diff --git "a/14555/metadata.json" "b/14555/metadata.json" new file mode 100644--- /dev/null +++ "b/14555/metadata.json" @@ -0,0 +1,36427 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "14555", + "quality_score": 0.8979, + "per_segment_quality_scores": [ + { + "start": 78.48, + "end": 82.18, + "probability": 0.1319 + }, + { + "start": 82.88, + "end": 84.98, + "probability": 0.5294 + }, + { + "start": 85.56, + "end": 87.68, + "probability": 0.047 + }, + { + "start": 88.28, + "end": 88.5, + "probability": 0.0359 + }, + { + "start": 91.7, + "end": 92.5, + "probability": 0.0512 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.1, + "end": 138.02, + "probability": 0.9797 + }, + { + "start": 138.02, + "end": 142.38, + "probability": 0.9972 + }, + { + "start": 142.86, + "end": 145.38, + "probability": 0.9207 + }, + { + "start": 145.38, + "end": 148.02, + "probability": 0.996 + }, + { + "start": 148.56, + "end": 151.14, + "probability": 0.9828 + }, + { + "start": 151.46, + "end": 151.62, + "probability": 0.6915 + }, + { + "start": 152.58, + "end": 154.14, + "probability": 0.6438 + }, + { + "start": 154.16, + "end": 157.8, + "probability": 0.8718 + }, + { + "start": 158.5, + "end": 161.26, + "probability": 0.4567 + }, + { + "start": 161.9, + "end": 164.1, + "probability": 0.8452 + }, + { + "start": 169.28, + "end": 171.1, + "probability": 0.9756 + }, + { + "start": 172.54, + "end": 175.08, + "probability": 0.9456 + }, + { + "start": 175.76, + "end": 177.36, + "probability": 0.9355 + }, + { + "start": 178.16, + "end": 183.56, + "probability": 0.9376 + }, + { + "start": 183.62, + "end": 185.98, + "probability": 0.6962 + }, + { + "start": 186.16, + "end": 187.66, + "probability": 0.9878 + }, + { + "start": 188.18, + "end": 188.98, + "probability": 0.6464 + }, + { + "start": 189.7, + "end": 195.52, + "probability": 0.9674 + }, + { + "start": 196.04, + "end": 198.74, + "probability": 0.9448 + }, + { + "start": 201.7, + "end": 206.02, + "probability": 0.9933 + }, + { + "start": 206.56, + "end": 208.18, + "probability": 0.6933 + }, + { + "start": 208.82, + "end": 210.1, + "probability": 0.9352 + }, + { + "start": 210.72, + "end": 211.18, + "probability": 0.8677 + }, + { + "start": 211.62, + "end": 214.08, + "probability": 0.7495 + }, + { + "start": 215.08, + "end": 216.04, + "probability": 0.6837 + }, + { + "start": 217.6, + "end": 222.64, + "probability": 0.9409 + }, + { + "start": 222.64, + "end": 224.88, + "probability": 0.989 + }, + { + "start": 225.44, + "end": 225.62, + "probability": 0.6679 + }, + { + "start": 227.06, + "end": 231.7, + "probability": 0.9811 + }, + { + "start": 233.0, + "end": 236.56, + "probability": 0.9126 + }, + { + "start": 237.86, + "end": 239.32, + "probability": 0.9935 + }, + { + "start": 240.0, + "end": 241.66, + "probability": 0.999 + }, + { + "start": 241.76, + "end": 243.08, + "probability": 0.8697 + }, + { + "start": 243.94, + "end": 247.24, + "probability": 0.9109 + }, + { + "start": 247.84, + "end": 250.06, + "probability": 0.711 + }, + { + "start": 251.16, + "end": 252.26, + "probability": 0.7276 + }, + { + "start": 252.74, + "end": 256.02, + "probability": 0.8837 + }, + { + "start": 256.94, + "end": 259.36, + "probability": 0.9575 + }, + { + "start": 260.08, + "end": 262.3, + "probability": 0.9048 + }, + { + "start": 262.82, + "end": 266.48, + "probability": 0.9761 + }, + { + "start": 266.54, + "end": 269.26, + "probability": 0.7569 + }, + { + "start": 269.42, + "end": 271.32, + "probability": 0.552 + }, + { + "start": 272.32, + "end": 274.3, + "probability": 0.6123 + }, + { + "start": 274.38, + "end": 274.68, + "probability": 0.3682 + }, + { + "start": 274.72, + "end": 274.9, + "probability": 0.5492 + }, + { + "start": 274.98, + "end": 276.18, + "probability": 0.9136 + }, + { + "start": 276.64, + "end": 279.62, + "probability": 0.9814 + }, + { + "start": 281.02, + "end": 285.22, + "probability": 0.9513 + }, + { + "start": 285.86, + "end": 286.95, + "probability": 0.7123 + }, + { + "start": 288.06, + "end": 290.7, + "probability": 0.9756 + }, + { + "start": 291.98, + "end": 292.22, + "probability": 0.9726 + }, + { + "start": 293.38, + "end": 293.82, + "probability": 0.9907 + }, + { + "start": 294.76, + "end": 295.79, + "probability": 0.2196 + }, + { + "start": 296.68, + "end": 299.56, + "probability": 0.8516 + }, + { + "start": 300.42, + "end": 305.8, + "probability": 0.9685 + }, + { + "start": 306.42, + "end": 307.56, + "probability": 0.6425 + }, + { + "start": 308.4, + "end": 311.68, + "probability": 0.5082 + }, + { + "start": 312.42, + "end": 313.22, + "probability": 0.782 + }, + { + "start": 313.36, + "end": 315.28, + "probability": 0.9922 + }, + { + "start": 315.9, + "end": 316.96, + "probability": 0.666 + }, + { + "start": 317.1, + "end": 320.5, + "probability": 0.9196 + }, + { + "start": 321.16, + "end": 322.86, + "probability": 0.9355 + }, + { + "start": 325.36, + "end": 326.02, + "probability": 0.2964 + }, + { + "start": 326.16, + "end": 328.04, + "probability": 0.5926 + }, + { + "start": 328.88, + "end": 332.08, + "probability": 0.8921 + }, + { + "start": 332.2, + "end": 334.1, + "probability": 0.9815 + }, + { + "start": 335.42, + "end": 337.76, + "probability": 0.9219 + }, + { + "start": 337.9, + "end": 338.98, + "probability": 0.9519 + }, + { + "start": 339.62, + "end": 341.28, + "probability": 0.8634 + }, + { + "start": 341.7, + "end": 345.66, + "probability": 0.9762 + }, + { + "start": 347.26, + "end": 350.66, + "probability": 0.9629 + }, + { + "start": 351.22, + "end": 359.94, + "probability": 0.8522 + }, + { + "start": 360.56, + "end": 361.78, + "probability": 0.8904 + }, + { + "start": 363.79, + "end": 367.9, + "probability": 0.9677 + }, + { + "start": 368.44, + "end": 370.08, + "probability": 0.701 + }, + { + "start": 370.28, + "end": 372.83, + "probability": 0.9717 + }, + { + "start": 373.42, + "end": 377.44, + "probability": 0.9102 + }, + { + "start": 377.88, + "end": 381.26, + "probability": 0.9912 + }, + { + "start": 381.88, + "end": 383.72, + "probability": 0.9366 + }, + { + "start": 384.12, + "end": 386.68, + "probability": 0.9746 + }, + { + "start": 388.2, + "end": 392.06, + "probability": 0.9943 + }, + { + "start": 392.66, + "end": 394.74, + "probability": 0.9795 + }, + { + "start": 395.38, + "end": 396.46, + "probability": 0.9024 + }, + { + "start": 397.04, + "end": 397.78, + "probability": 0.9277 + }, + { + "start": 398.48, + "end": 401.51, + "probability": 0.782 + }, + { + "start": 402.58, + "end": 408.72, + "probability": 0.9807 + }, + { + "start": 408.88, + "end": 409.26, + "probability": 0.7162 + }, + { + "start": 410.66, + "end": 412.9, + "probability": 0.8893 + }, + { + "start": 413.02, + "end": 416.94, + "probability": 0.9653 + }, + { + "start": 417.42, + "end": 418.17, + "probability": 0.9535 + }, + { + "start": 418.72, + "end": 423.68, + "probability": 0.8794 + }, + { + "start": 424.28, + "end": 424.98, + "probability": 0.7941 + }, + { + "start": 425.06, + "end": 426.1, + "probability": 0.9744 + }, + { + "start": 426.12, + "end": 428.5, + "probability": 0.7939 + }, + { + "start": 429.04, + "end": 430.04, + "probability": 0.9029 + }, + { + "start": 430.48, + "end": 432.82, + "probability": 0.9288 + }, + { + "start": 433.16, + "end": 435.86, + "probability": 0.8845 + }, + { + "start": 436.5, + "end": 440.3, + "probability": 0.7986 + }, + { + "start": 440.92, + "end": 442.98, + "probability": 0.9766 + }, + { + "start": 445.7, + "end": 448.38, + "probability": 0.8444 + }, + { + "start": 449.02, + "end": 451.16, + "probability": 0.9474 + }, + { + "start": 452.14, + "end": 454.7, + "probability": 0.8872 + }, + { + "start": 454.9, + "end": 457.34, + "probability": 0.9949 + }, + { + "start": 458.0, + "end": 462.9, + "probability": 0.8217 + }, + { + "start": 463.9, + "end": 465.64, + "probability": 0.9606 + }, + { + "start": 466.4, + "end": 472.64, + "probability": 0.9941 + }, + { + "start": 472.64, + "end": 477.32, + "probability": 0.9927 + }, + { + "start": 477.68, + "end": 479.18, + "probability": 0.8279 + }, + { + "start": 479.76, + "end": 483.96, + "probability": 0.99 + }, + { + "start": 485.92, + "end": 487.0, + "probability": 0.9834 + }, + { + "start": 487.52, + "end": 490.32, + "probability": 0.9502 + }, + { + "start": 490.88, + "end": 493.1, + "probability": 0.9843 + }, + { + "start": 493.38, + "end": 496.22, + "probability": 0.8881 + }, + { + "start": 497.1, + "end": 497.74, + "probability": 0.7322 + }, + { + "start": 498.46, + "end": 501.12, + "probability": 0.9721 + }, + { + "start": 502.06, + "end": 504.46, + "probability": 0.9386 + }, + { + "start": 505.2, + "end": 506.68, + "probability": 0.9959 + }, + { + "start": 507.56, + "end": 510.48, + "probability": 0.9543 + }, + { + "start": 511.12, + "end": 512.04, + "probability": 0.7792 + }, + { + "start": 512.48, + "end": 513.32, + "probability": 0.8047 + }, + { + "start": 513.9, + "end": 516.78, + "probability": 0.8854 + }, + { + "start": 517.56, + "end": 519.3, + "probability": 0.887 + }, + { + "start": 520.12, + "end": 523.44, + "probability": 0.9683 + }, + { + "start": 523.46, + "end": 524.54, + "probability": 0.9844 + }, + { + "start": 524.6, + "end": 529.92, + "probability": 0.953 + }, + { + "start": 530.62, + "end": 532.84, + "probability": 0.9834 + }, + { + "start": 533.62, + "end": 534.1, + "probability": 0.7033 + }, + { + "start": 534.24, + "end": 538.92, + "probability": 0.9661 + }, + { + "start": 539.46, + "end": 541.32, + "probability": 0.8838 + }, + { + "start": 541.72, + "end": 542.34, + "probability": 0.9473 + }, + { + "start": 542.54, + "end": 545.98, + "probability": 0.9615 + }, + { + "start": 546.62, + "end": 550.38, + "probability": 0.7866 + }, + { + "start": 550.72, + "end": 551.34, + "probability": 0.9026 + }, + { + "start": 552.02, + "end": 554.92, + "probability": 0.8818 + }, + { + "start": 555.06, + "end": 556.4, + "probability": 0.8798 + }, + { + "start": 557.28, + "end": 559.34, + "probability": 0.9038 + }, + { + "start": 559.66, + "end": 560.08, + "probability": 0.8761 + }, + { + "start": 560.38, + "end": 560.86, + "probability": 0.9477 + }, + { + "start": 561.72, + "end": 563.64, + "probability": 0.9974 + }, + { + "start": 567.28, + "end": 571.5, + "probability": 0.9631 + }, + { + "start": 571.8, + "end": 573.34, + "probability": 0.9883 + }, + { + "start": 573.76, + "end": 574.1, + "probability": 0.646 + }, + { + "start": 574.18, + "end": 577.86, + "probability": 0.6567 + }, + { + "start": 578.56, + "end": 579.88, + "probability": 0.8697 + }, + { + "start": 580.2, + "end": 581.53, + "probability": 0.9753 + }, + { + "start": 583.02, + "end": 585.46, + "probability": 0.6602 + }, + { + "start": 585.58, + "end": 588.8, + "probability": 0.8368 + }, + { + "start": 589.8, + "end": 590.48, + "probability": 0.0471 + }, + { + "start": 590.68, + "end": 592.56, + "probability": 0.9604 + }, + { + "start": 592.74, + "end": 593.48, + "probability": 0.6567 + }, + { + "start": 593.48, + "end": 594.11, + "probability": 0.6889 + }, + { + "start": 594.84, + "end": 596.8, + "probability": 0.9919 + }, + { + "start": 597.16, + "end": 598.9, + "probability": 0.9922 + }, + { + "start": 599.04, + "end": 602.6, + "probability": 0.7349 + }, + { + "start": 603.04, + "end": 605.46, + "probability": 0.8065 + }, + { + "start": 606.12, + "end": 607.8, + "probability": 0.908 + }, + { + "start": 608.08, + "end": 611.32, + "probability": 0.562 + }, + { + "start": 611.32, + "end": 616.28, + "probability": 0.0572 + }, + { + "start": 616.28, + "end": 616.28, + "probability": 0.0801 + }, + { + "start": 616.28, + "end": 617.12, + "probability": 0.1359 + }, + { + "start": 617.76, + "end": 619.44, + "probability": 0.9766 + }, + { + "start": 621.62, + "end": 628.5, + "probability": 0.9569 + }, + { + "start": 628.54, + "end": 630.58, + "probability": 0.8597 + }, + { + "start": 630.72, + "end": 633.96, + "probability": 0.9968 + }, + { + "start": 634.76, + "end": 638.28, + "probability": 0.9694 + }, + { + "start": 639.12, + "end": 640.3, + "probability": 0.9958 + }, + { + "start": 640.8, + "end": 643.46, + "probability": 0.0542 + }, + { + "start": 644.18, + "end": 644.84, + "probability": 0.8733 + }, + { + "start": 645.52, + "end": 647.86, + "probability": 0.9798 + }, + { + "start": 647.86, + "end": 651.12, + "probability": 0.9755 + }, + { + "start": 651.7, + "end": 653.09, + "probability": 0.9973 + }, + { + "start": 653.92, + "end": 654.64, + "probability": 0.8335 + }, + { + "start": 655.2, + "end": 660.06, + "probability": 0.9502 + }, + { + "start": 660.84, + "end": 662.28, + "probability": 0.9619 + }, + { + "start": 663.22, + "end": 664.02, + "probability": 0.4115 + }, + { + "start": 664.64, + "end": 665.46, + "probability": 0.9775 + }, + { + "start": 666.18, + "end": 666.66, + "probability": 0.8584 + }, + { + "start": 666.76, + "end": 669.66, + "probability": 0.7665 + }, + { + "start": 670.3, + "end": 671.81, + "probability": 0.8192 + }, + { + "start": 672.02, + "end": 672.85, + "probability": 0.9908 + }, + { + "start": 673.38, + "end": 674.3, + "probability": 0.9917 + }, + { + "start": 675.22, + "end": 677.14, + "probability": 0.925 + }, + { + "start": 677.78, + "end": 679.56, + "probability": 0.8739 + }, + { + "start": 680.16, + "end": 682.88, + "probability": 0.9509 + }, + { + "start": 683.74, + "end": 684.57, + "probability": 0.8799 + }, + { + "start": 685.4, + "end": 688.28, + "probability": 0.9749 + }, + { + "start": 702.02, + "end": 702.66, + "probability": 0.0379 + }, + { + "start": 702.66, + "end": 702.66, + "probability": 0.0505 + }, + { + "start": 702.66, + "end": 702.66, + "probability": 0.0378 + }, + { + "start": 702.66, + "end": 702.66, + "probability": 0.0601 + }, + { + "start": 702.66, + "end": 702.66, + "probability": 0.043 + }, + { + "start": 702.66, + "end": 703.32, + "probability": 0.346 + }, + { + "start": 703.5, + "end": 704.56, + "probability": 0.4664 + }, + { + "start": 705.02, + "end": 705.38, + "probability": 0.7793 + }, + { + "start": 705.46, + "end": 707.08, + "probability": 0.923 + }, + { + "start": 708.12, + "end": 710.34, + "probability": 0.6424 + }, + { + "start": 710.7, + "end": 712.04, + "probability": 0.9407 + }, + { + "start": 712.24, + "end": 713.06, + "probability": 0.8267 + }, + { + "start": 713.14, + "end": 714.08, + "probability": 0.8597 + }, + { + "start": 714.82, + "end": 721.22, + "probability": 0.8513 + }, + { + "start": 721.34, + "end": 721.82, + "probability": 0.8342 + }, + { + "start": 722.16, + "end": 722.7, + "probability": 0.3172 + }, + { + "start": 723.04, + "end": 725.76, + "probability": 0.8574 + }, + { + "start": 726.52, + "end": 728.5, + "probability": 0.9606 + }, + { + "start": 730.3, + "end": 733.5, + "probability": 0.9429 + }, + { + "start": 734.42, + "end": 736.34, + "probability": 0.8108 + }, + { + "start": 737.12, + "end": 739.42, + "probability": 0.8417 + }, + { + "start": 740.08, + "end": 741.14, + "probability": 0.9686 + }, + { + "start": 742.46, + "end": 744.36, + "probability": 0.917 + }, + { + "start": 745.1, + "end": 750.5, + "probability": 0.9974 + }, + { + "start": 750.58, + "end": 751.08, + "probability": 0.548 + }, + { + "start": 751.58, + "end": 752.1, + "probability": 0.6763 + }, + { + "start": 752.88, + "end": 753.48, + "probability": 0.666 + }, + { + "start": 753.6, + "end": 755.7, + "probability": 0.8882 + }, + { + "start": 755.8, + "end": 756.8, + "probability": 0.9469 + }, + { + "start": 757.14, + "end": 758.18, + "probability": 0.9493 + }, + { + "start": 758.28, + "end": 760.04, + "probability": 0.9531 + }, + { + "start": 760.12, + "end": 760.94, + "probability": 0.8081 + }, + { + "start": 761.44, + "end": 762.77, + "probability": 0.9966 + }, + { + "start": 763.12, + "end": 763.88, + "probability": 0.7138 + }, + { + "start": 764.5, + "end": 765.8, + "probability": 0.9539 + }, + { + "start": 766.34, + "end": 769.74, + "probability": 0.9662 + }, + { + "start": 770.54, + "end": 774.36, + "probability": 0.9962 + }, + { + "start": 774.92, + "end": 776.36, + "probability": 0.6689 + }, + { + "start": 776.44, + "end": 779.08, + "probability": 0.9891 + }, + { + "start": 779.38, + "end": 780.42, + "probability": 0.8464 + }, + { + "start": 781.08, + "end": 781.8, + "probability": 0.8953 + }, + { + "start": 781.96, + "end": 784.08, + "probability": 0.9722 + }, + { + "start": 785.06, + "end": 787.2, + "probability": 0.9803 + }, + { + "start": 787.94, + "end": 791.84, + "probability": 0.9652 + }, + { + "start": 792.26, + "end": 793.98, + "probability": 0.8263 + }, + { + "start": 794.42, + "end": 795.52, + "probability": 0.586 + }, + { + "start": 795.84, + "end": 798.4, + "probability": 0.8562 + }, + { + "start": 799.08, + "end": 801.0, + "probability": 0.9949 + }, + { + "start": 801.08, + "end": 802.78, + "probability": 0.9197 + }, + { + "start": 803.58, + "end": 805.28, + "probability": 0.9087 + }, + { + "start": 805.42, + "end": 808.72, + "probability": 0.9862 + }, + { + "start": 809.64, + "end": 812.16, + "probability": 0.9882 + }, + { + "start": 812.16, + "end": 815.08, + "probability": 0.9945 + }, + { + "start": 815.82, + "end": 818.94, + "probability": 0.9845 + }, + { + "start": 819.38, + "end": 820.76, + "probability": 0.8867 + }, + { + "start": 821.06, + "end": 822.54, + "probability": 0.7594 + }, + { + "start": 823.08, + "end": 824.98, + "probability": 0.9858 + }, + { + "start": 825.08, + "end": 826.44, + "probability": 0.9495 + }, + { + "start": 829.28, + "end": 830.2, + "probability": 0.272 + }, + { + "start": 830.2, + "end": 830.2, + "probability": 0.264 + }, + { + "start": 830.2, + "end": 831.71, + "probability": 0.7734 + }, + { + "start": 832.78, + "end": 833.86, + "probability": 0.9807 + }, + { + "start": 834.64, + "end": 836.7, + "probability": 0.9834 + }, + { + "start": 837.3, + "end": 837.92, + "probability": 0.8198 + }, + { + "start": 838.12, + "end": 838.78, + "probability": 0.9516 + }, + { + "start": 838.94, + "end": 839.72, + "probability": 0.7066 + }, + { + "start": 840.04, + "end": 842.88, + "probability": 0.989 + }, + { + "start": 843.1, + "end": 844.06, + "probability": 0.8686 + }, + { + "start": 844.36, + "end": 845.6, + "probability": 0.8789 + }, + { + "start": 846.16, + "end": 851.74, + "probability": 0.9917 + }, + { + "start": 851.98, + "end": 853.22, + "probability": 0.9763 + }, + { + "start": 853.88, + "end": 855.92, + "probability": 0.9458 + }, + { + "start": 856.58, + "end": 860.58, + "probability": 0.8545 + }, + { + "start": 861.28, + "end": 862.68, + "probability": 0.9633 + }, + { + "start": 863.3, + "end": 866.2, + "probability": 0.9399 + }, + { + "start": 866.2, + "end": 869.8, + "probability": 0.9609 + }, + { + "start": 870.72, + "end": 874.12, + "probability": 0.9518 + }, + { + "start": 874.74, + "end": 878.64, + "probability": 0.866 + }, + { + "start": 879.3, + "end": 884.02, + "probability": 0.8989 + }, + { + "start": 884.68, + "end": 889.02, + "probability": 0.8786 + }, + { + "start": 889.44, + "end": 892.68, + "probability": 0.9919 + }, + { + "start": 892.68, + "end": 896.24, + "probability": 0.9595 + }, + { + "start": 896.66, + "end": 897.33, + "probability": 0.9037 + }, + { + "start": 897.74, + "end": 900.84, + "probability": 0.9553 + }, + { + "start": 900.84, + "end": 905.1, + "probability": 0.9963 + }, + { + "start": 905.88, + "end": 906.76, + "probability": 0.8044 + }, + { + "start": 907.24, + "end": 908.26, + "probability": 0.7865 + }, + { + "start": 908.46, + "end": 909.26, + "probability": 0.901 + }, + { + "start": 909.42, + "end": 910.4, + "probability": 0.9852 + }, + { + "start": 911.08, + "end": 912.7, + "probability": 0.9213 + }, + { + "start": 913.06, + "end": 917.92, + "probability": 0.8166 + }, + { + "start": 918.68, + "end": 921.52, + "probability": 0.9076 + }, + { + "start": 922.04, + "end": 923.38, + "probability": 0.8627 + }, + { + "start": 923.4, + "end": 924.56, + "probability": 0.8612 + }, + { + "start": 924.9, + "end": 926.1, + "probability": 0.8941 + }, + { + "start": 926.76, + "end": 928.22, + "probability": 0.842 + }, + { + "start": 928.66, + "end": 932.28, + "probability": 0.9219 + }, + { + "start": 932.6, + "end": 933.26, + "probability": 0.7485 + }, + { + "start": 933.46, + "end": 934.32, + "probability": 0.9603 + }, + { + "start": 934.54, + "end": 935.94, + "probability": 0.999 + }, + { + "start": 936.24, + "end": 939.86, + "probability": 0.9958 + }, + { + "start": 940.18, + "end": 941.52, + "probability": 0.9172 + }, + { + "start": 941.98, + "end": 943.76, + "probability": 0.446 + }, + { + "start": 943.76, + "end": 944.58, + "probability": 0.5273 + }, + { + "start": 944.62, + "end": 949.44, + "probability": 0.8789 + }, + { + "start": 949.86, + "end": 951.78, + "probability": 0.8489 + }, + { + "start": 952.38, + "end": 954.5, + "probability": 0.6892 + }, + { + "start": 955.72, + "end": 956.0, + "probability": 0.2634 + }, + { + "start": 957.34, + "end": 957.98, + "probability": 0.1462 + }, + { + "start": 958.04, + "end": 965.24, + "probability": 0.1019 + }, + { + "start": 965.64, + "end": 965.78, + "probability": 0.1548 + }, + { + "start": 1002.26, + "end": 1003.68, + "probability": 0.5611 + }, + { + "start": 1004.0, + "end": 1006.02, + "probability": 0.7295 + }, + { + "start": 1006.14, + "end": 1006.74, + "probability": 0.8033 + }, + { + "start": 1006.8, + "end": 1007.7, + "probability": 0.9757 + }, + { + "start": 1007.92, + "end": 1008.6, + "probability": 0.6096 + }, + { + "start": 1008.76, + "end": 1009.74, + "probability": 0.8756 + }, + { + "start": 1011.98, + "end": 1015.3, + "probability": 0.906 + }, + { + "start": 1015.3, + "end": 1020.2, + "probability": 0.9202 + }, + { + "start": 1020.86, + "end": 1023.46, + "probability": 0.8674 + }, + { + "start": 1024.12, + "end": 1024.26, + "probability": 0.0071 + }, + { + "start": 1025.28, + "end": 1026.06, + "probability": 0.0944 + }, + { + "start": 1026.06, + "end": 1026.96, + "probability": 0.0902 + }, + { + "start": 1026.96, + "end": 1027.92, + "probability": 0.4622 + }, + { + "start": 1027.98, + "end": 1030.5, + "probability": 0.7924 + }, + { + "start": 1041.74, + "end": 1044.22, + "probability": 0.5558 + }, + { + "start": 1044.32, + "end": 1044.88, + "probability": 0.7598 + }, + { + "start": 1045.08, + "end": 1045.96, + "probability": 0.6814 + }, + { + "start": 1046.04, + "end": 1046.58, + "probability": 0.5053 + }, + { + "start": 1047.92, + "end": 1050.78, + "probability": 0.9519 + }, + { + "start": 1051.36, + "end": 1051.96, + "probability": 0.8422 + }, + { + "start": 1052.7, + "end": 1053.92, + "probability": 0.6498 + }, + { + "start": 1053.98, + "end": 1058.56, + "probability": 0.9661 + }, + { + "start": 1059.0, + "end": 1062.14, + "probability": 0.9922 + }, + { + "start": 1063.46, + "end": 1066.72, + "probability": 0.8776 + }, + { + "start": 1067.82, + "end": 1070.7, + "probability": 0.824 + }, + { + "start": 1071.12, + "end": 1071.78, + "probability": 0.6088 + }, + { + "start": 1074.62, + "end": 1076.76, + "probability": 0.7775 + }, + { + "start": 1078.28, + "end": 1081.16, + "probability": 0.7 + }, + { + "start": 1081.24, + "end": 1082.96, + "probability": 0.8999 + }, + { + "start": 1082.96, + "end": 1086.76, + "probability": 0.716 + }, + { + "start": 1087.58, + "end": 1087.98, + "probability": 0.1838 + }, + { + "start": 1089.42, + "end": 1094.4, + "probability": 0.3809 + }, + { + "start": 1095.85, + "end": 1098.52, + "probability": 0.447 + }, + { + "start": 1098.7, + "end": 1102.12, + "probability": 0.8638 + }, + { + "start": 1103.1, + "end": 1105.34, + "probability": 0.9575 + }, + { + "start": 1105.34, + "end": 1108.66, + "probability": 0.4679 + }, + { + "start": 1108.84, + "end": 1111.5, + "probability": 0.9376 + }, + { + "start": 1112.56, + "end": 1112.86, + "probability": 0.4323 + }, + { + "start": 1112.92, + "end": 1113.5, + "probability": 0.4683 + }, + { + "start": 1113.6, + "end": 1115.7, + "probability": 0.8385 + }, + { + "start": 1115.78, + "end": 1118.08, + "probability": 0.7277 + }, + { + "start": 1118.86, + "end": 1120.94, + "probability": 0.8806 + }, + { + "start": 1122.46, + "end": 1122.74, + "probability": 0.4166 + }, + { + "start": 1122.78, + "end": 1125.88, + "probability": 0.8944 + }, + { + "start": 1125.88, + "end": 1129.64, + "probability": 0.9823 + }, + { + "start": 1130.66, + "end": 1132.64, + "probability": 0.9355 + }, + { + "start": 1134.06, + "end": 1134.88, + "probability": 0.6122 + }, + { + "start": 1135.76, + "end": 1136.6, + "probability": 0.9446 + }, + { + "start": 1137.76, + "end": 1139.42, + "probability": 0.6808 + }, + { + "start": 1141.1, + "end": 1143.6, + "probability": 0.8787 + }, + { + "start": 1144.42, + "end": 1147.48, + "probability": 0.0978 + }, + { + "start": 1148.42, + "end": 1151.98, + "probability": 0.1689 + }, + { + "start": 1151.98, + "end": 1154.16, + "probability": 0.9785 + }, + { + "start": 1154.24, + "end": 1154.88, + "probability": 0.4097 + }, + { + "start": 1154.96, + "end": 1156.46, + "probability": 0.7123 + }, + { + "start": 1156.48, + "end": 1157.42, + "probability": 0.0565 + }, + { + "start": 1159.18, + "end": 1161.54, + "probability": 0.4308 + }, + { + "start": 1162.7, + "end": 1165.7, + "probability": 0.7081 + }, + { + "start": 1166.44, + "end": 1172.92, + "probability": 0.4835 + }, + { + "start": 1173.1, + "end": 1174.36, + "probability": 0.1503 + }, + { + "start": 1174.36, + "end": 1177.34, + "probability": 0.5372 + }, + { + "start": 1177.34, + "end": 1179.88, + "probability": 0.9846 + }, + { + "start": 1180.6, + "end": 1184.68, + "probability": 0.9243 + }, + { + "start": 1184.8, + "end": 1184.94, + "probability": 0.0077 + }, + { + "start": 1185.7, + "end": 1186.36, + "probability": 0.1488 + }, + { + "start": 1186.36, + "end": 1186.36, + "probability": 0.0245 + }, + { + "start": 1186.36, + "end": 1186.36, + "probability": 0.2062 + }, + { + "start": 1186.36, + "end": 1187.39, + "probability": 0.3417 + }, + { + "start": 1188.38, + "end": 1189.26, + "probability": 0.4476 + }, + { + "start": 1189.78, + "end": 1191.04, + "probability": 0.7862 + }, + { + "start": 1191.16, + "end": 1192.61, + "probability": 0.7417 + }, + { + "start": 1194.06, + "end": 1194.32, + "probability": 0.3346 + }, + { + "start": 1194.32, + "end": 1195.58, + "probability": 0.7818 + }, + { + "start": 1195.64, + "end": 1197.9, + "probability": 0.8142 + }, + { + "start": 1200.44, + "end": 1204.66, + "probability": 0.969 + }, + { + "start": 1204.74, + "end": 1207.24, + "probability": 0.6201 + }, + { + "start": 1207.46, + "end": 1209.08, + "probability": 0.569 + }, + { + "start": 1209.46, + "end": 1213.88, + "probability": 0.9658 + }, + { + "start": 1213.88, + "end": 1220.54, + "probability": 0.9362 + }, + { + "start": 1220.8, + "end": 1224.16, + "probability": 0.9686 + }, + { + "start": 1224.84, + "end": 1226.66, + "probability": 0.9814 + }, + { + "start": 1226.66, + "end": 1226.8, + "probability": 0.6874 + }, + { + "start": 1226.9, + "end": 1227.58, + "probability": 0.2647 + }, + { + "start": 1227.68, + "end": 1228.32, + "probability": 0.3712 + }, + { + "start": 1229.14, + "end": 1230.06, + "probability": 0.959 + }, + { + "start": 1230.66, + "end": 1230.8, + "probability": 0.2477 + }, + { + "start": 1230.8, + "end": 1232.4, + "probability": 0.3622 + }, + { + "start": 1232.5, + "end": 1233.08, + "probability": 0.9163 + }, + { + "start": 1233.18, + "end": 1234.88, + "probability": 0.9316 + }, + { + "start": 1234.94, + "end": 1237.66, + "probability": 0.9223 + }, + { + "start": 1238.0, + "end": 1240.58, + "probability": 0.969 + }, + { + "start": 1241.1, + "end": 1242.6, + "probability": 0.623 + }, + { + "start": 1243.22, + "end": 1243.84, + "probability": 0.8293 + }, + { + "start": 1243.94, + "end": 1245.52, + "probability": 0.9669 + }, + { + "start": 1245.62, + "end": 1245.86, + "probability": 0.2549 + }, + { + "start": 1245.88, + "end": 1246.1, + "probability": 0.0129 + }, + { + "start": 1248.74, + "end": 1253.94, + "probability": 0.1419 + }, + { + "start": 1255.26, + "end": 1257.74, + "probability": 0.1174 + }, + { + "start": 1257.74, + "end": 1261.84, + "probability": 0.9631 + }, + { + "start": 1262.04, + "end": 1262.53, + "probability": 0.4998 + }, + { + "start": 1262.9, + "end": 1263.81, + "probability": 0.8662 + }, + { + "start": 1264.3, + "end": 1266.4, + "probability": 0.9963 + }, + { + "start": 1266.84, + "end": 1268.06, + "probability": 0.96 + }, + { + "start": 1268.94, + "end": 1270.7, + "probability": 0.9823 + }, + { + "start": 1272.74, + "end": 1281.26, + "probability": 0.7482 + }, + { + "start": 1282.47, + "end": 1286.58, + "probability": 0.9902 + }, + { + "start": 1286.58, + "end": 1291.5, + "probability": 0.556 + }, + { + "start": 1292.02, + "end": 1292.88, + "probability": 0.7697 + }, + { + "start": 1293.56, + "end": 1297.82, + "probability": 0.9174 + }, + { + "start": 1298.36, + "end": 1303.73, + "probability": 0.9791 + }, + { + "start": 1304.2, + "end": 1307.22, + "probability": 0.7542 + }, + { + "start": 1307.84, + "end": 1312.18, + "probability": 0.981 + }, + { + "start": 1312.18, + "end": 1316.64, + "probability": 0.9594 + }, + { + "start": 1317.08, + "end": 1318.56, + "probability": 0.7412 + }, + { + "start": 1318.96, + "end": 1322.38, + "probability": 0.9686 + }, + { + "start": 1323.1, + "end": 1324.22, + "probability": 0.8091 + }, + { + "start": 1324.8, + "end": 1329.2, + "probability": 0.9583 + }, + { + "start": 1329.5, + "end": 1330.42, + "probability": 0.6425 + }, + { + "start": 1330.5, + "end": 1333.7, + "probability": 0.9136 + }, + { + "start": 1334.14, + "end": 1340.22, + "probability": 0.9512 + }, + { + "start": 1340.32, + "end": 1341.14, + "probability": 0.3179 + }, + { + "start": 1341.58, + "end": 1344.22, + "probability": 0.6348 + }, + { + "start": 1344.22, + "end": 1344.58, + "probability": 0.6443 + }, + { + "start": 1344.74, + "end": 1345.22, + "probability": 0.5117 + }, + { + "start": 1345.32, + "end": 1345.9, + "probability": 0.604 + }, + { + "start": 1346.04, + "end": 1347.32, + "probability": 0.5772 + }, + { + "start": 1347.76, + "end": 1349.66, + "probability": 0.9868 + }, + { + "start": 1349.68, + "end": 1351.2, + "probability": 0.9055 + }, + { + "start": 1351.8, + "end": 1355.96, + "probability": 0.9673 + }, + { + "start": 1356.72, + "end": 1357.58, + "probability": 0.6963 + }, + { + "start": 1357.82, + "end": 1358.82, + "probability": 0.0349 + }, + { + "start": 1358.88, + "end": 1360.02, + "probability": 0.8103 + }, + { + "start": 1360.15, + "end": 1360.53, + "probability": 0.3452 + }, + { + "start": 1360.74, + "end": 1361.26, + "probability": 0.3329 + }, + { + "start": 1361.63, + "end": 1364.6, + "probability": 0.7404 + }, + { + "start": 1364.88, + "end": 1366.9, + "probability": 0.7275 + }, + { + "start": 1367.56, + "end": 1368.84, + "probability": 0.6913 + }, + { + "start": 1369.0, + "end": 1370.16, + "probability": 0.7827 + }, + { + "start": 1370.5, + "end": 1373.0, + "probability": 0.9074 + }, + { + "start": 1373.4, + "end": 1374.48, + "probability": 0.7825 + }, + { + "start": 1374.66, + "end": 1380.72, + "probability": 0.9594 + }, + { + "start": 1381.16, + "end": 1384.48, + "probability": 0.8166 + }, + { + "start": 1385.55, + "end": 1389.78, + "probability": 0.9218 + }, + { + "start": 1390.1, + "end": 1395.7, + "probability": 0.7796 + }, + { + "start": 1396.22, + "end": 1398.1, + "probability": 0.8686 + }, + { + "start": 1398.46, + "end": 1406.08, + "probability": 0.732 + }, + { + "start": 1410.74, + "end": 1412.52, + "probability": 0.615 + }, + { + "start": 1412.74, + "end": 1414.46, + "probability": 0.6933 + }, + { + "start": 1415.76, + "end": 1417.88, + "probability": 0.8293 + }, + { + "start": 1418.5, + "end": 1422.28, + "probability": 0.7334 + }, + { + "start": 1422.34, + "end": 1423.24, + "probability": 0.8229 + }, + { + "start": 1423.56, + "end": 1425.18, + "probability": 0.5797 + }, + { + "start": 1425.82, + "end": 1427.28, + "probability": 0.8849 + }, + { + "start": 1429.05, + "end": 1432.48, + "probability": 0.7722 + }, + { + "start": 1432.9, + "end": 1433.52, + "probability": 0.45 + }, + { + "start": 1433.82, + "end": 1437.32, + "probability": 0.6775 + }, + { + "start": 1438.5, + "end": 1446.72, + "probability": 0.948 + }, + { + "start": 1448.1, + "end": 1451.8, + "probability": 0.7765 + }, + { + "start": 1451.96, + "end": 1452.66, + "probability": 0.9224 + }, + { + "start": 1452.7, + "end": 1455.28, + "probability": 0.7332 + }, + { + "start": 1455.34, + "end": 1456.37, + "probability": 0.9045 + }, + { + "start": 1457.18, + "end": 1458.18, + "probability": 0.6596 + }, + { + "start": 1458.76, + "end": 1459.2, + "probability": 0.7378 + }, + { + "start": 1459.7, + "end": 1461.88, + "probability": 0.6023 + }, + { + "start": 1462.7, + "end": 1464.18, + "probability": 0.0601 + }, + { + "start": 1464.42, + "end": 1468.1, + "probability": 0.2727 + }, + { + "start": 1468.12, + "end": 1468.4, + "probability": 0.6434 + }, + { + "start": 1468.54, + "end": 1470.24, + "probability": 0.8153 + }, + { + "start": 1471.86, + "end": 1473.02, + "probability": 0.6966 + }, + { + "start": 1474.34, + "end": 1477.94, + "probability": 0.9708 + }, + { + "start": 1479.02, + "end": 1481.94, + "probability": 0.8197 + }, + { + "start": 1483.3, + "end": 1484.02, + "probability": 0.7918 + }, + { + "start": 1484.18, + "end": 1485.12, + "probability": 0.9841 + }, + { + "start": 1485.42, + "end": 1486.68, + "probability": 0.9429 + }, + { + "start": 1486.74, + "end": 1487.3, + "probability": 0.9915 + }, + { + "start": 1488.58, + "end": 1496.28, + "probability": 0.9403 + }, + { + "start": 1497.66, + "end": 1498.86, + "probability": 0.9977 + }, + { + "start": 1499.46, + "end": 1503.85, + "probability": 0.8148 + }, + { + "start": 1506.4, + "end": 1510.9, + "probability": 0.6749 + }, + { + "start": 1512.56, + "end": 1514.62, + "probability": 0.9807 + }, + { + "start": 1514.62, + "end": 1519.52, + "probability": 0.925 + }, + { + "start": 1520.86, + "end": 1525.28, + "probability": 0.9876 + }, + { + "start": 1525.36, + "end": 1529.31, + "probability": 0.9949 + }, + { + "start": 1531.0, + "end": 1533.18, + "probability": 0.9543 + }, + { + "start": 1533.36, + "end": 1538.1, + "probability": 0.9935 + }, + { + "start": 1538.1, + "end": 1541.76, + "probability": 0.7916 + }, + { + "start": 1543.18, + "end": 1547.68, + "probability": 0.9451 + }, + { + "start": 1547.68, + "end": 1551.0, + "probability": 0.6988 + }, + { + "start": 1551.68, + "end": 1555.06, + "probability": 0.5936 + }, + { + "start": 1555.1, + "end": 1557.16, + "probability": 0.902 + }, + { + "start": 1558.98, + "end": 1560.52, + "probability": 0.731 + }, + { + "start": 1560.78, + "end": 1561.12, + "probability": 0.7041 + }, + { + "start": 1562.08, + "end": 1564.62, + "probability": 0.881 + }, + { + "start": 1565.36, + "end": 1566.38, + "probability": 0.8149 + }, + { + "start": 1566.52, + "end": 1567.6, + "probability": 0.5644 + }, + { + "start": 1567.72, + "end": 1568.7, + "probability": 0.0707 + }, + { + "start": 1569.52, + "end": 1571.04, + "probability": 0.0321 + }, + { + "start": 1571.1, + "end": 1573.3, + "probability": 0.4796 + }, + { + "start": 1574.78, + "end": 1578.96, + "probability": 0.7474 + }, + { + "start": 1579.92, + "end": 1583.82, + "probability": 0.8665 + }, + { + "start": 1585.52, + "end": 1592.88, + "probability": 0.9885 + }, + { + "start": 1592.88, + "end": 1595.62, + "probability": 0.9645 + }, + { + "start": 1595.7, + "end": 1596.48, + "probability": 0.9236 + }, + { + "start": 1596.64, + "end": 1597.82, + "probability": 0.9615 + }, + { + "start": 1598.2, + "end": 1603.46, + "probability": 0.9435 + }, + { + "start": 1603.54, + "end": 1604.52, + "probability": 0.9247 + }, + { + "start": 1604.74, + "end": 1608.93, + "probability": 0.7565 + }, + { + "start": 1609.28, + "end": 1612.22, + "probability": 0.9924 + }, + { + "start": 1612.38, + "end": 1613.54, + "probability": 0.7676 + }, + { + "start": 1615.38, + "end": 1616.54, + "probability": 0.991 + }, + { + "start": 1617.76, + "end": 1618.56, + "probability": 0.7089 + }, + { + "start": 1620.48, + "end": 1622.94, + "probability": 0.9157 + }, + { + "start": 1624.48, + "end": 1625.41, + "probability": 0.9235 + }, + { + "start": 1626.6, + "end": 1628.86, + "probability": 0.9033 + }, + { + "start": 1630.82, + "end": 1633.36, + "probability": 0.7755 + }, + { + "start": 1634.86, + "end": 1637.38, + "probability": 0.8816 + }, + { + "start": 1639.0, + "end": 1640.56, + "probability": 0.8691 + }, + { + "start": 1640.66, + "end": 1641.3, + "probability": 0.998 + }, + { + "start": 1644.24, + "end": 1645.74, + "probability": 0.6063 + }, + { + "start": 1646.54, + "end": 1647.16, + "probability": 0.9149 + }, + { + "start": 1647.42, + "end": 1647.64, + "probability": 0.6851 + }, + { + "start": 1648.16, + "end": 1649.71, + "probability": 0.9813 + }, + { + "start": 1650.74, + "end": 1652.28, + "probability": 0.9481 + }, + { + "start": 1652.82, + "end": 1654.16, + "probability": 0.9889 + }, + { + "start": 1654.9, + "end": 1656.72, + "probability": 0.7561 + }, + { + "start": 1656.82, + "end": 1662.3, + "probability": 0.9812 + }, + { + "start": 1663.62, + "end": 1664.83, + "probability": 0.9797 + }, + { + "start": 1667.48, + "end": 1671.7, + "probability": 0.8101 + }, + { + "start": 1674.18, + "end": 1677.76, + "probability": 0.7178 + }, + { + "start": 1678.64, + "end": 1681.68, + "probability": 0.6252 + }, + { + "start": 1683.22, + "end": 1684.22, + "probability": 0.8994 + }, + { + "start": 1684.52, + "end": 1686.54, + "probability": 0.8027 + }, + { + "start": 1686.64, + "end": 1686.96, + "probability": 0.482 + }, + { + "start": 1687.1, + "end": 1688.44, + "probability": 0.7129 + }, + { + "start": 1689.72, + "end": 1691.62, + "probability": 0.9849 + }, + { + "start": 1691.78, + "end": 1693.8, + "probability": 0.986 + }, + { + "start": 1694.04, + "end": 1700.84, + "probability": 0.9034 + }, + { + "start": 1701.5, + "end": 1704.38, + "probability": 0.9635 + }, + { + "start": 1705.74, + "end": 1707.58, + "probability": 0.5286 + }, + { + "start": 1708.86, + "end": 1710.16, + "probability": 0.7964 + }, + { + "start": 1711.28, + "end": 1713.46, + "probability": 0.9948 + }, + { + "start": 1715.86, + "end": 1717.84, + "probability": 0.9625 + }, + { + "start": 1721.42, + "end": 1722.42, + "probability": 0.8694 + }, + { + "start": 1722.6, + "end": 1728.0, + "probability": 0.9834 + }, + { + "start": 1728.71, + "end": 1733.5, + "probability": 0.9845 + }, + { + "start": 1734.22, + "end": 1740.08, + "probability": 0.9246 + }, + { + "start": 1740.08, + "end": 1744.72, + "probability": 0.9932 + }, + { + "start": 1745.98, + "end": 1752.76, + "probability": 0.8757 + }, + { + "start": 1753.1, + "end": 1753.92, + "probability": 0.635 + }, + { + "start": 1754.54, + "end": 1754.88, + "probability": 0.4629 + }, + { + "start": 1754.94, + "end": 1755.42, + "probability": 0.717 + }, + { + "start": 1755.56, + "end": 1758.34, + "probability": 0.2113 + }, + { + "start": 1758.34, + "end": 1758.34, + "probability": 0.08 + }, + { + "start": 1758.34, + "end": 1759.22, + "probability": 0.1003 + }, + { + "start": 1759.78, + "end": 1762.25, + "probability": 0.7936 + }, + { + "start": 1763.06, + "end": 1763.34, + "probability": 0.7095 + }, + { + "start": 1763.34, + "end": 1763.74, + "probability": 0.6086 + }, + { + "start": 1763.74, + "end": 1767.78, + "probability": 0.9896 + }, + { + "start": 1767.78, + "end": 1770.94, + "probability": 0.9509 + }, + { + "start": 1771.92, + "end": 1773.26, + "probability": 0.8237 + }, + { + "start": 1773.94, + "end": 1775.7, + "probability": 0.7938 + }, + { + "start": 1777.76, + "end": 1779.42, + "probability": 0.7778 + }, + { + "start": 1779.6, + "end": 1783.34, + "probability": 0.9565 + }, + { + "start": 1783.34, + "end": 1786.84, + "probability": 0.8349 + }, + { + "start": 1786.94, + "end": 1787.36, + "probability": 0.8492 + }, + { + "start": 1787.76, + "end": 1793.06, + "probability": 0.8758 + }, + { + "start": 1793.14, + "end": 1794.47, + "probability": 0.6162 + }, + { + "start": 1795.56, + "end": 1796.96, + "probability": 0.8178 + }, + { + "start": 1798.62, + "end": 1806.12, + "probability": 0.924 + }, + { + "start": 1806.78, + "end": 1810.0, + "probability": 0.9431 + }, + { + "start": 1811.6, + "end": 1811.94, + "probability": 0.5189 + }, + { + "start": 1811.98, + "end": 1812.78, + "probability": 0.8212 + }, + { + "start": 1813.22, + "end": 1814.82, + "probability": 0.3576 + }, + { + "start": 1815.14, + "end": 1815.68, + "probability": 0.1041 + }, + { + "start": 1816.02, + "end": 1818.18, + "probability": 0.5457 + }, + { + "start": 1818.18, + "end": 1818.82, + "probability": 0.5014 + }, + { + "start": 1819.32, + "end": 1820.6, + "probability": 0.8226 + }, + { + "start": 1821.3, + "end": 1827.94, + "probability": 0.9384 + }, + { + "start": 1828.08, + "end": 1829.22, + "probability": 0.7703 + }, + { + "start": 1829.46, + "end": 1831.24, + "probability": 0.7844 + }, + { + "start": 1832.18, + "end": 1835.1, + "probability": 0.9919 + }, + { + "start": 1835.92, + "end": 1838.37, + "probability": 0.9734 + }, + { + "start": 1839.04, + "end": 1844.14, + "probability": 0.7877 + }, + { + "start": 1844.26, + "end": 1844.98, + "probability": 0.7893 + }, + { + "start": 1845.18, + "end": 1845.88, + "probability": 0.6085 + }, + { + "start": 1846.06, + "end": 1846.72, + "probability": 0.8113 + }, + { + "start": 1846.94, + "end": 1849.9, + "probability": 0.948 + }, + { + "start": 1852.76, + "end": 1857.96, + "probability": 0.5912 + }, + { + "start": 1858.12, + "end": 1861.46, + "probability": 0.6568 + }, + { + "start": 1861.6, + "end": 1861.92, + "probability": 0.8069 + }, + { + "start": 1862.88, + "end": 1864.62, + "probability": 0.5439 + }, + { + "start": 1864.62, + "end": 1867.76, + "probability": 0.855 + }, + { + "start": 1868.1, + "end": 1869.88, + "probability": 0.2994 + }, + { + "start": 1869.88, + "end": 1871.37, + "probability": 0.2368 + }, + { + "start": 1872.46, + "end": 1877.5, + "probability": 0.3724 + }, + { + "start": 1877.7, + "end": 1881.83, + "probability": 0.2362 + }, + { + "start": 1881.98, + "end": 1882.58, + "probability": 0.9006 + }, + { + "start": 1882.72, + "end": 1884.0, + "probability": 0.7217 + }, + { + "start": 1884.68, + "end": 1886.42, + "probability": 0.9047 + }, + { + "start": 1886.56, + "end": 1887.44, + "probability": 0.5576 + }, + { + "start": 1888.0, + "end": 1888.42, + "probability": 0.4352 + }, + { + "start": 1889.4, + "end": 1891.9, + "probability": 0.1782 + }, + { + "start": 1892.0, + "end": 1893.54, + "probability": 0.7498 + }, + { + "start": 1895.2, + "end": 1896.2, + "probability": 0.9658 + }, + { + "start": 1896.22, + "end": 1899.74, + "probability": 0.6346 + }, + { + "start": 1900.22, + "end": 1901.3, + "probability": 0.7468 + }, + { + "start": 1901.32, + "end": 1901.58, + "probability": 0.4919 + }, + { + "start": 1901.62, + "end": 1903.06, + "probability": 0.6355 + }, + { + "start": 1903.7, + "end": 1905.18, + "probability": 0.7506 + }, + { + "start": 1907.6, + "end": 1911.02, + "probability": 0.9363 + }, + { + "start": 1911.5, + "end": 1912.34, + "probability": 0.6478 + }, + { + "start": 1912.4, + "end": 1915.31, + "probability": 0.9985 + }, + { + "start": 1916.24, + "end": 1918.19, + "probability": 0.9107 + }, + { + "start": 1919.64, + "end": 1922.4, + "probability": 0.9866 + }, + { + "start": 1923.62, + "end": 1925.99, + "probability": 0.9209 + }, + { + "start": 1928.08, + "end": 1930.99, + "probability": 0.9663 + }, + { + "start": 1931.3, + "end": 1932.9, + "probability": 0.9937 + }, + { + "start": 1933.62, + "end": 1938.76, + "probability": 0.9747 + }, + { + "start": 1939.2, + "end": 1940.32, + "probability": 0.8768 + }, + { + "start": 1940.66, + "end": 1942.04, + "probability": 0.9326 + }, + { + "start": 1942.18, + "end": 1944.0, + "probability": 0.4456 + }, + { + "start": 1944.23, + "end": 1951.32, + "probability": 0.7953 + }, + { + "start": 1952.08, + "end": 1953.54, + "probability": 0.9724 + }, + { + "start": 1954.68, + "end": 1959.6, + "probability": 0.9315 + }, + { + "start": 1960.38, + "end": 1964.6, + "probability": 0.923 + }, + { + "start": 1965.5, + "end": 1967.04, + "probability": 0.7341 + }, + { + "start": 1968.68, + "end": 1970.86, + "probability": 0.7271 + }, + { + "start": 1972.76, + "end": 1978.31, + "probability": 0.9237 + }, + { + "start": 1982.06, + "end": 1983.4, + "probability": 0.5996 + }, + { + "start": 1985.44, + "end": 1986.58, + "probability": 0.8066 + }, + { + "start": 1987.48, + "end": 1995.9, + "probability": 0.9347 + }, + { + "start": 1997.48, + "end": 2000.7, + "probability": 0.7642 + }, + { + "start": 2001.22, + "end": 2002.12, + "probability": 0.5977 + }, + { + "start": 2003.58, + "end": 2007.9, + "probability": 0.7383 + }, + { + "start": 2008.68, + "end": 2011.5, + "probability": 0.9831 + }, + { + "start": 2011.98, + "end": 2015.48, + "probability": 0.953 + }, + { + "start": 2015.74, + "end": 2018.4, + "probability": 0.9849 + }, + { + "start": 2018.54, + "end": 2019.22, + "probability": 0.4451 + }, + { + "start": 2020.0, + "end": 2021.3, + "probability": 0.8687 + }, + { + "start": 2022.3, + "end": 2022.5, + "probability": 0.7026 + }, + { + "start": 2024.74, + "end": 2025.0, + "probability": 0.7846 + }, + { + "start": 2028.8, + "end": 2032.0, + "probability": 0.9526 + }, + { + "start": 2032.7, + "end": 2034.98, + "probability": 0.7879 + }, + { + "start": 2036.2, + "end": 2037.9, + "probability": 0.7568 + }, + { + "start": 2040.88, + "end": 2042.96, + "probability": 0.9897 + }, + { + "start": 2044.42, + "end": 2046.66, + "probability": 0.9919 + }, + { + "start": 2047.2, + "end": 2049.26, + "probability": 0.8086 + }, + { + "start": 2050.6, + "end": 2052.2, + "probability": 0.9802 + }, + { + "start": 2054.36, + "end": 2057.3, + "probability": 0.9608 + }, + { + "start": 2059.26, + "end": 2061.66, + "probability": 0.338 + }, + { + "start": 2062.54, + "end": 2067.56, + "probability": 0.9954 + }, + { + "start": 2068.54, + "end": 2070.28, + "probability": 0.7214 + }, + { + "start": 2071.2, + "end": 2074.42, + "probability": 0.9919 + }, + { + "start": 2075.68, + "end": 2077.54, + "probability": 0.7627 + }, + { + "start": 2079.96, + "end": 2082.08, + "probability": 0.6413 + }, + { + "start": 2083.56, + "end": 2084.2, + "probability": 0.4314 + }, + { + "start": 2084.96, + "end": 2088.9, + "probability": 0.974 + }, + { + "start": 2089.98, + "end": 2091.34, + "probability": 0.9875 + }, + { + "start": 2091.4, + "end": 2093.42, + "probability": 0.9951 + }, + { + "start": 2095.36, + "end": 2097.58, + "probability": 0.9823 + }, + { + "start": 2098.76, + "end": 2101.18, + "probability": 0.9302 + }, + { + "start": 2101.66, + "end": 2102.8, + "probability": 0.8983 + }, + { + "start": 2102.98, + "end": 2103.74, + "probability": 0.7314 + }, + { + "start": 2104.44, + "end": 2113.84, + "probability": 0.9821 + }, + { + "start": 2114.9, + "end": 2115.9, + "probability": 0.9327 + }, + { + "start": 2117.6, + "end": 2121.3, + "probability": 0.9793 + }, + { + "start": 2121.36, + "end": 2122.7, + "probability": 0.9792 + }, + { + "start": 2124.28, + "end": 2126.08, + "probability": 0.7692 + }, + { + "start": 2127.04, + "end": 2131.0, + "probability": 0.8624 + }, + { + "start": 2132.24, + "end": 2132.82, + "probability": 0.8582 + }, + { + "start": 2132.92, + "end": 2133.6, + "probability": 0.6135 + }, + { + "start": 2133.82, + "end": 2135.14, + "probability": 0.9816 + }, + { + "start": 2138.12, + "end": 2139.06, + "probability": 0.3186 + }, + { + "start": 2142.08, + "end": 2144.0, + "probability": 0.9938 + }, + { + "start": 2144.38, + "end": 2145.46, + "probability": 0.6241 + }, + { + "start": 2145.48, + "end": 2149.64, + "probability": 0.5199 + }, + { + "start": 2150.74, + "end": 2153.81, + "probability": 0.8811 + }, + { + "start": 2153.98, + "end": 2154.73, + "probability": 0.0761 + }, + { + "start": 2157.82, + "end": 2160.18, + "probability": 0.9076 + }, + { + "start": 2162.64, + "end": 2165.22, + "probability": 0.8723 + }, + { + "start": 2167.56, + "end": 2169.32, + "probability": 0.9856 + }, + { + "start": 2171.1, + "end": 2175.56, + "probability": 0.9185 + }, + { + "start": 2177.3, + "end": 2177.94, + "probability": 0.5286 + }, + { + "start": 2178.14, + "end": 2180.28, + "probability": 0.7533 + }, + { + "start": 2181.5, + "end": 2182.56, + "probability": 0.8604 + }, + { + "start": 2183.72, + "end": 2187.2, + "probability": 0.8761 + }, + { + "start": 2188.44, + "end": 2192.38, + "probability": 0.7712 + }, + { + "start": 2193.6, + "end": 2197.08, + "probability": 0.9453 + }, + { + "start": 2200.92, + "end": 2202.84, + "probability": 0.5981 + }, + { + "start": 2204.54, + "end": 2207.26, + "probability": 0.8694 + }, + { + "start": 2207.46, + "end": 2213.92, + "probability": 0.9516 + }, + { + "start": 2215.46, + "end": 2217.72, + "probability": 0.9233 + }, + { + "start": 2219.54, + "end": 2221.28, + "probability": 0.7498 + }, + { + "start": 2228.74, + "end": 2231.18, + "probability": 0.7275 + }, + { + "start": 2232.5, + "end": 2238.38, + "probability": 0.8769 + }, + { + "start": 2239.94, + "end": 2245.46, + "probability": 0.8955 + }, + { + "start": 2246.62, + "end": 2250.06, + "probability": 0.7695 + }, + { + "start": 2250.78, + "end": 2250.94, + "probability": 0.7256 + }, + { + "start": 2251.54, + "end": 2254.66, + "probability": 0.9838 + }, + { + "start": 2255.44, + "end": 2256.64, + "probability": 0.8536 + }, + { + "start": 2257.7, + "end": 2261.36, + "probability": 0.9795 + }, + { + "start": 2261.36, + "end": 2265.78, + "probability": 0.9927 + }, + { + "start": 2265.92, + "end": 2269.0, + "probability": 0.9829 + }, + { + "start": 2269.66, + "end": 2271.72, + "probability": 0.9697 + }, + { + "start": 2276.84, + "end": 2282.26, + "probability": 0.7286 + }, + { + "start": 2286.2, + "end": 2289.4, + "probability": 0.9203 + }, + { + "start": 2289.8, + "end": 2291.0, + "probability": 0.6904 + }, + { + "start": 2292.0, + "end": 2294.06, + "probability": 0.8536 + }, + { + "start": 2296.21, + "end": 2299.5, + "probability": 0.9897 + }, + { + "start": 2299.68, + "end": 2300.98, + "probability": 0.9961 + }, + { + "start": 2301.64, + "end": 2302.08, + "probability": 0.8828 + }, + { + "start": 2303.38, + "end": 2304.98, + "probability": 0.8109 + }, + { + "start": 2306.28, + "end": 2306.72, + "probability": 0.7422 + }, + { + "start": 2306.96, + "end": 2308.72, + "probability": 0.8643 + }, + { + "start": 2308.94, + "end": 2311.16, + "probability": 0.8364 + }, + { + "start": 2312.36, + "end": 2314.5, + "probability": 0.8574 + }, + { + "start": 2316.5, + "end": 2317.37, + "probability": 0.666 + }, + { + "start": 2318.42, + "end": 2319.04, + "probability": 0.9575 + }, + { + "start": 2320.04, + "end": 2320.94, + "probability": 0.9849 + }, + { + "start": 2321.88, + "end": 2324.82, + "probability": 0.7507 + }, + { + "start": 2325.68, + "end": 2327.46, + "probability": 0.4648 + }, + { + "start": 2328.66, + "end": 2332.36, + "probability": 0.9863 + }, + { + "start": 2332.36, + "end": 2335.78, + "probability": 0.8646 + }, + { + "start": 2336.94, + "end": 2341.38, + "probability": 0.9813 + }, + { + "start": 2342.64, + "end": 2348.28, + "probability": 0.8105 + }, + { + "start": 2348.98, + "end": 2352.31, + "probability": 0.698 + }, + { + "start": 2352.92, + "end": 2359.0, + "probability": 0.7725 + }, + { + "start": 2360.14, + "end": 2363.6, + "probability": 0.9565 + }, + { + "start": 2364.32, + "end": 2366.78, + "probability": 0.9484 + }, + { + "start": 2367.8, + "end": 2372.06, + "probability": 0.7235 + }, + { + "start": 2372.76, + "end": 2376.18, + "probability": 0.9736 + }, + { + "start": 2376.86, + "end": 2379.42, + "probability": 0.9592 + }, + { + "start": 2380.38, + "end": 2383.88, + "probability": 0.8058 + }, + { + "start": 2384.5, + "end": 2384.94, + "probability": 0.5538 + }, + { + "start": 2385.24, + "end": 2387.26, + "probability": 0.8112 + }, + { + "start": 2387.38, + "end": 2388.38, + "probability": 0.8524 + }, + { + "start": 2388.46, + "end": 2390.48, + "probability": 0.9519 + }, + { + "start": 2390.78, + "end": 2393.92, + "probability": 0.9711 + }, + { + "start": 2394.78, + "end": 2397.28, + "probability": 0.036 + }, + { + "start": 2397.88, + "end": 2399.64, + "probability": 0.4694 + }, + { + "start": 2400.92, + "end": 2401.78, + "probability": 0.287 + }, + { + "start": 2401.78, + "end": 2405.24, + "probability": 0.6008 + }, + { + "start": 2406.4, + "end": 2409.1, + "probability": 0.9177 + }, + { + "start": 2409.56, + "end": 2411.48, + "probability": 0.9371 + }, + { + "start": 2412.18, + "end": 2413.98, + "probability": 0.9429 + }, + { + "start": 2414.28, + "end": 2416.62, + "probability": 0.9216 + }, + { + "start": 2416.7, + "end": 2421.36, + "probability": 0.8234 + }, + { + "start": 2421.9, + "end": 2426.58, + "probability": 0.9557 + }, + { + "start": 2427.12, + "end": 2429.78, + "probability": 0.932 + }, + { + "start": 2430.52, + "end": 2434.68, + "probability": 0.9957 + }, + { + "start": 2434.76, + "end": 2435.9, + "probability": 0.5529 + }, + { + "start": 2436.44, + "end": 2440.82, + "probability": 0.1604 + }, + { + "start": 2441.36, + "end": 2442.7, + "probability": 0.7281 + }, + { + "start": 2442.78, + "end": 2443.48, + "probability": 0.2763 + }, + { + "start": 2443.8, + "end": 2447.36, + "probability": 0.707 + }, + { + "start": 2448.28, + "end": 2450.56, + "probability": 0.597 + }, + { + "start": 2451.15, + "end": 2453.78, + "probability": 0.6967 + }, + { + "start": 2453.92, + "end": 2457.46, + "probability": 0.7084 + }, + { + "start": 2457.46, + "end": 2457.64, + "probability": 0.4783 + }, + { + "start": 2457.76, + "end": 2459.04, + "probability": 0.5019 + }, + { + "start": 2461.36, + "end": 2462.08, + "probability": 0.5632 + }, + { + "start": 2462.18, + "end": 2463.28, + "probability": 0.685 + }, + { + "start": 2463.72, + "end": 2473.48, + "probability": 0.9697 + }, + { + "start": 2474.3, + "end": 2476.4, + "probability": 0.7988 + }, + { + "start": 2478.3, + "end": 2480.78, + "probability": 0.7622 + }, + { + "start": 2481.4, + "end": 2482.64, + "probability": 0.664 + }, + { + "start": 2483.6, + "end": 2484.96, + "probability": 0.8862 + }, + { + "start": 2486.76, + "end": 2496.66, + "probability": 0.9588 + }, + { + "start": 2497.68, + "end": 2499.3, + "probability": 0.0028 + }, + { + "start": 2500.76, + "end": 2503.78, + "probability": 0.8631 + }, + { + "start": 2503.84, + "end": 2504.7, + "probability": 0.7215 + }, + { + "start": 2504.8, + "end": 2510.6, + "probability": 0.9926 + }, + { + "start": 2513.74, + "end": 2515.26, + "probability": 0.9832 + }, + { + "start": 2516.34, + "end": 2521.34, + "probability": 0.9924 + }, + { + "start": 2522.78, + "end": 2527.14, + "probability": 0.8759 + }, + { + "start": 2529.02, + "end": 2534.46, + "probability": 0.9957 + }, + { + "start": 2535.66, + "end": 2537.62, + "probability": 0.9312 + }, + { + "start": 2539.94, + "end": 2540.7, + "probability": 0.706 + }, + { + "start": 2540.7, + "end": 2546.34, + "probability": 0.705 + }, + { + "start": 2546.52, + "end": 2555.78, + "probability": 0.8303 + }, + { + "start": 2555.78, + "end": 2561.28, + "probability": 0.9472 + }, + { + "start": 2563.94, + "end": 2565.12, + "probability": 0.7041 + }, + { + "start": 2566.48, + "end": 2569.16, + "probability": 0.617 + }, + { + "start": 2569.3, + "end": 2577.88, + "probability": 0.7381 + }, + { + "start": 2578.68, + "end": 2579.32, + "probability": 0.9717 + }, + { + "start": 2581.36, + "end": 2584.4, + "probability": 0.9935 + }, + { + "start": 2585.82, + "end": 2589.42, + "probability": 0.998 + }, + { + "start": 2589.68, + "end": 2590.6, + "probability": 0.4169 + }, + { + "start": 2592.24, + "end": 2595.94, + "probability": 0.8677 + }, + { + "start": 2598.3, + "end": 2601.18, + "probability": 0.7981 + }, + { + "start": 2602.66, + "end": 2605.54, + "probability": 0.9763 + }, + { + "start": 2606.66, + "end": 2610.06, + "probability": 0.8964 + }, + { + "start": 2610.82, + "end": 2613.26, + "probability": 0.9048 + }, + { + "start": 2614.72, + "end": 2619.56, + "probability": 0.6456 + }, + { + "start": 2621.94, + "end": 2627.94, + "probability": 0.9776 + }, + { + "start": 2628.5, + "end": 2630.68, + "probability": 0.9201 + }, + { + "start": 2634.98, + "end": 2637.4, + "probability": 0.6771 + }, + { + "start": 2638.04, + "end": 2643.62, + "probability": 0.9618 + }, + { + "start": 2645.3, + "end": 2646.08, + "probability": 0.9307 + }, + { + "start": 2647.32, + "end": 2648.3, + "probability": 0.9746 + }, + { + "start": 2649.08, + "end": 2649.97, + "probability": 0.9585 + }, + { + "start": 2651.5, + "end": 2653.1, + "probability": 0.9876 + }, + { + "start": 2653.9, + "end": 2656.18, + "probability": 0.9893 + }, + { + "start": 2657.02, + "end": 2658.64, + "probability": 0.7558 + }, + { + "start": 2659.48, + "end": 2664.16, + "probability": 0.909 + }, + { + "start": 2664.46, + "end": 2667.56, + "probability": 0.8817 + }, + { + "start": 2668.22, + "end": 2670.78, + "probability": 0.9964 + }, + { + "start": 2671.78, + "end": 2675.96, + "probability": 0.9688 + }, + { + "start": 2676.88, + "end": 2678.48, + "probability": 0.6108 + }, + { + "start": 2680.18, + "end": 2685.8, + "probability": 0.8266 + }, + { + "start": 2688.72, + "end": 2696.26, + "probability": 0.7559 + }, + { + "start": 2697.24, + "end": 2700.38, + "probability": 0.8498 + }, + { + "start": 2700.7, + "end": 2702.8, + "probability": 0.9647 + }, + { + "start": 2704.44, + "end": 2705.94, + "probability": 0.6667 + }, + { + "start": 2707.38, + "end": 2711.58, + "probability": 0.9435 + }, + { + "start": 2712.66, + "end": 2716.68, + "probability": 0.9619 + }, + { + "start": 2717.26, + "end": 2720.62, + "probability": 0.9858 + }, + { + "start": 2722.12, + "end": 2724.38, + "probability": 0.7245 + }, + { + "start": 2724.88, + "end": 2725.08, + "probability": 0.2819 + }, + { + "start": 2725.08, + "end": 2727.94, + "probability": 0.9053 + }, + { + "start": 2730.92, + "end": 2739.0, + "probability": 0.8497 + }, + { + "start": 2740.44, + "end": 2740.72, + "probability": 0.8517 + }, + { + "start": 2741.18, + "end": 2743.96, + "probability": 0.794 + }, + { + "start": 2744.28, + "end": 2746.06, + "probability": 0.8726 + }, + { + "start": 2747.16, + "end": 2750.08, + "probability": 0.9733 + }, + { + "start": 2750.56, + "end": 2752.1, + "probability": 0.9382 + }, + { + "start": 2752.28, + "end": 2752.72, + "probability": 0.5163 + }, + { + "start": 2752.94, + "end": 2755.1, + "probability": 0.9388 + }, + { + "start": 2755.56, + "end": 2756.68, + "probability": 0.8563 + }, + { + "start": 2756.72, + "end": 2758.6, + "probability": 0.8836 + }, + { + "start": 2758.8, + "end": 2759.62, + "probability": 0.9481 + }, + { + "start": 2760.08, + "end": 2761.04, + "probability": 0.6616 + }, + { + "start": 2761.16, + "end": 2763.68, + "probability": 0.8787 + }, + { + "start": 2764.94, + "end": 2765.86, + "probability": 0.5768 + }, + { + "start": 2767.1, + "end": 2768.46, + "probability": 0.8319 + }, + { + "start": 2769.02, + "end": 2770.18, + "probability": 0.9345 + }, + { + "start": 2770.74, + "end": 2772.6, + "probability": 0.9756 + }, + { + "start": 2773.06, + "end": 2779.6, + "probability": 0.7377 + }, + { + "start": 2781.26, + "end": 2785.52, + "probability": 0.6943 + }, + { + "start": 2786.76, + "end": 2789.76, + "probability": 0.9614 + }, + { + "start": 2791.1, + "end": 2791.42, + "probability": 0.1141 + }, + { + "start": 2791.6, + "end": 2795.86, + "probability": 0.9571 + }, + { + "start": 2796.0, + "end": 2797.02, + "probability": 0.6114 + }, + { + "start": 2797.24, + "end": 2798.16, + "probability": 0.8051 + }, + { + "start": 2798.58, + "end": 2802.46, + "probability": 0.8258 + }, + { + "start": 2802.74, + "end": 2805.36, + "probability": 0.9888 + }, + { + "start": 2808.3, + "end": 2809.74, + "probability": 0.9015 + }, + { + "start": 2809.82, + "end": 2811.5, + "probability": 0.102 + }, + { + "start": 2811.74, + "end": 2813.59, + "probability": 0.9535 + }, + { + "start": 2813.7, + "end": 2814.24, + "probability": 0.0138 + }, + { + "start": 2814.48, + "end": 2814.66, + "probability": 0.4926 + }, + { + "start": 2814.7, + "end": 2815.42, + "probability": 0.7448 + }, + { + "start": 2815.5, + "end": 2816.4, + "probability": 0.6547 + }, + { + "start": 2816.9, + "end": 2817.54, + "probability": 0.5412 + }, + { + "start": 2817.58, + "end": 2818.42, + "probability": 0.6429 + }, + { + "start": 2818.54, + "end": 2819.46, + "probability": 0.7695 + }, + { + "start": 2819.58, + "end": 2821.34, + "probability": 0.8953 + }, + { + "start": 2821.46, + "end": 2823.08, + "probability": 0.8172 + }, + { + "start": 2824.26, + "end": 2831.2, + "probability": 0.9662 + }, + { + "start": 2831.28, + "end": 2833.02, + "probability": 0.9513 + }, + { + "start": 2833.44, + "end": 2834.26, + "probability": 0.9148 + }, + { + "start": 2836.36, + "end": 2837.48, + "probability": 0.6272 + }, + { + "start": 2838.26, + "end": 2839.26, + "probability": 0.9071 + }, + { + "start": 2841.94, + "end": 2845.54, + "probability": 0.939 + }, + { + "start": 2846.94, + "end": 2852.18, + "probability": 0.8314 + }, + { + "start": 2852.62, + "end": 2855.0, + "probability": 0.5663 + }, + { + "start": 2856.02, + "end": 2858.0, + "probability": 0.9941 + }, + { + "start": 2858.8, + "end": 2859.42, + "probability": 0.9072 + }, + { + "start": 2860.44, + "end": 2862.58, + "probability": 0.8184 + }, + { + "start": 2864.76, + "end": 2869.72, + "probability": 0.9841 + }, + { + "start": 2870.9, + "end": 2872.88, + "probability": 0.4037 + }, + { + "start": 2875.28, + "end": 2878.34, + "probability": 0.8323 + }, + { + "start": 2879.22, + "end": 2880.48, + "probability": 0.8811 + }, + { + "start": 2880.56, + "end": 2882.14, + "probability": 0.5088 + }, + { + "start": 2882.22, + "end": 2883.35, + "probability": 0.9642 + }, + { + "start": 2883.56, + "end": 2884.46, + "probability": 0.9691 + }, + { + "start": 2884.9, + "end": 2885.46, + "probability": 0.8218 + }, + { + "start": 2886.64, + "end": 2890.38, + "probability": 0.6765 + }, + { + "start": 2890.96, + "end": 2892.46, + "probability": 0.6106 + }, + { + "start": 2893.06, + "end": 2894.16, + "probability": 0.7931 + }, + { + "start": 2894.46, + "end": 2895.24, + "probability": 0.6522 + }, + { + "start": 2896.14, + "end": 2899.58, + "probability": 0.8937 + }, + { + "start": 2901.5, + "end": 2902.3, + "probability": 0.9658 + }, + { + "start": 2903.52, + "end": 2904.08, + "probability": 0.3532 + }, + { + "start": 2904.1, + "end": 2905.66, + "probability": 0.9783 + }, + { + "start": 2905.72, + "end": 2906.5, + "probability": 0.5381 + }, + { + "start": 2906.62, + "end": 2907.56, + "probability": 0.9984 + }, + { + "start": 2910.66, + "end": 2914.44, + "probability": 0.9832 + }, + { + "start": 2916.18, + "end": 2916.78, + "probability": 0.8344 + }, + { + "start": 2918.06, + "end": 2920.9, + "probability": 0.9606 + }, + { + "start": 2921.42, + "end": 2922.86, + "probability": 0.8717 + }, + { + "start": 2925.38, + "end": 2927.38, + "probability": 0.7288 + }, + { + "start": 2928.2, + "end": 2933.82, + "probability": 0.965 + }, + { + "start": 2934.0, + "end": 2937.2, + "probability": 0.9418 + }, + { + "start": 2939.48, + "end": 2942.86, + "probability": 0.9573 + }, + { + "start": 2942.86, + "end": 2947.18, + "probability": 0.9411 + }, + { + "start": 2948.08, + "end": 2950.06, + "probability": 0.8131 + }, + { + "start": 2951.02, + "end": 2955.78, + "probability": 0.5224 + }, + { + "start": 2956.24, + "end": 2959.4, + "probability": 0.8344 + }, + { + "start": 2959.42, + "end": 2961.44, + "probability": 0.5818 + }, + { + "start": 2962.7, + "end": 2964.32, + "probability": 0.7134 + }, + { + "start": 2964.56, + "end": 2965.02, + "probability": 0.9727 + }, + { + "start": 2966.2, + "end": 2967.7, + "probability": 0.8378 + }, + { + "start": 2968.22, + "end": 