 0.7126 + }, + { + "start": 25522.1, + "end": 25525.0, + "probability": 0.7098 + }, + { + "start": 25525.1, + "end": 25526.04, + "probability": 0.6391 + }, + { + "start": 25526.06, + "end": 25532.88, + "probability": 0.9717 + }, + { + "start": 25532.92, + "end": 25536.9, + "probability": 0.986 + }, + { + "start": 25536.96, + "end": 25539.14, + "probability": 0.9955 + }, + { + "start": 25539.36, + "end": 25540.08, + "probability": 0.8906 + }, + { + "start": 25541.3, + "end": 25544.01, + "probability": 0.9835 + }, + { + "start": 25544.24, + "end": 25545.94, + "probability": 0.9785 + }, + { + "start": 25546.48, + "end": 25550.44, + "probability": 0.8341 + }, + { + "start": 25550.5, + "end": 25551.76, + "probability": 0.8789 + }, + { + "start": 25552.82, + "end": 25553.83, + "probability": 0.8567 + }, + { + "start": 25554.98, + "end": 25556.98, + "probability": 0.8358 + }, + { + "start": 25558.28, + "end": 25559.72, + "probability": 0.1036 + }, + { + "start": 25559.72, + "end": 25560.3, + "probability": 0.8182 + }, + { + "start": 25560.32, + "end": 25561.62, + "probability": 0.5848 + }, + { + "start": 25561.68, + "end": 25562.38, + "probability": 0.8398 + }, + { + "start": 25562.6, + "end": 25562.92, + "probability": 0.797 + }, + { + "start": 25562.96, + "end": 25563.88, + "probability": 0.8451 + }, + { + "start": 25563.9, + "end": 25564.88, + "probability": 0.9525 + }, + { + "start": 25564.96, + "end": 25565.78, + "probability": 0.7167 + }, + { + "start": 25565.96, + "end": 25567.21, + "probability": 0.6484 + }, + { + "start": 25567.38, + "end": 25567.86, + "probability": 0.8597 + }, + { + "start": 25568.62, + "end": 25571.2, + "probability": 0.981 + }, + { + "start": 25572.6, + "end": 25574.0, + "probability": 0.9919 + }, + { + "start": 25574.12, + "end": 25577.46, + "probability": 0.6119 + }, + { + "start": 25577.48, + "end": 25578.08, + "probability": 0.8477 + }, + { + "start": 25578.82, + "end": 25579.94, + "probability": 0.8036 + }, + { + "start": 25580.96, + "end": 25584.9, + "probability": 0.9966 + }, + { + "start": 25585.8, + "end": 25588.42, + "probability": 0.8641 + }, + { + "start": 25589.1, + "end": 25592.68, + "probability": 0.9924 + }, + { + "start": 25592.68, + "end": 25596.54, + "probability": 0.9867 + }, + { + "start": 25597.5, + "end": 25601.58, + "probability": 0.9979 + }, + { + "start": 25601.58, + "end": 25607.12, + "probability": 0.9996 + }, + { + "start": 25607.32, + "end": 25611.2, + "probability": 0.7761 + }, + { + "start": 25611.74, + "end": 25614.62, + "probability": 0.9833 + }, + { + "start": 25615.08, + "end": 25616.56, + "probability": 0.6843 + }, + { + "start": 25617.78, + "end": 25618.08, + "probability": 0.7549 + }, + { + "start": 25620.64, + "end": 25621.9, + "probability": 0.9996 + }, + { + "start": 25622.64, + "end": 25625.12, + "probability": 0.9708 + }, + { + "start": 25625.7, + "end": 25626.98, + "probability": 0.9702 + }, + { + "start": 25630.4, + "end": 25632.14, + "probability": 0.9381 + }, + { + "start": 25632.78, + "end": 25634.58, + "probability": 0.6527 + }, + { + "start": 25636.29, + "end": 25638.28, + "probability": 0.9547 + }, + { + "start": 25644.38, + "end": 25646.44, + "probability": 0.8544 + }, + { + "start": 25647.28, + "end": 25648.64, + "probability": 0.9843 + }, + { + "start": 25649.52, + "end": 25651.24, + "probability": 0.9697 + }, + { + "start": 25651.8, + "end": 25653.08, + "probability": 0.8414 + }, + { + "start": 25653.94, + "end": 25658.22, + "probability": 0.9978 + }, + { + "start": 25658.36, + "end": 25659.34, + "probability": 0.913 + }, + { + "start": 25659.46, + "end": 25662.64, + "probability": 0.9448 + }, + { + "start": 25662.88, + "end": 25664.6, + "probability": 0.944 + }, + { + "start": 25665.76, + "end": 25666.92, + "probability": 0.7793 + }, + { + "start": 25667.78, + "end": 25668.54, + "probability": 0.8888 + }, + { + "start": 25669.94, + "end": 25672.39, + "probability": 0.7449 + }, + { + "start": 25673.18, + "end": 25673.94, + "probability": 0.9526 + }, + { + "start": 25674.0, + "end": 25675.12, + "probability": 0.9167 + }, + { + "start": 25675.6, + "end": 25680.22, + "probability": 0.8726 + }, + { + "start": 25680.32, + "end": 25682.64, + "probability": 0.9703 + }, + { + "start": 25683.32, + "end": 25684.38, + "probability": 0.761 + }, + { + "start": 25684.74, + "end": 25686.12, + "probability": 0.9805 + }, + { + "start": 25686.82, + "end": 25691.08, + "probability": 0.7583 + }, + { + "start": 25691.22, + "end": 25693.54, + "probability": 0.9036 + }, + { + "start": 25693.6, + "end": 25695.46, + "probability": 0.9636 + }, + { + "start": 