diff --git "a/125626/metadata.json" "b/125626/metadata.json" new file mode 100644--- /dev/null +++ "b/125626/metadata.json" @@ -0,0 +1,38887 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "125626", + "quality_score": 0.8993, + "per_segment_quality_scores": [ + { + "start": 0.68, + "end": 6.34, + "probability": 0.0537 + }, + { + "start": 6.82, + "end": 6.82, + "probability": 0.093 + }, + { + "start": 49.44, + "end": 53.78, + "probability": 0.9814 + }, + { + "start": 54.3, + "end": 58.31, + "probability": 0.9722 + }, + { + "start": 59.42, + "end": 64.2, + "probability": 0.9341 + }, + { + "start": 64.7, + "end": 70.0, + "probability": 0.8928 + }, + { + "start": 70.14, + "end": 74.34, + "probability": 0.6973 + }, + { + "start": 74.76, + "end": 75.36, + "probability": 0.5951 + }, + { + "start": 75.46, + "end": 78.1, + "probability": 0.9437 + }, + { + "start": 78.58, + "end": 79.72, + "probability": 0.6901 + }, + { + "start": 79.76, + "end": 80.46, + "probability": 0.4995 + }, + { + "start": 80.86, + "end": 82.6, + "probability": 0.7575 + }, + { + "start": 84.02, + "end": 88.5, + "probability": 0.9594 + }, + { + "start": 89.18, + "end": 94.56, + "probability": 0.9445 + }, + { + "start": 95.52, + "end": 99.72, + "probability": 0.9492 + }, + { + "start": 100.3, + "end": 103.66, + "probability": 0.9202 + }, + { + "start": 106.09, + "end": 109.28, + "probability": 0.7766 + }, + { + "start": 110.3, + "end": 111.18, + "probability": 0.5034 + }, + { + "start": 112.1, + "end": 114.86, + "probability": 0.8491 + }, + { + "start": 115.26, + "end": 117.72, + "probability": 0.92 + }, + { + "start": 119.62, + "end": 121.9, + "probability": 0.7847 + }, + { + "start": 122.8, + "end": 124.54, + "probability": 0.8927 + }, + { + "start": 125.12, + "end": 126.66, + "probability": 0.8799 + }, + { + "start": 126.78, + "end": 128.92, + "probability": 0.9731 + }, + { + "start": 128.98, + "end": 131.24, + "probability": 0.8035 + }, + { + "start": 133.12, + "end": 136.42, + "probability": 0.8332 + }, + { + "start": 137.26, + "end": 138.46, + "probability": 0.6623 + }, + { + "start": 138.82, + "end": 144.92, + "probability": 0.8862 + }, + { + "start": 145.82, + "end": 146.34, + "probability": 0.5587 + }, + { + "start": 147.3, + "end": 148.98, + "probability": 0.7488 + }, + { + "start": 149.24, + "end": 151.98, + "probability": 0.9873 + }, + { + "start": 152.24, + "end": 153.73, + "probability": 0.8217 + }, + { + "start": 154.36, + "end": 155.08, + "probability": 0.7409 + }, + { + "start": 155.92, + "end": 157.92, + "probability": 0.5028 + }, + { + "start": 158.62, + "end": 161.38, + "probability": 0.9152 + }, + { + "start": 162.82, + "end": 166.48, + "probability": 0.7167 + }, + { + "start": 166.56, + "end": 169.04, + "probability": 0.9147 + }, + { + "start": 170.0, + "end": 173.62, + "probability": 0.9971 + }, + { + "start": 174.44, + "end": 176.54, + "probability": 0.9874 + }, + { + "start": 177.6, + "end": 178.56, + "probability": 0.7136 + }, + { + "start": 179.76, + "end": 180.4, + "probability": 0.6399 + }, + { + "start": 180.52, + "end": 181.32, + "probability": 0.511 + }, + { + "start": 181.4, + "end": 183.88, + "probability": 0.9465 + }, + { + "start": 184.2, + "end": 187.68, + "probability": 0.9729 + }, + { + "start": 187.68, + "end": 191.42, + "probability": 0.9758 + }, + { + "start": 193.16, + "end": 193.44, + "probability": 0.2762 + }, + { + "start": 193.62, + "end": 195.76, + "probability": 0.6991 + }, + { + "start": 195.76, + "end": 197.5, + "probability": 0.7745 + }, + { + "start": 198.26, + "end": 200.96, + "probability": 0.9923 + }, + { + "start": 200.96, + "end": 205.52, + "probability": 0.9811 + }, + { + "start": 205.52, + "end": 212.1, + "probability": 0.9619 + }, + { + "start": 212.82, + "end": 215.88, + "probability": 0.9961 + }, + { + "start": 216.76, + "end": 218.26, + "probability": 0.5057 + }, + { + "start": 219.06, + "end": 223.74, + "probability": 0.9459 + }, + { + "start": 224.26, + "end": 225.58, + "probability": 0.9144 + }, + { + "start": 226.08, + "end": 229.72, + "probability": 0.9906 + }, + { + "start": 229.72, + "end": 235.2, + "probability": 0.9667 + }, + { + "start": 235.5, + "end": 237.28, + "probability": 0.9577 + }, + { + "start": 237.78, + "end": 240.92, + "probability": 0.8303 + }, + { + "start": 241.3, + "end": 243.04, + "probability": 0.9348 + }, + { + "start": 244.2, + "end": 246.7, + "probability": 0.9172 + }, + { + "start": 247.42, + "end": 250.12, + "probability": 0.9883 + }, + { + "start": 250.84, + "end": 252.46, + "probability": 0.9672 + }, + { + "start": 253.2, + "end": 254.26, + "probability": 0.8418 + }, + { + "start": 254.28, + "end": 257.48, + "probability": 0.9881 + }, + { + "start": 257.9, + "end": 261.9, + "probability": 0.9935 + }, + { + "start": 262.94, + "end": 264.38, + "probability": 0.8125 + }, + { + "start": 264.5, + "end": 265.58, + "probability": 0.9558 + }, + { + "start": 265.66, + "end": 268.82, + "probability": 0.995 + }, + { + "start": 269.36, + "end": 271.0, + "probability": 0.9263 + }, + { + "start": 271.84, + "end": 273.04, + "probability": 0.8004 + }, + { + "start": 273.14, + "end": 274.66, + "probability": 0.8728 + }, + { + "start": 275.04, + "end": 279.1, + "probability": 0.9367 + }, + { + "start": 279.1, + "end": 283.34, + "probability": 0.9732 + }, + { + "start": 283.54, + "end": 285.86, + "probability": 0.946 + }, + { + "start": 286.4, + "end": 287.76, + "probability": 0.9963 + }, + { + "start": 288.4, + "end": 291.78, + "probability": 0.988 + }, + { + "start": 291.78, + "end": 295.42, + "probability": 0.9672 + }, + { + "start": 295.56, + "end": 297.12, + "probability": 0.8032 + }, + { + "start": 297.3, + "end": 302.18, + "probability": 0.9974 + }, + { + "start": 302.94, + "end": 303.26, + "probability": 0.6925 + }, + { + "start": 303.3, + "end": 309.6, + "probability": 0.9877 + }, + { + "start": 309.6, + "end": 314.02, + "probability": 0.91 + }, + { + "start": 314.74, + "end": 319.66, + "probability": 0.9869 + }, + { + "start": 320.18, + "end": 323.96, + "probability": 0.9985 + }, + { + "start": 323.96, + "end": 326.82, + "probability": 0.7484 + }, + { + "start": 329.56, + "end": 331.54, + "probability": 0.8241 + }, + { + "start": 332.42, + "end": 334.32, + "probability": 0.4955 + }, + { + "start": 334.86, + "end": 337.98, + "probability": 0.9957 + }, + { + "start": 338.08, + "end": 339.34, + "probability": 0.6668 + }, + { + "start": 340.02, + "end": 344.46, + "probability": 0.9392 + }, + { + "start": 345.38, + "end": 347.16, + "probability": 0.8992 + }, + { + "start": 347.62, + "end": 348.64, + "probability": 0.4758 + }, + { + "start": 348.82, + "end": 352.34, + "probability": 0.9595 + }, + { + "start": 353.84, + "end": 357.1, + "probability": 0.9556 + }, + { + "start": 357.36, + "end": 359.44, + "probability": 0.8444 + }, + { + "start": 359.78, + "end": 362.82, + "probability": 0.97 + }, + { + "start": 363.02, + "end": 365.84, + "probability": 0.7167 + }, + { + "start": 366.62, + "end": 368.1, + "probability": 0.7666 + }, + { + "start": 368.9, + "end": 370.94, + "probability": 0.9529 + }, + { + "start": 371.42, + "end": 373.18, + "probability": 0.7869 + }, + { + "start": 374.32, + "end": 375.2, + "probability": 0.8791 + }, + { + "start": 375.84, + "end": 377.28, + "probability": 0.9753 + }, + { + "start": 377.82, + "end": 379.22, + "probability": 0.9016 + }, + { + "start": 379.38, + "end": 381.76, + "probability": 0.7956 + }, + { + "start": 381.76, + "end": 384.06, + "probability": 0.9037 + }, + { + "start": 384.5, + "end": 386.66, + "probability": 0.987 + }, + { + "start": 387.14, + "end": 391.74, + "probability": 0.9977 + }, + { + "start": 393.0, + "end": 397.18, + "probability": 0.9777 + }, + { + "start": 397.9, + "end": 398.88, + "probability": 0.7323 + }, + { + "start": 399.0, + "end": 401.14, + "probability": 0.8583 + }, + { + "start": 401.54, + "end": 405.46, + "probability": 0.9425 + }, + { + "start": 405.46, + "end": 408.94, + "probability": 0.9197 + }, + { + "start": 409.38, + "end": 410.24, + "probability": 0.8833 + }, + { + "start": 410.58, + "end": 411.62, + "probability": 0.9277 + }, + { + "start": 412.22, + "end": 414.36, + "probability": 0.955 + }, + { + "start": 414.74, + "end": 416.78, + "probability": 0.9685 + }, + { + "start": 416.78, + "end": 419.02, + "probability": 0.9832 + }, + { + "start": 419.2, + "end": 422.82, + "probability": 0.9119 + }, + { + "start": 423.3, + "end": 424.8, + "probability": 0.8477 + }, + { + "start": 425.36, + "end": 431.52, + "probability": 0.9456 + }, + { + "start": 431.52, + "end": 436.2, + "probability": 0.8094 + }, + { + "start": 436.3, + "end": 439.74, + "probability": 0.9143 + }, + { + "start": 439.74, + "end": 441.94, + "probability": 0.7021 + }, + { + "start": 442.42, + "end": 442.78, + "probability": 0.8058 + }, + { + "start": 443.38, + "end": 446.14, + "probability": 0.9849 + }, + { + "start": 448.04, + "end": 449.36, + "probability": 0.7266 + }, + { + "start": 449.8, + "end": 450.52, + "probability": 0.499 + }, + { + "start": 450.79, + "end": 458.16, + "probability": 0.9818 + }, + { + "start": 458.54, + "end": 463.32, + "probability": 0.9146 + }, + { + "start": 463.66, + "end": 465.38, + "probability": 0.4451 + }, + { + "start": 466.24, + "end": 466.8, + "probability": 0.3879 + }, + { + "start": 466.84, + "end": 470.16, + "probability": 0.9766 + }, + { + "start": 470.2, + "end": 471.06, + "probability": 0.886 + }, + { + "start": 471.76, + "end": 476.12, + "probability": 0.8328 + }, + { + "start": 476.28, + "end": 477.44, + "probability": 0.9107 + }, + { + "start": 477.7, + "end": 479.06, + "probability": 0.8632 + }, + { + "start": 479.14, + "end": 480.3, + "probability": 0.6764 + }, + { + "start": 481.34, + "end": 484.7, + "probability": 0.8513 + }, + { + "start": 484.82, + "end": 486.5, + "probability": 0.7383 + }, + { + "start": 486.62, + "end": 489.38, + "probability": 0.6377 + }, + { + "start": 489.42, + "end": 490.4, + "probability": 0.9203 + }, + { + "start": 490.84, + "end": 491.82, + "probability": 0.9187 + }, + { + "start": 491.9, + "end": 492.64, + "probability": 0.9487 + }, + { + "start": 493.3, + "end": 494.18, + "probability": 0.9005 + }, + { + "start": 494.26, + "end": 497.58, + "probability": 0.8463 + }, + { + "start": 498.1, + "end": 498.8, + "probability": 0.7827 + }, + { + "start": 498.88, + "end": 504.54, + "probability": 0.7241 + }, + { + "start": 505.3, + "end": 507.24, + "probability": 0.9479 + }, + { + "start": 507.34, + "end": 509.64, + "probability": 0.9673 + }, + { + "start": 510.16, + "end": 511.76, + "probability": 0.8986 + }, + { + "start": 511.94, + "end": 515.34, + "probability": 0.8029 + }, + { + "start": 515.34, + "end": 519.08, + "probability": 0.852 + }, + { + "start": 519.9, + "end": 520.46, + "probability": 0.5807 + }, + { + "start": 520.68, + "end": 522.26, + "probability": 0.7504 + }, + { + "start": 522.42, + "end": 525.5, + "probability": 0.9841 + }, + { + "start": 525.5, + "end": 529.28, + "probability": 0.9873 + }, + { + "start": 529.76, + "end": 533.68, + "probability": 0.974 + }, + { + "start": 534.24, + "end": 536.08, + "probability": 0.9922 + }, + { + "start": 536.08, + "end": 538.52, + "probability": 0.5099 + }, + { + "start": 538.88, + "end": 539.22, + "probability": 0.5527 + }, + { + "start": 539.26, + "end": 541.86, + "probability": 0.9514 + }, + { + "start": 542.34, + "end": 544.44, + "probability": 0.9674 + }, + { + "start": 544.58, + "end": 546.78, + "probability": 0.9546 + }, + { + "start": 547.54, + "end": 550.78, + "probability": 0.7007 + }, + { + "start": 551.16, + "end": 551.48, + "probability": 0.9448 + }, + { + "start": 553.51, + "end": 558.02, + "probability": 0.9803 + }, + { + "start": 558.28, + "end": 560.3, + "probability": 0.9563 + }, + { + "start": 560.3, + "end": 562.48, + "probability": 0.9966 + }, + { + "start": 562.84, + "end": 565.26, + "probability": 0.9178 + }, + { + "start": 565.64, + "end": 567.2, + "probability": 0.9681 + }, + { + "start": 567.84, + "end": 570.46, + "probability": 0.8695 + }, + { + "start": 570.58, + "end": 573.96, + "probability": 0.9858 + }, + { + "start": 573.96, + "end": 578.68, + "probability": 0.9586 + }, + { + "start": 578.82, + "end": 579.3, + "probability": 0.7976 + }, + { + "start": 579.46, + "end": 580.76, + "probability": 0.8801 + }, + { + "start": 580.76, + "end": 585.12, + "probability": 0.8 + }, + { + "start": 585.48, + "end": 590.32, + "probability": 0.9972 + }, + { + "start": 590.32, + "end": 594.72, + "probability": 0.9392 + }, + { + "start": 594.96, + "end": 597.28, + "probability": 0.9881 + }, + { + "start": 597.28, + "end": 599.74, + "probability": 0.9944 + }, + { + "start": 600.1, + "end": 600.78, + "probability": 0.9131 + }, + { + "start": 601.58, + "end": 602.9, + "probability": 0.7946 + }, + { + "start": 603.1, + "end": 606.66, + "probability": 0.9067 + }, + { + "start": 606.66, + "end": 610.06, + "probability": 0.9966 + }, + { + "start": 610.58, + "end": 614.88, + "probability": 0.8295 + }, + { + "start": 614.94, + "end": 615.36, + "probability": 0.9186 + }, + { + "start": 617.76, + "end": 620.8, + "probability": 0.7078 + }, + { + "start": 621.5, + "end": 623.32, + "probability": 0.8885 + }, + { + "start": 624.1, + "end": 625.77, + "probability": 0.7756 + }, + { + "start": 626.52, + "end": 629.26, + "probability": 0.9913 + }, + { + "start": 629.32, + "end": 629.9, + "probability": 0.6138 + }, + { + "start": 629.92, + "end": 631.47, + "probability": 0.8126 + }, + { + "start": 633.02, + "end": 636.14, + "probability": 0.6852 + }, + { + "start": 636.34, + "end": 637.7, + "probability": 0.8152 + }, + { + "start": 638.78, + "end": 641.16, + "probability": 0.9346 + }, + { + "start": 642.02, + "end": 643.44, + "probability": 0.797 + }, + { + "start": 644.12, + "end": 646.22, + "probability": 0.981 + }, + { + "start": 646.96, + "end": 648.48, + "probability": 0.9958 + }, + { + "start": 649.24, + "end": 651.5, + "probability": 0.9264 + }, + { + "start": 651.72, + "end": 654.36, + "probability": 0.6191 + }, + { + "start": 655.62, + "end": 659.78, + "probability": 0.7502 + }, + { + "start": 660.34, + "end": 663.64, + "probability": 0.8297 + }, + { + "start": 664.36, + "end": 666.68, + "probability": 0.9949 + }, + { + "start": 667.38, + "end": 669.42, + "probability": 0.8735 + }, + { + "start": 669.58, + "end": 671.1, + "probability": 0.6769 + }, + { + "start": 671.12, + "end": 673.92, + "probability": 0.9736 + }, + { + "start": 674.32, + "end": 674.56, + "probability": 0.7908 + }, + { + "start": 675.51, + "end": 677.48, + "probability": 0.9984 + }, + { + "start": 677.74, + "end": 678.04, + "probability": 0.7518 + }, + { + "start": 678.08, + "end": 678.66, + "probability": 0.6909 + }, + { + "start": 679.86, + "end": 681.02, + "probability": 0.9541 + }, + { + "start": 681.16, + "end": 681.6, + "probability": 0.7812 + }, + { + "start": 681.9, + "end": 689.14, + "probability": 0.9639 + }, + { + "start": 689.48, + "end": 692.12, + "probability": 0.9036 + }, + { + "start": 692.4, + "end": 693.88, + "probability": 0.8357 + }, + { + "start": 693.98, + "end": 697.76, + "probability": 0.7842 + }, + { + "start": 698.22, + "end": 701.16, + "probability": 0.9471 + }, + { + "start": 701.22, + "end": 702.55, + "probability": 0.915 + }, + { + "start": 702.78, + "end": 704.94, + "probability": 0.8286 + }, + { + "start": 705.46, + "end": 708.28, + "probability": 0.991 + }, + { + "start": 708.78, + "end": 710.58, + "probability": 0.7793 + }, + { + "start": 710.8, + "end": 711.32, + "probability": 0.8105 + }, + { + "start": 711.64, + "end": 714.18, + "probability": 0.7645 + }, + { + "start": 714.42, + "end": 715.8, + "probability": 0.9899 + }, + { + "start": 716.24, + "end": 718.7, + "probability": 0.8359 + }, + { + "start": 718.9, + "end": 723.48, + "probability": 0.8229 + }, + { + "start": 724.14, + "end": 725.68, + "probability": 0.9922 + }, + { + "start": 726.7, + "end": 729.48, + "probability": 0.9019 + }, + { + "start": 730.16, + "end": 732.38, + "probability": 0.8903 + }, + { + "start": 732.8, + "end": 734.06, + "probability": 0.4685 + }, + { + "start": 734.8, + "end": 737.21, + "probability": 0.7598 + }, + { + "start": 737.58, + "end": 739.0, + "probability": 0.5464 + }, + { + "start": 739.78, + "end": 740.34, + "probability": 0.4513 + }, + { + "start": 740.52, + "end": 740.74, + "probability": 0.2907 + }, + { + "start": 740.78, + "end": 741.28, + "probability": 0.7326 + }, + { + "start": 741.32, + "end": 745.84, + "probability": 0.8907 + }, + { + "start": 745.86, + "end": 747.08, + "probability": 0.796 + }, + { + "start": 747.78, + "end": 748.84, + "probability": 0.8258 + }, + { + "start": 748.9, + "end": 749.66, + "probability": 0.6971 + }, + { + "start": 749.98, + "end": 752.52, + "probability": 0.7807 + }, + { + "start": 753.1, + "end": 755.46, + "probability": 0.998 + }, + { + "start": 755.8, + "end": 756.3, + "probability": 0.6276 + }, + { + "start": 756.34, + "end": 758.24, + "probability": 0.6737 + }, + { + "start": 758.8, + "end": 760.48, + "probability": 0.6648 + }, + { + "start": 760.6, + "end": 761.32, + "probability": 0.7872 + }, + { + "start": 761.36, + "end": 764.98, + "probability": 0.9805 + }, + { + "start": 765.64, + "end": 767.62, + "probability": 0.8785 + }, + { + "start": 768.06, + "end": 769.54, + "probability": 0.8672 + }, + { + "start": 770.16, + "end": 771.58, + "probability": 0.8104 + }, + { + "start": 772.5, + "end": 774.94, + "probability": 0.9847 + }, + { + "start": 776.04, + "end": 780.7, + "probability": 0.6672 + }, + { + "start": 781.7, + "end": 781.96, + "probability": 0.0237 + }, + { + "start": 781.96, + "end": 785.98, + "probability": 0.7893 + }, + { + "start": 786.66, + "end": 788.84, + "probability": 0.9028 + }, + { + "start": 790.06, + "end": 791.38, + "probability": 0.7628 + }, + { + "start": 792.74, + "end": 795.14, + "probability": 0.9909 + }, + { + "start": 795.22, + "end": 796.54, + "probability": 0.9783 + }, + { + "start": 797.22, + "end": 801.08, + "probability": 0.0418 + }, + { + "start": 801.78, + "end": 805.2, + "probability": 0.7933 + }, + { + "start": 805.5, + "end": 805.86, + "probability": 0.8755 + }, + { + "start": 806.48, + "end": 807.74, + "probability": 0.9852 + }, + { + "start": 809.0, + "end": 810.74, + "probability": 0.9849 + }, + { + "start": 811.02, + "end": 815.02, + "probability": 0.9956 + }, + { + "start": 815.26, + "end": 818.28, + "probability": 0.9136 + }, + { + "start": 820.02, + "end": 820.14, + "probability": 0.0551 + }, + { + "start": 820.28, + "end": 824.56, + "probability": 0.9972 + }, + { + "start": 825.34, + "end": 833.02, + "probability": 0.9958 + }, + { + "start": 833.74, + "end": 834.7, + "probability": 0.6383 + }, + { + "start": 837.3, + "end": 839.14, + "probability": 0.701 + }, + { + "start": 840.24, + "end": 841.08, + "probability": 0.7861 + }, + { + "start": 841.84, + "end": 842.64, + "probability": 0.9597 + }, + { + "start": 843.18, + "end": 845.8, + "probability": 0.9612 + }, + { + "start": 846.42, + "end": 846.58, + "probability": 0.532 + }, + { + "start": 846.62, + "end": 847.7, + "probability": 0.7784 + }, + { + "start": 848.08, + "end": 850.44, + "probability": 0.7941 + }, + { + "start": 850.96, + "end": 853.02, + "probability": 0.9846 + }, + { + "start": 853.1, + "end": 854.7, + "probability": 0.8009 + }, + { + "start": 856.16, + "end": 856.64, + "probability": 0.0071 + }, + { + "start": 856.9, + "end": 858.22, + "probability": 0.8189 + }, + { + "start": 858.28, + "end": 861.86, + "probability": 0.9796 + }, + { + "start": 862.4, + "end": 863.72, + "probability": 0.7536 + }, + { + "start": 864.18, + "end": 864.32, + "probability": 0.366 + }, + { + "start": 865.56, + "end": 866.28, + "probability": 0.5758 + }, + { + "start": 866.32, + "end": 866.76, + "probability": 0.5019 + }, + { + "start": 870.7, + "end": 874.92, + "probability": 0.999 + }, + { + "start": 875.04, + "end": 880.36, + "probability": 0.9973 + }, + { + "start": 880.98, + "end": 881.9, + "probability": 0.7448 + }, + { + "start": 882.1, + "end": 883.02, + "probability": 0.5064 + }, + { + "start": 883.12, + "end": 885.78, + "probability": 0.8194 + }, + { + "start": 886.58, + "end": 888.78, + "probability": 0.648 + }, + { + "start": 889.06, + "end": 892.84, + "probability": 0.8069 + }, + { + "start": 892.84, + "end": 895.82, + "probability": 0.8612 + }, + { + "start": 896.92, + "end": 897.62, + "probability": 0.6717 + }, + { + "start": 897.9, + "end": 901.46, + "probability": 0.9321 + }, + { + "start": 901.6, + "end": 905.54, + "probability": 0.7499 + }, + { + "start": 906.34, + "end": 911.82, + "probability": 0.9708 + }, + { + "start": 912.8, + "end": 917.3, + "probability": 0.683 + }, + { + "start": 917.62, + "end": 919.19, + "probability": 0.8686 + }, + { + "start": 919.9, + "end": 920.42, + "probability": 0.8281 + }, + { + "start": 921.3, + "end": 926.86, + "probability": 0.9984 + }, + { + "start": 928.0, + "end": 931.04, + "probability": 0.7943 + }, + { + "start": 931.04, + "end": 934.12, + "probability": 0.9291 + }, + { + "start": 934.8, + "end": 939.92, + "probability": 0.7626 + }, + { + "start": 940.02, + "end": 942.22, + "probability": 0.9744 + }, + { + "start": 942.28, + "end": 944.22, + "probability": 0.7927 + }, + { + "start": 944.5, + "end": 947.5, + "probability": 0.7317 + }, + { + "start": 947.74, + "end": 947.92, + "probability": 0.7263 + }, + { + "start": 948.1, + "end": 949.2, + "probability": 0.6919 + }, + { + "start": 949.38, + "end": 951.44, + "probability": 0.8096 + }, + { + "start": 951.78, + "end": 952.76, + "probability": 0.794 + }, + { + "start": 954.46, + "end": 955.48, + "probability": 0.7587 + }, + { + "start": 955.72, + "end": 956.4, + "probability": 0.9009 + }, + { + "start": 956.6, + "end": 962.72, + "probability": 0.9923 + }, + { + "start": 962.78, + "end": 966.36, + "probability": 0.8896 + }, + { + "start": 966.96, + "end": 970.44, + "probability": 0.9283 + }, + { + "start": 970.94, + "end": 976.66, + "probability": 0.9722 + }, + { + "start": 977.06, + "end": 979.72, + "probability": 0.9688 + }, + { + "start": 980.18, + "end": 985.84, + "probability": 0.9778 + }, + { + "start": 985.94, + "end": 993.16, + "probability": 0.9646 + }, + { + "start": 993.28, + "end": 994.26, + "probability": 0.693 + }, + { + "start": 994.82, + "end": 995.14, + "probability": 0.3801 + }, + { + "start": 995.36, + "end": 997.22, + "probability": 0.6489 + }, + { + "start": 997.22, + "end": 997.88, + "probability": 0.4232 + }, + { + "start": 997.96, + "end": 1000.08, + "probability": 0.9888 + }, + { + "start": 1000.26, + "end": 1001.06, + "probability": 0.9019 + }, + { + "start": 1001.1, + "end": 1003.74, + "probability": 0.955 + }, + { + "start": 1004.48, + "end": 1006.78, + "probability": 0.9946 + }, + { + "start": 1006.92, + "end": 1008.84, + "probability": 0.972 + }, + { + "start": 1008.94, + "end": 1012.9, + "probability": 0.9773 + }, + { + "start": 1013.36, + "end": 1018.1, + "probability": 0.9723 + }, + { + "start": 1018.1, + "end": 1022.2, + "probability": 0.9492 + }, + { + "start": 1022.36, + "end": 1023.34, + "probability": 0.4393 + }, + { + "start": 1023.9, + "end": 1025.54, + "probability": 0.6714 + }, + { + "start": 1026.0, + "end": 1028.14, + "probability": 0.6701 + }, + { + "start": 1028.18, + "end": 1031.78, + "probability": 0.9189 + }, + { + "start": 1032.34, + "end": 1034.62, + "probability": 0.9937 + }, + { + "start": 1034.82, + "end": 1035.92, + "probability": 0.8172 + }, + { + "start": 1036.26, + "end": 1037.9, + "probability": 0.8823 + }, + { + "start": 1037.98, + "end": 1039.72, + "probability": 0.9608 + }, + { + "start": 1040.56, + "end": 1044.92, + "probability": 0.9983 + }, + { + "start": 1044.92, + "end": 1049.42, + "probability": 0.9975 + }, + { + "start": 1049.74, + "end": 1053.52, + "probability": 0.9978 + }, + { + "start": 1053.72, + "end": 1054.5, + "probability": 0.7853 + }, + { + "start": 1055.14, + "end": 1056.28, + "probability": 0.4364 + }, + { + "start": 1056.84, + "end": 1057.04, + "probability": 0.6465 + }, + { + "start": 1057.06, + "end": 1061.0, + "probability": 0.9122 + }, + { + "start": 1061.34, + "end": 1061.38, + "probability": 0.5872 + }, + { + "start": 1061.38, + "end": 1064.28, + "probability": 0.9811 + }, + { + "start": 1064.46, + "end": 1066.84, + "probability": 0.9899 + }, + { + "start": 1067.48, + "end": 1072.78, + "probability": 0.9307 + }, + { + "start": 1073.12, + "end": 1075.14, + "probability": 0.7956 + }, + { + "start": 1077.74, + "end": 1078.38, + "probability": 0.2638 + }, + { + "start": 1078.96, + "end": 1080.12, + "probability": 0.8544 + }, + { + "start": 1081.46, + "end": 1082.34, + "probability": 0.1925 + }, + { + "start": 1082.34, + "end": 1082.7, + "probability": 0.7636 + }, + { + "start": 1083.52, + "end": 1085.2, + "probability": 0.937 + }, + { + "start": 1085.46, + "end": 1087.7, + "probability": 0.9407 + }, + { + "start": 1087.8, + "end": 1088.92, + "probability": 0.98 + }, + { + "start": 1089.04, + "end": 1089.82, + "probability": 0.2805 + }, + { + "start": 1089.96, + "end": 1091.18, + "probability": 0.689 + }, + { + "start": 1091.28, + "end": 1091.56, + "probability": 0.4366 + }, + { + "start": 1092.14, + "end": 1094.41, + "probability": 0.8359 + }, + { + "start": 1095.06, + "end": 1097.32, + "probability": 0.8521 + }, + { + "start": 1097.84, + "end": 1099.9, + "probability": 0.9618 + }, + { + "start": 1100.56, + "end": 1102.34, + "probability": 0.915 + }, + { + "start": 1103.04, + "end": 1103.8, + "probability": 0.5714 + }, + { + "start": 1104.36, + "end": 1109.36, + "probability": 0.9688 + }, + { + "start": 1109.74, + "end": 1111.86, + "probability": 0.9523 + }, + { + "start": 1112.08, + "end": 1114.2, + "probability": 0.9736 + }, + { + "start": 1114.78, + "end": 1117.95, + "probability": 0.9449 + }, + { + "start": 1118.28, + "end": 1119.26, + "probability": 0.4649 + }, + { + "start": 1119.76, + "end": 1121.04, + "probability": 0.8197 + }, + { + "start": 1121.16, + "end": 1122.52, + "probability": 0.8488 + }, + { + "start": 1122.86, + "end": 1127.44, + "probability": 0.9887 + }, + { + "start": 1128.08, + "end": 1129.64, + "probability": 0.6788 + }, + { + "start": 1130.36, + "end": 1131.52, + "probability": 0.9889 + }, + { + "start": 1131.72, + "end": 1133.16, + "probability": 0.7515 + }, + { + "start": 1133.28, + "end": 1135.76, + "probability": 0.851 + }, + { + "start": 1136.5, + "end": 1140.46, + "probability": 0.9368 + }, + { + "start": 1141.94, + "end": 1143.68, + "probability": 0.999 + }, + { + "start": 1144.26, + "end": 1147.06, + "probability": 0.9435 + }, + { + "start": 1147.22, + "end": 1149.08, + "probability": 0.5391 + }, + { + "start": 1149.18, + "end": 1149.56, + "probability": 0.8039 + }, + { + "start": 1149.92, + "end": 1150.88, + "probability": 0.7954 + }, + { + "start": 1151.26, + "end": 1152.28, + "probability": 0.9128 + }, + { + "start": 1152.94, + "end": 1154.88, + "probability": 0.6579 + }, + { + "start": 1155.34, + "end": 1156.6, + "probability": 0.9843 + }, + { + "start": 1157.16, + "end": 1159.26, + "probability": 0.7636 + }, + { + "start": 1159.26, + "end": 1162.8, + "probability": 0.9956 + }, + { + "start": 1163.1, + "end": 1164.48, + "probability": 0.9045 + }, + { + "start": 1164.88, + "end": 1165.6, + "probability": 0.9763 + }, + { + "start": 1165.7, + "end": 1166.96, + "probability": 0.9893 + }, + { + "start": 1167.0, + "end": 1170.76, + "probability": 0.991 + }, + { + "start": 1172.68, + "end": 1174.54, + "probability": 0.977 + }, + { + "start": 1174.66, + "end": 1177.54, + "probability": 0.9056 + }, + { + "start": 1177.64, + "end": 1179.14, + "probability": 0.872 + }, + { + "start": 1179.24, + "end": 1180.96, + "probability": 0.4034 + }, + { + "start": 1181.22, + "end": 1182.14, + "probability": 0.8761 + }, + { + "start": 1182.2, + "end": 1184.21, + "probability": 0.7433 + }, + { + "start": 1185.54, + "end": 1186.5, + "probability": 0.6867 + }, + { + "start": 1186.7, + "end": 1188.36, + "probability": 0.5155 + }, + { + "start": 1188.44, + "end": 1189.8, + "probability": 0.8902 + }, + { + "start": 1190.18, + "end": 1190.66, + "probability": 0.8718 + }, + { + "start": 1192.0, + "end": 1194.1, + "probability": 0.8874 + }, + { + "start": 1194.16, + "end": 1195.74, + "probability": 0.8686 + }, + { + "start": 1196.26, + "end": 1196.66, + "probability": 0.6595 + }, + { + "start": 1197.08, + "end": 1200.02, + "probability": 0.6648 + }, + { + "start": 1200.82, + "end": 1205.06, + "probability": 0.8658 + }, + { + "start": 1205.34, + "end": 1206.0, + "probability": 0.4323 + }, + { + "start": 1206.14, + "end": 1206.58, + "probability": 0.6908 + }, + { + "start": 1206.9, + "end": 1207.66, + "probability": 0.6044 + }, + { + "start": 1208.02, + "end": 1214.38, + "probability": 0.7901 + }, + { + "start": 1214.84, + "end": 1219.8, + "probability": 0.9921 + }, + { + "start": 1219.88, + "end": 1220.92, + "probability": 0.7388 + }, + { + "start": 1221.4, + "end": 1223.7, + "probability": 0.9329 + }, + { + "start": 1224.22, + "end": 1225.98, + "probability": 0.5013 + }, + { + "start": 1226.2, + "end": 1228.74, + "probability": 0.8167 + }, + { + "start": 1229.82, + "end": 1233.82, + "probability": 0.9595 + }, + { + "start": 1234.18, + "end": 1234.94, + "probability": 0.5924 + }, + { + "start": 1234.96, + "end": 1238.6, + "probability": 0.9429 + }, + { + "start": 1239.32, + "end": 1239.7, + "probability": 0.7285 + }, + { + "start": 1239.86, + "end": 1244.0, + "probability": 0.9741 + }, + { + "start": 1244.3, + "end": 1246.08, + "probability": 0.7354 + }, + { + "start": 1246.7, + "end": 1249.64, + "probability": 0.9904 + }, + { + "start": 1250.24, + "end": 1253.46, + "probability": 0.8542 + }, + { + "start": 1253.46, + "end": 1257.22, + "probability": 0.9883 + }, + { + "start": 1258.08, + "end": 1264.82, + "probability": 0.9974 + }, + { + "start": 1264.96, + "end": 1265.86, + "probability": 0.6318 + }, + { + "start": 1268.46, + "end": 1268.94, + "probability": 0.1735 + }, + { + "start": 1281.2, + "end": 1282.5, + "probability": 0.5201 + }, + { + "start": 1285.18, + "end": 1285.68, + "probability": 0.6757 + }, + { + "start": 1287.18, + "end": 1288.6, + "probability": 0.734 + }, + { + "start": 1288.62, + "end": 1294.58, + "probability": 0.7486 + }, + { + "start": 1294.58, + "end": 1297.92, + "probability": 0.993 + }, + { + "start": 1298.06, + "end": 1300.78, + "probability": 0.5691 + }, + { + "start": 1303.36, + "end": 1303.98, + "probability": 0.359 + }, + { + "start": 1303.98, + "end": 1303.98, + "probability": 0.2958 + }, + { + "start": 1303.98, + "end": 1303.98, + "probability": 0.4902 + }, + { + "start": 1303.98, + "end": 1303.98, + "probability": 0.1402 + }, + { + "start": 1303.98, + "end": 1306.72, + "probability": 0.704 + }, + { + "start": 1307.16, + "end": 1310.02, + "probability": 0.9743 + }, + { + "start": 1310.54, + "end": 1312.76, + "probability": 0.883 + }, + { + "start": 1313.63, + "end": 1317.86, + "probability": 0.9569 + }, + { + "start": 1318.68, + "end": 1321.34, + "probability": 0.8934 + }, + { + "start": 1321.76, + "end": 1322.78, + "probability": 0.5944 + }, + { + "start": 1323.42, + "end": 1326.58, + "probability": 0.561 + }, + { + "start": 1326.58, + "end": 1328.24, + "probability": 0.7765 + }, + { + "start": 1328.71, + "end": 1329.24, + "probability": 0.6163 + }, + { + "start": 1329.24, + "end": 1329.96, + "probability": 0.6483 + }, + { + "start": 1330.07, + "end": 1331.3, + "probability": 0.569 + }, + { + "start": 1331.32, + "end": 1331.94, + "probability": 0.7648 + }, + { + "start": 1332.04, + "end": 1333.06, + "probability": 0.8358 + }, + { + "start": 1333.24, + "end": 1335.09, + "probability": 0.9639 + }, + { + "start": 1335.28, + "end": 1336.06, + "probability": 0.679 + }, + { + "start": 1336.82, + "end": 1338.72, + "probability": 0.8116 + }, + { + "start": 1339.42, + "end": 1340.58, + "probability": 0.8609 + }, + { + "start": 1340.66, + "end": 1341.8, + "probability": 0.5852 + }, + { + "start": 1342.44, + "end": 1345.26, + "probability": 0.8859 + }, + { + "start": 1346.2, + "end": 1347.12, + "probability": 0.8273 + }, + { + "start": 1347.2, + "end": 1350.18, + "probability": 0.6968 + }, + { + "start": 1350.88, + "end": 1351.42, + "probability": 0.0752 + }, + { + "start": 1351.71, + "end": 1356.7, + "probability": 0.8881 + }, + { + "start": 1357.4, + "end": 1361.28, + "probability": 0.6189 + }, + { + "start": 1361.9, + "end": 1363.14, + "probability": 0.8405 + }, + { + "start": 1363.7, + "end": 1368.52, + "probability": 0.9091 + }, + { + "start": 1369.72, + "end": 1372.2, + "probability": 0.9928 + }, + { + "start": 1372.26, + "end": 1373.22, + "probability": 0.8058 + }, + { + "start": 1373.24, + "end": 1374.22, + "probability": 0.9561 + }, + { + "start": 1374.68, + "end": 1377.66, + "probability": 0.986 + }, + { + "start": 1377.66, + "end": 1379.8, + "probability": 0.999 + }, + { + "start": 1380.32, + "end": 1381.18, + "probability": 0.8459 + }, + { + "start": 1381.74, + "end": 1384.06, + "probability": 0.6313 + }, + { + "start": 1384.84, + "end": 1387.16, + "probability": 0.9951 + }, + { + "start": 1387.38, + "end": 1392.36, + "probability": 0.813 + }, + { + "start": 1392.36, + "end": 1395.58, + "probability": 0.9924 + }, + { + "start": 1395.66, + "end": 1396.06, + "probability": 0.4829 + }, + { + "start": 1396.18, + "end": 1396.92, + "probability": 0.3052 + }, + { + "start": 1397.08, + "end": 1397.86, + "probability": 0.6433 + }, + { + "start": 1398.07, + "end": 1400.24, + "probability": 0.6525 + }, + { + "start": 1400.26, + "end": 1404.18, + "probability": 0.9441 + }, + { + "start": 1405.98, + "end": 1407.78, + "probability": 0.9943 + }, + { + "start": 1407.94, + "end": 1408.44, + "probability": 0.6145 + }, + { + "start": 1408.52, + "end": 1410.22, + "probability": 0.9584 + }, + { + "start": 1410.22, + "end": 1412.2, + "probability": 0.9868 + }, + { + "start": 1415.29, + "end": 1416.94, + "probability": 0.0855 + }, + { + "start": 1416.94, + "end": 1416.94, + "probability": 0.119 + }, + { + "start": 1416.94, + "end": 1419.22, + "probability": 0.5877 + }, + { + "start": 1419.28, + "end": 1424.32, + "probability": 0.8786 + }, + { + "start": 1424.44, + "end": 1426.28, + "probability": 0.9464 + }, + { + "start": 1426.38, + "end": 1427.42, + "probability": 0.9921 + }, + { + "start": 1428.02, + "end": 1428.66, + "probability": 0.4277 + }, + { + "start": 1428.8, + "end": 1433.01, + "probability": 0.9921 + }, + { + "start": 1433.76, + "end": 1434.74, + "probability": 0.6576 + }, + { + "start": 1434.74, + "end": 1435.38, + "probability": 0.902 + }, + { + "start": 1436.52, + "end": 1439.16, + "probability": 0.6735 + }, + { + "start": 1439.98, + "end": 1442.74, + "probability": 0.9982 + }, + { + "start": 1442.76, + "end": 1444.0, + "probability": 0.3191 + }, + { + "start": 1444.0, + "end": 1445.24, + "probability": 0.4477 + }, + { + "start": 1446.02, + "end": 1449.08, + "probability": 0.9928 + }, + { + "start": 1449.08, + "end": 1453.24, + "probability": 0.9493 + }, + { + "start": 1454.04, + "end": 1455.62, + "probability": 0.8871 + }, + { + "start": 1457.0, + "end": 1459.32, + "probability": 0.829 + }, + { + "start": 1459.5, + "end": 1462.04, + "probability": 0.9935 + }, + { + "start": 1462.04, + "end": 1464.64, + "probability": 0.9753 + }, + { + "start": 1464.82, + "end": 1465.34, + "probability": 0.9878 + }, + { + "start": 1466.62, + "end": 1469.86, + "probability": 0.9815 + }, + { + "start": 1469.86, + "end": 1473.02, + "probability": 0.8821 + }, + { + "start": 1473.12, + "end": 1477.28, + "probability": 0.99 + }, + { + "start": 1477.28, + "end": 1480.74, + "probability": 0.9954 + }, + { + "start": 1480.92, + "end": 1482.38, + "probability": 0.9586 + }, + { + "start": 1482.88, + "end": 1485.76, + "probability": 0.8911 + }, + { + "start": 1486.36, + "end": 1489.82, + "probability": 0.8629 + }, + { + "start": 1490.52, + "end": 1493.04, + "probability": 0.9914 + }, + { + "start": 1493.04, + "end": 1497.2, + "probability": 0.8423 + }, + { + "start": 1497.32, + "end": 1502.12, + "probability": 0.9575 + }, + { + "start": 1502.74, + "end": 1504.18, + "probability": 0.8522 + }, + { + "start": 1504.7, + "end": 1510.34, + "probability": 0.951 + }, + { + "start": 1510.34, + "end": 1516.9, + "probability": 0.8006 + }, + { + "start": 1517.34, + "end": 1518.12, + "probability": 0.7938 + }, + { + "start": 1518.66, + "end": 1519.38, + "probability": 0.499 + }, + { + "start": 1520.04, + "end": 1523.34, + "probability": 0.9648 + }, + { + "start": 1523.68, + "end": 1526.68, + "probability": 0.9921 + }, + { + "start": 1527.64, + "end": 1530.8, + "probability": 0.9903 + }, + { + "start": 1530.84, + "end": 1533.22, + "probability": 0.9966 + }, + { + "start": 1533.81, + "end": 1536.38, + "probability": 0.9819 + }, + { + "start": 1536.98, + "end": 1538.74, + "probability": 0.9374 + }, + { + "start": 1539.58, + "end": 1541.92, + "probability": 0.9573 + }, + { + "start": 1541.92, + "end": 1544.7, + "probability": 0.9871 + }, + { + "start": 1545.38, + "end": 1549.18, + "probability": 0.8692 + }, + { + "start": 1550.08, + "end": 1551.54, + "probability": 0.9757 + }, + { + "start": 1551.6, + "end": 1554.42, + "probability": 0.96 + }, + { + "start": 1554.8, + "end": 1559.2, + "probability": 0.9785 + }, + { + "start": 1559.54, + "end": 1561.22, + "probability": 0.9475 + }, + { + "start": 1561.9, + "end": 1564.36, + "probability": 0.9863 + }, + { + "start": 1564.36, + "end": 1567.34, + "probability": 0.9739 + }, + { + "start": 1568.2, + "end": 1569.8, + "probability": 0.7443 + }, + { + "start": 1570.98, + "end": 1576.7, + "probability": 0.9906 + }, + { + "start": 1577.1, + "end": 1580.14, + "probability": 0.9584 + }, + { + "start": 1580.3, + "end": 1584.2, + "probability": 0.8918 + }, + { + "start": 1584.3, + "end": 1589.98, + "probability": 0.9495 + }, + { + "start": 1590.4, + "end": 1593.32, + "probability": 0.9971 + }, + { + "start": 1593.32, + "end": 1596.94, + "probability": 0.9989 + }, + { + "start": 1597.28, + "end": 1600.6, + "probability": 0.8067 + }, + { + "start": 1600.68, + "end": 1602.46, + "probability": 0.829 + }, + { + "start": 1602.58, + "end": 1603.02, + "probability": 0.7704 + }, + { + "start": 1603.1, + "end": 1604.38, + "probability": 0.7704 + }, + { + "start": 1604.86, + "end": 1608.06, + "probability": 0.9529 + }, + { + "start": 1608.44, + "end": 1611.36, + "probability": 0.991 + }, + { + "start": 1611.98, + "end": 1612.44, + "probability": 0.8469 + }, + { + "start": 1612.72, + "end": 1617.46, + "probability": 0.9875 + }, + { + "start": 1618.14, + "end": 1619.76, + "probability": 0.9265 + }, + { + "start": 1619.76, + "end": 1621.9, + "probability": 0.9236 + }, + { + "start": 1622.44, + "end": 1624.82, + "probability": 0.8304 + }, + { + "start": 1625.46, + "end": 1628.38, + "probability": 0.9691 + }, + { + "start": 1628.68, + "end": 1633.33, + "probability": 0.9885 + }, + { + "start": 1634.2, + "end": 1636.66, + "probability": 0.9893 + }, + { + "start": 1636.66, + "end": 1639.44, + "probability": 0.9763 + }, + { + "start": 1639.54, + "end": 1642.9, + "probability": 0.7934 + }, + { + "start": 1643.04, + "end": 1647.08, + "probability": 0.66 + }, + { + "start": 1647.22, + "end": 1651.66, + "probability": 0.9939 + }, + { + "start": 1652.36, + "end": 1655.88, + "probability": 0.9831 + }, + { + "start": 1655.88, + "end": 1658.92, + "probability": 0.9912 + }, + { + "start": 1659.3, + "end": 1662.38, + "probability": 0.9917 + }, + { + "start": 1662.82, + "end": 1663.36, + "probability": 0.7259 + }, + { + "start": 1663.4, + "end": 1663.76, + "probability": 0.6366 + }, + { + "start": 1663.82, + "end": 1664.68, + "probability": 0.8989 + }, + { + "start": 1665.06, + "end": 1667.8, + "probability": 0.9788 + }, + { + "start": 1667.88, + "end": 1670.14, + "probability": 0.9694 + }, + { + "start": 1670.26, + "end": 1672.46, + "probability": 0.9249 + }, + { + "start": 1673.12, + "end": 1675.68, + "probability": 0.9726 + }, + { + "start": 1675.78, + "end": 1677.64, + "probability": 0.7933 + }, + { + "start": 1678.02, + "end": 1680.32, + "probability": 0.981 + }, + { + "start": 1680.38, + "end": 1682.12, + "probability": 0.9518 + }, + { + "start": 1682.66, + "end": 1688.26, + "probability": 0.8273 + }, + { + "start": 1688.38, + "end": 1690.36, + "probability": 0.4137 + }, + { + "start": 1690.9, + "end": 1692.18, + "probability": 0.9666 + }, + { + "start": 1692.52, + "end": 1692.74, + "probability": 0.7962 + }, + { + "start": 1692.82, + "end": 1695.1, + "probability": 0.8027 + }, + { + "start": 1695.1, + "end": 1695.69, + "probability": 0.6534 + }, + { + "start": 1696.78, + "end": 1701.6, + "probability": 0.9341 + }, + { + "start": 1702.0, + "end": 1702.88, + "probability": 0.7231 + }, + { + "start": 1703.42, + "end": 1704.54, + "probability": 0.8696 + }, + { + "start": 1704.92, + "end": 1710.1, + "probability": 0.8173 + }, + { + "start": 1710.32, + "end": 1713.16, + "probability": 0.8387 + }, + { + "start": 1714.62, + "end": 1717.06, + "probability": 0.5397 + }, + { + "start": 1717.18, + "end": 1720.86, + "probability": 0.998 + }, + { + "start": 1720.98, + "end": 1723.0, + "probability": 0.8977 + }, + { + "start": 1723.52, + "end": 1725.5, + "probability": 0.6499 + }, + { + "start": 1725.66, + "end": 1728.34, + "probability": 0.8813 + }, + { + "start": 1729.04, + "end": 1729.83, + "probability": 0.9298 + }, + { + "start": 1730.08, + "end": 1732.58, + "probability": 0.915 + }, + { + "start": 1732.74, + "end": 1734.06, + "probability": 0.6538 + }, + { + "start": 1734.12, + "end": 1735.89, + "probability": 0.4701 + }, + { + "start": 1736.44, + "end": 1738.72, + "probability": 0.9385 + }, + { + "start": 1739.02, + "end": 1739.66, + "probability": 0.8159 + }, + { + "start": 1739.78, + "end": 1740.56, + "probability": 0.9548 + }, + { + "start": 1740.6, + "end": 1745.12, + "probability": 0.9724 + }, + { + "start": 1745.12, + "end": 1747.82, + "probability": 0.967 + }, + { + "start": 1748.54, + "end": 1749.68, + "probability": 0.6084 + }, + { + "start": 1750.58, + "end": 1756.2, + "probability": 0.6713 + }, + { + "start": 1756.54, + "end": 1760.08, + "probability": 0.9722 + }, + { + "start": 1760.38, + "end": 1763.12, + "probability": 0.8773 + }, + { + "start": 1763.98, + "end": 1765.04, + "probability": 0.5512 + }, + { + "start": 1765.2, + "end": 1767.8, + "probability": 0.9838 + }, + { + "start": 1767.84, + "end": 1768.52, + "probability": 0.7191 + }, + { + "start": 1768.56, + "end": 1769.52, + "probability": 0.6112 + }, + { + "start": 1769.56, + "end": 1770.16, + "probability": 0.8032 + }, + { + "start": 1770.66, + "end": 1772.46, + "probability": 0.6027 + }, + { + "start": 1772.74, + "end": 1773.98, + "probability": 0.6845 + }, + { + "start": 1774.2, + "end": 1775.06, + "probability": 0.6497 + }, + { + "start": 1775.72, + "end": 1780.92, + "probability": 0.9659 + }, + { + "start": 1781.66, + "end": 1783.3, + "probability": 0.7157 + }, + { + "start": 1784.32, + "end": 1786.94, + "probability": 0.9159 + }, + { + "start": 1787.6, + "end": 1790.24, + "probability": 0.6696 + }, + { + "start": 1791.44, + "end": 1793.12, + "probability": 0.836 + }, + { + "start": 1795.74, + "end": 1798.52, + "probability": 0.7976 + }, + { + "start": 1799.38, + "end": 1801.02, + "probability": 0.9879 + }, + { + "start": 1802.04, + "end": 1804.74, + "probability": 0.9887 + }, + { + "start": 1805.46, + "end": 1807.16, + "probability": 0.9476 + }, + { + "start": 1808.0, + "end": 1811.11, + "probability": 0.9346 + }, + { + "start": 1812.44, + "end": 1819.8, + "probability": 0.9907 + }, + { + "start": 1820.54, + "end": 1822.72, + "probability": 0.9608 + }, + { + "start": 1823.26, + "end": 1824.62, + "probability": 0.9725 + }, + { + "start": 1825.2, + "end": 1826.66, + "probability": 0.9391 + }, + { + "start": 1827.2, + "end": 1835.88, + "probability": 0.99 + }, + { + "start": 1836.44, + "end": 1837.52, + "probability": 0.9891 + }, + { + "start": 1838.04, + "end": 1838.56, + "probability": 0.4379 + }, + { + "start": 1838.6, + "end": 1840.86, + "probability": 0.9128 + }, + { + "start": 1846.1, + "end": 1846.46, + "probability": 0.3632 + }, + { + "start": 1846.46, + "end": 1847.54, + "probability": 0.803 + }, + { + "start": 1847.78, + "end": 1848.42, + "probability": 0.5695 + }, + { + "start": 1848.46, + "end": 1848.62, + "probability": 0.5838 + }, + { + "start": 1848.62, + "end": 1848.64, + "probability": 0.6163 + }, + { + "start": 1848.64, + "end": 1848.66, + "probability": 0.1987 + }, + { + "start": 1848.66, + "end": 1849.84, + "probability": 0.3574 + }, + { + "start": 1850.5, + "end": 1851.96, + "probability": 0.9205 + }, + { + "start": 1852.02, + "end": 1853.62, + "probability": 0.93 + }, + { + "start": 1855.57, + "end": 1856.38, + "probability": 0.514 + }, + { + "start": 1856.38, + "end": 1857.13, + "probability": 0.5797 + }, + { + "start": 1858.28, + "end": 1863.02, + "probability": 0.9937 + }, + { + "start": 1863.7, + "end": 1866.52, + "probability": 0.8447 + }, + { + "start": 1867.26, + "end": 1871.7, + "probability": 0.9985 + }, + { + "start": 1872.46, + "end": 1874.92, + "probability": 0.6413 + }, + { + "start": 1875.4, + "end": 1876.28, + "probability": 0.8026 + }, + { + "start": 1877.7, + "end": 1880.98, + "probability": 0.978 + }, + { + "start": 1881.04, + "end": 1881.72, + "probability": 0.7632 + }, + { + "start": 1883.54, + "end": 1885.44, + "probability": 0.9912 + }, + { + "start": 1886.72, + "end": 1890.5, + "probability": 0.9494 + }, + { + "start": 1891.78, + "end": 1893.18, + "probability": 0.6973 + }, + { + "start": 1894.24, + "end": 1896.1, + "probability": 0.9893 + }, + { + "start": 1897.24, + "end": 1902.16, + "probability": 0.9878 + }, + { + "start": 1903.46, + "end": 1904.26, + "probability": 0.8563 + }, + { + "start": 1904.8, + "end": 1905.14, + "probability": 0.7265 + }, + { + "start": 1905.2, + "end": 1905.38, + "probability": 0.9178 + }, + { + "start": 1905.46, + "end": 1911.76, + "probability": 0.9802 + }, + { + "start": 1911.76, + "end": 1916.04, + "probability": 0.9735 + }, + { + "start": 1918.02, + "end": 1918.74, + "probability": 0.5083 + }, + { + "start": 1919.46, + "end": 1923.32, + "probability": 0.9972 + }, + { + "start": 1923.94, + "end": 1925.06, + "probability": 0.9375 + }, + { + "start": 1925.1, + "end": 1929.08, + "probability": 0.9912 + }, + { + "start": 1929.68, + "end": 1931.68, + "probability": 0.7071 + }, + { + "start": 1932.4, + "end": 1933.92, + "probability": 0.7441 + }, + { + "start": 1934.32, + "end": 1934.58, + "probability": 0.7908 + }, + { + "start": 1934.58, + "end": 1934.82, + "probability": 0.7951 + }, + { + "start": 1936.66, + "end": 1937.56, + "probability": 0.6287 + }, + { + "start": 1937.64, + "end": 1939.76, + "probability": 0.9922 + }, + { + "start": 1940.4, + "end": 1943.2, + "probability": 0.9568 + }, + { + "start": 1943.92, + "end": 1949.54, + "probability": 0.8946 + }, + { + "start": 1950.34, + "end": 1952.3, + "probability": 0.8823 + }, + { + "start": 1952.42, + "end": 1953.71, + "probability": 0.7346 + }, + { + "start": 1954.56, + "end": 1956.5, + "probability": 0.9963 + }, + { + "start": 1957.94, + "end": 1960.38, + "probability": 0.7367 + }, + { + "start": 1960.94, + "end": 1961.66, + "probability": 0.5114 + }, + { + "start": 1962.2, + "end": 1964.46, + "probability": 0.737 + }, + { + "start": 1964.96, + "end": 1966.26, + "probability": 0.9684 + }, + { + "start": 1966.32, + "end": 1967.18, + "probability": 0.9274 + }, + { + "start": 1967.24, + "end": 1968.68, + "probability": 0.8663 + }, + { + "start": 1971.94, + "end": 1974.82, + "probability": 0.6462 + }, + { + "start": 1974.9, + "end": 1975.32, + "probability": 0.7925 + }, + { + "start": 1975.44, + "end": 1978.88, + "probability": 0.9938 + }, + { + "start": 1978.94, + "end": 1981.82, + "probability": 0.6786 + }, + { + "start": 1981.88, + "end": 1983.42, + "probability": 0.993 + }, + { + "start": 1983.42, + "end": 1985.64, + "probability": 0.7965 + }, + { + "start": 1985.74, + "end": 1986.38, + "probability": 0.8215 + }, + { + "start": 1986.72, + "end": 1988.14, + "probability": 0.9239 + }, + { + "start": 1988.7, + "end": 1991.19, + "probability": 0.9988 + }, + { + "start": 1991.62, + "end": 1994.22, + "probability": 0.9628 + }, + { + "start": 1994.8, + "end": 1996.02, + "probability": 0.9185 + }, + { + "start": 1996.48, + "end": 1998.2, + "probability": 0.6788 + }, + { + "start": 1998.26, + "end": 1998.68, + "probability": 0.6967 + }, + { + "start": 1999.16, + "end": 2001.2, + "probability": 0.9912 + }, + { + "start": 2001.58, + "end": 2002.53, + "probability": 0.5852 + }, + { + "start": 2002.74, + "end": 2004.12, + "probability": 0.4477 + }, + { + "start": 2004.58, + "end": 2008.32, + "probability": 0.783 + }, + { + "start": 2009.02, + "end": 2012.06, + "probability": 0.9987 + }, + { + "start": 2012.08, + "end": 2014.98, + "probability": 0.9555 + }, + { + "start": 2015.6, + "end": 2018.66, + "probability": 0.8169 + }, + { + "start": 2019.32, + "end": 2022.52, + "probability": 0.9922 + }, + { + "start": 2023.22, + "end": 2024.04, + "probability": 0.9225 + }, + { + "start": 2039.64, + "end": 2041.96, + "probability": 0.9525 + }, + { + "start": 2044.26, + "end": 2046.56, + "probability": 0.8006 + }, + { + "start": 2047.18, + "end": 2049.36, + "probability": 0.991 + }, + { + "start": 2049.96, + "end": 2052.02, + "probability": 0.9819 + }, + { + "start": 2052.64, + "end": 2053.82, + "probability": 0.9963 + }, + { + "start": 2053.92, + "end": 2054.3, + "probability": 0.7873 + }, + { + "start": 2054.42, + "end": 2056.2, + "probability": 0.9743 + }, + { + "start": 2057.12, + "end": 2058.02, + "probability": 0.8416 + }, + { + "start": 2058.52, + "end": 2059.1, + "probability": 0.6761 + }, + { + "start": 2059.1, + "end": 2062.14, + "probability": 0.944 + }, + { + "start": 2062.74, + "end": 2066.81, + "probability": 0.9854 + }, + { + "start": 2067.24, + "end": 2069.32, + "probability": 0.852 + }, + { + "start": 2069.32, + "end": 2070.86, + "probability": 0.9993 + }, + { + "start": 2071.64, + "end": 2073.2, + "probability": 0.9191 + }, + { + "start": 2073.76, + "end": 2076.94, + "probability": 0.9972 + }, + { + "start": 2077.96, + "end": 2079.22, + "probability": 0.5421 + }, + { + "start": 2079.44, + "end": 2081.32, + "probability": 0.7325 + }, + { + "start": 2081.76, + "end": 2082.64, + "probability": 0.9821 + }, + { + "start": 2082.74, + "end": 2084.68, + "probability": 0.96 + }, + { + "start": 2084.76, + "end": 2087.78, + "probability": 0.9683 + }, + { + "start": 2087.96, + "end": 2088.88, + "probability": 0.5017 + }, + { + "start": 2089.26, + "end": 2091.48, + "probability": 0.8994 + }, + { + "start": 2091.94, + "end": 2092.56, + "probability": 0.8845 + }, + { + "start": 2092.98, + "end": 2095.73, + "probability": 0.9885 + }, + { + "start": 2096.42, + "end": 2098.76, + "probability": 0.97 + }, + { + "start": 2098.84, + "end": 2099.94, + "probability": 0.9735 + }, + { + "start": 2100.66, + "end": 2101.79, + "probability": 0.998 + }, + { + "start": 2102.06, + "end": 2104.84, + "probability": 0.9058 + }, + { + "start": 2105.3, + "end": 2110.26, + "probability": 0.9092 + }, + { + "start": 2110.44, + "end": 2111.7, + "probability": 0.879 + }, + { + "start": 2111.76, + "end": 2112.2, + "probability": 0.8751 + }, + { + "start": 2112.48, + "end": 2114.44, + "probability": 0.9866 + }, + { + "start": 2114.5, + "end": 2114.6, + "probability": 0.8864 + }, + { + "start": 2115.04, + "end": 2115.92, + "probability": 0.915 + }, + { + "start": 2115.94, + "end": 2118.22, + "probability": 0.8898 + }, + { + "start": 2118.22, + "end": 2121.64, + "probability": 0.8239 + }, + { + "start": 2122.24, + "end": 2124.58, + "probability": 0.8813 + }, + { + "start": 2124.94, + "end": 2126.44, + "probability": 0.9893 + }, + { + "start": 2126.44, + "end": 2129.02, + "probability": 0.9825 + }, + { + "start": 2129.46, + "end": 2133.82, + "probability": 0.9795 + }, + { + "start": 2134.34, + "end": 2136.02, + "probability": 0.9929 + }, + { + "start": 2136.54, + "end": 2137.12, + "probability": 0.9385 + }, + { + "start": 2137.86, + "end": 2140.9, + "probability": 0.9878 + }, + { + "start": 2141.08, + "end": 2141.54, + "probability": 0.6874 + }, + { + "start": 2141.62, + "end": 2142.54, + "probability": 0.9195 + }, + { + "start": 2142.66, + "end": 2145.44, + "probability": 0.9863 + }, + { + "start": 2145.7, + "end": 2147.66, + "probability": 0.5104 + }, + { + "start": 2148.4, + "end": 2150.44, + "probability": 0.9801 + }, + { + "start": 2150.44, + "end": 2152.12, + "probability": 0.9987 + }, + { + "start": 2152.98, + "end": 2153.96, + "probability": 0.9222 + }, + { + "start": 2154.38, + "end": 2156.14, + "probability": 0.9907 + }, + { + "start": 2156.62, + "end": 2157.12, + "probability": 0.5324 + }, + { + "start": 2157.78, + "end": 2161.32, + "probability": 0.9941 + }, + { + "start": 2161.74, + "end": 2163.1, + "probability": 0.9315 + }, + { + "start": 2163.18, + "end": 2164.96, + "probability": 0.8637 + }, + { + "start": 2164.96, + "end": 2167.62, + "probability": 0.998 + }, + { + "start": 2167.7, + "end": 2170.24, + "probability": 0.8814 + }, + { + "start": 2170.54, + "end": 2172.86, + "probability": 0.8328 + }, + { + "start": 2172.86, + "end": 2175.5, + "probability": 0.996 + }, + { + "start": 2175.62, + "end": 2176.57, + "probability": 0.9976 + }, + { + "start": 2177.54, + "end": 2178.46, + "probability": 0.6594 + }, + { + "start": 2178.58, + "end": 2180.5, + "probability": 0.9733 + }, + { + "start": 2180.5, + "end": 2182.0, + "probability": 0.9509 + }, + { + "start": 2182.4, + "end": 2183.9, + "probability": 0.9905 + }, + { + "start": 2184.06, + "end": 2184.4, + "probability": 0.7951 + }, + { + "start": 2185.82, + "end": 2187.18, + "probability": 0.8495 + }, + { + "start": 2187.26, + "end": 2190.64, + "probability": 0.927 + }, + { + "start": 2191.3, + "end": 2192.7, + "probability": 0.9902 + }, + { + "start": 2192.86, + "end": 2193.5, + "probability": 0.8644 + }, + { + "start": 2204.58, + "end": 2205.62, + "probability": 0.8788 + }, + { + "start": 2205.66, + "end": 2206.64, + "probability": 0.8704 + }, + { + "start": 2206.76, + "end": 2209.42, + "probability": 0.972 + }, + { + "start": 2210.42, + "end": 2213.8, + "probability": 0.9099 + }, + { + "start": 2213.98, + "end": 2217.0, + "probability": 0.9603 + }, + { + "start": 2217.1, + "end": 2218.17, + "probability": 0.9989 + }, + { + "start": 2220.24, + "end": 2221.62, + "probability": 0.7957 + }, + { + "start": 2223.77, + "end": 2227.02, + "probability": 0.8711 + }, + { + "start": 2227.58, + "end": 2228.32, + "probability": 0.9058 + }, + { + "start": 2228.94, + "end": 2229.86, + "probability": 0.9928 + }, + { + "start": 2230.76, + "end": 2231.76, + "probability": 0.6711 + }, + { + "start": 2232.24, + "end": 2234.54, + "probability": 0.9546 + }, + { + "start": 2234.54, + "end": 2237.76, + "probability": 0.9907 + }, + { + "start": 2237.9, + "end": 2240.88, + "probability": 0.5011 + }, + { + "start": 2242.26, + "end": 2242.44, + "probability": 0.2954 + }, + { + "start": 2257.52, + "end": 2262.4, + "probability": 0.7169 + }, + { + "start": 2263.54, + "end": 2264.22, + "probability": 0.5208 + }, + { + "start": 2264.88, + "end": 2268.56, + "probability": 0.7402 + }, + { + "start": 2270.06, + "end": 2270.06, + "probability": 0.7909 + }, + { + "start": 2270.06, + "end": 2273.08, + "probability": 0.267 + }, + { + "start": 2275.98, + "end": 2276.18, + "probability": 0.004 + }, + { + "start": 2276.18, + "end": 2279.82, + "probability": 0.2509 + }, + { + "start": 2280.24, + "end": 2281.74, + "probability": 0.0925 + }, + { + "start": 2283.04, + "end": 2285.9, + "probability": 0.0292 + }, + { + "start": 2287.37, + "end": 2290.56, + "probability": 0.0179 + }, + { + "start": 2291.62, + "end": 2292.16, + "probability": 0.0119 + }, + { + "start": 2292.28, + "end": 2292.44, + "probability": 0.0539 + }, + { + "start": 2292.44, + "end": 2292.78, + "probability": 0.0886 + }, + { + "start": 2293.54, + "end": 2296.4, + "probability": 0.3418 + }, + { + "start": 2305.92, + "end": 2307.36, + "probability": 0.3915 + }, + { + "start": 2307.96, + "end": 2308.82, + "probability": 0.0367 + }, + { + "start": 2311.82, + "end": 2312.98, + "probability": 0.1085 + }, + { + "start": 2317.82, + "end": 2317.82, + "probability": 0.4885 + }, + { + "start": 2317.82, + "end": 2319.32, + "probability": 0.8006 + }, + { + "start": 2323.66, + "end": 2325.96, + "probability": 0.6711 + }, + { + "start": 2327.36, + "end": 2331.88, + "probability": 0.7546 + }, + { + "start": 2332.58, + "end": 2335.8, + "probability": 0.8701 + }, + { + "start": 2335.92, + "end": 2339.56, + "probability": 0.9873 + }, + { + "start": 2340.18, + "end": 2343.42, + "probability": 0.9806 + }, + { + "start": 2343.88, + "end": 2348.08, + "probability": 0.993 + }, + { + "start": 2348.08, + "end": 2352.4, + "probability": 0.8472 + }, + { + "start": 2352.92, + "end": 2355.76, + "probability": 0.9665 + }, + { + "start": 2356.3, + "end": 2358.31, + "probability": 0.7699 + }, + { + "start": 2358.84, + "end": 2362.34, + "probability": 0.4962 + }, + { + "start": 2362.43, + "end": 2367.42, + "probability": 0.8566 + }, + { + "start": 2368.14, + "end": 2369.24, + "probability": 0.8693 + }, + { + "start": 2369.38, + "end": 2371.02, + "probability": 0.9081 + }, + { + "start": 2371.1, + "end": 2372.56, + "probability": 0.7643 + }, + { + "start": 2373.48, + "end": 2374.79, + "probability": 0.7727 + }, + { + "start": 2376.07, + "end": 2379.5, + "probability": 0.9468 + }, + { + "start": 2380.12, + "end": 2381.84, + "probability": 0.9435 + }, + { + "start": 2382.36, + "end": 2385.04, + "probability": 0.8942 + }, + { + "start": 2385.56, + "end": 2390.16, + "probability": 0.9824 + }, + { + "start": 2390.44, + "end": 2393.76, + "probability": 0.7167 + }, + { + "start": 2394.16, + "end": 2395.96, + "probability": 0.6721 + }, + { + "start": 2396.24, + "end": 2399.36, + "probability": 0.9738 + }, + { + "start": 2399.44, + "end": 2400.92, + "probability": 0.9382 + }, + { + "start": 2401.36, + "end": 2404.92, + "probability": 0.9487 + }, + { + "start": 2405.32, + "end": 2409.06, + "probability": 0.9387 + }, + { + "start": 2409.22, + "end": 2410.22, + "probability": 0.8357 + }, + { + "start": 2410.68, + "end": 2412.64, + "probability": 0.9886 + }, + { + "start": 2412.68, + "end": 2414.26, + "probability": 0.7405 + }, + { + "start": 2414.72, + "end": 2416.24, + "probability": 0.6678 + }, + { + "start": 2416.24, + "end": 2417.76, + "probability": 0.9819 + }, + { + "start": 2417.84, + "end": 2422.04, + "probability": 0.8511 + }, + { + "start": 2422.96, + "end": 2423.44, + "probability": 0.8146 + }, + { + "start": 2423.74, + "end": 2426.08, + "probability": 0.986 + }, + { + "start": 2426.52, + "end": 2429.24, + "probability": 0.9765 + }, + { + "start": 2429.74, + "end": 2431.8, + "probability": 0.7515 + }, + { + "start": 2432.12, + "end": 2433.78, + "probability": 0.9937 + }, + { + "start": 2433.84, + "end": 2434.2, + "probability": 0.8242 + }, + { + "start": 2434.54, + "end": 2435.18, + "probability": 0.7585 + }, + { + "start": 2435.54, + "end": 2437.0, + "probability": 0.9343 + }, + { + "start": 2437.18, + "end": 2437.62, + "probability": 0.785 + }, + { + "start": 2437.7, + "end": 2437.88, + "probability": 0.8256 + }, + { + "start": 2438.18, + "end": 2439.3, + "probability": 0.955 + }, + { + "start": 2455.1, + "end": 2456.57, + "probability": 0.7727 + }, + { + "start": 2456.88, + "end": 2458.06, + "probability": 0.7459 + }, + { + "start": 2458.56, + "end": 2461.68, + "probability": 0.7426 + }, + { + "start": 2462.57, + "end": 2468.58, + "probability": 0.9762 + }, + { + "start": 2468.82, + "end": 2469.5, + "probability": 0.6865 + }, + { + "start": 2470.1, + "end": 2470.98, + "probability": 0.6556 + }, + { + "start": 2470.98, + "end": 2471.54, + "probability": 0.6767 + }, + { + "start": 2472.64, + "end": 2477.8, + "probability": 0.795 + }, + { + "start": 2477.94, + "end": 2481.22, + "probability": 0.9338 + }, + { + "start": 2481.32, + "end": 2481.64, + "probability": 0.4841 + }, + { + "start": 2481.7, + "end": 2483.42, + "probability": 0.7689 + }, + { + "start": 2483.6, + "end": 2486.06, + "probability": 0.9951 + }, + { + "start": 2486.06, + "end": 2488.5, + "probability": 0.9363 + }, + { + "start": 2490.07, + "end": 2494.16, + "probability": 0.9956 + }, + { + "start": 2494.66, + "end": 2495.78, + "probability": 0.6669 + }, + { + "start": 2495.88, + "end": 2497.54, + "probability": 0.6842 + }, + { + "start": 2497.58, + "end": 2498.52, + "probability": 0.9395 + }, + { + "start": 2499.18, + "end": 2506.8, + "probability": 0.9888 + }, + { + "start": 2506.8, + "end": 2514.64, + "probability": 0.8179 + }, + { + "start": 2515.16, + "end": 2519.7, + "probability": 0.9112 + }, + { + "start": 2520.34, + "end": 2523.04, + "probability": 0.9933 + }, + { + "start": 2523.14, + "end": 2525.7, + "probability": 0.3452 + }, + { + "start": 2526.42, + "end": 2530.64, + "probability": 0.9219 + }, + { + "start": 2530.86, + "end": 2531.94, + "probability": 0.8378 + }, + { + "start": 2532.2, + "end": 2534.06, + "probability": 0.8115 + }, + { + "start": 2534.18, + "end": 2537.8, + "probability": 0.9116 + }, + { + "start": 2537.8, + "end": 2541.68, + "probability": 0.9756 + }, + { + "start": 2543.03, + "end": 2545.0, + "probability": 0.8015 + }, + { + "start": 2545.28, + "end": 2547.04, + "probability": 0.831 + }, + { + "start": 2547.14, + "end": 2548.03, + "probability": 0.6625 + }, + { + "start": 2548.46, + "end": 2554.26, + "probability": 0.5983 + }, + { + "start": 2554.72, + "end": 2559.32, + "probability": 0.9696 + }, + { + "start": 2559.76, + "end": 2560.92, + "probability": 0.7944 + }, + { + "start": 2561.06, + "end": 2562.58, + "probability": 0.932 + }, + { + "start": 2562.68, + "end": 2564.04, + "probability": 0.8835 + }, + { + "start": 2564.22, + "end": 2564.36, + "probability": 0.2433 + }, + { + "start": 2564.36, + "end": 2564.36, + "probability": 0.0165 + }, + { + "start": 2564.5, + "end": 2566.82, + "probability": 0.4761 + }, + { + "start": 2566.82, + "end": 2567.04, + "probability": 0.298 + }, + { + "start": 2570.64, + "end": 2575.48, + "probability": 0.9402 + }, + { + "start": 2575.54, + "end": 2577.8, + "probability": 0.7553 + }, + { + "start": 2578.48, + "end": 2580.98, + "probability": 0.563 + }, + { + "start": 2581.16, + "end": 2584.94, + "probability": 0.705 + }, + { + "start": 2585.48, + "end": 2587.24, + "probability": 0.8077 + }, + { + "start": 2587.32, + "end": 2589.08, + "probability": 0.9257 + }, + { + "start": 2590.92, + "end": 2591.48, + "probability": 0.6988 + }, + { + "start": 2593.1, + "end": 2595.72, + "probability": 0.5038 + }, + { + "start": 2595.76, + "end": 2598.36, + "probability": 0.9033 + }, + { + "start": 2598.42, + "end": 2598.52, + "probability": 0.5947 + }, + { + "start": 2599.4, + "end": 2600.56, + "probability": 0.4599 + }, + { + "start": 2601.32, + "end": 2601.9, + "probability": 0.9114 + }, + { + "start": 2603.88, + "end": 2604.5, + "probability": 0.6786 + }, + { + "start": 2604.86, + "end": 2607.7, + "probability": 0.8823 + }, + { + "start": 2608.3, + "end": 2608.84, + "probability": 0.9236 + }, + { + "start": 2623.68, + "end": 2624.94, + "probability": 0.6923 + }, + { + "start": 2625.1, + "end": 2627.52, + "probability": 0.9163 + }, + { + "start": 2627.9, + "end": 2630.0, + "probability": 0.9907 + }, + { + "start": 2630.76, + "end": 2636.88, + "probability": 0.9883 + }, + { + "start": 2636.88, + "end": 2640.38, + "probability": 0.9953 + }, + { + "start": 2641.02, + "end": 2643.64, + "probability": 0.5731 + }, + { + "start": 2644.18, + "end": 2645.32, + "probability": 0.8611 + }, + { + "start": 2645.94, + "end": 2649.81, + "probability": 0.8894 + }, + { + "start": 2650.62, + "end": 2655.68, + "probability": 0.9624 + }, + { + "start": 2656.54, + "end": 2658.98, + "probability": 0.933 + }, + { + "start": 2659.52, + "end": 2661.02, + "probability": 0.7302 + }, + { + "start": 2661.6, + "end": 2667.36, + "probability": 0.9708 + }, + { + "start": 2668.04, + "end": 2673.66, + "probability": 0.9651 + }, + { + "start": 2673.66, + "end": 2677.72, + "probability": 0.9946 + }, + { + "start": 2677.88, + "end": 2682.08, + "probability": 0.9984 + }, + { + "start": 2682.7, + "end": 2688.78, + "probability": 0.9855 + }, + { + "start": 2689.17, + "end": 2695.06, + "probability": 0.7786 + }, + { + "start": 2695.8, + "end": 2702.76, + "probability": 0.8413 + }, + { + "start": 2703.36, + "end": 2709.42, + "probability": 0.9941 + }, + { + "start": 2709.8, + "end": 2711.68, + "probability": 0.6857 + }, + { + "start": 2712.34, + "end": 2714.18, + "probability": 0.7853 + }, + { + "start": 2714.68, + "end": 2715.56, + "probability": 0.416 + }, + { + "start": 