diff --git "a/112169/metadata.json" "b/112169/metadata.json" new file mode 100644--- /dev/null +++ "b/112169/metadata.json" @@ -0,0 +1,11822 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "112169", + "quality_score": 0.8945, + "per_segment_quality_scores": [ + { + "start": 15.17, + "end": 16.28, + "probability": 0.0845 + }, + { + "start": 44.3, + "end": 45.12, + "probability": 0.2078 + }, + { + "start": 45.2, + "end": 49.6, + "probability": 0.434 + }, + { + "start": 49.78, + "end": 54.28, + "probability": 0.6792 + }, + { + "start": 54.5, + "end": 56.64, + "probability": 0.9785 + }, + { + "start": 57.24, + "end": 59.5, + "probability": 0.9642 + }, + { + "start": 60.64, + "end": 62.26, + "probability": 0.8224 + }, + { + "start": 68.72, + "end": 69.0, + "probability": 0.1242 + }, + { + "start": 69.0, + "end": 71.88, + "probability": 0.6665 + }, + { + "start": 72.92, + "end": 79.04, + "probability": 0.9281 + }, + { + "start": 79.56, + "end": 81.0, + "probability": 0.2874 + }, + { + "start": 82.0, + "end": 85.44, + "probability": 0.9773 + }, + { + "start": 86.24, + "end": 87.94, + "probability": 0.9951 + }, + { + "start": 88.84, + "end": 91.64, + "probability": 0.9951 + }, + { + "start": 91.64, + "end": 95.02, + "probability": 0.9094 + }, + { + "start": 95.82, + "end": 97.22, + "probability": 0.9617 + }, + { + "start": 97.5, + "end": 98.22, + "probability": 0.704 + }, + { + "start": 101.44, + "end": 104.66, + "probability": 0.7913 + }, + { + "start": 105.34, + "end": 106.66, + "probability": 0.7827 + }, + { + "start": 124.34, + "end": 125.52, + "probability": 0.624 + }, + { + "start": 126.64, + "end": 127.94, + "probability": 0.7452 + }, + { + "start": 130.48, + "end": 136.22, + "probability": 0.9736 + }, + { + "start": 137.26, + "end": 137.36, + "probability": 0.0318 + }, + { + "start": 143.32, + "end": 143.42, + "probability": 0.0385 + }, + { + "start": 143.42, + "end": 144.32, + "probability": 0.118 + }, + { + "start": 146.0, + "end": 148.18, + "probability": 0.9232 + }, + { + "start": 148.94, + "end": 153.46, + "probability": 0.7533 + }, + { + "start": 154.4, + "end": 157.98, + "probability": 0.9597 + }, + { + "start": 159.68, + "end": 161.42, + "probability": 0.9086 + }, + { + "start": 162.88, + "end": 167.2, + "probability": 0.9961 + }, + { + "start": 167.2, + "end": 171.92, + "probability": 0.9911 + }, + { + "start": 173.2, + "end": 174.98, + "probability": 0.9979 + }, + { + "start": 175.68, + "end": 177.82, + "probability": 0.9941 + }, + { + "start": 178.66, + "end": 181.48, + "probability": 0.9725 + }, + { + "start": 182.26, + "end": 183.84, + "probability": 0.7957 + }, + { + "start": 185.52, + "end": 187.8, + "probability": 0.7236 + }, + { + "start": 188.76, + "end": 191.02, + "probability": 0.9761 + }, + { + "start": 191.32, + "end": 195.32, + "probability": 0.9878 + }, + { + "start": 196.72, + "end": 200.4, + "probability": 0.946 + }, + { + "start": 201.02, + "end": 201.24, + "probability": 0.9717 + }, + { + "start": 202.58, + "end": 205.1, + "probability": 0.9335 + }, + { + "start": 206.08, + "end": 208.56, + "probability": 0.9832 + }, + { + "start": 209.1, + "end": 210.2, + "probability": 0.9966 + }, + { + "start": 210.6, + "end": 211.56, + "probability": 0.7717 + }, + { + "start": 213.34, + "end": 214.46, + "probability": 0.9517 + }, + { + "start": 215.02, + "end": 218.82, + "probability": 0.8813 + }, + { + "start": 220.78, + "end": 221.9, + "probability": 0.8924 + }, + { + "start": 222.46, + "end": 223.88, + "probability": 0.7876 + }, + { + "start": 224.92, + "end": 227.46, + "probability": 0.767 + }, + { + "start": 229.46, + "end": 232.08, + "probability": 0.9146 + }, + { + "start": 233.02, + "end": 235.38, + "probability": 0.8551 + }, + { + "start": 236.42, + "end": 239.06, + "probability": 0.9872 + }, + { + "start": 239.06, + "end": 242.08, + "probability": 0.996 + }, + { + "start": 243.38, + "end": 243.74, + "probability": 0.9061 + }, + { + "start": 244.46, + "end": 247.18, + "probability": 0.9924 + }, + { + "start": 247.82, + "end": 251.78, + "probability": 0.9971 + }, + { + "start": 252.68, + "end": 255.2, + "probability": 0.9924 + }, + { + "start": 256.42, + "end": 259.32, + "probability": 0.7011 + }, + { + "start": 260.82, + "end": 262.54, + "probability": 0.8371 + }, + { + "start": 264.14, + "end": 267.0, + "probability": 0.6887 + }, + { + "start": 268.12, + "end": 268.22, + "probability": 0.4328 + }, + { + "start": 268.24, + "end": 271.76, + "probability": 0.8186 + }, + { + "start": 273.48, + "end": 279.96, + "probability": 0.8191 + }, + { + "start": 280.7, + "end": 284.48, + "probability": 0.7695 + }, + { + "start": 286.4, + "end": 290.52, + "probability": 0.9545 + }, + { + "start": 291.08, + "end": 292.46, + "probability": 0.975 + }, + { + "start": 293.54, + "end": 293.82, + "probability": 0.5364 + }, + { + "start": 294.72, + "end": 296.74, + "probability": 0.9941 + }, + { + "start": 297.46, + "end": 303.14, + "probability": 0.9983 + }, + { + "start": 303.72, + "end": 306.74, + "probability": 0.9833 + }, + { + "start": 308.6, + "end": 312.62, + "probability": 0.9854 + }, + { + "start": 313.2, + "end": 318.18, + "probability": 0.9964 + }, + { + "start": 318.84, + "end": 319.08, + "probability": 0.7994 + }, + { + "start": 323.86, + "end": 324.4, + "probability": 0.6957 + }, + { + "start": 324.46, + "end": 326.42, + "probability": 0.941 + }, + { + "start": 326.86, + "end": 327.32, + "probability": 0.8865 + }, + { + "start": 330.44, + "end": 333.64, + "probability": 0.9808 + }, + { + "start": 333.94, + "end": 335.74, + "probability": 0.7982 + }, + { + "start": 335.84, + "end": 339.06, + "probability": 0.9233 + }, + { + "start": 340.7, + "end": 346.36, + "probability": 0.994 + }, + { + "start": 347.14, + "end": 349.94, + "probability": 0.967 + }, + { + "start": 350.42, + "end": 351.46, + "probability": 0.9282 + }, + { + "start": 353.92, + "end": 355.22, + "probability": 0.8578 + }, + { + "start": 359.66, + "end": 361.96, + "probability": 0.8004 + }, + { + "start": 368.36, + "end": 369.92, + "probability": 0.3975 + }, + { + "start": 370.22, + "end": 371.03, + "probability": 0.657 + }, + { + "start": 371.18, + "end": 371.74, + "probability": 0.7719 + }, + { + "start": 371.94, + "end": 373.88, + "probability": 0.9613 + }, + { + "start": 374.08, + "end": 374.68, + "probability": 0.9358 + }, + { + "start": 376.12, + "end": 379.32, + "probability": 0.9665 + }, + { + "start": 380.34, + "end": 382.88, + "probability": 0.9627 + }, + { + "start": 384.16, + "end": 385.22, + "probability": 0.9512 + }, + { + "start": 385.88, + "end": 388.52, + "probability": 0.9979 + }, + { + "start": 389.1, + "end": 390.38, + "probability": 0.6739 + }, + { + "start": 391.18, + "end": 392.04, + "probability": 0.9012 + }, + { + "start": 392.76, + "end": 397.22, + "probability": 0.9924 + }, + { + "start": 397.9, + "end": 399.12, + "probability": 0.8094 + }, + { + "start": 399.78, + "end": 403.34, + "probability": 0.8999 + }, + { + "start": 404.36, + "end": 404.36, + "probability": 0.0734 + }, + { + "start": 404.36, + "end": 406.06, + "probability": 0.9146 + }, + { + "start": 406.74, + "end": 408.2, + "probability": 0.8884 + }, + { + "start": 408.7, + "end": 410.64, + "probability": 0.9529 + }, + { + "start": 410.86, + "end": 411.3, + "probability": 0.9535 + }, + { + "start": 413.7, + "end": 418.38, + "probability": 0.6141 + }, + { + "start": 418.44, + "end": 419.34, + "probability": 0.8917 + }, + { + "start": 431.06, + "end": 433.98, + "probability": 0.8055 + }, + { + "start": 434.52, + "end": 436.84, + "probability": 0.5391 + }, + { + "start": 436.94, + "end": 445.66, + "probability": 0.8422 + }, + { + "start": 446.04, + "end": 447.32, + "probability": 0.7756 + }, + { + "start": 448.2, + "end": 448.8, + "probability": 0.9779 + }, + { + "start": 449.34, + "end": 451.28, + "probability": 0.9877 + }, + { + "start": 451.6, + "end": 452.94, + "probability": 0.875 + }, + { + "start": 453.18, + "end": 455.2, + "probability": 0.9976 + }, + { + "start": 455.96, + "end": 458.62, + "probability": 0.9839 + }, + { + "start": 458.7, + "end": 461.4, + "probability": 0.9963 + }, + { + "start": 461.54, + "end": 462.1, + "probability": 0.8217 + }, + { + "start": 462.96, + "end": 465.26, + "probability": 0.8545 + }, + { + "start": 465.26, + "end": 469.16, + "probability": 0.9728 + }, + { + "start": 469.62, + "end": 475.66, + "probability": 0.9767 + }, + { + "start": 476.16, + "end": 476.72, + "probability": 0.7087 + }, + { + "start": 476.86, + "end": 477.5, + "probability": 0.9285 + }, + { + "start": 477.94, + "end": 479.44, + "probability": 0.7649 + }, + { + "start": 479.52, + "end": 481.6, + "probability": 0.9399 + }, + { + "start": 482.3, + "end": 484.1, + "probability": 0.6276 + }, + { + "start": 484.28, + "end": 485.6, + "probability": 0.9477 + }, + { + "start": 486.14, + "end": 488.24, + "probability": 0.9937 + }, + { + "start": 488.94, + "end": 491.1, + "probability": 0.9496 + }, + { + "start": 491.24, + "end": 496.32, + "probability": 0.9432 + }, + { + "start": 497.2, + "end": 501.42, + "probability": 0.7588 + }, + { + "start": 502.2, + "end": 504.46, + "probability": 0.9961 + }, + { + "start": 504.46, + "end": 507.36, + "probability": 0.9798 + }, + { + "start": 507.78, + "end": 508.04, + "probability": 0.8851 + }, + { + "start": 509.9, + "end": 510.86, + "probability": 0.7389 + }, + { + "start": 511.52, + "end": 511.64, + "probability": 0.8167 + }, + { + "start": 513.32, + "end": 516.05, + "probability": 0.5384 + }, + { + "start": 517.26, + "end": 519.72, + "probability": 0.9043 + }, + { + "start": 520.6, + "end": 522.46, + "probability": 0.9849 + }, + { + "start": 522.7, + "end": 525.42, + "probability": 0.7299 + }, + { + "start": 526.14, + "end": 528.8, + "probability": 0.9906 + }, + { + "start": 528.96, + "end": 530.96, + "probability": 0.9926 + }, + { + "start": 531.04, + "end": 532.12, + "probability": 0.6869 + }, + { + "start": 532.2, + "end": 534.04, + "probability": 0.9772 + }, + { + "start": 536.16, + "end": 538.8, + "probability": 0.9795 + }, + { + "start": 538.92, + "end": 541.52, + "probability": 0.7157 + }, + { + "start": 541.96, + "end": 543.34, + "probability": 0.0285 + }, + { + "start": 543.86, + "end": 549.28, + "probability": 0.9834 + }, + { + "start": 549.36, + "end": 551.0, + "probability": 0.7497 + }, + { + "start": 551.22, + "end": 553.12, + "probability": 0.9018 + }, + { + "start": 556.12, + "end": 557.22, + "probability": 0.0091 + }, + { + "start": 557.4, + "end": 557.58, + "probability": 0.1264 + }, + { + "start": 557.78, + "end": 559.42, + "probability": 0.0816 + }, + { + "start": 562.42, + "end": 563.24, + "probability": 0.3837 + }, + { + "start": 565.12, + "end": 566.32, + "probability": 0.6404 + }, + { + "start": 567.32, + "end": 568.49, + "probability": 0.5476 + }, + { + "start": 568.72, + "end": 570.24, + "probability": 0.786 + }, + { + "start": 570.44, + "end": 573.98, + "probability": 0.7505 + }, + { + "start": 574.1, + "end": 576.02, + "probability": 0.8018 + }, + { + "start": 578.36, + "end": 582.2, + "probability": 0.7834 + }, + { + "start": 582.28, + "end": 583.66, + "probability": 0.787 + }, + { + "start": 583.82, + "end": 584.54, + "probability": 0.4889 + }, + { + "start": 584.9, + "end": 585.54, + "probability": 0.2897 + }, + { + "start": 585.54, + "end": 586.8, + "probability": 0.9978 + }, + { + "start": 587.2, + "end": 588.36, + "probability": 0.6995 + }, + { + "start": 589.08, + "end": 589.56, + "probability": 0.4359 + }, + { + "start": 590.14, + "end": 590.94, + "probability": 0.233 + }, + { + "start": 591.3, + "end": 594.54, + "probability": 0.5322 + }, + { + "start": 594.6, + "end": 595.3, + "probability": 0.7604 + }, + { + "start": 595.38, + "end": 596.2, + "probability": 0.6483 + }, + { + "start": 596.36, + "end": 598.84, + "probability": 0.6258 + }, + { + "start": 599.38, + "end": 601.18, + "probability": 0.8848 + }, + { + "start": 601.98, + "end": 604.96, + "probability": 0.6926 + }, + { + "start": 610.28, + "end": 612.36, + "probability": 0.8977 + }, + { + "start": 612.46, + "end": 616.48, + "probability": 0.9839 + }, + { + "start": 617.28, + "end": 619.58, + "probability": 0.9722 + }, + { + "start": 619.68, + "end": 621.64, + "probability": 0.9425 + }, + { + "start": 623.54, + "end": 627.62, + "probability": 0.9919 + }, + { + "start": 628.98, + "end": 630.5, + "probability": 0.9885 + }, + { + "start": 631.24, + "end": 632.82, + "probability": 0.7994 + }, + { + "start": 634.94, + "end": 635.16, + "probability": 0.3 + }, + { + "start": 637.4, + "end": 639.86, + "probability": 0.168 + }, + { + "start": 648.72, + "end": 652.88, + "probability": 0.0964 + }, + { + "start": 653.88, + "end": 654.96, + "probability": 0.0763 + }, + { + "start": 656.12, + "end": 656.5, + "probability": 0.1757 + }, + { + "start": 657.06, + "end": 658.12, + "probability": 0.0485 + }, + { + "start": 658.12, + "end": 658.46, + "probability": 0.049 + }, + { + "start": 689.62, + "end": 690.46, + "probability": 0.0 + }, + { + "start": 691.14, + "end": 694.48, + "probability": 0.8168 + }, + { + "start": 695.16, + "end": 696.78, + "probability": 0.8811 + }, + { + "start": 697.72, + "end": 700.26, + "probability": 0.7983 + }, + { + "start": 701.56, + "end": 705.36, + "probability": 0.9917 + }, + { + "start": 706.32, + "end": 709.23, + "probability": 0.814 + }, + { + "start": 710.18, + "end": 712.4, + "probability": 0.9902 + }, + { + "start": 713.1, + "end": 714.04, + "probability": 0.8013 + }, + { + "start": 714.66, + "end": 716.1, + "probability": 0.7473 + }, + { + "start": 716.66, + "end": 720.72, + "probability": 0.9935 + }, + { + "start": 721.38, + "end": 726.56, + "probability": 0.9956 + }, + { + "start": 728.82, + "end": 729.71, + "probability": 0.8382 + }, + { + "start": 730.52, + "end": 732.24, + "probability": 0.8935 + }, + { + "start": 732.86, + "end": 735.56, + "probability": 0.8736 + }, + { + "start": 736.24, + "end": 738.2, + "probability": 0.6951 + }, + { + "start": 740.24, + "end": 741.04, + "probability": 0.9338 + }, + { + "start": 741.66, + "end": 745.04, + "probability": 0.9972 + }, + { + "start": 745.98, + "end": 747.36, + "probability": 0.7866 + }, + { + "start": 748.14, + "end": 751.58, + "probability": 0.9971 + }, + { + "start": 752.16, + "end": 753.32, + "probability": 0.9276 + }, + { + "start": 754.0, + "end": 756.24, + "probability": 0.972 + }, + { + "start": 757.66, + "end": 765.24, + "probability": 0.9333 + }, + { + "start": 766.34, + "end": 767.66, + "probability": 0.6739 + }, + { + "start": 768.62, + "end": 771.12, + "probability": 0.8286 + }, + { + "start": 771.72, + "end": 773.78, + "probability": 0.991 + }, + { + "start": 774.7, + "end": 781.38, + "probability": 0.9902 + }, + { + "start": 782.5, + "end": 789.1, + "probability": 0.9796 + }, + { + "start": 791.12, + "end": 793.04, + "probability": 0.7715 + }, + { + "start": 794.32, + "end": 795.26, + "probability": 0.8776 + }, + { + "start": 796.06, + "end": 798.14, + "probability": 0.8088 + }, + { + "start": 799.04, + "end": 800.92, + "probability": 0.9933 + }, + { + "start": 801.76, + "end": 802.72, + "probability": 0.9453 + }, + { + "start": 803.52, + "end": 806.56, + "probability": 0.9823 + }, + { + "start": 807.58, + "end": 811.48, + "probability": 0.9553 + }, + { + "start": 813.8, + "end": 815.13, + "probability": 0.9775 + }, + { + "start": 815.82, + "end": 817.1, + "probability": 0.9424 + }, + { + "start": 817.48, + "end": 818.04, + "probability": 0.4972 + }, + { + "start": 818.24, + "end": 818.8, + "probability": 0.5367 + }, + { + "start": 819.56, + "end": 821.16, + "probability": 0.8945 + }, + { + "start": 822.3, + "end": 826.18, + "probability": 0.934 + }, + { + "start": 828.7, + "end": 832.08, + "probability": 0.8292 + }, + { + "start": 832.76, + "end": 836.32, + "probability": 0.9538 + }, + { + "start": 837.3, + "end": 839.98, + "probability": 0.9558 + }, + { + "start": 840.1, + "end": 841.52, + "probability": 0.8303 + }, + { + "start": 842.4, + "end": 844.22, + "probability": 0.7465 + }, + { + "start": 844.92, + "end": 846.32, + "probability": 0.8348 + }, + { + "start": 846.84, + "end": 848.82, + "probability": 0.9495 + }, + { + "start": 849.42, + "end": 849.76, + "probability": 0.5298 + }, + { + "start": 849.8, + "end": 854.1, + "probability": 0.9361 + }, + { + "start": 854.7, + "end": 855.56, + "probability": 0.7182 + }, + { + "start": 855.62, + "end": 859.3, + "probability": 0.9017 + }, + { + "start": 861.06, + "end": 865.06, + "probability": 0.9929 + }, + { + "start": 865.84, + "end": 868.3, + "probability": 0.8452 + }, + { + "start": 868.88, + "end": 869.62, + "probability": 0.8124 + }, + { + "start": 870.16, + "end": 872.96, + "probability": 0.9816 + }, + { + "start": 875.04, + "end": 877.5, + "probability": 0.9613 + }, + { + "start": 877.92, + "end": 878.82, + "probability": 0.8579 + }, + { + "start": 878.98, + "end": 880.18, + "probability": 0.7339 + }, + { + "start": 881.48, + "end": 883.86, + "probability": 0.8342 + }, + { + "start": 884.04, + "end": 886.66, + "probability": 0.9593 + }, + { + "start": 887.64, + "end": 888.28, + "probability": 0.6935 + }, + { + "start": 889.26, + "end": 892.14, + "probability": 0.8884 + }, + { + "start": 893.22, + "end": 897.46, + "probability": 0.9937 + }, + { + "start": 898.08, + "end": 901.06, + "probability": 0.9801 + }, + { + "start": 902.58, + "end": 903.96, + "probability": 0.7367 + }, + { + "start": 904.9, + "end": 908.74, + "probability": 0.8105 + }, + { + "start": 909.78, + "end": 912.62, + "probability": 0.9937 + }, + { + "start": 913.7, + "end": 915.48, + "probability": 0.8619 + }, + { + "start": 916.44, + "end": 919.33, + "probability": 0.976 + }, + { + "start": 919.68, + "end": 923.04, + "probability": 0.9895 + }, + { + "start": 924.48, + "end": 926.12, + "probability": 0.9424 + }, + { + "start": 927.12, + "end": 929.78, + "probability": 0.9849 + }, + { + "start": 929.78, + "end": 932.58, + "probability": 0.6807 + }, + { + "start": 933.46, + "end": 936.56, + "probability": 0.9927 + }, + { + "start": 937.08, + "end": 940.38, + "probability": 0.8261 + }, + { + "start": 941.08, + "end": 942.84, + "probability": 0.7384 + }, + { + "start": 943.34, + "end": 945.7, + "probability": 0.8809 + }, + { + "start": 945.72, + "end": 946.68, + "probability": 0.8014 + }, + { + "start": 947.5, + "end": 949.92, + "probability": 0.631 + }, + { + "start": 950.34, + "end": 953.3, + "probability": 0.9977 + }, + { + "start": 955.24, + "end": 957.14, + "probability": 0.6493 + }, + { + "start": 957.36, + "end": 961.82, + "probability": 0.9089 + }, + { + "start": 962.76, + "end": 967.54, + "probability": 0.9347 + }, + { + "start": 969.22, + "end": 971.72, + "probability": 0.9681 + }, + { + "start": 972.46, + "end": 974.98, + "probability": 0.9689 + }, + { + "start": 975.46, + "end": 978.92, + "probability": 0.9546 + }, + { + "start": 979.68, + "end": 983.64, + "probability": 0.9751 + }, + { + "start": 985.7, + "end": 990.36, + "probability": 0.889 + }, + { + "start": 991.24, + "end": 993.24, + "probability": 0.8838 + }, + { + "start": 993.76, + "end": 995.22, + "probability": 0.7975 + }, + { + "start": 995.42, + "end": 997.42, + "probability": 0.9095 + }, + { + "start": 997.96, + "end": 999.0, + "probability": 0.9067 + }, + { + "start": 999.26, + "end": 1001.02, + "probability": 0.9378 + }, + { + "start": 1001.4, + "end": 1003.86, + "probability": 0.9561 + }, + { + "start": 1005.1, + "end": 1006.38, + "probability": 0.7678 + }, + { + "start": 1006.98, + "end": 1007.88, + "probability": 0.8246 + }, + { + "start": 1008.62, + "end": 1011.74, + "probability": 0.793 + }, + { + "start": 1013.68, + "end": 1015.26, + "probability": 0.6969 + }, + { + "start": 1015.98, + "end": 1018.82, + "probability": 0.9766 + }, + { + "start": 1019.76, + "end": 1021.68, + "probability": 0.8466 + }, + { + "start": 1021.9, + "end": 1023.06, + "probability": 0.9538 + }, + { + "start": 1023.24, + "end": 1023.92, + "probability": 0.6978 + }, + { + "start": 1024.48, + "end": 1025.8, + "probability": 0.9212 + }, + { + "start": 1026.22, + "end": 1027.56, + "probability": 0.4878 + }, + { + "start": 1027.8, + "end": 1029.22, + "probability": 0.9914 + }, + { + "start": 1030.8, + "end": 1033.71, + "probability": 0.9856 + }, + { + "start": 1034.8, + "end": 1039.28, + "probability": 0.6297 + }, + { + "start": 1039.86, + "end": 1040.9, + "probability": 0.8727 + }, + { + "start": 1041.48, + "end": 1042.08, + "probability": 0.7962 + }, + { + "start": 1042.88, + "end": 1043.74, + "probability": 0.7562 + }, + { + "start": 1046.72, + "end": 1049.42, + "probability": 0.6505 + }, + { + "start": 1053.72, + "end": 1055.28, + "probability": 0.9844 + }, + { + "start": 1056.2, + "end": 1057.96, + "probability": 0.968 + }, + { + "start": 1066.55, + "end": 1068.92, + "probability": 0.9182 + }, + { + "start": 1070.08, + "end": 1071.48, + "probability": 0.9917 + }, + { + "start": 1072.12, + "end": 1073.22, + "probability": 0.868 + }, + { + "start": 1074.56, + "end": 1076.62, + "probability": 0.8954 + }, + { + "start": 1077.68, + "end": 1080.02, + "probability": 0.976 + }, + { + "start": 1081.62, + "end": 1085.22, + "probability": 0.9104 + }, + { + "start": 1085.44, + "end": 1086.5, + "probability": 0.9849 + }, + { + "start": 1088.52, + "end": 1090.08, + "probability": 0.9316 + }, + { + "start": 1091.02, + "end": 1096.0, + "probability": 0.9943 + }, + { + "start": 1096.6, + "end": 1102.9, + "probability": 0.9524 + }, + { + "start": 1103.72, + "end": 1106.8, + "probability": 0.9863 + }, + { + "start": 1107.96, + "end": 1110.3, + "probability": 0.9952 + }, + { + "start": 1110.96, + "end": 1112.84, + "probability": 0.8841 + }, + { + "start": 1113.22, + "end": 1113.82, + "probability": 0.8402 + }, + { + "start": 1114.04, + "end": 1115.14, + "probability": 0.9623 + }, + { + "start": 1115.4, + "end": 1116.0, + "probability": 0.8372 + }, + { + "start": 1116.42, + "end": 1117.44, + "probability": 0.7725 + }, + { + "start": 1118.8, + "end": 1120.66, + "probability": 0.988 + }, + { + "start": 1121.18, + "end": 1122.48, + "probability": 0.9937 + }, + { + "start": 1122.76, + "end": 1123.76, + "probability": 0.5498 + }, + { + "start": 1124.98, + "end": 1127.04, + "probability": 0.9634 + }, + { + "start": 1127.98, + "end": 1128.58, + "probability": 0.9043 + }, + { + "start": 1128.94, + "end": 1129.54, + "probability": 0.9083 + }, + { + "start": 1130.64, + "end": 1134.82, + "probability": 0.9536 + }, + { + "start": 1135.82, + "end": 1141.2, + "probability": 0.9878 + }, + { + "start": 1143.26, + "end": 1147.08, + "probability": 0.9439 + }, + { + "start": 1147.62, + "end": 1150.56, + "probability": 0.9709 + }, + { + "start": 1151.64, + "end": 1155.32, + "probability": 0.8683 + }, + { + "start": 1156.2, + "end": 1157.28, + "probability": 0.308 + }, + { + "start": 1158.54, + "end": 1159.8, + "probability": 0.894 + }, + { + "start": 1160.42, + "end": 1162.78, + "probability": 0.9889 + }, + { + "start": 1165.14, + "end": 1168.5, + "probability": 0.9893 + }, + { + "start": 1168.5, + "end": 1173.4, + "probability": 0.9155 + }, + { + "start": 1174.16, + "end": 1175.9, + "probability": 0.9937 + }, + { + "start": 1176.56, + "end": 1179.12, + "probability": 0.7515 + }, + { + "start": 1179.96, + "end": 1184.56, + "probability": 0.8397 + }, + { + "start": 1185.8, + "end": 1189.3, + "probability": 0.8195 + }, + { + "start": 1189.92, + "end": 1196.3, + "probability": 0.9891 + }, + { + "start": 1197.74, + "end": 1198.72, + "probability": 0.7499 + }, + { + "start": 1199.66, + "end": 1202.22, + "probability": 0.8349 + }, + { + "start": 1204.06, + "end": 1207.26, + "probability": 0.896 + }, + { + "start": 1207.32, + "end": 1208.48, + "probability": 0.8959 + }, + { + "start": 1209.24, + "end": 1210.8, + "probability": 0.8629 + }, + { + "start": 1211.62, + "end": 1212.9, + "probability": 0.9131 + }, + { + "start": 1213.66, + "end": 1217.96, + "probability": 0.9448 + }, + { + "start": 1219.14, + "end": 1222.48, + "probability": 0.8829 + }, + { + "start": 1223.64, + "end": 1226.36, + "probability": 0.9572 + }, + { + "start": 1226.84, + "end": 1227.74, + "probability": 0.8138 + }, + { + "start": 1228.4, + "end": 1232.58, + "probability": 0.716 + }, + { + "start": 1233.74, + "end": 1236.96, + "probability": 0.7854 + }, + { + "start": 1238.14, + "end": 1240.18, + "probability": 0.9805 + }, + { + "start": 1240.98, + "end": 1245.06, + "probability": 0.7802 + }, + { + "start": 1245.18, + "end": 1246.34, + "probability": 0.9763 + }, + { + "start": 1248.82, + "end": 1251.32, + "probability": 0.9576 + }, + { + "start": 1251.82, + "end": 1254.08, + "probability": 0.9681 + }, + { + "start": 1254.58, + "end": 1257.08, + "probability": 0.7004 + }, + { + "start": 1258.14, + "end": 1260.32, + "probability": 0.8988 + }, + { + "start": 1260.9, + "end": 1262.06, + "probability": 0.9988 + }, + { + "start": 1262.86, + "end": 1266.5, + "probability": 0.9972 + }, + { + "start": 1267.32, + "end": 1271.16, + "probability": 0.9351 + }, + { + "start": 1273.32, + "end": 1280.01, + "probability": 0.9966 + }, + { + "start": 1281.68, + "end": 1285.06, + "probability": 0.9954 + }, + { + "start": 1285.92, + "end": 1290.62, + "probability": 0.9976 + }, + { + "start": 1290.86, + "end": 1291.22, + "probability": 0.7478 + }, + { + "start": 1291.38, + "end": 1291.94, + "probability": 0.7953 + }, + { + "start": 1293.98, + "end": 1295.84, + "probability": 0.9927 + }, + { + "start": 1296.54, + "end": 1300.8, + "probability": 0.9473 + }, + { + "start": 1301.5, + "end": 1305.18, + "probability": 0.7144 + }, + { + "start": 1306.62, + "end": 1310.82, + "probability": 0.9772 + }, + { + "start": 1312.14, + "end": 1314.02, + "probability": 0.9553 + }, + { + "start": 1317.85, + "end": 1321.4, + "probability": 0.8402 + }, + { + "start": 1322.1, + "end": 1326.18, + "probability": 0.9218 + }, + { + "start": 1326.82, + "end": 1328.42, + "probability": 0.655 + }, + { + "start": 1328.94, + "end": 1329.64, + "probability": 0.9233 + }, + { + "start": 1330.56, + "end": 1331.8, + "probability": 0.9455 + }, + { + "start": 1332.3, + "end": 1335.22, + "probability": 0.879 + }, + { + "start": 1336.14, + "end": 1337.38, + "probability": 0.7388 + }, + { + "start": 1337.76, + "end": 1338.7, + "probability": 0.9681 + }, + { + "start": 1339.02, + "end": 1340.54, + "probability": 0.9172 + }, + { + "start": 1340.94, + "end": 1344.52, + "probability": 0.7395 + }, + { + "start": 1345.42, + "end": 1347.64, + "probability": 0.9115 + }, + { + "start": 1348.06, + "end": 1351.36, + "probability": 0.9794 + }, + { + "start": 1359.6, + "end": 1364.0, + "probability": 0.9171 + }, + { + "start": 1364.0, + "end": 1367.76, + "probability": 0.9957 + }, + { + "start": 1368.36, + "end": 1371.5, + "probability": 0.7027 + }, + { + "start": 1372.82, + "end": 1374.04, + "probability": 0.6808 + }, + { + "start": 1374.34, + "end": 1379.12, + "probability": 0.7073 + }, + { + "start": 1379.52, + "end": 1381.16, + "probability": 0.6503 + }, + { + "start": 1381.7, + "end": 1384.54, + "probability": 0.9628 + }, + { + "start": 1385.2, + "end": 1387.66, + "probability": 0.9412 + }, + { + "start": 1388.82, + "end": 1391.65, + "probability": 0.9737 + }, + { + "start": 1392.3, + "end": 1395.26, + "probability": 0.9683 + }, + { + "start": 1395.96, + "end": 1398.38, + "probability": 0.9912 + }, + { + "start": 1399.12, + "end": 1402.22, + "probability": 0.9788 + }, + { + "start": 1403.12, + "end": 1404.26, + "probability": 0.914 + }, + { + "start": 1404.62, + "end": 1405.32, + "probability": 0.9498 + }, + { + "start": 1405.8, + "end": 1407.1, + "probability": 0.7409 + }, + { + "start": 1407.62, + "end": 1408.9, + "probability": 0.8077 + }, + { + "start": 1409.74, + "end": 1411.32, + "probability": 0.9292 + }, + { + "start": 1411.96, + "end": 1414.84, + "probability": 0.9144 + }, + { + "start": 1415.66, + "end": 1418.5, + "probability": 0.969 + }, + { + "start": 1419.9, + "end": 1420.4, + "probability": 0.9107 + }, + { + "start": 1421.14, + "end": 1425.08, + "probability": 0.9961 + }, + { + "start": 1425.6, + "end": 1428.02, + "probability": 0.8406 + }, + { + "start": 1428.66, + "end": 1430.52, + "probability": 0.9618 + }, + { + "start": 1431.18, + "end": 1432.36, + "probability": 0.9958 + }, + { + "start": 1433.26, + "end": 1434.02, + "probability": 0.9328 + }, + { + "start": 1434.72, + "end": 1437.3, + "probability": 0.9807 + }, + { + "start": 1437.72, + "end": 1439.24, + "probability": 0.9727 + }, + { + "start": 1439.72, + "end": 1440.66, + "probability": 0.9698 + }, + { + "start": 1441.06, + "end": 1442.12, + "probability": 0.9753 + }, + { + "start": 1442.5, + "end": 1443.52, + "probability": 0.9829 + }, + { + "start": 1446.38, + "end": 1450.8, + "probability": 0.9822 + }, + { + "start": 1451.82, + "end": 1452.94, + "probability": 0.9278 + }, + { + "start": 1453.54, + "end": 1454.59, + "probability": 0.8548 + }, + { + "start": 1455.88, + "end": 1459.24, + "probability": 0.9928 + }, + { + "start": 1459.92, + "end": 1461.76, + "probability": 0.9788 + }, + { + "start": 1462.82, + "end": 1465.68, + "probability": 0.8183 + }, + { + "start": 1466.54, + "end": 1468.96, + "probability": 0.8971 + }, + { + "start": 1469.68, + "end": 1475.38, + "probability": 0.9967 + }, + { + "start": 1475.98, + "end": 1478.48, + "probability": 0.9781 + }, + { + "start": 1491.66, + "end": 1492.5, + "probability": 0.1241 + }, + { + "start": 1492.5, + "end": 1492.5, + "probability": 0.0203 + }, + { + "start": 1492.5, + "end": 1492.5, + "probability": 0.0161 + }, + { + "start": 1492.5, + "end": 1495.48, + "probability": 0.6578 + }, + { + "start": 1495.98, + "end": 1498.16, + "probability": 0.7883 + }, + { + "start": 1498.52, + "end": 1499.72, + "probability": 0.539 + }, + { + "start": 1500.38, + "end": 1502.64, + "probability": 0.8846 + }, + { + "start": 1502.9, + "end": 1504.14, + "probability": 0.9536 + }, + { + "start": 1504.5, + "end": 1506.24, + "probability": 0.9801 + }, + { + "start": 1508.24, + "end": 1508.84, + "probability": 0.9214 + }, + { + "start": 1509.82, + "end": 1512.96, + "probability": 0.9676 + }, + { + "start": 1513.78, + "end": 1516.22, + "probability": 0.8451 + }, + { + "start": 1516.9, + "end": 1519.58, + "probability": 0.8971 + }, + { + "start": 1520.12, + "end": 1520.82, + "probability": 0.8075 + }, + { + "start": 1520.84, + "end": 1521.52, + "probability": 0.8757 + }, + { + "start": 1521.76, + "end": 1523.24, + "probability": 0.976 + }, + { + "start": 1523.28, + "end": 1524.62, + "probability": 0.9562 + }, + { + "start": 1525.76, + "end": 1526.42, + "probability": 0.5939 + }, + { + "start": 1526.52, + "end": 1528.56, + "probability": 0.8476 + }, + { + "start": 1528.72, + "end": 1532.36, + "probability": 0.7094 + }, + { + "start": 1532.48, + "end": 1532.82, + "probability": 0.3887 + }, + { + "start": 1533.52, + "end": 1536.36, + "probability": 0.8484 + }, + { + "start": 1536.8, + "end": 1541.04, + "probability": 0.9929 + }, + { + "start": 1541.2, + "end": 1542.1, + "probability": 0.8316 + }, + { + "start": 1542.76, + "end": 1547.68, + "probability": 0.9399 + }, + { + "start": 1548.02, + "end": 1548.48, + "probability": 0.6213 + }, + { + "start": 1548.56, + "end": 1550.28, + "probability": 0.7381 + }, + { + "start": 1550.28, + "end": 1550.72, + "probability": 0.4788 + }, + { + "start": 1550.72, + "end": 1551.58, + "probability": 0.868 + }, + { + "start": 1551.98, + "end": 1553.6, + "probability": 0.7491 + }, + { + "start": 1554.38, + "end": 1561.88, + "probability": 0.9686 + }, + { + "start": 1562.64, + "end": 1564.66, + "probability": 0.7667 + }, + { + "start": 1565.62, + "end": 1567.76, + "probability": 0.9571 + }, + { + "start": 1568.82, + "end": 1570.17, + "probability": 0.8148 + }, + { + "start": 1570.52, + "end": 1573.4, + "probability": 0.9353 + }, + { + "start": 1573.88, + "end": 1574.92, + "probability": 0.9083 + }, + { + "start": 1575.38, + "end": 1575.6, + "probability": 0.6869 + }, + { + "start": 1576.94, + "end": 1578.04, + "probability": 0.5041 + }, + { + "start": 1578.24, + "end": 1579.76, + "probability": 0.3577 + }, + { + "start": 1582.24, + "end": 1583.12, + "probability": 0.0186 + }, + { + "start": 1689.28, + "end": 1693.6, + "probability": 0.8832 + }, + { + "start": 1694.2, + "end": 1695.54, + "probability": 0.8623 + }, + { + "start": 1698.96, + "end": 1702.74, + "probability": 0.9964 + }, + { + "start": 1714.44, + "end": 1716.38, + "probability": 0.6442 + }, + { + "start": 1718.2, + "end": 1719.78, + "probability": 0.74 + }, + { + "start": 1721.86, + "end": 1723.54, + "probability": 0.9138 + }, + { + "start": 1725.2, + "end": 1726.32, + "probability": 0.9769 + }, + { + "start": 1729.91, + "end": 1732.24, + "probability": 0.8066 + }, + { + "start": 1734.3, + "end": 1737.68, + "probability": 0.8 + }, + { + "start": 1740.26, + "end": 1742.86, + "probability": 0.9367 + }, + { + "start": 1743.32, + "end": 1743.7, + "probability": 0.8777 + }, + { + "start": 1744.2, + "end": 1744.78, + "probability": 0.6261 + }, + { + "start": 1747.4, + "end": 1751.52, + "probability": 0.9814 + }, + { + "start": 1751.54, + "end": 1751.96, + "probability": 0.8857 + }, + { + "start": 1752.82, + "end": 1753.9, + "probability": 0.9121 + }, + { + "start": 1754.04, + "end": 1755.92, + "probability": 0.9944 + }, + { + "start": 1756.38, + "end": 1758.82, + "probability": 0.9187 + }, + { + "start": 1759.66, + "end": 1761.5, + "probability": 0.9992 + }, + { + "start": 1762.5, + "end": 1764.42, + "probability": 0.9082 + }, + { + "start": 1765.24, + "end": 1768.22, + "probability": 0.9973 + }, + { + "start": 1768.74, + "end": 1769.68, + "probability": 0.853 + }, + { + "start": 1770.42, + "end": 1773.74, + "probability": 0.979 + }, + { + "start": 1773.74, + "end": 1777.04, + "probability": 0.9744 + }, + { + "start": 1778.0, + "end": 1780.64, + "probability": 0.895 + }, + { + "start": 1780.76, + "end": 1784.78, + "probability": 0.9807 + }, + { + "start": 1786.68, + "end": 1787.52, + "probability": 0.9535 + }, + { + "start": 1788.56, + "end": 1790.02, + "probability": 0.7426 + }, + { + "start": 1791.22, + "end": 1792.06, + "probability": 0.9673 + }, + { + "start": 1796.08, + "end": 1797.3, + "probability": 0.9344 + }, + { + "start": 1799.14, + "end": 1800.72, + "probability": 0.9963 + }, + { + "start": 1802.02, + "end": 1806.26, + "probability": 0.9937 + }, + { + "start": 1806.94, + "end": 1807.76, + "probability": 0.7424 + }, + { + "start": 1808.1, + "end": 1808.64, + "probability": 0.7224 + }, + { + "start": 1808.68, + "end": 1809.12, + "probability": 0.8914 + }, + { + "start": 1809.18, + "end": 1810.04, + "probability": 0.9907 + }, + { + "start": 1811.14, + "end": 1812.08, + "probability": 0.5456 + }, + { + "start": 1813.08, + "end": 1813.8, + "probability": 0.3843 + }, + { + "start": 1815.16, + "end": 1816.92, + "probability": 0.8431 + }, + { + "start": 1817.32, + "end": 1820.1, + "probability": 0.9687 + }, + { + "start": 1820.58, + "end": 1820.9, + "probability": 0.8252 + }, + { + "start": 1820.96, + "end": 1821.2, + "probability": 0.517 + }, + { + "start": 1823.38, + "end": 1827.52, + "probability": 0.9749 + }, + { + "start": 1828.72, + "end": 1830.26, + "probability": 0.9932 + }, + { + "start": 1831.22, + "end": 1833.32, + "probability": 0.9563 + }, + { + "start": 1834.64, + "end": 1836.58, + "probability": 0.991 + }, + { + "start": 1837.14, + "end": 1838.14, + "probability": 0.7671 + }, + { + "start": 1839.3, + "end": 1840.28, + "probability": 0.9984 + }, + { + "start": 1840.8, + "end": 1841.52, + "probability": 0.9985 + }, + { + "start": 1844.46, + "end": 1846.12, + "probability": 0.8337 + }, + { + "start": 1846.9, + "end": 1850.6, + "probability": 0.8654 + }, + { + "start": 1851.4, + "end": 1852.32, + "probability": 0.8918 + }, + { + "start": 1853.3, + "end": 1853.96, + "probability": 0.8127 + }, + { + "start": 1855.56, + "end": 1857.17, + "probability": 0.9813 + }, + { + "start": 1858.44, + "end": 1861.02, + "probability": 0.9829 + }, + { + "start": 1862.84, + "end": 1866.36, + "probability": 0.852 + }, + { + "start": 1867.4, + "end": 1869.6, + "probability": 0.8748 + }, + { + "start": 1870.04, + "end": 1873.28, + "probability": 0.9608 + }, + { + "start": 1873.48, + "end": 1875.08, + "probability": 0.9799 + }, + { + "start": 1875.18, + "end": 1875.96, + "probability": 0.9114 + }, + { + "start": 1876.56, + "end": 1877.14, + "probability": 0.6962 + }, + { + "start": 1877.7, + "end": 1879.08, + "probability": 0.8396 + }, + { + "start": 1880.58, + "end": 1884.06, + "probability": 0.7538 + }, + { + "start": 1884.06, + "end": 1885.66, + "probability": 0.8714 + }, + { + "start": 1886.82, + "end": 1890.18, + "probability": 0.957 + }, + { + "start": 1890.92, + "end": 1895.86, + "probability": 0.9895 + }, + { + "start": 1897.86, + "end": 1900.5, + "probability": 0.998 + }, + { + "start": 1900.5, + "end": 1904.1, + "probability": 0.9868 + }, + { + "start": 1906.56, + "end": 1910.48, + "probability": 0.9801 + }, + { + "start": 1911.74, + "end": 1913.98, + "probability": 0.9633 + }, + { + "start": 