25696.08, + "end": 25699.74, + "probability": 0.9722 + }, + { + "start": 25700.38, + "end": 25703.92, + "probability": 0.8975 + }, + { + "start": 25704.9, + "end": 25706.42, + "probability": 0.9219 + }, + { + "start": 25707.36, + "end": 25709.16, + "probability": 0.9404 + }, + { + "start": 25709.16, + "end": 25712.02, + "probability": 0.916 + }, + { + "start": 25712.1, + "end": 25712.7, + "probability": 0.8843 + }, + { + "start": 25712.98, + "end": 25714.1, + "probability": 0.9048 + }, + { + "start": 25715.0, + "end": 25716.22, + "probability": 0.8053 + }, + { + "start": 25717.08, + "end": 25717.92, + "probability": 0.6895 + }, + { + "start": 25718.4, + "end": 25720.9, + "probability": 0.8862 + }, + { + "start": 25721.36, + "end": 25722.76, + "probability": 0.8931 + }, + { + "start": 25722.84, + "end": 25724.9, + "probability": 0.945 + }, + { + "start": 25725.36, + "end": 25728.05, + "probability": 0.9683 + }, + { + "start": 25730.54, + "end": 25730.54, + "probability": 0.0712 + }, + { + "start": 25730.54, + "end": 25731.74, + "probability": 0.9751 + }, + { + "start": 25731.8, + "end": 25733.04, + "probability": 0.9029 + }, + { + "start": 25733.72, + "end": 25734.4, + "probability": 0.9044 + }, + { + "start": 25734.46, + "end": 25736.4, + "probability": 0.7498 + }, + { + "start": 25736.42, + "end": 25737.24, + "probability": 0.6348 + }, + { + "start": 25737.7, + "end": 25739.28, + "probability": 0.8797 + }, + { + "start": 25739.74, + "end": 25741.3, + "probability": 0.8035 + }, + { + "start": 25741.74, + "end": 25743.54, + "probability": 0.9678 + }, + { + "start": 25744.86, + "end": 25746.86, + "probability": 0.7991 + }, + { + "start": 25747.08, + "end": 25747.82, + "probability": 0.8355 + }, + { + "start": 25747.92, + "end": 25749.34, + "probability": 0.9668 + }, + { + "start": 25750.18, + "end": 25753.6, + "probability": 0.4543 + }, + { + "start": 25755.44, + "end": 25756.82, + "probability": 0.8376 + }, + { + "start": 25757.56, + "end": 25758.48, + "probability": 0.5154 + }, + { + "start": 25758.68, + "end": 25759.12, + "probability": 0.4844 + }, + { + "start": 25759.22, + "end": 25759.6, + "probability": 0.5214 + }, + { + "start": 25759.98, + "end": 25760.9, + "probability": 0.8083 + }, + { + "start": 25761.02, + "end": 25763.4, + "probability": 0.8467 + }, + { + "start": 25763.98, + "end": 25765.33, + "probability": 0.8743 + }, + { + "start": 25765.54, + "end": 25767.18, + "probability": 0.981 + }, + { + "start": 25768.08, + "end": 25769.96, + "probability": 0.8837 + }, + { + "start": 25770.52, + "end": 25772.13, + "probability": 0.8919 + }, + { + "start": 25772.54, + "end": 25773.46, + "probability": 0.3291 + }, + { + "start": 25773.46, + "end": 25773.56, + "probability": 0.7759 + }, + { + "start": 25781.22, + "end": 25782.64, + "probability": 0.1381 + }, + { + "start": 25783.16, + "end": 25785.94, + "probability": 0.0681 + }, + { + "start": 25794.84, + "end": 25795.68, + "probability": 0.1774 + }, + { + "start": 25796.04, + "end": 25798.72, + "probability": 0.7462 + }, + { + "start": 25798.72, + "end": 25802.24, + "probability": 0.9026 + }, + { + "start": 25802.28, + "end": 25805.9, + "probability": 0.8072 + }, + { + "start": 25805.9, + "end": 25809.08, + "probability": 0.9099 + }, + { + "start": 25809.26, + "end": 25811.96, + "probability": 0.9916 + }, + { + "start": 25812.68, + "end": 25816.08, + "probability": 0.8105 + }, + { + "start": 25816.98, + "end": 25820.64, + "probability": 0.8076 + }, + { + "start": 25820.64, + "end": 25822.4, + "probability": 0.5906 + }, + { + "start": 25823.78, + "end": 25829.12, + "probability": 0.3954 + }, + { + "start": 25829.94, + "end": 25830.86, + "probability": 0.8101 + }, + { + "start": 25833.12, + "end": 25833.54, + "probability": 0.088 + }, + { + "start": 25833.96, + "end": 25835.5, + "probability": 0.4293 + }, + { + "start": 25843.48, + "end": 25845.54, + "probability": 0.669 + }, + { + "start": 25845.74, + "end": 25847.12, + "probability": 0.227 + }, + { + "start": 25849.72, + "end": 25851.64, + "probability": 0.1631 + }, + { + "start": 25854.38, + "end": 25855.0, + "probability": 0.9575 + }, + { + "start": 25855.86, + "end": 25856.76, + "probability": 0.3887 + }, + { + "start": 25857.34, + "end": 25859.02, + "probability": 0.7169 + }, + { + "start": 25859.96, + "end": 25861.14, + "probability": 0.9922 + }, + { + "start": 25861.82, + "end": 25864.42, + "probability": 0.6437 + }, + { + "start": 25865.46, + "end": 25871.14, + "probability": 0.9582 + }, + { + "start": 25871.62, + "end": 25872.52, + "probability": 0.9731 + }, + { + "start": 25873.98, + "end": 