2968.22, + "probability": 0.0501 + }, + { + "start": 2968.22, + "end": 2969.06, + "probability": 0.6588 + }, + { + "start": 2974.02, + "end": 2975.88, + "probability": 0.7491 + }, + { + "start": 2977.48, + "end": 2979.54, + "probability": 0.8094 + }, + { + "start": 2980.24, + "end": 2980.46, + "probability": 0.8736 + }, + { + "start": 2982.02, + "end": 2983.4, + "probability": 0.9423 + }, + { + "start": 2986.16, + "end": 2988.12, + "probability": 0.9209 + }, + { + "start": 2988.58, + "end": 2991.12, + "probability": 0.828 + }, + { + "start": 2991.5, + "end": 2993.88, + "probability": 0.5568 + }, + { + "start": 2994.3, + "end": 2994.84, + "probability": 0.6965 + }, + { + "start": 2994.94, + "end": 2997.22, + "probability": 0.3003 + }, + { + "start": 2997.92, + "end": 3001.18, + "probability": 0.9491 + }, + { + "start": 3001.8, + "end": 3002.66, + "probability": 0.5878 + }, + { + "start": 3003.32, + "end": 3004.82, + "probability": 0.9018 + }, + { + "start": 3007.08, + "end": 3008.34, + "probability": 0.9775 + }, + { + "start": 3008.76, + "end": 3009.54, + "probability": 0.7958 + }, + { + "start": 3009.6, + "end": 3013.64, + "probability": 0.9587 + }, + { + "start": 3014.84, + "end": 3017.98, + "probability": 0.8055 + }, + { + "start": 3018.04, + "end": 3018.8, + "probability": 0.7146 + }, + { + "start": 3018.92, + "end": 3020.24, + "probability": 0.9529 + }, + { + "start": 3020.9, + "end": 3024.04, + "probability": 0.8122 + }, + { + "start": 3025.16, + "end": 3026.16, + "probability": 0.822 + }, + { + "start": 3027.32, + "end": 3028.62, + "probability": 0.6749 + }, + { + "start": 3030.64, + "end": 3031.9, + "probability": 0.911 + }, + { + "start": 3032.0, + "end": 3033.46, + "probability": 0.8755 + }, + { + "start": 3034.28, + "end": 3035.26, + "probability": 0.1978 + }, + { + "start": 3035.88, + "end": 3036.23, + "probability": 0.8905 + }, + { + "start": 3037.24, + "end": 3037.92, + "probability": 0.9272 + }, + { + "start": 3038.62, + "end": 3039.92, + "probability": 0.854 + }, + { + "start": 3040.44, + "end": 3041.86, + "probability": 0.8032 + }, + { + "start": 3042.88, + "end": 3044.82, + "probability": 0.8674 + }, + { + "start": 3046.9, + "end": 3053.8, + "probability": 0.9792 + }, + { + "start": 3055.94, + "end": 3057.02, + "probability": 0.8405 + }, + { + "start": 3057.86, + "end": 3060.18, + "probability": 0.9971 + }, + { + "start": 3061.08, + "end": 3061.86, + "probability": 0.9819 + }, + { + "start": 3062.44, + "end": 3065.8, + "probability": 0.9473 + }, + { + "start": 3066.66, + "end": 3069.14, + "probability": 0.9781 + }, + { + "start": 3069.66, + "end": 3073.88, + "probability": 0.9182 + }, + { + "start": 3074.52, + "end": 3079.66, + "probability": 0.9557 + }, + { + "start": 3081.12, + "end": 3084.28, + "probability": 0.9883 + }, + { + "start": 3084.86, + "end": 3089.1, + "probability": 0.962 + }, + { + "start": 3090.37, + "end": 3092.35, + "probability": 0.5363 + }, + { + "start": 3093.58, + "end": 3095.18, + "probability": 0.644 + }, + { + "start": 3095.86, + "end": 3097.08, + "probability": 0.856 + }, + { + "start": 3097.8, + "end": 3101.84, + "probability": 0.9772 + }, + { + "start": 3102.38, + "end": 3104.24, + "probability": 0.8245 + }, + { + "start": 3105.46, + "end": 3109.86, + "probability": 0.9724 + }, + { + "start": 3111.0, + "end": 3111.55, + "probability": 0.9112 + }, + { + "start": 3112.06, + "end": 3113.76, + "probability": 0.8526 + }, + { + "start": 3113.8, + "end": 3115.44, + "probability": 0.9326 + }, + { + "start": 3116.04, + "end": 3117.1, + "probability": 0.8057 + }, + { + "start": 3118.52, + "end": 3121.44, + "probability": 0.97 + }, + { + "start": 3122.36, + "end": 3122.6, + "probability": 0.0382 + }, + { + "start": 3122.86, + "end": 3126.6, + "probability": 0.9597 + }, + { + "start": 3128.66, + "end": 3129.7, + "probability": 0.8072 + }, + { + "start": 3132.5, + "end": 3133.6, + "probability": 0.3025 + }, + { + "start": 3133.72, + "end": 3134.12, + "probability": 0.0939 + }, + { + "start": 3134.12, + "end": 3135.42, + "probability": 0.0376 + }, + { + "start": 3135.76, + "end": 3137.6, + "probability": 0.3957 + }, + { + "start": 3137.82, + "end": 3141.42, + "probability": 0.9899 + }, + { + "start": 3141.66, + "end": 3144.74, + "probability": 0.9441 + }, + { + "start": 3145.66, + "end": 3151.76, + "probability": 0.9692 + }, + { + "start": 3152.38, + "end": 3155.68, + "probability": 0.5326 + }, + { + "start": 3156.46, + "end": 3162.66, + "probability": 0.8048 + }, + { + "start": 3163.38, + "end": 3165.7, + "probability": 0.1162 + }, + { + "start": 3166.9, + "end": 3168.48, + "probability": 0.841 + }, + { + "start": 3170.18, + "end": 3170.66, + "probability": 0.3208 + }, + { + "start": 3171.98, + "end": 3174.7, + "probability": 0.9957 + }, + { + "start": 3174.86, + "end": 3176.74, + "probability": 0.8862 + }, + { + "start": 3176.74, + "end": 3177.14, + "probability": 0.1147 + }, + { + "start": 3177.6, + "end": 3179.36, + "probability": 0.928 + }, + { + "start": 3179.42, + "end": 3180.1, + "probability": 0.5937 + }, + { + "start": 3180.46, + "end": 3183.3, + "probability": 0.9829 + }, + { + "start": 3184.12, + "end": 3187.86, + "probability": 0.881 + }, + { + "start": 3188.36, + "end": 3191.86, + "probability": 0.0067 + }, + { + "start": 3191.86, + "end": 3193.16, + "probability": 0.0631 + }, + { + "start": 3193.3, + "end": 3194.42, + "probability": 0.9941 + }, + { + "start": 3195.08, + "end": 3198.34, + "probability": 0.625 + }, + { + "start": 3199.64, + "end": 3200.68, + "probability": 0.7415 + }, + { + "start": 3200.7, + "end": 3203.3, + "probability": 0.7624 + }, + { + "start": 3204.06, + "end": 3206.68, + "probability": 0.5922 + }, + { + "start": 3207.9, + "end": 3210.7, + "probability": 0.8327 + }, + { + "start": 3210.78, + "end": 3214.86, + "probability": 0.8289 + }, + { + "start": 3215.08, + "end": 3215.78, + "probability": 0.4258 + }, + { + "start": 3216.44, + "end": 3218.0, + "probability": 0.6848 + }, + { + "start": 3218.12, + "end": 3221.28, + "probability": 0.6852 + }, + { + "start": 3221.28, + "end": 3226.06, + "probability": 0.96 + }, + { + "start": 3226.38, + "end": 3228.02, + "probability": 0.5834 + }, + { + "start": 3228.46, + "end": 3229.86, + "probability": 0.7677 + }, + { + "start": 3230.46, + "end": 3231.78, + "probability": 0.9854 + }, + { + "start": 3232.46, + "end": 3233.26, + "probability": 0.4883 + }, + { + "start": 3233.72, + "end": 3234.24, + "probability": 0.8583 + }, + { + "start": 3234.56, + "end": 3237.16, + "probability": 0.8472 + }, + { + "start": 3237.68, + "end": 3238.72, + "probability": 0.7933 + }, + { + "start": 3238.8, + "end": 3239.66, + "probability": 0.7423 + }, + { + "start": 3239.74, + "end": 3240.94, + "probability": 0.7255 + }, + { + "start": 3241.06, + "end": 3242.48, + "probability": 0.638 + }, + { + "start": 3243.4, + "end": 3245.64, + "probability": 0.9759 + }, + { + "start": 3247.34, + "end": 3250.16, + "probability": 0.9701 + }, + { + "start": 3251.18, + "end": 3252.52, + "probability": 0.7941 + }, + { + "start": 3253.34, + "end": 3255.6, + "probability": 0.9455 + }, + { + "start": 3256.36, + "end": 3258.16, + "probability": 0.9316 + }, + { + "start": 3258.8, + "end": 3261.42, + "probability": 0.9468 + }, + { + "start": 3261.98, + "end": 3264.5, + "probability": 0.7496 + }, + { + "start": 3265.06, + "end": 3266.74, + "probability": 0.9585 + }, + { + "start": 3267.52, + "end": 3270.54, + "probability": 0.9847 + }, + { + "start": 3271.64, + "end": 3272.58, + "probability": 0.6724 + }, + { + "start": 3273.34, + "end": 3278.64, + "probability": 0.8566 + }, + { + "start": 3278.64, + "end": 3281.64, + "probability": 0.8616 + }, + { + "start": 3282.44, + "end": 3286.96, + "probability": 0.8782 + }, + { + "start": 3288.0, + "end": 3288.9, + "probability": 0.8954 + }, + { + "start": 3289.06, + "end": 3294.26, + "probability": 0.9502 + }, + { + "start": 3294.38, + "end": 3295.28, + "probability": 0.886 + }, + { + "start": 3295.72, + "end": 3296.44, + "probability": 0.8568 + }, + { + "start": 3297.0, + "end": 3299.94, + "probability": 0.7181 + }, + { + "start": 3300.68, + "end": 3302.22, + "probability": 0.875 + }, + { + "start": 3302.9, + "end": 3304.12, + "probability": 0.963 + }, + { + "start": 3304.66, + "end": 3305.94, + "probability": 0.9907 + }, + { + "start": 3306.94, + "end": 3309.42, + "probability": 0.8264 + }, + { + "start": 3309.42, + "end": 3312.9, + "probability": 0.8582 + }, + { + "start": 3313.44, + "end": 3317.16, + "probability": 0.873 + }, + { + "start": 3317.84, + "end": 3320.44, + "probability": 0.931 + }, + { + "start": 3321.32, + "end": 3321.92, + "probability": 0.3905 + }, + { + "start": 3322.8, + "end": 3325.94, + "probability": 0.9744 + }, + { + "start": 3327.0, + "end": 3333.48, + "probability": 0.9665 + }, + { + "start": 3333.74, + "end": 3341.64, + "probability": 0.9883 + }, + { + "start": 3343.14, + "end": 3345.32, + "probability": 0.9929 + }, + { + "start": 3346.24, + "end": 3348.22, + "probability": 0.6301 + }, + { + "start": 3349.84, + "end": 3350.64, + "probability": 0.7701 + }, + { + "start": 3350.74, + "end": 3353.88, + "probability": 0.7178 + }, + { + "start": 3354.06, + "end": 3359.84, + "probability": 0.479 + }, + { + "start": 3360.38, + "end": 3362.54, + "probability": 0.9194 + }, + { + "start": 3362.94, + "end": 3363.66, + "probability": 0.4801 + }, + { + "start": 3363.88, + "end": 3366.34, + "probability": 0.7117 + }, + { + "start": 3367.12, + "end": 3371.28, + "probability": 0.979 + }, + { + "start": 3371.74, + "end": 3378.23, + "probability": 0.9875 + }, + { + "start": 3379.98, + "end": 3385.3, + "probability": 0.8858 + }, + { + "start": 3385.86, + "end": 3388.0, + "probability": 0.9269 + }, + { + "start": 3389.12, + "end": 3391.46, + "probability": 0.8082 + }, + { + "start": 3392.04, + "end": 3396.97, + "probability": 0.8355 + }, + { + "start": 3397.38, + "end": 3398.04, + "probability": 0.2818 + }, + { + "start": 3398.22, + "end": 3398.68, + "probability": 0.4947 + }, + { + "start": 3399.66, + "end": 3399.66, + "probability": 0.2388 + }, + { + "start": 3399.68, + "end": 3400.4, + "probability": 0.7235 + }, + { + "start": 3400.46, + "end": 3401.5, + "probability": 0.9443 + }, + { + "start": 3401.62, + "end": 3402.78, + "probability": 0.9779 + }, + { + "start": 3402.88, + "end": 3403.76, + "probability": 0.9795 + }, + { + "start": 3405.47, + "end": 3408.46, + "probability": 0.8788 + }, + { + "start": 3409.22, + "end": 3410.1, + "probability": 0.3773 + }, + { + "start": 3410.18, + "end": 3410.8, + "probability": 0.6306 + }, + { + "start": 3411.44, + "end": 3413.16, + "probability": 0.8887 + }, + { + "start": 3413.64, + "end": 3416.54, + "probability": 0.984 + }, + { + "start": 3417.14, + "end": 3419.16, + "probability": 0.8484 + }, + { + "start": 3419.48, + "end": 3421.72, + "probability": 0.9194 + }, + { + "start": 3422.52, + "end": 3425.58, + "probability": 0.8059 + }, + { + "start": 3426.34, + "end": 3427.44, + "probability": 0.9716 + }, + { + "start": 3427.72, + "end": 3430.1, + "probability": 0.655 + }, + { + "start": 3430.26, + "end": 3433.16, + "probability": 0.9199 + }, + { + "start": 3433.32, + "end": 3433.72, + "probability": 0.8661 + }, + { + "start": 3434.26, + "end": 3435.5, + "probability": 0.9611 + }, + { + "start": 3435.74, + "end": 3436.22, + "probability": 0.4489 + }, + { + "start": 3436.8, + "end": 3438.06, + "probability": 0.6555 + }, + { + "start": 3439.26, + "end": 3439.42, + "probability": 0.4767 + }, + { + "start": 3439.5, + "end": 3441.42, + "probability": 0.812 + }, + { + "start": 3441.86, + "end": 3444.0, + "probability": 0.7432 + }, + { + "start": 3444.32, + "end": 3449.16, + "probability": 0.5724 + }, + { + "start": 3449.58, + "end": 3450.14, + "probability": 0.5759 + }, + { + "start": 3450.46, + "end": 3453.84, + "probability": 0.8233 + }, + { + "start": 3454.16, + "end": 3456.1, + "probability": 0.7029 + }, + { + "start": 3456.38, + "end": 3456.84, + "probability": 0.5162 + }, + { + "start": 3456.86, + "end": 3457.88, + "probability": 0.8562 + }, + { + "start": 3458.38, + "end": 3459.16, + "probability": 0.693 + }, + { + "start": 3460.04, + "end": 3463.99, + "probability": 0.7417 + }, + { + "start": 3464.98, + "end": 3465.78, + "probability": 0.8474 + }, + { + "start": 3465.88, + "end": 3469.18, + "probability": 0.9045 + }, + { + "start": 3470.36, + "end": 3475.38, + "probability": 0.9829 + }, + { + "start": 3476.94, + "end": 3481.0, + "probability": 0.7809 + }, + { + "start": 3481.46, + "end": 3485.12, + "probability": 0.9361 + }, + { + "start": 3485.8, + "end": 3486.32, + "probability": 0.8812 + }, + { + "start": 3486.76, + "end": 3492.14, + "probability": 0.9736 + }, + { + "start": 3492.54, + "end": 3494.8, + "probability": 0.3624 + }, + { + "start": 3495.14, + "end": 3499.82, + "probability": 0.589 + }, + { + "start": 3500.02, + "end": 3500.8, + "probability": 0.6839 + }, + { + "start": 3500.9, + "end": 3501.86, + "probability": 0.187 + }, + { + "start": 3502.5, + "end": 3508.04, + "probability": 0.7762 + }, + { + "start": 3508.38, + "end": 3509.4, + "probability": 0.5407 + }, + { + "start": 3509.5, + "end": 3510.06, + "probability": 0.8373 + }, + { + "start": 3510.2, + "end": 3512.2, + "probability": 0.5808 + }, + { + "start": 3512.26, + "end": 3513.12, + "probability": 0.7781 + }, + { + "start": 3513.2, + "end": 3518.64, + "probability": 0.7529 + }, + { + "start": 3518.8, + "end": 3519.54, + "probability": 0.3849 + }, + { + "start": 3519.54, + "end": 3520.64, + "probability": 0.8305 + }, + { + "start": 3521.1, + "end": 3522.38, + "probability": 0.8059 + }, + { + "start": 3522.52, + "end": 3524.54, + "probability": 0.973 + }, + { + "start": 3525.0, + "end": 3526.14, + "probability": 0.7614 + }, + { + "start": 3526.46, + "end": 3527.58, + "probability": 0.8766 + }, + { + "start": 3527.9, + "end": 3529.72, + "probability": 0.7396 + }, + { + "start": 3530.1, + "end": 3531.8, + "probability": 0.9685 + }, + { + "start": 3531.9, + "end": 3535.64, + "probability": 0.7686 + }, + { + "start": 3535.96, + "end": 3536.86, + "probability": 0.8768 + }, + { + "start": 3537.5, + "end": 3538.02, + "probability": 0.9686 + }, + { + "start": 3538.3, + "end": 3541.24, + "probability": 0.7215 + }, + { + "start": 3541.24, + "end": 3541.24, + "probability": 0.2658 + }, + { + "start": 3541.24, + "end": 3545.82, + "probability": 0.6298 + }, + { + "start": 3545.82, + "end": 3547.16, + "probability": 0.4264 + }, + { + "start": 3547.42, + "end": 3549.2, + "probability": 0.5916 + }, + { + "start": 3549.62, + "end": 3549.76, + "probability": 0.3861 + }, + { + "start": 3549.86, + "end": 3552.32, + "probability": 0.9966 + }, + { + "start": 3552.66, + "end": 3553.94, + "probability": 0.6201 + }, + { + "start": 3554.24, + "end": 3554.34, + "probability": 0.5003 + }, + { + "start": 3554.46, + "end": 3555.7, + "probability": 0.9692 + }, + { + "start": 3555.86, + "end": 3558.04, + "probability": 0.9669 + }, + { + "start": 3558.46, + "end": 3561.86, + "probability": 0.9612 + }, + { + "start": 3562.04, + "end": 3563.18, + "probability": 0.8401 + }, + { + "start": 3563.64, + "end": 3563.88, + "probability": 0.2864 + }, + { + "start": 3564.02, + "end": 3564.46, + "probability": 0.7925 + }, + { + "start": 3564.78, + "end": 3565.9, + "probability": 0.8075 + }, + { + "start": 3566.04, + "end": 3568.72, + "probability": 0.9494 + }, + { + "start": 3569.18, + "end": 3570.16, + "probability": 0.7317 + }, + { + "start": 3571.6, + "end": 3573.28, + "probability": 0.7429 + }, + { + "start": 3574.04, + "end": 3576.04, + "probability": 0.8931 + }, + { + "start": 3576.74, + "end": 3576.84, + "probability": 0.1898 + }, + { + "start": 3576.84, + "end": 3577.22, + "probability": 0.4742 + }, + { + "start": 3577.34, + "end": 3578.36, + "probability": 0.9412 + }, + { + "start": 3578.54, + "end": 3579.5, + "probability": 0.2775 + }, + { + "start": 3579.66, + "end": 3580.16, + "probability": 0.7509 + }, + { + "start": 3591.64, + "end": 3596.6, + "probability": 0.6165 + }, + { + "start": 3597.6, + "end": 3601.56, + "probability": 0.9491 + }, + { + "start": 3601.56, + "end": 3604.84, + "probability": 0.8965 + }, + { + "start": 3605.32, + "end": 3607.68, + "probability": 0.7894 + }, + { + "start": 3607.76, + "end": 3608.64, + "probability": 0.8994 + }, + { + "start": 3609.32, + "end": 3612.38, + "probability": 0.8267 + }, + { + "start": 3613.08, + "end": 3615.38, + "probability": 0.8047 + }, + { + "start": 3615.84, + "end": 3619.02, + "probability": 0.7719 + }, + { + "start": 3619.44, + "end": 3624.54, + "probability": 0.7774 + }, + { + "start": 3624.54, + "end": 3627.6, + "probability": 0.9936 + }, + { + "start": 3628.08, + "end": 3632.54, + "probability": 0.7979 + }, + { + "start": 3632.96, + "end": 3634.86, + "probability": 0.7171 + }, + { + "start": 3635.0, + "end": 3639.46, + "probability": 0.7266 + }, + { + "start": 3639.82, + "end": 3641.12, + "probability": 0.9355 + }, + { + "start": 3641.4, + "end": 3646.9, + "probability": 0.7107 + }, + { + "start": 3647.5, + "end": 3648.36, + "probability": 0.6589 + }, + { + "start": 3648.74, + "end": 3649.58, + "probability": 0.8493 + }, + { + "start": 3650.04, + "end": 3652.68, + "probability": 0.5572 + }, + { + "start": 3653.06, + "end": 3654.06, + "probability": 0.2914 + }, + { + "start": 3654.1, + "end": 3654.66, + "probability": 0.6701 + }, + { + "start": 3654.92, + "end": 3655.72, + "probability": 0.8877 + }, + { + "start": 3655.74, + "end": 3657.28, + "probability": 0.97 + }, + { + "start": 3658.18, + "end": 3661.4, + "probability": 0.8243 + }, + { + "start": 3661.4, + "end": 3666.9, + "probability": 0.9308 + }, + { + "start": 3667.26, + "end": 3668.14, + "probability": 0.6403 + }, + { + "start": 3668.64, + "end": 3673.52, + "probability": 0.9514 + }, + { + "start": 3674.08, + "end": 3678.36, + "probability": 0.8103 + }, + { + "start": 3678.36, + "end": 3681.54, + "probability": 0.4462 + }, + { + "start": 3681.64, + "end": 3683.3, + "probability": 0.8923 + }, + { + "start": 3683.64, + "end": 3684.1, + "probability": 0.4631 + }, + { + "start": 3684.82, + "end": 3687.28, + "probability": 0.8694 + }, + { + "start": 3689.81, + "end": 3693.26, + "probability": 0.6318 + }, + { + "start": 3694.0, + "end": 3695.42, + "probability": 0.7419 + }, + { + "start": 3695.86, + "end": 3696.36, + "probability": 0.5698 + }, + { + "start": 3696.76, + "end": 3700.08, + "probability": 0.7374 + }, + { + "start": 3700.34, + "end": 3703.24, + "probability": 0.9446 + }, + { + "start": 3704.02, + "end": 3704.96, + "probability": 0.6143 + }, + { + "start": 3705.5, + "end": 3707.82, + "probability": 0.6264 + }, + { + "start": 3708.12, + "end": 3708.76, + "probability": 0.4831 + }, + { + "start": 3709.24, + "end": 3709.98, + "probability": 0.9657 + }, + { + "start": 3710.16, + "end": 3710.72, + "probability": 0.9462 + }, + { + "start": 3710.76, + "end": 3713.5, + "probability": 0.9781 + }, + { + "start": 3713.82, + "end": 3717.32, + "probability": 0.9389 + }, + { + "start": 3717.66, + "end": 3718.54, + "probability": 0.6067 + }, + { + "start": 3718.7, + "end": 3723.86, + "probability": 0.9738 + }, + { + "start": 3724.08, + "end": 3725.03, + "probability": 0.7755 + }, + { + "start": 3726.23, + "end": 3729.54, + "probability": 0.9957 + }, + { + "start": 3729.54, + "end": 3732.34, + "probability": 0.5961 + }, + { + "start": 3732.62, + "end": 3735.64, + "probability": 0.3304 + }, + { + "start": 3735.64, + "end": 3736.81, + "probability": 0.7057 + }, + { + "start": 3737.46, + "end": 3737.64, + "probability": 0.0076 + }, + { + "start": 3738.36, + "end": 3739.25, + "probability": 0.3319 + }, + { + "start": 3739.58, + "end": 3743.34, + "probability": 0.9067 + }, + { + "start": 3743.44, + "end": 3744.02, + "probability": 0.8411 + }, + { + "start": 3744.16, + "end": 3744.62, + "probability": 0.8599 + }, + { + "start": 3744.7, + "end": 3745.26, + "probability": 0.8005 + }, + { + "start": 3745.54, + "end": 3746.31, + "probability": 0.5679 + }, + { + "start": 3746.72, + "end": 3749.44, + "probability": 0.7631 + }, + { + "start": 3750.1, + "end": 3752.78, + "probability": 0.8205 + }, + { + "start": 3753.1, + "end": 3756.06, + "probability": 0.7176 + }, + { + "start": 3756.64, + "end": 3759.08, + "probability": 0.6126 + }, + { + "start": 3759.34, + "end": 3762.2, + "probability": 0.9241 + }, + { + "start": 3762.64, + "end": 3765.02, + "probability": 0.8493 + }, + { + "start": 3765.32, + "end": 3766.56, + "probability": 0.9291 + }, + { + "start": 3766.86, + "end": 3769.48, + "probability": 0.9858 + }, + { + "start": 3769.94, + "end": 3770.9, + "probability": 0.9051 + }, + { + "start": 3771.58, + "end": 3772.56, + "probability": 0.6335 + }, + { + "start": 3772.66, + "end": 3776.14, + "probability": 0.8928 + }, + { + "start": 3776.66, + "end": 3778.76, + "probability": 0.8417 + }, + { + "start": 3778.92, + "end": 3782.58, + "probability": 0.9702 + }, + { + "start": 3782.7, + "end": 3783.28, + "probability": 0.8133 + }, + { + "start": 3783.34, + "end": 3783.8, + "probability": 0.7392 + }, + { + "start": 3784.24, + "end": 3785.5, + "probability": 0.8393 + }, + { + "start": 3785.8, + "end": 3790.08, + "probability": 0.6873 + }, + { + "start": 3790.4, + "end": 3790.94, + "probability": 0.678 + }, + { + "start": 3791.36, + "end": 3794.16, + "probability": 0.9002 + }, + { + "start": 3794.48, + "end": 3798.66, + "probability": 0.8742 + }, + { + "start": 3799.16, + "end": 3799.82, + "probability": 0.5795 + }, + { + "start": 3800.64, + "end": 3805.02, + "probability": 0.9971 + }, + { + "start": 3805.32, + "end": 3806.06, + "probability": 0.8471 + }, + { + "start": 3807.08, + "end": 3808.26, + "probability": 0.969 + }, + { + "start": 3808.9, + "end": 3810.68, + "probability": 0.5953 + }, + { + "start": 3810.96, + "end": 3812.46, + "probability": 0.6964 + }, + { + "start": 3812.8, + "end": 3814.78, + "probability": 0.7972 + }, + { + "start": 3815.12, + "end": 3817.24, + "probability": 0.7984 + }, + { + "start": 3817.48, + "end": 3817.92, + "probability": 0.9153 + }, + { + "start": 3818.56, + "end": 3823.28, + "probability": 0.7531 + }, + { + "start": 3823.54, + "end": 3827.08, + "probability": 0.7659 + }, + { + "start": 3827.6, + "end": 3832.2, + "probability": 0.9414 + }, + { + "start": 3832.78, + "end": 3833.52, + "probability": 0.8979 + }, + { + "start": 3834.56, + "end": 3835.14, + "probability": 0.8852 + }, + { + "start": 3835.26, + "end": 3837.74, + "probability": 0.8771 + }, + { + "start": 3837.96, + "end": 3838.92, + "probability": 0.9506 + }, + { + "start": 3839.48, + "end": 3840.06, + "probability": 0.5118 + }, + { + "start": 3840.32, + "end": 3840.7, + "probability": 0.6729 + }, + { + "start": 3840.98, + "end": 3843.58, + "probability": 0.9317 + }, + { + "start": 3844.08, + "end": 3845.56, + "probability": 0.855 + }, + { + "start": 3845.98, + "end": 3847.16, + "probability": 0.8984 + }, + { + "start": 3847.6, + "end": 3849.48, + "probability": 0.4814 + }, + { + "start": 3850.1, + "end": 3855.46, + "probability": 0.7217 + }, + { + "start": 3855.84, + "end": 3859.2, + "probability": 0.4632 + }, + { + "start": 3859.58, + "end": 3863.36, + "probability": 0.9403 + }, + { + "start": 3863.96, + "end": 3866.5, + "probability": 0.8289 + }, + { + "start": 3868.2, + "end": 3869.86, + "probability": 0.9655 + }, + { + "start": 3870.12, + "end": 3871.74, + "probability": 0.9174 + }, + { + "start": 3872.16, + "end": 3873.56, + "probability": 0.8579 + }, + { + "start": 3873.86, + "end": 3879.46, + "probability": 0.8316 + }, + { + "start": 3880.4, + "end": 3882.78, + "probability": 0.8875 + }, + { + "start": 3883.28, + "end": 3885.8, + "probability": 0.9812 + }, + { + "start": 3885.8, + "end": 3888.52, + "probability": 0.8031 + }, + { + "start": 3888.58, + "end": 3889.76, + "probability": 0.6591 + }, + { + "start": 3890.08, + "end": 3891.24, + "probability": 0.8357 + }, + { + "start": 3892.1, + "end": 3893.46, + "probability": 0.5954 + }, + { + "start": 3894.66, + "end": 3900.2, + "probability": 0.8371 + }, + { + "start": 3900.58, + "end": 3901.68, + "probability": 0.7666 + }, + { + "start": 3902.36, + "end": 3903.5, + "probability": 0.9691 + }, + { + "start": 3903.58, + "end": 3908.72, + "probability": 0.6958 + }, + { + "start": 3909.32, + "end": 3912.2, + "probability": 0.9641 + }, + { + "start": 3912.62, + "end": 3914.18, + "probability": 0.969 + }, + { + "start": 3915.02, + "end": 3916.92, + "probability": 0.5745 + }, + { + "start": 3917.52, + "end": 3922.12, + "probability": 0.8876 + }, + { + "start": 3923.28, + "end": 3924.8, + "probability": 0.622 + }, + { + "start": 3925.18, + "end": 3926.88, + "probability": 0.8838 + }, + { + "start": 3930.02, + "end": 3931.9, + "probability": 0.5365 + }, + { + "start": 3932.44, + "end": 3936.32, + "probability": 0.9824 + }, + { + "start": 3939.46, + "end": 3940.2, + "probability": 0.8228 + }, + { + "start": 3941.68, + "end": 3944.8, + "probability": 0.9399 + }, + { + "start": 3944.98, + "end": 3947.16, + "probability": 0.9858 + }, + { + "start": 3947.52, + "end": 3949.08, + "probability": 0.7158 + }, + { + "start": 3949.5, + "end": 3950.4, + "probability": 0.722 + }, + { + "start": 3950.64, + "end": 3951.86, + "probability": 0.8226 + }, + { + "start": 3952.16, + "end": 3955.06, + "probability": 0.859 + }, + { + "start": 3955.2, + "end": 3957.36, + "probability": 0.9253 + }, + { + "start": 3958.38, + "end": 3962.72, + "probability": 0.7411 + }, + { + "start": 3964.14, + "end": 3964.98, + "probability": 0.6475 + }, + { + "start": 3965.42, + "end": 3966.44, + "probability": 0.8329 + }, + { + "start": 3966.46, + "end": 3967.46, + "probability": 0.9343 + }, + { + "start": 3967.54, + "end": 3968.22, + "probability": 0.5977 + }, + { + "start": 3968.72, + "end": 3970.38, + "probability": 0.8003 + }, + { + "start": 3970.7, + "end": 3971.05, + "probability": 0.924 + }, + { + "start": 3971.58, + "end": 3972.46, + "probability": 0.917 + }, + { + "start": 3972.84, + "end": 3973.59, + "probability": 0.85 + }, + { + "start": 3974.02, + "end": 3974.5, + "probability": 0.9844 + }, + { + "start": 3974.9, + "end": 3976.3, + "probability": 0.7935 + }, + { + "start": 3978.1, + "end": 3979.66, + "probability": 0.8813 + }, + { + "start": 3980.14, + "end": 3981.43, + "probability": 0.8777 + }, + { + "start": 3982.42, + "end": 3984.34, + "probability": 0.753 + }, + { + "start": 3984.64, + "end": 3987.7, + "probability": 0.5989 + }, + { + "start": 3988.66, + "end": 3990.5, + "probability": 0.7244 + }, + { + "start": 3990.76, + "end": 3992.58, + "probability": 0.9089 + }, + { + "start": 3992.9, + "end": 3994.48, + "probability": 0.9247 + }, + { + "start": 3995.02, + "end": 3997.3, + "probability": 0.8286 + }, + { + "start": 3997.32, + "end": 4000.0, + "probability": 0.8097 + }, + { + "start": 4000.46, + "end": 4000.98, + "probability": 0.633 + }, + { + "start": 4002.22, + "end": 4004.12, + "probability": 0.4252 + }, + { + "start": 4004.32, + "end": 4009.72, + "probability": 0.3624 + }, + { + "start": 4009.84, + "end": 4012.98, + "probability": 0.7163 + }, + { + "start": 4013.44, + "end": 4014.57, + "probability": 0.8476 + }, + { + "start": 4016.52, + "end": 4017.24, + "probability": 0.3962 + }, + { + "start": 4017.34, + "end": 4019.84, + "probability": 0.8948 + }, + { + "start": 4020.26, + "end": 4021.18, + "probability": 0.7523 + }, + { + "start": 4021.28, + "end": 4022.3, + "probability": 0.8949 + }, + { + "start": 4022.68, + "end": 4024.42, + "probability": 0.8625 + }, + { + "start": 4024.66, + "end": 4026.64, + "probability": 0.6877 + }, + { + "start": 4027.5, + "end": 4029.3, + "probability": 0.8057 + }, + { + "start": 4029.5, + "end": 4033.68, + "probability": 0.9424 + }, + { + "start": 4034.04, + "end": 4035.56, + "probability": 0.9633 + }, + { + "start": 4035.64, + "end": 4036.43, + "probability": 0.7813 + }, + { + "start": 4036.84, + "end": 4039.7, + "probability": 0.9858 + }, + { + "start": 4040.04, + "end": 4040.66, + "probability": 0.5708 + }, + { + "start": 4040.7, + "end": 4041.8, + "probability": 0.936 + }, + { + "start": 4041.92, + "end": 4043.76, + "probability": 0.9476 + }, + { + "start": 4043.76, + "end": 4045.72, + "probability": 0.6644 + }, + { + "start": 4046.12, + "end": 4047.43, + "probability": 0.9867 + }, + { + "start": 4047.76, + "end": 4048.44, + "probability": 0.8236 + }, + { + "start": 4048.66, + "end": 4050.14, + "probability": 0.9716 + }, + { + "start": 4050.7, + "end": 4052.92, + "probability": 0.7044 + }, + { + "start": 4053.88, + "end": 4054.66, + "probability": 0.8821 + }, + { + "start": 4055.86, + "end": 4056.0, + "probability": 0.1853 + }, + { + "start": 4056.0, + "end": 4059.26, + "probability": 0.7524 + }, + { + "start": 4059.26, + "end": 4059.86, + "probability": 0.4521 + }, + { + "start": 4059.86, + "end": 4062.16, + "probability": 0.4735 + }, + { + "start": 4062.7, + "end": 4065.3, + "probability": 0.7728 + }, + { + "start": 4065.3, + "end": 4068.26, + "probability": 0.7026 + }, + { + "start": 4068.26, + "end": 4068.26, + "probability": 0.3861 + }, + { + "start": 4068.26, + "end": 4068.34, + "probability": 0.4982 + }, + { + "start": 4068.34, + "end": 4069.76, + "probability": 0.684 + }, + { + "start": 4069.82, + "end": 4071.82, + "probability": 0.6697 + }, + { + "start": 4071.82, + "end": 4072.26, + "probability": 0.387 + }, + { + "start": 4072.36, + "end": 4073.26, + "probability": 0.5927 + }, + { + "start": 4073.74, + "end": 4075.34, + "probability": 0.8694 + }, + { + "start": 4075.44, + "end": 4075.84, + "probability": 0.7456 + }, + { + "start": 4076.58, + "end": 4081.18, + "probability": 0.8774 + }, + { + "start": 4081.18, + "end": 4084.24, + "probability": 0.8385 + }, + { + "start": 4084.58, + "end": 4085.58, + "probability": 0.0268 + }, + { + "start": 4103.58, + "end": 4104.94, + "probability": 0.4944 + }, + { + "start": 4106.14, + "end": 4106.88, + "probability": 0.8499 + }, + { + "start": 4108.08, + "end": 4110.82, + "probability": 0.8149 + }, + { + "start": 4111.4, + "end": 4111.48, + "probability": 0.3569 + }, + { + "start": 4111.48, + "end": 4113.3, + "probability": 0.2583 + }, + { + "start": 4116.4, + "end": 4118.08, + "probability": 0.1657 + }, + { + "start": 4118.64, + "end": 4121.79, + "probability": 0.4253 + }, + { + "start": 4122.34, + "end": 4125.76, + "probability": 0.3263 + }, + { + "start": 4126.14, + "end": 4127.94, + "probability": 0.4191 + }, + { + "start": 4128.8, + "end": 4129.72, + "probability": 0.801 + }, + { + "start": 4130.92, + "end": 4132.9, + "probability": 0.5667 + }, + { + "start": 4133.58, + "end": 4135.45, + "probability": 0.3397 + }, + { + "start": 4137.4, + "end": 4139.2, + "probability": 0.9757 + }, + { + "start": 4139.72, + "end": 4140.94, + "probability": 0.9897 + }, + { + "start": 4143.0, + "end": 4143.84, + "probability": 0.8528 + }, + { + "start": 4144.38, + "end": 4145.32, + "probability": 0.6208 + }, + { + "start": 4146.38, + "end": 4149.84, + "probability": 0.9772 + }, + { + "start": 4151.18, + "end": 4154.86, + "probability": 0.8809 + }, + { + "start": 4155.78, + "end": 4160.18, + "probability": 0.9849 + }, + { + "start": 4160.26, + "end": 4162.42, + "probability": 0.6414 + }, + { + "start": 4163.41, + "end": 4164.98, + "probability": 0.5987 + }, + { + "start": 4165.9, + "end": 4166.46, + "probability": 0.7271 + }, + { + "start": 4166.92, + "end": 4167.96, + "probability": 0.1224 + }, + { + "start": 4168.74, + "end": 4170.74, + "probability": 0.7619 + }, + { + "start": 4170.88, + "end": 4174.36, + "probability": 0.8854 + }, + { + "start": 4175.14, + "end": 4180.9, + "probability": 0.9425 + }, + { + "start": 4180.94, + "end": 4182.16, + "probability": 0.8347 + }, + { + "start": 4182.56, + "end": 4184.28, + "probability": 0.9866 + }, + { + "start": 4184.32, + "end": 4184.72, + "probability": 0.698 + }, + { + "start": 4184.8, + "end": 4188.16, + "probability": 0.968 + }, + { + "start": 4188.34, + "end": 4191.8, + "probability": 0.8797 + }, + { + "start": 4192.26, + "end": 4193.42, + "probability": 0.8538 + }, + { + "start": 4195.58, + "end": 4198.3, + "probability": 0.889 + }, + { + "start": 4198.3, + "end": 4201.18, + "probability": 0.9894 + }, + { + "start": 4202.2, + "end": 4206.44, + "probability": 0.9179 + }, + { + "start": 4207.46, + "end": 4211.0, + "probability": 0.7318 + }, + { + "start": 4211.94, + "end": 4213.46, + "probability": 0.321 + }, + { + "start": 4213.46, + "end": 4213.98, + "probability": 0.7483 + }, + { + "start": 4214.05, + "end": 4219.14, + "probability": 0.911 + }, + { + "start": 4219.18, + "end": 4219.6, + "probability": 0.4108 + }, + { + "start": 4220.62, + "end": 4221.18, + "probability": 0.4435 + }, + { + "start": 4221.7, + "end": 4222.52, + "probability": 0.6709 + }, + { + "start": 4222.66, + "end": 4223.72, + "probability": 0.8107 + }, + { + "start": 4223.86, + "end": 4224.62, + "probability": 0.6336 + }, + { + "start": 4227.62, + "end": 4229.8, + "probability": 0.4807 + }, + { + "start": 4229.92, + "end": 4231.46, + "probability": 0.9902 + }, + { + "start": 4231.46, + "end": 4233.78, + "probability": 0.8208 + }, + { + "start": 4234.44, + "end": 4238.12, + "probability": 0.924 + }, + { + "start": 4238.28, + "end": 4239.52, + "probability": 0.7871 + }, + { + "start": 4239.76, + "end": 4240.6, + "probability": 0.8613 + }, + { + "start": 4241.04, + "end": 4243.46, + "probability": 0.8615 + }, + { + "start": 4244.26, + "end": 4245.94, + "probability": 0.9113 + }, + { + "start": 4246.56, + "end": 4247.98, + "probability": 0.8151 + }, + { + "start": 4248.1, + "end": 4248.98, + "probability": 0.6575 + }, + { + "start": 4249.04, + "end": 4251.78, + "probability": 0.9537 + }, + { + "start": 4252.58, + "end": 4253.36, + "probability": 0.6261 + }, + { + "start": 4253.44, + "end": 4255.54, + "probability": 0.7465 + }, + { + "start": 4255.54, + "end": 4258.52, + "probability": 0.7687 + }, + { + "start": 4259.6, + "end": 4260.88, + "probability": 0.6095 + }, + { + "start": 4261.0, + "end": 4264.72, + "probability": 0.9591 + }, + { + "start": 4266.18, + "end": 4269.22, + "probability": 0.701 + }, + { + "start": 4269.8, + "end": 4269.96, + "probability": 0.3553 + }, + { + "start": 4270.1, + "end": 4273.6, + "probability": 0.7987 + }, + { + "start": 4274.18, + "end": 4277.08, + "probability": 0.9535 + }, + { + "start": 4278.3, + "end": 4279.36, + "probability": 0.8747 + }, + { + "start": 4279.52, + "end": 4280.16, + "probability": 0.5 + }, + { + "start": 4280.26, + "end": 4281.42, + "probability": 0.5746 + }, + { + "start": 4281.5, + "end": 4283.38, + "probability": 0.9443 + }, + { + "start": 4284.1, + "end": 4287.84, + "probability": 0.8969 + }, + { + "start": 4288.58, + "end": 4290.54, + "probability": 0.7945 + }, + { + "start": 4290.54, + "end": 4295.6, + "probability": 0.6162 + }, + { + "start": 4296.4, + "end": 4297.1, + "probability": 0.7396 + }, + { + "start": 4297.68, + "end": 4299.66, + "probability": 0.9466 + }, + { + "start": 4299.92, + "end": 4305.9, + "probability": 0.7459 + }, + { + "start": 4305.9, + "end": 4310.14, + "probability": 0.8318 + }, + { + "start": 4311.8, + "end": 4314.36, + "probability": 0.794 + }, + { + "start": 4314.36, + "end": 4316.98, + "probability": 0.9378 + }, + { + "start": 4317.04, + "end": 4320.48, + "probability": 0.9587 + }, + { + "start": 4321.0, + "end": 4324.14, + "probability": 0.8855 + }, + { + "start": 4324.14, + "end": 4328.53, + "probability": 0.9206 + }, + { + "start": 4328.8, + "end": 4330.12, + "probability": 0.6628 + }, + { + "start": 4330.16, + "end": 4334.58, + "probability": 0.3224 + }, + { + "start": 4334.58, + "end": 4334.7, + "probability": 0.1592 + }, + { + "start": 4334.88, + "end": 4337.46, + "probability": 0.8559 + }, + { + "start": 4337.94, + "end": 4340.98, + "probability": 0.5571 + }, + { + "start": 4342.6, + "end": 4343.26, + "probability": 0.7094 + }, + { + "start": 4343.48, + "end": 4343.8, + "probability": 0.2849 + }, + { + "start": 4343.94, + "end": 4347.42, + "probability": 0.7972 + }, + { + "start": 4347.42, + "end": 4351.06, + "probability": 0.9351 + }, + { + "start": 4351.34, + "end": 4356.16, + "probability": 0.7665 + }, + { + "start": 4356.92, + "end": 4361.84, + "probability": 0.9261 + }, + { + "start": 4362.56, + "end": 4366.82, + "probability": 0.9068 + }, + { + "start": 4367.06, + "end": 4370.64, + "probability": 0.9106 + }, + { + "start": 4371.12, + "end": 4372.18, + "probability": 0.6557 + }, + { + "start": 4372.58, + "end": 4373.93, + "probability": 0.9224 + }, + { + "start": 4374.02, + "end": 4374.64, + "probability": 0.3768 + }, + { + "start": 4374.64, + "end": 4375.34, + "probability": 0.7498 + }, + { + "start": 4375.56, + "end": 4376.88, + "probability": 0.5077 + }, + { + "start": 4377.66, + "end": 4378.82, + "probability": 0.8876 + }, + { + "start": 4380.24, + "end": 4380.56, + "probability": 0.3775 + }, + { + "start": 4380.6, + "end": 4382.16, + "probability": 0.6436 + }, + { + "start": 4382.38, + "end": 4385.44, + "probability": 0.9728 + }, + { + "start": 4385.72, + "end": 4388.73, + "probability": 0.9377 + }, + { + "start": 4390.8, + "end": 4394.28, + "probability": 0.6898 + }, + { + "start": 4395.02, + "end": 4399.8, + "probability": 0.731 + }, + { + "start": 4401.14, + "end": 4405.16, + "probability": 0.963 + }, + { + "start": 4406.08, + "end": 4409.82, + "probability": 0.7891 + }, + { + "start": 4410.02, + "end": 4411.8, + "probability": 0.5979 + }, + { + "start": 4412.96, + "end": 4413.58, + "probability": 0.4886 + }, + { + "start": 4416.2, + "end": 4418.86, + "probability": 0.9018 + }, + { + "start": 4419.38, + "end": 4419.92, + "probability": 0.7215 + }, + { + "start": 4420.06, + "end": 4421.62, + "probability": 0.8463 + }, + { + "start": 4421.7, + "end": 4423.02, + "probability": 0.9178 + }, + { + "start": 4423.72, + "end": 4426.3, + "probability": 0.6916 + }, + { + "start": 4426.82, + "end": 4427.56, + "probability": 0.7307 + }, + { + "start": 4428.42, + "end": 4430.78, + "probability": 0.8684 + }, + { + "start": 4430.78, + "end": 4433.46, + "probability": 0.7733 + }, + { + "start": 4434.28, + "end": 4435.94, + "probability": 0.6828 + }, + { + "start": 4436.06, + "end": 4438.62, + "probability": 0.939 + }, + { + "start": 4439.08, + "end": 4440.04, + "probability": 0.5156 + }, + { + "start": 4440.1, + "end": 4440.82, + "probability": 0.7506 + }, + { + "start": 4440.92, + "end": 4441.6, + "probability": 0.8084 + }, + { + "start": 4442.1, + "end": 4443.08, + "probability": 0.5732 + }, + { + "start": 4444.29, + "end": 4447.86, + "probability": 0.8023 + }, + { + "start": 4447.86, + "end": 4451.72, + "probability": 0.4779 + }, + { + "start": 4451.9, + "end": 4453.06, + "probability": 0.7971 + }, + { + "start": 4454.5, + "end": 4456.86, + "probability": 0.7749 + }, + { + "start": 4457.72, + "end": 4457.94, + "probability": 0.1677 + }, + { + "start": 4458.02, + "end": 4461.02, + "probability": 0.7882 + }, + { + "start": 4461.76, + "end": 4463.76, + "probability": 0.7998 + }, + { + "start": 4466.68, + "end": 4470.02, + "probability": 0.9872 + }, + { + "start": 4470.1, + "end": 4472.6, + "probability": 0.7122 + }, + { + "start": 4473.86, + "end": 4474.88, + "probability": 0.5482 + }, + { + "start": 4476.12, + "end": 4479.7, + "probability": 0.8462 + }, + { + "start": 4480.48, + "end": 4482.98, + "probability": 0.8664 + }, + { + "start": 4484.34, + "end": 4487.74, + "probability": 0.922 + }, + { + "start": 4487.74, + "end": 4491.54, + "probability": 0.9974 + }, + { + "start": 4492.48, + "end": 4495.5, + "probability": 0.6737 + }, + { + "start": 4496.28, + "end": 4496.86, + "probability": 0.6759 + }, + { + "start": 4497.22, + "end": 4499.52, + "probability": 0.9615 + }, + { + "start": 4500.6, + "end": 4503.24, + "probability": 0.8851 + }, + { + "start": 4504.02, + "end": 4504.32, + "probability": 0.2007 + }, + { + "start": 4504.8, + "end": 4507.9, + "probability": 0.7496 + }, + { + "start": 4509.3, + "end": 4510.08, + "probability": 0.8616 + }, + { + "start": 4510.18, + "end": 4512.08, + "probability": 0.8685 + }, + { + "start": 4513.86, + "end": 4514.16, + "probability": 0.4837 + }, + { + "start": 4514.3, + "end": 4516.92, + "probability": 0.9839 + }, + { + "start": 4516.92, + "end": 4520.14, + "probability": 0.8506 + }, + { + "start": 4520.7, + "end": 4523.08, + "probability": 0.6507 + }, + { + "start": 4524.16, + "end": 4526.26, + "probability": 0.9841 + }, + { + "start": 4527.4, + "end": 4527.86, + "probability": 0.68 + }, + { + "start": 4529.3, + "end": 4530.08, + "probability": 0.8451 + }, + { + "start": 4530.8, + "end": 4534.28, + "probability": 0.9563 + }, + { + "start": 4535.76, + "end": 4537.7, + "probability": 0.8203 + }, + { + "start": 4538.6, + "end": 4539.6, + "probability": 0.5398 + }, + { + "start": 4539.92, + "end": 4542.86, + "probability": 0.8865 + }, + { + "start": 4543.34, + "end": 4548.38, + "probability": 0.825 + }, + { + "start": 4548.98, + "end": 4549.48, + "probability": 0.7209 + }, + { + "start": 4549.56, + "end": 4550.4, + "probability": 0.7737 + }, + { + "start": 4550.52, + "end": 4552.62, + "probability": 0.9473 + }, + { + "start": 4553.28, + "end": 4553.48, + "probability": 0.7257 + }, + { + "start": 4566.22, + "end": 4567.54, + "probability": 0.9277 + }, + { + "start": 4567.84, + "end": 4568.38, + "probability": 0.3421 + }, + { + "start": 4568.6, + "end": 4574.41, + "probability": 0.9546 + }, + { + "start": 4574.76, + "end": 4580.04, + "probability": 0.9544 + }, + { + "start": 4580.38, + "end": 4585.12, + "probability": 0.9873 + }, + { + "start": 4585.6, + "end": 4589.04, + "probability": 0.9908 + }, + { + "start": 4589.04, + "end": 4592.9, + "probability": 0.8734 + }, + { + "start": 4593.42, + "end": 4596.16, + "probability": 0.6225 + }, + { + "start": 4596.68, + "end": 4599.56, + "probability": 0.7996 + }, + { + "start": 4600.52, + "end": 4603.58, + "probability": 0.9937 + }, + { + "start": 4604.54, + "end": 4609.42, + "probability": 0.9912 + }, + { + "start": 4609.94, + "end": 4611.54, + "probability": 0.7979 + }, + { + "start": 4612.76, + "end": 4613.1, + "probability": 0.6285 + }, + { + "start": 4613.22, + "end": 4613.92, + "probability": 0.9295 + }, + { + "start": 4614.04, + "end": 4615.06, + "probability": 0.9656 + }, + { + "start": 4615.22, + "end": 4617.9, + "probability": 0.9852 + }, + { + "start": 4617.9, + "end": 4621.9, + "probability": 0.7925 + }, + { + "start": 4622.48, + "end": 4624.44, + "probability": 0.564 + }, + { + "start": 4624.66, + "end": 4627.16, + "probability": 0.9819 + }, + { + "start": 4627.3, + "end": 4628.6, + "probability": 0.8552 + }, + { + "start": 4629.04, + "end": 4632.38, + "probability": 0.9613 + }, + { + "start": 4633.43, + "end": 4636.4, + "probability": 0.9989 + }, + { + "start": 4636.84, + "end": 4642.64, + "probability": 0.9122 + }, + { + "start": 4642.8, + "end": 4647.52, + "probability": 0.778 + }, + { + "start": 4647.66, + "end": 4648.72, + "probability": 0.768 + }, + { + "start": 4649.12, + "end": 4650.82, + "probability": 0.9983 + }, + { + "start": 4651.34, + "end": 4654.32, + "probability": 0.8349 + }, + { + "start": 4654.32, + "end": 4659.3, + "probability": 0.9896 + }, + { + "start": 4660.08, + "end": 4663.96, + "probability": 0.93 + }, + { + "start": 4664.2, + "end": 4665.92, + "probability": 0.8062 + }, + { + "start": 4666.4, + "end": 4669.28, + "probability": 0.9429 + }, + { + "start": 4670.26, + "end": 4672.16, + "probability": 0.8404 + }, + { + "start": 4673.44, + "end": 4674.28, + "probability": 0.7737 + }, + { + "start": 4674.32, + "end": 4680.32, + "probability": 0.9928 + }, + { + "start": 4680.96, + "end": 4682.02, + "probability": 0.7408 + }, + { + "start": 4682.2, + "end": 4684.88, + "probability": 0.9976 + }, + { + "start": 4685.7, + "end": 4690.48, + "probability": 0.9808 + }, + { + "start": 4690.92, + "end": 4692.08, + "probability": 0.8962 + }, + { + "start": 4692.26, + "end": 4693.46, + "probability": 0.8529 + }, + { + "start": 4693.84, + "end": 4695.66, + "probability": 0.9891 + }, + { + "start": 4696.18, + "end": 4699.96, + "probability": 0.9959 + }, + { + "start": 4699.96, + "end": 4703.88, + "probability": 0.993 + }, + { + "start": 4707.14, + "end": 4709.34, + "probability": 0.8022 + }, + { + "start": 4709.98, + "end": 4713.44, + "probability": 0.9937 + }, + { + "start": 4714.08, + "end": 4716.98, + "probability": 0.9976 + }, + { + "start": 4717.56, + "end": 4719.0, + "probability": 0.9582 + }, + { + "start": 4719.18, + "end": 4722.48, + "probability": 0.9964 + }, + { + "start": 4723.04, + "end": 4724.64, + "probability": 0.4046 + }, + { + "start": 4725.34, + "end": 4728.7, + "probability": 0.8612 + }, + { + "start": 4729.26, + "end": 4732.72, + "probability": 0.956 + }, + { + "start": 4733.2, + "end": 4736.96, + "probability": 0.9946 + }, + { + "start": 4737.06, + "end": 4738.4, + "probability": 0.8586 + }, + { + "start": 4738.82, + "end": 4740.6, + "probability": 0.8917 + }, + { + "start": 4741.4, + "end": 4745.33, + "probability": 0.9865 + }, + { + "start": 4745.96, + "end": 4752.28, + "probability": 0.9656 + }, + { + "start": 4752.4, + "end": 4754.56, + "probability": 0.8268 + }, + { + "start": 4755.24, + "end": 4756.2, + "probability": 0.5223 + }, + { + "start": 4756.32, + "end": 4759.2, + "probability": 0.6658 + }, + { + "start": 4759.82, + "end": 4761.68, + "probability": 0.9852 + }, + { + "start": 4761.86, + "end": 4763.92, + "probability": 0.7666 + }, + { + "start": 4764.42, + "end": 4769.94, + "probability": 0.985 + }, + { + "start": 4770.06, + "end": 4771.44, + "probability": 0.7614 + }, + { + "start": 4772.3, + "end": 4773.26, + "probability": 0.8799 + }, + { + "start": 4773.4, + "end": 4775.02, + "probability": 0.9578 + }, + { + "start": 4775.58, + "end": 4777.94, + "probability": 0.8505 + }, + { + "start": 4778.86, + "end": 4783.24, + "probability": 0.881 + }, + { + "start": 4783.7, + "end": 4785.72, + "probability": 0.9866 + }, + { + "start": 4786.38, + "end": 4787.22, + "probability": 0.4993 + }, + { + "start": 4787.5, + "end": 4789.44, + "probability": 0.9278 + }, + { + "start": 4789.94, + "end": 4792.32, + "probability": 0.9114 + }, + { + "start": 4792.72, + "end": 4793.48, + "probability": 0.6972 + }, + { + "start": 4793.54, + "end": 4797.68, + "probability": 0.9327 + }, + { + "start": 4797.7, + "end": 4799.7, + "probability": 0.6807 + }, + { + "start": 4799.82, + "end": 4800.22, + "probability": 0.4683 + }, + { + "start": 4800.28, + "end": 4803.16, + "probability": 0.9259 + }, + { + "start": 4803.28, + "end": 4805.5, + "probability": 0.8923 + }, + { + "start": 4805.6, + "end": 4809.34, + "probability": 0.9958 + }, + { + "start": 4809.34, + "end": 4816.04, + "probability": 0.9692 + }, + { + "start": 4816.48, + "end": 4819.88, + "probability": 0.9108 + }, + { + "start": 4820.0, + "end": 4821.7, + "probability": 0.9966 + }, + { + "start": 4821.82, + "end": 4824.28, + "probability": 0.6018 + }, + { + "start": 4824.92, + "end": 4824.92, + "probability": 0.3107 + }, + { + "start": 4825.16, + "end": 4828.2, + "probability": 0.9361 + }, + { + "start": 4829.1, + "end": 4829.88, + "probability": 0.938 + }, + { + "start": 4829.96, + "end": 4831.94, + "probability": 0.9755 + }, + { + "start": 4832.06, + "end": 4833.0, + "probability": 0.8849 + }, + { + "start": 4833.08, + "end": 4836.86, + "probability": 0.8338 + }, + { + "start": 4837.44, + "end": 4839.62, + "probability": 0.9917 + }, + { + "start": 4840.18, + "end": 4841.2, + "probability": 0.3038 + }, + { + "start": 4841.2, + "end": 4841.82, + "probability": 0.6646 + }, + { + "start": 4841.88, + "end": 4843.22, + "probability": 0.6304 + }, + { + "start": 4843.3, + "end": 4845.78, + "probability": 0.7465 + }, + { + "start": 4845.96, + "end": 4850.3, + "probability": 0.9912 + }, + { + "start": 4850.8, + "end": 4863.88, + "probability": 0.9844 + }, + { + "start": 4864.0, + "end": 4864.7, + "probability": 0.7407 + }, + { + "start": 4864.7, + "end": 4867.94, + "probability": 0.923 + }, + { + "start": 4868.0, + "end": 4868.76, + "probability": 0.7598 + }, + { + "start": 4869.84, + "end": 4871.1, + "probability": 0.4673 + }, + { + "start": 4871.94, + "end": 4872.04, + "probability": 0.0298 + }, + { + "start": 4872.36, + "end": 4873.68, + "probability": 0.6689 + }, + { + "start": 4873.78, + "end": 4876.86, + "probability": 0.5009 + }, + { + "start": 4879.42, + "end": 4880.6, + "probability": 0.0421 + }, + { + "start": 4880.6, + "end": 4880.7, + "probability": 0.1304 + }, + { + "start": 4880.7, + "end": 4885.1, + "probability": 0.6832 + }, + { + "start": 4885.94, + "end": 4890.8, + "probability": 0.7215 + }, + { + "start": 4891.82, + "end": 4894.02, + "probability": 0.7198 + }, + { + "start": 4895.96, + "end": 4899.4, + "probability": 0.6602 + }, + { + "start": 4899.7, + "end": 4900.84, + "probability": 0.9043 + }, + { + "start": 4902.56, + "end": 4904.16, + "probability": 0.5011 + }, + { + "start": 4905.18, + "end": 4906.2, + "probability": 0.856 + }, + { + "start": 4907.72, + "end": 4908.94, + "probability": 0.0193 + }, + { + "start": 4910.9, + "end": 4912.26, + "probability": 0.8578 + }, + { + "start": 4912.88, + "end": 4914.44, + "probability": 0.1307 + }, + { + "start": 4914.44, + "end": 4914.79, + "probability": 0.3478 + }, + { + "start": 4916.02, + "end": 4917.76, + "probability": 0.6496 + }, + { + "start": 4917.9, + "end": 4918.62, + "probability": 0.8978 + }, + { + "start": 4923.56, + "end": 4927.24, + "probability": 0.7906 + }, + { + "start": 4928.34, + "end": 4929.64, + "probability": 0.9436 + }, + { + "start": 4929.76, + "end": 4931.28, + "probability": 0.8848 + }, + { + "start": 4931.38, + "end": 4931.76, + "probability": 0.4439 + }, + { + "start": 4933.26, + "end": 4933.54, + "probability": 0.673 + }, + { + "start": 4934.3, + "end": 4934.86, + "probability": 0.9224 + }, + { + "start": 4935.38, + "end": 4936.62, + "probability": 0.567 + }, + { + "start": 4936.72, + "end": 4939.64, + "probability": 0.9388 + }, + { + "start": 4939.64, + "end": 4942.3, + "probability": 0.6509 + }, + { + "start": 4942.4, + "end": 4944.12, + "probability": 0.6652 + }, + { + "start": 4944.96, + "end": 4946.42, + "probability": 0.9126 + }, + { + "start": 4947.12, + "end": 4948.24, + "probability": 0.8274 + }, + { + "start": 4948.3, + "end": 4949.28, + "probability": 0.9827 + }, + { + "start": 4949.84, + "end": 4950.6, + "probability": 0.842 + }, + { + "start": 4952.62, + "end": 4957.0, + "probability": 0.9506 + }, + { + "start": 4958.26, + "end": 4959.5, + "probability": 0.7842 + }, + { + "start": 4960.48, + "end": 4963.41, + "probability": 0.9397 + }, + { + "start": 4963.64, + "end": 4964.52, + "probability": 0.4796 + }, + { + "start": 4965.68, + "end": 4969.52, + "probability": 0.9245 + }, + { + "start": 4971.26, + "end": 4973.92, + "probability": 0.9644 + }, + { + "start": 4974.42, + "end": 4976.82, + "probability": 0.9818 + }, + { + "start": 4977.56, + "end": 4980.58, + "probability": 0.995 + }, + { + "start": 4981.48, + "end": 4982.4, + "probability": 0.9768 + }, + { + "start": 4985.12, + "end": 4988.15, + "probability": 0.957 + }, + { + "start": 4990.36, + "end": 4996.3, + "probability": 0.9728 + }, + { + "start": 4998.3, + "end": 5001.0, + "probability": 0.9899 + }, + { + "start": 5002.0, + "end": 5003.06, + "probability": 0.7129 + }, + { + "start": 5003.58, + "end": 5006.62, + "probability": 0.9899 + }, + { + "start": 5007.16, + "end": 5008.76, + "probability": 0.8309 + }, + { + "start": 5009.18, + "end": 5011.34, + "probability": 0.9149 + }, + { + "start": 5013.16, + "end": 5016.7, + "probability": 0.9961 + }, + { + "start": 5018.24, + "end": 5022.46, + "probability": 0.9927 + }, + { + "start": 5023.58, + "end": 5024.86, + "probability": 0.8788 + }, + { + "start": 5025.44, + "end": 5025.95, + "probability": 0.974 + }, + { + "start": 5027.98, + "end": 5030.46, + "probability": 0.9099 + }, + { + "start": 5030.54, + "end": 5034.06, + "probability": 0.9943 + }, + { + "start": 5036.5, + "end": 5036.77, + "probability": 0.8472 + }, + { + "start": 5037.04, + "end": 5039.84, + "probability": 0.9969 + }, + { + "start": 5039.92, + "end": 5043.62, + "probability": 0.994 + }, + { + "start": 5044.48, + "end": 5046.24, + "probability": 0.8825 + }, + { + "start": 5048.62, + "end": 5051.56, + "probability": 0.939 + }, + { + "start": 5052.88, + "end": 5054.64, + "probability": 0.9248 + }, + { + "start": 5055.5, + "end": 5058.46, + "probability": 0.9531 + }, + { + "start": 5059.36, + "end": 5061.38, + "probability": 0.9949 + }, + { + "start": 5063.74, + "end": 5064.5, + "probability": 0.7697 + }, + { + "start": 5064.58, + "end": 5066.36, + "probability": 0.995 + }, + { + "start": 5067.42, + "end": 5070.7, + "probability": 0.9898 + }, + { + "start": 5070.7, + "end": 5075.14, + "probability": 0.9987 + }, + { + "start": 5077.16, + "end": 5079.58, + "probability": 0.8804 + }, + { + "start": 5082.96, + "end": 5084.32, + "probability": 0.6122 + }, + { + "start": 5086.58, + "end": 5090.23, + "probability": 0.991 + }, + { + "start": 5091.14, + "end": 5094.24, + "probability": 0.9351 + }, + { + "start": 5094.86, + "end": 5096.8, + "probability": 0.025 + }, + { + "start": 5097.64, + "end": 5099.02, + "probability": 0.8345 + }, + { + "start": 5100.88, + "end": 5104.88, + "probability": 0.5496 + }, + { + "start": 5107.84, + "end": 5111.83, + "probability": 0.8369 + }, + { + "start": 5114.02, + "end": 5114.72, + "probability": 0.998 + }, + { + "start": 5116.48, + "end": 5118.7, + "probability": 0.939 + }, + { + "start": 5118.88, + "end": 5119.82, + "probability": 0.8111 + }, + { + "start": 5120.54, + "end": 5121.86, + "probability": 0.9907 + }, + { + "start": 5122.82, + "end": 5126.48, + "probability": 0.9736 + }, + { + "start": 5127.28, + "end": 5129.6, + "probability": 0.7844 + }, + { + "start": 5130.76, + "end": 5133.42, + "probability": 0.6579 + }, + { + "start": 5134.22, + "end": 5136.28, + "probability": 0.9735 + }, + { + "start": 5138.78, + "end": 5142.32, + "probability": 0.9907 + }, + { + "start": 5142.32, + "end": 5144.14, + "probability": 0.984 + }, + { + "start": 5148.26, + "end": 5151.32, + "probability": 0.9956 + }, + { + "start": 5151.34, + "end": 5153.9, + "probability": 0.9896 + }, + { + "start": 5155.46, + "end": 5156.48, + "probability": 0.9796 + }, + { + "start": 5157.08, + "end": 5158.62, + "probability": 0.9941 + }, + { + "start": 5159.44, + "end": 5161.34, + "probability": 0.981 + }, + { + "start": 5163.86, + "end": 5164.86, + "probability": 0.8959 + }, + { + "start": 5166.28, + "end": 5169.58, + "probability": 0.7775 + }, + { + "start": 5170.3, + "end": 5171.94, + "probability": 0.25 + }, + { + "start": 5173.08, + "end": 5173.9, + "probability": 0.8354 + }, + { + "start": 5174.04, + "end": 5175.36, + "probability": 0.9178 + }, + { + "start": 5175.71, + "end": 5177.5, + "probability": 0.7516 + }, + { + "start": 5179.54, + "end": 5182.9, + "probability": 0.9885 + }, + { + "start": 5184.76, + "end": 5186.48, + "probability": 0.685 + }, + { + "start": 5188.04, + "end": 5189.56, + "probability": 0.9971 + }, + { + "start": 5189.7, + "end": 5191.06, + "probability": 0.9878 + }, + { + "start": 5191.12, + "end": 5192.68, + "probability": 0.9699 + }, + { + "start": 5194.74, + "end": 5196.6, + "probability": 0.7832 + }, + { + "start": 5197.2, + "end": 5197.93, + "probability": 0.9932 + }, + { + "start": 5199.08, + "end": 5202.3, + "probability": 0.9798 + }, + { + "start": 5203.78, + "end": 5205.08, + "probability": 0.8301 + }, + { + "start": 5206.64, + "end": 5210.6, + "probability": 0.9954 + }, + { + "start": 5210.7, + "end": 5213.68, + "probability": 0.9903 + }, + { + "start": 5215.44, + "end": 5215.9, + "probability": 0.7412 + }, + { + "start": 5217.5, + "end": 5219.16, + "probability": 0.9468 + }, + { + "start": 5220.0, + "end": 5221.5, + "probability": 0.9337 + }, + { + "start": 5222.46, + "end": 5223.86, + "probability": 0.9627 + }, + { + "start": 5224.52, + "end": 5225.98, + "probability": 0.9881 + }, + { + "start": 5227.44, + "end": 5230.7, + "probability": 0.9985 + }, + { + "start": 5231.82, + "end": 5234.0, + "probability": 0.692 + }, + { + "start": 5234.64, + "end": 5237.28, + "probability": 0.9684 + }, + { + "start": 5239.16, + "end": 5241.76, + "probability": 0.999 + }, + { + "start": 5244.46, + "end": 5248.26, + "probability": 0.9531 + }, + { + "start": 5248.84, + "end": 5249.58, + "probability": 0.9906 + }, + { + "start": 5250.4, + "end": 5251.98, + "probability": 0.9641 + }, + { + "start": 5252.04, + "end": 5253.48, + "probability": 0.9971 + }, + { + "start": 5254.82, + "end": 5257.84, + "probability": 0.981 + }, + { + "start": 5259.3, + "end": 5261.7, + "probability": 0.9242 + }, + { + "start": 5262.7, + "end": 5267.18, + "probability": 0.9836 + }, + { + "start": 5268.12, + "end": 5271.86, + "probability": 0.7862 + }, + { + "start": 5271.92, + "end": 5273.12, + "probability": 0.8865 + }, + { + "start": 5273.68, + "end": 5275.34, + "probability": 0.9947 + }, + { + "start": 5276.74, + "end": 5278.34, + "probability": 0.9838 + }, + { + "start": 5279.46, + "end": 5281.32, + "probability": 0.9819 + }, + { + "start": 5282.52, + "end": 5287.2, + "probability": 0.964 + }, + { + "start": 5287.88, + "end": 5289.92, + "probability": 0.8271 + }, + { + "start": 5290.98, + "end": 5294.5, + "probability": 0.6619 + }, + { + "start": 5295.84, + "end": 5297.82, + "probability": 0.8796 + }, + { + "start": 5299.94, + "end": 5301.12, + "probability": 0.0199 + }, + { + "start": 5315.72, + "end": 5319.14, + "probability": 0.7945 + }, + { + "start": 5320.08, + "end": 5322.2, + "probability": 0.624 + }, + { + "start": 5322.74, + "end": 5324.62, + "probability": 0.793 + }, + { + "start": 5325.32, + "end": 5325.7, + "probability": 0.6891 + }, + { + "start": 5325.7, + "end": 5329.46, + "probability": 0.8944 + }, + { + "start": 5330.46, + "end": 5334.64, + "probability": 0.8426 + }, + { + "start": 5335.58, + "end": 5336.02, + "probability": 0.0458 + }, + { + "start": 5336.42, + "end": 5338.18, + "probability": 0.7418 + }, + { + "start": 5339.16, + "end": 5341.14, + "probability": 0.9276 + }, + { + "start": 5341.88, + "end": 5342.99, + "probability": 0.8667 + }, + { + "start": 5344.24, + "end": 5346.52, + "probability": 0.704 + }, + { + "start": 5347.48, + "end": 5348.3, + "probability": 0.8961 + }, + { + "start": 5348.4, + "end": 5349.18, + "probability": 0.9156 + }, + { + "start": 5349.36, + "end": 5353.96, + "probability": 0.9805 + }, + { + "start": 5354.5, + "end": 5357.36, + "probability": 0.5477 + }, + { + "start": 5358.04, + "end": 5360.72, + "probability": 0.8435 + }, + { + "start": 5361.4, + "end": 5363.62, + "probability": 0.9514 + }, + { + "start": 5364.64, + "end": 5366.98, + "probability": 0.9688 + }, + { + "start": 5368.3, + "end": 5374.58, + "probability": 0.9157 + }, + { + "start": 5374.8, + "end": 5383.38, + "probability": 0.9832 + }, + { + "start": 5383.5, + "end": 5384.22, + "probability": 0.559 + }, + { + "start": 5384.7, + "end": 5387.94, + "probability": 0.5391 + }, + { + "start": 5388.82, + "end": 5390.32, + "probability": 0.7753 + }, + { + "start": 5390.8, + "end": 5391.58, + "probability": 0.7704 + }, + { + "start": 5391.84, + "end": 5393.82, + "probability": 0.8489 + }, + { + "start": 5393.98, + "end": 5395.2, + "probability": 0.9559 + }, + { + "start": 5395.56, + "end": 5396.9, + "probability": 0.4578 + }, + { + "start": 5397.28, + "end": 5398.04, + "probability": 0.7039 + }, + { + "start": 5398.14, + "end": 5399.04, + "probability": 0.7459 + }, + { + "start": 5399.4, + "end": 5401.2, + "probability": 0.994 + }, + { + "start": 5401.28, + "end": 5404.5, + "probability": 0.7343 + }, + { + "start": 5404.54, + "end": 5405.76, + "probability": 0.4501 + }, + { + "start": 5405.78, + "end": 5408.08, + "probability": 0.662 + }, + { + "start": 5408.78, + "end": 5412.94, + "probability": 0.6757 + }, + { + "start": 5413.36, + "end": 5414.0, + "probability": 0.8966 + }, + { + "start": 5414.12, + "end": 5414.68, + "probability": 0.7323 + }, + { + "start": 5415.38, + "end": 5417.56, + "probability": 0.7952 + }, + { + "start": 5418.2, + "end": 5421.9, + "probability": 0.7441 + }, + { + "start": 5421.9, + "end": 5426.39, + "probability": 0.648 + }, + { + "start": 5427.06, + "end": 5427.1, + "probability": 0.0327 + }, + { + "start": 5427.12, + "end": 5430.0, + "probability": 0.9517 + }, + { + "start": 5430.0, + "end": 5433.8, + "probability": 0.7644 + }, + { + "start": 5434.3, + "end": 5435.42, + "probability": 0.8473 + }, + { + "start": 5435.5, + "end": 5442.36, + "probability": 0.6631 + }, + { + "start": 5442.38, + "end": 5443.14, + "probability": 0.7788 + }, + { + "start": 5443.72, + "end": 5446.64, + "probability": 0.9821 + }, + { + "start": 5446.64, + "end": 5450.66, + "probability": 0.9954 + }, + { + "start": 5451.28, + "end": 5453.54, + "probability": 0.8226 + }, + { + "start": 5454.06, + "end": 5457.04, + "probability": 0.9428 + }, + { + "start": 5457.72, + "end": 5462.3, + "probability": 0.7981 + }, + { + "start": 5463.06, + "end": 5464.56, + "probability": 0.9863 + }, + { + "start": 5465.62, + "end": 5467.48, + "probability": 0.6739 + }, + { + "start": 5469.4, + "end": 5473.1, + "probability": 0.8513 + }, + { + "start": 5473.1, + "end": 5477.78, + "probability": 0.9659 + }, + { + "start": 5477.98, + "end": 5481.0, + "probability": 0.9382 + }, + { + "start": 5482.22, + "end": 5483.82, + "probability": 0.866 + }, + { + "start": 5484.42, + "end": 5489.32, + "probability": 0.9476 + }, + { + "start": 5489.84, + "end": 5490.35, + "probability": 0.9731 + }, + { + "start": 5490.42, + "end": 5491.64, + "probability": 0.9948 + }, + { + "start": 5491.72, + "end": 5496.72, + "probability": 0.9487 + }, + { + "start": 5497.08, + "end": 5500.64, + "probability": 0.9025 + }, + { + "start": 5501.64, + "end": 5503.86, + "probability": 0.5542 + }, + { + "start": 5505.36, + "end": 5506.03, + "probability": 0.6543 + }, + { + "start": 5507.0, + "end": 5508.48, + "probability": 0.7564 + }, + { + "start": 5508.62, + "end": 5514.56, + "probability": 0.8235 + }, + { + "start": 5514.88, + "end": 5517.06, + "probability": 0.4381 + }, + { + "start": 5517.74, + "end": 5518.96, + "probability": 0.3902 + }, + { + "start": 5519.3, + "end": 5522.58, + "probability": 0.9844 + }, + { + "start": 5522.66, + "end": 5525.08, + "probability": 0.9272 + }, + { + "start": 5525.52, + "end": 5526.78, + "probability": 0.7956 + }, + { + "start": 5527.0, + "end": 5529.1, + "probability": 0.7693 + }, + { + "start": 5529.86, + "end": 5534.92, + "probability": 0.9935 + }, + { + "start": 5534.92, + "end": 5539.6, + "probability": 0.7391 + }, + { + "start": 5539.6, + "end": 5540.14, + "probability": 0.5049 + }, + { + "start": 5540.14, + "end": 5542.74, + "probability": 0.8525 + }, + { + "start": 5543.64, + "end": 5546.8, + "probability": 0.9246 + }, + { + "start": 5547.2, + "end": 5549.08, + "probability": 0.6071 + }, + { + "start": 5550.14, + "end": 5557.96, + "probability": 0.992 + }, + { + "start": 5559.16, + "end": 5563.48, + "probability": 0.9978 + }, + { + "start": 5563.48, + "end": 5569.7, + "probability": 0.967 + }, + { + "start": 5569.9, + "end": 5572.02, + "probability": 0.6099 + }, + { + "start": 5572.4, + "end": 5573.88, + "probability": 0.8671 + }, + { + "start": 5573.94, + "end": 5575.57, + "probability": 0.9164 + }, + { + "start": 5576.4, + "end": 5577.72, + "probability": 0.7834 + }, + { + "start": 5587.12, + "end": 5589.22, + "probability": 0.5728 + }, + { + "start": 5589.22, + "end": 5590.94, + "probability": 0.5221 + }, + { + "start": 5591.76, + "end": 5594.34, + "probability": 0.8308 + }, + { + "start": 5595.46, + "end": 5600.62, + "probability": 0.8687 + }, + { + "start": 5600.62, + "end": 5606.74, + "probability": 0.9977 + }, + { + "start": 5607.52, + "end": 5611.08, + "probability": 