diff --git "a/16517/metadata.json" "b/16517/metadata.json" new file mode 100644--- /dev/null +++ "b/16517/metadata.json" @@ -0,0 +1,37337 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "16517", + "quality_score": 0.9189, + "per_segment_quality_scores": [ + { + "start": 109.14, + "end": 109.68, + "probability": 0.0386 + }, + { + "start": 109.68, + "end": 109.68, + "probability": 0.1574 + }, + { + "start": 109.68, + "end": 109.68, + "probability": 0.0846 + }, + { + "start": 109.68, + "end": 109.68, + "probability": 0.0393 + }, + { + "start": 109.68, + "end": 110.62, + "probability": 0.0233 + }, + { + "start": 111.28, + "end": 114.18, + "probability": 0.8702 + }, + { + "start": 115.0, + "end": 116.88, + "probability": 0.9744 + }, + { + "start": 117.24, + "end": 117.68, + "probability": 0.7508 + }, + { + "start": 118.22, + "end": 118.84, + "probability": 0.7124 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 133.6, + "end": 137.68, + "probability": 0.2011 + }, + { + "start": 138.8, + "end": 141.04, + "probability": 0.1942 + }, + { + "start": 144.92, + "end": 148.06, + "probability": 0.0004 + }, + { + "start": 148.96, + "end": 150.46, + "probability": 0.0369 + }, + { + "start": 151.06, + "end": 157.4, + "probability": 0.0634 + }, + { + "start": 157.4, + "end": 160.2, + "probability": 0.1124 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.68, + "end": 255.38, + "probability": 0.0216 + }, + { + "start": 255.38, + "end": 256.7, + "probability": 0.1805 + }, + { + "start": 257.63, + "end": 262.56, + "probability": 0.9829 + }, + { + "start": 262.56, + "end": 265.56, + "probability": 0.9985 + }, + { + "start": 266.46, + "end": 269.04, + "probability": 0.9806 + }, + { + "start": 269.56, + "end": 269.92, + "probability": 0.4378 + }, + { + "start": 271.8, + "end": 272.84, + "probability": 0.0318 + }, + { + "start": 272.96, + "end": 277.88, + "probability": 0.3466 + }, + { + "start": 280.14, + "end": 282.24, + "probability": 0.6205 + }, + { + "start": 282.28, + "end": 285.3, + "probability": 0.8994 + }, + { + "start": 288.54, + "end": 290.66, + "probability": 0.5918 + }, + { + "start": 291.24, + "end": 295.26, + "probability": 0.9843 + }, + { + "start": 295.78, + "end": 297.4, + "probability": 0.9554 + }, + { + "start": 299.92, + "end": 303.66, + "probability": 0.9162 + }, + { + "start": 304.24, + "end": 304.98, + "probability": 0.8352 + }, + { + "start": 306.2, + "end": 309.76, + "probability": 0.9855 + }, + { + "start": 309.88, + "end": 315.06, + "probability": 0.9883 + }, + { + "start": 315.72, + "end": 317.5, + "probability": 0.9285 + }, + { + "start": 317.58, + "end": 320.28, + "probability": 0.9664 + }, + { + "start": 321.54, + "end": 326.16, + "probability": 0.9971 + }, + { + "start": 326.16, + "end": 330.9, + "probability": 0.9995 + }, + { + "start": 332.02, + "end": 332.72, + "probability": 0.8612 + }, + { + "start": 333.52, + "end": 335.26, + "probability": 0.9976 + }, + { + "start": 335.88, + "end": 339.36, + "probability": 0.9973 + }, + { + "start": 339.82, + "end": 341.82, + "probability": 0.9824 + }, + { + "start": 343.74, + "end": 344.12, + "probability": 0.7749 + }, + { + "start": 347.48, + "end": 351.56, + "probability": 0.6071 + }, + { + "start": 352.46, + "end": 356.1, + "probability": 0.9246 + }, + { + "start": 356.66, + "end": 358.12, + "probability": 0.9329 + }, + { + "start": 358.62, + "end": 360.44, + "probability": 0.991 + }, + { + "start": 360.94, + "end": 361.58, + "probability": 0.9407 + }, + { + "start": 361.8, + "end": 362.94, + "probability": 0.9804 + }, + { + "start": 363.46, + "end": 365.3, + "probability": 0.9566 + }, + { + "start": 369.2, + "end": 370.08, + "probability": 0.6406 + }, + { + "start": 370.18, + "end": 373.06, + "probability": 0.9951 + }, + { + "start": 373.06, + "end": 375.28, + "probability": 0.9065 + }, + { + "start": 376.36, + "end": 380.14, + "probability": 0.959 + }, + { + "start": 383.44, + "end": 384.54, + "probability": 0.9658 + }, + { + "start": 385.32, + "end": 386.34, + "probability": 0.7354 + }, + { + "start": 388.26, + "end": 391.0, + "probability": 0.7074 + }, + { + "start": 392.0, + "end": 395.96, + "probability": 0.9653 + }, + { + "start": 397.44, + "end": 400.24, + "probability": 0.9629 + }, + { + "start": 400.66, + "end": 402.58, + "probability": 0.9805 + }, + { + "start": 402.98, + "end": 405.8, + "probability": 0.9957 + }, + { + "start": 406.48, + "end": 408.24, + "probability": 0.7407 + }, + { + "start": 408.94, + "end": 411.38, + "probability": 0.9156 + }, + { + "start": 412.1, + "end": 413.78, + "probability": 0.9868 + }, + { + "start": 415.06, + "end": 417.2, + "probability": 0.947 + }, + { + "start": 417.86, + "end": 420.18, + "probability": 0.9958 + }, + { + "start": 420.76, + "end": 423.64, + "probability": 0.9619 + }, + { + "start": 424.16, + "end": 430.42, + "probability": 0.9894 + }, + { + "start": 430.46, + "end": 435.78, + "probability": 0.957 + }, + { + "start": 436.24, + "end": 439.34, + "probability": 0.9764 + }, + { + "start": 440.66, + "end": 442.6, + "probability": 0.9861 + }, + { + "start": 444.0, + "end": 446.5, + "probability": 0.9053 + }, + { + "start": 447.08, + "end": 447.52, + "probability": 0.8366 + }, + { + "start": 449.0, + "end": 449.93, + "probability": 0.9645 + }, + { + "start": 450.14, + "end": 451.52, + "probability": 0.9639 + }, + { + "start": 452.02, + "end": 455.1, + "probability": 0.9942 + }, + { + "start": 455.1, + "end": 458.78, + "probability": 0.8454 + }, + { + "start": 459.74, + "end": 462.08, + "probability": 0.8966 + }, + { + "start": 463.62, + "end": 465.1, + "probability": 0.9894 + }, + { + "start": 465.58, + "end": 468.72, + "probability": 0.9979 + }, + { + "start": 469.22, + "end": 471.02, + "probability": 0.9708 + }, + { + "start": 472.54, + "end": 475.5, + "probability": 0.934 + }, + { + "start": 476.06, + "end": 478.56, + "probability": 0.9765 + }, + { + "start": 479.12, + "end": 480.36, + "probability": 0.9625 + }, + { + "start": 481.28, + "end": 484.64, + "probability": 0.9804 + }, + { + "start": 485.22, + "end": 490.46, + "probability": 0.9438 + }, + { + "start": 491.04, + "end": 495.16, + "probability": 0.9949 + }, + { + "start": 496.2, + "end": 496.94, + "probability": 0.8451 + }, + { + "start": 497.6, + "end": 498.78, + "probability": 0.4528 + }, + { + "start": 500.04, + "end": 505.66, + "probability": 0.9423 + }, + { + "start": 507.2, + "end": 509.28, + "probability": 0.9969 + }, + { + "start": 510.4, + "end": 515.36, + "probability": 0.9964 + }, + { + "start": 516.44, + "end": 517.66, + "probability": 0.7663 + }, + { + "start": 519.62, + "end": 523.6, + "probability": 0.9978 + }, + { + "start": 524.34, + "end": 528.4, + "probability": 0.9915 + }, + { + "start": 528.4, + "end": 531.18, + "probability": 0.9884 + }, + { + "start": 532.64, + "end": 534.6, + "probability": 0.9528 + }, + { + "start": 535.1, + "end": 541.82, + "probability": 0.9941 + }, + { + "start": 542.94, + "end": 543.48, + "probability": 0.7273 + }, + { + "start": 543.58, + "end": 544.6, + "probability": 0.9402 + }, + { + "start": 545.08, + "end": 548.34, + "probability": 0.992 + }, + { + "start": 550.6, + "end": 552.74, + "probability": 0.8912 + }, + { + "start": 554.08, + "end": 557.64, + "probability": 0.9982 + }, + { + "start": 558.12, + "end": 562.68, + "probability": 0.8813 + }, + { + "start": 564.3, + "end": 565.54, + "probability": 0.8452 + }, + { + "start": 566.78, + "end": 570.36, + "probability": 0.9922 + }, + { + "start": 571.34, + "end": 574.16, + "probability": 0.995 + }, + { + "start": 574.8, + "end": 579.98, + "probability": 0.9966 + }, + { + "start": 581.94, + "end": 585.48, + "probability": 0.988 + }, + { + "start": 585.78, + "end": 586.98, + "probability": 0.89 + }, + { + "start": 587.42, + "end": 589.38, + "probability": 0.9967 + }, + { + "start": 589.86, + "end": 592.96, + "probability": 0.993 + }, + { + "start": 593.44, + "end": 596.86, + "probability": 0.8807 + }, + { + "start": 598.08, + "end": 600.54, + "probability": 0.9594 + }, + { + "start": 602.74, + "end": 606.6, + "probability": 0.9948 + }, + { + "start": 606.6, + "end": 611.86, + "probability": 0.8411 + }, + { + "start": 613.1, + "end": 619.93, + "probability": 0.9962 + }, + { + "start": 620.14, + "end": 626.5, + "probability": 0.9667 + }, + { + "start": 627.24, + "end": 627.56, + "probability": 0.7033 + }, + { + "start": 629.46, + "end": 633.82, + "probability": 0.9287 + }, + { + "start": 634.5, + "end": 637.32, + "probability": 0.9053 + }, + { + "start": 637.86, + "end": 641.88, + "probability": 0.9515 + }, + { + "start": 642.4, + "end": 644.62, + "probability": 0.5726 + }, + { + "start": 645.06, + "end": 648.58, + "probability": 0.8535 + }, + { + "start": 650.1, + "end": 652.3, + "probability": 0.9792 + }, + { + "start": 652.64, + "end": 657.66, + "probability": 0.9781 + }, + { + "start": 658.82, + "end": 660.3, + "probability": 0.6341 + }, + { + "start": 661.5, + "end": 663.76, + "probability": 0.9728 + }, + { + "start": 664.66, + "end": 665.94, + "probability": 0.9784 + }, + { + "start": 666.88, + "end": 668.72, + "probability": 0.9064 + }, + { + "start": 669.56, + "end": 673.22, + "probability": 0.8918 + }, + { + "start": 674.78, + "end": 676.24, + "probability": 0.8498 + }, + { + "start": 676.98, + "end": 679.96, + "probability": 0.9656 + }, + { + "start": 681.74, + "end": 683.5, + "probability": 0.8831 + }, + { + "start": 684.12, + "end": 687.1, + "probability": 0.9912 + }, + { + "start": 688.46, + "end": 691.4, + "probability": 0.9767 + }, + { + "start": 691.94, + "end": 695.08, + "probability": 0.9683 + }, + { + "start": 695.36, + "end": 698.12, + "probability": 0.9167 + }, + { + "start": 699.9, + "end": 701.08, + "probability": 0.9935 + }, + { + "start": 701.82, + "end": 707.96, + "probability": 0.9725 + }, + { + "start": 709.48, + "end": 712.98, + "probability": 0.8651 + }, + { + "start": 713.14, + "end": 714.02, + "probability": 0.7454 + }, + { + "start": 714.66, + "end": 718.98, + "probability": 0.9979 + }, + { + "start": 718.98, + "end": 723.02, + "probability": 0.9945 + }, + { + "start": 724.54, + "end": 725.58, + "probability": 0.7566 + }, + { + "start": 726.12, + "end": 733.78, + "probability": 0.9949 + }, + { + "start": 735.18, + "end": 737.56, + "probability": 0.9271 + }, + { + "start": 738.62, + "end": 740.98, + "probability": 0.9943 + }, + { + "start": 741.52, + "end": 745.38, + "probability": 0.9758 + }, + { + "start": 747.36, + "end": 750.05, + "probability": 0.9562 + }, + { + "start": 750.72, + "end": 751.02, + "probability": 0.4964 + }, + { + "start": 752.12, + "end": 754.78, + "probability": 0.9944 + }, + { + "start": 755.5, + "end": 757.42, + "probability": 0.7465 + }, + { + "start": 758.06, + "end": 758.66, + "probability": 0.8103 + }, + { + "start": 759.36, + "end": 760.44, + "probability": 0.9917 + }, + { + "start": 761.16, + "end": 765.22, + "probability": 0.9864 + }, + { + "start": 766.52, + "end": 766.94, + "probability": 0.9253 + }, + { + "start": 767.02, + "end": 767.86, + "probability": 0.8481 + }, + { + "start": 768.16, + "end": 772.12, + "probability": 0.8273 + }, + { + "start": 772.64, + "end": 773.72, + "probability": 0.9911 + }, + { + "start": 775.14, + "end": 779.22, + "probability": 0.9928 + }, + { + "start": 779.22, + "end": 783.96, + "probability": 0.9985 + }, + { + "start": 785.16, + "end": 785.6, + "probability": 0.9443 + }, + { + "start": 786.32, + "end": 791.7, + "probability": 0.902 + }, + { + "start": 792.2, + "end": 792.7, + "probability": 0.789 + }, + { + "start": 793.74, + "end": 796.14, + "probability": 0.9699 + }, + { + "start": 796.58, + "end": 800.84, + "probability": 0.9909 + }, + { + "start": 802.44, + "end": 804.02, + "probability": 0.9587 + }, + { + "start": 804.62, + "end": 810.96, + "probability": 0.9839 + }, + { + "start": 812.2, + "end": 814.88, + "probability": 0.8976 + }, + { + "start": 815.4, + "end": 817.66, + "probability": 0.9972 + }, + { + "start": 817.98, + "end": 819.76, + "probability": 0.7382 + }, + { + "start": 820.3, + "end": 822.18, + "probability": 0.9325 + }, + { + "start": 823.78, + "end": 825.86, + "probability": 0.848 + }, + { + "start": 826.64, + "end": 828.38, + "probability": 0.8587 + }, + { + "start": 828.9, + "end": 830.34, + "probability": 0.7164 + }, + { + "start": 831.98, + "end": 834.8, + "probability": 0.9727 + }, + { + "start": 835.76, + "end": 839.78, + "probability": 0.9784 + }, + { + "start": 840.98, + "end": 843.66, + "probability": 0.9918 + }, + { + "start": 844.2, + "end": 850.28, + "probability": 0.9983 + }, + { + "start": 851.16, + "end": 856.02, + "probability": 0.9976 + }, + { + "start": 857.72, + "end": 858.2, + "probability": 0.6398 + }, + { + "start": 858.44, + "end": 863.66, + "probability": 0.9928 + }, + { + "start": 863.66, + "end": 868.72, + "probability": 0.9747 + }, + { + "start": 869.7, + "end": 873.6, + "probability": 0.9678 + }, + { + "start": 874.14, + "end": 877.4, + "probability": 0.9869 + }, + { + "start": 878.0, + "end": 879.7, + "probability": 0.9469 + }, + { + "start": 880.86, + "end": 882.86, + "probability": 0.8535 + }, + { + "start": 886.3, + "end": 891.52, + "probability": 0.9741 + }, + { + "start": 892.26, + "end": 897.8, + "probability": 0.9937 + }, + { + "start": 898.5, + "end": 901.3, + "probability": 0.9964 + }, + { + "start": 902.38, + "end": 904.42, + "probability": 0.9971 + }, + { + "start": 905.14, + "end": 907.1, + "probability": 0.9908 + }, + { + "start": 907.76, + "end": 909.02, + "probability": 0.9892 + }, + { + "start": 912.28, + "end": 913.26, + "probability": 0.5583 + }, + { + "start": 913.8, + "end": 919.94, + "probability": 0.9894 + }, + { + "start": 920.52, + "end": 925.72, + "probability": 0.9082 + }, + { + "start": 927.06, + "end": 927.54, + "probability": 0.5349 + }, + { + "start": 927.62, + "end": 928.67, + "probability": 0.9631 + }, + { + "start": 929.16, + "end": 934.58, + "probability": 0.9897 + }, + { + "start": 934.58, + "end": 938.78, + "probability": 0.9937 + }, + { + "start": 939.98, + "end": 940.98, + "probability": 0.6357 + }, + { + "start": 941.04, + "end": 941.7, + "probability": 0.6931 + }, + { + "start": 942.18, + "end": 947.56, + "probability": 0.9177 + }, + { + "start": 948.44, + "end": 950.08, + "probability": 0.8892 + }, + { + "start": 950.72, + "end": 952.78, + "probability": 0.9723 + }, + { + "start": 953.84, + "end": 954.24, + "probability": 0.8146 + }, + { + "start": 954.7, + "end": 958.02, + "probability": 0.985 + }, + { + "start": 958.78, + "end": 962.96, + "probability": 0.9956 + }, + { + "start": 963.46, + "end": 967.34, + "probability": 0.8707 + }, + { + "start": 969.32, + "end": 971.44, + "probability": 0.7805 + }, + { + "start": 971.96, + "end": 972.94, + "probability": 0.9462 + }, + { + "start": 973.48, + "end": 974.82, + "probability": 0.789 + }, + { + "start": 975.06, + "end": 978.98, + "probability": 0.9897 + }, + { + "start": 980.1, + "end": 981.24, + "probability": 0.606 + }, + { + "start": 982.12, + "end": 983.74, + "probability": 0.9048 + }, + { + "start": 984.28, + "end": 984.92, + "probability": 0.8927 + }, + { + "start": 985.54, + "end": 992.3, + "probability": 0.9928 + }, + { + "start": 992.8, + "end": 995.58, + "probability": 0.9772 + }, + { + "start": 996.4, + "end": 997.6, + "probability": 0.6614 + }, + { + "start": 999.64, + "end": 1000.3, + "probability": 0.6435 + }, + { + "start": 1001.08, + "end": 1002.46, + "probability": 0.9538 + }, + { + "start": 1003.18, + "end": 1007.86, + "probability": 0.9965 + }, + { + "start": 1008.44, + "end": 1010.32, + "probability": 0.6896 + }, + { + "start": 1011.06, + "end": 1013.24, + "probability": 0.9485 + }, + { + "start": 1014.38, + "end": 1015.48, + "probability": 0.8093 + }, + { + "start": 1017.62, + "end": 1019.34, + "probability": 0.9901 + }, + { + "start": 1019.86, + "end": 1020.32, + "probability": 0.4225 + }, + { + "start": 1020.92, + "end": 1023.7, + "probability": 0.8865 + }, + { + "start": 1024.32, + "end": 1027.1, + "probability": 0.8857 + }, + { + "start": 1027.64, + "end": 1029.24, + "probability": 0.6363 + }, + { + "start": 1029.84, + "end": 1033.98, + "probability": 0.6626 + }, + { + "start": 1034.8, + "end": 1036.32, + "probability": 0.8346 + }, + { + "start": 1038.02, + "end": 1040.62, + "probability": 0.9412 + }, + { + "start": 1042.26, + "end": 1043.24, + "probability": 0.426 + }, + { + "start": 1043.24, + "end": 1044.98, + "probability": 0.967 + }, + { + "start": 1045.52, + "end": 1047.24, + "probability": 0.9178 + }, + { + "start": 1049.16, + "end": 1050.08, + "probability": 0.9098 + }, + { + "start": 1053.94, + "end": 1054.16, + "probability": 0.7898 + }, + { + "start": 1057.08, + "end": 1058.5, + "probability": 0.5364 + }, + { + "start": 1059.22, + "end": 1059.96, + "probability": 0.773 + }, + { + "start": 1061.12, + "end": 1061.88, + "probability": 0.8236 + }, + { + "start": 1063.96, + "end": 1066.16, + "probability": 0.9958 + }, + { + "start": 1067.82, + "end": 1070.06, + "probability": 0.9479 + }, + { + "start": 1070.96, + "end": 1071.7, + "probability": 0.9036 + }, + { + "start": 1073.8, + "end": 1076.66, + "probability": 0.9767 + }, + { + "start": 1077.32, + "end": 1078.88, + "probability": 0.9976 + }, + { + "start": 1079.8, + "end": 1081.4, + "probability": 0.9986 + }, + { + "start": 1083.4, + "end": 1084.1, + "probability": 0.17 + }, + { + "start": 1084.1, + "end": 1084.98, + "probability": 0.7371 + }, + { + "start": 1085.18, + "end": 1085.98, + "probability": 0.7916 + }, + { + "start": 1086.36, + "end": 1088.52, + "probability": 0.9873 + }, + { + "start": 1089.96, + "end": 1093.64, + "probability": 0.9974 + }, + { + "start": 1094.28, + "end": 1096.32, + "probability": 0.993 + }, + { + "start": 1098.06, + "end": 1098.8, + "probability": 0.7693 + }, + { + "start": 1099.86, + "end": 1100.36, + "probability": 0.6611 + }, + { + "start": 1101.08, + "end": 1102.48, + "probability": 0.9966 + }, + { + "start": 1103.0, + "end": 1104.84, + "probability": 0.8633 + }, + { + "start": 1105.94, + "end": 1111.42, + "probability": 0.9887 + }, + { + "start": 1112.5, + "end": 1115.06, + "probability": 0.9985 + }, + { + "start": 1115.64, + "end": 1121.0, + "probability": 0.9942 + }, + { + "start": 1122.62, + "end": 1123.98, + "probability": 0.9406 + }, + { + "start": 1125.28, + "end": 1128.44, + "probability": 0.997 + }, + { + "start": 1129.4, + "end": 1129.88, + "probability": 0.8374 + }, + { + "start": 1129.98, + "end": 1130.52, + "probability": 0.6842 + }, + { + "start": 1130.54, + "end": 1131.42, + "probability": 0.5895 + }, + { + "start": 1131.5, + "end": 1131.76, + "probability": 0.8295 + }, + { + "start": 1131.82, + "end": 1132.96, + "probability": 0.7488 + }, + { + "start": 1135.42, + "end": 1136.0, + "probability": 0.388 + }, + { + "start": 1136.62, + "end": 1139.02, + "probability": 0.9546 + }, + { + "start": 1139.28, + "end": 1139.7, + "probability": 0.3153 + }, + { + "start": 1139.94, + "end": 1143.16, + "probability": 0.9399 + }, + { + "start": 1144.2, + "end": 1144.88, + "probability": 0.9263 + }, + { + "start": 1145.62, + "end": 1152.18, + "probability": 0.8333 + }, + { + "start": 1152.8, + "end": 1157.0, + "probability": 0.9995 + }, + { + "start": 1158.52, + "end": 1164.06, + "probability": 0.9953 + }, + { + "start": 1164.98, + "end": 1168.96, + "probability": 0.9988 + }, + { + "start": 1170.26, + "end": 1172.94, + "probability": 0.9447 + }, + { + "start": 1173.96, + "end": 1175.82, + "probability": 0.8848 + }, + { + "start": 1177.26, + "end": 1179.48, + "probability": 0.98 + }, + { + "start": 1179.6, + "end": 1180.3, + "probability": 0.8058 + }, + { + "start": 1181.46, + "end": 1185.16, + "probability": 0.8815 + }, + { + "start": 1185.94, + "end": 1188.78, + "probability": 0.9836 + }, + { + "start": 1189.4, + "end": 1192.36, + "probability": 0.9921 + }, + { + "start": 1194.04, + "end": 1197.42, + "probability": 0.9083 + }, + { + "start": 1198.6, + "end": 1201.88, + "probability": 0.9914 + }, + { + "start": 1202.84, + "end": 1205.56, + "probability": 0.9956 + }, + { + "start": 1205.56, + "end": 1209.2, + "probability": 0.9953 + }, + { + "start": 1209.92, + "end": 1213.74, + "probability": 0.9762 + }, + { + "start": 1214.72, + "end": 1217.66, + "probability": 0.8877 + }, + { + "start": 1218.24, + "end": 1220.54, + "probability": 0.9846 + }, + { + "start": 1220.66, + "end": 1221.59, + "probability": 0.9392 + }, + { + "start": 1222.1, + "end": 1226.18, + "probability": 0.9761 + }, + { + "start": 1227.34, + "end": 1228.44, + "probability": 0.6375 + }, + { + "start": 1229.36, + "end": 1231.2, + "probability": 0.8465 + }, + { + "start": 1232.16, + "end": 1232.5, + "probability": 0.8673 + }, + { + "start": 1233.2, + "end": 1234.1, + "probability": 0.9647 + }, + { + "start": 1235.72, + "end": 1240.46, + "probability": 0.9854 + }, + { + "start": 1240.46, + "end": 1245.04, + "probability": 0.9885 + }, + { + "start": 1245.86, + "end": 1249.76, + "probability": 0.662 + }, + { + "start": 1250.76, + "end": 1251.96, + "probability": 0.9993 + }, + { + "start": 1252.56, + "end": 1255.18, + "probability": 0.9717 + }, + { + "start": 1255.48, + "end": 1256.02, + "probability": 0.782 + }, + { + "start": 1257.42, + "end": 1257.44, + "probability": 0.4828 + }, + { + "start": 1257.6, + "end": 1258.0, + "probability": 0.9613 + }, + { + "start": 1258.2, + "end": 1262.46, + "probability": 0.989 + }, + { + "start": 1263.08, + "end": 1265.24, + "probability": 0.9983 + }, + { + "start": 1266.6, + "end": 1267.84, + "probability": 0.8942 + }, + { + "start": 1269.0, + "end": 1273.94, + "probability": 0.9922 + }, + { + "start": 1274.82, + "end": 1275.96, + "probability": 0.7073 + }, + { + "start": 1276.04, + "end": 1280.68, + "probability": 0.9875 + }, + { + "start": 1281.28, + "end": 1283.18, + "probability": 0.923 + }, + { + "start": 1284.42, + "end": 1285.74, + "probability": 0.7941 + }, + { + "start": 1286.46, + "end": 1289.06, + "probability": 0.991 + }, + { + "start": 1289.9, + "end": 1292.66, + "probability": 0.9971 + }, + { + "start": 1294.1, + "end": 1295.54, + "probability": 0.8894 + }, + { + "start": 1296.2, + "end": 1296.74, + "probability": 0.8931 + }, + { + "start": 1296.8, + "end": 1297.64, + "probability": 0.9724 + }, + { + "start": 1297.86, + "end": 1298.62, + "probability": 0.6803 + }, + { + "start": 1298.94, + "end": 1300.02, + "probability": 0.8348 + }, + { + "start": 1300.42, + "end": 1301.84, + "probability": 0.8462 + }, + { + "start": 1302.72, + "end": 1307.16, + "probability": 0.9788 + }, + { + "start": 1308.26, + "end": 1312.7, + "probability": 0.95 + }, + { + "start": 1313.68, + "end": 1319.04, + "probability": 0.9819 + }, + { + "start": 1320.26, + "end": 1322.3, + "probability": 0.8857 + }, + { + "start": 1324.32, + "end": 1328.94, + "probability": 0.9779 + }, + { + "start": 1329.88, + "end": 1332.26, + "probability": 0.9747 + }, + { + "start": 1333.28, + "end": 1334.76, + "probability": 0.8164 + }, + { + "start": 1335.44, + "end": 1336.02, + "probability": 0.7046 + }, + { + "start": 1338.18, + "end": 1342.94, + "probability": 0.9829 + }, + { + "start": 1344.52, + "end": 1345.12, + "probability": 0.813 + }, + { + "start": 1345.9, + "end": 1346.62, + "probability": 0.7158 + }, + { + "start": 1347.48, + "end": 1350.84, + "probability": 0.9806 + }, + { + "start": 1351.66, + "end": 1353.42, + "probability": 0.9612 + }, + { + "start": 1354.3, + "end": 1356.52, + "probability": 0.9014 + }, + { + "start": 1357.32, + "end": 1358.86, + "probability": 0.9592 + }, + { + "start": 1359.96, + "end": 1360.66, + "probability": 0.0113 + }, + { + "start": 1360.92, + "end": 1364.66, + "probability": 0.7939 + }, + { + "start": 1365.2, + "end": 1366.8, + "probability": 0.9092 + }, + { + "start": 1366.96, + "end": 1367.28, + "probability": 0.9474 + }, + { + "start": 1367.36, + "end": 1367.96, + "probability": 0.9221 + }, + { + "start": 1368.02, + "end": 1368.42, + "probability": 0.5214 + }, + { + "start": 1368.48, + "end": 1368.74, + "probability": 0.6788 + }, + { + "start": 1369.22, + "end": 1370.66, + "probability": 0.929 + }, + { + "start": 1370.74, + "end": 1374.24, + "probability": 0.573 + }, + { + "start": 1374.56, + "end": 1376.4, + "probability": 0.6904 + }, + { + "start": 1376.98, + "end": 1377.66, + "probability": 0.7497 + }, + { + "start": 1378.98, + "end": 1380.92, + "probability": 0.9705 + }, + { + "start": 1380.98, + "end": 1381.28, + "probability": 0.5945 + }, + { + "start": 1381.36, + "end": 1381.96, + "probability": 0.7395 + }, + { + "start": 1382.2, + "end": 1385.28, + "probability": 0.9207 + }, + { + "start": 1385.7, + "end": 1390.08, + "probability": 0.9917 + }, + { + "start": 1390.84, + "end": 1392.56, + "probability": 0.87 + }, + { + "start": 1393.3, + "end": 1398.6, + "probability": 0.998 + }, + { + "start": 1399.16, + "end": 1399.72, + "probability": 0.9713 + }, + { + "start": 1401.22, + "end": 1401.92, + "probability": 0.9966 + }, + { + "start": 1402.86, + "end": 1406.62, + "probability": 0.9894 + }, + { + "start": 1407.08, + "end": 1409.06, + "probability": 0.9908 + }, + { + "start": 1411.34, + "end": 1414.18, + "probability": 0.9094 + }, + { + "start": 1415.86, + "end": 1417.22, + "probability": 0.9827 + }, + { + "start": 1417.68, + "end": 1419.42, + "probability": 0.9963 + }, + { + "start": 1420.6, + "end": 1424.1, + "probability": 0.9803 + }, + { + "start": 1425.9, + "end": 1426.48, + "probability": 0.888 + }, + { + "start": 1427.08, + "end": 1428.9, + "probability": 0.9005 + }, + { + "start": 1430.24, + "end": 1430.38, + "probability": 0.059 + }, + { + "start": 1430.38, + "end": 1430.38, + "probability": 0.0461 + }, + { + "start": 1430.38, + "end": 1432.48, + "probability": 0.9554 + }, + { + "start": 1434.02, + "end": 1436.26, + "probability": 0.9973 + }, + { + "start": 1436.4, + "end": 1438.0, + "probability": 0.6563 + }, + { + "start": 1438.08, + "end": 1439.7, + "probability": 0.8995 + }, + { + "start": 1439.86, + "end": 1442.64, + "probability": 0.9023 + }, + { + "start": 1447.6, + "end": 1450.64, + "probability": 0.8881 + }, + { + "start": 1451.32, + "end": 1452.42, + "probability": 0.9106 + }, + { + "start": 1453.56, + "end": 1454.28, + "probability": 0.7839 + }, + { + "start": 1454.44, + "end": 1455.4, + "probability": 0.8787 + }, + { + "start": 1455.52, + "end": 1457.24, + "probability": 0.9673 + }, + { + "start": 1458.96, + "end": 1461.4, + "probability": 0.9558 + }, + { + "start": 1461.96, + "end": 1462.72, + "probability": 0.7813 + }, + { + "start": 1464.06, + "end": 1468.51, + "probability": 0.9852 + }, + { + "start": 1469.14, + "end": 1471.39, + "probability": 0.9951 + }, + { + "start": 1472.56, + "end": 1474.94, + "probability": 0.9728 + }, + { + "start": 1476.74, + "end": 1478.12, + "probability": 0.7681 + }, + { + "start": 1479.06, + "end": 1480.6, + "probability": 0.8235 + }, + { + "start": 1481.34, + "end": 1483.68, + "probability": 0.9893 + }, + { + "start": 1484.96, + "end": 1485.16, + "probability": 0.8499 + }, + { + "start": 1485.96, + "end": 1487.68, + "probability": 0.8977 + }, + { + "start": 1487.8, + "end": 1488.38, + "probability": 0.7112 + }, + { + "start": 1488.46, + "end": 1490.5, + "probability": 0.9665 + }, + { + "start": 1491.0, + "end": 1493.14, + "probability": 0.9591 + }, + { + "start": 1493.5, + "end": 1495.94, + "probability": 0.99 + }, + { + "start": 1496.36, + "end": 1496.94, + "probability": 0.9182 + }, + { + "start": 1497.84, + "end": 1502.06, + "probability": 0.9919 + }, + { + "start": 1502.06, + "end": 1505.94, + "probability": 0.9633 + }, + { + "start": 1506.4, + "end": 1510.3, + "probability": 0.9942 + }, + { + "start": 1510.3, + "end": 1514.2, + "probability": 0.9599 + }, + { + "start": 1514.64, + "end": 1517.48, + "probability": 0.9972 + }, + { + "start": 1517.5, + "end": 1520.02, + "probability": 0.9721 + }, + { + "start": 1520.58, + "end": 1526.18, + "probability": 0.9874 + }, + { + "start": 1528.2, + "end": 1534.68, + "probability": 0.9915 + }, + { + "start": 1535.34, + "end": 1538.22, + "probability": 0.9622 + }, + { + "start": 1538.42, + "end": 1539.96, + "probability": 0.6642 + }, + { + "start": 1540.52, + "end": 1541.26, + "probability": 0.7075 + }, + { + "start": 1541.6, + "end": 1543.44, + "probability": 0.9773 + }, + { + "start": 1543.98, + "end": 1545.4, + "probability": 0.9348 + }, + { + "start": 1546.68, + "end": 1547.56, + "probability": 0.9885 + }, + { + "start": 1548.18, + "end": 1550.0, + "probability": 0.991 + }, + { + "start": 1550.62, + "end": 1554.36, + "probability": 0.9746 + }, + { + "start": 1556.3, + "end": 1557.46, + "probability": 0.8872 + }, + { + "start": 1558.12, + "end": 1558.84, + "probability": 0.7434 + }, + { + "start": 1558.92, + "end": 1561.02, + "probability": 0.9111 + }, + { + "start": 1561.08, + "end": 1562.96, + "probability": 0.9756 + }, + { + "start": 1563.02, + "end": 1564.18, + "probability": 0.6126 + }, + { + "start": 1564.44, + "end": 1566.04, + "probability": 0.9976 + }, + { + "start": 1566.28, + "end": 1567.28, + "probability": 0.6419 + }, + { + "start": 1567.64, + "end": 1570.18, + "probability": 0.9918 + }, + { + "start": 1570.64, + "end": 1571.4, + "probability": 0.7542 + }, + { + "start": 1571.92, + "end": 1576.84, + "probability": 0.9619 + }, + { + "start": 1576.9, + "end": 1577.58, + "probability": 0.8072 + }, + { + "start": 1577.66, + "end": 1581.56, + "probability": 0.9712 + }, + { + "start": 1581.56, + "end": 1583.92, + "probability": 0.9963 + }, + { + "start": 1584.4, + "end": 1585.5, + "probability": 0.7367 + }, + { + "start": 1585.74, + "end": 1586.44, + "probability": 0.9694 + }, + { + "start": 1586.82, + "end": 1587.54, + "probability": 0.967 + }, + { + "start": 1587.56, + "end": 1588.8, + "probability": 0.998 + }, + { + "start": 1590.26, + "end": 1591.34, + "probability": 0.8406 + }, + { + "start": 1591.44, + "end": 1594.2, + "probability": 0.9485 + }, + { + "start": 1594.94, + "end": 1597.99, + "probability": 0.7748 + }, + { + "start": 1599.7, + "end": 1601.48, + "probability": 0.9977 + }, + { + "start": 1602.26, + "end": 1603.4, + "probability": 0.9435 + }, + { + "start": 1604.08, + "end": 1605.88, + "probability": 0.9907 + }, + { + "start": 1605.88, + "end": 1608.66, + "probability": 0.9165 + }, + { + "start": 1608.76, + "end": 1610.88, + "probability": 0.9535 + }, + { + "start": 1611.38, + "end": 1611.78, + "probability": 0.4918 + }, + { + "start": 1611.8, + "end": 1614.2, + "probability": 0.8383 + }, + { + "start": 1614.52, + "end": 1615.28, + "probability": 0.7206 + }, + { + "start": 1615.42, + "end": 1617.26, + "probability": 0.9961 + }, + { + "start": 1618.02, + "end": 1618.74, + "probability": 0.7815 + }, + { + "start": 1621.24, + "end": 1623.36, + "probability": 0.9171 + }, + { + "start": 1623.44, + "end": 1626.04, + "probability": 0.8662 + }, + { + "start": 1627.16, + "end": 1630.6, + "probability": 0.9982 + }, + { + "start": 1631.22, + "end": 1636.3, + "probability": 0.9869 + }, + { + "start": 1638.42, + "end": 1645.2, + "probability": 0.8788 + }, + { + "start": 1646.26, + "end": 1649.98, + "probability": 0.9917 + }, + { + "start": 1650.54, + "end": 1656.38, + "probability": 0.9909 + }, + { + "start": 1656.82, + "end": 1658.2, + "probability": 0.9892 + }, + { + "start": 1659.04, + "end": 1661.28, + "probability": 0.6768 + }, + { + "start": 1661.74, + "end": 1665.14, + "probability": 0.9909 + }, + { + "start": 1665.9, + "end": 1669.38, + "probability": 0.9958 + }, + { + "start": 1670.24, + "end": 1671.64, + "probability": 0.9852 + }, + { + "start": 1672.26, + "end": 1672.88, + "probability": 0.7554 + }, + { + "start": 1673.82, + "end": 1676.86, + "probability": 0.9971 + }, + { + "start": 1678.16, + "end": 1679.7, + "probability": 0.884 + }, + { + "start": 1680.52, + "end": 1681.7, + "probability": 0.9849 + }, + { + "start": 1684.1, + "end": 1685.62, + "probability": 0.7135 + }, + { + "start": 1686.24, + "end": 1686.72, + "probability": 0.8595 + }, + { + "start": 1686.82, + "end": 1688.64, + "probability": 0.9868 + }, + { + "start": 1688.7, + "end": 1691.24, + "probability": 0.9797 + }, + { + "start": 1691.78, + "end": 1693.5, + "probability": 0.9669 + }, + { + "start": 1693.76, + "end": 1695.6, + "probability": 0.942 + }, + { + "start": 1696.34, + "end": 1699.86, + "probability": 0.8173 + }, + { + "start": 1700.76, + "end": 1703.6, + "probability": 0.9746 + }, + { + "start": 1704.88, + "end": 1706.82, + "probability": 0.9505 + }, + { + "start": 1709.06, + "end": 1709.92, + "probability": 0.8313 + }, + { + "start": 1710.24, + "end": 1710.96, + "probability": 0.7092 + }, + { + "start": 1711.26, + "end": 1712.78, + "probability": 0.9918 + }, + { + "start": 1713.86, + "end": 1715.8, + "probability": 0.9766 + }, + { + "start": 1717.62, + "end": 1718.3, + "probability": 0.999 + }, + { + "start": 1718.88, + "end": 1719.64, + "probability": 0.8058 + }, + { + "start": 1720.68, + "end": 1721.76, + "probability": 0.9503 + }, + { + "start": 1722.76, + "end": 1723.72, + "probability": 0.6194 + }, + { + "start": 1723.82, + "end": 1724.32, + "probability": 0.0669 + }, + { + "start": 1724.32, + "end": 1724.53, + "probability": 0.7716 + }, + { + "start": 1725.44, + "end": 1727.52, + "probability": 0.8857 + }, + { + "start": 1728.08, + "end": 1731.2, + "probability": 0.9974 + }, + { + "start": 1731.94, + "end": 1732.74, + "probability": 0.5637 + }, + { + "start": 1733.6, + "end": 1736.1, + "probability": 0.9976 + }, + { + "start": 1736.94, + "end": 1738.08, + "probability": 0.9553 + }, + { + "start": 1738.68, + "end": 1743.98, + "probability": 0.994 + }, + { + "start": 1745.06, + "end": 1748.6, + "probability": 0.9938 + }, + { + "start": 1748.6, + "end": 1753.24, + "probability": 0.9994 + }, + { + "start": 1754.56, + "end": 1756.36, + "probability": 0.9863 + }, + { + "start": 1757.06, + "end": 1758.5, + "probability": 0.9826 + }, + { + "start": 1759.3, + "end": 1761.72, + "probability": 0.9955 + }, + { + "start": 1761.72, + "end": 1764.5, + "probability": 0.8533 + }, + { + "start": 1765.02, + "end": 1766.06, + "probability": 0.8008 + }, + { + "start": 1766.48, + "end": 1767.24, + "probability": 0.7032 + }, + { + "start": 1767.86, + "end": 1768.44, + "probability": 0.9224 + }, + { + "start": 1768.52, + "end": 1774.24, + "probability": 0.9788 + }, + { + "start": 1774.92, + "end": 1778.58, + "probability": 0.9927 + }, + { + "start": 1779.98, + "end": 1781.18, + "probability": 0.8093 + }, + { + "start": 1781.64, + "end": 1783.4, + "probability": 0.9054 + }, + { + "start": 1783.96, + "end": 1785.32, + "probability": 0.9072 + }, + { + "start": 1785.56, + "end": 1787.94, + "probability": 0.9776 + }, + { + "start": 1788.66, + "end": 1792.04, + "probability": 0.9938 + }, + { + "start": 1792.78, + "end": 1796.96, + "probability": 0.8775 + }, + { + "start": 1797.14, + "end": 1797.5, + "probability": 0.6379 + }, + { + "start": 1798.88, + "end": 1801.14, + "probability": 0.8438 + }, + { + "start": 1801.52, + "end": 1803.72, + "probability": 0.985 + }, + { + "start": 1804.38, + "end": 1805.82, + "probability": 0.9325 + }, + { + "start": 1806.4, + "end": 1809.04, + "probability": 0.9944 + }, + { + "start": 1810.04, + "end": 1812.04, + "probability": 0.9189 + }, + { + "start": 1824.88, + "end": 1826.1, + "probability": 0.2332 + }, + { + "start": 1827.02, + "end": 1828.42, + "probability": 0.4857 + }, + { + "start": 1829.0, + "end": 1829.26, + "probability": 0.6062 + }, + { + "start": 1837.06, + "end": 1837.34, + "probability": 0.3798 + }, + { + "start": 1837.44, + "end": 1841.18, + "probability": 0.6388 + }, + { + "start": 1842.18, + "end": 1848.0, + "probability": 0.9734 + }, + { + "start": 1848.98, + "end": 1854.78, + "probability": 0.9355 + }, + { + "start": 1855.6, + "end": 1860.28, + "probability": 0.9895 + }, + { + "start": 1861.54, + "end": 1866.58, + "probability": 0.9957 + }, + { + "start": 1867.9, + "end": 1870.56, + "probability": 0.6542 + }, + { + "start": 1871.26, + "end": 1872.58, + "probability": 0.5173 + }, + { + "start": 1873.84, + "end": 1878.14, + "probability": 0.9212 + }, + { + "start": 1879.04, + "end": 1881.62, + "probability": 0.9333 + }, + { + "start": 1882.58, + "end": 1888.36, + "probability": 0.7117 + }, + { + "start": 1888.48, + "end": 1888.96, + "probability": 0.623 + }, + { + "start": 1889.28, + "end": 1891.36, + "probability": 0.8241 + }, + { + "start": 1892.52, + "end": 1901.08, + "probability": 0.9561 + }, + { + "start": 1901.38, + "end": 1911.98, + "probability": 0.9784 + }, + { + "start": 1912.96, + "end": 1915.1, + "probability": 0.9922 + }, + { + "start": 1915.32, + "end": 1917.07, + "probability": 0.8843 + }, + { + "start": 1917.2, + "end": 1919.82, + "probability": 0.8638 + }, + { + "start": 1919.98, + "end": 1921.42, + "probability": 0.9473 + }, + { + "start": 1922.08, + "end": 1923.46, + "probability": 0.4965 + }, + { + "start": 1924.06, + "end": 1930.02, + "probability": 0.9394 + }, + { + "start": 1930.96, + "end": 1934.52, + "probability": 0.0684 + }, + { + "start": 1934.98, + "end": 1936.68, + "probability": 0.6069 + }, + { + "start": 1937.28, + "end": 1937.63, + "probability": 0.7058 + }, + { + "start": 1938.12, + "end": 1941.6, + "probability": 0.8873 + }, + { + "start": 1942.36, + "end": 1944.9, + "probability": 0.6668 + }, + { + "start": 1945.0, + "end": 1945.82, + "probability": 0.4766 + }, + { + "start": 1946.02, + "end": 1946.84, + "probability": 0.9128 + }, + { + "start": 1947.24, + "end": 1947.92, + "probability": 0.7424 + }, + { + "start": 1948.36, + "end": 1948.54, + "probability": 0.0861 + }, + { + "start": 1948.54, + "end": 1949.8, + "probability": 0.6484 + }, + { + "start": 1949.88, + "end": 1951.73, + "probability": 0.591 + }, + { + "start": 1952.74, + "end": 1954.98, + "probability": 0.5978 + }, + { + "start": 1955.0, + "end": 1956.08, + "probability": 0.7963 + }, + { + "start": 1956.28, + "end": 1958.93, + "probability": 0.9749 + }, + { + "start": 1960.38, + "end": 1961.92, + "probability": 0.6613 + }, + { + "start": 1962.74, + "end": 1964.86, + "probability": 0.9293 + }, + { + "start": 1965.62, + "end": 1967.92, + "probability": 0.4318 + }, + { + "start": 1969.12, + "end": 1976.5, + "probability": 0.9703 + }, + { + "start": 1977.08, + "end": 1984.62, + "probability": 0.9958 + }, + { + "start": 1985.9, + "end": 1990.62, + "probability": 0.9979 + }, + { + "start": 1991.56, + "end": 1994.96, + "probability": 0.9436 + }, + { + "start": 1996.0, + "end": 1998.6, + "probability": 0.8672 + }, + { + "start": 1999.22, + "end": 2005.06, + "probability": 0.9839 + }, + { + "start": 2005.32, + "end": 2006.86, + "probability": 0.944 + }, + { + "start": 2006.96, + "end": 2008.26, + "probability": 0.6402 + }, + { + "start": 2008.94, + "end": 2012.56, + "probability": 0.9373 + }, + { + "start": 2012.96, + "end": 2015.0, + "probability": 0.9219 + }, + { + "start": 2015.4, + "end": 2019.4, + "probability": 0.7277 + }, + { + "start": 2019.64, + "end": 2020.8, + "probability": 0.5119 + }, + { + "start": 2022.22, + "end": 2026.03, + "probability": 0.957 + }, + { + "start": 2027.04, + "end": 2028.56, + "probability": 0.7374 + }, + { + "start": 2028.64, + "end": 2030.14, + "probability": 0.9414 + }, + { + "start": 2030.54, + "end": 2033.7, + "probability": 0.963 + }, + { + "start": 2033.98, + "end": 2036.74, + "probability": 0.9757 + }, + { + "start": 2037.64, + "end": 2042.74, + "probability": 0.9599 + }, + { + "start": 2043.38, + "end": 2046.92, + "probability": 0.6568 + }, + { + "start": 2047.36, + "end": 2053.08, + "probability": 0.8275 + }, + { + "start": 2053.94, + "end": 2056.12, + "probability": 0.9788 + }, + { + "start": 2057.18, + "end": 2060.94, + "probability": 0.9891 + }, + { + "start": 2061.54, + "end": 2063.16, + "probability": 0.9979 + }, + { + "start": 2064.44, + "end": 2065.32, + "probability": 0.6263 + }, + { + "start": 2067.2, + "end": 2070.18, + "probability": 0.8873 + }, + { + "start": 2071.82, + "end": 2073.56, + "probability": 0.7145 + }, + { + "start": 2073.72, + "end": 2075.46, + "probability": 0.728 + }, + { + "start": 2075.64, + "end": 2075.99, + "probability": 0.7294 + }, + { + "start": 2076.7, + "end": 2078.28, + "probability": 0.8973 + }, + { + "start": 2079.0, + "end": 2079.88, + "probability": 0.6497 + }, + { + "start": 2080.28, + "end": 2080.52, + "probability": 0.6655 + }, + { + "start": 2081.06, + "end": 2081.56, + "probability": 0.9082 + }, + { + "start": 2081.64, + "end": 2084.74, + "probability": 0.9154 + }, + { + "start": 2085.32, + "end": 2085.78, + "probability": 0.4739 + }, + { + "start": 2085.8, + "end": 2086.06, + "probability": 0.86 + }, + { + "start": 2088.52, + "end": 2093.48, + "probability": 0.7511 + }, + { + "start": 2094.44, + "end": 2100.38, + "probability": 0.8688 + }, + { + "start": 2101.64, + "end": 2103.1, + "probability": 0.748 + }, + { + "start": 2103.72, + "end": 2107.96, + "probability": 0.7435 + }, + { + "start": 2108.72, + "end": 2111.2, + "probability": 0.8799 + }, + { + "start": 2112.9, + "end": 2117.9, + "probability": 0.9969 + }, + { + "start": 2119.6, + "end": 2120.6, + "probability": 0.8664 + }, + { + "start": 2121.36, + "end": 2124.88, + "probability": 0.7553 + }, + { + "start": 2125.26, + "end": 2131.52, + "probability": 0.9926 + }, + { + "start": 2131.58, + "end": 2134.66, + "probability": 0.9766 + }, + { + "start": 2135.46, + "end": 2140.12, + "probability": 0.9233 + }, + { + "start": 2140.74, + "end": 2143.72, + "probability": 0.9593 + }, + { + "start": 2144.48, + "end": 2148.6, + "probability": 0.9764 + }, + { + "start": 2149.2, + "end": 2149.42, + "probability": 0.975 + }, + { + "start": 2150.06, + "end": 2152.04, + "probability": 0.9331 + }, + { + "start": 2153.26, + "end": 2154.28, + "probability": 0.5565 + }, + { + "start": 2155.02, + "end": 2159.12, + "probability": 0.9626 + }, + { + "start": 2160.22, + "end": 2161.7, + "probability": 0.0951 + }, + { + "start": 2162.7, + "end": 2165.82, + "probability": 0.6144 + }, + { + "start": 2166.62, + "end": 2166.62, + "probability": 0.0745 + }, + { + "start": 2166.62, + "end": 2167.48, + "probability": 0.5684 + }, + { + "start": 2167.66, + "end": 2168.82, + "probability": 0.4929 + }, + { + "start": 2169.06, + "end": 2169.48, + "probability": 0.2063 + }, + { + "start": 2169.8, + "end": 2171.2, + "probability": 0.7772 + }, + { + "start": 2171.24, + "end": 2172.54, + "probability": 0.5818 + }, + { + "start": 2172.68, + "end": 2174.81, + "probability": 0.9365 + }, + { + "start": 2175.24, + "end": 2176.98, + "probability": 0.7375 + }, + { + "start": 2177.1, + "end": 2178.66, + "probability": 0.8735 + }, + { + "start": 2178.96, + "end": 2181.28, + "probability": 0.9902 + }, + { + "start": 2181.96, + "end": 2186.52, + "probability": 0.9951 + }, + { + "start": 2187.22, + "end": 2190.24, + "probability": 0.9893 + }, + { + "start": 2190.24, + "end": 2194.32, + "probability": 0.6687 + }, + { + "start": 2194.4, + "end": 2197.91, + "probability": 0.9577 + }, + { + "start": 2200.32, + "end": 2205.08, + "probability": 0.9993 + }, + { + "start": 2205.68, + "end": 2207.56, + "probability": 0.9971 + }, + { + "start": 2207.92, + "end": 2215.08, + "probability": 0.9941 + }, + { + "start": 2215.32, + "end": 2216.6, + "probability": 0.8794 + }, + { + "start": 2217.16, + "end": 2218.96, + "probability": 0.9821 + }, + { + "start": 2221.16, + "end": 2224.28, + "probability": 0.9443 + }, + { + "start": 2227.0, + "end": 