diff --git "a/4063/metadata.json" "b/4063/metadata.json" new file mode 100644--- /dev/null +++ "b/4063/metadata.json" @@ -0,0 +1,37957 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "4063", + "quality_score": 0.8379, + "per_segment_quality_scores": [ + { + "start": 77.16, + "end": 77.34, + "probability": 0.1689 + }, + { + "start": 77.34, + "end": 77.34, + "probability": 0.2082 + }, + { + "start": 77.34, + "end": 77.62, + "probability": 0.0524 + }, + { + "start": 77.62, + "end": 80.38, + "probability": 0.6855 + }, + { + "start": 81.08, + "end": 82.74, + "probability": 0.1936 + }, + { + "start": 83.48, + "end": 84.72, + "probability": 0.819 + }, + { + "start": 84.98, + "end": 86.9, + "probability": 0.6533 + }, + { + "start": 87.78, + "end": 90.32, + "probability": 0.8975 + }, + { + "start": 94.7, + "end": 98.68, + "probability": 0.8206 + }, + { + "start": 99.54, + "end": 103.66, + "probability": 0.9614 + }, + { + "start": 104.2, + "end": 108.36, + "probability": 0.9755 + }, + { + "start": 108.8, + "end": 112.44, + "probability": 0.6536 + }, + { + "start": 112.44, + "end": 115.56, + "probability": 0.8042 + }, + { + "start": 116.7, + "end": 117.84, + "probability": 0.7621 + }, + { + "start": 118.44, + "end": 120.42, + "probability": 0.8421 + }, + { + "start": 120.82, + "end": 124.08, + "probability": 0.9696 + }, + { + "start": 124.32, + "end": 125.54, + "probability": 0.8508 + }, + { + "start": 141.5, + "end": 143.92, + "probability": 0.4894 + }, + { + "start": 144.0, + "end": 144.0, + "probability": 0.0 + }, + { + "start": 144.0, + "end": 144.0, + "probability": 0.0 + }, + { + "start": 144.58, + "end": 146.86, + "probability": 0.8637 + }, + { + "start": 147.68, + "end": 151.08, + "probability": 0.9496 + }, + { + "start": 151.94, + "end": 156.62, + "probability": 0.8755 + }, + { + "start": 157.36, + "end": 160.38, + "probability": 0.9904 + }, + { + "start": 161.6, + "end": 164.13, + "probability": 0.5776 + }, + { + "start": 165.22, + "end": 165.43, + "probability": 0.4349 + }, + { + "start": 166.04, + "end": 169.24, + "probability": 0.7306 + }, + { + "start": 169.48, + "end": 173.48, + "probability": 0.684 + }, + { + "start": 175.72, + "end": 176.42, + "probability": 0.653 + }, + { + "start": 179.62, + "end": 182.48, + "probability": 0.8346 + }, + { + "start": 183.24, + "end": 183.76, + "probability": 0.6991 + }, + { + "start": 185.78, + "end": 187.22, + "probability": 0.6801 + }, + { + "start": 188.5, + "end": 194.86, + "probability": 0.6625 + }, + { + "start": 194.92, + "end": 199.5, + "probability": 0.969 + }, + { + "start": 200.52, + "end": 204.06, + "probability": 0.9631 + }, + { + "start": 204.64, + "end": 208.98, + "probability": 0.7646 + }, + { + "start": 208.98, + "end": 214.16, + "probability": 0.6697 + }, + { + "start": 216.47, + "end": 220.54, + "probability": 0.7671 + }, + { + "start": 220.88, + "end": 222.12, + "probability": 0.7226 + }, + { + "start": 223.0, + "end": 225.38, + "probability": 0.9304 + }, + { + "start": 226.1, + "end": 228.62, + "probability": 0.8879 + }, + { + "start": 229.38, + "end": 232.74, + "probability": 0.763 + }, + { + "start": 234.0, + "end": 236.98, + "probability": 0.7581 + }, + { + "start": 236.98, + "end": 239.36, + "probability": 0.7598 + }, + { + "start": 240.44, + "end": 242.38, + "probability": 0.2675 + }, + { + "start": 242.38, + "end": 245.4, + "probability": 0.9577 + }, + { + "start": 246.22, + "end": 248.4, + "probability": 0.9043 + }, + { + "start": 249.06, + "end": 252.08, + "probability": 0.9951 + }, + { + "start": 252.8, + "end": 255.46, + "probability": 0.812 + }, + { + "start": 255.46, + "end": 258.58, + "probability": 0.9591 + }, + { + "start": 259.84, + "end": 263.62, + "probability": 0.9473 + }, + { + "start": 264.38, + "end": 266.7, + "probability": 0.9296 + }, + { + "start": 266.7, + "end": 270.58, + "probability": 0.9852 + }, + { + "start": 270.76, + "end": 271.58, + "probability": 0.8628 + }, + { + "start": 294.54, + "end": 295.84, + "probability": 0.406 + }, + { + "start": 297.0, + "end": 299.4, + "probability": 0.8844 + }, + { + "start": 299.4, + "end": 301.48, + "probability": 0.8624 + }, + { + "start": 302.2, + "end": 305.34, + "probability": 0.9495 + }, + { + "start": 307.84, + "end": 310.48, + "probability": 0.1446 + }, + { + "start": 313.82, + "end": 319.66, + "probability": 0.1065 + }, + { + "start": 320.92, + "end": 322.7, + "probability": 0.0445 + }, + { + "start": 324.13, + "end": 326.73, + "probability": 0.2215 + }, + { + "start": 331.14, + "end": 332.52, + "probability": 0.0966 + }, + { + "start": 332.52, + "end": 332.76, + "probability": 0.0419 + }, + { + "start": 335.24, + "end": 338.34, + "probability": 0.0494 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 378.0, + "end": 378.0, + "probability": 0.0 + }, + { + "start": 382.04, + "end": 385.5, + "probability": 0.8241 + }, + { + "start": 385.96, + "end": 388.28, + "probability": 0.773 + }, + { + "start": 389.34, + "end": 393.52, + "probability": 0.8404 + }, + { + "start": 394.88, + "end": 395.22, + "probability": 0.5805 + }, + { + "start": 395.28, + "end": 396.0, + "probability": 0.2327 + }, + { + "start": 397.04, + "end": 397.38, + "probability": 0.0148 + }, + { + "start": 397.38, + "end": 399.24, + "probability": 0.8349 + }, + { + "start": 400.06, + "end": 401.62, + "probability": 0.6758 + }, + { + "start": 402.78, + "end": 404.4, + "probability": 0.9662 + }, + { + "start": 405.2, + "end": 406.1, + "probability": 0.7631 + }, + { + "start": 406.36, + "end": 408.3, + "probability": 0.9349 + }, + { + "start": 408.54, + "end": 409.16, + "probability": 0.8881 + }, + { + "start": 409.42, + "end": 409.72, + "probability": 0.943 + }, + { + "start": 411.22, + "end": 412.9, + "probability": 0.9889 + }, + { + "start": 413.96, + "end": 417.84, + "probability": 0.9889 + }, + { + "start": 419.1, + "end": 423.88, + "probability": 0.8713 + }, + { + "start": 424.66, + "end": 425.88, + "probability": 0.7792 + }, + { + "start": 425.92, + "end": 426.38, + "probability": 0.5694 + }, + { + "start": 426.5, + "end": 428.02, + "probability": 0.8126 + }, + { + "start": 428.42, + "end": 428.52, + "probability": 0.4735 + }, + { + "start": 429.9, + "end": 433.42, + "probability": 0.9902 + }, + { + "start": 433.98, + "end": 438.18, + "probability": 0.9669 + }, + { + "start": 439.04, + "end": 441.5, + "probability": 0.958 + }, + { + "start": 442.22, + "end": 444.0, + "probability": 0.9856 + }, + { + "start": 444.12, + "end": 446.84, + "probability": 0.99 + }, + { + "start": 448.14, + "end": 450.04, + "probability": 0.9977 + }, + { + "start": 450.14, + "end": 450.86, + "probability": 0.8197 + }, + { + "start": 451.32, + "end": 455.22, + "probability": 0.8958 + }, + { + "start": 455.34, + "end": 455.78, + "probability": 0.6213 + }, + { + "start": 455.94, + "end": 457.14, + "probability": 0.9542 + }, + { + "start": 457.68, + "end": 458.16, + "probability": 0.7563 + }, + { + "start": 459.88, + "end": 459.92, + "probability": 0.2735 + }, + { + "start": 459.92, + "end": 461.0, + "probability": 0.9747 + }, + { + "start": 461.56, + "end": 463.68, + "probability": 0.6768 + }, + { + "start": 464.42, + "end": 467.3, + "probability": 0.6377 + }, + { + "start": 467.4, + "end": 468.1, + "probability": 0.9619 + }, + { + "start": 468.3, + "end": 471.7, + "probability": 0.9724 + }, + { + "start": 472.5, + "end": 477.44, + "probability": 0.7851 + }, + { + "start": 478.8, + "end": 480.86, + "probability": 0.9803 + }, + { + "start": 480.96, + "end": 482.18, + "probability": 0.9672 + }, + { + "start": 482.28, + "end": 485.52, + "probability": 0.8543 + }, + { + "start": 486.18, + "end": 489.52, + "probability": 0.8494 + }, + { + "start": 490.04, + "end": 491.84, + "probability": 0.8258 + }, + { + "start": 492.06, + "end": 494.46, + "probability": 0.9653 + }, + { + "start": 496.1, + "end": 498.76, + "probability": 0.8348 + }, + { + "start": 500.62, + "end": 507.72, + "probability": 0.698 + }, + { + "start": 508.78, + "end": 508.96, + "probability": 0.5142 + }, + { + "start": 513.18, + "end": 513.62, + "probability": 0.7144 + }, + { + "start": 515.7, + "end": 518.52, + "probability": 0.9702 + }, + { + "start": 519.5, + "end": 523.72, + "probability": 0.8661 + }, + { + "start": 524.62, + "end": 529.48, + "probability": 0.9604 + }, + { + "start": 529.74, + "end": 530.86, + "probability": 0.7672 + }, + { + "start": 531.44, + "end": 533.02, + "probability": 0.9513 + }, + { + "start": 534.06, + "end": 537.62, + "probability": 0.9919 + }, + { + "start": 538.0, + "end": 538.63, + "probability": 0.7036 + }, + { + "start": 539.04, + "end": 540.08, + "probability": 0.9948 + }, + { + "start": 540.62, + "end": 541.42, + "probability": 0.7443 + }, + { + "start": 541.7, + "end": 545.22, + "probability": 0.9701 + }, + { + "start": 545.52, + "end": 546.46, + "probability": 0.6921 + }, + { + "start": 547.0, + "end": 547.94, + "probability": 0.9595 + }, + { + "start": 548.08, + "end": 549.56, + "probability": 0.8233 + }, + { + "start": 549.64, + "end": 550.44, + "probability": 0.6526 + }, + { + "start": 551.32, + "end": 553.16, + "probability": 0.9096 + }, + { + "start": 553.36, + "end": 560.58, + "probability": 0.9639 + }, + { + "start": 561.14, + "end": 561.38, + "probability": 0.7682 + }, + { + "start": 562.54, + "end": 567.44, + "probability": 0.9589 + }, + { + "start": 567.84, + "end": 571.48, + "probability": 0.9783 + }, + { + "start": 571.72, + "end": 574.2, + "probability": 0.9216 + }, + { + "start": 574.86, + "end": 578.1, + "probability": 0.9987 + }, + { + "start": 578.54, + "end": 583.6, + "probability": 0.8859 + }, + { + "start": 583.9, + "end": 585.04, + "probability": 0.7733 + }, + { + "start": 585.76, + "end": 589.4, + "probability": 0.7985 + }, + { + "start": 590.98, + "end": 596.4, + "probability": 0.6272 + }, + { + "start": 596.78, + "end": 599.76, + "probability": 0.9382 + }, + { + "start": 601.44, + "end": 602.28, + "probability": 0.751 + }, + { + "start": 602.8, + "end": 605.86, + "probability": 0.8182 + }, + { + "start": 606.78, + "end": 608.96, + "probability": 0.6777 + }, + { + "start": 608.96, + "end": 610.62, + "probability": 0.9018 + }, + { + "start": 611.86, + "end": 614.46, + "probability": 0.9227 + }, + { + "start": 615.14, + "end": 617.8, + "probability": 0.9871 + }, + { + "start": 618.02, + "end": 619.34, + "probability": 0.6566 + }, + { + "start": 619.4, + "end": 620.2, + "probability": 0.5922 + }, + { + "start": 620.82, + "end": 622.18, + "probability": 0.2008 + }, + { + "start": 622.84, + "end": 623.57, + "probability": 0.7032 + }, + { + "start": 624.14, + "end": 624.8, + "probability": 0.6589 + }, + { + "start": 625.26, + "end": 628.94, + "probability": 0.96 + }, + { + "start": 629.72, + "end": 630.21, + "probability": 0.8958 + }, + { + "start": 631.96, + "end": 634.34, + "probability": 0.8336 + }, + { + "start": 634.34, + "end": 637.9, + "probability": 0.9062 + }, + { + "start": 638.6, + "end": 642.44, + "probability": 0.8304 + }, + { + "start": 642.5, + "end": 646.5, + "probability": 0.8291 + }, + { + "start": 647.3, + "end": 652.68, + "probability": 0.7703 + }, + { + "start": 653.72, + "end": 655.4, + "probability": 0.9381 + }, + { + "start": 655.56, + "end": 656.66, + "probability": 0.9597 + }, + { + "start": 657.44, + "end": 660.14, + "probability": 0.5553 + }, + { + "start": 660.24, + "end": 661.54, + "probability": 0.7763 + }, + { + "start": 662.14, + "end": 663.56, + "probability": 0.8015 + }, + { + "start": 665.18, + "end": 669.76, + "probability": 0.7011 + }, + { + "start": 669.94, + "end": 671.32, + "probability": 0.835 + }, + { + "start": 671.98, + "end": 672.22, + "probability": 0.4614 + }, + { + "start": 672.74, + "end": 677.36, + "probability": 0.7445 + }, + { + "start": 677.86, + "end": 677.98, + "probability": 0.0029 + }, + { + "start": 678.06, + "end": 680.36, + "probability": 0.9946 + }, + { + "start": 681.18, + "end": 685.6, + "probability": 0.9978 + }, + { + "start": 685.6, + "end": 689.1, + "probability": 0.6614 + }, + { + "start": 690.94, + "end": 691.34, + "probability": 0.3687 + }, + { + "start": 692.06, + "end": 696.68, + "probability": 0.9414 + }, + { + "start": 697.48, + "end": 697.48, + "probability": 0.0033 + }, + { + "start": 697.48, + "end": 699.82, + "probability": 0.7352 + }, + { + "start": 699.82, + "end": 703.3, + "probability": 0.8005 + }, + { + "start": 704.08, + "end": 704.26, + "probability": 0.5051 + }, + { + "start": 704.38, + "end": 708.0, + "probability": 0.9609 + }, + { + "start": 708.0, + "end": 712.08, + "probability": 0.8159 + }, + { + "start": 712.64, + "end": 715.68, + "probability": 0.7497 + }, + { + "start": 716.24, + "end": 718.36, + "probability": 0.9096 + }, + { + "start": 719.74, + "end": 719.9, + "probability": 0.0774 + }, + { + "start": 720.36, + "end": 722.74, + "probability": 0.7419 + }, + { + "start": 722.74, + "end": 726.12, + "probability": 0.9453 + }, + { + "start": 726.36, + "end": 726.52, + "probability": 0.0391 + }, + { + "start": 726.7, + "end": 729.28, + "probability": 0.9253 + }, + { + "start": 729.8, + "end": 730.92, + "probability": 0.9315 + }, + { + "start": 732.26, + "end": 732.46, + "probability": 0.3658 + }, + { + "start": 732.8, + "end": 735.02, + "probability": 0.8136 + }, + { + "start": 735.1, + "end": 736.0, + "probability": 0.7811 + }, + { + "start": 736.78, + "end": 738.2, + "probability": 0.6991 + }, + { + "start": 739.42, + "end": 742.9, + "probability": 0.7193 + }, + { + "start": 743.58, + "end": 745.9, + "probability": 0.9619 + }, + { + "start": 746.04, + "end": 749.18, + "probability": 0.9095 + }, + { + "start": 749.26, + "end": 750.74, + "probability": 0.9916 + }, + { + "start": 751.3, + "end": 757.18, + "probability": 0.8916 + }, + { + "start": 757.82, + "end": 760.64, + "probability": 0.996 + }, + { + "start": 761.9, + "end": 763.18, + "probability": 0.9925 + }, + { + "start": 763.44, + "end": 764.88, + "probability": 0.7414 + }, + { + "start": 765.32, + "end": 766.48, + "probability": 0.937 + }, + { + "start": 766.54, + "end": 766.82, + "probability": 0.8505 + }, + { + "start": 766.94, + "end": 767.36, + "probability": 0.7578 + }, + { + "start": 768.16, + "end": 771.34, + "probability": 0.8647 + }, + { + "start": 772.2, + "end": 774.22, + "probability": 0.9627 + }, + { + "start": 775.98, + "end": 778.3, + "probability": 0.745 + }, + { + "start": 779.04, + "end": 779.9, + "probability": 0.8709 + }, + { + "start": 785.88, + "end": 786.76, + "probability": 0.4428 + }, + { + "start": 787.54, + "end": 791.6, + "probability": 0.967 + }, + { + "start": 792.86, + "end": 795.12, + "probability": 0.9033 + }, + { + "start": 795.12, + "end": 798.12, + "probability": 0.4935 + }, + { + "start": 798.58, + "end": 799.02, + "probability": 0.6828 + }, + { + "start": 799.12, + "end": 803.6, + "probability": 0.612 + }, + { + "start": 803.76, + "end": 804.96, + "probability": 0.7714 + }, + { + "start": 805.86, + "end": 810.68, + "probability": 0.4784 + }, + { + "start": 810.88, + "end": 811.98, + "probability": 0.4539 + }, + { + "start": 812.08, + "end": 813.88, + "probability": 0.7064 + }, + { + "start": 816.46, + "end": 817.78, + "probability": 0.8863 + }, + { + "start": 817.96, + "end": 820.58, + "probability": 0.9837 + }, + { + "start": 822.34, + "end": 822.54, + "probability": 0.2 + }, + { + "start": 822.62, + "end": 827.72, + "probability": 0.9678 + }, + { + "start": 827.84, + "end": 828.14, + "probability": 0.2309 + }, + { + "start": 829.8, + "end": 831.92, + "probability": 0.6667 + }, + { + "start": 835.58, + "end": 837.06, + "probability": 0.7651 + }, + { + "start": 837.54, + "end": 838.1, + "probability": 0.6714 + }, + { + "start": 838.7, + "end": 842.94, + "probability": 0.963 + }, + { + "start": 843.04, + "end": 846.26, + "probability": 0.937 + }, + { + "start": 846.46, + "end": 847.22, + "probability": 0.9582 + }, + { + "start": 847.56, + "end": 851.8, + "probability": 0.9967 + }, + { + "start": 851.94, + "end": 852.8, + "probability": 0.8824 + }, + { + "start": 853.56, + "end": 855.16, + "probability": 0.8189 + }, + { + "start": 855.88, + "end": 856.0, + "probability": 0.0717 + }, + { + "start": 856.14, + "end": 858.46, + "probability": 0.9501 + }, + { + "start": 859.66, + "end": 863.08, + "probability": 0.8562 + }, + { + "start": 863.56, + "end": 864.64, + "probability": 0.8794 + }, + { + "start": 865.0, + "end": 866.02, + "probability": 0.927 + }, + { + "start": 866.74, + "end": 868.38, + "probability": 0.9737 + }, + { + "start": 868.44, + "end": 870.4, + "probability": 0.9608 + }, + { + "start": 870.94, + "end": 873.58, + "probability": 0.959 + }, + { + "start": 874.46, + "end": 877.8, + "probability": 0.99 + }, + { + "start": 877.82, + "end": 878.94, + "probability": 0.9186 + }, + { + "start": 880.06, + "end": 883.66, + "probability": 0.9585 + }, + { + "start": 884.36, + "end": 885.14, + "probability": 0.9521 + }, + { + "start": 885.36, + "end": 887.64, + "probability": 0.8038 + }, + { + "start": 888.2, + "end": 890.62, + "probability": 0.9669 + }, + { + "start": 893.48, + "end": 895.28, + "probability": 0.9497 + }, + { + "start": 895.74, + "end": 897.92, + "probability": 0.9884 + }, + { + "start": 898.72, + "end": 900.22, + "probability": 0.9814 + }, + { + "start": 900.5, + "end": 901.98, + "probability": 0.9397 + }, + { + "start": 902.16, + "end": 903.46, + "probability": 0.8504 + }, + { + "start": 904.0, + "end": 908.46, + "probability": 0.9861 + }, + { + "start": 908.66, + "end": 910.96, + "probability": 0.9411 + }, + { + "start": 911.44, + "end": 914.78, + "probability": 0.9731 + }, + { + "start": 915.44, + "end": 918.16, + "probability": 0.8489 + }, + { + "start": 918.64, + "end": 920.42, + "probability": 0.9937 + }, + { + "start": 920.78, + "end": 921.98, + "probability": 0.9082 + }, + { + "start": 922.44, + "end": 924.54, + "probability": 0.9984 + }, + { + "start": 925.42, + "end": 928.2, + "probability": 0.9784 + }, + { + "start": 928.28, + "end": 929.08, + "probability": 0.994 + }, + { + "start": 929.54, + "end": 930.37, + "probability": 0.9317 + }, + { + "start": 931.32, + "end": 936.5, + "probability": 0.9976 + }, + { + "start": 936.84, + "end": 939.46, + "probability": 0.9955 + }, + { + "start": 939.46, + "end": 941.38, + "probability": 0.9702 + }, + { + "start": 941.48, + "end": 943.06, + "probability": 0.4957 + }, + { + "start": 943.78, + "end": 944.62, + "probability": 0.9583 + }, + { + "start": 945.56, + "end": 950.84, + "probability": 0.9326 + }, + { + "start": 950.98, + "end": 953.86, + "probability": 0.9655 + }, + { + "start": 953.94, + "end": 954.18, + "probability": 0.2253 + }, + { + "start": 954.7, + "end": 955.18, + "probability": 0.7838 + }, + { + "start": 955.7, + "end": 956.96, + "probability": 0.915 + }, + { + "start": 957.06, + "end": 957.44, + "probability": 0.5489 + }, + { + "start": 957.9, + "end": 960.4, + "probability": 0.8725 + }, + { + "start": 961.08, + "end": 961.96, + "probability": 0.8694 + }, + { + "start": 962.36, + "end": 964.25, + "probability": 0.9811 + }, + { + "start": 964.8, + "end": 966.24, + "probability": 0.8086 + }, + { + "start": 966.26, + "end": 969.04, + "probability": 0.6442 + }, + { + "start": 969.86, + "end": 971.8, + "probability": 0.9561 + }, + { + "start": 972.46, + "end": 975.42, + "probability": 0.9875 + }, + { + "start": 978.52, + "end": 983.68, + "probability": 0.9915 + }, + { + "start": 984.34, + "end": 987.66, + "probability": 0.88 + }, + { + "start": 989.98, + "end": 992.62, + "probability": 0.9415 + }, + { + "start": 992.7, + "end": 994.24, + "probability": 0.9945 + }, + { + "start": 994.34, + "end": 997.16, + "probability": 0.9937 + }, + { + "start": 997.24, + "end": 999.16, + "probability": 0.4064 + }, + { + "start": 999.32, + "end": 1004.8, + "probability": 0.5002 + }, + { + "start": 1006.4, + "end": 1012.78, + "probability": 0.7894 + }, + { + "start": 1012.78, + "end": 1019.88, + "probability": 0.9373 + }, + { + "start": 1020.52, + "end": 1022.38, + "probability": 0.6758 + }, + { + "start": 1022.94, + "end": 1025.7, + "probability": 0.9177 + }, + { + "start": 1026.88, + "end": 1031.16, + "probability": 0.7883 + }, + { + "start": 1032.72, + "end": 1033.64, + "probability": 0.5557 + }, + { + "start": 1034.18, + "end": 1035.42, + "probability": 0.7049 + }, + { + "start": 1036.0, + "end": 1037.84, + "probability": 0.9427 + }, + { + "start": 1038.08, + "end": 1041.94, + "probability": 0.9541 + }, + { + "start": 1042.14, + "end": 1043.1, + "probability": 0.9951 + }, + { + "start": 1043.74, + "end": 1044.84, + "probability": 0.734 + }, + { + "start": 1046.0, + "end": 1047.8, + "probability": 0.7745 + }, + { + "start": 1048.32, + "end": 1050.44, + "probability": 0.6641 + }, + { + "start": 1051.26, + "end": 1052.02, + "probability": 0.9629 + }, + { + "start": 1052.12, + "end": 1053.74, + "probability": 0.9788 + }, + { + "start": 1054.34, + "end": 1054.48, + "probability": 0.3147 + }, + { + "start": 1054.54, + "end": 1056.02, + "probability": 0.9858 + }, + { + "start": 1057.04, + "end": 1058.22, + "probability": 0.8516 + }, + { + "start": 1058.92, + "end": 1064.18, + "probability": 0.8501 + }, + { + "start": 1064.78, + "end": 1066.12, + "probability": 0.6695 + }, + { + "start": 1066.92, + "end": 1069.86, + "probability": 0.2834 + }, + { + "start": 1070.04, + "end": 1072.8, + "probability": 0.2879 + }, + { + "start": 1073.16, + "end": 1074.76, + "probability": 0.9424 + }, + { + "start": 1075.18, + "end": 1075.76, + "probability": 0.5082 + }, + { + "start": 1076.06, + "end": 1077.6, + "probability": 0.5857 + }, + { + "start": 1077.72, + "end": 1078.74, + "probability": 0.959 + }, + { + "start": 1079.0, + "end": 1080.58, + "probability": 0.5359 + }, + { + "start": 1081.36, + "end": 1082.38, + "probability": 0.9465 + }, + { + "start": 1082.44, + "end": 1086.46, + "probability": 0.9763 + }, + { + "start": 1087.68, + "end": 1088.46, + "probability": 0.0051 + }, + { + "start": 1088.7, + "end": 1090.08, + "probability": 0.96 + }, + { + "start": 1090.46, + "end": 1091.9, + "probability": 0.2827 + }, + { + "start": 1092.4, + "end": 1093.4, + "probability": 0.4414 + }, + { + "start": 1093.8, + "end": 1095.12, + "probability": 0.8723 + }, + { + "start": 1095.4, + "end": 1097.58, + "probability": 0.566 + }, + { + "start": 1098.26, + "end": 1100.48, + "probability": 0.6326 + }, + { + "start": 1101.34, + "end": 1104.28, + "probability": 0.9879 + }, + { + "start": 1104.3, + "end": 1107.88, + "probability": 0.8191 + }, + { + "start": 1107.88, + "end": 1109.53, + "probability": 0.3029 + }, + { + "start": 1109.74, + "end": 1111.42, + "probability": 0.5559 + }, + { + "start": 1112.44, + "end": 1117.54, + "probability": 0.7465 + }, + { + "start": 1117.58, + "end": 1118.37, + "probability": 0.1372 + }, + { + "start": 1118.52, + "end": 1118.76, + "probability": 0.0552 + }, + { + "start": 1120.82, + "end": 1122.44, + "probability": 0.4261 + }, + { + "start": 1122.98, + "end": 1123.86, + "probability": 0.3146 + }, + { + "start": 1123.96, + "end": 1126.68, + "probability": 0.2687 + }, + { + "start": 1126.84, + "end": 1130.68, + "probability": 0.0194 + }, + { + "start": 1131.27, + "end": 1134.6, + "probability": 0.6768 + }, + { + "start": 1135.86, + "end": 1142.58, + "probability": 0.2628 + }, + { + "start": 1143.62, + "end": 1150.38, + "probability": 0.9085 + }, + { + "start": 1150.48, + "end": 1153.26, + "probability": 0.6535 + }, + { + "start": 1154.42, + "end": 1157.16, + "probability": 0.676 + }, + { + "start": 1158.16, + "end": 1158.32, + "probability": 0.7844 + }, + { + "start": 1158.42, + "end": 1159.16, + "probability": 0.8097 + }, + { + "start": 1159.26, + "end": 1160.4, + "probability": 0.6074 + }, + { + "start": 1160.76, + "end": 1161.12, + "probability": 0.748 + }, + { + "start": 1161.12, + "end": 1166.02, + "probability": 0.0111 + }, + { + "start": 1166.02, + "end": 1166.06, + "probability": 0.0344 + }, + { + "start": 1166.08, + "end": 1166.82, + "probability": 0.3412 + }, + { + "start": 1167.02, + "end": 1168.08, + "probability": 0.7833 + }, + { + "start": 1168.5, + "end": 1170.2, + "probability": 0.0484 + }, + { + "start": 1170.38, + "end": 1171.98, + "probability": 0.7183 + }, + { + "start": 1172.04, + "end": 1172.2, + "probability": 0.8441 + }, + { + "start": 1172.72, + "end": 1173.96, + "probability": 0.6083 + }, + { + "start": 1174.32, + "end": 1175.5, + "probability": 0.7437 + }, + { + "start": 1176.36, + "end": 1178.12, + "probability": 0.8163 + }, + { + "start": 1179.28, + "end": 1182.22, + "probability": 0.8913 + }, + { + "start": 1182.98, + "end": 1183.72, + "probability": 0.0319 + }, + { + "start": 1183.78, + "end": 1183.78, + "probability": 0.0122 + }, + { + "start": 1184.7, + "end": 1191.14, + "probability": 0.5489 + }, + { + "start": 1191.28, + "end": 1193.4, + "probability": 0.5682 + }, + { + "start": 1193.52, + "end": 1194.76, + "probability": 0.4137 + }, + { + "start": 1194.9, + "end": 1195.18, + "probability": 0.1668 + }, + { + "start": 1197.34, + "end": 1198.74, + "probability": 0.9231 + }, + { + "start": 1199.0, + "end": 1199.72, + "probability": 0.0097 + }, + { + "start": 1200.68, + "end": 1204.14, + "probability": 0.7056 + }, + { + "start": 1205.46, + "end": 1208.02, + "probability": 0.8175 + }, + { + "start": 1208.56, + "end": 1210.02, + "probability": 0.4641 + }, + { + "start": 1210.7, + "end": 1212.66, + "probability": 0.9525 + }, + { + "start": 1212.9, + "end": 1218.1, + "probability": 0.6443 + }, + { + "start": 1218.8, + "end": 1222.02, + "probability": 0.4004 + }, + { + "start": 1222.76, + "end": 1227.25, + "probability": 0.9272 + }, + { + "start": 1227.48, + "end": 1228.72, + "probability": 0.6802 + }, + { + "start": 1229.46, + "end": 1229.72, + "probability": 0.5161 + }, + { + "start": 1230.4, + "end": 1233.62, + "probability": 0.8491 + }, + { + "start": 1234.08, + "end": 1234.92, + "probability": 0.8525 + }, + { + "start": 1236.06, + "end": 1240.9, + "probability": 0.9058 + }, + { + "start": 1241.06, + "end": 1242.18, + "probability": 0.1844 + }, + { + "start": 1242.68, + "end": 1243.85, + "probability": 0.973 + }, + { + "start": 1244.12, + "end": 1244.54, + "probability": 0.8041 + }, + { + "start": 1245.02, + "end": 1247.6, + "probability": 0.789 + }, + { + "start": 1248.1, + "end": 1250.0, + "probability": 0.9878 + }, + { + "start": 1250.28, + "end": 1251.26, + "probability": 0.8542 + }, + { + "start": 1251.4, + "end": 1252.07, + "probability": 0.9574 + }, + { + "start": 1252.88, + "end": 1260.82, + "probability": 0.9678 + }, + { + "start": 1261.06, + "end": 1266.64, + "probability": 0.8484 + }, + { + "start": 1266.8, + "end": 1269.46, + "probability": 0.6771 + }, + { + "start": 1269.56, + "end": 1271.88, + "probability": 0.8494 + }, + { + "start": 1276.03, + "end": 1281.38, + "probability": 0.8795 + }, + { + "start": 1282.0, + "end": 1284.28, + "probability": 0.9897 + }, + { + "start": 1284.66, + "end": 1287.78, + "probability": 0.7668 + }, + { + "start": 1288.4, + "end": 1291.3, + "probability": 0.9257 + }, + { + "start": 1292.06, + "end": 1292.4, + "probability": 0.5843 + }, + { + "start": 1292.52, + "end": 1292.94, + "probability": 0.3051 + }, + { + "start": 1293.16, + "end": 1295.84, + "probability": 0.9209 + }, + { + "start": 1296.36, + "end": 1298.2, + "probability": 0.9302 + }, + { + "start": 1298.62, + "end": 1299.31, + "probability": 0.9841 + }, + { + "start": 1299.74, + "end": 1301.08, + "probability": 0.9922 + }, + { + "start": 1302.04, + "end": 1304.16, + "probability": 0.9952 + }, + { + "start": 1304.16, + "end": 1306.66, + "probability": 0.9629 + }, + { + "start": 1307.92, + "end": 1310.2, + "probability": 0.8197 + }, + { + "start": 1310.2, + "end": 1312.26, + "probability": 0.9248 + }, + { + "start": 1312.36, + "end": 1315.92, + "probability": 0.9674 + }, + { + "start": 1317.08, + "end": 1319.74, + "probability": 0.9539 + }, + { + "start": 1320.18, + "end": 1322.52, + "probability": 0.9432 + }, + { + "start": 1322.9, + "end": 1324.86, + "probability": 0.3316 + }, + { + "start": 1325.62, + "end": 1325.92, + "probability": 0.5373 + }, + { + "start": 1328.44, + "end": 1330.72, + "probability": 0.6606 + }, + { + "start": 1330.86, + "end": 1334.32, + "probability": 0.8508 + }, + { + "start": 1334.54, + "end": 1335.52, + "probability": 0.6509 + }, + { + "start": 1336.26, + "end": 1338.64, + "probability": 0.9972 + }, + { + "start": 1339.1, + "end": 1341.02, + "probability": 0.8403 + }, + { + "start": 1342.12, + "end": 1342.52, + "probability": 0.4071 + }, + { + "start": 1343.06, + "end": 1347.78, + "probability": 0.8743 + }, + { + "start": 1348.2, + "end": 1350.8, + "probability": 0.9741 + }, + { + "start": 1351.34, + "end": 1354.72, + "probability": 0.933 + }, + { + "start": 1354.98, + "end": 1357.56, + "probability": 0.99 + }, + { + "start": 1358.26, + "end": 1360.16, + "probability": 0.9728 + }, + { + "start": 1362.88, + "end": 1363.1, + "probability": 0.6178 + }, + { + "start": 1363.22, + "end": 1364.1, + "probability": 0.5194 + }, + { + "start": 1364.1, + "end": 1364.78, + "probability": 0.6602 + }, + { + "start": 1365.14, + "end": 1365.68, + "probability": 0.466 + }, + { + "start": 1365.7, + "end": 1365.98, + "probability": 0.3793 + }, + { + "start": 1368.72, + "end": 1369.68, + "probability": 0.9135 + }, + { + "start": 1371.02, + "end": 1375.12, + "probability": 0.9937 + }, + { + "start": 1375.66, + "end": 1378.24, + "probability": 0.7246 + }, + { + "start": 1379.33, + "end": 1381.12, + "probability": 0.4877 + }, + { + "start": 1381.3, + "end": 1382.92, + "probability": 0.7314 + }, + { + "start": 1383.42, + "end": 1384.92, + "probability": 0.9629 + }, + { + "start": 1384.92, + "end": 1385.88, + "probability": 0.8589 + }, + { + "start": 1386.06, + "end": 1387.66, + "probability": 0.2643 + }, + { + "start": 1388.44, + "end": 1389.86, + "probability": 0.7082 + }, + { + "start": 1390.34, + "end": 1392.08, + "probability": 0.5523 + }, + { + "start": 1392.56, + "end": 1393.36, + "probability": 0.2637 + }, + { + "start": 1394.14, + "end": 1395.78, + "probability": 0.1965 + }, + { + "start": 1395.92, + "end": 1397.32, + "probability": 0.7056 + }, + { + "start": 1400.14, + "end": 1402.0, + "probability": 0.6975 + }, + { + "start": 1402.4, + "end": 1406.04, + "probability": 0.9498 + }, + { + "start": 1406.36, + "end": 1407.62, + "probability": 0.6428 + }, + { + "start": 1408.5, + "end": 1411.78, + "probability": 0.9961 + }, + { + "start": 1412.2, + "end": 1414.8, + "probability": 0.8266 + }, + { + "start": 1415.58, + "end": 1416.5, + "probability": 0.9622 + }, + { + "start": 1418.32, + "end": 1421.88, + "probability": 0.8668 + }, + { + "start": 1421.88, + "end": 1424.92, + "probability": 0.7431 + }, + { + "start": 1425.84, + "end": 1426.1, + "probability": 0.6873 + }, + { + "start": 1426.84, + "end": 1429.74, + "probability": 0.9336 + }, + { + "start": 1430.18, + "end": 1433.12, + "probability": 0.4335 + }, + { + "start": 1433.22, + "end": 1434.78, + "probability": 0.7031 + }, + { + "start": 1434.78, + "end": 1438.3, + "probability": 0.995 + }, + { + "start": 1438.86, + "end": 1440.58, + "probability": 0.259 + }, + { + "start": 1441.38, + "end": 1441.38, + "probability": 0.4004 + }, + { + "start": 1441.96, + "end": 1443.74, + "probability": 0.8087 + }, + { + "start": 1444.46, + "end": 1446.77, + "probability": 0.5309 + }, + { + "start": 1447.36, + "end": 1450.06, + "probability": 0.9893 + }, + { + "start": 1450.62, + "end": 1451.88, + "probability": 0.2294 + }, + { + "start": 1452.58, + "end": 1454.53, + "probability": 0.8374 + }, + { + "start": 1455.66, + "end": 1456.92, + "probability": 0.5787 + }, + { + "start": 1457.38, + "end": 1458.52, + "probability": 0.8746 + }, + { + "start": 1459.18, + "end": 1462.36, + "probability": 0.9476 + }, + { + "start": 1462.36, + "end": 1467.78, + "probability": 0.8314 + }, + { + "start": 1468.72, + "end": 1471.64, + "probability": 0.608 + }, + { + "start": 1471.74, + "end": 1473.46, + "probability": 0.6111 + }, + { + "start": 1474.1, + "end": 1475.58, + "probability": 0.603 + }, + { + "start": 1475.94, + "end": 1481.42, + "probability": 0.7202 + }, + { + "start": 1483.28, + "end": 1487.32, + "probability": 0.3384 + }, + { + "start": 1487.84, + "end": 1489.64, + "probability": 0.7803 + }, + { + "start": 1492.78, + "end": 1497.48, + "probability": 0.9919 + }, + { + "start": 1498.26, + "end": 1498.8, + "probability": 0.88 + }, + { + "start": 1498.96, + "end": 1500.4, + "probability": 0.5603 + }, + { + "start": 1500.48, + "end": 1500.78, + "probability": 0.6431 + }, + { + "start": 1501.3, + "end": 1507.11, + "probability": 0.8527 + }, + { + "start": 1508.14, + "end": 1510.76, + "probability": 0.8988 + }, + { + "start": 1511.12, + "end": 1515.66, + "probability": 0.8193 + }, + { + "start": 1515.66, + "end": 1516.46, + "probability": 0.1575 + }, + { + "start": 1516.46, + "end": 1517.4, + "probability": 0.6055 + }, + { + "start": 1518.06, + "end": 1519.24, + "probability": 0.7196 + }, + { + "start": 1520.94, + "end": 1521.4, + "probability": 0.7763 + }, + { + "start": 1521.46, + "end": 1522.2, + "probability": 0.86 + }, + { + "start": 1522.26, + "end": 1522.88, + "probability": 0.8164 + }, + { + "start": 1523.04, + "end": 1525.74, + "probability": 0.7665 + }, + { + "start": 1526.42, + "end": 1527.06, + "probability": 0.6974 + }, + { + "start": 1527.18, + "end": 1527.82, + "probability": 0.8959 + }, + { + "start": 1527.92, + "end": 1529.9, + "probability": 0.7066 + }, + { + "start": 1530.68, + "end": 1534.28, + "probability": 0.6681 + }, + { + "start": 1534.66, + "end": 1536.5, + "probability": 0.6976 + }, + { + "start": 1536.56, + "end": 1537.33, + "probability": 0.6589 + }, + { + "start": 1538.18, + "end": 1542.6, + "probability": 0.5602 + }, + { + "start": 1542.68, + "end": 1544.18, + "probability": 0.7666 + }, + { + "start": 1544.74, + "end": 1547.14, + "probability": 0.8288 + }, + { + "start": 1547.24, + "end": 1547.92, + "probability": 0.8045 + }, + { + "start": 1548.22, + "end": 1550.98, + "probability": 0.8232 + }, + { + "start": 1551.02, + "end": 1551.86, + "probability": 0.9202 + }, + { + "start": 1553.32, + "end": 1554.52, + "probability": 0.8407 + }, + { + "start": 1554.96, + "end": 1557.92, + "probability": 0.8937 + }, + { + "start": 1558.46, + "end": 1562.88, + "probability": 0.7782 + }, + { + "start": 1563.7, + "end": 1567.46, + "probability": 0.8531 + }, + { + "start": 1568.16, + "end": 1569.28, + "probability": 0.9414 + }, + { + "start": 1569.78, + "end": 1572.62, + "probability": 0.7828 + }, + { + "start": 1572.9, + "end": 1576.84, + "probability": 0.6688 + }, + { + "start": 1577.24, + "end": 1580.12, + "probability": 0.5511 + }, + { + "start": 1581.08, + "end": 1584.6, + "probability": 0.9701 + }, + { + "start": 1585.2, + "end": 1586.2, + "probability": 0.9945 + }, + { + "start": 1586.88, + "end": 1589.66, + "probability": 0.851 + }, + { + "start": 1589.7, + "end": 1593.68, + "probability": 0.9694 + }, + { + "start": 1594.1, + "end": 1596.15, + "probability": 0.6685 + }, + { + "start": 1596.82, + "end": 1599.5, + "probability": 0.9098 + }, + { + "start": 1599.5, + "end": 1601.08, + "probability": 0.4992 + }, + { + "start": 1602.44, + "end": 1603.04, + "probability": 0.0974 + }, + { + "start": 1603.94, + "end": 1605.08, + "probability": 0.2465 + }, + { + "start": 1606.59, + "end": 1609.92, + "probability": 0.8618 + }, + { + "start": 1610.04, + "end": 1610.78, + "probability": 0.5933 + }, + { + "start": 1610.92, + "end": 1613.4, + "probability": 0.9131 + }, + { + "start": 1613.4, + "end": 1617.24, + "probability": 0.6648 + }, + { + "start": 1617.36, + "end": 1618.1, + "probability": 0.5093 + }, + { + "start": 1618.18, + "end": 1620.0, + "probability": 0.9655 + }, + { + "start": 1620.4, + "end": 1623.13, + "probability": 0.8378 + }, + { + "start": 1623.68, + "end": 1625.14, + "probability": 0.6288 + }, + { + "start": 1625.36, + "end": 1627.02, + "probability": 0.5592 + }, + { + "start": 1627.22, + "end": 1629.46, + "probability": 0.565 + }, + { + "start": 1629.58, + "end": 1630.52, + "probability": 0.9414 + }, + { + "start": 1630.58, + "end": 1632.88, + "probability": 0.9779 + }, + { + "start": 1633.26, + "end": 1634.64, + "probability": 0.8421 + }, + { + "start": 1635.22, + "end": 1637.76, + "probability": 0.9432 + }, + { + "start": 1638.48, + "end": 1641.26, + "probability": 0.9632 + }, + { + "start": 1641.66, + "end": 1642.99, + "probability": 0.9753 + }, + { + "start": 1643.28, + "end": 1644.08, + "probability": 0.9216 + }, + { + "start": 1644.92, + "end": 1645.35, + "probability": 0.9482 + }, + { + "start": 1646.98, + "end": 1649.68, + "probability": 0.6534 + }, + { + "start": 1650.16, + "end": 1651.68, + "probability": 0.6625 + }, + { + "start": 1652.1, + "end": 1656.46, + "probability": 0.5849 + }, + { + "start": 1656.5, + "end": 1657.4, + "probability": 0.7793 + }, + { + "start": 1657.68, + "end": 1664.48, + "probability": 0.9956 + }, + { + "start": 1664.68, + "end": 1670.46, + "probability": 0.9779 + }, + { + "start": 1671.24, + "end": 1672.74, + "probability": 0.8499 + }, + { + "start": 1673.3, + "end": 1677.16, + "probability": 0.9905 + }, + { + "start": 1677.88, + "end": 1679.96, + "probability": 0.9709 + }, + { + "start": 1680.58, + "end": 1680.9, + "probability": 0.8489 + }, + { + "start": 1681.02, + "end": 1681.76, + "probability": 0.8451 + }, + { + "start": 1681.96, + "end": 1684.76, + "probability": 0.9853 + }, + { + "start": 1684.9, + "end": 1688.26, + "probability": 0.9897 + }, + { + "start": 1689.34, + "end": 1691.06, + "probability": 0.9982 + }, + { + "start": 1691.14, + "end": 1691.76, + "probability": 0.7611 + }, + { + "start": 1692.06, + "end": 1694.98, + "probability": 0.9645 + }, + { + "start": 1695.42, + "end": 1699.02, + "probability": 0.996 + }, + { + "start": 1699.3, + "end": 1701.26, + "probability": 0.9136 + }, + { + "start": 1701.66, + "end": 1705.18, + "probability": 0.6504 + }, + { + "start": 1705.7, + "end": 1709.76, + "probability": 0.9966 + }, + { + "start": 1709.94, + "end": 1712.98, + "probability": 0.9959 + }, + { + "start": 1713.08, + "end": 1713.9, + "probability": 0.6995 + }, + { + "start": 1714.5, + "end": 1715.06, + "probability": 0.6094 + }, + { + "start": 1715.2, + "end": 1719.22, + "probability": 0.9926 + }, + { + "start": 1720.06, + "end": 1722.72, + "probability": 0.9487 + }, + { + "start": 1723.24, + "end": 1728.14, + "probability": 0.9934 + }, + { + "start": 1728.16, + "end": 1731.22, + "probability": 0.9865 + }, + { + "start": 1731.32, + "end": 1731.66, + "probability": 0.558 + }, + { + "start": 1731.76, + "end": 1731.76, + "probability": 0.319 + }, + { + "start": 1731.76, + "end": 1733.56, + "probability": 0.7631 + }, + { + "start": 1735.77, + "end": 1737.62, + "probability": 0.7754 + }, + { + "start": 1737.78, + "end": 1738.44, + "probability": 0.7111 + }, + { + "start": 1738.78, + "end": 1740.38, + "probability": 0.8307 + }, + { + "start": 1740.38, + "end": 1741.8, + "probability": 0.3684 + }, + { + "start": 1741.8, + "end": 1742.26, + "probability": 0.5661 + }, + { + "start": 1744.0, + "end": 1746.3, + "probability": 0.7978 + }, + { + "start": 1752.96, + "end": 1754.94, + "probability": 0.9984 + }, + { + "start": 1755.56, + "end": 1756.64, + "probability": 0.9941 + }, + { + "start": 1757.24, + "end": 1762.0, + "probability": 0.9972 + }, + { + "start": 1762.18, + "end": 1766.48, + "probability": 0.8984 + }, + { + "start": 1766.98, + "end": 1768.02, + "probability": 0.958 + }, + { + "start": 1768.58, + "end": 1770.56, + "probability": 0.7613 + }, + { + "start": 1771.12, + "end": 1774.02, + "probability": 0.8298 + }, + { + "start": 1774.02, + "end": 1776.52, + "probability": 0.9937 + }, + { + "start": 1777.5, + "end": 1778.52, + "probability": 0.6664 + }, + { + "start": 1779.52, + "end": 1781.52, + "probability": 0.7357 + }, + { + "start": 1782.16, + "end": 1783.78, + "probability": 0.9098 + }, + { + "start": 1784.24, + "end": 1786.52, + "probability": 0.9907 + }, + { + "start": 1786.94, + "end": 1792.66, + "probability": 0.9807 + }, + { + "start": 1792.74, + "end": 1793.2, + "probability": 0.7376 + }, + { + "start": 1793.3, + "end": 1793.84, + "probability": 0.3508 + }, + { + "start": 1793.88, + "end": 1800.8, + "probability": 0.8099 + }, + { + "start": 1802.12, + "end": 1806.94, + "probability": 0.7954 + }, + { + "start": 1806.94, + "end": 1807.86, + "probability": 0.9707 + }, + { + "start": 1809.04, + "end": 1811.34, + "probability": 0.6209 + }, + { + "start": 1813.48, + "end": 1815.6, + "probability": 0.8598 + }, + { + "start": 1816.12, + "end": 1819.96, + "probability": 0.9183 + }, + { + "start": 1820.7, + "end": 1822.3, + "probability": 0.6534 + }, + { + "start": 1822.48, + "end": 1824.46, + "probability": 0.9741 + }, + { + "start": 1824.72, + "end": 1825.76, + "probability": 0.8996 + }, + { + "start": 1826.08, + "end": 1826.44, + "probability": 0.5155 + }, + { + "start": 1826.48, + "end": 1827.13, + "probability": 0.5296 + }, + { + "start": 1827.84, + "end": 1829.84, + "probability": 0.759 + }, + { + "start": 1830.26, + "end": 1833.52, + "probability": 0.69 + }, + { + "start": 1833.81, + "end": 1834.98, + "probability": 0.7966 + }, + { + "start": 1835.08, + "end": 1838.38, + "probability": 0.7673 + }, + { + "start": 1838.94, + "end": 1839.36, + "probability": 0.7178 + }, + { + "start": 1839.92, + "end": 1841.9, + "probability": 0.3954 + }, + { + "start": 1844.09, + "end": 1846.76, + "probability": 0.9885 + }, + { + "start": 1847.18, + "end": 1847.78, + "probability": 0.487 + }, + { + "start": 1848.42, + "end": 1849.16, + "probability": 0.786 + }, + { + "start": 1849.68, + "end": 1853.02, + "probability": 0.8555 + }, + { + "start": 1853.92, + "end": 1856.78, + "probability": 0.8229 + }, + { + "start": 1856.82, + "end": 1857.82, + "probability": 0.5744 + }, + { + "start": 1858.18, + "end": 1859.02, + "probability": 0.9817 + }, + { + "start": 1860.7, + "end": 1864.6, + "probability": 0.8809 + }, + { + "start": 1865.24, + "end": 1868.22, + "probability": 0.8267 + }, + { + "start": 1868.76, + "end": 1869.08, + "probability": 0.7226 + }, + { + "start": 1869.48, + "end": 1872.94, + "probability": 0.8664 + }, + { + "start": 1874.12, + "end": 1878.06, + "probability": 0.9185 + }, + { + "start": 1878.36, + "end": 1880.98, + "probability": 0.9517 + }, + { + "start": 1882.1, + "end": 1883.16, + "probability": 0.7313 + }, + { + "start": 1883.68, + "end": 1889.62, + "probability": 0.9331 + }, + { + "start": 1889.7, + "end": 1889.98, + "probability": 0.782 + }, + { + "start": 1890.16, + "end": 1891.12, + "probability": 0.5739 + }, + { + "start": 1891.18, + "end": 1895.8, + "probability": 0.9956 + }, + { + "start": 1896.12, + "end": 1897.84, + "probability": 0.9434 + }, + { + "start": 1898.4, + "end": 1900.6, + "probability": 0.9922 + }, + { + "start": 1901.2, + "end": 1906.68, + "probability": 0.8439 + }, + { + "start": 1906.74, + "end": 1909.09, + "probability": 0.6707 + }, + { + "start": 1909.9, + "end": 1911.42, + "probability": 0.8928 + }, + { + "start": 1911.94, + "end": 1913.06, + "probability": 0.597 + }, + { + "start": 1913.84, + "end": 1914.8, + "probability": 0.7557 + }, + { + "start": 1915.36, + "end": 1917.36, + "probability": 0.8391 + }, + { + "start": 1917.5, + "end": 1918.26, + "probability": 0.8365 + }, + { + "start": 1918.58, + "end": 1922.96, + "probability": 0.8592 + }, + { + "start": 1923.64, + "end": 1925.42, + "probability": 0.9899 + }, + { + "start": 1926.0, + "end": 1926.04, + "probability": 0.0068 + }, + { + "start": 1927.26, + "end": 1927.52, + "probability": 0.13 + }, + { + "start": 1927.52, + "end": 1928.94, + "probability": 0.3655 + }, + { + "start": 1929.04, + "end": 1932.22, + "probability": 0.9663 + }, + { + "start": 1932.48, + "end": 1937.24, + "probability": 0.8144 + }, + { + "start": 1937.66, + "end": 1938.78, + "probability": 0.9307 + }, + { + "start": 1938.88, + "end": 1939.75, + "probability": 0.684 + }, + { + "start": 1940.26, + "end": 1942.58, + "probability": 0.7811 + }, + { + "start": 1942.92, + "end": 1946.26, + "probability": 0.6128 + }, + { + "start": 1946.4, + "end": 1951.2, + "probability": 0.8536 + }, + { + "start": 1952.74, + "end": 1954.96, + "probability": 0.4889 + }, + { + "start": 1955.78, + "end": 1957.6, + "probability": 0.9922 + }, + { + "start": 1958.16, + "end": 1959.78, + "probability": 0.8388 + }, + { + "start": 1959.96, + "end": 1964.0, + "probability": 0.7737 + }, + { + "start": 1964.88, + "end": 1966.24, + "probability": 0.4259 + }, + { + "start": 1967.64, + "end": 1969.66, + "probability": 0.9143 + }, + { + "start": 1970.32, + "end": 1971.86, + "probability": 0.6428 + }, + { + "start": 1973.54, + "end": 1977.38, + "probability": 0.9092 + }, + { + "start": 1979.38, + "end": 1981.26, + "probability": 0.9609 + }, + { + "start": 1982.14, + "end": 1986.0, + "probability": 0.8177 + }, + { + "start": 1986.66, + "end": 1987.42, + "probability": 0.8512 + }, + { + "start": 1987.46, + "end": 1988.62, + "probability": 0.98 + }, + { + "start": 1989.14, + "end": 1989.94, + "probability": 0.962 + }, + { + "start": 1989.94, + "end": 1991.06, + "probability": 0.8305 + }, + { + "start": 1991.14, + "end": 1991.96, + "probability": 0.6277 + }, + { + "start": 1993.04, + "end": 1993.96, + "probability": 0.7347 + }, + { + "start": 1994.6, + "end": 1995.5, + "probability": 0.9116 + }, + { + "start": 1996.26, + "end": 1998.1, + "probability": 0.9199 + }, + { + "start": 1999.04, + "end": 2001.5, + "probability": 0.6857 + }, + { + "start": 2002.16, + "end": 2005.54, + "probability": 0.911 + }, + { + "start": 2006.54, + "end": 2008.66, + "probability": 0.9824 + }, + { + "start": 2009.08, + "end": 2017.82, + "probability": 0.9076 + }, + { + "start": 2017.94, + "end": 2018.26, + "probability": 0.8685 + }, + { + "start": 2018.78, + "end": 2023.66, + "probability": 0.9919 + }, + { + "start": 2024.76, + "end": 2029.48, + "probability": 0.9723 + }, + { + "start": 2030.7, + "end": 2033.12, + "probability": 0.9067 + }, + { + "start": 2034.2, + "end": 2034.98, + "probability": 0.2966 + }, + { + "start": 2035.92, + "end": 2038.24, + "probability": 0.8158 + }, + { + "start": 2039.04, + "end": 2041.14, + "probability": 0.9653 + }, + { + "start": 2041.78, + "end": 2046.01, + "probability": 0.9966 + }, + { + "start": 2047.08, + "end": 2050.16, + "probability": 0.9946 + }, + { + "start": 2050.74, + "end": 2052.86, + "probability": 0.9665 + }, + { + "start": 2054.02, + "end": 2054.74, + "probability": 0.8243 + }, + { + "start": 2055.5, + "end": 2059.56, + "probability": 0.6825 + }, + { + "start": 2060.44, + "end": 2066.14, + "probability": 0.98 + }, + { + "start": 2067.46, + "end": 2069.3, + "probability": 0.995 + }, + { + "start": 2070.42, + "end": 2072.68, + "probability": 0.8944 + }, + { + "start": 2072.72, + "end": 2077.9, + "probability": 0.9828 + }, + { + "start": 2078.86, + "end": 2083.7, + "probability": 0.8456 + }, + { + "start": 2084.24, + "end": 2088.28, + "probability": 0.9913 + }, + { + "start": 2089.38, + "end": 2092.98, + "probability": 0.9971 + }, + { + "start": 2093.9, + "end": 2094.54, + "probability": 0.7438 + }, + { + "start": 2095.18, + "end": 2095.6, + "probability": 0.7615 + }, + { + "start": 2096.68, + "end": 2098.26, + "probability": 0.9868 + }, + { + "start": 2099.4, + "end": 2100.46, + "probability": 0.6219 + }, + { + "start": 2104.84, + "end": 2105.62, + "probability": 0.924 + }, + { + "start": 2106.74, + "end": 2111.52, + "probability": 0.976 + }, + { + "start": 2112.06, + "end": 2115.08, + "probability": 0.7586 + }, + { + "start": 2115.08, + "end": 2117.5, + "probability": 0.992 + }, + { + "start": 2118.96, + "end": 2121.36, + "probability": 0.9966 + }, + { + "start": 2122.24, + "end": 2123.38, + "probability": 0.6266 + }, + { + "start": 2124.0, + "end": 2126.66, + "probability": 0.6825 + }, + { + "start": 2127.56, + "end": 2129.46, + "probability": 0.9676 + }, + { + "start": 2130.2, + "end": 2131.92, + "probability": 0.7729 + }, + { + "start": 2132.52, + "end": 2134.98, + "probability": 0.8624 + }, + { + "start": 2135.64, + "end": 2136.16, + "probability": 0.9871 + }, + { + "start": 2137.32, + "end": 2139.46, + "probability": 0.9935 + }, + { + "start": 2140.26, + "end": 2143.26, + "probability": 0.988 + }, + { + "start": 2143.26, + "end": 2146.9, + "probability": 0.9974 + }, + { + "start": 2147.26, + "end": 2148.36, + "probability": 0.9704 + }, + { + "start": 2148.96, + "end": 2149.18, + "probability": 0.9902 + }, + { + "start": 2150.58, + "end": 2155.54, + "probability": 0.9846 + }, + { + "start": 2155.92, + "end": 2156.64, + "probability": 0.8413 + }, + { + "start": 2157.6, + "end": 2162.08, + "probability": 0.8896 + }, + { + "start": 2162.6, + "end": 2163.52, + "probability": 0.8018 + }, + { + "start": 2164.66, + "end": 2166.58, + "probability": 0.9736 + }, + { + "start": 2167.38, + "end": 2170.88, + "probability": 0.3111 + }, + { + "start": 2170.88, + "end": 2171.28, + "probability": 0.0767 + }, + { + "start": 2171.32, + "end": 2174.8, + "probability": 0.98 + }, + { + "start": 2175.38, + "end": 2177.68, + "probability": 0.9893 + }, + { + "start": 2178.24, + "end": 2182.4, + "probability": 0.7934 + }, + { + "start": 2183.1, + "end": 2186.28, + "probability": 0.9445 + }, + { + "start": 2186.28, + "end": 2188.76, + "probability": 0.9979 + }, + { + "start": 2189.32, + "end": 2191.84, + "probability": 0.7712 + }, + { + "start": 2192.64, + "end": 2197.34, + "probability": 0.9921 + }, + { + "start": 2197.9, + "end": 2201.26, + "probability": 0.861 + }, + { + "start": 2201.74, + "end": 2206.24, + "probability": 0.831 + }, + { + "start": 2206.84, + "end": 2210.02, + "probability": 0.9995 + }, + { + "start": 2210.5, + "end": 2212.32, + "probability": 0.7975 + }, + { + "start": 2213.02, + "end": 2213.74, + "probability": 0.8322 + }, + { + "start": 2214.34, + "end": 2216.56, + "probability": 0.7864 + }, + { + "start": 2217.32, + "end": 2219.94, + "probability": 0.9927 + }, + { + "start": 2220.72, + "end": 2223.2, + "probability": 0.8937 + }, + { + "start": 2223.78, + "end": 2224.53, + "probability": 0.967 + }, + { + "start": 2225.28, + "end": 2229.02, + "probability": 0.9976 + }, + { + "start": 2230.5, + "end": 2233.92, + "probability": 0.8279 + }, + { + "start": 2234.52, + "end": 2235.22, + "probability": 0.4034 + }, + { + "start": 2235.34, + "end": 2236.18, + "probability": 0.9805 + }, + { + "start": 2236.76, + "end": 2237.82, + "probability": 0.6863 + }, + { + "start": 2238.14, + "end": 2238.59, + "probability": 0.7573 + }, + { + "start": 2239.34, + "end": 2241.04, + "probability": 0.9529 + }, + { + "start": 2241.54, + "end": 2243.18, + "probability": 0.8252 + }, + { + "start": 2248.86, + "end": 2250.14, + "probability": 0.6094 + }, + { + "start": 2250.26, + "end": 2250.78, + "probability": 0.2437 + }, + { + "start": 2262.18, + "end": 2265.24, + "probability": 0.502 + }, + { + "start": 2268.86, + "end": 2273.84, + "probability": 0.8731 + }, + { + "start": 2273.84, + "end": 2278.26, + "probability": 0.9796 + }, + { + "start": 2278.86, + "end": 2285.18, + "probability": 0.979 + }, + { + "start": 2285.46, + "end": 2288.14, + "probability": 0.8981 + }, + { + "start": 2288.66, + "end": 2292.54, + "probability": 0.684 + }, + { + "start": 2293.92, + "end": 2298.76, + "probability": 0.9166 + }, + { + "start": 2299.48, + "end": 2301.96, + "probability": 0.9648 + }, + { + "start": 2302.08, + "end": 2302.6, + "probability": 0.7953 + }, + { + "start": 2304.12, + "end": 2305.3, + "probability": 0.8087 + }, + { + "start": 2305.82, + "end": 2306.92, + "probability": 0.9004 + }, + { + "start": 2308.06, + "end": 2310.74, + "probability": 0.9525 + }, + { + "start": 2311.14, + "end": 2311.7, + "probability": 0.8955 + }, + { + "start": 2311.78, + "end": 2313.02, + "probability": 0.979 + }, + { + "start": 2313.12, + "end": 2313.84, + "probability": 0.7165 + }, + { + "start": 2315.14, + "end": 2318.7, + "probability": 0.9818 + }, + { + "start": 2319.44, + "end": 2322.28, + "probability": 0.7494 + }, + { + "start": 2324.2, + "end": 2330.14, + "probability": 0.8997 + }, + { + "start": 2330.48, + "end": 2336.12, + "probability": 0.9984 + }, + { + "start": 2337.28, + "end": 2337.84, + "probability": 0.6991 + }, + { + "start": 2339.26, + "end": 2341.94, + "probability": 0.8526 + }, + { + "start": 2342.92, + "end": 2346.86, + "probability": 0.9883 + }, + { + "start": 2348.9, + "end": 2351.92, + "probability": 0.5898 + }, + { + "start": 2353.5, + "end": 2354.9, + "probability": 0.9463 + }, + { + "start": 2356.26, + "end": 2358.86, + "probability": 0.8191 + }, + { + "start": 2359.24, + "end": 2363.6, + "probability": 0.8162 + }, + { + "start": 2364.66, + "end": 2365.44, + "probability": 0.3783 + }, + { + "start": 2366.62, + "end": 2368.06, + "probability": 0.868 + }, + { + "start": 2369.62, + "end": 2371.52, + "probability": 0.9529 + }, + { + "start": 2371.72, + "end": 2374.72, + "probability": 0.9574 + }, + { + "start": 2375.92, + "end": 2381.22, + "probability": 0.8227 + }, + { + "start": 2382.6, + "end": 2383.52, + "probability": 0.8167 + }, + { + "start": 2384.92, + "end": 2387.84, + "probability": 0.9436 + }, + { + "start": 2388.06, + "end": 2389.0, + "probability": 0.6774 + }, + { + "start": 2389.48, + "end": 2389.78, + "probability": 0.4188 + }, + { + "start": 2389.8, + "end": 2396.04, + "probability": 0.9658 + }, + { + "start": 2396.58, + "end": 2398.12, + "probability": 0.9094 + }, + { + "start": 2399.62, + "end": 2400.46, + "probability": 0.9285 + }, + { + "start": 2402.52, + "end": 2407.04, + "probability": 0.9131 + }, + { + "start": 2408.06, + "end": 2411.31, + "probability": 0.9851 + }, + { + "start": 2412.46, + "end": 2417.24, + "probability": 0.976 + }, + { + "start": 2418.38, + "end": 2421.38, + "probability": 0.8064 + }, + { + "start": 2422.32, + "end": 2424.74, + "probability": 0.9939 + }, + { + "start": 2425.6, + "end": 2430.2, + "probability": 0.9729 + }, + { + "start": 2431.08, + "end": 2435.58, + "probability": 0.9964 + }, + { + "start": 2436.02, + "end": 2437.1, + "probability": 0.8333 + }, + { + "start": 2437.24, + "end": 2438.12, + "probability": 0.8701 + }, + { + "start": 2438.64, + "end": 2441.26, + "probability": 0.8918 + }, + { + "start": 2441.72, + "end": 2444.36, + "probability": 0.9787 + }, + { + "start": 2446.75, + "end": 2448.82, + "probability": 0.478 + }, + { + "start": 2449.86, + "end": 2453.61, + "probability": 0.9772 + }, + { + "start": 2455.1, + "end": 2457.48, + "probability": 0.9968 + }, + { + "start": 2458.12, + "end": 2458.7, + "probability": 0.7161 + }, + { + "start": 2460.6, + "end": 2464.1, + "probability": 0.9878 + }, + { + "start": 2464.8, + "end": 2466.1, + "probability": 0.9491 + }, + { + "start": 2467.06, + "end": 2467.74, + "probability": 0.8772 + }, + { + "start": 2467.8, + "end": 2468.7, + "probability": 0.7411 + }, + { + "start": 2468.72, + "end": 2470.16, + "probability": 0.9468 + }, + { + "start": 2472.2, + "end": 2476.14, + "probability": 0.9966 + }, + { + "start": 2477.14, + "end": 2479.68, + "probability": 0.9554 + }, + { + "start": 2480.58, + "end": 2483.94, + "probability": 0.7469 + }, + { + "start": 2484.94, + "end": 2488.26, + "probability": 0.9784 + }, + { + "start": 2488.94, + "end": 2490.04, + "probability": 0.5667 + }, + { + "start": 2490.16, + "end": 2494.16, + "probability": 0.6135 + }, + { + "start": 2494.58, + "end": 2498.58, + "probability": 0.9372 + }, + { + "start": 2499.28, + "end": 2500.5, + "probability": 0.939 + }, + { + "start": 2500.84, + "end": 2502.06, + "probability": 0.9951 + }, + { + "start": 2502.32, + "end": 2504.48, + "probability": 0.9912 + }, + { + "start": 2505.64, + "end": 2508.0, + "probability": 0.9116 + }, + { + "start": 2508.48, + "end": 2510.0, + "probability": 0.7019 + }, + { + "start": 2510.2, + "end": 2514.82, + "probability": 0.9795 + }, + { + "start": 2516.34, + "end": 2519.59, + "probability": 0.9918 + }, + { + "start": 2520.72, + "end": 2524.18, + "probability": 0.9591 + }, + { + "start": 2525.16, + "end": 2526.44, + "probability": 0.973 + }, + { + "start": 2527.46, + "end": 2530.18, + "probability": 0.842 + }, + { + "start": 2530.18, + "end": 2533.4, + "probability": 0.9801 + }, + { + "start": 2534.32, + "end": 2538.78, + "probability": 0.973 + }, + { + "start": 2539.96, + "end": 2540.68, + "probability": 0.9137 + }, + { + "start": 2542.26, + "end": 2543.58, + "probability": 0.8094 + }, + { + "start": 2544.88, + "end": 2547.78, + "probability": 0.9443 + }, + { + "start": 2548.3, + "end": 2553.12, + "probability": 0.8589 + }, + { + "start": 2554.38, + "end": 2555.35, + "probability": 0.9268 + }, + { + "start": 2555.6, + "end": 2556.66, + "probability": 0.9601 + }, + { + "start": 2557.06, + "end": 2559.2, + "probability": 0.9792 + }, + { + "start": 2560.48, + "end": 2564.33, + "probability": 0.981 + }, + { + "start": 2565.98, + "end": 2569.36, + "probability": 0.991 + }, + { + "start": 2570.5, + "end": 2573.92, + "probability": 0.9995 + }, + { + "start": 2574.68, + "end": 2577.26, + "probability": 0.967 + }, + { + "start": 2577.26, + "end": 2579.24, + "probability": 0.7483 + }, + { + "start": 2581.62, + "end": 2582.04, + "probability": 0.6154 + }, + { + "start": 2582.12, + "end": 2584.88, + "probability": 0.9982 + }, + { + "start": 2584.88, + "end": 2588.72, + "probability": 0.9958 + }, + { + "start": 2589.38, + "end": 2591.02, + "probability": 0.8832 + }, + { + "start": 2591.54, + "end": 2592.44, + "probability": 0.9471 + }, + { + "start": 2593.58, + "end": 2595.9, + "probability": 0.9891 + }, + { + "start": 2596.98, + "end": 2600.12, + "probability": 0.961 + }, + { + "start": 2601.26, + "end": 2603.5, + "probability": 0.945 + }, + { + "start": 2603.58, + "end": 2607.26, + "probability": 0.998 + }, + { + "start": 2607.26, + "end": 2610.9, + "probability": 0.9984 + }, + { + "start": 2612.6, + "end": 2616.04, + "probability": 0.9971 + }, + { + "start": 2616.84, + "end": 2620.36, + "probability": 0.9883 + }, + { + "start": 2620.44, + "end": 2623.92, + "probability": 0.9961 + }, + { + "start": 2624.0, + "end": 2625.08, + "probability": 0.7889 + }, + { + "start": 2625.4, + "end": 2630.96, + "probability": 0.9913 + }, + { + "start": 2631.54, + "end": 2634.94, + "probability": 0.9973 + }, + { + "start": 2635.12, + "end": 2635.32, + "probability": 0.4173 + }, + { + "start": 2635.42, + "end": 2636.9, + "probability": 0.8201 + }, + { + "start": 2637.0, + "end": 2639.7, + "probability": 0.8944 + }, + { + "start": 2639.82, + "end": 2640.12, + "probability": 0.8908 + }, + { + "start": 2640.96, + "end": 2646.68, + "probability": 0.8304 + }, + { + "start": 2646.74, + "end": 2647.44, + "probability": 0.9487 + }, + { + "start": 2648.14, + "end": 2648.5, + "probability": 0.6757 + }, + { + "start": 2648.82, + "end": 2651.86, + "probability": 0.9585 + }, + { + "start": 2653.22, + "end": 2654.12, + "probability": 0.6038 + }, + { + "start": 2654.12, + "end": 2655.46, + "probability": 0.8767 + }, + { + "start": 2655.58, + "end": 2656.75, + "probability": 0.8165 + }, + { + "start": 2656.9, + "end": 2660.82, + "probability": 0.9553 + }, + { + "start": 2661.94, + "end": 2665.94, + "probability": 0.9945 + }, + { + "start": 2666.42, + "end": 2667.26, + "probability": 0.9448 + }, + { + "start": 2667.92, + "end": 2671.51, + "probability": 0.9847 + }, + { + "start": 2673.52, + "end": 2676.58, + "probability": 0.9908 + }, + { + "start": 2676.96, + "end": 2679.08, + "probability": 0.0269 + }, + { + "start": 2679.48, + "end": 2680.86, + "probability": 0.3622 + }, + { + "start": 2682.96, + "end": 2686.28, + "probability": 0.9982 + }, + { + "start": 2687.18, + "end": 2689.94, + "probability": 0.999 + }, + { + "start": 2689.94, + "end": 2694.38, + "probability": 0.8062 + }, + { + "start": 2694.78, + "end": 2696.81, + "probability": 0.9945 + }, + { + "start": 2696.94, + "end": 2700.96, + "probability": 0.8135 + }, + { + "start": 2701.6, + "end": 2705.88, + "probability": 0.9878 + }, + { + "start": 2706.34, + "end": 2708.52, + "probability": 0.9733 + }, + { + "start": 2710.26, + "end": 2712.7, + "probability": 0.9746 + }, + { + "start": 2713.02, + "end": 2714.56, + "probability": 0.9926 + }, + { + "start": 2715.1, + "end": 2715.9, + "probability": 0.903 + }, + { + "start": 2716.14, + "end": 2720.86, + "probability": 0.9696 + }, + { + "start": 2721.4, + "end": 2728.64, + "probability": 0.9749 + }, + { + "start": 2728.64, + "end": 2733.4, + "probability": 0.9957 + }, + { + "start": 2734.28, + "end": 2736.96, + "probability": 0.9919 + }, + { + "start": 2737.94, + "end": 2742.04, + "probability": 0.9907 + }, + { + "start": 2742.04, + "end": 2745.96, + "probability": 0.9924 + }, + { + "start": 2746.84, + "end": 2748.54, + "probability": 0.853 + }, + { + "start": 2749.52, + "end": 2750.14, + "probability": 0.7276 + }, + { + "start": 2750.76, + "end": 2751.6, + "probability": 0.8907 + }, + { + "start": 2752.14, + "end": 2753.36, + "probability": 0.9626 + }, + { + "start": 2754.24, + "end": 2759.78, + "probability": 0.828 + }, + { + "start": 2760.48, + "end": 2761.82, + "probability": 0.973 + }, + { + "start": 2763.02, + "end": 2768.52, + "probability": 0.9865 + }, + { + "start": 2769.28, + "end": 2771.52, + "probability": 0.9592 + }, + { + "start": 2773.4, + "end": 2776.94, + "probability": 0.998 + }, + { + "start": 2777.0, + "end": 2777.74, + "probability": 0.9225 + }, + { + "start": 2777.92, + "end": 2778.64, + "probability": 0.9818 + }, + { + "start": 2779.66, + "end": 2783.48, + "probability": 0.9968 + }, + { + "start": 2784.08, + "end": 2787.0, + "probability": 0.9557 + }, + { + "start": 2787.9, + "end": 2789.1, + "probability": 0.9987 + }, + { + "start": 2790.46, + "end": 2791.68, + "probability": 0.9927 + }, + { + "start": 2792.16, + "end": 2793.56, + "probability": 0.9949 + }, + { + "start": 2795.62, + "end": 2798.22, + "probability": 0.992 + }, + { + "start": 