0.8731 + }, + { + "start": 5612.7, + "end": 5615.62, + "probability": 0.8043 + }, + { + "start": 5616.28, + "end": 5624.84, + "probability": 0.974 + }, + { + "start": 5625.12, + "end": 5628.32, + "probability": 0.9861 + }, + { + "start": 5629.88, + "end": 5634.88, + "probability": 0.9852 + }, + { + "start": 5635.6, + "end": 5640.3, + "probability": 0.9124 + }, + { + "start": 5641.04, + "end": 5643.84, + "probability": 0.853 + }, + { + "start": 5645.22, + "end": 5645.6, + "probability": 0.7259 + }, + { + "start": 5645.82, + "end": 5646.14, + "probability": 0.3897 + }, + { + "start": 5646.18, + "end": 5646.74, + "probability": 0.8137 + }, + { + "start": 5646.82, + "end": 5648.44, + "probability": 0.6573 + }, + { + "start": 5651.42, + "end": 5654.9, + "probability": 0.677 + }, + { + "start": 5656.18, + "end": 5660.84, + "probability": 0.9393 + }, + { + "start": 5662.02, + "end": 5664.86, + "probability": 0.9267 + }, + { + "start": 5665.82, + "end": 5669.02, + "probability": 0.952 + }, + { + "start": 5669.8, + "end": 5671.32, + "probability": 0.7998 + }, + { + "start": 5671.48, + "end": 5672.5, + "probability": 0.6675 + }, + { + "start": 5673.0, + "end": 5676.08, + "probability": 0.6416 + }, + { + "start": 5677.0, + "end": 5682.52, + "probability": 0.9413 + }, + { + "start": 5682.76, + "end": 5688.7, + "probability": 0.9869 + }, + { + "start": 5689.3, + "end": 5691.26, + "probability": 0.9963 + }, + { + "start": 5691.76, + "end": 5693.88, + "probability": 0.978 + }, + { + "start": 5694.6, + "end": 5696.54, + "probability": 0.9769 + }, + { + "start": 5696.82, + "end": 5699.22, + "probability": 0.995 + }, + { + "start": 5699.78, + "end": 5700.58, + "probability": 0.5852 + }, + { + "start": 5701.1, + "end": 5704.02, + "probability": 0.9624 + }, + { + "start": 5705.2, + "end": 5707.9, + "probability": 0.9325 + }, + { + "start": 5708.94, + "end": 5709.7, + "probability": 0.5573 + }, + { + "start": 5710.92, + "end": 5712.98, + "probability": 0.9938 + }, + { + "start": 5713.88, + "end": 5716.32, + "probability": 0.7448 + }, + { + "start": 5717.16, + "end": 5719.78, + "probability": 0.6955 + }, + { + "start": 5720.46, + "end": 5721.8, + "probability": 0.8982 + }, + { + "start": 5722.2, + "end": 5722.86, + "probability": 0.562 + }, + { + "start": 5723.04, + "end": 5726.1, + "probability": 0.7658 + }, + { + "start": 5726.12, + "end": 5726.94, + "probability": 0.7531 + }, + { + "start": 5727.0, + "end": 5729.84, + "probability": 0.8052 + }, + { + "start": 5730.02, + "end": 5731.82, + "probability": 0.8362 + }, + { + "start": 5732.04, + "end": 5732.56, + "probability": 0.3328 + }, + { + "start": 5732.84, + "end": 5737.58, + "probability": 0.8619 + }, + { + "start": 5738.12, + "end": 5738.74, + "probability": 0.7069 + }, + { + "start": 5739.1, + "end": 5740.12, + "probability": 0.8765 + }, + { + "start": 5741.22, + "end": 5741.88, + "probability": 0.3092 + }, + { + "start": 5741.98, + "end": 5742.62, + "probability": 0.9193 + }, + { + "start": 5742.9, + "end": 5745.6, + "probability": 0.9077 + }, + { + "start": 5746.3, + "end": 5747.34, + "probability": 0.4996 + }, + { + "start": 5747.6, + "end": 5747.66, + "probability": 0.79 + }, + { + "start": 5747.74, + "end": 5749.56, + "probability": 0.9829 + }, + { + "start": 5749.62, + "end": 5752.62, + "probability": 0.8664 + }, + { + "start": 5752.9, + "end": 5753.9, + "probability": 0.7625 + }, + { + "start": 5754.46, + "end": 5755.98, + "probability": 0.9543 + }, + { + "start": 5756.88, + "end": 5762.1, + "probability": 0.9722 + }, + { + "start": 5762.78, + "end": 5766.7, + "probability": 0.9749 + }, + { + "start": 5766.86, + "end": 5767.52, + "probability": 0.7733 + }, + { + "start": 5767.58, + "end": 5768.28, + "probability": 0.7647 + }, + { + "start": 5768.84, + "end": 5771.74, + "probability": 0.9009 + }, + { + "start": 5772.18, + "end": 5774.18, + "probability": 0.9414 + }, + { + "start": 5774.88, + "end": 5775.08, + "probability": 0.6501 + }, + { + "start": 5775.16, + "end": 5776.4, + "probability": 0.9915 + }, + { + "start": 5776.72, + "end": 5778.26, + "probability": 0.9472 + }, + { + "start": 5778.72, + "end": 5779.52, + "probability": 0.8202 + }, + { + "start": 5779.7, + "end": 5782.8, + "probability": 0.9885 + }, + { + "start": 5783.66, + "end": 5787.24, + "probability": 0.7749 + }, + { + "start": 5788.06, + "end": 5789.82, + "probability": 0.6229 + }, + { + "start": 5790.02, + "end": 5791.08, + "probability": 0.9837 + }, + { + "start": 5791.34, + "end": 5792.44, + "probability": 0.789 + }, + { + "start": 5793.04, + "end": 5796.3, + "probability": 0.9904 + }, + { + "start": 5796.3, + "end": 5800.48, + "probability": 0.998 + }, + { + "start": 5800.84, + "end": 5802.06, + "probability": 0.7621 + }, + { + "start": 5802.62, + "end": 5803.6, + "probability": 0.8905 + }, + { + "start": 5803.98, + "end": 5806.54, + "probability": 0.9226 + }, + { + "start": 5806.68, + "end": 5809.3, + "probability": 0.8457 + }, + { + "start": 5809.48, + "end": 5809.62, + "probability": 0.8665 + }, + { + "start": 5809.7, + "end": 5810.48, + "probability": 0.7058 + }, + { + "start": 5810.54, + "end": 5811.04, + "probability": 0.4414 + }, + { + "start": 5811.16, + "end": 5812.08, + "probability": 0.5596 + }, + { + "start": 5812.08, + "end": 5813.38, + "probability": 0.5383 + }, + { + "start": 5813.84, + "end": 5814.42, + "probability": 0.6517 + }, + { + "start": 5815.22, + "end": 5818.4, + "probability": 0.9785 + }, + { + "start": 5818.4, + "end": 5820.94, + "probability": 0.979 + }, + { + "start": 5820.98, + "end": 5821.68, + "probability": 0.4213 + }, + { + "start": 5822.04, + "end": 5822.74, + "probability": 0.9473 + }, + { + "start": 5823.52, + "end": 5826.7, + "probability": 0.8783 + }, + { + "start": 5827.2, + "end": 5830.34, + "probability": 0.7032 + }, + { + "start": 5830.34, + "end": 5833.62, + "probability": 0.9757 + }, + { + "start": 5833.8, + "end": 5834.14, + "probability": 0.6891 + }, + { + "start": 5834.2, + "end": 5836.2, + "probability": 0.7108 + }, + { + "start": 5836.52, + "end": 5837.82, + "probability": 0.9273 + }, + { + "start": 5837.9, + "end": 5839.64, + "probability": 0.966 + }, + { + "start": 5840.34, + "end": 5842.18, + "probability": 0.8739 + }, + { + "start": 5849.94, + "end": 5853.08, + "probability": 0.8213 + }, + { + "start": 5864.42, + "end": 5866.68, + "probability": 0.645 + }, + { + "start": 5867.12, + "end": 5867.96, + "probability": 0.8323 + }, + { + "start": 5870.42, + "end": 5871.7, + "probability": 0.1561 + }, + { + "start": 5872.38, + "end": 5873.6, + "probability": 0.8707 + }, + { + "start": 5875.56, + "end": 5879.76, + "probability": 0.819 + }, + { + "start": 5882.78, + "end": 5886.54, + "probability": 0.9439 + }, + { + "start": 5886.72, + "end": 5889.96, + "probability": 0.9834 + }, + { + "start": 5889.96, + "end": 5892.98, + "probability": 0.9535 + }, + { + "start": 5895.7, + "end": 5898.2, + "probability": 0.7529 + }, + { + "start": 5899.32, + "end": 5903.12, + "probability": 0.9596 + }, + { + "start": 5903.34, + "end": 5905.14, + "probability": 0.4601 + }, + { + "start": 5906.08, + "end": 5908.4, + "probability": 0.9599 + }, + { + "start": 5910.36, + "end": 5913.94, + "probability": 0.9977 + }, + { + "start": 5915.2, + "end": 5921.2, + "probability": 0.9271 + }, + { + "start": 5923.26, + "end": 5926.76, + "probability": 0.7621 + }, + { + "start": 5927.96, + "end": 5930.3, + "probability": 0.9882 + }, + { + "start": 5931.32, + "end": 5937.74, + "probability": 0.8346 + }, + { + "start": 5937.84, + "end": 5939.49, + "probability": 0.7493 + }, + { + "start": 5940.44, + "end": 5941.74, + "probability": 0.9474 + }, + { + "start": 5942.74, + "end": 5945.28, + "probability": 0.7683 + }, + { + "start": 5945.94, + "end": 5947.48, + "probability": 0.4602 + }, + { + "start": 5948.46, + "end": 5949.46, + "probability": 0.8865 + }, + { + "start": 5950.52, + "end": 5953.0, + "probability": 0.7357 + }, + { + "start": 5953.98, + "end": 5956.32, + "probability": 0.8689 + }, + { + "start": 5958.46, + "end": 5963.8, + "probability": 0.672 + }, + { + "start": 5964.5, + "end": 5968.62, + "probability": 0.83 + }, + { + "start": 5968.62, + "end": 5972.76, + "probability": 0.6393 + }, + { + "start": 5974.02, + "end": 5977.62, + "probability": 0.9067 + }, + { + "start": 5978.28, + "end": 5983.4, + "probability": 0.9028 + }, + { + "start": 5984.22, + "end": 5990.5, + "probability": 0.9811 + }, + { + "start": 5991.46, + "end": 5996.13, + "probability": 0.9764 + }, + { + "start": 5997.24, + "end": 6001.08, + "probability": 0.9251 + }, + { + "start": 6001.4, + "end": 6006.88, + "probability": 0.952 + }, + { + "start": 6009.26, + "end": 6011.32, + "probability": 0.663 + }, + { + "start": 6012.48, + "end": 6013.84, + "probability": 0.598 + }, + { + "start": 6013.84, + "end": 6014.8, + "probability": 0.9255 + }, + { + "start": 6014.9, + "end": 6016.04, + "probability": 0.8383 + }, + { + "start": 6016.16, + "end": 6018.1, + "probability": 0.9929 + }, + { + "start": 6018.34, + "end": 6020.26, + "probability": 0.8927 + }, + { + "start": 6021.42, + "end": 6023.52, + "probability": 0.8172 + }, + { + "start": 6024.44, + "end": 6028.82, + "probability": 0.9908 + }, + { + "start": 6029.78, + "end": 6034.26, + "probability": 0.992 + }, + { + "start": 6034.46, + "end": 6035.08, + "probability": 0.775 + }, + { + "start": 6036.12, + "end": 6039.14, + "probability": 0.8382 + }, + { + "start": 6039.36, + "end": 6043.28, + "probability": 0.8973 + }, + { + "start": 6051.02, + "end": 6052.36, + "probability": 0.4128 + }, + { + "start": 6053.96, + "end": 6054.2, + "probability": 0.7056 + }, + { + "start": 6062.58, + "end": 6064.54, + "probability": 0.626 + }, + { + "start": 6065.02, + "end": 6066.38, + "probability": 0.7933 + }, + { + "start": 6066.46, + "end": 6068.06, + "probability": 0.6584 + }, + { + "start": 6068.26, + "end": 6068.64, + "probability": 0.7972 + }, + { + "start": 6069.06, + "end": 6070.84, + "probability": 0.1479 + }, + { + "start": 6071.88, + "end": 6072.18, + "probability": 0.4232 + }, + { + "start": 6072.52, + "end": 6075.68, + "probability": 0.9388 + }, + { + "start": 6076.78, + "end": 6079.18, + "probability": 0.3824 + }, + { + "start": 6079.68, + "end": 6081.54, + "probability": 0.7811 + }, + { + "start": 6082.06, + "end": 6082.96, + "probability": 0.6003 + }, + { + "start": 6083.1, + "end": 6083.56, + "probability": 0.4439 + }, + { + "start": 6083.66, + "end": 6085.22, + "probability": 0.7038 + }, + { + "start": 6085.7, + "end": 6086.78, + "probability": 0.7634 + }, + { + "start": 6087.67, + "end": 6089.64, + "probability": 0.7271 + }, + { + "start": 6090.48, + "end": 6091.12, + "probability": 0.624 + }, + { + "start": 6091.32, + "end": 6091.98, + "probability": 0.6712 + }, + { + "start": 6092.04, + "end": 6092.54, + "probability": 0.6562 + }, + { + "start": 6092.56, + "end": 6092.82, + "probability": 0.5912 + }, + { + "start": 6092.88, + "end": 6097.02, + "probability": 0.8354 + }, + { + "start": 6097.78, + "end": 6100.02, + "probability": 0.7991 + }, + { + "start": 6101.74, + "end": 6103.0, + "probability": 0.8586 + }, + { + "start": 6103.4, + "end": 6104.02, + "probability": 0.4654 + }, + { + "start": 6105.22, + "end": 6105.78, + "probability": 0.0025 + }, + { + "start": 6106.02, + "end": 6106.42, + "probability": 0.2641 + }, + { + "start": 6107.72, + "end": 6109.18, + "probability": 0.0888 + }, + { + "start": 6109.3, + "end": 6109.48, + "probability": 0.3455 + }, + { + "start": 6109.54, + "end": 6110.38, + "probability": 0.4139 + }, + { + "start": 6110.42, + "end": 6113.14, + "probability": 0.3804 + }, + { + "start": 6113.14, + "end": 6114.0, + "probability": 0.5154 + }, + { + "start": 6114.16, + "end": 6114.64, + "probability": 0.5101 + }, + { + "start": 6114.98, + "end": 6116.84, + "probability": 0.8878 + }, + { + "start": 6117.2, + "end": 6118.41, + "probability": 0.7606 + }, + { + "start": 6118.74, + "end": 6122.68, + "probability": 0.6723 + }, + { + "start": 6123.3, + "end": 6124.32, + "probability": 0.6489 + }, + { + "start": 6124.92, + "end": 6126.42, + "probability": 0.669 + }, + { + "start": 6127.14, + "end": 6128.26, + "probability": 0.5292 + }, + { + "start": 6129.06, + "end": 6129.82, + "probability": 0.646 + }, + { + "start": 6130.14, + "end": 6131.87, + "probability": 0.583 + }, + { + "start": 6132.62, + "end": 6137.24, + "probability": 0.6124 + }, + { + "start": 6138.22, + "end": 6141.02, + "probability": 0.6431 + }, + { + "start": 6141.74, + "end": 6144.74, + "probability": 0.9907 + }, + { + "start": 6144.82, + "end": 6146.04, + "probability": 0.7392 + }, + { + "start": 6146.54, + "end": 6150.6, + "probability": 0.9009 + }, + { + "start": 6151.74, + "end": 6155.04, + "probability": 0.8736 + }, + { + "start": 6155.6, + "end": 6159.9, + "probability": 0.9648 + }, + { + "start": 6160.58, + "end": 6163.32, + "probability": 0.9982 + }, + { + "start": 6164.52, + "end": 6169.36, + "probability": 0.9354 + }, + { + "start": 6169.36, + "end": 6171.98, + "probability": 0.9986 + }, + { + "start": 6172.24, + "end": 6173.93, + "probability": 0.5116 + }, + { + "start": 6174.46, + "end": 6175.36, + "probability": 0.7839 + }, + { + "start": 6175.48, + "end": 6177.79, + "probability": 0.9102 + }, + { + "start": 6178.42, + "end": 6181.89, + "probability": 0.6489 + }, + { + "start": 6183.34, + "end": 6183.34, + "probability": 0.138 + }, + { + "start": 6183.34, + "end": 6183.42, + "probability": 0.4665 + }, + { + "start": 6183.54, + "end": 6184.6, + "probability": 0.9123 + }, + { + "start": 6184.76, + "end": 6185.3, + "probability": 0.3129 + }, + { + "start": 6186.3, + "end": 6190.08, + "probability": 0.6563 + }, + { + "start": 6190.72, + "end": 6192.26, + "probability": 0.9371 + }, + { + "start": 6192.86, + "end": 6193.61, + "probability": 0.9424 + }, + { + "start": 6194.16, + "end": 6196.02, + "probability": 0.9824 + }, + { + "start": 6196.42, + "end": 6197.24, + "probability": 0.7846 + }, + { + "start": 6197.7, + "end": 6199.72, + "probability": 0.9715 + }, + { + "start": 6200.66, + "end": 6205.0, + "probability": 0.821 + }, + { + "start": 6205.7, + "end": 6209.98, + "probability": 0.9819 + }, + { + "start": 6210.62, + "end": 6215.88, + "probability": 0.8666 + }, + { + "start": 6216.62, + "end": 6218.56, + "probability": 0.9971 + }, + { + "start": 6219.22, + "end": 6220.48, + "probability": 0.5126 + }, + { + "start": 6220.66, + "end": 6223.17, + "probability": 0.7432 + }, + { + "start": 6224.26, + "end": 6227.04, + "probability": 0.918 + }, + { + "start": 6227.6, + "end": 6233.34, + "probability": 0.7102 + }, + { + "start": 6234.1, + "end": 6237.42, + "probability": 0.9912 + }, + { + "start": 6237.84, + "end": 6243.44, + "probability": 0.8361 + }, + { + "start": 6243.46, + "end": 6246.9, + "probability": 0.867 + }, + { + "start": 6247.72, + "end": 6252.2, + "probability": 0.6654 + }, + { + "start": 6252.22, + "end": 6259.92, + "probability": 0.9783 + }, + { + "start": 6260.94, + "end": 6263.06, + "probability": 0.9342 + }, + { + "start": 6263.52, + "end": 6266.35, + "probability": 0.97 + }, + { + "start": 6266.84, + "end": 6268.81, + "probability": 0.9036 + }, + { + "start": 6269.28, + "end": 6270.98, + "probability": 0.8955 + }, + { + "start": 6271.64, + "end": 6274.15, + "probability": 0.9606 + }, + { + "start": 6275.48, + "end": 6279.22, + "probability": 0.7603 + }, + { + "start": 6279.78, + "end": 6280.68, + "probability": 0.8578 + }, + { + "start": 6281.02, + "end": 6283.5, + "probability": 0.9729 + }, + { + "start": 6283.94, + "end": 6285.12, + "probability": 0.9532 + }, + { + "start": 6285.24, + "end": 6286.18, + "probability": 0.9416 + }, + { + "start": 6286.6, + "end": 6289.22, + "probability": 0.9616 + }, + { + "start": 6289.76, + "end": 6290.66, + "probability": 0.5342 + }, + { + "start": 6291.74, + "end": 6293.13, + "probability": 0.9854 + }, + { + "start": 6293.86, + "end": 6296.08, + "probability": 0.942 + }, + { + "start": 6296.78, + "end": 6299.22, + "probability": 0.9926 + }, + { + "start": 6300.1, + "end": 6301.74, + "probability": 0.9899 + }, + { + "start": 6302.48, + "end": 6305.46, + "probability": 0.9129 + }, + { + "start": 6305.76, + "end": 6306.82, + "probability": 0.6557 + }, + { + "start": 6307.2, + "end": 6307.84, + "probability": 0.668 + }, + { + "start": 6308.12, + "end": 6310.34, + "probability": 0.6951 + }, + { + "start": 6310.98, + "end": 6311.66, + "probability": 0.8566 + }, + { + "start": 6312.38, + "end": 6312.42, + "probability": 0.4436 + }, + { + "start": 6312.66, + "end": 6318.84, + "probability": 0.9531 + }, + { + "start": 6318.98, + "end": 6320.44, + "probability": 0.9253 + }, + { + "start": 6320.68, + "end": 6321.78, + "probability": 0.8594 + }, + { + "start": 6322.34, + "end": 6324.6, + "probability": 0.9968 + }, + { + "start": 6328.56, + "end": 6330.78, + "probability": 0.7921 + }, + { + "start": 6331.32, + "end": 6332.54, + "probability": 0.6523 + }, + { + "start": 6333.24, + "end": 6335.34, + "probability": 0.8457 + }, + { + "start": 6335.74, + "end": 6337.8, + "probability": 0.9953 + }, + { + "start": 6338.1, + "end": 6338.98, + "probability": 0.8915 + }, + { + "start": 6339.28, + "end": 6340.46, + "probability": 0.8411 + }, + { + "start": 6341.36, + "end": 6342.74, + "probability": 0.9166 + }, + { + "start": 6342.82, + "end": 6343.9, + "probability": 0.9375 + }, + { + "start": 6344.14, + "end": 6345.98, + "probability": 0.8901 + }, + { + "start": 6346.26, + "end": 6347.74, + "probability": 0.895 + }, + { + "start": 6348.62, + "end": 6351.24, + "probability": 0.7576 + }, + { + "start": 6351.7, + "end": 6352.82, + "probability": 0.8964 + }, + { + "start": 6352.82, + "end": 6353.24, + "probability": 0.4939 + }, + { + "start": 6353.74, + "end": 6358.12, + "probability": 0.91 + }, + { + "start": 6358.54, + "end": 6361.04, + "probability": 0.9434 + }, + { + "start": 6361.24, + "end": 6362.8, + "probability": 0.9905 + }, + { + "start": 6362.9, + "end": 6363.76, + "probability": 0.345 + }, + { + "start": 6363.76, + "end": 6364.8, + "probability": 0.7603 + }, + { + "start": 6364.88, + "end": 6365.1, + "probability": 0.4662 + }, + { + "start": 6365.1, + "end": 6365.6, + "probability": 0.7731 + }, + { + "start": 6365.6, + "end": 6368.84, + "probability": 0.6027 + }, + { + "start": 6369.32, + "end": 6370.62, + "probability": 0.9128 + }, + { + "start": 6370.78, + "end": 6373.18, + "probability": 0.9248 + }, + { + "start": 6373.86, + "end": 6374.46, + "probability": 0.7835 + }, + { + "start": 6374.74, + "end": 6381.1, + "probability": 0.4803 + }, + { + "start": 6382.04, + "end": 6383.8, + "probability": 0.9399 + }, + { + "start": 6384.62, + "end": 6385.72, + "probability": 0.5175 + }, + { + "start": 6385.76, + "end": 6387.64, + "probability": 0.6836 + }, + { + "start": 6387.74, + "end": 6389.34, + "probability": 0.9189 + }, + { + "start": 6389.34, + "end": 6393.54, + "probability": 0.6372 + }, + { + "start": 6393.8, + "end": 6395.8, + "probability": 0.126 + }, + { + "start": 6396.82, + "end": 6400.08, + "probability": 0.3409 + }, + { + "start": 6400.52, + "end": 6401.24, + "probability": 0.1633 + }, + { + "start": 6401.34, + "end": 6404.96, + "probability": 0.6786 + }, + { + "start": 6405.26, + "end": 6407.64, + "probability": 0.0398 + }, + { + "start": 6407.8, + "end": 6408.22, + "probability": 0.1388 + }, + { + "start": 6409.2, + "end": 6412.3, + "probability": 0.781 + }, + { + "start": 6413.04, + "end": 6413.96, + "probability": 0.2277 + }, + { + "start": 6414.24, + "end": 6414.56, + "probability": 0.1406 + }, + { + "start": 6415.62, + "end": 6415.72, + "probability": 0.1128 + }, + { + "start": 6415.72, + "end": 6416.3, + "probability": 0.5648 + }, + { + "start": 6416.78, + "end": 6416.88, + "probability": 0.7093 + }, + { + "start": 6416.94, + "end": 6419.92, + "probability": 0.9922 + }, + { + "start": 6420.06, + "end": 6420.8, + "probability": 0.14 + }, + { + "start": 6422.12, + "end": 6423.78, + "probability": 0.6972 + }, + { + "start": 6424.28, + "end": 6425.64, + "probability": 0.4061 + }, + { + "start": 6425.78, + "end": 6426.7, + "probability": 0.4661 + }, + { + "start": 6427.82, + "end": 6429.8, + "probability": 0.9673 + }, + { + "start": 6429.94, + "end": 6430.74, + "probability": 0.5063 + }, + { + "start": 6430.82, + "end": 6431.36, + "probability": 0.8721 + }, + { + "start": 6431.52, + "end": 6432.12, + "probability": 0.448 + }, + { + "start": 6432.46, + "end": 6433.4, + "probability": 0.1621 + }, + { + "start": 6433.5, + "end": 6434.36, + "probability": 0.3897 + }, + { + "start": 6435.7, + "end": 6436.15, + "probability": 0.4342 + }, + { + "start": 6437.3, + "end": 6439.84, + "probability": 0.8458 + }, + { + "start": 6439.92, + "end": 6441.54, + "probability": 0.7913 + }, + { + "start": 6441.66, + "end": 6444.16, + "probability": 0.6449 + }, + { + "start": 6444.48, + "end": 6445.18, + "probability": 0.5807 + }, + { + "start": 6446.14, + "end": 6448.52, + "probability": 0.4907 + }, + { + "start": 6448.7, + "end": 6449.32, + "probability": 0.6932 + }, + { + "start": 6449.32, + "end": 6450.06, + "probability": 0.3945 + }, + { + "start": 6450.06, + "end": 6451.36, + "probability": 0.4462 + }, + { + "start": 6452.5, + "end": 6453.98, + "probability": 0.968 + }, + { + "start": 6454.48, + "end": 6455.76, + "probability": 0.8891 + }, + { + "start": 6456.16, + "end": 6459.2, + "probability": 0.9147 + }, + { + "start": 6459.98, + "end": 6465.04, + "probability": 0.9928 + }, + { + "start": 6466.62, + "end": 6467.76, + "probability": 0.7234 + }, + { + "start": 6467.86, + "end": 6469.66, + "probability": 0.4915 + }, + { + "start": 6469.72, + "end": 6470.78, + "probability": 0.7593 + }, + { + "start": 6471.32, + "end": 6472.64, + "probability": 0.8306 + }, + { + "start": 6473.38, + "end": 6474.02, + "probability": 0.6813 + }, + { + "start": 6475.2, + "end": 6476.0, + "probability": 0.7507 + }, + { + "start": 6476.9, + "end": 6480.66, + "probability": 0.971 + }, + { + "start": 6481.34, + "end": 6482.88, + "probability": 0.9962 + }, + { + "start": 6482.94, + "end": 6484.18, + "probability": 0.9915 + }, + { + "start": 6484.24, + "end": 6484.84, + "probability": 0.8862 + }, + { + "start": 6485.28, + "end": 6487.34, + "probability": 0.9934 + }, + { + "start": 6488.24, + "end": 6490.86, + "probability": 0.9736 + }, + { + "start": 6491.56, + "end": 6494.94, + "probability": 0.9994 + }, + { + "start": 6495.64, + "end": 6496.64, + "probability": 0.8326 + }, + { + "start": 6496.8, + "end": 6497.62, + "probability": 0.6294 + }, + { + "start": 6497.98, + "end": 6500.56, + "probability": 0.7932 + }, + { + "start": 6500.88, + "end": 6502.38, + "probability": 0.9929 + }, + { + "start": 6503.02, + "end": 6503.8, + "probability": 0.8512 + }, + { + "start": 6503.9, + "end": 6504.36, + "probability": 0.9552 + }, + { + "start": 6505.48, + "end": 6508.08, + "probability": 0.9834 + }, + { + "start": 6508.66, + "end": 6511.86, + "probability": 0.8951 + }, + { + "start": 6512.22, + "end": 6513.98, + "probability": 0.9728 + }, + { + "start": 6514.7, + "end": 6514.88, + "probability": 0.7157 + }, + { + "start": 6514.92, + "end": 6515.12, + "probability": 0.803 + }, + { + "start": 6515.22, + "end": 6521.1, + "probability": 0.9909 + }, + { + "start": 6522.16, + "end": 6523.26, + "probability": 0.7003 + }, + { + "start": 6524.46, + "end": 6528.18, + "probability": 0.9984 + }, + { + "start": 6529.14, + "end": 6530.02, + "probability": 0.91 + }, + { + "start": 6530.78, + "end": 6531.74, + "probability": 0.9515 + }, + { + "start": 6532.6, + "end": 6534.86, + "probability": 0.9487 + }, + { + "start": 6534.94, + "end": 6535.1, + "probability": 0.8195 + }, + { + "start": 6535.14, + "end": 6536.5, + "probability": 0.7581 + }, + { + "start": 6536.84, + "end": 6537.88, + "probability": 0.9905 + }, + { + "start": 6538.9, + "end": 6539.98, + "probability": 0.7776 + }, + { + "start": 6540.58, + "end": 6542.44, + "probability": 0.5424 + }, + { + "start": 6542.58, + "end": 6543.62, + "probability": 0.865 + }, + { + "start": 6543.72, + "end": 6544.18, + "probability": 0.9319 + }, + { + "start": 6545.08, + "end": 6548.6, + "probability": 0.9795 + }, + { + "start": 6549.5, + "end": 6551.8, + "probability": 0.9799 + }, + { + "start": 6552.38, + "end": 6554.08, + "probability": 0.996 + }, + { + "start": 6554.7, + "end": 6560.0, + "probability": 0.9961 + }, + { + "start": 6560.06, + "end": 6561.62, + "probability": 0.9354 + }, + { + "start": 6562.58, + "end": 6564.86, + "probability": 0.9971 + }, + { + "start": 6566.62, + "end": 6568.26, + "probability": 0.8174 + }, + { + "start": 6569.28, + "end": 6570.02, + "probability": 0.9515 + }, + { + "start": 6570.8, + "end": 6574.0, + "probability": 0.988 + }, + { + "start": 6574.72, + "end": 6575.56, + "probability": 0.967 + }, + { + "start": 6576.86, + "end": 6577.38, + "probability": 0.9583 + }, + { + "start": 6577.5, + "end": 6580.78, + "probability": 0.9956 + }, + { + "start": 6580.78, + "end": 6585.46, + "probability": 0.9952 + }, + { + "start": 6586.12, + "end": 6589.66, + "probability": 0.9535 + }, + { + "start": 6590.72, + "end": 6593.18, + "probability": 0.9855 + }, + { + "start": 6593.34, + "end": 6595.28, + "probability": 0.9935 + }, + { + "start": 6595.36, + "end": 6596.0, + "probability": 0.8932 + }, + { + "start": 6597.26, + "end": 6598.6, + "probability": 0.9824 + }, + { + "start": 6598.64, + "end": 6601.34, + "probability": 0.9856 + }, + { + "start": 6603.1, + "end": 6606.36, + "probability": 0.9858 + }, + { + "start": 6606.64, + "end": 6609.05, + "probability": 0.9417 + }, + { + "start": 6609.5, + "end": 6613.78, + "probability": 0.6431 + }, + { + "start": 6613.78, + "end": 6614.14, + "probability": 0.8577 + }, + { + "start": 6615.08, + "end": 6616.02, + "probability": 0.8808 + }, + { + "start": 6616.14, + "end": 6617.16, + "probability": 0.5417 + }, + { + "start": 6617.36, + "end": 6618.34, + "probability": 0.8857 + }, + { + "start": 6618.48, + "end": 6619.68, + "probability": 0.7077 + }, + { + "start": 6619.82, + "end": 6621.78, + "probability": 0.9418 + }, + { + "start": 6622.82, + "end": 6630.14, + "probability": 0.9875 + }, + { + "start": 6630.32, + "end": 6631.42, + "probability": 0.7369 + }, + { + "start": 6632.38, + "end": 6633.9, + "probability": 0.9822 + }, + { + "start": 6634.2, + "end": 6635.24, + "probability": 0.5331 + }, + { + "start": 6635.34, + "end": 6636.14, + "probability": 0.9884 + }, + { + "start": 6636.7, + "end": 6640.88, + "probability": 0.9359 + }, + { + "start": 6641.42, + "end": 6643.3, + "probability": 0.6846 + }, + { + "start": 6643.44, + "end": 6647.88, + "probability": 0.9865 + }, + { + "start": 6648.6, + "end": 6650.1, + "probability": 0.9857 + }, + { + "start": 6650.24, + "end": 6651.38, + "probability": 0.7639 + }, + { + "start": 6652.04, + "end": 6653.0, + "probability": 0.7965 + }, + { + "start": 6654.04, + "end": 6655.18, + "probability": 0.9959 + }, + { + "start": 6655.2, + "end": 6655.84, + "probability": 0.4542 + }, + { + "start": 6655.98, + "end": 6657.64, + "probability": 0.7485 + }, + { + "start": 6657.8, + "end": 6659.08, + "probability": 0.9505 + }, + { + "start": 6659.16, + "end": 6660.0, + "probability": 0.756 + }, + { + "start": 6660.32, + "end": 6661.34, + "probability": 0.849 + }, + { + "start": 6661.64, + "end": 6662.66, + "probability": 0.6337 + }, + { + "start": 6663.22, + "end": 6664.42, + "probability": 0.6969 + }, + { + "start": 6664.62, + "end": 6665.4, + "probability": 0.6522 + }, + { + "start": 6665.6, + "end": 6667.88, + "probability": 0.9203 + }, + { + "start": 6667.98, + "end": 6669.32, + "probability": 0.9554 + }, + { + "start": 6669.68, + "end": 6671.4, + "probability": 0.988 + }, + { + "start": 6672.1, + "end": 6674.22, + "probability": 0.9943 + }, + { + "start": 6674.74, + "end": 6676.04, + "probability": 0.9923 + }, + { + "start": 6676.58, + "end": 6677.16, + "probability": 0.8925 + }, + { + "start": 6677.28, + "end": 6678.02, + "probability": 0.815 + }, + { + "start": 6678.55, + "end": 6683.84, + "probability": 0.9933 + }, + { + "start": 6684.34, + "end": 6685.17, + "probability": 0.9937 + }, + { + "start": 6685.28, + "end": 6686.1, + "probability": 0.9156 + }, + { + "start": 6687.18, + "end": 6689.5, + "probability": 0.9975 + }, + { + "start": 6689.72, + "end": 6690.76, + "probability": 0.7955 + }, + { + "start": 6691.14, + "end": 6693.22, + "probability": 0.9029 + }, + { + "start": 6694.56, + "end": 6695.34, + "probability": 0.9887 + }, + { + "start": 6695.4, + "end": 6696.43, + "probability": 0.9881 + }, + { + "start": 6697.04, + "end": 6697.94, + "probability": 0.8192 + }, + { + "start": 6698.16, + "end": 6699.4, + "probability": 0.9775 + }, + { + "start": 6699.9, + "end": 6701.86, + "probability": 0.9771 + }, + { + "start": 6702.36, + "end": 6706.42, + "probability": 0.9915 + }, + { + "start": 6706.78, + "end": 6708.1, + "probability": 0.9951 + }, + { + "start": 6708.18, + "end": 6709.44, + "probability": 0.905 + }, + { + "start": 6709.82, + "end": 6711.0, + "probability": 0.4722 + }, + { + "start": 6711.48, + "end": 6714.06, + "probability": 0.9815 + }, + { + "start": 6714.34, + "end": 6714.9, + "probability": 0.7237 + }, + { + "start": 6715.02, + "end": 6716.73, + "probability": 0.6479 + }, + { + "start": 6717.8, + "end": 6719.14, + "probability": 0.8355 + }, + { + "start": 6719.54, + "end": 6722.66, + "probability": 0.687 + }, + { + "start": 6736.86, + "end": 6739.0, + "probability": 0.4671 + }, + { + "start": 6739.0, + "end": 6740.22, + "probability": 0.946 + }, + { + "start": 6741.64, + "end": 6742.06, + "probability": 0.8365 + }, + { + "start": 6743.92, + "end": 6746.34, + "probability": 0.619 + }, + { + "start": 6747.68, + "end": 6750.2, + "probability": 0.814 + }, + { + "start": 6750.4, + "end": 6754.76, + "probability": 0.9062 + }, + { + "start": 6756.84, + "end": 6758.96, + "probability": 0.7553 + }, + { + "start": 6761.04, + "end": 6765.98, + "probability": 0.9801 + }, + { + "start": 6767.24, + "end": 6772.82, + "probability": 0.7815 + }, + { + "start": 6772.82, + "end": 6776.08, + "probability": 0.8465 + }, + { + "start": 6777.18, + "end": 6783.36, + "probability": 0.993 + }, + { + "start": 6784.7, + "end": 6787.52, + "probability": 0.9956 + }, + { + "start": 6787.78, + "end": 6788.9, + "probability": 0.9966 + }, + { + "start": 6789.76, + "end": 6792.48, + "probability": 0.9951 + }, + { + "start": 6792.54, + "end": 6794.24, + "probability": 0.9652 + }, + { + "start": 6794.72, + "end": 6801.12, + "probability": 0.9807 + }, + { + "start": 6802.62, + "end": 6804.42, + "probability": 0.9925 + }, + { + "start": 6805.06, + "end": 6806.22, + "probability": 0.666 + }, + { + "start": 6806.32, + "end": 6810.14, + "probability": 0.989 + }, + { + "start": 6811.24, + "end": 6813.94, + "probability": 0.8262 + }, + { + "start": 6814.9, + "end": 6818.23, + "probability": 0.9836 + }, + { + "start": 6819.98, + "end": 6822.18, + "probability": 0.9403 + }, + { + "start": 6823.34, + "end": 6824.96, + "probability": 0.9324 + }, + { + "start": 6825.78, + "end": 6827.46, + "probability": 0.847 + }, + { + "start": 6828.32, + "end": 6832.82, + "probability": 0.9674 + }, + { + "start": 6833.42, + "end": 6835.56, + "probability": 0.9919 + }, + { + "start": 6836.84, + "end": 6842.32, + "probability": 0.7312 + }, + { + "start": 6842.32, + "end": 6843.72, + "probability": 0.038 + }, + { + "start": 6843.78, + "end": 6846.98, + "probability": 0.7275 + }, + { + "start": 6848.3, + "end": 6855.42, + "probability": 0.686 + }, + { + "start": 6855.82, + "end": 6857.07, + "probability": 0.9058 + }, + { + "start": 6857.88, + "end": 6857.88, + "probability": 0.2842 + }, + { + "start": 6857.9, + "end": 6860.96, + "probability": 0.9961 + }, + { + "start": 6861.46, + "end": 6865.76, + "probability": 0.9976 + }, + { + "start": 6866.78, + "end": 6868.58, + "probability": 0.975 + }, + { + "start": 6869.38, + "end": 6872.68, + "probability": 0.9731 + }, + { + "start": 6873.22, + "end": 6874.62, + "probability": 0.8593 + }, + { + "start": 6875.48, + "end": 6876.66, + "probability": 0.8559 + }, + { + "start": 6877.96, + "end": 6880.8, + "probability": 0.9612 + }, + { + "start": 6881.66, + "end": 6885.22, + "probability": 0.9503 + }, + { + "start": 6885.62, + "end": 6887.36, + "probability": 0.9889 + }, + { + "start": 6888.1, + "end": 6889.18, + "probability": 0.9845 + }, + { + "start": 6890.98, + "end": 6891.68, + "probability": 0.4314 + }, + { + "start": 6891.68, + "end": 6895.84, + "probability": 0.8168 + }, + { + "start": 6896.2, + "end": 6900.6, + "probability": 0.9578 + }, + { + "start": 6900.74, + "end": 6905.92, + "probability": 0.9893 + }, + { + "start": 6906.26, + "end": 6908.14, + "probability": 0.7765 + }, + { + "start": 6908.76, + "end": 6911.34, + "probability": 0.6462 + }, + { + "start": 6913.0, + "end": 6915.1, + "probability": 0.7417 + }, + { + "start": 6915.2, + "end": 6915.92, + "probability": 0.558 + }, + { + "start": 6916.28, + "end": 6922.66, + "probability": 0.9717 + }, + { + "start": 6922.78, + "end": 6927.2, + "probability": 0.9302 + }, + { + "start": 6928.2, + "end": 6932.9, + "probability": 0.9681 + }, + { + "start": 6933.9, + "end": 6938.36, + "probability": 0.9809 + }, + { + "start": 6938.66, + "end": 6939.64, + "probability": 0.7789 + }, + { + "start": 6939.96, + "end": 6941.24, + "probability": 0.8279 + }, + { + "start": 6941.52, + "end": 6942.26, + "probability": 0.8765 + }, + { + "start": 6942.44, + "end": 6944.18, + "probability": 0.9391 + }, + { + "start": 6944.28, + "end": 6944.96, + "probability": 0.8809 + }, + { + "start": 6944.96, + "end": 6947.94, + "probability": 0.8171 + }, + { + "start": 6948.12, + "end": 6948.52, + "probability": 0.9043 + }, + { + "start": 6948.8, + "end": 6950.49, + "probability": 0.7149 + }, + { + "start": 6951.64, + "end": 6953.12, + "probability": 0.5806 + }, + { + "start": 6953.26, + "end": 6956.36, + "probability": 0.8682 + }, + { + "start": 6966.02, + "end": 6967.36, + "probability": 0.4998 + }, + { + "start": 6968.2, + "end": 6968.68, + "probability": 0.2671 + }, + { + "start": 6968.68, + "end": 6971.72, + "probability": 0.7145 + }, + { + "start": 6973.84, + "end": 6978.7, + "probability": 0.9972 + }, + { + "start": 6979.66, + "end": 6981.72, + "probability": 0.958 + }, + { + "start": 6983.1, + "end": 6984.82, + "probability": 0.991 + }, + { + "start": 6986.08, + "end": 6988.08, + "probability": 0.9919 + }, + { + "start": 6988.58, + "end": 6990.44, + "probability": 0.9386 + }, + { + "start": 6990.52, + "end": 6991.02, + "probability": 0.7804 + }, + { + "start": 6991.08, + "end": 6995.76, + "probability": 0.991 + }, + { + "start": 6996.8, + "end": 7002.26, + "probability": 0.9917 + }, + { + "start": 7002.76, + "end": 7006.26, + "probability": 0.9921 + }, + { + "start": 7006.3, + "end": 7007.28, + "probability": 0.8543 + }, + { + "start": 7008.34, + "end": 7012.5, + "probability": 0.8835 + }, + { + "start": 7013.3, + "end": 7015.06, + "probability": 0.9961 + }, + { + "start": 7016.44, + "end": 7017.3, + "probability": 0.9249 + }, + { + "start": 7017.7, + "end": 7019.1, + "probability": 0.9854 + }, + { + "start": 7019.98, + "end": 7023.38, + "probability": 0.5356 + }, + { + "start": 7023.96, + "end": 7028.52, + "probability": 0.9753 + }, + { + "start": 7029.16, + "end": 7031.28, + "probability": 0.9719 + }, + { + "start": 7031.46, + "end": 7033.1, + "probability": 0.8207 + }, + { + "start": 7034.02, + "end": 7035.38, + "probability": 0.939 + }, + { + "start": 7036.34, + "end": 7037.2, + "probability": 0.9428 + }, + { + "start": 7037.8, + "end": 7040.6, + "probability": 0.9928 + }, + { + "start": 7041.24, + "end": 7042.12, + "probability": 0.8804 + }, + { + "start": 7042.64, + "end": 7043.7, + "probability": 0.7489 + }, + { + "start": 7044.46, + "end": 7048.5, + "probability": 0.99 + }, + { + "start": 7049.66, + "end": 7057.62, + "probability": 0.9956 + }, + { + "start": 7057.62, + "end": 7062.5, + "probability": 0.993 + }, + { + "start": 7063.08, + "end": 7069.68, + "probability": 0.9939 + }, + { + "start": 7070.42, + "end": 7071.28, + "probability": 0.8362 + }, + { + "start": 7071.48, + "end": 7073.12, + "probability": 0.9951 + }, + { + "start": 7073.24, + "end": 7074.3, + "probability": 0.7996 + }, + { + "start": 7076.4, + "end": 7080.8, + "probability": 0.9785 + }, + { + "start": 7080.86, + "end": 7082.16, + "probability": 0.8146 + }, + { + "start": 7082.62, + "end": 7084.08, + "probability": 0.9518 + }, + { + "start": 7085.34, + "end": 7090.7, + "probability": 0.9696 + }, + { + "start": 7091.84, + "end": 7096.54, + "probability": 0.9674 + }, + { + "start": 7097.94, + "end": 7102.7, + "probability": 0.9772 + }, + { + "start": 7102.7, + "end": 7103.02, + "probability": 0.3604 + }, + { + "start": 7103.04, + "end": 7103.92, + "probability": 0.9926 + }, + { + "start": 7104.36, + "end": 7109.26, + "probability": 0.9292 + }, + { + "start": 7110.24, + "end": 7111.09, + "probability": 0.9621 + }, + { + "start": 7111.28, + "end": 7112.38, + "probability": 0.9929 + }, + { + "start": 7112.56, + "end": 7114.68, + "probability": 0.998 + }, + { + "start": 7115.58, + "end": 7118.62, + "probability": 0.9965 + }, + { + "start": 7119.82, + "end": 7124.16, + "probability": 0.9946 + }, + { + "start": 7124.62, + "end": 7126.86, + "probability": 0.888 + }, + { + "start": 7127.72, + "end": 7129.16, + "probability": 0.9866 + }, + { + "start": 7130.12, + "end": 7132.4, + "probability": 0.7712 + }, + { + "start": 7133.24, + "end": 7134.36, + "probability": 0.9843 + }, + { + "start": 7135.7, + "end": 7139.84, + "probability": 0.9865 + }, + { + "start": 7140.48, + "end": 7142.56, + "probability": 0.8451 + }, + { + "start": 7144.38, + "end": 7144.48, + "probability": 0.8467 + }, + { + "start": 7145.48, + "end": 7147.94, + "probability": 0.9983 + }, + { + "start": 7148.26, + "end": 7149.06, + "probability": 0.9014 + }, + { + "start": 7149.42, + "end": 7152.16, + "probability": 0.9949 + }, + { + "start": 7154.36, + "end": 7155.28, + "probability": 0.9919 + }, + { + "start": 7155.74, + "end": 7158.16, + "probability": 0.9849 + }, + { + "start": 7159.16, + "end": 7161.38, + "probability": 0.7243 + }, + { + "start": 7162.22, + "end": 7164.34, + "probability": 0.9777 + }, + { + "start": 7164.44, + "end": 7166.98, + "probability": 0.9625 + }, + { + "start": 7167.4, + "end": 7170.78, + "probability": 0.7486 + }, + { + "start": 7171.12, + "end": 7176.04, + "probability": 0.9969 + }, + { + "start": 7176.68, + "end": 7178.42, + "probability": 0.9974 + }, + { + "start": 7178.52, + "end": 7179.4, + "probability": 0.5336 + }, + { + "start": 7179.96, + "end": 7180.78, + "probability": 0.7745 + }, + { + "start": 7180.82, + "end": 7181.74, + "probability": 0.9467 + }, + { + "start": 7182.34, + "end": 7183.5, + "probability": 0.9878 + }, + { + "start": 7183.58, + "end": 7185.02, + "probability": 0.9609 + }, + { + "start": 7185.1, + "end": 7187.0, + "probability": 0.9154 + }, + { + "start": 7187.04, + "end": 7188.3, + "probability": 0.3733 + }, + { + "start": 7189.32, + "end": 7194.74, + "probability": 0.7932 + }, + { + "start": 7195.16, + "end": 7195.64, + "probability": 0.4967 + }, + { + "start": 7195.7, + "end": 7199.1, + "probability": 0.9966 + }, + { + "start": 7200.12, + "end": 7202.66, + "probability": 0.5235 + }, + { + "start": 7202.76, + "end": 7203.2, + "probability": 0.9215 + }, + { + "start": 7203.62, + "end": 7207.06, + "probability": 0.9799 + }, + { + "start": 7207.52, + "end": 7208.34, + "probability": 0.8572 + }, + { + "start": 7208.44, + "end": 7210.08, + "probability": 0.9895 + }, + { + "start": 7210.18, + "end": 7211.62, + "probability": 0.9368 + }, + { + "start": 7212.6, + "end": 7214.96, + "probability": 0.9392 + }, + { + "start": 7215.42, + "end": 7217.78, + "probability": 0.9772 + }, + { + "start": 7217.78, + "end": 7220.44, + "probability": 0.7506 + }, + { + "start": 7220.48, + "end": 7224.08, + "probability": 0.91 + }, + { + "start": 7225.44, + "end": 7226.98, + "probability": 0.932 + }, + { + "start": 7227.2, + "end": 7229.3, + "probability": 0.8135 + }, + { + "start": 7229.3, + "end": 7230.94, + "probability": 0.9605 + }, + { + "start": 7230.98, + "end": 7232.94, + "probability": 0.7916 + }, + { + "start": 7233.2, + "end": 7234.6, + "probability": 0.8722 + }, + { + "start": 7234.7, + "end": 7237.86, + "probability": 0.95 + }, + { + "start": 7237.96, + "end": 7238.92, + "probability": 0.5596 + }, + { + "start": 7243.82, + "end": 7245.22, + "probability": 0.3809 + }, + { + "start": 7245.32, + "end": 7246.14, + "probability": 0.4197 + }, + { + "start": 7246.22, + "end": 7247.72, + "probability": 0.5876 + }, + { + "start": 7247.94, + "end": 7249.14, + "probability": 0.8046 + }, + { + "start": 7250.0, + "end": 7254.14, + "probability": 0.897 + }, + { + "start": 7254.56, + "end": 7255.86, + "probability": 0.0534 + }, + { + "start": 7255.98, + "end": 7256.68, + "probability": 0.5311 + }, + { + "start": 7257.04, + "end": 7257.82, + "probability": 0.8962 + }, + { + "start": 7258.74, + "end": 7261.4, + "probability": 0.6629 + }, + { + "start": 7261.54, + "end": 7263.14, + "probability": 0.5105 + }, + { + "start": 7263.78, + "end": 7265.62, + "probability": 0.6628 + }, + { + "start": 7265.84, + "end": 7266.5, + "probability": 0.6822 + }, + { + "start": 7266.96, + "end": 7267.28, + "probability": 0.6941 + }, + { + "start": 7267.6, + "end": 7268.46, + "probability": 0.5529 + }, + { + "start": 7268.7, + "end": 7270.06, + "probability": 0.7247 + }, + { + "start": 7270.1, + "end": 7270.92, + "probability": 0.9202 + }, + { + "start": 7271.38, + "end": 7273.56, + "probability": 0.5925 + }, + { + "start": 7274.28, + "end": 7278.38, + "probability": 0.9911 + }, + { + "start": 7280.2, + "end": 7286.0, + "probability": 0.9745 + }, + { + "start": 7286.06, + "end": 7288.62, + "probability": 0.9102 + }, + { + "start": 7288.68, + "end": 7290.89, + "probability": 0.9951 + }, + { + "start": 7291.9, + "end": 7294.84, + "probability": 0.9951 + }, + { + "start": 7294.84, + "end": 7299.72, + "probability": 0.9931 + }, + { + "start": 7301.46, + "end": 7303.7, + "probability": 0.9187 + }, + { + "start": 7304.02, + "end": 7304.84, + "probability": 0.6886 + }, + { + "start": 7306.74, + "end": 7309.5, + "probability": 0.9973 + }, + { + "start": 7309.5, + "end": 7312.94, + "probability": 0.969 + }, + { + "start": 7313.54, + "end": 7314.02, + "probability": 0.348 + }, + { + "start": 7314.86, + "end": 7317.74, + "probability": 0.8276 + }, + { + "start": 7318.0, + "end": 7319.38, + "probability": 0.9115 + }, + { + "start": 7319.46, + "end": 7323.38, + "probability": 0.9966 + }, + { + "start": 7323.72, + "end": 7325.64, + "probability": 0.9966 + }, + { + "start": 7325.94, + "end": 7328.24, + "probability": 0.9561 + }, + { + "start": 7329.02, + "end": 7329.5, + "probability": 0.4245 + }, + { + "start": 7329.64, + "end": 7330.32, + "probability": 0.5402 + }, + { + "start": 7330.78, + "end": 7334.58, + "probability": 0.9951 + }, + { + "start": 7334.58, + "end": 7338.22, + "probability": 0.9985 + }, + { + "start": 7338.36, + "end": 7338.88, + "probability": 0.5482 + }, + { + "start": 7339.38, + "end": 7343.34, + "probability": 0.9964 + }, + { + "start": 7344.12, + "end": 7347.16, + "probability": 0.7634 + }, + { + "start": 7347.74, + "end": 7350.1, + "probability": 0.8796 + }, + { + "start": 7350.36, + "end": 7351.48, + "probability": 0.7559 + }, + { + "start": 7351.66, + "end": 7353.02, + "probability": 0.9269 + }, + { + "start": 7353.06, + "end": 7354.92, + "probability": 0.9749 + }, + { + "start": 7355.34, + "end": 7358.2, + "probability": 0.9189 + }, + { + "start": 7359.4, + "end": 7362.52, + "probability": 0.6709 + }, + { + "start": 7362.66, + "end": 7364.94, + "probability": 0.6558 + }, + { + "start": 7365.24, + "end": 7367.26, + "probability": 0.9429 + }, + { + "start": 7367.28, + "end": 7369.14, + "probability": 0.7977 + }, + { + "start": 7370.24, + "end": 7370.48, + "probability": 0.8599 + }, + { + "start": 7370.58, + "end": 7372.78, + "probability": 0.9409 + }, + { + "start": 7373.24, + "end": 7373.94, + "probability": 0.9412 + }, + { + "start": 7374.32, + "end": 7375.44, + "probability": 0.9885 + }, + { + "start": 7375.54, + "end": 7376.42, + "probability": 0.9929 + }, + { + "start": 7376.68, + "end": 7377.38, + "probability": 0.287 + }, + { + "start": 7378.2, + "end": 7379.08, + "probability": 0.7422 + }, + { + "start": 7379.48, + "end": 7380.32, + "probability": 0.8515 + }, + { + "start": 7380.78, + "end": 7381.44, + "probability": 0.7178 + }, + { + "start": 7381.6, + "end": 7381.98, + "probability": 0.7131 + }, + { + "start": 7382.08, + "end": 7383.22, + "probability": 0.8369 + }, + { + "start": 7383.28, + "end": 7383.91, + "probability": 0.8865 + }, + { + "start": 7384.24, + "end": 7385.44, + "probability": 0.9164 + }, + { + "start": 7385.74, + "end": 7389.78, + "probability": 0.9944 + }, + { + "start": 7390.84, + "end": 7391.62, + "probability": 0.8679 + }, + { + "start": 7391.74, + "end": 7392.64, + "probability": 0.7915 + }, + { + "start": 7393.04, + "end": 7397.64, + "probability": 0.9917 + }, + { + "start": 7398.02, + "end": 7401.42, + "probability": 0.9517 + }, + { + "start": 7402.9, + "end": 7403.81, + "probability": 0.8213 + }, + { + "start": 7404.14, + "end": 7404.78, + "probability": 0.5801 + }, + { + "start": 7405.12, + "end": 7408.32, + "probability": 0.9763 + }, + { + "start": 7408.56, + "end": 7411.66, + "probability": 0.9553 + }, + { + "start": 7412.12, + "end": 7415.7, + "probability": 0.9974 + }, + { + "start": 7416.34, + "end": 7418.68, + "probability": 0.9382 + }, + { + "start": 7418.92, + "end": 7426.01, + "probability": 0.9781 + }, + { + "start": 7426.74, + "end": 7428.26, + "probability": 0.9674 + }, + { + "start": 7428.34, + "end": 7429.47, + "probability": 0.8984 + }, + { + "start": 7429.75, + "end": 7432.98, + "probability": 0.8755 + }, + { + "start": 7433.27, + "end": 7437.52, + "probability": 0.9066 + }, + { + "start": 7437.56, + "end": 7439.28, + "probability": 0.912 + }, + { + "start": 7439.96, + "end": 7442.92, + "probability": 0.9778 + }, + { + "start": 7443.0, + "end": 7444.5, + "probability": 0.9147 + }, + { + "start": 7444.58, + "end": 7445.33, + "probability": 0.7837 + }, + { + "start": 7446.76, + "end": 7447.52, + "probability": 0.6027 + }, + { + "start": 7447.58, + "end": 7448.0, + "probability": 0.9331 + }, + { + "start": 7448.06, + "end": 7448.72, + "probability": 0.5736 + }, + { + "start": 7448.76, + "end": 7449.68, + "probability": 0.7929 + }, + { + "start": 7449.88, + "end": 7451.74, + "probability": 0.6847 + }, + { + "start": 7451.84, + "end": 7452.5, + "probability": 0.7315 + }, + { + "start": 7452.7, + "end": 7453.62, + "probability": 0.6266 + }, + { + "start": 7454.34, + "end": 7455.86, + "probability": 0.8909 + }, + { + "start": 7456.3, + "end": 7460.34, + "probability": 0.9349 + }, + { + "start": 7460.52, + "end": 7462.76, + "probability": 0.9612 + }, + { + "start": 7462.84, + "end": 7463.82, + "probability": 0.6148 + }, + { + "start": 7464.2, + "end": 7466.22, + "probability": 0.8499 + }, + { + "start": 7466.26, + "end": 7467.15, + "probability": 0.9023 + }, + { + "start": 7467.72, + "end": 7470.18, + "probability": 0.9881 + }, + { + "start": 7470.48, + "end": 7471.44, + "probability": 0.9836 + }, + { + "start": 7472.32, + "end": 7474.74, + "probability": 0.9251 + }, + { + "start": 7475.82, + "end": 7479.14, + "probability": 0.8685 + }, + { + "start": 7479.72, + "end": 7482.73, + "probability": 0.9163 + }, + { + "start": 7483.66, + "end": 7488.54, + "probability": 0.9521 + }, + { + "start": 7489.16, + "end": 7493.2, + "probability": 0.9972 + }, + { + "start": 7493.7, + "end": 7496.26, + "probability": 0.9006 + }, + { + "start": 7496.36, + "end": 7498.42, + "probability": 0.6779 + }, + { + "start": 7499.08, + "end": 7502.7, + "probability": 0.9721 + }, + { + "start": 7503.58, + "end": 7504.32, + "probability": 0.854 + }, + { + "start": 7504.46, + "end": 7506.5, + "probability": 0.9878 + }, + { + "start": 7506.64, + "end": 7509.14, + "probability": 0.957 + }, + { + "start": 7509.14, + "end": 7512.18, + "probability": 0.9653 + }, + { + "start": 7512.74, + "end": 7514.8, + "probability": 0.7156 + }, + { + "start": 7514.92, + "end": 7517.54, + "probability": 0.9536 + }, + { + "start": 7518.32, + "end": 7519.16, + "probability": 0.8777 + }, + { + "start": 7526.78, + "end": 7527.04, + "probability": 0.5509 + }, + { + "start": 7527.24, + "end": 7528.12, + "probability": 0.7808 + }, + { + "start": 7528.2, + "end": 7532.08, + "probability": 0.9885 + }, + { + "start": 7540.94, + "end": 7542.0, + "probability": 0.4707 + }, + { + "start": 7542.58, + "end": 7546.0, + "probability": 0.8052 + }, + { + "start": 7546.0, + "end": 7546.86, + "probability": 0.3304 + }, + { + "start": 7550.39, + "end": 7553.46, + "probability": 0.7577 + }, + { + "start": 7554.58, + "end": 7555.52, + "probability": 0.9756 + }, + { + "start": 7557.02, + "end": 7557.02, + "probability": 0.1083 + }, + { + "start": 7557.02, + "end": 7557.02, + "probability": 0.0728 + }, + { + "start": 7557.02, + "end": 7557.02, + "probability": 0.1896 + }, + { + "start": 7557.02, + "end": 7559.64, + "probability": 0.6376 + }, + { + "start": 7561.18, + "end": 7566.38, + "probability": 0.9771 + }, + { + "start": 7567.5, + "end": 7570.3, + "probability": 0.9854 + }, + { + "start": 7571.78, + "end": 7573.27, + "probability": 0.7919 + }, + { + "start": 7574.7, + "end": 7576.6, + "probability": 0.9937 + }, + { + "start": 7577.38, + "end": 7579.03, + "probability": 0.8616 + }, + { + "start": 7580.12, + "end": 7582.84, + "probability": 0.9857 + }, + { + "start": 7584.46, + "end": 7585.12, + "probability": 0.6721 + }, + { + "start": 7585.74, + "end": 7589.48, + "probability": 0.9517 + }, + { + "start": 7591.34, + "end": 7592.94, + "probability": 0.9021 + }, + { + "start": 7594.26, + "end": 7596.13, + "probability": 0.9746 + }, + { + "start": 7597.0, + "end": 7597.26, + "probability": 0.9463 + }, + { + "start": 7600.58, + "end": 7601.16, + "probability": 0.6672 + }, + { + "start": 7601.32, + "end": 7601.78, + "probability": 0.7832 + }, + { + "start": 7601.84, + "end": 7602.88, + "probability": 0.813 + }, + { + "start": 7603.18, + "end": 7604.1, + "probability": 0.912 + }, + { + "start": 7604.34, + "end": 7608.2, + "probability": 0.98 + }, + { + "start": 7609.68, + "end": 7612.32, + "probability": 0.9903 + }, + { + "start": 7613.5, + "end": 7615.88, + "probability": 0.9891 + }, + { + "start": 7617.36, + "end": 7618.8, + "probability": 0.6621 + }, + { + "start": 7619.4, + "end": 7621.24, + "probability": 0.8777 + }, + { + "start": 7623.1, + "end": 7624.14, + "probability": 0.821 + }, + { + "start": 7624.82, + "end": 7627.26, + "probability": 0.6823 + }, + { + "start": 7627.5, + "end": 7628.76, + "probability": 0.9833 + }, + { + "start": 7628.86, + "end": 7634.26, + "probability": 0.9811 + }, + { + "start": 7634.76, + "end": 7635.06, + "probability": 0.3782 + }, + { + "start": 7635.08, + "end": 7635.4, + "probability": 0.6666 + }, + { + "start": 7635.48, + "end": 7647.8, + "probability": 0.9535 + }, + { + "start": 7647.8, + "end": 7650.92, + "probability": 0.9977 + }, + { + "start": 7651.2, + "end": 7652.32, + "probability": 0.9961 + }, + { + "start": 7653.42, + "end": 7654.52, + "probability": 0.9058 + }, + { + "start": 7654.56, + "end": 7661.1, + "probability": 0.7524 + }, + { + "start": 7661.7, + "end": 7667.36, + "probability": 0.6498 + }, + { + "start": 7667.64, + "end": 7669.46, + "probability": 0.945 + }, + { + "start": 7669.88, + "end": 7670.08, + "probability": 0.7685 + }, + { + "start": 7670.14, + "end": 7671.84, + "probability": 0.9807 + }, + { + "start": 7672.16, + "end": 7673.58, + "probability": 0.8783 + }, + { + "start": 7673.78, + "end": 7676.3, + "probability": 0.9828 + }, + { + "start": 7676.42, + "end": 7677.28, + "probability": 0.5159 + }, + { + "start": 7677.42, + "end": 7678.18, + "probability": 0.8748 + }, + { + "start": 7678.3, + "end": 7680.94, + "probability": 0.7563 + }, + { + "start": 7681.04, + "end": 7681.94, + "probability": 0.8014 + }, + { + "start": 7681.94, + "end": 7682.94, + "probability": 0.72 + }, + { + "start": 7683.04, + "end": 7683.96, + "probability": 0.8975 + }, + { + "start": 7684.42, + "end": 7685.96, + "probability": 0.973 + }, + { + "start": 7686.5, + "end": 7687.96, + "probability": 0.9511 + }, + { + "start": 7688.3, + "end": 7690.46, + "probability": 0.9976 + }, + { + "start": 7690.9, + "end": 7695.52, + "probability": 0.9976 + }, + { + "start": 7695.98, + "end": 7696.52, + "probability": 0.5015 + }, + { + "start": 7697.64, + "end": 7702.03, + "probability": 0.208 + }, + { + "start": 7702.95, + "end": 7705.54, + "probability": 0.45 + }, + { + "start": 7706.52, + "end": 7711.3, + "probability": 0.9017 + }, + { + "start": 7712.48, + "end": 7717.06, + "probability": 0.7874 + }, + { + "start": 7717.86, + "end": 7722.18, + "probability": 0.9425 + }, + { + "start": 7722.22, + "end": 7726.94, + "probability": 0.9414 + }, + { + "start": 7727.18, + "end": 7727.76, + "probability": 0.9036 + }, + { + "start": 7728.14, + "end": 7729.78, + "probability": 0.9542 + }, + { + "start": 7730.0, + "end": 7735.46, + "probability": 0.8065 + }, + { + "start": 7735.54, + "end": 7736.12, + "probability": 0.1639 + }, + { + "start": 7736.12, + "end": 7740.44, + "probability": 0.8995 + }, + { + "start": 7740.5, + "end": 7742.12, + "probability": 0.9865 + }, + { + "start": 7742.52, + "end": 7745.3, + "probability": 0.9932 + }, + { + "start": 7745.6, + "end": 7747.56, + "probability": 0.8154 + }, + { + "start": 7748.22, + "end": 7752.38, + "probability": 0.8788 + }, + { + "start": 7752.76, + "end": 7755.0, + "probability": 0.9819 + }, + { + "start": 7755.38, + "end": 7759.04, + "probability": 0.9588 + }, + { + "start": 7759.08, + "end": 7759.79, + "probability": 0.9749 + }, + { + "start": 7760.44, + "end": 7761.5, + "probability": 0.6405 + }, + { + "start": 7761.56, + "end": 7764.16, + "probability": 0.9315 + }, + { + "start": 7764.16, + "end": 7764.5, + "probability": 0.2358 + }, + { + "start": 7764.98, + "end": 7765.28, + "probability": 0.675 + }, + { + "start": 7765.34, + "end": 7770.36, + "probability": 0.8367 + }, + { + "start": 7770.76, + "end": 7772.5, + "probability": 0.8328 + }, + { + "start": 7772.86, + "end": 7773.96, + "probability": 0.8871 + }, + { + "start": 7774.08, + "end": 7774.3, + "probability": 0.8574 + }, + { + "start": 7774.44, + "end": 7776.92, + "probability": 0.9609 + }, + { + "start": 7776.92, + "end": 7779.9, + "probability": 0.9943 + }, + { + "start": 7780.3, + "end": 7781.94, + "probability": 0.9985 + }, + { + "start": 7782.4, + "end": 7783.26, + "probability": 0.835 + }, + { + "start": 7783.46, + "end": 7784.34, + "probability": 0.9756 + }, + { + "start": 7784.92, + "end": 7788.92, + "probability": 0.983 + }, + { + "start": 7788.98, + "end": 7792.42, + "probability": 0.998 + }, + { + "start": 7793.16, + "end": 7794.78, + "probability": 0.7109 + }, + { + "start": 7795.18, + "end": 7796.74, + "probability": 0.9669 + }, + { + "start": 7797.34, + "end": 7807.9, + "probability": 0.9817 + }, + { + "start": 7808.98, + "end": 7811.4, + "probability": 0.732 + }, + { + "start": 7811.56, + "end": 7813.03, + "probability": 0.9429 + }, + { + "start": 7814.34, + "end": 7816.9, + "probability": 0.9802 + }, + { + "start": 7817.4, + "end": 7820.46, + "probability": 0.9177 + }, + { + "start": 7820.6, + "end": 7821.23, + "probability": 0.9912 + }, + { + "start": 7822.06, + "end": 7824.12, + "probability": 0.9094 + }, + { + "start": 7824.46, + "end": 7825.84, + "probability": 0.8636 + }, + { + "start": 7825.92, + "end": 7828.48, + "probability": 0.7397 + }, + { + "start": 7828.66, + "end": 7830.78, + "probability": 0.6906 + }, + { + "start": 7831.0, + "end": 7831.44, + "probability": 0.223 + }, + { + "start": 7833.18, + "end": 7837.92, + "probability": 0.2487 + }, + { + "start": 7845.42, + "end": 7848.28, + "probability": 0.8735 + }, + { + "start": 7848.32, + "end": 7851.88, + "probability": 0.9724 + }, + { + "start": 7852.24, + "end": 7854.38, + "probability": 0.9744 + }, + { + "start": 7854.74, + "end": 7855.82, + "probability": 0.5363 + }, + { + "start": 7856.14, + "end": 7858.16, + "probability": 0.8957 + }, + { + "start": 7858.76, + "end": 7861.12, + "probability": 0.8075 + }, + { + "start": 7863.06, + "end": 7864.86, + "probability": 0.8807 + }, + { + "start": 7865.26, + "end": 7867.4, + "probability": 0.9651 + }, + { + "start": 7868.37, + "end": 7869.72, + "probability": 0.9684 + }, + { + "start": 7870.2, + "end": 7871.4, + "probability": 0.7651 + }, + { + "start": 7871.54, + "end": 7873.38, + "probability": 0.8777 + }, + { + "start": 7873.82, + "end": 7876.56, + "probability": 0.998 + }, + { + "start": 7876.98, + "end": 7879.13, + "probability": 0.9889 + }, + { + "start": 7879.72, + "end": 7882.48, + "probability": 0.9757 + }, + { + "start": 7882.58, + "end": 7883.6, + "probability": 0.827 + }, + { + "start": 7883.84, + "end": 7885.36, + "probability": 0.9495 + }, + { + "start": 7885.6, + "end": 7892.06, + "probability": 0.9569 + }, + { + "start": 7892.44, + "end": 7894.68, + "probability": 0.9452 + }, + { + "start": 7895.1, + "end": 7897.0, + "probability": 0.6961 + }, + { + "start": 7897.48, + "end": 7898.84, + "probability": 0.6854 + }, + { + "start": 7899.75, + "end": 7901.7, + "probability": 0.7085 + }, + { + "start": 7902.54, + "end": 7904.06, + "probability": 0.6772 + }, + { + "start": 7904.32, + "end": 7906.44, + "probability": 0.7717 + }, + { + "start": 7907.06, + "end": 7907.8, + "probability": 0.1832 + }, + { + "start": 7907.8, + "end": 7911.36, + "probability": 0.7069 + }, + { + "start": 7911.36, + "end": 7911.44, + "probability": 0.1467 + }, + { + "start": 7911.74, + "end": 7911.94, + "probability": 0.3741 + }, + { + "start": 7911.94, + "end": 7914.38, + "probability": 0.5612 + }, + { + "start": 7914.44, + "end": 7916.22, + "probability": 0.6381 + }, + { + "start": 7916.22, + "end": 7916.24, + "probability": 0.4727 + }, + { + "start": 7916.24, + "end": 7916.64, + "probability": 0.2541 + }, + { + "start": 7917.26, + "end": 7918.12, + "probability": 0.8416 + }, + { + "start": 7920.28, + "end": 7926.78, + "probability": 0.6654 + }, + { + "start": 7927.06, + "end": 7928.32, + "probability": 0.8491 + }, + { + "start": 7928.84, + "end": 7929.66, + "probability": 0.4501 + }, + { + "start": 7929.74, + "end": 7930.92, + "probability": 0.9616 + }, + { + "start": 7930.98, + "end": 7932.92, + "probability": 0.8774 + }, + { + "start": 7932.96, + "end": 7933.62, + "probability": 0.8309 + }, + { + "start": 7933.68, + "end": 7934.36, + "probability": 0.7747 + }, + { + "start": 7934.44, + "end": 7936.67, + "probability": 0.8137 + }, + { + "start": 7937.22, + "end": 7937.78, + "probability": 0.5438 + }, + { + "start": 7938.06, + "end": 7939.68, + "probability": 0.7894 + }, + { + "start": 7939.7, + "end": 7942.48, + "probability": 0.9854 + }, + { + "start": 7942.92, + "end": 7945.56, + "probability": 0.8143 + }, + { + "start": 7945.86, + "end": 7947.66, + "probability": 0.9951 + }, + { + "start": 7948.0, + "end": 7948.58, + "probability": 0.8127 + }, + { + "start": 7948.8, + "end": 7949.78, + "probability": 0.8017 + }, + { + "start": 7950.12, + "end": 7953.06, + "probability": 0.9967 + }, + { + "start": 7953.16, + "end": 7953.6, + "probability": 0.8122 + }, + { + "start": 7953.68, + "end": 7955.08, + "probability": 0.9451 + }, + { + "start": 7955.3, + "end": 7956.14, + "probability": 0.9213 + }, + { + "start": 7956.38, + "end": 7957.1, + "probability": 0.7511 + }, + { + "start": 7957.38, + "end": 7959.62, + "probability": 0.7552 + }, + { + "start": 7959.74, + "end": 7960.25, + "probability": 0.9507 + }, + { + "start": 7960.42, + "end": 7960.81, + "probability": 0.9606 + }, + { + "start": 7961.64, + "end": 7962.32, + "probability": 0.9717 + }, + { + "start": 7963.02, + "end": 7964.33, + "probability": 0.8267 + }, + { + "start": 7965.2, + "end": 7966.14, + "probability": 0.8345 + }, + { + "start": 7966.16, + "end": 7966.92, + "probability": 0.9806 + }, + { + "start": 7967.06, + "end": 7967.72, + "probability": 0.716 + }, + { + "start": 7967.78, + "end": 7968.62, + "probability": 0.9641 + }, + { + "start": 7968.94, + "end": 7970.14, + "probability": 0.9546 + }, + { + "start": 7970.46, + "end": 7971.86, + "probability": 0.9899 + }, + { + "start": 7971.96, + "end": 7976.48, + "probability": 0.9831 + }, + { + "start": 7976.84, + "end": 7978.06, + "probability": 0.7752 + }, + { + "start": 7978.34, + "end": 7978.74, + "probability": 0.7896 + }, + { + "start": 7978.84, + "end": 7982.62, + "probability": 0.9396 + }, + { + "start": 7982.62, + "end": 7987.68, + "probability": 0.9395 + }, + { + "start": 7987.74, + "end": 7988.68, + "probability": 0.8582 + }, + { + "start": 7989.02, + "end": 7989.82, + "probability": 0.6849 + }, + { + "start": 7990.9, + "end": 7994.38, + "probability": 0.856 + }, + { + "start": 7994.86, + "end": 7995.6, + "probability": 0.6578 + }, + { + "start": 7996.26, + "end": 7998.06, + "probability": 0.9901 + }, + { + "start": 7998.22, + "end": 7999.14, + "probability": 0.8728 + }, + { + "start": 7999.46, + "end": 8000.84, + "probability": 0.9612 + }, + { + "start": 8001.2, + "end": 8002.58, + "probability": 0.9067 + }, + { + "start": 8002.62, + "end": 8002.76, + "probability": 0.4052 + }, + { + "start": 8002.9, + "end": 8006.72, + "probability": 0.8641 + }, + { + "start": 8006.72, + "end": 8009.1, + "probability": 0.9896 + }, + { + "start": 8009.5, + "end": 8010.13, + "probability": 0.9705 + }, + { + "start": 8010.44, + "end": 8011.12, + "probability": 0.4741 + }, + { + "start": 8011.52, + "end": 8014.88, + "probability": 0.9556 + }, + { + "start": 8015.32, + "end": 8016.24, + "probability": 0.9787 + }, + { + "start": 8016.56, + "end": 8017.32, + "probability": 0.8869 + }, + { + "start": 8017.6, + "end": 8021.76, + "probability": 0.9916 + }, + { + "start": 8022.3, + "end": 8024.31, + "probability": 0.8124 + }, + { + "start": 8024.86, + "end": 8027.08, + "probability": 0.9675 + }, + { + "start": 8027.08, + "end": 8029.82, + "probability": 0.9943 + }, + { + "start": 8030.5, + "end": 8032.68, + "probability": 0.9824 + }, + { + "start": 8033.24, + "end": 8035.96, + "probability": 0.9939 + }, + { + "start": 8036.02, + "end": 8037.82, + "probability": 0.8425 + }, + { + "start": 8038.62, + "end": 8039.96, + "probability": 0.9985 + }, + { + "start": 8040.06, + "end": 8043.22, + "probability": 0.9894 + }, + { + "start": 8044.38, + "end": 8047.97, + "probability": 0.98 + }, + { + "start": 8048.72, + "end": 8051.52, + "probability": 0.7132 + }, + { + "start": 8051.7, + "end": 8055.04, + "probability": 0.9376 + }, + { + "start": 8055.08, + "end": 8056.14, + "probability": 0.9409 + }, + { + "start": 8056.54, + "end": 8058.22, + "probability": 0.9452 + }, + { + "start": 8059.72, + "end": 8061.3, + "probability": 0.994 + }, + { + "start": 8061.62, + "end": 8062.88, + "probability": 0.9961 + }, + { + "start": 8063.16, + "end": 8065.26, + "probability": 0.6889 + }, + { + "start": 8065.34, + "end": 8067.92, + "probability": 0.9238 + }, + { + "start": 8068.6, + "end": 8068.98, + "probability": 0.6221 + }, + { + "start": 8069.06, + "end": 8069.7, + "probability": 0.9637 + }, + { + "start": 8070.08, + "end": 8070.88, + "probability": 0.6831 + }, + { + "start": 8070.94, + "end": 8072.18, + "probability": 0.9206 + }, + { + "start": 8073.1, + "end": 8078.78, + "probability": 0.961 + }, + { + "start": 8078.96, + "end": 8079.7, + "probability": 0.7609 + }, + { + "start": 8079.9, + "end": 8080.48, + "probability": 0.9507 + }, + { + "start": 8080.56, + "end": 8081.74, + "probability": 0.6728 + }, + { + "start": 8081.86, + "end": 