2716.34, + "end": 2716.34, + "probability": 0.006 + }, + { + "start": 2716.34, + "end": 2718.69, + "probability": 0.344 + }, + { + "start": 2719.26, + "end": 2722.62, + "probability": 0.6621 + }, + { + "start": 2723.2, + "end": 2726.62, + "probability": 0.4312 + }, + { + "start": 2729.52, + "end": 2730.6, + "probability": 0.0019 + }, + { + "start": 2730.6, + "end": 2732.0, + "probability": 0.0145 + }, + { + "start": 2732.0, + "end": 2732.37, + "probability": 0.0583 + }, + { + "start": 2733.04, + "end": 2733.74, + "probability": 0.2198 + }, + { + "start": 2733.74, + "end": 2734.86, + "probability": 0.412 + }, + { + "start": 2735.08, + "end": 2737.4, + "probability": 0.2321 + }, + { + "start": 2739.68, + "end": 2741.76, + "probability": 0.096 + }, + { + "start": 2742.06, + "end": 2744.28, + "probability": 0.4562 + }, + { + "start": 2745.62, + "end": 2746.26, + "probability": 0.074 + }, + { + "start": 2747.4, + "end": 2752.88, + "probability": 0.1728 + }, + { + "start": 2755.44, + "end": 2755.78, + "probability": 0.1528 + }, + { + "start": 2756.58, + "end": 2759.64, + "probability": 0.0524 + }, + { + "start": 2759.9, + "end": 2760.26, + "probability": 0.2672 + }, + { + "start": 2760.84, + "end": 2761.36, + "probability": 0.4239 + }, + { + "start": 2762.88, + "end": 2763.12, + "probability": 0.1863 + }, + { + "start": 2763.6, + "end": 2764.06, + "probability": 0.3618 + }, + { + "start": 2764.06, + "end": 2765.74, + "probability": 0.4656 + }, + { + "start": 2765.74, + "end": 2765.74, + "probability": 0.6159 + }, + { + "start": 2765.74, + "end": 2767.66, + "probability": 0.0981 + }, + { + "start": 2768.24, + "end": 2768.44, + "probability": 0.2915 + }, + { + "start": 2768.44, + "end": 2772.46, + "probability": 0.0407 + }, + { + "start": 2775.98, + "end": 2777.22, + "probability": 0.2716 + }, + { + "start": 2777.22, + "end": 2779.97, + "probability": 0.0621 + }, + { + "start": 2780.78, + "end": 2781.64, + "probability": 0.138 + }, + { + "start": 2781.68, + "end": 2783.16, + "probability": 0.4553 + }, + { + "start": 2783.64, + "end": 2786.26, + "probability": 0.7564 + }, + { + "start": 2786.38, + "end": 2788.2, + "probability": 0.0953 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2821.0, + "end": 2821.0, + "probability": 0.0 + }, + { + "start": 2826.36, + "end": 2827.83, + "probability": 0.6465 + }, + { + "start": 2837.68, + "end": 2840.4, + "probability": 0.9116 + }, + { + "start": 2840.48, + "end": 2841.92, + "probability": 0.9983 + }, + { + "start": 2842.38, + "end": 2843.38, + "probability": 0.9289 + }, + { + "start": 2844.88, + "end": 2846.72, + "probability": 0.2275 + }, + { + "start": 2848.33, + "end": 2850.22, + "probability": 0.8233 + }, + { + "start": 2850.68, + "end": 2856.02, + "probability": 0.9841 + }, + { + "start": 2857.3, + "end": 2858.38, + "probability": 0.4203 + }, + { + "start": 2858.44, + "end": 2862.56, + "probability": 0.9678 + }, + { + "start": 2862.56, + "end": 2865.96, + "probability": 0.9753 + }, + { + "start": 2866.32, + "end": 2867.38, + "probability": 0.9008 + }, + { + "start": 2867.92, + "end": 2873.0, + "probability": 0.993 + }, + { + "start": 2873.76, + "end": 2874.48, + "probability": 0.1741 + }, + { + "start": 2874.76, + "end": 2875.98, + "probability": 0.9583 + }, + { + "start": 2876.1, + "end": 2877.58, + "probability": 0.9834 + }, + { + "start": 2878.8, + "end": 2880.64, + "probability": 0.9839 + }, + { + "start": 2880.8, + "end": 2882.56, + "probability": 0.9556 + }, + { + "start": 2885.02, + "end": 2889.26, + "probability": 0.7685 + }, + { + "start": 2889.4, + "end": 2890.54, + "probability": 0.9633 + }, + { + "start": 2890.64, + "end": 2891.62, + "probability": 0.0376 + }, + { + "start": 2892.28, + "end": 2893.32, + "probability": 0.0981 + }, + { + "start": 2893.74, + "end": 2896.82, + "probability": 0.8687 + }, + { + "start": 2897.66, + "end": 2897.66, + "probability": 0.0459 + }, + { + "start": 2897.66, + "end": 2900.36, + "probability": 0.8802 + }, + { + "start": 2900.36, + "end": 2900.73, + "probability": 0.3022 + }, + { + "start": 2902.3, + "end": 2906.1, + "probability": 0.0274 + }, + { + "start": 2908.02, + "end": 2908.14, + "probability": 0.0055 + }, + { + "start": 2919.04, + "end": 2924.74, + "probability": 0.0627 + }, + { + "start": 2925.08, + "end": 2927.86, + "probability": 0.2536 + }, + { + "start": 2927.86, + "end": 2929.1, + "probability": 0.0148 + }, + { + "start": 2930.79, + "end": 2934.86, + "probability": 0.1424 + }, + { + "start": 2935.74, + "end": 2936.72, + "probability": 0.4066 + }, + { + "start": 2936.72, + "end": 2938.98, + "probability": 0.0767 + }, + { + "start": 2940.08, + "end": 2946.48, + "probability": 0.0939 + }, + { + "start": 2946.48, + "end": 2949.5, + "probability": 0.0375 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2972.0, + "end": 2972.0, + "probability": 0.0 + }, + { + "start": 2973.93, + "end": 2976.78, + "probability": 0.6166 + }, + { + "start": 2976.78, + "end": 2978.9, + "probability": 0.5764 + }, + { + "start": 2979.04, + "end": 2980.16, + "probability": 0.5554 + }, + { + "start": 2980.86, + "end": 2985.84, + "probability": 0.9146 + }, + { + "start": 2985.94, + "end": 2989.32, + "probability": 0.9608 + }, + { + "start": 2989.42, + "end": 2989.66, + "probability": 0.5594 + }, + { + "start": 2990.12, + "end": 2993.94, + "probability": 0.1144 + }, + { + "start": 2994.2, + "end": 2995.18, + "probability": 0.3854 + }, + { + "start": 2995.5, + "end": 2995.8, + "probability": 0.0035 + }, + { + "start": 2996.68, + "end": 2998.58, + "probability": 0.1532 + }, + { + "start": 2998.58, + "end": 2999.6, + "probability": 0.5767 + }, + { + "start": 2999.7, + "end": 3001.84, + "probability": 0.6607 + }, + { + "start": 3001.84, + "end": 3003.58, + "probability": 0.7036 + }, + { + "start": 3004.12, + "end": 3005.84, + "probability": 0.0352 + }, + { + "start": 3005.84, + "end": 3011.06, + "probability": 0.1087 + }, + { + "start": 3015.6, + "end": 3016.62, + "probability": 0.9145 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.0, + "end": 3111.0, + "probability": 0.0 + }, + { + "start": 3111.16, + "end": 3112.58, + "probability": 0.8276 + }, + { + "start": 3114.06, + "end": 3118.12, + "probability": 0.9993 + }, + { + "start": 3118.12, + "end": 3121.34, + "probability": 0.998 + }, + { + "start": 3123.28, + "end": 3125.62, + "probability": 0.9946 + }, + { + "start": 3126.78, + "end": 3128.74, + "probability": 0.9987 + }, + { + "start": 3129.66, + "end": 3134.5, + "probability": 0.9937 + }, + { + "start": 3135.6, + "end": 3138.14, + "probability": 0.9992 + }, + { + "start": 3138.94, + "end": 3140.36, + "probability": 0.9886 + }, + { + "start": 3141.24, + "end": 3144.82, + "probability": 0.96 + }, + { + "start": 3145.5, + "end": 3146.84, + "probability": 0.9919 + }, + { + "start": 3147.44, + "end": 3150.36, + "probability": 0.9224 + }, + { + "start": 3151.2, + "end": 3156.3, + "probability": 0.991 + }, + { + "start": 3157.48, + "end": 3162.48, + "probability": 0.9941 + }, + { + "start": 3163.28, + "end": 3165.1, + "probability": 0.6793 + }, + { + "start": 3166.62, + "end": 3167.96, + "probability": 0.7636 + }, + { + "start": 3168.94, + "end": 3170.56, + "probability": 0.0171 + }, + { + "start": 3170.82, + "end": 3172.42, + "probability": 0.8952 + }, + { + "start": 3173.52, + "end": 3175.02, + "probability": 0.9189 + }, + { + "start": 3175.04, + "end": 3175.27, + "probability": 0.0524 + }, + { + "start": 3175.62, + "end": 3177.36, + "probability": 0.5929 + }, + { + "start": 3177.68, + "end": 3178.36, + "probability": 0.641 + }, + { + "start": 3178.48, + "end": 3179.6, + "probability": 0.9956 + }, + { + "start": 3179.76, + "end": 3181.38, + "probability": 0.7108 + }, + { + "start": 3185.36, + "end": 3188.32, + "probability": 0.0229 + }, + { + "start": 3188.74, + "end": 3188.8, + "probability": 0.0199 + }, + { + "start": 3189.6, + "end": 3190.62, + "probability": 0.45 + }, + { + "start": 3191.18, + "end": 3191.78, + "probability": 0.3364 + }, + { + "start": 3191.9, + "end": 3194.24, + "probability": 0.2174 + }, + { + "start": 3197.54, + "end": 3197.97, + "probability": 0.2588 + }, + { + "start": 3199.34, + "end": 3199.34, + "probability": 0.0955 + }, + { + "start": 3199.34, + "end": 3203.4, + "probability": 0.014 + }, + { + "start": 3203.52, + "end": 3203.98, + "probability": 0.0595 + }, + { + "start": 3203.98, + "end": 3207.22, + "probability": 0.3736 + }, + { + "start": 3207.6, + "end": 3208.1, + "probability": 0.3314 + }, + { + "start": 3213.9, + "end": 3215.24, + "probability": 0.507 + }, + { + "start": 3216.82, + "end": 3217.36, + "probability": 0.0328 + }, + { + "start": 3220.42, + "end": 3221.28, + "probability": 0.1339 + }, + { + "start": 3221.28, + "end": 3222.27, + "probability": 0.0335 + }, + { + "start": 3222.72, + "end": 3223.54, + "probability": 0.2367 + }, + { + "start": 3236.32, + "end": 3239.58, + "probability": 0.1398 + }, + { + "start": 3239.92, + "end": 3240.82, + "probability": 0.3586 + }, + { + "start": 3241.18, + "end": 3243.8, + "probability": 0.1371 + }, + { + "start": 3243.82, + "end": 3245.22, + "probability": 0.0532 + }, + { + "start": 3245.22, + "end": 3245.43, + "probability": 0.4305 + }, + { + "start": 3245.8, + "end": 3246.42, + "probability": 0.0178 + }, + { + "start": 3247.76, + "end": 3248.36, + "probability": 0.0411 + }, + { + "start": 3249.06, + "end": 3251.48, + "probability": 0.2113 + }, + { + "start": 3254.78, + "end": 3255.64, + "probability": 0.1212 + }, + { + "start": 3258.36, + "end": 3260.45, + "probability": 0.1027 + }, + { + "start": 3263.2, + "end": 3263.98, + "probability": 0.0022 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.0, + "end": 3267.0, + "probability": 0.0 + }, + { + "start": 3267.32, + "end": 3268.8, + "probability": 0.5267 + }, + { + "start": 3269.02, + "end": 3271.8, + "probability": 0.2012 + }, + { + "start": 3272.2, + "end": 3272.2, + "probability": 0.5639 + }, + { + "start": 3272.2, + "end": 3274.22, + "probability": 0.8851 + }, + { + "start": 3274.7, + "end": 3277.08, + "probability": 0.8796 + }, + { + "start": 3277.2, + "end": 3281.38, + "probability": 0.9795 + }, + { + "start": 3282.2, + "end": 3285.56, + "probability": 0.8352 + }, + { + "start": 3286.04, + "end": 3287.66, + "probability": 0.8561 + }, + { + "start": 3312.34, + "end": 3313.8, + "probability": 0.7303 + }, + { + "start": 3317.0, + "end": 3320.42, + "probability": 0.9053 + }, + { + "start": 3324.0, + "end": 3327.52, + "probability": 0.8893 + }, + { + "start": 3328.42, + "end": 3330.88, + "probability": 0.9007 + }, + { + "start": 3331.3, + "end": 3335.14, + "probability": 0.8293 + }, + { + "start": 3335.22, + "end": 3336.72, + "probability": 0.8333 + }, + { + "start": 3337.0, + "end": 3342.52, + "probability": 0.8416 + }, + { + "start": 3343.04, + "end": 3344.98, + "probability": 0.9137 + }, + { + "start": 3345.74, + "end": 3349.2, + "probability": 0.9464 + }, + { + "start": 3350.1, + "end": 3351.52, + "probability": 0.8877 + }, + { + "start": 3352.98, + "end": 3354.58, + "probability": 0.571 + }, + { + "start": 3355.22, + "end": 3356.94, + "probability": 0.8181 + }, + { + "start": 3357.66, + "end": 3362.72, + "probability": 0.7649 + }, + { + "start": 3362.72, + "end": 3368.76, + "probability": 0.7983 + }, + { + "start": 3369.36, + "end": 3373.76, + "probability": 0.9545 + }, + { + "start": 3374.56, + "end": 3376.08, + "probability": 0.7788 + }, + { + "start": 3376.84, + "end": 3381.88, + "probability": 0.8419 + }, + { + "start": 3382.0, + "end": 3383.72, + "probability": 0.9891 + }, + { + "start": 3385.3, + "end": 3387.69, + "probability": 0.9695 + }, + { + "start": 3388.28, + "end": 3389.2, + "probability": 0.8562 + }, + { + "start": 3389.96, + "end": 3392.24, + "probability": 0.9931 + }, + { + "start": 3393.16, + "end": 3396.66, + "probability": 0.9778 + }, + { + "start": 3397.52, + "end": 3402.04, + "probability": 0.9814 + }, + { + "start": 3402.74, + "end": 3405.26, + "probability": 0.5703 + }, + { + "start": 3406.2, + "end": 3411.02, + "probability": 0.9981 + }, + { + "start": 3411.52, + "end": 3411.64, + "probability": 0.5775 + }, + { + "start": 3411.8, + "end": 3413.04, + "probability": 0.8775 + }, + { + "start": 3413.28, + "end": 3416.58, + "probability": 0.9884 + }, + { + "start": 3417.34, + "end": 3419.68, + "probability": 0.8189 + }, + { + "start": 3420.56, + "end": 3425.6, + "probability": 0.9371 + }, + { + "start": 3426.28, + "end": 3426.98, + "probability": 0.9624 + }, + { + "start": 3428.52, + "end": 3431.86, + "probability": 0.9939 + }, + { + "start": 3432.0, + "end": 3433.32, + "probability": 0.8999 + }, + { + "start": 3433.76, + "end": 3435.66, + "probability": 0.6287 + }, + { + "start": 3436.16, + "end": 3437.64, + "probability": 0.9661 + }, + { + "start": 3438.2, + "end": 3440.42, + "probability": 0.9961 + }, + { + "start": 3440.84, + "end": 3445.64, + "probability": 0.9858 + }, + { + "start": 3445.78, + "end": 3447.02, + "probability": 0.8774 + }, + { + "start": 3447.44, + "end": 3450.08, + "probability": 0.9912 + }, + { + "start": 3450.82, + "end": 3451.5, + "probability": 0.9602 + }, + { + "start": 3452.38, + "end": 3454.22, + "probability": 0.9988 + }, + { + "start": 3455.38, + "end": 3457.46, + "probability": 0.9946 + }, + { + "start": 3457.62, + "end": 3458.18, + "probability": 0.7876 + }, + { + "start": 3458.66, + "end": 3460.16, + "probability": 0.8397 + }, + { + "start": 3460.26, + "end": 3461.3, + "probability": 0.9138 + }, + { + "start": 3461.44, + "end": 3464.04, + "probability": 0.9722 + }, + { + "start": 3465.0, + "end": 3466.12, + "probability": 0.991 + }, + { + "start": 3466.64, + "end": 3468.4, + "probability": 0.9958 + }, + { + "start": 3469.37, + "end": 3470.56, + "probability": 0.5351 + }, + { + "start": 3470.56, + "end": 3471.32, + "probability": 0.6838 + }, + { + "start": 3472.26, + "end": 3473.14, + "probability": 0.9727 + }, + { + "start": 3474.56, + "end": 3478.3, + "probability": 0.9758 + }, + { + "start": 3478.32, + "end": 3479.56, + "probability": 0.7048 + }, + { + "start": 3481.18, + "end": 3482.4, + "probability": 0.9495 + }, + { + "start": 3482.44, + "end": 3488.06, + "probability": 0.9269 + }, + { + "start": 3488.74, + "end": 3490.84, + "probability": 0.9785 + }, + { + "start": 3492.62, + "end": 3493.86, + "probability": 0.968 + }, + { + "start": 3494.2, + "end": 3499.1, + "probability": 0.9923 + }, + { + "start": 3499.84, + "end": 3501.2, + "probability": 0.9946 + }, + { + "start": 3502.08, + "end": 3503.56, + "probability": 0.6674 + }, + { + "start": 3504.2, + "end": 3506.06, + "probability": 0.9706 + }, + { + "start": 3506.14, + "end": 3508.4, + "probability": 0.9954 + }, + { + "start": 3508.98, + "end": 3512.62, + "probability": 0.9323 + }, + { + "start": 3512.76, + "end": 3513.82, + "probability": 0.9441 + }, + { + "start": 3514.26, + "end": 3516.56, + "probability": 0.937 + }, + { + "start": 3517.5, + "end": 3519.06, + "probability": 0.9701 + }, + { + "start": 3519.18, + "end": 3520.84, + "probability": 0.9847 + }, + { + "start": 3521.78, + "end": 3525.02, + "probability": 0.9336 + }, + { + "start": 3525.54, + "end": 3529.42, + "probability": 0.9972 + }, + { + "start": 3530.32, + "end": 3533.46, + "probability": 0.9556 + }, + { + "start": 3535.2, + "end": 3536.4, + "probability": 0.99 + }, + { + "start": 3536.44, + "end": 3539.45, + "probability": 0.9889 + }, + { + "start": 3540.26, + "end": 3546.92, + "probability": 0.9921 + }, + { + "start": 3547.08, + "end": 3547.7, + "probability": 0.7917 + }, + { + "start": 3547.78, + "end": 3549.76, + "probability": 0.9948 + }, + { + "start": 3550.72, + "end": 3552.24, + "probability": 0.9839 + }, + { + "start": 3552.92, + "end": 3554.47, + "probability": 0.5623 + }, + { + "start": 3554.88, + "end": 3556.88, + "probability": 0.9946 + }, + { + "start": 3557.56, + "end": 3558.9, + "probability": 0.9886 + }, + { + "start": 3559.74, + "end": 3561.12, + "probability": 0.9617 + }, + { + "start": 3561.74, + "end": 3564.7, + "probability": 0.9711 + }, + { + "start": 3565.12, + "end": 3565.94, + "probability": 0.7572 + }, + { + "start": 3566.2, + "end": 3566.66, + "probability": 0.8648 + }, + { + "start": 3566.9, + "end": 3567.52, + "probability": 0.4851 + }, + { + "start": 3567.74, + "end": 3569.14, + "probability": 0.815 + }, + { + "start": 3569.92, + "end": 3571.8, + "probability": 0.7556 + }, + { + "start": 3572.76, + "end": 3575.02, + "probability": 0.9083 + }, + { + "start": 3575.14, + "end": 3576.98, + "probability": 0.7863 + }, + { + "start": 3577.66, + "end": 3578.98, + "probability": 0.9224 + }, + { + "start": 3579.02, + "end": 3584.4, + "probability": 0.9828 + }, + { + "start": 3584.98, + "end": 3585.4, + "probability": 0.2656 + }, + { + "start": 3585.46, + "end": 3588.92, + "probability": 0.8332 + }, + { + "start": 3589.06, + "end": 3590.3, + "probability": 0.7492 + }, + { + "start": 3591.04, + "end": 3591.84, + "probability": 0.989 + }, + { + "start": 3593.2, + "end": 3593.84, + "probability": 0.7524 + }, + { + "start": 3594.12, + "end": 3596.18, + "probability": 0.9894 + }, + { + "start": 3596.3, + "end": 3599.82, + "probability": 0.9816 + }, + { + "start": 3600.34, + "end": 3603.9, + "probability": 0.9984 + }, + { + "start": 3604.48, + "end": 3606.6, + "probability": 0.2919 + }, + { + "start": 3606.86, + "end": 3608.02, + "probability": 0.5835 + }, + { + "start": 3608.44, + "end": 3610.94, + "probability": 0.7925 + }, + { + "start": 3611.1, + "end": 3611.92, + "probability": 0.1592 + }, + { + "start": 3612.04, + "end": 3612.68, + "probability": 0.8261 + }, + { + "start": 3613.14, + "end": 3615.98, + "probability": 0.9667 + }, + { + "start": 3615.98, + "end": 3615.98, + "probability": 0.6317 + }, + { + "start": 3615.98, + "end": 3617.9, + "probability": 0.8887 + }, + { + "start": 3618.06, + "end": 3622.28, + "probability": 0.9735 + }, + { + "start": 3622.82, + "end": 3626.7, + "probability": 0.998 + }, + { + "start": 3626.78, + "end": 3627.4, + "probability": 0.741 + }, + { + "start": 3627.94, + "end": 3628.58, + "probability": 0.5239 + }, + { + "start": 3628.8, + "end": 3630.68, + "probability": 0.7276 + }, + { + "start": 3630.7, + "end": 3631.91, + "probability": 0.9045 + }, + { + "start": 3632.58, + "end": 3633.26, + "probability": 0.8383 + }, + { + "start": 3639.44, + "end": 3639.9, + "probability": 0.1751 + }, + { + "start": 3659.66, + "end": 3660.78, + "probability": 0.7518 + }, + { + "start": 3661.3, + "end": 3663.8, + "probability": 0.8642 + }, + { + "start": 3664.76, + "end": 3669.38, + "probability": 0.9608 + }, + { + "start": 3669.44, + "end": 3670.26, + "probability": 0.933 + }, + { + "start": 3670.76, + "end": 3671.78, + "probability": 0.9805 + }, + { + "start": 3673.02, + "end": 3676.2, + "probability": 0.4156 + }, + { + "start": 3676.58, + "end": 3676.68, + "probability": 0.577 + }, + { + "start": 3676.88, + "end": 3679.39, + "probability": 0.995 + }, + { + "start": 3679.64, + "end": 3682.48, + "probability": 0.8174 + }, + { + "start": 3682.54, + "end": 3686.28, + "probability": 0.9623 + }, + { + "start": 3686.9, + "end": 3695.84, + "probability": 0.9792 + }, + { + "start": 3695.96, + "end": 3700.22, + "probability": 0.8948 + }, + { + "start": 3700.38, + "end": 3702.62, + "probability": 0.9915 + }, + { + "start": 3703.38, + "end": 3704.14, + "probability": 0.9891 + }, + { + "start": 3704.76, + "end": 3707.32, + "probability": 0.9935 + }, + { + "start": 3708.08, + "end": 3713.64, + "probability": 0.9882 + }, + { + "start": 3715.4, + "end": 3717.3, + "probability": 0.9205 + }, + { + "start": 3717.3, + "end": 3721.52, + "probability": 0.9946 + }, + { + "start": 3722.18, + "end": 3725.9, + "probability": 0.9929 + }, + { + "start": 3725.9, + "end": 3730.52, + "probability": 0.7633 + }, + { + "start": 3730.66, + "end": 3735.38, + "probability": 0.8973 + }, + { + "start": 3737.18, + "end": 3739.64, + "probability": 0.9691 + }, + { + "start": 3740.34, + "end": 3741.36, + "probability": 0.8144 + }, + { + "start": 3741.64, + "end": 3747.1, + "probability": 0.8818 + }, + { + "start": 3747.1, + "end": 3750.62, + "probability": 0.9086 + }, + { + "start": 3750.78, + "end": 3751.59, + "probability": 0.9961 + }, + { + "start": 3753.44, + "end": 3758.2, + "probability": 0.9962 + }, + { + "start": 3758.58, + "end": 3760.9, + "probability": 0.9818 + }, + { + "start": 3760.96, + "end": 3762.8, + "probability": 0.2916 + }, + { + "start": 3762.94, + "end": 3764.25, + "probability": 0.9616 + }, + { + "start": 3764.4, + "end": 3765.77, + "probability": 0.9829 + }, + { + "start": 3766.64, + "end": 3766.86, + "probability": 0.5036 + }, + { + "start": 3767.04, + "end": 3768.54, + "probability": 0.9412 + }, + { + "start": 3769.12, + "end": 3771.74, + "probability": 0.9956 + }, + { + "start": 3772.7, + "end": 3775.02, + "probability": 0.5557 + }, + { + "start": 3775.2, + "end": 3776.28, + "probability": 0.9905 + }, + { + "start": 3777.24, + "end": 3778.44, + "probability": 0.3389 + }, + { + "start": 3778.66, + "end": 3779.42, + "probability": 0.9167 + }, + { + "start": 3779.52, + "end": 3785.12, + "probability": 0.9902 + }, + { + "start": 3785.36, + "end": 3789.18, + "probability": 0.9888 + }, + { + "start": 3789.18, + "end": 3792.17, + "probability": 0.9946 + }, + { + "start": 3793.2, + "end": 3795.34, + "probability": 0.8268 + }, + { + "start": 3798.32, + "end": 3800.32, + "probability": 0.8294 + }, + { + "start": 3801.82, + "end": 3808.38, + "probability": 0.7432 + }, + { + "start": 3809.5, + "end": 3812.02, + "probability": 0.8234 + }, + { + "start": 3812.08, + "end": 3814.48, + "probability": 0.925 + }, + { + "start": 3815.84, + "end": 3815.84, + "probability": 0.2475 + }, + { + "start": 3815.96, + "end": 3816.8, + "probability": 0.8395 + }, + { + "start": 3816.98, + "end": 3819.06, + "probability": 0.9275 + }, + { + "start": 3819.9, + "end": 3822.08, + "probability": 0.9995 + }, + { + "start": 3823.28, + "end": 3825.76, + "probability": 0.9909 + }, + { + "start": 3825.76, + "end": 3828.8, + "probability": 0.9622 + }, + { + "start": 3829.6, + "end": 3831.26, + "probability": 0.9968 + }, + { + "start": 3831.52, + "end": 3833.44, + "probability": 0.8362 + }, + { + "start": 3833.92, + "end": 3834.96, + "probability": 0.1505 + }, + { + "start": 3835.88, + "end": 3836.26, + "probability": 0.179 + }, + { + "start": 3836.26, + "end": 3838.36, + "probability": 0.4683 + }, + { + "start": 3838.52, + "end": 3841.96, + "probability": 0.6101 + }, + { + "start": 3842.12, + "end": 3842.5, + "probability": 0.654 + }, + { + "start": 3843.22, + "end": 3843.92, + "probability": 0.0778 + }, + { + "start": 3843.92, + "end": 3844.64, + "probability": 0.9187 + }, + { + "start": 3844.84, + "end": 3846.6, + "probability": 0.5711 + }, + { + "start": 3846.72, + "end": 3847.7, + "probability": 0.7116 + }, + { + "start": 3847.9, + "end": 3850.97, + "probability": 0.9368 + }, + { + "start": 3851.32, + "end": 3852.12, + "probability": 0.8431 + }, + { + "start": 3852.36, + "end": 3853.46, + "probability": 0.7852 + }, + { + "start": 3854.26, + "end": 3856.28, + "probability": 0.9036 + }, + { + "start": 3857.06, + "end": 3861.8, + "probability": 0.6291 + }, + { + "start": 3861.8, + "end": 3863.32, + "probability": 0.7848 + }, + { + "start": 3885.42, + "end": 3888.34, + "probability": 0.786 + }, + { + "start": 3889.36, + "end": 3891.46, + "probability": 0.9705 + }, + { + "start": 3891.92, + "end": 3893.0, + "probability": 0.9572 + }, + { + "start": 3893.24, + "end": 3897.76, + "probability": 0.814 + }, + { + "start": 3897.84, + "end": 3899.72, + "probability": 0.9689 + }, + { + "start": 3899.78, + "end": 3901.2, + "probability": 0.918 + }, + { + "start": 3902.44, + "end": 3904.66, + "probability": 0.7751 + }, + { + "start": 3905.4, + "end": 3906.62, + "probability": 0.7364 + }, + { + "start": 3907.14, + "end": 3908.16, + "probability": 0.9902 + }, + { + "start": 3908.32, + "end": 3909.51, + "probability": 0.9893 + }, + { + "start": 3910.22, + "end": 3913.14, + "probability": 0.9906 + }, + { + "start": 3913.14, + "end": 3920.02, + "probability": 0.9326 + }, + { + "start": 3920.66, + "end": 3924.56, + "probability": 0.9842 + }, + { + "start": 3924.74, + "end": 3925.92, + "probability": 0.7593 + }, + { + "start": 3926.46, + "end": 3928.12, + "probability": 0.9509 + }, + { + "start": 3928.44, + "end": 3930.2, + "probability": 0.9308 + }, + { + "start": 3930.3, + "end": 3931.24, + "probability": 0.7604 + }, + { + "start": 3932.08, + "end": 3933.48, + "probability": 0.9935 + }, + { + "start": 3933.94, + "end": 3937.92, + "probability": 0.9934 + }, + { + "start": 3937.92, + "end": 3939.66, + "probability": 0.8214 + }, + { + "start": 3940.1, + "end": 3942.04, + "probability": 0.8677 + }, + { + "start": 3942.14, + "end": 3943.28, + "probability": 0.9457 + }, + { + "start": 3943.64, + "end": 3946.64, + "probability": 0.9935 + }, + { + "start": 3946.72, + "end": 3947.82, + "probability": 0.9053 + }, + { + "start": 3948.56, + "end": 3950.98, + "probability": 0.9935 + }, + { + "start": 3951.78, + "end": 3953.58, + "probability": 0.9989 + }, + { + "start": 3953.94, + "end": 3956.6, + "probability": 0.9462 + }, + { + "start": 3956.64, + "end": 3958.78, + "probability": 0.5647 + }, + { + "start": 3959.26, + "end": 3960.2, + "probability": 0.918 + }, + { + "start": 3960.8, + "end": 3963.16, + "probability": 0.9893 + }, + { + "start": 3963.58, + "end": 3964.88, + "probability": 0.9654 + }, + { + "start": 3965.04, + "end": 3968.96, + "probability": 0.9463 + }, + { + "start": 3969.02, + "end": 3971.64, + "probability": 0.9077 + }, + { + "start": 3972.28, + "end": 3975.37, + "probability": 0.936 + }, + { + "start": 3975.92, + "end": 3977.82, + "probability": 0.937 + }, + { + "start": 3978.1, + "end": 3979.02, + "probability": 0.9299 + }, + { + "start": 3979.32, + "end": 3981.44, + "probability": 0.9667 + }, + { + "start": 3982.02, + "end": 3984.68, + "probability": 0.7083 + }, + { + "start": 3985.42, + "end": 3986.26, + "probability": 0.9352 + }, + { + "start": 3986.42, + "end": 3987.46, + "probability": 0.9524 + }, + { + "start": 3987.5, + "end": 3989.22, + "probability": 0.9745 + }, + { + "start": 3989.72, + "end": 3993.78, + "probability": 0.9814 + }, + { + "start": 3994.1, + "end": 3995.68, + "probability": 0.9738 + }, + { + "start": 3996.44, + "end": 4002.2, + "probability": 0.9784 + }, + { + "start": 4002.9, + "end": 4004.48, + "probability": 0.9957 + }, + { + "start": 4005.2, + "end": 4007.96, + "probability": 0.8164 + }, + { + "start": 4008.8, + "end": 4009.94, + "probability": 0.9747 + }, + { + "start": 4010.08, + "end": 4010.88, + "probability": 0.5638 + }, + { + "start": 4011.42, + "end": 4011.84, + "probability": 0.5935 + }, + { + "start": 4011.9, + "end": 4014.24, + "probability": 0.5322 + }, + { + "start": 4014.38, + "end": 4018.02, + "probability": 0.9839 + }, + { + "start": 4018.66, + "end": 4019.86, + "probability": 0.9985 + }, + { + "start": 4019.96, + "end": 4021.18, + "probability": 0.7383 + }, + { + "start": 4022.4, + "end": 4022.86, + "probability": 0.0574 + }, + { + "start": 4022.86, + "end": 4023.48, + "probability": 0.9156 + }, + { + "start": 4025.18, + "end": 4026.82, + "probability": 0.0132 + }, + { + "start": 4028.1, + "end": 4028.44, + "probability": 0.0918 + }, + { + "start": 4028.5, + "end": 4028.8, + "probability": 0.1115 + }, + { + "start": 4028.8, + "end": 4029.06, + "probability": 0.1952 + }, + { + "start": 4029.06, + "end": 4029.9, + "probability": 0.2273 + }, + { + "start": 4031.12, + "end": 4031.74, + "probability": 0.5531 + }, + { + "start": 4031.98, + "end": 4036.24, + "probability": 0.761 + }, + { + "start": 4036.64, + "end": 4038.74, + "probability": 0.6089 + }, + { + "start": 4038.82, + "end": 4041.5, + "probability": 0.5178 + }, + { + "start": 4041.52, + "end": 4043.8, + "probability": 0.8854 + }, + { + "start": 4043.82, + "end": 4049.16, + "probability": 0.9692 + }, + { + "start": 4049.2, + "end": 4053.4, + "probability": 0.9595 + }, + { + "start": 4053.74, + "end": 4056.62, + "probability": 0.7289 + }, + { + "start": 4056.9, + "end": 4060.24, + "probability": 0.9309 + }, + { + "start": 4060.34, + "end": 4060.92, + "probability": 0.3826 + }, + { + "start": 4061.72, + "end": 4062.88, + "probability": 0.8863 + }, + { + "start": 4062.92, + "end": 4063.74, + "probability": 0.7563 + }, + { + "start": 4063.88, + "end": 4064.1, + "probability": 0.7941 + }, + { + "start": 4064.16, + "end": 4065.28, + "probability": 0.9951 + }, + { + "start": 4065.7, + "end": 4067.04, + "probability": 0.9656 + }, + { + "start": 4067.84, + "end": 4068.6, + "probability": 0.812 + }, + { + "start": 4068.84, + "end": 4074.66, + "probability": 0.9688 + }, + { + "start": 4074.66, + "end": 4079.46, + "probability": 0.9976 + }, + { + "start": 4080.1, + "end": 4080.1, + "probability": 0.168 + }, + { + "start": 4080.24, + "end": 4084.76, + "probability": 0.9121 + }, + { + "start": 4084.76, + "end": 4088.6, + "probability": 0.9729 + }, + { + "start": 4089.04, + "end": 4090.72, + "probability": 0.934 + }, + { + "start": 4092.0, + "end": 4092.48, + "probability": 0.5581 + }, + { + "start": 4093.58, + "end": 4097.44, + "probability": 0.7724 + }, + { + "start": 4097.74, + "end": 4100.18, + "probability": 0.9968 + }, + { + "start": 4100.48, + "end": 4103.14, + "probability": 0.9015 + }, + { + "start": 4103.34, + "end": 4106.62, + "probability": 0.9915 + }, + { + "start": 4106.86, + "end": 4107.32, + "probability": 0.8683 + }, + { + "start": 4107.96, + "end": 4111.1, + "probability": 0.9832 + }, + { + "start": 4111.24, + "end": 4111.72, + "probability": 0.6223 + }, + { + "start": 4111.82, + "end": 4112.16, + "probability": 0.5482 + }, + { + "start": 4112.26, + "end": 4113.08, + "probability": 0.6829 + }, + { + "start": 4113.38, + "end": 4114.96, + "probability": 0.7836 + }, + { + "start": 4115.42, + "end": 4119.0, + "probability": 0.9731 + }, + { + "start": 4120.0, + "end": 4124.43, + "probability": 0.9779 + }, + { + "start": 4124.88, + "end": 4127.06, + "probability": 0.9751 + }, + { + "start": 4127.72, + "end": 4133.52, + "probability": 0.9673 + }, + { + "start": 4134.08, + "end": 4135.9, + "probability": 0.9381 + }, + { + "start": 4135.98, + "end": 4137.42, + "probability": 0.9457 + }, + { + "start": 4137.5, + "end": 4141.48, + "probability": 0.9865 + }, + { + "start": 4141.9, + "end": 4143.94, + "probability": 0.978 + }, + { + "start": 4144.02, + "end": 4148.12, + "probability": 0.9964 + }, + { + "start": 4148.88, + "end": 4150.06, + "probability": 0.6644 + }, + { + "start": 4150.8, + "end": 4153.04, + "probability": 0.9059 + }, + { + "start": 4153.1, + "end": 4155.54, + "probability": 0.9973 + }, + { + "start": 4155.54, + "end": 4158.76, + "probability": 0.8798 + }, + { + "start": 4158.82, + "end": 4161.0, + "probability": 0.7461 + }, + { + "start": 4161.56, + "end": 4167.02, + "probability": 0.9904 + }, + { + "start": 4167.4, + "end": 4170.08, + "probability": 0.998 + }, + { + "start": 4170.68, + "end": 4173.16, + "probability": 0.7559 + }, + { + "start": 4174.3, + "end": 4175.56, + "probability": 0.8245 + }, + { + "start": 4175.72, + "end": 4178.16, + "probability": 0.9697 + }, + { + "start": 4178.26, + "end": 4184.94, + "probability": 0.9613 + }, + { + "start": 4184.94, + "end": 4188.08, + "probability": 0.9987 + }, + { + "start": 4189.32, + "end": 4195.22, + "probability": 0.9956 + }, + { + "start": 4195.22, + "end": 4198.58, + "probability": 0.9996 + }, + { + "start": 4199.16, + "end": 4200.78, + "probability": 0.9004 + }, + { + "start": 4201.22, + "end": 4202.04, + "probability": 0.9321 + }, + { + "start": 4202.18, + "end": 4203.92, + "probability": 0.9897 + }, + { + "start": 4203.96, + "end": 4204.8, + "probability": 0.7783 + }, + { + "start": 4204.88, + "end": 4206.02, + "probability": 0.7526 + }, + { + "start": 4206.22, + "end": 4207.9, + "probability": 0.9747 + }, + { + "start": 4208.1, + "end": 4208.9, + "probability": 0.8963 + }, + { + "start": 4208.98, + "end": 4212.02, + "probability": 0.937 + }, + { + "start": 4212.38, + "end": 4213.26, + "probability": 0.6744 + }, + { + "start": 4213.66, + "end": 4215.46, + "probability": 0.8477 + }, + { + "start": 4215.86, + "end": 4219.5, + "probability": 0.7082 + }, + { + "start": 4219.84, + "end": 4221.7, + "probability": 0.9814 + }, + { + "start": 4222.44, + "end": 4228.54, + "probability": 0.9857 + }, + { + "start": 4228.54, + "end": 4231.8, + "probability": 0.9921 + }, + { + "start": 4231.8, + "end": 4235.62, + "probability": 0.999 + }, + { + "start": 4236.0, + "end": 4236.34, + "probability": 0.6612 + }, + { + "start": 4236.7, + "end": 4241.26, + "probability": 0.9958 + }, + { + "start": 4241.58, + "end": 4245.16, + "probability": 0.9871 + }, + { + "start": 4245.16, + "end": 4248.82, + "probability": 0.9983 + }, + { + "start": 4249.44, + "end": 4250.34, + "probability": 0.9441 + }, + { + "start": 4250.94, + "end": 4254.76, + "probability": 0.998 + }, + { + "start": 4255.26, + "end": 4256.48, + "probability": 0.8556 + }, + { + "start": 4256.98, + "end": 4257.44, + "probability": 0.8935 + }, + { + "start": 4258.4, + "end": 4259.26, + "probability": 0.8397 + }, + { + "start": 4259.82, + "end": 4261.44, + "probability": 0.8328 + }, + { + "start": 4261.56, + "end": 4263.36, + "probability": 0.92 + }, + { + "start": 4275.08, + "end": 4275.08, + "probability": 0.0077 + }, + { + "start": 4284.84, + "end": 4286.48, + "probability": 0.239 + }, + { + "start": 4287.74, + "end": 4288.96, + "probability": 0.6351 + }, + { + "start": 4290.1, + "end": 4291.24, + "probability": 0.6461 + }, + { + "start": 4292.86, + "end": 4297.26, + "probability": 0.9851 + }, + { + "start": 4298.46, + "end": 4300.04, + "probability": 0.7395 + }, + { + "start": 4300.8, + "end": 4303.52, + "probability": 0.866 + }, + { + "start": 4304.56, + "end": 4310.1, + "probability": 0.9746 + }, + { + "start": 4310.66, + "end": 4312.36, + "probability": 0.7241 + }, + { + "start": 4313.76, + "end": 4317.72, + "probability": 0.9863 + }, + { + "start": 4319.58, + "end": 4326.4, + "probability": 0.9135 + }, + { + "start": 4327.92, + "end": 4329.34, + "probability": 0.9814 + }, + { + "start": 4330.22, + "end": 4337.56, + "probability": 0.9971 + }, + { + "start": 4338.46, + "end": 4340.24, + "probability": 0.9951 + }, + { + "start": 4341.4, + "end": 4343.48, + "probability": 0.9402 + }, + { + "start": 4344.64, + "end": 4352.56, + "probability": 0.993 + }, + { + "start": 4353.22, + "end": 4359.0, + "probability": 0.9987 + }, + { + "start": 4359.68, + "end": 4365.32, + "probability": 0.9985 + }, + { + "start": 4366.34, + "end": 4369.9, + "probability": 0.84 + }, + { + "start": 4370.44, + "end": 4373.98, + "probability": 0.8228 + }, + { + "start": 4374.06, + "end": 4377.88, + "probability": 0.8983 + }, + { + "start": 4378.54, + "end": 4380.52, + "probability": 0.9866 + }, + { + "start": 4381.04, + "end": 4382.92, + "probability": 0.9292 + }, + { + "start": 4383.44, + "end": 4385.7, + "probability": 0.9956 + }, + { + "start": 4386.3, + "end": 4393.14, + "probability": 0.8578 + }, + { + "start": 4393.92, + "end": 4395.54, + "probability": 0.7474 + }, + { + "start": 4395.62, + "end": 4396.82, + "probability": 0.9586 + }, + { + "start": 4397.3, + "end": 4404.18, + "probability": 0.9792 + }, + { + "start": 4404.8, + "end": 4404.8, + "probability": 0.1418 + }, + { + "start": 4404.8, + "end": 4404.8, + "probability": 0.0523 + }, + { + "start": 4404.8, + "end": 4405.72, + "probability": 0.5742 + }, + { + "start": 4406.08, + "end": 4407.2, + "probability": 0.9661 + }, + { + "start": 4407.82, + "end": 4411.12, + "probability": 0.8534 + }, + { + "start": 4411.54, + "end": 4412.2, + "probability": 0.6899 + }, + { + "start": 4412.32, + "end": 4413.54, + "probability": 0.9249 + }, + { + "start": 4414.22, + "end": 4416.28, + "probability": 0.9139 + }, + { + "start": 4416.92, + "end": 4422.8, + "probability": 0.9611 + }, + { + "start": 4423.24, + "end": 4427.7, + "probability": 0.9545 + }, + { + "start": 4428.04, + "end": 4434.26, + "probability": 0.8049 + }, + { + "start": 4434.7, + "end": 4435.33, + "probability": 0.5664 + }, + { + "start": 4436.18, + "end": 4437.24, + "probability": 0.8953 + }, + { + "start": 4437.66, + "end": 4442.6, + "probability": 0.8928 + }, + { + "start": 4443.44, + "end": 4446.24, + "probability": 0.9993 + }, + { + "start": 4447.46, + "end": 4450.52, + "probability": 0.9471 + }, + { + "start": 4451.34, + "end": 4456.76, + "probability": 0.952 + }, + { + "start": 4457.22, + "end": 4458.48, + "probability": 0.7891 + }, + { + "start": 4459.4, + "end": 4463.4, + "probability": 0.9697 + }, + { + "start": 4464.68, + "end": 4465.72, + "probability": 0.7899 + }, + { + "start": 4466.16, + "end": 4468.38, + "probability": 0.9512 + }, + { + "start": 4468.88, + "end": 4469.36, + "probability": 0.5168 + }, + { + "start": 4469.46, + "end": 4469.46, + "probability": 0.0041 + }, + { + "start": 4470.56, + "end": 4471.58, + "probability": 0.4017 + }, + { + "start": 4472.82, + "end": 4473.42, + "probability": 0.126 + }, + { + "start": 4486.88, + "end": 4487.1, + "probability": 0.0179 + }, + { + "start": 4487.28, + "end": 4490.18, + "probability": 0.9919 + }, + { + "start": 4490.18, + "end": 4493.22, + "probability": 0.6225 + }, + { + "start": 4493.36, + "end": 4494.26, + "probability": 0.9436 + }, + { + "start": 4494.42, + "end": 4494.64, + "probability": 0.7473 + }, + { + "start": 4495.0, + "end": 4496.16, + "probability": 0.821 + }, + { + "start": 4496.2, + "end": 4497.28, + "probability": 0.8628 + }, + { + "start": 4497.32, + "end": 4498.06, + "probability": 0.3569 + }, + { + "start": 4498.06, + "end": 4498.3, + "probability": 0.1482 + }, + { + "start": 4498.4, + "end": 4503.18, + "probability": 0.9485 + }, + { + "start": 4503.5, + "end": 4507.07, + "probability": 0.9913 + }, + { + "start": 4508.1, + "end": 4508.28, + "probability": 0.4919 + }, + { + "start": 4508.48, + "end": 4511.0, + "probability": 0.4185 + }, + { + "start": 4511.48, + "end": 4513.52, + "probability": 0.6689 + }, + { + "start": 4513.64, + "end": 4514.22, + "probability": 0.9391 + }, + { + "start": 4514.34, + "end": 4515.2, + "probability": 0.7452 + }, + { + "start": 4516.96, + "end": 4517.78, + "probability": 0.5064 + }, + { + "start": 4518.76, + "end": 4519.5, + "probability": 0.7256 + }, + { + "start": 4519.52, + "end": 4521.92, + "probability": 0.9218 + }, + { + "start": 4522.36, + "end": 4523.14, + "probability": 0.8781 + }, + { + "start": 4523.26, + "end": 4525.3, + "probability": 0.9727 + }, + { + "start": 4526.06, + "end": 4530.4, + "probability": 0.9679 + }, + { + "start": 4530.74, + "end": 4532.26, + "probability": 0.8395 + }, + { + "start": 4532.3, + "end": 4534.72, + "probability": 0.827 + }, + { + "start": 4537.46, + "end": 4541.92, + "probability": 0.5924 + }, + { + "start": 4542.54, + "end": 4544.62, + "probability": 0.9634 + }, + { + "start": 4544.94, + "end": 4548.42, + "probability": 0.9458 + }, + { + "start": 4548.94, + "end": 4550.02, + "probability": 0.884 + }, + { + "start": 4550.86, + "end": 4555.24, + "probability": 0.9511 + }, + { + "start": 4555.68, + "end": 4558.26, + "probability": 0.7721 + }, + { + "start": 4558.32, + "end": 4561.32, + "probability": 0.7345 + }, + { + "start": 4561.38, + "end": 4562.32, + "probability": 0.9835 + }, + { + "start": 4562.68, + "end": 4562.98, + "probability": 0.9773 + }, + { + "start": 4563.06, + "end": 4564.64, + "probability": 0.916 + }, + { + "start": 4565.12, + "end": 4567.94, + "probability": 0.998 + }, + { + "start": 4568.4, + "end": 4569.52, + "probability": 0.7668 + }, + { + "start": 4570.04, + "end": 4572.32, + "probability": 0.7551 + }, + { + "start": 4572.8, + "end": 4575.38, + "probability": 0.8598 + }, + { + "start": 4576.78, + "end": 4583.82, + "probability": 0.9296 + }, + { + "start": 4585.08, + "end": 4588.04, + "probability": 0.9575 + }, + { + "start": 4588.2, + "end": 4591.24, + "probability": 0.9255 + }, + { + "start": 4591.36, + "end": 4596.02, + "probability": 0.7757 + }, + { + "start": 4596.44, + "end": 4597.76, + "probability": 0.8551 + }, + { + "start": 4598.3, + "end": 4600.08, + "probability": 0.9406 + }, + { + "start": 4600.3, + "end": 4601.54, + "probability": 0.7701 + }, + { + "start": 4601.7, + "end": 4602.04, + "probability": 0.5313 + }, + { + "start": 4602.12, + "end": 4603.12, + "probability": 0.9708 + }, + { + "start": 4603.28, + "end": 4603.56, + "probability": 0.3098 + }, + { + "start": 4603.72, + "end": 4604.32, + "probability": 0.7106 + }, + { + "start": 4604.88, + "end": 4607.2, + "probability": 0.9796 + }, + { + "start": 4607.92, + "end": 4612.48, + "probability": 0.9817 + }, + { + "start": 4613.12, + "end": 4615.26, + "probability": 0.2325 + }, + { + "start": 4615.26, + "end": 4617.94, + "probability": 0.6658 + }, + { + "start": 4618.76, + "end": 4619.32, + "probability": 0.7361 + }, + { + "start": 4619.62, + "end": 4621.04, + "probability": 0.8944 + }, + { + "start": 4621.08, + "end": 4622.7, + "probability": 0.9552 + }, + { + "start": 4623.34, + "end": 4627.8, + "probability": 0.749 + }, + { + "start": 4627.94, + "end": 4629.56, + "probability": 0.9985 + }, + { + "start": 4629.94, + "end": 4633.0, + "probability": 0.8967 + }, + { + "start": 4633.6, + "end": 4633.7, + "probability": 0.1619 + }, + { + "start": 4633.7, + "end": 4636.8, + "probability": 0.8008 + }, + { + "start": 4637.06, + "end": 4637.3, + "probability": 0.147 + }, + { + "start": 4637.3, + "end": 4637.3, + "probability": 0.0289 + }, + { + "start": 4637.3, + "end": 4638.99, + "probability": 0.5785 + }, + { + "start": 4639.14, + "end": 4642.0, + "probability": 0.882 + }, + { + "start": 4642.58, + "end": 4642.84, + "probability": 0.1942 + }, + { + "start": 4642.84, + "end": 4644.36, + "probability": 0.3725 + }, + { + "start": 4644.54, + "end": 4644.7, + "probability": 0.0269 + }, + { + "start": 4644.7, + "end": 4644.7, + "probability": 0.1175 + }, + { + "start": 4644.7, + "end": 4645.58, + "probability": 0.6909 + }, + { + "start": 4645.74, + "end": 4649.32, + "probability": 0.7718 + }, + { + "start": 4649.94, + "end": 4652.36, + "probability": 0.1806 + }, + { + "start": 4655.06, + "end": 4656.02, + "probability": 0.1879 + }, + { + "start": 4656.64, + "end": 4657.72, + "probability": 0.1353 + }, + { + "start": 4658.28, + "end": 4660.36, + "probability": 0.2228 + }, + { + "start": 4660.52, + "end": 4662.4, + "probability": 0.1087 + }, + { + "start": 4663.31, + "end": 4664.82, + "probability": 0.0409 + }, + { + "start": 4664.96, + "end": 4674.46, + "probability": 0.0596 + }, + { + "start": 4675.96, + "end": 4679.36, + "probability": 0.0776 + }, + { + "start": 4684.58, + "end": 4685.9, + "probability": 0.1726 + }, + { + "start": 4685.9, + "end": 4689.06, + "probability": 0.0271 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.0, + "probability": 0.0 + }, + { + "start": 4722.17, + "end": 4725.12, + "probability": 0.6865 + }, + { + "start": 4725.52, + "end": 4727.86, + "probability": 0.9072 + }, + { + "start": 4727.98, + "end": 4728.83, + "probability": 0.4686 + }, + { + "start": 4729.96, + "end": 4730.82, + "probability": 0.0494 + }, + { + "start": 4731.38, + "end": 4731.54, + "probability": 0.1671 + }, + { + "start": 4731.54, + "end": 4732.86, + "probability": 0.815 + }, + { + "start": 4732.9, + "end": 4734.08, + "probability": 0.4604 + }, + { + "start": 4734.08, + "end": 4735.0, + "probability": 0.6475 + }, + { + "start": 4735.08, + "end": 4736.16, + "probability": 0.4838 + }, + { + "start": 4736.62, + "end": 4737.24, + "probability": 0.7002 + }, + { + "start": 4737.24, + "end": 4737.68, + "probability": 0.1201 + }, + { + "start": 4737.8, + "end": 4740.18, + "probability": 0.8695 + }, + { + "start": 4740.36, + "end": 4740.86, + "probability": 0.8801 + }, + { + "start": 4740.96, + "end": 4743.64, + "probability": 0.9951 + }, + { + "start": 4744.0, + "end": 4747.06, + "probability": 0.8402 + }, + { + "start": 4747.16, + "end": 4747.92, + "probability": 0.784 + }, + { + "start": 4748.22, + "end": 4751.18, + "probability": 0.7728 + }, + { + "start": 4751.42, + "end": 4753.66, + "probability": 0.9901 + }, + { + "start": 4753.74, + "end": 4754.8, + "probability": 0.5775 + }, + { + "start": 4754.88, + "end": 4757.4, + "probability": 0.9961 + }, + { + "start": 4757.78, + "end": 4758.72, + "probability": 0.7427 + }, + { + "start": 4759.06, + "end": 4761.18, + "probability": 0.9548 + }, + { + "start": 4761.26, + "end": 4761.52, + "probability": 0.536 + }, + { + "start": 4764.04, + "end": 4766.48, + "probability": 0.9451 + }, + { + "start": 4767.04, + "end": 4769.0, + "probability": 0.9974 + }, + { + "start": 4769.08, + "end": 4772.84, + "probability": 0.9168 + }, + { + "start": 4773.4, + "end": 4774.12, + "probability": 0.872 + }, + { + "start": 4774.24, + "end": 4774.9, + "probability": 0.8945 + }, + { + "start": 4775.4, + "end": 4779.08, + "probability": 0.9635 + }, + { + "start": 4779.34, + "end": 4783.36, + "probability": 0.954 + }, + { + "start": 4783.5, + "end": 4783.92, + "probability": 0.9766 + }, + { + "start": 4784.46, + "end": 4786.76, + "probability": 0.9924 + }, + { + "start": 4786.82, + "end": 4788.44, + "probability": 0.9581 + }, + { + "start": 4789.0, + "end": 4790.68, + "probability": 0.7676 + }, + { + "start": 4790.82, + "end": 4792.28, + "probability": 0.9698 + }, + { + "start": 4792.56, + "end": 4794.5, + "probability": 0.9753 + }, + { + "start": 4795.16, + "end": 4795.18, + "probability": 0.0915 + }, + { + "start": 4795.18, + "end": 4796.7, + "probability": 0.8318 + }, + { + "start": 4796.88, + "end": 4799.18, + "probability": 0.9424 + }, + { + "start": 4799.84, + "end": 4800.38, + "probability": 0.0091 + }, + { + "start": 4800.38, + "end": 4800.38, + "probability": 0.0583 + }, + { + "start": 4800.38, + "end": 4803.46, + "probability": 0.4738 + }, + { + "start": 4803.62, + "end": 4805.46, + "probability": 0.0386 + }, + { + "start": 4805.96, + "end": 4811.6, + "probability": 0.2584 + }, + { + "start": 4814.82, + "end": 4815.24, + "probability": 0.0598 + }, + { + "start": 4815.26, + "end": 4817.96, + "probability": 0.1174 + }, + { + "start": 4820.8, + "end": 4821.18, + "probability": 0.3415 + }, + { + "start": 4821.18, + "end": 4825.74, + "probability": 0.1282 + }, + { + "start": 4835.74, + "end": 4836.44, + "probability": 0.1041 + }, + { + "start": 4841.32, + "end": 4843.44, + "probability": 0.1393 + }, + { + "start": 4844.1, + "end": 4845.2, + "probability": 0.048 + }, + { + "start": 4845.22, + "end": 4846.86, + "probability": 0.0334 + }, + { + "start": 4846.86, + "end": 4846.86, + "probability": 0.2964 + }, + { + "start": 4848.1, + "end": 4848.6, + "probability": 0.0816 + }, + { + "start": 4860.72, + "end": 4861.48, + "probability": 0.0345 + }, + { + "start": 4862.24, + "end": 4862.42, + "probability": 0.304 + }, + { + "start": 4862.42, + "end": 4863.44, + "probability": 0.1788 + }, + { + "start": 4863.72, + "end": 4863.82, + "probability": 0.0334 + }, + { + "start": 4863.82, + "end": 4866.7, + "probability": 0.0518 + }, + { + "start": 4867.0, + "end": 4868.04, + "probability": 0.1842 + }, + { + "start": 4869.16, + "end": 4870.42, + "probability": 0.1204 + }, + { + "start": 4870.56, + "end": 4871.44, + "probability": 0.2516 + }, + { + "start": 4871.86, + "end": 4873.5, + "probability": 0.0179 + }, + { + "start": 4873.5, + "end": 4873.5, + "probability": 0.0325 + }, + { + "start": 4873.92, + "end": 4874.86, + "probability": 0.015 + }, + { + "start": 4875.0, + "end": 4875.0, + "probability": 0.0 + }, + { + "start": 4875.0, + "end": 4875.0, + "probability": 0.0 + }, + { + "start": 4875.0, + "end": 4875.0, + "probability": 0.0 + }, + { + "start": 4875.0, + "end": 4875.0, + "probability": 0.0 + }, + { + "start": 4875.0, + "end": 4875.0, + "probability": 0.0 + }, + { + "start": 4875.0, + "end": 4875.0, + "probability": 0.0 + }, + { + "start": 4875.0, + "end": 4875.0, + "probability": 0.0 + }, + { + "start": 4875.0, + "end": 4875.0, + "probability": 0.0 + }, + { + "start": 4875.0, + "end": 4875.0, + "probability": 0.0 + }, + { + "start": 4875.4, + "end": 4876.56, + "probability": 0.1001 + }, + { + "start": 4876.56, + "end": 4877.4, + "probability": 0.2237 + }, + { + "start": 4877.6, + "end": 4879.34, + "probability": 0.1381 + }, + { + "start": 4882.06, + "end": 4884.76, + "probability": 0.0118 + }, + { + "start": 4889.72, + "end": 4890.0, + "probability": 0.8018 + }, + { + "start": 4890.0, + "end": 4894.1, + "probability": 0.0833 + }, + { + "start": 4894.1, + "end": 4896.76, + "probability": 0.0015 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5004.0, + "end": 5004.0, + "probability": 0.0 + }, + { + "start": 5005.62, + "end": 5008.0, + "probability": 0.1754 + }, + { + "start": 5008.84, + "end": 5009.92, + "probability": 0.0159 + }, + { + "start": 5009.92, + "end": 5010.66, + "probability": 0.1958 + }, + { + "start": 5011.08, + "end": 5012.62, + "probability": 0.3818 + }, + { + "start": 5016.88, + "end": 5019.06, + "probability": 0.6734 + }, + { + "start": 5019.18, + "end": 5027.0, + "probability": 0.1361 + }, + { + "start": 5027.78, + "end": 5032.78, + "probability": 0.026 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.0, + "end": 5130.0, + "probability": 0.0 + }, + { + "start": 5130.22, + "end": 5130.38, + "probability": 0.0639 + }, + { + "start": 5130.38, + "end": 5130.38, + "probability": 0.0703 + }, + { + "start": 5130.38, + "end": 5131.67, + "probability": 0.4814 + }, + { + "start": 5132.7, + "end": 5137.6, + "probability": 0.8877 + }, + { + "start": 5138.16, + "end": 5141.7, + "probability": 0.7616 + }, + { + "start": 5142.3, + "end": 5145.96, + "probability": 0.8936 + }, + { + "start": 5146.7, + "end": 5147.72, + "probability": 0.74 + }, + { + "start": 5147.8, + "end": 5148.46, + "probability": 0.6913 + }, + { + "start": 5148.6, + "end": 5154.8, + "probability": 0.9398 + }, + { + "start": 5154.84, + "end": 5160.76, + "probability": 0.9989 + }, + { + "start": 5161.3, + "end": 5165.64, + "probability": 0.9227 + }, + { + "start": 5166.42, + "end": 5170.28, + "probability": 0.9153 + }, + { + "start": 5170.28, + "end": 5173.82, + "probability": 0.9891 + }, + { + "start": 5174.7, + "end": 5175.24, + "probability": 0.3384 + }, + { + "start": 5175.24, + "end": 5177.5, + "probability": 0.8238 + }, + { + "start": 5177.54, + "end": 5181.9, + "probability": 0.9813 + }, + { + "start": 5182.3, + "end": 5185.2, + "probability": 0.9291 + }, + { + "start": 5185.2, + "end": 5187.9, + "probability": 0.9676 + }, + { + "start": 5188.54, + "end": 5192.58, + "probability": 0.9544 + }, + { + "start": 5192.94, + "end": 5196.68, + "probability": 0.9913 + }, + { + "start": 5196.92, + "end": 5201.58, + "probability": 0.9482 + }, + { + "start": 5202.3, + "end": 5208.44, + "probability": 0.9674 + }, + { + "start": 5208.66, + "end": 5209.96, + "probability": 0.7242 + }, + { + "start": 5210.14, + "end": 5211.22, + "probability": 0.576 + }, + { + "start": 5211.4, + "end": 5214.76, + "probability": 0.9839 + }, + { + "start": 5215.54, + "end": 5219.9, + "probability": 0.8339 + }, + { + "start": 5220.56, + "end": 5221.33, + "probability": 0.5066 + }, + { + "start": 5221.74, + "end": 5224.68, + "probability": 0.8812 + }, + { + "start": 5225.22, + "end": 5225.74, + "probability": 0.8105 + }, + { + "start": 5227.62, + "end": 5228.6, + "probability": 0.5934 + }, + { + "start": 5228.96, + "end": 5229.84, + "probability": 0.5951 + }, + { + "start": 5231.4, + "end": 5235.58, + "probability": 0.9399 + }, + { + "start": 5236.08, + "end": 5239.18, + "probability": 0.9819 + }, + { + "start": 5239.86, + "end": 5245.42, + "probability": 0.9935 + }, + { + "start": 5245.88, + "end": 5250.16, + "probability": 0.8958 + }, + { + "start": 5250.74, + "end": 5253.18, + "probability": 0.761 + }, + { + "start": 5255.04, + "end": 5257.08, + "probability": 0.7809 + }, + { + "start": 5258.02, + "end": 5260.02, + "probability": 0.9799 + }, + { + "start": 5260.12, + "end": 5263.54, + "probability": 0.9357 + }, + { + "start": 5264.54, + "end": 5267.49, + "probability": 0.8989 + }, + { + "start": 5267.78, + "end": 5268.9, + "probability": 0.079 + }, + { + "start": 5271.84, + "end": 5273.14, + "probability": 0.1434 + }, + { + "start": 5273.14, + "end": 5273.34, + "probability": 0.519 + }, + { + "start": 5274.03, + "end": 5274.44, + "probability": 0.1057 + }, + { + "start": 5275.02, + "end": 5275.52, + "probability": 0.218 + }, + { + "start": 5275.52, + "end": 5276.64, + "probability": 0.5399 + }, + { + "start": 5277.62, + "end": 5278.5, + "probability": 0.5698 + }, + { + "start": 5278.5, + "end": 5278.78, + "probability": 0.4516 + }, + { + "start": 5279.52, + "end": 5282.84, + "probability": 0.4738 + }, + { + "start": 5283.56, + "end": 5283.66, + "probability": 0.5583 + }, + { + "start": 5285.52, + "end": 5286.66, + "probability": 0.8056 + }, + { + "start": 5304.36, + "end": 5305.4, + "probability": 0.6502 + }, + { + "start": 5305.48, + "end": 5306.92, + "probability": 0.6838 + }, + { + "start": 5307.24, + "end": 5309.6, + "probability": 0.7257 + }, + { + "start": 5310.34, + "end": 5314.48, + "probability": 0.5757 + }, + { + "start": 5314.58, + "end": 5315.2, + "probability": 0.3234 + }, + { + "start": 5315.48, + "end": 5315.9, + "probability": 0.5881 + }, + { + "start": 5317.36, + "end": 5321.43, + "probability": 0.9909 + }, + { + "start": 5323.6, + "end": 5327.24, + "probability": 0.7542 + }, + { + "start": 5328.92, + "end": 5331.7, + "probability": 0.4826 + }, + { + "start": 5333.02, + "end": 5334.54, + "probability": 0.9949 + }, + { + "start": 5335.06, + "end": 5335.2, + "probability": 0.8095 + }, + { + "start": 5335.26, + "end": 5338.04, + "probability": 0.9953 + }, + { + "start": 5339.84, + "end": 5343.0, + "probability": 0.9907 + }, + { + "start": 5343.86, + "end": 5344.36, + "probability": 0.9969 + }, + { + "start": 5345.34, + "end": 5347.4, + "probability": 0.998 + }, + { + "start": 5349.26, + "end": 5350.17, + "probability": 0.9586 + }, + { + "start": 5351.54, + "end": 5354.12, + "probability": 0.9973 + }, + { + "start": 5354.2, + "end": 5355.08, + "probability": 0.9084 + }, + { + "start": 5355.16, + "end": 5356.22, + "probability": 0.9331 + }, + { + "start": 5357.56, + "end": 5364.72, + "probability": 0.9843 + }, + { + "start": 5365.5, + "end": 5366.78, + "probability": 0.8862 + }, + { + "start": 5367.88, + "end": 5369.96, + "probability": 0.8439 + }, + { + "start": 5370.78, + "end": 5375.24, + "probability": 0.9971 + }, + { + "start": 5375.9, + "end": 5379.48, + "probability": 0.8342 + }, + { + "start": 5380.1, + "end": 5382.1, + "probability": 0.985 + }, + { + "start": 5382.64, + "end": 5383.24, + "probability": 0.5271 + }, + { + "start": 5383.54, + "end": 5384.52, + "probability": 0.9648 + }, + { + "start": 5384.62, + "end": 5385.32, + "probability": 0.8184 + }, + { + "start": 5385.62, + "end": 5387.94, + "probability": 0.9854 + }, + { + "start": 5388.92, + "end": 5400.02, + "probability": 0.484 + }, + { + "start": 5400.68, + "end": 5402.19, + "probability": 0.8294 + }, + { + "start": 5403.13, + "end": 5404.81, + "probability": 0.6101 + }, + { + "start": 5405.81, + "end": 5409.65, + "probability": 0.7995 + }, + { + "start": 5410.37, + "end": 5410.91, + "probability": 0.8138 + }, + { + "start": 5412.35, + "end": 5414.07, + "probability": 0.9957 + }, + { + "start": 5415.17, + "end": 5417.47, + "probability": 0.9981 + }, + { + "start": 5417.89, + "end": 5418.55, + "probability": 0.5161 + }, + { + "start": 5419.13, + "end": 5419.77, + "probability": 0.905 + }, + { + "start": 5421.11, + "end": 5423.31, + "probability": 0.9946 + }, + { + "start": 5425.67, + "end": 5428.07, + "probability": 0.9971 + }, + { + "start": 5428.59, + "end": 5432.35, + "probability": 0.9969 + }, + { + "start": 5433.57, + "end": 5435.03, + "probability": 0.9471 + }, + { + "start": 5435.65, + "end": 5436.79, + "probability": 0.7443 + }, + { + "start": 5437.41, + "end": 5438.37, + "probability": 0.882 + }, + { + "start": 5439.23, + "end": 5441.65, + "probability": 0.8901 + }, + { + "start": 5441.93, + "end": 5443.05, + "probability": 0.7759 + }, + { + "start": 5444.07, + "end": 5445.49, + "probability": 0.9216 + }, + { + "start": 5446.91, + "end": 5448.45, + "probability": 0.8736 + }, + { + "start": 5449.49, + "end": 5453.71, + "probability": 0.9617 + }, + { + "start": 5453.91, + "end": 5454.75, + "probability": 0.3427 + }, + { + "start": 5454.83, + "end": 5455.31, + "probability": 0.8773 + }, + { + "start": 5455.37, + "end": 5456.69, + "probability": 0.8618 + }, + { + "start": 5456.75, + "end": 5457.83, + "probability": 0.8936 + }, + { + "start": 5458.01, + "end": 5459.55, + "probability": 0.98 + }, + { + "start": 5460.03, + "end": 5461.01, + "probability": 0.7803 + }, + { + "start": 5461.33, + "end": 5461.91, + "probability": 0.8089 + }, + { + "start": 5462.65, + "end": 5463.25, + "probability": 0.85 + }, + { + "start": 5463.63, + "end": 5464.53, + "probability": 0.9205 + }, + { + "start": 5464.89, + "end": 5468.89, + "probability": 0.9967 + }, + { + "start": 5469.59, + "end": 5471.63, + "probability": 0.9912 + }, + { + "start": 5472.49, + "end": 5473.45, + "probability": 0.7634 + }, + { + "start": 5474.45, + "end": 5475.19, + "probability": 0.8434 + }, + { + "start": 5476.71, + "end": 5480.33, + "probability": 0.9138 + }, + { + "start": 5480.55, + "end": 5480.83, + "probability": 0.3402 + }, + { + "start": 5480.87, + "end": 5481.09, + "probability": 0.7507 + }, + { + "start": 5481.17, + "end": 5483.49, + "probability": 0.9321 + }, + { + "start": 5483.89, + "end": 5485.87, + "probability": 0.9769 + }, + { + "start": 5486.31, + "end": 5487.37, + "probability": 0.9609 + }, + { + "start": 5487.39, + "end": 5488.11, + "probability": 0.5242 + }, + { + "start": 5488.25, + "end": 5489.71, + "probability": 0.92 + }, + { + "start": 5491.13, + "end": 5493.09, + "probability": 0.9741 + }, + { + "start": 5493.19, + "end": 5493.83, + "probability": 0.8389 + }, + { + "start": 5495.09, + "end": 5496.77, + "probability": 0.9664 + }, + { + "start": 5497.05, + "end": 5498.71, + "probability": 0.9783 + }, + { + "start": 5499.11, + "end": 5500.71, + "probability": 0.9971 + }, + { + "start": 5501.11, + "end": 5502.31, + "probability": 0.7507 + }, + { + "start": 5502.41, + "end": 5503.28, + "probability": 0.8533 + }, + { + "start": 5503.85, + "end": 5506.41, + "probability": 0.9363 + }, + { + "start": 5506.55, + "end": 5507.57, + "probability": 0.6643 + }, + { + "start": 5509.61, + "end": 5511.29, + "probability": 0.9456 + }, + { + "start": 5512.73, + "end": 5514.91, + "probability": 0.9692 + }, + { + "start": 5516.29, + "end": 5519.51, + "probability": 0.9871 + }, + { + "start": 5519.63, + "end": 5520.77, + "probability": 0.8137 + }, + { + "start": 5521.89, + "end": 5523.35, + "probability": 0.9989 + }, + { + "start": 5523.69, + "end": 5526.51, + "probability": 0.9932 + }, + { + "start": 5527.27, + "end": 5529.01, + "probability": 0.9985 + }, + { + "start": 5529.43, + "end": 5533.04, + "probability": 0.9009 + }, + { + "start": 5534.59, + "end": 5537.23, + "probability": 0.9829 + }, + { + "start": 5538.01, + "end": 5538.55, + "probability": 0.9056 + }, + { + "start": 5538.73, + "end": 5539.45, + "probability": 0.6788 + }, + { + "start": 5540.39, + "end": 5541.41, + "probability": 0.9312 + }, + { + "start": 5541.63, + "end": 5544.93, + "probability": 0.9364 + }, + { + "start": 5545.99, + "end": 5548.01, + "probability": 0.5453 + }, + { + "start": 5549.35, + "end": 5551.69, + "probability": 0.7402 + }, + { + "start": 5552.51, + "end": 5554.31, + "probability": 0.7966 + }, + { + "start": 5555.05, + "end": 5558.05, + "probability": 0.9721 + }, + { + "start": 5558.13, + "end": 5559.47, + "probability": 0.9886 + }, + { + "start": 5559.53, + "end": 5561.17, + "probability": 0.6597 + }, + { + "start": 5561.43, + "end": 5563.45, + "probability": 0.592 + }, + { + "start": 5563.57, + "end": 5565.49, + "probability": 0.9912 + }, + { + "start": 5565.61, + "end": 5567.41, + "probability": 0.9233 + }, + { + "start": 5567.53, + "end": 5570.37, + "probability": 0.6087 + }, + { + "start": 5570.47, + "end": 5572.73, + "probability": 0.7783 + }, + { + "start": 5572.79, + "end": 5573.63, + "probability": 0.943 + }, + { + "start": 5574.11, + "end": 5574.95, + "probability": 0.9966 + }, + { + "start": 5575.71, + "end": 5576.53, + "probability": 0.7226 + }, + { + "start": 5577.87, + "end": 5578.49, + "probability": 0.9557 + }, + { + "start": 5578.93, + "end": 5582.19, + "probability": 0.9797 + }, + { + "start": 5582.35, + "end": 5584.49, + "probability": 0.9392 + }, + { + "start": 5585.31, + "end": 5589.37, + "probability": 0.7866 + }, + { + "start": 5589.63, + "end": 5591.71, + "probability": 0.9599 + }, + { + "start": 5591.81, + "end": 5592.47, + "probability": 0.7796 + }, + { + "start": 5592.67, + "end": 5593.29, + "probability": 0.76 + }, + { + "start": 5593.29, + "end": 5594.57, + "probability": 0.999 + }, + { + "start": 5595.55, + "end": 5597.39, + "probability": 0.812 + }, + { + "start": 5597.91, + "end": 5600.85, + "probability": 0.8677 + }, + { + "start": 5602.03, + "end": 5602.59, + "probability": 0.9855 + }, + { + "start": 5602.75, + "end": 5603.71, + "probability": 0.8771 + }, + { + "start": 5603.81, + "end": 5604.67, + "probability": 0.9951 + }, + { + "start": 5605.11, + "end": 5606.11, + "probability": 0.9264 + }, + { + "start": 5606.17, + "end": 5607.75, + "probability": 0.9907 + }, + { + "start": 5610.09, + "end": 5610.63, + "probability": 0.7614 + }, + { + "start": 5612.07, + "end": 5614.13, + "probability": 0.994 + }, + { + "start": 5614.23, + "end": 5614.91, + "probability": 0.7439 + }, + { + "start": 5615.07, + "end": 5616.99, + "probability": 0.9224 + }, + { + "start": 5617.31, + "end": 5620.43, + "probability": 0.9875 + }, + { + "start": 5622.71, + "end": 5624.45, + "probability": 0.949 + }, + { + "start": 5625.39, + "end": 5626.81, + "probability": 0.8975 + }, + { + "start": 5627.01, + "end": 5628.65, + "probability": 0.99 + }, + { + "start": 5628.75, + "end": 5629.49, + "probability": 0.3811 + }, + { + "start": 5629.61, + "end": 5630.03, + "probability": 0.4738 + }, + { + "start": 5630.85, + "end": 5632.83, + "probability": 0.983 + }, + { + "start": 5633.63, + "end": 5635.35, + "probability": 0.9629 + }, + { + "start": 5635.89, + "end": 5636.01, + "probability": 0.2339 + }, + { + "start": 5636.01, + "end": 5636.51, + "probability": 0.9774 + }, + { + "start": 5636.97, + "end": 5639.37, + "probability": 0.8806 + }, + { + "start": 5639.37, + "end": 5642.29, + "probability": 0.9893 + }, + { + "start": 5642.45, + "end": 5642.8, + "probability": 0.8286 + }, + { + "start": 5643.63, + "end": 5645.65, + "probability": 0.9612 + }, + { + "start": 5645.79, + "end": 5646.73, + "probability": 0.913 + }, + { + "start": 5646.85, + "end": 5647.49, + "probability": 0.879 + }, + { + "start": 5648.47, + "end": 5649.51, + "probability": 0.7854 + }, + { + "start": 5650.65, + "end": 5651.89, + "probability": 0.7031 + }, + { + "start": 5652.77, + "end": 5653.11, + "probability": 0.8257 + }, + { + "start": 5653.87, + "end": 5654.99, + "probability": 0.8457 + }, + { + "start": 5655.05, + "end": 5655.71, + "probability": 0.6983 + }, + { + "start": 5655.73, + "end": 5657.01, + "probability": 0.5934 + }, + { + "start": 5658.11, + "end": 5659.91, + "probability": 0.7822 + }, + { + "start": 5661.25, + "end": 5663.85, + "probability": 0.9255 + }, + { + "start": 5664.51, + "end": 5665.43, + "probability": 0.9891 + }, + { + "start": 5666.07, + "end": 5667.0, + "probability": 0.9971 + }, + { + "start": 5667.57, + "end": 5668.48, + "probability": 0.9951 + }, + { + "start": 5669.23, + "end": 5670.69, + "probability": 0.9995 + }, + { + "start": 5671.07, + "end": 5673.91, + "probability": 0.9922 + }, + { + "start": 5673.99, + "end": 5678.13, + "probability": 0.9831 + }, + { + "start": 5678.85, + "end": 5679.69, + "probability": 0.8907 + }, + { + "start": 5680.41, + "end": 5680.91, + "probability": 0.7984 + }, + { + "start": 5682.29, + "end": 5684.21, + "probability": 0.8732 + }, + { + "start": 5684.93, + "end": 5688.11, + "probability": 0.7589 + }, + { + "start": 5688.65, + "end": 5689.85, + "probability": 0.9756 + }, + { + "start": 5690.93, + "end": 5694.65, + "probability": 0.9503 + }, + { + "start": 5695.13, + "end": 5696.31, + "probability": 0.9798 + }, + { + "start": 5697.17, + "end": 5700.23, + "probability": 0.998 + }, + { + "start": 5700.33, + "end": 5701.49, + "probability": 0.9763 + }, + { + "start": 5702.39, + "end": 5705.33, + "probability": 0.9694 + }, + { + "start": 5706.33, + "end": 5709.15, + "probability": 0.9714 + }, + { + "start": 5710.43, + "end": 5713.95, + "probability": 0.9846 + }, + { + "start": 5714.11, + "end": 5717.21, + "probability": 0.9762 + }, + { + "start": 5717.47, + "end": 