2798.76, + "end": 2800.8, + "probability": 0.9935 + }, + { + "start": 2800.8, + "end": 2803.92, + "probability": 0.9943 + }, + { + "start": 2804.64, + "end": 2805.7, + "probability": 0.6509 + }, + { + "start": 2805.76, + "end": 2808.38, + "probability": 0.9835 + }, + { + "start": 2808.46, + "end": 2809.0, + "probability": 0.8929 + }, + { + "start": 2809.12, + "end": 2809.5, + "probability": 0.8125 + }, + { + "start": 2810.56, + "end": 2811.54, + "probability": 0.7201 + }, + { + "start": 2812.38, + "end": 2815.68, + "probability": 0.9891 + }, + { + "start": 2815.88, + "end": 2816.2, + "probability": 0.6897 + }, + { + "start": 2816.86, + "end": 2818.74, + "probability": 0.9708 + }, + { + "start": 2819.12, + "end": 2822.3, + "probability": 0.986 + }, + { + "start": 2823.44, + "end": 2826.16, + "probability": 0.7298 + }, + { + "start": 2826.62, + "end": 2832.18, + "probability": 0.6094 + }, + { + "start": 2833.36, + "end": 2833.82, + "probability": 0.721 + }, + { + "start": 2833.92, + "end": 2839.52, + "probability": 0.9487 + }, + { + "start": 2840.2, + "end": 2846.12, + "probability": 0.9077 + }, + { + "start": 2846.58, + "end": 2849.18, + "probability": 0.9442 + }, + { + "start": 2849.7, + "end": 2854.58, + "probability": 0.9952 + }, + { + "start": 2854.58, + "end": 2857.12, + "probability": 0.9995 + }, + { + "start": 2857.6, + "end": 2861.6, + "probability": 0.988 + }, + { + "start": 2862.18, + "end": 2868.9, + "probability": 0.9973 + }, + { + "start": 2869.04, + "end": 2869.32, + "probability": 0.6527 + }, + { + "start": 2870.14, + "end": 2871.24, + "probability": 0.5823 + }, + { + "start": 2871.66, + "end": 2872.48, + "probability": 0.9928 + }, + { + "start": 2873.76, + "end": 2875.4, + "probability": 0.6842 + }, + { + "start": 2880.56, + "end": 2881.34, + "probability": 0.6118 + }, + { + "start": 2881.38, + "end": 2881.86, + "probability": 0.6519 + }, + { + "start": 2881.94, + "end": 2882.1, + "probability": 0.5698 + }, + { + "start": 2882.28, + "end": 2882.88, + "probability": 0.8859 + }, + { + "start": 2883.02, + "end": 2883.58, + "probability": 0.6373 + }, + { + "start": 2883.64, + "end": 2884.64, + "probability": 0.7071 + }, + { + "start": 2885.1, + "end": 2886.2, + "probability": 0.7352 + }, + { + "start": 2886.88, + "end": 2888.12, + "probability": 0.6918 + }, + { + "start": 2890.98, + "end": 2892.04, + "probability": 0.6034 + }, + { + "start": 2892.99, + "end": 2894.24, + "probability": 0.7241 + }, + { + "start": 2895.6, + "end": 2895.84, + "probability": 0.4645 + }, + { + "start": 2896.14, + "end": 2898.2, + "probability": 0.9805 + }, + { + "start": 2898.68, + "end": 2901.7, + "probability": 0.8979 + }, + { + "start": 2902.88, + "end": 2904.0, + "probability": 0.6476 + }, + { + "start": 2906.34, + "end": 2907.72, + "probability": 0.8086 + }, + { + "start": 2908.0, + "end": 2909.0, + "probability": 0.9036 + }, + { + "start": 2909.86, + "end": 2913.04, + "probability": 0.8639 + }, + { + "start": 2918.8, + "end": 2919.8, + "probability": 0.9312 + }, + { + "start": 2919.98, + "end": 2926.24, + "probability": 0.9119 + }, + { + "start": 2926.52, + "end": 2927.03, + "probability": 0.5922 + }, + { + "start": 2927.86, + "end": 2928.6, + "probability": 0.7019 + }, + { + "start": 2928.76, + "end": 2932.08, + "probability": 0.9507 + }, + { + "start": 2932.72, + "end": 2936.26, + "probability": 0.9427 + }, + { + "start": 2936.96, + "end": 2940.36, + "probability": 0.9962 + }, + { + "start": 2941.84, + "end": 2944.28, + "probability": 0.5242 + }, + { + "start": 2946.08, + "end": 2950.38, + "probability": 0.9943 + }, + { + "start": 2950.82, + "end": 2951.26, + "probability": 0.8634 + }, + { + "start": 2951.92, + "end": 2954.08, + "probability": 0.8834 + }, + { + "start": 2955.2, + "end": 2957.34, + "probability": 0.9253 + }, + { + "start": 2957.38, + "end": 2959.02, + "probability": 0.9746 + }, + { + "start": 2959.6, + "end": 2960.08, + "probability": 0.9031 + }, + { + "start": 2960.2, + "end": 2961.26, + "probability": 0.9766 + }, + { + "start": 2961.52, + "end": 2962.7, + "probability": 0.5291 + }, + { + "start": 2963.5, + "end": 2963.8, + "probability": 0.3745 + }, + { + "start": 2963.88, + "end": 2966.4, + "probability": 0.6393 + }, + { + "start": 2966.52, + "end": 2966.82, + "probability": 0.8365 + }, + { + "start": 2967.08, + "end": 2967.92, + "probability": 0.8443 + }, + { + "start": 2968.06, + "end": 2968.52, + "probability": 0.9098 + }, + { + "start": 2968.76, + "end": 2968.94, + "probability": 0.4869 + }, + { + "start": 2969.12, + "end": 2969.86, + "probability": 0.8491 + }, + { + "start": 2969.92, + "end": 2970.7, + "probability": 0.7002 + }, + { + "start": 2970.9, + "end": 2971.62, + "probability": 0.6745 + }, + { + "start": 2972.74, + "end": 2974.04, + "probability": 0.9333 + }, + { + "start": 2975.38, + "end": 2980.1, + "probability": 0.994 + }, + { + "start": 2980.92, + "end": 2983.7, + "probability": 0.998 + }, + { + "start": 2985.06, + "end": 2986.32, + "probability": 0.8657 + }, + { + "start": 2987.06, + "end": 2988.86, + "probability": 0.8968 + }, + { + "start": 2989.52, + "end": 2994.88, + "probability": 0.9533 + }, + { + "start": 2995.84, + "end": 2998.18, + "probability": 0.9507 + }, + { + "start": 2998.86, + "end": 3000.42, + "probability": 0.9896 + }, + { + "start": 3001.24, + "end": 3005.06, + "probability": 0.9954 + }, + { + "start": 3006.88, + "end": 3007.76, + "probability": 0.8005 + }, + { + "start": 3008.6, + "end": 3013.76, + "probability": 0.9964 + }, + { + "start": 3014.74, + "end": 3019.12, + "probability": 0.9989 + }, + { + "start": 3020.5, + "end": 3022.08, + "probability": 0.7879 + }, + { + "start": 3022.96, + "end": 3024.46, + "probability": 0.9304 + }, + { + "start": 3025.14, + "end": 3028.16, + "probability": 0.9971 + }, + { + "start": 3029.66, + "end": 3034.26, + "probability": 0.9946 + }, + { + "start": 3035.0, + "end": 3036.96, + "probability": 0.9651 + }, + { + "start": 3037.62, + "end": 3040.32, + "probability": 0.9885 + }, + { + "start": 3041.1, + "end": 3041.3, + "probability": 0.6049 + }, + { + "start": 3042.4, + "end": 3044.26, + "probability": 0.9023 + }, + { + "start": 3046.14, + "end": 3047.88, + "probability": 0.4171 + }, + { + "start": 3048.26, + "end": 3050.84, + "probability": 0.9389 + }, + { + "start": 3051.44, + "end": 3052.3, + "probability": 0.9092 + }, + { + "start": 3053.04, + "end": 3056.24, + "probability": 0.7071 + }, + { + "start": 3056.92, + "end": 3057.48, + "probability": 0.6093 + }, + { + "start": 3057.52, + "end": 3062.22, + "probability": 0.9393 + }, + { + "start": 3062.78, + "end": 3063.14, + "probability": 0.5257 + }, + { + "start": 3063.42, + "end": 3064.84, + "probability": 0.8704 + }, + { + "start": 3066.28, + "end": 3066.94, + "probability": 0.5268 + }, + { + "start": 3067.08, + "end": 3069.6, + "probability": 0.895 + }, + { + "start": 3070.04, + "end": 3070.44, + "probability": 0.6658 + }, + { + "start": 3076.06, + "end": 3077.96, + "probability": 0.8494 + }, + { + "start": 3078.6, + "end": 3079.76, + "probability": 0.5107 + }, + { + "start": 3081.68, + "end": 3085.44, + "probability": 0.8335 + }, + { + "start": 3085.44, + "end": 3090.42, + "probability": 0.9972 + }, + { + "start": 3092.86, + "end": 3096.42, + "probability": 0.9708 + }, + { + "start": 3096.42, + "end": 3099.82, + "probability": 0.999 + }, + { + "start": 3100.92, + "end": 3105.46, + "probability": 0.9984 + }, + { + "start": 3107.38, + "end": 3112.16, + "probability": 0.9832 + }, + { + "start": 3113.54, + "end": 3116.52, + "probability": 0.9929 + }, + { + "start": 3116.66, + "end": 3122.54, + "probability": 0.9248 + }, + { + "start": 3123.45, + "end": 3126.66, + "probability": 0.9847 + }, + { + "start": 3128.78, + "end": 3129.38, + "probability": 0.7407 + }, + { + "start": 3130.22, + "end": 3133.06, + "probability": 0.9028 + }, + { + "start": 3133.9, + "end": 3137.06, + "probability": 0.6662 + }, + { + "start": 3138.1, + "end": 3140.48, + "probability": 0.6544 + }, + { + "start": 3140.82, + "end": 3142.9, + "probability": 0.4422 + }, + { + "start": 3143.84, + "end": 3147.3, + "probability": 0.9362 + }, + { + "start": 3147.4, + "end": 3148.76, + "probability": 0.682 + }, + { + "start": 3148.88, + "end": 3149.78, + "probability": 0.6681 + }, + { + "start": 3149.96, + "end": 3151.0, + "probability": 0.529 + }, + { + "start": 3151.66, + "end": 3156.1, + "probability": 0.0647 + }, + { + "start": 3162.12, + "end": 3164.9, + "probability": 0.0058 + }, + { + "start": 3167.66, + "end": 3169.12, + "probability": 0.0892 + }, + { + "start": 3172.77, + "end": 3174.63, + "probability": 0.9868 + }, + { + "start": 3175.66, + "end": 3180.48, + "probability": 0.8361 + }, + { + "start": 3180.76, + "end": 3181.98, + "probability": 0.4461 + }, + { + "start": 3181.98, + "end": 3186.78, + "probability": 0.144 + }, + { + "start": 3187.42, + "end": 3189.84, + "probability": 0.0 + }, + { + "start": 3205.21, + "end": 3205.88, + "probability": 0.5095 + }, + { + "start": 3207.1, + "end": 3210.94, + "probability": 0.6621 + }, + { + "start": 3212.12, + "end": 3212.52, + "probability": 0.5467 + }, + { + "start": 3213.16, + "end": 3214.74, + "probability": 0.5024 + }, + { + "start": 3215.66, + "end": 3221.84, + "probability": 0.9805 + }, + { + "start": 3222.32, + "end": 3222.96, + "probability": 0.4294 + }, + { + "start": 3223.22, + "end": 3225.94, + "probability": 0.0393 + }, + { + "start": 3248.98, + "end": 3250.22, + "probability": 0.3375 + }, + { + "start": 3250.74, + "end": 3251.46, + "probability": 0.6746 + }, + { + "start": 3251.6, + "end": 3252.22, + "probability": 0.6369 + }, + { + "start": 3252.28, + "end": 3253.12, + "probability": 0.6656 + }, + { + "start": 3253.48, + "end": 3254.82, + "probability": 0.7888 + }, + { + "start": 3255.26, + "end": 3258.36, + "probability": 0.7119 + }, + { + "start": 3258.76, + "end": 3262.3, + "probability": 0.0572 + }, + { + "start": 3273.4, + "end": 3275.04, + "probability": 0.0211 + }, + { + "start": 3275.44, + "end": 3278.78, + "probability": 0.4227 + }, + { + "start": 3279.18, + "end": 3285.4, + "probability": 0.9507 + }, + { + "start": 3285.98, + "end": 3290.08, + "probability": 0.9487 + }, + { + "start": 3290.12, + "end": 3293.36, + "probability": 0.9916 + }, + { + "start": 3293.82, + "end": 3298.26, + "probability": 0.9967 + }, + { + "start": 3298.26, + "end": 3303.64, + "probability": 0.9851 + }, + { + "start": 3304.08, + "end": 3305.1, + "probability": 0.8985 + }, + { + "start": 3305.58, + "end": 3306.68, + "probability": 0.7712 + }, + { + "start": 3306.94, + "end": 3308.06, + "probability": 0.6212 + }, + { + "start": 3308.3, + "end": 3311.0, + "probability": 0.9332 + }, + { + "start": 3312.05, + "end": 3315.48, + "probability": 0.9596 + }, + { + "start": 3316.28, + "end": 3318.18, + "probability": 0.9987 + }, + { + "start": 3318.68, + "end": 3319.82, + "probability": 0.9982 + }, + { + "start": 3320.3, + "end": 3323.54, + "probability": 0.9836 + }, + { + "start": 3324.94, + "end": 3327.22, + "probability": 0.8366 + }, + { + "start": 3330.54, + "end": 3337.44, + "probability": 0.9954 + }, + { + "start": 3337.84, + "end": 3343.78, + "probability": 0.9828 + }, + { + "start": 3344.36, + "end": 3347.68, + "probability": 0.5132 + }, + { + "start": 3348.26, + "end": 3348.34, + "probability": 0.6382 + }, + { + "start": 3348.34, + "end": 3348.34, + "probability": 0.2124 + }, + { + "start": 3348.34, + "end": 3349.06, + "probability": 0.6682 + }, + { + "start": 3349.98, + "end": 3350.72, + "probability": 0.6174 + }, + { + "start": 3352.8, + "end": 3357.1, + "probability": 0.7449 + }, + { + "start": 3357.78, + "end": 3357.92, + "probability": 0.843 + }, + { + "start": 3358.22, + "end": 3359.6, + "probability": 0.9971 + }, + { + "start": 3360.58, + "end": 3365.98, + "probability": 0.8687 + }, + { + "start": 3365.98, + "end": 3367.92, + "probability": 0.7682 + }, + { + "start": 3368.82, + "end": 3373.18, + "probability": 0.9947 + }, + { + "start": 3374.14, + "end": 3375.8, + "probability": 0.6662 + }, + { + "start": 3376.8, + "end": 3378.1, + "probability": 0.7104 + }, + { + "start": 3378.62, + "end": 3381.84, + "probability": 0.8232 + }, + { + "start": 3382.5, + "end": 3385.86, + "probability": 0.793 + }, + { + "start": 3386.44, + "end": 3389.02, + "probability": 0.996 + }, + { + "start": 3389.58, + "end": 3391.0, + "probability": 0.5445 + }, + { + "start": 3391.12, + "end": 3394.82, + "probability": 0.9609 + }, + { + "start": 3394.82, + "end": 3399.84, + "probability": 0.8828 + }, + { + "start": 3400.0, + "end": 3402.46, + "probability": 0.9692 + }, + { + "start": 3403.98, + "end": 3404.5, + "probability": 0.164 + }, + { + "start": 3406.78, + "end": 3409.23, + "probability": 0.0434 + }, + { + "start": 3409.9, + "end": 3410.54, + "probability": 0.2976 + }, + { + "start": 3410.54, + "end": 3414.6, + "probability": 0.9753 + }, + { + "start": 3416.18, + "end": 3421.18, + "probability": 0.9862 + }, + { + "start": 3421.82, + "end": 3424.74, + "probability": 0.9985 + }, + { + "start": 3425.28, + "end": 3426.68, + "probability": 0.7023 + }, + { + "start": 3427.56, + "end": 3428.9, + "probability": 0.8667 + }, + { + "start": 3429.02, + "end": 3430.79, + "probability": 0.9956 + }, + { + "start": 3431.5, + "end": 3432.08, + "probability": 0.9049 + }, + { + "start": 3448.58, + "end": 3449.34, + "probability": 0.0752 + }, + { + "start": 3450.5, + "end": 3451.92, + "probability": 0.4053 + }, + { + "start": 3452.86, + "end": 3455.38, + "probability": 0.2995 + }, + { + "start": 3455.46, + "end": 3458.4, + "probability": 0.3284 + }, + { + "start": 3458.48, + "end": 3463.86, + "probability": 0.3848 + }, + { + "start": 3464.24, + "end": 3464.9, + "probability": 0.1876 + }, + { + "start": 3465.34, + "end": 3465.64, + "probability": 0.3961 + }, + { + "start": 3465.86, + "end": 3468.32, + "probability": 0.5957 + }, + { + "start": 3468.62, + "end": 3471.4, + "probability": 0.7489 + }, + { + "start": 3472.48, + "end": 3475.96, + "probability": 0.8547 + }, + { + "start": 3476.2, + "end": 3477.12, + "probability": 0.6399 + }, + { + "start": 3477.22, + "end": 3479.3, + "probability": 0.7515 + }, + { + "start": 3479.46, + "end": 3482.36, + "probability": 0.8453 + }, + { + "start": 3482.62, + "end": 3487.18, + "probability": 0.9186 + }, + { + "start": 3487.66, + "end": 3489.22, + "probability": 0.7481 + }, + { + "start": 3490.97, + "end": 3493.12, + "probability": 0.5093 + }, + { + "start": 3493.9, + "end": 3496.33, + "probability": 0.8311 + }, + { + "start": 3497.08, + "end": 3499.46, + "probability": 0.6716 + }, + { + "start": 3500.04, + "end": 3503.32, + "probability": 0.9243 + }, + { + "start": 3504.44, + "end": 3506.02, + "probability": 0.959 + }, + { + "start": 3506.54, + "end": 3508.58, + "probability": 0.9315 + }, + { + "start": 3509.92, + "end": 3515.4, + "probability": 0.9429 + }, + { + "start": 3515.68, + "end": 3519.3, + "probability": 0.9867 + }, + { + "start": 3519.8, + "end": 3521.08, + "probability": 0.8951 + }, + { + "start": 3523.14, + "end": 3525.46, + "probability": 0.6472 + }, + { + "start": 3528.26, + "end": 3530.76, + "probability": 0.9927 + }, + { + "start": 3531.4, + "end": 3533.76, + "probability": 0.9882 + }, + { + "start": 3533.76, + "end": 3537.9, + "probability": 0.596 + }, + { + "start": 3538.42, + "end": 3539.98, + "probability": 0.959 + }, + { + "start": 3540.38, + "end": 3541.72, + "probability": 0.672 + }, + { + "start": 3543.59, + "end": 3545.9, + "probability": 0.7352 + }, + { + "start": 3547.0, + "end": 3548.12, + "probability": 0.8997 + }, + { + "start": 3549.58, + "end": 3551.34, + "probability": 0.7836 + }, + { + "start": 3567.98, + "end": 3572.76, + "probability": 0.9911 + }, + { + "start": 3572.76, + "end": 3575.36, + "probability": 0.9796 + }, + { + "start": 3575.36, + "end": 3577.94, + "probability": 0.9945 + }, + { + "start": 3578.28, + "end": 3578.52, + "probability": 0.1504 + }, + { + "start": 3578.56, + "end": 3579.6, + "probability": 0.8266 + }, + { + "start": 3580.8, + "end": 3582.44, + "probability": 0.7843 + }, + { + "start": 3583.04, + "end": 3586.24, + "probability": 0.9008 + }, + { + "start": 3587.08, + "end": 3589.92, + "probability": 0.9819 + }, + { + "start": 3590.68, + "end": 3591.16, + "probability": 0.6734 + }, + { + "start": 3591.78, + "end": 3593.46, + "probability": 0.9948 + }, + { + "start": 3595.7, + "end": 3598.06, + "probability": 0.7938 + }, + { + "start": 3599.88, + "end": 3602.8, + "probability": 0.8559 + }, + { + "start": 3604.0, + "end": 3605.94, + "probability": 0.5619 + }, + { + "start": 3610.5, + "end": 3613.12, + "probability": 0.3512 + }, + { + "start": 3624.4, + "end": 3626.94, + "probability": 0.5928 + }, + { + "start": 3628.06, + "end": 3633.5, + "probability": 0.6323 + }, + { + "start": 3634.16, + "end": 3635.06, + "probability": 0.8381 + }, + { + "start": 3635.66, + "end": 3636.92, + "probability": 0.8335 + }, + { + "start": 3643.12, + "end": 3644.26, + "probability": 0.5983 + }, + { + "start": 3646.9, + "end": 3649.68, + "probability": 0.9967 + }, + { + "start": 3650.46, + "end": 3653.48, + "probability": 0.8232 + }, + { + "start": 3654.12, + "end": 3657.06, + "probability": 0.8961 + }, + { + "start": 3657.28, + "end": 3662.18, + "probability": 0.7922 + }, + { + "start": 3662.58, + "end": 3664.62, + "probability": 0.5679 + }, + { + "start": 3664.96, + "end": 3670.92, + "probability": 0.801 + }, + { + "start": 3671.5, + "end": 3674.0, + "probability": 0.8829 + }, + { + "start": 3674.48, + "end": 3677.92, + "probability": 0.9868 + }, + { + "start": 3678.08, + "end": 3681.34, + "probability": 0.9842 + }, + { + "start": 3681.98, + "end": 3682.58, + "probability": 0.5085 + }, + { + "start": 3683.42, + "end": 3684.18, + "probability": 0.7263 + }, + { + "start": 3684.28, + "end": 3685.1, + "probability": 0.639 + }, + { + "start": 3685.2, + "end": 3687.66, + "probability": 0.9434 + }, + { + "start": 3687.68, + "end": 3691.66, + "probability": 0.9508 + }, + { + "start": 3691.74, + "end": 3692.64, + "probability": 0.9527 + }, + { + "start": 3693.18, + "end": 3696.82, + "probability": 0.8729 + }, + { + "start": 3697.3, + "end": 3701.14, + "probability": 0.754 + }, + { + "start": 3702.6, + "end": 3702.88, + "probability": 0.6498 + }, + { + "start": 3707.58, + "end": 3709.46, + "probability": 0.8043 + }, + { + "start": 3709.88, + "end": 3713.09, + "probability": 0.5269 + }, + { + "start": 3715.58, + "end": 3719.17, + "probability": 0.9928 + }, + { + "start": 3719.24, + "end": 3723.62, + "probability": 0.9972 + }, + { + "start": 3724.22, + "end": 3727.0, + "probability": 0.998 + }, + { + "start": 3727.72, + "end": 3731.02, + "probability": 0.982 + }, + { + "start": 3732.08, + "end": 3735.12, + "probability": 0.8043 + }, + { + "start": 3735.7, + "end": 3738.32, + "probability": 0.9759 + }, + { + "start": 3738.92, + "end": 3741.08, + "probability": 0.9937 + }, + { + "start": 3741.36, + "end": 3742.06, + "probability": 0.8398 + }, + { + "start": 3742.22, + "end": 3742.98, + "probability": 0.966 + }, + { + "start": 3743.32, + "end": 3743.68, + "probability": 0.9163 + }, + { + "start": 3743.78, + "end": 3744.02, + "probability": 0.9416 + }, + { + "start": 3744.14, + "end": 3747.7, + "probability": 0.9385 + }, + { + "start": 3748.5, + "end": 3751.26, + "probability": 0.9481 + }, + { + "start": 3751.54, + "end": 3755.44, + "probability": 0.138 + }, + { + "start": 3755.96, + "end": 3758.96, + "probability": 0.8541 + }, + { + "start": 3759.44, + "end": 3761.8, + "probability": 0.9482 + }, + { + "start": 3762.36, + "end": 3766.36, + "probability": 0.8563 + }, + { + "start": 3767.2, + "end": 3768.62, + "probability": 0.9598 + }, + { + "start": 3769.22, + "end": 3770.28, + "probability": 0.7487 + }, + { + "start": 3770.58, + "end": 3772.37, + "probability": 0.6222 + }, + { + "start": 3773.16, + "end": 3775.2, + "probability": 0.7055 + }, + { + "start": 3775.24, + "end": 3777.38, + "probability": 0.7895 + }, + { + "start": 3777.8, + "end": 3779.36, + "probability": 0.7713 + }, + { + "start": 3779.76, + "end": 3784.46, + "probability": 0.9674 + }, + { + "start": 3784.92, + "end": 3785.2, + "probability": 0.7535 + }, + { + "start": 3785.3, + "end": 3785.93, + "probability": 0.9438 + }, + { + "start": 3786.78, + "end": 3788.12, + "probability": 0.9399 + }, + { + "start": 3788.16, + "end": 3789.48, + "probability": 0.3094 + }, + { + "start": 3789.48, + "end": 3792.06, + "probability": 0.6104 + }, + { + "start": 3792.52, + "end": 3794.04, + "probability": 0.9561 + }, + { + "start": 3794.26, + "end": 3795.34, + "probability": 0.6867 + }, + { + "start": 3795.86, + "end": 3798.48, + "probability": 0.6844 + }, + { + "start": 3799.38, + "end": 3799.96, + "probability": 0.7002 + }, + { + "start": 3800.84, + "end": 3801.96, + "probability": 0.8467 + }, + { + "start": 3802.11, + "end": 3804.74, + "probability": 0.6306 + }, + { + "start": 3805.08, + "end": 3808.16, + "probability": 0.9876 + }, + { + "start": 3808.62, + "end": 3810.58, + "probability": 0.9598 + }, + { + "start": 3811.12, + "end": 3813.52, + "probability": 0.9321 + }, + { + "start": 3814.16, + "end": 3817.0, + "probability": 0.9939 + }, + { + "start": 3817.44, + "end": 3817.88, + "probability": 0.5837 + }, + { + "start": 3818.0, + "end": 3818.72, + "probability": 0.8047 + }, + { + "start": 3818.86, + "end": 3821.92, + "probability": 0.6349 + }, + { + "start": 3824.82, + "end": 3825.96, + "probability": 0.8092 + }, + { + "start": 3826.02, + "end": 3827.84, + "probability": 0.7762 + }, + { + "start": 3827.92, + "end": 3828.62, + "probability": 0.8055 + }, + { + "start": 3829.14, + "end": 3829.82, + "probability": 0.6767 + }, + { + "start": 3830.38, + "end": 3834.28, + "probability": 0.9871 + }, + { + "start": 3834.96, + "end": 3835.66, + "probability": 0.8582 + }, + { + "start": 3835.88, + "end": 3836.56, + "probability": 0.9298 + }, + { + "start": 3836.84, + "end": 3839.54, + "probability": 0.9802 + }, + { + "start": 3840.2, + "end": 3841.0, + "probability": 0.7385 + }, + { + "start": 3841.52, + "end": 3842.8, + "probability": 0.9927 + }, + { + "start": 3844.72, + "end": 3846.46, + "probability": 0.9934 + }, + { + "start": 3847.14, + "end": 3850.8, + "probability": 0.998 + }, + { + "start": 3851.54, + "end": 3854.82, + "probability": 0.9917 + }, + { + "start": 3855.5, + "end": 3857.88, + "probability": 0.8413 + }, + { + "start": 3858.6, + "end": 3859.62, + "probability": 0.8369 + }, + { + "start": 3859.78, + "end": 3868.76, + "probability": 0.8773 + }, + { + "start": 3868.76, + "end": 3873.37, + "probability": 0.7675 + }, + { + "start": 3873.96, + "end": 3876.66, + "probability": 0.9828 + }, + { + "start": 3876.99, + "end": 3878.74, + "probability": 0.7577 + }, + { + "start": 3878.78, + "end": 3880.72, + "probability": 0.9953 + }, + { + "start": 3881.16, + "end": 3881.89, + "probability": 0.7121 + }, + { + "start": 3882.62, + "end": 3883.52, + "probability": 0.7043 + }, + { + "start": 3884.26, + "end": 3890.34, + "probability": 0.9945 + }, + { + "start": 3890.8, + "end": 3891.92, + "probability": 0.859 + }, + { + "start": 3892.38, + "end": 3896.14, + "probability": 0.8784 + }, + { + "start": 3897.06, + "end": 3899.58, + "probability": 0.9749 + }, + { + "start": 3900.98, + "end": 3904.44, + "probability": 0.8534 + }, + { + "start": 3905.6, + "end": 3907.22, + "probability": 0.9862 + }, + { + "start": 3907.76, + "end": 3910.14, + "probability": 0.9942 + }, + { + "start": 3910.24, + "end": 3914.12, + "probability": 0.978 + }, + { + "start": 3914.6, + "end": 3916.04, + "probability": 0.97 + }, + { + "start": 3916.74, + "end": 3919.46, + "probability": 0.9874 + }, + { + "start": 3919.74, + "end": 3921.68, + "probability": 0.9257 + }, + { + "start": 3922.28, + "end": 3927.26, + "probability": 0.9843 + }, + { + "start": 3927.44, + "end": 3928.72, + "probability": 0.5299 + }, + { + "start": 3929.16, + "end": 3930.34, + "probability": 0.8665 + }, + { + "start": 3931.04, + "end": 3934.88, + "probability": 0.966 + }, + { + "start": 3935.66, + "end": 3938.2, + "probability": 0.9857 + }, + { + "start": 3938.2, + "end": 3941.1, + "probability": 0.9976 + }, + { + "start": 3941.56, + "end": 3942.79, + "probability": 0.9968 + }, + { + "start": 3943.74, + "end": 3946.78, + "probability": 0.954 + }, + { + "start": 3947.38, + "end": 3949.11, + "probability": 0.985 + }, + { + "start": 3950.0, + "end": 3950.88, + "probability": 0.9281 + }, + { + "start": 3951.4, + "end": 3952.32, + "probability": 0.7364 + }, + { + "start": 3952.74, + "end": 3954.12, + "probability": 0.8138 + }, + { + "start": 3954.34, + "end": 3957.94, + "probability": 0.7507 + }, + { + "start": 3958.2, + "end": 3961.26, + "probability": 0.9634 + }, + { + "start": 3961.78, + "end": 3964.14, + "probability": 0.9862 + }, + { + "start": 3964.62, + "end": 3966.86, + "probability": 0.9951 + }, + { + "start": 3966.94, + "end": 3968.3, + "probability": 0.9586 + }, + { + "start": 3968.88, + "end": 3972.92, + "probability": 0.9341 + }, + { + "start": 3973.3, + "end": 3973.84, + "probability": 0.5511 + }, + { + "start": 3975.56, + "end": 3976.08, + "probability": 0.6703 + }, + { + "start": 3976.2, + "end": 3979.42, + "probability": 0.9412 + }, + { + "start": 3980.12, + "end": 3982.5, + "probability": 0.5805 + }, + { + "start": 3983.34, + "end": 3985.62, + "probability": 0.9152 + }, + { + "start": 3988.48, + "end": 3992.64, + "probability": 0.9821 + }, + { + "start": 3993.18, + "end": 3993.82, + "probability": 0.7817 + }, + { + "start": 3994.14, + "end": 3996.04, + "probability": 0.6742 + }, + { + "start": 3997.44, + "end": 4000.46, + "probability": 0.8259 + }, + { + "start": 4000.7, + "end": 4005.68, + "probability": 0.9953 + }, + { + "start": 4005.68, + "end": 4010.86, + "probability": 0.9972 + }, + { + "start": 4011.28, + "end": 4012.82, + "probability": 0.9429 + }, + { + "start": 4014.46, + "end": 4016.28, + "probability": 0.7234 + }, + { + "start": 4016.3, + "end": 4017.84, + "probability": 0.9478 + }, + { + "start": 4018.46, + "end": 4021.0, + "probability": 0.5879 + }, + { + "start": 4021.82, + "end": 4023.8, + "probability": 0.9943 + }, + { + "start": 4024.5, + "end": 4030.54, + "probability": 0.7498 + }, + { + "start": 4030.82, + "end": 4033.14, + "probability": 0.9978 + }, + { + "start": 4033.24, + "end": 4034.12, + "probability": 0.6146 + }, + { + "start": 4035.38, + "end": 4035.4, + "probability": 0.0006 + }, + { + "start": 4036.24, + "end": 4038.9, + "probability": 0.1248 + }, + { + "start": 4038.9, + "end": 4039.7, + "probability": 0.5424 + }, + { + "start": 4040.02, + "end": 4041.02, + "probability": 0.9112 + }, + { + "start": 4041.3, + "end": 4042.14, + "probability": 0.6411 + }, + { + "start": 4042.96, + "end": 4043.92, + "probability": 0.7295 + }, + { + "start": 4044.6, + "end": 4046.2, + "probability": 0.9827 + }, + { + "start": 4046.4, + "end": 4048.02, + "probability": 0.7634 + }, + { + "start": 4048.46, + "end": 4049.48, + "probability": 0.9878 + }, + { + "start": 4049.76, + "end": 4050.9, + "probability": 0.8106 + }, + { + "start": 4052.06, + "end": 4057.94, + "probability": 0.995 + }, + { + "start": 4058.0, + "end": 4058.72, + "probability": 0.297 + }, + { + "start": 4059.2, + "end": 4062.44, + "probability": 0.7992 + }, + { + "start": 4062.96, + "end": 4064.16, + "probability": 0.5813 + }, + { + "start": 4065.1, + "end": 4069.52, + "probability": 0.9437 + }, + { + "start": 4070.04, + "end": 4070.98, + "probability": 0.7384 + }, + { + "start": 4071.66, + "end": 4073.12, + "probability": 0.7515 + }, + { + "start": 4073.92, + "end": 4076.4, + "probability": 0.7955 + }, + { + "start": 4077.12, + "end": 4084.54, + "probability": 0.8445 + }, + { + "start": 4085.26, + "end": 4089.9, + "probability": 0.9963 + }, + { + "start": 4090.9, + "end": 4091.9, + "probability": 0.7962 + }, + { + "start": 4093.96, + "end": 4095.54, + "probability": 0.7563 + }, + { + "start": 4096.02, + "end": 4098.0, + "probability": 0.9546 + }, + { + "start": 4098.12, + "end": 4099.46, + "probability": 0.9907 + }, + { + "start": 4099.56, + "end": 4100.08, + "probability": 0.7456 + }, + { + "start": 4100.16, + "end": 4104.3, + "probability": 0.908 + }, + { + "start": 4105.14, + "end": 4107.76, + "probability": 0.9839 + }, + { + "start": 4108.48, + "end": 4109.74, + "probability": 0.8428 + }, + { + "start": 4110.54, + "end": 4111.4, + "probability": 0.9821 + }, + { + "start": 4111.5, + "end": 4112.96, + "probability": 0.9984 + }, + { + "start": 4114.12, + "end": 4116.72, + "probability": 0.9073 + }, + { + "start": 4117.72, + "end": 4121.36, + "probability": 0.9844 + }, + { + "start": 4121.42, + "end": 4122.34, + "probability": 0.9363 + }, + { + "start": 4123.32, + "end": 4124.14, + "probability": 0.5843 + }, + { + "start": 4124.4, + "end": 4127.8, + "probability": 0.9959 + }, + { + "start": 4127.94, + "end": 4129.56, + "probability": 0.9811 + }, + { + "start": 4130.2, + "end": 4131.44, + "probability": 0.8962 + }, + { + "start": 4132.06, + "end": 4134.96, + "probability": 0.9711 + }, + { + "start": 4135.52, + "end": 4139.4, + "probability": 0.9904 + }, + { + "start": 4139.86, + "end": 4143.84, + "probability": 0.9971 + }, + { + "start": 4143.96, + "end": 4147.02, + "probability": 0.9906 + }, + { + "start": 4147.91, + "end": 4152.0, + "probability": 0.5491 + }, + { + "start": 4152.48, + "end": 4152.56, + "probability": 0.4324 + }, + { + "start": 4152.58, + "end": 4152.96, + "probability": 0.726 + }, + { + "start": 4153.04, + "end": 4160.48, + "probability": 0.9832 + }, + { + "start": 4161.28, + "end": 4164.22, + "probability": 0.4624 + }, + { + "start": 4164.22, + "end": 4164.5, + "probability": 0.5559 + }, + { + "start": 4164.96, + "end": 4165.5, + "probability": 0.9104 + }, + { + "start": 4165.62, + "end": 4166.92, + "probability": 0.7371 + }, + { + "start": 4167.12, + "end": 4168.66, + "probability": 0.7817 + }, + { + "start": 4169.24, + "end": 4170.92, + "probability": 0.9625 + }, + { + "start": 4171.46, + "end": 4175.92, + "probability": 0.9043 + }, + { + "start": 4176.22, + "end": 4177.24, + "probability": 0.9501 + }, + { + "start": 4177.78, + "end": 4182.1, + "probability": 0.8347 + }, + { + "start": 4182.62, + "end": 4185.5, + "probability": 0.9756 + }, + { + "start": 4185.98, + "end": 4187.62, + "probability": 0.9958 + }, + { + "start": 4188.3, + "end": 4190.82, + "probability": 0.8865 + }, + { + "start": 4191.26, + "end": 4194.9, + "probability": 0.9564 + }, + { + "start": 4195.08, + "end": 4195.86, + "probability": 0.7011 + }, + { + "start": 4196.56, + "end": 4197.14, + "probability": 0.676 + }, + { + "start": 4197.7, + "end": 4198.1, + "probability": 0.7382 + }, + { + "start": 4198.2, + "end": 4202.5, + "probability": 0.9862 + }, + { + "start": 4202.6, + "end": 4202.9, + "probability": 0.5151 + }, + { + "start": 4203.48, + "end": 4204.8, + "probability": 0.9979 + }, + { + "start": 4205.18, + "end": 4211.36, + "probability": 0.9966 + }, + { + "start": 4211.8, + "end": 4214.12, + "probability": 0.9446 + }, + { + "start": 4215.0, + "end": 4217.16, + "probability": 0.7998 + }, + { + "start": 4217.5, + "end": 4218.89, + "probability": 0.9989 + }, + { + "start": 4219.6, + "end": 4220.82, + "probability": 0.7163 + }, + { + "start": 4221.18, + "end": 4226.32, + "probability": 0.8888 + }, + { + "start": 4226.34, + "end": 4229.42, + "probability": 0.8011 + }, + { + "start": 4229.98, + "end": 4231.03, + "probability": 0.6143 + }, + { + "start": 4231.2, + "end": 4232.1, + "probability": 0.752 + }, + { + "start": 4233.34, + "end": 4236.02, + "probability": 0.9199 + }, + { + "start": 4238.82, + "end": 4239.96, + "probability": 0.4116 + }, + { + "start": 4240.04, + "end": 4242.52, + "probability": 0.7585 + }, + { + "start": 4243.48, + "end": 4246.26, + "probability": 0.9359 + }, + { + "start": 4246.64, + "end": 4247.54, + "probability": 0.5809 + }, + { + "start": 4247.54, + "end": 4248.08, + "probability": 0.2964 + }, + { + "start": 4248.32, + "end": 4249.0, + "probability": 0.5192 + }, + { + "start": 4249.02, + "end": 4249.5, + "probability": 0.7428 + }, + { + "start": 4254.08, + "end": 4255.3, + "probability": 0.1974 + }, + { + "start": 4268.8, + "end": 4270.28, + "probability": 0.0845 + }, + { + "start": 4270.9, + "end": 4272.6, + "probability": 0.2872 + }, + { + "start": 4273.02, + "end": 4275.4, + "probability": 0.738 + }, + { + "start": 4275.94, + "end": 4278.36, + "probability": 0.0339 + }, + { + "start": 4278.36, + "end": 4279.34, + "probability": 0.2292 + }, + { + "start": 4279.5, + "end": 4282.02, + "probability": 0.4507 + }, + { + "start": 4283.32, + "end": 4284.68, + "probability": 0.4064 + }, + { + "start": 4295.16, + "end": 4295.26, + "probability": 0.0688 + }, + { + "start": 4297.26, + "end": 4303.04, + "probability": 0.0695 + }, + { + "start": 4303.14, + "end": 4305.72, + "probability": 0.0292 + }, + { + "start": 4305.72, + "end": 4307.0, + "probability": 0.1004 + }, + { + "start": 4307.95, + "end": 4309.02, + "probability": 0.0709 + }, + { + "start": 4309.2, + "end": 4311.42, + "probability": 0.0925 + }, + { + "start": 4312.06, + "end": 4312.46, + "probability": 0.3207 + }, + { + "start": 4312.46, + "end": 4312.67, + "probability": 0.0421 + }, + { + "start": 4313.38, + "end": 4313.98, + "probability": 0.2267 + }, + { + "start": 4313.98, + "end": 4313.98, + "probability": 0.0399 + }, + { + "start": 4313.98, + "end": 4315.03, + "probability": 0.0453 + }, + { + "start": 4315.38, + "end": 4316.8, + "probability": 0.0127 + }, + { + "start": 4316.8, + "end": 4317.98, + "probability": 0.0231 + }, + { + "start": 4318.46, + "end": 4320.26, + "probability": 0.0559 + }, + { + "start": 4320.26, + "end": 4321.94, + "probability": 0.3045 + }, + { + "start": 4323.66, + "end": 4324.56, + "probability": 0.6472 + }, + { + "start": 4324.56, + "end": 4324.98, + "probability": 0.5794 + }, + { + "start": 4325.0, + "end": 4325.0, + "probability": 0.0 + }, + { + "start": 4325.0, + "end": 4325.0, + "probability": 0.0 + }, + { + "start": 4325.0, + "end": 4325.0, + "probability": 0.0 + }, + { + "start": 4325.0, + "end": 4325.0, + "probability": 0.0 + }, + { + "start": 4333.14, + "end": 4334.4, + "probability": 0.7313 + }, + { + "start": 4336.26, + "end": 4336.98, + "probability": 0.4366 + }, + { + "start": 4337.02, + "end": 4337.18, + "probability": 0.7352 + }, + { + "start": 4338.26, + "end": 4339.42, + "probability": 0.9164 + }, + { + "start": 4339.94, + "end": 4340.92, + "probability": 0.5607 + }, + { + "start": 4341.13, + "end": 4341.98, + "probability": 0.7735 + }, + { + "start": 4342.54, + "end": 4343.14, + "probability": 0.9243 + }, + { + "start": 4345.02, + "end": 4347.08, + "probability": 0.5348 + }, + { + "start": 4347.88, + "end": 4351.12, + "probability": 0.9702 + }, + { + "start": 4351.88, + "end": 4358.02, + "probability": 0.9277 + }, + { + "start": 4359.06, + "end": 4361.12, + "probability": 0.6198 + }, + { + "start": 4361.66, + "end": 4364.82, + "probability": 0.9355 + }, + { + "start": 4365.44, + "end": 4367.76, + "probability": 0.9893 + }, + { + "start": 4368.2, + "end": 4371.44, + "probability": 0.976 + }, + { + "start": 4372.14, + "end": 4374.65, + "probability": 0.7086 + }, + { + "start": 4375.2, + "end": 4377.68, + "probability": 0.9567 + }, + { + "start": 4377.68, + "end": 4381.16, + "probability": 0.9801 + }, + { + "start": 4382.88, + "end": 4386.08, + "probability": 0.9461 + }, + { + "start": 4386.84, + "end": 4387.71, + "probability": 0.9857 + }, + { + "start": 4388.8, + "end": 4391.28, + "probability": 0.9902 + }, + { + "start": 4391.74, + "end": 4393.72, + "probability": 0.8652 + }, + { + "start": 4395.36, + "end": 4397.24, + "probability": 0.5618 + }, + { + "start": 4398.18, + "end": 4400.58, + "probability": 0.8042 + }, + { + "start": 4400.78, + "end": 4404.08, + "probability": 0.9795 + }, + { + "start": 4404.82, + "end": 4409.34, + "probability": 0.9704 + }, + { + "start": 4409.34, + "end": 4413.92, + "probability": 0.9992 + }, + { + "start": 4414.4, + "end": 4416.02, + "probability": 0.9971 + }, + { + "start": 4416.78, + "end": 4420.66, + "probability": 0.8433 + }, + { + "start": 4421.16, + "end": 4422.94, + "probability": 0.9219 + }, + { + "start": 4423.52, + "end": 4424.92, + "probability": 0.983 + }, + { + "start": 4425.06, + "end": 4429.28, + "probability": 0.9132 + }, + { + "start": 4429.62, + "end": 4432.22, + "probability": 0.9982 + }, + { + "start": 4432.62, + "end": 4436.62, + "probability": 0.994 + }, + { + "start": 4437.08, + "end": 4438.54, + "probability": 0.8566 + }, + { + "start": 4439.14, + "end": 4441.32, + "probability": 0.8431 + }, + { + "start": 4442.0, + "end": 4444.46, + "probability": 0.9516 + }, + { + "start": 4445.1, + "end": 4450.38, + "probability": 0.9856 + }, + { + "start": 4450.38, + "end": 4452.22, + "probability": 0.9387 + }, + { + "start": 4452.86, + "end": 4453.26, + "probability": 0.1463 + }, + { + "start": 4454.3, + "end": 4454.5, + "probability": 0.0485 + }, + { + "start": 4454.98, + "end": 4455.54, + "probability": 0.6672 + }, + { + "start": 4455.92, + "end": 4456.74, + "probability": 0.949 + }, + { + "start": 4457.2, + "end": 4463.12, + "probability": 0.9119 + }, + { + "start": 4463.58, + "end": 4464.6, + "probability": 0.8755 + }, + { + "start": 4464.6, + "end": 4470.48, + "probability": 0.7296 + }, + { + "start": 4470.74, + "end": 4471.02, + "probability": 0.9342 + }, + { + "start": 4471.7, + "end": 4474.2, + "probability": 0.8699 + }, + { + "start": 4474.84, + "end": 4477.18, + "probability": 0.9924 + }, + { + "start": 4478.39, + "end": 4480.88, + "probability": 0.9941 + }, + { + "start": 4481.28, + "end": 4483.62, + "probability": 0.7646 + }, + { + "start": 4484.14, + "end": 4487.12, + "probability": 0.9883 + }, + { + "start": 4487.72, + "end": 4490.48, + "probability": 0.9026 + }, + { + "start": 4491.18, + "end": 4491.64, + "probability": 0.7544 + }, + { + "start": 4492.14, + "end": 4496.52, + "probability": 0.8228 + }, + { + "start": 4498.14, + "end": 4501.94, + "probability": 0.9851 + }, + { + "start": 4503.3, + "end": 4504.1, + "probability": 0.6107 + }, + { + "start": 4504.22, + "end": 4505.1, + "probability": 0.8485 + }, + { + "start": 4505.28, + "end": 4506.08, + "probability": 0.7044 + }, + { + "start": 4506.36, + "end": 4507.04, + "probability": 0.4545 + }, + { + "start": 4509.17, + "end": 4511.58, + "probability": 0.9143 + }, + { + "start": 4511.7, + "end": 4512.64, + "probability": 0.5012 + }, + { + "start": 4513.36, + "end": 4514.28, + "probability": 0.9657 + }, + { + "start": 4515.22, + "end": 4516.1, + "probability": 0.9262 + }, + { + "start": 4517.06, + "end": 4518.8, + "probability": 0.8646 + }, + { + "start": 4519.28, + "end": 4519.56, + "probability": 0.3991 + }, + { + "start": 4519.68, + "end": 4520.33, + "probability": 0.8023 + }, + { + "start": 4521.2, + "end": 4523.78, + "probability": 0.9308 + }, + { + "start": 4523.86, + "end": 4524.54, + "probability": 0.5203 + }, + { + "start": 4525.0, + "end": 4531.2, + "probability": 0.6392 + }, + { + "start": 4531.3, + "end": 4533.34, + "probability": 0.9171 + }, + { + "start": 4533.52, + "end": 4533.74, + "probability": 0.5669 + }, + { + "start": 4533.74, + "end": 4534.2, + "probability": 0.4782 + }, + { + "start": 4534.26, + "end": 4535.62, + "probability": 0.7142 + }, + { + "start": 4535.66, + "end": 4537.92, + "probability": 0.9855 + }, + { + "start": 4538.14, + "end": 4540.24, + "probability": 0.7928 + }, + { + "start": 4540.4, + "end": 4541.02, + "probability": 0.7687 + }, + { + "start": 4541.12, + "end": 4543.66, + "probability": 0.9535 + }, + { + "start": 4544.22, + "end": 4546.8, + "probability": 0.6737 + }, + { + "start": 4547.32, + "end": 4550.16, + "probability": 0.7687 + }, + { + "start": 4551.32, + "end": 4551.84, + "probability": 0.7584 + }, + { + "start": 4551.92, + "end": 4552.7, + "probability": 0.3771 + }, + { + "start": 4552.94, + "end": 4554.74, + "probability": 0.4581 + }, + { + "start": 4555.2, + "end": 4555.7, + "probability": 0.4657 + }, + { + "start": 4555.74, + "end": 4556.32, + "probability": 0.6349 + }, + { + "start": 4556.78, + "end": 4557.04, + "probability": 0.6138 + }, + { + "start": 4557.5, + "end": 4558.4, + "probability": 0.7928 + }, + { + "start": 4558.54, + "end": 4562.52, + "probability": 0.9443 + }, + { + "start": 4562.6, + "end": 4562.7, + "probability": 0.046 + }, + { + "start": 4562.7, + "end": 4563.06, + "probability": 0.8272 + }, + { + "start": 4563.4, + "end": 4563.84, + "probability": 0.5773 + }, + { + "start": 4563.9, + "end": 4567.86, + "probability": 0.9855 + }, + { + "start": 4568.16, + "end": 4570.2, + "probability": 0.9967 + }, + { + "start": 4570.72, + "end": 4571.78, + "probability": 0.66 + }, + { + "start": 4572.2, + "end": 4573.2, + "probability": 0.8442 + }, + { + "start": 4573.82, + "end": 4576.17, + "probability": 0.9536 + }, + { + "start": 4576.82, + "end": 4581.44, + "probability": 0.9124 + }, + { + "start": 4581.44, + "end": 4582.22, + "probability": 0.5786 + }, + { + "start": 4583.04, + "end": 4584.04, + "probability": 0.5021 + }, + { + "start": 4585.42, + "end": 4585.86, + "probability": 0.359 + }, + { + "start": 4585.96, + "end": 4586.38, + "probability": 0.5968 + }, + { + "start": 4586.48, + "end": 4586.86, + "probability": 0.8559 + }, + { + "start": 4603.92, + "end": 4605.42, + "probability": 0.2357 + }, + { + "start": 4605.62, + "end": 4608.02, + "probability": 0.7844 + }, + { + "start": 4608.44, + "end": 4610.14, + "probability": 0.0409 + }, + { + "start": 4610.92, + "end": 4613.78, + "probability": 0.2794 + }, + { + "start": 4619.54, + "end": 4622.12, + "probability": 0.8004 + }, + { + "start": 4622.36, + "end": 4623.24, + "probability": 0.0335 + }, + { + "start": 4623.94, + "end": 4630.36, + "probability": 0.0617 + }, + { + "start": 4632.02, + "end": 4633.16, + "probability": 0.0167 + }, + { + "start": 4633.69, + "end": 4638.74, + "probability": 0.0173 + }, + { + "start": 4639.05, + "end": 4641.94, + "probability": 0.0851 + }, + { + "start": 4642.48, + "end": 4642.48, + "probability": 0.0424 + }, + { + "start": 4643.22, + "end": 4647.36, + "probability": 0.0588 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4684.0, + "end": 4684.0, + "probability": 0.0 + }, + { + "start": 4688.5, + "end": 4689.72, + "probability": 0.8717 + }, + { + "start": 4690.7, + "end": 4694.7, + "probability": 0.8675 + }, + { + "start": 4695.18, + "end": 4696.8, + "probability": 0.8431 + }, + { + "start": 4697.58, + "end": 4698.72, + "probability": 0.9973 + }, + { + "start": 4699.72, + "end": 4704.38, + "probability": 0.9844 + }, + { + "start": 4705.08, + "end": 4707.66, + "probability": 0.6827 + }, + { + "start": 4708.44, + "end": 4710.84, + "probability": 0.9622 + }, + { + "start": 4713.37, + "end": 4716.62, + "probability": 0.865 + }, + { + "start": 4717.42, + "end": 4723.84, + "probability": 0.9674 + }, + { + "start": 4723.84, + "end": 4729.22, + "probability": 0.8938 + }, + { + "start": 4729.7, + "end": 4736.26, + "probability": 0.8979 + }, + { + "start": 4736.66, + "end": 4738.58, + "probability": 0.8494 + }, + { + "start": 4739.08, + "end": 4739.86, + "probability": 0.9147 + }, + { + "start": 4740.58, + "end": 4743.32, + "probability": 0.8736 + }, + { + "start": 4743.4, + "end": 4745.1, + "probability": 0.98 + }, + { + "start": 4745.68, + "end": 4749.66, + "probability": 0.993 + }, + { + "start": 4749.9, + "end": 4754.06, + "probability": 0.9824 + }, + { + "start": 4754.68, + "end": 4760.16, + "probability": 0.9927 + }, + { + "start": 4760.24, + "end": 4761.12, + "probability": 0.7707 + }, + { + "start": 4761.68, + "end": 4762.3, + "probability": 0.7277 + }, + { + "start": 4763.09, + "end": 4765.4, + "probability": 0.7141 + }, + { + "start": 4765.96, + "end": 4767.26, + "probability": 0.567 + }, + { + "start": 4767.7, + "end": 4769.6, + "probability": 0.7742 + }, + { + "start": 4770.5, + "end": 4774.64, + "probability": 0.8851 + }, + { + "start": 4775.22, + "end": 4777.76, + "probability": 0.7432 + }, + { + "start": 4780.08, + "end": 4781.36, + "probability": 0.8155 + }, + { + "start": 4781.88, + "end": 4784.56, + "probability": 0.894 + }, + { + "start": 4785.84, + "end": 4787.2, + "probability": 0.6473 + }, + { + "start": 4788.06, + "end": 4790.79, + "probability": 0.7479 + }, + { + "start": 4791.14, + "end": 4792.72, + "probability": 0.1597 + }, + { + "start": 4792.8, + "end": 4797.2, + "probability": 0.9592 + }, + { + "start": 4797.32, + "end": 4798.08, + "probability": 0.686 + }, + { + "start": 4798.76, + "end": 4803.1, + "probability": 0.9045 + }, + { + "start": 4803.74, + "end": 4812.72, + "probability": 0.9639 + }, + { + "start": 4813.52, + "end": 4821.16, + "probability": 0.9616 + }, + { + "start": 4821.2, + "end": 4826.76, + "probability": 0.9316 + }, + { + "start": 4827.58, + "end": 4829.44, + "probability": 0.9932 + }, + { + "start": 4837.28, + "end": 4839.56, + "probability": 0.8499 + }, + { + "start": 4839.72, + "end": 4841.08, + "probability": 0.9586 + }, + { + "start": 4841.48, + "end": 4842.38, + "probability": 0.0731 + }, + { + "start": 4842.42, + "end": 4843.89, + "probability": 0.8979 + }, + { + "start": 4844.12, + "end": 4847.32, + "probability": 0.9582 + }, + { + "start": 4847.32, + "end": 4850.58, + "probability": 0.9531 + }, + { + "start": 4853.63, + "end": 4853.7, + "probability": 0.093 + }, + { + "start": 4853.7, + "end": 4854.96, + "probability": 0.2485 + }, + { + "start": 4854.96, + "end": 4860.28, + "probability": 0.9048 + }, + { + "start": 4860.44, + "end": 4867.35, + "probability": 0.5488 + }, + { + "start": 4868.32, + "end": 4872.26, + "probability": 0.9979 + }, + { + "start": 4872.26, + "end": 4877.44, + "probability": 0.9913 + }, + { + "start": 4877.78, + "end": 4880.46, + "probability": 0.9942 + }, + { + "start": 4880.58, + "end": 4884.78, + "probability": 0.986 + }, + { + "start": 4885.18, + "end": 4885.82, + "probability": 0.6888 + }, + { + "start": 4885.94, + "end": 4888.46, + "probability": 0.9201 + }, + { + "start": 4888.9, + "end": 4890.52, + "probability": 0.9756 + }, + { + "start": 4890.86, + "end": 4893.48, + "probability": 0.7547 + }, + { + "start": 4894.33, + "end": 4898.72, + "probability": 0.9963 + }, + { + "start": 4899.0, + "end": 4900.36, + "probability": 0.9978 + }, + { + "start": 4900.48, + "end": 4901.28, + "probability": 0.8643 + }, + { + "start": 4902.06, + "end": 4907.14, + "probability": 0.9265 + }, + { + "start": 4907.26, + "end": 4907.68, + "probability": 0.8032 + }, + { + "start": 4907.74, + "end": 4909.26, + "probability": 0.673 + }, + { + "start": 4909.34, + "end": 4910.66, + "probability": 0.8027 + }, + { + "start": 4919.12, + "end": 4921.91, + "probability": 0.8234 + }, + { + "start": 4923.1, + "end": 4925.42, + "probability": 0.9001 + }, + { + "start": 4926.64, + "end": 4928.34, + "probability": 0.9875 + }, + { + "start": 4931.26, + "end": 4936.58, + "probability": 0.9622 + }, + { + "start": 4937.16, + "end": 4939.74, + "probability": 0.972 + }, + { + "start": 4940.36, + "end": 4942.78, + "probability": 0.9908 + }, + { + "start": 4943.7, + "end": 4945.8, + "probability": 0.7629 + }, + { + "start": 4946.08, + "end": 4951.04, + "probability": 0.98 + }, + { + "start": 4951.22, + "end": 4951.8, + "probability": 0.8965 + }, + { + "start": 4952.36, + "end": 4953.28, + "probability": 0.3243 + }, + { + "start": 4955.17, + "end": 4957.08, + "probability": 0.9634 + }, + { + "start": 4958.24, + "end": 4959.02, + "probability": 0.6494 + }, + { + "start": 4959.23, + "end": 4963.58, + "probability": 0.4733 + }, + { + "start": 4964.38, + "end": 4965.52, + "probability": 0.3431 + }, + { + "start": 4965.68, + "end": 4967.6, + "probability": 0.8828 + }, + { + "start": 4968.42, + "end": 4970.14, + "probability": 0.9312 + }, + { + "start": 4974.08, + "end": 4975.78, + "probability": 0.1641 + }, + { + "start": 4975.94, + "end": 4979.44, + "probability": 0.8038 + }, + { + "start": 4980.26, + "end": 4983.42, + "probability": 0.9056 + }, + { + "start": 4983.48, + "end": 4986.32, + "probability": 0.9163 + }, + { + "start": 4986.78, + "end": 4988.88, + "probability": 0.7241 + }, + { + "start": 4989.38, + "end": 4991.2, + "probability": 0.0007 + }, + { + "start": 4994.54, + "end": 4996.16, + "probability": 0.3216 + }, + { + "start": 4996.78, + "end": 4999.29, + "probability": 0.7332 + }, + { + "start": 4999.66, + "end": 5000.26, + "probability": 0.7197 + }, + { + "start": 5000.38, + "end": 5000.76, + "probability": 0.7263 + }, + { + "start": 5001.1, + "end": 5001.66, + "probability": 0.8118 + }, + { + "start": 5001.76, + "end": 5002.8, + "probability": 0.6121 + }, + { + "start": 5002.8, + "end": 5006.24, + "probability": 0.7769 + }, + { + "start": 5006.36, + "end": 5007.18, + "probability": 0.278 + }, + { + "start": 5007.66, + "end": 5008.78, + "probability": 0.6665 + }, + { + "start": 5008.86, + "end": 5010.42, + "probability": 0.9868 + }, + { + "start": 5010.82, + "end": 5013.86, + "probability": 0.8138 + }, + { + "start": 5013.92, + "end": 5014.92, + "probability": 0.7212 + }, + { + "start": 5015.02, + "end": 5015.9, + "probability": 0.4361 + }, + { + "start": 5016.12, + "end": 5019.26, + "probability": 0.8441 + }, + { + "start": 5020.46, + "end": 5023.18, + "probability": 0.9906 + }, + { + "start": 5023.74, + "end": 5026.18, + "probability": 0.9694 + }, + { + "start": 5026.18, + "end": 5029.32, + "probability": 0.8887 + }, + { + "start": 5030.84, + "end": 5034.94, + "probability": 0.9977 + }, + { + "start": 5035.68, + "end": 5037.4, + "probability": 0.756 + }, + { + "start": 5037.52, + "end": 5040.2, + "probability": 0.9827 + }, + { + "start": 5040.96, + "end": 5043.5, + "probability": 0.9733 + }, + { + "start": 5043.92, + "end": 5047.94, + "probability": 0.9963 + }, + { + "start": 5047.94, + "end": 5051.72, + "probability": 0.9982 + }, + { + "start": 5052.26, + "end": 5056.58, + "probability": 0.9396 + }, + { + "start": 5057.86, + "end": 5060.2, + "probability": 0.7405 + }, + { + "start": 5060.24, + "end": 5060.9, + "probability": 0.5007 + }, + { + "start": 5060.9, + "end": 5063.64, + "probability": 0.779 + }, + { + "start": 5063.76, + "end": 5064.64, + "probability": 0.8586 + }, + { + "start": 5064.86, + "end": 5067.56, + "probability": 0.949 + }, + { + "start": 5068.42, + "end": 5071.98, + "probability": 0.5012 + }, + { + "start": 5072.1, + "end": 5072.4, + "probability": 0.7313 + }, + { + "start": 5072.74, + "end": 5074.96, + "probability": 0.3536 + }, + { + "start": 5076.62, + "end": 5078.14, + "probability": 0.9645 + }, + { + "start": 5078.56, + "end": 5080.78, + "probability": 0.6503 + }, + { + "start": 5081.52, + "end": 5088.6, + "probability": 0.6368 + }, + { + "start": 5089.02, + "end": 5091.5, + "probability": 0.4893 + }, + { + "start": 5092.42, + "end": 5093.82, + "probability": 0.322 + }, + { + "start": 5094.02, + "end": 5098.36, + "probability": 0.57 + }, + { + "start": 5098.64, + "end": 5101.68, + "probability": 0.0438 + }, + { + "start": 5101.96, + "end": 5109.16, + "probability": 0.8853 + }, + { + "start": 5109.34, + "end": 5110.22, + "probability": 0.7401 + }, + { + "start": 5110.26, + "end": 5111.59, + "probability": 0.774 + }, + { + "start": 5111.76, + "end": 5115.24, + "probability": 0.9685 + }, + { + "start": 5115.32, + "end": 5117.5, + "probability": 0.8298 + }, + { + "start": 5118.63, + "end": 5124.76, + "probability": 0.1198 + }, + { + "start": 5124.98, + "end": 5124.98, + "probability": 0.1058 + }, + { + "start": 5124.98, + "end": 5125.66, + "probability": 0.3778 + }, + { + "start": 5125.66, + "end": 5126.48, + "probability": 0.6164 + }, + { + "start": 5126.74, + "end": 5129.6, + "probability": 0.5065 + }, + { + "start": 5129.68, + "end": 5130.5, + "probability": 0.9469 + }, + { + "start": 5131.0, + "end": 5134.32, + "probability": 0.9877 + }, + { + "start": 5134.72, + "end": 5137.76, + "probability": 0.8357 + }, + { + "start": 5138.74, + "end": 5138.9, + "probability": 0.4702 + }, + { + "start": 5138.96, + "end": 5139.22, + "probability": 0.5271 + }, + { + "start": 5139.36, + "end": 5141.2, + "probability": 0.948 + }, + { + "start": 5141.36, + "end": 5144.74, + "probability": 0.9019 + }, + { + "start": 5145.1, + "end": 5146.5, + "probability": 0.0683 + }, + { + "start": 5147.04, + "end": 5147.04, + "probability": 0.0584 + }, + { + "start": 5147.04, + "end": 5147.76, + "probability": 0.3877 + }, + { + "start": 5147.76, + "end": 5148.22, + "probability": 0.2846 + }, + { + "start": 5148.28, + "end": 5148.76, + "probability": 0.4823 + }, + { + "start": 5148.9, + "end": 5149.46, + "probability": 0.7469 + }, + { + "start": 5178.06, + "end": 5182.12, + "probability": 0.1698 + }, + { + "start": 5182.32, + "end": 5188.12, + "probability": 0.0557 + }, + { + "start": 5188.34, + "end": 5189.04, + "probability": 0.0485 + }, + { + "start": 5189.04, + "end": 5190.3, + "probability": 0.1209 + }, + { + "start": 5190.3, + "end": 5190.34, + "probability": 0.042 + }, + { + "start": 5203.98, + "end": 5204.38, + "probability": 0.0411 + }, + { + "start": 5204.38, + "end": 5206.98, + "probability": 0.6215 + }, + { + "start": 5215.78, + "end": 5215.92, + "probability": 0.0001 + }, + { + "start": 5219.96, + "end": 5221.12, + "probability": 0.1971 + }, + { + "start": 5221.46, + "end": 5225.08, + "probability": 0.0846 + }, + { + "start": 5225.44, + "end": 5226.16, + "probability": 0.0477 + }, + { + "start": 5226.8, + "end": 5229.98, + "probability": 0.0724 + }, + { + "start": 5230.06, + "end": 5230.86, + "probability": 0.0972 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5234.32, + "end": 5239.98, + "probability": 0.9708 + }, + { + "start": 5240.2, + "end": 5244.74, + "probability": 0.7104 + }, + { + "start": 5245.36, + "end": 5247.23, + "probability": 0.3168 + }, + { + "start": 5248.16, + "end": 5250.74, + "probability": 0.9692 + }, + { + "start": 5251.62, + "end": 5253.7, + "probability": 0.7029 + }, + { + "start": 5256.24, + "end": 5259.0, + "probability": 0.822 + }, + { + "start": 5259.0, + "end": 5260.44, + "probability": 0.7823 + }, + { + "start": 5260.5, + "end": 5262.54, + "probability": 0.9443 + }, + { + "start": 5262.84, + "end": 5265.12, + "probability": 0.836 + }, + { + "start": 5265.88, + "end": 5268.56, + "probability": 0.9827 + }, + { + "start": 5269.22, + "end": 5272.72, + "probability": 0.9194 + }, + { + "start": 5273.52, + "end": 5274.84, + "probability": 0.8463 + }, + { + "start": 5275.52, + "end": 5277.62, + "probability": 0.9625 + }, + { + "start": 5278.38, + "end": 5279.18, + "probability": 0.6666 + }, + { + "start": 5279.72, + "end": 5280.38, + "probability": 0.3786 + }, + { + "start": 5280.6, + "end": 5280.74, + "probability": 0.3993 + }, + { + "start": 5281.6, + "end": 5282.99, + "probability": 0.521 + }, + { + "start": 5283.52, + "end": 5284.84, + "probability": 0.849 + }, + { + "start": 5284.92, + "end": 5287.33, + "probability": 0.6226 + }, + { + "start": 5288.9, + "end": 5291.4, + "probability": 0.6458 + }, + { + "start": 5291.48, + "end": 5293.34, + "probability": 0.9889 + }, + { + "start": 5294.46, + "end": 5296.36, + "probability": 0.7704 + }, + { + "start": 5298.02, + "end": 5303.18, + "probability": 0.9917 + }, + { + "start": 5304.34, + "end": 5306.81, + "probability": 0.9083 + }, + { + "start": 5307.96, + "end": 5309.74, + "probability": 0.9658 + }, + { + "start": 5310.48, + "end": 5313.26, + "probability": 0.9775 + }, + { + "start": 5314.1, + "end": 5317.38, + "probability": 0.9974 + }, + { + "start": 5317.38, + "end": 5321.26, + "probability": 0.8509 + }, + { + "start": 5322.32, + "end": 5322.78, + "probability": 0.498 + }, + { + "start": 5322.82, + "end": 5323.1, + "probability": 0.8197 + }, + { + "start": 5323.36, + "end": 5326.72, + "probability": 0.9328 + }, + { + "start": 5327.9, + "end": 5331.62, + "probability": 0.4863 + }, + { + "start": 5331.88, + "end": 5332.22, + "probability": 0.0518 + }, + { + "start": 5332.22, + "end": 5333.42, + "probability": 0.5658 + }, + { + "start": 5334.14, + "end": 5335.92, + "probability": 0.8775 + }, + { + "start": 5337.44, + "end": 5340.48, + "probability": 0.9567 + }, + { + "start": 5340.64, + "end": 5341.14, + "probability": 0.4713 + }, + { + "start": 5341.98, + "end": 5344.96, + "probability": 0.53 + }, + { + "start": 5346.06, + "end": 5347.02, + "probability": 0.8213 + }, + { + "start": 5347.36, + "end": 5350.4, + "probability": 0.9604 + }, + { + "start": 5351.12, + "end": 5352.6, + "probability": 0.7905 + }, + { + "start": 5353.74, + "end": 5356.88, + "probability": 0.9635 + }, + { + "start": 5358.24, + "end": 5359.98, + "probability": 0.9656 + }, + { + "start": 5361.02, + "end": 5363.42, + "probability": 0.9927 + }, + { + "start": 5364.6, + "end": 5365.3, + "probability": 0.6291 + }, + { + "start": 5366.14, + "end": 5368.9, + "probability": 0.9191 + }, + { + "start": 5368.98, + "end": 5369.84, + "probability": 0.9453 + }, + { + "start": 5371.99, + "end": 5375.28, + "probability": 0.9991 + }, + { + "start": 5377.1, + "end": 5379.54, + "probability": 0.8481 + }, + { + "start": 5380.46, + "end": 5381.44, + "probability": 0.8709 + }, + { + "start": 5382.16, + "end": 5384.66, + "probability": 0.7471 + }, + { + "start": 5384.86, + "end": 5385.06, + "probability": 0.2393 + }, + { + "start": 5388.02, + "end": 5389.02, + "probability": 0.983 + }, + { + "start": 5389.6, + "end": 5395.38, + "probability": 0.9767 + }, + { + "start": 5396.32, + "end": 5399.36, + "probability": 0.8593 + }, + { + "start": 5401.24, + "end": 5405.04, + "probability": 0.9937 + }, + { + "start": 5405.74, + "end": 5407.31, + "probability": 0.8398 + }, + { + "start": 5408.36, + "end": 5409.12, + "probability": 0.1893 + }, + { + "start": 5410.08, + "end": 5412.0, + "probability": 0.9048 + }, + { + "start": 5412.68, + "end": 5413.88, + "probability": 0.981 + }, + { + "start": 5414.58, + "end": 5416.24, + "probability": 0.6341 + }, + { + "start": 5417.0, + "end": 5420.96, + "probability": 0.5155 + }, + { + "start": 5421.64, + "end": 5425.7, + "probability": 0.9451 + }, + { + "start": 5425.74, + "end": 5426.96, + "probability": 0.5198 + }, + { + "start": 5427.28, + "end": 5427.5, + "probability": 0.7935 + }, + { + "start": 5428.3, + "end": 5429.2, + "probability": 0.7801 + }, + { + "start": 5430.1, + "end": 5432.14, + "probability": 0.679 + }, + { + "start": 5432.96, + "end": 5435.66, + "probability": 0.8389 + }, + { + "start": 5436.78, + "end": 5437.48, + "probability": 0.5741 + }, + { + "start": 5438.66, + "end": 5440.48, + "probability": 0.9932 + }, + { + "start": 5441.38, + "end": 5442.36, + "probability": 0.5029 + }, + { + "start": 5442.88, + "end": 5443.24, + "probability": 0.8207 + }, + { + "start": 5444.62, + "end": 5447.66, + "probability": 0.6911 + }, + { + "start": 5448.2, + "end": 5449.32, + "probability": 0.9467 + }, + { + "start": 5450.18, + "end": 5451.7, + "probability": 0.995 + }, + { + "start": 5451.86, + "end": 5453.71, + "probability": 0.9862 + }, + { + "start": 5454.68, + "end": 5458.38, + "probability": 0.6383 + }, + { + "start": 5458.44, + "end": 5460.24, + "probability": 0.9026 + }, + { + "start": 5460.88, + "end": 5462.84, + "probability": 0.4383 + }, + { + "start": 5462.84, + "end": 5464.36, + "probability": 0.6757 + }, + { + "start": 5465.14, + "end": 5467.08, + "probability": 0.9882 + }, + { + "start": 5467.68, + "end": 5471.38, + "probability": 0.9819 + }, + { + "start": 5471.84, + "end": 5475.92, + "probability": 0.9856 + }, + { + "start": 5476.38, + "end": 5479.86, + "probability": 0.9962 + }, + { + "start": 5480.74, + "end": 5485.48, + "probability": 0.9726 + }, + { + "start": 5486.04, + "end": 5487.12, + "probability": 0.9088 + }, + { + "start": 5487.84, + "end": 5489.04, + "probability": 0.9809 + }, + { + "start": 5490.3, + "end": 5490.8, + "probability": 0.7294 + }, + { + "start": 5491.34, + "end": 5494.36, + "probability": 0.9932 + }, + { + "start": 5495.36, + "end": 5498.2, + "probability": 0.9771 + }, + { + "start": 5498.82, + "end": 5500.72, + "probability": 0.9023 + }, + { + "start": 5501.28, + "end": 5503.2, + "probability": 0.9622 + }, + { + "start": 5505.06, + "end": 5506.38, + "probability": 0.9338 + }, + { + "start": 5507.38, + "end": 5509.32, + "probability": 0.984 + }, + { + "start": 5510.18, + "end": 5511.62, + "probability": 0.9744 + }, + { + "start": 5512.68, + "end": 5514.52, + "probability": 0.7949 + }, + { + "start": 5515.06, + "end": 5517.32, + "probability": 0.9185 + }, + { + "start": 5518.08, + "end": 5519.82, + "probability": 0.6916 + }, + { + "start": 5519.98, + "end": 5523.4, + "probability": 0.9695 + }, + { + "start": 5524.84, + "end": 5528.3, + "probability": 0.9875 + }, + { + "start": 5529.0, + "end": 5530.44, + "probability": 0.8772 + }, + { + "start": 5531.34, + "end": 5532.48, + "probability": 0.9935 + }, + { + "start": 5533.16, + "end": 5534.42, + "probability": 0.9943 + }, + { + "start": 5535.14, + "end": 5536.68, + "probability": 0.942 + }, + { + "start": 5536.86, + "end": 5538.22, + "probability": 0.7963 + }, + { + "start": 5539.16, + "end": 5541.56, + "probability": 0.9834 + }, + { + "start": 5542.28, + "end": 5544.48, + "probability": 0.8875 + }, + { + "start": 5544.48, + "end": 5546.18, + "probability": 0.9854 + }, + { + "start": 5547.52, + "end": 5551.0, + "probability": 0.9844 + }, + { + "start": 5551.54, + "end": 5556.3, + "probability": 0.9883 + }, + { + "start": 5557.18, + "end": 5558.24, + "probability": 0.996 + }, + { + "start": 5558.96, + "end": 5562.68, + "probability": 0.9959 + }, + { + "start": 5563.42, + "end": 5565.88, + "probability": 0.7461 + }, + { + "start": 5566.4, + "end": 5567.68, + "probability": 0.9826 + }, + { + "start": 5567.78, + "end": 5568.76, + "probability": 0.9971 + }, + { + "start": 5569.9, + "end": 5572.4, + "probability": 0.7614 + }, + { + "start": 5573.5, + "end": 5577.22, + "probability": 0.9385 + }, + { + "start": 5577.76, + "end": 5578.48, + "probability": 0.6672 + }, + { + "start": 5579.8, + "end": 