diff --git "a/42369/metadata.json" "b/42369/metadata.json" new file mode 100644--- /dev/null +++ "b/42369/metadata.json" @@ -0,0 +1,11272 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "42369", + "quality_score": 0.8854, + "per_segment_quality_scores": [ + { + "start": 83.96, + "end": 84.86, + "probability": 0.229 + }, + { + "start": 84.86, + "end": 85.42, + "probability": 0.1348 + }, + { + "start": 86.16, + "end": 87.72, + "probability": 0.6795 + }, + { + "start": 88.26, + "end": 89.0, + "probability": 0.8494 + }, + { + "start": 89.16, + "end": 90.66, + "probability": 0.9824 + }, + { + "start": 96.76, + "end": 98.72, + "probability": 0.5635 + }, + { + "start": 99.1, + "end": 103.68, + "probability": 0.9028 + }, + { + "start": 104.24, + "end": 106.94, + "probability": 0.8624 + }, + { + "start": 108.34, + "end": 110.58, + "probability": 0.2335 + }, + { + "start": 111.7, + "end": 112.98, + "probability": 0.2474 + }, + { + "start": 113.08, + "end": 113.08, + "probability": 0.7045 + }, + { + "start": 113.36, + "end": 116.52, + "probability": 0.1417 + }, + { + "start": 117.31, + "end": 117.92, + "probability": 0.3382 + }, + { + "start": 118.1, + "end": 121.26, + "probability": 0.9838 + }, + { + "start": 121.68, + "end": 123.62, + "probability": 0.1033 + }, + { + "start": 123.62, + "end": 123.72, + "probability": 0.0391 + }, + { + "start": 126.5, + "end": 129.02, + "probability": 0.4426 + }, + { + "start": 129.1, + "end": 130.06, + "probability": 0.3229 + }, + { + "start": 131.96, + "end": 132.44, + "probability": 0.7335 + }, + { + "start": 132.54, + "end": 138.7, + "probability": 0.9703 + }, + { + "start": 138.7, + "end": 142.28, + "probability": 0.8813 + }, + { + "start": 142.9, + "end": 145.84, + "probability": 0.9336 + }, + { + "start": 145.94, + "end": 146.36, + "probability": 0.8668 + }, + { + "start": 146.42, + "end": 147.28, + "probability": 0.749 + }, + { + "start": 147.38, + "end": 149.16, + "probability": 0.8906 + }, + { + "start": 150.16, + "end": 152.34, + "probability": 0.9477 + }, + { + "start": 152.48, + "end": 158.82, + "probability": 0.9775 + }, + { + "start": 159.02, + "end": 160.74, + "probability": 0.4051 + }, + { + "start": 161.24, + "end": 161.9, + "probability": 0.7295 + }, + { + "start": 162.08, + "end": 166.24, + "probability": 0.9333 + }, + { + "start": 167.0, + "end": 168.96, + "probability": 0.9808 + }, + { + "start": 169.12, + "end": 170.2, + "probability": 0.959 + }, + { + "start": 170.6, + "end": 171.98, + "probability": 0.9902 + }, + { + "start": 172.18, + "end": 172.94, + "probability": 0.9865 + }, + { + "start": 173.12, + "end": 173.76, + "probability": 0.8661 + }, + { + "start": 173.76, + "end": 175.24, + "probability": 0.7715 + }, + { + "start": 175.36, + "end": 176.7, + "probability": 0.818 + }, + { + "start": 177.28, + "end": 180.54, + "probability": 0.8964 + }, + { + "start": 181.16, + "end": 185.68, + "probability": 0.9886 + }, + { + "start": 186.78, + "end": 191.06, + "probability": 0.9822 + }, + { + "start": 191.06, + "end": 194.98, + "probability": 0.8554 + }, + { + "start": 195.58, + "end": 196.08, + "probability": 0.2791 + }, + { + "start": 196.2, + "end": 199.33, + "probability": 0.7981 + }, + { + "start": 200.12, + "end": 203.98, + "probability": 0.8808 + }, + { + "start": 204.28, + "end": 206.38, + "probability": 0.6211 + }, + { + "start": 206.64, + "end": 211.7, + "probability": 0.6971 + }, + { + "start": 211.9, + "end": 215.08, + "probability": 0.9362 + }, + { + "start": 215.74, + "end": 216.32, + "probability": 0.9047 + }, + { + "start": 216.36, + "end": 216.96, + "probability": 0.8606 + }, + { + "start": 217.08, + "end": 217.62, + "probability": 0.5493 + }, + { + "start": 217.68, + "end": 222.96, + "probability": 0.6592 + }, + { + "start": 223.38, + "end": 225.22, + "probability": 0.8896 + }, + { + "start": 225.62, + "end": 230.08, + "probability": 0.9928 + }, + { + "start": 230.12, + "end": 230.66, + "probability": 0.917 + }, + { + "start": 230.88, + "end": 231.2, + "probability": 0.3124 + }, + { + "start": 231.42, + "end": 232.0, + "probability": 0.313 + }, + { + "start": 233.0, + "end": 233.64, + "probability": 0.5941 + }, + { + "start": 234.44, + "end": 235.03, + "probability": 0.9011 + }, + { + "start": 235.78, + "end": 238.32, + "probability": 0.9813 + }, + { + "start": 238.4, + "end": 238.6, + "probability": 0.8132 + }, + { + "start": 239.7, + "end": 242.0, + "probability": 0.6847 + }, + { + "start": 242.24, + "end": 245.28, + "probability": 0.5807 + }, + { + "start": 245.98, + "end": 247.94, + "probability": 0.8194 + }, + { + "start": 249.5, + "end": 249.92, + "probability": 0.8682 + }, + { + "start": 250.9, + "end": 254.1, + "probability": 0.9734 + }, + { + "start": 254.74, + "end": 256.66, + "probability": 0.9856 + }, + { + "start": 257.14, + "end": 258.3, + "probability": 0.7146 + }, + { + "start": 258.44, + "end": 259.02, + "probability": 0.9027 + }, + { + "start": 259.52, + "end": 261.46, + "probability": 0.9888 + }, + { + "start": 262.22, + "end": 265.7, + "probability": 0.9758 + }, + { + "start": 266.32, + "end": 269.7, + "probability": 0.9443 + }, + { + "start": 270.36, + "end": 274.16, + "probability": 0.9974 + }, + { + "start": 274.7, + "end": 276.68, + "probability": 0.9707 + }, + { + "start": 277.22, + "end": 282.38, + "probability": 0.881 + }, + { + "start": 283.08, + "end": 284.28, + "probability": 0.9495 + }, + { + "start": 285.32, + "end": 286.22, + "probability": 0.8838 + }, + { + "start": 286.98, + "end": 290.82, + "probability": 0.9912 + }, + { + "start": 291.52, + "end": 294.48, + "probability": 0.9826 + }, + { + "start": 294.94, + "end": 297.74, + "probability": 0.8901 + }, + { + "start": 298.36, + "end": 301.46, + "probability": 0.9749 + }, + { + "start": 302.86, + "end": 307.56, + "probability": 0.9818 + }, + { + "start": 308.12, + "end": 309.24, + "probability": 0.8282 + }, + { + "start": 309.78, + "end": 311.74, + "probability": 0.9806 + }, + { + "start": 312.2, + "end": 315.42, + "probability": 0.9984 + }, + { + "start": 316.0, + "end": 319.02, + "probability": 0.9897 + }, + { + "start": 320.3, + "end": 321.94, + "probability": 0.9664 + }, + { + "start": 322.46, + "end": 325.62, + "probability": 0.9901 + }, + { + "start": 326.36, + "end": 328.56, + "probability": 0.9929 + }, + { + "start": 329.2, + "end": 332.8, + "probability": 0.9917 + }, + { + "start": 333.66, + "end": 335.74, + "probability": 0.7332 + }, + { + "start": 336.9, + "end": 338.56, + "probability": 0.563 + }, + { + "start": 338.64, + "end": 338.98, + "probability": 0.5936 + }, + { + "start": 339.02, + "end": 340.58, + "probability": 0.9298 + }, + { + "start": 340.62, + "end": 341.06, + "probability": 0.769 + }, + { + "start": 341.16, + "end": 342.3, + "probability": 0.9318 + }, + { + "start": 349.32, + "end": 350.48, + "probability": 0.8272 + }, + { + "start": 351.68, + "end": 352.98, + "probability": 0.869 + }, + { + "start": 354.42, + "end": 354.8, + "probability": 0.9476 + }, + { + "start": 356.6, + "end": 358.52, + "probability": 0.9979 + }, + { + "start": 360.4, + "end": 362.48, + "probability": 0.9718 + }, + { + "start": 363.44, + "end": 368.08, + "probability": 0.9928 + }, + { + "start": 369.56, + "end": 370.94, + "probability": 0.5649 + }, + { + "start": 372.0, + "end": 375.86, + "probability": 0.9653 + }, + { + "start": 377.72, + "end": 381.56, + "probability": 0.9188 + }, + { + "start": 383.46, + "end": 389.24, + "probability": 0.9854 + }, + { + "start": 389.24, + "end": 392.76, + "probability": 0.9928 + }, + { + "start": 394.26, + "end": 396.58, + "probability": 0.9913 + }, + { + "start": 397.48, + "end": 398.78, + "probability": 0.9221 + }, + { + "start": 399.5, + "end": 403.24, + "probability": 0.8257 + }, + { + "start": 404.56, + "end": 406.32, + "probability": 0.9827 + }, + { + "start": 407.1, + "end": 410.24, + "probability": 0.8687 + }, + { + "start": 410.66, + "end": 413.88, + "probability": 0.865 + }, + { + "start": 414.58, + "end": 415.94, + "probability": 0.9531 + }, + { + "start": 416.7, + "end": 418.8, + "probability": 0.9783 + }, + { + "start": 419.42, + "end": 421.08, + "probability": 0.903 + }, + { + "start": 421.4, + "end": 424.02, + "probability": 0.9723 + }, + { + "start": 424.12, + "end": 425.82, + "probability": 0.937 + }, + { + "start": 426.16, + "end": 427.52, + "probability": 0.6682 + }, + { + "start": 427.9, + "end": 430.18, + "probability": 0.8963 + }, + { + "start": 430.56, + "end": 431.1, + "probability": 0.6863 + }, + { + "start": 431.6, + "end": 433.2, + "probability": 0.8826 + }, + { + "start": 433.2, + "end": 434.54, + "probability": 0.3879 + }, + { + "start": 435.58, + "end": 437.5, + "probability": 0.8706 + }, + { + "start": 443.76, + "end": 446.18, + "probability": 0.735 + }, + { + "start": 447.32, + "end": 449.6, + "probability": 0.9911 + }, + { + "start": 450.64, + "end": 455.52, + "probability": 0.9838 + }, + { + "start": 456.84, + "end": 460.3, + "probability": 0.9745 + }, + { + "start": 460.3, + "end": 464.54, + "probability": 0.9988 + }, + { + "start": 465.72, + "end": 467.44, + "probability": 0.9916 + }, + { + "start": 468.4, + "end": 469.9, + "probability": 0.8866 + }, + { + "start": 470.84, + "end": 471.94, + "probability": 0.9944 + }, + { + "start": 472.8, + "end": 474.56, + "probability": 0.9954 + }, + { + "start": 475.78, + "end": 477.02, + "probability": 0.9548 + }, + { + "start": 477.42, + "end": 479.78, + "probability": 0.739 + }, + { + "start": 480.26, + "end": 482.2, + "probability": 0.7511 + }, + { + "start": 483.58, + "end": 484.24, + "probability": 0.7012 + }, + { + "start": 485.22, + "end": 488.1, + "probability": 0.9655 + }, + { + "start": 489.2, + "end": 491.08, + "probability": 0.9771 + }, + { + "start": 491.62, + "end": 495.4, + "probability": 0.9967 + }, + { + "start": 495.42, + "end": 499.48, + "probability": 0.9948 + }, + { + "start": 500.86, + "end": 502.56, + "probability": 0.9646 + }, + { + "start": 502.98, + "end": 506.3, + "probability": 0.8327 + }, + { + "start": 506.3, + "end": 510.7, + "probability": 0.9613 + }, + { + "start": 511.82, + "end": 513.42, + "probability": 0.5416 + }, + { + "start": 513.7, + "end": 517.62, + "probability": 0.9682 + }, + { + "start": 519.0, + "end": 523.46, + "probability": 0.8881 + }, + { + "start": 523.96, + "end": 528.16, + "probability": 0.68 + }, + { + "start": 528.52, + "end": 528.72, + "probability": 0.6975 + }, + { + "start": 529.56, + "end": 531.32, + "probability": 0.8727 + }, + { + "start": 531.48, + "end": 536.46, + "probability": 0.9764 + }, + { + "start": 537.6, + "end": 539.64, + "probability": 0.9734 + }, + { + "start": 540.0, + "end": 540.18, + "probability": 0.7472 + }, + { + "start": 540.24, + "end": 541.78, + "probability": 0.7157 + }, + { + "start": 541.9, + "end": 545.38, + "probability": 0.6971 + }, + { + "start": 545.38, + "end": 545.62, + "probability": 0.1074 + }, + { + "start": 547.16, + "end": 549.28, + "probability": 0.5129 + }, + { + "start": 550.74, + "end": 554.08, + "probability": 0.9197 + }, + { + "start": 555.52, + "end": 557.06, + "probability": 0.632 + }, + { + "start": 559.09, + "end": 562.62, + "probability": 0.439 + }, + { + "start": 564.26, + "end": 567.24, + "probability": 0.6255 + }, + { + "start": 568.54, + "end": 571.0, + "probability": 0.8113 + }, + { + "start": 572.16, + "end": 573.22, + "probability": 0.8787 + }, + { + "start": 573.54, + "end": 577.04, + "probability": 0.7853 + }, + { + "start": 577.24, + "end": 579.26, + "probability": 0.6798 + }, + { + "start": 579.66, + "end": 583.14, + "probability": 0.6236 + }, + { + "start": 583.28, + "end": 585.72, + "probability": 0.9888 + }, + { + "start": 586.3, + "end": 586.62, + "probability": 0.7268 + }, + { + "start": 587.46, + "end": 588.42, + "probability": 0.8304 + }, + { + "start": 589.04, + "end": 590.08, + "probability": 0.9842 + }, + { + "start": 590.6, + "end": 592.36, + "probability": 0.9481 + }, + { + "start": 592.44, + "end": 593.96, + "probability": 0.943 + }, + { + "start": 595.49, + "end": 597.0, + "probability": 0.7238 + }, + { + "start": 597.0, + "end": 597.54, + "probability": 0.2825 + }, + { + "start": 598.08, + "end": 600.28, + "probability": 0.9093 + }, + { + "start": 600.38, + "end": 600.58, + "probability": 0.7236 + }, + { + "start": 601.46, + "end": 603.34, + "probability": 0.8228 + }, + { + "start": 603.38, + "end": 604.7, + "probability": 0.9508 + }, + { + "start": 604.82, + "end": 605.2, + "probability": 0.7814 + }, + { + "start": 605.28, + "end": 605.6, + "probability": 0.7919 + }, + { + "start": 605.64, + "end": 606.24, + "probability": 0.5911 + }, + { + "start": 606.32, + "end": 607.74, + "probability": 0.965 + }, + { + "start": 610.78, + "end": 611.98, + "probability": 0.7507 + }, + { + "start": 612.88, + "end": 615.02, + "probability": 0.908 + }, + { + "start": 615.52, + "end": 617.62, + "probability": 0.8852 + }, + { + "start": 618.6, + "end": 619.52, + "probability": 0.8445 + }, + { + "start": 620.76, + "end": 623.0, + "probability": 0.9834 + }, + { + "start": 623.9, + "end": 628.26, + "probability": 0.9786 + }, + { + "start": 628.38, + "end": 629.01, + "probability": 0.7462 + }, + { + "start": 629.68, + "end": 630.98, + "probability": 0.8879 + }, + { + "start": 631.62, + "end": 633.92, + "probability": 0.8116 + }, + { + "start": 635.1, + "end": 637.22, + "probability": 0.9061 + }, + { + "start": 637.36, + "end": 639.32, + "probability": 0.7578 + }, + { + "start": 639.96, + "end": 642.94, + "probability": 0.9969 + }, + { + "start": 643.58, + "end": 645.58, + "probability": 0.8382 + }, + { + "start": 646.9, + "end": 651.98, + "probability": 0.9616 + }, + { + "start": 652.06, + "end": 652.88, + "probability": 0.871 + }, + { + "start": 653.92, + "end": 655.24, + "probability": 0.9519 + }, + { + "start": 655.4, + "end": 657.76, + "probability": 0.8409 + }, + { + "start": 658.28, + "end": 660.24, + "probability": 0.7823 + }, + { + "start": 662.0, + "end": 664.26, + "probability": 0.6658 + }, + { + "start": 664.3, + "end": 668.56, + "probability": 0.8366 + }, + { + "start": 669.22, + "end": 673.16, + "probability": 0.8833 + }, + { + "start": 673.98, + "end": 678.98, + "probability": 0.9753 + }, + { + "start": 679.26, + "end": 681.82, + "probability": 0.7753 + }, + { + "start": 682.56, + "end": 684.86, + "probability": 0.5692 + }, + { + "start": 684.94, + "end": 686.34, + "probability": 0.9905 + }, + { + "start": 686.86, + "end": 690.34, + "probability": 0.8773 + }, + { + "start": 690.64, + "end": 692.32, + "probability": 0.9902 + }, + { + "start": 692.48, + "end": 694.96, + "probability": 0.7115 + }, + { + "start": 695.68, + "end": 698.08, + "probability": 0.9863 + }, + { + "start": 698.72, + "end": 699.08, + "probability": 0.5559 + }, + { + "start": 699.24, + "end": 699.86, + "probability": 0.7152 + }, + { + "start": 700.0, + "end": 702.72, + "probability": 0.9125 + }, + { + "start": 702.82, + "end": 705.06, + "probability": 0.9791 + }, + { + "start": 705.68, + "end": 707.74, + "probability": 0.9093 + }, + { + "start": 708.14, + "end": 711.9, + "probability": 0.993 + }, + { + "start": 711.9, + "end": 714.96, + "probability": 0.8241 + }, + { + "start": 715.42, + "end": 716.5, + "probability": 0.7766 + }, + { + "start": 716.7, + "end": 719.78, + "probability": 0.9144 + }, + { + "start": 720.1, + "end": 723.72, + "probability": 0.9862 + }, + { + "start": 725.0, + "end": 726.36, + "probability": 0.6899 + }, + { + "start": 726.46, + "end": 727.62, + "probability": 0.7108 + }, + { + "start": 727.72, + "end": 728.1, + "probability": 0.6141 + }, + { + "start": 728.14, + "end": 728.4, + "probability": 0.7464 + }, + { + "start": 728.44, + "end": 729.06, + "probability": 0.7659 + }, + { + "start": 729.12, + "end": 731.18, + "probability": 0.9285 + }, + { + "start": 734.22, + "end": 736.18, + "probability": 0.6738 + }, + { + "start": 738.24, + "end": 740.5, + "probability": 0.7453 + }, + { + "start": 742.42, + "end": 746.12, + "probability": 0.8457 + }, + { + "start": 748.2, + "end": 750.66, + "probability": 0.908 + }, + { + "start": 752.1, + "end": 754.12, + "probability": 0.8511 + }, + { + "start": 755.84, + "end": 759.88, + "probability": 0.8547 + }, + { + "start": 759.88, + "end": 763.86, + "probability": 0.9755 + }, + { + "start": 764.88, + "end": 767.22, + "probability": 0.9932 + }, + { + "start": 770.5, + "end": 774.66, + "probability": 0.7784 + }, + { + "start": 776.0, + "end": 779.2, + "probability": 0.9631 + }, + { + "start": 779.76, + "end": 783.76, + "probability": 0.9755 + }, + { + "start": 784.34, + "end": 785.2, + "probability": 0.9865 + }, + { + "start": 786.18, + "end": 789.26, + "probability": 0.8361 + }, + { + "start": 790.04, + "end": 796.26, + "probability": 0.993 + }, + { + "start": 796.74, + "end": 798.2, + "probability": 0.9978 + }, + { + "start": 799.72, + "end": 802.2, + "probability": 0.7367 + }, + { + "start": 802.88, + "end": 804.7, + "probability": 0.9742 + }, + { + "start": 805.66, + "end": 807.6, + "probability": 0.9954 + }, + { + "start": 808.8, + "end": 813.16, + "probability": 0.9203 + }, + { + "start": 814.14, + "end": 815.64, + "probability": 0.9463 + }, + { + "start": 816.74, + "end": 819.98, + "probability": 0.9705 + }, + { + "start": 821.28, + "end": 826.08, + "probability": 0.9917 + }, + { + "start": 827.24, + "end": 829.97, + "probability": 0.9657 + }, + { + "start": 831.86, + "end": 832.96, + "probability": 0.9286 + }, + { + "start": 833.52, + "end": 838.42, + "probability": 0.993 + }, + { + "start": 838.66, + "end": 840.1, + "probability": 0.9862 + }, + { + "start": 840.48, + "end": 842.92, + "probability": 0.6036 + }, + { + "start": 843.54, + "end": 846.18, + "probability": 0.8439 + }, + { + "start": 846.58, + "end": 848.62, + "probability": 0.9701 + }, + { + "start": 848.96, + "end": 849.44, + "probability": 0.8409 + }, + { + "start": 849.74, + "end": 852.0, + "probability": 0.9173 + }, + { + "start": 852.02, + "end": 854.06, + "probability": 0.9482 + }, + { + "start": 854.58, + "end": 857.74, + "probability": 0.6707 + }, + { + "start": 858.92, + "end": 859.88, + "probability": 0.661 + }, + { + "start": 860.14, + "end": 860.16, + "probability": 0.5284 + }, + { + "start": 860.16, + "end": 864.64, + "probability": 0.9095 + }, + { + "start": 864.64, + "end": 868.72, + "probability": 0.8604 + }, + { + "start": 868.96, + "end": 871.36, + "probability": 0.9229 + }, + { + "start": 871.98, + "end": 877.24, + "probability": 0.9976 + }, + { + "start": 877.32, + "end": 882.34, + "probability": 0.954 + }, + { + "start": 883.1, + "end": 886.16, + "probability": 0.998 + }, + { + "start": 887.56, + "end": 891.44, + "probability": 0.9982 + }, + { + "start": 891.88, + "end": 893.94, + "probability": 0.8787 + }, + { + "start": 894.48, + "end": 897.44, + "probability": 0.9978 + }, + { + "start": 897.54, + "end": 900.92, + "probability": 0.9995 + }, + { + "start": 