5719.59, + "probability": 0.9431 + }, + { + "start": 5720.51, + "end": 5722.69, + "probability": 0.9919 + }, + { + "start": 5725.03, + "end": 5727.06, + "probability": 0.8549 + }, + { + "start": 5728.03, + "end": 5730.85, + "probability": 0.9341 + }, + { + "start": 5731.33, + "end": 5734.03, + "probability": 0.9875 + }, + { + "start": 5734.11, + "end": 5735.35, + "probability": 0.7784 + }, + { + "start": 5736.01, + "end": 5738.23, + "probability": 0.9978 + }, + { + "start": 5738.47, + "end": 5742.05, + "probability": 0.9907 + }, + { + "start": 5743.15, + "end": 5744.85, + "probability": 0.7625 + }, + { + "start": 5745.81, + "end": 5746.33, + "probability": 0.5981 + }, + { + "start": 5746.41, + "end": 5746.71, + "probability": 0.9628 + }, + { + "start": 5746.83, + "end": 5750.65, + "probability": 0.994 + }, + { + "start": 5752.22, + "end": 5754.31, + "probability": 0.9237 + }, + { + "start": 5754.75, + "end": 5755.73, + "probability": 0.8941 + }, + { + "start": 5755.77, + "end": 5759.27, + "probability": 0.9021 + }, + { + "start": 5759.77, + "end": 5760.77, + "probability": 0.9657 + }, + { + "start": 5760.89, + "end": 5761.65, + "probability": 0.9928 + }, + { + "start": 5762.49, + "end": 5763.47, + "probability": 0.8573 + }, + { + "start": 5764.53, + "end": 5766.87, + "probability": 0.9989 + }, + { + "start": 5767.61, + "end": 5770.33, + "probability": 0.9973 + }, + { + "start": 5770.45, + "end": 5771.13, + "probability": 0.4655 + }, + { + "start": 5772.73, + "end": 5773.77, + "probability": 0.9014 + }, + { + "start": 5774.41, + "end": 5776.91, + "probability": 0.7594 + }, + { + "start": 5777.47, + "end": 5781.91, + "probability": 0.9917 + }, + { + "start": 5782.33, + "end": 5785.57, + "probability": 0.8787 + }, + { + "start": 5786.45, + "end": 5787.8, + "probability": 0.9551 + }, + { + "start": 5788.65, + "end": 5789.31, + "probability": 0.905 + }, + { + "start": 5790.37, + "end": 5794.33, + "probability": 0.9419 + }, + { + "start": 5794.33, + "end": 5795.79, + "probability": 0.9827 + }, + { + "start": 5797.15, + "end": 5799.47, + "probability": 0.7869 + }, + { + "start": 5799.57, + "end": 5801.47, + "probability": 0.9941 + }, + { + "start": 5801.57, + "end": 5803.67, + "probability": 0.0839 + }, + { + "start": 5803.67, + "end": 5804.27, + "probability": 0.6105 + }, + { + "start": 5804.77, + "end": 5805.23, + "probability": 0.7379 + }, + { + "start": 5805.37, + "end": 5808.39, + "probability": 0.9944 + }, + { + "start": 5809.59, + "end": 5810.29, + "probability": 0.97 + }, + { + "start": 5810.37, + "end": 5811.03, + "probability": 0.8213 + }, + { + "start": 5811.17, + "end": 5814.19, + "probability": 0.9264 + }, + { + "start": 5814.19, + "end": 5816.79, + "probability": 0.7784 + }, + { + "start": 5816.79, + "end": 5820.11, + "probability": 0.9854 + }, + { + "start": 5820.49, + "end": 5821.41, + "probability": 0.8198 + }, + { + "start": 5821.41, + "end": 5822.13, + "probability": 0.6 + }, + { + "start": 5824.21, + "end": 5827.25, + "probability": 0.9049 + }, + { + "start": 5828.37, + "end": 5829.91, + "probability": 0.8599 + }, + { + "start": 5830.93, + "end": 5834.1, + "probability": 0.98 + }, + { + "start": 5834.37, + "end": 5834.79, + "probability": 0.7661 + }, + { + "start": 5834.91, + "end": 5835.77, + "probability": 0.7191 + }, + { + "start": 5836.35, + "end": 5839.17, + "probability": 0.9972 + }, + { + "start": 5839.77, + "end": 5840.63, + "probability": 0.8101 + }, + { + "start": 5840.71, + "end": 5843.73, + "probability": 0.6176 + }, + { + "start": 5843.85, + "end": 5844.03, + "probability": 0.9587 + }, + { + "start": 5844.59, + "end": 5846.47, + "probability": 0.7825 + }, + { + "start": 5847.27, + "end": 5849.29, + "probability": 0.8784 + }, + { + "start": 5849.71, + "end": 5852.31, + "probability": 0.9968 + }, + { + "start": 5852.73, + "end": 5854.51, + "probability": 0.8472 + }, + { + "start": 5855.17, + "end": 5855.63, + "probability": 0.6941 + }, + { + "start": 5855.77, + "end": 5856.19, + "probability": 0.5055 + }, + { + "start": 5856.95, + "end": 5861.05, + "probability": 0.9918 + }, + { + "start": 5861.17, + "end": 5863.35, + "probability": 0.8119 + }, + { + "start": 5864.15, + "end": 5866.31, + "probability": 0.9932 + }, + { + "start": 5866.31, + "end": 5867.89, + "probability": 0.793 + }, + { + "start": 5868.23, + "end": 5869.58, + "probability": 0.7379 + }, + { + "start": 5870.37, + "end": 5870.87, + "probability": 0.488 + }, + { + "start": 5871.15, + "end": 5871.73, + "probability": 0.505 + }, + { + "start": 5872.11, + "end": 5873.19, + "probability": 0.5492 + }, + { + "start": 5873.59, + "end": 5873.59, + "probability": 0.4839 + }, + { + "start": 5873.71, + "end": 5874.35, + "probability": 0.4581 + }, + { + "start": 5874.47, + "end": 5875.63, + "probability": 0.5532 + }, + { + "start": 5875.77, + "end": 5876.65, + "probability": 0.8362 + }, + { + "start": 5876.81, + "end": 5877.91, + "probability": 0.8538 + }, + { + "start": 5878.49, + "end": 5880.27, + "probability": 0.7725 + }, + { + "start": 5880.69, + "end": 5884.35, + "probability": 0.9866 + }, + { + "start": 5884.51, + "end": 5887.54, + "probability": 0.9892 + }, + { + "start": 5887.91, + "end": 5889.91, + "probability": 0.9612 + }, + { + "start": 5889.99, + "end": 5892.09, + "probability": 0.9938 + }, + { + "start": 5892.57, + "end": 5894.17, + "probability": 0.9937 + }, + { + "start": 5894.45, + "end": 5895.37, + "probability": 0.9946 + }, + { + "start": 5895.47, + "end": 5896.65, + "probability": 0.927 + }, + { + "start": 5896.65, + "end": 5899.19, + "probability": 0.9989 + }, + { + "start": 5899.19, + "end": 5901.47, + "probability": 0.9199 + }, + { + "start": 5902.23, + "end": 5903.89, + "probability": 0.9893 + }, + { + "start": 5904.27, + "end": 5904.69, + "probability": 0.6687 + }, + { + "start": 5904.75, + "end": 5905.27, + "probability": 0.9421 + }, + { + "start": 5905.63, + "end": 5906.45, + "probability": 0.9854 + }, + { + "start": 5906.57, + "end": 5907.73, + "probability": 0.9907 + }, + { + "start": 5908.33, + "end": 5910.43, + "probability": 0.8431 + }, + { + "start": 5911.17, + "end": 5912.63, + "probability": 0.8777 + }, + { + "start": 5912.89, + "end": 5913.51, + "probability": 0.5886 + }, + { + "start": 5913.55, + "end": 5916.61, + "probability": 0.9648 + }, + { + "start": 5917.03, + "end": 5917.55, + "probability": 0.9226 + }, + { + "start": 5917.91, + "end": 5918.23, + "probability": 0.8829 + }, + { + "start": 5920.07, + "end": 5920.83, + "probability": 0.8714 + }, + { + "start": 5921.97, + "end": 5922.43, + "probability": 0.5131 + }, + { + "start": 5922.55, + "end": 5923.49, + "probability": 0.3887 + }, + { + "start": 5924.23, + "end": 5924.73, + "probability": 0.6848 + }, + { + "start": 5925.01, + "end": 5926.93, + "probability": 0.8511 + }, + { + "start": 5927.65, + "end": 5928.75, + "probability": 0.2856 + }, + { + "start": 5952.09, + "end": 5953.39, + "probability": 0.2589 + }, + { + "start": 5954.55, + "end": 5956.05, + "probability": 0.8524 + }, + { + "start": 5956.69, + "end": 5961.59, + "probability": 0.5853 + }, + { + "start": 5962.21, + "end": 5965.21, + "probability": 0.9597 + }, + { + "start": 5966.37, + "end": 5969.39, + "probability": 0.999 + }, + { + "start": 5969.75, + "end": 5972.87, + "probability": 0.5635 + }, + { + "start": 5973.83, + "end": 5974.57, + "probability": 0.0358 + }, + { + "start": 5974.57, + "end": 5976.35, + "probability": 0.9437 + }, + { + "start": 5976.97, + "end": 5979.39, + "probability": 0.5333 + }, + { + "start": 5979.39, + "end": 5982.75, + "probability": 0.8453 + }, + { + "start": 5982.79, + "end": 5983.37, + "probability": 0.9264 + }, + { + "start": 5983.45, + "end": 5983.87, + "probability": 0.9695 + }, + { + "start": 5984.53, + "end": 5986.13, + "probability": 0.1311 + }, + { + "start": 5986.13, + "end": 5986.47, + "probability": 0.7957 + }, + { + "start": 5987.31, + "end": 5987.39, + "probability": 0.0015 + }, + { + "start": 5987.39, + "end": 5987.39, + "probability": 0.0199 + }, + { + "start": 5987.39, + "end": 5987.39, + "probability": 0.2946 + }, + { + "start": 5987.39, + "end": 5988.14, + "probability": 0.5241 + }, + { + "start": 5988.49, + "end": 5989.55, + "probability": 0.5397 + }, + { + "start": 5989.55, + "end": 5990.67, + "probability": 0.5413 + }, + { + "start": 5991.11, + "end": 5993.23, + "probability": 0.7871 + }, + { + "start": 5994.01, + "end": 5997.17, + "probability": 0.9664 + }, + { + "start": 5997.87, + "end": 6000.61, + "probability": 0.0403 + }, + { + "start": 6001.23, + "end": 6002.59, + "probability": 0.0416 + }, + { + "start": 6002.69, + "end": 6003.86, + "probability": 0.387 + }, + { + "start": 6006.79, + "end": 6012.17, + "probability": 0.6672 + }, + { + "start": 6013.23, + "end": 6014.25, + "probability": 0.452 + }, + { + "start": 6014.99, + "end": 6016.33, + "probability": 0.406 + }, + { + "start": 6016.41, + "end": 6017.45, + "probability": 0.2466 + }, + { + "start": 6017.53, + "end": 6018.66, + "probability": 0.2565 + }, + { + "start": 6019.77, + "end": 6022.35, + "probability": 0.5041 + }, + { + "start": 6023.27, + "end": 6024.45, + "probability": 0.101 + }, + { + "start": 6024.53, + "end": 6025.97, + "probability": 0.3611 + }, + { + "start": 6026.19, + "end": 6027.93, + "probability": 0.7163 + }, + { + "start": 6027.95, + "end": 6028.75, + "probability": 0.418 + }, + { + "start": 6028.87, + "end": 6030.91, + "probability": 0.4179 + }, + { + "start": 6030.91, + "end": 6034.79, + "probability": 0.2008 + }, + { + "start": 6036.09, + "end": 6036.09, + "probability": 0.0137 + }, + { + "start": 6036.09, + "end": 6037.55, + "probability": 0.2379 + }, + { + "start": 6038.73, + "end": 6041.37, + "probability": 0.8333 + }, + { + "start": 6041.5, + "end": 6045.33, + "probability": 0.9819 + }, + { + "start": 6045.83, + "end": 6047.04, + "probability": 0.9971 + }, + { + "start": 6049.71, + "end": 6051.49, + "probability": 0.8617 + }, + { + "start": 6052.59, + "end": 6056.07, + "probability": 0.9995 + }, + { + "start": 6056.21, + "end": 6059.73, + "probability": 0.9971 + }, + { + "start": 6060.25, + "end": 6061.69, + "probability": 0.994 + }, + { + "start": 6061.85, + "end": 6062.19, + "probability": 0.1145 + }, + { + "start": 6062.73, + "end": 6063.05, + "probability": 0.4858 + }, + { + "start": 6064.05, + "end": 6064.55, + "probability": 0.941 + }, + { + "start": 6065.29, + "end": 6065.59, + "probability": 0.5568 + }, + { + "start": 6065.83, + "end": 6066.13, + "probability": 0.3731 + }, + { + "start": 6066.15, + "end": 6066.65, + "probability": 0.8058 + }, + { + "start": 6066.75, + "end": 6067.59, + "probability": 0.9289 + }, + { + "start": 6067.59, + "end": 6069.87, + "probability": 0.9747 + }, + { + "start": 6071.19, + "end": 6072.63, + "probability": 0.6342 + }, + { + "start": 6072.65, + "end": 6075.24, + "probability": 0.9244 + }, + { + "start": 6075.57, + "end": 6076.03, + "probability": 0.6483 + }, + { + "start": 6076.93, + "end": 6081.33, + "probability": 0.9258 + }, + { + "start": 6082.13, + "end": 6083.15, + "probability": 0.8937 + }, + { + "start": 6083.99, + "end": 6086.59, + "probability": 0.8762 + }, + { + "start": 6087.87, + "end": 6088.61, + "probability": 0.8582 + }, + { + "start": 6090.55, + "end": 6091.49, + "probability": 0.6379 + }, + { + "start": 6091.55, + "end": 6093.13, + "probability": 0.8469 + }, + { + "start": 6093.13, + "end": 6098.69, + "probability": 0.8406 + }, + { + "start": 6099.94, + "end": 6102.33, + "probability": 0.7461 + }, + { + "start": 6102.53, + "end": 6103.99, + "probability": 0.9325 + }, + { + "start": 6104.07, + "end": 6105.45, + "probability": 0.9488 + }, + { + "start": 6105.69, + "end": 6110.05, + "probability": 0.989 + }, + { + "start": 6110.51, + "end": 6114.49, + "probability": 0.8555 + }, + { + "start": 6114.49, + "end": 6117.35, + "probability": 0.8693 + }, + { + "start": 6117.97, + "end": 6121.57, + "probability": 0.9872 + }, + { + "start": 6122.65, + "end": 6130.62, + "probability": 0.9958 + }, + { + "start": 6130.67, + "end": 6131.54, + "probability": 0.9478 + }, + { + "start": 6132.29, + "end": 6134.09, + "probability": 0.799 + }, + { + "start": 6135.13, + "end": 6135.81, + "probability": 0.8546 + }, + { + "start": 6136.47, + "end": 6140.91, + "probability": 0.9899 + }, + { + "start": 6141.45, + "end": 6142.89, + "probability": 0.7073 + }, + { + "start": 6143.69, + "end": 6146.47, + "probability": 0.7608 + }, + { + "start": 6147.45, + "end": 6150.73, + "probability": 0.939 + }, + { + "start": 6151.27, + "end": 6155.23, + "probability": 0.9957 + }, + { + "start": 6156.35, + "end": 6157.29, + "probability": 0.9889 + }, + { + "start": 6157.33, + "end": 6163.01, + "probability": 0.9885 + }, + { + "start": 6163.13, + "end": 6163.93, + "probability": 0.7953 + }, + { + "start": 6164.45, + "end": 6168.05, + "probability": 0.9972 + }, + { + "start": 6168.79, + "end": 6169.67, + "probability": 0.9639 + }, + { + "start": 6170.33, + "end": 6172.53, + "probability": 0.9854 + }, + { + "start": 6174.21, + "end": 6179.03, + "probability": 0.9932 + }, + { + "start": 6180.23, + "end": 6181.41, + "probability": 0.8875 + }, + { + "start": 6181.43, + "end": 6184.25, + "probability": 0.7948 + }, + { + "start": 6184.25, + "end": 6190.79, + "probability": 0.9771 + }, + { + "start": 6192.15, + "end": 6193.61, + "probability": 0.7001 + }, + { + "start": 6194.35, + "end": 6196.23, + "probability": 0.9319 + }, + { + "start": 6196.99, + "end": 6199.57, + "probability": 0.9121 + }, + { + "start": 6200.53, + "end": 6203.19, + "probability": 0.9966 + }, + { + "start": 6204.05, + "end": 6207.43, + "probability": 0.9996 + }, + { + "start": 6207.95, + "end": 6211.35, + "probability": 0.9992 + }, + { + "start": 6212.05, + "end": 6215.71, + "probability": 0.9985 + }, + { + "start": 6215.71, + "end": 6221.17, + "probability": 0.986 + }, + { + "start": 6221.69, + "end": 6226.59, + "probability": 0.9973 + }, + { + "start": 6226.97, + "end": 6229.21, + "probability": 0.8587 + }, + { + "start": 6230.57, + "end": 6233.99, + "probability": 0.9639 + }, + { + "start": 6234.87, + "end": 6237.13, + "probability": 0.9672 + }, + { + "start": 6237.99, + "end": 6244.21, + "probability": 0.9922 + }, + { + "start": 6244.21, + "end": 6249.23, + "probability": 0.9917 + }, + { + "start": 6250.03, + "end": 6252.35, + "probability": 0.999 + }, + { + "start": 6253.09, + "end": 6255.17, + "probability": 0.9901 + }, + { + "start": 6255.69, + "end": 6257.85, + "probability": 0.8141 + }, + { + "start": 6258.99, + "end": 6262.93, + "probability": 0.9951 + }, + { + "start": 6263.55, + "end": 6265.11, + "probability": 0.8662 + }, + { + "start": 6265.67, + "end": 6269.17, + "probability": 0.9961 + }, + { + "start": 6269.85, + "end": 6271.41, + "probability": 0.991 + }, + { + "start": 6272.57, + "end": 6279.17, + "probability": 0.8681 + }, + { + "start": 6279.17, + "end": 6284.45, + "probability": 0.7666 + }, + { + "start": 6285.33, + "end": 6290.71, + "probability": 0.5755 + }, + { + "start": 6292.33, + "end": 6297.11, + "probability": 0.9445 + }, + { + "start": 6297.57, + "end": 6298.59, + "probability": 0.7696 + }, + { + "start": 6299.15, + "end": 6305.27, + "probability": 0.9678 + }, + { + "start": 6305.87, + "end": 6307.71, + "probability": 0.5784 + }, + { + "start": 6307.91, + "end": 6318.41, + "probability": 0.8794 + }, + { + "start": 6320.35, + "end": 6327.39, + "probability": 0.9967 + }, + { + "start": 6328.73, + "end": 6330.89, + "probability": 0.7653 + }, + { + "start": 6331.01, + "end": 6332.11, + "probability": 0.7313 + }, + { + "start": 6332.87, + "end": 6334.97, + "probability": 0.923 + }, + { + "start": 6337.01, + "end": 6344.85, + "probability": 0.9977 + }, + { + "start": 6346.81, + "end": 6352.35, + "probability": 0.9677 + }, + { + "start": 6353.05, + "end": 6355.05, + "probability": 0.9969 + }, + { + "start": 6355.75, + "end": 6358.27, + "probability": 0.9791 + }, + { + "start": 6358.91, + "end": 6359.83, + "probability": 0.7332 + }, + { + "start": 6361.27, + "end": 6362.05, + "probability": 0.8608 + }, + { + "start": 6362.05, + "end": 6363.74, + "probability": 0.9628 + }, + { + "start": 6363.93, + "end": 6365.49, + "probability": 0.9945 + }, + { + "start": 6366.15, + "end": 6369.23, + "probability": 0.9976 + }, + { + "start": 6369.39, + "end": 6376.03, + "probability": 0.865 + }, + { + "start": 6376.59, + "end": 6377.63, + "probability": 0.7517 + }, + { + "start": 6377.91, + "end": 6380.71, + "probability": 0.9957 + }, + { + "start": 6381.73, + "end": 6384.27, + "probability": 0.988 + }, + { + "start": 6386.11, + "end": 6387.47, + "probability": 0.1796 + }, + { + "start": 6389.14, + "end": 6389.75, + "probability": 0.0648 + }, + { + "start": 6389.75, + "end": 6390.53, + "probability": 0.6259 + }, + { + "start": 6390.63, + "end": 6391.85, + "probability": 0.662 + }, + { + "start": 6391.99, + "end": 6395.89, + "probability": 0.1204 + }, + { + "start": 6396.23, + "end": 6396.87, + "probability": 0.8713 + }, + { + "start": 6396.95, + "end": 6399.53, + "probability": 0.9956 + }, + { + "start": 6400.07, + "end": 6404.41, + "probability": 0.9953 + }, + { + "start": 6404.53, + "end": 6406.17, + "probability": 0.9889 + }, + { + "start": 6406.79, + "end": 6409.23, + "probability": 0.9557 + }, + { + "start": 6410.09, + "end": 6414.59, + "probability": 0.8953 + }, + { + "start": 6414.85, + "end": 6417.09, + "probability": 0.9959 + }, + { + "start": 6417.67, + "end": 6419.21, + "probability": 0.8995 + }, + { + "start": 6419.77, + "end": 6420.96, + "probability": 0.9949 + }, + { + "start": 6422.79, + "end": 6424.91, + "probability": 0.9026 + }, + { + "start": 6425.65, + "end": 6426.53, + "probability": 0.8715 + }, + { + "start": 6426.77, + "end": 6429.41, + "probability": 0.6511 + }, + { + "start": 6429.59, + "end": 6430.87, + "probability": 0.7776 + }, + { + "start": 6431.45, + "end": 6434.17, + "probability": 0.9651 + }, + { + "start": 6434.67, + "end": 6435.69, + "probability": 0.8384 + }, + { + "start": 6436.33, + "end": 6437.35, + "probability": 0.9394 + }, + { + "start": 6437.57, + "end": 6440.43, + "probability": 0.2104 + }, + { + "start": 6440.43, + "end": 6442.75, + "probability": 0.9721 + }, + { + "start": 6444.19, + "end": 6447.45, + "probability": 0.6606 + }, + { + "start": 6447.73, + "end": 6454.09, + "probability": 0.9947 + }, + { + "start": 6454.57, + "end": 6458.89, + "probability": 0.9966 + }, + { + "start": 6459.65, + "end": 6462.63, + "probability": 0.4984 + }, + { + "start": 6462.63, + "end": 6467.99, + "probability": 0.9771 + }, + { + "start": 6468.17, + "end": 6471.97, + "probability": 0.7968 + }, + { + "start": 6471.99, + "end": 6477.03, + "probability": 0.9937 + }, + { + "start": 6477.25, + "end": 6479.65, + "probability": 0.9923 + }, + { + "start": 6480.11, + "end": 6482.86, + "probability": 0.9956 + }, + { + "start": 6483.45, + "end": 6484.85, + "probability": 0.9797 + }, + { + "start": 6484.93, + "end": 6485.83, + "probability": 0.9943 + }, + { + "start": 6486.41, + "end": 6488.13, + "probability": 0.9125 + }, + { + "start": 6491.57, + "end": 6499.61, + "probability": 0.8452 + }, + { + "start": 6500.81, + "end": 6503.99, + "probability": 0.9597 + }, + { + "start": 6504.33, + "end": 6507.65, + "probability": 0.9871 + }, + { + "start": 6507.99, + "end": 6510.41, + "probability": 0.7055 + }, + { + "start": 6510.87, + "end": 6513.49, + "probability": 0.9934 + }, + { + "start": 6513.59, + "end": 6517.71, + "probability": 0.9959 + }, + { + "start": 6518.11, + "end": 6519.37, + "probability": 0.6675 + }, + { + "start": 6519.71, + "end": 6522.12, + "probability": 0.9287 + }, + { + "start": 6522.19, + "end": 6526.37, + "probability": 0.9535 + }, + { + "start": 6527.05, + "end": 6532.91, + "probability": 0.9922 + }, + { + "start": 6533.39, + "end": 6534.55, + "probability": 0.9937 + }, + { + "start": 6534.63, + "end": 6534.97, + "probability": 0.6011 + }, + { + "start": 6536.87, + "end": 6540.61, + "probability": 0.5256 + }, + { + "start": 6541.21, + "end": 6543.69, + "probability": 0.8367 + }, + { + "start": 6543.77, + "end": 6544.89, + "probability": 0.5037 + }, + { + "start": 6546.13, + "end": 6548.09, + "probability": 0.9972 + }, + { + "start": 6548.19, + "end": 6549.64, + "probability": 0.999 + }, + { + "start": 6550.21, + "end": 6555.79, + "probability": 0.8929 + }, + { + "start": 6556.55, + "end": 6557.89, + "probability": 0.9329 + }, + { + "start": 6558.53, + "end": 6561.77, + "probability": 0.9744 + }, + { + "start": 6562.03, + "end": 6564.39, + "probability": 0.9855 + }, + { + "start": 6565.23, + "end": 6565.41, + "probability": 0.7989 + }, + { + "start": 6565.51, + "end": 6566.87, + "probability": 0.9286 + }, + { + "start": 6566.89, + "end": 6569.73, + "probability": 0.9826 + }, + { + "start": 6570.05, + "end": 6571.01, + "probability": 0.7525 + }, + { + "start": 6571.43, + "end": 6572.31, + "probability": 0.7943 + }, + { + "start": 6572.35, + "end": 6572.89, + "probability": 0.7952 + }, + { + "start": 6573.49, + "end": 6574.11, + "probability": 0.6659 + }, + { + "start": 6574.17, + "end": 6576.13, + "probability": 0.6852 + }, + { + "start": 6576.19, + "end": 6576.63, + "probability": 0.9089 + }, + { + "start": 6589.91, + "end": 6591.25, + "probability": 0.8581 + }, + { + "start": 6591.25, + "end": 6593.29, + "probability": 0.6599 + }, + { + "start": 6593.37, + "end": 6595.47, + "probability": 0.9902 + }, + { + "start": 6596.63, + "end": 6600.27, + "probability": 0.9974 + }, + { + "start": 6600.51, + "end": 6602.83, + "probability": 0.9365 + }, + { + "start": 6603.61, + "end": 6606.81, + "probability": 0.9852 + }, + { + "start": 6607.51, + "end": 6608.27, + "probability": 0.9921 + }, + { + "start": 6610.59, + "end": 6612.15, + "probability": 0.9888 + }, + { + "start": 6612.83, + "end": 6615.45, + "probability": 0.9949 + }, + { + "start": 6615.53, + "end": 6616.81, + "probability": 0.9274 + }, + { + "start": 6617.47, + "end": 6619.81, + "probability": 0.9853 + }, + { + "start": 6622.17, + "end": 6624.13, + "probability": 0.7385 + }, + { + "start": 6625.27, + "end": 6626.53, + "probability": 0.9128 + }, + { + "start": 6626.61, + "end": 6626.71, + "probability": 0.7562 + }, + { + "start": 6626.83, + "end": 6630.37, + "probability": 0.9924 + }, + { + "start": 6630.41, + "end": 6631.25, + "probability": 0.6455 + }, + { + "start": 6632.61, + "end": 6637.01, + "probability": 0.9945 + }, + { + "start": 6637.97, + "end": 6640.01, + "probability": 0.5049 + }, + { + "start": 6640.05, + "end": 6641.24, + "probability": 0.539 + }, + { + "start": 6641.49, + "end": 6646.53, + "probability": 0.9689 + }, + { + "start": 6646.97, + "end": 6647.67, + "probability": 0.5016 + }, + { + "start": 6648.95, + "end": 6650.65, + "probability": 0.9954 + }, + { + "start": 6651.51, + "end": 6654.49, + "probability": 0.9976 + }, + { + "start": 6656.19, + "end": 6659.55, + "probability": 0.918 + }, + { + "start": 6659.77, + "end": 6661.83, + "probability": 0.9709 + }, + { + "start": 6663.63, + "end": 6665.45, + "probability": 0.924 + }, + { + "start": 6666.39, + "end": 6670.13, + "probability": 0.7768 + }, + { + "start": 6670.13, + "end": 6671.19, + "probability": 0.9922 + }, + { + "start": 6671.39, + "end": 6672.69, + "probability": 0.9467 + }, + { + "start": 6672.79, + "end": 6675.13, + "probability": 0.9986 + }, + { + "start": 6675.73, + "end": 6676.95, + "probability": 0.8806 + }, + { + "start": 6677.07, + "end": 6677.84, + "probability": 0.9448 + }, + { + "start": 6678.43, + "end": 6679.81, + "probability": 0.9953 + }, + { + "start": 6680.07, + "end": 6680.59, + "probability": 0.8943 + }, + { + "start": 6682.15, + "end": 6683.93, + "probability": 0.9648 + }, + { + "start": 6684.69, + "end": 6687.09, + "probability": 0.9982 + }, + { + "start": 6687.85, + "end": 6691.21, + "probability": 0.9946 + }, + { + "start": 6691.53, + "end": 6695.95, + "probability": 0.9899 + }, + { + "start": 6696.31, + "end": 6697.63, + "probability": 0.9936 + }, + { + "start": 6699.05, + "end": 6699.69, + "probability": 0.7608 + }, + { + "start": 6700.85, + "end": 6702.09, + "probability": 0.7236 + }, + { + "start": 6704.09, + "end": 6707.29, + "probability": 0.9545 + }, + { + "start": 6707.95, + "end": 6710.61, + "probability": 0.9929 + }, + { + "start": 6711.89, + "end": 6714.35, + "probability": 0.8513 + }, + { + "start": 6715.11, + "end": 6716.05, + "probability": 0.8637 + }, + { + "start": 6716.85, + "end": 6719.61, + "probability": 0.9328 + }, + { + "start": 6720.51, + "end": 6722.89, + "probability": 0.9879 + }, + { + "start": 6723.71, + "end": 6724.87, + "probability": 0.9867 + }, + { + "start": 6725.69, + "end": 6726.97, + "probability": 0.8732 + }, + { + "start": 6727.79, + "end": 6728.52, + "probability": 0.9745 + }, + { + "start": 6728.75, + "end": 6729.76, + "probability": 0.8514 + }, + { + "start": 6730.13, + "end": 6732.22, + "probability": 0.5827 + }, + { + "start": 6732.87, + "end": 6734.93, + "probability": 0.8954 + }, + { + "start": 6735.43, + "end": 6736.59, + "probability": 0.9295 + }, + { + "start": 6736.77, + "end": 6739.71, + "probability": 0.888 + }, + { + "start": 6740.37, + "end": 6741.23, + "probability": 0.6205 + }, + { + "start": 6742.09, + "end": 6743.73, + "probability": 0.9564 + }, + { + "start": 6744.17, + "end": 6746.39, + "probability": 0.9795 + }, + { + "start": 6746.91, + "end": 6748.27, + "probability": 0.9886 + }, + { + "start": 6748.81, + "end": 6752.19, + "probability": 0.9431 + }, + { + "start": 6752.89, + "end": 6753.79, + "probability": 0.7925 + }, + { + "start": 6754.89, + "end": 6755.69, + "probability": 0.7718 + }, + { + "start": 6757.51, + "end": 6758.65, + "probability": 0.7535 + }, + { + "start": 6759.9, + "end": 6764.01, + "probability": 0.8805 + }, + { + "start": 6764.43, + "end": 6767.53, + "probability": 0.9765 + }, + { + "start": 6768.01, + "end": 6772.11, + "probability": 0.8466 + }, + { + "start": 6773.93, + "end": 6774.51, + "probability": 0.4294 + }, + { + "start": 6794.07, + "end": 6797.11, + "probability": 0.6761 + }, + { + "start": 6797.57, + "end": 6800.01, + "probability": 0.9176 + }, + { + "start": 6800.13, + "end": 6802.93, + "probability": 0.9613 + }, + { + "start": 6803.65, + "end": 6808.31, + "probability": 0.7634 + }, + { + "start": 6809.13, + "end": 6810.75, + "probability": 0.9185 + }, + { + "start": 6810.85, + "end": 6812.73, + "probability": 0.7502 + }, + { + "start": 6813.03, + "end": 6814.27, + "probability": 0.7649 + }, + { + "start": 6814.47, + "end": 6814.89, + "probability": 0.8707 + }, + { + "start": 6814.95, + "end": 6816.11, + "probability": 0.8957 + }, + { + "start": 6816.71, + "end": 6819.77, + "probability": 0.9706 + }, + { + "start": 6820.31, + "end": 6823.09, + "probability": 0.5974 + }, + { + "start": 6823.59, + "end": 6824.47, + "probability": 0.7625 + }, + { + "start": 6828.65, + "end": 6829.51, + "probability": 0.156 + }, + { + "start": 6830.81, + "end": 6831.53, + "probability": 0.1315 + }, + { + "start": 6831.55, + "end": 6831.57, + "probability": 0.0085 + }, + { + "start": 6837.95, + "end": 6843.81, + "probability": 0.1576 + }, + { + "start": 6844.45, + "end": 6844.77, + "probability": 0.1097 + }, + { + "start": 6844.77, + "end": 6844.77, + "probability": 0.2885 + }, + { + "start": 6846.91, + "end": 6848.05, + "probability": 0.0835 + }, + { + "start": 6884.31, + "end": 6884.81, + "probability": 0.5796 + }, + { + "start": 6886.59, + "end": 6887.33, + "probability": 0.8078 + }, + { + "start": 6887.97, + "end": 6889.21, + "probability": 0.8851 + }, + { + "start": 6890.49, + "end": 6893.13, + "probability": 0.5721 + }, + { + "start": 6894.05, + "end": 6902.01, + "probability": 0.9866 + }, + { + "start": 6903.61, + "end": 6906.05, + "probability": 0.9448 + }, + { + "start": 6908.93, + "end": 6910.19, + "probability": 0.9935 + }, + { + "start": 6910.79, + "end": 6911.71, + "probability": 0.9555 + }, + { + "start": 6913.61, + "end": 6916.33, + "probability": 0.9552 + }, + { + "start": 6917.11, + "end": 6918.49, + "probability": 0.8499 + }, + { + "start": 6919.51, + "end": 6921.8, + "probability": 0.8918 + }, + { + "start": 6922.61, + "end": 6930.15, + "probability": 0.9634 + }, + { + "start": 6930.89, + "end": 6932.63, + "probability": 0.9817 + }, + { + "start": 6933.33, + "end": 6934.55, + "probability": 0.8423 + }, + { + "start": 6935.45, + "end": 6938.71, + "probability": 0.6097 + }, + { + "start": 6941.43, + "end": 6943.01, + "probability": 0.9838 + }, + { + "start": 6943.21, + "end": 6945.19, + "probability": 0.8779 + }, + { + "start": 6945.77, + "end": 6948.87, + "probability": 0.9739 + }, + { + "start": 6949.63, + "end": 6951.55, + "probability": 0.9771 + }, + { + "start": 6952.31, + "end": 6955.05, + "probability": 0.9782 + }, + { + "start": 6955.05, + "end": 6958.41, + "probability": 0.979 + }, + { + "start": 6959.61, + "end": 6961.21, + "probability": 0.738 + }, + { + "start": 6962.01, + "end": 6964.09, + "probability": 0.9314 + }, + { + "start": 6964.45, + "end": 6966.47, + "probability": 0.9677 + }, + { + "start": 6972.17, + "end": 6973.75, + "probability": 0.9955 + }, + { + "start": 6976.07, + "end": 6977.79, + "probability": 0.7836 + }, + { + "start": 6979.81, + "end": 6982.51, + "probability": 0.8957 + }, + { + "start": 6983.73, + "end": 6987.31, + "probability": 0.9486 + }, + { + "start": 6988.19, + "end": 6990.69, + "probability": 0.9905 + }, + { + "start": 6993.13, + "end": 6997.17, + "probability": 0.9453 + }, + { + "start": 6998.31, + "end": 7001.65, + "probability": 0.9987 + }, + { + "start": 7002.85, + "end": 7005.79, + "probability": 0.9777 + }, + { + "start": 7006.41, + "end": 7014.31, + "probability": 0.9561 + }, + { + "start": 7015.15, + "end": 7017.05, + "probability": 0.8287 + }, + { + "start": 7017.13, + "end": 7021.77, + "probability": 0.9966 + }, + { + "start": 7022.65, + "end": 7025.27, + "probability": 0.8604 + }, + { + "start": 7025.79, + "end": 7029.77, + "probability": 0.9904 + }, + { + "start": 7030.49, + "end": 7031.77, + "probability": 0.9323 + }, + { + "start": 7032.53, + "end": 7036.05, + "probability": 0.9944 + }, + { + "start": 7036.67, + "end": 7037.61, + "probability": 0.9871 + }, + { + "start": 7044.01, + "end": 7046.91, + "probability": 0.9892 + }, + { + "start": 7047.85, + "end": 7049.87, + "probability": 0.9075 + }, + { + "start": 7049.89, + "end": 7050.65, + "probability": 0.7682 + }, + { + "start": 7052.57, + "end": 7053.79, + "probability": 0.9971 + }, + { + "start": 7054.71, + "end": 7057.07, + "probability": 0.9291 + }, + { + "start": 7057.33, + "end": 7060.33, + "probability": 0.9742 + }, + { + "start": 7060.99, + "end": 7065.03, + "probability": 0.9861 + }, + { + "start": 7065.65, + "end": 7069.75, + "probability": 0.9441 + }, + { + "start": 7070.71, + "end": 7073.23, + "probability": 0.8295 + }, + { + "start": 7074.89, + "end": 7077.27, + "probability": 0.8884 + }, + { + "start": 7077.93, + "end": 7080.57, + "probability": 0.9713 + }, + { + "start": 7081.77, + "end": 7084.93, + "probability": 0.8475 + }, + { + "start": 7085.25, + "end": 7089.67, + "probability": 0.994 + }, + { + "start": 7090.11, + "end": 7090.71, + "probability": 0.7634 + }, + { + "start": 7091.23, + "end": 7091.81, + "probability": 0.9675 + }, + { + "start": 7094.23, + "end": 7096.31, + "probability": 0.9915 + }, + { + "start": 7096.61, + "end": 7099.75, + "probability": 0.9832 + }, + { + "start": 7100.15, + "end": 7102.51, + "probability": 0.9905 + }, + { + "start": 7102.91, + "end": 7104.35, + "probability": 0.8863 + }, + { + "start": 7105.31, + "end": 7107.45, + "probability": 0.5376 + }, + { + "start": 7107.87, + "end": 7108.27, + "probability": 0.8197 + }, + { + "start": 7108.43, + "end": 7109.05, + "probability": 0.8204 + }, + { + "start": 7109.19, + "end": 7109.77, + "probability": 0.6772 + }, + { + "start": 7110.25, + "end": 7110.65, + "probability": 0.3017 + }, + { + "start": 7113.67, + "end": 7117.11, + "probability": 0.9272 + }, + { + "start": 7118.58, + "end": 7120.8, + "probability": 0.8592 + }, + { + "start": 7121.03, + "end": 7124.45, + "probability": 0.9332 + }, + { + "start": 7124.95, + "end": 7127.79, + "probability": 0.9795 + }, + { + "start": 7129.65, + "end": 7130.11, + "probability": 0.8347 + }, + { + "start": 7130.21, + "end": 7134.05, + "probability": 0.9961 + }, + { + "start": 7134.71, + "end": 7137.25, + "probability": 0.9985 + }, + { + "start": 7137.55, + "end": 7138.97, + "probability": 0.9507 + }, + { + "start": 7140.79, + "end": 7143.35, + "probability": 0.6942 + }, + { + "start": 7143.35, + "end": 7146.05, + "probability": 0.9948 + }, + { + "start": 7146.15, + "end": 7149.15, + "probability": 0.63 + }, + { + "start": 7150.23, + "end": 7151.13, + "probability": 0.7911 + }, + { + "start": 7151.31, + "end": 7152.05, + "probability": 0.741 + }, + { + "start": 7152.19, + "end": 7153.01, + "probability": 0.9004 + }, + { + "start": 7153.09, + "end": 7157.73, + "probability": 0.9968 + }, + { + "start": 7158.05, + "end": 7162.45, + "probability": 0.9891 + }, + { + "start": 7163.27, + "end": 7164.07, + "probability": 0.5528 + }, + { + "start": 7164.93, + "end": 7167.07, + "probability": 0.7771 + }, + { + "start": 7167.25, + "end": 7169.51, + "probability": 0.9971 + }, + { + "start": 7169.93, + "end": 7170.53, + "probability": 0.1154 + }, + { + "start": 7172.29, + "end": 7172.29, + "probability": 0.3559 + }, + { + "start": 7172.31, + "end": 7177.33, + "probability": 0.9925 + }, + { + "start": 7177.49, + "end": 7179.73, + "probability": 0.9966 + }, + { + "start": 7180.27, + "end": 7183.13, + "probability": 0.946 + }, + { + "start": 7183.51, + "end": 7183.63, + "probability": 0.3947 + }, + { + "start": 7184.03, + "end": 7186.97, + "probability": 0.9884 + }, + { + "start": 7186.97, + "end": 7190.51, + "probability": 0.9819 + }, + { + "start": 7190.65, + "end": 7191.25, + "probability": 0.5531 + }, + { + "start": 7191.47, + "end": 7192.33, + "probability": 0.9208 + }, + { + "start": 7192.41, + "end": 7193.19, + "probability": 0.9766 + }, + { + "start": 7193.61, + "end": 7195.47, + "probability": 0.9792 + }, + { + "start": 7195.97, + "end": 7202.25, + "probability": 0.9977 + }, + { + "start": 7203.97, + "end": 7207.27, + "probability": 0.9628 + }, + { + "start": 7208.53, + "end": 7213.45, + "probability": 0.9985 + }, + { + "start": 7213.73, + "end": 7215.25, + "probability": 0.9408 + }, + { + "start": 7215.35, + "end": 7218.45, + "probability": 0.9648 + }, + { + "start": 7218.51, + "end": 7222.63, + "probability": 0.9977 + }, + { + "start": 7222.97, + "end": 7225.49, + "probability": 0.8328 + }, + { + "start": 7225.77, + "end": 7228.97, + "probability": 0.9991 + }, + { + "start": 7228.97, + "end": 7232.6, + "probability": 0.9982 + }, + { + "start": 7233.29, + "end": 7234.15, + "probability": 0.9113 + }, + { + "start": 7236.19, + "end": 7236.99, + "probability": 0.7987 + }, + { + "start": 7237.09, + "end": 7240.05, + "probability": 0.9951 + }, + { + "start": 7240.09, + "end": 7243.71, + "probability": 0.9966 + }, + { + "start": 7245.91, + "end": 7246.93, + "probability": 0.9829 + }, + { + "start": 7248.23, + "end": 7248.79, + "probability": 0.7183 + }, + { + "start": 7249.37, + "end": 7249.95, + "probability": 0.7496 + }, + { + "start": 7250.61, + "end": 7251.51, + "probability": 0.9789 + }, + { + "start": 7252.39, + "end": 7258.34, + "probability": 0.9979 + }, + { + "start": 7258.93, + "end": 7260.35, + "probability": 0.7766 + }, + { + "start": 7261.87, + "end": 7263.71, + "probability": 0.9016 + }, + { + "start": 7265.09, + "end": 7268.23, + "probability": 0.8674 + }, + { + "start": 7269.23, + "end": 7273.47, + "probability": 0.8762 + }, + { + "start": 7274.13, + "end": 7279.55, + "probability": 0.9928 + }, + { + "start": 7281.11, + "end": 7284.09, + "probability": 0.9922 + }, + { + "start": 7285.23, + "end": 7287.21, + "probability": 0.9894 + }, + { + "start": 7288.53, + "end": 7290.77, + "probability": 0.999 + }, + { + "start": 7290.83, + "end": 7294.71, + "probability": 0.9493 + }, + { + "start": 7295.39, + "end": 7303.57, + "probability": 0.9951 + }, + { + "start": 7305.31, + "end": 7308.37, + "probability": 0.9299 + }, + { + "start": 7312.25, + "end": 7314.13, + "probability": 0.9262 + }, + { + "start": 7314.21, + "end": 7316.21, + "probability": 0.7784 + }, + { + "start": 7316.69, + "end": 7322.57, + "probability": 0.8397 + }, + { + "start": 7322.64, + "end": 7331.31, + "probability": 0.8298 + }, + { + "start": 7331.49, + "end": 7332.53, + "probability": 0.7097 + }, + { + "start": 7332.61, + "end": 7334.08, + "probability": 0.9249 + }, + { + "start": 7334.89, + "end": 7343.71, + "probability": 0.9296 + }, + { + "start": 7343.71, + "end": 7348.03, + "probability": 0.9962 + }, + { + "start": 7348.57, + "end": 7351.83, + "probability": 0.9956 + }, + { + "start": 7352.32, + "end": 7356.93, + "probability": 0.9968 + }, + { + "start": 7356.93, + "end": 7359.27, + "probability": 0.988 + }, + { + "start": 7360.93, + "end": 7361.81, + "probability": 0.8628 + }, + { + "start": 7362.93, + "end": 7365.29, + "probability": 0.992 + }, + { + "start": 7365.45, + "end": 7368.09, + "probability": 0.9631 + }, + { + "start": 7368.69, + "end": 7371.25, + "probability": 0.9166 + }, + { + "start": 7374.27, + "end": 7379.05, + "probability": 0.9813 + }, + { + "start": 7379.23, + "end": 7379.61, + "probability": 0.9353 + }, + { + "start": 7379.65, + "end": 7383.83, + "probability": 0.988 + }, + { + "start": 7385.57, + "end": 7386.29, + "probability": 0.9154 + }, + { + "start": 7387.65, + "end": 7389.73, + "probability": 0.9966 + }, + { + "start": 7389.79, + "end": 7392.33, + "probability": 0.9968 + }, + { + "start": 7396.97, + "end": 7400.41, + "probability": 0.9945 + }, + { + "start": 7400.73, + "end": 7402.73, + "probability": 0.7411 + }, + { + "start": 7403.99, + "end": 7408.23, + "probability": 0.9175 + }, + { + "start": 7409.33, + "end": 7413.33, + "probability": 0.8977 + }, + { + "start": 7414.13, + "end": 7416.11, + "probability": 0.9987 + }, + { + "start": 7417.43, + "end": 7418.95, + "probability": 0.9347 + }, + { + "start": 7421.07, + "end": 7425.15, + "probability": 0.9985 + }, + { + "start": 7425.21, + "end": 7428.75, + "probability": 0.9977 + }, + { + "start": 7428.75, + "end": 7432.01, + "probability": 0.9957 + }, + { + "start": 7433.99, + "end": 7437.59, + "probability": 0.999 + }, + { + "start": 7438.13, + "end": 7444.49, + "probability": 0.9954 + }, + { + "start": 7444.97, + "end": 7445.59, + "probability": 0.7363 + }, + { + "start": 7446.17, + "end": 7451.21, + "probability": 0.9687 + }, + { + "start": 7451.97, + "end": 7452.29, + "probability": 0.5613 + }, + { + "start": 7452.33, + "end": 7452.67, + "probability": 0.9522 + }, + { + "start": 7452.83, + "end": 7456.11, + "probability": 0.9808 + }, + { + "start": 7456.89, + "end": 7457.52, + "probability": 0.948 + }, + { + "start": 7457.83, + "end": 7458.53, + "probability": 0.7808 + }, + { + "start": 7458.73, + "end": 7462.2, + "probability": 0.9963 + }, + { + "start": 7462.67, + "end": 7464.11, + "probability": 0.9904 + }, + { + "start": 7464.29, + "end": 7465.73, + "probability": 0.96 + }, + { + "start": 7470.93, + "end": 7471.03, + "probability": 0.3425 + }, + { + "start": 7471.51, + "end": 7473.47, + "probability": 0.7312 + }, + { + "start": 7473.75, + "end": 7475.71, + "probability": 0.7725 + }, + { + "start": 7476.69, + "end": 7477.59, + "probability": 0.4989 + }, + { + "start": 7477.97, + "end": 7479.41, + "probability": 0.4979 + }, + { + "start": 7480.07, + "end": 7482.63, + "probability": 0.9508 + }, + { + "start": 7501.53, + "end": 7503.81, + "probability": 0.7591 + }, + { + "start": 7503.97, + "end": 7505.05, + "probability": 0.8945 + }, + { + "start": 7505.23, + "end": 7510.73, + "probability": 0.9686 + }, + { + "start": 7511.83, + "end": 7512.55, + "probability": 0.1458 + }, + { + "start": 7512.55, + "end": 7515.89, + "probability": 0.1136 + }, + { + "start": 7516.43, + "end": 7519.53, + "probability": 0.7482 + }, + { + "start": 7520.11, + "end": 7520.11, + "probability": 0.134 + }, + { + "start": 7520.11, + "end": 7522.39, + "probability": 0.9878 + }, + { + "start": 7522.59, + "end": 7523.53, + "probability": 0.9201 + }, + { + "start": 7523.79, + "end": 7527.09, + "probability": 0.9751 + }, + { + "start": 7527.95, + "end": 7531.13, + "probability": 0.6921 + }, + { + "start": 7531.89, + "end": 7537.21, + "probability": 0.9964 + }, + { + "start": 7537.21, + "end": 7543.39, + "probability": 0.9654 + }, + { + "start": 7545.69, + "end": 7546.39, + "probability": 0.8216 + }, + { + "start": 7546.55, + "end": 7548.31, + "probability": 0.9756 + }, + { + "start": 7548.41, + "end": 7550.17, + "probability": 0.6352 + }, + { + "start": 7551.29, + "end": 7554.55, + "probability": 0.9894 + }, + { + "start": 7554.55, + "end": 7560.37, + "probability": 0.9972 + }, + { + "start": 7561.35, + "end": 7565.07, + "probability": 0.9922 + }, + { + "start": 7566.95, + "end": 7567.95, + "probability": 0.7165 + }, + { + "start": 7568.43, + "end": 7570.85, + "probability": 0.9947 + }, + { + "start": 7570.93, + "end": 7571.93, + "probability": 0.7273 + }, + { + "start": 7573.51, + "end": 7574.77, + "probability": 0.9321 + }, + { + "start": 7574.79, + "end": 7575.35, + "probability": 0.8232 + }, + { + "start": 7575.55, + "end": 7577.69, + "probability": 0.9068 + }, + { + "start": 7578.53, + "end": 7579.13, + "probability": 0.8349 + }, + { + "start": 7580.49, + "end": 7582.19, + "probability": 0.9194 + }, + { + "start": 7582.69, + "end": 7586.55, + "probability": 0.9784 + }, + { + "start": 7586.55, + "end": 7593.11, + "probability": 0.9788 + }, + { + "start": 7593.77, + "end": 7593.91, + "probability": 0.5321 + }, + { + "start": 7594.87, + "end": 7598.69, + "probability": 0.9331 + }, + { + "start": 7598.69, + "end": 7602.17, + "probability": 0.7789 + }, + { + "start": 7603.26, + "end": 7605.17, + "probability": 0.2186 + }, + { + "start": 7605.17, + "end": 7607.09, + "probability": 0.751 + }, + { + "start": 7607.37, + "end": 7609.33, + "probability": 0.7594 + }, + { + "start": 7609.75, + "end": 7612.87, + "probability": 0.9421 + }, + { + "start": 7612.99, + "end": 7613.83, + "probability": 0.9339 + }, + { + "start": 7614.77, + "end": 7615.89, + "probability": 0.5346 + }, + { + "start": 7616.97, + "end": 7619.23, + "probability": 0.9568 + }, + { + "start": 7619.33, + "end": 7621.62, + "probability": 0.995 + }, + { + "start": 7622.15, + "end": 7623.81, + "probability": 0.8643 + }, + { + "start": 7624.53, + "end": 7625.39, + "probability": 0.6732 + }, + { + "start": 7626.09, + "end": 7628.97, + "probability": 0.7693 + }, + { + "start": 7629.67, + "end": 7631.07, + "probability": 0.7213 + }, + { + "start": 7632.05, + "end": 7634.35, + "probability": 0.8821 + }, + { + "start": 7636.17, + "end": 7640.01, + "probability": 0.9722 + }, + { + "start": 7640.81, + "end": 7644.69, + "probability": 0.9907 + }, + { + "start": 7644.85, + "end": 7646.35, + "probability": 0.9059 + }, + { + "start": 7647.15, + "end": 7650.99, + "probability": 0.9254 + }, + { + "start": 7651.49, + "end": 7653.37, + "probability": 0.9844 + }, + { + "start": 7653.53, + "end": 7653.53, + "probability": 0.0266 + }, + { + "start": 7653.53, + "end": 7654.91, + "probability": 0.8076 + }, + { + "start": 7655.33, + "end": 7656.69, + "probability": 0.9218 + }, + { + "start": 7657.57, + "end": 7658.13, + "probability": 0.9314 + }, + { + "start": 7659.25, + "end": 7665.23, + "probability": 0.8725 + }, + { + "start": 7665.81, + "end": 7668.15, + "probability": 0.9645 + }, + { + "start": 7668.15, + "end": 7670.87, + "probability": 0.9922 + }, + { + "start": 7671.69, + "end": 7672.97, + "probability": 0.9813 + }, + { + "start": 7673.61, + "end": 7674.99, + "probability": 0.9888 + }, + { + "start": 7675.63, + "end": 7677.69, + "probability": 0.9703 + }, + { + "start": 7678.17, + "end": 7679.39, + "probability": 0.9408 + }, + { + "start": 7679.91, + "end": 7682.71, + "probability": 0.8609 + }, + { + "start": 7683.27, + "end": 7685.93, + "probability": 0.9941 + }, + { + "start": 7685.93, + "end": 7690.08, + "probability": 0.9928 + }, + { + "start": 7690.25, + "end": 7693.51, + "probability": 0.9956 + }, + { + "start": 7693.51, + "end": 7696.07, + "probability": 0.9725 + }, + { + "start": 7697.31, + "end": 7698.71, + "probability": 0.9826 + }, + { + "start": 7698.85, + "end": 7701.85, + "probability": 0.8884 + }, + { + "start": 7701.97, + "end": 7703.89, + "probability": 0.9964 + }, + { + "start": 7704.95, + "end": 7708.33, + "probability": 0.8615 + }, + { + "start": 7708.37, + "end": 7709.85, + "probability": 0.851 + }, + { + "start": 7710.69, + "end": 7711.71, + "probability": 0.944 + }, + { + "start": 7712.05, + "end": 7714.43, + "probability": 0.9646 + }, + { + "start": 7715.03, + "end": 7715.95, + "probability": 0.4566 + }, + { + "start": 7716.03, + "end": 7716.41, + "probability": 0.6432 + }, + { + "start": 7716.77, + "end": 7718.35, + "probability": 0.7344 + }, + { + "start": 7718.57, + "end": 7719.72, + "probability": 0.9527 + }, + { + "start": 7719.97, + "end": 7721.21, + "probability": 0.7065 + }, + { + "start": 7721.43, + "end": 7722.19, + "probability": 0.0059 + }, + { + "start": 7722.63, + "end": 7726.93, + "probability": 0.6375 + }, + { + "start": 7728.99, + "end": 7730.99, + "probability": 0.7479 + }, + { + "start": 7731.49, + "end": 7733.99, + "probability": 0.9427 + }, + { + "start": 7735.91, + "end": 7738.37, + "probability": 0.886 + }, + { + "start": 7738.55, + "end": 7739.73, + "probability": 0.9929 + }, + { + "start": 7740.47, + "end": 7741.39, + "probability": 0.466 + }, + { + "start": 7741.95, + "end": 7748.29, + "probability": 0.6361 + }, + { + "start": 7748.79, + "end": 7748.99, + "probability": 0.0358 + }, + { + "start": 7748.99, + "end": 7748.99, + "probability": 0.0677 + }, + { + "start": 7748.99, + "end": 7748.99, + "probability": 0.0842 + }, + { + "start": 7748.99, + "end": 7748.99, + "probability": 0.0111 + }, + { + "start": 7748.99, + "end": 7754.23, + "probability": 0.3869 + }, + { + "start": 7754.51, + "end": 7756.93, + "probability": 0.9109 + }, + { + "start": 7757.07, + "end": 7760.69, + "probability": 0.9939 + }, + { + "start": 7761.65, + "end": 7762.65, + "probability": 0.157 + }, + { + "start": 7762.65, + "end": 7763.45, + "probability": 0.474 + }, + { + "start": 7763.45, + "end": 7763.49, + "probability": 0.8464 + }, + { + "start": 7763.51, + "end": 7764.71, + "probability": 0.794 + }, + { + "start": 7764.79, + "end": 7765.23, + "probability": 0.9331 + }, + { + "start": 7765.45, + "end": 7766.05, + "probability": 0.9722 + }, + { + "start": 7766.13, + "end": 7770.99, + "probability": 0.9521 + }, + { + "start": 7771.23, + "end": 7773.01, + "probability": 0.821 + }, + { + "start": 7773.23, + "end": 7776.87, + "probability": 0.9911 + }, + { + "start": 7776.93, + "end": 7777.51, + "probability": 0.5806 + }, + { + "start": 7777.63, + "end": 7778.87, + "probability": 0.9367 + }, + { + "start": 7778.95, + "end": 7780.61, + "probability": 0.7106 + }, + { + "start": 7780.75, + "end": 7781.51, + "probability": 0.6649 + }, + { + "start": 7782.39, + "end": 7783.99, + "probability": 0.9695 + }, + { + "start": 7785.18, + "end": 7788.07, + "probability": 0.9966 + }, + { + "start": 7788.11, + "end": 7788.55, + "probability": 0.0339 + }, + { + "start": 7789.49, + "end": 7790.57, + "probability": 0.1001 + }, + { + "start": 7790.57, + "end": 7791.75, + "probability": 0.2037 + }, + { + "start": 7791.93, + "end": 7794.43, + "probability": 0.9772 + }, + { + "start": 7796.77, + "end": 7797.29, + "probability": 0.0496 + }, + { + "start": 7797.29, + "end": 7797.29, + "probability": 0.0927 + }, + { + "start": 7797.29, + "end": 7797.29, + "probability": 0.134 + }, + { + "start": 7797.29, + "end": 7799.71, + "probability": 0.5345 + }, + { + "start": 7800.87, + "end": 7804.65, + "probability": 0.8491 + }, + { + "start": 7806.09, + "end": 7806.71, + "probability": 0.0333 + }, + { + "start": 7826.67, + "end": 7832.25, + "probability": 0.0487 + }, + { + "start": 7833.07, + "end": 7834.45, + "probability": 0.1763 + }, + { + "start": 7835.21, + "end": 7837.35, + "probability": 0.131 + }, + { + "start": 7845.05, + "end": 7848.59, + "probability": 0.0078 + }, + { + "start": 7849.78, + "end": 7853.31, + "probability": 0.0572 + }, + { + "start": 7853.31, + "end": 7854.13, + "probability": 0.1186 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.0, + "end": 7891.0, + "probability": 0.0 + }, + { + "start": 7891.68, + "end": 7891.86, + "probability": 0.1118 + }, + { + "start": 7891.86, + "end": 7891.86, + "probability": 0.04 + }, + { + "start": 7891.86, + "end": 7891.86, + "probability": 0.0881 + }, + { + "start": 7891.86, + "end": 7898.32, + "probability": 0.9678 + }, + { + "start": 7898.86, + "end": 7899.4, + "probability": 0.0416 + }, + { + "start": 7899.4, + "end": 7899.4, + "probability": 0.0617 + }, + { + "start": 7899.4, + "end": 7902.86, + "probability": 0.9907 + }, + { + "start": 7903.06, + "end": 7906.44, + "probability": 0.9844 + }, + { + "start": 7906.6, + "end": 7906.98, + "probability": 0.3133 + }, + { + "start": 7906.98, + "end": 7907.1, + "probability": 0.0925 + }, + { + "start": 7907.1, + "end": 7908.88, + "probability": 0.9971 + }, + { + "start": 7909.02, + "end": 7913.16, + "probability": 0.748 + }, + { + "start": 7913.16, + "end": 7915.76, + "probability": 0.999 + }, + { + "start": 7915.84, + "end": 7916.56, + "probability": 0.8349 + }, + { + "start": 7916.56, + "end": 7916.66, + "probability": 0.1152 + }, + { + "start": 7916.92, + "end": 7917.52, + "probability": 0.1981 + }, + { + "start": 7917.6, + "end": 7921.1, + "probability": 0.1823 + }, + { + "start": 7921.2, + "end": 7923.24, + "probability": 0.6874 + }, + { + "start": 7923.24, + "end": 7924.28, + "probability": 0.5971 + }, + { + "start": 7924.36, + "end": 7925.2, + "probability": 0.9093 + }, + { + "start": 7925.58, + "end": 7929.04, + "probability": 0.5186 + }, + { + "start": 7929.04, + "end": 7931.96, + "probability": 0.1733 + }, + { + "start": 7932.6, + "end": 7933.94, + "probability": 0.3032 + }, + { + "start": 7933.98, + "end": 7934.86, + "probability": 0.6204 + }, + { + "start": 7934.96, + "end": 7937.7, + "probability": 0.7643 + }, + { + "start": 7937.7, + "end": 7940.44, + "probability": 0.1616 + }, + { + "start": 7941.06, + "end": 7944.52, + "probability": 0.3627 + }, + { + "start": 7948.48, + "end": 7950.72, + "probability": 0.1239 + }, + { + "start": 7950.72, + "end": 7951.78, + "probability": 0.0307 + }, + { + "start": 7952.3, + "end": 7954.06, + "probability": 0.8947 + }, + { + "start": 7954.86, + "end": 7955.18, + "probability": 0.4238 + }, + { + "start": 7955.18, + "end": 7957.54, + "probability": 0.9437 + }, + { + "start": 7957.68, + "end": 7958.14, + "probability": 0.4834 + }, + { + "start": 7958.14, + "end": 7958.32, + "probability": 0.0501 + }, + { + "start": 7958.42, + "end": 7959.46, + "probability": 0.7531 + }, + { + "start": 7959.54, + "end": 7960.47, + "probability": 0.9791 + }, + { + "start": 7961.08, + "end": 7961.24, + "probability": 0.6824 + }, + { + "start": 7961.62, + "end": 7962.78, + "probability": 0.6143 + }, + { + "start": 7962.9, + "end": 7964.22, + "probability": 0.7286 + }, + { + "start": 7965.36, + "end": 7965.68, + "probability": 0.6346 + }, + { + "start": 7965.68, + "end": 7968.66, + "probability": 0.8223 + }, + { + "start": 7968.74, + "end": 7974.78, + "probability": 0.8989 + }, + { + "start": 7975.3, + "end": 7976.84, + "probability": 0.944 + }, + { + "start": 7977.48, + "end": 7979.42, + "probability": 0.97 + }, + { + "start": 7979.52, + "end": 7979.68, + "probability": 0.8209 + }, + { + "start": 7979.76, + "end": 7984.52, + "probability": 0.8477 + }, + { + "start": 7984.8, + "end": 7986.57, + "probability": 0.9872 + }, + { + "start": 7986.72, + "end": 7987.58, + "probability": 0.4705 + }, + { + "start": 7987.74, + "end": 7988.38, + "probability": 0.9253 + }, + { + "start": 7988.8, + "end": 7988.94, + "probability": 0.3636 + }, + { + "start": 7989.16, + "end": 7989.8, + "probability": 0.8151 + }, + { + "start": 7989.96, + "end": 7991.4, + "probability": 0.9839 + }, + { + "start": 7991.52, + "end": 7992.4, + "probability": 0.8804 + }, + { + "start": 7992.5, + "end": 7994.3, + "probability": 0.9209 + }, + { + "start": 7994.44, + "end": 7996.36, + "probability": 0.9783 + }, + { + "start": 7997.6, + "end": 7998.0, + "probability": 0.0071 + }, + { + "start": 7998.3, + "end": 8000.04, + "probability": 0.8307 + }, + { + "start": 8000.5, + "end": 8002.16, + "probability": 0.6218 + }, + { + "start": 8002.2, + "end": 8005.28, + "probability": 0.8704 + }, + { + "start": 8005.92, + "end": 8007.96, + "probability": 0.739 + }, + { + "start": 8008.3, + "end": 8010.2, + "probability": 0.8724 + }, + { + "start": 8010.34, + "end": 8011.7, + "probability": 0.9229 + }, + { + "start": 8011.98, + "end": 8016.86, + "probability": 0.7371 + }, + { + "start": 8017.34, + "end": 8021.02, + "probability": 0.7656 + }, + { + "start": 8021.44, + "end": 8024.6, + "probability": 0.9243 + }, + { + "start": 8025.86, + "end": 8028.78, + "probability": 0.979 + }, + { + "start": 8028.78, + "end": 8033.04, + "probability": 0.9738 + }, + { + "start": 8033.26, + "end": 8036.54, + "probability": 0.9855 + }, + { + "start": 8037.08, + "end": 8040.72, + "probability": 0.9972 + }, + { + "start": 8040.72, + "end": 8045.24, + "probability": 0.9991 + }, + { + "start": 8046.1, + "end": 8049.0, + "probability": 0.9712 + }, + { + "start": 8049.16, + "end": 8049.8, + "probability": 0.5246 + }, + { + "start": 8050.18, + "end": 8055.76, + "probability": 0.9632 + }, + { + "start": 8056.2, + "end": 8060.12, + "probability": 0.7843 + }, + { + "start": 8060.9, + "end": 8065.02, + "probability": 0.9371 + }, + { + "start": 8065.22, + "end": 8065.84, + "probability": 0.8716 + }, + { + "start": 8065.92, + "end": 8067.88, + "probability": 0.9449 + }, + { + "start": 8068.48, + "end": 8073.2, + "probability": 0.9886 + }, + { + "start": 8074.66, + "end": 8076.74, + "probability": 0.9833 + }, + { + "start": 8077.66, + "end": 8082.36, + "probability": 0.8055 + }, + { + "start": 8083.36, + "end": 8087.58, + "probability": 0.991 + }, + { + "start": 8087.64, + "end": 8088.38, + "probability": 0.8785 + }, + { + "start": 8089.06, + "end": 8092.38, + "probability": 0.9784 + }, + { + "start": 8092.38, + "end": 8096.98, + "probability": 0.9609 + }, + { + "start": 8097.98, + "end": 8100.58, + "probability": 0.6605 + }, + { + "start": 8101.94, + "end": 8103.48, + "probability": 0.7551 + }, + { + "start": 8103.68, + "end": 8107.9, + "probability": 0.6463 + }, + { + "start": 8108.58, + "end": 8110.86, + "probability": 0.978 + }, + { + "start": 8110.98, + "end": 8115.28, + "probability": 0.9465 + }, + { + "start": 8116.0, + "end": 8117.78, + "probability": 0.9943 + }, + { + "start": 8118.7, + "end": 8119.9, + "probability": 0.5673 + }, + { + "start": 8120.02, + "end": 8120.82, + "probability": 0.7669 + }, + { + "start": 8120.84, + "end": 8122.96, + "probability": 0.9146 + }, + { + "start": 8123.92, + "end": 8126.38, + "probability": 0.8977 + }, + { + "start": 8126.72, + "end": 8130.6, + "probability": 0.9797 + }, + { + "start": 8130.8, + "end": 8134.84, + "probability": 0.9528 + }, + { + "start": 8135.18, + "end": 8136.3, + "probability": 0.8282 + }, + { + "start": 8136.76, + "end": 8138.04, + "probability": 0.8799 + }, + { + "start": 8138.16, + "end": 8138.66, + "probability": 0.573 + }, + { + "start": 8138.88, + "end": 8139.94, + "probability": 0.783 + }, + { + "start": 8140.06, + "end": 8143.12, + "probability": 0.9955 + }, + { + "start": 8143.12, + "end": 8146.26, + "probability": 0.9497 + }, + { + "start": 8146.36, + "end": 8146.96, + "probability": 0.7458 + }, + { + "start": 8147.28, + "end": 8150.22, + "probability": 0.9805 + }, + { + "start": 8150.22, + "end": 8150.74, + "probability": 0.6794 + }, + { + "start": 8151.5, + "end": 8151.5, + "probability": 0.2678 + }, + { + "start": 8151.5, + "end": 8151.92, + "probability": 0.7954 + }, + { + "start": 8152.04, + "end": 8153.04, + "probability": 0.9144 + }, + { + "start": 8153.22, + "end": 8155.86, + "probability": 0.9037 + }, + { + "start": 8155.92, + "end": 8156.18, + "probability": 0.6262 + }, + { + "start": 8156.26, + "end": 8161.22, + "probability": 0.9978 + }, + { + "start": 8162.1, + "end": 8162.6, + "probability": 0.7242 + }, + { + "start": 8163.0, + "end": 8169.58, + "probability": 0.9365 + }, + { + "start": 8169.82, + "end": 8171.22, + "probability": 0.8114 + }, + { + "start": 8171.36, + "end": 8172.38, + "probability": 0.8927 + }, + { + "start": 8172.44, + "end": 8173.88, + "probability": 0.9555 + }, + { + "start": 8174.04, + "end": 8177.84, + "probability": 0.946 + }, + { + "start": 8177.9, + "end": 8183.42, + "probability": 0.4516 + }, + { + "start": 8185.36, + "end": 8191.94, + "probability": 0.0205 + }, + { + "start": 8194.14, + "end": 8194.98, + "probability": 0.4102 + }, + { + "start": 8209.9, + "end": 8210.66, + "probability": 0.025 + }, + { + "start": 8210.84, + "end": 8211.98, + "probability": 0.8302 + }, + { + "start": 8212.24, + "end": 8212.62, + "probability": 0.9297 + }, + { + "start": 8212.74, + "end": 8213.82, + "probability": 0.9421 + }, + { + "start": 8213.86, + "end": 8216.8, + "probability": 0.9824 + }, + { + "start": 8217.26, + "end": 8218.52, + "probability": 0.2249 + }, + { + "start": 8219.3, + "end": 8220.5, + "probability": 0.4779 + }, + { + "start": 8223.3, + "end": 8231.24, + "probability": 0.0455 + }, + { + "start": 8231.42, + "end": 8232.2, + "probability": 0.0189 + }, + { + "start": 8233.54, + "end": 8233.94, + "probability": 0.0062 + }, + { + "start": 8233.94, + "end": 8233.94, + "probability": 0.0118 + }, + { + "start": 8233.94, + "end": 8233.94, + "probability": 0.0495 + }, + { + "start": 8233.94, + "end": 8233.94, + "probability": 0.0365 + }, + { + "start": 8233.94, + "end": 8233.94, + "probability": 0.0349 + }, + { + "start": 8233.94, + "end": 8235.52, + "probability": 0.1885 + }, + { + "start": 8235.68, + "end": 8237.24, + "probability": 0.018 + }, + { + "start": 8237.24, + "end": 8237.64, + "probability": 0.0829 + }, + { + "start": 8237.64, + "end": 8240.32, + "probability": 0.0238 + }, + { + "start": 8240.46, + "end": 8242.92, + "probability": 0.2795 + }, + { + "start": 8242.92, + "end": 8242.92, + "probability": 0.0212 + }, + { + "start": 8242.92, + "end": 8244.98, + "probability": 0.0245 + }, + { + "start": 8245.0, + "end": 8245.0, + "probability": 0.0 + }, + { + "start": 8245.0, + "end": 8245.0, + "probability": 0.0 + }, + { + "start": 8245.0, + "end": 8245.0, + "probability": 0.0 + }, + { + "start": 8245.16, + "end": 8245.4, + "probability": 0.1395 + }, + { + "start": 8245.4, + "end": 8245.4, + "probability": 0.4518 + }, + { + "start": 8245.5, + "end": 8245.8, + "probability": 0.3882 + }, + { + "start": 8247.12, + "end": 8249.86, + "probability": 0.185 + }, + { + "start": 8251.74, + "end": 8253.87, + "probability": 0.7113 + }, + { + "start": 8254.64, + "end": 8256.34, + "probability": 0.8442 + }, + { + "start": 8258.54, + "end": 8259.94, + "probability": 0.885 + }, + { + "start": 8260.04, + "end": 8261.14, + "probability": 0.7276 + }, + { + "start": 8262.17, + "end": 8267.22, + "probability": 0.9933 + }, + { + "start": 8268.39, + "end": 8270.16, + "probability": 0.981 + }, + { + "start": 8270.28, + "end": 8272.76, + "probability": 0.651 + }, + { + "start": 8273.22, + "end": 8273.92, + "probability": 0.5521 + }, + { + "start": 8274.68, + "end": 8277.2, + "probability": 0.1268 + }, + { + "start": 8277.2, + "end": 8278.22, + "probability": 0.243 + }, + { + "start": 8278.38, + "end": 8279.94, + "probability": 0.9579 + }, + { + "start": 8281.0, + "end": 8283.02, + "probability": 0.9911 + }, + { + "start": 8283.24, + "end": 8285.18, + "probability": 0.9667 + }, + { + "start": 8286.0, + "end": 8287.72, + "probability": 0.9829 + }, + { + "start": 8288.38, + "end": 8290.12, + "probability": 0.995 + }, + { + "start": 8290.34, + "end": 8290.76, + "probability": 0.6945 + }, + { + "start": 8290.92, + "end": 8293.74, + "probability": 0.9746 + }, + { + "start": 8294.98, + "end": 8295.78, + "probability": 0.9006 + }, + { + "start": 8296.86, + "end": 8302.0, + "probability": 0.9969 + }, + { + "start": 8302.9, + "end": 8305.86, + "probability": 0.9875 + }, + { + "start": 8306.42, + "end": 8311.22, + "probability": 0.9948 + }, + { + "start": 8312.44, + "end": 8313.36, + "probability": 0.8661 + }, + { + "start": 8314.08, + "end": 8318.34, + "probability": 0.9912 + }, + { + "start": 8318.76, + "end": 8319.74, + "probability": 0.7702 + }, + { + "start": 8320.34, + "end": 8322.0, + "probability": 0.8077 + }, + { + "start": 8322.78, + "end": 8324.06, + "probability": 0.8059 + }, + { + "start": 8324.08, + "end": 8325.06, + "probability": 0.8765 + }, + { + "start": 8325.24, + "end": 8327.5, + "probability": 0.9768 + }, + { + "start": 8328.68, + "end": 8331.06, + "probability": 0.7957 + }, + { + "start": 8331.72, + "end": 8333.14, + "probability": 0.9856 + }, + { + "start": 8333.26, + "end": 8336.52, + "probability": 0.9829 + }, + { + "start": 8337.8, + "end": 8339.26, + "probability": 0.9913 + }, + { + "start": 8339.26, + "end": 8343.02, + "probability": 0.9552 + }, + { + "start": 8343.04, + "end": 8343.52, + "probability": 0.7121 + }, + { + "start": 8343.56, + "end": 8344.6, + "probability": 0.9034 + }, + { + "start": 8344.66, + "end": 8345.08, + "probability": 0.5832 + }, + { + "start": 8346.44, + "end": 8349.86, + "probability": 0.6226 + }, + { + "start": 8350.42, + "end": 8355.8, + "probability": 0.978 + }, + { + "start": 8355.88, + "end": 8356.58, + "probability": 0.7819 + }, + { + "start": 8356.78, + "end": 8359.64, + "probability": 0.9773 + }, + { + "start": 8359.78, + "end": 8360.13, + "probability": 0.71 + }, + { + "start": 8361.24, + "end": 8361.8, + "probability": 0.733 + }, + { + "start": 8362.32, + "end": 8364.06, + "probability": 0.9625 + }, + { + "start": 8364.22, + "end": 8364.7, + "probability": 0.7925 + }, + { + "start": 8365.12, + "end": 8366.12, + "probability": 0.9951 + }, + { + "start": 8367.56, + "end": 8368.44, + "probability": 0.7461 + }, + { + "start": 8368.68, + "end": 8371.66, + "probability": 0.9897 + }, + { + "start": 8371.78, + "end": 8373.24, + "probability": 0.9966 + }, + { + "start": 8373.66, + "end": 8374.52, + "probability": 0.1714 + }, + { + "start": 8375.0, + "end": 8375.0, + "probability": 0.1162 + }, + { + "start": 8375.0, + "end": 8377.43, + "probability": 0.7223 + }, + { + "start": 8378.28, + "end": 8379.84, + "probability": 0.8452 + }, + { + "start": 8379.98, + "end": 8384.18, + "probability": 0.8785 + }, + { + "start": 8384.24, + "end": 8385.48, + "probability": 0.8698 + }, + { + "start": 8385.54, + "end": 8385.78, + "probability": 0.4448 + }, + { + "start": 8385.9, + "end": 8386.9, + "probability": 0.9519 + }, + { + "start": 8387.46, + "end": 8388.16, + "probability": 0.8096 + }, + { + "start": 8388.3, + "end": 8391.26, + "probability": 0.9417 + }, + { + "start": 8391.26, + "end": 8394.12, + "probability": 0.9816 + }, + { + "start": 8394.62, + "end": 8395.12, + "probability": 0.7374 + }, + { + "start": 8395.52, + "end": 8396.0, + "probability": 0.9418 + }, + { + "start": 8396.48, + "end": 8397.36, + "probability": 0.7129 + }, + { + "start": 8397.4, + "end": 8399.3, + "probability": 0.9202 + }, + { + "start": 8399.8, + "end": 8401.4, + "probability": 0.7956 + }, + { + "start": 8401.94, + "end": 8404.72, + "probability": 0.9536 + }, + { + "start": 8405.3, + "end": 8408.12, + "probability": 0.994 + }, + { + "start": 8408.6, + "end": 8409.62, + "probability": 0.7959 + }, + { + "start": 8410.3, + "end": 8411.1, + "probability": 0.6854 + }, + { + "start": 8411.66, + "end": 8414.62, + "probability": 0.989 + }, + { + "start": 8414.96, + "end": 8418.94, + "probability": 0.8343 + }, + { + "start": 8419.44, + "end": 8422.56, + "probability": 0.9966 + }, + { + "start": 8422.66, + "end": 8423.32, + "probability": 0.5085 + }, + { + "start": 8423.74, + "end": 8427.96, + "probability": 0.9941 + }, + { + "start": 8428.52, + "end": 8430.34, + "probability": 0.6484 + }, + { + "start": 8431.12, + "end": 8432.68, + "probability": 0.1 + }, + { + "start": 8432.76, + "end": 8433.75, + "probability": 0.9182 + }, + { + "start": 8434.01, + "end": 8436.59, + "probability": 0.833 + }, + { + "start": 8437.05, + "end": 8437.57, + "probability": 0.4319 + }, + { + "start": 8437.85, + "end": 8438.23, + "probability": 0.7307 + }, + { + "start": 8438.35, + "end": 8438.73, + "probability": 0.771 + }, + { + "start": 8438.99, + "end": 8443.23, + "probability": 0.9895 + }, + { + "start": 8443.61, + "end": 8444.01, + "probability": 0.9039 + }, + { + "start": 8444.15, + "end": 8444.69, + "probability": 0.7335 + }, + { + "start": 8445.09, + "end": 