25874.68, + "probability": 0.9019 + }, + { + "start": 25876.02, + "end": 25881.68, + "probability": 0.988 + }, + { + "start": 25881.84, + "end": 25885.1, + "probability": 0.9942 + }, + { + "start": 25885.1, + "end": 25889.6, + "probability": 0.8816 + }, + { + "start": 25891.0, + "end": 25894.08, + "probability": 0.6371 + }, + { + "start": 25895.44, + "end": 25898.02, + "probability": 0.9822 + }, + { + "start": 25899.04, + "end": 25901.38, + "probability": 0.9849 + }, + { + "start": 25901.96, + "end": 25903.66, + "probability": 0.8542 + }, + { + "start": 25904.4, + "end": 25906.78, + "probability": 0.8229 + }, + { + "start": 25907.94, + "end": 25912.18, + "probability": 0.9702 + }, + { + "start": 25912.88, + "end": 25916.52, + "probability": 0.9954 + }, + { + "start": 25916.88, + "end": 25918.88, + "probability": 0.6992 + }, + { + "start": 25919.86, + "end": 25920.18, + "probability": 0.4364 + }, + { + "start": 25920.36, + "end": 25921.6, + "probability": 0.9588 + }, + { + "start": 25922.26, + "end": 25927.46, + "probability": 0.8252 + }, + { + "start": 25927.6, + "end": 25929.06, + "probability": 0.9688 + }, + { + "start": 25930.8, + "end": 25934.0, + "probability": 0.97 + }, + { + "start": 25934.16, + "end": 25935.78, + "probability": 0.9954 + }, + { + "start": 25935.86, + "end": 25937.82, + "probability": 0.691 + }, + { + "start": 25937.88, + "end": 25938.82, + "probability": 0.9924 + }, + { + "start": 25940.44, + "end": 25941.9, + "probability": 0.978 + }, + { + "start": 25942.14, + "end": 25943.19, + "probability": 0.9686 + }, + { + "start": 25944.42, + "end": 25946.72, + "probability": 0.6494 + }, + { + "start": 25947.36, + "end": 25948.24, + "probability": 0.7563 + }, + { + "start": 25948.78, + "end": 25949.34, + "probability": 0.5456 + }, + { + "start": 25949.42, + "end": 25951.78, + "probability": 0.6756 + }, + { + "start": 25951.98, + "end": 25953.31, + "probability": 0.9196 + }, + { + "start": 25954.1, + "end": 25958.02, + "probability": 0.9816 + }, + { + "start": 25958.2, + "end": 25960.16, + "probability": 0.9162 + }, + { + "start": 25960.18, + "end": 25960.72, + "probability": 0.3243 + }, + { + "start": 25961.28, + "end": 25964.54, + "probability": 0.9844 + }, + { + "start": 25964.64, + "end": 25966.32, + "probability": 0.9412 + }, + { + "start": 25966.76, + "end": 25968.28, + "probability": 0.5002 + }, + { + "start": 25969.0, + "end": 25970.27, + "probability": 0.9637 + }, + { + "start": 25970.68, + "end": 25971.6, + "probability": 0.7348 + }, + { + "start": 25971.96, + "end": 25973.8, + "probability": 0.9142 + }, + { + "start": 25973.94, + "end": 25977.96, + "probability": 0.9968 + }, + { + "start": 25978.02, + "end": 25984.04, + "probability": 0.9358 + }, + { + "start": 25984.04, + "end": 25988.66, + "probability": 0.9893 + }, + { + "start": 25988.82, + "end": 25991.66, + "probability": 0.973 + }, + { + "start": 25991.66, + "end": 25993.86, + "probability": 0.9809 + }, + { + "start": 25994.62, + "end": 25995.84, + "probability": 0.5978 + }, + { + "start": 25996.16, + "end": 25998.43, + "probability": 0.8699 + }, + { + "start": 25999.36, + "end": 26001.32, + "probability": 0.9629 + }, + { + "start": 26001.78, + "end": 26005.28, + "probability": 0.8528 + }, + { + "start": 26005.6, + "end": 26006.52, + "probability": 0.5205 + }, + { + "start": 26006.58, + "end": 26007.22, + "probability": 0.694 + }, + { + "start": 26007.7, + "end": 26010.22, + "probability": 0.9051 + }, + { + "start": 26010.34, + "end": 26012.92, + "probability": 0.9231 + }, + { + "start": 26013.78, + "end": 26017.76, + "probability": 0.9476 + }, + { + "start": 26017.88, + "end": 26018.67, + "probability": 0.937 + }, + { + "start": 26019.38, + "end": 26026.04, + "probability": 0.9388 + }, + { + "start": 26026.84, + "end": 26029.44, + "probability": 0.9909 + }, + { + "start": 26029.5, + "end": 26030.86, + "probability": 0.8383 + }, + { + "start": 26031.54, + "end": 26037.5, + "probability": 0.9912 + }, + { + "start": 26038.0, + "end": 26038.96, + "probability": 0.876 + }, + { + "start": 26039.04, + "end": 26039.78, + "probability": 0.9821 + }, + { + "start": 26040.8, + "end": 26042.48, + "probability": 0.8909 + }, + { + "start": 26043.92, + "end": 26046.5, + "probability": 0.9722 + }, + { + "start": 26046.5, + "end": 26049.66, + "probability": 0.9957 + }, + { + "start": 26050.52, + "end": 26052.38, + "probability": 0.8935 + }, + { + "start": 26053.0, + "end": 26053.72, + "probability": 0.9921 + }, + { + "start": 26054.38, + "end": 26055.66, + "probability": 0.8158 + }, + { + "start": 26056.46, + "end": 26058.18, + "probability": 0.8978 + }, + { + "start": 26058.88, + "end": 26062.02, + "probability": 0.9989 + }, + { + "start": 26062.98, + "end": 26065.74, + "probability": 0.9989 + }, + { + "start": 26067.75, + "end": 26069.86, + "probability": 0.964 + }, + { + "start": 26070.08, + "end": 26073.76, + "probability": 0.9873 + }, + { + "start": 26073.82, + "end": 26074.94, + "probability": 0.9574 + }, + { + "start": 26075.76, + "end": 26079.92, + "probability": 0.9952 + }, + { + "start": 26080.72, + "end": 26081.52, + "probability": 0.8875 + }, + { + "start": 26082.94, + "end": 26087.92, + "probability": 0.7876 + }, + { + "start": 26087.92, + "end": 26094.0, + "probability": 0.9438 + }, + { + "start": 26095.32, + "end": 26099.96, + "probability": 0.983 + }, + { + "start": 26100.2, + "end": 26103.54, + "probability": 0.9321 + }, + { + "start": 26104.0, + "end": 26106.4, + "probability": 0.9458 + }, + { + "start": 26106.68, + "end": 26107.72, + "probability": 0.9926 + }, + { + "start": 26108.08, + "end": 26109.16, + "probability": 0.8118 + }, + { + "start": 26109.54, + "end": 26112.26, + "probability": 0.8085 + }, + { + "start": 26112.84, + "end": 26114.03, + "probability": 0.9276 + }, + { + "start": 26114.82, + "end": 26115.92, + "probability": 0.9799 + }, + { + "start": 26116.62, + "end": 26118.45, + "probability": 0.9859 + }, + { + "start": 26118.8, + "end": 26119.99, + "probability": 0.813 + }, + { + "start": 26120.48, + "end": 26123.82, + "probability": 0.9583 + }, + { + "start": 26123.9, + "end": 26124.78, + "probability": 0.7254 + }, + { + "start": 26125.72, + "end": 26126.42, + "probability": 0.5167 + }, + { + "start": 26126.6, + "end": 26129.45, + "probability": 0.9502 + }, + { + "start": 26129.7, + "end": 26136.16, + "probability": 0.9043 + }, + { + "start": 26136.86, + "end": 26140.22, + "probability": 0.9873 + }, + { + "start": 26142.1, + "end": 26144.9, + "probability": 0.0284 + }, + { + "start": 26147.62, + "end": 26148.04, + "probability": 0.0317 + }, + { + "start": 26148.04, + "end": 26148.12, + "probability": 0.07 + }, + { + "start": 26148.12, + "end": 26149.36, + "probability": 0.0632 + }, + { + "start": 26150.02, + "end": 26151.32, + "probability": 0.7179 + }, + { + "start": 26152.22, + "end": 26157.62, + "probability": 0.9219 + }, + { + "start": 26157.74, + "end": 26158.62, + "probability": 0.8579 + }, + { + "start": 26158.64, + "end": 26162.3, + "probability": 0.7434 + }, + { + "start": 26162.3, + "end": 26169.28, + "probability": 0.9842 + }, + { + "start": 26169.82, + "end": 26173.8, + "probability": 0.978 + }, + { + "start": 26174.76, + "end": 26176.74, + "probability": 0.9775 + }, + { + "start": 26176.88, + "end": 26177.66, + "probability": 0.6308 + }, + { + "start": 26178.8, + "end": 26180.82, + "probability": 0.9635 + }, + { + "start": 26180.88, + "end": 26183.14, + "probability": 0.9353 + }, + { + "start": 26183.2, + "end": 26187.32, + "probability": 0.8642 + }, + { + "start": 26187.66, + "end": 26188.76, + "probability": 0.698 + }, + { + "start": 26189.38, + "end": 26191.6, + "probability": 0.8801 + }, + { + "start": 26192.62, + "end": 26194.94, + "probability": 0.9754 + }, + { + "start": 26194.94, + "end": 26197.56, + "probability": 0.6928 + }, + { + "start": 26197.66, + "end": 26198.03, + "probability": 0.1406 + }, + { + "start": 26199.4, + "end": 26202.77, + "probability": 0.2256 + }, + { + "start": 26205.46, + "end": 26206.16, + "probability": 0.0948 + }, + { + "start": 26206.72, + "end": 26207.06, + "probability": 0.1273 + }, + { + "start": 26210.62, + "end": 26212.48, + "probability": 0.7451 + }, + { + "start": 26217.37, + "end": 26219.26, + "probability": 0.3102 + }, + { + "start": 26219.46, + "end": 26219.46, + "probability": 0.5347 + }, + { + "start": 26220.91, + "end": 26224.28, + "probability": 0.2675 + }, + { + "start": 26224.56, + "end": 26225.34, + "probability": 0.8982 + }, + { + "start": 26225.48, + "end": 26227.48, + "probability": 0.9755 + }, + { + "start": 26227.82, + "end": 26230.52, + "probability": 0.8374 + }, + { + "start": 26231.12, + "end": 26233.18, + "probability": 0.9893 + }, + { + "start": 26234.0, + "end": 26236.72, + "probability": 0.9817 + }, + { + "start": 26237.26, + "end": 26237.72, + "probability": 0.8807 + }, + { + "start": 26237.84, + "end": 26242.5, + "probability": 0.993 + }, + { + "start": 26242.5, + "end": 26246.52, + "probability": 0.9861 + }, + { + "start": 26247.68, + "end": 26250.16, + "probability": 0.7332 + }, + { + "start": 26250.2, + "end": 26251.96, + "probability": 0.9771 + }, + { + "start": 26252.93, + "end": 26254.98, + "probability": 0.6997 + }, + { + "start": 26257.1, + "end": 