5583.68, + "probability": 0.9977 + }, + { + "start": 5584.38, + "end": 5587.36, + "probability": 0.8871 + }, + { + "start": 5587.9, + "end": 5590.74, + "probability": 0.8546 + }, + { + "start": 5591.28, + "end": 5593.95, + "probability": 0.9378 + }, + { + "start": 5594.52, + "end": 5596.38, + "probability": 0.9326 + }, + { + "start": 5596.64, + "end": 5598.08, + "probability": 0.6833 + }, + { + "start": 5599.3, + "end": 5601.14, + "probability": 0.9836 + }, + { + "start": 5601.62, + "end": 5602.66, + "probability": 0.8124 + }, + { + "start": 5603.64, + "end": 5607.72, + "probability": 0.8931 + }, + { + "start": 5608.6, + "end": 5611.05, + "probability": 0.989 + }, + { + "start": 5613.32, + "end": 5615.78, + "probability": 0.9951 + }, + { + "start": 5616.7, + "end": 5617.7, + "probability": 0.6609 + }, + { + "start": 5617.76, + "end": 5619.22, + "probability": 0.9019 + }, + { + "start": 5619.38, + "end": 5620.34, + "probability": 0.9686 + }, + { + "start": 5621.04, + "end": 5622.16, + "probability": 0.9751 + }, + { + "start": 5622.66, + "end": 5625.99, + "probability": 0.9594 + }, + { + "start": 5626.8, + "end": 5629.24, + "probability": 0.8273 + }, + { + "start": 5630.06, + "end": 5632.4, + "probability": 0.7257 + }, + { + "start": 5633.02, + "end": 5636.34, + "probability": 0.9345 + }, + { + "start": 5637.12, + "end": 5640.18, + "probability": 0.9938 + }, + { + "start": 5640.3, + "end": 5643.1, + "probability": 0.8178 + }, + { + "start": 5643.3, + "end": 5647.96, + "probability": 0.8978 + }, + { + "start": 5648.42, + "end": 5649.74, + "probability": 0.4934 + }, + { + "start": 5649.84, + "end": 5650.87, + "probability": 0.844 + }, + { + "start": 5651.62, + "end": 5653.08, + "probability": 0.8115 + }, + { + "start": 5653.72, + "end": 5654.18, + "probability": 0.1202 + }, + { + "start": 5654.9, + "end": 5656.22, + "probability": 0.8079 + }, + { + "start": 5660.16, + "end": 5662.58, + "probability": 0.9977 + }, + { + "start": 5662.88, + "end": 5663.86, + "probability": 0.92 + }, + { + "start": 5664.62, + "end": 5666.36, + "probability": 0.8584 + }, + { + "start": 5666.56, + "end": 5668.22, + "probability": 0.7156 + }, + { + "start": 5669.14, + "end": 5669.16, + "probability": 0.3675 + }, + { + "start": 5669.16, + "end": 5673.72, + "probability": 0.9941 + }, + { + "start": 5673.86, + "end": 5674.42, + "probability": 0.7251 + }, + { + "start": 5675.0, + "end": 5675.98, + "probability": 0.5503 + }, + { + "start": 5676.78, + "end": 5680.84, + "probability": 0.7996 + }, + { + "start": 5681.46, + "end": 5682.86, + "probability": 0.9562 + }, + { + "start": 5683.76, + "end": 5688.84, + "probability": 0.9182 + }, + { + "start": 5689.5, + "end": 5691.02, + "probability": 0.9976 + }, + { + "start": 5691.72, + "end": 5692.97, + "probability": 0.999 + }, + { + "start": 5694.06, + "end": 5697.2, + "probability": 0.7768 + }, + { + "start": 5697.96, + "end": 5700.84, + "probability": 0.8721 + }, + { + "start": 5701.72, + "end": 5705.86, + "probability": 0.9083 + }, + { + "start": 5705.94, + "end": 5706.92, + "probability": 0.9917 + }, + { + "start": 5708.02, + "end": 5710.3, + "probability": 0.9963 + }, + { + "start": 5710.88, + "end": 5714.91, + "probability": 0.7882 + }, + { + "start": 5715.62, + "end": 5719.56, + "probability": 0.987 + }, + { + "start": 5719.72, + "end": 5720.36, + "probability": 0.7655 + }, + { + "start": 5720.42, + "end": 5721.56, + "probability": 0.7252 + }, + { + "start": 5722.42, + "end": 5724.44, + "probability": 0.9869 + }, + { + "start": 5725.18, + "end": 5729.34, + "probability": 0.9985 + }, + { + "start": 5730.26, + "end": 5732.7, + "probability": 0.8345 + }, + { + "start": 5733.5, + "end": 5736.08, + "probability": 0.9487 + }, + { + "start": 5736.14, + "end": 5738.76, + "probability": 0.9316 + }, + { + "start": 5739.46, + "end": 5742.4, + "probability": 0.7923 + }, + { + "start": 5743.2, + "end": 5746.48, + "probability": 0.9573 + }, + { + "start": 5746.94, + "end": 5747.92, + "probability": 0.9227 + }, + { + "start": 5747.98, + "end": 5749.24, + "probability": 0.4617 + }, + { + "start": 5749.72, + "end": 5752.7, + "probability": 0.9834 + }, + { + "start": 5753.36, + "end": 5754.58, + "probability": 0.6694 + }, + { + "start": 5755.1, + "end": 5756.1, + "probability": 0.8866 + }, + { + "start": 5756.78, + "end": 5757.98, + "probability": 0.9882 + }, + { + "start": 5758.26, + "end": 5760.14, + "probability": 0.9551 + }, + { + "start": 5761.08, + "end": 5765.46, + "probability": 0.9518 + }, + { + "start": 5766.5, + "end": 5768.88, + "probability": 0.9409 + }, + { + "start": 5769.42, + "end": 5770.28, + "probability": 0.9937 + }, + { + "start": 5771.44, + "end": 5772.1, + "probability": 0.1652 + }, + { + "start": 5772.98, + "end": 5777.08, + "probability": 0.9565 + }, + { + "start": 5777.16, + "end": 5778.08, + "probability": 0.9194 + }, + { + "start": 5778.86, + "end": 5781.1, + "probability": 0.8516 + }, + { + "start": 5781.8, + "end": 5784.46, + "probability": 0.9834 + }, + { + "start": 5784.68, + "end": 5786.1, + "probability": 0.9152 + }, + { + "start": 5787.31, + "end": 5788.1, + "probability": 0.7794 + }, + { + "start": 5789.54, + "end": 5791.95, + "probability": 0.7603 + }, + { + "start": 5792.24, + "end": 5794.18, + "probability": 0.6353 + }, + { + "start": 5794.6, + "end": 5795.62, + "probability": 0.8568 + }, + { + "start": 5796.77, + "end": 5799.21, + "probability": 0.8228 + }, + { + "start": 5800.08, + "end": 5801.0, + "probability": 0.8463 + }, + { + "start": 5801.52, + "end": 5804.4, + "probability": 0.9957 + }, + { + "start": 5804.96, + "end": 5807.48, + "probability": 0.8147 + }, + { + "start": 5808.74, + "end": 5815.02, + "probability": 0.9599 + }, + { + "start": 5815.54, + "end": 5816.18, + "probability": 0.5607 + }, + { + "start": 5816.38, + "end": 5817.84, + "probability": 0.9439 + }, + { + "start": 5818.0, + "end": 5818.64, + "probability": 0.8206 + }, + { + "start": 5818.9, + "end": 5819.46, + "probability": 0.6839 + }, + { + "start": 5819.5, + "end": 5819.98, + "probability": 0.9198 + }, + { + "start": 5820.04, + "end": 5821.17, + "probability": 0.5853 + }, + { + "start": 5821.81, + "end": 5823.08, + "probability": 0.4506 + }, + { + "start": 5823.24, + "end": 5823.7, + "probability": 0.9501 + }, + { + "start": 5824.38, + "end": 5826.42, + "probability": 0.9661 + }, + { + "start": 5826.92, + "end": 5829.08, + "probability": 0.9664 + }, + { + "start": 5829.1, + "end": 5829.66, + "probability": 0.5105 + }, + { + "start": 5829.72, + "end": 5831.4, + "probability": 0.6555 + }, + { + "start": 5831.94, + "end": 5833.06, + "probability": 0.983 + }, + { + "start": 5833.82, + "end": 5833.94, + "probability": 0.5722 + }, + { + "start": 5834.04, + "end": 5837.04, + "probability": 0.9778 + }, + { + "start": 5837.44, + "end": 5837.98, + "probability": 0.3364 + }, + { + "start": 5838.08, + "end": 5838.36, + "probability": 0.8213 + }, + { + "start": 5838.46, + "end": 5843.26, + "probability": 0.9147 + }, + { + "start": 5843.4, + "end": 5844.67, + "probability": 0.616 + }, + { + "start": 5845.26, + "end": 5847.24, + "probability": 0.7016 + }, + { + "start": 5847.62, + "end": 5848.84, + "probability": 0.8804 + }, + { + "start": 5849.28, + "end": 5850.98, + "probability": 0.9938 + }, + { + "start": 5852.06, + "end": 5852.6, + "probability": 0.7209 + }, + { + "start": 5854.46, + "end": 5858.14, + "probability": 0.2466 + }, + { + "start": 5859.1, + "end": 5860.12, + "probability": 0.9384 + }, + { + "start": 5860.28, + "end": 5862.46, + "probability": 0.9589 + }, + { + "start": 5862.76, + "end": 5864.56, + "probability": 0.6605 + }, + { + "start": 5864.7, + "end": 5865.62, + "probability": 0.6036 + }, + { + "start": 5866.06, + "end": 5867.36, + "probability": 0.8288 + }, + { + "start": 5867.54, + "end": 5870.52, + "probability": 0.8954 + }, + { + "start": 5871.16, + "end": 5875.76, + "probability": 0.9597 + }, + { + "start": 5876.2, + "end": 5878.8, + "probability": 0.9982 + }, + { + "start": 5879.22, + "end": 5882.4, + "probability": 0.9958 + }, + { + "start": 5883.38, + "end": 5886.34, + "probability": 0.9946 + }, + { + "start": 5887.3, + "end": 5887.82, + "probability": 0.518 + }, + { + "start": 5888.06, + "end": 5891.98, + "probability": 0.8192 + }, + { + "start": 5893.06, + "end": 5896.88, + "probability": 0.8588 + }, + { + "start": 5896.88, + "end": 5897.36, + "probability": 0.8451 + }, + { + "start": 5897.98, + "end": 5900.24, + "probability": 0.7653 + }, + { + "start": 5900.54, + "end": 5901.32, + "probability": 0.4702 + }, + { + "start": 5901.56, + "end": 5902.6, + "probability": 0.9277 + }, + { + "start": 5903.1, + "end": 5906.38, + "probability": 0.6634 + }, + { + "start": 5906.96, + "end": 5908.5, + "probability": 0.5098 + }, + { + "start": 5908.52, + "end": 5909.54, + "probability": 0.7061 + }, + { + "start": 5909.62, + "end": 5912.19, + "probability": 0.9948 + }, + { + "start": 5912.44, + "end": 5914.66, + "probability": 0.8369 + }, + { + "start": 5914.94, + "end": 5920.8, + "probability": 0.9917 + }, + { + "start": 5920.96, + "end": 5921.44, + "probability": 0.5247 + }, + { + "start": 5921.46, + "end": 5922.36, + "probability": 0.6177 + }, + { + "start": 5922.46, + "end": 5922.54, + "probability": 0.2641 + }, + { + "start": 5922.6, + "end": 5926.18, + "probability": 0.6087 + }, + { + "start": 5926.46, + "end": 5929.06, + "probability": 0.7572 + }, + { + "start": 5929.26, + "end": 5930.82, + "probability": 0.6863 + }, + { + "start": 5931.12, + "end": 5931.66, + "probability": 0.5602 + }, + { + "start": 5931.72, + "end": 5934.52, + "probability": 0.9521 + }, + { + "start": 5934.78, + "end": 5936.64, + "probability": 0.9447 + }, + { + "start": 5937.26, + "end": 5940.3, + "probability": 0.91 + }, + { + "start": 5940.84, + "end": 5945.14, + "probability": 0.995 + }, + { + "start": 5946.22, + "end": 5946.22, + "probability": 0.2703 + }, + { + "start": 5946.86, + "end": 5949.34, + "probability": 0.9753 + }, + { + "start": 5949.84, + "end": 5951.56, + "probability": 0.9965 + }, + { + "start": 5952.0, + "end": 5954.4, + "probability": 0.9852 + }, + { + "start": 5955.14, + "end": 5957.53, + "probability": 0.9981 + }, + { + "start": 5958.72, + "end": 5961.86, + "probability": 0.9418 + }, + { + "start": 5962.52, + "end": 5964.8, + "probability": 0.9937 + }, + { + "start": 5965.32, + "end": 5966.76, + "probability": 0.8534 + }, + { + "start": 5967.32, + "end": 5970.06, + "probability": 0.9631 + }, + { + "start": 5970.62, + "end": 5973.79, + "probability": 0.9757 + }, + { + "start": 5976.56, + "end": 5980.1, + "probability": 0.8826 + }, + { + "start": 5981.24, + "end": 5982.26, + "probability": 0.9917 + }, + { + "start": 5982.48, + "end": 5984.5, + "probability": 0.9948 + }, + { + "start": 5985.7, + "end": 5988.78, + "probability": 0.6581 + }, + { + "start": 5989.78, + "end": 5991.54, + "probability": 0.7667 + }, + { + "start": 5992.12, + "end": 5996.48, + "probability": 0.9612 + }, + { + "start": 5997.36, + "end": 6001.08, + "probability": 0.9779 + }, + { + "start": 6001.8, + "end": 6003.74, + "probability": 0.8243 + }, + { + "start": 6004.28, + "end": 6006.14, + "probability": 0.9531 + }, + { + "start": 6006.76, + "end": 6008.14, + "probability": 0.8811 + }, + { + "start": 6009.16, + "end": 6011.13, + "probability": 0.9249 + }, + { + "start": 6011.88, + "end": 6013.48, + "probability": 0.9263 + }, + { + "start": 6014.16, + "end": 6015.46, + "probability": 0.8116 + }, + { + "start": 6015.56, + "end": 6017.36, + "probability": 0.9652 + }, + { + "start": 6018.3, + "end": 6020.54, + "probability": 0.8367 + }, + { + "start": 6021.46, + "end": 6023.99, + "probability": 0.9602 + }, + { + "start": 6024.58, + "end": 6027.76, + "probability": 0.9597 + }, + { + "start": 6028.46, + "end": 6032.08, + "probability": 0.8667 + }, + { + "start": 6032.44, + "end": 6034.72, + "probability": 0.8296 + }, + { + "start": 6035.5, + "end": 6039.06, + "probability": 0.8497 + }, + { + "start": 6039.62, + "end": 6040.88, + "probability": 0.9367 + }, + { + "start": 6040.92, + "end": 6043.07, + "probability": 0.9941 + }, + { + "start": 6043.78, + "end": 6046.38, + "probability": 0.9979 + }, + { + "start": 6049.09, + "end": 6054.64, + "probability": 0.6261 + }, + { + "start": 6054.94, + "end": 6056.24, + "probability": 0.8784 + }, + { + "start": 6056.8, + "end": 6058.18, + "probability": 0.6109 + }, + { + "start": 6058.4, + "end": 6062.44, + "probability": 0.5252 + }, + { + "start": 6062.66, + "end": 6063.52, + "probability": 0.5556 + }, + { + "start": 6064.12, + "end": 6064.56, + "probability": 0.3061 + }, + { + "start": 6064.74, + "end": 6066.7, + "probability": 0.9863 + }, + { + "start": 6066.82, + "end": 6070.02, + "probability": 0.9443 + }, + { + "start": 6071.26, + "end": 6071.88, + "probability": 0.846 + }, + { + "start": 6073.16, + "end": 6075.82, + "probability": 0.773 + }, + { + "start": 6077.08, + "end": 6079.22, + "probability": 0.996 + }, + { + "start": 6080.08, + "end": 6082.26, + "probability": 0.9736 + }, + { + "start": 6084.68, + "end": 6087.44, + "probability": 0.9707 + }, + { + "start": 6087.44, + "end": 6091.62, + "probability": 0.9869 + }, + { + "start": 6092.94, + "end": 6095.3, + "probability": 0.8137 + }, + { + "start": 6096.18, + "end": 6096.76, + "probability": 0.8785 + }, + { + "start": 6096.84, + "end": 6098.92, + "probability": 0.0652 + }, + { + "start": 6099.54, + "end": 6100.84, + "probability": 0.9886 + }, + { + "start": 6101.88, + "end": 6103.42, + "probability": 0.7338 + }, + { + "start": 6103.62, + "end": 6106.14, + "probability": 0.9718 + }, + { + "start": 6109.16, + "end": 6110.18, + "probability": 0.0405 + }, + { + "start": 6110.24, + "end": 6111.7, + "probability": 0.6171 + }, + { + "start": 6112.04, + "end": 6112.62, + "probability": 0.8398 + }, + { + "start": 6113.04, + "end": 6114.49, + "probability": 0.818 + }, + { + "start": 6115.6, + "end": 6118.64, + "probability": 0.9451 + }, + { + "start": 6119.04, + "end": 6119.34, + "probability": 0.8961 + }, + { + "start": 6120.58, + "end": 6121.69, + "probability": 0.9221 + }, + { + "start": 6122.66, + "end": 6124.58, + "probability": 0.9977 + }, + { + "start": 6125.1, + "end": 6127.9, + "probability": 0.988 + }, + { + "start": 6127.96, + "end": 6128.76, + "probability": 0.8036 + }, + { + "start": 6130.0, + "end": 6132.12, + "probability": 0.9797 + }, + { + "start": 6132.24, + "end": 6133.7, + "probability": 0.8713 + }, + { + "start": 6136.82, + "end": 6137.99, + "probability": 0.5291 + }, + { + "start": 6139.56, + "end": 6141.9, + "probability": 0.9872 + }, + { + "start": 6142.36, + "end": 6146.39, + "probability": 0.9467 + }, + { + "start": 6147.06, + "end": 6147.42, + "probability": 0.3266 + }, + { + "start": 6147.46, + "end": 6148.2, + "probability": 0.8228 + }, + { + "start": 6148.28, + "end": 6152.22, + "probability": 0.9384 + }, + { + "start": 6152.82, + "end": 6158.2, + "probability": 0.9292 + }, + { + "start": 6158.38, + "end": 6161.06, + "probability": 0.998 + }, + { + "start": 6161.06, + "end": 6163.76, + "probability": 0.9104 + }, + { + "start": 6164.26, + "end": 6166.04, + "probability": 0.7439 + }, + { + "start": 6166.94, + "end": 6171.66, + "probability": 0.9034 + }, + { + "start": 6172.2, + "end": 6175.14, + "probability": 0.7135 + }, + { + "start": 6175.7, + "end": 6177.3, + "probability": 0.9927 + }, + { + "start": 6177.38, + "end": 6178.0, + "probability": 0.8165 + }, + { + "start": 6178.46, + "end": 6179.46, + "probability": 0.9565 + }, + { + "start": 6180.26, + "end": 6180.54, + "probability": 0.4328 + }, + { + "start": 6181.16, + "end": 6182.2, + "probability": 0.5414 + }, + { + "start": 6183.04, + "end": 6185.98, + "probability": 0.6572 + }, + { + "start": 6186.56, + "end": 6188.76, + "probability": 0.8784 + }, + { + "start": 6189.38, + "end": 6191.94, + "probability": 0.7391 + }, + { + "start": 6193.12, + "end": 6195.86, + "probability": 0.7601 + }, + { + "start": 6197.33, + "end": 6202.7, + "probability": 0.894 + }, + { + "start": 6203.42, + "end": 6204.32, + "probability": 0.2223 + }, + { + "start": 6204.9, + "end": 6206.42, + "probability": 0.9853 + }, + { + "start": 6207.0, + "end": 6207.02, + "probability": 0.5499 + }, + { + "start": 6207.02, + "end": 6207.02, + "probability": 0.1549 + }, + { + "start": 6207.02, + "end": 6208.98, + "probability": 0.1053 + }, + { + "start": 6209.12, + "end": 6210.44, + "probability": 0.9823 + }, + { + "start": 6211.16, + "end": 6211.52, + "probability": 0.5081 + }, + { + "start": 6212.08, + "end": 6212.14, + "probability": 0.2126 + }, + { + "start": 6212.9, + "end": 6217.64, + "probability": 0.6108 + }, + { + "start": 6218.4, + "end": 6219.34, + "probability": 0.7845 + }, + { + "start": 6219.48, + "end": 6222.28, + "probability": 0.9876 + }, + { + "start": 6222.9, + "end": 6224.84, + "probability": 0.8016 + }, + { + "start": 6225.48, + "end": 6227.42, + "probability": 0.9539 + }, + { + "start": 6228.18, + "end": 6230.38, + "probability": 0.6744 + }, + { + "start": 6230.42, + "end": 6231.7, + "probability": 0.962 + }, + { + "start": 6232.1, + "end": 6233.71, + "probability": 0.6132 + }, + { + "start": 6234.94, + "end": 6236.72, + "probability": 0.7078 + }, + { + "start": 6237.32, + "end": 6239.64, + "probability": 0.9971 + }, + { + "start": 6240.34, + "end": 6244.42, + "probability": 0.9801 + }, + { + "start": 6244.58, + "end": 6246.12, + "probability": 0.5601 + }, + { + "start": 6246.72, + "end": 6247.44, + "probability": 0.7577 + }, + { + "start": 6248.32, + "end": 6253.82, + "probability": 0.7951 + }, + { + "start": 6254.42, + "end": 6255.46, + "probability": 0.9351 + }, + { + "start": 6255.46, + "end": 6256.98, + "probability": 0.7674 + }, + { + "start": 6258.0, + "end": 6258.46, + "probability": 0.2441 + }, + { + "start": 6259.34, + "end": 6259.74, + "probability": 0.3753 + }, + { + "start": 6259.74, + "end": 6260.44, + "probability": 0.6274 + }, + { + "start": 6265.2, + "end": 6266.18, + "probability": 0.002 + }, + { + "start": 6267.4, + "end": 6269.5, + "probability": 0.9211 + }, + { + "start": 6269.66, + "end": 6272.84, + "probability": 0.8337 + }, + { + "start": 6273.54, + "end": 6278.54, + "probability": 0.9272 + }, + { + "start": 6280.16, + "end": 6282.08, + "probability": 0.9836 + }, + { + "start": 6283.16, + "end": 6290.74, + "probability": 0.4848 + }, + { + "start": 6291.46, + "end": 6292.94, + "probability": 0.918 + }, + { + "start": 6293.56, + "end": 6295.96, + "probability": 0.9146 + }, + { + "start": 6296.12, + "end": 6297.16, + "probability": 0.7286 + }, + { + "start": 6297.24, + "end": 6299.92, + "probability": 0.8862 + }, + { + "start": 6300.54, + "end": 6304.5, + "probability": 0.958 + }, + { + "start": 6305.3, + "end": 6308.04, + "probability": 0.9536 + }, + { + "start": 6308.62, + "end": 6311.86, + "probability": 0.9615 + }, + { + "start": 6311.86, + "end": 6314.58, + "probability": 0.9954 + }, + { + "start": 6315.2, + "end": 6316.62, + "probability": 0.4961 + }, + { + "start": 6317.56, + "end": 6322.72, + "probability": 0.9697 + }, + { + "start": 6325.19, + "end": 6327.92, + "probability": 0.2564 + }, + { + "start": 6329.06, + "end": 6330.52, + "probability": 0.0483 + }, + { + "start": 6332.27, + "end": 6335.56, + "probability": 0.6759 + }, + { + "start": 6336.86, + "end": 6340.09, + "probability": 0.9979 + }, + { + "start": 6340.22, + "end": 6343.42, + "probability": 0.851 + }, + { + "start": 6344.02, + "end": 6345.86, + "probability": 0.5859 + }, + { + "start": 6346.2, + "end": 6348.1, + "probability": 0.0221 + }, + { + "start": 6348.62, + "end": 6353.6, + "probability": 0.3318 + }, + { + "start": 6357.48, + "end": 6362.1, + "probability": 0.7832 + }, + { + "start": 6363.28, + "end": 6366.24, + "probability": 0.9963 + }, + { + "start": 6367.58, + "end": 6367.62, + "probability": 0.7129 + }, + { + "start": 6369.66, + "end": 6371.94, + "probability": 0.9724 + }, + { + "start": 6372.06, + "end": 6373.5, + "probability": 0.9359 + }, + { + "start": 6374.08, + "end": 6376.78, + "probability": 0.9534 + }, + { + "start": 6377.38, + "end": 6378.2, + "probability": 0.5882 + }, + { + "start": 6379.2, + "end": 6380.82, + "probability": 0.6201 + }, + { + "start": 6381.1, + "end": 6382.06, + "probability": 0.6914 + }, + { + "start": 6382.1, + "end": 6384.16, + "probability": 0.8995 + }, + { + "start": 6384.2, + "end": 6385.53, + "probability": 0.5237 + }, + { + "start": 6386.82, + "end": 6392.47, + "probability": 0.9255 + }, + { + "start": 6393.16, + "end": 6393.58, + "probability": 0.9863 + }, + { + "start": 6394.62, + "end": 6397.46, + "probability": 0.7625 + }, + { + "start": 6397.62, + "end": 6398.46, + "probability": 0.2898 + }, + { + "start": 6399.28, + "end": 6401.56, + "probability": 0.9943 + }, + { + "start": 6402.2, + "end": 6402.72, + "probability": 0.6601 + }, + { + "start": 6402.92, + "end": 6406.06, + "probability": 0.9598 + }, + { + "start": 6406.7, + "end": 6408.94, + "probability": 0.8523 + }, + { + "start": 6409.18, + "end": 6410.38, + "probability": 0.991 + }, + { + "start": 6411.14, + "end": 6412.13, + "probability": 0.9104 + }, + { + "start": 6412.7, + "end": 6413.5, + "probability": 0.4725 + }, + { + "start": 6414.1, + "end": 6418.4, + "probability": 0.7941 + }, + { + "start": 6418.96, + "end": 6420.9, + "probability": 0.8207 + }, + { + "start": 6421.02, + "end": 6423.84, + "probability": 0.9682 + }, + { + "start": 6424.34, + "end": 6425.3, + "probability": 0.8727 + }, + { + "start": 6425.54, + "end": 6426.9, + "probability": 0.735 + }, + { + "start": 6427.48, + "end": 6430.5, + "probability": 0.9434 + }, + { + "start": 6431.26, + "end": 6434.52, + "probability": 0.8707 + }, + { + "start": 6434.56, + "end": 6438.62, + "probability": 0.9814 + }, + { + "start": 6439.28, + "end": 6442.3, + "probability": 0.8475 + }, + { + "start": 6442.74, + "end": 6444.84, + "probability": 0.4688 + }, + { + "start": 6444.92, + "end": 6446.24, + "probability": 0.9126 + }, + { + "start": 6446.32, + "end": 6447.16, + "probability": 0.9926 + }, + { + "start": 6447.26, + "end": 6449.68, + "probability": 0.9104 + }, + { + "start": 6450.22, + "end": 6450.24, + "probability": 0.6089 + }, + { + "start": 6450.92, + "end": 6452.3, + "probability": 0.5098 + }, + { + "start": 6452.3, + "end": 6453.36, + "probability": 0.0391 + }, + { + "start": 6453.44, + "end": 6456.91, + "probability": 0.9728 + }, + { + "start": 6457.74, + "end": 6464.04, + "probability": 0.9976 + }, + { + "start": 6464.74, + "end": 6465.78, + "probability": 0.993 + }, + { + "start": 6466.32, + "end": 6467.36, + "probability": 0.0152 + }, + { + "start": 6469.42, + "end": 6471.1, + "probability": 0.0543 + }, + { + "start": 6472.26, + "end": 6474.62, + "probability": 0.6738 + }, + { + "start": 6474.7, + "end": 6475.6, + "probability": 0.7329 + }, + { + "start": 6475.66, + "end": 6477.52, + "probability": 0.6008 + }, + { + "start": 6478.62, + "end": 6481.32, + "probability": 0.98 + }, + { + "start": 6481.54, + "end": 6482.04, + "probability": 0.6506 + }, + { + "start": 6482.34, + "end": 6484.94, + "probability": 0.9541 + }, + { + "start": 6486.46, + "end": 6489.72, + "probability": 0.9889 + }, + { + "start": 6489.78, + "end": 6495.22, + "probability": 0.9671 + }, + { + "start": 6495.7, + "end": 6497.4, + "probability": 0.9663 + }, + { + "start": 6497.6, + "end": 6500.52, + "probability": 0.9768 + }, + { + "start": 6501.08, + "end": 6504.6, + "probability": 0.7804 + }, + { + "start": 6504.72, + "end": 6506.82, + "probability": 0.7947 + }, + { + "start": 6507.92, + "end": 6509.7, + "probability": 0.996 + }, + { + "start": 6510.4, + "end": 6511.92, + "probability": 0.9644 + }, + { + "start": 6512.84, + "end": 6517.04, + "probability": 0.9858 + }, + { + "start": 6517.2, + "end": 6517.72, + "probability": 0.8576 + }, + { + "start": 6518.46, + "end": 6522.36, + "probability": 0.9521 + }, + { + "start": 6522.38, + "end": 6529.14, + "probability": 0.8791 + }, + { + "start": 6529.6, + "end": 6532.08, + "probability": 0.9946 + }, + { + "start": 6532.08, + "end": 6534.34, + "probability": 0.8503 + }, + { + "start": 6534.46, + "end": 6536.74, + "probability": 0.3712 + }, + { + "start": 6538.38, + "end": 6540.9, + "probability": 0.0086 + }, + { + "start": 6541.0, + "end": 6542.21, + "probability": 0.0964 + }, + { + "start": 6543.48, + "end": 6547.92, + "probability": 0.476 + }, + { + "start": 6548.5, + "end": 6550.22, + "probability": 0.6397 + }, + { + "start": 6550.4, + "end": 6552.82, + "probability": 0.4306 + }, + { + "start": 6553.5, + "end": 6556.36, + "probability": 0.4142 + }, + { + "start": 6556.56, + "end": 6562.48, + "probability": 0.4502 + }, + { + "start": 6562.66, + "end": 6563.66, + "probability": 0.3234 + }, + { + "start": 6564.2, + "end": 6566.64, + "probability": 0.7752 + }, + { + "start": 6567.22, + "end": 6572.26, + "probability": 0.9222 + }, + { + "start": 6572.94, + "end": 6575.02, + "probability": 0.8816 + }, + { + "start": 6576.06, + "end": 6578.4, + "probability": 0.4908 + }, + { + "start": 6578.6, + "end": 6586.2, + "probability": 0.6618 + }, + { + "start": 6586.53, + "end": 6588.5, + "probability": 0.9952 + }, + { + "start": 6588.74, + "end": 6593.38, + "probability": 0.183 + }, + { + "start": 6593.6, + "end": 6595.78, + "probability": 0.4952 + }, + { + "start": 6595.92, + "end": 6598.38, + "probability": 0.7376 + }, + { + "start": 6601.3, + "end": 6603.94, + "probability": 0.3381 + }, + { + "start": 6604.46, + "end": 6604.78, + "probability": 0.7121 + }, + { + "start": 6605.94, + "end": 6606.08, + "probability": 0.0025 + }, + { + "start": 6610.18, + "end": 6612.08, + "probability": 0.9211 + }, + { + "start": 6612.24, + "end": 6615.24, + "probability": 0.9792 + }, + { + "start": 6615.88, + "end": 6617.37, + "probability": 0.8953 + }, + { + "start": 6618.28, + "end": 6621.1, + "probability": 0.9008 + }, + { + "start": 6621.36, + "end": 6621.46, + "probability": 0.9732 + }, + { + "start": 6621.92, + "end": 6625.5, + "probability": 0.7099 + }, + { + "start": 6625.5, + "end": 6627.58, + "probability": 0.5132 + }, + { + "start": 6627.74, + "end": 6630.2, + "probability": 0.9243 + }, + { + "start": 6630.2, + "end": 6634.92, + "probability": 0.9983 + }, + { + "start": 6635.88, + "end": 6639.34, + "probability": 0.929 + }, + { + "start": 6639.82, + "end": 6642.86, + "probability": 0.9895 + }, + { + "start": 6643.26, + "end": 6644.06, + "probability": 0.8162 + }, + { + "start": 6644.24, + "end": 6644.64, + "probability": 0.6484 + }, + { + "start": 6644.64, + "end": 6647.96, + "probability": 0.9895 + }, + { + "start": 6648.14, + "end": 6648.88, + "probability": 0.7856 + }, + { + "start": 6649.22, + "end": 6651.48, + "probability": 0.9412 + }, + { + "start": 6651.66, + "end": 6652.06, + "probability": 0.6051 + }, + { + "start": 6652.16, + "end": 6656.18, + "probability": 0.7291 + }, + { + "start": 6656.18, + "end": 6659.1, + "probability": 0.9739 + }, + { + "start": 6659.8, + "end": 6662.7, + "probability": 0.5661 + }, + { + "start": 6662.78, + "end": 6664.38, + "probability": 0.9946 + }, + { + "start": 6664.54, + "end": 6665.05, + "probability": 0.5332 + }, + { + "start": 6666.02, + "end": 6667.24, + "probability": 0.4585 + }, + { + "start": 6669.01, + "end": 6671.84, + "probability": 0.9736 + }, + { + "start": 6672.32, + "end": 6674.56, + "probability": 0.7838 + }, + { + "start": 6674.56, + "end": 6675.4, + "probability": 0.6653 + }, + { + "start": 6675.8, + "end": 6676.08, + "probability": 0.6241 + }, + { + "start": 6676.18, + "end": 6677.04, + "probability": 0.6731 + }, + { + "start": 6677.69, + "end": 6680.47, + "probability": 0.5111 + }, + { + "start": 6681.88, + "end": 6684.38, + "probability": 0.9785 + }, + { + "start": 6684.88, + "end": 6686.3, + "probability": 0.9783 + }, + { + "start": 6686.46, + "end": 6687.68, + "probability": 0.8898 + }, + { + "start": 6687.7, + "end": 6689.04, + "probability": 0.9829 + }, + { + "start": 6689.42, + "end": 6690.3, + "probability": 0.8843 + }, + { + "start": 6690.78, + "end": 6691.5, + "probability": 0.7609 + }, + { + "start": 6691.6, + "end": 6692.4, + "probability": 0.8993 + }, + { + "start": 6692.5, + "end": 6694.5, + "probability": 0.9831 + }, + { + "start": 6694.66, + "end": 6698.48, + "probability": 0.9673 + }, + { + "start": 6698.6, + "end": 6700.54, + "probability": 0.9551 + }, + { + "start": 6700.96, + "end": 6703.18, + "probability": 0.9282 + }, + { + "start": 6703.24, + "end": 6707.7, + "probability": 0.9954 + }, + { + "start": 6708.76, + "end": 6711.1, + "probability": 0.9766 + }, + { + "start": 6711.36, + "end": 6714.64, + "probability": 0.9167 + }, + { + "start": 6714.76, + "end": 6716.02, + "probability": 0.9236 + }, + { + "start": 6716.1, + "end": 6718.5, + "probability": 0.9737 + }, + { + "start": 6718.94, + "end": 6720.96, + "probability": 0.9742 + }, + { + "start": 6721.28, + "end": 6723.7, + "probability": 0.9397 + }, + { + "start": 6724.2, + "end": 6729.46, + "probability": 0.7744 + }, + { + "start": 6729.46, + "end": 6734.42, + "probability": 0.8502 + }, + { + "start": 6734.6, + "end": 6738.54, + "probability": 0.8744 + }, + { + "start": 6738.96, + "end": 6739.82, + "probability": 0.7814 + }, + { + "start": 6740.22, + "end": 6742.36, + "probability": 0.7853 + }, + { + "start": 6742.86, + "end": 6743.7, + "probability": 0.7998 + }, + { + "start": 6743.74, + "end": 6744.46, + "probability": 0.9705 + }, + { + "start": 6744.62, + "end": 6747.0, + "probability": 0.9105 + }, + { + "start": 6747.44, + "end": 6748.62, + "probability": 0.6842 + }, + { + "start": 6748.76, + "end": 6751.16, + "probability": 0.9827 + }, + { + "start": 6751.6, + "end": 6756.8, + "probability": 0.9921 + }, + { + "start": 6756.92, + "end": 6759.02, + "probability": 0.9907 + }, + { + "start": 6759.38, + "end": 6760.32, + "probability": 0.6813 + }, + { + "start": 6760.74, + "end": 6763.0, + "probability": 0.9941 + }, + { + "start": 6763.14, + "end": 6767.96, + "probability": 0.9619 + }, + { + "start": 6768.3, + "end": 6769.08, + "probability": 0.9219 + }, + { + "start": 6769.2, + "end": 6769.64, + "probability": 0.4812 + }, + { + "start": 6770.04, + "end": 6771.7, + "probability": 0.7679 + }, + { + "start": 6771.82, + "end": 6772.06, + "probability": 0.5282 + }, + { + "start": 6772.08, + "end": 6772.88, + "probability": 0.8217 + }, + { + "start": 6773.28, + "end": 6775.54, + "probability": 0.9937 + }, + { + "start": 6775.9, + "end": 6777.28, + "probability": 0.9787 + }, + { + "start": 6777.4, + "end": 6777.96, + "probability": 0.7311 + }, + { + "start": 6778.36, + "end": 6782.92, + "probability": 0.9922 + }, + { + "start": 6784.3, + "end": 6787.98, + "probability": 0.9507 + }, + { + "start": 6788.02, + "end": 6788.56, + "probability": 0.7698 + }, + { + "start": 6789.0, + "end": 6789.6, + "probability": 0.8671 + }, + { + "start": 6789.64, + "end": 6790.92, + "probability": 0.9139 + }, + { + "start": 6790.98, + "end": 6791.92, + "probability": 0.9443 + }, + { + "start": 6792.32, + "end": 6797.28, + "probability": 0.9164 + }, + { + "start": 6797.62, + "end": 6799.42, + "probability": 0.9789 + }, + { + "start": 6799.46, + "end": 6801.2, + "probability": 0.782 + }, + { + "start": 6801.38, + "end": 6802.46, + "probability": 0.8794 + }, + { + "start": 6802.48, + "end": 6803.46, + "probability": 0.8788 + }, + { + "start": 6803.72, + "end": 6805.78, + "probability": 0.9912 + }, + { + "start": 6805.92, + "end": 6809.36, + "probability": 0.9991 + }, + { + "start": 6809.36, + "end": 6813.4, + "probability": 0.9406 + }, + { + "start": 6813.88, + "end": 6819.66, + "probability": 0.998 + }, + { + "start": 6819.76, + "end": 6820.12, + "probability": 0.6985 + }, + { + "start": 6820.32, + "end": 6820.78, + "probability": 0.5545 + }, + { + "start": 6820.93, + "end": 6821.74, + "probability": 0.5911 + }, + { + "start": 6822.98, + "end": 6826.42, + "probability": 0.8457 + }, + { + "start": 6826.9, + "end": 6828.68, + "probability": 0.6207 + }, + { + "start": 6828.86, + "end": 6829.9, + "probability": 0.5329 + }, + { + "start": 6830.4, + "end": 6830.74, + "probability": 0.6529 + }, + { + "start": 6831.08, + "end": 6831.88, + "probability": 0.8259 + }, + { + "start": 6832.44, + "end": 6833.9, + "probability": 0.069 + }, + { + "start": 6853.44, + "end": 6854.4, + "probability": 0.3114 + }, + { + "start": 6856.66, + "end": 6857.96, + "probability": 0.7336 + }, + { + "start": 6858.2, + "end": 6858.98, + "probability": 0.7406 + }, + { + "start": 6859.5, + "end": 6860.28, + "probability": 0.9102 + }, + { + "start": 6861.08, + "end": 6861.7, + "probability": 0.748 + }, + { + "start": 6862.3, + "end": 6863.4, + "probability": 0.8684 + }, + { + "start": 6863.92, + "end": 6867.48, + "probability": 0.7793 + }, + { + "start": 6867.56, + "end": 6871.76, + "probability": 0.7278 + }, + { + "start": 6872.1, + "end": 6873.92, + "probability": 0.374 + }, + { + "start": 6874.3, + "end": 6875.66, + "probability": 0.2619 + }, + { + "start": 6875.78, + "end": 6875.98, + "probability": 0.7875 + }, + { + "start": 6879.34, + "end": 6880.42, + "probability": 0.1767 + }, + { + "start": 6882.88, + "end": 6883.0, + "probability": 0.0551 + }, + { + "start": 6893.28, + "end": 6894.06, + "probability": 0.0745 + }, + { + "start": 6906.92, + "end": 6911.92, + "probability": 0.1179 + }, + { + "start": 6916.52, + "end": 6916.94, + "probability": 0.111 + }, + { + "start": 6919.62, + "end": 6923.8, + "probability": 0.0152 + }, + { + "start": 6923.8, + "end": 6923.8, + "probability": 0.1315 + }, + { + "start": 6923.8, + "end": 6923.8, + "probability": 0.2696 + }, + { + "start": 6923.8, + "end": 6923.8, + "probability": 0.3299 + }, + { + "start": 6923.8, + "end": 6924.18, + "probability": 0.1778 + }, + { + "start": 6924.7, + "end": 6925.56, + "probability": 0.0547 + }, + { + "start": 6926.42, + "end": 6927.16, + "probability": 0.2005 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.0, + "end": 6962.0, + "probability": 0.0 + }, + { + "start": 6962.4, + "end": 6962.46, + "probability": 0.0819 + }, + { + "start": 6962.46, + "end": 6962.46, + "probability": 0.1433 + }, + { + "start": 6962.46, + "end": 6963.04, + "probability": 0.9509 + }, + { + "start": 6963.3, + "end": 6964.36, + "probability": 0.6436 + }, + { + "start": 6964.7, + "end": 6966.86, + "probability": 0.9591 + }, + { + "start": 6967.8, + "end": 6970.44, + "probability": 0.7832 + }, + { + "start": 6970.44, + "end": 6970.88, + "probability": 0.8923 + }, + { + "start": 6972.38, + "end": 6974.18, + "probability": 0.8824 + }, + { + "start": 6974.88, + "end": 6975.32, + "probability": 0.7423 + }, + { + "start": 6975.9, + "end": 6976.48, + "probability": 0.7286 + }, + { + "start": 6977.74, + "end": 6980.02, + "probability": 0.9902 + }, + { + "start": 6981.22, + "end": 6983.88, + "probability": 0.9524 + }, + { + "start": 6984.88, + "end": 6987.76, + "probability": 0.9918 + }, + { + "start": 6987.84, + "end": 6989.84, + "probability": 0.8524 + }, + { + "start": 6990.22, + "end": 6991.06, + "probability": 0.9847 + }, + { + "start": 6992.46, + "end": 6994.86, + "probability": 0.8003 + }, + { + "start": 6997.48, + "end": 6998.02, + "probability": 0.748 + }, + { + "start": 6998.1, + "end": 6998.7, + "probability": 0.6467 + }, + { + "start": 6998.9, + "end": 7000.14, + "probability": 0.6864 + }, + { + "start": 7000.16, + "end": 7001.3, + "probability": 0.7725 + }, + { + "start": 7001.64, + "end": 7001.92, + "probability": 0.2933 + }, + { + "start": 7002.04, + "end": 7002.8, + "probability": 0.884 + }, + { + "start": 7003.66, + "end": 7007.08, + "probability": 0.7318 + }, + { + "start": 7007.16, + "end": 7008.42, + "probability": 0.8805 + }, + { + "start": 7009.8, + "end": 7010.88, + "probability": 0.6432 + }, + { + "start": 7012.14, + "end": 7014.76, + "probability": 0.9492 + }, + { + "start": 7015.24, + "end": 7018.04, + "probability": 0.92 + }, + { + "start": 7018.24, + "end": 7019.16, + "probability": 0.7612 + }, + { + "start": 7019.5, + "end": 7020.32, + "probability": 0.8389 + }, + { + "start": 7020.7, + "end": 7022.26, + "probability": 0.8314 + }, + { + "start": 7022.96, + "end": 7026.14, + "probability": 0.9043 + }, + { + "start": 7026.14, + "end": 7029.84, + "probability": 0.6955 + }, + { + "start": 7030.64, + "end": 7033.04, + "probability": 0.8723 + }, + { + "start": 7034.12, + "end": 7036.04, + "probability": 0.9946 + }, + { + "start": 7038.38, + "end": 7041.62, + "probability": 0.8325 + }, + { + "start": 7042.58, + "end": 7045.02, + "probability": 0.9893 + }, + { + "start": 7045.4, + "end": 7046.86, + "probability": 0.7882 + }, + { + "start": 7047.2, + "end": 7048.92, + "probability": 0.9287 + }, + { + "start": 7049.6, + "end": 7050.66, + "probability": 0.6284 + }, + { + "start": 7052.06, + "end": 7054.14, + "probability": 0.95 + }, + { + "start": 7054.88, + "end": 7057.02, + "probability": 0.9438 + }, + { + "start": 7057.7, + "end": 7059.2, + "probability": 0.9606 + }, + { + "start": 7061.36, + "end": 7064.58, + "probability": 0.9017 + }, + { + "start": 7064.58, + "end": 7066.92, + "probability": 0.5938 + }, + { + "start": 7067.82, + "end": 7072.18, + "probability": 0.8991 + }, + { + "start": 7072.94, + "end": 7074.32, + "probability": 0.745 + }, + { + "start": 7074.8, + "end": 7078.14, + "probability": 0.9906 + }, + { + "start": 7078.14, + "end": 7081.4, + "probability": 0.5944 + }, + { + "start": 7081.92, + "end": 7082.72, + "probability": 0.6201 + }, + { + "start": 7082.76, + "end": 7083.34, + "probability": 0.6588 + }, + { + "start": 7083.76, + "end": 7084.94, + "probability": 0.8462 + }, + { + "start": 7085.42, + "end": 7086.36, + "probability": 0.6959 + }, + { + "start": 7086.88, + "end": 7088.86, + "probability": 0.8887 + }, + { + "start": 7089.7, + "end": 7093.02, + "probability": 0.6612 + }, + { + "start": 7093.42, + "end": 7094.82, + "probability": 0.8951 + }, + { + "start": 7095.2, + "end": 7097.04, + "probability": 0.8284 + }, + { + "start": 7097.46, + "end": 7099.92, + "probability": 0.9565 + }, + { + "start": 7100.1, + "end": 7101.02, + "probability": 0.9243 + }, + { + "start": 7101.18, + "end": 7102.52, + "probability": 0.958 + }, + { + "start": 7104.42, + "end": 7105.9, + "probability": 0.7673 + }, + { + "start": 7106.46, + "end": 7107.9, + "probability": 0.572 + }, + { + "start": 7109.28, + "end": 7110.36, + "probability": 0.5172 + }, + { + "start": 7110.58, + "end": 7111.03, + "probability": 0.6858 + }, + { + "start": 7111.84, + "end": 7112.84, + "probability": 0.9057 + }, + { + "start": 7113.06, + "end": 7114.5, + "probability": 0.664 + }, + { + "start": 7114.92, + "end": 7117.46, + "probability": 0.8068 + }, + { + "start": 7117.56, + "end": 7118.26, + "probability": 0.7113 + }, + { + "start": 7118.8, + "end": 7120.9, + "probability": 0.8296 + }, + { + "start": 7122.24, + "end": 7123.42, + "probability": 0.7725 + }, + { + "start": 7123.76, + "end": 7127.32, + "probability": 0.9684 + }, + { + "start": 7128.14, + "end": 7131.38, + "probability": 0.9854 + }, + { + "start": 7132.2, + "end": 7135.48, + "probability": 0.4991 + }, + { + "start": 7135.6, + "end": 7137.12, + "probability": 0.6694 + }, + { + "start": 7137.6, + "end": 7141.88, + "probability": 0.7179 + }, + { + "start": 7142.44, + "end": 7143.56, + "probability": 0.585 + }, + { + "start": 7144.12, + "end": 7146.76, + "probability": 0.9011 + }, + { + "start": 7147.32, + "end": 7149.4, + "probability": 0.9723 + }, + { + "start": 7150.06, + "end": 7153.56, + "probability": 0.9593 + }, + { + "start": 7154.18, + "end": 7154.38, + "probability": 0.7223 + }, + { + "start": 7154.96, + "end": 7158.34, + "probability": 0.7432 + }, + { + "start": 7161.88, + "end": 7165.2, + "probability": 0.8165 + }, + { + "start": 7166.72, + "end": 7170.14, + "probability": 0.9539 + }, + { + "start": 7171.22, + "end": 7175.6, + "probability": 0.9336 + }, + { + "start": 7176.04, + "end": 7179.02, + "probability": 0.9413 + }, + { + "start": 7179.8, + "end": 7180.02, + "probability": 0.0116 + }, + { + "start": 7180.62, + "end": 7184.2, + "probability": 0.8735 + }, + { + "start": 7184.3, + "end": 7185.36, + "probability": 0.8413 + }, + { + "start": 7185.82, + "end": 7187.06, + "probability": 0.8757 + }, + { + "start": 7187.42, + "end": 7190.94, + "probability": 0.7766 + }, + { + "start": 7191.98, + "end": 7193.34, + "probability": 0.6027 + }, + { + "start": 7193.48, + "end": 7196.24, + "probability": 0.9658 + }, + { + "start": 7196.82, + "end": 7199.38, + "probability": 0.6841 + }, + { + "start": 7199.78, + "end": 7200.3, + "probability": 0.8802 + }, + { + "start": 7200.52, + "end": 7201.58, + "probability": 0.6401 + }, + { + "start": 7201.82, + "end": 7207.32, + "probability": 0.8691 + }, + { + "start": 7207.52, + "end": 7209.62, + "probability": 0.9884 + }, + { + "start": 7209.86, + "end": 7212.12, + "probability": 0.6609 + }, + { + "start": 7212.32, + "end": 7213.97, + "probability": 0.8672 + }, + { + "start": 7214.22, + "end": 7217.18, + "probability": 0.6676 + }, + { + "start": 7231.06, + "end": 7235.6, + "probability": 0.7382 + }, + { + "start": 7237.0, + "end": 7238.76, + "probability": 0.9795 + }, + { + "start": 7239.58, + "end": 7244.74, + "probability": 0.9201 + }, + { + "start": 7245.94, + "end": 7252.16, + "probability": 0.946 + }, + { + "start": 7252.22, + "end": 7252.77, + "probability": 0.991 + }, + { + "start": 7254.16, + "end": 7255.28, + "probability": 0.9255 + }, + { + "start": 7256.68, + "end": 7264.66, + "probability": 0.8614 + }, + { + "start": 7265.88, + "end": 7268.28, + "probability": 0.9888 + }, + { + "start": 7269.32, + "end": 7273.12, + "probability": 0.9908 + }, + { + "start": 7273.94, + "end": 7274.9, + "probability": 0.9839 + }, + { + "start": 7275.66, + "end": 7276.4, + "probability": 0.5978 + }, + { + "start": 7276.66, + "end": 7277.72, + "probability": 0.722 + }, + { + "start": 7278.74, + "end": 7280.62, + "probability": 0.88 + }, + { + "start": 7280.88, + "end": 7281.4, + "probability": 0.9003 + }, + { + "start": 7282.22, + "end": 7283.6, + "probability": 0.9821 + }, + { + "start": 7284.24, + "end": 7286.12, + "probability": 0.9944 + }, + { + "start": 7287.26, + "end": 7289.02, + "probability": 0.8678 + }, + { + "start": 7291.14, + "end": 7292.48, + "probability": 0.7877 + }, + { + "start": 7293.14, + "end": 7293.62, + "probability": 0.9424 + }, + { + "start": 7295.14, + "end": 7297.14, + "probability": 0.8901 + }, + { + "start": 7297.76, + "end": 7299.14, + "probability": 0.9766 + }, + { + "start": 7300.46, + "end": 7302.16, + "probability": 0.8232 + }, + { + "start": 7303.42, + "end": 7306.24, + "probability": 0.9561 + }, + { + "start": 7306.3, + "end": 7306.68, + "probability": 0.8096 + }, + { + "start": 7306.7, + "end": 7307.34, + "probability": 0.993 + }, + { + "start": 7308.48, + "end": 7310.16, + "probability": 0.9984 + }, + { + "start": 7312.04, + "end": 7314.78, + "probability": 0.9966 + }, + { + "start": 7316.44, + "end": 7318.54, + "probability": 0.997 + }, + { + "start": 7319.62, + "end": 7320.44, + "probability": 0.875 + }, + { + "start": 7321.0, + "end": 7323.46, + "probability": 0.8871 + }, + { + "start": 7323.6, + "end": 7324.04, + "probability": 0.9655 + }, + { + "start": 7324.8, + "end": 7328.58, + "probability": 0.985 + }, + { + "start": 7329.28, + "end": 7329.88, + "probability": 0.305 + }, + { + "start": 7331.14, + "end": 7332.75, + "probability": 0.9762 + }, + { + "start": 7333.04, + "end": 7335.48, + "probability": 0.9876 + }, + { + "start": 7336.38, + "end": 7337.88, + "probability": 0.8406 + }, + { + "start": 7338.94, + "end": 7340.96, + "probability": 0.9901 + }, + { + "start": 7341.78, + "end": 7344.94, + "probability": 0.903 + }, + { + "start": 7346.0, + "end": 7347.2, + "probability": 0.9754 + }, + { + "start": 7348.66, + "end": 7351.88, + "probability": 0.9141 + }, + { + "start": 7352.58, + "end": 7353.6, + "probability": 0.5434 + }, + { + "start": 7355.43, + "end": 7358.13, + "probability": 0.8833 + }, + { + "start": 7359.38, + "end": 7360.46, + "probability": 0.9047 + }, + { + "start": 7360.52, + "end": 7363.14, + "probability": 0.9675 + }, + { + "start": 7363.18, + "end": 7364.47, + "probability": 0.9731 + }, + { + "start": 7365.18, + "end": 7370.0, + "probability": 0.9984 + }, + { + "start": 7370.56, + "end": 7372.02, + "probability": 0.759 + }, + { + "start": 7373.92, + "end": 7377.6, + "probability": 0.908 + }, + { + "start": 7378.42, + "end": 7380.52, + "probability": 0.8979 + }, + { + "start": 7381.26, + "end": 7382.48, + "probability": 0.9832 + }, + { + "start": 7382.7, + "end": 7383.72, + "probability": 0.7817 + }, + { + "start": 7384.8, + "end": 7389.16, + "probability": 0.9968 + }, + { + "start": 7390.1, + "end": 7394.68, + "probability": 0.9802 + }, + { + "start": 7394.86, + "end": 7395.28, + "probability": 0.6071 + }, + { + "start": 7396.02, + "end": 7398.32, + "probability": 0.8806 + }, + { + "start": 7398.5, + "end": 7406.24, + "probability": 0.9964 + }, + { + "start": 7406.96, + "end": 7407.48, + "probability": 0.5743 + }, + { + "start": 7407.94, + "end": 7411.3, + "probability": 0.939 + }, + { + "start": 7411.48, + "end": 7411.68, + "probability": 0.6773 + }, + { + "start": 7413.0, + "end": 7413.96, + "probability": 0.8452 + }, + { + "start": 7414.42, + "end": 7416.54, + "probability": 0.7769 + }, + { + "start": 7416.62, + "end": 7420.07, + "probability": 0.5855 + }, + { + "start": 7441.8, + "end": 7441.8, + "probability": 0.0164 + }, + { + "start": 7441.8, + "end": 7443.8, + "probability": 0.6272 + }, + { + "start": 7445.56, + "end": 7447.06, + "probability": 0.9618 + }, + { + "start": 7449.3, + "end": 7450.34, + "probability": 0.763 + }, + { + "start": 7451.48, + "end": 7452.76, + "probability": 0.7836 + }, + { + "start": 7453.02, + "end": 7456.34, + "probability": 0.9897 + }, + { + "start": 7458.64, + "end": 7460.34, + "probability": 0.8652 + }, + { + "start": 7461.76, + "end": 7465.16, + "probability": 0.7629 + }, + { + "start": 7466.34, + "end": 7467.06, + "probability": 0.9823 + }, + { + "start": 7470.48, + "end": 7472.78, + "probability": 0.9917 + }, + { + "start": 7474.04, + "end": 7475.22, + "probability": 0.8928 + }, + { + "start": 7476.44, + "end": 7478.68, + "probability": 0.9492 + }, + { + "start": 7480.66, + "end": 7481.22, + "probability": 0.727 + }, + { + "start": 7482.38, + "end": 7483.22, + "probability": 0.9691 + }, + { + "start": 7484.22, + "end": 7485.14, + "probability": 0.6594 + }, + { + "start": 7488.04, + "end": 7493.84, + "probability": 0.9467 + }, + { + "start": 7494.68, + "end": 7495.34, + "probability": 0.1463 + }, + { + "start": 7496.22, + "end": 7500.76, + "probability": 0.7642 + }, + { + "start": 7502.12, + "end": 7503.14, + "probability": 0.8182 + }, + { + "start": 7504.66, + "end": 7506.26, + "probability": 0.9729 + }, + { + "start": 7507.2, + "end": 7508.02, + "probability": 0.5247 + }, + { + "start": 7508.18, + "end": 7509.0, + "probability": 0.8877 + }, + { + "start": 7509.56, + "end": 7511.04, + "probability": 0.9412 + }, + { + "start": 7512.3, + "end": 7514.64, + "probability": 0.9208 + }, + { + "start": 7516.8, + "end": 7518.72, + "probability": 0.9915 + }, + { + "start": 7518.86, + "end": 7521.1, + "probability": 0.9954 + }, + { + "start": 7521.62, + "end": 7523.72, + "probability": 0.9948 + }, + { + "start": 7523.8, + "end": 7526.03, + "probability": 0.6624 + }, + { + "start": 7527.18, + "end": 7528.74, + "probability": 0.9294 + }, + { + "start": 7530.66, + "end": 7531.56, + "probability": 0.8104 + }, + { + "start": 7533.28, + "end": 7533.77, + "probability": 0.1367 + }, + { + "start": 7534.06, + "end": 7537.24, + "probability": 0.7616 + }, + { + "start": 7549.56, + "end": 7549.78, + "probability": 0.0914 + }, + { + "start": 7550.16, + "end": 7550.16, + "probability": 0.0717 + }, + { + "start": 7550.16, + "end": 7550.16, + "probability": 0.0592 + }, + { + "start": 7550.16, + "end": 7552.74, + "probability": 0.7343 + }, + { + "start": 7555.04, + "end": 7557.26, + "probability": 0.9529 + }, + { + "start": 7557.82, + "end": 7559.54, + "probability": 0.965 + }, + { + "start": 7559.86, + "end": 7561.46, + "probability": 0.7689 + }, + { + "start": 7561.78, + "end": 7563.96, + "probability": 0.9922 + }, + { + "start": 7564.12, + "end": 7565.78, + "probability": 0.328 + }, + { + "start": 7565.86, + "end": 7567.75, + "probability": 0.9814 + }, + { + "start": 7569.38, + "end": 7570.88, + "probability": 0.9891 + }, + { + "start": 7574.14, + "end": 7575.48, + "probability": 0.9384 + }, + { + "start": 7575.66, + "end": 7578.32, + "probability": 0.8508 + }, + { + "start": 7579.46, + "end": 7581.5, + "probability": 0.9332 + }, + { + "start": 7582.92, + "end": 7586.3, + "probability": 0.9953 + }, + { + "start": 7589.2, + "end": 7593.12, + "probability": 0.7101 + }, + { + "start": 7594.08, + "end": 7597.36, + "probability": 0.6265 + }, + { + "start": 7597.58, + "end": 7599.04, + "probability": 0.7996 + }, + { + "start": 7601.98, + "end": 7605.1, + "probability": 0.98 + }, + { + "start": 7606.18, + "end": 7607.02, + "probability": 0.784 + }, + { + "start": 7608.9, + "end": 7609.94, + "probability": 0.7384 + }, + { + "start": 7610.84, + "end": 7611.94, + "probability": 0.8057 + }, + { + "start": 7612.82, + "end": 7614.26, + "probability": 0.9893 + }, + { + "start": 7615.08, + "end": 7618.08, + "probability": 0.9648 + }, + { + "start": 7620.02, + "end": 7620.84, + "probability": 0.7199 + }, + { + "start": 7622.48, + "end": 7622.96, + "probability": 0.7435 + }, + { + "start": 7623.82, + "end": 7627.18, + "probability": 0.8258 + }, + { + "start": 7628.48, + "end": 7632.58, + "probability": 0.7983 + }, + { + "start": 7633.4, + "end": 7636.88, + "probability": 0.8831 + }, + { + "start": 7638.42, + "end": 7640.78, + "probability": 0.9539 + }, + { + "start": 7641.36, + "end": 7642.04, + "probability": 0.8533 + }, + { + "start": 7643.18, + "end": 7644.1, + "probability": 0.9974 + }, + { + "start": 7644.82, + "end": 7648.2, + "probability": 0.8022 + }, + { + "start": 7649.36, + "end": 7651.96, + "probability": 0.9911 + }, + { + "start": 7652.1, + "end": 7653.6, + "probability": 0.6369 + }, + { + "start": 7655.12, + "end": 7655.78, + "probability": 0.9917 + }, + { + "start": 7656.64, + "end": 7659.92, + "probability": 0.9854 + }, + { + "start": 7660.86, + "end": 7662.58, + "probability": 0.643 + }, + { + "start": 7663.42, + "end": 7665.84, + "probability": 0.5136 + }, + { + "start": 7666.72, + "end": 7668.56, + "probability": 0.654 + }, + { + "start": 7669.28, + "end": 7671.7, + "probability": 0.9608 + }, + { + "start": 7672.82, + "end": 7674.12, + "probability": 0.9389 + }, + { + "start": 7674.54, + "end": 7675.04, + "probability": 0.9498 + }, + { + "start": 7675.12, + "end": 7677.82, + "probability": 0.7726 + }, + { + "start": 7678.92, + "end": 7683.36, + "probability": 0.7822 + }, + { + "start": 7683.9, + "end": 7684.79, + "probability": 0.5742 + }, + { + "start": 7686.1, + "end": 7687.16, + "probability": 0.7454 + }, + { + "start": 7688.06, + "end": 7688.34, + "probability": 0.7838 + }, + { + "start": 7689.22, + "end": 7689.72, + "probability": 0.6597 + }, + { + "start": 7691.98, + "end": 7693.46, + "probability": 0.9858 + }, + { + "start": 7693.54, + "end": 7694.98, + "probability": 0.9908 + }, + { + "start": 7695.0, + "end": 7695.56, + "probability": 0.4194 + }, + { + "start": 7695.68, + "end": 7697.22, + "probability": 0.9638 + }, + { + "start": 7713.68, + "end": 7715.2, + "probability": 0.6271 + }, + { + "start": 7716.92, + "end": 7721.56, + "probability": 0.965 + }, + { + "start": 7721.98, + "end": 7728.82, + "probability": 0.9863 + }, + { + "start": 7731.6, + "end": 7737.16, + "probability": 0.9959 + }, + { + "start": 7740.56, + "end": 7745.48, + "probability": 0.8463 + }, + { + "start": 7746.78, + "end": 7755.0, + "probability": 0.9845 + }, + { + "start": 7755.1, + "end": 7756.12, + "probability": 0.9218 + }, + { + "start": 7756.2, + "end": 7756.64, + "probability": 0.7389 + }, + { + "start": 7757.24, + "end": 7762.46, + "probability": 0.9927 + }, + { + "start": 7762.82, + "end": 7764.22, + "probability": 0.9659 + }, + { + "start": 7765.04, + "end": 7767.62, + "probability": 0.9666 + }, + { + "start": 7770.34, + "end": 7771.02, + "probability": 0.6338 + }, + { + "start": 7771.96, + "end": 7774.02, + "probability": 0.9976 + }, + { + "start": 7775.74, + "end": 7777.18, + "probability": 0.7454 + }, + { + "start": 7777.86, + "end": 7779.34, + "probability": 0.8706 + }, + { + "start": 7780.42, + "end": 7783.2, + "probability": 0.8958 + }, + { + "start": 7791.3, + "end": 7791.9, + "probability": 0.7937 + }, + { + "start": 7794.04, + "end": 7796.96, + "probability": 0.9625 + }, + { + "start": 7798.3, + "end": 7799.52, + "probability": 0.9941 + }, + { + "start": 7801.28, + "end": 7804.46, + "probability": 0.9637 + }, + { + "start": 7806.76, + "end": 7808.34, + "probability": 0.9181 + }, + { + "start": 7810.2, + "end": 7811.64, + "probability": 0.0382 + }, + { + "start": 7830.24, + "end": 7831.14, + "probability": 0.5417 + }, + { + "start": 7832.36, + "end": 7833.96, + "probability": 0.8451 + }, + { + "start": 7834.08, + "end": 7837.58, + "probability": 0.8489 + }, + { + "start": 7839.7, + "end": 7840.24, + "probability": 0.6984 + }, + { + "start": 7841.28, + "end": 7841.28, + "probability": 0.2292 + }, + { + "start": 7845.12, + "end": 7850.06, + "probability": 0.9991 + }, + { + "start": 7851.52, + "end": 7855.68, + "probability": 0.9989 + }, + { + "start": 7857.78, + "end": 7859.16, + "probability": 0.9822 + }, + { + "start": 7861.36, + "end": 7863.94, + "probability": 0.7413 + }, + { + "start": 7865.14, + "end": 7867.0, + "probability": 0.9802 + }, + { + "start": 7868.69, + "end": 7871.56, + "probability": 0.981 + }, + { + "start": 7874.0, + "end": 7874.9, + "probability": 0.9749 + }, + { + "start": 7876.4, + "end": 7879.28, + "probability": 0.9666 + }, + { + "start": 7880.34, + "end": 7882.5, + "probability": 0.9225 + }, + { + "start": 7882.98, + "end": 7884.4, + "probability": 0.9504 + }, + { + "start": 7884.82, + "end": 7886.46, + "probability": 0.9961 + }, + { + "start": 7888.06, + "end": 7889.62, + "probability": 0.9483 + }, + { + "start": 7891.12, + "end": 7893.28, + "probability": 0.7675 + }, + { + "start": 7895.12, + "end": 7899.72, + "probability": 0.9878 + }, + { + "start": 7901.34, + "end": 7903.14, + "probability": 0.9536 + }, + { + "start": 7905.38, + "end": 7908.08, + "probability": 0.9522 + }, + { + "start": 7909.1, + "end": 7911.18, + "probability": 0.959 + }, + { + "start": 7911.3, + "end": 7911.72, + "probability": 0.9868 + }, + { + "start": 7912.52, + "end": 7914.06, + "probability": 0.9943 + }, + { + "start": 7914.16, + "end": 7919.0, + "probability": 0.9622 + }, + { + "start": 7919.0, + "end": 7922.24, + "probability": 0.9957 + }, + { + "start": 7923.24, + "end": 7924.0, + "probability": 0.5035 + }, + { + "start": 7925.44, + "end": 7927.44, + "probability": 0.998 + }, + { + "start": 7928.86, + "end": 7929.22, + "probability": 0.881 + }, + { + "start": 7929.34, + "end": 7930.64, + "probability": 0.6661 + }, + { + "start": 7931.3, + "end": 7932.63, + "probability": 0.8916 + }, + { + "start": 7935.62, + "end": 7937.12, + "probability": 0.8113 + }, + { + "start": 7937.3, + "end": 7940.4, + "probability": 0.9946 + }, + { + "start": 7941.46, + "end": 7945.66, + "probability": 0.929 + }, + { + "start": 7947.98, + "end": 7950.72, + "probability": 0.9801 + }, + { + "start": 7952.92, + "end": 7953.24, + "probability": 0.4992 + }, + { + "start": 7954.56, + "end": 7956.92, + "probability": 0.9973 + }, + { + "start": 7957.8, + "end": 7959.76, + "probability": 0.902 + }, + { + "start": 7961.94, + "end": 7963.12, + "probability": 0.9204 + }, + { + "start": 7965.04, + "end": 7966.95, + "probability": 0.9023 + }, + { + "start": 7969.44, + "end": 7971.56, + "probability": 0.912 + }, + { + "start": 7972.68, + "end": 7976.96, + "probability": 0.9939 + }, + { + "start": 7977.92, + "end": 7979.94, + "probability": 0.7258 + }, + { + "start": 7980.52, + "end": 7986.08, + "probability": 0.9245 + }, + { + "start": 7987.28, + "end": 7988.74, + "probability": 0.9743 + }, + { + "start": 7989.78, + "end": 7993.04, + "probability": 0.9813 + }, + { + "start": 7994.24, + "end": 7995.88, + "probability": 0.9852 + }, + { + "start": 7996.06, + "end": 7997.16, + "probability": 0.8807 + }, + { + "start": 7998.42, + "end": 8000.16, + "probability": 0.7141 + }, + { + "start": 8000.48, + "end": 8003.64, + "probability": 0.9602 + }, + { + "start": 8010.16, + "end": 8010.8, + "probability": 0.527 + }, + { + "start": 8010.98, + "end": 8012.31, + "probability": 0.6689 + }, + { + "start": 8013.32, + "end": 8015.46, + "probability": 0.972 + }, + { + "start": 8015.76, + "end": 8019.12, + "probability": 0.98 + }, + { + "start": 8019.88, + "end": 8021.05, + "probability": 0.8855 + }, + { + "start": 8023.04, + "end": 8024.48, + "probability": 0.9075 + }, + { + "start": 8025.66, + "end": 8030.09, + "probability": 0.8911 + }, + { + "start": 8030.74, + "end": 8035.14, + "probability": 0.9905 + }, + { + "start": 8035.26, + "end": 8037.2, + "probability": 0.7931 + }, + { + "start": 8037.84, + "end": 8039.5, + "probability": 0.968 + }, + { + "start": 8040.0, + "end": 8042.22, + "probability": 0.7841 + }, + { + "start": 8042.42, + "end": 8043.36, + "probability": 0.8045 + }, + { + "start": 8043.98, + "end": 8044.44, + "probability": 0.7949 + }, + { + "start": 8044.5, + "end": 8054.02, + "probability": 0.9918 + }, + { + "start": 8054.72, + "end": 8055.14, + "probability": 0.4774 + }, + { + "start": 8056.08, + "end": 8056.88, + "probability": 0.2198 + }, + { + "start": 8057.3, + "end": 8057.3, + "probability": 0.8491 + }, + { + "start": 8059.94, + "end": 8062.26, + "probability": 0.7612 + }, + { + "start": 8063.38, + "end": 8066.48, + "probability": 0.9476 + }, + { + "start": 8066.78, + "end": 8067.66, + "probability": 0.8903 + }, + { + "start": 8068.8, + "end": 8070.18, + "probability": 0.9755 + }, + { + "start": 8071.16, + "end": 8075.92, + "probability": 0.8228 + }, + { + "start": 8076.38, + "end": 8077.84, + "probability": 0.99 + }, + { + "start": 8079.02, + "end": 8083.0, + "probability": 0.8754 + }, + { + "start": 8083.1, + "end": 8083.48, + "probability": 0.9017 + }, + { + "start": 8084.76, + "end": 8091.04, + "probability": 0.8642 + }, + { + "start": 8091.16, + "end": 8092.96, + "probability": 0.6639 + }, + { + "start": 8093.28, + "end": 8093.74, + "probability": 0.8348 + }, + { + "start": 8095.02, + "end": 8099.44, + "probability": 0.8781 + }, + { + "start": 8099.96, + "end": 8103.42, + "probability": 0.7756 + }, + { + "start": 8103.42, + "end": 8105.88, + "probability": 0.9867 + }, + { + "start": 8106.84, + "end": 8109.56, + "probability": 0.9957 + }, + { + "start": 8110.28, + "end": 8111.24, + "probability": 0.9947 + }, + { + "start": 8112.36, + "end": 8116.72, + "probability": 0.9502 + }, + { + "start": 8117.44, + "end": 8119.94, + "probability": 0.996 + }, + { + "start": 8120.48, + "end": 8123.62, + "probability": 0.9987 + }, + { + "start": 8124.18, + "end": 8128.9, + "probability": 0.9934 + }, + { + "start": 8129.2, + "end": 8132.18, + "probability": 0.9745 + }, + { + "start": 8132.7, + "end": 8135.4, + "probability": 0.6865 + }, + { + "start": 8136.08, + "end": 8139.56, + "probability": 0.9855 + }, + { + "start": 8142.18, + "end": 8147.94, + "probability": 0.8855 + }, + { + "start": 8149.02, + "end": 8150.9, + "probability": 0.7756 + }, + { + "start": 8151.46, + "end": 8152.0, + "probability": 0.6628 + }, + { + "start": 8152.7, + "end": 8155.8, + "probability": 0.9906 + }, + { + "start": 8156.34, + "end": 8158.96, + "probability": 0.6523 + }, + { + "start": 8160.18, + "end": 8162.46, + "probability": 0.8746 + }, + { + "start": 8163.16, + "end": 8165.96, + "probability": 0.9927 + }, + { + "start": 8166.48, + "end": 8167.96, + "probability": 0.9785 + }, + { + "start": 8168.5, + "end": 8171.66, + "probability": 0.9852 + }, + { + "start": 8172.42, + "end": 8177.12, + "probability": 0.9326 + }, + { + "start": 8177.88, + "end": 8178.96, + "probability": 0.6939 + }, + { + "start": 8179.6, + "end": 8182.46, + "probability": 0.9623 + }, + { + "start": 8183.02, + "end": 8186.92, + "probability": 0.7962 + }, + { + "start": 8187.56, + "end": 8189.06, + "probability": 0.9648 + }, + { + "start": 8189.12, + "end": 8191.18, + "probability": 0.9897 + }, + { + "start": 8192.52, + "end": 8192.88, + "probability": 0.3361 + }, + { + "start": 8193.26, + "end": 8198.06, + "probability": 0.9955 + }, + { + "start": 8198.74, + "end": 8203.02, + "probability": 0.9934 + }, + { + "start": 8203.56, + "end": 8208.66, + "probability": 0.9908 + }, + { + "start": 8208.8, + "end": 8211.84, + "probability": 0.8247 + }, + { + "start": 8212.96, + "end": 8217.52, + "probability": 0.8649 + }, + { + "start": 8218.46, + "end": 8221.36, + "probability": 0.9976 + }, + { + "start": 8221.42, + "end": 8225.8, + "probability": 0.908 + }, + { + "start": 8226.52, + "end": 8227.44, + "probability": 0.776 + }, + { + "start": 8227.68, + "end": 8229.94, + "probability": 0.9348 + }, + { + "start": 8230.48, + "end": 8232.8, + "probability": 0.9206 + }, + { + "start": 8233.76, + "end": 8234.64, + "probability": 0.9207 + }, + { + "start": 8235.04, + "end": 8237.74, + "probability": 0.9767 + }, + { + "start": 8238.24, + "end": 8240.12, + "probability": 0.9915 + }, + { + "start": 8241.06, + "end": 8241.84, + "probability": 0.8913 + }, + { + "start": 8242.0, + "end": 8242.84, + "probability": 0.9889 + }, + { + "start": 8243.18, + "end": 8244.55, + "probability": 0.7397 + }, + { + "start": 8244.92, + "end": 8245.84, + "probability": 0.8885 + }, + { + "start": 8245.98, + "end": 8251.14, + "probability": 0.9224 + }, + { + "start": 8251.4, + "end": 8254.44, + "probability": 0.9393 + }, + { + "start": 8255.2, + "end": 8258.12, + "probability": 0.9686 + }, + { + "start": 8258.18, + "end": 8259.62, + "probability": 0.938 + }, + { + "start": 