8448.67, + "probability": 0.9707 + }, + { + "start": 8449.03, + "end": 8449.77, + "probability": 0.7377 + }, + { + "start": 8450.11, + "end": 8451.31, + "probability": 0.8909 + }, + { + "start": 8451.41, + "end": 8451.77, + "probability": 0.8538 + }, + { + "start": 8451.85, + "end": 8452.67, + "probability": 0.9565 + }, + { + "start": 8452.97, + "end": 8455.01, + "probability": 0.9955 + }, + { + "start": 8455.39, + "end": 8458.31, + "probability": 0.8852 + }, + { + "start": 8458.37, + "end": 8458.61, + "probability": 0.7368 + }, + { + "start": 8459.65, + "end": 8460.05, + "probability": 0.3752 + }, + { + "start": 8460.19, + "end": 8461.75, + "probability": 0.8795 + }, + { + "start": 8464.61, + "end": 8468.75, + "probability": 0.985 + }, + { + "start": 8468.89, + "end": 8471.21, + "probability": 0.9586 + }, + { + "start": 8471.21, + "end": 8473.61, + "probability": 0.8092 + }, + { + "start": 8474.17, + "end": 8475.31, + "probability": 0.6558 + }, + { + "start": 8475.57, + "end": 8478.64, + "probability": 0.6659 + }, + { + "start": 8478.79, + "end": 8479.43, + "probability": 0.4503 + }, + { + "start": 8481.23, + "end": 8482.05, + "probability": 0.2054 + }, + { + "start": 8489.99, + "end": 8490.71, + "probability": 0.1725 + }, + { + "start": 8493.05, + "end": 8493.77, + "probability": 0.1415 + }, + { + "start": 8497.31, + "end": 8499.69, + "probability": 0.7668 + }, + { + "start": 8499.89, + "end": 8501.89, + "probability": 0.9248 + }, + { + "start": 8501.89, + "end": 8504.43, + "probability": 0.8156 + }, + { + "start": 8508.93, + "end": 8512.93, + "probability": 0.5798 + }, + { + "start": 8514.69, + "end": 8516.77, + "probability": 0.0247 + }, + { + "start": 8524.47, + "end": 8529.85, + "probability": 0.021 + }, + { + "start": 8530.13, + "end": 8535.1, + "probability": 0.013 + }, + { + "start": 8538.05, + "end": 8539.57, + "probability": 0.2697 + }, + { + "start": 8539.57, + "end": 8540.57, + "probability": 0.0263 + }, + { + "start": 8542.59, + "end": 8543.69, + "probability": 0.007 + }, + { + "start": 8558.67, + "end": 8559.45, + "probability": 0.0655 + }, + { + "start": 8560.09, + "end": 8561.63, + "probability": 0.2388 + }, + { + "start": 8561.63, + "end": 8566.01, + "probability": 0.1659 + }, + { + "start": 8566.55, + "end": 8572.05, + "probability": 0.0237 + }, + { + "start": 8573.36, + "end": 8576.35, + "probability": 0.0473 + }, + { + "start": 8576.83, + "end": 8577.85, + "probability": 0.3861 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8578.0, + "end": 8578.0, + "probability": 0.0 + }, + { + "start": 8602.76, + "end": 8604.88, + "probability": 0.0414 + }, + { + "start": 8604.88, + "end": 8610.9, + "probability": 0.0633 + }, + { + "start": 8619.5, + "end": 8619.76, + "probability": 0.0045 + }, + { + "start": 8619.76, + "end": 8623.32, + "probability": 0.0502 + }, + { + "start": 8623.32, + "end": 8623.58, + "probability": 0.1691 + }, + { + "start": 8624.48, + "end": 8626.02, + "probability": 0.0676 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.0, + "end": 8703.0, + "probability": 0.0 + }, + { + "start": 8703.1, + "end": 8704.1, + "probability": 0.0423 + }, + { + "start": 8704.1, + "end": 8704.1, + "probability": 0.1193 + }, + { + "start": 8704.1, + "end": 8704.1, + "probability": 0.0585 + }, + { + "start": 8704.1, + "end": 8704.86, + "probability": 0.1229 + }, + { + "start": 8704.86, + "end": 8707.3, + "probability": 0.6934 + }, + { + "start": 8707.46, + "end": 8712.24, + "probability": 0.9643 + }, + { + "start": 8713.02, + "end": 8713.62, + "probability": 0.5907 + }, + { + "start": 8713.74, + "end": 8714.46, + "probability": 0.9124 + }, + { + "start": 8714.62, + "end": 8720.46, + "probability": 0.9583 + }, + { + "start": 8720.64, + "end": 8721.96, + "probability": 0.7313 + }, + { + "start": 8722.46, + "end": 8726.3, + "probability": 0.9656 + }, + { + "start": 8726.3, + "end": 8729.6, + "probability": 0.972 + }, + { + "start": 8729.6, + "end": 8733.0, + "probability": 0.9941 + }, + { + "start": 8733.66, + "end": 8737.58, + "probability": 0.9932 + }, + { + "start": 8738.18, + "end": 8742.4, + "probability": 0.8517 + }, + { + "start": 8743.0, + "end": 8745.82, + "probability": 0.9634 + }, + { + "start": 8745.9, + "end": 8747.6, + "probability": 0.9597 + }, + { + "start": 8748.04, + "end": 8750.5, + "probability": 0.9887 + }, + { + "start": 8750.64, + "end": 8751.12, + "probability": 0.5753 + }, + { + "start": 8751.8, + "end": 8752.56, + "probability": 0.7579 + }, + { + "start": 8752.96, + "end": 8755.94, + "probability": 0.6364 + }, + { + "start": 8756.1, + "end": 8757.36, + "probability": 0.7138 + }, + { + "start": 8774.74, + "end": 8776.86, + "probability": 0.7352 + }, + { + "start": 8778.3, + "end": 8781.66, + "probability": 0.7738 + }, + { + "start": 8782.54, + "end": 8785.09, + "probability": 0.9004 + }, + { + "start": 8786.68, + "end": 8788.64, + "probability": 0.9619 + }, + { + "start": 8789.08, + "end": 8794.44, + "probability": 0.9496 + }, + { + "start": 8795.82, + "end": 8799.9, + "probability": 0.9734 + }, + { + "start": 8801.18, + "end": 8804.44, + "probability": 0.7889 + }, + { + "start": 8808.0, + "end": 8809.26, + "probability": 0.6618 + }, + { + "start": 8810.14, + "end": 8811.36, + "probability": 0.8002 + }, + { + "start": 8812.02, + "end": 8815.3, + "probability": 0.9535 + }, + { + "start": 8817.06, + "end": 8820.74, + "probability": 0.9944 + }, + { + "start": 8821.72, + "end": 8823.86, + "probability": 0.7664 + }, + { + "start": 8823.98, + "end": 8825.72, + "probability": 0.6142 + }, + { + "start": 8827.76, + "end": 8827.96, + "probability": 0.0228 + }, + { + "start": 8827.96, + "end": 8828.58, + "probability": 0.1802 + }, + { + "start": 8829.08, + "end": 8830.12, + "probability": 0.4045 + }, + { + "start": 8830.12, + "end": 8831.98, + "probability": 0.5425 + }, + { + "start": 8832.2, + "end": 8835.52, + "probability": 0.9719 + }, + { + "start": 8835.8, + "end": 8837.54, + "probability": 0.7503 + }, + { + "start": 8837.86, + "end": 8839.36, + "probability": 0.7254 + }, + { + "start": 8840.32, + "end": 8841.5, + "probability": 0.472 + }, + { + "start": 8841.98, + "end": 8841.98, + "probability": 0.4954 + }, + { + "start": 8841.98, + "end": 8842.56, + "probability": 0.6141 + }, + { + "start": 8842.56, + "end": 8845.7, + "probability": 0.6922 + }, + { + "start": 8845.7, + "end": 8850.36, + "probability": 0.8434 + }, + { + "start": 8850.58, + "end": 8851.58, + "probability": 0.9022 + }, + { + "start": 8851.7, + "end": 8855.26, + "probability": 0.8455 + }, + { + "start": 8855.32, + "end": 8855.58, + "probability": 0.1109 + }, + { + "start": 8855.58, + "end": 8858.3, + "probability": 0.8498 + }, + { + "start": 8858.36, + "end": 8858.7, + "probability": 0.3158 + }, + { + "start": 8858.86, + "end": 8860.76, + "probability": 0.7037 + }, + { + "start": 8860.76, + "end": 8862.9, + "probability": 0.9577 + }, + { + "start": 8862.98, + "end": 8863.7, + "probability": 0.9133 + }, + { + "start": 8863.76, + "end": 8864.58, + "probability": 0.8757 + }, + { + "start": 8865.1, + "end": 8869.24, + "probability": 0.9678 + }, + { + "start": 8869.38, + "end": 8873.48, + "probability": 0.6839 + }, + { + "start": 8873.58, + "end": 8876.04, + "probability": 0.7607 + }, + { + "start": 8876.96, + "end": 8879.76, + "probability": 0.5533 + }, + { + "start": 8880.46, + "end": 8883.42, + "probability": 0.9783 + }, + { + "start": 8884.04, + "end": 8884.96, + "probability": 0.8823 + }, + { + "start": 8885.68, + "end": 8887.26, + "probability": 0.5637 + }, + { + "start": 8887.28, + "end": 8890.24, + "probability": 0.9238 + }, + { + "start": 8890.94, + "end": 8891.9, + "probability": 0.9979 + }, + { + "start": 8892.42, + "end": 8893.82, + "probability": 0.8378 + }, + { + "start": 8894.08, + "end": 8896.98, + "probability": 0.8885 + }, + { + "start": 8897.38, + "end": 8899.06, + "probability": 0.9158 + }, + { + "start": 8899.6, + "end": 8900.1, + "probability": 0.8806 + }, + { + "start": 8900.14, + "end": 8901.36, + "probability": 0.9781 + }, + { + "start": 8901.86, + "end": 8904.46, + "probability": 0.9658 + }, + { + "start": 8904.46, + "end": 8909.8, + "probability": 0.9896 + }, + { + "start": 8909.9, + "end": 8913.3, + "probability": 0.9832 + }, + { + "start": 8914.02, + "end": 8915.54, + "probability": 0.8137 + }, + { + "start": 8916.26, + "end": 8919.34, + "probability": 0.7487 + }, + { + "start": 8919.7, + "end": 8922.1, + "probability": 0.984 + }, + { + "start": 8922.74, + "end": 8924.88, + "probability": 0.9786 + }, + { + "start": 8925.48, + "end": 8926.42, + "probability": 0.6227 + }, + { + "start": 8927.18, + "end": 8933.66, + "probability": 0.9932 + }, + { + "start": 8933.8, + "end": 8934.7, + "probability": 0.6326 + }, + { + "start": 8935.28, + "end": 8935.88, + "probability": 0.8776 + }, + { + "start": 8936.92, + "end": 8941.22, + "probability": 0.9949 + }, + { + "start": 8941.22, + "end": 8942.88, + "probability": 0.6645 + }, + { + "start": 8943.32, + "end": 8946.82, + "probability": 0.3729 + }, + { + "start": 8947.72, + "end": 8952.94, + "probability": 0.2327 + }, + { + "start": 8952.96, + "end": 8953.9, + "probability": 0.667 + }, + { + "start": 8955.6, + "end": 8956.54, + "probability": 0.1969 + }, + { + "start": 8959.6, + "end": 8960.84, + "probability": 0.1449 + }, + { + "start": 8960.84, + "end": 8962.96, + "probability": 0.4993 + }, + { + "start": 8963.64, + "end": 8966.88, + "probability": 0.5647 + }, + { + "start": 8966.88, + "end": 8968.04, + "probability": 0.6615 + }, + { + "start": 8968.04, + "end": 8968.08, + "probability": 0.039 + }, + { + "start": 8968.08, + "end": 8970.66, + "probability": 0.8647 + }, + { + "start": 8970.78, + "end": 8973.12, + "probability": 0.8759 + }, + { + "start": 8974.36, + "end": 8976.0, + "probability": 0.656 + }, + { + "start": 8976.2, + "end": 8978.3, + "probability": 0.9807 + }, + { + "start": 8978.56, + "end": 8979.84, + "probability": 0.4993 + }, + { + "start": 8980.14, + "end": 8980.28, + "probability": 0.2864 + }, + { + "start": 8981.02, + "end": 8981.36, + "probability": 0.1454 + }, + { + "start": 8985.52, + "end": 8985.82, + "probability": 0.3665 + }, + { + "start": 8985.82, + "end": 8987.98, + "probability": 0.4506 + }, + { + "start": 8989.22, + "end": 8990.25, + "probability": 0.5589 + }, + { + "start": 8990.5, + "end": 8992.32, + "probability": 0.9795 + }, + { + "start": 8992.56, + "end": 8994.46, + "probability": 0.7823 + }, + { + "start": 8994.6, + "end": 8994.96, + "probability": 0.391 + }, + { + "start": 8995.68, + "end": 8997.84, + "probability": 0.3539 + }, + { + "start": 8998.32, + "end": 8999.72, + "probability": 0.6835 + }, + { + "start": 9013.28, + "end": 9018.22, + "probability": 0.9326 + }, + { + "start": 9018.24, + "end": 9021.86, + "probability": 0.9462 + }, + { + "start": 9024.65, + "end": 9026.72, + "probability": 0.783 + }, + { + "start": 9027.08, + "end": 9027.18, + "probability": 0.4334 + }, + { + "start": 9029.02, + "end": 9032.36, + "probability": 0.1846 + }, + { + "start": 9042.38, + "end": 9043.86, + "probability": 0.0533 + }, + { + "start": 9050.58, + "end": 9056.58, + "probability": 0.8712 + }, + { + "start": 9056.72, + "end": 9058.34, + "probability": 0.9545 + }, + { + "start": 9059.06, + "end": 9060.64, + "probability": 0.8381 + }, + { + "start": 9060.76, + "end": 9065.5, + "probability": 0.9897 + }, + { + "start": 9065.92, + "end": 9071.38, + "probability": 0.9874 + }, + { + "start": 9071.38, + "end": 9076.5, + "probability": 0.9989 + }, + { + "start": 9077.02, + "end": 9080.38, + "probability": 0.9883 + }, + { + "start": 9080.38, + "end": 9084.4, + "probability": 0.999 + }, + { + "start": 9085.12, + "end": 9086.5, + "probability": 0.6866 + }, + { + "start": 9086.86, + "end": 9089.92, + "probability": 0.9702 + }, + { + "start": 9090.08, + "end": 9091.5, + "probability": 0.7434 + }, + { + "start": 9092.16, + "end": 9093.76, + "probability": 0.9907 + }, + { + "start": 9093.9, + "end": 9094.24, + "probability": 0.6558 + }, + { + "start": 9094.32, + "end": 9095.56, + "probability": 0.9948 + }, + { + "start": 9095.7, + "end": 9096.14, + "probability": 0.9176 + }, + { + "start": 9096.24, + "end": 9096.58, + "probability": 0.9463 + }, + { + "start": 9096.66, + "end": 9097.84, + "probability": 0.6107 + }, + { + "start": 9097.94, + "end": 9100.28, + "probability": 0.9805 + }, + { + "start": 9100.94, + "end": 9103.04, + "probability": 0.9854 + }, + { + "start": 9103.58, + "end": 9104.98, + "probability": 0.9798 + }, + { + "start": 9105.1, + "end": 9107.88, + "probability": 0.9912 + }, + { + "start": 9108.34, + "end": 9109.26, + "probability": 0.8813 + }, + { + "start": 9109.36, + "end": 9112.74, + "probability": 0.9271 + }, + { + "start": 9113.3, + "end": 9114.96, + "probability": 0.9115 + }, + { + "start": 9115.22, + "end": 9118.34, + "probability": 0.991 + }, + { + "start": 9118.78, + "end": 9120.41, + "probability": 0.9258 + }, + { + "start": 9120.54, + "end": 9123.1, + "probability": 0.8142 + }, + { + "start": 9123.6, + "end": 9126.88, + "probability": 0.9277 + }, + { + "start": 9127.08, + "end": 9131.54, + "probability": 0.9373 + }, + { + "start": 9131.92, + "end": 9133.44, + "probability": 0.8132 + }, + { + "start": 9133.98, + "end": 9134.36, + "probability": 0.6932 + }, + { + "start": 9134.5, + "end": 9136.16, + "probability": 0.7698 + }, + { + "start": 9136.5, + "end": 9139.0, + "probability": 0.9894 + }, + { + "start": 9139.3, + "end": 9140.98, + "probability": 0.9657 + }, + { + "start": 9141.44, + "end": 9146.94, + "probability": 0.9205 + }, + { + "start": 9147.46, + "end": 9149.98, + "probability": 0.9905 + }, + { + "start": 9150.14, + "end": 9152.78, + "probability": 0.8545 + }, + { + "start": 9153.52, + "end": 9157.96, + "probability": 0.9946 + }, + { + "start": 9158.34, + "end": 9160.58, + "probability": 0.9445 + }, + { + "start": 9161.44, + "end": 9164.94, + "probability": 0.9817 + }, + { + "start": 9165.04, + "end": 9166.96, + "probability": 0.9782 + }, + { + "start": 9167.46, + "end": 9170.66, + "probability": 0.9953 + }, + { + "start": 9171.08, + "end": 9173.96, + "probability": 0.9648 + }, + { + "start": 9174.04, + "end": 9176.22, + "probability": 0.9692 + }, + { + "start": 9176.82, + "end": 9178.54, + "probability": 0.6341 + }, + { + "start": 9178.54, + "end": 9178.94, + "probability": 0.5453 + }, + { + "start": 9179.02, + "end": 9182.9, + "probability": 0.9589 + }, + { + "start": 9182.9, + "end": 9187.22, + "probability": 0.8396 + }, + { + "start": 9187.82, + "end": 9190.26, + "probability": 0.9536 + }, + { + "start": 9190.36, + "end": 9193.1, + "probability": 0.9307 + }, + { + "start": 9193.1, + "end": 9196.36, + "probability": 0.9893 + }, + { + "start": 9196.92, + "end": 9201.42, + "probability": 0.9881 + }, + { + "start": 9201.98, + "end": 9202.62, + "probability": 0.7596 + }, + { + "start": 9203.12, + "end": 9206.68, + "probability": 0.9854 + }, + { + "start": 9207.08, + "end": 9211.44, + "probability": 0.9929 + }, + { + "start": 9212.08, + "end": 9214.66, + "probability": 0.9834 + }, + { + "start": 9215.2, + "end": 9220.46, + "probability": 0.9218 + }, + { + "start": 9220.82, + "end": 9221.56, + "probability": 0.6322 + }, + { + "start": 9221.98, + "end": 9225.96, + "probability": 0.8088 + }, + { + "start": 9225.96, + "end": 9229.18, + "probability": 0.999 + }, + { + "start": 9229.66, + "end": 9232.4, + "probability": 0.9726 + }, + { + "start": 9232.72, + "end": 9234.34, + "probability": 0.8584 + }, + { + "start": 9234.64, + "end": 9238.3, + "probability": 0.9898 + }, + { + "start": 9238.8, + "end": 9241.86, + "probability": 0.8121 + }, + { + "start": 9241.9, + "end": 9242.9, + "probability": 0.7932 + }, + { + "start": 9243.4, + "end": 9250.98, + "probability": 0.8105 + }, + { + "start": 9251.08, + "end": 9251.42, + "probability": 0.0616 + }, + { + "start": 9251.78, + "end": 9254.22, + "probability": 0.9888 + }, + { + "start": 9254.3, + "end": 9258.4, + "probability": 0.9333 + }, + { + "start": 9258.56, + "end": 9263.68, + "probability": 0.8141 + }, + { + "start": 9264.2, + "end": 9268.16, + "probability": 0.7182 + }, + { + "start": 9268.64, + "end": 9271.84, + "probability": 0.784 + }, + { + "start": 9272.28, + "end": 9274.18, + "probability": 0.9571 + }, + { + "start": 9274.54, + "end": 9277.64, + "probability": 0.899 + }, + { + "start": 9277.64, + "end": 9281.0, + "probability": 0.9651 + }, + { + "start": 9281.48, + "end": 9283.08, + "probability": 0.953 + }, + { + "start": 9283.18, + "end": 9286.58, + "probability": 0.947 + }, + { + "start": 9286.62, + "end": 9289.4, + "probability": 0.9366 + }, + { + "start": 9289.82, + "end": 9292.3, + "probability": 0.9506 + }, + { + "start": 9292.98, + "end": 9297.66, + "probability": 0.9665 + }, + { + "start": 9298.54, + "end": 9302.36, + "probability": 0.8899 + }, + { + "start": 9302.5, + "end": 9305.5, + "probability": 0.9557 + }, + { + "start": 9306.06, + "end": 9308.52, + "probability": 0.8779 + }, + { + "start": 9308.82, + "end": 9311.44, + "probability": 0.9733 + }, + { + "start": 9311.58, + "end": 9312.8, + "probability": 0.7081 + }, + { + "start": 9313.24, + "end": 9315.12, + "probability": 0.9261 + }, + { + "start": 9315.34, + "end": 9316.72, + "probability": 0.9021 + }, + { + "start": 9316.74, + "end": 9317.8, + "probability": 0.9267 + }, + { + "start": 9317.98, + "end": 9319.36, + "probability": 0.9866 + }, + { + "start": 9320.12, + "end": 9323.6, + "probability": 0.9626 + }, + { + "start": 9323.6, + "end": 9326.34, + "probability": 0.998 + }, + { + "start": 9326.4, + "end": 9327.1, + "probability": 0.8445 + }, + { + "start": 9327.52, + "end": 9328.98, + "probability": 0.9401 + }, + { + "start": 9329.12, + "end": 9330.24, + "probability": 0.9871 + }, + { + "start": 9330.46, + "end": 9334.2, + "probability": 0.9141 + }, + { + "start": 9334.3, + "end": 9337.48, + "probability": 0.9281 + }, + { + "start": 9337.48, + "end": 9340.28, + "probability": 0.9917 + }, + { + "start": 9340.42, + "end": 9341.52, + "probability": 0.9438 + }, + { + "start": 9341.7, + "end": 9344.72, + "probability": 0.9485 + }, + { + "start": 9345.68, + "end": 9348.38, + "probability": 0.8608 + }, + { + "start": 9348.48, + "end": 9348.72, + "probability": 0.8742 + }, + { + "start": 9349.2, + "end": 9352.49, + "probability": 0.9938 + }, + { + "start": 9352.94, + "end": 9357.1, + "probability": 0.9966 + }, + { + "start": 9357.42, + "end": 9361.92, + "probability": 0.9923 + }, + { + "start": 9362.04, + "end": 9363.38, + "probability": 0.8316 + }, + { + "start": 9363.48, + "end": 9366.94, + "probability": 0.7881 + }, + { + "start": 9368.52, + "end": 9372.02, + "probability": 0.9517 + }, + { + "start": 9372.02, + "end": 9374.74, + "probability": 0.9201 + }, + { + "start": 9374.92, + "end": 9375.52, + "probability": 0.9259 + }, + { + "start": 9376.04, + "end": 9382.32, + "probability": 0.7209 + }, + { + "start": 9382.86, + "end": 9384.36, + "probability": 0.9109 + }, + { + "start": 9384.92, + "end": 9391.18, + "probability": 0.9912 + }, + { + "start": 9391.18, + "end": 9401.68, + "probability": 0.8916 + }, + { + "start": 9401.68, + "end": 9405.94, + "probability": 0.9933 + }, + { + "start": 9406.08, + "end": 9407.32, + "probability": 0.7523 + }, + { + "start": 9407.42, + "end": 9411.3, + "probability": 0.9447 + }, + { + "start": 9412.12, + "end": 9413.12, + "probability": 0.6436 + }, + { + "start": 9414.0, + "end": 9417.54, + "probability": 0.9984 + }, + { + "start": 9417.92, + "end": 9420.38, + "probability": 0.9914 + }, + { + "start": 9420.7, + "end": 9423.84, + "probability": 0.9498 + }, + { + "start": 9423.84, + "end": 9427.1, + "probability": 0.9987 + }, + { + "start": 9427.52, + "end": 9430.14, + "probability": 0.7432 + }, + { + "start": 9432.86, + "end": 9432.96, + "probability": 0.0359 + }, + { + "start": 9433.34, + "end": 9433.58, + "probability": 0.1577 + }, + { + "start": 9433.58, + "end": 9434.77, + "probability": 0.8537 + }, + { + "start": 9435.82, + "end": 9435.94, + "probability": 0.3351 + }, + { + "start": 9436.04, + "end": 9438.3, + "probability": 0.9514 + }, + { + "start": 9438.76, + "end": 9440.14, + "probability": 0.9738 + }, + { + "start": 9440.6, + "end": 9443.8, + "probability": 0.9807 + }, + { + "start": 9444.12, + "end": 9448.1, + "probability": 0.973 + }, + { + "start": 9448.46, + "end": 9450.28, + "probability": 0.119 + }, + { + "start": 9450.94, + "end": 9452.12, + "probability": 0.981 + }, + { + "start": 9452.12, + "end": 9452.64, + "probability": 0.4867 + }, + { + "start": 9453.67, + "end": 9459.38, + "probability": 0.9956 + }, + { + "start": 9459.76, + "end": 9463.54, + "probability": 0.9979 + }, + { + "start": 9463.8, + "end": 9467.9, + "probability": 0.9985 + }, + { + "start": 9468.32, + "end": 9471.2, + "probability": 0.9036 + }, + { + "start": 9471.7, + "end": 9473.32, + "probability": 0.8626 + }, + { + "start": 9473.48, + "end": 9481.1, + "probability": 0.9399 + }, + { + "start": 9481.24, + "end": 9485.36, + "probability": 0.9941 + }, + { + "start": 9485.76, + "end": 9488.54, + "probability": 0.9009 + }, + { + "start": 9489.08, + "end": 9492.32, + "probability": 0.915 + }, + { + "start": 9492.98, + "end": 9497.48, + "probability": 0.9908 + }, + { + "start": 9497.98, + "end": 9502.9, + "probability": 0.9913 + }, + { + "start": 9502.9, + "end": 9508.2, + "probability": 0.9469 + }, + { + "start": 9508.74, + "end": 9511.46, + "probability": 0.885 + }, + { + "start": 9511.46, + "end": 9514.96, + "probability": 0.9979 + }, + { + "start": 9515.14, + "end": 9517.4, + "probability": 0.8069 + }, + { + "start": 9518.12, + "end": 9519.74, + "probability": 0.9969 + }, + { + "start": 9520.16, + "end": 9521.66, + "probability": 0.9716 + }, + { + "start": 9522.16, + "end": 9525.62, + "probability": 0.6168 + }, + { + "start": 9525.7, + "end": 9528.76, + "probability": 0.9884 + }, + { + "start": 9529.26, + "end": 9532.84, + "probability": 0.8441 + }, + { + "start": 9533.24, + "end": 9536.24, + "probability": 0.9731 + }, + { + "start": 9536.56, + "end": 9538.68, + "probability": 0.8793 + }, + { + "start": 9539.26, + "end": 9542.24, + "probability": 0.9602 + }, + { + "start": 9542.64, + "end": 9546.02, + "probability": 0.932 + }, + { + "start": 9546.02, + "end": 9549.46, + "probability": 0.9954 + }, + { + "start": 9549.46, + "end": 9552.56, + "probability": 0.988 + }, + { + "start": 9553.24, + "end": 9556.18, + "probability": 0.9321 + }, + { + "start": 9556.58, + "end": 9559.58, + "probability": 0.7681 + }, + { + "start": 9559.64, + "end": 9560.02, + "probability": 0.8097 + }, + { + "start": 9560.48, + "end": 9564.52, + "probability": 0.9913 + }, + { + "start": 9564.66, + "end": 9564.96, + "probability": 0.7337 + }, + { + "start": 9565.06, + "end": 9566.4, + "probability": 0.6255 + }, + { + "start": 9566.6, + "end": 9569.78, + "probability": 0.9927 + }, + { + "start": 9569.78, + "end": 9572.44, + "probability": 0.9954 + }, + { + "start": 9572.84, + "end": 9577.72, + "probability": 0.9936 + }, + { + "start": 9578.4, + "end": 9580.84, + "probability": 0.997 + }, + { + "start": 9580.84, + "end": 9584.58, + "probability": 0.8142 + }, + { + "start": 9585.1, + "end": 9589.2, + "probability": 0.9873 + }, + { + "start": 9589.26, + "end": 9592.98, + "probability": 0.9988 + }, + { + "start": 9593.66, + "end": 9597.7, + "probability": 0.9871 + }, + { + "start": 9597.72, + "end": 9600.04, + "probability": 0.9932 + }, + { + "start": 9600.46, + "end": 9602.4, + "probability": 0.9917 + }, + { + "start": 9602.46, + "end": 9603.04, + "probability": 0.6896 + }, + { + "start": 9603.58, + "end": 9605.04, + "probability": 0.7246 + }, + { + "start": 9607.78, + "end": 9611.24, + "probability": 0.9245 + }, + { + "start": 9613.02, + "end": 9615.94, + "probability": 0.8828 + }, + { + "start": 9619.22, + "end": 9619.68, + "probability": 0.6467 + }, + { + "start": 9620.94, + "end": 9622.74, + "probability": 0.1795 + }, + { + "start": 9633.56, + "end": 9637.32, + "probability": 0.8394 + }, + { + "start": 9638.12, + "end": 9640.02, + "probability": 0.8905 + }, + { + "start": 9640.18, + "end": 9642.02, + "probability": 0.4073 + }, + { + "start": 9642.02, + "end": 9644.8, + "probability": 0.8838 + }, + { + "start": 9645.76, + "end": 9651.24, + "probability": 0.9321 + }, + { + "start": 9652.46, + "end": 9652.85, + "probability": 0.7568 + }, + { + "start": 9656.58, + "end": 9657.44, + "probability": 0.3028 + }, + { + "start": 9657.52, + "end": 9658.3, + "probability": 0.3741 + }, + { + "start": 9658.32, + "end": 9658.72, + "probability": 0.7677 + }, + { + "start": 9658.8, + "end": 9659.02, + "probability": 0.323 + }, + { + "start": 9659.16, + "end": 9661.78, + "probability": 0.9906 + }, + { + "start": 9662.54, + "end": 9665.48, + "probability": 0.9987 + }, + { + "start": 9666.44, + "end": 9669.76, + "probability": 0.9874 + }, + { + "start": 9670.72, + "end": 9675.46, + "probability": 0.9953 + }, + { + "start": 9676.3, + "end": 9677.66, + "probability": 0.98 + }, + { + "start": 9678.26, + "end": 9680.78, + "probability": 0.9979 + }, + { + "start": 9680.78, + "end": 9684.24, + "probability": 0.987 + }, + { + "start": 9684.96, + "end": 9685.94, + "probability": 0.9906 + }, + { + "start": 9686.1, + "end": 9689.97, + "probability": 0.9817 + }, + { + "start": 9691.04, + "end": 9694.92, + "probability": 0.8506 + }, + { + "start": 9694.92, + "end": 9699.4, + "probability": 0.8644 + }, + { + "start": 9699.5, + "end": 9701.62, + "probability": 0.9312 + }, + { + "start": 9701.62, + "end": 9704.84, + "probability": 0.9573 + }, + { + "start": 9704.84, + "end": 9707.12, + "probability": 0.9086 + }, + { + "start": 9708.38, + "end": 9715.26, + "probability": 0.9375 + }, + { + "start": 9716.78, + "end": 9719.9, + "probability": 0.9125 + }, + { + "start": 9720.32, + "end": 9724.08, + "probability": 0.758 + }, + { + "start": 9724.66, + "end": 9725.38, + "probability": 0.4525 + }, + { + "start": 9725.44, + "end": 9726.24, + "probability": 0.8821 + }, + { + "start": 9727.1, + "end": 9728.16, + "probability": 0.9229 + }, + { + "start": 9728.28, + "end": 9729.12, + "probability": 0.7931 + }, + { + "start": 9729.32, + "end": 9729.9, + "probability": 0.7111 + }, + { + "start": 9730.16, + "end": 9730.8, + "probability": 0.5962 + }, + { + "start": 9730.94, + "end": 9732.18, + "probability": 0.7585 + }, + { + "start": 9732.32, + "end": 9736.58, + "probability": 0.9924 + }, + { + "start": 9736.58, + "end": 9740.38, + "probability": 0.9958 + }, + { + "start": 9740.38, + "end": 9746.92, + "probability": 0.9748 + }, + { + "start": 9748.36, + "end": 9750.6, + "probability": 0.5492 + }, + { + "start": 9750.84, + "end": 9755.18, + "probability": 0.9791 + }, + { + "start": 9756.34, + "end": 9757.46, + "probability": 0.9898 + }, + { + "start": 9757.52, + "end": 9762.5, + "probability": 0.9884 + }, + { + "start": 9762.92, + "end": 9763.76, + "probability": 0.7819 + }, + { + "start": 9763.88, + "end": 9766.72, + "probability": 0.9974 + }, + { + "start": 9766.72, + "end": 9768.86, + "probability": 0.9653 + }, + { + "start": 9769.86, + "end": 9772.92, + "probability": 0.907 + }, + { + "start": 9773.06, + "end": 9777.02, + "probability": 0.9061 + }, + { + "start": 9777.02, + "end": 9779.64, + "probability": 0.9679 + }, + { + "start": 9780.54, + "end": 9785.1, + "probability": 0.9739 + }, + { + "start": 9785.22, + "end": 9785.58, + "probability": 0.8235 + }, + { + "start": 9785.66, + "end": 9787.62, + "probability": 0.8356 + }, + { + "start": 9788.12, + "end": 9789.82, + "probability": 0.9006 + }, + { + "start": 9790.26, + "end": 9791.02, + "probability": 0.7957 + }, + { + "start": 9791.1, + "end": 9793.17, + "probability": 0.9357 + }, + { + "start": 9793.68, + "end": 9796.44, + "probability": 0.9971 + }, + { + "start": 9797.16, + "end": 9799.36, + "probability": 0.998 + }, + { + "start": 9800.0, + "end": 9801.86, + "probability": 0.9936 + }, + { + "start": 9803.1, + "end": 9803.94, + "probability": 0.999 + }, + { + "start": 9804.3, + "end": 9805.8, + "probability": 0.994 + }, + { + "start": 9806.28, + "end": 9810.18, + "probability": 0.9028 + }, + { + "start": 9810.18, + "end": 9813.48, + "probability": 0.9663 + }, + { + "start": 9815.66, + "end": 9818.8, + "probability": 0.9589 + }, + { + "start": 9818.9, + "end": 9819.2, + "probability": 0.8059 + }, + { + "start": 9819.28, + "end": 9820.86, + "probability": 0.896 + }, + { + "start": 9820.88, + "end": 9822.64, + "probability": 0.9899 + }, + { + "start": 9823.72, + "end": 9826.66, + "probability": 0.9946 + }, + { + "start": 9826.66, + "end": 9829.8, + "probability": 0.9964 + }, + { + "start": 9829.8, + "end": 9835.28, + "probability": 0.9864 + }, + { + "start": 9835.3, + "end": 9837.02, + "probability": 0.9655 + }, + { + "start": 9838.52, + "end": 9839.28, + "probability": 0.3479 + }, + { + "start": 9839.5, + "end": 9843.48, + "probability": 0.937 + }, + { + "start": 9844.42, + "end": 9845.3, + "probability": 0.9187 + }, + { + "start": 9845.6, + "end": 9848.72, + "probability": 0.9578 + }, + { + "start": 9848.82, + "end": 9850.42, + "probability": 0.973 + }, + { + "start": 9851.26, + "end": 9851.72, + "probability": 0.7629 + }, + { + "start": 9852.4, + "end": 9853.98, + "probability": 0.6119 + }, + { + "start": 9854.5, + "end": 9855.52, + "probability": 0.7683 + }, + { + "start": 9857.08, + "end": 9859.46, + "probability": 0.7785 + }, + { + "start": 9859.8, + "end": 9861.58, + "probability": 0.8969 + }, + { + "start": 9861.68, + "end": 9866.12, + "probability": 0.7834 + }, + { + "start": 9866.66, + "end": 9869.62, + "probability": 0.7785 + }, + { + "start": 9870.2, + "end": 9871.64, + "probability": 0.8026 + }, + { + "start": 9872.14, + "end": 9874.5, + "probability": 0.8613 + }, + { + "start": 9875.9, + "end": 9880.18, + "probability": 0.9847 + }, + { + "start": 9880.3, + "end": 9885.12, + "probability": 0.9463 + }, + { + "start": 9885.12, + "end": 9889.7, + "probability": 0.9982 + }, + { + "start": 9890.14, + "end": 9891.56, + "probability": 0.9843 + }, + { + "start": 9892.68, + "end": 9894.76, + "probability": 0.9925 + }, + { + "start": 9894.76, + "end": 9896.98, + "probability": 0.7885 + }, + { + "start": 9897.74, + "end": 9898.9, + "probability": 0.746 + }, + { + "start": 9899.48, + "end": 9901.56, + "probability": 0.8404 + }, + { + "start": 9902.18, + "end": 9905.92, + "probability": 0.939 + }, + { + "start": 9910.06, + "end": 9911.58, + "probability": 0.5338 + }, + { + "start": 9911.7, + "end": 9914.36, + "probability": 0.9778 + }, + { + "start": 9914.36, + "end": 9917.16, + "probability": 0.8866 + }, + { + "start": 9917.3, + "end": 9919.68, + "probability": 0.9858 + }, + { + "start": 9920.4, + "end": 9923.08, + "probability": 0.4783 + }, + { + "start": 9923.74, + "end": 9928.56, + "probability": 0.8092 + }, + { + "start": 9929.2, + "end": 9930.7, + "probability": 0.6387 + }, + { + "start": 9931.2, + "end": 9932.88, + "probability": 0.8963 + }, + { + "start": 9932.94, + "end": 9939.84, + "probability": 0.9234 + }, + { + "start": 9939.92, + "end": 9940.46, + "probability": 0.6471 + }, + { + "start": 9940.5, + "end": 9941.76, + "probability": 0.8911 + }, + { + "start": 9942.3, + "end": 9942.84, + "probability": 0.6947 + }, + { + "start": 9943.58, + "end": 9943.92, + "probability": 0.7236 + }, + { + "start": 9943.96, + "end": 9945.9, + "probability": 0.9965 + }, + { + "start": 9946.02, + "end": 9948.98, + "probability": 0.9652 + }, + { + "start": 9949.24, + "end": 9949.98, + "probability": 0.6875 + }, + { + "start": 9950.04, + "end": 9953.22, + "probability": 0.9562 + }, + { + "start": 9953.72, + "end": 9957.98, + "probability": 0.8719 + }, + { + "start": 9958.88, + "end": 9960.44, + "probability": 0.8715 + }, + { + "start": 9960.54, + "end": 9962.78, + "probability": 0.9921 + }, + { + "start": 9962.96, + "end": 9963.88, + "probability": 0.7238 + }, + { + "start": 9964.14, + "end": 9966.3, + "probability": 0.9194 + }, + { + "start": 9966.38, + "end": 9968.28, + "probability": 0.9585 + }, + { + "start": 9968.28, + "end": 9969.44, + "probability": 0.6157 + }, + { + "start": 9969.7, + "end": 9973.06, + "probability": 0.9883 + }, + { + "start": 9973.16, + "end": 9976.79, + "probability": 0.8067 + }, + { + "start": 9977.36, + "end": 9981.04, + "probability": 0.9166 + }, + { + "start": 9981.46, + "end": 9982.2, + "probability": 0.8655 + }, + { + "start": 9982.88, + "end": 9988.04, + "probability": 0.9878 + }, + { + "start": 9988.56, + "end": 9993.76, + "probability": 0.9896 + }, + { + "start": 9994.32, + "end": 9996.54, + "probability": 0.8832 + }, + { + "start": 9997.42, + "end": 9999.68, + "probability": 0.998 + }, + { + "start": 9999.68, + "end": 10003.3, + "probability": 0.9504 + }, + { + "start": 10003.68, + "end": 10006.4, + "probability": 0.8152 + }, + { + "start": 10007.02, + "end": 10009.16, + "probability": 0.8531 + }, + { + "start": 10009.7, + "end": 10012.9, + "probability": 0.7254 + }, + { + "start": 10014.0, + "end": 10016.72, + "probability": 0.9739 + }, + { + "start": 10017.84, + "end": 10018.82, + "probability": 0.8331 + }, + { + "start": 10019.7, + "end": 10025.12, + "probability": 0.2643 + }, + { + "start": 10025.7, + "end": 10028.56, + "probability": 0.9498 + }, + { + "start": 10028.62, + "end": 10032.1, + "probability": 0.9935 + }, + { + "start": 10032.1, + "end": 10035.44, + "probability": 0.948 + }, + { + "start": 10035.58, + "end": 10038.18, + "probability": 0.7948 + }, + { + "start": 10038.94, + "end": 10041.04, + "probability": 0.8625 + }, + { + "start": 10041.84, + "end": 10043.06, + "probability": 0.974 + }, + { + "start": 10043.1, + "end": 10043.54, + "probability": 0.8988 + }, + { + "start": 10043.62, + "end": 10044.5, + "probability": 0.9101 + }, + { + "start": 10045.0, + "end": 10048.04, + "probability": 0.962 + }, + { + "start": 10048.56, + "end": 10050.04, + "probability": 0.3243 + }, + { + "start": 10051.3, + "end": 10053.22, + "probability": 0.8083 + }, + { + "start": 10056.36, + "end": 10057.46, + "probability": 0.765 + }, + { + "start": 10058.52, + "end": 10060.66, + "probability": 0.9976 + }, + { + "start": 10060.66, + "end": 10063.42, + "probability": 0.9963 + }, + { + "start": 10064.18, + "end": 10065.94, + "probability": 0.9818 + }, + { + "start": 10066.46, + "end": 10071.16, + "probability": 0.9104 + }, + { + "start": 10072.0, + "end": 10076.34, + "probability": 0.9976 + }, + { + "start": 10076.94, + "end": 10082.58, + "probability": 0.9412 + }, + { + "start": 10083.02, + "end": 10084.98, + "probability": 0.9985 + }, + { + "start": 10085.54, + "end": 10085.98, + "probability": 0.6613 + }, + { + "start": 10086.78, + "end": 10089.42, + "probability": 0.7985 + }, + { + "start": 10090.26, + "end": 10096.98, + "probability": 0.9771 + }, + { + "start": 10097.8, + "end": 10099.7, + "probability": 0.9297 + }, + { + "start": 10100.18, + "end": 10102.22, + "probability": 0.9127 + }, + { + "start": 10104.02, + "end": 10105.34, + "probability": 0.6795 + }, + { + "start": 10105.42, + "end": 10107.44, + "probability": 0.9796 + }, + { + "start": 10107.52, + "end": 10108.42, + "probability": 0.9361 + }, + { + "start": 10109.04, + "end": 10111.46, + "probability": 0.8268 + }, + { + "start": 10111.58, + "end": 10112.76, + "probability": 0.9342 + }, + { + "start": 10113.18, + "end": 10115.76, + "probability": 0.8911 + }, + { + "start": 10116.12, + "end": 10118.58, + "probability": 0.604 + }, + { + "start": 10119.08, + "end": 10120.86, + "probability": 0.9449 + }, + { + "start": 10121.84, + "end": 10126.48, + "probability": 0.8286 + }, + { + "start": 10126.54, + "end": 10126.74, + "probability": 0.4556 + }, + { + "start": 10126.82, + "end": 10127.66, + "probability": 0.919 + }, + { + "start": 10127.74, + "end": 10131.42, + "probability": 0.9959 + }, + { + "start": 10132.0, + "end": 10134.86, + "probability": 0.9568 + }, + { + "start": 10135.78, + "end": 10138.0, + "probability": 0.2436 + }, + { + "start": 10138.16, + "end": 10143.24, + "probability": 0.9665 + }, + { + "start": 10143.46, + "end": 10144.02, + "probability": 0.8973 + }, + { + "start": 10144.92, + "end": 10150.9, + "probability": 0.9833 + }, + { + "start": 10150.9, + "end": 10155.44, + "probability": 0.9977 + }, + { + "start": 10156.48, + "end": 10160.66, + "probability": 0.9977 + }, + { + "start": 10164.16, + "end": 10166.94, + "probability": 0.6879 + }, + { + "start": 10167.64, + "end": 10171.44, + "probability": 0.7673 + }, + { + "start": 10172.1, + "end": 10173.1, + "probability": 0.978 + }, + { + "start": 10173.76, + "end": 10175.18, + "probability": 0.5873 + }, + { + "start": 10175.62, + "end": 10180.14, + "probability": 0.9818 + }, + { + "start": 10180.54, + "end": 10180.66, + "probability": 0.5699 + }, + { + "start": 10180.84, + "end": 10181.68, + "probability": 0.8657 + }, + { + "start": 10182.62, + "end": 10187.24, + "probability": 0.6795 + }, + { + "start": 10188.64, + "end": 10189.48, + "probability": 0.974 + }, + { + "start": 10189.66, + "end": 10191.78, + "probability": 0.8564 + }, + { + "start": 10191.94, + "end": 10194.8, + "probability": 0.9768 + }, + { + "start": 10212.16, + "end": 10214.84, + "probability": 0.7218 + }, + { + "start": 10215.26, + "end": 10216.68, + "probability": 0.6815 + }, + { + "start": 10217.5, + "end": 10218.14, + "probability": 0.5254 + }, + { + "start": 10218.3, + "end": 10219.48, + "probability": 0.897 + }, + { + "start": 10219.64, + "end": 10220.26, + "probability": 0.6171 + }, + { + "start": 10220.86, + "end": 10227.26, + "probability": 0.96 + }, + { + "start": 10227.3, + "end": 10230.82, + "probability": 0.9864 + }, + { + "start": 10232.61, + "end": 10236.32, + "probability": 0.9982 + }, + { + "start": 10236.42, + "end": 10238.68, + "probability": 0.5819 + }, + { + "start": 10241.45, + "end": 10245.18, + "probability": 0.8933 + }, + { + "start": 10245.62, + "end": 10248.22, + "probability": 0.3126 + }, + { + "start": 10248.3, + "end": 10251.02, + "probability": 0.9296 + }, + { + "start": 10251.32, + "end": 10253.56, + "probability": 0.5582 + }, + { + "start": 10253.66, + "end": 10257.42, + "probability": 0.8832 + }, + { + "start": 10258.06, + "end": 10262.92, + "probability": 0.9803 + }, + { + "start": 10263.04, + "end": 10265.86, + "probability": 0.9964 + }, + { + "start": 10266.06, + "end": 10268.3, + "probability": 0.9155 + }, + { + "start": 10269.77, + "end": 10273.6, + "probability": 0.9978 + }, + { + "start": 10274.0, + "end": 10276.0, + "probability": 0.9925 + }, + { + "start": 10276.08, + "end": 10279.44, + "probability": 0.9465 + }, + { + "start": 10279.6, + "end": 10284.44, + "probability": 0.9933 + }, + { + "start": 10284.68, + "end": 10286.16, + "probability": 0.9515 + }, + { + "start": 10290.64, + "end": 10293.7, + "probability": 0.8287 + }, + { + "start": 10294.16, + "end": 10297.36, + "probability": 0.9591 + }, + { + "start": 10297.46, + "end": 10298.1, + "probability": 0.8715 + }, + { + "start": 10298.72, + "end": 10299.18, + "probability": 0.0384 + }, + { + "start": 10299.44, + "end": 10303.26, + "probability": 0.9067 + }, + { + "start": 10303.48, + "end": 10305.7, + "probability": 0.8613 + }, + { + "start": 10306.02, + "end": 10308.66, + "probability": 0.6635 + }, + { + "start": 10308.96, + "end": 10309.42, + "probability": 0.2194 + }, + { + "start": 10321.72, + "end": 10322.3, + "probability": 0.1516 + }, + { + "start": 10322.88, + "end": 10329.18, + "probability": 0.3582 + }, + { + "start": 10329.38, + "end": 10331.18, + "probability": 0.8706 + }, + { + "start": 10331.34, + "end": 10332.24, + "probability": 0.5272 + }, + { + "start": 10333.68, + "end": 10337.9, + "probability": 0.2255 + }, + { + "start": 10350.42, + "end": 10353.88, + "probability": 0.0498 + }, + { + "start": 10354.53, + "end": 10358.9, + "probability": 0.0197 + }, + { + "start": 10358.9, + "end": 10361.42, + "probability": 0.1174 + }, + { + "start": 10362.6, + "end": 10363.6, + "probability": 0.0851 + }, + { + "start": 10375.16, + "end": 10379.16, + "probability": 0.0688 + }, + { + "start": 10379.66, + "end": 10383.36, + "probability": 0.084 + }, + { + "start": 10384.04, + "end": 10384.8, + "probability": 0.1558 + }, + { + "start": 10386.39, + "end": 10387.8, + "probability": 0.115 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.0, + "end": 10399.0, + "probability": 0.0 + }, + { + "start": 10399.56, + "end": 10400.26, + "probability": 0.6856 + }, + { + "start": 10401.08, + "end": 10405.2, + "probability": 0.7305 + }, + { + "start": 10405.28, + "end": 10406.18, + "probability": 0.5726 + }, + { + "start": 10408.42, + "end": 10408.48, + "probability": 0.3958 + }, + { + "start": 10408.48, + "end": 10408.48, + "probability": 0.1267 + }, + { + "start": 10408.48, + "end": 10412.9, + "probability": 0.6242 + }, + { + "start": 10413.18, + "end": 10413.48, + "probability": 0.6658 + }, + { + "start": 10414.48, + "end": 10415.0, + "probability": 0.2425 + }, + { + "start": 10415.28, + "end": 10416.43, + "probability": 0.9715 + }, + { + "start": 10416.88, + "end": 10417.7, + "probability": 0.7783 + }, + { + "start": 10417.78, + "end": 10418.76, + "probability": 0.9747 + }, + { + "start": 10419.16, + "end": 10422.54, + "probability": 0.5202 + }, + { + "start": 10424.44, + "end": 10426.18, + "probability": 0.4344 + }, + { + "start": 10426.92, + "end": 10431.2, + "probability": 0.9821 + }, + { + "start": 10431.2, + "end": 10435.64, + "probability": 0.8691 + }, + { + "start": 10436.64, + "end": 10437.02, + "probability": 0.731 + }, + { + "start": 10437.28, + "end": 10438.52, + "probability": 0.6699 + }, + { + "start": 10438.94, + "end": 10440.2, + "probability": 0.1834 + }, + { + "start": 10441.76, + "end": 10442.66, + "probability": 0.687 + }, + { + "start": 10442.66, + "end": 10443.01, + "probability": 0.8883 + }, + { + "start": 10444.62, + "end": 10446.76, + "probability": 0.783 + }, + { + "start": 10446.76, + "end": 10448.82, + "probability": 0.864 + }, + { + "start": 10448.98, + "end": 10450.08, + "probability": 0.3769 + }, + { + "start": 10450.3, + "end": 10453.3, + "probability": 0.9303 + }, + { + "start": 10453.9, + "end": 10455.3, + "probability": 0.553 + }, + { + "start": 10455.48, + "end": 10456.82, + "probability": 0.9119 + }, + { + "start": 10457.66, + "end": 10462.96, + "probability": 0.6085 + }, + { + "start": 10463.04, + "end": 10464.36, + "probability": 0.7825 + }, + { + "start": 10464.36, + "end": 10466.56, + "probability": 0.9755 + }, + { + "start": 10467.52, + "end": 10468.24, + "probability": 0.5495 + }, + { + "start": 10468.36, + "end": 10469.84, + "probability": 0.9812 + }, + { + "start": 10470.44, + "end": 10472.78, + "probability": 0.3769 + }, + { + "start": 10472.94, + "end": 10473.66, + "probability": 0.0367 + }, + { + "start": 10475.26, + "end": 10476.68, + "probability": 0.1034 + }, + { + "start": 10476.86, + "end": 10477.88, + "probability": 0.9324 + }, + { + "start": 10478.12, + "end": 10478.74, + "probability": 0.5897 + }, + { + "start": 10479.44, + "end": 10479.96, + "probability": 0.5404 + }, + { + "start": 10480.24, + "end": 10482.3, + "probability": 0.814 + }, + { + "start": 10490.76, + "end": 10493.44, + "probability": 0.5044 + }, + { + "start": 10493.52, + "end": 10494.58, + "probability": 0.8727 + }, + { + "start": 10495.0, + "end": 10497.3, + "probability": 0.8498 + }, + { + "start": 10497.4, + "end": 10498.18, + "probability": 0.7341 + }, + { + "start": 10498.3, + "end": 10499.32, + "probability": 0.9258 + }, + { + "start": 10501.63, + "end": 10507.4, + "probability": 0.9977 + }, + { + "start": 10507.4, + "end": 10509.18, + "probability": 0.8691 + }, + { + "start": 10510.14, + "end": 10512.24, + "probability": 0.991 + }, + { + "start": 10513.56, + "end": 10517.04, + "probability": 0.9985 + }, + { + "start": 10518.06, + "end": 10519.58, + "probability": 0.9987 + }, + { + "start": 10520.38, + "end": 10525.1, + "probability": 0.9972 + }, + { + "start": 10525.14, + "end": 10526.56, + "probability": 0.9954 + }, + { + "start": 10527.26, + "end": 10530.02, + "probability": 0.8998 + }, + { + "start": 10532.02, + "end": 10533.86, + "probability": 0.5653 + }, + { + "start": 10534.44, + "end": 10538.52, + "probability": 0.9773 + }, + { + "start": 10538.76, + "end": 10539.72, + "probability": 0.9756 + }, + { + "start": 10540.96, + "end": 10543.64, + "probability": 0.8567 + }, + { + "start": 10543.78, + "end": 10545.54, + "probability": 0.7412 + }, + { + "start": 10546.88, + "end": 10550.41, + "probability": 0.9012 + }, + { + "start": 10551.26, + "end": 10554.88, + "probability": 0.7309 + }, + { + "start": 10554.96, + "end": 10558.48, + "probability": 0.9529 + }, + { + "start": 10559.06, + "end": 10560.24, + "probability": 0.9282 + }, + { + "start": 10560.36, + "end": 10561.39, + "probability": 0.9972 + }, + { + "start": 10562.3, + "end": 10566.72, + "probability": 0.8532 + }, + { + "start": 10567.62, + "end": 10569.9, + "probability": 0.6459 + }, + { + "start": 10570.3, + "end": 10572.32, + "probability": 0.8391 + }, + { + "start": 10573.06, + "end": 10576.22, + "probability": 0.9045 + }, + { + "start": 10576.86, + "end": 10578.32, + "probability": 0.9742 + }, + { + "start": 10578.98, + "end": 10580.46, + "probability": 0.8384 + }, + { + "start": 10581.06, + "end": 10581.76, + "probability": 0.9451 + }, + { + "start": 10582.32, + "end": 10582.81, + "probability": 0.9725 + }, + { + "start": 10583.8, + "end": 10584.98, + "probability": 0.9307 + }, + { + "start": 10585.74, + "end": 10586.22, + "probability": 0.4594 + }, + { + "start": 10586.4, + "end": 10587.42, + "probability": 0.513 + }, + { + "start": 10587.42, + "end": 10587.9, + "probability": 0.6973 + }, + { + "start": 10587.96, + "end": 10591.06, + "probability": 0.8887 + }, + { + "start": 10591.06, + "end": 10593.34, + "probability": 0.9448 + }, + { + "start": 10593.66, + "end": 10595.36, + "probability": 0.7542 + }, + { + "start": 10595.44, + "end": 10599.92, + "probability": 0.9661 + }, + { + "start": 10601.34, + "end": 10602.42, + "probability": 0.7774 + }, + { + "start": 10602.76, + "end": 10604.5, + "probability": 0.7793 + }, + { + "start": 10605.08, + "end": 10606.52, + "probability": 0.9697 + }, + { + "start": 10607.26, + "end": 10609.4, + "probability": 0.9738 + }, + { + "start": 10609.6, + "end": 10611.27, + "probability": 0.9541 + }, + { + "start": 10612.53, + "end": 10617.01, + "probability": 0.9566 + }, + { + "start": 10617.85, + "end": 10618.87, + "probability": 0.7681 + }, + { + "start": 10619.03, + "end": 10622.27, + "probability": 0.8892 + }, + { + "start": 10623.23, + "end": 10625.01, + "probability": 0.9963 + }, + { + "start": 10625.65, + "end": 10628.51, + "probability": 0.9525 + }, + { + "start": 10629.81, + "end": 10632.59, + "probability": 0.9626 + }, + { + "start": 10633.67, + "end": 10636.05, + "probability": 0.9817 + }, + { + "start": 10636.05, + "end": 10638.91, + "probability": 0.9706 + }, + { + "start": 10639.25, + "end": 10642.69, + "probability": 0.9653 + }, + { + "start": 10643.53, + "end": 10643.99, + "probability": 0.7146 + }, + { + "start": 10644.93, + "end": 10646.65, + "probability": 0.9814 + }, + { + "start": 10647.15, + "end": 10651.51, + "probability": 0.994 + }, + { + "start": 10652.63, + "end": 10656.51, + "probability": 0.9554 + }, + { + "start": 10657.29, + "end": 10658.93, + "probability": 0.9961 + }, + { + "start": 10659.41, + "end": 10660.33, + "probability": 0.8799 + }, + { + "start": 10660.89, + "end": 10663.09, + "probability": 0.5226 + }, + { + "start": 10663.13, + "end": 10663.47, + "probability": 0.796 + }, + { + "start": 10663.59, + "end": 10663.99, + "probability": 0.5974 + }, + { + "start": 10664.17, + "end": 10664.35, + "probability": 0.0596 + }, + { + "start": 10665.25, + "end": 10666.29, + "probability": 0.5374 + }, + { + "start": 10667.15, + "end": 10671.63, + "probability": 0.3043 + }, + { + "start": 10671.75, + "end": 10673.37, + "probability": 0.2227 + }, + { + "start": 10673.37, + "end": 10676.17, + "probability": 0.4367 + }, + { + "start": 10678.87, + "end": 10679.37, + "probability": 0.0114 + }, + { + "start": 10683.17, + "end": 10684.99, + "probability": 0.0393 + }, + { + "start": 10684.99, + "end": 10685.39, + "probability": 0.2488 + }, + { + "start": 10694.43, + "end": 10700.41, + "probability": 0.4567 + }, + { + "start": 10700.51, + "end": 10701.59, + "probability": 0.2949 + }, + { + "start": 10701.63, + "end": 10705.33, + "probability": 0.7019 + }, + { + "start": 10705.79, + "end": 10706.79, + "probability": 0.6343 + }, + { + "start": 10707.37, + "end": 10708.57, + "probability": 0.1056 + }, + { + "start": 10718.37, + "end": 10718.85, + "probability": 0.0501 + }, + { + "start": 10718.85, + "end": 10719.83, + "probability": 0.0125 + }, + { + "start": 10720.15, + "end": 10721.09, + "probability": 0.0745 + }, + { + "start": 10732.43, + "end": 10733.63, + "probability": 0.0196 + }, + { + "start": 10737.26, + "end": 10739.38, + "probability": 0.0487 + }, + { + "start": 10744.57, + "end": 10747.97, + "probability": 0.0317 + }, + { + "start": 10747.99, + "end": 10749.25, + "probability": 0.0436 + }, + { + "start": 10753.95, + "end": 10755.01, + "probability": 0.0078 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.0, + "end": 10796.0, + "probability": 0.0 + }, + { + "start": 10796.02, + "end": 10797.23, + "probability": 0.1015 + }, + { + "start": 10797.72, + "end": 10797.74, + "probability": 0.3966 + }, + { + "start": 10799.7, + "end": 10800.5, + "probability": 0.0533 + }, + { + "start": 10800.5, + "end": 10803.86, + "probability": 0.7317 + }, + { + "start": 10803.98, + "end": 10805.56, + "probability": 0.4995 + }, + { + "start": 10806.08, + "end": 10808.58, + "probability": 0.7841 + }, + { + "start": 10809.62, + "end": 10813.14, + "probability": 0.9904 + }, + { + "start": 10813.14, + "end": 10817.96, + "probability": 0.9391 + }, + { + "start": 10818.58, + "end": 10818.72, + "probability": 0.1128 + }, + { + "start": 10818.72, + "end": 10819.94, + "probability": 0.9955 + }, + { + "start": 10820.2, + "end": 10820.6, + "probability": 0.8586 + }, + { + "start": 10820.8, + "end": 10821.5, + "probability": 0.9303 + }, + { + "start": 10821.62, + "end": 10825.42, + "probability": 0.9813 + }, + { + "start": 10826.0, + "end": 10828.4, + "probability": 0.9838 + }, + { + "start": 10828.88, + "end": 10830.66, + "probability": 0.9858 + }, + { + "start": 10831.14, + "end": 10832.64, + "probability": 0.9934 + }, + { + "start": 10832.82, + "end": 10835.0, + "probability": 0.9046 + }, + { + "start": 10835.0, + "end": 10837.16, + "probability": 0.9987 + }, + { + "start": 10838.32, + "end": 10838.72, + "probability": 0.5692 + }, + { + "start": 10838.8, + "end": 10839.48, + "probability": 0.8732 + }, + { + "start": 10839.74, + "end": 10842.32, + "probability": 0.7625 + }, + { + "start": 10842.54, + "end": 10844.68, + "probability": 0.9919 + }, + { + "start": 10845.18, + "end": 10847.06, + "probability": 0.933 + }, + { + "start": 10847.06, + "end": 10847.4, + "probability": 0.6591 + }, + { + "start": 10847.46, + "end": 10848.42, + "probability": 0.6893 + }, + { + "start": 10848.94, + "end": 10849.8, + "probability": 0.5064 + }, + { + "start": 10850.04, + "end": 10851.44, + "probability": 0.7581 + }, + { + "start": 10851.68, + "end": 10854.14, + "probability": 0.9826 + }, + { + "start": 10854.52, + "end": 10854.64, + "probability": 0.1404 + }, + { + "start": 10854.9, + "end": 10859.74, + "probability": 0.7927 + }, + { + "start": 10860.92, + "end": 10861.76, + "probability": 0.3414 + }, + { + "start": 10862.06, + "end": 10862.06, + "probability": 0.2104 + }, + { + "start": 10862.06, + "end": 10862.06, + "probability": 0.0331 + }, + { + "start": 10862.06, + "end": 10862.06, + "probability": 0.1597 + }, + { + "start": 10862.06, + "end": 10862.06, + "probability": 0.0966 + }, + { + "start": 10862.06, + "end": 10863.04, + "probability": 0.8118 + }, + { + "start": 10865.4, + "end": 10865.52, + "probability": 0.2064 + }, + { + "start": 10867.66, + "end": 10869.52, + "probability": 0.9307 + }, + { + "start": 10869.9, + "end": 10873.54, + "probability": 0.9592 + }, + { + "start": 10873.54, + "end": 10877.82, + "probability": 0.9994 + }, + { + "start": 10878.46, + "end": 10879.14, + "probability": 0.8677 + }, + { + "start": 10879.32, + "end": 10879.96, + "probability": 0.9276 + }, + { + "start": 10880.22, + "end": 10883.9, + "probability": 0.9259 + }, + { + "start": 10884.68, + "end": 10887.44, + "probability": 0.978 + }, + { + "start": 10889.8, + "end": 10894.38, + "probability": 0.9955 + }, + { + "start": 10894.7, + "end": 10898.94, + "probability": 0.9968 + }, + { + "start": 10899.5, + "end": 10903.9, + "probability": 0.9136 + }, + { + "start": 10903.9, + "end": 10907.86, + "probability": 0.9826 + }, + { + "start": 10908.1, + "end": 10908.68, + "probability": 0.8998 + }, + { + "start": 10909.3, + "end": 10911.18, + "probability": 0.7445 + }, + { + "start": 10911.7, + "end": 10912.5, + "probability": 0.9643 + }, + { + "start": 10913.04, + "end": 10914.9, + "probability": 0.9707 + }, + { + "start": 10915.18, + "end": 10919.4, + "probability": 0.95 + }, + { + "start": 10920.2, + "end": 10923.68, + "probability": 0.9824 + }, + { + "start": 10923.68, + "end": 10927.26, + "probability": 0.6621 + }, + { + "start": 10927.34, + "end": 10928.48, + "probability": 0.9722 + }, + { + "start": 10929.08, + "end": 10932.16, + "probability": 0.9893 + }, + { + "start": 10932.16, + "end": 10935.2, + "probability": 0.9779 + }, + { + "start": 10935.84, + "end": 10939.58, + "probability": 0.9324 + }, + { + "start": 10939.92, + "end": 10943.66, + "probability": 0.9752 + }, + { + "start": 10944.0, + "end": 10946.74, + "probability": 0.9948 + }, + { + "start": 10947.32, + "end": 10947.56, + "probability": 0.8433 + }, + { + "start": 10947.96, + "end": 10949.56, + "probability": 0.6756 + }, + { + "start": 10949.72, + "end": 10950.58, + "probability": 0.7759 + }, + { + "start": 10952.69, + "end": 10954.9, + "probability": 0.7207 + }, + { + "start": 10955.46, + "end": 10956.52, + "probability": 0.7212 + }, + { + "start": 10956.58, + "end": 10957.32, + "probability": 0.8561 + }, + { + "start": 10968.08, + "end": 10968.87, + "probability": 0.0578 + }, + { + "start": 10969.28, + "end": 10973.69, + "probability": 0.0847 + }, + { + "start": 10974.92, + "end": 10980.92, + "probability": 0.0582 + }, + { + "start": 10997.06, + "end": 10997.98, + "probability": 0.5828 + }, + { + "start": 10998.32, + "end": 10998.74, + "probability": 0.6564 + }, + { + "start": 10998.74, + "end": 11001.06, + "probability": 0.0056 + }, + { + "start": 11003.5, + "end": 11004.3, + "probability": 0.236 + }, + { + "start": 11028.52, + "end": 11031.32, + "probability": 0.8159 + }, + { + "start": 11031.98, + "end": 11034.66, + "probability": 0.9781 + }, + { + "start": 11037.52, + "end": 11041.76, + "probability": 0.9965 + }, + { + "start": 11041.76, + "end": 11043.24, + "probability": 0.7939 + }, + { + "start": 11043.66, + "end": 11045.24, + "probability": 0.5148 + }, + { + "start": 11050.84, + "end": 11051.96, + "probability": 0.0407 + }, + { + "start": 11051.96, + "end": 11053.2, + "probability": 0.1358 + }, + { + "start": 11053.62, + "end": 11054.0, + "probability": 0.5834 + }, + { + "start": 11054.32, + "end": 11055.24, + "probability": 0.8384 + }, + { + "start": 11055.4, + "end": 11056.6, + "probability": 0.8742 + }, + { + "start": 11056.9, + "end": 11058.74, + "probability": 0.9989 + }, + { + "start": 11059.44, + "end": 11064.0, + "probability": 0.9952 + }, + { + "start": 11065.82, + "end": 11066.9, + "probability": 0.6694 + }, + { + "start": 11067.68, + "end": 11069.34, + "probability": 0.3876 + }, + { + "start": 11070.94, + "end": 11074.75, + "probability": 0.9863 + }, + { + "start": 11075.8, + "end": 11076.82, + "probability": 0.9631 + }, + { + "start": 11077.34, + "end": 11078.58, + "probability": 0.9668 + }, + { + "start": 11079.3, + "end": 11080.5, + "probability": 0.9541 + }, + { + "start": 11080.92, + "end": 11085.3, + "probability": 0.9921 + }, + { + "start": 11088.68, + "end": 11094.94, + "probability": 0.9976 + }, + { + "start": 11094.94, + "end": 11102.16, + "probability": 0.9983 + }, + { + "start": 11103.38, + "end": 11110.94, + "probability": 0.9439 + }, + { + "start": 11111.6, + "end": 11115.04, + "probability": 0.9976 + }, + { + "start": 11116.94, + "end": 11118.22, + "probability": 0.9072 + }, + { + "start": 11118.62, + "end": 11121.92, + "probability": 0.9966 + }, + { + "start": 11121.92, + "end": 11126.44, + "probability": 0.9973 + }, + { + "start": 11127.88, + "end": 11133.24, + "probability": 0.9858 + }, + { + "start": 11134.9, + "end": 11138.38, + "probability": 0.967 + }, + { + "start": 11139.08, + "end": 11141.06, + "probability": 0.9978 + }, + { + "start": 11141.72, + "end": 11145.56, + "probability": 0.9915 + }, + { + "start": 11146.16, + "end": 11152.8, + "probability": 0.9878 + }, + { + "start": 11153.9, + "end": 11156.46, + "probability": 0.9324 + }, + { + "start": 11157.34, + "end": 11160.4, + "probability": 0.992 + }, + { + "start": 11162.42, + "end": 11162.92, + "probability": 0.8239 + }, + { + "start": 11162.98, + "end": 11163.44, + "probability": 0.9412 + }, + { + "start": 11163.56, + "end": 11167.84, + "probability": 0.9771 + }, + { + "start": 11167.84, + "end": 11174.14, + "probability": 0.9967 + }, + { + "start": 11175.62, + "end": 11177.16, + "probability": 0.9932 + }, + { + "start": 11177.8, + "end": 11178.56, + "probability": 0.9984 + }, + { + "start": 11179.34, + "end": 11184.64, + "probability": 0.9989 + }, + { + "start": 11185.2, + "end": 11187.26, + "probability": 0.9856 + }, + { + "start": 11189.22, + "end": 11189.86, + "probability": 0.8309 + }, + { + "start": 11189.9, + "end": 11191.36, + "probability": 0.7465 + }, + { + "start": 11191.42, + "end": 11192.4, + "probability": 0.7794 + }, + { + "start": 11192.54, + "end": 11194.04, + "probability": 0.9803 + }, + { + "start": 11194.94, + "end": 11198.42, + "probability": 0.9883 + }, + { + "start": 11198.96, + "end": 11201.64, + "probability": 0.9922 + }, + { + "start": 11204.4, + "end": 11204.92, + "probability": 0.9952 + }, + { + "start": 11205.0, + "end": 11205.52, + "probability": 0.7068 + }, + { + "start": 11205.7, + "end": 11207.16, + "probability": 0.9888 + }, + { + "start": 11208.24, + "end": 11210.8, + "probability": 0.9462 + }, + { + "start": 11211.24, + "end": 11212.14, + "probability": 0.9419 + }, + { + "start": 11214.78, + "end": 11217.74, + "probability": 0.9805 + }, + { + "start": 11217.8, + "end": 11218.62, + "probability": 0.9708 + }, + { + "start": 11218.98, + "end": 11221.4, + "probability": 0.9273 + }, + { + "start": 11221.76, + "end": 11224.26, + "probability": 0.9601 + }, + { + "start": 11226.5, + "end": 11228.21, + "probability": 0.5055 + }, + { + "start": 11228.52, + "end": 11230.7, + "probability": 0.9884 + }, + { + "start": 11230.96, + "end": 11235.56, + "probability": 0.9341 + }, + { + "start": 11235.56, + "end": 11241.2, + "probability": 0.9743 + }, + { + "start": 11242.48, + "end": 11243.74, + "probability": 0.5418 + }, + { + "start": 11244.56, + "end": 11246.18, + "probability": 0.9775 + }, + { + "start": 11246.74, + "end": 11247.42, + "probability": 0.4693 + }, + { + "start": 11247.68, + "end": 11250.24, + "probability": 0.6565 + }, + { + "start": 11250.6, + "end": 11251.3, + "probability": 0.2969 + }, + { + "start": 11251.3, + "end": 11251.6, + "probability": 0.3875 + }, + { + "start": 11252.48, + "end": 11255.7, + "probability": 0.9822 + }, + { + "start": 11256.24, + "end": 11258.24, + "probability": 0.9989 + }, + { + "start": 11258.82, + "end": 11260.98, + "probability": 0.9676 + }, + { + "start": 11262.12, + "end": 11263.88, + "probability": 0.9912 + }, + { + "start": 11264.24, + "end": 11266.16, + "probability": 0.7665 + }, + { + "start": 11266.26, + "end": 11267.0, + "probability": 0.9684 + }, + { + "start": 11267.1, + "end": 11267.52, + "probability": 0.5898 + }, + { + "start": 11267.84, + "end": 11269.74, + "probability": 0.9753 + }, + { + "start": 11270.06, + "end": 11274.3, + "probability": 0.8669 + }, + { + "start": 11274.4, + "end": 11279.34, + "probability": 0.9715 + }, + { + "start": 11279.38, + "end": 11281.04, + "probability": 0.9189 + }, + { + "start": 11281.12, + "end": 11281.88, + "probability": 0.9675 + }, + { + "start": 11282.87, + "end": 11284.88, + "probability": 0.3905 + }, + { + "start": 11285.48, + "end": 11287.82, + "probability": 0.9543 + }, + { + "start": 11288.26, + "end": 11291.98, + "probability": 0.7111 + }, + { + "start": 11292.66, + "end": 11295.5, + "probability": 0.9729 + }, + { + "start": 11296.06, + "end": 11296.62, + "probability": 0.6187 + }, + { + "start": 11296.84, + "end": 11297.98, + "probability": 0.9976 + }, + { + "start": 11298.88, + "end": 11299.7, + "probability": 0.9005 + }, + { + "start": 11299.82, + "end": 11300.5, + "probability": 0.6855 + }, + { + "start": 11300.94, + "end": 11304.7, + "probability": 0.9795 + }, + { + "start": 11304.98, + "end": 11306.24, + "probability": 0.961 + }, + { + "start": 11319.42, + "end": 11320.94, + "probability": 0.5823 + }, + { + "start": 11322.22, + "end": 11323.22, + "probability": 0.7623 + }, + { + "start": 11323.44, + "end": 11323.8, + "probability": 0.8231 + }, + { + "start": 11323.86, + "end": 11324.63, + "probability": 0.8086 + }, + { + "start": 11326.48, + "end": 11329.08, + "probability": 0.8823 + }, + { + "start": 11329.26, + "end": 11329.26, + "probability": 0.4314 + }, + { + "start": 11330.14, + "end": 11332.64, + "probability": 0.7502 + }, + { + "start": 11334.18, + "end": 11334.48, + "probability": 0.0273 + }, + { + "start": 11334.48, + "end": 11334.48, + "probability": 0.0252 + }, + { + "start": 11334.48, + "end": 11334.48, + "probability": 0.0359 + }, + { + "start": 11334.48, + "end": 11335.36, + "probability": 0.4844 + }, + { + "start": 11335.42, + "end": 11335.5, + "probability": 0.0185 + }, + { + "start": 11335.5, + "end": 11336.36, + "probability": 0.6949 + }, + { + "start": 11336.46, + "end": 11337.32, + "probability": 0.7603 + }, + { + "start": 11337.42, + "end": 11338.92, + "probability": 0.938 + }, + { + "start": 11339.18, + "end": 11340.36, + "probability": 0.791 + }, + { + "start": 11340.62, + "end": 11343.02, + "probability": 0.6759 + }, + { + "start": 11343.22, + "end": 11344.04, + "probability": 0.4267 + }, + { + "start": 11344.04, + "end": 11344.86, + "probability": 0.0104 + }, + { + "start": 11344.86, + "end": 11345.26, + "probability": 0.1262 + }, + { + "start": 11345.26, + "end": 11348.74, + "probability": 0.8579 + }, + { + "start": 11348.76, + "end": 11351.08, + "probability": 0.1487 + }, + { + "start": 11351.22, + "end": 11352.36, + "probability": 0.5172 + }, + { + "start": 11352.48, + "end": 11353.04, + "probability": 0.6306 + }, + { + "start": 11353.14, + "end": 11354.62, + "probability": 0.9814 + }, + { + "start": 11354.66, + "end": 11355.0, + "probability": 0.3057 + }, + { + "start": 11355.5, + "end": 11358.24, + "probability": 0.79 + }, + { + "start": 11358.8, + "end": 11360.72, + "probability": 0.589 + }, + { + "start": 11361.68, + "end": 11368.84, + "probability": 0.93 + }, + { + "start": 11368.94, + "end": 11369.68, + "probability": 0.7045 + }, + { + "start": 11369.8, + "end": 11371.04, + "probability": 0.9576 + }, + { + "start": 11371.48, + "end": 11371.88, + "probability": 0.8982 + }, + { + "start": 11372.6, + "end": 11373.22, + "probability": 0.6083 + }, + { + "start": 11373.8, + "end": 11379.7, + "probability": 0.89 + }, + { + "start": 11380.74, + "end": 11381.4, + "probability": 0.5682 + }, + { + "start": 11382.08, + "end": 11383.7, + "probability": 0.8637 + }, + { + "start": 11384.18, + "end": 11387.76, + "probability": 0.9828 + }, + { + "start": 11388.08, + "end": 11389.94, + "probability": 0.9956 + }, + { + "start": 11390.58, + "end": 11393.52, + "probability": 0.9294 + }, + { + "start": 11393.74, + "end": 11397.16, + "probability": 0.9737 + }, + { + "start": 11397.72, + "end": 11400.68, + "probability": 0.9533 + }, + { + "start": 11401.38, + "end": 11404.78, + "probability": 0.9875 + }, + { + "start": 11406.27, + "end": 11413.18, + "probability": 0.9952 + }, + { + "start": 11413.72, + "end": 11415.24, + "probability": 0.5947 + }, + { + "start": 11415.7, + "end": 11417.72, + "probability": 0.9912 + }, + { + "start": 11417.72, + "end": 11421.68, + "probability": 0.9956 + }, + { + "start": 11422.12, + "end": 11423.4, + "probability": 0.7567 + }, + { + "start": 11424.0, + "end": 11426.6, + "probability": 0.9937 + }, + { + "start": 11427.48, + "end": 11431.12, + "probability": 0.8674 + }, + { + "start": 11431.82, + "end": 11433.26, + "probability": 0.2879 + }, + { + "start": 11433.62, + "end": 11436.1, + "probability": 0.9931 + }, + { + "start": 11438.07, + "end": 11439.44, + "probability": 0.9946 + }, + { + "start": 11439.44, + "end": 