diff --git "a/16366/metadata.json" "b/16366/metadata.json" new file mode 100644--- /dev/null +++ "b/16366/metadata.json" @@ -0,0 +1,22172 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "16366", + "quality_score": 0.8632, + "per_segment_quality_scores": [ + { + "start": 33.72, + "end": 36.12, + "probability": 0.7598 + }, + { + "start": 41.94, + "end": 43.86, + "probability": 0.5692 + }, + { + "start": 45.04, + "end": 47.18, + "probability": 0.5231 + }, + { + "start": 47.9, + "end": 51.56, + "probability": 0.6963 + }, + { + "start": 52.06, + "end": 54.78, + "probability": 0.9953 + }, + { + "start": 55.96, + "end": 57.86, + "probability": 0.9451 + }, + { + "start": 58.38, + "end": 58.68, + "probability": 0.8055 + }, + { + "start": 61.08, + "end": 62.36, + "probability": 0.7814 + }, + { + "start": 62.48, + "end": 63.9, + "probability": 0.5409 + }, + { + "start": 63.96, + "end": 66.94, + "probability": 0.9914 + }, + { + "start": 66.94, + "end": 69.82, + "probability": 0.9969 + }, + { + "start": 70.42, + "end": 72.32, + "probability": 0.4978 + }, + { + "start": 73.0, + "end": 77.9, + "probability": 0.7684 + }, + { + "start": 78.02, + "end": 78.26, + "probability": 0.6972 + }, + { + "start": 78.9, + "end": 79.92, + "probability": 0.0796 + }, + { + "start": 80.46, + "end": 81.34, + "probability": 0.7812 + }, + { + "start": 82.84, + "end": 88.66, + "probability": 0.7544 + }, + { + "start": 90.02, + "end": 91.36, + "probability": 0.9274 + }, + { + "start": 91.56, + "end": 94.9, + "probability": 0.8059 + }, + { + "start": 98.66, + "end": 100.74, + "probability": 0.4221 + }, + { + "start": 101.34, + "end": 102.94, + "probability": 0.6142 + }, + { + "start": 103.52, + "end": 108.6, + "probability": 0.7817 + }, + { + "start": 108.78, + "end": 109.4, + "probability": 0.8121 + }, + { + "start": 109.42, + "end": 112.12, + "probability": 0.9578 + }, + { + "start": 112.28, + "end": 113.9, + "probability": 0.969 + }, + { + "start": 116.18, + "end": 117.86, + "probability": 0.7931 + }, + { + "start": 118.34, + "end": 119.26, + "probability": 0.022 + }, + { + "start": 122.22, + "end": 122.42, + "probability": 0.2181 + }, + { + "start": 123.12, + "end": 126.36, + "probability": 0.5097 + }, + { + "start": 127.6, + "end": 127.8, + "probability": 0.3733 + }, + { + "start": 129.4, + "end": 129.4, + "probability": 0.0026 + }, + { + "start": 130.86, + "end": 133.74, + "probability": 0.2268 + }, + { + "start": 135.16, + "end": 135.98, + "probability": 0.5532 + }, + { + "start": 136.12, + "end": 137.8, + "probability": 0.8021 + }, + { + "start": 137.96, + "end": 139.38, + "probability": 0.8734 + }, + { + "start": 139.62, + "end": 140.18, + "probability": 0.5269 + }, + { + "start": 140.22, + "end": 141.04, + "probability": 0.8817 + }, + { + "start": 141.12, + "end": 141.9, + "probability": 0.7408 + }, + { + "start": 142.86, + "end": 145.68, + "probability": 0.9941 + }, + { + "start": 146.52, + "end": 148.88, + "probability": 0.9587 + }, + { + "start": 149.14, + "end": 150.66, + "probability": 0.6325 + }, + { + "start": 151.7, + "end": 152.02, + "probability": 0.311 + }, + { + "start": 152.06, + "end": 154.14, + "probability": 0.614 + }, + { + "start": 154.7, + "end": 156.76, + "probability": 0.9107 + }, + { + "start": 157.18, + "end": 160.52, + "probability": 0.7702 + }, + { + "start": 161.3, + "end": 166.3, + "probability": 0.959 + }, + { + "start": 166.3, + "end": 170.68, + "probability": 0.9756 + }, + { + "start": 171.56, + "end": 175.36, + "probability": 0.833 + }, + { + "start": 175.86, + "end": 181.7, + "probability": 0.9947 + }, + { + "start": 181.7, + "end": 185.96, + "probability": 0.9968 + }, + { + "start": 187.28, + "end": 190.56, + "probability": 0.9933 + }, + { + "start": 191.56, + "end": 197.6, + "probability": 0.977 + }, + { + "start": 198.72, + "end": 204.08, + "probability": 0.9614 + }, + { + "start": 204.08, + "end": 207.58, + "probability": 0.9969 + }, + { + "start": 209.02, + "end": 214.14, + "probability": 0.9585 + }, + { + "start": 214.14, + "end": 217.84, + "probability": 0.9723 + }, + { + "start": 217.84, + "end": 220.32, + "probability": 0.8683 + }, + { + "start": 220.88, + "end": 223.18, + "probability": 0.8817 + }, + { + "start": 223.56, + "end": 228.52, + "probability": 0.9422 + }, + { + "start": 228.88, + "end": 229.3, + "probability": 0.7243 + }, + { + "start": 229.88, + "end": 231.96, + "probability": 0.9471 + }, + { + "start": 235.76, + "end": 238.52, + "probability": 0.8543 + }, + { + "start": 238.58, + "end": 238.88, + "probability": 0.6384 + }, + { + "start": 238.98, + "end": 239.3, + "probability": 0.7682 + }, + { + "start": 239.42, + "end": 240.14, + "probability": 0.7428 + }, + { + "start": 244.5, + "end": 245.3, + "probability": 0.6949 + }, + { + "start": 246.34, + "end": 250.66, + "probability": 0.9191 + }, + { + "start": 250.84, + "end": 253.24, + "probability": 0.9979 + }, + { + "start": 254.24, + "end": 261.5, + "probability": 0.9959 + }, + { + "start": 261.52, + "end": 268.2, + "probability": 0.9985 + }, + { + "start": 268.68, + "end": 269.76, + "probability": 0.7285 + }, + { + "start": 269.86, + "end": 270.32, + "probability": 0.7311 + }, + { + "start": 270.46, + "end": 270.8, + "probability": 0.1631 + }, + { + "start": 271.24, + "end": 272.44, + "probability": 0.9929 + }, + { + "start": 273.2, + "end": 276.74, + "probability": 0.8712 + }, + { + "start": 276.74, + "end": 283.24, + "probability": 0.998 + }, + { + "start": 283.38, + "end": 289.58, + "probability": 0.8878 + }, + { + "start": 289.74, + "end": 290.56, + "probability": 0.611 + }, + { + "start": 290.6, + "end": 291.12, + "probability": 0.9269 + }, + { + "start": 291.44, + "end": 293.62, + "probability": 0.9356 + }, + { + "start": 293.78, + "end": 296.28, + "probability": 0.9488 + }, + { + "start": 296.96, + "end": 301.72, + "probability": 0.9995 + }, + { + "start": 302.88, + "end": 304.46, + "probability": 0.9488 + }, + { + "start": 304.6, + "end": 307.5, + "probability": 0.9947 + }, + { + "start": 308.5, + "end": 311.56, + "probability": 0.9933 + }, + { + "start": 312.58, + "end": 315.98, + "probability": 0.7957 + }, + { + "start": 316.66, + "end": 317.32, + "probability": 0.4086 + }, + { + "start": 317.44, + "end": 319.58, + "probability": 0.6393 + }, + { + "start": 320.2, + "end": 323.52, + "probability": 0.981 + }, + { + "start": 324.46, + "end": 328.5, + "probability": 0.9482 + }, + { + "start": 329.04, + "end": 330.38, + "probability": 0.9973 + }, + { + "start": 330.84, + "end": 331.86, + "probability": 0.0532 + }, + { + "start": 334.42, + "end": 334.72, + "probability": 0.0209 + }, + { + "start": 334.72, + "end": 334.72, + "probability": 0.1133 + }, + { + "start": 334.72, + "end": 334.72, + "probability": 0.2771 + }, + { + "start": 334.72, + "end": 334.72, + "probability": 0.0611 + }, + { + "start": 334.72, + "end": 334.84, + "probability": 0.1552 + }, + { + "start": 335.32, + "end": 339.48, + "probability": 0.9683 + }, + { + "start": 339.78, + "end": 341.58, + "probability": 0.9726 + }, + { + "start": 342.18, + "end": 344.3, + "probability": 0.997 + }, + { + "start": 344.82, + "end": 349.54, + "probability": 0.7395 + }, + { + "start": 349.66, + "end": 351.54, + "probability": 0.8596 + }, + { + "start": 352.16, + "end": 353.04, + "probability": 0.9543 + }, + { + "start": 353.4, + "end": 354.76, + "probability": 0.9758 + }, + { + "start": 355.08, + "end": 356.2, + "probability": 0.9829 + }, + { + "start": 356.28, + "end": 357.82, + "probability": 0.9814 + }, + { + "start": 359.12, + "end": 360.74, + "probability": 0.9772 + }, + { + "start": 361.4, + "end": 363.7, + "probability": 0.7686 + }, + { + "start": 363.84, + "end": 364.66, + "probability": 0.6551 + }, + { + "start": 364.98, + "end": 365.5, + "probability": 0.7227 + }, + { + "start": 365.54, + "end": 366.56, + "probability": 0.7481 + }, + { + "start": 366.68, + "end": 367.4, + "probability": 0.2568 + }, + { + "start": 367.4, + "end": 368.74, + "probability": 0.8702 + }, + { + "start": 368.94, + "end": 370.12, + "probability": 0.941 + }, + { + "start": 370.38, + "end": 371.14, + "probability": 0.8712 + }, + { + "start": 371.66, + "end": 374.58, + "probability": 0.9268 + }, + { + "start": 374.58, + "end": 378.44, + "probability": 0.6832 + }, + { + "start": 378.88, + "end": 381.36, + "probability": 0.606 + }, + { + "start": 381.66, + "end": 384.1, + "probability": 0.7985 + }, + { + "start": 392.98, + "end": 393.92, + "probability": 0.6601 + }, + { + "start": 394.0, + "end": 394.94, + "probability": 0.8455 + }, + { + "start": 395.04, + "end": 397.79, + "probability": 0.9946 + }, + { + "start": 398.3, + "end": 399.58, + "probability": 0.6815 + }, + { + "start": 400.1, + "end": 402.3, + "probability": 0.9122 + }, + { + "start": 403.26, + "end": 405.84, + "probability": 0.8374 + }, + { + "start": 405.92, + "end": 409.12, + "probability": 0.9101 + }, + { + "start": 409.54, + "end": 413.74, + "probability": 0.5877 + }, + { + "start": 414.28, + "end": 415.58, + "probability": 0.4272 + }, + { + "start": 416.3, + "end": 417.56, + "probability": 0.5538 + }, + { + "start": 417.82, + "end": 419.56, + "probability": 0.9868 + }, + { + "start": 419.66, + "end": 423.86, + "probability": 0.9792 + }, + { + "start": 424.3, + "end": 425.7, + "probability": 0.704 + }, + { + "start": 425.88, + "end": 428.34, + "probability": 0.7402 + }, + { + "start": 428.34, + "end": 431.72, + "probability": 0.9894 + }, + { + "start": 432.1, + "end": 433.1, + "probability": 0.9275 + }, + { + "start": 433.24, + "end": 437.2, + "probability": 0.9229 + }, + { + "start": 437.7, + "end": 438.96, + "probability": 0.2308 + }, + { + "start": 439.24, + "end": 439.6, + "probability": 0.5061 + }, + { + "start": 439.64, + "end": 440.58, + "probability": 0.8091 + }, + { + "start": 440.66, + "end": 441.66, + "probability": 0.7121 + }, + { + "start": 442.2, + "end": 442.34, + "probability": 0.1673 + }, + { + "start": 442.36, + "end": 443.32, + "probability": 0.4813 + }, + { + "start": 443.92, + "end": 445.38, + "probability": 0.2947 + }, + { + "start": 446.02, + "end": 447.46, + "probability": 0.4538 + }, + { + "start": 448.54, + "end": 449.56, + "probability": 0.4715 + }, + { + "start": 449.56, + "end": 451.58, + "probability": 0.6735 + }, + { + "start": 452.18, + "end": 454.28, + "probability": 0.9839 + }, + { + "start": 454.34, + "end": 455.76, + "probability": 0.9791 + }, + { + "start": 456.2, + "end": 458.96, + "probability": 0.9953 + }, + { + "start": 458.96, + "end": 462.4, + "probability": 0.996 + }, + { + "start": 462.68, + "end": 464.66, + "probability": 0.9731 + }, + { + "start": 464.98, + "end": 465.38, + "probability": 0.913 + }, + { + "start": 465.4, + "end": 467.79, + "probability": 0.9392 + }, + { + "start": 468.16, + "end": 469.48, + "probability": 0.8402 + }, + { + "start": 469.76, + "end": 470.92, + "probability": 0.6702 + }, + { + "start": 471.02, + "end": 473.8, + "probability": 0.9034 + }, + { + "start": 474.08, + "end": 476.72, + "probability": 0.9956 + }, + { + "start": 476.86, + "end": 477.48, + "probability": 0.3891 + }, + { + "start": 478.22, + "end": 479.66, + "probability": 0.3728 + }, + { + "start": 479.94, + "end": 480.04, + "probability": 0.0055 + }, + { + "start": 480.6, + "end": 482.58, + "probability": 0.2241 + }, + { + "start": 482.7, + "end": 485.06, + "probability": 0.756 + }, + { + "start": 485.2, + "end": 489.02, + "probability": 0.8589 + }, + { + "start": 489.02, + "end": 489.96, + "probability": 0.4167 + }, + { + "start": 489.98, + "end": 490.34, + "probability": 0.5723 + }, + { + "start": 490.86, + "end": 493.52, + "probability": 0.8579 + }, + { + "start": 493.54, + "end": 493.82, + "probability": 0.5383 + }, + { + "start": 493.9, + "end": 496.35, + "probability": 0.7841 + }, + { + "start": 496.48, + "end": 497.06, + "probability": 0.4977 + }, + { + "start": 497.14, + "end": 499.2, + "probability": 0.4535 + }, + { + "start": 499.26, + "end": 503.2, + "probability": 0.9707 + }, + { + "start": 503.88, + "end": 506.98, + "probability": 0.8272 + }, + { + "start": 507.06, + "end": 509.42, + "probability": 0.902 + }, + { + "start": 509.5, + "end": 510.06, + "probability": 0.6299 + }, + { + "start": 510.14, + "end": 511.28, + "probability": 0.6428 + }, + { + "start": 511.5, + "end": 512.5, + "probability": 0.8788 + }, + { + "start": 512.54, + "end": 513.26, + "probability": 0.5401 + }, + { + "start": 513.82, + "end": 518.56, + "probability": 0.5485 + }, + { + "start": 518.86, + "end": 519.36, + "probability": 0.8647 + }, + { + "start": 519.62, + "end": 520.5, + "probability": 0.6197 + }, + { + "start": 520.72, + "end": 527.46, + "probability": 0.8293 + }, + { + "start": 527.5, + "end": 530.66, + "probability": 0.9642 + }, + { + "start": 531.38, + "end": 535.92, + "probability": 0.9977 + }, + { + "start": 536.04, + "end": 541.62, + "probability": 0.9689 + }, + { + "start": 541.82, + "end": 542.5, + "probability": 0.6494 + }, + { + "start": 542.94, + "end": 547.24, + "probability": 0.9856 + }, + { + "start": 548.12, + "end": 551.88, + "probability": 0.9877 + }, + { + "start": 551.98, + "end": 553.58, + "probability": 0.619 + }, + { + "start": 553.7, + "end": 554.86, + "probability": 0.9551 + }, + { + "start": 555.32, + "end": 557.76, + "probability": 0.9901 + }, + { + "start": 558.0, + "end": 561.8, + "probability": 0.9891 + }, + { + "start": 561.88, + "end": 564.0, + "probability": 0.973 + }, + { + "start": 564.28, + "end": 565.88, + "probability": 0.9012 + }, + { + "start": 565.96, + "end": 567.16, + "probability": 0.5226 + }, + { + "start": 567.4, + "end": 568.7, + "probability": 0.3667 + }, + { + "start": 569.04, + "end": 569.59, + "probability": 0.5916 + }, + { + "start": 570.4, + "end": 572.3, + "probability": 0.8009 + }, + { + "start": 572.74, + "end": 574.34, + "probability": 0.803 + }, + { + "start": 574.42, + "end": 574.86, + "probability": 0.9203 + }, + { + "start": 574.88, + "end": 576.38, + "probability": 0.8986 + }, + { + "start": 576.42, + "end": 580.22, + "probability": 0.993 + }, + { + "start": 580.78, + "end": 582.5, + "probability": 0.9209 + }, + { + "start": 582.8, + "end": 584.36, + "probability": 0.9699 + }, + { + "start": 584.48, + "end": 584.86, + "probability": 0.5763 + }, + { + "start": 584.92, + "end": 587.4, + "probability": 0.9709 + }, + { + "start": 588.84, + "end": 589.1, + "probability": 0.816 + }, + { + "start": 591.6, + "end": 596.0, + "probability": 0.9469 + }, + { + "start": 599.58, + "end": 600.32, + "probability": 0.2946 + }, + { + "start": 600.5, + "end": 607.3, + "probability": 0.9788 + }, + { + "start": 608.04, + "end": 612.26, + "probability": 0.9067 + }, + { + "start": 613.42, + "end": 614.92, + "probability": 0.9606 + }, + { + "start": 615.14, + "end": 618.16, + "probability": 0.9897 + }, + { + "start": 619.48, + "end": 624.82, + "probability": 0.9893 + }, + { + "start": 625.84, + "end": 627.84, + "probability": 0.9199 + }, + { + "start": 628.76, + "end": 630.14, + "probability": 0.9299 + }, + { + "start": 631.1, + "end": 634.62, + "probability": 0.8631 + }, + { + "start": 635.64, + "end": 642.18, + "probability": 0.9954 + }, + { + "start": 643.12, + "end": 645.04, + "probability": 0.6821 + }, + { + "start": 646.22, + "end": 648.43, + "probability": 0.7339 + }, + { + "start": 649.32, + "end": 650.98, + "probability": 0.9845 + }, + { + "start": 652.08, + "end": 656.54, + "probability": 0.9828 + }, + { + "start": 656.78, + "end": 657.74, + "probability": 0.9193 + }, + { + "start": 658.16, + "end": 662.26, + "probability": 0.8109 + }, + { + "start": 662.44, + "end": 663.1, + "probability": 0.5053 + }, + { + "start": 663.66, + "end": 667.24, + "probability": 0.8333 + }, + { + "start": 668.16, + "end": 669.18, + "probability": 0.4949 + }, + { + "start": 669.52, + "end": 674.14, + "probability": 0.9731 + }, + { + "start": 674.68, + "end": 676.24, + "probability": 0.9757 + }, + { + "start": 676.42, + "end": 680.1, + "probability": 0.9902 + }, + { + "start": 680.48, + "end": 682.7, + "probability": 0.9417 + }, + { + "start": 683.1, + "end": 685.92, + "probability": 0.9351 + }, + { + "start": 686.1, + "end": 687.72, + "probability": 0.8869 + }, + { + "start": 687.86, + "end": 690.1, + "probability": 0.9721 + }, + { + "start": 690.34, + "end": 692.56, + "probability": 0.7477 + }, + { + "start": 692.98, + "end": 694.34, + "probability": 0.7401 + }, + { + "start": 694.44, + "end": 695.4, + "probability": 0.718 + }, + { + "start": 695.4, + "end": 701.06, + "probability": 0.9873 + }, + { + "start": 701.06, + "end": 703.12, + "probability": 0.9822 + }, + { + "start": 703.5, + "end": 708.14, + "probability": 0.5821 + }, + { + "start": 709.02, + "end": 709.37, + "probability": 0.4789 + }, + { + "start": 711.06, + "end": 713.36, + "probability": 0.9309 + }, + { + "start": 713.74, + "end": 717.46, + "probability": 0.9159 + }, + { + "start": 719.32, + "end": 725.62, + "probability": 0.9932 + }, + { + "start": 725.62, + "end": 729.72, + "probability": 0.9993 + }, + { + "start": 729.72, + "end": 736.66, + "probability": 0.989 + }, + { + "start": 736.98, + "end": 738.82, + "probability": 0.984 + }, + { + "start": 739.74, + "end": 744.22, + "probability": 0.9697 + }, + { + "start": 744.3, + "end": 745.78, + "probability": 0.7345 + }, + { + "start": 746.1, + "end": 747.74, + "probability": 0.913 + }, + { + "start": 747.86, + "end": 749.4, + "probability": 0.9521 + }, + { + "start": 749.72, + "end": 749.94, + "probability": 0.5153 + }, + { + "start": 750.06, + "end": 750.6, + "probability": 0.393 + }, + { + "start": 750.66, + "end": 751.88, + "probability": 0.7069 + }, + { + "start": 752.04, + "end": 754.54, + "probability": 0.8672 + }, + { + "start": 754.54, + "end": 756.62, + "probability": 0.9952 + }, + { + "start": 757.38, + "end": 761.66, + "probability": 0.8517 + }, + { + "start": 766.0, + "end": 768.9, + "probability": 0.9015 + }, + { + "start": 769.28, + "end": 769.28, + "probability": 0.6663 + }, + { + "start": 769.28, + "end": 772.46, + "probability": 0.9949 + }, + { + "start": 772.46, + "end": 777.76, + "probability": 0.9205 + }, + { + "start": 778.22, + "end": 778.68, + "probability": 0.7424 + }, + { + "start": 778.78, + "end": 780.72, + "probability": 0.8955 + }, + { + "start": 780.8, + "end": 790.08, + "probability": 0.8758 + }, + { + "start": 790.2, + "end": 792.84, + "probability": 0.823 + }, + { + "start": 793.38, + "end": 793.82, + "probability": 0.2952 + }, + { + "start": 793.94, + "end": 797.02, + "probability": 0.9261 + }, + { + "start": 797.3, + "end": 801.18, + "probability": 0.9292 + }, + { + "start": 801.48, + "end": 802.42, + "probability": 0.688 + }, + { + "start": 802.52, + "end": 803.08, + "probability": 0.2442 + }, + { + "start": 803.18, + "end": 803.4, + "probability": 0.9361 + }, + { + "start": 803.56, + "end": 804.52, + "probability": 0.8998 + }, + { + "start": 804.66, + "end": 805.86, + "probability": 0.7773 + }, + { + "start": 806.08, + "end": 811.5, + "probability": 0.7647 + }, + { + "start": 812.18, + "end": 813.38, + "probability": 0.968 + }, + { + "start": 813.66, + "end": 815.14, + "probability": 0.5074 + }, + { + "start": 815.2, + "end": 816.05, + "probability": 0.8231 + }, + { + "start": 816.48, + "end": 816.98, + "probability": 0.6996 + }, + { + "start": 817.1, + "end": 820.68, + "probability": 0.9385 + }, + { + "start": 820.68, + "end": 823.6, + "probability": 0.8552 + }, + { + "start": 823.84, + "end": 828.6, + "probability": 0.7781 + }, + { + "start": 828.6, + "end": 831.24, + "probability": 0.5411 + }, + { + "start": 831.34, + "end": 833.9, + "probability": 0.936 + }, + { + "start": 834.0, + "end": 834.28, + "probability": 0.7379 + }, + { + "start": 835.02, + "end": 840.02, + "probability": 0.9911 + }, + { + "start": 840.4, + "end": 841.78, + "probability": 0.7976 + }, + { + "start": 841.8, + "end": 843.0, + "probability": 0.6766 + }, + { + "start": 843.14, + "end": 845.14, + "probability": 0.822 + }, + { + "start": 845.34, + "end": 849.18, + "probability": 0.8517 + }, + { + "start": 849.64, + "end": 850.1, + "probability": 0.0423 + }, + { + "start": 850.86, + "end": 854.14, + "probability": 0.9896 + }, + { + "start": 854.58, + "end": 855.14, + "probability": 0.7253 + }, + { + "start": 855.24, + "end": 856.32, + "probability": 0.9749 + }, + { + "start": 856.86, + "end": 860.06, + "probability": 0.6385 + }, + { + "start": 860.44, + "end": 861.4, + "probability": 0.7377 + }, + { + "start": 863.12, + "end": 863.6, + "probability": 0.1418 + }, + { + "start": 863.6, + "end": 864.81, + "probability": 0.6379 + }, + { + "start": 865.22, + "end": 867.76, + "probability": 0.4578 + }, + { + "start": 868.24, + "end": 870.5, + "probability": 0.7286 + }, + { + "start": 870.62, + "end": 876.8, + "probability": 0.9166 + }, + { + "start": 877.04, + "end": 878.3, + "probability": 0.8967 + }, + { + "start": 881.98, + "end": 882.86, + "probability": 0.5638 + }, + { + "start": 884.22, + "end": 888.26, + "probability": 0.9764 + }, + { + "start": 888.54, + "end": 889.98, + "probability": 0.9889 + }, + { + "start": 891.02, + "end": 893.34, + "probability": 0.9692 + }, + { + "start": 893.48, + "end": 893.86, + "probability": 0.8411 + }, + { + "start": 894.1, + "end": 894.96, + "probability": 0.8851 + }, + { + "start": 895.08, + "end": 898.66, + "probability": 0.9746 + }, + { + "start": 899.78, + "end": 903.58, + "probability": 0.8636 + }, + { + "start": 903.58, + "end": 906.42, + "probability": 0.9978 + }, + { + "start": 907.38, + "end": 909.52, + "probability": 0.99 + }, + { + "start": 910.14, + "end": 913.14, + "probability": 0.9788 + }, + { + "start": 913.14, + "end": 916.04, + "probability": 0.9977 + }, + { + "start": 916.14, + "end": 916.6, + "probability": 0.6776 + }, + { + "start": 917.2, + "end": 919.66, + "probability": 0.6641 + }, + { + "start": 921.02, + "end": 924.73, + "probability": 0.7238 + }, + { + "start": 925.06, + "end": 925.92, + "probability": 0.9526 + }, + { + "start": 925.98, + "end": 927.88, + "probability": 0.8744 + }, + { + "start": 928.76, + "end": 932.48, + "probability": 0.996 + }, + { + "start": 933.1, + "end": 935.96, + "probability": 0.9965 + }, + { + "start": 936.56, + "end": 940.34, + "probability": 0.9915 + }, + { + "start": 941.56, + "end": 943.48, + "probability": 0.9971 + }, + { + "start": 943.54, + "end": 945.16, + "probability": 0.8949 + }, + { + "start": 945.66, + "end": 946.8, + "probability": 0.98 + }, + { + "start": 947.04, + "end": 948.12, + "probability": 0.9102 + }, + { + "start": 948.52, + "end": 949.72, + "probability": 0.9179 + }, + { + "start": 950.5, + "end": 952.84, + "probability": 0.7846 + }, + { + "start": 953.54, + "end": 955.68, + "probability": 0.7651 + }, + { + "start": 956.34, + "end": 957.26, + "probability": 0.6109 + }, + { + "start": 957.42, + "end": 959.5, + "probability": 0.9676 + }, + { + "start": 959.5, + "end": 961.26, + "probability": 0.9932 + }, + { + "start": 961.38, + "end": 961.9, + "probability": 0.4875 + }, + { + "start": 962.2, + "end": 962.82, + "probability": 0.5254 + }, + { + "start": 962.86, + "end": 964.88, + "probability": 0.9912 + }, + { + "start": 965.02, + "end": 969.38, + "probability": 0.9795 + }, + { + "start": 970.26, + "end": 973.64, + "probability": 0.9875 + }, + { + "start": 973.88, + "end": 974.62, + "probability": 0.763 + }, + { + "start": 974.94, + "end": 975.54, + "probability": 0.7031 + }, + { + "start": 975.82, + "end": 977.4, + "probability": 0.9648 + }, + { + "start": 977.6, + "end": 979.96, + "probability": 0.7295 + }, + { + "start": 984.3, + "end": 986.26, + "probability": 0.538 + }, + { + "start": 986.54, + "end": 988.6, + "probability": 0.883 + }, + { + "start": 988.7, + "end": 992.56, + "probability": 0.6997 + }, + { + "start": 992.62, + "end": 995.6, + "probability": 0.7787 + }, + { + "start": 996.08, + "end": 996.43, + "probability": 0.0354 + }, + { + "start": 996.8, + "end": 1001.64, + "probability": 0.8156 + }, + { + "start": 1001.8, + "end": 1002.62, + "probability": 0.7001 + }, + { + "start": 1003.44, + "end": 1008.03, + "probability": 0.8739 + }, + { + "start": 1010.26, + "end": 1010.26, + "probability": 0.1027 + }, + { + "start": 1010.26, + "end": 1012.02, + "probability": 0.8896 + }, + { + "start": 1012.22, + "end": 1015.42, + "probability": 0.9229 + }, + { + "start": 1015.52, + "end": 1016.52, + "probability": 0.8179 + }, + { + "start": 1017.98, + "end": 1018.4, + "probability": 0.0071 + }, + { + "start": 1018.4, + "end": 1020.02, + "probability": 0.9958 + }, + { + "start": 1020.72, + "end": 1021.42, + "probability": 0.8242 + }, + { + "start": 1021.52, + "end": 1024.26, + "probability": 0.9869 + }, + { + "start": 1024.26, + "end": 1028.88, + "probability": 0.9973 + }, + { + "start": 1028.92, + "end": 1030.67, + "probability": 0.6664 + }, + { + "start": 1031.48, + "end": 1035.52, + "probability": 0.9874 + }, + { + "start": 1036.12, + "end": 1037.36, + "probability": 0.6356 + }, + { + "start": 1037.94, + "end": 1038.44, + "probability": 0.6313 + }, + { + "start": 1038.54, + "end": 1041.58, + "probability": 0.9704 + }, + { + "start": 1041.7, + "end": 1042.92, + "probability": 0.9518 + }, + { + "start": 1043.3, + "end": 1043.92, + "probability": 0.9659 + }, + { + "start": 1043.98, + "end": 1047.2, + "probability": 0.925 + }, + { + "start": 1048.2, + "end": 1048.78, + "probability": 0.777 + }, + { + "start": 1048.92, + "end": 1049.76, + "probability": 0.7483 + }, + { + "start": 1049.88, + "end": 1051.02, + "probability": 0.8783 + }, + { + "start": 1051.04, + "end": 1054.78, + "probability": 0.8114 + }, + { + "start": 1054.84, + "end": 1055.98, + "probability": 0.7377 + }, + { + "start": 1056.6, + "end": 1058.94, + "probability": 0.9494 + }, + { + "start": 1059.08, + "end": 1062.9, + "probability": 0.9221 + }, + { + "start": 1062.9, + "end": 1069.18, + "probability": 0.9925 + }, + { + "start": 1070.66, + "end": 1072.08, + "probability": 0.7069 + }, + { + "start": 1072.38, + "end": 1077.6, + "probability": 0.9177 + }, + { + "start": 1078.3, + "end": 1080.04, + "probability": 0.5747 + }, + { + "start": 1080.86, + "end": 1081.46, + "probability": 0.6567 + }, + { + "start": 1081.64, + "end": 1086.1, + "probability": 0.9741 + }, + { + "start": 1086.76, + "end": 1089.18, + "probability": 0.8667 + }, + { + "start": 1089.26, + "end": 1092.24, + "probability": 0.7109 + }, + { + "start": 1092.52, + "end": 1095.96, + "probability": 0.9906 + }, + { + "start": 1096.46, + "end": 1101.66, + "probability": 0.8804 + }, + { + "start": 1102.8, + "end": 1105.16, + "probability": 0.6344 + }, + { + "start": 1105.72, + "end": 1106.88, + "probability": 0.8678 + }, + { + "start": 1107.72, + "end": 1109.58, + "probability": 0.8542 + }, + { + "start": 1111.42, + "end": 1113.88, + "probability": 0.958 + }, + { + "start": 1113.88, + "end": 1117.84, + "probability": 0.8225 + }, + { + "start": 1118.66, + "end": 1123.08, + "probability": 0.9707 + }, + { + "start": 1123.08, + "end": 1127.76, + "probability": 0.9237 + }, + { + "start": 1127.88, + "end": 1131.12, + "probability": 0.9976 + }, + { + "start": 1131.98, + "end": 1133.22, + "probability": 0.6233 + }, + { + "start": 1133.42, + "end": 1133.62, + "probability": 0.4236 + }, + { + "start": 1134.06, + "end": 1134.28, + "probability": 0.5816 + }, + { + "start": 1136.38, + "end": 1137.72, + "probability": 0.8812 + }, + { + "start": 1137.72, + "end": 1138.56, + "probability": 0.398 + }, + { + "start": 1138.58, + "end": 1140.96, + "probability": 0.8819 + }, + { + "start": 1141.04, + "end": 1143.78, + "probability": 0.4772 + }, + { + "start": 1144.34, + "end": 1145.38, + "probability": 0.7398 + }, + { + "start": 1145.7, + "end": 1150.38, + "probability": 0.9861 + }, + { + "start": 1151.42, + "end": 1158.04, + "probability": 0.9813 + }, + { + "start": 1158.82, + "end": 1159.88, + "probability": 0.9968 + }, + { + "start": 1160.54, + "end": 1164.12, + "probability": 0.9909 + }, + { + "start": 1164.86, + "end": 1166.12, + "probability": 0.8009 + }, + { + "start": 1166.94, + "end": 1168.26, + "probability": 0.7986 + }, + { + "start": 1168.78, + "end": 1171.84, + "probability": 0.8743 + }, + { + "start": 1172.64, + "end": 1173.96, + "probability": 0.6042 + }, + { + "start": 1175.04, + "end": 1178.94, + "probability": 0.9933 + }, + { + "start": 1179.54, + "end": 1184.26, + "probability": 0.9928 + }, + { + "start": 1186.0, + "end": 1188.1, + "probability": 0.9441 + }, + { + "start": 1188.58, + "end": 1190.48, + "probability": 0.7933 + }, + { + "start": 1191.72, + "end": 1195.18, + "probability": 0.8721 + }, + { + "start": 1196.02, + "end": 1201.48, + "probability": 0.9889 + }, + { + "start": 1202.04, + "end": 1204.84, + "probability": 0.8851 + }, + { + "start": 1205.46, + "end": 1206.6, + "probability": 0.9339 + }, + { + "start": 1207.12, + "end": 1209.2, + "probability": 0.6828 + }, + { + "start": 1209.96, + "end": 1211.24, + "probability": 0.7209 + }, + { + "start": 1211.62, + "end": 1213.54, + "probability": 0.8692 + }, + { + "start": 1214.0, + "end": 1218.32, + "probability": 0.9345 + }, + { + "start": 1218.7, + "end": 1220.84, + "probability": 0.9582 + }, + { + "start": 1221.14, + "end": 1224.0, + "probability": 0.9004 + }, + { + "start": 1224.34, + "end": 1226.9, + "probability": 0.9901 + }, + { + "start": 1227.28, + "end": 1228.12, + "probability": 0.8189 + }, + { + "start": 1228.22, + "end": 1230.62, + "probability": 0.6647 + }, + { + "start": 1231.0, + "end": 1231.34, + "probability": 0.4927 + }, + { + "start": 1231.34, + "end": 1231.76, + "probability": 0.4912 + }, + { + "start": 1232.0, + "end": 1232.7, + "probability": 0.8788 + }, + { + "start": 1232.8, + "end": 1235.24, + "probability": 0.9149 + }, + { + "start": 1235.34, + "end": 1237.02, + "probability": 0.7197 + }, + { + "start": 1237.18, + "end": 1239.08, + "probability": 0.9771 + }, + { + "start": 1240.24, + "end": 1242.6, + "probability": 0.5991 + }, + { + "start": 1242.64, + "end": 1242.88, + "probability": 0.1713 + }, + { + "start": 1242.88, + "end": 1249.68, + "probability": 0.9915 + }, + { + "start": 1250.3, + "end": 1253.92, + "probability": 0.6849 + }, + { + "start": 1254.52, + "end": 1256.91, + "probability": 0.7882 + }, + { + "start": 1258.4, + "end": 1258.4, + "probability": 0.0178 + }, + { + "start": 1258.4, + "end": 1258.4, + "probability": 0.1362 + }, + { + "start": 1258.4, + "end": 1258.4, + "probability": 0.2153 + }, + { + "start": 1258.4, + "end": 1258.4, + "probability": 0.3936 + }, + { + "start": 1258.4, + "end": 1258.4, + "probability": 0.1297 + }, + { + "start": 1258.4, + "end": 1260.18, + "probability": 0.4996 + }, + { + "start": 1261.88, + "end": 1264.34, + "probability": 0.9097 + }, + { + "start": 1264.6, + "end": 1267.28, + "probability": 0.645 + }, + { + "start": 1267.48, + "end": 1273.36, + "probability": 0.9689 + }, + { + "start": 1274.04, + "end": 1277.98, + "probability": 0.96 + }, + { + "start": 1278.12, + "end": 1278.87, + "probability": 0.9628 + }, + { + "start": 1279.12, + "end": 1282.26, + "probability": 0.9501 + }, + { + "start": 1282.84, + "end": 1284.0, + "probability": 0.7241 + }, + { + "start": 1284.66, + "end": 1286.9, + "probability": 0.0276 + }, + { + "start": 1287.2, + "end": 1288.68, + "probability": 0.5663 + }, + { + "start": 1289.06, + "end": 1291.8, + "probability": 0.7744 + }, + { + "start": 1292.32, + "end": 1294.08, + "probability": 0.4354 + }, + { + "start": 1294.82, + "end": 1296.98, + "probability": 0.634 + }, + { + "start": 1297.36, + "end": 1298.02, + "probability": 0.7953 + }, + { + "start": 1299.74, + "end": 1301.34, + "probability": 0.4387 + }, + { + "start": 1301.7, + "end": 1307.34, + "probability": 0.9307 + }, + { + "start": 1307.42, + "end": 1307.96, + "probability": 0.713 + }, + { + "start": 1308.0, + "end": 1308.82, + "probability": 0.2643 + }, + { + "start": 1309.08, + "end": 1310.86, + "probability": 0.6846 + }, + { + "start": 1311.34, + "end": 1312.7, + "probability": 0.6933 + }, + { + "start": 1318.72, + "end": 1322.28, + "probability": 0.6937 + }, + { + "start": 1322.42, + "end": 1326.7, + "probability": 0.9832 + }, + { + "start": 1326.7, + "end": 1331.06, + "probability": 0.9972 + }, + { + "start": 1331.78, + "end": 1335.78, + "probability": 0.9979 + }, + { + "start": 1335.78, + "end": 1342.36, + "probability": 0.9951 + }, + { + "start": 1342.36, + "end": 1346.64, + "probability": 0.9978 + }, + { + "start": 1347.26, + "end": 1351.74, + "probability": 0.9855 + }, + { + "start": 1351.8, + "end": 1356.64, + "probability": 0.9985 + }, + { + "start": 1357.08, + "end": 1360.08, + "probability": 0.9932 + }, + { + "start": 1360.18, + "end": 1362.94, + "probability": 0.6013 + }, + { + "start": 1363.38, + "end": 1364.06, + "probability": 0.7616 + }, + { + "start": 1364.34, + "end": 1370.84, + "probability": 0.9899 + }, + { + "start": 1371.38, + "end": 1374.3, + "probability": 0.8031 + }, + { + "start": 1374.96, + "end": 1377.68, + "probability": 0.9899 + }, + { + "start": 1377.98, + "end": 1378.98, + "probability": 0.6912 + }, + { + "start": 1379.1, + "end": 1380.52, + "probability": 0.651 + }, + { + "start": 1380.78, + "end": 1384.6, + "probability": 0.9655 + }, + { + "start": 1384.68, + "end": 1386.55, + "probability": 0.9138 + }, + { + "start": 1387.38, + "end": 1392.52, + "probability": 0.991 + }, + { + "start": 1393.34, + "end": 1396.76, + "probability": 0.9967 + }, + { + "start": 1396.76, + "end": 1400.98, + "probability": 0.9996 + }, + { + "start": 1401.16, + "end": 1401.96, + "probability": 0.7179 + }, + { + "start": 1402.12, + "end": 1402.44, + "probability": 0.8539 + }, + { + "start": 1402.52, + "end": 1405.36, + "probability": 0.7079 + }, + { + "start": 1405.9, + "end": 1409.23, + "probability": 0.8815 + }, + { + "start": 1409.82, + "end": 1412.32, + "probability": 0.5804 + }, + { + "start": 1412.84, + "end": 1415.42, + "probability": 0.8142 + }, + { + "start": 1415.42, + "end": 1419.96, + "probability": 0.9825 + }, + { + "start": 1420.34, + "end": 1421.0, + "probability": 0.6328 + }, + { + "start": 1421.1, + "end": 1421.96, + "probability": 0.7114 + }, + { + "start": 1422.38, + "end": 1422.89, + "probability": 0.3867 + }, + { + "start": 1423.48, + "end": 1424.7, + "probability": 0.8826 + }, + { + "start": 1426.3, + "end": 1427.44, + "probability": 0.6073 + }, + { + "start": 1427.56, + "end": 1428.84, + "probability": 0.8385 + }, + { + "start": 1429.5, + "end": 1430.14, + "probability": 0.301 + }, + { + "start": 1431.85, + "end": 1440.52, + "probability": 0.8877 + }, + { + "start": 1440.58, + "end": 1441.02, + "probability": 0.242 + }, + { + "start": 1441.44, + "end": 1445.12, + "probability": 0.9902 + }, + { + "start": 1446.18, + "end": 1449.82, + "probability": 0.7814 + }, + { + "start": 1450.5, + "end": 1453.18, + "probability": 0.9768 + }, + { + "start": 1453.28, + "end": 1454.06, + "probability": 0.7541 + }, + { + "start": 1454.44, + "end": 1454.74, + "probability": 0.4752 + }, + { + "start": 1454.88, + "end": 1455.64, + "probability": 0.4703 + }, + { + "start": 1455.86, + "end": 1456.35, + "probability": 0.5689 + }, + { + "start": 1456.76, + "end": 1461.9, + "probability": 0.9572 + }, + { + "start": 1462.08, + "end": 1464.98, + "probability": 0.8302 + }, + { + "start": 1465.4, + "end": 1467.1, + "probability": 0.7252 + }, + { + "start": 1468.82, + "end": 1470.22, + "probability": 0.5026 + }, + { + "start": 1470.88, + "end": 1474.28, + "probability": 0.8661 + }, + { + "start": 1474.8, + "end": 1476.78, + "probability": 0.9815 + }, + { + "start": 1476.86, + "end": 1477.26, + "probability": 0.8983 + }, + { + "start": 1477.4, + "end": 1478.02, + "probability": 0.89 + }, + { + "start": 1478.4, + "end": 1480.84, + "probability": 0.9332 + }, + { + "start": 1480.94, + "end": 1481.82, + "probability": 0.7273 + }, + { + "start": 1482.28, + "end": 1485.42, + "probability": 0.8274 + }, + { + "start": 1485.48, + "end": 1486.54, + "probability": 0.4564 + }, + { + "start": 1487.1, + "end": 1487.24, + "probability": 0.4813 + }, + { + "start": 1487.32, + "end": 1488.6, + "probability": 0.9618 + }, + { + "start": 1488.62, + "end": 1489.89, + "probability": 0.9261 + }, + { + "start": 1490.04, + "end": 1491.34, + "probability": 0.9243 + }, + { + "start": 1492.12, + "end": 1493.62, + "probability": 0.833 + }, + { + "start": 1493.8, + "end": 1496.62, + "probability": 0.7896 + }, + { + "start": 1497.12, + "end": 1500.68, + "probability": 0.7605 + }, + { + "start": 1501.04, + "end": 1502.64, + "probability": 0.6128 + }, + { + "start": 1502.72, + "end": 1504.34, + "probability": 0.9934 + }, + { + "start": 1504.7, + "end": 1506.28, + "probability": 0.9814 + }, + { + "start": 1506.64, + "end": 1506.72, + "probability": 0.4286 + }, + { + "start": 1506.84, + "end": 1507.62, + "probability": 0.8095 + }, + { + "start": 1508.0, + "end": 1512.08, + "probability": 0.9966 + }, + { + "start": 1513.0, + "end": 1515.52, + "probability": 0.9798 + }, + { + "start": 1515.52, + "end": 1519.54, + "probability": 0.9921 + }, + { + "start": 1520.16, + "end": 1521.38, + "probability": 0.7297 + }, + { + "start": 1521.76, + "end": 1523.0, + "probability": 0.6704 + }, + { + "start": 1523.04, + "end": 1524.0, + "probability": 0.7562 + }, + { + "start": 1524.08, + "end": 1528.44, + "probability": 0.9546 + }, + { + "start": 1528.64, + "end": 1532.5, + "probability": 0.9136 + }, + { + "start": 1533.02, + "end": 1534.12, + "probability": 0.8238 + }, + { + "start": 1534.36, + "end": 1536.86, + "probability": 0.7157 + }, + { + "start": 1537.36, + "end": 1539.78, + "probability": 0.9927 + }, + { + "start": 1540.42, + "end": 1541.92, + "probability": 0.7512 + }, + { + "start": 1542.62, + "end": 1545.64, + "probability": 0.8765 + }, + { + "start": 1546.1, + "end": 