2234.3, + "probability": 0.9116 + }, + { + "start": 2235.0, + "end": 2239.1, + "probability": 0.9948 + }, + { + "start": 2239.62, + "end": 2240.12, + "probability": 0.3492 + }, + { + "start": 2241.98, + "end": 2244.44, + "probability": 0.8848 + }, + { + "start": 2244.5, + "end": 2248.16, + "probability": 0.9834 + }, + { + "start": 2248.64, + "end": 2250.7, + "probability": 0.9583 + }, + { + "start": 2251.22, + "end": 2256.22, + "probability": 0.9557 + }, + { + "start": 2256.22, + "end": 2259.38, + "probability": 0.9981 + }, + { + "start": 2260.18, + "end": 2263.04, + "probability": 0.8962 + }, + { + "start": 2263.5, + "end": 2265.84, + "probability": 0.5829 + }, + { + "start": 2266.36, + "end": 2270.58, + "probability": 0.8536 + }, + { + "start": 2270.78, + "end": 2273.5, + "probability": 0.8898 + }, + { + "start": 2274.34, + "end": 2275.16, + "probability": 0.6671 + }, + { + "start": 2275.9, + "end": 2278.83, + "probability": 0.5781 + }, + { + "start": 2279.14, + "end": 2280.64, + "probability": 0.9937 + }, + { + "start": 2281.4, + "end": 2290.7, + "probability": 0.9135 + }, + { + "start": 2291.44, + "end": 2292.58, + "probability": 0.567 + }, + { + "start": 2293.18, + "end": 2297.18, + "probability": 0.8213 + }, + { + "start": 2297.96, + "end": 2304.02, + "probability": 0.9807 + }, + { + "start": 2304.9, + "end": 2306.52, + "probability": 0.8903 + }, + { + "start": 2307.1, + "end": 2309.18, + "probability": 0.9355 + }, + { + "start": 2310.12, + "end": 2310.84, + "probability": 0.2201 + }, + { + "start": 2310.92, + "end": 2311.78, + "probability": 0.7569 + }, + { + "start": 2312.22, + "end": 2316.08, + "probability": 0.9788 + }, + { + "start": 2316.82, + "end": 2317.08, + "probability": 0.7361 + }, + { + "start": 2317.96, + "end": 2320.31, + "probability": 0.9873 + }, + { + "start": 2320.94, + "end": 2324.52, + "probability": 0.9084 + }, + { + "start": 2324.64, + "end": 2325.42, + "probability": 0.9523 + }, + { + "start": 2326.24, + "end": 2329.6, + "probability": 0.9466 + }, + { + "start": 2330.12, + "end": 2331.48, + "probability": 0.9419 + }, + { + "start": 2331.64, + "end": 2338.3, + "probability": 0.9816 + }, + { + "start": 2338.46, + "end": 2342.2, + "probability": 0.9543 + }, + { + "start": 2342.58, + "end": 2344.48, + "probability": 0.9563 + }, + { + "start": 2345.36, + "end": 2347.46, + "probability": 0.9939 + }, + { + "start": 2348.08, + "end": 2350.44, + "probability": 0.7335 + }, + { + "start": 2351.4, + "end": 2354.28, + "probability": 0.9922 + }, + { + "start": 2355.04, + "end": 2355.96, + "probability": 0.8327 + }, + { + "start": 2356.02, + "end": 2360.12, + "probability": 0.9861 + }, + { + "start": 2360.72, + "end": 2365.82, + "probability": 0.9969 + }, + { + "start": 2365.98, + "end": 2368.8, + "probability": 0.8472 + }, + { + "start": 2369.64, + "end": 2370.58, + "probability": 0.9211 + }, + { + "start": 2371.16, + "end": 2375.72, + "probability": 0.9978 + }, + { + "start": 2376.28, + "end": 2377.48, + "probability": 0.4637 + }, + { + "start": 2377.58, + "end": 2380.84, + "probability": 0.9198 + }, + { + "start": 2381.0, + "end": 2384.48, + "probability": 0.9806 + }, + { + "start": 2384.92, + "end": 2389.14, + "probability": 0.9697 + }, + { + "start": 2389.9, + "end": 2392.68, + "probability": 0.8028 + }, + { + "start": 2392.8, + "end": 2396.36, + "probability": 0.9961 + }, + { + "start": 2397.56, + "end": 2402.92, + "probability": 0.9622 + }, + { + "start": 2403.04, + "end": 2403.59, + "probability": 0.9138 + }, + { + "start": 2403.9, + "end": 2406.64, + "probability": 0.9979 + }, + { + "start": 2406.84, + "end": 2407.24, + "probability": 0.9211 + }, + { + "start": 2407.38, + "end": 2409.32, + "probability": 0.9797 + }, + { + "start": 2409.62, + "end": 2409.84, + "probability": 0.6728 + }, + { + "start": 2410.46, + "end": 2412.28, + "probability": 0.6378 + }, + { + "start": 2412.32, + "end": 2416.7, + "probability": 0.7445 + }, + { + "start": 2417.22, + "end": 2418.98, + "probability": 0.9746 + }, + { + "start": 2420.72, + "end": 2422.18, + "probability": 0.8527 + }, + { + "start": 2422.82, + "end": 2426.4, + "probability": 0.9219 + }, + { + "start": 2426.52, + "end": 2427.56, + "probability": 0.9927 + }, + { + "start": 2428.08, + "end": 2432.82, + "probability": 0.8254 + }, + { + "start": 2433.12, + "end": 2435.2, + "probability": 0.0125 + }, + { + "start": 2436.9, + "end": 2438.16, + "probability": 0.8882 + }, + { + "start": 2438.64, + "end": 2439.68, + "probability": 0.656 + }, + { + "start": 2439.78, + "end": 2440.8, + "probability": 0.7385 + }, + { + "start": 2442.02, + "end": 2444.32, + "probability": 0.7786 + }, + { + "start": 2445.34, + "end": 2447.92, + "probability": 0.978 + }, + { + "start": 2449.24, + "end": 2451.28, + "probability": 0.7414 + }, + { + "start": 2452.84, + "end": 2453.64, + "probability": 0.9042 + }, + { + "start": 2455.38, + "end": 2456.66, + "probability": 0.78 + }, + { + "start": 2457.54, + "end": 2459.88, + "probability": 0.993 + }, + { + "start": 2460.68, + "end": 2461.3, + "probability": 0.9881 + }, + { + "start": 2461.5, + "end": 2462.22, + "probability": 0.9758 + }, + { + "start": 2462.3, + "end": 2464.7, + "probability": 0.9962 + }, + { + "start": 2466.28, + "end": 2468.25, + "probability": 0.6047 + }, + { + "start": 2468.36, + "end": 2469.48, + "probability": 0.9771 + }, + { + "start": 2470.48, + "end": 2471.62, + "probability": 0.9974 + }, + { + "start": 2473.18, + "end": 2474.06, + "probability": 0.8286 + }, + { + "start": 2474.62, + "end": 2476.9, + "probability": 0.9841 + }, + { + "start": 2478.16, + "end": 2481.64, + "probability": 0.9852 + }, + { + "start": 2482.38, + "end": 2483.8, + "probability": 0.9972 + }, + { + "start": 2484.94, + "end": 2489.04, + "probability": 0.9708 + }, + { + "start": 2491.72, + "end": 2492.56, + "probability": 0.7855 + }, + { + "start": 2493.8, + "end": 2498.06, + "probability": 0.9915 + }, + { + "start": 2501.04, + "end": 2502.86, + "probability": 0.9895 + }, + { + "start": 2503.9, + "end": 2505.5, + "probability": 0.9988 + }, + { + "start": 2507.06, + "end": 2510.2, + "probability": 0.9878 + }, + { + "start": 2512.04, + "end": 2517.1, + "probability": 0.5479 + }, + { + "start": 2518.42, + "end": 2519.98, + "probability": 0.9859 + }, + { + "start": 2521.26, + "end": 2521.82, + "probability": 0.1291 + }, + { + "start": 2522.56, + "end": 2525.06, + "probability": 0.1117 + }, + { + "start": 2525.84, + "end": 2526.54, + "probability": 0.2673 + }, + { + "start": 2526.86, + "end": 2527.41, + "probability": 0.6816 + }, + { + "start": 2527.9, + "end": 2528.5, + "probability": 0.9368 + }, + { + "start": 2530.0, + "end": 2531.3, + "probability": 0.0726 + }, + { + "start": 2533.5, + "end": 2535.14, + "probability": 0.2854 + }, + { + "start": 2535.78, + "end": 2535.86, + "probability": 0.2776 + }, + { + "start": 2535.86, + "end": 2535.86, + "probability": 0.0418 + }, + { + "start": 2535.86, + "end": 2537.78, + "probability": 0.7635 + }, + { + "start": 2537.9, + "end": 2538.26, + "probability": 0.2244 + }, + { + "start": 2538.42, + "end": 2540.36, + "probability": 0.5795 + }, + { + "start": 2541.08, + "end": 2541.6, + "probability": 0.6717 + }, + { + "start": 2542.46, + "end": 2546.8, + "probability": 0.9221 + }, + { + "start": 2547.38, + "end": 2547.64, + "probability": 0.0697 + }, + { + "start": 2547.64, + "end": 2549.44, + "probability": 0.3406 + }, + { + "start": 2550.48, + "end": 2552.98, + "probability": 0.9548 + }, + { + "start": 2552.98, + "end": 2554.66, + "probability": 0.7413 + }, + { + "start": 2555.22, + "end": 2559.1, + "probability": 0.8587 + }, + { + "start": 2559.72, + "end": 2562.16, + "probability": 0.9525 + }, + { + "start": 2562.8, + "end": 2563.36, + "probability": 0.5586 + }, + { + "start": 2563.48, + "end": 2563.9, + "probability": 0.6228 + }, + { + "start": 2563.96, + "end": 2564.22, + "probability": 0.8625 + }, + { + "start": 2564.34, + "end": 2565.52, + "probability": 0.9383 + }, + { + "start": 2566.76, + "end": 2566.98, + "probability": 0.6445 + }, + { + "start": 2567.12, + "end": 2568.46, + "probability": 0.9967 + }, + { + "start": 2568.88, + "end": 2572.43, + "probability": 0.9854 + }, + { + "start": 2572.86, + "end": 2574.02, + "probability": 0.9639 + }, + { + "start": 2574.8, + "end": 2575.84, + "probability": 0.7603 + }, + { + "start": 2577.14, + "end": 2579.32, + "probability": 0.9936 + }, + { + "start": 2581.38, + "end": 2582.42, + "probability": 0.8074 + }, + { + "start": 2585.12, + "end": 2586.3, + "probability": 0.9978 + }, + { + "start": 2587.48, + "end": 2592.2, + "probability": 0.9636 + }, + { + "start": 2593.24, + "end": 2593.88, + "probability": 0.9644 + }, + { + "start": 2594.72, + "end": 2596.22, + "probability": 0.7711 + }, + { + "start": 2597.2, + "end": 2598.04, + "probability": 0.8878 + }, + { + "start": 2599.86, + "end": 2600.62, + "probability": 0.9753 + }, + { + "start": 2601.9, + "end": 2603.68, + "probability": 0.8829 + }, + { + "start": 2604.62, + "end": 2605.76, + "probability": 0.9802 + }, + { + "start": 2605.88, + "end": 2607.28, + "probability": 0.9692 + }, + { + "start": 2607.42, + "end": 2608.34, + "probability": 0.9988 + }, + { + "start": 2609.34, + "end": 2612.28, + "probability": 0.8523 + }, + { + "start": 2613.48, + "end": 2615.08, + "probability": 0.9979 + }, + { + "start": 2616.7, + "end": 2617.48, + "probability": 0.8182 + }, + { + "start": 2618.3, + "end": 2619.96, + "probability": 0.9134 + }, + { + "start": 2621.12, + "end": 2623.24, + "probability": 0.9911 + }, + { + "start": 2623.32, + "end": 2623.52, + "probability": 0.1111 + }, + { + "start": 2623.52, + "end": 2625.68, + "probability": 0.229 + }, + { + "start": 2625.96, + "end": 2626.02, + "probability": 0.2751 + }, + { + "start": 2626.02, + "end": 2630.6, + "probability": 0.9932 + }, + { + "start": 2632.38, + "end": 2637.46, + "probability": 0.9725 + }, + { + "start": 2637.46, + "end": 2640.76, + "probability": 0.9951 + }, + { + "start": 2641.28, + "end": 2642.6, + "probability": 0.1561 + }, + { + "start": 2642.6, + "end": 2642.72, + "probability": 0.0162 + }, + { + "start": 2642.72, + "end": 2643.64, + "probability": 0.3681 + }, + { + "start": 2644.18, + "end": 2647.06, + "probability": 0.8325 + }, + { + "start": 2647.44, + "end": 2648.7, + "probability": 0.7479 + }, + { + "start": 2649.3, + "end": 2653.18, + "probability": 0.7605 + }, + { + "start": 2653.5, + "end": 2653.5, + "probability": 0.2504 + }, + { + "start": 2653.52, + "end": 2653.52, + "probability": 0.398 + }, + { + "start": 2653.56, + "end": 2654.9, + "probability": 0.6062 + }, + { + "start": 2655.41, + "end": 2659.1, + "probability": 0.963 + }, + { + "start": 2659.74, + "end": 2661.36, + "probability": 0.7945 + }, + { + "start": 2661.44, + "end": 2662.02, + "probability": 0.6347 + }, + { + "start": 2662.04, + "end": 2664.18, + "probability": 0.9475 + }, + { + "start": 2665.16, + "end": 2665.38, + "probability": 0.6138 + }, + { + "start": 2666.28, + "end": 2666.72, + "probability": 0.6869 + }, + { + "start": 2666.88, + "end": 2668.46, + "probability": 0.9553 + }, + { + "start": 2669.1, + "end": 2671.8, + "probability": 0.9831 + }, + { + "start": 2672.54, + "end": 2672.54, + "probability": 0.0349 + }, + { + "start": 2672.54, + "end": 2674.2, + "probability": 0.5468 + }, + { + "start": 2674.46, + "end": 2676.58, + "probability": 0.732 + }, + { + "start": 2677.2, + "end": 2677.66, + "probability": 0.0139 + }, + { + "start": 2677.82, + "end": 2678.78, + "probability": 0.8161 + }, + { + "start": 2678.88, + "end": 2682.48, + "probability": 0.8918 + }, + { + "start": 2682.6, + "end": 2683.04, + "probability": 0.6129 + }, + { + "start": 2683.38, + "end": 2685.78, + "probability": 0.969 + }, + { + "start": 2685.88, + "end": 2686.12, + "probability": 0.4684 + }, + { + "start": 2686.16, + "end": 2687.12, + "probability": 0.8303 + }, + { + "start": 2687.88, + "end": 2687.98, + "probability": 0.1664 + }, + { + "start": 2690.06, + "end": 2695.68, + "probability": 0.0387 + }, + { + "start": 2695.96, + "end": 2697.42, + "probability": 0.1125 + }, + { + "start": 2697.42, + "end": 2699.42, + "probability": 0.181 + }, + { + "start": 2700.1, + "end": 2702.12, + "probability": 0.078 + }, + { + "start": 2702.84, + "end": 2703.51, + "probability": 0.8826 + }, + { + "start": 2704.08, + "end": 2705.28, + "probability": 0.9267 + }, + { + "start": 2705.94, + "end": 2706.38, + "probability": 0.0047 + }, + { + "start": 2706.38, + "end": 2708.92, + "probability": 0.6628 + }, + { + "start": 2709.1, + "end": 2709.87, + "probability": 0.7307 + }, + { + "start": 2711.12, + "end": 2713.66, + "probability": 0.9666 + }, + { + "start": 2715.1, + "end": 2720.06, + "probability": 0.8875 + }, + { + "start": 2720.66, + "end": 2722.84, + "probability": 0.9728 + }, + { + "start": 2723.72, + "end": 2725.46, + "probability": 0.8503 + }, + { + "start": 2726.16, + "end": 2726.9, + "probability": 0.1159 + }, + { + "start": 2727.0, + "end": 2732.52, + "probability": 0.9556 + }, + { + "start": 2732.62, + "end": 2733.6, + "probability": 0.0552 + }, + { + "start": 2733.6, + "end": 2733.68, + "probability": 0.052 + }, + { + "start": 2733.68, + "end": 2736.7, + "probability": 0.6226 + }, + { + "start": 2736.92, + "end": 2737.02, + "probability": 0.0529 + }, + { + "start": 2737.02, + "end": 2740.68, + "probability": 0.9691 + }, + { + "start": 2741.94, + "end": 2744.26, + "probability": 0.9095 + }, + { + "start": 2744.92, + "end": 2746.16, + "probability": 0.8668 + }, + { + "start": 2748.46, + "end": 2751.9, + "probability": 0.9789 + }, + { + "start": 2753.0, + "end": 2754.24, + "probability": 0.9924 + }, + { + "start": 2754.96, + "end": 2756.64, + "probability": 0.9748 + }, + { + "start": 2757.1, + "end": 2757.9, + "probability": 0.8761 + }, + { + "start": 2758.16, + "end": 2759.16, + "probability": 0.9273 + }, + { + "start": 2760.04, + "end": 2761.52, + "probability": 0.7752 + }, + { + "start": 2761.62, + "end": 2764.2, + "probability": 0.8248 + }, + { + "start": 2765.12, + "end": 2767.76, + "probability": 0.9766 + }, + { + "start": 2768.2, + "end": 2770.21, + "probability": 0.0979 + }, + { + "start": 2772.18, + "end": 2777.82, + "probability": 0.9277 + }, + { + "start": 2778.02, + "end": 2778.46, + "probability": 0.297 + }, + { + "start": 2778.56, + "end": 2778.76, + "probability": 0.1665 + }, + { + "start": 2778.76, + "end": 2778.76, + "probability": 0.3079 + }, + { + "start": 2778.98, + "end": 2780.32, + "probability": 0.9964 + }, + { + "start": 2780.78, + "end": 2782.62, + "probability": 0.885 + }, + { + "start": 2784.8, + "end": 2786.54, + "probability": 0.8401 + }, + { + "start": 2788.8, + "end": 2789.4, + "probability": 0.9446 + }, + { + "start": 2790.32, + "end": 2791.24, + "probability": 0.9966 + }, + { + "start": 2792.68, + "end": 2793.7, + "probability": 0.8058 + }, + { + "start": 2794.62, + "end": 2795.34, + "probability": 0.9542 + }, + { + "start": 2796.28, + "end": 2797.58, + "probability": 0.9907 + }, + { + "start": 2798.16, + "end": 2800.09, + "probability": 0.9962 + }, + { + "start": 2801.9, + "end": 2802.64, + "probability": 0.5696 + }, + { + "start": 2803.58, + "end": 2806.28, + "probability": 0.8636 + }, + { + "start": 2806.94, + "end": 2807.44, + "probability": 0.0893 + }, + { + "start": 2807.44, + "end": 2809.52, + "probability": 0.5455 + }, + { + "start": 2810.1, + "end": 2811.64, + "probability": 0.4528 + }, + { + "start": 2812.24, + "end": 2813.78, + "probability": 0.4832 + }, + { + "start": 2814.78, + "end": 2815.6, + "probability": 0.78 + }, + { + "start": 2819.0, + "end": 2819.52, + "probability": 0.9838 + }, + { + "start": 2820.6, + "end": 2823.18, + "probability": 0.773 + }, + { + "start": 2824.1, + "end": 2824.1, + "probability": 0.0154 + }, + { + "start": 2824.12, + "end": 2826.16, + "probability": 0.8002 + }, + { + "start": 2827.56, + "end": 2828.33, + "probability": 0.3268 + }, + { + "start": 2829.74, + "end": 2831.82, + "probability": 0.9949 + }, + { + "start": 2832.7, + "end": 2835.12, + "probability": 0.7954 + }, + { + "start": 2835.24, + "end": 2836.63, + "probability": 0.6941 + }, + { + "start": 2837.74, + "end": 2838.64, + "probability": 0.9106 + }, + { + "start": 2839.36, + "end": 2841.92, + "probability": 0.8755 + }, + { + "start": 2845.7, + "end": 2848.76, + "probability": 0.1229 + }, + { + "start": 2848.84, + "end": 2850.48, + "probability": 0.5057 + }, + { + "start": 2850.54, + "end": 2853.26, + "probability": 0.6413 + }, + { + "start": 2853.9, + "end": 2856.32, + "probability": 0.7996 + }, + { + "start": 2858.18, + "end": 2858.82, + "probability": 0.98 + }, + { + "start": 2860.3, + "end": 2861.64, + "probability": 0.9985 + }, + { + "start": 2863.36, + "end": 2863.84, + "probability": 0.7742 + }, + { + "start": 2864.54, + "end": 2865.4, + "probability": 0.9974 + }, + { + "start": 2868.18, + "end": 2868.82, + "probability": 0.9653 + }, + { + "start": 2871.18, + "end": 2872.42, + "probability": 0.9753 + }, + { + "start": 2873.02, + "end": 2875.6, + "probability": 0.9912 + }, + { + "start": 2877.52, + "end": 2878.96, + "probability": 0.9851 + }, + { + "start": 2880.16, + "end": 2882.9, + "probability": 0.8811 + }, + { + "start": 2883.9, + "end": 2885.08, + "probability": 0.772 + }, + { + "start": 2885.66, + "end": 2887.62, + "probability": 0.835 + }, + { + "start": 2889.2, + "end": 2891.76, + "probability": 0.989 + }, + { + "start": 2891.76, + "end": 2894.08, + "probability": 0.9865 + }, + { + "start": 2894.6, + "end": 2896.82, + "probability": 0.9949 + }, + { + "start": 2897.4, + "end": 2898.24, + "probability": 0.8367 + }, + { + "start": 2899.7, + "end": 2900.02, + "probability": 0.3827 + }, + { + "start": 2900.18, + "end": 2901.72, + "probability": 0.9642 + }, + { + "start": 2902.8, + "end": 2903.98, + "probability": 0.989 + }, + { + "start": 2905.42, + "end": 2907.4, + "probability": 0.7873 + }, + { + "start": 2908.56, + "end": 2914.12, + "probability": 0.9705 + }, + { + "start": 2914.58, + "end": 2917.88, + "probability": 0.9789 + }, + { + "start": 2921.12, + "end": 2921.96, + "probability": 0.5542 + }, + { + "start": 2923.85, + "end": 2925.88, + "probability": 0.69 + }, + { + "start": 2927.06, + "end": 2927.42, + "probability": 0.5617 + }, + { + "start": 2928.3, + "end": 2929.42, + "probability": 0.9128 + }, + { + "start": 2929.54, + "end": 2931.88, + "probability": 0.8231 + }, + { + "start": 2932.0, + "end": 2932.8, + "probability": 0.3014 + }, + { + "start": 2933.78, + "end": 2933.8, + "probability": 0.0109 + }, + { + "start": 2933.8, + "end": 2935.42, + "probability": 0.0749 + }, + { + "start": 2936.92, + "end": 2937.44, + "probability": 0.7758 + }, + { + "start": 2937.58, + "end": 2938.48, + "probability": 0.596 + }, + { + "start": 2938.78, + "end": 2940.72, + "probability": 0.7332 + }, + { + "start": 2941.06, + "end": 2941.88, + "probability": 0.8975 + }, + { + "start": 2942.08, + "end": 2944.82, + "probability": 0.994 + }, + { + "start": 2945.64, + "end": 2946.52, + "probability": 0.0837 + }, + { + "start": 2946.52, + "end": 2947.52, + "probability": 0.5362 + }, + { + "start": 2947.52, + "end": 2948.15, + "probability": 0.5254 + }, + { + "start": 2948.4, + "end": 2951.58, + "probability": 0.9523 + }, + { + "start": 2951.58, + "end": 2954.46, + "probability": 0.4296 + }, + { + "start": 2954.72, + "end": 2958.24, + "probability": 0.9417 + }, + { + "start": 2958.24, + "end": 2962.06, + "probability": 0.989 + }, + { + "start": 2962.72, + "end": 2965.68, + "probability": 0.9908 + }, + { + "start": 2966.04, + "end": 2966.96, + "probability": 0.9907 + }, + { + "start": 2967.88, + "end": 2969.6, + "probability": 0.9968 + }, + { + "start": 2969.82, + "end": 2971.25, + "probability": 0.9956 + }, + { + "start": 2972.4, + "end": 2976.16, + "probability": 0.9917 + }, + { + "start": 2977.08, + "end": 2981.07, + "probability": 0.9733 + }, + { + "start": 2982.88, + "end": 2985.28, + "probability": 0.9569 + }, + { + "start": 2986.04, + "end": 2990.18, + "probability": 0.9978 + }, + { + "start": 2990.28, + "end": 2991.52, + "probability": 0.9398 + }, + { + "start": 2993.04, + "end": 2996.22, + "probability": 0.9697 + }, + { + "start": 2997.88, + "end": 2999.08, + "probability": 0.8374 + }, + { + "start": 3000.86, + "end": 3002.82, + "probability": 0.819 + }, + { + "start": 3002.88, + "end": 3006.1, + "probability": 0.9969 + }, + { + "start": 3006.1, + "end": 3009.16, + "probability": 0.9941 + }, + { + "start": 3011.02, + "end": 3016.02, + "probability": 0.978 + }, + { + "start": 3016.46, + "end": 3019.88, + "probability": 0.7948 + }, + { + "start": 3021.64, + "end": 3021.94, + "probability": 0.7913 + }, + { + "start": 3022.8, + "end": 3026.24, + "probability": 0.9335 + }, + { + "start": 3027.42, + "end": 3029.38, + "probability": 0.9858 + }, + { + "start": 3030.34, + "end": 3031.14, + "probability": 0.5765 + }, + { + "start": 3031.2, + "end": 3031.76, + "probability": 0.733 + }, + { + "start": 3031.94, + "end": 3034.5, + "probability": 0.9917 + }, + { + "start": 3035.04, + "end": 3042.32, + "probability": 0.9836 + }, + { + "start": 3043.06, + "end": 3044.46, + "probability": 0.9552 + }, + { + "start": 3045.32, + "end": 3046.8, + "probability": 0.7783 + }, + { + "start": 3046.84, + "end": 3049.3, + "probability": 0.9694 + }, + { + "start": 3049.72, + "end": 3053.96, + "probability": 0.7673 + }, + { + "start": 3053.96, + "end": 3058.2, + "probability": 0.9968 + }, + { + "start": 3059.84, + "end": 3062.3, + "probability": 0.9834 + }, + { + "start": 3063.5, + "end": 3063.8, + "probability": 0.7589 + }, + { + "start": 3065.22, + "end": 3068.8, + "probability": 0.9065 + }, + { + "start": 3069.1, + "end": 3069.1, + "probability": 0.1448 + }, + { + "start": 3069.1, + "end": 3069.82, + "probability": 0.427 + }, + { + "start": 3070.16, + "end": 3071.84, + "probability": 0.8223 + }, + { + "start": 3072.46, + "end": 3074.02, + "probability": 0.7772 + }, + { + "start": 3074.08, + "end": 3076.68, + "probability": 0.9252 + }, + { + "start": 3077.28, + "end": 3079.42, + "probability": 0.8785 + }, + { + "start": 3080.5, + "end": 3083.2, + "probability": 0.9729 + }, + { + "start": 3083.38, + "end": 3085.32, + "probability": 0.5551 + }, + { + "start": 3086.22, + "end": 3091.56, + "probability": 0.9365 + }, + { + "start": 3091.88, + "end": 3092.47, + "probability": 0.8885 + }, + { + "start": 3093.06, + "end": 3095.54, + "probability": 0.9849 + }, + { + "start": 3096.64, + "end": 3098.06, + "probability": 0.8775 + }, + { + "start": 3099.34, + "end": 3100.34, + "probability": 0.8424 + }, + { + "start": 3102.54, + "end": 3106.12, + "probability": 0.9182 + }, + { + "start": 3107.52, + "end": 3109.96, + "probability": 0.9786 + }, + { + "start": 3110.86, + "end": 3112.58, + "probability": 0.9207 + }, + { + "start": 3113.24, + "end": 3116.28, + "probability": 0.9954 + }, + { + "start": 3116.6, + "end": 3120.26, + "probability": 0.9948 + }, + { + "start": 3121.48, + "end": 3124.0, + "probability": 0.9489 + }, + { + "start": 3124.88, + "end": 3126.24, + "probability": 0.9866 + }, + { + "start": 3126.32, + "end": 3127.36, + "probability": 0.87 + }, + { + "start": 3129.9, + "end": 3130.8, + "probability": 0.8308 + }, + { + "start": 3130.82, + "end": 3131.56, + "probability": 0.9065 + }, + { + "start": 3131.8, + "end": 3134.08, + "probability": 0.9746 + }, + { + "start": 3138.42, + "end": 3141.48, + "probability": 0.8367 + }, + { + "start": 3141.66, + "end": 3144.21, + "probability": 0.9788 + }, + { + "start": 3145.94, + "end": 3147.96, + "probability": 0.9521 + }, + { + "start": 3148.98, + "end": 3149.41, + "probability": 0.7422 + }, + { + "start": 3150.54, + "end": 3151.48, + "probability": 0.7729 + }, + { + "start": 3152.36, + "end": 3154.7, + "probability": 0.9867 + }, + { + "start": 3155.28, + "end": 3157.22, + "probability": 0.9087 + }, + { + "start": 3158.72, + "end": 3159.68, + "probability": 0.7916 + }, + { + "start": 3161.0, + "end": 3166.5, + "probability": 0.9934 + }, + { + "start": 3166.96, + "end": 3172.9, + "probability": 0.9944 + }, + { + "start": 3172.94, + "end": 3174.1, + "probability": 0.4259 + }, + { + "start": 3175.6, + "end": 3177.22, + "probability": 0.9175 + }, + { + "start": 3177.28, + "end": 3179.72, + "probability": 0.986 + }, + { + "start": 3179.84, + "end": 3181.88, + "probability": 0.7853 + }, + { + "start": 3181.96, + "end": 3183.06, + "probability": 0.7548 + }, + { + "start": 3183.34, + "end": 3184.16, + "probability": 0.8661 + }, + { + "start": 3184.22, + "end": 3186.5, + "probability": 0.6682 + }, + { + "start": 3187.44, + "end": 3188.02, + "probability": 0.7255 + }, + { + "start": 3190.43, + "end": 3193.54, + "probability": 0.9703 + }, + { + "start": 3194.38, + "end": 3195.22, + "probability": 0.9922 + }, + { + "start": 3195.74, + "end": 3196.84, + "probability": 0.8042 + }, + { + "start": 3196.92, + "end": 3197.18, + "probability": 0.8424 + }, + { + "start": 3197.22, + "end": 3198.08, + "probability": 0.9686 + }, + { + "start": 3198.16, + "end": 3200.96, + "probability": 0.9406 + }, + { + "start": 3201.34, + "end": 3201.84, + "probability": 0.8621 + }, + { + "start": 3202.74, + "end": 3203.22, + "probability": 0.9766 + }, + { + "start": 3204.04, + "end": 3205.0, + "probability": 0.7883 + }, + { + "start": 3205.96, + "end": 3206.92, + "probability": 0.9541 + }, + { + "start": 3207.38, + "end": 3209.3, + "probability": 0.9321 + }, + { + "start": 3210.52, + "end": 3211.8, + "probability": 0.998 + }, + { + "start": 3211.88, + "end": 3214.62, + "probability": 0.9945 + }, + { + "start": 3216.24, + "end": 3217.64, + "probability": 0.1288 + }, + { + "start": 3217.64, + "end": 3219.1, + "probability": 0.659 + }, + { + "start": 3219.36, + "end": 3222.9, + "probability": 0.3609 + }, + { + "start": 3223.1, + "end": 3223.14, + "probability": 0.0002 + }, + { + "start": 3223.86, + "end": 3224.42, + "probability": 0.0477 + }, + { + "start": 3224.44, + "end": 3228.04, + "probability": 0.5715 + }, + { + "start": 3228.93, + "end": 3231.2, + "probability": 0.8272 + }, + { + "start": 3231.8, + "end": 3232.7, + "probability": 0.6603 + }, + { + "start": 3233.48, + "end": 3235.76, + "probability": 0.9873 + }, + { + "start": 3238.86, + "end": 3240.04, + "probability": 0.9511 + }, + { + "start": 3241.46, + "end": 3242.82, + "probability": 0.9814 + }, + { + "start": 3243.74, + "end": 3245.2, + "probability": 0.577 + }, + { + "start": 3247.04, + "end": 3248.82, + "probability": 0.7876 + }, + { + "start": 3249.4, + "end": 3251.48, + "probability": 0.7537 + }, + { + "start": 3251.7, + "end": 3252.4, + "probability": 0.8862 + }, + { + "start": 3252.5, + "end": 3252.6, + "probability": 0.1067 + }, + { + "start": 3252.7, + "end": 3252.88, + "probability": 0.5818 + }, + { + "start": 3253.66, + "end": 3256.58, + "probability": 0.8587 + }, + { + "start": 3256.58, + "end": 3258.68, + "probability": 0.9347 + }, + { + "start": 3258.98, + "end": 3259.82, + "probability": 0.9519 + }, + { + "start": 3260.32, + "end": 3262.2, + "probability": 0.9153 + }, + { + "start": 3262.3, + "end": 3262.98, + "probability": 0.8979 + }, + { + "start": 3263.22, + "end": 3263.68, + "probability": 0.7589 + }, + { + "start": 3263.8, + "end": 3266.5, + "probability": 0.9546 + }, + { + "start": 3268.02, + "end": 3268.66, + "probability": 0.7636 + }, + { + "start": 3269.42, + "end": 3270.44, + "probability": 0.6449 + }, + { + "start": 3271.2, + "end": 3273.44, + "probability": 0.5632 + }, + { + "start": 3274.18, + "end": 3276.6, + "probability": 0.548 + }, + { + "start": 3277.0, + "end": 3280.72, + "probability": 0.9858 + }, + { + "start": 3281.14, + "end": 3283.86, + "probability": 0.9706 + }, + { + "start": 3284.4, + "end": 3285.26, + "probability": 0.9782 + }, + { + "start": 3286.04, + "end": 3288.34, + "probability": 0.9631 + }, + { + "start": 3290.24, + "end": 3292.02, + "probability": 0.9834 + }, + { + "start": 3292.76, + "end": 3294.62, + "probability": 0.9784 + }, + { + "start": 3295.28, + "end": 3297.34, + "probability": 0.999 + }, + { + "start": 3298.68, + "end": 3300.82, + "probability": 0.8424 + }, + { + "start": 3302.36, + "end": 3302.92, + "probability": 0.8927 + }, + { + "start": 3303.88, + "end": 3306.54, + "probability": 0.9995 + }, + { + "start": 3307.4, + "end": 3308.64, + "probability": 0.9958 + }, + { + "start": 3308.88, + "end": 3310.28, + "probability": 0.9075 + }, + { + "start": 3310.96, + "end": 3312.93, + "probability": 0.9984 + }, + { + "start": 3314.1, + "end": 3315.93, + "probability": 0.9981 + }, + { + "start": 3318.06, + "end": 3319.02, + "probability": 0.2762 + }, + { + "start": 3319.64, + "end": 3322.22, + "probability": 0.778 + }, + { + "start": 3322.26, + "end": 3323.32, + "probability": 0.9294 + }, + { + "start": 3324.22, + "end": 3325.06, + "probability": 0.7854 + }, + { + "start": 3327.38, + "end": 3330.82, + "probability": 0.7642 + }, + { + "start": 3330.99, + "end": 3331.42, + "probability": 0.2122 + }, + { + "start": 3331.42, + "end": 3332.6, + "probability": 0.7778 + }, + { + "start": 3334.06, + "end": 3337.68, + "probability": 0.9757 + }, + { + "start": 3338.26, + "end": 3338.26, + "probability": 0.2366 + }, + { + "start": 3338.26, + "end": 3340.7, + "probability": 0.7347 + }, + { + "start": 3341.06, + "end": 3343.64, + "probability": 0.6606 + }, + { + "start": 3344.36, + "end": 3346.2, + "probability": 0.9973 + }, + { + "start": 3347.0, + "end": 3348.02, + "probability": 0.8291 + }, + { + "start": 3348.32, + "end": 3351.36, + "probability": 0.9902 + }, + { + "start": 3351.54, + "end": 3353.16, + "probability": 0.9468 + }, + { + "start": 3354.24, + "end": 3355.26, + "probability": 0.7346 + }, + { + "start": 3356.26, + "end": 3361.2, + "probability": 0.9986 + }, + { + "start": 3364.62, + "end": 3365.38, + "probability": 0.7501 + }, + { + "start": 3366.96, + "end": 3367.86, + "probability": 0.7072 + }, + { + "start": 3368.52, + "end": 3370.1, + "probability": 0.9276 + }, + { + "start": 3371.22, + "end": 3379.1, + "probability": 0.9814 + }, + { + "start": 3379.84, + "end": 3381.74, + "probability": 0.9956 + }, + { + "start": 3381.82, + "end": 3382.18, + "probability": 0.7739 + }, + { + "start": 3382.42, + "end": 3383.74, + "probability": 0.8895 + }, + { + "start": 3385.08, + "end": 3389.56, + "probability": 0.969 + }, + { + "start": 3389.6, + "end": 3391.76, + "probability": 0.989 + }, + { + "start": 3392.28, + "end": 3394.76, + "probability": 0.6354 + }, + { + "start": 3395.96, + "end": 3398.52, + "probability": 0.8545 + }, + { + "start": 3399.86, + "end": 3403.64, + "probability": 0.8387 + }, + { + "start": 3404.8, + "end": 3409.5, + "probability": 0.9878 + }, + { + "start": 3409.92, + "end": 3411.88, + "probability": 0.875 + }, + { + "start": 3412.26, + "end": 3413.94, + "probability": 0.9883 + }, + { + "start": 3415.02, + "end": 3416.84, + "probability": 0.9446 + }, + { + "start": 3417.5, + "end": 3422.46, + "probability": 0.791 + }, + { + "start": 3423.18, + "end": 3424.88, + "probability": 0.4012 + }, + { + "start": 3425.28, + "end": 3425.91, + "probability": 0.83 + }, + { + "start": 3426.88, + "end": 3430.44, + "probability": 0.9982 + }, + { + "start": 3431.72, + "end": 3434.14, + "probability": 0.9053 + }, + { + "start": 3435.08, + "end": 3436.04, + "probability": 0.9878 + }, + { + "start": 3437.4, + "end": 3438.78, + "probability": 0.6393 + }, + { + "start": 3439.52, + "end": 3441.82, + "probability": 0.9251 + }, + { + "start": 3442.98, + "end": 3445.44, + "probability": 0.9979 + }, + { + "start": 3446.3, + "end": 3449.9, + "probability": 0.9812 + }, + { + "start": 3451.06, + "end": 3452.6, + "probability": 0.9718 + }, + { + "start": 3453.88, + "end": 3454.4, + "probability": 0.7089 + }, + { + "start": 3455.8, + "end": 3457.02, + "probability": 0.7908 + }, + { + "start": 3457.64, + "end": 3458.5, + "probability": 0.8399 + }, + { + "start": 3459.04, + "end": 3459.91, + "probability": 0.3245 + }, + { + "start": 3461.5, + "end": 3463.56, + "probability": 0.6993 + }, + { + "start": 3464.4, + "end": 3465.16, + "probability": 0.8867 + }, + { + "start": 3465.78, + "end": 3468.84, + "probability": 0.9722 + }, + { + "start": 3469.66, + "end": 3471.29, + "probability": 0.9678 + }, + { + "start": 3472.36, + "end": 3473.82, + "probability": 0.8754 + }, + { + "start": 3474.48, + "end": 3476.16, + "probability": 0.7619 + }, + { + "start": 3476.9, + "end": 3479.04, + "probability": 0.9972 + }, + { + "start": 3479.18, + "end": 3479.84, + "probability": 0.9841 + }, + { + "start": 3480.42, + "end": 3483.32, + "probability": 0.9964 + }, + { + "start": 3485.22, + "end": 3485.48, + "probability": 0.6945 + }, + { + "start": 3486.2, + "end": 3487.12, + "probability": 0.6516 + }, + { + "start": 3487.54, + "end": 3488.1, + "probability": 0.9403 + }, + { + "start": 3488.32, + "end": 3490.4, + "probability": 0.9438 + }, + { + "start": 3492.26, + "end": 3497.74, + "probability": 0.9655 + }, + { + "start": 3500.68, + "end": 3501.44, + "probability": 0.7307 + }, + { + "start": 3502.58, + "end": 3505.42, + "probability": 0.9421 + }, + { + "start": 3506.7, + "end": 3509.34, + "probability": 0.939 + }, + { + "start": 3511.46, + "end": 3512.44, + "probability": 0.9229 + }, + { + "start": 3513.42, + "end": 3514.94, + "probability": 0.8926 + }, + { + "start": 3516.3, + "end": 3519.46, + "probability": 0.9982 + }, + { + "start": 3520.88, + "end": 3521.91, + "probability": 0.8309 + }, + { + "start": 3522.02, + "end": 3524.54, + "probability": 0.9944 + }, + { + "start": 3524.54, + "end": 3529.12, + "probability": 0.9657 + }, + { + "start": 3530.7, + "end": 3532.12, + "probability": 0.8697 + }, + { + "start": 3533.84, + "end": 3535.5, + "probability": 0.9779 + }, + { + "start": 3536.04, + "end": 3537.62, + "probability": 0.9927 + }, + { + "start": 3537.92, + "end": 3539.3, + "probability": 0.9755 + }, + { + "start": 3540.62, + "end": 3542.78, + "probability": 0.7858 + }, + { + "start": 3544.14, + "end": 3546.2, + "probability": 0.4768 + }, + { + "start": 3546.56, + "end": 3548.78, + "probability": 0.0721 + }, + { + "start": 3549.6, + "end": 3552.5, + "probability": 0.8878 + }, + { + "start": 3553.64, + "end": 3554.78, + "probability": 0.8743 + }, + { + "start": 3555.58, + "end": 3558.38, + "probability": 0.9751 + }, + { + "start": 3559.54, + "end": 3561.18, + "probability": 0.9815 + }, + { + "start": 3562.38, + "end": 3564.58, + "probability": 0.9644 + }, + { + "start": 3565.52, + "end": 3569.54, + "probability": 0.9736 + }, + { + "start": 3569.62, + "end": 3571.78, + "probability": 0.798 + }, + { + "start": 3571.88, + "end": 3572.92, + "probability": 0.9485 + }, + { + "start": 3573.6, + "end": 3576.04, + "probability": 0.9907 + }, + { + "start": 3576.26, + "end": 3580.86, + "probability": 0.9781 + }, + { + "start": 3590.3, + "end": 3593.18, + "probability": 0.9883 + }, + { + "start": 3594.92, + "end": 3597.9, + "probability": 0.9971 + }, + { + "start": 3599.28, + "end": 3603.14, + "probability": 0.9935 + }, + { + "start": 3603.14, + "end": 3606.98, + "probability": 0.998 + }, + { + "start": 3607.96, + "end": 3611.06, + "probability": 0.9988 + }, + { + "start": 3612.0, + "end": 3617.86, + "probability": 0.9855 + }, + { + "start": 3619.0, + "end": 3619.88, + "probability": 0.972 + }, + { + "start": 3620.74, + "end": 3621.32, + "probability": 0.942 + }, + { + "start": 3622.12, + "end": 3624.04, + "probability": 0.8997 + }, + { + "start": 3625.38, + "end": 3628.72, + "probability": 0.9075 + }, + { + "start": 3629.32, + "end": 3631.5, + "probability": 0.8609 + }, + { + "start": 3633.28, + "end": 3635.64, + "probability": 0.9968 + }, + { + "start": 3636.34, + "end": 3640.86, + "probability": 0.993 + }, + { + "start": 3642.88, + "end": 3645.32, + "probability": 0.9734 + }, + { + "start": 3646.28, + "end": 3647.86, + "probability": 0.986 + }, + { + "start": 3647.98, + "end": 3649.12, + "probability": 0.999 + }, + { + "start": 3649.88, + "end": 3652.32, + "probability": 0.9421 + }, + { + "start": 3654.12, + "end": 3656.62, + "probability": 0.9758 + }, + { + "start": 3658.2, + "end": 3662.82, + "probability": 0.9642 + }, + { + "start": 3664.0, + "end": 3666.02, + "probability": 0.5305 + }, + { + "start": 3667.06, + "end": 3669.66, + "probability": 0.9756 + }, + { + "start": 3669.9, + "end": 3671.52, + "probability": 0.9915 + }, + { + "start": 3671.64, + "end": 3672.38, + "probability": 0.9836 + }, + { + "start": 3673.32, + "end": 3674.44, + "probability": 0.7808 + }, + { + "start": 3675.4, + "end": 3677.08, + "probability": 0.9978 + }, + { + "start": 3677.18, + "end": 3678.03, + "probability": 0.9903 + }, + { + "start": 3678.88, + "end": 3679.88, + "probability": 0.6593 + }, + { + "start": 3680.56, + "end": 3681.9, + "probability": 0.9907 + }, + { + "start": 3681.96, + "end": 3683.44, + "probability": 0.8022 + }, + { + "start": 3683.72, + "end": 3686.1, + "probability": 0.8292 + }, + { + "start": 3686.7, + "end": 3689.42, + "probability": 0.9412 + }, + { + "start": 3689.88, + "end": 3690.7, + "probability": 0.2495 + }, + { + "start": 3691.28, + "end": 3692.62, + "probability": 0.8839 + }, + { + "start": 3693.24, + "end": 3694.94, + "probability": 0.8965 + }, + { + "start": 3695.08, + "end": 3696.62, + "probability": 0.9687 + }, + { + "start": 3696.68, + "end": 3698.48, + "probability": 0.9348 + }, + { + "start": 3699.54, + "end": 3700.86, + "probability": 0.9395 + }, + { + "start": 3701.48, + "end": 3701.74, + "probability": 0.9814 + }, + { + "start": 3702.28, + "end": 3704.02, + "probability": 0.9399 + }, + { + "start": 3704.2, + "end": 3705.0, + "probability": 0.2502 + }, + { + "start": 3705.32, + "end": 3707.42, + "probability": 0.9568 + }, + { + "start": 3707.56, + "end": 3708.92, + "probability": 0.5211 + }, + { + "start": 3709.02, + "end": 3710.1, + "probability": 0.9111 + }, + { + "start": 3710.88, + "end": 3712.99, + "probability": 0.7127 + }, + { + "start": 3713.28, + "end": 3713.46, + "probability": 0.0765 + }, + { + "start": 3713.6, + "end": 3714.84, + "probability": 0.775 + }, + { + "start": 3715.99, + "end": 3719.14, + "probability": 0.4631 + }, + { + "start": 3719.38, + "end": 3720.5, + "probability": 0.7342 + }, + { + "start": 3720.5, + "end": 3722.24, + "probability": 0.4942 + }, + { + "start": 3722.26, + "end": 3723.14, + "probability": 0.5496 + }, + { + "start": 3723.22, + "end": 3723.88, + "probability": 0.6615 + }, + { + "start": 3723.94, + "end": 3725.58, + "probability": 0.8809 + }, + { + "start": 3725.6, + "end": 3726.17, + "probability": 0.5105 + }, + { + "start": 3726.38, + "end": 3727.22, + "probability": 0.9634 + }, + { + "start": 3727.28, + "end": 3728.21, + "probability": 0.8782 + }, + { + "start": 3728.54, + "end": 3729.66, + "probability": 0.5337 + }, + { + "start": 3729.66, + "end": 3729.66, + "probability": 0.1859 + }, + { + "start": 3729.66, + "end": 3731.94, + "probability": 0.4443 + }, + { + "start": 3731.94, + "end": 3732.42, + "probability": 0.1975 + }, + { + "start": 3732.44, + "end": 3734.88, + "probability": 0.373 + }, + { + "start": 3736.24, + "end": 3738.54, + "probability": 0.593 + }, + { + "start": 3740.36, + "end": 3740.9, + "probability": 0.218 + }, + { + "start": 3741.04, + "end": 3742.3, + "probability": 0.7088 + }, + { + "start": 3743.31, + "end": 3745.04, + "probability": 0.2208 + }, + { + "start": 3745.04, + "end": 3745.04, + "probability": 0.0246 + }, + { + "start": 3745.04, + "end": 3745.04, + "probability": 0.4352 + }, + { + "start": 3745.04, + "end": 3745.04, + "probability": 0.0253 + }, + { + "start": 3745.04, + "end": 3752.76, + "probability": 0.8984 + }, + { + "start": 3753.74, + "end": 3756.54, + "probability": 0.9924 + }, + { + "start": 3757.66, + "end": 3758.74, + "probability": 0.9957 + }, + { + "start": 3760.24, + "end": 3761.44, + "probability": 0.7737 + }, + { + "start": 3762.56, + "end": 3764.76, + "probability": 0.8411 + }, + { + "start": 3765.42, + "end": 3766.8, + "probability": 0.3172 + }, + { + "start": 3767.52, + "end": 3770.82, + "probability": 0.9765 + }, + { + "start": 3771.42, + "end": 3773.94, + "probability": 0.9912 + }, + { + "start": 3773.94, + "end": 3777.38, + "probability": 0.9814 + }, + { + "start": 3778.38, + "end": 3778.84, + "probability": 0.7659 + }, + { + "start": 3779.12, + "end": 3782.39, + "probability": 0.7612 + }, + { + "start": 3783.2, + "end": 3786.18, + "probability": 0.9941 + }, + { + "start": 3786.64, + "end": 3787.54, + "probability": 0.9709 + }, + { + "start": 3789.2, + "end": 3791.78, + "probability": 0.907 + }, + { + "start": 3793.78, + "end": 3797.06, + "probability": 0.9913 + }, + { + "start": 3797.06, + "end": 3801.26, + "probability": 0.9864 + }, + { + "start": 3801.78, + "end": 3803.56, + "probability": 0.5945 + }, + { + "start": 3804.24, + "end": 3806.38, + "probability": 0.978 + }, + { + "start": 3807.0, + "end": 3807.48, + "probability": 0.4986 + }, + { + "start": 3810.24, + "end": 3814.5, + "probability": 0.6727 + }, + { + "start": 3816.05, + "end": 3820.74, + "probability": 0.9462 + }, + { + "start": 3820.82, + "end": 3822.04, + "probability": 0.9143 + }, + { + "start": 3822.5, + "end": 3824.42, + "probability": 0.6558 + }, + { + "start": 3824.74, + "end": 3824.74, + "probability": 0.2648 + }, + { + "start": 3824.84, + "end": 3830.9, + "probability": 0.9781 + }, + { + "start": 3831.6, + "end": 3832.9, + "probability": 0.9824 + }, + { + "start": 3833.28, + "end": 3833.56, + "probability": 0.8574 + }, + { + "start": 3834.18, + "end": 3836.56, + "probability": 0.8009 + }, + { + "start": 3837.92, + "end": 3841.56, + "probability": 0.9822 + }, + { + "start": 3842.52, + "end": 3843.48, + "probability": 0.944 + }, + { + "start": 3844.28, + "end": 3845.92, + "probability": 0.8821 + }, + { + "start": 3846.5, + "end": 3848.48, + "probability": 0.9921 + }, + { + "start": 3849.16, + "end": 3855.48, + "probability": 0.9589 + }, + { + "start": 3857.08, + "end": 3860.16, + "probability": 0.9955 + }, + { + "start": 3861.24, + "end": 3864.9, + "probability": 0.9925 + }, + { + "start": 3865.0, + "end": 3865.72, + "probability": 0.864 + }, + { + "start": 3866.38, + "end": 3869.1, + "probability": 0.9912 + }, + { + "start": 3869.72, + "end": 3871.54, + "probability": 0.983 + }, + { + "start": 3872.0, + "end": 3876.24, + "probability": 0.8923 + }, + { + "start": 3876.24, + "end": 3879.34, + "probability": 0.9829 + }, + { + "start": 3879.86, + "end": 3881.07, + "probability": 0.9888 + }, + { + "start": 3881.6, + "end": 3881.92, + "probability": 0.873 + }, + { + "start": 3882.0, + "end": 3885.24, + "probability": 0.745 + }, + { + "start": 3885.72, + "end": 3888.06, + "probability": 0.9454 + }, + { + "start": 3888.66, + "end": 3893.16, + "probability": 0.9629 + }, + { + "start": 3893.76, + "end": 3895.68, + "probability": 0.9735 + }, + { + "start": 3896.22, + "end": 3898.34, + "probability": 0.9707 + }, + { + "start": 3898.54, + "end": 3899.32, + "probability": 0.7283 + }, + { + "start": 3899.62, + "end": 3901.7, + "probability": 0.8325 + }, + { + "start": 3901.86, + "end": 3903.94, + "probability": 0.9674 + }, + { + "start": 3904.24, + "end": 3906.8, + "probability": 0.9765 + }, + { + "start": 3906.9, + "end": 3908.72, + "probability": 0.9274 + }, + { + "start": 3909.84, + "end": 3916.58, + "probability": 0.9979 + }, + { + "start": 3917.16, + "end": 3920.52, + "probability": 0.8728 + }, + { + "start": 3921.7, + "end": 3922.7, + "probability": 0.9902 + }, + { + "start": 