8082.58, + "probability": 0.9421 + }, + { + "start": 8082.86, + "end": 8084.02, + "probability": 0.9728 + }, + { + "start": 8084.14, + "end": 8085.58, + "probability": 0.7577 + }, + { + "start": 8086.34, + "end": 8088.42, + "probability": 0.9526 + }, + { + "start": 8088.6, + "end": 8091.78, + "probability": 0.9958 + }, + { + "start": 8091.78, + "end": 8095.12, + "probability": 0.9899 + }, + { + "start": 8095.6, + "end": 8097.4, + "probability": 0.9561 + }, + { + "start": 8097.52, + "end": 8098.82, + "probability": 0.814 + }, + { + "start": 8099.2, + "end": 8100.9, + "probability": 0.9069 + }, + { + "start": 8101.24, + "end": 8105.14, + "probability": 0.9937 + }, + { + "start": 8105.62, + "end": 8106.16, + "probability": 0.8894 + }, + { + "start": 8106.32, + "end": 8106.8, + "probability": 0.7421 + }, + { + "start": 8106.94, + "end": 8107.84, + "probability": 0.7143 + }, + { + "start": 8108.28, + "end": 8109.46, + "probability": 0.2477 + }, + { + "start": 8110.58, + "end": 8113.86, + "probability": 0.9849 + }, + { + "start": 8113.86, + "end": 8118.06, + "probability": 0.9499 + }, + { + "start": 8118.44, + "end": 8119.52, + "probability": 0.8187 + }, + { + "start": 8119.9, + "end": 8120.33, + "probability": 0.6301 + }, + { + "start": 8120.94, + "end": 8122.04, + "probability": 0.6128 + }, + { + "start": 8122.08, + "end": 8122.98, + "probability": 0.2523 + }, + { + "start": 8123.12, + "end": 8124.8, + "probability": 0.9004 + }, + { + "start": 8124.9, + "end": 8125.14, + "probability": 0.9239 + }, + { + "start": 8125.32, + "end": 8127.5, + "probability": 0.5757 + }, + { + "start": 8127.92, + "end": 8129.46, + "probability": 0.9231 + }, + { + "start": 8130.16, + "end": 8131.18, + "probability": 0.5517 + }, + { + "start": 8132.24, + "end": 8132.48, + "probability": 0.5057 + }, + { + "start": 8132.5, + "end": 8133.86, + "probability": 0.7805 + }, + { + "start": 8133.92, + "end": 8134.42, + "probability": 0.991 + }, + { + "start": 8134.96, + "end": 8138.66, + "probability": 0.9951 + }, + { + "start": 8140.94, + "end": 8141.74, + "probability": 0.6328 + }, + { + "start": 8141.9, + "end": 8141.9, + "probability": 0.8379 + }, + { + "start": 8141.9, + "end": 8145.26, + "probability": 0.96 + }, + { + "start": 8145.9, + "end": 8147.42, + "probability": 0.995 + }, + { + "start": 8148.1, + "end": 8150.64, + "probability": 0.972 + }, + { + "start": 8150.98, + "end": 8156.66, + "probability": 0.9893 + }, + { + "start": 8157.14, + "end": 8158.9, + "probability": 0.9548 + }, + { + "start": 8159.06, + "end": 8163.7, + "probability": 0.9475 + }, + { + "start": 8164.14, + "end": 8165.62, + "probability": 0.8844 + }, + { + "start": 8165.9, + "end": 8167.68, + "probability": 0.645 + }, + { + "start": 8167.78, + "end": 8170.58, + "probability": 0.9315 + }, + { + "start": 8172.18, + "end": 8173.9, + "probability": 0.4917 + }, + { + "start": 8177.24, + "end": 8178.48, + "probability": 0.5929 + }, + { + "start": 8178.6, + "end": 8178.64, + "probability": 0.4464 + }, + { + "start": 8178.88, + "end": 8183.7, + "probability": 0.9917 + }, + { + "start": 8184.58, + "end": 8190.5, + "probability": 0.95 + }, + { + "start": 8191.36, + "end": 8196.36, + "probability": 0.9791 + }, + { + "start": 8197.02, + "end": 8202.42, + "probability": 0.9976 + }, + { + "start": 8203.0, + "end": 8204.2, + "probability": 0.7539 + }, + { + "start": 8204.92, + "end": 8208.68, + "probability": 0.7057 + }, + { + "start": 8209.7, + "end": 8213.04, + "probability": 0.9912 + }, + { + "start": 8213.76, + "end": 8218.06, + "probability": 0.887 + }, + { + "start": 8218.2, + "end": 8221.94, + "probability": 0.9885 + }, + { + "start": 8221.94, + "end": 8226.88, + "probability": 0.9819 + }, + { + "start": 8227.32, + "end": 8229.16, + "probability": 0.5929 + }, + { + "start": 8229.78, + "end": 8233.26, + "probability": 0.9956 + }, + { + "start": 8233.88, + "end": 8234.54, + "probability": 0.86 + }, + { + "start": 8236.26, + "end": 8243.84, + "probability": 0.9976 + }, + { + "start": 8243.86, + "end": 8245.34, + "probability": 0.4828 + }, + { + "start": 8245.82, + "end": 8247.48, + "probability": 0.9641 + }, + { + "start": 8247.56, + "end": 8248.42, + "probability": 0.6067 + }, + { + "start": 8248.5, + "end": 8250.14, + "probability": 0.9926 + }, + { + "start": 8250.54, + "end": 8251.83, + "probability": 0.9456 + }, + { + "start": 8252.38, + "end": 8254.6, + "probability": 0.9946 + }, + { + "start": 8255.12, + "end": 8256.86, + "probability": 0.9961 + }, + { + "start": 8257.46, + "end": 8260.38, + "probability": 0.917 + }, + { + "start": 8261.02, + "end": 8263.78, + "probability": 0.9814 + }, + { + "start": 8263.84, + "end": 8269.3, + "probability": 0.918 + }, + { + "start": 8269.42, + "end": 8270.82, + "probability": 0.9234 + }, + { + "start": 8271.28, + "end": 8272.66, + "probability": 0.9007 + }, + { + "start": 8273.36, + "end": 8275.24, + "probability": 0.8206 + }, + { + "start": 8275.34, + "end": 8279.66, + "probability": 0.9738 + }, + { + "start": 8280.04, + "end": 8281.56, + "probability": 0.5619 + }, + { + "start": 8281.56, + "end": 8281.78, + "probability": 0.4518 + }, + { + "start": 8281.88, + "end": 8284.12, + "probability": 0.9802 + }, + { + "start": 8284.76, + "end": 8287.8, + "probability": 0.7139 + }, + { + "start": 8289.24, + "end": 8290.98, + "probability": 0.6705 + }, + { + "start": 8292.14, + "end": 8294.04, + "probability": 0.9193 + }, + { + "start": 8294.24, + "end": 8297.22, + "probability": 0.9808 + }, + { + "start": 8297.96, + "end": 8300.66, + "probability": 0.9868 + }, + { + "start": 8301.16, + "end": 8305.24, + "probability": 0.9756 + }, + { + "start": 8305.94, + "end": 8308.29, + "probability": 0.9518 + }, + { + "start": 8309.08, + "end": 8310.78, + "probability": 0.9075 + }, + { + "start": 8311.6, + "end": 8315.2, + "probability": 0.9675 + }, + { + "start": 8315.36, + "end": 8315.96, + "probability": 0.9604 + }, + { + "start": 8316.4, + "end": 8318.7, + "probability": 0.9854 + }, + { + "start": 8318.8, + "end": 8325.06, + "probability": 0.9138 + }, + { + "start": 8325.5, + "end": 8327.8, + "probability": 0.9983 + }, + { + "start": 8328.2, + "end": 8332.22, + "probability": 0.9532 + }, + { + "start": 8332.66, + "end": 8336.82, + "probability": 0.9722 + }, + { + "start": 8337.46, + "end": 8342.22, + "probability": 0.9929 + }, + { + "start": 8342.22, + "end": 8345.93, + "probability": 0.9956 + }, + { + "start": 8346.66, + "end": 8348.42, + "probability": 0.4995 + }, + { + "start": 8348.64, + "end": 8349.26, + "probability": 0.7219 + }, + { + "start": 8349.26, + "end": 8350.08, + "probability": 0.5301 + }, + { + "start": 8350.78, + "end": 8355.48, + "probability": 0.9661 + }, + { + "start": 8355.56, + "end": 8357.9, + "probability": 0.9438 + }, + { + "start": 8358.52, + "end": 8359.38, + "probability": 0.8907 + }, + { + "start": 8360.08, + "end": 8362.56, + "probability": 0.8683 + }, + { + "start": 8362.64, + "end": 8365.01, + "probability": 0.9973 + }, + { + "start": 8366.12, + "end": 8370.54, + "probability": 0.9694 + }, + { + "start": 8371.76, + "end": 8376.46, + "probability": 0.9916 + }, + { + "start": 8377.16, + "end": 8384.56, + "probability": 0.9992 + }, + { + "start": 8384.76, + "end": 8385.04, + "probability": 0.2463 + }, + { + "start": 8385.06, + "end": 8386.5, + "probability": 0.7947 + }, + { + "start": 8386.98, + "end": 8389.08, + "probability": 0.9726 + }, + { + "start": 8389.4, + "end": 8390.32, + "probability": 0.7249 + }, + { + "start": 8391.5, + "end": 8393.08, + "probability": 0.8794 + }, + { + "start": 8393.48, + "end": 8395.26, + "probability": 0.9841 + }, + { + "start": 8395.72, + "end": 8396.1, + "probability": 0.7694 + }, + { + "start": 8396.3, + "end": 8397.55, + "probability": 0.9313 + }, + { + "start": 8398.0, + "end": 8398.54, + "probability": 0.8032 + }, + { + "start": 8400.02, + "end": 8400.46, + "probability": 0.8941 + }, + { + "start": 8400.48, + "end": 8401.22, + "probability": 0.8412 + }, + { + "start": 8401.3, + "end": 8402.16, + "probability": 0.9679 + }, + { + "start": 8402.18, + "end": 8404.74, + "probability": 0.8505 + }, + { + "start": 8404.88, + "end": 8407.84, + "probability": 0.9907 + }, + { + "start": 8408.7, + "end": 8416.3, + "probability": 0.9315 + }, + { + "start": 8417.02, + "end": 8419.88, + "probability": 0.9937 + }, + { + "start": 8420.04, + "end": 8425.2, + "probability": 0.8726 + }, + { + "start": 8427.3, + "end": 8429.54, + "probability": 0.7565 + }, + { + "start": 8429.54, + "end": 8434.4, + "probability": 0.9428 + }, + { + "start": 8434.56, + "end": 8439.12, + "probability": 0.9914 + }, + { + "start": 8439.26, + "end": 8440.36, + "probability": 0.8916 + }, + { + "start": 8440.98, + "end": 8448.6, + "probability": 0.9948 + }, + { + "start": 8448.84, + "end": 8453.61, + "probability": 0.9966 + }, + { + "start": 8454.44, + "end": 8457.44, + "probability": 0.9407 + }, + { + "start": 8458.16, + "end": 8464.34, + "probability": 0.9847 + }, + { + "start": 8464.78, + "end": 8470.0, + "probability": 0.9995 + }, + { + "start": 8470.0, + "end": 8476.32, + "probability": 0.9986 + }, + { + "start": 8476.46, + "end": 8482.12, + "probability": 0.9971 + }, + { + "start": 8482.62, + "end": 8485.5, + "probability": 0.9978 + }, + { + "start": 8486.62, + "end": 8488.8, + "probability": 0.7032 + }, + { + "start": 8490.68, + "end": 8494.32, + "probability": 0.8081 + }, + { + "start": 8494.9, + "end": 8498.42, + "probability": 0.8757 + }, + { + "start": 8498.86, + "end": 8500.96, + "probability": 0.9561 + }, + { + "start": 8501.16, + "end": 8503.3, + "probability": 0.9218 + }, + { + "start": 8503.58, + "end": 8508.68, + "probability": 0.9532 + }, + { + "start": 8509.1, + "end": 8512.36, + "probability": 0.8511 + }, + { + "start": 8513.02, + "end": 8513.42, + "probability": 0.4374 + }, + { + "start": 8513.48, + "end": 8516.62, + "probability": 0.9685 + }, + { + "start": 8516.84, + "end": 8520.88, + "probability": 0.9039 + }, + { + "start": 8521.74, + "end": 8526.72, + "probability": 0.9662 + }, + { + "start": 8527.02, + "end": 8531.52, + "probability": 0.9441 + }, + { + "start": 8532.08, + "end": 8534.08, + "probability": 0.8823 + }, + { + "start": 8534.46, + "end": 8537.08, + "probability": 0.9481 + }, + { + "start": 8538.82, + "end": 8542.74, + "probability": 0.9924 + }, + { + "start": 8542.86, + "end": 8543.28, + "probability": 0.4721 + }, + { + "start": 8544.38, + "end": 8547.18, + "probability": 0.8506 + }, + { + "start": 8547.74, + "end": 8554.2, + "probability": 0.9927 + }, + { + "start": 8554.2, + "end": 8559.92, + "probability": 0.9993 + }, + { + "start": 8560.02, + "end": 8565.84, + "probability": 0.9979 + }, + { + "start": 8565.84, + "end": 8570.46, + "probability": 0.9994 + }, + { + "start": 8570.9, + "end": 8575.58, + "probability": 0.9736 + }, + { + "start": 8575.58, + "end": 8579.48, + "probability": 0.9944 + }, + { + "start": 8579.96, + "end": 8582.74, + "probability": 0.9371 + }, + { + "start": 8583.18, + "end": 8590.0, + "probability": 0.9824 + }, + { + "start": 8590.46, + "end": 8593.8, + "probability": 0.9386 + }, + { + "start": 8593.8, + "end": 8600.12, + "probability": 0.9241 + }, + { + "start": 8600.34, + "end": 8601.3, + "probability": 0.7559 + }, + { + "start": 8601.38, + "end": 8605.04, + "probability": 0.9907 + }, + { + "start": 8605.7, + "end": 8607.58, + "probability": 0.9748 + }, + { + "start": 8607.64, + "end": 8610.24, + "probability": 0.9596 + }, + { + "start": 8611.34, + "end": 8616.28, + "probability": 0.9422 + }, + { + "start": 8617.14, + "end": 8624.36, + "probability": 0.9756 + }, + { + "start": 8624.88, + "end": 8628.94, + "probability": 0.9677 + }, + { + "start": 8629.54, + "end": 8632.08, + "probability": 0.9903 + }, + { + "start": 8632.62, + "end": 8634.76, + "probability": 0.9949 + }, + { + "start": 8635.28, + "end": 8642.76, + "probability": 0.9972 + }, + { + "start": 8642.76, + "end": 8650.6, + "probability": 0.9888 + }, + { + "start": 8651.36, + "end": 8655.54, + "probability": 0.9652 + }, + { + "start": 8655.74, + "end": 8657.86, + "probability": 0.9432 + }, + { + "start": 8658.42, + "end": 8660.24, + "probability": 0.96 + }, + { + "start": 8660.76, + "end": 8666.08, + "probability": 0.9718 + }, + { + "start": 8666.58, + "end": 8667.54, + "probability": 0.4724 + }, + { + "start": 8667.62, + "end": 8669.12, + "probability": 0.7924 + }, + { + "start": 8669.44, + "end": 8670.0, + "probability": 0.8237 + }, + { + "start": 8670.36, + "end": 8670.98, + "probability": 0.6361 + }, + { + "start": 8671.04, + "end": 8672.3, + "probability": 0.8998 + }, + { + "start": 8672.34, + "end": 8672.7, + "probability": 0.8649 + }, + { + "start": 8672.74, + "end": 8674.84, + "probability": 0.9237 + }, + { + "start": 8675.32, + "end": 8677.54, + "probability": 0.8226 + }, + { + "start": 8677.91, + "end": 8680.24, + "probability": 0.8522 + }, + { + "start": 8680.28, + "end": 8680.82, + "probability": 0.8523 + }, + { + "start": 8681.2, + "end": 8682.04, + "probability": 0.8417 + }, + { + "start": 8682.28, + "end": 8683.4, + "probability": 0.9233 + }, + { + "start": 8684.04, + "end": 8686.94, + "probability": 0.9968 + }, + { + "start": 8687.74, + "end": 8690.04, + "probability": 0.9613 + }, + { + "start": 8690.14, + "end": 8690.9, + "probability": 0.8111 + }, + { + "start": 8690.96, + "end": 8695.9, + "probability": 0.9902 + }, + { + "start": 8695.9, + "end": 8700.96, + "probability": 0.9971 + }, + { + "start": 8701.62, + "end": 8702.3, + "probability": 0.8344 + }, + { + "start": 8702.92, + "end": 8705.36, + "probability": 0.9778 + }, + { + "start": 8705.72, + "end": 8706.5, + "probability": 0.6964 + }, + { + "start": 8706.94, + "end": 8708.3, + "probability": 0.6963 + }, + { + "start": 8708.36, + "end": 8709.64, + "probability": 0.9678 + }, + { + "start": 8709.96, + "end": 8711.42, + "probability": 0.8604 + }, + { + "start": 8712.08, + "end": 8715.54, + "probability": 0.8676 + }, + { + "start": 8715.54, + "end": 8718.9, + "probability": 0.9645 + }, + { + "start": 8719.0, + "end": 8724.1, + "probability": 0.9943 + }, + { + "start": 8724.54, + "end": 8730.62, + "probability": 0.9268 + }, + { + "start": 8731.1, + "end": 8731.92, + "probability": 0.9484 + }, + { + "start": 8732.1, + "end": 8733.24, + "probability": 0.7451 + }, + { + "start": 8733.64, + "end": 8734.3, + "probability": 0.541 + }, + { + "start": 8734.48, + "end": 8735.1, + "probability": 0.9034 + }, + { + "start": 8735.52, + "end": 8737.88, + "probability": 0.9528 + }, + { + "start": 8737.94, + "end": 8738.44, + "probability": 0.8604 + }, + { + "start": 8738.58, + "end": 8738.92, + "probability": 0.5519 + }, + { + "start": 8739.22, + "end": 8740.38, + "probability": 0.4578 + }, + { + "start": 8741.04, + "end": 8743.42, + "probability": 0.8217 + }, + { + "start": 8744.96, + "end": 8746.14, + "probability": 0.8456 + }, + { + "start": 8747.2, + "end": 8750.8, + "probability": 0.919 + }, + { + "start": 8751.38, + "end": 8754.1, + "probability": 0.9967 + }, + { + "start": 8754.9, + "end": 8756.54, + "probability": 0.7525 + }, + { + "start": 8757.46, + "end": 8762.44, + "probability": 0.8503 + }, + { + "start": 8763.38, + "end": 8764.18, + "probability": 0.7772 + }, + { + "start": 8764.9, + "end": 8767.5, + "probability": 0.9938 + }, + { + "start": 8767.61, + "end": 8771.69, + "probability": 0.9953 + }, + { + "start": 8772.26, + "end": 8777.46, + "probability": 0.7588 + }, + { + "start": 8777.98, + "end": 8778.8, + "probability": 0.3051 + }, + { + "start": 8779.26, + "end": 8781.12, + "probability": 0.791 + }, + { + "start": 8781.26, + "end": 8782.14, + "probability": 0.7829 + }, + { + "start": 8782.76, + "end": 8785.46, + "probability": 0.0747 + }, + { + "start": 8786.23, + "end": 8790.97, + "probability": 0.2006 + }, + { + "start": 8798.78, + "end": 8799.74, + "probability": 0.3342 + }, + { + "start": 8799.74, + "end": 8800.0, + "probability": 0.0228 + }, + { + "start": 8800.1, + "end": 8802.28, + "probability": 0.5559 + }, + { + "start": 8802.72, + "end": 8805.69, + "probability": 0.9727 + }, + { + "start": 8806.48, + "end": 8810.2, + "probability": 0.7787 + }, + { + "start": 8810.36, + "end": 8813.46, + "probability": 0.9105 + }, + { + "start": 8815.8, + "end": 8821.94, + "probability": 0.9773 + }, + { + "start": 8822.08, + "end": 8823.24, + "probability": 0.6617 + }, + { + "start": 8823.76, + "end": 8826.02, + "probability": 0.9764 + }, + { + "start": 8826.82, + "end": 8827.3, + "probability": 0.6259 + }, + { + "start": 8829.22, + "end": 8830.76, + "probability": 0.6166 + }, + { + "start": 8831.18, + "end": 8832.86, + "probability": 0.3532 + }, + { + "start": 8833.3, + "end": 8834.8, + "probability": 0.9722 + }, + { + "start": 8835.32, + "end": 8835.86, + "probability": 0.2555 + }, + { + "start": 8836.06, + "end": 8838.38, + "probability": 0.6333 + }, + { + "start": 8838.46, + "end": 8839.32, + "probability": 0.452 + }, + { + "start": 8839.68, + "end": 8841.86, + "probability": 0.9021 + }, + { + "start": 8845.18, + "end": 8847.82, + "probability": 0.1625 + }, + { + "start": 8847.82, + "end": 8848.84, + "probability": 0.0994 + }, + { + "start": 8850.78, + "end": 8852.96, + "probability": 0.9713 + }, + { + "start": 8854.16, + "end": 8855.39, + "probability": 0.497 + }, + { + "start": 8857.6, + "end": 8858.12, + "probability": 0.4218 + }, + { + "start": 8858.12, + "end": 8858.28, + "probability": 0.0462 + }, + { + "start": 8858.48, + "end": 8860.48, + "probability": 0.5422 + }, + { + "start": 8860.96, + "end": 8864.2, + "probability": 0.8683 + }, + { + "start": 8865.1, + "end": 8867.62, + "probability": 0.9803 + }, + { + "start": 8868.28, + "end": 8870.88, + "probability": 0.98 + }, + { + "start": 8871.94, + "end": 8874.38, + "probability": 0.646 + }, + { + "start": 8874.9, + "end": 8880.02, + "probability": 0.9553 + }, + { + "start": 8880.38, + "end": 8886.84, + "probability": 0.7774 + }, + { + "start": 8887.34, + "end": 8888.4, + "probability": 0.6963 + }, + { + "start": 8888.66, + "end": 8890.92, + "probability": 0.6072 + }, + { + "start": 8890.92, + "end": 8892.32, + "probability": 0.774 + }, + { + "start": 8895.86, + "end": 8901.22, + "probability": 0.4897 + }, + { + "start": 8902.24, + "end": 8906.56, + "probability": 0.2528 + }, + { + "start": 8907.08, + "end": 8907.42, + "probability": 0.1105 + }, + { + "start": 8908.06, + "end": 8911.38, + "probability": 0.4285 + }, + { + "start": 8911.96, + "end": 8915.44, + "probability": 0.9608 + }, + { + "start": 8916.26, + "end": 8919.28, + "probability": 0.7482 + }, + { + "start": 8921.46, + "end": 8926.98, + "probability": 0.599 + }, + { + "start": 8928.02, + "end": 8931.96, + "probability": 0.9728 + }, + { + "start": 8931.96, + "end": 8935.94, + "probability": 0.9845 + }, + { + "start": 8936.4, + "end": 8938.72, + "probability": 0.8099 + }, + { + "start": 8942.72, + "end": 8943.62, + "probability": 0.379 + }, + { + "start": 8944.38, + "end": 8946.58, + "probability": 0.4917 + }, + { + "start": 8946.86, + "end": 8947.58, + "probability": 0.6509 + }, + { + "start": 8947.96, + "end": 8948.62, + "probability": 0.6633 + }, + { + "start": 8948.62, + "end": 8949.66, + "probability": 0.7746 + }, + { + "start": 8949.82, + "end": 8951.24, + "probability": 0.6565 + }, + { + "start": 8953.28, + "end": 8955.78, + "probability": 0.004 + }, + { + "start": 8956.46, + "end": 8959.02, + "probability": 0.0313 + }, + { + "start": 8961.22, + "end": 8961.97, + "probability": 0.0741 + }, + { + "start": 8964.8, + "end": 8966.7, + "probability": 0.208 + }, + { + "start": 8967.32, + "end": 8969.64, + "probability": 0.5609 + }, + { + "start": 8969.8, + "end": 8973.12, + "probability": 0.9863 + }, + { + "start": 8973.12, + "end": 8977.62, + "probability": 0.8331 + }, + { + "start": 8978.12, + "end": 8978.9, + "probability": 0.7621 + }, + { + "start": 8979.4, + "end": 8981.44, + "probability": 0.7127 + }, + { + "start": 8982.24, + "end": 8983.52, + "probability": 0.3246 + }, + { + "start": 8984.3, + "end": 8992.98, + "probability": 0.943 + }, + { + "start": 8993.54, + "end": 8994.86, + "probability": 0.3072 + }, + { + "start": 8995.82, + "end": 8997.08, + "probability": 0.7799 + }, + { + "start": 8997.66, + "end": 9000.26, + "probability": 0.8358 + }, + { + "start": 9000.96, + "end": 9007.06, + "probability": 0.8861 + }, + { + "start": 9007.06, + "end": 9011.88, + "probability": 0.9922 + }, + { + "start": 9012.3, + "end": 9015.02, + "probability": 0.9982 + }, + { + "start": 9015.3, + "end": 9015.96, + "probability": 0.774 + }, + { + "start": 9017.34, + "end": 9017.34, + "probability": 0.2962 + }, + { + "start": 9017.34, + "end": 9017.48, + "probability": 0.1322 + }, + { + "start": 9017.48, + "end": 9017.84, + "probability": 0.5361 + }, + { + "start": 9017.9, + "end": 9018.98, + "probability": 0.5225 + }, + { + "start": 9019.02, + "end": 9019.86, + "probability": 0.9265 + }, + { + "start": 9020.08, + "end": 9020.64, + "probability": 0.9257 + }, + { + "start": 9021.26, + "end": 9025.74, + "probability": 0.8139 + }, + { + "start": 9027.64, + "end": 9029.96, + "probability": 0.9325 + }, + { + "start": 9036.16, + "end": 9038.3, + "probability": 0.618 + }, + { + "start": 9038.94, + "end": 9040.68, + "probability": 0.8999 + }, + { + "start": 9041.42, + "end": 9042.66, + "probability": 0.8812 + }, + { + "start": 9043.92, + "end": 9046.02, + "probability": 0.6453 + }, + { + "start": 9046.5, + "end": 9049.02, + "probability": 0.8629 + }, + { + "start": 9049.68, + "end": 9053.88, + "probability": 0.9821 + }, + { + "start": 9054.48, + "end": 9055.48, + "probability": 0.9385 + }, + { + "start": 9055.64, + "end": 9056.86, + "probability": 0.7822 + }, + { + "start": 9062.38, + "end": 9064.38, + "probability": 0.9481 + }, + { + "start": 9065.64, + "end": 9067.3, + "probability": 0.6043 + }, + { + "start": 9067.64, + "end": 9068.28, + "probability": 0.9036 + }, + { + "start": 9068.44, + "end": 9071.24, + "probability": 0.9961 + }, + { + "start": 9075.22, + "end": 9079.04, + "probability": 0.9922 + }, + { + "start": 9080.04, + "end": 9081.58, + "probability": 0.9964 + }, + { + "start": 9082.52, + "end": 9084.82, + "probability": 0.8746 + }, + { + "start": 9085.84, + "end": 9087.36, + "probability": 0.9915 + }, + { + "start": 9088.78, + "end": 9092.9, + "probability": 0.9864 + }, + { + "start": 9093.64, + "end": 9095.37, + "probability": 0.081 + }, + { + "start": 9097.48, + "end": 9097.5, + "probability": 0.2926 + }, + { + "start": 9097.5, + "end": 9097.5, + "probability": 0.7351 + }, + { + "start": 9097.5, + "end": 9098.68, + "probability": 0.7754 + }, + { + "start": 9100.16, + "end": 9101.94, + "probability": 0.9966 + }, + { + "start": 9102.52, + "end": 9105.48, + "probability": 0.8446 + }, + { + "start": 9106.34, + "end": 9108.88, + "probability": 0.7923 + }, + { + "start": 9110.72, + "end": 9114.98, + "probability": 0.9185 + }, + { + "start": 9114.98, + "end": 9115.98, + "probability": 0.5781 + }, + { + "start": 9116.38, + "end": 9118.66, + "probability": 0.9211 + }, + { + "start": 9121.79, + "end": 9122.64, + "probability": 0.1312 + }, + { + "start": 9122.64, + "end": 9126.56, + "probability": 0.7858 + }, + { + "start": 9127.04, + "end": 9128.56, + "probability": 0.9899 + }, + { + "start": 9128.76, + "end": 9130.02, + "probability": 0.9995 + }, + { + "start": 9130.36, + "end": 9131.06, + "probability": 0.2101 + }, + { + "start": 9132.02, + "end": 9132.06, + "probability": 0.5663 + }, + { + "start": 9132.06, + "end": 9132.9, + "probability": 0.5013 + }, + { + "start": 9133.8, + "end": 9137.48, + "probability": 0.98 + }, + { + "start": 9137.88, + "end": 9138.68, + "probability": 0.9663 + }, + { + "start": 9138.8, + "end": 9143.3, + "probability": 0.9626 + }, + { + "start": 9143.3, + "end": 9146.7, + "probability": 0.9985 + }, + { + "start": 9146.98, + "end": 9148.04, + "probability": 0.6971 + }, + { + "start": 9148.36, + "end": 9150.24, + "probability": 0.9839 + }, + { + "start": 9150.46, + "end": 9151.02, + "probability": 0.8333 + }, + { + "start": 9151.46, + "end": 9155.7, + "probability": 0.8687 + }, + { + "start": 9155.9, + "end": 9156.43, + "probability": 0.5508 + }, + { + "start": 9157.12, + "end": 9157.7, + "probability": 0.7728 + }, + { + "start": 9157.9, + "end": 9159.7, + "probability": 0.9756 + }, + { + "start": 9161.28, + "end": 9163.12, + "probability": 0.7781 + }, + { + "start": 9163.16, + "end": 9164.0, + "probability": 0.0689 + }, + { + "start": 9164.0, + "end": 9164.0, + "probability": 0.0875 + }, + { + "start": 9164.0, + "end": 9165.87, + "probability": 0.7552 + }, + { + "start": 9166.56, + "end": 9169.82, + "probability": 0.729 + }, + { + "start": 9171.32, + "end": 9172.04, + "probability": 0.5973 + }, + { + "start": 9172.18, + "end": 9174.37, + "probability": 0.9374 + }, + { + "start": 9175.94, + "end": 9177.52, + "probability": 0.1651 + }, + { + "start": 9177.52, + "end": 9178.4, + "probability": 0.5039 + }, + { + "start": 9178.48, + "end": 9180.18, + "probability": 0.6302 + }, + { + "start": 9180.82, + "end": 9185.78, + "probability": 0.8434 + }, + { + "start": 9186.5, + "end": 9187.74, + "probability": 0.1399 + }, + { + "start": 9188.76, + "end": 9189.02, + "probability": 0.0823 + }, + { + "start": 9189.38, + "end": 9189.38, + "probability": 0.1584 + }, + { + "start": 9189.38, + "end": 9191.24, + "probability": 0.9663 + }, + { + "start": 9191.4, + "end": 9196.88, + "probability": 0.8288 + }, + { + "start": 9197.54, + "end": 9198.12, + "probability": 0.5232 + }, + { + "start": 9198.3, + "end": 9199.96, + "probability": 0.9456 + }, + { + "start": 9200.36, + "end": 9203.0, + "probability": 0.9391 + }, + { + "start": 9203.48, + "end": 9204.27, + "probability": 0.9178 + }, + { + "start": 9204.5, + "end": 9205.64, + "probability": 0.9991 + }, + { + "start": 9206.14, + "end": 9206.86, + "probability": 0.7819 + }, + { + "start": 9207.2, + "end": 9208.58, + "probability": 0.9694 + }, + { + "start": 9209.02, + "end": 9210.18, + "probability": 0.6167 + }, + { + "start": 9210.2, + "end": 9211.64, + "probability": 0.3141 + }, + { + "start": 9212.13, + "end": 9214.89, + "probability": 0.5988 + }, + { + "start": 9216.12, + "end": 9219.88, + "probability": 0.9928 + }, + { + "start": 9222.4, + "end": 9224.2, + "probability": 0.3235 + }, + { + "start": 9224.26, + "end": 9225.14, + "probability": 0.9427 + }, + { + "start": 9225.92, + "end": 9229.64, + "probability": 0.5256 + }, + { + "start": 9233.2, + "end": 9233.4, + "probability": 0.0068 + }, + { + "start": 9233.4, + "end": 9233.4, + "probability": 0.4405 + }, + { + "start": 9233.4, + "end": 9234.87, + "probability": 0.9865 + }, + { + "start": 9235.08, + "end": 9236.28, + "probability": 0.0467 + }, + { + "start": 9236.92, + "end": 9239.28, + "probability": 0.9942 + }, + { + "start": 9239.98, + "end": 9241.94, + "probability": 0.388 + }, + { + "start": 9243.46, + "end": 9245.58, + "probability": 0.9609 + }, + { + "start": 9245.58, + "end": 9249.46, + "probability": 0.8321 + }, + { + "start": 9249.5, + "end": 9251.14, + "probability": 0.9749 + }, + { + "start": 9252.32, + "end": 9256.02, + "probability": 0.9513 + }, + { + "start": 9256.72, + "end": 9259.74, + "probability": 0.5307 + }, + { + "start": 9259.86, + "end": 9260.18, + "probability": 0.1904 + }, + { + "start": 9260.18, + "end": 9260.53, + "probability": 0.5264 + }, + { + "start": 9261.72, + "end": 9263.71, + "probability": 0.5972 + }, + { + "start": 9264.3, + "end": 9265.06, + "probability": 0.3126 + }, + { + "start": 9265.78, + "end": 9269.42, + "probability": 0.9277 + }, + { + "start": 9269.48, + "end": 9272.88, + "probability": 0.9311 + }, + { + "start": 9273.02, + "end": 9274.7, + "probability": 0.9943 + }, + { + "start": 9275.58, + "end": 9276.08, + "probability": 0.4991 + }, + { + "start": 9276.22, + "end": 9281.98, + "probability": 0.8877 + }, + { + "start": 9282.12, + "end": 9283.82, + "probability": 0.9419 + }, + { + "start": 9284.68, + "end": 9287.5, + "probability": 0.8267 + }, + { + "start": 9287.56, + "end": 9289.48, + "probability": 0.63 + }, + { + "start": 9289.7, + "end": 9292.66, + "probability": 0.436 + }, + { + "start": 9292.78, + "end": 9295.58, + "probability": 0.5933 + }, + { + "start": 9295.76, + "end": 9296.94, + "probability": 0.7136 + }, + { + "start": 9297.04, + "end": 9298.08, + "probability": 0.587 + }, + { + "start": 9298.12, + "end": 9298.55, + "probability": 0.5046 + }, + { + "start": 9298.86, + "end": 9300.04, + "probability": 0.9172 + }, + { + "start": 9302.24, + "end": 9302.82, + "probability": 0.3808 + }, + { + "start": 9304.48, + "end": 9305.98, + "probability": 0.0209 + }, + { + "start": 9306.51, + "end": 9307.48, + "probability": 0.5083 + }, + { + "start": 9307.48, + "end": 9308.32, + "probability": 0.5949 + }, + { + "start": 9308.92, + "end": 9308.96, + "probability": 0.577 + }, + { + "start": 9308.96, + "end": 9309.14, + "probability": 0.2922 + }, + { + "start": 9309.24, + "end": 9310.0, + "probability": 0.8138 + }, + { + "start": 9310.18, + "end": 9311.72, + "probability": 0.9541 + }, + { + "start": 9312.0, + "end": 9312.86, + "probability": 0.4978 + }, + { + "start": 9316.26, + "end": 9317.34, + "probability": 0.2586 + }, + { + "start": 9318.27, + "end": 9322.08, + "probability": 0.8948 + }, + { + "start": 9322.6, + "end": 9323.58, + "probability": 0.034 + }, + { + "start": 9324.14, + "end": 9324.14, + "probability": 0.026 + }, + { + "start": 9324.14, + "end": 9324.14, + "probability": 0.101 + }, + { + "start": 9324.14, + "end": 9326.3, + "probability": 0.7853 + }, + { + "start": 9327.56, + "end": 9331.74, + "probability": 0.8611 + }, + { + "start": 9331.86, + "end": 9332.26, + "probability": 0.5278 + }, + { + "start": 9333.9, + "end": 9336.24, + "probability": 0.4037 + }, + { + "start": 9337.38, + "end": 9340.52, + "probability": 0.7347 + }, + { + "start": 9341.14, + "end": 9342.56, + "probability": 0.6742 + }, + { + "start": 9343.14, + "end": 9344.82, + "probability": 0.9556 + }, + { + "start": 9345.56, + "end": 9347.74, + "probability": 0.9347 + }, + { + "start": 9348.34, + "end": 9351.64, + "probability": 0.8694 + }, + { + "start": 9352.36, + "end": 9353.42, + "probability": 0.5354 + }, + { + "start": 9354.34, + "end": 9356.42, + "probability": 0.983 + }, + { + "start": 9357.12, + "end": 9358.68, + "probability": 0.9168 + }, + { + "start": 9359.32, + "end": 9361.36, + "probability": 0.8517 + }, + { + "start": 9362.18, + "end": 9365.1, + "probability": 0.9346 + }, + { + "start": 9365.34, + "end": 9366.18, + "probability": 0.8539 + }, + { + "start": 9366.36, + "end": 9368.08, + "probability": 0.9064 + }, + { + "start": 9368.8, + "end": 9371.68, + "probability": 0.8924 + }, + { + "start": 9372.28, + "end": 9374.24, + "probability": 0.0073 + }, + { + "start": 9374.38, + "end": 9376.14, + "probability": 0.8358 + }, + { + "start": 9376.86, + "end": 9378.8, + "probability": 0.2535 + }, + { + "start": 9378.86, + "end": 9378.86, + "probability": 0.1962 + }, + { + "start": 9378.9, + "end": 9380.12, + "probability": 0.6786 + }, + { + "start": 9380.58, + "end": 9385.44, + "probability": 0.8674 + }, + { + "start": 9385.9, + "end": 9387.63, + "probability": 0.7897 + }, + { + "start": 9387.96, + "end": 9388.54, + "probability": 0.469 + }, + { + "start": 9389.26, + "end": 9390.62, + "probability": 0.8862 + }, + { + "start": 9390.7, + "end": 9391.8, + "probability": 0.706 + }, + { + "start": 9391.9, + "end": 9394.56, + "probability": 0.7188 + }, + { + "start": 9394.94, + "end": 9396.2, + "probability": 0.9644 + }, + { + "start": 9396.58, + "end": 9400.26, + "probability": 0.9072 + }, + { + "start": 9400.66, + "end": 9401.22, + "probability": 0.424 + }, + { + "start": 9401.36, + "end": 9403.84, + "probability": 0.7204 + }, + { + "start": 9404.56, + "end": 9405.04, + "probability": 0.0396 + }, + { + "start": 9405.04, + "end": 9406.16, + "probability": 0.59 + }, + { + "start": 9407.75, + "end": 9410.21, + "probability": 0.9431 + }, + { + "start": 9410.74, + "end": 9411.66, + "probability": 0.0716 + }, + { + "start": 9411.66, + "end": 9415.58, + "probability": 0.9658 + }, + { + "start": 9419.48, + "end": 9420.26, + "probability": 0.7134 + }, + { + "start": 9420.5, + "end": 9428.38, + "probability": 0.9442 + }, + { + "start": 9428.62, + "end": 9433.32, + "probability": 0.9898 + }, + { + "start": 9434.24, + "end": 9437.14, + "probability": 0.8871 + }, + { + "start": 9438.0, + "end": 9441.5, + "probability": 0.9985 + }, + { + "start": 9442.6, + "end": 9443.88, + "probability": 0.0907 + }, + { + "start": 9444.48, + "end": 9449.48, + "probability": 0.9979 + }, + { + "start": 9449.94, + "end": 9452.36, + "probability": 0.9951 + }, + { + "start": 9452.74, + "end": 9454.68, + "probability": 0.5485 + }, + { + "start": 9455.14, + "end": 9456.08, + "probability": 0.7333 + }, + { + "start": 9456.98, + "end": 9460.56, + "probability": 0.0796 + }, + { + "start": 9460.56, + "end": 9462.96, + "probability": 0.2409 + }, + { + "start": 9463.54, + "end": 9470.96, + "probability": 0.7364 + }, + { + "start": 9471.4, + "end": 9477.04, + "probability": 0.9694 + }, + { + "start": 9477.62, + "end": 9479.96, + "probability": 0.6152 + }, + { + "start": 9480.1, + "end": 9482.12, + "probability": 0.8958 + }, + { + "start": 9482.2, + "end": 9483.48, + "probability": 0.573 + }, + { + "start": 9483.9, + "end": 9485.35, + "probability": 0.5729 + }, + { + "start": 9485.56, + "end": 9488.28, + "probability": 0.8589 + }, + { + "start": 9488.72, + "end": 9489.84, + "probability": 0.8635 + }, + { + "start": 9490.74, + "end": 9492.7, + "probability": 0.8444 + }, + { + "start": 9492.94, + "end": 9494.22, + "probability": 0.0414 + }, + { + "start": 9494.5, + "end": 9497.1, + "probability": 0.6838 + }, + { + "start": 9497.98, + "end": 9500.02, + "probability": 0.9876 + }, + { + "start": 9500.24, + "end": 9500.88, + "probability": 0.9129 + }, + { + "start": 9501.04, + "end": 9502.32, + "probability": 0.9484 + }, + { + "start": 9502.94, + "end": 9503.86, + "probability": 0.941 + }, + { + "start": 9503.94, + "end": 9507.26, + "probability": 0.868 + }, + { + "start": 9507.84, + "end": 9514.22, + "probability": 0.9777 + }, + { + "start": 9514.52, + "end": 9517.56, + "probability": 0.9632 + }, + { + "start": 9517.98, + "end": 9518.3, + "probability": 0.2673 + }, + { + "start": 9518.34, + "end": 9522.06, + "probability": 0.943 + }, + { + "start": 9522.42, + "end": 9525.16, + "probability": 0.8074 + }, + { + "start": 9525.66, + "end": 9526.78, + "probability": 0.8726 + }, + { + "start": 9527.08, + "end": 9529.48, + "probability": 0.8945 + }, + { + "start": 9529.66, + "end": 9530.82, + "probability": 0.9184 + }, + { + "start": 9531.3, + "end": 9537.9, + "probability": 0.9806 + }, + { + "start": 9538.12, + "end": 9539.82, + "probability": 0.0154 + }, + { + "start": 9540.0, + "end": 9541.56, + "probability": 0.7622 + }, + { + "start": 9541.6, + "end": 9541.67, + "probability": 0.5962 + }, + { + "start": 9542.12, + "end": 9543.86, + "probability": 0.8778 + }, + { + "start": 9544.16, + "end": 9544.23, + "probability": 0.0044 + }, + { + "start": 9548.18, + "end": 9548.18, + "probability": 0.1954 + }, + { + "start": 9548.18, + "end": 9548.18, + "probability": 0.1364 + }, + { + "start": 9548.18, + "end": 9549.14, + "probability": 0.5223 + }, + { + "start": 9549.24, + "end": 9551.8, + "probability": 0.5417 + }, + { + "start": 9553.13, + "end": 9556.48, + "probability": 0.7123 + }, + { + "start": 9556.66, + "end": 9559.38, + "probability": 0.8007 + }, + { + "start": 9560.22, + "end": 9562.3, + "probability": 0.0331 + }, + { + "start": 9562.3, + "end": 9562.3, + "probability": 0.0135 + }, + { + "start": 9562.3, + "end": 9562.3, + "probability": 0.2553 + }, + { + "start": 9562.3, + "end": 9563.78, + "probability": 0.1038 + }, + { + "start": 9564.17, + "end": 9564.38, + "probability": 0.0889 + }, + { + "start": 9564.66, + "end": 9565.92, + "probability": 0.2383 + }, + { + "start": 9566.08, + "end": 9568.84, + "probability": 0.1323 + }, + { + "start": 9568.92, + "end": 9570.28, + "probability": 0.103 + }, + { + "start": 9570.8, + "end": 9571.27, + "probability": 0.0588 + }, + { + "start": 9572.76, + "end": 9580.66, + "probability": 0.9339 + }, + { + "start": 9580.86, + "end": 9585.78, + "probability": 0.8623 + }, + { + "start": 9585.96, + "end": 9587.48, + "probability": 0.7875 + }, + { + "start": 9587.62, + "end": 9588.36, + "probability": 0.7538 + }, + { + "start": 9588.42, + "end": 9589.22, + "probability": 0.9821 + }, + { + "start": 9590.4, + "end": 9594.38, + "probability": 0.9851 + }, + { + "start": 9595.14, + "end": 9596.86, + "probability": 0.9218 + }, + { + "start": 9597.82, + "end": 9600.82, + "probability": 0.965 + }, + { + "start": 9601.58, + "end": 9604.32, + "probability": 0.9827 + }, + { + "start": 9605.46, + "end": 9611.08, + "probability": 0.9888 + }, + { + "start": 9611.9, + "end": 9611.9, + "probability": 0.0262 + }, + { + "start": 9611.9, + "end": 9613.64, + "probability": 0.8167 + }, + { + "start": 9613.78, + "end": 9614.34, + "probability": 0.5945 + }, + { + "start": 9614.42, + "end": 9622.1, + "probability": 0.867 + }, + { + "start": 9624.5, + "end": 9625.74, + "probability": 0.5168 + }, + { + "start": 9625.94, + "end": 9627.6, + "probability": 0.6981 + }, + { + "start": 9627.86, + "end": 9630.59, + "probability": 0.3893 + }, + { + "start": 9631.5, + "end": 9632.36, + "probability": 0.4718 + }, + { + "start": 9632.48, + "end": 9632.58, + "probability": 0.2234 + }, + { + "start": 9632.86, + "end": 9633.9, + "probability": 0.9441 + }, + { + "start": 9634.0, + "end": 9636.98, + "probability": 0.9949 + }, + { + "start": 9637.42, + "end": 9637.9, + "probability": 0.5648 + }, + { + "start": 9638.1, + "end": 9638.31, + "probability": 0.0265 + }, + { + "start": 9638.86, + "end": 9640.18, + "probability": 0.9363 + }, + { + "start": 9640.24, + "end": 9642.12, + "probability": 0.754 + }, + { + "start": 9642.34, + "end": 9643.78, + "probability": 0.9963 + }, + { + "start": 9645.04, + "end": 9652.14, + "probability": 0.9683 + }, + { + "start": 9652.14, + "end": 9655.22, + "probability": 0.9961 + }, + { + "start": 9655.86, + "end": 9660.38, + "probability": 0.991 + }, + { + "start": 9660.86, + "end": 9661.74, + "probability": 0.7051 + }, + { + "start": 9662.08, + "end": 9665.48, + "probability": 0.9291 + }, + { + "start": 9665.94, + "end": 9668.08, + "probability": 0.9893 + }, + { + "start": 9668.14, + "end": 9669.0, + "probability": 0.9572 + }, + { + "start": 9669.74, + "end": 9670.3, + "probability": 0.9592 + }, + { + "start": 9671.62, + "end": 9675.38, + "probability": 0.7378 + }, + { + "start": 9676.12, + "end": 9678.02, + "probability": 0.8913 + }, + { + "start": 9679.2, + "end": 9681.18, + "probability": 0.9868 + }, + { + "start": 9681.8, + "end": 9682.64, + "probability": 0.8934 + }, + { + "start": 9683.44, + "end": 9687.72, + "probability": 0.9894 + }, + { + "start": 9687.72, + "end": 9689.78, + "probability": 0.8519 + }, + { + "start": 9690.32, + "end": 9691.67, + "probability": 0.363 + }, + { + "start": 9692.36, + "end": 9694.64, + "probability": 0.9626 + }, + { + "start": 9695.64, + "end": 9698.08, + "probability": 0.9956 + }, + { + "start": 9698.86, + "end": 9702.3, + "probability": 0.9254 + }, + { + "start": 9702.86, + "end": 9705.12, + "probability": 0.9899 + }, + { + "start": 9705.76, + "end": 9707.38, + "probability": 0.9807 + }, + { + "start": 9707.72, + "end": 9708.02, + "probability": 0.7684 + }, + { + "start": 9708.06, + "end": 9710.86, + "probability": 0.8622 + }, + { + "start": 9710.96, + "end": 9712.92, + "probability": 0.991 + }, + { + "start": 9713.6, + "end": 9720.3, + "probability": 0.9855 + }, + { + "start": 9721.1, + "end": 9722.44, + "probability": 0.6928 + }, + { + "start": 9723.1, + "end": 9724.48, + "probability": 0.9437 + }, + { + "start": 9725.12, + "end": 9732.06, + "probability": 0.9878 + }, + { + "start": 9732.54, + "end": 9736.06, + "probability": 0.9952 + }, + { + "start": 9736.46, + "end": 9738.62, + "probability": 0.9935 + }, + { + "start": 9738.96, + "end": 9740.22, + "probability": 0.8956 + }, + { + "start": 9740.96, + "end": 9742.56, + "probability": 0.3513 + }, + { + "start": 9743.78, + "end": 9745.12, + "probability": 0.0695 + }, + { + "start": 9745.28, + "end": 9746.26, + "probability": 0.9241 + }, + { + "start": 9746.26, + "end": 9747.38, + "probability": 0.9453 + }, + { + "start": 9748.26, + "end": 9751.3, + "probability": 0.0161 + }, + { + "start": 9751.5, + "end": 9752.6, + "probability": 0.2249 + }, + { + "start": 9752.92, + "end": 9754.14, + "probability": 0.3166 + }, + { + "start": 9754.16, + "end": 9755.74, + "probability": 0.9316 + }, + { + "start": 9756.04, + "end": 9758.76, + "probability": 0.9918 + }, + { + "start": 9758.9, + "end": 9760.26, + "probability": 0.9927 + }, + { + "start": 9760.74, + "end": 9760.84, + "probability": 0.4844 + }, + { + "start": 9762.58, + "end": 9762.66, + "probability": 0.015 + }, + { + "start": 9763.12, + "end": 9766.2, + "probability": 0.9966 + }, + { + "start": 9766.52, + "end": 9768.19, + "probability": 0.9985 + }, + { + "start": 9768.56, + "end": 9769.1, + "probability": 0.453 + }, + { + "start": 9769.32, + "end": 9770.52, + "probability": 0.9062 + }, + { + "start": 9770.64, + "end": 9771.32, + "probability": 0.7349 + }, + { + "start": 9771.64, + "end": 9774.12, + "probability": 0.9166 + }, + { + "start": 9774.62, + "end": 9775.82, + "probability": 0.9989 + }, + { + "start": 9776.64, + "end": 9780.74, + "probability": 0.9626 + }, + { + "start": 9780.76, + "end": 9784.08, + "probability": 0.9348 + }, + { + "start": 9784.4, + "end": 9786.0, + "probability": 0.9854 + }, + { + "start": 9786.48, + "end": 9788.1, + "probability": 0.9585 + }, + { + "start": 9788.4, + "end": 9789.78, + "probability": 0.0534 + }, + { + "start": 9790.52, + "end": 9791.36, + "probability": 0.8734 + }, + { + "start": 9792.2, + "end": 9792.68, + "probability": 0.2356 + }, + { + "start": 9792.74, + "end": 9792.74, + "probability": 0.3049 + }, + { + "start": 9792.8, + "end": 9795.18, + "probability": 0.9042 + }, + { + "start": 9795.58, + "end": 9797.1, + "probability": 0.9639 + }, + { + "start": 9798.7, + "end": 9801.82, + "probability": 0.9176 + }, + { + "start": 9803.34, + "end": 9805.26, + "probability": 0.9603 + }, + { + "start": 9806.06, + "end": 9808.66, + "probability": 0.998 + }, + { + "start": 9809.42, + "end": 9814.0, + "probability": 0.9982 + }, + { + "start": 9815.04, + "end": 9815.98, + "probability": 0.7564 + }, + { + "start": 9817.02, + "end": 9818.54, + "probability": 0.9893 + }, + { + "start": 9819.36, + "end": 9822.36, + "probability": 0.9977 + }, + { + "start": 9823.1, + "end": 9827.86, + "probability": 0.9916 + }, + { + "start": 9828.86, + "end": 9831.38, + "probability": 0.9985 + }, + { + "start": 9831.88, + "end": 9833.18, + "probability": 0.0147 + }, + { + "start": 9833.96, + "end": 9836.23, + "probability": 0.5678 + }, + { + "start": 9836.68, + "end": 9839.0, + "probability": 0.9045 + }, + { + "start": 9839.12, + "end": 9840.44, + "probability": 0.9707 + }, + { + "start": 9840.66, + "end": 9844.44, + "probability": 0.7969 + }, + { + "start": 9845.64, + "end": 9847.54, + "probability": 0.9795 + }, + { + "start": 9848.64, + "end": 9853.76, + "probability": 0.9703 + }, + { + "start": 9854.82, + "end": 9856.7, + "probability": 0.9833 + }, + { + "start": 9857.5, + "end": 9858.6, + "probability": 0.9761 + }, + { + "start": 9859.94, + "end": 9863.62, + "probability": 0.9974 + }, + { + "start": 9864.96, + "end": 9867.08, + "probability": 0.4981 + }, + { + "start": 9867.08, + "end": 9868.66, + "probability": 0.858 + }, + { + "start": 9869.0, + "end": 9871.9, + "probability": 0.9069 + }, + { + "start": 9872.54, + "end": 9876.78, + "probability": 0.9843 + }, + { + "start": 9877.48, + "end": 9879.42, + "probability": 0.8593 + }, + { + "start": 9879.7, + "end": 9880.54, + "probability": 0.8506 + }, + { + "start": 9881.6, + "end": 9885.8, + "probability": 0.9879 + }, + { + "start": 9886.52, + "end": 9890.34, + "probability": 0.9023 + }, + { + "start": 9891.04, + "end": 9892.4, + "probability": 0.9927 + }, + { + "start": 9893.22, + "end": 9896.16, + "probability": 0.4303 + }, + { + "start": 9896.16, + "end": 9899.82, + "probability": 0.7914 + }, + { + "start": 9900.34, + "end": 9902.35, + "probability": 0.6746 + }, + { + "start": 9903.06, + "end": 9904.06, + "probability": 0.572 + }, + { + "start": 9904.64, + "end": 9909.32, + "probability": 0.8576 + }, + { + "start": 9911.06, + "end": 9915.38, + "probability": 0.9978 + }, + { + "start": 9915.42, + "end": 9916.02, + "probability": 0.9252 + }, + { + "start": 9916.48, + "end": 9918.0, + "probability": 0.9783 + }, + { + "start": 9918.32, + "end": 9919.14, + "probability": 0.9745 + }, + { + "start": 9920.02, + "end": 9920.1, + "probability": 0.2375 + }, + { + "start": 9920.1, + "end": 9921.24, + "probability": 0.9338 + }, + { + "start": 9921.9, + "end": 9925.78, + "probability": 0.9917 + }, + { + "start": 9926.42, + "end": 9928.64, + "probability": 0.8863 + }, + { + "start": 9929.78, + "end": 9935.24, + "probability": 0.8276 + }, + { + "start": 9937.42, + "end": 9938.56, + "probability": 0.491 + }, + { + "start": 9938.6, + "end": 9942.36, + "probability": 0.5632 + }, + { + "start": 9943.0, + "end": 9945.3, + "probability": 0.9119 + }, + { + "start": 9946.22, + "end": 9948.14, + "probability": 0.877 + }, + { + "start": 9949.02, + "end": 9949.56, + "probability": 0.1124 + }, + { + "start": 9949.56, + "end": 9952.9, + "probability": 0.8131 + }, + { + "start": 9953.9, + "end": 9954.76, + "probability": 0.8737 + }, + { + "start": 9955.38, + "end": 9957.92, + "probability": 0.8553 + }, + { + "start": 9959.12, + "end": 9962.42, + "probability": 0.9559 + }, + { + "start": 9963.26, + "end": 9963.5, + "probability": 0.8274 + }, + { + "start": 9964.18, + "end": 9965.32, + "probability": 0.9736 + }, + { + "start": 9965.82, + "end": 9966.18, + "probability": 0.8985 + }, + { + "start": 9966.46, + "end": 9968.84, + "probability": 0.9964 + }, + { + "start": 9969.54, + "end": 9972.37, + "probability": 0.6779 + }, + { + "start": 9973.78, + "end": 9973.84, + "probability": 0.0127 + }, + { + "start": 9973.84, + "end": 9974.68, + "probability": 0.8081 + }, + { + "start": 9975.2, + "end": 9978.54, + "probability": 0.9462 + }, + { + "start": 9979.3, + "end": 9982.34, + "probability": 0.9756 + }, + { + "start": 9984.82, + "end": 9984.86, + "probability": 0.0298 + }, + { + "start": 9984.86, + "end": 9984.86, + "probability": 0.1612 + }, + { + "start": 9984.86, + "end": 9987.62, + "probability": 0.9836 + }, + { + "start": 9987.62, + "end": 9990.74, + "probability": 0.9973 + }, + { + "start": 9991.26, + "end": 9993.16, + "probability": 0.6325 + }, + { + "start": 9993.96, + "end": 9995.12, + "probability": 0.6663 + }, + { + "start": 9995.5, + "end": 9997.26, + "probability": 0.972 + }, + { + "start": 9997.74, + "end": 9998.0, + "probability": 0.8422 + }, + { + "start": 9998.78, + "end": 10000.62, + "probability": 0.9407 + }, + { + "start": 10001.36, + "end": 10002.64, + "probability": 0.6107 + }, + { + "start": 10002.72, + "end": 10005.95, + "probability": 0.6471 + }, + { + "start": 10006.76, + "end": 10008.52, + "probability": 0.2184 + }, + { + "start": 10009.36, + "end": 10009.36, + "probability": 0.1851 + }, + { + "start": 10009.36, + "end": 10014.1, + "probability": 0.9869 + }, + { + "start": 10015.16, + "end": 10019.6, + "probability": 0.9148 + }, + { + "start": 10020.12, + "end": 10022.61, + "probability": 0.988 + }, + { + "start": 10024.28, + "end": 10027.26, + "probability": 0.8214 + }, + { + "start": 10027.86, + "end": 10032.7, + "probability": 0.9746 + }, + { + "start": 10032.78, + "end": 10033.24, + "probability": 0.873 + }, + { + "start": 10034.2, + "end": 10035.33, + "probability": 0.9622 + }, + { + "start": 10036.4, + "end": 10038.8, + "probability": 0.9874 + }, + { + "start": 10039.0, + "end": 10042.4, + "probability": 0.9784 + }, + { + "start": 10042.72, + "end": 10048.12, + "probability": 0.9565 + }, + { + "start": 10048.12, + "end": 10054.46, + "probability": 0.9947 + }, + { + "start": 10054.82, + "end": 10056.72, + "probability": 0.9988 + }, + { + "start": 10057.22, + "end": 10058.02, + "probability": 0.9204 + }, + { + "start": 10058.6, + "end": 10059.12, + "probability": 0.6857 + }, + { + "start": 10059.68, + "end": 10060.56, + "probability": 0.2477 + }, + { + "start": 10060.56, + "end": 10061.54, + "probability": 0.8808 + }, + { + "start": 10061.54, + "end": 10062.04, + "probability": 0.0649 + }, + { + "start": 10062.24, + "end": 10063.12, + "probability": 0.6836 + }, + { + "start": 10065.8, + "end": 10067.42, + "probability": 0.67 + }, + { + "start": 10067.6, + "end": 10070.4, + "probability": 0.7881 + }, + { + "start": 10071.74, + "end": 10073.76, + "probability": 0.9531 + }, + { + "start": 10074.42, + "end": 10075.86, + "probability": 0.9855 + }, + { + "start": 10075.96, + "end": 10077.18, + "probability": 0.9968 + }, + { + "start": 10077.24, + "end": 10077.88, + "probability": 0.5638 + }, + { + "start": 10078.14, + "end": 10080.48, + "probability": 0.9354 + }, + { + "start": 10081.02, + "end": 10081.48, + "probability": 0.0145 + }, + { + "start": 10081.48, + "end": 10083.64, + "probability": 0.8623 + }, + { + "start": 10083.78, + "end": 10084.46, + "probability": 0.8697 + }, + { + "start": 10084.56, + "end": 10089.8, + "probability": 0.0381 + }, + { + "start": 10093.42, + "end": 10094.84, + "probability": 0.1742 + }, + { + "start": 10094.9, + "end": 10096.68, + "probability": 0.7546 + }, + { + "start": 10096.86, + "end": 10099.02, + "probability": 0.813 + }, + { + "start": 10100.38, + "end": 10101.92, + "probability": 0.8334 + }, + { + "start": 10102.62, + "end": 10104.7, + "probability": 0.9689 + }, + { + "start": 10106.16, + "end": 10107.08, + "probability": 0.8671 + }, + { + "start": 10107.8, + "end": 10110.18, + "probability": 0.9823 + }, + { + "start": 10111.3, + "end": 10115.42, + "probability": 0.9235 + }, + { + "start": 10116.52, + "end": 10118.7, + "probability": 0.9862 + }, + { + "start": 10119.0, + "end": 10119.94, + "probability": 0.9836 + }, + { + "start": 10120.92, + "end": 10121.9, + "probability": 0.9694 + }, + { + "start": 10122.98, + "end": 10123.74, + "probability": 0.5538 + }, + { + "start": 10123.96, + "end": 10124.72, + "probability": 0.9596 + }, + { + "start": 10124.8, + "end": 10125.7, + "probability": 0.6922 + }, + { + "start": 10125.8, + "end": 10126.0, + "probability": 0.8578 + }, + { + "start": 10126.1, + "end": 10126.52, + "probability": 0.8031 + }, + { + "start": 10127.36, + "end": 10130.36, + "probability": 0.9908 + }, + { + "start": 10130.4, + "end": 10132.28, + "probability": 0.9831 + }, + { + "start": 10132.46, + "end": 10133.98, + "probability": 0.5882 + }, + { + "start": 10134.52, + "end": 10135.36, + "probability": 0.9778 + }, + { + "start": 10136.24, + "end": 10138.7, + "probability": 0.9921 + }, + { + "start": 10139.44, + "end": 10140.62, + "probability": 0.8737 + }, + { + "start": 10141.58, + "end": 10145.44, + "probability": 0.9976 + }, + { + "start": 10146.03, + "end": 10148.42, + "probability": 0.7413 + }, + { + "start": 10148.87, + "end": 10152.56, + "probability": 0.7646 + }, + { + "start": 10152.64, + "end": 10153.08, + "probability": 0.705 + }, + { + "start": 10153.08, + "end": 10155.18, + "probability": 0.7887 + }, + { + "start": 10155.22, + "end": 10157.54, + "probability": 0.6644 + }, + { + "start": 10158.0, + "end": 10163.54, + "probability": 0.983 + }, + { + "start": 10164.46, + "end": 10166.02, + "probability": 0.9865 + }, + { + "start": 10166.88, + "end": 10168.74, + "probability": 0.9973 + }, + { + "start": 10170.1, + "end": 10173.0, + "probability": 0.9907 + }, + { + "start": 10173.12, + "end": 10173.98, + "probability": 0.9121 + }, + { + "start": 10174.3, + "end": 10177.26, + "probability": 0.8575 + }, + { + "start": 10177.48, + "end": 10177.48, + "probability": 0.1158 + }, + { + "start": 10177.48, + "end": 10178.2, + "probability": 0.7501 + }, + { + "start": 10178.34, + "end": 10179.02, + "probability": 0.8367 + }, + { + "start": 10179.1, + "end": 10180.38, + "probability": 0.8581 + }, + { + "start": 10180.7, + "end": 10184.92, + "probability": 0.8546 + }, + { + "start": 10185.36, + "end": 10185.54, + "probability": 0.1537 + }, + { + "start": 10185.54, + "end": 10188.22, + "probability": 0.8056 + }, + { + "start": 10188.34, + "end": 10192.3, + "probability": 0.9964 + }, + { + "start": 10192.5, + "end": 10194.78, + "probability": 0.9141 + }, + { + "start": 10195.52, + "end": 10197.9, + "probability": 0.9839 + }, + { + "start": 10198.18, + "end": 10200.1, + "probability": 0.9474 + }, + { + "start": 10200.72, + "end": 10201.7, + "probability": 0.9595 + }, + { + "start": 10201.9, + "end": 10204.34, + "probability": 0.9379 + }, + { + "start": 10205.16, + "end": 10206.64, + "probability": 0.7904 + }, + { + "start": 10207.46, + "end": 10210.42, + "probability": 0.969 + }, + { + "start": 10210.82, + "end": 10212.82, + "probability": 0.9945 + }, + { + "start": 10213.38, + "end": 10218.1, + "probability": 0.9555 + }, + { + "start": 10218.56, + "end": 10221.46, + "probability": 0.9819 + }, + { + "start": 10222.1, + "end": 10224.66, + "probability": 0.5315 + }, + { + "start": 10224.72, + "end": 10228.08, + "probability": 0.7758 + }, + { + "start": 10228.82, + "end": 10229.02, + "probability": 0.9003 + }, + { + "start": 10229.16, + "end": 10233.62, + "probability": 0.9929 + }, + { + "start": 10233.76, + "end": 10235.26, + "probability": 0.9893 + }, + { + "start": 10235.9, + "end": 10237.32, + "probability": 0.9934 + }, + { + "start": 10238.14, + "end": 10241.06, + "probability": 0.9431 + }, + { + "start": 10241.84, + "end": 10244.92, + "probability": 0.9869 + }, + { + "start": 10246.38, + "end": 10247.0, + "probability": 0.9595 + }, + { + "start": 10248.02, + "end": 10249.0, + "probability": 0.9968 + }, + { + "start": 10250.04, + "end": 10253.8, + "probability": 0.7762 + }, + { + "start": 10254.44, + "end": 10255.7, + "probability": 0.5178 + }, + { + "start": 10255.92, + "end": 10257.04, + "probability": 0.5555 + }, + { + "start": 10257.04, + "end": 10258.54, + "probability": 0.6635 + }, + { + "start": 10259.38, + "end": 10260.22, + "probability": 0.7753 + }, + { + "start": 10261.04, + "end": 10265.74, + "probability": 0.9791 + }, + { + "start": 10266.26, + "end": 10270.7, + "probability": 0.9832 + }, + { + "start": 10272.0, + "end": 10274.57, + "probability": 0.8866 + }, + { + "start": 10275.48, + "end": 10281.58, + "probability": 0.9946 + }, + { + "start": 10281.98, + "end": 10285.24, + "probability": 0.9894 + }, + { + "start": 10285.3, + "end": 10286.26, + "probability": 0.8991 + }, + { + "start": 10287.22, + "end": 10288.26, + "probability": 0.9381 + }, + { + "start": 10288.44, + "end": 10292.54, + "probability": 0.9974 + }, + { + "start": 10293.26, + "end": 10295.52, + "probability": 0.7751 + }, + { + "start": 10296.28, + "end": 10300.68, + "probability": 0.8909 + }, + { + "start": 10301.1, + "end": 10302.44, + "probability": 0.9496 + }, + { + "start": 10303.6, + "end": 10303.88, + "probability": 0.2093 + }, + { + "start": 10303.88, + "end": 10303.88, + "probability": 0.1011 + }, + { + "start": 10303.88, + "end": 10303.88, + "probability": 0.0729 + }, + { + "start": 10303.88, + "end": 10305.77, + "probability": 0.5063 + }, + { + "start": 10307.14, + "end": 10307.9, + "probability": 0.0354 + }, + { + "start": 10308.5, + "end": 10309.02, + "probability": 0.285 + }, + { + "start": 10309.02, + "end": 10310.12, + "probability": 0.6934 + }, + { + "start": 10310.24, + "end": 10314.52, + "probability": 0.9567 + }, + { + "start": 10315.16, + "end": 10318.14, + "probability": 0.923 + }, + { + "start": 10318.74, + "end": 10319.34, + "probability": 0.6961 + }, + { + "start": 10320.08, + "end": 10321.32, + "probability": 0.9971 + }, + { + "start": 10322.86, + "end": 10323.96, + "probability": 0.0355 + }, + { + "start": 10324.12, + "end": 10328.98, + "probability": 0.9717 + }, + { + "start": 10328.98, + "end": 10332.64, + "probability": 0.9996 + }, + { + "start": 10333.68, + "end": 10334.44, + "probability": 0.3256 + }, + { + "start": 10335.84, + "end": 10337.9, + "probability": 0.9913 + }, + { + "start": 10338.16, + "end": 10338.96, + "probability": 0.7945 + }, + { + "start": 10339.84, + "end": 10341.5, + "probability": 0.922 + }, + { + "start": 10342.9, + "end": 10343.64, + "probability": 0.9491 + }, + { + "start": 10344.38, + "end": 10346.88, + "probability": 0.9948 + }, + { + "start": 10347.64, + "end": 10349.98, + "probability": 0.9246 + }, + { + "start": 10351.18, + "end": 10352.14, + "probability": 0.7327 + }, + { + "start": 10353.04, + "end": 10353.16, + "probability": 0.0079 + }, + { + "start": 10353.16, + "end": 10359.22, + "probability": 0.9122 + }, + { + "start": 10359.84, + "end": 10362.76, + "probability": 0.9526 + }, + { + "start": 10364.18, + "end": 10371.48, + "probability": 0.9879 + }, + { + "start": 10371.86, + "end": 10372.23, + "probability": 0.9467 + }, + { + "start": 10373.68, + "end": 10373.7, + "probability": 0.021 + }, + { + "start": 10377.9, + "end": 10377.96, + "probability": 0.0434 + }, + { + "start": 10377.96, + "end": 10380.18, + "probability": 0.8013 + }, + { + "start": 10380.68, + "end": 10380.7, + "probability": 0.1356 + }, + { + "start": 10380.7, + "end": 10382.24, + "probability": 0.8287 + }, + { + "start": 10382.9, + "end": 10387.05, + "probability": 0.9805 + }, + { + "start": 10387.46, + "end": 10389.5, + "probability": 0.9956 + }, + { + "start": 10390.04, + "end": 10390.04, + "probability": 0.0022 + }, + { + "start": 10390.04, + "end": 10392.82, + "probability": 0.8906 + }, + { + "start": 10393.12, + "end": 10394.08, + "probability": 0.8947 + }, + { + "start": 10394.4, + "end": 10398.76, + "probability": 0.9723 + }, + { + "start": 10399.56, + "end": 10401.88, + "probability": 0.2004 + }, + { + "start": 10401.88, + "end": 10403.04, + "probability": 0.0165 + }, + { + "start": 10403.98, + "end": 10405.32, + "probability": 0.2389 + }, + { + "start": 10405.72, + "end": 10406.38, + "probability": 0.7512 + }, + { + "start": 10406.92, + "end": 10407.46, + "probability": 0.8728 + }, + { + "start": 10407.56, + "end": 10408.67, + "probability": 0.75 + }, + { + "start": 10409.22, + "end": 10410.26, + "probability": 0.1655 + }, + { + "start": 10410.68, + "end": 10411.32, + "probability": 0.4766 + }, + { + "start": 10412.38, + "end": 10414.62, + "probability": 0.7266 + }, + { + "start": 10414.74, + "end": 10415.2, + "probability": 0.257 + }, + { + "start": 10415.2, + "end": 10415.38, + "probability": 0.665 + }, + { + "start": 10415.54, + "end": 10417.14, + "probability": 0.4885 + }, + { + "start": 10417.24, + "end": 10418.65, + "probability": 0.4692 + }, + { + "start": 10419.08, + "end": 10421.84, + "probability": 0.9827 + }, + { + "start": 10421.96, + "end": 10422.26, + "probability": 0.5033 + }, + { + "start": 10422.32, + "end": 10422.54, + "probability": 0.87 + }, + { + "start": 10422.7, + "end": 10429.26, + "probability": 0.9926 + }, + { + "start": 10429.26, + "end": 10431.84, + "probability": 0.9948 + }, + { + "start": 10432.36, + "end": 10442.08, + "probability": 0.9277 + }, + { + "start": 10443.28, + "end": 10446.92, + "probability": 0.969 + }, + { + "start": 10447.12, + "end": 10449.38, + "probability": 0.8672 + }, + { + "start": 10449.58, + "end": 10450.62, + "probability": 0.1608 + }, + { + "start": 10450.62, + "end": 10454.04, + "probability": 0.2213 + }, + { + "start": 10454.16, + "end": 10454.65, + "probability": 0.2347 + }, + { + "start": 10455.02, + "end": 10457.42, + "probability": 0.9296 + }, + { + "start": 10458.12, + "end": 10460.1, + "probability": 0.7049 + }, + { + "start": 10460.72, + "end": 10462.92, + "probability": 0.9891 + }, + { + "start": 10464.16, + "end": 10464.18, + "probability": 0.0569 + }, + { + "start": 10464.18, + "end": 10465.6, + "probability": 0.7013 + }, + { + "start": 10466.36, + "end": 10467.77, + "probability": 0.7473 + }, + { + "start": 10467.92, + "end": 10469.3, + "probability": 0.991 + }, + { + "start": 10469.8, + "end": 10475.7, + "probability": 0.9896 + }, + { + "start": 10476.56, + "end": 10476.66, + "probability": 0.0102 + }, + { + "start": 10476.66, + "end": 10482.23, + "probability": 0.9284 + }, + { + "start": 10482.94, + "end": 10485.4, + "probability": 0.9971 + }, + { + "start": 10485.86, + "end": 10489.18, + "probability": 0.9871 + }, + { + "start": 10489.94, + "end": 10493.12, + "probability": 0.998 + }, + { + "start": 10493.12, + "end": 10497.28, + "probability": 0.9685 + }, + { + "start": 10497.8, + "end": 10501.58, + "probability": 0.7842 + }, + { + "start": 10501.58, + "end": 10501.6, + "probability": 0.0938 + }, + { + "start": 10501.6, + "end": 10503.86, + "probability": 0.6286 + }, + { + "start": 10503.86, + "end": 10506.62, + "probability": 0.9959 + }, + { + "start": 10507.2, + "end": 10509.54, + "probability": 0.9575 + }, + { + "start": 10510.28, + "end": 10513.08, + "probability": 0.9881 + }, + { + "start": 10513.9, + "end": 10514.14, + "probability": 0.2992 + }, + { + "start": 10514.7, + "end": 10516.22, + "probability": 0.3558 + }, + { + "start": 10516.82, + "end": 10516.82, + "probability": 0.4055 + }, + { + "start": 10516.84, + "end": 10524.02, + "probability": 0.9969 + }, + { + "start": 10525.0, + "end": 10530.02, + "probability": 0.1238 + }, + { + "start": 10530.02, + "end": 10531.46, + "probability": 0.0068 + }, + { + "start": 10531.46, + "end": 10531.96, + "probability": 0.2184 + }, + { + "start": 10532.04, + "end": 10532.22, + "probability": 0.1497 + }, + { + "start": 10532.22, + "end": 10532.22, + "probability": 0.1107 + }, + { + "start": 10532.22, + "end": 10533.2, + "probability": 0.5615 + }, + { + "start": 10533.64, + "end": 10535.62, + "probability": 0.9423 + }, + { + "start": 10535.62, + "end": 10536.46, + "probability": 0.8094 + }, + { + "start": 10538.1, + "end": 10540.78, + "probability": 0.8778 + }, + { + "start": 10540.88, + "end": 10546.08, + "probability": 0.9775 + }, + { + "start": 10546.32, + "end": 10548.16, + "probability": 0.9437 + }, + { + "start": 10548.78, + "end": 10553.84, + "probability": 0.9836 + }, + { + "start": 10554.56, + "end": 10557.26, + "probability": 0.989 + }, + { + "start": 10557.3, + "end": 10560.82, + "probability": 0.9669 + }, + { + "start": 10561.64, + "end": 10562.88, + "probability": 0.8984 + }, + { + "start": 10563.78, + "end": 10569.52, + "probability": 0.956 + }, + { + "start": 10569.7, + "end": 10571.02, + "probability": 0.9182 + }, + { + "start": 10571.3, + "end": 10572.96, + "probability": 0.1677 + }, + { + "start": 10573.26, + "end": 10576.32, + "probability": 0.9722 + }, + { + "start": 10577.38, + "end": 10580.26, + "probability": 0.9467 + }, + { + "start": 10581.24, + "end": 10584.32, + "probability": 0.9917 + }, + { + "start": 10585.34, + "end": 10590.38, + "probability": 0.986 + }, + { + "start": 10591.42, + "end": 10591.9, + "probability": 0.6675 + }, + { + "start": 10592.46, + "end": 10597.2, + "probability": 0.8861 + }, + { + "start": 10598.1, + "end": 10599.3, + "probability": 0.9956 + }, + { + "start": 10599.64, + "end": 10599.98, + "probability": 0.7617 + }, + { + "start": 10600.06, + "end": 10600.6, + "probability": 0.6477 + }, + { + "start": 10600.8, + "end": 10602.5, + "probability": 0.532 + }, + { + "start": 10602.66, + "end": 10605.44, + "probability": 0.9945 + }, + { + "start": 10606.06, + "end": 10607.94, + "probability": 0.9786 + }, + { + "start": 10608.14, + "end": 10609.26, + "probability": 0.8591 + }, + { + "start": 10609.94, + "end": 10614.84, + "probability": 0.8647 + }, + { + "start": 10615.6, + "end": 10621.84, + "probability": 0.9375 + }, + { + "start": 10622.47, + "end": 10626.68, + "probability": 