1915.08, + "end": 1917.36, + "probability": 0.9292 + }, + { + "start": 1918.12, + "end": 1919.42, + "probability": 0.615 + }, + { + "start": 1921.98, + "end": 1923.26, + "probability": 0.5236 + }, + { + "start": 1924.24, + "end": 1924.7, + "probability": 0.6927 + }, + { + "start": 1925.26, + "end": 1925.96, + "probability": 0.8498 + }, + { + "start": 1927.18, + "end": 1929.22, + "probability": 0.9679 + }, + { + "start": 1931.5, + "end": 1934.44, + "probability": 0.995 + }, + { + "start": 1935.8, + "end": 1938.5, + "probability": 0.9989 + }, + { + "start": 1940.58, + "end": 1946.3, + "probability": 0.9526 + }, + { + "start": 1946.7, + "end": 1947.8, + "probability": 0.7154 + }, + { + "start": 1947.96, + "end": 1948.88, + "probability": 0.6429 + }, + { + "start": 1949.48, + "end": 1954.02, + "probability": 0.9983 + }, + { + "start": 1954.66, + "end": 1959.08, + "probability": 0.9977 + }, + { + "start": 1959.94, + "end": 1960.64, + "probability": 0.6776 + }, + { + "start": 1962.5, + "end": 1968.24, + "probability": 0.9991 + }, + { + "start": 1970.72, + "end": 1973.08, + "probability": 0.9991 + }, + { + "start": 1974.2, + "end": 1974.7, + "probability": 0.7383 + }, + { + "start": 1976.2, + "end": 1979.82, + "probability": 0.9915 + }, + { + "start": 1980.54, + "end": 1981.2, + "probability": 0.9912 + }, + { + "start": 1983.26, + "end": 1985.4, + "probability": 0.9992 + }, + { + "start": 1986.74, + "end": 1989.5, + "probability": 0.936 + }, + { + "start": 1990.8, + "end": 1992.1, + "probability": 0.9995 + }, + { + "start": 1993.94, + "end": 1997.88, + "probability": 0.9996 + }, + { + "start": 1999.84, + "end": 2001.16, + "probability": 0.9987 + }, + { + "start": 2004.26, + "end": 2006.7, + "probability": 0.9805 + }, + { + "start": 2006.9, + "end": 2009.12, + "probability": 0.9821 + }, + { + "start": 2009.3, + "end": 2009.66, + "probability": 0.6031 + }, + { + "start": 2010.48, + "end": 2011.16, + "probability": 0.9576 + }, + { + "start": 2011.36, + "end": 2011.68, + "probability": 0.6481 + }, + { + "start": 2012.1, + "end": 2014.92, + "probability": 0.8446 + }, + { + "start": 2016.92, + "end": 2018.54, + "probability": 0.9748 + }, + { + "start": 2018.76, + "end": 2020.38, + "probability": 0.9865 + }, + { + "start": 2021.24, + "end": 2026.08, + "probability": 0.7495 + }, + { + "start": 2027.38, + "end": 2031.06, + "probability": 0.9783 + }, + { + "start": 2031.62, + "end": 2032.24, + "probability": 0.9586 + }, + { + "start": 2034.82, + "end": 2035.46, + "probability": 0.8264 + }, + { + "start": 2036.9, + "end": 2038.4, + "probability": 0.939 + }, + { + "start": 2039.36, + "end": 2041.32, + "probability": 0.9695 + }, + { + "start": 2042.22, + "end": 2044.38, + "probability": 0.9769 + }, + { + "start": 2045.08, + "end": 2047.68, + "probability": 0.998 + }, + { + "start": 2053.08, + "end": 2054.42, + "probability": 0.9983 + }, + { + "start": 2056.92, + "end": 2057.82, + "probability": 0.8545 + }, + { + "start": 2058.98, + "end": 2059.12, + "probability": 0.5933 + }, + { + "start": 2060.74, + "end": 2061.2, + "probability": 0.9141 + }, + { + "start": 2063.22, + "end": 2066.78, + "probability": 0.9878 + }, + { + "start": 2068.12, + "end": 2070.56, + "probability": 0.9683 + }, + { + "start": 2071.52, + "end": 2072.15, + "probability": 0.9973 + }, + { + "start": 2073.08, + "end": 2073.7, + "probability": 0.9817 + }, + { + "start": 2075.72, + "end": 2078.48, + "probability": 0.8789 + }, + { + "start": 2078.94, + "end": 2081.2, + "probability": 0.9816 + }, + { + "start": 2082.64, + "end": 2083.46, + "probability": 0.5344 + }, + { + "start": 2084.64, + "end": 2085.42, + "probability": 0.9571 + }, + { + "start": 2086.52, + "end": 2087.84, + "probability": 0.9235 + }, + { + "start": 2088.68, + "end": 2089.52, + "probability": 0.8534 + }, + { + "start": 2090.16, + "end": 2091.6, + "probability": 0.967 + }, + { + "start": 2092.32, + "end": 2097.1, + "probability": 0.9816 + }, + { + "start": 2098.3, + "end": 2100.24, + "probability": 0.9695 + }, + { + "start": 2100.8, + "end": 2104.36, + "probability": 0.9941 + }, + { + "start": 2105.38, + "end": 2107.96, + "probability": 0.9344 + }, + { + "start": 2110.04, + "end": 2111.3, + "probability": 0.9711 + }, + { + "start": 2112.6, + "end": 2115.1, + "probability": 0.9333 + }, + { + "start": 2115.64, + "end": 2117.04, + "probability": 0.9282 + }, + { + "start": 2117.52, + "end": 2118.36, + "probability": 0.2993 + }, + { + "start": 2119.12, + "end": 2119.38, + "probability": 0.7571 + }, + { + "start": 2120.96, + "end": 2122.68, + "probability": 0.9585 + }, + { + "start": 2123.26, + "end": 2124.94, + "probability": 0.9855 + }, + { + "start": 2125.24, + "end": 2126.76, + "probability": 0.8301 + }, + { + "start": 2126.84, + "end": 2127.48, + "probability": 0.9398 + }, + { + "start": 2127.76, + "end": 2128.32, + "probability": 0.8398 + }, + { + "start": 2129.1, + "end": 2130.78, + "probability": 0.9851 + }, + { + "start": 2130.88, + "end": 2133.5, + "probability": 0.9847 + }, + { + "start": 2133.8, + "end": 2135.7, + "probability": 0.9921 + }, + { + "start": 2136.46, + "end": 2141.16, + "probability": 0.9925 + }, + { + "start": 2142.06, + "end": 2144.94, + "probability": 0.9478 + }, + { + "start": 2145.64, + "end": 2147.88, + "probability": 0.9888 + }, + { + "start": 2151.0, + "end": 2151.64, + "probability": 0.7222 + }, + { + "start": 2151.74, + "end": 2156.08, + "probability": 0.9333 + }, + { + "start": 2156.08, + "end": 2160.74, + "probability": 0.9989 + }, + { + "start": 2161.36, + "end": 2164.74, + "probability": 0.9684 + }, + { + "start": 2164.9, + "end": 2165.84, + "probability": 0.9962 + }, + { + "start": 2166.36, + "end": 2168.6, + "probability": 0.9856 + }, + { + "start": 2169.2, + "end": 2171.5, + "probability": 0.9946 + }, + { + "start": 2172.1, + "end": 2175.32, + "probability": 0.9681 + }, + { + "start": 2175.95, + "end": 2177.52, + "probability": 0.7207 + }, + { + "start": 2189.08, + "end": 2190.24, + "probability": 0.8567 + }, + { + "start": 2214.1, + "end": 2214.17, + "probability": 0.5828 + }, + { + "start": 2221.12, + "end": 2221.84, + "probability": 0.51 + }, + { + "start": 2224.38, + "end": 2225.28, + "probability": 0.8126 + }, + { + "start": 2225.86, + "end": 2226.56, + "probability": 0.9017 + }, + { + "start": 2227.24, + "end": 2231.7, + "probability": 0.979 + }, + { + "start": 2231.74, + "end": 2232.46, + "probability": 0.7371 + }, + { + "start": 2232.64, + "end": 2235.4, + "probability": 0.9524 + }, + { + "start": 2235.58, + "end": 2236.12, + "probability": 0.569 + }, + { + "start": 2237.2, + "end": 2239.98, + "probability": 0.9831 + }, + { + "start": 2240.6, + "end": 2243.01, + "probability": 0.9939 + }, + { + "start": 2243.88, + "end": 2245.01, + "probability": 0.6428 + }, + { + "start": 2245.9, + "end": 2248.96, + "probability": 0.9929 + }, + { + "start": 2249.98, + "end": 2251.6, + "probability": 0.9938 + }, + { + "start": 2252.18, + "end": 2253.46, + "probability": 0.907 + }, + { + "start": 2255.92, + "end": 2260.2, + "probability": 0.9837 + }, + { + "start": 2262.5, + "end": 2264.32, + "probability": 0.976 + }, + { + "start": 2264.9, + "end": 2266.04, + "probability": 0.9224 + }, + { + "start": 2267.1, + "end": 2268.06, + "probability": 0.998 + }, + { + "start": 2268.93, + "end": 2269.42, + "probability": 0.8803 + }, + { + "start": 2270.58, + "end": 2273.12, + "probability": 0.9061 + }, + { + "start": 2273.98, + "end": 2279.78, + "probability": 0.9843 + }, + { + "start": 2283.66, + "end": 2289.3, + "probability": 0.9967 + }, + { + "start": 2290.5, + "end": 2294.86, + "probability": 0.2812 + }, + { + "start": 2295.04, + "end": 2298.3, + "probability": 0.3821 + }, + { + "start": 2298.3, + "end": 2298.38, + "probability": 0.1018 + }, + { + "start": 2298.5, + "end": 2300.02, + "probability": 0.5303 + }, + { + "start": 2300.02, + "end": 2301.04, + "probability": 0.8158 + }, + { + "start": 2303.12, + "end": 2303.47, + "probability": 0.4446 + }, + { + "start": 2306.94, + "end": 2307.36, + "probability": 0.6655 + }, + { + "start": 2307.48, + "end": 2308.46, + "probability": 0.3898 + }, + { + "start": 2308.46, + "end": 2308.96, + "probability": 0.2419 + }, + { + "start": 2309.06, + "end": 2309.06, + "probability": 0.2596 + }, + { + "start": 2309.12, + "end": 2311.6, + "probability": 0.8372 + }, + { + "start": 2311.78, + "end": 2312.62, + "probability": 0.8007 + }, + { + "start": 2312.76, + "end": 2313.74, + "probability": 0.513 + }, + { + "start": 2313.88, + "end": 2316.04, + "probability": 0.8651 + }, + { + "start": 2316.36, + "end": 2318.0, + "probability": 0.2798 + }, + { + "start": 2318.18, + "end": 2320.64, + "probability": 0.1626 + }, + { + "start": 2321.1, + "end": 2324.1, + "probability": 0.9528 + }, + { + "start": 2324.32, + "end": 2325.66, + "probability": 0.2671 + }, + { + "start": 2325.84, + "end": 2325.84, + "probability": 0.4352 + }, + { + "start": 2325.9, + "end": 2328.14, + "probability": 0.665 + }, + { + "start": 2328.32, + "end": 2330.86, + "probability": 0.3151 + }, + { + "start": 2331.3, + "end": 2331.58, + "probability": 0.5316 + }, + { + "start": 2331.68, + "end": 2332.32, + "probability": 0.8958 + }, + { + "start": 2332.58, + "end": 2333.96, + "probability": 0.9798 + }, + { + "start": 2334.5, + "end": 2334.9, + "probability": 0.5211 + }, + { + "start": 2335.22, + "end": 2336.96, + "probability": 0.0427 + }, + { + "start": 2336.96, + "end": 2339.28, + "probability": 0.7197 + }, + { + "start": 2339.54, + "end": 2341.18, + "probability": 0.1929 + }, + { + "start": 2342.18, + "end": 2343.06, + "probability": 0.0192 + }, + { + "start": 2343.06, + "end": 2343.64, + "probability": 0.0459 + }, + { + "start": 2343.74, + "end": 2347.32, + "probability": 0.6603 + }, + { + "start": 2347.4, + "end": 2348.08, + "probability": 0.6085 + }, + { + "start": 2348.38, + "end": 2349.56, + "probability": 0.1801 + }, + { + "start": 2350.4, + "end": 2352.76, + "probability": 0.3054 + }, + { + "start": 2353.16, + "end": 2353.16, + "probability": 0.1478 + }, + { + "start": 2353.16, + "end": 2353.16, + "probability": 0.3419 + }, + { + "start": 2353.16, + "end": 2353.65, + "probability": 0.4804 + }, + { + "start": 2354.48, + "end": 2354.64, + "probability": 0.0702 + }, + { + "start": 2356.56, + "end": 2357.32, + "probability": 0.0093 + }, + { + "start": 2358.24, + "end": 2358.68, + "probability": 0.222 + }, + { + "start": 2358.7, + "end": 2361.02, + "probability": 0.0985 + }, + { + "start": 2363.28, + "end": 2363.6, + "probability": 0.002 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2398.0, + "end": 2398.0, + "probability": 0.0 + }, + { + "start": 2399.82, + "end": 2400.08, + "probability": 0.0527 + }, + { + "start": 2400.08, + "end": 2404.3, + "probability": 0.1981 + }, + { + "start": 2404.3, + "end": 2404.62, + "probability": 0.0847 + }, + { + "start": 2407.64, + "end": 2407.74, + "probability": 0.0064 + }, + { + "start": 2420.34, + "end": 2421.28, + "probability": 0.0665 + }, + { + "start": 2435.32, + "end": 2435.54, + "probability": 0.0766 + }, + { + "start": 2435.54, + "end": 2438.34, + "probability": 0.1059 + }, + { + "start": 2441.08, + "end": 2443.56, + "probability": 0.0522 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2559.0, + "end": 2559.0, + "probability": 0.0 + }, + { + "start": 2569.17, + "end": 2569.68, + "probability": 0.044 + }, + { + "start": 2569.68, + "end": 2572.44, + "probability": 0.0885 + }, + { + "start": 2572.44, + "end": 2576.7, + "probability": 0.3443 + }, + { + "start": 2581.28, + "end": 2582.94, + "probability": 0.6436 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.0, + "end": 2680.0, + "probability": 0.0 + }, + { + "start": 2680.46, + "end": 2682.62, + "probability": 0.9883 + }, + { + "start": 2682.78, + "end": 2683.9, + "probability": 0.8887 + }, + { + "start": 2684.38, + "end": 2685.76, + "probability": 0.9901 + }, + { + "start": 2686.96, + "end": 2688.76, + "probability": 0.4992 + }, + { + "start": 2689.02, + "end": 2692.42, + "probability": 0.9426 + }, + { + "start": 2692.8, + "end": 2693.98, + "probability": 0.8374 + }, + { + "start": 2694.38, + "end": 2694.8, + "probability": 0.7858 + }, + { + "start": 2696.4, + "end": 2697.26, + "probability": 0.9839 + }, + { + "start": 2698.46, + "end": 2699.72, + "probability": 0.6475 + }, + { + "start": 2700.18, + "end": 2701.04, + "probability": 0.6449 + }, + { + "start": 2701.34, + "end": 2703.0, + "probability": 0.9035 + }, + { + "start": 2703.12, + "end": 2705.78, + "probability": 0.8727 + }, + { + "start": 2706.38, + "end": 2709.08, + "probability": 0.882 + }, + { + "start": 2709.9, + "end": 2712.58, + "probability": 0.7221 + }, + { + "start": 2712.86, + "end": 2713.22, + "probability": 0.8356 + }, + { + "start": 2723.92, + "end": 2726.62, + "probability": 0.8473 + }, + { + "start": 2727.98, + "end": 2728.16, + "probability": 0.1942 + }, + { + "start": 2729.5, + "end": 2732.02, + "probability": 0.4955 + }, + { + "start": 2732.02, + "end": 2737.3, + "probability": 0.9312 + }, + { + "start": 2737.5, + "end": 2740.5, + "probability": 0.9939 + }, + { + "start": 2743.52, + "end": 2744.72, + "probability": 0.2552 + }, + { + "start": 2745.6, + "end": 2749.16, + "probability": 0.9154 + }, + { + "start": 2749.26, + "end": 2749.8, + "probability": 0.8693 + }, + { + "start": 2750.98, + "end": 2753.28, + "probability": 0.6523 + }, + { + "start": 2754.0, + "end": 2755.38, + "probability": 0.7342 + }, + { + "start": 2756.42, + "end": 2760.28, + "probability": 0.7329 + }, + { + "start": 2761.04, + "end": 2763.54, + "probability": 0.981 + }, + { + "start": 2764.26, + "end": 2767.02, + "probability": 0.8291 + }, + { + "start": 2768.62, + "end": 2771.1, + "probability": 0.9583 + }, + { + "start": 2772.4, + "end": 2773.6, + "probability": 0.9163 + }, + { + "start": 2775.08, + "end": 2776.78, + "probability": 0.9203 + }, + { + "start": 2777.36, + "end": 2777.98, + "probability": 0.8569 + }, + { + "start": 2780.68, + "end": 2785.36, + "probability": 0.8478 + }, + { + "start": 2785.42, + "end": 2787.06, + "probability": 0.9446 + }, + { + "start": 2788.16, + "end": 2789.3, + "probability": 0.7298 + }, + { + "start": 2790.26, + "end": 2790.92, + "probability": 0.5338 + }, + { + "start": 2791.14, + "end": 2792.48, + "probability": 0.8179 + }, + { + "start": 2793.78, + "end": 2795.22, + "probability": 0.9908 + }, + { + "start": 2796.4, + "end": 2798.96, + "probability": 0.9802 + }, + { + "start": 2799.16, + "end": 2799.84, + "probability": 0.9209 + }, + { + "start": 2801.1, + "end": 2802.56, + "probability": 0.8648 + }, + { + "start": 2803.86, + "end": 2804.58, + "probability": 0.9701 + }, + { + "start": 2805.34, + "end": 2806.13, + "probability": 0.8263 + }, + { + "start": 2807.46, + "end": 2808.36, + "probability": 0.9733 + }, + { + "start": 2808.8, + "end": 2811.1, + "probability": 0.5359 + }, + { + "start": 2811.5, + "end": 2812.3, + "probability": 0.7163 + }, + { + "start": 2812.88, + "end": 2814.1, + "probability": 0.9586 + }, + { + "start": 2815.36, + "end": 2817.0, + "probability": 0.9462 + }, + { + "start": 2818.14, + "end": 2819.48, + "probability": 0.9971 + }, + { + "start": 2820.22, + "end": 2824.39, + "probability": 0.9866 + }, + { + "start": 2825.42, + "end": 2828.18, + "probability": 0.7937 + }, + { + "start": 2828.96, + "end": 2830.2, + "probability": 0.9516 + }, + { + "start": 2831.18, + "end": 2833.38, + "probability": 0.8093 + }, + { + "start": 2833.48, + "end": 2834.14, + "probability": 0.9243 + }, + { + "start": 2835.12, + "end": 2838.4, + "probability": 0.9895 + }, + { + "start": 2838.48, + "end": 2839.88, + "probability": 0.9329 + }, + { + "start": 2840.76, + "end": 2844.22, + "probability": 0.9796 + }, + { + "start": 2844.88, + "end": 2847.58, + "probability": 0.9608 + }, + { + "start": 2847.7, + "end": 2851.02, + "probability": 0.8941 + }, + { + "start": 2851.46, + "end": 2853.0, + "probability": 0.9036 + }, + { + "start": 2854.22, + "end": 2855.68, + "probability": 0.9498 + }, + { + "start": 2855.82, + "end": 2857.06, + "probability": 0.9734 + }, + { + "start": 2857.54, + "end": 2859.68, + "probability": 0.948 + }, + { + "start": 2861.22, + "end": 2861.52, + "probability": 0.9844 + }, + { + "start": 2862.7, + "end": 2864.9, + "probability": 0.9982 + }, + { + "start": 2865.1, + "end": 2867.8, + "probability": 0.8514 + }, + { + "start": 2868.34, + "end": 2869.28, + "probability": 0.6102 + }, + { + "start": 2869.36, + "end": 2870.21, + "probability": 0.794 + }, + { + "start": 2870.34, + "end": 2871.62, + "probability": 0.6654 + }, + { + "start": 2872.26, + "end": 2874.44, + "probability": 0.8902 + }, + { + "start": 2875.98, + "end": 2878.94, + "probability": 0.9854 + }, + { + "start": 2880.06, + "end": 2880.94, + "probability": 0.998 + }, + { + "start": 2882.06, + "end": 2884.0, + "probability": 0.9946 + }, + { + "start": 2884.58, + "end": 2887.9, + "probability": 0.9969 + }, + { + "start": 2888.04, + "end": 2889.84, + "probability": 0.8122 + }, + { + "start": 2889.92, + "end": 2890.6, + "probability": 0.7716 + }, + { + "start": 2891.36, + "end": 2894.08, + "probability": 0.999 + }, + { + "start": 2894.18, + "end": 2895.7, + "probability": 0.735 + }, + { + "start": 2896.16, + "end": 2897.64, + "probability": 0.8137 + }, + { + "start": 2898.5, + "end": 2899.94, + "probability": 0.822 + }, + { + "start": 2900.6, + "end": 2900.8, + "probability": 0.9397 + }, + { + "start": 2901.54, + "end": 2902.52, + "probability": 0.7404 + }, + { + "start": 2903.28, + "end": 2904.36, + "probability": 0.5899 + }, + { + "start": 2904.74, + "end": 2906.34, + "probability": 0.9966 + }, + { + "start": 2907.22, + "end": 2908.48, + "probability": 0.9963 + }, + { + "start": 2910.32, + "end": 2915.3, + "probability": 0.8778 + }, + { + "start": 2915.3, + "end": 2917.62, + "probability": 0.9997 + }, + { + "start": 2918.74, + "end": 2922.74, + "probability": 0.9984 + }, + { + "start": 2922.74, + "end": 2926.32, + "probability": 0.9362 + }, + { + "start": 2926.96, + "end": 2931.0, + "probability": 0.9976 + }, + { + "start": 2931.92, + "end": 2932.66, + "probability": 0.5039 + }, + { + "start": 2933.84, + "end": 2934.44, + "probability": 0.834 + }, + { + "start": 2934.52, + "end": 2935.4, + "probability": 0.5504 + }, + { + "start": 2935.4, + "end": 2936.66, + "probability": 0.9857 + }, + { + "start": 2936.72, + "end": 2937.76, + "probability": 0.8364 + }, + { + "start": 2938.2, + "end": 2940.32, + "probability": 0.9889 + }, + { + "start": 2940.42, + "end": 2940.92, + "probability": 0.8435 + }, + { + "start": 2942.16, + "end": 2944.0, + "probability": 0.9141 + }, + { + "start": 2944.24, + "end": 2948.22, + "probability": 0.8829 + }, + { + "start": 2962.64, + "end": 2963.43, + "probability": 0.7076 + }, + { + "start": 2964.48, + "end": 2965.94, + "probability": 0.7677 + }, + { + "start": 2966.5, + "end": 2968.06, + "probability": 0.9956 + }, + { + "start": 2969.08, + "end": 2973.02, + "probability": 0.8932 + }, + { + "start": 2973.54, + "end": 2976.98, + "probability": 0.755 + }, + { + "start": 2977.48, + "end": 2980.25, + "probability": 0.9759 + }, + { + "start": 2982.64, + "end": 2985.58, + "probability": 0.9984 + }, + { + "start": 2985.96, + "end": 2988.86, + "probability": 0.9977 + }, + { + "start": 2989.42, + "end": 2990.58, + "probability": 0.7341 + }, + { + "start": 2991.06, + "end": 2991.16, + "probability": 0.7069 + }, + { + "start": 2994.64, + "end": 2994.94, + "probability": 0.2337 + }, + { + "start": 2994.94, + "end": 2994.94, + "probability": 0.3055 + }, + { + "start": 2994.94, + "end": 2995.01, + "probability": 0.9535 + }, + { + "start": 2996.34, + "end": 2998.3, + "probability": 0.7413 + }, + { + "start": 2999.2, + "end": 3000.26, + "probability": 0.5376 + }, + { + "start": 3000.38, + "end": 3001.1, + "probability": 0.9788 + }, + { + "start": 3001.52, + "end": 3005.82, + "probability": 0.9885 + }, + { + "start": 3006.36, + "end": 3009.4, + "probability": 0.9983 + }, + { + "start": 3009.98, + "end": 3013.46, + "probability": 0.9995 + }, + { + "start": 3014.28, + "end": 3017.46, + "probability": 0.9973 + }, + { + "start": 3017.98, + "end": 3019.02, + "probability": 0.8457 + }, + { + "start": 3019.82, + "end": 3021.1, + "probability": 0.9924 + }, + { + "start": 3021.76, + "end": 3023.25, + "probability": 0.9958 + }, + { + "start": 3024.9, + "end": 3029.08, + "probability": 0.8716 + }, + { + "start": 3029.64, + "end": 3033.48, + "probability": 0.9784 + }, + { + "start": 3035.32, + "end": 3040.34, + "probability": 0.9958 + }, + { + "start": 3041.0, + "end": 3045.16, + "probability": 0.858 + }, + { + "start": 3045.6, + "end": 3050.22, + "probability": 0.9883 + }, + { + "start": 3051.62, + "end": 3053.55, + "probability": 0.9937 + }, + { + "start": 3054.4, + "end": 3058.78, + "probability": 0.9588 + }, + { + "start": 3060.02, + "end": 3061.66, + "probability": 0.8583 + }, + { + "start": 3062.56, + "end": 3063.5, + "probability": 0.3509 + }, + { + "start": 3065.0, + "end": 3067.24, + "probability": 0.9951 + }, + { + "start": 3068.16, + "end": 3069.5, + "probability": 0.8608 + }, + { + "start": 3070.24, + "end": 3072.86, + "probability": 0.6559 + }, + { + "start": 3073.84, + "end": 3080.16, + "probability": 0.9805 + }, + { + "start": 3081.32, + "end": 3082.51, + "probability": 0.9155 + }, + { + "start": 3083.68, + "end": 3085.56, + "probability": 0.9589 + }, + { + "start": 3086.58, + "end": 3088.04, + "probability": 0.9857 + }, + { + "start": 3089.98, + "end": 3092.34, + "probability": 0.9974 + }, + { + "start": 3093.18, + "end": 3097.6, + "probability": 0.9867 + }, + { + "start": 3098.68, + "end": 3099.7, + "probability": 0.9634 + }, + { + "start": 3100.64, + "end": 3105.82, + "probability": 0.9988 + }, + { + "start": 3106.4, + "end": 3109.26, + "probability": 0.998 + }, + { + "start": 3110.8, + "end": 3112.78, + "probability": 0.893 + }, + { + "start": 3113.42, + "end": 3119.66, + "probability": 0.9758 + }, + { + "start": 3121.02, + "end": 3122.26, + "probability": 0.9402 + }, + { + "start": 3123.12, + "end": 3126.52, + "probability": 0.9891 + }, + { + "start": 3127.44, + "end": 3129.58, + "probability": 0.994 + }, + { + "start": 3130.98, + "end": 3132.94, + "probability": 0.9959 + }, + { + "start": 3134.04, + "end": 3139.6, + "probability": 0.8821 + }, + { + "start": 3140.48, + "end": 3141.7, + "probability": 0.9443 + }, + { + "start": 3142.64, + "end": 3147.9, + "probability": 0.9929 + }, + { + "start": 3148.96, + "end": 3154.72, + "probability": 0.9929 + }, + { + "start": 3155.32, + "end": 3157.74, + "probability": 0.9425 + }, + { + "start": 3159.04, + "end": 3162.34, + "probability": 0.9437 + }, + { + "start": 3163.3, + "end": 3169.1, + "probability": 0.9957 + }, + { + "start": 3169.72, + "end": 3173.02, + "probability": 0.9399 + }, + { + "start": 3173.02, + "end": 3178.56, + "probability": 0.9907 + }, + { + "start": 3179.14, + "end": 3182.36, + "probability": 0.995 + }, + { + "start": 3183.34, + "end": 3188.42, + "probability": 0.9995 + }, + { + "start": 3188.42, + "end": 3193.36, + "probability": 0.9834 + }, + { + "start": 3194.04, + "end": 3195.88, + "probability": 0.9824 + }, + { + "start": 3196.34, + "end": 3199.82, + "probability": 0.9879 + }, + { + "start": 3200.1, + "end": 3200.92, + "probability": 0.9744 + }, + { + "start": 3201.84, + "end": 3202.18, + "probability": 0.8856 + }, + { + "start": 3204.32, + "end": 3206.4, + "probability": 0.9463 + }, + { + "start": 3206.98, + "end": 3208.16, + "probability": 0.9788 + }, + { + "start": 3208.92, + "end": 3211.12, + "probability": 0.9233 + }, + { + "start": 3211.12, + "end": 3212.74, + "probability": 0.6879 + }, + { + "start": 3221.08, + "end": 3222.4, + "probability": 0.597 + }, + { + "start": 3222.46, + "end": 3222.86, + "probability": 0.9388 + }, + { + "start": 3223.96, + "end": 3225.22, + "probability": 0.7824 + }, + { + "start": 3235.52, + "end": 3237.02, + "probability": 0.3502 + }, + { + "start": 3239.02, + "end": 3241.7, + "probability": 0.7395 + }, + { + "start": 3242.98, + "end": 3245.56, + "probability": 0.7457 + }, + { + "start": 3246.44, + "end": 3250.86, + "probability": 0.9854 + }, + { + "start": 3251.58, + "end": 3253.99, + "probability": 0.7213 + }, + { + "start": 3255.94, + "end": 3258.96, + "probability": 0.6711 + }, + { + "start": 3260.42, + "end": 3266.72, + "probability": 0.9808 + }, + { + "start": 3267.1, + "end": 3270.86, + "probability": 0.9795 + }, + { + "start": 3271.44, + "end": 3274.28, + "probability": 0.9945 + }, + { + "start": 3277.56, + "end": 3278.32, + "probability": 0.8074 + }, + { + "start": 3280.08, + "end": 3282.04, + "probability": 0.9927 + }, + { + "start": 3283.08, + "end": 3285.78, + "probability": 0.8595 + }, + { + "start": 3286.46, + "end": 3288.28, + "probability": 0.9162 + }, + { + "start": 3289.02, + "end": 3290.77, + "probability": 0.6402 + }, + { + "start": 3291.36, + "end": 3292.94, + "probability": 0.6217 + }, + { + "start": 3293.08, + "end": 3296.7, + "probability": 0.8802 + }, + { + "start": 3299.04, + "end": 3302.48, + "probability": 0.9563 + }, + { + "start": 3303.0, + "end": 3304.48, + "probability": 0.9685 + }, + { + "start": 3304.84, + "end": 3305.78, + "probability": 0.7417 + }, + { + "start": 3305.98, + "end": 3310.32, + "probability": 0.9941 + }, + { + "start": 3312.04, + "end": 3313.8, + "probability": 0.9341 + }, + { + "start": 3313.98, + "end": 3314.86, + "probability": 0.4944 + }, + { + "start": 3314.88, + "end": 3315.34, + "probability": 0.6577 + }, + { + "start": 3316.42, + "end": 3320.74, + "probability": 0.943 + }, + { + "start": 3321.08, + "end": 3321.58, + "probability": 0.716 + }, + { + "start": 3322.6, + "end": 3324.3, + "probability": 0.9867 + }, + { + "start": 3324.84, + "end": 3325.96, + "probability": 0.9433 + }, + { + "start": 3328.4, + "end": 3329.72, + "probability": 0.9201 + }, + { + "start": 3330.76, + "end": 3333.96, + "probability": 0.9812 + }, + { + "start": 3335.16, + "end": 3335.66, + "probability": 0.7559 + }, + { + "start": 3336.3, + "end": 3338.26, + "probability": 0.8439 + }, + { + "start": 3339.74, + "end": 3340.1, + "probability": 0.8774 + }, + { + "start": 3341.22, + "end": 3341.76, + "probability": 0.9097 + }, + { + "start": 3342.76, + "end": 3346.4, + "probability": 0.9956 + }, + { + "start": 3346.92, + "end": 3348.7, + "probability": 0.9976 + }, + { + "start": 3350.14, + "end": 3351.64, + "probability": 0.7897 + }, + { + "start": 3352.72, + "end": 3353.12, + "probability": 0.6993 + }, + { + "start": 3353.9, + "end": 3355.34, + "probability": 0.935 + }, + { + "start": 3356.08, + "end": 3356.44, + "probability": 0.7647 + }, + { + "start": 3357.02, + "end": 3359.04, + "probability": 0.9966 + }, + { + "start": 3359.74, + "end": 3360.22, + "probability": 0.4115 + }, + { + "start": 3360.68, + "end": 3363.72, + "probability": 0.801 + }, + { + "start": 3363.86, + "end": 3364.78, + "probability": 0.9268 + }, + { + "start": 3365.48, + "end": 3369.98, + "probability": 0.9954 + }, + { + "start": 3372.74, + "end": 3373.32, + "probability": 0.8643 + }, + { + "start": 3374.82, + "end": 3375.32, + "probability": 0.9385 + }, + { + "start": 3376.0, + "end": 3377.14, + "probability": 0.999 + }, + { + "start": 3378.72, + "end": 3380.22, + "probability": 0.9989 + }, + { + "start": 3381.2, + "end": 3383.38, + "probability": 0.9909 + }, + { + "start": 3384.58, + "end": 3387.74, + "probability": 0.955 + }, + { + "start": 3387.98, + "end": 3388.66, + "probability": 0.8822 + }, + { + "start": 3388.76, + "end": 3389.92, + "probability": 0.9985 + }, + { + "start": 3390.0, + "end": 3390.88, + "probability": 0.9818 + }, + { + "start": 3392.2, + "end": 3394.28, + "probability": 0.98 + }, + { + "start": 3395.0, + "end": 3396.62, + "probability": 0.998 + }, + { + "start": 3397.72, + "end": 3398.96, + "probability": 0.9512 + }, + { + "start": 3400.6, + "end": 3401.46, + "probability": 0.9759 + }, + { + "start": 3402.34, + "end": 3405.88, + "probability": 0.9769 + }, + { + "start": 3406.68, + "end": 3407.7, + "probability": 0.8707 + }, + { + "start": 3408.42, + "end": 3409.18, + "probability": 0.9598 + }, + { + "start": 3410.74, + "end": 3411.4, + "probability": 0.9228 + }, + { + "start": 3412.46, + "end": 3414.8, + "probability": 0.923 + }, + { + "start": 3416.3, + "end": 3420.9, + "probability": 0.9993 + }, + { + "start": 3421.76, + "end": 3422.6, + "probability": 0.7934 + }, + { + "start": 3423.14, + "end": 3426.18, + "probability": 0.9796 + }, + { + "start": 3426.22, + "end": 3428.96, + "probability": 0.978 + }, + { + "start": 3429.44, + "end": 3430.08, + "probability": 0.761 + }, + { + "start": 3431.64, + "end": 3433.18, + "probability": 0.6408 + }, + { + "start": 3433.24, + "end": 3434.54, + "probability": 0.8612 + }, + { + "start": 3434.92, + "end": 3438.54, + "probability": 0.9561 + }, + { + "start": 3439.06, + "end": 3440.5, + "probability": 0.9932 + }, + { + "start": 3443.22, + "end": 3446.78, + "probability": 0.9833 + }, + { + "start": 3448.72, + "end": 3450.48, + "probability": 0.989 + }, + { + "start": 3451.3, + "end": 3452.77, + "probability": 0.9884 + }, + { + "start": 3453.9, + "end": 3455.12, + "probability": 0.9493 + }, + { + "start": 3456.52, + "end": 3458.28, + "probability": 0.986 + }, + { + "start": 3458.62, + "end": 3460.04, + "probability": 0.9911 + }, + { + "start": 3460.46, + "end": 3462.5, + "probability": 0.9982 + }, + { + "start": 3463.06, + "end": 3467.62, + "probability": 0.9964 + }, + { + "start": 3467.62, + "end": 3471.18, + "probability": 0.999 + }, + { + "start": 3472.72, + "end": 3475.3, + "probability": 0.7707 + }, + { + "start": 3476.24, + "end": 3476.98, + "probability": 0.9531 + }, + { + "start": 3477.82, + "end": 3481.86, + "probability": 0.9954 + }, + { + "start": 3482.98, + "end": 3485.36, + "probability": 0.9983 + }, + { + "start": 3486.26, + "end": 3486.98, + "probability": 0.9845 + }, + { + "start": 3487.52, + "end": 3488.18, + "probability": 0.9352 + }, + { + "start": 3489.76, + "end": 3491.86, + "probability": 0.9681 + }, + { + "start": 3492.88, + "end": 3494.32, + "probability": 0.8616 + }, + { + "start": 3495.7, + "end": 3496.7, + "probability": 0.9825 + }, + { + "start": 3497.24, + "end": 3498.24, + "probability": 0.9812 + }, + { + "start": 3499.06, + "end": 3499.54, + "probability": 0.9829 + }, + { + "start": 3500.54, + "end": 3501.86, + "probability": 0.5452 + }, + { + "start": 3504.58, + "end": 3505.76, + "probability": 0.8735 + }, + { + "start": 3505.86, + "end": 3509.0, + "probability": 0.9646 + }, + { + "start": 3509.84, + "end": 3513.08, + "probability": 0.9976 + }, + { + "start": 3514.26, + "end": 3515.4, + "probability": 0.8977 + }, + { + "start": 3516.8, + "end": 3519.22, + "probability": 0.7953 + }, + { + "start": 3520.0, + "end": 3520.56, + "probability": 0.8997 + }, + { + "start": 3521.44, + "end": 3525.72, + "probability": 0.9135 + }, + { + "start": 3526.42, + "end": 3528.3, + "probability": 0.985 + }, + { + "start": 3528.5, + "end": 3529.86, + "probability": 0.4796 + }, + { + "start": 3530.06, + "end": 3530.81, + "probability": 0.7695 + }, + { + "start": 3532.02, + "end": 3533.14, + "probability": 0.9156 + }, + { + "start": 3533.7, + "end": 3535.67, + "probability": 0.9004 + }, + { + "start": 3536.42, + "end": 3536.56, + "probability": 0.7264 + }, + { + "start": 3536.72, + "end": 3536.82, + "probability": 0.4919 + }, + { + "start": 3537.04, + "end": 3539.46, + "probability": 0.9891 + }, + { + "start": 3540.52, + "end": 3544.08, + "probability": 0.9933 + }, + { + "start": 3544.88, + "end": 3547.36, + "probability": 0.8804 + }, + { + "start": 3547.98, + "end": 3548.52, + "probability": 0.4828 + }, + { + "start": 3549.16, + "end": 3549.76, + "probability": 0.7108 + }, + { + "start": 3549.82, + "end": 3553.6, + "probability": 0.9526 + }, + { + "start": 3554.82, + "end": 3555.31, + "probability": 0.999 + }, + { + "start": 3556.2, + "end": 3557.24, + "probability": 0.7509 + }, + { + "start": 3558.64, + "end": 3559.72, + "probability": 0.5141 + }, + { + "start": 3559.8, + "end": 3562.28, + "probability": 0.6664 + }, + { + "start": 3562.46, + "end": 3563.42, + "probability": 0.979 + }, + { + "start": 3564.42, + "end": 3565.44, + "probability": 0.9618 + }, + { + "start": 3566.4, + "end": 3567.28, + "probability": 0.9424 + }, + { + "start": 3568.48, + "end": 3570.08, + "probability": 0.8075 + }, + { + "start": 3570.6, + "end": 3572.54, + "probability": 0.9382 + }, + { + "start": 3574.58, + "end": 3576.16, + "probability": 0.97 + }, + { + "start": 3577.18, + "end": 3579.58, + "probability": 0.9266 + }, + { + "start": 3580.24, + "end": 3581.3, + "probability": 0.681 + }, + { + "start": 3581.34, + "end": 3582.52, + "probability": 0.9219 + }, + { + "start": 3582.6, + "end": 3585.03, + "probability": 0.973 + }, + { + "start": 3585.66, + "end": 3586.52, + "probability": 0.7684 + }, + { + "start": 3586.6, + "end": 3587.96, + "probability": 0.9372 + }, + { + "start": 3589.1, + "end": 3591.02, + "probability": 0.9581 + }, + { + "start": 3592.0, + "end": 3593.4, + "probability": 0.9785 + }, + { + "start": 3593.64, + "end": 3594.82, + "probability": 0.7717 + }, + { + "start": 3594.86, + "end": 3595.5, + "probability": 0.7629 + }, + { + "start": 3596.76, + "end": 3599.08, + "probability": 0.9967 + }, + { + "start": 3600.52, + "end": 3601.44, + "probability": 0.503 + }, + { + "start": 3602.2, + "end": 3606.16, + "probability": 0.9939 + }, + { + "start": 3606.16, + "end": 3610.38, + "probability": 0.9834 + }, + { + "start": 3610.94, + "end": 3612.26, + "probability": 0.5556 + }, + { + "start": 3612.96, + "end": 3615.76, + "probability": 0.9543 + }, + { + "start": 3616.74, + "end": 3619.6, + "probability": 0.9978 + }, + { + "start": 3620.6, + "end": 3625.46, + "probability": 0.9988 + }, + { + "start": 3625.58, + "end": 3626.2, + "probability": 0.8927 + }, + { + "start": 3626.76, + "end": 3629.06, + "probability": 0.8868 + }, + { + "start": 3629.58, + "end": 3632.44, + "probability": 0.929 + }, + { + "start": 3632.64, + "end": 3634.04, + "probability": 0.9918 + }, + { + "start": 3634.1, + "end": 3634.88, + "probability": 0.9479 + }, + { + "start": 3635.22, + "end": 3636.09, + "probability": 0.9951 + }, + { + "start": 3636.64, + "end": 3637.18, + "probability": 0.7678 + }, + { + "start": 3637.28, + "end": 3641.98, + "probability": 0.8727 + }, + { + "start": 3642.82, + "end": 3643.86, + "probability": 0.9288 + }, + { + "start": 3643.96, + "end": 3646.3, + "probability": 0.9962 + }, + { + "start": 3646.72, + "end": 3647.18, + "probability": 0.6899 + }, + { + "start": 3648.12, + "end": 3655.0, + "probability": 0.9916 + }, + { + "start": 3656.14, + "end": 3660.06, + "probability": 0.9878 + }, + { + "start": 3660.64, + "end": 3662.72, + "probability": 0.9657 + }, + { + "start": 3662.74, + "end": 3663.28, + "probability": 0.7932 + }, + { + "start": 3663.38, + "end": 3664.46, + "probability": 0.9377 + }, + { + "start": 3665.04, + "end": 3671.88, + "probability": 0.9494 + }, + { + "start": 3672.52, + "end": 3676.34, + "probability": 0.9948 + }, + { + "start": 3676.44, + "end": 3678.1, + "probability": 0.959 + }, + { + "start": 3678.3, + "end": 3683.4, + "probability": 0.9463 + }, + { + "start": 3683.8, + "end": 3685.2, + "probability": 0.9898 + }, + { + "start": 3685.68, + "end": 3688.08, + "probability": 0.9951 + }, + { + "start": 3689.1, + "end": 3694.44, + "probability": 0.9453 + }, + { + "start": 3694.62, + "end": 3695.38, + "probability": 0.801 + }, + { + "start": 3695.86, + "end": 3700.2, + "probability": 0.9979 + }, + { + "start": 3700.66, + "end": 3703.36, + "probability": 0.9974 + }, + { + "start": 3703.36, + "end": 3706.14, + "probability": 0.9863 + }, + { + "start": 3706.94, + "end": 3709.0, + "probability": 0.9211 + }, + { + "start": 3710.14, + "end": 3710.86, + "probability": 0.9146 + }, + { + "start": 3710.98, + "end": 3713.94, + "probability": 0.9915 + }, + { + "start": 3714.46, + "end": 3715.36, + "probability": 0.9272 + }, + { + "start": 3715.42, + "end": 3716.0, + "probability": 0.9343 + }, + { + "start": 3716.26, + "end": 3716.76, + "probability": 0.9 + }, + { + "start": 3717.54, + "end": 3719.94, + "probability": 0.9842 + }, + { + "start": 3721.53, + "end": 3724.89, + "probability": 0.9912 + }, + { + "start": 3725.64, + "end": 3728.3, + "probability": 0.9973 + }, + { + "start": 3729.64, + "end": 3732.75, + "probability": 0.9985 + }, + { + "start": 3733.64, + "end": 3736.82, + "probability": 0.9613 + }, + { + "start": 3738.28, + "end": 3740.9, + "probability": 0.9963 + }, + { + "start": 3741.94, + "end": 3743.4, + "probability": 0.9897 + }, + { + "start": 3744.28, + "end": 3746.56, + "probability": 0.9639 + }, + { + "start": 3746.7, + "end": 3747.27, + "probability": 0.9503 + }, + { + "start": 3748.16, + "end": 3751.82, + "probability": 0.9976 + }, + { + "start": 3751.82, + "end": 3756.54, + "probability": 0.9985 + }, + { + "start": 3757.48, + "end": 3758.6, + "probability": 0.7871 + }, + { + "start": 3759.66, + "end": 3760.16, + "probability": 0.8611 + }, + { + "start": 3760.98, + "end": 3761.92, + "probability": 0.9219 + }, + { + "start": 3762.44, + "end": 3766.12, + "probability": 0.9097 + }, + { + "start": 3766.12, + "end": 3769.92, + "probability": 0.9963 + }, + { + "start": 3770.7, + "end": 3771.98, + "probability": 0.9991 + }, + { + "start": 3772.74, + "end": 3774.28, + "probability": 0.9256 + }, + { + "start": 3774.42, + "end": 3775.18, + "probability": 0.7502 + }, + { + "start": 3775.38, + "end": 3776.02, + "probability": 0.9825 + }, + { + "start": 3776.2, + "end": 3777.32, + "probability": 0.979 + }, + { + "start": 3778.28, + "end": 3778.48, + "probability": 0.9749 + }, + { + "start": 3779.18, + "end": 3781.08, + "probability": 0.8945 + }, + { + "start": 3781.94, + "end": 3786.4, + "probability": 0.9814 + }, + { + "start": 3787.3, + "end": 3789.26, + "probability": 0.976 + }, + { + "start": 3790.24, + "end": 3794.84, + "probability": 0.9993 + }, + { + "start": 3795.26, + "end": 3797.56, + "probability": 0.9794 + }, + { + "start": 3798.82, + "end": 3801.72, + "probability": 0.7441 + }, + { + "start": 3802.38, + "end": 3804.28, + "probability": 0.7571 + }, + { + "start": 3804.34, + "end": 3807.06, + "probability": 0.8658 + }, + { + "start": 3808.28, + "end": 3809.5, + "probability": 0.5385 + }, + { + "start": 3810.32, + "end": 3815.2, + "probability": 0.8688 + }, + { + "start": 3823.56, + "end": 3826.0, + "probability": 0.9418 + }, + { + "start": 3830.64, + "end": 3831.57, + "probability": 0.578 + }, + { + "start": 3833.08, + "end": 3834.26, + "probability": 0.7716 + }, + { + "start": 3835.0, + "end": 3835.58, + "probability": 0.7232 + }, + { + "start": 3838.83, + "end": 3840.94, + "probability": 0.9023 + }, + { + "start": 3843.82, + "end": 3844.04, + "probability": 0.8003 + }, + { + "start": 3847.66, + "end": 3849.3, + "probability": 0.7248 + }, + { + "start": 3850.8, + "end": 3855.92, + "probability": 0.9941 + }, + { + "start": 3856.04, + "end": 3856.32, + "probability": 0.8749 + }, + { + "start": 3856.42, + "end": 3857.04, + "probability": 0.7456 + }, + { + "start": 3857.42, + "end": 3858.28, + "probability": 0.9738 + }, + { + "start": 3858.42, + "end": 3859.02, + "probability": 0.9202 + }, + { + "start": 3859.92, + "end": 3860.36, + "probability": 0.9983 + }, + { + "start": 3861.58, + "end": 3862.54, + "probability": 0.9972 + }, + { + "start": 3864.0, + "end": 3866.26, + "probability": 0.9521 + }, + { + "start": 3867.38, + "end": 3871.02, + "probability": 0.999 + }, + { + "start": 3872.02, + "end": 3874.24, + "probability": 0.815 + }, + { + "start": 3875.32, + "end": 3876.2, + "probability": 0.9678 + }, + { + "start": 3877.86, + "end": 3880.78, + "probability": 0.9969 + }, + { + "start": 3881.44, + "end": 3882.62, + "probability": 0.9963 + }, + { + "start": 3883.56, + "end": 3887.68, + "probability": 0.9699 + }, + { + "start": 3888.64, + "end": 3890.63, + "probability": 0.9967 + }, + { + "start": 3891.6, + "end": 3892.32, + "probability": 0.6536 + }, + { + "start": 3893.1, + "end": 3897.66, + "probability": 0.9673 + }, + { + "start": 3900.84, + "end": 3902.24, + "probability": 0.8128 + }, + { + "start": 3903.18, + "end": 3904.62, + "probability": 0.7572 + }, + { + "start": 3904.72, + "end": 3905.9, + "probability": 0.5061 + }, + { + "start": 3905.98, + "end": 3909.54, + "probability": 0.998 + }, + { + "start": 3911.12, + "end": 3913.02, + "probability": 0.9961 + }, + { + "start": 3913.12, + "end": 3913.78, + "probability": 0.7973 + }, + { + "start": 3913.96, + "end": 3914.44, + "probability": 0.7933 + }, + { + "start": 3914.84, + "end": 3916.22, + "probability": 0.9948 + }, + { + "start": 3917.69, + "end": 3919.3, + "probability": 0.9025 + }, + { + "start": 3920.54, + "end": 3921.88, + "probability": 0.9803 + }, + { + "start": 3922.9, + "end": 3923.94, + "probability": 0.9751 + }, + { + "start": 3925.78, + "end": 3928.52, + "probability": 0.9786 + }, + { + "start": 3930.32, + "end": 3931.92, + "probability": 0.9234 + }, + { + "start": 3933.86, + "end": 3934.76, + "probability": 0.9209 + }, + { + "start": 3934.88, + "end": 3935.32, + "probability": 0.8537 + }, + { + "start": 3935.38, + "end": 3936.0, + "probability": 0.7755 + }, + { + "start": 3936.55, + "end": 3938.52, + "probability": 0.9145 + }, + { + "start": 3938.52, + "end": 3939.18, + "probability": 0.5718 + }, + { + "start": 3940.24, + "end": 3941.22, + "probability": 0.9275 + }, + { + "start": 3942.4, + "end": 3943.32, + "probability": 0.9468 + }, + { + "start": 3944.64, + "end": 3945.3, + "probability": 0.9624 + }, + { + "start": 3948.16, + "end": 3951.08, + "probability": 0.9984 + }, + { + "start": 3952.14, + "end": 3952.92, + "probability": 0.8964 + }, + { + "start": 3954.42, + "end": 3958.6, + "probability": 0.9924 + }, + { + "start": 3961.14, + "end": 3963.46, + "probability": 0.9981 + }, + { + "start": 3964.52, + "end": 3966.18, + "probability": 0.9832 + }, + { + "start": 3967.84, + "end": 3969.74, + "probability": 0.9964 + }, + { + "start": 3972.64, + "end": 3973.12, + "probability": 0.9153 + }, + { + "start": 3974.2, + "end": 3975.34, + "probability": 0.9647 + }, + { + "start": 3976.38, + "end": 3977.12, + "probability": 0.8823 + }, + { + "start": 3978.42, + "end": 3979.64, + "probability": 0.993 + }, + { + "start": 3981.96, + "end": 3986.56, + "probability": 0.9468 + }, + { + "start": 3987.34, + "end": 3987.9, + "probability": 0.6797 + }, + { + "start": 3989.3, + "end": 3990.54, + "probability": 0.7631 + }, + { + "start": 3991.08, + "end": 3992.12, + "probability": 0.9485 + }, + { + "start": 3993.48, + "end": 3994.24, + "probability": 0.958 + }, + { + "start": 3996.59, + "end": 3998.24, + "probability": 0.8018 + }, + { + "start": 3999.86, + "end": 4002.76, + "probability": 0.9957 + }, + { + "start": 4007.04, + "end": 4008.44, + "probability": 0.9026 + }, + { + "start": 4009.52, + "end": 4010.72, + "probability": 0.9714 + }, + { + "start": 4011.44, + "end": 4013.38, + "probability": 0.9951 + }, + { + "start": 4014.46, + "end": 4015.04, + "probability": 0.9838 + }, + { + "start": 4018.04, + "end": 4020.26, + "probability": 0.8057 + }, + { + "start": 4020.96, + "end": 4022.02, + "probability": 0.6368 + }, + { + "start": 4022.84, + "end": 4025.76, + "probability": 0.9785 + }, + { + "start": 4026.58, + "end": 4027.42, + "probability": 0.9468 + }, + { + "start": 4027.48, + "end": 4029.72, + "probability": 0.9967 + }, + { + "start": 4031.58, + "end": 4035.68, + "probability": 0.9949 + }, + { + "start": 4036.28, + "end": 4038.68, + "probability": 0.9914 + }, + { + "start": 4039.8, + "end": 4042.0, + "probability": 0.9969 + }, + { + "start": 4042.66, + "end": 4044.58, + "probability": 0.8189 + }, + { + "start": 4045.22, + "end": 4047.92, + "probability": 0.9978 + }, + { + "start": 4048.86, + "end": 4049.62, + "probability": 0.9946 + }, + { + "start": 4050.38, + "end": 4051.8, + "probability": 0.9741 + }, + { + "start": 4053.68, + "end": 4055.28, + "probability": 0.9933 + }, + { + "start": 4056.28, + "end": 4059.12, + "probability": 0.9951 + }, + { + "start": 4059.62, + "end": 4061.14, + "probability": 0.7291 + }, + { + "start": 4061.68, + "end": 4064.22, + "probability": 0.975 + }, + { + "start": 4064.94, + "end": 4067.92, + "probability": 0.9207 + }, + { + "start": 4068.6, + "end": 4070.96, + "probability": 0.9938 + }, + { + "start": 4071.82, + "end": 4074.04, + "probability": 0.9861 + }, + { + "start": 4074.7, + "end": 4074.92, + "probability": 0.5559 + }, + { + "start": 4076.98, + "end": 4078.88, + "probability": 0.9785 + }, + { + "start": 4078.96, + "end": 4082.78, + "probability": 0.9371 + }, + { + "start": 4083.56, + "end": 4084.42, + "probability": 0.9945 + }, + { + "start": 4097.28, + "end": 4097.28, + "probability": 0.6442 + }, + { + "start": 4097.28, + "end": 4099.04, + "probability": 0.7629 + }, + { + "start": 4099.04, + "end": 4099.14, + "probability": 0.8683 + }, + { + "start": 4099.78, + "end": 4101.66, + "probability": 0.7834 + }, + { + "start": 4104.76, + "end": 4105.8, + "probability": 0.641 + }, + { + "start": 4106.6, + "end": 4107.74, + "probability": 0.7699 + }, + { + "start": 4109.62, + "end": 4111.18, + "probability": 0.8218 + }, + { + "start": 4111.32, + "end": 4115.52, + "probability": 0.9512 + }, + { + "start": 4116.54, + "end": 4119.02, + "probability": 0.9678 + }, + { + "start": 4120.7, + "end": 4123.72, + "probability": 0.8431 + }, + { + "start": 4123.88, + "end": 4124.37, + "probability": 0.9961 + }, + { + "start": 4124.96, + "end": 4127.26, + "probability": 0.981 + }, + { + "start": 4128.38, + "end": 4133.3, + "probability": 0.9572 + }, + { + "start": 4134.22, + "end": 4139.58, + "probability": 0.9586 + }, + { + "start": 4139.66, + "end": 4144.18, + "probability": 0.9971 + }, + { + "start": 4144.54, + "end": 4148.96, + "probability": 0.9984 + }, + { + "start": 4149.9, + "end": 4154.16, + "probability": 0.9982 + }, + { + "start": 4154.16, + "end": 4158.56, + "probability": 0.9924 + }, + { + "start": 4159.16, + "end": 4160.36, + "probability": 0.9912 + }, + { + "start": 4160.88, + "end": 4163.28, + "probability": 0.99 + }, + { + "start": 4163.9, + "end": 4166.52, + "probability": 0.9733 + }, + { + "start": 4166.98, + "end": 4170.92, + "probability": 0.7561 + }, + { + "start": 4170.92, + "end": 4173.94, + "probability": 0.9961 + }, + { + "start": 4174.1, + "end": 4177.96, + "probability": 0.9413 + }, + { + "start": 4177.96, + "end": 4181.6, + "probability": 0.9311 + }, + { + "start": 4183.17, + "end": 4187.64, + "probability": 0.918 + }, + { + "start": 4187.82, + "end": 4189.26, + "probability": 0.7186 + }, + { + "start": 4189.92, + "end": 4192.6, + "probability": 0.835 + }, + { + "start": 4193.08, + "end": 4197.37, + "probability": 0.9966 + }, + { + "start": 4198.76, + "end": 4200.14, + "probability": 0.9971 + }, + { + "start": 4201.42, + "end": 4202.91, + "probability": 0.7554 + }, + { + "start": 4204.64, + "end": 4209.02, + "probability": 0.9793 + }, + { + "start": 4209.12, + "end": 4209.98, + "probability": 0.8933 + }, + { + "start": 4210.76, + "end": 4213.82, + "probability": 0.9811 + }, + { + "start": 4215.28, + "end": 4216.8, + "probability": 0.9614 + }, + { + "start": 4217.5, + "end": 4219.34, + "probability": 0.4986 + }, + { + "start": 4220.94, + "end": 4223.26, + "probability": 0.5853 + }, + { + "start": 4224.5, + "end": 4226.92, + "probability": 0.9768 + }, + { + "start": 4227.94, + "end": 4229.42, + "probability": 0.7889 + }, + { + "start": 4229.64, + "end": 4230.68, + "probability": 0.8521 + }, + { + "start": 4230.8, + "end": 4234.4, + "probability": 0.9605 + }, + { + "start": 4234.4, + "end": 4237.64, + "probability": 0.9597 + }, + { + "start": 4238.22, + "end": 4238.7, + "probability": 0.5791 + }, + { + "start": 4239.5, + "end": 4240.42, + "probability": 0.9538 + }, + { + "start": 4243.61, + "end": 4246.12, + "probability": 0.6614 + }, + { + "start": 4246.12, + "end": 4249.58, + "probability": 0.9795 + }, + { + "start": 4250.1, + "end": 4251.18, + "probability": 0.9921 + }, + { + "start": 4251.6, + "end": 4254.34, + "probability": 0.848 + }, + { + "start": 4254.82, + "end": 4260.26, + "probability": 0.9943 + }, + { + "start": 4261.6, + "end": 4263.24, + "probability": 0.9318 + }, + { + "start": 4266.26, + "end": 4269.28, + "probability": 0.9922 + }, + { + "start": 4269.62, + "end": 4271.59, + "probability": 0.8359 + }, + { + "start": 4271.86, + "end": 4274.04, + "probability": 0.9177 + }, + { + "start": 4275.04, + "end": 4277.8, + "probability": 0.9976 + }, + { + "start": 4278.58, + "end": 4280.4, + "probability": 0.7832 + }, + { + "start": 4280.98, + "end": 4283.04, + "probability": 0.9949 + }, + { + "start": 4283.34, + "end": 4284.5, + "probability": 0.9777 + }, + { + "start": 4285.62, + "end": 4287.08, + "probability": 0.7716 + }, + { + "start": 4288.28, + "end": 4289.27, + "probability": 0.9927 + }, + { + "start": 4290.54, + "end": 4291.74, + "probability": 0.8184 + }, + { + "start": 4292.04, + "end": 4292.96, + "probability": 0.8604 + }, + { + "start": 4293.0, + "end": 4296.5, + "probability": 0.9814 + }, + { + "start": 4297.66, + "end": 4301.44, + "probability": 0.985 + }, + { + "start": 4301.44, + "end": 4304.48, + "probability": 0.9958 + }, + { + "start": 4307.5, + "end": 4308.23, + "probability": 0.221 + }, + { + "start": 4308.46, + "end": 4311.0, + "probability": 0.4372 + }, + { + "start": 4311.26, + "end": 4311.46, + "probability": 0.0228 + }, + { + "start": 4311.46, + "end": 4313.46, + "probability": 0.2324 + }, + { + "start": 4313.58, + "end": 4314.36, + "probability": 0.2093 + }, + { + "start": 4314.98, + "end": 4316.06, + "probability": 0.1847 + }, + { + "start": 4316.24, + "end": 4318.86, + "probability": 0.7238 + }, + { + "start": 4319.62, + "end": 4323.4, + "probability": 0.9957 + }, + { + "start": 4323.8, + "end": 4325.9, + "probability": 0.9624 + }, + { + "start": 4326.77, + "end": 4327.77, + "probability": 0.4451 + }, + { + "start": 4328.28, + "end": 4330.14, + "probability": 0.8464 + }, + { + "start": 4331.06, + "end": 4331.28, + "probability": 0.0357 + }, + { + "start": 4331.28, + "end": 4333.32, + "probability": 0.0486 + }, + { + "start": 4333.32, + "end": 4336.62, + "probability": 0.5484 + }, + { + "start": 4337.1, + "end": 4337.1, + "probability": 0.1243 + }, + { + "start": 4337.1, + "end": 4339.08, + "probability": 0.7035 + }, + { + "start": 4339.18, + "end": 4341.44, + "probability": 0.7962 + }, + { + "start": 4341.44, + "end": 4341.94, + "probability": 0.1355 + }, + { + "start": 4341.94, + "end": 4341.94, + "probability": 0.097 + }, + { + "start": 4342.08, + "end": 4343.07, + "probability": 0.1492 + }, + { + "start": 4344.6, + "end": 4346.46, + "probability": 0.5275 + }, + { + "start": 4347.3, + "end": 4348.84, + "probability": 0.3011 + }, + { + "start": 4348.9, + "end": 4349.9, + "probability": 0.4632 + }, + { + "start": 4350.02, + "end": 4351.5, + "probability": 0.6712 + }, + { + "start": 4351.54, + "end": 4352.14, + "probability": 0.2475 + }, + { + "start": 4352.22, + "end": 4353.5, + "probability": 0.8789 + }, + { + "start": 4353.6, + "end": 4354.82, + "probability": 0.6792 + }, + { + "start": 4354.88, + "end": 4356.1, + "probability": 0.7787 + }, + { + "start": 4356.1, + "end": 4356.64, + "probability": 0.0869 + }, + { + "start": 4357.62, + "end": 4358.62, + "probability": 0.0564 + }, + { + "start": 4358.68, + "end": 4359.18, + "probability": 0.3214 + }, + { + "start": 4359.5, + "end": 4361.42, + "probability": 0.7579 + }, + { + "start": 4361.42, + "end": 4365.38, + "probability": 0.3332 + }, + { + "start": 4365.74, + "end": 4366.9, + "probability": 0.9951 + }, + { + "start": 4366.96, + "end": 4370.8, + "probability": 0.9706 + }, + { + "start": 4370.94, + "end": 4371.04, + "probability": 0.0189 + }, + { + "start": 4371.62, + "end": 4372.56, + "probability": 0.0483 + }, + { + "start": 4372.66, + "end": 4374.48, + "probability": 0.0927 + }, + { + "start": 4374.5, + "end": 4375.54, + "probability": 0.061 + }, + { + "start": 4375.54, + "end": 4376.54, + "probability": 0.044 + }, + { + "start": 4376.84, + "end": 4378.34, + "probability": 0.512 + }, + { + "start": 4378.52, + "end": 4381.48, + "probability": 0.8843 + }, + { + "start": 4381.64, + "end": 4382.24, + "probability": 0.7325 + }, + { + "start": 4382.38, + "end": 4383.22, + "probability": 0.7413 + }, + { + "start": 4383.68, + "end": 4385.1, + "probability": 0.9685 + }, + { + "start": 4385.3, + "end": 4386.54, + "probability": 0.9344 + }, + { + "start": 4386.62, + "end": 4389.04, + "probability": 0.9639 + }, + { + "start": 4389.04, + "end": 4393.14, + "probability": 0.8902 + }, + { + "start": 4394.04, + "end": 4395.76, + "probability": 0.9812 + }, + { + "start": 4396.34, + "end": 4397.52, + "probability": 0.6255 + }, + { + "start": 4397.66, + "end": 4403.26, + "probability": 0.9855 + }, + { + "start": 4403.92, + "end": 4407.38, + "probability": 0.9805 + }, + { + "start": 4407.94, + "end": 4412.32, + "probability": 0.9968 + }, + { + "start": 4412.82, + "end": 4415.72, + "probability": 0.9716 + }, + { + "start": 4416.48, + "end": 4417.82, + "probability": 0.7236 + }, + { + "start": 4417.96, + "end": 4420.34, + "probability": 0.4456 + }, + { + "start": 4420.34, + "end": 4421.34, + "probability": 0.6205 + }, + { + "start": 4421.44, + "end": 4422.67, + "probability": 0.9598 + }, + { + "start": 4423.18, + "end": 4425.15, + "probability": 0.9624 + }, + { + "start": 4425.48, + "end": 4430.1, + "probability": 0.9824 + }, + { + "start": 4430.84, + "end": 4434.92, + "probability": 0.9373 + }, + { + "start": 4435.18, + "end": 4437.2, + "probability": 0.9784 + }, + { + "start": 4437.26, + "end": 4440.56, + "probability": 0.9922 + }, + { + "start": 4440.92, + "end": 4443.98, + "probability": 0.916 + }, + { + "start": 4444.16, + "end": 4446.02, + "probability": 0.8856 + }, + { + "start": 4446.58, + "end": 4448.0, + "probability": 0.8044 + }, + { + "start": 4448.94, + "end": 4452.82, + "probability": 0.987 + }, + { + "start": 4452.82, + "end": 4455.6, + "probability": 0.996 + }, + { + "start": 4456.14, + "end": 4460.96, + "probability": 0.9987 + }, + { + "start": 4461.2, + "end": 4463.98, + "probability": 0.9741 + }, + { + "start": 4464.58, + "end": 4470.06, + "probability": 0.9548 + }, + { + "start": 4470.08, + "end": 4476.12, + "probability": 0.998 + }, + { + "start": 4476.16, + "end": 4477.7, + "probability": 0.9873 + }, + { + "start": 4477.92, + "end": 4480.04, + "probability": 0.9937 + }, + { + "start": 4480.28, + "end": 4483.36, + "probability": 0.9798 + }, + { + "start": 4483.56, + "end": 4484.9, + "probability": 0.9941 + }, + { + "start": 4486.5, + "end": 4486.7, + "probability": 0.4538 + }, + { + "start": 4486.84, + "end": 4486.9, + "probability": 0.1514 + }, + { + "start": 4486.9, + "end": 4486.9, + "probability": 0.5671 + }, + { + "start": 4486.9, + "end": 4488.04, + "probability": 0.9362 + }, + { + "start": 4488.5, + "end": 4490.3, + "probability": 0.9521 + }, + { + "start": 4490.76, + "end": 4496.52, + "probability": 0.9396 + }, + { + "start": 4496.54, + "end": 4499.38, + "probability": 0.7768 + }, + { + "start": 4499.6, + "end": 4504.08, + "probability": 0.9919 + }, + { + "start": 4505.02, + "end": 4507.56, + "probability": 0.948 + }, + { + "start": 4507.76, + "end": 4509.6, + "probability": 0.9917 + }, + { + "start": 4510.24, + "end": 4512.37, + "probability": 0.9805 + }, + { + "start": 4514.96, + "end": 4515.64, + "probability": 0.2289 + }, + { + "start": 4516.7, + "end": 4517.48, + "probability": 0.7363 + }, + { + "start": 4517.6, + "end": 4519.86, + "probability": 0.915 + }, + { + "start": 4520.4, + "end": 