11439.44, + "probability": 0.1937 + }, + { + "start": 11439.44, + "end": 11440.48, + "probability": 0.5176 + }, + { + "start": 11441.9, + "end": 11443.94, + "probability": 0.8777 + }, + { + "start": 11444.08, + "end": 11444.9, + "probability": 0.95 + }, + { + "start": 11445.38, + "end": 11446.24, + "probability": 0.3525 + }, + { + "start": 11448.16, + "end": 11450.72, + "probability": 0.7711 + }, + { + "start": 11450.76, + "end": 11453.19, + "probability": 0.4874 + }, + { + "start": 11453.66, + "end": 11454.18, + "probability": 0.6123 + }, + { + "start": 11454.86, + "end": 11456.06, + "probability": 0.7988 + }, + { + "start": 11456.14, + "end": 11456.63, + "probability": 0.4914 + }, + { + "start": 11457.04, + "end": 11458.32, + "probability": 0.0558 + }, + { + "start": 11459.5, + "end": 11461.3, + "probability": 0.4894 + }, + { + "start": 11461.66, + "end": 11462.4, + "probability": 0.825 + }, + { + "start": 11462.48, + "end": 11464.24, + "probability": 0.6446 + }, + { + "start": 11464.7, + "end": 11467.1, + "probability": 0.8591 + }, + { + "start": 11467.18, + "end": 11468.88, + "probability": 0.9565 + }, + { + "start": 11470.04, + "end": 11476.1, + "probability": 0.9918 + }, + { + "start": 11476.6, + "end": 11478.3, + "probability": 0.988 + }, + { + "start": 11478.38, + "end": 11481.14, + "probability": 0.6667 + }, + { + "start": 11481.62, + "end": 11484.54, + "probability": 0.6657 + }, + { + "start": 11484.6, + "end": 11484.94, + "probability": 0.9382 + }, + { + "start": 11484.98, + "end": 11488.32, + "probability": 0.9883 + }, + { + "start": 11488.78, + "end": 11490.84, + "probability": 0.9807 + }, + { + "start": 11490.84, + "end": 11493.5, + "probability": 0.9974 + }, + { + "start": 11494.16, + "end": 11497.1, + "probability": 0.8913 + }, + { + "start": 11497.78, + "end": 11497.8, + "probability": 0.0743 + }, + { + "start": 11497.8, + "end": 11498.76, + "probability": 0.8596 + }, + { + "start": 11499.62, + "end": 11501.88, + "probability": 0.9835 + }, + { + "start": 11502.56, + "end": 11506.8, + "probability": 0.9285 + }, + { + "start": 11507.32, + "end": 11511.04, + "probability": 0.8938 + }, + { + "start": 11511.52, + "end": 11512.94, + "probability": 0.9541 + }, + { + "start": 11513.74, + "end": 11514.04, + "probability": 0.6198 + }, + { + "start": 11514.12, + "end": 11514.34, + "probability": 0.3131 + }, + { + "start": 11514.42, + "end": 11517.04, + "probability": 0.9883 + }, + { + "start": 11517.28, + "end": 11518.58, + "probability": 0.8454 + }, + { + "start": 11519.14, + "end": 11522.66, + "probability": 0.6923 + }, + { + "start": 11522.66, + "end": 11523.18, + "probability": 0.0264 + }, + { + "start": 11523.36, + "end": 11524.8, + "probability": 0.998 + }, + { + "start": 11525.48, + "end": 11526.62, + "probability": 0.9445 + }, + { + "start": 11527.06, + "end": 11528.26, + "probability": 0.9863 + }, + { + "start": 11528.62, + "end": 11530.12, + "probability": 0.9922 + }, + { + "start": 11530.54, + "end": 11530.98, + "probability": 0.9257 + }, + { + "start": 11531.06, + "end": 11532.24, + "probability": 0.708 + }, + { + "start": 11532.36, + "end": 11533.54, + "probability": 0.9901 + }, + { + "start": 11533.76, + "end": 11534.9, + "probability": 0.8875 + }, + { + "start": 11535.44, + "end": 11536.26, + "probability": 0.8901 + }, + { + "start": 11536.82, + "end": 11538.82, + "probability": 0.7574 + }, + { + "start": 11538.82, + "end": 11540.02, + "probability": 0.9531 + }, + { + "start": 11540.12, + "end": 11540.68, + "probability": 0.8059 + }, + { + "start": 11540.74, + "end": 11543.28, + "probability": 0.7107 + }, + { + "start": 11543.86, + "end": 11546.94, + "probability": 0.8623 + }, + { + "start": 11548.64, + "end": 11550.82, + "probability": 0.4785 + }, + { + "start": 11551.32, + "end": 11551.44, + "probability": 0.166 + }, + { + "start": 11551.44, + "end": 11551.44, + "probability": 0.3164 + }, + { + "start": 11551.44, + "end": 11553.26, + "probability": 0.9933 + }, + { + "start": 11555.6, + "end": 11556.9, + "probability": 0.7772 + }, + { + "start": 11557.06, + "end": 11558.41, + "probability": 0.6817 + }, + { + "start": 11558.74, + "end": 11559.32, + "probability": 0.8263 + }, + { + "start": 11559.36, + "end": 11562.38, + "probability": 0.9972 + }, + { + "start": 11562.4, + "end": 11566.68, + "probability": 0.8454 + }, + { + "start": 11566.8, + "end": 11567.62, + "probability": 0.71 + }, + { + "start": 11567.82, + "end": 11571.7, + "probability": 0.5582 + }, + { + "start": 11574.06, + "end": 11578.56, + "probability": 0.2209 + }, + { + "start": 11591.0, + "end": 11593.68, + "probability": 0.6188 + }, + { + "start": 11593.68, + "end": 11596.08, + "probability": 0.8781 + }, + { + "start": 11596.08, + "end": 11596.98, + "probability": 0.6088 + }, + { + "start": 11597.34, + "end": 11598.5, + "probability": 0.5464 + }, + { + "start": 11598.82, + "end": 11601.96, + "probability": 0.7231 + }, + { + "start": 11602.42, + "end": 11605.22, + "probability": 0.9341 + }, + { + "start": 11608.86, + "end": 11609.78, + "probability": 0.0445 + }, + { + "start": 11609.78, + "end": 11611.16, + "probability": 0.0739 + }, + { + "start": 11611.16, + "end": 11617.4, + "probability": 0.0687 + }, + { + "start": 11622.4, + "end": 11624.32, + "probability": 0.1383 + }, + { + "start": 11624.32, + "end": 11626.16, + "probability": 0.011 + }, + { + "start": 11626.16, + "end": 11628.16, + "probability": 0.2917 + }, + { + "start": 11628.38, + "end": 11629.32, + "probability": 0.0875 + }, + { + "start": 11629.32, + "end": 11630.12, + "probability": 0.1065 + }, + { + "start": 11630.22, + "end": 11630.22, + "probability": 0.1126 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.0, + "end": 11669.0, + "probability": 0.0 + }, + { + "start": 11669.4, + "end": 11671.0, + "probability": 0.7563 + }, + { + "start": 11672.5, + "end": 11674.32, + "probability": 0.8772 + }, + { + "start": 11674.34, + "end": 11676.7, + "probability": 0.806 + }, + { + "start": 11676.82, + "end": 11677.52, + "probability": 0.8282 + }, + { + "start": 11681.22, + "end": 11682.72, + "probability": 0.7139 + }, + { + "start": 11684.36, + "end": 11690.06, + "probability": 0.9849 + }, + { + "start": 11691.08, + "end": 11693.24, + "probability": 0.9922 + }, + { + "start": 11693.24, + "end": 11696.62, + "probability": 0.9933 + }, + { + "start": 11698.3, + "end": 11698.52, + "probability": 0.4938 + }, + { + "start": 11698.56, + "end": 11699.38, + "probability": 0.6707 + }, + { + "start": 11699.46, + "end": 11700.46, + "probability": 0.9965 + }, + { + "start": 11700.6, + "end": 11704.34, + "probability": 0.8352 + }, + { + "start": 11704.86, + "end": 11705.26, + "probability": 0.7035 + }, + { + "start": 11705.26, + "end": 11705.56, + "probability": 0.9683 + }, + { + "start": 11705.62, + "end": 11705.92, + "probability": 0.7122 + }, + { + "start": 11706.06, + "end": 11706.38, + "probability": 0.9062 + }, + { + "start": 11706.42, + "end": 11709.52, + "probability": 0.9889 + }, + { + "start": 11710.08, + "end": 11711.12, + "probability": 0.9928 + }, + { + "start": 11711.18, + "end": 11712.1, + "probability": 0.9705 + }, + { + "start": 11713.42, + "end": 11714.32, + "probability": 0.6307 + }, + { + "start": 11714.76, + "end": 11718.94, + "probability": 0.992 + }, + { + "start": 11719.8, + "end": 11720.34, + "probability": 0.8914 + }, + { + "start": 11721.02, + "end": 11721.76, + "probability": 0.9434 + }, + { + "start": 11722.08, + "end": 11722.26, + "probability": 0.7092 + }, + { + "start": 11722.46, + "end": 11724.7, + "probability": 0.8301 + }, + { + "start": 11724.86, + "end": 11725.12, + "probability": 0.3715 + }, + { + "start": 11725.14, + "end": 11726.96, + "probability": 0.7605 + }, + { + "start": 11727.78, + "end": 11730.12, + "probability": 0.9839 + }, + { + "start": 11730.7, + "end": 11736.58, + "probability": 0.9806 + }, + { + "start": 11738.0, + "end": 11738.98, + "probability": 0.7027 + }, + { + "start": 11739.62, + "end": 11740.3, + "probability": 0.7529 + }, + { + "start": 11741.2, + "end": 11744.7, + "probability": 0.9771 + }, + { + "start": 11744.7, + "end": 11749.58, + "probability": 0.9875 + }, + { + "start": 11749.9, + "end": 11750.54, + "probability": 0.9144 + }, + { + "start": 11750.7, + "end": 11751.31, + "probability": 0.9832 + }, + { + "start": 11751.5, + "end": 11752.1, + "probability": 0.9379 + }, + { + "start": 11752.26, + "end": 11753.0, + "probability": 0.6381 + }, + { + "start": 11753.52, + "end": 11753.7, + "probability": 0.5635 + }, + { + "start": 11753.76, + "end": 11755.96, + "probability": 0.9761 + }, + { + "start": 11755.98, + "end": 11757.26, + "probability": 0.9604 + }, + { + "start": 11757.66, + "end": 11758.82, + "probability": 0.9802 + }, + { + "start": 11758.9, + "end": 11760.98, + "probability": 0.9822 + }, + { + "start": 11762.08, + "end": 11762.74, + "probability": 0.9395 + }, + { + "start": 11762.82, + "end": 11763.78, + "probability": 0.7854 + }, + { + "start": 11764.02, + "end": 11766.4, + "probability": 0.9903 + }, + { + "start": 11766.9, + "end": 11769.58, + "probability": 0.9798 + }, + { + "start": 11769.74, + "end": 11773.76, + "probability": 0.9841 + }, + { + "start": 11774.76, + "end": 11774.98, + "probability": 0.6949 + }, + { + "start": 11775.04, + "end": 11775.64, + "probability": 0.7099 + }, + { + "start": 11775.7, + "end": 11779.82, + "probability": 0.9695 + }, + { + "start": 11780.8, + "end": 11783.86, + "probability": 0.9769 + }, + { + "start": 11783.86, + "end": 11786.3, + "probability": 0.9446 + }, + { + "start": 11788.32, + "end": 11792.02, + "probability": 0.879 + }, + { + "start": 11793.44, + "end": 11796.96, + "probability": 0.9016 + }, + { + "start": 11797.24, + "end": 11799.54, + "probability": 0.5016 + }, + { + "start": 11800.42, + "end": 11801.56, + "probability": 0.9882 + }, + { + "start": 11803.08, + "end": 11805.34, + "probability": 0.5058 + }, + { + "start": 11805.44, + "end": 11805.94, + "probability": 0.2881 + }, + { + "start": 11806.08, + "end": 11806.08, + "probability": 0.7426 + }, + { + "start": 11806.08, + "end": 11808.29, + "probability": 0.989 + }, + { + "start": 11808.94, + "end": 11812.08, + "probability": 0.9985 + }, + { + "start": 11812.62, + "end": 11815.28, + "probability": 0.9813 + }, + { + "start": 11815.98, + "end": 11818.1, + "probability": 0.9798 + }, + { + "start": 11818.26, + "end": 11818.46, + "probability": 0.9005 + }, + { + "start": 11818.52, + "end": 11819.4, + "probability": 0.8665 + }, + { + "start": 11820.62, + "end": 11821.56, + "probability": 0.9724 + }, + { + "start": 11821.76, + "end": 11822.42, + "probability": 0.753 + }, + { + "start": 11822.74, + "end": 11825.1, + "probability": 0.9402 + }, + { + "start": 11825.14, + "end": 11826.66, + "probability": 0.6699 + }, + { + "start": 11827.74, + "end": 11831.28, + "probability": 0.8994 + }, + { + "start": 11831.4, + "end": 11835.62, + "probability": 0.8326 + }, + { + "start": 11836.52, + "end": 11837.04, + "probability": 0.9082 + }, + { + "start": 11837.44, + "end": 11840.06, + "probability": 0.7719 + }, + { + "start": 11840.06, + "end": 11842.5, + "probability": 0.9943 + }, + { + "start": 11843.36, + "end": 11849.28, + "probability": 0.9795 + }, + { + "start": 11850.22, + "end": 11852.24, + "probability": 0.8398 + }, + { + "start": 11853.0, + "end": 11856.2, + "probability": 0.9506 + }, + { + "start": 11856.2, + "end": 11859.76, + "probability": 0.9949 + }, + { + "start": 11861.72, + "end": 11867.12, + "probability": 0.9904 + }, + { + "start": 11867.72, + "end": 11869.38, + "probability": 0.742 + }, + { + "start": 11869.64, + "end": 11870.38, + "probability": 0.952 + }, + { + "start": 11870.44, + "end": 11872.8, + "probability": 0.8751 + }, + { + "start": 11873.84, + "end": 11877.94, + "probability": 0.9704 + }, + { + "start": 11878.46, + "end": 11879.92, + "probability": 0.8888 + }, + { + "start": 11880.94, + "end": 11884.1, + "probability": 0.9927 + }, + { + "start": 11884.1, + "end": 11887.48, + "probability": 0.9614 + }, + { + "start": 11887.88, + "end": 11888.34, + "probability": 0.5745 + }, + { + "start": 11888.42, + "end": 11889.1, + "probability": 0.7218 + }, + { + "start": 11889.5, + "end": 11890.76, + "probability": 0.96 + }, + { + "start": 11892.48, + "end": 11892.64, + "probability": 0.4439 + }, + { + "start": 11893.74, + "end": 11896.9, + "probability": 0.6674 + }, + { + "start": 11898.58, + "end": 11899.86, + "probability": 0.9746 + }, + { + "start": 11900.98, + "end": 11901.98, + "probability": 0.6277 + }, + { + "start": 11902.84, + "end": 11904.74, + "probability": 0.9901 + }, + { + "start": 11904.74, + "end": 11907.56, + "probability": 0.9972 + }, + { + "start": 11908.58, + "end": 11911.46, + "probability": 0.9429 + }, + { + "start": 11912.08, + "end": 11914.56, + "probability": 0.9779 + }, + { + "start": 11915.06, + "end": 11917.75, + "probability": 0.987 + }, + { + "start": 11919.08, + "end": 11922.02, + "probability": 0.9968 + }, + { + "start": 11922.74, + "end": 11926.54, + "probability": 0.959 + }, + { + "start": 11927.16, + "end": 11928.14, + "probability": 0.6814 + }, + { + "start": 11928.74, + "end": 11930.7, + "probability": 0.9809 + }, + { + "start": 11931.9, + "end": 11932.68, + "probability": 0.6744 + }, + { + "start": 11932.9, + "end": 11933.56, + "probability": 0.5077 + }, + { + "start": 11934.14, + "end": 11934.78, + "probability": 0.9607 + }, + { + "start": 11935.42, + "end": 11938.62, + "probability": 0.9836 + }, + { + "start": 11938.62, + "end": 11941.66, + "probability": 0.9767 + }, + { + "start": 11942.3, + "end": 11942.88, + "probability": 0.9688 + }, + { + "start": 11943.94, + "end": 11944.52, + "probability": 0.7583 + }, + { + "start": 11945.04, + "end": 11948.18, + "probability": 0.8529 + }, + { + "start": 11948.76, + "end": 11951.6, + "probability": 0.7848 + }, + { + "start": 11952.2, + "end": 11955.32, + "probability": 0.9141 + }, + { + "start": 11955.32, + "end": 11960.14, + "probability": 0.959 + }, + { + "start": 11960.7, + "end": 11962.08, + "probability": 0.9969 + }, + { + "start": 11963.14, + "end": 11964.82, + "probability": 0.9971 + }, + { + "start": 11965.58, + "end": 11966.44, + "probability": 0.9757 + }, + { + "start": 11966.54, + "end": 11967.7, + "probability": 0.9501 + }, + { + "start": 11967.92, + "end": 11968.34, + "probability": 0.573 + }, + { + "start": 11968.42, + "end": 11969.3, + "probability": 0.9987 + }, + { + "start": 11970.8, + "end": 11974.72, + "probability": 0.9904 + }, + { + "start": 11975.6, + "end": 11977.42, + "probability": 0.9968 + }, + { + "start": 11978.24, + "end": 11981.06, + "probability": 0.8246 + }, + { + "start": 11981.88, + "end": 11982.14, + "probability": 0.7822 + }, + { + "start": 11982.46, + "end": 11983.02, + "probability": 0.9111 + }, + { + "start": 11983.12, + "end": 11984.38, + "probability": 0.9689 + }, + { + "start": 11984.46, + "end": 11985.46, + "probability": 0.6395 + }, + { + "start": 11985.98, + "end": 11986.24, + "probability": 0.6773 + }, + { + "start": 11986.86, + "end": 11989.8, + "probability": 0.9221 + }, + { + "start": 11990.42, + "end": 11991.2, + "probability": 0.608 + }, + { + "start": 11992.08, + "end": 11996.36, + "probability": 0.9847 + }, + { + "start": 11996.92, + "end": 12000.12, + "probability": 0.9896 + }, + { + "start": 12001.64, + "end": 12002.08, + "probability": 0.5414 + }, + { + "start": 12002.1, + "end": 12003.0, + "probability": 0.7971 + }, + { + "start": 12003.3, + "end": 12003.82, + "probability": 0.7374 + }, + { + "start": 12004.02, + "end": 12007.42, + "probability": 0.791 + }, + { + "start": 12007.94, + "end": 12011.96, + "probability": 0.9835 + }, + { + "start": 12012.02, + "end": 12012.56, + "probability": 0.6125 + }, + { + "start": 12013.06, + "end": 12015.6, + "probability": 0.502 + }, + { + "start": 12015.8, + "end": 12021.72, + "probability": 0.9586 + }, + { + "start": 12021.86, + "end": 12022.46, + "probability": 0.4523 + }, + { + "start": 12023.22, + "end": 12027.9, + "probability": 0.9236 + }, + { + "start": 12028.46, + "end": 12030.7, + "probability": 0.9038 + }, + { + "start": 12031.24, + "end": 12033.96, + "probability": 0.9917 + }, + { + "start": 12034.24, + "end": 12035.26, + "probability": 0.7191 + }, + { + "start": 12035.96, + "end": 12038.18, + "probability": 0.9824 + }, + { + "start": 12039.16, + "end": 12039.88, + "probability": 0.1945 + }, + { + "start": 12039.88, + "end": 12039.88, + "probability": 0.0115 + }, + { + "start": 12039.88, + "end": 12046.54, + "probability": 0.9806 + }, + { + "start": 12046.8, + "end": 12052.2, + "probability": 0.9575 + }, + { + "start": 12053.44, + "end": 12054.48, + "probability": 0.9897 + }, + { + "start": 12063.54, + "end": 12065.2, + "probability": 0.6073 + }, + { + "start": 12065.38, + "end": 12067.22, + "probability": 0.8604 + }, + { + "start": 12067.84, + "end": 12072.38, + "probability": 0.7781 + }, + { + "start": 12073.08, + "end": 12081.34, + "probability": 0.7487 + }, + { + "start": 12081.42, + "end": 12086.3, + "probability": 0.9556 + }, + { + "start": 12087.08, + "end": 12087.32, + "probability": 0.5423 + }, + { + "start": 12087.92, + "end": 12088.48, + "probability": 0.872 + }, + { + "start": 12088.54, + "end": 12093.46, + "probability": 0.9191 + }, + { + "start": 12093.56, + "end": 12095.76, + "probability": 0.9816 + }, + { + "start": 12096.34, + "end": 12101.96, + "probability": 0.9598 + }, + { + "start": 12101.96, + "end": 12106.66, + "probability": 0.994 + }, + { + "start": 12107.42, + "end": 12110.38, + "probability": 0.9267 + }, + { + "start": 12111.56, + "end": 12114.76, + "probability": 0.9668 + }, + { + "start": 12114.9, + "end": 12116.08, + "probability": 0.7683 + }, + { + "start": 12116.48, + "end": 12119.89, + "probability": 0.9959 + }, + { + "start": 12121.1, + "end": 12127.44, + "probability": 0.966 + }, + { + "start": 12127.5, + "end": 12131.42, + "probability": 0.7249 + }, + { + "start": 12132.5, + "end": 12134.48, + "probability": 0.802 + }, + { + "start": 12134.56, + "end": 12136.82, + "probability": 0.9882 + }, + { + "start": 12136.94, + "end": 12138.72, + "probability": 0.9634 + }, + { + "start": 12140.73, + "end": 12143.51, + "probability": 0.9868 + }, + { + "start": 12144.44, + "end": 12149.24, + "probability": 0.977 + }, + { + "start": 12149.44, + "end": 12153.66, + "probability": 0.9277 + }, + { + "start": 12153.98, + "end": 12154.5, + "probability": 0.8176 + }, + { + "start": 12155.12, + "end": 12157.3, + "probability": 0.9828 + }, + { + "start": 12158.02, + "end": 12160.12, + "probability": 0.9526 + }, + { + "start": 12160.3, + "end": 12165.92, + "probability": 0.9801 + }, + { + "start": 12166.66, + "end": 12168.68, + "probability": 0.9756 + }, + { + "start": 12168.78, + "end": 12171.27, + "probability": 0.901 + }, + { + "start": 12172.14, + "end": 12173.76, + "probability": 0.9799 + }, + { + "start": 12173.96, + "end": 12175.13, + "probability": 0.9688 + }, + { + "start": 12175.24, + "end": 12177.22, + "probability": 0.9457 + }, + { + "start": 12177.34, + "end": 12178.16, + "probability": 0.921 + }, + { + "start": 12178.72, + "end": 12181.56, + "probability": 0.9812 + }, + { + "start": 12182.02, + "end": 12185.28, + "probability": 0.86 + }, + { + "start": 12185.54, + "end": 12186.08, + "probability": 0.9417 + }, + { + "start": 12186.54, + "end": 12187.54, + "probability": 0.9924 + }, + { + "start": 12187.64, + "end": 12188.4, + "probability": 0.802 + }, + { + "start": 12188.52, + "end": 12189.66, + "probability": 0.856 + }, + { + "start": 12190.56, + "end": 12193.76, + "probability": 0.9906 + }, + { + "start": 12194.34, + "end": 12197.16, + "probability": 0.973 + }, + { + "start": 12197.48, + "end": 12197.68, + "probability": 0.7007 + }, + { + "start": 12198.6, + "end": 12200.42, + "probability": 0.8253 + }, + { + "start": 12200.5, + "end": 12202.54, + "probability": 0.987 + }, + { + "start": 12203.38, + "end": 12204.08, + "probability": 0.771 + }, + { + "start": 12204.88, + "end": 12207.78, + "probability": 0.9985 + }, + { + "start": 12212.44, + "end": 12213.62, + "probability": 0.9894 + }, + { + "start": 12219.2, + "end": 12219.3, + "probability": 0.4852 + }, + { + "start": 12219.84, + "end": 12222.82, + "probability": 0.9894 + }, + { + "start": 12223.02, + "end": 12225.56, + "probability": 0.6781 + }, + { + "start": 12226.2, + "end": 12230.88, + "probability": 0.9894 + }, + { + "start": 12231.46, + "end": 12232.44, + "probability": 0.9941 + }, + { + "start": 12233.9, + "end": 12237.17, + "probability": 0.7073 + }, + { + "start": 12237.46, + "end": 12239.26, + "probability": 0.8937 + }, + { + "start": 12240.24, + "end": 12242.66, + "probability": 0.9982 + }, + { + "start": 12242.9, + "end": 12243.56, + "probability": 0.9427 + }, + { + "start": 12244.16, + "end": 12246.6, + "probability": 0.998 + }, + { + "start": 12246.6, + "end": 12249.6, + "probability": 0.8439 + }, + { + "start": 12250.22, + "end": 12254.34, + "probability": 0.9873 + }, + { + "start": 12254.94, + "end": 12256.82, + "probability": 0.5656 + }, + { + "start": 12257.18, + "end": 12257.46, + "probability": 0.7906 + }, + { + "start": 12258.22, + "end": 12259.1, + "probability": 0.8113 + }, + { + "start": 12259.68, + "end": 12260.1, + "probability": 0.5153 + }, + { + "start": 12261.02, + "end": 12263.34, + "probability": 0.9961 + }, + { + "start": 12263.86, + "end": 12264.42, + "probability": 0.8541 + }, + { + "start": 12264.76, + "end": 12268.88, + "probability": 0.9912 + }, + { + "start": 12268.96, + "end": 12271.38, + "probability": 0.9761 + }, + { + "start": 12271.8, + "end": 12272.92, + "probability": 0.9436 + }, + { + "start": 12273.5, + "end": 12273.74, + "probability": 0.4654 + }, + { + "start": 12273.8, + "end": 12274.16, + "probability": 0.8827 + }, + { + "start": 12274.28, + "end": 12279.98, + "probability": 0.9397 + }, + { + "start": 12279.98, + "end": 12281.46, + "probability": 0.8657 + }, + { + "start": 12282.35, + "end": 12286.54, + "probability": 0.9292 + }, + { + "start": 12287.26, + "end": 12288.38, + "probability": 0.9434 + }, + { + "start": 12289.22, + "end": 12291.7, + "probability": 0.7383 + }, + { + "start": 12291.76, + "end": 12292.62, + "probability": 0.9255 + }, + { + "start": 12292.72, + "end": 12294.12, + "probability": 0.9323 + }, + { + "start": 12294.86, + "end": 12295.56, + "probability": 0.4585 + }, + { + "start": 12295.76, + "end": 12296.7, + "probability": 0.7196 + }, + { + "start": 12297.2, + "end": 12300.36, + "probability": 0.9858 + }, + { + "start": 12301.0, + "end": 12305.88, + "probability": 0.8687 + }, + { + "start": 12306.34, + "end": 12307.88, + "probability": 0.8428 + }, + { + "start": 12308.02, + "end": 12311.06, + "probability": 0.9764 + }, + { + "start": 12311.18, + "end": 12312.7, + "probability": 0.6993 + }, + { + "start": 12312.7, + "end": 12312.82, + "probability": 0.6854 + }, + { + "start": 12313.14, + "end": 12313.7, + "probability": 0.3287 + }, + { + "start": 12314.02, + "end": 12315.32, + "probability": 0.8052 + }, + { + "start": 12315.5, + "end": 12317.86, + "probability": 0.9893 + }, + { + "start": 12317.86, + "end": 12321.62, + "probability": 0.7606 + }, + { + "start": 12321.74, + "end": 12322.82, + "probability": 0.7592 + }, + { + "start": 12323.06, + "end": 12323.8, + "probability": 0.5791 + }, + { + "start": 12324.8, + "end": 12327.58, + "probability": 0.7917 + }, + { + "start": 12330.02, + "end": 12331.28, + "probability": 0.7643 + }, + { + "start": 12331.66, + "end": 12331.98, + "probability": 0.7533 + }, + { + "start": 12335.3, + "end": 12339.76, + "probability": 0.1247 + }, + { + "start": 12353.6, + "end": 12358.54, + "probability": 0.8447 + }, + { + "start": 12358.62, + "end": 12359.66, + "probability": 0.6386 + }, + { + "start": 12359.74, + "end": 12360.94, + "probability": 0.6029 + }, + { + "start": 12362.04, + "end": 12366.98, + "probability": 0.1438 + }, + { + "start": 12369.37, + "end": 12371.61, + "probability": 0.5439 + }, + { + "start": 12372.16, + "end": 12372.24, + "probability": 0.4302 + }, + { + "start": 12384.36, + "end": 12385.36, + "probability": 0.9639 + }, + { + "start": 12386.26, + "end": 12392.52, + "probability": 0.8049 + }, + { + "start": 12393.08, + "end": 12393.91, + "probability": 0.0198 + }, + { + "start": 12394.86, + "end": 12397.66, + "probability": 0.0812 + }, + { + "start": 12398.38, + "end": 12402.66, + "probability": 0.063 + }, + { + "start": 12417.1, + "end": 12419.88, + "probability": 0.009 + }, + { + "start": 12419.94, + "end": 12423.94, + "probability": 0.821 + }, + { + "start": 12424.02, + "end": 12424.92, + "probability": 0.6743 + }, + { + "start": 12424.92, + "end": 12426.46, + "probability": 0.2987 + }, + { + "start": 12426.78, + "end": 12431.98, + "probability": 0.7604 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12432.0, + "end": 12432.0, + "probability": 0.0 + }, + { + "start": 12434.27, + "end": 12439.32, + "probability": 0.148 + }, + { + "start": 12439.68, + "end": 12442.08, + "probability": 0.0188 + }, + { + "start": 12442.26, + "end": 12443.78, + "probability": 0.2047 + }, + { + "start": 12444.02, + "end": 12450.32, + "probability": 0.1282 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.0, + "end": 12554.0, + "probability": 0.0 + }, + { + "start": 12554.14, + "end": 12554.38, + "probability": 0.0431 + }, + { + "start": 12554.38, + "end": 12555.06, + "probability": 0.0582 + }, + { + "start": 12555.92, + "end": 12558.04, + "probability": 0.7026 + }, + { + "start": 12558.94, + "end": 12561.88, + "probability": 0.98 + }, + { + "start": 12563.06, + "end": 12564.74, + "probability": 0.9894 + }, + { + "start": 12565.48, + "end": 12567.86, + "probability": 0.9775 + }, + { + "start": 12568.48, + "end": 12573.38, + "probability": 0.9122 + }, + { + "start": 12573.44, + "end": 12575.28, + "probability": 0.9163 + }, + { + "start": 12575.76, + "end": 12577.18, + "probability": 0.9191 + }, + { + "start": 12579.06, + "end": 12581.06, + "probability": 0.9808 + }, + { + "start": 12581.72, + "end": 12582.4, + "probability": 0.4865 + }, + { + "start": 12582.42, + "end": 12584.1, + "probability": 0.7341 + }, + { + "start": 12584.48, + "end": 12588.16, + "probability": 0.9858 + }, + { + "start": 12588.29, + "end": 12592.78, + "probability": 0.9875 + }, + { + "start": 12593.8, + "end": 12594.34, + "probability": 0.5583 + }, + { + "start": 12594.74, + "end": 12595.29, + "probability": 0.9243 + }, + { + "start": 12595.48, + "end": 12595.98, + "probability": 0.4735 + }, + { + "start": 12596.4, + "end": 12599.8, + "probability": 0.9954 + }, + { + "start": 12600.62, + "end": 12604.68, + "probability": 0.9933 + }, + { + "start": 12605.92, + "end": 12607.98, + "probability": 0.9944 + }, + { + "start": 12608.2, + "end": 12609.48, + "probability": 0.9883 + }, + { + "start": 12609.78, + "end": 12613.14, + "probability": 0.9442 + }, + { + "start": 12613.5, + "end": 12614.52, + "probability": 0.6747 + }, + { + "start": 12615.38, + "end": 12616.42, + "probability": 0.9585 + }, + { + "start": 12617.1, + "end": 12617.9, + "probability": 0.9834 + }, + { + "start": 12619.36, + "end": 12620.68, + "probability": 0.9636 + }, + { + "start": 12620.8, + "end": 12621.22, + "probability": 0.8807 + }, + { + "start": 12621.34, + "end": 12627.8, + "probability": 0.9945 + }, + { + "start": 12628.34, + "end": 12631.44, + "probability": 0.906 + }, + { + "start": 12632.72, + "end": 12636.02, + "probability": 0.8046 + }, + { + "start": 12636.98, + "end": 12639.32, + "probability": 0.8734 + }, + { + "start": 12642.3, + "end": 12642.74, + "probability": 0.5349 + }, + { + "start": 12643.36, + "end": 12645.11, + "probability": 0.8708 + }, + { + "start": 12646.14, + "end": 12650.6, + "probability": 0.9922 + }, + { + "start": 12650.6, + "end": 12655.42, + "probability": 0.9991 + }, + { + "start": 12656.62, + "end": 12658.96, + "probability": 0.999 + }, + { + "start": 12659.66, + "end": 12661.88, + "probability": 0.9529 + }, + { + "start": 12662.6, + "end": 12665.5, + "probability": 0.986 + }, + { + "start": 12666.9, + "end": 12671.16, + "probability": 0.9951 + }, + { + "start": 12672.02, + "end": 12676.18, + "probability": 0.9982 + }, + { + "start": 12676.86, + "end": 12679.06, + "probability": 0.834 + }, + { + "start": 12680.0, + "end": 12683.4, + "probability": 0.9902 + }, + { + "start": 12683.4, + "end": 12687.18, + "probability": 0.9373 + }, + { + "start": 12687.64, + "end": 12692.72, + "probability": 0.9966 + }, + { + "start": 12693.78, + "end": 12698.12, + "probability": 0.989 + }, + { + "start": 12698.68, + "end": 12702.52, + "probability": 0.9924 + }, + { + "start": 12703.14, + "end": 12706.64, + "probability": 0.9798 + }, + { + "start": 12706.74, + "end": 12709.66, + "probability": 0.9644 + }, + { + "start": 12710.2, + "end": 12714.42, + "probability": 0.9929 + }, + { + "start": 12714.42, + "end": 12718.58, + "probability": 0.9746 + }, + { + "start": 12719.52, + "end": 12722.8, + "probability": 0.6399 + }, + { + "start": 12723.18, + "end": 12729.58, + "probability": 0.9724 + }, + { + "start": 12730.54, + "end": 12732.86, + "probability": 0.9912 + }, + { + "start": 12733.7, + "end": 12736.42, + "probability": 0.9932 + }, + { + "start": 12737.24, + "end": 12741.32, + "probability": 0.9963 + }, + { + "start": 12741.7, + "end": 12745.32, + "probability": 0.9774 + }, + { + "start": 12745.7, + "end": 12749.26, + "probability": 0.9889 + }, + { + "start": 12750.2, + "end": 12754.62, + "probability": 0.8761 + }, + { + "start": 12755.48, + "end": 12756.25, + "probability": 0.5166 + }, + { + "start": 12757.46, + "end": 12760.02, + "probability": 0.9619 + }, + { + "start": 12760.7, + "end": 12769.18, + "probability": 0.9765 + }, + { + "start": 12769.18, + "end": 12772.82, + "probability": 0.997 + }, + { + "start": 12772.92, + "end": 12773.54, + "probability": 0.7953 + }, + { + "start": 12774.56, + "end": 12777.08, + "probability": 0.9761 + }, + { + "start": 12777.36, + "end": 12778.58, + "probability": 0.69 + }, + { + "start": 12778.88, + "end": 12779.72, + "probability": 0.7254 + }, + { + "start": 12780.76, + "end": 12783.54, + "probability": 0.9922 + }, + { + "start": 12784.16, + "end": 12788.16, + "probability": 0.9867 + }, + { + "start": 12789.3, + "end": 12789.84, + "probability": 0.7027 + }, + { + "start": 12790.38, + "end": 12792.88, + "probability": 0.9921 + }, + { + "start": 12792.88, + "end": 12795.98, + "probability": 0.9927 + }, + { + "start": 12796.36, + "end": 12797.68, + "probability": 0.9972 + }, + { + "start": 12798.7, + "end": 12801.92, + "probability": 0.9911 + }, + { + "start": 12803.06, + "end": 12803.22, + "probability": 0.459 + }, + { + "start": 12803.22, + "end": 12805.22, + "probability": 0.7774 + }, + { + "start": 12805.98, + "end": 12806.62, + "probability": 0.9095 + }, + { + "start": 12806.76, + "end": 12808.17, + "probability": 0.9956 + }, + { + "start": 12809.2, + "end": 12812.3, + "probability": 0.9299 + }, + { + "start": 12813.4, + "end": 12814.3, + "probability": 0.7153 + }, + { + "start": 12814.54, + "end": 12816.22, + "probability": 0.6361 + }, + { + "start": 12816.26, + "end": 12818.66, + "probability": 0.8663 + }, + { + "start": 12818.66, + "end": 12819.92, + "probability": 0.5326 + }, + { + "start": 12820.14, + "end": 12821.08, + "probability": 0.4482 + }, + { + "start": 12821.86, + "end": 12821.86, + "probability": 0.0636 + }, + { + "start": 12821.9, + "end": 12825.38, + "probability": 0.8975 + }, + { + "start": 12826.54, + "end": 12829.17, + "probability": 0.9482 + }, + { + "start": 12829.55, + "end": 12831.13, + "probability": 0.9912 + }, + { + "start": 12831.65, + "end": 12834.47, + "probability": 0.9981 + }, + { + "start": 12834.85, + "end": 12836.68, + "probability": 0.9858 + }, + { + "start": 12837.21, + "end": 12838.01, + "probability": 0.8802 + }, + { + "start": 12838.05, + "end": 12841.3, + "probability": 0.8636 + }, + { + "start": 12842.01, + "end": 12846.27, + "probability": 0.9969 + }, + { + "start": 12846.83, + "end": 12848.77, + "probability": 0.9966 + }, + { + "start": 12850.05, + "end": 12850.75, + "probability": 0.9873 + }, + { + "start": 12851.11, + "end": 12852.11, + "probability": 0.9307 + }, + { + "start": 12852.25, + "end": 12854.01, + "probability": 0.8456 + }, + { + "start": 12854.39, + "end": 12856.79, + "probability": 0.9661 + }, + { + "start": 12856.89, + "end": 12858.07, + "probability": 0.8244 + }, + { + "start": 12858.71, + "end": 12860.17, + "probability": 0.9025 + }, + { + "start": 12860.77, + "end": 12862.99, + "probability": 0.7269 + }, + { + "start": 12863.49, + "end": 12864.43, + "probability": 0.9644 + }, + { + "start": 12864.71, + "end": 12865.31, + "probability": 0.9195 + }, + { + "start": 12865.77, + "end": 12867.13, + "probability": 0.9767 + }, + { + "start": 12868.23, + "end": 12870.53, + "probability": 0.7485 + }, + { + "start": 12870.99, + "end": 12871.71, + "probability": 0.6149 + }, + { + "start": 12872.09, + "end": 12872.69, + "probability": 0.7261 + }, + { + "start": 12872.79, + "end": 12875.27, + "probability": 0.9198 + }, + { + "start": 12876.67, + "end": 12878.59, + "probability": 0.9971 + }, + { + "start": 12878.69, + "end": 12879.77, + "probability": 0.9619 + }, + { + "start": 12880.43, + "end": 12883.59, + "probability": 0.9982 + }, + { + "start": 12883.59, + "end": 12888.03, + "probability": 0.9988 + }, + { + "start": 12888.37, + "end": 12890.29, + "probability": 0.9971 + }, + { + "start": 12891.19, + "end": 12893.64, + "probability": 0.9399 + }, + { + "start": 12894.49, + "end": 12896.07, + "probability": 0.9982 + }, + { + "start": 12896.21, + "end": 12900.13, + "probability": 0.9979 + }, + { + "start": 12900.25, + "end": 12904.29, + "probability": 0.9976 + }, + { + "start": 12904.95, + "end": 12908.23, + "probability": 0.9867 + }, + { + "start": 12908.23, + "end": 12911.35, + "probability": 0.966 + }, + { + "start": 12911.79, + "end": 12914.77, + "probability": 0.9888 + }, + { + "start": 12916.63, + "end": 12920.57, + "probability": 0.9813 + }, + { + "start": 12921.05, + "end": 12923.93, + "probability": 0.9779 + }, + { + "start": 12924.51, + "end": 12927.02, + "probability": 0.9988 + }, + { + "start": 12927.41, + "end": 12930.43, + "probability": 0.9423 + }, + { + "start": 12931.13, + "end": 12934.79, + "probability": 0.9798 + }, + { + "start": 12935.03, + "end": 12939.33, + "probability": 0.9918 + }, + { + "start": 12939.97, + "end": 12944.59, + "probability": 0.9971 + }, + { + "start": 12945.27, + "end": 12946.31, + "probability": 0.8919 + }, + { + "start": 12946.91, + "end": 12949.35, + "probability": 0.9903 + }, + { + "start": 12949.87, + "end": 12951.59, + "probability": 0.9917 + }, + { + "start": 12952.17, + "end": 12957.49, + "probability": 0.9956 + }, + { + "start": 12958.11, + "end": 12958.57, + "probability": 0.413 + }, + { + "start": 12958.67, + "end": 12959.25, + "probability": 0.5882 + }, + { + "start": 12959.29, + "end": 12959.69, + "probability": 0.7804 + }, + { + "start": 12960.07, + "end": 12962.77, + "probability": 0.9965 + }, + { + "start": 12963.45, + "end": 12965.17, + "probability": 0.9785 + }, + { + "start": 12965.99, + "end": 12968.55, + "probability": 0.8774 + }, + { + "start": 12969.15, + "end": 12970.83, + "probability": 0.9688 + }, + { + "start": 12971.05, + "end": 12971.35, + "probability": 0.794 + }, + { + "start": 12971.81, + "end": 12972.71, + "probability": 0.787 + }, + { + "start": 12973.03, + "end": 12975.77, + "probability": 0.9967 + }, + { + "start": 12975.77, + "end": 12976.63, + "probability": 0.7931 + }, + { + "start": 12977.07, + "end": 12980.33, + "probability": 0.9972 + }, + { + "start": 12993.01, + "end": 12994.83, + "probability": 0.7117 + }, + { + "start": 12995.89, + "end": 12997.75, + "probability": 0.9701 + }, + { + "start": 12997.91, + "end": 13000.79, + "probability": 0.9641 + }, + { + "start": 13001.35, + "end": 13002.67, + "probability": 0.9907 + }, + { + "start": 13003.19, + "end": 13004.59, + "probability": 0.9971 + }, + { + "start": 13004.71, + "end": 13006.73, + "probability": 0.9719 + }, + { + "start": 13006.87, + "end": 13007.89, + "probability": 0.9309 + }, + { + "start": 13008.53, + "end": 13009.59, + "probability": 0.9948 + }, + { + "start": 13010.43, + "end": 13015.92, + "probability": 0.9558 + }, + { + "start": 13017.63, + "end": 13023.61, + "probability": 0.9087 + }, + { + "start": 13024.23, + "end": 13026.71, + "probability": 0.9761 + }, + { + "start": 13026.81, + "end": 13027.95, + "probability": 0.6979 + }, + { + "start": 13028.35, + "end": 13029.69, + "probability": 0.893 + }, + { + "start": 13030.17, + "end": 13032.17, + "probability": 0.9716 + }, + { + "start": 13032.73, + "end": 13035.43, + "probability": 0.9169 + }, + { + "start": 13036.13, + "end": 13039.25, + "probability": 0.9391 + }, + { + "start": 13039.31, + "end": 13044.31, + "probability": 0.9964 + }, + { + "start": 13044.39, + "end": 13046.91, + "probability": 0.975 + }, + { + "start": 13047.59, + "end": 13048.29, + "probability": 0.8787 + }, + { + "start": 13049.03, + "end": 13053.81, + "probability": 0.9927 + }, + { + "start": 13054.39, + "end": 13056.77, + "probability": 0.8852 + }, + { + "start": 13056.81, + "end": 13063.51, + "probability": 0.9196 + }, + { + "start": 13063.81, + "end": 13068.17, + "probability": 0.9878 + }, + { + "start": 13068.27, + "end": 13071.67, + "probability": 0.9973 + }, + { + "start": 13071.73, + "end": 13073.71, + "probability": 0.9777 + }, + { + "start": 13074.73, + "end": 13075.89, + "probability": 0.8704 + }, + { + "start": 13076.63, + "end": 13078.21, + "probability": 0.8488 + }, + { + "start": 13078.41, + "end": 13079.71, + "probability": 0.9462 + }, + { + "start": 13080.31, + "end": 13080.97, + "probability": 0.9739 + }, + { + "start": 13082.05, + "end": 13088.07, + "probability": 0.9915 + }, + { + "start": 13088.21, + "end": 13089.51, + "probability": 0.9958 + }, + { + "start": 13089.59, + "end": 13091.19, + "probability": 0.7302 + }, + { + "start": 13091.55, + "end": 13092.39, + "probability": 0.9747 + }, + { + "start": 13092.57, + "end": 13093.61, + "probability": 0.957 + }, + { + "start": 13093.63, + "end": 13093.73, + "probability": 0.7905 + }, + { + "start": 13094.23, + "end": 13095.03, + "probability": 0.9788 + }, + { + "start": 13095.27, + "end": 13095.77, + "probability": 0.8921 + }, + { + "start": 13096.09, + "end": 13098.15, + "probability": 0.9829 + }, + { + "start": 13098.29, + "end": 13102.59, + "probability": 0.9985 + }, + { + "start": 13102.71, + "end": 13104.77, + "probability": 0.9814 + }, + { + "start": 13106.05, + "end": 13110.67, + "probability": 0.9977 + }, + { + "start": 13110.73, + "end": 13111.31, + "probability": 0.7703 + }, + { + "start": 13111.39, + "end": 13113.73, + "probability": 0.8951 + }, + { + "start": 13114.11, + "end": 13118.63, + "probability": 0.8228 + }, + { + "start": 13118.71, + "end": 13121.85, + "probability": 0.9772 + }, + { + "start": 13122.29, + "end": 13125.87, + "probability": 0.9868 + }, + { + "start": 13126.33, + "end": 13128.31, + "probability": 0.983 + }, + { + "start": 13128.63, + "end": 13130.21, + "probability": 0.9992 + }, + { + "start": 13130.53, + "end": 13133.11, + "probability": 0.9958 + }, + { + "start": 13133.23, + "end": 13133.87, + "probability": 0.9132 + }, + { + "start": 13134.67, + "end": 13135.83, + "probability": 0.9829 + }, + { + "start": 13136.93, + "end": 13137.69, + "probability": 0.9437 + }, + { + "start": 13138.05, + "end": 13144.01, + "probability": 0.9932 + }, + { + "start": 13144.13, + "end": 13148.75, + "probability": 0.9406 + }, + { + "start": 13149.73, + "end": 13152.81, + "probability": 0.999 + }, + { + "start": 13152.81, + "end": 13155.33, + "probability": 0.9266 + }, + { + "start": 13155.87, + "end": 13156.49, + "probability": 0.9297 + }, + { + "start": 13157.09, + "end": 13159.29, + "probability": 0.9155 + }, + { + "start": 13160.23, + "end": 13161.69, + "probability": 0.7057 + }, + { + "start": 13162.29, + "end": 13167.69, + "probability": 0.8883 + }, + { + "start": 13167.79, + "end": 13168.89, + "probability": 0.8788 + }, + { + "start": 13169.25, + "end": 13170.37, + "probability": 0.8804 + }, + { + "start": 13170.49, + "end": 13173.11, + "probability": 0.9943 + }, + { + "start": 13174.43, + "end": 13177.67, + "probability": 0.9247 + }, + { + "start": 13178.15, + "end": 13180.83, + "probability": 0.8073 + }, + { + "start": 13180.89, + "end": 13183.57, + "probability": 0.9395 + }, + { + "start": 13184.23, + "end": 13185.91, + "probability": 0.9963 + }, + { + "start": 13186.35, + "end": 13186.89, + "probability": 0.7766 + }, + { + "start": 13186.97, + "end": 13187.95, + "probability": 0.7597 + }, + { + "start": 13188.67, + "end": 13192.33, + "probability": 0.9962 + }, + { + "start": 13192.97, + "end": 13193.49, + "probability": 0.9517 + }, + { + "start": 13193.61, + "end": 13197.71, + "probability": 0.9732 + }, + { + "start": 13197.71, + "end": 13204.25, + "probability": 0.9938 + }, + { + "start": 13204.39, + "end": 13205.47, + "probability": 0.8376 + }, + { + "start": 13205.57, + "end": 13207.15, + "probability": 0.9846 + }, + { + "start": 13207.55, + "end": 13212.77, + "probability": 0.9781 + }, + { + "start": 13212.95, + "end": 13214.15, + "probability": 0.8306 + }, + { + "start": 13214.23, + "end": 13216.73, + "probability": 0.7331 + }, + { + "start": 13217.17, + "end": 13219.01, + "probability": 0.8955 + }, + { + "start": 13219.45, + "end": 13221.13, + "probability": 0.9867 + }, + { + "start": 13221.59, + "end": 13223.01, + "probability": 0.9862 + }, + { + "start": 13224.01, + "end": 13229.83, + "probability": 0.9916 + }, + { + "start": 13230.45, + "end": 13233.81, + "probability": 0.8292 + }, + { + "start": 13234.19, + "end": 13237.43, + "probability": 0.9939 + }, + { + "start": 13237.97, + "end": 13240.38, + "probability": 0.9804 + }, + { + "start": 13240.65, + "end": 13244.39, + "probability": 0.8915 + }, + { + "start": 13244.65, + "end": 13247.29, + "probability": 0.9975 + }, + { + "start": 13247.29, + "end": 13252.77, + "probability": 0.9978 + }, + { + "start": 13253.09, + "end": 13254.34, + "probability": 0.793 + }, + { + "start": 13254.75, + "end": 13255.89, + "probability": 0.9954 + }, + { + "start": 13256.71, + "end": 13257.89, + "probability": 0.8397 + }, + { + "start": 13258.25, + "end": 13259.55, + "probability": 0.9576 + }, + { + "start": 13259.77, + "end": 13261.67, + "probability": 0.9244 + }, + { + "start": 13261.71, + "end": 13262.43, + "probability": 0.8704 + }, + { + "start": 13262.79, + "end": 13267.91, + "probability": 0.9917 + }, + { + "start": 13268.39, + "end": 13270.13, + "probability": 0.8167 + }, + { + "start": 13270.37, + "end": 13272.03, + "probability": 0.9961 + }, + { + "start": 13272.09, + "end": 13272.97, + "probability": 0.6341 + }, + { + "start": 13273.57, + "end": 13279.41, + "probability": 0.6579 + }, + { + "start": 13279.83, + "end": 13284.95, + "probability": 0.8651 + }, + { + "start": 13285.53, + "end": 13288.19, + "probability": 0.9943 + }, + { + "start": 13288.55, + "end": 13291.73, + "probability": 0.9857 + }, + { + "start": 13292.47, + "end": 13295.71, + "probability": 0.8959 + }, + { + "start": 13296.29, + "end": 13297.69, + "probability": 0.8721 + }, + { + "start": 13297.97, + "end": 13302.75, + "probability": 0.9517 + }, + { + "start": 13302.85, + "end": 13304.95, + "probability": 0.9848 + }, + { + "start": 13305.03, + "end": 13306.11, + "probability": 0.5028 + }, + { + "start": 13306.71, + "end": 13311.97, + "probability": 0.984 + }, + { + "start": 13314.03, + "end": 13319.23, + "probability": 0.9973 + }, + { + "start": 13319.95, + "end": 13322.25, + "probability": 0.9572 + }, + { + "start": 13322.31, + "end": 13323.26, + "probability": 0.9006 + }, + { + "start": 13323.73, + "end": 13324.87, + "probability": 0.9766 + }, + { + "start": 13325.87, + "end": 13327.59, + "probability": 0.991 + }, + { + "start": 13327.79, + "end": 13328.39, + "probability": 0.5967 + }, + { + "start": 13328.45, + "end": 13332.57, + "probability": 0.6141 + }, + { + "start": 13332.81, + "end": 13335.69, + "probability": 0.9406 + }, + { + "start": 13336.67, + "end": 13338.51, + "probability": 0.722 + }, + { + "start": 13338.57, + "end": 13342.53, + "probability": 0.8992 + }, + { + "start": 13343.47, + "end": 13346.03, + "probability": 0.9958 + }, + { + "start": 13346.17, + "end": 13347.07, + "probability": 0.9846 + }, + { + "start": 13362.39, + "end": 13366.39, + "probability": 0.8191 + }, + { + "start": 13367.01, + "end": 13370.03, + "probability": 0.9941 + }, + { + "start": 13370.89, + "end": 13372.67, + "probability": 0.9931 + }, + { + "start": 13374.55, + "end": 13380.01, + "probability": 0.9854 + }, + { + "start": 13380.01, + "end": 13384.65, + "probability": 0.9944 + }, + { + "start": 13385.51, + "end": 13386.61, + "probability": 0.6815 + }, + { + "start": 13386.73, + "end": 13387.19, + "probability": 0.7872 + }, + { + "start": 13387.35, + "end": 13393.51, + "probability": 0.991 + }, + { + "start": 13394.29, + "end": 13400.19, + "probability": 0.9906 + }, + { + "start": 13401.41, + "end": 13404.23, + "probability": 0.9851 + }, + { + "start": 13404.85, + "end": 13407.05, + "probability": 0.8912 + }, + { + "start": 13407.79, + "end": 13409.53, + "probability": 0.9774 + }, + { + "start": 13410.69, + "end": 13412.75, + "probability": 0.9308 + }, + { + "start": 13412.87, + "end": 13415.79, + "probability": 0.987 + }, + { + "start": 13416.53, + "end": 13421.85, + "probability": 0.9592 + }, + { + "start": 13422.57, + "end": 13425.55, + "probability": 0.9536 + }, + { + "start": 13426.27, + "end": 13427.95, + "probability": 0.7586 + }, + { + "start": 13428.35, + "end": 13428.65, + "probability": 0.4131 + }, + { + "start": 13428.83, + "end": 13435.67, + "probability": 0.8871 + }, + { + "start": 13436.27, + "end": 13440.01, + "probability": 0.9921 + }, + { + "start": 13440.95, + "end": 13441.87, + "probability": 0.7318 + }, + { + "start": 13442.07, + "end": 13445.77, + "probability": 0.988 + }, + { + "start": 13446.47, + "end": 13449.75, + "probability": 0.9976 + }, + { + "start": 13450.33, + "end": 13451.31, + "probability": 0.9968 + }, + { + "start": 13452.37, + "end": 13459.4, + "probability": 0.9918 + }, + { + "start": 13460.39, + "end": 13463.15, + "probability": 0.9807 + }, + { + "start": 13463.89, + "end": 13465.57, + "probability": 0.9756 + }, + { + "start": 13466.01, + "end": 13466.45, + "probability": 0.0829 + }, + { + "start": 13466.71, + "end": 13467.83, + "probability": 0.3011 + }, + { + "start": 13468.93, + "end": 13471.83, + "probability": 0.9678 + }, + { + "start": 13472.65, + "end": 13476.35, + "probability": 0.9937 + }, + { + "start": 13477.39, + "end": 13483.61, + "probability": 0.9766 + }, + { + "start": 13484.47, + "end": 13487.75, + "probability": 0.9788 + }, + { + "start": 13489.09, + "end": 13492.39, + "probability": 0.5086 + }, + { + "start": 13492.99, + "end": 13498.51, + "probability": 0.9639 + }, + { + "start": 13498.63, + "end": 13500.67, + "probability": 0.938 + }, + { + "start": 13501.49, + "end": 13506.05, + "probability": 0.98 + }, + { + "start": 13506.67, + "end": 13509.05, + "probability": 0.9932 + }, + { + "start": 13509.83, + "end": 13513.15, + "probability": 0.9014 + }, + { + "start": 13513.49, + "end": 13517.97, + "probability": 0.989 + }, + { + "start": 13518.37, + "end": 13519.43, + "probability": 0.6717 + }, + { + "start": 13519.75, + "end": 13519.75, + "probability": 0.4113 + }, + { + "start": 13520.37, + "end": 13520.39, + "probability": 0.5214 + }, + { + "start": 13520.97, + "end": 13527.17, + "probability": 0.8571 + }, + { + "start": 13527.63, + "end": 13528.05, + "probability": 0.5154 + }, + { + "start": 13528.63, + "end": 13529.13, + "probability": 0.8005 + }, + { + "start": 13529.77, + "end": 13530.33, + "probability": 0.4649 + }, + { + "start": 13531.01, + "end": 13533.11, + "probability": 0.9954 + }, + { + "start": 13533.69, + "end": 13534.43, + "probability": 0.5371 + }, + { + "start": 13534.97, + "end": 13538.63, + "probability": 0.9736 + }, + { + "start": 13539.01, + "end": 13545.15, + "probability": 0.9785 + }, + { + "start": 13545.21, + "end": 13545.21, + "probability": 0.5146 + }, + { + "start": 13545.21, + "end": 13546.91, + "probability": 0.9742 + }, + { + "start": 13547.53, + "end": 13549.15, + "probability": 0.9574 + }, + { + "start": 13549.77, + "end": 13553.33, + "probability": 0.9912 + }, + { + "start": 13553.35, + "end": 13553.97, + "probability": 0.7695 + }, + { + "start": 13554.99, + "end": 13559.03, + "probability": 0.9444 + }, + { + "start": 13560.48, + "end": 13561.67, + "probability": 0.1473 + }, + { + "start": 13562.09, + "end": 13562.09, + "probability": 0.2753 + }, + { + "start": 13562.09, + "end": 13562.09, + "probability": 0.1139 + }, + { + "start": 13562.09, + "end": 13562.09, + "probability": 0.1314 + }, + { + "start": 13562.09, + "end": 13562.79, + "probability": 0.4738 + }, + { + "start": 13562.93, + "end": 13568.35, + "probability": 0.9299 + }, + { + "start": 13568.59, + "end": 13571.33, + "probability": 0.7705 + }, + { + "start": 13571.51, + "end": 13574.39, + "probability": 0.6637 + }, + { + "start": 13575.52, + "end": 13580.11, + "probability": 0.401 + }, + { + "start": 13580.71, + "end": 13582.21, + "probability": 0.4723 + }, + { + "start": 13584.03, + "end": 13585.27, + "probability": 0.309 + }, + { + "start": 13585.93, + "end": 13587.11, + "probability": 0.0214 + }, + { + "start": 13587.55, + "end": 13588.67, + "probability": 0.1366 + }, + { + "start": 13588.67, + "end": 13594.57, + "probability": 0.2267 + }, + { + "start": 13594.59, + "end": 13597.09, + "probability": 0.7472 + }, + { + "start": 13597.11, + "end": 13598.11, + "probability": 0.6308 + }, + { + "start": 13598.77, + "end": 13602.71, + "probability": 0.3497 + }, + { + "start": 13603.41, + "end": 13604.55, + "probability": 0.2137 + }, + { + "start": 13604.79, + "end": 13606.79, + "probability": 0.1402 + }, + { + "start": 13609.3, + "end": 13610.51, + "probability": 0.0658 + }, + { + "start": 13610.51, + "end": 13612.59, + "probability": 0.0717 + }, + { + "start": 13613.31, + "end": 13616.95, + "probability": 0.0655 + }, + { + "start": 13618.51, + "end": 13620.35, + "probability": 0.1003 + }, + { + "start": 13621.5, + "end": 13623.41, + "probability": 0.0753 + }, + { + "start": 13642.57, + "end": 13643.51, + "probability": 0.2615 + }, + { + "start": 13644.75, + "end": 13651.97, + "probability": 0.0687 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13667.0, + "end": 13667.0, + "probability": 0.0 + }, + { + "start": 13676.98, + "end": 13677.66, + "probability": 0.1373 + }, + { + "start": 13679.5, + "end": 13683.56, + "probability": 0.0397 + }, + { + "start": 13683.56, + "end": 13683.98, + "probability": 0.0879 + }, + { + "start": 13683.98, + "end": 13691.88, + "probability": 0.0331 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13813.0, + "end": 13813.0, + "probability": 0.0 + }, + { + "start": 13819.84, + "end": 13820.72, + "probability": 0.0699 + }, + { + "start": 13820.72, + "end": 13820.72, + "probability": 0.0278 + }, + { + "start": 13820.72, + "end": 13823.21, + "probability": 0.3316 + }, + { + "start": 13827.44, + "end": 13830.72, + "probability": 0.1239 + }, + { + "start": 13830.72, + "end": 13830.72, + "probability": 0.0303 + }, + { + "start": 13830.72, + "end": 13831.44, + "probability": 0.1976 + }, + { + "start": 13840.02, + "end": 13840.44, + "probability": 0.1309 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.0, + "end": 13934.0, + "probability": 0.0 + }, + { + "start": 13934.18, + "end": 13934.8, + "probability": 0.0562 + }, + { + "start": 13937.9, + "end": 13944.3, + "probability": 0.9915 + }, + { + "start": 13944.48, + "end": 13945.1, + "probability": 0.5909 + }, + { + "start": 13945.22, + "end": 13949.47, + "probability": 0.9946 + }, + { + "start": 13950.36, + "end": 13954.24, + "probability": 0.9847 + }, + { + "start": 13954.4, + "end": 13959.96, + "probability": 0.9849 + }, + { + "start": 13960.4, + "end": 13961.91, + "probability": 0.9871 + }, + { + "start": 13962.38, + "end": 13966.02, + "probability": 0.9958 + }, + { + "start": 13966.8, + "end": 13968.08, + "probability": 0.9877 + }, + { + "start": 13968.84, + "end": 13973.04, + "probability": 0.9952 + }, + { + "start": 13973.52, + "end": 13975.2, + "probability": 0.9829 + }, + { + "start": 13975.32, + "end": 13978.08, + "probability": 0.9915 + }, + { + "start": 13978.22, + "end": 13978.34, + "probability": 0.1285 + }, + { + "start": 13979.18, + "end": 13980.6, + "probability": 0.8673 + }, + { + "start": 13981.24, + "end": 13982.59, + "probability": 0.977 + }, + { + "start": 13983.48, + "end": 13986.44, + "probability": 0.9871 + }, + { + "start": 13986.96, + "end": 13989.02, + "probability": 0.9813 + }, + { + "start": 13989.48, + "end": 13990.16, + "probability": 0.9608 + }, + { + "start": 13990.5, + "end": 13994.64, + "probability": 0.9894 + }, + { + "start": 13995.1, + "end": 13997.88, + "probability": 0.9731 + }, + { + "start": 13998.12, + "end": 14000.22, + "probability": 0.9912 + }, + { + "start": 14000.78, + "end": 14003.78, + "probability": 0.9878 + }, + { + "start": 14004.48, + "end": 14005.1, + "probability": 0.9141 + }, + { + "start": 14005.5, + "end": 14007.14, + "probability": 0.9979 + }, + { + "start": 14008.4, + "end": 14009.16, + "probability": 0.61 + }, + { + "start": 14009.3, + "end": 14010.12, + "probability": 0.9653 + }, + { + "start": 14010.28, + "end": 14011.42, + "probability": 0.7383 + }, + { + "start": 14011.82, + "end": 14013.22, + "probability": 0.8146 + }, + { + "start": 14013.9, + "end": 14015.7, + "probability": 0.9634 + }, + { + "start": 14016.46, + "end": 14017.76, + "probability": 0.8998 + }, + { + "start": 14018.48, + "end": 14024.08, + "probability": 0.9853 + }, + { + "start": 14024.62, + "end": 14025.1, + "probability": 0.9439 + }, + { + "start": 14026.58, + "end": 14027.7, + "probability": 0.8726 + }, + { + "start": 14029.3, + "end": 14031.64, + "probability": 0.8132 + }, + { + "start": 14032.46, + "end": 14032.78, + "probability": 0.2692 + }, + { + "start": 14033.54, + "end": 14035.36, + "probability": 0.9359 + }, + { + "start": 14036.84, + "end": 14038.34, + "probability": 0.9047 + }, + { + "start": 14038.52, + "end": 14039.3, + "probability": 0.9814 + }, + { + "start": 14040.6, + "end": 14044.62, + "probability": 0.9946 + }, + { + "start": 14044.62, + "end": 14049.24, + "probability": 0.997 + }, + { + "start": 14050.2, + "end": 14051.62, + "probability": 0.9469 + }, + { + "start": 14051.84, + "end": 14052.62, + "probability": 0.8632 + }, + { + "start": 14052.72, + "end": 14054.14, + "probability": 0.8708 + }, + { + "start": 14055.22, + "end": 14057.3, + "probability": 0.9934 + }, + { + "start": 14058.52, + "end": 14058.96, + "probability": 0.9599 + }, + { + "start": 14059.86, + "end": 14063.44, + "probability": 0.9897 + }, + { + "start": 14064.08, + "end": 14068.56, + "probability": 0.8528 + }, + { + "start": 14068.72, + "end": 14073.06, + "probability": 0.9951 + }, + { + "start": 14073.56, + "end": 14074.48, + "probability": 0.7726 + }, + { + "start": 14074.56, + "end": 14078.53, + "probability": 0.9813 + }, + { + "start": 14078.86, + "end": 14081.54, + "probability": 0.9931 + }, + { + "start": 14081.54, + "end": 14084.86, + "probability": 0.9978 + }, + { + "start": 14085.9, + "end": 14087.04, + "probability": 0.9742 + }, + { + "start": 14087.76, + "end": 14093.78, + "probability": 0.972 + }, + { + "start": 14093.88, + "end": 14094.72, + "probability": 0.9809 + }, + { + "start": 14094.88, + "end": 14095.96, + "probability": 0.8683 + }, + { + "start": 14096.12, + "end": 14099.22, + "probability": 0.9912 + }, + { + "start": 14099.3, + "end": 14100.31, + "probability": 0.9971 + }, + { + "start": 14100.46, + "end": 14102.68, + "probability": 0.9867 + }, + { + "start": 14102.78, + "end": 14106.24, + "probability": 0.9873 + }, + { + "start": 14106.38, + "end": 14107.06, + "probability": 0.6961 + }, + { + "start": 14107.6, + "end": 14113.96, + "probability": 0.9031 + }, + { + "start": 14114.32, + "end": 14115.82, + "probability": 0.8421 + }, + { + "start": 14116.22, + "end": 14118.86, + "probability": 0.9512 + }, + { + "start": 14120.18, + "end": 14120.76, + "probability": 0.5026 + }, + { + "start": 14121.08, + "end": 14123.22, + "probability": 0.916 + }, + { + "start": 14123.3, + "end": 14124.5, + "probability": 0.9488 + }, + { + "start": 14124.92, + "end": 14126.44, + "probability": 0.9944 + }, + { + "start": 14127.18, + "end": 14129.88, + "probability": 0.9028 + }, + { + "start": 14130.42, + "end": 14133.46, + "probability": 0.936 + }, + { + "start": 14133.58, + "end": 14134.24, + "probability": 0.9888 + }, + { + "start": 14134.9, + "end": 14138.46, + "probability": 0.995 + }, + { + "start": 14138.46, + "end": 14143.48, + "probability": 0.9643 + }, + { + "start": 14143.9, + "end": 14144.28, + "probability": 0.3443 + }, + { + "start": 14145.62, + "end": 14146.7, + "probability": 0.8273 + }, + { + "start": 14146.8, + "end": 14149.42, + "probability": 0.9877 + }, + { + "start": 14149.94, + "end": 14151.12, + "probability": 0.9585 + }, + { + "start": 14151.22, + "end": 14152.28, + "probability": 0.9507 + }, + { + "start": 14153.36, + "end": 14157.58, + "probability": 0.992 + }, + { + "start": 14158.36, + "end": 14159.18, + "probability": 0.7562 + }, + { + "start": 14159.42, + "end": 14160.48, + "probability": 0.9108 + }, + { + "start": 14160.82, + "end": 14161.86, + "probability": 0.9879 + }, + { + "start": 14162.66, + "end": 14164.78, + "probability": 0.9983 + }, + { + "start": 14168.74, + "end": 14169.46, + "probability": 0.8453 + }, + { + "start": 14171.98, + "end": 14174.68, + "probability": 0.9664 + }, + { + "start": 14175.86, + "end": 14178.9, + "probability": 0.9963 + }, + { + "start": 14179.06, + "end": 14181.42, + "probability": 0.9672 + }, + { + "start": 14182.14, + "end": 14183.2, + "probability": 0.9708 + }, + { + "start": 14184.26, + "end": 14185.78, + "probability": 0.9976 + }, + { + "start": 14187.22, + "end": 14190.76, + "probability": 0.9648 + }, + { + "start": 14192.18, + "end": 14197.48, + "probability": 0.9989 + }, + { + "start": 14198.36, + "end": 14201.5, + "probability": 0.9945 + }, + { + "start": 14201.5, + "end": 14205.26, + "probability": 0.9954 + }, + { + "start": 14206.26, + "end": 14208.52, + "probability": 0.9956 + }, + { + "start": 14208.52, + "end": 14208.96, + "probability": 0.9789 + }, + { + "start": 14209.68, + "end": 14211.7, + "probability": 0.9908 + }, + { + "start": 14212.66, + "end": 14213.68, + "probability": 0.9019 + }, + { + "start": 14213.8, + "end": 14215.24, + "probability": 0.9481 + }, + { + "start": 14215.78, + "end": 14221.8, + "probability": 0.9485 + }, + { + "start": 14222.64, + "end": 14224.66, + "probability": 0.9729 + }, + { + "start": 14225.22, + "end": 14226.04, + "probability": 0.901 + }, + { + "start": 14226.8, + "end": 14231.58, + "probability": 0.9933 + }, + { + "start": 14232.16, + "end": 14234.56, + "probability": 0.9382 + }, + { + "start": 14235.16, + "end": 14237.76, + "probability": 0.9246 + }, + { + "start": 14238.8, + "end": 14240.86, + "probability": 0.9258 + }, + { + "start": 14242.66, + "end": 14245.0, + "probability": 0.9973 + }, + { + "start": 14245.72, + "end": 14246.88, + "probability": 0.7457 + }, + { + "start": 14247.4, + "end": 14249.36, + "probability": 0.881 + }, + { + "start": 14249.48, + "end": 14253.94, + "probability": 0.9836 + }, + { + "start": 14254.5, + "end": 14255.1, + "probability": 0.83 + }, + { + "start": 14255.36, + "end": 14256.0, + "probability": 0.9307 + }, + { + "start": 14256.08, + "end": 14258.31, + "probability": 0.9971 + }, + { + "start": 14259.1, + "end": 14260.52, + "probability": 0.9476 + }, + { + "start": 14261.02, + "end": 14262.8, + "probability": 0.8301 + }, + { + "start": 14263.48, + "end": 14267.08, + "probability": 0.9105 + }, + { + "start": 14267.18, + "end": 14271.32, + "probability": 0.9713 + }, + { + "start": 14272.06, + "end": 14273.46, + "probability": 0.9683 + }, + { + "start": 14274.04, + "end": 14274.74, + "probability": 0.7698 + }, + { + "start": 14274.86, + "end": 14279.12, + "probability": 0.9966 + }, + { + "start": 14279.52, + "end": 14281.02, + "probability": 0.4712 + }, + { + "start": 14281.58, + "end": 14286.92, + "probability": 0.9727 + }, + { + "start": 14287.28, + "end": 14287.56, + "probability": 0.0489 + }, + { + "start": 14287.92, + "end": 14287.92, + "probability": 0.1858 + }, + { + "start": 14288.04, + "end": 14289.16, + "probability": 0.7804 + }, + { + "start": 14289.42, + "end": 14293.74, + "probability": 0.8992 + }, + { + "start": 14294.06, + "end": 14294.08, + "probability": 0.0974 + }, + { + "start": 14294.08, + "end": 14294.86, + "probability": 0.4984 + }, + { + "start": 14294.94, + "end": 14296.4, + "probability": 0.9063 + }, + { + "start": 14296.82, + "end": 14300.9, + "probability": 0.9652 + }, + { + "start": 14300.98, + "end": 14301.34, + "probability": 0.7434 + }, + { + "start": 14301.34, + "end": 14301.44, + "probability": 0.7379 + }, + { + "start": 14301.8, + "end": 14302.52, + "probability": 0.9265 + }, + { + "start": 14302.66, + "end": 14307.94, + "probability": 0.9817 + }, + { + "start": 14308.94, + "end": 14311.48, + "probability": 0.9436 + }, + { + "start": 14312.42, + "end": 14314.14, + "probability": 0.9769 + }, + { + "start": 14314.16, + "end": 14314.22, + "probability": 0.133 + }, + { + "start": 14314.22, + "end": 14317.58, + "probability": 0.917 + }, + { + "start": 14318.16, + "end": 14319.2, + "probability": 0.9548 + }, + { + "start": 14319.32, + "end": 14323.56, + "probability": 0.9791 + }, + { + "start": 14323.56, + "end": 14326.52, + "probability": 0.9987 + }, + { + "start": 14326.66, + "end": 14327.38, + "probability": 0.3984 + }, + { + "start": 14327.38, + "end": 14327.38, + "probability": 0.5206 + }, + { + "start": 14327.38, + "end": 14330.62, + "probability": 0.972 + }, + { + "start": 14331.22, + "end": 14334.18, + "probability": 0.9956 + }, + { + "start": 14335.2, + "end": 14336.1, + "probability": 0.9363 + }, + { + "start": 14338.14, + "end": 14339.18, + "probability": 0.9913 + }, + { + "start": 14356.84, + "end": 14358.46, + "probability": 0.5167 + }, + { + "start": 14359.36, + "end": 14362.44, + "probability": 0.9099 + }, + { + "start": 14363.6, + "end": 14363.76, + "probability": 0.4843 + }, + { + "start": 14363.76, + "end": 14367.1, + "probability": 0.9829 + }, + { + "start": 14371.06, + "end": 14373.32, + "probability": 0.9987 + }, + { + "start": 14374.64, + "end": 14376.36, + "probability": 0.9967 + }, + { + "start": 14377.66, + "end": 14380.26, + "probability": 0.9845 + }, + { + "start": 14381.16, + "end": 14383.34, + "probability": 0.9719 + }, + { + "start": 14384.68, + "end": 14385.2, + "probability": 0.7269 + }, + { + "start": 14386.82, + "end": 14387.4, + "probability": 0.6741 + }, + { + "start": 14388.42, + "end": 14389.64, + "probability": 0.9595 + }, + { + "start": 14390.46, + "end": 14391.84, + "probability": 0.069 + }, + { + "start": 14392.16, + "end": 14392.48, + "probability": 0.3538 + }, + { + "start": 14392.8, + "end": 14394.3, + "probability": 0.8509 + }, + { + "start": 14394.52, + "end": 14396.78, + "probability": 0.9712 + }, + { + "start": 14396.92, + "end": 14398.94, + "probability": 0.8075 + }, + { + "start": 14399.28, + "end": 14399.86, + "probability": 0.7747 + }, + { + "start": 14400.36, + "end": 14404.6, + "probability": 0.4981 + }, + { + "start": 14405.06, + "end": 14407.3, + "probability": 0.8235 + }, + { + "start": 14407.4, + "end": 14409.1, + "probability": 0.8037 + }, + { + "start": 14409.18, + "end": 14410.56, + "probability": 0.9457 + }, + { + "start": 14411.68, + "end": 14415.04, + "probability": 0.9965 + }, + { + "start": 14415.04, + "end": 14419.66, + "probability": 0.9897 + }, + { + "start": 14420.14, + "end": 14422.44, + "probability": 0.8931 + }, + { + "start": 14423.3, + "end": 14424.76, + "probability": 0.808 + }, + { + "start": 14426.32, + "end": 14428.64, + "probability": 0.6433 + }, + { + "start": 14428.76, + "end": 14430.22, + "probability": 0.962 + }, + { + "start": 14430.5, + "end": 14437.74, + "probability": 0.8869 + }, + { + "start": 14438.18, + "end": 14442.44, + "probability": 0.9802 + }, + { + "start": 14442.52, + "end": 14444.2, + "probability": 0.7459 + }, + { + "start": 14444.8, + "end": 14445.0, + "probability": 0.2476 + }, + { + "start": 14445.06, + "end": 14445.46, + "probability": 0.9458 + }, + { + "start": 14446.42, + "end": 14449.1, + "probability": 0.6382 + }, + { + "start": 14449.22, + "end": 14452.2, + "probability": 0.6196 + }, + { + "start": 14452.3, + "end": 14453.44, + "probability": 0.769 + }, + { + "start": 14453.56, + "end": 14455.08, + "probability": 0.8783 + }, + { + "start": 