0.6007 + }, + { + "start": 10627.58, + "end": 10628.12, + "probability": 0.1137 + }, + { + "start": 10628.12, + "end": 10628.12, + "probability": 0.1399 + }, + { + "start": 10628.12, + "end": 10628.12, + "probability": 0.0963 + }, + { + "start": 10628.12, + "end": 10628.12, + "probability": 0.1255 + }, + { + "start": 10628.12, + "end": 10628.12, + "probability": 0.0265 + }, + { + "start": 10628.12, + "end": 10628.12, + "probability": 0.2203 + }, + { + "start": 10628.12, + "end": 10630.26, + "probability": 0.6571 + }, + { + "start": 10630.46, + "end": 10633.01, + "probability": 0.6083 + }, + { + "start": 10635.02, + "end": 10635.02, + "probability": 0.2054 + }, + { + "start": 10635.02, + "end": 10636.8, + "probability": 0.6143 + }, + { + "start": 10637.2, + "end": 10639.06, + "probability": 0.6798 + }, + { + "start": 10639.28, + "end": 10640.04, + "probability": 0.5633 + }, + { + "start": 10640.08, + "end": 10641.1, + "probability": 0.9393 + }, + { + "start": 10641.1, + "end": 10642.02, + "probability": 0.7563 + }, + { + "start": 10642.86, + "end": 10644.0, + "probability": 0.8281 + }, + { + "start": 10644.12, + "end": 10644.84, + "probability": 0.7629 + }, + { + "start": 10645.12, + "end": 10648.74, + "probability": 0.9905 + }, + { + "start": 10648.78, + "end": 10649.78, + "probability": 0.9268 + }, + { + "start": 10650.12, + "end": 10651.81, + "probability": 0.9854 + }, + { + "start": 10652.88, + "end": 10654.98, + "probability": 0.9575 + }, + { + "start": 10655.14, + "end": 10656.36, + "probability": 0.9299 + }, + { + "start": 10656.64, + "end": 10659.96, + "probability": 0.9995 + }, + { + "start": 10660.46, + "end": 10661.96, + "probability": 0.8381 + }, + { + "start": 10662.7, + "end": 10663.26, + "probability": 0.6968 + }, + { + "start": 10663.6, + "end": 10666.42, + "probability": 0.9933 + }, + { + "start": 10666.96, + "end": 10668.67, + "probability": 0.9014 + }, + { + "start": 10669.12, + "end": 10671.29, + "probability": 0.8971 + }, + { + "start": 10673.76, + "end": 10677.02, + "probability": 0.9948 + }, + { + "start": 10677.09, + "end": 10680.6, + "probability": 0.9855 + }, + { + "start": 10681.06, + "end": 10683.06, + "probability": 0.9915 + }, + { + "start": 10683.44, + "end": 10685.52, + "probability": 0.9582 + }, + { + "start": 10685.86, + "end": 10687.39, + "probability": 0.9829 + }, + { + "start": 10688.04, + "end": 10690.7, + "probability": 0.9888 + }, + { + "start": 10690.82, + "end": 10691.94, + "probability": 0.8466 + }, + { + "start": 10692.58, + "end": 10696.44, + "probability": 0.9551 + }, + { + "start": 10696.44, + "end": 10699.72, + "probability": 0.9759 + }, + { + "start": 10700.46, + "end": 10705.0, + "probability": 0.993 + }, + { + "start": 10705.6, + "end": 10707.18, + "probability": 0.9748 + }, + { + "start": 10707.24, + "end": 10708.24, + "probability": 0.9113 + }, + { + "start": 10708.32, + "end": 10709.08, + "probability": 0.8248 + }, + { + "start": 10709.2, + "end": 10709.9, + "probability": 0.8946 + }, + { + "start": 10710.06, + "end": 10711.36, + "probability": 0.9694 + }, + { + "start": 10711.88, + "end": 10715.18, + "probability": 0.9409 + }, + { + "start": 10715.64, + "end": 10718.4, + "probability": 0.9927 + }, + { + "start": 10718.48, + "end": 10720.13, + "probability": 0.9845 + }, + { + "start": 10720.6, + "end": 10724.38, + "probability": 0.8428 + }, + { + "start": 10724.8, + "end": 10729.54, + "probability": 0.9838 + }, + { + "start": 10729.84, + "end": 10731.24, + "probability": 0.919 + }, + { + "start": 10732.0, + "end": 10734.34, + "probability": 0.9126 + }, + { + "start": 10734.54, + "end": 10739.56, + "probability": 0.9899 + }, + { + "start": 10739.94, + "end": 10741.04, + "probability": 0.7218 + }, + { + "start": 10741.2, + "end": 10741.7, + "probability": 0.7283 + }, + { + "start": 10742.54, + "end": 10746.12, + "probability": 0.9498 + }, + { + "start": 10746.96, + "end": 10748.02, + "probability": 0.9492 + }, + { + "start": 10748.46, + "end": 10751.44, + "probability": 0.9717 + }, + { + "start": 10752.26, + "end": 10753.24, + "probability": 0.795 + }, + { + "start": 10753.36, + "end": 10754.86, + "probability": 0.9437 + }, + { + "start": 10755.24, + "end": 10757.6, + "probability": 0.8462 + }, + { + "start": 10757.92, + "end": 10758.38, + "probability": 0.6659 + }, + { + "start": 10758.44, + "end": 10760.4, + "probability": 0.6952 + }, + { + "start": 10760.76, + "end": 10762.78, + "probability": 0.8074 + }, + { + "start": 10763.02, + "end": 10764.84, + "probability": 0.9512 + }, + { + "start": 10764.92, + "end": 10766.1, + "probability": 0.8479 + }, + { + "start": 10766.36, + "end": 10767.64, + "probability": 0.9061 + }, + { + "start": 10767.68, + "end": 10769.28, + "probability": 0.78 + }, + { + "start": 10769.54, + "end": 10770.96, + "probability": 0.9596 + }, + { + "start": 10771.2, + "end": 10772.22, + "probability": 0.7827 + }, + { + "start": 10772.3, + "end": 10772.64, + "probability": 0.4316 + }, + { + "start": 10772.68, + "end": 10773.44, + "probability": 0.6989 + }, + { + "start": 10773.58, + "end": 10775.68, + "probability": 0.9637 + }, + { + "start": 10775.9, + "end": 10776.56, + "probability": 0.8787 + }, + { + "start": 10776.72, + "end": 10778.86, + "probability": 0.7757 + }, + { + "start": 10779.12, + "end": 10781.52, + "probability": 0.9951 + }, + { + "start": 10782.8, + "end": 10785.2, + "probability": 0.699 + }, + { + "start": 10786.64, + "end": 10789.32, + "probability": 0.9354 + }, + { + "start": 10789.4, + "end": 10794.34, + "probability": 0.9766 + }, + { + "start": 10794.58, + "end": 10795.74, + "probability": 0.978 + }, + { + "start": 10795.78, + "end": 10796.56, + "probability": 0.9585 + }, + { + "start": 10796.96, + "end": 10798.82, + "probability": 0.856 + }, + { + "start": 10799.14, + "end": 10802.88, + "probability": 0.9937 + }, + { + "start": 10803.34, + "end": 10805.12, + "probability": 0.8345 + }, + { + "start": 10805.2, + "end": 10809.44, + "probability": 0.9576 + }, + { + "start": 10809.76, + "end": 10812.9, + "probability": 0.8713 + }, + { + "start": 10812.9, + "end": 10814.06, + "probability": 0.6851 + }, + { + "start": 10814.22, + "end": 10818.34, + "probability": 0.8932 + }, + { + "start": 10818.42, + "end": 10823.92, + "probability": 0.9744 + }, + { + "start": 10824.5, + "end": 10828.36, + "probability": 0.9805 + }, + { + "start": 10829.34, + "end": 10832.18, + "probability": 0.9951 + }, + { + "start": 10832.18, + "end": 10835.72, + "probability": 0.9967 + }, + { + "start": 10836.36, + "end": 10839.3, + "probability": 0.9976 + }, + { + "start": 10839.3, + "end": 10843.24, + "probability": 0.9937 + }, + { + "start": 10843.82, + "end": 10848.58, + "probability": 0.8821 + }, + { + "start": 10849.9, + "end": 10853.84, + "probability": 0.8757 + }, + { + "start": 10854.72, + "end": 10855.88, + "probability": 0.034 + }, + { + "start": 10855.88, + "end": 10857.7, + "probability": 0.1834 + }, + { + "start": 10857.7, + "end": 10858.94, + "probability": 0.2958 + }, + { + "start": 10859.26, + "end": 10861.7, + "probability": 0.9194 + }, + { + "start": 10862.0, + "end": 10862.62, + "probability": 0.0847 + }, + { + "start": 10862.78, + "end": 10864.4, + "probability": 0.8898 + }, + { + "start": 10864.7, + "end": 10865.38, + "probability": 0.5107 + }, + { + "start": 10865.48, + "end": 10868.78, + "probability": 0.7441 + }, + { + "start": 10868.94, + "end": 10869.64, + "probability": 0.6747 + }, + { + "start": 10875.71, + "end": 10878.14, + "probability": 0.5908 + }, + { + "start": 10878.54, + "end": 10879.93, + "probability": 0.9531 + }, + { + "start": 10880.44, + "end": 10882.76, + "probability": 0.9927 + }, + { + "start": 10883.66, + "end": 10884.58, + "probability": 0.4337 + }, + { + "start": 10884.72, + "end": 10885.39, + "probability": 0.4072 + }, + { + "start": 10885.5, + "end": 10886.43, + "probability": 0.7679 + }, + { + "start": 10887.68, + "end": 10892.26, + "probability": 0.0731 + }, + { + "start": 10893.02, + "end": 10897.86, + "probability": 0.9807 + }, + { + "start": 10897.98, + "end": 10899.08, + "probability": 0.5038 + }, + { + "start": 10901.7, + "end": 10901.96, + "probability": 0.0895 + }, + { + "start": 10904.68, + "end": 10908.66, + "probability": 0.9029 + }, + { + "start": 10909.36, + "end": 10915.14, + "probability": 0.9531 + }, + { + "start": 10915.92, + "end": 10919.18, + "probability": 0.9329 + }, + { + "start": 10919.22, + "end": 10922.56, + "probability": 0.9814 + }, + { + "start": 10923.04, + "end": 10924.88, + "probability": 0.9548 + }, + { + "start": 10925.0, + "end": 10925.64, + "probability": 0.9099 + }, + { + "start": 10926.14, + "end": 10931.36, + "probability": 0.9497 + }, + { + "start": 10931.38, + "end": 10933.22, + "probability": 0.746 + }, + { + "start": 10933.88, + "end": 10937.5, + "probability": 0.9971 + }, + { + "start": 10938.0, + "end": 10940.71, + "probability": 0.9647 + }, + { + "start": 10941.38, + "end": 10944.2, + "probability": 0.9971 + }, + { + "start": 10944.2, + "end": 10947.32, + "probability": 0.9949 + }, + { + "start": 10947.36, + "end": 10949.08, + "probability": 0.6507 + }, + { + "start": 10949.2, + "end": 10953.02, + "probability": 0.9725 + }, + { + "start": 10953.52, + "end": 10955.56, + "probability": 0.8076 + }, + { + "start": 10955.72, + "end": 10958.02, + "probability": 0.9564 + }, + { + "start": 10958.44, + "end": 10962.72, + "probability": 0.9625 + }, + { + "start": 10963.36, + "end": 10966.04, + "probability": 0.9368 + }, + { + "start": 10966.46, + "end": 10968.48, + "probability": 0.9606 + }, + { + "start": 10969.22, + "end": 10970.26, + "probability": 0.7156 + }, + { + "start": 10970.82, + "end": 10971.9, + "probability": 0.9577 + }, + { + "start": 10972.16, + "end": 10973.08, + "probability": 0.956 + }, + { + "start": 10973.42, + "end": 10978.52, + "probability": 0.9893 + }, + { + "start": 10978.88, + "end": 10982.26, + "probability": 0.9609 + }, + { + "start": 10982.72, + "end": 10985.08, + "probability": 0.9727 + }, + { + "start": 10985.34, + "end": 10987.2, + "probability": 0.9912 + }, + { + "start": 10987.26, + "end": 10992.26, + "probability": 0.9721 + }, + { + "start": 10992.48, + "end": 10994.1, + "probability": 0.9737 + }, + { + "start": 10994.48, + "end": 10995.34, + "probability": 0.8556 + }, + { + "start": 10995.58, + "end": 11001.46, + "probability": 0.9929 + }, + { + "start": 11002.02, + "end": 11003.68, + "probability": 0.7556 + }, + { + "start": 11003.74, + "end": 11005.06, + "probability": 0.8606 + }, + { + "start": 11005.1, + "end": 11006.9, + "probability": 0.9613 + }, + { + "start": 11007.32, + "end": 11011.28, + "probability": 0.6693 + }, + { + "start": 11011.38, + "end": 11012.56, + "probability": 0.7991 + }, + { + "start": 11012.58, + "end": 11013.48, + "probability": 0.7681 + }, + { + "start": 11014.5, + "end": 11016.72, + "probability": 0.9902 + }, + { + "start": 11016.72, + "end": 11020.68, + "probability": 0.9912 + }, + { + "start": 11020.76, + "end": 11021.82, + "probability": 0.519 + }, + { + "start": 11021.92, + "end": 11023.62, + "probability": 0.5025 + }, + { + "start": 11024.12, + "end": 11026.34, + "probability": 0.9184 + }, + { + "start": 11027.26, + "end": 11029.12, + "probability": 0.4929 + }, + { + "start": 11030.04, + "end": 11030.04, + "probability": 0.6023 + }, + { + "start": 11030.04, + "end": 11031.38, + "probability": 0.8377 + }, + { + "start": 11031.94, + "end": 11032.58, + "probability": 0.4127 + }, + { + "start": 11034.14, + "end": 11037.06, + "probability": 0.975 + }, + { + "start": 11037.32, + "end": 11040.28, + "probability": 0.9824 + }, + { + "start": 11040.8, + "end": 11044.04, + "probability": 0.9323 + }, + { + "start": 11044.04, + "end": 11048.42, + "probability": 0.9639 + }, + { + "start": 11048.88, + "end": 11050.42, + "probability": 0.5174 + }, + { + "start": 11050.5, + "end": 11051.48, + "probability": 0.3978 + }, + { + "start": 11051.52, + "end": 11056.74, + "probability": 0.9768 + }, + { + "start": 11056.82, + "end": 11058.06, + "probability": 0.8403 + }, + { + "start": 11058.62, + "end": 11061.52, + "probability": 0.9917 + }, + { + "start": 11061.76, + "end": 11061.92, + "probability": 0.139 + }, + { + "start": 11062.22, + "end": 11064.06, + "probability": 0.8639 + }, + { + "start": 11064.58, + "end": 11069.78, + "probability": 0.9113 + }, + { + "start": 11070.6, + "end": 11072.64, + "probability": 0.955 + }, + { + "start": 11072.92, + "end": 11073.7, + "probability": 0.7263 + }, + { + "start": 11073.8, + "end": 11076.02, + "probability": 0.9529 + }, + { + "start": 11076.32, + "end": 11078.98, + "probability": 0.9788 + }, + { + "start": 11079.26, + "end": 11081.79, + "probability": 0.9711 + }, + { + "start": 11082.22, + "end": 11083.92, + "probability": 0.8066 + }, + { + "start": 11084.58, + "end": 11086.4, + "probability": 0.8021 + }, + { + "start": 11087.6, + "end": 11087.92, + "probability": 0.722 + }, + { + "start": 11088.44, + "end": 11088.94, + "probability": 0.3306 + }, + { + "start": 11089.52, + "end": 11091.3, + "probability": 0.4714 + }, + { + "start": 11091.78, + "end": 11092.08, + "probability": 0.4274 + }, + { + "start": 11092.98, + "end": 11096.1, + "probability": 0.8999 + }, + { + "start": 11096.52, + "end": 11099.66, + "probability": 0.833 + }, + { + "start": 11100.28, + "end": 11102.6, + "probability": 0.9795 + }, + { + "start": 11103.38, + "end": 11104.86, + "probability": 0.9968 + }, + { + "start": 11104.94, + "end": 11106.7, + "probability": 0.9601 + }, + { + "start": 11106.94, + "end": 11108.1, + "probability": 0.8731 + }, + { + "start": 11108.82, + "end": 11112.56, + "probability": 0.9521 + }, + { + "start": 11113.16, + "end": 11115.8, + "probability": 0.9958 + }, + { + "start": 11116.7, + "end": 11121.72, + "probability": 0.9938 + }, + { + "start": 11121.72, + "end": 11124.5, + "probability": 0.9796 + }, + { + "start": 11125.1, + "end": 11126.34, + "probability": 0.9286 + }, + { + "start": 11126.48, + "end": 11128.27, + "probability": 0.9009 + }, + { + "start": 11129.2, + "end": 11131.26, + "probability": 0.9802 + }, + { + "start": 11132.1, + "end": 11135.56, + "probability": 0.5667 + }, + { + "start": 11135.56, + "end": 11137.98, + "probability": 0.8694 + }, + { + "start": 11139.5, + "end": 11142.82, + "probability": 0.9734 + }, + { + "start": 11142.82, + "end": 11146.7, + "probability": 0.9976 + }, + { + "start": 11146.78, + "end": 11148.74, + "probability": 0.9707 + }, + { + "start": 11149.0, + "end": 11150.12, + "probability": 0.873 + }, + { + "start": 11150.26, + "end": 11152.08, + "probability": 0.9339 + }, + { + "start": 11152.54, + "end": 11154.62, + "probability": 0.9572 + }, + { + "start": 11155.3, + "end": 11157.22, + "probability": 0.9744 + }, + { + "start": 11157.24, + "end": 11158.14, + "probability": 0.9897 + }, + { + "start": 11158.64, + "end": 11161.68, + "probability": 0.9937 + }, + { + "start": 11162.26, + "end": 11164.32, + "probability": 0.9976 + }, + { + "start": 11164.9, + "end": 11169.72, + "probability": 0.9852 + }, + { + "start": 11169.86, + "end": 11172.08, + "probability": 0.9972 + }, + { + "start": 11172.58, + "end": 11175.68, + "probability": 0.9927 + }, + { + "start": 11176.32, + "end": 11177.42, + "probability": 0.6002 + }, + { + "start": 11177.42, + "end": 11179.3, + "probability": 0.9476 + }, + { + "start": 11179.84, + "end": 11181.26, + "probability": 0.7159 + }, + { + "start": 11182.16, + "end": 11183.16, + "probability": 0.8355 + }, + { + "start": 11183.48, + "end": 11184.46, + "probability": 0.7009 + }, + { + "start": 11184.46, + "end": 11186.54, + "probability": 0.9453 + }, + { + "start": 11186.82, + "end": 11188.74, + "probability": 0.8665 + }, + { + "start": 11188.94, + "end": 11192.42, + "probability": 0.9897 + }, + { + "start": 11192.54, + "end": 11195.82, + "probability": 0.9951 + }, + { + "start": 11196.18, + "end": 11198.96, + "probability": 0.9976 + }, + { + "start": 11198.96, + "end": 11202.4, + "probability": 0.9983 + }, + { + "start": 11202.86, + "end": 11205.04, + "probability": 0.9705 + }, + { + "start": 11205.98, + "end": 11209.36, + "probability": 0.9889 + }, + { + "start": 11210.32, + "end": 11211.04, + "probability": 0.4926 + }, + { + "start": 11211.14, + "end": 11215.98, + "probability": 0.9451 + }, + { + "start": 11216.93, + "end": 11218.88, + "probability": 0.7721 + }, + { + "start": 11219.0, + "end": 11221.54, + "probability": 0.9944 + }, + { + "start": 11221.54, + "end": 11224.14, + "probability": 0.9407 + }, + { + "start": 11224.74, + "end": 11226.44, + "probability": 0.7109 + }, + { + "start": 11226.56, + "end": 11227.68, + "probability": 0.9786 + }, + { + "start": 11227.84, + "end": 11228.78, + "probability": 0.7718 + }, + { + "start": 11229.22, + "end": 11232.36, + "probability": 0.9182 + }, + { + "start": 11232.54, + "end": 11233.27, + "probability": 0.2172 + }, + { + "start": 11233.58, + "end": 11235.48, + "probability": 0.9746 + }, + { + "start": 11236.08, + "end": 11237.72, + "probability": 0.7519 + }, + { + "start": 11238.48, + "end": 11238.94, + "probability": 0.6978 + }, + { + "start": 11239.34, + "end": 11241.34, + "probability": 0.6642 + }, + { + "start": 11241.48, + "end": 11242.06, + "probability": 0.5585 + }, + { + "start": 11242.2, + "end": 11244.64, + "probability": 0.9484 + }, + { + "start": 11245.06, + "end": 11246.98, + "probability": 0.6614 + }, + { + "start": 11247.2, + "end": 11251.36, + "probability": 0.9961 + }, + { + "start": 11252.6, + "end": 11256.08, + "probability": 0.9935 + }, + { + "start": 11256.7, + "end": 11261.18, + "probability": 0.998 + }, + { + "start": 11261.34, + "end": 11265.62, + "probability": 0.9982 + }, + { + "start": 11265.98, + "end": 11269.4, + "probability": 0.9896 + }, + { + "start": 11270.06, + "end": 11271.36, + "probability": 0.7524 + }, + { + "start": 11271.46, + "end": 11272.02, + "probability": 0.9382 + }, + { + "start": 11272.5, + "end": 11275.74, + "probability": 0.9978 + }, + { + "start": 11275.74, + "end": 11279.8, + "probability": 0.9975 + }, + { + "start": 11280.34, + "end": 11280.58, + "probability": 0.0472 + }, + { + "start": 11280.6, + "end": 11281.16, + "probability": 0.8949 + }, + { + "start": 11281.2, + "end": 11285.82, + "probability": 0.9831 + }, + { + "start": 11286.18, + "end": 11286.8, + "probability": 0.5195 + }, + { + "start": 11286.88, + "end": 11289.32, + "probability": 0.8106 + }, + { + "start": 11290.04, + "end": 11298.36, + "probability": 0.9141 + }, + { + "start": 11298.44, + "end": 11302.36, + "probability": 0.985 + }, + { + "start": 11302.64, + "end": 11303.5, + "probability": 0.3633 + }, + { + "start": 11303.52, + "end": 11306.36, + "probability": 0.9663 + }, + { + "start": 11306.76, + "end": 11307.06, + "probability": 0.6507 + }, + { + "start": 11307.06, + "end": 11308.28, + "probability": 0.9331 + }, + { + "start": 11308.46, + "end": 11312.22, + "probability": 0.9889 + }, + { + "start": 11312.28, + "end": 11314.96, + "probability": 0.85 + }, + { + "start": 11315.28, + "end": 11318.9, + "probability": 0.9325 + }, + { + "start": 11322.22, + "end": 11324.12, + "probability": 0.3986 + }, + { + "start": 11324.14, + "end": 11325.84, + "probability": 0.6054 + }, + { + "start": 11325.88, + "end": 11326.54, + "probability": 0.4662 + }, + { + "start": 11326.74, + "end": 11328.2, + "probability": 0.8161 + }, + { + "start": 11328.42, + "end": 11329.06, + "probability": 0.4337 + }, + { + "start": 11329.08, + "end": 11330.56, + "probability": 0.8828 + }, + { + "start": 11330.86, + "end": 11334.1, + "probability": 0.9016 + }, + { + "start": 11334.86, + "end": 11337.56, + "probability": 0.9561 + }, + { + "start": 11338.66, + "end": 11340.12, + "probability": 0.5568 + }, + { + "start": 11340.16, + "end": 11341.66, + "probability": 0.9392 + }, + { + "start": 11341.66, + "end": 11345.48, + "probability": 0.697 + }, + { + "start": 11346.54, + "end": 11348.3, + "probability": 0.8099 + }, + { + "start": 11348.58, + "end": 11349.72, + "probability": 0.8074 + }, + { + "start": 11349.82, + "end": 11351.06, + "probability": 0.8904 + }, + { + "start": 11351.46, + "end": 11354.88, + "probability": 0.9729 + }, + { + "start": 11354.98, + "end": 11356.12, + "probability": 0.9433 + }, + { + "start": 11356.6, + "end": 11358.68, + "probability": 0.9287 + }, + { + "start": 11359.3, + "end": 11362.4, + "probability": 0.9961 + }, + { + "start": 11362.4, + "end": 11364.94, + "probability": 0.9715 + }, + { + "start": 11365.82, + "end": 11369.3, + "probability": 0.9812 + }, + { + "start": 11369.9, + "end": 11377.46, + "probability": 0.9323 + }, + { + "start": 11377.5, + "end": 11380.12, + "probability": 0.8945 + }, + { + "start": 11380.2, + "end": 11381.08, + "probability": 0.7348 + }, + { + "start": 11381.66, + "end": 11382.9, + "probability": 0.903 + }, + { + "start": 11383.02, + "end": 11383.76, + "probability": 0.7301 + }, + { + "start": 11383.9, + "end": 11384.16, + "probability": 0.6628 + }, + { + "start": 11384.32, + "end": 11384.9, + "probability": 0.9289 + }, + { + "start": 11385.02, + "end": 11388.74, + "probability": 0.9233 + }, + { + "start": 11388.84, + "end": 11392.94, + "probability": 0.7097 + }, + { + "start": 11392.94, + "end": 11399.44, + "probability": 0.9675 + }, + { + "start": 11401.34, + "end": 11402.46, + "probability": 0.5399 + }, + { + "start": 11402.78, + "end": 11404.24, + "probability": 0.6431 + }, + { + "start": 11404.38, + "end": 11408.18, + "probability": 0.9808 + }, + { + "start": 11409.46, + "end": 11416.02, + "probability": 0.9896 + }, + { + "start": 11416.2, + "end": 11417.98, + "probability": 0.9128 + }, + { + "start": 11418.9, + "end": 11424.06, + "probability": 0.9952 + }, + { + "start": 11424.06, + "end": 11427.48, + "probability": 0.9956 + }, + { + "start": 11428.78, + "end": 11432.26, + "probability": 0.8666 + }, + { + "start": 11432.74, + "end": 11435.28, + "probability": 0.996 + }, + { + "start": 11435.64, + "end": 11438.66, + "probability": 0.8886 + }, + { + "start": 11438.74, + "end": 11442.06, + "probability": 0.9872 + }, + { + "start": 11442.22, + "end": 11448.94, + "probability": 0.9907 + }, + { + "start": 11449.78, + "end": 11450.44, + "probability": 0.8138 + }, + { + "start": 11450.76, + "end": 11456.54, + "probability": 0.9951 + }, + { + "start": 11456.66, + "end": 11460.67, + "probability": 0.8638 + }, + { + "start": 11461.22, + "end": 11465.52, + "probability": 0.9943 + }, + { + "start": 11466.18, + "end": 11472.6, + "probability": 0.9897 + }, + { + "start": 11473.04, + "end": 11476.78, + "probability": 0.9817 + }, + { + "start": 11476.98, + "end": 11481.36, + "probability": 0.9969 + }, + { + "start": 11481.68, + "end": 11482.4, + "probability": 0.709 + }, + { + "start": 11482.86, + "end": 11483.6, + "probability": 0.8798 + }, + { + "start": 11483.84, + "end": 11485.86, + "probability": 0.9553 + }, + { + "start": 11485.92, + "end": 11486.98, + "probability": 0.9641 + }, + { + "start": 11487.22, + "end": 11488.76, + "probability": 0.9489 + }, + { + "start": 11489.24, + "end": 11492.88, + "probability": 0.9764 + }, + { + "start": 11492.88, + "end": 11496.02, + "probability": 0.9972 + }, + { + "start": 11496.52, + "end": 11501.32, + "probability": 0.975 + }, + { + "start": 11501.32, + "end": 11505.02, + "probability": 0.9983 + }, + { + "start": 11505.24, + "end": 11505.5, + "probability": 0.7071 + }, + { + "start": 11506.06, + "end": 11512.12, + "probability": 0.998 + }, + { + "start": 11512.62, + "end": 11514.72, + "probability": 0.9977 + }, + { + "start": 11515.84, + "end": 11516.64, + "probability": 0.9879 + }, + { + "start": 11517.3, + "end": 11520.7, + "probability": 0.9873 + }, + { + "start": 11520.7, + "end": 11524.98, + "probability": 0.9959 + }, + { + "start": 11525.4, + "end": 11527.38, + "probability": 0.8798 + }, + { + "start": 11527.62, + "end": 11528.98, + "probability": 0.8875 + }, + { + "start": 11529.36, + "end": 11529.9, + "probability": 0.8839 + }, + { + "start": 11530.26, + "end": 11532.1, + "probability": 0.8781 + }, + { + "start": 11532.26, + "end": 11533.56, + "probability": 0.6331 + }, + { + "start": 11533.66, + "end": 11535.44, + "probability": 0.9172 + }, + { + "start": 11535.84, + "end": 11543.74, + "probability": 0.8674 + }, + { + "start": 11545.34, + "end": 11546.54, + "probability": 0.875 + }, + { + "start": 11546.64, + "end": 11547.68, + "probability": 0.7867 + }, + { + "start": 11547.76, + "end": 11549.24, + "probability": 0.9202 + }, + { + "start": 11549.38, + "end": 11552.8, + "probability": 0.9555 + }, + { + "start": 11552.88, + "end": 11553.76, + "probability": 0.8428 + }, + { + "start": 11553.86, + "end": 11556.96, + "probability": 0.7523 + }, + { + "start": 11557.52, + "end": 11561.58, + "probability": 0.9922 + }, + { + "start": 11561.78, + "end": 11564.9, + "probability": 0.9912 + }, + { + "start": 11565.5, + "end": 11569.38, + "probability": 0.945 + }, + { + "start": 11569.96, + "end": 11572.78, + "probability": 0.9713 + }, + { + "start": 11572.84, + "end": 11574.12, + "probability": 0.9599 + }, + { + "start": 11574.26, + "end": 11579.4, + "probability": 0.8475 + }, + { + "start": 11579.62, + "end": 11583.44, + "probability": 0.9856 + }, + { + "start": 11583.6, + "end": 11584.64, + "probability": 0.6737 + }, + { + "start": 11585.16, + "end": 11587.96, + "probability": 0.9332 + }, + { + "start": 11588.04, + "end": 11589.0, + "probability": 0.9515 + }, + { + "start": 11589.32, + "end": 11590.72, + "probability": 0.9805 + }, + { + "start": 11590.96, + "end": 11592.37, + "probability": 0.7871 + }, + { + "start": 11593.08, + "end": 11597.12, + "probability": 0.9937 + }, + { + "start": 11597.18, + "end": 11599.88, + "probability": 0.9889 + }, + { + "start": 11600.28, + "end": 11601.78, + "probability": 0.9265 + }, + { + "start": 11601.92, + "end": 11605.54, + "probability": 0.9882 + }, + { + "start": 11606.22, + "end": 11612.76, + "probability": 0.8921 + }, + { + "start": 11613.06, + "end": 11618.22, + "probability": 0.8561 + }, + { + "start": 11618.78, + "end": 11619.24, + "probability": 0.5197 + }, + { + "start": 11619.28, + "end": 11622.94, + "probability": 0.9947 + }, + { + "start": 11623.36, + "end": 11626.13, + "probability": 0.9438 + }, + { + "start": 11626.8, + "end": 11627.72, + "probability": 0.7119 + }, + { + "start": 11627.9, + "end": 11631.18, + "probability": 0.9826 + }, + { + "start": 11631.76, + "end": 11635.82, + "probability": 0.3433 + }, + { + "start": 11635.82, + "end": 11638.18, + "probability": 0.5988 + }, + { + "start": 11638.64, + "end": 11640.54, + "probability": 0.76 + }, + { + "start": 11640.78, + "end": 11645.12, + "probability": 0.9753 + }, + { + "start": 11645.12, + "end": 11649.74, + "probability": 0.9852 + }, + { + "start": 11649.76, + "end": 11652.12, + "probability": 0.9932 + }, + { + "start": 11652.26, + "end": 11659.34, + "probability": 0.7025 + }, + { + "start": 11659.36, + "end": 11662.02, + "probability": 0.9834 + }, + { + "start": 11662.5, + "end": 11666.74, + "probability": 0.978 + }, + { + "start": 11668.1, + "end": 11669.46, + "probability": 0.9157 + }, + { + "start": 11670.0, + "end": 11674.74, + "probability": 0.9846 + }, + { + "start": 11675.08, + "end": 11675.34, + "probability": 0.6178 + }, + { + "start": 11675.4, + "end": 11677.48, + "probability": 0.8984 + }, + { + "start": 11677.56, + "end": 11678.6, + "probability": 0.6589 + }, + { + "start": 11678.72, + "end": 11681.42, + "probability": 0.7552 + }, + { + "start": 11681.54, + "end": 11686.46, + "probability": 0.0249 + }, + { + "start": 11686.46, + "end": 11687.4, + "probability": 0.5635 + }, + { + "start": 11687.5, + "end": 11688.42, + "probability": 0.9047 + }, + { + "start": 11688.44, + "end": 11689.4, + "probability": 0.8292 + }, + { + "start": 11689.78, + "end": 11690.72, + "probability": 0.748 + }, + { + "start": 11690.88, + "end": 11692.18, + "probability": 0.7759 + }, + { + "start": 11692.34, + "end": 11695.22, + "probability": 0.8286 + }, + { + "start": 11695.9, + "end": 11698.44, + "probability": 0.8601 + }, + { + "start": 11698.82, + "end": 11699.81, + "probability": 0.9187 + }, + { + "start": 11700.12, + "end": 11700.78, + "probability": 0.5704 + }, + { + "start": 11700.94, + "end": 11701.78, + "probability": 0.8818 + }, + { + "start": 11702.12, + "end": 11703.52, + "probability": 0.9789 + }, + { + "start": 11703.74, + "end": 11705.38, + "probability": 0.9591 + }, + { + "start": 11705.72, + "end": 11709.32, + "probability": 0.9665 + }, + { + "start": 11709.64, + "end": 11716.0, + "probability": 0.9724 + }, + { + "start": 11716.7, + "end": 11718.14, + "probability": 0.9111 + }, + { + "start": 11718.4, + "end": 11719.94, + "probability": 0.9871 + }, + { + "start": 11720.0, + "end": 11721.06, + "probability": 0.8811 + }, + { + "start": 11721.24, + "end": 11725.87, + "probability": 0.9709 + }, + { + "start": 11726.48, + "end": 11727.93, + "probability": 0.9475 + }, + { + "start": 11728.5, + "end": 11729.14, + "probability": 0.5662 + }, + { + "start": 11729.14, + "end": 11730.94, + "probability": 0.6923 + }, + { + "start": 11731.58, + "end": 11733.36, + "probability": 0.7913 + }, + { + "start": 11736.76, + "end": 11739.02, + "probability": 0.942 + }, + { + "start": 11739.52, + "end": 11739.82, + "probability": 0.166 + }, + { + "start": 11740.64, + "end": 11745.3, + "probability": 0.9947 + }, + { + "start": 11746.04, + "end": 11747.22, + "probability": 0.9606 + }, + { + "start": 11747.42, + "end": 11748.28, + "probability": 0.666 + }, + { + "start": 11748.7, + "end": 11749.92, + "probability": 0.9922 + }, + { + "start": 11750.06, + "end": 11751.42, + "probability": 0.9559 + }, + { + "start": 11751.64, + "end": 11755.5, + "probability": 0.9337 + }, + { + "start": 11755.5, + "end": 11759.12, + "probability": 0.8356 + }, + { + "start": 11759.62, + "end": 11761.18, + "probability": 0.5012 + }, + { + "start": 11761.54, + "end": 11763.18, + "probability": 0.9264 + }, + { + "start": 11763.48, + "end": 11765.3, + "probability": 0.6638 + }, + { + "start": 11765.62, + "end": 11767.22, + "probability": 0.9495 + }, + { + "start": 11767.42, + "end": 11768.9, + "probability": 0.9446 + }, + { + "start": 11769.04, + "end": 11769.36, + "probability": 0.6043 + }, + { + "start": 11769.4, + "end": 11773.4, + "probability": 0.9877 + }, + { + "start": 11773.48, + "end": 11776.38, + "probability": 0.9952 + }, + { + "start": 11778.3, + "end": 11779.4, + "probability": 0.2713 + }, + { + "start": 11782.49, + "end": 11783.54, + "probability": 0.1227 + }, + { + "start": 11783.54, + "end": 11785.82, + "probability": 0.5725 + }, + { + "start": 11786.38, + "end": 11787.38, + "probability": 0.6555 + }, + { + "start": 11787.6, + "end": 11788.68, + "probability": 0.8442 + }, + { + "start": 11789.06, + "end": 11793.4, + "probability": 0.9878 + }, + { + "start": 11793.4, + "end": 11797.1, + "probability": 0.9093 + }, + { + "start": 11797.58, + "end": 11800.22, + "probability": 0.8542 + }, + { + "start": 11800.46, + "end": 11801.66, + "probability": 0.8896 + }, + { + "start": 11801.78, + "end": 11805.06, + "probability": 0.958 + }, + { + "start": 11805.26, + "end": 11807.48, + "probability": 0.9678 + }, + { + "start": 11807.62, + "end": 11811.98, + "probability": 0.9279 + }, + { + "start": 11811.98, + "end": 11817.22, + "probability": 0.9964 + }, + { + "start": 11817.34, + "end": 11818.38, + "probability": 0.8467 + }, + { + "start": 11818.78, + "end": 11819.88, + "probability": 0.5758 + }, + { + "start": 11820.02, + "end": 11820.12, + "probability": 0.48 + }, + { + "start": 11820.24, + "end": 11820.36, + "probability": 0.8337 + }, + { + "start": 11820.46, + "end": 11823.42, + "probability": 0.9061 + }, + { + "start": 11823.58, + "end": 11825.76, + "probability": 0.9928 + }, + { + "start": 11826.18, + "end": 11829.9, + "probability": 0.9939 + }, + { + "start": 11830.02, + "end": 11831.9, + "probability": 0.8625 + }, + { + "start": 11831.92, + "end": 11833.55, + "probability": 0.9862 + }, + { + "start": 11833.7, + "end": 11836.04, + "probability": 0.7963 + }, + { + "start": 11836.42, + "end": 11837.66, + "probability": 0.7839 + }, + { + "start": 11838.0, + "end": 11841.98, + "probability": 0.9875 + }, + { + "start": 11842.58, + "end": 11842.82, + "probability": 0.8118 + }, + { + "start": 11843.68, + "end": 11845.54, + "probability": 0.7437 + }, + { + "start": 11845.76, + "end": 11847.7, + "probability": 0.951 + }, + { + "start": 11847.96, + "end": 11848.62, + "probability": 0.7086 + }, + { + "start": 11849.2, + "end": 11850.42, + "probability": 0.9078 + }, + { + "start": 11851.62, + "end": 11854.36, + "probability": 0.6381 + }, + { + "start": 11854.66, + "end": 11856.88, + "probability": 0.9897 + }, + { + "start": 11856.92, + "end": 11858.1, + "probability": 0.9719 + }, + { + "start": 11858.18, + "end": 11860.51, + "probability": 0.9175 + }, + { + "start": 11860.9, + "end": 11862.24, + "probability": 0.6646 + }, + { + "start": 11862.86, + "end": 11864.33, + "probability": 0.9097 + }, + { + "start": 11864.72, + "end": 11866.8, + "probability": 0.947 + }, + { + "start": 11867.18, + "end": 11868.16, + "probability": 0.96 + }, + { + "start": 11869.34, + "end": 11872.12, + "probability": 0.996 + }, + { + "start": 11872.68, + "end": 11875.1, + "probability": 0.9973 + }, + { + "start": 11875.48, + "end": 11880.5, + "probability": 0.9902 + }, + { + "start": 11880.88, + "end": 11882.52, + "probability": 0.9312 + }, + { + "start": 11882.84, + "end": 11885.7, + "probability": 0.9798 + }, + { + "start": 11886.96, + "end": 11886.96, + "probability": 0.0296 + }, + { + "start": 11886.96, + "end": 11887.44, + "probability": 0.7625 + }, + { + "start": 11887.56, + "end": 11889.78, + "probability": 0.9948 + }, + { + "start": 11890.02, + "end": 11891.16, + "probability": 0.9806 + }, + { + "start": 11891.3, + "end": 11892.42, + "probability": 0.9917 + }, + { + "start": 11892.5, + "end": 11893.78, + "probability": 0.9275 + }, + { + "start": 11894.18, + "end": 11895.16, + "probability": 0.7161 + }, + { + "start": 11895.88, + "end": 11897.36, + "probability": 0.9641 + }, + { + "start": 11897.44, + "end": 11898.48, + "probability": 0.6333 + }, + { + "start": 11898.58, + "end": 11900.08, + "probability": 0.9923 + }, + { + "start": 11901.0, + "end": 11903.4, + "probability": 0.9604 + }, + { + "start": 11905.58, + "end": 11908.18, + "probability": 0.993 + }, + { + "start": 11908.58, + "end": 11912.0, + "probability": 0.972 + }, + { + "start": 11912.8, + "end": 11920.72, + "probability": 0.9856 + }, + { + "start": 11921.1, + "end": 11921.95, + "probability": 0.9682 + }, + { + "start": 11923.16, + "end": 11926.44, + "probability": 0.9855 + }, + { + "start": 11926.72, + "end": 11928.98, + "probability": 0.9668 + }, + { + "start": 11929.26, + "end": 11930.54, + "probability": 0.831 + }, + { + "start": 11931.1, + "end": 11931.96, + "probability": 0.6694 + }, + { + "start": 11932.48, + "end": 11934.46, + "probability": 0.9886 + }, + { + "start": 11934.54, + "end": 11934.58, + "probability": 0.4968 + }, + { + "start": 11934.7, + "end": 11935.09, + "probability": 0.8779 + }, + { + "start": 11935.8, + "end": 11939.39, + "probability": 0.9048 + }, + { + "start": 11939.56, + "end": 11939.68, + "probability": 0.2692 + }, + { + "start": 11939.68, + "end": 11941.6, + "probability": 0.7601 + }, + { + "start": 11941.76, + "end": 11943.85, + "probability": 0.74 + }, + { + "start": 11944.22, + "end": 11944.96, + "probability": 0.8789 + }, + { + "start": 11945.54, + "end": 11950.86, + "probability": 0.9647 + }, + { + "start": 11951.0, + "end": 11953.76, + "probability": 0.9731 + }, + { + "start": 11953.94, + "end": 11957.46, + "probability": 0.9924 + }, + { + "start": 11957.48, + "end": 11960.76, + "probability": 0.8377 + }, + { + "start": 11960.92, + "end": 11963.72, + "probability": 0.9942 + }, + { + "start": 11963.9, + "end": 11965.26, + "probability": 0.9666 + }, + { + "start": 11965.9, + "end": 11968.54, + "probability": 0.9781 + }, + { + "start": 11969.48, + "end": 11971.46, + "probability": 0.9936 + }, + { + "start": 11971.76, + "end": 11973.22, + "probability": 0.7266 + }, + { + "start": 11973.32, + "end": 11976.28, + "probability": 0.7895 + }, + { + "start": 11976.6, + "end": 11979.12, + "probability": 0.9489 + }, + { + "start": 11979.66, + "end": 11981.98, + "probability": 0.8419 + }, + { + "start": 11982.38, + "end": 11985.44, + "probability": 0.8794 + }, + { + "start": 11985.68, + "end": 11987.3, + "probability": 0.9984 + }, + { + "start": 11988.02, + "end": 11991.16, + "probability": 0.9929 + }, + { + "start": 11991.16, + "end": 11995.46, + "probability": 0.9907 + }, + { + "start": 11995.84, + "end": 11998.08, + "probability": 0.762 + }, + { + "start": 12000.3, + "end": 12004.83, + "probability": 0.3448 + }, + { + "start": 12005.86, + "end": 12006.96, + "probability": 0.0129 + }, + { + "start": 12007.42, + "end": 12008.68, + "probability": 0.6286 + }, + { + "start": 12008.8, + "end": 12009.5, + "probability": 0.6073 + }, + { + "start": 12009.58, + "end": 12010.76, + "probability": 0.8549 + }, + { + "start": 12011.08, + "end": 12011.64, + "probability": 0.933 + }, + { + "start": 12011.68, + "end": 12015.82, + "probability": 0.8468 + }, + { + "start": 12015.9, + "end": 12016.7, + "probability": 0.7773 + }, + { + "start": 12017.94, + "end": 12022.6, + "probability": 0.9979 + }, + { + "start": 12023.8, + "end": 12028.14, + "probability": 0.8941 + }, + { + "start": 12029.42, + "end": 12031.35, + "probability": 0.8983 + }, + { + "start": 12031.44, + "end": 12032.35, + "probability": 0.8173 + }, + { + "start": 12033.34, + "end": 12034.18, + "probability": 0.9155 + }, + { + "start": 12034.42, + "end": 12035.34, + "probability": 0.9047 + }, + { + "start": 12035.62, + "end": 12036.72, + "probability": 0.9115 + }, + { + "start": 12036.82, + "end": 12037.8, + "probability": 0.9865 + }, + { + "start": 12038.04, + "end": 12039.91, + "probability": 0.9876 + }, + { + "start": 12040.14, + "end": 12042.32, + "probability": 0.9868 + }, + { + "start": 12042.46, + "end": 12043.54, + "probability": 0.7509 + }, + { + "start": 12043.82, + "end": 12046.98, + "probability": 0.9836 + }, + { + "start": 12047.62, + "end": 12049.62, + "probability": 0.8271 + }, + { + "start": 12049.98, + "end": 12051.9, + "probability": 0.9713 + }, + { + "start": 12052.2, + "end": 12055.02, + "probability": 0.9961 + }, + { + "start": 12055.06, + "end": 12056.6, + "probability": 0.9745 + }, + { + "start": 12056.94, + "end": 12059.58, + "probability": 0.8195 + }, + { + "start": 12060.18, + "end": 12063.58, + "probability": 0.9598 + }, + { + "start": 12063.98, + "end": 12067.02, + "probability": 0.9969 + }, + { + "start": 12067.4, + "end": 12069.18, + "probability": 0.9963 + }, + { + "start": 12069.28, + "end": 12070.74, + "probability": 0.9659 + }, + { + "start": 12070.94, + "end": 12072.16, + "probability": 0.8811 + }, + { + "start": 12072.42, + "end": 12073.86, + "probability": 0.8089 + }, + { + "start": 12073.98, + "end": 12076.64, + "probability": 0.7736 + }, + { + "start": 12076.8, + "end": 12077.56, + "probability": 0.6929 + }, + { + "start": 12077.78, + "end": 12080.48, + "probability": 0.7121 + }, + { + "start": 12080.48, + "end": 12085.12, + "probability": 0.6644 + }, + { + "start": 12085.68, + "end": 12086.65, + "probability": 0.1562 + }, + { + "start": 12087.2, + "end": 12089.3, + "probability": 0.737 + }, + { + "start": 12089.3, + "end": 12092.88, + "probability": 0.6485 + }, + { + "start": 12093.42, + "end": 12095.44, + "probability": 0.8512 + }, + { + "start": 12095.98, + "end": 12098.52, + "probability": 0.3587 + }, + { + "start": 12098.7, + "end": 12098.7, + "probability": 0.2042 + }, + { + "start": 12098.7, + "end": 12098.92, + "probability": 0.6403 + }, + { + "start": 12099.14, + "end": 12101.4, + "probability": 0.0886 + }, + { + "start": 12101.62, + "end": 12102.46, + "probability": 0.4481 + }, + { + "start": 12102.52, + "end": 12102.68, + "probability": 0.2007 + }, + { + "start": 12102.68, + "end": 12103.81, + "probability": 0.7828 + }, + { + "start": 12104.48, + "end": 12106.22, + "probability": 0.8684 + }, + { + "start": 12106.32, + "end": 12106.78, + "probability": 0.7632 + }, + { + "start": 12106.82, + "end": 12108.53, + "probability": 0.2431 + }, + { + "start": 12109.44, + "end": 12111.16, + "probability": 0.4672 + }, + { + "start": 12111.22, + "end": 12114.22, + "probability": 0.4112 + }, + { + "start": 12114.82, + "end": 12117.68, + "probability": 0.9561 + }, + { + "start": 12117.8, + "end": 12120.86, + "probability": 0.9939 + }, + { + "start": 12120.86, + "end": 12124.36, + "probability": 0.6874 + }, + { + "start": 12124.64, + "end": 12127.18, + "probability": 0.9081 + }, + { + "start": 12127.6, + "end": 12129.3, + "probability": 0.7467 + }, + { + "start": 12129.78, + "end": 12133.16, + "probability": 0.9349 + }, + { + "start": 12133.16, + "end": 12136.82, + "probability": 0.9557 + }, + { + "start": 12137.1, + "end": 12139.28, + "probability": 0.9497 + }, + { + "start": 12139.32, + "end": 12141.32, + "probability": 0.9912 + }, + { + "start": 12141.4, + "end": 12144.32, + "probability": 0.9861 + }, + { + "start": 12144.44, + "end": 12146.72, + "probability": 0.9655 + }, + { + "start": 12146.82, + "end": 12147.82, + "probability": 0.8289 + }, + { + "start": 12147.86, + "end": 12149.42, + "probability": 0.9478 + }, + { + "start": 12149.72, + "end": 12150.42, + "probability": 0.876 + }, + { + "start": 12150.76, + "end": 12153.28, + "probability": 0.9846 + }, + { + "start": 12153.92, + "end": 12155.7, + "probability": 0.9934 + }, + { + "start": 12156.04, + "end": 12158.1, + "probability": 0.7097 + }, + { + "start": 12158.3, + "end": 12159.94, + "probability": 0.9812 + }, + { + "start": 12160.06, + "end": 12162.93, + "probability": 0.9919 + }, + { + "start": 12163.34, + "end": 12166.78, + "probability": 0.9742 + }, + { + "start": 12167.12, + "end": 12168.6, + "probability": 0.5369 + }, + { + "start": 12168.74, + "end": 12169.78, + "probability": 0.825 + }, + { + "start": 12170.58, + "end": 12170.9, + "probability": 0.6289 + }, + { + "start": 12171.02, + "end": 12171.95, + "probability": 0.8618 + }, + { + "start": 12172.12, + "end": 12173.36, + "probability": 0.8915 + }, + { + "start": 12173.66, + "end": 12177.48, + "probability": 0.9845 + }, + { + "start": 12179.5, + "end": 12182.62, + "probability": 0.8203 + }, + { + "start": 12182.96, + "end": 12184.54, + "probability": 0.6508 + }, + { + "start": 12184.74, + "end": 12188.22, + "probability": 0.8309 + }, + { + "start": 12188.22, + "end": 12192.5, + "probability": 0.9214 + }, + { + "start": 12195.26, + "end": 12196.7, + "probability": 0.8552 + }, + { + "start": 12196.7, + "end": 12200.1, + "probability": 0.9537 + }, + { + "start": 12200.2, + "end": 12201.94, + "probability": 0.8929 + }, + { + "start": 12202.32, + "end": 12204.42, + "probability": 0.8852 + }, + { + "start": 12204.66, + "end": 12207.44, + "probability": 0.9942 + }, + { + "start": 12207.98, + "end": 12210.18, + "probability": 0.9952 + }, + { + "start": 12210.3, + "end": 12210.78, + "probability": 0.9462 + }, + { + "start": 12213.26, + "end": 12214.88, + "probability": 0.8021 + }, + { + "start": 12215.04, + "end": 12216.62, + "probability": 0.9233 + }, + { + "start": 12216.74, + "end": 12220.5, + "probability": 0.8245 + }, + { + "start": 12220.54, + "end": 12222.66, + "probability": 0.7933 + }, + { + "start": 12223.0, + "end": 12225.06, + "probability": 0.9551 + }, + { + "start": 12225.58, + "end": 12228.34, + "probability": 0.9884 + }, + { + "start": 12228.46, + "end": 12229.56, + "probability": 0.9896 + }, + { + "start": 12230.1, + "end": 12234.1, + "probability": 0.9972 + }, + { + "start": 12234.5, + "end": 12236.76, + "probability": 0.8467 + }, + { + "start": 12237.26, + "end": 12241.38, + "probability": 0.9854 + }, + { + "start": 12241.76, + "end": 12245.12, + "probability": 0.9918 + }, + { + "start": 12245.3, + "end": 12246.36, + "probability": 0.9247 + }, + { + "start": 12246.5, + "end": 12247.34, + "probability": 0.9836 + }, + { + "start": 12247.54, + "end": 12249.04, + "probability": 0.9722 + }, + { + "start": 12249.18, + "end": 12251.66, + "probability": 0.8914 + }, + { + "start": 12251.74, + "end": 12252.02, + "probability": 0.6663 + }, + { + "start": 12252.02, + "end": 12254.34, + "probability": 0.5181 + }, + { + "start": 12254.46, + "end": 12256.96, + "probability": 0.988 + }, + { + "start": 12257.06, + "end": 12258.76, + "probability": 0.9254 + }, + { + "start": 12259.58, + "end": 12262.32, + "probability": 0.8201 + }, + { + "start": 12274.76, + "end": 12274.84, + "probability": 0.0438 + }, + { + "start": 12274.96, + "end": 12276.28, + "probability": 0.4823 + }, + { + "start": 12276.72, + "end": 12278.16, + "probability": 0.8784 + }, + { + "start": 12278.18, + "end": 12279.26, + "probability": 0.4558 + }, + { + "start": 12279.6, + "end": 12279.76, + "probability": 0.562 + }, + { + "start": 12279.8, + "end": 12281.56, + "probability": 0.6664 + }, + { + "start": 12281.56, + "end": 12282.76, + "probability": 0.4225 + }, + { + "start": 12282.84, + "end": 12283.24, + "probability": 0.3164 + }, + { + "start": 12283.24, + "end": 12283.24, + "probability": 0.2359 + }, + { + "start": 12283.24, + "end": 12284.6, + "probability": 0.5104 + }, + { + "start": 12285.06, + "end": 12285.28, + "probability": 0.3657 + }, + { + "start": 12287.38, + "end": 12289.7, + "probability": 0.1362 + }, + { + "start": 12290.28, + "end": 12290.28, + "probability": 0.0715 + }, + { + "start": 12290.28, + "end": 12290.4, + "probability": 0.0353 + }, + { + "start": 12290.58, + "end": 12290.58, + "probability": 0.0351 + }, + { + "start": 12290.58, + "end": 12290.58, + "probability": 0.2914 + }, + { + "start": 12290.58, + "end": 12290.58, + "probability": 0.212 + }, + { + "start": 12290.58, + "end": 12291.46, + "probability": 0.5944 + }, + { + "start": 12291.84, + "end": 12294.34, + "probability": 0.705 + }, + { + "start": 12294.64, + "end": 12296.84, + "probability": 0.8173 + }, + { + "start": 12296.9, + "end": 12299.24, + "probability": 0.6003 + }, + { + "start": 12299.5, + "end": 12300.12, + "probability": 0.4397 + }, + { + "start": 12300.9, + "end": 12301.62, + "probability": 0.7522 + }, + { + "start": 12301.62, + "end": 12302.86, + "probability": 0.6298 + }, + { + "start": 12302.94, + "end": 12303.74, + "probability": 0.6426 + }, + { + "start": 12304.2, + "end": 12306.26, + "probability": 0.9873 + }, + { + "start": 12306.32, + "end": 12309.74, + "probability": 0.845 + }, + { + "start": 12309.82, + "end": 12310.84, + "probability": 0.74 + }, + { + "start": 12310.9, + "end": 12312.12, + "probability": 0.9082 + }, + { + "start": 12312.54, + "end": 12314.1, + "probability": 0.9429 + }, + { + "start": 12314.42, + "end": 12317.86, + "probability": 0.9517 + }, + { + "start": 12318.24, + "end": 12320.28, + "probability": 0.8733 + }, + { + "start": 12320.68, + "end": 12325.32, + "probability": 0.8896 + }, + { + "start": 12325.38, + "end": 12326.94, + "probability": 0.879 + }, + { + "start": 12327.04, + "end": 12328.42, + "probability": 0.9961 + }, + { + "start": 12328.46, + "end": 12330.3, + "probability": 0.9984 + }, + { + "start": 12330.86, + "end": 12332.92, + "probability": 0.9883 + }, + { + "start": 12332.98, + "end": 12334.14, + "probability": 0.9208 + }, + { + "start": 12334.36, + "end": 12337.04, + "probability": 0.931 + }, + { + "start": 12337.1, + "end": 12340.86, + "probability": 0.913 + }, + { + "start": 12340.92, + "end": 12341.4, + "probability": 0.882 + }, + { + "start": 12342.0, + "end": 12343.14, + "probability": 0.8451 + }, + { + "start": 12343.24, + "end": 12343.5, + "probability": 0.2414 + }, + { + "start": 12343.58, + "end": 12346.2, + "probability": 0.9368 + }, + { + "start": 12346.22, + "end": 12346.52, + "probability": 0.8162 + }, + { + "start": 12346.74, + "end": 12348.84, + "probability": 0.9263 + }, + { + "start": 12349.28, + "end": 12353.5, + "probability": 0.8507 + }, + { + "start": 12353.82, + "end": 12358.14, + "probability": 0.9911 + }, + { + "start": 12358.3, + "end": 12359.9, + "probability": 0.6389 + }, + { + "start": 12361.06, + "end": 12365.18, + "probability": 0.6509 + }, + { + "start": 12365.18, + "end": 12366.56, + "probability": 0.7826 + }, + { + "start": 12366.7, + "end": 12368.88, + "probability": 0.9929 + }, + { + "start": 12369.22, + "end": 12371.84, + "probability": 0.964 + }, + { + "start": 12372.16, + "end": 12373.16, + "probability": 0.6569 + }, + { + "start": 12373.22, + "end": 12376.79, + "probability": 0.9592 + }, + { + "start": 12377.2, + "end": 12378.13, + "probability": 0.9054 + }, + { + "start": 12378.48, + "end": 12381.44, + "probability": 0.9819 + }, + { + "start": 12381.68, + "end": 12383.44, + "probability": 0.2213 + }, + { + "start": 12383.8, + "end": 12387.64, + "probability": 0.762 + }, + { + "start": 12387.7, + "end": 12388.38, + "probability": 0.6409 + }, + { + "start": 12388.46, + "end": 12389.82, + "probability": 0.2457 + }, + { + "start": 12390.36, + "end": 12390.62, + "probability": 0.0955 + }, + { + "start": 12391.86, + "end": 12393.08, + "probability": 0.8515 + }, + { + "start": 12393.14, + "end": 12395.78, + "probability": 0.7809 + }, + { + "start": 12395.86, + "end": 12398.32, + "probability": 0.7817 + }, + { + "start": 12398.4, + "end": 12398.66, + "probability": 0.1726 + }, + { + "start": 12399.24, + "end": 12399.96, + "probability": 0.3912 + }, + { + "start": 12400.22, + "end": 12401.6, + "probability": 0.4882 + }, + { + "start": 12401.7, + "end": 12403.44, + "probability": 0.6147 + }, + { + "start": 12403.48, + "end": 12403.8, + "probability": 0.2747 + }, + { + "start": 12403.8, + "end": 12404.66, + "probability": 0.6736 + }, + { + "start": 12405.0, + "end": 12405.82, + "probability": 0.6214 + }, + { + "start": 12405.9, + "end": 12405.92, + "probability": 0.2008 + }, + { + "start": 12405.92, + "end": 12407.06, + "probability": 0.5442 + }, + { + "start": 12407.06, + "end": 12408.54, + "probability": 0.6433 + }, + { + "start": 12408.66, + "end": 12411.26, + "probability": 0.8908 + }, + { + "start": 12411.36, + "end": 12413.76, + "probability": 0.7846 + }, + { + "start": 12414.02, + "end": 12415.11, + "probability": 0.6391 + }, + { + "start": 12416.3, + "end": 12418.94, + "probability": 0.9795 + }, + { + "start": 12419.06, + "end": 12421.08, + "probability": 0.8718 + }, + { + "start": 12421.08, + "end": 12424.56, + "probability": 0.9826 + }, + { + "start": 12425.4, + "end": 12432.58, + "probability": 0.9624 + }, + { + "start": 12433.08, + "end": 12434.68, + "probability": 0.7941 + }, + { + "start": 12435.6, + "end": 12439.0, + "probability": 0.9849 + }, + { + "start": 12439.92, + "end": 12441.18, + "probability": 0.9272 + }, + { + "start": 12441.22, + "end": 12442.96, + "probability": 0.9836 + }, + { + "start": 12443.06, + "end": 12443.66, + "probability": 0.6981 + }, + { + "start": 12444.02, + "end": 12448.42, + "probability": 0.8228 + }, + { + "start": 12448.77, + "end": 12450.33, + "probability": 0.5011 + }, + { + "start": 12451.02, + "end": 12451.96, + "probability": 0.8538 + }, + { + "start": 12452.5, + "end": 12453.22, + "probability": 0.9216 + }, + { + "start": 12453.26, + "end": 12455.36, + "probability": 0.8936 + }, + { + "start": 12455.46, + "end": 12456.56, + "probability": 0.8154 + }, + { + "start": 12456.76, + "end": 12458.04, + "probability": 0.9894 + }, + { + "start": 12458.12, + "end": 12459.04, + "probability": 0.9962 + }, + { + "start": 12459.22, + "end": 12460.08, + "probability": 0.77 + }, + { + "start": 12460.22, + "end": 12463.02, + "probability": 0.9078 + }, + { + "start": 12463.16, + "end": 12463.8, + "probability": 0.7962 + }, + { + "start": 12463.92, + "end": 12466.38, + "probability": 0.9621 + }, + { + "start": 12466.74, + "end": 12469.22, + "probability": 0.9937 + }, + { + "start": 12469.56, + "end": 12471.36, + "probability": 0.9935 + }, + { + "start": 12471.42, + "end": 12472.47, + "probability": 0.8992 + }, + { + "start": 12472.7, + "end": 12475.64, + "probability": 0.9347 + }, + { + "start": 12476.12, + "end": 12477.58, + "probability": 0.8846 + }, + { + "start": 12478.02, + "end": 12480.16, + "probability": 0.9963 + }, + { + "start": 12480.4, + "end": 12482.44, + "probability": 0.9301 + }, + { + "start": 12482.86, + "end": 12484.42, + "probability": 0.9954 + }, + { + "start": 12484.42, + "end": 12486.82, + "probability": 0.7811 + }, + { + "start": 12487.32, + "end": 12487.8, + "probability": 0.5034 + }, + { + "start": 12488.02, + "end": 12491.64, + "probability": 0.7438 + }, + { + "start": 12492.48, + "end": 12492.68, + "probability": 0.7533 + }, + { + "start": 12493.3, + "end": 12494.88, + "probability": 0.9026 + }, + { + "start": 12495.36, + "end": 12497.28, + "probability": 0.9795 + }, + { + "start": 12497.86, + "end": 12501.46, + "probability": 0.9756 + }, + { + "start": 12502.08, + "end": 12505.26, + "probability": 0.9001 + }, + { + "start": 12505.48, + "end": 12506.36, + "probability": 0.8764 + }, + { + "start": 12506.56, + "end": 12510.26, + "probability": 0.7387 + }, + { + "start": 12510.42, + "end": 12512.9, + "probability": 0.9767 + }, + { + "start": 12513.16, + "end": 12515.34, + "probability": 0.8573 + }, + { + "start": 12515.5, + "end": 12517.66, + "probability": 0.9689 + }, + { + "start": 12517.96, + "end": 12518.2, + "probability": 0.5755 + }, + { + "start": 12518.2, + "end": 12518.68, + "probability": 0.4163 + }, + { + "start": 12518.76, + "end": 12519.46, + "probability": 0.6639 + }, + { + "start": 12519.92, + "end": 12520.8, + "probability": 0.6678 + }, + { + "start": 12520.86, + "end": 12521.28, + "probability": 0.7814 + }, + { + "start": 12521.34, + "end": 12522.9, + "probability": 0.9427 + }, + { + "start": 12523.3, + "end": 12523.66, + "probability": 0.8998 + }, + { + "start": 12523.78, + "end": 12526.3, + "probability": 0.9488 + }, + { + "start": 12526.5, + "end": 12528.28, + "probability": 0.8614 + }, + { + "start": 12528.32, + "end": 12529.06, + "probability": 0.7262 + }, + { + "start": 12529.12, + "end": 12532.08, + "probability": 0.896 + }, + { + "start": 12532.18, + "end": 12533.34, + "probability": 0.7938 + }, + { + "start": 12533.46, + "end": 12537.92, + "probability": 0.1068 + }, + { + "start": 12537.92, + "end": 12538.02, + "probability": 0.276 + }, + { + "start": 12538.36, + "end": 12538.8, + "probability": 0.4615 + }, + { + "start": 12538.8, + "end": 12539.12, + "probability": 0.0673 + }, + { + "start": 12539.42, + "end": 12539.42, + "probability": 0.0466 + }, + { + "start": 12539.42, + "end": 12539.44, + "probability": 0.2943 + }, + { + "start": 12539.62, + "end": 12540.7, + "probability": 0.4933 + }, + { + "start": 12541.38, + "end": 12543.7, + "probability": 0.4583 + }, + { + "start": 12544.08, + "end": 12545.16, + "probability": 0.5865 + }, + { + "start": 12545.52, + "end": 12546.88, + "probability": 0.7196 + }, + { + "start": 12547.86, + "end": 12550.4, + "probability": 0.7278 + }, + { + "start": 12551.5, + "end": 12554.23, + "probability": 0.6489 + }, + { + "start": 12555.82, + "end": 12559.86, + "probability": 0.9368 + }, + { + "start": 12561.04, + "end": 12562.18, + "probability": 0.6006 + }, + { + "start": 12563.5, + "end": 12567.72, + "probability": 0.9753 + }, + { + "start": 12567.88, + "end": 12569.12, + "probability": 0.937 + }, + { + "start": 12569.24, + "end": 12569.9, + "probability": 0.6127 + }, + { + "start": 12569.9, + "end": 12572.68, + "probability": 0.8911 + }, + { + "start": 12574.3, + "end": 12575.34, + "probability": 0.9061 + }, + { + "start": 12575.72, + "end": 12577.94, + "probability": 0.9849 + }, + { + "start": 12578.4, + "end": 12579.94, + "probability": 0.9186 + }, + { + "start": 12579.98, + "end": 12581.36, + "probability": 0.8052 + }, + { + "start": 12582.14, + "end": 12583.88, + "probability": 0.9924 + }, + { + "start": 12585.18, + "end": 12587.68, + "probability": 0.9958 + }, + { + "start": 12588.62, + "end": 12589.04, + "probability": 0.624 + }, + { + "start": 12589.28, + "end": 12592.58, + "probability": 0.9388 + }, + { + "start": 12594.1, + "end": 12597.26, + "probability": 0.9951 + }, + { + "start": 12597.54, + "end": 12599.34, + "probability": 0.9764 + }, + { + "start": 12601.34, + "end": 12603.76, + "probability": 0.9118 + }, + { + "start": 12605.1, + "end": 12607.38, + "probability": 0.8757 + }, + { + "start": 12607.48, + "end": 12609.5, + "probability": 0.9271 + }, + { + "start": 12609.6, + "end": 12610.6, + "probability": 0.5754 + }, + { + "start": 12611.76, + "end": 12613.06, + "probability": 0.9868 + }, + { + "start": 12614.22, + "end": 12615.82, + "probability": 0.8711 + }, + { + "start": 12616.1, + "end": 12617.42, + "probability": 0.873 + }, + { + "start": 12617.5, + "end": 12619.1, + "probability": 0.9729 + }, + { + "start": 12620.96, + "end": 12627.06, + "probability": 0.9926 + }, + { + "start": 12628.38, + "end": 12630.8, + "probability": 0.9989 + }, + { + "start": 12632.26, + "end": 12637.82, + "probability": 0.9956 + }, + { + "start": 12638.48, + "end": 12639.48, + "probability": 0.8756 + }, + { + "start": 12640.6, + "end": 12642.4, + "probability": 0.9714 + }, + { + "start": 12644.7, + "end": 12649.8, + "probability": 0.9935 + }, + { + "start": 12650.84, + "end": 12651.94, + "probability": 0.7418 + }, + { + "start": 12652.3, + "end": 12655.46, + "probability": 0.887 + }, + { + "start": 12656.08, + "end": 12658.82, + "probability": 0.941 + }, + { + "start": 12658.84, + "end": 12660.66, + "probability": 0.9692 + }, + { + "start": 12661.58, + "end": 12664.06, + "probability": 0.7994 + }, + { + "start": 12664.48, + "end": 12670.28, + "probability": 0.943 + }, + { + "start": 12674.6, + "end": 12678.9, + "probability": 0.9966 + }, + { + "start": 12680.44, + "end": 12682.93, + "probability": 0.9907 + }, + { + "start": 12683.18, + "end": 12684.18, + "probability": 0.75 + }, + { + "start": 12684.26, + "end": 12685.5, + "probability": 0.7473 + }, + { + "start": 12686.58, + "end": 12689.38, + "probability": 0.9662 + }, + { + "start": 12690.56, + "end": 12692.58, + "probability": 0.9894 + }, + { + "start": 12692.8, + "end": 12693.88, + "probability": 0.6201 + }, + { + "start": 12694.04, + "end": 12695.36, + "probability": 0.9836 + }, + { + "start": 12696.06, + "end": 12697.3, + "probability": 0.8292 + }, + { + "start": 12699.42, + "end": 12704.28, + "probability": 0.873 + }, + { + "start": 12704.36, + "end": 12707.22, + "probability": 0.7081 + }, + { + "start": 12708.72, + "end": 12710.88, + "probability": 0.989 + }, + { + "start": 12711.04, + "end": 12714.08, + "probability": 0.998 + }, + { + "start": 12714.18, + "end": 12714.96, + "probability": 0.8241 + }, + { + "start": 12717.38, + "end": 12722.84, + "probability": 0.9827 + }, + { + "start": 12722.96, + "end": 12724.28, + "probability": 0.7726 + }, + { + "start": 12725.36, + "end": 12727.74, + "probability": 0.7925 + }, + { + "start": 12728.44, + "end": 12729.72, + "probability": 0.9719 + }, + { + "start": 12730.34, + "end": 12732.2, + "probability": 0.7996 + }, + { + "start": 12733.28, + "end": 12736.46, + "probability": 0.68 + }, + { + "start": 12737.96, + "end": 12739.6, + "probability": 0.9496 + }, + { + "start": 12740.56, + "end": 12743.7, + "probability": 0.9351 + }, + { + "start": 12745.64, + "end": 12749.84, + "probability": 0.9784 + }, + { + "start": 12750.94, + "end": 12756.1, + "probability": 0.9449 + }, + { + "start": 12756.76, + "end": 12757.52, + "probability": 0.6116 + }, + { + "start": 12758.58, + "end": 12763.72, + "probability": 0.9964 + }, + { + "start": 12764.84, + "end": 12766.75, + "probability": 0.8315 + }, + { + "start": 12767.58, + "end": 12771.14, + "probability": 0.9358 + }, + { + "start": 12771.22, + "end": 12771.4, + "probability": 0.6121 + }, + { + "start": 12771.42, + "end": 12772.16, + "probability": 0.2751 + }, + { + "start": 12772.5, + "end": 12773.54, + "probability": 0.6312 + }, + { + "start": 12773.6, + "end": 12774.08, + "probability": 0.5834 + }, + { + "start": 12774.1, + "end": 12775.08, + "probability": 0.9073 + }, + { + "start": 12776.72, + "end": 12778.4, + "probability": 0.8369 + }, + { + "start": 12778.48, + "end": 12779.7, + "probability": 0.6436 + }, + { + "start": 12779.72, + "end": 12779.92, + "probability": 0.9034 + }, + { + "start": 12781.28, + "end": 12782.66, + "probability": 0.774 + }, + { + "start": 12782.78, + "end": 12784.12, + "probability": 0.6032 + }, + { + "start": 12784.22, + "end": 12785.18, + "probability": 0.0709 + }, + { + "start": 12785.18, + "end": 12786.84, + "probability": 0.8273 + }, + { + "start": 12787.48, + "end": 12789.34, + "probability": 0.8894 + }, + { + "start": 12789.64, + "end": 12793.14, + "probability": 0.8882 + }, + { + "start": 12793.74, + "end": 12796.66, + "probability": 0.1481 + }, + { + "start": 12798.04, + "end": 12799.16, + "probability": 0.5664 + }, + { + "start": 12800.36, + "end": 12802.3, + "probability": 0.7747 + }, + { + "start": 12802.36, + "end": 12806.3, + "probability": 0.8715 + }, + { + "start": 12806.3, + "end": 12809.96, + "probability": 0.9474 + }, + { + "start": 12810.2, + "end": 12811.78, + "probability": 0.8262 + }, + { + "start": 12812.64, + "end": 12816.86, + "probability": 0.6262 + }, + { + "start": 12817.34, + "end": 12817.92, + "probability": 0.7405 + }, + { + "start": 12818.4, + "end": 12818.96, + "probability": 0.595 + }, + { + "start": 12819.68, + "end": 12819.68, + "probability": 0.3075 + }, + { + "start": 12819.68, + "end": 12820.46, + "probability": 0.4551 + }, + { + "start": 12820.56, + "end": 12821.36, + "probability": 0.8809 + }, + { + "start": 12821.64, + "end": 12822.08, + "probability": 0.7242 + }, + { + "start": 12822.12, + "end": 12822.66, + "probability": 0.8829 + }, + { + "start": 12822.7, + "end": 12824.0, + "probability": 0.8643 + }, + { + "start": 12825.86, + "end": 12827.74, + "probability": 0.8173 + }, + { + "start": 12828.62, + "end": 12829.66, + "probability": 0.8655 + }, + { + "start": 12829.78, + "end": 12833.92, + "probability": 0.7953 + }, + { + "start": 12834.7, + "end": 12838.3, + "probability": 0.5956 + }, + { + "start": 12839.44, + "end": 12843.32, + "probability": 0.9664 + }, + { + "start": 12843.96, + "end": 12845.62, + "probability": 0.9927 + }, + { + "start": 12846.54, + "end": 12846.98, + "probability": 0.5883 + }, + { + "start": 12847.04, + "end": 12851.68, + "probability": 0.9881 + }, + { + "start": 12851.68, + "end": 12857.32, + "probability": 0.9973 + }, + { + "start": 12857.82, + "end": 12859.26, + "probability": 0.7379 + }, + { + "start": 12860.26, + "end": 12862.5, + "probability": 0.9528 + }, + { + "start": 12862.58, + "end": 12866.08, + "probability": 0.9249 + }, + { + "start": 12866.22, + "end": 12867.28, + "probability": 0.9171 + }, + { + "start": 12867.36, + "end": 12869.94, + "probability": 0.9955 + }, + { + "start": 12870.14, + "end": 12873.33, + "probability": 0.9595 + }, + { + "start": 12874.28, + "end": 12875.74, + "probability": 0.7761 + }, + { + "start": 12876.3, + "end": 12879.9, + "probability": 0.971 + }, + { + "start": 12879.96, + "end": 12882.12, + "probability": 0.977 + }, + { + "start": 12882.36, + "end": 12883.04, + "probability": 0.7634 + }, + { + "start": 12883.12, + "end": 12884.32, + "probability": 0.969 + }, + { + "start": 12884.48, + "end": 12885.1, + "probability": 0.7245 + }, + { + "start": 12885.18, + "end": 12886.76, + "probability": 0.6472 + }, + { + "start": 12886.84, + "end": 12887.58, + "probability": 0.7194 + }, + { + "start": 12887.58, + "end": 12888.28, + "probability": 0.7346 + }, + { + "start": 12888.3, + "end": 12888.92, + "probability": 0.9062 + }, + { + "start": 12889.0, + "end": 12890.04, + "probability": 0.959 + }, + { + "start": 12890.78, + "end": 12891.44, + "probability": 0.8931 + }, + { + "start": 12891.6, + "end": 