26257.98, + "probability": 0.1086 + }, + { + "start": 26258.32, + "end": 26259.44, + "probability": 0.685 + }, + { + "start": 26260.34, + "end": 26261.27, + "probability": 0.2865 + }, + { + "start": 26262.32, + "end": 26263.46, + "probability": 0.9127 + }, + { + "start": 26263.86, + "end": 26265.52, + "probability": 0.9554 + }, + { + "start": 26265.76, + "end": 26268.28, + "probability": 0.2905 + }, + { + "start": 26268.32, + "end": 26272.36, + "probability": 0.9203 + }, + { + "start": 26272.36, + "end": 26275.98, + "probability": 0.9968 + }, + { + "start": 26278.74, + "end": 26280.66, + "probability": 0.7624 + }, + { + "start": 26280.76, + "end": 26282.18, + "probability": 0.152 + }, + { + "start": 26282.34, + "end": 26283.56, + "probability": 0.8413 + }, + { + "start": 26283.76, + "end": 26284.84, + "probability": 0.8628 + }, + { + "start": 26284.98, + "end": 26285.74, + "probability": 0.7554 + }, + { + "start": 26285.94, + "end": 26287.6, + "probability": 0.9945 + }, + { + "start": 26287.8, + "end": 26288.58, + "probability": 0.8533 + }, + { + "start": 26288.9, + "end": 26290.4, + "probability": 0.8425 + }, + { + "start": 26290.84, + "end": 26292.26, + "probability": 0.9432 + }, + { + "start": 26292.42, + "end": 26296.44, + "probability": 0.9445 + }, + { + "start": 26296.44, + "end": 26299.78, + "probability": 0.9607 + }, + { + "start": 26299.86, + "end": 26303.24, + "probability": 0.6684 + }, + { + "start": 26304.89, + "end": 26305.9, + "probability": 0.143 + }, + { + "start": 26305.9, + "end": 26306.11, + "probability": 0.8625 + }, + { + "start": 26308.86, + "end": 26308.86, + "probability": 0.1418 + }, + { + "start": 26308.86, + "end": 26309.18, + "probability": 0.4167 + }, + { + "start": 26309.32, + "end": 26311.15, + "probability": 0.5554 + }, + { + "start": 26311.7, + "end": 26312.28, + "probability": 0.2721 + }, + { + "start": 26313.8, + "end": 26315.76, + "probability": 0.2854 + }, + { + "start": 26315.76, + "end": 26317.66, + "probability": 0.2884 + }, + { + "start": 26317.72, + "end": 26318.48, + "probability": 0.8665 + }, + { + "start": 26318.66, + "end": 26319.99, + "probability": 0.7686 + }, + { + "start": 26320.06, + "end": 26321.18, + "probability": 0.9816 + }, + { + "start": 26322.3, + "end": 26324.62, + "probability": 0.5752 + }, + { + "start": 26325.34, + "end": 26327.32, + "probability": 0.996 + }, + { + "start": 26327.72, + "end": 26327.96, + "probability": 0.855 + }, + { + "start": 26328.04, + "end": 26328.56, + "probability": 0.8288 + }, + { + "start": 26328.76, + "end": 26329.3, + "probability": 0.3681 + }, + { + "start": 26329.34, + "end": 26333.81, + "probability": 0.9604 + }, + { + "start": 26333.92, + "end": 26335.04, + "probability": 0.9121 + }, + { + "start": 26335.46, + "end": 26335.99, + "probability": 0.8971 + }, + { + "start": 26336.2, + "end": 26337.64, + "probability": 0.6745 + }, + { + "start": 26337.94, + "end": 26339.67, + "probability": 0.7305 + }, + { + "start": 26340.24, + "end": 26341.66, + "probability": 0.8157 + }, + { + "start": 26341.86, + "end": 26343.86, + "probability": 0.8485 + }, + { + "start": 26344.32, + "end": 26345.86, + "probability": 0.8954 + }, + { + "start": 26346.32, + "end": 26350.92, + "probability": 0.9421 + }, + { + "start": 26350.98, + "end": 26354.4, + "probability": 0.9958 + }, + { + "start": 26354.56, + "end": 26355.6, + "probability": 0.6254 + }, + { + "start": 26356.52, + "end": 26358.87, + "probability": 0.5125 + }, + { + "start": 26359.38, + "end": 26360.42, + "probability": 0.6792 + }, + { + "start": 26360.6, + "end": 26364.56, + "probability": 0.7593 + }, + { + "start": 26364.62, + "end": 26366.26, + "probability": 0.9513 + }, + { + "start": 26366.66, + "end": 26368.92, + "probability": 0.8623 + }, + { + "start": 26369.36, + "end": 26370.24, + "probability": 0.0781 + }, + { + "start": 26371.24, + "end": 26373.8, + "probability": 0.2998 + }, + { + "start": 26374.18, + "end": 26377.14, + "probability": 0.6032 + }, + { + "start": 26377.34, + "end": 26379.78, + "probability": 0.458 + }, + { + "start": 26381.02, + "end": 26381.82, + "probability": 0.9946 + }, + { + "start": 26383.16, + "end": 26387.86, + "probability": 0.9643 + }, + { + "start": 26387.98, + "end": 26388.66, + "probability": 0.8438 + }, + { + "start": 26388.78, + "end": 26389.3, + "probability": 0.4776 + }, + { + "start": 26389.88, + "end": 26391.8, + "probability": 0.9454 + }, + { + "start": 26392.06, + "end": 26393.14, + "probability": 0.8472 + }, + { + "start": 26393.24, + "end": 26393.62, + "probability": 0.8645 + }, + { + "start": 26394.08, + "end": 26394.77, + "probability": 