3923.2, + "end": 3926.56, + "probability": 0.9715 + }, + { + "start": 3927.66, + "end": 3932.38, + "probability": 0.8883 + }, + { + "start": 3933.1, + "end": 3934.08, + "probability": 0.9678 + }, + { + "start": 3935.26, + "end": 3937.44, + "probability": 0.9338 + }, + { + "start": 3938.92, + "end": 3941.84, + "probability": 0.9737 + }, + { + "start": 3941.94, + "end": 3942.82, + "probability": 0.9244 + }, + { + "start": 3943.62, + "end": 3948.28, + "probability": 0.9929 + }, + { + "start": 3949.08, + "end": 3950.43, + "probability": 0.9985 + }, + { + "start": 3950.92, + "end": 3951.48, + "probability": 0.5747 + }, + { + "start": 3951.88, + "end": 3953.06, + "probability": 0.9814 + }, + { + "start": 3953.6, + "end": 3958.28, + "probability": 0.8401 + }, + { + "start": 3959.3, + "end": 3960.8, + "probability": 0.9634 + }, + { + "start": 3962.04, + "end": 3966.82, + "probability": 0.9944 + }, + { + "start": 3966.92, + "end": 3968.5, + "probability": 0.7888 + }, + { + "start": 3969.0, + "end": 3970.28, + "probability": 0.9919 + }, + { + "start": 3970.66, + "end": 3971.56, + "probability": 0.9545 + }, + { + "start": 3972.82, + "end": 3975.32, + "probability": 0.989 + }, + { + "start": 3975.86, + "end": 3977.82, + "probability": 0.9629 + }, + { + "start": 3978.44, + "end": 3981.18, + "probability": 0.9771 + }, + { + "start": 3982.54, + "end": 3985.46, + "probability": 0.9531 + }, + { + "start": 3986.38, + "end": 3987.96, + "probability": 0.9946 + }, + { + "start": 3988.54, + "end": 3991.04, + "probability": 0.9857 + }, + { + "start": 3991.72, + "end": 3995.2, + "probability": 0.9758 + }, + { + "start": 3995.2, + "end": 3997.78, + "probability": 0.9227 + }, + { + "start": 3998.52, + "end": 3999.42, + "probability": 0.736 + }, + { + "start": 3999.56, + "end": 3999.96, + "probability": 0.8811 + }, + { + "start": 4000.0, + "end": 4004.18, + "probability": 0.9823 + }, + { + "start": 4004.26, + "end": 4005.13, + "probability": 0.9036 + }, + { + "start": 4005.62, + "end": 4008.0, + "probability": 0.8616 + }, + { + "start": 4008.52, + "end": 4011.52, + "probability": 0.6863 + }, + { + "start": 4012.58, + "end": 4013.56, + "probability": 0.8693 + }, + { + "start": 4014.06, + "end": 4015.9, + "probability": 0.9729 + }, + { + "start": 4016.04, + "end": 4016.66, + "probability": 0.6765 + }, + { + "start": 4016.78, + "end": 4017.58, + "probability": 0.978 + }, + { + "start": 4017.68, + "end": 4018.14, + "probability": 0.8613 + }, + { + "start": 4018.22, + "end": 4020.54, + "probability": 0.6818 + }, + { + "start": 4021.0, + "end": 4022.44, + "probability": 0.9834 + }, + { + "start": 4022.56, + "end": 4023.9, + "probability": 0.9526 + }, + { + "start": 4024.36, + "end": 4024.46, + "probability": 0.4417 + }, + { + "start": 4025.14, + "end": 4026.18, + "probability": 0.8567 + }, + { + "start": 4026.94, + "end": 4030.18, + "probability": 0.9073 + }, + { + "start": 4030.9, + "end": 4032.36, + "probability": 0.6396 + }, + { + "start": 4032.56, + "end": 4034.74, + "probability": 0.9954 + }, + { + "start": 4035.28, + "end": 4038.76, + "probability": 0.9521 + }, + { + "start": 4038.96, + "end": 4040.52, + "probability": 0.9904 + }, + { + "start": 4041.1, + "end": 4042.0, + "probability": 0.8379 + }, + { + "start": 4042.56, + "end": 4046.72, + "probability": 0.9365 + }, + { + "start": 4049.31, + "end": 4051.74, + "probability": 0.9664 + }, + { + "start": 4052.46, + "end": 4052.46, + "probability": 0.1123 + }, + { + "start": 4052.46, + "end": 4053.92, + "probability": 0.7907 + }, + { + "start": 4054.52, + "end": 4056.48, + "probability": 0.6375 + }, + { + "start": 4056.6, + "end": 4058.56, + "probability": 0.8688 + }, + { + "start": 4059.08, + "end": 4059.32, + "probability": 0.9895 + }, + { + "start": 4060.46, + "end": 4062.12, + "probability": 0.9786 + }, + { + "start": 4062.66, + "end": 4065.14, + "probability": 0.9546 + }, + { + "start": 4065.58, + "end": 4069.08, + "probability": 0.972 + }, + { + "start": 4069.82, + "end": 4071.84, + "probability": 0.9377 + }, + { + "start": 4072.66, + "end": 4076.2, + "probability": 0.986 + }, + { + "start": 4076.52, + "end": 4078.96, + "probability": 0.7873 + }, + { + "start": 4079.76, + "end": 4081.22, + "probability": 0.7656 + }, + { + "start": 4081.76, + "end": 4082.92, + "probability": 0.7379 + }, + { + "start": 4090.14, + "end": 4091.08, + "probability": 0.8269 + }, + { + "start": 4091.68, + "end": 4095.18, + "probability": 0.9249 + }, + { + "start": 4095.44, + "end": 4096.02, + "probability": 0.9411 + }, + { + "start": 4097.48, + "end": 4100.86, + "probability": 0.9983 + }, + { + "start": 4101.42, + "end": 4104.44, + "probability": 0.949 + }, + { + "start": 4105.8, + "end": 4111.18, + "probability": 0.9928 + }, + { + "start": 4111.68, + "end": 4112.82, + "probability": 0.6216 + }, + { + "start": 4113.26, + "end": 4114.46, + "probability": 0.9829 + }, + { + "start": 4115.6, + "end": 4119.56, + "probability": 0.8392 + }, + { + "start": 4120.1, + "end": 4122.12, + "probability": 0.9634 + }, + { + "start": 4122.46, + "end": 4123.32, + "probability": 0.952 + }, + { + "start": 4123.48, + "end": 4124.48, + "probability": 0.5559 + }, + { + "start": 4124.94, + "end": 4128.48, + "probability": 0.991 + }, + { + "start": 4129.8, + "end": 4130.34, + "probability": 0.7061 + }, + { + "start": 4131.2, + "end": 4136.48, + "probability": 0.8925 + }, + { + "start": 4136.48, + "end": 4142.08, + "probability": 0.9907 + }, + { + "start": 4143.12, + "end": 4145.44, + "probability": 0.9628 + }, + { + "start": 4146.3, + "end": 4153.34, + "probability": 0.9895 + }, + { + "start": 4154.9, + "end": 4161.1, + "probability": 0.9604 + }, + { + "start": 4162.34, + "end": 4167.19, + "probability": 0.9847 + }, + { + "start": 4167.26, + "end": 4176.3, + "probability": 0.736 + }, + { + "start": 4177.38, + "end": 4181.88, + "probability": 0.9954 + }, + { + "start": 4182.8, + "end": 4186.1, + "probability": 0.9944 + }, + { + "start": 4186.8, + "end": 4188.24, + "probability": 0.9918 + }, + { + "start": 4189.26, + "end": 4196.58, + "probability": 0.9852 + }, + { + "start": 4196.58, + "end": 4202.66, + "probability": 0.991 + }, + { + "start": 4204.08, + "end": 4204.72, + "probability": 0.7089 + }, + { + "start": 4205.52, + "end": 4208.1, + "probability": 0.9775 + }, + { + "start": 4208.1, + "end": 4212.12, + "probability": 0.9984 + }, + { + "start": 4212.96, + "end": 4217.56, + "probability": 0.9946 + }, + { + "start": 4218.06, + "end": 4220.56, + "probability": 0.9796 + }, + { + "start": 4221.78, + "end": 4223.46, + "probability": 0.9153 + }, + { + "start": 4224.12, + "end": 4228.14, + "probability": 0.8569 + }, + { + "start": 4229.1, + "end": 4232.04, + "probability": 0.9922 + }, + { + "start": 4233.46, + "end": 4234.14, + "probability": 0.5803 + }, + { + "start": 4234.64, + "end": 4235.04, + "probability": 0.758 + }, + { + "start": 4235.08, + "end": 4235.84, + "probability": 0.852 + }, + { + "start": 4236.34, + "end": 4242.22, + "probability": 0.9949 + }, + { + "start": 4244.06, + "end": 4247.94, + "probability": 0.9815 + }, + { + "start": 4248.88, + "end": 4253.34, + "probability": 0.9537 + }, + { + "start": 4254.42, + "end": 4256.4, + "probability": 0.9821 + }, + { + "start": 4257.0, + "end": 4262.88, + "probability": 0.9884 + }, + { + "start": 4264.6, + "end": 4270.18, + "probability": 0.9981 + }, + { + "start": 4271.3, + "end": 4274.22, + "probability": 0.9964 + }, + { + "start": 4274.22, + "end": 4278.4, + "probability": 0.9983 + }, + { + "start": 4279.4, + "end": 4281.08, + "probability": 0.9941 + }, + { + "start": 4281.7, + "end": 4285.24, + "probability": 0.9833 + }, + { + "start": 4285.8, + "end": 4288.92, + "probability": 0.9927 + }, + { + "start": 4289.44, + "end": 4292.1, + "probability": 0.998 + }, + { + "start": 4293.32, + "end": 4293.84, + "probability": 0.5852 + }, + { + "start": 4294.52, + "end": 4295.5, + "probability": 0.9584 + }, + { + "start": 4296.52, + "end": 4298.74, + "probability": 0.9752 + }, + { + "start": 4299.32, + "end": 4301.5, + "probability": 0.7875 + }, + { + "start": 4302.12, + "end": 4308.9, + "probability": 0.9266 + }, + { + "start": 4309.7, + "end": 4313.82, + "probability": 0.9987 + }, + { + "start": 4314.58, + "end": 4317.08, + "probability": 0.9243 + }, + { + "start": 4317.08, + "end": 4320.72, + "probability": 0.9954 + }, + { + "start": 4321.96, + "end": 4322.72, + "probability": 0.7401 + }, + { + "start": 4323.8, + "end": 4325.38, + "probability": 0.943 + }, + { + "start": 4326.02, + "end": 4327.38, + "probability": 0.971 + }, + { + "start": 4328.44, + "end": 4331.52, + "probability": 0.9977 + }, + { + "start": 4332.06, + "end": 4333.4, + "probability": 0.9984 + }, + { + "start": 4334.08, + "end": 4335.3, + "probability": 0.9907 + }, + { + "start": 4336.36, + "end": 4339.84, + "probability": 0.9987 + }, + { + "start": 4339.84, + "end": 4343.22, + "probability": 0.9919 + }, + { + "start": 4344.48, + "end": 4346.23, + "probability": 0.9572 + }, + { + "start": 4347.4, + "end": 4353.58, + "probability": 0.9612 + }, + { + "start": 4354.72, + "end": 4355.56, + "probability": 0.3551 + }, + { + "start": 4356.18, + "end": 4360.08, + "probability": 0.9675 + }, + { + "start": 4360.74, + "end": 4361.8, + "probability": 0.9155 + }, + { + "start": 4362.04, + "end": 4363.92, + "probability": 0.5281 + }, + { + "start": 4364.36, + "end": 4365.02, + "probability": 0.3698 + }, + { + "start": 4365.68, + "end": 4366.02, + "probability": 0.6735 + }, + { + "start": 4366.54, + "end": 4368.7, + "probability": 0.6045 + }, + { + "start": 4368.76, + "end": 4372.86, + "probability": 0.9548 + }, + { + "start": 4373.16, + "end": 4373.6, + "probability": 0.6351 + }, + { + "start": 4374.18, + "end": 4374.34, + "probability": 0.4781 + }, + { + "start": 4376.34, + "end": 4377.76, + "probability": 0.2491 + }, + { + "start": 4381.88, + "end": 4384.5, + "probability": 0.3335 + }, + { + "start": 4387.1, + "end": 4388.24, + "probability": 0.707 + }, + { + "start": 4388.54, + "end": 4392.26, + "probability": 0.5053 + }, + { + "start": 4394.92, + "end": 4399.76, + "probability": 0.9645 + }, + { + "start": 4400.8, + "end": 4402.58, + "probability": 0.8849 + }, + { + "start": 4403.18, + "end": 4403.34, + "probability": 0.7546 + }, + { + "start": 4405.08, + "end": 4408.36, + "probability": 0.7853 + }, + { + "start": 4409.64, + "end": 4410.08, + "probability": 0.5248 + }, + { + "start": 4410.08, + "end": 4410.24, + "probability": 0.7063 + }, + { + "start": 4410.34, + "end": 4410.88, + "probability": 0.8244 + }, + { + "start": 4411.14, + "end": 4412.24, + "probability": 0.6585 + }, + { + "start": 4413.42, + "end": 4414.46, + "probability": 0.9504 + }, + { + "start": 4414.66, + "end": 4416.0, + "probability": 0.9622 + }, + { + "start": 4416.16, + "end": 4417.74, + "probability": 0.9537 + }, + { + "start": 4418.16, + "end": 4418.6, + "probability": 0.8701 + }, + { + "start": 4418.68, + "end": 4419.36, + "probability": 0.6445 + }, + { + "start": 4419.98, + "end": 4422.16, + "probability": 0.8674 + }, + { + "start": 4422.86, + "end": 4428.14, + "probability": 0.9083 + }, + { + "start": 4428.84, + "end": 4431.6, + "probability": 0.9987 + }, + { + "start": 4432.78, + "end": 4435.46, + "probability": 0.9994 + }, + { + "start": 4435.46, + "end": 4440.1, + "probability": 0.9973 + }, + { + "start": 4442.16, + "end": 4443.28, + "probability": 0.6861 + }, + { + "start": 4443.92, + "end": 4445.58, + "probability": 0.9972 + }, + { + "start": 4446.82, + "end": 4450.54, + "probability": 0.9929 + }, + { + "start": 4451.34, + "end": 4454.46, + "probability": 0.8001 + }, + { + "start": 4455.26, + "end": 4457.6, + "probability": 0.9375 + }, + { + "start": 4459.26, + "end": 4461.3, + "probability": 0.9805 + }, + { + "start": 4461.48, + "end": 4462.12, + "probability": 0.9398 + }, + { + "start": 4462.2, + "end": 4462.78, + "probability": 0.8516 + }, + { + "start": 4463.32, + "end": 4464.72, + "probability": 0.9791 + }, + { + "start": 4465.16, + "end": 4466.16, + "probability": 0.6056 + }, + { + "start": 4466.26, + "end": 4470.7, + "probability": 0.9728 + }, + { + "start": 4471.82, + "end": 4477.82, + "probability": 0.992 + }, + { + "start": 4478.08, + "end": 4478.6, + "probability": 0.5235 + }, + { + "start": 4478.66, + "end": 4478.76, + "probability": 0.5387 + }, + { + "start": 4479.26, + "end": 4480.2, + "probability": 0.9754 + }, + { + "start": 4481.12, + "end": 4482.82, + "probability": 0.9532 + }, + { + "start": 4482.86, + "end": 4483.98, + "probability": 0.8327 + }, + { + "start": 4484.1, + "end": 4484.56, + "probability": 0.6726 + }, + { + "start": 4484.62, + "end": 4488.28, + "probability": 0.9961 + }, + { + "start": 4489.32, + "end": 4493.98, + "probability": 0.9937 + }, + { + "start": 4494.0, + "end": 4499.2, + "probability": 0.9979 + }, + { + "start": 4499.34, + "end": 4503.8, + "probability": 0.9791 + }, + { + "start": 4505.16, + "end": 4506.98, + "probability": 0.9098 + }, + { + "start": 4507.24, + "end": 4509.28, + "probability": 0.9557 + }, + { + "start": 4509.96, + "end": 4514.84, + "probability": 0.9831 + }, + { + "start": 4514.84, + "end": 4517.36, + "probability": 0.9946 + }, + { + "start": 4518.44, + "end": 4518.88, + "probability": 0.5043 + }, + { + "start": 4518.96, + "end": 4521.3, + "probability": 0.7748 + }, + { + "start": 4521.36, + "end": 4522.0, + "probability": 0.6935 + }, + { + "start": 4522.42, + "end": 4524.34, + "probability": 0.9623 + }, + { + "start": 4524.78, + "end": 4527.32, + "probability": 0.9837 + }, + { + "start": 4527.9, + "end": 4530.46, + "probability": 0.9658 + }, + { + "start": 4530.46, + "end": 4536.34, + "probability": 0.9575 + }, + { + "start": 4537.38, + "end": 4538.6, + "probability": 0.7574 + }, + { + "start": 4538.9, + "end": 4541.88, + "probability": 0.9746 + }, + { + "start": 4543.0, + "end": 4546.96, + "probability": 0.9867 + }, + { + "start": 4547.88, + "end": 4549.64, + "probability": 0.8758 + }, + { + "start": 4549.86, + "end": 4552.14, + "probability": 0.8741 + }, + { + "start": 4552.46, + "end": 4553.26, + "probability": 0.5475 + }, + { + "start": 4553.4, + "end": 4554.9, + "probability": 0.9912 + }, + { + "start": 4555.58, + "end": 4557.54, + "probability": 0.9886 + }, + { + "start": 4557.7, + "end": 4564.08, + "probability": 0.8848 + }, + { + "start": 4565.38, + "end": 4568.18, + "probability": 0.9937 + }, + { + "start": 4568.18, + "end": 4571.7, + "probability": 0.9979 + }, + { + "start": 4572.28, + "end": 4576.52, + "probability": 0.9918 + }, + { + "start": 4576.52, + "end": 4581.86, + "probability": 0.9965 + }, + { + "start": 4582.32, + "end": 4585.16, + "probability": 0.8943 + }, + { + "start": 4586.3, + "end": 4587.65, + "probability": 0.705 + }, + { + "start": 4587.88, + "end": 4589.1, + "probability": 0.7178 + }, + { + "start": 4589.2, + "end": 4589.82, + "probability": 0.9589 + }, + { + "start": 4589.88, + "end": 4591.06, + "probability": 0.8647 + }, + { + "start": 4591.52, + "end": 4592.22, + "probability": 0.9731 + }, + { + "start": 4592.6, + "end": 4594.48, + "probability": 0.9414 + }, + { + "start": 4595.34, + "end": 4598.6, + "probability": 0.9876 + }, + { + "start": 4599.4, + "end": 4601.82, + "probability": 0.7596 + }, + { + "start": 4602.44, + "end": 4605.8, + "probability": 0.985 + }, + { + "start": 4606.42, + "end": 4607.72, + "probability": 0.8626 + }, + { + "start": 4608.64, + "end": 4612.06, + "probability": 0.9905 + }, + { + "start": 4612.92, + "end": 4617.78, + "probability": 0.9979 + }, + { + "start": 4619.22, + "end": 4622.38, + "probability": 0.9827 + }, + { + "start": 4623.3, + "end": 4625.4, + "probability": 0.8866 + }, + { + "start": 4626.08, + "end": 4630.08, + "probability": 0.9102 + }, + { + "start": 4630.66, + "end": 4633.16, + "probability": 0.9993 + }, + { + "start": 4634.02, + "end": 4636.04, + "probability": 0.8363 + }, + { + "start": 4636.72, + "end": 4637.68, + "probability": 0.9894 + }, + { + "start": 4638.64, + "end": 4639.92, + "probability": 0.8224 + }, + { + "start": 4640.6, + "end": 4641.82, + "probability": 0.6634 + }, + { + "start": 4641.96, + "end": 4643.6, + "probability": 0.9698 + }, + { + "start": 4644.26, + "end": 4646.42, + "probability": 0.9924 + }, + { + "start": 4646.94, + "end": 4647.64, + "probability": 0.9848 + }, + { + "start": 4648.28, + "end": 4649.52, + "probability": 0.869 + }, + { + "start": 4650.06, + "end": 4654.3, + "probability": 0.9826 + }, + { + "start": 4654.84, + "end": 4655.12, + "probability": 0.8966 + }, + { + "start": 4655.82, + "end": 4658.92, + "probability": 0.8459 + }, + { + "start": 4659.48, + "end": 4662.4, + "probability": 0.6753 + }, + { + "start": 4663.36, + "end": 4664.86, + "probability": 0.9471 + }, + { + "start": 4675.78, + "end": 4676.74, + "probability": 0.7511 + }, + { + "start": 4678.52, + "end": 4680.22, + "probability": 0.8275 + }, + { + "start": 4681.74, + "end": 4686.1, + "probability": 0.7458 + }, + { + "start": 4687.2, + "end": 4690.16, + "probability": 0.701 + }, + { + "start": 4690.92, + "end": 4691.92, + "probability": 0.9848 + }, + { + "start": 4693.26, + "end": 4696.56, + "probability": 0.9863 + }, + { + "start": 4697.28, + "end": 4698.8, + "probability": 0.9314 + }, + { + "start": 4699.48, + "end": 4700.32, + "probability": 0.7892 + }, + { + "start": 4701.52, + "end": 4705.22, + "probability": 0.9316 + }, + { + "start": 4706.08, + "end": 4706.32, + "probability": 0.848 + }, + { + "start": 4706.44, + "end": 4708.78, + "probability": 0.9971 + }, + { + "start": 4710.04, + "end": 4712.22, + "probability": 0.9609 + }, + { + "start": 4714.18, + "end": 4716.92, + "probability": 0.9186 + }, + { + "start": 4717.48, + "end": 4718.36, + "probability": 0.9332 + }, + { + "start": 4719.58, + "end": 4720.82, + "probability": 0.8555 + }, + { + "start": 4721.82, + "end": 4722.81, + "probability": 0.9858 + }, + { + "start": 4723.42, + "end": 4723.87, + "probability": 0.8432 + }, + { + "start": 4725.22, + "end": 4727.2, + "probability": 0.8509 + }, + { + "start": 4728.26, + "end": 4731.29, + "probability": 0.9565 + }, + { + "start": 4732.16, + "end": 4734.87, + "probability": 0.9828 + }, + { + "start": 4735.46, + "end": 4736.32, + "probability": 0.6855 + }, + { + "start": 4737.52, + "end": 4739.78, + "probability": 0.9792 + }, + { + "start": 4741.64, + "end": 4741.66, + "probability": 0.0795 + }, + { + "start": 4741.66, + "end": 4741.66, + "probability": 0.1144 + }, + { + "start": 4741.66, + "end": 4741.8, + "probability": 0.4389 + }, + { + "start": 4744.66, + "end": 4745.88, + "probability": 0.4112 + }, + { + "start": 4747.6, + "end": 4752.64, + "probability": 0.9681 + }, + { + "start": 4752.84, + "end": 4754.14, + "probability": 0.7988 + }, + { + "start": 4754.18, + "end": 4754.82, + "probability": 0.9855 + }, + { + "start": 4755.36, + "end": 4756.0, + "probability": 0.7777 + }, + { + "start": 4758.88, + "end": 4759.57, + "probability": 0.9626 + }, + { + "start": 4760.1, + "end": 4763.26, + "probability": 0.8486 + }, + { + "start": 4763.98, + "end": 4767.5, + "probability": 0.814 + }, + { + "start": 4768.18, + "end": 4771.5, + "probability": 0.9678 + }, + { + "start": 4772.08, + "end": 4773.82, + "probability": 0.922 + }, + { + "start": 4774.36, + "end": 4775.4, + "probability": 0.6716 + }, + { + "start": 4776.66, + "end": 4777.4, + "probability": 0.9431 + }, + { + "start": 4779.14, + "end": 4779.62, + "probability": 0.5734 + }, + { + "start": 4779.86, + "end": 4781.86, + "probability": 0.9562 + }, + { + "start": 4783.14, + "end": 4786.36, + "probability": 0.9436 + }, + { + "start": 4787.48, + "end": 4788.5, + "probability": 0.916 + }, + { + "start": 4788.8, + "end": 4789.44, + "probability": 0.7775 + }, + { + "start": 4790.46, + "end": 4794.0, + "probability": 0.9839 + }, + { + "start": 4794.76, + "end": 4795.8, + "probability": 0.7389 + }, + { + "start": 4797.32, + "end": 4800.0, + "probability": 0.8883 + }, + { + "start": 4801.22, + "end": 4801.74, + "probability": 0.8466 + }, + { + "start": 4802.32, + "end": 4805.14, + "probability": 0.4172 + }, + { + "start": 4805.54, + "end": 4807.74, + "probability": 0.9261 + }, + { + "start": 4808.5, + "end": 4808.7, + "probability": 0.6174 + }, + { + "start": 4809.04, + "end": 4809.74, + "probability": 0.9834 + }, + { + "start": 4814.02, + "end": 4816.0, + "probability": 0.9899 + }, + { + "start": 4816.62, + "end": 4818.35, + "probability": 0.979 + }, + { + "start": 4819.52, + "end": 4820.96, + "probability": 0.918 + }, + { + "start": 4821.64, + "end": 4822.55, + "probability": 0.9214 + }, + { + "start": 4823.44, + "end": 4824.52, + "probability": 0.9926 + }, + { + "start": 4825.58, + "end": 4827.66, + "probability": 0.995 + }, + { + "start": 4828.44, + "end": 4828.64, + "probability": 0.3408 + }, + { + "start": 4829.38, + "end": 4830.35, + "probability": 0.9575 + }, + { + "start": 4830.94, + "end": 4833.84, + "probability": 0.9106 + }, + { + "start": 4834.4, + "end": 4837.16, + "probability": 0.9313 + }, + { + "start": 4837.88, + "end": 4845.2, + "probability": 0.9543 + }, + { + "start": 4845.96, + "end": 4847.32, + "probability": 0.8474 + }, + { + "start": 4847.64, + "end": 4847.86, + "probability": 0.7401 + }, + { + "start": 4848.82, + "end": 4850.16, + "probability": 0.9224 + }, + { + "start": 4851.08, + "end": 4851.64, + "probability": 0.7199 + }, + { + "start": 4851.78, + "end": 4856.84, + "probability": 0.9792 + }, + { + "start": 4857.24, + "end": 4860.02, + "probability": 0.9873 + }, + { + "start": 4860.28, + "end": 4864.5, + "probability": 0.9624 + }, + { + "start": 4866.62, + "end": 4867.62, + "probability": 0.9951 + }, + { + "start": 4872.0, + "end": 4872.8, + "probability": 0.7294 + }, + { + "start": 4872.88, + "end": 4877.06, + "probability": 0.7584 + }, + { + "start": 4877.52, + "end": 4880.28, + "probability": 0.9971 + }, + { + "start": 4880.82, + "end": 4881.78, + "probability": 0.7437 + }, + { + "start": 4882.98, + "end": 4884.7, + "probability": 0.9869 + }, + { + "start": 4885.66, + "end": 4887.26, + "probability": 0.9525 + }, + { + "start": 4888.2, + "end": 4892.82, + "probability": 0.8405 + }, + { + "start": 4893.78, + "end": 4896.1, + "probability": 0.9938 + }, + { + "start": 4896.6, + "end": 4897.88, + "probability": 0.8055 + }, + { + "start": 4898.26, + "end": 4899.14, + "probability": 0.726 + }, + { + "start": 4899.56, + "end": 4900.34, + "probability": 0.7478 + }, + { + "start": 4900.46, + "end": 4901.1, + "probability": 0.8577 + }, + { + "start": 4901.66, + "end": 4902.4, + "probability": 0.8203 + }, + { + "start": 4902.66, + "end": 4903.22, + "probability": 0.0571 + }, + { + "start": 4903.22, + "end": 4904.0, + "probability": 0.7348 + }, + { + "start": 4904.88, + "end": 4905.3, + "probability": 0.8293 + }, + { + "start": 4905.54, + "end": 4905.9, + "probability": 0.7007 + }, + { + "start": 4906.0, + "end": 4906.92, + "probability": 0.6465 + }, + { + "start": 4906.98, + "end": 4908.18, + "probability": 0.7085 + }, + { + "start": 4908.66, + "end": 4908.66, + "probability": 0.5284 + }, + { + "start": 4908.66, + "end": 4909.95, + "probability": 0.9185 + }, + { + "start": 4910.8, + "end": 4912.0, + "probability": 0.6674 + }, + { + "start": 4912.2, + "end": 4915.44, + "probability": 0.8313 + }, + { + "start": 4916.14, + "end": 4916.68, + "probability": 0.805 + }, + { + "start": 4917.32, + "end": 4921.54, + "probability": 0.8849 + }, + { + "start": 4922.3, + "end": 4922.86, + "probability": 0.9912 + }, + { + "start": 4923.52, + "end": 4924.7, + "probability": 0.811 + }, + { + "start": 4925.32, + "end": 4928.12, + "probability": 0.9822 + }, + { + "start": 4928.76, + "end": 4930.44, + "probability": 0.9876 + }, + { + "start": 4930.82, + "end": 4931.18, + "probability": 0.7362 + }, + { + "start": 4931.82, + "end": 4934.02, + "probability": 0.6321 + }, + { + "start": 4934.58, + "end": 4935.85, + "probability": 0.9946 + }, + { + "start": 4936.74, + "end": 4938.86, + "probability": 0.8743 + }, + { + "start": 4939.58, + "end": 4940.4, + "probability": 0.5056 + }, + { + "start": 4941.0, + "end": 4942.86, + "probability": 0.9464 + }, + { + "start": 4945.76, + "end": 4947.68, + "probability": 0.6573 + }, + { + "start": 4950.38, + "end": 4951.26, + "probability": 0.8403 + }, + { + "start": 4952.78, + "end": 4954.4, + "probability": 0.9554 + }, + { + "start": 4955.02, + "end": 4958.02, + "probability": 0.9937 + }, + { + "start": 4958.76, + "end": 4961.52, + "probability": 0.9941 + }, + { + "start": 4961.96, + "end": 4963.18, + "probability": 0.6822 + }, + { + "start": 4963.42, + "end": 4965.2, + "probability": 0.7749 + }, + { + "start": 4965.94, + "end": 4969.2, + "probability": 0.9917 + }, + { + "start": 4969.44, + "end": 4969.9, + "probability": 0.8981 + }, + { + "start": 4970.24, + "end": 4970.66, + "probability": 0.9664 + }, + { + "start": 4971.26, + "end": 4971.96, + "probability": 0.8026 + }, + { + "start": 4973.12, + "end": 4975.86, + "probability": 0.9829 + }, + { + "start": 4976.46, + "end": 4978.26, + "probability": 0.9899 + }, + { + "start": 4978.4, + "end": 4979.14, + "probability": 0.9924 + }, + { + "start": 4979.38, + "end": 4980.12, + "probability": 0.9896 + }, + { + "start": 4980.54, + "end": 4981.94, + "probability": 0.9613 + }, + { + "start": 4982.46, + "end": 4983.88, + "probability": 0.9377 + }, + { + "start": 4984.04, + "end": 4986.52, + "probability": 0.7431 + }, + { + "start": 4986.66, + "end": 4987.2, + "probability": 0.7074 + }, + { + "start": 4987.38, + "end": 4991.04, + "probability": 0.9258 + }, + { + "start": 4991.78, + "end": 4993.92, + "probability": 0.9874 + }, + { + "start": 4994.12, + "end": 4994.96, + "probability": 0.9798 + }, + { + "start": 4995.28, + "end": 4996.2, + "probability": 0.9375 + }, + { + "start": 4996.72, + "end": 4997.14, + "probability": 0.976 + }, + { + "start": 4997.92, + "end": 4999.12, + "probability": 0.981 + }, + { + "start": 4999.78, + "end": 5006.46, + "probability": 0.9855 + }, + { + "start": 5007.36, + "end": 5009.62, + "probability": 0.9804 + }, + { + "start": 5010.54, + "end": 5012.38, + "probability": 0.9988 + }, + { + "start": 5013.3, + "end": 5015.52, + "probability": 0.991 + }, + { + "start": 5015.7, + "end": 5019.12, + "probability": 0.8381 + }, + { + "start": 5019.98, + "end": 5020.94, + "probability": 0.8074 + }, + { + "start": 5021.54, + "end": 5022.18, + "probability": 0.9688 + }, + { + "start": 5022.7, + "end": 5025.5, + "probability": 0.9932 + }, + { + "start": 5026.08, + "end": 5030.22, + "probability": 0.8537 + }, + { + "start": 5030.22, + "end": 5033.4, + "probability": 0.9945 + }, + { + "start": 5033.88, + "end": 5035.03, + "probability": 0.9976 + }, + { + "start": 5035.24, + "end": 5036.5, + "probability": 0.9489 + }, + { + "start": 5036.94, + "end": 5041.1, + "probability": 0.9858 + }, + { + "start": 5041.14, + "end": 5044.68, + "probability": 0.9968 + }, + { + "start": 5045.66, + "end": 5048.7, + "probability": 0.9393 + }, + { + "start": 5049.4, + "end": 5052.26, + "probability": 0.9723 + }, + { + "start": 5053.0, + "end": 5054.9, + "probability": 0.9239 + }, + { + "start": 5055.06, + "end": 5057.2, + "probability": 0.8846 + }, + { + "start": 5057.64, + "end": 5058.48, + "probability": 0.9326 + }, + { + "start": 5059.02, + "end": 5060.28, + "probability": 0.656 + }, + { + "start": 5060.62, + "end": 5062.58, + "probability": 0.6184 + }, + { + "start": 5063.22, + "end": 5067.2, + "probability": 0.9976 + }, + { + "start": 5067.68, + "end": 5069.22, + "probability": 0.9601 + }, + { + "start": 5069.58, + "end": 5070.78, + "probability": 0.9635 + }, + { + "start": 5071.48, + "end": 5073.1, + "probability": 0.9967 + }, + { + "start": 5073.64, + "end": 5076.72, + "probability": 0.9984 + }, + { + "start": 5076.72, + "end": 5079.34, + "probability": 0.9976 + }, + { + "start": 5080.04, + "end": 5082.16, + "probability": 0.9962 + }, + { + "start": 5082.16, + "end": 5084.9, + "probability": 0.9507 + }, + { + "start": 5085.74, + "end": 5089.08, + "probability": 0.9767 + }, + { + "start": 5090.08, + "end": 5092.1, + "probability": 0.9951 + }, + { + "start": 5092.76, + "end": 5093.6, + "probability": 0.9001 + }, + { + "start": 5093.78, + "end": 5094.84, + "probability": 0.9408 + }, + { + "start": 5095.1, + "end": 5096.18, + "probability": 0.9934 + }, + { + "start": 5096.9, + "end": 5100.16, + "probability": 0.9921 + }, + { + "start": 5100.96, + "end": 5102.02, + "probability": 0.8628 + }, + { + "start": 5102.3, + "end": 5103.72, + "probability": 0.7906 + }, + { + "start": 5104.34, + "end": 5107.06, + "probability": 0.9971 + }, + { + "start": 5108.48, + "end": 5110.86, + "probability": 0.876 + }, + { + "start": 5112.58, + "end": 5114.48, + "probability": 0.713 + }, + { + "start": 5114.7, + "end": 5117.5, + "probability": 0.9901 + }, + { + "start": 5118.18, + "end": 5120.66, + "probability": 0.9795 + }, + { + "start": 5121.52, + "end": 5125.84, + "probability": 0.9946 + }, + { + "start": 5125.88, + "end": 5132.46, + "probability": 0.9963 + }, + { + "start": 5133.2, + "end": 5134.56, + "probability": 0.8376 + }, + { + "start": 5134.58, + "end": 5138.22, + "probability": 0.9929 + }, + { + "start": 5138.4, + "end": 5139.04, + "probability": 0.741 + }, + { + "start": 5140.04, + "end": 5144.58, + "probability": 0.9902 + }, + { + "start": 5145.14, + "end": 5147.24, + "probability": 0.9609 + }, + { + "start": 5148.49, + "end": 5151.78, + "probability": 0.9858 + }, + { + "start": 5152.28, + "end": 5155.36, + "probability": 0.9678 + }, + { + "start": 5155.66, + "end": 5156.4, + "probability": 0.5794 + }, + { + "start": 5156.46, + "end": 5157.04, + "probability": 0.4131 + }, + { + "start": 5157.6, + "end": 5160.26, + "probability": 0.8028 + }, + { + "start": 5160.94, + "end": 5161.54, + "probability": 0.9863 + }, + { + "start": 5161.74, + "end": 5162.91, + "probability": 0.8972 + }, + { + "start": 5163.1, + "end": 5164.19, + "probability": 0.9824 + }, + { + "start": 5165.32, + "end": 5167.6, + "probability": 0.9816 + }, + { + "start": 5167.66, + "end": 5169.56, + "probability": 0.9928 + }, + { + "start": 5170.28, + "end": 5172.24, + "probability": 0.994 + }, + { + "start": 5172.88, + "end": 5174.72, + "probability": 0.9738 + }, + { + "start": 5175.76, + "end": 5176.48, + "probability": 0.9169 + }, + { + "start": 5177.0, + "end": 5178.22, + "probability": 0.9287 + }, + { + "start": 5178.38, + "end": 5179.24, + "probability": 0.9489 + }, + { + "start": 5179.32, + "end": 5181.1, + "probability": 0.9406 + }, + { + "start": 5181.54, + "end": 5184.66, + "probability": 0.9701 + }, + { + "start": 5185.52, + "end": 5188.84, + "probability": 0.9775 + }, + { + "start": 5189.06, + "end": 5189.06, + "probability": 0.0215 + }, + { + "start": 5189.4, + "end": 5190.26, + "probability": 0.6602 + }, + { + "start": 5190.98, + "end": 5191.48, + "probability": 0.3177 + }, + { + "start": 5191.72, + "end": 5192.4, + "probability": 0.6808 + }, + { + "start": 5192.9, + "end": 5195.02, + "probability": 0.9907 + }, + { + "start": 5195.8, + "end": 5199.62, + "probability": 0.9917 + }, + { + "start": 5199.62, + "end": 5201.64, + "probability": 0.9985 + }, + { + "start": 5202.1, + "end": 5203.8, + "probability": 0.9603 + }, + { + "start": 5204.38, + "end": 5207.3, + "probability": 0.7625 + }, + { + "start": 5208.38, + "end": 5208.88, + "probability": 0.9099 + }, + { + "start": 5209.1, + "end": 5209.62, + "probability": 0.892 + }, + { + "start": 5209.68, + "end": 5213.04, + "probability": 0.9922 + }, + { + "start": 5213.2, + "end": 5215.3, + "probability": 0.9717 + }, + { + "start": 5215.46, + "end": 5216.66, + "probability": 0.9409 + }, + { + "start": 5216.9, + "end": 5217.06, + "probability": 0.4303 + }, + { + "start": 5217.14, + "end": 5218.66, + "probability": 0.9441 + }, + { + "start": 5219.32, + "end": 5220.36, + "probability": 0.7118 + }, + { + "start": 5220.4, + "end": 5222.68, + "probability": 0.9104 + }, + { + "start": 5223.78, + "end": 5226.38, + "probability": 0.9458 + }, + { + "start": 5234.22, + "end": 5236.86, + "probability": 0.9617 + }, + { + "start": 5241.26, + "end": 5241.56, + "probability": 0.2762 + }, + { + "start": 5248.72, + "end": 5252.76, + "probability": 0.6178 + }, + { + "start": 5253.94, + "end": 5256.88, + "probability": 0.996 + }, + { + "start": 5257.6, + "end": 5259.5, + "probability": 0.9943 + }, + { + "start": 5260.14, + "end": 5263.84, + "probability": 0.9733 + }, + { + "start": 5264.1, + "end": 5265.94, + "probability": 0.981 + }, + { + "start": 5266.38, + "end": 5268.78, + "probability": 0.9885 + }, + { + "start": 5270.14, + "end": 5273.94, + "probability": 0.9966 + }, + { + "start": 5274.1, + "end": 5275.24, + "probability": 0.7804 + }, + { + "start": 5275.4, + "end": 5279.04, + "probability": 0.958 + }, + { + "start": 5279.98, + "end": 5284.66, + "probability": 0.9864 + }, + { + "start": 5284.84, + "end": 5285.94, + "probability": 0.7803 + }, + { + "start": 5286.4, + "end": 5289.36, + "probability": 0.9772 + }, + { + "start": 5291.3, + "end": 5293.94, + "probability": 0.9831 + }, + { + "start": 5294.36, + "end": 5297.16, + "probability": 0.984 + }, + { + "start": 5298.0, + "end": 5301.36, + "probability": 0.9199 + }, + { + "start": 5301.36, + "end": 5305.98, + "probability": 0.9622 + }, + { + "start": 5306.88, + "end": 5309.44, + "probability": 0.8972 + }, + { + "start": 5310.28, + "end": 5312.92, + "probability": 0.9748 + }, + { + "start": 5313.54, + "end": 5318.78, + "probability": 0.9531 + }, + { + "start": 5319.68, + "end": 5320.34, + "probability": 0.7127 + }, + { + "start": 5321.24, + "end": 5323.22, + "probability": 0.9646 + }, + { + "start": 5324.02, + "end": 5324.42, + "probability": 0.4651 + }, + { + "start": 5324.96, + "end": 5325.86, + "probability": 0.7177 + }, + { + "start": 5325.86, + "end": 5328.24, + "probability": 0.6039 + }, + { + "start": 5329.24, + "end": 5332.08, + "probability": 0.7807 + }, + { + "start": 5333.96, + "end": 5336.16, + "probability": 0.9957 + }, + { + "start": 5336.16, + "end": 5339.34, + "probability": 0.9844 + }, + { + "start": 5340.26, + "end": 5342.32, + "probability": 0.7414 + }, + { + "start": 5342.48, + "end": 5345.1, + "probability": 0.9681 + }, + { + "start": 5345.52, + "end": 5351.28, + "probability": 0.797 + }, + { + "start": 5351.66, + "end": 5352.68, + "probability": 0.9783 + }, + { + "start": 5354.06, + "end": 5357.54, + "probability": 0.9594 + }, + { + "start": 5359.0, + "end": 5363.2, + "probability": 0.9958 + }, + { + "start": 5364.28, + "end": 5366.2, + "probability": 0.9551 + }, + { + "start": 5367.42, + "end": 5370.64, + "probability": 0.9871 + }, + { + "start": 5370.64, + "end": 5374.32, + "probability": 0.9869 + }, + { + "start": 5375.02, + "end": 5375.63, + "probability": 0.5264 + }, + { + "start": 5376.7, + "end": 5377.6, + "probability": 0.3944 + }, + { + "start": 5377.82, + "end": 5379.22, + "probability": 0.9238 + }, + { + "start": 5380.18, + "end": 5381.85, + "probability": 0.7866 + }, + { + "start": 5382.3, + "end": 5385.6, + "probability": 0.9199 + }, + { + "start": 5385.82, + "end": 5388.42, + "probability": 0.9943 + }, + { + "start": 5388.42, + "end": 5392.84, + "probability": 0.9214 + }, + { + "start": 5394.48, + "end": 5397.4, + "probability": 0.9983 + }, + { + "start": 5398.2, + "end": 5399.54, + "probability": 0.8319 + }, + { + "start": 5400.18, + "end": 5401.88, + "probability": 0.9686 + }, + { + "start": 5402.52, + "end": 5404.04, + "probability": 0.9097 + }, + { + "start": 5404.82, + "end": 5407.16, + "probability": 0.9125 + }, + { + "start": 5408.2, + "end": 5410.96, + "probability": 0.9577 + }, + { + "start": 5411.24, + "end": 5414.84, + "probability": 0.9752 + }, + { + "start": 5415.92, + "end": 5417.34, + "probability": 0.7744 + }, + { + "start": 5417.8, + "end": 5418.82, + "probability": 0.9487 + }, + { + "start": 5420.0, + "end": 5422.41, + "probability": 0.894 + }, + { + "start": 5423.06, + "end": 5425.3, + "probability": 0.9849 + }, + { + "start": 5425.78, + "end": 5428.96, + "probability": 0.9465 + }, + { + "start": 5429.32, + "end": 5430.39, + "probability": 0.9775 + }, + { + "start": 5431.0, + "end": 5433.86, + "probability": 0.9902 + }, + { + "start": 5434.84, + "end": 5435.82, + "probability": 0.917 + }, + { + "start": 5436.5, + "end": 5441.04, + "probability": 0.9984 + }, + { + "start": 5442.21, + "end": 5443.74, + "probability": 0.998 + }, + { + "start": 5443.74, + "end": 5446.2, + "probability": 0.6654 + }, + { + "start": 5446.2, + "end": 5446.82, + "probability": 0.7518 + }, + { + "start": 5448.3, + "end": 5449.02, + "probability": 0.4382 + }, + { + "start": 5451.24, + "end": 5453.28, + "probability": 0.411 + }, + { + "start": 5453.28, + "end": 5453.58, + "probability": 0.2566 + }, + { + "start": 5453.58, + "end": 5453.88, + "probability": 0.3091 + }, + { + "start": 5453.98, + "end": 5454.34, + "probability": 0.5239 + }, + { + "start": 5454.42, + "end": 5455.08, + "probability": 0.896 + }, + { + "start": 5455.08, + "end": 5458.64, + "probability": 0.8374 + }, + { + "start": 5459.32, + "end": 5460.8, + "probability": 0.8805 + }, + { + "start": 5460.88, + "end": 5461.0, + "probability": 0.6606 + }, + { + "start": 5461.04, + "end": 5461.7, + "probability": 0.7416 + }, + { + "start": 5461.84, + "end": 5464.08, + "probability": 0.9689 + }, + { + "start": 5464.3, + "end": 5464.75, + "probability": 0.8158 + }, + { + "start": 5465.28, + "end": 5466.46, + "probability": 0.8274 + }, + { + "start": 5466.6, + "end": 5467.3, + "probability": 0.7087 + }, + { + "start": 5467.74, + "end": 5470.26, + "probability": 0.9841 + }, + { + "start": 5470.92, + "end": 5473.1, + "probability": 0.677 + }, + { + "start": 5473.68, + "end": 5476.16, + "probability": 0.9823 + }, + { + "start": 5476.24, + "end": 5477.18, + "probability": 0.8007 + }, + { + "start": 5477.42, + "end": 5477.52, + "probability": 0.4321 + }, + { + "start": 5477.58, + "end": 5481.26, + "probability": 0.7945 + }, + { + "start": 5481.74, + "end": 5486.88, + "probability": 0.9774 + }, + { + "start": 5486.96, + "end": 5488.74, + "probability": 0.9231 + }, + { + "start": 5489.28, + "end": 5491.32, + "probability": 0.9869 + }, + { + "start": 5491.86, + "end": 5494.88, + "probability": 0.9893 + }, + { + "start": 5494.88, + "end": 5499.1, + "probability": 0.9905 + }, + { + "start": 5500.38, + "end": 5500.88, + "probability": 0.9652 + }, + { + "start": 5501.82, + "end": 5502.7, + "probability": 0.9221 + }, + { + "start": 5503.14, + "end": 5506.5, + "probability": 0.7368 + }, + { + "start": 5506.86, + "end": 5507.78, + "probability": 0.6419 + }, + { + "start": 5508.2, + "end": 5509.38, + "probability": 0.7971 + }, + { + "start": 5509.38, + "end": 5509.76, + "probability": 0.3855 + }, + { + "start": 5510.32, + "end": 5511.92, + "probability": 0.9385 + }, + { + "start": 5512.3, + "end": 5516.7, + "probability": 0.9719 + }, + { + "start": 5517.28, + "end": 5519.72, + "probability": 0.9904 + }, + { + "start": 5520.04, + "end": 5521.76, + "probability": 0.6845 + }, + { + "start": 5521.84, + "end": 5522.48, + "probability": 0.3298 + }, + { + "start": 5522.48, + "end": 5525.06, + "probability": 0.7365 + }, + { + "start": 5525.06, + "end": 5525.7, + "probability": 0.4076 + }, + { + "start": 5525.9, + "end": 5527.14, + "probability": 0.8118 + }, + { + "start": 5527.4, + "end": 5530.86, + "probability": 0.9812 + }, + { + "start": 5530.94, + "end": 5534.18, + "probability": 0.6005 + }, + { + "start": 5534.52, + "end": 5536.58, + "probability": 0.9823 + }, + { + "start": 5536.88, + "end": 5537.46, + "probability": 0.9291 + }, + { + "start": 5537.58, + "end": 5537.96, + "probability": 0.8409 + }, + { + "start": 5538.04, + "end": 5538.8, + "probability": 0.9029 + }, + { + "start": 5538.86, + "end": 5540.36, + "probability": 0.9659 + }, + { + "start": 5540.4, + "end": 5540.6, + "probability": 0.3597 + }, + { + "start": 5540.74, + "end": 5542.82, + "probability": 0.9304 + }, + { + "start": 5543.38, + "end": 5545.8, + "probability": 0.9368 + }, + { + "start": 5546.46, + "end": 5547.12, + "probability": 0.5032 + }, + { + "start": 5548.1, + "end": 5549.7, + "probability": 0.765 + }, + { + "start": 5551.5, + "end": 5553.94, + "probability": 0.9396 + }, + { + "start": 5563.24, + "end": 5564.66, + "probability": 0.8032 + }, + { + "start": 5565.58, + "end": 5566.3, + "probability": 0.6004 + }, + { + "start": 5566.64, + "end": 5567.12, + "probability": 0.5587 + }, + { + "start": 5567.2, + "end": 5567.86, + "probability": 0.5905 + }, + { + "start": 5568.0, + "end": 5570.8, + "probability": 0.9908 + }, + { + "start": 5571.48, + "end": 5572.8, + "probability": 0.946 + }, + { + "start": 5573.84, + "end": 5577.9, + "probability": 0.9899 + }, + { + "start": 5578.86, + "end": 5581.18, + "probability": 0.9928 + }, + { + "start": 5581.18, + "end": 5585.08, + "probability": 0.9925 + }, + { + "start": 5586.38, + "end": 5588.6, + "probability": 0.9944 + }, + { + "start": 5590.0, + "end": 5593.55, + "probability": 0.8873 + }, + { + "start": 5594.7, + "end": 5597.77, + "probability": 0.9943 + }, + { + "start": 5598.26, + "end": 5598.76, + "probability": 0.4513 + }, + { + "start": 5598.86, + "end": 5600.95, + "probability": 0.9634 + }, + { + "start": 5602.88, + "end": 5606.0, + "probability": 0.9149 + }, + { + "start": 5606.84, + "end": 5607.64, + "probability": 0.9832 + }, + { + "start": 5608.9, + "end": 5612.96, + "probability": 0.8884 + }, + { + "start": 5614.38, + "end": 5615.4, + "probability": 0.5791 + }, + { + "start": 5617.18, + "end": 5618.14, + "probability": 0.8442 + }, + { + "start": 5618.66, + "end": 5621.78, + "probability": 0.9666 + }, + { + "start": 5622.32, + "end": 5623.29, + "probability": 0.8567 + }, + { + "start": 5624.88, + "end": 5629.12, + "probability": 0.8595 + }, + { + "start": 5630.08, + "end": 5632.02, + "probability": 0.9951 + }, + { + "start": 5632.9, + "end": 5635.9, + "probability": 0.9518 + }, + { + "start": 5636.88, + "end": 5637.5, + "probability": 0.3752 + }, + { + "start": 5638.28, + "end": 5638.7, + "probability": 0.2552 + }, + { + "start": 5640.68, + "end": 5642.12, + "probability": 0.5355 + }, + { + "start": 5643.12, + "end": 5644.8, + "probability": 0.917 + }, + { + "start": 5645.88, + "end": 5646.66, + "probability": 0.0856 + }, + { + "start": 5646.86, + "end": 5650.2, + "probability": 0.6562 + }, + { + "start": 5650.2, + "end": 5651.82, + "probability": 0.821 + }, + { + "start": 5652.48, + "end": 5654.08, + "probability": 0.7573 + }, + { + "start": 5654.18, + "end": 5654.94, + "probability": 0.7811 + }, + { + "start": 5655.04, + "end": 5656.34, + "probability": 0.7969 + }, + { + "start": 5656.6, + "end": 5657.4, + "probability": 0.5728 + }, + { + "start": 5657.48, + "end": 5658.82, + "probability": 0.7359 + }, + { + "start": 5658.82, + "end": 5659.14, + "probability": 0.6254 + }, + { + "start": 5659.44, + "end": 5660.4, + "probability": 0.7845 + }, + { + "start": 5660.44, + "end": 5662.81, + "probability": 0.8608 + }, + { + "start": 5663.04, + "end": 5663.14, + "probability": 0.3272 + }, + { + "start": 5663.14, + "end": 5663.14, + "probability": 0.4985 + }, + { + "start": 5663.14, + "end": 5664.9, + "probability": 0.6586 + }, + { + "start": 5664.94, + "end": 5666.8, + "probability": 0.9756 + }, + { + "start": 5666.82, + "end": 5668.82, + "probability": 0.8374 + }, + { + "start": 5668.9, + "end": 5670.54, + "probability": 0.5869 + }, + { + "start": 5670.8, + "end": 5672.14, + "probability": 0.5513 + }, + { + "start": 