12894.68, + "probability": 0.8102 + }, + { + "start": 12894.98, + "end": 12897.74, + "probability": 0.876 + }, + { + "start": 12897.9, + "end": 12899.96, + "probability": 0.9323 + }, + { + "start": 12900.84, + "end": 12902.36, + "probability": 0.8882 + }, + { + "start": 12902.8, + "end": 12903.06, + "probability": 0.7993 + }, + { + "start": 12903.16, + "end": 12907.06, + "probability": 0.9615 + }, + { + "start": 12907.96, + "end": 12910.9, + "probability": 0.9395 + }, + { + "start": 12911.04, + "end": 12913.04, + "probability": 0.8146 + }, + { + "start": 12913.4, + "end": 12914.02, + "probability": 0.7046 + }, + { + "start": 12914.36, + "end": 12915.2, + "probability": 0.8483 + }, + { + "start": 12915.68, + "end": 12918.62, + "probability": 0.8832 + }, + { + "start": 12919.18, + "end": 12921.0, + "probability": 0.5073 + }, + { + "start": 12921.7, + "end": 12927.8, + "probability": 0.9544 + }, + { + "start": 12928.42, + "end": 12929.08, + "probability": 0.2743 + }, + { + "start": 12931.2, + "end": 12931.99, + "probability": 0.8406 + }, + { + "start": 12932.7, + "end": 12933.06, + "probability": 0.428 + }, + { + "start": 12933.12, + "end": 12933.22, + "probability": 0.7606 + }, + { + "start": 12933.58, + "end": 12934.91, + "probability": 0.7251 + }, + { + "start": 12935.18, + "end": 12935.38, + "probability": 0.6816 + }, + { + "start": 12935.9, + "end": 12938.02, + "probability": 0.9495 + }, + { + "start": 12938.14, + "end": 12938.98, + "probability": 0.8142 + }, + { + "start": 12939.08, + "end": 12939.44, + "probability": 0.9 + }, + { + "start": 12940.0, + "end": 12941.68, + "probability": 0.7244 + }, + { + "start": 12941.7, + "end": 12944.02, + "probability": 0.9717 + }, + { + "start": 12944.2, + "end": 12947.42, + "probability": 0.9099 + }, + { + "start": 12947.46, + "end": 12949.4, + "probability": 0.7768 + }, + { + "start": 12949.96, + "end": 12952.34, + "probability": 0.8984 + }, + { + "start": 12953.35, + "end": 12955.62, + "probability": 0.8051 + }, + { + "start": 12959.96, + "end": 12959.96, + "probability": 0.161 + }, + { + "start": 12959.96, + "end": 12961.88, + "probability": 0.6388 + }, + { + "start": 12963.58, + "end": 12965.84, + "probability": 0.7065 + }, + { + "start": 12966.64, + "end": 12966.98, + "probability": 0.7592 + }, + { + "start": 12967.0, + "end": 12971.36, + "probability": 0.8842 + }, + { + "start": 12971.36, + "end": 12975.04, + "probability": 0.9583 + }, + { + "start": 12975.9, + "end": 12976.78, + "probability": 0.6642 + }, + { + "start": 12976.9, + "end": 12977.2, + "probability": 0.2527 + }, + { + "start": 12977.34, + "end": 12980.04, + "probability": 0.8873 + }, + { + "start": 12980.06, + "end": 12982.74, + "probability": 0.9071 + }, + { + "start": 12983.12, + "end": 12983.56, + "probability": 0.9307 + }, + { + "start": 12983.84, + "end": 12984.24, + "probability": 0.9045 + }, + { + "start": 12984.36, + "end": 12987.94, + "probability": 0.98 + }, + { + "start": 12988.44, + "end": 12989.18, + "probability": 0.7897 + }, + { + "start": 12989.68, + "end": 12990.24, + "probability": 0.2133 + }, + { + "start": 12990.3, + "end": 12991.36, + "probability": 0.69 + }, + { + "start": 12991.46, + "end": 12995.92, + "probability": 0.912 + }, + { + "start": 12996.86, + "end": 12999.02, + "probability": 0.9831 + }, + { + "start": 12999.56, + "end": 12999.96, + "probability": 0.5544 + }, + { + "start": 13000.02, + "end": 13000.78, + "probability": 0.8447 + }, + { + "start": 13000.9, + "end": 13003.24, + "probability": 0.7725 + }, + { + "start": 13003.9, + "end": 13006.2, + "probability": 0.8238 + }, + { + "start": 13006.72, + "end": 13009.08, + "probability": 0.7065 + }, + { + "start": 13009.16, + "end": 13013.92, + "probability": 0.8165 + }, + { + "start": 13014.56, + "end": 13017.38, + "probability": 0.8505 + }, + { + "start": 13017.48, + "end": 13020.04, + "probability": 0.8345 + }, + { + "start": 13020.32, + "end": 13024.64, + "probability": 0.89 + }, + { + "start": 13024.82, + "end": 13025.6, + "probability": 0.8125 + }, + { + "start": 13025.98, + "end": 13026.8, + "probability": 0.5016 + }, + { + "start": 13027.94, + "end": 13029.66, + "probability": 0.4044 + }, + { + "start": 13029.74, + "end": 13032.44, + "probability": 0.7601 + }, + { + "start": 13032.62, + "end": 13033.16, + "probability": 0.6874 + }, + { + "start": 13033.26, + "end": 13036.22, + "probability": 0.6848 + }, + { + "start": 13037.18, + "end": 13039.34, + "probability": 0.4189 + }, + { + "start": 13039.66, + "end": 13040.34, + "probability": 0.4442 + }, + { + "start": 13040.7, + "end": 13043.72, + "probability": 0.8862 + }, + { + "start": 13044.38, + "end": 13049.3, + "probability": 0.9884 + }, + { + "start": 13049.58, + "end": 13054.36, + "probability": 0.9974 + }, + { + "start": 13054.78, + "end": 13058.0, + "probability": 0.9977 + }, + { + "start": 13058.42, + "end": 13059.71, + "probability": 0.8091 + }, + { + "start": 13060.76, + "end": 13062.92, + "probability": 0.9906 + }, + { + "start": 13063.1, + "end": 13065.0, + "probability": 0.8159 + }, + { + "start": 13065.38, + "end": 13067.7, + "probability": 0.9834 + }, + { + "start": 13067.84, + "end": 13068.82, + "probability": 0.8402 + }, + { + "start": 13069.32, + "end": 13075.22, + "probability": 0.9775 + }, + { + "start": 13075.34, + "end": 13079.78, + "probability": 0.9362 + }, + { + "start": 13080.24, + "end": 13084.78, + "probability": 0.9648 + }, + { + "start": 13084.92, + "end": 13088.72, + "probability": 0.9263 + }, + { + "start": 13089.16, + "end": 13091.48, + "probability": 0.9019 + }, + { + "start": 13091.58, + "end": 13091.58, + "probability": 0.2769 + }, + { + "start": 13091.58, + "end": 13091.94, + "probability": 0.0405 + }, + { + "start": 13092.22, + "end": 13094.88, + "probability": 0.9379 + }, + { + "start": 13095.24, + "end": 13096.78, + "probability": 0.9775 + }, + { + "start": 13096.86, + "end": 13103.22, + "probability": 0.9633 + }, + { + "start": 13103.86, + "end": 13106.14, + "probability": 0.985 + }, + { + "start": 13106.78, + "end": 13107.44, + "probability": 0.814 + }, + { + "start": 13108.52, + "end": 13110.24, + "probability": 0.7104 + }, + { + "start": 13119.18, + "end": 13126.6, + "probability": 0.5612 + }, + { + "start": 13127.52, + "end": 13128.34, + "probability": 0.8133 + }, + { + "start": 13128.5, + "end": 13133.46, + "probability": 0.9779 + }, + { + "start": 13133.88, + "end": 13134.94, + "probability": 0.7766 + }, + { + "start": 13135.06, + "end": 13138.84, + "probability": 0.9972 + }, + { + "start": 13138.86, + "end": 13141.64, + "probability": 0.9922 + }, + { + "start": 13142.22, + "end": 13144.65, + "probability": 0.9992 + }, + { + "start": 13145.44, + "end": 13147.76, + "probability": 0.9412 + }, + { + "start": 13147.88, + "end": 13148.6, + "probability": 0.9509 + }, + { + "start": 13148.74, + "end": 13149.7, + "probability": 0.9832 + }, + { + "start": 13150.1, + "end": 13151.24, + "probability": 0.9797 + }, + { + "start": 13151.26, + "end": 13153.04, + "probability": 0.967 + }, + { + "start": 13153.48, + "end": 13156.98, + "probability": 0.7874 + }, + { + "start": 13157.04, + "end": 13157.62, + "probability": 0.876 + }, + { + "start": 13157.86, + "end": 13159.56, + "probability": 0.982 + }, + { + "start": 13159.68, + "end": 13160.96, + "probability": 0.9812 + }, + { + "start": 13161.5, + "end": 13163.16, + "probability": 0.925 + }, + { + "start": 13163.38, + "end": 13163.9, + "probability": 0.5564 + }, + { + "start": 13164.08, + "end": 13164.6, + "probability": 0.7488 + }, + { + "start": 13164.92, + "end": 13166.36, + "probability": 0.9515 + }, + { + "start": 13167.36, + "end": 13168.38, + "probability": 0.7387 + }, + { + "start": 13169.02, + "end": 13170.5, + "probability": 0.9299 + }, + { + "start": 13171.56, + "end": 13172.8, + "probability": 0.9731 + }, + { + "start": 13173.48, + "end": 13175.76, + "probability": 0.8103 + }, + { + "start": 13175.92, + "end": 13176.78, + "probability": 0.9639 + }, + { + "start": 13177.22, + "end": 13180.98, + "probability": 0.9979 + }, + { + "start": 13180.98, + "end": 13184.38, + "probability": 0.7732 + }, + { + "start": 13184.6, + "end": 13189.08, + "probability": 0.8329 + }, + { + "start": 13189.72, + "end": 13192.64, + "probability": 0.9888 + }, + { + "start": 13192.76, + "end": 13196.28, + "probability": 0.968 + }, + { + "start": 13197.46, + "end": 13202.04, + "probability": 0.8672 + }, + { + "start": 13202.52, + "end": 13203.32, + "probability": 0.6656 + }, + { + "start": 13203.64, + "end": 13205.08, + "probability": 0.9775 + }, + { + "start": 13205.26, + "end": 13205.84, + "probability": 0.9424 + }, + { + "start": 13206.2, + "end": 13207.14, + "probability": 0.8712 + }, + { + "start": 13207.58, + "end": 13210.84, + "probability": 0.9179 + }, + { + "start": 13211.16, + "end": 13213.74, + "probability": 0.9968 + }, + { + "start": 13214.08, + "end": 13218.26, + "probability": 0.9718 + }, + { + "start": 13218.68, + "end": 13220.9, + "probability": 0.7387 + }, + { + "start": 13221.42, + "end": 13223.86, + "probability": 0.9201 + }, + { + "start": 13223.86, + "end": 13227.04, + "probability": 0.8856 + }, + { + "start": 13227.14, + "end": 13227.7, + "probability": 0.5844 + }, + { + "start": 13228.22, + "end": 13229.36, + "probability": 0.8184 + }, + { + "start": 13229.88, + "end": 13233.57, + "probability": 0.9924 + }, + { + "start": 13234.18, + "end": 13234.92, + "probability": 0.7697 + }, + { + "start": 13235.26, + "end": 13238.02, + "probability": 0.8857 + }, + { + "start": 13238.38, + "end": 13239.76, + "probability": 0.6732 + }, + { + "start": 13240.4, + "end": 13240.8, + "probability": 0.807 + }, + { + "start": 13240.8, + "end": 13243.7, + "probability": 0.8623 + }, + { + "start": 13244.08, + "end": 13245.11, + "probability": 0.9801 + }, + { + "start": 13245.18, + "end": 13250.22, + "probability": 0.9854 + }, + { + "start": 13250.38, + "end": 13252.22, + "probability": 0.7957 + }, + { + "start": 13252.58, + "end": 13253.38, + "probability": 0.921 + }, + { + "start": 13253.5, + "end": 13256.9, + "probability": 0.7197 + }, + { + "start": 13257.2, + "end": 13260.2, + "probability": 0.8945 + }, + { + "start": 13260.54, + "end": 13263.2, + "probability": 0.9672 + }, + { + "start": 13263.6, + "end": 13265.44, + "probability": 0.8351 + }, + { + "start": 13265.68, + "end": 13267.06, + "probability": 0.9437 + }, + { + "start": 13267.52, + "end": 13272.54, + "probability": 0.9906 + }, + { + "start": 13272.94, + "end": 13275.72, + "probability": 0.7938 + }, + { + "start": 13276.34, + "end": 13278.56, + "probability": 0.9116 + }, + { + "start": 13279.0, + "end": 13281.87, + "probability": 0.925 + }, + { + "start": 13282.68, + "end": 13283.54, + "probability": 0.9951 + }, + { + "start": 13283.96, + "end": 13284.9, + "probability": 0.9893 + }, + { + "start": 13285.72, + "end": 13288.3, + "probability": 0.9972 + }, + { + "start": 13288.3, + "end": 13291.66, + "probability": 0.9218 + }, + { + "start": 13291.8, + "end": 13294.4, + "probability": 0.9934 + }, + { + "start": 13294.4, + "end": 13297.14, + "probability": 0.9996 + }, + { + "start": 13297.6, + "end": 13298.68, + "probability": 0.918 + }, + { + "start": 13299.1, + "end": 13299.74, + "probability": 0.9033 + }, + { + "start": 13300.28, + "end": 13303.4, + "probability": 0.9974 + }, + { + "start": 13303.5, + "end": 13306.74, + "probability": 0.9948 + }, + { + "start": 13307.36, + "end": 13307.82, + "probability": 0.4899 + }, + { + "start": 13309.06, + "end": 13310.06, + "probability": 0.8591 + }, + { + "start": 13310.18, + "end": 13311.68, + "probability": 0.5912 + }, + { + "start": 13311.78, + "end": 13312.36, + "probability": 0.7346 + }, + { + "start": 13312.7, + "end": 13319.18, + "probability": 0.9455 + }, + { + "start": 13319.46, + "end": 13323.34, + "probability": 0.9608 + }, + { + "start": 13323.92, + "end": 13326.92, + "probability": 0.9954 + }, + { + "start": 13327.3, + "end": 13330.64, + "probability": 0.8315 + }, + { + "start": 13330.98, + "end": 13333.08, + "probability": 0.9951 + }, + { + "start": 13333.6, + "end": 13335.78, + "probability": 0.991 + }, + { + "start": 13336.42, + "end": 13339.66, + "probability": 0.894 + }, + { + "start": 13339.96, + "end": 13340.8, + "probability": 0.7018 + }, + { + "start": 13340.94, + "end": 13342.22, + "probability": 0.8566 + }, + { + "start": 13342.54, + "end": 13343.88, + "probability": 0.8885 + }, + { + "start": 13343.98, + "end": 13347.68, + "probability": 0.93 + }, + { + "start": 13348.14, + "end": 13351.56, + "probability": 0.91 + }, + { + "start": 13352.02, + "end": 13356.5, + "probability": 0.9342 + }, + { + "start": 13356.56, + "end": 13357.58, + "probability": 0.9881 + }, + { + "start": 13358.14, + "end": 13358.84, + "probability": 0.5418 + }, + { + "start": 13359.26, + "end": 13360.61, + "probability": 0.9834 + }, + { + "start": 13361.32, + "end": 13362.63, + "probability": 0.9961 + }, + { + "start": 13363.04, + "end": 13366.26, + "probability": 0.9345 + }, + { + "start": 13366.58, + "end": 13367.36, + "probability": 0.7838 + }, + { + "start": 13367.56, + "end": 13368.76, + "probability": 0.8767 + }, + { + "start": 13368.84, + "end": 13371.32, + "probability": 0.9946 + }, + { + "start": 13371.66, + "end": 13375.08, + "probability": 0.9919 + }, + { + "start": 13375.1, + "end": 13375.1, + "probability": 0.473 + }, + { + "start": 13375.1, + "end": 13375.6, + "probability": 0.7588 + }, + { + "start": 13377.86, + "end": 13380.12, + "probability": 0.4642 + }, + { + "start": 13380.12, + "end": 13381.12, + "probability": 0.5946 + }, + { + "start": 13381.7, + "end": 13385.48, + "probability": 0.7519 + }, + { + "start": 13385.52, + "end": 13385.76, + "probability": 0.9043 + }, + { + "start": 13386.42, + "end": 13387.12, + "probability": 0.8625 + }, + { + "start": 13387.2, + "end": 13387.64, + "probability": 0.832 + }, + { + "start": 13387.8, + "end": 13388.56, + "probability": 0.9238 + }, + { + "start": 13388.68, + "end": 13390.2, + "probability": 0.9466 + }, + { + "start": 13390.54, + "end": 13391.0, + "probability": 0.4905 + }, + { + "start": 13391.02, + "end": 13391.78, + "probability": 0.9071 + }, + { + "start": 13392.12, + "end": 13392.74, + "probability": 0.7079 + }, + { + "start": 13393.92, + "end": 13394.66, + "probability": 0.6709 + }, + { + "start": 13395.1, + "end": 13395.58, + "probability": 0.0965 + }, + { + "start": 13395.58, + "end": 13396.74, + "probability": 0.7244 + }, + { + "start": 13396.88, + "end": 13397.04, + "probability": 0.3412 + }, + { + "start": 13397.04, + "end": 13398.21, + "probability": 0.9089 + }, + { + "start": 13398.72, + "end": 13399.5, + "probability": 0.6962 + }, + { + "start": 13400.76, + "end": 13401.46, + "probability": 0.6346 + }, + { + "start": 13401.54, + "end": 13403.84, + "probability": 0.9963 + }, + { + "start": 13403.86, + "end": 13406.98, + "probability": 0.9963 + }, + { + "start": 13407.46, + "end": 13411.46, + "probability": 0.9421 + }, + { + "start": 13412.64, + "end": 13416.16, + "probability": 0.9845 + }, + { + "start": 13416.2, + "end": 13416.3, + "probability": 0.7062 + }, + { + "start": 13416.72, + "end": 13420.08, + "probability": 0.9777 + }, + { + "start": 13420.86, + "end": 13422.9, + "probability": 0.894 + }, + { + "start": 13424.1, + "end": 13424.68, + "probability": 0.733 + }, + { + "start": 13425.6, + "end": 13427.26, + "probability": 0.7547 + }, + { + "start": 13428.8, + "end": 13432.06, + "probability": 0.983 + }, + { + "start": 13432.4, + "end": 13433.16, + "probability": 0.8101 + }, + { + "start": 13433.92, + "end": 13438.36, + "probability": 0.9881 + }, + { + "start": 13439.62, + "end": 13440.86, + "probability": 0.7229 + }, + { + "start": 13440.92, + "end": 13441.83, + "probability": 0.5582 + }, + { + "start": 13442.74, + "end": 13445.56, + "probability": 0.9874 + }, + { + "start": 13445.56, + "end": 13447.98, + "probability": 0.9956 + }, + { + "start": 13448.42, + "end": 13449.18, + "probability": 0.9711 + }, + { + "start": 13450.42, + "end": 13451.22, + "probability": 0.6731 + }, + { + "start": 13452.4, + "end": 13452.56, + "probability": 0.439 + }, + { + "start": 13452.6, + "end": 13454.1, + "probability": 0.738 + }, + { + "start": 13454.52, + "end": 13455.82, + "probability": 0.9393 + }, + { + "start": 13455.94, + "end": 13457.58, + "probability": 0.738 + }, + { + "start": 13457.62, + "end": 13458.24, + "probability": 0.8749 + }, + { + "start": 13458.32, + "end": 13459.82, + "probability": 0.4973 + }, + { + "start": 13460.07, + "end": 13461.26, + "probability": 0.9551 + }, + { + "start": 13461.86, + "end": 13462.92, + "probability": 0.7283 + }, + { + "start": 13462.96, + "end": 13464.66, + "probability": 0.9858 + }, + { + "start": 13464.66, + "end": 13466.68, + "probability": 0.993 + }, + { + "start": 13467.72, + "end": 13469.88, + "probability": 0.6056 + }, + { + "start": 13470.58, + "end": 13472.08, + "probability": 0.9772 + }, + { + "start": 13472.8, + "end": 13474.42, + "probability": 0.8882 + }, + { + "start": 13474.56, + "end": 13475.66, + "probability": 0.5711 + }, + { + "start": 13475.76, + "end": 13478.64, + "probability": 0.7785 + }, + { + "start": 13479.5, + "end": 13481.32, + "probability": 0.7749 + }, + { + "start": 13481.42, + "end": 13481.42, + "probability": 0.0527 + }, + { + "start": 13481.42, + "end": 13481.42, + "probability": 0.1803 + }, + { + "start": 13481.42, + "end": 13482.13, + "probability": 0.7845 + }, + { + "start": 13483.92, + "end": 13485.14, + "probability": 0.7326 + }, + { + "start": 13486.04, + "end": 13489.52, + "probability": 0.7452 + }, + { + "start": 13491.24, + "end": 13494.38, + "probability": 0.6822 + }, + { + "start": 13494.5, + "end": 13494.99, + "probability": 0.8818 + }, + { + "start": 13495.66, + "end": 13496.82, + "probability": 0.9849 + }, + { + "start": 13496.94, + "end": 13498.24, + "probability": 0.9754 + }, + { + "start": 13499.0, + "end": 13503.23, + "probability": 0.949 + }, + { + "start": 13503.98, + "end": 13506.08, + "probability": 0.9211 + }, + { + "start": 13507.2, + "end": 13508.48, + "probability": 0.9653 + }, + { + "start": 13509.66, + "end": 13510.55, + "probability": 0.9128 + }, + { + "start": 13510.98, + "end": 13512.75, + "probability": 0.4822 + }, + { + "start": 13513.92, + "end": 13515.04, + "probability": 0.9583 + }, + { + "start": 13515.68, + "end": 13517.68, + "probability": 0.9893 + }, + { + "start": 13517.78, + "end": 13518.98, + "probability": 0.966 + }, + { + "start": 13520.0, + "end": 13523.36, + "probability": 0.9916 + }, + { + "start": 13523.44, + "end": 13524.02, + "probability": 0.892 + }, + { + "start": 13524.22, + "end": 13524.62, + "probability": 0.9275 + }, + { + "start": 13524.66, + "end": 13525.28, + "probability": 0.9213 + }, + { + "start": 13525.36, + "end": 13525.9, + "probability": 0.6437 + }, + { + "start": 13526.94, + "end": 13529.68, + "probability": 0.916 + }, + { + "start": 13529.68, + "end": 13532.48, + "probability": 0.9799 + }, + { + "start": 13532.96, + "end": 13533.76, + "probability": 0.8955 + }, + { + "start": 13535.16, + "end": 13537.14, + "probability": 0.7327 + }, + { + "start": 13537.76, + "end": 13540.64, + "probability": 0.9604 + }, + { + "start": 13541.4, + "end": 13547.26, + "probability": 0.9841 + }, + { + "start": 13547.86, + "end": 13549.24, + "probability": 0.5659 + }, + { + "start": 13549.94, + "end": 13550.48, + "probability": 0.5686 + }, + { + "start": 13550.52, + "end": 13551.36, + "probability": 0.8756 + }, + { + "start": 13551.46, + "end": 13552.34, + "probability": 0.3784 + }, + { + "start": 13552.44, + "end": 13553.21, + "probability": 0.9147 + }, + { + "start": 13553.56, + "end": 13554.04, + "probability": 0.4405 + }, + { + "start": 13554.8, + "end": 13555.98, + "probability": 0.5483 + }, + { + "start": 13556.04, + "end": 13556.58, + "probability": 0.8281 + }, + { + "start": 13557.04, + "end": 13559.0, + "probability": 0.8251 + }, + { + "start": 13559.62, + "end": 13561.94, + "probability": 0.8315 + }, + { + "start": 13562.1, + "end": 13563.21, + "probability": 0.8228 + }, + { + "start": 13563.86, + "end": 13565.02, + "probability": 0.9467 + }, + { + "start": 13565.26, + "end": 13566.52, + "probability": 0.8828 + }, + { + "start": 13567.98, + "end": 13569.96, + "probability": 0.9353 + }, + { + "start": 13570.22, + "end": 13572.04, + "probability": 0.6209 + }, + { + "start": 13572.66, + "end": 13575.3, + "probability": 0.9631 + }, + { + "start": 13575.88, + "end": 13577.06, + "probability": 0.9912 + }, + { + "start": 13577.24, + "end": 13579.4, + "probability": 0.9679 + }, + { + "start": 13579.92, + "end": 13580.37, + "probability": 0.8228 + }, + { + "start": 13580.66, + "end": 13582.82, + "probability": 0.2836 + }, + { + "start": 13582.82, + "end": 13583.18, + "probability": 0.0507 + }, + { + "start": 13583.28, + "end": 13584.56, + "probability": 0.991 + }, + { + "start": 13585.62, + "end": 13588.0, + "probability": 0.7431 + }, + { + "start": 13588.0, + "end": 13591.02, + "probability": 0.9835 + }, + { + "start": 13591.24, + "end": 13594.34, + "probability": 0.9781 + }, + { + "start": 13594.9, + "end": 13598.42, + "probability": 0.9194 + }, + { + "start": 13598.74, + "end": 13599.54, + "probability": 0.8579 + }, + { + "start": 13599.96, + "end": 13601.32, + "probability": 0.9805 + }, + { + "start": 13602.44, + "end": 13603.4, + "probability": 0.82 + }, + { + "start": 13603.54, + "end": 13603.76, + "probability": 0.8108 + }, + { + "start": 13604.12, + "end": 13605.58, + "probability": 0.8541 + }, + { + "start": 13606.28, + "end": 13606.52, + "probability": 0.7574 + }, + { + "start": 13607.58, + "end": 13608.02, + "probability": 0.9091 + }, + { + "start": 13608.88, + "end": 13611.88, + "probability": 0.9334 + }, + { + "start": 13612.08, + "end": 13617.04, + "probability": 0.9092 + }, + { + "start": 13617.94, + "end": 13618.7, + "probability": 0.9142 + }, + { + "start": 13619.56, + "end": 13620.46, + "probability": 0.8983 + }, + { + "start": 13620.52, + "end": 13621.04, + "probability": 0.5329 + }, + { + "start": 13621.14, + "end": 13624.08, + "probability": 0.8315 + }, + { + "start": 13624.36, + "end": 13627.46, + "probability": 0.7664 + }, + { + "start": 13628.02, + "end": 13629.06, + "probability": 0.3967 + }, + { + "start": 13629.06, + "end": 13629.54, + "probability": 0.8126 + }, + { + "start": 13630.14, + "end": 13630.42, + "probability": 0.697 + }, + { + "start": 13630.73, + "end": 13635.18, + "probability": 0.748 + }, + { + "start": 13635.18, + "end": 13636.85, + "probability": 0.7499 + }, + { + "start": 13637.16, + "end": 13638.2, + "probability": 0.9973 + }, + { + "start": 13638.74, + "end": 13639.46, + "probability": 0.7127 + }, + { + "start": 13640.1, + "end": 13642.34, + "probability": 0.9382 + }, + { + "start": 13642.92, + "end": 13643.68, + "probability": 0.9631 + }, + { + "start": 13644.1, + "end": 13646.64, + "probability": 0.7036 + }, + { + "start": 13646.8, + "end": 13649.04, + "probability": 0.9337 + }, + { + "start": 13650.0, + "end": 13650.86, + "probability": 0.9775 + }, + { + "start": 13650.86, + "end": 13651.08, + "probability": 0.8826 + }, + { + "start": 13651.1, + "end": 13652.44, + "probability": 0.7668 + }, + { + "start": 13652.6, + "end": 13652.74, + "probability": 0.7461 + }, + { + "start": 13653.3, + "end": 13656.04, + "probability": 0.998 + }, + { + "start": 13656.44, + "end": 13657.0, + "probability": 0.6567 + }, + { + "start": 13658.0, + "end": 13658.74, + "probability": 0.9407 + }, + { + "start": 13658.84, + "end": 13659.34, + "probability": 0.9696 + }, + { + "start": 13660.3, + "end": 13661.26, + "probability": 0.9466 + }, + { + "start": 13661.78, + "end": 13662.96, + "probability": 0.976 + }, + { + "start": 13663.3, + "end": 13665.22, + "probability": 0.9987 + }, + { + "start": 13665.58, + "end": 13667.18, + "probability": 0.9957 + }, + { + "start": 13667.64, + "end": 13669.18, + "probability": 0.8984 + }, + { + "start": 13670.42, + "end": 13672.56, + "probability": 0.726 + }, + { + "start": 13673.04, + "end": 13673.96, + "probability": 0.3384 + }, + { + "start": 13674.42, + "end": 13675.2, + "probability": 0.9609 + }, + { + "start": 13675.36, + "end": 13676.14, + "probability": 0.887 + }, + { + "start": 13676.5, + "end": 13680.0, + "probability": 0.8564 + }, + { + "start": 13680.38, + "end": 13682.98, + "probability": 0.8051 + }, + { + "start": 13683.66, + "end": 13684.74, + "probability": 0.9071 + }, + { + "start": 13685.1, + "end": 13687.24, + "probability": 0.9268 + }, + { + "start": 13687.78, + "end": 13689.74, + "probability": 0.832 + }, + { + "start": 13689.84, + "end": 13690.78, + "probability": 0.9204 + }, + { + "start": 13691.46, + "end": 13693.66, + "probability": 0.8508 + }, + { + "start": 13694.08, + "end": 13696.36, + "probability": 0.9022 + }, + { + "start": 13696.8, + "end": 13697.28, + "probability": 0.9904 + }, + { + "start": 13698.08, + "end": 13699.26, + "probability": 0.7735 + }, + { + "start": 13699.96, + "end": 13703.18, + "probability": 0.6649 + }, + { + "start": 13704.0, + "end": 13708.28, + "probability": 0.9274 + }, + { + "start": 13708.28, + "end": 13709.58, + "probability": 0.5332 + }, + { + "start": 13710.44, + "end": 13711.1, + "probability": 0.7297 + }, + { + "start": 13711.22, + "end": 13712.04, + "probability": 0.7733 + }, + { + "start": 13712.18, + "end": 13716.98, + "probability": 0.9716 + }, + { + "start": 13717.46, + "end": 13720.24, + "probability": 0.9596 + }, + { + "start": 13720.56, + "end": 13721.86, + "probability": 0.9735 + }, + { + "start": 13721.9, + "end": 13722.8, + "probability": 0.706 + }, + { + "start": 13723.32, + "end": 13725.68, + "probability": 0.9163 + }, + { + "start": 13726.12, + "end": 13727.78, + "probability": 0.8092 + }, + { + "start": 13728.08, + "end": 13728.86, + "probability": 0.9592 + }, + { + "start": 13729.12, + "end": 13729.86, + "probability": 0.8589 + }, + { + "start": 13729.92, + "end": 13731.22, + "probability": 0.7674 + }, + { + "start": 13731.32, + "end": 13732.36, + "probability": 0.7792 + }, + { + "start": 13732.36, + "end": 13733.12, + "probability": 0.7145 + }, + { + "start": 13733.18, + "end": 13735.84, + "probability": 0.6122 + }, + { + "start": 13735.9, + "end": 13736.44, + "probability": 0.9032 + }, + { + "start": 13736.74, + "end": 13738.88, + "probability": 0.9868 + }, + { + "start": 13738.9, + "end": 13740.6, + "probability": 0.6499 + }, + { + "start": 13740.62, + "end": 13740.94, + "probability": 0.7196 + }, + { + "start": 13741.32, + "end": 13742.12, + "probability": 0.8248 + }, + { + "start": 13742.22, + "end": 13744.26, + "probability": 0.6098 + }, + { + "start": 13745.34, + "end": 13745.72, + "probability": 0.5839 + }, + { + "start": 13746.28, + "end": 13749.38, + "probability": 0.785 + }, + { + "start": 13749.68, + "end": 13750.52, + "probability": 0.5917 + }, + { + "start": 13751.36, + "end": 13753.06, + "probability": 0.9389 + }, + { + "start": 13753.24, + "end": 13754.64, + "probability": 0.8472 + }, + { + "start": 13754.72, + "end": 13755.12, + "probability": 0.4972 + }, + { + "start": 13755.52, + "end": 13756.62, + "probability": 0.6915 + }, + { + "start": 13756.74, + "end": 13757.92, + "probability": 0.9668 + }, + { + "start": 13758.0, + "end": 13759.72, + "probability": 0.9419 + }, + { + "start": 13760.54, + "end": 13761.96, + "probability": 0.6257 + }, + { + "start": 13762.92, + "end": 13763.6, + "probability": 0.9314 + }, + { + "start": 13764.46, + "end": 13765.78, + "probability": 0.9239 + }, + { + "start": 13766.3, + "end": 13767.68, + "probability": 0.8784 + }, + { + "start": 13767.76, + "end": 13768.18, + "probability": 0.6074 + }, + { + "start": 13768.78, + "end": 13770.72, + "probability": 0.9869 + }, + { + "start": 13770.98, + "end": 13772.73, + "probability": 0.9495 + }, + { + "start": 13773.56, + "end": 13777.08, + "probability": 0.9606 + }, + { + "start": 13777.28, + "end": 13778.45, + "probability": 0.9907 + }, + { + "start": 13779.02, + "end": 13779.84, + "probability": 0.6836 + }, + { + "start": 13780.42, + "end": 13781.6, + "probability": 0.8127 + }, + { + "start": 13781.78, + "end": 13782.58, + "probability": 0.5309 + }, + { + "start": 13782.66, + "end": 13783.01, + "probability": 0.5986 + }, + { + "start": 13783.28, + "end": 13783.69, + "probability": 0.326 + }, + { + "start": 13784.06, + "end": 13784.26, + "probability": 0.6491 + }, + { + "start": 13784.58, + "end": 13786.84, + "probability": 0.9763 + }, + { + "start": 13786.96, + "end": 13787.28, + "probability": 0.8839 + }, + { + "start": 13787.34, + "end": 13789.46, + "probability": 0.789 + }, + { + "start": 13790.16, + "end": 13790.42, + "probability": 0.4816 + }, + { + "start": 13790.46, + "end": 13790.76, + "probability": 0.5685 + }, + { + "start": 13790.82, + "end": 13792.48, + "probability": 0.5094 + }, + { + "start": 13792.6, + "end": 13793.3, + "probability": 0.0752 + }, + { + "start": 13793.66, + "end": 13794.78, + "probability": 0.8458 + }, + { + "start": 13794.86, + "end": 13795.22, + "probability": 0.8057 + }, + { + "start": 13796.04, + "end": 13796.6, + "probability": 0.8569 + }, + { + "start": 13797.16, + "end": 13799.52, + "probability": 0.9674 + }, + { + "start": 13800.3, + "end": 13802.02, + "probability": 0.9909 + }, + { + "start": 13802.56, + "end": 13803.48, + "probability": 0.9727 + }, + { + "start": 13803.68, + "end": 13807.94, + "probability": 0.993 + }, + { + "start": 13808.26, + "end": 13811.1, + "probability": 0.6627 + }, + { + "start": 13811.96, + "end": 13813.22, + "probability": 0.9526 + }, + { + "start": 13814.54, + "end": 13815.56, + "probability": 0.7233 + }, + { + "start": 13815.8, + "end": 13819.78, + "probability": 0.9818 + }, + { + "start": 13819.8, + "end": 13821.04, + "probability": 0.4473 + }, + { + "start": 13821.46, + "end": 13826.0, + "probability": 0.8152 + }, + { + "start": 13826.5, + "end": 13827.02, + "probability": 0.6188 + }, + { + "start": 13827.22, + "end": 13827.78, + "probability": 0.9195 + }, + { + "start": 13827.84, + "end": 13832.6, + "probability": 0.9079 + }, + { + "start": 13833.36, + "end": 13834.64, + "probability": 0.8204 + }, + { + "start": 13835.32, + "end": 13836.72, + "probability": 0.3405 + }, + { + "start": 13836.8, + "end": 13837.88, + "probability": 0.8869 + }, + { + "start": 13838.4, + "end": 13840.22, + "probability": 0.9746 + }, + { + "start": 13860.98, + "end": 13863.96, + "probability": 0.7505 + }, + { + "start": 13865.6, + "end": 13871.1, + "probability": 0.6628 + }, + { + "start": 13871.16, + "end": 13875.7, + "probability": 0.5427 + }, + { + "start": 13876.74, + "end": 13877.96, + "probability": 0.8844 + }, + { + "start": 13878.22, + "end": 13878.88, + "probability": 0.9116 + }, + { + "start": 13879.0, + "end": 13882.2, + "probability": 0.7605 + }, + { + "start": 13883.93, + "end": 13887.64, + "probability": 0.9835 + }, + { + "start": 13888.54, + "end": 13891.68, + "probability": 0.9817 + }, + { + "start": 13892.46, + "end": 13894.16, + "probability": 0.6407 + }, + { + "start": 13894.94, + "end": 13899.12, + "probability": 0.8964 + }, + { + "start": 13900.32, + "end": 13901.1, + "probability": 0.8206 + }, + { + "start": 13901.76, + "end": 13903.0, + "probability": 0.6526 + }, + { + "start": 13903.32, + "end": 13908.12, + "probability": 0.9292 + }, + { + "start": 13908.96, + "end": 13915.56, + "probability": 0.9973 + }, + { + "start": 13915.72, + "end": 13916.5, + "probability": 0.7416 + }, + { + "start": 13917.06, + "end": 13919.86, + "probability": 0.9477 + }, + { + "start": 13920.18, + "end": 13920.6, + "probability": 0.8894 + }, + { + "start": 13921.78, + "end": 13925.08, + "probability": 0.8574 + }, + { + "start": 13925.62, + "end": 13929.0, + "probability": 0.944 + }, + { + "start": 13929.68, + "end": 13935.62, + "probability": 0.9399 + }, + { + "start": 13938.74, + "end": 13940.68, + "probability": 0.7463 + }, + { + "start": 13941.22, + "end": 13945.08, + "probability": 0.9968 + }, + { + "start": 13945.38, + "end": 13946.8, + "probability": 0.8347 + }, + { + "start": 13947.24, + "end": 13948.5, + "probability": 0.6509 + }, + { + "start": 13948.56, + "end": 13950.5, + "probability": 0.9409 + }, + { + "start": 13951.18, + "end": 13953.72, + "probability": 0.9853 + }, + { + "start": 13953.78, + "end": 13955.82, + "probability": 0.9574 + }, + { + "start": 13956.58, + "end": 13959.12, + "probability": 0.8807 + }, + { + "start": 13959.16, + "end": 13959.54, + "probability": 0.6742 + }, + { + "start": 13959.88, + "end": 13961.4, + "probability": 0.9925 + }, + { + "start": 13961.98, + "end": 13964.3, + "probability": 0.9748 + }, + { + "start": 13965.0, + "end": 13965.52, + "probability": 0.4537 + }, + { + "start": 13966.26, + "end": 13969.04, + "probability": 0.9706 + }, + { + "start": 13969.62, + "end": 13971.28, + "probability": 0.9306 + }, + { + "start": 13977.72, + "end": 13979.52, + "probability": 0.8565 + }, + { + "start": 13980.2, + "end": 13982.3, + "probability": 0.0003 + }, + { + "start": 13983.64, + "end": 13986.3, + "probability": 0.0996 + }, + { + "start": 13986.36, + "end": 13992.16, + "probability": 0.9055 + }, + { + "start": 13992.82, + "end": 13993.56, + "probability": 0.6783 + }, + { + "start": 13994.8, + "end": 13996.72, + "probability": 0.9004 + }, + { + "start": 13997.32, + "end": 14000.78, + "probability": 0.8533 + }, + { + "start": 14001.08, + "end": 14001.52, + "probability": 0.4725 + }, + { + "start": 14001.56, + "end": 14001.94, + "probability": 0.5229 + }, + { + "start": 14002.02, + "end": 14002.42, + "probability": 0.844 + }, + { + "start": 14002.52, + "end": 14002.98, + "probability": 0.5651 + }, + { + "start": 14003.02, + "end": 14003.48, + "probability": 0.7109 + }, + { + "start": 14003.5, + "end": 14004.44, + "probability": 0.728 + }, + { + "start": 14004.84, + "end": 14005.36, + "probability": 0.9551 + }, + { + "start": 14005.76, + "end": 14007.66, + "probability": 0.9706 + }, + { + "start": 14008.08, + "end": 14010.86, + "probability": 0.712 + }, + { + "start": 14011.44, + "end": 14015.36, + "probability": 0.8784 + }, + { + "start": 14015.42, + "end": 14017.08, + "probability": 0.8117 + }, + { + "start": 14018.14, + "end": 14020.78, + "probability": 0.9731 + }, + { + "start": 14021.1, + "end": 14022.96, + "probability": 0.9984 + }, + { + "start": 14024.0, + "end": 14025.36, + "probability": 0.9797 + }, + { + "start": 14025.94, + "end": 14026.72, + "probability": 0.9592 + }, + { + "start": 14027.3, + "end": 14028.74, + "probability": 0.7708 + }, + { + "start": 14028.76, + "end": 14029.22, + "probability": 0.7996 + }, + { + "start": 14029.3, + "end": 14030.78, + "probability": 0.9734 + }, + { + "start": 14031.12, + "end": 14032.78, + "probability": 0.3006 + }, + { + "start": 14033.46, + "end": 14036.54, + "probability": 0.8968 + }, + { + "start": 14036.62, + "end": 14038.06, + "probability": 0.9718 + }, + { + "start": 14038.64, + "end": 14043.22, + "probability": 0.917 + }, + { + "start": 14043.44, + "end": 14044.66, + "probability": 0.9853 + }, + { + "start": 14045.26, + "end": 14046.25, + "probability": 0.9927 + }, + { + "start": 14046.82, + "end": 14050.11, + "probability": 0.9663 + }, + { + "start": 14050.56, + "end": 14051.9, + "probability": 0.9924 + }, + { + "start": 14052.38, + "end": 14055.02, + "probability": 0.9811 + }, + { + "start": 14055.32, + "end": 14056.32, + "probability": 0.7723 + }, + { + "start": 14056.48, + "end": 14058.5, + "probability": 0.9623 + }, + { + "start": 14058.98, + "end": 14062.22, + "probability": 0.9971 + }, + { + "start": 14062.6, + "end": 14063.82, + "probability": 0.7629 + }, + { + "start": 14064.12, + "end": 14065.12, + "probability": 0.7957 + }, + { + "start": 14065.18, + "end": 14069.32, + "probability": 0.9907 + }, + { + "start": 14069.78, + "end": 14072.9, + "probability": 0.9647 + }, + { + "start": 14073.04, + "end": 14073.86, + "probability": 0.8037 + }, + { + "start": 14074.22, + "end": 14077.62, + "probability": 0.9905 + }, + { + "start": 14078.2, + "end": 14080.42, + "probability": 0.9141 + }, + { + "start": 14080.46, + "end": 14081.9, + "probability": 0.9628 + }, + { + "start": 14082.14, + "end": 14083.19, + "probability": 0.5572 + }, + { + "start": 14083.62, + "end": 14083.98, + "probability": 0.3087 + }, + { + "start": 14084.02, + "end": 14085.08, + "probability": 0.8282 + }, + { + "start": 14085.6, + "end": 14087.16, + "probability": 0.9453 + }, + { + "start": 14087.74, + "end": 14087.92, + "probability": 0.4301 + }, + { + "start": 14087.96, + "end": 14089.38, + "probability": 0.4729 + }, + { + "start": 14089.66, + "end": 14091.36, + "probability": 0.84 + }, + { + "start": 14092.04, + "end": 14095.46, + "probability": 0.664 + }, + { + "start": 14095.58, + "end": 14098.08, + "probability": 0.6566 + }, + { + "start": 14098.48, + "end": 14102.16, + "probability": 0.8636 + }, + { + "start": 14102.76, + "end": 14103.58, + "probability": 0.8426 + }, + { + "start": 14103.84, + "end": 14104.14, + "probability": 0.3499 + }, + { + "start": 14105.23, + "end": 14107.2, + "probability": 0.6339 + }, + { + "start": 14107.6, + "end": 14108.18, + "probability": 0.6667 + }, + { + "start": 14108.92, + "end": 14110.2, + "probability": 0.8245 + }, + { + "start": 14110.9, + "end": 14112.48, + "probability": 0.7873 + }, + { + "start": 14113.8, + "end": 14115.66, + "probability": 0.9082 + }, + { + "start": 14121.16, + "end": 14122.04, + "probability": 0.8404 + }, + { + "start": 14122.18, + "end": 14123.74, + "probability": 0.9473 + }, + { + "start": 14123.88, + "end": 14126.92, + "probability": 0.9813 + }, + { + "start": 14128.42, + "end": 14130.32, + "probability": 0.3505 + }, + { + "start": 14131.02, + "end": 14133.26, + "probability": 0.8735 + }, + { + "start": 14133.8, + "end": 14136.82, + "probability": 0.2489 + }, + { + "start": 14137.04, + "end": 14144.0, + "probability": 0.9874 + }, + { + "start": 14144.08, + "end": 14149.0, + "probability": 0.9974 + }, + { + "start": 14149.5, + "end": 14151.06, + "probability": 0.999 + }, + { + "start": 14151.92, + "end": 14158.74, + "probability": 0.9808 + }, + { + "start": 14159.82, + "end": 14162.18, + "probability": 0.9313 + }, + { + "start": 14163.5, + "end": 14169.38, + "probability": 0.9973 + }, + { + "start": 14169.88, + "end": 14173.76, + "probability": 0.8123 + }, + { + "start": 14173.94, + "end": 14179.28, + "probability": 0.9469 + }, + { + "start": 14179.7, + "end": 14183.02, + "probability": 0.9887 + }, + { + "start": 14183.08, + "end": 14184.76, + "probability": 0.6112 + }, + { + "start": 14184.94, + "end": 14185.3, + "probability": 0.7561 + }, + { + "start": 14186.52, + "end": 14187.5, + "probability": 0.9993 + }, + { + "start": 14188.12, + "end": 14190.74, + "probability": 0.9476 + }, + { + "start": 14190.82, + "end": 14193.8, + "probability": 0.4544 + }, + { + "start": 14193.9, + "end": 14195.24, + "probability": 0.8984 + }, + { + "start": 14195.4, + "end": 14199.42, + "probability": 0.8601 + }, + { + "start": 14200.1, + "end": 14204.8, + "probability": 0.8469 + }, + { + "start": 14205.0, + "end": 14209.48, + "probability": 0.9883 + }, + { + "start": 14210.08, + "end": 14212.6, + "probability": 0.9963 + }, + { + "start": 14213.1, + "end": 14217.02, + "probability": 0.9788 + }, + { + "start": 14217.02, + "end": 14219.22, + "probability": 0.9518 + }, + { + "start": 14219.7, + "end": 14224.02, + "probability": 0.9413 + }, + { + "start": 14224.98, + "end": 14230.24, + "probability": 0.9903 + }, + { + "start": 14231.32, + "end": 14234.22, + "probability": 0.9893 + }, + { + "start": 14234.74, + "end": 14236.1, + "probability": 0.9886 + }, + { + "start": 14236.68, + "end": 14237.66, + "probability": 0.7255 + }, + { + "start": 14237.78, + "end": 14240.04, + "probability": 0.7421 + }, + { + "start": 14240.84, + "end": 14243.91, + "probability": 0.9856 + }, + { + "start": 14244.86, + "end": 14248.92, + "probability": 0.9839 + }, + { + "start": 14249.56, + "end": 14252.58, + "probability": 0.9946 + }, + { + "start": 14252.64, + "end": 14255.04, + "probability": 0.9296 + }, + { + "start": 14256.7, + "end": 14259.42, + "probability": 0.6805 + }, + { + "start": 14260.28, + "end": 14261.6, + "probability": 0.9893 + }, + { + "start": 14262.32, + "end": 14262.76, + "probability": 0.702 + }, + { + "start": 14262.8, + "end": 14263.6, + "probability": 0.7911 + }, + { + "start": 14264.02, + "end": 14266.76, + "probability": 0.8167 + }, + { + "start": 14267.08, + "end": 14268.4, + "probability": 0.9766 + }, + { + "start": 14268.46, + "end": 14269.12, + "probability": 0.7149 + }, + { + "start": 14269.92, + "end": 14274.52, + "probability": 0.9081 + }, + { + "start": 14274.96, + "end": 14275.54, + "probability": 0.9928 + }, + { + "start": 14276.4, + "end": 14278.14, + "probability": 0.7975 + }, + { + "start": 14278.62, + "end": 14279.18, + "probability": 0.6296 + }, + { + "start": 14279.46, + "end": 14280.68, + "probability": 0.9861 + }, + { + "start": 14280.88, + "end": 14282.54, + "probability": 0.7403 + }, + { + "start": 14284.26, + "end": 14286.84, + "probability": 0.95 + }, + { + "start": 14287.56, + "end": 14293.24, + "probability": 0.981 + }, + { + "start": 14294.2, + "end": 14301.02, + "probability": 0.9741 + }, + { + "start": 14301.48, + "end": 14304.42, + "probability": 0.9948 + }, + { + "start": 14304.42, + "end": 14307.92, + "probability": 0.9973 + }, + { + "start": 14308.68, + "end": 14310.6, + "probability": 0.4656 + }, + { + "start": 14311.42, + "end": 14311.72, + "probability": 0.1107 + }, + { + "start": 14311.72, + "end": 14317.42, + "probability": 0.9804 + }, + { + "start": 14317.8, + "end": 14321.52, + "probability": 0.9793 + }, + { + "start": 14322.1, + "end": 14322.9, + "probability": 0.6804 + }, + { + "start": 14324.56, + "end": 14327.36, + "probability": 0.9932 + }, + { + "start": 14327.92, + "end": 14330.92, + "probability": 0.9868 + }, + { + "start": 14331.28, + "end": 14335.68, + "probability": 0.9884 + }, + { + "start": 14336.26, + "end": 14339.46, + "probability": 0.9398 + }, + { + "start": 14339.46, + "end": 14342.48, + "probability": 0.9979 + }, + { + "start": 14342.64, + "end": 14342.94, + "probability": 0.5237 + }, + { + "start": 14342.98, + "end": 14343.9, + "probability": 0.9203 + }, + { + "start": 14344.1, + "end": 14346.2, + "probability": 0.998 + }, + { + "start": 14346.36, + "end": 14347.67, + "probability": 0.9589 + }, + { + "start": 14348.3, + "end": 14349.66, + "probability": 0.6508 + }, + { + "start": 14349.96, + "end": 14353.18, + "probability": 0.9871 + }, + { + "start": 14353.9, + "end": 14357.42, + "probability": 0.8537 + }, + { + "start": 14358.9, + "end": 14359.84, + "probability": 0.7013 + }, + { + "start": 14360.44, + "end": 14364.44, + "probability": 0.7454 + }, + { + "start": 14365.32, + "end": 14370.16, + "probability": 0.6483 + }, + { + "start": 14370.46, + "end": 14371.88, + "probability": 0.8695 + }, + { + "start": 14371.96, + "end": 14373.06, + "probability": 0.9122 + }, + { + "start": 14373.1, + "end": 14374.2, + "probability": 0.9318 + }, + { + "start": 14375.1, + "end": 14375.56, + "probability": 0.8477 + }, + { + "start": 14376.12, + "end": 14382.5, + "probability": 0.7922 + }, + { + "start": 14383.56, + "end": 14384.4, + "probability": 0.7939 + }, + { + "start": 14385.16, + "end": 14387.62, + "probability": 0.9916 + }, + { + "start": 14387.9, + "end": 14389.5, + "probability": 0.8644 + }, + { + "start": 14389.5, + "end": 14389.98, + "probability": 0.157 + }, + { + "start": 14389.98, + "end": 14393.38, + "probability": 0.9927 + }, + { + "start": 14393.72, + "end": 14394.29, + "probability": 0.95 + }, + { + "start": 14395.04, + "end": 14396.1, + "probability": 0.5746 + }, + { + "start": 14397.14, + "end": 14397.38, + "probability": 0.4336 + }, + { + "start": 14398.0, + "end": 14399.38, + "probability": 0.3883 + }, + { + "start": 14399.9, + "end": 14402.76, + "probability": 0.9875 + }, + { + "start": 14403.18, + "end": 14405.28, + "probability": 0.9922 + }, + { + "start": 14405.48, + "end": 14406.6, + "probability": 0.9885 + }, + { + "start": 14407.14, + "end": 14407.7, + "probability": 0.6234 + }, + { + "start": 14407.82, + "end": 14409.82, + "probability": 0.9313 + }, + { + "start": 14409.9, + "end": 14411.12, + "probability": 0.9131 + }, + { + "start": 14411.4, + "end": 14413.2, + "probability": 0.9341 + }, + { + "start": 14413.68, + "end": 14416.18, + "probability": 0.9023 + }, + { + "start": 14416.9, + "end": 14419.42, + "probability": 0.8544 + }, + { + "start": 14419.46, + "end": 14421.5, + "probability": 0.9946 + }, + { + "start": 14421.92, + "end": 14422.67, + "probability": 0.9628 + }, + { + "start": 14422.78, + "end": 14422.98, + "probability": 0.7056 + }, + { + "start": 14423.02, + "end": 14423.66, + "probability": 0.7589 + }, + { + "start": 14424.02, + "end": 14427.06, + "probability": 0.774 + }, + { + "start": 14427.44, + "end": 14431.32, + "probability": 0.9648 + }, + { + "start": 14431.78, + "end": 14432.16, + "probability": 0.8635 + }, + { + "start": 14432.24, + "end": 14432.86, + "probability": 0.7183 + }, + { + "start": 14435.28, + "end": 14436.54, + "probability": 0.4635 + }, + { + "start": 14436.54, + "end": 14436.54, + "probability": 0.3492 + }, + { + "start": 14436.54, + "end": 14437.12, + "probability": 0.5535 + }, + { + "start": 14437.88, + "end": 14439.74, + "probability": 0.6737 + }, + { + "start": 14441.9, + "end": 14443.08, + "probability": 0.8256 + }, + { + "start": 14443.44, + "end": 14446.68, + "probability": 0.8661 + }, + { + "start": 14447.62, + "end": 14449.24, + "probability": 0.9673 + }, + { + "start": 14450.28, + "end": 14451.68, + "probability": 0.941 + }, + { + "start": 14452.32, + "end": 14453.58, + "probability": 0.4978 + }, + { + "start": 14453.67, + "end": 14454.98, + "probability": 0.9425 + }, + { + "start": 14455.06, + "end": 14456.54, + "probability": 0.7105 + }, + { + "start": 14457.1, + "end": 14457.94, + "probability": 0.6026 + }, + { + "start": 14458.44, + "end": 14458.66, + "probability": 0.6186 + }, + { + "start": 14459.16, + "end": 14460.33, + "probability": 0.9127 + }, + { + "start": 14460.82, + "end": 14461.6, + "probability": 0.9827 + }, + { + "start": 14461.78, + "end": 14464.58, + "probability": 0.9449 + }, + { + "start": 14464.6, + "end": 14466.36, + "probability": 0.9863 + }, + { + "start": 14466.5, + "end": 14469.9, + "probability": 0.7489 + }, + { + "start": 14470.08, + "end": 14471.1, + "probability": 0.8292 + }, + { + "start": 14471.32, + "end": 14473.32, + "probability": 0.9805 + }, + { + "start": 14473.82, + "end": 14475.86, + "probability": 0.983 + }, + { + "start": 14476.52, + "end": 14477.98, + "probability": 0.9981 + }, + { + "start": 14478.08, + "end": 14479.57, + "probability": 0.9907 + }, + { + "start": 14480.76, + "end": 14482.08, + "probability": 0.9222 + }, + { + "start": 14482.64, + "end": 14482.78, + "probability": 0.7031 + }, + { + "start": 14482.82, + "end": 14483.0, + "probability": 0.8325 + }, + { + "start": 14483.08, + "end": 14484.1, + "probability": 0.687 + }, + { + "start": 14484.24, + "end": 14484.94, + "probability": 0.9446 + }, + { + "start": 14485.04, + "end": 14486.06, + "probability": 0.8362 + }, + { + "start": 14486.16, + "end": 14489.96, + "probability": 0.9066 + }, + { + "start": 14490.62, + "end": 14490.72, + "probability": 0.3596 + }, + { + "start": 14490.78, + "end": 14492.16, + "probability": 0.9338 + }, + { + "start": 14492.22, + "end": 14495.28, + "probability": 0.8598 + }, + { + "start": 14495.38, + "end": 14500.52, + "probability": 0.8594 + }, + { + "start": 14501.02, + "end": 14502.46, + "probability": 0.6959 + }, + { + "start": 14502.58, + "end": 14502.7, + "probability": 0.6235 + }, + { + "start": 14502.8, + "end": 14504.27, + "probability": 0.8788 + }, + { + "start": 14504.96, + "end": 14505.44, + "probability": 0.0751 + }, + { + "start": 14505.44, + "end": 14506.35, + "probability": 0.9038 + }, + { + "start": 14507.06, + "end": 14513.22, + "probability": 0.8594 + }, + { + "start": 14513.54, + "end": 14513.7, + "probability": 0.5752 + }, + { + "start": 14514.24, + "end": 14516.78, + "probability": 0.7533 + }, + { + "start": 14517.24, + "end": 14519.56, + "probability": 0.7509 + }, + { + "start": 14520.12, + "end": 14523.92, + "probability": 0.9862 + }, + { + "start": 14524.9, + "end": 14527.24, + "probability": 0.8346 + }, + { + "start": 14527.28, + "end": 14530.36, + "probability": 0.8501 + }, + { + "start": 14530.5, + "end": 14531.38, + "probability": 0.6403 + }, + { + "start": 14531.84, + "end": 14532.72, + "probability": 0.8702 + }, + { + "start": 14532.86, + "end": 14534.06, + "probability": 0.9728 + }, + { + "start": 14534.08, + "end": 14534.8, + "probability": 0.8879 + }, + { + "start": 14535.44, + "end": 14535.94, + "probability": 0.9027 + }, + { + "start": 14538.22, + "end": 14541.26, + "probability": 0.5802 + }, + { + "start": 14541.42, + "end": 14546.68, + "probability": 0.9953 + }, + { + "start": 14547.12, + "end": 14549.2, + "probability": 0.9354 + }, + { + "start": 14549.28, + "end": 14549.8, + "probability": 0.5666 + }, + { + "start": 14549.94, + "end": 14550.76, + "probability": 0.5908 + }, + { + "start": 14551.1, + "end": 14552.54, + "probability": 0.0107 + }, + { + "start": 14552.58, + "end": 14553.08, + "probability": 0.0067 + }, + { + "start": 14553.08, + "end": 14555.58, + "probability": 0.503 + }, + { + "start": 14555.78, + "end": 14556.14, + "probability": 0.5829 + }, + { + "start": 14556.14, + "end": 14557.86, + "probability": 0.8726 + }, + { + "start": 14558.18, + "end": 14559.24, + "probability": 0.9242 + }, + { + "start": 14559.32, + "end": 14560.36, + "probability": 0.6842 + }, + { + "start": 14560.36, + "end": 14561.96, + "probability": 0.9966 + }, + { + "start": 14562.72, + "end": 14564.3, + "probability": 0.9948 + }, + { + "start": 14564.82, + "end": 14565.08, + "probability": 0.8907 + }, + { + "start": 14565.16, + "end": 14565.58, + "probability": 0.6008 + }, + { + "start": 14565.66, + "end": 14566.76, + "probability": 0.9282 + }, + { + "start": 14566.8, + "end": 14568.0, + "probability": 0.9358 + }, + { + "start": 14568.84, + "end": 14568.94, + "probability": 0.452 + }, + { + "start": 14569.04, + "end": 14573.98, + "probability": 0.8138 + }, + { + "start": 14574.68, + "end": 14575.12, + "probability": 0.8763 + }, + { + "start": 14575.14, + "end": 14575.94, + "probability": 0.7581 + }, + { + "start": 14576.3, + "end": 14578.51, + "probability": 0.9888 + }, + { + "start": 14579.35, + "end": 14582.61, + "probability": 0.9964 + }, + { + "start": 14583.24, + "end": 14585.9, + "probability": 0.9901 + }, + { + "start": 14585.9, + "end": 14588.98, + "probability": 0.9727 + }, + { + "start": 14589.06, + "end": 14589.7, + "probability": 0.74 + }, + { + "start": 14590.08, + "end": 14590.86, + "probability": 0.9393 + }, + { + "start": 14590.96, + "end": 14593.24, + "probability": 0.8824 + }, + { + "start": 14593.54, + "end": 14595.35, + "probability": 0.5058 + }, + { + "start": 14595.54, + "end": 14598.06, + "probability": 0.8864 + }, + { + "start": 14598.06, + "end": 14599.02, + "probability": 0.6961 + }, + { + "start": 14599.12, + "end": 14599.48, + "probability": 0.8303 + }, + { + "start": 14599.58, + "end": 14601.74, + "probability": 0.9661 + }, + { + "start": 14602.42, + "end": 14605.36, + "probability": 0.9895 + }, + { + "start": 14605.94, + "end": 14611.68, + "probability": 0.9902 + }, + { + "start": 14611.92, + "end": 14616.24, + "probability": 0.9941 + }, + { + "start": 14617.04, + "end": 14619.6, + "probability": 0.6399 + }, + { + "start": 14620.16, + "end": 14621.66, + "probability": 0.9971 + }, + { + "start": 14622.08, + "end": 14623.78, + "probability": 0.9304 + }, + { + "start": 14624.34, + "end": 14627.0, + "probability": 0.9866 + }, + { + "start": 14627.06, + "end": 14630.08, + "probability": 0.9725 + }, + { + "start": 14630.2, + "end": 14630.8, + "probability": 0.8776 + }, + { + "start": 14631.28, + "end": 14631.64, + "probability": 0.8235 + }, + { + "start": 14631.68, + "end": 14634.82, + "probability": 0.5819 + }, + { + "start": 14635.3, + "end": 14636.38, + "probability": 0.9749 + }, + { + "start": 14636.8, + "end": 14640.3, + "probability": 0.9963 + }, + { + "start": 14640.84, + "end": 14641.8, + "probability": 0.7849 + }, + { + "start": 14641.94, + "end": 14643.82, + "probability": 0.9933 + }, + { + "start": 14644.34, + "end": 14646.36, + "probability": 0.9081 + }, + { + "start": 14646.74, + "end": 14648.62, + "probability": 0.7347 + }, + { + "start": 14649.3, + "end": 14651.36, + "probability": 0.9834 + }, + { + "start": 14651.9, + "end": 14655.62, + "probability": 0.9019 + }, + { + "start": 14655.74, + "end": 14656.72, + "probability": 0.9593 + }, + { + "start": 14657.24, + "end": 14658.98, + "probability": 0.7632 + }, + { + "start": 14659.94, + "end": 14662.34, + "probability": 0.9973 + }, + { + "start": 14662.36, + "end": 14663.7, + "probability": 0.992 + }, + { + "start": 14663.82, + "end": 14664.28, + "probability": 0.7041 + }, + { + "start": 14664.38, + "end": 14665.14, + "probability": 0.8519 + }, + { + "start": 14666.28, + "end": 14666.7, + "probability": 0.5804 + }, + { + "start": 14666.78, + "end": 14668.58, + "probability": 0.5682 + }, + { + "start": 14669.7, + "end": 14670.0, + "probability": 0.6673 + }, + { + "start": 14670.36, + "end": 14675.46, + "probability": 0.9657 + }, + { + "start": 14676.04, + "end": 14679.22, + "probability": 0.9928 + }, + { + "start": 14679.66, + "end": 14680.62, + "probability": 0.742 + }, + { + "start": 14680.7, + "end": 14681.88, + "probability": 0.9498 + }, + { + "start": 14681.94, + "end": 14682.14, + "probability": 0.0915 + }, + { + "start": 14682.14, + "end": 14684.62, + "probability": 0.9598 + }, + { + "start": 14684.62, + "end": 14686.68, + "probability": 0.9789 + }, + { + "start": 14687.22, + "end": 14689.36, + "probability": 0.7473 + }, + { + "start": 14689.8, + "end": 14690.12, + "probability": 0.8334 + }, + { + "start": 14690.26, + "end": 14693.36, + "probability": 0.9874 + }, + { + "start": 14693.42, + "end": 14697.22, + "probability": 0.7963 + }, + { + "start": 14697.94, + "end": 14699.6, + "probability": 0.8313 + }, + { + "start": 14699.84, + "end": 14700.4, + "probability": 0.8007 + }, + { + "start": 14700.76, + "end": 14703.94, + "probability": 0.8505 + }, + { + "start": 14703.94, + "end": 14707.14, + "probability": 0.99 + }, + { + "start": 14707.58, + "end": 14708.55, + "probability": 0.863 + }, + { + "start": 14709.04, + "end": 14710.1, + "probability": 0.9951 + }, + { + "start": 14710.54, + "end": 14714.8, + "probability": 0.9757 + }, + { + "start": 14715.26, + "end": 14719.16, + "probability": 0.855 + }, + { + "start": 14719.68, + "end": 14719.94, + "probability": 0.4986 + }, + { + "start": 14720.0, + "end": 14720.7, + "probability": 0.9465 + }, + { + "start": 14720.78, + "end": 14722.12, + "probability": 0.819 + }, + { + "start": 14722.82, + "end": 14725.04, + "probability": 0.91 + }, + { + "start": 14725.48, + "end": 14728.26, + "probability": 0.9701 + }, + { + "start": 14728.68, + "end": 14729.58, + "probability": 0.8916 + }, + { + "start": 14729.66, + "end": 14730.9, + "probability": 0.9665 + }, + { + "start": 14731.02, + "end": 14732.94, + "probability": 0.9858 + }, + { + "start": 14733.26, + "end": 14733.66, + "probability": 0.429 + }, + { + "start": 14733.66, + "end": 14736.24, + "probability": 0.9539 + }, + { + "start": 14736.38, + "end": 14738.56, + "probability": 0.9636 + }, + { + "start": 14738.68, + "end": 14739.58, + "probability": 0.9536 + }, + { + "start": 14739.74, + "end": 14744.68, + "probability": 0.9841 + }, + { + "start": 14744.74, + "end": 14745.56, + "probability": 0.9708 + }, + { + "start": 14745.66, + "end": 14746.98, + "probability": 0.9888 + }, + { + "start": 14747.12, + "end": 14748.72, + "probability": 0.9824 + }, + { + "start": 14749.26, + "end": 14751.0, + "probability": 0.7371 + }, + { + "start": 14751.24, + "end": 14752.56, + "probability": 0.4919 + }, + { + "start": 14752.72, + "end": 14754.96, + "probability": 0.4348 + }, + { + "start": 14755.06, + "end": 14755.54, + "probability": 0.2882 + }, + { + "start": 14755.82, + "end": 14756.92, + "probability": 0.9317 + }, + { + "start": 14758.54, + "end": 14758.68, + "probability": 0.542 + }, + { + "start": 14758.68, + "end": 14759.84, + "probability": 0.6683 + }, + { + "start": 14760.0, + "end": 14762.68, + "probability": 0.4768 + }, + { + "start": 14763.03, + "end": 14765.48, + "probability": 0.7708 + }, + { + "start": 14766.5, + "end": 14774.3, + "probability": 0.5192 + }, + { + "start": 14774.62, + "end": 14777.28, + "probability": 0.9548 + }, + { + "start": 14777.32, + "end": 14777.7, + "probability": 0.3998 + }, + { + "start": 14777.78, + "end": 14777.96, + "probability": 0.4004 + }, + { + "start": 14778.1, + "end": 14779.15, + "probability": 0.9607 + }, + { + "start": 14779.58, + "end": 14779.68, + "probability": 0.4676 + }, + { + "start": 14779.92, + "end": 14780.38, + "probability": 0.9194 + }, + { + "start": 14780.44, + "end": 14781.04, + "probability": 0.9364 + }, + { + "start": 14781.48, + "end": 14781.8, + "probability": 0.849 + }, + { + "start": 14781.9, + "end": 14782.32, + "probability": 0.6517 + }, + { + "start": 14782.54, + "end": 14785.52, + "probability": 0.4491 + }, + { + "start": 14785.52, + "end": 14787.72, + "probability": 0.923 + }, + { + "start": 14788.18, + "end": 14791.58, + "probability": 0.9975 + }, + { + "start": 14791.96, + "end": 14795.36, + "probability": 0.9923 + }, + { + "start": 14795.96, + "end": 14798.74, + "probability": 0.9278 + }, + { + "start": 14798.96, + "end": 14799.28, + "probability": 0.8916 + }, + { + "start": 14799.84, + "end": 14801.78, + "probability": 0.9843 + }, + { + "start": 14802.46, + "end": 14804.18, + "probability": 0.9648 + }, + { + "start": 14804.66, + "end": 14804.98, + "probability": 0.5221 + }, + { + "start": 14805.06, + "end": 14807.34, + "probability": 0.9524 + }, + { + "start": 14807.78, + "end": 14809.68, + "probability": 0.9805 + }, + { + "start": 14810.32, + "end": 14812.14, + "probability": 0.9943 + }, + { + "start": 14812.18, + "end": 14813.62, + "probability": 0.9988 + }, + { + "start": 14813.98, + "end": 14814.76, + "probability": 0.7374 + }, + { + "start": 14815.2, + "end": 14817.2, + "probability": 0.9756 + }, + { + "start": 14817.4, + "end": 14819.66, + "probability": 0.867 + }, + { + "start": 14819.8, + "end": 14820.4, + "probability": 0.8917 + }, + { + "start": 14820.52, + "end": 14821.64, + "probability": 0.9094 + }, + { + "start": 14821.9, + "end": 14823.2, + "probability": 0.9082 + }, + { + "start": 14823.34, + "end": 14823.92, + "probability": 0.5959 + }, + { + "start": 14824.28, + "end": 14825.54, + "probability": 0.9293 + }, + { + "start": 14825.62, + "end": 14826.37, + "probability": 0.9529 + }, + { + "start": 14826.72, + "end": 14828.36, + "probability": 0.9325 + }, + { + "start": 14828.66, + "end": 14830.38, + "probability": 0.9805 + }, + { + "start": 14830.46, + "end": 14831.16, + "probability": 0.6094 + }, + { + "start": 14831.9, + "end": 14832.38, + "probability": 0.4689 + }, + { + "start": 14832.86, + "end": 14834.28, + "probability": 0.7342 + }, + { + "start": 14834.64, + "end": 14836.36, + "probability": 0.7444 + }, + { + "start": 14836.98, + "end": 14838.8, + "probability": 0.6722 + }, + { + "start": 14839.76, + "end": 14842.12, + "probability": 0.7403 + }, + { + "start": 14842.6, + "end": 14844.88, + "probability": 0.97 + }, + { + "start": 14845.04, + "end": 14845.69, + "probability": 0.9904 + }, + { + "start": 14846.16, + "end": 14847.66, + "probability": 0.9835 + }, + { + "start": 14848.06, + "end": 14851.28, + "probability": 0.8442 + }, + { + "start": 14851.36, + "end": 14853.9, + "probability": 0.9229 + }, + { + "start": 14854.56, + "end": 14857.9, + "probability": 0.9727 + }, + { + "start": 14858.38, + "end": 14861.42, + "probability": 0.9812 + }, + { + "start": 14861.78, + "end": 14864.34, + "probability": 0.9828 + }, + { + "start": 14864.34, + "end": 14867.52, + "probability": 0.9874 + }, + { + "start": 14867.86, + "end": 14871.22, + "probability": 0.9008 + }, + { + "start": 14871.5, + "end": 14874.6, + "probability": 0.9927 + }, + { + "start": 14875.02, + "end": 14879.06, + "probability": 0.8787 + }, + { + "start": 14879.72, + "end": 14883.4, + "probability": 0.7542 + }, + { + "start": 14884.08, + "end": 14886.1, + "probability": 0.7848 + }, + { + "start": 14886.14, + "end": 14891.48, + "probability": 0.9835 + }, + { + "start": 14891.54, + "end": 14894.36, + "probability": 0.9638 + }, + { + "start": 14895.56, + "end": 14898.9, + "probability": 0.9983 + }, + { + "start": 14899.5, + "end": 14902.64, + "probability": 0.9578 + }, + { + "start": 14902.9, + "end": 14903.71, + "probability": 0.8504 + }, + { + "start": 14904.5, + "end": 14905.88, + "probability": 0.7868 + }, + { + "start": 14907.1, + "end": 14907.98, + "probability": 0.7507 + }, + { + "start": 14908.78, + "end": 14910.06, + "probability": 0.99 + }, + { + "start": 14910.56, + "end": 14912.84, + "probability": 0.8623 + }, + { + "start": 14913.36, + "end": 14917.16, + "probability": 0.8957 + }, + { + "start": 14917.28, + "end": 14918.6, + "probability": 0.9501 + }, + { + "start": 14918.66, + "end": 14923.29, + "probability": 0.9933 + }, + { + "start": 14925.24, + "end": 14927.18, + "probability": 0.9951 + }, + { + "start": 14927.78, + "end": 14929.5, + "probability": 0.9915 + }, + { + "start": 14929.64, + "end": 14934.28, + "probability": 0.9977 + }, + { + "start": 14934.48, + "end": 14938.04, + "probability": 0.9977 + }, + { + "start": 14938.04, + "end": 14941.66, + "probability": 0.9977 + }, + { + "start": 14941.9, + "end": 14944.42, + "probability": 0.944 + }, + { + "start": 14944.62, + "end": 14945.72, + "probability": 0.9872 + }, + { + "start": 14946.08, + "end": 14949.8, + "probability": 0.9279 + }, + { + "start": 14950.18, + "end": 14952.0, + "probability": 0.9698 + }, + { + "start": 14952.18, + "end": 14954.24, + "probability": 0.969 + }, + { + "start": 14954.48, + "end": 14955.98, + "probability": 0.9868 + }, + { + "start": 14956.12, + "end": 14957.52, + "probability": 0.7142 + }, + { + "start": 14957.92, + "end": 14963.72, + "probability": 0.9905 + }, + { + "start": 14964.16, + "end": 14965.0, + "probability": 0.5779 + }, + { + "start": 14965.02, + "end": 14968.43, + "probability": 0.9699 + }, + { + "start": 14968.68, + "end": 14975.62, + "probability": 0.9141 + }, + { + "start": 14975.7, + "end": 14976.42, + "probability": 0.5981 + }, + { + "start": 14976.8, + "end": 14978.68, + "probability": 0.8337 + }, + { + "start": 14978.74, + "end": 14979.72, + "probability": 0.8845 + }, + { + "start": 14980.1, + "end": 14982.2, + "probability": 0.958 + }, + { + "start": 14982.2, + "end": 14985.02, + "probability": 0.9584 + }, + { + "start": 14985.44, + "end": 14989.4, + "probability": 0.9979 + }, + { + "start": 14989.72, + "end": 14993.65, + "probability": 0.9871 + }, + { + "start": 14994.0, + "end": 14995.7, + "probability": 0.9773 + }, + { + "start": 14995.78, + "end": 15000.28, + "probability": 0.9491 + }, + { + "start": 15000.86, + "end": 15004.32, + "probability": 0.9937 + }, + { + "start": 15004.32, + "end": 15008.88, + "probability": 0.9976 + }, + { + "start": 15009.56, + "end": 15012.26, + "probability": 0.9543 + }, + { + "start": 15012.26, + "end": 15016.6, + "probability": 0.9353 + }, + { + "start": 15016.86, + "end": 15020.9, + "probability": 0.929 + }, + { + "start": 15020.92, + "end": 15022.12, + "probability": 0.7186 + }, + { + "start": 15022.22, + "end": 15027.84, + "probability": 0.9687 + }, + { + "start": 15028.2, + "end": 15029.04, + "probability": 0.9507 + }, + { + "start": 15029.22, + "end": 15035.44, + "probability": 0.9807 + }, + { + "start": 15036.04, + "end": 