1549.28, + "probability": 0.8801 + }, + { + "start": 1549.38, + "end": 1552.54, + "probability": 0.8737 + }, + { + "start": 1552.88, + "end": 1553.94, + "probability": 0.3444 + }, + { + "start": 1554.04, + "end": 1555.2, + "probability": 0.5029 + }, + { + "start": 1556.26, + "end": 1557.52, + "probability": 0.6122 + }, + { + "start": 1557.88, + "end": 1558.4, + "probability": 0.4857 + }, + { + "start": 1558.48, + "end": 1559.95, + "probability": 0.9821 + }, + { + "start": 1560.46, + "end": 1561.04, + "probability": 0.4176 + }, + { + "start": 1561.18, + "end": 1564.26, + "probability": 0.8604 + }, + { + "start": 1565.14, + "end": 1567.04, + "probability": 0.777 + }, + { + "start": 1567.5, + "end": 1568.42, + "probability": 0.4158 + }, + { + "start": 1570.98, + "end": 1572.94, + "probability": 0.7023 + }, + { + "start": 1573.16, + "end": 1575.5, + "probability": 0.8612 + }, + { + "start": 1575.5, + "end": 1579.24, + "probability": 0.895 + }, + { + "start": 1579.95, + "end": 1582.68, + "probability": 0.8716 + }, + { + "start": 1582.68, + "end": 1585.56, + "probability": 0.9947 + }, + { + "start": 1585.94, + "end": 1589.68, + "probability": 0.962 + }, + { + "start": 1590.32, + "end": 1594.36, + "probability": 0.9616 + }, + { + "start": 1594.36, + "end": 1599.26, + "probability": 0.9976 + }, + { + "start": 1599.62, + "end": 1601.74, + "probability": 0.7591 + }, + { + "start": 1602.08, + "end": 1607.04, + "probability": 0.9918 + }, + { + "start": 1607.22, + "end": 1609.9, + "probability": 0.9094 + }, + { + "start": 1610.12, + "end": 1611.08, + "probability": 0.7422 + }, + { + "start": 1611.36, + "end": 1614.08, + "probability": 0.7509 + }, + { + "start": 1614.16, + "end": 1614.84, + "probability": 0.6938 + }, + { + "start": 1614.94, + "end": 1616.16, + "probability": 0.7777 + }, + { + "start": 1616.62, + "end": 1619.26, + "probability": 0.837 + }, + { + "start": 1619.4, + "end": 1620.6, + "probability": 0.9881 + }, + { + "start": 1621.1, + "end": 1623.44, + "probability": 0.9855 + }, + { + "start": 1623.7, + "end": 1624.3, + "probability": 0.7284 + }, + { + "start": 1624.38, + "end": 1625.08, + "probability": 0.5453 + }, + { + "start": 1625.16, + "end": 1625.72, + "probability": 0.672 + }, + { + "start": 1625.92, + "end": 1626.26, + "probability": 0.4575 + }, + { + "start": 1626.88, + "end": 1627.76, + "probability": 0.9543 + }, + { + "start": 1627.8, + "end": 1631.08, + "probability": 0.9894 + }, + { + "start": 1631.08, + "end": 1634.98, + "probability": 0.8882 + }, + { + "start": 1635.8, + "end": 1636.52, + "probability": 0.9604 + }, + { + "start": 1636.62, + "end": 1640.78, + "probability": 0.9893 + }, + { + "start": 1641.4, + "end": 1644.78, + "probability": 0.6875 + }, + { + "start": 1645.22, + "end": 1649.48, + "probability": 0.9767 + }, + { + "start": 1649.48, + "end": 1654.12, + "probability": 0.9759 + }, + { + "start": 1654.54, + "end": 1657.68, + "probability": 0.7754 + }, + { + "start": 1657.68, + "end": 1660.3, + "probability": 0.8063 + }, + { + "start": 1660.54, + "end": 1662.64, + "probability": 0.7188 + }, + { + "start": 1662.7, + "end": 1663.2, + "probability": 0.5635 + }, + { + "start": 1663.32, + "end": 1665.7, + "probability": 0.8029 + }, + { + "start": 1666.06, + "end": 1667.0, + "probability": 0.8316 + }, + { + "start": 1667.3, + "end": 1667.56, + "probability": 0.5918 + }, + { + "start": 1667.66, + "end": 1669.54, + "probability": 0.9762 + }, + { + "start": 1669.88, + "end": 1671.71, + "probability": 0.9844 + }, + { + "start": 1672.62, + "end": 1675.3, + "probability": 0.699 + }, + { + "start": 1677.2, + "end": 1681.28, + "probability": 0.5281 + }, + { + "start": 1681.76, + "end": 1683.17, + "probability": 0.5234 + }, + { + "start": 1684.4, + "end": 1686.24, + "probability": 0.9048 + }, + { + "start": 1686.42, + "end": 1687.64, + "probability": 0.7622 + }, + { + "start": 1687.92, + "end": 1692.14, + "probability": 0.8859 + }, + { + "start": 1692.84, + "end": 1695.92, + "probability": 0.9699 + }, + { + "start": 1695.96, + "end": 1699.15, + "probability": 0.9863 + }, + { + "start": 1702.34, + "end": 1710.27, + "probability": 0.5099 + }, + { + "start": 1711.14, + "end": 1714.72, + "probability": 0.6018 + }, + { + "start": 1714.86, + "end": 1716.34, + "probability": 0.8151 + }, + { + "start": 1716.72, + "end": 1719.84, + "probability": 0.9929 + }, + { + "start": 1719.84, + "end": 1724.52, + "probability": 0.9625 + }, + { + "start": 1725.02, + "end": 1728.54, + "probability": 0.6517 + }, + { + "start": 1728.62, + "end": 1731.9, + "probability": 0.9424 + }, + { + "start": 1732.1, + "end": 1733.44, + "probability": 0.7918 + }, + { + "start": 1733.76, + "end": 1734.52, + "probability": 0.8609 + }, + { + "start": 1735.18, + "end": 1737.9, + "probability": 0.8636 + }, + { + "start": 1738.16, + "end": 1742.54, + "probability": 0.9236 + }, + { + "start": 1742.6, + "end": 1744.67, + "probability": 0.5571 + }, + { + "start": 1744.7, + "end": 1746.64, + "probability": 0.5226 + }, + { + "start": 1747.64, + "end": 1748.54, + "probability": 0.1203 + }, + { + "start": 1748.54, + "end": 1751.86, + "probability": 0.8976 + }, + { + "start": 1752.62, + "end": 1753.82, + "probability": 0.948 + }, + { + "start": 1754.26, + "end": 1755.58, + "probability": 0.6324 + }, + { + "start": 1756.24, + "end": 1758.74, + "probability": 0.9941 + }, + { + "start": 1759.74, + "end": 1760.8, + "probability": 0.9862 + }, + { + "start": 1761.8, + "end": 1766.62, + "probability": 0.8813 + }, + { + "start": 1767.2, + "end": 1769.2, + "probability": 0.9512 + }, + { + "start": 1770.12, + "end": 1772.52, + "probability": 0.7996 + }, + { + "start": 1773.54, + "end": 1776.1, + "probability": 0.6328 + }, + { + "start": 1777.56, + "end": 1780.36, + "probability": 0.7416 + }, + { + "start": 1780.4, + "end": 1780.4, + "probability": 0.1154 + }, + { + "start": 1780.4, + "end": 1781.92, + "probability": 0.44 + }, + { + "start": 1782.68, + "end": 1783.92, + "probability": 0.7572 + }, + { + "start": 1784.0, + "end": 1788.28, + "probability": 0.9952 + }, + { + "start": 1788.28, + "end": 1792.44, + "probability": 0.9983 + }, + { + "start": 1793.4, + "end": 1795.7, + "probability": 0.9763 + }, + { + "start": 1796.12, + "end": 1798.84, + "probability": 0.9815 + }, + { + "start": 1799.44, + "end": 1806.2, + "probability": 0.946 + }, + { + "start": 1806.34, + "end": 1807.24, + "probability": 0.7223 + }, + { + "start": 1807.88, + "end": 1809.1, + "probability": 0.9723 + }, + { + "start": 1809.16, + "end": 1811.8, + "probability": 0.9867 + }, + { + "start": 1812.38, + "end": 1817.2, + "probability": 0.9553 + }, + { + "start": 1817.72, + "end": 1819.78, + "probability": 0.9342 + }, + { + "start": 1820.52, + "end": 1822.94, + "probability": 0.9971 + }, + { + "start": 1824.0, + "end": 1827.36, + "probability": 0.7355 + }, + { + "start": 1827.44, + "end": 1830.6, + "probability": 0.998 + }, + { + "start": 1831.1, + "end": 1835.1, + "probability": 0.998 + }, + { + "start": 1835.78, + "end": 1839.52, + "probability": 0.9974 + }, + { + "start": 1840.16, + "end": 1842.1, + "probability": 0.9825 + }, + { + "start": 1842.26, + "end": 1842.78, + "probability": 0.7761 + }, + { + "start": 1843.24, + "end": 1843.88, + "probability": 0.661 + }, + { + "start": 1844.24, + "end": 1846.3, + "probability": 0.7429 + }, + { + "start": 1847.04, + "end": 1849.0, + "probability": 0.9939 + }, + { + "start": 1849.08, + "end": 1850.34, + "probability": 0.5048 + }, + { + "start": 1850.7, + "end": 1852.76, + "probability": 0.6151 + }, + { + "start": 1853.16, + "end": 1854.38, + "probability": 0.8512 + }, + { + "start": 1854.42, + "end": 1861.4, + "probability": 0.9661 + }, + { + "start": 1862.62, + "end": 1866.66, + "probability": 0.9373 + }, + { + "start": 1867.24, + "end": 1870.7, + "probability": 0.9885 + }, + { + "start": 1870.72, + "end": 1874.0, + "probability": 0.9648 + }, + { + "start": 1874.5, + "end": 1880.64, + "probability": 0.9636 + }, + { + "start": 1885.62, + "end": 1888.52, + "probability": 0.8753 + }, + { + "start": 1888.6, + "end": 1890.78, + "probability": 0.9661 + }, + { + "start": 1891.18, + "end": 1895.14, + "probability": 0.9963 + }, + { + "start": 1895.14, + "end": 1900.86, + "probability": 0.9841 + }, + { + "start": 1901.78, + "end": 1906.96, + "probability": 0.6816 + }, + { + "start": 1907.16, + "end": 1908.12, + "probability": 0.7298 + }, + { + "start": 1908.32, + "end": 1909.34, + "probability": 0.6788 + }, + { + "start": 1909.94, + "end": 1911.62, + "probability": 0.8981 + }, + { + "start": 1912.18, + "end": 1915.76, + "probability": 0.9954 + }, + { + "start": 1915.88, + "end": 1916.32, + "probability": 0.6949 + }, + { + "start": 1917.08, + "end": 1918.0, + "probability": 0.5276 + }, + { + "start": 1918.72, + "end": 1924.84, + "probability": 0.8631 + }, + { + "start": 1925.14, + "end": 1928.92, + "probability": 0.998 + }, + { + "start": 1929.04, + "end": 1935.88, + "probability": 0.9902 + }, + { + "start": 1936.16, + "end": 1936.58, + "probability": 0.7362 + }, + { + "start": 1936.9, + "end": 1937.38, + "probability": 0.5482 + }, + { + "start": 1937.46, + "end": 1939.7, + "probability": 0.7157 + }, + { + "start": 1943.43, + "end": 1946.96, + "probability": 0.8945 + }, + { + "start": 1948.0, + "end": 1948.54, + "probability": 0.6859 + }, + { + "start": 1948.68, + "end": 1949.08, + "probability": 0.8679 + }, + { + "start": 1949.2, + "end": 1953.32, + "probability": 0.967 + }, + { + "start": 1953.56, + "end": 1954.56, + "probability": 0.7218 + }, + { + "start": 1954.68, + "end": 1958.9, + "probability": 0.9709 + }, + { + "start": 1958.9, + "end": 1961.78, + "probability": 0.9893 + }, + { + "start": 1962.6, + "end": 1967.6, + "probability": 0.9585 + }, + { + "start": 1967.6, + "end": 1970.38, + "probability": 0.9596 + }, + { + "start": 1971.24, + "end": 1975.0, + "probability": 0.9947 + }, + { + "start": 1975.0, + "end": 1979.44, + "probability": 0.9865 + }, + { + "start": 1980.42, + "end": 1981.18, + "probability": 0.9542 + }, + { + "start": 1981.64, + "end": 1985.07, + "probability": 0.9957 + }, + { + "start": 1986.0, + "end": 1989.94, + "probability": 0.8699 + }, + { + "start": 1990.14, + "end": 1992.86, + "probability": 0.9731 + }, + { + "start": 1994.18, + "end": 1996.69, + "probability": 0.9954 + }, + { + "start": 1997.18, + "end": 2000.24, + "probability": 0.8991 + }, + { + "start": 2000.92, + "end": 2002.0, + "probability": 0.295 + }, + { + "start": 2002.06, + "end": 2003.2, + "probability": 0.5984 + }, + { + "start": 2003.38, + "end": 2009.04, + "probability": 0.9072 + }, + { + "start": 2009.14, + "end": 2010.22, + "probability": 0.7822 + }, + { + "start": 2010.68, + "end": 2011.26, + "probability": 0.6773 + }, + { + "start": 2011.4, + "end": 2016.68, + "probability": 0.9829 + }, + { + "start": 2017.08, + "end": 2018.24, + "probability": 0.8281 + }, + { + "start": 2018.38, + "end": 2021.1, + "probability": 0.9046 + }, + { + "start": 2021.26, + "end": 2021.52, + "probability": 0.7687 + }, + { + "start": 2022.48, + "end": 2024.06, + "probability": 0.702 + }, + { + "start": 2024.2, + "end": 2027.58, + "probability": 0.994 + }, + { + "start": 2027.58, + "end": 2031.54, + "probability": 0.9695 + }, + { + "start": 2033.08, + "end": 2033.86, + "probability": 0.3628 + }, + { + "start": 2034.26, + "end": 2037.28, + "probability": 0.978 + }, + { + "start": 2037.28, + "end": 2040.84, + "probability": 0.9967 + }, + { + "start": 2041.86, + "end": 2043.18, + "probability": 0.5075 + }, + { + "start": 2043.8, + "end": 2044.67, + "probability": 0.6543 + }, + { + "start": 2044.84, + "end": 2044.92, + "probability": 0.497 + }, + { + "start": 2045.14, + "end": 2050.96, + "probability": 0.9187 + }, + { + "start": 2051.94, + "end": 2052.82, + "probability": 0.3921 + }, + { + "start": 2052.94, + "end": 2054.99, + "probability": 0.2571 + }, + { + "start": 2055.08, + "end": 2056.24, + "probability": 0.1378 + }, + { + "start": 2058.42, + "end": 2060.62, + "probability": 0.909 + }, + { + "start": 2060.74, + "end": 2063.84, + "probability": 0.6966 + }, + { + "start": 2064.04, + "end": 2064.86, + "probability": 0.3885 + }, + { + "start": 2064.96, + "end": 2066.16, + "probability": 0.4814 + }, + { + "start": 2066.16, + "end": 2067.32, + "probability": 0.2759 + }, + { + "start": 2067.34, + "end": 2069.1, + "probability": 0.8446 + }, + { + "start": 2069.18, + "end": 2070.56, + "probability": 0.6732 + }, + { + "start": 2072.12, + "end": 2072.97, + "probability": 0.4503 + }, + { + "start": 2073.76, + "end": 2075.16, + "probability": 0.2803 + }, + { + "start": 2075.88, + "end": 2076.32, + "probability": 0.0048 + }, + { + "start": 2077.32, + "end": 2077.42, + "probability": 0.2514 + }, + { + "start": 2077.64, + "end": 2078.24, + "probability": 0.1834 + }, + { + "start": 2078.24, + "end": 2079.16, + "probability": 0.7178 + }, + { + "start": 2079.78, + "end": 2079.78, + "probability": 0.0039 + }, + { + "start": 2081.98, + "end": 2083.48, + "probability": 0.0773 + }, + { + "start": 2083.98, + "end": 2084.78, + "probability": 0.5596 + }, + { + "start": 2084.84, + "end": 2086.1, + "probability": 0.4986 + }, + { + "start": 2086.1, + "end": 2088.22, + "probability": 0.4482 + }, + { + "start": 2088.22, + "end": 2090.22, + "probability": 0.6695 + }, + { + "start": 2090.4, + "end": 2092.14, + "probability": 0.1952 + }, + { + "start": 2093.71, + "end": 2099.02, + "probability": 0.9446 + }, + { + "start": 2100.56, + "end": 2102.22, + "probability": 0.3944 + }, + { + "start": 2102.34, + "end": 2103.33, + "probability": 0.5273 + }, + { + "start": 2103.88, + "end": 2106.72, + "probability": 0.9901 + }, + { + "start": 2106.98, + "end": 2108.1, + "probability": 0.8669 + }, + { + "start": 2108.66, + "end": 2109.72, + "probability": 0.5074 + }, + { + "start": 2109.72, + "end": 2109.74, + "probability": 0.3005 + }, + { + "start": 2109.9, + "end": 2110.27, + "probability": 0.2075 + }, + { + "start": 2110.68, + "end": 2111.62, + "probability": 0.8128 + }, + { + "start": 2111.76, + "end": 2114.92, + "probability": 0.644 + }, + { + "start": 2115.04, + "end": 2116.58, + "probability": 0.4761 + }, + { + "start": 2117.09, + "end": 2119.26, + "probability": 0.8691 + }, + { + "start": 2119.66, + "end": 2121.92, + "probability": 0.9631 + }, + { + "start": 2122.06, + "end": 2123.34, + "probability": 0.6676 + }, + { + "start": 2123.44, + "end": 2124.88, + "probability": 0.9625 + }, + { + "start": 2125.76, + "end": 2127.96, + "probability": 0.9904 + }, + { + "start": 2131.94, + "end": 2133.52, + "probability": 0.6432 + }, + { + "start": 2133.64, + "end": 2136.94, + "probability": 0.8672 + }, + { + "start": 2136.94, + "end": 2137.68, + "probability": 0.0367 + }, + { + "start": 2137.72, + "end": 2138.4, + "probability": 0.7923 + }, + { + "start": 2139.02, + "end": 2140.88, + "probability": 0.941 + }, + { + "start": 2141.7, + "end": 2142.78, + "probability": 0.9633 + }, + { + "start": 2143.06, + "end": 2145.06, + "probability": 0.9702 + }, + { + "start": 2145.72, + "end": 2146.15, + "probability": 0.8234 + }, + { + "start": 2147.1, + "end": 2150.56, + "probability": 0.7938 + }, + { + "start": 2151.3, + "end": 2152.62, + "probability": 0.9351 + }, + { + "start": 2152.72, + "end": 2156.02, + "probability": 0.8511 + }, + { + "start": 2156.82, + "end": 2161.82, + "probability": 0.9808 + }, + { + "start": 2161.85, + "end": 2167.64, + "probability": 0.9612 + }, + { + "start": 2167.8, + "end": 2169.06, + "probability": 0.943 + }, + { + "start": 2169.2, + "end": 2170.3, + "probability": 0.9644 + }, + { + "start": 2170.44, + "end": 2174.38, + "probability": 0.9719 + }, + { + "start": 2174.38, + "end": 2179.5, + "probability": 0.9755 + }, + { + "start": 2179.58, + "end": 2183.85, + "probability": 0.9897 + }, + { + "start": 2184.6, + "end": 2184.9, + "probability": 0.5853 + }, + { + "start": 2184.94, + "end": 2189.94, + "probability": 0.9196 + }, + { + "start": 2191.62, + "end": 2191.62, + "probability": 0.027 + }, + { + "start": 2191.62, + "end": 2191.62, + "probability": 0.0639 + }, + { + "start": 2191.62, + "end": 2194.06, + "probability": 0.8159 + }, + { + "start": 2194.28, + "end": 2195.5, + "probability": 0.3584 + }, + { + "start": 2195.56, + "end": 2197.62, + "probability": 0.4948 + }, + { + "start": 2197.7, + "end": 2200.13, + "probability": 0.751 + }, + { + "start": 2200.38, + "end": 2201.84, + "probability": 0.2749 + }, + { + "start": 2202.12, + "end": 2202.12, + "probability": 0.0179 + }, + { + "start": 2202.12, + "end": 2202.12, + "probability": 0.3684 + }, + { + "start": 2202.12, + "end": 2203.62, + "probability": 0.7352 + }, + { + "start": 2203.68, + "end": 2205.0, + "probability": 0.8433 + }, + { + "start": 2205.08, + "end": 2205.64, + "probability": 0.9399 + }, + { + "start": 2205.76, + "end": 2206.3, + "probability": 0.8424 + }, + { + "start": 2206.3, + "end": 2207.1, + "probability": 0.963 + }, + { + "start": 2207.1, + "end": 2208.6, + "probability": 0.632 + }, + { + "start": 2208.64, + "end": 2213.14, + "probability": 0.895 + }, + { + "start": 2213.48, + "end": 2217.5, + "probability": 0.9622 + }, + { + "start": 2217.62, + "end": 2219.0, + "probability": 0.9034 + }, + { + "start": 2219.02, + "end": 2221.4, + "probability": 0.9902 + }, + { + "start": 2221.52, + "end": 2223.57, + "probability": 0.8659 + }, + { + "start": 2223.98, + "end": 2224.6, + "probability": 0.5945 + }, + { + "start": 2224.7, + "end": 2224.84, + "probability": 0.7545 + }, + { + "start": 2224.88, + "end": 2225.86, + "probability": 0.9851 + }, + { + "start": 2226.26, + "end": 2227.4, + "probability": 0.659 + }, + { + "start": 2227.7, + "end": 2228.02, + "probability": 0.8516 + }, + { + "start": 2228.14, + "end": 2232.18, + "probability": 0.9781 + }, + { + "start": 2232.64, + "end": 2235.76, + "probability": 0.9123 + }, + { + "start": 2235.76, + "end": 2236.24, + "probability": 0.4119 + }, + { + "start": 2236.42, + "end": 2238.26, + "probability": 0.8832 + }, + { + "start": 2238.32, + "end": 2241.32, + "probability": 0.8789 + }, + { + "start": 2241.52, + "end": 2241.7, + "probability": 0.6444 + }, + { + "start": 2241.88, + "end": 2245.12, + "probability": 0.9681 + }, + { + "start": 2245.72, + "end": 2249.24, + "probability": 0.9982 + }, + { + "start": 2249.36, + "end": 2250.29, + "probability": 0.9932 + }, + { + "start": 2250.86, + "end": 2253.9, + "probability": 0.9874 + }, + { + "start": 2254.72, + "end": 2255.98, + "probability": 0.9195 + }, + { + "start": 2256.06, + "end": 2259.16, + "probability": 0.9512 + }, + { + "start": 2259.16, + "end": 2262.58, + "probability": 0.9963 + }, + { + "start": 2262.74, + "end": 2263.92, + "probability": 0.9935 + }, + { + "start": 2264.26, + "end": 2269.12, + "probability": 0.9791 + }, + { + "start": 2269.48, + "end": 2271.22, + "probability": 0.0455 + }, + { + "start": 2271.48, + "end": 2272.78, + "probability": 0.9746 + }, + { + "start": 2272.96, + "end": 2273.38, + "probability": 0.2627 + }, + { + "start": 2273.42, + "end": 2274.6, + "probability": 0.737 + }, + { + "start": 2274.86, + "end": 2275.1, + "probability": 0.4235 + }, + { + "start": 2275.18, + "end": 2277.02, + "probability": 0.8953 + }, + { + "start": 2277.22, + "end": 2280.0, + "probability": 0.9202 + }, + { + "start": 2280.4, + "end": 2282.92, + "probability": 0.9762 + }, + { + "start": 2283.42, + "end": 2284.32, + "probability": 0.7347 + }, + { + "start": 2284.36, + "end": 2286.99, + "probability": 0.9922 + }, + { + "start": 2287.1, + "end": 2287.86, + "probability": 0.6932 + }, + { + "start": 2288.44, + "end": 2290.04, + "probability": 0.8538 + }, + { + "start": 2290.1, + "end": 2295.0, + "probability": 0.9736 + }, + { + "start": 2295.1, + "end": 2299.66, + "probability": 0.9912 + }, + { + "start": 2299.9, + "end": 2300.84, + "probability": 0.8179 + }, + { + "start": 2301.58, + "end": 2302.32, + "probability": 0.7041 + }, + { + "start": 2302.4, + "end": 2302.78, + "probability": 0.7652 + }, + { + "start": 2303.16, + "end": 2304.86, + "probability": 0.8993 + }, + { + "start": 2304.96, + "end": 2307.52, + "probability": 0.9946 + }, + { + "start": 2307.52, + "end": 2309.86, + "probability": 0.9905 + }, + { + "start": 2310.18, + "end": 2313.07, + "probability": 0.9935 + }, + { + "start": 2313.72, + "end": 2314.08, + "probability": 0.4494 + }, + { + "start": 2314.22, + "end": 2317.76, + "probability": 0.9921 + }, + { + "start": 2318.52, + "end": 2319.82, + "probability": 0.0254 + }, + { + "start": 2319.82, + "end": 2320.18, + "probability": 0.4374 + }, + { + "start": 2320.18, + "end": 2325.58, + "probability": 0.8204 + }, + { + "start": 2325.74, + "end": 2326.34, + "probability": 0.5442 + }, + { + "start": 2326.38, + "end": 2326.98, + "probability": 0.5343 + }, + { + "start": 2327.48, + "end": 2329.6, + "probability": 0.9852 + }, + { + "start": 2330.06, + "end": 2330.72, + "probability": 0.4745 + }, + { + "start": 2330.86, + "end": 2332.68, + "probability": 0.9731 + }, + { + "start": 2332.74, + "end": 2333.54, + "probability": 0.6886 + }, + { + "start": 2333.6, + "end": 2334.44, + "probability": 0.9515 + }, + { + "start": 2334.74, + "end": 2336.86, + "probability": 0.9597 + }, + { + "start": 2336.92, + "end": 2339.88, + "probability": 0.9003 + }, + { + "start": 2340.28, + "end": 2346.4, + "probability": 0.9829 + }, + { + "start": 2347.22, + "end": 2348.32, + "probability": 0.7517 + }, + { + "start": 2348.54, + "end": 2350.46, + "probability": 0.7475 + }, + { + "start": 2350.5, + "end": 2352.35, + "probability": 0.9492 + }, + { + "start": 2352.86, + "end": 2354.26, + "probability": 0.9033 + }, + { + "start": 2354.48, + "end": 2356.42, + "probability": 0.6484 + }, + { + "start": 2356.88, + "end": 2360.08, + "probability": 0.9722 + }, + { + "start": 2360.24, + "end": 2360.72, + "probability": 0.8542 + }, + { + "start": 2361.34, + "end": 2362.5, + "probability": 0.7624 + }, + { + "start": 2363.16, + "end": 2367.7, + "probability": 0.91 + }, + { + "start": 2368.42, + "end": 2368.93, + "probability": 0.9042 + }, + { + "start": 2369.46, + "end": 2370.72, + "probability": 0.8345 + }, + { + "start": 2370.76, + "end": 2374.82, + "probability": 0.9916 + }, + { + "start": 2374.96, + "end": 2378.75, + "probability": 0.9728 + }, + { + "start": 2379.16, + "end": 2383.98, + "probability": 0.8149 + }, + { + "start": 2384.24, + "end": 2385.68, + "probability": 0.7831 + }, + { + "start": 2385.9, + "end": 2388.54, + "probability": 0.9591 + }, + { + "start": 2388.86, + "end": 2389.36, + "probability": 0.4422 + }, + { + "start": 2390.06, + "end": 2391.42, + "probability": 0.979 + }, + { + "start": 2391.56, + "end": 2393.02, + "probability": 0.9313 + }, + { + "start": 2393.08, + "end": 2396.1, + "probability": 0.9678 + }, + { + "start": 2396.22, + "end": 2400.58, + "probability": 0.776 + }, + { + "start": 2400.9, + "end": 2402.98, + "probability": 0.9414 + }, + { + "start": 2403.14, + "end": 2404.14, + "probability": 0.5177 + }, + { + "start": 2405.04, + "end": 2407.08, + "probability": 0.9321 + }, + { + "start": 2407.86, + "end": 2413.52, + "probability": 0.9861 + }, + { + "start": 2414.34, + "end": 2415.06, + "probability": 0.5732 + }, + { + "start": 2416.42, + "end": 2418.34, + "probability": 0.8144 + }, + { + "start": 2419.16, + "end": 2421.8, + "probability": 0.9836 + }, + { + "start": 2422.96, + "end": 2423.66, + "probability": 0.6176 + }, + { + "start": 2423.82, + "end": 2424.62, + "probability": 0.9009 + }, + { + "start": 2424.7, + "end": 2428.05, + "probability": 0.9917 + }, + { + "start": 2429.06, + "end": 2437.76, + "probability": 0.7476 + }, + { + "start": 2437.8, + "end": 2440.58, + "probability": 0.7396 + }, + { + "start": 2440.92, + "end": 2441.84, + "probability": 0.8348 + }, + { + "start": 2441.96, + "end": 2443.06, + "probability": 0.9727 + }, + { + "start": 2443.14, + "end": 2445.24, + "probability": 0.9183 + }, + { + "start": 2445.8, + "end": 2447.48, + "probability": 0.2139 + }, + { + "start": 2447.68, + "end": 2449.1, + "probability": 0.4175 + }, + { + "start": 2449.24, + "end": 2449.9, + "probability": 0.6999 + }, + { + "start": 2450.02, + "end": 2451.02, + "probability": 0.5968 + }, + { + "start": 2451.6, + "end": 2452.3, + "probability": 0.9752 + }, + { + "start": 2453.02, + "end": 2454.8, + "probability": 0.9096 + }, + { + "start": 2455.6, + "end": 2460.1, + "probability": 0.9624 + }, + { + "start": 2460.66, + "end": 2463.68, + "probability": 0.9189 + }, + { + "start": 2463.78, + "end": 2465.24, + "probability": 0.875 + }, + { + "start": 2465.66, + "end": 2467.06, + "probability": 0.7605 + }, + { + "start": 2467.18, + "end": 2468.12, + "probability": 0.6995 + }, + { + "start": 2468.3, + "end": 2468.96, + "probability": 0.832 + }, + { + "start": 2469.02, + "end": 2469.65, + "probability": 0.6353 + }, + { + "start": 2470.98, + "end": 2473.68, + "probability": 0.9212 + }, + { + "start": 2474.72, + "end": 2475.26, + "probability": 0.9522 + }, + { + "start": 2476.42, + "end": 2477.88, + "probability": 0.9799 + }, + { + "start": 2478.04, + "end": 2480.26, + "probability": 0.8594 + }, + { + "start": 2480.4, + "end": 2481.34, + "probability": 0.9262 + }, + { + "start": 2483.15, + "end": 2486.84, + "probability": 0.8169 + }, + { + "start": 2486.92, + "end": 2492.08, + "probability": 0.9792 + }, + { + "start": 2495.2, + "end": 2496.54, + "probability": 0.7679 + }, + { + "start": 2497.1, + "end": 2498.28, + "probability": 0.9701 + }, + { + "start": 2498.74, + "end": 2500.36, + "probability": 0.3446 + }, + { + "start": 2501.16, + "end": 2502.82, + "probability": 0.0861 + }, + { + "start": 2503.0, + "end": 2505.24, + "probability": 0.8704 + }, + { + "start": 2505.24, + "end": 2506.5, + "probability": 0.9266 + }, + { + "start": 2506.6, + "end": 2511.68, + "probability": 0.8767 + }, + { + "start": 2512.48, + "end": 2514.54, + "probability": 0.9547 + }, + { + "start": 2514.56, + "end": 2517.18, + "probability": 0.6697 + }, + { + "start": 2517.28, + "end": 2517.7, + "probability": 0.3392 + }, + { + "start": 2517.8, + "end": 2519.02, + "probability": 0.6767 + }, + { + "start": 2519.3, + "end": 2519.72, + "probability": 0.0935 + }, + { + "start": 2519.94, + "end": 2520.24, + "probability": 0.2967 + }, + { + "start": 2521.34, + "end": 2522.94, + "probability": 0.6207 + }, + { + "start": 2523.04, + "end": 2524.12, + "probability": 0.6806 + }, + { + "start": 2524.24, + "end": 2525.6, + "probability": 0.2048 + }, + { + "start": 2526.38, + "end": 2526.84, + "probability": 0.028 + }, + { + "start": 2527.02, + "end": 2527.36, + "probability": 0.344 + }, + { + "start": 2527.58, + "end": 2530.72, + "probability": 0.7643 + }, + { + "start": 2530.78, + "end": 2532.98, + "probability": 0.8721 + }, + { + "start": 2533.04, + "end": 2534.84, + "probability": 0.7256 + }, + { + "start": 2534.96, + "end": 2536.54, + "probability": 0.7215 + }, + { + "start": 2537.34, + "end": 2538.08, + "probability": 0.7274 + }, + { + "start": 2538.6, + "end": 2541.42, + "probability": 0.6887 + }, + { + "start": 2541.52, + "end": 2543.5, + "probability": 0.9456 + }, + { + "start": 2543.6, + "end": 2547.9, + "probability": 0.569 + }, + { + "start": 2548.68, + "end": 2549.2, + "probability": 0.7802 + }, + { + "start": 2550.14, + "end": 2557.08, + "probability": 0.9534 + }, + { + "start": 2558.1, + "end": 2561.08, + "probability": 0.9904 + }, + { + "start": 2561.88, + "end": 2566.94, + "probability": 0.9622 + }, + { + "start": 2567.44, + "end": 2571.9, + "probability": 0.9942 + }, + { + "start": 2571.96, + "end": 2576.78, + "probability": 0.9759 + }, + { + "start": 2576.86, + "end": 2578.82, + "probability": 0.9158 + }, + { + "start": 2578.9, + "end": 2579.84, + "probability": 0.5456 + }, + { + "start": 2579.88, + "end": 2581.08, + "probability": 0.8739 + }, + { + "start": 2581.33, + "end": 2584.52, + "probability": 0.9326 + }, + { + "start": 2584.78, + "end": 2587.14, + "probability": 0.7121 + }, + { + "start": 2587.36, + "end": 2590.74, + "probability": 0.9651 + }, + { + "start": 2591.02, + "end": 2597.38, + "probability": 0.925 + }, + { + "start": 2597.76, + "end": 2600.32, + "probability": 0.52 + }, + { + "start": 2600.48, + "end": 2602.42, + "probability": 0.8271 + }, + { + "start": 2602.42, + "end": 2602.66, + "probability": 0.5272 + }, + { + "start": 2602.76, + "end": 2602.76, + "probability": 0.5163 + }, + { + "start": 2602.76, + "end": 2604.62, + "probability": 0.8897 + }, + { + "start": 2605.14, + "end": 2609.4, + "probability": 0.9613 + }, + { + "start": 2609.46, + "end": 2609.68, + "probability": 0.3267 + }, + { + "start": 2609.76, + "end": 2611.04, + "probability": 0.957 + }, + { + "start": 2611.12, + "end": 2612.28, + "probability": 0.9829 + }, + { + "start": 2612.72, + "end": 2613.51, + "probability": 0.5009 + }, + { + "start": 2614.26, + "end": 2615.74, + "probability": 0.9909 + }, + { + "start": 2616.66, + "end": 2618.4, + "probability": 0.7433 + }, + { + "start": 2618.52, + "end": 2619.98, + "probability": 0.9525 + }, + { + "start": 2620.1, + "end": 2620.59, + "probability": 0.7919 + }, + { + "start": 2620.96, + "end": 2622.8, + "probability": 0.8996 + }, + { + "start": 2622.92, + "end": 2623.02, + "probability": 0.3987 + }, + { + "start": 2623.26, + "end": 2626.28, + "probability": 0.8362 + }, + { + "start": 2626.68, + "end": 2626.68, + "probability": 0.0899 + }, + { + "start": 2626.68, + "end": 2627.46, + "probability": 0.6109 + }, + { + "start": 2627.5, + "end": 2631.06, + "probability": 0.9418 + }, + { + "start": 2631.12, + "end": 2632.92, + "probability": 0.8296 + }, + { + "start": 2633.0, + "end": 2633.96, + "probability": 0.8865 + }, + { + "start": 2635.82, + "end": 2637.52, + "probability": 0.0242 + }, + { + "start": 2637.66, + "end": 2638.4, + "probability": 0.0133 + }, + { + "start": 2638.4, + "end": 2639.72, + "probability": 0.2163 + }, + { + "start": 2639.78, + "end": 2641.36, + "probability": 0.4974 + }, + { + "start": 2641.36, + "end": 2643.62, + "probability": 0.5624 + }, + { + "start": 2644.02, + "end": 2644.86, + "probability": 0.732 + }, + { + "start": 2645.18, + "end": 2646.34, + "probability": 0.7034 + }, + { + "start": 2646.44, + "end": 2647.86, + "probability": 0.6433 + }, + { + "start": 2647.9, + "end": 2649.08, + "probability": 0.8969 + }, + { + "start": 2650.23, + "end": 2653.26, + "probability": 0.815 + }, + { + "start": 2653.68, + "end": 2654.84, + "probability": 0.8039 + }, + { + "start": 2655.38, + "end": 2658.6, + "probability": 0.8055 + }, + { + "start": 2659.7, + "end": 2659.7, + "probability": 0.0991 + }, + { + "start": 2659.7, + "end": 2660.12, + "probability": 0.2214 + }, + { + "start": 2660.88, + "end": 2660.98, + "probability": 0.1616 + }, + { + "start": 2660.98, + "end": 2660.98, + "probability": 0.5252 + }, + { + "start": 2660.98, + "end": 2661.74, + "probability": 0.0384 + }, + { + "start": 2662.4, + "end": 2662.98, + "probability": 0.345 + }, + { + "start": 2663.56, + "end": 2664.48, + "probability": 0.1515 + }, + { + "start": 2664.48, + "end": 2665.78, + "probability": 0.3356 + }, + { + "start": 2665.82, + "end": 2667.58, + "probability": 0.2919 + }, + { + "start": 2667.58, + "end": 2668.92, + "probability": 0.4771 + }, + { + "start": 2669.18, + "end": 2670.32, + "probability": 0.6425 + }, + { + "start": 2670.68, + "end": 2672.82, + "probability": 0.6079 + }, + { + "start": 2673.02, + "end": 2673.26, + "probability": 0.8991 + }, + { + "start": 2673.36, + "end": 2674.98, + "probability": 0.8294 + }, + { + "start": 2675.0, + "end": 2675.54, + "probability": 0.5416 + }, + { + "start": 2675.64, + "end": 2678.34, + "probability": 0.4905 + }, + { + "start": 2678.62, + "end": 2679.24, + "probability": 0.8269 + }, + { + "start": 2679.72, + "end": 2682.06, + "probability": 0.9871 + }, + { + "start": 2682.16, + "end": 2683.46, + "probability": 0.7898 + }, + { + "start": 2683.76, + "end": 2685.8, + "probability": 0.823 + }, + { + "start": 2685.88, + "end": 2686.99, + "probability": 0.4616 + }, + { + "start": 2687.14, + "end": 2687.9, + "probability": 0.7069 + }, + { + "start": 2688.02, + "end": 2689.99, + "probability": 0.998 + }, + { + "start": 2690.58, + "end": 2692.66, + "probability": 0.979 + }, + { + "start": 2693.42, + "end": 2694.78, + "probability": 0.9036 + }, + { + "start": 2695.6, + "end": 2699.68, + "probability": 0.844 + }, + { + "start": 2700.12, + "end": 2702.33, + "probability": 0.9661 + }, + { + "start": 2703.64, + "end": 2703.86, + "probability": 0.5149 + }, + { + "start": 2706.22, + "end": 2707.12, + "probability": 0.4648 + }, + { + "start": 2707.9, + "end": 2708.1, + "probability": 0.6769 + }, + { + "start": 2708.14, + "end": 2708.88, + "probability": 0.7678 + }, + { + "start": 2708.98, + "end": 2709.86, + "probability": 0.9606 + }, + { + "start": 2710.78, + "end": 2714.14, + "probability": 0.6142 + }, + { + "start": 2714.62, + "end": 2715.28, + "probability": 0.0077 + }, + { + "start": 2715.86, + "end": 2716.68, + "probability": 0.7047 + }, + { + "start": 2716.82, + "end": 2718.22, + "probability": 0.9911 + }, + { + "start": 2719.0, + "end": 2723.52, + "probability": 0.9443 + }, + { + "start": 2723.64, + "end": 2724.56, + "probability": 0.7695 + }, + { + "start": 2725.16, + "end": 2728.7, + "probability": 0.8745 + }, + { + "start": 2729.22, + "end": 2731.5, + "probability": 0.9491 + }, + { + "start": 2732.36, + "end": 2733.66, + "probability": 0.7053 + }, + { + "start": 2734.16, + "end": 2735.98, + "probability": 0.9458 + }, + { + "start": 2737.0, + "end": 2739.12, + "probability": 0.7187 + }, + { + "start": 2739.84, + "end": 2743.62, + "probability": 0.9987 + }, + { + "start": 2744.14, + "end": 2747.3, + "probability": 0.8866 + }, + { + "start": 2747.64, + "end": 2747.64, + "probability": 0.2538 + }, + { + "start": 2747.64, + "end": 2748.78, + "probability": 0.9948 + }, + { + "start": 2748.82, + "end": 2749.26, + "probability": 0.75 + }, + { + "start": 2749.42, + "end": 2750.44, + "probability": 0.9559 + }, + { + "start": 2750.54, + "end": 2751.98, + "probability": 0.7517 + }, + { + "start": 2752.22, + "end": 2756.62, + "probability": 0.752 + }, + { + "start": 2757.56, + "end": 2757.56, + "probability": 0.2491 + }, + { + "start": 2757.56, + "end": 2757.56, + "probability": 0.0792 + }, + { + "start": 2757.56, + "end": 2757.56, + "probability": 0.1801 + }, + { + "start": 2757.56, + "end": 2758.9, + "probability": 0.5656 + }, + { + "start": 2759.06, + "end": 2759.82, + "probability": 0.8821 + }, + { + "start": 2759.86, + "end": 2760.62, + "probability": 0.8877 + }, + { + "start": 2760.68, + "end": 2762.92, + "probability": 0.8684 + }, + { + "start": 2763.4, + "end": 2765.02, + "probability": 0.9251 + }, + { + "start": 2765.1, + "end": 2766.14, + "probability": 0.8066 + }, + { + "start": 2766.52, + "end": 2768.08, + "probability": 0.9984 + }, + { + "start": 2768.64, + "end": 2769.36, + "probability": 0.9539 + }, + { + "start": 2770.32, + "end": 2771.14, + "probability": 0.5104 + }, + { + "start": 2771.3, + "end": 2775.76, + "probability": 0.8291 + }, + { + "start": 2776.06, + "end": 2777.32, + "probability": 0.902 + }, + { + "start": 2778.04, + "end": 2780.2, + "probability": 0.9531 + }, + { + "start": 2780.42, + "end": 2785.8, + "probability": 0.9871 + }, + { + "start": 2787.4, + "end": 2790.6, + "probability": 0.9341 + }, + { + "start": 2791.66, + "end": 2792.99, + "probability": 0.8428 + }, + { + "start": 2793.88, + "end": 2795.1, + "probability": 0.532 + }, + { + "start": 2795.4, + "end": 2795.64, + "probability": 0.0118 + }, + { + "start": 2797.12, + "end": 2797.64, + "probability": 0.3074 + }, + { + "start": 2797.7, + "end": 2799.32, + "probability": 0.6519 + }, + { + "start": 2799.56, + "end": 2803.1, + "probability": 0.9496 + }, + { + "start": 2803.26, + "end": 2805.14, + "probability": 0.9907 + }, + { + "start": 2805.84, + "end": 2808.18, + "probability": 0.6604 + }, + { + "start": 2808.6, + "end": 2811.15, + "probability": 0.9739 + }, + { + "start": 2812.48, + "end": 2816.78, + "probability": 0.9743 + }, + { + "start": 2816.94, + "end": 2820.06, + "probability": 0.9406 + }, + { + "start": 2821.6, + "end": 2821.7, + "probability": 0.109 + }, + { + "start": 2821.7, + "end": 2826.06, + "probability": 0.9297 + }, + { + "start": 2826.22, + "end": 2827.94, + "probability": 0.9167 + }, + { + "start": 2828.52, + "end": 2828.78, + "probability": 0.4802 + }, + { + "start": 2828.9, + "end": 2834.88, + "probability": 0.9275 + }, + { + "start": 2834.96, + "end": 2836.18, + "probability": 0.9258 + }, + { + "start": 2836.52, + "end": 2837.38, + "probability": 0.8493 + }, + { + "start": 2837.76, + "end": 2838.22, + "probability": 0.6027 + }, + { + "start": 2838.58, + "end": 2839.57, + "probability": 0.9419 + }, + { + "start": 2839.8, + "end": 2840.59, + "probability": 0.8987 + }, + { + "start": 2841.2, + "end": 2843.36, + "probability": 0.9178 + }, + { + "start": 2843.72, + "end": 2845.12, + "probability": 0.973 + }, + { + "start": 2845.2, + "end": 2846.58, + "probability": 0.9207 + }, + { + "start": 2846.94, + "end": 2850.92, + "probability": 0.9321 + }, + { + "start": 2851.04, + "end": 2851.67, + "probability": 0.5463 + }, + { + "start": 2851.84, + "end": 2852.86, + "probability": 0.7968 + }, + { + "start": 2852.9, + "end": 2854.84, + "probability": 0.5974 + }, + { + "start": 2855.26, + "end": 2856.3, + "probability": 0.8579 + }, + { + "start": 2856.44, + "end": 2857.34, + "probability": 0.6545 + }, + { + "start": 2857.68, + "end": 2860.78, + "probability": 0.9121 + }, + { + "start": 2861.12, + "end": 2862.7, + "probability": 0.8379 + }, + { + "start": 2863.08, + "end": 2866.6, + "probability": 0.7917 + }, + { + "start": 2867.22, + "end": 2869.7, + "probability": 0.8793 + }, + { + "start": 2870.04, + "end": 2870.72, + "probability": 0.887 + }, + { + "start": 