5672.7, + "end": 5673.48, + "probability": 0.6807 + }, + { + "start": 5673.8, + "end": 5675.48, + "probability": 0.6245 + }, + { + "start": 5675.6, + "end": 5676.54, + "probability": 0.8785 + }, + { + "start": 5678.24, + "end": 5681.96, + "probability": 0.8613 + }, + { + "start": 5682.78, + "end": 5684.86, + "probability": 0.9788 + }, + { + "start": 5686.46, + "end": 5688.88, + "probability": 0.9908 + }, + { + "start": 5689.72, + "end": 5693.24, + "probability": 0.9418 + }, + { + "start": 5694.04, + "end": 5695.12, + "probability": 0.8979 + }, + { + "start": 5695.52, + "end": 5696.56, + "probability": 0.8883 + }, + { + "start": 5696.84, + "end": 5698.98, + "probability": 0.8966 + }, + { + "start": 5700.46, + "end": 5703.12, + "probability": 0.8643 + }, + { + "start": 5704.44, + "end": 5707.92, + "probability": 0.9883 + }, + { + "start": 5708.98, + "end": 5712.52, + "probability": 0.976 + }, + { + "start": 5713.3, + "end": 5719.16, + "probability": 0.9951 + }, + { + "start": 5720.72, + "end": 5723.68, + "probability": 0.7358 + }, + { + "start": 5724.36, + "end": 5725.14, + "probability": 0.8367 + }, + { + "start": 5726.02, + "end": 5730.54, + "probability": 0.9607 + }, + { + "start": 5732.24, + "end": 5733.22, + "probability": 0.965 + }, + { + "start": 5734.8, + "end": 5737.1, + "probability": 0.8787 + }, + { + "start": 5738.24, + "end": 5741.22, + "probability": 0.9854 + }, + { + "start": 5741.66, + "end": 5745.94, + "probability": 0.903 + }, + { + "start": 5746.96, + "end": 5749.5, + "probability": 0.833 + }, + { + "start": 5752.36, + "end": 5754.24, + "probability": 0.9806 + }, + { + "start": 5754.3, + "end": 5755.52, + "probability": 0.9966 + }, + { + "start": 5756.68, + "end": 5758.12, + "probability": 0.6353 + }, + { + "start": 5759.54, + "end": 5761.4, + "probability": 0.9763 + }, + { + "start": 5762.22, + "end": 5764.26, + "probability": 0.8806 + }, + { + "start": 5764.9, + "end": 5768.66, + "probability": 0.9883 + }, + { + "start": 5769.54, + "end": 5771.82, + "probability": 0.8129 + }, + { + "start": 5773.04, + "end": 5776.2, + "probability": 0.9491 + }, + { + "start": 5777.5, + "end": 5778.02, + "probability": 0.5226 + }, + { + "start": 5779.26, + "end": 5780.44, + "probability": 0.7017 + }, + { + "start": 5781.3, + "end": 5783.28, + "probability": 0.9736 + }, + { + "start": 5784.26, + "end": 5785.06, + "probability": 0.6204 + }, + { + "start": 5786.1, + "end": 5788.42, + "probability": 0.9388 + }, + { + "start": 5789.46, + "end": 5792.48, + "probability": 0.9398 + }, + { + "start": 5793.1, + "end": 5798.16, + "probability": 0.8699 + }, + { + "start": 5798.24, + "end": 5798.94, + "probability": 0.7417 + }, + { + "start": 5799.72, + "end": 5804.82, + "probability": 0.9199 + }, + { + "start": 5804.96, + "end": 5806.14, + "probability": 0.7257 + }, + { + "start": 5806.14, + "end": 5807.0, + "probability": 0.8741 + }, + { + "start": 5807.12, + "end": 5811.2, + "probability": 0.9867 + }, + { + "start": 5813.94, + "end": 5814.52, + "probability": 0.2481 + }, + { + "start": 5814.6, + "end": 5815.18, + "probability": 0.4554 + }, + { + "start": 5816.46, + "end": 5819.48, + "probability": 0.6688 + }, + { + "start": 5820.18, + "end": 5821.68, + "probability": 0.3244 + }, + { + "start": 5821.8, + "end": 5823.38, + "probability": 0.5388 + }, + { + "start": 5824.18, + "end": 5825.26, + "probability": 0.4083 + }, + { + "start": 5825.42, + "end": 5826.42, + "probability": 0.8037 + }, + { + "start": 5826.52, + "end": 5827.12, + "probability": 0.7035 + }, + { + "start": 5827.26, + "end": 5829.52, + "probability": 0.8695 + }, + { + "start": 5830.0, + "end": 5830.92, + "probability": 0.9558 + }, + { + "start": 5831.0, + "end": 5831.44, + "probability": 0.9679 + }, + { + "start": 5833.12, + "end": 5836.6, + "probability": 0.9774 + }, + { + "start": 5837.14, + "end": 5839.0, + "probability": 0.9891 + }, + { + "start": 5840.16, + "end": 5841.72, + "probability": 0.8119 + }, + { + "start": 5842.24, + "end": 5843.68, + "probability": 0.644 + }, + { + "start": 5843.88, + "end": 5846.46, + "probability": 0.9701 + }, + { + "start": 5847.0, + "end": 5851.14, + "probability": 0.9183 + }, + { + "start": 5851.66, + "end": 5851.74, + "probability": 0.5837 + }, + { + "start": 5851.76, + "end": 5853.8, + "probability": 0.9353 + }, + { + "start": 5853.98, + "end": 5854.22, + "probability": 0.7855 + }, + { + "start": 5854.68, + "end": 5857.36, + "probability": 0.6695 + }, + { + "start": 5857.84, + "end": 5860.68, + "probability": 0.9731 + }, + { + "start": 5860.78, + "end": 5861.56, + "probability": 0.4221 + }, + { + "start": 5861.8, + "end": 5863.42, + "probability": 0.8558 + }, + { + "start": 5872.32, + "end": 5874.28, + "probability": 0.6418 + }, + { + "start": 5875.78, + "end": 5879.1, + "probability": 0.7585 + }, + { + "start": 5880.1, + "end": 5885.5, + "probability": 0.9938 + }, + { + "start": 5886.02, + "end": 5886.52, + "probability": 0.594 + }, + { + "start": 5887.14, + "end": 5889.1, + "probability": 0.8098 + }, + { + "start": 5889.94, + "end": 5890.48, + "probability": 0.749 + }, + { + "start": 5892.06, + "end": 5893.78, + "probability": 0.9788 + }, + { + "start": 5894.62, + "end": 5898.2, + "probability": 0.9602 + }, + { + "start": 5898.74, + "end": 5900.22, + "probability": 0.9507 + }, + { + "start": 5901.6, + "end": 5903.84, + "probability": 0.979 + }, + { + "start": 5904.76, + "end": 5906.64, + "probability": 0.9754 + }, + { + "start": 5907.82, + "end": 5909.84, + "probability": 0.9966 + }, + { + "start": 5910.46, + "end": 5912.38, + "probability": 0.9883 + }, + { + "start": 5913.04, + "end": 5913.54, + "probability": 0.863 + }, + { + "start": 5914.28, + "end": 5914.71, + "probability": 0.9463 + }, + { + "start": 5916.1, + "end": 5919.54, + "probability": 0.9906 + }, + { + "start": 5919.64, + "end": 5921.24, + "probability": 0.7915 + }, + { + "start": 5921.52, + "end": 5924.5, + "probability": 0.9742 + }, + { + "start": 5926.88, + "end": 5928.12, + "probability": 0.3386 + }, + { + "start": 5928.34, + "end": 5931.48, + "probability": 0.4017 + }, + { + "start": 5932.42, + "end": 5934.1, + "probability": 0.7615 + }, + { + "start": 5934.66, + "end": 5938.32, + "probability": 0.1205 + }, + { + "start": 5938.32, + "end": 5938.52, + "probability": 0.5382 + }, + { + "start": 5940.08, + "end": 5940.08, + "probability": 0.2484 + }, + { + "start": 5940.08, + "end": 5940.08, + "probability": 0.1362 + }, + { + "start": 5940.08, + "end": 5940.88, + "probability": 0.6255 + }, + { + "start": 5941.12, + "end": 5942.28, + "probability": 0.7155 + }, + { + "start": 5942.9, + "end": 5944.64, + "probability": 0.9965 + }, + { + "start": 5944.8, + "end": 5945.7, + "probability": 0.979 + }, + { + "start": 5946.08, + "end": 5946.4, + "probability": 0.883 + }, + { + "start": 5946.54, + "end": 5948.94, + "probability": 0.9839 + }, + { + "start": 5948.98, + "end": 5950.38, + "probability": 0.5915 + }, + { + "start": 5950.38, + "end": 5951.0, + "probability": 0.687 + }, + { + "start": 5951.16, + "end": 5953.0, + "probability": 0.9937 + }, + { + "start": 5954.14, + "end": 5955.72, + "probability": 0.5962 + }, + { + "start": 5956.16, + "end": 5956.76, + "probability": 0.5155 + }, + { + "start": 5958.08, + "end": 5959.26, + "probability": 0.3165 + }, + { + "start": 5959.58, + "end": 5960.0, + "probability": 0.4912 + }, + { + "start": 5960.24, + "end": 5961.2, + "probability": 0.8944 + }, + { + "start": 5961.52, + "end": 5963.82, + "probability": 0.925 + }, + { + "start": 5964.08, + "end": 5965.18, + "probability": 0.5663 + }, + { + "start": 5965.28, + "end": 5965.4, + "probability": 0.1706 + }, + { + "start": 5965.4, + "end": 5966.8, + "probability": 0.5077 + }, + { + "start": 5966.9, + "end": 5968.22, + "probability": 0.8403 + }, + { + "start": 5969.12, + "end": 5969.4, + "probability": 0.5679 + }, + { + "start": 5970.38, + "end": 5971.9, + "probability": 0.3233 + }, + { + "start": 5971.98, + "end": 5973.76, + "probability": 0.837 + }, + { + "start": 5973.94, + "end": 5974.5, + "probability": 0.8903 + }, + { + "start": 5974.62, + "end": 5975.7, + "probability": 0.9014 + }, + { + "start": 5975.8, + "end": 5976.28, + "probability": 0.7393 + }, + { + "start": 5976.76, + "end": 5977.86, + "probability": 0.7423 + }, + { + "start": 5978.0, + "end": 5979.32, + "probability": 0.9964 + }, + { + "start": 5980.86, + "end": 5982.04, + "probability": 0.9555 + }, + { + "start": 5982.24, + "end": 5985.88, + "probability": 0.9816 + }, + { + "start": 5985.98, + "end": 5992.46, + "probability": 0.9993 + }, + { + "start": 5992.78, + "end": 5993.92, + "probability": 0.9662 + }, + { + "start": 5994.94, + "end": 5997.94, + "probability": 0.9971 + }, + { + "start": 5998.12, + "end": 5999.44, + "probability": 0.9048 + }, + { + "start": 5999.88, + "end": 6001.1, + "probability": 0.9602 + }, + { + "start": 6002.0, + "end": 6005.6, + "probability": 0.831 + }, + { + "start": 6005.98, + "end": 6007.9, + "probability": 0.7062 + }, + { + "start": 6008.1, + "end": 6009.3, + "probability": 0.9815 + }, + { + "start": 6010.2, + "end": 6010.8, + "probability": 0.802 + }, + { + "start": 6012.7, + "end": 6013.74, + "probability": 0.9988 + }, + { + "start": 6015.04, + "end": 6019.28, + "probability": 0.9938 + }, + { + "start": 6020.82, + "end": 6023.48, + "probability": 0.9907 + }, + { + "start": 6024.04, + "end": 6025.15, + "probability": 0.3822 + }, + { + "start": 6027.1, + "end": 6030.9, + "probability": 0.9907 + }, + { + "start": 6031.48, + "end": 6032.3, + "probability": 0.9168 + }, + { + "start": 6033.2, + "end": 6038.8, + "probability": 0.9965 + }, + { + "start": 6040.14, + "end": 6040.8, + "probability": 0.9932 + }, + { + "start": 6042.74, + "end": 6044.28, + "probability": 0.9739 + }, + { + "start": 6045.76, + "end": 6046.2, + "probability": 0.6423 + }, + { + "start": 6046.7, + "end": 6047.44, + "probability": 0.5711 + }, + { + "start": 6047.94, + "end": 6049.42, + "probability": 0.9691 + }, + { + "start": 6050.34, + "end": 6052.1, + "probability": 0.8647 + }, + { + "start": 6052.88, + "end": 6058.1, + "probability": 0.996 + }, + { + "start": 6058.1, + "end": 6065.76, + "probability": 0.9891 + }, + { + "start": 6067.88, + "end": 6068.95, + "probability": 0.7882 + }, + { + "start": 6069.62, + "end": 6070.52, + "probability": 0.6078 + }, + { + "start": 6073.2, + "end": 6079.58, + "probability": 0.9972 + }, + { + "start": 6079.58, + "end": 6084.18, + "probability": 0.9982 + }, + { + "start": 6084.38, + "end": 6085.3, + "probability": 0.628 + }, + { + "start": 6087.92, + "end": 6090.04, + "probability": 0.9672 + }, + { + "start": 6090.48, + "end": 6092.02, + "probability": 0.8335 + }, + { + "start": 6092.36, + "end": 6095.58, + "probability": 0.9227 + }, + { + "start": 6096.06, + "end": 6099.9, + "probability": 0.9586 + }, + { + "start": 6100.62, + "end": 6101.7, + "probability": 0.8008 + }, + { + "start": 6102.18, + "end": 6105.12, + "probability": 0.9321 + }, + { + "start": 6105.5, + "end": 6108.8, + "probability": 0.7396 + }, + { + "start": 6108.92, + "end": 6110.5, + "probability": 0.223 + }, + { + "start": 6110.68, + "end": 6113.66, + "probability": 0.9487 + }, + { + "start": 6113.8, + "end": 6115.35, + "probability": 0.9854 + }, + { + "start": 6115.68, + "end": 6116.3, + "probability": 0.3947 + }, + { + "start": 6116.72, + "end": 6119.41, + "probability": 0.9902 + }, + { + "start": 6119.54, + "end": 6119.96, + "probability": 0.381 + }, + { + "start": 6120.81, + "end": 6123.56, + "probability": 0.7522 + }, + { + "start": 6123.7, + "end": 6126.19, + "probability": 0.6875 + }, + { + "start": 6127.06, + "end": 6127.62, + "probability": 0.3397 + }, + { + "start": 6127.78, + "end": 6128.64, + "probability": 0.7587 + }, + { + "start": 6129.18, + "end": 6132.82, + "probability": 0.994 + }, + { + "start": 6133.16, + "end": 6136.86, + "probability": 0.9904 + }, + { + "start": 6137.22, + "end": 6140.7, + "probability": 0.9981 + }, + { + "start": 6141.18, + "end": 6142.54, + "probability": 0.8818 + }, + { + "start": 6143.0, + "end": 6144.3, + "probability": 0.7995 + }, + { + "start": 6145.0, + "end": 6153.02, + "probability": 0.9982 + }, + { + "start": 6153.44, + "end": 6154.4, + "probability": 0.9583 + }, + { + "start": 6154.5, + "end": 6155.58, + "probability": 0.9613 + }, + { + "start": 6156.0, + "end": 6157.74, + "probability": 0.9712 + }, + { + "start": 6157.86, + "end": 6159.76, + "probability": 0.9635 + }, + { + "start": 6160.14, + "end": 6162.22, + "probability": 0.8451 + }, + { + "start": 6163.22, + "end": 6164.3, + "probability": 0.9188 + }, + { + "start": 6164.42, + "end": 6167.06, + "probability": 0.9739 + }, + { + "start": 6167.56, + "end": 6171.24, + "probability": 0.9644 + }, + { + "start": 6171.4, + "end": 6172.84, + "probability": 0.9951 + }, + { + "start": 6173.54, + "end": 6176.82, + "probability": 0.9977 + }, + { + "start": 6177.08, + "end": 6177.38, + "probability": 0.8079 + }, + { + "start": 6177.84, + "end": 6179.68, + "probability": 0.7897 + }, + { + "start": 6180.58, + "end": 6182.78, + "probability": 0.9821 + }, + { + "start": 6183.16, + "end": 6184.12, + "probability": 0.424 + }, + { + "start": 6184.26, + "end": 6187.12, + "probability": 0.8587 + }, + { + "start": 6192.62, + "end": 6194.86, + "probability": 0.7846 + }, + { + "start": 6195.48, + "end": 6196.4, + "probability": 0.8707 + }, + { + "start": 6199.54, + "end": 6200.8, + "probability": 0.8425 + }, + { + "start": 6201.38, + "end": 6201.98, + "probability": 0.8298 + }, + { + "start": 6204.22, + "end": 6206.08, + "probability": 0.9772 + }, + { + "start": 6207.62, + "end": 6210.54, + "probability": 0.9955 + }, + { + "start": 6212.24, + "end": 6214.64, + "probability": 0.9936 + }, + { + "start": 6215.68, + "end": 6215.82, + "probability": 0.9949 + }, + { + "start": 6216.38, + "end": 6219.24, + "probability": 0.9933 + }, + { + "start": 6219.9, + "end": 6220.5, + "probability": 0.5 + }, + { + "start": 6221.18, + "end": 6223.86, + "probability": 0.99 + }, + { + "start": 6224.0, + "end": 6229.44, + "probability": 0.97 + }, + { + "start": 6231.54, + "end": 6233.04, + "probability": 0.9988 + }, + { + "start": 6234.9, + "end": 6238.46, + "probability": 0.9387 + }, + { + "start": 6239.36, + "end": 6241.86, + "probability": 0.9966 + }, + { + "start": 6243.2, + "end": 6246.26, + "probability": 0.9926 + }, + { + "start": 6247.9, + "end": 6252.32, + "probability": 0.8962 + }, + { + "start": 6252.54, + "end": 6253.02, + "probability": 0.8535 + }, + { + "start": 6254.48, + "end": 6257.6, + "probability": 0.9171 + }, + { + "start": 6259.4, + "end": 6260.22, + "probability": 0.6642 + }, + { + "start": 6260.62, + "end": 6262.3, + "probability": 0.0979 + }, + { + "start": 6263.78, + "end": 6266.12, + "probability": 0.8613 + }, + { + "start": 6266.66, + "end": 6270.08, + "probability": 0.8982 + }, + { + "start": 6270.32, + "end": 6273.18, + "probability": 0.8515 + }, + { + "start": 6273.86, + "end": 6276.38, + "probability": 0.9532 + }, + { + "start": 6278.32, + "end": 6279.46, + "probability": 0.43 + }, + { + "start": 6279.52, + "end": 6285.34, + "probability": 0.9836 + }, + { + "start": 6286.2, + "end": 6291.16, + "probability": 0.8974 + }, + { + "start": 6291.64, + "end": 6294.83, + "probability": 0.9681 + }, + { + "start": 6295.88, + "end": 6300.5, + "probability": 0.9484 + }, + { + "start": 6300.96, + "end": 6302.82, + "probability": 0.9817 + }, + { + "start": 6303.36, + "end": 6305.78, + "probability": 0.9939 + }, + { + "start": 6306.1, + "end": 6309.9, + "probability": 0.9932 + }, + { + "start": 6311.06, + "end": 6314.52, + "probability": 0.988 + }, + { + "start": 6314.64, + "end": 6319.0, + "probability": 0.9107 + }, + { + "start": 6319.88, + "end": 6323.16, + "probability": 0.996 + }, + { + "start": 6324.3, + "end": 6328.56, + "probability": 0.8118 + }, + { + "start": 6329.28, + "end": 6332.44, + "probability": 0.9941 + }, + { + "start": 6332.96, + "end": 6334.14, + "probability": 0.9429 + }, + { + "start": 6335.04, + "end": 6338.66, + "probability": 0.9863 + }, + { + "start": 6339.2, + "end": 6342.56, + "probability": 0.8061 + }, + { + "start": 6343.12, + "end": 6345.1, + "probability": 0.9692 + }, + { + "start": 6345.16, + "end": 6346.44, + "probability": 0.9754 + }, + { + "start": 6346.58, + "end": 6350.16, + "probability": 0.9992 + }, + { + "start": 6350.68, + "end": 6354.62, + "probability": 0.9618 + }, + { + "start": 6355.04, + "end": 6359.18, + "probability": 0.9985 + }, + { + "start": 6359.9, + "end": 6360.6, + "probability": 0.8909 + }, + { + "start": 6361.32, + "end": 6362.56, + "probability": 0.974 + }, + { + "start": 6363.12, + "end": 6363.98, + "probability": 0.9738 + }, + { + "start": 6364.16, + "end": 6367.46, + "probability": 0.9969 + }, + { + "start": 6367.84, + "end": 6373.14, + "probability": 0.9736 + }, + { + "start": 6373.68, + "end": 6375.28, + "probability": 0.7814 + }, + { + "start": 6375.52, + "end": 6377.38, + "probability": 0.5379 + }, + { + "start": 6377.5, + "end": 6380.32, + "probability": 0.8916 + }, + { + "start": 6380.98, + "end": 6382.1, + "probability": 0.9409 + }, + { + "start": 6382.22, + "end": 6387.85, + "probability": 0.8948 + }, + { + "start": 6388.98, + "end": 6390.36, + "probability": 0.9482 + }, + { + "start": 6390.52, + "end": 6392.14, + "probability": 0.9229 + }, + { + "start": 6392.24, + "end": 6394.08, + "probability": 0.3286 + }, + { + "start": 6394.08, + "end": 6396.39, + "probability": 0.7503 + }, + { + "start": 6398.2, + "end": 6400.5, + "probability": 0.9866 + }, + { + "start": 6401.54, + "end": 6403.8, + "probability": 0.8967 + }, + { + "start": 6404.62, + "end": 6407.12, + "probability": 0.9622 + }, + { + "start": 6407.28, + "end": 6407.96, + "probability": 0.9288 + }, + { + "start": 6408.86, + "end": 6410.86, + "probability": 0.9932 + }, + { + "start": 6411.34, + "end": 6417.14, + "probability": 0.9951 + }, + { + "start": 6418.04, + "end": 6419.08, + "probability": 0.9377 + }, + { + "start": 6419.32, + "end": 6422.84, + "probability": 0.97 + }, + { + "start": 6422.96, + "end": 6423.7, + "probability": 0.2533 + }, + { + "start": 6425.3, + "end": 6428.0, + "probability": 0.9704 + }, + { + "start": 6428.02, + "end": 6433.84, + "probability": 0.923 + }, + { + "start": 6434.02, + "end": 6435.52, + "probability": 0.8849 + }, + { + "start": 6437.24, + "end": 6439.8, + "probability": 0.761 + }, + { + "start": 6439.86, + "end": 6440.98, + "probability": 0.8239 + }, + { + "start": 6441.24, + "end": 6441.8, + "probability": 0.7518 + }, + { + "start": 6442.16, + "end": 6443.7, + "probability": 0.9728 + }, + { + "start": 6443.78, + "end": 6445.2, + "probability": 0.8856 + }, + { + "start": 6445.78, + "end": 6448.36, + "probability": 0.991 + }, + { + "start": 6448.58, + "end": 6451.76, + "probability": 0.9882 + }, + { + "start": 6452.18, + "end": 6452.38, + "probability": 0.346 + }, + { + "start": 6452.38, + "end": 6454.46, + "probability": 0.9985 + }, + { + "start": 6455.72, + "end": 6458.46, + "probability": 0.9974 + }, + { + "start": 6458.46, + "end": 6462.14, + "probability": 0.962 + }, + { + "start": 6463.47, + "end": 6465.98, + "probability": 0.9597 + }, + { + "start": 6466.12, + "end": 6466.18, + "probability": 0.0848 + }, + { + "start": 6466.18, + "end": 6470.58, + "probability": 0.8091 + }, + { + "start": 6470.66, + "end": 6471.0, + "probability": 0.6031 + }, + { + "start": 6471.06, + "end": 6475.84, + "probability": 0.8021 + }, + { + "start": 6479.7, + "end": 6479.7, + "probability": 0.0441 + }, + { + "start": 6479.7, + "end": 6479.96, + "probability": 0.01 + }, + { + "start": 6480.68, + "end": 6482.6, + "probability": 0.8447 + }, + { + "start": 6482.72, + "end": 6484.72, + "probability": 0.4197 + }, + { + "start": 6485.38, + "end": 6487.56, + "probability": 0.8226 + }, + { + "start": 6490.08, + "end": 6491.24, + "probability": 0.8477 + }, + { + "start": 6491.36, + "end": 6493.82, + "probability": 0.7635 + }, + { + "start": 6494.56, + "end": 6499.5, + "probability": 0.9723 + }, + { + "start": 6499.66, + "end": 6500.16, + "probability": 0.5259 + }, + { + "start": 6500.66, + "end": 6502.3, + "probability": 0.9902 + }, + { + "start": 6502.38, + "end": 6504.18, + "probability": 0.9993 + }, + { + "start": 6504.7, + "end": 6510.86, + "probability": 0.9883 + }, + { + "start": 6510.9, + "end": 6512.06, + "probability": 0.8784 + }, + { + "start": 6512.48, + "end": 6517.18, + "probability": 0.9712 + }, + { + "start": 6517.32, + "end": 6520.61, + "probability": 0.7306 + }, + { + "start": 6521.16, + "end": 6522.42, + "probability": 0.9977 + }, + { + "start": 6522.7, + "end": 6523.94, + "probability": 0.9857 + }, + { + "start": 6524.08, + "end": 6525.14, + "probability": 0.8872 + }, + { + "start": 6525.3, + "end": 6526.66, + "probability": 0.7992 + }, + { + "start": 6527.36, + "end": 6529.78, + "probability": 0.9366 + }, + { + "start": 6530.28, + "end": 6531.32, + "probability": 0.6335 + }, + { + "start": 6531.8, + "end": 6532.94, + "probability": 0.9536 + }, + { + "start": 6533.02, + "end": 6534.56, + "probability": 0.9872 + }, + { + "start": 6534.86, + "end": 6538.26, + "probability": 0.991 + }, + { + "start": 6538.26, + "end": 6541.16, + "probability": 0.9945 + }, + { + "start": 6541.78, + "end": 6543.92, + "probability": 0.9932 + }, + { + "start": 6544.04, + "end": 6545.64, + "probability": 0.9951 + }, + { + "start": 6546.34, + "end": 6550.38, + "probability": 0.9901 + }, + { + "start": 6550.38, + "end": 6553.54, + "probability": 0.9827 + }, + { + "start": 6554.0, + "end": 6557.68, + "probability": 0.9928 + }, + { + "start": 6557.68, + "end": 6561.0, + "probability": 0.9947 + }, + { + "start": 6561.44, + "end": 6564.26, + "probability": 0.9873 + }, + { + "start": 6564.8, + "end": 6570.6, + "probability": 0.9518 + }, + { + "start": 6571.62, + "end": 6572.84, + "probability": 0.0333 + }, + { + "start": 6572.9, + "end": 6577.28, + "probability": 0.8477 + }, + { + "start": 6577.84, + "end": 6579.0, + "probability": 0.5394 + }, + { + "start": 6579.4, + "end": 6581.46, + "probability": 0.8382 + }, + { + "start": 6581.72, + "end": 6584.3, + "probability": 0.9069 + }, + { + "start": 6584.7, + "end": 6588.14, + "probability": 0.9967 + }, + { + "start": 6588.58, + "end": 6593.66, + "probability": 0.9988 + }, + { + "start": 6594.14, + "end": 6596.62, + "probability": 0.9976 + }, + { + "start": 6596.62, + "end": 6599.5, + "probability": 0.9907 + }, + { + "start": 6600.24, + "end": 6601.58, + "probability": 0.674 + }, + { + "start": 6603.02, + "end": 6603.83, + "probability": 0.6801 + }, + { + "start": 6604.66, + "end": 6606.24, + "probability": 0.9506 + }, + { + "start": 6606.6, + "end": 6607.29, + "probability": 0.8752 + }, + { + "start": 6607.92, + "end": 6609.7, + "probability": 0.9893 + }, + { + "start": 6610.2, + "end": 6611.08, + "probability": 0.948 + }, + { + "start": 6611.28, + "end": 6614.14, + "probability": 0.5029 + }, + { + "start": 6614.14, + "end": 6614.16, + "probability": 0.0842 + }, + { + "start": 6614.16, + "end": 6614.76, + "probability": 0.4903 + }, + { + "start": 6615.2, + "end": 6616.36, + "probability": 0.87 + }, + { + "start": 6616.5, + "end": 6616.93, + "probability": 0.5568 + }, + { + "start": 6617.06, + "end": 6617.98, + "probability": 0.8779 + }, + { + "start": 6618.38, + "end": 6619.12, + "probability": 0.6012 + }, + { + "start": 6619.44, + "end": 6622.46, + "probability": 0.9448 + }, + { + "start": 6622.9, + "end": 6626.72, + "probability": 0.6079 + }, + { + "start": 6627.02, + "end": 6629.74, + "probability": 0.9901 + }, + { + "start": 6630.24, + "end": 6634.9, + "probability": 0.9612 + }, + { + "start": 6635.26, + "end": 6636.22, + "probability": 0.8566 + }, + { + "start": 6636.88, + "end": 6638.8, + "probability": 0.993 + }, + { + "start": 6639.76, + "end": 6641.4, + "probability": 0.9424 + }, + { + "start": 6641.44, + "end": 6642.08, + "probability": 0.8195 + }, + { + "start": 6642.46, + "end": 6644.92, + "probability": 0.928 + }, + { + "start": 6645.24, + "end": 6648.72, + "probability": 0.8857 + }, + { + "start": 6649.14, + "end": 6649.74, + "probability": 0.766 + }, + { + "start": 6649.94, + "end": 6653.78, + "probability": 0.9441 + }, + { + "start": 6654.24, + "end": 6656.62, + "probability": 0.9834 + }, + { + "start": 6656.62, + "end": 6659.38, + "probability": 0.9761 + }, + { + "start": 6659.76, + "end": 6659.88, + "probability": 0.616 + }, + { + "start": 6659.88, + "end": 6662.56, + "probability": 0.9399 + }, + { + "start": 6662.88, + "end": 6665.34, + "probability": 0.97 + }, + { + "start": 6665.72, + "end": 6666.52, + "probability": 0.9932 + }, + { + "start": 6666.96, + "end": 6668.3, + "probability": 0.9214 + }, + { + "start": 6668.64, + "end": 6670.12, + "probability": 0.9389 + }, + { + "start": 6671.02, + "end": 6675.02, + "probability": 0.9117 + }, + { + "start": 6675.08, + "end": 6677.88, + "probability": 0.9704 + }, + { + "start": 6678.3, + "end": 6683.6, + "probability": 0.9933 + }, + { + "start": 6683.94, + "end": 6685.72, + "probability": 0.9403 + }, + { + "start": 6686.18, + "end": 6690.82, + "probability": 0.9853 + }, + { + "start": 6691.38, + "end": 6694.96, + "probability": 0.8942 + }, + { + "start": 6695.82, + "end": 6700.2, + "probability": 0.9949 + }, + { + "start": 6700.88, + "end": 6704.96, + "probability": 0.9875 + }, + { + "start": 6705.38, + "end": 6707.27, + "probability": 0.9097 + }, + { + "start": 6707.38, + "end": 6709.24, + "probability": 0.9749 + }, + { + "start": 6709.62, + "end": 6711.32, + "probability": 0.8463 + }, + { + "start": 6711.9, + "end": 6712.9, + "probability": 0.9648 + }, + { + "start": 6713.46, + "end": 6714.36, + "probability": 0.8258 + }, + { + "start": 6714.94, + "end": 6717.08, + "probability": 0.95 + }, + { + "start": 6717.42, + "end": 6719.82, + "probability": 0.9524 + }, + { + "start": 6720.8, + "end": 6723.34, + "probability": 0.7219 + }, + { + "start": 6724.12, + "end": 6727.5, + "probability": 0.8893 + }, + { + "start": 6727.94, + "end": 6729.94, + "probability": 0.9939 + }, + { + "start": 6730.46, + "end": 6733.24, + "probability": 0.9655 + }, + { + "start": 6733.9, + "end": 6739.06, + "probability": 0.9858 + }, + { + "start": 6739.16, + "end": 6740.0, + "probability": 0.4346 + }, + { + "start": 6740.24, + "end": 6742.1, + "probability": 0.3581 + }, + { + "start": 6742.2, + "end": 6744.0, + "probability": 0.9466 + }, + { + "start": 6744.68, + "end": 6745.6, + "probability": 0.7482 + }, + { + "start": 6746.28, + "end": 6749.34, + "probability": 0.9007 + }, + { + "start": 6752.2, + "end": 6755.62, + "probability": 0.7998 + }, + { + "start": 6765.28, + "end": 6770.34, + "probability": 0.5565 + }, + { + "start": 6771.46, + "end": 6774.94, + "probability": 0.8498 + }, + { + "start": 6776.34, + "end": 6777.4, + "probability": 0.6075 + }, + { + "start": 6777.44, + "end": 6778.56, + "probability": 0.6323 + }, + { + "start": 6778.66, + "end": 6785.48, + "probability": 0.9214 + }, + { + "start": 6786.32, + "end": 6789.18, + "probability": 0.7117 + }, + { + "start": 6789.98, + "end": 6793.44, + "probability": 0.841 + }, + { + "start": 6794.06, + "end": 6795.82, + "probability": 0.7764 + }, + { + "start": 6796.5, + "end": 6796.85, + "probability": 0.0521 + }, + { + "start": 6798.18, + "end": 6802.39, + "probability": 0.9165 + }, + { + "start": 6803.06, + "end": 6803.52, + "probability": 0.75 + }, + { + "start": 6804.16, + "end": 6805.7, + "probability": 0.9438 + }, + { + "start": 6806.06, + "end": 6807.4, + "probability": 0.5887 + }, + { + "start": 6807.9, + "end": 6809.58, + "probability": 0.5006 + }, + { + "start": 6809.7, + "end": 6810.14, + "probability": 0.938 + }, + { + "start": 6811.74, + "end": 6814.36, + "probability": 0.7752 + }, + { + "start": 6815.06, + "end": 6817.96, + "probability": 0.9341 + }, + { + "start": 6818.62, + "end": 6820.22, + "probability": 0.995 + }, + { + "start": 6820.86, + "end": 6824.96, + "probability": 0.9494 + }, + { + "start": 6826.86, + "end": 6829.62, + "probability": 0.9457 + }, + { + "start": 6830.5, + "end": 6831.42, + "probability": 0.9482 + }, + { + "start": 6832.36, + "end": 6834.6, + "probability": 0.8235 + }, + { + "start": 6835.38, + "end": 6836.32, + "probability": 0.8633 + }, + { + "start": 6837.14, + "end": 6837.96, + "probability": 0.9172 + }, + { + "start": 6839.0, + "end": 6844.5, + "probability": 0.8943 + }, + { + "start": 6844.9, + "end": 6848.46, + "probability": 0.9866 + }, + { + "start": 6849.24, + "end": 6851.28, + "probability": 0.9778 + }, + { + "start": 6851.92, + "end": 6853.7, + "probability": 0.9961 + }, + { + "start": 6855.5, + "end": 6857.06, + "probability": 0.9684 + }, + { + "start": 6857.86, + "end": 6862.44, + "probability": 0.874 + }, + { + "start": 6863.2, + "end": 6864.2, + "probability": 0.9624 + }, + { + "start": 6864.82, + "end": 6867.0, + "probability": 0.9412 + }, + { + "start": 6867.44, + "end": 6869.58, + "probability": 0.7166 + }, + { + "start": 6870.12, + "end": 6873.32, + "probability": 0.5176 + }, + { + "start": 6873.42, + "end": 6873.92, + "probability": 0.9824 + }, + { + "start": 6874.44, + "end": 6876.48, + "probability": 0.9453 + }, + { + "start": 6877.36, + "end": 6882.5, + "probability": 0.954 + }, + { + "start": 6883.06, + "end": 6886.24, + "probability": 0.9923 + }, + { + "start": 6886.82, + "end": 6890.24, + "probability": 0.9937 + }, + { + "start": 6892.14, + "end": 6898.12, + "probability": 0.9949 + }, + { + "start": 6900.02, + "end": 6902.6, + "probability": 0.9876 + }, + { + "start": 6904.58, + "end": 6906.84, + "probability": 0.999 + }, + { + "start": 6907.38, + "end": 6908.96, + "probability": 0.9417 + }, + { + "start": 6909.48, + "end": 6911.46, + "probability": 0.9583 + }, + { + "start": 6912.12, + "end": 6915.74, + "probability": 0.9972 + }, + { + "start": 6916.58, + "end": 6918.74, + "probability": 0.9948 + }, + { + "start": 6919.52, + "end": 6920.66, + "probability": 0.793 + }, + { + "start": 6922.24, + "end": 6923.48, + "probability": 0.9042 + }, + { + "start": 6924.22, + "end": 6925.84, + "probability": 0.7913 + }, + { + "start": 6927.54, + "end": 6930.18, + "probability": 0.9941 + }, + { + "start": 6931.26, + "end": 6932.28, + "probability": 0.9905 + }, + { + "start": 6933.2, + "end": 6935.98, + "probability": 0.9625 + }, + { + "start": 6937.12, + "end": 6940.62, + "probability": 0.9912 + }, + { + "start": 6940.68, + "end": 6944.94, + "probability": 0.9443 + }, + { + "start": 6945.92, + "end": 6948.64, + "probability": 0.9352 + }, + { + "start": 6949.4, + "end": 6950.4, + "probability": 0.7854 + }, + { + "start": 6950.54, + "end": 6952.28, + "probability": 0.917 + }, + { + "start": 6952.84, + "end": 6955.22, + "probability": 0.9911 + }, + { + "start": 6956.24, + "end": 6961.32, + "probability": 0.9731 + }, + { + "start": 6962.26, + "end": 6965.02, + "probability": 0.9985 + }, + { + "start": 6965.76, + "end": 6968.34, + "probability": 0.9989 + }, + { + "start": 6969.06, + "end": 6972.74, + "probability": 0.9424 + }, + { + "start": 6973.26, + "end": 6973.96, + "probability": 0.9485 + }, + { + "start": 6975.26, + "end": 6977.08, + "probability": 0.9961 + }, + { + "start": 6978.24, + "end": 6979.72, + "probability": 0.8699 + }, + { + "start": 6980.74, + "end": 6981.7, + "probability": 0.7499 + }, + { + "start": 6982.78, + "end": 6985.06, + "probability": 0.7853 + }, + { + "start": 6986.0, + "end": 6987.22, + "probability": 0.9883 + }, + { + "start": 6988.0, + "end": 6990.02, + "probability": 0.9595 + }, + { + "start": 6991.04, + "end": 6992.96, + "probability": 0.9917 + }, + { + "start": 6993.64, + "end": 6995.74, + "probability": 0.9811 + }, + { + "start": 6996.72, + "end": 7000.48, + "probability": 0.7347 + }, + { + "start": 7001.06, + "end": 7002.14, + "probability": 0.6684 + }, + { + "start": 7002.78, + "end": 7005.54, + "probability": 0.9958 + }, + { + "start": 7005.54, + "end": 7009.24, + "probability": 0.9578 + }, + { + "start": 7010.54, + "end": 7016.54, + "probability": 0.9471 + }, + { + "start": 7017.24, + "end": 7018.98, + "probability": 0.9985 + }, + { + "start": 7019.79, + "end": 7020.42, + "probability": 0.7731 + }, + { + "start": 7022.22, + "end": 7023.8, + "probability": 0.8951 + }, + { + "start": 7024.44, + "end": 7025.22, + "probability": 0.9762 + }, + { + "start": 7025.78, + "end": 7027.44, + "probability": 0.9951 + }, + { + "start": 7028.3, + "end": 7030.34, + "probability": 0.9106 + }, + { + "start": 7030.36, + "end": 7031.47, + "probability": 0.9819 + }, + { + "start": 7032.36, + "end": 7034.8, + "probability": 0.7994 + }, + { + "start": 7035.4, + "end": 7038.2, + "probability": 0.8776 + }, + { + "start": 7060.24, + "end": 7062.36, + "probability": 0.7949 + }, + { + "start": 7063.7, + "end": 7064.48, + "probability": 0.6546 + }, + { + "start": 7065.68, + "end": 7067.58, + "probability": 0.9207 + }, + { + "start": 7068.8, + "end": 7071.6, + "probability": 0.9749 + }, + { + "start": 7072.42, + "end": 7074.92, + "probability": 0.6695 + }, + { + "start": 7075.54, + "end": 7077.88, + "probability": 0.9855 + }, + { + "start": 7082.12, + "end": 7086.2, + "probability": 0.9896 + }, + { + "start": 7086.42, + "end": 7087.88, + "probability": 0.741 + }, + { + "start": 7088.72, + "end": 7092.54, + "probability": 0.9971 + }, + { + "start": 7093.48, + "end": 7095.04, + "probability": 0.9954 + }, + { + "start": 7095.2, + "end": 7096.84, + "probability": 0.9768 + }, + { + "start": 7098.1, + "end": 7102.68, + "probability": 0.9499 + }, + { + "start": 7104.12, + "end": 7107.6, + "probability": 0.9827 + }, + { + "start": 7107.6, + "end": 7112.26, + "probability": 0.9985 + }, + { + "start": 7113.24, + "end": 7116.12, + "probability": 0.9683 + }, + { + "start": 7116.98, + "end": 7118.9, + "probability": 0.7397 + }, + { + "start": 7119.52, + "end": 7120.78, + "probability": 0.8259 + }, + { + "start": 7121.42, + "end": 7124.76, + "probability": 0.9904 + }, + { + "start": 7126.2, + "end": 7128.86, + "probability": 0.8812 + }, + { + "start": 7129.38, + "end": 7133.32, + "probability": 0.958 + }, + { + "start": 7134.0, + "end": 7137.94, + "probability": 0.972 + }, + { + "start": 7139.16, + "end": 7143.32, + "probability": 0.9951 + }, + { + "start": 7143.8, + "end": 7145.3, + "probability": 0.9907 + }, + { + "start": 7146.5, + "end": 7149.06, + "probability": 0.9843 + }, + { + "start": 7149.46, + "end": 7150.12, + "probability": 0.716 + }, + { + "start": 7150.86, + "end": 7155.42, + "probability": 0.998 + }, + { + "start": 7156.0, + "end": 7160.14, + "probability": 0.9925 + }, + { + "start": 7161.72, + "end": 7162.08, + "probability": 0.6909 + }, + { + "start": 7162.92, + "end": 7166.46, + "probability": 0.9554 + }, + { + "start": 7167.46, + "end": 7171.96, + "probability": 0.9656 + }, + { + "start": 7172.54, + "end": 7173.02, + "probability": 0.8843 + }, + { + "start": 7173.84, + "end": 7176.42, + "probability": 0.9971 + }, + { + "start": 7178.26, + "end": 7182.98, + "probability": 0.9702 + }, + { + "start": 7183.56, + "end": 7187.92, + "probability": 0.9487 + }, + { + "start": 7188.76, + "end": 7188.86, + "probability": 0.1091 + }, + { + "start": 7188.86, + "end": 7192.72, + "probability": 0.8955 + }, + { + "start": 7192.86, + "end": 7193.47, + "probability": 0.8291 + }, + { + "start": 7194.82, + "end": 7195.28, + "probability": 0.2859 + }, + { + "start": 7195.76, + "end": 7197.16, + "probability": 0.7927 + }, + { + "start": 7197.32, + "end": 7200.38, + "probability": 0.9029 + }, + { + "start": 7200.44, + "end": 7201.36, + "probability": 0.4126 + }, + { + "start": 7201.8, + "end": 7204.12, + "probability": 0.9009 + }, + { + "start": 7204.3, + "end": 7205.36, + "probability": 0.5106 + }, + { + "start": 7205.92, + "end": 7206.44, + "probability": 0.484 + }, + { + "start": 7206.56, + "end": 7207.36, + "probability": 0.5807 + }, + { + "start": 7208.1, + "end": 7211.56, + "probability": 0.7476 + }, + { + "start": 7211.94, + "end": 7212.68, + "probability": 0.5811 + }, + { + "start": 7213.16, + "end": 7217.04, + "probability": 0.6215 + }, + { + "start": 7217.12, + "end": 7220.5, + "probability": 0.8649 + }, + { + "start": 7221.91, + "end": 7224.16, + "probability": 0.6236 + }, + { + "start": 7224.28, + "end": 7225.7, + "probability": 0.7138 + }, + { + "start": 7225.72, + "end": 7227.23, + "probability": 0.793 + }, + { + "start": 7228.02, + "end": 7230.54, + "probability": 0.9953 + }, + { + "start": 7230.7, + "end": 7232.78, + "probability": 0.98 + }, + { + "start": 7233.8, + "end": 7235.82, + "probability": 0.9385 + }, + { + "start": 7235.98, + "end": 7237.6, + "probability": 0.9898 + }, + { + "start": 7238.76, + "end": 7238.76, + "probability": 0.3207 + }, + { + "start": 7239.02, + "end": 7240.76, + "probability": 0.9893 + }, + { + "start": 7241.08, + "end": 7241.4, + "probability": 0.8801 + }, + { + "start": 7241.5, + "end": 7242.32, + "probability": 0.8516 + }, + { + "start": 7244.44, + "end": 7245.52, + "probability": 0.2185 + }, + { + "start": 7246.6, + "end": 7247.06, + "probability": 0.448 + }, + { + "start": 7247.06, + "end": 7248.44, + "probability": 0.8795 + }, + { + "start": 7250.04, + "end": 7252.12, + "probability": 0.9907 + }, + { + "start": 7252.3, + "end": 7252.77, + "probability": 0.7456 + }, + { + "start": 7253.76, + "end": 7256.02, + "probability": 0.9121 + }, + { + "start": 7257.08, + "end": 7257.76, + "probability": 0.1172 + }, + { + "start": 7258.48, + "end": 7261.52, + "probability": 0.5541 + }, + { + "start": 7262.22, + "end": 7263.92, + "probability": 0.941 + }, + { + "start": 7265.74, + "end": 7266.44, + "probability": 0.381 + }, + { + "start": 7266.64, + "end": 7267.6, + "probability": 0.7528 + }, + { + "start": 7267.78, + "end": 7268.61, + "probability": 0.981 + }, + { + "start": 7268.8, + "end": 7270.16, + "probability": 0.995 + }, + { + "start": 7270.42, + "end": 7271.68, + "probability": 0.7374 + }, + { + "start": 7272.36, + "end": 7272.46, + "probability": 0.7404 + }, + { + "start": 7274.78, + "end": 7278.32, + "probability": 0.9882 + }, + { + "start": 7278.7, + "end": 7279.88, + "probability": 0.91 + }, + { + "start": 7280.4, + "end": 7284.6, + "probability": 0.7782 + }, + { + "start": 7284.94, + "end": 7287.18, + "probability": 0.6799 + }, + { + "start": 7287.36, + "end": 7288.3, + "probability": 0.7718 + }, + { + "start": 7288.74, + "end": 7289.74, + "probability": 0.5816 + }, + { + "start": 7289.82, + "end": 7293.3, + "probability": 0.9812 + }, + { + "start": 7293.58, + "end": 7294.02, + "probability": 0.8928 + }, + { + "start": 7294.88, + "end": 7297.42, + "probability": 0.9801 + }, + { + "start": 7297.84, + "end": 7299.28, + "probability": 0.9894 + }, + { + "start": 7299.44, + "end": 7300.4, + "probability": 0.7967 + }, + { + "start": 7300.68, + "end": 7300.88, + "probability": 0.7663 + }, + { + "start": 7302.0, + "end": 7303.06, + "probability": 0.8932 + }, + { + "start": 7303.64, + "end": 7310.06, + "probability": 0.945 + }, + { + "start": 7310.06, + "end": 7314.56, + "probability": 0.9813 + }, + { + "start": 7314.94, + "end": 7320.06, + "probability": 0.9653 + }, + { + "start": 7320.38, + "end": 7328.98, + "probability": 0.9691 + }, + { + "start": 7330.44, + "end": 7338.65, + "probability": 0.9868 + }, + { + "start": 7339.76, + "end": 7339.76, + "probability": 0.2944 + }, + { + "start": 7339.76, + "end": 7346.46, + "probability": 0.8668 + }, + { + "start": 7346.46, + "end": 7352.36, + "probability": 0.7894 + }, + { + "start": 7352.58, + "end": 7354.64, + "probability": 0.8871 + }, + { + "start": 7355.46, + "end": 7357.92, + "probability": 0.4638 + }, + { + "start": 7358.2, + "end": 7359.78, + "probability": 0.9405 + }, + { + "start": 7360.48, + "end": 7361.24, + "probability": 0.9 + }, + { + "start": 7361.36, + "end": 7364.28, + "probability": 0.9906 + }, + { + "start": 7364.6, + "end": 7365.84, + "probability": 0.7179 + }, + { + "start": 7365.94, + "end": 7367.52, + "probability": 0.8237 + }, + { + "start": 7368.9, + "end": 7371.68, + "probability": 0.9943 + }, + { + "start": 7372.24, + "end": 7376.06, + "probability": 0.8067 + }, + { + "start": 7376.54, + "end": 7379.44, + "probability": 0.9971 + }, + { + "start": 7379.94, + "end": 7381.6, + "probability": 0.8154 + }, + { + "start": 7382.16, + "end": 7383.42, + "probability": 0.9717 + }, + { + "start": 7383.94, + "end": 7385.54, + "probability": 0.7861 + }, + { + "start": 7386.12, + "end": 7387.96, + "probability": 0.9352 + }, + { + "start": 7388.32, + "end": 7391.36, + "probability": 0.9057 + }, + { + "start": 7391.72, + "end": 7393.64, + "probability": 0.9937 + }, + { + "start": 7394.08, + "end": 7396.12, + "probability": 0.9575 + }, + { + "start": 7397.72, + "end": 7399.16, + "probability": 0.9906 + }, + { + "start": 7399.78, + "end": 7401.94, + "probability": 0.438 + }, + { + "start": 7402.76, + "end": 7404.12, + "probability": 0.4952 + }, + { + "start": 7404.12, + "end": 7404.98, + "probability": 0.6659 + }, + { + "start": 7405.12, + "end": 7405.9, + "probability": 0.733 + }, + { + "start": 7405.94, + "end": 7410.78, + "probability": 0.9238 + }, + { + "start": 7411.08, + "end": 7411.12, + "probability": 0.4548 + }, + { + "start": 7411.46, + "end": 7411.88, + "probability": 0.1889 + }, + { + "start": 7412.22, + "end": 7412.22, + "probability": 0.3622 + }, + { + "start": 7412.22, + "end": 7412.22, + "probability": 0.0509 + }, + { + "start": 7412.22, + "end": 7414.06, + "probability": 0.9788 + }, + { + "start": 7414.14, + "end": 7414.54, + "probability": 0.837 + }, + { + "start": 7415.04, + "end": 7415.4, + "probability": 0.7817 + }, + { + "start": 7415.94, + "end": 7418.1, + "probability": 0.7085 + }, + { + "start": 7418.76, + "end": 7422.72, + "probability": 0.8975 + }, + { + "start": 7429.66, + "end": 7429.7, + "probability": 0.1604 + }, + { + "start": 7429.7, + "end": 7429.7, + "probability": 0.1799 + }, + { + "start": 7429.7, + "end": 7429.72, + "probability": 0.0547 + }, + { + "start": 7445.44, + "end": 7447.58, + "probability": 0.647 + }, + { + "start": 7448.14, + "end": 7449.48, + "probability": 0.7545 + }, + { + "start": 7449.48, + "end": 7450.38, + "probability": 0.781 + }, + { + "start": 7450.7, + "end": 7452.38, + "probability": 0.88 + }, + { + "start": 7453.52, + "end": 7454.56, + "probability": 0.8807 + }, + { + "start": 7454.7, + "end": 7457.3, + "probability": 0.9879 + }, + { + "start": 7458.38, + "end": 7461.74, + "probability": 0.9899 + }, + { + "start": 7463.1, + "end": 7467.92, + "probability": 0.9926 + }, + { + "start": 7468.62, + "end": 7470.84, + "probability": 0.9609 + }, + { + "start": 7471.86, + "end": 7474.58, + "probability": 0.9971 + }, + { + "start": 7475.14, + "end": 7478.94, + "probability": 0.9727 + }, + { + "start": 7480.04, + "end": 7483.16, + "probability": 0.9788 + }, + { + "start": 7483.68, + "end": 7485.02, + "probability": 0.9688 + }, + { + "start": 7485.6, + "end": 7486.64, + "probability": 0.8072 + }, + { + "start": 7488.14, + "end": 7488.3, + "probability": 0.0499 + }, + { + "start": 7488.3, + "end": 7488.3, + "probability": 0.1733 + }, + { + "start": 7488.3, + "end": 7491.46, + "probability": 0.7502 + }, + { + "start": 7492.14, + "end": 7492.2, + "probability": 0.125 + }, + { + "start": 7492.2, + "end": 7495.48, + "probability": 0.8809 + }, + { + "start": 7495.48, + "end": 7497.44, + "probability": 0.6145 + }, + { + "start": 7497.94, + "end": 7499.38, + "probability": 0.8856 + }, + { + "start": 7499.66, + "end": 7500.6, + "probability": 