15038.08, + "probability": 0.5585 + }, + { + "start": 15039.0, + "end": 15040.72, + "probability": 0.9869 + }, + { + "start": 15040.82, + "end": 15044.26, + "probability": 0.9492 + }, + { + "start": 15044.38, + "end": 15050.2, + "probability": 0.9945 + }, + { + "start": 15050.8, + "end": 15055.54, + "probability": 0.9934 + }, + { + "start": 15056.14, + "end": 15058.82, + "probability": 0.9359 + }, + { + "start": 15058.94, + "end": 15061.42, + "probability": 0.7758 + }, + { + "start": 15061.48, + "end": 15063.86, + "probability": 0.8374 + }, + { + "start": 15064.2, + "end": 15069.18, + "probability": 0.9921 + }, + { + "start": 15069.18, + "end": 15074.24, + "probability": 0.9985 + }, + { + "start": 15074.24, + "end": 15079.9, + "probability": 0.9954 + }, + { + "start": 15080.42, + "end": 15086.22, + "probability": 0.8838 + }, + { + "start": 15086.78, + "end": 15088.62, + "probability": 0.9458 + }, + { + "start": 15088.7, + "end": 15091.12, + "probability": 0.9888 + }, + { + "start": 15091.16, + "end": 15091.16, + "probability": 0.2778 + }, + { + "start": 15091.22, + "end": 15092.2, + "probability": 0.6295 + }, + { + "start": 15092.22, + "end": 15093.44, + "probability": 0.7801 + }, + { + "start": 15098.76, + "end": 15099.66, + "probability": 0.6186 + }, + { + "start": 15101.44, + "end": 15102.3, + "probability": 0.7212 + }, + { + "start": 15103.1, + "end": 15104.38, + "probability": 0.7487 + }, + { + "start": 15104.88, + "end": 15106.36, + "probability": 0.77 + }, + { + "start": 15107.36, + "end": 15113.46, + "probability": 0.9865 + }, + { + "start": 15114.14, + "end": 15116.76, + "probability": 0.9912 + }, + { + "start": 15118.08, + "end": 15118.64, + "probability": 0.8082 + }, + { + "start": 15118.72, + "end": 15119.38, + "probability": 0.6794 + }, + { + "start": 15119.46, + "end": 15121.08, + "probability": 0.8735 + }, + { + "start": 15121.4, + "end": 15125.68, + "probability": 0.8175 + }, + { + "start": 15126.44, + "end": 15130.04, + "probability": 0.5048 + }, + { + "start": 15130.28, + "end": 15131.14, + "probability": 0.7906 + }, + { + "start": 15132.14, + "end": 15135.82, + "probability": 0.9271 + }, + { + "start": 15136.12, + "end": 15137.06, + "probability": 0.654 + }, + { + "start": 15137.18, + "end": 15137.88, + "probability": 0.6069 + }, + { + "start": 15137.9, + "end": 15140.1, + "probability": 0.5348 + }, + { + "start": 15140.1, + "end": 15142.15, + "probability": 0.6476 + }, + { + "start": 15143.76, + "end": 15147.96, + "probability": 0.1233 + }, + { + "start": 15151.34, + "end": 15151.52, + "probability": 0.0854 + }, + { + "start": 15151.52, + "end": 15151.52, + "probability": 0.0125 + }, + { + "start": 15151.52, + "end": 15151.52, + "probability": 0.3603 + }, + { + "start": 15151.52, + "end": 15151.52, + "probability": 0.2302 + }, + { + "start": 15151.52, + "end": 15151.66, + "probability": 0.1455 + }, + { + "start": 15151.66, + "end": 15154.3, + "probability": 0.5093 + }, + { + "start": 15154.98, + "end": 15155.1, + "probability": 0.5394 + }, + { + "start": 15156.42, + "end": 15157.3, + "probability": 0.3846 + }, + { + "start": 15157.3, + "end": 15157.3, + "probability": 0.1942 + }, + { + "start": 15157.3, + "end": 15158.98, + "probability": 0.4964 + }, + { + "start": 15159.44, + "end": 15162.82, + "probability": 0.5289 + }, + { + "start": 15162.9, + "end": 15165.36, + "probability": 0.7543 + }, + { + "start": 15166.0, + "end": 15166.82, + "probability": 0.9772 + }, + { + "start": 15167.38, + "end": 15169.84, + "probability": 0.9379 + }, + { + "start": 15169.92, + "end": 15172.54, + "probability": 0.8389 + }, + { + "start": 15173.42, + "end": 15174.46, + "probability": 0.7186 + }, + { + "start": 15174.46, + "end": 15177.76, + "probability": 0.9631 + }, + { + "start": 15179.6, + "end": 15180.96, + "probability": 0.7493 + }, + { + "start": 15181.54, + "end": 15189.44, + "probability": 0.9777 + }, + { + "start": 15189.5, + "end": 15189.94, + "probability": 0.9364 + }, + { + "start": 15190.18, + "end": 15191.38, + "probability": 0.9729 + }, + { + "start": 15191.72, + "end": 15193.02, + "probability": 0.9559 + }, + { + "start": 15193.54, + "end": 15197.86, + "probability": 0.8328 + }, + { + "start": 15198.16, + "end": 15200.54, + "probability": 0.7947 + }, + { + "start": 15200.6, + "end": 15201.72, + "probability": 0.9786 + }, + { + "start": 15201.98, + "end": 15202.66, + "probability": 0.9934 + }, + { + "start": 15203.24, + "end": 15210.34, + "probability": 0.9399 + }, + { + "start": 15210.8, + "end": 15211.48, + "probability": 0.7911 + }, + { + "start": 15211.64, + "end": 15212.38, + "probability": 0.595 + }, + { + "start": 15213.14, + "end": 15215.46, + "probability": 0.989 + }, + { + "start": 15217.51, + "end": 15221.24, + "probability": 0.5537 + }, + { + "start": 15221.8, + "end": 15223.54, + "probability": 0.619 + }, + { + "start": 15224.0, + "end": 15228.32, + "probability": 0.7897 + }, + { + "start": 15228.7, + "end": 15229.44, + "probability": 0.764 + }, + { + "start": 15229.46, + "end": 15235.14, + "probability": 0.9769 + }, + { + "start": 15235.66, + "end": 15238.44, + "probability": 0.7251 + }, + { + "start": 15239.5, + "end": 15240.28, + "probability": 0.7152 + }, + { + "start": 15240.96, + "end": 15244.26, + "probability": 0.7656 + }, + { + "start": 15244.32, + "end": 15248.22, + "probability": 0.8774 + }, + { + "start": 15248.7, + "end": 15249.02, + "probability": 0.1652 + }, + { + "start": 15249.34, + "end": 15251.72, + "probability": 0.9552 + }, + { + "start": 15253.26, + "end": 15255.16, + "probability": 0.6414 + }, + { + "start": 15255.16, + "end": 15256.34, + "probability": 0.4329 + }, + { + "start": 15257.32, + "end": 15259.2, + "probability": 0.8677 + }, + { + "start": 15259.6, + "end": 15262.2, + "probability": 0.8237 + }, + { + "start": 15262.78, + "end": 15264.82, + "probability": 0.8344 + }, + { + "start": 15264.88, + "end": 15267.66, + "probability": 0.5223 + }, + { + "start": 15267.9, + "end": 15271.02, + "probability": 0.7978 + }, + { + "start": 15271.24, + "end": 15273.06, + "probability": 0.8737 + }, + { + "start": 15273.58, + "end": 15276.34, + "probability": 0.6285 + }, + { + "start": 15276.44, + "end": 15277.2, + "probability": 0.5743 + }, + { + "start": 15277.64, + "end": 15278.82, + "probability": 0.7603 + }, + { + "start": 15279.0, + "end": 15285.2, + "probability": 0.6349 + }, + { + "start": 15285.6, + "end": 15287.66, + "probability": 0.7187 + }, + { + "start": 15289.32, + "end": 15293.0, + "probability": 0.957 + }, + { + "start": 15293.32, + "end": 15294.32, + "probability": 0.9431 + }, + { + "start": 15295.44, + "end": 15296.72, + "probability": 0.9702 + }, + { + "start": 15296.94, + "end": 15299.92, + "probability": 0.4455 + }, + { + "start": 15301.72, + "end": 15302.44, + "probability": 0.6978 + }, + { + "start": 15303.06, + "end": 15303.89, + "probability": 0.8979 + }, + { + "start": 15304.62, + "end": 15306.42, + "probability": 0.9537 + }, + { + "start": 15307.12, + "end": 15312.74, + "probability": 0.9564 + }, + { + "start": 15313.36, + "end": 15318.26, + "probability": 0.8722 + }, + { + "start": 15318.76, + "end": 15320.72, + "probability": 0.9333 + }, + { + "start": 15321.24, + "end": 15324.48, + "probability": 0.9777 + }, + { + "start": 15325.12, + "end": 15328.58, + "probability": 0.9617 + }, + { + "start": 15328.58, + "end": 15331.26, + "probability": 0.9473 + }, + { + "start": 15331.48, + "end": 15333.78, + "probability": 0.7782 + }, + { + "start": 15334.24, + "end": 15335.4, + "probability": 0.9243 + }, + { + "start": 15335.76, + "end": 15337.56, + "probability": 0.99 + }, + { + "start": 15338.1, + "end": 15338.8, + "probability": 0.7168 + }, + { + "start": 15339.26, + "end": 15344.78, + "probability": 0.9455 + }, + { + "start": 15346.72, + "end": 15348.88, + "probability": 0.763 + }, + { + "start": 15349.34, + "end": 15350.9, + "probability": 0.7064 + }, + { + "start": 15351.2, + "end": 15354.44, + "probability": 0.9253 + }, + { + "start": 15354.72, + "end": 15355.92, + "probability": 0.8236 + }, + { + "start": 15356.66, + "end": 15358.38, + "probability": 0.9632 + }, + { + "start": 15358.78, + "end": 15359.52, + "probability": 0.6783 + }, + { + "start": 15359.62, + "end": 15363.0, + "probability": 0.6903 + }, + { + "start": 15363.54, + "end": 15369.02, + "probability": 0.8986 + }, + { + "start": 15369.08, + "end": 15371.1, + "probability": 0.866 + }, + { + "start": 15371.1, + "end": 15374.25, + "probability": 0.9948 + }, + { + "start": 15374.66, + "end": 15378.5, + "probability": 0.9409 + }, + { + "start": 15378.98, + "end": 15382.03, + "probability": 0.7971 + }, + { + "start": 15382.36, + "end": 15384.6, + "probability": 0.984 + }, + { + "start": 15385.0, + "end": 15386.38, + "probability": 0.9178 + }, + { + "start": 15386.76, + "end": 15387.72, + "probability": 0.7773 + }, + { + "start": 15387.9, + "end": 15391.74, + "probability": 0.3833 + }, + { + "start": 15391.78, + "end": 15392.26, + "probability": 0.5367 + }, + { + "start": 15392.3, + "end": 15393.56, + "probability": 0.8198 + }, + { + "start": 15393.84, + "end": 15395.18, + "probability": 0.5469 + }, + { + "start": 15395.3, + "end": 15396.3, + "probability": 0.9469 + }, + { + "start": 15396.48, + "end": 15398.58, + "probability": 0.9375 + }, + { + "start": 15400.04, + "end": 15400.3, + "probability": 0.9233 + }, + { + "start": 15404.68, + "end": 15407.22, + "probability": 0.798 + }, + { + "start": 15408.36, + "end": 15408.88, + "probability": 0.7574 + }, + { + "start": 15409.46, + "end": 15410.47, + "probability": 0.8584 + }, + { + "start": 15411.8, + "end": 15417.44, + "probability": 0.9423 + }, + { + "start": 15418.3, + "end": 15419.1, + "probability": 0.8545 + }, + { + "start": 15420.68, + "end": 15422.44, + "probability": 0.7902 + }, + { + "start": 15423.16, + "end": 15424.98, + "probability": 0.9838 + }, + { + "start": 15427.28, + "end": 15429.16, + "probability": 0.9576 + }, + { + "start": 15430.0, + "end": 15430.58, + "probability": 0.5244 + }, + { + "start": 15431.88, + "end": 15432.44, + "probability": 0.6684 + }, + { + "start": 15433.74, + "end": 15436.38, + "probability": 0.9292 + }, + { + "start": 15438.5, + "end": 15440.08, + "probability": 0.204 + }, + { + "start": 15443.08, + "end": 15444.26, + "probability": 0.6042 + }, + { + "start": 15447.9, + "end": 15449.12, + "probability": 0.7786 + }, + { + "start": 15450.46, + "end": 15451.16, + "probability": 0.7993 + }, + { + "start": 15452.52, + "end": 15454.08, + "probability": 0.8854 + }, + { + "start": 15455.0, + "end": 15457.56, + "probability": 0.8389 + }, + { + "start": 15459.04, + "end": 15459.16, + "probability": 0.8991 + }, + { + "start": 15460.76, + "end": 15461.42, + "probability": 0.7104 + }, + { + "start": 15462.18, + "end": 15463.7, + "probability": 0.7122 + }, + { + "start": 15464.66, + "end": 15465.92, + "probability": 0.4916 + }, + { + "start": 15467.68, + "end": 15469.3, + "probability": 0.7346 + }, + { + "start": 15470.58, + "end": 15472.04, + "probability": 0.8075 + }, + { + "start": 15473.1, + "end": 15476.47, + "probability": 0.8828 + }, + { + "start": 15477.2, + "end": 15480.18, + "probability": 0.862 + }, + { + "start": 15481.48, + "end": 15483.62, + "probability": 0.8984 + }, + { + "start": 15484.94, + "end": 15485.18, + "probability": 0.6525 + }, + { + "start": 15485.9, + "end": 15486.6, + "probability": 0.9877 + }, + { + "start": 15487.5, + "end": 15488.1, + "probability": 0.485 + }, + { + "start": 15490.1, + "end": 15491.44, + "probability": 0.9702 + }, + { + "start": 15492.6, + "end": 15494.24, + "probability": 0.7761 + }, + { + "start": 15494.84, + "end": 15495.56, + "probability": 0.9446 + }, + { + "start": 15496.7, + "end": 15498.28, + "probability": 0.3913 + }, + { + "start": 15498.28, + "end": 15502.75, + "probability": 0.7961 + }, + { + "start": 15504.58, + "end": 15505.34, + "probability": 0.4249 + }, + { + "start": 15506.3, + "end": 15507.9, + "probability": 0.871 + }, + { + "start": 15512.5, + "end": 15514.56, + "probability": 0.9155 + }, + { + "start": 15515.42, + "end": 15517.72, + "probability": 0.8401 + }, + { + "start": 15518.7, + "end": 15521.22, + "probability": 0.7621 + }, + { + "start": 15524.26, + "end": 15526.22, + "probability": 0.6112 + }, + { + "start": 15527.12, + "end": 15528.74, + "probability": 0.8181 + }, + { + "start": 15530.47, + "end": 15532.28, + "probability": 0.4444 + }, + { + "start": 15532.28, + "end": 15536.4, + "probability": 0.8208 + }, + { + "start": 15537.42, + "end": 15538.16, + "probability": 0.9604 + }, + { + "start": 15539.58, + "end": 15546.18, + "probability": 0.6036 + }, + { + "start": 15547.52, + "end": 15548.82, + "probability": 0.8864 + }, + { + "start": 15551.72, + "end": 15552.58, + "probability": 0.8326 + }, + { + "start": 15553.68, + "end": 15555.14, + "probability": 0.9969 + }, + { + "start": 15556.46, + "end": 15559.64, + "probability": 0.9236 + }, + { + "start": 15562.82, + "end": 15563.45, + "probability": 0.8042 + }, + { + "start": 15565.54, + "end": 15569.3, + "probability": 0.8181 + }, + { + "start": 15569.6, + "end": 15570.26, + "probability": 0.9702 + }, + { + "start": 15572.54, + "end": 15575.38, + "probability": 0.9939 + }, + { + "start": 15575.38, + "end": 15579.22, + "probability": 0.9503 + }, + { + "start": 15580.7, + "end": 15582.9, + "probability": 0.6453 + }, + { + "start": 15582.96, + "end": 15584.67, + "probability": 0.9043 + }, + { + "start": 15585.76, + "end": 15588.45, + "probability": 0.9409 + }, + { + "start": 15589.78, + "end": 15591.38, + "probability": 0.9851 + }, + { + "start": 15592.78, + "end": 15600.84, + "probability": 0.8962 + }, + { + "start": 15601.72, + "end": 15603.3, + "probability": 0.9873 + }, + { + "start": 15604.18, + "end": 15604.82, + "probability": 0.5484 + }, + { + "start": 15605.46, + "end": 15606.98, + "probability": 0.9841 + }, + { + "start": 15607.28, + "end": 15608.14, + "probability": 0.8004 + }, + { + "start": 15608.64, + "end": 15609.9, + "probability": 0.7941 + }, + { + "start": 15609.96, + "end": 15611.5, + "probability": 0.7804 + }, + { + "start": 15614.2, + "end": 15616.48, + "probability": 0.9731 + }, + { + "start": 15617.06, + "end": 15617.44, + "probability": 0.9777 + }, + { + "start": 15617.78, + "end": 15618.32, + "probability": 0.8696 + }, + { + "start": 15624.88, + "end": 15625.51, + "probability": 0.6453 + }, + { + "start": 15627.06, + "end": 15628.26, + "probability": 0.9678 + }, + { + "start": 15628.76, + "end": 15629.29, + "probability": 0.9785 + }, + { + "start": 15630.46, + "end": 15631.44, + "probability": 0.7393 + }, + { + "start": 15632.48, + "end": 15633.78, + "probability": 0.9836 + }, + { + "start": 15634.94, + "end": 15635.54, + "probability": 0.9324 + }, + { + "start": 15636.3, + "end": 15637.46, + "probability": 0.546 + }, + { + "start": 15637.98, + "end": 15639.08, + "probability": 0.9777 + }, + { + "start": 15640.44, + "end": 15642.6, + "probability": 0.6227 + }, + { + "start": 15643.82, + "end": 15645.48, + "probability": 0.5282 + }, + { + "start": 15646.42, + "end": 15649.86, + "probability": 0.8752 + }, + { + "start": 15650.2, + "end": 15650.92, + "probability": 0.6778 + }, + { + "start": 15651.16, + "end": 15652.0, + "probability": 0.8012 + }, + { + "start": 15652.06, + "end": 15652.5, + "probability": 0.4384 + }, + { + "start": 15652.5, + "end": 15656.28, + "probability": 0.9956 + }, + { + "start": 15659.1, + "end": 15660.87, + "probability": 0.6269 + }, + { + "start": 15661.22, + "end": 15662.5, + "probability": 0.9266 + }, + { + "start": 15662.52, + "end": 15666.46, + "probability": 0.6994 + }, + { + "start": 15667.54, + "end": 15671.56, + "probability": 0.8582 + }, + { + "start": 15672.18, + "end": 15675.88, + "probability": 0.9603 + }, + { + "start": 15676.8, + "end": 15683.88, + "probability": 0.9432 + }, + { + "start": 15684.2, + "end": 15687.66, + "probability": 0.9623 + }, + { + "start": 15687.84, + "end": 15691.59, + "probability": 0.9635 + }, + { + "start": 15692.98, + "end": 15694.44, + "probability": 0.7385 + }, + { + "start": 15694.86, + "end": 15695.1, + "probability": 0.7122 + }, + { + "start": 15695.16, + "end": 15696.06, + "probability": 0.6363 + }, + { + "start": 15696.14, + "end": 15697.5, + "probability": 0.7404 + }, + { + "start": 15698.24, + "end": 15700.94, + "probability": 0.7566 + }, + { + "start": 15715.98, + "end": 15718.46, + "probability": 0.7738 + }, + { + "start": 15720.87, + "end": 15724.46, + "probability": 0.8159 + }, + { + "start": 15726.18, + "end": 15726.4, + "probability": 0.4928 + }, + { + "start": 15726.98, + "end": 15727.26, + "probability": 0.9624 + }, + { + "start": 15727.34, + "end": 15729.68, + "probability": 0.8135 + }, + { + "start": 15729.78, + "end": 15730.28, + "probability": 0.5137 + }, + { + "start": 15730.34, + "end": 15732.28, + "probability": 0.6177 + }, + { + "start": 15732.48, + "end": 15733.14, + "probability": 0.8197 + }, + { + "start": 15733.28, + "end": 15734.84, + "probability": 0.6647 + }, + { + "start": 15735.26, + "end": 15738.4, + "probability": 0.9705 + }, + { + "start": 15738.56, + "end": 15739.54, + "probability": 0.6562 + }, + { + "start": 15739.58, + "end": 15741.02, + "probability": 0.9267 + }, + { + "start": 15741.02, + "end": 15741.66, + "probability": 0.4967 + }, + { + "start": 15742.82, + "end": 15743.16, + "probability": 0.4769 + }, + { + "start": 15743.22, + "end": 15745.28, + "probability": 0.7708 + }, + { + "start": 15745.72, + "end": 15748.32, + "probability": 0.1577 + }, + { + "start": 15750.09, + "end": 15752.94, + "probability": 0.7653 + }, + { + "start": 15753.52, + "end": 15756.78, + "probability": 0.9916 + }, + { + "start": 15757.96, + "end": 15759.34, + "probability": 0.8428 + }, + { + "start": 15759.9, + "end": 15763.82, + "probability": 0.8381 + }, + { + "start": 15765.62, + "end": 15766.68, + "probability": 0.7449 + }, + { + "start": 15767.58, + "end": 15771.74, + "probability": 0.9111 + }, + { + "start": 15772.74, + "end": 15776.74, + "probability": 0.884 + }, + { + "start": 15778.12, + "end": 15779.86, + "probability": 0.9133 + }, + { + "start": 15780.18, + "end": 15781.85, + "probability": 0.1243 + }, + { + "start": 15782.1, + "end": 15783.2, + "probability": 0.1069 + }, + { + "start": 15784.34, + "end": 15784.9, + "probability": 0.003 + }, + { + "start": 15785.16, + "end": 15786.38, + "probability": 0.6721 + }, + { + "start": 15786.6, + "end": 15788.76, + "probability": 0.6858 + }, + { + "start": 15788.9, + "end": 15789.28, + "probability": 0.8615 + }, + { + "start": 15789.42, + "end": 15791.66, + "probability": 0.9432 + }, + { + "start": 15792.48, + "end": 15793.72, + "probability": 0.9692 + }, + { + "start": 15794.24, + "end": 15797.88, + "probability": 0.9959 + }, + { + "start": 15798.36, + "end": 15798.86, + "probability": 0.6297 + }, + { + "start": 15798.86, + "end": 15803.94, + "probability": 0.981 + }, + { + "start": 15804.74, + "end": 15805.64, + "probability": 0.5531 + }, + { + "start": 15806.1, + "end": 15807.84, + "probability": 0.5434 + }, + { + "start": 15808.0, + "end": 15809.08, + "probability": 0.9618 + }, + { + "start": 15809.18, + "end": 15810.14, + "probability": 0.7315 + }, + { + "start": 15810.62, + "end": 15813.6, + "probability": 0.8739 + }, + { + "start": 15814.32, + "end": 15815.88, + "probability": 0.4624 + }, + { + "start": 15816.58, + "end": 15817.84, + "probability": 0.9795 + }, + { + "start": 15818.76, + "end": 15820.44, + "probability": 0.8879 + }, + { + "start": 15820.64, + "end": 15820.84, + "probability": 0.7393 + }, + { + "start": 15820.94, + "end": 15821.68, + "probability": 0.9125 + }, + { + "start": 15821.76, + "end": 15823.32, + "probability": 0.9587 + }, + { + "start": 15823.88, + "end": 15827.32, + "probability": 0.8045 + }, + { + "start": 15827.44, + "end": 15828.72, + "probability": 0.8921 + }, + { + "start": 15829.5, + "end": 15831.26, + "probability": 0.8727 + }, + { + "start": 15832.68, + "end": 15836.9, + "probability": 0.9851 + }, + { + "start": 15837.46, + "end": 15839.14, + "probability": 0.8596 + }, + { + "start": 15841.04, + "end": 15842.06, + "probability": 0.9233 + }, + { + "start": 15842.38, + "end": 15842.86, + "probability": 0.8687 + }, + { + "start": 15842.98, + "end": 15843.78, + "probability": 0.9358 + }, + { + "start": 15843.96, + "end": 15846.04, + "probability": 0.9894 + }, + { + "start": 15846.46, + "end": 15846.9, + "probability": 0.8457 + }, + { + "start": 15847.0, + "end": 15847.46, + "probability": 0.9584 + }, + { + "start": 15848.88, + "end": 15851.78, + "probability": 0.5903 + }, + { + "start": 15853.24, + "end": 15853.66, + "probability": 0.407 + }, + { + "start": 15853.78, + "end": 15854.26, + "probability": 0.8362 + }, + { + "start": 15854.34, + "end": 15854.82, + "probability": 0.3463 + }, + { + "start": 15855.58, + "end": 15857.74, + "probability": 0.969 + }, + { + "start": 15858.34, + "end": 15859.42, + "probability": 0.9846 + }, + { + "start": 15860.28, + "end": 15863.96, + "probability": 0.978 + }, + { + "start": 15864.82, + "end": 15868.94, + "probability": 0.8914 + }, + { + "start": 15869.76, + "end": 15870.58, + "probability": 0.9691 + }, + { + "start": 15871.16, + "end": 15875.62, + "probability": 0.9638 + }, + { + "start": 15876.1, + "end": 15876.66, + "probability": 0.6161 + }, + { + "start": 15877.28, + "end": 15880.24, + "probability": 0.5034 + }, + { + "start": 15881.12, + "end": 15882.4, + "probability": 0.2008 + }, + { + "start": 15882.82, + "end": 15885.26, + "probability": 0.9707 + }, + { + "start": 15885.26, + "end": 15886.08, + "probability": 0.9961 + }, + { + "start": 15886.64, + "end": 15889.08, + "probability": 0.8395 + }, + { + "start": 15889.72, + "end": 15891.28, + "probability": 0.9201 + }, + { + "start": 15891.9, + "end": 15896.62, + "probability": 0.9883 + }, + { + "start": 15898.52, + "end": 15899.82, + "probability": 0.5553 + }, + { + "start": 15899.92, + "end": 15901.25, + "probability": 0.9766 + }, + { + "start": 15901.52, + "end": 15904.06, + "probability": 0.7568 + }, + { + "start": 15904.38, + "end": 15907.3, + "probability": 0.9951 + }, + { + "start": 15908.98, + "end": 15909.92, + "probability": 0.6774 + }, + { + "start": 15910.14, + "end": 15912.34, + "probability": 0.5756 + }, + { + "start": 15912.62, + "end": 15916.76, + "probability": 0.895 + }, + { + "start": 15917.8, + "end": 15919.71, + "probability": 0.9028 + }, + { + "start": 15921.46, + "end": 15922.52, + "probability": 0.8584 + }, + { + "start": 15922.52, + "end": 15923.16, + "probability": 0.4607 + }, + { + "start": 15924.18, + "end": 15925.62, + "probability": 0.7004 + }, + { + "start": 15926.56, + "end": 15928.82, + "probability": 0.9065 + }, + { + "start": 15930.14, + "end": 15931.32, + "probability": 0.8464 + }, + { + "start": 15932.62, + "end": 15933.8, + "probability": 0.8324 + }, + { + "start": 15934.38, + "end": 15938.16, + "probability": 0.9448 + }, + { + "start": 15938.84, + "end": 15944.94, + "probability": 0.9609 + }, + { + "start": 15945.64, + "end": 15948.09, + "probability": 0.978 + }, + { + "start": 15949.32, + "end": 15950.04, + "probability": 0.9471 + }, + { + "start": 15951.38, + "end": 15951.68, + "probability": 0.9602 + }, + { + "start": 15951.78, + "end": 15956.82, + "probability": 0.9969 + }, + { + "start": 15957.32, + "end": 15960.5, + "probability": 0.9985 + }, + { + "start": 15960.72, + "end": 15961.32, + "probability": 0.9458 + }, + { + "start": 15963.54, + "end": 15964.4, + "probability": 0.7044 + }, + { + "start": 15964.4, + "end": 15965.3, + "probability": 0.5806 + }, + { + "start": 15966.04, + "end": 15967.52, + "probability": 0.8838 + }, + { + "start": 15968.04, + "end": 15971.36, + "probability": 0.7467 + }, + { + "start": 15971.52, + "end": 15973.17, + "probability": 0.9438 + }, + { + "start": 15974.56, + "end": 15975.0, + "probability": 0.9684 + }, + { + "start": 15975.84, + "end": 15977.4, + "probability": 0.9835 + }, + { + "start": 15977.94, + "end": 15978.88, + "probability": 0.9967 + }, + { + "start": 15979.58, + "end": 15980.08, + "probability": 0.5895 + }, + { + "start": 15980.16, + "end": 15982.42, + "probability": 0.7679 + }, + { + "start": 15982.48, + "end": 15985.52, + "probability": 0.7056 + }, + { + "start": 15986.22, + "end": 15987.3, + "probability": 0.8832 + }, + { + "start": 15987.4, + "end": 15988.34, + "probability": 0.8735 + }, + { + "start": 15988.4, + "end": 15991.9, + "probability": 0.9833 + }, + { + "start": 15992.02, + "end": 15997.32, + "probability": 0.9985 + }, + { + "start": 15997.74, + "end": 16001.39, + "probability": 0.9957 + }, + { + "start": 16001.52, + "end": 16002.34, + "probability": 0.8497 + }, + { + "start": 16002.78, + "end": 16003.16, + "probability": 0.6337 + }, + { + "start": 16006.46, + "end": 16009.56, + "probability": 0.9885 + }, + { + "start": 16009.56, + "end": 16010.0, + "probability": 0.4503 + }, + { + "start": 16010.64, + "end": 16011.04, + "probability": 0.7763 + }, + { + "start": 16012.26, + "end": 16012.88, + "probability": 0.7412 + }, + { + "start": 16013.0, + "end": 16013.94, + "probability": 0.706 + }, + { + "start": 16013.96, + "end": 16015.3, + "probability": 0.9125 + }, + { + "start": 16015.4, + "end": 16016.24, + "probability": 0.5778 + }, + { + "start": 16016.32, + "end": 16018.0, + "probability": 0.925 + }, + { + "start": 16018.76, + "end": 16020.24, + "probability": 0.5242 + }, + { + "start": 16020.52, + "end": 16020.92, + "probability": 0.5999 + }, + { + "start": 16022.24, + "end": 16022.9, + "probability": 0.7971 + }, + { + "start": 16023.0, + "end": 16023.98, + "probability": 0.7894 + }, + { + "start": 16024.08, + "end": 16024.58, + "probability": 0.6432 + }, + { + "start": 16024.88, + "end": 16025.52, + "probability": 0.1801 + }, + { + "start": 16026.28, + "end": 16029.68, + "probability": 0.7559 + }, + { + "start": 16029.78, + "end": 16030.5, + "probability": 0.6679 + }, + { + "start": 16031.46, + "end": 16031.7, + "probability": 0.0097 + }, + { + "start": 16031.8, + "end": 16032.68, + "probability": 0.8935 + }, + { + "start": 16032.76, + "end": 16035.18, + "probability": 0.9742 + }, + { + "start": 16035.28, + "end": 16036.22, + "probability": 0.9045 + }, + { + "start": 16036.54, + "end": 16037.16, + "probability": 0.7192 + }, + { + "start": 16037.26, + "end": 16038.7, + "probability": 0.9495 + }, + { + "start": 16038.74, + "end": 16039.9, + "probability": 0.4274 + }, + { + "start": 16040.28, + "end": 16042.62, + "probability": 0.8561 + }, + { + "start": 16043.76, + "end": 16044.76, + "probability": 0.1433 + }, + { + "start": 16045.16, + "end": 16046.62, + "probability": 0.5536 + }, + { + "start": 16046.62, + "end": 16046.98, + "probability": 0.7597 + }, + { + "start": 16047.18, + "end": 16047.8, + "probability": 0.8732 + }, + { + "start": 16047.92, + "end": 16048.02, + "probability": 0.8759 + }, + { + "start": 16048.54, + "end": 16050.8, + "probability": 0.8672 + }, + { + "start": 16051.4, + "end": 16054.38, + "probability": 0.9859 + }, + { + "start": 16054.7, + "end": 16057.62, + "probability": 0.9347 + }, + { + "start": 16057.72, + "end": 16058.39, + "probability": 0.956 + }, + { + "start": 16059.54, + "end": 16060.66, + "probability": 0.9607 + }, + { + "start": 16062.7, + "end": 16065.26, + "probability": 0.9892 + }, + { + "start": 16066.62, + "end": 16069.24, + "probability": 0.2146 + }, + { + "start": 16069.36, + "end": 16070.9, + "probability": 0.6502 + }, + { + "start": 16072.14, + "end": 16072.74, + "probability": 0.6014 + }, + { + "start": 16073.42, + "end": 16077.38, + "probability": 0.9884 + }, + { + "start": 16079.68, + "end": 16080.62, + "probability": 0.7538 + }, + { + "start": 16080.72, + "end": 16082.1, + "probability": 0.9729 + }, + { + "start": 16082.32, + "end": 16084.62, + "probability": 0.6961 + }, + { + "start": 16084.74, + "end": 16085.94, + "probability": 0.4851 + }, + { + "start": 16085.94, + "end": 16088.24, + "probability": 0.6056 + }, + { + "start": 16088.28, + "end": 16089.42, + "probability": 0.9163 + }, + { + "start": 16090.8, + "end": 16094.0, + "probability": 0.9937 + }, + { + "start": 16094.6, + "end": 16096.42, + "probability": 0.6987 + }, + { + "start": 16096.74, + "end": 16098.84, + "probability": 0.9858 + }, + { + "start": 16098.94, + "end": 16100.41, + "probability": 0.9727 + }, + { + "start": 16100.62, + "end": 16102.7, + "probability": 0.9033 + }, + { + "start": 16103.02, + "end": 16105.12, + "probability": 0.9988 + }, + { + "start": 16105.74, + "end": 16106.62, + "probability": 0.674 + }, + { + "start": 16107.24, + "end": 16109.76, + "probability": 0.8318 + }, + { + "start": 16109.94, + "end": 16110.84, + "probability": 0.9703 + }, + { + "start": 16111.58, + "end": 16112.4, + "probability": 0.937 + }, + { + "start": 16112.52, + "end": 16113.66, + "probability": 0.9888 + }, + { + "start": 16114.46, + "end": 16117.72, + "probability": 0.9845 + }, + { + "start": 16118.08, + "end": 16118.94, + "probability": 0.5015 + }, + { + "start": 16119.04, + "end": 16122.54, + "probability": 0.9969 + }, + { + "start": 16123.6, + "end": 16128.2, + "probability": 0.9929 + }, + { + "start": 16129.22, + "end": 16130.26, + "probability": 0.752 + }, + { + "start": 16131.0, + "end": 16134.0, + "probability": 0.992 + }, + { + "start": 16134.04, + "end": 16137.22, + "probability": 0.9952 + }, + { + "start": 16137.72, + "end": 16141.48, + "probability": 0.9985 + }, + { + "start": 16142.08, + "end": 16144.26, + "probability": 0.9101 + }, + { + "start": 16145.26, + "end": 16147.46, + "probability": 0.6995 + }, + { + "start": 16148.66, + "end": 16149.7, + "probability": 0.0127 + }, + { + "start": 16149.7, + "end": 16151.02, + "probability": 0.5204 + }, + { + "start": 16151.04, + "end": 16152.92, + "probability": 0.9066 + }, + { + "start": 16153.34, + "end": 16154.46, + "probability": 0.2367 + }, + { + "start": 16154.46, + "end": 16154.7, + "probability": 0.0981 + }, + { + "start": 16154.7, + "end": 16157.2, + "probability": 0.744 + }, + { + "start": 16158.18, + "end": 16161.06, + "probability": 0.9438 + }, + { + "start": 16161.3, + "end": 16161.62, + "probability": 0.0105 + }, + { + "start": 16161.74, + "end": 16165.22, + "probability": 0.9965 + }, + { + "start": 16165.46, + "end": 16166.14, + "probability": 0.0396 + }, + { + "start": 16166.26, + "end": 16168.02, + "probability": 0.9442 + }, + { + "start": 16168.88, + "end": 16170.76, + "probability": 0.9875 + }, + { + "start": 16173.28, + "end": 16173.4, + "probability": 0.1056 + }, + { + "start": 16173.4, + "end": 16174.7, + "probability": 0.8611 + }, + { + "start": 16175.32, + "end": 16177.0, + "probability": 0.9685 + }, + { + "start": 16178.18, + "end": 16181.44, + "probability": 0.9961 + }, + { + "start": 16181.46, + "end": 16185.14, + "probability": 0.9862 + }, + { + "start": 16185.66, + "end": 16187.14, + "probability": 0.7679 + }, + { + "start": 16187.3, + "end": 16190.04, + "probability": 0.9979 + }, + { + "start": 16190.04, + "end": 16192.68, + "probability": 0.9988 + }, + { + "start": 16193.5, + "end": 16195.16, + "probability": 0.9934 + }, + { + "start": 16196.06, + "end": 16198.22, + "probability": 0.8027 + }, + { + "start": 16199.98, + "end": 16201.58, + "probability": 0.9953 + }, + { + "start": 16202.34, + "end": 16208.34, + "probability": 0.9944 + }, + { + "start": 16208.98, + "end": 16211.02, + "probability": 0.9883 + }, + { + "start": 16211.32, + "end": 16212.69, + "probability": 0.9854 + }, + { + "start": 16213.38, + "end": 16216.46, + "probability": 0.9014 + }, + { + "start": 16216.78, + "end": 16220.0, + "probability": 0.9967 + }, + { + "start": 16220.8, + "end": 16223.24, + "probability": 0.827 + }, + { + "start": 16223.28, + "end": 16224.54, + "probability": 0.8604 + }, + { + "start": 16225.3, + "end": 16229.2, + "probability": 0.984 + }, + { + "start": 16230.02, + "end": 16233.14, + "probability": 0.982 + }, + { + "start": 16233.58, + "end": 16236.22, + "probability": 0.9734 + }, + { + "start": 16236.74, + "end": 16239.38, + "probability": 0.9675 + }, + { + "start": 16239.66, + "end": 16241.32, + "probability": 0.9838 + }, + { + "start": 16242.26, + "end": 16242.9, + "probability": 0.9912 + }, + { + "start": 16243.08, + "end": 16248.68, + "probability": 0.976 + }, + { + "start": 16248.88, + "end": 16250.08, + "probability": 0.814 + }, + { + "start": 16250.66, + "end": 16251.36, + "probability": 0.7351 + }, + { + "start": 16251.46, + "end": 16252.8, + "probability": 0.9784 + }, + { + "start": 16252.88, + "end": 16254.32, + "probability": 0.984 + }, + { + "start": 16254.52, + "end": 16255.9, + "probability": 0.9745 + }, + { + "start": 16256.5, + "end": 16260.44, + "probability": 0.9971 + }, + { + "start": 16261.04, + "end": 16262.28, + "probability": 0.9636 + }, + { + "start": 16263.16, + "end": 16266.16, + "probability": 0.9842 + }, + { + "start": 16266.26, + "end": 16268.43, + "probability": 0.9971 + }, + { + "start": 16268.56, + "end": 16270.9, + "probability": 0.9289 + }, + { + "start": 16271.36, + "end": 16273.48, + "probability": 0.9975 + }, + { + "start": 16273.76, + "end": 16274.72, + "probability": 0.9044 + }, + { + "start": 16275.36, + "end": 16280.74, + "probability": 0.9756 + }, + { + "start": 16281.26, + "end": 16287.06, + "probability": 0.9979 + }, + { + "start": 16287.12, + "end": 16290.26, + "probability": 0.993 + }, + { + "start": 16290.96, + "end": 16293.16, + "probability": 0.9436 + }, + { + "start": 16293.84, + "end": 16299.58, + "probability": 0.9907 + }, + { + "start": 16299.84, + "end": 16302.26, + "probability": 0.9983 + }, + { + "start": 16303.02, + "end": 16304.5, + "probability": 0.8867 + }, + { + "start": 16305.04, + "end": 16308.24, + "probability": 0.9922 + }, + { + "start": 16308.58, + "end": 16313.16, + "probability": 0.9978 + }, + { + "start": 16313.3, + "end": 16316.4, + "probability": 0.9961 + }, + { + "start": 16316.84, + "end": 16319.42, + "probability": 0.9988 + }, + { + "start": 16319.94, + "end": 16321.38, + "probability": 0.9663 + }, + { + "start": 16321.76, + "end": 16326.52, + "probability": 0.9886 + }, + { + "start": 16326.94, + "end": 16327.54, + "probability": 0.7181 + }, + { + "start": 16327.96, + "end": 16328.66, + "probability": 0.5805 + }, + { + "start": 16332.53, + "end": 16335.74, + "probability": 0.7029 + }, + { + "start": 16336.18, + "end": 16338.2, + "probability": 0.8261 + }, + { + "start": 16338.68, + "end": 16341.32, + "probability": 0.9816 + }, + { + "start": 16341.92, + "end": 16344.1, + "probability": 0.9467 + }, + { + "start": 16344.58, + "end": 16344.94, + "probability": 0.8181 + }, + { + "start": 16345.0, + "end": 16345.42, + "probability": 0.7036 + }, + { + "start": 16345.9, + "end": 16347.44, + "probability": 0.3848 + }, + { + "start": 16347.46, + "end": 16348.8, + "probability": 0.9176 + }, + { + "start": 16348.88, + "end": 16349.62, + "probability": 0.8011 + }, + { + "start": 16350.02, + "end": 16352.62, + "probability": 0.949 + }, + { + "start": 16353.04, + "end": 16353.5, + "probability": 0.6368 + }, + { + "start": 16355.72, + "end": 16357.28, + "probability": 0.5594 + }, + { + "start": 16359.58, + "end": 16362.66, + "probability": 0.7743 + }, + { + "start": 16364.03, + "end": 16370.06, + "probability": 0.7338 + }, + { + "start": 16370.46, + "end": 16372.3, + "probability": 0.9336 + }, + { + "start": 16373.72, + "end": 16374.12, + "probability": 0.8524 + }, + { + "start": 16375.18, + "end": 16378.14, + "probability": 0.707 + }, + { + "start": 16378.56, + "end": 16378.78, + "probability": 0.8127 + }, + { + "start": 16379.12, + "end": 16380.76, + "probability": 0.1101 + }, + { + "start": 16381.72, + "end": 16382.96, + "probability": 0.6315 + }, + { + "start": 16384.14, + "end": 16392.1, + "probability": 0.9731 + }, + { + "start": 16393.04, + "end": 16397.16, + "probability": 0.9022 + }, + { + "start": 16397.68, + "end": 16399.18, + "probability": 0.8619 + }, + { + "start": 16400.9, + "end": 16402.09, + "probability": 0.9382 + }, + { + "start": 16403.3, + "end": 16408.48, + "probability": 0.9292 + }, + { + "start": 16409.42, + "end": 16410.64, + "probability": 0.9973 + }, + { + "start": 16411.54, + "end": 16414.28, + "probability": 0.9882 + }, + { + "start": 16415.36, + "end": 16416.9, + "probability": 0.9486 + }, + { + "start": 16417.88, + "end": 16419.98, + "probability": 0.7177 + }, + { + "start": 16420.16, + "end": 16420.44, + "probability": 0.4581 + }, + { + "start": 16420.48, + "end": 16421.18, + "probability": 0.5511 + }, + { + "start": 16421.78, + "end": 16422.82, + "probability": 0.9263 + }, + { + "start": 16423.58, + "end": 16427.2, + "probability": 0.6752 + }, + { + "start": 16427.84, + "end": 16429.52, + "probability": 0.9927 + }, + { + "start": 16430.24, + "end": 16431.46, + "probability": 0.7014 + }, + { + "start": 16431.46, + "end": 16433.92, + "probability": 0.8034 + }, + { + "start": 16434.28, + "end": 16436.34, + "probability": 0.741 + }, + { + "start": 16436.8, + "end": 16437.7, + "probability": 0.6298 + }, + { + "start": 16438.42, + "end": 16441.96, + "probability": 0.7617 + }, + { + "start": 16442.42, + "end": 16444.76, + "probability": 0.9961 + }, + { + "start": 16446.0, + "end": 16449.0, + "probability": 0.9884 + }, + { + "start": 16449.5, + "end": 16450.58, + "probability": 0.9521 + }, + { + "start": 16451.1, + "end": 16451.66, + "probability": 0.9917 + }, + { + "start": 16452.18, + "end": 16455.2, + "probability": 0.9665 + }, + { + "start": 16456.08, + "end": 16456.9, + "probability": 0.9574 + }, + { + "start": 16457.42, + "end": 16459.42, + "probability": 0.9702 + }, + { + "start": 16461.14, + "end": 16463.52, + "probability": 0.4782 + }, + { + "start": 16464.88, + "end": 16470.2, + "probability": 0.9532 + }, + { + "start": 16470.9, + "end": 16474.88, + "probability": 0.9902 + }, + { + "start": 16475.52, + "end": 16477.88, + "probability": 0.9725 + }, + { + "start": 16478.54, + "end": 16479.66, + "probability": 0.8652 + }, + { + "start": 16480.22, + "end": 16482.92, + "probability": 0.9157 + }, + { + "start": 16484.34, + "end": 16485.78, + "probability": 0.7747 + }, + { + "start": 16485.86, + "end": 16488.8, + "probability": 0.7952 + }, + { + "start": 16489.44, + "end": 16490.92, + "probability": 0.9631 + }, + { + "start": 16491.48, + "end": 16492.51, + "probability": 0.354 + }, + { + "start": 16493.82, + "end": 16494.71, + "probability": 0.6089 + }, + { + "start": 16495.9, + "end": 16497.5, + "probability": 0.9434 + }, + { + "start": 16498.58, + "end": 16500.56, + "probability": 0.9255 + }, + { + "start": 16501.5, + "end": 16503.48, + "probability": 0.98 + }, + { + "start": 16504.48, + "end": 16507.16, + "probability": 0.9692 + }, + { + "start": 16507.5, + "end": 16508.52, + "probability": 0.6476 + }, + { + "start": 16509.0, + "end": 16511.22, + "probability": 0.9193 + }, + { + "start": 16512.66, + "end": 16514.07, + "probability": 0.8784 + }, + { + "start": 16514.85, + "end": 16519.39, + "probability": 0.8496 + }, + { + "start": 16520.54, + "end": 16521.42, + "probability": 0.9837 + }, + { + "start": 16522.64, + "end": 16524.27, + "probability": 0.9844 + }, + { + "start": 16525.96, + "end": 16527.52, + "probability": 0.9958 + }, + { + "start": 16528.32, + "end": 16529.82, + "probability": 0.9658 + }, + { + "start": 16531.68, + "end": 16532.64, + "probability": 0.9878 + }, + { + "start": 16533.36, + "end": 16534.9, + "probability": 0.8807 + }, + { + "start": 16535.82, + "end": 16536.92, + "probability": 0.9795 + }, + { + "start": 16537.68, + "end": 16539.72, + "probability": 0.9477 + }, + { + "start": 16540.3, + "end": 16543.5, + "probability": 0.9949 + }, + { + "start": 16546.87, + "end": 16547.72, + "probability": 0.6027 + }, + { + "start": 16548.37, + "end": 16552.02, + "probability": 0.7023 + }, + { + "start": 16552.81, + "end": 16556.91, + "probability": 0.9133 + }, + { + "start": 16557.43, + "end": 16560.0, + "probability": 0.973 + }, + { + "start": 16560.91, + "end": 16564.45, + "probability": 0.7718 + }, + { + "start": 16565.45, + "end": 16567.11, + "probability": 0.9849 + }, + { + "start": 16567.78, + "end": 16571.11, + "probability": 0.9875 + }, + { + "start": 16572.41, + "end": 16573.2, + "probability": 0.8892 + }, + { + "start": 16573.83, + "end": 16575.89, + "probability": 0.9248 + }, + { + "start": 16576.23, + "end": 16576.79, + "probability": 0.7662 + }, + { + "start": 16577.43, + "end": 16578.21, + "probability": 0.6802 + }, + { + "start": 16578.87, + "end": 16580.18, + "probability": 0.9785 + }, + { + "start": 16580.95, + "end": 16582.23, + "probability": 0.9944 + }, + { + "start": 16583.11, + "end": 16586.49, + "probability": 0.9734 + }, + { + "start": 16588.15, + "end": 16589.19, + "probability": 0.7216 + }, + { + "start": 16590.11, + "end": 16594.65, + "probability": 0.9968 + }, + { + "start": 16595.65, + "end": 16598.63, + "probability": 0.9476 + }, + { + "start": 16598.69, + "end": 16599.75, + "probability": 0.647 + }, + { + "start": 16600.87, + "end": 16602.05, + "probability": 0.8419 + }, + { + "start": 16602.79, + "end": 16604.39, + "probability": 0.889 + }, + { + "start": 16605.03, + "end": 16608.67, + "probability": 0.9961 + }, + { + "start": 16609.69, + "end": 16611.47, + "probability": 0.662 + }, + { + "start": 16612.09, + "end": 16619.47, + "probability": 0.9875 + }, + { + "start": 16620.07, + "end": 16622.95, + "probability": 0.7868 + }, + { + "start": 16624.68, + "end": 16628.13, + "probability": 0.7314 + }, + { + "start": 16628.27, + "end": 16630.17, + "probability": 0.8293 + }, + { + "start": 16630.21, + "end": 16632.39, + "probability": 0.8272 + }, + { + "start": 16632.97, + "end": 16634.79, + "probability": 0.8867 + }, + { + "start": 16635.27, + "end": 16638.53, + "probability": 0.5091 + }, + { + "start": 16638.57, + "end": 16642.07, + "probability": 0.9974 + }, + { + "start": 16642.49, + "end": 16643.91, + "probability": 0.8709 + }, + { + "start": 16644.57, + "end": 16645.73, + "probability": 0.9824 + }, + { + "start": 16645.87, + "end": 16646.59, + "probability": 0.7674 + }, + { + "start": 16647.01, + "end": 16651.73, + "probability": 0.9985 + }, + { + "start": 16652.05, + "end": 16652.61, + "probability": 0.9776 + }, + { + "start": 16653.31, + "end": 16655.21, + "probability": 0.6455 + }, + { + "start": 16655.73, + "end": 16656.75, + "probability": 0.7353 + }, + { + "start": 16657.17, + "end": 16661.03, + "probability": 0.9661 + }, + { + "start": 16661.39, + "end": 16662.07, + "probability": 0.5189 + }, + { + "start": 16662.13, + "end": 16666.01, + "probability": 0.9874 + }, + { + "start": 16667.81, + "end": 16670.91, + "probability": 0.9694 + }, + { + "start": 16670.99, + "end": 16673.33, + "probability": 0.8882 + }, + { + "start": 16674.77, + "end": 16676.59, + "probability": 0.996 + }, + { + "start": 16676.67, + "end": 16677.63, + "probability": 0.9061 + }, + { + "start": 16678.67, + "end": 16680.53, + "probability": 0.9258 + }, + { + "start": 16680.75, + "end": 16681.09, + "probability": 0.8987 + }, + { + "start": 16682.42, + "end": 16685.33, + "probability": 0.8291 + }, + { + "start": 16685.49, + "end": 16687.59, + "probability": 0.5523 + }, + { + "start": 16687.73, + "end": 16688.05, + "probability": 0.3402 + }, + { + "start": 16688.13, + "end": 16688.81, + "probability": 0.8888 + }, + { + "start": 16688.89, + "end": 16690.03, + "probability": 0.7318 + }, + { + "start": 16691.53, + "end": 16692.91, + "probability": 0.929 + }, + { + "start": 16693.91, + "end": 16696.42, + "probability": 0.9272 + }, + { + "start": 16698.31, + "end": 16698.89, + "probability": 0.8558 + }, + { + "start": 16699.83, + "end": 16704.67, + "probability": 0.6992 + }, + { + "start": 16706.01, + "end": 16709.05, + "probability": 0.9863 + }, + { + "start": 16710.07, + "end": 16711.89, + "probability": 0.9946 + }, + { + "start": 16713.31, + "end": 16717.71, + "probability": 0.9872 + }, + { + "start": 16720.05, + "end": 16721.45, + "probability": 0.6074 + }, + { + "start": 16722.09, + "end": 16724.09, + "probability": 0.9416 + }, + { + "start": 16724.89, + "end": 16725.71, + "probability": 0.8527 + }, + { + "start": 16725.77, + "end": 16728.03, + "probability": 0.77 + }, + { + "start": 16729.09, + "end": 16731.77, + "probability": 0.7677 + }, + { + "start": 16734.18, + "end": 16736.71, + "probability": 0.8461 + }, + { + "start": 16738.35, + "end": 16741.03, + "probability": 0.8478 + }, + { + "start": 16742.79, + "end": 16745.73, + "probability": 0.9268 + }, + { + "start": 16746.93, + "end": 16749.23, + "probability": 0.8838 + }, + { + "start": 16750.73, + "end": 16753.04, + "probability": 0.7668 + }, + { + "start": 16755.93, + "end": 16757.59, + "probability": 0.9591 + }, + { + "start": 16758.55, + "end": 16759.71, + "probability": 0.8252 + }, + { + "start": 16760.27, + "end": 16761.79, + "probability": 0.997 + }, + { + "start": 16762.81, + "end": 16763.99, + "probability": 0.8574 + }, + { + "start": 16765.49, + "end": 16767.15, + "probability": 0.9858 + }, + { + "start": 16767.83, + "end": 16768.99, + "probability": 0.9723 + }, + { + "start": 16769.92, + "end": 16770.61, + "probability": 0.9334 + }, + { + "start": 16772.41, + "end": 16775.95, + "probability": 0.8914 + }, + { + "start": 16776.99, + "end": 16777.61, + "probability": 0.939 + }, + { + "start": 16778.25, + "end": 16779.25, + "probability": 0.994 + }, + { + "start": 16780.25, + "end": 16782.37, + "probability": 0.9762 + }, + { + "start": 16783.13, + "end": 16787.51, + "probability": 0.9972 + }, + { + "start": 16788.03, + "end": 16789.03, + "probability": 0.9644 + }, + { + "start": 16789.89, + "end": 16791.45, + "probability": 0.9965 + }, + { + "start": 16792.11, + "end": 16792.91, + "probability": 0.9078 + }, + { + "start": 16793.77, + "end": 16796.29, + "probability": 0.9503 + }, + { + "start": 16798.03, + "end": 16799.03, + "probability": 0.9944 + }, + { + "start": 16800.09, + "end": 16801.71, + "probability": 0.9976 + }, + { + "start": 16802.83, + "end": 16804.59, + "probability": 0.7654 + }, + { + "start": 16805.31, + "end": 16807.64, + "probability": 0.9755 + }, + { + "start": 16808.81, + "end": 16810.31, + "probability": 0.9457 + }, + { + "start": 16810.43, + "end": 16813.49, + "probability": 0.9844 + }, + { + "start": 16814.37, + "end": 16817.17, + "probability": 0.7069 + }, + { + "start": 16818.03, + "end": 16821.07, + "probability": 0.8228 + }, + { + "start": 16823.45, + "end": 16824.89, + "probability": 0.9955 + }, + { + "start": 16825.61, + "end": 16828.81, + "probability": 0.7327 + }, + { + "start": 16830.53, + "end": 16831.85, + "probability": 0.8196 + }, + { + "start": 16832.79, + "end": 16834.91, + "probability": 0.8552 + }, + { + "start": 16835.73, + "end": 16838.19, + "probability": 0.9496 + }, + { + "start": 16839.05, + "end": 16840.71, + "probability": 0.9272 + }, + { + "start": 16841.77, + "end": 16842.93, + "probability": 0.5942 + }, + { + "start": 16843.11, + "end": 16847.19, + "probability": 0.8485 + }, + { + "start": 16847.99, + "end": 16850.83, + "probability": 0.9783 + }, + { + "start": 16851.49, + "end": 16852.19, + "probability": 0.9865 + }, + { + "start": 16854.0, + "end": 16856.31, + "probability": 0.999 + }, + { + "start": 16857.81, + "end": 16859.72, + "probability": 0.7099 + }, + { + "start": 16860.55, + "end": 16864.17, + "probability": 0.9791 + }, + { + "start": 16864.75, + "end": 16865.93, + "probability": 0.5232 + }, + { + "start": 16866.95, + "end": 16870.97, + "probability": 0.9244 + }, + { + "start": 16871.75, + "end": 16875.23, + "probability": 0.9698 + }, + { + "start": 16876.19, + "end": 16880.11, + "probability": 0.9636 + }, + { + "start": 16880.83, + "end": 16886.61, + "probability": 0.6715 + }, + { + "start": 16887.17, + "end": 16889.91, + "probability": 0.9507 + }, + { + "start": 16890.01, + "end": 16890.97, + "probability": 0.5613 + }, + { + "start": 16891.03, + "end": 16891.57, + "probability": 0.5556 + }, + { + "start": 16891.57, + "end": 16893.57, + "probability": 0.8308 + }, + { + "start": 16894.71, + "end": 16899.73, + "probability": 0.918 + }, + { + "start": 16901.27, + "end": 16902.53, + "probability": 0.8386 + }, + { + "start": 16903.45, + "end": 16904.79, + "probability": 0.9005 + }, + { + "start": 16906.25, + "end": 16908.57, + "probability": 0.7006 + }, + { + "start": 16909.23, + "end": 16918.67, + "probability": 0.9604 + }, + { + "start": 16919.41, + "end": 16921.35, + "probability": 0.9869 + }, + { + "start": 16921.91, + "end": 16924.91, + "probability": 0.9412 + }, + { + "start": 16925.49, + "end": 16926.81, + "probability": 0.8306 + }, + { + "start": 16927.37, + "end": 16931.81, + "probability": 0.8253 + }, + { + "start": 16932.87, + "end": 16936.13, + "probability": 0.8564 + }, + { + "start": 16936.25, + "end": 16937.19, + "probability": 0.6269 + }, + { + "start": 16937.61, + "end": 16939.64, + "probability": 0.9897 + }, + { + "start": 16942.69, + "end": 16944.17, + "probability": 0.1946 + }, + { + "start": 16944.21, + "end": 16948.61, + "probability": 0.9924 + }, + { + "start": 16948.61, + "end": 16952.89, + "probability": 0.997 + }, + { + "start": 16953.67, + "end": 16957.29, + "probability": 0.7309 + }, + { + "start": 16957.83, + "end": 16959.27, + "probability": 0.9414 + }, + { + "start": 16960.78, + "end": 16964.01, + "probability": 0.8794 + }, + { + "start": 16965.07, + "end": 16968.19, + "probability": 0.9746 + }, + { + "start": 16969.15, + "end": 16970.79, + "probability": 0.8896 + }, + { + "start": 16972.44, + "end": 16974.31, + "probability": 0.6479 + }, + { + "start": 16974.31, + "end": 16975.07, + "probability": 0.4804 + }, + { + "start": 16976.03, + "end": 16979.07, + "probability": 0.9631 + }, + { + "start": 16979.61, + "end": 16981.07, + "probability": 0.6254 + }, + { + "start": 16981.33, + "end": 16984.73, + "probability": 0.8197 + }, + { + "start": 16985.33, + "end": 16987.96, + "probability": 0.989 + }, + { + "start": 16988.83, + "end": 16991.65, + "probability": 0.742 + }, + { + "start": 16992.21, + "end": 16997.51, + "probability": 0.9811 + }, + { + "start": 16998.29, + "end": 17001.49, + "probability": 0.7974 + }, + { + "start": 17002.19, + "end": 17003.95, + "probability": 0.7358 + }, + { + "start": 17004.67, + "end": 17007.19, + "probability": 0.9575 + }, + { + "start": 17007.79, + "end": 17011.41, + "probability": 0.9663 + }, + { + "start": 17011.95, + "end": 17012.63, + "probability": 0.5964 + }, + { + "start": 17012.93, + "end": 17015.93, + "probability": 0.9773 + }, + { + "start": 17016.65, + "end": 17019.83, + "probability": 0.9948 + }, + { + "start": 17019.97, + "end": 17024.23, + "probability": 0.9928 + }, + { + "start": 17024.77, + "end": 17026.07, + "probability": 0.9871 + }, + { + "start": 17026.91, + "end": 17027.77, + "probability": 0.4928 + }, + { + "start": 17028.01, + "end": 17032.05, + "probability": 0.728 + }, + { + "start": 17032.71, + "end": 17035.61, + "probability": 0.9961 + }, + { + "start": 17036.37, + "end": 17038.21, + "probability": 0.9756 + }, + { + "start": 17038.39, + "end": 17041.29, + "probability": 0.8312 + }, + { + "start": 17041.73, + "end": 17042.97, + "probability": 0.7607 + }, + { + "start": 17043.73, + "end": 17044.75, + "probability": 0.8271 + }, + { + "start": 17045.43, + "end": 17047.45, + "probability": 0.362 + }, + { + "start": 17048.83, + "end": 17052.95, + "probability": 0.9629 + }, + { + "start": 17053.33, + "end": 17055.87, + "probability": 0.7488 + }, + { + "start": 17057.77, + "end": 17060.23, + "probability": 0.885 + }, + { + "start": 17060.39, + "end": 17064.77, + "probability": 0.9076 + }, + { + "start": 17065.87, + "end": 17067.27, + "probability": 0.9429 + }, + { + "start": 17068.91, + "end": 17070.41, + "probability": 0.5182 + }, + { + "start": 17070.59, + "end": 17075.67, + "probability": 0.9861 + }, + { + "start": 17077.91, + "end": 17083.17, + "probability": 0.8088 + }, + { + "start": 17084.01, + "end": 17084.89, + "probability": 0.7945 + }, + { + "start": 17084.95, + "end": 17086.35, + "probability": 0.7994 + }, + { + "start": 17086.65, + "end": 17088.33, + "probability": 0.9624 + }, + { + "start": 17088.45, + "end": 17090.71, + "probability": 0.9656 + }, + { + "start": 17091.23, + "end": 17093.07, + "probability": 0.8027 + }, + { + "start": 17093.75, + "end": 17094.59, + "probability": 0.7349 + }, + { + "start": 17094.97, + "end": 17096.13, + "probability": 0.6397 + }, + { + "start": 17096.67, + "end": 17096.71, + "probability": 0.3894 + }, + { + "start": 17096.71, + "end": 17097.63, + "probability": 0.6729 + }, + { + "start": 17098.05, + "end": 17099.23, + "probability": 0.9928 + }, + { + "start": 17100.33, + "end": 17102.67, + "probability": 0.9398 + }, + { + "start": 17102.89, + "end": 17104.01, + "probability": 0.9974 + }, + { + "start": 17105.05, + "end": 17105.49, + "probability": 0.2545 + }, + { + "start": 17105.49, + "end": 17107.73, + "probability": 0.9087 + }, + { + "start": 17108.39, + "end": 17111.27, + "probability": 0.9934 + }, + { + "start": 17111.95, + "end": 17113.71, + "probability": 0.9396 + }, + { + "start": 17113.77, + "end": 17116.51, + "probability": 0.9973 + }, + { + "start": 17118.07, + "end": 17118.53, + "probability": 0.7228 + }, + { + "start": 17118.59, + "end": 17119.63, + "probability": 0.7818 + }, + { + "start": 17119.85, + "end": 17121.77, + "probability": 0.6121 + }, + { + "start": 17122.79, + "end": 17124.17, + "probability": 0.9918 + }, + { + "start": 17125.09, + "end": 17126.37, + "probability": 0.8613 + }, + { + "start": 17127.49, + "end": 17132.95, + "probability": 0.9868 + }, + { + "start": 17133.43, + "end": 17134.09, + "probability": 0.4698 + }, + { + "start": 17135.39, + "end": 17136.99, + "probability": 0.9271 + }, + { + "start": 17137.65, + "end": 17140.77, + "probability": 0.9943 + }, + { + "start": 17141.31, + "end": 17143.11, + "probability": 0.9907 + }, + { + "start": 17143.75, + "end": 17145.49, + "probability": 0.9255 + }, + { + "start": 17146.87, + "end": 17150.25, + "probability": 0.8934 + }, + { + "start": 17150.41, + "end": 17152.47, + "probability": 0.969 + }, + { + "start": 17152.93, + "end": 17157.21, + "probability": 0.9549 + }, + { + "start": 17158.45, + "end": 17160.01, + "probability": 0.8588 + }, + { + "start": 17161.93, + "end": 17164.97, + "probability": 0.9275 + }, + { + "start": 17166.45, + "end": 17172.37, + "probability": 0.9587 + }, + { + "start": 17173.61, + "end": 17178.5, + "probability": 0.9513 + }, + { + "start": 17178.95, + "end": 17179.53, + "probability": 0.6717 + }, + { + "start": 17179.89, + "end": 17180.77, + "probability": 0.7759 + }, + { + "start": 17181.17, + "end": 17181.79, + "probability": 0.7368 + }, + { + "start": 17182.31, + "end": 17183.55, + "probability": 0.8586 + }, + { + "start": 17183.67, + "end": 17188.09, + "probability": 0.989 + }, + { + "start": 17189.41, + "end": 17190.75, + "probability": 0.7798 + }, + { + "start": 17191.83, + "end": 17193.11, + "probability": 0.877 + }, + { + "start": 17193.29, + "end": 17193.51, + "probability": 0.4516 + }, + { + "start": 17193.61, + "end": 17193.85, + "probability": 0.7469 + }, + { + "start": 17194.27, + "end": 17194.79, + "probability": 0.7924 + }, + { + "start": 17195.79, + "end": 17198.83, + "probability": 0.0252 + }, + { + "start": 17199.74, + "end": 17201.27, + "probability": 0.0121 + }, + { + "start": 17202.05, + "end": 17206.51, + "probability": 0.3045 + }, + { + "start": 17207.73, + "end": 17212.17, + "probability": 0.9831 + }, + { + "start": 17214.57, + "end": 17215.11, + "probability": 0.8643 + }, + { + "start": 17215.81, + "end": 17216.37, + "probability": 0.9484 + }, + { + "start": 17217.11, + "end": 17218.37, + "probability": 0.9771 + }, + { + "start": 17219.81, + "end": 17221.77, + "probability": 0.9858 + }, + { + "start": 17221.89, + "end": 17223.47, + "probability": 0.9933 + }, + { + "start": 17224.15, + "end": 17226.43, + "probability": 0.9086 + }, + { + "start": 17227.33, + "end": 17227.95, + "probability": 0.7594 + }, + { + "start": 17230.41, + "end": 17231.77, + "probability": 0.8335 + }, + { + "start": 17233.87, + "end": 17235.51, + "probability": 0.9985 + }, + { + "start": 17235.89, + "end": 17240.03, + "probability": 0.8333 + }, + { + "start": 17240.03, + "end": 17243.21, + "probability": 0.9006 + }, + { + "start": 17243.47, + "end": 17246.29, + "probability": 0.761 + }, + { + "start": 17247.53, + "end": 17250.13, + "probability": 0.9226 + }, + { + "start": 17250.39, + "end": 17253.15, + "probability": 0.9909 + }, + { + "start": 17253.83, + "end": 17259.31, + "probability": 0.9971 + }, + { + "start": 17259.91, + "end": 17261.37, + "probability": 0.9977 + }, + { + "start": 17262.29, + "end": 17265.63, + "probability": 0.9925 + }, + { + "start": 17265.93, + "end": 17266.53, + "probability": 0.5511 + }, + { + "start": 17266.73, + "end": 17267.65, + "probability": 0.5945 + }, + { + "start": 17267.71, + "end": 17269.73, + "probability": 0.7261 + }, + { + "start": 17270.65, + "end": 17272.19, + "probability": 0.9932 + }, + { + "start": 17273.43, + "end": 17276.13, + "probability": 0.925 + }, + { + "start": 17277.17, + "end": 17278.17, + "probability": 0.7159 + }, + { + "start": 17279.95, + "end": 17281.61, + "probability": 0.6036 + }, + { + "start": 17284.55, + "end": 17291.33, + "probability": 0.8872 + }, + { + "start": 17291.33, + "end": 17298.83, + "probability": 0.999 + }, + { + "start": 17302.53, + "end": 17304.71, + "probability": 0.9043 + }, + { + "start": 17306.81, + "end": 17308.46, + "probability": 0.9315 + }, + { + "start": 17310.09, + "end": 17318.55, + "probability": 0.8828 + }, + { + "start": 17319.45, + "end": 17320.17, + "probability": 0.9582 + }, + { + "start": 17321.53, + "end": 17322.17, + "probability": 0.8865 + }, + { + "start": 17322.25, + "end": 17325.79, + "probability": 0.8421 + }, + { + "start": 17326.07, + "end": 17330.01, + "probability": 0.952 + }, + { + "start": 17331.23, + "end": 17339.31, + "probability": 0.784 + }, + { + "start": 17339.31, + "end": 17341.35, + "probability": 0.8908 + }, + { + "start": 17344.13, + "end": 17344.77, + "probability": 0.693 + }, + { + "start": 17345.49, + "end": 17347.81, + "probability": 0.9891 + }, + { + "start": 17348.61, + "end": 17351.21, + "probability": 0.9519 + }, + { + "start": 17351.55, + "end": 17352.87, + "probability": 0.955 + }, + { + "start": 17353.03, + "end": 17357.35, + "probability": 0.9893 + }, + { + "start": 17358.51, + "end": 17359.47, + "probability": 0.6665 + }, + { + "start": 17360.93, + "end": 17361.75, + "probability": 0.9725 + }, + { + "start": 17362.53, + "end": 17363.57, + "probability": 0.8436 + }, + { + "start": 17363.67, + "end": 17367.19, + "probability": 0.7159 + }, + { + "start": 17367.39, + "end": 17369.09, + "probability": 0.8035 + }, + { + "start": 17370.09, + "end": 17372.13, + "probability": 0.9976 + }, + { + "start": 17373.11, + "end": 17374.51, + "probability": 0.5201 + }, + { + "start": 17375.59, + "end": 17377.85, + "probability": 0.9275 + }, + { + "start": 17378.81, + "end": 17383.53, + "probability": 0.9952 + }, + { + "start": 17383.53, + "end": 17393.33, + "probability": 0.9953 + }, + { + "start": 17394.15, + "end": 17399.43, + "probability": 0.9919 + }, + { + "start": 17400.41, + "end": 17403.69, + "probability": 0.9747 + }, + { + "start": 17405.19, + "end": 17407.05, + "probability": 0.7768 + }, + { + "start": 17407.35, + "end": 17407.85, + "probability": 0.2855 + }, + { + "start": 17408.17, + "end": 17408.67, + "probability": 0.3867 + }, + { + "start": 17408.79, + "end": 17409.55, + "probability": 0.8573 + }, + { + "start": 17409.63, + "end": 17412.47, + "probability": 0.9654 + }, + { + "start": 17412.47, + "end": 17415.77, + "probability": 0.997 + }, + { + "start": 17416.35, + "end": 17418.27, + "probability": 0.9639 + }, + { + "start": 17418.97, + "end": 17423.13, + "probability": 0.9972 + }, + { + "start": 17424.27, + "end": 17427.95, + "probability": 0.9924 + }, + { + "start": 17428.73, + "end": 17430.09, + "probability": 0.6884 + }, + { + "start": 17430.17, + "end": 17431.49, + "probability": 0.924 + }, + { + "start": 17431.63, + "end": 17433.45, + "probability": 0.9917 + }, + { + "start": 17434.03, + "end": 17434.85, + "probability": 0.7656 + }, + { + "start": 17435.69, + "end": 17437.15, + "probability": 0.8503 + }, + { + "start": 17437.21, + "end": 17442.37, + "probability": 0.9909 + }, + { + "start": 17443.37, + "end": 17445.75, + "probability": 0.6285 + }, + { + "start": 17445.75, + "end": 17448.49, + "probability": 0.8892 + }, + { + "start": 17448.93, + "end": 17449.13, + "probability": 0.5205 + }, + { + "start": 17449.13, + "end": 17450.13, + "probability": 0.7355 + }, + { + "start": 17450.39, + "end": 17452.51, + "probability": 0.5629 + }, + { + "start": 17452.51, + "end": 17455.85, + "probability": 0.483 + }, + { + "start": 17455.93, + "end": 17458.31, + "probability": 0.9857 + }, + { + "start": 17458.41, + "end": 17462.01, + "probability": 0.9366 + }, + { + "start": 17463.37, + "end": 17468.03, + "probability": 0.7708 + }, + { + "start": 17468.61, + "end": 17469.85, + "probability": 0.9885 + }, + { + "start": 17470.17, + "end": 17471.79, + "probability": 0.9704 + }, + { + "start": 17472.25, + "end": 17475.37, + "probability": 0.9734 + }, + { + "start": 17476.09, + "end": 17478.97, + "probability": 0.9688 + }, + { + "start": 17480.31, + "end": 17483.07, + "probability": 0.9683 + }, + { + "start": 17483.53, + "end": 17483.95, + "probability": 0.8323 + }, + { + "start": 17484.49, + "end": 17485.63, + "probability": 0.7379 + }, + { + "start": 17485.67, + "end": 17486.23, + "probability": 0.6913 + }, + { + "start": 17487.49, + "end": 17488.97, + "probability": 0.9279 + }, + { + "start": 17489.05, + "end": 17489.77, + "probability": 0.8462 + }, + { + "start": 17490.39, + "end": 17492.19, + "probability": 0.9529 + }, + { + "start": 17493.37, + "end": 17494.87, + "probability": 0.8512 + }, + { + "start": 17496.03, + "end": 17497.49, + "probability": 0.7982 + }, + { + "start": 17500.25, + "end": 17501.29, + "probability": 0.3316 + }, + { + "start": 17504.23, + "end": 17505.15, + "probability": 0.9196 + }, + { + "start": 17507.19, + "end": 17508.13, + "probability": 0.9218 + }, + { + "start": 17511.29, + "end": 17512.37, + "probability": 0.8617 + }, + { + "start": 17513.71, + "end": 17521.57, + "probability": 0.7332 + }, + { + "start": 17522.43, + "end": 17523.95, + "probability": 0.349 + }, + { + "start": 17524.63, + "end": 17526.47, + "probability": 0.8782 + }, + { + "start": 17527.23, + "end": 17528.83, + "probability": 0.6249 + }, + { + "start": 17529.25, + "end": 17529.89, + "probability": 0.6921 + }, + { + "start": 17530.33, + "end": 17531.03, + "probability": 0.7504 + }, + { + "start": 17531.09, + "end": 17532.15, + "probability": 0.6697 + }, + { + "start": 17532.71, + "end": 17536.03, + "probability": 0.0494 + }, + { + "start": 17536.91, + "end": 17543.81, + "probability": 0.0298 + }, + { + "start": 17546.17, + "end": 17546.31, + "probability": 0.0518 + }, + { + "start": 17546.31, + "end": 17547.27, + "probability": 0.3781 + }, + { + "start": 17548.41, + "end": 17550.39, + "probability": 0.4976 + }, + { + "start": 17551.01, + "end": 17554.57, + "probability": 0.5854 + }, + { + "start": 17554.57, + "end": 17558.83, + "probability": 0.7036 + }, + { + "start": 17559.51, + "end": 17562.89, + "probability": 0.9604 + }, + { + "start": 17564.27, + "end": 17565.13, + "probability": 0.501 + }, + { + "start": 17565.99, + "end": 17565.99, + "probability": 0.2393 + }, + { + "start": 17565.99, + "end": 17568.77, + "probability": 0.4935 + }, + { + "start": 17569.19, + "end": 17570.91, + "probability": 0.6069 + }, + { + "start": 17571.27, + "end": 17573.19, + "probability": 0.8107 + }, + { + "start": 17573.27, + "end": 17574.03, + "probability": 0.8436 + }, + { + "start": 17574.39, + "end": 