2870.94, + "end": 2872.44, + "probability": 0.9746 + }, + { + "start": 2873.16, + "end": 2874.28, + "probability": 0.9916 + }, + { + "start": 2874.4, + "end": 2875.5, + "probability": 0.6592 + }, + { + "start": 2876.0, + "end": 2877.16, + "probability": 0.8232 + }, + { + "start": 2877.64, + "end": 2881.96, + "probability": 0.914 + }, + { + "start": 2882.08, + "end": 2882.68, + "probability": 0.9622 + }, + { + "start": 2882.72, + "end": 2883.33, + "probability": 0.9417 + }, + { + "start": 2883.5, + "end": 2884.1, + "probability": 0.9893 + }, + { + "start": 2884.34, + "end": 2884.88, + "probability": 0.6641 + }, + { + "start": 2885.2, + "end": 2887.82, + "probability": 0.5943 + }, + { + "start": 2888.16, + "end": 2892.52, + "probability": 0.2187 + }, + { + "start": 2892.98, + "end": 2894.6, + "probability": 0.3434 + }, + { + "start": 2894.66, + "end": 2895.1, + "probability": 0.057 + }, + { + "start": 2895.16, + "end": 2897.32, + "probability": 0.3186 + }, + { + "start": 2897.36, + "end": 2897.94, + "probability": 0.1579 + }, + { + "start": 2898.24, + "end": 2898.3, + "probability": 0.041 + }, + { + "start": 2898.3, + "end": 2899.6, + "probability": 0.8126 + }, + { + "start": 2899.66, + "end": 2900.58, + "probability": 0.6967 + }, + { + "start": 2900.86, + "end": 2903.72, + "probability": 0.7311 + }, + { + "start": 2903.78, + "end": 2906.12, + "probability": 0.9521 + }, + { + "start": 2906.98, + "end": 2909.04, + "probability": 0.7915 + }, + { + "start": 2909.84, + "end": 2913.52, + "probability": 0.6381 + }, + { + "start": 2914.24, + "end": 2918.94, + "probability": 0.8481 + }, + { + "start": 2920.06, + "end": 2921.92, + "probability": 0.991 + }, + { + "start": 2922.96, + "end": 2924.84, + "probability": 0.9021 + }, + { + "start": 2925.04, + "end": 2926.45, + "probability": 0.9458 + }, + { + "start": 2926.58, + "end": 2929.34, + "probability": 0.9959 + }, + { + "start": 2930.12, + "end": 2932.86, + "probability": 0.996 + }, + { + "start": 2932.9, + "end": 2934.86, + "probability": 0.9709 + }, + { + "start": 2935.04, + "end": 2942.26, + "probability": 0.929 + }, + { + "start": 2942.66, + "end": 2944.8, + "probability": 0.9392 + }, + { + "start": 2944.9, + "end": 2946.26, + "probability": 0.959 + }, + { + "start": 2946.3, + "end": 2947.82, + "probability": 0.9609 + }, + { + "start": 2948.26, + "end": 2949.42, + "probability": 0.9972 + }, + { + "start": 2950.06, + "end": 2952.54, + "probability": 0.9864 + }, + { + "start": 2953.68, + "end": 2956.72, + "probability": 0.9693 + }, + { + "start": 2957.4, + "end": 2961.68, + "probability": 0.9957 + }, + { + "start": 2961.78, + "end": 2964.84, + "probability": 0.9275 + }, + { + "start": 2964.96, + "end": 2968.14, + "probability": 0.8177 + }, + { + "start": 2968.34, + "end": 2969.1, + "probability": 0.9684 + }, + { + "start": 2969.68, + "end": 2970.24, + "probability": 0.2897 + }, + { + "start": 2971.24, + "end": 2973.14, + "probability": 0.9502 + }, + { + "start": 2973.94, + "end": 2975.08, + "probability": 0.7311 + }, + { + "start": 2975.88, + "end": 2979.4, + "probability": 0.835 + }, + { + "start": 2981.28, + "end": 2983.24, + "probability": 0.8616 + }, + { + "start": 2983.92, + "end": 2988.12, + "probability": 0.7949 + }, + { + "start": 2990.0, + "end": 2991.93, + "probability": 0.9563 + }, + { + "start": 2993.14, + "end": 2996.6, + "probability": 0.967 + }, + { + "start": 2997.18, + "end": 2999.24, + "probability": 0.97 + }, + { + "start": 2999.72, + "end": 3001.1, + "probability": 0.9404 + }, + { + "start": 3001.16, + "end": 3002.32, + "probability": 0.9905 + }, + { + "start": 3002.42, + "end": 3002.92, + "probability": 0.4461 + }, + { + "start": 3003.16, + "end": 3004.23, + "probability": 0.9941 + }, + { + "start": 3004.32, + "end": 3005.21, + "probability": 0.9954 + }, + { + "start": 3005.34, + "end": 3006.37, + "probability": 0.946 + }, + { + "start": 3009.96, + "end": 3012.14, + "probability": 0.6952 + }, + { + "start": 3012.4, + "end": 3015.84, + "probability": 0.9918 + }, + { + "start": 3016.72, + "end": 3021.31, + "probability": 0.9783 + }, + { + "start": 3021.78, + "end": 3022.38, + "probability": 0.9689 + }, + { + "start": 3023.82, + "end": 3027.72, + "probability": 0.9723 + }, + { + "start": 3029.88, + "end": 3031.38, + "probability": 0.4614 + }, + { + "start": 3032.48, + "end": 3033.96, + "probability": 0.7815 + }, + { + "start": 3034.38, + "end": 3037.48, + "probability": 0.7114 + }, + { + "start": 3038.08, + "end": 3040.34, + "probability": 0.5561 + }, + { + "start": 3040.46, + "end": 3043.38, + "probability": 0.7357 + }, + { + "start": 3043.92, + "end": 3044.74, + "probability": 0.5378 + }, + { + "start": 3044.86, + "end": 3045.02, + "probability": 0.1845 + }, + { + "start": 3045.06, + "end": 3047.0, + "probability": 0.9837 + }, + { + "start": 3047.5, + "end": 3048.84, + "probability": 0.9937 + }, + { + "start": 3048.86, + "end": 3051.0, + "probability": 0.9836 + }, + { + "start": 3051.0, + "end": 3052.6, + "probability": 0.9925 + }, + { + "start": 3052.7, + "end": 3053.97, + "probability": 0.7402 + }, + { + "start": 3054.28, + "end": 3055.06, + "probability": 0.818 + }, + { + "start": 3055.18, + "end": 3056.2, + "probability": 0.8501 + }, + { + "start": 3056.32, + "end": 3058.54, + "probability": 0.3988 + }, + { + "start": 3058.68, + "end": 3058.68, + "probability": 0.2008 + }, + { + "start": 3058.68, + "end": 3059.02, + "probability": 0.5416 + }, + { + "start": 3059.08, + "end": 3060.0, + "probability": 0.3098 + }, + { + "start": 3060.2, + "end": 3061.5, + "probability": 0.626 + }, + { + "start": 3061.72, + "end": 3064.47, + "probability": 0.2244 + }, + { + "start": 3064.82, + "end": 3065.66, + "probability": 0.3526 + }, + { + "start": 3066.02, + "end": 3067.04, + "probability": 0.6133 + }, + { + "start": 3067.94, + "end": 3069.5, + "probability": 0.7135 + }, + { + "start": 3069.54, + "end": 3070.56, + "probability": 0.4331 + }, + { + "start": 3070.6, + "end": 3072.38, + "probability": 0.86 + }, + { + "start": 3073.8, + "end": 3074.4, + "probability": 0.7018 + }, + { + "start": 3074.74, + "end": 3075.58, + "probability": 0.589 + }, + { + "start": 3075.58, + "end": 3076.12, + "probability": 0.2594 + }, + { + "start": 3076.44, + "end": 3077.94, + "probability": 0.6029 + }, + { + "start": 3077.96, + "end": 3078.48, + "probability": 0.817 + }, + { + "start": 3078.5, + "end": 3080.12, + "probability": 0.741 + }, + { + "start": 3080.66, + "end": 3081.39, + "probability": 0.5848 + }, + { + "start": 3081.8, + "end": 3082.64, + "probability": 0.8861 + }, + { + "start": 3083.52, + "end": 3084.1, + "probability": 0.7966 + }, + { + "start": 3084.12, + "end": 3084.37, + "probability": 0.1246 + }, + { + "start": 3085.64, + "end": 3087.58, + "probability": 0.8337 + }, + { + "start": 3087.98, + "end": 3089.68, + "probability": 0.9515 + }, + { + "start": 3089.72, + "end": 3090.26, + "probability": 0.6715 + }, + { + "start": 3090.44, + "end": 3096.3, + "probability": 0.9377 + }, + { + "start": 3096.6, + "end": 3097.34, + "probability": 0.4791 + }, + { + "start": 3097.34, + "end": 3098.23, + "probability": 0.2596 + }, + { + "start": 3098.88, + "end": 3103.94, + "probability": 0.8712 + }, + { + "start": 3104.28, + "end": 3110.6, + "probability": 0.8556 + }, + { + "start": 3110.6, + "end": 3115.18, + "probability": 0.9664 + }, + { + "start": 3115.44, + "end": 3118.48, + "probability": 0.9773 + }, + { + "start": 3118.64, + "end": 3120.56, + "probability": 0.8718 + }, + { + "start": 3121.0, + "end": 3121.74, + "probability": 0.4097 + }, + { + "start": 3122.1, + "end": 3124.74, + "probability": 0.9882 + }, + { + "start": 3126.34, + "end": 3127.46, + "probability": 0.2512 + }, + { + "start": 3127.66, + "end": 3130.08, + "probability": 0.2064 + }, + { + "start": 3130.08, + "end": 3130.8, + "probability": 0.5545 + }, + { + "start": 3131.03, + "end": 3132.62, + "probability": 0.8545 + }, + { + "start": 3132.74, + "end": 3133.7, + "probability": 0.7308 + }, + { + "start": 3133.96, + "end": 3136.18, + "probability": 0.912 + }, + { + "start": 3137.12, + "end": 3138.18, + "probability": 0.8917 + }, + { + "start": 3139.04, + "end": 3139.86, + "probability": 0.8025 + }, + { + "start": 3140.48, + "end": 3142.74, + "probability": 0.9595 + }, + { + "start": 3143.72, + "end": 3144.62, + "probability": 0.5999 + }, + { + "start": 3146.78, + "end": 3152.36, + "probability": 0.7648 + }, + { + "start": 3153.14, + "end": 3154.88, + "probability": 0.8277 + }, + { + "start": 3155.44, + "end": 3158.74, + "probability": 0.8916 + }, + { + "start": 3159.38, + "end": 3162.74, + "probability": 0.9515 + }, + { + "start": 3163.64, + "end": 3165.57, + "probability": 0.9184 + }, + { + "start": 3166.48, + "end": 3167.39, + "probability": 0.9465 + }, + { + "start": 3168.08, + "end": 3171.38, + "probability": 0.9717 + }, + { + "start": 3172.44, + "end": 3175.16, + "probability": 0.9642 + }, + { + "start": 3175.32, + "end": 3176.92, + "probability": 0.9959 + }, + { + "start": 3177.3, + "end": 3178.36, + "probability": 0.446 + }, + { + "start": 3178.5, + "end": 3180.72, + "probability": 0.7428 + }, + { + "start": 3181.78, + "end": 3185.6, + "probability": 0.9257 + }, + { + "start": 3185.6, + "end": 3189.66, + "probability": 0.9891 + }, + { + "start": 3191.01, + "end": 3191.08, + "probability": 0.0097 + }, + { + "start": 3191.08, + "end": 3192.06, + "probability": 0.7937 + }, + { + "start": 3192.24, + "end": 3193.54, + "probability": 0.8042 + }, + { + "start": 3193.62, + "end": 3195.32, + "probability": 0.9979 + }, + { + "start": 3196.04, + "end": 3197.32, + "probability": 0.8643 + }, + { + "start": 3197.46, + "end": 3199.62, + "probability": 0.7729 + }, + { + "start": 3200.1, + "end": 3202.9, + "probability": 0.889 + }, + { + "start": 3203.22, + "end": 3205.92, + "probability": 0.9579 + }, + { + "start": 3206.68, + "end": 3209.34, + "probability": 0.9847 + }, + { + "start": 3209.94, + "end": 3213.7, + "probability": 0.5486 + }, + { + "start": 3214.08, + "end": 3217.82, + "probability": 0.9769 + }, + { + "start": 3218.18, + "end": 3222.55, + "probability": 0.9437 + }, + { + "start": 3224.1, + "end": 3225.86, + "probability": 0.6981 + }, + { + "start": 3226.42, + "end": 3230.84, + "probability": 0.9901 + }, + { + "start": 3230.84, + "end": 3234.3, + "probability": 0.7493 + }, + { + "start": 3234.92, + "end": 3240.56, + "probability": 0.9932 + }, + { + "start": 3240.56, + "end": 3243.8, + "probability": 0.964 + }, + { + "start": 3243.8, + "end": 3245.92, + "probability": 0.9917 + }, + { + "start": 3246.56, + "end": 3248.86, + "probability": 0.6963 + }, + { + "start": 3248.92, + "end": 3251.6, + "probability": 0.9531 + }, + { + "start": 3251.6, + "end": 3253.64, + "probability": 0.6781 + }, + { + "start": 3254.46, + "end": 3256.44, + "probability": 0.2974 + }, + { + "start": 3256.56, + "end": 3260.0, + "probability": 0.7957 + }, + { + "start": 3260.52, + "end": 3263.12, + "probability": 0.8083 + }, + { + "start": 3263.52, + "end": 3265.6, + "probability": 0.5231 + }, + { + "start": 3265.82, + "end": 3268.34, + "probability": 0.4958 + }, + { + "start": 3268.84, + "end": 3271.58, + "probability": 0.7474 + }, + { + "start": 3273.6, + "end": 3276.24, + "probability": 0.3705 + }, + { + "start": 3279.56, + "end": 3280.18, + "probability": 0.2926 + }, + { + "start": 3280.22, + "end": 3280.5, + "probability": 0.6171 + }, + { + "start": 3280.54, + "end": 3281.22, + "probability": 0.6773 + }, + { + "start": 3281.22, + "end": 3283.0, + "probability": 0.7404 + }, + { + "start": 3283.9, + "end": 3284.8, + "probability": 0.8467 + }, + { + "start": 3285.02, + "end": 3287.62, + "probability": 0.8794 + }, + { + "start": 3287.78, + "end": 3292.64, + "probability": 0.8586 + }, + { + "start": 3293.32, + "end": 3295.5, + "probability": 0.9912 + }, + { + "start": 3295.58, + "end": 3297.82, + "probability": 0.9629 + }, + { + "start": 3299.88, + "end": 3302.14, + "probability": 0.6062 + }, + { + "start": 3302.18, + "end": 3302.84, + "probability": 0.7241 + }, + { + "start": 3303.08, + "end": 3303.62, + "probability": 0.7042 + }, + { + "start": 3304.22, + "end": 3307.16, + "probability": 0.4751 + }, + { + "start": 3308.52, + "end": 3310.54, + "probability": 0.7957 + }, + { + "start": 3310.62, + "end": 3311.1, + "probability": 0.7488 + }, + { + "start": 3312.2, + "end": 3313.16, + "probability": 0.9093 + }, + { + "start": 3313.8, + "end": 3316.38, + "probability": 0.9951 + }, + { + "start": 3316.38, + "end": 3322.06, + "probability": 0.976 + }, + { + "start": 3323.04, + "end": 3323.44, + "probability": 0.3735 + }, + { + "start": 3325.12, + "end": 3325.78, + "probability": 0.0134 + }, + { + "start": 3325.78, + "end": 3326.96, + "probability": 0.6503 + }, + { + "start": 3327.32, + "end": 3329.36, + "probability": 0.6172 + }, + { + "start": 3331.18, + "end": 3332.5, + "probability": 0.9107 + }, + { + "start": 3333.38, + "end": 3334.86, + "probability": 0.849 + }, + { + "start": 3335.94, + "end": 3336.78, + "probability": 0.6572 + }, + { + "start": 3336.86, + "end": 3339.28, + "probability": 0.9904 + }, + { + "start": 3340.48, + "end": 3341.4, + "probability": 0.6336 + }, + { + "start": 3342.56, + "end": 3343.92, + "probability": 0.7165 + }, + { + "start": 3344.64, + "end": 3346.02, + "probability": 0.6515 + }, + { + "start": 3347.56, + "end": 3347.56, + "probability": 0.0012 + }, + { + "start": 3348.4, + "end": 3348.5, + "probability": 0.3583 + }, + { + "start": 3348.5, + "end": 3349.65, + "probability": 0.4908 + }, + { + "start": 3352.22, + "end": 3356.6, + "probability": 0.9528 + }, + { + "start": 3357.42, + "end": 3359.04, + "probability": 0.5533 + }, + { + "start": 3359.56, + "end": 3362.0, + "probability": 0.8938 + }, + { + "start": 3362.76, + "end": 3365.3, + "probability": 0.7947 + }, + { + "start": 3365.58, + "end": 3368.88, + "probability": 0.5519 + }, + { + "start": 3369.62, + "end": 3370.3, + "probability": 0.9949 + }, + { + "start": 3371.0, + "end": 3371.45, + "probability": 0.8026 + }, + { + "start": 3372.46, + "end": 3374.34, + "probability": 0.9265 + }, + { + "start": 3374.96, + "end": 3376.7, + "probability": 0.9869 + }, + { + "start": 3377.3, + "end": 3379.72, + "probability": 0.9971 + }, + { + "start": 3380.76, + "end": 3385.26, + "probability": 0.8015 + }, + { + "start": 3386.3, + "end": 3387.62, + "probability": 0.7428 + }, + { + "start": 3388.3, + "end": 3390.94, + "probability": 0.788 + }, + { + "start": 3391.14, + "end": 3393.2, + "probability": 0.9143 + }, + { + "start": 3393.28, + "end": 3394.83, + "probability": 0.9895 + }, + { + "start": 3395.82, + "end": 3399.56, + "probability": 0.9971 + }, + { + "start": 3401.16, + "end": 3402.02, + "probability": 0.8271 + }, + { + "start": 3402.16, + "end": 3403.54, + "probability": 0.946 + }, + { + "start": 3403.62, + "end": 3404.65, + "probability": 0.8118 + }, + { + "start": 3405.26, + "end": 3409.92, + "probability": 0.9829 + }, + { + "start": 3412.08, + "end": 3412.44, + "probability": 0.8176 + }, + { + "start": 3413.3, + "end": 3414.56, + "probability": 0.9716 + }, + { + "start": 3415.6, + "end": 3416.78, + "probability": 0.6364 + }, + { + "start": 3417.56, + "end": 3419.28, + "probability": 0.9163 + }, + { + "start": 3419.34, + "end": 3420.41, + "probability": 0.8108 + }, + { + "start": 3420.52, + "end": 3421.28, + "probability": 0.1065 + }, + { + "start": 3421.36, + "end": 3421.52, + "probability": 0.025 + }, + { + "start": 3421.78, + "end": 3426.66, + "probability": 0.6386 + }, + { + "start": 3426.84, + "end": 3432.34, + "probability": 0.8123 + }, + { + "start": 3432.48, + "end": 3433.34, + "probability": 0.3397 + }, + { + "start": 3433.42, + "end": 3434.8, + "probability": 0.9574 + }, + { + "start": 3434.88, + "end": 3436.42, + "probability": 0.7302 + }, + { + "start": 3437.58, + "end": 3437.58, + "probability": 0.3309 + }, + { + "start": 3437.58, + "end": 3438.66, + "probability": 0.5856 + }, + { + "start": 3438.9, + "end": 3443.88, + "probability": 0.8481 + }, + { + "start": 3444.06, + "end": 3444.72, + "probability": 0.474 + }, + { + "start": 3445.42, + "end": 3446.68, + "probability": 0.564 + }, + { + "start": 3446.78, + "end": 3450.46, + "probability": 0.9536 + }, + { + "start": 3450.58, + "end": 3451.44, + "probability": 0.195 + }, + { + "start": 3451.8, + "end": 3452.26, + "probability": 0.8011 + }, + { + "start": 3452.36, + "end": 3453.28, + "probability": 0.7571 + }, + { + "start": 3453.44, + "end": 3456.3, + "probability": 0.5602 + }, + { + "start": 3456.3, + "end": 3464.68, + "probability": 0.8132 + }, + { + "start": 3465.16, + "end": 3466.58, + "probability": 0.5596 + }, + { + "start": 3467.1, + "end": 3468.26, + "probability": 0.7776 + }, + { + "start": 3468.34, + "end": 3470.76, + "probability": 0.8467 + }, + { + "start": 3470.86, + "end": 3473.86, + "probability": 0.9478 + }, + { + "start": 3473.86, + "end": 3476.78, + "probability": 0.2519 + }, + { + "start": 3476.78, + "end": 3476.78, + "probability": 0.3225 + }, + { + "start": 3477.08, + "end": 3477.42, + "probability": 0.6963 + }, + { + "start": 3477.56, + "end": 3479.92, + "probability": 0.8767 + }, + { + "start": 3480.08, + "end": 3480.75, + "probability": 0.7612 + }, + { + "start": 3481.22, + "end": 3483.31, + "probability": 0.9506 + }, + { + "start": 3484.3, + "end": 3485.78, + "probability": 0.7192 + }, + { + "start": 3486.06, + "end": 3490.98, + "probability": 0.9359 + }, + { + "start": 3491.32, + "end": 3493.2, + "probability": 0.8981 + }, + { + "start": 3493.3, + "end": 3497.8, + "probability": 0.9673 + }, + { + "start": 3498.34, + "end": 3499.04, + "probability": 0.8221 + }, + { + "start": 3499.18, + "end": 3504.76, + "probability": 0.974 + }, + { + "start": 3505.56, + "end": 3506.92, + "probability": 0.7896 + }, + { + "start": 3507.44, + "end": 3508.58, + "probability": 0.6799 + }, + { + "start": 3509.06, + "end": 3515.02, + "probability": 0.99 + }, + { + "start": 3516.2, + "end": 3525.02, + "probability": 0.9904 + }, + { + "start": 3526.16, + "end": 3529.24, + "probability": 0.7769 + }, + { + "start": 3529.88, + "end": 3537.14, + "probability": 0.994 + }, + { + "start": 3538.4, + "end": 3540.98, + "probability": 0.8118 + }, + { + "start": 3541.72, + "end": 3544.64, + "probability": 0.9977 + }, + { + "start": 3545.64, + "end": 3550.06, + "probability": 0.6803 + }, + { + "start": 3550.6, + "end": 3557.3, + "probability": 0.995 + }, + { + "start": 3558.44, + "end": 3564.08, + "probability": 0.992 + }, + { + "start": 3564.8, + "end": 3569.62, + "probability": 0.9534 + }, + { + "start": 3570.78, + "end": 3573.18, + "probability": 0.9671 + }, + { + "start": 3574.0, + "end": 3577.94, + "probability": 0.9453 + }, + { + "start": 3578.5, + "end": 3585.04, + "probability": 0.8684 + }, + { + "start": 3586.22, + "end": 3591.08, + "probability": 0.9829 + }, + { + "start": 3591.08, + "end": 3595.88, + "probability": 0.9977 + }, + { + "start": 3596.56, + "end": 3601.26, + "probability": 0.987 + }, + { + "start": 3602.26, + "end": 3607.58, + "probability": 0.9911 + }, + { + "start": 3608.5, + "end": 3614.5, + "probability": 0.9141 + }, + { + "start": 3614.94, + "end": 3618.1, + "probability": 0.9726 + }, + { + "start": 3619.14, + "end": 3622.69, + "probability": 0.6738 + }, + { + "start": 3623.32, + "end": 3624.06, + "probability": 0.5748 + }, + { + "start": 3624.38, + "end": 3630.84, + "probability": 0.9824 + }, + { + "start": 3630.84, + "end": 3634.94, + "probability": 0.9964 + }, + { + "start": 3635.54, + "end": 3640.38, + "probability": 0.9941 + }, + { + "start": 3641.62, + "end": 3643.24, + "probability": 0.7789 + }, + { + "start": 3643.76, + "end": 3645.08, + "probability": 0.8405 + }, + { + "start": 3645.3, + "end": 3650.94, + "probability": 0.9779 + }, + { + "start": 3651.32, + "end": 3654.08, + "probability": 0.9937 + }, + { + "start": 3654.2, + "end": 3657.92, + "probability": 0.9985 + }, + { + "start": 3658.32, + "end": 3661.62, + "probability": 0.9927 + }, + { + "start": 3662.14, + "end": 3666.86, + "probability": 0.9967 + }, + { + "start": 3666.86, + "end": 3672.57, + "probability": 0.9716 + }, + { + "start": 3673.44, + "end": 3675.1, + "probability": 0.936 + }, + { + "start": 3675.64, + "end": 3678.12, + "probability": 0.998 + }, + { + "start": 3678.96, + "end": 3680.52, + "probability": 0.7228 + }, + { + "start": 3681.1, + "end": 3684.88, + "probability": 0.9227 + }, + { + "start": 3684.94, + "end": 3686.84, + "probability": 0.8922 + }, + { + "start": 3687.16, + "end": 3689.38, + "probability": 0.5617 + }, + { + "start": 3690.04, + "end": 3690.98, + "probability": 0.902 + }, + { + "start": 3691.84, + "end": 3692.16, + "probability": 0.885 + }, + { + "start": 3692.28, + "end": 3695.74, + "probability": 0.9937 + }, + { + "start": 3695.9, + "end": 3696.74, + "probability": 0.9457 + }, + { + "start": 3696.8, + "end": 3700.56, + "probability": 0.9611 + }, + { + "start": 3700.56, + "end": 3704.86, + "probability": 0.99 + }, + { + "start": 3704.9, + "end": 3707.34, + "probability": 0.6884 + }, + { + "start": 3708.18, + "end": 3710.32, + "probability": 0.9067 + }, + { + "start": 3711.22, + "end": 3712.36, + "probability": 0.7193 + }, + { + "start": 3712.5, + "end": 3713.16, + "probability": 0.5032 + }, + { + "start": 3713.48, + "end": 3716.58, + "probability": 0.9123 + }, + { + "start": 3716.66, + "end": 3717.86, + "probability": 0.9722 + }, + { + "start": 3719.24, + "end": 3725.36, + "probability": 0.9747 + }, + { + "start": 3725.52, + "end": 3727.72, + "probability": 0.3463 + }, + { + "start": 3727.9, + "end": 3731.86, + "probability": 0.5252 + }, + { + "start": 3731.86, + "end": 3736.52, + "probability": 0.8973 + }, + { + "start": 3737.12, + "end": 3739.7, + "probability": 0.1882 + }, + { + "start": 3740.12, + "end": 3743.78, + "probability": 0.8351 + }, + { + "start": 3743.94, + "end": 3746.64, + "probability": 0.7739 + }, + { + "start": 3747.06, + "end": 3748.66, + "probability": 0.9739 + }, + { + "start": 3749.64, + "end": 3753.5, + "probability": 0.9667 + }, + { + "start": 3753.5, + "end": 3757.0, + "probability": 0.9993 + }, + { + "start": 3757.84, + "end": 3761.92, + "probability": 0.983 + }, + { + "start": 3761.92, + "end": 3766.04, + "probability": 0.9996 + }, + { + "start": 3767.24, + "end": 3768.8, + "probability": 0.7964 + }, + { + "start": 3769.42, + "end": 3773.16, + "probability": 0.6905 + }, + { + "start": 3773.96, + "end": 3777.7, + "probability": 0.9955 + }, + { + "start": 3778.44, + "end": 3782.42, + "probability": 0.7407 + }, + { + "start": 3782.94, + "end": 3783.84, + "probability": 0.7427 + }, + { + "start": 3784.64, + "end": 3786.78, + "probability": 0.7886 + }, + { + "start": 3787.32, + "end": 3789.65, + "probability": 0.6406 + }, + { + "start": 3794.54, + "end": 3794.98, + "probability": 0.6794 + }, + { + "start": 3796.08, + "end": 3796.72, + "probability": 0.5702 + }, + { + "start": 3797.72, + "end": 3798.54, + "probability": 0.577 + }, + { + "start": 3827.18, + "end": 3827.88, + "probability": 0.4638 + }, + { + "start": 3827.88, + "end": 3828.96, + "probability": 0.635 + }, + { + "start": 3830.85, + "end": 3832.94, + "probability": 0.0206 + }, + { + "start": 3832.96, + "end": 3833.94, + "probability": 0.025 + }, + { + "start": 3833.94, + "end": 3834.02, + "probability": 0.0373 + }, + { + "start": 3834.02, + "end": 3834.42, + "probability": 0.166 + }, + { + "start": 3835.52, + "end": 3837.06, + "probability": 0.0444 + }, + { + "start": 3840.96, + "end": 3842.54, + "probability": 0.0181 + }, + { + "start": 3842.82, + "end": 3848.24, + "probability": 0.1298 + }, + { + "start": 3848.24, + "end": 3852.4, + "probability": 0.0253 + }, + { + "start": 3855.28, + "end": 3860.84, + "probability": 0.4641 + }, + { + "start": 3865.71, + "end": 3867.28, + "probability": 0.0559 + }, + { + "start": 3869.2, + "end": 3869.2, + "probability": 0.1421 + }, + { + "start": 3869.2, + "end": 3871.45, + "probability": 0.0712 + }, + { + "start": 3871.78, + "end": 3874.96, + "probability": 0.9241 + }, + { + "start": 3875.36, + "end": 3881.06, + "probability": 0.8068 + }, + { + "start": 3881.06, + "end": 3881.06, + "probability": 0.6933 + }, + { + "start": 3881.06, + "end": 3883.54, + "probability": 0.5527 + }, + { + "start": 3884.9, + "end": 3886.28, + "probability": 0.7336 + }, + { + "start": 3886.58, + "end": 3890.84, + "probability": 0.8834 + }, + { + "start": 3891.52, + "end": 3894.12, + "probability": 0.9912 + }, + { + "start": 3894.16, + "end": 3895.52, + "probability": 0.8554 + }, + { + "start": 3895.52, + "end": 3896.94, + "probability": 0.7102 + }, + { + "start": 3897.6, + "end": 3899.1, + "probability": 0.9203 + }, + { + "start": 3899.18, + "end": 3900.4, + "probability": 0.7189 + }, + { + "start": 3900.78, + "end": 3903.66, + "probability": 0.9127 + }, + { + "start": 3903.66, + "end": 3906.38, + "probability": 0.9932 + }, + { + "start": 3907.3, + "end": 3910.05, + "probability": 0.9919 + }, + { + "start": 3910.78, + "end": 3915.22, + "probability": 0.9889 + }, + { + "start": 3915.38, + "end": 3918.94, + "probability": 0.7748 + }, + { + "start": 3919.58, + "end": 3920.18, + "probability": 0.8801 + }, + { + "start": 3920.92, + "end": 3924.38, + "probability": 0.989 + }, + { + "start": 3924.38, + "end": 3927.12, + "probability": 0.9695 + }, + { + "start": 3928.2, + "end": 3930.38, + "probability": 0.8868 + }, + { + "start": 3930.58, + "end": 3931.62, + "probability": 0.4391 + }, + { + "start": 3931.72, + "end": 3935.84, + "probability": 0.8721 + }, + { + "start": 3935.84, + "end": 3939.82, + "probability": 0.9976 + }, + { + "start": 3940.64, + "end": 3943.38, + "probability": 0.9495 + }, + { + "start": 3943.38, + "end": 3947.18, + "probability": 0.9913 + }, + { + "start": 3947.22, + "end": 3951.02, + "probability": 0.9363 + }, + { + "start": 3952.1, + "end": 3956.04, + "probability": 0.5247 + }, + { + "start": 3956.12, + "end": 3959.16, + "probability": 0.9319 + }, + { + "start": 3959.6, + "end": 3963.3, + "probability": 0.7497 + }, + { + "start": 3963.92, + "end": 3963.92, + "probability": 0.1876 + }, + { + "start": 3963.92, + "end": 3967.48, + "probability": 0.8696 + }, + { + "start": 3969.26, + "end": 3970.02, + "probability": 0.7603 + }, + { + "start": 3970.16, + "end": 3974.68, + "probability": 0.9396 + }, + { + "start": 3974.96, + "end": 3976.88, + "probability": 0.8604 + }, + { + "start": 3977.2, + "end": 3980.06, + "probability": 0.7854 + }, + { + "start": 3980.24, + "end": 3981.48, + "probability": 0.9077 + }, + { + "start": 3982.1, + "end": 3985.16, + "probability": 0.9456 + }, + { + "start": 3986.62, + "end": 3990.06, + "probability": 0.9531 + }, + { + "start": 3990.06, + "end": 3993.32, + "probability": 0.9987 + }, + { + "start": 3993.98, + "end": 3997.26, + "probability": 0.9452 + }, + { + "start": 3997.36, + "end": 3998.22, + "probability": 0.8529 + }, + { + "start": 3998.3, + "end": 3999.04, + "probability": 0.726 + }, + { + "start": 3999.14, + "end": 4000.86, + "probability": 0.9468 + }, + { + "start": 4001.58, + "end": 4003.88, + "probability": 0.9953 + }, + { + "start": 4005.04, + "end": 4007.16, + "probability": 0.9844 + }, + { + "start": 4007.16, + "end": 4009.16, + "probability": 0.9604 + }, + { + "start": 4009.3, + "end": 4014.2, + "probability": 0.9962 + }, + { + "start": 4014.64, + "end": 4016.82, + "probability": 0.7969 + }, + { + "start": 4017.04, + "end": 4017.74, + "probability": 0.89 + }, + { + "start": 4018.16, + "end": 4018.82, + "probability": 0.5802 + }, + { + "start": 4018.96, + "end": 4023.66, + "probability": 0.8926 + }, + { + "start": 4023.84, + "end": 4024.34, + "probability": 0.6036 + }, + { + "start": 4025.04, + "end": 4028.66, + "probability": 0.9897 + }, + { + "start": 4029.18, + "end": 4029.34, + "probability": 0.4258 + }, + { + "start": 4029.48, + "end": 4029.86, + "probability": 0.7184 + }, + { + "start": 4030.24, + "end": 4032.52, + "probability": 0.9256 + }, + { + "start": 4032.6, + "end": 4033.58, + "probability": 0.8403 + }, + { + "start": 4034.04, + "end": 4038.32, + "probability": 0.9972 + }, + { + "start": 4038.58, + "end": 4038.68, + "probability": 0.4459 + }, + { + "start": 4038.94, + "end": 4040.04, + "probability": 0.7495 + }, + { + "start": 4040.14, + "end": 4041.72, + "probability": 0.5771 + }, + { + "start": 4041.74, + "end": 4046.94, + "probability": 0.9656 + }, + { + "start": 4047.4, + "end": 4047.9, + "probability": 0.529 + }, + { + "start": 4047.96, + "end": 4049.04, + "probability": 0.9204 + }, + { + "start": 4049.46, + "end": 4051.74, + "probability": 0.9883 + }, + { + "start": 4051.96, + "end": 4052.6, + "probability": 0.8747 + }, + { + "start": 4052.84, + "end": 4055.32, + "probability": 0.7541 + }, + { + "start": 4055.46, + "end": 4058.32, + "probability": 0.9502 + }, + { + "start": 4059.24, + "end": 4061.3, + "probability": 0.7787 + }, + { + "start": 4061.6, + "end": 4063.73, + "probability": 0.9386 + }, + { + "start": 4064.16, + "end": 4065.0, + "probability": 0.887 + }, + { + "start": 4065.22, + "end": 4066.46, + "probability": 0.9724 + }, + { + "start": 4067.14, + "end": 4067.64, + "probability": 0.9579 + }, + { + "start": 4067.72, + "end": 4068.6, + "probability": 0.832 + }, + { + "start": 4068.66, + "end": 4069.64, + "probability": 0.7395 + }, + { + "start": 4069.72, + "end": 4071.82, + "probability": 0.6187 + }, + { + "start": 4072.9, + "end": 4075.2, + "probability": 0.7898 + }, + { + "start": 4075.26, + "end": 4076.28, + "probability": 0.7856 + }, + { + "start": 4076.82, + "end": 4078.34, + "probability": 0.9802 + }, + { + "start": 4078.48, + "end": 4080.7, + "probability": 0.8868 + }, + { + "start": 4081.16, + "end": 4084.96, + "probability": 0.9976 + }, + { + "start": 4085.72, + "end": 4087.5, + "probability": 0.9795 + }, + { + "start": 4088.3, + "end": 4088.68, + "probability": 0.6024 + }, + { + "start": 4088.74, + "end": 4091.22, + "probability": 0.9893 + }, + { + "start": 4091.22, + "end": 4093.02, + "probability": 0.7416 + }, + { + "start": 4093.56, + "end": 4097.12, + "probability": 0.9924 + }, + { + "start": 4097.22, + "end": 4098.22, + "probability": 0.815 + }, + { + "start": 4098.58, + "end": 4101.46, + "probability": 0.9176 + }, + { + "start": 4101.72, + "end": 4104.3, + "probability": 0.7827 + }, + { + "start": 4104.68, + "end": 4104.8, + "probability": 0.2404 + }, + { + "start": 4104.92, + "end": 4105.12, + "probability": 0.5663 + }, + { + "start": 4105.12, + "end": 4105.64, + "probability": 0.4264 + }, + { + "start": 4105.72, + "end": 4108.52, + "probability": 0.5233 + }, + { + "start": 4109.0, + "end": 4114.68, + "probability": 0.9775 + }, + { + "start": 4115.1, + "end": 4116.8, + "probability": 0.951 + }, + { + "start": 4118.08, + "end": 4121.12, + "probability": 0.9943 + }, + { + "start": 4121.18, + "end": 4122.32, + "probability": 0.9862 + }, + { + "start": 4122.42, + "end": 4126.26, + "probability": 0.995 + }, + { + "start": 4126.78, + "end": 4129.22, + "probability": 0.9503 + }, + { + "start": 4131.68, + "end": 4134.22, + "probability": 0.9111 + }, + { + "start": 4134.22, + "end": 4138.4, + "probability": 0.6814 + }, + { + "start": 4138.86, + "end": 4141.38, + "probability": 0.9399 + }, + { + "start": 4141.38, + "end": 4143.84, + "probability": 0.9725 + }, + { + "start": 4144.46, + "end": 4146.14, + "probability": 0.9911 + }, + { + "start": 4146.48, + "end": 4147.58, + "probability": 0.8524 + }, + { + "start": 4147.68, + "end": 4150.56, + "probability": 0.9562 + }, + { + "start": 4150.84, + "end": 4153.2, + "probability": 0.9875 + }, + { + "start": 4153.66, + "end": 4156.59, + "probability": 0.9426 + }, + { + "start": 4157.14, + "end": 4157.94, + "probability": 0.9929 + }, + { + "start": 4158.24, + "end": 4163.82, + "probability": 0.9974 + }, + { + "start": 4164.2, + "end": 4166.84, + "probability": 0.811 + }, + { + "start": 4167.28, + "end": 4168.58, + "probability": 0.9269 + }, + { + "start": 4168.64, + "end": 4170.08, + "probability": 0.972 + }, + { + "start": 4170.2, + "end": 4172.9, + "probability": 0.7704 + }, + { + "start": 4172.96, + "end": 4175.34, + "probability": 0.6576 + }, + { + "start": 4175.7, + "end": 4180.92, + "probability": 0.8854 + }, + { + "start": 4181.0, + "end": 4182.88, + "probability": 0.9885 + }, + { + "start": 4183.3, + "end": 4185.4, + "probability": 0.89 + }, + { + "start": 4186.02, + "end": 4186.46, + "probability": 0.7404 + }, + { + "start": 4186.9, + "end": 4192.58, + "probability": 0.7508 + }, + { + "start": 4193.42, + "end": 4197.76, + "probability": 0.9345 + }, + { + "start": 4198.04, + "end": 4200.04, + "probability": 0.557 + }, + { + "start": 4200.04, + "end": 4201.2, + "probability": 0.6495 + }, + { + "start": 4201.2, + "end": 4201.74, + "probability": 0.809 + }, + { + "start": 4202.3, + "end": 4204.66, + "probability": 0.6912 + }, + { + "start": 4205.44, + "end": 4205.78, + "probability": 0.2174 + }, + { + "start": 4205.78, + "end": 4207.76, + "probability": 0.3442 + }, + { + "start": 4208.2, + "end": 4212.52, + "probability": 0.6667 + }, + { + "start": 4213.0, + "end": 4217.52, + "probability": 0.8516 + }, + { + "start": 4217.52, + "end": 4222.18, + "probability": 0.9899 + }, + { + "start": 4222.3, + "end": 4224.98, + "probability": 0.7827 + }, + { + "start": 4225.08, + "end": 4225.64, + "probability": 0.9722 + }, + { + "start": 4225.76, + "end": 4226.62, + "probability": 0.7151 + }, + { + "start": 4226.64, + "end": 4229.0, + "probability": 0.8505 + }, + { + "start": 4229.18, + "end": 4232.08, + "probability": 0.9945 + }, + { + "start": 4232.08, + "end": 4235.84, + "probability": 0.9954 + }, + { + "start": 4236.46, + "end": 4239.98, + "probability": 0.9655 + }, + { + "start": 4240.1, + "end": 4242.14, + "probability": 0.67 + }, + { + "start": 4242.32, + "end": 4244.72, + "probability": 0.8752 + }, + { + "start": 4245.6, + "end": 4250.06, + "probability": 0.9834 + }, + { + "start": 4250.16, + "end": 4250.84, + "probability": 0.5274 + }, + { + "start": 4251.06, + "end": 4251.42, + "probability": 0.6162 + }, + { + "start": 4251.56, + "end": 4252.06, + "probability": 0.4903 + }, + { + "start": 4252.5, + "end": 4254.26, + "probability": 0.9145 + }, + { + "start": 4254.74, + "end": 4255.31, + "probability": 0.7192 + }, + { + "start": 4255.88, + "end": 4259.12, + "probability": 0.9905 + }, + { + "start": 4259.52, + "end": 4262.24, + "probability": 0.9961 + }, + { + "start": 4262.34, + "end": 4265.46, + "probability": 0.9627 + }, + { + "start": 4265.78, + "end": 4266.28, + "probability": 0.7745 + }, + { + "start": 4266.34, + "end": 4268.62, + "probability": 0.4322 + }, + { + "start": 4269.4, + "end": 4273.88, + "probability": 0.9816 + }, + { + "start": 4274.6, + "end": 4277.8, + "probability": 0.8931 + }, + { + "start": 4278.36, + "end": 4282.58, + "probability": 0.9753 + }, + { + "start": 4283.1, + "end": 4285.78, + "probability": 0.9913 + }, + { + "start": 4286.5, + "end": 4288.4, + "probability": 0.9898 + }, + { + "start": 4288.84, + "end": 4289.48, + "probability": 0.8882 + }, + { + "start": 4289.54, + "end": 4290.28, + "probability": 0.9712 + }, + { + "start": 4290.48, + "end": 4291.24, + "probability": 0.8476 + }, + { + "start": 4291.34, + "end": 4295.02, + "probability": 0.9388 + }, + { + "start": 4295.94, + "end": 4302.6, + "probability": 0.7837 + }, + { + "start": 4302.6, + "end": 4308.76, + "probability": 0.9893 + }, + { + "start": 4309.18, + "end": 4311.9, + "probability": 0.9773 + }, + { + "start": 4311.96, + "end": 4314.52, + "probability": 0.8867 + }, + { + "start": 4314.84, + "end": 4316.58, + "probability": 0.9673 + }, + { + "start": 4316.7, + "end": 4320.71, + "probability": 0.9878 + }, + { + "start": 4321.44, + "end": 4327.38, + "probability": 0.9916 + }, + { + "start": 4327.54, + "end": 4328.95, + "probability": 0.9889 + }, + { + "start": 4330.14, + "end": 4333.81, + "probability": 0.9093 + }, + { + "start": 4334.14, + "end": 4334.76, + "probability": 0.7796 + }, + { + "start": 4334.8, + "end": 4335.64, + "probability": 0.988 + }, + { + "start": 4336.18, + "end": 4339.14, + "probability": 0.9989 + }, + { + "start": 4339.24, + "end": 4340.76, + "probability": 0.9956 + }, + { + "start": 4341.1, + "end": 4341.32, + "probability": 0.7825 + }, + { + "start": 4341.58, + "end": 4345.02, + "probability": 0.7296 + }, + { + "start": 4345.38, + "end": 4348.16, + "probability": 0.9944 + }, + { + "start": 4348.72, + "end": 4350.36, + "probability": 0.9351 + }, + { + "start": 4361.22, + "end": 4361.8, + "probability": 0.7561 + }, + { + "start": 4369.22, + "end": 4370.32, + "probability": 0.5435 + }, + { + "start": 4370.34, + "end": 4373.66, + "probability": 0.5553 + }, + { + "start": 4373.78, + "end": 4375.4, + "probability": 0.9126 + }, + { + "start": 4383.7, + "end": 4388.48, + "probability": 0.6537 + }, + { + "start": 4394.71, + "end": 4399.56, + "probability": 0.4462 + }, + { + "start": 4400.12, + "end": 4402.18, + "probability": 0.9277 + }, + { + "start": 4402.3, + "end": 4403.08, + "probability": 0.9226 + }, + { + "start": 4404.08, + "end": 4405.28, + "probability": 0.9636 + }, + { + "start": 4405.94, + "end": 4409.06, + "probability": 0.5363 + }, + { + "start": 4409.48, + "end": 4412.08, + "probability": 0.605 + }, + { + "start": 4412.82, + "end": 4415.53, + "probability": 0.7326 + }, + { + "start": 4416.92, + "end": 4421.18, + "probability": 0.7819 + }, + { + "start": 4421.38, + "end": 4421.86, + "probability": 0.5397 + }, + { + "start": 4422.2, + "end": 4423.42, + "probability": 0.6018 + }, + { + "start": 4423.52, + "end": 4423.58, + "probability": 0.1124 + }, + { + "start": 4423.58, + "end": 4426.26, + "probability": 0.5256 + }, + { + "start": 4426.96, + "end": 4427.86, + "probability": 0.2476 + }, + { + "start": 4427.86, + "end": 4428.4, + "probability": 0.3946 + }, + { + "start": 4428.4, + "end": 4429.4, + "probability": 0.216 + }, + { + "start": 4429.58, + "end": 4430.12, + "probability": 0.4253 + }, + { + "start": 4431.31, + "end": 4434.82, + "probability": 0.8677 + }, + { + "start": 4435.44, + "end": 4438.54, + "probability": 0.1595 + }, + { + "start": 4438.92, + "end": 4439.28, + "probability": 0.0314 + }, + { + "start": 4440.64, + "end": 4440.96, + "probability": 0.02 + }, + { + "start": 4440.96, + "end": 4440.96, + "probability": 0.3751 + }, + { + "start": 4440.96, + "end": 4440.96, + "probability": 0.4373 + }, + { + "start": 4440.96, + "end": 4440.96, + "probability": 0.5121 + }, + { + "start": 4440.96, + "end": 4440.96, + "probability": 0.0286 + }, + { + "start": 4440.96, + "end": 4440.96, + "probability": 0.0241 + }, + { + "start": 4440.96, + "end": 4440.96, + "probability": 0.0145 + }, + { + "start": 4440.96, + "end": 4444.44, + "probability": 0.3739 + }, + { + "start": 4444.5, + "end": 4445.3, + "probability": 0.6868 + }, + { + "start": 4445.4, + "end": 4448.35, + "probability": 0.8747 + }, + { + "start": 4449.52, + "end": 4449.86, + "probability": 0.8417 + }, + { + "start": 4449.96, + "end": 4450.2, + "probability": 0.779 + }, + { + "start": 4450.22, + "end": 4451.9, + "probability": 0.8999 + }, + { + "start": 4452.26, + "end": 4452.78, + "probability": 0.5901 + }, + { + "start": 4453.58, + "end": 4458.46, + "probability": 0.9298 + }, + { + "start": 4461.36, + "end": 4461.54, + "probability": 0.0186 + }, + { + "start": 4461.7, + "end": 4461.82, + "probability": 0.0914 + }, + { + "start": 4461.82, + "end": 4461.82, + "probability": 0.474 + }, + { + "start": 4461.82, + "end": 4462.38, + "probability": 0.5994 + }, + { + "start": 4462.52, + "end": 4463.01, + "probability": 0.8392 + }, + { + "start": 4463.1, + "end": 4463.52, + "probability": 0.5306 + }, + { + "start": 4464.7, + "end": 4465.28, + "probability": 0.614 + }, + { + "start": 4465.98, + "end": 4466.14, + "probability": 0.348 + }, + { + "start": 4466.24, + "end": 4467.82, + "probability": 0.4507 + }, + { + "start": 4469.14, + "end": 4469.92, + "probability": 0.7245 + }, + { + "start": 4470.46, + "end": 4472.62, + "probability": 0.9196 + }, + { + "start": 4474.16, + "end": 4479.13, + "probability": 0.9556 + }, + { + "start": 4480.06, + "end": 4484.18, + "probability": 0.9096 + }, + { + "start": 4484.18, + "end": 4486.4, + "probability": 0.9976 + }, + { + "start": 4487.02, + "end": 4489.3, + "probability": 0.8588 + }, + { + "start": 4489.78, + "end": 4494.8, + "probability": 0.9937 + }, + { + "start": 4495.22, + "end": 4496.2, + "probability": 0.8354 + }, + { + "start": 4498.02, + "end": 4499.78, + "probability": 0.5875 + }, + { + "start": 4500.04, + "end": 4502.8, + "probability": 0.8316 + }, + { + "start": 4503.2, + "end": 4505.1, + "probability": 0.9447 + }, + { + "start": 4505.1, + "end": 4507.72, + "probability": 0.9767 + }, + { + "start": 4508.26, + "end": 4509.99, + "probability": 0.841 + }, + { + "start": 4511.0, + "end": 4512.04, + "probability": 0.8874 + }, + { + "start": 4512.1, + "end": 4512.74, + "probability": 0.6792 + }, + { + "start": 4513.28, + "end": 4516.04, + "probability": 0.955 + }, + { + "start": 4516.18, + "end": 4517.74, + "probability": 0.8465 + }, + { + "start": 4518.24, + "end": 4520.74, + "probability": 0.9354 + }, + { + "start": 4521.16, + "end": 4522.59, + "probability": 0.9067 + }, + { + "start": 4523.2, + "end": 4525.0, + "probability": 0.8887 + }, + { + "start": 4526.0, + "end": 4526.79, + "probability": 0.8809 + }, + { + "start": 4528.38, + "end": 4530.78, + "probability": 0.511 + }, + { + "start": 4530.94, + "end": 4531.22, + "probability": 0.8062 + }, + { + "start": 4531.64, + "end": 4535.94, + "probability": 0.7412 + }, + { + "start": 4536.5, + "end": 4537.08, + "probability": 0.574 + }, + { + "start": 4537.36, + "end": 4538.56, + "probability": 0.8604 + }, + { + "start": 4539.0, + "end": 4541.2, + "probability": 0.4714 + }, + { + "start": 4541.32, + "end": 4543.38, + "probability": 0.931 + }, + { + "start": 4543.4, + "end": 4545.6, + "probability": 0.6766 + }, + { + "start": 4545.74, + "end": 4547.51, + "probability": 0.9502 + }, + { + "start": 4547.68, + "end": 4549.5, + "probability": 0.9938 + }, + { + "start": 4550.04, + "end": 4551.36, + "probability": 0.8757 + }, + { + "start": 4551.42, + "end": 4554.48, + "probability": 0.9666 + }, + { + "start": 4554.56, + "end": 4555.34, + "probability": 0.8326 + }, + { + "start": 4555.96, + "end": 4558.48, + "probability": 0.8594 + }, + { + "start": 4559.8, + "end": 4561.16, + "probability": 0.6494 + }, + { + "start": 4561.26, + "end": 4562.54, + "probability": 0.6805 + }, + { + "start": 4562.58, + "end": 4564.04, + "probability": 0.8946 + }, + { + "start": 4564.1, + "end": 4567.98, + "probability": 0.9819 + }, + { + "start": 4568.46, + "end": 4572.54, + "probability": 0.7736 + }, + { + "start": 4572.66, + "end": 4573.32, + "probability": 0.8117 + }, + { + "start": 4573.42, + "end": 4575.68, + "probability": 0.8635 + }, + { + "start": 4576.18, + "end": 4579.18, + "probability": 0.972 + }, + { + "start": 4579.3, + "end": 4583.9, + "probability": 0.9519 + }, + { + "start": 4584.9, + "end": 4588.8, + "probability": 0.9854 + }, + { + "start": 4589.38, + "end": 4592.8, + "probability": 0.969 + }, + { + "start": 4592.8, + "end": 4596.1, + "probability": 0.9813 + }, + { + "start": 4597.2, + "end": 4599.98, + "probability": 0.9288 + }, + { + "start": 4600.46, + "end": 4602.58, + "probability": 0.8529 + }, + { + "start": 4602.86, + "end": 4605.46, + "probability": 0.9458 + }, + { + "start": 4605.96, + "end": 4607.54, + "probability": 0.9879 + }, + { + "start": 4607.9, + "end": 4610.92, + "probability": 0.9949 + }, + { + "start": 4611.32, + "end": 4613.66, + "probability": 0.9403 + }, + { + "start": 4614.02, + "end": 4618.48, + "probability": 0.9905 + }, + { + "start": 4619.08, + "end": 4621.82, + "probability": 0.915 + }, + { + "start": 4622.54, + "end": 4626.46, + "probability": 0.9941 + }, + { + "start": 4627.14, + "end": 4628.46, + "probability": 0.9845 + }, + { + "start": 4628.74, + "end": 4633.46, + "probability": 0.9922 + }, + { + "start": 4634.08, + "end": 4636.88, + "probability": 0.9904 + }, + { + "start": 4637.92, + "end": 4641.42, + "probability": 0.9761 + }, + { + "start": 4642.04, + "end": 4643.32, + "probability": 0.9716 + }, + { + "start": 4643.44, + "end": 4645.28, + "probability": 0.6864 + }, + { + "start": 4645.62, + "end": 4647.92, + "probability": 0.8286 + }, + { + "start": 4648.52, + "end": 4650.44, + "probability": 0.9941 + }, + { + "start": 4650.44, + "end": 4655.0, + "probability": 0.9672 + }, + { + "start": 4656.74, + "end": 4659.26, + "probability": 0.8134 + }, + { + "start": 4660.04, + "end": 4664.04, + "probability": 0.9434 + }, + { + "start": 4664.2, + "end": 4666.52, + "probability": 0.8953 + }, + { + "start": 4666.62, + "end": 4668.82, + "probability": 0.9425 + }, + { + "start": 4669.3, + "end": 4671.12, + "probability": 0.9983 + }, + { + "start": 4671.82, + "end": 4672.98, + "probability": 0.8453 + }, + { + "start": 4673.06, + "end": 4674.32, + "probability": 0.7054 + }, + { + "start": 4674.58, + "end": 4675.32, + "probability": 0.4509 + }, + { + "start": 4675.92, + "end": 4679.92, + "probability": 0.9644 + }, + { + "start": 4680.56, + "end": 4682.16, + "probability": 0.9956 + }, + { + "start": 4682.16, + "end": 4685.12, + "probability": 0.7393 + }, + { + "start": 4685.9, + "end": 4686.32, + "probability": 0.3209 + }, + { + "start": 4686.42, + "end": 4687.98, + "probability": 0.7476 + }, + { + "start": 4688.08, + "end": 4691.08, + "probability": 0.9959 + }, + { + "start": 4691.52, + "end": 4694.42, + "probability": 0.9822 + }, + { + "start": 4695.02, + "end": 4695.2, + "probability": 0.4922 + }, + { + "start": 4695.3, + "end": 4695.76, + "probability": 0.9007 + }, + { + "start": 4696.12, + "end": 4698.72, + "probability": 0.7865 + }, + { + "start": 4699.07, + "end": 4702.9, + "probability": 0.9521 + }, + { + "start": 4704.22, + "end": 4706.3, + "probability": 0.9117 + }, + { + "start": 4706.56, + "end": 4708.92, + "probability": 0.7793 + }, + { + "start": 4709.28, + "end": 4713.26, + "probability": 0.8969 + }, + { + "start": 4713.34, + "end": 4714.92, + "probability": 0.9259 + }, + { + "start": 4715.28, + "end": 4716.84, + "probability": 0.9648 + }, + { + "start": 4717.16, + "end": 4718.66, + "probability": 0.8244 + }, + { + "start": 4719.04, + "end": 4721.42, + "probability": 0.9432 + }, + { + "start": 4721.62, + "end": 4723.62, + "probability": 0.8079 + }, + { + "start": 4723.72, + "end": 4724.91, + "probability": 0.947 + }, + { + "start": 4725.5, + "end": 4728.72, + "probability": 0.9731 + }, + { + "start": 4728.72, + "end": 4735.6, + "probability": 0.9962 + }, + { + "start": 4735.68, + "end": 4738.3, + "probability": 0.9963 + }, + { + "start": 4738.42, + "end": 4739.74, + "probability": 0.7275 + }, + { + "start": 4739.82, + "end": 4740.2, + "probability": 0.7633 + }, + { + "start": 4740.34, + "end": 4740.34, + "probability": 0.5999 + }, + { + "start": 4740.34, + "end": 4744.06, + "probability": 0.9746 + }, + { + "start": 4745.67, + "end": 4747.82, + "probability": 0.7423 + }, + { + "start": 4748.58, + "end": 4751.4, + "probability": 0.6992 + }, + { + "start": 4751.8, + "end": 4753.24, + "probability": 0.8312 + }, + { + "start": 4754.12, + "end": 4754.84, + "probability": 0.9765 + }, + { + "start": 4755.04, + "end": 4756.27, + "probability": 0.3853 + }, + { + "start": 4757.0, + "end": 4758.14, + "probability": 0.8844 + }, + { + "start": 4758.22, + "end": 4761.22, + "probability": 0.9264 + }, + { + "start": 4761.48, + "end": 4764.04, + "probability": 0.818 + }, + { + "start": 4764.5, + "end": 4767.36, + "probability": 0.7639 + }, + { + "start": 4767.36, + "end": 4770.24, + "probability": 0.981 + }, + { + "start": 4770.7, + "end": 4772.68, + "probability": 0.6251 + }, + { + "start": 4772.8, + "end": 4776.18, + "probability": 0.9351 + }, + { + "start": 4776.18, + "end": 4779.94, + "probability": 0.9626 + }, + { + "start": 4781.48, + "end": 4786.06, + "probability": 0.7068 + }, + { + "start": 4786.8, + "end": 4788.49, + "probability": 0.8143 + }, + { + "start": 4789.26, + "end": 4792.5, + "probability": 0.8638 + }, + { + "start": 4792.66, + "end": 4793.5, + "probability": 0.7933 + }, + { + "start": 4793.9, + "end": 4798.54, + "probability": 0.9546 + }, + { + "start": 4799.76, + "end": 4801.2, + "probability": 0.7056 + }, + { + "start": 4801.42, + "end": 4802.74, + "probability": 0.9132 + }, + { + "start": 4802.86, + "end": 4807.24, + "probability": 0.9456 + }, + { + "start": 4808.3, + "end": 4811.2, + "probability": 0.6653 + }, + { + "start": 4811.4, + "end": 4815.22, + "probability": 0.5761 + }, + { + "start": 4815.64, + "end": 4817.26, + "probability": 0.4783 + }, + { + "start": 4817.38, + "end": 4818.56, + "probability": 0.9011 + }, + { + "start": 4820.38, + "end": 4821.28, + "probability": 0.8755 + }, + { + "start": 4821.46, + "end": 4821.96, + "probability": 0.802 + }, + { + "start": 4821.98, + "end": 4826.14, + "probability": 0.8723 + }, + { + "start": 4826.98, + "end": 4828.94, + "probability": 0.4666 + }, + { + "start": 4829.38, + "end": 4829.88, + "probability": 0.5732 + }, + { + "start": 4830.06, + "end": 4830.64, + "probability": 0.732 + }, + { + "start": 4830.72, + "end": 4833.24, + "probability": 0.9883 + }, + { + "start": 4834.2, + "end": 4836.02, + "probability": 0.9901 + }, + { + "start": 4836.02, + "end": 4838.24, + "probability": 0.9959 + }, + { + "start": 4838.72, + "end": 4841.74, + "probability": 0.98 + }, + { + "start": 4842.28, + "end": 4845.68, + "probability": 0.9228 + }, + { + "start": 4845.72, + "end": 4849.84, + "probability": 0.7553 + }, + { + "start": 4850.52, + "end": 4852.06, + "probability": 0.9056 + }, + { + "start": 4852.54, + "end": 4856.24, + "probability": 0.994 + }, + { + "start": 4856.76, + "end": 4858.72, + "probability": 0.9047 + }, + { + "start": 4858.8, + "end": 4860.86, + "probability": 0.8841 + }, + { + "start": 4861.36, + "end": 4864.02, + "probability": 0.998 + }, + { + "start": 4864.16, + "end": 4867.62, + "probability": 0.9888 + }, + { + "start": 4867.74, + "end": 4869.44, + "probability": 0.8184 + }, + { + "start": 4869.76, + "end": 4871.88, + "probability": 0.9866 + }, + { + "start": 4872.36, + "end": 4874.12, + "probability": 0.9525 + }, + { + "start": 4874.16, + "end": 4876.12, + "probability": 0.8552 + }, + { + "start": 4876.64, + "end": 4877.34, + "probability": 0.6443 + }, + { + "start": 4877.62, + "end": 4880.3, + "probability": 0.9759 + }, + { + "start": 4880.52, + "end": 4881.56, + "probability": 0.3972 + }, + { + "start": 4881.98, + "end": 4884.7, + "probability": 0.9224 + }, + { + "start": 4885.58, + "end": 4887.52, + "probability": 0.9824 + }, + { + "start": 4887.66, + "end": 4888.44, + "probability": 0.7136 + }, + { + "start": 4888.5, + "end": 4888.62, + "probability": 0.7501 + }, + { + "start": 4888.86, + "end": 4895.08, + "probability": 0.5973 + }, + { + "start": 4895.34, + "end": 4897.44, + "probability": 0.9359 + }, + { + "start": 4897.8, + "end": 4901.17, + "probability": 0.4968 + }, + { + "start": 4901.7, + "end": 4901.9, + "probability": 0.537 + }, + { + "start": 4902.02, + "end": 4903.72, + "probability": 0.8838 + }, + { + "start": 4904.14, + "end": 4907.08, + "probability": 0.9927 + }, + { + "start": 4907.08, + "end": 4911.22, + "probability": 0.7401 + }, + { + "start": 4911.64, + "end": 4912.98, + "probability": 0.9932 + }, + { + "start": 4913.16, + "end": 4916.44, + "probability": 0.9743 + }, + { + "start": 4917.08, + "end": 4921.36, + "probability": 0.8193 + }, + { + "start": 4921.38, + "end": 4922.66, + "probability": 0.6219 + }, + { + "start": 4922.7, + "end": 4924.24, + "probability": 0.6633 + }, + { + "start": 4924.38, + "end": 4925.98, + "probability": 0.5411 + }, + { + "start": 4925.98, + "end": 4926.82, + "probability": 0.3228 + }, + { + "start": 4926.82, + "end": 4926.82, + "probability": 0.5366 + }, + { + "start": 4926.82, + "end": 4926.82, + "probability": 0.3324 + }, + { + "start": 4926.82, + "end": 4927.2, + "probability": 0.7183 + }, + { + "start": 4927.64, + "end": 4931.66, + "probability": 0.6837 + }, + { + "start": 4931.8, + "end": 4931.84, + "probability": 0.3792 + }, + { + "start": 4934.04, + "end": 4935.18, + "probability": 0.2114 + }, + { + "start": 4935.34, + "end": 4935.48, + "probability": 0.207 + }, + { + "start": 4935.52, + "end": 4937.46, + "probability": 0.7541 + }, + { + "start": 4937.54, + "end": 4939.56, + "probability": 0.7182 + }, + { + "start": 4940.2, + "end": 4940.82, + "probability": 0.0561 + }, + { + "start": 4940.92, + "end": 4942.76, + "probability": 0.1193 + }, + { + "start": 4944.3, + "end": 4944.72, + "probability": 0.0155 + }, + { + "start": 4945.36, + "end": 4945.64, + "probability": 0.0939 + }, + { + "start": 4947.28, + "end": 4948.02, + "probability": 0.0611 + }, + { + "start": 4948.22, + "end": 4949.72, + "probability": 0.0918 + }, + { + "start": 4950.26, + "end": 4951.16, + "probability": 0.2004 + }, + { + "start": 4951.24, + "end": 4953.54, + "probability": 0.1611 + }, + { + "start": 4954.04, + "end": 4954.54, + "probability": 0.1945 + }, + { + "start": 4954.54, + "end": 4954.54, + "probability": 0.105 + }, + { + "start": 4954.54, + "end": 4956.7, + "probability": 0.2537 + }, + { + "start": 4956.7, + "end": 4957.66, + "probability": 0.5443 + }, + { + "start": 4957.94, + "end": 4963.34, + "probability": 0.0764 + }, + { + "start": 4964.26, + "end": 4964.44, + "probability": 0.0339 + }, + { + "start": 4964.44, + "end": 4964.74, + "probability": 0.0632 + }, + { + "start": 4964.74, + "end": 4964.74, + "probability": 0.2167 + }, + { + "start": 4964.74, + "end": 4964.74, + "probability": 0.0486 + }, + { + "start": 4964.74, + "end": 4964.74, + "probability": 0.0569 + }, + { + "start": 4964.74, + "end": 4964.88, + "probability": 0.0561 + }, + { + "start": 4964.9, + "end": 4965.84, + "probability": 0.3573 + }, + { + "start": 4965.94, + "end": 4966.74, + "probability": 0.4211 + }, + { + "start": 4967.9, + "end": 4970.3, + "probability": 0.8672 + }, + { + "start": 4970.46, + "end": 4970.76, + "probability": 0.6866 + }, + { + "start": 4970.88, + "end": 4974.12, + "probability": 0.761 + }, + { + "start": 4974.12, + "end": 4978.54, + "probability": 0.6582 + }, + { + "start": 4978.76, + "end": 4979.74, + "probability": 0.8639 + }, + { + "start": 4980.24, + "end": 4981.84, + "probability": 0.7777 + }, + { + "start": 4981.96, + "end": 4982.76, + "probability": 0.8805 + }, + { + "start": 4983.26, + "end": 4986.04, + "probability": 0.9772 + }, + { + "start": 4986.34, + "end": 4987.58, + "probability": 0.9178 + }, + { + "start": 4987.66, + "end": 4991.46, + "probability": 0.7993 + }, + { + "start": 4991.64, + "end": 4994.24, + "probability": 0.984 + }, + { + "start": 4994.54, + "end": 4996.8, + "probability": 0.9991 + }, + { + "start": 4997.68, + "end": 5000.66, + "probability": 0.7648 + }, + { + "start": 5000.94, + "end": 5001.98, + "probability": 0.0189 + }, + { + "start": 5001.98, + "end": 5005.86, + "probability": 0.6328 + }, + { + "start": 5006.1, + "end": 5006.8, + "probability": 0.7744 + }, + { + "start": 5007.0, + "end": 5007.96, + "probability": 0.8569 + }, + { + "start": 5009.3, + "end": 5015.78, + "probability": 0.9336 + }, + { + "start": 5016.44, + "end": 5020.8, + "probability": 0.8708 + }, + { + "start": 5020.96, + "end": 5023.7, + "probability": 0.7464 + }, + { + "start": 5023.8, + "end": 5025.32, + "probability": 0.4562 + }, + { + "start": 5025.96, + "end": 5031.98, + "probability": 0.9893 + }, + { + "start": 5032.4, + "end": 5034.17, + "probability": 0.212 + }, + { + "start": 5035.96, + "end": 5037.7, + "probability": 0.9125 + }, + { + "start": 5038.5, + "end": 5039.82, + "probability": 0.8734 + }, + { + "start": 5040.2, + "end": 5041.26, + "probability": 0.845 + }, + { + "start": 5041.36, + "end": 5043.1, + "probability": 0.7128 + }, + { + "start": 5043.9, + "end": 5047.42, + "probability": 0.7358 + }, + { + "start": 5048.09, + "end": 5053.38, + "probability": 0.9577 + }, + { + "start": 5053.88, + "end": 5057.28, + "probability": 0.9134 + }, + { + "start": 5057.8, + "end": 5060.3, + "probability": 0.9976 + }, + { + "start": 5060.32, + "end": 5064.04, + "probability": 0.9588 + }, + { + "start": 5064.16, + "end": 5064.26, + "probability": 0.241 + }, + { + "start": 5064.46, + "end": 5065.44, + "probability": 0.6159 + }, + { + "start": 5067.92, + "end": 5070.38, + "probability": 0.9506 + }, + { + "start": 5071.4, + "end": 5072.84, + "probability": 0.7853 + }, + { + "start": 5075.52, + "end": 5079.76, + "probability": 0.6596 + }, + { + "start": 5082.69, + "end": 5085.26, + "probability": 0.5713 + }, + { + "start": 5086.16, + "end": 5088.46, + "probability": 0.8915 + }, + { + "start": 5088.64, + "end": 5089.74, + "probability": 0.833 + }, + { + "start": 5089.88, + "end": 5091.36, + "probability": 0.6103 + }, + { + "start": 5091.46, + "end": 5093.32, + "probability": 0.6228 + }, + { + "start": 5093.72, + "end": 5096.8, + "probability": 0.9667 + }, + { + "start": 5097.4, + "end": 5100.06, + "probability": 0.8242 + }, + { + "start": 5100.42, + "end": 5101.68, + "probability": 0.4402 + }, + { + "start": 5101.74, + "end": 5109.38, + "probability": 0.9306 + }, + { + "start": 5109.46, + "end": 5113.18, + "probability": 0.9895 + }, + { + "start": 5113.38, + "end": 5114.45, + "probability": 0.9303 + }, + { + "start": 5114.5, + "end": 5116.52, + "probability": 0.9712 + }, + { + "start": 5116.84, + "end": 5118.04, + "probability": 0.7172 + }, + { + "start": 5118.08, + "end": 5120.4, + "probability": 0.6935 + }, + { + "start": 5120.4, + "end": 5122.52, + "probability": 0.8994 + }, + { + "start": 5124.08, + "end": 5128.34, + "probability": 0.9623 + }, + { + "start": 5128.34, + "end": 5132.62, + "probability": 0.9773 + }, + { + "start": 5132.8, + "end": 5135.98, + "probability": 0.8014 + }, + { + "start": 5136.24, + "end": 5138.64, + "probability": 0.9957 + }, + { + "start": 5138.72, + "end": 5142.6, + "probability": 0.9827 + }, + { + "start": 5142.98, + "end": 5144.54, + "probability": 0.9087 + }, + { + "start": 5144.62, + "end": 5149.73, + "probability": 0.52 + }, + { + "start": 5150.36, + "end": 5156.94, + "probability": 0.9752 + }, + { + "start": 5157.0, + "end": 5160.34, + "probability": 0.9876 + }, + { + "start": 5161.04, + "end": 5163.32, + "probability": 0.9953 + }, + { + "start": 5163.44, + "end": 5165.02, + "probability": 0.8541 + }, + { + "start": 5165.34, + "end": 5168.62, + "probability": 0.9562 + }, + { + "start": 5169.06, + "end": 5172.86, + "probability": 0.8048 + }, + { + "start": 5173.7, + "end": 5175.98, + "probability": 0.9292 + }, + { + "start": 5176.24, + "end": 5178.9, + "probability": 0.813 + }, + { + "start": 5181.69, + "end": 5185.32, + "probability": 0.6261 + }, + { + "start": 5185.98, + "end": 5188.58, + "probability": 0.9822 + }, + { + "start": 5188.58, + "end": 5191.08, + "probability": 0.827 + }, + { + "start": 5191.28, + "end": 5195.04, + "probability": 0.9832 + }, + { + "start": 5196.76, + "end": 5201.7, + "probability": 0.9985 + }, + { + "start": 5201.7, + "end": 5206.14, + "probability": 0.9937 + }, + { + "start": 5206.92, + "end": 5208.62, + "probability": 0.9958 + }, + { + "start": 5208.84, + "end": 5211.68, + "probability": 0.9945 + }, + { + "start": 5212.44, + "end": 5217.54, + "probability": 0.9789 + }, + { + "start": 5218.08, + "end": 5219.72, + "probability": 0.8975 + }, + { + "start": 5220.14, + "end": 5221.28, + "probability": 0.9287 + }, + { + "start": 5221.58, + "end": 5222.62, + "probability": 0.9746 + }, + { + "start": 5222.74, + "end": 5223.86, + "probability": 0.9883 + }, + { + "start": 5224.1, + "end": 5225.96, + "probability": 0.9776 + }, + { + "start": 5226.08, + "end": 5227.54, + "probability": 0.994 + }, + { + "start": 5227.66, + "end": 5233.08, + "probability": 0.8967 + }, + { + "start": 5233.84, + "end": 5235.56, + "probability": 0.9912 + }, + { + "start": 5236.24, + "end": 5238.2, + "probability": 0.7604 + }, + { + "start": 5238.4, + "end": 5240.72, + "probability": 0.9935 + }, + { + "start": 5240.84, + "end": 5241.47, + "probability": 0.8931 + }, + { + "start": 5242.34, + "end": 5244.18, + "probability": 0.9037 + }, + { + "start": 5244.38, + "end": 5246.04, + "probability": 0.7471 + }, + { + "start": 5246.68, + "end": 5249.64, + "probability": 0.9691 + }, + { + "start": 5249.66, + "end": 5254.72, + "probability": 0.8319 + }, + { + "start": 5254.84, + "end": 5257.9, + "probability": 0.7279 + }, + { + "start": 5258.1, + "end": 5259.85, + "probability": 0.9901 + }, + { + "start": 5260.28, + "end": 5263.22, + "probability": 0.9883 + }, + { + "start": 5263.5, + "end": 5264.86, + "probability": 0.5506 + }, + { + "start": 5265.24, + "end": 5266.28, + "probability": 0.6142 + }, + { + "start": 5266.46, + "end": 5269.5, + "probability": 0.9609 + }, + { + "start": 5269.82, + "end": 5271.44, + "probability": 0.9801 + }, + { + "start": 5272.4, + "end": 5272.7, + "probability": 0.411 + }, + { + "start": 5272.78, + "end": 5276.86, + "probability": 0.9635 + }, + { + "start": 5277.2, + "end": 5277.81, + "probability": 0.911 + }, + { + "start": 5278.32, + "end": 5282.84, + "probability": 0.9078 + }, + { + "start": 5282.98, + "end": 5285.6, + "probability": 0.754 + }, + { + "start": 5286.48, + "end": 5287.88, + "probability": 0.9575 + }, + { + "start": 5288.1, + "end": 5290.96, + "probability": 0.9 + }, + { + "start": 5290.96, + "end": 5295.6, + "probability": 0.7984 + }, + { + "start": 5296.92, + "end": 5300.56, + "probability": 0.9946 + }, + { + "start": 5300.56, + "end": 5306.8, + "probability": 0.9856 + }, + { + "start": 5307.04, + "end": 5307.14, + "probability": 0.4649 + }, + { + "start": 5307.84, + "end": 5314.14, + "probability": 0.9788 + }, + { + "start": 5314.18, + "end": 5315.36, + "probability": 0.8342 + }, + { + "start": 5316.0, + "end": 5319.68, + "probability": 0.871 + }, + { + "start": 5322.92, + "end": 5326.88, + "probability": 0.8567 + }, + { + "start": 5327.06, + "end": 5327.5, + "probability": 0.7556 + }, + { + "start": 5327.92, + "end": 5328.52, + "probability": 0.5256 + }, + { + "start": 5329.14, + "end": 5332.34, + "probability": 0.8208 + }, + { + "start": 5333.65, + "end": 5338.62, + "probability": 0.9722 + }, + { + "start": 5338.68, + "end": 5339.97, + "probability": 0.9382 + }, + { + "start": 5340.14, + "end": 5341.96, + "probability": 0.9796 + }, + { + "start": 5342.02, + "end": 5342.76, + "probability": 0.5602 + }, + { + "start": 5343.04, + "end": 5344.54, + "probability": 0.4802 + }, + { + "start": 5345.58, + "end": 5349.42, + "probability": 0.5533 + }, + { + "start": 5350.42, + "end": 5351.52, + "probability": 0.6193 + }, + { + "start": 5355.86, + "end": 5356.44, + "probability": 0.5028 + }, + { + "start": 5357.06, + "end": 5360.96, + "probability": 0.8755 + }, + { + "start": 5361.56, + "end": 5362.85, + "probability": 0.9072 + }, + { + "start": 5363.28, + "end": 5365.43, + "probability": 0.5157 + }, + { + "start": 5366.6, + "end": 5374.2, + "probability": 0.9937 + }, + { + "start": 5375.72, + "end": 5376.72, + "probability": 0.9671 + }, + { + "start": 5377.5, + "end": 5378.08, + "probability": 0.7457 + }, + { + "start": 5378.16, + "end": 5378.76, + "probability": 0.5302 + }, + { + "start": 5378.86, + "end": 5384.3, + "probability": 0.9795 + }, + { + "start": 5384.34, + "end": 5386.28, + "probability": 0.3761 + }, + { + "start": 5388.04, + "end": 5392.96, + "probability": 0.7863 + }, + { + "start": 5392.96, + "end": 5397.14, + "probability": 0.6623 + }, + { + "start": 5398.12, + "end": 5399.72, + "probability": 0.9717 + }, + { + "start": 5399.96, + "end": 5402.56, + "probability": 0.6921 + }, + { + "start": 5402.74, + "end": 5406.14, + "probability": 0.9678 + }, + { + "start": 5406.32, + "end": 5413.64, + "probability": 0.8099 + }, + { + "start": 5414.88, + "end": 5418.52, + "probability": 0.9744 + }, + { + "start": 5419.5, + "end": 5423.14, + "probability": 0.8804 + }, + { + "start": 5423.92, + "end": 5425.72, + "probability": 0.9885 + }, + { + "start": 5427.26, + "end": 5431.94, + "probability": 0.9097 + }, + { + "start": 5432.38, + "end": 5433.38, + "probability": 0.957 + }, + { + "start": 5433.42, + "end": 5434.04, + "probability": 0.7802 + }, + { + "start": 5434.12, + "end": 5436.68, + "probability": 0.9858 + }, + { + "start": 5437.02, + "end": 5440.2, + "probability": 0.9971 + }, + { + "start": 5441.86, + "end": 5445.76, + "probability": 0.9983 + }, + { + "start": 5446.54, + "end": 5448.51, + "probability": 0.617 + }, + { + "start": 5451.3, + "end": 5456.12, + "probability": 0.9797 + }, + { + "start": 5456.12, + "end": 5459.96, + "probability": 0.9937 + }, + { + "start": 5460.4, + "end": 5461.9, + "probability": 0.5605 + }, + { + "start": 5462.2, + "end": 5466.01, + "probability": 0.6043 + }, + { + "start": 5466.72, + "end": 5469.0, + "probability": 0.9928 + }, + { + "start": 5469.1, + "end": 5470.26, + "probability": 0.7572 + }, + { + "start": 5470.74, + "end": 5471.74, + "probability": 0.9327 + }, + { + "start": 5471.9, + "end": 5476.68, + "probability": 0.9894 + }, + { + "start": 5476.68, + "end": 5481.76, + "probability": 0.9941 + }, + { + "start": 5482.6, + "end": 5482.96, + "probability": 0.5151 + }, + { + "start": 5487.44, + "end": 5493.02, + "probability": 0.993 + }, + { + "start": 5493.64, + "end": 5497.96, + "probability": 0.9927 + }, + { + "start": 5497.96, + "end": 5503.3, + "probability": 0.9113 + }, + { + "start": 5505.7, + "end": 5509.68, + "probability": 0.696 + }, + { + "start": 5509.9, + "end": 5511.34, + "probability": 0.8896 + }, + { + "start": 5511.8, + "end": 5513.48, + "probability": 0.6927 + }, + { + "start": 5513.96, + "end": 5520.0, + "probability": 0.9927 + }, + { + "start": 5520.2, + "end": 5529.04, + "probability": 0.8028 + }, + { + "start": 5529.64, + "end": 5533.68, + "probability": 0.9941 + }, + { + "start": 5533.68, + "end": 5538.18, + "probability": 0.9945 + }, + { + "start": 5538.72, + "end": 5541.22, + "probability": 0.9968 + }, + { + "start": 5541.86, + "end": 5548.1, + "probability": 0.9916 + }, + { + "start": 5548.34, + "end": 5550.36, + "probability": 0.896 + }, + { + "start": 5551.16, + "end": 5553.62, + "probability": 0.8723 + }, + { + "start": 5553.84, + "end": 5557.4, + "probability": 0.9967 + }, + { + "start": 5557.5, + "end": 5560.78, + "probability": 0.8726 + }, + { + "start": 5561.42, + "end": 5562.36, + "probability": 0.6263 + }, + { + "start": 5562.56, + "end": 5567.89, + "probability": 0.9939 + }, + { + "start": 5568.58, + "end": 5573.88, + "probability": 0.9963 + }, + { + "start": 5574.62, + "end": 5577.11, + "probability": 0.9939 + }, + { + "start": 5577.58, + "end": 5581.78, + "probability": 0.7545 + }, + { + "start": 5581.78, + "end": 5582.72, + "probability": 0.8394 + }, + { + "start": 5582.84, + "end": 5585.12, + "probability": 0.5389 + }, + { + "start": 5585.9, + "end": 5589.88, + "probability": 0.9909 + }, + { + "start": 5590.24, + "end": 5593.86, + "probability": 0.9922 + }, + { + "start": 5594.14, + "end": 5596.52, + "probability": 0.7593 + }, + { + "start": 5597.22, + "end": 5600.22, + "probability": 0.6244 + }, + { + "start": 5600.58, + "end": 5606.74, + "probability": 0.9543 + }, + { + "start": 5608.04, + "end": 5609.72, + "probability": 0.7392 + }, + { + "start": 5609.86, + "end": 5612.28, + "probability": 0.9609 + }, + { + "start": 5612.7, + "end": 5615.92, + "probability": 0.96 + }, + { + "start": 5615.98, + "end": 5618.82, + "probability": 0.9735 + }, + { + "start": 5619.08, + "end": 5623.4, + "probability": 0.9814 + }, + { + "start": 5624.32, + "end": 5628.66, + "probability": 0.9862 + }, + { + "start": 5628.9, + "end": 5632.64, + "probability": 0.9503 + }, + { + "start": 5632.98, + "end": 5634.26, + "probability": 0.8353 + }, + { + "start": 5634.36, + "end": 5635.02, + "probability": 0.886 + }, + { + "start": 5635.08, + "end": 5636.28, + "probability": 0.8976 + }, + { + "start": 5636.72, + "end": 5643.0, + "probability": 0.9541 + }, + { + "start": 5643.54, + "end": 5644.02, + "probability": 0.6635 + }, + { + "start": 5644.08, + "end": 5646.06, + "probability": 0.8076 + }, + { + "start": 5646.22, + "end": 5647.17, + "probability": 0.9434 + }, + { + "start": 5647.6, + "end": 5651.28, + "probability": 0.9351 + }, + { + "start": 5651.42, + "end": 5657.44, + "probability": 0.9922 + }, + { + "start": 5659.75, + "end": 5663.32, + "probability": 0.9418 + }, + { + "start": 5663.44, + "end": 5667.83, + "probability": 0.9756 + }, + { + "start": 5669.6, + "end": 5673.74, + "probability": 0.9686 + }, + { + "start": 5674.02, + "end": 5681.24, + "probability": 0.9921 + }, + { + "start": 5683.19, + "end": 5685.62, + "probability": 0.7781 + }, + { + "start": 5686.8, + "end": 5695.58, + "probability": 0.9453 + }, + { + "start": 5695.8, + "end": 5699.0, + "probability": 0.9852 + }, + { + "start": 5699.08, + "end": 5701.7, + "probability": 0.998 + }, + { + "start": 5702.64, + "end": 5707.88, + "probability": 0.8277 + }, + { + "start": 5708.44, + "end": 5712.98, + "probability": 0.9297 + }, + { + "start": 5713.46, + "end": 5714.08, + "probability": 0.6791 + }, + { + "start": 5714.28, + "end": 5716.3, + "probability": 0.9333 + }, + { + "start": 5716.52, + "end": 5720.26, + "probability": 0.9849 + }, + { + "start": 5720.26, + "end": 5725.6, + "probability": 0.9294 + }, + { + "start": 5725.94, + "end": 5726.56, + "probability": 0.6904 + }, + { + "start": 5727.64, + "end": 5729.36, + "probability": 0.9345 + }, + { + "start": 5729.6, + "end": 5730.62, + "probability": 0.8734 + }, + { + "start": 5730.8, + "end": 5735.46, + "probability": 0.9861 + }, + { + "start": 5735.46, + "end": 5740.72, + "probability": 0.9956 + }, + { + "start": 5741.82, + "end": 5748.18, + "probability": 0.999 + }, + { + "start": 5748.18, + "end": 5753.8, + "probability": 0.999 + }, + { + "start": 5754.02, + "end": 5754.88, + "probability": 0.372 + }, + { + "start": 5755.26, + "end": 5756.4, + "probability": 0.8807 + }, + { + "start": 5756.76, + "end": 5764.36, + "probability": 0.994 + }, + { + "start": 5764.76, + "end": 5766.86, + "probability": 0.7283 + }, + { + "start": 5767.2, + "end": 5768.74, + "probability": 0.9391 + }, + { + "start": 5769.04, + "end": 5770.02, + "probability": 0.761 + }, + { + "start": 5770.1, + "end": 5772.54, + "probability": 0.7546 + }, + { + "start": 5772.96, + "end": 5773.82, + "probability": 0.8902 + }, + { + "start": 5773.86, + "end": 5776.96, + "probability": 0.98 + }, + { + "start": 5777.24, + "end": 5778.24, + "probability": 0.8052 + }, + { + "start": 5778.44, + "end": 5780.76, + "probability": 0.7481 + }, + { + "start": 5780.98, + "end": 5785.58, + "probability": 0.8179 + }, + { + "start": 5785.86, + "end": 5788.8, + "probability": 0.5007 + }, + { + "start": 5788.86, + "end": 5792.78, + "probability": 0.8769 + }, + { + "start": 5793.16, + "end": 5794.65, + "probability": 0.978 + }, + { + "start": 5794.9, + "end": 5798.6, + "probability": 0.9781 + }, + { + "start": 5798.6, + "end": 5802.02, + "probability": 0.9881 + }, + { + "start": 5802.12, + "end": 5802.36, + "probability": 0.6959 + }, + { + "start": 5802.78, + "end": 5804.8, + "probability": 0.5703 + }, + { + "start": 5805.02, + "end": 5810.6, + "probability": 0.992 + }, + { + "start": 5818.8, + "end": 5819.56, + "probability": 0.5042 + }, + { + "start": 5822.58, + "end": 5823.9, + "probability": 0.7955 + }, + { + "start": 5824.04, + "end": 5827.38, + "probability": 0.8423 + }, + { + "start": 5827.6, + "end": 5830.7, + "probability": 0.9968 + }, + { + "start": 5830.78, + "end": 5831.66, + "probability": 0.8721 + }, + { + "start": 5832.14, + "end": 5833.36, + "probability": 0.9976 + }, + { + "start": 5833.96, + "end": 5836.42, + "probability": 0.9885 + }, + { + "start": 5836.5, + "end": 5837.44, + "probability": 0.7476 + }, + { + "start": 5837.5, + "end": 5840.3, + "probability": 0.7475 + }, + { + "start": 5841.0, + "end": 5842.48, + "probability": 0.963 + }, + { + "start": 5842.9, + "end": 5845.68, + "probability": 0.9935 + }, + { + "start": 5845.8, + "end": 5846.84, + "probability": 0.9883 + }, + { + "start": 5846.94, + "end": 5851.2, + "probability": 0.9409 + }, + { + "start": 5851.52, + "end": 5852.4, + "probability": 0.9854 + }, + { + "start": 5852.54, + "end": 5852.96, + "probability": 0.9619 + }, + { + "start": 5853.0, + "end": 5853.52, + "probability": 0.7221 + }, + { + "start": 5853.58, + "end": 5854.66, + "probability": 0.9722 + }, + { + "start": 5856.24, + "end": 5859.76, + "probability": 0.9792 + }, + { + "start": 5863.14, + "end": 5864.1, + "probability": 0.0079 + }, + { + "start": 5864.1, + "end": 5865.11, + "probability": 0.6137 + }, + { + "start": 5865.24, + "end": 5865.9, + "probability": 0.7171 + }, + { + "start": 5865.98, + "end": 5869.76, + "probability": 0.9893 + }, + { + "start": 5871.46, + "end": 5871.64, + "probability": 0.1784 + }, + { + "start": 5871.64, + "end": 5871.8, + "probability": 0.6404 + }, + { + "start": 5871.92, + "end": 5874.38, + "probability": 0.9899 + }, + { + "start": 5874.54, + "end": 5876.11, + "probability": 0.8324 + }, + { + "start": 5877.12, + "end": 5879.2, + "probability": 0.78 + }, + { + "start": 5879.42, + "end": 5881.56, + "probability": 0.565 + }, + { + "start": 5881.64, + "end": 5884.1, + "probability": 0.8529 + }, + { + "start": 5884.1, + "end": 5885.22, + "probability": 0.7591 + }, + { + "start": 5885.38, + "end": 5888.52, + "probability": 0.8761 + }, + { + "start": 5889.64, + "end": 5895.82, + "probability": 0.9835 + }, + { + "start": 5896.38, + "end": 5900.0, + "probability": 0.9752 + }, + { + "start": 5901.0, + "end": 5904.0, + "probability": 0.9966 + }, + { + "start": 5904.06, + "end": 5909.1, + "probability": 0.9934 + }, + { + "start": 5909.1, + "end": 5913.93, + "probability": 0.9957 + }, + { + "start": 5914.24, + "end": 5915.16, + "probability": 0.8375 + }, + { + "start": 5915.26, + "end": 5915.7, + "probability": 0.6582 + }, + { + "start": 5916.28, + "end": 5917.52, + "probability": 0.8073 + }, + { + "start": 5918.26, + "end": 5921.36, + "probability": 0.9932 + }, + { + "start": 5922.46, + "end": 5925.38, + "probability": 0.9826 + }, + { + "start": 5925.48, + "end": 5930.59, + "probability": 0.9688 + }, + { + "start": 5930.96, + "end": 5933.24, + "probability": 0.8262 + }, + { + "start": 5934.1, + "end": 5938.21, + "probability": 0.9949 + }, + { + "start": 5938.5, + "end": 5941.46, + "probability": 0.9338 + }, + { + "start": 5942.54, + "end": 5943.29, + "probability": 0.8701 + }, + { + "start": 5944.14, + "end": 5948.22, + "probability": 0.9821 + }, + { + "start": 5948.88, + "end": 5949.58, + "probability": 0.6196 + }, + { + "start": 5951.82, + "end": 5956.44, + "probability": 0.9922 + }, + { + "start": 5957.28, + "end": 5957.88, + "probability": 0.9245 + }, + { + "start": 5958.5, + "end": 5959.4, + "probability": 0.6093 + }, + { + "start": 5959.54, + "end": 5963.78, + "probability": 0.7636 + }, + { + "start": 5964.6, + "end": 5969.02, + "probability": 0.9727 + }, + { + "start": 5970.08, + "end": 5972.14, + "probability": 0.9216 + }, + { + "start": 5973.1, + "end": 5976.82, + "probability": 0.9963 + }, + { + "start": 5977.58, + "end": 5978.24, + "probability": 0.7577 + }, + { + "start": 5979.1, + "end": 5987.24, + "probability": 0.9868 + }, + { + "start": 5988.16, + "end": 5991.56, + "probability": 0.8467 + }, + { + "start": 5992.5, + "end": 5996.42, + "probability": 0.9821 + }, + { + "start": 5996.42, + "end": 5999.9, + "probability": 0.9375 + }, + { + "start": 6000.92, + "end": 6003.36, + "probability": 0.5895 + }, + { + "start": 6005.22, + "end": 6009.26, + "probability": 