8260.34, + "end": 8263.18, + "probability": 0.9651 + }, + { + "start": 8264.36, + "end": 8267.94, + "probability": 0.8222 + }, + { + "start": 8269.4, + "end": 8270.44, + "probability": 0.7897 + }, + { + "start": 8270.86, + "end": 8271.52, + "probability": 0.6814 + }, + { + "start": 8271.82, + "end": 8274.0, + "probability": 0.9825 + }, + { + "start": 8274.38, + "end": 8275.9, + "probability": 0.6994 + }, + { + "start": 8275.98, + "end": 8279.58, + "probability": 0.9902 + }, + { + "start": 8279.58, + "end": 8282.82, + "probability": 0.9977 + }, + { + "start": 8283.48, + "end": 8286.08, + "probability": 0.9096 + }, + { + "start": 8286.86, + "end": 8290.07, + "probability": 0.9658 + }, + { + "start": 8290.66, + "end": 8292.56, + "probability": 0.995 + }, + { + "start": 8292.88, + "end": 8293.16, + "probability": 0.7496 + }, + { + "start": 8293.94, + "end": 8299.52, + "probability": 0.9939 + }, + { + "start": 8300.18, + "end": 8303.77, + "probability": 0.9414 + }, + { + "start": 8304.22, + "end": 8304.88, + "probability": 0.8182 + }, + { + "start": 8305.32, + "end": 8305.76, + "probability": 0.8527 + }, + { + "start": 8306.24, + "end": 8308.86, + "probability": 0.9507 + }, + { + "start": 8309.56, + "end": 8313.06, + "probability": 0.9832 + }, + { + "start": 8313.9, + "end": 8318.54, + "probability": 0.989 + }, + { + "start": 8319.26, + "end": 8321.88, + "probability": 0.9944 + }, + { + "start": 8321.88, + "end": 8325.6, + "probability": 0.9677 + }, + { + "start": 8326.2, + "end": 8326.7, + "probability": 0.9736 + }, + { + "start": 8327.3, + "end": 8330.86, + "probability": 0.9396 + }, + { + "start": 8331.7, + "end": 8335.44, + "probability": 0.7502 + }, + { + "start": 8336.08, + "end": 8338.42, + "probability": 0.9896 + }, + { + "start": 8339.28, + "end": 8342.32, + "probability": 0.9938 + }, + { + "start": 8342.96, + "end": 8345.73, + "probability": 0.998 + }, + { + "start": 8346.34, + "end": 8349.08, + "probability": 0.8803 + }, + { + "start": 8349.46, + "end": 8350.64, + "probability": 0.8954 + }, + { + "start": 8351.3, + "end": 8351.78, + "probability": 0.62 + }, + { + "start": 8351.86, + "end": 8354.54, + "probability": 0.6493 + }, + { + "start": 8354.7, + "end": 8356.14, + "probability": 0.5772 + }, + { + "start": 8356.4, + "end": 8359.02, + "probability": 0.9306 + }, + { + "start": 8359.7, + "end": 8363.72, + "probability": 0.9904 + }, + { + "start": 8364.46, + "end": 8367.64, + "probability": 0.5762 + }, + { + "start": 8367.74, + "end": 8370.42, + "probability": 0.9336 + }, + { + "start": 8370.56, + "end": 8371.1, + "probability": 0.9178 + }, + { + "start": 8371.24, + "end": 8377.18, + "probability": 0.9946 + }, + { + "start": 8377.46, + "end": 8382.62, + "probability": 0.6339 + }, + { + "start": 8383.1, + "end": 8385.44, + "probability": 0.6646 + }, + { + "start": 8386.16, + "end": 8387.14, + "probability": 0.9158 + }, + { + "start": 8388.02, + "end": 8391.16, + "probability": 0.8857 + }, + { + "start": 8391.86, + "end": 8394.68, + "probability": 0.993 + }, + { + "start": 8394.72, + "end": 8395.54, + "probability": 0.8792 + }, + { + "start": 8396.46, + "end": 8400.48, + "probability": 0.9034 + }, + { + "start": 8400.86, + "end": 8401.84, + "probability": 0.7572 + }, + { + "start": 8402.4, + "end": 8403.22, + "probability": 0.4763 + }, + { + "start": 8403.24, + "end": 8405.92, + "probability": 0.848 + }, + { + "start": 8406.08, + "end": 8408.16, + "probability": 0.995 + }, + { + "start": 8408.26, + "end": 8409.1, + "probability": 0.9785 + }, + { + "start": 8410.22, + "end": 8410.84, + "probability": 0.743 + }, + { + "start": 8410.92, + "end": 8410.92, + "probability": 0.6406 + }, + { + "start": 8410.92, + "end": 8411.88, + "probability": 0.7597 + }, + { + "start": 8412.52, + "end": 8415.2, + "probability": 0.9106 + }, + { + "start": 8431.88, + "end": 8432.96, + "probability": 0.6122 + }, + { + "start": 8436.54, + "end": 8438.56, + "probability": 0.7509 + }, + { + "start": 8439.34, + "end": 8441.3, + "probability": 0.9883 + }, + { + "start": 8442.34, + "end": 8445.14, + "probability": 0.9076 + }, + { + "start": 8446.1, + "end": 8448.14, + "probability": 0.9849 + }, + { + "start": 8449.02, + "end": 8450.6, + "probability": 0.6913 + }, + { + "start": 8451.4, + "end": 8455.28, + "probability": 0.9766 + }, + { + "start": 8456.34, + "end": 8458.36, + "probability": 0.8825 + }, + { + "start": 8459.2, + "end": 8460.32, + "probability": 0.957 + }, + { + "start": 8461.0, + "end": 8461.8, + "probability": 0.8492 + }, + { + "start": 8462.44, + "end": 8464.96, + "probability": 0.9589 + }, + { + "start": 8465.96, + "end": 8468.62, + "probability": 0.4695 + }, + { + "start": 8469.22, + "end": 8471.38, + "probability": 0.9703 + }, + { + "start": 8472.44, + "end": 8473.38, + "probability": 0.9601 + }, + { + "start": 8473.5, + "end": 8475.54, + "probability": 0.958 + }, + { + "start": 8475.64, + "end": 8476.0, + "probability": 0.9164 + }, + { + "start": 8476.1, + "end": 8478.68, + "probability": 0.9478 + }, + { + "start": 8479.56, + "end": 8480.9, + "probability": 0.7701 + }, + { + "start": 8481.8, + "end": 8482.26, + "probability": 0.4579 + }, + { + "start": 8483.26, + "end": 8483.66, + "probability": 0.0812 + }, + { + "start": 8483.66, + "end": 8485.0, + "probability": 0.8661 + }, + { + "start": 8485.36, + "end": 8486.22, + "probability": 0.9398 + }, + { + "start": 8486.6, + "end": 8490.44, + "probability": 0.7997 + }, + { + "start": 8490.94, + "end": 8490.94, + "probability": 0.0162 + }, + { + "start": 8490.94, + "end": 8492.57, + "probability": 0.7473 + }, + { + "start": 8493.86, + "end": 8494.8, + "probability": 0.7367 + }, + { + "start": 8495.64, + "end": 8498.48, + "probability": 0.9773 + }, + { + "start": 8499.1, + "end": 8501.56, + "probability": 0.7491 + }, + { + "start": 8502.24, + "end": 8504.9, + "probability": 0.441 + }, + { + "start": 8506.32, + "end": 8507.82, + "probability": 0.5737 + }, + { + "start": 8508.86, + "end": 8509.34, + "probability": 0.7949 + }, + { + "start": 8509.7, + "end": 8510.7, + "probability": 0.8599 + }, + { + "start": 8510.76, + "end": 8514.36, + "probability": 0.7503 + }, + { + "start": 8514.5, + "end": 8514.9, + "probability": 0.5076 + }, + { + "start": 8514.98, + "end": 8515.32, + "probability": 0.402 + }, + { + "start": 8516.04, + "end": 8517.14, + "probability": 0.9601 + }, + { + "start": 8518.7, + "end": 8520.84, + "probability": 0.9778 + }, + { + "start": 8522.0, + "end": 8522.4, + "probability": 0.6763 + }, + { + "start": 8522.92, + "end": 8526.12, + "probability": 0.9141 + }, + { + "start": 8526.88, + "end": 8529.08, + "probability": 0.9952 + }, + { + "start": 8530.08, + "end": 8532.1, + "probability": 0.9917 + }, + { + "start": 8532.82, + "end": 8533.82, + "probability": 0.9858 + }, + { + "start": 8534.52, + "end": 8536.7, + "probability": 0.9879 + }, + { + "start": 8536.88, + "end": 8537.22, + "probability": 0.3094 + }, + { + "start": 8537.42, + "end": 8538.0, + "probability": 0.8583 + }, + { + "start": 8538.44, + "end": 8541.88, + "probability": 0.9641 + }, + { + "start": 8542.64, + "end": 8544.88, + "probability": 0.9726 + }, + { + "start": 8545.24, + "end": 8547.14, + "probability": 0.9739 + }, + { + "start": 8547.78, + "end": 8548.46, + "probability": 0.6238 + }, + { + "start": 8548.64, + "end": 8550.92, + "probability": 0.6219 + }, + { + "start": 8551.42, + "end": 8557.66, + "probability": 0.9625 + }, + { + "start": 8558.0, + "end": 8560.28, + "probability": 0.9628 + }, + { + "start": 8560.32, + "end": 8561.18, + "probability": 0.9487 + }, + { + "start": 8561.72, + "end": 8562.92, + "probability": 0.6028 + }, + { + "start": 8563.42, + "end": 8567.28, + "probability": 0.9447 + }, + { + "start": 8567.44, + "end": 8568.46, + "probability": 0.8894 + }, + { + "start": 8568.98, + "end": 8570.56, + "probability": 0.7818 + }, + { + "start": 8571.52, + "end": 8572.56, + "probability": 0.9847 + }, + { + "start": 8573.32, + "end": 8574.44, + "probability": 0.7838 + }, + { + "start": 8575.49, + "end": 8580.82, + "probability": 0.9734 + }, + { + "start": 8581.22, + "end": 8584.18, + "probability": 0.922 + }, + { + "start": 8584.72, + "end": 8587.14, + "probability": 0.9268 + }, + { + "start": 8587.14, + "end": 8590.52, + "probability": 0.9386 + }, + { + "start": 8591.2, + "end": 8593.32, + "probability": 0.0278 + }, + { + "start": 8593.38, + "end": 8593.5, + "probability": 0.0243 + }, + { + "start": 8593.5, + "end": 8593.5, + "probability": 0.0417 + }, + { + "start": 8593.5, + "end": 8594.62, + "probability": 0.4541 + }, + { + "start": 8594.8, + "end": 8596.66, + "probability": 0.8734 + }, + { + "start": 8596.66, + "end": 8597.94, + "probability": 0.6583 + }, + { + "start": 8598.5, + "end": 8601.06, + "probability": 0.6311 + }, + { + "start": 8603.5, + "end": 8607.72, + "probability": 0.5074 + }, + { + "start": 8607.9, + "end": 8608.6, + "probability": 0.568 + }, + { + "start": 8608.62, + "end": 8609.84, + "probability": 0.7633 + }, + { + "start": 8609.84, + "end": 8611.74, + "probability": 0.8712 + }, + { + "start": 8611.78, + "end": 8613.1, + "probability": 0.5947 + }, + { + "start": 8613.12, + "end": 8617.32, + "probability": 0.9504 + }, + { + "start": 8617.32, + "end": 8622.92, + "probability": 0.8873 + }, + { + "start": 8623.38, + "end": 8623.6, + "probability": 0.0311 + }, + { + "start": 8623.6, + "end": 8626.42, + "probability": 0.7502 + }, + { + "start": 8626.42, + "end": 8630.44, + "probability": 0.9482 + }, + { + "start": 8631.18, + "end": 8632.34, + "probability": 0.6392 + }, + { + "start": 8632.84, + "end": 8635.56, + "probability": 0.7107 + }, + { + "start": 8636.55, + "end": 8637.38, + "probability": 0.1193 + }, + { + "start": 8638.78, + "end": 8638.88, + "probability": 0.0758 + }, + { + "start": 8639.11, + "end": 8640.92, + "probability": 0.6096 + }, + { + "start": 8641.02, + "end": 8643.26, + "probability": 0.5758 + }, + { + "start": 8643.8, + "end": 8648.5, + "probability": 0.0323 + }, + { + "start": 8648.62, + "end": 8649.92, + "probability": 0.298 + }, + { + "start": 8650.06, + "end": 8653.5, + "probability": 0.0993 + }, + { + "start": 8653.56, + "end": 8654.52, + "probability": 0.3324 + }, + { + "start": 8654.74, + "end": 8657.2, + "probability": 0.6006 + }, + { + "start": 8657.92, + "end": 8661.9, + "probability": 0.4649 + }, + { + "start": 8663.04, + "end": 8664.5, + "probability": 0.9366 + }, + { + "start": 8671.3, + "end": 8672.82, + "probability": 0.4245 + }, + { + "start": 8673.44, + "end": 8675.56, + "probability": 0.6216 + }, + { + "start": 8675.74, + "end": 8677.02, + "probability": 0.4844 + }, + { + "start": 8677.64, + "end": 8680.0, + "probability": 0.4757 + }, + { + "start": 8680.22, + "end": 8682.02, + "probability": 0.3418 + }, + { + "start": 8683.38, + "end": 8688.08, + "probability": 0.5013 + }, + { + "start": 8688.24, + "end": 8690.26, + "probability": 0.7456 + }, + { + "start": 8690.32, + "end": 8690.9, + "probability": 0.5068 + }, + { + "start": 8692.18, + "end": 8692.24, + "probability": 0.1583 + }, + { + "start": 8692.24, + "end": 8692.24, + "probability": 0.3715 + }, + { + "start": 8692.24, + "end": 8693.52, + "probability": 0.4749 + }, + { + "start": 8694.34, + "end": 8696.94, + "probability": 0.8289 + }, + { + "start": 8696.98, + "end": 8699.66, + "probability": 0.8966 + }, + { + "start": 8700.08, + "end": 8703.04, + "probability": 0.7514 + }, + { + "start": 8704.04, + "end": 8704.62, + "probability": 0.2304 + }, + { + "start": 8704.62, + "end": 8705.22, + "probability": 0.7512 + }, + { + "start": 8705.42, + "end": 8706.14, + "probability": 0.7068 + }, + { + "start": 8706.24, + "end": 8708.32, + "probability": 0.9457 + }, + { + "start": 8708.9, + "end": 8710.64, + "probability": 0.9005 + }, + { + "start": 8711.6, + "end": 8712.62, + "probability": 0.943 + }, + { + "start": 8713.3, + "end": 8715.64, + "probability": 0.9601 + }, + { + "start": 8716.18, + "end": 8719.38, + "probability": 0.8408 + }, + { + "start": 8719.9, + "end": 8720.1, + "probability": 0.8571 + }, + { + "start": 8722.04, + "end": 8723.5, + "probability": 0.6414 + }, + { + "start": 8723.88, + "end": 8724.2, + "probability": 0.7262 + }, + { + "start": 8724.24, + "end": 8724.88, + "probability": 0.831 + }, + { + "start": 8725.42, + "end": 8728.96, + "probability": 0.6472 + }, + { + "start": 8728.96, + "end": 8731.62, + "probability": 0.7141 + }, + { + "start": 8731.74, + "end": 8732.24, + "probability": 0.8574 + }, + { + "start": 8732.8, + "end": 8735.38, + "probability": 0.7936 + }, + { + "start": 8735.94, + "end": 8736.36, + "probability": 0.7288 + }, + { + "start": 8736.92, + "end": 8739.4, + "probability": 0.9947 + }, + { + "start": 8740.76, + "end": 8742.0, + "probability": 0.9878 + }, + { + "start": 8742.66, + "end": 8744.88, + "probability": 0.8367 + }, + { + "start": 8745.12, + "end": 8746.58, + "probability": 0.994 + }, + { + "start": 8747.1, + "end": 8751.8, + "probability": 0.9854 + }, + { + "start": 8752.3, + "end": 8752.34, + "probability": 0.0353 + }, + { + "start": 8752.34, + "end": 8752.34, + "probability": 0.0428 + }, + { + "start": 8752.34, + "end": 8753.14, + "probability": 0.556 + }, + { + "start": 8753.72, + "end": 8755.06, + "probability": 0.7657 + }, + { + "start": 8755.52, + "end": 8758.8, + "probability": 0.9946 + }, + { + "start": 8759.22, + "end": 8761.88, + "probability": 0.9677 + }, + { + "start": 8762.16, + "end": 8765.26, + "probability": 0.9302 + }, + { + "start": 8765.64, + "end": 8766.88, + "probability": 0.0352 + }, + { + "start": 8767.86, + "end": 8771.12, + "probability": 0.7051 + }, + { + "start": 8771.76, + "end": 8775.4, + "probability": 0.9534 + }, + { + "start": 8775.84, + "end": 8777.1, + "probability": 0.603 + }, + { + "start": 8777.54, + "end": 8779.38, + "probability": 0.9177 + }, + { + "start": 8779.96, + "end": 8780.84, + "probability": 0.5631 + }, + { + "start": 8780.84, + "end": 8780.84, + "probability": 0.2758 + }, + { + "start": 8780.84, + "end": 8782.0, + "probability": 0.8048 + }, + { + "start": 8782.44, + "end": 8784.24, + "probability": 0.9 + }, + { + "start": 8784.84, + "end": 8785.84, + "probability": 0.8695 + }, + { + "start": 8786.18, + "end": 8789.1, + "probability": 0.9592 + }, + { + "start": 8789.22, + "end": 8790.38, + "probability": 0.9496 + }, + { + "start": 8790.82, + "end": 8793.36, + "probability": 0.9979 + }, + { + "start": 8793.68, + "end": 8795.16, + "probability": 0.9967 + }, + { + "start": 8795.24, + "end": 8796.06, + "probability": 0.9232 + }, + { + "start": 8796.7, + "end": 8800.06, + "probability": 0.7038 + }, + { + "start": 8800.28, + "end": 8800.3, + "probability": 0.2158 + }, + { + "start": 8800.3, + "end": 8800.3, + "probability": 0.2778 + }, + { + "start": 8800.3, + "end": 8800.3, + "probability": 0.0362 + }, + { + "start": 8800.3, + "end": 8806.14, + "probability": 0.5699 + }, + { + "start": 8806.82, + "end": 8809.22, + "probability": 0.9959 + }, + { + "start": 8810.67, + "end": 8813.44, + "probability": 0.9645 + }, + { + "start": 8814.18, + "end": 8815.84, + "probability": 0.9935 + }, + { + "start": 8816.32, + "end": 8816.98, + "probability": 0.7629 + }, + { + "start": 8817.4, + "end": 8818.54, + "probability": 0.9927 + }, + { + "start": 8819.08, + "end": 8822.12, + "probability": 0.9952 + }, + { + "start": 8822.52, + "end": 8823.24, + "probability": 0.7152 + }, + { + "start": 8824.34, + "end": 8825.74, + "probability": 0.0693 + }, + { + "start": 8826.32, + "end": 8827.6, + "probability": 0.066 + }, + { + "start": 8827.78, + "end": 8829.14, + "probability": 0.4989 + }, + { + "start": 8831.94, + "end": 8835.86, + "probability": 0.9521 + }, + { + "start": 8835.92, + "end": 8837.86, + "probability": 0.9976 + }, + { + "start": 8838.12, + "end": 8839.96, + "probability": 0.9863 + }, + { + "start": 8840.2, + "end": 8842.06, + "probability": 0.9976 + }, + { + "start": 8842.48, + "end": 8846.24, + "probability": 0.8891 + }, + { + "start": 8846.8, + "end": 8852.36, + "probability": 0.9959 + }, + { + "start": 8853.34, + "end": 8854.6, + "probability": 0.9971 + }, + { + "start": 8854.9, + "end": 8856.02, + "probability": 0.9714 + }, + { + "start": 8857.26, + "end": 8859.22, + "probability": 0.9951 + }, + { + "start": 8862.02, + "end": 8864.6, + "probability": 0.9297 + }, + { + "start": 8864.94, + "end": 8865.16, + "probability": 0.0801 + }, + { + "start": 8865.26, + "end": 8867.7, + "probability": 0.7594 + }, + { + "start": 8868.42, + "end": 8872.5, + "probability": 0.4068 + }, + { + "start": 8872.8, + "end": 8873.82, + "probability": 0.3429 + }, + { + "start": 8873.82, + "end": 8875.26, + "probability": 0.0073 + }, + { + "start": 8876.56, + "end": 8876.66, + "probability": 0.0589 + }, + { + "start": 8876.66, + "end": 8876.66, + "probability": 0.0331 + }, + { + "start": 8876.66, + "end": 8878.2, + "probability": 0.8275 + }, + { + "start": 8878.56, + "end": 8883.58, + "probability": 0.987 + }, + { + "start": 8885.38, + "end": 8886.46, + "probability": 0.9321 + }, + { + "start": 8887.52, + "end": 8888.62, + "probability": 0.934 + }, + { + "start": 8889.62, + "end": 8890.88, + "probability": 0.7991 + }, + { + "start": 8891.0, + "end": 8893.42, + "probability": 0.6294 + }, + { + "start": 8894.02, + "end": 8897.6, + "probability": 0.9431 + }, + { + "start": 8898.36, + "end": 8900.26, + "probability": 0.9911 + }, + { + "start": 8900.54, + "end": 8901.28, + "probability": 0.9583 + }, + { + "start": 8901.6, + "end": 8902.56, + "probability": 0.9944 + }, + { + "start": 8902.72, + "end": 8903.68, + "probability": 0.9521 + }, + { + "start": 8904.5, + "end": 8909.2, + "probability": 0.8652 + }, + { + "start": 8909.76, + "end": 8910.81, + "probability": 0.9971 + }, + { + "start": 8912.76, + "end": 8913.98, + "probability": 0.9348 + }, + { + "start": 8914.42, + "end": 8915.7, + "probability": 0.9678 + }, + { + "start": 8915.9, + "end": 8917.04, + "probability": 0.9964 + }, + { + "start": 8917.64, + "end": 8919.3, + "probability": 0.9892 + }, + { + "start": 8920.2, + "end": 8923.48, + "probability": 0.9937 + }, + { + "start": 8923.92, + "end": 8926.7, + "probability": 0.9712 + }, + { + "start": 8926.88, + "end": 8930.1, + "probability": 0.8722 + }, + { + "start": 8930.74, + "end": 8931.66, + "probability": 0.9963 + }, + { + "start": 8932.16, + "end": 8936.0, + "probability": 0.9825 + }, + { + "start": 8936.2, + "end": 8936.94, + "probability": 0.9014 + }, + { + "start": 8937.74, + "end": 8938.42, + "probability": 0.8399 + }, + { + "start": 8938.94, + "end": 8940.2, + "probability": 0.9639 + }, + { + "start": 8940.74, + "end": 8941.64, + "probability": 0.7136 + }, + { + "start": 8941.76, + "end": 8945.64, + "probability": 0.9236 + }, + { + "start": 8946.1, + "end": 8947.82, + "probability": 0.9914 + }, + { + "start": 8948.28, + "end": 8950.24, + "probability": 0.6592 + }, + { + "start": 8951.62, + "end": 8952.06, + "probability": 0.5315 + }, + { + "start": 8952.72, + "end": 8956.42, + "probability": 0.9985 + }, + { + "start": 8956.42, + "end": 8959.32, + "probability": 0.9958 + }, + { + "start": 8960.04, + "end": 8961.42, + "probability": 0.733 + }, + { + "start": 8961.58, + "end": 8962.1, + "probability": 0.907 + }, + { + "start": 8962.5, + "end": 8965.58, + "probability": 0.9932 + }, + { + "start": 8966.2, + "end": 8969.28, + "probability": 0.933 + }, + { + "start": 8969.84, + "end": 8972.08, + "probability": 0.9283 + }, + { + "start": 8972.64, + "end": 8978.36, + "probability": 0.9602 + }, + { + "start": 8978.94, + "end": 8983.34, + "probability": 0.9126 + }, + { + "start": 8984.54, + "end": 8987.6, + "probability": 0.8706 + }, + { + "start": 8987.74, + "end": 8988.74, + "probability": 0.6734 + }, + { + "start": 8989.58, + "end": 8990.32, + "probability": 0.9483 + }, + { + "start": 8991.1, + "end": 8994.5, + "probability": 0.6275 + }, + { + "start": 8995.46, + "end": 8996.28, + "probability": 0.9367 + }, + { + "start": 8997.14, + "end": 8999.48, + "probability": 0.9953 + }, + { + "start": 9000.46, + "end": 9001.02, + "probability": 0.5615 + }, + { + "start": 9001.8, + "end": 9002.1, + "probability": 0.8085 + }, + { + "start": 9003.48, + "end": 9004.81, + "probability": 0.7081 + }, + { + "start": 9005.14, + "end": 9006.36, + "probability": 0.8317 + }, + { + "start": 9006.72, + "end": 9010.22, + "probability": 0.7304 + }, + { + "start": 9010.88, + "end": 9014.58, + "probability": 0.5135 + }, + { + "start": 9014.74, + "end": 9015.18, + "probability": 0.0608 + }, + { + "start": 9015.56, + "end": 9016.72, + "probability": 0.9946 + }, + { + "start": 9016.8, + "end": 9018.72, + "probability": 0.8555 + }, + { + "start": 9018.72, + "end": 9020.02, + "probability": 0.5245 + }, + { + "start": 9020.08, + "end": 9021.54, + "probability": 0.7739 + }, + { + "start": 9021.62, + "end": 9023.36, + "probability": 0.874 + }, + { + "start": 9023.42, + "end": 9026.24, + "probability": 0.9917 + }, + { + "start": 9026.86, + "end": 9028.9, + "probability": 0.9027 + }, + { + "start": 9035.06, + "end": 9036.9, + "probability": 0.8607 + }, + { + "start": 9037.36, + "end": 9040.54, + "probability": 0.8464 + }, + { + "start": 9040.82, + "end": 9042.61, + "probability": 0.9356 + }, + { + "start": 9044.78, + "end": 9047.06, + "probability": 0.8215 + }, + { + "start": 9047.74, + "end": 9049.18, + "probability": 0.9902 + }, + { + "start": 9050.46, + "end": 9051.92, + "probability": 0.9885 + }, + { + "start": 9052.76, + "end": 9056.34, + "probability": 0.9963 + }, + { + "start": 9057.78, + "end": 9059.24, + "probability": 0.7558 + }, + { + "start": 9059.84, + "end": 9061.24, + "probability": 0.5147 + }, + { + "start": 9061.58, + "end": 9063.24, + "probability": 0.7739 + }, + { + "start": 9063.62, + "end": 9065.36, + "probability": 0.8045 + }, + { + "start": 9065.72, + "end": 9065.76, + "probability": 0.0346 + }, + { + "start": 9074.26, + "end": 9076.6, + "probability": 0.2012 + }, + { + "start": 9078.82, + "end": 9079.74, + "probability": 0.3185 + }, + { + "start": 9079.74, + "end": 9081.26, + "probability": 0.5494 + }, + { + "start": 9082.14, + "end": 9082.48, + "probability": 0.0472 + }, + { + "start": 9083.76, + "end": 9083.94, + "probability": 0.0819 + }, + { + "start": 9083.94, + "end": 9086.96, + "probability": 0.78 + }, + { + "start": 9089.94, + "end": 9093.92, + "probability": 0.0148 + }, + { + "start": 9110.64, + "end": 9112.92, + "probability": 0.5723 + }, + { + "start": 9113.08, + "end": 9114.14, + "probability": 0.5978 + }, + { + "start": 9114.2, + "end": 9117.3, + "probability": 0.5471 + }, + { + "start": 9117.3, + "end": 9118.16, + "probability": 0.2929 + }, + { + "start": 9118.58, + "end": 9120.22, + "probability": 0.8371 + }, + { + "start": 9120.26, + "end": 9121.62, + "probability": 0.8116 + }, + { + "start": 9121.62, + "end": 9122.16, + "probability": 0.4677 + }, + { + "start": 9122.66, + "end": 9123.06, + "probability": 0.7954 + }, + { + "start": 9124.3, + "end": 9124.54, + "probability": 0.3984 + }, + { + "start": 9128.12, + "end": 9130.52, + "probability": 0.7736 + }, + { + "start": 9130.94, + "end": 9132.74, + "probability": 0.9971 + }, + { + "start": 9133.98, + "end": 9136.56, + "probability": 0.9966 + }, + { + "start": 9138.0, + "end": 9141.48, + "probability": 0.4651 + }, + { + "start": 9141.6, + "end": 9143.02, + "probability": 0.9614 + }, + { + "start": 9143.04, + "end": 9146.42, + "probability": 0.852 + }, + { + "start": 9148.04, + "end": 9149.6, + "probability": 0.9875 + }, + { + "start": 9149.92, + "end": 9151.5, + "probability": 0.9544 + }, + { + "start": 9152.46, + "end": 9153.35, + "probability": 0.9814 + }, + { + "start": 9154.26, + "end": 9155.92, + "probability": 0.9768 + }, + { + "start": 9155.96, + "end": 9158.08, + "probability": 0.9824 + }, + { + "start": 9158.14, + "end": 9162.28, + "probability": 0.9541 + }, + { + "start": 9162.36, + "end": 9163.64, + "probability": 0.2222 + }, + { + "start": 9164.52, + "end": 9168.62, + "probability": 0.9823 + }, + { + "start": 9169.26, + "end": 9170.12, + "probability": 0.4167 + }, + { + "start": 9170.3, + "end": 9171.56, + "probability": 0.9004 + }, + { + "start": 9171.92, + "end": 9172.82, + "probability": 0.896 + }, + { + "start": 9172.86, + "end": 9173.0, + "probability": 0.8673 + }, + { + "start": 9174.02, + "end": 9176.38, + "probability": 0.9639 + }, + { + "start": 9177.08, + "end": 9179.9, + "probability": 0.745 + }, + { + "start": 9180.68, + "end": 9184.5, + "probability": 0.9965 + }, + { + "start": 9185.2, + "end": 9186.32, + "probability": 0.943 + }, + { + "start": 9186.4, + "end": 9187.28, + "probability": 0.8935 + }, + { + "start": 9187.46, + "end": 9190.5, + "probability": 0.9722 + }, + { + "start": 9190.94, + "end": 9195.4, + "probability": 0.9927 + }, + { + "start": 9195.54, + "end": 9196.8, + "probability": 0.8831 + }, + { + "start": 9197.44, + "end": 9198.56, + "probability": 0.8589 + }, + { + "start": 9199.1, + "end": 9201.88, + "probability": 0.8758 + }, + { + "start": 9202.76, + "end": 9203.88, + "probability": 0.7657 + }, + { + "start": 9204.04, + "end": 9206.69, + "probability": 0.9526 + }, + { + "start": 9207.52, + "end": 9211.56, + "probability": 0.9743 + }, + { + "start": 9212.32, + "end": 9212.66, + "probability": 0.3474 + }, + { + "start": 9212.78, + "end": 9214.58, + "probability": 0.9368 + }, + { + "start": 9215.0, + "end": 9216.18, + "probability": 0.7593 + }, + { + "start": 9217.4, + "end": 9220.98, + "probability": 0.9647 + }, + { + "start": 9221.52, + "end": 9223.1, + "probability": 0.8969 + }, + { + "start": 9223.8, + "end": 9224.48, + "probability": 0.8184 + }, + { + "start": 9225.34, + "end": 9228.88, + "probability": 0.9388 + }, + { + "start": 9228.88, + "end": 9232.16, + "probability": 0.9687 + }, + { + "start": 9232.82, + "end": 9237.94, + "probability": 0.9937 + }, + { + "start": 9238.18, + "end": 9239.54, + "probability": 0.9888 + }, + { + "start": 9239.66, + "end": 9241.61, + "probability": 0.5108 + }, + { + "start": 9247.48, + "end": 9248.52, + "probability": 0.6714 + }, + { + "start": 9249.38, + "end": 9250.44, + "probability": 0.8969 + }, + { + "start": 9254.22, + "end": 9257.24, + "probability": 0.9238 + }, + { + "start": 9257.9, + "end": 9259.84, + "probability": 0.7339 + }, + { + "start": 9260.66, + "end": 9262.12, + "probability": 0.9985 + }, + { + "start": 9263.02, + "end": 9264.32, + "probability": 0.9922 + }, + { + "start": 9264.46, + "end": 9268.42, + "probability": 0.9431 + }, + { + "start": 9269.76, + "end": 9271.74, + "probability": 0.9062 + }, + { + "start": 9272.04, + "end": 9272.77, + "probability": 0.7795 + }, + { + "start": 9273.08, + "end": 9273.64, + "probability": 0.7559 + }, + { + "start": 9274.14, + "end": 9277.56, + "probability": 0.7362 + }, + { + "start": 9278.2, + "end": 9280.5, + "probability": 0.9257 + }, + { + "start": 9281.22, + "end": 9282.27, + "probability": 0.9834 + }, + { + "start": 9282.62, + "end": 9286.22, + "probability": 0.9204 + }, + { + "start": 9287.16, + "end": 9288.88, + "probability": 0.9107 + }, + { + "start": 9289.68, + "end": 9296.94, + "probability": 0.9473 + }, + { + "start": 9297.76, + "end": 9301.22, + "probability": 0.9672 + }, + { + "start": 9303.82, + "end": 9305.28, + "probability": 0.9023 + }, + { + "start": 9306.26, + "end": 9312.38, + "probability": 0.9526 + }, + { + "start": 9312.38, + "end": 9316.04, + "probability": 0.9795 + }, + { + "start": 9316.6, + "end": 9318.14, + "probability": 0.7052 + }, + { + "start": 9319.94, + "end": 9322.18, + "probability": 0.9785 + }, + { + "start": 9322.64, + "end": 9324.9, + "probability": 0.9786 + }, + { + "start": 9325.42, + "end": 9326.52, + "probability": 0.5463 + }, + { + "start": 9327.52, + "end": 9332.46, + "probability": 0.9844 + }, + { + "start": 9334.78, + "end": 9336.52, + "probability": 0.8682 + }, + { + "start": 9337.12, + "end": 9338.92, + "probability": 0.8662 + }, + { + "start": 9343.92, + "end": 9345.62, + "probability": 0.5715 + }, + { + "start": 9346.16, + "end": 9346.16, + "probability": 0.6532 + }, + { + "start": 9346.16, + "end": 9349.74, + "probability": 0.9849 + }, + { + "start": 9349.74, + "end": 9353.0, + "probability": 0.8371 + }, + { + "start": 9353.74, + "end": 9358.16, + "probability": 0.9959 + }, + { + "start": 9359.22, + "end": 9362.18, + "probability": 0.9692 + }, + { + "start": 9363.16, + "end": 9364.96, + "probability": 0.9895 + }, + { + "start": 9365.94, + "end": 9369.38, + "probability": 0.9912 + }, + { + "start": 9369.82, + "end": 9371.06, + "probability": 0.8682 + }, + { + "start": 9371.84, + "end": 9374.08, + "probability": 0.9969 + }, + { + "start": 9374.74, + "end": 9378.22, + "probability": 0.8892 + }, + { + "start": 9379.41, + "end": 9383.36, + "probability": 0.9868 + }, + { + "start": 9383.36, + "end": 9386.98, + "probability": 0.8771 + }, + { + "start": 9387.44, + "end": 9390.98, + "probability": 0.8723 + }, + { + "start": 9391.04, + "end": 9391.81, + "probability": 0.9453 + }, + { + "start": 9392.52, + "end": 9394.86, + "probability": 0.3796 + }, + { + "start": 9396.34, + "end": 9397.84, + "probability": 0.7451 + }, + { + "start": 9403.32, + "end": 9407.88, + "probability": 0.9971 + }, + { + "start": 9408.78, + "end": 9410.84, + "probability": 0.0508 + }, + { + "start": 9410.96, + "end": 9412.82, + "probability": 0.6206 + }, + { + "start": 9412.82, + "end": 9413.06, + "probability": 0.281 + }, + { + "start": 9413.06, + "end": 9413.62, + "probability": 0.3775 + }, + { + "start": 9414.91, + "end": 9418.62, + "probability": 0.0512 + }, + { + "start": 9418.64, + "end": 9420.9, + "probability": 0.0025 + }, + { + "start": 9423.6, + "end": 9424.18, + "probability": 0.9727 + }, + { + "start": 9443.72, + "end": 9446.0, + "probability": 0.6659 + }, + { + "start": 9446.28, + "end": 9448.6, + "probability": 0.9559 + }, + { + "start": 9449.28, + "end": 9452.28, + "probability": 0.9191 + }, + { + "start": 9452.42, + "end": 9458.22, + "probability": 0.9966 + }, + { + "start": 9458.48, + "end": 9463.02, + "probability": 0.999 + }, + { + "start": 9463.02, + "end": 9469.06, + "probability": 0.9893 + }, + { + "start": 9477.34, + "end": 9480.12, + "probability": 0.7029 + }, + { + "start": 9480.5, + "end": 9481.6, + "probability": 0.5306 + }, + { + "start": 9487.28, + "end": 9487.76, + "probability": 0.6936 + }, + { + "start": 9488.5, + "end": 9489.6, + "probability": 0.6333 + }, + { + "start": 9490.16, + "end": 9493.28, + "probability": 0.9605 + }, + { + "start": 9493.48, + "end": 9494.36, + "probability": 0.9336 + }, + { + "start": 9495.54, + "end": 9497.98, + "probability": 0.9058 + }, + { + "start": 9498.8, + "end": 9500.92, + "probability": 0.951 + }, + { + "start": 9501.72, + "end": 9503.34, + "probability": 0.6662 + }, + { + "start": 9503.9, + "end": 9505.26, + "probability": 0.5332 + }, + { + "start": 9505.7, + "end": 9507.84, + "probability": 0.9595 + }, + { + "start": 9508.3, + "end": 9509.16, + "probability": 0.6648 + }, + { + "start": 9510.26, + "end": 9512.86, + "probability": 0.3958 + }, + { + "start": 9513.0, + "end": 9513.44, + "probability": 0.7883 + }, + { + "start": 9513.44, + "end": 9515.56, + "probability": 0.9348 + }, + { + "start": 9516.14, + "end": 9518.48, + "probability": 0.8262 + }, + { + "start": 9519.36, + "end": 9523.72, + "probability": 0.9919 + }, + { + "start": 9524.14, + "end": 9525.8, + "probability": 0.8879 + }, + { + "start": 9526.58, + "end": 9527.82, + "probability": 0.9093 + }, + { + "start": 9528.44, + "end": 9534.86, + "probability": 0.9014 + }, + { + "start": 9535.96, + "end": 9538.74, + "probability": 0.9329 + }, + { + "start": 9539.6, + "end": 9542.96, + "probability": 0.9418 + }, + { + "start": 9543.66, + "end": 9545.2, + "probability": 0.9921 + }, + { + "start": 9545.72, + "end": 9546.31, + "probability": 0.9365 + }, + { + "start": 9546.78, + "end": 9547.88, + "probability": 0.8866 + }, + { + "start": 9548.34, + "end": 9549.96, + "probability": 0.881 + }, + { + "start": 9550.66, + "end": 9552.62, + "probability": 0.8986 + }, + { + "start": 9563.68, + "end": 9568.06, + "probability": 0.6014 + }, + { + "start": 9568.06, + "end": 9571.54, + "probability": 0.5012 + }, + { + "start": 9573.62, + "end": 9576.72, + "probability": 0.8174 + }, + { + "start": 9577.4, + "end": 9578.38, + "probability": 0.7534 + }, + { + "start": 9579.02, + "end": 9580.2, + "probability": 0.936 + }, + { + "start": 9580.74, + "end": 9582.46, + "probability": 0.9901 + }, + { + "start": 9583.16, + "end": 9583.46, + "probability": 0.7742 + }, + { + "start": 9584.28, + "end": 9587.92, + "probability": 0.8508 + }, + { + "start": 9588.46, + "end": 9593.2, + "probability": 0.6906 + }, + { + "start": 9593.9, + "end": 9596.0, + "probability": 0.7467 + }, + { + "start": 9596.1, + "end": 9602.08, + "probability": 0.8016 + }, + { + "start": 9602.5, + "end": 9605.2, + "probability": 0.7489 + }, + { + "start": 9605.38, + "end": 9605.62, + "probability": 0.8325 + }, + { + "start": 9610.14, + "end": 9610.64, + "probability": 0.4042 + }, + { + "start": 9610.9, + "end": 9612.14, + "probability": 0.6856 + }, + { + "start": 9612.4, + "end": 9615.56, + "probability": 0.9854 + }, + { + "start": 9616.68, + "end": 9620.0, + "probability": 0.9663 + }, + { + "start": 9620.14, + "end": 9620.88, + "probability": 0.9767 + }, + { + "start": 9621.82, + "end": 9622.4, + "probability": 0.7901 + }, + { + "start": 9622.96, + "end": 9626.0, + "probability": 0.9976 + }, + { + "start": 9626.7, + "end": 9628.76, + "probability": 0.9985 + }, + { + "start": 9630.5, + "end": 9631.46, + "probability": 0.9982 + }, + { + "start": 9632.68, + "end": 9634.4, + "probability": 0.9711 + }, + { + "start": 9634.46, + "end": 9635.42, + "probability": 0.7731 + }, + { + "start": 9635.68, + "end": 9636.32, + "probability": 0.8242 + }, + { + "start": 9637.46, + "end": 9640.58, + "probability": 0.9978 + }, + { + "start": 9641.38, + "end": 9643.74, + "probability": 0.7361 + }, + { + "start": 9645.64, + "end": 9646.48, + "probability": 0.7488 + }, + { + "start": 9646.62, + "end": 9647.1, + "probability": 0.4978 + }, + { + "start": 9647.26, + "end": 9648.71, + "probability": 0.8938 + }, + { + "start": 9648.86, + "end": 9649.2, + "probability": 0.7275 + }, + { + "start": 9649.98, + "end": 9651.34, + "probability": 0.9506 + }, + { + "start": 9651.52, + "end": 9652.18, + "probability": 0.0919 + }, + { + "start": 9652.3, + "end": 9655.12, + "probability": 0.9351 + }, + { + "start": 9655.8, + "end": 9656.5, + "probability": 0.9454 + }, + { + "start": 9656.58, + "end": 9658.06, + "probability": 0.6139 + }, + { + "start": 9658.1, + "end": 9660.7, + "probability": 0.9962 + }, + { + "start": 9660.8, + "end": 9661.58, + "probability": 0.7708 + }, + { + "start": 9661.68, + "end": 9663.62, + "probability": 0.9417 + }, + { + "start": 9663.62, + "end": 9664.25, + "probability": 0.9108 + }, + { + "start": 9665.12, + "end": 9667.6, + "probability": 0.9479 + }, + { + "start": 9668.16, + "end": 9670.28, + "probability": 0.9211 + }, + { + "start": 9670.38, + "end": 9672.38, + "probability": 0.9974 + }, + { + "start": 9673.36, + "end": 9674.9, + "probability": 0.9788 + }, + { + "start": 9675.42, + "end": 9676.18, + "probability": 0.8646 + }, + { + "start": 9676.24, + "end": 9679.3, + "probability": 0.7414 + }, + { + "start": 9679.88, + "end": 9681.46, + "probability": 0.7479 + }, + { + "start": 9681.6, + "end": 9682.94, + "probability": 0.7683 + }, + { + "start": 9683.4, + "end": 9683.97, + "probability": 0.5874 + }, + { + "start": 9684.12, + "end": 9685.1, + "probability": 0.782 + }, + { + "start": 9685.16, + "end": 9687.56, + "probability": 0.9792 + }, + { + "start": 9687.56, + "end": 9691.54, + "probability": 0.9457 + }, + { + "start": 9691.56, + "end": 9693.22, + "probability": 0.9794 + }, + { + "start": 9693.72, + "end": 9695.68, + "probability": 0.9923 + }, + { + "start": 9695.76, + "end": 9698.14, + "probability": 0.9915 + }, + { + "start": 9698.54, + "end": 9699.82, + "probability": 0.9946 + }, + { + "start": 9700.26, + "end": 9701.14, + "probability": 0.9605 + }, + { + "start": 9701.2, + "end": 9702.64, + "probability": 0.9979 + }, + { + "start": 9702.68, + "end": 9705.04, + "probability": 0.9845 + }, + { + "start": 9705.1, + "end": 9707.06, + "probability": 0.9932 + }, + { + "start": 9707.42, + "end": 9708.82, + "probability": 0.776 + }, + { + "start": 9709.56, + "end": 9709.92, + "probability": 0.5548 + }, + { + "start": 9710.26, + "end": 9711.82, + "probability": 0.968 + }, + { + "start": 9711.84, + "end": 9713.08, + "probability": 0.8393 + }, + { + "start": 9713.76, + "end": 9715.88, + "probability": 0.7942 + }, + { + "start": 9727.36, + "end": 9729.94, + "probability": 0.6262 + }, + { + "start": 9732.08, + "end": 9738.76, + "probability": 0.9786 + }, + { + "start": 9739.54, + "end": 9740.56, + "probability": 0.9468 + }, + { + "start": 9741.12, + "end": 9742.12, + "probability": 0.7492 + }, + { + "start": 9742.8, + "end": 9743.48, + "probability": 0.9626 + }, + { + "start": 9743.72, + "end": 9746.98, + "probability": 0.9984 + }, + { + "start": 9749.22, + "end": 9752.36, + "probability": 0.9562 + }, + { + "start": 9752.8, + "end": 9754.56, + "probability": 0.9634 + }, + { + "start": 9755.36, + "end": 9757.82, + "probability": 0.998 + }, + { + "start": 9757.9, + "end": 9759.42, + "probability": 0.979 + }, + { + "start": 9759.84, + "end": 9762.56, + "probability": 0.9681 + }, + { + "start": 9763.24, + "end": 9766.82, + "probability": 0.9868 + }, + { + "start": 9767.48, + "end": 9771.36, + "probability": 0.9437 + }, + { + "start": 9772.14, + "end": 9773.52, + "probability": 0.9944 + }, + { + "start": 9774.36, + "end": 9776.1, + "probability": 0.9995 + }, + { + "start": 9776.32, + "end": 9776.88, + "probability": 0.9168 + }, + { + "start": 9777.96, + "end": 9780.24, + "probability": 0.7163 + }, + { + "start": 9780.58, + "end": 9785.96, + "probability": 0.8799 + }, + { + "start": 9786.1, + "end": 9787.32, + "probability": 0.3534 + }, + { + "start": 9787.9, + "end": 9789.14, + "probability": 0.9797 + }, + { + "start": 9789.74, + "end": 9790.44, + "probability": 0.9132 + }, + { + "start": 9790.5, + "end": 9790.88, + "probability": 0.5206 + }, + { + "start": 9791.08, + "end": 9793.34, + "probability": 0.7676 + }, + { + "start": 9793.34, + "end": 9796.44, + "probability": 0.9968 + }, + { + "start": 9796.6, + "end": 9797.8, + "probability": 0.4274 + }, + { + "start": 9798.12, + "end": 9799.06, + "probability": 0.9795 + }, + { + "start": 9799.42, + "end": 9799.94, + "probability": 0.8217 + }, + { + "start": 9800.18, + "end": 9803.38, + "probability": 0.7158 + }, + { + "start": 9803.78, + "end": 9807.26, + "probability": 0.504 + }, + { + "start": 9807.28, + "end": 9808.58, + "probability": 0.8053 + }, + { + "start": 9808.8, + "end": 9809.94, + "probability": 0.9119 + }, + { + "start": 9810.28, + "end": 9811.78, + "probability": 0.9535 + }, + { + "start": 9811.84, + "end": 9812.76, + "probability": 0.8543 + }, + { + "start": 9813.06, + "end": 9815.56, + "probability": 0.9744 + }, + { + "start": 9818.86, + "end": 9822.2, + "probability": 0.8529 + }, + { + "start": 9823.54, + "end": 9825.16, + "probability": 0.6094 + }, + { + "start": 9825.22, + "end": 9828.24, + "probability": 0.9455 + }, + { + "start": 9828.92, + "end": 9830.24, + "probability": 0.4464 + }, + { + "start": 9830.84, + "end": 9831.9, + "probability": 0.9109 + }, + { + "start": 9832.26, + "end": 9833.92, + "probability": 0.7085 + }, + { + "start": 9834.76, + "end": 9836.18, + "probability": 0.9365 + }, + { + "start": 9836.72, + "end": 9837.5, + "probability": 0.758 + }, + { + "start": 9837.64, + "end": 9838.6, + "probability": 0.5177 + }, + { + "start": 9839.04, + "end": 9841.9, + "probability": 0.9764 + }, + { + "start": 9845.96, + "end": 9847.3, + "probability": 0.7404 + }, + { + "start": 9847.58, + "end": 9848.52, + "probability": 0.6514 + }, + { + "start": 9849.28, + "end": 9850.24, + "probability": 0.7378 + }, + { + "start": 9850.58, + "end": 9850.84, + "probability": 0.7151 + }, + { + "start": 9851.24, + "end": 9854.04, + "probability": 0.9954 + }, + { + "start": 9854.76, + "end": 9856.16, + "probability": 0.8531 + }, + { + "start": 9856.48, + "end": 9857.76, + "probability": 0.9187 + }, + { + "start": 9859.4, + "end": 9859.4, + "probability": 0.6497 + }, + { + "start": 9859.4, + "end": 9860.4, + "probability": 0.5703 + }, + { + "start": 9860.74, + "end": 9861.24, + "probability": 0.7878 + }, + { + "start": 9861.4, + "end": 9862.06, + "probability": 0.7395 + }, + { + "start": 9863.42, + "end": 9864.86, + "probability": 0.9568 + }, + { + "start": 9867.22, + "end": 9870.04, + "probability": 0.862 + }, + { + "start": 9871.46, + "end": 9873.82, + "probability": 0.9354 + }, + { + "start": 9874.16, + "end": 9875.4, + "probability": 0.0491 + }, + { + "start": 9875.4, + "end": 9875.4, + "probability": 0.522 + }, + { + "start": 9875.4, + "end": 9875.4, + "probability": 0.5932 + }, + { + "start": 9875.4, + "end": 9876.24, + "probability": 0.1501 + }, + { + "start": 9876.82, + "end": 9880.14, + "probability": 0.6499 + }, + { + "start": 9881.3, + "end": 9882.46, + "probability": 0.856 + }, + { + "start": 9882.54, + "end": 9883.17, + "probability": 0.0225 + }, + { + "start": 9883.42, + "end": 9885.06, + "probability": 0.9589 + }, + { + "start": 9885.14, + "end": 9886.96, + "probability": 0.4643 + }, + { + "start": 9887.4, + "end": 9887.88, + "probability": 0.7923 + }, + { + "start": 9888.64, + "end": 9891.56, + "probability": 0.8906 + }, + { + "start": 9893.59, + "end": 9895.47, + "probability": 0.8229 + }, + { + "start": 9898.9, + "end": 9900.88, + "probability": 0.6387 + }, + { + "start": 9900.96, + "end": 9902.74, + "probability": 0.5704 + }, + { + "start": 9902.86, + "end": 9904.34, + "probability": 0.5623 + }, + { + "start": 9904.78, + "end": 9905.42, + "probability": 0.8973 + }, + { + "start": 9905.54, + "end": 9909.68, + "probability": 0.8042 + }, + { + "start": 9909.68, + "end": 9910.96, + "probability": 0.8818 + }, + { + "start": 9911.74, + "end": 9912.22, + "probability": 0.4666 + }, + { + "start": 9912.58, + "end": 9914.86, + "probability": 0.0392 + }, + { + "start": 9926.48, + "end": 9926.86, + "probability": 0.3288 + }, + { + "start": 9927.44, + "end": 9933.68, + "probability": 0.1886 + }, + { + "start": 9935.66, + "end": 9936.34, + "probability": 0.1188 + }, + { + "start": 9936.52, + "end": 9936.92, + "probability": 0.1824 + }, + { + "start": 9937.28, + "end": 9937.64, + "probability": 0.3829 + }, + { + "start": 9937.76, + "end": 9942.16, + "probability": 0.5461 + }, + { + "start": 9942.46, + "end": 9945.9, + "probability": 0.7068 + }, + { + "start": 9945.9, + "end": 9949.98, + "probability": 0.955 + }, + { + "start": 9950.04, + "end": 9951.76, + "probability": 0.8116 + }, + { + "start": 9951.96, + "end": 9954.54, + "probability": 0.9493 + }, + { + "start": 9955.64, + "end": 9957.38, + "probability": 0.8082 + }, + { + "start": 9969.62, + "end": 9970.16, + "probability": 0.455 + }, + { + "start": 9971.52, + "end": 9972.74, + "probability": 0.7645 + }, + { + "start": 9975.2, + "end": 9978.38, + "probability": 0.8427 + }, + { + "start": 9979.0, + "end": 9980.04, + "probability": 0.8157 + }, + { + "start": 9980.1, + "end": 9981.92, + "probability": 0.931 + }, + { + "start": 9986.4, + "end": 9989.8, + "probability": 0.6971 + }, + { + "start": 9989.8, + "end": 9995.06, + "probability": 0.3909 + }, + { + "start": 9995.32, + "end": 9996.42, + "probability": 0.6641 + }, + { + "start": 9996.66, + "end": 9997.02, + "probability": 0.503 + }, + { + "start": 9997.5, + "end": 9998.38, + "probability": 0.5856 + }, + { + "start": 9998.4, + "end": 9999.3, + "probability": 0.7544 + }, + { + "start": 9999.42, + "end": 10000.28, + "probability": 0.8296 + }, + { + "start": 10000.38, + "end": 10001.16, + "probability": 0.7803 + }, + { + "start": 10005.0, + "end": 10005.84, + "probability": 0.5156 + }, + { + "start": 10008.98, + "end": 10011.9, + "probability": 0.8978 + }, + { + "start": 10011.9, + "end": 10016.64, + "probability": 0.9703 + }, + { + "start": 10018.55, + "end": 10022.8, + "probability": 0.9326 + }, + { + "start": 10024.9, + "end": 10027.5, + "probability": 0.9722 + }, + { + "start": 10028.62, + "end": 10031.42, + "probability": 0.9518 + }, + { + "start": 10033.36, + "end": 10037.8, + "probability": 0.8179 + }, + { + "start": 10039.16, + "end": 10041.34, + "probability": 0.9688 + }, + { + "start": 10042.34, + "end": 10045.98, + "probability": 0.9717 + }, + { + "start": 10046.78, + "end": 10048.34, + "probability": 0.8609 + }, + { + "start": 10048.52, + "end": 10050.08, + "probability": 0.8229 + }, + { + "start": 10050.24, + "end": 10051.06, + "probability": 0.715 + }, + { + "start": 10052.72, + "end": 10055.16, + "probability": 0.8049 + }, + { + "start": 10055.94, + "end": 10057.44, + "probability": 0.8401 + }, + { + "start": 10057.78, + "end": 10059.58, + "probability": 0.2182 + }, + { + "start": 10060.48, + "end": 10062.52, + "probability": 0.9694 + }, + { + "start": 10063.52, + "end": 10065.0, + "probability": 0.9455 + }, + { + "start": 10067.15, + "end": 10070.91, + "probability": 0.7592 + }, + { + "start": 10071.5, + "end": 10074.14, + "probability": 0.7814 + }, + { + "start": 10075.06, + "end": 10075.8, + "probability": 0.8382 + }, + { + "start": 10080.2, + "end": 10082.26, + "probability": 0.6399 + }, + { + "start": 10083.38, + "end": 10083.5, + "probability": 0.0324 + }, + { + "start": 10083.5, + "end": 10083.94, + "probability": 0.216 + }, + { + "start": 10084.9, + "end": 10090.66, + "probability": 0.9683 + }, + { + "start": 10092.55, + "end": 10094.28, + "probability": 0.6635 + }, + { + "start": 10095.6, + "end": 10100.84, + "probability": 0.9602 + }, + { + "start": 10102.48, + "end": 10105.74, + "probability": 0.9607 + }, + { + "start": 10108.74, + "end": 10109.94, + "probability": 0.9873 + }, + { + "start": 10110.98, + "end": 10113.42, + "probability": 0.9957 + }, + { + "start": 10114.18, + "end": 10115.44, + "probability": 0.9756 + }, + { + "start": 10116.56, + "end": 10119.52, + "probability": 0.9539 + }, + { + "start": 10119.58, + "end": 10120.4, + "probability": 0.9935 + }, + { + "start": 10121.0, + "end": 10122.2, + "probability": 0.9065 + }, + { + "start": 10124.96, + "end": 10128.98, + "probability": 0.8805 + }, + { + "start": 10129.88, + "end": 10131.22, + "probability": 0.9726 + }, + { + "start": 10131.86, + "end": 10133.55, + "probability": 0.8794 + }, + { + "start": 10134.72, + "end": 10138.4, + "probability": 0.8162 + }, + { + "start": 10140.5, + "end": 10141.86, + "probability": 0.8372 + }, + { + "start": 10141.98, + "end": 10142.52, + "probability": 0.8877 + }, + { + "start": 10143.16, + "end": 10148.58, + "probability": 0.6887 + }, + { + "start": 10149.24, + "end": 10151.4, + "probability": 0.8857 + }, + { + "start": 10152.8, + "end": 10153.32, + "probability": 0.8331 + }, + { + "start": 10153.42, + "end": 10157.74, + "probability": 0.9535 + }, + { + "start": 10158.44, + "end": 10161.22, + "probability": 0.9185 + }, + { + "start": 10162.3, + "end": 10168.28, + "probability": 0.9928 + }, + { + "start": 10169.22, + "end": 10172.8, + "probability": 0.8575 + }, + { + "start": 10172.8, + "end": 10177.1, + "probability": 0.8211 + }, + { + "start": 10178.7, + "end": 10181.26, + "probability": 0.3923 + }, + { + "start": 10181.44, + "end": 10182.56, + "probability": 0.9471 + }, + { + "start": 10182.7, + "end": 10183.38, + "probability": 0.3169 + }, + { + "start": 10183.46, + "end": 10185.1, + "probability": 0.8965 + }, + { + "start": 10185.74, + "end": 10188.58, + "probability": 0.7695 + }, + { + "start": 10189.36, + "end": 10190.16, + "probability": 0.9429 + }, + { + "start": 10191.08, + "end": 10195.14, + "probability": 0.8441 + }, + { + "start": 10195.36, + "end": 10196.74, + "probability": 0.9802 + }, + { + "start": 10197.58, + "end": 10200.04, + "probability": 0.8707 + }, + { + "start": 10201.0, + "end": 10204.54, + "probability": 0.7441 + }, + { + "start": 10205.68, + "end": 10206.64, + "probability": 0.2589 + }, + { + "start": 10207.28, + "end": 10209.38, + "probability": 0.9652 + }, + { + "start": 10210.46, + "end": 10212.58, + "probability": 0.7162 + }, + { + "start": 10213.68, + "end": 10216.46, + "probability": 0.7524 + }, + { + "start": 10216.98, + "end": 10221.9, + "probability": 0.959 + }, + { + "start": 10222.62, + "end": 10228.96, + "probability": 0.9005 + }, + { + "start": 10231.38, + "end": 10236.88, + "probability": 0.6437 + }, + { + "start": 10237.42, + "end": 10243.5, + "probability": 0.6933 + }, + { + "start": 10243.72, + "end": 10244.76, + "probability": 0.9848 + }, + { + "start": 10245.42, + "end": 10246.88, + "probability": 0.9856 + }, + { + "start": 10248.22, + "end": 10250.3, + "probability": 0.8799 + }, + { + "start": 10250.84, + "end": 10253.56, + "probability": 0.929 + }, + { + "start": 10253.56, + "end": 10257.22, + "probability": 0.9731 + }, + { + "start": 10257.98, + "end": 10261.48, + "probability": 0.6951 + }, + { + "start": 10261.64, + "end": 10263.56, + "probability": 0.4518 + }, + { + "start": 10275.44, + "end": 10279.14, + "probability": 0.9976 + }, + { + "start": 10280.54, + "end": 10282.46, + "probability": 0.9589 + }, + { + "start": 10282.88, + "end": 10284.06, + "probability": 0.9574 + }, + { + "start": 10284.18, + "end": 10286.0, + "probability": 0.4996 + }, + { + "start": 10286.9, + "end": 10290.26, + "probability": 0.9948 + }, + { + "start": 10291.4, + "end": 10293.94, + "probability": 0.9279 + }, + { + "start": 10295.02, + "end": 10298.88, + "probability": 0.9631 + }, + { + "start": 10299.66, + "end": 10301.36, + "probability": 0.974 + }, + { + "start": 10301.46, + "end": 10303.62, + "probability": 0.8962 + }, + { + "start": 10304.2, + "end": 10306.4, + "probability": 0.8952 + }, + { + "start": 10311.5, + "end": 10312.16, + "probability": 0.2314 + }, + { + "start": 10312.46, + "end": 10316.38, + "probability": 0.2143 + }, + { + "start": 10319.84, + "end": 10323.82, + "probability": 0.0285 + }, + { + "start": 10326.88, + "end": 10328.7, + "probability": 0.0365 + }, + { + "start": 10328.98, + "end": 10329.98, + "probability": 0.5719 + }, + { + "start": 10330.04, + "end": 10331.26, + "probability": 0.6067 + }, + { + "start": 10331.38, + "end": 10334.68, + "probability": 0.7925 + }, + { + "start": 10337.34, + "end": 10340.46, + "probability": 0.9269 + }, + { + "start": 10340.46, + "end": 10343.38, + "probability": 0.8881 + }, + { + "start": 10344.1, + "end": 10346.94, + "probability": 0.8811 + }, + { + "start": 10348.58, + "end": 10353.12, + "probability": 0.952 + }, + { + "start": 10353.72, + "end": 10356.18, + "probability": 0.9667 + }, + { + "start": 10356.76, + "end": 10358.88, + "probability": 0.9935 + }, + { + "start": 10359.82, + "end": 10364.3, + "probability": 0.8174 + }, + { + "start": 10367.41, + "end": 10371.24, + "probability": 0.7455 + }, + { + "start": 10371.34, + "end": 10372.72, + "probability": 0.5611 + }, + { + "start": 10373.44, + "end": 10377.22, + "probability": 0.9597 + }, + { + "start": 10377.74, + "end": 10381.18, + "probability": 0.8147 + }, + { + "start": 10382.18, + "end": 10382.66, + "probability": 0.6326 + }, + { + "start": 10382.7, + "end": 10384.46, + "probability": 0.6942 + }, + { + "start": 10385.04, + "end": 10387.3, + "probability": 0.1944 + }, + { + "start": 10388.26, + "end": 10391.62, + "probability": 0.3427 + }, + { + "start": 10392.12, + "end": 10393.68, + "probability": 0.8283 + }, + { + "start": 10393.84, + "end": 10396.22, + "probability": 0.965 + }, + { + "start": 10396.44, + "end": 10400.42, + "probability": 0.7509 + }, + { + "start": 10400.44, + "end": 10402.2, + "probability": 0.9114 + }, + { + "start": 10403.66, + "end": 10405.72, + "probability": 0.0039 + }, + { + "start": 10406.62, + "end": 10407.36, + "probability": 0.004 + }, + { + "start": 10407.36, + "end": 10407.5, + "probability": 0.1459 + }, + { + "start": 10407.5, + "end": 10407.5, + "probability": 0.0752 + }, + { + "start": 10407.5, + "end": 10407.62, + "probability": 0.0416 + }, + { + "start": 10407.62, + "end": 10409.14, + "probability": 0.4673 + }, + { + "start": 10413.7, + "end": 10413.9, + "probability": 0.4846 + }, + { + "start": 10418.54, + "end": 10419.06, + "probability": 0.6331 + }, + { + "start": 10419.64, + "end": 10420.32, + "probability": 0.9692 + }, + { + "start": 10420.34, + "end": 10420.92, + "probability": 0.8285 + }, + { + "start": 10421.42, + "end": 10425.8, + "probability": 0.91 + }, + { + "start": 10426.12, + "end": 10429.8, + "probability": 0.8752 + }, + { + "start": 10430.0, + "end": 10432.98, + "probability": 0.6236 + }, + { + "start": 10432.98, + "end": 10433.22, + "probability": 0.8287 + }, + { + "start": 10433.24, + "end": 10434.36, + "probability": 0.6029 + }, + { + "start": 10434.36, + "end": 10435.24, + "probability": 0.6185 + }, + { + "start": 10435.24, + "end": 10435.82, + "probability": 0.3469 + }, + { + "start": 10436.38, + "end": 10436.84, + "probability": 0.7584 + }, + { + "start": 10437.54, + "end": 10438.16, + "probability": 0.7693 + }, + { + "start": 10439.74, + "end": 10440.28, + "probability": 0.7709 + }, + { + "start": 10450.28, + "end": 10453.4, + "probability": 0.6324 + }, + { + "start": 10456.0, + "end": 10460.36, + "probability": 0.9095 + }, + { + "start": 10462.74, + "end": 10464.68, + "probability": 0.7847 + }, + { + "start": 10465.82, + "end": 10470.82, + "probability": 0.9738 + }, + { + "start": 10472.02, + "end": 10472.66, + "probability": 0.7619 + }, + { + "start": 10472.76, + "end": 10474.88, + "probability": 0.8844 + }, + { + "start": 10475.0, + "end": 10478.9, + "probability": 0.5459 + }, + { + "start": 10481.7, + "end": 10484.54, + "probability": 0.1337 + }, + { + "start": 10484.54, + "end": 10490.12, + "probability": 0.675 + }, + { + "start": 10492.98, + "end": 10500.42, + "probability": 0.8569 + }, + { + "start": 10501.94, + "end": 10502.5, + "probability": 0.8722 + }, + { + "start": 10503.28, + "end": 10506.3, + "probability": 0.9689 + }, + { + "start": 10507.8, + "end": 10508.38, + "probability": 0.774 + }, + { + "start": 10509.18, + "end": 10510.02, + "probability": 0.9011 + }, + { + "start": 10510.06, + "end": 10512.44, + "probability": 0.8928 + }, + { + "start": 10513.16, + "end": 10514.06, + "probability": 0.732 + }, + { + "start": 10514.72, + "end": 10518.46, + "probability": 0.9869 + }, + { + "start": 10519.76, + "end": 10521.04, + "probability": 0.9958 + }, + { + "start": 10521.6, + "end": 10523.1, + "probability": 0.3358 + }, + { + "start": 10523.8, + "end": 10525.22, + "probability": 0.041 + }, + { + "start": 10526.1, + "end": 10529.82, + "probability": 0.9888 + }, + { + "start": 10531.18, + "end": 10531.6, + "probability": 0.8866 + }, + { + "start": 10532.28, + "end": 10538.18, + "probability": 0.99 + }, + { + "start": 10539.78, + "end": 10541.82, + "probability": 0.9292 + }, + { + "start": 10543.08, + "end": 10544.46, + "probability": 0.9945 + }, + { + "start": 10544.98, + "end": 10546.12, + "probability": 0.9504 + }, + { + "start": 10546.42, + "end": 10548.56, + "probability": 0.9915 + }, + { + "start": 10549.38, + "end": 10553.78, + "probability": 0.9981 + }, + { + "start": 10556.28, + "end": 10558.3, + "probability": 0.9196 + }, + { + "start": 10558.52, + "end": 10559.3, + "probability": 0.7706 + }, + { + "start": 10559.68, + "end": 10560.22, + "probability": 0.7209 + }, + { + "start": 10560.32, + "end": 10561.31, + "probability": 0.981 + }, + { + "start": 10561.96, + "end": 10563.68, + "probability": 0.985 + }, + { + "start": 10564.6, + "end": 10571.14, + "probability": 0.9949 + }, + { + "start": 10572.22, + "end": 10575.22, + "probability": 0.6097 + }, + { + "start": 10576.7, + "end": 10578.42, + "probability": 0.8089 + }, + { + "start": 10579.24, + "end": 10581.7, + "probability": 0.9611 + }, + { + "start": 10582.4, + "end": 10583.74, + "probability": 0.9754 + }, + { + "start": 10585.32, + "end": 10589.12, + "probability": 0.9944 + }, + { + "start": 10589.84, + "end": 10592.56, + "probability": 0.9025 + }, + { + "start": 10593.3, + "end": 10594.3, + "probability": 0.9775 + }, + { + "start": 10594.84, + "end": 10596.48, + "probability": 0.977 + }, + { + "start": 10597.6, + "end": 10600.76, + "probability": 0.9086 + }, + { + "start": 10601.68, + "end": 10603.48, + "probability": 0.9989 + }, + { + "start": 10604.06, + "end": 10606.24, + "probability": 0.9843 + }, + { + "start": 10606.4, + "end": 10607.15, + "probability": 0.7497 + }, + { + "start": 10608.12, + "end": 10609.54, + "probability": 0.8838 + }, + { + "start": 10610.06, + "end": 10610.26, + "probability": 0.0933 + }, + { + "start": 10611.94, + "end": 10615.88, + "probability": 0.4852 + }, + { + "start": 10616.32, + "end": 10616.74, + "probability": 0.4039 + }, + { + "start": 10617.52, + "end": 10618.56, + "probability": 0.6865 + }, + { + "start": 10619.26, + "end": 10623.1, + "probability": 0.5265 + }, + { + "start": 10623.4, + "end": 10624.68, + "probability": 0.4883 + }, + { + "start": 10625.32, + "end": 10628.62, + "probability": 0.8955 + }, + { + "start": 10629.2, + "end": 10632.1, + "probability": 0.9082 + }, + { + "start": 10632.46, + "end": 10634.26, + "probability": 0.8711 + }, + { + "start": 10634.88, + "end": 10635.72, + "probability": 0.4859 + }, + { + "start": 10635.84, + "end": 10639.2, + "probability": 0.6834 + }, + { + "start": 10639.6, + "end": 10643.19, + "probability": 0.6018 + }, + { + "start": 10643.8, + "end": 10647.64, + "probability": 0.7546 + }, + { + "start": 10648.16, + "end": 10648.48, + "probability": 0.7553 + }, + { + "start": 10648.68, + "end": 10649.32, + "probability": 0.0996 + }, + { + "start": 10649.32, + "end": 10652.74, + "probability": 0.629 + }, + { + "start": 10652.96, + "end": 10658.08, + "probability": 0.0999 + }, + { + "start": 10658.1, + "end": 10664.1, + "probability": 0.5916 + }, + { + "start": 10664.8, + "end": 10667.54, + "probability": 0.98 + }, + { + "start": 10671.76, + "end": 10676.1, + "probability": 0.893 + }, + { + "start": 10676.1, + "end": 10679.4, + "probability": 0.9727 + }, + { + "start": 10679.56, + "end": 10684.78, + "probability": 0.3551 + }, + { + "start": 10684.78, + "end": 10685.12, + "probability": 0.5056 + }, + { + "start": 10688.01, + "end": 10690.08, + "probability": 0.0741 + }, + { + "start": 10690.76, + "end": 10691.74, + "probability": 0.7291 + }, + { + "start": 10692.32, + "end": 10694.62, + "probability": 0.2017 + }, + { + "start": 10695.6, + "end": 10696.74, + "probability": 0.2926 + }, + { + "start": 10697.38, + "end": 10699.86, + "probability": 0.2441 + }, + { + "start": 10699.86, + "end": 10702.1, + "probability": 0.1336 + }, + { + "start": 10702.16, + "end": 10703.56, + "probability": 0.5285 + }, + { + "start": 10703.92, + "end": 10705.28, + "probability": 0.4624 + }, + { + "start": 10705.4, + "end": 10705.7, + "probability": 0.3527 + }, + { + "start": 10705.8, + "end": 10708.7, + "probability": 0.6701 + }, + { + "start": 10708.74, + "end": 10709.75, + "probability": 0.5487 + }, + { + "start": 10710.6, + "end": 10713.3, + "probability": 0.797 + }, + { + "start": 10713.34, + "end": 10716.5, + "probability": 0.9306 + }, + { + "start": 10716.7, + "end": 10717.64, + "probability": 0.3937 + }, + { + "start": 10717.72, + "end": 10717.88, + "probability": 0.1392 + }, + { + "start": 10718.14, + "end": 10718.26, + "probability": 0.081 + }, + { + "start": 10718.26, + "end": 10719.06, + "probability": 0.5419 + }, + { + "start": 10719.18, + "end": 10721.89, + "probability": 0.7608 + }, + { + "start": 10722.18, + "end": 10724.08, + "probability": 0.8495 + }, + { + "start": 10726.6, + "end": 10728.76, + "probability": 0.5445 + }, + { + "start": 10728.88, + "end": 10728.98, + "probability": 0.7573 + }, + { + "start": 10729.08, + "end": 10730.08, + "probability": 0.5181 + }, + { + "start": 10730.16, + "end": 10731.04, + "probability": 0.8027 + }, + { + "start": 10731.2, + "end": 10732.12, + "probability": 0.6653 + }, + { + "start": 10732.78, + "end": 10736.2, + "probability": 0.9386 + }, + { + "start": 10736.62, + "end": 10738.94, + "probability": 0.9874 + }, + { + "start": 10739.06, + "end": 10739.4, + "probability": 0.715 + }, + { + "start": 10739.84, + "end": 10745.44, + "probability": 0.8546 + }, + { + "start": 10745.98, + "end": 10748.86, + "probability": 0.0126 + }, + { + "start": 10748.86, + "end": 10749.18, + "probability": 0.0225 + }, + { + "start": 10749.26, + "end": 10751.1, + "probability": 0.6843 + }, + { + "start": 10751.8, + "end": 10753.35, + "probability": 0.5714 + }, + { + "start": 10753.52, + "end": 10757.65, + "probability": 0.6487 + }, + { + "start": 10757.84, + "end": 10758.44, + "probability": 0.8418 + }, + { + "start": 10758.76, + "end": 10759.08, + "probability": 0.1475 + }, + { + "start": 10759.18, + "end": 10761.16, + "probability": 0.9943 + }, + { + "start": 10762.32, + "end": 10764.34, + "probability": 0.0375 + }, + { + "start": 10768.04, + "end": 10768.88, + "probability": 0.2283 + }, + { + "start": 10769.34, + "end": 10772.22, + "probability": 0.0944 + }, + { + "start": 10774.19, + "end": 10776.66, + "probability": 0.6899 + }, + { + "start": 10777.34, + "end": 10779.16, + "probability": 0.9431 + }, + { + "start": 10779.32, + "end": 10780.99, + "probability": 0.1156 + }, + { + "start": 10781.02, + "end": 10783.17, + "probability": 0.965 + }, + { + "start": 10783.58, + "end": 10784.84, + "probability": 0.8303 + }, + { + "start": 10785.1, + "end": 10786.72, + "probability": 0.6295 + }, + { + "start": 10786.98, + "end": 10787.44, + "probability": 0.8914 + }, + { + "start": 10787.54, + "end": 10791.46, + "probability": 0.928 + }, + { + "start": 10792.96, + "end": 10797.64, + "probability": 0.9659 + }, + { + "start": 10798.24, + "end": 10800.14, + "probability": 0.9579 + }, + { + "start": 10802.24, + "end": 10803.18, + "probability": 0.9825 + }, + { + "start": 10803.78, + "end": 10805.7, + "probability": 0.879 + }, + { + "start": 