900.92, + "end": 906.82, + "probability": 0.9905 + }, + { + "start": 906.88, + "end": 911.52, + "probability": 0.6715 + }, + { + "start": 912.08, + "end": 913.35, + "probability": 0.9514 + }, + { + "start": 913.52, + "end": 914.38, + "probability": 0.8413 + }, + { + "start": 914.44, + "end": 917.45, + "probability": 0.9304 + }, + { + "start": 918.0, + "end": 920.04, + "probability": 0.7449 + }, + { + "start": 920.24, + "end": 921.9, + "probability": 0.9947 + }, + { + "start": 922.86, + "end": 923.18, + "probability": 0.6253 + }, + { + "start": 923.28, + "end": 927.14, + "probability": 0.838 + }, + { + "start": 927.5, + "end": 930.44, + "probability": 0.9978 + }, + { + "start": 930.72, + "end": 933.1, + "probability": 0.9946 + }, + { + "start": 933.16, + "end": 935.1, + "probability": 0.697 + }, + { + "start": 935.84, + "end": 941.14, + "probability": 0.9744 + }, + { + "start": 941.16, + "end": 944.42, + "probability": 0.9977 + }, + { + "start": 945.56, + "end": 948.4, + "probability": 0.9112 + }, + { + "start": 948.62, + "end": 949.1, + "probability": 0.6449 + }, + { + "start": 949.22, + "end": 951.92, + "probability": 0.9902 + }, + { + "start": 952.88, + "end": 955.02, + "probability": 0.6663 + }, + { + "start": 955.52, + "end": 956.84, + "probability": 0.8059 + }, + { + "start": 957.0, + "end": 958.24, + "probability": 0.8398 + }, + { + "start": 958.3, + "end": 959.5, + "probability": 0.9811 + }, + { + "start": 959.8, + "end": 962.48, + "probability": 0.9946 + }, + { + "start": 962.86, + "end": 963.08, + "probability": 0.793 + }, + { + "start": 963.22, + "end": 965.0, + "probability": 0.7735 + }, + { + "start": 965.3, + "end": 967.96, + "probability": 0.7149 + }, + { + "start": 968.84, + "end": 971.28, + "probability": 0.9631 + }, + { + "start": 972.76, + "end": 977.08, + "probability": 0.9914 + }, + { + "start": 977.08, + "end": 979.5, + "probability": 0.9891 + }, + { + "start": 979.58, + "end": 980.54, + "probability": 0.6436 + }, + { + "start": 981.6, + "end": 983.04, + "probability": 0.9285 + }, + { + "start": 983.14, + "end": 985.08, + "probability": 0.6635 + }, + { + "start": 985.76, + "end": 986.4, + "probability": 0.596 + }, + { + "start": 986.62, + "end": 988.4, + "probability": 0.9769 + }, + { + "start": 988.84, + "end": 989.9, + "probability": 0.8458 + }, + { + "start": 990.82, + "end": 993.38, + "probability": 0.9667 + }, + { + "start": 995.62, + "end": 1000.08, + "probability": 0.9956 + }, + { + "start": 1000.74, + "end": 1003.76, + "probability": 0.925 + }, + { + "start": 1004.28, + "end": 1006.82, + "probability": 0.9177 + }, + { + "start": 1007.04, + "end": 1008.44, + "probability": 0.8818 + }, + { + "start": 1008.9, + "end": 1009.0, + "probability": 0.0194 + }, + { + "start": 1010.78, + "end": 1012.0, + "probability": 0.0485 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0926 + }, + { + "start": 1012.0, + "end": 1013.96, + "probability": 0.8747 + }, + { + "start": 1014.42, + "end": 1018.38, + "probability": 0.9685 + }, + { + "start": 1018.42, + "end": 1018.9, + "probability": 0.8772 + }, + { + "start": 1019.82, + "end": 1023.7, + "probability": 0.8826 + }, + { + "start": 1024.08, + "end": 1025.74, + "probability": 0.9881 + }, + { + "start": 1027.44, + "end": 1032.4, + "probability": 0.9945 + }, + { + "start": 1033.08, + "end": 1034.2, + "probability": 0.9516 + }, + { + "start": 1034.56, + "end": 1035.64, + "probability": 0.8804 + }, + { + "start": 1035.98, + "end": 1040.34, + "probability": 0.7628 + }, + { + "start": 1040.34, + "end": 1041.84, + "probability": 0.9219 + }, + { + "start": 1042.04, + "end": 1044.44, + "probability": 0.9689 + }, + { + "start": 1045.16, + "end": 1046.84, + "probability": 0.7364 + }, + { + "start": 1046.9, + "end": 1047.28, + "probability": 0.8153 + }, + { + "start": 1047.36, + "end": 1048.2, + "probability": 0.823 + }, + { + "start": 1049.04, + "end": 1053.12, + "probability": 0.9702 + }, + { + "start": 1053.68, + "end": 1057.12, + "probability": 0.8776 + }, + { + "start": 1057.68, + "end": 1062.16, + "probability": 0.9623 + }, + { + "start": 1062.92, + "end": 1065.36, + "probability": 0.8141 + }, + { + "start": 1065.96, + "end": 1069.72, + "probability": 0.8789 + }, + { + "start": 1070.04, + "end": 1073.68, + "probability": 0.8663 + }, + { + "start": 1073.88, + "end": 1074.36, + "probability": 0.7467 + }, + { + "start": 1074.46, + "end": 1075.3, + "probability": 0.9458 + }, + { + "start": 1075.82, + "end": 1076.58, + "probability": 0.4215 + }, + { + "start": 1076.84, + "end": 1077.1, + "probability": 0.8862 + }, + { + "start": 1077.74, + "end": 1080.16, + "probability": 0.9359 + }, + { + "start": 1080.94, + "end": 1082.28, + "probability": 0.8881 + }, + { + "start": 1082.38, + "end": 1082.8, + "probability": 0.7771 + }, + { + "start": 1082.86, + "end": 1083.14, + "probability": 0.8078 + }, + { + "start": 1083.22, + "end": 1083.96, + "probability": 0.7931 + }, + { + "start": 1084.06, + "end": 1085.56, + "probability": 0.9837 + }, + { + "start": 1088.36, + "end": 1089.68, + "probability": 0.625 + }, + { + "start": 1089.9, + "end": 1089.96, + "probability": 0.6785 + }, + { + "start": 1089.96, + "end": 1093.54, + "probability": 0.6255 + }, + { + "start": 1094.78, + "end": 1098.62, + "probability": 0.8432 + }, + { + "start": 1099.36, + "end": 1099.88, + "probability": 0.5025 + }, + { + "start": 1100.0, + "end": 1101.08, + "probability": 0.8113 + }, + { + "start": 1101.08, + "end": 1101.7, + "probability": 0.7289 + }, + { + "start": 1101.8, + "end": 1105.36, + "probability": 0.9914 + }, + { + "start": 1105.36, + "end": 1109.0, + "probability": 0.9961 + }, + { + "start": 1109.1, + "end": 1110.2, + "probability": 0.9387 + }, + { + "start": 1111.66, + "end": 1114.62, + "probability": 0.8907 + }, + { + "start": 1115.22, + "end": 1117.28, + "probability": 0.6734 + }, + { + "start": 1118.44, + "end": 1120.42, + "probability": 0.9483 + }, + { + "start": 1121.04, + "end": 1127.92, + "probability": 0.9604 + }, + { + "start": 1128.78, + "end": 1129.44, + "probability": 0.8685 + }, + { + "start": 1129.68, + "end": 1132.86, + "probability": 0.9066 + }, + { + "start": 1132.86, + "end": 1137.24, + "probability": 0.8735 + }, + { + "start": 1137.3, + "end": 1138.3, + "probability": 0.6742 + }, + { + "start": 1138.94, + "end": 1140.3, + "probability": 0.8675 + }, + { + "start": 1140.98, + "end": 1142.38, + "probability": 0.9128 + }, + { + "start": 1142.94, + "end": 1147.06, + "probability": 0.9559 + }, + { + "start": 1147.54, + "end": 1149.22, + "probability": 0.8643 + }, + { + "start": 1149.46, + "end": 1149.72, + "probability": 0.7521 + }, + { + "start": 1150.9, + "end": 1152.86, + "probability": 0.6836 + }, + { + "start": 1153.08, + "end": 1154.58, + "probability": 0.9644 + }, + { + "start": 1154.66, + "end": 1155.22, + "probability": 0.8524 + }, + { + "start": 1155.28, + "end": 1155.66, + "probability": 0.7852 + }, + { + "start": 1156.14, + "end": 1156.98, + "probability": 0.6639 + }, + { + "start": 1157.42, + "end": 1158.38, + "probability": 0.9806 + }, + { + "start": 1160.52, + "end": 1161.32, + "probability": 0.6965 + }, + { + "start": 1161.86, + "end": 1162.46, + "probability": 0.7362 + }, + { + "start": 1164.2, + "end": 1167.54, + "probability": 0.7891 + }, + { + "start": 1168.54, + "end": 1169.2, + "probability": 0.5732 + }, + { + "start": 1169.3, + "end": 1171.4, + "probability": 0.803 + }, + { + "start": 1173.04, + "end": 1175.0, + "probability": 0.9867 + }, + { + "start": 1176.12, + "end": 1180.12, + "probability": 0.9884 + }, + { + "start": 1180.12, + "end": 1183.75, + "probability": 0.9615 + }, + { + "start": 1184.24, + "end": 1189.94, + "probability": 0.9928 + }, + { + "start": 1190.1, + "end": 1191.22, + "probability": 0.9003 + }, + { + "start": 1191.82, + "end": 1192.45, + "probability": 0.9478 + }, + { + "start": 1193.96, + "end": 1195.84, + "probability": 0.6275 + }, + { + "start": 1195.92, + "end": 1200.06, + "probability": 0.9946 + }, + { + "start": 1200.82, + "end": 1203.72, + "probability": 0.475 + }, + { + "start": 1204.04, + "end": 1206.78, + "probability": 0.98 + }, + { + "start": 1208.0, + "end": 1212.2, + "probability": 0.8352 + }, + { + "start": 1212.84, + "end": 1213.56, + "probability": 0.9901 + }, + { + "start": 1213.64, + "end": 1214.68, + "probability": 0.4903 + }, + { + "start": 1217.12, + "end": 1218.38, + "probability": 0.7134 + }, + { + "start": 1219.06, + "end": 1219.74, + "probability": 0.9512 + }, + { + "start": 1220.76, + "end": 1226.18, + "probability": 0.9875 + }, + { + "start": 1226.74, + "end": 1231.02, + "probability": 0.8377 + }, + { + "start": 1231.46, + "end": 1232.36, + "probability": 0.8162 + }, + { + "start": 1232.8, + "end": 1234.18, + "probability": 0.9448 + }, + { + "start": 1234.34, + "end": 1236.38, + "probability": 0.7736 + }, + { + "start": 1237.02, + "end": 1239.24, + "probability": 0.9379 + }, + { + "start": 1239.66, + "end": 1241.7, + "probability": 0.6656 + }, + { + "start": 1241.9, + "end": 1245.1, + "probability": 0.9191 + }, + { + "start": 1245.18, + "end": 1245.76, + "probability": 0.6817 + }, + { + "start": 1245.94, + "end": 1246.4, + "probability": 0.3152 + }, + { + "start": 1246.7, + "end": 1248.34, + "probability": 0.9971 + }, + { + "start": 1249.36, + "end": 1252.54, + "probability": 0.998 + }, + { + "start": 1252.7, + "end": 1257.5, + "probability": 0.9878 + }, + { + "start": 1257.74, + "end": 1257.92, + "probability": 0.4285 + }, + { + "start": 1257.98, + "end": 1260.38, + "probability": 0.8855 + }, + { + "start": 1260.86, + "end": 1263.32, + "probability": 0.9215 + }, + { + "start": 1263.32, + "end": 1264.36, + "probability": 0.9526 + }, + { + "start": 1264.54, + "end": 1266.96, + "probability": 0.9874 + }, + { + "start": 1267.42, + "end": 1269.34, + "probability": 0.5279 + }, + { + "start": 1269.64, + "end": 1270.92, + "probability": 0.8877 + }, + { + "start": 1271.02, + "end": 1271.44, + "probability": 0.6585 + }, + { + "start": 1271.5, + "end": 1271.82, + "probability": 0.7692 + }, + { + "start": 1271.84, + "end": 1272.64, + "probability": 0.6497 + }, + { + "start": 1272.68, + "end": 1275.16, + "probability": 0.9418 + }, + { + "start": 1277.64, + "end": 1278.8, + "probability": 0.8184 + }, + { + "start": 1279.84, + "end": 1283.25, + "probability": 0.9006 + }, + { + "start": 1284.26, + "end": 1285.7, + "probability": 0.9674 + }, + { + "start": 1286.36, + "end": 1289.9, + "probability": 0.9821 + }, + { + "start": 1291.12, + "end": 1293.56, + "probability": 0.9897 + }, + { + "start": 1294.52, + "end": 1297.5, + "probability": 0.9644 + }, + { + "start": 1298.32, + "end": 1299.38, + "probability": 0.7707 + }, + { + "start": 1299.46, + "end": 1303.22, + "probability": 0.9456 + }, + { + "start": 1303.7, + "end": 1304.82, + "probability": 0.9174 + }, + { + "start": 1306.3, + "end": 1307.88, + "probability": 0.8037 + }, + { + "start": 1308.04, + "end": 1312.76, + "probability": 0.9636 + }, + { + "start": 1313.42, + "end": 1315.08, + "probability": 0.564 + }, + { + "start": 1315.9, + "end": 1318.78, + "probability": 0.976 + }, + { + "start": 1319.42, + "end": 1319.56, + "probability": 0.3451 + }, + { + "start": 1320.04, + "end": 1321.66, + "probability": 0.758 + }, + { + "start": 1321.88, + "end": 1328.22, + "probability": 0.5897 + }, + { + "start": 1329.0, + "end": 1332.94, + "probability": 0.9948 + }, + { + "start": 1333.17, + "end": 1337.08, + "probability": 0.953 + }, + { + "start": 1337.14, + "end": 1341.78, + "probability": 0.9769 + }, + { + "start": 1342.56, + "end": 1348.66, + "probability": 0.8667 + }, + { + "start": 1348.92, + "end": 1348.92, + "probability": 0.5594 + }, + { + "start": 1349.06, + "end": 1352.6, + "probability": 0.9619 + }, + { + "start": 1354.28, + "end": 1358.86, + "probability": 0.75 + }, + { + "start": 1359.02, + "end": 1359.24, + "probability": 0.7 + }, + { + "start": 1359.34, + "end": 1360.26, + "probability": 0.5975 + }, + { + "start": 1360.44, + "end": 1366.01, + "probability": 0.9883 + }, + { + "start": 1366.52, + "end": 1367.22, + "probability": 0.9183 + }, + { + "start": 1367.66, + "end": 1367.92, + "probability": 0.7987 + }, + { + "start": 1368.02, + "end": 1369.28, + "probability": 0.7829 + }, + { + "start": 1370.46, + "end": 1372.96, + "probability": 0.704 + }, + { + "start": 1373.6, + "end": 1377.54, + "probability": 0.6395 + }, + { + "start": 1381.72, + "end": 1385.94, + "probability": 0.8309 + }, + { + "start": 1386.14, + "end": 1386.68, + "probability": 0.9111 + }, + { + "start": 1386.98, + "end": 1388.52, + "probability": 0.9462 + }, + { + "start": 1389.92, + "end": 1392.66, + "probability": 0.8442 + }, + { + "start": 1392.88, + "end": 1392.92, + "probability": 0.0107 + }, + { + "start": 1393.62, + "end": 1396.76, + "probability": 0.9473 + }, + { + "start": 1397.8, + "end": 1399.92, + "probability": 0.9673 + }, + { + "start": 1401.26, + "end": 1402.38, + "probability": 0.8127 + }, + { + "start": 1404.24, + "end": 1406.76, + "probability": 0.9937 + }, + { + "start": 1408.04, + "end": 1410.02, + "probability": 0.7945 + }, + { + "start": 1410.7, + "end": 1412.12, + "probability": 0.9438 + }, + { + "start": 1413.46, + "end": 1414.1, + "probability": 0.8518 + }, + { + "start": 1414.66, + "end": 1416.04, + "probability": 0.8961 + }, + { + "start": 1416.8, + "end": 1417.88, + "probability": 0.9535 + }, + { + "start": 1418.92, + "end": 1421.5, + "probability": 0.9924 + }, + { + "start": 1422.48, + "end": 1425.16, + "probability": 0.9959 + }, + { + "start": 1426.38, + "end": 1428.96, + "probability": 0.9719 + }, + { + "start": 1430.1, + "end": 1432.68, + "probability": 0.8452 + }, + { + "start": 1433.44, + "end": 1434.64, + "probability": 0.9956 + }, + { + "start": 1435.64, + "end": 1438.34, + "probability": 0.9945 + }, + { + "start": 1438.94, + "end": 1440.48, + "probability": 0.8866 + }, + { + "start": 1441.5, + "end": 1443.08, + "probability": 0.9985 + }, + { + "start": 1443.72, + "end": 1449.94, + "probability": 0.9905 + }, + { + "start": 1451.06, + "end": 1454.94, + "probability": 0.9844 + }, + { + "start": 1456.02, + "end": 1459.16, + "probability": 0.7651 + }, + { + "start": 1460.2, + "end": 1463.18, + "probability": 0.9927 + }, + { + "start": 1464.02, + "end": 1465.28, + "probability": 0.6681 + }, + { + "start": 1466.18, + "end": 1468.24, + "probability": 0.7778 + }, + { + "start": 1468.98, + "end": 1470.96, + "probability": 0.9317 + }, + { + "start": 1472.18, + "end": 1474.2, + "probability": 0.8689 + }, + { + "start": 1474.92, + "end": 1477.62, + "probability": 0.5745 + }, + { + "start": 1477.82, + "end": 1479.78, + "probability": 0.6266 + }, + { + "start": 1479.82, + "end": 1481.34, + "probability": 0.9128 + }, + { + "start": 1483.64, + "end": 1484.7, + "probability": 0.4521 + }, + { + "start": 1486.6, + "end": 1490.16, + "probability": 0.62 + }, + { + "start": 1490.38, + "end": 1491.74, + "probability": 0.9408 + }, + { + "start": 1493.14, + "end": 1495.08, + "probability": 0.8682 + }, + { + "start": 1495.76, + "end": 1498.86, + "probability": 0.9678 + }, + { + "start": 1500.42, + "end": 1504.38, + "probability": 0.9954 + }, + { + "start": 1505.04, + "end": 1510.22, + "probability": 0.9824 + }, + { + "start": 1512.18, + "end": 1515.54, + "probability": 0.7176 + }, + { + "start": 1516.04, + "end": 1517.76, + "probability": 0.7938 + }, + { + "start": 1518.84, + "end": 1520.56, + "probability": 0.9268 + }, + { + "start": 1522.14, + "end": 1526.82, + "probability": 0.9678 + }, + { + "start": 1527.24, + "end": 1528.0, + "probability": 0.6763 + }, + { + "start": 1528.76, + "end": 1529.68, + "probability": 0.5783 + }, + { + "start": 1529.74, + "end": 1536.2, + "probability": 0.8781 + }, + { + "start": 1536.28, + "end": 1538.12, + "probability": 0.9481 + }, + { + "start": 1540.5, + "end": 1544.32, + "probability": 0.9341 + }, + { + "start": 1545.74, + "end": 1547.1, + "probability": 0.6652 + }, + { + "start": 1548.12, + "end": 1549.6, + "probability": 0.841 + }, + { + "start": 1550.0, + "end": 1550.82, + "probability": 0.3485 + }, + { + "start": 1550.88, + "end": 1551.36, + "probability": 0.792 + }, + { + "start": 1552.96, + "end": 1555.58, + "probability": 0.9657 + }, + { + "start": 1555.72, + "end": 1559.9, + "probability": 0.6958 + }, + { + "start": 1560.66, + "end": 1565.18, + "probability": 0.9328 + }, + { + "start": 1566.6, + "end": 1569.54, + "probability": 0.8259 + }, + { + "start": 1569.9, + "end": 1570.76, + "probability": 0.9021 + }, + { + "start": 1570.82, + "end": 1571.6, + "probability": 0.9659 + }, + { + "start": 1571.92, + "end": 1575.36, + "probability": 0.9706 + }, + { + "start": 1576.28, + "end": 1577.18, + "probability": 0.9827 + }, + { + "start": 1578.92, + "end": 1581.19, + "probability": 0.9902 + }, + { + "start": 1582.2, + "end": 1584.62, + "probability": 0.5242 + }, + { + "start": 1585.18, + "end": 1585.81, + "probability": 0.4857 + }, + { + "start": 1586.32, + "end": 1593.82, + "probability": 0.8758 + }, + { + "start": 1594.1, + "end": 1594.62, + "probability": 0.7161 + }, + { + "start": 1596.32, + "end": 1599.84, + "probability": 0.7871 + }, + { + "start": 1600.58, + "end": 1603.12, + "probability": 0.8098 + }, + { + "start": 1604.44, + "end": 1605.34, + "probability": 0.8459 + }, + { + "start": 1606.1, + "end": 1607.86, + "probability": 0.8085 + }, + { + "start": 1608.14, + "end": 1613.4, + "probability": 0.9744 + }, + { + "start": 1613.94, + "end": 1617.58, + "probability": 0.9903 + }, + { + "start": 1617.64, + "end": 1618.38, + "probability": 0.7698 + }, + { + "start": 1618.94, + "end": 1620.4, + "probability": 0.9553 + }, + { + "start": 1621.14, + "end": 1622.78, + "probability": 0.5221 + }, + { + "start": 1622.86, + "end": 1623.66, + "probability": 0.625 + }, + { + "start": 1623.68, + "end": 1623.68, + "probability": 0.3196 + }, + { + "start": 1623.68, + "end": 1624.82, + "probability": 0.8448 + }, + { + "start": 1625.48, + "end": 1629.2, + "probability": 0.9767 + }, + { + "start": 1629.34, + "end": 1630.3, + "probability": 0.8911 + }, + { + "start": 1630.54, + "end": 1630.96, + "probability": 0.8915 + }, + { + "start": 1630.98, + "end": 1632.82, + "probability": 0.6699 + }, + { + "start": 1632.88, + "end": 1633.18, + "probability": 0.7692 + }, + { + "start": 1633.28, + "end": 1635.28, + "probability": 0.7701 + }, + { + "start": 1636.14, + "end": 1636.5, + "probability": 0.7267 + }, + { + "start": 1636.56, + "end": 1636.88, + "probability": 0.8577 + }, + { + "start": 1636.92, + "end": 1638.9, + "probability": 0.7838 + }, + { + "start": 1639.38, + "end": 1640.58, + "probability": 0.9346 + }, + { + "start": 1640.78, + "end": 1642.06, + "probability": 0.9856 + }, + { + "start": 1642.1, + "end": 1643.55, + "probability": 0.985 + }, + { + "start": 1644.34, + "end": 1644.88, + "probability": 0.818 + }, + { + "start": 1645.54, + "end": 1647.98, + "probability": 0.6677 + }, + { + "start": 