0.9526 + }, + { + "start": 6009.26, + "end": 6013.7, + "probability": 0.9995 + }, + { + "start": 6015.56, + "end": 6017.72, + "probability": 0.9995 + }, + { + "start": 6019.02, + "end": 6022.4, + "probability": 0.9934 + }, + { + "start": 6024.04, + "end": 6026.52, + "probability": 0.7566 + }, + { + "start": 6026.72, + "end": 6029.68, + "probability": 0.5957 + }, + { + "start": 6029.76, + "end": 6031.94, + "probability": 0.8311 + }, + { + "start": 6033.76, + "end": 6037.64, + "probability": 0.9885 + }, + { + "start": 6038.06, + "end": 6039.68, + "probability": 0.9841 + }, + { + "start": 6040.2, + "end": 6044.02, + "probability": 0.9698 + }, + { + "start": 6044.96, + "end": 6045.9, + "probability": 0.7421 + }, + { + "start": 6046.12, + "end": 6047.02, + "probability": 0.7054 + }, + { + "start": 6047.1, + "end": 6048.06, + "probability": 0.8497 + }, + { + "start": 6048.2, + "end": 6049.42, + "probability": 0.9453 + }, + { + "start": 6049.74, + "end": 6050.84, + "probability": 0.9063 + }, + { + "start": 6053.26, + "end": 6053.76, + "probability": 0.7479 + }, + { + "start": 6053.9, + "end": 6054.7, + "probability": 0.9893 + }, + { + "start": 6054.74, + "end": 6056.42, + "probability": 0.9881 + }, + { + "start": 6056.5, + "end": 6058.88, + "probability": 0.9861 + }, + { + "start": 6058.88, + "end": 6062.26, + "probability": 0.9964 + }, + { + "start": 6062.96, + "end": 6065.18, + "probability": 0.9048 + }, + { + "start": 6065.52, + "end": 6069.12, + "probability": 0.955 + }, + { + "start": 6069.42, + "end": 6070.16, + "probability": 0.8716 + }, + { + "start": 6070.96, + "end": 6073.06, + "probability": 0.9017 + }, + { + "start": 6073.8, + "end": 6077.24, + "probability": 0.9912 + }, + { + "start": 6077.24, + "end": 6081.9, + "probability": 0.9412 + }, + { + "start": 6082.1, + "end": 6083.36, + "probability": 0.6723 + }, + { + "start": 6084.04, + "end": 6086.32, + "probability": 0.9897 + }, + { + "start": 6086.32, + "end": 6089.44, + "probability": 0.9873 + }, + { + "start": 6089.96, + "end": 6091.6, + "probability": 0.9801 + }, + { + "start": 6091.72, + "end": 6092.68, + "probability": 0.7227 + }, + { + "start": 6093.04, + "end": 6095.22, + "probability": 0.9957 + }, + { + "start": 6095.82, + "end": 6097.56, + "probability": 0.9409 + }, + { + "start": 6098.16, + "end": 6099.08, + "probability": 0.9944 + }, + { + "start": 6099.58, + "end": 6102.84, + "probability": 0.9644 + }, + { + "start": 6102.84, + "end": 6105.16, + "probability": 0.9935 + }, + { + "start": 6105.26, + "end": 6106.16, + "probability": 0.9924 + }, + { + "start": 6107.0, + "end": 6108.68, + "probability": 0.6757 + }, + { + "start": 6108.8, + "end": 6109.4, + "probability": 0.2587 + }, + { + "start": 6109.88, + "end": 6115.2, + "probability": 0.9707 + }, + { + "start": 6115.54, + "end": 6115.74, + "probability": 0.3015 + }, + { + "start": 6116.6, + "end": 6119.14, + "probability": 0.5592 + }, + { + "start": 6119.24, + "end": 6122.02, + "probability": 0.9946 + }, + { + "start": 6122.08, + "end": 6123.86, + "probability": 0.7735 + }, + { + "start": 6125.08, + "end": 6128.24, + "probability": 0.7062 + }, + { + "start": 6140.74, + "end": 6142.62, + "probability": 0.6284 + }, + { + "start": 6143.8, + "end": 6146.74, + "probability": 0.9414 + }, + { + "start": 6146.88, + "end": 6148.48, + "probability": 0.6965 + }, + { + "start": 6149.86, + "end": 6154.12, + "probability": 0.9795 + }, + { + "start": 6155.08, + "end": 6156.8, + "probability": 0.6178 + }, + { + "start": 6158.34, + "end": 6161.18, + "probability": 0.4963 + }, + { + "start": 6162.18, + "end": 6166.84, + "probability": 0.9989 + }, + { + "start": 6167.48, + "end": 6170.4, + "probability": 0.7545 + }, + { + "start": 6171.66, + "end": 6177.2, + "probability": 0.8822 + }, + { + "start": 6177.8, + "end": 6181.38, + "probability": 0.5582 + }, + { + "start": 6181.42, + "end": 6182.14, + "probability": 0.4557 + }, + { + "start": 6182.84, + "end": 6185.88, + "probability": 0.8602 + }, + { + "start": 6186.7, + "end": 6187.62, + "probability": 0.9258 + }, + { + "start": 6188.28, + "end": 6191.6, + "probability": 0.752 + }, + { + "start": 6191.64, + "end": 6192.74, + "probability": 0.9553 + }, + { + "start": 6193.6, + "end": 6194.18, + "probability": 0.7803 + }, + { + "start": 6194.24, + "end": 6195.24, + "probability": 0.9302 + }, + { + "start": 6195.32, + "end": 6195.92, + "probability": 0.9513 + }, + { + "start": 6196.04, + "end": 6196.56, + "probability": 0.9673 + }, + { + "start": 6197.88, + "end": 6199.76, + "probability": 0.9819 + }, + { + "start": 6200.8, + "end": 6201.57, + "probability": 0.6909 + }, + { + "start": 6203.2, + "end": 6207.3, + "probability": 0.8889 + }, + { + "start": 6207.66, + "end": 6210.38, + "probability": 0.98 + }, + { + "start": 6210.7, + "end": 6212.44, + "probability": 0.2766 + }, + { + "start": 6212.44, + "end": 6213.02, + "probability": 0.7487 + }, + { + "start": 6213.58, + "end": 6214.66, + "probability": 0.8847 + }, + { + "start": 6215.76, + "end": 6221.46, + "probability": 0.9906 + }, + { + "start": 6222.64, + "end": 6224.34, + "probability": 0.9584 + }, + { + "start": 6224.98, + "end": 6225.68, + "probability": 0.9119 + }, + { + "start": 6226.88, + "end": 6230.42, + "probability": 0.9625 + }, + { + "start": 6230.48, + "end": 6233.21, + "probability": 0.9868 + }, + { + "start": 6234.08, + "end": 6236.56, + "probability": 0.7705 + }, + { + "start": 6237.32, + "end": 6238.26, + "probability": 0.9728 + }, + { + "start": 6239.2, + "end": 6241.9, + "probability": 0.9915 + }, + { + "start": 6243.08, + "end": 6244.07, + "probability": 0.8953 + }, + { + "start": 6245.78, + "end": 6247.1, + "probability": 0.9201 + }, + { + "start": 6247.94, + "end": 6249.39, + "probability": 0.8488 + }, + { + "start": 6250.12, + "end": 6252.56, + "probability": 0.9802 + }, + { + "start": 6253.24, + "end": 6254.72, + "probability": 0.9087 + }, + { + "start": 6255.6, + "end": 6257.02, + "probability": 0.9825 + }, + { + "start": 6258.26, + "end": 6260.06, + "probability": 0.519 + }, + { + "start": 6261.5, + "end": 6263.72, + "probability": 0.7402 + }, + { + "start": 6264.5, + "end": 6265.34, + "probability": 0.9261 + }, + { + "start": 6266.08, + "end": 6268.4, + "probability": 0.9089 + }, + { + "start": 6269.52, + "end": 6273.46, + "probability": 0.9969 + }, + { + "start": 6274.74, + "end": 6280.36, + "probability": 0.8195 + }, + { + "start": 6281.2, + "end": 6282.72, + "probability": 0.7483 + }, + { + "start": 6283.6, + "end": 6284.26, + "probability": 0.8533 + }, + { + "start": 6285.8, + "end": 6291.16, + "probability": 0.9422 + }, + { + "start": 6291.34, + "end": 6294.49, + "probability": 0.9888 + }, + { + "start": 6294.86, + "end": 6296.5, + "probability": 0.821 + }, + { + "start": 6297.32, + "end": 6298.6, + "probability": 0.925 + }, + { + "start": 6299.18, + "end": 6300.83, + "probability": 0.6771 + }, + { + "start": 6301.12, + "end": 6301.78, + "probability": 0.6458 + }, + { + "start": 6302.46, + "end": 6306.78, + "probability": 0.9639 + }, + { + "start": 6306.94, + "end": 6307.95, + "probability": 0.9368 + }, + { + "start": 6308.34, + "end": 6311.54, + "probability": 0.9899 + }, + { + "start": 6311.96, + "end": 6312.82, + "probability": 0.9839 + }, + { + "start": 6313.68, + "end": 6315.71, + "probability": 0.4084 + }, + { + "start": 6316.0, + "end": 6318.88, + "probability": 0.9811 + }, + { + "start": 6320.5, + "end": 6321.58, + "probability": 0.7709 + }, + { + "start": 6321.66, + "end": 6323.98, + "probability": 0.9452 + }, + { + "start": 6324.16, + "end": 6325.22, + "probability": 0.9482 + }, + { + "start": 6325.88, + "end": 6330.58, + "probability": 0.9611 + }, + { + "start": 6331.04, + "end": 6333.0, + "probability": 0.7576 + }, + { + "start": 6333.5, + "end": 6335.86, + "probability": 0.936 + }, + { + "start": 6336.38, + "end": 6340.2, + "probability": 0.964 + }, + { + "start": 6340.38, + "end": 6341.52, + "probability": 0.8773 + }, + { + "start": 6341.74, + "end": 6342.88, + "probability": 0.9647 + }, + { + "start": 6343.78, + "end": 6349.44, + "probability": 0.8229 + }, + { + "start": 6350.32, + "end": 6350.66, + "probability": 0.4857 + }, + { + "start": 6350.88, + "end": 6354.04, + "probability": 0.7204 + }, + { + "start": 6354.12, + "end": 6358.06, + "probability": 0.6809 + }, + { + "start": 6358.74, + "end": 6366.9, + "probability": 0.9024 + }, + { + "start": 6367.76, + "end": 6372.32, + "probability": 0.9886 + }, + { + "start": 6372.32, + "end": 6377.3, + "probability": 0.9917 + }, + { + "start": 6377.98, + "end": 6379.58, + "probability": 0.9435 + }, + { + "start": 6380.24, + "end": 6383.68, + "probability": 0.7865 + }, + { + "start": 6384.74, + "end": 6387.8, + "probability": 0.8644 + }, + { + "start": 6388.0, + "end": 6389.0, + "probability": 0.8865 + }, + { + "start": 6389.68, + "end": 6391.44, + "probability": 0.4087 + }, + { + "start": 6392.52, + "end": 6397.7, + "probability": 0.9537 + }, + { + "start": 6398.46, + "end": 6400.54, + "probability": 0.8313 + }, + { + "start": 6400.64, + "end": 6401.62, + "probability": 0.7246 + }, + { + "start": 6401.78, + "end": 6405.38, + "probability": 0.9739 + }, + { + "start": 6406.02, + "end": 6410.4, + "probability": 0.9397 + }, + { + "start": 6410.4, + "end": 6412.92, + "probability": 0.9926 + }, + { + "start": 6413.46, + "end": 6417.88, + "probability": 0.9225 + }, + { + "start": 6418.58, + "end": 6419.92, + "probability": 0.9814 + }, + { + "start": 6420.8, + "end": 6422.24, + "probability": 0.9841 + }, + { + "start": 6424.8, + "end": 6428.16, + "probability": 0.6465 + }, + { + "start": 6428.7, + "end": 6431.14, + "probability": 0.9966 + }, + { + "start": 6431.66, + "end": 6432.82, + "probability": 0.7098 + }, + { + "start": 6433.76, + "end": 6437.78, + "probability": 0.7619 + }, + { + "start": 6438.38, + "end": 6441.76, + "probability": 0.978 + }, + { + "start": 6441.94, + "end": 6443.84, + "probability": 0.8183 + }, + { + "start": 6444.42, + "end": 6447.08, + "probability": 0.7181 + }, + { + "start": 6447.46, + "end": 6451.22, + "probability": 0.5674 + }, + { + "start": 6451.42, + "end": 6454.88, + "probability": 0.9111 + }, + { + "start": 6455.46, + "end": 6457.68, + "probability": 0.9794 + }, + { + "start": 6457.68, + "end": 6458.18, + "probability": 0.7401 + }, + { + "start": 6468.18, + "end": 6469.4, + "probability": 0.5631 + }, + { + "start": 6469.68, + "end": 6469.84, + "probability": 0.7404 + }, + { + "start": 6469.84, + "end": 6471.96, + "probability": 0.7082 + }, + { + "start": 6472.86, + "end": 6476.08, + "probability": 0.667 + }, + { + "start": 6476.22, + "end": 6477.94, + "probability": 0.9313 + }, + { + "start": 6478.3, + "end": 6483.62, + "probability": 0.9584 + }, + { + "start": 6483.98, + "end": 6485.68, + "probability": 0.9308 + }, + { + "start": 6485.72, + "end": 6489.48, + "probability": 0.9371 + }, + { + "start": 6491.5, + "end": 6494.44, + "probability": 0.9154 + }, + { + "start": 6495.06, + "end": 6499.06, + "probability": 0.9354 + }, + { + "start": 6499.22, + "end": 6501.62, + "probability": 0.7919 + }, + { + "start": 6501.78, + "end": 6504.78, + "probability": 0.8616 + }, + { + "start": 6504.96, + "end": 6508.62, + "probability": 0.9502 + }, + { + "start": 6509.94, + "end": 6513.08, + "probability": 0.8362 + }, + { + "start": 6513.16, + "end": 6513.84, + "probability": 0.4852 + }, + { + "start": 6514.32, + "end": 6516.06, + "probability": 0.768 + }, + { + "start": 6516.64, + "end": 6517.82, + "probability": 0.5177 + }, + { + "start": 6518.14, + "end": 6523.16, + "probability": 0.9886 + }, + { + "start": 6523.88, + "end": 6527.24, + "probability": 0.9612 + }, + { + "start": 6528.08, + "end": 6531.04, + "probability": 0.9543 + }, + { + "start": 6531.12, + "end": 6533.06, + "probability": 0.994 + }, + { + "start": 6533.18, + "end": 6534.64, + "probability": 0.72 + }, + { + "start": 6534.76, + "end": 6537.63, + "probability": 0.9763 + }, + { + "start": 6538.14, + "end": 6542.86, + "probability": 0.82 + }, + { + "start": 6542.9, + "end": 6544.52, + "probability": 0.7236 + }, + { + "start": 6544.94, + "end": 6547.3, + "probability": 0.67 + }, + { + "start": 6547.32, + "end": 6551.8, + "probability": 0.9079 + }, + { + "start": 6551.8, + "end": 6555.18, + "probability": 0.859 + }, + { + "start": 6555.74, + "end": 6556.62, + "probability": 0.7966 + }, + { + "start": 6557.86, + "end": 6559.12, + "probability": 0.5781 + }, + { + "start": 6559.18, + "end": 6559.76, + "probability": 0.4343 + }, + { + "start": 6559.78, + "end": 6560.18, + "probability": 0.4899 + }, + { + "start": 6560.18, + "end": 6562.02, + "probability": 0.7191 + }, + { + "start": 6562.54, + "end": 6563.22, + "probability": 0.4946 + }, + { + "start": 6563.38, + "end": 6564.73, + "probability": 0.6585 + }, + { + "start": 6564.96, + "end": 6567.54, + "probability": 0.5637 + }, + { + "start": 6568.92, + "end": 6574.16, + "probability": 0.7899 + }, + { + "start": 6574.28, + "end": 6577.78, + "probability": 0.8311 + }, + { + "start": 6578.36, + "end": 6578.54, + "probability": 0.2348 + }, + { + "start": 6578.54, + "end": 6581.07, + "probability": 0.6967 + }, + { + "start": 6582.14, + "end": 6586.56, + "probability": 0.7664 + }, + { + "start": 6588.08, + "end": 6590.16, + "probability": 0.8604 + }, + { + "start": 6590.22, + "end": 6592.06, + "probability": 0.8979 + }, + { + "start": 6592.76, + "end": 6595.24, + "probability": 0.7719 + }, + { + "start": 6595.9, + "end": 6596.94, + "probability": 0.603 + }, + { + "start": 6596.94, + "end": 6602.84, + "probability": 0.5374 + }, + { + "start": 6602.9, + "end": 6604.24, + "probability": 0.5669 + }, + { + "start": 6604.42, + "end": 6610.12, + "probability": 0.9388 + }, + { + "start": 6610.58, + "end": 6616.08, + "probability": 0.9776 + }, + { + "start": 6616.08, + "end": 6620.78, + "probability": 0.9898 + }, + { + "start": 6621.26, + "end": 6622.04, + "probability": 0.9028 + }, + { + "start": 6622.4, + "end": 6624.6, + "probability": 0.9347 + }, + { + "start": 6624.82, + "end": 6630.64, + "probability": 0.9038 + }, + { + "start": 6630.86, + "end": 6637.12, + "probability": 0.8676 + }, + { + "start": 6637.32, + "end": 6638.02, + "probability": 0.697 + }, + { + "start": 6638.08, + "end": 6639.68, + "probability": 0.5371 + }, + { + "start": 6639.98, + "end": 6645.54, + "probability": 0.8045 + }, + { + "start": 6645.7, + "end": 6651.82, + "probability": 0.9812 + }, + { + "start": 6653.3, + "end": 6654.7, + "probability": 0.5095 + }, + { + "start": 6654.82, + "end": 6656.14, + "probability": 0.9858 + }, + { + "start": 6656.24, + "end": 6658.58, + "probability": 0.9849 + }, + { + "start": 6658.84, + "end": 6661.56, + "probability": 0.6575 + }, + { + "start": 6661.66, + "end": 6666.14, + "probability": 0.9773 + }, + { + "start": 6667.18, + "end": 6667.68, + "probability": 0.6807 + }, + { + "start": 6668.46, + "end": 6672.32, + "probability": 0.9753 + }, + { + "start": 6672.32, + "end": 6676.26, + "probability": 0.9438 + }, + { + "start": 6676.84, + "end": 6679.7, + "probability": 0.5809 + }, + { + "start": 6680.18, + "end": 6685.76, + "probability": 0.789 + }, + { + "start": 6686.5, + "end": 6687.56, + "probability": 0.7828 + }, + { + "start": 6687.68, + "end": 6688.86, + "probability": 0.9163 + }, + { + "start": 6689.31, + "end": 6692.1, + "probability": 0.8014 + }, + { + "start": 6692.72, + "end": 6693.54, + "probability": 0.9346 + }, + { + "start": 6693.64, + "end": 6694.14, + "probability": 0.7271 + }, + { + "start": 6694.18, + "end": 6694.4, + "probability": 0.4427 + }, + { + "start": 6694.52, + "end": 6695.2, + "probability": 0.9285 + }, + { + "start": 6695.4, + "end": 6700.26, + "probability": 0.8574 + }, + { + "start": 6700.88, + "end": 6704.2, + "probability": 0.939 + }, + { + "start": 6704.94, + "end": 6707.1, + "probability": 0.9548 + }, + { + "start": 6707.58, + "end": 6711.38, + "probability": 0.937 + }, + { + "start": 6711.92, + "end": 6715.82, + "probability": 0.5487 + }, + { + "start": 6716.14, + "end": 6717.06, + "probability": 0.6355 + }, + { + "start": 6717.22, + "end": 6719.6, + "probability": 0.8068 + }, + { + "start": 6719.84, + "end": 6723.92, + "probability": 0.8083 + }, + { + "start": 6726.06, + "end": 6729.28, + "probability": 0.8082 + }, + { + "start": 6729.5, + "end": 6734.28, + "probability": 0.8978 + }, + { + "start": 6734.36, + "end": 6738.9, + "probability": 0.943 + }, + { + "start": 6739.56, + "end": 6741.0, + "probability": 0.9474 + }, + { + "start": 6741.34, + "end": 6741.7, + "probability": 0.5751 + }, + { + "start": 6741.8, + "end": 6743.76, + "probability": 0.9487 + }, + { + "start": 6743.86, + "end": 6745.28, + "probability": 0.7313 + }, + { + "start": 6745.36, + "end": 6745.8, + "probability": 0.8092 + }, + { + "start": 6745.98, + "end": 6746.98, + "probability": 0.7995 + }, + { + "start": 6747.1, + "end": 6749.36, + "probability": 0.902 + }, + { + "start": 6749.42, + "end": 6750.28, + "probability": 0.4675 + }, + { + "start": 6750.7, + "end": 6754.56, + "probability": 0.8355 + }, + { + "start": 6754.78, + "end": 6759.48, + "probability": 0.9619 + }, + { + "start": 6760.12, + "end": 6763.02, + "probability": 0.8986 + }, + { + "start": 6763.8, + "end": 6767.12, + "probability": 0.9005 + }, + { + "start": 6767.3, + "end": 6769.36, + "probability": 0.8328 + }, + { + "start": 6769.58, + "end": 6771.12, + "probability": 0.5066 + }, + { + "start": 6771.12, + "end": 6777.36, + "probability": 0.6828 + }, + { + "start": 6778.15, + "end": 6782.49, + "probability": 0.6374 + }, + { + "start": 6783.5, + "end": 6785.92, + "probability": 0.6993 + }, + { + "start": 6786.32, + "end": 6791.4, + "probability": 0.9114 + }, + { + "start": 6791.96, + "end": 6792.78, + "probability": 0.5593 + }, + { + "start": 6792.96, + "end": 6794.46, + "probability": 0.7109 + }, + { + "start": 6794.66, + "end": 6795.32, + "probability": 0.6349 + }, + { + "start": 6795.4, + "end": 6798.56, + "probability": 0.8518 + }, + { + "start": 6799.56, + "end": 6800.74, + "probability": 0.9972 + }, + { + "start": 6800.88, + "end": 6801.78, + "probability": 0.8143 + }, + { + "start": 6801.94, + "end": 6804.88, + "probability": 0.8836 + }, + { + "start": 6805.06, + "end": 6808.52, + "probability": 0.7274 + }, + { + "start": 6808.9, + "end": 6811.12, + "probability": 0.9476 + }, + { + "start": 6811.26, + "end": 6813.1, + "probability": 0.6121 + }, + { + "start": 6813.22, + "end": 6815.94, + "probability": 0.958 + }, + { + "start": 6816.02, + "end": 6816.86, + "probability": 0.5 + }, + { + "start": 6817.0, + "end": 6817.3, + "probability": 0.438 + }, + { + "start": 6817.7, + "end": 6819.66, + "probability": 0.8271 + }, + { + "start": 6819.74, + "end": 6823.58, + "probability": 0.7348 + }, + { + "start": 6823.94, + "end": 6827.16, + "probability": 0.8619 + }, + { + "start": 6827.24, + "end": 6827.91, + "probability": 0.8894 + }, + { + "start": 6828.34, + "end": 6829.9, + "probability": 0.6372 + }, + { + "start": 6829.94, + "end": 6831.18, + "probability": 0.7558 + }, + { + "start": 6831.3, + "end": 6832.02, + "probability": 0.6253 + }, + { + "start": 6832.1, + "end": 6833.82, + "probability": 0.5607 + }, + { + "start": 6834.36, + "end": 6837.94, + "probability": 0.666 + }, + { + "start": 6838.14, + "end": 6841.4, + "probability": 0.1977 + }, + { + "start": 6841.58, + "end": 6842.74, + "probability": 0.3965 + }, + { + "start": 6842.74, + "end": 6844.34, + "probability": 0.9836 + }, + { + "start": 6844.46, + "end": 6848.26, + "probability": 0.7571 + }, + { + "start": 6848.38, + "end": 6851.74, + "probability": 0.8752 + }, + { + "start": 6851.74, + "end": 6855.3, + "probability": 0.8303 + }, + { + "start": 6855.42, + "end": 6856.48, + "probability": 0.7395 + }, + { + "start": 6857.28, + "end": 6859.38, + "probability": 0.479 + }, + { + "start": 6859.48, + "end": 6862.48, + "probability": 0.9788 + }, + { + "start": 6862.78, + "end": 6863.88, + "probability": 0.9988 + }, + { + "start": 6864.04, + "end": 6866.68, + "probability": 0.6656 + }, + { + "start": 6866.88, + "end": 6868.8, + "probability": 0.8076 + }, + { + "start": 6869.18, + "end": 6869.74, + "probability": 0.684 + }, + { + "start": 6869.86, + "end": 6872.46, + "probability": 0.9932 + }, + { + "start": 6872.46, + "end": 6875.6, + "probability": 0.8869 + }, + { + "start": 6876.0, + "end": 6877.16, + "probability": 0.916 + }, + { + "start": 6877.36, + "end": 6878.18, + "probability": 0.2417 + }, + { + "start": 6878.34, + "end": 6881.4, + "probability": 0.8709 + }, + { + "start": 6881.5, + "end": 6883.64, + "probability": 0.6734 + }, + { + "start": 6883.66, + "end": 6886.84, + "probability": 0.6585 + }, + { + "start": 6886.9, + "end": 6887.16, + "probability": 0.6897 + }, + { + "start": 6887.52, + "end": 6889.44, + "probability": 0.7627 + }, + { + "start": 6889.5, + "end": 6892.22, + "probability": 0.9845 + }, + { + "start": 6893.06, + "end": 6895.98, + "probability": 0.8231 + }, + { + "start": 6896.2, + "end": 6902.9, + "probability": 0.7827 + }, + { + "start": 6902.96, + "end": 6904.88, + "probability": 0.9875 + }, + { + "start": 6905.54, + "end": 6909.37, + "probability": 0.729 + }, + { + "start": 6909.44, + "end": 6911.54, + "probability": 0.545 + }, + { + "start": 6912.17, + "end": 6913.48, + "probability": 0.0332 + }, + { + "start": 6913.82, + "end": 6914.52, + "probability": 0.259 + }, + { + "start": 6915.58, + "end": 6918.02, + "probability": 0.8552 + }, + { + "start": 6918.88, + "end": 6920.68, + "probability": 0.9831 + }, + { + "start": 6920.68, + "end": 6921.18, + "probability": 0.5629 + }, + { + "start": 6921.34, + "end": 6925.04, + "probability": 0.6637 + }, + { + "start": 6929.5, + "end": 6932.36, + "probability": 0.4403 + }, + { + "start": 6932.44, + "end": 6936.9, + "probability": 0.6483 + }, + { + "start": 6937.64, + "end": 6941.02, + "probability": 0.8761 + }, + { + "start": 6941.04, + "end": 6941.83, + "probability": 0.5249 + }, + { + "start": 6942.54, + "end": 6949.5, + "probability": 0.6839 + }, + { + "start": 6953.0, + "end": 6953.0, + "probability": 0.2394 + }, + { + "start": 6953.0, + "end": 6956.3, + "probability": 0.7006 + }, + { + "start": 6956.48, + "end": 6958.08, + "probability": 0.5067 + }, + { + "start": 6963.1, + "end": 6965.54, + "probability": 0.5623 + }, + { + "start": 6966.9, + "end": 6968.26, + "probability": 0.4395 + }, + { + "start": 6969.7, + "end": 6971.04, + "probability": 0.5235 + }, + { + "start": 6971.12, + "end": 6972.9, + "probability": 0.7756 + }, + { + "start": 6974.48, + "end": 6980.02, + "probability": 0.895 + }, + { + "start": 6980.7, + "end": 6981.5, + "probability": 0.7513 + }, + { + "start": 6983.18, + "end": 6984.46, + "probability": 0.6826 + }, + { + "start": 6985.68, + "end": 6986.28, + "probability": 0.8262 + }, + { + "start": 6987.5, + "end": 6989.88, + "probability": 0.9304 + }, + { + "start": 6990.66, + "end": 6991.94, + "probability": 0.9648 + }, + { + "start": 6992.6, + "end": 6996.78, + "probability": 0.9924 + }, + { + "start": 6997.88, + "end": 7001.77, + "probability": 0.2842 + }, + { + "start": 7009.08, + "end": 7009.8, + "probability": 0.3436 + }, + { + "start": 7009.86, + "end": 7012.42, + "probability": 0.5156 + }, + { + "start": 7012.62, + "end": 7014.56, + "probability": 0.9397 + }, + { + "start": 7017.3, + "end": 7020.4, + "probability": 0.7588 + }, + { + "start": 7023.52, + "end": 7026.4, + "probability": 0.6679 + }, + { + "start": 7027.74, + "end": 7030.8, + "probability": 0.1213 + }, + { + "start": 7031.62, + "end": 7034.98, + "probability": 0.908 + }, + { + "start": 7036.22, + "end": 7040.8, + "probability": 0.9607 + }, + { + "start": 7042.82, + "end": 7043.72, + "probability": 0.6816 + }, + { + "start": 7043.96, + "end": 7045.52, + "probability": 0.6596 + }, + { + "start": 7045.58, + "end": 7047.22, + "probability": 0.6731 + }, + { + "start": 7048.66, + "end": 7051.62, + "probability": 0.8203 + }, + { + "start": 7053.12, + "end": 7058.24, + "probability": 0.9664 + }, + { + "start": 7059.26, + "end": 7060.92, + "probability": 0.8359 + }, + { + "start": 7061.16, + "end": 7063.62, + "probability": 0.8496 + }, + { + "start": 7063.72, + "end": 7064.72, + "probability": 0.9066 + }, + { + "start": 7065.76, + "end": 7066.88, + "probability": 0.9961 + }, + { + "start": 7067.72, + "end": 7070.52, + "probability": 0.9404 + }, + { + "start": 7070.64, + "end": 7071.5, + "probability": 0.6974 + }, + { + "start": 7072.5, + "end": 7077.18, + "probability": 0.8799 + }, + { + "start": 7078.26, + "end": 7080.6, + "probability": 0.8237 + }, + { + "start": 7080.74, + "end": 7081.4, + "probability": 0.9544 + }, + { + "start": 7081.78, + "end": 7083.2, + "probability": 0.9961 + }, + { + "start": 7083.94, + "end": 7086.92, + "probability": 0.9075 + }, + { + "start": 7087.02, + "end": 7089.86, + "probability": 0.4583 + }, + { + "start": 7090.7, + "end": 7095.44, + "probability": 0.9482 + }, + { + "start": 7096.26, + "end": 7098.31, + "probability": 0.929 + }, + { + "start": 7099.66, + "end": 7101.08, + "probability": 0.6908 + }, + { + "start": 7101.94, + "end": 7103.7, + "probability": 0.603 + }, + { + "start": 7104.26, + "end": 7107.86, + "probability": 0.9883 + }, + { + "start": 7108.14, + "end": 7110.8, + "probability": 0.5573 + }, + { + "start": 7112.32, + "end": 7116.0, + "probability": 0.9744 + }, + { + "start": 7116.56, + "end": 7117.28, + "probability": 0.8796 + }, + { + "start": 7117.36, + "end": 7118.1, + "probability": 0.5043 + }, + { + "start": 7118.16, + "end": 7118.52, + "probability": 0.3102 + }, + { + "start": 7119.0, + "end": 7125.4, + "probability": 0.8965 + }, + { + "start": 7126.22, + "end": 7131.38, + "probability": 0.7563 + }, + { + "start": 7132.52, + "end": 7135.92, + "probability": 0.9556 + }, + { + "start": 7136.32, + "end": 7137.42, + "probability": 0.7683 + }, + { + "start": 7137.98, + "end": 7140.46, + "probability": 0.871 + }, + { + "start": 7141.32, + "end": 7144.08, + "probability": 0.4755 + }, + { + "start": 7144.46, + "end": 7148.34, + "probability": 0.6496 + }, + { + "start": 7150.78, + "end": 7152.97, + "probability": 0.9525 + }, + { + "start": 7154.6, + "end": 7160.06, + "probability": 0.9559 + }, + { + "start": 7160.98, + "end": 7165.58, + "probability": 0.678 + }, + { + "start": 7165.72, + "end": 7166.66, + "probability": 0.5942 + }, + { + "start": 7167.32, + "end": 7168.52, + "probability": 0.7359 + }, + { + "start": 7169.06, + "end": 7171.0, + "probability": 0.9824 + }, + { + "start": 7172.22, + "end": 7175.86, + "probability": 0.7677 + }, + { + "start": 7175.86, + "end": 7178.68, + "probability": 0.9081 + }, + { + "start": 7179.66, + "end": 7180.99, + "probability": 0.7118 + }, + { + "start": 7181.48, + "end": 7185.7, + "probability": 0.8539 + }, + { + "start": 7186.0, + "end": 7188.18, + "probability": 0.9587 + }, + { + "start": 7189.38, + "end": 7191.0, + "probability": 0.8354 + }, + { + "start": 7191.64, + "end": 7193.2, + "probability": 0.3538 + }, + { + "start": 7194.2, + "end": 7194.78, + "probability": 0.8174 + }, + { + "start": 7195.5, + "end": 7199.78, + "probability": 0.7074 + }, + { + "start": 7201.14, + "end": 7204.22, + "probability": 0.9877 + }, + { + "start": 7204.98, + "end": 7209.3, + "probability": 0.9579 + }, + { + "start": 7210.0, + "end": 7212.56, + "probability": 0.74 + }, + { + "start": 7212.94, + "end": 7220.04, + "probability": 0.8506 + }, + { + "start": 7220.04, + "end": 7226.18, + "probability": 0.9467 + }, + { + "start": 7226.8, + "end": 7227.68, + "probability": 0.5692 + }, + { + "start": 7227.96, + "end": 7229.04, + "probability": 0.1471 + }, + { + "start": 7229.4, + "end": 7234.84, + "probability": 0.9254 + }, + { + "start": 7234.84, + "end": 7240.24, + "probability": 0.9405 + }, + { + "start": 7240.78, + "end": 7244.76, + "probability": 0.6208 + }, + { + "start": 7245.3, + "end": 7250.78, + "probability": 0.6523 + }, + { + "start": 7250.9, + "end": 7251.64, + "probability": 0.9484 + }, + { + "start": 7253.68, + "end": 7257.62, + "probability": 0.9729 + }, + { + "start": 7257.62, + "end": 7260.38, + "probability": 0.8376 + }, + { + "start": 7260.38, + "end": 7264.48, + "probability": 0.8539 + }, + { + "start": 7265.3, + "end": 7267.38, + "probability": 0.9714 + }, + { + "start": 7268.34, + "end": 7269.94, + "probability": 0.7541 + }, + { + "start": 7270.46, + "end": 7275.14, + "probability": 0.936 + }, + { + "start": 7276.22, + "end": 7280.26, + "probability": 0.7366 + }, + { + "start": 7281.08, + "end": 7284.4, + "probability": 0.9521 + }, + { + "start": 7284.54, + "end": 7285.06, + "probability": 0.6717 + }, + { + "start": 7285.16, + "end": 7287.36, + "probability": 0.8035 + }, + { + "start": 7287.96, + "end": 7290.82, + "probability": 0.901 + }, + { + "start": 7290.82, + "end": 7294.44, + "probability": 0.843 + }, + { + "start": 7295.96, + "end": 7299.24, + "probability": 0.8938 + }, + { + "start": 7299.4, + "end": 7303.46, + "probability": 0.8247 + }, + { + "start": 7304.1, + "end": 7310.68, + "probability": 0.906 + }, + { + "start": 7312.22, + "end": 7313.42, + "probability": 0.8104 + }, + { + "start": 7314.4, + "end": 7314.72, + "probability": 0.0502 + }, + { + "start": 7315.04, + "end": 7318.84, + "probability": 0.9892 + }, + { + "start": 7319.08, + "end": 7320.0, + "probability": 0.7031 + }, + { + "start": 7320.58, + "end": 7323.74, + "probability": 0.8771 + }, + { + "start": 7323.74, + "end": 7327.8, + "probability": 0.9234 + }, + { + "start": 7327.84, + "end": 7333.6, + "probability": 0.9878 + }, + { + "start": 7334.74, + "end": 7340.24, + "probability": 0.9001 + }, + { + "start": 7342.16, + "end": 7344.98, + "probability": 0.8734 + }, + { + "start": 7344.98, + "end": 7348.36, + "probability": 0.8564 + }, + { + "start": 7349.64, + "end": 7353.28, + "probability": 0.829 + }, + { + "start": 7353.46, + "end": 7354.26, + "probability": 0.7033 + }, + { + "start": 7354.54, + "end": 7356.9, + "probability": 0.6373 + }, + { + "start": 7356.9, + "end": 7360.12, + "probability": 0.6857 + }, + { + "start": 7360.6, + "end": 7363.48, + "probability": 0.6738 + }, + { + "start": 7364.36, + "end": 7370.28, + "probability": 0.7949 + }, + { + "start": 7370.38, + "end": 7371.26, + "probability": 0.8875 + }, + { + "start": 7372.54, + "end": 7374.58, + "probability": 0.9269 + }, + { + "start": 7374.72, + "end": 7377.24, + "probability": 0.7521 + }, + { + "start": 7377.38, + "end": 7378.36, + "probability": 0.726 + }, + { + "start": 7378.88, + "end": 7382.86, + "probability": 0.7978 + }, + { + "start": 7383.12, + "end": 7383.24, + "probability": 0.4481 + }, + { + "start": 7383.34, + "end": 7388.22, + "probability": 0.842 + }, + { + "start": 7388.32, + "end": 7388.94, + "probability": 0.4427 + }, + { + "start": 7390.44, + "end": 7397.98, + "probability": 0.4975 + }, + { + "start": 7399.18, + "end": 7403.54, + "probability": 0.7939 + }, + { + "start": 7403.66, + "end": 7404.78, + "probability": 0.8331 + }, + { + "start": 7405.58, + "end": 7408.84, + "probability": 0.8463 + }, + { + "start": 7408.84, + "end": 7412.56, + "probability": 0.9329 + }, + { + "start": 7413.34, + "end": 7417.28, + "probability": 0.9423 + }, + { + "start": 7419.84, + "end": 7425.74, + "probability": 0.5712 + }, + { + "start": 7425.82, + "end": 7427.04, + "probability": 0.8297 + }, + { + "start": 7427.84, + "end": 7433.22, + "probability": 0.9668 + }, + { + "start": 7434.98, + "end": 7439.22, + "probability": 0.696 + }, + { + "start": 7439.82, + "end": 7441.76, + "probability": 0.4355 + }, + { + "start": 7443.52, + "end": 7446.62, + "probability": 0.8544 + }, + { + "start": 7446.62, + "end": 7449.32, + "probability": 0.7502 + }, + { + "start": 7450.12, + "end": 7455.02, + "probability": 0.9688 + }, + { + "start": 7456.52, + "end": 7459.3, + "probability": 0.7599 + }, + { + "start": 7460.0, + "end": 7464.12, + "probability": 0.9504 + }, + { + "start": 7464.2, + "end": 7466.02, + "probability": 0.7799 + }, + { + "start": 7466.5, + "end": 7473.24, + "probability": 0.9044 + }, + { + "start": 7476.4, + "end": 7476.74, + "probability": 0.3271 + }, + { + "start": 7477.0, + "end": 7478.71, + "probability": 0.6152 + }, + { + "start": 7483.06, + "end": 7488.12, + "probability": 0.9946 + }, + { + "start": 7488.38, + "end": 7491.47, + "probability": 0.8971 + }, + { + "start": 7493.34, + "end": 7497.4, + "probability": 0.5579 + }, + { + "start": 7498.0, + "end": 7499.6, + "probability": 0.8379 + }, + { + "start": 7500.1, + "end": 7501.78, + "probability": 0.9723 + }, + { + "start": 7502.0, + "end": 7503.24, + "probability": 0.5104 + }, + { + "start": 7511.66, + "end": 7513.86, + "probability": 0.5072 + }, + { + "start": 7514.68, + "end": 7520.06, + "probability": 0.8967 + }, + { + "start": 7520.44, + "end": 7521.06, + "probability": 0.736 + }, + { + "start": 7522.04, + "end": 7524.08, + "probability": 0.9552 + }, + { + "start": 7527.82, + "end": 7528.9, + "probability": 0.1697 + }, + { + "start": 7528.9, + "end": 7534.8, + "probability": 0.637 + }, + { + "start": 7534.94, + "end": 7538.54, + "probability": 0.7319 + }, + { + "start": 7538.66, + "end": 7540.76, + "probability": 0.6433 + }, + { + "start": 7541.62, + "end": 7543.36, + "probability": 0.5375 + }, + { + "start": 7543.96, + "end": 7545.52, + "probability": 0.5022 + }, + { + "start": 7546.04, + "end": 7547.64, + "probability": 0.7353 + }, + { + "start": 7548.22, + "end": 7549.7, + "probability": 0.8765 + }, + { + "start": 7550.92, + "end": 7554.06, + "probability": 0.5543 + }, + { + "start": 7555.74, + "end": 7560.68, + "probability": 0.7548 + }, + { + "start": 7561.48, + "end": 7564.66, + "probability": 0.6554 + }, + { + "start": 7565.42, + "end": 7566.02, + "probability": 0.7905 + }, + { + "start": 7566.2, + "end": 7570.34, + "probability": 0.9121 + }, + { + "start": 7570.34, + "end": 7571.42, + "probability": 0.3381 + }, + { + "start": 7572.38, + "end": 7574.42, + "probability": 0.7149 + }, + { + "start": 7574.96, + "end": 7580.06, + "probability": 0.8206 + }, + { + "start": 7581.36, + "end": 7583.14, + "probability": 0.5668 + }, + { + "start": 7583.14, + "end": 7583.42, + "probability": 0.8594 + }, + { + "start": 7583.94, + "end": 7588.26, + "probability": 0.8539 + }, + { + "start": 7589.52, + "end": 7596.2, + "probability": 0.8741 + }, + { + "start": 7597.34, + "end": 7599.22, + "probability": 0.8367 + }, + { + "start": 7600.22, + "end": 7602.46, + "probability": 0.3027 + }, + { + "start": 7603.06, + "end": 7603.62, + "probability": 0.3166 + }, + { + "start": 7604.38, + "end": 7606.74, + "probability": 0.7732 + }, + { + "start": 7607.68, + "end": 7608.88, + "probability": 0.9541 + }, + { + "start": 7609.5, + "end": 7612.28, + "probability": 0.869 + }, + { + "start": 7612.98, + "end": 7613.92, + "probability": 0.7074 + }, + { + "start": 7614.2, + "end": 7617.46, + "probability": 0.5165 + }, + { + "start": 7617.9, + "end": 7620.3, + "probability": 0.808 + }, + { + "start": 7621.08, + "end": 7622.38, + "probability": 0.9803 + }, + { + "start": 7622.82, + "end": 7623.46, + "probability": 0.9556 + }, + { + "start": 7623.58, + "end": 7626.51, + "probability": 0.738 + }, + { + "start": 7626.78, + "end": 7627.22, + "probability": 0.6719 + }, + { + "start": 7627.32, + "end": 7627.96, + "probability": 0.7987 + }, + { + "start": 7628.5, + "end": 7629.12, + "probability": 0.6228 + }, + { + "start": 7629.64, + "end": 7633.32, + "probability": 0.959 + }, + { + "start": 7633.96, + "end": 7638.19, + "probability": 0.2259 + }, + { + "start": 7639.16, + "end": 7641.02, + "probability": 0.7489 + }, + { + "start": 7642.22, + "end": 7644.98, + "probability": 0.8513 + }, + { + "start": 7645.66, + "end": 7648.82, + "probability": 0.9792 + }, + { + "start": 7649.44, + "end": 7651.32, + "probability": 0.985 + }, + { + "start": 7652.3, + "end": 7654.26, + "probability": 0.8887 + }, + { + "start": 7654.9, + "end": 7655.96, + "probability": 0.9758 + }, + { + "start": 7656.28, + "end": 7659.26, + "probability": 0.8333 + }, + { + "start": 7659.68, + "end": 7660.78, + "probability": 0.9397 + }, + { + "start": 7661.26, + "end": 7663.06, + "probability": 0.9091 + }, + { + "start": 7663.2, + "end": 7666.38, + "probability": 0.9705 + }, + { + "start": 7666.46, + "end": 7667.62, + "probability": 0.9474 + }, + { + "start": 7668.46, + "end": 7670.06, + "probability": 0.222 + }, + { + "start": 7670.22, + "end": 7673.96, + "probability": 0.5518 + }, + { + "start": 7674.06, + "end": 7677.18, + "probability": 0.7043 + }, + { + "start": 7677.94, + "end": 7679.12, + "probability": 0.3155 + }, + { + "start": 7679.24, + "end": 7680.66, + "probability": 0.3166 + }, + { + "start": 7680.74, + "end": 7683.28, + "probability": 0.6284 + }, + { + "start": 7683.66, + "end": 7688.3, + "probability": 0.8993 + }, + { + "start": 7688.4, + "end": 7690.94, + "probability": 0.7603 + }, + { + "start": 7691.57, + "end": 7695.54, + "probability": 0.9461 + }, + { + "start": 7695.94, + "end": 7696.74, + "probability": 0.7223 + }, + { + "start": 7697.74, + "end": 7697.96, + "probability": 0.1446 + }, + { + "start": 7698.54, + "end": 7698.96, + "probability": 0.0357 + }, + { + "start": 7699.16, + "end": 7699.84, + "probability": 0.4535 + }, + { + "start": 7701.14, + "end": 7704.98, + "probability": 0.5515 + }, + { + "start": 7705.6, + "end": 7706.62, + "probability": 0.7354 + }, + { + "start": 7708.78, + "end": 7709.08, + "probability": 0.3124 + }, + { + "start": 7710.22, + "end": 7715.84, + "probability": 0.9902 + }, + { + "start": 7716.26, + "end": 7716.74, + "probability": 0.6643 + }, + { + "start": 7716.92, + "end": 7724.46, + "probability": 0.8401 + }, + { + "start": 7725.12, + "end": 7728.37, + "probability": 0.9883 + }, + { + "start": 7729.58, + "end": 7732.18, + "probability": 0.8946 + }, + { + "start": 7732.62, + "end": 