10805.8, + "end": 10807.06, + "probability": 0.9784 + }, + { + "start": 10807.76, + "end": 10809.16, + "probability": 0.1695 + }, + { + "start": 10809.96, + "end": 10812.08, + "probability": 0.6576 + }, + { + "start": 10812.08, + "end": 10812.96, + "probability": 0.9854 + }, + { + "start": 10814.17, + "end": 10819.98, + "probability": 0.4551 + }, + { + "start": 10821.16, + "end": 10826.18, + "probability": 0.9895 + }, + { + "start": 10826.48, + "end": 10828.58, + "probability": 0.9874 + }, + { + "start": 10828.68, + "end": 10833.2, + "probability": 0.7712 + }, + { + "start": 10834.26, + "end": 10837.98, + "probability": 0.9922 + }, + { + "start": 10838.58, + "end": 10841.8, + "probability": 0.9526 + }, + { + "start": 10843.92, + "end": 10844.76, + "probability": 0.2399 + }, + { + "start": 10844.84, + "end": 10844.84, + "probability": 0.306 + }, + { + "start": 10844.86, + "end": 10850.36, + "probability": 0.9812 + }, + { + "start": 10851.64, + "end": 10854.04, + "probability": 0.9811 + }, + { + "start": 10854.6, + "end": 10860.1, + "probability": 0.6929 + }, + { + "start": 10861.3, + "end": 10863.78, + "probability": 0.9838 + }, + { + "start": 10864.6, + "end": 10869.2, + "probability": 0.7461 + }, + { + "start": 10869.96, + "end": 10872.8, + "probability": 0.9937 + }, + { + "start": 10872.88, + "end": 10873.5, + "probability": 0.6797 + }, + { + "start": 10873.52, + "end": 10874.26, + "probability": 0.9572 + }, + { + "start": 10874.38, + "end": 10875.32, + "probability": 0.5159 + }, + { + "start": 10875.66, + "end": 10877.16, + "probability": 0.9031 + }, + { + "start": 10877.74, + "end": 10879.4, + "probability": 0.9581 + }, + { + "start": 10880.62, + "end": 10881.5, + "probability": 0.8868 + }, + { + "start": 10881.92, + "end": 10884.56, + "probability": 0.9822 + }, + { + "start": 10886.02, + "end": 10888.64, + "probability": 0.9814 + }, + { + "start": 10889.64, + "end": 10891.12, + "probability": 0.8311 + }, + { + "start": 10891.6, + "end": 10895.04, + "probability": 0.9927 + }, + { + "start": 10895.7, + "end": 10898.42, + "probability": 0.9906 + }, + { + "start": 10899.02, + "end": 10904.16, + "probability": 0.9852 + }, + { + "start": 10904.62, + "end": 10905.86, + "probability": 0.3419 + }, + { + "start": 10906.9, + "end": 10908.76, + "probability": 0.9641 + }, + { + "start": 10908.88, + "end": 10910.5, + "probability": 0.9937 + }, + { + "start": 10910.5, + "end": 10915.26, + "probability": 0.9675 + }, + { + "start": 10916.02, + "end": 10917.22, + "probability": 0.6004 + }, + { + "start": 10917.86, + "end": 10919.38, + "probability": 0.9893 + }, + { + "start": 10919.62, + "end": 10921.42, + "probability": 0.7483 + }, + { + "start": 10922.3, + "end": 10923.46, + "probability": 0.9591 + }, + { + "start": 10923.74, + "end": 10924.92, + "probability": 0.7885 + }, + { + "start": 10925.42, + "end": 10925.66, + "probability": 0.6385 + }, + { + "start": 10925.68, + "end": 10927.08, + "probability": 0.9839 + }, + { + "start": 10927.14, + "end": 10928.2, + "probability": 0.7044 + }, + { + "start": 10928.82, + "end": 10931.92, + "probability": 0.7993 + }, + { + "start": 10933.26, + "end": 10936.78, + "probability": 0.998 + }, + { + "start": 10937.42, + "end": 10941.0, + "probability": 0.9985 + }, + { + "start": 10942.26, + "end": 10943.46, + "probability": 0.7659 + }, + { + "start": 10943.9, + "end": 10945.58, + "probability": 0.954 + }, + { + "start": 10945.64, + "end": 10947.2, + "probability": 0.9596 + }, + { + "start": 10947.9, + "end": 10948.32, + "probability": 0.9222 + }, + { + "start": 10950.28, + "end": 10955.36, + "probability": 0.9925 + }, + { + "start": 10955.54, + "end": 10956.6, + "probability": 0.94 + }, + { + "start": 10957.58, + "end": 10960.0, + "probability": 0.9593 + }, + { + "start": 10960.68, + "end": 10961.48, + "probability": 0.9428 + }, + { + "start": 10962.02, + "end": 10962.02, + "probability": 0.0493 + }, + { + "start": 10964.12, + "end": 10966.32, + "probability": 0.0236 + }, + { + "start": 10966.32, + "end": 10972.36, + "probability": 0.4682 + }, + { + "start": 10972.5, + "end": 10973.62, + "probability": 0.9873 + }, + { + "start": 10974.22, + "end": 10976.94, + "probability": 0.9181 + }, + { + "start": 10977.2, + "end": 10981.92, + "probability": 0.7351 + }, + { + "start": 10982.04, + "end": 10983.53, + "probability": 0.7446 + }, + { + "start": 10984.14, + "end": 10986.56, + "probability": 0.9192 + }, + { + "start": 10987.12, + "end": 10988.02, + "probability": 0.8383 + }, + { + "start": 10988.16, + "end": 10988.7, + "probability": 0.1482 + }, + { + "start": 10991.48, + "end": 10992.1, + "probability": 0.0609 + }, + { + "start": 10992.38, + "end": 10994.32, + "probability": 0.1945 + }, + { + "start": 10994.58, + "end": 10995.2, + "probability": 0.9102 + }, + { + "start": 10995.7, + "end": 10996.24, + "probability": 0.8511 + }, + { + "start": 10997.12, + "end": 11000.64, + "probability": 0.1322 + }, + { + "start": 11000.76, + "end": 11005.44, + "probability": 0.9182 + }, + { + "start": 11006.38, + "end": 11011.24, + "probability": 0.3789 + }, + { + "start": 11011.24, + "end": 11018.84, + "probability": 0.3282 + }, + { + "start": 11018.84, + "end": 11022.06, + "probability": 0.4083 + }, + { + "start": 11022.26, + "end": 11027.0, + "probability": 0.5652 + }, + { + "start": 11027.66, + "end": 11029.26, + "probability": 0.8181 + }, + { + "start": 11029.66, + "end": 11030.8, + "probability": 0.9558 + }, + { + "start": 11030.88, + "end": 11032.38, + "probability": 0.9938 + }, + { + "start": 11032.56, + "end": 11033.31, + "probability": 0.998 + }, + { + "start": 11034.06, + "end": 11035.06, + "probability": 0.9982 + }, + { + "start": 11035.72, + "end": 11038.58, + "probability": 0.9165 + }, + { + "start": 11038.62, + "end": 11042.32, + "probability": 0.8233 + }, + { + "start": 11042.98, + "end": 11043.22, + "probability": 0.0209 + }, + { + "start": 11043.22, + "end": 11047.12, + "probability": 0.9681 + }, + { + "start": 11047.26, + "end": 11050.96, + "probability": 0.9124 + }, + { + "start": 11051.24, + "end": 11055.34, + "probability": 0.9829 + }, + { + "start": 11055.9, + "end": 11058.4, + "probability": 0.9696 + }, + { + "start": 11058.5, + "end": 11060.86, + "probability": 0.9994 + }, + { + "start": 11061.38, + "end": 11064.14, + "probability": 0.9953 + }, + { + "start": 11064.58, + "end": 11065.48, + "probability": 0.044 + }, + { + "start": 11065.48, + "end": 11065.5, + "probability": 0.0694 + }, + { + "start": 11065.58, + "end": 11069.64, + "probability": 0.6492 + }, + { + "start": 11069.78, + "end": 11071.03, + "probability": 0.4572 + }, + { + "start": 11071.98, + "end": 11072.54, + "probability": 0.8274 + }, + { + "start": 11073.04, + "end": 11073.5, + "probability": 0.5402 + }, + { + "start": 11073.54, + "end": 11074.6, + "probability": 0.2235 + }, + { + "start": 11075.6, + "end": 11077.84, + "probability": 0.6396 + }, + { + "start": 11078.24, + "end": 11080.26, + "probability": 0.6008 + }, + { + "start": 11080.32, + "end": 11081.91, + "probability": 0.655 + }, + { + "start": 11082.06, + "end": 11083.1, + "probability": 0.6148 + }, + { + "start": 11083.68, + "end": 11085.4, + "probability": 0.8965 + }, + { + "start": 11092.53, + "end": 11096.6, + "probability": 0.7283 + }, + { + "start": 11098.22, + "end": 11099.76, + "probability": 0.3676 + }, + { + "start": 11100.5, + "end": 11102.12, + "probability": 0.8714 + }, + { + "start": 11102.16, + "end": 11103.52, + "probability": 0.8403 + }, + { + "start": 11103.66, + "end": 11108.12, + "probability": 0.8931 + }, + { + "start": 11108.96, + "end": 11110.82, + "probability": 0.6731 + }, + { + "start": 11111.42, + "end": 11113.6, + "probability": 0.4998 + }, + { + "start": 11113.6, + "end": 11114.25, + "probability": 0.7778 + }, + { + "start": 11119.96, + "end": 11121.6, + "probability": 0.5922 + }, + { + "start": 11122.2, + "end": 11123.36, + "probability": 0.2322 + }, + { + "start": 11127.58, + "end": 11130.24, + "probability": 0.6182 + }, + { + "start": 11130.58, + "end": 11131.38, + "probability": 0.3513 + }, + { + "start": 11131.76, + "end": 11132.36, + "probability": 0.1 + }, + { + "start": 11134.24, + "end": 11137.34, + "probability": 0.6548 + }, + { + "start": 11137.46, + "end": 11138.96, + "probability": 0.6251 + }, + { + "start": 11139.08, + "end": 11140.8, + "probability": 0.6209 + }, + { + "start": 11142.28, + "end": 11143.26, + "probability": 0.0155 + }, + { + "start": 11143.42, + "end": 11144.04, + "probability": 0.6217 + }, + { + "start": 11144.8, + "end": 11147.12, + "probability": 0.0021 + }, + { + "start": 11147.96, + "end": 11149.84, + "probability": 0.7772 + }, + { + "start": 11149.92, + "end": 11151.86, + "probability": 0.8066 + }, + { + "start": 11151.94, + "end": 11152.46, + "probability": 0.6763 + }, + { + "start": 11153.08, + "end": 11154.02, + "probability": 0.8684 + }, + { + "start": 11155.12, + "end": 11155.48, + "probability": 0.3831 + }, + { + "start": 11155.66, + "end": 11157.52, + "probability": 0.6055 + }, + { + "start": 11157.9, + "end": 11160.04, + "probability": 0.3346 + }, + { + "start": 11178.02, + "end": 11178.16, + "probability": 0.0455 + }, + { + "start": 11178.16, + "end": 11178.66, + "probability": 0.4215 + }, + { + "start": 11178.86, + "end": 11179.62, + "probability": 0.3024 + }, + { + "start": 11180.36, + "end": 11181.52, + "probability": 0.3811 + }, + { + "start": 11181.7, + "end": 11186.78, + "probability": 0.6077 + }, + { + "start": 11187.3, + "end": 11189.66, + "probability": 0.7773 + }, + { + "start": 11190.02, + "end": 11192.3, + "probability": 0.6399 + }, + { + "start": 11192.8, + "end": 11193.4, + "probability": 0.0388 + }, + { + "start": 11193.4, + "end": 11193.4, + "probability": 0.3921 + }, + { + "start": 11193.4, + "end": 11193.4, + "probability": 0.4215 + }, + { + "start": 11193.4, + "end": 11193.4, + "probability": 0.1888 + }, + { + "start": 11193.4, + "end": 11196.62, + "probability": 0.5612 + }, + { + "start": 11196.62, + "end": 11199.86, + "probability": 0.9938 + }, + { + "start": 11201.98, + "end": 11204.4, + "probability": 0.5514 + }, + { + "start": 11206.26, + "end": 11211.02, + "probability": 0.9597 + }, + { + "start": 11213.42, + "end": 11213.92, + "probability": 0.5737 + }, + { + "start": 11214.56, + "end": 11215.2, + "probability": 0.6473 + }, + { + "start": 11215.82, + "end": 11217.6, + "probability": 0.6039 + }, + { + "start": 11218.94, + "end": 11224.86, + "probability": 0.9377 + }, + { + "start": 11225.62, + "end": 11229.93, + "probability": 0.863 + }, + { + "start": 11231.04, + "end": 11235.0, + "probability": 0.9619 + }, + { + "start": 11235.32, + "end": 11237.36, + "probability": 0.61 + }, + { + "start": 11238.06, + "end": 11243.22, + "probability": 0.6686 + }, + { + "start": 11258.0, + "end": 11258.86, + "probability": 0.3381 + }, + { + "start": 11259.04, + "end": 11263.66, + "probability": 0.6995 + }, + { + "start": 11264.74, + "end": 11267.42, + "probability": 0.9798 + }, + { + "start": 11268.62, + "end": 11271.96, + "probability": 0.9902 + }, + { + "start": 11272.46, + "end": 11273.56, + "probability": 0.8532 + }, + { + "start": 11274.18, + "end": 11274.94, + "probability": 0.6258 + }, + { + "start": 11275.9, + "end": 11282.44, + "probability": 0.6681 + }, + { + "start": 11282.7, + "end": 11284.16, + "probability": 0.828 + }, + { + "start": 11284.74, + "end": 11286.64, + "probability": 0.929 + }, + { + "start": 11287.12, + "end": 11292.28, + "probability": 0.9961 + }, + { + "start": 11293.38, + "end": 11296.18, + "probability": 0.9247 + }, + { + "start": 11296.8, + "end": 11298.58, + "probability": 0.9468 + }, + { + "start": 11299.86, + "end": 11306.62, + "probability": 0.8671 + }, + { + "start": 11307.24, + "end": 11308.38, + "probability": 0.8285 + }, + { + "start": 11308.78, + "end": 11309.78, + "probability": 0.9023 + }, + { + "start": 11309.96, + "end": 11313.66, + "probability": 0.8921 + }, + { + "start": 11314.7, + "end": 11315.52, + "probability": 0.8748 + }, + { + "start": 11315.7, + "end": 11316.04, + "probability": 0.6271 + }, + { + "start": 11316.18, + "end": 11316.94, + "probability": 0.7991 + }, + { + "start": 11316.94, + "end": 11317.74, + "probability": 0.6849 + }, + { + "start": 11317.74, + "end": 11318.46, + "probability": 0.7229 + }, + { + "start": 11318.74, + "end": 11322.92, + "probability": 0.887 + }, + { + "start": 11324.5, + "end": 11325.82, + "probability": 0.646 + }, + { + "start": 11326.34, + "end": 11328.08, + "probability": 0.9772 + }, + { + "start": 11328.16, + "end": 11332.62, + "probability": 0.9608 + }, + { + "start": 11332.84, + "end": 11334.32, + "probability": 0.6968 + }, + { + "start": 11335.12, + "end": 11335.58, + "probability": 0.9485 + }, + { + "start": 11335.98, + "end": 11338.3, + "probability": 0.9777 + }, + { + "start": 11338.3, + "end": 11342.82, + "probability": 0.8842 + }, + { + "start": 11343.92, + "end": 11345.18, + "probability": 0.9878 + }, + { + "start": 11345.48, + "end": 11345.88, + "probability": 0.9652 + }, + { + "start": 11346.1, + "end": 11346.76, + "probability": 0.9465 + }, + { + "start": 11346.9, + "end": 11350.82, + "probability": 0.6813 + }, + { + "start": 11351.94, + "end": 11353.98, + "probability": 0.8658 + }, + { + "start": 11354.62, + "end": 11357.5, + "probability": 0.9197 + }, + { + "start": 11358.48, + "end": 11360.3, + "probability": 0.7006 + }, + { + "start": 11360.62, + "end": 11362.3, + "probability": 0.7042 + }, + { + "start": 11363.4, + "end": 11366.22, + "probability": 0.7686 + }, + { + "start": 11366.96, + "end": 11368.64, + "probability": 0.9039 + }, + { + "start": 11369.42, + "end": 11370.92, + "probability": 0.6789 + }, + { + "start": 11373.18, + "end": 11375.26, + "probability": 0.7091 + }, + { + "start": 11379.7, + "end": 11382.78, + "probability": 0.7539 + }, + { + "start": 11383.36, + "end": 11385.2, + "probability": 0.7788 + }, + { + "start": 11386.42, + "end": 11390.9, + "probability": 0.896 + }, + { + "start": 11390.94, + "end": 11393.68, + "probability": 0.9969 + }, + { + "start": 11393.68, + "end": 11398.72, + "probability": 0.983 + }, + { + "start": 11399.32, + "end": 11401.66, + "probability": 0.9263 + }, + { + "start": 11401.86, + "end": 11408.9, + "probability": 0.9965 + }, + { + "start": 11409.76, + "end": 11412.3, + "probability": 0.9968 + }, + { + "start": 11412.72, + "end": 11415.26, + "probability": 0.2712 + }, + { + "start": 11415.8, + "end": 11420.9, + "probability": 0.613 + }, + { + "start": 11421.14, + "end": 11424.28, + "probability": 0.9406 + }, + { + "start": 11424.28, + "end": 11428.32, + "probability": 0.9912 + }, + { + "start": 11428.54, + "end": 11430.02, + "probability": 0.8178 + }, + { + "start": 11430.56, + "end": 11432.58, + "probability": 0.7762 + }, + { + "start": 11433.18, + "end": 11434.88, + "probability": 0.8508 + }, + { + "start": 11435.24, + "end": 11435.88, + "probability": 0.7588 + }, + { + "start": 11436.24, + "end": 11437.64, + "probability": 0.8345 + }, + { + "start": 11437.78, + "end": 11440.4, + "probability": 0.9817 + }, + { + "start": 11440.46, + "end": 11443.7, + "probability": 0.95 + }, + { + "start": 11444.04, + "end": 11446.08, + "probability": 0.9985 + }, + { + "start": 11446.48, + "end": 11447.3, + "probability": 0.9318 + }, + { + "start": 11447.38, + "end": 11451.12, + "probability": 0.9538 + }, + { + "start": 11452.46, + "end": 11453.8, + "probability": 0.9662 + }, + { + "start": 11453.9, + "end": 11455.06, + "probability": 0.9946 + }, + { + "start": 11455.68, + "end": 11458.64, + "probability": 0.9767 + }, + { + "start": 11458.82, + "end": 11460.18, + "probability": 0.9709 + }, + { + "start": 11461.06, + "end": 11463.02, + "probability": 0.9635 + }, + { + "start": 11463.22, + "end": 11465.96, + "probability": 0.7067 + }, + { + "start": 11467.08, + "end": 11470.38, + "probability": 0.9895 + }, + { + "start": 11470.38, + "end": 11472.88, + "probability": 0.9961 + }, + { + "start": 11473.54, + "end": 11475.38, + "probability": 0.9902 + }, + { + "start": 11475.6, + "end": 11477.24, + "probability": 0.9872 + }, + { + "start": 11477.38, + "end": 11479.1, + "probability": 0.9897 + }, + { + "start": 11479.38, + "end": 11480.76, + "probability": 0.9478 + }, + { + "start": 11480.84, + "end": 11486.9, + "probability": 0.938 + }, + { + "start": 11487.34, + "end": 11488.78, + "probability": 0.8038 + }, + { + "start": 11488.84, + "end": 11490.84, + "probability": 0.7675 + }, + { + "start": 11491.52, + "end": 11492.16, + "probability": 0.7371 + }, + { + "start": 11492.72, + "end": 11494.9, + "probability": 0.7506 + }, + { + "start": 11495.02, + "end": 11500.45, + "probability": 0.9484 + }, + { + "start": 11501.64, + "end": 11504.94, + "probability": 0.91 + }, + { + "start": 11505.08, + "end": 11508.5, + "probability": 0.991 + }, + { + "start": 11509.56, + "end": 11510.26, + "probability": 0.777 + }, + { + "start": 11510.32, + "end": 11513.68, + "probability": 0.7433 + }, + { + "start": 11513.68, + "end": 11516.7, + "probability": 0.9363 + }, + { + "start": 11518.95, + "end": 11521.77, + "probability": 0.3382 + }, + { + "start": 11523.22, + "end": 11523.66, + "probability": 0.7297 + }, + { + "start": 11523.84, + "end": 11524.96, + "probability": 0.9249 + }, + { + "start": 11525.18, + "end": 11526.17, + "probability": 0.4765 + }, + { + "start": 11526.6, + "end": 11528.46, + "probability": 0.8931 + }, + { + "start": 11528.64, + "end": 11531.34, + "probability": 0.7497 + }, + { + "start": 11532.14, + "end": 11532.94, + "probability": 0.3512 + }, + { + "start": 11533.06, + "end": 11533.88, + "probability": 0.8378 + }, + { + "start": 11534.38, + "end": 11535.46, + "probability": 0.8508 + }, + { + "start": 11535.54, + "end": 11538.08, + "probability": 0.9731 + }, + { + "start": 11538.24, + "end": 11540.36, + "probability": 0.9919 + }, + { + "start": 11540.48, + "end": 11543.86, + "probability": 0.9625 + }, + { + "start": 11544.84, + "end": 11549.24, + "probability": 0.9958 + }, + { + "start": 11549.38, + "end": 11552.6, + "probability": 0.6419 + }, + { + "start": 11553.28, + "end": 11553.28, + "probability": 0.3098 + }, + { + "start": 11553.28, + "end": 11558.18, + "probability": 0.9199 + }, + { + "start": 11558.62, + "end": 11559.82, + "probability": 0.9365 + }, + { + "start": 11560.38, + "end": 11562.28, + "probability": 0.9257 + }, + { + "start": 11562.52, + "end": 11565.78, + "probability": 0.8407 + }, + { + "start": 11566.18, + "end": 11566.4, + "probability": 0.5897 + }, + { + "start": 11566.56, + "end": 11568.54, + "probability": 0.7247 + }, + { + "start": 11569.42, + "end": 11570.18, + "probability": 0.883 + }, + { + "start": 11570.76, + "end": 11572.98, + "probability": 0.9373 + }, + { + "start": 11583.5, + "end": 11584.36, + "probability": 0.5479 + }, + { + "start": 11584.66, + "end": 11586.26, + "probability": 0.8922 + }, + { + "start": 11587.34, + "end": 11587.76, + "probability": 0.5652 + }, + { + "start": 11587.8, + "end": 11591.1, + "probability": 0.6336 + }, + { + "start": 11592.26, + "end": 11595.06, + "probability": 0.9304 + }, + { + "start": 11596.42, + "end": 11597.19, + "probability": 0.8489 + }, + { + "start": 11597.5, + "end": 11602.38, + "probability": 0.9926 + }, + { + "start": 11602.74, + "end": 11603.96, + "probability": 0.8372 + }, + { + "start": 11605.36, + "end": 11607.46, + "probability": 0.9819 + }, + { + "start": 11608.08, + "end": 11611.54, + "probability": 0.9787 + }, + { + "start": 11612.3, + "end": 11613.94, + "probability": 0.9907 + }, + { + "start": 11614.16, + "end": 11619.74, + "probability": 0.9907 + }, + { + "start": 11620.42, + "end": 11626.82, + "probability": 0.9258 + }, + { + "start": 11627.98, + "end": 11628.42, + "probability": 0.6333 + }, + { + "start": 11628.52, + "end": 11629.5, + "probability": 0.6998 + }, + { + "start": 11629.62, + "end": 11632.25, + "probability": 0.9909 + }, + { + "start": 11633.14, + "end": 11640.02, + "probability": 0.9919 + }, + { + "start": 11641.18, + "end": 11644.7, + "probability": 0.9326 + }, + { + "start": 11644.84, + "end": 11645.62, + "probability": 0.5784 + }, + { + "start": 11646.04, + "end": 11647.04, + "probability": 0.9468 + }, + { + "start": 11647.48, + "end": 11648.2, + "probability": 0.9707 + }, + { + "start": 11648.34, + "end": 11649.0, + "probability": 0.7949 + }, + { + "start": 11650.04, + "end": 11653.64, + "probability": 0.964 + }, + { + "start": 11654.28, + "end": 11657.82, + "probability": 0.9648 + }, + { + "start": 11658.58, + "end": 11661.24, + "probability": 0.9976 + }, + { + "start": 11661.56, + "end": 11667.12, + "probability": 0.9849 + }, + { + "start": 11667.94, + "end": 11667.94, + "probability": 0.0353 + }, + { + "start": 11667.94, + "end": 11669.8, + "probability": 0.8262 + }, + { + "start": 11669.96, + "end": 11673.56, + "probability": 0.9915 + }, + { + "start": 11674.28, + "end": 11674.99, + "probability": 0.238 + }, + { + "start": 11675.48, + "end": 11676.36, + "probability": 0.5621 + }, + { + "start": 11676.54, + "end": 11677.54, + "probability": 0.5994 + }, + { + "start": 11678.92, + "end": 11679.72, + "probability": 0.9551 + }, + { + "start": 11680.58, + "end": 11681.88, + "probability": 0.7703 + }, + { + "start": 11682.28, + "end": 11683.7, + "probability": 0.9598 + }, + { + "start": 11683.8, + "end": 11686.06, + "probability": 0.9863 + }, + { + "start": 11686.22, + "end": 11688.58, + "probability": 0.9778 + }, + { + "start": 11688.98, + "end": 11691.32, + "probability": 0.815 + }, + { + "start": 11691.56, + "end": 11695.24, + "probability": 0.9968 + }, + { + "start": 11696.5, + "end": 11698.97, + "probability": 0.9434 + }, + { + "start": 11699.66, + "end": 11700.14, + "probability": 0.7315 + }, + { + "start": 11700.22, + "end": 11703.4, + "probability": 0.7422 + }, + { + "start": 11703.76, + "end": 11704.92, + "probability": 0.9333 + }, + { + "start": 11705.46, + "end": 11707.4, + "probability": 0.9423 + }, + { + "start": 11707.48, + "end": 11708.84, + "probability": 0.954 + }, + { + "start": 11709.26, + "end": 11711.92, + "probability": 0.9669 + }, + { + "start": 11711.92, + "end": 11714.92, + "probability": 0.9907 + }, + { + "start": 11715.36, + "end": 11715.88, + "probability": 0.9935 + }, + { + "start": 11717.14, + "end": 11717.32, + "probability": 0.1797 + }, + { + "start": 11717.32, + "end": 11717.84, + "probability": 0.3927 + }, + { + "start": 11718.78, + "end": 11722.0, + "probability": 0.975 + }, + { + "start": 11722.06, + "end": 11725.26, + "probability": 0.9404 + }, + { + "start": 11725.38, + "end": 11727.82, + "probability": 0.9693 + }, + { + "start": 11728.88, + "end": 11730.22, + "probability": 0.8234 + }, + { + "start": 11730.36, + "end": 11734.42, + "probability": 0.9972 + }, + { + "start": 11734.6, + "end": 11740.24, + "probability": 0.9727 + }, + { + "start": 11740.8, + "end": 11746.68, + "probability": 0.9733 + }, + { + "start": 11747.52, + "end": 11748.7, + "probability": 0.4747 + }, + { + "start": 11748.8, + "end": 11755.12, + "probability": 0.9542 + }, + { + "start": 11755.58, + "end": 11757.24, + "probability": 0.9036 + }, + { + "start": 11757.82, + "end": 11760.22, + "probability": 0.9882 + }, + { + "start": 11760.3, + "end": 11761.14, + "probability": 0.7232 + }, + { + "start": 11761.76, + "end": 11762.52, + "probability": 0.9927 + }, + { + "start": 11763.22, + "end": 11764.2, + "probability": 0.9559 + }, + { + "start": 11765.12, + "end": 11769.56, + "probability": 0.9919 + }, + { + "start": 11769.74, + "end": 11773.56, + "probability": 0.9957 + }, + { + "start": 11774.16, + "end": 11777.48, + "probability": 0.955 + }, + { + "start": 11777.48, + "end": 11780.16, + "probability": 0.812 + }, + { + "start": 11780.96, + "end": 11783.04, + "probability": 0.9888 + }, + { + "start": 11783.08, + "end": 11785.44, + "probability": 0.9169 + }, + { + "start": 11786.08, + "end": 11787.46, + "probability": 0.9963 + }, + { + "start": 11787.86, + "end": 11790.22, + "probability": 0.9913 + }, + { + "start": 11790.88, + "end": 11793.66, + "probability": 0.9963 + }, + { + "start": 11793.96, + "end": 11796.64, + "probability": 0.2331 + }, + { + "start": 11796.74, + "end": 11801.78, + "probability": 0.9937 + }, + { + "start": 11801.78, + "end": 11805.66, + "probability": 0.9958 + }, + { + "start": 11806.6, + "end": 11808.5, + "probability": 0.96 + }, + { + "start": 11817.62, + "end": 11822.14, + "probability": 0.9525 + }, + { + "start": 11822.92, + "end": 11835.4, + "probability": 0.0624 + }, + { + "start": 11836.0, + "end": 11839.02, + "probability": 0.4547 + }, + { + "start": 11839.02, + "end": 11839.02, + "probability": 0.7828 + }, + { + "start": 11839.02, + "end": 11839.02, + "probability": 0.77 + }, + { + "start": 11843.64, + "end": 11844.08, + "probability": 0.0427 + }, + { + "start": 11854.16, + "end": 11859.36, + "probability": 0.0805 + }, + { + "start": 11859.36, + "end": 11862.18, + "probability": 0.0721 + }, + { + "start": 11862.28, + "end": 11864.11, + "probability": 0.2787 + }, + { + "start": 11866.74, + "end": 11872.86, + "probability": 0.0856 + }, + { + "start": 11876.48, + "end": 11878.48, + "probability": 0.0183 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11914.0, + "end": 11914.0, + "probability": 0.0 + }, + { + "start": 11924.4, + "end": 11928.74, + "probability": 0.1975 + }, + { + "start": 11935.66, + "end": 11936.9, + "probability": 0.5508 + }, + { + "start": 11957.72, + "end": 11959.42, + "probability": 0.0411 + }, + { + "start": 11959.42, + "end": 11959.96, + "probability": 0.1178 + }, + { + "start": 11959.96, + "end": 11962.44, + "probability": 0.1015 + }, + { + "start": 11962.72, + "end": 11964.42, + "probability": 0.1124 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12042.0, + "end": 12042.0, + "probability": 0.0 + }, + { + "start": 12048.84, + "end": 12050.38, + "probability": 0.7133 + }, + { + "start": 12050.48, + "end": 12051.08, + "probability": 0.8652 + }, + { + "start": 12051.28, + "end": 12057.86, + "probability": 0.9919 + }, + { + "start": 12058.64, + "end": 12059.34, + "probability": 0.9568 + }, + { + "start": 12059.96, + "end": 12067.78, + "probability": 0.8661 + }, + { + "start": 12068.9, + "end": 12070.78, + "probability": 0.6461 + }, + { + "start": 12070.86, + "end": 12072.17, + "probability": 0.8727 + }, + { + "start": 12072.78, + "end": 12075.14, + "probability": 0.9721 + }, + { + "start": 12075.76, + "end": 12077.42, + "probability": 0.9513 + }, + { + "start": 12077.94, + "end": 12082.5, + "probability": 0.9838 + }, + { + "start": 12084.12, + "end": 12088.3, + "probability": 0.988 + }, + { + "start": 12088.84, + "end": 12093.34, + "probability": 0.9878 + }, + { + "start": 12093.62, + "end": 12093.82, + "probability": 0.7285 + }, + { + "start": 12094.9, + "end": 12096.32, + "probability": 0.9819 + }, + { + "start": 12096.42, + "end": 12097.66, + "probability": 0.8682 + }, + { + "start": 12098.0, + "end": 12098.74, + "probability": 0.8393 + }, + { + "start": 12098.86, + "end": 12100.49, + "probability": 0.9331 + }, + { + "start": 12118.88, + "end": 12119.6, + "probability": 0.7387 + }, + { + "start": 12120.84, + "end": 12121.88, + "probability": 0.8515 + }, + { + "start": 12123.1, + "end": 12128.24, + "probability": 0.9302 + }, + { + "start": 12129.5, + "end": 12132.56, + "probability": 0.8789 + }, + { + "start": 12133.1, + "end": 12135.9, + "probability": 0.9899 + }, + { + "start": 12136.68, + "end": 12138.32, + "probability": 0.216 + }, + { + "start": 12139.12, + "end": 12143.66, + "probability": 0.9492 + }, + { + "start": 12143.8, + "end": 12144.46, + "probability": 0.9022 + }, + { + "start": 12144.7, + "end": 12145.72, + "probability": 0.9451 + }, + { + "start": 12145.82, + "end": 12146.22, + "probability": 0.8593 + }, + { + "start": 12146.3, + "end": 12147.66, + "probability": 0.9276 + }, + { + "start": 12147.9, + "end": 12149.08, + "probability": 0.8652 + }, + { + "start": 12150.52, + "end": 12151.56, + "probability": 0.7774 + }, + { + "start": 12152.26, + "end": 12153.0, + "probability": 0.5808 + }, + { + "start": 12153.14, + "end": 12155.81, + "probability": 0.9741 + }, + { + "start": 12156.02, + "end": 12157.64, + "probability": 0.8599 + }, + { + "start": 12157.76, + "end": 12159.5, + "probability": 0.936 + }, + { + "start": 12159.96, + "end": 12161.68, + "probability": 0.994 + }, + { + "start": 12161.78, + "end": 12162.44, + "probability": 0.7526 + }, + { + "start": 12162.78, + "end": 12164.19, + "probability": 0.6921 + }, + { + "start": 12166.54, + "end": 12169.46, + "probability": 0.8916 + }, + { + "start": 12169.82, + "end": 12171.11, + "probability": 0.7575 + }, + { + "start": 12171.66, + "end": 12172.4, + "probability": 0.7246 + }, + { + "start": 12172.48, + "end": 12174.86, + "probability": 0.9735 + }, + { + "start": 12175.4, + "end": 12181.68, + "probability": 0.7 + }, + { + "start": 12182.46, + "end": 12185.25, + "probability": 0.7489 + }, + { + "start": 12185.44, + "end": 12187.74, + "probability": 0.7519 + }, + { + "start": 12190.94, + "end": 12193.14, + "probability": 0.8556 + }, + { + "start": 12193.8, + "end": 12199.24, + "probability": 0.9829 + }, + { + "start": 12199.24, + "end": 12199.52, + "probability": 0.0903 + }, + { + "start": 12200.48, + "end": 12202.1, + "probability": 0.9489 + }, + { + "start": 12203.08, + "end": 12205.98, + "probability": 0.9092 + }, + { + "start": 12206.54, + "end": 12211.76, + "probability": 0.9797 + }, + { + "start": 12211.76, + "end": 12216.62, + "probability": 0.963 + }, + { + "start": 12218.12, + "end": 12219.63, + "probability": 0.9946 + }, + { + "start": 12220.24, + "end": 12222.0, + "probability": 0.9949 + }, + { + "start": 12222.64, + "end": 12223.08, + "probability": 0.9224 + }, + { + "start": 12223.2, + "end": 12224.44, + "probability": 0.9434 + }, + { + "start": 12226.59, + "end": 12229.08, + "probability": 0.8562 + }, + { + "start": 12229.98, + "end": 12232.94, + "probability": 0.962 + }, + { + "start": 12233.82, + "end": 12235.16, + "probability": 0.835 + }, + { + "start": 12235.82, + "end": 12237.48, + "probability": 0.9561 + }, + { + "start": 12239.46, + "end": 12241.72, + "probability": 0.9722 + }, + { + "start": 12242.3, + "end": 12243.1, + "probability": 0.8098 + }, + { + "start": 12243.54, + "end": 12246.08, + "probability": 0.8054 + }, + { + "start": 12246.48, + "end": 12247.14, + "probability": 0.8625 + }, + { + "start": 12248.36, + "end": 12249.1, + "probability": 0.8757 + }, + { + "start": 12249.64, + "end": 12250.92, + "probability": 0.9799 + }, + { + "start": 12251.34, + "end": 12253.28, + "probability": 0.9956 + }, + { + "start": 12253.98, + "end": 12255.12, + "probability": 0.875 + }, + { + "start": 12256.32, + "end": 12259.06, + "probability": 0.7362 + }, + { + "start": 12260.12, + "end": 12260.78, + "probability": 0.9278 + }, + { + "start": 12261.34, + "end": 12264.6, + "probability": 0.9548 + }, + { + "start": 12265.64, + "end": 12266.66, + "probability": 0.9714 + }, + { + "start": 12267.1, + "end": 12268.46, + "probability": 0.8406 + }, + { + "start": 12268.7, + "end": 12269.92, + "probability": 0.644 + }, + { + "start": 12270.4, + "end": 12273.2, + "probability": 0.983 + }, + { + "start": 12273.74, + "end": 12275.34, + "probability": 0.824 + }, + { + "start": 12275.96, + "end": 12277.28, + "probability": 0.8562 + }, + { + "start": 12277.98, + "end": 12280.38, + "probability": 0.9973 + }, + { + "start": 12281.28, + "end": 12282.78, + "probability": 0.9746 + }, + { + "start": 12283.4, + "end": 12285.14, + "probability": 0.9869 + }, + { + "start": 12285.28, + "end": 12287.98, + "probability": 0.9989 + }, + { + "start": 12288.56, + "end": 12291.64, + "probability": 0.9591 + }, + { + "start": 12291.64, + "end": 12293.34, + "probability": 0.999 + }, + { + "start": 12294.1, + "end": 12296.12, + "probability": 0.9976 + }, + { + "start": 12296.12, + "end": 12299.34, + "probability": 0.7579 + }, + { + "start": 12299.48, + "end": 12300.92, + "probability": 0.9884 + }, + { + "start": 12301.56, + "end": 12303.34, + "probability": 0.9929 + }, + { + "start": 12303.8, + "end": 12305.44, + "probability": 0.9047 + }, + { + "start": 12305.5, + "end": 12306.86, + "probability": 0.9932 + }, + { + "start": 12307.6, + "end": 12307.7, + "probability": 0.9717 + }, + { + "start": 12308.72, + "end": 12309.88, + "probability": 0.9954 + }, + { + "start": 12310.64, + "end": 12312.92, + "probability": 0.9485 + }, + { + "start": 12313.0, + "end": 12314.3, + "probability": 0.9634 + }, + { + "start": 12314.92, + "end": 12316.28, + "probability": 0.9351 + }, + { + "start": 12316.68, + "end": 12321.14, + "probability": 0.9037 + }, + { + "start": 12321.72, + "end": 12322.3, + "probability": 0.851 + }, + { + "start": 12322.52, + "end": 12323.0, + "probability": 0.9063 + }, + { + "start": 12323.42, + "end": 12327.04, + "probability": 0.9592 + }, + { + "start": 12327.38, + "end": 12328.43, + "probability": 0.9849 + }, + { + "start": 12328.74, + "end": 12331.36, + "probability": 0.9287 + }, + { + "start": 12331.84, + "end": 12332.28, + "probability": 0.8801 + }, + { + "start": 12333.6, + "end": 12335.22, + "probability": 0.9237 + }, + { + "start": 12335.38, + "end": 12337.32, + "probability": 0.9473 + }, + { + "start": 12338.7, + "end": 12340.54, + "probability": 0.9502 + }, + { + "start": 12341.1, + "end": 12342.54, + "probability": 0.7885 + }, + { + "start": 12348.72, + "end": 12349.66, + "probability": 0.4257 + }, + { + "start": 12350.28, + "end": 12350.8, + "probability": 0.523 + }, + { + "start": 12354.24, + "end": 12357.9, + "probability": 0.96 + }, + { + "start": 12358.36, + "end": 12359.66, + "probability": 0.9007 + }, + { + "start": 12360.7, + "end": 12363.04, + "probability": 0.8263 + }, + { + "start": 12364.66, + "end": 12369.84, + "probability": 0.9877 + }, + { + "start": 12370.92, + "end": 12373.14, + "probability": 0.9541 + }, + { + "start": 12374.16, + "end": 12377.44, + "probability": 0.8876 + }, + { + "start": 12377.7, + "end": 12379.72, + "probability": 0.5784 + }, + { + "start": 12379.82, + "end": 12380.24, + "probability": 0.8601 + }, + { + "start": 12381.4, + "end": 12382.4, + "probability": 0.7842 + }, + { + "start": 12383.0, + "end": 12383.28, + "probability": 0.9541 + }, + { + "start": 12383.96, + "end": 12385.86, + "probability": 0.6836 + }, + { + "start": 12387.56, + "end": 12390.06, + "probability": 0.6838 + }, + { + "start": 12390.24, + "end": 12394.06, + "probability": 0.9678 + }, + { + "start": 12397.34, + "end": 12398.9, + "probability": 0.8224 + }, + { + "start": 12404.78, + "end": 12407.54, + "probability": 0.9214 + }, + { + "start": 12407.72, + "end": 12411.02, + "probability": 0.9883 + }, + { + "start": 12412.68, + "end": 12414.68, + "probability": 0.9424 + }, + { + "start": 12417.8, + "end": 12418.9, + "probability": 0.641 + }, + { + "start": 12419.1, + "end": 12424.78, + "probability": 0.9732 + }, + { + "start": 12425.92, + "end": 12429.94, + "probability": 0.6875 + }, + { + "start": 12429.94, + "end": 12434.56, + "probability": 0.9904 + }, + { + "start": 12435.28, + "end": 12437.1, + "probability": 0.1944 + }, + { + "start": 12437.1, + "end": 12440.96, + "probability": 0.8597 + }, + { + "start": 12440.96, + "end": 12446.7, + "probability": 0.7963 + }, + { + "start": 12446.98, + "end": 12447.48, + "probability": 0.6512 + }, + { + "start": 12448.24, + "end": 12448.86, + "probability": 0.7557 + }, + { + "start": 12450.12, + "end": 12452.44, + "probability": 0.9209 + }, + { + "start": 12454.21, + "end": 12458.56, + "probability": 0.9846 + }, + { + "start": 12458.56, + "end": 12462.28, + "probability": 0.9983 + }, + { + "start": 12462.84, + "end": 12467.92, + "probability": 0.9968 + }, + { + "start": 12468.44, + "end": 12476.64, + "probability": 0.8859 + }, + { + "start": 12477.48, + "end": 12482.16, + "probability": 0.995 + }, + { + "start": 12482.16, + "end": 12485.24, + "probability": 0.9308 + }, + { + "start": 12485.76, + "end": 12489.92, + "probability": 0.8293 + }, + { + "start": 12490.68, + "end": 12492.72, + "probability": 0.849 + }, + { + "start": 12493.62, + "end": 12494.42, + "probability": 0.9435 + }, + { + "start": 12494.54, + "end": 12495.84, + "probability": 0.8657 + }, + { + "start": 12496.02, + "end": 12497.2, + "probability": 0.4683 + }, + { + "start": 12497.24, + "end": 12499.08, + "probability": 0.7539 + }, + { + "start": 12499.2, + "end": 12504.33, + "probability": 0.7863 + }, + { + "start": 12505.56, + "end": 12509.54, + "probability": 0.4855 + }, + { + "start": 12509.58, + "end": 12512.4, + "probability": 0.8175 + }, + { + "start": 12512.68, + "end": 12514.02, + "probability": 0.8035 + }, + { + "start": 12515.72, + "end": 12516.22, + "probability": 0.6616 + }, + { + "start": 12516.8, + "end": 12517.4, + "probability": 0.7923 + }, + { + "start": 12517.56, + "end": 12519.84, + "probability": 0.6591 + }, + { + "start": 12520.64, + "end": 12524.44, + "probability": 0.9126 + }, + { + "start": 12525.74, + "end": 12526.98, + "probability": 0.8307 + }, + { + "start": 12528.5, + "end": 12531.46, + "probability": 0.4506 + }, + { + "start": 12532.08, + "end": 12534.44, + "probability": 0.9025 + }, + { + "start": 12535.34, + "end": 12538.32, + "probability": 0.6775 + }, + { + "start": 12541.3, + "end": 12544.31, + "probability": 0.8309 + }, + { + "start": 12546.2, + "end": 12548.78, + "probability": 0.9796 + }, + { + "start": 12550.54, + "end": 12552.46, + "probability": 0.7379 + }, + { + "start": 12553.04, + "end": 12559.04, + "probability": 0.9019 + }, + { + "start": 12559.68, + "end": 12561.94, + "probability": 0.7051 + }, + { + "start": 12562.16, + "end": 12564.32, + "probability": 0.5573 + }, + { + "start": 12564.64, + "end": 12565.98, + "probability": 0.6555 + }, + { + "start": 12566.72, + "end": 12568.0, + "probability": 0.6778 + }, + { + "start": 12569.16, + "end": 12571.22, + "probability": 0.8249 + }, + { + "start": 12584.88, + "end": 12585.22, + "probability": 0.2516 + }, + { + "start": 12585.54, + "end": 12586.2, + "probability": 0.6172 + }, + { + "start": 12587.18, + "end": 12588.4, + "probability": 0.8285 + }, + { + "start": 12589.2, + "end": 12593.52, + "probability": 0.9334 + }, + { + "start": 12594.12, + "end": 12596.12, + "probability": 0.7784 + }, + { + "start": 12598.14, + "end": 12604.88, + "probability": 0.955 + }, + { + "start": 12604.96, + "end": 12607.88, + "probability": 0.9722 + }, + { + "start": 12608.8, + "end": 12610.06, + "probability": 0.8571 + }, + { + "start": 12610.86, + "end": 12615.42, + "probability": 0.9891 + }, + { + "start": 12616.1, + "end": 12621.02, + "probability": 0.9902 + }, + { + "start": 12621.68, + "end": 12623.48, + "probability": 0.9475 + }, + { + "start": 12625.46, + "end": 12626.9, + "probability": 0.895 + }, + { + "start": 12627.0, + "end": 12628.76, + "probability": 0.9652 + }, + { + "start": 12629.0, + "end": 12632.02, + "probability": 0.9966 + }, + { + "start": 12632.72, + "end": 12634.82, + "probability": 0.8484 + }, + { + "start": 12635.46, + "end": 12640.7, + "probability": 0.9803 + }, + { + "start": 12641.54, + "end": 12643.62, + "probability": 0.7845 + }, + { + "start": 12643.7, + "end": 12646.16, + "probability": 0.979 + }, + { + "start": 12646.82, + "end": 12648.46, + "probability": 0.9487 + }, + { + "start": 12648.76, + "end": 12654.04, + "probability": 0.9933 + }, + { + "start": 12654.58, + "end": 12655.28, + "probability": 0.8031 + }, + { + "start": 12655.82, + "end": 12658.52, + "probability": 0.9718 + }, + { + "start": 12659.1, + "end": 12660.46, + "probability": 0.9697 + }, + { + "start": 12661.78, + "end": 12667.76, + "probability": 0.9871 + }, + { + "start": 12668.5, + "end": 12670.66, + "probability": 0.9982 + }, + { + "start": 12670.92, + "end": 12675.26, + "probability": 0.9873 + }, + { + "start": 12676.3, + "end": 12678.92, + "probability": 0.8836 + }, + { + "start": 12679.94, + "end": 12682.02, + "probability": 0.895 + }, + { + "start": 12683.46, + "end": 12685.36, + "probability": 0.9801 + }, + { + "start": 12685.48, + "end": 12690.84, + "probability": 0.9976 + }, + { + "start": 12691.38, + "end": 12693.64, + "probability": 0.9843 + }, + { + "start": 12693.98, + "end": 12696.98, + "probability": 0.9673 + }, + { + "start": 12697.1, + "end": 12701.4, + "probability": 0.9786 + }, + { + "start": 12702.34, + "end": 12706.04, + "probability": 0.5591 + }, + { + "start": 12708.38, + "end": 12708.64, + "probability": 0.2236 + }, + { + "start": 12709.5, + "end": 12710.52, + "probability": 0.4676 + }, + { + "start": 12711.12, + "end": 12711.48, + "probability": 0.1966 + }, + { + "start": 12711.76, + "end": 12717.04, + "probability": 0.8076 + }, + { + "start": 12717.22, + "end": 12721.02, + "probability": 0.9766 + }, + { + "start": 12721.06, + "end": 12725.28, + "probability": 0.9972 + }, + { + "start": 12726.2, + "end": 12727.04, + "probability": 0.8195 + }, + { + "start": 12728.06, + "end": 12728.13, + "probability": 0.0509 + }, + { + "start": 12728.32, + "end": 12728.62, + "probability": 0.0149 + }, + { + "start": 12729.42, + "end": 12731.6, + "probability": 0.0934 + }, + { + "start": 12732.28, + "end": 12732.28, + "probability": 0.0882 + }, + { + "start": 12732.28, + "end": 12734.6, + "probability": 0.6713 + }, + { + "start": 12734.78, + "end": 12736.44, + "probability": 0.995 + }, + { + "start": 12737.32, + "end": 12740.48, + "probability": 0.8389 + }, + { + "start": 12740.62, + "end": 12743.54, + "probability": 0.9985 + }, + { + "start": 12743.6, + "end": 12746.9, + "probability": 0.1602 + }, + { + "start": 12746.9, + "end": 12748.15, + "probability": 0.5631 + }, + { + "start": 12748.32, + "end": 12748.8, + "probability": 0.5094 + }, + { + "start": 12749.34, + "end": 12752.34, + "probability": 0.8737 + }, + { + "start": 12753.18, + "end": 12755.96, + "probability": 0.9933 + }, + { + "start": 12756.24, + "end": 12759.88, + "probability": 0.9831 + }, + { + "start": 12759.88, + "end": 12763.42, + "probability": 0.9833 + }, + { + "start": 12763.56, + "end": 12767.46, + "probability": 0.9652 + }, + { + "start": 12767.62, + "end": 12770.14, + "probability": 0.9576 + }, + { + "start": 12771.2, + "end": 12774.72, + "probability": 0.9803 + }, + { + "start": 12775.54, + "end": 12779.88, + "probability": 0.9843 + }, + { + "start": 12780.76, + "end": 12784.64, + "probability": 0.9951 + }, + { + "start": 12785.42, + "end": 12786.55, + "probability": 0.5077 + }, + { + "start": 12786.7, + "end": 12792.24, + "probability": 0.9397 + }, + { + "start": 12792.9, + "end": 12795.6, + "probability": 0.9746 + }, + { + "start": 12796.36, + "end": 12799.5, + "probability": 0.9038 + }, + { + "start": 12800.68, + "end": 12806.3, + "probability": 0.8772 + }, + { + "start": 12806.7, + "end": 12810.5, + "probability": 0.9969 + }, + { + "start": 12811.02, + "end": 12812.6, + "probability": 0.8973 + }, + { + "start": 12812.86, + "end": 12813.26, + "probability": 0.2693 + }, + { + "start": 12813.46, + "end": 12814.46, + "probability": 0.8441 + }, + { + "start": 12814.86, + "end": 12817.54, + "probability": 0.9602 + }, + { + "start": 12817.7, + "end": 12819.08, + "probability": 0.9942 + }, + { + "start": 12819.6, + "end": 12820.64, + "probability": 0.8081 + }, + { + "start": 12820.74, + "end": 12823.92, + "probability": 0.9963 + }, + { + "start": 12824.52, + "end": 12829.04, + "probability": 0.9515 + }, + { + "start": 12829.64, + "end": 12831.68, + "probability": 0.2107 + }, + { + "start": 12832.12, + "end": 12837.9, + "probability": 0.9509 + }, + { + "start": 12838.74, + "end": 12844.78, + "probability": 0.9873 + }, + { + "start": 12845.03, + "end": 12850.74, + "probability": 0.9595 + }, + { + "start": 12850.94, + "end": 12853.3, + "probability": 0.6689 + }, + { + "start": 12853.96, + "end": 12859.44, + "probability": 0.7422 + }, + { + "start": 12860.36, + "end": 12865.38, + "probability": 0.9875 + }, + { + "start": 12868.5, + "end": 12868.5, + "probability": 0.1445 + }, + { + "start": 12868.5, + "end": 12873.28, + "probability": 0.5441 + }, + { + "start": 12873.42, + "end": 12874.52, + "probability": 0.7802 + }, + { + "start": 12874.6, + "end": 12876.06, + "probability": 0.8716 + }, + { + "start": 12876.18, + "end": 12879.11, + "probability": 0.7454 + }, + { + "start": 12880.24, + "end": 12884.86, + "probability": 0.3455 + }, + { + "start": 12884.86, + "end": 12885.34, + "probability": 0.3984 + }, + { + "start": 12885.48, + "end": 12888.28, + "probability": 0.9563 + }, + { + "start": 12889.02, + "end": 12891.84, + "probability": 0.9978 + }, + { + "start": 12892.0, + "end": 12892.94, + "probability": 0.9805 + }, + { + "start": 12893.46, + "end": 12896.12, + "probability": 0.9854 + }, + { + "start": 12897.2, + "end": 12900.0, + "probability": 0.998 + }, + { + "start": 12900.0, + "end": 12903.76, + "probability": 0.9844 + }, + { + "start": 12904.14, + "end": 12905.14, + "probability": 0.9832 + }, + { + "start": 12905.8, + "end": 12908.2, + "probability": 0.99 + }, + { + "start": 12909.3, + "end": 12914.12, + "probability": 0.6341 + }, + { + "start": 12914.68, + "end": 12916.24, + "probability": 0.6437 + }, + { + "start": 12916.34, + "end": 12921.88, + "probability": 0.9231 + }, + { + "start": 12921.98, + "end": 12924.82, + "probability": 0.9106 + }, + { + "start": 12924.96, + "end": 12930.0, + "probability": 0.9952 + }, + { + "start": 12931.14, + "end": 12931.76, + "probability": 0.1362 + }, + { + "start": 12931.82, + "end": 12940.12, + "probability": 0.9935 + }, + { + "start": 12940.24, + "end": 12944.4, + "probability": 0.9972 + }, + { + "start": 12945.26, + "end": 12945.72, + "probability": 0.5365 + }, + { + "start": 12945.76, + "end": 12947.2, + "probability": 0.9795 + }, + { + "start": 12947.44, + "end": 12948.24, + "probability": 0.881 + }, + { + "start": 12948.94, + "end": 12951.72, + "probability": 0.9185 + }, + { + "start": 12951.98, + "end": 12954.96, + "probability": 0.9924 + }, + { + "start": 12955.96, + "end": 12959.68, + "probability": 0.9625 + }, + { + "start": 12960.86, + "end": 12966.6, + "probability": 0.9403 + }, + { + "start": 12967.32, + "end": 12971.4, + "probability": 0.9391 + }, + { + "start": 12972.02, + "end": 12977.06, + "probability": 0.7852 + }, + { + "start": 12977.06, + "end": 12981.78, + "probability": 0.9619 + }, + { + "start": 12982.34, + "end": 12985.9, + "probability": 0.9187 + }, + { + "start": 12986.02, + "end": 12989.38, + "probability": 0.9976 + }, + { + "start": 12989.54, + "end": 12990.1, + "probability": 0.0818 + }, + { + "start": 12991.58, + "end": 12995.84, + "probability": 0.9873 + }, + { + "start": 12996.02, + "end": 12996.3, + "probability": 0.9283 + }, + { + "start": 12996.38, + "end": 12998.54, + "probability": 0.8166 + }, + { + "start": 12999.02, + "end": 12999.52, + "probability": 0.6926 + }, + { + "start": 12999.74, + "end": 13002.36, + "probability": 0.9923 + }, + { + "start": 13002.8, + "end": 13005.18, + "probability": 0.9446 + }, + { + "start": 13005.22, + "end": 13006.52, + "probability": 0.9826 + }, + { + "start": 13006.98, + "end": 13012.75, + "probability": 0.9261 + }, + { + "start": 13014.12, + "end": 13017.16, + "probability": 0.7642 + }, + { + "start": 13017.38, + "end": 13021.88, + "probability": 0.9411 + }, + { + "start": 13022.14, + "end": 13025.4, + "probability": 0.9803 + }, + { + "start": 13026.2, + "end": 13030.96, + "probability": 0.9777 + }, + { + "start": 13031.36, + "end": 13033.02, + "probability": 0.7503 + }, + { + "start": 13033.9, + "end": 13037.24, + "probability": 0.9958 + }, + { + "start": 13037.24, + "end": 13040.62, + "probability": 0.9799 + }, + { + "start": 13040.78, + "end": 13041.18, + "probability": 0.8482 + }, + { + "start": 13041.66, + "end": 13042.82, + "probability": 0.8296 + }, + { + "start": 13042.94, + "end": 13045.72, + "probability": 0.9828 + }, + { + "start": 13046.34, + "end": 13049.2, + "probability": 0.992 + }, + { + "start": 13049.2, + "end": 13053.74, + "probability": 0.9626 + }, + { + "start": 13055.08, + "end": 13057.32, + "probability": 0.9974 + }, + { + "start": 13057.6, + "end": 13060.1, + "probability": 0.9973 + }, + { + "start": 13060.18, + "end": 13060.74, + "probability": 0.8803 + }, + { + "start": 13060.8, + "end": 13064.42, + "probability": 0.9893 + }, + { + "start": 13065.98, + "end": 13066.6, + "probability": 0.8128 + }, + { + "start": 13066.7, + "end": 13067.16, + "probability": 0.9826 + }, + { + "start": 13067.22, + "end": 13073.02, + "probability": 0.9978 + }, + { + "start": 13073.1, + "end": 13077.32, + "probability": 0.7936 + }, + { + "start": 13077.38, + "end": 13081.78, + "probability": 0.9886 + }, + { + "start": 13082.58, + "end": 13084.8, + "probability": 0.8877 + }, + { + "start": 13084.8, + "end": 13089.36, + "probability": 0.9019 + }, + { + "start": 13089.48, + "end": 13091.8, + "probability": 0.8403 + }, + { + "start": 13091.8, + "end": 13094.4, + "probability": 0.9702 + }, + { + "start": 13095.02, + "end": 13098.64, + "probability": 0.9771 + }, + { + "start": 13098.96, + "end": 13101.8, + "probability": 0.9938 + }, + { + "start": 13102.68, + "end": 13106.94, + "probability": 0.9501 + }, + { + "start": 13107.04, + "end": 13109.52, + "probability": 0.9983 + }, + { + "start": 13110.3, + "end": 13113.94, + "probability": 0.9838 + }, + { + "start": 13113.94, + "end": 13116.92, + "probability": 0.9996 + }, + { + "start": 13117.0, + "end": 13117.88, + "probability": 0.7049 + }, + { + "start": 13118.0, + "end": 13118.94, + "probability": 0.7306 + }, + { + "start": 13119.62, + "end": 13122.66, + "probability": 0.9022 + }, + { + "start": 13122.66, + "end": 13123.36, + "probability": 0.5877 + }, + { + "start": 13123.56, + "end": 13124.28, + "probability": 0.6523 + }, + { + "start": 13124.34, + "end": 13124.78, + "probability": 0.8344 + }, + { + "start": 13124.88, + "end": 13126.06, + "probability": 0.7863 + }, + { + "start": 13126.16, + "end": 13126.9, + "probability": 0.8695 + }, + { + "start": 13127.9, + "end": 13131.48, + "probability": 0.9924 + }, + { + "start": 13131.48, + "end": 13136.26, + "probability": 0.9974 + }, + { + "start": 13136.74, + "end": 13139.12, + "probability": 0.9949 + }, + { + "start": 13139.12, + "end": 13142.02, + "probability": 0.988 + }, + { + "start": 13142.1, + "end": 13144.08, + "probability": 0.9956 + }, + { + "start": 13144.08, + "end": 13146.66, + "probability": 0.995 + }, + { + "start": 13147.56, + "end": 13149.66, + "probability": 0.9636 + }, + { + "start": 13150.18, + "end": 13152.42, + "probability": 0.7412 + }, + { + "start": 13152.96, + "end": 13153.32, + "probability": 0.2346 + }, + { + "start": 13153.84, + "end": 13155.94, + "probability": 0.8885 + }, + { + "start": 13156.26, + "end": 13159.8, + "probability": 0.5356 + }, + { + "start": 13159.92, + "end": 13160.38, + "probability": 0.9721 + }, + { + "start": 13160.58, + "end": 13163.28, + "probability": 0.9713 + }, + { + "start": 13163.7, + "end": 13167.34, + "probability": 0.9949 + }, + { + "start": 13168.28, + "end": 13171.36, + "probability": 0.9958 + }, + { + "start": 13171.36, + "end": 13176.1, + "probability": 0.9788 + }, + { + "start": 13177.1, + "end": 13177.6, + "probability": 0.9043 + }, + { + "start": 13177.72, + "end": 13183.14, + "probability": 0.9752 + }, + { + "start": 13183.14, + "end": 13187.92, + "probability": 0.997 + }, + { + "start": 13188.04, + "end": 13188.65, + "probability": 0.6819 + }, + { + "start": 13189.2, + "end": 13189.65, + "probability": 0.0031 + }, + { + "start": 13191.12, + "end": 13194.08, + "probability": 0.9894 + }, + { + "start": 13195.34, + "end": 13197.9, + "probability": 0.975 + }, + { + "start": 13198.72, + "end": 13202.38, + "probability": 0.9906 + }, + { + "start": 13203.0, + "end": 13204.18, + "probability": 0.7395 + }, + { + "start": 13204.22, + "end": 13208.88, + "probability": 0.9836 + }, + { + "start": 13209.82, + "end": 13212.78, + "probability": 0.9928 + }, + { + "start": 13213.7, + "end": 13217.8, + "probability": 0.8726 + }, + { + "start": 13217.86, + "end": 13220.98, + "probability": 0.9995 + }, + { + "start": 13221.5, + "end": 13222.28, + "probability": 0.7992 + }, + { + "start": 13222.44, + "end": 13226.94, + "probability": 0.9855 + }, + { + "start": 13227.38, + "end": 13232.16, + "probability": 0.9902 + }, + { + "start": 13232.4, + "end": 13233.04, + "probability": 0.8185 + }, + { + "start": 13233.6, + "end": 13239.05, + "probability": 0.9882 + }, + { + "start": 13240.58, + "end": 13243.72, + "probability": 0.662 + }, + { + "start": 13244.58, + "end": 13247.5, + "probability": 0.6897 + }, + { + "start": 13247.92, + "end": 13252.42, + "probability": 0.9797 + }, + { + "start": 13252.42, + "end": 13255.7, + "probability": 0.9989 + }, + { + "start": 13256.36, + "end": 13260.82, + "probability": 0.9193 + }, + { + "start": 13261.02, + "end": 13263.98, + "probability": 0.9758 + }, + { + "start": 13264.46, + "end": 13265.66, + "probability": 0.9255 + }, + { + "start": 13266.14, + "end": 13268.68, + "probability": 0.9697 + }, + { + "start": 13268.68, + "end": 13272.52, + "probability": 0.8213 + }, + { + "start": 13273.02, + "end": 13278.08, + "probability": 0.8843 + }, + { + "start": 13279.08, + "end": 13284.68, + "probability": 0.9945 + }, + { + "start": 13285.24, + "end": 13287.02, + "probability": 0.7359 + }, + { + "start": 13287.18, + "end": 13291.0, + "probability": 0.6444 + }, + { + "start": 13291.16, + "end": 13294.67, + "probability": 0.9409 + }, + { + "start": 13295.04, + "end": 13297.92, + "probability": 0.914 + }, + { + "start": 13298.4, + "end": 13298.92, + "probability": 0.4222 + }, + { + "start": 13299.0, + "end": 13302.72, + "probability": 0.9761 + }, + { + "start": 13303.6, + "end": 13305.14, + "probability": 0.6914 + }, + { + "start": 13305.28, + "end": 13306.38, + "probability": 0.7036 + }, + { + "start": 13306.52, + "end": 13307.8, + "probability": 0.9925 + }, + { + "start": 13308.32, + "end": 13312.58, + "probability": 0.9609 + }, + { + "start": 13313.14, + "end": 13314.68, + "probability": 0.9055 + }, + { + "start": 13314.72, + "end": 13322.31, + "probability": 0.9937 + }, + { + "start": 13324.22, + "end": 13329.52, + "probability": 0.9848 + }, + { + "start": 13329.78, + "end": 13333.34, + "probability": 0.9827 + }, + { + "start": 13333.86, + "end": 13337.3, + "probability": 0.9682 + }, + { + "start": 13338.32, + "end": 13340.98, + "probability": 0.7782 + }, + { + "start": 13341.58, + "end": 13342.28, + "probability": 0.9895 + }, + { + "start": 13343.16, + "end": 13344.46, + "probability": 0.561 + }, + { + "start": 13345.6, + "end": 13351.18, + "probability": 0.9665 + }, + { + "start": 13351.36, + "end": 13352.54, + "probability": 0.998 + }, + { + "start": 13353.06, + "end": 13356.22, + "probability": 0.7972 + }, + { + "start": 13356.94, + "end": 13360.46, + "probability": 0.7339 + }, + { + "start": 13361.04, + "end": 13362.94, + "probability": 0.9924 + }, + { + "start": 13363.56, + "end": 13366.24, + "probability": 0.7475 + }, + { + "start": 13366.32, + "end": 13370.98, + "probability": 0.9584 + }, + { + "start": 13371.08, + "end": 13372.56, + "probability": 0.9983 + }, + { + "start": 13372.98, + "end": 13378.04, + "probability": 0.895 + }, + { + "start": 13378.18, + "end": 13381.5, + "probability": 0.8939 + }, + { + "start": 13381.68, + "end": 13382.7, + "probability": 0.9813 + }, + { + "start": 13382.84, + "end": 13386.14, + "probability": 0.9878 + }, + { + "start": 13386.34, + "end": 13388.6, + "probability": 0.8572 + }, + { + "start": 13389.24, + "end": 13393.5, + "probability": 0.9802 + }, + { + "start": 13394.16, + "end": 13396.44, + "probability": 0.9932 + }, + { + "start": 13397.0, + "end": 13398.64, + "probability": 0.7755 + }, + { + "start": 13399.1, + "end": 13401.2, + "probability": 0.9961 + }, + { + "start": 13402.02, + "end": 13404.04, + "probability": 0.9821 + }, + { + "start": 13404.7, + "end": 13406.48, + "probability": 0.9272 + }, + { + "start": 13406.9, + "end": 13412.0, + "probability": 0.9963 + }, + { + "start": 13412.94, + "end": 13415.1, + "probability": 0.9806 + }, + { + "start": 13415.58, + "end": 13417.02, + "probability": 0.7496 + }, + { + "start": 13417.24, + "end": 13418.98, + "probability": 0.8998 + }, + { + "start": 13419.06, + "end": 13419.62, + "probability": 0.5656 + }, + { + "start": 13419.68, + "end": 13420.38, + "probability": 0.568 + }, + { + "start": 13420.82, + "end": 13423.68, + "probability": 0.9587 + }, + { + "start": 13423.68, + "end": 13426.28, + "probability": 0.8695 + }, + { + "start": 13427.82, + "end": 13432.72, + "probability": 0.9927 + }, + { + "start": 13433.08, + "end": 13433.28, + "probability": 0.786 + }, + { + "start": 13434.22, + "end": 13436.06, + "probability": 0.9493 + }, + { + "start": 13436.62, + "end": 13438.8, + "probability": 0.9882 + }, + { + "start": 13439.68, + "end": 13440.02, + "probability": 0.8419 + }, + { + "start": 13440.68, + "end": 13441.7, + "probability": 0.8802 + }, + { + "start": 13451.38, + "end": 13453.5, + "probability": 0.1398 + }, + { + "start": 13454.24, + "end": 13455.68, + "probability": 0.1476 + }, + { + "start": 13456.24, + "end": 13456.54, + "probability": 0.0921 + }, + { + "start": 13475.74, + "end": 13478.98, + "probability": 0.7089 + }, + { + "start": 13479.74, + "end": 13482.4, + "probability": 0.9087 + }, + { + "start": 13482.54, + "end": 13484.76, + "probability": 0.7132 + }, + { + "start": 13484.82, + "end": 13485.78, + "probability": 0.7752 + }, + { + "start": 13487.0, + "end": 13489.58, + "probability": 0.9854 + }, + { + "start": 13491.26, + "end": 13493.44, + "probability": 0.7542 + }, + { + "start": 13493.44, + "end": 13496.1, + "probability": 0.8446 + }, + { + "start": 13496.28, + "end": 13500.12, + "probability": 0.5564 + }, + { + "start": 13500.62, + "end": 13501.12, + "probability": 0.5344 + }, + { + "start": 13501.24, + "end": 13502.0, + "probability": 0.7812 + }, + { + "start": 13502.54, + "end": 13506.52, + "probability": 0.8965 + }, + { + "start": 13506.52, + "end": 13510.32, + "probability": 0.9789 + }, + { + "start": 13511.02, + "end": 13514.54, + "probability": 0.7479 + }, + { + "start": 13515.1, + "end": 13516.72, + "probability": 0.9897 + }, + { + "start": 13517.9, + "end": 13519.78, + "probability": 0.8303 + }, + { + "start": 13519.9, + "end": 13520.8, + "probability": 0.6285 + }, + { + "start": 13521.1, + "end": 13521.84, + "probability": 0.5481 + }, + { + "start": 13522.18, + "end": 13523.36, + "probability": 0.7 + }, + { + "start": 13524.04, + "end": 13528.16, + "probability": 0.9697 + }, + { + "start": 13528.16, + "end": 13531.56, + "probability": 0.9817 + }, + { + "start": 13531.76, + "end": 13533.52, + "probability": 0.9515 + }, + { + "start": 13534.18, + "end": 13537.46, + "probability": 0.9294 + }, + { + "start": 13538.24, + "end": 13541.36, + "probability": 0.9868 + }, + { + "start": 13544.09, + "end": 13549.16, + "probability": 0.9692 + }, + { + "start": 13549.3, + "end": 13550.92, + "probability": 0.8818 + }, + { + "start": 13551.68, + "end": 13556.4, + "probability": 0.9017 + }, + { + "start": 13556.6, + "end": 13557.86, + "probability": 0.7634 + }, + { + "start": 13558.42, + "end": 13561.7, + "probability": 0.9949 + }, + { + "start": 13561.82, + "end": 13562.46, + "probability": 0.6521 + }, + { + "start": 13562.64, + "end": 13571.9, + "probability": 0.5075 + }, + { + "start": 13573.18, + "end": 13581.24, + "probability": 0.8537 + }, + { + "start": 13582.36, + "end": 13584.0, + "probability": 0.6617 + }, + { + "start": 13588.1, + "end": 13591.66, + "probability": 0.8914 + }, + { + "start": 13594.5, + "end": 13596.32, + "probability": 0.7716 + }, + { + "start": 13597.34, + "end": 13601.52, + "probability": 0.9715 + }, + { + "start": 13603.92, + "end": 13605.5, + "probability": 0.4455 + }, + { + "start": 13606.06, + "end": 13608.18, + "probability": 0.6858 + }, + { + "start": 13609.14, + "end": 13612.58, + "probability": 0.4228 + }, + { + "start": 13612.68, + "end": 13617.8, + "probability": 0.4868 + }, + { + "start": 13617.8, + "end": 13619.84, + "probability": 0.6488 + }, + { + "start": 13620.78, + "end": 13622.36, + "probability": 0.8752 + }, + { + "start": 13623.04, + "end": 13628.44, + "probability": 0.7535 + }, + { + "start": 13630.69, + "end": 13634.94, + "probability": 0.7492 + }, + { + "start": 13635.06, + "end": 13637.74, + "probability": 0.8335 + }, + { + "start": 13637.94, + "end": 13640.01, + "probability": 0.6847 + }, + { + "start": 13640.62, + "end": 13641.64, + "probability": 0.7346 + }, + { + "start": 13642.1, + "end": 13644.76, + "probability": 0.8267 + }, + { + "start": 13645.64, + "end": 13649.62, + "probability": 0.7892 + }, + { + "start": 13649.84, + "end": 13651.08, + "probability": 0.8329 + }, + { + "start": 13652.98, + "end": 13654.18, + "probability": 0.3142 + }, + { + "start": 13654.23, + "end": 13657.12, + "probability": 0.7688 + }, + { + "start": 13657.3, + "end": 13661.06, + "probability": 0.6682 + }, + { + "start": 13661.98, + "end": 13666.2, + "probability": 0.8201 + }, + { + "start": 13666.78, + "end": 13667.12, + "probability": 0.5233 + }, + { + "start": 13667.22, + "end": 13671.85, + "probability": 0.973 + }, + { + "start": 13672.34, + "end": 13674.2, + "probability": 0.7455 + }, + { + "start": 13674.98, + "end": 13676.27, + "probability": 0.4048 + }, + { + "start": 13677.16, + "end": 13680.12, + "probability": 0.6718 + }, + { + "start": 13680.18, + "end": 13681.46, + "probability": 0.8587 + }, + { + "start": 13685.14, + "end": 13688.42, + "probability": 0.5574 + }, + { + "start": 13688.96, + "end": 13689.86, + "probability": 0.8431 + }, + { + "start": 13689.94, + "end": 13690.76, + "probability": 0.9905 + }, + { + "start": 13691.3, + "end": 13695.92, + "probability": 0.6462 + }, + { + "start": 13696.08, + "end": 13699.78, + "probability": 0.9869 + }, + { + "start": 13701.48, + "end": 13704.52, + "probability": 0.3526 + }, + { + "start": 13705.76, + "end": 13708.7, + "probability": 0.49 + }, + { + "start": 