0.8394 + }, + { + "start": 7503.46, + "end": 7503.58, + "probability": 0.0423 + }, + { + "start": 7503.58, + "end": 7504.12, + "probability": 0.1986 + }, + { + "start": 7504.12, + "end": 7504.94, + "probability": 0.3478 + }, + { + "start": 7505.24, + "end": 7506.28, + "probability": 0.3922 + }, + { + "start": 7506.44, + "end": 7509.14, + "probability": 0.9005 + }, + { + "start": 7509.68, + "end": 7511.56, + "probability": 0.927 + }, + { + "start": 7512.24, + "end": 7512.67, + "probability": 0.6481 + }, + { + "start": 7512.94, + "end": 7514.04, + "probability": 0.6637 + }, + { + "start": 7515.44, + "end": 7518.32, + "probability": 0.9479 + }, + { + "start": 7518.46, + "end": 7520.94, + "probability": 0.8547 + }, + { + "start": 7521.3, + "end": 7525.82, + "probability": 0.9931 + }, + { + "start": 7525.96, + "end": 7526.78, + "probability": 0.7376 + }, + { + "start": 7527.28, + "end": 7529.58, + "probability": 0.9785 + }, + { + "start": 7529.76, + "end": 7530.99, + "probability": 0.9799 + }, + { + "start": 7531.1, + "end": 7532.38, + "probability": 0.9971 + }, + { + "start": 7533.06, + "end": 7536.56, + "probability": 0.8973 + }, + { + "start": 7536.86, + "end": 7537.62, + "probability": 0.9381 + }, + { + "start": 7537.72, + "end": 7540.12, + "probability": 0.9157 + }, + { + "start": 7541.58, + "end": 7544.36, + "probability": 0.998 + }, + { + "start": 7545.32, + "end": 7549.6, + "probability": 0.9852 + }, + { + "start": 7550.48, + "end": 7554.7, + "probability": 0.9921 + }, + { + "start": 7554.7, + "end": 7559.38, + "probability": 0.9819 + }, + { + "start": 7560.04, + "end": 7562.8, + "probability": 0.9967 + }, + { + "start": 7562.8, + "end": 7567.6, + "probability": 0.9904 + }, + { + "start": 7568.96, + "end": 7574.58, + "probability": 0.9985 + }, + { + "start": 7575.8, + "end": 7576.34, + "probability": 0.5408 + }, + { + "start": 7576.86, + "end": 7577.78, + "probability": 0.9478 + }, + { + "start": 7578.56, + "end": 7582.2, + "probability": 0.9642 + }, + { + "start": 7582.76, + "end": 7584.22, + "probability": 0.9717 + }, + { + "start": 7585.06, + "end": 7588.92, + "probability": 0.9921 + }, + { + "start": 7588.92, + "end": 7592.86, + "probability": 0.9211 + }, + { + "start": 7593.44, + "end": 7596.62, + "probability": 0.9966 + }, + { + "start": 7597.36, + "end": 7601.92, + "probability": 0.9984 + }, + { + "start": 7602.26, + "end": 7605.5, + "probability": 0.9858 + }, + { + "start": 7605.9, + "end": 7608.78, + "probability": 0.995 + }, + { + "start": 7609.8, + "end": 7610.92, + "probability": 0.9042 + }, + { + "start": 7611.28, + "end": 7612.32, + "probability": 0.9263 + }, + { + "start": 7612.74, + "end": 7618.32, + "probability": 0.9951 + }, + { + "start": 7619.38, + "end": 7620.02, + "probability": 0.6672 + }, + { + "start": 7620.02, + "end": 7620.68, + "probability": 0.6271 + }, + { + "start": 7620.68, + "end": 7621.36, + "probability": 0.6364 + }, + { + "start": 7622.2, + "end": 7625.5, + "probability": 0.9985 + }, + { + "start": 7626.24, + "end": 7626.34, + "probability": 0.0043 + }, + { + "start": 7629.04, + "end": 7629.36, + "probability": 0.1658 + }, + { + "start": 7629.36, + "end": 7629.36, + "probability": 0.5012 + }, + { + "start": 7629.36, + "end": 7629.36, + "probability": 0.1042 + }, + { + "start": 7629.36, + "end": 7631.7, + "probability": 0.7151 + }, + { + "start": 7632.26, + "end": 7633.42, + "probability": 0.7192 + }, + { + "start": 7633.9, + "end": 7636.04, + "probability": 0.9943 + }, + { + "start": 7636.04, + "end": 7638.94, + "probability": 0.9923 + }, + { + "start": 7639.68, + "end": 7643.08, + "probability": 0.9967 + }, + { + "start": 7643.08, + "end": 7646.5, + "probability": 0.9925 + }, + { + "start": 7647.46, + "end": 7651.96, + "probability": 0.9728 + }, + { + "start": 7652.16, + "end": 7654.02, + "probability": 0.7751 + }, + { + "start": 7654.3, + "end": 7656.8, + "probability": 0.9953 + }, + { + "start": 7656.8, + "end": 7661.2, + "probability": 0.9996 + }, + { + "start": 7662.0, + "end": 7664.52, + "probability": 0.9995 + }, + { + "start": 7665.12, + "end": 7667.38, + "probability": 0.9934 + }, + { + "start": 7667.76, + "end": 7669.72, + "probability": 0.9946 + }, + { + "start": 7670.26, + "end": 7673.48, + "probability": 0.8748 + }, + { + "start": 7673.48, + "end": 7673.86, + "probability": 0.4932 + }, + { + "start": 7673.88, + "end": 7673.88, + "probability": 0.0123 + }, + { + "start": 7673.88, + "end": 7674.06, + "probability": 0.4539 + }, + { + "start": 7674.12, + "end": 7677.08, + "probability": 0.8836 + }, + { + "start": 7677.42, + "end": 7678.68, + "probability": 0.9971 + }, + { + "start": 7679.58, + "end": 7681.52, + "probability": 0.5882 + }, + { + "start": 7682.86, + "end": 7685.94, + "probability": 0.0326 + }, + { + "start": 7686.68, + "end": 7689.8, + "probability": 0.6582 + }, + { + "start": 7697.74, + "end": 7698.18, + "probability": 0.104 + }, + { + "start": 7698.18, + "end": 7698.18, + "probability": 0.1371 + }, + { + "start": 7698.18, + "end": 7698.18, + "probability": 0.4261 + }, + { + "start": 7698.18, + "end": 7704.34, + "probability": 0.8026 + }, + { + "start": 7704.9, + "end": 7705.88, + "probability": 0.9121 + }, + { + "start": 7706.02, + "end": 7707.53, + "probability": 0.8317 + }, + { + "start": 7707.92, + "end": 7708.78, + "probability": 0.8452 + }, + { + "start": 7710.48, + "end": 7713.16, + "probability": 0.0282 + }, + { + "start": 7713.18, + "end": 7713.64, + "probability": 0.177 + }, + { + "start": 7713.82, + "end": 7714.98, + "probability": 0.7602 + }, + { + "start": 7715.46, + "end": 7718.56, + "probability": 0.9064 + }, + { + "start": 7719.14, + "end": 7720.48, + "probability": 0.9944 + }, + { + "start": 7721.18, + "end": 7721.98, + "probability": 0.7415 + }, + { + "start": 7722.18, + "end": 7723.3, + "probability": 0.6175 + }, + { + "start": 7723.42, + "end": 7726.2, + "probability": 0.8228 + }, + { + "start": 7726.7, + "end": 7729.14, + "probability": 0.7832 + }, + { + "start": 7729.82, + "end": 7733.0, + "probability": 0.8231 + }, + { + "start": 7734.0, + "end": 7736.14, + "probability": 0.683 + }, + { + "start": 7737.8, + "end": 7739.62, + "probability": 0.9911 + }, + { + "start": 7741.22, + "end": 7742.64, + "probability": 0.9324 + }, + { + "start": 7743.16, + "end": 7744.56, + "probability": 0.9243 + }, + { + "start": 7745.3, + "end": 7748.72, + "probability": 0.9843 + }, + { + "start": 7749.08, + "end": 7749.74, + "probability": 0.3157 + }, + { + "start": 7750.18, + "end": 7750.46, + "probability": 0.8464 + }, + { + "start": 7750.76, + "end": 7751.58, + "probability": 0.3866 + }, + { + "start": 7752.28, + "end": 7752.9, + "probability": 0.8239 + }, + { + "start": 7753.14, + "end": 7754.32, + "probability": 0.1695 + }, + { + "start": 7754.46, + "end": 7755.7, + "probability": 0.8609 + }, + { + "start": 7756.14, + "end": 7757.28, + "probability": 0.9539 + }, + { + "start": 7757.82, + "end": 7758.76, + "probability": 0.0678 + }, + { + "start": 7759.28, + "end": 7766.8, + "probability": 0.7264 + }, + { + "start": 7768.24, + "end": 7768.78, + "probability": 0.9504 + }, + { + "start": 7769.9, + "end": 7773.98, + "probability": 0.9959 + }, + { + "start": 7774.06, + "end": 7775.1, + "probability": 0.6167 + }, + { + "start": 7776.0, + "end": 7777.81, + "probability": 0.9313 + }, + { + "start": 7778.6, + "end": 7779.44, + "probability": 0.929 + }, + { + "start": 7780.38, + "end": 7783.98, + "probability": 0.999 + }, + { + "start": 7784.96, + "end": 7785.65, + "probability": 0.9119 + }, + { + "start": 7786.92, + "end": 7787.46, + "probability": 0.7418 + }, + { + "start": 7788.58, + "end": 7791.3, + "probability": 0.9733 + }, + { + "start": 7792.54, + "end": 7792.89, + "probability": 0.1109 + }, + { + "start": 7793.04, + "end": 7795.64, + "probability": 0.7185 + }, + { + "start": 7796.64, + "end": 7800.52, + "probability": 0.5545 + }, + { + "start": 7800.8, + "end": 7804.9, + "probability": 0.6624 + }, + { + "start": 7805.7, + "end": 7807.12, + "probability": 0.9694 + }, + { + "start": 7808.86, + "end": 7811.83, + "probability": 0.9155 + }, + { + "start": 7813.02, + "end": 7814.74, + "probability": 0.9646 + }, + { + "start": 7816.96, + "end": 7820.22, + "probability": 0.9745 + }, + { + "start": 7821.08, + "end": 7822.1, + "probability": 0.691 + }, + { + "start": 7823.74, + "end": 7826.1, + "probability": 0.7477 + }, + { + "start": 7827.76, + "end": 7829.46, + "probability": 0.9754 + }, + { + "start": 7830.04, + "end": 7833.2, + "probability": 0.9672 + }, + { + "start": 7833.86, + "end": 7835.3, + "probability": 0.9179 + }, + { + "start": 7836.92, + "end": 7841.62, + "probability": 0.8369 + }, + { + "start": 7843.88, + "end": 7849.52, + "probability": 0.9993 + }, + { + "start": 7851.92, + "end": 7854.14, + "probability": 0.998 + }, + { + "start": 7855.74, + "end": 7859.98, + "probability": 0.8994 + }, + { + "start": 7860.04, + "end": 7861.98, + "probability": 0.286 + }, + { + "start": 7863.0, + "end": 7864.18, + "probability": 0.0084 + }, + { + "start": 7864.64, + "end": 7868.16, + "probability": 0.8752 + }, + { + "start": 7869.24, + "end": 7869.34, + "probability": 0.257 + }, + { + "start": 7869.34, + "end": 7871.32, + "probability": 0.5146 + }, + { + "start": 7871.7, + "end": 7873.39, + "probability": 0.986 + }, + { + "start": 7874.58, + "end": 7876.48, + "probability": 0.7393 + }, + { + "start": 7877.16, + "end": 7878.38, + "probability": 0.8956 + }, + { + "start": 7879.22, + "end": 7880.94, + "probability": 0.9346 + }, + { + "start": 7881.98, + "end": 7883.12, + "probability": 0.8911 + }, + { + "start": 7883.16, + "end": 7885.98, + "probability": 0.9147 + }, + { + "start": 7888.4, + "end": 7891.74, + "probability": 0.9828 + }, + { + "start": 7893.22, + "end": 7893.58, + "probability": 0.0003 + }, + { + "start": 7894.16, + "end": 7894.34, + "probability": 0.1053 + }, + { + "start": 7894.34, + "end": 7897.0, + "probability": 0.8472 + }, + { + "start": 7898.1, + "end": 7905.86, + "probability": 0.9177 + }, + { + "start": 7906.96, + "end": 7907.54, + "probability": 0.9696 + }, + { + "start": 7908.18, + "end": 7909.5, + "probability": 0.9829 + }, + { + "start": 7910.84, + "end": 7913.2, + "probability": 0.6917 + }, + { + "start": 7914.46, + "end": 7915.08, + "probability": 0.8138 + }, + { + "start": 7915.94, + "end": 7916.32, + "probability": 0.8341 + }, + { + "start": 7918.32, + "end": 7919.66, + "probability": 0.9708 + }, + { + "start": 7920.94, + "end": 7922.96, + "probability": 0.9887 + }, + { + "start": 7923.64, + "end": 7925.48, + "probability": 0.8137 + }, + { + "start": 7926.76, + "end": 7930.38, + "probability": 0.981 + }, + { + "start": 7931.22, + "end": 7932.44, + "probability": 0.9111 + }, + { + "start": 7932.7, + "end": 7936.31, + "probability": 0.9976 + }, + { + "start": 7936.46, + "end": 7937.4, + "probability": 0.971 + }, + { + "start": 7937.56, + "end": 7938.2, + "probability": 0.9832 + }, + { + "start": 7938.86, + "end": 7940.0, + "probability": 0.7605 + }, + { + "start": 7941.74, + "end": 7945.66, + "probability": 0.9982 + }, + { + "start": 7946.46, + "end": 7947.8, + "probability": 0.8876 + }, + { + "start": 7949.36, + "end": 7953.54, + "probability": 0.998 + }, + { + "start": 7954.02, + "end": 7955.04, + "probability": 0.7368 + }, + { + "start": 7956.18, + "end": 7960.1, + "probability": 0.9943 + }, + { + "start": 7960.88, + "end": 7962.84, + "probability": 0.996 + }, + { + "start": 7963.58, + "end": 7965.98, + "probability": 0.8663 + }, + { + "start": 7967.22, + "end": 7969.06, + "probability": 0.9779 + }, + { + "start": 7970.7, + "end": 7974.28, + "probability": 0.7938 + }, + { + "start": 7975.5, + "end": 7976.2, + "probability": 0.6049 + }, + { + "start": 7977.76, + "end": 7979.22, + "probability": 0.95 + }, + { + "start": 7979.62, + "end": 7980.62, + "probability": 0.3908 + }, + { + "start": 7981.34, + "end": 7982.88, + "probability": 0.9397 + }, + { + "start": 7984.48, + "end": 7989.85, + "probability": 0.9399 + }, + { + "start": 7990.46, + "end": 7990.86, + "probability": 0.7741 + }, + { + "start": 7990.88, + "end": 7991.82, + "probability": 0.9236 + }, + { + "start": 7992.68, + "end": 7999.96, + "probability": 0.8662 + }, + { + "start": 8001.64, + "end": 8005.69, + "probability": 0.9932 + }, + { + "start": 8007.34, + "end": 8010.58, + "probability": 0.7724 + }, + { + "start": 8011.32, + "end": 8012.08, + "probability": 0.9366 + }, + { + "start": 8012.88, + "end": 8017.38, + "probability": 0.689 + }, + { + "start": 8018.76, + "end": 8020.42, + "probability": 0.997 + }, + { + "start": 8023.44, + "end": 8027.42, + "probability": 0.9834 + }, + { + "start": 8028.3, + "end": 8029.12, + "probability": 0.5918 + }, + { + "start": 8030.2, + "end": 8033.46, + "probability": 0.9753 + }, + { + "start": 8033.54, + "end": 8035.24, + "probability": 0.9585 + }, + { + "start": 8037.28, + "end": 8039.62, + "probability": 0.9463 + }, + { + "start": 8040.26, + "end": 8043.6, + "probability": 0.9949 + }, + { + "start": 8044.52, + "end": 8046.44, + "probability": 0.8099 + }, + { + "start": 8047.18, + "end": 8049.29, + "probability": 0.9824 + }, + { + "start": 8050.12, + "end": 8053.5, + "probability": 0.945 + }, + { + "start": 8054.6, + "end": 8056.48, + "probability": 0.9926 + }, + { + "start": 8057.42, + "end": 8059.48, + "probability": 0.9855 + }, + { + "start": 8060.52, + "end": 8060.68, + "probability": 0.2697 + }, + { + "start": 8060.72, + "end": 8063.44, + "probability": 0.985 + }, + { + "start": 8063.46, + "end": 8065.16, + "probability": 0.8386 + }, + { + "start": 8065.6, + "end": 8065.95, + "probability": 0.9621 + }, + { + "start": 8066.2, + "end": 8066.76, + "probability": 0.9747 + }, + { + "start": 8066.94, + "end": 8067.93, + "probability": 0.9752 + }, + { + "start": 8068.12, + "end": 8070.02, + "probability": 0.9724 + }, + { + "start": 8070.72, + "end": 8076.3, + "probability": 0.9897 + }, + { + "start": 8077.54, + "end": 8079.92, + "probability": 0.9919 + }, + { + "start": 8081.12, + "end": 8086.44, + "probability": 0.9797 + }, + { + "start": 8086.64, + "end": 8088.04, + "probability": 0.9014 + }, + { + "start": 8089.2, + "end": 8091.14, + "probability": 0.8373 + }, + { + "start": 8091.98, + "end": 8094.08, + "probability": 0.7643 + }, + { + "start": 8095.96, + "end": 8097.86, + "probability": 0.9727 + }, + { + "start": 8099.49, + "end": 8103.4, + "probability": 0.9907 + }, + { + "start": 8104.8, + "end": 8105.98, + "probability": 0.792 + }, + { + "start": 8108.82, + "end": 8109.92, + "probability": 0.9896 + }, + { + "start": 8113.18, + "end": 8114.16, + "probability": 0.8101 + }, + { + "start": 8116.0, + "end": 8117.06, + "probability": 0.9978 + }, + { + "start": 8117.78, + "end": 8120.28, + "probability": 0.9998 + }, + { + "start": 8121.3, + "end": 8123.54, + "probability": 0.8294 + }, + { + "start": 8123.62, + "end": 8124.46, + "probability": 0.9496 + }, + { + "start": 8124.58, + "end": 8126.38, + "probability": 0.7895 + }, + { + "start": 8127.04, + "end": 8132.18, + "probability": 0.9966 + }, + { + "start": 8134.4, + "end": 8136.38, + "probability": 0.9976 + }, + { + "start": 8138.78, + "end": 8141.72, + "probability": 0.998 + }, + { + "start": 8144.46, + "end": 8147.92, + "probability": 0.999 + }, + { + "start": 8149.22, + "end": 8151.36, + "probability": 0.9689 + }, + { + "start": 8152.12, + "end": 8154.32, + "probability": 0.9734 + }, + { + "start": 8155.5, + "end": 8160.56, + "probability": 0.9927 + }, + { + "start": 8161.24, + "end": 8163.48, + "probability": 0.9027 + }, + { + "start": 8164.52, + "end": 8169.84, + "probability": 0.9389 + }, + { + "start": 8171.92, + "end": 8173.78, + "probability": 0.4696 + }, + { + "start": 8173.78, + "end": 8175.69, + "probability": 0.8857 + }, + { + "start": 8176.32, + "end": 8177.52, + "probability": 0.6814 + }, + { + "start": 8178.88, + "end": 8180.3, + "probability": 0.9944 + }, + { + "start": 8181.42, + "end": 8183.74, + "probability": 0.6396 + }, + { + "start": 8184.92, + "end": 8188.0, + "probability": 0.9982 + }, + { + "start": 8189.16, + "end": 8191.56, + "probability": 0.9189 + }, + { + "start": 8193.6, + "end": 8196.54, + "probability": 0.9967 + }, + { + "start": 8196.62, + "end": 8198.68, + "probability": 0.9224 + }, + { + "start": 8198.72, + "end": 8200.22, + "probability": 0.812 + }, + { + "start": 8202.02, + "end": 8203.34, + "probability": 0.9733 + }, + { + "start": 8203.44, + "end": 8207.52, + "probability": 0.9984 + }, + { + "start": 8207.52, + "end": 8208.46, + "probability": 0.6218 + }, + { + "start": 8208.76, + "end": 8211.9, + "probability": 0.9935 + }, + { + "start": 8212.14, + "end": 8213.24, + "probability": 0.9905 + }, + { + "start": 8213.5, + "end": 8217.58, + "probability": 0.9859 + }, + { + "start": 8218.38, + "end": 8219.98, + "probability": 0.8677 + }, + { + "start": 8220.14, + "end": 8221.16, + "probability": 0.2745 + }, + { + "start": 8221.32, + "end": 8222.08, + "probability": 0.2706 + }, + { + "start": 8222.1, + "end": 8225.68, + "probability": 0.77 + }, + { + "start": 8226.84, + "end": 8228.3, + "probability": 0.9692 + }, + { + "start": 8229.72, + "end": 8230.86, + "probability": 0.8018 + }, + { + "start": 8230.92, + "end": 8235.47, + "probability": 0.8198 + }, + { + "start": 8237.92, + "end": 8240.35, + "probability": 0.9634 + }, + { + "start": 8240.62, + "end": 8243.2, + "probability": 0.9976 + }, + { + "start": 8244.32, + "end": 8245.52, + "probability": 0.8123 + }, + { + "start": 8245.58, + "end": 8248.38, + "probability": 0.3762 + }, + { + "start": 8248.6, + "end": 8248.78, + "probability": 0.6392 + }, + { + "start": 8248.78, + "end": 8249.86, + "probability": 0.7194 + }, + { + "start": 8250.06, + "end": 8250.38, + "probability": 0.6927 + }, + { + "start": 8250.48, + "end": 8251.99, + "probability": 0.8328 + }, + { + "start": 8253.34, + "end": 8253.54, + "probability": 0.4534 + }, + { + "start": 8253.54, + "end": 8254.24, + "probability": 0.7585 + }, + { + "start": 8254.88, + "end": 8258.38, + "probability": 0.4838 + }, + { + "start": 8260.04, + "end": 8262.04, + "probability": 0.7575 + }, + { + "start": 8262.82, + "end": 8265.78, + "probability": 0.9373 + }, + { + "start": 8266.6, + "end": 8269.54, + "probability": 0.8867 + }, + { + "start": 8270.02, + "end": 8271.4, + "probability": 0.7689 + }, + { + "start": 8271.76, + "end": 8272.81, + "probability": 0.9854 + }, + { + "start": 8274.16, + "end": 8275.48, + "probability": 0.9293 + }, + { + "start": 8276.8, + "end": 8277.36, + "probability": 0.678 + }, + { + "start": 8279.98, + "end": 8281.62, + "probability": 0.9086 + }, + { + "start": 8282.34, + "end": 8283.24, + "probability": 0.0778 + }, + { + "start": 8283.24, + "end": 8286.48, + "probability": 0.7883 + }, + { + "start": 8286.48, + "end": 8287.31, + "probability": 0.0576 + }, + { + "start": 8287.84, + "end": 8290.02, + "probability": 0.932 + }, + { + "start": 8290.2, + "end": 8291.86, + "probability": 0.6452 + }, + { + "start": 8293.26, + "end": 8294.16, + "probability": 0.8442 + }, + { + "start": 8294.38, + "end": 8298.48, + "probability": 0.9382 + }, + { + "start": 8298.8, + "end": 8301.92, + "probability": 0.9488 + }, + { + "start": 8303.42, + "end": 8308.06, + "probability": 0.8372 + }, + { + "start": 8309.6, + "end": 8311.4, + "probability": 0.9481 + }, + { + "start": 8312.62, + "end": 8315.94, + "probability": 0.9871 + }, + { + "start": 8316.94, + "end": 8320.02, + "probability": 0.828 + }, + { + "start": 8320.02, + "end": 8320.52, + "probability": 0.8524 + }, + { + "start": 8320.8, + "end": 8324.68, + "probability": 0.9958 + }, + { + "start": 8326.58, + "end": 8328.66, + "probability": 0.9473 + }, + { + "start": 8329.18, + "end": 8329.6, + "probability": 0.1239 + }, + { + "start": 8330.14, + "end": 8332.3, + "probability": 0.9609 + }, + { + "start": 8333.8, + "end": 8338.8, + "probability": 0.9797 + }, + { + "start": 8338.86, + "end": 8340.16, + "probability": 0.7632 + }, + { + "start": 8340.6, + "end": 8341.15, + "probability": 0.0062 + }, + { + "start": 8341.26, + "end": 8341.46, + "probability": 0.2515 + }, + { + "start": 8342.29, + "end": 8342.42, + "probability": 0.2636 + }, + { + "start": 8342.48, + "end": 8343.2, + "probability": 0.316 + }, + { + "start": 8343.58, + "end": 8346.8, + "probability": 0.9123 + }, + { + "start": 8347.24, + "end": 8347.94, + "probability": 0.7146 + }, + { + "start": 8348.86, + "end": 8350.88, + "probability": 0.5527 + }, + { + "start": 8350.96, + "end": 8353.92, + "probability": 0.987 + }, + { + "start": 8354.86, + "end": 8357.78, + "probability": 0.9995 + }, + { + "start": 8358.88, + "end": 8361.92, + "probability": 0.8275 + }, + { + "start": 8362.96, + "end": 8364.74, + "probability": 0.7925 + }, + { + "start": 8365.42, + "end": 8368.92, + "probability": 0.824 + }, + { + "start": 8369.1, + "end": 8373.4, + "probability": 0.0082 + }, + { + "start": 8373.4, + "end": 8373.4, + "probability": 0.0189 + }, + { + "start": 8373.4, + "end": 8373.4, + "probability": 0.1262 + }, + { + "start": 8373.4, + "end": 8373.4, + "probability": 0.1807 + }, + { + "start": 8373.4, + "end": 8375.62, + "probability": 0.8555 + }, + { + "start": 8375.72, + "end": 8379.08, + "probability": 0.8158 + }, + { + "start": 8379.62, + "end": 8380.14, + "probability": 0.8864 + }, + { + "start": 8380.58, + "end": 8382.62, + "probability": 0.4198 + }, + { + "start": 8382.74, + "end": 8383.7, + "probability": 0.1839 + }, + { + "start": 8383.7, + "end": 8383.92, + "probability": 0.18 + }, + { + "start": 8383.92, + "end": 8386.18, + "probability": 0.917 + }, + { + "start": 8386.8, + "end": 8387.42, + "probability": 0.8428 + }, + { + "start": 8387.44, + "end": 8388.2, + "probability": 0.8673 + }, + { + "start": 8388.68, + "end": 8389.23, + "probability": 0.9565 + }, + { + "start": 8389.56, + "end": 8390.94, + "probability": 0.9971 + }, + { + "start": 8391.6, + "end": 8393.62, + "probability": 0.9425 + }, + { + "start": 8393.68, + "end": 8396.0, + "probability": 0.8157 + }, + { + "start": 8396.24, + "end": 8396.42, + "probability": 0.3684 + }, + { + "start": 8396.64, + "end": 8397.32, + "probability": 0.6956 + }, + { + "start": 8397.46, + "end": 8400.54, + "probability": 0.9419 + }, + { + "start": 8401.04, + "end": 8402.48, + "probability": 0.746 + }, + { + "start": 8403.26, + "end": 8404.04, + "probability": 0.804 + }, + { + "start": 8404.76, + "end": 8408.16, + "probability": 0.9304 + }, + { + "start": 8409.08, + "end": 8410.1, + "probability": 0.8225 + }, + { + "start": 8410.2, + "end": 8411.5, + "probability": 0.9326 + }, + { + "start": 8411.74, + "end": 8412.5, + "probability": 0.6019 + }, + { + "start": 8412.54, + "end": 8412.62, + "probability": 0.0314 + }, + { + "start": 8412.7, + "end": 8415.88, + "probability": 0.9767 + }, + { + "start": 8416.1, + "end": 8416.88, + "probability": 0.436 + }, + { + "start": 8416.88, + "end": 8421.4, + "probability": 0.8186 + }, + { + "start": 8422.96, + "end": 8423.76, + "probability": 0.9952 + }, + { + "start": 8424.42, + "end": 8426.86, + "probability": 0.844 + }, + { + "start": 8428.2, + "end": 8436.36, + "probability": 0.9507 + }, + { + "start": 8436.84, + "end": 8436.84, + "probability": 0.0596 + }, + { + "start": 8436.84, + "end": 8442.2, + "probability": 0.9796 + }, + { + "start": 8442.2, + "end": 8446.46, + "probability": 0.9903 + }, + { + "start": 8446.64, + "end": 8447.36, + "probability": 0.6654 + }, + { + "start": 8447.36, + "end": 8447.36, + "probability": 0.5827 + }, + { + "start": 8447.36, + "end": 8448.0, + "probability": 0.6923 + }, + { + "start": 8448.46, + "end": 8450.48, + "probability": 0.604 + }, + { + "start": 8455.78, + "end": 8458.81, + "probability": 0.8047 + }, + { + "start": 8458.86, + "end": 8459.44, + "probability": 0.6171 + }, + { + "start": 8460.24, + "end": 8460.68, + "probability": 0.6514 + }, + { + "start": 8461.34, + "end": 8461.96, + "probability": 0.6216 + }, + { + "start": 8463.04, + "end": 8464.5, + "probability": 0.6637 + }, + { + "start": 8466.86, + "end": 8469.5, + "probability": 0.8813 + }, + { + "start": 8470.28, + "end": 8471.7, + "probability": 0.3367 + }, + { + "start": 8472.52, + "end": 8473.48, + "probability": 0.8989 + }, + { + "start": 8473.64, + "end": 8479.54, + "probability": 0.8092 + }, + { + "start": 8479.54, + "end": 8484.98, + "probability": 0.9979 + }, + { + "start": 8485.12, + "end": 8489.36, + "probability": 0.809 + }, + { + "start": 8489.96, + "end": 8490.56, + "probability": 0.7106 + }, + { + "start": 8490.88, + "end": 8491.86, + "probability": 0.5086 + }, + { + "start": 8491.86, + "end": 8492.22, + "probability": 0.317 + }, + { + "start": 8492.58, + "end": 8493.46, + "probability": 0.5308 + }, + { + "start": 8493.92, + "end": 8495.62, + "probability": 0.7584 + }, + { + "start": 8504.92, + "end": 8507.66, + "probability": 0.9673 + }, + { + "start": 8509.24, + "end": 8509.9, + "probability": 0.3286 + }, + { + "start": 8509.9, + "end": 8512.74, + "probability": 0.8337 + }, + { + "start": 8513.26, + "end": 8515.9, + "probability": 0.9175 + }, + { + "start": 8516.78, + "end": 8519.0, + "probability": 0.8165 + }, + { + "start": 8519.22, + "end": 8519.84, + "probability": 0.5892 + }, + { + "start": 8520.58, + "end": 8522.66, + "probability": 0.8868 + }, + { + "start": 8526.34, + "end": 8527.46, + "probability": 0.588 + }, + { + "start": 8528.1, + "end": 8530.2, + "probability": 0.7991 + }, + { + "start": 8531.38, + "end": 8536.78, + "probability": 0.9739 + }, + { + "start": 8537.32, + "end": 8540.54, + "probability": 0.469 + }, + { + "start": 8540.98, + "end": 8542.88, + "probability": 0.6468 + }, + { + "start": 8543.08, + "end": 8543.88, + "probability": 0.5091 + }, + { + "start": 8545.36, + "end": 8546.04, + "probability": 0.3168 + }, + { + "start": 8546.56, + "end": 8548.34, + "probability": 0.1432 + }, + { + "start": 8548.76, + "end": 8548.94, + "probability": 0.3547 + }, + { + "start": 8548.94, + "end": 8550.9, + "probability": 0.4946 + }, + { + "start": 8558.48, + "end": 8558.78, + "probability": 0.2971 + }, + { + "start": 8558.78, + "end": 8559.92, + "probability": 0.1908 + }, + { + "start": 8560.56, + "end": 8562.84, + "probability": 0.6174 + }, + { + "start": 8563.36, + "end": 8566.66, + "probability": 0.9356 + }, + { + "start": 8567.08, + "end": 8569.08, + "probability": 0.9054 + }, + { + "start": 8569.64, + "end": 8570.34, + "probability": 0.6858 + }, + { + "start": 8571.02, + "end": 8573.98, + "probability": 0.8076 + }, + { + "start": 8575.28, + "end": 8579.8, + "probability": 0.8352 + }, + { + "start": 8580.04, + "end": 8581.72, + "probability": 0.916 + }, + { + "start": 8582.3, + "end": 8583.02, + "probability": 0.6414 + }, + { + "start": 8583.88, + "end": 8585.34, + "probability": 0.7945 + }, + { + "start": 8586.22, + "end": 8591.24, + "probability": 0.9681 + }, + { + "start": 8591.62, + "end": 8592.7, + "probability": 0.5275 + }, + { + "start": 8592.88, + "end": 8593.4, + "probability": 0.6085 + }, + { + "start": 8593.4, + "end": 8594.0, + "probability": 0.7657 + }, + { + "start": 8594.36, + "end": 8595.1, + "probability": 0.546 + }, + { + "start": 8596.78, + "end": 8600.0, + "probability": 0.0821 + }, + { + "start": 8601.4, + "end": 8603.18, + "probability": 0.0313 + }, + { + "start": 8604.44, + "end": 8606.98, + "probability": 0.042 + }, + { + "start": 8608.58, + "end": 8612.3, + "probability": 0.6394 + }, + { + "start": 8612.3, + "end": 8614.86, + "probability": 0.4768 + }, + { + "start": 8615.42, + "end": 8618.8, + "probability": 0.8003 + }, + { + "start": 8618.82, + "end": 8621.58, + "probability": 0.9019 + }, + { + "start": 8622.54, + "end": 8625.68, + "probability": 0.7845 + }, + { + "start": 8625.78, + "end": 8626.84, + "probability": 0.6047 + }, + { + "start": 8627.4, + "end": 8630.9, + "probability": 0.692 + }, + { + "start": 8631.44, + "end": 8631.88, + "probability": 0.7844 + }, + { + "start": 8633.1, + "end": 8634.96, + "probability": 0.9974 + }, + { + "start": 8635.76, + "end": 8642.1, + "probability": 0.9012 + }, + { + "start": 8642.3, + "end": 8643.22, + "probability": 0.7894 + }, + { + "start": 8644.08, + "end": 8647.54, + "probability": 0.9541 + }, + { + "start": 8647.56, + "end": 8648.14, + "probability": 0.7548 + }, + { + "start": 8668.76, + "end": 8669.18, + "probability": 0.0561 + }, + { + "start": 8669.18, + "end": 8669.72, + "probability": 0.3425 + }, + { + "start": 8672.4, + "end": 8674.88, + "probability": 0.8963 + }, + { + "start": 8675.62, + "end": 8679.88, + "probability": 0.8036 + }, + { + "start": 8680.94, + "end": 8684.0, + "probability": 0.897 + }, + { + "start": 8684.52, + "end": 8686.84, + "probability": 0.9936 + }, + { + "start": 8686.84, + "end": 8692.56, + "probability": 0.8954 + }, + { + "start": 8693.08, + "end": 8696.72, + "probability": 0.9915 + }, + { + "start": 8697.58, + "end": 8700.24, + "probability": 0.8249 + }, + { + "start": 8700.96, + "end": 8702.08, + "probability": 0.9808 + }, + { + "start": 8703.0, + "end": 8710.0, + "probability": 0.9619 + }, + { + "start": 8710.26, + "end": 8711.5, + "probability": 0.9044 + }, + { + "start": 8712.12, + "end": 8716.06, + "probability": 0.9966 + }, + { + "start": 8716.06, + "end": 8721.32, + "probability": 0.8325 + }, + { + "start": 8721.96, + "end": 8723.34, + "probability": 0.852 + }, + { + "start": 8723.58, + "end": 8727.46, + "probability": 0.7467 + }, + { + "start": 8727.66, + "end": 8728.54, + "probability": 0.9831 + }, + { + "start": 8729.74, + "end": 8732.96, + "probability": 0.9944 + }, + { + "start": 8733.06, + "end": 8733.98, + "probability": 0.8615 + }, + { + "start": 8734.36, + "end": 8736.52, + "probability": 0.9744 + }, + { + "start": 8737.4, + "end": 8741.62, + "probability": 0.971 + }, + { + "start": 8741.8, + "end": 8742.82, + "probability": 0.831 + }, + { + "start": 8743.7, + "end": 8747.66, + "probability": 0.9775 + }, + { + "start": 8748.68, + "end": 8753.7, + "probability": 0.868 + }, + { + "start": 8753.7, + "end": 8757.08, + "probability": 0.9985 + }, + { + "start": 8758.12, + "end": 8762.22, + "probability": 0.9919 + }, + { + "start": 8762.22, + "end": 8765.72, + "probability": 0.646 + }, + { + "start": 8767.4, + "end": 8772.36, + "probability": 0.9921 + }, + { + "start": 8773.28, + "end": 8777.52, + "probability": 0.9048 + }, + { + "start": 8778.3, + "end": 8781.6, + "probability": 0.9767 + }, + { + "start": 8782.64, + "end": 8788.22, + "probability": 0.9969 + }, + { + "start": 8789.16, + "end": 8792.6, + "probability": 0.7655 + }, + { + "start": 8793.32, + "end": 8793.82, + "probability": 0.4523 + }, + { + "start": 8793.86, + "end": 8794.6, + "probability": 0.9362 + }, + { + "start": 8795.06, + "end": 8799.46, + "probability": 0.9952 + }, + { + "start": 8800.9, + "end": 8805.28, + "probability": 0.9985 + }, + { + "start": 8805.82, + "end": 8810.34, + "probability": 0.9947 + }, + { + "start": 8811.48, + "end": 8814.76, + "probability": 0.9647 + }, + { + "start": 8815.44, + "end": 8816.5, + "probability": 0.9387 + }, + { + "start": 8816.96, + "end": 8820.3, + "probability": 0.9619 + }, + { + "start": 8821.22, + "end": 8824.68, + "probability": 0.9982 + }, + { + "start": 8825.16, + "end": 8830.68, + "probability": 0.9905 + }, + { + "start": 8831.22, + "end": 8831.46, + "probability": 0.6581 + }, + { + "start": 8832.36, + "end": 8833.29, + "probability": 0.581 + }, + { + "start": 8834.22, + "end": 8837.7, + "probability": 0.9184 + }, + { + "start": 8838.6, + "end": 8842.78, + "probability": 0.9928 + }, + { + "start": 8843.38, + "end": 8844.62, + "probability": 0.8596 + }, + { + "start": 8846.16, + "end": 8848.44, + "probability": 0.9713 + }, + { + "start": 8849.34, + "end": 8850.06, + "probability": 0.541 + }, + { + "start": 8850.6, + "end": 8855.1, + "probability": 0.9326 + }, + { + "start": 8855.94, + "end": 8859.9, + "probability": 0.8936 + }, + { + "start": 8860.5, + "end": 8862.44, + "probability": 0.695 + }, + { + "start": 8862.88, + "end": 8865.1, + "probability": 0.993 + }, + { + "start": 8865.28, + "end": 8868.76, + "probability": 0.9442 + }, + { + "start": 8869.14, + "end": 8872.98, + "probability": 0.9427 + }, + { + "start": 8873.74, + "end": 8874.22, + "probability": 0.7541 + }, + { + "start": 8875.18, + "end": 8875.78, + "probability": 0.7063 + }, + { + "start": 8876.16, + "end": 8877.48, + "probability": 0.8267 + }, + { + "start": 8877.74, + "end": 8879.14, + "probability": 0.9741 + }, + { + "start": 8879.92, + "end": 8880.54, + "probability": 0.7133 + }, + { + "start": 8881.06, + "end": 8885.38, + "probability": 0.7323 + }, + { + "start": 8886.6, + "end": 8890.52, + "probability": 0.5083 + }, + { + "start": 8890.62, + "end": 8891.54, + "probability": 0.7268 + }, + { + "start": 8891.62, + "end": 8893.13, + "probability": 0.6259 + }, + { + "start": 8893.96, + "end": 8895.34, + "probability": 0.906 + }, + { + "start": 8896.0, + "end": 8897.82, + "probability": 0.8997 + }, + { + "start": 8898.42, + "end": 8898.66, + "probability": 0.0326 + }, + { + "start": 8899.2, + "end": 8902.34, + "probability": 0.4996 + }, + { + "start": 8902.76, + "end": 8903.06, + "probability": 0.5962 + }, + { + "start": 8903.9, + "end": 8904.22, + "probability": 0.7508 + }, + { + "start": 8904.5, + "end": 8904.92, + "probability": 0.7306 + }, + { + "start": 8905.6, + "end": 8908.5, + "probability": 0.8716 + }, + { + "start": 8908.98, + "end": 8914.82, + "probability": 0.9046 + }, + { + "start": 8914.94, + "end": 8916.44, + "probability": 0.4003 + }, + { + "start": 8916.98, + "end": 8920.08, + "probability": 0.9841 + }, + { + "start": 8920.56, + "end": 8921.04, + "probability": 0.7588 + }, + { + "start": 8921.2, + "end": 8923.76, + "probability": 0.8987 + }, + { + "start": 8924.42, + "end": 8925.58, + "probability": 0.9584 + }, + { + "start": 8925.68, + "end": 8927.06, + "probability": 0.8749 + }, + { + "start": 8927.14, + "end": 8927.84, + "probability": 0.6182 + }, + { + "start": 8930.26, + "end": 8932.24, + "probability": 0.8273 + }, + { + "start": 8933.0, + "end": 8933.33, + "probability": 0.5085 + }, + { + "start": 8933.8, + "end": 8934.04, + "probability": 0.8114 + }, + { + "start": 8945.58, + "end": 8945.68, + "probability": 0.5091 + }, + { + "start": 8946.44, + "end": 8947.12, + "probability": 0.5442 + }, + { + "start": 8947.2, + "end": 8948.8, + "probability": 0.9636 + }, + { + "start": 8949.26, + "end": 8958.8, + "probability": 0.9154 + }, + { + "start": 8964.3, + "end": 8965.14, + "probability": 0.6039 + }, + { + "start": 8966.02, + "end": 8966.12, + "probability": 0.3841 + }, + { + "start": 8966.12, + "end": 8966.46, + "probability": 0.4805 + }, + { + "start": 8966.54, + "end": 8968.82, + "probability": 0.9451 + }, + { + "start": 8970.92, + "end": 8972.76, + "probability": 0.7636 + }, + { + "start": 8973.16, + "end": 8974.68, + "probability": 0.8752 + }, + { + "start": 8975.14, + "end": 8975.68, + "probability": 0.8056 + }, + { + "start": 8975.74, + "end": 8979.86, + "probability": 0.7818 + }, + { + "start": 8980.32, + "end": 8982.58, + "probability": 0.6981 + }, + { + "start": 8984.22, + "end": 8988.02, + "probability": 0.9863 + }, + { + "start": 8988.6, + "end": 8993.78, + "probability": 0.9929 + }, + { + "start": 8994.36, + "end": 8995.56, + "probability": 0.867 + }, + { + "start": 8996.08, + "end": 8996.82, + "probability": 0.6698 + }, + { + "start": 8997.62, + "end": 9000.44, + "probability": 0.8065 + }, + { + "start": 9001.42, + "end": 9004.7, + "probability": 0.9849 + }, + { + "start": 9004.78, + "end": 9007.5, + "probability": 0.7129 + }, + { + "start": 9007.6, + "end": 9009.8, + "probability": 0.8877 + }, + { + "start": 9010.02, + "end": 9010.9, + "probability": 0.9829 + }, + { + "start": 9014.28, + "end": 9018.28, + "probability": 0.9395 + }, + { + "start": 9018.98, + "end": 9022.76, + "probability": 0.9861 + }, + { + "start": 9023.22, + "end": 9024.16, + "probability": 0.9402 + }, + { + "start": 9025.08, + "end": 9027.88, + "probability": 0.9355 + }, + { + "start": 9027.9, + "end": 9030.9, + "probability": 0.9898 + }, + { + "start": 9030.98, + "end": 9034.56, + "probability": 0.9717 + }, + { + "start": 9035.48, + "end": 9035.86, + "probability": 0.6727 + }, + { + "start": 9036.54, + "end": 9038.64, + "probability": 0.9955 + }, + { + "start": 9038.74, + "end": 9040.66, + "probability": 0.8103 + }, + { + "start": 9041.1, + "end": 9042.22, + "probability": 0.9264 + }, + { + "start": 9042.56, + "end": 9043.32, + "probability": 0.9769 + }, + { + "start": 9044.22, + "end": 9045.84, + "probability": 0.8971 + }, + { + "start": 9047.42, + "end": 9051.16, + "probability": 0.9913 + }, + { + "start": 9051.94, + "end": 9054.56, + "probability": 0.9981 + }, + { + "start": 9054.56, + "end": 9057.3, + "probability": 0.9865 + }, + { + "start": 9058.44, + "end": 9061.4, + "probability": 0.9652 + }, + { + "start": 9061.5, + "end": 9063.32, + "probability": 0.9805 + }, + { + "start": 9064.1, + "end": 9064.52, + "probability": 0.4659 + }, + { + "start": 9064.52, + "end": 9069.64, + "probability": 0.9474 + }, + { + "start": 9070.22, + "end": 9071.22, + "probability": 0.9904 + }, + { + "start": 9071.82, + "end": 9073.68, + "probability": 0.9961 + }, + { + "start": 9075.46, + "end": 9077.82, + "probability": 0.8087 + }, + { + "start": 9078.06, + "end": 9078.94, + "probability": 0.788 + }, + { + "start": 9079.58, + "end": 9082.04, + "probability": 0.7864 + }, + { + "start": 9082.88, + "end": 9086.66, + "probability": 0.9776 + }, + { + "start": 9087.78, + "end": 9089.88, + "probability": 0.9576 + }, + { + "start": 9090.42, + "end": 9092.9, + "probability": 0.9769 + }, + { + "start": 9093.22, + "end": 9095.14, + "probability": 0.9526 + }, + { + "start": 9096.42, + "end": 9096.86, + "probability": 0.715 + }, + { + "start": 9096.94, + "end": 9100.04, + "probability": 0.991 + }, + { + "start": 9100.86, + "end": 9104.08, + "probability": 0.897 + }, + { + "start": 9105.32, + "end": 9107.06, + "probability": 0.905 + }, + { + "start": 9107.26, + "end": 9110.62, + "probability": 0.8926 + }, + { + "start": 9111.34, + "end": 9113.52, + "probability": 0.9972 + }, + { + "start": 9113.96, + "end": 9116.24, + "probability": 0.9924 + }, + { + "start": 9117.18, + "end": 9120.02, + "probability": 0.9957 + }, + { + "start": 9120.54, + "end": 9122.16, + "probability": 0.9967 + }, + { + "start": 9122.9, + "end": 9125.14, + "probability": 0.8162 + }, + { + "start": 9125.68, + "end": 9127.68, + "probability": 0.9906 + }, + { + "start": 9128.8, + "end": 9129.12, + "probability": 0.6866 + }, + { + "start": 9129.66, + "end": 9131.32, + "probability": 0.9198 + }, + { + "start": 9132.06, + "end": 9134.32, + "probability": 0.9381 + }, + { + "start": 9134.48, + "end": 9136.66, + "probability": 0.9663 + }, + { + "start": 9137.18, + "end": 9137.82, + "probability": 0.8595 + }, + { + "start": 9138.38, + "end": 9142.48, + "probability": 0.9884 + }, + { + "start": 9143.5, + "end": 9144.54, + "probability": 0.958 + }, + { + "start": 9145.5, + "end": 9148.52, + "probability": 0.9884 + }, + { + "start": 9150.08, + "end": 9151.08, + "probability": 0.8819 + }, + { + "start": 9151.74, + "end": 9152.44, + "probability": 0.7429 + }, + { + "start": 9152.56, + "end": 9153.58, + "probability": 0.9485 + }, + { + "start": 9153.7, + "end": 9157.14, + "probability": 0.9496 + }, + { + "start": 9157.36, + "end": 9157.72, + "probability": 0.8431 + }, + { + "start": 9159.4, + "end": 9160.56, + "probability": 0.8689 + }, + { + "start": 9161.68, + "end": 9162.22, + "probability": 0.8613 + }, + { + "start": 9162.82, + "end": 9167.52, + "probability": 0.9941 + }, + { + "start": 9167.52, + "end": 9171.14, + "probability": 0.999 + }, + { + "start": 9171.7, + "end": 9175.38, + "probability": 0.981 + }, + { + "start": 9176.28, + "end": 9176.78, + "probability": 0.4168 + }, + { + "start": 9176.94, + "end": 9180.0, + "probability": 0.9484 + }, + { + "start": 9180.0, + "end": 9183.26, + "probability": 0.969 + }, + { + "start": 9183.72, + "end": 9184.92, + "probability": 0.9189 + }, + { + "start": 9185.88, + "end": 9186.6, + "probability": 0.9814 + }, + { + "start": 9188.0, + "end": 9188.62, + "probability": 0.5787 + }, + { + "start": 9188.66, + "end": 9189.92, + "probability": 0.9867 + }, + { + "start": 9190.1, + "end": 9191.76, + "probability": 0.8591 + }, + { + "start": 9191.76, + "end": 9194.62, + "probability": 0.9839 + }, + { + "start": 9195.04, + "end": 9195.52, + "probability": 0.4863 + }, + { + "start": 9195.66, + "end": 9195.92, + "probability": 0.5662 + }, + { + "start": 9195.98, + "end": 9196.74, + "probability": 0.9418 + }, + { + "start": 9197.84, + "end": 9199.36, + "probability": 0.7375 + }, + { + "start": 9200.4, + "end": 9203.4, + "probability": 0.8719 + }, + { + "start": 9203.88, + "end": 9208.2, + "probability": 0.9749 + }, + { + "start": 9208.32, + "end": 9209.23, + "probability": 0.7421 + }, + { + "start": 9209.66, + "end": 9210.64, + "probability": 0.7778 + }, + { + "start": 9211.9, + "end": 9214.26, + "probability": 0.8007 + }, + { + "start": 9215.5, + "end": 9216.74, + "probability": 0.7278 + }, + { + "start": 9217.48, + "end": 9221.28, + "probability": 0.9672 + }, + { + "start": 9221.66, + "end": 9223.66, + "probability": 0.9917 + }, + { + "start": 9224.36, + "end": 9225.96, + "probability": 0.4397 + }, + { + "start": 9226.52, + "end": 9229.5, + "probability": 0.7203 + }, + { + "start": 9229.88, + "end": 9230.7, + "probability": 0.7024 + }, + { + "start": 9231.64, + "end": 9232.96, + "probability": 0.891 + }, + { + "start": 9234.14, + "end": 9238.0, + "probability": 0.7349 + }, + { + "start": 9238.68, + "end": 9241.06, + "probability": 0.7868 + }, + { + "start": 9241.72, + "end": 9242.78, + "probability": 0.6724 + }, + { + "start": 9243.86, + "end": 9244.8, + "probability": 0.8096 + }, + { + "start": 9244.9, + "end": 9252.06, + "probability": 0.884 + }, + { + "start": 9252.48, + "end": 9253.58, + "probability": 0.6726 + }, + { + "start": 9256.68, + "end": 9256.88, + "probability": 0.0613 + }, + { + "start": 9260.76, + "end": 9261.06, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.52, + "probability": 0.1011 + }, + { + "start": 9271.76, + "end": 9274.7, + "probability": 0.5538 + }, + { + "start": 9275.2, + "end": 9277.56, + "probability": 0.9869 + }, + { + "start": 9277.94, + "end": 9279.1, + "probability": 0.7743 + }, + { + "start": 9279.6, + "end": 9281.44, + "probability": 0.986 + }, + { + "start": 9282.0, + "end": 9282.54, + "probability": 0.867 + }, + { + "start": 9282.76, + "end": 9283.16, + "probability": 0.7112 + }, + { + "start": 9283.3, + "end": 9288.18, + "probability": 0.9048 + }, + { + "start": 9289.3, + "end": 9290.32, + "probability": 0.0001 + }, + { + "start": 9291.68, + "end": 9295.14, + "probability": 0.8027 + }, + { + "start": 9295.5, + "end": 9296.94, + "probability": 0.6784 + }, + { + "start": 9297.46, + "end": 9297.92, + "probability": 0.2601 + }, + { + "start": 9297.94, + "end": 9298.42, + "probability": 0.4232 + }, + { + "start": 9298.44, + "end": 9298.92, + "probability": 0.5147 + }, + { + "start": 9299.0, + "end": 9299.58, + "probability": 0.6647 + }, + { + "start": 9301.68, + "end": 9302.16, + "probability": 0.0037 + }, + { + "start": 9304.88, + "end": 9306.42, + "probability": 0.0244 + }, + { + "start": 9307.68, + "end": 9309.24, + "probability": 0.0002 + }, + { + "start": 9309.78, + "end": 9313.46, + "probability": 0.0776 + }, + { + "start": 9314.48, + "end": 9316.68, + "probability": 0.2553 + }, + { + "start": 9316.82, + "end": 9319.8, + "probability": 0.9963 + }, + { + "start": 9319.82, + "end": 9322.36, + "probability": 0.8638 + }, + { + "start": 9322.42, + "end": 9324.18, + "probability": 0.9946 + }, + { + "start": 9325.18, + "end": 9326.74, + "probability": 0.7649 + }, + { + "start": 9334.16, + "end": 9335.12, + "probability": 0.5078 + }, + { + "start": 9335.26, + "end": 9335.56, + "probability": 0.47 + }, + { + "start": 9335.64, + "end": 9338.44, + "probability": 0.7602 + }, + { + "start": 9338.48, + "end": 9340.22, + "probability": 0.8158 + }, + { + "start": 9340.86, + "end": 9345.22, + "probability": 0.9751 + }, + { + "start": 9346.08, + "end": 9348.76, + "probability": 0.9162 + }, + { + "start": 9350.16, + "end": 9355.8, + "probability": 0.9844 + }, + { + "start": 9355.8, + "end": 9364.79, + "probability": 0.9822 + }, + { + "start": 9365.82, + "end": 9369.46, + "probability": 0.8735 + }, + { + "start": 9370.0, + "end": 9372.38, + "probability": 0.814 + }, + { + "start": 9372.98, + "end": 9376.7, + "probability": 0.8588 + }, + { + "start": 9377.22, + "end": 9380.72, + "probability": 0.9909 + }, + { + "start": 9381.5, + "end": 9382.28, + "probability": 0.6293 + }, + { + "start": 9382.72, + "end": 9384.48, + "probability": 0.5997 + }, + { + "start": 9384.94, + "end": 9386.68, + "probability": 0.5009 + }, + { + "start": 9387.34, + "end": 9388.82, + "probability": 0.5912 + }, + { + "start": 9388.82, + "end": 9391.96, + "probability": 0.3462 + }, + { + "start": 9392.24, + "end": 9395.42, + "probability": 0.9743 + }, + { + "start": 9396.14, + "end": 9401.26, + "probability": 0.855 + }, + { + "start": 9401.32, + "end": 9404.92, + "probability": 0.981 + }, + { + "start": 9404.92, + "end": 9408.32, + "probability": 0.9155 + }, + { + "start": 9409.08, + "end": 9412.18, + "probability": 0.9973 + }, + { + "start": 9412.24, + "end": 9417.2, + "probability": 0.8669 + }, + { + "start": 9417.44, + "end": 9422.48, + "probability": 0.9939 + }, + { + "start": 9423.14, + "end": 9429.74, + "probability": 0.8467 + }, + { + "start": 9429.86, + "end": 9431.38, + "probability": 0.9705 + }, + { + "start": 9432.08, + "end": 9435.52, + "probability": 0.9517 + }, + { + "start": 9436.12, + "end": 9438.7, + "probability": 0.9053 + }, + { + "start": 9438.88, + "end": 9442.96, + "probability": 0.8219 + }, + { + "start": 9443.38, + "end": 9443.72, + "probability": 0.7982 + }, + { + "start": 9444.58, + "end": 9446.26, + "probability": 0.9751 + }, + { + "start": 9446.96, + "end": 9448.5, + "probability": 0.9256 + }, + { + "start": 9448.96, + "end": 9452.32, + "probability": 0.995 + }, + { + "start": 9452.42, + "end": 9452.96, + "probability": 0.0712 + }, + { + "start": 9453.74, + "end": 9457.74, + "probability": 0.879 + }, + { + "start": 9458.4, + "end": 9462.7, + "probability": 0.7172 + }, + { + "start": 9463.22, + "end": 9468.02, + "probability": 0.7185 + }, + { + "start": 9475.82, + "end": 9478.7, + "probability": 0.6384 + }, + { + "start": 9479.42, + "end": 9482.44, + "probability": 0.9731 + }, + { + "start": 9495.3, + "end": 9497.66, + "probability": 0.8327 + }, + { + "start": 9498.38, + "end": 9499.34, + "probability": 0.7726 + }, + { + "start": 9500.94, + "end": 9504.86, + "probability": 0.719 + }, + { + "start": 9506.08, + "end": 9507.86, + "probability": 0.7974 + }, + { + "start": 9508.94, + "end": 9509.68, + "probability": 0.8444 + }, + { + "start": 9510.74, + "end": 9513.2, + "probability": 0.7456 + }, + { + "start": 9514.14, + "end": 9516.16, + "probability": 0.0739 + }, + { + "start": 9517.18, + "end": 9518.4, + "probability": 0.704 + }, + { + "start": 9521.34, + "end": 9523.24, + "probability": 0.7697 + }, + { + "start": 9524.16, + "end": 9525.32, + "probability": 0.9243 + }, + { + "start": 9525.38, + "end": 9529.12, + "probability": 0.9412 + }, + { + "start": 9529.78, + "end": 9532.4, + "probability": 0.9111 + }, + { + "start": 9533.02, + "end": 9537.18, + "probability": 0.99 + }, + { + "start": 9538.46, + "end": 9541.18, + "probability": 0.9963 + }, + { + "start": 9541.24, + "end": 9544.78, + "probability": 0.9951 + }, + { + "start": 9545.45, + "end": 9549.0, + "probability": 0.9961 + }, + { + "start": 9549.12, + "end": 9550.06, + "probability": 0.7366 + }, + { + "start": 9550.44, + "end": 9551.08, + "probability": 0.9156 + }, + { + "start": 9551.16, + "end": 9551.9, + "probability": 0.8671 + }, + { + "start": 9552.31, + "end": 9555.02, + "probability": 0.9236 + }, + { + "start": 9555.96, + "end": 9556.86, + "probability": 0.7454 + }, + { + "start": 9556.94, + "end": 9560.36, + "probability": 0.9875 + }, + { + "start": 9560.44, + "end": 9562.82, + "probability": 0.9919 + }, + { + "start": 9567.74, + "end": 9568.7, + "probability": 0.6725 + }, + { + "start": 9572.58, + "end": 9575.8, + "probability": 0.7972 + }, + { + "start": 9577.56, + "end": 9579.08, + "probability": 0.8973 + }, + { + "start": 9580.2, + "end": 9583.54, + "probability": 0.9817 + }, + { + "start": 9585.74, + "end": 9588.24, + "probability": 0.8701 + }, + { + "start": 9588.62, + "end": 9589.68, + "probability": 0.9978 + }, + { + "start": 9590.9, + "end": 9595.66, + "probability": 0.8107 + }, + { + "start": 9596.5, + "end": 9598.5, + "probability": 0.9848 + }, + { + "start": 9599.1, + "end": 9601.06, + "probability": 0.9772 + }, + { + "start": 9602.1, + "end": 9603.66, + "probability": 0.741 + }, + { + "start": 9604.76, + "end": 9606.3, + "probability": 0.9535 + }, + { + "start": 9608.02, + "end": 9611.34, + "probability": 0.9435 + }, + { + "start": 9611.48, + "end": 9611.98, + "probability": 0.4267 + }, + { + "start": 9612.46, + "end": 9613.28, + "probability": 0.5624 + }, + { + "start": 9613.32, + "end": 9614.7, + "probability": 0.8795 + }, + { + "start": 9614.92, + "end": 9618.96, + "probability": 0.9941 + }, + { + "start": 9619.7, + "end": 9620.38, + "probability": 0.6765 + }, + { + "start": 9621.0, + "end": 9626.34, + "probability": 0.8002 + }, + { + "start": 9627.1, + "end": 9627.76, + "probability": 0.9881 + }, + { + "start": 9628.46, + "end": 9629.32, + "probability": 0.9897 + }, + { + "start": 9629.96, + "end": 9632.28, + "probability": 0.9781 + }, + { + "start": 9632.98, + "end": 9633.88, + "probability": 0.9884 + }, + { + "start": 9634.44, + "end": 9637.62, + "probability": 0.9238 + }, + { + "start": 9638.24, + "end": 9639.14, + "probability": 0.9233 + }, + { + "start": 9639.64, + "end": 9646.23, + "probability": 0.9729 + }, + { + "start": 9646.44, + "end": 9646.44, + "probability": 0.0043 + }, + { + "start": 9647.08, + "end": 9647.42, + "probability": 0.171 + }, + { + "start": 9648.3, + "end": 9651.88, + "probability": 0.1028 + }, + { + "start": 9652.4, + "end": 9653.78, + "probability": 0.3743 + }, + { + "start": 9653.8, + "end": 9655.38, + "probability": 0.6478 + }, + { + "start": 9655.38, + "end": 9656.48, + "probability": 0.7485 + }, + { + "start": 9657.66, + "end": 9658.66, + "probability": 0.4101 + }, + { + "start": 9659.9, + "end": 9661.68, + "probability": 0.465 + }, + { + "start": 9661.8, + "end": 9662.15, + "probability": 0.6807 + }, + { + "start": 9662.18, + "end": 9663.72, + "probability": 0.169 + }, + { + "start": 9664.82, + "end": 9667.24, + "probability": 0.9653 + }, + { + "start": 9668.44, + "end": 9668.52, + "probability": 0.2297 + }, + { + "start": 9669.1, + "end": 9669.52, + "probability": 0.1082 + }, + { + "start": 9669.52, + "end": 9670.86, + "probability": 0.7166 + }, + { + "start": 9671.22, + "end": 9673.98, + "probability": 0.644 + }, + { + "start": 9674.24, + "end": 9674.77, + "probability": 0.9246 + }, + { + "start": 9675.1, + "end": 9676.5, + "probability": 0.8875 + }, + { + "start": 9676.66, + "end": 9676.86, + "probability": 0.2447 + }, + { + "start": 9677.74, + "end": 9677.84, + "probability": 0.0101 + }, + { + "start": 9677.94, + "end": 9678.94, + "probability": 0.7207 + }, + { + "start": 9679.5, + "end": 9680.04, + "probability": 0.6833 + }, + { + "start": 9680.44, + "end": 9680.7, + "probability": 0.2141 + }, + { + "start": 9680.7, + "end": 9681.26, + "probability": 0.5876 + }, + { + "start": 9681.74, + "end": 9683.39, + "probability": 0.0099 + }, + { + "start": 9683.9, + "end": 9687.2, + "probability": 0.5285 + }, + { + "start": 9690.24, + "end": 9698.0, + "probability": 0.0994 + }, + { + "start": 9698.06, + "end": 9699.7, + "probability": 0.3753 + }, + { + "start": 9700.56, + "end": 9701.9, + "probability": 0.0109 + }, + { + "start": 9703.56, + "end": 9708.82, + "probability": 0.3687 + }, + { + "start": 9708.82, + "end": 9709.03, + "probability": 0.0337 + }, + { + "start": 9709.94, + "end": 9710.5, + "probability": 0.4327 + }, + { + "start": 9710.5, + "end": 9711.62, + "probability": 0.0412 + }, + { + "start": 9711.72, + "end": 9712.16, + "probability": 0.0071 + }, + { + "start": 9714.64, + "end": 9716.18, + "probability": 0.0701 + }, + { + "start": 9716.94, + "end": 9718.91, + "probability": 0.0404 + }, + { + "start": 9719.22, + "end": 9720.08, + "probability": 0.0084 + }, + { + "start": 9723.52, + "end": 9727.42, + "probability": 0.0811 + }, + { + "start": 9732.78, + "end": 9733.72, + "probability": 0.2997 + }, + { + "start": 9741.0, + "end": 9741.0, + "probability": 0.0 + }, + { + "start": 9741.0, + "end": 9741.0, + "probability": 0.0 + }, + { + "start": 9741.0, + "end": 9741.0, + "probability": 0.0 + }, + { + "start": 9741.0, + "end": 9741.0, + "probability": 0.0 + }, + { + "start": 9741.0, + "end": 9741.0, + "probability": 0.0 + }, + { + "start": 9741.0, + "end": 9741.0, + "probability": 0.0 + }, + { + "start": 9741.0, + "end": 9741.0, + "probability": 0.0 + }, + { + "start": 9741.0, + "end": 9741.0, + "probability": 0.0 + }, + { + "start": 9741.0, + "end": 9741.0, + "probability": 0.0 + }, + { + "start": 9741.02, + "end": 9741.3, + "probability": 0.2075 + }, + { + "start": 9741.38, + "end": 9743.22, + "probability": 0.927 + }, + { + "start": 9743.68, + "end": 9746.2, + "probability": 0.8503 + }, + { + "start": 9746.3, + "end": 9747.04, + "probability": 0.9233 + }, + { + "start": 9748.02, + "end": 9749.86, + "probability": 0.8447 + }, + { + "start": 9749.98, + "end": 9750.88, + "probability": 0.9805 + }, + { + "start": 9751.5, + "end": 9752.74, + "probability": 0.9679 + }, + { + "start": 9753.36, + "end": 9754.2, + "probability": 0.9575 + }, + { + "start": 9754.32, + "end": 9757.3, + "probability": 0.979 + }, + { + "start": 9757.6, + "end": 9758.34, + "probability": 0.7175 + }, + { + "start": 9758.48, + "end": 9760.42, + "probability": 0.8162 + }, + { + "start": 9760.46, + "end": 9765.46, + "probability": 0.9595 + }, + { + "start": 9766.16, + "end": 9766.3, + "probability": 0.0757 + }, + { + "start": 9766.3, + "end": 9767.34, + "probability": 0.5675 + }, + { + "start": 9767.54, + "end": 9768.17, + "probability": 0.6305 + }, + { + "start": 9769.54, + "end": 9769.8, + "probability": 0.0656 + }, + { + "start": 9769.8, + "end": 9772.6, + "probability": 0.9292 + }, + { + "start": 9773.08, + "end": 9777.54, + "probability": 0.9818 + }, + { + "start": 9778.22, + "end": 9778.22, + "probability": 0.0033 + }, + { + "start": 9778.98, + "end": 9779.44, + "probability": 0.0038 + }, + { + "start": 9779.44, + "end": 9781.63, + "probability": 0.2464 + }, + { + "start": 9781.88, + "end": 9783.27, + "probability": 0.7451 + }, + { + "start": 9784.06, + "end": 9789.86, + "probability": 0.9634 + }, + { + "start": 9790.8, + "end": 9792.27, + "probability": 0.8774 + }, + { + "start": 9792.94, + "end": 9794.32, + "probability": 0.6795 + }, + { + "start": 9794.66, + "end": 9796.92, + "probability": 0.8818 + }, + { + "start": 9797.22, + "end": 9798.02, + "probability": 0.9675 + }, + { + "start": 9798.28, + "end": 9798.7, + "probability": 0.64 + }, + { + "start": 9798.74, + "end": 9799.56, + "probability": 0.7674 + }, + { + "start": 9800.06, + "end": 9801.52, + "probability": 0.978 + }, + { + "start": 9802.88, + "end": 9804.34, + "probability": 0.9897 + }, + { + "start": 9805.0, + "end": 9807.98, + "probability": 0.9186 + }, + { + "start": 9809.2, + "end": 9811.62, + "probability": 0.993 + }, + { + "start": 9811.82, + "end": 9812.28, + "probability": 0.0179 + }, + { + "start": 9812.32, + "end": 9816.58, + "probability": 0.5792 + }, + { + "start": 9816.58, + "end": 9818.66, + "probability": 0.5585 + }, + { + "start": 9819.3, + "end": 9819.42, + "probability": 0.4876 + }, + { + "start": 9819.42, + "end": 9819.94, + "probability": 0.3992 + }, + { + "start": 9820.02, + "end": 9820.76, + "probability": 0.7968 + }, + { + "start": 9820.98, + "end": 9821.78, + "probability": 0.8604 + }, + { + "start": 9822.32, + "end": 9823.58, + "probability": 0.9749 + }, + { + "start": 9824.12, + "end": 9827.26, + "probability": 0.8649 + }, + { + "start": 9827.36, + "end": 9828.52, + "probability": 0.9766 + }, + { + "start": 9829.06, + "end": 9829.92, + "probability": 0.7964 + }, + { + "start": 9830.12, + "end": 9831.9, + "probability": 0.7936 + }, + { + "start": 9832.06, + "end": 9833.04, + "probability": 0.7786 + }, + { + "start": 9833.14, + "end": 9833.36, + "probability": 0.5447 + }, + { + "start": 9833.38, + "end": 9836.4, + "probability": 0.8882 + }, + { + "start": 9837.62, + "end": 9839.44, + "probability": 0.9074 + }, + { + "start": 9840.6, + "end": 9841.18, + "probability": 0.9507 + }, + { + "start": 9841.66, + "end": 9842.85, + "probability": 0.8059 + }, + { + "start": 9843.08, + "end": 9844.98, + "probability": 0.8615 + }, + { + "start": 9845.34, + "end": 9846.1, + "probability": 0.7152 + }, + { + "start": 9846.66, + "end": 9848.52, + "probability": 0.8214 + }, + { + "start": 9849.04, + "end": 9850.38, + "probability": 0.9175 + }, + { + "start": 9850.9, + "end": 9855.0, + "probability": 0.9769 + }, + { + "start": 9855.9, + "end": 9858.4, + "probability": 0.998 + }, + { + "start": 9860.44, + "end": 9865.2, + "probability": 0.9853 + }, + { + "start": 9865.94, + "end": 9867.7, + "probability": 0.9556 + }, + { + "start": 9868.6, + "end": 9871.16, + "probability": 0.9681 + }, + { + "start": 9872.32, + "end": 9873.2, + "probability": 0.7678 + }, + { + "start": 9874.46, + "end": 9874.86, + "probability": 0.0534 + }, + { + "start": 9875.12, + "end": 9877.16, + "probability": 0.8244 + }, + { + "start": 9877.2, + "end": 9878.41, + "probability": 0.9595 + }, + { + "start": 9879.14, + "end": 9879.14, + "probability": 0.554 + }, + { + "start": 9879.14, + "end": 9880.08, + "probability": 0.5947 + }, + { + "start": 9880.66, + "end": 9882.73, + "probability": 0.496 + }, + { + "start": 9883.54, + "end": 9883.58, + "probability": 0.1603 + }, + { + "start": 9883.58, + "end": 9886.7, + "probability": 0.7769 + }, + { + "start": 9886.8, + "end": 9887.74, + "probability": 0.8715 + }, + { + "start": 9887.82, + "end": 9888.7, + "probability": 0.7061 + }, + { + "start": 9888.76, + "end": 9890.16, + "probability": 0.9927 + }, + { + "start": 9890.3, + "end": 9891.64, + "probability": 0.8651 + }, + { + "start": 9891.64, + "end": 9892.62, + "probability": 0.4402 + }, + { + "start": 9892.62, + "end": 9894.14, + "probability": 0.936 + }, + { + "start": 9894.26, + "end": 9895.46, + "probability": 0.8752 + }, + { + "start": 9896.24, + "end": 9899.08, + "probability": 0.9672 + }, + { + "start": 9899.3, + "end": 9901.26, + "probability": 0.9881 + }, + { + "start": 9902.86, + "end": 9903.32, + "probability": 0.3453 + }, + { + "start": 9904.08, + "end": 9904.1, + "probability": 0.0663 + }, + { + "start": 9904.1, + "end": 9904.44, + "probability": 0.5824 + }, + { + "start": 9904.52, + "end": 9904.62, + "probability": 0.3907 + }, + { + "start": 9904.62, + "end": 9904.62, + "probability": 0.6176 + }, + { + "start": 9904.62, + "end": 9906.96, + "probability": 0.5536 + }, + { + "start": 9907.1, + "end": 9907.5, + "probability": 0.967 + }, + { + "start": 9908.18, + "end": 9911.1, + "probability": 0.8105 + }, + { + "start": 9911.22, + "end": 9914.24, + "probability": 0.9579 + }, + { + "start": 9914.54, + "end": 9917.04, + "probability": 0.8148 + }, + { + "start": 9917.72, + "end": 9919.3, + "probability": 0.783 + }, + { + "start": 9919.62, + "end": 9920.18, + "probability": 0.0168 + }, + { + "start": 9920.18, + "end": 9920.18, + "probability": 0.2855 + }, + { + "start": 9920.18, + "end": 9921.66, + "probability": 0.4046 + }, + { + "start": 9923.29, + "end": 9924.08, + "probability": 0.3944 + }, + { + "start": 9924.2, + "end": 9929.42, + "probability": 0.3356 + }, + { + "start": 9929.42, + "end": 9929.42, + "probability": 0.0086 + }, + { + "start": 9929.42, + "end": 9929.42, + "probability": 0.036 + }, + { + "start": 9929.42, + "end": 9929.42, + "probability": 0.0541 + }, + { + "start": 9929.42, + "end": 9930.38, + "probability": 0.6738 + }, + { + "start": 9930.62, + "end": 9932.38, + "probability": 0.9441 + }, + { + "start": 9932.76, + "end": 9934.44, + "probability": 0.7448 + }, + { + "start": 9935.24, + "end": 9936.74, + "probability": 0.9358 + }, + { + "start": 9936.74, + "end": 9939.2, + "probability": 0.6288 + }, + { + "start": 9940.0, + "end": 9943.02, + "probability": 0.7305 + }, + { + "start": 9943.5, + "end": 9944.24, + "probability": 0.7424 + }, + { + "start": 9944.36, + "end": 9944.94, + "probability": 0.8923 + }, + { + "start": 9945.12, + "end": 9945.46, + "probability": 0.8047 + }, + { + "start": 9945.72, + "end": 9947.18, + "probability": 0.9808 + }, + { + "start": 9947.52, + "end": 9950.5, + "probability": 0.979 + }, + { + "start": 9950.74, + "end": 9951.56, + "probability": 0.8168 + }, + { + "start": 9952.44, + "end": 9954.49, + "probability": 0.9917 + }, + { + "start": 9954.92, + "end": 9957.52, + "probability": 0.993 + }, + { + "start": 9957.96, + "end": 9959.62, + "probability": 0.9951 + }, + { + "start": 9959.7, + "end": 9960.92, + "probability": 0.3742 + }, + { + "start": 9961.48, + "end": 9963.19, + "probability": 0.6121 + }, + { + "start": 9963.56, + "end": 9966.92, + "probability": 0.9188 + }, + { + "start": 9967.78, + "end": 9970.34, + "probability": 0.7351 + }, + { + "start": 9970.7, + "end": 9975.96, + "probability": 0.9856 + }, + { + "start": 9976.08, + "end": 9976.9, + "probability": 0.9462 + }, + { + "start": 9977.86, + "end": 9978.84, + "probability": 0.5551 + }, + { + "start": 9979.4, + "end": 9981.06, + "probability": 0.3594 + }, + { + "start": 9981.92, + "end": 9981.92, + "probability": 0.0351 + }, + { + "start": 9981.92, + "end": 9981.92, + "probability": 0.1239 + }, + { + "start": 9981.92, + "end": 9982.28, + "probability": 0.4674 + }, + { + "start": 9982.28, + "end": 9982.88, + "probability": 0.4248 + }, + { + "start": 9983.04, + "end": 9983.39, + "probability": 0.8452 + }, + { + "start": 9983.64, + "end": 9984.08, + "probability": 0.5936 + }, + { + "start": 9984.66, + "end": 9984.96, + "probability": 0.7596 + }, + { + "start": 9987.24, + "end": 9991.17, + "probability": 0.8911 + }, + { + "start": 9992.38, + "end": 9995.46, + "probability": 0.8222 + }, + { + "start": 9996.3, + "end": 10000.56, + "probability": 0.9691 + }, + { + "start": 10001.26, + "end": 10001.96, + "probability": 0.8638 + }, + { + "start": 10002.96, + "end": 10003.32, + "probability": 0.8575 + }, + { + "start": 10003.36, + "end": 10004.94, + "probability": 0.9396 + }, + { + "start": 10005.84, + "end": 10010.6, + "probability": 0.9648 + }, + { + "start": 10011.34, + "end": 10013.42, + "probability": 0.9498 + }, + { + "start": 10013.96, + "end": 10016.86, + "probability": 0.9982 + }, + { + "start": 10017.58, + "end": 10020.44, + "probability": 0.9904 + }, + { + "start": 10020.7, + "end": 10021.0, + "probability": 0.2745 + }, + { + "start": 10021.0, + "end": 10024.4, + "probability": 0.7163 + }, + { + "start": 10024.9, + "end": 10026.48, + "probability": 0.985 + }, + { + "start": 10026.58, + "end": 10031.66, + "probability": 0.8187 + }, + { + "start": 10031.88, + "end": 10032.96, + "probability": 0.7325 + }, + { + "start": 10033.36, + "end": 10042.9, + "probability": 0.9806 + }, + { + "start": 10043.92, + "end": 10048.1, + "probability": 0.8019 + }, + { + "start": 10048.7, + "end": 10049.56, + "probability": 0.6309 + }, + { + "start": 10052.38, + "end": 10054.19, + "probability": 0.8174 + }, + { + "start": 10055.54, + "end": 10059.42, + "probability": 0.9866 + }, + { + "start": 10059.52, + "end": 10062.0, + "probability": 0.9966 + }, + { + "start": 10063.92, + "end": 10066.4, + "probability": 0.9231 + }, + { + "start": 10067.06, + "end": 10068.54, + "probability": 0.8341 + }, + { + "start": 10069.62, + "end": 10072.74, + "probability": 0.9873 + }, + { + "start": 10073.44, + "end": 10074.06, + "probability": 0.9193 + }, + { + "start": 10074.18, + "end": 10075.47, + "probability": 0.9805 + }, + { + "start": 10075.56, + "end": 10079.8, + "probability": 0.8354 + }, + { + "start": 10083.54, + "end": 10084.94, + "probability": 0.9222 + }, + { + "start": 10085.66, + "end": 10089.74, + "probability": 0.9361 + }, + { + "start": 10090.58, + "end": 10092.28, + "probability": 0.8514 + }, + { + "start": 10092.94, + "end": 10096.54, + "probability": 0.8911 + }, + { + "start": 10097.08, + "end": 10100.92, + "probability": 0.6428 + }, + { + "start": 10101.54, + "end": 10103.48, + "probability": 0.7745 + }, + { + "start": 10104.16, + "end": 10109.84, + "probability": 0.9513 + }, + { + "start": 10109.98, + "end": 10110.86, + "probability": 0.9534 + }, + { + "start": 10111.14, + "end": 10114.1, + "probability": 0.9993 + }, + { + "start": 10114.92, + "end": 10121.8, + "probability": 0.9426 + }, + { + "start": 10122.52, + "end": 10125.72, + "probability": 0.8266 + }, + { + "start": 10126.28, + "end": 10127.7, + "probability": 0.9971 + }, + { + "start": 10127.86, + "end": 10128.68, + "probability": 0.8824 + }, + { + "start": 10128.9, + "end": 10130.58, + "probability": 0.7812 + }, + { + "start": 10130.64, + "end": 10131.42, + "probability": 0.9734 + }, + { + "start": 10131.86, + "end": 10136.2, + "probability": 0.9023 + }, + { + "start": 10136.74, + "end": 10137.44, + "probability": 0.9096 + }, + { + "start": 10139.93, + "end": 10140.73, + "probability": 0.3792 + }, + { + "start": 10141.5, + "end": 10142.48, + "probability": 0.9993 + }, + { + "start": 10143.36, + "end": 10144.64, + "probability": 0.7372 + }, + { + "start": 10145.14, + "end": 10148.32, + "probability": 0.9974 + }, + { + "start": 10148.82, + "end": 10151.96, + "probability": 0.9414 + }, + { + "start": 10152.7, + "end": 10154.02, + "probability": 0.6554 + }, + { + "start": 10154.18, + "end": 10157.14, + "probability": 0.9031 + }, + { + "start": 10157.56, + "end": 10160.68, + "probability": 0.9888 + }, + { + "start": 10160.88, + "end": 10162.44, + "probability": 0.7889 + }, + { + "start": 10162.96, + "end": 10163.46, + "probability": 0.9375 + }, + { + "start": 10164.06, + "end": 10165.32, + "probability": 0.78 + }, + { + "start": 10165.88, + "end": 10167.2, + "probability": 0.9831 + }, + { + "start": 10167.36, + "end": 10167.97, + "probability": 0.9763 + }, + { + "start": 10168.26, + "end": 10169.66, + "probability": 0.6611 + }, + { + "start": 10169.72, + "end": 10172.1, + "probability": 0.9759 + }, + { + "start": 10173.78, + "end": 10175.24, + "probability": 0.9535 + }, + { + "start": 10176.36, + "end": 10183.66, + "probability": 0.9945 + }, + { + "start": 10183.66, + "end": 10189.94, + "probability": 0.9453 + }, + { + "start": 10190.26, + "end": 10191.36, + "probability": 0.5555 + }, + { + "start": 10191.78, + "end": 10193.23, + "probability": 0.8697 + }, + { + "start": 10193.3, + "end": 10197.04, + "probability": 0.832 + }, + { + "start": 10197.18, + "end": 10197.36, + "probability": 0.7144 + }, + { + "start": 10197.86, + "end": 10200.5, + "probability": 0.9215 + }, + { + "start": 10201.0, + "end": 10201.81, + "probability": 0.7349 + }, + { + "start": 10202.52, + "end": 10204.18, + "probability": 0.9644 + }, + { + "start": 10204.86, + "end": 10208.2, + "probability": 0.6497 + }, + { + "start": 10208.28, + "end": 10209.86, + "probability": 0.7802 + }, + { + "start": 10210.48, + "end": 10213.96, + "probability": 0.9621 + }, + { + "start": 10214.1, + "end": 10215.8, + "probability": 0.9968 + }, + { + "start": 10216.2, + "end": 10218.34, + "probability": 0.9453 + }, + { + "start": 10218.4, + "end": 10220.52, + "probability": 0.9642 + }, + { + "start": 10222.08, + "end": 10222.76, + "probability": 0.6079 + }, + { + "start": 10222.78, + "end": 10222.92, + "probability": 0.6 + }, + { + "start": 10222.92, + "end": 10224.6, + "probability": 0.6667 + }, + { + "start": 10224.64, + "end": 10225.3, + "probability": 0.7135 + }, + { + "start": 10225.72, + "end": 10226.38, + "probability": 0.9481 + }, + { + "start": 10226.42, + "end": 10227.66, + "probability": 0.8199 + }, + { + "start": 10227.66, + "end": 10229.42, + "probability": 0.7503 + }, + { + "start": 10230.3, + "end": 10232.94, + "probability": 0.4805 + }, + { + "start": 10233.64, + "end": 10234.18, + "probability": 0.6991 + }, + { + "start": 10234.76, + "end": 10241.1, + "probability": 0.9915 + }, + { + "start": 10241.68, + "end": 10243.4, + "probability": 0.997 + }, + { + "start": 10244.76, + "end": 10245.88, + "probability": 0.9937 + }, + { + "start": 10250.26, + "end": 10252.14, + "probability": 0.9631 + }, + { + "start": 10253.02, + "end": 10253.84, + "probability": 0.5597 + }, + { + "start": 10253.98, + "end": 10258.16, + "probability": 0.9899 + }, + { + "start": 10258.74, + "end": 10263.48, + "probability": 0.998 + }, + { + "start": 10264.12, + "end": 10265.68, + "probability": 0.9966 + }, + { + "start": 10267.86, + "end": 10269.38, + "probability": 0.5923 + }, + { + "start": 10269.62, + "end": 10272.72, + "probability": 0.9945 + }, + { + "start": 10273.2, + "end": 10277.61, + "probability": 0.8871 + }, + { + "start": 10278.88, + "end": 10278.88, + "probability": 0.5621 + }, + { + "start": 10278.88, + "end": 10280.72, + "probability": 0.8158 + }, + { + "start": 10281.18, + "end": 10282.76, + "probability": 0.5251 + }, + { + "start": 10283.14, + "end": 10286.02, + "probability": 0.0889 + }, + { + "start": 10286.28, + "end": 10288.18, + "probability": 0.1933 + }, + { + "start": 10288.56, + "end": 10290.4, + "probability": 0.5181 + }, + { + "start": 10291.84, + "end": 10291.84, + "probability": 0.4271 + }, + { + "start": 10291.84, + "end": 10296.44, + "probability": 0.7573 + }, + { + "start": 10297.44, + "end": 10299.72, + "probability": 0.9989 + }, + { + "start": 10300.24, + "end": 10304.26, + "probability": 0.8832 + }, + { + "start": 10304.8, + "end": 10306.46, + "probability": 0.8622 + }, + { + "start": 10307.18, + "end": 10310.08, + "probability": 0.9827 + }, + { + "start": 10310.62, + "end": 10313.14, + "probability": 0.9943 + }, + { + "start": 10313.22, + "end": 10313.91, + "probability": 0.9233 + }, + { + "start": 10315.62, + "end": 10317.06, + "probability": 0.864 + }, + { + "start": 10317.24, + "end": 10319.44, + "probability": 0.8005 + }, + { + "start": 10319.88, + "end": 10321.62, + "probability": 0.9917 + }, + { + "start": 10322.56, + "end": 10324.2, + "probability": 0.8545 + }, + { + "start": 10325.02, + "end": 10329.35, + "probability": 0.9791 + }, + { + "start": 10329.58, + "end": 10330.72, + "probability": 0.9907 + }, + { + "start": 10331.36, + "end": 10333.12, + "probability": 0.7393 + }, + { + "start": 10333.3, + "end": 10335.82, + "probability": 0.9506 + }, + { + "start": 10336.66, + "end": 10337.0, + "probability": 0.5331 + }, + { + "start": 10337.28, + "end": 10337.98, + "probability": 0.2563 + }, + { + "start": 10338.2, + "end": 10339.16, + "probability": 0.8876 + }, + { + "start": 10339.6, + "end": 10343.84, + "probability": 0.8197 + }, + { + "start": 10344.04, + "end": 10344.66, + "probability": 0.7688 + }, + { + "start": 10344.96, + "end": 10346.38, + "probability": 0.6333 + }, + { + "start": 10346.78, + "end": 10351.36, + "probability": 0.9077 + }, + { + "start": 10351.84, + "end": 10356.46, + "probability": 0.9307 + }, + { + "start": 10356.84, + "end": 10358.34, + "probability": 0.8328 + }, + { + "start": 10358.98, + "end": 10359.61, + "probability": 0.9767 + }, + { + "start": 10359.8, + "end": 10362.26, + "probability": 0.8035 + }, + { + "start": 10362.74, + "end": 10363.82, + "probability": 0.9601 + }, + { + "start": 10364.16, + "end": 10366.76, + "probability": 0.9862 + }, + { + "start": 10366.82, + "end": 10367.9, + "probability": 0.8047 + }, + { + "start": 10368.34, + "end": 10370.74, + "probability": 0.7524 + }, + { + "start": 10371.36, + "end": 10373.74, + "probability": 0.9844 + }, + { + "start": 10374.04, + "end": 10377.04, + "probability": 0.9609 + }, + { + "start": 10377.26, + "end": 10378.24, + "probability": 0.8845 + }, + { + "start": 10378.3, + "end": 10379.49, + "probability": 0.9713 + }, + { + "start": 10380.42, + "end": 10381.96, + "probability": 0.9583 + }, + { + "start": 10382.2, + "end": 10385.1, + "probability": 0.9692 + }, + { + "start": 10386.02, + "end": 10386.56, + "probability": 0.9108 + }, + { + "start": 10386.68, + "end": 10390.58, + "probability": 0.9941 + }, + { + "start": 10390.68, + "end": 10392.87, + "probability": 0.9861 + }, + { + "start": 10394.18, + "end": 10395.94, + "probability": 0.8171 + }, + { + "start": 10396.64, + "end": 10400.8, + "probability": 0.9982 + }, + { + "start": 10401.62, + "end": 10404.8, + "probability": 0.9942 + }, + { + "start": 10406.26, + "end": 10408.84, + "probability": 0.9473 + }, + { + "start": 10409.66, + "end": 10410.64, + "probability": 0.9755 + }, + { + "start": 10411.28, + "end": 10414.3, + "probability": 0.9968 + }, + { + "start": 10414.92, + "end": 10416.46, + "probability": 0.9715 + }, + { + "start": 10417.0, + "end": 10420.38, + "probability": 0.9984 + }, + { + "start": 10421.74, + "end": 10422.98, + "probability": 0.9922 + }, + { + "start": 10423.54, + "end": 10425.7, + "probability": 0.9935 + }, + { + "start": 10425.82, + "end": 10428.8, + "probability": 0.996 + }, + { + "start": 10429.34, + "end": 10430.6, + "probability": 0.9937 + }, + { + "start": 10432.02, + "end": 10436.56, + "probability": 0.9951 + }, + { + "start": 10436.56, + "end": 10440.1, + "probability": 0.9921 + }, + { + "start": 10440.72, + "end": 10443.16, + "probability": 0.9206 + }, + { + "start": 10443.64, + "end": 10448.24, + "probability": 0.9942 + }, + { + "start": 10448.86, + "end": 10455.5, + "probability": 0.9885 + }, + { + "start": 10455.5, + "end": 10459.52, + "probability": 0.9829 + }, + { + "start": 10460.24, + "end": 10461.92, + "probability": 0.9963 + }, + { + "start": 10462.54, + "end": 10463.4, + "probability": 0.8046 + }, + { + "start": 10464.42, + "end": 10465.54, + "probability": 0.9248 + }, + { + "start": 10468.34, + "end": 10469.46, + "probability": 0.8941 + }, + { + "start": 10470.16, + "end": 10473.72, + "probability": 0.9844 + }, + { + "start": 10474.3, + "end": 10477.7, + "probability": 0.9907 + }, + { + "start": 10478.3, + "end": 10479.34, + "probability": 0.5931 + }, + { + "start": 10479.68, + "end": 10480.56, + "probability": 0.9245 + }, + { + "start": 10481.28, + "end": 10482.56, + "probability": 0.9648 + }, + { + "start": 10482.62, + "end": 10484.38, + "probability": 0.7206 + }, + { + "start": 10484.7, + "end": 10488.52, + "probability": 0.9958 + }, + { + "start": 10489.14, + "end": 10490.18, + "probability": 0.8889 + }, + { + "start": 10490.6, + "end": 10491.72, + "probability": 0.9095 + }, + { + "start": 10492.18, + "end": 10496.46, + "probability": 0.9846 + }, + { + "start": 10496.84, + "end": 10499.46, + "probability": 0.9697 + }, + { + "start": 10500.2, + "end": 10502.38, + "probability": 0.8027 + }, + { + "start": 10502.88, + "end": 10503.74, + "probability": 0.4001 + }, + { + "start": 10503.78, + "end": 10505.7, + "probability": 0.9035 + }, + { + "start": 10519.76, + "end": 10522.38, + "probability": 0.7703 + }, + { + "start": 10522.64, + "end": 10523.74, + "probability": 0.4791 + }, + { + "start": 10524.74, + "end": 10525.9, + "probability": 0.8292 + }, + { + "start": 10526.06, + "end": 10527.4, + "probability": 0.9448 + }, + { + "start": 10527.66, + "end": 10529.54, + "probability": 0.9879 + }, + { + "start": 10530.62, + "end": 10531.36, + "probability": 0.9427 + }, + { + "start": 10531.58, + "end": 10535.1, + "probability": 0.9907 + }, + { + "start": 10535.66, + "end": 10540.84, + "probability": 0.9684 + }, + { + "start": 10541.5, + "end": 10542.69, + "probability": 0.9971 + }, + { + "start": 10542.96, + "end": 10544.29, + "probability": 0.7701 + }, + { + "start": 10544.34, + "end": 10546.12, + "probability": 0.8507 + }, + { + "start": 10546.62, + "end": 10551.76, + "probability": 0.9849 + }, + { + "start": 10552.28, + "end": 10554.96, + "probability": 0.9961 + }, + { + "start": 10555.46, + "end": 10557.82, + "probability": 0.9133 + }, + { + "start": 10558.34, + "end": 10561.92, + "probability": 0.988 + }, + { + "start": 10562.6, + "end": 10564.14, + "probability": 0.9932 + }, + { + "start": 10564.58, + "end": 10568.42, + "probability": 0.9943 + }, + { + "start": 10568.42, + "end": 10571.16, + "probability": 0.9969 + }, + { + "start": 10571.92, + "end": 10572.92, + "probability": 0.8777 + }, + { + "start": 10573.04, + "end": 10574.42, + "probability": 0.7764 + }, + { + "start": 10574.88, + "end": 10578.66, + "probability": 0.9417 + }, + { + "start": 10579.16, + "end": 10580.9, + "probability": 0.9917 + }, + { + "start": 10581.56, + "end": 10585.46, + "probability": 0.9957 + }, + { + "start": 10585.9, + "end": 10586.76, + "probability": 0.873 + }, + { + "start": 10587.58, + "end": 10589.54, + "probability": 0.9963 + }, + { + "start": 10589.76, + "end": 10594.2, + "probability": 0.9946 + }, + { + "start": 10594.42, + "end": 10596.19, + "probability": 0.8892 + }, + { + "start": 10596.92, + "end": 10601.56, + "probability": 0.9674 + }, + { + "start": 10602.08, + "end": 10603.26, + "probability": 0.9734 + }, + { + "start": 10603.3, + "end": 10606.4, + "probability": 0.9794 + }, + { + "start": 10606.78, + "end": 10607.92, + "probability": 0.893 + }, + { + "start": 10608.0, + "end": 10610.16, + "probability": 0.9775 + }, + { + "start": 10610.36, + "end": 10612.28, + "probability": 0.8097 + }, + { + "start": 10612.9, + "end": 10617.92, + "probability": 0.9869 + }, + { + "start": 10618.28, + "end": 10619.48, + "probability": 0.9899 + }, + { + "start": 10619.62, + "end": 10619.82, + "probability": 0.917 + }, + { + "start": 10620.08, + "end": 10621.12, + "probability": 0.8756 + }, + { + "start": 10621.72, + "end": 10623.06, + "probability": 0.9357 + }, + { + "start": 10624.42, + "end": 10629.18, + "probability": 0.978 + }, + { + "start": 10629.78, + "end": 10630.76, + "probability": 0.8058 + }, + { + "start": 10630.9, + "end": 10635.38, + "probability": 0.9767 + }, + { + "start": 10635.98, + "end": 10638.28, + "probability": 0.9941 + }, + { + "start": 10638.98, + "end": 10640.4, + "probability": 0.8206 + }, + { + "start": 10641.06, + "end": 10647.06, + "probability": 0.9961 + }, + { + "start": 10647.66, + "end": 10649.26, + "probability": 0.7998 + }, + { + "start": 10649.96, + "end": 10650.98, + "probability": 0.8206 + }, + { + "start": 10651.08, + "end": 10653.58, + "probability": 0.9447 + }, + { + "start": 10653.9, + "end": 10654.96, + "probability": 0.8741 + }, + { + "start": 10655.18, + "end": 10655.88, + "probability": 0.5842 + }, + { + "start": 10656.68, + "end": 10657.92, + "probability": 0.9343 + }, + { + "start": 10658.22, + "end": 10660.58, + "probability": 0.9932 + }, + { + "start": 10660.9, + "end": 10662.32, + "probability": 0.9795 + }, + { + "start": 10662.68, + "end": 10666.92, + "probability": 0.991 + }, + { + "start": 10667.7, + "end": 10668.36, + "probability": 0.8617 + }, + { + "start": 10668.8, + "end": 10671.18, + "probability": 0.988 + }, + { + "start": 10671.24, + "end": 10672.86, + "probability": 0.9545 + }, + { + "start": 10673.6, + "end": 10675.76, + "probability": 0.907 + }, + { + "start": 10676.34, + "end": 10678.4, + "probability": 0.9934 + }, + { + "start": 10678.56, + "end": 10679.52, + "probability": 0.8933 + }, + { + "start": 10679.84, + "end": 10681.08, + "probability": 0.8096 + }, + { + "start": 10681.28, + "end": 10682.32, + "probability": 0.8158 + }, + { + "start": 10682.48, + "end": 10683.14, + "probability": 0.6902 + }, + { + "start": 10683.66, + "end": 10687.16, + "probability": 0.9946 + }, + { + "start": 10688.32, + "end": 10691.32, + "probability": 0.9761 + }, + { + "start": 10692.0, + "end": 10694.5, + "probability": 0.9189 + }, + { + "start": 10694.84, + "end": 10699.44, + "probability": 0.9863 + }, + { + "start": 10700.06, + "end": 10701.32, + "probability": 0.9868 + }, + { + "start": 10702.32, + "end": 10704.4, + "probability": 0.9445 + }, + { + "start": 10705.48, + "end": 10706.54, + "probability": 0.916 + }, + { + "start": 10706.74, + "end": 10707.8, + "probability": 0.8643 + }, + { + "start": 10707.98, + "end": 10710.91, + "probability": 0.9399 + }, + { + "start": 10710.96, + "end": 10711.66, + "probability": 0.7145 + }, + { + "start": 10711.7, + "end": 10715.04, + "probability": 0.86 + }, + { + "start": 10715.7, + "end": 10716.28, + "probability": 0.8815 + }, + { + "start": 10716.54, + "end": 10717.9, + "probability": 0.3464 + }, + { + "start": 10718.4, + "end": 10720.56, + "probability": 0.7642 + }, + { + "start": 10720.82, + "end": 10721.94, + "probability": 0.2927 + }, + { + "start": 10722.14, + "end": 10726.42, + "probability": 0.8435 + }, + { + "start": 10726.92, + "end": 10730.3, + "probability": 0.9811 + }, + { + "start": 10730.62, + "end": 10734.06, + "probability": 0.983 + }, + { + "start": 10734.84, + "end": 10739.52, + "probability": 0.9318 + }, + { + "start": 10740.24, + "end": 10740.8, + "probability": 0.4859 + }, + { + "start": 10741.12, + "end": 10743.54, + "probability": 0.4789 + }, + { + "start": 10743.66, + "end": 10745.88, + "probability": 0.9902 + }, + { + "start": 10746.48, + "end": 10747.52, + "probability": 0.9455 + }, + { + "start": 10748.96, + "end": 10750.96, + "probability": 0.7966 + }, + { + "start": 10751.14, + "end": 10751.5, + "probability": 0.6249 + }, + { + "start": 10751.58, + "end": 10752.0, + "probability": 0.4584 + }, + { + "start": 10752.14, + "end": 10753.12, + "probability": 0.6408 + }, + { + "start": 10755.82, + "end": 10759.98, + "probability": 0.7795 + }, + { + "start": 10760.58, + "end": 10763.06, + "probability": 0.9385 + }, + { + "start": 10763.72, + "end": 10765.94, + "probability": 0.9891 + }, + { + "start": 10766.56, + "end": 10769.34, + "probability": 0.7345 + }, + { + "start": 10770.54, + "end": 10775.44, + "probability": 0.9896 + }, + { + "start": 10776.26, + "end": 10781.12, + "probability": 0.9916 + }, + { + "start": 10781.44, + "end": 10783.96, + "probability": 0.8027 + }, + { + "start": 10784.5, + "end": 10786.5, + "probability": 0.9709 + }, + { + "start": 10787.32, + "end": 10789.7, + "probability": 0.6951 + }, + { + "start": 10790.68, + "end": 10793.74, + "probability": 0.9723 + }, + { + "start": 10794.12, + "end": 10797.0, + "probability": 0.9919 + }, + { + "start": 10797.22, + "end": 10799.24, + "probability": 0.9827 + }, + { + "start": 10800.96, + "end": 10801.26, + "probability": 0.7878 + }, + { + "start": 10801.28, + "end": 10804.8, + "probability": 0.9766 + }, + { + "start": 10804.94, + "end": 10807.76, + "probability": 0.9868 + }, + { + "start": 10808.08, + "end": 10809.6, + "probability": 0.9024 + }, + { + "start": 10810.0, + "end": 10810.62, + "probability": 0.7028 + }, + { + "start": 10811.12, + "end": 10814.44, + "probability": 0.9797 + }, + { + "start": 10815.26, + "end": 10817.5, + "probability": 0.9824 + }, + { + "start": 10818.12, + "end": 10820.88, + "probability": 0.9098 + }, + { + "start": 10821.58, + "end": 10824.26, + "probability": 0.9379 + }, + { + "start": 10824.34, + "end": 10825.94, + "probability": 0.75 + }, + { + "start": 10826.44, + "end": 10830.6, + "probability": 0.999 + }, + { + "start": 10830.6, + "end": 10833.68, + "probability": 0.9945 + }, + { + "start": 10833.92, + "end": 10834.74, + "probability": 0.9269 + }, + { + "start": 10835.9, + "end": 10837.41, + "probability": 0.9961 + }, + { + "start": 10837.62, + "end": 10842.16, + "probability": 0.9742 + }, + { + "start": 10842.16, + "end": 10846.28, + "probability": 0.988 + }, + { + "start": 10847.38, + "end": 10850.24, + "probability": 0.7184 + }, + { + "start": 10851.38, + "end": 10853.86, + "probability": 0.9275 + }, + { + "start": 10854.38, + "end": 10858.7, + "probability": 0.9906 + }, + { + "start": 10859.16, + "end": 10861.42, + "probability": 0.9468 + }, + { + "start": 10861.64, + "end": 10867.96, + "probability": 0.9775 + }, + { + "start": 10868.6, + "end": 10875.16, + "probability": 0.967 + }, + { + "start": 10875.8, + "end": 10881.44, + "probability": 0.8301 + }, + { + "start": 10882.1, + "end": 10883.46, + "probability": 0.9848 + }, + { + "start": 10884.1, + "end": 10888.6, + "probability": 0.9761 + }, + { + "start": 10888.98, + "end": 10889.96, + "probability": 0.6289 + }, + { + "start": 10890.82, + "end": 10891.68, + "probability": 0.7495 + }, + { + "start": 10891.92, + "end": 10895.32, + "probability": 0.9296 + }, + { + "start": 10895.78, + "end": 10903.6, + "probability": 0.9731 + }, + { + "start": 10903.84, + "end": 10908.66, + "probability": 0.9771 + }, + { + "start": 10908.78, + "end": 10910.6, + "probability": 0.8828 + }, + { + "start": 10910.82, + "end": 10910.98, + "probability": 0.3067 + }, + { + "start": 10911.6, + "end": 10914.32, + "probability": 0.9935 + }, + { + "start": 10914.96, + "end": 10917.94, + "probability": 0.9257 + }, + { + "start": 10918.4, + "end": 10920.1, + "probability": 0.8806 + }, + { + "start": 10920.16, + "end": 10923.24, + "probability": 0.9953 + }, + { + "start": 10923.5, + "end": 10926.8, + "probability": 0.9825 + }, + { + "start": 10927.0, + "end": 10928.32, + "probability": 0.9913 + }, + { + "start": 10928.38, + "end": 10930.34, + "probability": 0.9818 + }, + { + "start": 10930.82, + "end": 10934.66, + "probability": 0.9942 + }, + { + "start": 10935.24, + "end": 10936.28, + "probability": 0.8354 + }, + { + "start": 10936.32, + "end": 10941.96, + "probability": 0.989 + }, + { + "start": 10942.46, + "end": 10946.12, + "probability": 0.9321 + }, + { + "start": 10946.48, + "end": 10954.96, + "probability": 0.924 + }, + { + "start": 10955.1, + "end": 10956.3, + "probability": 0.4299 + }, + { + "start": 10956.38, + "end": 10957.3, + "probability": 0.8679 + }, + { + "start": 10957.68, + "end": 10959.6, + "probability": 0.9719 + }, + { + "start": 10959.88, + "end": 10962.98, + "probability": 0.9907 + }, + { + "start": 10963.28, + "end": 10966.16, + "probability": 0.9894 + }, + { + "start": 10966.52, + "end": 10966.86, + "probability": 0.8834 + }, + { + "start": 10966.88, + "end": 10968.56, + "probability": 0.5528 + }, + { + "start": 10969.0, + "end": 10973.04, + "probability": 0.7641 + }, + { + "start": 10979.16, + "end": 10980.44, + "probability": 0.9634 + }, + { + "start": 10985.32, + "end": 10987.06, + "probability": 0.6949 + }, + { + "start": 10988.92, + "end": 10992.62, + "probability": 0.9357 + }, + { + "start": 10994.52, + "end": 10998.58, + "probability": 0.9887 + }, + { + "start": 10999.76, + "end": 11000.36, + "probability": 0.9603 + }, + { + "start": 11000.88, + "end": 11001.44, + "probability": 0.8742 + }, + { + "start": 11002.48, + "end": 11004.02, + "probability": 0.8696 + }, + { + "start": 11005.04, + "end": 11006.08, + "probability": 0.8897 + }, + { + "start": 11007.46, + "end": 