0.9386 + }, + { + "start": 26396.0, + "end": 26397.18, + "probability": 0.7491 + }, + { + "start": 26397.4, + "end": 26397.81, + "probability": 0.6182 + }, + { + "start": 26397.98, + "end": 26399.12, + "probability": 0.8219 + }, + { + "start": 26399.72, + "end": 26404.72, + "probability": 0.8628 + }, + { + "start": 26404.8, + "end": 26408.74, + "probability": 0.9961 + }, + { + "start": 26409.06, + "end": 26413.52, + "probability": 0.9944 + }, + { + "start": 26413.88, + "end": 26414.44, + "probability": 0.7781 + }, + { + "start": 26415.48, + "end": 26416.78, + "probability": 0.906 + }, + { + "start": 26416.86, + "end": 26419.44, + "probability": 0.9056 + }, + { + "start": 26420.48, + "end": 26422.3, + "probability": 0.981 + }, + { + "start": 26422.72, + "end": 26427.52, + "probability": 0.9976 + }, + { + "start": 26427.52, + "end": 26432.92, + "probability": 0.9956 + }, + { + "start": 26433.38, + "end": 26439.8, + "probability": 0.8328 + }, + { + "start": 26439.96, + "end": 26442.09, + "probability": 0.4861 + }, + { + "start": 26443.82, + "end": 26447.48, + "probability": 0.9956 + }, + { + "start": 26447.52, + "end": 26450.5, + "probability": 0.8935 + }, + { + "start": 26451.5, + "end": 26453.82, + "probability": 0.6669 + }, + { + "start": 26453.94, + "end": 26457.3, + "probability": 0.9699 + }, + { + "start": 26457.38, + "end": 26459.86, + "probability": 0.9946 + }, + { + "start": 26460.56, + "end": 26462.58, + "probability": 0.6362 + }, + { + "start": 26462.68, + "end": 26466.24, + "probability": 0.7738 + }, + { + "start": 26466.52, + "end": 26468.82, + "probability": 0.5807 + }, + { + "start": 26468.92, + "end": 26469.74, + "probability": 0.589 + }, + { + "start": 26470.2, + "end": 26472.38, + "probability": 0.9968 + }, + { + "start": 26472.38, + "end": 26474.55, + "probability": 0.9907 + }, + { + "start": 26474.92, + "end": 26475.9, + "probability": 0.693 + }, + { + "start": 26476.48, + "end": 26478.9, + "probability": 0.9147 + }, + { + "start": 26479.84, + "end": 26483.68, + "probability": 0.8143 + }, + { + "start": 26484.26, + "end": 26487.84, + "probability": 0.9868 + }, + { + "start": 26488.38, + "end": 26495.6, + "probability": 0.994 + }, + { + "start": 26496.12, + "end": 26497.74, + "probability": 0.6689 + }, + { + "start": 26497.94, + "end": 26500.83, + "probability": 0.8362 + }, + { + "start": 26501.42, + "end": 26504.0, + "probability": 0.9974 + }, + { + "start": 26504.0, + "end": 26505.78, + "probability": 0.9557 + }, + { + "start": 26506.42, + "end": 26509.6, + "probability": 0.7678 + }, + { + "start": 26510.44, + "end": 26515.2, + "probability": 0.9188 + }, + { + "start": 26515.62, + "end": 26517.06, + "probability": 0.5915 + }, + { + "start": 26517.08, + "end": 26517.92, + "probability": 0.8118 + }, + { + "start": 26518.64, + "end": 26519.8, + "probability": 0.44 + }, + { + "start": 26519.8, + "end": 26523.02, + "probability": 0.8056 + }, + { + "start": 26523.28, + "end": 26523.78, + "probability": 0.868 + }, + { + "start": 26524.22, + "end": 26524.64, + "probability": 0.6601 + }, + { + "start": 26524.96, + "end": 26525.96, + "probability": 0.8973 + }, + { + "start": 26526.42, + "end": 26529.38, + "probability": 0.9632 + }, + { + "start": 26530.84, + "end": 26532.95, + "probability": 0.9946 + }, + { + "start": 26533.5, + "end": 26534.8, + "probability": 0.807 + }, + { + "start": 26534.92, + "end": 26537.18, + "probability": 0.824 + }, + { + "start": 26537.98, + "end": 26538.62, + "probability": 0.1899 + }, + { + "start": 26539.38, + "end": 26543.04, + "probability": 0.2943 + }, + { + "start": 26543.84, + "end": 26545.75, + "probability": 0.137 + }, + { + "start": 26546.0, + "end": 26546.94, + "probability": 0.7864 + }, + { + "start": 26547.64, + "end": 26548.46, + "probability": 0.9813 + }, + { + "start": 26548.74, + "end": 26549.27, + "probability": 0.3529 + }, + { + "start": 26549.58, + "end": 26549.82, + "probability": 0.5777 + }, + { + "start": 26549.9, + "end": 26550.84, + "probability": 0.5566 + }, + { + "start": 26550.94, + "end": 26552.56, + "probability": 0.5555 + }, + { + "start": 26553.32, + "end": 26554.22, + "probability": 0.0838 + }, + { + "start": 26554.24, + "end": 26556.62, + "probability": 0.7871 + }, + { + "start": 26557.18, + "end": 26558.26, + "probability": 0.9716 + }, + { + "start": 26558.82, + "end": 26559.64, + "probability": 0.8811 + }, + { + "start": 26560.22, + "end": 26561.26, + "probability": 0.783 + }, + { + "start": 26561.52, + "end": 26562.36, + "probability": 0.6175 + }, + { + "start": 26562.42, + "end": 26565.6, + "probability": 0.9904 + }, + { + "start": 