13708.7, + "end": 13709.37, + "probability": 0.4955 + }, + { + "start": 13709.42, + "end": 13710.52, + "probability": 0.5783 + }, + { + "start": 13711.54, + "end": 13714.16, + "probability": 0.959 + }, + { + "start": 13714.86, + "end": 13716.52, + "probability": 0.6063 + }, + { + "start": 13717.24, + "end": 13718.71, + "probability": 0.8695 + }, + { + "start": 13719.7, + "end": 13723.4, + "probability": 0.7371 + }, + { + "start": 13723.72, + "end": 13726.48, + "probability": 0.0054 + }, + { + "start": 13727.36, + "end": 13728.54, + "probability": 0.6409 + }, + { + "start": 13728.94, + "end": 13729.14, + "probability": 0.0501 + }, + { + "start": 13729.14, + "end": 13729.58, + "probability": 0.4528 + }, + { + "start": 13730.08, + "end": 13732.62, + "probability": 0.5693 + }, + { + "start": 13733.36, + "end": 13736.8, + "probability": 0.9634 + }, + { + "start": 13736.94, + "end": 13738.02, + "probability": 0.404 + }, + { + "start": 13738.04, + "end": 13740.38, + "probability": 0.695 + }, + { + "start": 13740.8, + "end": 13743.12, + "probability": 0.9352 + }, + { + "start": 13743.52, + "end": 13744.52, + "probability": 0.7329 + }, + { + "start": 13745.58, + "end": 13748.44, + "probability": 0.611 + }, + { + "start": 13749.48, + "end": 13752.54, + "probability": 0.2511 + }, + { + "start": 13754.3, + "end": 13755.91, + "probability": 0.9253 + }, + { + "start": 13757.72, + "end": 13759.14, + "probability": 0.6161 + }, + { + "start": 13759.76, + "end": 13760.46, + "probability": 0.5729 + }, + { + "start": 13761.56, + "end": 13763.02, + "probability": 0.4324 + }, + { + "start": 13763.14, + "end": 13763.68, + "probability": 0.426 + }, + { + "start": 13763.88, + "end": 13766.7, + "probability": 0.7303 + }, + { + "start": 13768.4, + "end": 13768.84, + "probability": 0.6543 + }, + { + "start": 13768.96, + "end": 13769.46, + "probability": 0.8869 + }, + { + "start": 13769.84, + "end": 13774.82, + "probability": 0.858 + }, + { + "start": 13775.04, + "end": 13775.24, + "probability": 0.5426 + }, + { + "start": 13776.8, + "end": 13779.22, + "probability": 0.7047 + }, + { + "start": 13780.3, + "end": 13782.53, + "probability": 0.8906 + }, + { + "start": 13783.88, + "end": 13784.92, + "probability": 0.7743 + }, + { + "start": 13786.02, + "end": 13787.22, + "probability": 0.988 + }, + { + "start": 13788.56, + "end": 13789.14, + "probability": 0.8431 + }, + { + "start": 13790.8, + "end": 13792.14, + "probability": 0.9506 + }, + { + "start": 13793.94, + "end": 13794.54, + "probability": 0.9665 + }, + { + "start": 13795.62, + "end": 13796.5, + "probability": 0.889 + }, + { + "start": 13797.62, + "end": 13800.52, + "probability": 0.4904 + }, + { + "start": 13801.34, + "end": 13804.6, + "probability": 0.4292 + }, + { + "start": 13804.82, + "end": 13805.08, + "probability": 0.1512 + }, + { + "start": 13806.08, + "end": 13807.23, + "probability": 0.3305 + }, + { + "start": 13808.24, + "end": 13810.08, + "probability": 0.7008 + }, + { + "start": 13817.1, + "end": 13819.1, + "probability": 0.7259 + }, + { + "start": 13819.14, + "end": 13821.74, + "probability": 0.7227 + }, + { + "start": 13822.26, + "end": 13823.52, + "probability": 0.6736 + }, + { + "start": 13824.96, + "end": 13827.26, + "probability": 0.7207 + }, + { + "start": 13829.42, + "end": 13830.56, + "probability": 0.5871 + }, + { + "start": 13831.46, + "end": 13832.78, + "probability": 0.9281 + }, + { + "start": 13833.26, + "end": 13837.6, + "probability": 0.6622 + }, + { + "start": 13838.68, + "end": 13839.44, + "probability": 0.492 + }, + { + "start": 13839.84, + "end": 13840.62, + "probability": 0.8937 + }, + { + "start": 13843.49, + "end": 13844.84, + "probability": 0.8367 + }, + { + "start": 13847.84, + "end": 13848.26, + "probability": 0.4137 + }, + { + "start": 13848.94, + "end": 13850.14, + "probability": 0.2948 + }, + { + "start": 13850.5, + "end": 13851.56, + "probability": 0.5375 + }, + { + "start": 13851.62, + "end": 13851.96, + "probability": 0.389 + }, + { + "start": 13852.02, + "end": 13853.36, + "probability": 0.9322 + }, + { + "start": 13863.6, + "end": 13864.34, + "probability": 0.3367 + }, + { + "start": 13864.56, + "end": 13865.58, + "probability": 0.496 + }, + { + "start": 13865.98, + "end": 13866.43, + "probability": 0.6361 + }, + { + "start": 13867.42, + "end": 13868.66, + "probability": 0.96 + }, + { + "start": 13869.62, + "end": 13871.68, + "probability": 0.9449 + }, + { + "start": 13871.8, + "end": 13874.57, + "probability": 0.5703 + }, + { + "start": 13875.62, + "end": 13877.34, + "probability": 0.7749 + }, + { + "start": 13877.48, + "end": 13879.54, + "probability": 0.7783 + }, + { + "start": 13879.62, + "end": 13880.32, + "probability": 0.9608 + }, + { + "start": 13880.46, + "end": 13881.16, + "probability": 0.4977 + }, + { + "start": 13881.42, + "end": 13881.98, + "probability": 0.7733 + }, + { + "start": 13882.66, + "end": 13883.66, + "probability": 0.9741 + }, + { + "start": 13884.36, + "end": 13885.7, + "probability": 0.9967 + }, + { + "start": 13886.28, + "end": 13887.82, + "probability": 0.7388 + }, + { + "start": 13889.2, + "end": 13891.42, + "probability": 0.9669 + }, + { + "start": 13892.22, + "end": 13893.14, + "probability": 0.6833 + }, + { + "start": 13893.88, + "end": 13897.66, + "probability": 0.7001 + }, + { + "start": 13897.82, + "end": 13898.92, + "probability": 0.8701 + }, + { + "start": 13899.82, + "end": 13901.46, + "probability": 0.9609 + }, + { + "start": 13902.88, + "end": 13903.54, + "probability": 0.938 + }, + { + "start": 13903.62, + "end": 13905.08, + "probability": 0.7318 + }, + { + "start": 13907.56, + "end": 13911.48, + "probability": 0.2737 + }, + { + "start": 13911.8, + "end": 13912.68, + "probability": 0.5681 + }, + { + "start": 13913.5, + "end": 13914.7, + "probability": 0.9917 + }, + { + "start": 13915.6, + "end": 13916.35, + "probability": 0.9663 + }, + { + "start": 13917.56, + "end": 13918.29, + "probability": 0.9889 + }, + { + "start": 13919.32, + "end": 13921.24, + "probability": 0.6902 + }, + { + "start": 13921.84, + "end": 13923.78, + "probability": 0.9886 + }, + { + "start": 13924.38, + "end": 13925.42, + "probability": 0.9936 + }, + { + "start": 13926.16, + "end": 13929.5, + "probability": 0.8228 + }, + { + "start": 13930.12, + "end": 13931.9, + "probability": 0.6454 + }, + { + "start": 13932.12, + "end": 13933.9, + "probability": 0.8694 + }, + { + "start": 13934.1, + "end": 13935.36, + "probability": 0.8376 + }, + { + "start": 13936.14, + "end": 13937.12, + "probability": 0.749 + }, + { + "start": 13937.7, + "end": 13938.76, + "probability": 0.6519 + }, + { + "start": 13939.84, + "end": 13941.84, + "probability": 0.9906 + }, + { + "start": 13942.92, + "end": 13944.24, + "probability": 0.9482 + }, + { + "start": 13944.96, + "end": 13949.36, + "probability": 0.9899 + }, + { + "start": 13949.88, + "end": 13951.94, + "probability": 0.9973 + }, + { + "start": 13952.08, + "end": 13953.12, + "probability": 0.6626 + }, + { + "start": 13953.82, + "end": 13956.4, + "probability": 0.9988 + }, + { + "start": 13957.7, + "end": 13958.86, + "probability": 0.8518 + }, + { + "start": 13959.42, + "end": 13961.3, + "probability": 0.9718 + }, + { + "start": 13961.92, + "end": 13962.86, + "probability": 0.5851 + }, + { + "start": 13963.78, + "end": 13966.12, + "probability": 0.9745 + }, + { + "start": 13966.52, + "end": 13968.5, + "probability": 0.8755 + }, + { + "start": 13969.1, + "end": 13970.92, + "probability": 0.7612 + }, + { + "start": 13971.0, + "end": 13971.24, + "probability": 0.741 + }, + { + "start": 13972.1, + "end": 13973.56, + "probability": 0.8306 + }, + { + "start": 13984.66, + "end": 13985.46, + "probability": 0.7319 + }, + { + "start": 13985.5, + "end": 13990.04, + "probability": 0.9932 + }, + { + "start": 13990.64, + "end": 13993.44, + "probability": 0.9495 + }, + { + "start": 13997.56, + "end": 13998.7, + "probability": 0.7447 + }, + { + "start": 13998.99, + "end": 14000.52, + "probability": 0.9741 + }, + { + "start": 14008.4, + "end": 14011.72, + "probability": 0.3636 + }, + { + "start": 14011.72, + "end": 14016.6, + "probability": 0.4754 + }, + { + "start": 14016.9, + "end": 14020.96, + "probability": 0.9836 + }, + { + "start": 14021.92, + "end": 14023.22, + "probability": 0.9914 + }, + { + "start": 14025.18, + "end": 14027.52, + "probability": 0.7257 + }, + { + "start": 14028.22, + "end": 14028.38, + "probability": 0.1515 + }, + { + "start": 14028.38, + "end": 14028.38, + "probability": 0.1317 + }, + { + "start": 14028.38, + "end": 14029.21, + "probability": 0.8462 + }, + { + "start": 14030.14, + "end": 14031.64, + "probability": 0.6051 + }, + { + "start": 14032.26, + "end": 14034.4, + "probability": 0.9244 + }, + { + "start": 14034.96, + "end": 14036.86, + "probability": 0.7359 + }, + { + "start": 14036.88, + "end": 14037.48, + "probability": 0.9091 + }, + { + "start": 14041.52, + "end": 14042.84, + "probability": 0.5813 + }, + { + "start": 14044.26, + "end": 14045.76, + "probability": 0.9875 + }, + { + "start": 14049.02, + "end": 14049.48, + "probability": 0.59 + }, + { + "start": 14049.58, + "end": 14050.6, + "probability": 0.7715 + }, + { + "start": 14050.72, + "end": 14051.26, + "probability": 0.5282 + }, + { + "start": 14051.32, + "end": 14051.9, + "probability": 0.9749 + }, + { + "start": 14052.02, + "end": 14053.08, + "probability": 0.6739 + }, + { + "start": 14054.09, + "end": 14061.1, + "probability": 0.921 + }, + { + "start": 14062.22, + "end": 14064.42, + "probability": 0.7282 + }, + { + "start": 14065.2, + "end": 14072.0, + "probability": 0.9586 + }, + { + "start": 14072.18, + "end": 14074.84, + "probability": 0.9588 + }, + { + "start": 14077.36, + "end": 14082.72, + "probability": 0.6866 + }, + { + "start": 14082.9, + "end": 14083.6, + "probability": 0.5418 + }, + { + "start": 14084.08, + "end": 14087.06, + "probability": 0.8946 + }, + { + "start": 14087.06, + "end": 14089.26, + "probability": 0.8519 + }, + { + "start": 14089.5, + "end": 14090.0, + "probability": 0.8075 + }, + { + "start": 14090.86, + "end": 14092.74, + "probability": 0.9943 + }, + { + "start": 14093.62, + "end": 14095.4, + "probability": 0.9979 + }, + { + "start": 14095.96, + "end": 14097.48, + "probability": 0.9997 + }, + { + "start": 14098.08, + "end": 14102.02, + "probability": 0.9374 + }, + { + "start": 14102.52, + "end": 14103.36, + "probability": 0.8304 + }, + { + "start": 14106.44, + "end": 14111.8, + "probability": 0.9118 + }, + { + "start": 14112.66, + "end": 14113.71, + "probability": 0.7497 + }, + { + "start": 14113.82, + "end": 14117.3, + "probability": 0.9558 + }, + { + "start": 14117.32, + "end": 14122.7, + "probability": 0.9648 + }, + { + "start": 14123.94, + "end": 14127.0, + "probability": 0.7483 + }, + { + "start": 14128.14, + "end": 14129.08, + "probability": 0.9382 + }, + { + "start": 14129.62, + "end": 14131.16, + "probability": 0.9962 + }, + { + "start": 14132.2, + "end": 14134.1, + "probability": 0.8608 + }, + { + "start": 14135.28, + "end": 14136.6, + "probability": 0.7788 + }, + { + "start": 14136.9, + "end": 14137.9, + "probability": 0.5756 + }, + { + "start": 14138.3, + "end": 14139.98, + "probability": 0.6493 + }, + { + "start": 14140.02, + "end": 14140.38, + "probability": 0.2892 + }, + { + "start": 14140.46, + "end": 14141.28, + "probability": 0.7368 + }, + { + "start": 14141.3, + "end": 14142.7, + "probability": 0.8833 + }, + { + "start": 14143.06, + "end": 14143.8, + "probability": 0.9124 + }, + { + "start": 14144.2, + "end": 14145.12, + "probability": 0.7215 + }, + { + "start": 14146.34, + "end": 14147.66, + "probability": 0.9946 + }, + { + "start": 14147.76, + "end": 14148.86, + "probability": 0.8103 + }, + { + "start": 14149.7, + "end": 14151.66, + "probability": 0.916 + }, + { + "start": 14152.58, + "end": 14155.4, + "probability": 0.9279 + }, + { + "start": 14155.94, + "end": 14156.7, + "probability": 0.9807 + }, + { + "start": 14157.7, + "end": 14160.04, + "probability": 0.9362 + }, + { + "start": 14160.88, + "end": 14163.66, + "probability": 0.9214 + }, + { + "start": 14164.44, + "end": 14166.88, + "probability": 0.9705 + }, + { + "start": 14167.36, + "end": 14169.14, + "probability": 0.9782 + }, + { + "start": 14169.56, + "end": 14170.38, + "probability": 0.9763 + }, + { + "start": 14170.76, + "end": 14171.84, + "probability": 0.5334 + }, + { + "start": 14172.6, + "end": 14175.1, + "probability": 0.8928 + }, + { + "start": 14176.98, + "end": 14180.28, + "probability": 0.979 + }, + { + "start": 14181.08, + "end": 14182.28, + "probability": 0.9886 + }, + { + "start": 14184.12, + "end": 14186.9, + "probability": 0.9541 + }, + { + "start": 14188.12, + "end": 14191.2, + "probability": 0.7045 + }, + { + "start": 14192.72, + "end": 14193.72, + "probability": 0.7041 + }, + { + "start": 14196.34, + "end": 14198.62, + "probability": 0.988 + }, + { + "start": 14198.68, + "end": 14199.46, + "probability": 0.9794 + }, + { + "start": 14200.2, + "end": 14201.32, + "probability": 0.782 + }, + { + "start": 14202.24, + "end": 14204.12, + "probability": 0.9015 + }, + { + "start": 14205.16, + "end": 14207.98, + "probability": 0.9681 + }, + { + "start": 14208.9, + "end": 14209.84, + "probability": 0.878 + }, + { + "start": 14211.48, + "end": 14214.68, + "probability": 0.9638 + }, + { + "start": 14216.46, + "end": 14217.14, + "probability": 0.8434 + }, + { + "start": 14217.74, + "end": 14219.38, + "probability": 0.9965 + }, + { + "start": 14220.2, + "end": 14221.28, + "probability": 0.9858 + }, + { + "start": 14223.16, + "end": 14225.32, + "probability": 0.9829 + }, + { + "start": 14227.53, + "end": 14229.46, + "probability": 0.7857 + }, + { + "start": 14229.58, + "end": 14230.22, + "probability": 0.846 + }, + { + "start": 14230.28, + "end": 14232.26, + "probability": 0.9456 + }, + { + "start": 14232.68, + "end": 14233.74, + "probability": 0.7962 + }, + { + "start": 14234.64, + "end": 14235.74, + "probability": 0.9921 + }, + { + "start": 14237.28, + "end": 14242.34, + "probability": 0.8 + }, + { + "start": 14243.3, + "end": 14247.06, + "probability": 0.5105 + }, + { + "start": 14248.4, + "end": 14250.52, + "probability": 0.8077 + }, + { + "start": 14251.68, + "end": 14252.46, + "probability": 0.8438 + }, + { + "start": 14252.54, + "end": 14253.34, + "probability": 0.673 + }, + { + "start": 14253.52, + "end": 14255.86, + "probability": 0.9271 + }, + { + "start": 14256.68, + "end": 14259.32, + "probability": 0.8359 + }, + { + "start": 14259.38, + "end": 14261.3, + "probability": 0.8539 + }, + { + "start": 14263.0, + "end": 14264.42, + "probability": 0.802 + }, + { + "start": 14265.8, + "end": 14268.48, + "probability": 0.9748 + }, + { + "start": 14268.62, + "end": 14269.48, + "probability": 0.8553 + }, + { + "start": 14269.56, + "end": 14273.22, + "probability": 0.6787 + }, + { + "start": 14273.62, + "end": 14275.72, + "probability": 0.9856 + }, + { + "start": 14275.86, + "end": 14276.68, + "probability": 0.7965 + }, + { + "start": 14277.78, + "end": 14278.6, + "probability": 0.8322 + }, + { + "start": 14278.68, + "end": 14280.06, + "probability": 0.9458 + }, + { + "start": 14281.54, + "end": 14282.22, + "probability": 0.9932 + }, + { + "start": 14284.0, + "end": 14285.2, + "probability": 0.9907 + }, + { + "start": 14286.8, + "end": 14288.24, + "probability": 0.8135 + }, + { + "start": 14288.92, + "end": 14293.18, + "probability": 0.9116 + }, + { + "start": 14294.86, + "end": 14295.74, + "probability": 0.9459 + }, + { + "start": 14297.54, + "end": 14300.4, + "probability": 0.9673 + }, + { + "start": 14301.84, + "end": 14303.24, + "probability": 0.9985 + }, + { + "start": 14304.16, + "end": 14307.08, + "probability": 0.9988 + }, + { + "start": 14307.6, + "end": 14308.28, + "probability": 0.7017 + }, + { + "start": 14309.52, + "end": 14314.12, + "probability": 0.9955 + }, + { + "start": 14314.22, + "end": 14317.78, + "probability": 0.9367 + }, + { + "start": 14319.04, + "end": 14320.92, + "probability": 0.8319 + }, + { + "start": 14322.36, + "end": 14327.64, + "probability": 0.855 + }, + { + "start": 14328.8, + "end": 14331.64, + "probability": 0.5859 + }, + { + "start": 14332.38, + "end": 14333.68, + "probability": 0.9527 + }, + { + "start": 14334.48, + "end": 14338.9, + "probability": 0.9978 + }, + { + "start": 14340.18, + "end": 14341.16, + "probability": 0.9985 + }, + { + "start": 14342.58, + "end": 14344.32, + "probability": 0.9946 + }, + { + "start": 14345.26, + "end": 14348.18, + "probability": 0.9987 + }, + { + "start": 14348.9, + "end": 14351.22, + "probability": 0.4956 + }, + { + "start": 14352.88, + "end": 14356.2, + "probability": 0.9886 + }, + { + "start": 14357.44, + "end": 14359.15, + "probability": 0.8969 + }, + { + "start": 14360.55, + "end": 14365.92, + "probability": 0.9667 + }, + { + "start": 14366.18, + "end": 14367.64, + "probability": 0.9956 + }, + { + "start": 14369.1, + "end": 14373.38, + "probability": 0.6853 + }, + { + "start": 14374.62, + "end": 14378.42, + "probability": 0.9498 + }, + { + "start": 14379.22, + "end": 14381.44, + "probability": 0.9713 + }, + { + "start": 14382.4, + "end": 14383.2, + "probability": 0.9512 + }, + { + "start": 14384.2, + "end": 14385.56, + "probability": 0.9416 + }, + { + "start": 14386.36, + "end": 14387.11, + "probability": 0.9951 + }, + { + "start": 14388.44, + "end": 14390.12, + "probability": 0.9464 + }, + { + "start": 14391.76, + "end": 14392.56, + "probability": 0.9138 + }, + { + "start": 14392.62, + "end": 14394.66, + "probability": 0.7898 + }, + { + "start": 14394.72, + "end": 14396.53, + "probability": 0.9772 + }, + { + "start": 14397.56, + "end": 14398.88, + "probability": 0.9756 + }, + { + "start": 14400.1, + "end": 14401.38, + "probability": 0.7183 + }, + { + "start": 14402.34, + "end": 14405.5, + "probability": 0.9985 + }, + { + "start": 14406.66, + "end": 14411.34, + "probability": 0.9956 + }, + { + "start": 14412.56, + "end": 14414.16, + "probability": 0.9772 + }, + { + "start": 14414.52, + "end": 14415.68, + "probability": 0.8841 + }, + { + "start": 14415.74, + "end": 14417.6, + "probability": 0.8728 + }, + { + "start": 14417.68, + "end": 14418.65, + "probability": 0.9366 + }, + { + "start": 14418.92, + "end": 14420.06, + "probability": 0.7506 + }, + { + "start": 14420.8, + "end": 14422.3, + "probability": 0.6423 + }, + { + "start": 14423.85, + "end": 14427.0, + "probability": 0.9961 + }, + { + "start": 14427.62, + "end": 14428.4, + "probability": 0.8053 + }, + { + "start": 14429.08, + "end": 14433.5, + "probability": 0.9941 + }, + { + "start": 14433.52, + "end": 14437.0, + "probability": 0.8402 + }, + { + "start": 14437.64, + "end": 14438.54, + "probability": 0.8708 + }, + { + "start": 14439.06, + "end": 14440.82, + "probability": 0.9972 + }, + { + "start": 14440.86, + "end": 14442.83, + "probability": 0.6996 + }, + { + "start": 14444.52, + "end": 14448.72, + "probability": 0.989 + }, + { + "start": 14449.24, + "end": 14450.44, + "probability": 0.978 + }, + { + "start": 14450.8, + "end": 14453.94, + "probability": 0.9814 + }, + { + "start": 14454.06, + "end": 14454.38, + "probability": 0.8301 + }, + { + "start": 14455.38, + "end": 14456.86, + "probability": 0.9731 + }, + { + "start": 14458.04, + "end": 14459.6, + "probability": 0.8585 + }, + { + "start": 14460.3, + "end": 14460.42, + "probability": 0.9339 + }, + { + "start": 14462.94, + "end": 14464.28, + "probability": 0.9282 + }, + { + "start": 14465.08, + "end": 14466.18, + "probability": 0.9656 + }, + { + "start": 14468.52, + "end": 14469.6, + "probability": 0.0771 + }, + { + "start": 14474.64, + "end": 14475.04, + "probability": 0.0313 + }, + { + "start": 14475.92, + "end": 14477.64, + "probability": 0.4526 + }, + { + "start": 14478.18, + "end": 14479.02, + "probability": 0.0938 + }, + { + "start": 14479.12, + "end": 14479.12, + "probability": 0.5464 + }, + { + "start": 14479.12, + "end": 14480.12, + "probability": 0.6617 + }, + { + "start": 14480.26, + "end": 14480.9, + "probability": 0.5318 + }, + { + "start": 14482.12, + "end": 14483.02, + "probability": 0.6466 + }, + { + "start": 14483.58, + "end": 14485.16, + "probability": 0.7302 + }, + { + "start": 14486.8, + "end": 14488.58, + "probability": 0.8592 + }, + { + "start": 14489.38, + "end": 14490.02, + "probability": 0.7071 + }, + { + "start": 14490.76, + "end": 14492.42, + "probability": 0.8685 + }, + { + "start": 14492.94, + "end": 14497.92, + "probability": 0.8821 + }, + { + "start": 14499.08, + "end": 14500.84, + "probability": 0.9185 + }, + { + "start": 14501.78, + "end": 14502.26, + "probability": 0.8831 + }, + { + "start": 14503.26, + "end": 14505.36, + "probability": 0.9866 + }, + { + "start": 14505.98, + "end": 14507.36, + "probability": 0.9436 + }, + { + "start": 14508.42, + "end": 14509.74, + "probability": 0.7981 + }, + { + "start": 14511.08, + "end": 14513.0, + "probability": 0.994 + }, + { + "start": 14513.78, + "end": 14516.48, + "probability": 0.8056 + }, + { + "start": 14516.92, + "end": 14518.24, + "probability": 0.9792 + }, + { + "start": 14519.68, + "end": 14520.8, + "probability": 0.9785 + }, + { + "start": 14521.7, + "end": 14522.42, + "probability": 0.8898 + }, + { + "start": 14523.34, + "end": 14524.26, + "probability": 0.8772 + }, + { + "start": 14525.14, + "end": 14529.26, + "probability": 0.9799 + }, + { + "start": 14529.88, + "end": 14531.16, + "probability": 0.7198 + }, + { + "start": 14531.66, + "end": 14532.4, + "probability": 0.6261 + }, + { + "start": 14533.4, + "end": 14535.52, + "probability": 0.9869 + }, + { + "start": 14536.04, + "end": 14537.06, + "probability": 0.9099 + }, + { + "start": 14537.58, + "end": 14538.06, + "probability": 0.8268 + }, + { + "start": 14538.6, + "end": 14541.86, + "probability": 0.9259 + }, + { + "start": 14543.36, + "end": 14544.9, + "probability": 0.9221 + }, + { + "start": 14545.9, + "end": 14551.36, + "probability": 0.7935 + }, + { + "start": 14552.3, + "end": 14557.5, + "probability": 0.9465 + }, + { + "start": 14557.66, + "end": 14564.62, + "probability": 0.9858 + }, + { + "start": 14565.32, + "end": 14568.22, + "probability": 0.9866 + }, + { + "start": 14568.78, + "end": 14572.62, + "probability": 0.8883 + }, + { + "start": 14573.16, + "end": 14576.2, + "probability": 0.8509 + }, + { + "start": 14577.16, + "end": 14577.38, + "probability": 0.6696 + }, + { + "start": 14578.26, + "end": 14581.88, + "probability": 0.9844 + }, + { + "start": 14582.76, + "end": 14583.58, + "probability": 0.5795 + }, + { + "start": 14584.24, + "end": 14585.58, + "probability": 0.7427 + }, + { + "start": 14586.14, + "end": 14586.8, + "probability": 0.7864 + }, + { + "start": 14588.25, + "end": 14589.48, + "probability": 0.9883 + }, + { + "start": 14590.64, + "end": 14593.56, + "probability": 0.95 + }, + { + "start": 14594.48, + "end": 14595.94, + "probability": 0.6354 + }, + { + "start": 14596.48, + "end": 14599.42, + "probability": 0.9856 + }, + { + "start": 14600.04, + "end": 14604.86, + "probability": 0.9337 + }, + { + "start": 14605.76, + "end": 14607.82, + "probability": 0.9229 + }, + { + "start": 14608.48, + "end": 14609.94, + "probability": 0.838 + }, + { + "start": 14610.6, + "end": 14611.96, + "probability": 0.7954 + }, + { + "start": 14612.5, + "end": 14619.14, + "probability": 0.9826 + }, + { + "start": 14619.72, + "end": 14622.34, + "probability": 0.9905 + }, + { + "start": 14622.74, + "end": 14624.76, + "probability": 0.8132 + }, + { + "start": 14624.76, + "end": 14627.24, + "probability": 0.7884 + }, + { + "start": 14627.84, + "end": 14629.78, + "probability": 0.7407 + }, + { + "start": 14631.14, + "end": 14636.26, + "probability": 0.9844 + }, + { + "start": 14637.7, + "end": 14639.1, + "probability": 0.8167 + }, + { + "start": 14639.9, + "end": 14641.38, + "probability": 0.6708 + }, + { + "start": 14641.98, + "end": 14642.74, + "probability": 0.9397 + }, + { + "start": 14643.34, + "end": 14644.5, + "probability": 0.9979 + }, + { + "start": 14645.06, + "end": 14646.4, + "probability": 0.9836 + }, + { + "start": 14646.94, + "end": 14651.88, + "probability": 0.9364 + }, + { + "start": 14653.08, + "end": 14656.1, + "probability": 0.8861 + }, + { + "start": 14656.1, + "end": 14659.02, + "probability": 0.7489 + }, + { + "start": 14660.02, + "end": 14660.24, + "probability": 0.8046 + }, + { + "start": 14661.82, + "end": 14662.98, + "probability": 0.8542 + }, + { + "start": 14664.72, + "end": 14666.42, + "probability": 0.9835 + }, + { + "start": 14667.42, + "end": 14668.3, + "probability": 0.915 + }, + { + "start": 14680.0, + "end": 14681.82, + "probability": 0.7369 + }, + { + "start": 14683.72, + "end": 14689.86, + "probability": 0.997 + }, + { + "start": 14690.46, + "end": 14691.6, + "probability": 0.9845 + }, + { + "start": 14692.84, + "end": 14694.44, + "probability": 0.9985 + }, + { + "start": 14694.52, + "end": 14695.16, + "probability": 0.9608 + }, + { + "start": 14695.6, + "end": 14696.23, + "probability": 0.7223 + }, + { + "start": 14697.08, + "end": 14699.06, + "probability": 0.7332 + }, + { + "start": 14699.26, + "end": 14699.66, + "probability": 0.8279 + }, + { + "start": 14700.32, + "end": 14702.22, + "probability": 0.809 + }, + { + "start": 14703.1, + "end": 14706.76, + "probability": 0.9845 + }, + { + "start": 14707.02, + "end": 14711.34, + "probability": 0.9406 + }, + { + "start": 14711.9, + "end": 14718.7, + "probability": 0.9763 + }, + { + "start": 14718.88, + "end": 14719.7, + "probability": 0.6174 + }, + { + "start": 14719.7, + "end": 14721.16, + "probability": 0.865 + }, + { + "start": 14721.28, + "end": 14724.22, + "probability": 0.7872 + }, + { + "start": 14725.16, + "end": 14729.88, + "probability": 0.9943 + }, + { + "start": 14729.98, + "end": 14732.06, + "probability": 0.5026 + }, + { + "start": 14732.22, + "end": 14735.48, + "probability": 0.8087 + }, + { + "start": 14735.6, + "end": 14736.94, + "probability": 0.5757 + }, + { + "start": 14737.02, + "end": 14738.45, + "probability": 0.9504 + }, + { + "start": 14738.96, + "end": 14742.5, + "probability": 0.7953 + }, + { + "start": 14743.4, + "end": 14746.98, + "probability": 0.792 + }, + { + "start": 14748.36, + "end": 14753.76, + "probability": 0.7029 + }, + { + "start": 14753.84, + "end": 14755.52, + "probability": 0.9355 + }, + { + "start": 14756.82, + "end": 14757.42, + "probability": 0.1365 + }, + { + "start": 14758.09, + "end": 14762.74, + "probability": 0.9934 + }, + { + "start": 14763.18, + "end": 14765.68, + "probability": 0.9992 + }, + { + "start": 14766.08, + "end": 14766.64, + "probability": 0.4769 + }, + { + "start": 14766.88, + "end": 14770.62, + "probability": 0.8789 + }, + { + "start": 14772.06, + "end": 14777.24, + "probability": 0.6184 + }, + { + "start": 14777.36, + "end": 14780.82, + "probability": 0.3494 + }, + { + "start": 14780.94, + "end": 14783.56, + "probability": 0.8038 + }, + { + "start": 14783.84, + "end": 14784.8, + "probability": 0.6459 + }, + { + "start": 14784.9, + "end": 14786.4, + "probability": 0.6113 + }, + { + "start": 14786.9, + "end": 14787.68, + "probability": 0.5893 + }, + { + "start": 14790.26, + "end": 14790.32, + "probability": 0.1204 + }, + { + "start": 14790.32, + "end": 14792.08, + "probability": 0.7817 + }, + { + "start": 14792.36, + "end": 14792.76, + "probability": 0.9166 + }, + { + "start": 14792.88, + "end": 14794.08, + "probability": 0.8167 + }, + { + "start": 14794.14, + "end": 14796.78, + "probability": 0.8452 + }, + { + "start": 14797.36, + "end": 14798.3, + "probability": 0.8604 + }, + { + "start": 14799.51, + "end": 14804.24, + "probability": 0.743 + }, + { + "start": 14804.86, + "end": 14806.08, + "probability": 0.6384 + }, + { + "start": 14806.16, + "end": 14809.3, + "probability": 0.6819 + }, + { + "start": 14809.82, + "end": 14813.84, + "probability": 0.973 + }, + { + "start": 14815.12, + "end": 14817.01, + "probability": 0.9894 + }, + { + "start": 14817.96, + "end": 14819.84, + "probability": 0.9749 + }, + { + "start": 14820.2, + "end": 14822.56, + "probability": 0.9909 + }, + { + "start": 14822.94, + "end": 14823.78, + "probability": 0.9116 + }, + { + "start": 14825.37, + "end": 14827.12, + "probability": 0.6681 + }, + { + "start": 14827.42, + "end": 14829.5, + "probability": 0.9688 + }, + { + "start": 14829.62, + "end": 14831.92, + "probability": 0.669 + }, + { + "start": 14832.7, + "end": 14833.09, + "probability": 0.947 + }, + { + "start": 14833.8, + "end": 14835.28, + "probability": 0.542 + }, + { + "start": 14835.34, + "end": 14836.78, + "probability": 0.9785 + }, + { + "start": 14837.54, + "end": 14838.48, + "probability": 0.5586 + }, + { + "start": 14839.24, + "end": 14840.78, + "probability": 0.9714 + }, + { + "start": 14841.78, + "end": 14845.02, + "probability": 0.9709 + }, + { + "start": 14845.3, + "end": 14845.86, + "probability": 0.8926 + }, + { + "start": 14845.92, + "end": 14846.82, + "probability": 0.9536 + }, + { + "start": 14847.4, + "end": 14851.32, + "probability": 0.9805 + }, + { + "start": 14851.54, + "end": 14855.28, + "probability": 0.5807 + }, + { + "start": 14855.38, + "end": 14857.08, + "probability": 0.9272 + }, + { + "start": 14857.6, + "end": 14862.04, + "probability": 0.9225 + }, + { + "start": 14862.28, + "end": 14866.08, + "probability": 0.9746 + }, + { + "start": 14866.08, + "end": 14870.26, + "probability": 0.821 + }, + { + "start": 14870.64, + "end": 14873.0, + "probability": 0.75 + }, + { + "start": 14873.66, + "end": 14877.56, + "probability": 0.9358 + }, + { + "start": 14877.56, + "end": 14880.38, + "probability": 0.9944 + }, + { + "start": 14880.6, + "end": 14884.86, + "probability": 0.7482 + }, + { + "start": 14885.6, + "end": 14889.46, + "probability": 0.9347 + }, + { + "start": 14890.42, + "end": 14891.44, + "probability": 0.9703 + }, + { + "start": 14892.18, + "end": 14897.78, + "probability": 0.8091 + }, + { + "start": 14898.18, + "end": 14898.4, + "probability": 0.699 + }, + { + "start": 14899.06, + "end": 14904.38, + "probability": 0.222 + }, + { + "start": 14904.38, + "end": 14905.24, + "probability": 0.763 + }, + { + "start": 14906.64, + "end": 14909.34, + "probability": 0.5179 + }, + { + "start": 14909.94, + "end": 14911.57, + "probability": 0.5832 + }, + { + "start": 14913.96, + "end": 14916.76, + "probability": 0.4879 + }, + { + "start": 14917.92, + "end": 14920.24, + "probability": 0.6123 + }, + { + "start": 14920.28, + "end": 14921.52, + "probability": 0.5398 + }, + { + "start": 14921.68, + "end": 14921.72, + "probability": 0.3118 + }, + { + "start": 14921.72, + "end": 14922.08, + "probability": 0.7161 + }, + { + "start": 14923.24, + "end": 14924.21, + "probability": 0.7756 + }, + { + "start": 14925.02, + "end": 14927.12, + "probability": 0.6222 + }, + { + "start": 14928.14, + "end": 14929.68, + "probability": 0.8385 + }, + { + "start": 14930.74, + "end": 14931.22, + "probability": 0.6849 + }, + { + "start": 14931.24, + "end": 14932.02, + "probability": 0.6808 + }, + { + "start": 14932.24, + "end": 14932.44, + "probability": 0.3561 + }, + { + "start": 14932.68, + "end": 14934.18, + "probability": 0.9111 + }, + { + "start": 14934.32, + "end": 14937.88, + "probability": 0.8366 + }, + { + "start": 14938.16, + "end": 14939.39, + "probability": 0.9923 + }, + { + "start": 14939.82, + "end": 14940.42, + "probability": 0.6942 + }, + { + "start": 14940.54, + "end": 14943.92, + "probability": 0.6734 + }, + { + "start": 14944.18, + "end": 14947.4, + "probability": 0.8632 + }, + { + "start": 14947.74, + "end": 14950.28, + "probability": 0.9907 + }, + { + "start": 14950.92, + "end": 14951.92, + "probability": 0.9532 + }, + { + "start": 14952.76, + "end": 14955.96, + "probability": 0.9438 + }, + { + "start": 14956.08, + "end": 14957.04, + "probability": 0.988 + }, + { + "start": 14957.4, + "end": 14959.3, + "probability": 0.8855 + }, + { + "start": 14959.34, + "end": 14959.95, + "probability": 0.9667 + }, + { + "start": 14960.6, + "end": 14961.92, + "probability": 0.5851 + }, + { + "start": 14962.62, + "end": 14965.14, + "probability": 0.576 + }, + { + "start": 14965.3, + "end": 14966.84, + "probability": 0.9773 + }, + { + "start": 14966.88, + "end": 14968.9, + "probability": 0.562 + }, + { + "start": 14969.86, + "end": 14970.7, + "probability": 0.7051 + }, + { + "start": 14971.5, + "end": 14975.72, + "probability": 0.7888 + }, + { + "start": 14975.72, + "end": 14978.3, + "probability": 0.6514 + }, + { + "start": 14978.36, + "end": 14979.03, + "probability": 0.5987 + }, + { + "start": 14979.82, + "end": 14984.0, + "probability": 0.9673 + }, + { + "start": 14984.08, + "end": 14984.9, + "probability": 0.2056 + }, + { + "start": 14984.9, + "end": 14985.72, + "probability": 0.7228 + }, + { + "start": 14986.28, + "end": 14988.44, + "probability": 0.965 + }, + { + "start": 14988.52, + "end": 14993.04, + "probability": 0.6128 + }, + { + "start": 14993.46, + "end": 14994.36, + "probability": 0.6491 + }, + { + "start": 14994.88, + "end": 14997.86, + "probability": 0.9753 + }, + { + "start": 14997.9, + "end": 15001.6, + "probability": 0.8038 + }, + { + "start": 15001.6, + "end": 15005.48, + "probability": 0.9991 + }, + { + "start": 15005.84, + "end": 15006.34, + "probability": 0.4765 + }, + { + "start": 15006.4, + "end": 15006.88, + "probability": 0.6349 + }, + { + "start": 15006.96, + "end": 15008.04, + "probability": 0.8481 + }, + { + "start": 15009.14, + "end": 15013.04, + "probability": 0.7721 + }, + { + "start": 15013.04, + "end": 15016.42, + "probability": 0.8925 + }, + { + "start": 15016.62, + "end": 15018.64, + "probability": 0.8661 + }, + { + "start": 15019.16, + "end": 15020.62, + "probability": 0.7096 + }, + { + "start": 15021.16, + "end": 15024.04, + "probability": 0.9612 + }, + { + "start": 15025.23, + "end": 15027.4, + "probability": 0.8654 + }, + { + "start": 15027.82, + "end": 15030.16, + "probability": 0.9918 + }, + { + "start": 15030.24, + "end": 15032.2, + "probability": 0.9944 + }, + { + "start": 15033.04, + "end": 15034.94, + "probability": 0.8101 + }, + { + "start": 15035.34, + "end": 15036.16, + "probability": 0.9883 + }, + { + "start": 15036.84, + "end": 15037.26, + "probability": 0.6133 + }, + { + "start": 15037.78, + "end": 15039.08, + "probability": 0.4896 + }, + { + "start": 15039.14, + "end": 15041.76, + "probability": 0.9795 + }, + { + "start": 15042.78, + "end": 15045.92, + "probability": 0.9705 + }, + { + "start": 15046.36, + "end": 15048.12, + "probability": 0.8556 + }, + { + "start": 15048.16, + "end": 15051.3, + "probability": 0.8124 + }, + { + "start": 15051.44, + "end": 15051.56, + "probability": 0.5513 + }, + { + "start": 15051.62, + "end": 15054.08, + "probability": 0.9321 + }, + { + "start": 15055.22, + "end": 15057.08, + "probability": 0.8076 + }, + { + "start": 15057.9, + "end": 15059.82, + "probability": 0.5874 + }, + { + "start": 15082.86, + "end": 15083.0, + "probability": 0.3094 + }, + { + "start": 15083.0, + "end": 15083.5, + "probability": 0.5586 + }, + { + "start": 15084.5, + "end": 15085.78, + "probability": 0.7409 + }, + { + "start": 15090.18, + "end": 15091.74, + "probability": 0.7526 + }, + { + "start": 15091.9, + "end": 15094.78, + "probability": 0.713 + }, + { + "start": 15095.0, + "end": 15097.9, + "probability": 0.9933 + }, + { + "start": 15100.08, + "end": 15101.5, + "probability": 0.9536 + }, + { + "start": 15102.24, + "end": 15104.86, + "probability": 0.9751 + }, + { + "start": 15105.48, + "end": 15110.34, + "probability": 0.8764 + }, + { + "start": 15111.84, + "end": 15116.26, + "probability": 0.9553 + }, + { + "start": 15116.65, + "end": 15119.76, + "probability": 0.9761 + }, + { + "start": 15121.46, + "end": 15122.98, + "probability": 0.9639 + }, + { + "start": 15124.48, + "end": 15125.76, + "probability": 0.9337 + }, + { + "start": 15127.18, + "end": 15131.4, + "probability": 0.8105 + }, + { + "start": 15132.56, + "end": 15133.62, + "probability": 0.8058 + }, + { + "start": 15134.36, + "end": 15136.6, + "probability": 0.9845 + }, + { + "start": 15137.82, + "end": 15139.48, + "probability": 0.9727 + }, + { + "start": 15141.34, + "end": 15143.16, + "probability": 0.0789 + }, + { + "start": 15143.82, + "end": 15144.1, + "probability": 0.0106 + }, + { + "start": 15144.1, + "end": 15144.1, + "probability": 0.1629 + }, + { + "start": 15144.1, + "end": 15145.26, + "probability": 0.207 + }, + { + "start": 15145.26, + "end": 15149.5, + "probability": 0.7291 + }, + { + "start": 15150.22, + "end": 15151.42, + "probability": 0.4546 + }, + { + "start": 15152.98, + "end": 15153.78, + "probability": 0.5894 + }, + { + "start": 15154.08, + "end": 15155.0, + "probability": 0.8672 + }, + { + "start": 15155.16, + "end": 15156.16, + "probability": 0.9927 + }, + { + "start": 15156.34, + "end": 15158.66, + "probability": 0.9183 + }, + { + "start": 15159.76, + "end": 15162.16, + "probability": 0.7917 + }, + { + "start": 15162.2, + "end": 15163.18, + "probability": 0.9681 + }, + { + "start": 15163.94, + "end": 15165.2, + "probability": 0.9895 + }, + { + "start": 15167.02, + "end": 15168.46, + "probability": 0.897 + }, + { + "start": 15168.94, + "end": 15170.64, + "probability": 0.9622 + }, + { + "start": 15171.08, + "end": 15174.52, + "probability": 0.8339 + }, + { + "start": 15175.72, + "end": 15178.94, + "probability": 0.9663 + }, + { + "start": 15178.94, + "end": 15183.2, + "probability": 0.9938 + }, + { + "start": 15185.02, + "end": 15189.44, + "probability": 0.8736 + }, + { + "start": 15189.44, + "end": 15193.3, + "probability": 0.7971 + }, + { + "start": 15193.6, + "end": 15194.54, + "probability": 0.7088 + }, + { + "start": 15195.82, + "end": 15196.56, + "probability": 0.9828 + }, + { + "start": 15197.1, + "end": 15201.38, + "probability": 0.9922 + }, + { + "start": 15202.1, + "end": 15205.42, + "probability": 0.8879 + }, + { + "start": 15206.32, + "end": 15206.72, + "probability": 0.3937 + }, + { + "start": 15206.78, + "end": 15209.14, + "probability": 0.9597 + }, + { + "start": 15209.14, + "end": 15213.36, + "probability": 0.7455 + }, + { + "start": 15214.3, + "end": 15216.28, + "probability": 0.6973 + }, + { + "start": 15216.28, + "end": 15221.1, + "probability": 0.8823 + }, + { + "start": 15221.21, + "end": 15222.82, + "probability": 0.4985 + }, + { + "start": 15223.66, + "end": 15225.3, + "probability": 0.4421 + }, + { + "start": 15226.42, + "end": 15228.12, + "probability": 0.7539 + }, + { + "start": 15229.7, + "end": 15232.88, + "probability": 0.9292 + }, + { + "start": 15233.56, + "end": 15235.38, + "probability": 0.9847 + }, + { + "start": 15235.46, + "end": 15238.5, + "probability": 0.9399 + }, + { + "start": 15239.32, + "end": 15241.16, + "probability": 0.9534 + }, + { + "start": 15242.76, + "end": 15244.25, + "probability": 0.5837 + }, + { + "start": 15244.52, + "end": 15246.36, + "probability": 0.2912 + }, + { + "start": 15246.52, + "end": 15248.52, + "probability": 0.8385 + }, + { + "start": 15248.9, + "end": 15249.72, + "probability": 0.6715 + }, + { + "start": 15250.34, + "end": 15251.82, + "probability": 0.1096 + }, + { + "start": 15251.82, + "end": 15253.14, + "probability": 0.6076 + }, + { + "start": 15253.4, + "end": 15255.52, + "probability": 0.2831 + }, + { + "start": 15255.76, + "end": 15255.86, + "probability": 0.1361 + }, + { + "start": 15256.06, + "end": 15256.45, + "probability": 0.0687 + }, + { + "start": 15256.76, + "end": 15259.94, + "probability": 0.6396 + }, + { + "start": 15259.96, + "end": 15261.58, + "probability": 0.949 + }, + { + "start": 15262.28, + "end": 15265.26, + "probability": 0.7979 + }, + { + "start": 15268.24, + "end": 15272.48, + "probability": 0.8884 + }, + { + "start": 15272.48, + "end": 15277.3, + "probability": 0.9794 + }, + { + "start": 15277.7, + "end": 15281.32, + "probability": 0.8147 + }, + { + "start": 15281.9, + "end": 15283.08, + "probability": 0.9609 + }, + { + "start": 15283.14, + "end": 15284.46, + "probability": 0.8393 + }, + { + "start": 15284.56, + "end": 15285.69, + "probability": 0.5616 + }, + { + "start": 15287.24, + "end": 15288.38, + "probability": 0.3736 + }, + { + "start": 15288.38, + "end": 15289.9, + "probability": 0.7649 + }, + { + "start": 15290.36, + "end": 15293.72, + "probability": 0.9824 + }, + { + "start": 15294.96, + "end": 15297.06, + "probability": 0.9174 + }, + { + "start": 15297.06, + "end": 15299.48, + "probability": 0.9758 + }, + { + "start": 15300.06, + "end": 15303.12, + "probability": 0.8883 + }, + { + "start": 15303.86, + "end": 15307.0, + "probability": 0.9875 + }, + { + "start": 15307.1, + "end": 15310.88, + "probability": 0.8138 + }, + { + "start": 15311.58, + "end": 15314.96, + "probability": 0.8062 + }, + { + "start": 15315.56, + "end": 15316.58, + "probability": 0.943 + }, + { + "start": 15317.7, + "end": 15319.38, + "probability": 0.6878 + }, + { + "start": 15319.46, + "end": 15320.18, + "probability": 0.7572 + }, + { + "start": 15320.42, + "end": 15323.3, + "probability": 0.9742 + }, + { + "start": 15324.34, + "end": 15326.68, + "probability": 0.8457 + }, + { + "start": 15326.68, + "end": 15329.52, + "probability": 0.8238 + }, + { + "start": 15330.24, + "end": 15333.48, + "probability": 0.8157 + }, + { + "start": 15335.14, + "end": 15338.28, + "probability": 0.6976 + }, + { + "start": 15338.98, + "end": 15342.52, + "probability": 0.9827 + }, + { + "start": 15343.28, + "end": 15344.12, + "probability": 0.6932 + }, + { + "start": 15344.57, + "end": 15348.06, + "probability": 0.8177 + }, + { + "start": 15348.6, + "end": 15348.78, + "probability": 0.4759 + }, + { + "start": 15348.86, + "end": 15349.48, + "probability": 0.6128 + }, + { + "start": 15349.62, + "end": 15352.26, + "probability": 0.8331 + }, + { + "start": 15353.82, + "end": 15361.08, + "probability": 0.8986 + }, + { + "start": 15361.28, + "end": 15363.18, + "probability": 0.6119 + }, + { + "start": 15364.56, + "end": 15366.6, + "probability": 0.783 + }, + { + "start": 15367.72, + "end": 15367.96, + "probability": 0.4611 + }, + { + "start": 15368.04, + "end": 15369.28, + "probability": 0.8115 + }, + { + "start": 15369.32, + "end": 15370.84, + "probability": 0.7249 + }, + { + "start": 15370.96, + "end": 15373.12, + "probability": 0.8763 + }, + { + "start": 15373.72, + "end": 15375.84, + "probability": 0.9925 + }, + { + "start": 15375.84, + "end": 15378.06, + "probability": 0.9893 + }, + { + "start": 15378.88, + "end": 15379.44, + "probability": 0.9152 + }, + { + "start": 15379.98, + "end": 15381.08, + "probability": 0.7095 + }, + { + "start": 15381.22, + "end": 15382.74, + "probability": 0.7873 + }, + { + "start": 15382.9, + "end": 15385.78, + "probability": 0.9019 + }, + { + "start": 15385.98, + "end": 15386.86, + "probability": 0.9281 + }, + { + "start": 15387.4, + "end": 15388.0, + "probability": 0.7462 + }, + { + "start": 15389.18, + "end": 15391.66, + "probability": 0.9504 + }, + { + "start": 15391.66, + "end": 15394.54, + "probability": 0.8135 + }, + { + "start": 15395.1, + "end": 15396.3, + "probability": 0.9053 + }, + { + "start": 15397.14, + "end": 15399.76, + "probability": 0.7581 + }, + { + "start": 15400.6, + "end": 15401.72, + "probability": 0.4432 + }, + { + "start": 15401.78, + "end": 15403.8, + "probability": 0.7638 + }, + { + "start": 15405.84, + "end": 15405.88, + "probability": 0.006 + }, + { + "start": 15407.14, + "end": 15408.62, + "probability": 0.1139 + }, + { + "start": 15408.62, + "end": 15410.54, + "probability": 0.3168 + }, + { + "start": 15410.7, + "end": 15413.86, + "probability": 0.8592 + }, + { + "start": 15414.24, + "end": 15416.9, + "probability": 0.8155 + }, + { + "start": 15418.32, + "end": 15419.37, + "probability": 0.5703 + }, + { + "start": 15422.6, + "end": 15424.96, + "probability": 0.434 + }, + { + "start": 15425.8, + "end": 15428.08, + "probability": 0.1013 + }, + { + "start": 15428.92, + "end": 15428.94, + "probability": 0.0738 + }, + { + "start": 15428.94, + "end": 15428.94, + "probability": 0.2641 + }, + { + "start": 15428.94, + "end": 15428.94, + "probability": 0.3367 + }, + { + "start": 15428.94, + "end": 15429.84, + "probability": 0.7885 + }, + { + "start": 15430.58, + "end": 15432.6, + "probability": 0.4922 + }, + { + "start": 15433.9, + "end": 15434.26, + "probability": 0.3328 + }, + { + "start": 15434.36, + "end": 15437.4, + "probability": 0.4631 + }, + { + "start": 15437.48, + "end": 15437.82, + "probability": 0.6608 + }, + { + "start": 15438.02, + "end": 15438.24, + "probability": 0.1029 + }, + { + "start": 15438.42, + "end": 15439.84, + "probability": 0.8132 + }, + { + "start": 15440.0, + "end": 15441.82, + "probability": 0.6535 + }, + { + "start": 15442.2, + "end": 15443.26, + "probability": 0.7743 + }, + { + "start": 15444.48, + "end": 15444.58, + "probability": 0.002 + }, + { + "start": 15444.58, + "end": 15445.42, + "probability": 0.2733 + }, + { + "start": 15446.8, + "end": 15448.05, + "probability": 0.6292 + }, + { + "start": 15448.16, + "end": 15450.8, + "probability": 0.3135 + }, + { + "start": 15451.04, + "end": 15452.72, + "probability": 0.5273 + }, + { + "start": 15453.72, + "end": 15455.42, + "probability": 0.6575 + }, + { + "start": 15455.74, + "end": 15457.23, + "probability": 0.3226 + }, + { + "start": 15457.54, + "end": 15460.14, + "probability": 0.5053 + }, + { + "start": 15460.24, + "end": 15461.28, + "probability": 0.482 + }, + { + "start": 15461.4, + "end": 15462.08, + "probability": 0.4599 + }, + { + "start": 15462.16, + "end": 15462.58, + "probability": 0.0629 + }, + { + "start": 15462.61, + "end": 15465.68, + "probability": 0.5769 + }, + { + "start": 15466.32, + "end": 15468.16, + "probability": 0.0966 + }, + { + "start": 15468.54, + "end": 15471.66, + "probability": 0.6742 + }, + { + "start": 15472.6, + "end": 15473.06, + "probability": 0.8564 + }, + { + "start": 15473.3, + "end": 15476.9, + "probability": 0.9767 + }, + { + "start": 15476.9, + "end": 15480.02, + "probability": 0.5713 + }, + { + "start": 15480.36, + "end": 15481.58, + "probability": 0.602 + }, + { + "start": 15481.9, + "end": 15484.6, + "probability": 0.6913 + }, + { + "start": 15485.14, + "end": 15488.48, + "probability": 0.9717 + }, + { + "start": 15489.2, + "end": 15490.83, + "probability": 0.8373 + }, + { + "start": 15492.4, + "end": 15492.52, + "probability": 0.1535 + }, + { + "start": 15492.68, + "end": 15498.16, + "probability": 0.5109 + }, + { + "start": 15498.7, + "end": 15499.68, + "probability": 0.6452 + }, + { + "start": 15499.8, + "end": 15501.54, + "probability": 0.4953 + }, + { + "start": 15501.7, + "end": 15505.68, + "probability": 0.6444 + }, + { + "start": 15505.68, + "end": 15507.42, + "probability": 0.5968 + }, + { + "start": 15508.12, + "end": 15509.0, + "probability": 0.9618 + }, + { + "start": 15511.54, + "end": 15512.44, + "probability": 0.5778 + }, + { + "start": 15513.06, + "end": 15514.04, + "probability": 0.7835 + }, + { + "start": 15514.36, + "end": 15514.68, + "probability": 0.8276 + }, + { + "start": 15514.74, + "end": 15517.8, + "probability": 0.9674 + }, + { + "start": 15518.04, + "end": 15518.72, + "probability": 0.8414 + }, + { + "start": 15519.44, + "end": 15519.81, + "probability": 0.7753 + }, + { + "start": 15520.26, + "end": 15522.22, + "probability": 0.9922 + }, + { + "start": 15522.48, + "end": 15524.46, + "probability": 0.7974 + }, + { + "start": 15525.06, + "end": 15526.56, + "probability": 0.9062 + }, + { + "start": 15527.88, + "end": 15529.06, + "probability": 0.709 + }, + { + "start": 15529.14, + "end": 15531.98, + "probability": 0.5449 + }, + { + "start": 15532.92, + "end": 15534.16, + "probability": 0.2755 + }, + { + "start": 15535.68, + "end": 15538.58, + "probability": 0.9792 + }, + { + "start": 15539.42, + "end": 15540.26, + "probability": 0.5916 + }, + { + "start": 15542.16, + "end": 15544.24, + "probability": 0.9264 + }, + { + "start": 15547.24, + "end": 15550.73, + "probability": 0.7148 + }, + { + "start": 15551.24, + "end": 15551.34, + "probability": 0.3658 + }, + { + "start": 15551.9, + "end": 15552.78, + "probability": 0.6281 + }, + { + "start": 15553.68, + "end": 15554.44, + "probability": 0.8428 + }, + { + "start": 15554.56, + "end": 15556.68, + "probability": 0.7351 + }, + { + "start": 15557.14, + "end": 15559.72, + "probability": 0.1693 + }, + { + "start": 15559.86, + "end": 15560.9, + "probability": 0.7923 + }, + { + "start": 15561.16, + "end": 15562.58, + "probability": 0.3332 + }, + { + "start": 15563.48, + "end": 15568.2, + "probability": 0.9788 + }, + { + "start": 15568.36, + "end": 15568.99, + "probability": 0.7163 + }, + { + "start": 15569.14, + "end": 15572.04, + "probability": 0.1895 + }, + { + "start": 15572.78, + "end": 15576.44, + "probability": 0.5591 + }, + { + "start": 15576.76, + "end": 15580.84, + "probability": 0.9839 + }, + { + "start": 15580.88, + "end": 15581.26, + "probability": 0.8207 + }, + { + "start": 15582.84, + "end": 15586.78, + "probability": 0.7303 + }, + { + "start": 15587.22, + "end": 15589.16, + "probability": 0.7752 + }, + { + "start": 15590.38, + "end": 15592.24, + "probability": 0.8501 + }, + { + "start": 15592.62, + "end": 15593.6, + "probability": 0.7704 + }, + { + "start": 15593.72, + "end": 15598.08, + "probability": 0.8472 + }, + { + "start": 15606.16, + "end": 15607.16, + "probability": 0.4755 + }, + { + "start": 15608.22, + "end": 15612.72, + "probability": 0.5138 + }, + { + "start": 15613.16, + "end": 15614.88, + "probability": 0.6382 + }, + { + "start": 15615.2, + "end": 15618.96, + "probability": 0.9667 + }, + { + "start": 15619.14, + "end": 15620.94, + "probability": 0.9883 + }, + { + "start": 15621.74, + "end": 15623.13, + "probability": 0.2828 + }, + { + "start": 15624.58, + "end": 15628.14, + "probability": 0.0788 + }, + { + "start": 15628.32, + "end": 15628.72, + "probability": 0.1458 + }, + { + "start": 15628.92, + "end": 15629.38, + "probability": 0.8238 + }, + { + "start": 15629.48, + "end": 15632.08, + "probability": 0.9565 + }, + { + "start": 15632.08, + "end": 15635.92, + "probability": 0.9712 + }, + { + "start": 15636.04, + "end": 15638.7, + "probability": 0.9514 + }, + { + "start": 15638.8, + "end": 15639.1, + "probability": 0.7026 + }, + { + "start": 15640.04, + "end": 15644.12, + "probability": 0.9957 + }, + { + "start": 15644.48, + "end": 15644.84, + "probability": 0.5011 + }, + { + "start": 15645.56, + "end": 15646.16, + "probability": 0.3349 + }, + { + "start": 15646.36, + "end": 15649.4, + "probability": 0.87 + }, + { + "start": 15650.18, + "end": 15653.04, + "probability": 0.9191 + }, + { + "start": 15653.78, + "end": 15653.94, + "probability": 0.4738 + }, + { + "start": 15655.34, + "end": 15658.22, + "probability": 0.5695 + }, + { + "start": 15658.46, + "end": 15659.16, + "probability": 0.5747 + }, + { + "start": 15659.4, + "end": 15662.21, + "probability": 0.3581 + }, + { + "start": 15663.12, + "end": 15665.36, + "probability": 0.472 + }, + { + "start": 15665.38, + "end": 15665.72, + "probability": 0.6674 + }, + { + "start": 15666.46, + "end": 15668.17, + "probability": 0.582 + }, + { + "start": 15669.82, + "end": 15672.64, + "probability": 0.7633 + }, + { + "start": 15672.92, + "end": 15674.34, + "probability": 0.7702 + }, + { + "start": 15674.96, + "end": 15676.74, + "probability": 0.9479 + }, + { + "start": 15678.74, + "end": 15680.0, + "probability": 0.5676 + }, + { + "start": 15680.32, + "end": 15683.27, + "probability": 0.0732 + }, + { + "start": 15684.32, + "end": 15687.42, + "probability": 0.6807 + }, + { + "start": 15687.92, + "end": 15693.3, + "probability": 0.8054 + }, + { + "start": 15693.44, + "end": 15697.14, + "probability": 0.7439 + }, + { + "start": 15698.77, + "end": 15703.96, + "probability": 0.9424 + }, + { + "start": 15706.26, + "end": 15707.94, + "probability": 0.6035 + }, + { + "start": 15714.61, + "end": 15716.1, + "probability": 0.3301 + }, + { + "start": 15720.72, + "end": 15721.62, + "probability": 0.0357 + }, + { + "start": 15726.42, + "end": 15729.5, + "probability": 0.7958 + }, + { + "start": 15729.82, + "end": 15732.51, + "probability": 0.2932 + }, + { + "start": 15737.64, + "end": 15738.82, + "probability": 0.1656 + }, + { + "start": 15740.1, + "end": 15740.26, + "probability": 0.0142 + }, + { + "start": 15740.26, + "end": 15741.22, + "probability": 0.0888 + }, + { + "start": 15741.32, + "end": 15742.52, + "probability": 0.6166 + }, + { + "start": 15743.36, + "end": 15746.28, + "probability": 0.9113 + }, + { + "start": 15763.06, + "end": 15764.58, + "probability": 0.7001 + }, + { + "start": 15765.74, + "end": 15766.98, + "probability": 0.894 + }, + { + "start": 15767.96, + "end": 15770.34, + "probability": 0.9683 + }, + { + "start": 15772.08, + "end": 15774.68, + "probability": 0.9819 + }, + { + "start": 15775.88, + "end": 15778.98, + "probability": 0.9089 + }, + { + "start": 15780.18, + "end": 15786.92, + "probability": 0.9976 + }, + { + "start": 15787.08, + "end": 15789.52, + "probability": 0.9898 + }, + { + "start": 15790.32, + "end": 15794.46, + "probability": 0.9038 + }, + { + "start": 15795.08, + "end": 15798.1, + "probability": 0.672 + }, + { + "start": 15798.56, + "end": 15800.88, + "probability": 0.9029 + }, + { + "start": 15801.98, + "end": 15806.14, + "probability": 0.969 + }, + { + "start": 15806.86, + "end": 15808.56, + "probability": 0.8226 + }, + { + "start": 15809.86, + "end": 15812.78, + "probability": 0.946 + }, + { + "start": 15813.4, + "end": 15819.56, + "probability": 0.9935 + }, + { + "start": 15819.82, + "end": 15824.06, + "probability": 0.922 + }, + { + "start": 15824.24, + "end": 15826.11, + "probability": 0.8113 + }, + { + "start": 15826.32, + "end": 15827.36, + "probability": 0.5838 + }, + { + "start": 15827.58, + "end": 15827.76, + "probability": 0.7209 + }, + { + "start": 15827.76, + "end": 15831.78, + "probability": 0.8923 + }, + { + "start": 15831.8, + "end": 15832.76, + "probability": 0.7458 + }, + { + "start": 15834.7, + "end": 15837.56, + "probability": 0.6488 + }, + { + "start": 15838.26, + "end": 15839.06, + "probability": 0.827 + }, + { + "start": 15839.68, + "end": 15842.1, + "probability": 0.8225 + }, + { + "start": 15842.16, + "end": 15844.46, + "probability": 0.8141 + }, + { + "start": 15845.08, + "end": 15846.5, + "probability": 0.8981 + }, + { + "start": 15846.64, + "end": 15851.88, + "probability": 0.9742 + }, + { + "start": 15852.18, + "end": 15853.34, + "probability": 0.92 + }, + { + "start": 15853.5, + "end": 15855.34, + "probability": 0.9976 + }, + { + "start": 15855.46, + "end": 15856.38, + "probability": 0.9039 + }, + { + "start": 15856.54, + "end": 15856.64, + "probability": 0.5923 + }, + { + "start": 15857.34, + "end": 15860.34, + "probability": 0.9277 + }, + { + "start": 15861.32, + "end": 15863.6, + "probability": 0.9697 + }, + { + "start": 15863.64, + "end": 15865.44, + "probability": 0.8665 + }, + { + "start": 15865.58, + "end": 15867.54, + "probability": 0.9238 + }, + { + "start": 15868.36, + "end": 15870.18, + "probability": 0.9019 + }, + { + "start": 15870.7, + "end": 15871.41, + "probability": 0.8293 + }, + { + "start": 15872.99, + "end": 15876.0, + "probability": 0.8323 + }, + { + "start": 15877.42, + "end": 15881.36, + "probability": 0.6085 + }, + { + "start": 15881.48, + "end": 15882.66, + "probability": 0.9325 + }, + { + "start": 15882.72, + "end": 15883.7, + "probability": 0.9116 + }, + { + "start": 15884.1, + "end": 15886.44, + "probability": 0.9937 + }, + { + "start": 15886.62, + "end": 15889.4, + "probability": 0.9978 + }, + { + "start": 15890.08, + "end": 15891.5, + "probability": 0.9907 + }, + { + "start": 15892.3, + "end": 15895.34, + "probability": 0.994 + }, + { + "start": 15896.8, + "end": 15898.22, + "probability": 0.7789 + }, + { + "start": 15898.54, + "end": 15899.32, + "probability": 0.3362 + }, + { + "start": 15899.4, + "end": 15900.74, + "probability": 0.7891 + }, + { + "start": 15900.8, + "end": 15901.58, + "probability": 0.3689 + }, + { + "start": 15901.76, + "end": 15906.86, + "probability": 0.8971 + }, + { + "start": 15907.38, + "end": 15909.16, + "probability": 0.8801 + }, + { + "start": 15909.9, + "end": 15910.44, + "probability": 0.7874 + }, + { + "start": 15910.6, + "end": 15913.88, + "probability": 0.8401 + }, + { + "start": 15913.96, + "end": 15914.28, + "probability": 0.8069 + }, + { + "start": 15914.32, + "end": 15915.22, + "probability": 0.8151 + }, + { + "start": 15915.28, + "end": 15915.46, + "probability": 0.8746 + }, + { + "start": 15915.66, + "end": 15916.0, + "probability": 0.964 + }, + { + "start": 15916.24, + "end": 15917.58, + "probability": 0.9794 + }, + { + "start": 15917.76, + "end": 15919.5, + "probability": 0.9059 + }, + { + "start": 15919.6, + "end": 15919.94, + "probability": 0.9802 + }, + { + "start": 15920.0, + "end": 15920.38, + "probability": 0.6699 + }, + { + "start": 15920.92, + "end": 15921.64, + "probability": 0.5695 + }, + { + "start": 15921.9, + "end": 15924.36, + "probability": 0.9422 + }, + { + "start": 15925.12, + "end": 15927.04, + "probability": 0.9951 + }, + { + "start": 15927.74, + "end": 15928.79, + "probability": 0.6813 + }, + { + "start": 15929.02, + "end": 15929.91, + "probability": 0.9878 + }, + { + "start": 15930.68, + "end": 15932.22, + "probability": 0.993 + }, + { + "start": 15932.76, + "end": 15936.26, + "probability": 0.9732 + }, + { + "start": 15937.1, + "end": 15938.94, + "probability": 0.6211 + }, + { + "start": 15939.7, + "end": 15941.32, + "probability": 0.8168 + }, + { + "start": 15942.34, + "end": 15943.9, + "probability": 0.9774 + }, + { + "start": 15945.04, + "end": 15947.68, + "probability": 0.9108 + }, + { + "start": 15948.72, + "end": 15951.7, + "probability": 0.8397 + }, + { + "start": 15953.56, + "end": 15955.08, + "probability": 0.0657 + }, + { + "start": 15955.78, + "end": 15956.49, + "probability": 0.4849 + }, + { + "start": 15957.32, + "end": 15961.44, + "probability": 0.8593 + }, + { + "start": 15961.44, + "end": 15963.06, + "probability": 0.9136 + }, + { + "start": 15963.54, + "end": 15965.9, + "probability": 0.9871 + }, + { + "start": 15966.52, + "end": 15968.5, + "probability": 0.9588 + }, + { + "start": 15969.26, + "end": 15973.4, + "probability": 0.9334 + }, + { + "start": 15975.38, + "end": 15976.61, + "probability": 0.9532 + }, + { + "start": 15977.0, + "end": 15977.52, + "probability": 0.9956 + }, + { + "start": 15978.88, + "end": 15980.72, + "probability": 0.4919 + }, + { + "start": 15980.92, + "end": 15983.74, + "probability": 0.7037 + }, + { + "start": 15985.06, + "end": 15990.5, + "probability": 0.5986 + }, + { + "start": 15991.51, + "end": 15993.78, + "probability": 0.5875 + }, + { + "start": 15993.94, + "end": 15994.94, + "probability": 0.5074 + }, + { + "start": 15995.16, + "end": 15996.6, + "probability": 0.4989 + }, + { + "start": 15998.04, + "end": 15999.25, + "probability": 0.059 + }, + { + "start": 15999.86, + "end": 16000.66, + "probability": 0.3308 + }, + { + "start": 16001.57, + "end": 16004.8, + "probability": 0.7414 + }, + { + "start": 16004.8, + "end": 16005.48, + "probability": 0.6293 + }, + { + "start": 16006.94, + "end": 16008.4, + "probability": 0.3667 + }, + { + "start": 16008.42, + "end": 16009.36, + "probability": 0.642 + }, + { + "start": 16009.42, + "end": 16010.32, + "probability": 0.8097 + }, + { + "start": 16010.4, + "end": 16011.02, + "probability": 0.6969 + }, + { + "start": 16011.04, + "end": 16011.92, + "probability": 0.8311 + }, + { + "start": 16012.12, + "end": 16014.78, + "probability": 0.3107 + }, + { + "start": 16014.88, + "end": 16016.6, + "probability": 0.8007 + }, + { + "start": 16017.18, + "end": 16019.98, + "probability": 0.6598 + }, + { + "start": 16020.08, + "end": 16021.3, + "probability": 0.7673 + }, + { + "start": 16021.36, + "end": 16023.64, + "probability": 0.9877 + }, + { + "start": 16024.34, + "end": 16026.7, + "probability": 0.7909 + }, + { + "start": 16028.62, + "end": 16030.4, + "probability": 0.7572 + }, + { + "start": 16030.68, + "end": 16031.72, + "probability": 0.9641 + }, + { + "start": 16032.08, + "end": 16035.82, + "probability": 0.9965 + }, + { + "start": 16036.48, + "end": 16039.64, + "probability": 0.9261 + }, + { + "start": 16040.16, + "end": 16042.32, + "probability": 0.9992 + }, + { + "start": 16042.46, + "end": 16043.36, + "probability": 0.7646 + }, + { + "start": 16043.48, + "end": 16046.48, + "probability": 0.8434 + }, + { + "start": 16047.04, + "end": 16047.7, + "probability": 0.5941 + }, + { + "start": 16048.26, + "end": 16050.76, + "probability": 0.8109 + }, + { + "start": 16051.64, + "end": 16053.02, + "probability": 0.792 + }, + { + "start": 16053.32, + "end": 16054.58, + "probability": 0.9839 + }, + { + "start": 16054.68, + "end": 16058.54, + "probability": 0.987 + }, + { + "start": 16058.92, + "end": 16060.42, + "probability": 0.9177 + }, + { + "start": 16060.52, + "end": 16062.58, + "probability": 0.9883 + }, + { + "start": 16063.26, + "end": 16065.64, + "probability": 0.8381 + }, + { + "start": 16065.72, + "end": 16067.54, + "probability": 0.8006 + }, + { + "start": 16067.54, + "end": 16067.63, + "probability": 0.5053 + }, + { + "start": 16068.52, + "end": 16068.98, + "probability": 0.0165 + }, + { + "start": 16069.54, + "end": 16070.38, + "probability": 0.017 + }, + { + "start": 16070.98, + "end": 16073.46, + "probability": 0.7019 + }, + { + "start": 16073.68, + "end": 16073.92, + "probability": 0.5291 + }, + { + "start": 16074.52, + "end": 16075.56, + "probability": 0.8801 + }, + { + "start": 16075.68, + "end": 16078.8, + "probability": 0.967 + }, + { + "start": 16078.86, + "end": 16080.78, + "probability": 0.9459 + }, + { + "start": 16082.47, + "end": 16085.6, + "probability": 0.9967 + }, + { + "start": 16085.6, + "end": 16088.28, + "probability": 0.9727 + }, + { + "start": 16089.36, + "end": 16090.64, + "probability": 0.5007 + }, + { + "start": 16090.78, + "end": 16091.7, + "probability": 0.4087 + }, + { + "start": 16091.78, + "end": 16093.02, + "probability": 0.9873 + }, + { + "start": 16093.12, + "end": 16095.09, + "probability": 0.6901 + }, + { + "start": 16096.5, + "end": 16096.52, + "probability": 0.3809 + }, + { + "start": 16097.28, + "end": 16100.58, + "probability": 0.9609 + }, + { + "start": 16100.7, + "end": 16102.08, + "probability": 0.8918 + }, + { + "start": 16102.1, + "end": 16103.5, + "probability": 0.6112 + }, + { + "start": 16105.78, + "end": 16107.9, + "probability": 0.5043 + }, + { + "start": 16108.1, + "end": 16108.32, + "probability": 0.4182 + }, + { + "start": 16109.62, + "end": 16113.54, + "probability": 0.6443 + }, + { + "start": 16114.06, + "end": 16117.94, + "probability": 0.969 + }, + { + "start": 16118.5, + "end": 16119.12, + "probability": 0.8475 + }, + { + "start": 16119.94, + "end": 16121.4, + "probability": 0.7316 + }, + { + "start": 16121.46, + "end": 16123.5, + "probability": 0.9854 + }, + { + "start": 16123.72, + "end": 16128.0, + "probability": 0.9899 + }, + { + "start": 16128.9, + "end": 16131.8, + "probability": 0.9798 + }, + { + "start": 16132.5, + "end": 16134.4, + "probability": 0.8555 + }, + { + "start": 16136.4, + "end": 16138.0, + "probability": 0.9692 + }, + { + "start": 16139.84, + "end": 16140.68, + "probability": 0.7425 + }, + { + "start": 16141.6, + "end": 16144.58, + "probability": 0.7503 + }, + { + "start": 16157.26, + "end": 16158.02, + "probability": 0.5979 + }, + { + "start": 16158.42, + "end": 16159.54, + "probability": 0.9373 + }, + { + "start": 16160.04, + "end": 16161.0, + "probability": 0.7929 + }, + { + "start": 16161.28, + "end": 16163.86, + "probability": 0.765 + }, + { + "start": 16164.72, + "end": 16165.36, + "probability": 0.7705 + }, + { + "start": 16165.52, + "end": 16167.52, + "probability": 0.9735 + }, + { + "start": 16168.12, + "end": 16170.72, + "probability": 0.9828 + }, + { + "start": 16171.64, + "end": 16173.7, + "probability": 0.9474 + }, + { + "start": 16173.86, + "end": 16175.36, + "probability": 0.4343 + }, + { + "start": 16175.42, + "end": 16177.64, + "probability": 0.9161 + }, + { + "start": 16178.5, + "end": 16182.32, + "probability": 0.6186 + }, + { + "start": 16182.4, + "end": 16184.77, + "probability": 0.5237 + }, + { + "start": 16186.0, + "end": 16187.68, + "probability": 0.8548 + }, + { + "start": 16187.96, + "end": 16188.36, + "probability": 0.8582 + }, + { + "start": 16188.64, + "end": 16191.58, + "probability": 0.7516 + }, + { + "start": 16191.96, + "end": 16193.5, + "probability": 0.8367 + }, + { + "start": 16194.12, + "end": 16196.3, + "probability": 0.9986 + }, + { + "start": 16196.94, + "end": 16198.86, + "probability": 0.9901 + }, + { + "start": 16198.92, + "end": 16200.62, + "probability": 0.9932 + }, + { + "start": 16201.36, + "end": 16202.74, + "probability": 0.9591 + }, + { + "start": 16202.82, + "end": 16204.22, + "probability": 0.8733 + }, + { + "start": 16205.36, + "end": 16209.56, + "probability": 0.9922 + }, + { + "start": 16210.28, + "end": 16214.54, + "probability": 0.9609 + }, + { + "start": 16215.24, + "end": 16216.5, + "probability": 0.9982 + }, + { + "start": 16217.3, + "end": 16218.76, + "probability": 0.9153 + }, + { + "start": 16219.58, + "end": 16223.8, + "probability": 0.9641 + }, + { + "start": 16224.4, + "end": 16225.36, + "probability": 0.9237 + }, + { + "start": 16225.92, + "end": 16226.54, + "probability": 0.7929 + }, + { + "start": 16226.92, + "end": 16229.92, + "probability": 0.9323 + }, + { + "start": 16230.52, + "end": 16233.38, + "probability": 0.9902 + }, + { + "start": 16233.48, + "end": 16235.72, + "probability": 0.994 + }, + { + "start": 16236.12, + "end": 16238.08, + "probability": 0.9938 + }, + { + "start": 16238.28, + "end": 16239.76, + "probability": 0.968 + }, + { + "start": 16240.22, + "end": 16242.02, + "probability": 0.9821 + }, + { + "start": 16242.02, + "end": 16244.24, + "probability": 0.9957 + }, + { + "start": 16245.3, + "end": 16248.54, + "probability": 0.9982 + }, + { + "start": 16249.4, + "end": 16251.65, + "probability": 0.9689 + }, + { + "start": 16252.16, + "end": 16253.88, + "probability": 0.9909 + }, + { + "start": 16254.18, + "end": 16257.6, + "probability": 0.9713 + }, + { + "start": 16258.48, + "end": 16260.44, + "probability": 0.946 + }, + { + "start": 16260.62, + "end": 16262.82, + "probability": 0.9907 + }, + { + "start": 16263.46, + "end": 16264.02, + "probability": 0.812 + }, + { + "start": 16264.72, + "end": 16265.98, + "probability": 0.9282 + }, + { + "start": 16266.38, + "end": 16267.3, + "probability": 0.8594 + }, + { + "start": 16267.56, + "end": 16269.34, + "probability": 0.8506 + }, + { + "start": 16269.88, + "end": 16270.66, + "probability": 0.7613 + }, + { + "start": 16271.06, + "end": 16272.28, + "probability": 0.9253 + }, + { + "start": 16272.86, + "end": 16273.98, + "probability": 0.97 + }, + { + "start": 16274.16, + "end": 16276.98, + "probability": 0.9956 + }, + { + "start": 16278.08, + "end": 16280.14, + "probability": 0.9134 + }, + { + "start": 16280.34, + "end": 16281.52, + "probability": 0.9857 + }, + { + "start": 16282.28, + "end": 16284.66, + "probability": 0.9961 + }, + { + "start": 16284.72, + "end": 16284.98, + "probability": 0.6191 + }, + { + "start": 16285.02, + "end": 16286.84, + "probability": 0.7754 + }, + { + "start": 16286.98, + "end": 16287.88, + "probability": 0.8145 + }, + { + "start": 16288.32, + "end": 16290.8, + "probability": 0.9941 + }, + { + "start": 16291.26, + "end": 16294.72, + "probability": 0.9971 + }, + { + "start": 16294.72, + "end": 16298.97, + "probability": 0.9968 + }, + { + "start": 16299.18, + "end": 16301.46, + "probability": 0.9723 + }, + { + "start": 16302.2, + "end": 16306.96, + "probability": 0.9892 + }, + { + "start": 16307.0, + "end": 16307.82, + "probability": 0.7504 + }, + { + "start": 16309.0, + "end": 16312.16, + "probability": 0.9734 + }, + { + "start": 16312.84, + "end": 16317.2, + "probability": 0.9588 + }, + { + "start": 16317.68, + "end": 16319.02, + "probability": 0.8471 + }, + { + "start": 16319.12, + "end": 16320.44, + "probability": 0.9591 + }, + { + "start": 16320.74, + "end": 16321.54, + "probability": 0.9764 + }, + { + "start": 16321.58, + "end": 16326.26, + "probability": 0.9944 + }, + { + "start": 16326.78, + "end": 16330.0, + "probability": 0.99 + }, + { + "start": 16331.44, + "end": 16332.46, + "probability": 0.6977 + }, + { + "start": 16332.62, + "end": 16336.82, + "probability": 0.9872 + }, + { + "start": 16336.98, + "end": 16338.8, + "probability": 0.8926 + }, + { + "start": 16338.88, + "end": 16340.94, + "probability": 0.9924 + }, + { + "start": 16341.84, + "end": 16344.64, + "probability": 0.8577 + }, + { + "start": 16344.8, + "end": 16347.64, + "probability": 0.974 + }, + { + "start": 16348.36, + "end": 16352.26, + "probability": 0.964 + }, + { + "start": 16352.6, + "end": 16353.94, + "probability": 0.88 + }, + { + "start": 16354.6, + "end": 16359.48, + "probability": 0.9756 + }, + { + "start": 16359.94, + "end": 16361.14, + "probability": 0.9345 + }, + { + "start": 16361.18, + "end": 16362.1, + "probability": 0.8976 + }, + { + "start": 16362.44, + "end": 16365.84, + "probability": 0.9966 + }, + { + "start": 16366.0, + "end": 16369.12, + "probability": 0.8473 + }, + { + "start": 16369.46, + "end": 16371.72, + "probability": 0.9956 + }, + { + "start": 16372.3, + "end": 16374.52, + "probability": 0.97 + }, + { + "start": 16374.86, + "end": 16376.5, + "probability": 0.9694 + }, + { + "start": 16376.62, + "end": 16379.48, + "probability": 0.8493 + }, + { + "start": 16379.54, + "end": 16381.92, + "probability": 0.9932 + }, + { + "start": 16382.26, + "end": 16383.48, + "probability": 0.9556 + }, + { + "start": 16384.06, + "end": 16386.18, + "probability": 0.9973 + }, + { + "start": 16386.54, + "end": 16388.08, + "probability": 0.9399 + }, + { + "start": 16388.5, + "end": 16388.96, + "probability": 0.3979 + }, + { + "start": 16389.0, + "end": 16390.6, + "probability": 0.7267 + }, + { + "start": 16391.0, + "end": 16391.88, + "probability": 0.8767 + }, + { + "start": 16392.38, + "end": 16396.52, + "probability": 0.9868 + }, + { + "start": 16397.1, + "end": 16399.42, + "probability": 0.9907 + }, + { + "start": 16399.5, + "end": 16402.82, + "probability": 0.9766 + }, + { + "start": 16402.82, + "end": 16406.2, + "probability": 0.9995 + }, + { + "start": 16406.2, + "end": 16410.36, + "probability": 0.9812 + }, + { + "start": 16410.48, + "end": 16411.22, + "probability": 0.6193 + }, + { + "start": 16411.58, + "end": 16414.52, + "probability": 0.9878 + }, + { + "start": 16414.78, + "end": 16415.86, + "probability": 0.7921 + }, + { + "start": 16415.92, + "end": 16417.32, + "probability": 0.9634 + }, + { + "start": 16417.58, + "end": 16418.92, + "probability": 0.9775 + }, + { + "start": 16419.24, + "end": 16420.12, + "probability": 0.7111 + }, + { + "start": 16420.28, + "end": 16420.8, + "probability": 0.5523 + }, + { + "start": 16420.86, + "end": 16421.4, + "probability": 0.96 + }, + { + "start": 16421.44, + "end": 16425.5, + "probability": 0.9918 + }, + { + "start": 16425.5, + "end": 16429.14, + "probability": 0.9989 + }, + { + "start": 16436.34, + "end": 16439.16, + "probability": 0.4869 + }, + { + "start": 16439.16, + "end": 16443.18, + "probability": 0.2371 + }, + { + "start": 16444.36, + "end": 16447.28, + "probability": 0.9971 + }, + { + "start": 16447.42, + "end": 16448.05, + "probability": 0.733 + }, + { + "start": 16448.28, + "end": 16450.42, + "probability": 0.9889 + }, + { + "start": 16450.6, + "end": 16452.74, + "probability": 0.7519 + }, + { + "start": 16453.44, + "end": 16458.98, + "probability": 0.9618 + }, + { + "start": 16459.28, + "end": 16460.26, + "probability": 0.9816 + }, + { + "start": 16460.44, + "end": 16462.92, + "probability": 0.9982 + }, + { + "start": 16463.06, + "end": 16466.06, + "probability": 0.896 + }, + { + "start": 16466.74, + "end": 16469.64, + "probability": 0.998 + }, + { + "start": 16469.64, + "end": 16472.84, + "probability": 0.996 + }, + { + "start": 16473.06, + "end": 16476.34, + "probability": 0.9736 + }, + { + "start": 16476.96, + "end": 16477.72, + "probability": 0.9825 + }, + { + "start": 16478.92, + "end": 16479.32, + "probability": 0.7065 + }, + { + "start": 16479.5, + "end": 16480.58, + "probability": 0.7564 + }, + { + "start": 16481.3, + "end": 16483.26, + "probability": 0.8246 + }, + { + "start": 16485.2, + "end": 16488.56, + "probability": 0.9079 + }, + { + "start": 16490.2, + "end": 16490.66, + "probability": 0.9119 + }, + { + "start": 16499.6, + "end": 16501.74, + "probability": 0.6725 + }, + { + "start": 16502.26, + "end": 16502.6, + "probability": 0.604 + }, + { + "start": 16503.48, + "end": 16506.08, + "probability": 0.6696 + }, + { + "start": 16507.4, + "end": 16509.4, + "probability": 0.9766 + }, + { + "start": 16511.0, + "end": 16512.3, + "probability": 0.9873 + }, + { + "start": 16512.56, + "end": 16513.84, + "probability": 0.8586 + }, + { + "start": 16515.22, + "end": 16518.1, + "probability": 0.8787 + }, + { + "start": 16519.47, + "end": 16523.24, + "probability": 0.9985 + }, + { + "start": 16524.3, + "end": 16524.66, + "probability": 0.5814 + }, + { + "start": 16525.1, + "end": 16526.46, + "probability": 0.8359 + }, + { + "start": 16527.36, + "end": 16529.5, + "probability": 0.86 + }, + { + "start": 16530.8, + "end": 16536.22, + "probability": 0.9809 + }, + { + "start": 16536.36, + "end": 16537.14, + "probability": 0.9043 + }, + { + "start": 16538.18, + "end": 16538.6, + "probability": 0.5294 + }, + { + "start": 16539.3, + "end": 16542.16, + "probability": 0.8449 + }, + { + "start": 16543.02, + "end": 16544.96, + "probability": 0.9171 + }, + { + "start": 16545.4, + "end": 16550.2, + "probability": 0.9679 + }, + { + "start": 16550.98, + "end": 16553.12, + "probability": 0.9238 + }, + { + "start": 16553.66, + "end": 16558.2, + "probability": 0.9789 + }, + { + "start": 16559.52, + "end": 16561.36, + "probability": 0.9829 + }, + { + "start": 16562.32, + "end": 16563.36, + "probability": 0.1101 + }, + { + "start": 16563.7, + "end": 16564.2, + "probability": 0.471 + }, + { + "start": 16564.88, + "end": 16567.1, + "probability": 0.8354 + }, + { + "start": 16568.66, + "end": 16571.42, + "probability": 0.9692 + }, + { + "start": 16572.36, + "end": 16573.52, + "probability": 0.6749 + }, + { + "start": 16574.34, + "end": 16576.72, + "probability": 0.9749 + }, + { + "start": 16577.6, + "end": 16581.32, + "probability": 0.9954 + }, + { + "start": 16581.88, + "end": 16584.56, + "probability": 0.924 + }, + { + "start": 16585.2, + "end": 16586.34, + "probability": 0.8727 + }, + { + "start": 16587.14, + "end": 16592.4, + "probability": 0.8579 + }, + { + "start": 16592.96, + "end": 16595.64, + "probability": 0.9317 + }, + { + "start": 16596.38, + "end": 16597.14, + "probability": 0.9875 + }, + { + "start": 16597.58, + "end": 16598.28, + "probability": 0.9753 + }, + { + "start": 16598.7, + "end": 16602.42, + "probability": 0.9899 + }, + { + "start": 16603.66, + "end": 16606.7, + "probability": 0.7336 + }, + { + "start": 16607.64, + "end": 16608.7, + "probability": 0.9101 + }, + { + "start": 16609.36, + "end": 16612.78, + "probability": 0.972 + }, + { + "start": 16613.78, + "end": 16614.46, + "probability": 0.9316 + }, + { + "start": 16615.1, + "end": 16618.1, + "probability": 0.7764 + }, + { + "start": 16618.78, + "end": 16619.74, + "probability": 0.9185 + }, + { + "start": 16620.5, + "end": 16624.48, + "probability": 0.7917 + }, + { + "start": 16625.12, + "end": 16626.12, + "probability": 0.8975 + }, + { + "start": 16627.04, + "end": 16628.12, + "probability": 0.9464 + }, + { + "start": 16628.26, + "end": 16630.06, + "probability": 0.9737 + }, + { + "start": 16630.52, + "end": 16631.84, + "probability": 0.9785 + }, + { + "start": 16633.14, + "end": 16637.32, + "probability": 0.9761 + }, + { + "start": 16638.16, + "end": 16639.08, + "probability": 0.7842 + }, + { + "start": 16640.2, + "end": 16642.12, + "probability": 0.961 + }, + { + "start": 16643.22, + "end": 16644.18, + "probability": 0.6691 + }, + { + "start": 16645.06, + "end": 16645.9, + "probability": 0.9169 + }, + { + "start": 16647.32, + "end": 16651.48, + "probability": 0.9927 + }, + { + "start": 16652.2, + "end": 16653.78, + "probability": 0.9958 + }, + { + "start": 16654.4, + "end": 16655.34, + "probability": 0.9744 + }, + { + "start": 16657.63, + "end": 16659.7, + "probability": 0.8516 + }, + { + "start": 16660.52, + "end": 16664.5, + "probability": 0.9712 + }, + { + "start": 16664.9, + "end": 16665.3, + "probability": 0.7624 + }, + { + "start": 16665.34, + "end": 16668.24, + "probability": 0.9619 + }, + { + "start": 16668.58, + "end": 16672.08, + "probability": 0.9785 + }, + { + "start": 16673.08, + "end": 16673.18, + "probability": 0.0116 + }, + { + "start": 16675.28, + "end": 16676.5, + "probability": 0.1135 + }, + { + "start": 16677.32, + "end": 16679.6, + "probability": 0.8367 + }, + { + "start": 16679.82, + "end": 16682.68, + "probability": 0.4803 + }, + { + "start": 16682.76, + "end": 16685.46, + "probability": 0.6463 + }, + { + "start": 16685.7, + "end": 16686.88, + "probability": 0.6461 + }, + { + "start": 16689.28, + "end": 16689.7, + "probability": 0.0227 + }, + { + "start": 16689.7, + "end": 16690.13, + "probability": 0.2425 + }, + { + "start": 16690.26, + "end": 16691.9, + "probability": 0.9614 + }, + { + "start": 16691.9, + "end": 16692.08, + "probability": 0.3593 + }, + { + "start": 16692.28, + "end": 16692.82, + "probability": 0.8117 + }, + { + "start": 16692.82, + "end": 16694.98, + "probability": 0.9912 + }, + { + "start": 16695.04, + "end": 16697.04, + "probability": 0.9386 + }, + { + "start": 16697.16, + "end": 16700.2, + "probability": 0.7697 + }, + { + "start": 16701.6, + "end": 16703.34, + "probability": 0.7451 + }, + { + "start": 16704.22, + "end": 16709.86, + "probability": 0.9819 + }, + { + "start": 16710.38, + "end": 16711.18, + "probability": 0.8627 + }, + { + "start": 16711.26, + "end": 16713.08, + "probability": 0.9587 + }, + { + "start": 16716.16, + "end": 16717.56, + "probability": 0.9917 + }, + { + "start": 16717.66, + "end": 16720.58, + "probability": 0.9609 + }, + { + "start": 16720.66, + "end": 16722.08, + "probability": 0.946 + }, + { + "start": 16722.16, + "end": 16725.02, + "probability": 0.9269 + }, + { + "start": 16725.5, + "end": 16728.75, + "probability": 0.9741 + }, + { + "start": 16729.78, + "end": 16730.62, + "probability": 0.6371 + }, + { + "start": 16731.2, + "end": 16734.7, + "probability": 0.7989 + }, + { + "start": 16735.34, + "end": 16741.5, + "probability": 0.9932 + }, + { + "start": 16742.5, + "end": 16742.92, + "probability": 0.7695 + }, + { + "start": 16743.88, + "end": 16745.08, + "probability": 0.8995 + }, + { + "start": 16746.32, + "end": 16747.48, + "probability": 0.7518 + }, + { + "start": 16747.74, + "end": 16749.46, + "probability": 0.865 + }, + { + "start": 16749.76, + "end": 16752.68, + "probability": 0.9229 + }, + { + "start": 16754.02, + "end": 16757.0, + "probability": 0.915 + }, + { + "start": 16757.34, + "end": 16757.94, + "probability": 0.7928 + }, + { + "start": 16758.66, + "end": 16759.34, + "probability": 0.622 + }, + { + "start": 16759.64, + "end": 16764.22, + "probability": 0.9912 + }, + { + "start": 16764.22, + "end": 16768.42, + "probability": 0.9615 + }, + { + "start": 16768.84, + "end": 16769.22, + "probability": 0.6941 + }, + { + "start": 16771.42, + "end": 16774.32, + "probability": 0.5887 + }, + { + "start": 16774.96, + "end": 16776.43, + "probability": 0.5573 + }, + { + "start": 16776.54, + "end": 16782.12, + "probability": 0.8463 + }, + { + "start": 16782.12, + "end": 16784.7, + "probability": 0.9928 + }, + { + "start": 16785.26, + "end": 16785.81, + "probability": 0.8525 + }, + { + "start": 16786.84, + "end": 16787.94, + "probability": 0.9238 + }, + { + "start": 16788.16, + "end": 16790.84, + "probability": 0.8188 + }, + { + "start": 16791.42, + "end": 16793.04, + "probability": 0.7893 + }, + { + "start": 16793.62, + "end": 16795.68, + "probability": 0.9324 + }, + { + "start": 16796.24, + "end": 16796.94, + "probability": 0.9261 + }, + { + "start": 16797.32, + "end": 16802.52, + "probability": 0.8818 + }, + { + "start": 16802.92, + "end": 16803.44, + "probability": 0.6316 + }, + { + "start": 16803.64, + "end": 16804.14, + "probability": 0.2816 + }, + { + "start": 16804.3, + "end": 16805.78, + "probability": 0.8659 + }, + { + "start": 16806.36, + "end": 16807.38, + "probability": 0.6264 + }, + { + "start": 16808.66, + "end": 16808.98, + "probability": 0.6221 + }, + { + "start": 16809.82, + "end": 16815.54, + "probability": 0.7428 + }, + { + "start": 16815.76, + "end": 16817.02, + "probability": 0.9857 + }, + { + "start": 16817.74, + "end": 16819.42, + "probability": 0.3716 + }, + { + "start": 16819.42, + "end": 16822.76, + "probability": 0.617 + }, + { + "start": 16824.02, + "end": 16825.92, + "probability": 0.7952 + }, + { + "start": 16828.0, + "end": 16828.28, + "probability": 0.2734 + }, + { + "start": 16830.84, + "end": 16832.66, + "probability": 0.5317 + }, + { + "start": 16834.48, + "end": 16834.8, + "probability": 0.6858 + }, + { + "start": 16838.1, + "end": 16838.28, + "probability": 0.3742 + }, + { + "start": 16847.9, + "end": 16848.9, + "probability": 0.4473 + }, + { + "start": 16856.4, + "end": 16856.72, + "probability": 0.608 + }, + { + "start": 16860.06, + "end": 16860.84, + "probability": 0.6304 + }, + { + "start": 16861.92, + "end": 16866.08, + "probability": 0.5579 + }, + { + "start": 16868.7, + "end": 16873.56, + "probability": 0.9602 + }, + { + "start": 16873.94, + "end": 16874.7, + "probability": 0.8455 + }, + { + "start": 16875.44, + "end": 16876.58, + "probability": 0.9574 + }, + { + "start": 16876.92, + "end": 16880.95, + "probability": 0.9728 + }, + { + "start": 16882.1, + "end": 16882.94, + "probability": 0.9425 + }, + { + "start": 16883.06, + "end": 16883.32, + "probability": 0.8778 + }, + { + "start": 16884.38, + "end": 16886.36, + "probability": 0.9824 + }, + { + "start": 16887.6, + "end": 16891.14, + "probability": 0.9518 + }, + { + "start": 16892.2, + "end": 16894.7, + "probability": 0.9249 + }, + { + "start": 16897.46, + "end": 16900.82, + "probability": 0.6462 + }, + { + "start": 16901.5, + "end": 16903.54, + "probability": 0.8841 + }, + { + "start": 16904.8, + "end": 16909.44, + "probability": 0.9854 + }, + { + "start": 16911.14, + "end": 16912.36, + "probability": 0.6441 + }, + { + "start": 16913.82, + "end": 16914.38, + "probability": 0.5736 + }, + { + "start": 16916.64, + "end": 16918.76, + "probability": 0.9603 + }, + { + "start": 16918.96, + "end": 16919.24, + "probability": 0.4897 + }, + { + "start": 16919.62, + "end": 16922.1, + "probability": 0.8778 + }, + { + "start": 16923.8, + "end": 16924.5, + "probability": 0.8604 + }, + { + "start": 16925.94, + "end": 16928.12, + "probability": 0.9489 + }, + { + "start": 16928.28, + "end": 16928.8, + "probability": 0.3654 + }, + { + "start": 16930.12, + "end": 16932.1, + "probability": 0.959 + }, + { + "start": 16933.34, + "end": 16939.58, + "probability": 0.9954 + }, + { + "start": 16940.98, + "end": 16942.7, + "probability": 0.9963 + }, + { + "start": 16943.36, + "end": 16945.0, + "probability": 0.9966 + }, + { + "start": 16945.64, + "end": 16949.48, + "probability": 0.9956 + }, + { + "start": 16950.26, + "end": 16952.06, + "probability": 0.8447 + }, + { + "start": 16952.2, + "end": 16953.56, + "probability": 0.9985 + }, + { + "start": 16954.66, + "end": 16956.34, + "probability": 0.9978 + }, + { + "start": 16957.56, + "end": 16962.68, + "probability": 0.9982 + }, + { + "start": 16965.0, + "end": 16966.08, + "probability": 0.7527 + }, + { + "start": 16968.72, + "end": 16969.84, + "probability": 0.999 + }, + { + "start": 16970.44, + "end": 16972.78, + "probability": 0.8264 + }, + { + "start": 16973.3, + "end": 16975.46, + "probability": 0.9609 + }, + { + "start": 16976.86, + "end": 16978.36, + "probability": 0.8927 + }, + { + "start": 16978.62, + "end": 16981.44, + "probability": 0.9897 + }, + { + "start": 16982.76, + "end": 16983.71, + "probability": 0.9774 + }, + { + "start": 16984.46, + "end": 16986.28, + "probability": 0.9982 + }, + { + "start": 16986.54, + "end": 16990.16, + "probability": 0.8436 + }, + { + "start": 16990.82, + "end": 16994.93, + "probability": 0.5929 + }, + { + "start": 16996.18, + "end": 16998.14, + "probability": 0.5875 + }, + { + "start": 17001.22, + "end": 17001.66, + "probability": 0.273 + }, + { + "start": 17003.46, + "end": 17003.72, + "probability": 0.2618 + }, + { + "start": 17003.72, + "end": 17004.48, + "probability": 0.323 + }, + { + "start": 17004.58, + "end": 17006.54, + "probability": 0.5134 + }, + { + "start": 17008.12, + "end": 17009.2, + "probability": 0.7776 + }, + { + "start": 17009.48, + "end": 17013.82, + "probability": 0.7637 + }, + { + "start": 17016.04, + "end": 17019.88, + "probability": 0.9678 + }, + { + "start": 17021.82, + "end": 17022.38, + "probability": 0.1544 + }, + { + "start": 17022.54, + "end": 17026.86, + "probability": 0.8842 + }, + { + "start": 17026.92, + "end": 17029.52, + "probability": 0.9771 + }, + { + "start": 17031.36, + "end": 17033.38, + "probability": 0.6181 + }, + { + "start": 17035.02, + "end": 17037.08, + "probability": 0.8847 + }, + { + "start": 17038.42, + "end": 17040.26, + "probability": 0.9978 + }, + { + "start": 17041.04, + "end": 17043.2, + "probability": 0.9975 + }, + { + "start": 17044.8, + "end": 17046.52, + "probability": 0.5693 + }, + { + "start": 17048.0, + "end": 17051.28, + "probability": 0.9964 + }, + { + "start": 17053.08, + "end": 17056.88, + "probability": 0.9989 + }, + { + "start": 17058.56, + "end": 17062.38, + "probability": 0.9958 + }, + { + "start": 17063.74, + "end": 17066.76, + "probability": 0.9878 + }, + { + "start": 17068.18, + "end": 17069.96, + "probability": 0.9663 + }, + { + "start": 17070.66, + "end": 17071.76, + "probability": 0.6485 + }, + { + "start": 17072.3, + "end": 17073.32, + "probability": 0.8331 + }, + { + "start": 17074.58, + "end": 17076.72, + "probability": 0.9755 + }, + { + "start": 17077.52, + "end": 17078.76, + "probability": 0.9984 + }, + { + "start": 17080.34, + "end": 17081.8, + "probability": 0.9145 + }, + { + "start": 17083.9, + "end": 17090.2, + "probability": 0.8439 + }, + { + "start": 17091.4, + "end": 17095.78, + "probability": 0.9966 + }, + { + "start": 17096.82, + "end": 17098.8, + "probability": 0.9995 + }, + { + "start": 17099.8, + "end": 17101.2, + "probability": 0.9638 + }, + { + "start": 17102.34, + "end": 17104.48, + "probability": 0.9807 + }, + { + "start": 17105.64, + "end": 17106.7, + "probability": 0.8835 + }, + { + "start": 17106.88, + "end": 17110.62, + "probability": 0.9229 + }, + { + "start": 17111.82, + "end": 17115.92, + "probability": 0.8751 + }, + { + "start": 17117.06, + "end": 17121.7, + "probability": 0.9771 + }, + { + "start": 17122.9, + "end": 17124.76, + "probability": 0.9979 + }, + { + "start": 17125.06, + "end": 17125.48, + "probability": 0.8208 + }, + { + "start": 17125.6, + "end": 17126.12, + "probability": 0.893 + }, + { + "start": 17129.1, + "end": 17129.74, + "probability": 0.9448 + }, + { + "start": 17131.02, + "end": 17133.99, + "probability": 0.9942 + }, + { + "start": 17135.38, + "end": 17136.74, + "probability": 0.998 + }, + { + "start": 17137.64, + "end": 17138.96, + "probability": 0.8167 + }, + { + "start": 17140.84, + "end": 17143.26, + "probability": 0.9781 + }, + { + "start": 17144.58, + "end": 17148.64, + "probability": 0.9245 + }, + { + "start": 17148.72, + "end": 17152.3, + "probability": 0.9701 + }, + { + "start": 17153.48, + "end": 17156.74, + "probability": 0.9946 + }, + { + "start": 17157.48, + "end": 17158.32, + "probability": 0.774 + }, + { + "start": 17159.42, + "end": 17160.44, + "probability": 0.9992 + }, + { + "start": 17161.44, + "end": 17167.4, + "probability": 0.7833 + }, + { + "start": 17168.42, + "end": 17168.9, + "probability": 0.6979 + }, + { + "start": 17170.22, + "end": 17173.72, + "probability": 0.9987 + }, + { + "start": 17174.86, + "end": 17178.28, + "probability": 0.9956 + }, + { + "start": 17179.08, + "end": 17182.72, + "probability": 0.9927 + }, + { + "start": 17182.76, + "end": 17186.7, + "probability": 0.9946 + }, + { + "start": 17187.42, + "end": 17188.84, + "probability": 0.9447 + }, + { + "start": 17191.42, + "end": 17193.48, + "probability": 0.8438 + }, + { + "start": 17193.64, + "end": 17195.58, + "probability": 0.6949 + }, + { + "start": 17195.88, + "end": 17199.02, + "probability": 0.9861 + }, + { + "start": 17199.52, + "end": 17200.74, + "probability": 0.4973 + }, + { + "start": 17201.44, + "end": 17205.1, + "probability": 0.8184 + }, + { + "start": 17206.02, + "end": 17207.98, + "probability": 0.9909 + }, + { + "start": 17209.52, + "end": 17210.72, + "probability": 0.5161 + }, + { + "start": 17212.18, + "end": 17219.22, + "probability": 0.9236 + }, + { + "start": 17220.44, + "end": 17226.92, + "probability": 0.9426 + }, + { + "start": 17228.52, + "end": 17229.86, + "probability": 0.9987 + }, + { + "start": 17230.76, + "end": 17232.08, + "probability": 0.9866 + }, + { + "start": 17233.46, + "end": 17235.08, + "probability": 0.3378 + }, + { + "start": 17236.22, + "end": 17238.48, + "probability": 0.9351 + }, + { + "start": 17239.46, + "end": 17241.12, + "probability": 0.8756 + }, + { + "start": 17242.1, + "end": 17244.32, + "probability": 0.9973 + }, + { + "start": 17245.22, + "end": 17248.4, + "probability": 0.9967 + }, + { + "start": 17249.78, + "end": 17253.22, + "probability": 0.9963 + }, + { + "start": 17254.24, + "end": 17255.04, + "probability": 0.9927 + }, + { + "start": 17256.6, + "end": 17260.32, + "probability": 0.9851 + }, + { + "start": 17261.14, + "end": 17263.14, + "probability": 0.9379 + }, + { + "start": 17263.46, + "end": 17264.78, + "probability": 0.8784 + }, + { + "start": 17265.56, + "end": 17267.56, + "probability": 0.8639 + }, + { + "start": 17268.38, + "end": 17270.88, + "probability": 0.9431 + }, + { + "start": 17279.84, + "end": 17283.01, + "probability": 0.5408 + }, + { + "start": 17284.2, + "end": 17288.3, + "probability": 0.9917 + }, + { + "start": 17289.48, + "end": 17292.8, + "probability": 0.8386 + }, + { + "start": 17292.82, + "end": 17296.36, + "probability": 0.9164 + }, + { + "start": 17296.9, + "end": 17300.02, + "probability": 0.7706 + }, + { + "start": 17300.5, + "end": 17302.8, + "probability": 0.5892 + }, + { + "start": 17303.26, + "end": 17303.94, + "probability": 0.5454 + }, + { + "start": 17304.04, + "end": 17307.68, + "probability": 0.9891 + }, + { + "start": 17308.18, + "end": 17309.02, + "probability": 0.9148 + }, + { + "start": 17309.2, + "end": 17310.36, + "probability": 0.7897 + }, + { + "start": 17310.6, + "end": 17312.34, + "probability": 0.9684 + }, + { + "start": 17313.08, + "end": 17315.76, + "probability": 0.8046 + }, + { + "start": 17316.5, + "end": 17317.04, + "probability": 0.7756 + }, + { + "start": 17317.1, + "end": 17317.8, + "probability": 0.6044 + }, + { + "start": 17318.0, + "end": 17318.79, + "probability": 0.6481 + }, + { + "start": 17319.04, + "end": 17325.1, + "probability": 0.9979 + }, + { + "start": 17325.66, + "end": 17327.54, + "probability": 0.9944 + }, + { + "start": 17328.5, + "end": 17331.06, + "probability": 0.9596 + }, + { + "start": 17331.28, + "end": 17334.94, + "probability": 0.9681 + }, + { + "start": 17335.58, + "end": 17340.34, + "probability": 0.9634 + }, + { + "start": 17341.84, + "end": 17344.34, + "probability": 0.875 + }, + { + "start": 17345.38, + "end": 17347.38, + "probability": 0.9225 + }, + { + "start": 17348.12, + "end": 17349.8, + "probability": 0.9966 + }, + { + "start": 17349.88, + "end": 17351.8, + "probability": 0.8793 + }, + { + "start": 17352.36, + "end": 17353.72, + "probability": 0.962 + }, + { + "start": 17354.26, + "end": 17355.62, + "probability": 0.9859 + }, + { + "start": 17355.74, + "end": 17357.34, + "probability": 0.9842 + }, + { + "start": 17358.26, + "end": 17360.48, + "probability": 0.988 + }, + { + "start": 17361.48, + "end": 17362.76, + "probability": 0.8749 + }, + { + "start": 17363.52, + "end": 17363.96, + "probability": 0.8773 + }, + { + "start": 17364.78, + "end": 17366.4, + "probability": 0.9955 + }, + { + "start": 17366.76, + "end": 17369.14, + "probability": 0.9192 + }, + { + "start": 17369.52, + "end": 17370.74, + "probability": 0.9676 + }, + { + "start": 17371.18, + "end": 17373.02, + "probability": 0.9746 + }, + { + "start": 17374.1, + "end": 17374.99, + "probability": 0.5849 + }, + { + "start": 17375.04, + "end": 17375.58, + "probability": 0.7524 + }, + { + "start": 17377.56, + "end": 17381.03, + "probability": 0.899 + }, + { + "start": 17382.76, + "end": 17385.25, + "probability": 0.9868 + }, + { + "start": 17386.14, + "end": 17387.42, + "probability": 0.8719 + }, + { + "start": 17387.64, + "end": 17388.58, + "probability": 0.7667 + }, + { + "start": 17394.5, + "end": 17394.64, + "probability": 0.2942 + }, + { + "start": 17394.64, + "end": 17394.86, + "probability": 0.0813 + }, + { + "start": 17394.88, + "end": 17395.32, + "probability": 0.5558 + }, + { + "start": 17396.0, + "end": 17396.68, + "probability": 0.453 + }, + { + "start": 17397.85, + "end": 17399.28, + "probability": 0.6945 + }, + { + "start": 17400.5, + "end": 17400.7, + "probability": 0.2029 + }, + { + "start": 17401.38, + "end": 17402.18, + "probability": 0.7493 + }, + { + "start": 17403.76, + "end": 17405.06, + "probability": 0.276 + }, + { + "start": 17405.5, + "end": 17408.8, + "probability": 0.7851 + }, + { + "start": 17409.92, + "end": 17410.58, + "probability": 0.6083 + }, + { + "start": 17410.76, + "end": 17413.38, + "probability": 0.8441 + }, + { + "start": 17432.78, + "end": 17432.78, + "probability": 0.635 + }, + { + "start": 17432.78, + "end": 17432.86, + "probability": 0.243 + }, + { + "start": 17432.86, + "end": 17432.86, + "probability": 0.104 + }, + { + "start": 17432.86, + "end": 17433.72, + "probability": 0.4548 + }, + { + "start": 17433.8, + "end": 17437.18, + "probability": 0.7971 + }, + { + "start": 17437.32, + "end": 17437.86, + "probability": 0.4362 + }, + { + "start": 17438.96, + "end": 17439.16, + "probability": 0.9119 + }, + { + "start": 17442.14, + "end": 17444.16, + "probability": 0.8112 + }, + { + "start": 17447.68, + "end": 17448.88, + "probability": 0.775 + }, + { + "start": 17449.0, + "end": 17450.28, + "probability": 0.6704 + }, + { + "start": 17450.34, + "end": 17451.86, + "probability": 0.89 + }, + { + "start": 17452.34, + "end": 17453.18, + "probability": 0.7329 + }, + { + "start": 17453.2, + "end": 17454.16, + "probability": 0.7233 + }, + { + "start": 17454.7, + "end": 17458.96, + "probability": 0.3684 + }, + { + "start": 17459.68, + "end": 17463.2, + "probability": 0.8625 + }, + { + "start": 17463.42, + "end": 17464.88, + "probability": 0.9508 + }, + { + "start": 17465.3, + "end": 17468.28, + "probability": 0.9505 + }, + { + "start": 17468.84, + "end": 17470.26, + "probability": 0.6281 + }, + { + "start": 17470.52, + "end": 17473.14, + "probability": 0.3893 + }, + { + "start": 17473.28, + "end": 17474.54, + "probability": 0.5934 + }, + { + "start": 17475.36, + "end": 17479.74, + "probability": 0.805 + }, + { + "start": 17480.02, + "end": 17481.66, + "probability": 0.7276 + }, + { + "start": 17482.06, + "end": 17483.84, + "probability": 0.9725 + }, + { + "start": 17484.06, + "end": 17486.0, + "probability": 0.6014 + }, + { + "start": 17486.6, + "end": 17489.86, + "probability": 0.6674 + }, + { + "start": 17490.54, + "end": 17492.34, + "probability": 0.7665 + }, + { + "start": 17492.54, + "end": 17493.56, + "probability": 0.323 + }, + { + "start": 17493.66, + "end": 17495.04, + "probability": 0.9966 + }, + { + "start": 17496.22, + "end": 17502.24, + "probability": 0.7358 + }, + { + "start": 17503.04, + "end": 17504.16, + "probability": 0.6999 + }, + { + "start": 17504.58, + "end": 17505.48, + "probability": 0.2938 + }, + { + "start": 17505.96, + "end": 17506.56, + "probability": 0.0915 + }, + { + "start": 17506.56, + "end": 17506.56, + "probability": 0.2267 + }, + { + "start": 17507.0, + "end": 17507.5, + "probability": 0.6998 + }, + { + "start": 17508.72, + "end": 17510.0, + "probability": 0.7317 + }, + { + "start": 17511.44, + "end": 17523.23, + "probability": 0.0767 + }, + { + "start": 17527.2, + "end": 17527.62, + "probability": 0.5242 + }, + { + "start": 17543.04, + "end": 17544.06, + "probability": 0.4535 + }, + { + "start": 17555.6, + "end": 17555.6, + "probability": 0.1831 + }, + { + "start": 17555.6, + "end": 17556.32, + "probability": 0.861 + }, + { + "start": 17557.74, + "end": 17559.52, + "probability": 0.6862 + }, + { + "start": 17560.54, + "end": 17561.8, + "probability": 0.9541 + }, + { + "start": 17562.64, + "end": 17563.38, + "probability": 0.8526 + }, + { + "start": 17563.88, + "end": 17569.24, + "probability": 0.8931 + }, + { + "start": 17570.4, + "end": 17575.38, + "probability": 0.9879 + }, + { + "start": 17575.38, + "end": 17582.7, + "probability": 0.9786 + }, + { + "start": 17583.32, + "end": 17584.74, + "probability": 0.7758 + }, + { + "start": 17585.88, + "end": 17586.42, + "probability": 0.5422 + }, + { + "start": 17587.22, + "end": 17589.12, + "probability": 0.9382 + }, + { + "start": 17589.76, + "end": 17591.28, + "probability": 0.4607 + }, + { + "start": 17592.7, + "end": 17594.28, + "probability": 0.9836 + }, + { + "start": 17594.64, + "end": 17600.36, + "probability": 0.9884 + }, + { + "start": 17600.8, + "end": 17603.88, + "probability": 0.7017 + }, + { + "start": 17604.54, + "end": 17608.5, + "probability": 0.9738 + }, + { + "start": 17608.5, + "end": 17610.78, + "probability": 0.9067 + }, + { + "start": 17611.74, + "end": 17613.8, + "probability": 0.8947 + }, + { + "start": 17613.98, + "end": 17617.5, + "probability": 0.9524 + }, + { + "start": 17617.94, + "end": 17619.42, + "probability": 0.9801 + }, + { + "start": 17619.98, + "end": 17621.16, + "probability": 0.9967 + }, + { + "start": 17621.36, + "end": 17623.59, + "probability": 0.9922 + }, + { + "start": 17624.52, + "end": 17626.18, + "probability": 0.9972 + }, + { + "start": 17626.38, + "end": 17630.02, + "probability": 0.9914 + }, + { + "start": 17631.02, + "end": 17631.37, + "probability": 0.9221 + }, + { + "start": 17631.42, + "end": 17637.64, + "probability": 0.869 + }, + { + "start": 17637.64, + "end": 17638.24, + "probability": 0.7194 + }, + { + "start": 17639.1, + "end": 17647.52, + "probability": 0.9162 + }, + { + "start": 17648.16, + "end": 17651.54, + "probability": 0.8866 + }, + { + "start": 17651.88, + "end": 17653.34, + "probability": 0.8213 + }, + { + "start": 17653.34, + "end": 17653.88, + "probability": 0.8099 + }, + { + "start": 17653.98, + "end": 17656.78, + "probability": 0.8806 + }, + { + "start": 17657.24, + "end": 17659.76, + "probability": 0.9862 + }, + { + "start": 17659.76, + "end": 17662.72, + "probability": 0.9748 + }, + { + "start": 17663.24, + "end": 17664.6, + "probability": 0.6589 + }, + { + "start": 17664.9, + "end": 17666.56, + "probability": 0.5029 + }, + { + "start": 17666.76, + "end": 17666.76, + "probability": 0.616 + }, + { + "start": 17666.76, + "end": 17668.18, + "probability": 0.8363 + }, + { + "start": 17668.74, + "end": 17669.84, + "probability": 0.97 + }, + { + "start": 17670.2, + "end": 17670.72, + "probability": 0.9615 + }, + { + "start": 17671.5, + "end": 17675.44, + "probability": 0.9757 + }, + { + "start": 17676.14, + "end": 17677.76, + "probability": 0.9604 + }, + { + "start": 17677.82, + "end": 17681.4, + "probability": 0.9961 + }, + { + "start": 17681.54, + "end": 17681.88, + "probability": 0.7639 + }, + { + "start": 17682.0, + "end": 17682.62, + "probability": 0.8233 + }, + { + "start": 17683.5, + "end": 17685.88, + "probability": 0.8118 + }, + { + "start": 17686.34, + "end": 17688.48, + "probability": 0.9962 + }, + { + "start": 17689.48, + "end": 17692.64, + "probability": 0.9961 + }, + { + "start": 17693.4, + "end": 17693.64, + "probability": 0.7415 + }, + { + "start": 17695.46, + "end": 17699.58, + "probability": 0.8842 + }, + { + "start": 17699.7, + "end": 17702.84, + "probability": 0.911 + }, + { + "start": 17703.48, + "end": 17708.4, + "probability": 0.9517 + }, + { + "start": 17708.5, + "end": 17711.16, + "probability": 0.9948 + }, + { + "start": 17711.24, + "end": 17712.36, + "probability": 0.7273 + }, + { + "start": 17712.94, + "end": 17714.87, + "probability": 0.9315 + }, + { + "start": 17715.9, + "end": 17718.72, + "probability": 0.4095 + }, + { + "start": 17719.64, + "end": 17727.1, + "probability": 0.9913 + }, + { + "start": 17728.26, + "end": 17731.04, + "probability": 0.9905 + }, + { + "start": 17733.12, + "end": 17734.74, + "probability": 0.9246 + }, + { + "start": 17734.8, + "end": 17735.7, + "probability": 0.8909 + }, + { + "start": 17736.4, + "end": 17737.16, + "probability": 0.6455 + }, + { + "start": 17737.86, + "end": 17739.12, + "probability": 0.806 + }, + { + "start": 17739.74, + "end": 17742.04, + "probability": 0.9734 + }, + { + "start": 17742.66, + "end": 17744.98, + "probability": 0.9846 + }, + { + "start": 17745.03, + "end": 17748.34, + "probability": 0.9047 + }, + { + "start": 17748.46, + "end": 17748.94, + "probability": 0.6629 + }, + { + "start": 17749.98, + "end": 17754.9, + "probability": 0.8321 + }, + { + "start": 17755.54, + "end": 17757.18, + "probability": 0.8554 + }, + { + "start": 17757.26, + "end": 17759.68, + "probability": 0.757 + }, + { + "start": 17760.12, + "end": 17763.68, + "probability": 0.9644 + }, + { + "start": 17763.78, + "end": 17765.86, + "probability": 0.4207 + }, + { + "start": 17766.82, + "end": 17770.24, + "probability": 0.9849 + }, + { + "start": 17770.66, + "end": 17775.28, + "probability": 0.9965 + }, + { + "start": 17775.88, + "end": 17781.08, + "probability": 0.561 + }, + { + "start": 17781.16, + "end": 17781.84, + "probability": 0.8078 + }, + { + "start": 17782.32, + "end": 17784.48, + "probability": 0.7538 + }, + { + "start": 17784.86, + "end": 17785.92, + "probability": 0.8953 + }, + { + "start": 17786.98, + "end": 17789.12, + "probability": 0.9978 + }, + { + "start": 17789.18, + "end": 17789.68, + "probability": 0.7648 + }, + { + "start": 17789.7, + "end": 17793.54, + "probability": 0.9149 + }, + { + "start": 17794.02, + "end": 17796.8, + "probability": 0.8468 + }, + { + "start": 17797.56, + "end": 17800.74, + "probability": 0.988 + }, + { + "start": 17801.82, + "end": 17802.44, + "probability": 0.2856 + }, + { + "start": 17802.52, + "end": 17806.96, + "probability": 0.9071 + }, + { + "start": 17807.38, + "end": 17808.68, + "probability": 0.8157 + }, + { + "start": 17808.88, + "end": 17811.06, + "probability": 0.844 + }, + { + "start": 17811.46, + "end": 17812.41, + "probability": 0.922 + }, + { + "start": 17813.1, + "end": 17814.74, + "probability": 0.9186 + }, + { + "start": 17815.3, + "end": 17818.84, + "probability": 0.9253 + }, + { + "start": 17819.82, + "end": 17821.08, + "probability": 0.9823 + }, + { + "start": 17822.12, + "end": 17825.66, + "probability": 0.7469 + }, + { + "start": 17826.2, + "end": 17826.81, + "probability": 0.5307 + }, + { + "start": 17827.66, + "end": 17829.82, + "probability": 0.8625 + }, + { + "start": 17830.98, + "end": 17833.42, + "probability": 0.9196 + }, + { + "start": 17833.8, + "end": 17836.28, + "probability": 0.9967 + }, + { + "start": 17836.7, + "end": 17838.44, + "probability": 0.9992 + }, + { + "start": 17838.44, + "end": 17840.98, + "probability": 0.9902 + }, + { + "start": 17841.18, + "end": 17842.94, + "probability": 0.9894 + }, + { + "start": 17843.34, + "end": 17846.78, + "probability": 0.9939 + }, + { + "start": 17846.78, + "end": 17850.76, + "probability": 0.983 + }, + { + "start": 17851.38, + "end": 17854.48, + "probability": 0.6766 + }, + { + "start": 17856.65, + "end": 17859.5, + "probability": 0.9831 + }, + { + "start": 17859.86, + "end": 17862.14, + "probability": 0.9924 + }, + { + "start": 17862.74, + "end": 17867.78, + "probability": 0.9958 + }, + { + "start": 17868.5, + "end": 17870.08, + "probability": 0.9618 + }, + { + "start": 17870.12, + "end": 17871.95, + "probability": 0.9978 + }, + { + "start": 17872.72, + "end": 17874.65, + "probability": 0.8588 + }, + { + "start": 17874.86, + "end": 17876.58, + "probability": 0.9095 + }, + { + "start": 17876.68, + "end": 17877.84, + "probability": 0.5904 + }, + { + "start": 17878.38, + "end": 17881.69, + "probability": 0.9939 + }, + { + "start": 17882.5, + "end": 17886.52, + "probability": 0.9917 + }, + { + "start": 17887.24, + "end": 17889.3, + "probability": 0.9978 + }, + { + "start": 17889.46, + "end": 17889.99, + "probability": 0.9782 + }, + { + "start": 17890.2, + "end": 17890.34, + "probability": 0.5345 + }, + { + "start": 17890.44, + "end": 17894.74, + "probability": 0.8708 + }, + { + "start": 17895.22, + "end": 17896.3, + "probability": 0.9343 + }, + { + "start": 17896.76, + "end": 17897.82, + "probability": 0.9369 + }, + { + "start": 17898.08, + "end": 17899.44, + "probability": 0.787 + }, + { + "start": 17900.14, + "end": 17903.02, + "probability": 0.9931 + }, + { + "start": 17903.02, + "end": 17909.22, + "probability": 0.8152 + }, + { + "start": 17909.6, + "end": 17913.58, + "probability": 0.9929 + }, + { + "start": 17913.58, + "end": 17916.44, + "probability": 0.9997 + }, + { + "start": 17916.64, + "end": 17919.42, + "probability": 0.9539 + }, + { + "start": 17919.44, + "end": 17920.16, + "probability": 0.801 + }, + { + "start": 17920.84, + "end": 17922.46, + "probability": 0.927 + }, + { + "start": 17922.58, + "end": 17925.86, + "probability": 0.9859 + }, + { + "start": 17926.1, + "end": 17927.22, + "probability": 0.2652 + }, + { + "start": 17927.38, + "end": 17928.98, + "probability": 0.824 + }, + { + "start": 17929.4, + "end": 17930.52, + "probability": 0.9357 + }, + { + "start": 17931.1, + "end": 17933.42, + "probability": 0.9492 + }, + { + "start": 17934.78, + "end": 17936.76, + "probability": 0.9308 + }, + { + "start": 17936.78, + "end": 17938.52, + "probability": 0.6493 + }, + { + "start": 17938.6, + "end": 17940.6, + "probability": 0.9751 + }, + { + "start": 17940.92, + "end": 17944.6, + "probability": 0.924 + }, + { + "start": 17945.86, + "end": 17950.54, + "probability": 0.9858 + }, + { + "start": 17950.54, + "end": 17954.34, + "probability": 0.9813 + }, + { + "start": 17954.38, + "end": 17954.8, + "probability": 0.5417 + }, + { + "start": 17955.7, + "end": 17957.04, + "probability": 0.578 + }, + { + "start": 17958.2, + "end": 17961.0, + "probability": 0.8116 + }, + { + "start": 17965.28, + "end": 17966.68, + "probability": 0.1513 + }, + { + "start": 17992.2, + "end": 17995.12, + "probability": 0.7303 + }, + { + "start": 17996.4, + "end": 17998.56, + "probability": 0.938 + }, + { + "start": 18000.02, + "end": 18004.8, + "probability": 0.9937 + }, + { + "start": 18005.76, + "end": 18007.17, + "probability": 0.7143 + }, + { + "start": 18008.74, + "end": 18011.76, + "probability": 0.843 + }, + { + "start": 18012.0, + "end": 18013.13, + "probability": 0.9951 + }, + { + "start": 18014.86, + "end": 18017.43, + "probability": 0.9927 + }, + { + "start": 18018.3, + "end": 18021.0, + "probability": 0.9844 + }, + { + "start": 18021.84, + "end": 18023.52, + "probability": 0.967 + }, + { + "start": 18024.26, + "end": 18027.08, + "probability": 0.9773 + }, + { + "start": 18028.74, + "end": 18030.3, + "probability": 0.9856 + }, + { + "start": 18030.44, + "end": 18033.54, + "probability": 0.9864 + }, + { + "start": 18033.88, + "end": 18035.7, + "probability": 0.9893 + }, + { + "start": 18036.36, + "end": 18036.86, + "probability": 0.9492 + }, + { + "start": 18037.1, + "end": 18037.88, + "probability": 0.9958 + }, + { + "start": 18038.48, + "end": 18039.92, + "probability": 0.9807 + }, + { + "start": 18040.04, + "end": 18041.46, + "probability": 0.951 + }, + { + "start": 18042.52, + "end": 18043.6, + "probability": 0.9567 + }, + { + "start": 18044.48, + "end": 18046.43, + "probability": 0.5761 + }, + { + "start": 18046.66, + "end": 18049.19, + "probability": 0.9963 + }, + { + "start": 18049.58, + "end": 18050.32, + "probability": 0.7189 + }, + { + "start": 18050.48, + "end": 18053.45, + "probability": 0.6888 + }, + { + "start": 18053.5, + "end": 18053.7, + "probability": 0.4883 + }, + { + "start": 18054.7, + "end": 18056.96, + "probability": 0.9219 + }, + { + "start": 18057.66, + "end": 18058.78, + "probability": 0.8833 + }, + { + "start": 18059.28, + "end": 18062.44, + "probability": 0.9964 + }, + { + "start": 18062.96, + "end": 18064.68, + "probability": 0.792 + }, + { + "start": 18065.9, + "end": 18066.4, + "probability": 0.6983 + }, + { + "start": 18066.78, + "end": 18067.26, + "probability": 0.8082 + }, + { + "start": 18068.24, + "end": 18068.48, + "probability": 0.9538 + }, + { + "start": 18069.6, + "end": 18070.7, + "probability": 0.6948 + }, + { + "start": 18071.5, + "end": 18072.46, + "probability": 0.9902 + }, + { + "start": 18073.86, + "end": 18075.72, + "probability": 0.849 + }, + { + "start": 18075.74, + "end": 18077.27, + "probability": 0.7771 + }, + { + "start": 18077.46, + "end": 18078.71, + "probability": 0.8251 + }, + { + "start": 18079.32, + "end": 18080.66, + "probability": 0.9792 + }, + { + "start": 18081.74, + "end": 18084.04, + "probability": 0.8155 + }, + { + "start": 18084.44, + "end": 18085.96, + "probability": 0.8564 + }, + { + "start": 18086.02, + "end": 18086.04, + "probability": 0.714 + }, + { + "start": 18086.12, + "end": 18087.14, + "probability": 0.5533 + }, + { + "start": 18087.14, + "end": 18089.94, + "probability": 0.9502 + }, + { + "start": 18091.8, + "end": 18093.58, + "probability": 0.8696 + }, + { + "start": 18094.62, + "end": 18097.94, + "probability": 0.8624 + }, + { + "start": 18098.94, + "end": 18100.76, + "probability": 0.987 + }, + { + "start": 18101.38, + "end": 18102.14, + "probability": 0.8887 + }, + { + "start": 18102.78, + "end": 18104.92, + "probability": 0.9567 + }, + { + "start": 18105.78, + "end": 18108.1, + "probability": 0.9905 + }, + { + "start": 18108.98, + "end": 18110.7, + "probability": 0.9614 + }, + { + "start": 18111.26, + "end": 18113.74, + "probability": 0.959 + }, + { + "start": 18114.9, + "end": 18116.74, + "probability": 0.9325 + }, + { + "start": 18117.32, + "end": 18118.84, + "probability": 0.8915 + }, + { + "start": 18119.3, + "end": 18121.84, + "probability": 0.5167 + }, + { + "start": 18122.18, + "end": 18123.94, + "probability": 0.9744 + }, + { + "start": 18124.42, + "end": 18127.42, + "probability": 0.812 + }, + { + "start": 18127.74, + "end": 18131.04, + "probability": 0.7878 + }, + { + "start": 18131.1, + "end": 18131.56, + "probability": 0.5804 + }, + { + "start": 18131.62, + "end": 18134.8, + "probability": 0.9327 + }, + { + "start": 18135.7, + "end": 18137.9, + "probability": 0.9912 + }, + { + "start": 18139.26, + "end": 18144.22, + "probability": 0.9381 + }, + { + "start": 18144.86, + "end": 18147.44, + "probability": 0.2732 + }, + { + "start": 18147.44, + "end": 18148.48, + "probability": 0.842 + }, + { + "start": 18148.92, + "end": 18149.7, + "probability": 0.3249 + }, + { + "start": 18149.8, + "end": 18151.73, + "probability": 0.8281 + }, + { + "start": 18152.5, + "end": 18153.75, + "probability": 0.8047 + }, + { + "start": 18154.84, + "end": 18156.68, + "probability": 0.3612 + }, + { + "start": 18156.74, + "end": 18158.22, + "probability": 0.9629 + }, + { + "start": 18158.78, + "end": 18160.9, + "probability": 0.9683 + }, + { + "start": 18160.94, + "end": 18164.0, + "probability": 0.9829 + }, + { + "start": 18164.6, + "end": 18167.02, + "probability": 0.9611 + }, + { + "start": 18168.16, + "end": 18168.66, + "probability": 0.8307 + }, + { + "start": 18169.88, + "end": 18170.38, + "probability": 0.6718 + }, + { + "start": 18170.5, + "end": 18174.46, + "probability": 0.9095 + }, + { + "start": 18193.52, + "end": 18194.04, + "probability": 0.342 + }, + { + "start": 18194.04, + "end": 18194.04, + "probability": 0.2874 + }, + { + "start": 18194.04, + "end": 18194.54, + "probability": 0.4201 + }, + { + "start": 18195.02, + "end": 18197.62, + "probability": 0.779 + }, + { + "start": 18197.82, + "end": 18202.0, + "probability": 0.8899 + }, + { + "start": 18202.18, + "end": 18202.64, + "probability": 0.8507 + }, + { + "start": 18203.32, + "end": 18205.24, + "probability": 0.7581 + }, + { + "start": 18205.38, + "end": 18206.52, + "probability": 0.7353 + }, + { + "start": 18206.62, + "end": 18210.52, + "probability": 0.9606 + }, + { + "start": 18210.52, + "end": 18213.76, + "probability": 0.9954 + }, + { + "start": 18214.34, + "end": 18214.92, + "probability": 0.6989 + }, + { + "start": 18217.82, + "end": 18219.0, + "probability": 0.6532 + }, + { + "start": 18219.66, + "end": 18220.7, + "probability": 0.2675 + }, + { + "start": 18221.62, + "end": 18223.4, + "probability": 0.9916 + }, + { + "start": 18224.3, + "end": 18225.96, + "probability": 0.9437 + }, + { + "start": 18226.54, + "end": 18227.9, + "probability": 0.9511 + }, + { + "start": 18229.06, + "end": 18229.7, + "probability": 0.7587 + }, + { + "start": 18230.98, + "end": 18231.7, + "probability": 0.6621 + }, + { + "start": 18232.36, + "end": 18233.64, + "probability": 0.8857 + }, + { + "start": 18235.66, + "end": 18238.34, + "probability": 0.9393 + }, + { + "start": 18240.48, + "end": 18246.44, + "probability": 0.9775 + }, + { + "start": 18248.08, + "end": 18248.96, + "probability": 0.9911 + }, + { + "start": 18249.68, + "end": 18253.3, + "probability": 0.9973 + }, + { + "start": 18254.28, + "end": 18255.84, + "probability": 0.9939 + }, + { + "start": 18256.82, + "end": 18259.8, + "probability": 0.9779 + }, + { + "start": 18261.28, + "end": 18261.76, + "probability": 0.8025 + }, + { + "start": 18262.86, + "end": 18266.7, + "probability": 0.9862 + }, + { + "start": 18268.16, + "end": 18269.38, + "probability": 0.7607 + }, + { + "start": 18270.46, + "end": 18273.02, + "probability": 0.9968 + }, + { + "start": 18275.24, + "end": 18276.44, + "probability": 0.8571 + }, + { + "start": 18277.56, + "end": 18280.12, + "probability": 0.8564 + }, + { + "start": 18281.02, + "end": 18282.7, + "probability": 0.9106 + }, + { + "start": 18283.58, + "end": 18284.6, + "probability": 0.7737 + }, + { + "start": 18285.6, + "end": 18289.08, + "probability": 0.9718 + }, + { + "start": 18289.08, + "end": 18296.3, + "probability": 0.9196 + }, + { + "start": 18297.12, + "end": 18300.3, + "probability": 0.9348 + }, + { + "start": 18301.36, + "end": 18302.8, + "probability": 0.9789 + }, + { + "start": 18303.4, + "end": 18304.83, + "probability": 0.8285 + }, + { + "start": 18305.3, + "end": 18309.82, + "probability": 0.8998 + }, + { + "start": 18310.66, + "end": 18311.4, + "probability": 0.981 + }, + { + "start": 18311.92, + "end": 18315.24, + "probability": 0.9427 + }, + { + "start": 18315.58, + "end": 18318.28, + "probability": 0.9653 + }, + { + "start": 18319.26, + "end": 18323.72, + "probability": 0.8824 + }, + { + "start": 18324.12, + "end": 18324.98, + "probability": 0.4461 + }, + { + "start": 18325.46, + "end": 18327.2, + "probability": 0.7857 + }, + { + "start": 18328.18, + "end": 18332.4, + "probability": 0.9678 + }, + { + "start": 18332.4, + "end": 18336.42, + "probability": 0.9716 + }, + { + "start": 18337.14, + "end": 18340.62, + "probability": 0.7049 + }, + { + "start": 18341.26, + "end": 18343.72, + "probability": 0.9409 + }, + { + "start": 18344.4, + "end": 18348.64, + "probability": 0.9756 + }, + { + "start": 18349.08, + "end": 18354.0, + "probability": 0.8928 + }, + { + "start": 18356.14, + "end": 18359.64, + "probability": 0.6799 + }, + { + "start": 18359.8, + "end": 18360.42, + "probability": 0.9224 + }, + { + "start": 18360.5, + "end": 18362.4, + "probability": 0.7028 + }, + { + "start": 18362.7, + "end": 18363.22, + "probability": 0.8828 + }, + { + "start": 18363.84, + "end": 18366.7, + "probability": 0.955 + }, + { + "start": 18367.36, + "end": 18369.48, + "probability": 0.9816 + }, + { + "start": 18369.9, + "end": 18372.04, + "probability": 0.9878 + }, + { + "start": 18374.44, + "end": 18376.12, + "probability": 0.7108 + }, + { + "start": 18377.2, + "end": 18379.02, + "probability": 0.9593 + }, + { + "start": 18380.4, + "end": 18380.94, + "probability": 0.9373 + }, + { + "start": 18381.96, + "end": 18383.54, + "probability": 0.7878 + }, + { + "start": 18384.38, + "end": 18386.76, + "probability": 0.7867 + }, + { + "start": 18387.32, + "end": 18391.38, + "probability": 0.9753 + }, + { + "start": 18392.24, + "end": 18396.36, + "probability": 0.9409 + }, + { + "start": 18397.06, + "end": 18399.52, + "probability": 0.7207 + }, + { + "start": 18400.12, + "end": 18405.78, + "probability": 0.6687 + }, + { + "start": 18406.26, + "end": 18411.14, + "probability": 0.9424 + }, + { + "start": 18411.54, + "end": 18412.02, + "probability": 0.8947 + }, + { + "start": 18412.16, + "end": 18414.26, + "probability": 0.9285 + }, + { + "start": 18415.64, + "end": 18417.22, + "probability": 0.9298 + }, + { + "start": 18418.08, + "end": 18418.82, + "probability": 0.911 + }, + { + "start": 18419.48, + "end": 18421.34, + "probability": 0.4691 + }, + { + "start": 18421.84, + "end": 18424.8, + "probability": 0.9525 + }, + { + "start": 18425.38, + "end": 18432.82, + "probability": 0.7999 + }, + { + "start": 18433.66, + "end": 18435.04, + "probability": 0.7941 + }, + { + "start": 18435.88, + "end": 18439.8, + "probability": 0.7875 + }, + { + "start": 18439.8, + "end": 18443.86, + "probability": 0.9041 + }, + { + "start": 18444.54, + "end": 18447.26, + "probability": 0.9564 + }, + { + "start": 18448.04, + "end": 18448.44, + "probability": 0.4825 + }, + { + "start": 18448.58, + "end": 18452.62, + "probability": 0.9216 + }, + { + "start": 18453.16, + "end": 18460.26, + "probability": 0.9438 + }, + { + "start": 18461.76, + "end": 18462.94, + "probability": 0.9574 + }, + { + "start": 18464.08, + "end": 18464.62, + "probability": 0.9073 + }, + { + "start": 18464.76, + "end": 18466.08, + "probability": 0.9849 + }, + { + "start": 18466.3, + "end": 18469.12, + "probability": 0.9834 + }, + { + "start": 18469.76, + "end": 18472.4, + "probability": 0.9712 + }, + { + "start": 18472.92, + "end": 18476.02, + "probability": 0.6532 + }, + { + "start": 18476.02, + "end": 18479.04, + "probability": 0.8204 + }, + { + "start": 18479.44, + "end": 18483.76, + "probability": 0.998 + }, + { + "start": 18484.22, + "end": 18487.86, + "probability": 0.9812 + }, + { + "start": 18488.24, + "end": 18488.74, + "probability": 0.6882 + }, + { + "start": 18489.28, + "end": 18493.82, + "probability": 0.9941 + }, + { + "start": 18494.32, + "end": 18496.04, + "probability": 0.9017 + }, + { + "start": 18496.9, + "end": 18497.62, + "probability": 0.4855 + }, + { + "start": 18498.22, + "end": 18499.89, + "probability": 0.9922 + }, + { + "start": 18500.7, + "end": 18502.3, + "probability": 0.8805 + }, + { + "start": 18503.34, + "end": 18505.58, + "probability": 0.6815 + }, + { + "start": 18506.54, + "end": 18509.68, + "probability": 0.7837 + }, + { + "start": 18510.28, + "end": 18512.32, + "probability": 0.7569 + }, + { + "start": 18513.14, + "end": 18513.56, + "probability": 0.6786 + }, + { + "start": 18514.06, + "end": 18517.12, + "probability": 0.9875 + }, + { + "start": 18517.42, + "end": 18520.88, + "probability": 0.9181 + }, + { + "start": 18521.46, + "end": 18522.02, + "probability": 0.6733 + }, + { + "start": 18522.94, + "end": 18523.9, + "probability": 0.8431 + }, + { + "start": 18524.54, + "end": 18526.5, + "probability": 0.9051 + }, + { + "start": 18527.18, + "end": 18530.54, + "probability": 0.9424 + }, + { + "start": 18531.1, + "end": 18532.7, + "probability": 0.9465 + }, + { + "start": 18533.66, + "end": 18534.98, + "probability": 0.9595 + }, + { + "start": 18536.1, + "end": 18540.46, + "probability": 0.5616 + }, + { + "start": 18541.0, + "end": 18542.26, + "probability": 0.8319 + }, + { + "start": 18542.4, + "end": 18543.34, + "probability": 0.1403 + }, + { + "start": 18543.54, + "end": 18545.3, + "probability": 0.936 + }, + { + "start": 18545.92, + "end": 18548.02, + "probability": 0.8821 + }, + { + "start": 18548.5, + "end": 18549.21, + "probability": 0.8836 + }, + { + "start": 18549.58, + "end": 18549.72, + "probability": 0.7993 + }, + { + "start": 18550.64, + "end": 18551.58, + "probability": 0.9384 + }, + { + "start": 18552.7, + "end": 18556.04, + "probability": 0.86 + }, + { + "start": 18556.36, + "end": 18557.31, + "probability": 0.9741 + }, + { + "start": 18557.74, + "end": 18559.48, + "probability": 0.72 + }, + { + "start": 18559.94, + "end": 18560.46, + "probability": 0.7114 + }, + { + "start": 18560.7, + "end": 18561.76, + "probability": 0.7584 + }, + { + "start": 18562.04, + "end": 18562.82, + "probability": 0.946 + }, + { + "start": 18563.0, + "end": 18564.72, + "probability": 0.6818 + }, + { + "start": 18565.38, + "end": 18566.42, + "probability": 0.5324 + }, + { + "start": 18567.28, + "end": 18572.46, + "probability": 0.9457 + }, + { + "start": 18573.0, + "end": 18577.94, + "probability": 0.9117 + }, + { + "start": 18578.26, + "end": 18579.08, + "probability": 0.8899 + }, + { + "start": 18580.1, + "end": 18580.77, + "probability": 0.0322 + }, + { + "start": 18581.92, + "end": 18583.6, + "probability": 0.7346 + }, + { + "start": 18584.36, + "end": 18586.88, + "probability": 0.652 + }, + { + "start": 18587.16, + "end": 18588.5, + "probability": 0.7988 + }, + { + "start": 18589.14, + "end": 18590.86, + "probability": 0.8777 + }, + { + "start": 18591.4, + "end": 18593.02, + "probability": 0.6395 + }, + { + "start": 18593.56, + "end": 18594.32, + "probability": 0.4595 + }, + { + "start": 18594.46, + "end": 18595.08, + "probability": 0.4462 + }, + { + "start": 18595.52, + "end": 18600.64, + "probability": 0.9297 + }, + { + "start": 18601.02, + "end": 18602.4, + "probability": 0.9954 + }, + { + "start": 18603.14, + "end": 18606.16, + "probability": 0.5051 + }, + { + "start": 18606.88, + "end": 18610.52, + "probability": 0.2813 + }, + { + "start": 18611.14, + "end": 18613.28, + "probability": 0.7075 + }, + { + "start": 18614.22, + "end": 18615.06, + "probability": 0.9282 + }, + { + "start": 18615.84, + "end": 18616.28, + "probability": 0.6852 + }, + { + "start": 18617.66, + "end": 18619.98, + "probability": 0.9692 + }, + { + "start": 18621.2, + "end": 18621.82, + "probability": 0.3698 + }, + { + "start": 18623.04, + "end": 18626.66, + "probability": 0.9425 + }, + { + "start": 18627.44, + "end": 18630.42, + "probability": 0.981 + }, + { + "start": 18630.6, + "end": 18631.4, + "probability": 0.8508 + }, + { + "start": 18631.58, + "end": 18632.98, + "probability": 0.7631 + }, + { + "start": 18633.38, + "end": 18634.28, + "probability": 0.6254 + }, + { + "start": 18634.68, + "end": 18636.32, + "probability": 0.8508 + }, + { + "start": 18637.0, + "end": 18639.12, + "probability": 0.9497 + }, + { + "start": 18640.41, + "end": 18642.04, + "probability": 0.6598 + }, + { + "start": 18642.04, + "end": 18642.16, + "probability": 0.4724 + }, + { + "start": 18642.54, + "end": 18644.8, + "probability": 0.9086 + }, + { + "start": 18645.56, + "end": 18648.18, + "probability": 0.9861 + }, + { + "start": 18648.6, + "end": 18649.86, + "probability": 0.9183 + }, + { + "start": 18650.28, + "end": 18651.6, + "probability": 0.975 + }, + { + "start": 18653.58, + "end": 18655.6, + "probability": 0.5394 + }, + { + "start": 18657.2, + "end": 18658.46, + "probability": 0.681 + }, + { + "start": 18659.28, + "end": 18661.32, + "probability": 0.9379 + }, + { + "start": 18662.68, + "end": 18664.4, + "probability": 0.9323 + }, + { + "start": 18665.3, + "end": 18666.68, + "probability": 0.9085 + }, + { + "start": 18667.72, + "end": 18669.24, + "probability": 0.9019 + }, + { + "start": 18669.84, + "end": 