11009.12, + "probability": 0.8949 + }, + { + "start": 11009.78, + "end": 11010.48, + "probability": 0.7915 + }, + { + "start": 11012.12, + "end": 11013.9, + "probability": 0.9158 + }, + { + "start": 11015.3, + "end": 11017.08, + "probability": 0.9393 + }, + { + "start": 11018.32, + "end": 11022.34, + "probability": 0.976 + }, + { + "start": 11024.66, + "end": 11026.56, + "probability": 0.9023 + }, + { + "start": 11026.76, + "end": 11031.66, + "probability": 0.994 + }, + { + "start": 11031.76, + "end": 11034.78, + "probability": 0.9862 + }, + { + "start": 11035.2, + "end": 11035.28, + "probability": 0.2883 + }, + { + "start": 11036.34, + "end": 11036.96, + "probability": 0.8831 + }, + { + "start": 11037.04, + "end": 11038.8, + "probability": 0.8053 + }, + { + "start": 11038.9, + "end": 11043.82, + "probability": 0.9909 + }, + { + "start": 11045.54, + "end": 11047.3, + "probability": 0.8646 + }, + { + "start": 11049.16, + "end": 11053.98, + "probability": 0.9791 + }, + { + "start": 11054.62, + "end": 11056.22, + "probability": 0.9899 + }, + { + "start": 11056.82, + "end": 11058.96, + "probability": 0.9113 + }, + { + "start": 11060.54, + "end": 11062.32, + "probability": 0.9973 + }, + { + "start": 11062.94, + "end": 11064.42, + "probability": 0.608 + }, + { + "start": 11065.7, + "end": 11069.64, + "probability": 0.9893 + }, + { + "start": 11070.96, + "end": 11073.3, + "probability": 0.9963 + }, + { + "start": 11075.5, + "end": 11078.02, + "probability": 0.8254 + }, + { + "start": 11078.48, + "end": 11083.94, + "probability": 0.7552 + }, + { + "start": 11085.2, + "end": 11089.5, + "probability": 0.9644 + }, + { + "start": 11091.04, + "end": 11099.04, + "probability": 0.9363 + }, + { + "start": 11100.5, + "end": 11104.4, + "probability": 0.9866 + }, + { + "start": 11104.4, + "end": 11109.32, + "probability": 0.8657 + }, + { + "start": 11110.1, + "end": 11111.48, + "probability": 0.908 + }, + { + "start": 11112.98, + "end": 11113.54, + "probability": 0.8813 + }, + { + "start": 11113.56, + "end": 11114.56, + "probability": 0.9536 + }, + { + "start": 11114.64, + "end": 11115.84, + "probability": 0.6391 + }, + { + "start": 11116.12, + "end": 11116.52, + "probability": 0.8796 + }, + { + "start": 11118.34, + "end": 11121.08, + "probability": 0.9136 + }, + { + "start": 11124.34, + "end": 11128.28, + "probability": 0.962 + }, + { + "start": 11129.5, + "end": 11135.04, + "probability": 0.9931 + }, + { + "start": 11135.3, + "end": 11135.5, + "probability": 0.8838 + }, + { + "start": 11136.08, + "end": 11138.2, + "probability": 0.8928 + }, + { + "start": 11139.98, + "end": 11142.28, + "probability": 0.9836 + }, + { + "start": 11143.46, + "end": 11144.98, + "probability": 0.6973 + }, + { + "start": 11147.74, + "end": 11149.58, + "probability": 0.7839 + }, + { + "start": 11150.1, + "end": 11154.96, + "probability": 0.9775 + }, + { + "start": 11156.02, + "end": 11161.6, + "probability": 0.963 + }, + { + "start": 11162.76, + "end": 11166.99, + "probability": 0.9805 + }, + { + "start": 11168.6, + "end": 11173.28, + "probability": 0.9715 + }, + { + "start": 11174.5, + "end": 11178.1, + "probability": 0.9995 + }, + { + "start": 11178.22, + "end": 11182.86, + "probability": 0.8849 + }, + { + "start": 11184.04, + "end": 11184.76, + "probability": 0.4622 + }, + { + "start": 11185.14, + "end": 11185.4, + "probability": 0.6839 + }, + { + "start": 11186.1, + "end": 11191.24, + "probability": 0.8506 + }, + { + "start": 11192.34, + "end": 11194.46, + "probability": 0.9917 + }, + { + "start": 11195.44, + "end": 11196.64, + "probability": 0.8586 + }, + { + "start": 11197.28, + "end": 11198.24, + "probability": 0.5596 + }, + { + "start": 11198.78, + "end": 11202.96, + "probability": 0.7456 + }, + { + "start": 11203.54, + "end": 11208.4, + "probability": 0.9898 + }, + { + "start": 11208.48, + "end": 11208.76, + "probability": 0.9053 + }, + { + "start": 11208.96, + "end": 11212.04, + "probability": 0.9814 + }, + { + "start": 11212.44, + "end": 11214.92, + "probability": 0.6726 + }, + { + "start": 11215.36, + "end": 11216.04, + "probability": 0.4137 + }, + { + "start": 11216.22, + "end": 11217.7, + "probability": 0.9609 + }, + { + "start": 11233.9, + "end": 11236.44, + "probability": 0.7462 + }, + { + "start": 11237.46, + "end": 11240.22, + "probability": 0.8003 + }, + { + "start": 11241.18, + "end": 11244.72, + "probability": 0.9817 + }, + { + "start": 11245.6, + "end": 11249.12, + "probability": 0.9911 + }, + { + "start": 11249.94, + "end": 11251.64, + "probability": 0.6857 + }, + { + "start": 11252.32, + "end": 11254.22, + "probability": 0.9735 + }, + { + "start": 11254.78, + "end": 11257.4, + "probability": 0.9688 + }, + { + "start": 11257.92, + "end": 11262.26, + "probability": 0.9969 + }, + { + "start": 11262.26, + "end": 11264.86, + "probability": 0.9952 + }, + { + "start": 11265.24, + "end": 11266.86, + "probability": 0.9915 + }, + { + "start": 11267.26, + "end": 11268.16, + "probability": 0.6656 + }, + { + "start": 11269.16, + "end": 11275.6, + "probability": 0.9502 + }, + { + "start": 11276.56, + "end": 11280.16, + "probability": 0.9834 + }, + { + "start": 11280.94, + "end": 11282.74, + "probability": 0.7836 + }, + { + "start": 11283.66, + "end": 11285.86, + "probability": 0.9253 + }, + { + "start": 11286.82, + "end": 11290.92, + "probability": 0.9935 + }, + { + "start": 11291.98, + "end": 11294.88, + "probability": 0.9748 + }, + { + "start": 11295.56, + "end": 11299.38, + "probability": 0.9951 + }, + { + "start": 11300.18, + "end": 11305.84, + "probability": 0.996 + }, + { + "start": 11306.48, + "end": 11311.26, + "probability": 0.9951 + }, + { + "start": 11311.8, + "end": 11314.22, + "probability": 0.9486 + }, + { + "start": 11315.56, + "end": 11315.68, + "probability": 0.5046 + }, + { + "start": 11316.36, + "end": 11318.48, + "probability": 0.9965 + }, + { + "start": 11319.34, + "end": 11322.08, + "probability": 0.9978 + }, + { + "start": 11322.64, + "end": 11324.12, + "probability": 0.9755 + }, + { + "start": 11325.28, + "end": 11326.86, + "probability": 0.7061 + }, + { + "start": 11327.66, + "end": 11330.12, + "probability": 0.9971 + }, + { + "start": 11331.08, + "end": 11331.78, + "probability": 0.9435 + }, + { + "start": 11332.62, + "end": 11334.28, + "probability": 0.9303 + }, + { + "start": 11335.18, + "end": 11339.54, + "probability": 0.9912 + }, + { + "start": 11340.48, + "end": 11342.2, + "probability": 0.9854 + }, + { + "start": 11343.02, + "end": 11344.42, + "probability": 0.986 + }, + { + "start": 11345.14, + "end": 11346.78, + "probability": 0.9872 + }, + { + "start": 11349.6, + "end": 11351.1, + "probability": 0.8757 + }, + { + "start": 11351.66, + "end": 11353.54, + "probability": 0.8228 + }, + { + "start": 11354.46, + "end": 11355.42, + "probability": 0.9303 + }, + { + "start": 11356.82, + "end": 11358.52, + "probability": 0.8569 + }, + { + "start": 11359.42, + "end": 11363.5, + "probability": 0.8832 + }, + { + "start": 11364.44, + "end": 11369.84, + "probability": 0.9983 + }, + { + "start": 11371.1, + "end": 11371.28, + "probability": 0.844 + }, + { + "start": 11372.02, + "end": 11374.76, + "probability": 0.9972 + }, + { + "start": 11375.76, + "end": 11376.74, + "probability": 0.9333 + }, + { + "start": 11377.98, + "end": 11378.36, + "probability": 0.6677 + }, + { + "start": 11379.1, + "end": 11381.92, + "probability": 0.9908 + }, + { + "start": 11382.5, + "end": 11383.26, + "probability": 0.5115 + }, + { + "start": 11384.4, + "end": 11384.54, + "probability": 0.8186 + }, + { + "start": 11384.68, + "end": 11391.6, + "probability": 0.9481 + }, + { + "start": 11393.12, + "end": 11396.02, + "probability": 0.9419 + }, + { + "start": 11396.96, + "end": 11399.38, + "probability": 0.9785 + }, + { + "start": 11402.14, + "end": 11407.12, + "probability": 0.8904 + }, + { + "start": 11408.24, + "end": 11412.02, + "probability": 0.9683 + }, + { + "start": 11413.62, + "end": 11416.24, + "probability": 0.926 + }, + { + "start": 11417.36, + "end": 11423.72, + "probability": 0.9919 + }, + { + "start": 11424.08, + "end": 11424.9, + "probability": 0.8887 + }, + { + "start": 11425.38, + "end": 11425.94, + "probability": 0.9876 + }, + { + "start": 11426.44, + "end": 11427.12, + "probability": 0.979 + }, + { + "start": 11427.64, + "end": 11428.42, + "probability": 0.7997 + }, + { + "start": 11429.02, + "end": 11432.64, + "probability": 0.9658 + }, + { + "start": 11433.92, + "end": 11435.3, + "probability": 0.7472 + }, + { + "start": 11436.44, + "end": 11437.51, + "probability": 0.601 + }, + { + "start": 11438.16, + "end": 11439.84, + "probability": 0.9546 + }, + { + "start": 11440.58, + "end": 11445.5, + "probability": 0.9271 + }, + { + "start": 11445.86, + "end": 11446.38, + "probability": 0.838 + }, + { + "start": 11446.98, + "end": 11449.0, + "probability": 0.7349 + }, + { + "start": 11449.22, + "end": 11450.74, + "probability": 0.9712 + }, + { + "start": 11450.8, + "end": 11450.9, + "probability": 0.6167 + }, + { + "start": 11451.38, + "end": 11453.54, + "probability": 0.9026 + }, + { + "start": 11454.08, + "end": 11456.52, + "probability": 0.7771 + }, + { + "start": 11458.82, + "end": 11461.04, + "probability": 0.5112 + }, + { + "start": 11461.16, + "end": 11461.4, + "probability": 0.758 + }, + { + "start": 11463.58, + "end": 11465.88, + "probability": 0.6932 + }, + { + "start": 11466.88, + "end": 11467.86, + "probability": 0.7422 + }, + { + "start": 11469.18, + "end": 11469.3, + "probability": 0.3922 + }, + { + "start": 11470.52, + "end": 11471.34, + "probability": 0.2826 + }, + { + "start": 11471.8, + "end": 11472.64, + "probability": 0.7212 + }, + { + "start": 11473.6, + "end": 11474.86, + "probability": 0.9507 + }, + { + "start": 11475.54, + "end": 11477.58, + "probability": 0.9967 + }, + { + "start": 11478.7, + "end": 11479.44, + "probability": 0.9967 + }, + { + "start": 11479.48, + "end": 11480.28, + "probability": 0.9662 + }, + { + "start": 11480.58, + "end": 11481.16, + "probability": 0.795 + }, + { + "start": 11481.3, + "end": 11482.12, + "probability": 0.6865 + }, + { + "start": 11483.0, + "end": 11486.96, + "probability": 0.9944 + }, + { + "start": 11486.96, + "end": 11490.22, + "probability": 0.9797 + }, + { + "start": 11490.44, + "end": 11490.84, + "probability": 0.9191 + }, + { + "start": 11490.98, + "end": 11491.48, + "probability": 0.748 + }, + { + "start": 11492.12, + "end": 11494.02, + "probability": 0.9923 + }, + { + "start": 11494.46, + "end": 11495.78, + "probability": 0.9809 + }, + { + "start": 11496.18, + "end": 11497.64, + "probability": 0.7101 + }, + { + "start": 11498.62, + "end": 11499.5, + "probability": 0.9763 + }, + { + "start": 11500.34, + "end": 11501.08, + "probability": 0.766 + }, + { + "start": 11502.16, + "end": 11502.88, + "probability": 0.6574 + }, + { + "start": 11503.72, + "end": 11505.84, + "probability": 0.9977 + }, + { + "start": 11506.78, + "end": 11510.32, + "probability": 0.9976 + }, + { + "start": 11511.26, + "end": 11513.36, + "probability": 0.9988 + }, + { + "start": 11514.06, + "end": 11515.08, + "probability": 0.9639 + }, + { + "start": 11515.94, + "end": 11516.9, + "probability": 0.8162 + }, + { + "start": 11516.98, + "end": 11517.96, + "probability": 0.8775 + }, + { + "start": 11518.38, + "end": 11522.26, + "probability": 0.9337 + }, + { + "start": 11522.56, + "end": 11522.98, + "probability": 0.954 + }, + { + "start": 11524.02, + "end": 11526.42, + "probability": 0.9725 + }, + { + "start": 11527.56, + "end": 11528.56, + "probability": 0.9976 + }, + { + "start": 11529.56, + "end": 11532.3, + "probability": 0.9958 + }, + { + "start": 11532.96, + "end": 11535.72, + "probability": 0.999 + }, + { + "start": 11535.74, + "end": 11536.94, + "probability": 0.9061 + }, + { + "start": 11537.34, + "end": 11538.1, + "probability": 0.948 + }, + { + "start": 11538.5, + "end": 11543.7, + "probability": 0.9904 + }, + { + "start": 11544.12, + "end": 11545.96, + "probability": 0.9987 + }, + { + "start": 11546.56, + "end": 11547.56, + "probability": 0.904 + }, + { + "start": 11548.0, + "end": 11549.86, + "probability": 0.9977 + }, + { + "start": 11553.76, + "end": 11554.28, + "probability": 0.04 + }, + { + "start": 11555.9, + "end": 11556.96, + "probability": 0.0822 + }, + { + "start": 11557.88, + "end": 11558.14, + "probability": 0.0554 + }, + { + "start": 11558.14, + "end": 11558.98, + "probability": 0.1679 + }, + { + "start": 11559.1, + "end": 11562.08, + "probability": 0.9545 + }, + { + "start": 11562.74, + "end": 11563.78, + "probability": 0.9251 + }, + { + "start": 11563.82, + "end": 11567.38, + "probability": 0.9512 + }, + { + "start": 11567.64, + "end": 11569.94, + "probability": 0.9727 + }, + { + "start": 11570.44, + "end": 11573.22, + "probability": 0.9937 + }, + { + "start": 11573.22, + "end": 11576.2, + "probability": 0.9683 + }, + { + "start": 11577.16, + "end": 11578.94, + "probability": 0.96 + }, + { + "start": 11579.66, + "end": 11585.56, + "probability": 0.9987 + }, + { + "start": 11586.04, + "end": 11586.54, + "probability": 0.9142 + }, + { + "start": 11587.34, + "end": 11589.32, + "probability": 0.9936 + }, + { + "start": 11589.88, + "end": 11594.0, + "probability": 0.9915 + }, + { + "start": 11594.34, + "end": 11595.94, + "probability": 0.9224 + }, + { + "start": 11596.3, + "end": 11601.0, + "probability": 0.8473 + }, + { + "start": 11601.3, + "end": 11602.02, + "probability": 0.7685 + }, + { + "start": 11602.16, + "end": 11602.54, + "probability": 0.9584 + }, + { + "start": 11602.76, + "end": 11603.53, + "probability": 0.8051 + }, + { + "start": 11604.12, + "end": 11604.9, + "probability": 0.6992 + }, + { + "start": 11605.3, + "end": 11606.66, + "probability": 0.9258 + }, + { + "start": 11607.0, + "end": 11609.12, + "probability": 0.9272 + }, + { + "start": 11609.4, + "end": 11612.68, + "probability": 0.8751 + }, + { + "start": 11613.06, + "end": 11615.12, + "probability": 0.971 + }, + { + "start": 11615.46, + "end": 11620.27, + "probability": 0.9922 + }, + { + "start": 11621.2, + "end": 11623.06, + "probability": 0.9555 + }, + { + "start": 11623.78, + "end": 11625.28, + "probability": 0.9951 + }, + { + "start": 11625.36, + "end": 11625.96, + "probability": 0.5692 + }, + { + "start": 11626.1, + "end": 11626.56, + "probability": 0.7884 + }, + { + "start": 11627.44, + "end": 11630.1, + "probability": 0.9985 + }, + { + "start": 11630.7, + "end": 11631.4, + "probability": 0.9391 + }, + { + "start": 11631.8, + "end": 11633.54, + "probability": 0.989 + }, + { + "start": 11634.56, + "end": 11636.46, + "probability": 0.9617 + }, + { + "start": 11637.2, + "end": 11640.98, + "probability": 0.9746 + }, + { + "start": 11642.0, + "end": 11643.92, + "probability": 0.9381 + }, + { + "start": 11644.32, + "end": 11648.18, + "probability": 0.9959 + }, + { + "start": 11648.94, + "end": 11653.51, + "probability": 0.9951 + }, + { + "start": 11654.0, + "end": 11658.6, + "probability": 0.9996 + }, + { + "start": 11659.1, + "end": 11663.3, + "probability": 0.8283 + }, + { + "start": 11663.3, + "end": 11665.9, + "probability": 0.9987 + }, + { + "start": 11666.26, + "end": 11670.42, + "probability": 0.9662 + }, + { + "start": 11670.94, + "end": 11671.44, + "probability": 0.8446 + }, + { + "start": 11671.82, + "end": 11676.58, + "probability": 0.9512 + }, + { + "start": 11676.82, + "end": 11678.7, + "probability": 0.9847 + }, + { + "start": 11679.14, + "end": 11680.92, + "probability": 0.9116 + }, + { + "start": 11681.46, + "end": 11683.06, + "probability": 0.9736 + }, + { + "start": 11684.32, + "end": 11685.02, + "probability": 0.2613 + }, + { + "start": 11685.02, + "end": 11686.4, + "probability": 0.68 + }, + { + "start": 11686.44, + "end": 11687.66, + "probability": 0.5602 + }, + { + "start": 11687.84, + "end": 11690.12, + "probability": 0.9747 + }, + { + "start": 11691.98, + "end": 11694.36, + "probability": 0.4306 + }, + { + "start": 11696.52, + "end": 11699.64, + "probability": 0.8555 + }, + { + "start": 11699.78, + "end": 11700.04, + "probability": 0.4573 + }, + { + "start": 11700.46, + "end": 11703.58, + "probability": 0.6743 + }, + { + "start": 11704.68, + "end": 11705.04, + "probability": 0.6905 + }, + { + "start": 11705.04, + "end": 11705.84, + "probability": 0.1239 + }, + { + "start": 11706.08, + "end": 11707.62, + "probability": 0.4064 + }, + { + "start": 11708.21, + "end": 11710.62, + "probability": 0.7177 + }, + { + "start": 11710.76, + "end": 11711.76, + "probability": 0.5077 + }, + { + "start": 11712.22, + "end": 11712.48, + "probability": 0.393 + }, + { + "start": 11713.46, + "end": 11713.48, + "probability": 0.2593 + }, + { + "start": 11713.48, + "end": 11715.24, + "probability": 0.6483 + }, + { + "start": 11715.92, + "end": 11716.7, + "probability": 0.8381 + }, + { + "start": 11716.82, + "end": 11717.74, + "probability": 0.8041 + }, + { + "start": 11717.96, + "end": 11721.22, + "probability": 0.793 + }, + { + "start": 11723.76, + "end": 11724.18, + "probability": 0.0302 + }, + { + "start": 11724.88, + "end": 11725.26, + "probability": 0.0408 + }, + { + "start": 11725.56, + "end": 11732.34, + "probability": 0.1904 + }, + { + "start": 11732.44, + "end": 11733.66, + "probability": 0.7769 + }, + { + "start": 11736.16, + "end": 11739.34, + "probability": 0.9624 + }, + { + "start": 11740.94, + "end": 11743.82, + "probability": 0.8192 + }, + { + "start": 11744.36, + "end": 11748.74, + "probability": 0.986 + }, + { + "start": 11749.12, + "end": 11749.94, + "probability": 0.6567 + }, + { + "start": 11750.8, + "end": 11754.14, + "probability": 0.9883 + }, + { + "start": 11754.68, + "end": 11756.58, + "probability": 0.7622 + }, + { + "start": 11757.18, + "end": 11758.88, + "probability": 0.7919 + }, + { + "start": 11759.94, + "end": 11762.98, + "probability": 0.9109 + }, + { + "start": 11763.54, + "end": 11765.92, + "probability": 0.9824 + }, + { + "start": 11766.74, + "end": 11768.96, + "probability": 0.9836 + }, + { + "start": 11769.5, + "end": 11771.28, + "probability": 0.9897 + }, + { + "start": 11771.86, + "end": 11775.86, + "probability": 0.9229 + }, + { + "start": 11776.7, + "end": 11782.96, + "probability": 0.9083 + }, + { + "start": 11783.38, + "end": 11784.24, + "probability": 0.5974 + }, + { + "start": 11785.08, + "end": 11789.82, + "probability": 0.9167 + }, + { + "start": 11790.6, + "end": 11791.46, + "probability": 0.753 + }, + { + "start": 11791.5, + "end": 11795.1, + "probability": 0.9785 + }, + { + "start": 11795.1, + "end": 11798.58, + "probability": 0.9339 + }, + { + "start": 11799.12, + "end": 11800.9, + "probability": 0.9336 + }, + { + "start": 11801.46, + "end": 11803.52, + "probability": 0.834 + }, + { + "start": 11804.26, + "end": 11810.34, + "probability": 0.9359 + }, + { + "start": 11810.88, + "end": 11812.6, + "probability": 0.9768 + }, + { + "start": 11812.92, + "end": 11818.04, + "probability": 0.951 + }, + { + "start": 11818.86, + "end": 11821.06, + "probability": 0.4871 + }, + { + "start": 11821.32, + "end": 11823.34, + "probability": 0.6676 + }, + { + "start": 11823.8, + "end": 11826.84, + "probability": 0.9731 + }, + { + "start": 11827.54, + "end": 11827.88, + "probability": 0.8521 + }, + { + "start": 11828.3, + "end": 11831.08, + "probability": 0.9507 + }, + { + "start": 11832.1, + "end": 11833.06, + "probability": 0.8165 + }, + { + "start": 11833.18, + "end": 11835.0, + "probability": 0.8355 + }, + { + "start": 11836.36, + "end": 11839.11, + "probability": 0.9779 + }, + { + "start": 11839.82, + "end": 11841.04, + "probability": 0.9834 + }, + { + "start": 11841.46, + "end": 11845.74, + "probability": 0.96 + }, + { + "start": 11846.04, + "end": 11848.91, + "probability": 0.6505 + }, + { + "start": 11849.56, + "end": 11852.32, + "probability": 0.9554 + }, + { + "start": 11852.94, + "end": 11854.1, + "probability": 0.8416 + }, + { + "start": 11854.5, + "end": 11856.26, + "probability": 0.9321 + }, + { + "start": 11857.0, + "end": 11858.22, + "probability": 0.8684 + }, + { + "start": 11858.66, + "end": 11864.56, + "probability": 0.9822 + }, + { + "start": 11865.16, + "end": 11870.24, + "probability": 0.8816 + }, + { + "start": 11870.78, + "end": 11872.62, + "probability": 0.9049 + }, + { + "start": 11874.06, + "end": 11874.72, + "probability": 0.9417 + }, + { + "start": 11875.78, + "end": 11876.68, + "probability": 0.9718 + }, + { + "start": 11877.24, + "end": 11879.62, + "probability": 0.9595 + }, + { + "start": 11879.8, + "end": 11884.16, + "probability": 0.988 + }, + { + "start": 11884.76, + "end": 11887.4, + "probability": 0.8896 + }, + { + "start": 11887.8, + "end": 11889.06, + "probability": 0.9174 + }, + { + "start": 11889.42, + "end": 11893.16, + "probability": 0.9786 + }, + { + "start": 11894.52, + "end": 11898.34, + "probability": 0.7173 + }, + { + "start": 11899.26, + "end": 11905.28, + "probability": 0.9601 + }, + { + "start": 11905.84, + "end": 11909.5, + "probability": 0.9895 + }, + { + "start": 11909.5, + "end": 11913.12, + "probability": 0.9988 + }, + { + "start": 11913.78, + "end": 11914.98, + "probability": 0.8412 + }, + { + "start": 11916.78, + "end": 11916.86, + "probability": 0.1339 + }, + { + "start": 11916.86, + "end": 11917.58, + "probability": 0.679 + }, + { + "start": 11917.96, + "end": 11919.5, + "probability": 0.9724 + }, + { + "start": 11919.7, + "end": 11922.68, + "probability": 0.9769 + }, + { + "start": 11923.02, + "end": 11928.18, + "probability": 0.9285 + }, + { + "start": 11928.6, + "end": 11929.96, + "probability": 0.8863 + }, + { + "start": 11930.49, + "end": 11932.6, + "probability": 0.4431 + }, + { + "start": 11933.1, + "end": 11934.5, + "probability": 0.6716 + }, + { + "start": 11935.46, + "end": 11940.18, + "probability": 0.7723 + }, + { + "start": 11940.84, + "end": 11945.02, + "probability": 0.8552 + }, + { + "start": 11945.86, + "end": 11947.18, + "probability": 0.6567 + }, + { + "start": 11947.76, + "end": 11949.0, + "probability": 0.99 + }, + { + "start": 11950.0, + "end": 11951.28, + "probability": 0.437 + }, + { + "start": 11953.46, + "end": 11954.54, + "probability": 0.0579 + }, + { + "start": 11954.62, + "end": 11954.7, + "probability": 0.0178 + }, + { + "start": 11954.7, + "end": 11957.88, + "probability": 0.6736 + }, + { + "start": 11958.5, + "end": 11961.84, + "probability": 0.7876 + }, + { + "start": 11962.14, + "end": 11964.18, + "probability": 0.9873 + }, + { + "start": 11964.4, + "end": 11966.58, + "probability": 0.8261 + }, + { + "start": 11966.72, + "end": 11968.74, + "probability": 0.8733 + }, + { + "start": 11969.0, + "end": 11970.06, + "probability": 0.7745 + }, + { + "start": 11970.44, + "end": 11971.32, + "probability": 0.6119 + }, + { + "start": 11971.38, + "end": 11972.8, + "probability": 0.9838 + }, + { + "start": 11973.42, + "end": 11975.0, + "probability": 0.9823 + }, + { + "start": 11975.4, + "end": 11977.28, + "probability": 0.8585 + }, + { + "start": 11977.88, + "end": 11978.28, + "probability": 0.5932 + }, + { + "start": 11978.28, + "end": 11979.42, + "probability": 0.5781 + }, + { + "start": 11979.62, + "end": 11980.34, + "probability": 0.4014 + }, + { + "start": 11980.34, + "end": 11983.56, + "probability": 0.9972 + }, + { + "start": 11983.56, + "end": 11985.34, + "probability": 0.926 + }, + { + "start": 11986.04, + "end": 11988.72, + "probability": 0.9678 + }, + { + "start": 11988.82, + "end": 11988.92, + "probability": 0.2483 + }, + { + "start": 11989.28, + "end": 11989.52, + "probability": 0.738 + }, + { + "start": 11989.7, + "end": 11990.06, + "probability": 0.9575 + }, + { + "start": 11990.08, + "end": 11994.48, + "probability": 0.8877 + }, + { + "start": 11994.72, + "end": 11995.14, + "probability": 0.908 + }, + { + "start": 11995.44, + "end": 11995.96, + "probability": 0.7106 + }, + { + "start": 11995.96, + "end": 11997.86, + "probability": 0.8631 + }, + { + "start": 11999.8, + "end": 12001.76, + "probability": 0.9539 + }, + { + "start": 12002.75, + "end": 12003.92, + "probability": 0.5472 + }, + { + "start": 12005.52, + "end": 12007.34, + "probability": 0.9244 + }, + { + "start": 12007.52, + "end": 12009.04, + "probability": 0.8751 + }, + { + "start": 12009.06, + "end": 12009.34, + "probability": 0.6607 + }, + { + "start": 12010.78, + "end": 12012.83, + "probability": 0.9306 + }, + { + "start": 12013.76, + "end": 12014.25, + "probability": 0.7504 + }, + { + "start": 12014.6, + "end": 12017.06, + "probability": 0.0696 + }, + { + "start": 12017.06, + "end": 12019.56, + "probability": 0.362 + }, + { + "start": 12019.58, + "end": 12021.34, + "probability": 0.5004 + }, + { + "start": 12022.56, + "end": 12023.92, + "probability": 0.5873 + }, + { + "start": 12023.98, + "end": 12025.58, + "probability": 0.3922 + }, + { + "start": 12025.8, + "end": 12026.38, + "probability": 0.0069 + }, + { + "start": 12026.7, + "end": 12027.22, + "probability": 0.4772 + }, + { + "start": 12027.8, + "end": 12028.84, + "probability": 0.8522 + }, + { + "start": 12029.4, + "end": 12031.24, + "probability": 0.7865 + }, + { + "start": 12032.84, + "end": 12036.02, + "probability": 0.9912 + }, + { + "start": 12037.26, + "end": 12040.02, + "probability": 0.9697 + }, + { + "start": 12040.38, + "end": 12040.8, + "probability": 0.0567 + }, + { + "start": 12041.16, + "end": 12043.74, + "probability": 0.8066 + }, + { + "start": 12044.04, + "end": 12045.14, + "probability": 0.0671 + }, + { + "start": 12045.16, + "end": 12048.15, + "probability": 0.9539 + }, + { + "start": 12048.76, + "end": 12050.6, + "probability": 0.8231 + }, + { + "start": 12051.14, + "end": 12051.4, + "probability": 0.0251 + }, + { + "start": 12051.96, + "end": 12055.66, + "probability": 0.6396 + }, + { + "start": 12056.02, + "end": 12056.46, + "probability": 0.041 + }, + { + "start": 12056.92, + "end": 12057.62, + "probability": 0.3792 + }, + { + "start": 12057.74, + "end": 12059.12, + "probability": 0.5155 + }, + { + "start": 12059.76, + "end": 12061.08, + "probability": 0.6123 + }, + { + "start": 12066.84, + "end": 12071.42, + "probability": 0.0663 + }, + { + "start": 12072.88, + "end": 12077.44, + "probability": 0.2476 + }, + { + "start": 12078.08, + "end": 12081.16, + "probability": 0.2431 + }, + { + "start": 12082.06, + "end": 12082.16, + "probability": 0.0926 + }, + { + "start": 12082.16, + "end": 12084.3, + "probability": 0.7271 + }, + { + "start": 12087.72, + "end": 12089.4, + "probability": 0.0675 + }, + { + "start": 12089.4, + "end": 12090.74, + "probability": 0.5652 + }, + { + "start": 12090.98, + "end": 12091.78, + "probability": 0.1524 + }, + { + "start": 12092.0, + "end": 12092.36, + "probability": 0.3102 + }, + { + "start": 12093.84, + "end": 12093.84, + "probability": 0.0249 + }, + { + "start": 12093.84, + "end": 12093.84, + "probability": 0.6559 + }, + { + "start": 12093.84, + "end": 12096.84, + "probability": 0.8022 + }, + { + "start": 12097.43, + "end": 12098.5, + "probability": 0.9347 + }, + { + "start": 12099.66, + "end": 12103.24, + "probability": 0.9661 + }, + { + "start": 12103.86, + "end": 12104.26, + "probability": 0.6435 + }, + { + "start": 12104.86, + "end": 12107.38, + "probability": 0.8506 + }, + { + "start": 12108.32, + "end": 12110.08, + "probability": 0.8901 + }, + { + "start": 12110.7, + "end": 12113.88, + "probability": 0.8862 + }, + { + "start": 12116.04, + "end": 12117.48, + "probability": 0.9517 + }, + { + "start": 12118.54, + "end": 12122.36, + "probability": 0.9907 + }, + { + "start": 12122.46, + "end": 12123.97, + "probability": 0.9894 + }, + { + "start": 12124.64, + "end": 12126.02, + "probability": 0.9671 + }, + { + "start": 12128.06, + "end": 12129.92, + "probability": 0.8044 + }, + { + "start": 12133.0, + "end": 12133.86, + "probability": 0.8875 + }, + { + "start": 12135.76, + "end": 12136.46, + "probability": 0.8049 + }, + { + "start": 12137.68, + "end": 12138.62, + "probability": 0.9278 + }, + { + "start": 12139.44, + "end": 12142.9, + "probability": 0.9659 + }, + { + "start": 12145.36, + "end": 12146.9, + "probability": 0.9966 + }, + { + "start": 12147.92, + "end": 12148.7, + "probability": 0.8748 + }, + { + "start": 12149.88, + "end": 12155.94, + "probability": 0.9434 + }, + { + "start": 12157.38, + "end": 12158.18, + "probability": 0.6899 + }, + { + "start": 12158.96, + "end": 12161.14, + "probability": 0.9473 + }, + { + "start": 12161.62, + "end": 12163.98, + "probability": 0.9787 + }, + { + "start": 12165.46, + "end": 12165.86, + "probability": 0.8262 + }, + { + "start": 12166.34, + "end": 12168.82, + "probability": 0.8303 + }, + { + "start": 12168.94, + "end": 12169.96, + "probability": 0.9412 + }, + { + "start": 12173.14, + "end": 12175.34, + "probability": 0.984 + }, + { + "start": 12176.0, + "end": 12178.5, + "probability": 0.8902 + }, + { + "start": 12179.48, + "end": 12182.52, + "probability": 0.991 + }, + { + "start": 12183.42, + "end": 12185.96, + "probability": 0.7555 + }, + { + "start": 12186.0, + "end": 12187.08, + "probability": 0.437 + }, + { + "start": 12187.1, + "end": 12190.3, + "probability": 0.8637 + }, + { + "start": 12190.76, + "end": 12192.36, + "probability": 0.9218 + }, + { + "start": 12192.42, + "end": 12193.5, + "probability": 0.631 + }, + { + "start": 12193.5, + "end": 12196.26, + "probability": 0.7001 + }, + { + "start": 12196.66, + "end": 12198.32, + "probability": 0.6838 + }, + { + "start": 12200.36, + "end": 12202.86, + "probability": 0.9854 + }, + { + "start": 12204.88, + "end": 12206.02, + "probability": 0.8864 + }, + { + "start": 12206.2, + "end": 12206.94, + "probability": 0.3977 + }, + { + "start": 12207.5, + "end": 12208.1, + "probability": 0.3267 + }, + { + "start": 12208.72, + "end": 12210.96, + "probability": 0.9633 + }, + { + "start": 12212.2, + "end": 12212.86, + "probability": 0.9167 + }, + { + "start": 12213.52, + "end": 12215.3, + "probability": 0.7344 + }, + { + "start": 12215.38, + "end": 12218.64, + "probability": 0.9653 + }, + { + "start": 12219.62, + "end": 12220.52, + "probability": 0.985 + }, + { + "start": 12221.42, + "end": 12223.06, + "probability": 0.9956 + }, + { + "start": 12224.18, + "end": 12227.74, + "probability": 0.9718 + }, + { + "start": 12229.8, + "end": 12231.36, + "probability": 0.313 + }, + { + "start": 12231.62, + "end": 12231.96, + "probability": 0.7668 + }, + { + "start": 12232.02, + "end": 12232.9, + "probability": 0.9303 + }, + { + "start": 12233.12, + "end": 12233.96, + "probability": 0.7261 + }, + { + "start": 12234.26, + "end": 12235.48, + "probability": 0.0805 + }, + { + "start": 12236.1, + "end": 12236.82, + "probability": 0.0376 + }, + { + "start": 12236.82, + "end": 12237.08, + "probability": 0.451 + }, + { + "start": 12237.42, + "end": 12239.3, + "probability": 0.4848 + }, + { + "start": 12239.58, + "end": 12240.22, + "probability": 0.2495 + }, + { + "start": 12240.66, + "end": 12241.38, + "probability": 0.8043 + }, + { + "start": 12241.64, + "end": 12243.7, + "probability": 0.7372 + }, + { + "start": 12244.98, + "end": 12247.08, + "probability": 0.0327 + }, + { + "start": 12247.58, + "end": 12251.74, + "probability": 0.9577 + }, + { + "start": 12254.68, + "end": 12256.74, + "probability": 0.9785 + }, + { + "start": 12257.24, + "end": 12257.9, + "probability": 0.9115 + }, + { + "start": 12258.7, + "end": 12259.12, + "probability": 0.9045 + }, + { + "start": 12259.72, + "end": 12261.08, + "probability": 0.98 + }, + { + "start": 12262.32, + "end": 12266.26, + "probability": 0.8381 + }, + { + "start": 12266.58, + "end": 12268.68, + "probability": 0.4514 + }, + { + "start": 12268.88, + "end": 12270.86, + "probability": 0.7113 + }, + { + "start": 12272.14, + "end": 12272.22, + "probability": 0.0171 + }, + { + "start": 12272.22, + "end": 12272.22, + "probability": 0.1943 + }, + { + "start": 12272.22, + "end": 12273.62, + "probability": 0.3149 + }, + { + "start": 12273.98, + "end": 12275.18, + "probability": 0.8418 + }, + { + "start": 12275.34, + "end": 12276.5, + "probability": 0.6647 + }, + { + "start": 12276.64, + "end": 12278.96, + "probability": 0.9512 + }, + { + "start": 12279.82, + "end": 12281.64, + "probability": 0.2435 + }, + { + "start": 12283.82, + "end": 12284.62, + "probability": 0.0024 + }, + { + "start": 12284.81, + "end": 12284.88, + "probability": 0.1103 + }, + { + "start": 12284.88, + "end": 12284.88, + "probability": 0.4483 + }, + { + "start": 12284.88, + "end": 12285.86, + "probability": 0.5616 + }, + { + "start": 12285.86, + "end": 12288.06, + "probability": 0.328 + }, + { + "start": 12288.58, + "end": 12290.28, + "probability": 0.0199 + }, + { + "start": 12292.64, + "end": 12296.21, + "probability": 0.65 + }, + { + "start": 12297.56, + "end": 12298.78, + "probability": 0.9189 + }, + { + "start": 12299.74, + "end": 12302.82, + "probability": 0.8093 + }, + { + "start": 12303.7, + "end": 12305.7, + "probability": 0.9198 + }, + { + "start": 12306.78, + "end": 12308.78, + "probability": 0.8051 + }, + { + "start": 12309.94, + "end": 12310.78, + "probability": 0.9701 + }, + { + "start": 12311.86, + "end": 12312.12, + "probability": 0.9678 + }, + { + "start": 12312.66, + "end": 12315.04, + "probability": 0.8624 + }, + { + "start": 12315.94, + "end": 12317.12, + "probability": 0.7744 + }, + { + "start": 12318.68, + "end": 12322.14, + "probability": 0.8901 + }, + { + "start": 12322.52, + "end": 12322.68, + "probability": 0.5928 + }, + { + "start": 12322.76, + "end": 12325.28, + "probability": 0.928 + }, + { + "start": 12325.72, + "end": 12329.24, + "probability": 0.9932 + }, + { + "start": 12329.3, + "end": 12329.88, + "probability": 0.8548 + }, + { + "start": 12329.9, + "end": 12331.88, + "probability": 0.6396 + }, + { + "start": 12332.2, + "end": 12332.42, + "probability": 0.3395 + }, + { + "start": 12332.42, + "end": 12333.54, + "probability": 0.7191 + }, + { + "start": 12333.54, + "end": 12336.48, + "probability": 0.5224 + }, + { + "start": 12338.38, + "end": 12338.66, + "probability": 0.0199 + }, + { + "start": 12338.66, + "end": 12338.66, + "probability": 0.1425 + }, + { + "start": 12338.66, + "end": 12340.14, + "probability": 0.3187 + }, + { + "start": 12340.24, + "end": 12341.58, + "probability": 0.3834 + }, + { + "start": 12342.0, + "end": 12344.0, + "probability": 0.7002 + }, + { + "start": 12344.12, + "end": 12344.96, + "probability": 0.6117 + }, + { + "start": 12345.36, + "end": 12347.48, + "probability": 0.7151 + }, + { + "start": 12347.56, + "end": 12353.14, + "probability": 0.7982 + }, + { + "start": 12354.34, + "end": 12355.82, + "probability": 0.9937 + }, + { + "start": 12356.58, + "end": 12357.36, + "probability": 0.2707 + }, + { + "start": 12357.56, + "end": 12358.94, + "probability": 0.2084 + }, + { + "start": 12367.78, + "end": 12370.6, + "probability": 0.8498 + }, + { + "start": 12370.92, + "end": 12377.56, + "probability": 0.7119 + }, + { + "start": 12378.16, + "end": 12380.5, + "probability": 0.8617 + }, + { + "start": 12383.08, + "end": 12384.24, + "probability": 0.7539 + }, + { + "start": 12384.32, + "end": 12386.94, + "probability": 0.8857 + }, + { + "start": 12388.82, + "end": 12390.52, + "probability": 0.828 + }, + { + "start": 12390.84, + "end": 12391.54, + "probability": 0.6959 + }, + { + "start": 12392.9, + "end": 12393.06, + "probability": 0.5036 + }, + { + "start": 12393.12, + "end": 12396.02, + "probability": 0.9925 + }, + { + "start": 12396.18, + "end": 12397.3, + "probability": 0.9192 + }, + { + "start": 12397.4, + "end": 12400.28, + "probability": 0.9849 + }, + { + "start": 12400.38, + "end": 12400.78, + "probability": 0.9521 + }, + { + "start": 12401.62, + "end": 12402.78, + "probability": 0.9976 + }, + { + "start": 12403.64, + "end": 12404.4, + "probability": 0.0588 + }, + { + "start": 12404.4, + "end": 12405.39, + "probability": 0.2205 + }, + { + "start": 12406.98, + "end": 12407.24, + "probability": 0.3256 + }, + { + "start": 12407.24, + "end": 12408.62, + "probability": 0.2817 + }, + { + "start": 12410.32, + "end": 12414.02, + "probability": 0.7019 + }, + { + "start": 12415.46, + "end": 12419.98, + "probability": 0.8558 + }, + { + "start": 12420.6, + "end": 12424.36, + "probability": 0.717 + }, + { + "start": 12425.68, + "end": 12431.58, + "probability": 0.8895 + }, + { + "start": 12432.2, + "end": 12433.72, + "probability": 0.9024 + }, + { + "start": 12436.86, + "end": 12448.98, + "probability": 0.7664 + }, + { + "start": 12449.86, + "end": 12452.96, + "probability": 0.7308 + }, + { + "start": 12453.58, + "end": 12456.52, + "probability": 0.9946 + }, + { + "start": 12457.98, + "end": 12461.78, + "probability": 0.8703 + }, + { + "start": 12464.02, + "end": 12464.56, + "probability": 0.0662 + }, + { + "start": 12464.68, + "end": 12465.6, + "probability": 0.6271 + }, + { + "start": 12465.82, + "end": 12466.82, + "probability": 0.3369 + }, + { + "start": 12466.9, + "end": 12470.56, + "probability": 0.8701 + }, + { + "start": 12472.12, + "end": 12472.88, + "probability": 0.6069 + }, + { + "start": 12473.12, + "end": 12476.12, + "probability": 0.7496 + }, + { + "start": 12476.18, + "end": 12479.7, + "probability": 0.7634 + }, + { + "start": 12481.98, + "end": 12482.32, + "probability": 0.494 + }, + { + "start": 12482.32, + "end": 12486.72, + "probability": 0.8443 + }, + { + "start": 12486.76, + "end": 12488.38, + "probability": 0.608 + }, + { + "start": 12488.66, + "end": 12490.3, + "probability": 0.8389 + }, + { + "start": 12491.98, + "end": 12493.44, + "probability": 0.7811 + }, + { + "start": 12494.18, + "end": 12498.68, + "probability": 0.9305 + }, + { + "start": 12499.6, + "end": 12507.2, + "probability": 0.8959 + }, + { + "start": 12508.24, + "end": 12511.14, + "probability": 0.9976 + }, + { + "start": 12512.36, + "end": 12513.24, + "probability": 0.6796 + }, + { + "start": 12514.06, + "end": 12515.3, + "probability": 0.8091 + }, + { + "start": 12516.2, + "end": 12517.44, + "probability": 0.8979 + }, + { + "start": 12517.68, + "end": 12521.12, + "probability": 0.9873 + }, + { + "start": 12522.18, + "end": 12524.18, + "probability": 0.9371 + }, + { + "start": 12526.28, + "end": 12533.46, + "probability": 0.9775 + }, + { + "start": 12534.24, + "end": 12540.76, + "probability": 0.9976 + }, + { + "start": 12541.72, + "end": 12544.56, + "probability": 0.995 + }, + { + "start": 12544.6, + "end": 12546.1, + "probability": 0.9588 + }, + { + "start": 12547.3, + "end": 12552.18, + "probability": 0.9819 + }, + { + "start": 12552.82, + "end": 12555.0, + "probability": 0.9951 + }, + { + "start": 12555.6, + "end": 12561.38, + "probability": 0.9005 + }, + { + "start": 12561.82, + "end": 12562.64, + "probability": 0.6891 + }, + { + "start": 12563.92, + "end": 12568.82, + "probability": 0.9876 + }, + { + "start": 12568.82, + "end": 12573.02, + "probability": 0.9756 + }, + { + "start": 12573.14, + "end": 12575.1, + "probability": 0.9937 + }, + { + "start": 12575.64, + "end": 12580.36, + "probability": 0.9723 + }, + { + "start": 12581.16, + "end": 12582.3, + "probability": 0.9141 + }, + { + "start": 12583.36, + "end": 12585.22, + "probability": 0.7936 + }, + { + "start": 12585.84, + "end": 12589.68, + "probability": 0.9907 + }, + { + "start": 12590.14, + "end": 12594.58, + "probability": 0.9253 + }, + { + "start": 12595.0, + "end": 12598.34, + "probability": 0.9902 + }, + { + "start": 12599.26, + "end": 12604.08, + "probability": 0.9785 + }, + { + "start": 12604.24, + "end": 12605.08, + "probability": 0.5443 + }, + { + "start": 12605.74, + "end": 12606.96, + "probability": 0.9429 + }, + { + "start": 12607.6, + "end": 12612.36, + "probability": 0.9692 + }, + { + "start": 12612.64, + "end": 12613.62, + "probability": 0.8312 + }, + { + "start": 12614.18, + "end": 12617.44, + "probability": 0.9329 + }, + { + "start": 12617.56, + "end": 12620.12, + "probability": 0.8763 + }, + { + "start": 12623.1, + "end": 12624.12, + "probability": 0.7708 + }, + { + "start": 12625.58, + "end": 12628.94, + "probability": 0.8129 + }, + { + "start": 12629.46, + "end": 12632.4, + "probability": 0.9004 + }, + { + "start": 12632.82, + "end": 12635.42, + "probability": 0.981 + }, + { + "start": 12635.78, + "end": 12640.54, + "probability": 0.9554 + }, + { + "start": 12640.84, + "end": 12643.8, + "probability": 0.9928 + }, + { + "start": 12644.64, + "end": 12644.92, + "probability": 0.3068 + }, + { + "start": 12645.04, + "end": 12646.74, + "probability": 0.7799 + }, + { + "start": 12646.78, + "end": 12647.34, + "probability": 0.6526 + }, + { + "start": 12647.58, + "end": 12649.44, + "probability": 0.957 + }, + { + "start": 12670.76, + "end": 12671.64, + "probability": 0.4654 + }, + { + "start": 12672.3, + "end": 12673.7, + "probability": 0.653 + }, + { + "start": 12675.42, + "end": 12677.45, + "probability": 0.896 + }, + { + "start": 12679.44, + "end": 12682.64, + "probability": 0.9026 + }, + { + "start": 12684.0, + "end": 12684.68, + "probability": 0.9784 + }, + { + "start": 12685.84, + "end": 12691.58, + "probability": 0.7765 + }, + { + "start": 12691.7, + "end": 12692.38, + "probability": 0.6466 + }, + { + "start": 12693.24, + "end": 12694.24, + "probability": 0.6521 + }, + { + "start": 12695.88, + "end": 12696.12, + "probability": 0.4894 + }, + { + "start": 12696.24, + "end": 12696.82, + "probability": 0.7741 + }, + { + "start": 12696.96, + "end": 12698.28, + "probability": 0.9907 + }, + { + "start": 12698.58, + "end": 12699.88, + "probability": 0.9973 + }, + { + "start": 12701.42, + "end": 12703.92, + "probability": 0.851 + }, + { + "start": 12704.88, + "end": 12705.32, + "probability": 0.8138 + }, + { + "start": 12705.38, + "end": 12708.81, + "probability": 0.819 + }, + { + "start": 12708.92, + "end": 12710.3, + "probability": 0.9419 + }, + { + "start": 12710.64, + "end": 12713.52, + "probability": 0.9911 + }, + { + "start": 12714.3, + "end": 12714.5, + "probability": 0.2589 + }, + { + "start": 12714.58, + "end": 12715.14, + "probability": 0.8748 + }, + { + "start": 12715.3, + "end": 12718.08, + "probability": 0.9308 + }, + { + "start": 12718.14, + "end": 12718.74, + "probability": 0.9839 + }, + { + "start": 12718.82, + "end": 12719.5, + "probability": 0.9944 + }, + { + "start": 12719.58, + "end": 12721.02, + "probability": 0.9914 + }, + { + "start": 12722.22, + "end": 12724.8, + "probability": 0.8508 + }, + { + "start": 12725.62, + "end": 12726.34, + "probability": 0.9116 + }, + { + "start": 12727.4, + "end": 12729.76, + "probability": 0.8501 + }, + { + "start": 12729.8, + "end": 12730.95, + "probability": 0.9956 + }, + { + "start": 12732.86, + "end": 12735.82, + "probability": 0.875 + }, + { + "start": 12736.78, + "end": 12737.66, + "probability": 0.902 + }, + { + "start": 12737.84, + "end": 12739.48, + "probability": 0.9251 + }, + { + "start": 12739.86, + "end": 12741.52, + "probability": 0.6685 + }, + { + "start": 12741.84, + "end": 12743.54, + "probability": 0.7315 + }, + { + "start": 12743.6, + "end": 12744.18, + "probability": 0.9662 + }, + { + "start": 12744.24, + "end": 12745.12, + "probability": 0.9259 + }, + { + "start": 12746.2, + "end": 12749.96, + "probability": 0.9495 + }, + { + "start": 12750.18, + "end": 12750.86, + "probability": 0.686 + }, + { + "start": 12750.94, + "end": 12752.1, + "probability": 0.9856 + }, + { + "start": 12752.16, + "end": 12753.26, + "probability": 0.7384 + }, + { + "start": 12753.36, + "end": 12753.84, + "probability": 0.6485 + }, + { + "start": 12754.36, + "end": 12755.26, + "probability": 0.6983 + }, + { + "start": 12756.0, + "end": 