14455.62, + "end": 14456.02, + "probability": 0.513 + }, + { + "start": 14457.38, + "end": 14460.96, + "probability": 0.9905 + }, + { + "start": 14461.48, + "end": 14465.58, + "probability": 0.912 + }, + { + "start": 14466.34, + "end": 14466.6, + "probability": 0.6287 + }, + { + "start": 14467.04, + "end": 14469.04, + "probability": 0.9749 + }, + { + "start": 14469.5, + "end": 14470.98, + "probability": 0.9932 + }, + { + "start": 14472.18, + "end": 14473.86, + "probability": 0.9978 + }, + { + "start": 14474.48, + "end": 14476.96, + "probability": 0.9984 + }, + { + "start": 14477.8, + "end": 14480.9, + "probability": 0.9995 + }, + { + "start": 14481.56, + "end": 14484.84, + "probability": 0.9972 + }, + { + "start": 14484.94, + "end": 14488.18, + "probability": 0.9833 + }, + { + "start": 14489.12, + "end": 14493.02, + "probability": 0.9943 + }, + { + "start": 14493.7, + "end": 14495.6, + "probability": 0.9826 + }, + { + "start": 14495.84, + "end": 14496.44, + "probability": 0.8304 + }, + { + "start": 14497.2, + "end": 14498.48, + "probability": 0.8149 + }, + { + "start": 14498.66, + "end": 14498.84, + "probability": 0.0042 + }, + { + "start": 14499.08, + "end": 14501.06, + "probability": 0.3887 + }, + { + "start": 14501.06, + "end": 14503.38, + "probability": 0.1992 + }, + { + "start": 14503.4, + "end": 14504.2, + "probability": 0.6018 + }, + { + "start": 14504.64, + "end": 14505.22, + "probability": 0.6673 + }, + { + "start": 14506.61, + "end": 14508.65, + "probability": 0.9919 + }, + { + "start": 14509.24, + "end": 14510.8, + "probability": 0.942 + }, + { + "start": 14511.2, + "end": 14511.84, + "probability": 0.9444 + }, + { + "start": 14511.94, + "end": 14513.98, + "probability": 0.9941 + }, + { + "start": 14513.98, + "end": 14517.5, + "probability": 0.7858 + }, + { + "start": 14517.82, + "end": 14521.28, + "probability": 0.6612 + }, + { + "start": 14522.32, + "end": 14522.32, + "probability": 0.3662 + }, + { + "start": 14534.44, + "end": 14541.64, + "probability": 0.5926 + }, + { + "start": 14541.78, + "end": 14542.82, + "probability": 0.3959 + }, + { + "start": 14543.56, + "end": 14548.92, + "probability": 0.8255 + }, + { + "start": 14551.16, + "end": 14552.42, + "probability": 0.6478 + }, + { + "start": 14552.44, + "end": 14554.94, + "probability": 0.2203 + }, + { + "start": 14558.94, + "end": 14559.9, + "probability": 0.4564 + }, + { + "start": 14560.7, + "end": 14561.02, + "probability": 0.0102 + }, + { + "start": 14572.78, + "end": 14574.68, + "probability": 0.1078 + }, + { + "start": 14574.68, + "end": 14574.7, + "probability": 0.142 + }, + { + "start": 14574.7, + "end": 14575.9, + "probability": 0.0762 + }, + { + "start": 14582.76, + "end": 14583.58, + "probability": 0.0227 + }, + { + "start": 14584.64, + "end": 14585.72, + "probability": 0.0408 + }, + { + "start": 14586.32, + "end": 14587.26, + "probability": 0.0913 + }, + { + "start": 14589.34, + "end": 14590.62, + "probability": 0.0358 + }, + { + "start": 14590.62, + "end": 14590.68, + "probability": 0.0199 + }, + { + "start": 14592.0, + "end": 14592.43, + "probability": 0.0635 + }, + { + "start": 14594.24, + "end": 14595.96, + "probability": 0.0477 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14613.0, + "end": 14613.0, + "probability": 0.0 + }, + { + "start": 14614.56, + "end": 14617.86, + "probability": 0.9815 + }, + { + "start": 14618.46, + "end": 14620.66, + "probability": 0.9678 + }, + { + "start": 14620.7, + "end": 14622.56, + "probability": 0.5857 + }, + { + "start": 14625.9, + "end": 14627.66, + "probability": 0.2296 + }, + { + "start": 14628.9, + "end": 14630.16, + "probability": 0.9847 + }, + { + "start": 14630.28, + "end": 14630.3, + "probability": 0.1622 + }, + { + "start": 14630.3, + "end": 14630.3, + "probability": 0.0504 + }, + { + "start": 14630.3, + "end": 14630.3, + "probability": 0.0943 + }, + { + "start": 14630.3, + "end": 14630.3, + "probability": 0.0432 + }, + { + "start": 14630.3, + "end": 14630.3, + "probability": 0.1465 + }, + { + "start": 14630.3, + "end": 14631.42, + "probability": 0.4252 + }, + { + "start": 14631.42, + "end": 14636.42, + "probability": 0.98 + }, + { + "start": 14637.02, + "end": 14637.52, + "probability": 0.976 + }, + { + "start": 14638.06, + "end": 14640.44, + "probability": 0.9941 + }, + { + "start": 14640.44, + "end": 14643.36, + "probability": 0.9825 + }, + { + "start": 14643.92, + "end": 14646.8, + "probability": 0.928 + }, + { + "start": 14646.8, + "end": 14649.84, + "probability": 0.9978 + }, + { + "start": 14649.84, + "end": 14653.32, + "probability": 0.9979 + }, + { + "start": 14653.74, + "end": 14654.32, + "probability": 0.7501 + }, + { + "start": 14655.26, + "end": 14658.24, + "probability": 0.9897 + }, + { + "start": 14658.24, + "end": 14661.42, + "probability": 0.9938 + }, + { + "start": 14662.02, + "end": 14663.98, + "probability": 0.9906 + }, + { + "start": 14663.98, + "end": 14666.58, + "probability": 0.9946 + }, + { + "start": 14666.72, + "end": 14667.24, + "probability": 0.7236 + }, + { + "start": 14667.72, + "end": 14669.1, + "probability": 0.9845 + }, + { + "start": 14669.2, + "end": 14672.2, + "probability": 0.9957 + }, + { + "start": 14673.18, + "end": 14673.77, + "probability": 0.9917 + }, + { + "start": 14674.44, + "end": 14675.08, + "probability": 0.9113 + }, + { + "start": 14675.26, + "end": 14677.2, + "probability": 0.7659 + }, + { + "start": 14677.64, + "end": 14680.5, + "probability": 0.9963 + }, + { + "start": 14681.16, + "end": 14684.42, + "probability": 0.9958 + }, + { + "start": 14685.08, + "end": 14688.58, + "probability": 0.7959 + }, + { + "start": 14688.58, + "end": 14691.54, + "probability": 0.9628 + }, + { + "start": 14691.74, + "end": 14692.36, + "probability": 0.7019 + }, + { + "start": 14692.56, + "end": 14695.92, + "probability": 0.8871 + }, + { + "start": 14696.36, + "end": 14697.94, + "probability": 0.9827 + }, + { + "start": 14698.44, + "end": 14701.78, + "probability": 0.992 + }, + { + "start": 14701.84, + "end": 14703.14, + "probability": 0.9959 + }, + { + "start": 14704.1, + "end": 14705.76, + "probability": 0.9868 + }, + { + "start": 14706.08, + "end": 14706.42, + "probability": 0.8294 + }, + { + "start": 14706.44, + "end": 14707.8, + "probability": 0.9624 + }, + { + "start": 14708.32, + "end": 14708.89, + "probability": 0.6656 + }, + { + "start": 14709.38, + "end": 14710.05, + "probability": 0.9738 + }, + { + "start": 14710.22, + "end": 14713.02, + "probability": 0.9867 + }, + { + "start": 14713.8, + "end": 14714.52, + "probability": 0.8217 + }, + { + "start": 14715.08, + "end": 14716.4, + "probability": 0.9898 + }, + { + "start": 14716.44, + "end": 14720.9, + "probability": 0.9396 + }, + { + "start": 14721.4, + "end": 14724.52, + "probability": 0.9763 + }, + { + "start": 14725.64, + "end": 14727.72, + "probability": 0.8649 + }, + { + "start": 14728.0, + "end": 14728.96, + "probability": 0.9534 + }, + { + "start": 14729.46, + "end": 14733.38, + "probability": 0.9963 + }, + { + "start": 14733.46, + "end": 14733.84, + "probability": 0.7574 + }, + { + "start": 14734.98, + "end": 14735.42, + "probability": 0.5362 + }, + { + "start": 14735.5, + "end": 14742.22, + "probability": 0.9944 + }, + { + "start": 14742.28, + "end": 14744.84, + "probability": 0.9023 + }, + { + "start": 14750.74, + "end": 14751.66, + "probability": 0.884 + }, + { + "start": 14752.18, + "end": 14753.84, + "probability": 0.8816 + }, + { + "start": 14755.4, + "end": 14756.52, + "probability": 0.9751 + }, + { + "start": 14758.19, + "end": 14761.72, + "probability": 0.841 + }, + { + "start": 14770.76, + "end": 14773.14, + "probability": 0.6327 + }, + { + "start": 14773.9, + "end": 14774.7, + "probability": 0.8469 + }, + { + "start": 14774.72, + "end": 14774.96, + "probability": 0.8711 + }, + { + "start": 14775.02, + "end": 14775.64, + "probability": 0.9124 + }, + { + "start": 14775.7, + "end": 14778.38, + "probability": 0.7611 + }, + { + "start": 14778.74, + "end": 14779.7, + "probability": 0.541 + }, + { + "start": 14779.9, + "end": 14781.4, + "probability": 0.8356 + }, + { + "start": 14781.4, + "end": 14784.22, + "probability": 0.4213 + }, + { + "start": 14784.36, + "end": 14785.32, + "probability": 0.1217 + }, + { + "start": 14785.5, + "end": 14786.52, + "probability": 0.6381 + }, + { + "start": 14786.52, + "end": 14789.72, + "probability": 0.9876 + }, + { + "start": 14789.78, + "end": 14790.34, + "probability": 0.9031 + }, + { + "start": 14790.42, + "end": 14790.86, + "probability": 0.8531 + }, + { + "start": 14791.02, + "end": 14792.24, + "probability": 0.7178 + }, + { + "start": 14792.4, + "end": 14794.02, + "probability": 0.7602 + }, + { + "start": 14794.56, + "end": 14800.24, + "probability": 0.8001 + }, + { + "start": 14800.4, + "end": 14803.62, + "probability": 0.9659 + }, + { + "start": 14804.42, + "end": 14806.58, + "probability": 0.9932 + }, + { + "start": 14806.74, + "end": 14811.74, + "probability": 0.9926 + }, + { + "start": 14811.76, + "end": 14815.5, + "probability": 0.9728 + }, + { + "start": 14815.54, + "end": 14818.7, + "probability": 0.9624 + }, + { + "start": 14818.78, + "end": 14818.78, + "probability": 0.2838 + }, + { + "start": 14818.78, + "end": 14819.32, + "probability": 0.7608 + }, + { + "start": 14819.38, + "end": 14824.14, + "probability": 0.9774 + }, + { + "start": 14824.48, + "end": 14825.46, + "probability": 0.6939 + }, + { + "start": 14825.52, + "end": 14826.26, + "probability": 0.8382 + }, + { + "start": 14826.48, + "end": 14827.16, + "probability": 0.9507 + }, + { + "start": 14827.18, + "end": 14828.94, + "probability": 0.8762 + }, + { + "start": 14828.96, + "end": 14829.06, + "probability": 0.7393 + }, + { + "start": 14829.06, + "end": 14830.22, + "probability": 0.8465 + }, + { + "start": 14830.32, + "end": 14831.7, + "probability": 0.909 + }, + { + "start": 14831.7, + "end": 14832.18, + "probability": 0.3852 + }, + { + "start": 14832.3, + "end": 14835.38, + "probability": 0.9358 + }, + { + "start": 14835.4, + "end": 14835.78, + "probability": 0.9141 + }, + { + "start": 14836.52, + "end": 14838.26, + "probability": 0.5706 + }, + { + "start": 14838.5, + "end": 14842.04, + "probability": 0.9333 + }, + { + "start": 14842.12, + "end": 14845.24, + "probability": 0.9985 + }, + { + "start": 14845.8, + "end": 14846.1, + "probability": 0.3603 + }, + { + "start": 14846.22, + "end": 14846.22, + "probability": 0.2181 + }, + { + "start": 14846.22, + "end": 14848.96, + "probability": 0.9416 + }, + { + "start": 14849.46, + "end": 14851.06, + "probability": 0.9779 + }, + { + "start": 14851.12, + "end": 14851.76, + "probability": 0.8578 + }, + { + "start": 14852.12, + "end": 14852.8, + "probability": 0.6522 + }, + { + "start": 14852.96, + "end": 14854.24, + "probability": 0.8651 + }, + { + "start": 14855.0, + "end": 14856.33, + "probability": 0.7394 + }, + { + "start": 14856.74, + "end": 14858.86, + "probability": 0.3468 + }, + { + "start": 14859.18, + "end": 14860.58, + "probability": 0.5867 + }, + { + "start": 14860.66, + "end": 14862.84, + "probability": 0.6511 + }, + { + "start": 14863.16, + "end": 14868.48, + "probability": 0.2686 + }, + { + "start": 14870.3, + "end": 14876.36, + "probability": 0.8075 + }, + { + "start": 14876.36, + "end": 14877.07, + "probability": 0.1031 + }, + { + "start": 14878.02, + "end": 14878.78, + "probability": 0.3743 + }, + { + "start": 14878.9, + "end": 14879.98, + "probability": 0.2619 + }, + { + "start": 14881.7, + "end": 14883.56, + "probability": 0.6547 + }, + { + "start": 14884.28, + "end": 14885.38, + "probability": 0.8614 + }, + { + "start": 14885.88, + "end": 14887.04, + "probability": 0.8668 + }, + { + "start": 14887.42, + "end": 14888.0, + "probability": 0.7063 + }, + { + "start": 14888.06, + "end": 14890.52, + "probability": 0.8622 + }, + { + "start": 14890.64, + "end": 14890.8, + "probability": 0.1196 + }, + { + "start": 14890.8, + "end": 14891.3, + "probability": 0.3599 + }, + { + "start": 14891.54, + "end": 14893.36, + "probability": 0.8799 + }, + { + "start": 14893.8, + "end": 14896.62, + "probability": 0.5157 + }, + { + "start": 14902.74, + "end": 14907.42, + "probability": 0.9898 + }, + { + "start": 14908.18, + "end": 14910.64, + "probability": 0.8415 + }, + { + "start": 14911.06, + "end": 14911.71, + "probability": 0.795 + }, + { + "start": 14912.12, + "end": 14913.6, + "probability": 0.8781 + }, + { + "start": 14914.38, + "end": 14916.5, + "probability": 0.988 + }, + { + "start": 14916.5, + "end": 14917.46, + "probability": 0.2404 + }, + { + "start": 14917.58, + "end": 14917.9, + "probability": 0.4305 + }, + { + "start": 14917.96, + "end": 14919.1, + "probability": 0.625 + }, + { + "start": 14919.18, + "end": 14920.43, + "probability": 0.9751 + }, + { + "start": 14920.64, + "end": 14921.28, + "probability": 0.8815 + }, + { + "start": 14921.92, + "end": 14925.46, + "probability": 0.9288 + }, + { + "start": 14925.5, + "end": 14929.74, + "probability": 0.9585 + }, + { + "start": 14929.78, + "end": 14929.98, + "probability": 0.7299 + }, + { + "start": 14930.54, + "end": 14930.94, + "probability": 0.3799 + }, + { + "start": 14930.98, + "end": 14935.42, + "probability": 0.9948 + }, + { + "start": 14937.83, + "end": 14942.26, + "probability": 0.8714 + }, + { + "start": 14943.02, + "end": 14943.48, + "probability": 0.7465 + }, + { + "start": 14944.26, + "end": 14945.28, + "probability": 0.957 + }, + { + "start": 14945.82, + "end": 14949.18, + "probability": 0.219 + }, + { + "start": 14949.18, + "end": 14953.2, + "probability": 0.9603 + }, + { + "start": 14953.28, + "end": 14954.84, + "probability": 0.9355 + }, + { + "start": 14955.78, + "end": 14959.48, + "probability": 0.9957 + }, + { + "start": 14959.48, + "end": 14961.98, + "probability": 0.9909 + }, + { + "start": 14963.02, + "end": 14965.2, + "probability": 0.9956 + }, + { + "start": 14965.76, + "end": 14968.28, + "probability": 0.9585 + }, + { + "start": 14968.94, + "end": 14969.9, + "probability": 0.8164 + }, + { + "start": 14970.02, + "end": 14972.44, + "probability": 0.9102 + }, + { + "start": 14972.92, + "end": 14975.3, + "probability": 0.8542 + }, + { + "start": 14975.54, + "end": 14976.82, + "probability": 0.8141 + }, + { + "start": 14977.6, + "end": 14980.16, + "probability": 0.8892 + }, + { + "start": 14980.9, + "end": 14986.52, + "probability": 0.9303 + }, + { + "start": 14987.08, + "end": 14989.56, + "probability": 0.967 + }, + { + "start": 14990.04, + "end": 14991.66, + "probability": 0.8314 + }, + { + "start": 14991.76, + "end": 14992.38, + "probability": 0.7652 + }, + { + "start": 14992.82, + "end": 14994.76, + "probability": 0.7696 + }, + { + "start": 14995.34, + "end": 14998.56, + "probability": 0.9017 + }, + { + "start": 14999.3, + "end": 15000.5, + "probability": 0.8471 + }, + { + "start": 15001.06, + "end": 15001.42, + "probability": 0.8398 + }, + { + "start": 15002.12, + "end": 15002.9, + "probability": 0.8626 + }, + { + "start": 15003.36, + "end": 15006.46, + "probability": 0.9581 + }, + { + "start": 15006.9, + "end": 15008.64, + "probability": 0.7863 + }, + { + "start": 15009.32, + "end": 15010.22, + "probability": 0.8649 + }, + { + "start": 15010.84, + "end": 15015.52, + "probability": 0.9807 + }, + { + "start": 15015.7, + "end": 15018.86, + "probability": 0.9781 + }, + { + "start": 15019.76, + "end": 15021.92, + "probability": 0.9775 + }, + { + "start": 15022.82, + "end": 15025.8, + "probability": 0.9803 + }, + { + "start": 15026.22, + "end": 15027.04, + "probability": 0.8679 + }, + { + "start": 15027.62, + "end": 15029.42, + "probability": 0.9417 + }, + { + "start": 15030.24, + "end": 15031.44, + "probability": 0.8299 + }, + { + "start": 15032.24, + "end": 15033.8, + "probability": 0.9974 + }, + { + "start": 15034.88, + "end": 15036.37, + "probability": 0.9971 + }, + { + "start": 15037.4, + "end": 15040.04, + "probability": 0.9623 + }, + { + "start": 15041.22, + "end": 15042.56, + "probability": 0.4637 + }, + { + "start": 15043.12, + "end": 15046.26, + "probability": 0.9402 + }, + { + "start": 15046.82, + "end": 15048.98, + "probability": 0.9815 + }, + { + "start": 15049.86, + "end": 15052.42, + "probability": 0.9854 + }, + { + "start": 15053.04, + "end": 15054.26, + "probability": 0.8723 + }, + { + "start": 15055.52, + "end": 15056.28, + "probability": 0.8537 + }, + { + "start": 15057.44, + "end": 15058.5, + "probability": 0.9539 + }, + { + "start": 15059.08, + "end": 15064.74, + "probability": 0.9873 + }, + { + "start": 15065.66, + "end": 15065.8, + "probability": 0.5741 + }, + { + "start": 15065.84, + "end": 15067.24, + "probability": 0.9865 + }, + { + "start": 15067.36, + "end": 15070.6, + "probability": 0.9829 + }, + { + "start": 15070.94, + "end": 15071.5, + "probability": 0.8406 + }, + { + "start": 15072.16, + "end": 15075.54, + "probability": 0.8859 + }, + { + "start": 15076.32, + "end": 15079.34, + "probability": 0.9794 + }, + { + "start": 15079.4, + "end": 15080.06, + "probability": 0.9615 + }, + { + "start": 15081.62, + "end": 15086.04, + "probability": 0.9746 + }, + { + "start": 15086.04, + "end": 15090.08, + "probability": 0.9966 + }, + { + "start": 15090.7, + "end": 15092.96, + "probability": 0.9806 + }, + { + "start": 15093.8, + "end": 15095.51, + "probability": 0.8023 + }, + { + "start": 15095.8, + "end": 15097.82, + "probability": 0.9585 + }, + { + "start": 15097.94, + "end": 15098.74, + "probability": 0.9277 + }, + { + "start": 15099.3, + "end": 15100.62, + "probability": 0.9867 + }, + { + "start": 15101.3, + "end": 15103.82, + "probability": 0.9719 + }, + { + "start": 15103.82, + "end": 15106.66, + "probability": 0.995 + }, + { + "start": 15107.22, + "end": 15108.12, + "probability": 0.9695 + }, + { + "start": 15108.48, + "end": 15112.18, + "probability": 0.9982 + }, + { + "start": 15112.88, + "end": 15114.54, + "probability": 0.8263 + }, + { + "start": 15115.02, + "end": 15115.9, + "probability": 0.9438 + }, + { + "start": 15116.1, + "end": 15117.76, + "probability": 0.7021 + }, + { + "start": 15118.26, + "end": 15123.72, + "probability": 0.9963 + }, + { + "start": 15124.52, + "end": 15126.96, + "probability": 0.999 + }, + { + "start": 15127.84, + "end": 15128.45, + "probability": 0.9578 + }, + { + "start": 15129.02, + "end": 15130.7, + "probability": 0.9988 + }, + { + "start": 15131.16, + "end": 15131.94, + "probability": 0.9844 + }, + { + "start": 15132.38, + "end": 15134.84, + "probability": 0.9159 + }, + { + "start": 15135.26, + "end": 15136.44, + "probability": 0.8118 + }, + { + "start": 15136.52, + "end": 15136.86, + "probability": 0.7587 + }, + { + "start": 15136.9, + "end": 15138.64, + "probability": 0.9563 + }, + { + "start": 15138.94, + "end": 15140.2, + "probability": 0.9988 + }, + { + "start": 15140.62, + "end": 15141.22, + "probability": 0.9844 + }, + { + "start": 15141.58, + "end": 15143.32, + "probability": 0.8479 + }, + { + "start": 15143.66, + "end": 15144.46, + "probability": 0.7993 + }, + { + "start": 15145.36, + "end": 15146.1, + "probability": 0.5159 + }, + { + "start": 15146.14, + "end": 15148.22, + "probability": 0.9246 + }, + { + "start": 15152.4, + "end": 15153.02, + "probability": 0.3416 + }, + { + "start": 15153.38, + "end": 15155.56, + "probability": 0.9956 + }, + { + "start": 15155.56, + "end": 15158.84, + "probability": 0.8704 + }, + { + "start": 15158.84, + "end": 15162.92, + "probability": 0.5924 + }, + { + "start": 15163.5, + "end": 15164.28, + "probability": 0.4061 + }, + { + "start": 15166.06, + "end": 15168.46, + "probability": 0.2678 + }, + { + "start": 15172.74, + "end": 15174.26, + "probability": 0.7423 + }, + { + "start": 15174.52, + "end": 15174.86, + "probability": 0.5879 + }, + { + "start": 15175.1, + "end": 15175.75, + "probability": 0.0753 + }, + { + "start": 15177.74, + "end": 15181.1, + "probability": 0.6907 + }, + { + "start": 15182.22, + "end": 15184.52, + "probability": 0.988 + }, + { + "start": 15184.52, + "end": 15186.52, + "probability": 0.9629 + }, + { + "start": 15186.78, + "end": 15187.8, + "probability": 0.6189 + }, + { + "start": 15188.04, + "end": 15189.88, + "probability": 0.8164 + }, + { + "start": 15192.48, + "end": 15195.58, + "probability": 0.8344 + }, + { + "start": 15196.68, + "end": 15199.64, + "probability": 0.9954 + }, + { + "start": 15200.54, + "end": 15201.84, + "probability": 0.9045 + }, + { + "start": 15202.38, + "end": 15206.52, + "probability": 0.7056 + }, + { + "start": 15206.64, + "end": 15208.07, + "probability": 0.4375 + }, + { + "start": 15208.5, + "end": 15209.44, + "probability": 0.5246 + }, + { + "start": 15209.92, + "end": 15210.72, + "probability": 0.6954 + }, + { + "start": 15211.54, + "end": 15215.11, + "probability": 0.8771 + }, + { + "start": 15216.52, + "end": 15218.08, + "probability": 0.7424 + }, + { + "start": 15218.1, + "end": 15219.42, + "probability": 0.6816 + }, + { + "start": 15219.6, + "end": 15221.48, + "probability": 0.968 + }, + { + "start": 15222.22, + "end": 15224.68, + "probability": 0.9624 + }, + { + "start": 15224.8, + "end": 15225.68, + "probability": 0.67 + }, + { + "start": 15225.82, + "end": 15229.64, + "probability": 0.9803 + }, + { + "start": 15230.38, + "end": 15231.68, + "probability": 0.8599 + }, + { + "start": 15232.56, + "end": 15234.82, + "probability": 0.9913 + }, + { + "start": 15236.36, + "end": 15237.76, + "probability": 0.9445 + }, + { + "start": 15238.7, + "end": 15242.98, + "probability": 0.8352 + }, + { + "start": 15243.1, + "end": 15247.52, + "probability": 0.9839 + }, + { + "start": 15247.52, + "end": 15253.16, + "probability": 0.9986 + }, + { + "start": 15254.08, + "end": 15254.4, + "probability": 0.8677 + }, + { + "start": 15254.94, + "end": 15260.86, + "probability": 0.8232 + }, + { + "start": 15261.36, + "end": 15264.12, + "probability": 0.9878 + }, + { + "start": 15264.64, + "end": 15267.36, + "probability": 0.9722 + }, + { + "start": 15268.36, + "end": 15268.86, + "probability": 0.9172 + }, + { + "start": 15269.5, + "end": 15272.88, + "probability": 0.7881 + }, + { + "start": 15274.0, + "end": 15276.68, + "probability": 0.9886 + }, + { + "start": 15278.82, + "end": 15279.0, + "probability": 0.6193 + }, + { + "start": 15282.42, + "end": 15284.84, + "probability": 0.5206 + }, + { + "start": 15285.84, + "end": 15288.5, + "probability": 0.9255 + }, + { + "start": 15290.08, + "end": 15292.36, + "probability": 0.9347 + }, + { + "start": 15292.5, + "end": 15293.39, + "probability": 0.5869 + }, + { + "start": 15293.76, + "end": 15295.02, + "probability": 0.9749 + }, + { + "start": 15295.64, + "end": 15297.48, + "probability": 0.8853 + }, + { + "start": 15298.1, + "end": 15300.98, + "probability": 0.9136 + }, + { + "start": 15301.3, + "end": 15303.24, + "probability": 0.9452 + }, + { + "start": 15303.94, + "end": 15306.52, + "probability": 0.9286 + }, + { + "start": 15307.46, + "end": 15308.24, + "probability": 0.7476 + }, + { + "start": 15308.8, + "end": 15310.18, + "probability": 0.7978 + }, + { + "start": 15310.9, + "end": 15312.32, + "probability": 0.0889 + }, + { + "start": 15312.76, + "end": 15315.94, + "probability": 0.1224 + }, + { + "start": 15316.18, + "end": 15316.96, + "probability": 0.219 + }, + { + "start": 15317.4, + "end": 15320.38, + "probability": 0.8308 + }, + { + "start": 15321.12, + "end": 15321.82, + "probability": 0.0852 + }, + { + "start": 15321.82, + "end": 15325.76, + "probability": 0.9663 + }, + { + "start": 15326.48, + "end": 15329.58, + "probability": 0.9958 + }, + { + "start": 15330.36, + "end": 15332.58, + "probability": 0.9966 + }, + { + "start": 15332.84, + "end": 15338.8, + "probability": 0.9841 + }, + { + "start": 15339.84, + "end": 15341.02, + "probability": 0.9673 + }, + { + "start": 15341.84, + "end": 15343.5, + "probability": 0.998 + }, + { + "start": 15344.3, + "end": 15348.6, + "probability": 0.9971 + }, + { + "start": 15349.46, + "end": 15353.32, + "probability": 0.9959 + }, + { + "start": 15353.84, + "end": 15355.8, + "probability": 0.9712 + }, + { + "start": 15356.18, + "end": 15360.76, + "probability": 0.9857 + }, + { + "start": 15362.32, + "end": 15365.56, + "probability": 0.9873 + }, + { + "start": 15366.52, + "end": 15370.38, + "probability": 0.9982 + }, + { + "start": 15370.38, + "end": 15374.34, + "probability": 0.8842 + }, + { + "start": 15376.54, + "end": 15379.34, + "probability": 0.999 + }, + { + "start": 15379.34, + "end": 15382.82, + "probability": 0.9956 + }, + { + "start": 15383.6, + "end": 15388.52, + "probability": 0.9637 + }, + { + "start": 15389.34, + "end": 15393.78, + "probability": 0.9452 + }, + { + "start": 15394.34, + "end": 15395.7, + "probability": 0.8638 + }, + { + "start": 15396.28, + "end": 15396.6, + "probability": 0.0444 + }, + { + "start": 15397.06, + "end": 15398.24, + "probability": 0.2343 + }, + { + "start": 15398.24, + "end": 15402.22, + "probability": 0.9072 + }, + { + "start": 15402.92, + "end": 15411.14, + "probability": 0.9018 + }, + { + "start": 15412.74, + "end": 15419.04, + "probability": 0.9823 + }, + { + "start": 15419.85, + "end": 15420.62, + "probability": 0.1738 + }, + { + "start": 15420.62, + "end": 15422.82, + "probability": 0.91 + }, + { + "start": 15424.4, + "end": 15426.3, + "probability": 0.8102 + }, + { + "start": 15427.42, + "end": 15429.32, + "probability": 0.8214 + }, + { + "start": 15430.88, + "end": 15432.22, + "probability": 0.9441 + }, + { + "start": 15432.32, + "end": 15435.8, + "probability": 0.9649 + }, + { + "start": 15436.4, + "end": 15437.92, + "probability": 0.9877 + }, + { + "start": 15439.22, + "end": 15441.2, + "probability": 0.9685 + }, + { + "start": 15442.52, + "end": 15444.16, + "probability": 0.8209 + }, + { + "start": 15444.28, + "end": 15448.0, + "probability": 0.9538 + }, + { + "start": 15448.04, + "end": 15450.72, + "probability": 0.9866 + }, + { + "start": 15450.78, + "end": 15451.8, + "probability": 0.9988 + }, + { + "start": 15452.4, + "end": 15454.24, + "probability": 0.9819 + }, + { + "start": 15454.76, + "end": 15454.76, + "probability": 0.7358 + }, + { + "start": 15457.66, + "end": 15458.82, + "probability": 0.9501 + }, + { + "start": 15458.98, + "end": 15462.8, + "probability": 0.9972 + }, + { + "start": 15463.64, + "end": 15463.82, + "probability": 0.4969 + }, + { + "start": 15465.16, + "end": 15467.6, + "probability": 0.771 + }, + { + "start": 15467.94, + "end": 15469.06, + "probability": 0.9613 + }, + { + "start": 15469.14, + "end": 15471.42, + "probability": 0.9888 + }, + { + "start": 15472.94, + "end": 15474.96, + "probability": 0.9639 + }, + { + "start": 15475.92, + "end": 15477.5, + "probability": 0.9963 + }, + { + "start": 15478.3, + "end": 15479.7, + "probability": 0.9977 + }, + { + "start": 15480.42, + "end": 15483.3, + "probability": 0.8614 + }, + { + "start": 15484.06, + "end": 15489.12, + "probability": 0.9907 + }, + { + "start": 15489.88, + "end": 15491.76, + "probability": 0.75 + }, + { + "start": 15492.58, + "end": 15494.0, + "probability": 0.9415 + }, + { + "start": 15495.2, + "end": 15496.0, + "probability": 0.9979 + }, + { + "start": 15497.2, + "end": 15497.96, + "probability": 0.6838 + }, + { + "start": 15498.78, + "end": 15502.02, + "probability": 0.9831 + }, + { + "start": 15502.68, + "end": 15505.04, + "probability": 0.8697 + }, + { + "start": 15506.5, + "end": 15508.54, + "probability": 0.7442 + }, + { + "start": 15509.48, + "end": 15514.04, + "probability": 0.9707 + }, + { + "start": 15515.02, + "end": 15515.28, + "probability": 0.0739 + }, + { + "start": 15516.28, + "end": 15517.16, + "probability": 0.7782 + }, + { + "start": 15517.8, + "end": 15521.02, + "probability": 0.9805 + }, + { + "start": 15521.98, + "end": 15524.82, + "probability": 0.9798 + }, + { + "start": 15525.78, + "end": 15526.78, + "probability": 0.985 + }, + { + "start": 15527.64, + "end": 15529.3, + "probability": 0.9948 + }, + { + "start": 15530.76, + "end": 15532.22, + "probability": 0.9198 + }, + { + "start": 15532.96, + "end": 15537.72, + "probability": 0.8725 + }, + { + "start": 15537.9, + "end": 15539.36, + "probability": 0.8503 + }, + { + "start": 15540.74, + "end": 15541.28, + "probability": 0.915 + }, + { + "start": 15542.52, + "end": 15544.32, + "probability": 0.9961 + }, + { + "start": 15545.12, + "end": 15545.34, + "probability": 0.6349 + }, + { + "start": 15546.62, + "end": 15548.18, + "probability": 0.9633 + }, + { + "start": 15549.16, + "end": 15552.08, + "probability": 0.9929 + }, + { + "start": 15553.56, + "end": 15555.74, + "probability": 0.8552 + }, + { + "start": 15556.32, + "end": 15558.52, + "probability": 0.8287 + }, + { + "start": 15559.14, + "end": 15559.82, + "probability": 0.9801 + }, + { + "start": 15560.48, + "end": 15561.72, + "probability": 0.9866 + }, + { + "start": 15561.78, + "end": 15564.94, + "probability": 0.8366 + }, + { + "start": 15565.72, + "end": 15568.5, + "probability": 0.976 + }, + { + "start": 15569.14, + "end": 15570.26, + "probability": 0.7495 + }, + { + "start": 15571.12, + "end": 15572.7, + "probability": 0.9995 + }, + { + "start": 15573.28, + "end": 15573.94, + "probability": 0.9393 + }, + { + "start": 15574.6, + "end": 15576.24, + "probability": 0.9611 + }, + { + "start": 15576.38, + "end": 15577.4, + "probability": 0.9962 + }, + { + "start": 15578.22, + "end": 15580.36, + "probability": 0.9595 + }, + { + "start": 15581.06, + "end": 15584.1, + "probability": 0.9858 + }, + { + "start": 15584.18, + "end": 15586.64, + "probability": 0.7137 + }, + { + "start": 15587.08, + "end": 15588.52, + "probability": 0.8498 + }, + { + "start": 15616.86, + "end": 15617.42, + "probability": 0.3579 + }, + { + "start": 15617.56, + "end": 15619.42, + "probability": 0.4419 + }, + { + "start": 15619.57, + "end": 15625.92, + "probability": 0.6858 + }, + { + "start": 15625.92, + "end": 15629.46, + "probability": 0.967 + }, + { + "start": 15630.2, + "end": 15634.44, + "probability": 0.7996 + }, + { + "start": 15634.58, + "end": 15635.68, + "probability": 0.7977 + }, + { + "start": 15635.76, + "end": 15637.86, + "probability": 0.8247 + }, + { + "start": 15637.86, + "end": 15641.02, + "probability": 0.996 + }, + { + "start": 15642.0, + "end": 15644.06, + "probability": 0.7225 + }, + { + "start": 15644.06, + "end": 15646.68, + "probability": 0.8969 + }, + { + "start": 15646.72, + "end": 15650.06, + "probability": 0.9543 + }, + { + "start": 15650.06, + "end": 15652.92, + "probability": 0.998 + }, + { + "start": 15653.38, + "end": 15655.82, + "probability": 0.8909 + }, + { + "start": 15656.7, + "end": 15657.48, + "probability": 0.7827 + }, + { + "start": 15658.02, + "end": 15660.44, + "probability": 0.9489 + }, + { + "start": 15660.44, + "end": 15663.52, + "probability": 0.9058 + }, + { + "start": 15663.52, + "end": 15666.46, + "probability": 0.9365 + }, + { + "start": 15667.15, + "end": 15668.44, + "probability": 0.0441 + }, + { + "start": 15671.44, + "end": 15672.76, + "probability": 0.6736 + }, + { + "start": 15673.36, + "end": 15674.7, + "probability": 0.8814 + }, + { + "start": 15674.78, + "end": 15677.54, + "probability": 0.9577 + }, + { + "start": 15677.64, + "end": 15678.8, + "probability": 0.6604 + }, + { + "start": 15679.34, + "end": 15682.4, + "probability": 0.9732 + }, + { + "start": 15682.94, + "end": 15683.74, + "probability": 0.4323 + }, + { + "start": 15683.74, + "end": 15683.8, + "probability": 0.3943 + }, + { + "start": 15683.84, + "end": 15687.26, + "probability": 0.999 + }, + { + "start": 15687.64, + "end": 15690.11, + "probability": 0.9966 + }, + { + "start": 15691.02, + "end": 15691.06, + "probability": 0.2478 + }, + { + "start": 15691.06, + "end": 15692.48, + "probability": 0.8914 + }, + { + "start": 15692.86, + "end": 15694.34, + "probability": 0.9941 + }, + { + "start": 15694.42, + "end": 15695.74, + "probability": 0.8248 + }, + { + "start": 15697.88, + "end": 15698.36, + "probability": 0.0296 + }, + { + "start": 15698.43, + "end": 15701.46, + "probability": 0.6717 + }, + { + "start": 15702.3, + "end": 15702.94, + "probability": 0.1971 + }, + { + "start": 15702.94, + "end": 15706.58, + "probability": 0.4024 + }, + { + "start": 15706.58, + "end": 15706.9, + "probability": 0.4809 + }, + { + "start": 15707.46, + "end": 15707.76, + "probability": 0.0418 + }, + { + "start": 15707.76, + "end": 15707.76, + "probability": 0.1085 + }, + { + "start": 15707.76, + "end": 15707.76, + "probability": 0.094 + }, + { + "start": 15707.76, + "end": 15708.88, + "probability": 0.5924 + }, + { + "start": 15709.02, + "end": 15710.12, + "probability": 0.8571 + }, + { + "start": 15723.08, + "end": 15725.72, + "probability": 0.6791 + }, + { + "start": 15726.22, + "end": 15728.0, + "probability": 0.8076 + }, + { + "start": 15728.82, + "end": 15733.32, + "probability": 0.9943 + }, + { + "start": 15733.96, + "end": 15738.26, + "probability": 0.9993 + }, + { + "start": 15739.28, + "end": 15741.26, + "probability": 0.9973 + }, + { + "start": 15741.26, + "end": 15743.14, + "probability": 0.9983 + }, + { + "start": 15743.5, + "end": 15746.48, + "probability": 0.9947 + }, + { + "start": 15747.16, + "end": 15748.62, + "probability": 0.8702 + }, + { + "start": 15749.18, + "end": 15749.88, + "probability": 0.4339 + }, + { + "start": 15749.88, + "end": 15753.96, + "probability": 0.9937 + }, + { + "start": 15754.44, + "end": 15756.88, + "probability": 0.6516 + }, + { + "start": 15757.04, + "end": 15759.8, + "probability": 0.9968 + }, + { + "start": 15759.82, + "end": 15762.26, + "probability": 0.8182 + }, + { + "start": 15762.64, + "end": 15763.66, + "probability": 0.6633 + }, + { + "start": 15763.82, + "end": 15766.54, + "probability": 0.9164 + }, + { + "start": 15766.72, + "end": 15768.98, + "probability": 0.9774 + }, + { + "start": 15769.34, + "end": 15771.24, + "probability": 0.9041 + }, + { + "start": 15771.92, + "end": 15772.58, + "probability": 0.6676 + }, + { + "start": 15773.3, + "end": 15773.92, + "probability": 0.7448 + }, + { + "start": 15773.96, + "end": 15781.2, + "probability": 0.9823 + }, + { + "start": 15781.54, + "end": 15781.86, + "probability": 0.3202 + }, + { + "start": 15781.98, + "end": 15783.0, + "probability": 0.7679 + }, + { + "start": 15783.1, + "end": 15785.48, + "probability": 0.9568 + }, + { + "start": 15785.48, + "end": 15788.04, + "probability": 0.7502 + }, + { + "start": 15788.4, + "end": 15792.22, + "probability": 0.9783 + }, + { + "start": 15792.64, + "end": 15792.94, + "probability": 0.8489 + }, + { + "start": 15792.98, + "end": 15794.7, + "probability": 0.8994 + }, + { + "start": 15794.7, + "end": 15797.66, + "probability": 0.9989 + }, + { + "start": 15797.74, + "end": 15802.8, + "probability": 0.9975 + }, + { + "start": 15804.02, + "end": 15805.64, + "probability": 0.9474 + }, + { + "start": 15806.24, + "end": 15807.41, + "probability": 0.9564 + }, + { + "start": 15807.78, + "end": 15811.62, + "probability": 0.8148 + }, + { + "start": 15811.74, + "end": 15814.14, + "probability": 0.7735 + }, + { + "start": 15814.5, + "end": 15818.14, + "probability": 0.9729 + }, + { + "start": 15819.92, + "end": 15821.3, + "probability": 0.9058 + }, + { + "start": 15822.1, + "end": 15825.2, + "probability": 0.9685 + }, + { + "start": 15825.2, + "end": 15827.14, + "probability": 0.8042 + }, + { + "start": 15827.2, + "end": 15831.82, + "probability": 0.9713 + }, + { + "start": 15832.9, + "end": 15833.8, + "probability": 0.8523 + }, + { + "start": 15833.84, + "end": 15834.88, + "probability": 0.9541 + }, + { + "start": 15834.9, + "end": 15837.6, + "probability": 0.8838 + }, + { + "start": 15837.94, + "end": 15838.86, + "probability": 0.8091 + }, + { + "start": 15840.54, + "end": 15841.68, + "probability": 0.9082 + }, + { + "start": 15842.26, + "end": 15843.58, + "probability": 0.7382 + }, + { + "start": 15844.1, + "end": 15847.68, + "probability": 0.8965 + }, + { + "start": 15847.76, + "end": 15848.54, + "probability": 0.9873 + }, + { + "start": 15849.2, + "end": 15851.58, + "probability": 0.9215 + }, + { + "start": 15852.38, + "end": 15855.3, + "probability": 0.9911 + }, + { + "start": 15855.98, + "end": 15858.56, + "probability": 0.995 + }, + { + "start": 15858.56, + "end": 15861.54, + "probability": 0.9834 + }, + { + "start": 15861.94, + "end": 15862.58, + "probability": 0.6851 + }, + { + "start": 15862.7, + "end": 15864.9, + "probability": 0.9863 + }, + { + "start": 15864.9, + "end": 15867.26, + "probability": 0.9901 + }, + { + "start": 15867.96, + "end": 15868.38, + "probability": 0.9351 + }, + { + "start": 15869.52, + "end": 15870.8, + "probability": 0.9133 + }, + { + "start": 15870.88, + "end": 15873.36, + "probability": 0.9953 + }, + { + "start": 15873.8, + "end": 15877.48, + "probability": 0.9988 + }, + { + "start": 15878.38, + "end": 15880.86, + "probability": 0.9985 + }, + { + "start": 15880.86, + "end": 15883.3, + "probability": 0.9899 + }, + { + "start": 15884.12, + "end": 15885.64, + "probability": 0.7356 + }, + { + "start": 15885.7, + "end": 15887.16, + "probability": 0.9614 + }, + { + "start": 15887.7, + "end": 15890.14, + "probability": 0.9961 + }, + { + "start": 15890.56, + "end": 15891.94, + "probability": 0.6591 + }, + { + "start": 15892.4, + "end": 15893.64, + "probability": 0.8714 + }, + { + "start": 15893.86, + "end": 15895.52, + "probability": 0.5091 + }, + { + "start": 15895.52, + "end": 15896.14, + "probability": 0.3691 + }, + { + "start": 15896.4, + "end": 15896.84, + "probability": 0.5378 + }, + { + "start": 15897.3, + "end": 15900.84, + "probability": 0.9956 + }, + { + "start": 15901.4, + "end": 15903.16, + "probability": 0.9954 + }, + { + "start": 15903.72, + "end": 15906.52, + "probability": 0.991 + }, + { + "start": 15907.08, + "end": 15910.6, + "probability": 0.9263 + }, + { + "start": 15911.22, + "end": 15912.46, + "probability": 0.9897 + }, + { + "start": 15913.2, + "end": 15913.82, + "probability": 0.6395 + }, + { + "start": 15914.08, + "end": 15916.2, + "probability": 0.9904 + }, + { + "start": 15916.24, + "end": 15916.54, + "probability": 0.5596 + }, + { + "start": 15916.58, + "end": 15919.22, + "probability": 0.5688 + }, + { + "start": 15919.4, + "end": 15922.44, + "probability": 0.9922 + }, + { + "start": 15923.02, + "end": 15924.38, + "probability": 0.8901 + }, + { + "start": 15926.0, + "end": 15929.44, + "probability": 0.9979 + }, + { + "start": 15929.5, + "end": 15931.66, + "probability": 0.95 + }, + { + "start": 15931.82, + "end": 15932.88, + "probability": 0.7188 + }, + { + "start": 15933.24, + "end": 15935.18, + "probability": 0.9549 + }, + { + "start": 15935.7, + "end": 15937.98, + "probability": 0.9937 + }, + { + "start": 15938.42, + "end": 15939.46, + "probability": 0.7247 + }, + { + "start": 15939.6, + "end": 15941.66, + "probability": 0.9905 + }, + { + "start": 15942.36, + "end": 15944.32, + "probability": 0.7983 + }, + { + "start": 15945.14, + "end": 15947.14, + "probability": 0.8887 + }, + { + "start": 15947.14, + "end": 15949.16, + "probability": 0.9929 + }, + { + "start": 15949.58, + "end": 15952.19, + "probability": 0.9992 + }, + { + "start": 15952.63, + "end": 15954.95, + "probability": 0.9918 + }, + { + "start": 15955.61, + "end": 15957.85, + "probability": 0.9962 + }, + { + "start": 15958.69, + "end": 15961.45, + "probability": 0.9955 + }, + { + "start": 15961.83, + "end": 15963.11, + "probability": 0.999 + }, + { + "start": 15963.63, + "end": 15965.97, + "probability": 0.9922 + }, + { + "start": 15966.35, + "end": 15969.93, + "probability": 0.9962 + }, + { + "start": 15970.05, + "end": 15970.75, + "probability": 0.6955 + }, + { + "start": 15971.05, + "end": 15972.81, + "probability": 0.9924 + }, + { + "start": 15973.23, + "end": 15973.97, + "probability": 0.7319 + }, + { + "start": 15974.57, + "end": 15977.52, + "probability": 0.9076 + }, + { + "start": 15978.35, + "end": 15981.39, + "probability": 0.966 + }, + { + "start": 15981.43, + "end": 15982.52, + "probability": 0.3976 + }, + { + "start": 15983.33, + "end": 15985.93, + "probability": 0.6887 + }, + { + "start": 15987.39, + "end": 15987.49, + "probability": 0.2105 + }, + { + "start": 15998.21, + "end": 16005.59, + "probability": 0.3851 + }, + { + "start": 16005.73, + "end": 16007.17, + "probability": 0.7234 + }, + { + "start": 16007.33, + "end": 16008.11, + "probability": 0.6161 + }, + { + "start": 16009.37, + "end": 16012.99, + "probability": 0.5798 + }, + { + "start": 16014.49, + "end": 16017.47, + "probability": 0.0404 + }, + { + "start": 16017.47, + "end": 16020.23, + "probability": 0.0878 + }, + { + "start": 16020.43, + "end": 16021.13, + "probability": 0.0029 + }, + { + "start": 16021.21, + "end": 16024.55, + "probability": 0.381 + }, + { + "start": 16025.13, + "end": 16029.69, + "probability": 0.0435 + }, + { + "start": 16031.19, + "end": 16035.44, + "probability": 0.0713 + }, + { + "start": 16055.73, + "end": 16059.46, + "probability": 0.4182 + }, + { + "start": 16064.01, + "end": 16064.69, + "probability": 0.0555 + }, + { + "start": 16064.69, + "end": 16066.1, + "probability": 0.0267 + }, + { + "start": 16067.84, + "end": 16068.97, + "probability": 0.0617 + }, + { + "start": 16069.99, + "end": 16071.45, + "probability": 0.0695 + }, + { + "start": 16071.97, + "end": 16072.31, + "probability": 0.0195 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16083.0, + "end": 16083.0, + "probability": 0.0 + }, + { + "start": 16086.0, + "end": 16090.22, + "probability": 0.9786 + }, + { + "start": 16091.02, + "end": 16096.06, + "probability": 0.9917 + }, + { + "start": 16097.68, + "end": 16102.56, + "probability": 0.9966 + }, + { + "start": 16103.32, + "end": 16107.46, + "probability": 0.757 + }, + { + "start": 16108.42, + "end": 16112.58, + "probability": 0.8776 + }, + { + "start": 16113.2, + "end": 16113.6, + "probability": 0.8722 + }, + { + "start": 16114.24, + "end": 16115.58, + "probability": 0.6486 + }, + { + "start": 16115.68, + "end": 16117.18, + "probability": 0.9165 + }, + { + "start": 16117.4, + "end": 16121.0, + "probability": 0.9644 + }, + { + "start": 16121.26, + "end": 16122.24, + "probability": 0.9873 + }, + { + "start": 16122.34, + "end": 16124.02, + "probability": 0.8419 + }, + { + "start": 16124.92, + "end": 16127.7, + "probability": 0.9881 + }, + { + "start": 16128.28, + "end": 16129.1, + "probability": 0.9895 + }, + { + "start": 16129.2, + "end": 16130.1, + "probability": 0.9189 + }, + { + "start": 16130.22, + "end": 16130.82, + "probability": 0.9488 + }, + { + "start": 16130.94, + "end": 16131.38, + "probability": 0.9481 + }, + { + "start": 16131.56, + "end": 16133.08, + "probability": 0.9202 + }, + { + "start": 16133.6, + "end": 16137.1, + "probability": 0.9896 + }, + { + "start": 16137.1, + "end": 16143.34, + "probability": 0.5144 + }, + { + "start": 16143.88, + "end": 16146.46, + "probability": 0.8651 + }, + { + "start": 16147.02, + "end": 16147.64, + "probability": 0.9477 + }, + { + "start": 16148.3, + "end": 16152.32, + "probability": 0.8781 + }, + { + "start": 16152.92, + "end": 16154.72, + "probability": 0.9453 + }, + { + "start": 16155.52, + "end": 16158.26, + "probability": 0.8698 + }, + { + "start": 16160.15, + "end": 16165.54, + "probability": 0.9685 + }, + { + "start": 16166.34, + "end": 16168.66, + "probability": 0.9834 + }, + { + "start": 16169.52, + "end": 16173.52, + "probability": 0.9853 + }, + { + "start": 16173.72, + "end": 16177.02, + "probability": 0.7519 + }, + { + "start": 16177.68, + "end": 16179.3, + "probability": 0.8759 + }, + { + "start": 16179.9, + "end": 16180.86, + "probability": 0.9074 + }, + { + "start": 16181.22, + "end": 16183.28, + "probability": 0.463 + }, + { + "start": 16183.9, + "end": 16184.2, + "probability": 0.468 + }, + { + "start": 16184.28, + "end": 16186.6, + "probability": 0.9553 + }, + { + "start": 16186.82, + "end": 16187.28, + "probability": 0.4787 + }, + { + "start": 16187.42, + "end": 16189.82, + "probability": 0.8471 + }, + { + "start": 16190.44, + "end": 16193.16, + "probability": 0.9534 + }, + { + "start": 16193.96, + "end": 16195.72, + "probability": 0.9872 + }, + { + "start": 16195.98, + "end": 16197.5, + "probability": 0.9172 + }, + { + "start": 16197.8, + "end": 16199.16, + "probability": 0.6891 + }, + { + "start": 16199.24, + "end": 16201.96, + "probability": 0.8728 + }, + { + "start": 16202.64, + "end": 16207.76, + "probability": 0.9928 + }, + { + "start": 16207.92, + "end": 16208.92, + "probability": 0.9956 + }, + { + "start": 16209.02, + "end": 16209.72, + "probability": 0.5037 + }, + { + "start": 16210.24, + "end": 16214.4, + "probability": 0.9955 + }, + { + "start": 16214.5, + "end": 16216.82, + "probability": 0.9761 + }, + { + "start": 16216.9, + "end": 16217.92, + "probability": 0.8599 + }, + { + "start": 16218.3, + "end": 16219.26, + "probability": 0.7691 + }, + { + "start": 16220.16, + "end": 16223.68, + "probability": 0.9946 + }, + { + "start": 16223.78, + "end": 16225.26, + "probability": 0.8772 + }, + { + "start": 16225.38, + "end": 16227.5, + "probability": 0.0685 + }, + { + "start": 16229.26, + "end": 16229.8, + "probability": 0.1081 + }, + { + "start": 16230.02, + "end": 16233.99, + "probability": 0.0248 + }, + { + "start": 16236.44, + "end": 16237.86, + "probability": 0.5161 + }, + { + "start": 16239.38, + "end": 16241.86, + "probability": 0.9922 + }, + { + "start": 16241.88, + "end": 16245.08, + "probability": 0.9822 + }, + { + "start": 16245.7, + "end": 16249.96, + "probability": 0.9945 + }, + { + "start": 16251.82, + "end": 16253.38, + "probability": 0.9927 + }, + { + "start": 16253.46, + "end": 16257.52, + "probability": 0.9676 + }, + { + "start": 16258.82, + "end": 16259.98, + "probability": 0.781 + }, + { + "start": 16260.24, + "end": 16263.06, + "probability": 0.9971 + }, + { + "start": 16263.14, + "end": 16264.76, + "probability": 0.9963 + }, + { + "start": 16265.66, + "end": 16269.24, + "probability": 0.9704 + }, + { + "start": 16270.42, + "end": 16275.52, + "probability": 0.988 + }, + { + "start": 16275.66, + "end": 16276.9, + "probability": 0.9405 + }, + { + "start": 16276.98, + "end": 16279.96, + "probability": 0.9967 + }, + { + "start": 16280.48, + "end": 16281.98, + "probability": 0.9613 + }, + { + "start": 16282.62, + "end": 16285.88, + "probability": 0.7668 + }, + { + "start": 16286.56, + "end": 16291.22, + "probability": 0.9927 + }, + { + "start": 16292.45, + "end": 16294.42, + "probability": 0.7189 + }, + { + "start": 16294.42, + "end": 16297.12, + "probability": 0.9904 + }, + { + "start": 16297.16, + "end": 16299.3, + "probability": 0.9989 + }, + { + "start": 16299.3, + "end": 16303.58, + "probability": 0.9897 + }, + { + "start": 16303.7, + "end": 16304.04, + "probability": 0.7732 + }, + { + "start": 16306.14, + "end": 16306.82, + "probability": 0.8147 + }, + { + "start": 16308.46, + "end": 16310.88, + "probability": 0.8648 + }, + { + "start": 16313.34, + "end": 16313.74, + "probability": 0.5829 + }, + { + "start": 16318.1, + "end": 16321.72, + "probability": 0.6723 + }, + { + "start": 16322.42, + "end": 16322.86, + "probability": 0.9642 + }, + { + "start": 16336.12, + "end": 16337.06, + "probability": 0.5794 + }, + { + "start": 16337.96, + "end": 16338.7, + "probability": 0.7355 + }, + { + "start": 16339.48, + "end": 16341.16, + "probability": 0.893 + }, + { + "start": 16341.96, + "end": 16345.6, + "probability": 0.9954 + }, + { + "start": 16345.6, + "end": 16349.68, + "probability": 0.9846 + }, + { + "start": 16349.72, + "end": 16352.36, + "probability": 0.9909 + }, + { + "start": 16352.48, + "end": 16352.96, + "probability": 0.7025 + }, + { + "start": 16353.5, + "end": 16356.04, + "probability": 0.9873 + }, + { + "start": 16356.04, + "end": 16359.78, + "probability": 0.9901 + }, + { + "start": 16360.66, + "end": 16363.8, + "probability": 0.9942 + }, + { + "start": 16363.84, + "end": 16367.86, + "probability": 0.9984 + }, + { + "start": 16368.64, + "end": 16374.14, + "probability": 0.9894 + }, + { + "start": 16374.14, + "end": 16379.84, + "probability": 0.9989 + }, + { + "start": 16380.58, + "end": 16383.22, + "probability": 0.9705 + }, + { + "start": 16383.7, + "end": 16384.12, + "probability": 0.8974 + }, + { + "start": 16384.32, + "end": 16384.64, + "probability": 0.9682 + }, + { + "start": 16384.8, + "end": 16385.34, + "probability": 0.8644 + }, + { + "start": 16386.46, + "end": 16388.18, + "probability": 0.8883 + }, + { + "start": 16389.1, + "end": 16393.66, + "probability": 0.9875 + }, + { + "start": 16394.2, + "end": 16399.54, + "probability": 0.9927 + }, + { + "start": 16399.6, + "end": 16407.04, + "probability": 0.9922 + }, + { + "start": 16407.88, + "end": 16410.28, + "probability": 0.9746 + }, + { + "start": 16411.08, + "end": 16414.6, + "probability": 0.9738 + }, + { + "start": 16414.6, + "end": 16417.2, + "probability": 0.994 + }, + { + "start": 16417.98, + "end": 16423.16, + "probability": 0.9386 + }, + { + "start": 16423.9, + "end": 16424.4, + "probability": 0.7941 + }, + { + "start": 16424.94, + "end": 16425.08, + "probability": 0.5225 + }, + { + "start": 16425.18, + "end": 16425.42, + "probability": 0.6791 + }, + { + "start": 16425.54, + "end": 16426.38, + "probability": 0.8231 + }, + { + "start": 16427.1, + "end": 16428.12, + "probability": 0.7704 + }, + { + "start": 16428.2, + "end": 16430.44, + "probability": 0.895 + }, + { + "start": 16431.14, + "end": 16432.08, + "probability": 0.9669 + }, + { + "start": 16433.48, + "end": 16437.08, + "probability": 0.7603 + }, + { + "start": 16437.2, + "end": 16440.54, + "probability": 0.8172 + }, + { + "start": 16440.7, + "end": 16442.08, + "probability": 0.2555 + }, + { + "start": 16442.2, + "end": 16444.02, + "probability": 0.9676 + }, + { + "start": 16445.0, + "end": 16447.02, + "probability": 0.8774 + }, + { + "start": 16447.78, + "end": 16449.96, + "probability": 0.8828 + }, + { + "start": 16462.99, + "end": 16467.02, + "probability": 0.0246 + }, + { + "start": 16467.62, + "end": 16470.08, + "probability": 0.0385 + }, + { + "start": 16478.23, + "end": 16478.52, + "probability": 0.1098 + }, + { + "start": 16478.52, + "end": 16479.04, + "probability": 0.3147 + }, + { + "start": 16479.68, + "end": 16480.46, + "probability": 0.1627 + }, + { + "start": 16480.46, + "end": 16480.46, + "probability": 0.2997 + }, + { + "start": 16480.46, + "end": 16482.6, + "probability": 0.7482 + }, + { + "start": 16483.44, + "end": 16485.82, + "probability": 0.9305 + }, + { + "start": 16487.74, + "end": 16488.51, + "probability": 0.6371 + }, + { + "start": 16489.92, + "end": 16492.06, + "probability": 0.493 + }, + { + "start": 16492.3, + "end": 16496.32, + "probability": 0.5186 + }, + { + "start": 16496.46, + "end": 16500.38, + "probability": 0.9094 + }, + { + "start": 16500.38, + "end": 16503.18, + "probability": 0.828 + }, + { + "start": 16503.54, + "end": 16504.12, + "probability": 0.0956 + }, + { + "start": 16504.4, + "end": 16506.9, + "probability": 0.9825 + }, + { + "start": 16506.9, + "end": 16510.22, + "probability": 0.9855 + }, + { + "start": 16510.34, + "end": 16512.22, + "probability": 0.7795 + }, + { + "start": 16512.82, + "end": 16516.16, + "probability": 0.9847 + }, + { + "start": 16516.74, + "end": 16519.66, + "probability": 0.9136 + }, + { + "start": 16519.86, + "end": 16520.7, + "probability": 0.483 + }, + { + "start": 16521.64, + "end": 16524.72, + "probability": 0.8816 + }, + { + "start": 16525.22, + "end": 16525.9, + "probability": 0.7943 + }, + { + "start": 16526.54, + "end": 16529.78, + "probability": 0.9311 + }, + { + "start": 16532.22, + "end": 16534.13, + "probability": 0.6661 + }, + { + "start": 16534.58, + "end": 16536.92, + "probability": 0.6498 + }, + { + "start": 16537.88, + "end": 16543.7, + "probability": 0.9844 + }, + { + "start": 16543.7, + "end": 16549.34, + "probability": 0.8035 + }, + { + "start": 16550.66, + "end": 16553.51, + "probability": 0.9557 + }, + { + "start": 16553.74, + "end": 16555.0, + "probability": 0.936 + }, + { + "start": 16555.06, + "end": 16559.12, + "probability": 0.9221 + }, + { + "start": 16560.18, + "end": 16565.0, + "probability": 0.9855 + }, + { + "start": 16565.62, + "end": 16569.7, + "probability": 0.9933 + }, + { + "start": 16570.6, + "end": 16576.72, + "probability": 0.9799 + }, + { + "start": 16577.52, + "end": 16582.28, + "probability": 0.9896 + }, + { + "start": 16582.9, + "end": 16585.9, + "probability": 0.945 + }, + { + "start": 16586.58, + "end": 16588.84, + "probability": 0.9966 + }, + { + "start": 16589.98, + "end": 16590.66, + "probability": 0.9828 + }, + { + "start": 16591.72, + "end": 16595.9, + "probability": 0.9899 + }, + { + "start": 16596.42, + "end": 16599.92, + "probability": 0.9481 + }, + { + "start": 16601.04, + "end": 16602.0, + "probability": 0.842 + }, + { + "start": 16602.84, + "end": 16603.94, + "probability": 0.9691 + }, + { + "start": 16604.78, + "end": 16606.44, + "probability": 0.9672 + }, + { + "start": 16607.16, + "end": 16608.76, + "probability": 0.9169 + }, + { + "start": 16609.44, + "end": 16612.28, + "probability": 0.9513 + }, + { + "start": 16612.78, + "end": 16617.52, + "probability": 0.9911 + }, + { + "start": 16618.78, + "end": 16622.34, + "probability": 0.9913 + }, + { + "start": 16623.26, + "end": 16626.06, + "probability": 0.6733 + }, + { + "start": 16626.6, + "end": 16628.28, + "probability": 0.9296 + }, + { + "start": 16629.14, + "end": 16629.98, + "probability": 0.8464 + }, + { + "start": 16630.52, + "end": 16632.74, + "probability": 0.979 + }, + { + "start": 16633.68, + "end": 16635.66, + "probability": 0.9432 + }, + { + "start": 16636.86, + "end": 16645.0, + "probability": 0.9894 + }, + { + "start": 16645.96, + "end": 16648.24, + "probability": 0.9696 + }, + { + "start": 16649.72, + "end": 16651.36, + "probability": 0.7475 + }, + { + "start": 16652.4, + "end": 16654.86, + "probability": 0.8962 + }, + { + "start": 16655.06, + "end": 16656.98, + "probability": 0.9416 + }, + { + "start": 16657.54, + "end": 16659.22, + "probability": 0.9481 + }, + { + "start": 16659.84, + "end": 16662.74, + "probability": 0.9736 + }, + { + "start": 16663.44, + "end": 16664.28, + "probability": 0.7725 + }, + { + "start": 16665.38, + "end": 16667.0, + "probability": 0.982 + }, + { + "start": 16667.88, + "end": 16673.94, + "probability": 0.9971 + }, + { + "start": 16675.18, + "end": 16681.64, + "probability": 0.9768 + }, + { + "start": 16682.72, + "end": 16684.56, + "probability": 0.9993 + }, + { + "start": 16685.16, + "end": 16686.56, + "probability": 0.9905 + }, + { + "start": 16687.62, + "end": 16688.52, + "probability": 0.9748 + }, + { + "start": 16689.39, + "end": 16690.34, + "probability": 0.7155 + }, + { + "start": 16691.6, + "end": 16694.14, + "probability": 0.98 + }, + { + "start": 16694.66, + "end": 16695.42, + "probability": 0.9704 + }, + { + "start": 16695.9, + "end": 16700.5, + "probability": 0.9882 + }, + { + "start": 16701.02, + "end": 16701.68, + "probability": 0.5989 + }, + { + "start": 16702.38, + "end": 16703.72, + "probability": 0.9381 + }, + { + "start": 16704.8, + "end": 16709.14, + "probability": 0.8274 + }, + { + "start": 16709.78, + "end": 16715.56, + "probability": 0.9755 + }, + { + "start": 16715.56, + "end": 16720.62, + "probability": 0.984 + }, + { + "start": 16721.88, + "end": 16728.6, + "probability": 0.9982 + }, + { + "start": 16729.32, + "end": 16730.84, + "probability": 0.9515 + }, + { + "start": 16731.2, + "end": 16735.62, + "probability": 0.8871 + }, + { + "start": 16736.41, + "end": 16738.12, + "probability": 0.979 + }, + { + "start": 16739.56, + "end": 16740.3, + "probability": 0.6569 + }, + { + "start": 16740.58, + "end": 16740.88, + "probability": 0.8617 + }, + { + "start": 16740.96, + "end": 16745.48, + "probability": 0.9882 + }, + { + "start": 16746.04, + "end": 16748.08, + "probability": 0.6654 + }, + { + "start": 16749.0, + "end": 16750.54, + "probability": 0.9871 + }, + { + "start": 16752.58, + "end": 16757.28, + "probability": 0.9252 + }, + { + "start": 16758.16, + "end": 16759.96, + "probability": 0.8983 + }, + { + "start": 16760.98, + "end": 16764.8, + "probability": 0.7541 + }, + { + "start": 16765.38, + "end": 16772.3, + "probability": 0.9669 + }, + { + "start": 16774.96, + "end": 16780.82, + "probability": 0.9504 + }, + { + "start": 16783.48, + "end": 16786.22, + "probability": 0.8271 + }, + { + "start": 16787.28, + "end": 16789.96, + "probability": 0.9433 + }, + { + "start": 16790.6, + "end": 16795.22, + "probability": 0.9839 + }, + { + "start": 16796.64, + "end": 16799.34, + "probability": 0.9984 + }, + { + "start": 16800.02, + "end": 16805.2, + "probability": 0.8507 + }, + { + "start": 16806.34, + "end": 16810.24, + "probability": 0.7708 + }, + { + "start": 16811.22, + "end": 16813.74, + "probability": 0.9728 + }, + { + "start": 16813.74, + "end": 16817.66, + "probability": 0.837 + }, + { + "start": 16818.34, + "end": 16820.4, + "probability": 0.9495 + }, + { + "start": 16820.82, + "end": 16822.34, + "probability": 0.9623 + }, + { + "start": 16823.74, + "end": 16824.08, + "probability": 0.6716 + }, + { + "start": 16825.12, + "end": 16827.18, + "probability": 0.8455 + }, + { + "start": 16828.04, + "end": 16830.98, + "probability": 0.9478 + }, + { + "start": 16831.88, + "end": 16837.14, + "probability": 0.8818 + }, + { + "start": 16838.46, + "end": 16843.7, + "probability": 0.9545 + }, + { + "start": 16844.24, + "end": 16848.44, + "probability": 0.9388 + }, + { + "start": 16849.26, + "end": 16852.1, + "probability": 0.9488 + }, + { + "start": 16853.2, + "end": 16853.72, + "probability": 0.34 + }, + { + "start": 16854.98, + "end": 16857.6, + "probability": 0.8866 + }, + { + "start": 16858.44, + "end": 16863.82, + "probability": 0.9124 + }, + { + "start": 16864.6, + "end": 16865.68, + "probability": 0.6586 + }, + { + "start": 16865.92, + "end": 16866.94, + "probability": 0.9987 + }, + { + "start": 16867.82, + "end": 16870.5, + "probability": 0.7405 + }, + { + "start": 16871.34, + "end": 16873.3, + "probability": 0.9767 + }, + { + "start": 16874.82, + "end": 16876.14, + "probability": 0.7373 + }, + { + "start": 16876.22, + "end": 16880.26, + "probability": 0.9696 + }, + { + "start": 16880.42, + "end": 16884.86, + "probability": 0.9799 + }, + { + "start": 16885.92, + "end": 16887.94, + "probability": 0.7818 + }, + { + "start": 16888.72, + "end": 16892.58, + "probability": 0.9792 + }, + { + "start": 16892.58, + "end": 16895.98, + "probability": 0.9949 + }, + { + "start": 16897.28, + "end": 16901.36, + "probability": 0.987 + }, + { + "start": 16901.9, + "end": 16903.52, + "probability": 0.9916 + }, + { + "start": 16903.82, + "end": 16905.72, + "probability": 0.9199 + }, + { + "start": 16906.6, + "end": 16911.4, + "probability": 0.9468 + }, + { + "start": 16912.1, + "end": 16916.24, + "probability": 0.8119 + }, + { + "start": 16916.72, + "end": 16918.64, + "probability": 0.9936 + }, + { + "start": 16920.12, + "end": 16920.5, + "probability": 0.583 + }, + { + "start": 16920.94, + "end": 16921.92, + "probability": 0.7118 + }, + { + "start": 16922.06, + "end": 16922.51, + "probability": 0.7881 + }, + { + "start": 16923.26, + "end": 16924.2, + "probability": 0.0356 + }, + { + "start": 16924.38, + "end": 16925.56, + "probability": 0.5062 + }, + { + "start": 16925.58, + "end": 16925.96, + "probability": 0.7742 + }, + { + "start": 16926.16, + "end": 16926.58, + "probability": 0.8566 + }, + { + "start": 16927.88, + "end": 16929.3, + "probability": 0.9791 + }, + { + "start": 16929.32, + "end": 16930.37, + "probability": 0.9802 + }, + { + "start": 16930.72, + "end": 16932.02, + "probability": 0.9838 + }, + { + "start": 16933.48, + "end": 16934.14, + "probability": 0.9429 + }, + { + "start": 16934.18, + "end": 16940.26, + "probability": 0.9852 + }, + { + "start": 16940.4, + "end": 16941.5, + "probability": 0.5801 + }, + { + "start": 16942.14, + "end": 16943.58, + "probability": 0.8979 + }, + { + "start": 16944.48, + "end": 16948.8, + "probability": 0.9973 + }, + { + "start": 16949.0, + "end": 16952.64, + "probability": 0.9426 + }, + { + "start": 16954.3, + "end": 16959.08, + "probability": 0.9796 + }, + { + "start": 16959.66, + "end": 16962.18, + "probability": 0.9694 + }, + { + "start": 16962.6, + "end": 16966.02, + "probability": 0.9209 + }, + { + "start": 16966.76, + "end": 16969.74, + "probability": 0.7078 + }, + { + "start": 16969.8, + "end": 16972.78, + "probability": 0.8113 + }, + { + "start": 16973.5, + "end": 16975.16, + "probability": 0.9991 + }, + { + "start": 16975.8, + "end": 16977.16, + "probability": 0.9816 + }, + { + "start": 16977.82, + "end": 16978.58, + "probability": 0.9641 + }, + { + "start": 16978.96, + "end": 16982.1, + "probability": 0.9955 + }, + { + "start": 16982.44, + "end": 16982.78, + "probability": 0.2768 + }, + { + "start": 16982.78, + "end": 16983.4, + "probability": 0.4751 + }, + { + "start": 16983.52, + "end": 16987.72, + "probability": 0.7863 + }, + { + "start": 16987.74, + "end": 16990.4, + "probability": 0.915 + }, + { + "start": 16996.96, + "end": 16997.54, + "probability": 0.5125 + }, + { + "start": 16997.72, + "end": 16998.46, + "probability": 0.6016 + }, + { + "start": 16998.54, + "end": 16999.3, + "probability": 0.7984 + }, + { + "start": 16999.44, + "end": 17000.46, + "probability": 0.8894 + }, + { + "start": 17001.78, + "end": 17004.54, + "probability": 0.9211 + }, + { + "start": 17005.28, + "end": 17006.04, + "probability": 0.5902 + }, + { + "start": 17007.78, + "end": 17008.84, + "probability": 0.6112 + }, + { + "start": 17008.94, + "end": 17011.08, + "probability": 0.8809 + }, + { + "start": 17011.14, + "end": 17013.26, + "probability": 0.9842 + }, + { + "start": 17013.34, + "end": 17015.32, + "probability": 0.8353 + }, + { + "start": 17015.95, + "end": 17016.6, + "probability": 0.5822 + }, + { + "start": 17016.66, + "end": 17018.27, + "probability": 0.7003 + }, + { + "start": 17018.5, + "end": 17023.94, + "probability": 0.7554 + }, + { + "start": 17024.52, + "end": 17025.58, + "probability": 0.9421 + }, + { + "start": 17026.16, + "end": 17031.04, + "probability": 0.8032 + }, + { + "start": 17032.0, + "end": 17035.44, + "probability": 0.8011 + }, + { + "start": 17035.54, + "end": 17035.84, + "probability": 0.4291 + }, + { + "start": 17035.84, + "end": 17036.68, + "probability": 0.758 + }, + { + "start": 17036.88, + "end": 17037.68, + "probability": 0.8748 + }, + { + "start": 17037.8, + "end": 17039.56, + "probability": 0.968 + }, + { + "start": 17039.62, + "end": 17041.72, + "probability": 0.9305 + }, + { + "start": 17041.72, + "end": 17042.5, + "probability": 0.4532 + }, + { + "start": 17042.58, + "end": 17043.76, + "probability": 0.6185 + }, + { + "start": 17043.94, + "end": 17044.92, + "probability": 0.6152 + }, + { + "start": 17044.98, + "end": 17045.74, + "probability": 0.8188 + }, + { + "start": 17045.86, + "end": 17048.2, + "probability": 0.8469 + }, + { + "start": 17048.38, + "end": 17050.98, + "probability": 0.6333 + }, + { + "start": 17051.86, + "end": 17052.3, + "probability": 0.8921 + }, + { + "start": 17052.4, + "end": 17053.64, + "probability": 0.9917 + }, + { + "start": 17053.78, + "end": 17054.78, + "probability": 0.9655 + }, + { + "start": 17054.82, + "end": 17055.72, + "probability": 0.7739 + }, + { + "start": 17056.68, + "end": 17058.42, + "probability": 0.8831 + }, + { + "start": 17058.98, + "end": 17062.58, + "probability": 0.8956 + }, + { + "start": 17062.64, + "end": 17063.46, + "probability": 0.9847 + }, + { + "start": 17064.28, + "end": 17065.54, + "probability": 0.9823 + }, + { + "start": 17065.7, + "end": 17069.06, + "probability": 0.7917 + }, + { + "start": 17070.02, + "end": 17070.6, + "probability": 0.5321 + }, + { + "start": 17071.12, + "end": 17074.84, + "probability": 0.9223 + }, + { + "start": 17076.32, + "end": 17077.92, + "probability": 0.9809 + }, + { + "start": 17078.66, + "end": 17081.14, + "probability": 0.9172 + }, + { + "start": 17082.06, + "end": 17085.42, + "probability": 0.9871 + }, + { + "start": 17086.12, + "end": 17087.77, + "probability": 0.6703 + }, + { + "start": 17088.18, + "end": 17091.06, + "probability": 0.9883 + }, + { + "start": 17092.02, + "end": 17092.56, + "probability": 0.9368 + }, + { + "start": 17093.34, + "end": 17095.82, + "probability": 0.9924 + }, + { + "start": 17095.92, + "end": 17096.34, + "probability": 0.8429 + }, + { + "start": 17096.42, + "end": 17097.28, + "probability": 0.9863 + }, + { + "start": 17098.16, + "end": 17098.26, + "probability": 0.7141 + }, + { + "start": 17100.0, + "end": 17106.88, + "probability": 0.7072 + }, + { + "start": 17107.76, + "end": 17108.96, + "probability": 0.8593 + }, + { + "start": 17109.1, + "end": 17110.46, + "probability": 0.2339 + }, + { + "start": 17111.2, + "end": 17112.0, + "probability": 0.752 + }, + { + "start": 17112.06, + "end": 17116.81, + "probability": 0.7873 + }, + { + "start": 17117.12, + "end": 17118.03, + "probability": 0.9937 + }, + { + "start": 17118.6, + "end": 