7734.8, + "probability": 0.2124 + }, + { + "start": 7735.4, + "end": 7736.6, + "probability": 0.1697 + }, + { + "start": 7736.7, + "end": 7737.32, + "probability": 0.4568 + }, + { + "start": 7737.44, + "end": 7738.04, + "probability": 0.4353 + }, + { + "start": 7738.34, + "end": 7739.25, + "probability": 0.6642 + }, + { + "start": 7740.26, + "end": 7742.1, + "probability": 0.6632 + }, + { + "start": 7742.24, + "end": 7743.5, + "probability": 0.6071 + }, + { + "start": 7744.66, + "end": 7745.78, + "probability": 0.7891 + }, + { + "start": 7746.2, + "end": 7747.16, + "probability": 0.0411 + }, + { + "start": 7747.32, + "end": 7751.22, + "probability": 0.8246 + }, + { + "start": 7752.94, + "end": 7754.5, + "probability": 0.4201 + }, + { + "start": 7754.98, + "end": 7756.46, + "probability": 0.9281 + }, + { + "start": 7758.15, + "end": 7760.66, + "probability": 0.9238 + }, + { + "start": 7760.94, + "end": 7762.04, + "probability": 0.9803 + }, + { + "start": 7762.8, + "end": 7765.18, + "probability": 0.9818 + }, + { + "start": 7765.72, + "end": 7766.28, + "probability": 0.2337 + }, + { + "start": 7767.14, + "end": 7767.56, + "probability": 0.565 + }, + { + "start": 7767.78, + "end": 7771.4, + "probability": 0.9403 + }, + { + "start": 7771.96, + "end": 7773.76, + "probability": 0.8503 + }, + { + "start": 7773.92, + "end": 7776.48, + "probability": 0.9023 + }, + { + "start": 7776.56, + "end": 7777.6, + "probability": 0.2422 + }, + { + "start": 7777.66, + "end": 7778.12, + "probability": 0.6853 + }, + { + "start": 7778.68, + "end": 7780.58, + "probability": 0.5881 + }, + { + "start": 7781.1, + "end": 7784.72, + "probability": 0.7454 + }, + { + "start": 7785.6, + "end": 7788.34, + "probability": 0.8742 + }, + { + "start": 7789.58, + "end": 7793.84, + "probability": 0.9899 + }, + { + "start": 7794.48, + "end": 7801.88, + "probability": 0.7601 + }, + { + "start": 7801.96, + "end": 7803.48, + "probability": 0.4917 + }, + { + "start": 7804.44, + "end": 7806.24, + "probability": 0.8712 + }, + { + "start": 7807.0, + "end": 7810.82, + "probability": 0.7483 + }, + { + "start": 7810.82, + "end": 7811.52, + "probability": 0.3907 + }, + { + "start": 7811.96, + "end": 7812.34, + "probability": 0.455 + }, + { + "start": 7813.06, + "end": 7814.92, + "probability": 0.8831 + }, + { + "start": 7814.98, + "end": 7818.62, + "probability": 0.8664 + }, + { + "start": 7819.4, + "end": 7823.48, + "probability": 0.9948 + }, + { + "start": 7823.8, + "end": 7827.08, + "probability": 0.7906 + }, + { + "start": 7827.78, + "end": 7830.5, + "probability": 0.9533 + }, + { + "start": 7830.68, + "end": 7834.36, + "probability": 0.7198 + }, + { + "start": 7834.54, + "end": 7836.96, + "probability": 0.9866 + }, + { + "start": 7837.88, + "end": 7840.48, + "probability": 0.9897 + }, + { + "start": 7840.48, + "end": 7844.08, + "probability": 0.8984 + }, + { + "start": 7844.74, + "end": 7846.1, + "probability": 0.8987 + }, + { + "start": 7846.58, + "end": 7851.38, + "probability": 0.9979 + }, + { + "start": 7852.12, + "end": 7855.98, + "probability": 0.994 + }, + { + "start": 7856.86, + "end": 7861.82, + "probability": 0.8889 + }, + { + "start": 7861.82, + "end": 7866.02, + "probability": 0.9935 + }, + { + "start": 7866.32, + "end": 7867.48, + "probability": 0.766 + }, + { + "start": 7868.14, + "end": 7868.38, + "probability": 0.7131 + }, + { + "start": 7869.12, + "end": 7869.92, + "probability": 0.7124 + }, + { + "start": 7870.28, + "end": 7872.44, + "probability": 0.9229 + }, + { + "start": 7872.52, + "end": 7873.15, + "probability": 0.4431 + }, + { + "start": 7873.98, + "end": 7875.66, + "probability": 0.979 + }, + { + "start": 7876.76, + "end": 7879.0, + "probability": 0.9434 + }, + { + "start": 7879.24, + "end": 7879.9, + "probability": 0.6528 + }, + { + "start": 7879.94, + "end": 7880.94, + "probability": 0.7353 + }, + { + "start": 7881.0, + "end": 7882.4, + "probability": 0.6465 + }, + { + "start": 7882.6, + "end": 7883.36, + "probability": 0.9532 + }, + { + "start": 7883.5, + "end": 7884.62, + "probability": 0.0632 + }, + { + "start": 7884.9, + "end": 7886.82, + "probability": 0.023 + }, + { + "start": 7887.08, + "end": 7887.08, + "probability": 0.0414 + }, + { + "start": 7887.08, + "end": 7888.22, + "probability": 0.7866 + }, + { + "start": 7888.26, + "end": 7890.28, + "probability": 0.5125 + }, + { + "start": 7893.01, + "end": 7895.94, + "probability": 0.5768 + }, + { + "start": 7896.0, + "end": 7899.06, + "probability": 0.7025 + }, + { + "start": 7899.74, + "end": 7900.1, + "probability": 0.546 + }, + { + "start": 7900.48, + "end": 7902.78, + "probability": 0.2142 + }, + { + "start": 7912.06, + "end": 7912.82, + "probability": 0.0001 + }, + { + "start": 7913.48, + "end": 7913.98, + "probability": 0.3937 + }, + { + "start": 7913.98, + "end": 7916.76, + "probability": 0.308 + }, + { + "start": 7917.0, + "end": 7920.5, + "probability": 0.7221 + }, + { + "start": 7925.2, + "end": 7925.54, + "probability": 0.6617 + }, + { + "start": 7925.68, + "end": 7929.88, + "probability": 0.978 + }, + { + "start": 7930.66, + "end": 7934.48, + "probability": 0.6707 + }, + { + "start": 7936.0, + "end": 7939.16, + "probability": 0.6935 + }, + { + "start": 7941.94, + "end": 7947.18, + "probability": 0.6792 + }, + { + "start": 7948.32, + "end": 7948.66, + "probability": 0.1358 + }, + { + "start": 7949.16, + "end": 7950.46, + "probability": 0.1533 + }, + { + "start": 7950.46, + "end": 7950.46, + "probability": 0.0236 + }, + { + "start": 7950.46, + "end": 7950.46, + "probability": 0.0795 + }, + { + "start": 7950.46, + "end": 7950.56, + "probability": 0.0803 + }, + { + "start": 7950.76, + "end": 7953.1, + "probability": 0.9447 + }, + { + "start": 7953.92, + "end": 7958.38, + "probability": 0.8014 + }, + { + "start": 7959.2, + "end": 7960.9, + "probability": 0.8241 + }, + { + "start": 7960.98, + "end": 7962.76, + "probability": 0.1904 + }, + { + "start": 7962.92, + "end": 7963.36, + "probability": 0.4831 + }, + { + "start": 7963.48, + "end": 7966.1, + "probability": 0.7249 + }, + { + "start": 7966.3, + "end": 7969.9, + "probability": 0.963 + }, + { + "start": 7970.44, + "end": 7971.04, + "probability": 0.673 + }, + { + "start": 7971.18, + "end": 7971.94, + "probability": 0.7185 + }, + { + "start": 7971.94, + "end": 7974.24, + "probability": 0.5654 + }, + { + "start": 7974.38, + "end": 7975.4, + "probability": 0.6803 + }, + { + "start": 7975.6, + "end": 7976.14, + "probability": 0.2174 + }, + { + "start": 7976.4, + "end": 7979.66, + "probability": 0.5501 + }, + { + "start": 7979.8, + "end": 7981.0, + "probability": 0.5255 + }, + { + "start": 7981.32, + "end": 7981.42, + "probability": 0.272 + }, + { + "start": 7981.58, + "end": 7983.76, + "probability": 0.5265 + }, + { + "start": 7983.9, + "end": 7987.98, + "probability": 0.8589 + }, + { + "start": 7992.14, + "end": 7996.52, + "probability": 0.6699 + }, + { + "start": 7996.56, + "end": 7999.06, + "probability": 0.8429 + }, + { + "start": 7999.7, + "end": 8003.54, + "probability": 0.6459 + }, + { + "start": 8027.44, + "end": 8032.58, + "probability": 0.3935 + }, + { + "start": 8032.58, + "end": 8034.7, + "probability": 0.6716 + }, + { + "start": 8034.9, + "end": 8036.62, + "probability": 0.1513 + }, + { + "start": 8040.6, + "end": 8043.0, + "probability": 0.3446 + }, + { + "start": 8044.06, + "end": 8045.66, + "probability": 0.0752 + }, + { + "start": 8046.48, + "end": 8047.0, + "probability": 0.0383 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8108.0, + "end": 8108.0, + "probability": 0.0 + }, + { + "start": 8112.85, + "end": 8113.34, + "probability": 0.0597 + }, + { + "start": 8113.34, + "end": 8113.4, + "probability": 0.1719 + }, + { + "start": 8113.4, + "end": 8114.12, + "probability": 0.2375 + }, + { + "start": 8114.42, + "end": 8117.04, + "probability": 0.036 + }, + { + "start": 8122.52, + "end": 8123.5, + "probability": 0.0082 + }, + { + "start": 8124.89, + "end": 8130.06, + "probability": 0.1763 + }, + { + "start": 8130.08, + "end": 8130.54, + "probability": 0.2742 + }, + { + "start": 8130.54, + "end": 8131.28, + "probability": 0.0621 + }, + { + "start": 8131.4, + "end": 8132.94, + "probability": 0.1898 + }, + { + "start": 8133.7, + "end": 8135.74, + "probability": 0.0743 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.0, + "end": 8232.0, + "probability": 0.0 + }, + { + "start": 8232.22, + "end": 8232.22, + "probability": 0.1511 + }, + { + "start": 8232.22, + "end": 8237.24, + "probability": 0.8655 + }, + { + "start": 8237.8, + "end": 8238.58, + "probability": 0.7289 + }, + { + "start": 8238.68, + "end": 8240.64, + "probability": 0.8397 + }, + { + "start": 8241.96, + "end": 8243.32, + "probability": 0.8833 + }, + { + "start": 8244.24, + "end": 8251.1, + "probability": 0.849 + }, + { + "start": 8251.1, + "end": 8255.38, + "probability": 0.9934 + }, + { + "start": 8256.86, + "end": 8258.54, + "probability": 0.7689 + }, + { + "start": 8258.72, + "end": 8262.0, + "probability": 0.9817 + }, + { + "start": 8262.0, + "end": 8265.4, + "probability": 0.9863 + }, + { + "start": 8266.12, + "end": 8269.88, + "probability": 0.9302 + }, + { + "start": 8274.9, + "end": 8275.8, + "probability": 0.4335 + }, + { + "start": 8277.1, + "end": 8282.8, + "probability": 0.784 + }, + { + "start": 8282.94, + "end": 8288.68, + "probability": 0.99 + }, + { + "start": 8288.68, + "end": 8291.94, + "probability": 0.9884 + }, + { + "start": 8291.98, + "end": 8292.9, + "probability": 0.3729 + }, + { + "start": 8293.02, + "end": 8294.88, + "probability": 0.9223 + }, + { + "start": 8297.79, + "end": 8299.08, + "probability": 0.1652 + }, + { + "start": 8299.18, + "end": 8301.12, + "probability": 0.8936 + }, + { + "start": 8301.22, + "end": 8303.96, + "probability": 0.9732 + }, + { + "start": 8305.04, + "end": 8308.7, + "probability": 0.8932 + }, + { + "start": 8308.7, + "end": 8312.42, + "probability": 0.9801 + }, + { + "start": 8313.06, + "end": 8317.46, + "probability": 0.9773 + }, + { + "start": 8318.12, + "end": 8321.34, + "probability": 0.9211 + }, + { + "start": 8321.34, + "end": 8325.08, + "probability": 0.9908 + }, + { + "start": 8325.54, + "end": 8327.38, + "probability": 0.8908 + }, + { + "start": 8328.02, + "end": 8331.14, + "probability": 0.956 + }, + { + "start": 8331.78, + "end": 8332.9, + "probability": 0.8183 + }, + { + "start": 8333.02, + "end": 8334.14, + "probability": 0.9672 + }, + { + "start": 8334.34, + "end": 8337.4, + "probability": 0.9854 + }, + { + "start": 8338.36, + "end": 8342.9, + "probability": 0.9204 + }, + { + "start": 8343.88, + "end": 8349.56, + "probability": 0.9809 + }, + { + "start": 8349.6, + "end": 8350.26, + "probability": 0.8903 + }, + { + "start": 8350.34, + "end": 8351.66, + "probability": 0.7891 + }, + { + "start": 8352.8, + "end": 8356.02, + "probability": 0.9809 + }, + { + "start": 8356.02, + "end": 8361.18, + "probability": 0.9887 + }, + { + "start": 8361.18, + "end": 8364.78, + "probability": 0.9974 + }, + { + "start": 8365.48, + "end": 8368.8, + "probability": 0.9821 + }, + { + "start": 8368.92, + "end": 8369.8, + "probability": 0.869 + }, + { + "start": 8370.5, + "end": 8372.56, + "probability": 0.9728 + }, + { + "start": 8374.58, + "end": 8374.98, + "probability": 0.5781 + }, + { + "start": 8375.56, + "end": 8378.04, + "probability": 0.9862 + }, + { + "start": 8378.32, + "end": 8383.4, + "probability": 0.9808 + }, + { + "start": 8385.4, + "end": 8386.16, + "probability": 0.9827 + }, + { + "start": 8386.82, + "end": 8392.0, + "probability": 0.9892 + }, + { + "start": 8393.32, + "end": 8397.44, + "probability": 0.9916 + }, + { + "start": 8397.44, + "end": 8400.1, + "probability": 0.9948 + }, + { + "start": 8400.94, + "end": 8401.96, + "probability": 0.5403 + }, + { + "start": 8402.62, + "end": 8407.52, + "probability": 0.9937 + }, + { + "start": 8407.9, + "end": 8410.2, + "probability": 0.999 + }, + { + "start": 8410.2, + "end": 8414.66, + "probability": 0.9795 + }, + { + "start": 8415.38, + "end": 8418.74, + "probability": 0.9577 + }, + { + "start": 8419.92, + "end": 8421.36, + "probability": 0.8475 + }, + { + "start": 8421.54, + "end": 8423.24, + "probability": 0.814 + }, + { + "start": 8424.06, + "end": 8425.06, + "probability": 0.8464 + }, + { + "start": 8425.42, + "end": 8427.0, + "probability": 0.9624 + }, + { + "start": 8427.36, + "end": 8427.94, + "probability": 0.8199 + }, + { + "start": 8428.14, + "end": 8429.7, + "probability": 0.9118 + }, + { + "start": 8430.38, + "end": 8434.62, + "probability": 0.977 + }, + { + "start": 8435.12, + "end": 8440.76, + "probability": 0.9564 + }, + { + "start": 8442.36, + "end": 8445.68, + "probability": 0.9873 + }, + { + "start": 8445.72, + "end": 8451.48, + "probability": 0.9858 + }, + { + "start": 8452.42, + "end": 8454.54, + "probability": 0.9868 + }, + { + "start": 8454.54, + "end": 8457.2, + "probability": 0.9942 + }, + { + "start": 8458.16, + "end": 8461.94, + "probability": 0.9948 + }, + { + "start": 8462.88, + "end": 8464.84, + "probability": 0.9108 + }, + { + "start": 8465.5, + "end": 8467.68, + "probability": 0.8593 + }, + { + "start": 8467.94, + "end": 8472.58, + "probability": 0.9861 + }, + { + "start": 8474.12, + "end": 8475.26, + "probability": 0.9408 + }, + { + "start": 8475.32, + "end": 8479.32, + "probability": 0.9808 + }, + { + "start": 8479.56, + "end": 8480.63, + "probability": 0.8015 + }, + { + "start": 8481.14, + "end": 8481.16, + "probability": 0.0004 + }, + { + "start": 8482.04, + "end": 8487.68, + "probability": 0.9167 + }, + { + "start": 8487.68, + "end": 8491.4, + "probability": 0.9976 + }, + { + "start": 8492.78, + "end": 8497.77, + "probability": 0.9943 + }, + { + "start": 8498.08, + "end": 8501.9, + "probability": 0.952 + }, + { + "start": 8502.26, + "end": 8505.5, + "probability": 0.9886 + }, + { + "start": 8505.5, + "end": 8509.32, + "probability": 0.9956 + }, + { + "start": 8510.0, + "end": 8512.68, + "probability": 0.9071 + }, + { + "start": 8513.78, + "end": 8517.14, + "probability": 0.9948 + }, + { + "start": 8517.2, + "end": 8521.52, + "probability": 0.9437 + }, + { + "start": 8521.92, + "end": 8524.66, + "probability": 0.6166 + }, + { + "start": 8525.24, + "end": 8530.06, + "probability": 0.9921 + }, + { + "start": 8530.6, + "end": 8532.58, + "probability": 0.9868 + }, + { + "start": 8532.66, + "end": 8533.4, + "probability": 0.7696 + }, + { + "start": 8533.5, + "end": 8535.78, + "probability": 0.8634 + }, + { + "start": 8536.64, + "end": 8539.12, + "probability": 0.9377 + }, + { + "start": 8539.24, + "end": 8542.62, + "probability": 0.9954 + }, + { + "start": 8542.62, + "end": 8547.38, + "probability": 0.9755 + }, + { + "start": 8547.76, + "end": 8551.04, + "probability": 0.9968 + }, + { + "start": 8551.06, + "end": 8553.82, + "probability": 0.7988 + }, + { + "start": 8554.06, + "end": 8558.98, + "probability": 0.8523 + }, + { + "start": 8559.08, + "end": 8561.24, + "probability": 0.989 + }, + { + "start": 8561.24, + "end": 8565.16, + "probability": 0.9272 + }, + { + "start": 8566.12, + "end": 8567.28, + "probability": 0.7622 + }, + { + "start": 8567.44, + "end": 8571.56, + "probability": 0.9888 + }, + { + "start": 8571.64, + "end": 8572.88, + "probability": 0.9331 + }, + { + "start": 8573.38, + "end": 8578.16, + "probability": 0.9311 + }, + { + "start": 8578.68, + "end": 8582.36, + "probability": 0.919 + }, + { + "start": 8583.14, + "end": 8585.1, + "probability": 0.7569 + }, + { + "start": 8585.2, + "end": 8590.88, + "probability": 0.9937 + }, + { + "start": 8591.6, + "end": 8594.4, + "probability": 0.9985 + }, + { + "start": 8594.56, + "end": 8598.54, + "probability": 0.9461 + }, + { + "start": 8599.02, + "end": 8600.26, + "probability": 0.7105 + }, + { + "start": 8600.28, + "end": 8601.62, + "probability": 0.9791 + }, + { + "start": 8601.72, + "end": 8602.1, + "probability": 0.3807 + }, + { + "start": 8602.24, + "end": 8604.66, + "probability": 0.9941 + }, + { + "start": 8605.16, + "end": 8607.68, + "probability": 0.7179 + }, + { + "start": 8607.96, + "end": 8611.26, + "probability": 0.9274 + }, + { + "start": 8611.82, + "end": 8614.16, + "probability": 0.9966 + }, + { + "start": 8614.76, + "end": 8616.98, + "probability": 0.9904 + }, + { + "start": 8617.04, + "end": 8617.94, + "probability": 0.8491 + }, + { + "start": 8618.44, + "end": 8619.08, + "probability": 0.9545 + }, + { + "start": 8619.72, + "end": 8621.06, + "probability": 0.9141 + }, + { + "start": 8621.5, + "end": 8625.36, + "probability": 0.9397 + }, + { + "start": 8625.44, + "end": 8626.84, + "probability": 0.7343 + }, + { + "start": 8627.06, + "end": 8627.52, + "probability": 0.5875 + }, + { + "start": 8627.52, + "end": 8630.34, + "probability": 0.5855 + }, + { + "start": 8630.52, + "end": 8632.74, + "probability": 0.5288 + }, + { + "start": 8633.4, + "end": 8637.26, + "probability": 0.9832 + }, + { + "start": 8637.38, + "end": 8643.32, + "probability": 0.9881 + }, + { + "start": 8643.44, + "end": 8645.7, + "probability": 0.8701 + }, + { + "start": 8645.8, + "end": 8648.94, + "probability": 0.993 + }, + { + "start": 8649.04, + "end": 8649.8, + "probability": 0.9697 + }, + { + "start": 8650.54, + "end": 8651.8, + "probability": 0.9304 + }, + { + "start": 8652.12, + "end": 8654.54, + "probability": 0.6265 + }, + { + "start": 8654.82, + "end": 8657.2, + "probability": 0.9822 + }, + { + "start": 8657.98, + "end": 8661.36, + "probability": 0.959 + }, + { + "start": 8662.94, + "end": 8665.48, + "probability": 0.9422 + }, + { + "start": 8665.58, + "end": 8667.72, + "probability": 0.7786 + }, + { + "start": 8669.16, + "end": 8672.36, + "probability": 0.744 + }, + { + "start": 8682.46, + "end": 8685.22, + "probability": 0.6082 + }, + { + "start": 8686.28, + "end": 8687.12, + "probability": 0.7658 + }, + { + "start": 8688.42, + "end": 8690.22, + "probability": 0.8965 + }, + { + "start": 8691.3, + "end": 8695.44, + "probability": 0.9167 + }, + { + "start": 8696.18, + "end": 8702.2, + "probability": 0.9832 + }, + { + "start": 8702.92, + "end": 8704.58, + "probability": 0.8975 + }, + { + "start": 8705.46, + "end": 8709.56, + "probability": 0.9907 + }, + { + "start": 8709.58, + "end": 8711.9, + "probability": 0.8557 + }, + { + "start": 8712.54, + "end": 8713.92, + "probability": 0.699 + }, + { + "start": 8713.98, + "end": 8715.1, + "probability": 0.7564 + }, + { + "start": 8715.66, + "end": 8718.94, + "probability": 0.8937 + }, + { + "start": 8719.08, + "end": 8720.18, + "probability": 0.9745 + }, + { + "start": 8720.36, + "end": 8721.16, + "probability": 0.8141 + }, + { + "start": 8721.28, + "end": 8721.84, + "probability": 0.8652 + }, + { + "start": 8722.52, + "end": 8725.66, + "probability": 0.9814 + }, + { + "start": 8727.28, + "end": 8728.74, + "probability": 0.6212 + }, + { + "start": 8728.94, + "end": 8730.82, + "probability": 0.8738 + }, + { + "start": 8731.36, + "end": 8733.22, + "probability": 0.7525 + }, + { + "start": 8733.26, + "end": 8735.76, + "probability": 0.9627 + }, + { + "start": 8735.8, + "end": 8737.76, + "probability": 0.957 + }, + { + "start": 8739.62, + "end": 8740.84, + "probability": 0.546 + }, + { + "start": 8741.62, + "end": 8746.14, + "probability": 0.9687 + }, + { + "start": 8746.32, + "end": 8746.89, + "probability": 0.8655 + }, + { + "start": 8747.68, + "end": 8749.42, + "probability": 0.989 + }, + { + "start": 8750.02, + "end": 8750.92, + "probability": 0.9027 + }, + { + "start": 8751.14, + "end": 8755.44, + "probability": 0.9109 + }, + { + "start": 8756.2, + "end": 8760.68, + "probability": 0.9741 + }, + { + "start": 8761.2, + "end": 8764.9, + "probability": 0.9718 + }, + { + "start": 8765.06, + "end": 8766.14, + "probability": 0.8844 + }, + { + "start": 8766.74, + "end": 8769.66, + "probability": 0.9451 + }, + { + "start": 8770.26, + "end": 8773.9, + "probability": 0.9525 + }, + { + "start": 8773.92, + "end": 8776.76, + "probability": 0.9834 + }, + { + "start": 8777.22, + "end": 8781.02, + "probability": 0.9337 + }, + { + "start": 8781.68, + "end": 8783.56, + "probability": 0.5103 + }, + { + "start": 8784.4, + "end": 8786.36, + "probability": 0.9183 + }, + { + "start": 8787.78, + "end": 8790.06, + "probability": 0.9743 + }, + { + "start": 8792.19, + "end": 8794.82, + "probability": 0.9907 + }, + { + "start": 8795.46, + "end": 8798.62, + "probability": 0.8706 + }, + { + "start": 8798.78, + "end": 8800.88, + "probability": 0.9543 + }, + { + "start": 8801.72, + "end": 8804.38, + "probability": 0.8979 + }, + { + "start": 8804.42, + "end": 8804.7, + "probability": 0.1813 + }, + { + "start": 8805.56, + "end": 8808.24, + "probability": 0.7235 + }, + { + "start": 8809.02, + "end": 8813.2, + "probability": 0.7335 + }, + { + "start": 8813.34, + "end": 8813.88, + "probability": 0.7249 + }, + { + "start": 8814.06, + "end": 8814.68, + "probability": 0.6103 + }, + { + "start": 8814.68, + "end": 8817.76, + "probability": 0.6777 + }, + { + "start": 8818.34, + "end": 8821.38, + "probability": 0.8518 + }, + { + "start": 8822.1, + "end": 8823.94, + "probability": 0.6894 + }, + { + "start": 8824.0, + "end": 8825.0, + "probability": 0.9032 + }, + { + "start": 8825.48, + "end": 8829.28, + "probability": 0.9028 + }, + { + "start": 8829.64, + "end": 8830.48, + "probability": 0.3246 + }, + { + "start": 8831.68, + "end": 8834.12, + "probability": 0.7683 + }, + { + "start": 8834.76, + "end": 8836.0, + "probability": 0.6714 + }, + { + "start": 8836.84, + "end": 8842.94, + "probability": 0.7591 + }, + { + "start": 8843.46, + "end": 8845.26, + "probability": 0.8549 + }, + { + "start": 8845.52, + "end": 8846.87, + "probability": 0.7492 + }, + { + "start": 8847.48, + "end": 8848.92, + "probability": 0.5428 + }, + { + "start": 8849.92, + "end": 8853.62, + "probability": 0.8587 + }, + { + "start": 8854.06, + "end": 8856.98, + "probability": 0.755 + }, + { + "start": 8857.08, + "end": 8859.22, + "probability": 0.6448 + }, + { + "start": 8859.52, + "end": 8860.72, + "probability": 0.7484 + }, + { + "start": 8861.2, + "end": 8862.82, + "probability": 0.9225 + }, + { + "start": 8863.3, + "end": 8865.34, + "probability": 0.7838 + }, + { + "start": 8865.96, + "end": 8868.58, + "probability": 0.6185 + }, + { + "start": 8868.72, + "end": 8871.26, + "probability": 0.6278 + }, + { + "start": 8871.62, + "end": 8872.88, + "probability": 0.8218 + }, + { + "start": 8872.94, + "end": 8873.44, + "probability": 0.4513 + }, + { + "start": 8873.84, + "end": 8875.28, + "probability": 0.83 + }, + { + "start": 8875.6, + "end": 8877.02, + "probability": 0.9658 + }, + { + "start": 8877.48, + "end": 8878.78, + "probability": 0.7734 + }, + { + "start": 8879.26, + "end": 8880.72, + "probability": 0.6885 + }, + { + "start": 8881.36, + "end": 8882.9, + "probability": 0.9368 + }, + { + "start": 8883.42, + "end": 8884.76, + "probability": 0.9355 + }, + { + "start": 8884.86, + "end": 8885.68, + "probability": 0.8035 + }, + { + "start": 8886.02, + "end": 8891.0, + "probability": 0.98 + }, + { + "start": 8891.42, + "end": 8894.96, + "probability": 0.9662 + }, + { + "start": 8895.3, + "end": 8897.02, + "probability": 0.7984 + }, + { + "start": 8898.12, + "end": 8900.98, + "probability": 0.8435 + }, + { + "start": 8901.26, + "end": 8902.84, + "probability": 0.8703 + }, + { + "start": 8902.94, + "end": 8903.78, + "probability": 0.918 + }, + { + "start": 8904.84, + "end": 8905.3, + "probability": 0.3323 + }, + { + "start": 8905.52, + "end": 8906.44, + "probability": 0.8221 + }, + { + "start": 8906.56, + "end": 8907.66, + "probability": 0.7558 + }, + { + "start": 8908.06, + "end": 8910.52, + "probability": 0.9757 + }, + { + "start": 8910.9, + "end": 8917.1, + "probability": 0.9777 + }, + { + "start": 8917.56, + "end": 8918.42, + "probability": 0.9654 + }, + { + "start": 8918.54, + "end": 8920.24, + "probability": 0.94 + }, + { + "start": 8920.56, + "end": 8922.92, + "probability": 0.9258 + }, + { + "start": 8922.98, + "end": 8925.58, + "probability": 0.6371 + }, + { + "start": 8926.08, + "end": 8929.5, + "probability": 0.9262 + }, + { + "start": 8929.86, + "end": 8930.68, + "probability": 0.8851 + }, + { + "start": 8930.96, + "end": 8931.96, + "probability": 0.74 + }, + { + "start": 8932.02, + "end": 8933.0, + "probability": 0.9896 + }, + { + "start": 8933.74, + "end": 8935.92, + "probability": 0.7743 + }, + { + "start": 8936.38, + "end": 8938.14, + "probability": 0.985 + }, + { + "start": 8938.54, + "end": 8939.4, + "probability": 0.8126 + }, + { + "start": 8939.74, + "end": 8940.28, + "probability": 0.8519 + }, + { + "start": 8940.48, + "end": 8941.06, + "probability": 0.4536 + }, + { + "start": 8941.08, + "end": 8944.22, + "probability": 0.9842 + }, + { + "start": 8944.22, + "end": 8946.32, + "probability": 0.7908 + }, + { + "start": 8946.48, + "end": 8946.78, + "probability": 0.7022 + }, + { + "start": 8947.2, + "end": 8949.22, + "probability": 0.7151 + }, + { + "start": 8949.5, + "end": 8952.5, + "probability": 0.9873 + }, + { + "start": 8967.06, + "end": 8968.66, + "probability": 0.443 + }, + { + "start": 8968.74, + "end": 8968.9, + "probability": 0.3306 + }, + { + "start": 8969.02, + "end": 8970.24, + "probability": 0.7127 + }, + { + "start": 8971.84, + "end": 8977.06, + "probability": 0.9086 + }, + { + "start": 8977.24, + "end": 8977.56, + "probability": 0.8785 + }, + { + "start": 8978.04, + "end": 8978.36, + "probability": 0.7262 + }, + { + "start": 8980.24, + "end": 8983.7, + "probability": 0.8734 + }, + { + "start": 8984.12, + "end": 8987.48, + "probability": 0.9963 + }, + { + "start": 8988.1, + "end": 8989.1, + "probability": 0.8679 + }, + { + "start": 8989.74, + "end": 8990.3, + "probability": 0.9139 + }, + { + "start": 8990.44, + "end": 8991.61, + "probability": 0.9228 + }, + { + "start": 8992.08, + "end": 8993.62, + "probability": 0.9747 + }, + { + "start": 8994.52, + "end": 8999.96, + "probability": 0.9836 + }, + { + "start": 9000.96, + "end": 9004.46, + "probability": 0.9632 + }, + { + "start": 9004.46, + "end": 9007.6, + "probability": 0.9988 + }, + { + "start": 9008.3, + "end": 9013.06, + "probability": 0.9643 + }, + { + "start": 9013.22, + "end": 9014.02, + "probability": 0.7319 + }, + { + "start": 9015.04, + "end": 9018.04, + "probability": 0.9878 + }, + { + "start": 9018.44, + "end": 9019.76, + "probability": 0.8486 + }, + { + "start": 9020.78, + "end": 9025.52, + "probability": 0.9273 + }, + { + "start": 9027.4, + "end": 9031.98, + "probability": 0.9924 + }, + { + "start": 9033.0, + "end": 9037.4, + "probability": 0.9894 + }, + { + "start": 9037.98, + "end": 9041.64, + "probability": 0.9946 + }, + { + "start": 9042.1, + "end": 9045.32, + "probability": 0.8346 + }, + { + "start": 9045.98, + "end": 9047.18, + "probability": 0.5632 + }, + { + "start": 9047.66, + "end": 9050.2, + "probability": 0.9503 + }, + { + "start": 9050.3, + "end": 9052.66, + "probability": 0.9844 + }, + { + "start": 9053.78, + "end": 9057.2, + "probability": 0.777 + }, + { + "start": 9057.88, + "end": 9061.86, + "probability": 0.9008 + }, + { + "start": 9061.86, + "end": 9067.4, + "probability": 0.9708 + }, + { + "start": 9067.5, + "end": 9068.56, + "probability": 0.2965 + }, + { + "start": 9068.7, + "end": 9069.48, + "probability": 0.9222 + }, + { + "start": 9070.3, + "end": 9074.46, + "probability": 0.9912 + }, + { + "start": 9075.16, + "end": 9076.42, + "probability": 0.7547 + }, + { + "start": 9076.52, + "end": 9080.18, + "probability": 0.9255 + }, + { + "start": 9081.06, + "end": 9081.44, + "probability": 0.8379 + }, + { + "start": 9082.02, + "end": 9082.76, + "probability": 0.7584 + }, + { + "start": 9083.64, + "end": 9084.18, + "probability": 0.9509 + }, + { + "start": 9087.28, + "end": 9087.74, + "probability": 0.0336 + }, + { + "start": 9087.74, + "end": 9088.46, + "probability": 0.6344 + }, + { + "start": 9089.8, + "end": 9090.06, + "probability": 0.5309 + }, + { + "start": 9090.14, + "end": 9094.02, + "probability": 0.9952 + }, + { + "start": 9094.12, + "end": 9098.22, + "probability": 0.7586 + }, + { + "start": 9098.3, + "end": 9099.12, + "probability": 0.7641 + }, + { + "start": 9099.56, + "end": 9101.48, + "probability": 0.9451 + }, + { + "start": 9102.0, + "end": 9103.34, + "probability": 0.9396 + }, + { + "start": 9104.42, + "end": 9111.08, + "probability": 0.9768 + }, + { + "start": 9111.1, + "end": 9115.16, + "probability": 0.9882 + }, + { + "start": 9115.82, + "end": 9118.5, + "probability": 0.9929 + }, + { + "start": 9119.1, + "end": 9121.64, + "probability": 0.8392 + }, + { + "start": 9121.64, + "end": 9126.16, + "probability": 0.9849 + }, + { + "start": 9126.26, + "end": 9129.4, + "probability": 0.8818 + }, + { + "start": 9129.86, + "end": 9131.3, + "probability": 0.8861 + }, + { + "start": 9131.86, + "end": 9132.86, + "probability": 0.9756 + }, + { + "start": 9133.68, + "end": 9135.64, + "probability": 0.7124 + }, + { + "start": 9135.8, + "end": 9137.02, + "probability": 0.7425 + }, + { + "start": 9137.52, + "end": 9139.32, + "probability": 0.9634 + }, + { + "start": 9139.46, + "end": 9142.22, + "probability": 0.9372 + }, + { + "start": 9142.76, + "end": 9148.58, + "probability": 0.9961 + }, + { + "start": 9148.58, + "end": 9152.54, + "probability": 0.9972 + }, + { + "start": 9153.14, + "end": 9153.92, + "probability": 0.7309 + }, + { + "start": 9154.06, + "end": 9154.88, + "probability": 0.8165 + }, + { + "start": 9155.36, + "end": 9157.22, + "probability": 0.8982 + }, + { + "start": 9157.36, + "end": 9161.18, + "probability": 0.9097 + }, + { + "start": 9162.08, + "end": 9166.78, + "probability": 0.8711 + }, + { + "start": 9166.88, + "end": 9167.22, + "probability": 0.8052 + }, + { + "start": 9168.24, + "end": 9170.64, + "probability": 0.667 + }, + { + "start": 9170.98, + "end": 9176.19, + "probability": 0.9897 + }, + { + "start": 9176.57, + "end": 9181.33, + "probability": 0.9498 + }, + { + "start": 9182.23, + "end": 9185.13, + "probability": 0.807 + }, + { + "start": 9185.13, + "end": 9188.43, + "probability": 0.4388 + }, + { + "start": 9189.37, + "end": 9191.71, + "probability": 0.3 + }, + { + "start": 9192.25, + "end": 9193.15, + "probability": 0.9375 + }, + { + "start": 9204.99, + "end": 9205.23, + "probability": 0.8274 + }, + { + "start": 9222.43, + "end": 9224.11, + "probability": 0.2894 + }, + { + "start": 9224.95, + "end": 9225.59, + "probability": 0.3866 + }, + { + "start": 9235.03, + "end": 9239.87, + "probability": 0.4999 + }, + { + "start": 9239.87, + "end": 9243.31, + "probability": 0.3116 + }, + { + "start": 9243.47, + "end": 9244.13, + "probability": 0.2683 + }, + { + "start": 9246.33, + "end": 9247.29, + "probability": 0.0515 + }, + { + "start": 9252.37, + "end": 9252.77, + "probability": 0.08 + }, + { + "start": 9253.45, + "end": 9255.83, + "probability": 0.0984 + }, + { + "start": 9256.43, + "end": 9262.63, + "probability": 0.1422 + }, + { + "start": 9263.21, + "end": 9263.57, + "probability": 0.1382 + }, + { + "start": 9263.97, + "end": 9265.49, + "probability": 0.2447 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9305.0, + "end": 9305.0, + "probability": 0.0 + }, + { + "start": 9314.13, + "end": 9315.44, + "probability": 0.0313 + }, + { + "start": 9316.05, + "end": 9317.2, + "probability": 0.0404 + }, + { + "start": 9317.66, + "end": 9322.7, + "probability": 0.0381 + }, + { + "start": 9322.7, + "end": 9329.48, + "probability": 0.2019 + }, + { + "start": 9330.06, + "end": 9334.73, + "probability": 0.096 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.0, + "end": 9430.0, + "probability": 0.0 + }, + { + "start": 9430.28, + "end": 9430.86, + "probability": 0.2871 + }, + { + "start": 9432.28, + "end": 9432.6, + "probability": 0.1835 + }, + { + "start": 9432.6, + "end": 9432.6, + "probability": 0.0149 + }, + { + "start": 9432.6, + "end": 9434.96, + "probability": 0.1708 + }, + { + "start": 9436.28, + "end": 9436.42, + "probability": 0.3577 + }, + { + "start": 9439.18, + "end": 9443.06, + "probability": 0.0515 + }, + { + "start": 9443.11, + "end": 9443.74, + "probability": 0.1123 + }, + { + "start": 9445.18, + "end": 9445.34, + "probability": 0.0535 + }, + { + "start": 9445.34, + "end": 9445.34, + "probability": 0.0898 + }, + { + "start": 9445.34, + "end": 9445.34, + "probability": 0.0434 + }, + { + "start": 9445.34, + "end": 9449.12, + "probability": 0.7188 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9560.0, + "end": 9560.0, + "probability": 0.0 + }, + { + "start": 9566.08, + "end": 9567.18, + "probability": 0.6101 + }, + { + "start": 9567.94, + "end": 9568.78, + "probability": 0.0035 + }, + { + "start": 9576.42, + "end": 9577.46, + "probability": 0.0435 + }, + { + "start": 9592.11, + "end": 9594.59, + "probability": 0.0168 + }, + { + "start": 9596.4, + "end": 9598.32, + "probability": 0.1031 + }, + { + "start": 9598.32, + "end": 9601.34, + "probability": 0.0288 + }, + { + "start": 9601.34, + "end": 9603.24, + "probability": 0.1089 + }, + { + "start": 9603.26, + "end": 9607.95, + "probability": 0.0523 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9689.0, + "end": 9689.0, + "probability": 0.0 + }, + { + "start": 9700.22, + "end": 9703.56, + "probability": 0.0401 + }, + { + "start": 9704.44, + "end": 9709.24, + "probability": 0.0774 + }, + { + "start": 9709.24, + "end": 9711.68, + "probability": 0.0696 + }, + { + "start": 9711.68, + "end": 9712.16, + "probability": 0.2245 + }, + { + "start": 9712.24, + "end": 9714.38, + "probability": 0.0243 + }, + { + "start": 9714.38, + "end": 9721.76, + "probability": 0.0752 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9825.0, + "end": 9825.0, + "probability": 0.0 + }, + { + "start": 9826.29, + "end": 9826.5, + "probability": 0.0011 + }, + { + "start": 9826.5, + "end": 9826.5, + "probability": 0.0475 + }, + { + "start": 9826.5, + "end": 9826.5, + "probability": 0.4824 + }, + { + "start": 9826.5, + "end": 9826.5, + "probability": 0.1898 + }, + { + "start": 9826.5, + "end": 9827.76, + "probability": 0.1751 + }, + { + "start": 9828.81, + "end": 9832.44, + "probability": 0.7021 + }, + { + "start": 9832.54, + "end": 9833.48, + "probability": 0.9925 + }, + { + "start": 9837.46, + "end": 9839.98, + "probability": 0.7105 + }, + { + "start": 9840.52, + "end": 9840.74, + "probability": 0.7418 + }, + { + "start": 9841.84, + "end": 9842.46, + "probability": 0.67 + }, + { + "start": 9842.74, + "end": 9846.8, + "probability": 0.9525 + }, + { + "start": 9847.94, + "end": 9854.38, + "probability": 0.9407 + }, + { + "start": 9855.64, + "end": 9856.24, + "probability": 0.4308 + }, + { + "start": 9857.32, + "end": 9862.9, + "probability": 0.9189 + }, + { + "start": 9863.08, + "end": 9869.64, + "probability": 0.993 + }, + { + "start": 9870.8, + "end": 9874.48, + "probability": 0.992 + }, + { + "start": 9874.9, + "end": 9876.18, + "probability": 0.9854 + }, + { + "start": 9877.72, + "end": 9881.92, + "probability": 0.8564 + }, + { + "start": 9882.68, + "end": 9885.38, + "probability": 0.9415 + }, + { + "start": 9886.28, + "end": 9889.62, + "probability": 0.8521 + }, + { + "start": 9890.46, + "end": 9891.66, + "probability": 0.8985 + }, + { + "start": 9892.38, + "end": 9896.6, + "probability": 0.5212 + }, + { + "start": 9896.66, + "end": 9900.18, + "probability": 0.9543 + }, + { + "start": 9900.88, + "end": 9903.26, + "probability": 0.6505 + }, + { + "start": 9903.68, + "end": 9906.6, + "probability": 0.6614 + }, + { + "start": 9906.72, + "end": 9912.98, + "probability": 0.9554 + }, + { + "start": 9913.84, + "end": 9915.6, + "probability": 0.0095 + }, + { + "start": 9916.24, + "end": 9919.34, + "probability": 0.9653 + }, + { + "start": 9920.02, + "end": 9920.37, + "probability": 0.5166 + }, + { + "start": 9921.0, + "end": 9921.74, + "probability": 0.7861 + }, + { + "start": 9923.4, + "end": 9924.2, + "probability": 0.7585 + }, + { + "start": 9924.94, + "end": 9926.78, + "probability": 0.8135 + }, + { + "start": 9927.66, + "end": 9927.94, + "probability": 0.1065 + }, + { + "start": 9929.74, + "end": 9930.16, + "probability": 0.0358 + }, + { + "start": 9930.16, + "end": 9930.16, + "probability": 0.32 + }, + { + "start": 9930.16, + "end": 9932.37, + "probability": 0.9953 + }, + { + "start": 9932.68, + "end": 9933.06, + "probability": 0.0108 + }, + { + "start": 9933.6, + "end": 9935.26, + "probability": 0.1123 + }, + { + "start": 9935.34, + "end": 9936.66, + "probability": 0.4458 + }, + { + "start": 9937.18, + "end": 9938.68, + "probability": 0.755 + }, + { + "start": 9938.8, + "end": 9939.9, + "probability": 0.8142 + }, + { + "start": 9940.02, + "end": 9940.86, + "probability": 0.7488 + }, + { + "start": 9941.26, + "end": 9941.64, + "probability": 0.4934 + }, + { + "start": 9942.0, + "end": 9944.16, + "probability": 0.8845 + }, + { + "start": 9944.78, + "end": 9947.6, + "probability": 0.9171 + }, + { + "start": 9948.26, + "end": 9949.74, + "probability": 0.9837 + }, + { + "start": 9950.88, + "end": 9953.5, + "probability": 0.9814 + }, + { + "start": 9954.3, + "end": 9955.26, + "probability": 0.9943 + }, + { + "start": 9955.82, + "end": 9956.46, + "probability": 0.9277 + }, + { + "start": 9958.1, + "end": 9959.12, + "probability": 0.9993 + }, + { + "start": 9960.36, + "end": 9960.76, + "probability": 0.9819 + }, + { + "start": 9962.66, + "end": 9963.62, + "probability": 0.8166 + }, + { + "start": 9964.22, + "end": 9965.78, + "probability": 0.8347 + }, + { + "start": 9968.34, + "end": 9969.34, + "probability": 0.6246 + }, + { + "start": 9970.2, + "end": 9972.62, + "probability": 0.9629 + }, + { + "start": 9973.7, + "end": 9974.62, + "probability": 0.5926 + }, + { + "start": 9975.34, + "end": 9975.88, + "probability": 0.6014 + }, + { + "start": 9976.02, + "end": 9978.84, + "probability": 0.9465 + }, + { + "start": 9978.88, + "end": 