1648.16, + "end": 1648.38, + "probability": 0.3684 + }, + { + "start": 1648.42, + "end": 1648.78, + "probability": 0.8261 + }, + { + "start": 1648.82, + "end": 1650.9, + "probability": 0.794 + }, + { + "start": 1651.22, + "end": 1653.7, + "probability": 0.9523 + }, + { + "start": 1654.92, + "end": 1660.84, + "probability": 0.9907 + }, + { + "start": 1660.84, + "end": 1661.98, + "probability": 0.438 + }, + { + "start": 1662.2, + "end": 1664.44, + "probability": 0.9943 + }, + { + "start": 1664.82, + "end": 1668.52, + "probability": 0.6792 + }, + { + "start": 1668.94, + "end": 1672.68, + "probability": 0.9425 + }, + { + "start": 1672.74, + "end": 1673.5, + "probability": 0.6267 + }, + { + "start": 1673.52, + "end": 1674.24, + "probability": 0.8005 + }, + { + "start": 1674.52, + "end": 1674.8, + "probability": 0.2745 + }, + { + "start": 1674.9, + "end": 1675.94, + "probability": 0.7559 + }, + { + "start": 1676.44, + "end": 1677.34, + "probability": 0.6612 + }, + { + "start": 1677.5, + "end": 1678.72, + "probability": 0.8467 + }, + { + "start": 1678.86, + "end": 1678.98, + "probability": 0.6357 + }, + { + "start": 1679.26, + "end": 1683.26, + "probability": 0.9876 + }, + { + "start": 1683.34, + "end": 1683.76, + "probability": 0.9393 + }, + { + "start": 1684.2, + "end": 1686.38, + "probability": 0.8328 + }, + { + "start": 1686.48, + "end": 1689.06, + "probability": 0.6116 + }, + { + "start": 1689.69, + "end": 1692.68, + "probability": 0.938 + }, + { + "start": 1693.64, + "end": 1694.5, + "probability": 0.5644 + }, + { + "start": 1694.58, + "end": 1695.7, + "probability": 0.889 + }, + { + "start": 1695.92, + "end": 1696.56, + "probability": 0.426 + }, + { + "start": 1696.7, + "end": 1698.72, + "probability": 0.4767 + }, + { + "start": 1698.78, + "end": 1700.52, + "probability": 0.9327 + }, + { + "start": 1701.26, + "end": 1706.34, + "probability": 0.9271 + }, + { + "start": 1707.06, + "end": 1708.1, + "probability": 0.7893 + }, + { + "start": 1708.82, + "end": 1711.42, + "probability": 0.7497 + }, + { + "start": 1712.1, + "end": 1713.7, + "probability": 0.6361 + }, + { + "start": 1714.26, + "end": 1716.34, + "probability": 0.9021 + }, + { + "start": 1717.08, + "end": 1718.32, + "probability": 0.888 + }, + { + "start": 1719.74, + "end": 1724.28, + "probability": 0.9637 + }, + { + "start": 1725.38, + "end": 1726.14, + "probability": 0.5205 + }, + { + "start": 1726.24, + "end": 1729.62, + "probability": 0.9493 + }, + { + "start": 1729.76, + "end": 1730.08, + "probability": 0.3586 + }, + { + "start": 1730.28, + "end": 1732.84, + "probability": 0.9772 + }, + { + "start": 1733.16, + "end": 1734.22, + "probability": 0.9651 + }, + { + "start": 1734.94, + "end": 1736.5, + "probability": 0.7742 + }, + { + "start": 1737.02, + "end": 1744.88, + "probability": 0.7281 + }, + { + "start": 1744.88, + "end": 1746.32, + "probability": 0.4823 + }, + { + "start": 1746.52, + "end": 1747.22, + "probability": 0.7169 + }, + { + "start": 1747.82, + "end": 1749.2, + "probability": 0.764 + }, + { + "start": 1749.86, + "end": 1755.64, + "probability": 0.691 + }, + { + "start": 1755.74, + "end": 1756.88, + "probability": 0.558 + }, + { + "start": 1756.98, + "end": 1762.84, + "probability": 0.8885 + }, + { + "start": 1763.26, + "end": 1765.0, + "probability": 0.6131 + }, + { + "start": 1765.12, + "end": 1766.34, + "probability": 0.7226 + }, + { + "start": 1766.48, + "end": 1766.86, + "probability": 0.4383 + }, + { + "start": 1767.04, + "end": 1768.9, + "probability": 0.5058 + }, + { + "start": 1768.96, + "end": 1770.58, + "probability": 0.0617 + }, + { + "start": 1771.36, + "end": 1776.28, + "probability": 0.9393 + }, + { + "start": 1776.5, + "end": 1776.58, + "probability": 0.0527 + }, + { + "start": 1776.68, + "end": 1777.82, + "probability": 0.737 + }, + { + "start": 1777.9, + "end": 1778.92, + "probability": 0.7421 + }, + { + "start": 1779.18, + "end": 1780.08, + "probability": 0.4331 + }, + { + "start": 1780.14, + "end": 1784.74, + "probability": 0.8137 + }, + { + "start": 1785.24, + "end": 1788.2, + "probability": 0.8818 + }, + { + "start": 1788.32, + "end": 1788.96, + "probability": 0.6943 + }, + { + "start": 1789.02, + "end": 1790.14, + "probability": 0.9524 + }, + { + "start": 1790.3, + "end": 1791.0, + "probability": 0.5506 + }, + { + "start": 1791.02, + "end": 1791.92, + "probability": 0.7588 + }, + { + "start": 1792.26, + "end": 1793.7, + "probability": 0.7249 + }, + { + "start": 1793.72, + "end": 1794.62, + "probability": 0.9503 + }, + { + "start": 1794.76, + "end": 1795.44, + "probability": 0.9566 + }, + { + "start": 1795.6, + "end": 1798.36, + "probability": 0.8247 + }, + { + "start": 1798.36, + "end": 1799.88, + "probability": 0.9365 + }, + { + "start": 1800.22, + "end": 1801.94, + "probability": 0.9608 + }, + { + "start": 1802.14, + "end": 1802.58, + "probability": 0.9191 + }, + { + "start": 1803.14, + "end": 1804.42, + "probability": 0.3215 + }, + { + "start": 1804.6, + "end": 1808.86, + "probability": 0.9424 + }, + { + "start": 1808.92, + "end": 1809.16, + "probability": 0.9106 + }, + { + "start": 1809.56, + "end": 1812.88, + "probability": 0.9312 + }, + { + "start": 1813.28, + "end": 1815.34, + "probability": 0.6695 + }, + { + "start": 1815.36, + "end": 1817.38, + "probability": 0.8166 + }, + { + "start": 1817.84, + "end": 1820.78, + "probability": 0.8353 + }, + { + "start": 1821.88, + "end": 1824.16, + "probability": 0.9829 + }, + { + "start": 1824.66, + "end": 1825.14, + "probability": 0.5883 + }, + { + "start": 1825.4, + "end": 1826.36, + "probability": 0.8599 + }, + { + "start": 1826.68, + "end": 1827.14, + "probability": 0.6688 + }, + { + "start": 1828.1, + "end": 1828.9, + "probability": 0.945 + }, + { + "start": 1829.46, + "end": 1830.3, + "probability": 0.8326 + }, + { + "start": 1831.54, + "end": 1833.02, + "probability": 0.9495 + }, + { + "start": 1834.0, + "end": 1837.62, + "probability": 0.9555 + }, + { + "start": 1839.24, + "end": 1840.36, + "probability": 0.6216 + }, + { + "start": 1840.86, + "end": 1842.7, + "probability": 0.8871 + }, + { + "start": 1843.58, + "end": 1845.58, + "probability": 0.9583 + }, + { + "start": 1845.68, + "end": 1846.52, + "probability": 0.9917 + }, + { + "start": 1846.58, + "end": 1847.48, + "probability": 0.7979 + }, + { + "start": 1847.96, + "end": 1851.0, + "probability": 0.9377 + }, + { + "start": 1852.3, + "end": 1854.3, + "probability": 0.9688 + }, + { + "start": 1855.32, + "end": 1855.93, + "probability": 0.421 + }, + { + "start": 1856.28, + "end": 1862.62, + "probability": 0.9338 + }, + { + "start": 1862.96, + "end": 1864.28, + "probability": 0.7782 + }, + { + "start": 1864.36, + "end": 1865.2, + "probability": 0.9436 + }, + { + "start": 1865.4, + "end": 1870.3, + "probability": 0.8276 + }, + { + "start": 1870.42, + "end": 1871.46, + "probability": 0.8779 + }, + { + "start": 1872.26, + "end": 1874.74, + "probability": 0.9761 + }, + { + "start": 1875.36, + "end": 1878.08, + "probability": 0.6787 + }, + { + "start": 1878.08, + "end": 1879.7, + "probability": 0.74 + }, + { + "start": 1885.26, + "end": 1886.3, + "probability": 0.5056 + }, + { + "start": 1886.66, + "end": 1888.18, + "probability": 0.8728 + }, + { + "start": 1889.0, + "end": 1892.06, + "probability": 0.9636 + }, + { + "start": 1892.06, + "end": 1895.36, + "probability": 0.9587 + }, + { + "start": 1896.1, + "end": 1900.1, + "probability": 0.9935 + }, + { + "start": 1900.68, + "end": 1905.84, + "probability": 0.9277 + }, + { + "start": 1906.46, + "end": 1909.32, + "probability": 0.8031 + }, + { + "start": 1909.5, + "end": 1909.72, + "probability": 0.5681 + }, + { + "start": 1910.08, + "end": 1911.22, + "probability": 0.895 + }, + { + "start": 1911.26, + "end": 1912.6, + "probability": 0.9464 + }, + { + "start": 1913.22, + "end": 1914.08, + "probability": 0.9025 + }, + { + "start": 1914.32, + "end": 1918.26, + "probability": 0.9882 + }, + { + "start": 1918.76, + "end": 1923.3, + "probability": 0.9718 + }, + { + "start": 1923.76, + "end": 1924.28, + "probability": 0.9219 + }, + { + "start": 1925.04, + "end": 1928.38, + "probability": 0.9701 + }, + { + "start": 1929.4, + "end": 1933.54, + "probability": 0.9768 + }, + { + "start": 1933.54, + "end": 1938.66, + "probability": 0.9981 + }, + { + "start": 1938.8, + "end": 1940.52, + "probability": 0.9458 + }, + { + "start": 1940.94, + "end": 1941.92, + "probability": 0.8255 + }, + { + "start": 1942.2, + "end": 1945.86, + "probability": 0.978 + }, + { + "start": 1945.86, + "end": 1948.98, + "probability": 0.9916 + }, + { + "start": 1949.4, + "end": 1950.7, + "probability": 0.7065 + }, + { + "start": 1951.3, + "end": 1956.24, + "probability": 0.9899 + }, + { + "start": 1956.56, + "end": 1957.2, + "probability": 0.7515 + }, + { + "start": 1957.48, + "end": 1958.8, + "probability": 0.999 + }, + { + "start": 1959.12, + "end": 1962.34, + "probability": 0.9885 + }, + { + "start": 1962.62, + "end": 1964.2, + "probability": 0.9597 + }, + { + "start": 1964.26, + "end": 1966.5, + "probability": 0.9867 + }, + { + "start": 1967.02, + "end": 1969.24, + "probability": 0.9954 + }, + { + "start": 1969.24, + "end": 1972.56, + "probability": 0.9882 + }, + { + "start": 1972.98, + "end": 1973.76, + "probability": 0.8789 + }, + { + "start": 1974.08, + "end": 1974.88, + "probability": 0.7885 + }, + { + "start": 1975.24, + "end": 1978.96, + "probability": 0.9398 + }, + { + "start": 1979.28, + "end": 1980.34, + "probability": 0.7662 + }, + { + "start": 1980.52, + "end": 1980.74, + "probability": 0.8189 + }, + { + "start": 1982.6, + "end": 1985.08, + "probability": 0.6556 + }, + { + "start": 1985.1, + "end": 1987.1, + "probability": 0.6929 + }, + { + "start": 1994.9, + "end": 1997.76, + "probability": 0.4561 + }, + { + "start": 1997.98, + "end": 1997.98, + "probability": 0.7697 + }, + { + "start": 1997.98, + "end": 2000.78, + "probability": 0.8397 + }, + { + "start": 2001.52, + "end": 2009.46, + "probability": 0.9875 + }, + { + "start": 2009.46, + "end": 2017.5, + "probability": 0.9582 + }, + { + "start": 2017.98, + "end": 2019.02, + "probability": 0.4863 + }, + { + "start": 2019.58, + "end": 2021.26, + "probability": 0.8643 + }, + { + "start": 2022.64, + "end": 2025.12, + "probability": 0.9881 + }, + { + "start": 2025.64, + "end": 2030.22, + "probability": 0.8833 + }, + { + "start": 2031.26, + "end": 2032.92, + "probability": 0.9659 + }, + { + "start": 2033.58, + "end": 2034.9, + "probability": 0.6346 + }, + { + "start": 2035.86, + "end": 2039.2, + "probability": 0.9971 + }, + { + "start": 2040.46, + "end": 2044.94, + "probability": 0.9894 + }, + { + "start": 2044.94, + "end": 2050.36, + "probability": 0.992 + }, + { + "start": 2050.8, + "end": 2054.98, + "probability": 0.9981 + }, + { + "start": 2055.74, + "end": 2059.74, + "probability": 0.9695 + }, + { + "start": 2060.24, + "end": 2061.54, + "probability": 0.7429 + }, + { + "start": 2062.06, + "end": 2064.4, + "probability": 0.9802 + }, + { + "start": 2064.74, + "end": 2065.94, + "probability": 0.9638 + }, + { + "start": 2066.44, + "end": 2068.08, + "probability": 0.9034 + }, + { + "start": 2068.72, + "end": 2070.72, + "probability": 0.9023 + }, + { + "start": 2071.26, + "end": 2076.18, + "probability": 0.9476 + }, + { + "start": 2076.82, + "end": 2076.82, + "probability": 0.5347 + }, + { + "start": 2076.82, + "end": 2079.14, + "probability": 0.8142 + }, + { + "start": 2079.14, + "end": 2080.34, + "probability": 0.8514 + }, + { + "start": 2080.86, + "end": 2085.38, + "probability": 0.9951 + }, + { + "start": 2086.18, + "end": 2088.72, + "probability": 0.994 + }, + { + "start": 2089.08, + "end": 2091.38, + "probability": 0.9119 + }, + { + "start": 2091.76, + "end": 2093.55, + "probability": 0.4699 + }, + { + "start": 2093.94, + "end": 2098.12, + "probability": 0.6122 + }, + { + "start": 2103.82, + "end": 2106.76, + "probability": 0.8638 + }, + { + "start": 2110.6, + "end": 2111.78, + "probability": 0.5688 + }, + { + "start": 2114.4, + "end": 2116.82, + "probability": 0.9974 + }, + { + "start": 2117.0, + "end": 2119.7, + "probability": 0.9809 + }, + { + "start": 2120.48, + "end": 2123.46, + "probability": 0.9866 + }, + { + "start": 2124.06, + "end": 2125.94, + "probability": 0.9844 + }, + { + "start": 2126.44, + "end": 2134.28, + "probability": 0.9641 + }, + { + "start": 2135.16, + "end": 2139.38, + "probability": 0.8605 + }, + { + "start": 2139.52, + "end": 2141.94, + "probability": 0.9663 + }, + { + "start": 2142.58, + "end": 2144.94, + "probability": 0.966 + }, + { + "start": 2145.88, + "end": 2148.76, + "probability": 0.6311 + }, + { + "start": 2149.4, + "end": 2149.86, + "probability": 0.53 + }, + { + "start": 2150.02, + "end": 2155.36, + "probability": 0.9921 + }, + { + "start": 2155.46, + "end": 2157.12, + "probability": 0.9135 + }, + { + "start": 2157.82, + "end": 2158.86, + "probability": 0.94 + }, + { + "start": 2159.52, + "end": 2160.86, + "probability": 0.7194 + }, + { + "start": 2161.34, + "end": 2162.1, + "probability": 0.2756 + }, + { + "start": 2162.26, + "end": 2162.8, + "probability": 0.8114 + }, + { + "start": 2163.02, + "end": 2167.74, + "probability": 0.9568 + }, + { + "start": 2168.96, + "end": 2170.08, + "probability": 0.9459 + }, + { + "start": 2170.68, + "end": 2171.04, + "probability": 0.7744 + }, + { + "start": 2171.85, + "end": 2178.32, + "probability": 0.7694 + }, + { + "start": 2178.78, + "end": 2179.12, + "probability": 0.4786 + }, + { + "start": 2179.28, + "end": 2180.42, + "probability": 0.762 + }, + { + "start": 2180.92, + "end": 2185.98, + "probability": 0.9926 + }, + { + "start": 2186.9, + "end": 2187.66, + "probability": 0.681 + }, + { + "start": 2187.88, + "end": 2189.94, + "probability": 0.9324 + }, + { + "start": 2190.2, + "end": 2191.12, + "probability": 0.784 + }, + { + "start": 2191.32, + "end": 2192.5, + "probability": 0.9755 + }, + { + "start": 2192.92, + "end": 2193.42, + "probability": 0.7617 + }, + { + "start": 2194.2, + "end": 2196.74, + "probability": 0.9893 + }, + { + "start": 2197.14, + "end": 2201.82, + "probability": 0.9965 + }, + { + "start": 2201.82, + "end": 2205.14, + "probability": 0.9964 + }, + { + "start": 2205.44, + "end": 2207.08, + "probability": 0.9971 + }, + { + "start": 2207.46, + "end": 2209.16, + "probability": 0.9971 + }, + { + "start": 2209.66, + "end": 2210.26, + "probability": 0.6964 + }, + { + "start": 2210.98, + "end": 2212.9, + "probability": 0.9607 + }, + { + "start": 2213.68, + "end": 2214.26, + "probability": 0.9692 + }, + { + "start": 2215.5, + "end": 2215.76, + "probability": 0.4582 + }, + { + "start": 2216.34, + "end": 2219.32, + "probability": 0.8947 + }, + { + "start": 2219.9, + "end": 2221.6, + "probability": 0.9766 + }, + { + "start": 2222.08, + "end": 2226.74, + "probability": 0.9855 + }, + { + "start": 2227.34, + "end": 2228.98, + "probability": 0.6497 + }, + { + "start": 2229.42, + "end": 2232.94, + "probability": 0.909 + }, + { + "start": 2232.94, + "end": 2237.58, + "probability": 0.9667 + }, + { + "start": 2237.58, + "end": 2240.76, + "probability": 0.8581 + }, + { + "start": 2241.28, + "end": 2244.18, + "probability": 0.7763 + }, + { + "start": 2244.82, + "end": 2248.3, + "probability": 0.7739 + }, + { + "start": 2253.9, + "end": 2255.86, + "probability": 0.7941 + }, + { + "start": 2256.58, + "end": 2257.58, + "probability": 0.7067 + }, + { + "start": 2257.72, + "end": 2259.6, + "probability": 0.7792 + }, + { + "start": 2259.76, + "end": 2264.14, + "probability": 0.9832 + }, + { + "start": 2265.76, + "end": 2269.42, + "probability": 0.9535 + }, + { + "start": 2269.66, + "end": 2270.66, + "probability": 0.9204 + }, + { + "start": 2272.04, + "end": 2274.2, + "probability": 0.9235 + }, + { + "start": 2274.24, + "end": 2278.94, + "probability": 0.9716 + }, + { + "start": 2279.0, + "end": 2284.3, + "probability": 0.9954 + }, + { + "start": 2285.1, + "end": 2287.18, + "probability": 0.9921 + }, + { + "start": 2287.18, + "end": 2287.76, + "probability": 0.15 + }, + { + "start": 2288.06, + "end": 2288.88, + "probability": 0.5789 + }, + { + "start": 2288.94, + "end": 2290.8, + "probability": 0.8595 + }, + { + "start": 2291.66, + "end": 2292.1, + "probability": 0.7929 + }, + { + "start": 2292.78, + "end": 2293.66, + "probability": 0.8761 + }, + { + "start": 2294.3, + "end": 2300.02, + "probability": 0.932 + }, + { + "start": 2300.1, + "end": 2301.64, + "probability": 0.9242 + }, + { + "start": 2302.06, + "end": 2304.62, + "probability": 0.9587 + }, + { + "start": 2305.26, + "end": 2308.62, + "probability": 0.915 + }, + { + "start": 2308.7, + "end": 2313.38, + "probability": 0.9868 + }, + { + "start": 2313.74, + "end": 2315.06, + "probability": 0.6948 + }, + { + "start": 2315.66, + "end": 2321.08, + "probability": 0.9938 + }, + { + "start": 2322.02, + "end": 2324.38, + "probability": 0.6992 + }, + { + "start": 2325.8, + "end": 2326.4, + "probability": 0.4834 + }, + { + "start": 2327.56, + "end": 2328.47, + "probability": 0.8374 + }, + { + "start": 2330.7, + "end": 2331.56, + "probability": 0.9164 + }, + { + "start": 2332.36, + "end": 2340.44, + "probability": 0.8257 + }, + { + "start": 2340.92, + "end": 2344.06, + "probability": 0.8689 + }, + { + "start": 2345.4, + "end": 2346.02, + "probability": 0.7274 + }, + { + "start": 2347.04, + "end": 2349.76, + "probability": 0.7188 + }, + { + "start": 2350.94, + "end": 2354.56, + "probability": 0.8713 + }, + { + "start": 2355.34, + "end": 2357.36, + "probability": 0.9601 + }, + { + "start": 2358.3, + "end": 2360.38, + "probability": 0.8779 + }, + { + "start": 2361.1, + "end": 2363.2, + "probability": 0.9684 + }, + { + "start": 2363.74, + "end": 2368.68, + "probability": 0.9418 + }, + { + "start": 2369.48, + "end": 2370.11, + "probability": 0.8848 + }, + { + "start": 2370.3, + "end": 2370.92, + "probability": 0.6013 + }, + { + "start": 2370.98, + "end": 2375.22, + "probability": 0.7201 + }, + { + "start": 2375.28, + "end": 2380.98, + "probability": 0.7303 + }, + { + "start": 2380.98, + "end": 2386.48, + "probability": 0.9893 + }, + { + "start": 2387.38, + "end": 2388.74, + "probability": 0.9673 + }, + { + "start": 2388.88, + "end": 2391.12, + "probability": 0.8696 + }, + { + "start": 2391.64, + "end": 2392.26, + "probability": 0.5564 + }, + { + "start": 2392.7, + "end": 2393.38, + "probability": 0.0966 + }, + { + "start": 2393.72, + "end": 2396.92, + "probability": 0.7991 + }, + { + "start": 2398.22, + "end": 2402.84, + "probability": 0.848 + }, + { + "start": 2410.2, + "end": 2410.2, + "probability": 0.0472 + }, + { + "start": 2410.2, + "end": 2411.68, + "probability": 0.8076 + }, + { + "start": 2412.6, + "end": 2413.8, + "probability": 0.8616 + }, + { + "start": 2417.1, + "end": 2419.6, + "probability": 0.986 + }, + { + "start": 2419.6, + "end": 2422.48, + "probability": 0.9986 + }, + { + "start": 2422.56, + "end": 2423.8, + "probability": 0.8778 + }, + { + "start": 