17118.84, + "probability": 0.7654 + }, + { + "start": 17118.92, + "end": 17122.0, + "probability": 0.9803 + }, + { + "start": 17122.06, + "end": 17122.68, + "probability": 0.7599 + }, + { + "start": 17122.8, + "end": 17123.38, + "probability": 0.5696 + }, + { + "start": 17124.04, + "end": 17124.84, + "probability": 0.7952 + }, + { + "start": 17125.54, + "end": 17127.8, + "probability": 0.5416 + }, + { + "start": 17127.96, + "end": 17129.69, + "probability": 0.4704 + }, + { + "start": 17129.82, + "end": 17130.84, + "probability": 0.8246 + }, + { + "start": 17130.98, + "end": 17131.94, + "probability": 0.9931 + }, + { + "start": 17132.76, + "end": 17133.58, + "probability": 0.0015 + }, + { + "start": 17134.48, + "end": 17134.84, + "probability": 0.2013 + }, + { + "start": 17134.84, + "end": 17134.84, + "probability": 0.0448 + }, + { + "start": 17134.84, + "end": 17136.58, + "probability": 0.7427 + }, + { + "start": 17136.72, + "end": 17139.92, + "probability": 0.823 + }, + { + "start": 17140.04, + "end": 17141.82, + "probability": 0.8194 + }, + { + "start": 17141.84, + "end": 17142.48, + "probability": 0.5296 + }, + { + "start": 17143.1, + "end": 17145.08, + "probability": 0.5877 + }, + { + "start": 17145.22, + "end": 17146.94, + "probability": 0.9915 + }, + { + "start": 17147.4, + "end": 17147.89, + "probability": 0.6819 + }, + { + "start": 17148.44, + "end": 17149.04, + "probability": 0.8891 + }, + { + "start": 17149.14, + "end": 17152.64, + "probability": 0.9785 + }, + { + "start": 17152.88, + "end": 17155.08, + "probability": 0.9962 + }, + { + "start": 17155.1, + "end": 17155.76, + "probability": 0.1147 + }, + { + "start": 17155.78, + "end": 17156.0, + "probability": 0.507 + }, + { + "start": 17156.12, + "end": 17161.22, + "probability": 0.773 + }, + { + "start": 17161.28, + "end": 17162.7, + "probability": 0.837 + }, + { + "start": 17162.84, + "end": 17163.2, + "probability": 0.8317 + }, + { + "start": 17163.64, + "end": 17164.88, + "probability": 0.7308 + }, + { + "start": 17164.9, + "end": 17165.88, + "probability": 0.9932 + }, + { + "start": 17167.12, + "end": 17169.12, + "probability": 0.9951 + }, + { + "start": 17169.78, + "end": 17171.14, + "probability": 0.9856 + }, + { + "start": 17171.16, + "end": 17171.52, + "probability": 0.5213 + }, + { + "start": 17172.28, + "end": 17174.09, + "probability": 0.4706 + }, + { + "start": 17174.52, + "end": 17177.7, + "probability": 0.3814 + }, + { + "start": 17177.98, + "end": 17178.44, + "probability": 0.45 + }, + { + "start": 17179.02, + "end": 17180.1, + "probability": 0.6982 + }, + { + "start": 17180.8, + "end": 17183.08, + "probability": 0.7622 + }, + { + "start": 17183.22, + "end": 17183.62, + "probability": 0.9542 + }, + { + "start": 17184.92, + "end": 17186.8, + "probability": 0.9155 + }, + { + "start": 17186.9, + "end": 17188.44, + "probability": 0.6863 + }, + { + "start": 17188.92, + "end": 17191.28, + "probability": 0.9111 + }, + { + "start": 17191.42, + "end": 17192.08, + "probability": 0.7039 + }, + { + "start": 17192.38, + "end": 17194.54, + "probability": 0.8702 + }, + { + "start": 17194.64, + "end": 17198.2, + "probability": 0.8571 + }, + { + "start": 17198.56, + "end": 17200.92, + "probability": 0.9858 + }, + { + "start": 17201.1, + "end": 17202.26, + "probability": 0.5894 + }, + { + "start": 17203.58, + "end": 17206.24, + "probability": 0.8772 + }, + { + "start": 17206.4, + "end": 17210.0, + "probability": 0.9812 + }, + { + "start": 17210.1, + "end": 17212.14, + "probability": 0.8533 + }, + { + "start": 17212.34, + "end": 17214.68, + "probability": 0.9871 + }, + { + "start": 17215.52, + "end": 17218.04, + "probability": 0.9945 + }, + { + "start": 17218.16, + "end": 17219.96, + "probability": 0.9591 + }, + { + "start": 17220.48, + "end": 17220.94, + "probability": 0.8069 + }, + { + "start": 17221.22, + "end": 17222.26, + "probability": 0.7349 + }, + { + "start": 17222.86, + "end": 17227.02, + "probability": 0.5728 + }, + { + "start": 17227.12, + "end": 17230.64, + "probability": 0.9976 + }, + { + "start": 17244.0, + "end": 17244.18, + "probability": 0.6188 + }, + { + "start": 17245.08, + "end": 17248.3, + "probability": 0.9231 + }, + { + "start": 17248.4, + "end": 17249.94, + "probability": 0.5919 + }, + { + "start": 17250.04, + "end": 17250.52, + "probability": 0.9309 + }, + { + "start": 17250.66, + "end": 17253.0, + "probability": 0.5725 + }, + { + "start": 17253.16, + "end": 17255.06, + "probability": 0.7162 + }, + { + "start": 17255.2, + "end": 17258.44, + "probability": 0.9392 + }, + { + "start": 17258.62, + "end": 17263.74, + "probability": 0.9991 + }, + { + "start": 17263.9, + "end": 17266.98, + "probability": 0.7834 + }, + { + "start": 17267.12, + "end": 17269.14, + "probability": 0.8135 + }, + { + "start": 17269.3, + "end": 17269.7, + "probability": 0.4558 + }, + { + "start": 17269.96, + "end": 17270.82, + "probability": 0.8145 + }, + { + "start": 17272.82, + "end": 17273.86, + "probability": 0.346 + }, + { + "start": 17274.32, + "end": 17275.13, + "probability": 0.9175 + }, + { + "start": 17275.36, + "end": 17277.7, + "probability": 0.956 + }, + { + "start": 17278.28, + "end": 17279.06, + "probability": 0.9725 + }, + { + "start": 17281.06, + "end": 17281.36, + "probability": 0.2281 + }, + { + "start": 17282.24, + "end": 17282.78, + "probability": 0.6568 + }, + { + "start": 17282.82, + "end": 17283.12, + "probability": 0.8883 + }, + { + "start": 17284.4, + "end": 17287.56, + "probability": 0.5515 + }, + { + "start": 17288.45, + "end": 17291.73, + "probability": 0.8714 + }, + { + "start": 17293.46, + "end": 17300.82, + "probability": 0.9505 + }, + { + "start": 17301.64, + "end": 17302.36, + "probability": 0.8049 + }, + { + "start": 17303.66, + "end": 17305.4, + "probability": 0.89 + }, + { + "start": 17306.66, + "end": 17314.19, + "probability": 0.0248 + }, + { + "start": 17316.16, + "end": 17316.84, + "probability": 0.0361 + }, + { + "start": 17317.84, + "end": 17317.84, + "probability": 0.0045 + }, + { + "start": 17317.84, + "end": 17317.84, + "probability": 0.0405 + }, + { + "start": 17317.84, + "end": 17318.5, + "probability": 0.2768 + }, + { + "start": 17318.5, + "end": 17318.5, + "probability": 0.615 + }, + { + "start": 17318.5, + "end": 17323.6, + "probability": 0.6958 + }, + { + "start": 17324.66, + "end": 17327.55, + "probability": 0.9105 + }, + { + "start": 17328.64, + "end": 17329.66, + "probability": 0.5609 + }, + { + "start": 17330.06, + "end": 17333.12, + "probability": 0.7051 + }, + { + "start": 17333.3, + "end": 17335.76, + "probability": 0.9294 + }, + { + "start": 17335.76, + "end": 17339.46, + "probability": 0.967 + }, + { + "start": 17340.42, + "end": 17343.85, + "probability": 0.8354 + }, + { + "start": 17345.04, + "end": 17346.26, + "probability": 0.617 + }, + { + "start": 17347.06, + "end": 17349.14, + "probability": 0.7909 + }, + { + "start": 17349.22, + "end": 17349.66, + "probability": 0.9053 + }, + { + "start": 17371.11, + "end": 17372.12, + "probability": 0.1746 + }, + { + "start": 17372.25, + "end": 17374.2, + "probability": 0.4244 + }, + { + "start": 17374.2, + "end": 17377.44, + "probability": 0.9211 + }, + { + "start": 17377.46, + "end": 17378.5, + "probability": 0.5245 + }, + { + "start": 17380.54, + "end": 17385.62, + "probability": 0.6389 + }, + { + "start": 17387.5, + "end": 17388.67, + "probability": 0.1111 + }, + { + "start": 17390.46, + "end": 17392.38, + "probability": 0.0161 + }, + { + "start": 17394.5, + "end": 17400.94, + "probability": 0.0409 + }, + { + "start": 17401.0, + "end": 17401.0, + "probability": 0.0 + }, + { + "start": 17401.0, + "end": 17401.0, + "probability": 0.0 + }, + { + "start": 17401.0, + "end": 17401.0, + "probability": 0.0 + }, + { + "start": 17401.0, + "end": 17401.0, + "probability": 0.0 + }, + { + "start": 17401.0, + "end": 17401.0, + "probability": 0.0 + }, + { + "start": 17411.04, + "end": 17413.88, + "probability": 0.1263 + }, + { + "start": 17415.62, + "end": 17415.62, + "probability": 0.03 + }, + { + "start": 17417.38, + "end": 17417.9, + "probability": 0.1481 + }, + { + "start": 17419.92, + "end": 17420.84, + "probability": 0.1428 + }, + { + "start": 17421.36, + "end": 17422.18, + "probability": 0.1897 + }, + { + "start": 17426.12, + "end": 17426.56, + "probability": 0.0791 + }, + { + "start": 17426.56, + "end": 17426.6, + "probability": 0.0573 + }, + { + "start": 17426.6, + "end": 17426.6, + "probability": 0.0571 + }, + { + "start": 17426.6, + "end": 17428.52, + "probability": 0.0988 + }, + { + "start": 17430.01, + "end": 17431.42, + "probability": 0.2584 + }, + { + "start": 17439.48, + "end": 17443.06, + "probability": 0.4003 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.0, + "end": 17521.0, + "probability": 0.0 + }, + { + "start": 17521.24, + "end": 17524.02, + "probability": 0.854 + }, + { + "start": 17524.68, + "end": 17527.12, + "probability": 0.9663 + }, + { + "start": 17528.16, + "end": 17529.46, + "probability": 0.7535 + }, + { + "start": 17530.04, + "end": 17531.47, + "probability": 0.9951 + }, + { + "start": 17531.98, + "end": 17533.5, + "probability": 0.9866 + }, + { + "start": 17534.46, + "end": 17538.98, + "probability": 0.9943 + }, + { + "start": 17539.8, + "end": 17541.43, + "probability": 0.9205 + }, + { + "start": 17542.38, + "end": 17545.32, + "probability": 0.9972 + }, + { + "start": 17546.14, + "end": 17547.12, + "probability": 0.7144 + }, + { + "start": 17547.34, + "end": 17547.92, + "probability": 0.7614 + }, + { + "start": 17548.06, + "end": 17550.12, + "probability": 0.9932 + }, + { + "start": 17551.0, + "end": 17554.06, + "probability": 0.9629 + }, + { + "start": 17554.16, + "end": 17554.88, + "probability": 0.6933 + }, + { + "start": 17555.86, + "end": 17556.62, + "probability": 0.7091 + }, + { + "start": 17558.92, + "end": 17559.24, + "probability": 0.9377 + }, + { + "start": 17559.64, + "end": 17560.44, + "probability": 0.9939 + }, + { + "start": 17560.54, + "end": 17561.29, + "probability": 0.9006 + }, + { + "start": 17561.56, + "end": 17561.86, + "probability": 0.8652 + }, + { + "start": 17561.98, + "end": 17562.06, + "probability": 0.7955 + }, + { + "start": 17562.12, + "end": 17562.86, + "probability": 0.9645 + }, + { + "start": 17563.48, + "end": 17564.26, + "probability": 0.0504 + }, + { + "start": 17564.3, + "end": 17565.54, + "probability": 0.9321 + }, + { + "start": 17566.36, + "end": 17567.06, + "probability": 0.7141 + }, + { + "start": 17567.12, + "end": 17569.7, + "probability": 0.9893 + }, + { + "start": 17570.98, + "end": 17573.76, + "probability": 0.989 + }, + { + "start": 17574.28, + "end": 17576.78, + "probability": 0.8687 + }, + { + "start": 17578.32, + "end": 17579.8, + "probability": 0.5905 + }, + { + "start": 17579.86, + "end": 17580.98, + "probability": 0.9713 + }, + { + "start": 17581.66, + "end": 17583.9, + "probability": 0.8851 + }, + { + "start": 17585.56, + "end": 17587.08, + "probability": 0.9933 + }, + { + "start": 17587.2, + "end": 17590.62, + "probability": 0.9708 + }, + { + "start": 17590.82, + "end": 17594.7, + "probability": 0.9795 + }, + { + "start": 17595.16, + "end": 17596.12, + "probability": 0.7974 + }, + { + "start": 17596.38, + "end": 17600.3, + "probability": 0.9965 + }, + { + "start": 17600.58, + "end": 17601.96, + "probability": 0.9985 + }, + { + "start": 17601.96, + "end": 17605.8, + "probability": 0.9862 + }, + { + "start": 17606.7, + "end": 17608.46, + "probability": 0.8397 + }, + { + "start": 17609.3, + "end": 17612.5, + "probability": 0.9976 + }, + { + "start": 17613.5, + "end": 17615.08, + "probability": 0.7426 + }, + { + "start": 17615.78, + "end": 17618.5, + "probability": 0.9264 + }, + { + "start": 17618.6, + "end": 17620.01, + "probability": 0.9741 + }, + { + "start": 17620.9, + "end": 17623.08, + "probability": 0.9875 + }, + { + "start": 17623.14, + "end": 17623.58, + "probability": 0.6201 + }, + { + "start": 17623.7, + "end": 17625.71, + "probability": 0.9004 + }, + { + "start": 17627.8, + "end": 17630.84, + "probability": 0.9802 + }, + { + "start": 17631.28, + "end": 17632.36, + "probability": 0.8917 + }, + { + "start": 17632.46, + "end": 17634.97, + "probability": 0.9858 + }, + { + "start": 17635.86, + "end": 17638.68, + "probability": 0.8422 + }, + { + "start": 17639.5, + "end": 17641.0, + "probability": 0.8514 + }, + { + "start": 17641.84, + "end": 17645.6, + "probability": 0.9953 + }, + { + "start": 17645.68, + "end": 17646.72, + "probability": 0.936 + }, + { + "start": 17646.86, + "end": 17648.98, + "probability": 0.9659 + }, + { + "start": 17649.38, + "end": 17651.44, + "probability": 0.9985 + }, + { + "start": 17652.02, + "end": 17652.34, + "probability": 0.4593 + }, + { + "start": 17652.34, + "end": 17652.4, + "probability": 0.4085 + }, + { + "start": 17652.4, + "end": 17652.88, + "probability": 0.4325 + }, + { + "start": 17652.88, + "end": 17654.84, + "probability": 0.8404 + }, + { + "start": 17655.4, + "end": 17656.12, + "probability": 0.551 + }, + { + "start": 17656.24, + "end": 17657.64, + "probability": 0.9623 + }, + { + "start": 17657.98, + "end": 17658.38, + "probability": 0.8588 + }, + { + "start": 17658.84, + "end": 17659.48, + "probability": 0.9374 + }, + { + "start": 17659.9, + "end": 17661.12, + "probability": 0.9456 + }, + { + "start": 17661.56, + "end": 17662.22, + "probability": 0.88 + }, + { + "start": 17662.66, + "end": 17664.36, + "probability": 0.7005 + }, + { + "start": 17665.12, + "end": 17665.86, + "probability": 0.36 + }, + { + "start": 17665.94, + "end": 17668.52, + "probability": 0.7701 + }, + { + "start": 17670.04, + "end": 17672.8, + "probability": 0.8029 + }, + { + "start": 17673.8, + "end": 17675.74, + "probability": 0.8024 + }, + { + "start": 17676.16, + "end": 17677.06, + "probability": 0.8488 + }, + { + "start": 17680.62, + "end": 17681.46, + "probability": 0.2821 + }, + { + "start": 17683.12, + "end": 17683.92, + "probability": 0.0709 + }, + { + "start": 17688.2, + "end": 17689.96, + "probability": 0.9563 + }, + { + "start": 17690.02, + "end": 17690.6, + "probability": 0.8604 + }, + { + "start": 17690.7, + "end": 17691.04, + "probability": 0.9113 + }, + { + "start": 17691.04, + "end": 17691.72, + "probability": 0.8066 + }, + { + "start": 17691.82, + "end": 17693.33, + "probability": 0.9222 + }, + { + "start": 17694.5, + "end": 17696.1, + "probability": 0.3765 + }, + { + "start": 17697.14, + "end": 17698.72, + "probability": 0.6731 + }, + { + "start": 17699.52, + "end": 17704.3, + "probability": 0.9863 + }, + { + "start": 17704.3, + "end": 17707.68, + "probability": 0.9799 + }, + { + "start": 17709.54, + "end": 17711.4, + "probability": 0.5522 + }, + { + "start": 17713.28, + "end": 17715.8, + "probability": 0.998 + }, + { + "start": 17715.8, + "end": 17716.04, + "probability": 0.6441 + }, + { + "start": 17716.22, + "end": 17718.22, + "probability": 0.8989 + }, + { + "start": 17718.26, + "end": 17721.04, + "probability": 0.8812 + }, + { + "start": 17721.32, + "end": 17721.54, + "probability": 0.7197 + }, + { + "start": 17722.9, + "end": 17725.9, + "probability": 0.9929 + }, + { + "start": 17725.9, + "end": 17728.54, + "probability": 0.9648 + }, + { + "start": 17728.92, + "end": 17729.28, + "probability": 0.2603 + }, + { + "start": 17729.46, + "end": 17729.84, + "probability": 0.8365 + }, + { + "start": 17729.9, + "end": 17733.14, + "probability": 0.959 + }, + { + "start": 17733.78, + "end": 17734.4, + "probability": 0.0038 + }, + { + "start": 17735.32, + "end": 17735.56, + "probability": 0.6134 + }, + { + "start": 17736.02, + "end": 17737.13, + "probability": 0.5913 + }, + { + "start": 17737.44, + "end": 17740.22, + "probability": 0.8187 + }, + { + "start": 17741.32, + "end": 17743.58, + "probability": 0.8453 + }, + { + "start": 17743.62, + "end": 17746.68, + "probability": 0.9953 + }, + { + "start": 17747.34, + "end": 17750.32, + "probability": 0.9386 + }, + { + "start": 17750.32, + "end": 17753.38, + "probability": 0.9578 + }, + { + "start": 17754.44, + "end": 17756.66, + "probability": 0.9943 + }, + { + "start": 17757.54, + "end": 17759.08, + "probability": 0.9816 + }, + { + "start": 17759.16, + "end": 17762.44, + "probability": 0.9863 + }, + { + "start": 17762.44, + "end": 17766.38, + "probability": 0.9757 + }, + { + "start": 17766.92, + "end": 17769.38, + "probability": 0.9968 + }, + { + "start": 17769.38, + "end": 17772.16, + "probability": 0.998 + }, + { + "start": 17772.58, + "end": 17773.06, + "probability": 0.6818 + }, + { + "start": 17773.44, + "end": 17774.58, + "probability": 0.9867 + }, + { + "start": 17774.74, + "end": 17775.74, + "probability": 0.9125 + }, + { + "start": 17776.96, + "end": 17777.32, + "probability": 0.7163 + }, + { + "start": 17777.4, + "end": 17781.4, + "probability": 0.7913 + }, + { + "start": 17781.54, + "end": 17786.74, + "probability": 0.9898 + }, + { + "start": 17786.74, + "end": 17790.56, + "probability": 0.9907 + }, + { + "start": 17791.47, + "end": 17796.48, + "probability": 0.8822 + }, + { + "start": 17797.28, + "end": 17797.88, + "probability": 0.7047 + }, + { + "start": 17797.98, + "end": 17798.5, + "probability": 0.941 + }, + { + "start": 17798.86, + "end": 17803.92, + "probability": 0.9186 + }, + { + "start": 17804.04, + "end": 17805.04, + "probability": 0.9374 + }, + { + "start": 17805.14, + "end": 17806.41, + "probability": 0.9985 + }, + { + "start": 17806.98, + "end": 17807.49, + "probability": 0.9772 + }, + { + "start": 17808.24, + "end": 17811.32, + "probability": 0.8401 + }, + { + "start": 17811.32, + "end": 17814.6, + "probability": 0.9212 + }, + { + "start": 17815.14, + "end": 17815.59, + "probability": 0.9776 + }, + { + "start": 17816.12, + "end": 17818.24, + "probability": 0.9985 + }, + { + "start": 17818.66, + "end": 17823.64, + "probability": 0.9828 + }, + { + "start": 17824.34, + "end": 17827.42, + "probability": 0.9974 + }, + { + "start": 17827.42, + "end": 17827.64, + "probability": 0.801 + }, + { + "start": 17827.88, + "end": 17828.76, + "probability": 0.6441 + }, + { + "start": 17829.32, + "end": 17832.16, + "probability": 0.9839 + }, + { + "start": 17840.7, + "end": 17841.88, + "probability": 0.5011 + }, + { + "start": 17842.74, + "end": 17845.2, + "probability": 0.7882 + }, + { + "start": 17845.2, + "end": 17845.26, + "probability": 0.2959 + }, + { + "start": 17845.26, + "end": 17846.3, + "probability": 0.575 + }, + { + "start": 17847.14, + "end": 17850.12, + "probability": 0.9313 + }, + { + "start": 17851.44, + "end": 17853.54, + "probability": 0.9297 + }, + { + "start": 17853.66, + "end": 17853.82, + "probability": 0.3895 + }, + { + "start": 17854.84, + "end": 17856.7, + "probability": 0.9899 + }, + { + "start": 17857.86, + "end": 17858.36, + "probability": 0.4538 + }, + { + "start": 17860.16, + "end": 17863.34, + "probability": 0.9658 + }, + { + "start": 17867.16, + "end": 17868.22, + "probability": 0.4827 + }, + { + "start": 17869.56, + "end": 17870.18, + "probability": 0.8268 + }, + { + "start": 17870.58, + "end": 17871.32, + "probability": 0.849 + }, + { + "start": 17871.5, + "end": 17873.42, + "probability": 0.9852 + }, + { + "start": 17874.0, + "end": 17875.51, + "probability": 0.8166 + }, + { + "start": 17876.56, + "end": 17876.7, + "probability": 0.2555 + }, + { + "start": 17876.7, + "end": 17876.92, + "probability": 0.1123 + }, + { + "start": 17876.92, + "end": 17876.92, + "probability": 0.0345 + }, + { + "start": 17876.92, + "end": 17878.0, + "probability": 0.4348 + }, + { + "start": 17878.47, + "end": 17884.68, + "probability": 0.589 + }, + { + "start": 17886.7, + "end": 17889.88, + "probability": 0.9685 + }, + { + "start": 17890.6, + "end": 17892.58, + "probability": 0.8723 + }, + { + "start": 17904.18, + "end": 17904.18, + "probability": 0.3492 + }, + { + "start": 17904.18, + "end": 17905.88, + "probability": 0.6266 + }, + { + "start": 17906.14, + "end": 17908.7, + "probability": 0.9895 + }, + { + "start": 17908.88, + "end": 17909.96, + "probability": 0.6509 + }, + { + "start": 17911.82, + "end": 17912.56, + "probability": 0.852 + }, + { + "start": 17913.32, + "end": 17913.7, + "probability": 0.7256 + }, + { + "start": 17919.92, + "end": 17920.78, + "probability": 0.5609 + }, + { + "start": 17921.02, + "end": 17924.32, + "probability": 0.9085 + }, + { + "start": 17925.58, + "end": 17927.36, + "probability": 0.9542 + }, + { + "start": 17927.46, + "end": 17931.32, + "probability": 0.8381 + }, + { + "start": 17931.78, + "end": 17935.24, + "probability": 0.7918 + }, + { + "start": 17936.54, + "end": 17937.92, + "probability": 0.6953 + }, + { + "start": 17938.74, + "end": 17942.22, + "probability": 0.7711 + }, + { + "start": 17942.42, + "end": 17943.34, + "probability": 0.6679 + }, + { + "start": 17943.34, + "end": 17944.9, + "probability": 0.9827 + }, + { + "start": 17945.7, + "end": 17946.38, + "probability": 0.8238 + }, + { + "start": 17954.88, + "end": 17957.86, + "probability": 0.8353 + }, + { + "start": 17958.48, + "end": 17961.04, + "probability": 0.9714 + }, + { + "start": 17961.66, + "end": 17965.62, + "probability": 0.9895 + }, + { + "start": 17965.96, + "end": 17967.9, + "probability": 0.9954 + }, + { + "start": 17968.48, + "end": 17970.64, + "probability": 0.9947 + }, + { + "start": 17970.76, + "end": 17972.16, + "probability": 0.6778 + }, + { + "start": 17972.76, + "end": 17974.3, + "probability": 0.8103 + }, + { + "start": 17976.28, + "end": 17978.7, + "probability": 0.49 + }, + { + "start": 17979.22, + "end": 17980.62, + "probability": 0.1449 + }, + { + "start": 17980.72, + "end": 17981.06, + "probability": 0.0941 + }, + { + "start": 17981.26, + "end": 17981.96, + "probability": 0.9362 + }, + { + "start": 17982.44, + "end": 17983.22, + "probability": 0.9873 + }, + { + "start": 17983.82, + "end": 17986.52, + "probability": 0.7855 + }, + { + "start": 17987.0, + "end": 17989.12, + "probability": 0.8939 + }, + { + "start": 17989.94, + "end": 17993.72, + "probability": 0.9972 + }, + { + "start": 17994.58, + "end": 17996.04, + "probability": 0.7945 + }, + { + "start": 17996.16, + "end": 17997.84, + "probability": 0.9803 + }, + { + "start": 17997.92, + "end": 17999.48, + "probability": 0.953 + }, + { + "start": 18000.18, + "end": 18002.4, + "probability": 0.9985 + }, + { + "start": 18002.96, + "end": 18004.76, + "probability": 0.8928 + }, + { + "start": 18005.54, + "end": 18007.82, + "probability": 0.9915 + }, + { + "start": 18007.82, + "end": 18010.5, + "probability": 0.9893 + }, + { + "start": 18011.54, + "end": 18013.52, + "probability": 0.979 + }, + { + "start": 18013.54, + "end": 18014.68, + "probability": 0.996 + }, + { + "start": 18015.28, + "end": 18015.8, + "probability": 0.9073 + }, + { + "start": 18015.86, + "end": 18017.78, + "probability": 0.9937 + }, + { + "start": 18018.24, + "end": 18018.84, + "probability": 0.5334 + }, + { + "start": 18019.36, + "end": 18020.5, + "probability": 0.8623 + }, + { + "start": 18020.62, + "end": 18022.06, + "probability": 0.9485 + }, + { + "start": 18022.48, + "end": 18023.06, + "probability": 0.759 + }, + { + "start": 18023.1, + "end": 18023.4, + "probability": 0.9702 + }, + { + "start": 18023.54, + "end": 18023.9, + "probability": 0.7392 + }, + { + "start": 18024.46, + "end": 18026.19, + "probability": 0.8528 + }, + { + "start": 18026.58, + "end": 18027.0, + "probability": 0.8417 + }, + { + "start": 18027.5, + "end": 18031.22, + "probability": 0.9753 + }, + { + "start": 18031.6, + "end": 18032.04, + "probability": 0.9382 + }, + { + "start": 18032.54, + "end": 18035.08, + "probability": 0.97 + }, + { + "start": 18035.66, + "end": 18038.54, + "probability": 0.9934 + }, + { + "start": 18038.54, + "end": 18042.48, + "probability": 0.9978 + }, + { + "start": 18043.12, + "end": 18046.88, + "probability": 0.9816 + }, + { + "start": 18047.13, + "end": 18050.38, + "probability": 0.8933 + }, + { + "start": 18050.96, + "end": 18054.36, + "probability": 0.8287 + }, + { + "start": 18055.8, + "end": 18056.15, + "probability": 0.804 + }, + { + "start": 18056.28, + "end": 18057.04, + "probability": 0.8376 + }, + { + "start": 18057.14, + "end": 18060.34, + "probability": 0.9902 + }, + { + "start": 18061.22, + "end": 18063.78, + "probability": 0.9989 + }, + { + "start": 18063.78, + "end": 18066.38, + "probability": 0.9969 + }, + { + "start": 18066.44, + "end": 18068.34, + "probability": 0.9859 + }, + { + "start": 18068.88, + "end": 18072.04, + "probability": 0.7831 + }, + { + "start": 18072.82, + "end": 18075.12, + "probability": 0.9939 + }, + { + "start": 18075.56, + "end": 18076.44, + "probability": 0.6233 + }, + { + "start": 18076.46, + "end": 18076.86, + "probability": 0.9755 + }, + { + "start": 18077.4, + "end": 18080.22, + "probability": 0.9536 + }, + { + "start": 18080.22, + "end": 18082.12, + "probability": 0.9947 + }, + { + "start": 18082.74, + "end": 18086.02, + "probability": 0.9936 + }, + { + "start": 18086.9, + "end": 18087.26, + "probability": 0.8544 + }, + { + "start": 18087.82, + "end": 18090.98, + "probability": 0.7283 + }, + { + "start": 18090.98, + "end": 18094.56, + "probability": 0.9984 + }, + { + "start": 18094.84, + "end": 18097.22, + "probability": 0.9751 + }, + { + "start": 18097.8, + "end": 18098.34, + "probability": 0.7828 + }, + { + "start": 18098.86, + "end": 18099.43, + "probability": 0.8013 + }, + { + "start": 18099.54, + "end": 18101.8, + "probability": 0.9135 + }, + { + "start": 18102.3, + "end": 18104.52, + "probability": 0.8979 + }, + { + "start": 18104.86, + "end": 18106.58, + "probability": 0.8448 + }, + { + "start": 18107.02, + "end": 18111.2, + "probability": 0.9953 + }, + { + "start": 18111.62, + "end": 18116.66, + "probability": 0.9967 + }, + { + "start": 18117.54, + "end": 18119.95, + "probability": 0.9921 + }, + { + "start": 18120.56, + "end": 18123.04, + "probability": 0.9624 + }, + { + "start": 18123.6, + "end": 18127.08, + "probability": 0.896 + }, + { + "start": 18127.38, + "end": 18129.22, + "probability": 0.9909 + }, + { + "start": 18129.6, + "end": 18134.14, + "probability": 0.9933 + }, + { + "start": 18134.42, + "end": 18136.8, + "probability": 0.9855 + }, + { + "start": 18136.8, + "end": 18139.8, + "probability": 0.6417 + }, + { + "start": 18140.24, + "end": 18141.95, + "probability": 0.7737 + }, + { + "start": 18142.28, + "end": 18143.98, + "probability": 0.9894 + }, + { + "start": 18144.0, + "end": 18145.24, + "probability": 0.7463 + }, + { + "start": 18145.5, + "end": 18145.72, + "probability": 0.3451 + }, + { + "start": 18145.72, + "end": 18148.08, + "probability": 0.6414 + }, + { + "start": 18148.64, + "end": 18149.36, + "probability": 0.7091 + }, + { + "start": 18150.26, + "end": 18151.62, + "probability": 0.9604 + }, + { + "start": 18169.42, + "end": 18171.2, + "probability": 0.8009 + }, + { + "start": 18172.76, + "end": 18174.15, + "probability": 0.7225 + }, + { + "start": 18174.74, + "end": 18175.48, + "probability": 0.9052 + }, + { + "start": 18176.16, + "end": 18177.16, + "probability": 0.6232 + }, + { + "start": 18177.86, + "end": 18180.84, + "probability": 0.816 + }, + { + "start": 18181.5, + "end": 18183.42, + "probability": 0.9831 + }, + { + "start": 18184.6, + "end": 18189.72, + "probability": 0.967 + }, + { + "start": 18190.62, + "end": 18192.3, + "probability": 0.9604 + }, + { + "start": 18193.78, + "end": 18196.86, + "probability": 0.8597 + }, + { + "start": 18198.42, + "end": 18199.28, + "probability": 0.7108 + }, + { + "start": 18200.12, + "end": 18202.62, + "probability": 0.9917 + }, + { + "start": 18203.94, + "end": 18207.38, + "probability": 0.9904 + }, + { + "start": 18207.74, + "end": 18209.44, + "probability": 0.815 + }, + { + "start": 18211.14, + "end": 18213.4, + "probability": 0.7703 + }, + { + "start": 18214.62, + "end": 18217.08, + "probability": 0.5285 + }, + { + "start": 18217.98, + "end": 18219.44, + "probability": 0.1992 + }, + { + "start": 18220.68, + "end": 18222.08, + "probability": 0.8584 + }, + { + "start": 18222.68, + "end": 18227.18, + "probability": 0.7143 + }, + { + "start": 18228.12, + "end": 18229.17, + "probability": 0.7818 + }, + { + "start": 18229.84, + "end": 18232.78, + "probability": 0.9799 + }, + { + "start": 18234.84, + "end": 18237.32, + "probability": 0.6916 + }, + { + "start": 18237.74, + "end": 18238.82, + "probability": 0.9636 + }, + { + "start": 18240.34, + "end": 18244.06, + "probability": 0.9751 + }, + { + "start": 18244.32, + "end": 18246.78, + "probability": 0.9876 + }, + { + "start": 18247.32, + "end": 18248.54, + "probability": 0.7652 + }, + { + "start": 18249.62, + "end": 18253.12, + "probability": 0.7202 + }, + { + "start": 18253.12, + "end": 18255.82, + "probability": 0.6247 + }, + { + "start": 18257.0, + "end": 18259.66, + "probability": 0.9544 + }, + { + "start": 18260.26, + "end": 18260.64, + "probability": 0.4201 + }, + { + "start": 18261.24, + "end": 18263.82, + "probability": 0.9723 + }, + { + "start": 18264.6, + "end": 18266.9, + "probability": 0.666 + }, + { + "start": 18267.78, + "end": 18269.74, + "probability": 0.7858 + }, + { + "start": 18270.38, + "end": 18272.28, + "probability": 0.9186 + }, + { + "start": 18273.22, + "end": 18275.08, + "probability": 0.9885 + }, + { + "start": 18276.22, + "end": 18282.14, + "probability": 0.9899 + }, + { + "start": 18283.98, + "end": 18285.84, + "probability": 0.8128 + }, + { + "start": 18286.4, + "end": 18290.46, + "probability": 0.9542 + }, + { + "start": 18291.14, + "end": 18292.1, + "probability": 0.7583 + }, + { + "start": 18292.88, + "end": 18294.92, + "probability": 0.6788 + }, + { + "start": 18295.6, + "end": 18297.73, + "probability": 0.6479 + }, + { + "start": 18298.94, + "end": 18299.28, + "probability": 0.6541 + }, + { + "start": 18299.84, + "end": 18306.48, + "probability": 0.8931 + }, + { + "start": 18307.0, + "end": 18310.38, + "probability": 0.9561 + }, + { + "start": 18311.7, + "end": 18313.08, + "probability": 0.7201 + }, + { + "start": 18313.2, + "end": 18314.3, + "probability": 0.8446 + }, + { + "start": 18314.48, + "end": 18315.12, + "probability": 0.5065 + }, + { + "start": 18315.6, + "end": 18319.58, + "probability": 0.8188 + }, + { + "start": 18320.58, + "end": 18324.7, + "probability": 0.7838 + }, + { + "start": 18325.3, + "end": 18327.92, + "probability": 0.7818 + }, + { + "start": 18328.74, + "end": 18330.4, + "probability": 0.9541 + }, + { + "start": 18332.42, + "end": 18335.1, + "probability": 0.3957 + }, + { + "start": 18335.62, + "end": 18337.6, + "probability": 0.6143 + }, + { + "start": 18338.2, + "end": 18339.22, + "probability": 0.6671 + }, + { + "start": 18340.22, + "end": 18342.02, + "probability": 0.7573 + }, + { + "start": 18342.92, + "end": 18345.2, + "probability": 0.9784 + }, + { + "start": 18345.2, + "end": 18346.14, + "probability": 0.7607 + }, + { + "start": 18351.7, + "end": 18353.38, + "probability": 0.6838 + }, + { + "start": 18365.34, + "end": 18367.54, + "probability": 0.7075 + }, + { + "start": 18368.98, + "end": 18369.64, + "probability": 0.6812 + }, + { + "start": 18370.58, + "end": 18371.66, + "probability": 0.7239 + }, + { + "start": 18372.36, + "end": 18373.44, + "probability": 0.8156 + }, + { + "start": 18374.5, + "end": 18376.32, + "probability": 0.5185 + }, + { + "start": 18376.56, + "end": 18382.12, + "probability": 0.8975 + }, + { + "start": 18382.92, + "end": 18385.36, + "probability": 0.9244 + }, + { + "start": 18385.96, + "end": 18386.7, + "probability": 0.9487 + }, + { + "start": 18387.86, + "end": 18390.0, + "probability": 0.9694 + }, + { + "start": 18390.44, + "end": 18391.36, + "probability": 0.9966 + }, + { + "start": 18392.04, + "end": 18394.2, + "probability": 0.9022 + }, + { + "start": 18394.78, + "end": 18398.28, + "probability": 0.8907 + }, + { + "start": 18398.86, + "end": 18401.16, + "probability": 0.9946 + }, + { + "start": 18401.88, + "end": 18402.4, + "probability": 0.5089 + }, + { + "start": 18402.52, + "end": 18405.2, + "probability": 0.954 + }, + { + "start": 18406.52, + "end": 18408.22, + "probability": 0.9918 + }, + { + "start": 18408.86, + "end": 18412.42, + "probability": 0.9692 + }, + { + "start": 18413.14, + "end": 18416.28, + "probability": 0.9938 + }, + { + "start": 18416.9, + "end": 18420.66, + "probability": 0.8949 + }, + { + "start": 18421.34, + "end": 18424.62, + "probability": 0.9985 + }, + { + "start": 18425.2, + "end": 18429.28, + "probability": 0.978 + }, + { + "start": 18430.16, + "end": 18437.08, + "probability": 0.9954 + }, + { + "start": 18437.9, + "end": 18439.04, + "probability": 0.8744 + }, + { + "start": 18439.68, + "end": 18444.76, + "probability": 0.9915 + }, + { + "start": 18445.62, + "end": 18447.14, + "probability": 0.966 + }, + { + "start": 18447.96, + "end": 18450.7, + "probability": 0.9537 + }, + { + "start": 18452.04, + "end": 18452.72, + "probability": 0.8524 + }, + { + "start": 18452.82, + "end": 18453.9, + "probability": 0.9932 + }, + { + "start": 18454.0, + "end": 18454.52, + "probability": 0.6596 + }, + { + "start": 18454.64, + "end": 18459.18, + "probability": 0.9902 + }, + { + "start": 18459.18, + "end": 18464.0, + "probability": 0.9985 + }, + { + "start": 18465.26, + "end": 18465.9, + "probability": 0.8549 + }, + { + "start": 18466.02, + "end": 18467.22, + "probability": 0.9788 + }, + { + "start": 18467.26, + "end": 18468.38, + "probability": 0.752 + }, + { + "start": 18468.62, + "end": 18469.48, + "probability": 0.6632 + }, + { + "start": 18470.0, + "end": 18472.88, + "probability": 0.9928 + }, + { + "start": 18473.66, + "end": 18474.94, + "probability": 0.9587 + }, + { + "start": 18475.58, + "end": 18478.07, + "probability": 0.9282 + }, + { + "start": 18478.7, + "end": 18479.46, + "probability": 0.9289 + }, + { + "start": 18480.1, + "end": 18484.88, + "probability": 0.9952 + }, + { + "start": 18486.02, + "end": 18488.08, + "probability": 0.886 + }, + { + "start": 18488.76, + "end": 18491.22, + "probability": 0.9969 + }, + { + "start": 18491.94, + "end": 18495.54, + "probability": 0.9995 + }, + { + "start": 18495.54, + "end": 18498.28, + "probability": 0.9995 + }, + { + "start": 18499.14, + "end": 18499.58, + "probability": 0.4824 + }, + { + "start": 18499.66, + "end": 18500.34, + "probability": 0.7551 + }, + { + "start": 18500.7, + "end": 18503.64, + "probability": 0.98 + }, + { + "start": 18505.06, + "end": 18505.9, + "probability": 0.8054 + }, + { + "start": 18506.2, + "end": 18506.86, + "probability": 0.9852 + }, + { + "start": 18506.98, + "end": 18508.08, + "probability": 0.9938 + }, + { + "start": 18508.16, + "end": 18509.17, + "probability": 0.9891 + }, + { + "start": 18509.28, + "end": 18510.88, + "probability": 0.979 + }, + { + "start": 18511.4, + "end": 18513.56, + "probability": 0.939 + }, + { + "start": 18514.28, + "end": 18517.12, + "probability": 0.9572 + }, + { + "start": 18518.46, + "end": 18520.56, + "probability": 0.9094 + }, + { + "start": 18521.1, + "end": 18525.5, + "probability": 0.9937 + }, + { + "start": 18525.62, + "end": 18530.22, + "probability": 0.9514 + }, + { + "start": 18531.06, + "end": 18535.0, + "probability": 0.9972 + }, + { + "start": 18535.28, + "end": 18537.64, + "probability": 0.9858 + }, + { + "start": 18537.64, + "end": 18539.82, + "probability": 0.9993 + }, + { + "start": 18540.22, + "end": 18540.8, + "probability": 0.8567 + }, + { + "start": 18541.66, + "end": 18542.72, + "probability": 0.5808 + }, + { + "start": 18543.02, + "end": 18545.5, + "probability": 0.9886 + }, + { + "start": 18546.54, + "end": 18547.62, + "probability": 0.8251 + }, + { + "start": 18547.82, + "end": 18549.44, + "probability": 0.9414 + }, + { + "start": 18550.62, + "end": 18551.52, + "probability": 0.7847 + }, + { + "start": 18552.58, + "end": 18556.44, + "probability": 0.9531 + }, + { + "start": 18559.14, + "end": 18559.26, + "probability": 0.1071 + }, + { + "start": 18561.06, + "end": 18561.68, + "probability": 0.2811 + }, + { + "start": 18562.0, + "end": 18562.22, + "probability": 0.3345 + }, + { + "start": 18562.78, + "end": 18564.14, + "probability": 0.528 + }, + { + "start": 18564.3, + "end": 18564.66, + "probability": 0.6678 + }, + { + "start": 18565.48, + "end": 18566.4, + "probability": 0.7625 + }, + { + "start": 18566.44, + "end": 18567.34, + "probability": 0.597 + }, + { + "start": 18567.36, + "end": 18568.54, + "probability": 0.7892 + }, + { + "start": 18568.66, + "end": 18569.94, + "probability": 0.8793 + }, + { + "start": 18569.94, + "end": 18572.3, + "probability": 0.9907 + }, + { + "start": 18572.3, + "end": 18574.92, + "probability": 0.7659 + }, + { + "start": 18575.0, + "end": 18576.3, + "probability": 0.6246 + }, + { + "start": 18576.76, + "end": 18577.98, + "probability": 0.9893 + }, + { + "start": 18578.14, + "end": 18578.32, + "probability": 0.7767 + }, + { + "start": 18578.9, + "end": 18579.48, + "probability": 0.2863 + }, + { + "start": 18579.48, + "end": 18580.02, + "probability": 0.7316 + }, + { + "start": 18580.96, + "end": 18581.82, + "probability": 0.3483 + }, + { + "start": 18581.96, + "end": 18582.64, + "probability": 0.3741 + }, + { + "start": 18582.96, + "end": 18585.46, + "probability": 0.9272 + }, + { + "start": 18586.02, + "end": 18588.96, + "probability": 0.7954 + }, + { + "start": 18590.3, + "end": 18590.94, + "probability": 0.7672 + }, + { + "start": 18591.02, + "end": 18591.64, + "probability": 0.7635 + }, + { + "start": 18591.92, + "end": 18596.66, + "probability": 0.853 + }, + { + "start": 18596.98, + "end": 18598.26, + "probability": 0.6999 + }, + { + "start": 18599.5, + "end": 18600.26, + "probability": 0.8861 + }, + { + "start": 18600.52, + "end": 18604.02, + "probability": 0.9739 + }, + { + "start": 18604.62, + "end": 18608.12, + "probability": 0.9872 + }, + { + "start": 18608.12, + "end": 18611.52, + "probability": 0.998 + }, + { + "start": 18612.24, + "end": 18616.44, + "probability": 0.9926 + }, + { + "start": 18616.76, + "end": 18619.38, + "probability": 0.9982 + }, + { + "start": 18620.08, + "end": 18623.26, + "probability": 0.9793 + }, + { + "start": 18624.18, + "end": 18627.32, + "probability": 0.9945 + }, + { + "start": 18627.32, + "end": 18630.68, + "probability": 0.9737 + }, + { + "start": 18630.82, + "end": 18633.42, + "probability": 0.9756 + }, + { + "start": 18633.58, + "end": 18637.88, + "probability": 0.9883 + }, + { + "start": 18638.8, + "end": 18639.14, + "probability": 0.3514 + }, + { + "start": 18639.2, + "end": 18643.36, + "probability": 0.916 + }, + { + "start": 18643.48, + "end": 18645.62, + "probability": 0.8065 + }, + { + "start": 18646.53, + "end": 18648.43, + "probability": 0.9727 + }, + { + "start": 18649.18, + "end": 18653.08, + "probability": 0.9296 + }, + { + "start": 18653.18, + "end": 18657.3, + "probability": 0.9796 + }, + { + "start": 18657.92, + "end": 18663.34, + "probability": 0.9814 + }, + { + "start": 18664.04, + "end": 18668.2, + "probability": 0.995 + }, + { + "start": 18669.06, + "end": 18671.26, + "probability": 0.9893 + }, + { + "start": 18671.44, + "end": 18674.48, + "probability": 0.9038 + }, + { + "start": 18674.88, + "end": 18679.06, + "probability": 0.9961 + }, + { + "start": 18679.64, + "end": 18684.02, + "probability": 0.8825 + }, + { + "start": 18684.56, + "end": 18687.14, + "probability": 0.9667 + }, + { + "start": 18687.14, + "end": 18690.74, + "probability": 0.9864 + }, + { + "start": 18691.76, + "end": 18693.44, + "probability": 0.9983 + }, + { + "start": 18693.96, + "end": 18697.7, + "probability": 0.9926 + }, + { + "start": 18697.7, + "end": 18704.1, + "probability": 0.997 + }, + { + "start": 18704.32, + "end": 18706.9, + "probability": 0.9968 + }, + { + "start": 18707.5, + "end": 18712.36, + "probability": 0.9617 + }, + { + "start": 18712.58, + "end": 18713.72, + "probability": 0.8079 + }, + { + "start": 18714.22, + "end": 18715.72, + "probability": 0.8948 + }, + { + "start": 18715.78, + "end": 18719.74, + "probability": 0.9737 + }, + { + "start": 18720.48, + "end": 18723.38, + "probability": 0.9562 + }, + { + "start": 18723.38, + "end": 18727.2, + "probability": 0.998 + }, + { + "start": 18727.2, + "end": 18731.92, + "probability": 0.8946 + }, + { + "start": 18732.0, + "end": 18732.62, + "probability": 0.7824 + }, + { + "start": 18733.24, + "end": 18734.74, + "probability": 0.9971 + }, + { + "start": 18735.3, + "end": 18736.74, + "probability": 0.8133 + }, + { + "start": 18737.24, + "end": 18740.94, + "probability": 0.9417 + }, + { + "start": 18741.6, + "end": 18743.62, + "probability": 0.9919 + }, + { + "start": 18743.68, + "end": 18745.58, + "probability": 0.9967 + }, + { + "start": 18747.02, + "end": 18750.44, + "probability": 0.9905 + }, + { + "start": 18750.76, + "end": 18754.46, + "probability": 0.9915 + }, + { + "start": 18754.5, + "end": 18754.98, + "probability": 0.9604 + }, + { + "start": 18755.7, + "end": 18757.44, + "probability": 0.9992 + }, + { + "start": 18758.48, + "end": 18758.7, + "probability": 0.7232 + }, + { + "start": 18759.62, + "end": 18760.62, + "probability": 0.562 + }, + { + "start": 18761.08, + "end": 18761.88, + "probability": 0.8011 + }, + { + "start": 18763.44, + "end": 18767.32, + "probability": 0.9703 + }, + { + "start": 18767.4, + "end": 18768.82, + "probability": 0.9927 + }, + { + "start": 18770.16, + "end": 18771.22, + "probability": 0.8292 + }, + { + "start": 18771.22, + "end": 18772.38, + "probability": 0.7371 + }, + { + "start": 18773.24, + "end": 18774.44, + "probability": 0.7977 + }, + { + "start": 18775.2, + "end": 18775.88, + "probability": 0.5828 + }, + { + "start": 18777.98, + "end": 18779.54, + "probability": 0.8613 + }, + { + "start": 18780.08, + "end": 18785.64, + "probability": 0.9594 + }, + { + "start": 18786.66, + "end": 18788.0, + "probability": 0.8562 + }, + { + "start": 18791.82, + "end": 18794.98, + "probability": 0.1726 + }, + { + "start": 18797.88, + "end": 18800.75, + "probability": 0.6704 + }, + { + "start": 18802.78, + "end": 18806.32, + "probability": 0.6388 + }, + { + "start": 18806.34, + "end": 18806.92, + "probability": 0.8885 + }, + { + "start": 18810.86, + "end": 18814.38, + "probability": 0.5805 + }, + { + "start": 18815.36, + "end": 18815.94, + "probability": 0.6824 + }, + { + "start": 18816.6, + "end": 18819.28, + "probability": 0.7482 + }, + { + "start": 18819.3, + "end": 18823.02, + "probability": 0.931 + }, + { + "start": 18823.1, + "end": 18823.72, + "probability": 0.9242 + }, + { + "start": 18823.86, + "end": 18824.66, + "probability": 0.7819 + }, + { + "start": 18825.14, + "end": 18827.94, + "probability": 0.916 + }, + { + "start": 18828.0, + "end": 18829.66, + "probability": 0.8245 + }, + { + "start": 18850.16, + "end": 18852.09, + "probability": 0.7929 + }, + { + "start": 18853.06, + "end": 18854.04, + "probability": 0.8253 + }, + { + "start": 18854.2, + "end": 18857.3, + "probability": 0.9717 + }, + { + "start": 18858.54, + "end": 18863.05, + "probability": 0.9895 + }, + { + "start": 18864.52, + "end": 18867.0, + "probability": 0.9985 + }, + { + "start": 18868.0, + "end": 18871.84, + "probability": 0.9321 + }, + { + "start": 18874.35, + "end": 18877.28, + "probability": 0.8592 + }, + { + "start": 18878.1, + "end": 18879.62, + "probability": 0.5855 + }, + { + "start": 18879.76, + "end": 18880.9, + "probability": 0.618 + }, + { + "start": 18880.98, + "end": 18883.32, + "probability": 0.9218 + }, + { + "start": 18884.7, + "end": 18886.44, + "probability": 0.985 + }, + { + "start": 18887.94, + "end": 18889.84, + "probability": 0.9974 + }, + { + "start": 18891.08, + "end": 18892.36, + "probability": 0.9816 + }, + { + "start": 18893.58, + "end": 18897.14, + "probability": 0.9274 + }, + { + "start": 18897.22, + "end": 18898.58, + "probability": 0.9388 + }, + { + "start": 18900.74, + "end": 18902.5, + "probability": 0.9225 + }, + { + "start": 18902.84, + "end": 18908.94, + "probability": 0.9014 + }, + { + "start": 18909.1, + "end": 18916.0, + "probability": 0.9683 + }, + { + "start": 18917.56, + "end": 18918.8, + "probability": 0.9971 + }, + { + "start": 18920.6, + "end": 18922.56, + "probability": 0.9863 + }, + { + "start": 18923.86, + "end": 18928.16, + "probability": 0.9819 + }, + { + "start": 18928.16, + "end": 18929.38, + "probability": 0.8899 + }, + { + "start": 18930.08, + "end": 18933.56, + "probability": 0.9821 + }, + { + "start": 18934.38, + "end": 18935.38, + "probability": 0.8322 + }, + { + "start": 18935.86, + "end": 18939.34, + "probability": 0.9038 + }, + { + "start": 18940.46, + "end": 18944.46, + "probability": 0.9929 + }, + { + "start": 18945.38, + "end": 18949.06, + "probability": 0.9889 + }, + { + "start": 18949.72, + "end": 18950.12, + "probability": 0.3202 + }, + { + "start": 18950.64, + "end": 18953.24, + "probability": 0.8442 + }, + { + "start": 18953.42, + "end": 18955.56, + "probability": 0.9934 + }, + { + "start": 18956.14, + "end": 18957.18, + "probability": 0.9154 + }, + { + "start": 18958.06, + "end": 18960.62, + "probability": 0.9795 + }, + { + "start": 18961.84, + "end": 18963.02, + "probability": 0.935 + }, + { + "start": 18963.74, + "end": 18965.12, + "probability": 0.9666 + }, + { + "start": 18965.9, + "end": 18970.98, + "probability": 0.9774 + }, + { + "start": 18972.08, + "end": 18972.74, + "probability": 0.6624 + }, + { + "start": 18973.6, + "end": 18974.96, + "probability": 0.9743 + }, + { + "start": 18975.44, + "end": 18975.72, + "probability": 0.871 + }, + { + "start": 18977.0, + "end": 18979.08, + "probability": 0.7595 + }, + { + "start": 18979.8, + "end": 18980.82, + "probability": 0.6961 + }, + { + "start": 18981.94, + "end": 18985.48, + "probability": 0.9911 + }, + { + "start": 18986.28, + "end": 18989.9, + "probability": 0.9608 + }, + { + "start": 18989.9, + "end": 18993.22, + "probability": 0.9967 + }, + { + "start": 18993.68, + "end": 18995.54, + "probability": 0.5484 + }, + { + "start": 18996.34, + "end": 19003.16, + "probability": 0.9977 + }, + { + "start": 19003.82, + "end": 19005.14, + "probability": 0.6724 + }, + { + "start": 19006.1, + "end": 19006.82, + "probability": 0.6793 + }, + { + "start": 19007.7, + "end": 19010.68, + "probability": 0.8105 + }, + { + "start": 19011.88, + "end": 19013.08, + "probability": 0.6918 + }, + { + "start": 19014.0, + "end": 19016.4, + "probability": 0.8827 + }, + { + "start": 19016.76, + "end": 19018.94, + "probability": 0.931 + }, + { + "start": 19019.62, + "end": 19020.64, + "probability": 0.8151 + }, + { + "start": 19021.22, + "end": 19022.42, + "probability": 0.9769 + }, + { + "start": 19023.14, + "end": 19025.0, + "probability": 0.9519 + }, + { + "start": 19025.84, + "end": 19028.46, + "probability": 0.9521 + }, + { + "start": 19029.54, + "end": 19031.3, + "probability": 0.8266 + }, + { + "start": 19031.4, + "end": 19033.62, + "probability": 0.9918 + }, + { + "start": 19034.1, + "end": 19036.96, + "probability": 0.9943 + }, + { + "start": 19038.14, + "end": 19042.64, + "probability": 0.9286 + }, + { + "start": 19043.16, + "end": 19046.74, + "probability": 0.9868 + }, + { + "start": 19047.3, + "end": 19048.36, + "probability": 0.9982 + }, + { + "start": 19048.96, + "end": 19050.98, + "probability": 0.9167 + }, + { + "start": 19051.08, + "end": 19053.8, + "probability": 0.938 + }, + { + "start": 19054.32, + "end": 19055.58, + "probability": 0.9902 + }, + { + "start": 19056.62, + "end": 19058.5, + "probability": 0.9857 + }, + { + "start": 19059.32, + "end": 19060.5, + "probability": 0.7546 + }, + { + "start": 19060.58, + "end": 19064.2, + "probability": 0.9116 + }, + { + "start": 19065.54, + "end": 19066.62, + "probability": 0.6371 + }, + { + "start": 19066.84, + "end": 19067.7, + "probability": 0.7456 + }, + { + "start": 19068.66, + "end": 19070.68, + "probability": 0.9937 + }, + { + "start": 19071.84, + "end": 19073.02, + "probability": 0.8864 + }, + { + "start": 19074.16, + "end": 19076.54, + "probability": 0.9608 + }, + { + "start": 19077.02, + "end": 19079.7, + "probability": 0.8462 + }, + { + "start": 19086.3, + "end": 19088.14, + "probability": 0.7465 + }, + { + "start": 19089.37, + "end": 19092.62, + "probability": 0.9707 + }, + { + "start": 19093.28, + "end": 19095.38, + "probability": 0.9934 + }, + { + "start": 19096.06, + "end": 19098.34, + "probability": 0.9973 + }, + { + "start": 19098.9, + "end": 19101.5, + "probability": 0.984 + }, + { + "start": 19102.36, + "end": 19106.4, + "probability": 0.9995 + }, + { + "start": 19107.14, + "end": 19109.04, + "probability": 0.998 + }, + { + "start": 19109.52, + "end": 19111.22, + "probability": 0.9563 + }, + { + "start": 19111.76, + "end": 19113.14, + "probability": 0.8515 + }, + { + "start": 19114.54, + "end": 19119.24, + "probability": 0.9968 + }, + { + "start": 19119.68, + "end": 19120.74, + "probability": 0.4841 + }, + { + "start": 19121.36, + "end": 19126.5, + "probability": 0.9937 + }, + { + "start": 19126.58, + "end": 19128.1, + "probability": 0.8984 + }, + { + "start": 19129.3, + "end": 19131.52, + "probability": 0.9923 + }, + { + "start": 19132.24, + "end": 19135.38, + "probability": 0.9749 + }, + { + "start": 19136.54, + "end": 19140.04, + "probability": 0.9279 + }, + { + "start": 19140.6, + "end": 19145.0, + "probability": 0.9906 + }, + { + "start": 19145.42, + "end": 19148.2, + "probability": 0.9431 + }, + { + "start": 19148.96, + "end": 19152.88, + "probability": 0.9585 + }, + { + "start": 19153.58, + "end": 19155.04, + "probability": 0.8641 + }, + { + "start": 19156.6, + "end": 19162.22, + "probability": 0.9979 + }, + { + "start": 19162.9, + "end": 19165.42, + "probability": 0.9993 + }, + { + "start": 19166.06, + "end": 19167.3, + "probability": 0.7766 + }, + { + "start": 19168.0, + "end": 19172.42, + "probability": 0.998 + }, + { + "start": 19172.98, + "end": 19176.44, + "probability": 0.9994 + }, + { + "start": 19177.42, + "end": 19180.96, + "probability": 0.9991 + }, + { + "start": 19181.76, + "end": 19184.46, + "probability": 0.9864 + }, + { + "start": 19185.26, + "end": 19188.2, + "probability": 0.8272 + }, + { + "start": 19189.28, + "end": 19193.4, + "probability": 0.998 + }, + { + "start": 19194.0, + "end": 19198.68, + "probability": 0.9678 + }, + { + "start": 19199.34, + "end": 19200.78, + "probability": 0.8521 + }, + { + "start": 19201.32, + "end": 19202.24, + "probability": 0.9933 + }, + { + "start": 19202.86, + "end": 19205.26, + "probability": 0.9951 + }, + { + "start": 19206.24, + "end": 19207.68, + "probability": 0.9849 + }, + { + "start": 19208.54, + "end": 19209.68, + "probability": 0.729 + }, + { + "start": 19210.48, + "end": 19212.8, + "probability": 0.9049 + }, + { + "start": 19213.44, + "end": 19216.78, + "probability": 0.8502 + }, + { + "start": 19217.94, + "end": 19220.02, + "probability": 0.8924 + }, + { + "start": 19220.86, + "end": 19224.8, + "probability": 0.9921 + }, + { + "start": 19225.46, + "end": 19228.06, + "probability": 0.9631 + }, + { + "start": 19228.72, + "end": 19229.86, + "probability": 0.6952 + }, + { + "start": 19229.94, + "end": 19236.06, + "probability": 0.9888 + }, + { + "start": 19237.2, + "end": 19237.36, + "probability": 0.6195 + }, + { + "start": 19237.5, + "end": 19238.26, + "probability": 0.7355 + }, + { + "start": 19238.36, + "end": 19239.04, + "probability": 0.9053 + }, + { + "start": 19239.5, + "end": 19241.58, + "probability": 0.9663 + }, + { + "start": 19242.58, + "end": 19248.2, + "probability": 0.9979 + }, + { + "start": 19248.8, + "end": 19252.82, + "probability": 0.9916 + }, + { + "start": 19253.36, + "end": 19254.68, + "probability": 0.9324 + }, + { + "start": 19255.4, + "end": 19260.94, + "probability": 0.899 + }, + { + "start": 19261.88, + "end": 19266.17, + "probability": 0.9876 + }, + { + "start": 19267.2, + "end": 19268.42, + "probability": 0.9968 + }, + { + "start": 19269.2, + "end": 19270.62, + "probability": 0.9783 + }, + { + "start": 19271.36, + "end": 19273.46, + "probability": 0.9856 + }, + { + "start": 19274.02, + "end": 19275.08, + "probability": 0.9932 + }, + { + "start": 19275.64, + "end": 19277.22, + "probability": 0.9956 + }, + { + "start": 19277.86, + "end": 19280.82, + "probability": 0.9421 + }, + { + "start": 19281.2, + "end": 19282.8, + "probability": 0.8713 + }, + { + "start": 19282.96, + "end": 19284.88, + "probability": 0.8401 + }, + { + "start": 19285.34, + "end": 19285.54, + "probability": 0.8071 + }, + { + "start": 19286.48, + "end": 19287.4, + "probability": 0.5685 + }, + { + "start": 19287.58, + "end": 19289.19, + "probability": 0.0367 + }, + { + "start": 19295.1, + "end": 19296.38, + "probability": 0.0365 + }, + { + "start": 19298.1, + "end": 19298.8, + "probability": 0.4555 + }, + { + "start": 19300.08, + "end": 19300.7, + "probability": 0.6063 + }, + { + "start": 19301.88, + "end": 19302.88, + "probability": 0.1407 + }, + { + "start": 19308.52, + "end": 19309.12, + "probability": 0.1239 + }, + { + "start": 19309.26, + "end": 19309.92, + "probability": 0.2397 + }, + { + "start": 19309.96, + "end": 19310.16, + "probability": 0.4074 + }, + { + "start": 19310.16, + "end": 19315.76, + "probability": 0.1295 + }, + { + "start": 19316.12, + "end": 19317.78, + "probability": 0.1403 + }, + { + "start": 19317.78, + "end": 19318.56, + "probability": 0.1708 + }, + { + "start": 19318.56, + "end": 19318.56, + "probability": 0.3748 + }, + { + "start": 19318.56, + "end": 19318.56, + "probability": 0.1684 + }, + { + "start": 19318.56, + "end": 19319.75, + "probability": 0.5402 + }, + { + "start": 19319.82, + "end": 19322.44, + "probability": 0.8712 + }, + { + "start": 19323.8, + "end": 19325.06, + "probability": 0.8633 + }, + { + "start": 19325.2, + "end": 19327.26, + "probability": 0.8485 + }, + { + "start": 19328.68, + "end": 19329.1, + "probability": 0.9633 + }, + { + "start": 19329.68, + "end": 19329.8, + "probability": 0.4672 + }, + { + "start": 19330.88, + "end": 19333.54, + "probability": 0.9094 + }, + { + "start": 19339.88, + "end": 19340.4, + "probability": 0.4766 + }, + { + "start": 19345.52, + "end": 19346.32, + "probability": 0.4701 + }, + { + "start": 19346.5, + "end": 19348.38, + "probability": 0.6347 + }, + { + "start": 19348.5, + "end": 19350.32, + "probability": 0.9609 + }, + { + "start": 19350.64, + "end": 19352.5, + "probability": 0.8517 + }, + { + "start": 19352.78, + "end": 19354.98, + "probability": 0.9086 + }, + { + "start": 19355.12, + "end": 19357.56, + "probability": 0.9176 + }, + { + "start": 19358.26, + "end": 19359.74, + "probability": 0.9635 + }, + { + "start": 19360.58, + "end": 19363.98, + "probability": 0.9125 + }, + { + "start": 19364.6, + "end": 19365.82, + "probability": 0.9671 + }, + { + "start": 19366.8, + "end": 19370.56, + "probability": 0.9569 + }, + { + "start": 19371.38, + "end": 19376.3, + "probability": 0.993 + }, + { + "start": 19377.02, + "end": 19377.5, + "probability": 0.7394 + }, + { + "start": 19378.08, + "end": 19378.92, + "probability": 0.9678 + }, + { + "start": 19379.16, + "end": 19381.02, + "probability": 0.9565 + }, + { + "start": 19381.42, + "end": 19383.4, + "probability": 0.9583 + }, + { + "start": 19383.96, + "end": 19384.62, + "probability": 0.6444 + }, + { + "start": 19385.02, + "end": 19386.9, + "probability": 0.8877 + }, + { + "start": 19387.14, + "end": 19388.8, + "probability": 0.793 + }, + { + "start": 19389.28, + "end": 19390.96, + "probability": 0.9707 + }, + { + "start": 19391.84, + "end": 19394.92, + "probability": 0.7945 + }, + { + "start": 19395.66, + "end": 19397.28, + "probability": 0.8475 + }, + { + "start": 19397.92, + "end": 19399.25, + "probability": 0.8914 + }, + { + "start": 19400.38, + "end": 19404.32, + "probability": 0.9757 + }, + { + "start": 19404.32, + "end": 19408.32, + "probability": 0.9949 + }, + { + "start": 19408.76, + "end": 19411.5, + "probability": 0.996 + }, + { + "start": 19412.06, + "end": 19414.62, + "probability": 0.991 + }, + { + "start": 19415.3, + "end": 19418.98, + "probability": 0.9617 + }, + { + "start": 19419.5, + "end": 19425.68, + "probability": 0.7438 + }, + { + "start": 19426.06, + "end": 19428.0, + "probability": 0.9147 + }, + { + "start": 19428.82, + "end": 19431.02, + "probability": 0.8892 + }, + { + "start": 19431.6, + "end": 19432.68, + "probability": 0.9667 + }, + { + "start": 19433.02, + "end": 19433.98, + "probability": 0.9155 + }, + { + "start": 19434.34, + "end": 19439.94, + "probability": 0.9945 + }, + { + "start": 19440.54, + "end": 19441.04, + "probability": 0.8983 + }, + { + "start": 19442.1, + "end": 19446.9, + "probability": 0.9993 + }, + { + "start": 19447.72, + "end": 19450.14, + "probability": 0.9843 + }, + { + "start": 19450.96, + "end": 19454.66, + "probability": 0.9932 + }, + { + "start": 19455.26, + "end": 19458.98, + "probability": 0.9598 + }, + { + "start": 19458.98, + "end": 19461.88, + "probability": 0.6665 + }, + { + "start": 19462.34, + "end": 19467.06, + "probability": 0.9971 + }, + { + "start": 19467.42, + "end": 19469.32, + "probability": 0.9648 + }, + { + "start": 19469.9, + "end": 19473.12, + "probability": 0.9949 + }, + { + "start": 19473.74, + "end": 19477.84, + "probability": 0.9434 + }, + { + "start": 19478.54, + "end": 19479.42, + "probability": 0.7355 + }, + { + "start": 19480.02, + "end": 19482.96, + "probability": 0.9272 + }, + { + "start": 19483.5, + "end": 19484.78, + "probability": 0.9509 + }, + { + "start": 19484.8, + "end": 19487.42, + "probability": 0.9868 + }, + { + "start": 19487.5, + "end": 19489.22, + "probability": 0.9919 + }, + { + "start": 19490.74, + "end": 19491.78, + "probability": 0.3388 + }, + { + "start": 19492.36, + "end": 19493.48, + "probability": 0.8514 + }, + { + "start": 19494.66, + "end": 19500.12, + "probability": 0.9948 + }, + { + "start": 19500.66, + "end": 19506.14, + "probability": 0.9968 + }, + { + "start": 19506.92, + "end": 19511.66, + "probability": 0.9976 + }, + { + "start": 19511.72, + "end": 19515.78, + "probability": 0.8971 + }, + { + "start": 19516.36, + "end": 19519.1, + "probability": 0.8395 + }, + { + "start": 19519.6, + "end": 19520.86, + "probability": 0.7208 + }, + { + "start": 19521.84, + "end": 19524.72, + "probability": 0.7795 + }, + { + "start": 19525.06, + "end": 19526.76, + "probability": 0.9902 + }, + { + "start": 19527.28, + "end": 19530.24, + "probability": 0.9634 + }, + { + "start": 19530.8, + "end": 19536.42, + "probability": 0.9648 + }, + { + "start": 19537.08, + "end": 19540.84, + "probability": 0.9236 + }, + { + "start": 19541.5, + "end": 19543.86, + "probability": 0.9658 + }, + { + "start": 19544.32, + "end": 19547.14, + "probability": 0.9798 + }, + { + "start": 19547.74, + "end": 19550.16, + "probability": 0.9958 + }, + { + "start": 19550.16, + "end": 19553.4, + "probability": 0.9183 + }, + { + "start": 19553.66, + "end": 19556.76, + "probability": 0.9934 + }, + { + "start": 19557.26, + "end": 19560.18, + "probability": 0.9332 + }, + { + "start": 19560.32, + "end": 19560.32, + "probability": 0.5757 + }, + { + "start": 19560.62, + "end": 19563.67, + "probability": 0.9502 + }, + { + "start": 19563.8, + "end": 19567.44, + "probability": 0.9872 + }, + { + "start": 19567.82, + "end": 19570.11, + "probability": 0.998 + }, + { + "start": 19570.7, + "end": 19573.92, + "probability": 0.9967 + }, + { + "start": 19574.28, + "end": 19574.74, + "probability": 0.8858 + }, + { + "start": 19574.98, + "end": 19575.82, + "probability": 0.7565 + }, + { + "start": 19576.74, + "end": 19579.6, + "probability": 0.8048 + }, + { + "start": 19580.98, + "end": 19583.61, + "probability": 0.7406 + }, + { + "start": 19589.06, + "end": 19590.78, + "probability": 0.2326 + }, + { + "start": 19591.2, + "end": 19592.8, + "probability": 0.1299 + }, + { + "start": 19592.8, + "end": 19593.7, + "probability": 0.1065 + }, + { + "start": 19594.22, + "end": 19595.14, + "probability": 0.0551 + }, + { + "start": 19603.42, + "end": 19603.72, + "probability": 0.1024 + }, + { + "start": 19612.8, + "end": 19619.4, + "probability": 0.5774 + }, + { + "start": 19620.8, + "end": 19623.2, + "probability": 0.6315 + }, + { + "start": 19624.05, + "end": 19628.58, + "probability": 0.0818 + }, + { + "start": 19628.68, + "end": 19628.76, + "probability": 0.0089 + }, + { + "start": 19629.86, + "end": 19630.5, + "probability": 0.1786 + }, + { + "start": 19637.77, + "end": 19642.26, + "probability": 0.8286 + }, + { + "start": 19642.44, + "end": 19643.32, + "probability": 0.5816 + }, + { + "start": 19643.4, + "end": 19644.56, + "probability": 0.8392 + }, + { + "start": 19644.66, + "end": 19648.18, + "probability": 0.7759 + }, + { + "start": 19649.36, + "end": 19649.88, + "probability": 0.6568 + }, + { + "start": 19649.94, + "end": 19652.38, + "probability": 0.9463 + }, + { + "start": 19652.56, + "end": 19657.92, + "probability": 0.9939 + }, + { + "start": 19657.96, + "end": 19658.56, + "probability": 0.5363 + }, + { + "start": 19658.86, + "end": 19658.86, + "probability": 0.7764 + }, + { + "start": 19659.66, + "end": 19663.0, + "probability": 0.7518 + }, + { + "start": 19663.94, + "end": 19664.46, + "probability": 0.7008 + }, + { + "start": 19665.84, + "end": 19666.99, + "probability": 0.2841 + }, + { + "start": 19667.28, + "end": 19669.08, + "probability": 0.8248 + }, + { + "start": 19671.4, + "end": 19672.04, + "probability": 0.8411 + }, + { + "start": 19673.88, + "end": 19675.02, + "probability": 0.8907 + }, + { + "start": 19675.56, + "end": 19678.44, + "probability": 0.5823 + }, + { + "start": 19678.74, + "end": 19679.86, + "probability": 0.8981 + }, + { + "start": 19681.87, + "end": 19683.68, + "probability": 0.8914 + }, + { + "start": 19684.16, + "end": 19686.7, + "probability": 0.9898 + }, + { + "start": 19687.36, + "end": 19687.92, + "probability": 0.9554 + }, + { + "start": 19688.6, + "end": 19689.4, + "probability": 0.9891 + }, + { + "start": 19689.6, + "end": 19691.39, + "probability": 0.6914 + }, + { + "start": 19692.3, + "end": 19693.24, + "probability": 0.9995 + }, + { + "start": 19694.3, + "end": 19698.4, + "probability": 0.9448 + }, + { + "start": 19700.6, + "end": 19701.2, + "probability": 0.9451 + }, + { + "start": 19702.44, + "end": 19702.82, + "probability": 0.9799 + }, + { + "start": 19703.38, + "end": 19703.64, + "probability": 0.9081 + }, + { + "start": 19703.72, + "end": 19704.74, + "probability": 0.9872 + }, + { + "start": 19704.82, + "end": 19708.02, + "probability": 0.9771 + }, + { + "start": 19708.02, + "end": 19712.02, + "probability": 0.994 + }, + { + "start": 19712.12, + "end": 19712.86, + "probability": 0.9564 + }, + { + "start": 19713.94, + "end": 19715.16, + "probability": 0.9959 + }, + { + "start": 19716.46, + "end": 19717.09, + "probability": 0.7974 + }, + { + "start": 19719.36, + "end": 19721.74, + "probability": 0.6414 + }, + { + "start": 19723.28, + "end": 19725.78, + "probability": 0.7829 + }, + { + "start": 19726.32, + "end": 19727.46, + "probability": 0.8614 + }, + { + "start": 19727.6, + "end": 19728.66, + "probability": 0.8733 + }, + { + "start": 19728.82, + "end": 19731.3, + "probability": 0.9432 + }, + { + "start": 19731.36, + "end": 19732.5, + "probability": 0.9267 + }, + { + "start": 19733.08, + "end": 19734.28, + "probability": 0.8721 + }, + { + "start": 19734.38, + "end": 19734.86, + "probability": 0.6991 + }, + { + "start": 19735.44, + "end": 19736.3, + "probability": 0.8303 + }, + { + "start": 19736.96, + "end": 19739.0, + "probability": 0.9851 + }, + { + "start": 19739.12, + "end": 19741.8, + "probability": 0.9849 + }, + { + "start": 19742.36, + "end": 19743.02, + "probability": 0.822 + }, + { + "start": 19743.84, + "end": 19745.3, + "probability": 0.8604 + }, + { + "start": 19746.0, + "end": 19747.54, + "probability": 0.8034 + }, + { + "start": 19747.74, + "end": 19749.44, + "probability": 0.8478 + }, + { + "start": 19749.54, + "end": 19750.02, + "probability": 0.4413 + }, + { + "start": 19750.28, + "end": 19751.92, + "probability": 0.8232 + }, + { + "start": 19752.96, + "end": 19754.96, + "probability": 0.9736 + }, + { + "start": 19755.54, + "end": 19757.12, + "probability": 0.99 + }, + { + "start": 19757.9, + "end": 19758.7, + "probability": 0.8704 + }, + { + "start": 19758.84, + "end": 19760.04, + "probability": 0.9909 + }, + { + "start": 19761.0, + "end": 19764.84, + "probability": 0.842 + }, + { + "start": 19765.24, + "end": 19767.12, + "probability": 0.8726 + }, + { + "start": 19767.18, + "end": 19768.26, + "probability": 0.8176 + }, + { + "start": 19768.94, + "end": 19770.58, + "probability": 0.9802 + }, + { + "start": 19771.16, + "end": 19772.94, + "probability": 0.9762 + }, + { + "start": 19773.5, + "end": 19776.6, + "probability": 0.8324 + }, + { + "start": 19776.68, + "end": 19777.58, + "probability": 0.9482 + }, + { + "start": 19777.72, + "end": 19778.74, + "probability": 0.7678 + }, + { + "start": 19779.2, + "end": 19779.96, + "probability": 0.9746 + }, + { + "start": 19780.16, + "end": 19781.78, + "probability": 0.8926 + }, + { + "start": 19782.78, + "end": 19783.42, + "probability": 