4524.72, + "probability": 0.886 + }, + { + "start": 4524.96, + "end": 4525.72, + "probability": 0.9915 + }, + { + "start": 4526.4, + "end": 4527.52, + "probability": 0.9651 + }, + { + "start": 4528.02, + "end": 4529.28, + "probability": 0.9795 + }, + { + "start": 4529.48, + "end": 4533.02, + "probability": 0.9822 + }, + { + "start": 4533.22, + "end": 4535.64, + "probability": 0.9932 + }, + { + "start": 4536.08, + "end": 4541.08, + "probability": 0.8731 + }, + { + "start": 4541.88, + "end": 4542.38, + "probability": 0.5004 + }, + { + "start": 4543.38, + "end": 4544.76, + "probability": 0.9978 + }, + { + "start": 4545.38, + "end": 4546.96, + "probability": 0.8894 + }, + { + "start": 4547.66, + "end": 4553.02, + "probability": 0.9969 + }, + { + "start": 4553.02, + "end": 4560.76, + "probability": 0.9979 + }, + { + "start": 4561.02, + "end": 4562.36, + "probability": 0.9351 + }, + { + "start": 4563.4, + "end": 4563.94, + "probability": 0.4206 + }, + { + "start": 4565.45, + "end": 4567.12, + "probability": 0.6882 + }, + { + "start": 4567.54, + "end": 4570.9, + "probability": 0.7307 + }, + { + "start": 4571.88, + "end": 4576.42, + "probability": 0.9919 + }, + { + "start": 4576.98, + "end": 4586.4, + "probability": 0.9948 + }, + { + "start": 4586.4, + "end": 4592.34, + "probability": 0.9924 + }, + { + "start": 4593.2, + "end": 4594.58, + "probability": 0.9159 + }, + { + "start": 4594.94, + "end": 4596.12, + "probability": 0.6818 + }, + { + "start": 4596.82, + "end": 4598.36, + "probability": 0.8547 + }, + { + "start": 4598.44, + "end": 4600.78, + "probability": 0.8459 + }, + { + "start": 4602.7, + "end": 4603.98, + "probability": 0.922 + }, + { + "start": 4604.14, + "end": 4605.28, + "probability": 0.9775 + }, + { + "start": 4605.4, + "end": 4606.84, + "probability": 0.9855 + }, + { + "start": 4607.0, + "end": 4607.62, + "probability": 0.862 + }, + { + "start": 4607.76, + "end": 4608.58, + "probability": 0.808 + }, + { + "start": 4609.2, + "end": 4611.16, + "probability": 0.549 + }, + { + "start": 4611.72, + "end": 4615.82, + "probability": 0.8235 + }, + { + "start": 4616.14, + "end": 4617.02, + "probability": 0.8232 + }, + { + "start": 4617.32, + "end": 4617.76, + "probability": 0.5278 + }, + { + "start": 4617.8, + "end": 4617.96, + "probability": 0.6846 + }, + { + "start": 4619.12, + "end": 4619.66, + "probability": 0.3032 + }, + { + "start": 4620.02, + "end": 4623.58, + "probability": 0.9818 + }, + { + "start": 4623.58, + "end": 4626.58, + "probability": 0.9783 + }, + { + "start": 4627.36, + "end": 4629.68, + "probability": 0.7537 + }, + { + "start": 4631.21, + "end": 4633.02, + "probability": 0.9894 + }, + { + "start": 4633.7, + "end": 4634.56, + "probability": 0.9113 + }, + { + "start": 4634.86, + "end": 4636.88, + "probability": 0.7891 + }, + { + "start": 4638.92, + "end": 4639.84, + "probability": 0.6628 + }, + { + "start": 4639.98, + "end": 4641.46, + "probability": 0.9139 + }, + { + "start": 4641.6, + "end": 4642.46, + "probability": 0.8086 + }, + { + "start": 4642.88, + "end": 4643.16, + "probability": 0.0809 + }, + { + "start": 4644.6, + "end": 4650.76, + "probability": 0.9517 + }, + { + "start": 4651.38, + "end": 4656.16, + "probability": 0.7869 + }, + { + "start": 4656.16, + "end": 4663.2, + "probability": 0.9487 + }, + { + "start": 4663.36, + "end": 4665.5, + "probability": 0.5563 + }, + { + "start": 4666.6, + "end": 4668.08, + "probability": 0.603 + }, + { + "start": 4668.76, + "end": 4670.65, + "probability": 0.8793 + }, + { + "start": 4671.44, + "end": 4671.54, + "probability": 0.9491 + }, + { + "start": 4672.76, + "end": 4672.98, + "probability": 0.9585 + }, + { + "start": 4673.76, + "end": 4676.24, + "probability": 0.6426 + }, + { + "start": 4676.58, + "end": 4680.22, + "probability": 0.7227 + }, + { + "start": 4681.98, + "end": 4682.4, + "probability": 0.7542 + }, + { + "start": 4682.94, + "end": 4688.3, + "probability": 0.9681 + }, + { + "start": 4688.96, + "end": 4690.45, + "probability": 0.8759 + }, + { + "start": 4691.8, + "end": 4694.46, + "probability": 0.7427 + }, + { + "start": 4694.46, + "end": 4694.66, + "probability": 0.5369 + }, + { + "start": 4694.66, + "end": 4695.6, + "probability": 0.4373 + }, + { + "start": 4695.68, + "end": 4698.5, + "probability": 0.9455 + }, + { + "start": 4698.5, + "end": 4698.6, + "probability": 0.5789 + }, + { + "start": 4698.64, + "end": 4698.76, + "probability": 0.4998 + }, + { + "start": 4698.82, + "end": 4699.12, + "probability": 0.7566 + }, + { + "start": 4699.12, + "end": 4699.62, + "probability": 0.9773 + }, + { + "start": 4700.28, + "end": 4700.46, + "probability": 0.1415 + }, + { + "start": 4701.9, + "end": 4706.37, + "probability": 0.962 + }, + { + "start": 4708.1, + "end": 4708.32, + "probability": 0.7441 + }, + { + "start": 4709.76, + "end": 4713.46, + "probability": 0.9346 + }, + { + "start": 4715.08, + "end": 4716.22, + "probability": 0.9347 + }, + { + "start": 4717.8, + "end": 4720.4, + "probability": 0.9597 + }, + { + "start": 4720.6, + "end": 4721.08, + "probability": 0.626 + }, + { + "start": 4721.36, + "end": 4725.34, + "probability": 0.9976 + }, + { + "start": 4725.92, + "end": 4728.1, + "probability": 0.8097 + }, + { + "start": 4728.69, + "end": 4729.5, + "probability": 0.2688 + }, + { + "start": 4731.7, + "end": 4735.08, + "probability": 0.8858 + }, + { + "start": 4735.3, + "end": 4738.04, + "probability": 0.986 + }, + { + "start": 4739.0, + "end": 4740.8, + "probability": 0.7774 + }, + { + "start": 4744.12, + "end": 4748.7, + "probability": 0.9115 + }, + { + "start": 4749.02, + "end": 4750.94, + "probability": 0.6629 + }, + { + "start": 4752.08, + "end": 4754.3, + "probability": 0.9937 + }, + { + "start": 4755.6, + "end": 4761.64, + "probability": 0.9014 + }, + { + "start": 4762.58, + "end": 4764.88, + "probability": 0.9017 + }, + { + "start": 4765.84, + "end": 4766.32, + "probability": 0.8103 + }, + { + "start": 4766.75, + "end": 4767.36, + "probability": 0.7856 + }, + { + "start": 4767.5, + "end": 4768.14, + "probability": 0.7647 + }, + { + "start": 4768.26, + "end": 4771.48, + "probability": 0.9853 + }, + { + "start": 4772.02, + "end": 4773.08, + "probability": 0.7301 + }, + { + "start": 4774.36, + "end": 4776.2, + "probability": 0.6517 + }, + { + "start": 4780.4, + "end": 4781.26, + "probability": 0.116 + }, + { + "start": 4782.14, + "end": 4783.06, + "probability": 0.5878 + }, + { + "start": 4784.2, + "end": 4787.22, + "probability": 0.2739 + }, + { + "start": 4788.7, + "end": 4792.76, + "probability": 0.8211 + }, + { + "start": 4795.94, + "end": 4795.94, + "probability": 0.0886 + }, + { + "start": 4796.54, + "end": 4799.04, + "probability": 0.6884 + }, + { + "start": 4800.22, + "end": 4801.28, + "probability": 0.9256 + }, + { + "start": 4802.38, + "end": 4803.32, + "probability": 0.7486 + }, + { + "start": 4803.86, + "end": 4806.62, + "probability": 0.8029 + }, + { + "start": 4807.04, + "end": 4810.1, + "probability": 0.9823 + }, + { + "start": 4811.32, + "end": 4816.66, + "probability": 0.9912 + }, + { + "start": 4817.76, + "end": 4823.06, + "probability": 0.7657 + }, + { + "start": 4824.02, + "end": 4826.66, + "probability": 0.7915 + }, + { + "start": 4826.94, + "end": 4827.93, + "probability": 0.5969 + }, + { + "start": 4831.16, + "end": 4832.82, + "probability": 0.7835 + }, + { + "start": 4832.86, + "end": 4835.38, + "probability": 0.9846 + }, + { + "start": 4839.22, + "end": 4841.78, + "probability": 0.7803 + }, + { + "start": 4842.74, + "end": 4844.38, + "probability": 0.7739 + }, + { + "start": 4844.76, + "end": 4846.36, + "probability": 0.6761 + }, + { + "start": 4847.06, + "end": 4851.42, + "probability": 0.9587 + }, + { + "start": 4852.4, + "end": 4856.96, + "probability": 0.5841 + }, + { + "start": 4857.7, + "end": 4861.28, + "probability": 0.9957 + }, + { + "start": 4862.6, + "end": 4869.36, + "probability": 0.9854 + }, + { + "start": 4869.36, + "end": 4873.34, + "probability": 0.8848 + }, + { + "start": 4873.36, + "end": 4874.62, + "probability": 0.8113 + }, + { + "start": 4875.8, + "end": 4878.68, + "probability": 0.9839 + }, + { + "start": 4879.0, + "end": 4882.44, + "probability": 0.9318 + }, + { + "start": 4882.76, + "end": 4884.02, + "probability": 0.9982 + }, + { + "start": 4885.74, + "end": 4886.68, + "probability": 0.978 + }, + { + "start": 4886.8, + "end": 4888.19, + "probability": 0.6529 + }, + { + "start": 4888.48, + "end": 4889.74, + "probability": 0.8089 + }, + { + "start": 4890.46, + "end": 4891.81, + "probability": 0.8818 + }, + { + "start": 4892.74, + "end": 4896.74, + "probability": 0.9147 + }, + { + "start": 4897.7, + "end": 4901.32, + "probability": 0.9945 + }, + { + "start": 4901.96, + "end": 4903.36, + "probability": 0.9502 + }, + { + "start": 4904.74, + "end": 4906.66, + "probability": 0.9863 + }, + { + "start": 4906.94, + "end": 4909.78, + "probability": 0.6288 + }, + { + "start": 4909.78, + "end": 4914.06, + "probability": 0.9982 + }, + { + "start": 4914.16, + "end": 4914.8, + "probability": 0.9502 + }, + { + "start": 4915.48, + "end": 4919.02, + "probability": 0.7443 + }, + { + "start": 4919.56, + "end": 4920.78, + "probability": 0.8797 + }, + { + "start": 4921.6, + "end": 4924.16, + "probability": 0.9816 + }, + { + "start": 4925.18, + "end": 4926.26, + "probability": 0.7971 + }, + { + "start": 4926.9, + "end": 4927.76, + "probability": 0.9018 + }, + { + "start": 4927.96, + "end": 4929.46, + "probability": 0.9745 + }, + { + "start": 4929.54, + "end": 4930.86, + "probability": 0.9627 + }, + { + "start": 4931.88, + "end": 4933.48, + "probability": 0.9941 + }, + { + "start": 4934.32, + "end": 4935.36, + "probability": 0.9844 + }, + { + "start": 4935.92, + "end": 4936.62, + "probability": 0.9165 + }, + { + "start": 4937.0, + "end": 4938.44, + "probability": 0.9908 + }, + { + "start": 4939.42, + "end": 4942.98, + "probability": 0.9979 + }, + { + "start": 4943.4, + "end": 4945.36, + "probability": 0.6013 + }, + { + "start": 4946.3, + "end": 4947.78, + "probability": 0.6837 + }, + { + "start": 4947.98, + "end": 4949.58, + "probability": 0.8525 + }, + { + "start": 4949.94, + "end": 4950.34, + "probability": 0.7336 + }, + { + "start": 4951.3, + "end": 4951.94, + "probability": 0.9603 + }, + { + "start": 4953.86, + "end": 4957.72, + "probability": 0.9974 + }, + { + "start": 4958.7, + "end": 4959.76, + "probability": 0.8831 + }, + { + "start": 4960.6, + "end": 4961.91, + "probability": 0.9873 + }, + { + "start": 4962.12, + "end": 4965.72, + "probability": 0.5569 + }, + { + "start": 4966.8, + "end": 4969.54, + "probability": 0.7018 + }, + { + "start": 4970.7, + "end": 4972.36, + "probability": 0.9961 + }, + { + "start": 4973.8, + "end": 4975.66, + "probability": 0.997 + }, + { + "start": 4975.86, + "end": 4977.08, + "probability": 0.6342 + }, + { + "start": 4977.26, + "end": 4979.02, + "probability": 0.998 + }, + { + "start": 4979.7, + "end": 4983.58, + "probability": 0.9917 + }, + { + "start": 4984.1, + "end": 4991.34, + "probability": 0.9858 + }, + { + "start": 4991.34, + "end": 4992.62, + "probability": 0.5783 + }, + { + "start": 4992.72, + "end": 4998.2, + "probability": 0.9894 + }, + { + "start": 4998.3, + "end": 5000.08, + "probability": 0.7517 + }, + { + "start": 5001.28, + "end": 5006.16, + "probability": 0.9895 + }, + { + "start": 5006.88, + "end": 5013.3, + "probability": 0.8587 + }, + { + "start": 5013.86, + "end": 5015.62, + "probability": 0.9961 + }, + { + "start": 5016.48, + "end": 5018.42, + "probability": 0.8823 + }, + { + "start": 5018.8, + "end": 5019.66, + "probability": 0.8577 + }, + { + "start": 5020.12, + "end": 5023.32, + "probability": 0.861 + }, + { + "start": 5024.2, + "end": 5024.92, + "probability": 0.4401 + }, + { + "start": 5025.54, + "end": 5030.3, + "probability": 0.9983 + }, + { + "start": 5030.64, + "end": 5031.16, + "probability": 0.6312 + }, + { + "start": 5031.8, + "end": 5032.82, + "probability": 0.1014 + }, + { + "start": 5033.22, + "end": 5034.4, + "probability": 0.8096 + }, + { + "start": 5034.56, + "end": 5035.87, + "probability": 0.916 + }, + { + "start": 5036.52, + "end": 5037.56, + "probability": 0.8464 + }, + { + "start": 5038.26, + "end": 5040.7, + "probability": 0.021 + }, + { + "start": 5040.7, + "end": 5040.7, + "probability": 0.0289 + }, + { + "start": 5040.7, + "end": 5044.9, + "probability": 0.9784 + }, + { + "start": 5046.7, + "end": 5048.36, + "probability": 0.7858 + }, + { + "start": 5048.8, + "end": 5051.02, + "probability": 0.9884 + }, + { + "start": 5051.7, + "end": 5052.54, + "probability": 0.7001 + }, + { + "start": 5054.96, + "end": 5056.06, + "probability": 0.7998 + }, + { + "start": 5056.24, + "end": 5059.58, + "probability": 0.9601 + }, + { + "start": 5059.58, + "end": 5062.94, + "probability": 0.9877 + }, + { + "start": 5064.02, + "end": 5064.99, + "probability": 0.6862 + }, + { + "start": 5065.8, + "end": 5068.54, + "probability": 0.6714 + }, + { + "start": 5078.54, + "end": 5080.74, + "probability": 0.6838 + }, + { + "start": 5080.92, + "end": 5082.26, + "probability": 0.5112 + }, + { + "start": 5083.14, + "end": 5083.52, + "probability": 0.7126 + }, + { + "start": 5083.86, + "end": 5090.7, + "probability": 0.9368 + }, + { + "start": 5091.12, + "end": 5091.88, + "probability": 0.9201 + }, + { + "start": 5093.1, + "end": 5098.22, + "probability": 0.9867 + }, + { + "start": 5098.78, + "end": 5099.7, + "probability": 0.8489 + }, + { + "start": 5100.3, + "end": 5104.22, + "probability": 0.998 + }, + { + "start": 5104.46, + "end": 5109.14, + "probability": 0.9991 + }, + { + "start": 5109.74, + "end": 5113.62, + "probability": 0.9832 + }, + { + "start": 5113.96, + "end": 5118.34, + "probability": 0.9987 + }, + { + "start": 5120.06, + "end": 5124.02, + "probability": 0.9512 + }, + { + "start": 5124.94, + "end": 5128.42, + "probability": 0.9889 + }, + { + "start": 5129.22, + "end": 5130.58, + "probability": 0.8208 + }, + { + "start": 5131.68, + "end": 5135.54, + "probability": 0.9718 + }, + { + "start": 5136.18, + "end": 5137.42, + "probability": 0.9612 + }, + { + "start": 5138.04, + "end": 5138.8, + "probability": 0.9006 + }, + { + "start": 5139.44, + "end": 5144.02, + "probability": 0.9575 + }, + { + "start": 5144.6, + "end": 5148.34, + "probability": 0.9812 + }, + { + "start": 5149.6, + "end": 5152.68, + "probability": 0.9838 + }, + { + "start": 5153.34, + "end": 5154.32, + "probability": 0.7453 + }, + { + "start": 5155.28, + "end": 5157.2, + "probability": 0.9976 + }, + { + "start": 5157.8, + "end": 5158.44, + "probability": 0.9943 + }, + { + "start": 5159.44, + "end": 5165.62, + "probability": 0.9958 + }, + { + "start": 5166.6, + "end": 5171.08, + "probability": 0.9906 + }, + { + "start": 5171.08, + "end": 5175.4, + "probability": 0.9995 + }, + { + "start": 5176.32, + "end": 5179.12, + "probability": 0.7619 + }, + { + "start": 5179.52, + "end": 5180.86, + "probability": 0.8662 + }, + { + "start": 5181.36, + "end": 5181.98, + "probability": 0.7417 + }, + { + "start": 5182.58, + "end": 5185.12, + "probability": 0.9946 + }, + { + "start": 5185.98, + "end": 5189.0, + "probability": 0.9701 + }, + { + "start": 5189.5, + "end": 5189.54, + "probability": 0.2019 + }, + { + "start": 5189.54, + "end": 5189.54, + "probability": 0.0206 + }, + { + "start": 5189.54, + "end": 5197.78, + "probability": 0.9704 + }, + { + "start": 5198.38, + "end": 5201.2, + "probability": 0.9846 + }, + { + "start": 5202.06, + "end": 5204.94, + "probability": 0.9306 + }, + { + "start": 5205.8, + "end": 5207.88, + "probability": 0.9953 + }, + { + "start": 5208.46, + "end": 5209.94, + "probability": 0.9407 + }, + { + "start": 5210.48, + "end": 5215.06, + "probability": 0.9854 + }, + { + "start": 5215.06, + "end": 5220.13, + "probability": 0.9678 + }, + { + "start": 5221.04, + "end": 5224.58, + "probability": 0.9302 + }, + { + "start": 5224.58, + "end": 5228.18, + "probability": 0.9895 + }, + { + "start": 5228.8, + "end": 5235.17, + "probability": 0.8862 + }, + { + "start": 5235.36, + "end": 5238.8, + "probability": 0.9935 + }, + { + "start": 5238.8, + "end": 5241.66, + "probability": 0.8604 + }, + { + "start": 5242.3, + "end": 5247.18, + "probability": 0.9776 + }, + { + "start": 5247.84, + "end": 5250.26, + "probability": 0.9862 + }, + { + "start": 5251.04, + "end": 5252.56, + "probability": 0.8463 + }, + { + "start": 5253.12, + "end": 5258.22, + "probability": 0.9948 + }, + { + "start": 5258.76, + "end": 5264.84, + "probability": 0.9903 + }, + { + "start": 5265.38, + "end": 5267.2, + "probability": 0.9418 + }, + { + "start": 5267.98, + "end": 5272.76, + "probability": 0.9856 + }, + { + "start": 5272.76, + "end": 5276.62, + "probability": 0.9987 + }, + { + "start": 5276.78, + "end": 5277.96, + "probability": 0.8541 + }, + { + "start": 5278.58, + "end": 5282.24, + "probability": 0.981 + }, + { + "start": 5283.12, + "end": 5286.48, + "probability": 0.5016 + }, + { + "start": 5287.1, + "end": 5289.68, + "probability": 0.8173 + }, + { + "start": 5289.98, + "end": 5293.08, + "probability": 0.9969 + }, + { + "start": 5293.08, + "end": 5297.12, + "probability": 0.9552 + }, + { + "start": 5297.84, + "end": 5299.88, + "probability": 0.9956 + }, + { + "start": 5300.4, + "end": 5305.28, + "probability": 0.9009 + }, + { + "start": 5305.82, + "end": 5308.82, + "probability": 0.9402 + }, + { + "start": 5309.54, + "end": 5310.06, + "probability": 0.8362 + }, + { + "start": 5310.6, + "end": 5312.16, + "probability": 0.9146 + }, + { + "start": 5312.7, + "end": 5317.6, + "probability": 0.9926 + }, + { + "start": 5318.46, + "end": 5321.42, + "probability": 0.9927 + }, + { + "start": 5322.02, + "end": 5324.28, + "probability": 0.9424 + }, + { + "start": 5324.98, + "end": 5328.2, + "probability": 0.9634 + }, + { + "start": 5328.2, + "end": 5331.5, + "probability": 0.9983 + }, + { + "start": 5332.12, + "end": 5332.56, + "probability": 0.7827 + }, + { + "start": 5333.06, + "end": 5336.4, + "probability": 0.9825 + }, + { + "start": 5337.16, + "end": 5340.38, + "probability": 0.9984 + }, + { + "start": 5340.46, + "end": 5344.12, + "probability": 0.9968 + }, + { + "start": 5344.94, + "end": 5346.82, + "probability": 0.9985 + }, + { + "start": 5347.46, + "end": 5350.38, + "probability": 0.9896 + }, + { + "start": 5350.94, + "end": 5355.62, + "probability": 0.8655 + }, + { + "start": 5356.32, + "end": 5359.54, + "probability": 0.9961 + }, + { + "start": 5360.4, + "end": 5362.22, + "probability": 0.8189 + }, + { + "start": 5362.94, + "end": 5364.11, + "probability": 0.9421 + }, + { + "start": 5364.96, + "end": 