2425.07, + "end": 2428.44, + "probability": 0.9883 + }, + { + "start": 2429.12, + "end": 2431.92, + "probability": 0.9971 + }, + { + "start": 2432.12, + "end": 2433.42, + "probability": 0.9313 + }, + { + "start": 2433.7, + "end": 2436.3, + "probability": 0.9891 + }, + { + "start": 2437.06, + "end": 2439.02, + "probability": 0.7468 + }, + { + "start": 2439.34, + "end": 2445.4, + "probability": 0.7895 + }, + { + "start": 2445.4, + "end": 2447.76, + "probability": 0.7719 + }, + { + "start": 2447.9, + "end": 2450.66, + "probability": 0.9846 + }, + { + "start": 2451.44, + "end": 2452.56, + "probability": 0.823 + }, + { + "start": 2452.72, + "end": 2458.46, + "probability": 0.9303 + }, + { + "start": 2458.52, + "end": 2459.74, + "probability": 0.8868 + }, + { + "start": 2460.4, + "end": 2461.68, + "probability": 0.9216 + }, + { + "start": 2462.02, + "end": 2464.36, + "probability": 0.9416 + }, + { + "start": 2464.78, + "end": 2465.86, + "probability": 0.8251 + }, + { + "start": 2466.72, + "end": 2467.12, + "probability": 0.8149 + }, + { + "start": 2467.72, + "end": 2471.34, + "probability": 0.9316 + }, + { + "start": 2471.34, + "end": 2475.14, + "probability": 0.8694 + }, + { + "start": 2475.18, + "end": 2475.76, + "probability": 0.8394 + }, + { + "start": 2475.86, + "end": 2478.34, + "probability": 0.9929 + }, + { + "start": 2478.62, + "end": 2481.28, + "probability": 0.9937 + }, + { + "start": 2481.28, + "end": 2484.16, + "probability": 0.9385 + }, + { + "start": 2484.46, + "end": 2488.7, + "probability": 0.9982 + }, + { + "start": 2488.7, + "end": 2493.78, + "probability": 0.9139 + }, + { + "start": 2493.96, + "end": 2496.7, + "probability": 0.9398 + }, + { + "start": 2496.7, + "end": 2499.8, + "probability": 0.999 + }, + { + "start": 2499.92, + "end": 2500.83, + "probability": 0.8231 + }, + { + "start": 2501.16, + "end": 2504.46, + "probability": 0.7537 + }, + { + "start": 2504.52, + "end": 2505.6, + "probability": 0.9303 + }, + { + "start": 2505.66, + "end": 2507.02, + "probability": 0.9891 + }, + { + "start": 2507.3, + "end": 2509.12, + "probability": 0.9883 + }, + { + "start": 2509.4, + "end": 2509.6, + "probability": 0.5369 + }, + { + "start": 2509.72, + "end": 2512.4, + "probability": 0.7119 + }, + { + "start": 2512.54, + "end": 2514.82, + "probability": 0.8532 + }, + { + "start": 2515.38, + "end": 2517.38, + "probability": 0.7415 + }, + { + "start": 2521.62, + "end": 2523.34, + "probability": 0.6116 + }, + { + "start": 2524.2, + "end": 2529.46, + "probability": 0.9103 + }, + { + "start": 2531.54, + "end": 2536.5, + "probability": 0.7226 + }, + { + "start": 2537.46, + "end": 2540.26, + "probability": 0.947 + }, + { + "start": 2541.9, + "end": 2542.98, + "probability": 0.8987 + }, + { + "start": 2543.58, + "end": 2546.78, + "probability": 0.8461 + }, + { + "start": 2547.36, + "end": 2550.9, + "probability": 0.9859 + }, + { + "start": 2551.58, + "end": 2551.98, + "probability": 0.8047 + }, + { + "start": 2552.8, + "end": 2553.0, + "probability": 0.284 + }, + { + "start": 2553.1, + "end": 2555.66, + "probability": 0.9666 + }, + { + "start": 2555.86, + "end": 2557.12, + "probability": 0.9363 + }, + { + "start": 2557.36, + "end": 2559.06, + "probability": 0.6026 + }, + { + "start": 2559.4, + "end": 2563.22, + "probability": 0.8649 + }, + { + "start": 2563.56, + "end": 2564.75, + "probability": 0.7706 + }, + { + "start": 2564.92, + "end": 2567.08, + "probability": 0.8622 + }, + { + "start": 2567.08, + "end": 2567.12, + "probability": 0.4951 + }, + { + "start": 2567.12, + "end": 2568.01, + "probability": 0.3335 + }, + { + "start": 2569.14, + "end": 2569.83, + "probability": 0.7275 + }, + { + "start": 2570.84, + "end": 2574.88, + "probability": 0.7901 + }, + { + "start": 2575.0, + "end": 2576.04, + "probability": 0.8817 + }, + { + "start": 2576.84, + "end": 2577.98, + "probability": 0.9244 + }, + { + "start": 2578.8, + "end": 2580.8, + "probability": 0.6609 + }, + { + "start": 2581.06, + "end": 2583.72, + "probability": 0.96 + }, + { + "start": 2584.26, + "end": 2588.4, + "probability": 0.8164 + }, + { + "start": 2589.06, + "end": 2591.5, + "probability": 0.8533 + }, + { + "start": 2592.4, + "end": 2592.48, + "probability": 0.477 + }, + { + "start": 2592.54, + "end": 2595.52, + "probability": 0.9164 + }, + { + "start": 2595.88, + "end": 2600.38, + "probability": 0.9398 + }, + { + "start": 2600.68, + "end": 2600.88, + "probability": 0.7012 + }, + { + "start": 2601.58, + "end": 2603.64, + "probability": 0.533 + }, + { + "start": 2603.68, + "end": 2605.36, + "probability": 0.9519 + }, + { + "start": 2605.5, + "end": 2606.2, + "probability": 0.4104 + }, + { + "start": 2606.38, + "end": 2608.6, + "probability": 0.8919 + }, + { + "start": 2612.04, + "end": 2613.12, + "probability": 0.8718 + }, + { + "start": 2614.28, + "end": 2615.08, + "probability": 0.7388 + }, + { + "start": 2617.08, + "end": 2618.5, + "probability": 0.944 + }, + { + "start": 2618.68, + "end": 2620.06, + "probability": 0.8815 + }, + { + "start": 2620.18, + "end": 2624.32, + "probability": 0.9106 + }, + { + "start": 2624.32, + "end": 2625.82, + "probability": 0.7727 + }, + { + "start": 2625.82, + "end": 2628.62, + "probability": 0.9933 + }, + { + "start": 2630.5, + "end": 2635.98, + "probability": 0.9598 + }, + { + "start": 2636.34, + "end": 2643.3, + "probability": 0.8438 + }, + { + "start": 2643.38, + "end": 2643.92, + "probability": 0.485 + }, + { + "start": 2644.1, + "end": 2644.5, + "probability": 0.896 + }, + { + "start": 2644.54, + "end": 2646.14, + "probability": 0.9915 + }, + { + "start": 2646.22, + "end": 2647.44, + "probability": 0.7484 + }, + { + "start": 2647.44, + "end": 2647.94, + "probability": 0.8674 + }, + { + "start": 2649.34, + "end": 2657.24, + "probability": 0.9874 + }, + { + "start": 2657.3, + "end": 2658.34, + "probability": 0.9335 + }, + { + "start": 2659.24, + "end": 2660.94, + "probability": 0.973 + }, + { + "start": 2660.94, + "end": 2663.86, + "probability": 0.9995 + }, + { + "start": 2665.36, + "end": 2667.74, + "probability": 0.6235 + }, + { + "start": 2669.12, + "end": 2670.2, + "probability": 0.9388 + }, + { + "start": 2670.82, + "end": 2672.2, + "probability": 0.928 + }, + { + "start": 2672.56, + "end": 2672.86, + "probability": 0.5906 + }, + { + "start": 2672.98, + "end": 2673.36, + "probability": 0.9573 + }, + { + "start": 2673.42, + "end": 2677.22, + "probability": 0.9871 + }, + { + "start": 2678.12, + "end": 2679.58, + "probability": 0.9893 + }, + { + "start": 2679.7, + "end": 2682.44, + "probability": 0.9818 + }, + { + "start": 2682.54, + "end": 2683.46, + "probability": 0.7789 + }, + { + "start": 2684.16, + "end": 2687.82, + "probability": 0.8639 + }, + { + "start": 2688.64, + "end": 2695.14, + "probability": 0.9788 + }, + { + "start": 2697.08, + "end": 2701.04, + "probability": 0.9785 + }, + { + "start": 2701.72, + "end": 2702.64, + "probability": 0.0128 + }, + { + "start": 2702.78, + "end": 2704.78, + "probability": 0.8405 + }, + { + "start": 2705.08, + "end": 2706.84, + "probability": 0.9325 + }, + { + "start": 2707.4, + "end": 2708.05, + "probability": 0.9805 + }, + { + "start": 2710.0, + "end": 2712.56, + "probability": 0.9901 + }, + { + "start": 2713.36, + "end": 2715.44, + "probability": 0.7476 + }, + { + "start": 2716.4, + "end": 2718.32, + "probability": 0.9399 + }, + { + "start": 2718.78, + "end": 2722.12, + "probability": 0.8789 + }, + { + "start": 2722.18, + "end": 2722.64, + "probability": 0.1379 + }, + { + "start": 2723.56, + "end": 2724.12, + "probability": 0.3138 + }, + { + "start": 2724.18, + "end": 2725.76, + "probability": 0.8228 + }, + { + "start": 2726.72, + "end": 2729.82, + "probability": 0.9926 + }, + { + "start": 2730.38, + "end": 2731.16, + "probability": 0.9872 + }, + { + "start": 2731.54, + "end": 2735.65, + "probability": 0.9937 + }, + { + "start": 2737.17, + "end": 2740.9, + "probability": 0.9907 + }, + { + "start": 2741.16, + "end": 2743.44, + "probability": 0.9932 + }, + { + "start": 2745.06, + "end": 2747.06, + "probability": 0.9017 + }, + { + "start": 2747.14, + "end": 2749.48, + "probability": 0.9917 + }, + { + "start": 2749.48, + "end": 2749.7, + "probability": 0.8591 + }, + { + "start": 2752.4, + "end": 2754.4, + "probability": 0.1541 + }, + { + "start": 2754.4, + "end": 2755.56, + "probability": 0.5503 + }, + { + "start": 2755.66, + "end": 2759.9, + "probability": 0.9228 + }, + { + "start": 2766.84, + "end": 2768.54, + "probability": 0.6801 + }, + { + "start": 2769.42, + "end": 2770.24, + "probability": 0.7908 + }, + { + "start": 2770.88, + "end": 2775.12, + "probability": 0.9785 + }, + { + "start": 2775.12, + "end": 2780.9, + "probability": 0.9587 + }, + { + "start": 2781.32, + "end": 2782.7, + "probability": 0.5931 + }, + { + "start": 2783.4, + "end": 2786.58, + "probability": 0.792 + }, + { + "start": 2786.84, + "end": 2789.24, + "probability": 0.912 + }, + { + "start": 2789.48, + "end": 2790.54, + "probability": 0.9822 + }, + { + "start": 2791.2, + "end": 2794.42, + "probability": 0.8732 + }, + { + "start": 2795.08, + "end": 2798.6, + "probability": 0.9661 + }, + { + "start": 2798.74, + "end": 2799.78, + "probability": 0.7707 + }, + { + "start": 2800.2, + "end": 2800.68, + "probability": 0.4915 + }, + { + "start": 2800.76, + "end": 2801.12, + "probability": 0.4724 + }, + { + "start": 2801.38, + "end": 2806.54, + "probability": 0.819 + }, + { + "start": 2806.54, + "end": 2810.02, + "probability": 0.9775 + }, + { + "start": 2810.48, + "end": 2810.94, + "probability": 0.4766 + }, + { + "start": 2811.46, + "end": 2813.32, + "probability": 0.8568 + }, + { + "start": 2813.7, + "end": 2816.5, + "probability": 0.937 + }, + { + "start": 2816.74, + "end": 2817.76, + "probability": 0.9434 + }, + { + "start": 2818.1, + "end": 2820.74, + "probability": 0.967 + }, + { + "start": 2821.44, + "end": 2825.24, + "probability": 0.9252 + }, + { + "start": 2825.34, + "end": 2826.02, + "probability": 0.9564 + }, + { + "start": 2826.4, + "end": 2831.22, + "probability": 0.9751 + }, + { + "start": 2831.54, + "end": 2832.74, + "probability": 0.9522 + }, + { + "start": 2832.88, + "end": 2836.06, + "probability": 0.9282 + }, + { + "start": 2836.58, + "end": 2839.72, + "probability": 0.9569 + }, + { + "start": 2840.22, + "end": 2842.7, + "probability": 0.9622 + }, + { + "start": 2842.94, + "end": 2844.06, + "probability": 0.9486 + }, + { + "start": 2844.32, + "end": 2848.6, + "probability": 0.9873 + }, + { + "start": 2848.78, + "end": 2849.7, + "probability": 0.4629 + }, + { + "start": 2849.78, + "end": 2850.58, + "probability": 0.8196 + }, + { + "start": 2851.0, + "end": 2851.92, + "probability": 0.8749 + }, + { + "start": 2852.64, + "end": 2855.7, + "probability": 0.9653 + }, + { + "start": 2856.06, + "end": 2858.78, + "probability": 0.9704 + }, + { + "start": 2859.12, + "end": 2860.12, + "probability": 0.8813 + }, + { + "start": 2860.28, + "end": 2861.42, + "probability": 0.8981 + }, + { + "start": 2861.5, + "end": 2863.16, + "probability": 0.9354 + }, + { + "start": 2863.2, + "end": 2864.38, + "probability": 0.932 + }, + { + "start": 2864.48, + "end": 2864.48, + "probability": 0.3092 + }, + { + "start": 2864.6, + "end": 2866.68, + "probability": 0.9954 + }, + { + "start": 2866.8, + "end": 2867.8, + "probability": 0.9204 + }, + { + "start": 2868.02, + "end": 2871.34, + "probability": 0.8578 + }, + { + "start": 2872.06, + "end": 2873.94, + "probability": 0.9277 + }, + { + "start": 2874.1, + "end": 2878.56, + "probability": 0.7192 + }, + { + "start": 2878.96, + "end": 2879.72, + "probability": 0.9786 + }, + { + "start": 2879.98, + "end": 2880.66, + "probability": 0.8885 + }, + { + "start": 2881.1, + "end": 2881.88, + "probability": 0.887 + }, + { + "start": 2882.08, + "end": 2883.52, + "probability": 0.6561 + }, + { + "start": 2883.82, + "end": 2883.82, + "probability": 0.2762 + }, + { + "start": 2883.82, + "end": 2886.86, + "probability": 0.5908 + }, + { + "start": 2887.04, + "end": 2893.26, + "probability": 0.9753 + }, + { + "start": 2893.64, + "end": 2894.68, + "probability": 0.6354 + }, + { + "start": 2894.7, + "end": 2894.98, + "probability": 0.6959 + }, + { + "start": 2895.5, + "end": 2897.5, + "probability": 0.6636 + }, + { + "start": 2897.64, + "end": 2899.84, + "probability": 0.9237 + }, + { + "start": 2900.34, + "end": 2900.96, + "probability": 0.3969 + }, + { + "start": 2901.02, + "end": 2902.82, + "probability": 0.8626 + }, + { + "start": 2904.32, + "end": 2906.38, + "probability": 0.5811 + }, + { + "start": 2906.98, + "end": 2907.64, + "probability": 0.4926 + }, + { + "start": 2907.76, + "end": 2908.44, + "probability": 0.4645 + }, + { + "start": 2908.78, + "end": 2910.46, + "probability": 0.7537 + }, + { + "start": 2910.66, + "end": 2912.84, + "probability": 0.7187 + }, + { + "start": 2912.96, + "end": 2917.1, + "probability": 0.9535 + }, + { + "start": 2917.72, + "end": 2919.97, + "probability": 0.8942 + }, + { + "start": 2920.2, + "end": 2924.9, + "probability": 0.8538 + }, + { + "start": 2925.22, + "end": 2927.24, + "probability": 0.8496 + }, + { + "start": 2927.24, + "end": 2928.86, + "probability": 0.5856 + }, + { + "start": 2928.96, + "end": 2929.84, + "probability": 0.8346 + }, + { + "start": 2930.52, + "end": 2933.3, + "probability": 0.8967 + }, + { + "start": 2933.4, + "end": 2935.46, + "probability": 0.8166 + }, + { + "start": 2935.66, + "end": 2938.26, + "probability": 0.9225 + }, + { + "start": 2938.3, + "end": 2943.12, + "probability": 0.9784 + }, + { + "start": 2943.2, + "end": 2944.64, + "probability": 0.6041 + }, + { + "start": 2944.76, + "end": 2947.88, + "probability": 0.9482 + }, + { + "start": 2947.88, + "end": 2951.74, + "probability": 0.9663 + }, + { + "start": 2952.08, + "end": 2954.86, + "probability": 0.9185 + }, + { + "start": 2954.86, + "end": 2959.8, + "probability": 0.998 + }, + { + "start": 2960.28, + "end": 2963.64, + "probability": 0.9984 + }, + { + "start": 2963.8, + "end": 2965.38, + "probability": 0.6532 + }, + { + "start": 2965.8, + "end": 2966.28, + "probability": 0.9346 + }, + { + "start": 2966.38, + "end": 2967.24, + "probability": 0.5146 + }, + { + "start": 2967.26, + "end": 2968.08, + "probability": 0.8615 + }, + { + "start": 2968.22, + "end": 2970.56, + "probability": 0.7422 + }, + { + "start": 2970.86, + "end": 2972.96, + "probability": 0.9897 + }, + { + "start": 2973.28, + "end": 2974.97, + "probability": 0.9278 + }, + { + "start": 2975.16, + "end": 2976.38, + "probability": 0.9518 + }, + { + "start": 2976.48, + "end": 2978.48, + "probability": 0.9536 + }, + { + "start": 2978.54, + "end": 2980.74, + "probability": 0.9857 + }, + { + "start": 2980.94, + "end": 2983.96, + "probability": 0.8329 + }, + { + "start": 2984.08, + "end": 2987.42, + "probability": 0.9879 + }, + { + "start": 2987.42, + "end": 2990.76, + "probability": 0.9961 + }, + { + "start": 2990.92, + "end": 2993.32, + "probability": 0.8455 + }, + { + "start": 2993.52, + "end": 2996.5, + "probability": 0.939 + }, + { + "start": 2996.96, + "end": 2999.34, + "probability": 0.6666 + }, + { + "start": 2999.4, + "end": 3004.4, + "probability": 0.9938 + }, + { + "start": 3004.54, + "end": 3005.26, + "probability": 0.5703 + }, + { + "start": 3005.32, + "end": 3007.5, + "probability": 0.7454 + }, + { + "start": 3007.64, + "end": 3009.44, + "probability": 0.8109 + }, + { + "start": 3009.66, + "end": 3010.5, + "probability": 0.512 + }, + { + "start": 3010.52, + "end": 3013.54, + "probability": 0.9534 + }, + { + "start": 3015.26, + "end": 3016.62, + "probability": 0.7991 + }, + { + "start": 3018.72, + "end": 3020.3, + "probability": 0.9744 + }, + { + "start": 3021.78, + "end": 3026.5, + "probability": 0.9556 + }, + { + "start": 3027.42, + "end": 3029.68, + "probability": 0.9883 + }, + { + "start": 3030.3, + "end": 3033.4, + "probability": 0.9477 + }, + { + "start": 3034.42, + "end": 3037.96, + "probability": 0.9844 + }, + { + "start": 3038.78, + "end": 3042.64, + "probability": 0.9674 + }, + { + "start": 3042.76, + "end": 3044.0, + "probability": 0.7733 + }, + { + "start": 3044.16, + "end": 3044.82, + "probability": 0.534 + }, + { + "start": 3045.36, + "end": 3047.42, + "probability": 0.7211 + }, + { + "start": 3047.98, + "end": 3048.76, + "probability": 0.234 + }, + { + "start": 3049.44, + "end": 3051.39, + "probability": 0.9913 + }, + { + "start": 3052.18, + "end": 3055.24, + "probability": 0.7548 + }, + { + "start": 3055.98, + "end": 3058.26, + "probability": 0.9913 + }, + { + "start": 3058.42, + "end": 3062.56, + "probability": 0.9179 + }, + { + "start": 3062.88, + "end": 3064.34, + "probability": 0.9404 + }, + { + "start": 3065.44, + "end": 3067.7, + "probability": 0.9782 + }, + { + "start": 3069.02, + "end": 3070.44, + "probability": 0.6159 + }, + { + "start": 3071.62, + "end": 3074.5, + "probability": 0.99 + }, + { + "start": 3075.52, + "end": 3076.6, + "probability": 0.9115 + }, + { + "start": 3077.68, + "end": 3080.42, + "probability": 0.9797 + }, + { + "start": 3080.48, + "end": 3082.22, + "probability": 0.9582 + }, + { + "start": 3082.4, + "end": 3083.4, + "probability": 0.8869 + }, + { + "start": 3083.94, + "end": 3085.24, + "probability": 0.9843 + }, + { + "start": 3085.92, + "end": 3087.32, + "probability": 0.9919 + }, + { + "start": 3087.4, + "end": 3088.48, + "probability": 0.5933 + }, + { + "start": 3089.94, + "end": 3095.56, + "probability": 0.9958 + }, + { + "start": 3095.64, + "end": 3096.96, + "probability": 0.9294 + }, + { + "start": 3097.4, + "end": 3099.34, + "probability": 0.9817 + }, + { + "start": 3099.86, + "end": 3101.14, + "probability": 0.7586 + }, + { + "start": 3101.3, + "end": 3102.78, + "probability": 0.9227 + }, + { + "start": 3103.26, + "end": 3105.68, + "probability": 0.8768 + }, + { + "start": 3106.46, + "end": 3109.34, + "probability": 0.3198 + }, + { + "start": 3110.04, + "end": 3111.91, + "probability": 0.9354 + }, + { + "start": 3112.48, + "end": 3115.9, + "probability": 0.86 + }, + { + "start": 3115.92, + "end": 3116.3, + "probability": 0.3326 + }, + { + "start": 3116.34, + "end": 3118.46, + "probability": 0.8757 + }, + { + "start": 3119.2, + "end": 3120.72, + "probability": 0.9001 + }, + { + "start": 3120.96, + "end": 3122.28, + "probability": 0.9946 + }, + { + "start": 3122.52, + "end": 3125.18, + "probability": 0.9778 + }, + { + "start": 3125.28, + "end": 3125.52, + "probability": 0.5645 + }, + { + "start": 3125.72, + "end": 3127.68, + "probability": 0.8094 + }, + { + "start": 3127.78, + "end": 3130.08, + "probability": 0.6897 + }, + { + "start": 3131.02, + "end": 3134.32, + "probability": 0.9268 + }, + { + "start": 3135.4, + "end": 3136.58, + "probability": 0.6331 + }, + { + "start": 3137.2, + "end": 3139.26, + "probability": 0.9746 + }, + { + "start": 3141.54, + "end": 3143.29, + "probability": 0.9965 + }, + { + "start": 3143.5, + "end": 3147.22, + "probability": 0.8201 + }, + { + "start": 