18671.12, + "probability": 0.8361 + }, + { + "start": 18672.0, + "end": 18674.9, + "probability": 0.754 + }, + { + "start": 18675.72, + "end": 18682.96, + "probability": 0.9736 + }, + { + "start": 18683.6, + "end": 18688.78, + "probability": 0.9808 + }, + { + "start": 18690.08, + "end": 18690.84, + "probability": 0.2728 + }, + { + "start": 18691.44, + "end": 18692.92, + "probability": 0.8814 + }, + { + "start": 18693.68, + "end": 18694.76, + "probability": 0.9668 + }, + { + "start": 18695.44, + "end": 18696.56, + "probability": 0.7999 + }, + { + "start": 18697.16, + "end": 18700.72, + "probability": 0.9478 + }, + { + "start": 18701.42, + "end": 18702.98, + "probability": 0.9854 + }, + { + "start": 18703.48, + "end": 18705.62, + "probability": 0.9302 + }, + { + "start": 18705.86, + "end": 18706.32, + "probability": 0.7276 + }, + { + "start": 18707.22, + "end": 18707.56, + "probability": 0.9009 + }, + { + "start": 18708.9, + "end": 18711.72, + "probability": 0.9814 + }, + { + "start": 18712.18, + "end": 18715.9, + "probability": 0.9906 + }, + { + "start": 18716.96, + "end": 18717.06, + "probability": 0.459 + }, + { + "start": 18718.44, + "end": 18721.0, + "probability": 0.6979 + }, + { + "start": 18721.7, + "end": 18724.22, + "probability": 0.978 + }, + { + "start": 18724.84, + "end": 18727.0, + "probability": 0.8626 + }, + { + "start": 18728.12, + "end": 18731.86, + "probability": 0.8786 + }, + { + "start": 18732.5, + "end": 18734.8, + "probability": 0.9921 + }, + { + "start": 18735.44, + "end": 18736.2, + "probability": 0.8297 + }, + { + "start": 18736.56, + "end": 18737.88, + "probability": 0.9763 + }, + { + "start": 18737.94, + "end": 18738.86, + "probability": 0.9492 + }, + { + "start": 18739.7, + "end": 18743.32, + "probability": 0.8515 + }, + { + "start": 18744.1, + "end": 18744.3, + "probability": 0.8798 + }, + { + "start": 18745.7, + "end": 18748.9, + "probability": 0.871 + }, + { + "start": 18750.76, + "end": 18754.62, + "probability": 0.9536 + }, + { + "start": 18755.32, + "end": 18756.28, + "probability": 0.8281 + }, + { + "start": 18756.48, + "end": 18758.1, + "probability": 0.9834 + }, + { + "start": 18758.92, + "end": 18760.02, + "probability": 0.2733 + }, + { + "start": 18760.6, + "end": 18764.42, + "probability": 0.5384 + }, + { + "start": 18764.96, + "end": 18766.62, + "probability": 0.5642 + }, + { + "start": 18767.78, + "end": 18770.9, + "probability": 0.698 + }, + { + "start": 18771.98, + "end": 18772.36, + "probability": 0.0695 + }, + { + "start": 18772.42, + "end": 18773.52, + "probability": 0.3842 + }, + { + "start": 18773.52, + "end": 18773.62, + "probability": 0.663 + }, + { + "start": 18773.72, + "end": 18774.1, + "probability": 0.499 + }, + { + "start": 18774.4, + "end": 18774.92, + "probability": 0.9673 + }, + { + "start": 18775.04, + "end": 18775.68, + "probability": 0.3103 + }, + { + "start": 18775.76, + "end": 18776.48, + "probability": 0.5354 + }, + { + "start": 18777.5, + "end": 18778.7, + "probability": 0.4391 + }, + { + "start": 18779.68, + "end": 18780.42, + "probability": 0.3845 + }, + { + "start": 18780.66, + "end": 18781.62, + "probability": 0.9872 + }, + { + "start": 18782.06, + "end": 18782.54, + "probability": 0.5381 + }, + { + "start": 18782.66, + "end": 18783.26, + "probability": 0.861 + }, + { + "start": 18783.5, + "end": 18783.98, + "probability": 0.76 + }, + { + "start": 18784.04, + "end": 18784.44, + "probability": 0.8691 + }, + { + "start": 18785.18, + "end": 18785.78, + "probability": 0.7226 + }, + { + "start": 18785.86, + "end": 18786.38, + "probability": 0.9758 + }, + { + "start": 18786.54, + "end": 18787.02, + "probability": 0.7641 + }, + { + "start": 18787.1, + "end": 18787.88, + "probability": 0.9396 + }, + { + "start": 18788.34, + "end": 18788.7, + "probability": 0.8166 + }, + { + "start": 18788.86, + "end": 18789.42, + "probability": 0.6559 + }, + { + "start": 18789.84, + "end": 18790.34, + "probability": 0.1194 + }, + { + "start": 18790.38, + "end": 18791.32, + "probability": 0.9201 + }, + { + "start": 18791.8, + "end": 18792.08, + "probability": 0.286 + }, + { + "start": 18792.08, + "end": 18792.94, + "probability": 0.4995 + }, + { + "start": 18793.04, + "end": 18793.58, + "probability": 0.6808 + }, + { + "start": 18793.68, + "end": 18794.46, + "probability": 0.909 + }, + { + "start": 18795.24, + "end": 18796.56, + "probability": 0.7207 + }, + { + "start": 18798.26, + "end": 18798.78, + "probability": 0.3447 + }, + { + "start": 18798.9, + "end": 18799.42, + "probability": 0.8463 + }, + { + "start": 18799.6, + "end": 18800.12, + "probability": 0.5907 + }, + { + "start": 18800.2, + "end": 18800.96, + "probability": 0.9867 + }, + { + "start": 18801.16, + "end": 18801.78, + "probability": 0.7433 + }, + { + "start": 18801.82, + "end": 18802.68, + "probability": 0.9513 + }, + { + "start": 18803.18, + "end": 18803.68, + "probability": 0.3495 + }, + { + "start": 18803.92, + "end": 18804.92, + "probability": 0.7805 + }, + { + "start": 18805.04, + "end": 18805.54, + "probability": 0.4599 + }, + { + "start": 18805.78, + "end": 18806.48, + "probability": 0.946 + }, + { + "start": 18806.92, + "end": 18807.48, + "probability": 0.4018 + }, + { + "start": 18807.68, + "end": 18808.34, + "probability": 0.495 + }, + { + "start": 18809.0, + "end": 18809.5, + "probability": 0.3823 + }, + { + "start": 18809.58, + "end": 18810.42, + "probability": 0.9637 + }, + { + "start": 18810.54, + "end": 18811.12, + "probability": 0.335 + }, + { + "start": 18811.14, + "end": 18812.66, + "probability": 0.8799 + }, + { + "start": 18813.14, + "end": 18813.82, + "probability": 0.7458 + }, + { + "start": 18814.02, + "end": 18816.8, + "probability": 0.8625 + }, + { + "start": 18818.12, + "end": 18818.61, + "probability": 0.2041 + }, + { + "start": 18819.3, + "end": 18823.16, + "probability": 0.5942 + }, + { + "start": 18823.86, + "end": 18824.4, + "probability": 0.3031 + }, + { + "start": 18824.4, + "end": 18825.14, + "probability": 0.981 + }, + { + "start": 18825.34, + "end": 18825.72, + "probability": 0.6205 + }, + { + "start": 18826.0, + "end": 18826.68, + "probability": 0.963 + }, + { + "start": 18826.78, + "end": 18827.1, + "probability": 0.7523 + }, + { + "start": 18827.52, + "end": 18828.4, + "probability": 0.9832 + }, + { + "start": 18828.5, + "end": 18828.82, + "probability": 0.4102 + }, + { + "start": 18828.82, + "end": 18830.8, + "probability": 0.5555 + }, + { + "start": 18830.88, + "end": 18831.46, + "probability": 0.8809 + }, + { + "start": 18831.78, + "end": 18831.92, + "probability": 0.5944 + }, + { + "start": 18831.92, + "end": 18835.9, + "probability": 0.8892 + }, + { + "start": 18837.34, + "end": 18838.98, + "probability": 0.7482 + }, + { + "start": 18839.58, + "end": 18840.56, + "probability": 0.8931 + }, + { + "start": 18841.25, + "end": 18846.98, + "probability": 0.7372 + }, + { + "start": 18847.3, + "end": 18848.66, + "probability": 0.831 + }, + { + "start": 18848.78, + "end": 18849.41, + "probability": 0.7053 + }, + { + "start": 18850.08, + "end": 18855.2, + "probability": 0.8328 + }, + { + "start": 18855.76, + "end": 18856.9, + "probability": 0.678 + }, + { + "start": 18857.82, + "end": 18860.14, + "probability": 0.6689 + }, + { + "start": 18861.98, + "end": 18863.4, + "probability": 0.9658 + }, + { + "start": 18864.46, + "end": 18866.34, + "probability": 0.9432 + }, + { + "start": 18867.1, + "end": 18870.4, + "probability": 0.9912 + }, + { + "start": 18871.06, + "end": 18873.44, + "probability": 0.068 + }, + { + "start": 18873.44, + "end": 18874.9, + "probability": 0.8588 + }, + { + "start": 18875.42, + "end": 18876.36, + "probability": 0.8621 + }, + { + "start": 18876.62, + "end": 18877.04, + "probability": 0.8839 + }, + { + "start": 18877.66, + "end": 18877.98, + "probability": 0.4229 + }, + { + "start": 18878.82, + "end": 18881.44, + "probability": 0.967 + }, + { + "start": 18882.04, + "end": 18884.12, + "probability": 0.8979 + }, + { + "start": 18884.52, + "end": 18885.98, + "probability": 0.8846 + }, + { + "start": 18886.46, + "end": 18887.36, + "probability": 0.8973 + }, + { + "start": 18887.86, + "end": 18889.2, + "probability": 0.7813 + }, + { + "start": 18889.5, + "end": 18890.63, + "probability": 0.6248 + }, + { + "start": 18891.94, + "end": 18893.06, + "probability": 0.9695 + }, + { + "start": 18894.06, + "end": 18895.7, + "probability": 0.6863 + }, + { + "start": 18913.98, + "end": 18915.42, + "probability": 0.7045 + }, + { + "start": 18916.98, + "end": 18920.6, + "probability": 0.9948 + }, + { + "start": 18921.66, + "end": 18923.34, + "probability": 0.9779 + }, + { + "start": 18925.24, + "end": 18928.26, + "probability": 0.2743 + }, + { + "start": 18928.26, + "end": 18931.46, + "probability": 0.9462 + }, + { + "start": 18932.28, + "end": 18936.6, + "probability": 0.9882 + }, + { + "start": 18938.18, + "end": 18940.24, + "probability": 0.8104 + }, + { + "start": 18941.76, + "end": 18943.3, + "probability": 0.8199 + }, + { + "start": 18944.4, + "end": 18947.78, + "probability": 0.9133 + }, + { + "start": 18947.86, + "end": 18950.48, + "probability": 0.982 + }, + { + "start": 18951.8, + "end": 18951.98, + "probability": 0.5565 + }, + { + "start": 18952.06, + "end": 18955.8, + "probability": 0.9927 + }, + { + "start": 18956.84, + "end": 18959.02, + "probability": 0.9587 + }, + { + "start": 18960.58, + "end": 18962.04, + "probability": 0.8618 + }, + { + "start": 18963.24, + "end": 18964.94, + "probability": 0.9339 + }, + { + "start": 18965.82, + "end": 18968.7, + "probability": 0.9905 + }, + { + "start": 18969.34, + "end": 18973.82, + "probability": 0.7994 + }, + { + "start": 18974.84, + "end": 18976.72, + "probability": 0.999 + }, + { + "start": 18977.58, + "end": 18978.14, + "probability": 0.2198 + }, + { + "start": 18978.84, + "end": 18979.48, + "probability": 0.2523 + }, + { + "start": 18981.14, + "end": 18984.2, + "probability": 0.7481 + }, + { + "start": 18986.0, + "end": 18989.84, + "probability": 0.9958 + }, + { + "start": 18990.92, + "end": 18992.68, + "probability": 0.7822 + }, + { + "start": 18992.96, + "end": 18996.22, + "probability": 0.9772 + }, + { + "start": 18997.36, + "end": 19000.48, + "probability": 0.9756 + }, + { + "start": 19001.36, + "end": 19003.6, + "probability": 0.7256 + }, + { + "start": 19006.04, + "end": 19008.38, + "probability": 0.9957 + }, + { + "start": 19008.38, + "end": 19011.56, + "probability": 0.9967 + }, + { + "start": 19011.66, + "end": 19013.9, + "probability": 0.9225 + }, + { + "start": 19014.48, + "end": 19016.34, + "probability": 0.8645 + }, + { + "start": 19018.2, + "end": 19020.31, + "probability": 0.7742 + }, + { + "start": 19021.32, + "end": 19021.72, + "probability": 0.649 + }, + { + "start": 19021.8, + "end": 19026.5, + "probability": 0.9366 + }, + { + "start": 19027.14, + "end": 19028.94, + "probability": 0.9769 + }, + { + "start": 19030.74, + "end": 19032.82, + "probability": 0.545 + }, + { + "start": 19034.12, + "end": 19034.74, + "probability": 0.9963 + }, + { + "start": 19036.3, + "end": 19037.26, + "probability": 0.9627 + }, + { + "start": 19038.08, + "end": 19039.44, + "probability": 0.9983 + }, + { + "start": 19041.34, + "end": 19042.8, + "probability": 0.8644 + }, + { + "start": 19044.38, + "end": 19047.68, + "probability": 0.7598 + }, + { + "start": 19048.94, + "end": 19053.68, + "probability": 0.9731 + }, + { + "start": 19055.2, + "end": 19058.44, + "probability": 0.9851 + }, + { + "start": 19059.0, + "end": 19061.52, + "probability": 0.835 + }, + { + "start": 19062.58, + "end": 19064.68, + "probability": 0.8402 + }, + { + "start": 19065.7, + "end": 19066.54, + "probability": 0.9953 + }, + { + "start": 19067.1, + "end": 19068.78, + "probability": 0.8397 + }, + { + "start": 19070.0, + "end": 19076.16, + "probability": 0.9951 + }, + { + "start": 19076.54, + "end": 19078.9, + "probability": 0.9664 + }, + { + "start": 19079.66, + "end": 19081.04, + "probability": 0.9985 + }, + { + "start": 19081.62, + "end": 19085.18, + "probability": 0.9958 + }, + { + "start": 19087.38, + "end": 19088.02, + "probability": 0.2832 + }, + { + "start": 19089.48, + "end": 19093.26, + "probability": 0.4876 + }, + { + "start": 19093.26, + "end": 19095.22, + "probability": 0.7867 + }, + { + "start": 19095.28, + "end": 19096.38, + "probability": 0.8008 + }, + { + "start": 19096.94, + "end": 19098.5, + "probability": 0.481 + }, + { + "start": 19098.6, + "end": 19099.14, + "probability": 0.1857 + }, + { + "start": 19099.26, + "end": 19100.5, + "probability": 0.2474 + }, + { + "start": 19100.5, + "end": 19102.2, + "probability": 0.9 + }, + { + "start": 19102.94, + "end": 19103.74, + "probability": 0.497 + }, + { + "start": 19104.3, + "end": 19104.76, + "probability": 0.5851 + }, + { + "start": 19105.52, + "end": 19105.82, + "probability": 0.1616 + }, + { + "start": 19106.86, + "end": 19108.9, + "probability": 0.8038 + }, + { + "start": 19109.54, + "end": 19109.8, + "probability": 0.5448 + }, + { + "start": 19110.0, + "end": 19113.09, + "probability": 0.87 + }, + { + "start": 19113.7, + "end": 19117.2, + "probability": 0.9633 + }, + { + "start": 19117.4, + "end": 19117.91, + "probability": 0.7017 + }, + { + "start": 19119.72, + "end": 19120.5, + "probability": 0.3946 + }, + { + "start": 19120.78, + "end": 19122.66, + "probability": 0.7497 + }, + { + "start": 19123.22, + "end": 19125.32, + "probability": 0.6946 + }, + { + "start": 19126.26, + "end": 19127.29, + "probability": 0.9445 + }, + { + "start": 19127.54, + "end": 19132.62, + "probability": 0.9812 + }, + { + "start": 19133.0, + "end": 19135.72, + "probability": 0.9727 + }, + { + "start": 19136.38, + "end": 19136.87, + "probability": 0.056 + }, + { + "start": 19137.5, + "end": 19140.22, + "probability": 0.5131 + }, + { + "start": 19140.72, + "end": 19143.2, + "probability": 0.9728 + }, + { + "start": 19143.32, + "end": 19144.35, + "probability": 0.9983 + }, + { + "start": 19144.82, + "end": 19145.4, + "probability": 0.6649 + }, + { + "start": 19145.5, + "end": 19145.78, + "probability": 0.7018 + }, + { + "start": 19145.9, + "end": 19146.79, + "probability": 0.6199 + }, + { + "start": 19147.28, + "end": 19147.76, + "probability": 0.7219 + }, + { + "start": 19148.1, + "end": 19148.2, + "probability": 0.0016 + }, + { + "start": 19150.41, + "end": 19154.32, + "probability": 0.742 + }, + { + "start": 19154.76, + "end": 19155.88, + "probability": 0.7427 + }, + { + "start": 19156.8, + "end": 19158.11, + "probability": 0.6311 + }, + { + "start": 19162.44, + "end": 19164.28, + "probability": 0.68 + }, + { + "start": 19166.0, + "end": 19167.46, + "probability": 0.7324 + }, + { + "start": 19168.32, + "end": 19170.34, + "probability": 0.1616 + }, + { + "start": 19172.38, + "end": 19177.94, + "probability": 0.8573 + }, + { + "start": 19179.09, + "end": 19182.08, + "probability": 0.9847 + }, + { + "start": 19182.12, + "end": 19185.42, + "probability": 0.8089 + }, + { + "start": 19185.52, + "end": 19185.58, + "probability": 0.0809 + }, + { + "start": 19185.82, + "end": 19188.32, + "probability": 0.7229 + }, + { + "start": 19189.0, + "end": 19191.02, + "probability": 0.9102 + }, + { + "start": 19191.7, + "end": 19195.64, + "probability": 0.0383 + }, + { + "start": 19196.2, + "end": 19197.54, + "probability": 0.0216 + }, + { + "start": 19197.54, + "end": 19198.44, + "probability": 0.0576 + }, + { + "start": 19199.52, + "end": 19201.58, + "probability": 0.5967 + }, + { + "start": 19202.44, + "end": 19202.9, + "probability": 0.6221 + }, + { + "start": 19202.9, + "end": 19205.9, + "probability": 0.9819 + }, + { + "start": 19206.46, + "end": 19211.66, + "probability": 0.993 + }, + { + "start": 19211.66, + "end": 19217.32, + "probability": 0.9952 + }, + { + "start": 19217.8, + "end": 19219.22, + "probability": 0.618 + }, + { + "start": 19220.06, + "end": 19223.76, + "probability": 0.839 + }, + { + "start": 19224.58, + "end": 19227.72, + "probability": 0.9572 + }, + { + "start": 19228.1, + "end": 19230.54, + "probability": 0.9695 + }, + { + "start": 19230.98, + "end": 19231.74, + "probability": 0.9841 + }, + { + "start": 19232.14, + "end": 19235.98, + "probability": 0.8778 + }, + { + "start": 19236.26, + "end": 19237.34, + "probability": 0.7773 + }, + { + "start": 19238.06, + "end": 19240.02, + "probability": 0.8654 + }, + { + "start": 19240.38, + "end": 19241.04, + "probability": 0.8638 + }, + { + "start": 19242.44, + "end": 19243.84, + "probability": 0.9967 + }, + { + "start": 19244.14, + "end": 19245.89, + "probability": 0.755 + }, + { + "start": 19246.78, + "end": 19252.38, + "probability": 0.9852 + }, + { + "start": 19252.44, + "end": 19252.78, + "probability": 0.782 + }, + { + "start": 19253.42, + "end": 19255.51, + "probability": 0.9877 + }, + { + "start": 19257.24, + "end": 19260.42, + "probability": 0.4438 + }, + { + "start": 19261.28, + "end": 19262.64, + "probability": 0.0378 + }, + { + "start": 19271.58, + "end": 19275.7, + "probability": 0.6361 + }, + { + "start": 19276.58, + "end": 19277.26, + "probability": 0.6844 + }, + { + "start": 19277.88, + "end": 19278.02, + "probability": 0.5658 + }, + { + "start": 19278.54, + "end": 19282.2, + "probability": 0.6386 + }, + { + "start": 19282.2, + "end": 19283.24, + "probability": 0.7698 + }, + { + "start": 19284.5, + "end": 19284.6, + "probability": 0.7031 + }, + { + "start": 19293.88, + "end": 19298.18, + "probability": 0.8381 + }, + { + "start": 19298.78, + "end": 19299.34, + "probability": 0.7238 + }, + { + "start": 19300.76, + "end": 19301.1, + "probability": 0.3323 + }, + { + "start": 19302.02, + "end": 19302.96, + "probability": 0.9095 + }, + { + "start": 19303.65, + "end": 19305.82, + "probability": 0.769 + }, + { + "start": 19306.74, + "end": 19308.12, + "probability": 0.904 + }, + { + "start": 19309.14, + "end": 19309.86, + "probability": 0.6181 + }, + { + "start": 19310.04, + "end": 19313.86, + "probability": 0.3672 + }, + { + "start": 19320.63, + "end": 19321.77, + "probability": 0.9473 + }, + { + "start": 19324.04, + "end": 19324.83, + "probability": 0.3845 + }, + { + "start": 19325.96, + "end": 19326.76, + "probability": 0.789 + }, + { + "start": 19329.16, + "end": 19330.04, + "probability": 0.2693 + }, + { + "start": 19330.34, + "end": 19330.83, + "probability": 0.1933 + }, + { + "start": 19332.46, + "end": 19336.92, + "probability": 0.0379 + }, + { + "start": 19336.92, + "end": 19336.96, + "probability": 0.3343 + }, + { + "start": 19336.96, + "end": 19338.9, + "probability": 0.1532 + }, + { + "start": 19339.46, + "end": 19340.54, + "probability": 0.8452 + }, + { + "start": 19341.38, + "end": 19343.16, + "probability": 0.9175 + }, + { + "start": 19344.64, + "end": 19346.34, + "probability": 0.2629 + }, + { + "start": 19346.92, + "end": 19348.59, + "probability": 0.7017 + }, + { + "start": 19349.04, + "end": 19350.0, + "probability": 0.8563 + }, + { + "start": 19358.24, + "end": 19359.2, + "probability": 0.7424 + }, + { + "start": 19359.9, + "end": 19361.42, + "probability": 0.8412 + }, + { + "start": 19362.42, + "end": 19364.48, + "probability": 0.9927 + }, + { + "start": 19364.48, + "end": 19367.74, + "probability": 0.9924 + }, + { + "start": 19368.66, + "end": 19371.6, + "probability": 0.964 + }, + { + "start": 19372.2, + "end": 19375.3, + "probability": 0.9915 + }, + { + "start": 19376.64, + "end": 19378.43, + "probability": 0.8762 + }, + { + "start": 19379.6, + "end": 19380.07, + "probability": 0.9124 + }, + { + "start": 19381.04, + "end": 19383.16, + "probability": 0.9614 + }, + { + "start": 19383.24, + "end": 19388.18, + "probability": 0.9864 + }, + { + "start": 19389.5, + "end": 19392.5, + "probability": 0.9983 + }, + { + "start": 19393.62, + "end": 19396.12, + "probability": 0.751 + }, + { + "start": 19396.12, + "end": 19399.34, + "probability": 0.754 + }, + { + "start": 19399.8, + "end": 19400.22, + "probability": 0.7016 + }, + { + "start": 19400.28, + "end": 19401.22, + "probability": 0.852 + }, + { + "start": 19402.4, + "end": 19405.26, + "probability": 0.9964 + }, + { + "start": 19405.8, + "end": 19409.42, + "probability": 0.9528 + }, + { + "start": 19410.68, + "end": 19412.66, + "probability": 0.9502 + }, + { + "start": 19413.16, + "end": 19417.14, + "probability": 0.9929 + }, + { + "start": 19417.76, + "end": 19418.4, + "probability": 0.9974 + }, + { + "start": 19419.12, + "end": 19422.68, + "probability": 0.9777 + }, + { + "start": 19423.22, + "end": 19426.7, + "probability": 0.9282 + }, + { + "start": 19427.98, + "end": 19428.64, + "probability": 0.9962 + }, + { + "start": 19429.32, + "end": 19431.12, + "probability": 0.9049 + }, + { + "start": 19431.98, + "end": 19433.58, + "probability": 0.9971 + }, + { + "start": 19434.14, + "end": 19437.12, + "probability": 0.9869 + }, + { + "start": 19440.46, + "end": 19443.9, + "probability": 0.9899 + }, + { + "start": 19443.9, + "end": 19446.84, + "probability": 0.9214 + }, + { + "start": 19452.64, + "end": 19455.0, + "probability": 0.9941 + }, + { + "start": 19455.66, + "end": 19458.86, + "probability": 0.9958 + }, + { + "start": 19459.4, + "end": 19460.02, + "probability": 0.8851 + }, + { + "start": 19460.88, + "end": 19463.0, + "probability": 0.997 + }, + { + "start": 19463.02, + "end": 19465.26, + "probability": 0.9976 + }, + { + "start": 19465.56, + "end": 19469.04, + "probability": 0.9738 + }, + { + "start": 19469.22, + "end": 19472.38, + "probability": 0.9826 + }, + { + "start": 19473.3, + "end": 19475.96, + "probability": 0.748 + }, + { + "start": 19476.48, + "end": 19481.52, + "probability": 0.9664 + }, + { + "start": 19481.86, + "end": 19482.86, + "probability": 0.6539 + }, + { + "start": 19483.84, + "end": 19486.38, + "probability": 0.8876 + }, + { + "start": 19486.9, + "end": 19488.5, + "probability": 0.9897 + }, + { + "start": 19489.26, + "end": 19491.24, + "probability": 0.9767 + }, + { + "start": 19491.86, + "end": 19492.46, + "probability": 0.0629 + }, + { + "start": 19492.46, + "end": 19496.46, + "probability": 0.9812 + }, + { + "start": 19496.46, + "end": 19500.32, + "probability": 0.9849 + }, + { + "start": 19500.32, + "end": 19505.54, + "probability": 0.9979 + }, + { + "start": 19506.36, + "end": 19509.64, + "probability": 0.8676 + }, + { + "start": 19510.3, + "end": 19512.36, + "probability": 0.9858 + }, + { + "start": 19512.94, + "end": 19514.88, + "probability": 0.9777 + }, + { + "start": 19515.38, + "end": 19516.6, + "probability": 0.9699 + }, + { + "start": 19517.14, + "end": 19517.64, + "probability": 0.9649 + }, + { + "start": 19517.72, + "end": 19518.1, + "probability": 0.8788 + }, + { + "start": 19518.22, + "end": 19518.52, + "probability": 0.3538 + }, + { + "start": 19518.66, + "end": 19519.4, + "probability": 0.7727 + }, + { + "start": 19519.82, + "end": 19521.86, + "probability": 0.9963 + }, + { + "start": 19522.92, + "end": 19524.18, + "probability": 0.7782 + }, + { + "start": 19525.58, + "end": 19528.34, + "probability": 0.8557 + }, + { + "start": 19528.88, + "end": 19532.9, + "probability": 0.9467 + }, + { + "start": 19533.72, + "end": 19536.52, + "probability": 0.8729 + }, + { + "start": 19537.18, + "end": 19538.96, + "probability": 0.8811 + }, + { + "start": 19539.18, + "end": 19540.32, + "probability": 0.9482 + }, + { + "start": 19541.68, + "end": 19544.7, + "probability": 0.8206 + }, + { + "start": 19545.12, + "end": 19545.62, + "probability": 0.7469 + }, + { + "start": 19546.46, + "end": 19547.32, + "probability": 0.7568 + }, + { + "start": 19548.12, + "end": 19549.08, + "probability": 0.8625 + }, + { + "start": 19549.3, + "end": 19549.82, + "probability": 0.83 + }, + { + "start": 19549.98, + "end": 19552.54, + "probability": 0.9092 + }, + { + "start": 19552.54, + "end": 19555.26, + "probability": 0.998 + }, + { + "start": 19556.04, + "end": 19557.44, + "probability": 0.9082 + }, + { + "start": 19558.02, + "end": 19560.7, + "probability": 0.8397 + }, + { + "start": 19561.16, + "end": 19565.58, + "probability": 0.9946 + }, + { + "start": 19566.38, + "end": 19568.02, + "probability": 0.7597 + }, + { + "start": 19568.58, + "end": 19571.28, + "probability": 0.9748 + }, + { + "start": 19572.0, + "end": 19575.38, + "probability": 0.998 + }, + { + "start": 19576.0, + "end": 19579.3, + "probability": 0.9561 + }, + { + "start": 19579.82, + "end": 19582.38, + "probability": 0.9154 + }, + { + "start": 19583.96, + "end": 19587.02, + "probability": 0.9071 + }, + { + "start": 19587.22, + "end": 19589.46, + "probability": 0.986 + }, + { + "start": 19589.98, + "end": 19592.62, + "probability": 0.9745 + }, + { + "start": 19593.28, + "end": 19593.64, + "probability": 0.6802 + }, + { + "start": 19593.72, + "end": 19596.62, + "probability": 0.9926 + }, + { + "start": 19597.2, + "end": 19597.88, + "probability": 0.798 + }, + { + "start": 19598.5, + "end": 19598.98, + "probability": 0.9049 + }, + { + "start": 19599.06, + "end": 19602.58, + "probability": 0.9781 + }, + { + "start": 19603.1, + "end": 19604.42, + "probability": 0.6836 + }, + { + "start": 19604.46, + "end": 19607.38, + "probability": 0.941 + }, + { + "start": 19608.78, + "end": 19609.98, + "probability": 0.8216 + }, + { + "start": 19610.56, + "end": 19611.4, + "probability": 0.7217 + }, + { + "start": 19611.94, + "end": 19614.66, + "probability": 0.9938 + }, + { + "start": 19615.42, + "end": 19620.22, + "probability": 0.985 + }, + { + "start": 19621.32, + "end": 19623.94, + "probability": 0.9985 + }, + { + "start": 19624.32, + "end": 19625.3, + "probability": 0.971 + }, + { + "start": 19626.08, + "end": 19630.2, + "probability": 0.942 + }, + { + "start": 19630.82, + "end": 19633.08, + "probability": 0.9556 + }, + { + "start": 19633.68, + "end": 19634.94, + "probability": 0.9969 + }, + { + "start": 19637.8, + "end": 19642.48, + "probability": 0.8929 + }, + { + "start": 19642.48, + "end": 19646.54, + "probability": 0.9505 + }, + { + "start": 19647.42, + "end": 19648.11, + "probability": 0.5519 + }, + { + "start": 19649.06, + "end": 19649.76, + "probability": 0.8424 + }, + { + "start": 19651.12, + "end": 19654.26, + "probability": 0.8691 + }, + { + "start": 19654.88, + "end": 19656.24, + "probability": 0.9643 + }, + { + "start": 19657.16, + "end": 19660.5, + "probability": 0.996 + }, + { + "start": 19661.02, + "end": 19661.5, + "probability": 0.7352 + }, + { + "start": 19662.68, + "end": 19663.86, + "probability": 0.7942 + }, + { + "start": 19664.02, + "end": 19666.24, + "probability": 0.6994 + }, + { + "start": 19666.54, + "end": 19667.63, + "probability": 0.8092 + }, + { + "start": 19681.62, + "end": 19683.64, + "probability": 0.5271 + }, + { + "start": 19684.56, + "end": 19689.18, + "probability": 0.9298 + }, + { + "start": 19692.36, + "end": 19693.62, + "probability": 0.9055 + }, + { + "start": 19694.9, + "end": 19696.9, + "probability": 0.3562 + }, + { + "start": 19698.72, + "end": 19703.3, + "probability": 0.6689 + }, + { + "start": 19704.58, + "end": 19704.82, + "probability": 0.9834 + }, + { + "start": 19705.94, + "end": 19707.26, + "probability": 0.9838 + }, + { + "start": 19708.52, + "end": 19712.4, + "probability": 0.9854 + }, + { + "start": 19713.12, + "end": 19715.58, + "probability": 0.9626 + }, + { + "start": 19716.62, + "end": 19716.92, + "probability": 0.7551 + }, + { + "start": 19717.54, + "end": 19719.76, + "probability": 0.9945 + }, + { + "start": 19719.76, + "end": 19724.76, + "probability": 0.7028 + }, + { + "start": 19725.48, + "end": 19727.54, + "probability": 0.9819 + }, + { + "start": 19727.74, + "end": 19730.72, + "probability": 0.9963 + }, + { + "start": 19732.68, + "end": 19736.24, + "probability": 0.9974 + }, + { + "start": 19736.96, + "end": 19737.7, + "probability": 0.9403 + }, + { + "start": 19738.48, + "end": 19739.38, + "probability": 0.9534 + }, + { + "start": 19740.48, + "end": 19742.48, + "probability": 0.9785 + }, + { + "start": 19743.24, + "end": 19750.26, + "probability": 0.9907 + }, + { + "start": 19752.14, + "end": 19757.26, + "probability": 0.9922 + }, + { + "start": 19758.14, + "end": 19763.4, + "probability": 0.9896 + }, + { + "start": 19765.72, + "end": 19769.5, + "probability": 0.9982 + }, + { + "start": 19770.98, + "end": 19772.12, + "probability": 0.5258 + }, + { + "start": 19773.02, + "end": 19775.27, + "probability": 0.9963 + }, + { + "start": 19776.38, + "end": 19777.12, + "probability": 0.9146 + }, + { + "start": 19778.34, + "end": 19781.34, + "probability": 0.8344 + }, + { + "start": 19782.56, + "end": 19784.48, + "probability": 0.9741 + }, + { + "start": 19785.14, + "end": 19786.96, + "probability": 0.9824 + }, + { + "start": 19788.86, + "end": 19793.84, + "probability": 0.9908 + }, + { + "start": 19794.88, + "end": 19798.54, + "probability": 0.8854 + }, + { + "start": 19798.8, + "end": 19800.72, + "probability": 0.4806 + }, + { + "start": 19800.76, + "end": 19802.72, + "probability": 0.8691 + }, + { + "start": 19804.0, + "end": 19808.12, + "probability": 0.9809 + }, + { + "start": 19808.42, + "end": 19809.66, + "probability": 0.9213 + }, + { + "start": 19813.72, + "end": 19815.56, + "probability": 0.9873 + }, + { + "start": 19816.5, + "end": 19817.42, + "probability": 0.4803 + }, + { + "start": 19817.56, + "end": 19818.3, + "probability": 0.8477 + }, + { + "start": 19820.12, + "end": 19824.02, + "probability": 0.9907 + }, + { + "start": 19824.12, + "end": 19826.99, + "probability": 0.5855 + }, + { + "start": 19828.26, + "end": 19831.64, + "probability": 0.9281 + }, + { + "start": 19833.26, + "end": 19834.64, + "probability": 0.9861 + }, + { + "start": 19835.76, + "end": 19837.9, + "probability": 0.9478 + }, + { + "start": 19838.92, + "end": 19840.3, + "probability": 0.9692 + }, + { + "start": 19841.1, + "end": 19845.6, + "probability": 0.9843 + }, + { + "start": 19846.7, + "end": 19852.58, + "probability": 0.9967 + }, + { + "start": 19853.38, + "end": 19854.92, + "probability": 0.6664 + }, + { + "start": 19855.48, + "end": 19856.48, + "probability": 0.9421 + }, + { + "start": 19857.56, + "end": 19859.86, + "probability": 0.9979 + }, + { + "start": 19860.46, + "end": 19865.4, + "probability": 0.9932 + }, + { + "start": 19866.28, + "end": 19868.58, + "probability": 0.5894 + }, + { + "start": 19868.68, + "end": 19870.66, + "probability": 0.9146 + }, + { + "start": 19871.44, + "end": 19873.88, + "probability": 0.9904 + }, + { + "start": 19874.02, + "end": 19875.58, + "probability": 0.9969 + }, + { + "start": 19876.5, + "end": 19878.29, + "probability": 0.6588 + }, + { + "start": 19879.46, + "end": 19884.06, + "probability": 0.9546 + }, + { + "start": 19885.22, + "end": 19891.21, + "probability": 0.9951 + }, + { + "start": 19891.24, + "end": 19895.74, + "probability": 0.9987 + }, + { + "start": 19895.74, + "end": 19899.64, + "probability": 0.9989 + }, + { + "start": 19900.9, + "end": 19904.02, + "probability": 0.7534 + }, + { + "start": 19904.88, + "end": 19906.36, + "probability": 0.5321 + }, + { + "start": 19906.96, + "end": 19908.88, + "probability": 0.8491 + }, + { + "start": 19909.74, + "end": 19914.5, + "probability": 0.6703 + }, + { + "start": 19916.2, + "end": 19919.7, + "probability": 0.9619 + }, + { + "start": 19920.36, + "end": 19921.58, + "probability": 0.5309 + }, + { + "start": 19921.88, + "end": 19924.82, + "probability": 0.9762 + }, + { + "start": 19925.06, + "end": 19926.24, + "probability": 0.5043 + }, + { + "start": 19926.38, + "end": 19927.2, + "probability": 0.1558 + }, + { + "start": 19929.83, + "end": 19934.68, + "probability": 0.563 + }, + { + "start": 19935.7, + "end": 19938.28, + "probability": 0.9992 + }, + { + "start": 19938.48, + "end": 19938.78, + "probability": 0.6192 + }, + { + "start": 19939.32, + "end": 19939.6, + "probability": 0.0359 + }, + { + "start": 19939.6, + "end": 19940.36, + "probability": 0.8656 + }, + { + "start": 19941.78, + "end": 19943.5, + "probability": 0.9256 + }, + { + "start": 19943.5, + "end": 19947.12, + "probability": 0.9832 + }, + { + "start": 19947.3, + "end": 19949.32, + "probability": 0.8572 + }, + { + "start": 19949.76, + "end": 19951.02, + "probability": 0.9569 + }, + { + "start": 19951.34, + "end": 19952.54, + "probability": 0.5779 + }, + { + "start": 19952.82, + "end": 19954.36, + "probability": 0.9049 + }, + { + "start": 19955.46, + "end": 19957.9, + "probability": 0.985 + }, + { + "start": 19958.74, + "end": 19962.6, + "probability": 0.8732 + }, + { + "start": 19963.42, + "end": 19964.94, + "probability": 0.9834 + }, + { + "start": 19966.04, + "end": 19969.2, + "probability": 0.998 + }, + { + "start": 19970.04, + "end": 19971.28, + "probability": 0.8294 + }, + { + "start": 19971.6, + "end": 19975.84, + "probability": 0.9905 + }, + { + "start": 19976.52, + "end": 19978.44, + "probability": 0.8589 + }, + { + "start": 19978.72, + "end": 19980.1, + "probability": 0.9984 + }, + { + "start": 19980.5, + "end": 19983.36, + "probability": 0.937 + }, + { + "start": 19983.44, + "end": 19984.44, + "probability": 0.8875 + }, + { + "start": 19985.3, + "end": 19985.94, + "probability": 0.9535 + }, + { + "start": 19987.14, + "end": 19988.76, + "probability": 0.9225 + }, + { + "start": 19989.1, + "end": 19990.9, + "probability": 0.9741 + }, + { + "start": 19992.36, + "end": 19995.24, + "probability": 0.9813 + }, + { + "start": 19995.8, + "end": 19996.22, + "probability": 0.7211 + }, + { + "start": 19996.8, + "end": 19997.26, + "probability": 0.7999 + }, + { + "start": 19998.24, + "end": 20000.56, + "probability": 0.9786 + }, + { + "start": 20001.64, + "end": 20004.16, + "probability": 0.9851 + }, + { + "start": 20004.24, + "end": 20005.06, + "probability": 0.985 + }, + { + "start": 20005.4, + "end": 20006.6, + "probability": 0.9897 + }, + { + "start": 20006.6, + "end": 20007.22, + "probability": 0.8613 + }, + { + "start": 20007.34, + "end": 20011.6, + "probability": 0.981 + }, + { + "start": 20011.72, + "end": 20012.98, + "probability": 0.842 + }, + { + "start": 20013.34, + "end": 20014.98, + "probability": 0.9457 + }, + { + "start": 20015.46, + "end": 20016.36, + "probability": 0.9312 + }, + { + "start": 20016.9, + "end": 20018.82, + "probability": 0.3638 + }, + { + "start": 20019.04, + "end": 20020.4, + "probability": 0.5982 + }, + { + "start": 20020.54, + "end": 20021.8, + "probability": 0.6962 + }, + { + "start": 20022.54, + "end": 20023.4, + "probability": 0.7637 + }, + { + "start": 20024.14, + "end": 20026.64, + "probability": 0.9895 + }, + { + "start": 20026.64, + "end": 20028.96, + "probability": 0.9939 + }, + { + "start": 20030.56, + "end": 20035.58, + "probability": 0.999 + }, + { + "start": 20036.08, + "end": 20038.42, + "probability": 0.9935 + }, + { + "start": 20039.34, + "end": 20041.92, + "probability": 0.9645 + }, + { + "start": 20042.54, + "end": 20042.9, + "probability": 0.9282 + }, + { + "start": 20043.62, + "end": 20045.7, + "probability": 0.995 + }, + { + "start": 20046.96, + "end": 20047.12, + "probability": 0.9424 + }, + { + "start": 20047.96, + "end": 20050.6, + "probability": 0.9469 + }, + { + "start": 20051.3, + "end": 20054.26, + "probability": 0.9934 + }, + { + "start": 20054.96, + "end": 20056.36, + "probability": 0.9653 + }, + { + "start": 20057.18, + "end": 20058.12, + "probability": 0.8251 + }, + { + "start": 20059.16, + "end": 20061.3, + "probability": 0.9678 + }, + { + "start": 20062.22, + "end": 20063.82, + "probability": 0.9897 + }, + { + "start": 20064.36, + "end": 20068.46, + "probability": 0.9818 + }, + { + "start": 20068.52, + "end": 20070.47, + "probability": 0.9497 + }, + { + "start": 20072.06, + "end": 20073.48, + "probability": 0.951 + }, + { + "start": 20073.5, + "end": 20074.1, + "probability": 0.9353 + }, + { + "start": 20074.9, + "end": 20076.0, + "probability": 0.9431 + }, + { + "start": 20076.7, + "end": 20077.62, + "probability": 0.9409 + }, + { + "start": 20078.48, + "end": 20081.18, + "probability": 0.9528 + }, + { + "start": 20083.64, + "end": 20084.98, + "probability": 0.8735 + }, + { + "start": 20084.98, + "end": 20085.53, + "probability": 0.2143 + }, + { + "start": 20085.98, + "end": 20088.88, + "probability": 0.9616 + }, + { + "start": 20089.42, + "end": 20091.78, + "probability": 0.946 + }, + { + "start": 20092.48, + "end": 20096.52, + "probability": 0.9586 + }, + { + "start": 20097.6, + "end": 20099.6, + "probability": 0.9712 + }, + { + "start": 20100.08, + "end": 20102.88, + "probability": 0.9425 + }, + { + "start": 20103.0, + "end": 20106.96, + "probability": 0.8937 + }, + { + "start": 20107.54, + "end": 20109.4, + "probability": 0.7662 + }, + { + "start": 20110.14, + "end": 20111.38, + "probability": 0.8191 + }, + { + "start": 20112.14, + "end": 20114.82, + "probability": 0.904 + }, + { + "start": 20116.34, + "end": 20118.0, + "probability": 0.9632 + }, + { + "start": 20119.7, + "end": 20122.48, + "probability": 0.9585 + }, + { + "start": 20122.48, + "end": 20129.4, + "probability": 0.9769 + }, + { + "start": 20129.8, + "end": 20130.43, + "probability": 0.9824 + }, + { + "start": 20131.22, + "end": 20133.54, + "probability": 0.9979 + }, + { + "start": 20133.7, + "end": 20134.92, + "probability": 0.5301 + }, + { + "start": 20135.37, + "end": 20136.08, + "probability": 0.4907 + }, + { + "start": 20136.66, + "end": 20137.72, + "probability": 0.8828 + }, + { + "start": 20139.36, + "end": 20140.1, + "probability": 0.7611 + }, + { + "start": 20140.62, + "end": 20142.7, + "probability": 0.9061 + }, + { + "start": 20143.62, + "end": 20144.44, + "probability": 0.9766 + }, + { + "start": 20144.52, + "end": 20145.02, + "probability": 0.9055 + }, + { + "start": 20145.08, + "end": 20145.44, + "probability": 0.988 + }, + { + "start": 20145.58, + "end": 20146.4, + "probability": 0.9594 + }, + { + "start": 20147.24, + "end": 20151.36, + "probability": 0.9936 + }, + { + "start": 20152.14, + "end": 20155.5, + "probability": 0.9974 + }, + { + "start": 20156.26, + "end": 20157.62, + "probability": 0.9966 + }, + { + "start": 20158.38, + "end": 20161.32, + "probability": 0.9793 + }, + { + "start": 20162.64, + "end": 20164.54, + "probability": 0.9207 + }, + { + "start": 20165.2, + "end": 20168.42, + "probability": 0.9985 + }, + { + "start": 20169.38, + "end": 20171.18, + "probability": 0.7357 + }, + { + "start": 20172.04, + "end": 20173.2, + "probability": 0.9688 + }, + { + "start": 20173.48, + "end": 20177.09, + "probability": 0.9897 + }, + { + "start": 20177.44, + "end": 20177.86, + "probability": 0.8285 + }, + { + "start": 20178.02, + "end": 20180.25, + "probability": 0.5649 + }, + { + "start": 20181.3, + "end": 20181.81, + "probability": 0.8883 + }, + { + "start": 20181.88, + "end": 20183.04, + "probability": 0.9146 + }, + { + "start": 20184.1, + "end": 20184.84, + "probability": 0.9149 + }, + { + "start": 20186.02, + "end": 20187.72, + "probability": 0.8549 + }, + { + "start": 20189.34, + "end": 20190.1, + "probability": 0.8923 + }, + { + "start": 20191.34, + "end": 20193.44, + "probability": 0.7216 + }, + { + "start": 20194.58, + "end": 20200.0, + "probability": 0.7919 + }, + { + "start": 20200.4, + "end": 20203.32, + "probability": 0.746 + }, + { + "start": 20203.42, + "end": 20207.18, + "probability": 0.9404 + }, + { + "start": 20208.04, + "end": 20210.6, + "probability": 0.9559 + }, + { + "start": 20210.78, + "end": 20211.52, + "probability": 0.6391 + }, + { + "start": 20211.6, + "end": 20212.62, + "probability": 0.7495 + }, + { + "start": 20213.98, + "end": 20219.52, + "probability": 0.7494 + }, + { + "start": 20220.58, + "end": 20222.26, + "probability": 0.8954 + }, + { + "start": 20222.96, + "end": 20224.44, + "probability": 0.7648 + }, + { + "start": 20225.18, + "end": 20228.74, + "probability": 0.7968 + }, + { + "start": 20229.28, + "end": 20230.16, + "probability": 0.9331 + }, + { + "start": 20230.44, + "end": 20234.14, + "probability": 0.9387 + }, + { + "start": 20234.24, + "end": 20235.24, + "probability": 0.6881 + }, + { + "start": 20235.28, + "end": 20235.96, + "probability": 0.8606 + }, + { + "start": 20236.02, + "end": 20237.12, + "probability": 0.6526 + }, + { + "start": 20238.22, + "end": 20240.92, + "probability": 0.9954 + }, + { + "start": 20240.92, + "end": 20243.52, + "probability": 0.9955 + }, + { + "start": 20244.76, + "end": 20246.84, + "probability": 0.6851 + }, + { + "start": 20248.68, + "end": 20249.62, + "probability": 0.9229 + }, + { + "start": 20251.08, + "end": 20251.4, + "probability": 0.71 + }, + { + "start": 20253.62, + "end": 20255.36, + "probability": 0.9973 + }, + { + "start": 20255.48, + "end": 20256.98, + "probability": 0.8828 + }, + { + "start": 20258.12, + "end": 20260.88, + "probability": 0.9835 + }, + { + "start": 20262.0, + "end": 20265.16, + "probability": 0.8957 + }, + { + "start": 20266.06, + "end": 20270.6, + "probability": 0.9988 + }, + { + "start": 20271.44, + "end": 20272.7, + "probability": 0.9821 + }, + { + "start": 20277.12, + "end": 20277.68, + "probability": 0.8162 + }, + { + "start": 20278.58, + "end": 20279.26, + "probability": 0.0121 + }, + { + "start": 20279.26, + "end": 20279.26, + "probability": 0.3721 + }, + { + "start": 20280.71, + "end": 20284.5, + "probability": 0.9744 + }, + { + "start": 20287.82, + "end": 20289.78, + "probability": 0.8257 + }, + { + "start": 20290.34, + "end": 20291.6, + "probability": 0.8656 + }, + { + "start": 20293.52, + "end": 20294.3, + "probability": 0.2541 + }, + { + "start": 20309.04, + "end": 20309.5, + "probability": 0.0223 + }, + { + "start": 20313.12, + "end": 20317.24, + "probability": 0.8885 + }, + { + "start": 20318.52, + "end": 20319.8, + "probability": 0.6672 + }, + { + "start": 20320.36, + "end": 20323.66, + "probability": 0.4068 + }, + { + "start": 20324.94, + "end": 20327.86, + "probability": 0.536 + }, + { + "start": 20329.32, + "end": 20331.14, + "probability": 0.027 + }, + { + "start": 20336.15, + "end": 20337.34, + "probability": 0.0047 + }, + { + "start": 20341.8, + "end": 20343.06, + "probability": 0.0623 + }, + { + "start": 20344.98, + "end": 20345.78, + "probability": 0.1118 + }, + { + "start": 20345.78, + "end": 20345.78, + "probability": 0.1285 + }, + { + "start": 20345.78, + "end": 20347.03, + "probability": 0.0426 + }, + { + "start": 20347.12, + "end": 20347.78, + "probability": 0.2045 + }, + { + "start": 20356.85, + "end": 20359.24, + "probability": 0.0207 + }, + { + "start": 20359.24, + "end": 20359.26, + "probability": 0.0459 + }, + { + "start": 20359.26, + "end": 20359.34, + "probability": 0.0158 + }, + { + "start": 20380.45, + "end": 20382.13, + "probability": 0.0161 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20395.0, + "end": 20395.0, + "probability": 0.0 + }, + { + "start": 20399.36, + "end": 20402.06, + "probability": 0.7644 + }, + { + "start": 20402.7, + "end": 20403.38, + "probability": 0.922 + }, + { + "start": 20403.44, + "end": 20403.68, + "probability": 0.8635 + }, + { + "start": 20403.82, + "end": 20407.72, + "probability": 0.9852 + }, + { + "start": 20408.02, + "end": 20410.64, + "probability": 0.8626 + }, + { + "start": 20411.1, + "end": 20412.48, + "probability": 0.9731 + }, + { + "start": 20412.82, + "end": 20414.18, + "probability": 0.9313 + }, + { + "start": 20414.7, + "end": 20415.1, + "probability": 0.6627 + }, + { + "start": 20415.12, + "end": 20416.24, + "probability": 0.5868 + }, + { + "start": 20417.22, + "end": 20420.3, + "probability": 0.7826 + }, + { + "start": 20420.84, + "end": 20421.46, + "probability": 0.8547 + }, + { + "start": 20422.16, + "end": 20423.3, + "probability": 0.9455 + }, + { + "start": 20423.7, + "end": 20424.44, + "probability": 0.7362 + }, + { + "start": 20424.78, + "end": 20425.81, + "probability": 0.9538 + }, + { + "start": 20426.3, + "end": 20429.14, + "probability": 0.9532 + }, + { + "start": 20429.64, + "end": 20434.58, + "probability": 0.9115 + }, + { + "start": 20434.92, + "end": 20436.1, + "probability": 0.7718 + }, + { + "start": 20437.1, + "end": 20437.72, + "probability": 0.7347 + }, + { + "start": 20438.14, + "end": 20439.96, + "probability": 0.6621 + }, + { + "start": 20440.8, + "end": 20444.1, + "probability": 0.9841 + }, + { + "start": 20453.38, + "end": 20454.56, + "probability": 0.4724 + }, + { + "start": 20454.56, + "end": 20458.18, + "probability": 0.9097 + }, + { + "start": 20458.28, + "end": 20463.44, + "probability": 0.8516 + }, + { + "start": 20464.0, + "end": 20465.5, + "probability": 0.8738 + }, + { + "start": 20466.38, + "end": 20468.5, + "probability": 0.9985 + }, + { + "start": 20469.0, + "end": 20471.76, + "probability": 0.9464 + }, + { + "start": 20471.84, + "end": 20474.18, + "probability": 0.9187 + }, + { + "start": 20481.38, + "end": 20482.52, + "probability": 0.3887 + }, + { + "start": 20482.52, + "end": 20483.53, + "probability": 0.7054 + }, + { + "start": 20483.86, + "end": 20485.5, + "probability": 0.7455 + }, + { + "start": 20490.2, + "end": 20492.82, + "probability": 0.0389 + }, + { + "start": 20492.82, + "end": 20496.75, + "probability": 0.0134 + }, + { + "start": 20501.94, + "end": 20503.28, + "probability": 0.0527 + }, + { + "start": 20504.38, + "end": 20509.22, + "probability": 0.0593 + }, + { + "start": 20509.22, + "end": 20509.22, + "probability": 0.0425 + }, + { + "start": 20509.22, + "end": 20510.56, + "probability": 0.0248 + }, + { + "start": 20511.98, + "end": 20513.0, + "probability": 0.202 + }, + { + "start": 20513.56, + "end": 20514.68, + "probability": 0.0336 + }, + { + "start": 20521.9, + "end": 20527.44, + "probability": 0.4618 + }, + { + "start": 20529.19, + "end": 20530.24, + "probability": 0.0165 + }, + { + "start": 20532.66, + "end": 20538.96, + "probability": 0.043 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20565.0, + "end": 20565.0, + "probability": 0.0 + }, + { + "start": 20574.06, + "end": 20576.94, + "probability": 0.0362 + }, + { + "start": 20577.84, + "end": 20578.96, + "probability": 0.6776 + }, + { + "start": 20579.58, + "end": 20582.02, + "probability": 0.0831 + }, + { + "start": 20584.44, + "end": 20586.36, + "probability": 0.6753 + }, + { + "start": 20586.64, + "end": 20587.64, + "probability": 0.5439 + }, + { + "start": 20587.64, + "end": 20587.85, + "probability": 0.4528 + }, + { + "start": 20588.82, + "end": 20588.96, + "probability": 0.0459 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20687.0, + "end": 20687.0, + "probability": 0.0 + }, + { + "start": 20700.22, + "end": 20702.8, + "probability": 0.6595 + }, + { + "start": 20703.98, + "end": 20704.92, + "probability": 0.3191 + }, + { + "start": 20704.92, + "end": 20706.12, + "probability": 0.5929 + }, + { + "start": 20707.22, + "end": 20708.04, + "probability": 0.951 + }, + { + "start": 20709.76, + "end": 20711.24, + "probability": 0.4988 + }, + { + "start": 20712.53, + "end": 20715.8, + "probability": 0.692 + }, + { + "start": 20716.12, + "end": 20718.08, + "probability": 0.9376 + }, + { + "start": 20718.2, + "end": 20720.96, + "probability": 0.6232 + }, + { + "start": 20723.76, + "end": 20730.51, + "probability": 0.0831 + }, + { + "start": 20733.4, + "end": 20735.42, + "probability": 0.0238 + }, + { + "start": 20736.54, + "end": 20737.2, + "probability": 0.0 + }, + { + "start": 20738.68, + "end": 20740.58, + "probability": 0.0482 + }, + { + "start": 20740.58, + "end": 20742.24, + "probability": 0.0605 + }, + { + "start": 20742.7, + "end": 20743.42, + "probability": 0.0303 + }, + { + "start": 20751.9, + "end": 20752.24, + "probability": 0.3118 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.0, + "end": 20814.0, + "probability": 0.0 + }, + { + "start": 20814.66, + "end": 20815.06, + "probability": 0.6401 + }, + { + "start": 20815.06, + "end": 20815.9, + "probability": 0.1272 + }, + { + "start": 20816.12, + "end": 20816.36, + "probability": 0.0979 + }, + { + "start": 20816.52, + "end": 20820.34, + "probability": 0.0224 + }, + { + "start": 20822.16, + "end": 20823.62, + "probability": 0.0097 + }, + { + "start": 20825.12, + "end": 20826.94, + "probability": 0.475 + }, + { + "start": 20827.47, + "end": 20830.78, + "probability": 0.3108 + }, + { + "start": 20831.66, + "end": 20832.15, + "probability": 0.0196 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20975.0, + "end": 20975.0, + "probability": 0.0 + }, + { + "start": 20981.74, + "end": 20982.66, + "probability": 0.554 + }, + { + "start": 20983.6, + "end": 20988.58, + "probability": 0.9722 + }, + { + "start": 20989.04, + "end": 20990.72, + "probability": 0.993 + }, + { + "start": 20999.74, + "end": 21002.46, + "probability": 0.7673 + }, + { + "start": 21003.66, + "end": 21007.56, + "probability": 0.955 + }, + { + "start": 21008.68, + "end": 21010.36, + "probability": 0.9545 + }, + { + "start": 21011.5, + "end": 21016.06, + "probability": 0.9788 + }, + { + "start": 21016.24, + "end": 21018.02, + "probability": 0.8065 + }, + { + "start": 21019.1, + "end": 21022.0, + "probability": 0.9719 + }, + { + "start": 21022.14, + "end": 21022.58, + "probability": 0.4925 + }, + { + "start": 21022.68, + "end": 21027.9, + "probability": 0.9674 + }, + { + "start": 21028.94, + "end": 21029.3, + "probability": 0.0009 + }, + { + "start": 21029.3, + "end": 21030.89, + "probability": 0.7827 + }, + { + "start": 21031.24, + "end": 21034.42, + "probability": 0.8869 + }, + { + "start": 21035.06, + "end": 21036.1, + "probability": 0.7636 + }, + { + "start": 21037.78, + "end": 21039.08, + "probability": 0.7353 + }, + { + "start": 21039.22, + "end": 21040.9, + "probability": 0.8083 + }, + { + "start": 21042.3, + "end": 21042.78, + "probability": 0.3994 + }, + { + "start": 21042.92, + "end": 21045.64, + "probability": 0.6594 + }, + { + "start": 21046.02, + "end": 21046.76, + "probability": 0.821 + }, + { + "start": 21046.88, + "end": 21048.62, + "probability": 0.8976 + }, + { + "start": 21049.32, + "end": 21050.28, + "probability": 0.437 + }, + { + "start": 21050.32, + "end": 21053.84, + "probability": 0.9627 + }, + { + "start": 21056.99, + "end": 21058.35, + "probability": 0.0442 + }, + { + "start": 21058.68, + "end": 21062.15, + "probability": 0.0263 + }, + { + "start": 21064.46, + "end": 21065.02, + "probability": 0.0793 + }, + { + "start": 21078.9, + "end": 21079.28, + "probability": 0.075 + }, + { + "start": 21079.56, + "end": 21080.88, + "probability": 0.0314 + }, + { + "start": 21082.02, + "end": 21082.52, + "probability": 0.2243 + }, + { + "start": 21086.24, + "end": 21086.9, + "probability": 0.1666 + }, + { + "start": 21092.16, + "end": 21096.2, + "probability": 0.0423 + }, + { + "start": 21104.88, + "end": 21105.34, + "probability": 0.0177 + }, + { + "start": 21105.34, + "end": 21107.3, + "probability": 0.1652 + }, + { + "start": 21108.26, + "end": 21111.6, + "probability": 0.0526 + }, + { + "start": 21119.68, + "end": 21120.62, + "probability": 0.0089 + }, + { + "start": 21120.62, + "end": 21124.94, + "probability": 0.0197 + }, + { + "start": 21125.08, + "end": 21125.9, + "probability": 0.0108 + }, + { + "start": 21126.68, + "end": 21134.1, + "probability": 0.0317 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.0, + "end": 21159.0, + "probability": 0.0 + }, + { + "start": 21159.3, + "end": 21161.7, + "probability": 0.7832 + }, + { + "start": 21162.88, + "end": 21165.4, + "probability": 0.981 + }, + { + "start": 21165.64, + "end": 21167.78, + "probability": 0.9574 + }, + { + "start": 21167.92, + "end": 21169.04, + "probability": 0.8511 + }, + { + "start": 21169.12, + "end": 21170.26, + "probability": 0.9722 + }, + { + "start": 21171.24, + "end": 21176.82, + "probability": 0.9443 + }, + { + "start": 21176.92, + "end": 21177.88, + "probability": 0.9888 + }, + { + "start": 21178.46, + "end": 21179.46, + "probability": 0.9257 + }, + { + "start": 21180.56, + "end": 21181.82, + "probability": 0.7874 + }, + { + "start": 21182.78, + "end": 21183.8, + "probability": 0.406 + }, + { + "start": 21185.08, + "end": 21187.92, + "probability": 0.8737 + }, + { + "start": 21189.04, + "end": 21190.75, + "probability": 0.9956 + }, + { + "start": 21192.16, + "end": 21193.44, + "probability": 0.6175 + }, + { + "start": 21193.96, + "end": 21195.06, + "probability": 0.7282 + }, + { + "start": 21195.7, + "end": 21199.62, + "probability": 0.9497 + }, + { + "start": 21202.06, + "end": 21204.92, + "probability": 0.9511 + }, + { + "start": 21207.36, + "end": 21214.78, + "probability": 0.9662 + }, + { + "start": 21215.02, + "end": 21216.98, + "probability": 0.5046 + }, + { + "start": 21217.18, + "end": 21219.1, + "probability": 0.9791 + }, + { + "start": 21219.2, + "end": 21220.86, + "probability": 0.979 + }, + { + "start": 21222.14, + "end": 21225.64, + "probability": 0.9962 + }, + { + "start": 21227.2, + "end": 21229.38, + "probability": 0.9963 + }, + { + "start": 21230.24, + "end": 21231.94, + "probability": 0.9989 + }, + { + "start": 21233.26, + "end": 21236.54, + "probability": 0.9612 + }, + { + "start": 21236.8, + "end": 21237.46, + "probability": 0.9282 + }, + { + "start": 21238.5, + "end": 21240.01, + "probability": 0.9424 + }, + { + "start": 21240.82, + "end": 21242.88, + "probability": 0.9936 + }, + { + "start": 21243.72, + "end": 21246.2, + "probability": 0.9672 + }, + { + "start": 21246.92, + "end": 21247.16, + "probability": 0.7506 + }, + { + "start": 21247.42, + "end": 21253.68, + "probability": 0.9375 + }, + { + "start": 21254.38, + "end": 21255.22, + "probability": 0.9481 + }, + { + "start": 21255.46, + "end": 21255.67, + "probability": 0.727 + }, + { + "start": 21256.78, + "end": 21259.0, + "probability": 0.4142 + }, + { + "start": 21259.1, + "end": 21259.76, + "probability": 0.635 + }, + { + "start": 21259.8, + "end": 21260.16, + "probability": 0.5263 + }, + { + "start": 21261.16, + "end": 21263.22, + "probability": 0.4108 + }, + { + "start": 21263.6, + "end": 21265.46, + "probability": 0.9244 + }, + { + "start": 21265.6, + "end": 21265.88, + "probability": 0.5169 + }, + { + "start": 21266.6, + "end": 21270.2, + "probability": 0.6653 + }, + { + "start": 21270.2, + "end": 21273.54, + "probability": 0.7031 + }, + { + "start": 21273.99, + "end": 21275.87, + "probability": 0.626 + }, + { + "start": 21277.06, + "end": 21277.98, + "probability": 0.979 + }, + { + "start": 21278.12, + "end": 21279.74, + "probability": 0.9795 + }, + { + "start": 21282.34, + "end": 21283.92, + "probability": 0.2543 + }, + { + "start": 21284.36, + "end": 21288.88, + "probability": 0.2647 + }, + { + "start": 21290.02, + "end": 21290.18, + "probability": 0.679 + }, + { + "start": 21292.14, + "end": 21295.22, + "probability": 0.8379 + }, + { + "start": 21295.3, + "end": 21296.8, + "probability": 0.9284 + }, + { + "start": 21296.84, + "end": 21298.34, + "probability": 0.9604 + }, + { + "start": 21298.92, + "end": 21301.38, + "probability": 0.2026 + }, + { + "start": 21301.9, + "end": 21303.59, + "probability": 0.3979 + }, + { + "start": 21304.56, + "end": 21306.28, + "probability": 0.3554 + }, + { + "start": 21306.28, + "end": 21310.93, + "probability": 0.0258 + }, + { + "start": 21326.88, + "end": 21328.12, + "probability": 0.0179 + }, + { + "start": 21330.66, + "end": 21336.74, + "probability": 0.1831 + }, + { + "start": 21336.94, + "end": 21338.56, + "probability": 0.1544 + }, + { + "start": 21348.18, + "end": 21349.04, + "probability": 0.0437 + }, + { + "start": 21349.34, + "end": 21350.25, + "probability": 0.0704 + }, + { + "start": 21352.18, + "end": 21352.81, + "probability": 0.0921 + }, + { + "start": 21354.96, + "end": 21355.0, + "probability": 0.063 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.256 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.0, + "end": 21355.0, + "probability": 0.0 + }, + { + "start": 21355.46, + "end": 21360.58, + "probability": 0.7946 + }, + { + "start": 21361.7, + "end": 21363.46, + "probability": 0.8949 + }, + { + "start": 21363.62, + "end": 21365.78, + "probability": 0.9819 + }, + { + "start": 21365.86, + "end": 21367.9, + "probability": 0.6807 + }, + { + "start": 21368.88, + "end": 21371.02, + "probability": 0.9603 + }, + { + "start": 21371.04, + "end": 21371.22, + "probability": 0.2857 + }, + { + "start": 21371.28, + "end": 21371.62, + "probability": 0.9366 + }, + { + "start": 21371.7, + "end": 21372.4, + "probability": 0.7936 + }, + { + "start": 21372.54, + "end": 21374.56, + "probability": 0.9616 + }, + { + "start": 21375.48, + "end": 21379.2, + "probability": 0.9757 + }, + { + "start": 21379.3, + "end": 21380.48, + "probability": 0.9399 + }, + { + "start": 21381.66, + "end": 21383.82, + "probability": 0.4804 + }, + { + "start": 21383.84, + "end": 21385.02, + "probability": 0.5739 + }, + { + "start": 21385.16, + "end": 21388.28, + "probability": 0.9967 + }, + { + "start": 21388.92, + "end": 21390.3, + "probability": 0.5341 + }, + { + "start": 21390.82, + "end": 21391.84, + "probability": 0.7485 + }, + { + "start": 21393.02, + "end": 21398.82, + "probability": 0.5357 + }, + { + "start": 21399.02, + "end": 21399.66, + "probability": 0.4072 + }, + { + "start": 21399.66, + "end": 21400.08, + "probability": 0.828 + }, + { + "start": 21400.6, + "end": 21401.12, + "probability": 0.1372 + }, + { + "start": 21401.38, + "end": 21401.56, + "probability": 0.3763 + }, + { + "start": 21401.56, + "end": 21401.96, + "probability": 0.0168 + }, + { + "start": 21402.74, + "end": 21402.84, + "probability": 0.0507 + }, + { + "start": 21403.22, + "end": 21408.3, + "probability": 0.7668 + }, + { + "start": 21419.44, + "end": 21419.9, + "probability": 0.0184 + }, + { + "start": 21420.77, + "end": 21421.21, + "probability": 0.0097 + }, + { + "start": 21430.26, + "end": 21434.88, + "probability": 0.0866 + }, + { + "start": 21436.73, + "end": 21440.06, + "probability": 0.0923 + }, + { + "start": 21440.06, + "end": 21443.99, + "probability": 0.0331 + }, + { + "start": 21454.98, + "end": 21461.6, + "probability": 0.0433 + }, + { + "start": 21461.6, + "end": 21462.94, + "probability": 0.0533 + }, + { + "start": 21464.37, + "end": 21466.35, + "probability": 0.1058 + }, + { + "start": 21470.2, + "end": 21470.32, + "probability": 0.2149 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21475.0, + "end": 21475.0, + "probability": 0.0 + }, + { + "start": 21479.2, + "end": 21481.02, + "probability": 0.7627 + }, + { + "start": 21484.5, + "end": 21485.76, + "probability": 0.7557 + }, + { + "start": 21487.68, + "end": 21490.32, + "probability": 0.9819 + }, + { + "start": 21490.32, + "end": 21492.88, + "probability": 0.8291 + }, + { + "start": 21493.72, + "end": 21498.22, + "probability": 0.9629 + }, + { + "start": 21499.24, + "end": 21501.29, + "probability": 0.9111 + }, + { + "start": 21502.64, + "end": 21507.24, + "probability": 0.5675 + }, + { + "start": 21509.38, + "end": 21511.64, + "probability": 0.9927 + }, + { + "start": 21511.9, + "end": 21513.66, + "probability": 0.6055 + }, + { + "start": 21514.14, + "end": 21519.12, + "probability": 0.9902 + }, + { + "start": 21519.96, + "end": 21523.02, + "probability": 0.976 + }, + { + "start": 21523.96, + "end": 21527.28, + "probability": 0.9928 + }, + { + "start": 21528.02, + "end": 21530.42, + "probability": 0.8313 + }, + { + "start": 21531.3, + "end": 21535.04, + "probability": 0.9924 + }, + { + "start": 21535.54, + "end": 21537.2, + "probability": 0.998 + }, + { + "start": 21540.88, + "end": 21546.34, + "probability": 0.9933 + }, + { + "start": 21546.56, + "end": 21547.92, + "probability": 0.7971 + }, + { + "start": 21548.86, + "end": 21550.9, + "probability": 0.907 + }, + { + "start": 21551.04, + "end": 21552.16, + "probability": 0.8459 + }, + { + "start": 21552.48, + "end": 21553.66, + "probability": 0.932 + }, + { + "start": 21556.06, + "end": 21556.74, + "probability": 0.639 + }, + { + "start": 21557.2, + "end": 21558.66, + "probability": 0.1846 + }, + { + "start": 21559.18, + "end": 21560.06, + "probability": 0.4595 + }, + { + "start": 21562.46, + "end": 21564.29, + "probability": 0.2561 + }, + { + "start": 21566.74, + "end": 21567.3, + "probability": 0.0066 + }, + { + "start": 21574.44, + "end": 21575.94, + "probability": 0.0365 + }, + { + "start": 21575.94, + "end": 21580.07, + "probability": 0.0497 + }, + { + "start": 21580.66, + "end": 21583.58, + "probability": 0.0682 + }, + { + "start": 21584.82, + "end": 21591.9, + "probability": 0.0244 + }, + { + "start": 21594.66, + "end": 21596.2, + "probability": 0.0124 + }, + { + "start": 21614.48, + "end": 21615.98, + "probability": 0.1862 + }, + { + "start": 21618.02, + "end": 21618.46, + "probability": 0.0843 + }, + { + "start": 21618.46, + "end": 21619.04, + "probability": 0.1186 + }, + { + "start": 21619.04, + "end": 21619.04, + "probability": 0.047 + }, + { + "start": 21619.04, + "end": 21619.58, + "probability": 0.1101 + }, + { + "start": 21621.45, + "end": 21621.94, + "probability": 0.1042 + }, + { + "start": 21623.64, + "end": 21626.03, + "probability": 0.0337 + }, + { + "start": 21626.1, + "end": 21627.16, + "probability": 0.0475 + }, + { + "start": 21628.0, + "end": 21630.2, + "probability": 0.1119 + }, + { + "start": 21630.2, + "end": 21631.12, + "probability": 0.053 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21641.0, + "end": 21641.0, + "probability": 0.0 + }, + { + "start": 21642.2, + "end": 21645.16, + "probability": 0.2013 + }, + { + "start": 21645.22, + "end": 21645.76, + "probability": 0.4385 + }, + { + "start": 21645.88, + "end": 21648.86, + "probability": 0.7818 + }, + { + "start": 21651.12, + "end": 21655.58, + "probability": 0.0176 + }, + { + "start": 21656.46, + "end": 21663.71, + "probability": 0.0558 + }, + { + "start": 21663.76, + "end": 21666.0, + "probability": 0.0405 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + }, + { + "start": 21677.232, + "end": 21677.232, + "probability": 0.0 + } + ], + "segments_count": 7588, + "words_count": 39590, + "avg_words_per_segment": 5.2174, + "avg_segment_duration": 1.9712, + "avg_words_per_minute": 109.5805, + "plenum_id": "4063", + "duration": 21677.22, + "title": null, + "plenum_date": "2009-10-14" +} \ No newline at end of file