17581.53, + "probability": 0.972 + }, + { + "start": 17582.83, + "end": 17584.83, + "probability": 0.7606 + }, + { + "start": 17584.95, + "end": 17586.73, + "probability": 0.8906 + }, + { + "start": 17587.35, + "end": 17588.71, + "probability": 0.6503 + }, + { + "start": 17589.89, + "end": 17592.31, + "probability": 0.9563 + }, + { + "start": 17592.99, + "end": 17596.33, + "probability": 0.7086 + }, + { + "start": 17599.21, + "end": 17599.91, + "probability": 0.4105 + }, + { + "start": 17600.73, + "end": 17602.41, + "probability": 0.8973 + }, + { + "start": 17602.41, + "end": 17606.65, + "probability": 0.8083 + }, + { + "start": 17607.07, + "end": 17611.49, + "probability": 0.9869 + }, + { + "start": 17611.49, + "end": 17615.67, + "probability": 0.8071 + }, + { + "start": 17617.73, + "end": 17620.29, + "probability": 0.6773 + }, + { + "start": 17620.67, + "end": 17623.41, + "probability": 0.8271 + }, + { + "start": 17628.83, + "end": 17630.51, + "probability": 0.8164 + }, + { + "start": 17631.31, + "end": 17635.83, + "probability": 0.9911 + }, + { + "start": 17637.81, + "end": 17638.05, + "probability": 0.0066 + }, + { + "start": 17641.17, + "end": 17643.97, + "probability": 0.7076 + }, + { + "start": 17645.93, + "end": 17647.23, + "probability": 0.7533 + }, + { + "start": 17647.77, + "end": 17648.62, + "probability": 0.8066 + }, + { + "start": 17650.17, + "end": 17652.83, + "probability": 0.6902 + }, + { + "start": 17653.67, + "end": 17655.63, + "probability": 0.4915 + }, + { + "start": 17655.83, + "end": 17656.55, + "probability": 0.1481 + }, + { + "start": 17656.81, + "end": 17660.39, + "probability": 0.996 + }, + { + "start": 17661.29, + "end": 17663.45, + "probability": 0.6678 + }, + { + "start": 17664.19, + "end": 17666.09, + "probability": 0.2943 + }, + { + "start": 17667.47, + "end": 17669.69, + "probability": 0.9577 + }, + { + "start": 17670.25, + "end": 17675.61, + "probability": 0.9681 + }, + { + "start": 17677.09, + "end": 17679.93, + "probability": 0.4509 + }, + { + "start": 17680.71, + "end": 17681.75, + "probability": 0.6218 + }, + { + "start": 17682.41, + "end": 17685.23, + "probability": 0.965 + }, + { + "start": 17685.59, + "end": 17686.25, + "probability": 0.4245 + }, + { + "start": 17686.35, + "end": 17688.65, + "probability": 0.8537 + }, + { + "start": 17690.71, + "end": 17696.05, + "probability": 0.9737 + }, + { + "start": 17698.25, + "end": 17699.21, + "probability": 0.1473 + }, + { + "start": 17699.21, + "end": 17703.31, + "probability": 0.03 + }, + { + "start": 17706.85, + "end": 17708.87, + "probability": 0.6366 + }, + { + "start": 17710.41, + "end": 17711.15, + "probability": 0.2236 + }, + { + "start": 17712.86, + "end": 17713.71, + "probability": 0.2631 + }, + { + "start": 17714.24, + "end": 17716.65, + "probability": 0.6594 + }, + { + "start": 17716.71, + "end": 17718.02, + "probability": 0.7573 + }, + { + "start": 17718.63, + "end": 17721.19, + "probability": 0.8835 + }, + { + "start": 17722.31, + "end": 17723.61, + "probability": 0.9742 + }, + { + "start": 17724.39, + "end": 17730.93, + "probability": 0.9764 + }, + { + "start": 17731.09, + "end": 17732.99, + "probability": 0.5495 + }, + { + "start": 17734.03, + "end": 17735.73, + "probability": 0.7586 + }, + { + "start": 17735.79, + "end": 17738.23, + "probability": 0.9348 + }, + { + "start": 17739.27, + "end": 17740.13, + "probability": 0.2081 + }, + { + "start": 17740.35, + "end": 17742.4, + "probability": 0.5613 + }, + { + "start": 17743.29, + "end": 17743.75, + "probability": 0.8539 + }, + { + "start": 17744.81, + "end": 17747.23, + "probability": 0.8851 + }, + { + "start": 17747.65, + "end": 17750.93, + "probability": 0.885 + }, + { + "start": 17751.89, + "end": 17754.61, + "probability": 0.6998 + }, + { + "start": 17754.85, + "end": 17756.05, + "probability": 0.7627 + }, + { + "start": 17756.53, + "end": 17759.87, + "probability": 0.9814 + }, + { + "start": 17760.79, + "end": 17763.71, + "probability": 0.9347 + }, + { + "start": 17765.1, + "end": 17769.33, + "probability": 0.9153 + }, + { + "start": 17772.73, + "end": 17774.83, + "probability": 0.9823 + }, + { + "start": 17775.67, + "end": 17778.35, + "probability": 0.4534 + }, + { + "start": 17778.43, + "end": 17779.73, + "probability": 0.6059 + }, + { + "start": 17781.39, + "end": 17785.29, + "probability": 0.7217 + }, + { + "start": 17786.45, + "end": 17789.21, + "probability": 0.903 + }, + { + "start": 17789.21, + "end": 17790.01, + "probability": 0.8496 + }, + { + "start": 17790.13, + "end": 17793.07, + "probability": 0.9456 + }, + { + "start": 17793.37, + "end": 17794.75, + "probability": 0.8949 + }, + { + "start": 17795.17, + "end": 17796.53, + "probability": 0.9878 + }, + { + "start": 17796.69, + "end": 17798.15, + "probability": 0.8199 + }, + { + "start": 17798.63, + "end": 17800.41, + "probability": 0.7011 + }, + { + "start": 17800.47, + "end": 17801.66, + "probability": 0.9958 + }, + { + "start": 17802.05, + "end": 17802.75, + "probability": 0.8257 + }, + { + "start": 17802.85, + "end": 17803.51, + "probability": 0.3991 + }, + { + "start": 17804.0, + "end": 17804.79, + "probability": 0.6306 + }, + { + "start": 17804.79, + "end": 17806.73, + "probability": 0.8434 + }, + { + "start": 17806.81, + "end": 17807.29, + "probability": 0.8362 + }, + { + "start": 17807.87, + "end": 17808.55, + "probability": 0.6506 + }, + { + "start": 17808.73, + "end": 17811.11, + "probability": 0.8109 + }, + { + "start": 17812.35, + "end": 17814.27, + "probability": 0.9885 + }, + { + "start": 17815.21, + "end": 17816.41, + "probability": 0.8511 + }, + { + "start": 17816.57, + "end": 17818.12, + "probability": 0.9873 + }, + { + "start": 17818.45, + "end": 17819.15, + "probability": 0.9575 + }, + { + "start": 17820.15, + "end": 17821.37, + "probability": 0.9823 + }, + { + "start": 17821.53, + "end": 17824.07, + "probability": 0.7808 + }, + { + "start": 17825.09, + "end": 17825.79, + "probability": 0.6349 + }, + { + "start": 17826.53, + "end": 17828.25, + "probability": 0.9815 + }, + { + "start": 17828.89, + "end": 17829.13, + "probability": 0.3877 + }, + { + "start": 17829.13, + "end": 17833.57, + "probability": 0.939 + }, + { + "start": 17834.23, + "end": 17838.29, + "probability": 0.9876 + }, + { + "start": 17839.13, + "end": 17839.47, + "probability": 0.3352 + }, + { + "start": 17839.53, + "end": 17840.17, + "probability": 0.6523 + }, + { + "start": 17840.39, + "end": 17841.21, + "probability": 0.978 + }, + { + "start": 17841.31, + "end": 17842.09, + "probability": 0.5788 + }, + { + "start": 17842.23, + "end": 17842.53, + "probability": 0.1926 + }, + { + "start": 17842.65, + "end": 17843.31, + "probability": 0.5017 + }, + { + "start": 17843.31, + "end": 17845.45, + "probability": 0.4865 + }, + { + "start": 17845.57, + "end": 17847.59, + "probability": 0.665 + }, + { + "start": 17848.35, + "end": 17852.79, + "probability": 0.9747 + }, + { + "start": 17853.27, + "end": 17854.49, + "probability": 0.8083 + }, + { + "start": 17854.99, + "end": 17855.87, + "probability": 0.9384 + }, + { + "start": 17855.99, + "end": 17856.39, + "probability": 0.6598 + }, + { + "start": 17856.47, + "end": 17858.49, + "probability": 0.9586 + }, + { + "start": 17858.57, + "end": 17859.47, + "probability": 0.8665 + }, + { + "start": 17859.97, + "end": 17861.19, + "probability": 0.5528 + }, + { + "start": 17862.31, + "end": 17864.73, + "probability": 0.8838 + }, + { + "start": 17865.89, + "end": 17868.83, + "probability": 0.9818 + }, + { + "start": 17869.45, + "end": 17871.19, + "probability": 0.9599 + }, + { + "start": 17871.65, + "end": 17874.19, + "probability": 0.9761 + }, + { + "start": 17875.01, + "end": 17876.61, + "probability": 0.9691 + }, + { + "start": 17876.77, + "end": 17879.25, + "probability": 0.9882 + }, + { + "start": 17879.25, + "end": 17883.52, + "probability": 0.9613 + }, + { + "start": 17884.65, + "end": 17886.01, + "probability": 0.7256 + }, + { + "start": 17886.45, + "end": 17889.08, + "probability": 0.7281 + }, + { + "start": 17890.73, + "end": 17892.09, + "probability": 0.7276 + }, + { + "start": 17892.15, + "end": 17895.31, + "probability": 0.5323 + }, + { + "start": 17897.28, + "end": 17898.32, + "probability": 0.5276 + }, + { + "start": 17899.07, + "end": 17900.49, + "probability": 0.9035 + }, + { + "start": 17900.63, + "end": 17901.83, + "probability": 0.4755 + }, + { + "start": 17901.89, + "end": 17902.95, + "probability": 0.9246 + }, + { + "start": 17903.47, + "end": 17904.29, + "probability": 0.9491 + }, + { + "start": 17904.51, + "end": 17910.01, + "probability": 0.8278 + }, + { + "start": 17910.13, + "end": 17911.77, + "probability": 0.8709 + }, + { + "start": 17912.27, + "end": 17916.29, + "probability": 0.8607 + }, + { + "start": 17916.55, + "end": 17919.55, + "probability": 0.9786 + }, + { + "start": 17920.89, + "end": 17925.81, + "probability": 0.9551 + }, + { + "start": 17926.23, + "end": 17927.23, + "probability": 0.9576 + }, + { + "start": 17927.31, + "end": 17927.97, + "probability": 0.8784 + }, + { + "start": 17928.11, + "end": 17930.61, + "probability": 0.8076 + }, + { + "start": 17930.85, + "end": 17931.47, + "probability": 0.532 + }, + { + "start": 17931.47, + "end": 17932.55, + "probability": 0.0524 + }, + { + "start": 17932.93, + "end": 17935.23, + "probability": 0.1763 + }, + { + "start": 17935.67, + "end": 17936.65, + "probability": 0.2699 + }, + { + "start": 17936.71, + "end": 17938.39, + "probability": 0.22 + }, + { + "start": 17938.51, + "end": 17941.83, + "probability": 0.7102 + }, + { + "start": 17942.21, + "end": 17942.65, + "probability": 0.6737 + }, + { + "start": 17942.77, + "end": 17944.35, + "probability": 0.9683 + }, + { + "start": 17945.13, + "end": 17945.91, + "probability": 0.4385 + }, + { + "start": 17946.27, + "end": 17947.51, + "probability": 0.8512 + }, + { + "start": 17948.05, + "end": 17952.51, + "probability": 0.903 + }, + { + "start": 17953.27, + "end": 17955.66, + "probability": 0.9875 + }, + { + "start": 17956.53, + "end": 17957.89, + "probability": 0.8012 + }, + { + "start": 17958.41, + "end": 17959.27, + "probability": 0.4662 + }, + { + "start": 17960.55, + "end": 17961.51, + "probability": 0.9218 + }, + { + "start": 17962.05, + "end": 17964.63, + "probability": 0.8912 + }, + { + "start": 17964.71, + "end": 17966.41, + "probability": 0.6905 + }, + { + "start": 17966.41, + "end": 17966.61, + "probability": 0.5422 + }, + { + "start": 17966.61, + "end": 17969.18, + "probability": 0.8049 + }, + { + "start": 17969.61, + "end": 17973.45, + "probability": 0.8968 + }, + { + "start": 17974.07, + "end": 17975.41, + "probability": 0.9651 + }, + { + "start": 17975.59, + "end": 17977.33, + "probability": 0.9985 + }, + { + "start": 17977.47, + "end": 17980.21, + "probability": 0.8938 + }, + { + "start": 17980.71, + "end": 17983.91, + "probability": 0.9238 + }, + { + "start": 17984.01, + "end": 17985.51, + "probability": 0.8552 + }, + { + "start": 17986.43, + "end": 17987.01, + "probability": 0.9676 + }, + { + "start": 17987.57, + "end": 17988.63, + "probability": 0.0862 + }, + { + "start": 17988.63, + "end": 17989.51, + "probability": 0.4814 + }, + { + "start": 17989.51, + "end": 17991.61, + "probability": 0.8262 + }, + { + "start": 17992.37, + "end": 17994.39, + "probability": 0.9149 + }, + { + "start": 17994.95, + "end": 17996.75, + "probability": 0.9939 + }, + { + "start": 17997.51, + "end": 18000.51, + "probability": 0.7916 + }, + { + "start": 18000.95, + "end": 18002.11, + "probability": 0.8151 + }, + { + "start": 18002.63, + "end": 18004.39, + "probability": 0.6603 + }, + { + "start": 18004.59, + "end": 18005.83, + "probability": 0.9922 + }, + { + "start": 18006.99, + "end": 18008.77, + "probability": 0.2022 + }, + { + "start": 18009.59, + "end": 18011.59, + "probability": 0.2001 + }, + { + "start": 18011.65, + "end": 18013.87, + "probability": 0.9027 + }, + { + "start": 18014.55, + "end": 18015.74, + "probability": 0.4039 + }, + { + "start": 18015.83, + "end": 18019.27, + "probability": 0.8206 + }, + { + "start": 18019.69, + "end": 18020.71, + "probability": 0.7333 + }, + { + "start": 18021.15, + "end": 18022.53, + "probability": 0.963 + }, + { + "start": 18022.91, + "end": 18023.45, + "probability": 0.8371 + }, + { + "start": 18029.37, + "end": 18030.21, + "probability": 0.4004 + }, + { + "start": 18030.67, + "end": 18034.89, + "probability": 0.5256 + }, + { + "start": 18040.19, + "end": 18040.19, + "probability": 0.4893 + }, + { + "start": 18040.19, + "end": 18042.47, + "probability": 0.069 + }, + { + "start": 18042.47, + "end": 18045.29, + "probability": 0.9795 + }, + { + "start": 18046.13, + "end": 18048.11, + "probability": 0.9956 + }, + { + "start": 18048.15, + "end": 18050.29, + "probability": 0.8376 + }, + { + "start": 18050.93, + "end": 18052.15, + "probability": 0.8625 + }, + { + "start": 18053.07, + "end": 18057.87, + "probability": 0.9937 + }, + { + "start": 18057.87, + "end": 18060.37, + "probability": 0.9976 + }, + { + "start": 18060.49, + "end": 18061.07, + "probability": 0.8927 + }, + { + "start": 18061.37, + "end": 18062.71, + "probability": 0.9192 + }, + { + "start": 18063.39, + "end": 18065.59, + "probability": 0.8924 + }, + { + "start": 18065.93, + "end": 18067.95, + "probability": 0.918 + }, + { + "start": 18068.03, + "end": 18068.27, + "probability": 0.8986 + }, + { + "start": 18068.75, + "end": 18069.71, + "probability": 0.6151 + }, + { + "start": 18069.87, + "end": 18070.41, + "probability": 0.6098 + }, + { + "start": 18070.45, + "end": 18073.35, + "probability": 0.7157 + }, + { + "start": 18073.99, + "end": 18078.33, + "probability": 0.9841 + }, + { + "start": 18079.61, + "end": 18084.25, + "probability": 0.9807 + }, + { + "start": 18084.29, + "end": 18085.87, + "probability": 0.9968 + }, + { + "start": 18086.03, + "end": 18089.57, + "probability": 0.6088 + }, + { + "start": 18090.21, + "end": 18092.97, + "probability": 0.988 + }, + { + "start": 18093.19, + "end": 18094.81, + "probability": 0.9963 + }, + { + "start": 18095.67, + "end": 18096.35, + "probability": 0.8156 + }, + { + "start": 18097.25, + "end": 18100.49, + "probability": 0.8697 + }, + { + "start": 18100.65, + "end": 18102.41, + "probability": 0.7227 + }, + { + "start": 18102.51, + "end": 18103.81, + "probability": 0.9478 + }, + { + "start": 18104.33, + "end": 18105.73, + "probability": 0.9264 + }, + { + "start": 18106.39, + "end": 18110.65, + "probability": 0.9755 + }, + { + "start": 18111.09, + "end": 18114.23, + "probability": 0.9878 + }, + { + "start": 18114.33, + "end": 18116.43, + "probability": 0.7644 + }, + { + "start": 18117.03, + "end": 18120.75, + "probability": 0.9944 + }, + { + "start": 18120.97, + "end": 18122.55, + "probability": 0.9284 + }, + { + "start": 18123.51, + "end": 18123.53, + "probability": 0.3084 + }, + { + "start": 18123.53, + "end": 18123.79, + "probability": 0.2202 + }, + { + "start": 18123.91, + "end": 18126.09, + "probability": 0.3728 + }, + { + "start": 18126.09, + "end": 18127.63, + "probability": 0.7956 + }, + { + "start": 18127.69, + "end": 18129.57, + "probability": 0.9867 + }, + { + "start": 18130.27, + "end": 18131.07, + "probability": 0.9469 + }, + { + "start": 18131.25, + "end": 18135.67, + "probability": 0.9945 + }, + { + "start": 18136.55, + "end": 18140.98, + "probability": 0.9948 + }, + { + "start": 18142.08, + "end": 18145.31, + "probability": 0.9967 + }, + { + "start": 18145.93, + "end": 18149.21, + "probability": 0.9379 + }, + { + "start": 18150.33, + "end": 18152.27, + "probability": 0.7683 + }, + { + "start": 18152.55, + "end": 18153.04, + "probability": 0.779 + }, + { + "start": 18153.35, + "end": 18156.73, + "probability": 0.9953 + }, + { + "start": 18157.21, + "end": 18157.21, + "probability": 0.3835 + }, + { + "start": 18157.21, + "end": 18159.93, + "probability": 0.8379 + }, + { + "start": 18160.63, + "end": 18164.59, + "probability": 0.7661 + }, + { + "start": 18164.65, + "end": 18164.79, + "probability": 0.0694 + }, + { + "start": 18164.79, + "end": 18165.11, + "probability": 0.5146 + }, + { + "start": 18165.11, + "end": 18165.41, + "probability": 0.4982 + }, + { + "start": 18165.63, + "end": 18167.67, + "probability": 0.8662 + }, + { + "start": 18168.03, + "end": 18171.75, + "probability": 0.98 + }, + { + "start": 18171.75, + "end": 18176.23, + "probability": 0.8959 + }, + { + "start": 18176.71, + "end": 18179.03, + "probability": 0.773 + }, + { + "start": 18179.41, + "end": 18180.01, + "probability": 0.8968 + }, + { + "start": 18180.11, + "end": 18184.25, + "probability": 0.9944 + }, + { + "start": 18185.09, + "end": 18189.81, + "probability": 0.8384 + }, + { + "start": 18190.05, + "end": 18191.04, + "probability": 0.9045 + }, + { + "start": 18191.37, + "end": 18191.37, + "probability": 0.1049 + }, + { + "start": 18191.89, + "end": 18192.23, + "probability": 0.0975 + }, + { + "start": 18193.17, + "end": 18196.37, + "probability": 0.8208 + }, + { + "start": 18196.99, + "end": 18197.03, + "probability": 0.2322 + }, + { + "start": 18197.03, + "end": 18198.83, + "probability": 0.971 + }, + { + "start": 18199.01, + "end": 18199.67, + "probability": 0.9449 + }, + { + "start": 18199.79, + "end": 18201.21, + "probability": 0.9609 + }, + { + "start": 18201.81, + "end": 18204.33, + "probability": 0.9772 + }, + { + "start": 18205.1, + "end": 18207.4, + "probability": 0.9557 + }, + { + "start": 18207.83, + "end": 18209.83, + "probability": 0.9749 + }, + { + "start": 18210.55, + "end": 18213.87, + "probability": 0.916 + }, + { + "start": 18213.91, + "end": 18217.43, + "probability": 0.9956 + }, + { + "start": 18217.65, + "end": 18221.35, + "probability": 0.9822 + }, + { + "start": 18221.55, + "end": 18222.55, + "probability": 0.4779 + }, + { + "start": 18222.55, + "end": 18224.49, + "probability": 0.464 + }, + { + "start": 18225.19, + "end": 18225.79, + "probability": 0.0792 + }, + { + "start": 18225.79, + "end": 18227.61, + "probability": 0.6574 + }, + { + "start": 18228.17, + "end": 18233.15, + "probability": 0.8987 + }, + { + "start": 18233.75, + "end": 18235.43, + "probability": 0.9929 + }, + { + "start": 18236.09, + "end": 18236.95, + "probability": 0.8157 + }, + { + "start": 18237.07, + "end": 18240.15, + "probability": 0.9967 + }, + { + "start": 18240.55, + "end": 18242.23, + "probability": 0.9159 + }, + { + "start": 18242.23, + "end": 18244.25, + "probability": 0.9966 + }, + { + "start": 18246.05, + "end": 18247.11, + "probability": 0.5732 + }, + { + "start": 18249.63, + "end": 18254.29, + "probability": 0.0126 + }, + { + "start": 18254.71, + "end": 18258.01, + "probability": 0.9844 + }, + { + "start": 18258.25, + "end": 18258.35, + "probability": 0.7263 + }, + { + "start": 18258.87, + "end": 18263.91, + "probability": 0.9907 + }, + { + "start": 18263.99, + "end": 18268.41, + "probability": 0.9964 + }, + { + "start": 18268.61, + "end": 18268.87, + "probability": 0.6124 + }, + { + "start": 18270.99, + "end": 18273.83, + "probability": 0.6049 + }, + { + "start": 18273.89, + "end": 18276.47, + "probability": 0.978 + }, + { + "start": 18276.65, + "end": 18279.69, + "probability": 0.8886 + }, + { + "start": 18280.21, + "end": 18286.83, + "probability": 0.9965 + }, + { + "start": 18287.23, + "end": 18287.99, + "probability": 0.689 + }, + { + "start": 18289.31, + "end": 18290.79, + "probability": 0.3401 + }, + { + "start": 18291.17, + "end": 18293.45, + "probability": 0.862 + }, + { + "start": 18293.93, + "end": 18298.53, + "probability": 0.9661 + }, + { + "start": 18299.05, + "end": 18299.61, + "probability": 0.8341 + }, + { + "start": 18300.43, + "end": 18303.19, + "probability": 0.9233 + }, + { + "start": 18303.65, + "end": 18304.35, + "probability": 0.5181 + }, + { + "start": 18304.39, + "end": 18304.73, + "probability": 0.6261 + }, + { + "start": 18304.89, + "end": 18306.05, + "probability": 0.8269 + }, + { + "start": 18306.63, + "end": 18308.79, + "probability": 0.9949 + }, + { + "start": 18308.79, + "end": 18313.01, + "probability": 0.9713 + }, + { + "start": 18313.29, + "end": 18313.39, + "probability": 0.9604 + }, + { + "start": 18314.51, + "end": 18316.33, + "probability": 0.5042 + }, + { + "start": 18317.33, + "end": 18317.93, + "probability": 0.2427 + }, + { + "start": 18318.43, + "end": 18320.23, + "probability": 0.4333 + }, + { + "start": 18321.77, + "end": 18322.71, + "probability": 0.4982 + }, + { + "start": 18323.47, + "end": 18325.09, + "probability": 0.4162 + }, + { + "start": 18325.09, + "end": 18330.35, + "probability": 0.2871 + }, + { + "start": 18331.89, + "end": 18335.05, + "probability": 0.4631 + }, + { + "start": 18335.15, + "end": 18341.03, + "probability": 0.9832 + }, + { + "start": 18341.03, + "end": 18345.25, + "probability": 0.8311 + }, + { + "start": 18345.77, + "end": 18348.43, + "probability": 0.5947 + }, + { + "start": 18348.85, + "end": 18353.13, + "probability": 0.9922 + }, + { + "start": 18353.13, + "end": 18355.67, + "probability": 0.8434 + }, + { + "start": 18356.43, + "end": 18358.67, + "probability": 0.6794 + }, + { + "start": 18358.97, + "end": 18359.65, + "probability": 0.6004 + }, + { + "start": 18360.31, + "end": 18362.55, + "probability": 0.7515 + }, + { + "start": 18362.95, + "end": 18364.31, + "probability": 0.9763 + }, + { + "start": 18367.95, + "end": 18369.37, + "probability": 0.3854 + }, + { + "start": 18369.91, + "end": 18372.01, + "probability": 0.7695 + }, + { + "start": 18372.35, + "end": 18375.07, + "probability": 0.9512 + }, + { + "start": 18375.43, + "end": 18377.93, + "probability": 0.8456 + }, + { + "start": 18377.93, + "end": 18381.81, + "probability": 0.7674 + }, + { + "start": 18381.93, + "end": 18385.83, + "probability": 0.9961 + }, + { + "start": 18385.83, + "end": 18390.21, + "probability": 0.7065 + }, + { + "start": 18392.95, + "end": 18395.13, + "probability": 0.2419 + }, + { + "start": 18396.21, + "end": 18396.55, + "probability": 0.2091 + }, + { + "start": 18397.35, + "end": 18403.71, + "probability": 0.6972 + }, + { + "start": 18403.83, + "end": 18404.73, + "probability": 0.7411 + }, + { + "start": 18405.01, + "end": 18406.05, + "probability": 0.9524 + }, + { + "start": 18406.13, + "end": 18406.55, + "probability": 0.7845 + }, + { + "start": 18406.59, + "end": 18407.95, + "probability": 0.9199 + }, + { + "start": 18408.99, + "end": 18410.13, + "probability": 0.7825 + }, + { + "start": 18410.85, + "end": 18411.27, + "probability": 0.7041 + }, + { + "start": 18412.25, + "end": 18412.71, + "probability": 0.89 + }, + { + "start": 18413.23, + "end": 18414.29, + "probability": 0.5496 + }, + { + "start": 18431.73, + "end": 18433.31, + "probability": 0.3821 + }, + { + "start": 18433.39, + "end": 18441.23, + "probability": 0.6318 + }, + { + "start": 18442.09, + "end": 18442.43, + "probability": 0.869 + }, + { + "start": 18444.59, + "end": 18445.07, + "probability": 0.2637 + }, + { + "start": 18446.37, + "end": 18447.89, + "probability": 0.5559 + }, + { + "start": 18448.35, + "end": 18449.93, + "probability": 0.1723 + }, + { + "start": 18450.09, + "end": 18451.19, + "probability": 0.7646 + }, + { + "start": 18453.07, + "end": 18455.49, + "probability": 0.9969 + }, + { + "start": 18455.49, + "end": 18458.61, + "probability": 0.9824 + }, + { + "start": 18458.87, + "end": 18461.45, + "probability": 0.8936 + }, + { + "start": 18462.11, + "end": 18466.97, + "probability": 0.9939 + }, + { + "start": 18467.67, + "end": 18471.89, + "probability": 0.9893 + }, + { + "start": 18472.93, + "end": 18473.25, + "probability": 0.6076 + }, + { + "start": 18473.39, + "end": 18475.67, + "probability": 0.9208 + }, + { + "start": 18476.15, + "end": 18477.45, + "probability": 0.8197 + }, + { + "start": 18477.53, + "end": 18478.85, + "probability": 0.9239 + }, + { + "start": 18479.71, + "end": 18482.93, + "probability": 0.9858 + }, + { + "start": 18484.07, + "end": 18484.49, + "probability": 0.6359 + }, + { + "start": 18484.53, + "end": 18487.61, + "probability": 0.9921 + }, + { + "start": 18487.61, + "end": 18491.23, + "probability": 0.7629 + }, + { + "start": 18492.17, + "end": 18494.85, + "probability": 0.9961 + }, + { + "start": 18496.03, + "end": 18496.23, + "probability": 0.3525 + }, + { + "start": 18496.33, + "end": 18498.25, + "probability": 0.9949 + }, + { + "start": 18498.25, + "end": 18501.23, + "probability": 0.7209 + }, + { + "start": 18501.89, + "end": 18506.71, + "probability": 0.994 + }, + { + "start": 18507.53, + "end": 18510.25, + "probability": 0.8888 + }, + { + "start": 18511.23, + "end": 18513.91, + "probability": 0.9879 + }, + { + "start": 18514.75, + "end": 18517.31, + "probability": 0.9495 + }, + { + "start": 18517.31, + "end": 18520.47, + "probability": 0.9982 + }, + { + "start": 18521.07, + "end": 18524.65, + "probability": 0.8807 + }, + { + "start": 18524.77, + "end": 18527.41, + "probability": 0.9983 + }, + { + "start": 18528.71, + "end": 18529.99, + "probability": 0.9222 + }, + { + "start": 18531.11, + "end": 18533.57, + "probability": 0.9979 + }, + { + "start": 18534.35, + "end": 18538.73, + "probability": 0.9786 + }, + { + "start": 18538.79, + "end": 18542.43, + "probability": 0.9775 + }, + { + "start": 18542.43, + "end": 18544.97, + "probability": 0.9839 + }, + { + "start": 18547.53, + "end": 18550.53, + "probability": 0.9803 + }, + { + "start": 18550.53, + "end": 18553.87, + "probability": 0.894 + }, + { + "start": 18553.89, + "end": 18554.79, + "probability": 0.67 + }, + { + "start": 18554.83, + "end": 18555.63, + "probability": 0.5673 + }, + { + "start": 18555.97, + "end": 18557.61, + "probability": 0.8963 + }, + { + "start": 18558.45, + "end": 18558.71, + "probability": 0.535 + }, + { + "start": 18558.73, + "end": 18561.93, + "probability": 0.8487 + }, + { + "start": 18561.99, + "end": 18566.05, + "probability": 0.9893 + }, + { + "start": 18566.69, + "end": 18568.77, + "probability": 0.9847 + }, + { + "start": 18569.95, + "end": 18571.21, + "probability": 0.7112 + }, + { + "start": 18571.35, + "end": 18572.31, + "probability": 0.9748 + }, + { + "start": 18572.41, + "end": 18574.89, + "probability": 0.9219 + }, + { + "start": 18575.43, + "end": 18577.69, + "probability": 0.9771 + }, + { + "start": 18577.69, + "end": 18580.27, + "probability": 0.8849 + }, + { + "start": 18583.15, + "end": 18584.19, + "probability": 0.9966 + }, + { + "start": 18585.01, + "end": 18586.33, + "probability": 0.8317 + }, + { + "start": 18587.25, + "end": 18591.61, + "probability": 0.9888 + }, + { + "start": 18591.69, + "end": 18595.63, + "probability": 0.9968 + }, + { + "start": 18596.25, + "end": 18597.37, + "probability": 0.9724 + }, + { + "start": 18597.99, + "end": 18598.33, + "probability": 0.7958 + }, + { + "start": 18598.55, + "end": 18599.77, + "probability": 0.4456 + }, + { + "start": 18599.79, + "end": 18601.07, + "probability": 0.6503 + }, + { + "start": 18601.13, + "end": 18602.93, + "probability": 0.8009 + }, + { + "start": 18603.51, + "end": 18606.21, + "probability": 0.9781 + }, + { + "start": 18608.85, + "end": 18609.93, + "probability": 0.4519 + }, + { + "start": 18610.03, + "end": 18612.39, + "probability": 0.9727 + }, + { + "start": 18612.51, + "end": 18615.91, + "probability": 0.7601 + }, + { + "start": 18616.03, + "end": 18619.81, + "probability": 0.9962 + }, + { + "start": 18620.57, + "end": 18624.63, + "probability": 0.9961 + }, + { + "start": 18624.75, + "end": 18627.95, + "probability": 0.9332 + }, + { + "start": 18628.79, + "end": 18631.29, + "probability": 0.9919 + }, + { + "start": 18631.69, + "end": 18633.29, + "probability": 0.9855 + }, + { + "start": 18634.11, + "end": 18637.07, + "probability": 0.7671 + }, + { + "start": 18637.19, + "end": 18640.33, + "probability": 0.9849 + }, + { + "start": 18640.33, + "end": 18644.43, + "probability": 0.9979 + }, + { + "start": 18645.17, + "end": 18645.37, + "probability": 0.4484 + }, + { + "start": 18645.49, + "end": 18648.53, + "probability": 0.9813 + }, + { + "start": 18648.59, + "end": 18649.95, + "probability": 0.6777 + }, + { + "start": 18650.41, + "end": 18653.13, + "probability": 0.9969 + }, + { + "start": 18653.93, + "end": 18654.21, + "probability": 0.9171 + }, + { + "start": 18654.27, + "end": 18657.55, + "probability": 0.9675 + }, + { + "start": 18657.73, + "end": 18658.39, + "probability": 0.7206 + }, + { + "start": 18659.25, + "end": 18662.29, + "probability": 0.9723 + }, + { + "start": 18662.97, + "end": 18667.35, + "probability": 0.9702 + }, + { + "start": 18668.11, + "end": 18668.43, + "probability": 0.3698 + }, + { + "start": 18668.45, + "end": 18672.31, + "probability": 0.729 + }, + { + "start": 18672.43, + "end": 18674.57, + "probability": 0.9082 + }, + { + "start": 18675.03, + "end": 18676.55, + "probability": 0.9238 + }, + { + "start": 18676.63, + "end": 18679.63, + "probability": 0.8781 + }, + { + "start": 18681.21, + "end": 18681.51, + "probability": 0.6869 + }, + { + "start": 18681.81, + "end": 18686.65, + "probability": 0.9402 + }, + { + "start": 18686.75, + "end": 18688.01, + "probability": 0.9676 + }, + { + "start": 18688.13, + "end": 18690.27, + "probability": 0.9973 + }, + { + "start": 18690.27, + "end": 18693.29, + "probability": 0.9941 + }, + { + "start": 18695.12, + "end": 18698.45, + "probability": 0.6793 + }, + { + "start": 18698.45, + "end": 18702.73, + "probability": 0.9968 + }, + { + "start": 18702.73, + "end": 18706.13, + "probability": 0.9465 + }, + { + "start": 18706.81, + "end": 18709.13, + "probability": 0.987 + }, + { + "start": 18709.53, + "end": 18713.75, + "probability": 0.9825 + }, + { + "start": 18713.95, + "end": 18714.37, + "probability": 0.7347 + }, + { + "start": 18715.33, + "end": 18715.69, + "probability": 0.2282 + }, + { + "start": 18715.81, + "end": 18718.15, + "probability": 0.9958 + }, + { + "start": 18718.15, + "end": 18720.79, + "probability": 0.9888 + }, + { + "start": 18721.29, + "end": 18724.81, + "probability": 0.9781 + }, + { + "start": 18724.91, + "end": 18726.49, + "probability": 0.9969 + }, + { + "start": 18726.49, + "end": 18729.73, + "probability": 0.9933 + }, + { + "start": 18730.63, + "end": 18732.43, + "probability": 0.8589 + }, + { + "start": 18732.69, + "end": 18735.11, + "probability": 0.9917 + }, + { + "start": 18735.63, + "end": 18737.99, + "probability": 0.8686 + }, + { + "start": 18738.77, + "end": 18740.15, + "probability": 0.8575 + }, + { + "start": 18740.61, + "end": 18741.23, + "probability": 0.6845 + }, + { + "start": 18741.99, + "end": 18744.09, + "probability": 0.9872 + }, + { + "start": 18744.29, + "end": 18744.49, + "probability": 0.8246 + }, + { + "start": 18746.81, + "end": 18748.85, + "probability": 0.7169 + }, + { + "start": 18749.29, + "end": 18750.39, + "probability": 0.8065 + }, + { + "start": 18750.79, + "end": 18752.73, + "probability": 0.5477 + }, + { + "start": 18753.13, + "end": 18753.81, + "probability": 0.5974 + }, + { + "start": 18757.39, + "end": 18758.29, + "probability": 0.4978 + }, + { + "start": 18758.47, + "end": 18759.13, + "probability": 0.729 + }, + { + "start": 18759.19, + "end": 18760.57, + "probability": 0.6312 + }, + { + "start": 18761.01, + "end": 18762.07, + "probability": 0.7587 + }, + { + "start": 18762.93, + "end": 18765.79, + "probability": 0.6775 + }, + { + "start": 18769.77, + "end": 18771.21, + "probability": 0.7549 + }, + { + "start": 18771.31, + "end": 18775.19, + "probability": 0.985 + }, + { + "start": 18775.42, + "end": 18782.25, + "probability": 0.9982 + }, + { + "start": 18782.25, + "end": 18788.67, + "probability": 0.9917 + }, + { + "start": 18789.39, + "end": 18791.03, + "probability": 0.5542 + }, + { + "start": 18791.23, + "end": 18791.95, + "probability": 0.2559 + }, + { + "start": 18792.53, + "end": 18794.93, + "probability": 0.5341 + }, + { + "start": 18795.03, + "end": 18800.21, + "probability": 0.8712 + }, + { + "start": 18800.33, + "end": 18803.49, + "probability": 0.9678 + }, + { + "start": 18804.15, + "end": 18808.37, + "probability": 0.9674 + }, + { + "start": 18809.95, + "end": 18811.61, + "probability": 0.9011 + }, + { + "start": 18811.75, + "end": 18812.49, + "probability": 0.562 + }, + { + "start": 18812.49, + "end": 18819.73, + "probability": 0.7986 + }, + { + "start": 18819.73, + "end": 18828.87, + "probability": 0.9949 + }, + { + "start": 18829.31, + "end": 18832.75, + "probability": 0.9935 + }, + { + "start": 18832.75, + "end": 18835.17, + "probability": 0.9989 + }, + { + "start": 18835.29, + "end": 18840.05, + "probability": 0.9889 + }, + { + "start": 18840.15, + "end": 18841.01, + "probability": 0.8291 + }, + { + "start": 18841.09, + "end": 18842.57, + "probability": 0.9202 + }, + { + "start": 18843.03, + "end": 18850.51, + "probability": 0.9805 + }, + { + "start": 18850.51, + "end": 18858.47, + "probability": 0.993 + }, + { + "start": 18858.85, + "end": 18861.57, + "probability": 0.9445 + }, + { + "start": 18861.57, + "end": 18865.51, + "probability": 0.9963 + }, + { + "start": 18865.63, + "end": 18865.85, + "probability": 0.4786 + }, + { + "start": 18865.97, + "end": 18871.11, + "probability": 0.9598 + }, + { + "start": 18871.45, + "end": 18872.73, + "probability": 0.9489 + }, + { + "start": 18872.85, + "end": 18877.95, + "probability": 0.9388 + }, + { + "start": 18879.41, + "end": 18883.65, + "probability": 0.835 + }, + { + "start": 18884.25, + "end": 18889.2, + "probability": 0.991 + }, + { + "start": 18889.39, + "end": 18894.13, + "probability": 0.995 + }, + { + "start": 18894.39, + "end": 18900.93, + "probability": 0.9969 + }, + { + "start": 18901.55, + "end": 18903.73, + "probability": 0.7657 + }, + { + "start": 18903.83, + "end": 18907.13, + "probability": 0.8106 + }, + { + "start": 18907.59, + "end": 18909.27, + "probability": 0.7698 + }, + { + "start": 18909.27, + "end": 18914.03, + "probability": 0.9943 + }, + { + "start": 18914.03, + "end": 18918.29, + "probability": 0.9512 + }, + { + "start": 18918.41, + "end": 18920.39, + "probability": 0.5955 + }, + { + "start": 18920.53, + "end": 18925.33, + "probability": 0.9413 + }, + { + "start": 18925.37, + "end": 18926.77, + "probability": 0.9214 + }, + { + "start": 18926.99, + "end": 18928.41, + "probability": 0.9927 + }, + { + "start": 18928.53, + "end": 18929.53, + "probability": 0.6718 + }, + { + "start": 18929.97, + "end": 18931.99, + "probability": 0.9873 + }, + { + "start": 18932.19, + "end": 18936.83, + "probability": 0.9719 + }, + { + "start": 18937.07, + "end": 18940.71, + "probability": 0.9678 + }, + { + "start": 18941.27, + "end": 18942.57, + "probability": 0.6523 + }, + { + "start": 18942.57, + "end": 18945.31, + "probability": 0.9427 + }, + { + "start": 18945.39, + "end": 18947.05, + "probability": 0.9985 + }, + { + "start": 18947.07, + "end": 18949.89, + "probability": 0.969 + }, + { + "start": 18950.17, + "end": 18952.57, + "probability": 0.9861 + }, + { + "start": 18952.65, + "end": 18959.43, + "probability": 0.855 + }, + { + "start": 18959.59, + "end": 18963.39, + "probability": 0.9984 + }, + { + "start": 18963.83, + "end": 18965.51, + "probability": 0.9875 + }, + { + "start": 18965.65, + "end": 18966.82, + "probability": 0.8997 + }, + { + "start": 18967.35, + "end": 18972.93, + "probability": 0.9562 + }, + { + "start": 18973.01, + "end": 18974.97, + "probability": 0.9356 + }, + { + "start": 18975.39, + "end": 18977.91, + "probability": 0.9727 + }, + { + "start": 18978.09, + "end": 18978.83, + "probability": 0.6625 + }, + { + "start": 18979.21, + "end": 18981.19, + "probability": 0.7526 + }, + { + "start": 18981.31, + "end": 18982.45, + "probability": 0.6248 + }, + { + "start": 18983.33, + "end": 18985.47, + "probability": 0.7789 + }, + { + "start": 19009.95, + "end": 19010.93, + "probability": 0.5157 + }, + { + "start": 19011.05, + "end": 19011.83, + "probability": 0.6081 + }, + { + "start": 19011.89, + "end": 19012.93, + "probability": 0.7556 + }, + { + "start": 19013.07, + "end": 19016.87, + "probability": 0.9629 + }, + { + "start": 19017.71, + "end": 19020.07, + "probability": 0.9693 + }, + { + "start": 19020.77, + "end": 19023.87, + "probability": 0.9974 + }, + { + "start": 19024.95, + "end": 19032.6, + "probability": 0.9971 + }, + { + "start": 19034.39, + "end": 19036.23, + "probability": 0.9829 + }, + { + "start": 19036.93, + "end": 19041.45, + "probability": 0.9989 + }, + { + "start": 19044.51, + "end": 19046.61, + "probability": 0.8287 + }, + { + "start": 19047.27, + "end": 19050.03, + "probability": 0.9973 + }, + { + "start": 19050.75, + "end": 19057.83, + "probability": 0.999 + }, + { + "start": 19058.41, + "end": 19062.25, + "probability": 0.9966 + }, + { + "start": 19063.15, + "end": 19068.09, + "probability": 0.9741 + }, + { + "start": 19069.39, + "end": 19072.79, + "probability": 0.5187 + }, + { + "start": 19073.85, + "end": 19075.57, + "probability": 0.7178 + }, + { + "start": 19076.05, + "end": 19077.71, + "probability": 0.9924 + }, + { + "start": 19077.91, + "end": 19079.59, + "probability": 0.5383 + }, + { + "start": 19081.05, + "end": 19082.93, + "probability": 0.4831 + }, + { + "start": 19083.67, + "end": 19087.53, + "probability": 0.9905 + }, + { + "start": 19088.55, + "end": 19089.65, + "probability": 0.7345 + }, + { + "start": 19089.95, + "end": 19093.41, + "probability": 0.9134 + }, + { + "start": 19093.41, + "end": 19100.17, + "probability": 0.9735 + }, + { + "start": 19100.31, + "end": 19101.21, + "probability": 0.8824 + }, + { + "start": 19101.27, + "end": 19101.61, + "probability": 0.6094 + }, + { + "start": 19101.81, + "end": 19106.01, + "probability": 0.8639 + }, + { + "start": 19106.21, + "end": 19109.79, + "probability": 0.6583 + }, + { + "start": 19109.87, + "end": 19111.11, + "probability": 0.7902 + }, + { + "start": 19111.19, + "end": 19114.71, + "probability": 0.9951 + }, + { + "start": 19115.25, + "end": 19117.77, + "probability": 0.9324 + }, + { + "start": 19118.69, + "end": 19119.49, + "probability": 0.6559 + }, + { + "start": 19120.51, + "end": 19121.73, + "probability": 0.4264 + }, + { + "start": 19122.03, + "end": 19122.83, + "probability": 0.7443 + }, + { + "start": 19123.07, + "end": 19125.21, + "probability": 0.9827 + }, + { + "start": 19126.47, + "end": 19128.07, + "probability": 0.9283 + }, + { + "start": 19128.21, + "end": 19129.79, + "probability": 0.9821 + }, + { + "start": 19129.81, + "end": 19131.03, + "probability": 0.9326 + }, + { + "start": 19131.63, + "end": 19134.44, + "probability": 0.9943 + }, + { + "start": 19136.11, + "end": 19140.57, + "probability": 0.9873 + }, + { + "start": 19141.11, + "end": 19147.21, + "probability": 0.9957 + }, + { + "start": 19147.29, + "end": 19152.41, + "probability": 0.9983 + }, + { + "start": 19152.69, + "end": 19155.03, + "probability": 0.9929 + }, + { + "start": 19155.71, + "end": 19157.57, + "probability": 0.9388 + }, + { + "start": 19159.13, + "end": 19160.39, + "probability": 0.586 + }, + { + "start": 19160.49, + "end": 19161.53, + "probability": 0.8645 + }, + { + "start": 19161.65, + "end": 19168.25, + "probability": 0.9753 + }, + { + "start": 19169.07, + "end": 19169.77, + "probability": 0.8235 + }, + { + "start": 19170.81, + "end": 19175.91, + "probability": 0.9909 + }, + { + "start": 19176.41, + "end": 19178.45, + "probability": 0.9239 + }, + { + "start": 19179.33, + "end": 19185.23, + "probability": 0.855 + }, + { + "start": 19185.23, + "end": 19189.93, + "probability": 0.9953 + }, + { + "start": 19191.07, + "end": 19197.49, + "probability": 0.9964 + }, + { + "start": 19197.94, + "end": 19202.01, + "probability": 0.9995 + }, + { + "start": 19203.47, + "end": 19203.75, + "probability": 0.4045 + }, + { + "start": 19203.83, + "end": 19204.65, + "probability": 0.861 + }, + { + "start": 19204.89, + "end": 19205.87, + "probability": 0.8842 + }, + { + "start": 19205.99, + "end": 19206.81, + "probability": 0.8566 + }, + { + "start": 19207.97, + "end": 19214.93, + "probability": 0.9919 + }, + { + "start": 19215.65, + "end": 19218.11, + "probability": 0.9965 + }, + { + "start": 19218.49, + "end": 19220.35, + "probability": 0.9961 + }, + { + "start": 19221.21, + "end": 19226.69, + "probability": 0.9842 + }, + { + "start": 19226.69, + "end": 19232.29, + "probability": 0.9983 + }, + { + "start": 19232.29, + "end": 19241.83, + "probability": 0.9992 + }, + { + "start": 19242.65, + "end": 19244.11, + "probability": 0.766 + }, + { + "start": 19244.67, + "end": 19246.85, + "probability": 0.8632 + }, + { + "start": 19247.67, + "end": 19249.53, + "probability": 0.9722 + }, + { + "start": 19249.65, + "end": 19254.09, + "probability": 0.9548 + }, + { + "start": 19254.79, + "end": 19259.49, + "probability": 0.9941 + }, + { + "start": 19259.55, + "end": 19263.25, + "probability": 0.9923 + }, + { + "start": 19263.41, + "end": 19263.81, + "probability": 0.7612 + }, + { + "start": 19265.61, + "end": 19266.59, + "probability": 0.9129 + }, + { + "start": 19266.69, + "end": 19268.63, + "probability": 0.7717 + }, + { + "start": 19269.59, + "end": 19270.13, + "probability": 0.0798 + }, + { + "start": 19271.15, + "end": 19274.41, + "probability": 0.9917 + }, + { + "start": 19274.41, + "end": 19277.31, + "probability": 0.9969 + }, + { + "start": 19277.65, + "end": 19277.87, + "probability": 0.7482 + }, + { + "start": 19278.29, + "end": 19279.61, + "probability": 0.5751 + }, + { + "start": 19279.73, + "end": 19281.57, + "probability": 0.7711 + }, + { + "start": 19282.05, + "end": 19287.45, + "probability": 0.8126 + }, + { + "start": 19287.53, + "end": 19289.87, + "probability": 0.5836 + }, + { + "start": 19290.51, + "end": 19296.65, + "probability": 0.7971 + }, + { + "start": 19296.81, + "end": 19298.43, + "probability": 0.7304 + }, + { + "start": 19299.93, + "end": 19302.05, + "probability": 0.8483 + }, + { + "start": 19302.31, + "end": 19305.33, + "probability": 0.6272 + }, + { + "start": 19305.39, + "end": 19307.17, + "probability": 0.1247 + }, + { + "start": 19307.55, + "end": 19308.27, + "probability": 0.8178 + }, + { + "start": 19308.35, + "end": 19309.03, + "probability": 0.3007 + }, + { + "start": 19309.17, + "end": 19309.81, + "probability": 0.5576 + }, + { + "start": 19310.17, + "end": 19310.65, + "probability": 0.7363 + }, + { + "start": 19312.91, + "end": 19313.01, + "probability": 0.9116 + }, + { + "start": 19314.11, + "end": 19314.33, + "probability": 0.7455 + }, + { + "start": 19314.33, + "end": 19314.82, + "probability": 0.6292 + }, + { + "start": 19317.05, + "end": 19318.71, + "probability": 0.0001 + }, + { + "start": 19322.59, + "end": 19322.69, + "probability": 0.087 + }, + { + "start": 19327.33, + "end": 19329.81, + "probability": 0.2255 + }, + { + "start": 19329.89, + "end": 19333.69, + "probability": 0.9557 + }, + { + "start": 19333.81, + "end": 19334.93, + "probability": 0.6244 + }, + { + "start": 19335.05, + "end": 19337.21, + "probability": 0.9353 + }, + { + "start": 19337.43, + "end": 19338.63, + "probability": 0.3698 + }, + { + "start": 19338.77, + "end": 19339.33, + "probability": 0.4338 + }, + { + "start": 19349.97, + "end": 19351.81, + "probability": 0.3411 + }, + { + "start": 19353.3, + "end": 19355.07, + "probability": 0.501 + }, + { + "start": 19357.64, + "end": 19360.47, + "probability": 0.1478 + }, + { + "start": 19360.47, + "end": 19360.57, + "probability": 0.028 + }, + { + "start": 19360.57, + "end": 19360.57, + "probability": 0.1199 + }, + { + "start": 19360.57, + "end": 19363.41, + "probability": 0.5012 + }, + { + "start": 19363.47, + "end": 19367.77, + "probability": 0.5003 + }, + { + "start": 19367.91, + "end": 19370.59, + "probability": 0.5313 + }, + { + "start": 19370.69, + "end": 19372.39, + "probability": 0.2117 + }, + { + "start": 19372.71, + "end": 19377.45, + "probability": 0.9199 + }, + { + "start": 19377.97, + "end": 19381.61, + "probability": 0.9333 + }, + { + "start": 19381.65, + "end": 19384.65, + "probability": 0.6518 + }, + { + "start": 19385.25, + "end": 19385.43, + "probability": 0.0002 + }, + { + "start": 19387.17, + "end": 19391.77, + "probability": 0.3084 + }, + { + "start": 19392.37, + "end": 19395.63, + "probability": 0.8384 + }, + { + "start": 19398.45, + "end": 19401.35, + "probability": 0.844 + }, + { + "start": 19402.25, + "end": 19408.05, + "probability": 0.9181 + }, + { + "start": 19408.07, + "end": 19409.89, + "probability": 0.689 + }, + { + "start": 19409.91, + "end": 19410.29, + "probability": 0.8751 + }, + { + "start": 19413.51, + "end": 19415.79, + "probability": 0.7921 + }, + { + "start": 19416.95, + "end": 19422.65, + "probability": 0.9794 + }, + { + "start": 19422.65, + "end": 19426.07, + "probability": 0.995 + }, + { + "start": 19427.21, + "end": 19432.37, + "probability": 0.8025 + }, + { + "start": 19432.89, + "end": 19435.33, + "probability": 0.9899 + }, + { + "start": 19436.07, + "end": 19438.73, + "probability": 0.5372 + }, + { + "start": 19438.99, + "end": 19444.93, + "probability": 0.9558 + }, + { + "start": 19444.93, + "end": 19449.99, + "probability": 0.9951 + }, + { + "start": 19449.99, + "end": 19454.51, + "probability": 0.999 + }, + { + "start": 19454.89, + "end": 19456.27, + "probability": 0.4988 + }, + { + "start": 19456.51, + "end": 19459.47, + "probability": 0.6495 + }, + { + "start": 19459.47, + "end": 19464.99, + "probability": 0.9493 + }, + { + "start": 19464.99, + "end": 19468.49, + "probability": 0.9855 + }, + { + "start": 19469.39, + "end": 19471.29, + "probability": 0.7346 + }, + { + "start": 19471.51, + "end": 19474.99, + "probability": 0.9869 + }, + { + "start": 19476.23, + "end": 19479.63, + "probability": 0.9893 + }, + { + "start": 19479.98, + "end": 19483.79, + "probability": 0.9926 + }, + { + "start": 19484.11, + "end": 19484.74, + "probability": 0.987 + }, + { + "start": 19485.75, + "end": 19490.27, + "probability": 0.9825 + }, + { + "start": 19490.27, + "end": 19494.37, + "probability": 0.9963 + }, + { + "start": 19494.49, + "end": 19496.07, + "probability": 0.2774 + }, + { + "start": 19496.31, + "end": 19496.73, + "probability": 0.8555 + }, + { + "start": 19496.83, + "end": 19501.08, + "probability": 0.8962 + }, + { + "start": 19502.61, + "end": 19508.65, + "probability": 0.9214 + }, + { + "start": 19509.77, + "end": 19512.75, + "probability": 0.9678 + }, + { + "start": 19512.75, + "end": 19515.35, + "probability": 0.9658 + }, + { + "start": 19515.75, + "end": 19516.05, + "probability": 0.7236 + }, + { + "start": 19518.45, + "end": 19520.07, + "probability": 0.3552 + }, + { + "start": 19522.19, + "end": 19523.03, + "probability": 0.6094 + }, + { + "start": 19524.11, + "end": 19525.91, + "probability": 0.3041 + }, + { + "start": 19540.15, + "end": 19541.11, + "probability": 0.5232 + }, + { + "start": 19554.03, + "end": 19556.63, + "probability": 0.67 + }, + { + "start": 19558.47, + "end": 19559.65, + "probability": 0.7798 + }, + { + "start": 19559.81, + "end": 19561.61, + "probability": 0.6729 + }, + { + "start": 19561.77, + "end": 19563.71, + "probability": 0.9942 + }, + { + "start": 19564.59, + "end": 19565.8, + "probability": 0.5276 + }, + { + "start": 19567.09, + "end": 19570.21, + "probability": 0.9642 + }, + { + "start": 19570.21, + "end": 19575.27, + "probability": 0.5201 + }, + { + "start": 19575.27, + "end": 19577.97, + "probability": 0.9961 + }, + { + "start": 19578.89, + "end": 19584.23, + "probability": 0.8657 + }, + { + "start": 19585.71, + "end": 19588.85, + "probability": 0.7896 + }, + { + "start": 19589.05, + "end": 19590.69, + "probability": 0.7417 + }, + { + "start": 19591.35, + "end": 19594.51, + "probability": 0.869 + }, + { + "start": 19596.77, + "end": 19603.61, + "probability": 0.9607 + }, + { + "start": 19603.89, + "end": 19607.67, + "probability": 0.9626 + }, + { + "start": 19607.67, + "end": 19610.27, + "probability": 0.9989 + }, + { + "start": 19612.11, + "end": 19612.85, + "probability": 0.6954 + }, + { + "start": 19613.27, + "end": 19614.29, + "probability": 0.9893 + }, + { + "start": 19614.97, + "end": 19617.23, + "probability": 0.994 + }, + { + "start": 19618.05, + "end": 19618.71, + "probability": 0.8694 + }, + { + "start": 19618.81, + "end": 19619.76, + "probability": 0.9973 + }, + { + "start": 19620.69, + "end": 19621.17, + "probability": 0.6994 + }, + { + "start": 19621.41, + "end": 19623.15, + "probability": 0.939 + }, + { + "start": 19624.81, + "end": 19626.87, + "probability": 0.7255 + }, + { + "start": 19627.35, + "end": 19628.99, + "probability": 0.9937 + }, + { + "start": 19629.05, + "end": 19630.11, + "probability": 0.9159 + }, + { + "start": 19630.89, + "end": 19631.39, + "probability": 0.6292 + }, + { + "start": 19632.09, + "end": 19633.71, + "probability": 0.9788 + }, + { + "start": 19635.07, + "end": 19637.65, + "probability": 0.9949 + }, + { + "start": 19637.69, + "end": 19638.85, + "probability": 0.7952 + }, + { + "start": 19640.09, + "end": 19641.93, + "probability": 0.8917 + }, + { + "start": 19642.53, + "end": 19647.35, + "probability": 0.9722 + }, + { + "start": 19648.67, + "end": 19650.41, + "probability": 0.7822 + }, + { + "start": 19650.71, + "end": 19653.83, + "probability": 0.9776 + }, + { + "start": 19654.55, + "end": 19655.01, + "probability": 0.9462 + }, + { + "start": 19655.73, + "end": 19656.77, + "probability": 0.9843 + }, + { + "start": 19657.41, + "end": 19661.47, + "probability": 0.999 + }, + { + "start": 19661.57, + "end": 19662.15, + "probability": 0.9636 + }, + { + "start": 19662.59, + "end": 19663.25, + "probability": 0.9648 + }, + { + "start": 19663.39, + "end": 19665.47, + "probability": 0.9871 + }, + { + "start": 19666.15, + "end": 19667.95, + "probability": 0.9489 + }, + { + "start": 19669.51, + "end": 19672.17, + "probability": 0.9768 + }, + { + "start": 19673.01, + "end": 19674.25, + "probability": 0.5435 + }, + { + "start": 19675.03, + "end": 19677.33, + "probability": 0.9916 + }, + { + "start": 19677.43, + "end": 19678.21, + "probability": 0.962 + }, + { + "start": 19678.97, + "end": 19681.83, + "probability": 0.7213 + }, + { + "start": 19682.97, + "end": 19685.69, + "probability": 0.8879 + }, + { + "start": 19687.99, + "end": 19688.95, + "probability": 0.979 + }, + { + "start": 19689.17, + "end": 19691.49, + "probability": 0.0726 + }, + { + "start": 19691.49, + "end": 19692.13, + "probability": 0.4638 + }, + { + "start": 19692.19, + "end": 19693.69, + "probability": 0.5188 + }, + { + "start": 19693.81, + "end": 19694.67, + "probability": 0.8822 + }, + { + "start": 19694.77, + "end": 19695.53, + "probability": 0.8579 + }, + { + "start": 19697.13, + "end": 19698.15, + "probability": 0.9697 + }, + { + "start": 19699.91, + "end": 19704.41, + "probability": 0.9684 + }, + { + "start": 19704.67, + "end": 19705.15, + "probability": 0.8228 + }, + { + "start": 19705.83, + "end": 19707.77, + "probability": 0.938 + }, + { + "start": 19708.49, + "end": 19711.31, + "probability": 0.905 + }, + { + "start": 19711.97, + "end": 19713.22, + "probability": 0.9692 + }, + { + "start": 19714.23, + "end": 19717.65, + "probability": 0.9478 + }, + { + "start": 19718.37, + "end": 19720.13, + "probability": 0.9746 + }, + { + "start": 19720.45, + "end": 19723.11, + "probability": 0.9438 + }, + { + "start": 19726.33, + "end": 19726.43, + "probability": 0.2823 + }, + { + "start": 19728.05, + "end": 19728.69, + "probability": 0.5049 + }, + { + "start": 19728.81, + "end": 19729.05, + "probability": 0.8157 + }, + { + "start": 19729.15, + "end": 19732.21, + "probability": 0.9709 + }, + { + "start": 19732.27, + "end": 19732.85, + "probability": 0.7906 + }, + { + "start": 19732.95, + "end": 19734.47, + "probability": 0.7356 + }, + { + "start": 19734.61, + "end": 19735.47, + "probability": 0.8459 + }, + { + "start": 19735.65, + "end": 19740.03, + "probability": 0.9578 + }, + { + "start": 19740.31, + "end": 19741.63, + "probability": 0.6919 + }, + { + "start": 19742.01, + "end": 19745.29, + "probability": 0.8317 + }, + { + "start": 19745.43, + "end": 19746.72, + "probability": 0.8276 + }, + { + "start": 19747.31, + "end": 19748.35, + "probability": 0.3862 + }, + { + "start": 19749.11, + "end": 19752.49, + "probability": 0.9274 + }, + { + "start": 19754.39, + "end": 19755.7, + "probability": 0.0459 + }, + { + "start": 19756.41, + "end": 19761.51, + "probability": 0.0478 + }, + { + "start": 19761.67, + "end": 19762.47, + "probability": 0.7488 + }, + { + "start": 19763.63, + "end": 19765.93, + "probability": 0.1352 + }, + { + "start": 19772.49, + "end": 19772.97, + "probability": 0.0001 + }, + { + "start": 19773.83, + "end": 19776.07, + "probability": 0.023 + }, + { + "start": 19777.05, + "end": 19777.05, + "probability": 0.0232 + }, + { + "start": 19777.05, + "end": 19779.29, + "probability": 0.697 + }, + { + "start": 19781.49, + "end": 19784.33, + "probability": 0.583 + }, + { + "start": 19784.41, + "end": 19788.09, + "probability": 0.8594 + }, + { + "start": 19788.21, + "end": 19793.95, + "probability": 0.9477 + }, + { + "start": 19795.53, + "end": 19798.09, + "probability": 0.9925 + }, + { + "start": 19798.09, + "end": 19802.19, + "probability": 0.7847 + }, + { + "start": 19802.71, + "end": 19805.43, + "probability": 0.1877 + }, + { + "start": 19806.05, + "end": 19806.89, + "probability": 0.6171 + }, + { + "start": 19807.03, + "end": 19810.77, + "probability": 0.7771 + }, + { + "start": 19820.73, + "end": 19821.99, + "probability": 0.0597 + }, + { + "start": 19822.77, + "end": 19826.09, + "probability": 0.6646 + }, + { + "start": 19826.95, + "end": 19829.79, + "probability": 0.9946 + }, + { + "start": 19829.79, + "end": 19832.65, + "probability": 0.9845 + }, + { + "start": 19834.41, + "end": 19834.57, + "probability": 0.0188 + }, + { + "start": 19834.57, + "end": 19838.19, + "probability": 0.7427 + }, + { + "start": 19839.01, + "end": 19843.85, + "probability": 0.9622 + }, + { + "start": 19844.43, + "end": 19847.13, + "probability": 0.9949 + }, + { + "start": 19848.07, + "end": 19851.67, + "probability": 0.9939 + }, + { + "start": 19852.15, + "end": 19854.09, + "probability": 0.8934 + }, + { + "start": 19854.09, + "end": 19857.59, + "probability": 0.9569 + }, + { + "start": 19858.75, + "end": 19860.91, + "probability": 0.9828 + }, + { + "start": 19862.11, + "end": 19864.95, + "probability": 0.9888 + }, + { + "start": 19865.73, + "end": 19869.35, + "probability": 0.9976 + }, + { + "start": 19869.35, + "end": 19872.11, + "probability": 0.9923 + }, + { + "start": 19873.01, + "end": 19878.89, + "probability": 0.9877 + }, + { + "start": 19879.89, + "end": 19882.05, + "probability": 0.9483 + }, + { + "start": 19882.21, + "end": 19884.83, + "probability": 0.9733 + }, + { + "start": 19885.57, + "end": 19888.31, + "probability": 0.9965 + }, + { + "start": 19889.01, + "end": 19891.27, + "probability": 0.9736 + }, + { + "start": 19891.87, + "end": 19893.45, + "probability": 0.853 + }, + { + "start": 19894.75, + "end": 19897.53, + "probability": 0.9834 + }, + { + "start": 19898.31, + "end": 19900.43, + "probability": 0.9937 + }, + { + "start": 19900.89, + "end": 19902.97, + "probability": 0.9253 + }, + { + "start": 19903.98, + "end": 19904.33, + "probability": 0.2709 + }, + { + "start": 19904.91, + "end": 19906.61, + "probability": 0.6023 + }, + { + "start": 19906.81, + "end": 19910.09, + "probability": 0.9785 + }, + { + "start": 19910.09, + "end": 19914.37, + "probability": 0.8747 + }, + { + "start": 19915.23, + "end": 19916.49, + "probability": 0.0063 + }, + { + "start": 19916.49, + "end": 19917.29, + "probability": 0.5686 + }, + { + "start": 19917.83, + "end": 19919.31, + "probability": 0.8914 + }, + { + "start": 19920.35, + "end": 19922.81, + "probability": 0.6941 + }, + { + "start": 19922.85, + "end": 19923.35, + "probability": 0.8961 + }, + { + "start": 19923.71, + "end": 19927.03, + "probability": 0.5873 + }, + { + "start": 19927.75, + "end": 19934.15, + "probability": 0.7508 + }, + { + "start": 19934.65, + "end": 19935.95, + "probability": 0.9367 + }, + { + "start": 19936.11, + "end": 19936.87, + "probability": 0.004 + }, + { + "start": 19937.59, + "end": 19938.79, + "probability": 0.2135 + }, + { + "start": 19944.33, + "end": 19946.65, + "probability": 0.8099 + }, + { + "start": 19946.65, + "end": 19949.41, + "probability": 0.5941 + }, + { + "start": 19949.41, + "end": 19951.17, + "probability": 0.053 + }, + { + "start": 19951.61, + "end": 19952.87, + "probability": 0.6614 + }, + { + "start": 19953.11, + "end": 19953.61, + "probability": 0.2916 + }, + { + "start": 19953.67, + "end": 19954.21, + "probability": 0.6474 + }, + { + "start": 19954.23, + "end": 19954.73, + "probability": 0.7477 + }, + { + "start": 19971.55, + "end": 19976.73, + "probability": 0.5331 + }, + { + "start": 19976.73, + "end": 19980.91, + "probability": 0.4113 + }, + { + "start": 19980.91, + "end": 19980.91, + "probability": 0.059 + }, + { + "start": 19980.91, + "end": 19984.25, + "probability": 0.7462 + }, + { + "start": 19985.59, + "end": 19986.67, + "probability": 0.0391 + }, + { + "start": 19986.67, + "end": 19990.29, + "probability": 0.0285 + }, + { + "start": 19990.29, + "end": 19995.77, + "probability": 0.1925 + }, + { + "start": 20002.73, + "end": 20009.69, + "probability": 0.0248 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0 + }, + { + "start": 20081.76, + "end": 20082.58, + "probability": 0.0695 + }, + { + "start": 20082.58, + "end": 20082.58, + "probability": 0.1345 + }, + { + "start": 20082.58, + "end": 20082.86, + "probability": 0.0494 + }, + { + "start": 20083.9, + "end": 20089.12, + "probability": 0.1763 + }, + { + "start": 20106.94, + "end": 20107.48, + "probability": 0.1802 + }, + { + "start": 20112.4, + "end": 20113.29, + "probability": 0.6636 + }, + { + "start": 20122.86, + "end": 20125.08, + "probability": 0.0243 + }, + { + "start": 20125.08, + "end": 20126.68, + "probability": 0.0273 + }, + { + "start": 20126.68, + "end": 20131.36, + "probability": 0.0458 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.0, + "end": 20196.0, + "probability": 0.0 + }, + { + "start": 20196.2, + "end": 20197.0, + "probability": 0.1223 + }, + { + "start": 20197.0, + "end": 20200.16, + "probability": 0.0393 + }, + { + "start": 20201.68, + "end": 20203.88, + "probability": 0.0389 + }, + { + "start": 20204.56, + "end": 20206.1, + "probability": 0.0255 + }, + { + "start": 20207.2, + "end": 20209.82, + "probability": 0.0399 + }, + { + "start": 20209.94, + "end": 20210.42, + "probability": 0.0629 + }, + { + "start": 20210.78, + "end": 20211.22, + "probability": 0.1193 + }, + { + "start": 20211.22, + "end": 20211.22, + "probability": 0.0816 + }, + { + "start": 20211.47, + "end": 20213.5, + "probability": 0.1827 + }, + { + "start": 20213.5, + "end": 20215.2, + "probability": 0.3152 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.0, + "end": 20338.0, + "probability": 0.0 + }, + { + "start": 20338.18, + "end": 20338.84, + "probability": 0.8677 + }, + { + "start": 20339.28, + "end": 20340.36, + "probability": 0.7893 + }, + { + "start": 20340.78, + "end": 20343.04, + "probability": 0.9516 + }, + { + "start": 20343.6, + "end": 20346.86, + "probability": 0.9877 + }, + { + "start": 20347.74, + "end": 20351.92, + "probability": 0.964 + }, + { + "start": 20352.58, + "end": 20353.62, + "probability": 0.9941 + }, + { + "start": 20354.7, + "end": 20359.46, + "probability": 0.8826 + }, + { + "start": 20360.12, + "end": 20363.22, + "probability": 0.9724 + }, + { + "start": 20363.8, + "end": 20368.58, + "probability": 0.9579 + }, + { + "start": 20369.54, + "end": 20371.78, + "probability": 0.9178 + }, + { + "start": 20372.56, + "end": 20376.12, + "probability": 0.9609 + }, + { + "start": 20376.82, + "end": 20379.14, + "probability": 0.9692 + }, + { + "start": 20379.66, + "end": 20385.34, + "probability": 0.9734 + }, + { + "start": 20387.1, + "end": 20389.66, + "probability": 0.8586 + }, + { + "start": 20389.8, + "end": 20390.38, + "probability": 0.5343 + }, + { + "start": 20390.58, + "end": 20392.48, + "probability": 0.74 + }, + { + "start": 20393.6, + "end": 20394.78, + "probability": 0.9199 + }, + { + "start": 20395.02, + "end": 20396.28, + "probability": 0.7058 + }, + { + "start": 20396.72, + "end": 20396.98, + "probability": 0.9175 + }, + { + "start": 20397.78, + "end": 20400.24, + "probability": 0.9937 + }, + { + "start": 20400.82, + "end": 20406.84, + "probability": 0.9946 + }, + { + "start": 20406.84, + "end": 20414.26, + "probability": 0.9985 + }, + { + "start": 20414.96, + "end": 20417.48, + "probability": 0.9484 + }, + { + "start": 20417.9, + "end": 20419.18, + "probability": 0.833 + }, + { + "start": 20419.32, + "end": 20420.64, + "probability": 0.6504 + }, + { + "start": 20421.18, + "end": 20423.12, + "probability": 0.6681 + }, + { + "start": 20423.52, + "end": 20426.5, + "probability": 0.8626 + }, + { + "start": 20426.86, + "end": 20427.62, + "probability": 0.2948 + }, + { + "start": 20428.9, + "end": 20430.76, + "probability": 0.4781 + }, + { + "start": 20431.54, + "end": 20433.52, + "probability": 0.6838 + }, + { + "start": 20434.22, + "end": 20437.08, + "probability": 0.75 + }, + { + "start": 20437.62, + "end": 20439.4, + "probability": 0.6679 + }, + { + "start": 20440.06, + "end": 20444.3, + "probability": 0.7406 + }, + { + "start": 20444.84, + "end": 20445.72, + "probability": 0.8772 + }, + { + "start": 20445.8, + "end": 20450.68, + "probability": 0.9043 + }, + { + "start": 20450.76, + "end": 20452.56, + "probability": 0.6271 + }, + { + "start": 20453.16, + "end": 20456.96, + "probability": 0.9076 + }, + { + "start": 20457.5, + "end": 20464.16, + "probability": 0.9655 + }, + { + "start": 20464.74, + "end": 20467.48, + "probability": 0.5873 + }, + { + "start": 20467.58, + "end": 20469.34, + "probability": 0.1125 + }, + { + "start": 20469.46, + "end": 20470.46, + "probability": 0.7596 + }, + { + "start": 20485.52, + "end": 20487.92, + "probability": 0.6482 + }, + { + "start": 20489.16, + "end": 20489.18, + "probability": 0.8066 + }, + { + "start": 20492.78, + "end": 20493.5, + "probability": 0.2502 + }, + { + "start": 20495.34, + "end": 20496.06, + "probability": 0.5364 + }, + { + "start": 20496.24, + "end": 20497.34, + "probability": 0.8926 + }, + { + "start": 20504.9, + "end": 20507.22, + "probability": 0.5804 + }, + { + "start": 20507.24, + "end": 20507.68, + "probability": 0.3457 + }, + { + "start": 20507.76, + "end": 20508.12, + "probability": 0.5724 + }, + { + "start": 20508.16, + "end": 20508.7, + "probability": 0.6535 + }, + { + "start": 20524.24, + "end": 20528.34, + "probability": 0.153 + }, + { + "start": 20528.34, + "end": 20528.92, + "probability": 0.1207 + }, + { + "start": 20528.92, + "end": 20528.92, + "probability": 0.0629 + }, + { + "start": 20528.92, + "end": 20529.4, + "probability": 0.6457 + }, + { + "start": 20529.86, + "end": 20531.52, + "probability": 0.4296 + }, + { + "start": 20533.46, + "end": 20533.78, + "probability": 0.0628 + }, + { + "start": 20540.14, + "end": 20540.64, + "probability": 0.0407 + }, + { + "start": 20541.38, + "end": 20544.1, + "probability": 0.055 + }, + { + "start": 20593.3, + "end": 20593.52, + "probability": 0.0673 + }, + { + "start": 20593.52, + "end": 20593.86, + "probability": 0.0155 + }, + { + "start": 20593.86, + "end": 20594.02, + "probability": 0.0569 + }, + { + "start": 20594.02, + "end": 20594.4, + "probability": 0.0282 + }, + { + "start": 20594.4, + "end": 20594.5, + "probability": 0.0694 + }, + { + "start": 20594.5, + "end": 20594.54, + "probability": 0.2393 + }, + { + "start": 20594.54, + "end": 20594.54, + "probability": 0.0388 + }, + { + "start": 20595.56, + "end": 20595.56, + "probability": 0.0 + } + ], + "segments_count": 7282, + "words_count": 36884, + "avg_words_per_segment": 5.0651, + "avg_segment_duration": 2.1343, + "avg_words_per_minute": 107.4523, + "plenum_id": "14555", + "duration": 20595.56, + "title": null, + "plenum_date": "2011-07-04" +} \ No newline at end of file