3147.74, + "end": 3149.0, + "probability": 0.884 + }, + { + "start": 3149.14, + "end": 3151.52, + "probability": 0.9902 + }, + { + "start": 3152.7, + "end": 3156.72, + "probability": 0.9735 + }, + { + "start": 3157.28, + "end": 3158.64, + "probability": 0.8962 + }, + { + "start": 3158.72, + "end": 3159.63, + "probability": 0.9605 + }, + { + "start": 3160.02, + "end": 3161.22, + "probability": 0.9258 + }, + { + "start": 3161.64, + "end": 3163.3, + "probability": 0.9589 + }, + { + "start": 3163.4, + "end": 3167.3, + "probability": 0.9689 + }, + { + "start": 3168.46, + "end": 3168.84, + "probability": 0.7083 + }, + { + "start": 3168.84, + "end": 3173.98, + "probability": 0.96 + }, + { + "start": 3174.56, + "end": 3177.5, + "probability": 0.9888 + }, + { + "start": 3177.5, + "end": 3181.74, + "probability": 0.9971 + }, + { + "start": 3182.08, + "end": 3184.44, + "probability": 0.565 + }, + { + "start": 3185.14, + "end": 3187.04, + "probability": 0.9958 + }, + { + "start": 3188.02, + "end": 3188.56, + "probability": 0.7471 + }, + { + "start": 3189.22, + "end": 3193.28, + "probability": 0.9583 + }, + { + "start": 3193.64, + "end": 3195.48, + "probability": 0.9641 + }, + { + "start": 3196.02, + "end": 3198.8, + "probability": 0.9391 + }, + { + "start": 3198.96, + "end": 3200.72, + "probability": 0.9053 + }, + { + "start": 3200.86, + "end": 3202.26, + "probability": 0.835 + }, + { + "start": 3202.36, + "end": 3205.72, + "probability": 0.9142 + }, + { + "start": 3205.86, + "end": 3206.1, + "probability": 0.6247 + }, + { + "start": 3206.2, + "end": 3207.98, + "probability": 0.8062 + }, + { + "start": 3208.5, + "end": 3210.1, + "probability": 0.9968 + }, + { + "start": 3210.34, + "end": 3211.86, + "probability": 0.8046 + }, + { + "start": 3211.9, + "end": 3214.22, + "probability": 0.9658 + }, + { + "start": 3214.56, + "end": 3217.58, + "probability": 0.7897 + }, + { + "start": 3217.58, + "end": 3222.14, + "probability": 0.6012 + }, + { + "start": 3222.24, + "end": 3222.48, + "probability": 0.7235 + }, + { + "start": 3223.02, + "end": 3225.42, + "probability": 0.7908 + }, + { + "start": 3225.86, + "end": 3227.94, + "probability": 0.9783 + }, + { + "start": 3228.54, + "end": 3232.14, + "probability": 0.8128 + }, + { + "start": 3232.8, + "end": 3234.68, + "probability": 0.7293 + }, + { + "start": 3237.08, + "end": 3238.68, + "probability": 0.6146 + }, + { + "start": 3239.72, + "end": 3239.76, + "probability": 0.5363 + }, + { + "start": 3239.76, + "end": 3244.6, + "probability": 0.9504 + }, + { + "start": 3245.1, + "end": 3250.62, + "probability": 0.9522 + }, + { + "start": 3250.8, + "end": 3252.14, + "probability": 0.9765 + }, + { + "start": 3252.38, + "end": 3253.46, + "probability": 0.8595 + }, + { + "start": 3253.54, + "end": 3255.28, + "probability": 0.9017 + }, + { + "start": 3255.54, + "end": 3256.56, + "probability": 0.9958 + }, + { + "start": 3256.64, + "end": 3258.03, + "probability": 0.7905 + }, + { + "start": 3259.32, + "end": 3260.88, + "probability": 0.902 + }, + { + "start": 3261.22, + "end": 3261.96, + "probability": 0.5294 + }, + { + "start": 3262.06, + "end": 3262.54, + "probability": 0.6413 + }, + { + "start": 3263.04, + "end": 3265.06, + "probability": 0.9951 + }, + { + "start": 3265.44, + "end": 3265.93, + "probability": 0.9456 + }, + { + "start": 3266.42, + "end": 3268.38, + "probability": 0.9849 + }, + { + "start": 3268.72, + "end": 3270.18, + "probability": 0.9492 + }, + { + "start": 3270.54, + "end": 3273.54, + "probability": 0.7578 + }, + { + "start": 3274.0, + "end": 3277.36, + "probability": 0.9229 + }, + { + "start": 3277.68, + "end": 3277.96, + "probability": 0.557 + }, + { + "start": 3278.42, + "end": 3279.42, + "probability": 0.4791 + }, + { + "start": 3280.12, + "end": 3280.86, + "probability": 0.5657 + }, + { + "start": 3281.12, + "end": 3283.84, + "probability": 0.9276 + }, + { + "start": 3284.12, + "end": 3285.12, + "probability": 0.9691 + }, + { + "start": 3285.64, + "end": 3289.2, + "probability": 0.9323 + }, + { + "start": 3289.34, + "end": 3292.06, + "probability": 0.4989 + }, + { + "start": 3292.62, + "end": 3294.56, + "probability": 0.8339 + }, + { + "start": 3295.04, + "end": 3296.34, + "probability": 0.8875 + }, + { + "start": 3296.46, + "end": 3299.76, + "probability": 0.8955 + }, + { + "start": 3299.76, + "end": 3303.12, + "probability": 0.8767 + }, + { + "start": 3303.58, + "end": 3306.82, + "probability": 0.9871 + }, + { + "start": 3306.9, + "end": 3309.23, + "probability": 0.5173 + }, + { + "start": 3309.24, + "end": 3309.24, + "probability": 0.5903 + }, + { + "start": 3309.58, + "end": 3310.3, + "probability": 0.6427 + }, + { + "start": 3310.3, + "end": 3312.28, + "probability": 0.7102 + }, + { + "start": 3312.34, + "end": 3312.54, + "probability": 0.1488 + }, + { + "start": 3312.54, + "end": 3312.66, + "probability": 0.6941 + }, + { + "start": 3312.74, + "end": 3313.44, + "probability": 0.7694 + }, + { + "start": 3313.48, + "end": 3314.86, + "probability": 0.9525 + }, + { + "start": 3315.02, + "end": 3315.54, + "probability": 0.0587 + }, + { + "start": 3316.06, + "end": 3319.28, + "probability": 0.8548 + }, + { + "start": 3319.52, + "end": 3323.36, + "probability": 0.9268 + }, + { + "start": 3323.78, + "end": 3324.78, + "probability": 0.9087 + }, + { + "start": 3325.1, + "end": 3326.35, + "probability": 0.9064 + }, + { + "start": 3326.74, + "end": 3327.5, + "probability": 0.2069 + }, + { + "start": 3327.56, + "end": 3329.26, + "probability": 0.7693 + }, + { + "start": 3329.28, + "end": 3330.4, + "probability": 0.3582 + }, + { + "start": 3330.4, + "end": 3330.82, + "probability": 0.2499 + }, + { + "start": 3330.82, + "end": 3331.84, + "probability": 0.7018 + }, + { + "start": 3331.92, + "end": 3332.36, + "probability": 0.904 + }, + { + "start": 3332.52, + "end": 3334.48, + "probability": 0.8022 + }, + { + "start": 3334.86, + "end": 3337.67, + "probability": 0.813 + }, + { + "start": 3341.52, + "end": 3343.04, + "probability": 0.7952 + }, + { + "start": 3343.58, + "end": 3344.08, + "probability": 0.7268 + }, + { + "start": 3344.82, + "end": 3346.58, + "probability": 0.8874 + }, + { + "start": 3346.74, + "end": 3348.36, + "probability": 0.9634 + }, + { + "start": 3348.46, + "end": 3352.52, + "probability": 0.9804 + }, + { + "start": 3353.02, + "end": 3355.18, + "probability": 0.7858 + }, + { + "start": 3355.22, + "end": 3355.76, + "probability": 0.6413 + }, + { + "start": 3356.3, + "end": 3357.88, + "probability": 0.9474 + }, + { + "start": 3358.0, + "end": 3359.56, + "probability": 0.7627 + }, + { + "start": 3360.0, + "end": 3363.74, + "probability": 0.9173 + }, + { + "start": 3364.54, + "end": 3367.08, + "probability": 0.7843 + }, + { + "start": 3367.1, + "end": 3372.16, + "probability": 0.8166 + }, + { + "start": 3372.22, + "end": 3373.96, + "probability": 0.9489 + }, + { + "start": 3374.58, + "end": 3375.86, + "probability": 0.8915 + }, + { + "start": 3376.52, + "end": 3376.72, + "probability": 0.4098 + }, + { + "start": 3376.84, + "end": 3378.52, + "probability": 0.9846 + }, + { + "start": 3378.62, + "end": 3379.58, + "probability": 0.9736 + }, + { + "start": 3380.22, + "end": 3380.46, + "probability": 0.9444 + }, + { + "start": 3380.58, + "end": 3384.54, + "probability": 0.9842 + }, + { + "start": 3385.02, + "end": 3386.58, + "probability": 0.7493 + }, + { + "start": 3386.62, + "end": 3388.88, + "probability": 0.9404 + }, + { + "start": 3389.3, + "end": 3392.34, + "probability": 0.9968 + }, + { + "start": 3392.34, + "end": 3395.46, + "probability": 0.998 + }, + { + "start": 3395.94, + "end": 3398.12, + "probability": 0.9751 + }, + { + "start": 3398.14, + "end": 3400.74, + "probability": 0.9966 + }, + { + "start": 3401.22, + "end": 3402.08, + "probability": 0.7256 + }, + { + "start": 3402.18, + "end": 3403.06, + "probability": 0.9208 + }, + { + "start": 3403.46, + "end": 3404.82, + "probability": 0.9736 + }, + { + "start": 3405.08, + "end": 3408.76, + "probability": 0.9875 + }, + { + "start": 3409.66, + "end": 3413.02, + "probability": 0.6844 + }, + { + "start": 3413.28, + "end": 3416.38, + "probability": 0.9039 + }, + { + "start": 3416.96, + "end": 3421.68, + "probability": 0.929 + }, + { + "start": 3423.24, + "end": 3425.64, + "probability": 0.8361 + }, + { + "start": 3425.76, + "end": 3428.76, + "probability": 0.9779 + }, + { + "start": 3429.68, + "end": 3431.3, + "probability": 0.2936 + }, + { + "start": 3431.8, + "end": 3433.3, + "probability": 0.9156 + }, + { + "start": 3433.38, + "end": 3436.44, + "probability": 0.0693 + }, + { + "start": 3437.14, + "end": 3437.76, + "probability": 0.6853 + }, + { + "start": 3438.48, + "end": 3439.7, + "probability": 0.7605 + }, + { + "start": 3440.84, + "end": 3443.82, + "probability": 0.9954 + }, + { + "start": 3444.48, + "end": 3449.02, + "probability": 0.8381 + }, + { + "start": 3450.28, + "end": 3452.98, + "probability": 0.9663 + }, + { + "start": 3453.94, + "end": 3456.96, + "probability": 0.8028 + }, + { + "start": 3457.4, + "end": 3460.56, + "probability": 0.9792 + }, + { + "start": 3460.56, + "end": 3464.26, + "probability": 0.9547 + }, + { + "start": 3465.48, + "end": 3467.46, + "probability": 0.8558 + }, + { + "start": 3467.82, + "end": 3469.84, + "probability": 0.9623 + }, + { + "start": 3470.28, + "end": 3472.88, + "probability": 0.8643 + }, + { + "start": 3473.8, + "end": 3476.4, + "probability": 0.7887 + }, + { + "start": 3476.46, + "end": 3477.44, + "probability": 0.5463 + }, + { + "start": 3477.44, + "end": 3478.18, + "probability": 0.8721 + }, + { + "start": 3478.22, + "end": 3479.32, + "probability": 0.7277 + }, + { + "start": 3479.48, + "end": 3480.18, + "probability": 0.706 + }, + { + "start": 3480.5, + "end": 3483.34, + "probability": 0.9027 + }, + { + "start": 3484.12, + "end": 3484.94, + "probability": 0.7013 + }, + { + "start": 3484.98, + "end": 3485.2, + "probability": 0.0268 + }, + { + "start": 3485.2, + "end": 3486.1, + "probability": 0.9068 + }, + { + "start": 3486.42, + "end": 3486.9, + "probability": 0.9015 + }, + { + "start": 3487.06, + "end": 3487.72, + "probability": 0.9657 + }, + { + "start": 3487.84, + "end": 3490.26, + "probability": 0.9414 + }, + { + "start": 3490.36, + "end": 3494.84, + "probability": 0.7181 + }, + { + "start": 3494.88, + "end": 3497.92, + "probability": 0.9026 + }, + { + "start": 3498.34, + "end": 3501.2, + "probability": 0.9755 + }, + { + "start": 3501.5, + "end": 3504.82, + "probability": 0.9967 + }, + { + "start": 3504.88, + "end": 3506.42, + "probability": 0.4494 + }, + { + "start": 3506.42, + "end": 3509.18, + "probability": 0.5671 + }, + { + "start": 3509.2, + "end": 3510.74, + "probability": 0.7869 + }, + { + "start": 3511.0, + "end": 3512.32, + "probability": 0.9658 + }, + { + "start": 3512.52, + "end": 3514.45, + "probability": 0.6417 + }, + { + "start": 3516.01, + "end": 3518.6, + "probability": 0.5671 + }, + { + "start": 3520.1, + "end": 3522.56, + "probability": 0.731 + }, + { + "start": 3522.68, + "end": 3522.68, + "probability": 0.5522 + }, + { + "start": 3522.68, + "end": 3522.68, + "probability": 0.1509 + }, + { + "start": 3522.68, + "end": 3524.98, + "probability": 0.2986 + }, + { + "start": 3525.34, + "end": 3527.5, + "probability": 0.7439 + }, + { + "start": 3527.92, + "end": 3530.02, + "probability": 0.9449 + }, + { + "start": 3530.38, + "end": 3532.1, + "probability": 0.7533 + }, + { + "start": 3532.82, + "end": 3535.22, + "probability": 0.7975 + }, + { + "start": 3535.72, + "end": 3537.6, + "probability": 0.9773 + }, + { + "start": 3538.08, + "end": 3540.74, + "probability": 0.9603 + }, + { + "start": 3540.98, + "end": 3541.12, + "probability": 0.2625 + }, + { + "start": 3541.38, + "end": 3544.66, + "probability": 0.9714 + }, + { + "start": 3545.2, + "end": 3547.0, + "probability": 0.7527 + }, + { + "start": 3547.8, + "end": 3549.26, + "probability": 0.8733 + }, + { + "start": 3549.34, + "end": 3552.78, + "probability": 0.9884 + }, + { + "start": 3553.12, + "end": 3557.0, + "probability": 0.9928 + }, + { + "start": 3557.64, + "end": 3559.04, + "probability": 0.9578 + }, + { + "start": 3559.18, + "end": 3561.58, + "probability": 0.9832 + }, + { + "start": 3562.04, + "end": 3565.3, + "probability": 0.9098 + }, + { + "start": 3566.2, + "end": 3570.3, + "probability": 0.413 + }, + { + "start": 3570.3, + "end": 3571.6, + "probability": 0.37 + }, + { + "start": 3571.72, + "end": 3574.18, + "probability": 0.1594 + }, + { + "start": 3574.18, + "end": 3574.18, + "probability": 0.0759 + }, + { + "start": 3574.18, + "end": 3574.18, + "probability": 0.0957 + }, + { + "start": 3574.18, + "end": 3576.88, + "probability": 0.6367 + }, + { + "start": 3578.0, + "end": 3578.64, + "probability": 0.058 + }, + { + "start": 3578.64, + "end": 3579.32, + "probability": 0.3995 + }, + { + "start": 3579.9, + "end": 3582.02, + "probability": 0.8002 + }, + { + "start": 3582.02, + "end": 3584.5, + "probability": 0.9463 + }, + { + "start": 3584.66, + "end": 3587.44, + "probability": 0.8795 + }, + { + "start": 3587.88, + "end": 3587.88, + "probability": 0.0703 + }, + { + "start": 3587.88, + "end": 3587.88, + "probability": 0.1194 + }, + { + "start": 3587.88, + "end": 3594.13, + "probability": 0.5984 + }, + { + "start": 3594.68, + "end": 3598.2, + "probability": 0.7639 + }, + { + "start": 3598.62, + "end": 3603.48, + "probability": 0.9762 + }, + { + "start": 3603.56, + "end": 3604.28, + "probability": 0.6329 + }, + { + "start": 3605.9, + "end": 3607.94, + "probability": 0.4492 + }, + { + "start": 3608.06, + "end": 3608.5, + "probability": 0.4749 + }, + { + "start": 3608.8, + "end": 3609.62, + "probability": 0.6093 + }, + { + "start": 3609.78, + "end": 3613.4, + "probability": 0.9781 + }, + { + "start": 3614.1, + "end": 3614.9, + "probability": 0.9707 + }, + { + "start": 3615.08, + "end": 3615.96, + "probability": 0.7737 + }, + { + "start": 3616.46, + "end": 3617.18, + "probability": 0.9242 + }, + { + "start": 3617.62, + "end": 3618.04, + "probability": 0.4265 + }, + { + "start": 3618.04, + "end": 3619.78, + "probability": 0.9867 + }, + { + "start": 3620.42, + "end": 3620.84, + "probability": 0.9736 + }, + { + "start": 3621.08, + "end": 3626.04, + "probability": 0.9768 + }, + { + "start": 3626.46, + "end": 3627.64, + "probability": 0.999 + }, + { + "start": 3627.74, + "end": 3629.05, + "probability": 0.9849 + }, + { + "start": 3629.9, + "end": 3633.7, + "probability": 0.9553 + }, + { + "start": 3634.12, + "end": 3639.36, + "probability": 0.6065 + }, + { + "start": 3640.16, + "end": 3641.0, + "probability": 0.0367 + }, + { + "start": 3641.24, + "end": 3642.44, + "probability": 0.6016 + }, + { + "start": 3643.0, + "end": 3643.08, + "probability": 0.4133 + }, + { + "start": 3643.08, + "end": 3645.5, + "probability": 0.6504 + }, + { + "start": 3645.7, + "end": 3647.34, + "probability": 0.9453 + }, + { + "start": 3647.38, + "end": 3648.02, + "probability": 0.0444 + }, + { + "start": 3648.02, + "end": 3649.52, + "probability": 0.3143 + }, + { + "start": 3649.74, + "end": 3651.59, + "probability": 0.9895 + }, + { + "start": 3651.62, + "end": 3652.56, + "probability": 0.0498 + }, + { + "start": 3652.76, + "end": 3654.74, + "probability": 0.6772 + }, + { + "start": 3654.81, + "end": 3655.28, + "probability": 0.0169 + }, + { + "start": 3663.0, + "end": 3663.24, + "probability": 0.4153 + }, + { + "start": 3664.02, + "end": 3664.8, + "probability": 0.0304 + }, + { + "start": 3666.42, + "end": 3669.16, + "probability": 0.1724 + }, + { + "start": 3669.44, + "end": 3669.82, + "probability": 0.1814 + }, + { + "start": 3670.04, + "end": 3670.04, + "probability": 0.9287 + }, + { + "start": 3670.04, + "end": 3671.02, + "probability": 0.0059 + }, + { + "start": 3671.02, + "end": 3671.9, + "probability": 0.9172 + }, + { + "start": 3672.06, + "end": 3673.36, + "probability": 0.1819 + }, + { + "start": 3674.04, + "end": 3676.56, + "probability": 0.2709 + }, + { + "start": 3676.6, + "end": 3681.06, + "probability": 0.0372 + }, + { + "start": 3681.1, + "end": 3682.66, + "probability": 0.0818 + }, + { + "start": 3682.82, + "end": 3683.92, + "probability": 0.1149 + }, + { + "start": 3684.42, + "end": 3688.18, + "probability": 0.0261 + }, + { + "start": 3688.18, + "end": 3688.2, + "probability": 0.2034 + }, + { + "start": 3688.2, + "end": 3694.16, + "probability": 0.0412 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.0, + "end": 3736.0, + "probability": 0.0 + }, + { + "start": 3736.36, + "end": 3736.78, + "probability": 0.1068 + }, + { + "start": 3736.78, + "end": 3737.56, + "probability": 0.4866 + }, + { + "start": 3737.56, + "end": 3740.24, + "probability": 0.0264 + }, + { + "start": 3744.16, + "end": 3744.72, + "probability": 0.0516 + }, + { + "start": 3747.59, + "end": 3749.01, + "probability": 0.0607 + }, + { + "start": 3749.32, + "end": 3749.7, + "probability": 0.1117 + }, + { + "start": 3749.7, + "end": 3749.7, + "probability": 0.1966 + }, + { + "start": 3749.7, + "end": 3752.3, + "probability": 0.4818 + }, + { + "start": 3752.56, + "end": 3752.62, + "probability": 0.137 + }, + { + "start": 3753.86, + "end": 3754.4, + "probability": 0.0319 + }, + { + "start": 3755.02, + "end": 3757.48, + "probability": 0.1678 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3860.0, + "end": 3860.0, + "probability": 0.0 + }, + { + "start": 3861.62, + "end": 3865.72, + "probability": 0.967 + }, + { + "start": 3866.54, + "end": 3873.44, + "probability": 0.9926 + }, + { + "start": 3874.64, + "end": 3878.78, + "probability": 0.9144 + }, + { + "start": 3879.5, + "end": 3883.82, + "probability": 0.9246 + }, + { + "start": 3884.02, + "end": 3885.08, + "probability": 0.7599 + }, + { + "start": 3885.74, + "end": 3886.8, + "probability": 0.8006 + }, + { + "start": 3887.36, + "end": 3888.88, + "probability": 0.7675 + }, + { + "start": 3889.48, + "end": 3890.58, + "probability": 0.678 + }, + { + "start": 3891.08, + "end": 3891.76, + "probability": 0.9408 + }, + { + "start": 3892.88, + "end": 3895.28, + "probability": 0.7105 + }, + { + "start": 3896.04, + "end": 3899.76, + "probability": 0.8805 + }, + { + "start": 3899.76, + "end": 3904.58, + "probability": 0.9503 + }, + { + "start": 3906.8, + "end": 3908.88, + "probability": 0.9575 + }, + { + "start": 3909.64, + "end": 3912.8, + "probability": 0.5865 + }, + { + "start": 3913.62, + "end": 3916.52, + "probability": 0.8125 + }, + { + "start": 3917.5, + "end": 3921.92, + "probability": 0.8205 + }, + { + "start": 3923.14, + "end": 3926.94, + "probability": 0.9831 + }, + { + "start": 3928.02, + "end": 3929.06, + "probability": 0.9694 + }, + { + "start": 3929.7, + "end": 3930.52, + "probability": 0.8208 + }, + { + "start": 3931.22, + "end": 3931.85, + "probability": 0.9553 + }, + { + "start": 3933.04, + "end": 3936.36, + "probability": 0.9532 + }, + { + "start": 3936.8, + "end": 3937.72, + "probability": 0.9125 + }, + { + "start": 