5367.08, + "probability": 0.979 + }, + { + "start": 5367.66, + "end": 5370.14, + "probability": 0.983 + }, + { + "start": 5370.96, + "end": 5371.46, + "probability": 0.6556 + }, + { + "start": 5372.78, + "end": 5375.16, + "probability": 0.9544 + }, + { + "start": 5375.98, + "end": 5376.74, + "probability": 0.9686 + }, + { + "start": 5377.28, + "end": 5378.38, + "probability": 0.7418 + }, + { + "start": 5379.66, + "end": 5380.18, + "probability": 0.8167 + }, + { + "start": 5380.86, + "end": 5385.52, + "probability": 0.9862 + }, + { + "start": 5386.2, + "end": 5386.58, + "probability": 0.5645 + }, + { + "start": 5386.74, + "end": 5390.36, + "probability": 0.9956 + }, + { + "start": 5391.04, + "end": 5391.78, + "probability": 0.8578 + }, + { + "start": 5392.5, + "end": 5397.06, + "probability": 0.9681 + }, + { + "start": 5397.64, + "end": 5402.28, + "probability": 0.9578 + }, + { + "start": 5402.9, + "end": 5406.04, + "probability": 0.9845 + }, + { + "start": 5406.78, + "end": 5407.74, + "probability": 0.9794 + }, + { + "start": 5408.34, + "end": 5411.14, + "probability": 0.9088 + }, + { + "start": 5411.68, + "end": 5413.46, + "probability": 0.9993 + }, + { + "start": 5414.1, + "end": 5416.94, + "probability": 0.7944 + }, + { + "start": 5417.46, + "end": 5418.36, + "probability": 0.9381 + }, + { + "start": 5419.54, + "end": 5421.78, + "probability": 0.9762 + }, + { + "start": 5422.52, + "end": 5423.5, + "probability": 0.7324 + }, + { + "start": 5424.02, + "end": 5426.4, + "probability": 0.9961 + }, + { + "start": 5427.64, + "end": 5430.5, + "probability": 0.9924 + }, + { + "start": 5431.7, + "end": 5433.83, + "probability": 0.904 + }, + { + "start": 5434.6, + "end": 5436.44, + "probability": 0.6448 + }, + { + "start": 5439.48, + "end": 5442.34, + "probability": 0.9506 + }, + { + "start": 5442.7, + "end": 5444.56, + "probability": 0.9889 + }, + { + "start": 5445.12, + "end": 5448.24, + "probability": 0.9933 + }, + { + "start": 5448.64, + "end": 5451.46, + "probability": 0.9903 + }, + { + "start": 5451.9, + "end": 5455.28, + "probability": 0.9949 + }, + { + "start": 5456.82, + "end": 5457.97, + "probability": 0.626 + }, + { + "start": 5458.56, + "end": 5459.48, + "probability": 0.8706 + }, + { + "start": 5460.24, + "end": 5461.82, + "probability": 0.5701 + }, + { + "start": 5463.02, + "end": 5463.16, + "probability": 0.3116 + }, + { + "start": 5467.28, + "end": 5468.16, + "probability": 0.271 + }, + { + "start": 5469.14, + "end": 5472.88, + "probability": 0.2909 + }, + { + "start": 5473.74, + "end": 5475.22, + "probability": 0.6592 + }, + { + "start": 5475.8, + "end": 5477.41, + "probability": 0.9878 + }, + { + "start": 5477.98, + "end": 5480.1, + "probability": 0.5536 + }, + { + "start": 5480.12, + "end": 5484.58, + "probability": 0.8001 + }, + { + "start": 5485.18, + "end": 5489.4, + "probability": 0.981 + }, + { + "start": 5490.16, + "end": 5491.7, + "probability": 0.925 + }, + { + "start": 5491.84, + "end": 5493.44, + "probability": 0.735 + }, + { + "start": 5494.3, + "end": 5495.08, + "probability": 0.8809 + }, + { + "start": 5495.98, + "end": 5498.02, + "probability": 0.9745 + }, + { + "start": 5506.76, + "end": 5508.12, + "probability": 0.71 + }, + { + "start": 5508.24, + "end": 5511.54, + "probability": 0.9541 + }, + { + "start": 5512.56, + "end": 5515.14, + "probability": 0.8103 + }, + { + "start": 5526.0, + "end": 5527.02, + "probability": 0.6496 + }, + { + "start": 5527.9, + "end": 5529.1, + "probability": 0.6994 + }, + { + "start": 5530.3, + "end": 5532.06, + "probability": 0.9783 + }, + { + "start": 5532.34, + "end": 5534.22, + "probability": 0.8315 + }, + { + "start": 5535.72, + "end": 5538.16, + "probability": 0.8498 + }, + { + "start": 5540.34, + "end": 5541.22, + "probability": 0.9577 + }, + { + "start": 5542.22, + "end": 5545.98, + "probability": 0.9619 + }, + { + "start": 5547.24, + "end": 5551.64, + "probability": 0.9797 + }, + { + "start": 5552.74, + "end": 5555.5, + "probability": 0.9524 + }, + { + "start": 5556.44, + "end": 5557.66, + "probability": 0.9988 + }, + { + "start": 5558.66, + "end": 5559.96, + "probability": 0.9678 + }, + { + "start": 5560.78, + "end": 5562.1, + "probability": 0.9868 + }, + { + "start": 5562.94, + "end": 5564.78, + "probability": 0.944 + }, + { + "start": 5565.66, + "end": 5569.2, + "probability": 0.9898 + }, + { + "start": 5569.46, + "end": 5569.72, + "probability": 0.8186 + }, + { + "start": 5569.82, + "end": 5570.24, + "probability": 0.9051 + }, + { + "start": 5570.34, + "end": 5570.7, + "probability": 0.871 + }, + { + "start": 5572.24, + "end": 5573.54, + "probability": 0.8837 + }, + { + "start": 5575.14, + "end": 5581.58, + "probability": 0.9893 + }, + { + "start": 5582.02, + "end": 5582.46, + "probability": 0.9155 + }, + { + "start": 5583.2, + "end": 5584.64, + "probability": 0.9731 + }, + { + "start": 5586.2, + "end": 5586.82, + "probability": 0.9561 + }, + { + "start": 5586.92, + "end": 5588.12, + "probability": 0.5353 + }, + { + "start": 5588.12, + "end": 5592.3, + "probability": 0.9775 + }, + { + "start": 5592.92, + "end": 5599.0, + "probability": 0.8365 + }, + { + "start": 5599.06, + "end": 5604.38, + "probability": 0.9894 + }, + { + "start": 5605.48, + "end": 5607.08, + "probability": 0.9712 + }, + { + "start": 5607.54, + "end": 5608.7, + "probability": 0.939 + }, + { + "start": 5608.98, + "end": 5610.1, + "probability": 0.9104 + }, + { + "start": 5610.16, + "end": 5610.77, + "probability": 0.9611 + }, + { + "start": 5613.34, + "end": 5614.1, + "probability": 0.7317 + }, + { + "start": 5615.14, + "end": 5617.96, + "probability": 0.9569 + }, + { + "start": 5620.22, + "end": 5621.84, + "probability": 0.7942 + }, + { + "start": 5622.24, + "end": 5625.34, + "probability": 0.9664 + }, + { + "start": 5626.4, + "end": 5628.86, + "probability": 0.9924 + }, + { + "start": 5629.72, + "end": 5633.32, + "probability": 0.9971 + }, + { + "start": 5634.34, + "end": 5635.08, + "probability": 0.7706 + }, + { + "start": 5636.58, + "end": 5640.74, + "probability": 0.9314 + }, + { + "start": 5641.94, + "end": 5647.6, + "probability": 0.9419 + }, + { + "start": 5648.76, + "end": 5649.7, + "probability": 0.9293 + }, + { + "start": 5651.12, + "end": 5652.45, + "probability": 0.839 + }, + { + "start": 5653.26, + "end": 5653.98, + "probability": 0.4302 + }, + { + "start": 5655.12, + "end": 5656.5, + "probability": 0.849 + }, + { + "start": 5657.1, + "end": 5658.48, + "probability": 0.9717 + }, + { + "start": 5659.4, + "end": 5661.4, + "probability": 0.9274 + }, + { + "start": 5663.16, + "end": 5665.58, + "probability": 0.9479 + }, + { + "start": 5666.98, + "end": 5668.26, + "probability": 0.7437 + }, + { + "start": 5669.14, + "end": 5672.62, + "probability": 0.8016 + }, + { + "start": 5673.14, + "end": 5676.2, + "probability": 0.9717 + }, + { + "start": 5676.82, + "end": 5678.82, + "probability": 0.8432 + }, + { + "start": 5679.48, + "end": 5683.7, + "probability": 0.9434 + }, + { + "start": 5685.14, + "end": 5687.86, + "probability": 0.995 + }, + { + "start": 5688.66, + "end": 5689.74, + "probability": 0.9646 + }, + { + "start": 5690.54, + "end": 5693.18, + "probability": 0.9235 + }, + { + "start": 5694.28, + "end": 5695.62, + "probability": 0.6443 + }, + { + "start": 5696.14, + "end": 5697.3, + "probability": 0.5555 + }, + { + "start": 5698.82, + "end": 5705.5, + "probability": 0.9893 + }, + { + "start": 5706.1, + "end": 5707.2, + "probability": 0.9956 + }, + { + "start": 5708.18, + "end": 5714.5, + "probability": 0.9593 + }, + { + "start": 5714.5, + "end": 5715.76, + "probability": 0.8125 + }, + { + "start": 5716.42, + "end": 5718.56, + "probability": 0.9348 + }, + { + "start": 5718.68, + "end": 5719.98, + "probability": 0.9299 + }, + { + "start": 5720.06, + "end": 5721.16, + "probability": 0.9607 + }, + { + "start": 5722.4, + "end": 5723.88, + "probability": 0.7995 + }, + { + "start": 5725.34, + "end": 5728.16, + "probability": 0.9941 + }, + { + "start": 5728.16, + "end": 5733.98, + "probability": 0.9871 + }, + { + "start": 5735.12, + "end": 5740.96, + "probability": 0.9959 + }, + { + "start": 5741.68, + "end": 5743.36, + "probability": 0.921 + }, + { + "start": 5744.42, + "end": 5747.07, + "probability": 0.991 + }, + { + "start": 5748.54, + "end": 5750.46, + "probability": 0.8943 + }, + { + "start": 5751.32, + "end": 5755.38, + "probability": 0.9914 + }, + { + "start": 5756.64, + "end": 5761.56, + "probability": 0.9909 + }, + { + "start": 5762.3, + "end": 5765.72, + "probability": 0.6968 + }, + { + "start": 5766.36, + "end": 5768.3, + "probability": 0.8759 + }, + { + "start": 5768.44, + "end": 5771.52, + "probability": 0.7663 + }, + { + "start": 5771.52, + "end": 5774.32, + "probability": 0.9811 + }, + { + "start": 5775.58, + "end": 5777.42, + "probability": 0.9943 + }, + { + "start": 5777.76, + "end": 5780.94, + "probability": 0.9771 + }, + { + "start": 5782.02, + "end": 5783.46, + "probability": 0.9786 + }, + { + "start": 5783.8, + "end": 5788.1, + "probability": 0.9715 + }, + { + "start": 5789.24, + "end": 5791.12, + "probability": 0.9795 + }, + { + "start": 5791.64, + "end": 5793.64, + "probability": 0.9913 + }, + { + "start": 5794.42, + "end": 5801.64, + "probability": 0.9908 + }, + { + "start": 5801.64, + "end": 5804.88, + "probability": 0.9889 + }, + { + "start": 5806.04, + "end": 5807.26, + "probability": 0.9841 + }, + { + "start": 5809.02, + "end": 5813.42, + "probability": 0.9638 + }, + { + "start": 5814.06, + "end": 5816.31, + "probability": 0.8191 + }, + { + "start": 5818.04, + "end": 5825.16, + "probability": 0.9981 + }, + { + "start": 5825.84, + "end": 5827.86, + "probability": 0.9752 + }, + { + "start": 5828.46, + "end": 5829.48, + "probability": 0.9595 + }, + { + "start": 5829.58, + "end": 5830.16, + "probability": 0.9705 + }, + { + "start": 5830.46, + "end": 5833.02, + "probability": 0.9979 + }, + { + "start": 5833.74, + "end": 5834.72, + "probability": 0.9075 + }, + { + "start": 5835.68, + "end": 5838.28, + "probability": 0.9495 + }, + { + "start": 5838.72, + "end": 5842.1, + "probability": 0.8561 + }, + { + "start": 5842.7, + "end": 5843.3, + "probability": 0.7925 + }, + { + "start": 5844.04, + "end": 5848.82, + "probability": 0.9136 + }, + { + "start": 5849.54, + "end": 5850.62, + "probability": 0.9182 + }, + { + "start": 5850.9, + "end": 5852.76, + "probability": 0.9752 + }, + { + "start": 5852.88, + "end": 5853.76, + "probability": 0.9228 + }, + { + "start": 5853.9, + "end": 5857.14, + "probability": 0.8823 + }, + { + "start": 5857.28, + "end": 5862.86, + "probability": 0.9456 + }, + { + "start": 5863.52, + "end": 5866.96, + "probability": 0.7793 + }, + { + "start": 5867.42, + "end": 5869.8, + "probability": 0.9244 + }, + { + "start": 5870.4, + "end": 5871.44, + "probability": 0.7783 + }, + { + "start": 5872.04, + "end": 5872.86, + "probability": 0.9236 + }, + { + "start": 5872.92, + "end": 5874.14, + "probability": 0.4802 + }, + { + "start": 5874.9, + "end": 5875.94, + "probability": 0.9985 + }, + { + "start": 5877.02, + "end": 5881.7, + "probability": 0.9982 + }, + { + "start": 5882.28, + "end": 5884.24, + "probability": 0.9778 + }, + { + "start": 5885.16, + "end": 5885.88, + "probability": 0.7629 + }, + { + "start": 5886.58, + "end": 5892.64, + "probability": 0.9793 + }, + { + "start": 5893.6, + "end": 5896.24, + "probability": 0.9829 + }, + { + "start": 5897.68, + "end": 5899.16, + "probability": 0.8246 + }, + { + "start": 5900.14, + "end": 5904.6, + "probability": 0.9751 + }, + { + "start": 5904.74, + "end": 5905.14, + "probability": 0.9312 + }, + { + "start": 5905.62, + "end": 5907.06, + "probability": 0.9927 + }, + { + "start": 5907.22, + "end": 5910.8, + "probability": 0.9509 + }, + { + "start": 5911.64, + "end": 5913.88, + "probability": 0.7607 + }, + { + "start": 5914.58, + "end": 5917.54, + "probability": 0.845 + }, + { + "start": 5919.2, + "end": 5920.92, + "probability": 0.9858 + }, + { + "start": 5921.5, + "end": 5923.06, + "probability": 0.9693 + }, + { + "start": 5923.84, + "end": 5927.32, + "probability": 0.958 + }, + { + "start": 5928.06, + "end": 5930.04, + "probability": 0.9496 + }, + { + "start": 5930.6, + "end": 5934.0, + "probability": 0.9924 + }, + { + "start": 5934.22, + "end": 5934.9, + "probability": 0.8241 + }, + { + "start": 5935.44, + "end": 5937.98, + "probability": 0.6709 + }, + { + "start": 5938.1, + "end": 5939.6, + "probability": 0.2683 + }, + { + "start": 5939.94, + "end": 5945.52, + "probability": 0.9574 + }, + { + "start": 5945.68, + "end": 5946.7, + "probability": 0.7063 + }, + { + "start": 5946.86, + "end": 5947.18, + "probability": 0.3354 + }, + { + "start": 5947.44, + "end": 5952.58, + "probability": 0.9626 + }, + { + "start": 5952.74, + "end": 5953.28, + "probability": 0.938 + }, + { + "start": 5953.5, + "end": 5954.9, + "probability": 0.7294 + }, + { + "start": 5954.92, + "end": 5958.24, + "probability": 0.9896 + }, + { + "start": 5958.86, + "end": 5960.8, + "probability": 0.8253 + }, + { + "start": 5960.98, + "end": 5961.44, + "probability": 0.4736 + }, + { + "start": 5961.66, + "end": 5962.68, + "probability": 0.9663 + }, + { + "start": 5979.5, + "end": 5981.22, + "probability": 0.7993 + }, + { + "start": 5981.28, + "end": 5987.24, + "probability": 0.6256 + }, + { + "start": 5988.24, + "end": 5993.55, + "probability": 0.9905 + }, + { + "start": 5995.2, + "end": 6000.73, + "probability": 0.9052 + }, + { + "start": 6001.52, + "end": 6003.7, + "probability": 0.7007 + }, + { + "start": 6005.02, + "end": 6007.26, + "probability": 0.7008 + }, + { + "start": 6008.66, + "end": 6012.4, + "probability": 0.9652 + }, + { + "start": 6013.34, + "end": 6016.82, + "probability": 0.9959 + }, + { + "start": 6019.19, + "end": 6022.18, + "probability": 0.8493 + }, + { + "start": 6022.94, + "end": 6024.06, + "probability": 0.5491 + }, + { + "start": 6026.44, + "end": 6029.74, + "probability": 0.9701 + }, + { + "start": 6029.8, + "end": 6033.32, + "probability": 0.8553 + }, + { + "start": 6035.0, + "end": 6037.34, + "probability": 0.8972 + }, + { + "start": 6038.36, + "end": 6038.8, + "probability": 0.0982 + }, + { + "start": 6039.34, + "end": 6039.62, + "probability": 0.0256 + }, + { + "start": 6040.33, + "end": 6044.52, + "probability": 0.1821 + }, + { + "start": 6044.82, + "end": 6045.98, + "probability": 0.4368 + }, + { + "start": 6046.08, + "end": 6046.44, + "probability": 0.7437 + }, + { + "start": 6046.6, + "end": 6047.48, + "probability": 0.3261 + }, + { + "start": 6047.48, + "end": 6049.5, + "probability": 0.6809 + }, + { + "start": 6051.0, + "end": 6051.56, + "probability": 0.1772 + }, + { + "start": 6051.56, + "end": 6053.64, + "probability": 0.7067 + }, + { + "start": 6054.4, + "end": 6056.98, + "probability": 0.8902 + }, + { + "start": 6057.52, + "end": 6060.62, + "probability": 0.9617 + }, + { + "start": 6061.52, + "end": 6063.08, + "probability": 0.0352 + }, + { + "start": 6063.68, + "end": 6068.1, + "probability": 0.8731 + }, + { + "start": 6069.72, + "end": 6069.88, + "probability": 0.4866 + }, + { + "start": 6074.3, + "end": 6077.68, + "probability": 0.1523 + }, + { + "start": 6077.68, + "end": 6077.86, + "probability": 0.4834 + }, + { + "start": 6079.32, + "end": 6080.46, + "probability": 0.315 + }, + { + "start": 6082.08, + "end": 6085.1, + "probability": 0.479 + }, + { + "start": 6087.66, + "end": 6094.04, + "probability": 0.2177 + }, + { + "start": 6094.04, + "end": 6096.1, + "probability": 0.2185 + }, + { + "start": 6096.16, + "end": 6099.16, + "probability": 0.3015 + }, + { + "start": 6100.12, + "end": 6104.26, + "probability": 0.0476 + }, + { + "start": 6107.66, + "end": 6107.8, + "probability": 0.0165 + }, + { + "start": 6107.83, + "end": 6108.7, + "probability": 0.0522 + }, + { + "start": 6108.88, + "end": 6108.98, + "probability": 0.0338 + }, + { + "start": 6108.98, + "end": 6110.36, + "probability": 0.0126 + }, + { + "start": 6110.78, + "end": 6112.62, + "probability": 0.2257 + }, + { + "start": 6116.76, + "end": 6117.2, + "probability": 0.3089 + }, + { + "start": 6119.78, + "end": 6120.02, + "probability": 0.0427 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.0, + "end": 6138.0, + "probability": 0.0 + }, + { + "start": 6138.38, + "end": 6139.74, + "probability": 0.0514 + }, + { + "start": 6139.74, + "end": 6141.02, + "probability": 0.0383 + }, + { + "start": 6141.4, + "end": 6143.1, + "probability": 0.7706 + }, + { + "start": 6146.41, + "end": 6147.4, + "probability": 0.1207 + }, + { + "start": 6151.34, + "end": 6157.22, + "probability": 0.1177 + }, + { + "start": 6158.17, + "end": 6161.08, + "probability": 0.3311 + }, + { + "start": 6161.2, + "end": 6162.96, + "probability": 0.0596 + }, + { + "start": 6162.96, + "end": 6163.68, + "probability": 0.3308 + }, + { + "start": 6163.73, + "end": 6165.06, + "probability": 0.0383 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.0, + "end": 6263.0, + "probability": 0.0 + }, + { + "start": 6263.02, + "end": 6263.6, + "probability": 0.343 + }, + { + "start": 6264.06, + "end": 6265.26, + "probability": 0.9176 + }, + { + "start": 6265.84, + "end": 6267.66, + "probability": 0.8671 + }, + { + "start": 6268.84, + "end": 6269.42, + "probability": 0.7459 + }, + { + "start": 6277.12, + "end": 6278.68, + "probability": 0.5958 + }, + { + "start": 6284.8, + "end": 6286.0, + "probability": 0.9491 + }, + { + "start": 6286.14, + "end": 6290.84, + "probability": 0.7683 + }, + { + "start": 6292.18, + "end": 6294.22, + "probability": 0.9704 + }, + { + "start": 6295.7, + "end": 6299.14, + "probability": 0.9847 + }, + { + "start": 6299.92, + "end": 6301.86, + "probability": 0.984 + }, + { + "start": 6302.0, + "end": 6302.86, + "probability": 0.7013 + }, + { + "start": 6303.02, + "end": 6304.64, + "probability": 0.8363 + }, + { + "start": 6305.64, + "end": 6308.21, + "probability": 0.9951 + }, + { + "start": 6309.04, + "end": 6309.7, + "probability": 0.9828 + }, + { + "start": 6310.3, + "end": 6312.66, + "probability": 0.9288 + }, + { + "start": 6313.34, + "end": 6314.7, + "probability": 0.9531 + }, + { + "start": 6316.38, + "end": 6318.32, + "probability": 0.9785 + }, + { + "start": 6322.74, + "end": 6329.12, + "probability": 0.9989 + }, + { + "start": 6329.64, + "end": 6331.86, + "probability": 0.9436 + }, + { + "start": 6332.48, + "end": 6334.08, + "probability": 0.943 + }, + { + "start": 6334.84, + "end": 6335.68, + "probability": 0.902 + }, + { + "start": 6336.22, + "end": 6337.48, + "probability": 0.9713 + }, + { + "start": 6338.6, + "end": 