26565.76, + "end": 26566.68, + "probability": 0.6795 + }, + { + "start": 26566.74, + "end": 26567.34, + "probability": 0.9016 + }, + { + "start": 26567.74, + "end": 26571.84, + "probability": 0.9475 + }, + { + "start": 26572.46, + "end": 26576.74, + "probability": 0.9741 + }, + { + "start": 26577.52, + "end": 26579.78, + "probability": 0.9463 + }, + { + "start": 26580.92, + "end": 26583.48, + "probability": 0.8462 + }, + { + "start": 26584.08, + "end": 26584.66, + "probability": 0.6508 + }, + { + "start": 26584.74, + "end": 26586.56, + "probability": 0.9202 + }, + { + "start": 26587.08, + "end": 26589.06, + "probability": 0.62 + }, + { + "start": 26589.8, + "end": 26591.94, + "probability": 0.9969 + }, + { + "start": 26592.64, + "end": 26593.58, + "probability": 0.498 + }, + { + "start": 26593.82, + "end": 26594.08, + "probability": 0.7971 + }, + { + "start": 26594.6, + "end": 26597.78, + "probability": 0.806 + }, + { + "start": 26597.82, + "end": 26600.76, + "probability": 0.7784 + }, + { + "start": 26615.14, + "end": 26615.24, + "probability": 0.0326 + }, + { + "start": 26615.24, + "end": 26616.7, + "probability": 0.3695 + }, + { + "start": 26617.56, + "end": 26619.12, + "probability": 0.8335 + }, + { + "start": 26621.52, + "end": 26623.95, + "probability": 0.0828 + }, + { + "start": 26624.14, + "end": 26624.8, + "probability": 0.4127 + }, + { + "start": 26625.38, + "end": 26627.32, + "probability": 0.4497 + }, + { + "start": 26627.74, + "end": 26628.2, + "probability": 0.1001 + }, + { + "start": 26628.36, + "end": 26628.8, + "probability": 0.0553 + }, + { + "start": 26632.96, + "end": 26636.9, + "probability": 0.8789 + }, + { + "start": 26636.9, + "end": 26641.14, + "probability": 0.7656 + }, + { + "start": 26641.46, + "end": 26642.58, + "probability": 0.9932 + }, + { + "start": 26643.44, + "end": 26646.56, + "probability": 0.9382 + }, + { + "start": 26646.64, + "end": 26650.84, + "probability": 0.3782 + }, + { + "start": 26651.8, + "end": 26652.56, + "probability": 0.8232 + }, + { + "start": 26653.17, + "end": 26658.83, + "probability": 0.953 + }, + { + "start": 26658.98, + "end": 26661.98, + "probability": 0.3725 + }, + { + "start": 26662.0, + "end": 26663.52, + "probability": 0.3413 + }, + { + "start": 26663.84, + "end": 26668.9, + "probability": 0.9807 + }, + { + "start": 26669.9, + "end": 26672.84, + "probability": 0.9976 + }, + { + "start": 26673.64, + "end": 26676.16, + "probability": 0.9027 + }, + { + "start": 26676.98, + "end": 26678.42, + "probability": 0.1665 + }, + { + "start": 26678.74, + "end": 26683.36, + "probability": 0.9889 + }, + { + "start": 26683.6, + "end": 26687.36, + "probability": 0.9944 + }, + { + "start": 26688.84, + "end": 26694.58, + "probability": 0.9854 + }, + { + "start": 26695.54, + "end": 26697.86, + "probability": 0.9917 + }, + { + "start": 26698.54, + "end": 26701.28, + "probability": 0.9373 + }, + { + "start": 26702.62, + "end": 26703.48, + "probability": 0.4978 + }, + { + "start": 26703.76, + "end": 26707.4, + "probability": 0.9966 + }, + { + "start": 26708.0, + "end": 26710.26, + "probability": 0.8516 + }, + { + "start": 26711.0, + "end": 26714.48, + "probability": 0.9937 + }, + { + "start": 26715.02, + "end": 26717.3, + "probability": 0.951 + }, + { + "start": 26718.02, + "end": 26719.38, + "probability": 0.9692 + }, + { + "start": 26721.26, + "end": 26722.32, + "probability": 0.0269 + }, + { + "start": 26722.52, + "end": 26726.3, + "probability": 0.7253 + }, + { + "start": 26727.3, + "end": 26728.72, + "probability": 0.1013 + }, + { + "start": 26729.98, + "end": 26733.26, + "probability": 0.991 + }, + { + "start": 26733.92, + "end": 26738.12, + "probability": 0.9902 + }, + { + "start": 26738.24, + "end": 26741.02, + "probability": 0.9933 + }, + { + "start": 26741.04, + "end": 26743.54, + "probability": 0.9952 + }, + { + "start": 26744.08, + "end": 26746.32, + "probability": 0.9867 + }, + { + "start": 26746.98, + "end": 26749.4, + "probability": 0.9971 + }, + { + "start": 26750.6, + "end": 26751.2, + "probability": 0.7504 + }, + { + "start": 26752.16, + "end": 26755.74, + "probability": 0.9546 + }, + { + "start": 26756.46, + "end": 26758.74, + "probability": 0.9873 + }, + { + "start": 26759.62, + "end": 26762.68, + "probability": 0.997 + }, + { + "start": 26763.22, + "end": 26765.42, + "probability": 0.986 + }, + { + "start": 26766.02, + "end": 26767.7, + "probability": 0.9266 + }, + { + "start": 26768.18, + "end": 26771.5, + "probability": 0.8494 + }, + { + "start": 26772.44, + "end": 26773.9, + "probability": 0.998 + }, + { + "start": 26774.92, + "end": 