3938.08, + "end": 3939.12, + "probability": 0.8265 + }, + { + "start": 3940.4, + "end": 3942.84, + "probability": 0.9871 + }, + { + "start": 3942.84, + "end": 3947.05, + "probability": 0.9883 + }, + { + "start": 3948.2, + "end": 3951.66, + "probability": 0.9924 + }, + { + "start": 3952.4, + "end": 3956.84, + "probability": 0.8499 + }, + { + "start": 3956.84, + "end": 3958.4, + "probability": 0.6056 + }, + { + "start": 3959.34, + "end": 3962.22, + "probability": 0.2517 + }, + { + "start": 3962.54, + "end": 3963.66, + "probability": 0.5243 + }, + { + "start": 3963.78, + "end": 3963.88, + "probability": 0.8507 + }, + { + "start": 3965.16, + "end": 3967.56, + "probability": 0.8776 + }, + { + "start": 3968.12, + "end": 3971.6, + "probability": 0.9213 + }, + { + "start": 3972.72, + "end": 3974.88, + "probability": 0.8825 + }, + { + "start": 3975.9, + "end": 3978.14, + "probability": 0.7998 + }, + { + "start": 3978.84, + "end": 3981.44, + "probability": 0.9832 + }, + { + "start": 3982.1, + "end": 3984.18, + "probability": 0.9295 + }, + { + "start": 3984.6, + "end": 3986.3, + "probability": 0.8441 + }, + { + "start": 3987.24, + "end": 3989.76, + "probability": 0.9881 + }, + { + "start": 3990.66, + "end": 3993.46, + "probability": 0.8093 + }, + { + "start": 3994.46, + "end": 3995.18, + "probability": 0.9777 + }, + { + "start": 3995.8, + "end": 3997.42, + "probability": 0.9991 + }, + { + "start": 3998.1, + "end": 4005.3, + "probability": 0.9775 + }, + { + "start": 4006.04, + "end": 4008.5, + "probability": 0.9755 + }, + { + "start": 4009.08, + "end": 4012.44, + "probability": 0.7783 + }, + { + "start": 4012.94, + "end": 4014.26, + "probability": 0.8608 + }, + { + "start": 4014.68, + "end": 4019.28, + "probability": 0.9735 + }, + { + "start": 4019.96, + "end": 4023.22, + "probability": 0.9595 + }, + { + "start": 4024.42, + "end": 4027.36, + "probability": 0.9132 + }, + { + "start": 4028.02, + "end": 4029.0, + "probability": 0.8025 + }, + { + "start": 4029.56, + "end": 4033.78, + "probability": 0.7292 + }, + { + "start": 4034.38, + "end": 4036.18, + "probability": 0.9519 + }, + { + "start": 4037.52, + "end": 4039.72, + "probability": 0.9884 + }, + { + "start": 4040.68, + "end": 4043.76, + "probability": 0.9241 + }, + { + "start": 4044.3, + "end": 4045.36, + "probability": 0.7137 + }, + { + "start": 4045.92, + "end": 4048.3, + "probability": 0.7648 + }, + { + "start": 4049.04, + "end": 4051.84, + "probability": 0.9945 + }, + { + "start": 4052.34, + "end": 4055.84, + "probability": 0.8954 + }, + { + "start": 4056.62, + "end": 4060.16, + "probability": 0.9615 + }, + { + "start": 4060.16, + "end": 4064.42, + "probability": 0.9953 + }, + { + "start": 4065.0, + "end": 4066.58, + "probability": 0.9856 + }, + { + "start": 4067.14, + "end": 4072.26, + "probability": 0.9807 + }, + { + "start": 4072.8, + "end": 4076.64, + "probability": 0.9362 + }, + { + "start": 4077.64, + "end": 4079.56, + "probability": 0.7253 + }, + { + "start": 4080.78, + "end": 4085.3, + "probability": 0.9824 + }, + { + "start": 4086.32, + "end": 4088.24, + "probability": 0.9626 + }, + { + "start": 4088.72, + "end": 4089.2, + "probability": 0.5758 + }, + { + "start": 4089.26, + "end": 4090.94, + "probability": 0.9403 + }, + { + "start": 4091.72, + "end": 4096.52, + "probability": 0.9631 + }, + { + "start": 4097.46, + "end": 4101.0, + "probability": 0.96 + }, + { + "start": 4101.72, + "end": 4106.52, + "probability": 0.9572 + }, + { + "start": 4107.06, + "end": 4108.4, + "probability": 0.5655 + }, + { + "start": 4109.26, + "end": 4110.76, + "probability": 0.6724 + }, + { + "start": 4111.56, + "end": 4112.98, + "probability": 0.5893 + }, + { + "start": 4113.64, + "end": 4115.7, + "probability": 0.5267 + }, + { + "start": 4116.42, + "end": 4117.26, + "probability": 0.4854 + }, + { + "start": 4117.26, + "end": 4123.68, + "probability": 0.9397 + }, + { + "start": 4123.76, + "end": 4124.22, + "probability": 0.7502 + }, + { + "start": 4124.88, + "end": 4125.24, + "probability": 0.7881 + }, + { + "start": 4126.4, + "end": 4130.22, + "probability": 0.9102 + }, + { + "start": 4130.78, + "end": 4136.08, + "probability": 0.9969 + }, + { + "start": 4136.78, + "end": 4140.24, + "probability": 0.979 + }, + { + "start": 4141.36, + "end": 4145.33, + "probability": 0.8919 + }, + { + "start": 4145.4, + "end": 4148.86, + "probability": 0.9912 + }, + { + "start": 4149.42, + "end": 4150.64, + "probability": 0.8743 + }, + { + "start": 4151.24, + "end": 4157.06, + "probability": 0.6735 + }, + { + "start": 4157.26, + "end": 4159.96, + "probability": 0.9789 + }, + { + "start": 4161.7, + "end": 4164.52, + "probability": 0.9837 + }, + { + "start": 4165.36, + "end": 4170.12, + "probability": 0.9919 + }, + { + "start": 4170.78, + "end": 4172.4, + "probability": 0.8323 + }, + { + "start": 4173.02, + "end": 4178.84, + "probability": 0.9845 + }, + { + "start": 4179.96, + "end": 4181.82, + "probability": 0.9714 + }, + { + "start": 4182.62, + "end": 4183.62, + "probability": 0.9263 + }, + { + "start": 4183.82, + "end": 4184.2, + "probability": 0.7422 + }, + { + "start": 4184.28, + "end": 4188.34, + "probability": 0.902 + }, + { + "start": 4189.02, + "end": 4194.14, + "probability": 0.9419 + }, + { + "start": 4194.76, + "end": 4197.66, + "probability": 0.9501 + }, + { + "start": 4198.88, + "end": 4201.32, + "probability": 0.9637 + }, + { + "start": 4201.32, + "end": 4204.74, + "probability": 0.9961 + }, + { + "start": 4205.62, + "end": 4208.64, + "probability": 0.8669 + }, + { + "start": 4209.34, + "end": 4212.26, + "probability": 0.824 + }, + { + "start": 4212.26, + "end": 4214.58, + "probability": 0.9992 + }, + { + "start": 4215.4, + "end": 4216.16, + "probability": 0.8589 + }, + { + "start": 4216.24, + "end": 4217.18, + "probability": 0.5043 + }, + { + "start": 4217.18, + "end": 4220.84, + "probability": 0.8855 + }, + { + "start": 4221.72, + "end": 4226.08, + "probability": 0.8996 + }, + { + "start": 4226.08, + "end": 4230.48, + "probability": 0.9932 + }, + { + "start": 4231.66, + "end": 4232.26, + "probability": 0.669 + }, + { + "start": 4232.34, + "end": 4235.12, + "probability": 0.9877 + }, + { + "start": 4235.66, + "end": 4239.08, + "probability": 0.9983 + }, + { + "start": 4239.08, + "end": 4243.26, + "probability": 0.9969 + }, + { + "start": 4244.22, + "end": 4248.04, + "probability": 0.9884 + }, + { + "start": 4248.04, + "end": 4251.0, + "probability": 0.9965 + }, + { + "start": 4251.66, + "end": 4255.24, + "probability": 0.9711 + }, + { + "start": 4256.3, + "end": 4258.28, + "probability": 0.7031 + }, + { + "start": 4259.36, + "end": 4259.78, + "probability": 0.7035 + }, + { + "start": 4259.92, + "end": 4261.24, + "probability": 0.9367 + }, + { + "start": 4261.72, + "end": 4266.68, + "probability": 0.9755 + }, + { + "start": 4267.46, + "end": 4271.54, + "probability": 0.9727 + }, + { + "start": 4272.7, + "end": 4276.32, + "probability": 0.9819 + }, + { + "start": 4276.32, + "end": 4280.54, + "probability": 0.9989 + }, + { + "start": 4280.54, + "end": 4284.54, + "probability": 0.9985 + }, + { + "start": 4285.68, + "end": 4286.78, + "probability": 0.5788 + }, + { + "start": 4287.7, + "end": 4291.1, + "probability": 0.9951 + }, + { + "start": 4291.7, + "end": 4296.44, + "probability": 0.9636 + }, + { + "start": 4297.7, + "end": 4298.4, + "probability": 0.8096 + }, + { + "start": 4298.92, + "end": 4301.4, + "probability": 0.6968 + }, + { + "start": 4301.98, + "end": 4306.24, + "probability": 0.8211 + }, + { + "start": 4306.24, + "end": 4310.96, + "probability": 0.99 + }, + { + "start": 4311.52, + "end": 4313.58, + "probability": 0.9728 + }, + { + "start": 4314.46, + "end": 4315.0, + "probability": 0.4261 + }, + { + "start": 4315.5, + "end": 4319.92, + "probability": 0.9934 + }, + { + "start": 4319.92, + "end": 4325.22, + "probability": 0.996 + }, + { + "start": 4325.62, + "end": 4327.12, + "probability": 0.8276 + }, + { + "start": 4328.4, + "end": 4333.2, + "probability": 0.9834 + }, + { + "start": 4334.12, + "end": 4337.16, + "probability": 0.945 + }, + { + "start": 4337.82, + "end": 4342.02, + "probability": 0.9012 + }, + { + "start": 4342.06, + "end": 4347.52, + "probability": 0.7375 + }, + { + "start": 4347.68, + "end": 4348.08, + "probability": 0.2082 + }, + { + "start": 4348.16, + "end": 4350.58, + "probability": 0.879 + }, + { + "start": 4350.98, + "end": 4354.42, + "probability": 0.849 + }, + { + "start": 4355.44, + "end": 4356.24, + "probability": 0.756 + }, + { + "start": 4357.22, + "end": 4358.26, + "probability": 0.8647 + }, + { + "start": 4358.9, + "end": 4364.08, + "probability": 0.9833 + }, + { + "start": 4364.08, + "end": 4369.5, + "probability": 0.9975 + }, + { + "start": 4370.2, + "end": 4373.93, + "probability": 0.9897 + }, + { + "start": 4374.54, + "end": 4378.58, + "probability": 0.9752 + }, + { + "start": 4379.1, + "end": 4381.98, + "probability": 0.9946 + }, + { + "start": 4381.98, + "end": 4386.62, + "probability": 0.9858 + }, + { + "start": 4387.46, + "end": 4391.7, + "probability": 0.9773 + }, + { + "start": 4391.7, + "end": 4396.3, + "probability": 0.9947 + }, + { + "start": 4396.9, + "end": 4399.5, + "probability": 0.9932 + }, + { + "start": 4400.04, + "end": 4401.6, + "probability": 0.9445 + }, + { + "start": 4401.98, + "end": 4406.94, + "probability": 0.9811 + }, + { + "start": 4407.24, + "end": 4408.84, + "probability": 0.8655 + }, + { + "start": 4409.3, + "end": 4412.9, + "probability": 0.8756 + }, + { + "start": 4413.18, + "end": 4419.06, + "probability": 0.9895 + }, + { + "start": 4419.2, + "end": 4419.96, + "probability": 0.6767 + }, + { + "start": 4420.02, + "end": 4421.84, + "probability": 0.8147 + }, + { + "start": 4422.58, + "end": 4426.84, + "probability": 0.912 + }, + { + "start": 4427.38, + "end": 4430.42, + "probability": 0.9935 + }, + { + "start": 4430.66, + "end": 4431.16, + "probability": 0.9654 + }, + { + "start": 4431.44, + "end": 4432.4, + "probability": 0.899 + }, + { + "start": 4433.62, + "end": 4436.34, + "probability": 0.9453 + }, + { + "start": 4437.06, + "end": 4439.41, + "probability": 0.9683 + }, + { + "start": 4439.62, + "end": 4440.48, + "probability": 0.806 + }, + { + "start": 4441.4, + "end": 4443.96, + "probability": 0.9215 + }, + { + "start": 4444.46, + "end": 4448.2, + "probability": 0.9477 + }, + { + "start": 4448.82, + "end": 4451.5, + "probability": 0.7 + }, + { + "start": 4451.8, + "end": 4454.34, + "probability": 0.8337 + }, + { + "start": 4454.8, + "end": 4457.04, + "probability": 0.8903 + }, + { + "start": 4458.22, + "end": 4460.68, + "probability": 0.9858 + }, + { + "start": 4461.36, + "end": 4464.56, + "probability": 0.9602 + }, + { + "start": 4465.12, + "end": 4466.04, + "probability": 0.7116 + }, + { + "start": 4466.3, + "end": 4467.04, + "probability": 0.6866 + }, + { + "start": 4467.1, + "end": 4470.38, + "probability": 0.9816 + }, + { + "start": 4471.06, + "end": 4471.6, + "probability": 0.709 + }, + { + "start": 4472.28, + "end": 4474.18, + "probability": 0.94 + }, + { + "start": 4474.2, + "end": 4476.94, + "probability": 0.4864 + }, + { + "start": 4479.22, + "end": 4482.08, + "probability": 0.9461 + }, + { + "start": 4482.62, + "end": 4486.56, + "probability": 0.9381 + }, + { + "start": 4487.7, + "end": 4488.82, + "probability": 0.8691 + }, + { + "start": 4490.0, + "end": 4491.56, + "probability": 0.8647 + }, + { + "start": 4492.48, + "end": 4492.8, + "probability": 0.931 + }, + { + "start": 4493.38, + "end": 4494.66, + "probability": 0.5688 + }, + { + "start": 4495.58, + "end": 4499.48, + "probability": 0.9224 + }, + { + "start": 4499.96, + "end": 4501.74, + "probability": 0.9261 + }, + { + "start": 4502.76, + "end": 4504.76, + "probability": 0.7473 + }, + { + "start": 4505.1, + "end": 4506.46, + "probability": 0.8729 + }, + { + "start": 4506.94, + "end": 4508.22, + "probability": 0.9828 + }, + { + "start": 4508.54, + "end": 4509.54, + "probability": 0.9158 + }, + { + "start": 4509.8, + "end": 4510.56, + "probability": 0.8357 + }, + { + "start": 4510.78, + "end": 4512.52, + "probability": 0.8626 + }, + { + "start": 4513.74, + "end": 4517.22, + "probability": 0.9102 + }, + { + "start": 4518.7, + "end": 4521.46, + "probability": 0.6627 + }, + { + "start": 4522.08, + "end": 4526.12, + "probability": 0.9391 + }, + { + "start": 4527.58, + "end": 4534.12, + "probability": 0.8958 + }, + { + "start": 4535.1, + "end": 4539.5, + "probability": 0.9199 + }, + { + "start": 4540.06, + "end": 4542.1, + "probability": 0.8925 + }, + { + "start": 4542.42, + "end": 4545.16, + "probability": 0.9469 + }, + { + "start": 4545.76, + "end": 4549.26, + "probability": 0.9476 + }, + { + "start": 4549.72, + "end": 4550.66, + "probability": 0.4915 + }, + { + "start": 4551.02, + "end": 4552.16, + "probability": 0.5165 + }, + { + "start": 4553.24, + "end": 4557.02, + "probability": 0.6557 + }, + { + "start": 4557.54, + "end": 4559.9, + "probability": 0.9917 + }, + { + "start": 4561.04, + "end": 4566.78, + "probability": 0.9827 + }, + { + "start": 4566.92, + "end": 4569.9, + "probability": 0.9931 + }, + { + "start": 4570.48, + "end": 4573.64, + "probability": 0.9949 + }, + { + "start": 4574.04, + "end": 4574.88, + "probability": 0.8658 + }, + { + "start": 4575.04, + "end": 4576.08, + "probability": 0.9328 + }, + { + "start": 4577.04, + "end": 4580.62, + "probability": 0.8291 + }, + { + "start": 4581.2, + "end": 4582.76, + "probability": 0.9427 + }, + { + "start": 4582.8, + "end": 4584.54, + "probability": 0.9822 + }, + { + "start": 4585.1, + "end": 4588.0, + "probability": 0.9177 + }, + { + "start": 4588.7, + "end": 4591.12, + "probability": 0.9679 + }, + { + "start": 4591.92, + "end": 4593.6, + "probability": 0.5459 + }, + { + "start": 4594.36, + "end": 4598.46, + "probability": 0.8513 + }, + { + "start": 4599.08, + "end": 4601.78, + "probability": 0.9577 + }, + { + "start": 4602.54, + "end": 4604.8, + "probability": 0.9059 + }, + { + "start": 4604.82, + "end": 4607.48, + "probability": 0.9962 + }, + { + "start": 4608.32, + "end": 4609.81, + "probability": 0.9386 + }, + { + "start": 4610.06, + "end": 4612.48, + "probability": 0.9177 + }, + { + "start": 4613.34, + "end": 4616.96, + "probability": 0.9931 + }, + { + "start": 4617.88, + "end": 4621.2, + "probability": 0.9695 + }, + { + "start": 4621.92, + "end": 4626.52, + "probability": 0.9885 + }, + { + "start": 4627.58, + "end": 4629.08, + "probability": 0.9539 + }, + { + "start": 4629.76, + "end": 4631.18, + "probability": 0.9849 + }, + { + "start": 4631.72, + "end": 4633.2, + "probability": 0.9897 + }, + { + "start": 4633.74, + "end": 4635.98, + "probability": 0.8302 + }, + { + "start": 4636.8, + "end": 4642.54, + "probability": 0.8938 + }, + { + "start": 4643.34, + "end": 4645.68, + "probability": 0.9924 + }, + { + "start": 4646.28, + "end": 4650.2, + "probability": 0.9872 + }, + { + "start": 4651.22, + "end": 4653.34, + "probability": 0.9972 + }, + { + "start": 4653.96, + "end": 4656.34, + "probability": 0.9661 + }, + { + "start": 4656.7, + "end": 4660.1, + "probability": 0.9906 + }, + { + "start": 4660.1, + "end": 4663.46, + "probability": 0.9819 + }, + { + "start": 4665.02, + "end": 4669.47, + "probability": 0.8391 + }, + { + "start": 4669.58, + "end": 4671.18, + "probability": 0.7255 + }, + { + "start": 4672.22, + "end": 4673.1, + "probability": 0.6971 + }, + { + "start": 4674.56, + "end": 4675.7, + "probability": 0.9747 + }, + { + "start": 4676.44, + "end": 4681.12, + "probability": 0.8558 + }, + { + "start": 4681.82, + "end": 4686.54, + "probability": 0.8718 + }, + { + "start": 4687.34, + "end": 4691.24, + "probability": 0.6512 + }, + { + "start": 4691.76, + "end": 4696.66, + "probability": 0.9969 + }, + { + "start": 4697.54, + "end": 4703.14, + "probability": 0.643 + }, + { + "start": 4703.46, + "end": 4704.92, + "probability": 0.9893 + }, + { + "start": 4706.04, + "end": 4711.58, + "probability": 0.677 + }, + { + "start": 4712.48, + "end": 4713.14, + "probability": 0.8434 + }, + { + "start": 4714.16, + "end": 4715.04, + "probability": 0.7374 + }, + { + "start": 4715.84, + "end": 4721.2, + "probability": 0.7468 + }, + { + "start": 4721.5, + "end": 4722.78, + "probability": 0.9874 + }, + { + "start": 4723.62, + "end": 4724.56, + "probability": 0.5561 + }, + { + "start": 4725.2, + "end": 4727.8, + "probability": 0.7468 + }, + { + "start": 4728.64, + "end": 4730.18, + "probability": 0.7917 + }, + { + "start": 4730.8, + "end": 4731.54, + "probability": 0.5346 + }, + { + "start": 4731.96, + "end": 4733.76, + "probability": 0.9577 + }, + { + "start": 4734.04, + "end": 4735.16, + "probability": 0.9456 + }, + { + "start": 4735.22, + "end": 4736.34, + "probability": 0.918 + }, + { + "start": 4736.9, + "end": 4740.9, + "probability": 0.9647 + }, + { + "start": 4741.44, + "end": 4745.0, + "probability": 0.0818 + }, + { + "start": 4745.48, + "end": 4748.04, + "probability": 0.8951 + }, + { + "start": 4749.2, + "end": 4749.2, + "probability": 0.396 + }, + { + "start": 4749.2, + "end": 4752.62, + "probability": 0.1492 + }, + { + "start": 4752.68, + "end": 4753.24, + "probability": 0.0084 + }, + { + "start": 4753.94, + "end": 4754.3, + "probability": 0.1899 + }, + { + "start": 4755.96, + "end": 4756.66, + "probability": 0.0794 + }, + { + "start": 4756.66, + "end": 4756.96, + "probability": 0.1055 + }, + { + "start": 4757.11, + "end": 4758.0, + "probability": 0.1929 + }, + { + "start": 4759.14, + "end": 4762.2, + "probability": 0.175 + }, + { + "start": 4762.88, + "end": 4765.36, + "probability": 0.143 + }, + { + "start": 4766.04, + "end": 4768.02, + "probability": 0.0418 + }, + { + "start": 4769.12, + "end": 4772.92, + "probability": 0.2105 + }, + { + "start": 4773.36, + "end": 4777.34, + "probability": 0.1007 + }, + { + "start": 4778.42, + "end": 4780.24, + "probability": 0.1505 + }, + { + "start": 4780.94, + "end": 4782.12, + "probability": 0.0438 + }, + { + "start": 4782.7, + "end": 4783.94, + "probability": 0.0055 + }, + { + "start": 4784.6, + "end": 4785.77, + "probability": 0.0427 + }, + { + "start": 4785.86, + "end": 4788.46, + "probability": 0.1089 + }, + { + "start": 4788.48, + "end": 4793.1, + "probability": 0.1403 + }, + { + "start": 4793.7, + "end": 4796.14, + "probability": 0.0621 + }, + { + "start": 4796.9, + "end": 4799.05, + "probability": 0.1818 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4880.0, + "end": 4880.0, + "probability": 0.0 + }, + { + "start": 4885.22, + "end": 4885.22, + "probability": 0.052 + }, + { + "start": 4885.22, + "end": 4887.5, + "probability": 0.7465 + }, + { + "start": 4889.02, + "end": 4889.98, + "probability": 0.8937 + }, + { + "start": 4892.22, + "end": 4901.42, + "probability": 0.8258 + }, + { + "start": 4901.7, + "end": 4903.92, + "probability": 0.8214 + }, + { + "start": 4903.96, + "end": 4906.4, + "probability": 0.8649 + }, + { + "start": 4906.5, + "end": 4911.86, + "probability": 0.809 + }, + { + "start": 4913.7, + "end": 4916.58, + "probability": 0.7864 + }, + { + "start": 4918.94, + "end": 4921.5, + "probability": 0.4756 + }, + { + "start": 4923.06, + "end": 4925.86, + "probability": 0.8433 + }, + { + "start": 4926.84, + "end": 4931.22, + "probability": 0.9842 + }, + { + "start": 4932.2, + "end": 4934.26, + "probability": 0.7332 + }, + { + "start": 4935.22, + "end": 4941.34, + "probability": 0.942 + }, + { + "start": 4942.68, + "end": 4945.26, + "probability": 0.843 + }, + { + "start": 4945.5, + "end": 4950.04, + "probability": 0.9877 + }, + { + "start": 4953.32, + "end": 4957.24, + "probability": 0.5925 + }, + { + "start": 4958.66, + "end": 4961.56, + "probability": 0.8999 + }, + { + "start": 4962.82, + "end": 4964.68, + "probability": 0.9619 + }, + { + "start": 4966.32, + "end": 4971.48, + "probability": 0.7329 + }, + { + "start": 4972.78, + "end": 4973.75, + "probability": 0.7168 + }, + { + "start": 4974.38, + "end": 4975.48, + "probability": 0.6385 + }, + { + "start": 4975.56, + "end": 4976.92, + "probability": 0.7098 + }, + { + "start": 4977.96, + "end": 4981.91, + "probability": 0.8685 + }, + { + "start": 4982.46, + "end": 4985.64, + "probability": 0.9932 + }, + { + "start": 4986.28, + "end": 4987.62, + "probability": 0.9586 + }, + { + "start": 4989.08, + "end": 4990.42, + "probability": 0.7081 + }, + { + "start": 4990.7, + "end": 4995.12, + "probability": 0.9789 + }, + { + "start": 4996.28, + "end": 4996.58, + "probability": 0.7776 + }, + { + "start": 4997.24, + "end": 4997.96, + "probability": 0.3474 + }, + { + "start": 5001.56, + "end": 5002.88, + "probability": 0.3332 + }, + { + "start": 5003.52, + "end": 5005.64, + "probability": 0.9946 + }, + { + "start": 5006.42, + "end": 5007.1, + "probability": 0.8014 + }, + { + "start": 5007.76, + "end": 5010.42, + "probability": 0.9094 + }, + { + "start": 5011.52, + "end": 5013.1, + "probability": 0.8186 + }, + { + "start": 5013.88, + "end": 5015.5, + "probability": 0.79 + }, + { + "start": 5017.2, + "end": 5019.74, + "probability": 0.9945 + }, + { + "start": 5020.84, + "end": 5021.22, + "probability": 0.9878 + }, + { + "start": 5022.6, + "end": 5026.16, + "probability": 0.6664 + }, + { + "start": 5026.88, + "end": 5028.48, + "probability": 0.28 + }, + { + "start": 5030.27, + "end": 5032.35, + "probability": 0.6148 + }, + { + "start": 5034.24, + "end": 5037.82, + "probability": 0.7935 + }, + { + "start": 5038.38, + "end": 5040.12, + "probability": 0.7014 + }, + { + "start": 5040.88, + "end": 5043.74, + "probability": 0.698 + }, + { + "start": 5044.88, + "end": 5048.46, + "probability": 0.6556 + }, + { + "start": 5049.04, + "end": 5050.72, + "probability": 0.7581 + }, + { + "start": 5051.4, + "end": 5052.86, + "probability": 0.5947 + }, + { + "start": 5053.54, + "end": 5056.14, + "probability": 0.766 + }, + { + "start": 5058.46, + "end": 5059.14, + "probability": 0.4992 + }, + { + "start": 5060.03, + "end": 5064.78, + "probability": 0.8886 + }, + { + "start": 5065.34, + "end": 5067.16, + "probability": 0.6528 + }, + { + "start": 5067.48, + "end": 5068.04, + "probability": 0.8107 + }, + { + "start": 5068.62, + "end": 5069.5, + "probability": 0.3188 + }, + { + "start": 5070.84, + "end": 5074.14, + "probability": 0.5655 + }, + { + "start": 5075.16, + "end": 5075.96, + "probability": 0.8523 + }, + { + "start": 5076.68, + "end": 5077.36, + "probability": 0.7648 + }, + { + "start": 5078.34, + "end": 5083.32, + "probability": 0.9891 + }, + { + "start": 5085.4, + "end": 5086.3, + "probability": 0.9487 + }, + { + "start": 5087.09, + "end": 5087.69, + "probability": 0.1193 + }, + { + "start": 5088.34, + "end": 5090.72, + "probability": 0.7367 + }, + { + "start": 5092.0, + "end": 5092.56, + "probability": 0.3276 + }, + { + "start": 5094.58, + "end": 5098.12, + "probability": 0.9582 + }, + { + "start": 5098.56, + "end": 5099.96, + "probability": 0.9971 + }, + { + "start": 5101.3, + "end": 5102.44, + "probability": 0.4795 + }, + { + "start": 5103.8, + "end": 5107.34, + "probability": 0.9426 + }, + { + "start": 5108.08, + "end": 5111.08, + "probability": 0.7443 + }, + { + "start": 5111.84, + "end": 5113.84, + "probability": 0.6755 + }, + { + "start": 5113.92, + "end": 5114.69, + "probability": 0.9024 + }, + { + "start": 5115.48, + "end": 5117.04, + "probability": 0.9056 + }, + { + "start": 5118.7, + "end": 5119.64, + "probability": 0.9053 + }, + { + "start": 5120.54, + "end": 5122.6, + "probability": 0.2623 + }, + { + "start": 5123.62, + "end": 5125.6, + "probability": 0.9435 + }, + { + "start": 5126.76, + "end": 5128.88, + "probability": 0.7931 + }, + { + "start": 5128.98, + "end": 5133.16, + "probability": 0.9381 + }, + { + "start": 5135.3, + "end": 5136.62, + "probability": 0.5271 + }, + { + "start": 5137.48, + "end": 5139.74, + "probability": 0.8201 + }, + { + "start": 5140.26, + "end": 5141.82, + "probability": 0.8379 + }, + { + "start": 5143.36, + "end": 5147.6, + "probability": 0.8207 + }, + { + "start": 5148.98, + "end": 5151.86, + "probability": 0.9565 + }, + { + "start": 5152.5, + "end": 5155.96, + "probability": 0.4578 + }, + { + "start": 5156.76, + "end": 5160.62, + "probability": 0.83 + }, + { + "start": 5161.32, + "end": 5163.2, + "probability": 0.5269 + }, + { + "start": 5163.6, + "end": 5165.4, + "probability": 0.7487 + }, + { + "start": 5165.9, + "end": 5168.1, + "probability": 0.9409 + }, + { + "start": 5168.7, + "end": 5171.74, + "probability": 0.9856 + }, + { + "start": 5172.34, + "end": 5174.48, + "probability": 0.5844 + }, + { + "start": 5175.04, + "end": 5178.24, + "probability": 0.8871 + }, + { + "start": 5179.18, + "end": 5181.42, + "probability": 0.9219 + }, + { + "start": 5181.98, + "end": 5183.58, + "probability": 0.9871 + }, + { + "start": 5185.46, + "end": 5190.2, + "probability": 0.7879 + }, + { + "start": 5190.78, + "end": 5193.08, + "probability": 0.8626 + }, + { + "start": 5195.82, + "end": 5196.4, + "probability": 0.3339 + }, + { + "start": 5196.44, + "end": 5197.54, + "probability": 0.8267 + }, + { + "start": 5197.6, + "end": 5203.08, + "probability": 0.8831 + }, + { + "start": 5204.12, + "end": 5205.58, + "probability": 0.9844 + }, + { + "start": 5206.26, + "end": 5207.8, + "probability": 0.9055 + }, + { + "start": 5208.86, + "end": 5209.72, + "probability": 0.6175 + }, + { + "start": 5209.72, + "end": 5211.72, + "probability": 0.5523 + }, + { + "start": 5211.88, + "end": 5214.16, + "probability": 0.4546 + }, + { + "start": 5214.32, + "end": 5216.06, + "probability": 0.2756 + }, + { + "start": 5216.16, + "end": 5219.06, + "probability": 0.9173 + }, + { + "start": 5219.74, + "end": 5220.98, + "probability": 0.8618 + }, + { + "start": 5221.14, + "end": 5222.22, + "probability": 0.0002 + }, + { + "start": 5222.44, + "end": 5223.16, + "probability": 0.116 + }, + { + "start": 5223.22, + "end": 5226.06, + "probability": 0.8657 + }, + { + "start": 5226.5, + "end": 5227.78, + "probability": 0.579 + }, + { + "start": 5227.98, + "end": 5230.26, + "probability": 0.7303 + }, + { + "start": 5230.88, + "end": 5231.88, + "probability": 0.7557 + }, + { + "start": 5232.12, + "end": 5232.6, + "probability": 0.7749 + }, + { + "start": 5232.96, + "end": 5233.52, + "probability": 0.1391 + }, + { + "start": 5234.48, + "end": 5237.3, + "probability": 0.2958 + }, + { + "start": 5237.78, + "end": 5240.36, + "probability": 0.9686 + }, + { + "start": 5240.44, + "end": 5244.54, + "probability": 0.6247 + }, + { + "start": 5244.92, + "end": 5245.42, + "probability": 0.6958 + }, + { + "start": 5245.42, + "end": 5247.08, + "probability": 0.6693 + }, + { + "start": 5247.68, + "end": 5251.28, + "probability": 0.7392 + }, + { + "start": 5251.3, + "end": 5253.58, + "probability": 0.8221 + }, + { + "start": 5254.12, + "end": 5258.42, + "probability": 0.8419 + }, + { + "start": 5259.5, + "end": 5261.02, + "probability": 0.6721 + }, + { + "start": 5261.2, + "end": 5263.9, + "probability": 0.8712 + }, + { + "start": 5264.26, + "end": 5267.62, + "probability": 0.9497 + }, + { + "start": 5268.22, + "end": 5271.26, + "probability": 0.8383 + }, + { + "start": 5271.72, + "end": 5274.32, + "probability": 0.255 + }, + { + "start": 5275.92, + "end": 5277.82, + "probability": 0.5978 + }, + { + "start": 5278.52, + "end": 5281.5, + "probability": 0.7963 + }, + { + "start": 5282.72, + "end": 5284.12, + "probability": 0.7537 + }, + { + "start": 5285.1, + "end": 5288.58, + "probability": 0.9949 + }, + { + "start": 5290.06, + "end": 5293.28, + "probability": 0.9089 + }, + { + "start": 5294.32, + "end": 5297.1, + "probability": 0.5627 + }, + { + "start": 5298.22, + "end": 5299.48, + "probability": 0.8079 + }, + { + "start": 5302.48, + "end": 5302.66, + "probability": 0.0538 + }, + { + "start": 5302.66, + "end": 5304.1, + "probability": 0.1761 + }, + { + "start": 5305.26, + "end": 5310.42, + "probability": 0.8738 + }, + { + "start": 5310.58, + "end": 5313.68, + "probability": 0.9391 + }, + { + "start": 5314.66, + "end": 5315.3, + "probability": 0.9189 + }, + { + "start": 5315.82, + "end": 5323.06, + "probability": 0.7021 + }, + { + "start": 5323.84, + "end": 5325.34, + "probability": 0.8198 + }, + { + "start": 5326.26, + "end": 5329.84, + "probability": 0.9183 + }, + { + "start": 5330.76, + "end": 5334.06, + "probability": 0.8853 + }, + { + "start": 5334.06, + "end": 5338.68, + "probability": 0.9905 + }, + { + "start": 5339.66, + "end": 5343.32, + "probability": 0.8593 + }, + { + "start": 5344.98, + "end": 5347.28, + "probability": 0.7207 + }, + { + "start": 5348.66, + "end": 5350.92, + "probability": 0.2228 + }, + { + "start": 5351.0, + "end": 5352.54, + "probability": 0.7895 + }, + { + "start": 5352.8, + "end": 5358.78, + "probability": 0.9714 + }, + { + "start": 5359.04, + "end": 5359.58, + "probability": 0.896 + }, + { + "start": 5360.26, + "end": 5361.02, + "probability": 0.5709 + }, + { + "start": 5361.52, + "end": 5362.14, + "probability": 0.8598 + }, + { + "start": 5362.68, + "end": 5365.34, + "probability": 0.9302 + }, + { + "start": 5366.42, + "end": 5367.72, + "probability": 0.9198 + }, + { + "start": 5368.48, + "end": 5371.54, + "probability": 0.8937 + }, + { + "start": 5372.18, + "end": 5376.5, + "probability": 0.9879 + }, + { + "start": 5377.62, + "end": 5378.84, + "probability": 0.9212 + }, + { + "start": 5378.98, + "end": 5379.34, + "probability": 0.8247 + }, + { + "start": 5379.4, + "end": 5380.18, + "probability": 0.6025 + }, + { + "start": 5380.26, + "end": 5381.44, + "probability": 0.6023 + }, + { + "start": 5381.8, + "end": 5385.52, + "probability": 0.823 + }, + { + "start": 5385.68, + "end": 5386.18, + "probability": 0.5686 + }, + { + "start": 5386.42, + "end": 5387.87, + "probability": 0.6066 + }, + { + "start": 5389.66, + "end": 5394.48, + "probability": 0.3762 + }, + { + "start": 5394.82, + "end": 5395.52, + "probability": 0.2153 + }, + { + "start": 5397.86, + "end": 5400.84, + "probability": 0.311 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.4691 + }, + { + "start": 5401.22, + "end": 5403.14, + "probability": 0.9929 + }, + { + "start": 5403.3, + "end": 5406.34, + "probability": 0.6531 + }, + { + "start": 5406.34, + "end": 5408.18, + "probability": 0.9302 + }, + { + "start": 5408.66, + "end": 5409.7, + "probability": 0.828 + }, + { + "start": 5410.28, + "end": 5415.5, + "probability": 0.9917 + }, + { + "start": 5416.29, + "end": 5420.62, + "probability": 0.9896 + }, + { + "start": 5421.46, + "end": 5423.4, + "probability": 0.7471 + }, + { + "start": 5425.12, + "end": 5427.24, + "probability": 0.9719 + }, + { + "start": 5427.34, + "end": 5428.22, + "probability": 0.9522 + }, + { + "start": 5428.22, + "end": 5431.08, + "probability": 0.965 + }, + { + "start": 5432.03, + "end": 5433.82, + "probability": 0.2606 + }, + { + "start": 5434.44, + "end": 5436.84, + "probability": 0.9555 + }, + { + "start": 5437.0, + "end": 5439.14, + "probability": 0.6681 + }, + { + "start": 5439.62, + "end": 5444.76, + "probability": 0.9617 + }, + { + "start": 5445.2, + "end": 5446.88, + "probability": 0.986 + }, + { + "start": 5447.28, + "end": 5453.04, + "probability": 0.9694 + }, + { + "start": 5453.52, + "end": 5453.96, + "probability": 0.4984 + }, + { + "start": 5454.1, + "end": 5455.04, + "probability": 0.7529 + }, + { + "start": 5455.1, + "end": 5458.94, + "probability": 0.9924 + }, + { + "start": 5459.72, + "end": 5459.88, + "probability": 0.3728 + }, + { + "start": 5459.88, + "end": 5462.04, + "probability": 0.7186 + }, + { + "start": 5462.14, + "end": 5464.26, + "probability": 0.8992 + }, + { + "start": 5464.84, + "end": 5467.3, + "probability": 0.8977 + }, + { + "start": 5467.4, + "end": 5471.48, + "probability": 0.9015 + }, + { + "start": 5473.24, + "end": 5474.5, + "probability": 0.8896 + }, + { + "start": 5482.58, + "end": 5482.84, + "probability": 0.3752 + }, + { + "start": 5482.84, + "end": 5484.62, + "probability": 0.6974 + }, + { + "start": 5485.8, + "end": 5489.76, + "probability": 0.7019 + }, + { + "start": 5489.76, + "end": 5492.92, + "probability": 0.8523 + }, + { + "start": 5493.46, + "end": 5495.42, + "probability": 0.9227 + }, + { + "start": 5496.36, + "end": 5498.84, + "probability": 0.9446 + }, + { + "start": 5498.84, + "end": 5503.5, + "probability": 0.8665 + }, + { + "start": 5505.3, + "end": 5506.52, + "probability": 0.3341 + }, + { + "start": 5507.96, + "end": 5511.06, + "probability": 0.7876 + }, + { + "start": 5511.28, + "end": 5512.0, + "probability": 0.352 + }, + { + "start": 5512.28, + "end": 5512.85, + "probability": 0.7485 + }, + { + "start": 5514.4, + "end": 5519.08, + "probability": 0.9596 + }, + { + "start": 5519.7, + "end": 5521.32, + "probability": 0.937 + }, + { + "start": 5522.34, + "end": 5523.02, + "probability": 0.7719 + }, + { + "start": 5524.12, + "end": 5525.48, + "probability": 0.9332 + }, + { + "start": 5526.08, + "end": 5531.12, + "probability": 0.887 + }, + { + "start": 5532.46, + "end": 5536.52, + "probability": 0.9557 + }, + { + "start": 5537.66, + "end": 5540.68, + "probability": 0.8407 + }, + { + "start": 5541.28, + "end": 5544.94, + "probability": 0.9503 + }, + { + "start": 5545.8, + "end": 5546.48, + "probability": 0.7678 + }, + { + "start": 5547.16, + "end": 5549.64, + "probability": 0.8049 + }, + { + "start": 5549.92, + "end": 5551.65, + "probability": 0.7471 + }, + { + "start": 5552.66, + "end": 5555.82, + "probability": 0.7455 + }, + { + "start": 5557.22, + "end": 5560.28, + "probability": 0.9697 + }, + { + "start": 5562.12, + "end": 5564.98, + "probability": 0.9766 + }, + { + "start": 5565.54, + "end": 5568.92, + "probability": 0.7533 + }, + { + "start": 5569.58, + "end": 5570.68, + "probability": 0.6773 + }, + { + "start": 5571.22, + "end": 5576.04, + "probability": 0.8098 + }, + { + "start": 5577.2, + "end": 5579.08, + "probability": 0.7852 + }, + { + "start": 5580.0, + "end": 5584.34, + "probability": 0.9341 + }, + { + "start": 5585.0, + "end": 5588.72, + "probability": 0.895 + }, + { + "start": 5589.24, + "end": 5592.66, + "probability": 0.9653 + }, + { + "start": 5592.94, + "end": 5594.48, + "probability": 0.8142 + }, + { + "start": 5594.72, + "end": 5596.32, + "probability": 0.7932 + }, + { + "start": 5597.48, + "end": 5598.12, + "probability": 0.7177 + }, + { + "start": 5598.86, + "end": 5599.6, + "probability": 0.9242 + }, + { + "start": 5600.3, + "end": 5602.66, + "probability": 0.9766 + }, + { + "start": 5603.54, + "end": 5604.92, + "probability": 0.7636 + }, + { + "start": 5605.42, + "end": 5607.5, + "probability": 0.9006 + }, + { + "start": 5608.36, + "end": 5610.84, + "probability": 0.8765 + }, + { + "start": 5612.76, + "end": 5616.42, + "probability": 0.9399 + }, + { + "start": 5616.94, + "end": 5620.1, + "probability": 0.9932 + }, + { + "start": 5620.7, + "end": 5624.08, + "probability": 0.923 + }, + { + "start": 5625.54, + "end": 5629.32, + "probability": 0.8851 + }, + { + "start": 5629.84, + "end": 5633.28, + "probability": 0.9785 + }, + { + "start": 5635.4, + "end": 5636.12, + "probability": 0.7788 + }, + { + "start": 5636.86, + "end": 5637.4, + "probability": 0.8617 + }, + { + "start": 5637.8, + "end": 5638.82, + "probability": 0.9333 + }, + { + "start": 5639.0, + "end": 5639.62, + "probability": 0.9548 + }, + { + "start": 5640.1, + "end": 5640.6, + "probability": 0.3958 + }, + { + "start": 5641.3, + "end": 5643.94, + "probability": 0.8754 + }, + { + "start": 5644.76, + "end": 5645.78, + "probability": 0.961 + }, + { + "start": 5646.44, + "end": 5650.22, + "probability": 0.7914 + }, + { + "start": 5650.52, + "end": 5652.22, + "probability": 0.9801 + }, + { + "start": 5653.4, + "end": 5654.38, + "probability": 0.9167 + }, + { + "start": 5654.66, + "end": 5657.88, + "probability": 0.9309 + }, + { + "start": 5659.06, + "end": 5661.58, + "probability": 0.8181 + }, + { + "start": 5662.18, + "end": 5663.5, + "probability": 0.8353 + }, + { + "start": 5663.86, + "end": 5664.75, + "probability": 0.9023 + }, + { + "start": 5665.28, + "end": 5668.6, + "probability": 0.993 + }, + { + "start": 5669.28, + "end": 5670.38, + "probability": 0.6899 + }, + { + "start": 5671.16, + "end": 5671.36, + "probability": 0.7847 + }, + { + "start": 5672.04, + "end": 5674.68, + "probability": 0.9812 + }, + { + "start": 5675.31, + "end": 5676.36, + "probability": 0.0239 + }, + { + "start": 5677.06, + "end": 5678.28, + "probability": 0.7572 + }, + { + "start": 5678.56, + "end": 5678.94, + "probability": 0.917 + }, + { + "start": 5679.34, + "end": 5679.9, + "probability": 0.9877 + }, + { + "start": 5680.24, + "end": 5680.88, + "probability": 0.956 + }, + { + "start": 5681.16, + "end": 5682.62, + "probability": 0.8154 + }, + { + "start": 5684.0, + "end": 5684.56, + "probability": 0.7285 + }, + { + "start": 5685.22, + "end": 5688.66, + "probability": 0.9476 + }, + { + "start": 5689.04, + "end": 5690.42, + "probability": 0.8069 + }, + { + "start": 5690.96, + "end": 5692.6, + "probability": 0.8956 + }, + { + "start": 5693.06, + "end": 5697.8, + "probability": 0.8254 + }, + { + "start": 5697.8, + "end": 5701.44, + "probability": 0.964 + }, + { + "start": 5703.22, + "end": 5704.08, + "probability": 0.6228 + }, + { + "start": 5705.26, + "end": 5708.12, + "probability": 0.924 + }, + { + "start": 5708.96, + "end": 5710.08, + "probability": 0.7638 + }, + { + "start": 5710.28, + "end": 5714.12, + "probability": 0.8296 + }, + { + "start": 5714.62, + "end": 5719.46, + "probability": 0.8114 + }, + { + "start": 5720.1, + "end": 5723.42, + "probability": 0.7927 + }, + { + "start": 5724.24, + "end": 5725.42, + "probability": 0.6734 + }, + { + "start": 5725.78, + "end": 5729.52, + "probability": 0.8241 + }, + { + "start": 5729.84, + "end": 5731.32, + "probability": 0.8236 + }, + { + "start": 5731.72, + "end": 5733.62, + "probability": 0.7947 + }, + { + "start": 5734.36, + "end": 5737.46, + "probability": 0.9333 + }, + { + "start": 5737.46, + "end": 5741.52, + "probability": 0.9948 + }, + { + "start": 5743.04, + "end": 5744.64, + "probability": 0.9948 + }, + { + "start": 5745.18, + "end": 5746.28, + "probability": 0.7475 + }, + { + "start": 5746.64, + "end": 5748.9, + "probability": 0.5327 + }, + { + "start": 5749.9, + "end": 5751.52, + "probability": 0.0154 + }, + { + "start": 5753.08, + "end": 5755.1, + "probability": 0.658 + }, + { + "start": 5756.16, + "end": 5758.62, + "probability": 0.8726 + }, + { + "start": 5759.26, + "end": 5764.54, + "probability": 0.9497 + }, + { + "start": 5764.98, + "end": 5767.62, + "probability": 0.7003 + }, + { + "start": 5767.94, + "end": 5769.8, + "probability": 0.9963 + }, + { + "start": 5771.22, + "end": 5774.08, + "probability": 0.9097 + }, + { + "start": 5774.44, + "end": 5778.1, + "probability": 0.8236 + }, + { + "start": 5779.02, + "end": 5781.38, + "probability": 0.9111 + }, + { + "start": 5781.56, + "end": 5783.22, + "probability": 0.8973 + }, + { + "start": 5783.58, + "end": 5785.14, + "probability": 0.6315 + }, + { + "start": 5786.18, + "end": 5787.52, + "probability": 0.9249 + }, + { + "start": 5787.96, + "end": 5789.4, + "probability": 0.8598 + }, + { + "start": 5790.4, + "end": 5793.02, + "probability": 0.6393 + }, + { + "start": 5793.9, + "end": 5795.7, + "probability": 0.8311 + }, + { + "start": 5796.04, + "end": 5801.68, + "probability": 0.8035 + }, + { + "start": 5803.2, + "end": 5806.64, + "probability": 0.9171 + }, + { + "start": 5807.46, + "end": 5809.62, + "probability": 0.7494 + }, + { + "start": 5810.22, + "end": 5815.48, + "probability": 0.9154 + }, + { + "start": 5816.02, + "end": 5820.18, + "probability": 0.8526 + }, + { + "start": 5820.98, + "end": 5823.28, + "probability": 0.9883 + }, + { + "start": 5823.9, + "end": 5827.36, + "probability": 0.9734 + }, + { + "start": 5828.1, + "end": 5829.56, + "probability": 0.9511 + }, + { + "start": 5829.62, + "end": 5831.9, + "probability": 0.5619 + }, + { + "start": 5832.1, + "end": 5832.46, + "probability": 0.7471 + }, + { + "start": 5834.02, + "end": 5840.02, + "probability": 0.8223 + }, + { + "start": 5840.02, + "end": 5845.06, + "probability": 0.9918 + }, + { + "start": 5846.86, + "end": 5848.9, + "probability": 0.5849 + }, + { + "start": 5850.06, + "end": 5852.5, + "probability": 0.9 + }, + { + "start": 5853.08, + "end": 5857.86, + "probability": 0.9433 + }, + { + "start": 5858.24, + "end": 5859.18, + "probability": 0.9785 + }, + { + "start": 5860.12, + "end": 5860.78, + "probability": 0.7525 + }, + { + "start": 5862.56, + "end": 5866.7, + "probability": 0.9704 + }, + { + "start": 5867.22, + "end": 5868.28, + "probability": 0.8701 + }, + { + "start": 5870.06, + "end": 5873.3, + "probability": 0.783 + }, + { + "start": 5873.92, + "end": 5878.88, + "probability": 0.9522 + }, + { + "start": 5879.82, + "end": 5880.58, + "probability": 0.4229 + }, + { + "start": 5880.98, + "end": 5881.76, + "probability": 0.7918 + }, + { + "start": 5882.02, + "end": 5882.74, + "probability": 0.9341 + }, + { + "start": 5883.12, + "end": 5885.0, + "probability": 0.7653 + }, + { + "start": 5886.46, + "end": 5890.74, + "probability": 0.8577 + }, + { + "start": 5890.74, + "end": 5893.98, + "probability": 0.5349 + }, + { + "start": 5894.38, + "end": 5895.28, + "probability": 0.6783 + }, + { + "start": 5895.92, + "end": 5897.74, + "probability": 0.6543 + }, + { + "start": 5899.24, + "end": 5902.52, + "probability": 0.9626 + }, + { + "start": 5902.56, + "end": 5908.72, + "probability": 0.9873 + }, + { + "start": 5910.88, + "end": 5915.28, + "probability": 0.9604 + }, + { + "start": 5916.76, + "end": 5923.26, + "probability": 0.6657 + }, + { + "start": 5923.3, + "end": 5926.88, + "probability": 0.9821 + }, + { + "start": 5927.42, + "end": 5930.62, + "probability": 0.8392 + }, + { + "start": 5931.62, + "end": 5935.3, + "probability": 0.9175 + }, + { + "start": 5936.02, + "end": 5937.76, + "probability": 0.8763 + }, + { + "start": 5937.9, + "end": 5938.88, + "probability": 0.9164 + }, + { + "start": 5939.32, + "end": 5940.1, + "probability": 0.612 + }, + { + "start": 5940.26, + "end": 5941.9, + "probability": 0.9181 + }, + { + "start": 5942.46, + "end": 5944.2, + "probability": 0.9648 + }, + { + "start": 5944.66, + "end": 5947.34, + "probability": 0.995 + }, + { + "start": 5948.18, + "end": 5952.7, + "probability": 0.9585 + }, + { + "start": 5952.88, + "end": 5953.44, + "probability": 0.8243 + }, + { + "start": 5953.78, + "end": 5954.52, + "probability": 0.6817 + }, + { + "start": 5956.3, + "end": 5959.67, + "probability": 0.9243 + }, + { + "start": 5960.6, + "end": 5964.16, + "probability": 0.9233 + }, + { + "start": 5964.8, + "end": 5967.52, + "probability": 0.9181 + }, + { + "start": 5968.06, + "end": 5970.48, + "probability": 0.7551 + }, + { + "start": 5971.78, + "end": 5972.4, + "probability": 0.2962 + }, + { + "start": 5973.56, + "end": 5974.78, + "probability": 0.7572 + }, + { + "start": 5976.44, + "end": 5980.4, + "probability": 0.9413 + }, + { + "start": 5980.74, + "end": 5982.4, + "probability": 0.7667 + }, + { + "start": 5982.84, + "end": 5985.44, + "probability": 0.947 + }, + { + "start": 5987.66, + "end": 5991.63, + "probability": 0.9011 + }, + { + "start": 5992.94, + "end": 5994.66, + "probability": 0.9272 + }, + { + "start": 5994.98, + "end": 5999.42, + "probability": 0.9784 + }, + { + "start": 6000.7, + "end": 6003.9, + "probability": 0.927 + }, + { + "start": 6004.12, + "end": 6005.42, + "probability": 0.8855 + }, + { + "start": 6005.64, + "end": 6006.6, + "probability": 0.7099 + }, + { + "start": 6007.0, + "end": 6008.83, + "probability": 0.4374 + }, + { + "start": 6009.32, + "end": 6009.92, + "probability": 0.6684 + }, + { + "start": 6010.34, + "end": 6012.36, + "probability": 0.8543 + }, + { + "start": 6013.18, + "end": 6017.7, + "probability": 0.9255 + }, + { + "start": 6018.1, + "end": 6019.2, + "probability": 0.6821 + }, + { + "start": 6019.56, + "end": 6021.42, + "probability": 0.8939 + }, + { + "start": 6021.86, + "end": 6024.58, + "probability": 0.783 + }, + { + "start": 6024.9, + "end": 6026.94, + "probability": 0.9753 + }, + { + "start": 6028.14, + "end": 6031.44, + "probability": 0.9507 + }, + { + "start": 6031.44, + "end": 6034.18, + "probability": 0.9913 + }, + { + "start": 6034.9, + "end": 6036.24, + "probability": 0.6972 + }, + { + "start": 6036.66, + "end": 6038.9, + "probability": 0.9449 + }, + { + "start": 6039.2, + "end": 6041.74, + "probability": 0.8154 + }, + { + "start": 6042.26, + "end": 6045.54, + "probability": 0.9129 + }, + { + "start": 6046.82, + "end": 6051.72, + "probability": 0.7958 + }, + { + "start": 6052.36, + "end": 6056.82, + "probability": 0.8347 + }, + { + "start": 6057.52, + "end": 6062.34, + "probability": 0.9507 + }, + { + "start": 6062.76, + "end": 6063.88, + "probability": 0.744 + }, + { + "start": 6064.32, + "end": 6065.76, + "probability": 0.6952 + }, + { + "start": 6065.86, + "end": 6066.62, + "probability": 0.7184 + }, + { + "start": 6067.38, + "end": 6070.3, + "probability": 0.8145 + }, + { + "start": 6070.3, + "end": 6073.48, + "probability": 0.9161 + }, + { + "start": 6075.06, + "end": 6077.34, + "probability": 0.9383 + }, + { + "start": 6077.34, + "end": 6080.22, + "probability": 0.9504 + }, + { + "start": 6080.66, + "end": 6081.98, + "probability": 0.9618 + }, + { + "start": 6082.92, + "end": 6084.01, + "probability": 0.9705 + }, + { + "start": 6084.36, + "end": 6086.8, + "probability": 0.9148 + }, + { + "start": 6087.38, + "end": 6090.58, + "probability": 0.6889 + }, + { + "start": 6090.62, + "end": 6093.68, + "probability": 0.9749 + }, + { + "start": 6094.3, + "end": 6096.9, + "probability": 0.9286 + }, + { + "start": 6097.66, + "end": 6100.72, + "probability": 0.9829 + }, + { + "start": 6101.38, + "end": 6103.62, + "probability": 0.9843 + }, + { + "start": 6104.24, + "end": 6104.84, + "probability": 0.7648 + }, + { + "start": 6105.5, + "end": 6108.82, + "probability": 0.9793 + }, + { + "start": 6108.82, + "end": 6112.7, + "probability": 0.7353 + }, + { + "start": 6113.92, + "end": 6115.22, + "probability": 0.637 + }, + { + "start": 6115.76, + "end": 6118.66, + "probability": 0.9345 + }, + { + "start": 6119.38, + "end": 6121.22, + "probability": 0.8788 + }, + { + "start": 6122.28, + "end": 6125.16, + "probability": 0.9506 + }, + { + "start": 6125.54, + "end": 6126.44, + "probability": 0.6306 + }, + { + "start": 6127.02, + "end": 6130.42, + "probability": 0.9558 + }, + { + "start": 6131.04, + "end": 6135.6, + "probability": 0.7359 + }, + { + "start": 6135.6, + "end": 6138.88, + "probability": 0.9919 + }, + { + "start": 6139.62, + "end": 6145.36, + "probability": 0.9556 + }, + { + "start": 6146.19, + "end": 6150.58, + "probability": 0.9373 + }, + { + "start": 6151.54, + "end": 6154.36, + "probability": 0.712 + }, + { + "start": 6155.24, + "end": 6160.28, + "probability": 0.9708 + }, + { + "start": 6161.2, + "end": 6163.42, + "probability": 0.959 + }, + { + "start": 6163.42, + "end": 6166.34, + "probability": 0.9836 + }, + { + "start": 6167.78, + "end": 6169.68, + "probability": 0.726 + }, + { + "start": 6170.7, + "end": 6174.32, + "probability": 0.9882 + }, + { + "start": 6174.84, + "end": 6177.46, + "probability": 0.619 + }, + { + "start": 6177.8, + "end": 6186.15, + "probability": 0.9382 + }, + { + "start": 6186.76, + "end": 6191.54, + "probability": 0.541 + }, + { + "start": 6192.04, + "end": 6192.81, + "probability": 0.5743 + }, + { + "start": 6193.1, + "end": 6193.52, + "probability": 0.8382 + }, + { + "start": 6194.16, + "end": 6199.58, + "probability": 0.8084 + }, + { + "start": 6200.98, + "end": 6205.25, + "probability": 0.8828 + }, + { + "start": 6206.32, + "end": 6209.2, + "probability": 0.7563 + }, + { + "start": 6209.74, + "end": 6211.5, + "probability": 0.9393 + }, + { + "start": 6211.96, + "end": 6213.54, + "probability": 0.6912 + }, + { + "start": 6213.96, + "end": 6216.92, + "probability": 0.8754 + }, + { + "start": 6217.54, + "end": 6218.8, + "probability": 0.9896 + }, + { + "start": 6219.24, + "end": 6221.76, + "probability": 0.9799 + }, + { + "start": 6222.64, + "end": 6226.3, + "probability": 0.827 + }, + { + "start": 6226.74, + "end": 6229.5, + "probability": 0.7858 + }, + { + "start": 6230.54, + "end": 6234.66, + "probability": 0.9367 + }, + { + "start": 6235.46, + "end": 6239.94, + "probability": 0.7524 + }, + { + "start": 6241.04, + "end": 6243.16, + "probability": 0.7226 + }, + { + "start": 6243.96, + "end": 6248.75, + "probability": 0.6337 + }, + { + "start": 6250.32, + "end": 6252.48, + "probability": 0.0874 + }, + { + "start": 6252.48, + "end": 6254.02, + "probability": 0.0668 + }, + { + "start": 6254.44, + "end": 6255.1, + "probability": 0.7387 + }, + { + "start": 6255.54, + "end": 6255.86, + "probability": 0.2078 + }, + { + "start": 6256.42, + "end": 6260.2, + "probability": 0.8604 + }, + { + "start": 6260.54, + "end": 6261.38, + "probability": 0.6702 + }, + { + "start": 6261.68, + "end": 6263.94, + "probability": 0.5368 + }, + { + "start": 6264.48, + "end": 6266.5, + "probability": 0.7117 + }, + { + "start": 6267.04, + "end": 6269.12, + "probability": 0.6131 + }, + { + "start": 6269.48, + "end": 6271.18, + "probability": 0.9956 + }, + { + "start": 6271.68, + "end": 6275.8, + "probability": 0.7911 + }, + { + "start": 6276.76, + "end": 6279.44, + "probability": 0.9891 + }, + { + "start": 6279.96, + "end": 6283.98, + "probability": 0.6189 + }, + { + "start": 6284.36, + "end": 6285.96, + "probability": 0.7313 + }, + { + "start": 6287.5, + "end": 6290.12, + "probability": 0.778 + }, + { + "start": 6290.48, + "end": 6294.2, + "probability": 0.157 + }, + { + "start": 6295.26, + "end": 6295.9, + "probability": 0.4289 + }, + { + "start": 6296.52, + "end": 6299.0, + "probability": 0.966 + }, + { + "start": 6299.12, + "end": 6299.82, + "probability": 0.5822 + }, + { + "start": 6300.54, + "end": 6302.26, + "probability": 0.6841 + }, + { + "start": 6303.6, + "end": 6309.8, + "probability": 0.5396 + }, + { + "start": 6310.72, + "end": 6312.82, + "probability": 0.1726 + }, + { + "start": 6313.42, + "end": 6319.26, + "probability": 0.9002 + }, + { + "start": 6320.08, + "end": 6324.36, + "probability": 0.9645 + }, + { + "start": 6325.0, + "end": 6329.82, + "probability": 0.942 + }, + { + "start": 6330.12, + "end": 6334.08, + "probability": 0.7833 + }, + { + "start": 6334.46, + "end": 6336.22, + "probability": 0.7931 + }, + { + "start": 6336.62, + "end": 6336.84, + "probability": 0.7374 + }, + { + "start": 6338.42, + "end": 6341.6, + "probability": 0.856 + }, + { + "start": 6342.2, + "end": 6345.12, + "probability": 0.9348 + }, + { + "start": 6347.14, + "end": 6347.62, + "probability": 0.0794 + }, + { + "start": 6347.92, + "end": 6350.38, + "probability": 0.0864 + }, + { + "start": 6351.38, + "end": 6351.48, + "probability": 0.2359 + }, + { + "start": 6365.58, + "end": 6368.34, + "probability": 0.1738 + }, + { + "start": 6368.92, + "end": 6372.14, + "probability": 0.3032 + }, + { + "start": 6373.8, + "end": 6375.48, + "probability": 0.0461 + }, + { + "start": 6375.98, + "end": 6378.82, + "probability": 0.0736 + }, + { + "start": 6378.84, + "end": 6379.22, + "probability": 0.0412 + }, + { + "start": 6379.22, + "end": 6381.92, + "probability": 0.0206 + }, + { + "start": 6460.0, + "end": 6460.0, + "probability": 0.0 + }, + { + "start": 6460.0, + "end": 6460.0, + "probability": 0.0 + }, + { + "start": 6460.0, + "end": 6460.0, + "probability": 0.0 + }, + { + "start": 6460.0, + "end": 6460.0, + "probability": 0.0 + }, + { + "start": 6460.0, + "end": 6460.0, + "probability": 0.0 + }, + { + "start": 6460.0, + "end": 6460.0, + "probability": 0.0 + }, + { + "start": 6460.0, + "end": 6460.0, + "probability": 0.0 + }, + { + "start": 6460.0, + "end": 6460.0, + "probability": 0.0 + }, + { + "start": 6472.78, + "end": 6473.4, + "probability": 0.6287 + }, + { + "start": 6473.52, + "end": 6475.12, + "probability": 0.0275 + }, + { + "start": 6475.12, + "end": 6475.78, + "probability": 0.0992 + }, + { + "start": 6475.78, + "end": 6479.45, + "probability": 0.3063 + }, + { + "start": 6482.5, + "end": 6482.85, + "probability": 0.0888 + }, + { + "start": 6491.36, + "end": 6492.6, + "probability": 0.024 + }, + { + "start": 6492.6, + "end": 6495.14, + "probability": 0.0047 + }, + { + "start": 6495.14, + "end": 6495.14, + "probability": 0.2383 + }, + { + "start": 6495.14, + "end": 6495.14, + "probability": 0.061 + }, + { + "start": 6496.78, + "end": 6499.74, + "probability": 0.1107 + }, + { + "start": 6500.14, + "end": 6500.7, + "probability": 0.0292 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.0, + "end": 6594.0, + "probability": 0.0 + }, + { + "start": 6594.48, + "end": 6594.48, + "probability": 0.058 + }, + { + "start": 6594.48, + "end": 6594.48, + "probability": 0.4656 + }, + { + "start": 6594.48, + "end": 6594.48, + "probability": 0.0247 + }, + { + "start": 6594.48, + "end": 6594.48, + "probability": 0.1252 + }, + { + "start": 6594.48, + "end": 6594.62, + "probability": 0.5524 + }, + { + "start": 6594.96, + "end": 6596.74, + "probability": 0.9215 + }, + { + "start": 6597.48, + "end": 6599.82, + "probability": 0.979 + }, + { + "start": 6600.42, + "end": 6604.18, + "probability": 0.8537 + }, + { + "start": 6604.46, + "end": 6609.14, + "probability": 0.9329 + }, + { + "start": 6610.66, + "end": 6615.54, + "probability": 0.9959 + }, + { + "start": 6616.52, + "end": 6619.32, + "probability": 0.9893 + }, + { + "start": 6620.24, + "end": 6621.3, + "probability": 0.959 + }, + { + "start": 6621.82, + "end": 6625.06, + "probability": 0.9719 + }, + { + "start": 6626.2, + "end": 6630.84, + "probability": 0.9795 + }, + { + "start": 6631.4, + "end": 6632.42, + "probability": 0.5891 + }, + { + "start": 6632.82, + "end": 6634.9, + "probability": 0.9105 + }, + { + "start": 6636.36, + "end": 6638.48, + "probability": 0.7814 + }, + { + "start": 6639.04, + "end": 6640.04, + "probability": 0.9684 + }, + { + "start": 6640.56, + "end": 6642.46, + "probability": 0.9797 + }, + { + "start": 6643.68, + "end": 6648.1, + "probability": 0.9643 + }, + { + "start": 6648.1, + "end": 6650.58, + "probability": 0.9255 + }, + { + "start": 6650.9, + "end": 6652.32, + "probability": 0.9466 + }, + { + "start": 6652.4, + "end": 6653.76, + "probability": 0.9179 + }, + { + "start": 6654.66, + "end": 6661.1, + "probability": 0.953 + }, + { + "start": 6662.12, + "end": 6664.92, + "probability": 0.9272 + }, + { + "start": 6666.02, + "end": 6666.98, + "probability": 0.6793 + }, + { + "start": 6667.18, + "end": 6668.76, + "probability": 0.5843 + }, + { + "start": 6669.2, + "end": 6673.54, + "probability": 0.9189 + }, + { + "start": 6674.16, + "end": 6678.86, + "probability": 0.9819 + }, + { + "start": 6678.86, + "end": 6682.96, + "probability": 0.9853 + }, + { + "start": 6683.5, + "end": 6690.24, + "probability": 0.9938 + }, + { + "start": 6690.82, + "end": 6694.72, + "probability": 0.9948 + }, + { + "start": 6695.38, + "end": 6697.62, + "probability": 0.9727 + }, + { + "start": 6697.68, + "end": 6698.64, + "probability": 0.9559 + }, + { + "start": 6699.0, + "end": 6700.88, + "probability": 0.9963 + }, + { + "start": 6702.48, + "end": 6703.26, + "probability": 0.6703 + }, + { + "start": 6703.66, + "end": 6704.74, + "probability": 0.9783 + }, + { + "start": 6705.08, + "end": 6705.94, + "probability": 0.9538 + }, + { + "start": 6706.4, + "end": 6707.9, + "probability": 0.8464 + }, + { + "start": 6708.52, + "end": 6711.04, + "probability": 0.7877 + }, + { + "start": 6711.38, + "end": 6712.44, + "probability": 0.9608 + }, + { + "start": 6712.88, + "end": 6716.92, + "probability": 0.9781 + }, + { + "start": 6717.28, + "end": 6720.28, + "probability": 0.9769 + }, + { + "start": 6720.82, + "end": 6723.12, + "probability": 0.9965 + }, + { + "start": 6723.28, + "end": 6723.72, + "probability": 0.7009 + }, + { + "start": 6724.14, + "end": 6726.04, + "probability": 0.7976 + }, + { + "start": 6726.1, + "end": 6728.58, + "probability": 0.9481 + }, + { + "start": 6728.66, + "end": 6733.88, + "probability": 0.9094 + }, + { + "start": 6734.04, + "end": 6736.9, + "probability": 0.9536 + }, + { + "start": 6741.24, + "end": 6744.02, + "probability": 0.7317 + }, + { + "start": 6744.76, + "end": 6746.56, + "probability": 0.7247 + }, + { + "start": 6747.44, + "end": 6752.84, + "probability": 0.9599 + }, + { + "start": 6753.58, + "end": 6755.48, + "probability": 0.9329 + }, + { + "start": 6756.14, + "end": 6759.2, + "probability": 0.8874 + }, + { + "start": 6759.34, + "end": 6759.72, + "probability": 0.8717 + }, + { + "start": 6760.42, + "end": 6761.12, + "probability": 0.7451 + } + ], + "segments_count": 2251, + "words_count": 11089, + "avg_words_per_segment": 4.9263, + "avg_segment_duration": 2.1792, + "avg_words_per_minute": 97.7119, + "plenum_id": "42369", + "duration": 6809.2, + "title": null, + "plenum_date": "2015-05-19" +} \ No newline at end of file