6341.76, + "probability": 0.9877 + }, + { + "start": 6342.6, + "end": 6349.34, + "probability": 0.9702 + }, + { + "start": 6350.38, + "end": 6351.3, + "probability": 0.8957 + }, + { + "start": 6352.1, + "end": 6360.34, + "probability": 0.9814 + }, + { + "start": 6361.02, + "end": 6365.16, + "probability": 0.9744 + }, + { + "start": 6366.26, + "end": 6370.52, + "probability": 0.9741 + }, + { + "start": 6371.48, + "end": 6374.0, + "probability": 0.9973 + }, + { + "start": 6374.82, + "end": 6376.88, + "probability": 0.9894 + }, + { + "start": 6377.74, + "end": 6378.94, + "probability": 0.9556 + }, + { + "start": 6379.7, + "end": 6381.82, + "probability": 0.9936 + }, + { + "start": 6382.54, + "end": 6383.24, + "probability": 0.9763 + }, + { + "start": 6383.78, + "end": 6384.6, + "probability": 0.5519 + }, + { + "start": 6385.42, + "end": 6386.12, + "probability": 0.9285 + }, + { + "start": 6387.34, + "end": 6388.68, + "probability": 0.9604 + }, + { + "start": 6390.76, + "end": 6394.86, + "probability": 0.9479 + }, + { + "start": 6395.42, + "end": 6400.26, + "probability": 0.7328 + }, + { + "start": 6401.06, + "end": 6402.16, + "probability": 0.804 + }, + { + "start": 6402.72, + "end": 6406.2, + "probability": 0.9885 + }, + { + "start": 6406.9, + "end": 6409.94, + "probability": 0.9387 + }, + { + "start": 6410.9, + "end": 6412.75, + "probability": 0.6721 + }, + { + "start": 6413.52, + "end": 6414.79, + "probability": 0.9854 + }, + { + "start": 6415.67, + "end": 6417.17, + "probability": 0.916 + }, + { + "start": 6417.89, + "end": 6417.95, + "probability": 0.1063 + }, + { + "start": 6417.95, + "end": 6418.79, + "probability": 0.7843 + }, + { + "start": 6419.39, + "end": 6421.35, + "probability": 0.9016 + }, + { + "start": 6422.19, + "end": 6427.85, + "probability": 0.981 + }, + { + "start": 6428.49, + "end": 6429.49, + "probability": 0.8264 + }, + { + "start": 6430.45, + "end": 6432.0, + "probability": 0.9319 + }, + { + "start": 6432.97, + "end": 6433.99, + "probability": 0.9272 + }, + { + "start": 6434.99, + "end": 6438.79, + "probability": 0.7432 + }, + { + "start": 6439.23, + "end": 6439.35, + "probability": 0.0336 + }, + { + "start": 6439.35, + "end": 6440.59, + "probability": 0.5452 + }, + { + "start": 6441.25, + "end": 6446.15, + "probability": 0.9894 + }, + { + "start": 6446.83, + "end": 6448.11, + "probability": 0.7654 + }, + { + "start": 6448.71, + "end": 6451.95, + "probability": 0.9126 + }, + { + "start": 6453.47, + "end": 6456.33, + "probability": 0.819 + }, + { + "start": 6460.95, + "end": 6465.55, + "probability": 0.9448 + }, + { + "start": 6466.13, + "end": 6466.77, + "probability": 0.7141 + }, + { + "start": 6467.87, + "end": 6473.47, + "probability": 0.2332 + }, + { + "start": 6481.69, + "end": 6484.63, + "probability": 0.1113 + }, + { + "start": 6484.63, + "end": 6486.83, + "probability": 0.0474 + }, + { + "start": 6486.83, + "end": 6487.29, + "probability": 0.0354 + }, + { + "start": 6487.97, + "end": 6489.37, + "probability": 0.972 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.0, + "end": 6603.0, + "probability": 0.0 + }, + { + "start": 6603.2, + "end": 6603.32, + "probability": 0.3023 + }, + { + "start": 6603.32, + "end": 6603.68, + "probability": 0.088 + }, + { + "start": 6605.0, + "end": 6607.4, + "probability": 0.991 + }, + { + "start": 6607.46, + "end": 6609.28, + "probability": 0.7104 + }, + { + "start": 6609.94, + "end": 6610.54, + "probability": 0.4578 + }, + { + "start": 6611.38, + "end": 6611.48, + "probability": 0.494 + }, + { + "start": 6628.23, + "end": 6629.63, + "probability": 0.1273 + }, + { + "start": 6629.66, + "end": 6635.6, + "probability": 0.0611 + }, + { + "start": 6635.6, + "end": 6636.36, + "probability": 0.0336 + }, + { + "start": 6636.38, + "end": 6636.62, + "probability": 0.383 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6723.0, + "end": 6723.0, + "probability": 0.0 + }, + { + "start": 6732.72, + "end": 6732.8, + "probability": 0.0374 + }, + { + "start": 6732.8, + "end": 6733.0, + "probability": 0.1553 + }, + { + "start": 6733.08, + "end": 6735.12, + "probability": 0.9013 + }, + { + "start": 6735.14, + "end": 6738.72, + "probability": 0.9756 + }, + { + "start": 6738.94, + "end": 6739.74, + "probability": 0.7937 + }, + { + "start": 6739.84, + "end": 6740.96, + "probability": 0.7046 + }, + { + "start": 6741.04, + "end": 6741.5, + "probability": 0.7104 + }, + { + "start": 6742.82, + "end": 6746.86, + "probability": 0.8413 + }, + { + "start": 6747.18, + "end": 6748.42, + "probability": 0.6718 + }, + { + "start": 6749.24, + "end": 6757.74, + "probability": 0.1951 + }, + { + "start": 6758.4, + "end": 6761.51, + "probability": 0.0818 + }, + { + "start": 6763.54, + "end": 6766.2, + "probability": 0.11 + }, + { + "start": 6769.2, + "end": 6769.64, + "probability": 0.5365 + }, + { + "start": 6770.26, + "end": 6775.27, + "probability": 0.9688 + }, + { + "start": 6776.02, + "end": 6776.54, + "probability": 0.8484 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6854.0, + "end": 6854.0, + "probability": 0.0 + }, + { + "start": 6864.92, + "end": 6865.42, + "probability": 0.1925 + }, + { + "start": 6865.42, + "end": 6867.22, + "probability": 0.8646 + }, + { + "start": 6867.74, + "end": 6868.2, + "probability": 0.6456 + }, + { + "start": 6868.36, + "end": 6872.02, + "probability": 0.9852 + }, + { + "start": 6872.7, + "end": 6873.06, + "probability": 0.3235 + }, + { + "start": 6873.2, + "end": 6876.94, + "probability": 0.949 + }, + { + "start": 6878.23, + "end": 6882.48, + "probability": 0.863 + }, + { + "start": 6884.38, + "end": 6886.4, + "probability": 0.9763 + }, + { + "start": 6886.46, + "end": 6888.42, + "probability": 0.9532 + }, + { + "start": 6888.66, + "end": 6890.58, + "probability": 0.8598 + }, + { + "start": 6890.68, + "end": 6893.59, + "probability": 0.9694 + }, + { + "start": 6894.48, + "end": 6894.98, + "probability": 0.523 + }, + { + "start": 6897.28, + "end": 6898.58, + "probability": 0.9194 + }, + { + "start": 6903.34, + "end": 6904.46, + "probability": 0.7355 + }, + { + "start": 6904.56, + "end": 6906.86, + "probability": 0.8305 + }, + { + "start": 6907.32, + "end": 6913.2, + "probability": 0.9896 + }, + { + "start": 6913.8, + "end": 6915.78, + "probability": 0.5976 + }, + { + "start": 6916.2, + "end": 6918.13, + "probability": 0.6321 + }, + { + "start": 6918.72, + "end": 6919.18, + "probability": 0.738 + }, + { + "start": 6926.68, + "end": 6928.14, + "probability": 0.0631 + }, + { + "start": 6928.96, + "end": 6931.78, + "probability": 0.1472 + }, + { + "start": 6933.18, + "end": 6933.18, + "probability": 0.0444 + }, + { + "start": 6933.18, + "end": 6933.66, + "probability": 0.1253 + }, + { + "start": 6936.54, + "end": 6937.16, + "probability": 0.4681 + }, + { + "start": 6937.34, + "end": 6937.74, + "probability": 0.6703 + }, + { + "start": 6937.74, + "end": 6939.6, + "probability": 0.1595 + }, + { + "start": 6943.0, + "end": 6943.0, + "probability": 0.2351 + }, + { + "start": 6943.0, + "end": 6943.08, + "probability": 0.129 + }, + { + "start": 6944.04, + "end": 6945.35, + "probability": 0.1723 + }, + { + "start": 6946.02, + "end": 6946.02, + "probability": 0.1209 + }, + { + "start": 6955.72, + "end": 6955.88, + "probability": 0.1444 + }, + { + "start": 6984.02, + "end": 6986.14, + "probability": 0.5158 + }, + { + "start": 6986.86, + "end": 6988.74, + "probability": 0.6415 + }, + { + "start": 6989.76, + "end": 6990.44, + "probability": 0.6633 + }, + { + "start": 6990.8, + "end": 6996.04, + "probability": 0.9995 + }, + { + "start": 6996.96, + "end": 6999.76, + "probability": 0.7581 + }, + { + "start": 6999.86, + "end": 7003.89, + "probability": 0.946 + }, + { + "start": 7004.72, + "end": 7005.78, + "probability": 0.7294 + }, + { + "start": 7006.02, + "end": 7010.14, + "probability": 0.7926 + }, + { + "start": 7010.38, + "end": 7013.9, + "probability": 0.817 + }, + { + "start": 7013.96, + "end": 7018.96, + "probability": 0.9441 + }, + { + "start": 7019.08, + "end": 7023.5, + "probability": 0.8579 + }, + { + "start": 7023.9, + "end": 7030.44, + "probability": 0.9761 + }, + { + "start": 7030.52, + "end": 7034.66, + "probability": 0.9842 + }, + { + "start": 7034.76, + "end": 7040.06, + "probability": 0.8896 + }, + { + "start": 7040.22, + "end": 7041.12, + "probability": 0.7824 + }, + { + "start": 7041.84, + "end": 7043.02, + "probability": 0.6882 + }, + { + "start": 7043.22, + "end": 7049.95, + "probability": 0.9598 + }, + { + "start": 7050.44, + "end": 7051.82, + "probability": 0.9691 + }, + { + "start": 7052.38, + "end": 7053.36, + "probability": 0.7964 + }, + { + "start": 7053.76, + "end": 7056.54, + "probability": 0.9387 + }, + { + "start": 7056.88, + "end": 7058.22, + "probability": 0.9989 + }, + { + "start": 7059.92, + "end": 7060.18, + "probability": 0.4829 + }, + { + "start": 7060.32, + "end": 7060.73, + "probability": 0.4917 + }, + { + "start": 7063.58, + "end": 7064.46, + "probability": 0.7357 + }, + { + "start": 7064.54, + "end": 7066.78, + "probability": 0.8365 + }, + { + "start": 7067.18, + "end": 7068.04, + "probability": 0.9422 + }, + { + "start": 7068.7, + "end": 7070.98, + "probability": 0.9863 + }, + { + "start": 7071.28, + "end": 7075.78, + "probability": 0.9772 + }, + { + "start": 7076.0, + "end": 7078.28, + "probability": 0.9548 + }, + { + "start": 7078.74, + "end": 7080.8, + "probability": 0.9593 + }, + { + "start": 7081.36, + "end": 7083.82, + "probability": 0.6598 + }, + { + "start": 7084.38, + "end": 7089.38, + "probability": 0.9377 + }, + { + "start": 7089.96, + "end": 7091.74, + "probability": 0.908 + }, + { + "start": 7092.26, + "end": 7097.88, + "probability": 0.8119 + }, + { + "start": 7098.02, + "end": 7102.74, + "probability": 0.8336 + }, + { + "start": 7103.68, + "end": 7105.38, + "probability": 0.5303 + }, + { + "start": 7106.06, + "end": 7110.46, + "probability": 0.8202 + }, + { + "start": 7110.46, + "end": 7117.3, + "probability": 0.9406 + }, + { + "start": 7118.06, + "end": 7125.26, + "probability": 0.9871 + }, + { + "start": 7128.26, + "end": 7128.52, + "probability": 0.6734 + }, + { + "start": 7128.52, + "end": 7132.0, + "probability": 0.842 + }, + { + "start": 7132.66, + "end": 7137.04, + "probability": 0.851 + }, + { + "start": 7137.22, + "end": 7139.56, + "probability": 0.7529 + }, + { + "start": 7139.7, + "end": 7146.3, + "probability": 0.9502 + }, + { + "start": 7146.8, + "end": 7148.22, + "probability": 0.644 + }, + { + "start": 7148.62, + "end": 7150.29, + "probability": 0.9088 + }, + { + "start": 7150.96, + "end": 7159.5, + "probability": 0.9668 + }, + { + "start": 7160.16, + "end": 7167.78, + "probability": 0.9915 + }, + { + "start": 7168.6, + "end": 7172.0, + "probability": 0.9906 + }, + { + "start": 7173.28, + "end": 7174.38, + "probability": 0.482 + }, + { + "start": 7174.98, + "end": 7179.46, + "probability": 0.9249 + }, + { + "start": 7180.06, + "end": 7182.88, + "probability": 0.9863 + }, + { + "start": 7183.44, + "end": 7186.96, + "probability": 0.9963 + }, + { + "start": 7186.96, + "end": 7190.74, + "probability": 0.9794 + }, + { + "start": 7191.38, + "end": 7194.76, + "probability": 0.9307 + }, + { + "start": 7194.88, + "end": 7195.78, + "probability": 0.588 + }, + { + "start": 7196.34, + "end": 7198.08, + "probability": 0.9905 + }, + { + "start": 7201.76, + "end": 7203.86, + "probability": 0.7519 + }, + { + "start": 7204.68, + "end": 7206.04, + "probability": 0.9932 + }, + { + "start": 7206.7, + "end": 7207.56, + "probability": 0.8735 + }, + { + "start": 7208.38, + "end": 7210.56, + "probability": 0.9848 + }, + { + "start": 7214.84, + "end": 7215.58, + "probability": 0.0889 + }, + { + "start": 7215.58, + "end": 7217.96, + "probability": 0.1708 + }, + { + "start": 7218.1, + "end": 7218.74, + "probability": 0.7995 + }, + { + "start": 7220.5, + "end": 7221.16, + "probability": 0.6377 + }, + { + "start": 7222.24, + "end": 7222.8, + "probability": 0.034 + }, + { + "start": 7223.08, + "end": 7223.16, + "probability": 0.094 + }, + { + "start": 7223.16, + "end": 7224.4, + "probability": 0.6525 + }, + { + "start": 7225.14, + "end": 7226.42, + "probability": 0.6327 + }, + { + "start": 7226.92, + "end": 7229.64, + "probability": 0.7368 + }, + { + "start": 7230.48, + "end": 7230.66, + "probability": 0.2235 + }, + { + "start": 7231.0, + "end": 7233.68, + "probability": 0.6359 + }, + { + "start": 7234.56, + "end": 7235.16, + "probability": 0.4599 + }, + { + "start": 7235.72, + "end": 7237.38, + "probability": 0.4155 + }, + { + "start": 7237.74, + "end": 7239.54, + "probability": 0.8123 + }, + { + "start": 7239.74, + "end": 7240.16, + "probability": 0.0655 + }, + { + "start": 7240.18, + "end": 7240.46, + "probability": 0.0787 + }, + { + "start": 7241.28, + "end": 7241.28, + "probability": 0.0242 + }, + { + "start": 7241.28, + "end": 7244.14, + "probability": 0.2599 + }, + { + "start": 7244.18, + "end": 7250.46, + "probability": 0.294 + }, + { + "start": 7254.52, + "end": 7256.16, + "probability": 0.3922 + }, + { + "start": 7256.32, + "end": 7256.38, + "probability": 0.0064 + }, + { + "start": 7259.48, + "end": 7260.16, + "probability": 0.0244 + }, + { + "start": 7264.18, + "end": 7265.62, + "probability": 0.1976 + }, + { + "start": 7266.22, + "end": 7267.5, + "probability": 0.0213 + }, + { + "start": 7268.92, + "end": 7270.5, + "probability": 0.6731 + }, + { + "start": 7271.12, + "end": 7271.5, + "probability": 0.1978 + }, + { + "start": 7272.8, + "end": 7273.8, + "probability": 0.89 + }, + { + "start": 7273.9, + "end": 7274.76, + "probability": 0.7466 + }, + { + "start": 7275.14, + "end": 7281.86, + "probability": 0.8498 + }, + { + "start": 7282.44, + "end": 7287.94, + "probability": 0.9519 + }, + { + "start": 7288.66, + "end": 7291.15, + "probability": 0.9315 + }, + { + "start": 7291.68, + "end": 7292.42, + "probability": 0.4496 + }, + { + "start": 7292.42, + "end": 7293.9, + "probability": 0.4114 + }, + { + "start": 7293.9, + "end": 7295.58, + "probability": 0.8652 + }, + { + "start": 7296.18, + "end": 7296.86, + "probability": 0.6869 + }, + { + "start": 7296.9, + "end": 7299.02, + "probability": 0.7012 + }, + { + "start": 7299.08, + "end": 7301.52, + "probability": 0.7478 + }, + { + "start": 7301.58, + "end": 7302.39, + "probability": 0.9907 + }, + { + "start": 7302.96, + "end": 7304.44, + "probability": 0.7231 + }, + { + "start": 7304.92, + "end": 7306.44, + "probability": 0.9064 + }, + { + "start": 7306.86, + "end": 7307.46, + "probability": 0.896 + }, + { + "start": 7307.68, + "end": 7308.68, + "probability": 0.9452 + }, + { + "start": 7309.44, + "end": 7314.14, + "probability": 0.9426 + }, + { + "start": 7314.68, + "end": 7318.01, + "probability": 0.7853 + }, + { + "start": 7318.44, + "end": 7319.53, + "probability": 0.2325 + }, + { + "start": 7321.42, + "end": 7323.18, + "probability": 0.0193 + }, + { + "start": 7325.45, + "end": 7326.54, + "probability": 0.1846 + }, + { + "start": 7326.54, + "end": 7326.54, + "probability": 0.059 + }, + { + "start": 7326.54, + "end": 7327.46, + "probability": 0.4712 + }, + { + "start": 7327.56, + "end": 7330.22, + "probability": 0.9688 + }, + { + "start": 7330.84, + "end": 7334.26, + "probability": 0.6302 + }, + { + "start": 7334.92, + "end": 7338.18, + "probability": 0.8452 + }, + { + "start": 7338.28, + "end": 7339.9, + "probability": 0.5303 + }, + { + "start": 7340.95, + "end": 7341.98, + "probability": 0.1565 + }, + { + "start": 7341.98, + "end": 7341.98, + "probability": 0.1852 + }, + { + "start": 7342.12, + "end": 7346.38, + "probability": 0.7241 + }, + { + "start": 7346.58, + "end": 7348.52, + "probability": 0.9941 + }, + { + "start": 7348.54, + "end": 7349.5, + "probability": 0.9738 + }, + { + "start": 7349.8, + "end": 7351.06, + "probability": 0.694 + }, + { + "start": 7351.4, + "end": 7352.5, + "probability": 0.6741 + }, + { + "start": 7352.56, + "end": 7357.7, + "probability": 0.321 + }, + { + "start": 7357.76, + "end": 7358.72, + "probability": 0.2828 + }, + { + "start": 7359.3, + "end": 7363.2, + "probability": 0.1509 + }, + { + "start": 7363.34, + "end": 7363.56, + "probability": 0.0764 + }, + { + "start": 7363.74, + "end": 7366.72, + "probability": 0.4602 + }, + { + "start": 7366.98, + "end": 7367.67, + "probability": 0.1019 + }, + { + "start": 7368.1, + "end": 7368.24, + "probability": 0.8005 + }, + { + "start": 7368.24, + "end": 7371.82, + "probability": 0.8986 + }, + { + "start": 7372.54, + "end": 7374.18, + "probability": 0.9987 + }, + { + "start": 7374.2, + "end": 7375.64, + "probability": 0.9706 + }, + { + "start": 7377.28, + "end": 7377.54, + "probability": 0.7413 + }, + { + "start": 7377.78, + "end": 7378.82, + "probability": 0.1436 + }, + { + "start": 7391.46, + "end": 7391.78, + "probability": 0.1015 + }, + { + "start": 7391.88, + "end": 7393.0, + "probability": 0.5222 + }, + { + "start": 7393.18, + "end": 7394.52, + "probability": 0.9146 + }, + { + "start": 7396.84, + "end": 7398.92, + "probability": 0.601 + }, + { + "start": 7399.66, + "end": 7400.76, + "probability": 0.8502 + }, + { + "start": 7400.84, + "end": 7403.1, + "probability": 0.9096 + }, + { + "start": 7403.28, + "end": 7405.46, + "probability": 0.9023 + }, + { + "start": 7405.88, + "end": 7408.42, + "probability": 0.7959 + }, + { + "start": 7408.42, + "end": 7410.58, + "probability": 0.9918 + }, + { + "start": 7410.78, + "end": 7412.76, + "probability": 0.8693 + }, + { + "start": 7413.28, + "end": 7417.6, + "probability": 0.6447 + }, + { + "start": 7418.54, + "end": 7419.06, + "probability": 0.7986 + }, + { + "start": 7419.34, + "end": 7421.88, + "probability": 0.9938 + }, + { + "start": 7421.88, + "end": 7425.14, + "probability": 0.9971 + }, + { + "start": 7425.14, + "end": 7430.47, + "probability": 0.9834 + }, + { + "start": 7432.06, + "end": 7433.14, + "probability": 0.901 + }, + { + "start": 7433.36, + "end": 7435.42, + "probability": 0.6658 + }, + { + "start": 7435.5, + "end": 7437.24, + "probability": 0.9462 + }, + { + "start": 7439.88, + "end": 7441.91, + "probability": 0.4668 + }, + { + "start": 7442.18, + "end": 7444.96, + "probability": 0.813 + }, + { + "start": 7445.14, + "end": 7447.99, + "probability": 0.9414 + }, + { + "start": 7449.28, + "end": 7450.23, + "probability": 0.1929 + } + ], + "segments_count": 2361, + "words_count": 11708, + "avg_words_per_segment": 4.9589, + "avg_segment_duration": 1.9342, + "avg_words_per_minute": 91.5161, + "plenum_id": "112169", + "duration": 7676.03, + "title": null, + "plenum_date": "2023-01-11" +} \ No newline at end of file