0.4258 + }, + { + "start": 19784.2, + "end": 19785.14, + "probability": 0.9972 + }, + { + "start": 19785.52, + "end": 19786.32, + "probability": 0.9674 + }, + { + "start": 19786.9, + "end": 19788.0, + "probability": 0.9835 + }, + { + "start": 19788.56, + "end": 19791.08, + "probability": 0.9915 + }, + { + "start": 19791.66, + "end": 19792.94, + "probability": 0.9778 + }, + { + "start": 19793.34, + "end": 19794.62, + "probability": 0.9829 + }, + { + "start": 19794.72, + "end": 19795.38, + "probability": 0.9675 + }, + { + "start": 19795.52, + "end": 19796.44, + "probability": 0.9412 + }, + { + "start": 19796.7, + "end": 19797.56, + "probability": 0.9868 + }, + { + "start": 19798.1, + "end": 19801.82, + "probability": 0.9943 + }, + { + "start": 19801.84, + "end": 19803.46, + "probability": 0.952 + }, + { + "start": 19803.5, + "end": 19804.66, + "probability": 0.7883 + }, + { + "start": 19808.32, + "end": 19809.2, + "probability": 0.42 + }, + { + "start": 19810.26, + "end": 19811.26, + "probability": 0.8574 + }, + { + "start": 19814.62, + "end": 19816.3, + "probability": 0.7693 + }, + { + "start": 19831.46, + "end": 19832.14, + "probability": 0.509 + }, + { + "start": 19832.24, + "end": 19832.8, + "probability": 0.4636 + }, + { + "start": 19832.92, + "end": 19837.39, + "probability": 0.9912 + }, + { + "start": 19838.5, + "end": 19843.3, + "probability": 0.9977 + }, + { + "start": 19844.66, + "end": 19845.14, + "probability": 0.9065 + }, + { + "start": 19845.24, + "end": 19849.94, + "probability": 0.9016 + }, + { + "start": 19849.94, + "end": 19852.75, + "probability": 0.9985 + }, + { + "start": 19853.78, + "end": 19854.88, + "probability": 0.876 + }, + { + "start": 19855.04, + "end": 19857.52, + "probability": 0.9771 + }, + { + "start": 19857.6, + "end": 19859.94, + "probability": 0.9865 + }, + { + "start": 19860.0, + "end": 19861.84, + "probability": 0.9818 + }, + { + "start": 19862.14, + "end": 19862.72, + "probability": 0.5575 + }, + { + "start": 19862.82, + "end": 19863.66, + "probability": 0.7674 + }, + { + "start": 19864.38, + "end": 19866.28, + "probability": 0.5819 + }, + { + "start": 19866.36, + "end": 19866.74, + "probability": 0.4861 + }, + { + "start": 19866.8, + "end": 19867.98, + "probability": 0.9561 + }, + { + "start": 19869.0, + "end": 19870.2, + "probability": 0.8201 + }, + { + "start": 19870.64, + "end": 19871.26, + "probability": 0.9414 + }, + { + "start": 19871.34, + "end": 19872.4, + "probability": 0.9835 + }, + { + "start": 19872.48, + "end": 19876.16, + "probability": 0.9313 + }, + { + "start": 19876.22, + "end": 19877.64, + "probability": 0.8253 + }, + { + "start": 19877.7, + "end": 19880.26, + "probability": 0.8718 + }, + { + "start": 19880.42, + "end": 19881.8, + "probability": 0.998 + }, + { + "start": 19882.9, + "end": 19887.44, + "probability": 0.9955 + }, + { + "start": 19887.54, + "end": 19889.98, + "probability": 0.9968 + }, + { + "start": 19890.48, + "end": 19891.0, + "probability": 0.0842 + }, + { + "start": 19891.0, + "end": 19893.42, + "probability": 0.0122 + }, + { + "start": 19894.62, + "end": 19898.44, + "probability": 0.098 + }, + { + "start": 19899.0, + "end": 19900.8, + "probability": 0.5389 + }, + { + "start": 19900.96, + "end": 19901.36, + "probability": 0.7129 + }, + { + "start": 19902.2, + "end": 19903.82, + "probability": 0.8633 + }, + { + "start": 19903.88, + "end": 19905.32, + "probability": 0.457 + }, + { + "start": 19905.8, + "end": 19907.12, + "probability": 0.9897 + }, + { + "start": 19907.58, + "end": 19908.04, + "probability": 0.0096 + }, + { + "start": 19908.04, + "end": 19910.14, + "probability": 0.082 + }, + { + "start": 19910.14, + "end": 19911.52, + "probability": 0.3819 + }, + { + "start": 19912.36, + "end": 19913.04, + "probability": 0.6012 + }, + { + "start": 19913.18, + "end": 19914.28, + "probability": 0.6924 + }, + { + "start": 19914.38, + "end": 19915.23, + "probability": 0.6607 + }, + { + "start": 19915.36, + "end": 19916.2, + "probability": 0.7446 + }, + { + "start": 19916.68, + "end": 19918.56, + "probability": 0.7609 + }, + { + "start": 19918.6, + "end": 19919.89, + "probability": 0.6978 + }, + { + "start": 19921.46, + "end": 19925.2, + "probability": 0.9863 + }, + { + "start": 19926.16, + "end": 19927.9, + "probability": 0.9925 + }, + { + "start": 19928.3, + "end": 19929.32, + "probability": 0.7947 + }, + { + "start": 19930.28, + "end": 19934.26, + "probability": 0.9944 + }, + { + "start": 19934.76, + "end": 19941.38, + "probability": 0.9939 + }, + { + "start": 19941.82, + "end": 19941.92, + "probability": 0.6965 + }, + { + "start": 19942.52, + "end": 19942.97, + "probability": 0.9334 + }, + { + "start": 19943.14, + "end": 19945.76, + "probability": 0.9899 + }, + { + "start": 19946.32, + "end": 19949.78, + "probability": 0.8988 + }, + { + "start": 19950.52, + "end": 19951.74, + "probability": 0.8571 + }, + { + "start": 19952.3, + "end": 19953.44, + "probability": 0.926 + }, + { + "start": 19953.54, + "end": 19953.82, + "probability": 0.9048 + }, + { + "start": 19953.92, + "end": 19959.84, + "probability": 0.8872 + }, + { + "start": 19960.54, + "end": 19962.14, + "probability": 0.9283 + }, + { + "start": 19962.78, + "end": 19965.7, + "probability": 0.5196 + }, + { + "start": 19966.52, + "end": 19967.5, + "probability": 0.8613 + }, + { + "start": 19967.86, + "end": 19971.12, + "probability": 0.9907 + }, + { + "start": 19971.12, + "end": 19974.72, + "probability": 0.9941 + }, + { + "start": 19976.29, + "end": 19978.17, + "probability": 0.9951 + }, + { + "start": 19978.32, + "end": 19979.04, + "probability": 0.9469 + }, + { + "start": 19979.1, + "end": 19980.3, + "probability": 0.9961 + }, + { + "start": 19981.68, + "end": 19983.38, + "probability": 0.9937 + }, + { + "start": 19983.46, + "end": 19986.52, + "probability": 0.9896 + }, + { + "start": 19986.64, + "end": 19991.9, + "probability": 0.9775 + }, + { + "start": 19992.46, + "end": 19994.08, + "probability": 0.9602 + }, + { + "start": 19994.7, + "end": 19996.72, + "probability": 0.9954 + }, + { + "start": 19996.72, + "end": 19999.18, + "probability": 0.9942 + }, + { + "start": 19999.24, + "end": 20002.48, + "probability": 0.9504 + }, + { + "start": 20003.2, + "end": 20005.7, + "probability": 0.9741 + }, + { + "start": 20005.82, + "end": 20006.72, + "probability": 0.8701 + }, + { + "start": 20006.74, + "end": 20007.56, + "probability": 0.9261 + }, + { + "start": 20008.04, + "end": 20011.23, + "probability": 0.8157 + }, + { + "start": 20012.44, + "end": 20013.68, + "probability": 0.9342 + }, + { + "start": 20014.28, + "end": 20017.42, + "probability": 0.9853 + }, + { + "start": 20017.86, + "end": 20019.92, + "probability": 0.9905 + }, + { + "start": 20020.06, + "end": 20021.76, + "probability": 0.0032 + }, + { + "start": 20021.76, + "end": 20022.72, + "probability": 0.5422 + }, + { + "start": 20023.48, + "end": 20024.96, + "probability": 0.3116 + }, + { + "start": 20024.96, + "end": 20029.68, + "probability": 0.5151 + }, + { + "start": 20030.76, + "end": 20032.17, + "probability": 0.859 + }, + { + "start": 20032.96, + "end": 20034.78, + "probability": 0.9956 + }, + { + "start": 20035.5, + "end": 20038.9, + "probability": 0.8178 + }, + { + "start": 20039.3, + "end": 20040.34, + "probability": 0.9067 + }, + { + "start": 20040.44, + "end": 20042.94, + "probability": 0.9985 + }, + { + "start": 20043.34, + "end": 20044.82, + "probability": 0.9672 + }, + { + "start": 20044.9, + "end": 20046.0, + "probability": 0.8826 + }, + { + "start": 20046.18, + "end": 20048.88, + "probability": 0.9723 + }, + { + "start": 20049.3, + "end": 20051.6, + "probability": 0.8671 + }, + { + "start": 20052.08, + "end": 20053.58, + "probability": 0.6687 + }, + { + "start": 20053.72, + "end": 20055.52, + "probability": 0.9913 + }, + { + "start": 20056.24, + "end": 20057.86, + "probability": 0.9958 + }, + { + "start": 20058.16, + "end": 20059.42, + "probability": 0.9934 + }, + { + "start": 20059.8, + "end": 20061.54, + "probability": 0.433 + }, + { + "start": 20061.64, + "end": 20062.22, + "probability": 0.5401 + }, + { + "start": 20062.92, + "end": 20066.04, + "probability": 0.9927 + }, + { + "start": 20066.58, + "end": 20067.8, + "probability": 0.9008 + }, + { + "start": 20067.9, + "end": 20069.19, + "probability": 0.6638 + }, + { + "start": 20069.38, + "end": 20071.56, + "probability": 0.9395 + }, + { + "start": 20071.56, + "end": 20071.78, + "probability": 0.8149 + }, + { + "start": 20073.93, + "end": 20074.28, + "probability": 0.5381 + }, + { + "start": 20074.28, + "end": 20076.9, + "probability": 0.6958 + }, + { + "start": 20078.16, + "end": 20079.7, + "probability": 0.8645 + }, + { + "start": 20080.92, + "end": 20082.1, + "probability": 0.2957 + }, + { + "start": 20083.12, + "end": 20084.82, + "probability": 0.575 + }, + { + "start": 20084.88, + "end": 20085.06, + "probability": 0.4149 + }, + { + "start": 20085.06, + "end": 20086.16, + "probability": 0.5697 + }, + { + "start": 20086.24, + "end": 20090.02, + "probability": 0.9989 + }, + { + "start": 20090.26, + "end": 20091.88, + "probability": 0.9225 + }, + { + "start": 20092.08, + "end": 20093.32, + "probability": 0.7715 + }, + { + "start": 20093.38, + "end": 20097.66, + "probability": 0.9873 + }, + { + "start": 20098.16, + "end": 20098.64, + "probability": 0.966 + }, + { + "start": 20099.1, + "end": 20099.92, + "probability": 0.9609 + }, + { + "start": 20100.28, + "end": 20100.93, + "probability": 0.938 + }, + { + "start": 20101.62, + "end": 20102.39, + "probability": 0.9724 + }, + { + "start": 20102.56, + "end": 20106.66, + "probability": 0.9936 + }, + { + "start": 20106.86, + "end": 20108.72, + "probability": 0.922 + }, + { + "start": 20109.34, + "end": 20110.28, + "probability": 0.9353 + }, + { + "start": 20110.36, + "end": 20112.42, + "probability": 0.9336 + }, + { + "start": 20112.9, + "end": 20114.64, + "probability": 0.9972 + }, + { + "start": 20114.74, + "end": 20114.96, + "probability": 0.7681 + }, + { + "start": 20115.62, + "end": 20116.52, + "probability": 0.5197 + }, + { + "start": 20117.0, + "end": 20117.26, + "probability": 0.7129 + }, + { + "start": 20117.4, + "end": 20120.74, + "probability": 0.9722 + }, + { + "start": 20120.92, + "end": 20122.72, + "probability": 0.1247 + }, + { + "start": 20123.06, + "end": 20127.0, + "probability": 0.5312 + }, + { + "start": 20127.2, + "end": 20128.14, + "probability": 0.6645 + }, + { + "start": 20128.24, + "end": 20129.82, + "probability": 0.5569 + }, + { + "start": 20129.84, + "end": 20131.7, + "probability": 0.2621 + }, + { + "start": 20132.52, + "end": 20135.16, + "probability": 0.2317 + }, + { + "start": 20135.2, + "end": 20135.48, + "probability": 0.0079 + }, + { + "start": 20136.12, + "end": 20136.92, + "probability": 0.0757 + }, + { + "start": 20137.66, + "end": 20138.48, + "probability": 0.3579 + }, + { + "start": 20138.76, + "end": 20140.38, + "probability": 0.3029 + }, + { + "start": 20140.38, + "end": 20141.44, + "probability": 0.5856 + }, + { + "start": 20146.41, + "end": 20149.52, + "probability": 0.8912 + }, + { + "start": 20149.54, + "end": 20150.14, + "probability": 0.5804 + }, + { + "start": 20152.92, + "end": 20155.24, + "probability": 0.3545 + }, + { + "start": 20155.6, + "end": 20162.62, + "probability": 0.8574 + }, + { + "start": 20163.64, + "end": 20164.22, + "probability": 0.6772 + }, + { + "start": 20165.22, + "end": 20166.1, + "probability": 0.9567 + }, + { + "start": 20166.38, + "end": 20168.36, + "probability": 0.5909 + }, + { + "start": 20169.44, + "end": 20170.24, + "probability": 0.8584 + }, + { + "start": 20181.18, + "end": 20181.4, + "probability": 0.3065 + }, + { + "start": 20181.4, + "end": 20181.4, + "probability": 0.0208 + }, + { + "start": 20181.4, + "end": 20183.76, + "probability": 0.5248 + }, + { + "start": 20183.88, + "end": 20184.48, + "probability": 0.6835 + }, + { + "start": 20184.74, + "end": 20188.38, + "probability": 0.8493 + }, + { + "start": 20188.44, + "end": 20191.76, + "probability": 0.7009 + }, + { + "start": 20192.62, + "end": 20198.08, + "probability": 0.9233 + }, + { + "start": 20198.66, + "end": 20200.76, + "probability": 0.9837 + }, + { + "start": 20202.06, + "end": 20203.4, + "probability": 0.4786 + }, + { + "start": 20204.06, + "end": 20206.04, + "probability": 0.7449 + }, + { + "start": 20207.08, + "end": 20208.46, + "probability": 0.8298 + }, + { + "start": 20210.08, + "end": 20211.26, + "probability": 0.6381 + }, + { + "start": 20211.3, + "end": 20212.28, + "probability": 0.954 + }, + { + "start": 20217.04, + "end": 20218.88, + "probability": 0.1775 + }, + { + "start": 20220.36, + "end": 20222.34, + "probability": 0.1918 + }, + { + "start": 20250.28, + "end": 20256.14, + "probability": 0.9601 + }, + { + "start": 20256.14, + "end": 20261.24, + "probability": 0.9987 + }, + { + "start": 20262.44, + "end": 20265.3, + "probability": 0.9971 + }, + { + "start": 20265.3, + "end": 20269.08, + "probability": 0.8999 + }, + { + "start": 20269.64, + "end": 20271.36, + "probability": 0.9888 + }, + { + "start": 20272.18, + "end": 20273.94, + "probability": 0.981 + }, + { + "start": 20274.22, + "end": 20278.12, + "probability": 0.955 + }, + { + "start": 20278.46, + "end": 20280.3, + "probability": 0.9915 + }, + { + "start": 20280.86, + "end": 20282.34, + "probability": 0.9061 + }, + { + "start": 20283.12, + "end": 20283.96, + "probability": 0.8312 + }, + { + "start": 20284.0, + "end": 20289.8, + "probability": 0.9678 + }, + { + "start": 20290.34, + "end": 20294.16, + "probability": 0.9854 + }, + { + "start": 20295.04, + "end": 20300.38, + "probability": 0.9924 + }, + { + "start": 20301.42, + "end": 20307.54, + "probability": 0.9924 + }, + { + "start": 20307.66, + "end": 20309.08, + "probability": 0.7653 + }, + { + "start": 20309.66, + "end": 20310.72, + "probability": 0.9774 + }, + { + "start": 20311.36, + "end": 20311.86, + "probability": 0.2851 + }, + { + "start": 20311.88, + "end": 20314.94, + "probability": 0.9614 + }, + { + "start": 20315.44, + "end": 20319.34, + "probability": 0.9971 + }, + { + "start": 20320.2, + "end": 20323.74, + "probability": 0.9837 + }, + { + "start": 20324.24, + "end": 20325.8, + "probability": 0.9795 + }, + { + "start": 20326.34, + "end": 20330.1, + "probability": 0.9481 + }, + { + "start": 20330.54, + "end": 20333.44, + "probability": 0.9941 + }, + { + "start": 20333.58, + "end": 20334.44, + "probability": 0.994 + }, + { + "start": 20335.06, + "end": 20335.28, + "probability": 0.4287 + }, + { + "start": 20335.38, + "end": 20338.12, + "probability": 0.9006 + }, + { + "start": 20338.24, + "end": 20343.0, + "probability": 0.9701 + }, + { + "start": 20343.68, + "end": 20345.98, + "probability": 0.9286 + }, + { + "start": 20346.64, + "end": 20349.04, + "probability": 0.9721 + }, + { + "start": 20349.4, + "end": 20353.7, + "probability": 0.9717 + }, + { + "start": 20354.04, + "end": 20357.34, + "probability": 0.8937 + }, + { + "start": 20357.68, + "end": 20362.46, + "probability": 0.9914 + }, + { + "start": 20362.58, + "end": 20364.26, + "probability": 0.7592 + }, + { + "start": 20364.34, + "end": 20367.08, + "probability": 0.999 + }, + { + "start": 20367.08, + "end": 20370.12, + "probability": 0.9619 + }, + { + "start": 20370.54, + "end": 20374.64, + "probability": 0.8131 + }, + { + "start": 20375.26, + "end": 20378.96, + "probability": 0.7923 + }, + { + "start": 20379.16, + "end": 20382.84, + "probability": 0.8327 + }, + { + "start": 20383.48, + "end": 20384.54, + "probability": 0.9849 + }, + { + "start": 20384.78, + "end": 20385.66, + "probability": 0.7766 + }, + { + "start": 20385.8, + "end": 20387.16, + "probability": 0.8234 + }, + { + "start": 20387.46, + "end": 20389.78, + "probability": 0.842 + }, + { + "start": 20389.78, + "end": 20392.08, + "probability": 0.9613 + }, + { + "start": 20392.54, + "end": 20397.62, + "probability": 0.9626 + }, + { + "start": 20398.38, + "end": 20402.68, + "probability": 0.9926 + }, + { + "start": 20402.68, + "end": 20407.12, + "probability": 0.9945 + }, + { + "start": 20407.46, + "end": 20408.14, + "probability": 0.4186 + }, + { + "start": 20408.32, + "end": 20413.72, + "probability": 0.9854 + }, + { + "start": 20414.74, + "end": 20419.14, + "probability": 0.9575 + }, + { + "start": 20419.68, + "end": 20419.98, + "probability": 0.5253 + }, + { + "start": 20419.98, + "end": 20420.96, + "probability": 0.5266 + }, + { + "start": 20421.22, + "end": 20423.4, + "probability": 0.8898 + }, + { + "start": 20423.92, + "end": 20424.6, + "probability": 0.7202 + }, + { + "start": 20425.44, + "end": 20428.18, + "probability": 0.9936 + }, + { + "start": 20429.04, + "end": 20430.7, + "probability": 0.9628 + }, + { + "start": 20431.72, + "end": 20432.42, + "probability": 0.3041 + }, + { + "start": 20433.98, + "end": 20436.26, + "probability": 0.7996 + }, + { + "start": 20454.66, + "end": 20454.66, + "probability": 0.7044 + }, + { + "start": 20454.72, + "end": 20456.72, + "probability": 0.8227 + }, + { + "start": 20460.02, + "end": 20462.2, + "probability": 0.7443 + }, + { + "start": 20462.3, + "end": 20462.6, + "probability": 0.8619 + }, + { + "start": 20462.68, + "end": 20463.56, + "probability": 0.2751 + }, + { + "start": 20463.68, + "end": 20463.78, + "probability": 0.1863 + }, + { + "start": 20463.78, + "end": 20466.16, + "probability": 0.4368 + }, + { + "start": 20466.18, + "end": 20469.28, + "probability": 0.6643 + }, + { + "start": 20469.98, + "end": 20473.9, + "probability": 0.9924 + }, + { + "start": 20473.96, + "end": 20474.42, + "probability": 0.7939 + }, + { + "start": 20474.54, + "end": 20474.82, + "probability": 0.9059 + }, + { + "start": 20474.94, + "end": 20475.76, + "probability": 0.974 + }, + { + "start": 20476.72, + "end": 20481.24, + "probability": 0.98 + }, + { + "start": 20481.24, + "end": 20486.06, + "probability": 0.9989 + }, + { + "start": 20486.72, + "end": 20490.8, + "probability": 0.9829 + }, + { + "start": 20491.12, + "end": 20495.44, + "probability": 0.9027 + }, + { + "start": 20495.88, + "end": 20499.72, + "probability": 0.2122 + }, + { + "start": 20502.74, + "end": 20505.22, + "probability": 0.9251 + }, + { + "start": 20505.32, + "end": 20506.04, + "probability": 0.5517 + }, + { + "start": 20506.44, + "end": 20507.66, + "probability": 0.5804 + }, + { + "start": 20507.66, + "end": 20508.82, + "probability": 0.7622 + }, + { + "start": 20508.82, + "end": 20509.86, + "probability": 0.605 + }, + { + "start": 20509.94, + "end": 20510.54, + "probability": 0.8241 + }, + { + "start": 20512.06, + "end": 20513.18, + "probability": 0.7579 + }, + { + "start": 20513.49, + "end": 20517.78, + "probability": 0.974 + }, + { + "start": 20518.08, + "end": 20521.7, + "probability": 0.7352 + }, + { + "start": 20521.78, + "end": 20523.1, + "probability": 0.792 + }, + { + "start": 20523.96, + "end": 20527.48, + "probability": 0.8155 + }, + { + "start": 20529.0, + "end": 20530.76, + "probability": 0.9683 + }, + { + "start": 20530.9, + "end": 20532.92, + "probability": 0.8191 + }, + { + "start": 20533.0, + "end": 20537.24, + "probability": 0.941 + }, + { + "start": 20537.84, + "end": 20541.08, + "probability": 0.9982 + }, + { + "start": 20541.6, + "end": 20542.87, + "probability": 0.5408 + }, + { + "start": 20543.6, + "end": 20545.56, + "probability": 0.8565 + }, + { + "start": 20545.66, + "end": 20548.2, + "probability": 0.9976 + }, + { + "start": 20548.34, + "end": 20552.76, + "probability": 0.5397 + }, + { + "start": 20552.86, + "end": 20555.26, + "probability": 0.9924 + }, + { + "start": 20555.38, + "end": 20557.28, + "probability": 0.6081 + }, + { + "start": 20557.34, + "end": 20559.48, + "probability": 0.9673 + }, + { + "start": 20560.02, + "end": 20560.66, + "probability": 0.6654 + }, + { + "start": 20560.8, + "end": 20563.64, + "probability": 0.9878 + }, + { + "start": 20563.64, + "end": 20564.74, + "probability": 0.6539 + }, + { + "start": 20565.04, + "end": 20565.98, + "probability": 0.9484 + }, + { + "start": 20566.06, + "end": 20566.38, + "probability": 0.9848 + }, + { + "start": 20566.44, + "end": 20566.84, + "probability": 0.9948 + }, + { + "start": 20566.86, + "end": 20567.26, + "probability": 0.8648 + }, + { + "start": 20567.32, + "end": 20567.5, + "probability": 0.9273 + }, + { + "start": 20567.58, + "end": 20567.86, + "probability": 0.9771 + }, + { + "start": 20567.92, + "end": 20568.5, + "probability": 0.8824 + }, + { + "start": 20568.88, + "end": 20569.64, + "probability": 0.6044 + }, + { + "start": 20569.82, + "end": 20570.85, + "probability": 0.9875 + }, + { + "start": 20571.56, + "end": 20572.14, + "probability": 0.9765 + }, + { + "start": 20572.22, + "end": 20574.9, + "probability": 0.9738 + }, + { + "start": 20574.9, + "end": 20578.86, + "probability": 0.9317 + }, + { + "start": 20579.9, + "end": 20580.68, + "probability": 0.8751 + }, + { + "start": 20581.93, + "end": 20582.98, + "probability": 0.4127 + }, + { + "start": 20583.08, + "end": 20584.96, + "probability": 0.9969 + }, + { + "start": 20585.04, + "end": 20585.64, + "probability": 0.7875 + }, + { + "start": 20586.06, + "end": 20587.04, + "probability": 0.8653 + }, + { + "start": 20587.86, + "end": 20592.96, + "probability": 0.9963 + }, + { + "start": 20592.98, + "end": 20596.62, + "probability": 0.9915 + }, + { + "start": 20596.72, + "end": 20598.44, + "probability": 0.9379 + }, + { + "start": 20598.8, + "end": 20601.36, + "probability": 0.9908 + }, + { + "start": 20605.34, + "end": 20608.44, + "probability": 0.9965 + }, + { + "start": 20609.08, + "end": 20613.78, + "probability": 0.652 + }, + { + "start": 20614.36, + "end": 20615.26, + "probability": 0.4204 + }, + { + "start": 20615.4, + "end": 20615.5, + "probability": 0.0782 + }, + { + "start": 20615.54, + "end": 20615.56, + "probability": 0.054 + }, + { + "start": 20615.56, + "end": 20619.16, + "probability": 0.9614 + }, + { + "start": 20619.62, + "end": 20622.32, + "probability": 0.9949 + }, + { + "start": 20622.32, + "end": 20624.34, + "probability": 0.9958 + }, + { + "start": 20625.0, + "end": 20625.66, + "probability": 0.646 + }, + { + "start": 20625.72, + "end": 20626.36, + "probability": 0.8772 + }, + { + "start": 20626.46, + "end": 20627.14, + "probability": 0.9327 + }, + { + "start": 20627.2, + "end": 20628.06, + "probability": 0.9784 + }, + { + "start": 20628.5, + "end": 20629.58, + "probability": 0.9939 + }, + { + "start": 20629.64, + "end": 20630.94, + "probability": 0.8875 + }, + { + "start": 20631.6, + "end": 20633.82, + "probability": 0.7461 + }, + { + "start": 20634.02, + "end": 20636.76, + "probability": 0.9883 + }, + { + "start": 20636.96, + "end": 20637.1, + "probability": 0.7712 + }, + { + "start": 20637.54, + "end": 20637.98, + "probability": 0.7343 + }, + { + "start": 20638.56, + "end": 20639.66, + "probability": 0.6316 + }, + { + "start": 20641.16, + "end": 20642.42, + "probability": 0.5028 + }, + { + "start": 20642.42, + "end": 20644.98, + "probability": 0.5632 + }, + { + "start": 20644.98, + "end": 20645.0, + "probability": 0.1013 + }, + { + "start": 20645.0, + "end": 20647.16, + "probability": 0.4667 + }, + { + "start": 20647.88, + "end": 20652.5, + "probability": 0.8435 + }, + { + "start": 20653.1, + "end": 20653.56, + "probability": 0.6247 + }, + { + "start": 20653.56, + "end": 20654.04, + "probability": 0.5682 + }, + { + "start": 20655.36, + "end": 20656.32, + "probability": 0.6094 + }, + { + "start": 20666.22, + "end": 20666.38, + "probability": 0.334 + }, + { + "start": 20666.38, + "end": 20667.16, + "probability": 0.8264 + }, + { + "start": 20667.8, + "end": 20669.98, + "probability": 0.2991 + }, + { + "start": 20670.08, + "end": 20672.08, + "probability": 0.9817 + }, + { + "start": 20678.89, + "end": 20684.18, + "probability": 0.5845 + }, + { + "start": 20684.94, + "end": 20692.2, + "probability": 0.9466 + }, + { + "start": 20692.36, + "end": 20695.62, + "probability": 0.9053 + }, + { + "start": 20696.3, + "end": 20699.32, + "probability": 0.8506 + }, + { + "start": 20699.36, + "end": 20700.78, + "probability": 0.7658 + }, + { + "start": 20714.04, + "end": 20715.34, + "probability": 0.5259 + }, + { + "start": 20716.18, + "end": 20717.42, + "probability": 0.6632 + }, + { + "start": 20718.02, + "end": 20719.24, + "probability": 0.7179 + }, + { + "start": 20720.34, + "end": 20724.62, + "probability": 0.9926 + }, + { + "start": 20724.62, + "end": 20728.0, + "probability": 0.9958 + }, + { + "start": 20728.62, + "end": 20732.18, + "probability": 0.9906 + }, + { + "start": 20732.7, + "end": 20734.84, + "probability": 0.9985 + }, + { + "start": 20735.22, + "end": 20735.94, + "probability": 0.8603 + }, + { + "start": 20736.98, + "end": 20738.62, + "probability": 0.676 + }, + { + "start": 20739.36, + "end": 20740.54, + "probability": 0.1956 + }, + { + "start": 20740.54, + "end": 20741.32, + "probability": 0.4102 + }, + { + "start": 20741.32, + "end": 20746.8, + "probability": 0.9751 + }, + { + "start": 20746.88, + "end": 20750.02, + "probability": 0.9751 + }, + { + "start": 20750.96, + "end": 20755.78, + "probability": 0.9103 + }, + { + "start": 20755.82, + "end": 20760.1, + "probability": 0.9699 + }, + { + "start": 20760.3, + "end": 20761.46, + "probability": 0.6096 + }, + { + "start": 20762.9, + "end": 20763.7, + "probability": 0.2048 + }, + { + "start": 20764.2, + "end": 20768.0, + "probability": 0.999 + }, + { + "start": 20768.14, + "end": 20769.52, + "probability": 0.9321 + }, + { + "start": 20770.8, + "end": 20771.78, + "probability": 0.6796 + }, + { + "start": 20772.72, + "end": 20774.4, + "probability": 0.7359 + }, + { + "start": 20774.52, + "end": 20777.2, + "probability": 0.3035 + }, + { + "start": 20777.56, + "end": 20781.46, + "probability": 0.9955 + }, + { + "start": 20782.54, + "end": 20785.88, + "probability": 0.9746 + }, + { + "start": 20785.88, + "end": 20792.28, + "probability": 0.9941 + }, + { + "start": 20792.96, + "end": 20797.16, + "probability": 0.7948 + }, + { + "start": 20797.86, + "end": 20800.76, + "probability": 0.991 + }, + { + "start": 20800.88, + "end": 20803.16, + "probability": 0.8637 + }, + { + "start": 20803.26, + "end": 20804.08, + "probability": 0.8441 + }, + { + "start": 20804.38, + "end": 20805.04, + "probability": 0.7043 + }, + { + "start": 20805.58, + "end": 20808.24, + "probability": 0.9308 + }, + { + "start": 20808.7, + "end": 20810.66, + "probability": 0.9696 + }, + { + "start": 20811.18, + "end": 20814.12, + "probability": 0.9499 + }, + { + "start": 20814.46, + "end": 20817.43, + "probability": 0.9421 + }, + { + "start": 20817.96, + "end": 20821.72, + "probability": 0.9771 + }, + { + "start": 20821.72, + "end": 20825.9, + "probability": 0.9905 + }, + { + "start": 20827.04, + "end": 20831.5, + "probability": 0.9941 + }, + { + "start": 20831.98, + "end": 20834.56, + "probability": 0.9846 + }, + { + "start": 20835.7, + "end": 20837.58, + "probability": 0.8859 + }, + { + "start": 20838.56, + "end": 20843.1, + "probability": 0.9704 + }, + { + "start": 20843.96, + "end": 20845.22, + "probability": 0.8832 + }, + { + "start": 20845.78, + "end": 20849.2, + "probability": 0.9126 + }, + { + "start": 20849.64, + "end": 20852.14, + "probability": 0.7898 + }, + { + "start": 20852.74, + "end": 20858.04, + "probability": 0.9033 + }, + { + "start": 20858.44, + "end": 20863.18, + "probability": 0.9917 + }, + { + "start": 20863.72, + "end": 20865.12, + "probability": 0.8586 + }, + { + "start": 20865.24, + "end": 20868.94, + "probability": 0.9937 + }, + { + "start": 20870.12, + "end": 20872.5, + "probability": 0.9904 + }, + { + "start": 20872.6, + "end": 20873.18, + "probability": 0.9788 + }, + { + "start": 20873.52, + "end": 20874.01, + "probability": 0.5928 + }, + { + "start": 20875.76, + "end": 20880.38, + "probability": 0.5876 + }, + { + "start": 20880.84, + "end": 20886.06, + "probability": 0.9437 + }, + { + "start": 20886.46, + "end": 20891.44, + "probability": 0.9892 + }, + { + "start": 20892.0, + "end": 20892.58, + "probability": 0.8329 + }, + { + "start": 20893.94, + "end": 20897.84, + "probability": 0.9595 + }, + { + "start": 20897.94, + "end": 20899.76, + "probability": 0.9084 + }, + { + "start": 20900.22, + "end": 20901.42, + "probability": 0.7354 + }, + { + "start": 20902.12, + "end": 20908.22, + "probability": 0.7704 + }, + { + "start": 20908.28, + "end": 20911.06, + "probability": 0.9931 + }, + { + "start": 20911.08, + "end": 20911.92, + "probability": 0.8696 + }, + { + "start": 20912.4, + "end": 20914.22, + "probability": 0.998 + }, + { + "start": 20914.6, + "end": 20915.2, + "probability": 0.4772 + }, + { + "start": 20915.42, + "end": 20917.66, + "probability": 0.895 + }, + { + "start": 20917.76, + "end": 20919.0, + "probability": 0.9561 + }, + { + "start": 20919.52, + "end": 20922.5, + "probability": 0.8912 + }, + { + "start": 20922.6, + "end": 20923.82, + "probability": 0.8826 + }, + { + "start": 20923.88, + "end": 20925.44, + "probability": 0.6647 + }, + { + "start": 20925.96, + "end": 20929.78, + "probability": 0.9828 + }, + { + "start": 20930.32, + "end": 20931.88, + "probability": 0.9932 + }, + { + "start": 20931.88, + "end": 20934.8, + "probability": 0.9751 + }, + { + "start": 20934.88, + "end": 20938.76, + "probability": 0.9783 + }, + { + "start": 20938.8, + "end": 20940.23, + "probability": 0.9799 + }, + { + "start": 20940.6, + "end": 20941.92, + "probability": 0.9779 + }, + { + "start": 20942.34, + "end": 20943.04, + "probability": 0.8825 + }, + { + "start": 20943.84, + "end": 20944.7, + "probability": 0.7255 + }, + { + "start": 20944.78, + "end": 20948.48, + "probability": 0.8022 + }, + { + "start": 20948.5, + "end": 20950.32, + "probability": 0.7459 + }, + { + "start": 20950.44, + "end": 20952.38, + "probability": 0.6064 + }, + { + "start": 20952.76, + "end": 20954.68, + "probability": 0.9376 + }, + { + "start": 20954.68, + "end": 20958.14, + "probability": 0.9976 + }, + { + "start": 20958.16, + "end": 20958.52, + "probability": 0.7553 + }, + { + "start": 20958.68, + "end": 20959.52, + "probability": 0.6942 + }, + { + "start": 20961.94, + "end": 20969.02, + "probability": 0.8647 + }, + { + "start": 20969.68, + "end": 20972.16, + "probability": 0.9595 + }, + { + "start": 20986.88, + "end": 20990.1, + "probability": 0.6792 + }, + { + "start": 20990.96, + "end": 20997.44, + "probability": 0.9644 + }, + { + "start": 20998.28, + "end": 20999.56, + "probability": 0.9634 + }, + { + "start": 21000.46, + "end": 21004.7, + "probability": 0.9955 + }, + { + "start": 21004.7, + "end": 21007.84, + "probability": 0.9871 + }, + { + "start": 21009.14, + "end": 21012.58, + "probability": 0.8919 + }, + { + "start": 21012.58, + "end": 21016.4, + "probability": 0.9945 + }, + { + "start": 21017.34, + "end": 21023.54, + "probability": 0.9661 + }, + { + "start": 21024.56, + "end": 21030.4, + "probability": 0.9897 + }, + { + "start": 21031.46, + "end": 21035.8, + "probability": 0.8918 + }, + { + "start": 21035.8, + "end": 21039.62, + "probability": 0.9359 + }, + { + "start": 21040.68, + "end": 21042.76, + "probability": 0.7343 + }, + { + "start": 21043.48, + "end": 21046.24, + "probability": 0.7987 + }, + { + "start": 21047.36, + "end": 21050.4, + "probability": 0.9609 + }, + { + "start": 21050.92, + "end": 21053.84, + "probability": 0.9974 + }, + { + "start": 21054.78, + "end": 21055.7, + "probability": 0.8238 + }, + { + "start": 21055.94, + "end": 21057.54, + "probability": 0.9816 + }, + { + "start": 21057.9, + "end": 21060.34, + "probability": 0.6239 + }, + { + "start": 21061.44, + "end": 21063.21, + "probability": 0.9444 + }, + { + "start": 21063.84, + "end": 21066.74, + "probability": 0.8179 + }, + { + "start": 21067.14, + "end": 21068.64, + "probability": 0.9169 + }, + { + "start": 21070.02, + "end": 21071.4, + "probability": 0.9976 + }, + { + "start": 21072.54, + "end": 21074.34, + "probability": 0.9854 + }, + { + "start": 21075.18, + "end": 21077.98, + "probability": 0.9946 + }, + { + "start": 21078.64, + "end": 21080.62, + "probability": 0.7732 + }, + { + "start": 21080.7, + "end": 21081.42, + "probability": 0.75 + }, + { + "start": 21081.92, + "end": 21082.88, + "probability": 0.3844 + }, + { + "start": 21083.6, + "end": 21083.98, + "probability": 0.9657 + }, + { + "start": 21085.1, + "end": 21085.71, + "probability": 0.5719 + }, + { + "start": 21086.38, + "end": 21087.96, + "probability": 0.7742 + }, + { + "start": 21088.26, + "end": 21088.36, + "probability": 0.5763 + }, + { + "start": 21088.36, + "end": 21089.3, + "probability": 0.3184 + }, + { + "start": 21089.62, + "end": 21092.88, + "probability": 0.8313 + }, + { + "start": 21092.96, + "end": 21093.5, + "probability": 0.6277 + }, + { + "start": 21094.22, + "end": 21097.48, + "probability": 0.9087 + }, + { + "start": 21099.5, + "end": 21105.34, + "probability": 0.9318 + }, + { + "start": 21106.6, + "end": 21107.2, + "probability": 0.4897 + }, + { + "start": 21107.3, + "end": 21107.82, + "probability": 0.9254 + }, + { + "start": 21108.32, + "end": 21113.6, + "probability": 0.9333 + }, + { + "start": 21114.72, + "end": 21118.98, + "probability": 0.8204 + }, + { + "start": 21119.9, + "end": 21120.58, + "probability": 0.5929 + }, + { + "start": 21121.2, + "end": 21122.14, + "probability": 0.8564 + }, + { + "start": 21122.68, + "end": 21125.36, + "probability": 0.9486 + }, + { + "start": 21125.76, + "end": 21128.46, + "probability": 0.8701 + }, + { + "start": 21129.3, + "end": 21129.78, + "probability": 0.8232 + }, + { + "start": 21130.8, + "end": 21131.92, + "probability": 0.9354 + }, + { + "start": 21132.64, + "end": 21135.42, + "probability": 0.8869 + }, + { + "start": 21135.82, + "end": 21137.36, + "probability": 0.7283 + }, + { + "start": 21137.52, + "end": 21138.04, + "probability": 0.664 + }, + { + "start": 21138.14, + "end": 21139.16, + "probability": 0.8575 + }, + { + "start": 21139.54, + "end": 21140.4, + "probability": 0.8369 + }, + { + "start": 21140.92, + "end": 21144.08, + "probability": 0.9965 + }, + { + "start": 21144.92, + "end": 21148.18, + "probability": 0.9964 + }, + { + "start": 21149.04, + "end": 21149.9, + "probability": 0.8129 + }, + { + "start": 21150.48, + "end": 21152.52, + "probability": 0.8159 + }, + { + "start": 21152.62, + "end": 21153.44, + "probability": 0.6141 + }, + { + "start": 21153.5, + "end": 21153.74, + "probability": 0.2615 + }, + { + "start": 21153.76, + "end": 21154.8, + "probability": 0.6101 + }, + { + "start": 21155.32, + "end": 21156.3, + "probability": 0.9759 + }, + { + "start": 21156.88, + "end": 21157.86, + "probability": 0.9632 + }, + { + "start": 21159.48, + "end": 21160.22, + "probability": 0.957 + }, + { + "start": 21160.34, + "end": 21161.1, + "probability": 0.8587 + }, + { + "start": 21161.1, + "end": 21161.88, + "probability": 0.8188 + }, + { + "start": 21162.1, + "end": 21164.42, + "probability": 0.7997 + }, + { + "start": 21165.3, + "end": 21167.5, + "probability": 0.7934 + }, + { + "start": 21167.82, + "end": 21169.12, + "probability": 0.9033 + }, + { + "start": 21169.54, + "end": 21172.48, + "probability": 0.9535 + }, + { + "start": 21172.5, + "end": 21173.44, + "probability": 0.8344 + }, + { + "start": 21173.6, + "end": 21174.14, + "probability": 0.5463 + }, + { + "start": 21174.22, + "end": 21177.55, + "probability": 0.936 + }, + { + "start": 21178.1, + "end": 21179.91, + "probability": 0.9824 + }, + { + "start": 21180.42, + "end": 21182.14, + "probability": 0.9489 + }, + { + "start": 21182.82, + "end": 21183.84, + "probability": 0.6544 + }, + { + "start": 21184.72, + "end": 21185.32, + "probability": 0.9468 + }, + { + "start": 21186.48, + "end": 21186.9, + "probability": 0.742 + }, + { + "start": 21187.16, + "end": 21191.38, + "probability": 0.8485 + }, + { + "start": 21191.46, + "end": 21192.0, + "probability": 0.8818 + }, + { + "start": 21192.7, + "end": 21195.1, + "probability": 0.7448 + }, + { + "start": 21195.56, + "end": 21197.72, + "probability": 0.9769 + }, + { + "start": 21198.38, + "end": 21200.18, + "probability": 0.9096 + }, + { + "start": 21200.5, + "end": 21201.7, + "probability": 0.812 + }, + { + "start": 21201.88, + "end": 21205.48, + "probability": 0.7383 + }, + { + "start": 21205.58, + "end": 21206.45, + "probability": 0.7476 + }, + { + "start": 21206.58, + "end": 21208.24, + "probability": 0.4244 + }, + { + "start": 21208.24, + "end": 21211.0, + "probability": 0.73 + }, + { + "start": 21211.62, + "end": 21215.98, + "probability": 0.8199 + }, + { + "start": 21227.88, + "end": 21228.04, + "probability": 0.2716 + }, + { + "start": 21229.68, + "end": 21233.88, + "probability": 0.3312 + }, + { + "start": 21235.0, + "end": 21239.84, + "probability": 0.7452 + }, + { + "start": 21239.98, + "end": 21240.86, + "probability": 0.6053 + }, + { + "start": 21240.94, + "end": 21243.8, + "probability": 0.9692 + }, + { + "start": 21243.94, + "end": 21245.27, + "probability": 0.8325 + }, + { + "start": 21246.38, + "end": 21247.36, + "probability": 0.6322 + }, + { + "start": 21248.04, + "end": 21248.96, + "probability": 0.6163 + }, + { + "start": 21249.92, + "end": 21252.78, + "probability": 0.9368 + }, + { + "start": 21253.5, + "end": 21254.72, + "probability": 0.7881 + }, + { + "start": 21255.84, + "end": 21257.28, + "probability": 0.6631 + }, + { + "start": 21257.36, + "end": 21258.08, + "probability": 0.8476 + }, + { + "start": 21258.08, + "end": 21261.46, + "probability": 0.6977 + }, + { + "start": 21261.7, + "end": 21263.38, + "probability": 0.7194 + }, + { + "start": 21264.24, + "end": 21266.12, + "probability": 0.9355 + }, + { + "start": 21266.58, + "end": 21267.24, + "probability": 0.836 + }, + { + "start": 21267.42, + "end": 21269.28, + "probability": 0.8496 + }, + { + "start": 21269.46, + "end": 21271.28, + "probability": 0.8927 + }, + { + "start": 21271.34, + "end": 21272.28, + "probability": 0.7625 + }, + { + "start": 21272.4, + "end": 21272.76, + "probability": 0.7976 + }, + { + "start": 21272.9, + "end": 21275.06, + "probability": 0.934 + }, + { + "start": 21275.68, + "end": 21277.36, + "probability": 0.8468 + }, + { + "start": 21278.18, + "end": 21279.82, + "probability": 0.8835 + }, + { + "start": 21279.86, + "end": 21280.84, + "probability": 0.5695 + }, + { + "start": 21280.94, + "end": 21281.38, + "probability": 0.787 + }, + { + "start": 21281.44, + "end": 21287.42, + "probability": 0.8806 + }, + { + "start": 21287.66, + "end": 21288.22, + "probability": 0.9393 + }, + { + "start": 21288.82, + "end": 21293.02, + "probability": 0.9659 + }, + { + "start": 21293.86, + "end": 21297.52, + "probability": 0.9969 + }, + { + "start": 21298.0, + "end": 21299.06, + "probability": 0.7533 + }, + { + "start": 21299.16, + "end": 21306.02, + "probability": 0.9856 + }, + { + "start": 21306.02, + "end": 21309.3, + "probability": 0.9954 + }, + { + "start": 21309.84, + "end": 21311.48, + "probability": 0.9976 + }, + { + "start": 21312.64, + "end": 21313.66, + "probability": 0.8675 + }, + { + "start": 21314.14, + "end": 21316.18, + "probability": 0.9537 + }, + { + "start": 21316.18, + "end": 21319.14, + "probability": 0.9837 + }, + { + "start": 21319.86, + "end": 21322.04, + "probability": 0.8059 + }, + { + "start": 21322.16, + "end": 21323.8, + "probability": 0.9985 + }, + { + "start": 21323.82, + "end": 21324.64, + "probability": 0.6047 + }, + { + "start": 21325.24, + "end": 21325.56, + "probability": 0.4985 + }, + { + "start": 21325.6, + "end": 21328.28, + "probability": 0.9442 + }, + { + "start": 21328.97, + "end": 21336.0, + "probability": 0.9901 + }, + { + "start": 21336.58, + "end": 21338.6, + "probability": 0.9755 + }, + { + "start": 21338.6, + "end": 21340.94, + "probability": 0.9994 + }, + { + "start": 21341.64, + "end": 21342.16, + "probability": 0.8354 + }, + { + "start": 21342.3, + "end": 21343.18, + "probability": 0.9927 + }, + { + "start": 21343.28, + "end": 21346.0, + "probability": 0.8636 + }, + { + "start": 21346.58, + "end": 21347.16, + "probability": 0.8671 + }, + { + "start": 21347.28, + "end": 21347.74, + "probability": 0.9448 + }, + { + "start": 21347.78, + "end": 21350.86, + "probability": 0.9421 + }, + { + "start": 21351.06, + "end": 21351.8, + "probability": 0.7531 + }, + { + "start": 21352.32, + "end": 21353.46, + "probability": 0.9031 + }, + { + "start": 21354.64, + "end": 21355.36, + "probability": 0.9536 + }, + { + "start": 21355.92, + "end": 21358.88, + "probability": 0.9498 + }, + { + "start": 21359.72, + "end": 21363.64, + "probability": 0.9856 + }, + { + "start": 21363.64, + "end": 21368.18, + "probability": 0.8898 + }, + { + "start": 21368.66, + "end": 21371.46, + "probability": 0.987 + }, + { + "start": 21371.68, + "end": 21376.54, + "probability": 0.9585 + }, + { + "start": 21376.7, + "end": 21377.86, + "probability": 0.9084 + }, + { + "start": 21378.84, + "end": 21379.78, + "probability": 0.787 + }, + { + "start": 21379.88, + "end": 21382.2, + "probability": 0.9876 + }, + { + "start": 21382.2, + "end": 21384.38, + "probability": 0.9846 + }, + { + "start": 21385.02, + "end": 21385.5, + "probability": 0.3643 + }, + { + "start": 21385.5, + "end": 21385.96, + "probability": 0.9037 + }, + { + "start": 21386.0, + "end": 21387.3, + "probability": 0.8986 + }, + { + "start": 21387.32, + "end": 21389.82, + "probability": 0.9943 + }, + { + "start": 21391.0, + "end": 21391.74, + "probability": 0.5567 + }, + { + "start": 21391.74, + "end": 21392.48, + "probability": 0.6942 + }, + { + "start": 21392.58, + "end": 21396.36, + "probability": 0.9561 + }, + { + "start": 21398.1, + "end": 21398.94, + "probability": 0.9166 + }, + { + "start": 21399.02, + "end": 21399.86, + "probability": 0.7288 + }, + { + "start": 21400.8, + "end": 21402.72, + "probability": 0.8084 + }, + { + "start": 21405.64, + "end": 21407.84, + "probability": 0.6482 + }, + { + "start": 21409.34, + "end": 21414.44, + "probability": 0.883 + }, + { + "start": 21414.62, + "end": 21415.28, + "probability": 0.9116 + }, + { + "start": 21416.1, + "end": 21417.24, + "probability": 0.7926 + }, + { + "start": 21419.04, + "end": 21423.1, + "probability": 0.2091 + }, + { + "start": 21428.7, + "end": 21428.88, + "probability": 0.5426 + }, + { + "start": 21428.88, + "end": 21429.7, + "probability": 0.7259 + }, + { + "start": 21430.28, + "end": 21431.58, + "probability": 0.5653 + }, + { + "start": 21432.76, + "end": 21434.56, + "probability": 0.7156 + }, + { + "start": 21434.56, + "end": 21435.32, + "probability": 0.2632 + }, + { + "start": 21436.46, + "end": 21438.41, + "probability": 0.3708 + }, + { + "start": 21440.4, + "end": 21442.78, + "probability": 0.6557 + }, + { + "start": 21442.86, + "end": 21444.68, + "probability": 0.5183 + }, + { + "start": 21444.92, + "end": 21447.46, + "probability": 0.8658 + }, + { + "start": 21448.06, + "end": 21449.54, + "probability": 0.7967 + }, + { + "start": 21449.84, + "end": 21453.84, + "probability": 0.9504 + }, + { + "start": 21454.3, + "end": 21455.4, + "probability": 0.947 + }, + { + "start": 21474.72, + "end": 21475.7, + "probability": 0.2804 + }, + { + "start": 21475.7, + "end": 21478.92, + "probability": 0.7871 + }, + { + "start": 21480.26, + "end": 21484.78, + "probability": 0.9865 + }, + { + "start": 21484.9, + "end": 21485.82, + "probability": 0.7593 + }, + { + "start": 21486.84, + "end": 21487.66, + "probability": 0.6023 + }, + { + "start": 21487.66, + "end": 21493.3, + "probability": 0.6723 + }, + { + "start": 21493.4, + "end": 21495.32, + "probability": 0.9395 + }, + { + "start": 21496.4, + "end": 21499.42, + "probability": 0.5969 + }, + { + "start": 21501.24, + "end": 21503.42, + "probability": 0.2786 + }, + { + "start": 21503.42, + "end": 21506.64, + "probability": 0.5241 + }, + { + "start": 21507.32, + "end": 21508.28, + "probability": 0.8365 + }, + { + "start": 21509.16, + "end": 21510.18, + "probability": 0.9937 + }, + { + "start": 21512.08, + "end": 21515.12, + "probability": 0.9985 + }, + { + "start": 21515.12, + "end": 21518.68, + "probability": 0.8553 + }, + { + "start": 21519.68, + "end": 21521.76, + "probability": 0.4014 + }, + { + "start": 21521.98, + "end": 21524.6, + "probability": 0.9652 + }, + { + "start": 21526.14, + "end": 21527.36, + "probability": 0.9245 + }, + { + "start": 21527.54, + "end": 21529.06, + "probability": 0.5305 + }, + { + "start": 21529.18, + "end": 21533.98, + "probability": 0.994 + }, + { + "start": 21534.88, + "end": 21537.08, + "probability": 0.7618 + }, + { + "start": 21538.0, + "end": 21542.44, + "probability": 0.9951 + }, + { + "start": 21542.88, + "end": 21546.16, + "probability": 0.9969 + }, + { + "start": 21546.68, + "end": 21548.4, + "probability": 0.9849 + }, + { + "start": 21548.54, + "end": 21550.54, + "probability": 0.9611 + }, + { + "start": 21551.16, + "end": 21555.48, + "probability": 0.9106 + }, + { + "start": 21556.08, + "end": 21560.0, + "probability": 0.998 + }, + { + "start": 21560.36, + "end": 21563.56, + "probability": 0.9988 + }, + { + "start": 21564.06, + "end": 21566.26, + "probability": 0.8789 + }, + { + "start": 21567.64, + "end": 21568.98, + "probability": 0.9987 + }, + { + "start": 21569.08, + "end": 21574.98, + "probability": 0.9958 + }, + { + "start": 21576.9, + "end": 21578.64, + "probability": 0.9538 + }, + { + "start": 21578.74, + "end": 21579.64, + "probability": 0.6675 + }, + { + "start": 21579.72, + "end": 21580.78, + "probability": 0.9525 + }, + { + "start": 21581.32, + "end": 21584.74, + "probability": 0.9449 + }, + { + "start": 21585.44, + "end": 21588.86, + "probability": 0.9832 + }, + { + "start": 21590.66, + "end": 21593.94, + "probability": 0.708 + }, + { + "start": 21594.36, + "end": 21594.62, + "probability": 0.7969 + }, + { + "start": 21595.16, + "end": 21595.38, + "probability": 0.3742 + }, + { + "start": 21595.52, + "end": 21599.04, + "probability": 0.9754 + }, + { + "start": 21599.48, + "end": 21603.06, + "probability": 0.7634 + }, + { + "start": 21603.68, + "end": 21607.1, + "probability": 0.936 + }, + { + "start": 21607.98, + "end": 21612.48, + "probability": 0.9963 + }, + { + "start": 21612.56, + "end": 21615.3, + "probability": 0.9782 + }, + { + "start": 21615.5, + "end": 21616.54, + "probability": 0.9538 + }, + { + "start": 21617.14, + "end": 21621.1, + "probability": 0.9929 + }, + { + "start": 21622.16, + "end": 21625.24, + "probability": 0.9416 + }, + { + "start": 21626.02, + "end": 21629.5, + "probability": 0.9933 + }, + { + "start": 21629.98, + "end": 21634.16, + "probability": 0.9938 + }, + { + "start": 21635.22, + "end": 21637.66, + "probability": 0.988 + }, + { + "start": 21637.98, + "end": 21641.38, + "probability": 0.917 + }, + { + "start": 21641.48, + "end": 21643.22, + "probability": 0.8411 + }, + { + "start": 21643.3, + "end": 21644.06, + "probability": 0.7666 + }, + { + "start": 21644.1, + "end": 21644.54, + "probability": 0.7598 + }, + { + "start": 21644.82, + "end": 21645.08, + "probability": 0.8522 + }, + { + "start": 21645.76, + "end": 21646.78, + "probability": 0.7703 + }, + { + "start": 21646.78, + "end": 21648.18, + "probability": 0.5945 + }, + { + "start": 21648.24, + "end": 21652.24, + "probability": 0.9884 + }, + { + "start": 21652.3, + "end": 21653.84, + "probability": 0.8308 + }, + { + "start": 21654.36, + "end": 21655.8, + "probability": 0.946 + }, + { + "start": 21656.5, + "end": 21659.16, + "probability": 0.9663 + }, + { + "start": 21659.24, + "end": 21660.06, + "probability": 0.8077 + }, + { + "start": 21660.2, + "end": 21661.22, + "probability": 0.9991 + }, + { + "start": 21661.86, + "end": 21665.94, + "probability": 0.9941 + }, + { + "start": 21666.38, + "end": 21671.64, + "probability": 0.9951 + }, + { + "start": 21672.54, + "end": 21675.26, + "probability": 0.7677 + }, + { + "start": 21675.48, + "end": 21678.2, + "probability": 0.9889 + }, + { + "start": 21678.2, + "end": 21683.32, + "probability": 0.9958 + }, + { + "start": 21684.14, + "end": 21686.48, + "probability": 0.7737 + }, + { + "start": 21687.0, + "end": 21690.58, + "probability": 0.9425 + }, + { + "start": 21690.58, + "end": 21693.76, + "probability": 0.9796 + }, + { + "start": 21694.32, + "end": 21700.42, + "probability": 0.9973 + }, + { + "start": 21700.84, + "end": 21705.16, + "probability": 0.9934 + }, + { + "start": 21706.08, + "end": 21709.5, + "probability": 0.9795 + }, + { + "start": 21710.08, + "end": 21712.5, + "probability": 0.846 + }, + { + "start": 21713.22, + "end": 21715.68, + "probability": 0.964 + }, + { + "start": 21716.02, + "end": 21718.14, + "probability": 0.949 + }, + { + "start": 21718.6, + "end": 21723.6, + "probability": 0.9933 + }, + { + "start": 21724.28, + "end": 21725.18, + "probability": 0.8152 + }, + { + "start": 21725.56, + "end": 21728.48, + "probability": 0.9851 + }, + { + "start": 21728.5, + "end": 21732.16, + "probability": 0.9831 + }, + { + "start": 21732.72, + "end": 21737.3, + "probability": 0.998 + }, + { + "start": 21737.48, + "end": 21739.34, + "probability": 0.9894 + }, + { + "start": 21740.76, + "end": 21741.28, + "probability": 0.7728 + }, + { + "start": 21741.4, + "end": 21742.16, + "probability": 0.7859 + }, + { + "start": 21742.2, + "end": 21747.9, + "probability": 0.9713 + }, + { + "start": 21747.9, + "end": 21751.8, + "probability": 0.997 + }, + { + "start": 21752.46, + "end": 21755.44, + "probability": 0.9902 + }, + { + "start": 21755.44, + "end": 21760.14, + "probability": 0.9931 + }, + { + "start": 21760.24, + "end": 21763.86, + "probability": 0.9854 + }, + { + "start": 21763.86, + "end": 21768.02, + "probability": 0.9706 + }, + { + "start": 21768.72, + "end": 21769.08, + "probability": 0.4752 + }, + { + "start": 21769.88, + "end": 21774.86, + "probability": 0.977 + }, + { + "start": 21775.52, + "end": 21779.9, + "probability": 0.9837 + }, + { + "start": 21780.48, + "end": 21780.96, + "probability": 0.7709 + }, + { + "start": 21781.26, + "end": 21786.56, + "probability": 0.8398 + }, + { + "start": 21786.56, + "end": 21791.68, + "probability": 0.993 + }, + { + "start": 21792.48, + "end": 21794.6, + "probability": 0.9811 + }, + { + "start": 21795.14, + "end": 21798.36, + "probability": 0.9836 + }, + { + "start": 21798.78, + "end": 21801.9, + "probability": 0.832 + }, + { + "start": 21802.76, + "end": 21805.54, + "probability": 0.6856 + }, + { + "start": 21806.68, + "end": 21808.22, + "probability": 0.998 + }, + { + "start": 21808.4, + "end": 21812.02, + "probability": 0.9976 + }, + { + "start": 21813.02, + "end": 21813.58, + "probability": 0.986 + }, + { + "start": 21814.36, + "end": 21815.53, + "probability": 0.9878 + }, + { + "start": 21816.3, + "end": 21818.36, + "probability": 0.9116 + }, + { + "start": 21818.88, + "end": 21820.34, + "probability": 0.9839 + }, + { + "start": 21821.04, + "end": 21821.76, + "probability": 0.7646 + }, + { + "start": 21821.82, + "end": 21825.64, + "probability": 0.9562 + }, + { + "start": 21825.78, + "end": 21828.5, + "probability": 0.98 + }, + { + "start": 21829.54, + "end": 21831.76, + "probability": 0.9795 + }, + { + "start": 21832.92, + "end": 21833.96, + "probability": 0.8268 + }, + { + "start": 21834.52, + "end": 21836.4, + "probability": 0.9062 + }, + { + "start": 21836.5, + "end": 21836.88, + "probability": 0.7494 + }, + { + "start": 21837.36, + "end": 21842.44, + "probability": 0.9951 + }, + { + "start": 21842.82, + "end": 21843.2, + "probability": 0.7714 + }, + { + "start": 21843.7, + "end": 21844.72, + "probability": 0.562 + }, + { + "start": 21844.72, + "end": 21845.12, + "probability": 0.4801 + }, + { + "start": 21845.16, + "end": 21847.46, + "probability": 0.6134 + }, + { + "start": 21847.48, + "end": 21850.82, + "probability": 0.8524 + }, + { + "start": 21851.14, + "end": 21851.98, + "probability": 0.9863 + }, + { + "start": 21852.1, + "end": 21852.3, + "probability": 0.6205 + }, + { + "start": 21852.59, + "end": 21853.98, + "probability": 0.0605 + }, + { + "start": 21855.34, + "end": 21859.68, + "probability": 0.8511 + }, + { + "start": 21860.88, + "end": 21861.88, + "probability": 0.5777 + }, + { + "start": 21861.88, + "end": 21862.58, + "probability": 0.8419 + }, + { + "start": 21862.7, + "end": 21863.98, + "probability": 0.0201 + }, + { + "start": 21866.76, + "end": 21867.54, + "probability": 0.9678 + }, + { + "start": 21868.5, + "end": 21870.6, + "probability": 0.417 + }, + { + "start": 21870.66, + "end": 21871.52, + "probability": 0.9481 + }, + { + "start": 21872.02, + "end": 21872.48, + "probability": 0.4785 + }, + { + "start": 21872.52, + "end": 21872.86, + "probability": 0.7925 + }, + { + "start": 21872.86, + "end": 21873.18, + "probability": 0.8387 + }, + { + "start": 21874.08, + "end": 21875.04, + "probability": 0.8406 + }, + { + "start": 21875.28, + "end": 21876.74, + "probability": 0.6029 + }, + { + "start": 21876.84, + "end": 21878.12, + "probability": 0.9939 + }, + { + "start": 21878.24, + "end": 21879.28, + "probability": 0.7613 + }, + { + "start": 21879.66, + "end": 21880.34, + "probability": 0.6808 + }, + { + "start": 21880.4, + "end": 21880.9, + "probability": 0.554 + }, + { + "start": 21880.96, + "end": 21886.55, + "probability": 0.9866 + }, + { + "start": 21887.5, + "end": 21891.46, + "probability": 0.8602 + }, + { + "start": 21891.52, + "end": 21893.04, + "probability": 0.989 + }, + { + "start": 21897.36, + "end": 21899.58, + "probability": 0.7876 + }, + { + "start": 21899.64, + "end": 21900.68, + "probability": 0.9873 + }, + { + "start": 21900.68, + "end": 21901.46, + "probability": 0.887 + }, + { + "start": 21902.16, + "end": 21903.13, + "probability": 0.7245 + }, + { + "start": 21906.34, + "end": 21908.64, + "probability": 0.9952 + }, + { + "start": 21908.84, + "end": 21910.4, + "probability": 0.9985 + }, + { + "start": 21911.02, + "end": 21913.54, + "probability": 0.9184 + }, + { + "start": 21914.14, + "end": 21915.72, + "probability": 0.8425 + }, + { + "start": 21916.4, + "end": 21917.16, + "probability": 0.9058 + }, + { + "start": 21917.72, + "end": 21919.38, + "probability": 0.8936 + }, + { + "start": 21920.52, + "end": 21923.4, + "probability": 0.9735 + }, + { + "start": 21924.22, + "end": 21927.92, + "probability": 0.9823 + }, + { + "start": 21929.0, + "end": 21931.68, + "probability": 0.9253 + }, + { + "start": 21933.69, + "end": 21936.46, + "probability": 0.7552 + }, + { + "start": 21937.26, + "end": 21939.74, + "probability": 0.9413 + }, + { + "start": 21940.58, + "end": 21941.74, + "probability": 0.9797 + }, + { + "start": 21942.44, + "end": 21944.22, + "probability": 0.9616 + }, + { + "start": 21945.42, + "end": 21947.66, + "probability": 0.8166 + }, + { + "start": 21949.23, + "end": 21951.44, + "probability": 0.9967 + }, + { + "start": 21952.16, + "end": 21958.08, + "probability": 0.8423 + }, + { + "start": 21960.16, + "end": 21961.06, + "probability": 0.7857 + }, + { + "start": 21961.66, + "end": 21962.38, + "probability": 0.6733 + }, + { + "start": 21963.08, + "end": 21964.34, + "probability": 0.9736 + }, + { + "start": 21964.94, + "end": 21965.76, + "probability": 0.8382 + }, + { + "start": 21966.08, + "end": 21966.68, + "probability": 0.9684 + }, + { + "start": 21966.86, + "end": 21968.42, + "probability": 0.9771 + }, + { + "start": 21968.62, + "end": 21969.0, + "probability": 0.3438 + }, + { + "start": 21969.08, + "end": 21970.16, + "probability": 0.9868 + }, + { + "start": 21971.34, + "end": 21974.34, + "probability": 0.8597 + }, + { + "start": 21974.4, + "end": 21975.24, + "probability": 0.9443 + }, + { + "start": 21975.3, + "end": 21976.16, + "probability": 0.8477 + }, + { + "start": 21976.54, + "end": 21978.36, + "probability": 0.9809 + }, + { + "start": 21978.94, + "end": 21979.7, + "probability": 0.9784 + }, + { + "start": 21980.38, + "end": 21982.2, + "probability": 0.5616 + }, + { + "start": 21982.62, + "end": 21986.5, + "probability": 0.9538 + }, + { + "start": 21987.14, + "end": 21989.56, + "probability": 0.8659 + }, + { + "start": 21990.14, + "end": 21991.24, + "probability": 0.7575 + }, + { + "start": 21992.22, + "end": 21996.1, + "probability": 0.9974 + }, + { + "start": 21996.9, + "end": 22000.54, + "probability": 0.9848 + }, + { + "start": 22001.56, + "end": 22002.38, + "probability": 0.6673 + }, + { + "start": 22002.98, + "end": 22004.46, + "probability": 0.8238 + }, + { + "start": 22005.42, + "end": 22010.2, + "probability": 0.7223 + }, + { + "start": 22010.9, + "end": 22012.0, + "probability": 0.7975 + }, + { + "start": 22012.94, + "end": 22018.4, + "probability": 0.9939 + }, + { + "start": 22018.56, + "end": 22020.76, + "probability": 0.9562 + }, + { + "start": 22021.62, + "end": 22022.98, + "probability": 0.8658 + }, + { + "start": 22023.2, + "end": 22024.1, + "probability": 0.891 + }, + { + "start": 22024.1, + "end": 22024.88, + "probability": 0.5482 + }, + { + "start": 22024.9, + "end": 22025.12, + "probability": 0.7166 + }, + { + "start": 22025.6, + "end": 22026.46, + "probability": 0.8311 + }, + { + "start": 22026.68, + "end": 22027.2, + "probability": 0.8677 + }, + { + "start": 22027.5, + "end": 22029.13, + "probability": 0.7952 + }, + { + "start": 22029.22, + "end": 22032.6, + "probability": 0.9744 + }, + { + "start": 22032.64, + "end": 22033.28, + "probability": 0.674 + }, + { + "start": 22034.2, + "end": 22035.18, + "probability": 0.9039 + }, + { + "start": 22038.68, + "end": 22039.38, + "probability": 0.0016 + }, + { + "start": 22047.2, + "end": 22047.52, + "probability": 0.0 + }, + { + "start": 22048.9, + "end": 22049.98, + "probability": 0.0805 + }, + { + "start": 22054.14, + "end": 22055.16, + "probability": 0.6715 + }, + { + "start": 22057.64, + "end": 22062.4, + "probability": 0.8643 + }, + { + "start": 22062.8, + "end": 22063.92, + "probability": 0.5445 + }, + { + "start": 22064.28, + "end": 22066.48, + "probability": 0.7441 + }, + { + "start": 22067.58, + "end": 22070.54, + "probability": 0.9634 + }, + { + "start": 22070.78, + "end": 22074.68, + "probability": 0.5571 + }, + { + "start": 22074.74, + "end": 22075.44, + "probability": 0.6664 + }, + { + "start": 22082.32, + "end": 22083.42, + "probability": 0.7203 + }, + { + "start": 22085.44, + "end": 22091.46, + "probability": 0.3337 + }, + { + "start": 22091.46, + "end": 22093.07, + "probability": 0.2207 + }, + { + "start": 22098.54, + "end": 22100.62, + "probability": 0.7177 + }, + { + "start": 22100.82, + "end": 22101.34, + "probability": 0.8729 + }, + { + "start": 22101.44, + "end": 22104.86, + "probability": 0.938 + }, + { + "start": 22104.9, + "end": 22111.5, + "probability": 0.9366 + }, + { + "start": 22111.66, + "end": 22113.9, + "probability": 0.7349 + }, + { + "start": 22113.98, + "end": 22114.66, + "probability": 0.9534 + }, + { + "start": 22114.72, + "end": 22115.56, + "probability": 0.5132 + }, + { + "start": 22115.6, + "end": 22117.08, + "probability": 0.7639 + }, + { + "start": 22124.32, + "end": 22128.22, + "probability": 0.7189 + }, + { + "start": 22128.92, + "end": 22129.28, + "probability": 0.887 + }, + { + "start": 22130.06, + "end": 22131.02, + "probability": 0.8087 + }, + { + "start": 22132.38, + "end": 22136.34, + "probability": 0.9348 + }, + { + "start": 22136.98, + "end": 22137.8, + "probability": 0.9495 + }, + { + "start": 22138.3, + "end": 22141.48, + "probability": 0.9795 + }, + { + "start": 22142.62, + "end": 22146.1, + "probability": 0.9488 + }, + { + "start": 22146.86, + "end": 22149.26, + "probability": 0.8219 + }, + { + "start": 22150.44, + "end": 22152.06, + "probability": 0.9054 + }, + { + "start": 22152.18, + "end": 22154.3, + "probability": 0.9932 + }, + { + "start": 22155.48, + "end": 22158.34, + "probability": 0.98 + }, + { + "start": 22158.66, + "end": 22161.8, + "probability": 0.9515 + }, + { + "start": 22162.02, + "end": 22164.84, + "probability": 0.9826 + }, + { + "start": 22164.84, + "end": 22169.88, + "probability": 0.7693 + }, + { + "start": 22171.38, + "end": 22174.36, + "probability": 0.4885 + }, + { + "start": 22174.54, + "end": 22177.32, + "probability": 0.8862 + }, + { + "start": 22177.36, + "end": 22179.54, + "probability": 0.9371 + }, + { + "start": 22180.26, + "end": 22182.08, + "probability": 0.7096 + }, + { + "start": 22182.26, + "end": 22186.12, + "probability": 0.9451 + }, + { + "start": 22187.04, + "end": 22188.86, + "probability": 0.5798 + }, + { + "start": 22188.88, + "end": 22191.66, + "probability": 0.9783 + }, + { + "start": 22191.66, + "end": 22196.18, + "probability": 0.9911 + }, + { + "start": 22196.68, + "end": 22198.9, + "probability": 0.993 + }, + { + "start": 22198.9, + "end": 22201.54, + "probability": 0.9968 + }, + { + "start": 22202.38, + "end": 22203.44, + "probability": 0.8885 + }, + { + "start": 22203.7, + "end": 22209.32, + "probability": 0.8608 + }, + { + "start": 22209.94, + "end": 22212.46, + "probability": 0.8266 + }, + { + "start": 22213.42, + "end": 22214.84, + "probability": 0.8161 + }, + { + "start": 22215.38, + "end": 22215.96, + "probability": 0.8186 + }, + { + "start": 22217.32, + "end": 22220.94, + "probability": 0.7769 + }, + { + "start": 22221.52, + "end": 22223.76, + "probability": 0.8298 + }, + { + "start": 22224.54, + "end": 22226.46, + "probability": 0.9961 + }, + { + "start": 22227.82, + "end": 22228.86, + "probability": 0.7768 + }, + { + "start": 22229.26, + "end": 22233.78, + "probability": 0.9912 + }, + { + "start": 22234.08, + "end": 22234.88, + "probability": 0.8318 + }, + { + "start": 22235.56, + "end": 22237.06, + "probability": 0.9912 + }, + { + "start": 22237.64, + "end": 22239.82, + "probability": 0.8757 + }, + { + "start": 22240.36, + "end": 22241.14, + "probability": 0.9595 + }, + { + "start": 22242.56, + "end": 22244.71, + "probability": 0.9985 + }, + { + "start": 22245.22, + "end": 22246.2, + "probability": 0.9258 + }, + { + "start": 22246.84, + "end": 22248.69, + "probability": 0.8348 + }, + { + "start": 22250.18, + "end": 22253.68, + "probability": 0.9216 + }, + { + "start": 22254.36, + "end": 22255.7, + "probability": 0.918 + }, + { + "start": 22256.9, + "end": 22258.72, + "probability": 0.4922 + }, + { + "start": 22259.18, + "end": 22267.06, + "probability": 0.8937 + }, + { + "start": 22267.42, + "end": 22268.12, + "probability": 0.7295 + }, + { + "start": 22268.82, + "end": 22271.12, + "probability": 0.7192 + }, + { + "start": 22271.38, + "end": 22273.62, + "probability": 0.4774 + }, + { + "start": 22274.72, + "end": 22277.28, + "probability": 0.9646 + }, + { + "start": 22278.56, + "end": 22280.94, + "probability": 0.5097 + }, + { + "start": 22281.28, + "end": 22282.05, + "probability": 0.8928 + }, + { + "start": 22282.8, + "end": 22287.82, + "probability": 0.9917 + }, + { + "start": 22288.52, + "end": 22289.56, + "probability": 0.9694 + }, + { + "start": 22290.7, + "end": 22292.76, + "probability": 0.9881 + }, + { + "start": 22293.34, + "end": 22298.46, + "probability": 0.9908 + }, + { + "start": 22298.66, + "end": 22304.8, + "probability": 0.9911 + }, + { + "start": 22305.5, + "end": 22308.28, + "probability": 0.9087 + }, + { + "start": 22308.88, + "end": 22310.36, + "probability": 0.7917 + }, + { + "start": 22310.88, + "end": 22315.68, + "probability": 0.9858 + }, + { + "start": 22316.14, + "end": 22319.12, + "probability": 0.9969 + }, + { + "start": 22319.44, + "end": 22320.84, + "probability": 0.9062 + }, + { + "start": 22320.98, + "end": 22324.72, + "probability": 0.9974 + }, + { + "start": 22325.52, + "end": 22326.84, + "probability": 0.9336 + }, + { + "start": 22327.12, + "end": 22327.9, + "probability": 0.9709 + }, + { + "start": 22327.94, + "end": 22329.32, + "probability": 0.9813 + }, + { + "start": 22329.76, + "end": 22331.3, + "probability": 0.961 + }, + { + "start": 22331.84, + "end": 22334.46, + "probability": 0.9121 + }, + { + "start": 22335.0, + "end": 22338.48, + "probability": 0.9951 + }, + { + "start": 22338.58, + "end": 22338.92, + "probability": 0.5207 + }, + { + "start": 22339.02, + "end": 22340.14, + "probability": 0.5413 + }, + { + "start": 22340.34, + "end": 22341.0, + "probability": 0.7666 + }, + { + "start": 22341.9, + "end": 22344.78, + "probability": 0.8775 + }, + { + "start": 22345.16, + "end": 22345.64, + "probability": 0.5562 + }, + { + "start": 22345.64, + "end": 22346.58, + "probability": 0.8418 + }, + { + "start": 22346.66, + "end": 22347.66, + "probability": 0.812 + }, + { + "start": 22347.76, + "end": 22350.61, + "probability": 0.9829 + }, + { + "start": 22350.76, + "end": 22353.42, + "probability": 0.9991 + }, + { + "start": 22353.98, + "end": 22355.88, + "probability": 0.9911 + }, + { + "start": 22355.98, + "end": 22356.24, + "probability": 0.7268 + }, + { + "start": 22357.7, + "end": 22358.1, + "probability": 0.0104 + } + ], + "segments_count": 7774, + "words_count": 40232, + "avg_words_per_segment": 5.1752, + "avg_segment_duration": 2.0341, + "avg_words_per_minute": 105.8383, + "plenum_id": "125626", + "duration": 22807.63, + "title": null, + "plenum_date": "2024-03-20" +} \ No newline at end of file