9979.44, + "probability": 0.7786 + }, + { + "start": 9979.6, + "end": 9980.42, + "probability": 0.8209 + }, + { + "start": 9981.44, + "end": 9985.24, + "probability": 0.8157 + }, + { + "start": 9985.44, + "end": 9985.98, + "probability": 0.6073 + }, + { + "start": 9986.08, + "end": 9989.44, + "probability": 0.9873 + }, + { + "start": 9989.6, + "end": 9991.06, + "probability": 0.9814 + }, + { + "start": 9991.06, + "end": 9994.18, + "probability": 0.9645 + }, + { + "start": 9994.46, + "end": 9997.22, + "probability": 0.886 + }, + { + "start": 9997.88, + "end": 9998.04, + "probability": 0.3144 + }, + { + "start": 9998.9, + "end": 9999.6, + "probability": 0.3527 + }, + { + "start": 10000.04, + "end": 10001.96, + "probability": 0.98 + }, + { + "start": 10002.1, + "end": 10004.58, + "probability": 0.9777 + }, + { + "start": 10004.58, + "end": 10007.46, + "probability": 0.7457 + }, + { + "start": 10007.98, + "end": 10008.72, + "probability": 0.7271 + }, + { + "start": 10009.54, + "end": 10009.98, + "probability": 0.1599 + }, + { + "start": 10009.98, + "end": 10012.42, + "probability": 0.9933 + }, + { + "start": 10012.76, + "end": 10014.8, + "probability": 0.704 + }, + { + "start": 10015.54, + "end": 10016.48, + "probability": 0.7722 + }, + { + "start": 10016.58, + "end": 10017.23, + "probability": 0.8852 + }, + { + "start": 10017.7, + "end": 10019.86, + "probability": 0.588 + }, + { + "start": 10020.18, + "end": 10021.28, + "probability": 0.3663 + }, + { + "start": 10021.44, + "end": 10023.44, + "probability": 0.4846 + }, + { + "start": 10023.72, + "end": 10023.96, + "probability": 0.8596 + }, + { + "start": 10024.0, + "end": 10027.02, + "probability": 0.9764 + }, + { + "start": 10027.02, + "end": 10031.64, + "probability": 0.8737 + }, + { + "start": 10031.9, + "end": 10032.9, + "probability": 0.749 + }, + { + "start": 10033.08, + "end": 10035.52, + "probability": 0.7903 + }, + { + "start": 10035.74, + "end": 10037.41, + "probability": 0.4775 + }, + { + "start": 10038.24, + "end": 10039.51, + "probability": 0.9906 + }, + { + "start": 10040.4, + "end": 10042.68, + "probability": 0.8581 + }, + { + "start": 10043.34, + "end": 10045.72, + "probability": 0.9694 + }, + { + "start": 10045.86, + "end": 10048.24, + "probability": 0.9902 + }, + { + "start": 10048.24, + "end": 10052.08, + "probability": 0.9788 + }, + { + "start": 10052.28, + "end": 10053.5, + "probability": 0.6593 + }, + { + "start": 10053.7, + "end": 10054.96, + "probability": 0.8238 + }, + { + "start": 10055.18, + "end": 10060.82, + "probability": 0.7436 + }, + { + "start": 10061.0, + "end": 10061.7, + "probability": 0.4967 + }, + { + "start": 10061.74, + "end": 10063.94, + "probability": 0.6523 + }, + { + "start": 10064.04, + "end": 10066.74, + "probability": 0.7601 + }, + { + "start": 10067.18, + "end": 10067.74, + "probability": 0.8461 + }, + { + "start": 10068.78, + "end": 10071.36, + "probability": 0.9971 + }, + { + "start": 10072.1, + "end": 10072.84, + "probability": 0.9374 + }, + { + "start": 10073.76, + "end": 10074.84, + "probability": 0.9497 + }, + { + "start": 10076.18, + "end": 10078.52, + "probability": 0.8932 + }, + { + "start": 10079.32, + "end": 10082.08, + "probability": 0.9925 + }, + { + "start": 10082.22, + "end": 10084.18, + "probability": 0.9919 + }, + { + "start": 10084.48, + "end": 10085.48, + "probability": 0.9293 + }, + { + "start": 10085.96, + "end": 10087.18, + "probability": 0.9609 + }, + { + "start": 10087.92, + "end": 10090.7, + "probability": 0.9849 + }, + { + "start": 10092.24, + "end": 10093.96, + "probability": 0.9871 + }, + { + "start": 10094.7, + "end": 10096.96, + "probability": 0.9115 + }, + { + "start": 10098.16, + "end": 10099.44, + "probability": 0.9849 + }, + { + "start": 10099.56, + "end": 10102.36, + "probability": 0.9902 + }, + { + "start": 10102.8, + "end": 10104.36, + "probability": 0.8453 + }, + { + "start": 10104.52, + "end": 10106.58, + "probability": 0.9664 + }, + { + "start": 10107.28, + "end": 10108.4, + "probability": 0.9727 + }, + { + "start": 10109.5, + "end": 10110.08, + "probability": 0.9349 + }, + { + "start": 10110.22, + "end": 10113.12, + "probability": 0.8758 + }, + { + "start": 10113.26, + "end": 10113.66, + "probability": 0.8932 + }, + { + "start": 10113.82, + "end": 10115.34, + "probability": 0.7534 + }, + { + "start": 10115.46, + "end": 10116.89, + "probability": 0.9111 + }, + { + "start": 10117.02, + "end": 10117.94, + "probability": 0.8838 + }, + { + "start": 10118.93, + "end": 10122.52, + "probability": 0.7688 + }, + { + "start": 10122.6, + "end": 10122.99, + "probability": 0.7505 + }, + { + "start": 10124.26, + "end": 10127.44, + "probability": 0.9939 + }, + { + "start": 10127.78, + "end": 10129.46, + "probability": 0.9554 + }, + { + "start": 10130.32, + "end": 10131.46, + "probability": 0.9541 + }, + { + "start": 10132.72, + "end": 10132.94, + "probability": 0.9146 + }, + { + "start": 10133.0, + "end": 10135.82, + "probability": 0.9876 + }, + { + "start": 10136.34, + "end": 10137.92, + "probability": 0.8457 + }, + { + "start": 10137.98, + "end": 10138.4, + "probability": 0.8589 + }, + { + "start": 10139.4, + "end": 10139.92, + "probability": 0.7556 + }, + { + "start": 10140.16, + "end": 10140.76, + "probability": 0.6427 + }, + { + "start": 10140.88, + "end": 10143.0, + "probability": 0.6396 + }, + { + "start": 10143.16, + "end": 10143.8, + "probability": 0.7242 + }, + { + "start": 10144.68, + "end": 10145.9, + "probability": 0.6679 + }, + { + "start": 10147.04, + "end": 10149.82, + "probability": 0.8631 + }, + { + "start": 10150.92, + "end": 10153.24, + "probability": 0.9697 + }, + { + "start": 10153.76, + "end": 10154.52, + "probability": 0.8044 + }, + { + "start": 10155.3, + "end": 10159.88, + "probability": 0.9849 + }, + { + "start": 10160.26, + "end": 10160.54, + "probability": 0.9544 + }, + { + "start": 10162.32, + "end": 10165.92, + "probability": 0.9863 + }, + { + "start": 10166.98, + "end": 10167.92, + "probability": 0.9253 + }, + { + "start": 10169.2, + "end": 10170.58, + "probability": 0.636 + }, + { + "start": 10171.72, + "end": 10176.4, + "probability": 0.9795 + }, + { + "start": 10178.44, + "end": 10180.56, + "probability": 0.8047 + }, + { + "start": 10181.36, + "end": 10182.8, + "probability": 0.7198 + }, + { + "start": 10183.26, + "end": 10184.2, + "probability": 0.8675 + }, + { + "start": 10184.6, + "end": 10186.06, + "probability": 0.8415 + }, + { + "start": 10186.14, + "end": 10188.6, + "probability": 0.9229 + }, + { + "start": 10189.26, + "end": 10192.54, + "probability": 0.8105 + }, + { + "start": 10192.6, + "end": 10195.74, + "probability": 0.9163 + }, + { + "start": 10196.4, + "end": 10198.42, + "probability": 0.9912 + }, + { + "start": 10198.56, + "end": 10200.14, + "probability": 0.9372 + }, + { + "start": 10201.96, + "end": 10203.9, + "probability": 0.9865 + }, + { + "start": 10206.54, + "end": 10207.84, + "probability": 0.988 + }, + { + "start": 10208.32, + "end": 10210.7, + "probability": 0.9624 + }, + { + "start": 10210.78, + "end": 10211.15, + "probability": 0.8643 + }, + { + "start": 10211.4, + "end": 10212.06, + "probability": 0.7881 + }, + { + "start": 10212.48, + "end": 10213.12, + "probability": 0.9761 + }, + { + "start": 10214.42, + "end": 10215.88, + "probability": 0.9233 + }, + { + "start": 10217.84, + "end": 10218.62, + "probability": 0.8916 + }, + { + "start": 10219.92, + "end": 10221.2, + "probability": 0.9026 + }, + { + "start": 10222.18, + "end": 10223.44, + "probability": 0.7047 + }, + { + "start": 10223.54, + "end": 10224.46, + "probability": 0.6451 + }, + { + "start": 10224.58, + "end": 10225.38, + "probability": 0.7715 + }, + { + "start": 10227.36, + "end": 10227.9, + "probability": 0.916 + }, + { + "start": 10227.96, + "end": 10232.34, + "probability": 0.8564 + }, + { + "start": 10233.78, + "end": 10236.32, + "probability": 0.9325 + }, + { + "start": 10237.82, + "end": 10238.24, + "probability": 0.7105 + }, + { + "start": 10238.94, + "end": 10240.42, + "probability": 0.7018 + }, + { + "start": 10240.78, + "end": 10243.46, + "probability": 0.9343 + }, + { + "start": 10244.68, + "end": 10247.76, + "probability": 0.821 + }, + { + "start": 10247.9, + "end": 10249.34, + "probability": 0.9767 + }, + { + "start": 10250.28, + "end": 10252.38, + "probability": 0.3574 + }, + { + "start": 10252.98, + "end": 10253.92, + "probability": 0.9231 + }, + { + "start": 10254.06, + "end": 10254.92, + "probability": 0.6866 + }, + { + "start": 10255.02, + "end": 10257.56, + "probability": 0.974 + }, + { + "start": 10258.03, + "end": 10261.54, + "probability": 0.913 + }, + { + "start": 10261.84, + "end": 10264.28, + "probability": 0.509 + }, + { + "start": 10264.44, + "end": 10267.24, + "probability": 0.6462 + }, + { + "start": 10267.36, + "end": 10267.48, + "probability": 0.1355 + }, + { + "start": 10267.48, + "end": 10267.48, + "probability": 0.0196 + }, + { + "start": 10267.48, + "end": 10268.44, + "probability": 0.5452 + }, + { + "start": 10268.74, + "end": 10268.94, + "probability": 0.8161 + }, + { + "start": 10269.5, + "end": 10272.1, + "probability": 0.9808 + }, + { + "start": 10273.18, + "end": 10273.86, + "probability": 0.7565 + }, + { + "start": 10273.98, + "end": 10274.4, + "probability": 0.7546 + }, + { + "start": 10274.48, + "end": 10275.76, + "probability": 0.7058 + }, + { + "start": 10275.92, + "end": 10276.38, + "probability": 0.4805 + }, + { + "start": 10277.6, + "end": 10278.48, + "probability": 0.9756 + }, + { + "start": 10279.84, + "end": 10282.16, + "probability": 0.9481 + }, + { + "start": 10282.16, + "end": 10282.36, + "probability": 0.7051 + }, + { + "start": 10282.58, + "end": 10283.62, + "probability": 0.9437 + }, + { + "start": 10283.68, + "end": 10283.96, + "probability": 0.8131 + }, + { + "start": 10284.04, + "end": 10284.96, + "probability": 0.9818 + }, + { + "start": 10285.24, + "end": 10286.54, + "probability": 0.814 + }, + { + "start": 10287.12, + "end": 10289.06, + "probability": 0.6129 + }, + { + "start": 10289.6, + "end": 10290.68, + "probability": 0.9315 + }, + { + "start": 10290.74, + "end": 10291.9, + "probability": 0.8431 + }, + { + "start": 10292.22, + "end": 10293.14, + "probability": 0.4868 + }, + { + "start": 10293.32, + "end": 10295.92, + "probability": 0.7264 + }, + { + "start": 10295.98, + "end": 10298.34, + "probability": 0.6538 + }, + { + "start": 10298.4, + "end": 10300.1, + "probability": 0.6578 + }, + { + "start": 10300.1, + "end": 10302.26, + "probability": 0.9779 + }, + { + "start": 10302.28, + "end": 10304.04, + "probability": 0.9791 + }, + { + "start": 10304.72, + "end": 10305.88, + "probability": 0.9883 + }, + { + "start": 10306.28, + "end": 10308.54, + "probability": 0.6849 + }, + { + "start": 10309.76, + "end": 10310.6, + "probability": 0.8493 + }, + { + "start": 10311.96, + "end": 10312.22, + "probability": 0.3696 + }, + { + "start": 10313.0, + "end": 10315.42, + "probability": 0.7466 + }, + { + "start": 10315.58, + "end": 10316.08, + "probability": 0.8682 + }, + { + "start": 10316.88, + "end": 10317.48, + "probability": 0.4601 + }, + { + "start": 10318.34, + "end": 10318.82, + "probability": 0.7289 + }, + { + "start": 10318.98, + "end": 10320.56, + "probability": 0.8826 + }, + { + "start": 10321.02, + "end": 10322.12, + "probability": 0.9629 + }, + { + "start": 10322.94, + "end": 10323.84, + "probability": 0.9868 + }, + { + "start": 10324.36, + "end": 10326.4, + "probability": 0.8045 + }, + { + "start": 10327.18, + "end": 10328.78, + "probability": 0.9877 + }, + { + "start": 10329.46, + "end": 10333.1, + "probability": 0.8808 + }, + { + "start": 10333.12, + "end": 10333.68, + "probability": 0.6991 + }, + { + "start": 10333.98, + "end": 10337.2, + "probability": 0.9199 + }, + { + "start": 10340.8, + "end": 10344.14, + "probability": 0.9978 + }, + { + "start": 10344.62, + "end": 10345.66, + "probability": 0.9175 + }, + { + "start": 10346.08, + "end": 10347.92, + "probability": 0.8552 + }, + { + "start": 10348.4, + "end": 10349.75, + "probability": 0.707 + }, + { + "start": 10351.3, + "end": 10354.0, + "probability": 0.9213 + }, + { + "start": 10354.12, + "end": 10355.4, + "probability": 0.7122 + }, + { + "start": 10358.46, + "end": 10359.74, + "probability": 0.0835 + }, + { + "start": 10359.98, + "end": 10360.26, + "probability": 0.2347 + }, + { + "start": 10360.32, + "end": 10361.54, + "probability": 0.1368 + }, + { + "start": 10361.72, + "end": 10362.24, + "probability": 0.7791 + }, + { + "start": 10362.44, + "end": 10362.86, + "probability": 0.7594 + }, + { + "start": 10362.97, + "end": 10369.2, + "probability": 0.9165 + }, + { + "start": 10369.72, + "end": 10371.09, + "probability": 0.9387 + }, + { + "start": 10371.7, + "end": 10373.25, + "probability": 0.9619 + }, + { + "start": 10373.62, + "end": 10375.98, + "probability": 0.9295 + }, + { + "start": 10376.9, + "end": 10377.9, + "probability": 0.9604 + }, + { + "start": 10378.04, + "end": 10378.74, + "probability": 0.8005 + }, + { + "start": 10378.84, + "end": 10379.62, + "probability": 0.9576 + }, + { + "start": 10380.08, + "end": 10380.34, + "probability": 0.3025 + }, + { + "start": 10380.4, + "end": 10380.54, + "probability": 0.8567 + }, + { + "start": 10380.76, + "end": 10382.22, + "probability": 0.9913 + }, + { + "start": 10382.24, + "end": 10385.22, + "probability": 0.8798 + }, + { + "start": 10385.22, + "end": 10389.08, + "probability": 0.9959 + }, + { + "start": 10389.46, + "end": 10390.82, + "probability": 0.9805 + }, + { + "start": 10391.24, + "end": 10392.32, + "probability": 0.9243 + }, + { + "start": 10393.46, + "end": 10394.1, + "probability": 0.8862 + }, + { + "start": 10394.38, + "end": 10395.42, + "probability": 0.9599 + }, + { + "start": 10395.68, + "end": 10396.9, + "probability": 0.7142 + }, + { + "start": 10397.04, + "end": 10398.94, + "probability": 0.9451 + }, + { + "start": 10400.9, + "end": 10401.52, + "probability": 0.9845 + }, + { + "start": 10401.64, + "end": 10401.98, + "probability": 0.7605 + }, + { + "start": 10402.08, + "end": 10402.58, + "probability": 0.6759 + }, + { + "start": 10402.7, + "end": 10403.05, + "probability": 0.5659 + }, + { + "start": 10403.86, + "end": 10405.3, + "probability": 0.7891 + }, + { + "start": 10406.6, + "end": 10407.19, + "probability": 0.8599 + }, + { + "start": 10408.42, + "end": 10410.56, + "probability": 0.6308 + }, + { + "start": 10411.3, + "end": 10412.84, + "probability": 0.998 + }, + { + "start": 10413.78, + "end": 10414.48, + "probability": 0.8046 + }, + { + "start": 10415.26, + "end": 10415.76, + "probability": 0.9237 + }, + { + "start": 10416.9, + "end": 10421.08, + "probability": 0.9767 + }, + { + "start": 10422.0, + "end": 10426.92, + "probability": 0.9969 + }, + { + "start": 10427.22, + "end": 10430.46, + "probability": 0.9964 + }, + { + "start": 10431.78, + "end": 10432.4, + "probability": 0.9309 + }, + { + "start": 10432.96, + "end": 10433.72, + "probability": 0.9138 + }, + { + "start": 10434.42, + "end": 10441.92, + "probability": 0.9798 + }, + { + "start": 10442.32, + "end": 10444.0, + "probability": 0.9346 + }, + { + "start": 10444.88, + "end": 10445.14, + "probability": 0.569 + }, + { + "start": 10445.32, + "end": 10445.56, + "probability": 0.8792 + }, + { + "start": 10445.58, + "end": 10446.74, + "probability": 0.666 + }, + { + "start": 10447.22, + "end": 10450.14, + "probability": 0.9623 + }, + { + "start": 10450.26, + "end": 10451.42, + "probability": 0.7838 + }, + { + "start": 10452.2, + "end": 10452.74, + "probability": 0.6408 + }, + { + "start": 10453.46, + "end": 10456.98, + "probability": 0.9128 + }, + { + "start": 10457.32, + "end": 10459.9, + "probability": 0.9886 + }, + { + "start": 10460.32, + "end": 10461.56, + "probability": 0.7991 + }, + { + "start": 10462.22, + "end": 10465.74, + "probability": 0.9971 + }, + { + "start": 10465.74, + "end": 10468.72, + "probability": 0.9911 + }, + { + "start": 10469.16, + "end": 10470.6, + "probability": 0.9877 + }, + { + "start": 10470.62, + "end": 10472.96, + "probability": 0.5627 + }, + { + "start": 10473.02, + "end": 10473.02, + "probability": 0.6241 + }, + { + "start": 10473.02, + "end": 10473.44, + "probability": 0.6293 + }, + { + "start": 10474.26, + "end": 10475.5, + "probability": 0.6022 + }, + { + "start": 10475.62, + "end": 10475.92, + "probability": 0.6128 + }, + { + "start": 10476.5, + "end": 10478.56, + "probability": 0.7947 + }, + { + "start": 10479.34, + "end": 10482.88, + "probability": 0.9941 + }, + { + "start": 10483.7, + "end": 10486.38, + "probability": 0.8956 + }, + { + "start": 10487.18, + "end": 10489.74, + "probability": 0.98 + }, + { + "start": 10490.28, + "end": 10493.92, + "probability": 0.675 + }, + { + "start": 10494.56, + "end": 10495.58, + "probability": 0.8766 + }, + { + "start": 10496.5, + "end": 10496.98, + "probability": 0.851 + }, + { + "start": 10512.08, + "end": 10512.68, + "probability": 0.6553 + }, + { + "start": 10515.4, + "end": 10516.68, + "probability": 0.6386 + }, + { + "start": 10518.4, + "end": 10519.28, + "probability": 0.3793 + }, + { + "start": 10519.98, + "end": 10521.66, + "probability": 0.5484 + }, + { + "start": 10522.12, + "end": 10524.06, + "probability": 0.8476 + }, + { + "start": 10525.14, + "end": 10526.14, + "probability": 0.6291 + }, + { + "start": 10527.64, + "end": 10527.64, + "probability": 0.2867 + }, + { + "start": 10527.64, + "end": 10527.64, + "probability": 0.1237 + }, + { + "start": 10527.82, + "end": 10529.32, + "probability": 0.7028 + }, + { + "start": 10529.48, + "end": 10530.78, + "probability": 0.7429 + }, + { + "start": 10533.41, + "end": 10536.74, + "probability": 0.7789 + }, + { + "start": 10536.74, + "end": 10539.48, + "probability": 0.8968 + }, + { + "start": 10540.24, + "end": 10540.76, + "probability": 0.7404 + }, + { + "start": 10540.88, + "end": 10542.4, + "probability": 0.5765 + }, + { + "start": 10543.5, + "end": 10546.06, + "probability": 0.9939 + }, + { + "start": 10548.87, + "end": 10550.82, + "probability": 0.9726 + }, + { + "start": 10551.02, + "end": 10555.86, + "probability": 0.9933 + }, + { + "start": 10555.9, + "end": 10558.22, + "probability": 0.949 + }, + { + "start": 10558.22, + "end": 10560.6, + "probability": 0.3562 + }, + { + "start": 10560.74, + "end": 10561.94, + "probability": 0.6607 + }, + { + "start": 10561.94, + "end": 10566.08, + "probability": 0.7734 + }, + { + "start": 10567.72, + "end": 10569.66, + "probability": 0.9883 + }, + { + "start": 10570.78, + "end": 10574.54, + "probability": 0.9726 + }, + { + "start": 10576.16, + "end": 10579.76, + "probability": 0.9798 + }, + { + "start": 10581.2, + "end": 10583.46, + "probability": 0.9582 + }, + { + "start": 10585.64, + "end": 10588.78, + "probability": 0.9431 + }, + { + "start": 10590.18, + "end": 10593.36, + "probability": 0.8792 + }, + { + "start": 10594.4, + "end": 10596.48, + "probability": 0.9894 + }, + { + "start": 10597.92, + "end": 10598.79, + "probability": 0.9713 + }, + { + "start": 10599.0, + "end": 10602.56, + "probability": 0.9678 + }, + { + "start": 10603.2, + "end": 10605.72, + "probability": 0.9967 + }, + { + "start": 10607.02, + "end": 10609.87, + "probability": 0.9832 + }, + { + "start": 10611.38, + "end": 10617.3, + "probability": 0.9463 + }, + { + "start": 10618.12, + "end": 10619.6, + "probability": 0.9907 + }, + { + "start": 10619.98, + "end": 10621.08, + "probability": 0.9802 + }, + { + "start": 10621.38, + "end": 10624.22, + "probability": 0.9598 + }, + { + "start": 10626.26, + "end": 10626.7, + "probability": 0.9777 + }, + { + "start": 10627.5, + "end": 10630.58, + "probability": 0.8267 + }, + { + "start": 10630.89, + "end": 10634.08, + "probability": 0.9177 + }, + { + "start": 10634.88, + "end": 10636.56, + "probability": 0.7576 + }, + { + "start": 10636.56, + "end": 10642.21, + "probability": 0.9913 + }, + { + "start": 10643.02, + "end": 10644.7, + "probability": 0.8119 + }, + { + "start": 10644.96, + "end": 10651.03, + "probability": 0.7639 + }, + { + "start": 10652.1, + "end": 10652.1, + "probability": 0.0559 + }, + { + "start": 10652.1, + "end": 10656.36, + "probability": 0.9873 + }, + { + "start": 10657.23, + "end": 10660.1, + "probability": 0.9736 + }, + { + "start": 10660.38, + "end": 10662.51, + "probability": 0.9248 + }, + { + "start": 10663.94, + "end": 10664.84, + "probability": 0.8893 + }, + { + "start": 10665.5, + "end": 10665.72, + "probability": 0.202 + }, + { + "start": 10665.72, + "end": 10665.96, + "probability": 0.6343 + }, + { + "start": 10666.26, + "end": 10667.18, + "probability": 0.9435 + }, + { + "start": 10667.36, + "end": 10669.16, + "probability": 0.839 + }, + { + "start": 10670.26, + "end": 10673.82, + "probability": 0.8163 + }, + { + "start": 10674.08, + "end": 10676.43, + "probability": 0.8782 + }, + { + "start": 10678.24, + "end": 10679.86, + "probability": 0.9408 + }, + { + "start": 10680.16, + "end": 10682.04, + "probability": 0.972 + }, + { + "start": 10682.76, + "end": 10683.9, + "probability": 0.7958 + }, + { + "start": 10684.6, + "end": 10690.3, + "probability": 0.9938 + }, + { + "start": 10691.3, + "end": 10692.12, + "probability": 0.8907 + }, + { + "start": 10692.92, + "end": 10695.18, + "probability": 0.9968 + }, + { + "start": 10695.32, + "end": 10697.06, + "probability": 0.8841 + }, + { + "start": 10697.32, + "end": 10699.28, + "probability": 0.9966 + }, + { + "start": 10700.7, + "end": 10701.46, + "probability": 0.7928 + }, + { + "start": 10702.14, + "end": 10703.07, + "probability": 0.9967 + }, + { + "start": 10704.2, + "end": 10706.42, + "probability": 0.8979 + }, + { + "start": 10707.02, + "end": 10707.84, + "probability": 0.9121 + }, + { + "start": 10708.4, + "end": 10713.2, + "probability": 0.9718 + }, + { + "start": 10713.62, + "end": 10714.66, + "probability": 0.903 + }, + { + "start": 10715.72, + "end": 10719.02, + "probability": 0.6104 + }, + { + "start": 10719.04, + "end": 10720.5, + "probability": 0.6776 + }, + { + "start": 10721.74, + "end": 10722.16, + "probability": 0.5271 + }, + { + "start": 10722.24, + "end": 10730.8, + "probability": 0.9233 + }, + { + "start": 10731.6, + "end": 10732.24, + "probability": 0.9782 + }, + { + "start": 10732.38, + "end": 10739.24, + "probability": 0.9302 + }, + { + "start": 10739.74, + "end": 10741.06, + "probability": 0.8901 + }, + { + "start": 10741.12, + "end": 10743.68, + "probability": 0.8237 + }, + { + "start": 10744.82, + "end": 10746.18, + "probability": 0.6667 + }, + { + "start": 10746.68, + "end": 10749.6, + "probability": 0.9375 + }, + { + "start": 10749.92, + "end": 10752.08, + "probability": 0.9319 + }, + { + "start": 10753.72, + "end": 10759.16, + "probability": 0.872 + }, + { + "start": 10759.92, + "end": 10763.0, + "probability": 0.9688 + }, + { + "start": 10763.72, + "end": 10769.04, + "probability": 0.9531 + }, + { + "start": 10769.78, + "end": 10770.42, + "probability": 0.725 + }, + { + "start": 10770.8, + "end": 10772.86, + "probability": 0.9856 + }, + { + "start": 10773.22, + "end": 10776.18, + "probability": 0.9978 + }, + { + "start": 10776.54, + "end": 10777.9, + "probability": 0.8486 + }, + { + "start": 10778.48, + "end": 10783.0, + "probability": 0.8346 + }, + { + "start": 10783.34, + "end": 10784.18, + "probability": 0.7444 + }, + { + "start": 10784.28, + "end": 10786.8, + "probability": 0.9119 + }, + { + "start": 10787.0, + "end": 10790.06, + "probability": 0.9954 + }, + { + "start": 10790.6, + "end": 10794.68, + "probability": 0.9946 + }, + { + "start": 10795.02, + "end": 10796.74, + "probability": 0.9958 + }, + { + "start": 10797.26, + "end": 10799.42, + "probability": 0.9727 + }, + { + "start": 10799.78, + "end": 10801.0, + "probability": 0.9154 + }, + { + "start": 10801.48, + "end": 10802.68, + "probability": 0.9067 + }, + { + "start": 10802.78, + "end": 10803.54, + "probability": 0.9858 + }, + { + "start": 10803.98, + "end": 10805.52, + "probability": 0.781 + }, + { + "start": 10805.92, + "end": 10809.8, + "probability": 0.9858 + }, + { + "start": 10810.1, + "end": 10815.42, + "probability": 0.9167 + }, + { + "start": 10815.42, + "end": 10819.94, + "probability": 0.999 + }, + { + "start": 10820.4, + "end": 10821.32, + "probability": 0.5689 + }, + { + "start": 10821.44, + "end": 10822.1, + "probability": 0.7837 + }, + { + "start": 10822.44, + "end": 10823.56, + "probability": 0.3346 + }, + { + "start": 10823.64, + "end": 10827.92, + "probability": 0.985 + }, + { + "start": 10828.65, + "end": 10831.44, + "probability": 0.7293 + }, + { + "start": 10831.46, + "end": 10833.2, + "probability": 0.9521 + }, + { + "start": 10834.54, + "end": 10834.74, + "probability": 0.1081 + }, + { + "start": 10834.74, + "end": 10836.08, + "probability": 0.7014 + }, + { + "start": 10836.84, + "end": 10838.62, + "probability": 0.7979 + }, + { + "start": 10839.14, + "end": 10842.96, + "probability": 0.944 + }, + { + "start": 10843.9, + "end": 10846.6, + "probability": 0.9319 + }, + { + "start": 10846.72, + "end": 10847.8, + "probability": 0.5049 + }, + { + "start": 10847.8, + "end": 10850.04, + "probability": 0.999 + }, + { + "start": 10850.4, + "end": 10853.04, + "probability": 0.9062 + }, + { + "start": 10853.5, + "end": 10855.02, + "probability": 0.6396 + }, + { + "start": 10855.42, + "end": 10857.22, + "probability": 0.8408 + }, + { + "start": 10857.54, + "end": 10860.02, + "probability": 0.7167 + }, + { + "start": 10860.64, + "end": 10863.88, + "probability": 0.9702 + }, + { + "start": 10864.36, + "end": 10865.0, + "probability": 0.747 + }, + { + "start": 10865.8, + "end": 10868.82, + "probability": 0.9496 + }, + { + "start": 10870.12, + "end": 10871.9, + "probability": 0.9209 + }, + { + "start": 10880.84, + "end": 10886.62, + "probability": 0.6118 + }, + { + "start": 10887.62, + "end": 10887.88, + "probability": 0.0098 + }, + { + "start": 10887.88, + "end": 10891.38, + "probability": 0.7421 + }, + { + "start": 10892.0, + "end": 10898.09, + "probability": 0.8926 + }, + { + "start": 10898.24, + "end": 10904.04, + "probability": 0.9947 + }, + { + "start": 10904.54, + "end": 10905.96, + "probability": 0.9789 + }, + { + "start": 10906.48, + "end": 10908.1, + "probability": 0.9989 + }, + { + "start": 10909.88, + "end": 10914.32, + "probability": 0.9689 + }, + { + "start": 10915.02, + "end": 10918.57, + "probability": 0.9966 + }, + { + "start": 10918.94, + "end": 10921.5, + "probability": 0.885 + }, + { + "start": 10922.12, + "end": 10923.47, + "probability": 0.627 + }, + { + "start": 10926.96, + "end": 10929.24, + "probability": 0.96 + }, + { + "start": 10929.56, + "end": 10931.2, + "probability": 0.738 + }, + { + "start": 10931.64, + "end": 10934.4, + "probability": 0.9677 + }, + { + "start": 10935.86, + "end": 10938.76, + "probability": 0.9967 + }, + { + "start": 10941.64, + "end": 10945.04, + "probability": 0.9632 + }, + { + "start": 10946.28, + "end": 10949.84, + "probability": 0.9871 + }, + { + "start": 10950.88, + "end": 10953.02, + "probability": 0.9496 + }, + { + "start": 10954.32, + "end": 10956.74, + "probability": 0.5654 + }, + { + "start": 10957.72, + "end": 10961.58, + "probability": 0.9944 + }, + { + "start": 10961.72, + "end": 10962.42, + "probability": 0.706 + }, + { + "start": 10964.32, + "end": 10967.1, + "probability": 0.6796 + }, + { + "start": 10968.36, + "end": 10970.88, + "probability": 0.5356 + }, + { + "start": 10970.88, + "end": 10973.44, + "probability": 0.943 + }, + { + "start": 10973.44, + "end": 10974.72, + "probability": 0.9297 + }, + { + "start": 10976.92, + "end": 10980.14, + "probability": 0.8658 + }, + { + "start": 10983.52, + "end": 10984.88, + "probability": 0.7616 + }, + { + "start": 10986.24, + "end": 10990.52, + "probability": 0.9948 + }, + { + "start": 10990.68, + "end": 10994.12, + "probability": 0.9972 + }, + { + "start": 10995.04, + "end": 10996.96, + "probability": 0.9988 + }, + { + "start": 10997.0, + "end": 10997.92, + "probability": 0.95 + }, + { + "start": 10998.44, + "end": 11002.3, + "probability": 0.7857 + }, + { + "start": 11002.3, + "end": 11005.72, + "probability": 0.8922 + }, + { + "start": 11007.38, + "end": 11008.38, + "probability": 0.7573 + }, + { + "start": 11009.9, + "end": 11012.08, + "probability": 0.9954 + }, + { + "start": 11014.42, + "end": 11017.34, + "probability": 0.813 + }, + { + "start": 11018.96, + "end": 11022.72, + "probability": 0.9385 + }, + { + "start": 11022.88, + "end": 11023.32, + "probability": 0.7248 + }, + { + "start": 11023.38, + "end": 11024.84, + "probability": 0.9272 + }, + { + "start": 11025.02, + "end": 11026.76, + "probability": 0.987 + }, + { + "start": 11028.2, + "end": 11028.66, + "probability": 0.5394 + }, + { + "start": 11029.08, + "end": 11029.86, + "probability": 0.78 + }, + { + "start": 11030.24, + "end": 11033.28, + "probability": 0.9319 + }, + { + "start": 11033.34, + "end": 11036.48, + "probability": 0.9902 + }, + { + "start": 11037.22, + "end": 11042.72, + "probability": 0.9091 + }, + { + "start": 11045.1, + "end": 11045.64, + "probability": 0.8159 + }, + { + "start": 11047.24, + "end": 11049.3, + "probability": 0.9835 + }, + { + "start": 11049.88, + "end": 11051.85, + "probability": 0.1826 + }, + { + "start": 11053.94, + "end": 11054.62, + "probability": 0.8668 + }, + { + "start": 11056.02, + "end": 11056.88, + "probability": 0.9402 + }, + { + "start": 11058.24, + "end": 11063.22, + "probability": 0.98 + }, + { + "start": 11063.78, + "end": 11064.8, + "probability": 0.8581 + }, + { + "start": 11065.44, + "end": 11066.84, + "probability": 0.966 + }, + { + "start": 11067.26, + "end": 11071.32, + "probability": 0.991 + }, + { + "start": 11072.38, + "end": 11075.16, + "probability": 0.8815 + }, + { + "start": 11075.56, + "end": 11077.14, + "probability": 0.9799 + }, + { + "start": 11078.71, + "end": 11081.44, + "probability": 0.6659 + }, + { + "start": 11081.88, + "end": 11083.24, + "probability": 0.7763 + }, + { + "start": 11083.68, + "end": 11086.3, + "probability": 0.9529 + }, + { + "start": 11086.92, + "end": 11092.39, + "probability": 0.736 + }, + { + "start": 11093.3, + "end": 11093.66, + "probability": 0.0507 + }, + { + "start": 11093.66, + "end": 11094.1, + "probability": 0.4466 + }, + { + "start": 11094.18, + "end": 11097.78, + "probability": 0.9128 + }, + { + "start": 11098.1, + "end": 11100.9, + "probability": 0.9189 + }, + { + "start": 11101.1, + "end": 11103.3, + "probability": 0.8945 + }, + { + "start": 11103.42, + "end": 11104.41, + "probability": 0.8754 + }, + { + "start": 11104.6, + "end": 11105.62, + "probability": 0.7868 + }, + { + "start": 11106.28, + "end": 11106.38, + "probability": 0.0965 + }, + { + "start": 11107.2, + "end": 11107.7, + "probability": 0.5982 + }, + { + "start": 11108.02, + "end": 11109.58, + "probability": 0.7584 + }, + { + "start": 11109.78, + "end": 11111.32, + "probability": 0.8306 + }, + { + "start": 11111.76, + "end": 11112.5, + "probability": 0.5209 + }, + { + "start": 11113.36, + "end": 11114.12, + "probability": 0.9508 + }, + { + "start": 11114.8, + "end": 11118.02, + "probability": 0.5002 + }, + { + "start": 11118.02, + "end": 11120.14, + "probability": 0.2494 + }, + { + "start": 11120.14, + "end": 11120.24, + "probability": 0.3276 + }, + { + "start": 11120.66, + "end": 11125.0, + "probability": 0.9866 + }, + { + "start": 11126.0, + "end": 11130.72, + "probability": 0.9585 + }, + { + "start": 11130.72, + "end": 11135.78, + "probability": 0.9717 + }, + { + "start": 11137.2, + "end": 11141.24, + "probability": 0.9299 + }, + { + "start": 11141.3, + "end": 11142.5, + "probability": 0.9137 + }, + { + "start": 11142.96, + "end": 11144.88, + "probability": 0.9876 + }, + { + "start": 11144.88, + "end": 11148.14, + "probability": 0.9298 + }, + { + "start": 11148.86, + "end": 11152.34, + "probability": 0.9953 + }, + { + "start": 11152.42, + "end": 11153.42, + "probability": 0.7976 + }, + { + "start": 11154.8, + "end": 11159.06, + "probability": 0.9792 + }, + { + "start": 11159.96, + "end": 11161.6, + "probability": 0.6107 + }, + { + "start": 11161.7, + "end": 11163.82, + "probability": 0.979 + }, + { + "start": 11164.48, + "end": 11167.76, + "probability": 0.9149 + }, + { + "start": 11167.76, + "end": 11171.34, + "probability": 0.9812 + }, + { + "start": 11172.4, + "end": 11174.48, + "probability": 0.9017 + }, + { + "start": 11175.7, + "end": 11175.98, + "probability": 0.7098 + }, + { + "start": 11176.08, + "end": 11176.36, + "probability": 0.962 + }, + { + "start": 11176.48, + "end": 11180.4, + "probability": 0.9934 + }, + { + "start": 11180.96, + "end": 11182.94, + "probability": 0.9958 + }, + { + "start": 11184.08, + "end": 11189.28, + "probability": 0.8313 + }, + { + "start": 11189.36, + "end": 11190.67, + "probability": 0.9777 + }, + { + "start": 11191.3, + "end": 11193.34, + "probability": 0.988 + }, + { + "start": 11193.44, + "end": 11194.28, + "probability": 0.8614 + }, + { + "start": 11194.42, + "end": 11196.52, + "probability": 0.898 + }, + { + "start": 11197.36, + "end": 11199.06, + "probability": 0.4039 + }, + { + "start": 11199.98, + "end": 11201.13, + "probability": 0.4536 + }, + { + "start": 11201.64, + "end": 11202.68, + "probability": 0.2736 + }, + { + "start": 11205.67, + "end": 11210.0, + "probability": 0.608 + }, + { + "start": 11212.0, + "end": 11212.72, + "probability": 0.0064 + }, + { + "start": 11213.48, + "end": 11214.46, + "probability": 0.6876 + }, + { + "start": 11215.1, + "end": 11215.22, + "probability": 0.195 + }, + { + "start": 11216.72, + "end": 11217.06, + "probability": 0.3961 + }, + { + "start": 11217.56, + "end": 11217.68, + "probability": 0.0366 + }, + { + "start": 11217.68, + "end": 11219.16, + "probability": 0.7435 + }, + { + "start": 11219.18, + "end": 11222.68, + "probability": 0.7644 + }, + { + "start": 11223.22, + "end": 11223.96, + "probability": 0.4635 + }, + { + "start": 11223.98, + "end": 11227.66, + "probability": 0.8546 + }, + { + "start": 11228.7, + "end": 11231.28, + "probability": 0.9535 + }, + { + "start": 11231.28, + "end": 11234.76, + "probability": 0.9863 + }, + { + "start": 11235.06, + "end": 11235.32, + "probability": 0.8484 + }, + { + "start": 11236.12, + "end": 11237.46, + "probability": 0.7394 + }, + { + "start": 11237.5, + "end": 11238.38, + "probability": 0.7877 + }, + { + "start": 11238.44, + "end": 11238.54, + "probability": 0.7317 + }, + { + "start": 11239.2, + "end": 11241.86, + "probability": 0.7082 + }, + { + "start": 11241.86, + "end": 11244.76, + "probability": 0.6658 + }, + { + "start": 11245.62, + "end": 11250.48, + "probability": 0.9343 + }, + { + "start": 11250.48, + "end": 11253.66, + "probability": 0.9988 + }, + { + "start": 11253.72, + "end": 11254.8, + "probability": 0.7433 + }, + { + "start": 11255.16, + "end": 11257.56, + "probability": 0.7994 + }, + { + "start": 11258.26, + "end": 11260.12, + "probability": 0.9704 + }, + { + "start": 11261.0, + "end": 11263.08, + "probability": 0.8359 + }, + { + "start": 11263.74, + "end": 11264.4, + "probability": 0.8791 + }, + { + "start": 11265.66, + "end": 11268.32, + "probability": 0.9923 + }, + { + "start": 11268.52, + "end": 11270.08, + "probability": 0.7665 + }, + { + "start": 11270.16, + "end": 11270.92, + "probability": 0.5882 + }, + { + "start": 11271.3, + "end": 11274.98, + "probability": 0.9751 + }, + { + "start": 11275.32, + "end": 11279.78, + "probability": 0.689 + }, + { + "start": 11280.4, + "end": 11282.61, + "probability": 0.817 + }, + { + "start": 11282.88, + "end": 11286.52, + "probability": 0.7202 + }, + { + "start": 11286.52, + "end": 11288.96, + "probability": 0.9758 + }, + { + "start": 11291.18, + "end": 11293.72, + "probability": 0.1215 + }, + { + "start": 11295.96, + "end": 11297.44, + "probability": 0.1043 + }, + { + "start": 11298.46, + "end": 11298.86, + "probability": 0.4911 + }, + { + "start": 11299.04, + "end": 11299.34, + "probability": 0.4896 + }, + { + "start": 11299.42, + "end": 11300.32, + "probability": 0.8866 + }, + { + "start": 11300.88, + "end": 11302.8, + "probability": 0.6803 + }, + { + "start": 11303.0, + "end": 11306.1, + "probability": 0.8579 + }, + { + "start": 11306.52, + "end": 11307.44, + "probability": 0.7487 + }, + { + "start": 11307.5, + "end": 11308.8, + "probability": 0.6711 + }, + { + "start": 11308.9, + "end": 11309.62, + "probability": 0.7161 + }, + { + "start": 11309.92, + "end": 11311.44, + "probability": 0.7155 + }, + { + "start": 11312.34, + "end": 11315.04, + "probability": 0.9521 + }, + { + "start": 11315.34, + "end": 11316.96, + "probability": 0.2992 + }, + { + "start": 11317.42, + "end": 11318.56, + "probability": 0.9963 + }, + { + "start": 11319.38, + "end": 11321.84, + "probability": 0.7099 + }, + { + "start": 11321.92, + "end": 11324.86, + "probability": 0.9446 + }, + { + "start": 11325.24, + "end": 11327.74, + "probability": 0.8253 + }, + { + "start": 11328.16, + "end": 11329.76, + "probability": 0.3645 + }, + { + "start": 11330.52, + "end": 11333.22, + "probability": 0.9788 + }, + { + "start": 11333.66, + "end": 11337.2, + "probability": 0.9609 + }, + { + "start": 11337.58, + "end": 11339.78, + "probability": 0.6544 + }, + { + "start": 11340.12, + "end": 11342.42, + "probability": 0.7904 + }, + { + "start": 11342.52, + "end": 11343.44, + "probability": 0.8103 + }, + { + "start": 11343.82, + "end": 11345.7, + "probability": 0.9941 + }, + { + "start": 11346.28, + "end": 11348.78, + "probability": 0.9578 + }, + { + "start": 11348.96, + "end": 11350.42, + "probability": 0.9645 + }, + { + "start": 11350.86, + "end": 11352.78, + "probability": 0.9431 + }, + { + "start": 11352.88, + "end": 11352.98, + "probability": 0.5239 + }, + { + "start": 11353.12, + "end": 11354.34, + "probability": 0.9031 + }, + { + "start": 11354.34, + "end": 11355.56, + "probability": 