26777.38, + "probability": 0.9361 + }, + { + "start": 26777.92, + "end": 26779.96, + "probability": 0.998 + }, + { + "start": 26780.54, + "end": 26781.52, + "probability": 0.7595 + }, + { + "start": 26782.24, + "end": 26785.98, + "probability": 0.9726 + }, + { + "start": 26785.98, + "end": 26789.18, + "probability": 0.9922 + }, + { + "start": 26790.06, + "end": 26790.64, + "probability": 0.7884 + }, + { + "start": 26790.78, + "end": 26791.22, + "probability": 0.9169 + }, + { + "start": 26791.38, + "end": 26791.8, + "probability": 0.9581 + }, + { + "start": 26791.88, + "end": 26792.46, + "probability": 0.6186 + }, + { + "start": 26792.52, + "end": 26793.36, + "probability": 0.978 + }, + { + "start": 26794.6, + "end": 26800.46, + "probability": 0.9978 + }, + { + "start": 26800.46, + "end": 26806.12, + "probability": 0.9085 + }, + { + "start": 26806.12, + "end": 26812.4, + "probability": 0.9855 + }, + { + "start": 26814.02, + "end": 26815.82, + "probability": 0.7499 + }, + { + "start": 26816.58, + "end": 26819.52, + "probability": 0.9904 + }, + { + "start": 26820.26, + "end": 26821.3, + "probability": 0.9281 + }, + { + "start": 26824.28, + "end": 26824.96, + "probability": 0.7521 + }, + { + "start": 26827.2, + "end": 26828.02, + "probability": 0.6284 + }, + { + "start": 26829.56, + "end": 26830.61, + "probability": 0.274 + }, + { + "start": 26831.22, + "end": 26831.52, + "probability": 0.2544 + }, + { + "start": 26832.44, + "end": 26832.58, + "probability": 0.1502 + }, + { + "start": 26832.58, + "end": 26833.04, + "probability": 0.2359 + }, + { + "start": 26833.74, + "end": 26834.02, + "probability": 0.087 + }, + { + "start": 26834.14, + "end": 26835.62, + "probability": 0.4447 + }, + { + "start": 26836.12, + "end": 26837.04, + "probability": 0.885 + }, + { + "start": 26837.14, + "end": 26838.28, + "probability": 0.8755 + }, + { + "start": 26838.36, + "end": 26839.58, + "probability": 0.9736 + }, + { + "start": 26840.06, + "end": 26841.44, + "probability": 0.8118 + }, + { + "start": 26841.68, + "end": 26842.38, + "probability": 0.3442 + }, + { + "start": 26842.74, + "end": 26844.78, + "probability": 0.3552 + }, + { + "start": 26844.88, + "end": 26846.0, + "probability": 0.3499 + }, + { + "start": 26846.22, + "end": 26846.22, + "probability": 0.0939 + }, + { + "start": 26846.22, + "end": 26846.22, + "probability": 0.553 + }, + { + "start": 26846.22, + "end": 26847.93, + "probability": 0.2356 + }, + { + "start": 26850.08, + "end": 26852.12, + "probability": 0.7667 + }, + { + "start": 26854.0, + "end": 26859.8, + "probability": 0.7288 + }, + { + "start": 26859.8, + "end": 26866.06, + "probability": 0.9618 + }, + { + "start": 26866.26, + "end": 26867.3, + "probability": 0.4688 + }, + { + "start": 26867.7, + "end": 26868.38, + "probability": 0.675 + }, + { + "start": 26868.76, + "end": 26871.27, + "probability": 0.8999 + }, + { + "start": 26871.44, + "end": 26871.82, + "probability": 0.3567 + }, + { + "start": 26871.9, + "end": 26872.42, + "probability": 0.5872 + }, + { + "start": 26873.98, + "end": 26874.12, + "probability": 0.267 + }, + { + "start": 26874.12, + "end": 26875.96, + "probability": 0.5076 + }, + { + "start": 26876.98, + "end": 26878.4, + "probability": 0.1409 + }, + { + "start": 26878.52, + "end": 26881.84, + "probability": 0.4133 + }, + { + "start": 26881.84, + "end": 26883.09, + "probability": 0.4197 + }, + { + "start": 26886.34, + "end": 26887.66, + "probability": 0.3457 + }, + { + "start": 26888.66, + "end": 26890.38, + "probability": 0.4566 + }, + { + "start": 26890.46, + "end": 26892.62, + "probability": 0.8647 + }, + { + "start": 26892.74, + "end": 26895.16, + "probability": 0.4263 + }, + { + "start": 26896.62, + "end": 26902.44, + "probability": 0.2544 + }, + { + "start": 26906.3, + "end": 26908.18, + "probability": 0.0989 + }, + { + "start": 26908.18, + "end": 26908.48, + "probability": 0.1202 + }, + { + "start": 26908.48, + "end": 26908.62, + "probability": 0.0142 + }, + { + "start": 26908.62, + "end": 26909.12, + "probability": 0.1297 + }, + { + "start": 26910.2, + "end": 26915.68, + "probability": 0.1035 + }, + { + "start": 26916.84, + "end": 26919.34, + "probability": 0.0595 + }, + { + "start": 26919.64, + "end": 26920.92, + "probability": 0.0622 + }, + { + "start": 26921.62, + "end": 26922.47, + "probability": 0.0353 + } + ], + "segments_count": 9513, + "words_count": 47854, + "avg_words_per_segment": 5.0304, + "avg_segment_duration": 2.0981, + "avg_words_per_minute": 106.6448, + "plenum_id": "14425", + "duration": 26923.4, + "title": null, + "plenum_date": "2011-06-29" +} \ No newline at end of file