0.9065 + }, + { + "start": 11356.18, + "end": 11356.53, + "probability": 0.0243 + }, + { + "start": 11357.14, + "end": 11361.34, + "probability": 0.9834 + }, + { + "start": 11361.36, + "end": 11361.78, + "probability": 0.686 + }, + { + "start": 11361.84, + "end": 11362.0, + "probability": 0.7203 + }, + { + "start": 11362.08, + "end": 11363.92, + "probability": 0.8781 + }, + { + "start": 11364.78, + "end": 11367.58, + "probability": 0.9586 + }, + { + "start": 11368.2, + "end": 11368.54, + "probability": 0.8917 + }, + { + "start": 11368.54, + "end": 11369.82, + "probability": 0.5884 + }, + { + "start": 11369.98, + "end": 11371.34, + "probability": 0.5599 + }, + { + "start": 11371.46, + "end": 11372.08, + "probability": 0.7369 + }, + { + "start": 11372.76, + "end": 11378.2, + "probability": 0.9922 + }, + { + "start": 11378.38, + "end": 11380.96, + "probability": 0.9492 + }, + { + "start": 11381.1, + "end": 11383.66, + "probability": 0.8228 + }, + { + "start": 11384.22, + "end": 11385.2, + "probability": 0.5638 + }, + { + "start": 11385.32, + "end": 11386.51, + "probability": 0.9448 + }, + { + "start": 11387.12, + "end": 11388.03, + "probability": 0.8367 + }, + { + "start": 11388.58, + "end": 11391.86, + "probability": 0.903 + }, + { + "start": 11392.04, + "end": 11392.62, + "probability": 0.7416 + }, + { + "start": 11392.7, + "end": 11394.86, + "probability": 0.8563 + }, + { + "start": 11396.0, + "end": 11401.8, + "probability": 0.9676 + }, + { + "start": 11402.84, + "end": 11403.98, + "probability": 0.9946 + }, + { + "start": 11404.1, + "end": 11405.2, + "probability": 0.5866 + }, + { + "start": 11405.52, + "end": 11406.98, + "probability": 0.9808 + }, + { + "start": 11408.12, + "end": 11408.76, + "probability": 0.1624 + }, + { + "start": 11408.76, + "end": 11409.7, + "probability": 0.5188 + }, + { + "start": 11409.88, + "end": 11410.8, + "probability": 0.7585 + }, + { + "start": 11410.84, + "end": 11413.42, + "probability": 0.9811 + }, + { + "start": 11413.5, + "end": 11414.78, + "probability": 0.8204 + }, + { + "start": 11415.44, + "end": 11415.68, + "probability": 0.3007 + }, + { + "start": 11415.81, + "end": 11417.23, + "probability": 0.6803 + }, + { + "start": 11417.3, + "end": 11417.9, + "probability": 0.5449 + }, + { + "start": 11418.12, + "end": 11420.96, + "probability": 0.7936 + }, + { + "start": 11421.02, + "end": 11424.42, + "probability": 0.9961 + }, + { + "start": 11424.98, + "end": 11426.7, + "probability": 0.6216 + }, + { + "start": 11427.32, + "end": 11427.48, + "probability": 0.9093 + }, + { + "start": 11427.54, + "end": 11429.98, + "probability": 0.9871 + }, + { + "start": 11430.76, + "end": 11431.52, + "probability": 0.6744 + }, + { + "start": 11431.6, + "end": 11432.12, + "probability": 0.9223 + }, + { + "start": 11432.18, + "end": 11436.0, + "probability": 0.8215 + }, + { + "start": 11436.0, + "end": 11439.62, + "probability": 0.7903 + }, + { + "start": 11440.18, + "end": 11444.02, + "probability": 0.9269 + }, + { + "start": 11444.74, + "end": 11448.06, + "probability": 0.8755 + }, + { + "start": 11449.06, + "end": 11453.46, + "probability": 0.8851 + }, + { + "start": 11453.5, + "end": 11455.64, + "probability": 0.9197 + }, + { + "start": 11456.34, + "end": 11456.34, + "probability": 0.1565 + }, + { + "start": 11456.78, + "end": 11459.22, + "probability": 0.8677 + }, + { + "start": 11459.36, + "end": 11459.96, + "probability": 0.691 + }, + { + "start": 11460.24, + "end": 11461.86, + "probability": 0.9655 + }, + { + "start": 11462.14, + "end": 11465.92, + "probability": 0.9563 + }, + { + "start": 11466.44, + "end": 11469.48, + "probability": 0.6405 + }, + { + "start": 11470.18, + "end": 11473.44, + "probability": 0.8445 + }, + { + "start": 11473.96, + "end": 11476.56, + "probability": 0.8924 + }, + { + "start": 11477.3, + "end": 11477.58, + "probability": 0.6097 + }, + { + "start": 11477.64, + "end": 11479.2, + "probability": 0.9263 + }, + { + "start": 11479.2, + "end": 11479.78, + "probability": 0.5942 + }, + { + "start": 11480.16, + "end": 11482.9, + "probability": 0.8391 + }, + { + "start": 11482.96, + "end": 11486.18, + "probability": 0.9567 + }, + { + "start": 11486.24, + "end": 11487.64, + "probability": 0.7559 + }, + { + "start": 11488.36, + "end": 11491.66, + "probability": 0.8555 + }, + { + "start": 11492.28, + "end": 11492.38, + "probability": 0.3094 + }, + { + "start": 11492.44, + "end": 11495.24, + "probability": 0.6586 + }, + { + "start": 11495.4, + "end": 11498.46, + "probability": 0.9246 + }, + { + "start": 11499.72, + "end": 11501.22, + "probability": 0.729 + }, + { + "start": 11501.88, + "end": 11504.8, + "probability": 0.8719 + }, + { + "start": 11505.38, + "end": 11506.08, + "probability": 0.8298 + }, + { + "start": 11506.14, + "end": 11510.14, + "probability": 0.7615 + }, + { + "start": 11510.54, + "end": 11511.62, + "probability": 0.7298 + }, + { + "start": 11511.74, + "end": 11513.28, + "probability": 0.9619 + }, + { + "start": 11513.62, + "end": 11515.24, + "probability": 0.8513 + }, + { + "start": 11515.64, + "end": 11519.34, + "probability": 0.8564 + }, + { + "start": 11520.06, + "end": 11520.42, + "probability": 0.6218 + }, + { + "start": 11520.98, + "end": 11524.06, + "probability": 0.7681 + }, + { + "start": 11524.64, + "end": 11525.36, + "probability": 0.2165 + }, + { + "start": 11525.96, + "end": 11527.32, + "probability": 0.6436 + }, + { + "start": 11527.36, + "end": 11529.18, + "probability": 0.7749 + }, + { + "start": 11529.3, + "end": 11531.3, + "probability": 0.9925 + }, + { + "start": 11531.9, + "end": 11536.22, + "probability": 0.8981 + }, + { + "start": 11536.54, + "end": 11538.3, + "probability": 0.9516 + }, + { + "start": 11538.72, + "end": 11540.28, + "probability": 0.67 + }, + { + "start": 11540.88, + "end": 11544.22, + "probability": 0.9563 + }, + { + "start": 11544.22, + "end": 11547.48, + "probability": 0.9388 + }, + { + "start": 11547.82, + "end": 11549.36, + "probability": 0.9243 + }, + { + "start": 11549.96, + "end": 11552.76, + "probability": 0.8916 + }, + { + "start": 11553.02, + "end": 11557.2, + "probability": 0.9839 + }, + { + "start": 11557.58, + "end": 11558.74, + "probability": 0.5515 + }, + { + "start": 11559.44, + "end": 11562.14, + "probability": 0.9456 + }, + { + "start": 11562.52, + "end": 11565.74, + "probability": 0.9651 + }, + { + "start": 11566.48, + "end": 11568.86, + "probability": 0.8762 + }, + { + "start": 11569.48, + "end": 11575.24, + "probability": 0.9265 + }, + { + "start": 11575.68, + "end": 11577.31, + "probability": 0.8913 + }, + { + "start": 11577.98, + "end": 11581.86, + "probability": 0.6715 + }, + { + "start": 11582.3, + "end": 11585.48, + "probability": 0.634 + }, + { + "start": 11586.52, + "end": 11589.4, + "probability": 0.9438 + }, + { + "start": 11589.98, + "end": 11592.2, + "probability": 0.9832 + }, + { + "start": 11592.32, + "end": 11593.0, + "probability": 0.7908 + }, + { + "start": 11595.08, + "end": 11598.08, + "probability": 0.8621 + }, + { + "start": 11598.16, + "end": 11599.12, + "probability": 0.9954 + }, + { + "start": 11600.18, + "end": 11604.1, + "probability": 0.8804 + }, + { + "start": 11604.66, + "end": 11608.12, + "probability": 0.9678 + }, + { + "start": 11608.12, + "end": 11612.24, + "probability": 0.9808 + }, + { + "start": 11612.66, + "end": 11613.62, + "probability": 0.6757 + }, + { + "start": 11614.24, + "end": 11614.9, + "probability": 0.9095 + }, + { + "start": 11615.56, + "end": 11618.38, + "probability": 0.9885 + }, + { + "start": 11618.44, + "end": 11621.86, + "probability": 0.9973 + }, + { + "start": 11621.86, + "end": 11625.28, + "probability": 0.976 + }, + { + "start": 11625.6, + "end": 11626.74, + "probability": 0.8745 + }, + { + "start": 11627.98, + "end": 11631.54, + "probability": 0.8604 + }, + { + "start": 11631.68, + "end": 11634.6, + "probability": 0.9106 + }, + { + "start": 11634.96, + "end": 11639.32, + "probability": 0.9954 + }, + { + "start": 11639.9, + "end": 11642.82, + "probability": 0.8031 + }, + { + "start": 11642.82, + "end": 11646.42, + "probability": 0.995 + }, + { + "start": 11647.0, + "end": 11650.08, + "probability": 0.9893 + }, + { + "start": 11650.32, + "end": 11654.42, + "probability": 0.7375 + }, + { + "start": 11654.52, + "end": 11654.87, + "probability": 0.9575 + }, + { + "start": 11655.9, + "end": 11656.68, + "probability": 0.6153 + }, + { + "start": 11656.76, + "end": 11658.88, + "probability": 0.9419 + }, + { + "start": 11659.24, + "end": 11663.98, + "probability": 0.9829 + }, + { + "start": 11664.32, + "end": 11667.3, + "probability": 0.6865 + }, + { + "start": 11667.88, + "end": 11671.66, + "probability": 0.9667 + }, + { + "start": 11671.66, + "end": 11674.82, + "probability": 0.9893 + }, + { + "start": 11675.92, + "end": 11679.26, + "probability": 0.9858 + }, + { + "start": 11679.68, + "end": 11682.6, + "probability": 0.7976 + }, + { + "start": 11682.6, + "end": 11685.76, + "probability": 0.9861 + }, + { + "start": 11686.18, + "end": 11690.0, + "probability": 0.8218 + }, + { + "start": 11690.6, + "end": 11697.04, + "probability": 0.954 + }, + { + "start": 11697.36, + "end": 11698.02, + "probability": 0.5222 + }, + { + "start": 11698.46, + "end": 11699.92, + "probability": 0.0553 + }, + { + "start": 11700.04, + "end": 11703.18, + "probability": 0.8344 + }, + { + "start": 11703.3, + "end": 11704.41, + "probability": 0.9272 + }, + { + "start": 11704.92, + "end": 11705.34, + "probability": 0.5261 + }, + { + "start": 11705.56, + "end": 11709.58, + "probability": 0.9663 + }, + { + "start": 11711.03, + "end": 11713.59, + "probability": 0.8613 + }, + { + "start": 11713.72, + "end": 11719.68, + "probability": 0.9033 + }, + { + "start": 11720.2, + "end": 11722.82, + "probability": 0.9106 + }, + { + "start": 11723.58, + "end": 11726.72, + "probability": 0.9859 + }, + { + "start": 11726.72, + "end": 11731.32, + "probability": 0.9913 + }, + { + "start": 11731.9, + "end": 11734.6, + "probability": 0.9209 + }, + { + "start": 11735.3, + "end": 11737.12, + "probability": 0.9453 + }, + { + "start": 11738.66, + "end": 11739.76, + "probability": 0.7695 + }, + { + "start": 11739.84, + "end": 11741.54, + "probability": 0.9867 + }, + { + "start": 11743.82, + "end": 11745.8, + "probability": 0.9595 + }, + { + "start": 11745.96, + "end": 11746.36, + "probability": 0.3032 + }, + { + "start": 11746.52, + "end": 11747.56, + "probability": 0.9083 + }, + { + "start": 11747.7, + "end": 11748.5, + "probability": 0.579 + }, + { + "start": 11749.5, + "end": 11752.0, + "probability": 0.7468 + }, + { + "start": 11752.42, + "end": 11753.54, + "probability": 0.8765 + }, + { + "start": 11753.94, + "end": 11757.36, + "probability": 0.9604 + }, + { + "start": 11757.96, + "end": 11760.24, + "probability": 0.9846 + }, + { + "start": 11760.24, + "end": 11764.28, + "probability": 0.968 + }, + { + "start": 11765.06, + "end": 11766.5, + "probability": 0.9802 + }, + { + "start": 11767.02, + "end": 11768.52, + "probability": 0.9937 + }, + { + "start": 11768.98, + "end": 11771.4, + "probability": 0.8043 + }, + { + "start": 11771.76, + "end": 11774.04, + "probability": 0.96 + }, + { + "start": 11774.54, + "end": 11778.38, + "probability": 0.9803 + }, + { + "start": 11778.76, + "end": 11779.36, + "probability": 0.8262 + }, + { + "start": 11779.52, + "end": 11780.26, + "probability": 0.6145 + }, + { + "start": 11780.32, + "end": 11780.72, + "probability": 0.92 + }, + { + "start": 11780.74, + "end": 11785.6, + "probability": 0.9862 + }, + { + "start": 11785.6, + "end": 11788.86, + "probability": 0.9991 + }, + { + "start": 11789.24, + "end": 11791.52, + "probability": 0.8123 + }, + { + "start": 11791.94, + "end": 11793.02, + "probability": 0.507 + }, + { + "start": 11793.08, + "end": 11793.46, + "probability": 0.6273 + }, + { + "start": 11793.52, + "end": 11794.2, + "probability": 0.5029 + }, + { + "start": 11794.52, + "end": 11798.7, + "probability": 0.9797 + }, + { + "start": 11798.7, + "end": 11803.0, + "probability": 0.9456 + }, + { + "start": 11803.0, + "end": 11806.32, + "probability": 0.9796 + }, + { + "start": 11806.32, + "end": 11811.34, + "probability": 0.9987 + }, + { + "start": 11811.62, + "end": 11815.14, + "probability": 0.9841 + }, + { + "start": 11815.2, + "end": 11817.08, + "probability": 0.8673 + }, + { + "start": 11817.52, + "end": 11819.6, + "probability": 0.889 + }, + { + "start": 11819.86, + "end": 11820.62, + "probability": 0.584 + }, + { + "start": 11820.76, + "end": 11823.9, + "probability": 0.8199 + }, + { + "start": 11824.6, + "end": 11828.74, + "probability": 0.9751 + }, + { + "start": 11829.22, + "end": 11830.92, + "probability": 0.8116 + }, + { + "start": 11831.28, + "end": 11832.74, + "probability": 0.9982 + }, + { + "start": 11832.82, + "end": 11833.46, + "probability": 0.8367 + }, + { + "start": 11833.56, + "end": 11834.8, + "probability": 0.8039 + }, + { + "start": 11835.06, + "end": 11837.92, + "probability": 0.937 + }, + { + "start": 11838.04, + "end": 11838.6, + "probability": 0.4033 + }, + { + "start": 11838.6, + "end": 11840.06, + "probability": 0.8521 + }, + { + "start": 11841.5, + "end": 11843.46, + "probability": 0.88 + }, + { + "start": 11844.22, + "end": 11851.66, + "probability": 0.9906 + }, + { + "start": 11851.76, + "end": 11853.84, + "probability": 0.8926 + }, + { + "start": 11853.84, + "end": 11854.56, + "probability": 0.8197 + }, + { + "start": 11859.88, + "end": 11861.58, + "probability": 0.6412 + }, + { + "start": 11862.7, + "end": 11864.18, + "probability": 0.9526 + }, + { + "start": 11864.36, + "end": 11868.42, + "probability": 0.9658 + }, + { + "start": 11869.3, + "end": 11870.48, + "probability": 0.6664 + }, + { + "start": 11871.28, + "end": 11873.96, + "probability": 0.1897 + }, + { + "start": 11875.2, + "end": 11876.2, + "probability": 0.8103 + }, + { + "start": 11876.88, + "end": 11880.4, + "probability": 0.5709 + }, + { + "start": 11883.52, + "end": 11884.58, + "probability": 0.8088 + }, + { + "start": 11884.58, + "end": 11885.91, + "probability": 0.2665 + }, + { + "start": 11886.7, + "end": 11888.0, + "probability": 0.3907 + }, + { + "start": 11889.14, + "end": 11890.2, + "probability": 0.6116 + }, + { + "start": 11891.0, + "end": 11893.96, + "probability": 0.9126 + }, + { + "start": 11894.44, + "end": 11895.64, + "probability": 0.7704 + }, + { + "start": 11896.94, + "end": 11901.08, + "probability": 0.8544 + }, + { + "start": 11901.16, + "end": 11901.88, + "probability": 0.525 + }, + { + "start": 11903.22, + "end": 11905.82, + "probability": 0.9968 + }, + { + "start": 11907.28, + "end": 11910.12, + "probability": 0.672 + }, + { + "start": 11911.44, + "end": 11917.04, + "probability": 0.8267 + }, + { + "start": 11917.9, + "end": 11919.6, + "probability": 0.6203 + }, + { + "start": 11920.12, + "end": 11920.98, + "probability": 0.9238 + }, + { + "start": 11921.72, + "end": 11925.74, + "probability": 0.5457 + }, + { + "start": 11926.6, + "end": 11931.32, + "probability": 0.7712 + }, + { + "start": 11933.91, + "end": 11936.15, + "probability": 0.9142 + }, + { + "start": 11936.56, + "end": 11937.32, + "probability": 0.4858 + }, + { + "start": 11937.4, + "end": 11939.02, + "probability": 0.4688 + }, + { + "start": 11939.42, + "end": 11940.3, + "probability": 0.622 + }, + { + "start": 11940.42, + "end": 11942.66, + "probability": 0.9504 + }, + { + "start": 11943.06, + "end": 11945.12, + "probability": 0.4824 + }, + { + "start": 11945.42, + "end": 11945.88, + "probability": 0.6651 + }, + { + "start": 11946.26, + "end": 11949.24, + "probability": 0.965 + }, + { + "start": 11949.7, + "end": 11950.68, + "probability": 0.7508 + }, + { + "start": 11950.76, + "end": 11951.72, + "probability": 0.6691 + }, + { + "start": 11951.74, + "end": 11952.12, + "probability": 0.5855 + }, + { + "start": 11952.22, + "end": 11952.85, + "probability": 0.672 + }, + { + "start": 11953.4, + "end": 11955.72, + "probability": 0.9297 + }, + { + "start": 11955.9, + "end": 11961.8, + "probability": 0.5784 + }, + { + "start": 11962.46, + "end": 11966.58, + "probability": 0.9238 + }, + { + "start": 11967.84, + "end": 11968.28, + "probability": 0.5255 + }, + { + "start": 11968.42, + "end": 11969.92, + "probability": 0.7213 + }, + { + "start": 11970.2, + "end": 11971.7, + "probability": 0.3729 + }, + { + "start": 11971.72, + "end": 11973.48, + "probability": 0.6301 + }, + { + "start": 11973.62, + "end": 11978.94, + "probability": 0.775 + }, + { + "start": 11978.94, + "end": 11979.68, + "probability": 0.6961 + }, + { + "start": 11979.88, + "end": 11982.74, + "probability": 0.8362 + }, + { + "start": 11983.24, + "end": 11986.52, + "probability": 0.7275 + }, + { + "start": 11986.62, + "end": 11988.24, + "probability": 0.7703 + }, + { + "start": 11989.22, + "end": 11991.76, + "probability": 0.5387 + }, + { + "start": 11993.34, + "end": 11996.8, + "probability": 0.119 + }, + { + "start": 12007.16, + "end": 12007.38, + "probability": 0.1704 + }, + { + "start": 12007.38, + "end": 12007.66, + "probability": 0.0743 + }, + { + "start": 12008.24, + "end": 12008.28, + "probability": 0.0538 + }, + { + "start": 12008.86, + "end": 12009.86, + "probability": 0.4967 + }, + { + "start": 12010.04, + "end": 12013.8, + "probability": 0.4886 + }, + { + "start": 12016.02, + "end": 12019.5, + "probability": 0.6664 + }, + { + "start": 12020.36, + "end": 12021.06, + "probability": 0.5361 + }, + { + "start": 12022.16, + "end": 12023.96, + "probability": 0.8202 + }, + { + "start": 12024.5, + "end": 12026.16, + "probability": 0.844 + }, + { + "start": 12028.24, + "end": 12031.4, + "probability": 0.8662 + }, + { + "start": 12032.2, + "end": 12033.46, + "probability": 0.5028 + }, + { + "start": 12048.24, + "end": 12049.78, + "probability": 0.4892 + }, + { + "start": 12056.94, + "end": 12059.0, + "probability": 0.7843 + }, + { + "start": 12072.44, + "end": 12074.64, + "probability": 0.5677 + }, + { + "start": 12075.08, + "end": 12076.0, + "probability": 0.6999 + }, + { + "start": 12081.6, + "end": 12083.86, + "probability": 0.8284 + }, + { + "start": 12086.01, + "end": 12091.12, + "probability": 0.9321 + }, + { + "start": 12091.98, + "end": 12095.52, + "probability": 0.8995 + }, + { + "start": 12096.84, + "end": 12100.4, + "probability": 0.8508 + }, + { + "start": 12101.28, + "end": 12104.9, + "probability": 0.957 + }, + { + "start": 12105.56, + "end": 12107.8, + "probability": 0.676 + }, + { + "start": 12107.92, + "end": 12110.6, + "probability": 0.5032 + }, + { + "start": 12110.7, + "end": 12111.54, + "probability": 0.9463 + }, + { + "start": 12112.84, + "end": 12113.12, + "probability": 0.5353 + }, + { + "start": 12113.18, + "end": 12114.1, + "probability": 0.6307 + }, + { + "start": 12114.1, + "end": 12115.38, + "probability": 0.2282 + }, + { + "start": 12115.66, + "end": 12119.84, + "probability": 0.7 + }, + { + "start": 12120.4, + "end": 12122.76, + "probability": 0.83 + }, + { + "start": 12123.04, + "end": 12124.54, + "probability": 0.7457 + }, + { + "start": 12125.16, + "end": 12129.26, + "probability": 0.9059 + }, + { + "start": 12129.78, + "end": 12131.84, + "probability": 0.979 + }, + { + "start": 12132.82, + "end": 12134.86, + "probability": 0.8412 + }, + { + "start": 12136.26, + "end": 12137.0, + "probability": 0.8616 + }, + { + "start": 12137.52, + "end": 12142.31, + "probability": 0.8975 + }, + { + "start": 12143.08, + "end": 12145.58, + "probability": 0.6747 + }, + { + "start": 12149.8, + "end": 12153.52, + "probability": 0.9151 + }, + { + "start": 12153.52, + "end": 12157.02, + "probability": 0.8587 + }, + { + "start": 12157.66, + "end": 12162.04, + "probability": 0.8368 + }, + { + "start": 12163.14, + "end": 12163.92, + "probability": 0.7499 + }, + { + "start": 12164.86, + "end": 12168.58, + "probability": 0.8703 + }, + { + "start": 12168.7, + "end": 12169.08, + "probability": 0.4844 + }, + { + "start": 12169.5, + "end": 12173.18, + "probability": 0.8062 + }, + { + "start": 12174.08, + "end": 12175.3, + "probability": 0.9699 + }, + { + "start": 12175.62, + "end": 12175.9, + "probability": 0.677 + }, + { + "start": 12176.5, + "end": 12179.72, + "probability": 0.9165 + }, + { + "start": 12179.84, + "end": 12182.58, + "probability": 0.9222 + }, + { + "start": 12183.0, + "end": 12187.0, + "probability": 0.762 + }, + { + "start": 12187.0, + "end": 12189.76, + "probability": 0.8957 + }, + { + "start": 12190.5, + "end": 12192.62, + "probability": 0.5924 + }, + { + "start": 12192.9, + "end": 12198.46, + "probability": 0.7629 + }, + { + "start": 12198.94, + "end": 12200.62, + "probability": 0.6992 + }, + { + "start": 12200.62, + "end": 12203.0, + "probability": 0.9228 + }, + { + "start": 12203.56, + "end": 12204.56, + "probability": 0.5615 + }, + { + "start": 12205.02, + "end": 12207.4, + "probability": 0.5346 + }, + { + "start": 12207.76, + "end": 12212.04, + "probability": 0.7765 + }, + { + "start": 12212.72, + "end": 12216.08, + "probability": 0.7431 + }, + { + "start": 12216.58, + "end": 12219.18, + "probability": 0.6922 + }, + { + "start": 12220.44, + "end": 12223.3, + "probability": 0.5342 + }, + { + "start": 12223.38, + "end": 12228.8, + "probability": 0.8666 + }, + { + "start": 12229.2, + "end": 12231.12, + "probability": 0.9769 + }, + { + "start": 12231.68, + "end": 12234.46, + "probability": 0.6588 + }, + { + "start": 12234.98, + "end": 12238.04, + "probability": 0.8167 + }, + { + "start": 12238.82, + "end": 12244.26, + "probability": 0.8168 + }, + { + "start": 12244.26, + "end": 12248.3, + "probability": 0.9834 + }, + { + "start": 12249.04, + "end": 12252.28, + "probability": 0.9653 + }, + { + "start": 12253.8, + "end": 12254.5, + "probability": 0.7581 + }, + { + "start": 12254.74, + "end": 12255.86, + "probability": 0.6083 + }, + { + "start": 12255.92, + "end": 12261.63, + "probability": 0.5926 + }, + { + "start": 12262.5, + "end": 12265.66, + "probability": 0.9862 + }, + { + "start": 12266.36, + "end": 12268.98, + "probability": 0.7474 + }, + { + "start": 12270.43, + "end": 12273.7, + "probability": 0.9047 + }, + { + "start": 12274.16, + "end": 12277.43, + "probability": 0.7432 + }, + { + "start": 12278.54, + "end": 12281.5, + "probability": 0.7102 + }, + { + "start": 12282.89, + "end": 12287.42, + "probability": 0.6973 + }, + { + "start": 12287.92, + "end": 12292.64, + "probability": 0.9408 + }, + { + "start": 12293.94, + "end": 12298.28, + "probability": 0.8639 + }, + { + "start": 12299.0, + "end": 12301.08, + "probability": 0.5566 + }, + { + "start": 12301.36, + "end": 12301.78, + "probability": 0.2508 + }, + { + "start": 12301.78, + "end": 12302.61, + "probability": 0.571 + }, + { + "start": 12303.38, + "end": 12306.64, + "probability": 0.4095 + }, + { + "start": 12307.32, + "end": 12307.46, + "probability": 0.7521 + }, + { + "start": 12308.72, + "end": 12309.12, + "probability": 0.6478 + }, + { + "start": 12309.32, + "end": 12311.36, + "probability": 0.9674 + }, + { + "start": 12311.78, + "end": 12312.66, + "probability": 0.6549 + }, + { + "start": 12315.38, + "end": 12315.9, + "probability": 0.7592 + }, + { + "start": 12315.98, + "end": 12318.55, + "probability": 0.9019 + }, + { + "start": 12319.62, + "end": 12321.44, + "probability": 0.9907 + }, + { + "start": 12321.98, + "end": 12325.54, + "probability": 0.8321 + }, + { + "start": 12325.96, + "end": 12328.4, + "probability": 0.8679 + }, + { + "start": 12328.92, + "end": 12331.4, + "probability": 0.6027 + }, + { + "start": 12332.22, + "end": 12337.18, + "probability": 0.9634 + }, + { + "start": 12337.26, + "end": 12339.31, + "probability": 0.9236 + }, + { + "start": 12339.56, + "end": 12340.58, + "probability": 0.3669 + }, + { + "start": 12340.84, + "end": 12343.02, + "probability": 0.9561 + }, + { + "start": 12343.66, + "end": 12344.68, + "probability": 0.451 + }, + { + "start": 12344.8, + "end": 12346.32, + "probability": 0.4684 + }, + { + "start": 12346.46, + "end": 12347.22, + "probability": 0.3457 + }, + { + "start": 12347.44, + "end": 12351.54, + "probability": 0.88 + }, + { + "start": 12351.78, + "end": 12355.54, + "probability": 0.7047 + }, + { + "start": 12356.1, + "end": 12357.34, + "probability": 0.7852 + }, + { + "start": 12357.9, + "end": 12360.2, + "probability": 0.7727 + }, + { + "start": 12360.6, + "end": 12362.12, + "probability": 0.4957 + }, + { + "start": 12362.46, + "end": 12364.46, + "probability": 0.7316 + }, + { + "start": 12365.2, + "end": 12367.22, + "probability": 0.8392 + }, + { + "start": 12368.56, + "end": 12371.88, + "probability": 0.9146 + }, + { + "start": 12373.22, + "end": 12375.72, + "probability": 0.8704 + }, + { + "start": 12376.72, + "end": 12377.74, + "probability": 0.9048 + }, + { + "start": 12378.8, + "end": 12383.84, + "probability": 0.8884 + }, + { + "start": 12384.5, + "end": 12384.96, + "probability": 0.9158 + }, + { + "start": 12386.82, + "end": 12387.8, + "probability": 0.7055 + }, + { + "start": 12387.94, + "end": 12389.48, + "probability": 0.8974 + }, + { + "start": 12389.7, + "end": 12390.1, + "probability": 0.7765 + }, + { + "start": 12391.0, + "end": 12392.08, + "probability": 0.8418 + }, + { + "start": 12393.56, + "end": 12397.12, + "probability": 0.9775 + }, + { + "start": 12397.32, + "end": 12397.54, + "probability": 0.1873 + }, + { + "start": 12398.18, + "end": 12401.44, + "probability": 0.7734 + }, + { + "start": 12401.74, + "end": 12403.34, + "probability": 0.5678 + }, + { + "start": 12403.48, + "end": 12403.62, + "probability": 0.4668 + }, + { + "start": 12404.44, + "end": 12406.04, + "probability": 0.9886 + }, + { + "start": 12406.82, + "end": 12408.34, + "probability": 0.4466 + }, + { + "start": 12408.64, + "end": 12409.86, + "probability": 0.9307 + }, + { + "start": 12410.34, + "end": 12415.34, + "probability": 0.4471 + }, + { + "start": 12415.34, + "end": 12419.06, + "probability": 0.8628 + }, + { + "start": 12419.64, + "end": 12422.8, + "probability": 0.9049 + }, + { + "start": 12423.24, + "end": 12429.08, + "probability": 0.5512 + }, + { + "start": 12429.14, + "end": 12430.62, + "probability": 0.7217 + }, + { + "start": 12431.18, + "end": 12434.84, + "probability": 0.8334 + }, + { + "start": 12435.42, + "end": 12437.48, + "probability": 0.7566 + }, + { + "start": 12437.48, + "end": 12441.66, + "probability": 0.9892 + }, + { + "start": 12443.22, + "end": 12443.44, + "probability": 0.4599 + }, + { + "start": 12443.58, + "end": 12444.53, + "probability": 0.762 + }, + { + "start": 12445.34, + "end": 12448.4, + "probability": 0.9894 + }, + { + "start": 12449.06, + "end": 12451.66, + "probability": 0.9668 + }, + { + "start": 12454.72, + "end": 12457.74, + "probability": 0.7863 + }, + { + "start": 12457.74, + "end": 12460.66, + "probability": 0.5122 + }, + { + "start": 12461.2, + "end": 12464.18, + "probability": 0.3927 + }, + { + "start": 12464.7, + "end": 12466.88, + "probability": 0.9034 + }, + { + "start": 12467.34, + "end": 12470.06, + "probability": 0.7192 + }, + { + "start": 12470.06, + "end": 12473.56, + "probability": 0.9547 + }, + { + "start": 12474.1, + "end": 12474.86, + "probability": 0.5069 + }, + { + "start": 12476.34, + "end": 12480.58, + "probability": 0.796 + }, + { + "start": 12482.48, + "end": 12484.12, + "probability": 0.7751 + }, + { + "start": 12484.26, + "end": 12485.36, + "probability": 0.8169 + }, + { + "start": 12485.94, + "end": 12486.46, + "probability": 0.437 + }, + { + "start": 12486.96, + "end": 12492.49, + "probability": 0.7975 + }, + { + "start": 12493.1, + "end": 12497.76, + "probability": 0.746 + }, + { + "start": 12498.3, + "end": 12500.22, + "probability": 0.8155 + }, + { + "start": 12500.98, + "end": 12505.5, + "probability": 0.8518 + }, + { + "start": 12505.98, + "end": 12507.32, + "probability": 0.5376 + }, + { + "start": 12507.54, + "end": 12511.24, + "probability": 0.7878 + }, + { + "start": 12512.9, + "end": 12513.92, + "probability": 0.9197 + }, + { + "start": 12514.22, + "end": 12515.6, + "probability": 0.9693 + }, + { + "start": 12516.08, + "end": 12517.64, + "probability": 0.9884 + }, + { + "start": 12518.28, + "end": 12520.12, + "probability": 0.6192 + }, + { + "start": 12520.32, + "end": 12521.78, + "probability": 0.8339 + }, + { + "start": 12523.12, + "end": 12526.18, + "probability": 0.4256 + }, + { + "start": 12528.06, + "end": 12529.96, + "probability": 0.9539 + }, + { + "start": 12532.38, + "end": 12534.44, + "probability": 0.6839 + }, + { + "start": 12535.4, + "end": 12535.68, + "probability": 0.2309 + }, + { + "start": 12535.88, + "end": 12536.4, + "probability": 0.4332 + }, + { + "start": 12536.46, + "end": 12538.36, + "probability": 0.4703 + }, + { + "start": 12538.72, + "end": 12539.12, + "probability": 0.1505 + }, + { + "start": 12539.2, + "end": 12541.02, + "probability": 0.7082 + }, + { + "start": 12541.84, + "end": 12543.8, + "probability": 0.7571 + }, + { + "start": 12545.06, + "end": 12548.4, + "probability": 0.6833 + }, + { + "start": 12548.48, + "end": 12551.7, + "probability": 0.6147 + }, + { + "start": 12552.7, + "end": 12556.08, + "probability": 0.825 + }, + { + "start": 12556.08, + "end": 12559.6, + "probability": 0.9189 + }, + { + "start": 12560.38, + "end": 12563.06, + "probability": 0.634 + }, + { + "start": 12563.06, + "end": 12565.46, + "probability": 0.6184 + }, + { + "start": 12566.04, + "end": 12568.7, + "probability": 0.7856 + }, + { + "start": 12569.88, + "end": 12570.88, + "probability": 0.7939 + }, + { + "start": 12570.92, + "end": 12571.36, + "probability": 0.6891 + }, + { + "start": 12571.54, + "end": 12573.44, + "probability": 0.4863 + }, + { + "start": 12573.82, + "end": 12577.22, + "probability": 0.6837 + }, + { + "start": 12581.51, + "end": 12585.54, + "probability": 0.715 + }, + { + "start": 12586.28, + "end": 12591.04, + "probability": 0.8645 + }, + { + "start": 12591.2, + "end": 12596.32, + "probability": 0.707 + }, + { + "start": 12596.9, + "end": 12597.52, + "probability": 0.6412 + }, + { + "start": 12597.72, + "end": 12600.7, + "probability": 0.9325 + }, + { + "start": 12601.64, + "end": 12604.72, + "probability": 0.8524 + }, + { + "start": 12605.7, + "end": 12606.48, + "probability": 0.5541 + }, + { + "start": 12607.5, + "end": 12608.26, + "probability": 0.7145 + }, + { + "start": 12613.12, + "end": 12614.0, + "probability": 0.7647 + }, + { + "start": 12614.74, + "end": 12616.72, + "probability": 0.7305 + }, + { + "start": 12617.46, + "end": 12619.1, + "probability": 0.5544 + }, + { + "start": 12619.88, + "end": 12621.96, + "probability": 0.9335 + }, + { + "start": 12622.8, + "end": 12623.72, + "probability": 0.811 + }, + { + "start": 12624.58, + "end": 12625.28, + "probability": 0.9009 + }, + { + "start": 12626.28, + "end": 12628.38, + "probability": 0.7078 + }, + { + "start": 12628.94, + "end": 12632.1, + "probability": 0.7065 + }, + { + "start": 12634.5, + "end": 12638.66, + "probability": 0.7856 + }, + { + "start": 12639.3, + "end": 12641.8, + "probability": 0.9051 + }, + { + "start": 12642.12, + "end": 12643.44, + "probability": 0.4518 + }, + { + "start": 12644.28, + "end": 12646.58, + "probability": 0.4804 + }, + { + "start": 12647.16, + "end": 12647.73, + "probability": 0.8098 + }, + { + "start": 12648.6, + "end": 12649.82, + "probability": 0.9398 + }, + { + "start": 12650.62, + "end": 12651.58, + "probability": 0.348 + }, + { + "start": 12651.88, + "end": 12656.14, + "probability": 0.553 + }, + { + "start": 12657.04, + "end": 12657.66, + "probability": 0.8931 + }, + { + "start": 12662.5, + "end": 12663.04, + "probability": 0.6793 + }, + { + "start": 12663.18, + "end": 12668.14, + "probability": 0.7502 + }, + { + "start": 12668.82, + "end": 12673.44, + "probability": 0.9165 + }, + { + "start": 12673.92, + "end": 12675.92, + "probability": 0.8244 + }, + { + "start": 12676.16, + "end": 12677.7, + "probability": 0.8702 + }, + { + "start": 12678.34, + "end": 12682.3, + "probability": 0.6529 + }, + { + "start": 12682.36, + "end": 12685.86, + "probability": 0.7203 + }, + { + "start": 12685.86, + "end": 12689.92, + "probability": 0.9443 + }, + { + "start": 12690.38, + "end": 12690.78, + "probability": 0.6445 + }, + { + "start": 12690.86, + "end": 12694.02, + "probability": 0.6691 + }, + { + "start": 12694.02, + "end": 12697.9, + "probability": 0.8237 + }, + { + "start": 12698.04, + "end": 12704.34, + "probability": 0.9804 + }, + { + "start": 12704.88, + "end": 12709.24, + "probability": 0.9766 + }, + { + "start": 12710.16, + "end": 12711.84, + "probability": 0.9722 + }, + { + "start": 12712.38, + "end": 12713.26, + "probability": 0.7185 + }, + { + "start": 12713.6, + "end": 12716.12, + "probability": 0.7006 + }, + { + "start": 12716.38, + "end": 12718.8, + "probability": 0.8824 + }, + { + "start": 12719.58, + "end": 12723.84, + "probability": 0.8584 + }, + { + "start": 12723.9, + "end": 12727.3, + "probability": 0.9901 + }, + { + "start": 12727.8, + "end": 12732.24, + "probability": 0.8917 + }, + { + "start": 12732.64, + "end": 12732.92, + "probability": 0.4996 + }, + { + "start": 12733.42, + "end": 12735.62, + "probability": 0.7927 + }, + { + "start": 12735.62, + "end": 12739.36, + "probability": 0.9822 + }, + { + "start": 12739.86, + "end": 12743.32, + "probability": 0.9672 + }, + { + "start": 12743.38, + "end": 12746.76, + "probability": 0.4831 + }, + { + "start": 12747.17, + "end": 12750.52, + "probability": 0.8248 + }, + { + "start": 12751.28, + "end": 12751.98, + "probability": 0.8059 + }, + { + "start": 12752.84, + "end": 12754.12, + "probability": 0.6468 + }, + { + "start": 12754.24, + "end": 12755.94, + "probability": 0.351 + }, + { + "start": 12756.28, + "end": 12758.32, + "probability": 0.8388 + }, + { + "start": 12759.92, + "end": 12760.4, + "probability": 0.7836 + }, + { + "start": 12760.44, + "end": 12763.48, + "probability": 0.6674 + }, + { + "start": 12764.33, + "end": 12766.07, + "probability": 0.9194 + }, + { + "start": 12766.24, + "end": 12769.72, + "probability": 0.5825 + }, + { + "start": 12769.72, + "end": 12769.72, + "probability": 0.2411 + }, + { + "start": 12769.72, + "end": 12770.94, + "probability": 0.3839 + }, + { + "start": 12771.84, + "end": 12773.36, + "probability": 0.6531 + }, + { + "start": 12773.94, + "end": 12778.1, + "probability": 0.9678 + }, + { + "start": 12778.1, + "end": 12779.32, + "probability": 0.7654 + }, + { + "start": 12781.56, + "end": 12782.12, + "probability": 0.5137 + }, + { + "start": 12782.74, + "end": 12784.28, + "probability": 0.6344 + }, + { + "start": 12784.38, + "end": 12787.4, + "probability": 0.9826 + }, + { + "start": 12787.4, + "end": 12791.94, + "probability": 0.9323 + }, + { + "start": 12792.86, + "end": 12796.4, + "probability": 0.8107 + }, + { + "start": 12797.81, + "end": 12798.55, + "probability": 0.5084 + }, + { + "start": 12798.94, + "end": 12800.74, + "probability": 0.4262 + }, + { + "start": 12803.42, + "end": 12804.54, + "probability": 0.2944 + }, + { + "start": 12804.64, + "end": 12807.08, + "probability": 0.7015 + }, + { + "start": 12807.92, + "end": 12809.38, + "probability": 0.8042 + }, + { + "start": 12810.98, + "end": 12813.41, + "probability": 0.728 + }, + { + "start": 12813.92, + "end": 12817.86, + "probability": 0.9253 + }, + { + "start": 12818.94, + "end": 12822.98, + "probability": 0.8223 + }, + { + "start": 12822.98, + "end": 12825.4, + "probability": 0.965 + }, + { + "start": 12827.1, + "end": 12829.56, + "probability": 0.7471 + }, + { + "start": 12829.96, + "end": 12831.62, + "probability": 0.9053 + }, + { + "start": 12833.0, + "end": 12836.18, + "probability": 0.9481 + }, + { + "start": 12836.68, + "end": 12841.26, + "probability": 0.8207 + }, + { + "start": 12844.56, + "end": 12849.92, + "probability": 0.4871 + }, + { + "start": 12850.48, + "end": 12851.48, + "probability": 0.9626 + }, + { + "start": 12852.28, + "end": 12856.08, + "probability": 0.705 + }, + { + "start": 12856.28, + "end": 12858.7, + "probability": 0.9176 + }, + { + "start": 12860.22, + "end": 12861.78, + "probability": 0.9003 + }, + { + "start": 12862.4, + "end": 12865.06, + "probability": 0.7449 + }, + { + "start": 12866.06, + "end": 12867.22, + "probability": 0.6785 + }, + { + "start": 12868.44, + "end": 12868.82, + "probability": 0.5484 + }, + { + "start": 12868.86, + "end": 12869.64, + "probability": 0.8101 + }, + { + "start": 12869.94, + "end": 12870.26, + "probability": 0.8669 + }, + { + "start": 12870.34, + "end": 12871.4, + "probability": 0.7668 + }, + { + "start": 12871.52, + "end": 12872.44, + "probability": 0.7689 + }, + { + "start": 12872.5, + "end": 12875.58, + "probability": 0.7752 + }, + { + "start": 12876.24, + "end": 12878.0, + "probability": 0.6318 + }, + { + "start": 12879.3, + "end": 12881.46, + "probability": 0.7573 + }, + { + "start": 12881.58, + "end": 12883.16, + "probability": 0.7154 + }, + { + "start": 12883.52, + "end": 12885.26, + "probability": 0.8339 + }, + { + "start": 12886.02, + "end": 12886.94, + "probability": 0.1398 + }, + { + "start": 12887.82, + "end": 12891.04, + "probability": 0.8137 + }, + { + "start": 12891.58, + "end": 12894.2, + "probability": 0.4811 + }, + { + "start": 12895.8, + "end": 12898.36, + "probability": 0.8523 + }, + { + "start": 12898.84, + "end": 12901.8, + "probability": 0.6531 + }, + { + "start": 12901.98, + "end": 12904.64, + "probability": 0.9379 + }, + { + "start": 12904.86, + "end": 12907.3, + "probability": 0.6094 + }, + { + "start": 12907.92, + "end": 12909.1, + "probability": 0.0671 + } + ], + "segments_count": 4431, + "words_count": 23625, + "avg_words_per_segment": 5.3318, + "avg_segment_duration": 2.184, + "avg_words_per_minute": 109.6317, + "plenum_id": "16366", + "duration": 12929.66, + "title": null, + "plenum_date": "2011-11-08" +} \ No newline at end of file