12757.78, + "probability": 0.8984 + }, + { + "start": 12758.72, + "end": 12762.54, + "probability": 0.9265 + }, + { + "start": 12763.72, + "end": 12766.12, + "probability": 0.8116 + }, + { + "start": 12766.78, + "end": 12767.68, + "probability": 0.9768 + }, + { + "start": 12768.24, + "end": 12770.66, + "probability": 0.9156 + }, + { + "start": 12772.2, + "end": 12772.66, + "probability": 0.8036 + }, + { + "start": 12773.82, + "end": 12775.53, + "probability": 0.9592 + }, + { + "start": 12776.44, + "end": 12778.36, + "probability": 0.9518 + }, + { + "start": 12779.42, + "end": 12781.0, + "probability": 0.9712 + }, + { + "start": 12781.98, + "end": 12784.78, + "probability": 0.999 + }, + { + "start": 12784.78, + "end": 12786.72, + "probability": 0.996 + }, + { + "start": 12787.46, + "end": 12790.52, + "probability": 0.7345 + }, + { + "start": 12791.24, + "end": 12792.2, + "probability": 0.9572 + }, + { + "start": 12792.26, + "end": 12798.62, + "probability": 0.9647 + }, + { + "start": 12798.88, + "end": 12801.48, + "probability": 0.9429 + }, + { + "start": 12801.48, + "end": 12802.12, + "probability": 0.7742 + }, + { + "start": 12802.64, + "end": 12806.96, + "probability": 0.674 + }, + { + "start": 12807.08, + "end": 12807.71, + "probability": 0.9203 + }, + { + "start": 12807.78, + "end": 12808.62, + "probability": 0.6687 + }, + { + "start": 12809.18, + "end": 12812.6, + "probability": 0.985 + }, + { + "start": 12812.9, + "end": 12814.08, + "probability": 0.8839 + }, + { + "start": 12814.16, + "end": 12815.28, + "probability": 0.9462 + }, + { + "start": 12815.62, + "end": 12817.02, + "probability": 0.9702 + }, + { + "start": 12818.76, + "end": 12822.14, + "probability": 0.9061 + }, + { + "start": 12822.52, + "end": 12824.78, + "probability": 0.9765 + }, + { + "start": 12825.76, + "end": 12827.58, + "probability": 0.9985 + }, + { + "start": 12828.16, + "end": 12830.42, + "probability": 0.9248 + }, + { + "start": 12830.62, + "end": 12831.54, + "probability": 0.8464 + }, + { + "start": 12831.7, + "end": 12832.78, + "probability": 0.8896 + }, + { + "start": 12833.2, + "end": 12834.6, + "probability": 0.9714 + }, + { + "start": 12835.2, + "end": 12838.0, + "probability": 0.9846 + }, + { + "start": 12838.0, + "end": 12840.58, + "probability": 0.9897 + }, + { + "start": 12841.28, + "end": 12842.7, + "probability": 0.9829 + }, + { + "start": 12843.22, + "end": 12846.58, + "probability": 0.9929 + }, + { + "start": 12846.72, + "end": 12848.88, + "probability": 0.9497 + }, + { + "start": 12849.04, + "end": 12850.88, + "probability": 0.8006 + }, + { + "start": 12851.26, + "end": 12852.1, + "probability": 0.5623 + }, + { + "start": 12852.14, + "end": 12853.14, + "probability": 0.8888 + }, + { + "start": 12853.32, + "end": 12854.53, + "probability": 0.937 + }, + { + "start": 12854.64, + "end": 12855.3, + "probability": 0.5002 + }, + { + "start": 12856.04, + "end": 12858.4, + "probability": 0.517 + }, + { + "start": 12860.24, + "end": 12861.68, + "probability": 0.9872 + }, + { + "start": 12861.72, + "end": 12862.76, + "probability": 0.5591 + }, + { + "start": 12863.04, + "end": 12865.38, + "probability": 0.636 + }, + { + "start": 12865.5, + "end": 12866.02, + "probability": 0.7287 + }, + { + "start": 12867.18, + "end": 12867.66, + "probability": 0.7772 + }, + { + "start": 12868.34, + "end": 12869.54, + "probability": 0.9889 + }, + { + "start": 12869.6, + "end": 12870.52, + "probability": 0.9834 + }, + { + "start": 12871.1, + "end": 12871.78, + "probability": 0.9801 + }, + { + "start": 12871.86, + "end": 12873.82, + "probability": 0.9839 + }, + { + "start": 12874.7, + "end": 12877.38, + "probability": 0.8059 + }, + { + "start": 12877.84, + "end": 12879.04, + "probability": 0.9233 + }, + { + "start": 12879.84, + "end": 12882.24, + "probability": 0.7213 + }, + { + "start": 12882.38, + "end": 12882.76, + "probability": 0.1961 + }, + { + "start": 12882.76, + "end": 12884.18, + "probability": 0.9872 + }, + { + "start": 12884.56, + "end": 12887.66, + "probability": 0.7024 + }, + { + "start": 12888.16, + "end": 12889.91, + "probability": 0.9985 + }, + { + "start": 12890.98, + "end": 12893.12, + "probability": 0.9204 + }, + { + "start": 12893.18, + "end": 12894.52, + "probability": 0.9961 + }, + { + "start": 12894.86, + "end": 12897.63, + "probability": 0.7081 + }, + { + "start": 12898.1, + "end": 12899.76, + "probability": 0.6476 + }, + { + "start": 12900.9, + "end": 12903.24, + "probability": 0.9467 + }, + { + "start": 12903.54, + "end": 12904.45, + "probability": 0.9346 + }, + { + "start": 12904.86, + "end": 12905.7, + "probability": 0.9081 + }, + { + "start": 12906.1, + "end": 12906.92, + "probability": 0.9546 + }, + { + "start": 12908.26, + "end": 12909.52, + "probability": 0.7181 + }, + { + "start": 12910.82, + "end": 12912.5, + "probability": 0.9106 + }, + { + "start": 12913.2, + "end": 12913.54, + "probability": 0.9109 + }, + { + "start": 12921.05, + "end": 12923.34, + "probability": 0.6177 + }, + { + "start": 12924.7, + "end": 12928.58, + "probability": 0.9788 + }, + { + "start": 12930.53, + "end": 12932.44, + "probability": 0.998 + }, + { + "start": 12933.6, + "end": 12933.82, + "probability": 0.835 + }, + { + "start": 12935.04, + "end": 12940.14, + "probability": 0.9893 + }, + { + "start": 12941.44, + "end": 12942.24, + "probability": 0.5372 + }, + { + "start": 12942.8, + "end": 12944.43, + "probability": 0.9734 + }, + { + "start": 12945.66, + "end": 12947.04, + "probability": 0.9934 + }, + { + "start": 12947.82, + "end": 12948.62, + "probability": 0.8721 + }, + { + "start": 12949.96, + "end": 12952.4, + "probability": 0.9229 + }, + { + "start": 12952.58, + "end": 12956.26, + "probability": 0.7878 + }, + { + "start": 12957.52, + "end": 12958.06, + "probability": 0.9829 + }, + { + "start": 12958.58, + "end": 12959.4, + "probability": 0.9592 + }, + { + "start": 12959.88, + "end": 12962.92, + "probability": 0.7343 + }, + { + "start": 12963.76, + "end": 12965.84, + "probability": 0.9275 + }, + { + "start": 12967.14, + "end": 12969.38, + "probability": 0.9985 + }, + { + "start": 12969.9, + "end": 12971.96, + "probability": 0.9409 + }, + { + "start": 12972.62, + "end": 12974.82, + "probability": 0.9043 + }, + { + "start": 12975.48, + "end": 12977.84, + "probability": 0.9441 + }, + { + "start": 12979.06, + "end": 12980.06, + "probability": 0.9443 + }, + { + "start": 12981.06, + "end": 12982.24, + "probability": 0.9366 + }, + { + "start": 12982.44, + "end": 12983.98, + "probability": 0.0583 + }, + { + "start": 12985.04, + "end": 12987.48, + "probability": 0.8232 + }, + { + "start": 12987.96, + "end": 12989.94, + "probability": 0.9771 + }, + { + "start": 12990.5, + "end": 12993.06, + "probability": 0.9292 + }, + { + "start": 12993.82, + "end": 12994.64, + "probability": 0.9373 + }, + { + "start": 12995.76, + "end": 12998.32, + "probability": 0.9876 + }, + { + "start": 12998.8, + "end": 13000.68, + "probability": 0.8712 + }, + { + "start": 13001.16, + "end": 13004.54, + "probability": 0.9789 + }, + { + "start": 13004.96, + "end": 13007.58, + "probability": 0.9688 + }, + { + "start": 13008.3, + "end": 13009.56, + "probability": 0.9863 + }, + { + "start": 13010.0, + "end": 13010.98, + "probability": 0.7925 + }, + { + "start": 13011.32, + "end": 13014.22, + "probability": 0.9878 + }, + { + "start": 13014.76, + "end": 13017.44, + "probability": 0.9475 + }, + { + "start": 13017.86, + "end": 13020.82, + "probability": 0.9871 + }, + { + "start": 13021.08, + "end": 13022.84, + "probability": 0.5882 + }, + { + "start": 13023.08, + "end": 13024.34, + "probability": 0.9581 + }, + { + "start": 13025.0, + "end": 13026.66, + "probability": 0.9159 + }, + { + "start": 13027.24, + "end": 13028.96, + "probability": 0.9722 + }, + { + "start": 13029.42, + "end": 13031.68, + "probability": 0.902 + }, + { + "start": 13032.04, + "end": 13035.2, + "probability": 0.9808 + }, + { + "start": 13036.02, + "end": 13040.14, + "probability": 0.9785 + }, + { + "start": 13041.12, + "end": 13043.3, + "probability": 0.9997 + }, + { + "start": 13043.48, + "end": 13046.08, + "probability": 0.9505 + }, + { + "start": 13046.42, + "end": 13047.96, + "probability": 0.9576 + }, + { + "start": 13048.0, + "end": 13049.84, + "probability": 0.9862 + }, + { + "start": 13049.96, + "end": 13050.58, + "probability": 0.98 + }, + { + "start": 13050.68, + "end": 13050.78, + "probability": 0.7467 + }, + { + "start": 13050.9, + "end": 13054.2, + "probability": 0.8423 + }, + { + "start": 13054.28, + "end": 13059.5, + "probability": 0.9182 + }, + { + "start": 13060.06, + "end": 13062.56, + "probability": 0.9392 + }, + { + "start": 13062.6, + "end": 13063.54, + "probability": 0.9759 + }, + { + "start": 13064.5, + "end": 13066.06, + "probability": 0.9987 + }, + { + "start": 13067.0, + "end": 13070.96, + "probability": 0.9961 + }, + { + "start": 13071.26, + "end": 13072.76, + "probability": 0.8337 + }, + { + "start": 13073.26, + "end": 13076.86, + "probability": 0.8141 + }, + { + "start": 13077.36, + "end": 13080.14, + "probability": 0.987 + }, + { + "start": 13080.2, + "end": 13082.52, + "probability": 0.998 + }, + { + "start": 13082.8, + "end": 13083.48, + "probability": 0.7628 + }, + { + "start": 13083.84, + "end": 13084.42, + "probability": 0.9097 + }, + { + "start": 13084.68, + "end": 13085.52, + "probability": 0.9553 + }, + { + "start": 13085.78, + "end": 13087.22, + "probability": 0.7993 + }, + { + "start": 13087.68, + "end": 13088.98, + "probability": 0.9277 + }, + { + "start": 13089.46, + "end": 13090.74, + "probability": 0.8879 + }, + { + "start": 13091.16, + "end": 13096.36, + "probability": 0.9763 + }, + { + "start": 13096.82, + "end": 13098.14, + "probability": 0.9663 + }, + { + "start": 13098.88, + "end": 13102.16, + "probability": 0.9841 + }, + { + "start": 13102.74, + "end": 13104.04, + "probability": 0.9404 + }, + { + "start": 13104.48, + "end": 13106.28, + "probability": 0.9045 + }, + { + "start": 13106.4, + "end": 13106.84, + "probability": 0.8325 + }, + { + "start": 13108.54, + "end": 13110.88, + "probability": 0.997 + }, + { + "start": 13111.24, + "end": 13112.48, + "probability": 0.9757 + }, + { + "start": 13113.0, + "end": 13116.2, + "probability": 0.9915 + }, + { + "start": 13117.68, + "end": 13119.7, + "probability": 0.9974 + }, + { + "start": 13120.26, + "end": 13121.8, + "probability": 0.9951 + }, + { + "start": 13122.26, + "end": 13126.04, + "probability": 0.9975 + }, + { + "start": 13126.44, + "end": 13128.64, + "probability": 0.9899 + }, + { + "start": 13128.64, + "end": 13133.04, + "probability": 0.9912 + }, + { + "start": 13133.36, + "end": 13137.48, + "probability": 0.9885 + }, + { + "start": 13137.86, + "end": 13139.2, + "probability": 0.394 + }, + { + "start": 13139.66, + "end": 13141.72, + "probability": 0.7369 + }, + { + "start": 13141.88, + "end": 13143.38, + "probability": 0.9414 + }, + { + "start": 13156.96, + "end": 13159.56, + "probability": 0.7423 + }, + { + "start": 13160.64, + "end": 13168.02, + "probability": 0.9648 + }, + { + "start": 13168.16, + "end": 13168.94, + "probability": 0.8184 + }, + { + "start": 13169.82, + "end": 13171.04, + "probability": 0.9991 + }, + { + "start": 13171.9, + "end": 13175.9, + "probability": 0.9901 + }, + { + "start": 13175.9, + "end": 13181.14, + "probability": 0.9981 + }, + { + "start": 13181.14, + "end": 13185.56, + "probability": 0.9976 + }, + { + "start": 13186.2, + "end": 13187.92, + "probability": 0.8289 + }, + { + "start": 13188.08, + "end": 13189.38, + "probability": 0.7627 + }, + { + "start": 13189.84, + "end": 13192.22, + "probability": 0.9952 + }, + { + "start": 13192.7, + "end": 13193.36, + "probability": 0.7712 + }, + { + "start": 13193.96, + "end": 13194.5, + "probability": 0.8397 + }, + { + "start": 13194.6, + "end": 13198.22, + "probability": 0.9938 + }, + { + "start": 13198.5, + "end": 13202.02, + "probability": 0.9924 + }, + { + "start": 13202.84, + "end": 13204.68, + "probability": 0.998 + }, + { + "start": 13205.26, + "end": 13206.8, + "probability": 0.8586 + }, + { + "start": 13207.64, + "end": 13211.2, + "probability": 0.9425 + }, + { + "start": 13212.52, + "end": 13216.72, + "probability": 0.8727 + }, + { + "start": 13217.34, + "end": 13219.38, + "probability": 0.9772 + }, + { + "start": 13220.02, + "end": 13223.1, + "probability": 0.9729 + }, + { + "start": 13223.62, + "end": 13224.68, + "probability": 0.8824 + }, + { + "start": 13224.8, + "end": 13225.76, + "probability": 0.9591 + }, + { + "start": 13226.24, + "end": 13228.28, + "probability": 0.9956 + }, + { + "start": 13228.8, + "end": 13232.8, + "probability": 0.9862 + }, + { + "start": 13233.56, + "end": 13237.7, + "probability": 0.9979 + }, + { + "start": 13237.84, + "end": 13241.26, + "probability": 0.9501 + }, + { + "start": 13241.38, + "end": 13246.52, + "probability": 0.9731 + }, + { + "start": 13246.68, + "end": 13248.84, + "probability": 0.9929 + }, + { + "start": 13249.44, + "end": 13251.22, + "probability": 0.9759 + }, + { + "start": 13251.7, + "end": 13256.8, + "probability": 0.9832 + }, + { + "start": 13257.38, + "end": 13258.64, + "probability": 0.88 + }, + { + "start": 13259.2, + "end": 13261.6, + "probability": 0.9958 + }, + { + "start": 13261.66, + "end": 13262.22, + "probability": 0.7906 + }, + { + "start": 13262.7, + "end": 13263.62, + "probability": 0.9936 + }, + { + "start": 13263.74, + "end": 13264.52, + "probability": 0.9905 + }, + { + "start": 13264.96, + "end": 13265.9, + "probability": 0.4707 + }, + { + "start": 13266.46, + "end": 13270.26, + "probability": 0.9623 + }, + { + "start": 13270.9, + "end": 13271.4, + "probability": 0.776 + }, + { + "start": 13271.74, + "end": 13272.96, + "probability": 0.9893 + }, + { + "start": 13273.36, + "end": 13274.38, + "probability": 0.9003 + }, + { + "start": 13274.54, + "end": 13276.06, + "probability": 0.9659 + }, + { + "start": 13276.44, + "end": 13280.04, + "probability": 0.9982 + }, + { + "start": 13280.84, + "end": 13282.22, + "probability": 0.9403 + }, + { + "start": 13282.74, + "end": 13285.0, + "probability": 0.982 + }, + { + "start": 13285.5, + "end": 13286.16, + "probability": 0.6445 + }, + { + "start": 13286.58, + "end": 13288.44, + "probability": 0.9566 + }, + { + "start": 13288.8, + "end": 13289.32, + "probability": 0.8927 + }, + { + "start": 13289.84, + "end": 13290.62, + "probability": 0.9411 + }, + { + "start": 13291.06, + "end": 13294.3, + "probability": 0.9954 + }, + { + "start": 13294.86, + "end": 13297.02, + "probability": 0.96 + }, + { + "start": 13297.56, + "end": 13299.54, + "probability": 0.9393 + }, + { + "start": 13300.04, + "end": 13303.6, + "probability": 0.999 + }, + { + "start": 13304.06, + "end": 13306.66, + "probability": 0.9686 + }, + { + "start": 13307.18, + "end": 13308.5, + "probability": 0.9671 + }, + { + "start": 13308.66, + "end": 13309.48, + "probability": 0.7767 + }, + { + "start": 13309.98, + "end": 13313.26, + "probability": 0.9451 + }, + { + "start": 13313.38, + "end": 13317.98, + "probability": 0.9851 + }, + { + "start": 13318.88, + "end": 13320.9, + "probability": 0.998 + }, + { + "start": 13321.42, + "end": 13324.16, + "probability": 0.9961 + }, + { + "start": 13324.84, + "end": 13329.82, + "probability": 0.9949 + }, + { + "start": 13330.3, + "end": 13332.72, + "probability": 0.9912 + }, + { + "start": 13332.72, + "end": 13335.6, + "probability": 0.9215 + }, + { + "start": 13335.82, + "end": 13337.16, + "probability": 0.8918 + }, + { + "start": 13337.7, + "end": 13342.34, + "probability": 0.9937 + }, + { + "start": 13342.86, + "end": 13345.84, + "probability": 0.9941 + }, + { + "start": 13346.16, + "end": 13346.78, + "probability": 0.8535 + }, + { + "start": 13347.32, + "end": 13351.22, + "probability": 0.8997 + }, + { + "start": 13351.72, + "end": 13352.26, + "probability": 0.6161 + }, + { + "start": 13352.96, + "end": 13353.48, + "probability": 0.6388 + }, + { + "start": 13353.5, + "end": 13354.56, + "probability": 0.8098 + }, + { + "start": 13355.2, + "end": 13356.34, + "probability": 0.6543 + }, + { + "start": 13357.44, + "end": 13359.7, + "probability": 0.9543 + }, + { + "start": 13370.36, + "end": 13371.76, + "probability": 0.6619 + }, + { + "start": 13373.24, + "end": 13375.02, + "probability": 0.8851 + }, + { + "start": 13376.84, + "end": 13377.56, + "probability": 0.7472 + }, + { + "start": 13378.26, + "end": 13379.56, + "probability": 0.9858 + }, + { + "start": 13380.7, + "end": 13384.12, + "probability": 0.993 + }, + { + "start": 13386.2, + "end": 13390.06, + "probability": 0.9005 + }, + { + "start": 13390.24, + "end": 13392.5, + "probability": 0.9612 + }, + { + "start": 13392.66, + "end": 13394.9, + "probability": 0.9448 + }, + { + "start": 13396.28, + "end": 13399.62, + "probability": 0.9964 + }, + { + "start": 13400.78, + "end": 13404.62, + "probability": 0.9934 + }, + { + "start": 13405.7, + "end": 13409.94, + "probability": 0.8866 + }, + { + "start": 13411.2, + "end": 13412.14, + "probability": 0.9339 + }, + { + "start": 13413.19, + "end": 13415.58, + "probability": 0.8713 + }, + { + "start": 13415.82, + "end": 13415.82, + "probability": 0.2616 + }, + { + "start": 13416.42, + "end": 13421.58, + "probability": 0.9956 + }, + { + "start": 13423.12, + "end": 13425.36, + "probability": 0.9436 + }, + { + "start": 13426.6, + "end": 13429.44, + "probability": 0.9897 + }, + { + "start": 13430.6, + "end": 13432.17, + "probability": 0.9829 + }, + { + "start": 13432.64, + "end": 13433.75, + "probability": 0.8593 + }, + { + "start": 13434.0, + "end": 13436.64, + "probability": 0.9783 + }, + { + "start": 13437.3, + "end": 13439.52, + "probability": 0.9937 + }, + { + "start": 13439.52, + "end": 13443.0, + "probability": 0.9961 + }, + { + "start": 13443.34, + "end": 13447.2, + "probability": 0.8253 + }, + { + "start": 13449.14, + "end": 13451.72, + "probability": 0.8828 + }, + { + "start": 13452.5, + "end": 13454.86, + "probability": 0.862 + }, + { + "start": 13455.5, + "end": 13456.0, + "probability": 0.936 + }, + { + "start": 13456.72, + "end": 13458.98, + "probability": 0.9934 + }, + { + "start": 13459.88, + "end": 13460.68, + "probability": 0.9185 + }, + { + "start": 13460.7, + "end": 13463.12, + "probability": 0.9314 + }, + { + "start": 13464.42, + "end": 13473.3, + "probability": 0.9885 + }, + { + "start": 13475.44, + "end": 13477.3, + "probability": 0.936 + }, + { + "start": 13478.2, + "end": 13480.74, + "probability": 0.9861 + }, + { + "start": 13480.76, + "end": 13481.88, + "probability": 0.926 + }, + { + "start": 13483.7, + "end": 13485.64, + "probability": 0.9635 + }, + { + "start": 13485.88, + "end": 13488.56, + "probability": 0.7934 + }, + { + "start": 13488.8, + "end": 13491.38, + "probability": 0.9698 + }, + { + "start": 13492.72, + "end": 13495.08, + "probability": 0.9331 + }, + { + "start": 13495.46, + "end": 13495.94, + "probability": 0.9476 + }, + { + "start": 13496.2, + "end": 13496.98, + "probability": 0.9033 + }, + { + "start": 13498.06, + "end": 13500.22, + "probability": 0.9844 + }, + { + "start": 13500.76, + "end": 13501.7, + "probability": 0.9203 + }, + { + "start": 13502.6, + "end": 13504.71, + "probability": 0.8403 + }, + { + "start": 13505.54, + "end": 13507.02, + "probability": 0.9985 + }, + { + "start": 13507.96, + "end": 13511.16, + "probability": 0.9698 + }, + { + "start": 13512.04, + "end": 13520.38, + "probability": 0.9807 + }, + { + "start": 13520.92, + "end": 13525.98, + "probability": 0.9166 + }, + { + "start": 13526.54, + "end": 13529.58, + "probability": 0.9875 + }, + { + "start": 13530.1, + "end": 13533.04, + "probability": 0.9591 + }, + { + "start": 13533.42, + "end": 13534.78, + "probability": 0.9565 + }, + { + "start": 13534.88, + "end": 13537.94, + "probability": 0.9397 + }, + { + "start": 13538.38, + "end": 13538.48, + "probability": 0.2728 + }, + { + "start": 13539.24, + "end": 13540.98, + "probability": 0.9797 + }, + { + "start": 13542.08, + "end": 13545.08, + "probability": 0.8801 + }, + { + "start": 13546.78, + "end": 13547.5, + "probability": 0.9822 + }, + { + "start": 13548.34, + "end": 13550.34, + "probability": 0.9902 + }, + { + "start": 13551.52, + "end": 13553.26, + "probability": 0.645 + }, + { + "start": 13553.34, + "end": 13554.18, + "probability": 0.7529 + }, + { + "start": 13554.32, + "end": 13555.24, + "probability": 0.7994 + }, + { + "start": 13555.26, + "end": 13556.28, + "probability": 0.9495 + }, + { + "start": 13557.42, + "end": 13560.64, + "probability": 0.9928 + }, + { + "start": 13561.16, + "end": 13563.32, + "probability": 0.8404 + }, + { + "start": 13564.2, + "end": 13564.62, + "probability": 0.8983 + }, + { + "start": 13565.38, + "end": 13566.82, + "probability": 0.9736 + }, + { + "start": 13567.38, + "end": 13572.76, + "probability": 0.9836 + }, + { + "start": 13573.98, + "end": 13575.7, + "probability": 0.858 + }, + { + "start": 13576.79, + "end": 13577.52, + "probability": 0.9332 + }, + { + "start": 13578.8, + "end": 13581.22, + "probability": 0.9988 + }, + { + "start": 13581.28, + "end": 13585.86, + "probability": 0.9917 + }, + { + "start": 13586.6, + "end": 13587.96, + "probability": 0.6898 + }, + { + "start": 13589.3, + "end": 13591.56, + "probability": 0.8956 + }, + { + "start": 13591.68, + "end": 13594.34, + "probability": 0.6576 + }, + { + "start": 13595.12, + "end": 13600.14, + "probability": 0.9312 + }, + { + "start": 13600.34, + "end": 13603.38, + "probability": 0.9628 + }, + { + "start": 13604.36, + "end": 13608.18, + "probability": 0.6758 + }, + { + "start": 13609.64, + "end": 13610.98, + "probability": 0.7557 + }, + { + "start": 13611.8, + "end": 13614.74, + "probability": 0.9468 + }, + { + "start": 13615.6, + "end": 13617.24, + "probability": 0.8488 + }, + { + "start": 13618.44, + "end": 13619.28, + "probability": 0.0201 + }, + { + "start": 13619.28, + "end": 13619.28, + "probability": 0.2004 + }, + { + "start": 13619.28, + "end": 13621.32, + "probability": 0.7726 + }, + { + "start": 13622.1, + "end": 13622.68, + "probability": 0.8793 + }, + { + "start": 13623.38, + "end": 13625.44, + "probability": 0.8761 + }, + { + "start": 13626.04, + "end": 13628.24, + "probability": 0.917 + }, + { + "start": 13628.36, + "end": 13629.98, + "probability": 0.9463 + }, + { + "start": 13630.36, + "end": 13634.24, + "probability": 0.9946 + }, + { + "start": 13634.82, + "end": 13637.38, + "probability": 0.9823 + }, + { + "start": 13638.18, + "end": 13639.5, + "probability": 0.8843 + }, + { + "start": 13640.22, + "end": 13643.72, + "probability": 0.9199 + }, + { + "start": 13644.08, + "end": 13645.8, + "probability": 0.8669 + }, + { + "start": 13645.92, + "end": 13648.54, + "probability": 0.941 + }, + { + "start": 13649.36, + "end": 13651.1, + "probability": 0.8161 + }, + { + "start": 13658.52, + "end": 13660.36, + "probability": 0.756 + }, + { + "start": 13661.98, + "end": 13664.5, + "probability": 0.9221 + }, + { + "start": 13665.74, + "end": 13669.16, + "probability": 0.9973 + }, + { + "start": 13669.5, + "end": 13673.66, + "probability": 0.9419 + }, + { + "start": 13674.34, + "end": 13675.44, + "probability": 0.6357 + }, + { + "start": 13675.54, + "end": 13677.88, + "probability": 0.9313 + }, + { + "start": 13679.16, + "end": 13685.96, + "probability": 0.9302 + }, + { + "start": 13686.04, + "end": 13687.18, + "probability": 0.6758 + }, + { + "start": 13687.64, + "end": 13689.48, + "probability": 0.9165 + }, + { + "start": 13689.9, + "end": 13691.86, + "probability": 0.9507 + }, + { + "start": 13692.44, + "end": 13694.92, + "probability": 0.9628 + }, + { + "start": 13695.84, + "end": 13696.74, + "probability": 0.7761 + }, + { + "start": 13696.88, + "end": 13697.94, + "probability": 0.8854 + }, + { + "start": 13698.32, + "end": 13703.5, + "probability": 0.9822 + }, + { + "start": 13704.16, + "end": 13706.18, + "probability": 0.8196 + }, + { + "start": 13706.72, + "end": 13710.7, + "probability": 0.9319 + }, + { + "start": 13711.06, + "end": 13711.4, + "probability": 0.733 + }, + { + "start": 13711.48, + "end": 13712.36, + "probability": 0.8637 + }, + { + "start": 13712.86, + "end": 13713.76, + "probability": 0.9493 + }, + { + "start": 13714.72, + "end": 13719.0, + "probability": 0.8575 + }, + { + "start": 13719.64, + "end": 13721.54, + "probability": 0.9957 + }, + { + "start": 13722.14, + "end": 13725.56, + "probability": 0.6607 + }, + { + "start": 13726.38, + "end": 13728.1, + "probability": 0.7958 + }, + { + "start": 13728.9, + "end": 13733.38, + "probability": 0.9686 + }, + { + "start": 13733.56, + "end": 13734.36, + "probability": 0.6293 + }, + { + "start": 13734.7, + "end": 13738.56, + "probability": 0.8698 + }, + { + "start": 13739.28, + "end": 13742.24, + "probability": 0.8865 + }, + { + "start": 13743.96, + "end": 13745.48, + "probability": 0.7263 + }, + { + "start": 13747.5, + "end": 13749.62, + "probability": 0.8728 + }, + { + "start": 13750.52, + "end": 13751.66, + "probability": 0.9726 + }, + { + "start": 13751.94, + "end": 13754.06, + "probability": 0.9012 + }, + { + "start": 13754.52, + "end": 13760.0, + "probability": 0.9963 + }, + { + "start": 13760.86, + "end": 13762.06, + "probability": 0.5986 + }, + { + "start": 13762.22, + "end": 13765.82, + "probability": 0.8865 + }, + { + "start": 13765.82, + "end": 13770.24, + "probability": 0.9768 + }, + { + "start": 13770.66, + "end": 13771.52, + "probability": 0.6475 + }, + { + "start": 13771.92, + "end": 13772.52, + "probability": 0.6386 + }, + { + "start": 13773.04, + "end": 13773.87, + "probability": 0.8186 + }, + { + "start": 13775.04, + "end": 13779.66, + "probability": 0.9683 + }, + { + "start": 13780.5, + "end": 13785.48, + "probability": 0.988 + }, + { + "start": 13786.26, + "end": 13789.0, + "probability": 0.9946 + }, + { + "start": 13790.5, + "end": 13792.42, + "probability": 0.33 + }, + { + "start": 13793.02, + "end": 13794.32, + "probability": 0.7871 + }, + { + "start": 13794.84, + "end": 13801.0, + "probability": 0.7392 + }, + { + "start": 13801.24, + "end": 13802.58, + "probability": 0.8766 + }, + { + "start": 13803.46, + "end": 13806.98, + "probability": 0.8687 + }, + { + "start": 13808.2, + "end": 13810.56, + "probability": 0.8563 + }, + { + "start": 13811.2, + "end": 13813.82, + "probability": 0.8582 + }, + { + "start": 13814.72, + "end": 13818.66, + "probability": 0.9636 + }, + { + "start": 13819.34, + "end": 13823.56, + "probability": 0.9919 + }, + { + "start": 13823.7, + "end": 13824.74, + "probability": 0.623 + }, + { + "start": 13825.1, + "end": 13826.88, + "probability": 0.925 + }, + { + "start": 13827.3, + "end": 13830.98, + "probability": 0.6332 + }, + { + "start": 13831.02, + "end": 13831.82, + "probability": 0.7195 + }, + { + "start": 13833.08, + "end": 13834.0, + "probability": 0.8131 + }, + { + "start": 13834.36, + "end": 13839.08, + "probability": 0.9749 + }, + { + "start": 13839.08, + "end": 13843.82, + "probability": 0.9946 + }, + { + "start": 13844.76, + "end": 13847.08, + "probability": 0.7026 + }, + { + "start": 13847.14, + "end": 13848.46, + "probability": 0.537 + }, + { + "start": 13848.9, + "end": 13849.3, + "probability": 0.7474 + }, + { + "start": 13849.38, + "end": 13850.3, + "probability": 0.751 + }, + { + "start": 13850.84, + "end": 13853.18, + "probability": 0.8596 + }, + { + "start": 13853.78, + "end": 13858.68, + "probability": 0.7129 + }, + { + "start": 13858.98, + "end": 13861.04, + "probability": 0.8498 + }, + { + "start": 13861.54, + "end": 13863.1, + "probability": 0.4719 + }, + { + "start": 13863.74, + "end": 13865.7, + "probability": 0.6308 + }, + { + "start": 13865.78, + "end": 13872.42, + "probability": 0.8644 + }, + { + "start": 13872.52, + "end": 13875.42, + "probability": 0.6883 + }, + { + "start": 13876.0, + "end": 13877.2, + "probability": 0.9942 + }, + { + "start": 13877.66, + "end": 13881.16, + "probability": 0.5001 + }, + { + "start": 13881.92, + "end": 13882.64, + "probability": 0.6326 + }, + { + "start": 13883.04, + "end": 13884.7, + "probability": 0.9299 + }, + { + "start": 13884.84, + "end": 13885.22, + "probability": 0.4185 + }, + { + "start": 13885.54, + "end": 13887.94, + "probability": 0.9131 + }, + { + "start": 13899.5, + "end": 13900.54, + "probability": 0.654 + }, + { + "start": 13900.66, + "end": 13901.74, + "probability": 0.6495 + }, + { + "start": 13902.18, + "end": 13905.26, + "probability": 0.9917 + }, + { + "start": 13906.18, + "end": 13909.78, + "probability": 0.8453 + }, + { + "start": 13909.78, + "end": 13910.5, + "probability": 0.0904 + }, + { + "start": 13911.9, + "end": 13913.02, + "probability": 0.9358 + }, + { + "start": 13913.26, + "end": 13914.24, + "probability": 0.6519 + }, + { + "start": 13914.28, + "end": 13916.44, + "probability": 0.8691 + }, + { + "start": 13916.74, + "end": 13917.9, + "probability": 0.5557 + }, + { + "start": 13918.48, + "end": 13918.7, + "probability": 0.5516 + }, + { + "start": 13918.74, + "end": 13919.82, + "probability": 0.9859 + }, + { + "start": 13920.0, + "end": 13921.84, + "probability": 0.9751 + }, + { + "start": 13921.92, + "end": 13923.54, + "probability": 0.9775 + }, + { + "start": 13924.62, + "end": 13928.56, + "probability": 0.9985 + }, + { + "start": 13928.72, + "end": 13931.84, + "probability": 0.9897 + }, + { + "start": 13932.34, + "end": 13933.86, + "probability": 0.3907 + }, + { + "start": 13933.92, + "end": 13934.74, + "probability": 0.8818 + }, + { + "start": 13935.4, + "end": 13936.74, + "probability": 0.9497 + }, + { + "start": 13938.31, + "end": 13939.56, + "probability": 0.9595 + }, + { + "start": 13939.58, + "end": 13940.34, + "probability": 0.6724 + }, + { + "start": 13940.42, + "end": 13943.8, + "probability": 0.7735 + }, + { + "start": 13944.18, + "end": 13945.3, + "probability": 0.9266 + }, + { + "start": 13945.42, + "end": 13945.76, + "probability": 0.76 + }, + { + "start": 13946.2, + "end": 13947.48, + "probability": 0.9378 + }, + { + "start": 13947.54, + "end": 13948.24, + "probability": 0.9272 + }, + { + "start": 13948.36, + "end": 13948.88, + "probability": 0.926 + }, + { + "start": 13948.96, + "end": 13951.1, + "probability": 0.7585 + }, + { + "start": 13951.22, + "end": 13952.86, + "probability": 0.9893 + }, + { + "start": 13954.0, + "end": 13954.48, + "probability": 0.7208 + }, + { + "start": 13954.54, + "end": 13955.76, + "probability": 0.9069 + }, + { + "start": 13956.3, + "end": 13959.6, + "probability": 0.8336 + }, + { + "start": 13959.88, + "end": 13961.52, + "probability": 0.9894 + }, + { + "start": 13962.12, + "end": 13964.88, + "probability": 0.958 + }, + { + "start": 13964.98, + "end": 13965.78, + "probability": 0.8621 + }, + { + "start": 13965.8, + "end": 13967.56, + "probability": 0.8463 + }, + { + "start": 13967.66, + "end": 13970.1, + "probability": 0.978 + }, + { + "start": 13970.96, + "end": 13974.36, + "probability": 0.7352 + }, + { + "start": 13974.42, + "end": 13975.22, + "probability": 0.8341 + }, + { + "start": 13975.46, + "end": 13976.36, + "probability": 0.9812 + }, + { + "start": 13977.46, + "end": 13980.04, + "probability": 0.6797 + }, + { + "start": 13980.16, + "end": 13981.42, + "probability": 0.8593 + }, + { + "start": 13981.44, + "end": 13983.99, + "probability": 0.9844 + }, + { + "start": 13986.78, + "end": 13987.68, + "probability": 0.8965 + }, + { + "start": 13987.72, + "end": 13989.36, + "probability": 0.9948 + }, + { + "start": 13989.64, + "end": 13993.6, + "probability": 0.6483 + }, + { + "start": 13994.58, + "end": 13994.93, + "probability": 0.9043 + }, + { + "start": 13995.38, + "end": 13997.83, + "probability": 0.9973 + }, + { + "start": 13998.7, + "end": 13999.38, + "probability": 0.9449 + }, + { + "start": 13999.58, + "end": 14004.4, + "probability": 0.978 + }, + { + "start": 14005.7, + "end": 14008.08, + "probability": 0.9958 + }, + { + "start": 14008.54, + "end": 14010.84, + "probability": 0.8757 + }, + { + "start": 14010.84, + "end": 14013.64, + "probability": 0.9989 + }, + { + "start": 14013.7, + "end": 14015.66, + "probability": 0.7471 + }, + { + "start": 14016.18, + "end": 14017.84, + "probability": 0.9662 + }, + { + "start": 14018.18, + "end": 14022.24, + "probability": 0.843 + }, + { + "start": 14022.26, + "end": 14023.56, + "probability": 0.9801 + }, + { + "start": 14023.56, + "end": 14025.78, + "probability": 0.9983 + }, + { + "start": 14026.48, + "end": 14027.34, + "probability": 0.5949 + }, + { + "start": 14027.44, + "end": 14029.74, + "probability": 0.7483 + }, + { + "start": 14029.86, + "end": 14030.72, + "probability": 0.8535 + }, + { + "start": 14031.28, + "end": 14035.26, + "probability": 0.9729 + }, + { + "start": 14036.68, + "end": 14042.92, + "probability": 0.9656 + }, + { + "start": 14043.81, + "end": 14045.76, + "probability": 0.991 + }, + { + "start": 14046.32, + "end": 14048.7, + "probability": 0.9747 + }, + { + "start": 14049.02, + "end": 14049.12, + "probability": 0.2143 + }, + { + "start": 14049.2, + "end": 14051.16, + "probability": 0.8535 + }, + { + "start": 14051.54, + "end": 14053.56, + "probability": 0.9335 + }, + { + "start": 14053.72, + "end": 14054.98, + "probability": 0.641 + }, + { + "start": 14055.26, + "end": 14056.74, + "probability": 0.4802 + }, + { + "start": 14056.8, + "end": 14058.12, + "probability": 0.856 + }, + { + "start": 14058.9, + "end": 14062.24, + "probability": 0.9587 + }, + { + "start": 14062.98, + "end": 14065.92, + "probability": 0.9937 + }, + { + "start": 14067.22, + "end": 14068.42, + "probability": 0.7681 + }, + { + "start": 14068.5, + "end": 14070.1, + "probability": 0.9107 + }, + { + "start": 14070.24, + "end": 14071.05, + "probability": 0.9096 + }, + { + "start": 14071.14, + "end": 14072.07, + "probability": 0.9087 + }, + { + "start": 14072.84, + "end": 14077.34, + "probability": 0.9489 + }, + { + "start": 14077.54, + "end": 14078.72, + "probability": 0.5577 + }, + { + "start": 14079.18, + "end": 14079.6, + "probability": 0.8096 + }, + { + "start": 14080.34, + "end": 14081.9, + "probability": 0.7876 + }, + { + "start": 14082.34, + "end": 14085.34, + "probability": 0.9614 + }, + { + "start": 14085.54, + "end": 14086.26, + "probability": 0.7603 + }, + { + "start": 14086.46, + "end": 14086.96, + "probability": 0.3229 + }, + { + "start": 14087.4, + "end": 14088.78, + "probability": 0.9659 + }, + { + "start": 14090.24, + "end": 14092.38, + "probability": 0.832 + }, + { + "start": 14098.41, + "end": 14100.06, + "probability": 0.7271 + }, + { + "start": 14105.1, + "end": 14105.84, + "probability": 0.9983 + }, + { + "start": 14115.62, + "end": 14115.72, + "probability": 0.0108 + }, + { + "start": 14115.72, + "end": 14115.98, + "probability": 0.2718 + }, + { + "start": 14115.98, + "end": 14117.64, + "probability": 0.7267 + }, + { + "start": 14119.24, + "end": 14122.92, + "probability": 0.9903 + }, + { + "start": 14123.46, + "end": 14125.74, + "probability": 0.9912 + }, + { + "start": 14126.9, + "end": 14127.84, + "probability": 0.2437 + }, + { + "start": 14129.96, + "end": 14131.26, + "probability": 0.7091 + }, + { + "start": 14131.46, + "end": 14132.22, + "probability": 0.5915 + }, + { + "start": 14132.34, + "end": 14134.93, + "probability": 0.9609 + }, + { + "start": 14135.68, + "end": 14137.18, + "probability": 0.7778 + }, + { + "start": 14137.58, + "end": 14138.5, + "probability": 0.936 + }, + { + "start": 14138.54, + "end": 14140.18, + "probability": 0.9459 + }, + { + "start": 14141.16, + "end": 14143.6, + "probability": 0.9014 + }, + { + "start": 14143.82, + "end": 14145.92, + "probability": 0.9557 + }, + { + "start": 14146.62, + "end": 14151.04, + "probability": 0.9476 + }, + { + "start": 14152.54, + "end": 14155.52, + "probability": 0.9949 + }, + { + "start": 14156.98, + "end": 14158.32, + "probability": 0.9985 + }, + { + "start": 14158.84, + "end": 14159.74, + "probability": 0.9987 + }, + { + "start": 14160.96, + "end": 14164.32, + "probability": 0.9943 + }, + { + "start": 14164.44, + "end": 14167.34, + "probability": 0.9897 + }, + { + "start": 14167.78, + "end": 14169.66, + "probability": 0.8027 + }, + { + "start": 14172.24, + "end": 14172.24, + "probability": 0.0368 + }, + { + "start": 14172.38, + "end": 14174.9, + "probability": 0.7797 + }, + { + "start": 14175.0, + "end": 14175.88, + "probability": 0.7193 + }, + { + "start": 14176.12, + "end": 14179.96, + "probability": 0.9921 + }, + { + "start": 14180.48, + "end": 14184.0, + "probability": 0.991 + }, + { + "start": 14184.48, + "end": 14189.48, + "probability": 0.9969 + }, + { + "start": 14189.48, + "end": 14195.72, + "probability": 0.9958 + }, + { + "start": 14196.76, + "end": 14197.88, + "probability": 0.9338 + }, + { + "start": 14198.84, + "end": 14199.73, + "probability": 0.8766 + }, + { + "start": 14199.9, + "end": 14201.92, + "probability": 0.7763 + }, + { + "start": 14202.08, + "end": 14203.98, + "probability": 0.7055 + }, + { + "start": 14204.68, + "end": 14207.7, + "probability": 0.9797 + }, + { + "start": 14208.14, + "end": 14210.52, + "probability": 0.8444 + }, + { + "start": 14210.8, + "end": 14211.48, + "probability": 0.7591 + }, + { + "start": 14211.74, + "end": 14212.24, + "probability": 0.8369 + }, + { + "start": 14213.22, + "end": 14217.16, + "probability": 0.8442 + }, + { + "start": 14217.22, + "end": 14219.38, + "probability": 0.9446 + }, + { + "start": 14219.68, + "end": 14221.18, + "probability": 0.9811 + }, + { + "start": 14221.66, + "end": 14222.7, + "probability": 0.7294 + }, + { + "start": 14223.68, + "end": 14224.98, + "probability": 0.6396 + }, + { + "start": 14226.1, + "end": 14227.68, + "probability": 0.7118 + }, + { + "start": 14227.94, + "end": 14228.45, + "probability": 0.5436 + }, + { + "start": 14228.78, + "end": 14230.62, + "probability": 0.8474 + }, + { + "start": 14231.08, + "end": 14231.52, + "probability": 0.9697 + }, + { + "start": 14231.76, + "end": 14232.56, + "probability": 0.7528 + }, + { + "start": 14232.86, + "end": 14235.52, + "probability": 0.9695 + }, + { + "start": 14236.5, + "end": 14237.86, + "probability": 0.8999 + }, + { + "start": 14238.9, + "end": 14240.08, + "probability": 0.8925 + }, + { + "start": 14240.16, + "end": 14240.97, + "probability": 0.9532 + }, + { + "start": 14241.38, + "end": 14246.98, + "probability": 0.9919 + }, + { + "start": 14247.66, + "end": 14251.02, + "probability": 0.9709 + }, + { + "start": 14251.56, + "end": 14252.1, + "probability": 0.828 + }, + { + "start": 14253.28, + "end": 14255.82, + "probability": 0.7755 + }, + { + "start": 14256.6, + "end": 14260.3, + "probability": 0.9453 + }, + { + "start": 14260.86, + "end": 14264.52, + "probability": 0.8379 + }, + { + "start": 14265.1, + "end": 14266.3, + "probability": 0.9839 + }, + { + "start": 14268.18, + "end": 14270.7, + "probability": 0.6714 + }, + { + "start": 14270.82, + "end": 14271.9, + "probability": 0.8032 + }, + { + "start": 14272.44, + "end": 14276.12, + "probability": 0.9336 + }, + { + "start": 14276.12, + "end": 14279.86, + "probability": 0.9911 + }, + { + "start": 14281.0, + "end": 14285.4, + "probability": 0.9713 + }, + { + "start": 14287.36, + "end": 14292.48, + "probability": 0.7825 + }, + { + "start": 14293.02, + "end": 14294.88, + "probability": 0.7799 + }, + { + "start": 14294.98, + "end": 14294.98, + "probability": 0.1948 + }, + { + "start": 14294.98, + "end": 14294.98, + "probability": 0.4902 + }, + { + "start": 14294.98, + "end": 14301.24, + "probability": 0.9912 + }, + { + "start": 14301.48, + "end": 14302.34, + "probability": 0.7449 + }, + { + "start": 14303.28, + "end": 14305.1, + "probability": 0.7792 + }, + { + "start": 14305.57, + "end": 14311.26, + "probability": 0.9536 + }, + { + "start": 14311.34, + "end": 14312.26, + "probability": 0.8757 + }, + { + "start": 14312.46, + "end": 14312.82, + "probability": 0.5929 + }, + { + "start": 14312.96, + "end": 14313.48, + "probability": 0.7991 + }, + { + "start": 14313.98, + "end": 14316.02, + "probability": 0.9644 + }, + { + "start": 14316.72, + "end": 14318.3, + "probability": 0.7018 + }, + { + "start": 14318.46, + "end": 14320.78, + "probability": 0.9962 + }, + { + "start": 14321.28, + "end": 14325.12, + "probability": 0.9409 + }, + { + "start": 14325.58, + "end": 14325.58, + "probability": 0.0028 + }, + { + "start": 14325.58, + "end": 14328.61, + "probability": 0.9224 + }, + { + "start": 14329.7, + "end": 14331.94, + "probability": 0.9891 + }, + { + "start": 14332.4, + "end": 14333.7, + "probability": 0.9946 + }, + { + "start": 14333.72, + "end": 14334.58, + "probability": 0.951 + }, + { + "start": 14334.98, + "end": 14336.06, + "probability": 0.9292 + }, + { + "start": 14336.26, + "end": 14337.98, + "probability": 0.9533 + }, + { + "start": 14338.34, + "end": 14340.02, + "probability": 0.7616 + }, + { + "start": 14340.14, + "end": 14341.84, + "probability": 0.5766 + }, + { + "start": 14342.4, + "end": 14347.1, + "probability": 0.937 + }, + { + "start": 14347.1, + "end": 14351.6, + "probability": 0.988 + }, + { + "start": 14351.94, + "end": 14352.08, + "probability": 0.5024 + }, + { + "start": 14352.62, + "end": 14352.84, + "probability": 0.7021 + }, + { + "start": 14352.84, + "end": 14353.02, + "probability": 0.6523 + }, + { + "start": 14353.7, + "end": 14355.16, + "probability": 0.9421 + }, + { + "start": 14355.22, + "end": 14355.74, + "probability": 0.822 + }, + { + "start": 14355.88, + "end": 14358.28, + "probability": 0.9313 + }, + { + "start": 14359.76, + "end": 14360.72, + "probability": 0.5073 + }, + { + "start": 14367.42, + "end": 14368.26, + "probability": 0.5985 + }, + { + "start": 14368.38, + "end": 14368.38, + "probability": 0.2805 + }, + { + "start": 14368.38, + "end": 14369.44, + "probability": 0.6089 + }, + { + "start": 14369.52, + "end": 14370.78, + "probability": 0.6402 + }, + { + "start": 14373.1, + "end": 14376.7, + "probability": 0.8936 + }, + { + "start": 14377.7, + "end": 14379.06, + "probability": 0.7035 + }, + { + "start": 14380.48, + "end": 14383.26, + "probability": 0.97 + }, + { + "start": 14384.0, + "end": 14386.5, + "probability": 0.8811 + }, + { + "start": 14387.88, + "end": 14392.22, + "probability": 0.9958 + }, + { + "start": 14392.38, + "end": 14394.48, + "probability": 0.9924 + }, + { + "start": 14396.1, + "end": 14396.92, + "probability": 0.9708 + }, + { + "start": 14398.1, + "end": 14399.54, + "probability": 0.756 + }, + { + "start": 14400.82, + "end": 14405.62, + "probability": 0.9651 + }, + { + "start": 14407.12, + "end": 14410.69, + "probability": 0.898 + }, + { + "start": 14412.42, + "end": 14413.28, + "probability": 0.9561 + }, + { + "start": 14413.42, + "end": 14418.9, + "probability": 0.9207 + }, + { + "start": 14419.08, + "end": 14419.46, + "probability": 0.8784 + }, + { + "start": 14419.66, + "end": 14420.16, + "probability": 0.8917 + }, + { + "start": 14421.68, + "end": 14423.56, + "probability": 0.8911 + }, + { + "start": 14424.88, + "end": 14430.68, + "probability": 0.9829 + }, + { + "start": 14431.48, + "end": 14432.34, + "probability": 0.785 + }, + { + "start": 14432.8, + "end": 14433.46, + "probability": 0.5098 + }, + { + "start": 14433.88, + "end": 14434.44, + "probability": 0.14 + }, + { + "start": 14436.04, + "end": 14438.92, + "probability": 0.771 + }, + { + "start": 14439.04, + "end": 14441.52, + "probability": 0.9663 + }, + { + "start": 14441.94, + "end": 14443.04, + "probability": 0.6438 + }, + { + "start": 14443.24, + "end": 14444.08, + "probability": 0.623 + }, + { + "start": 14444.62, + "end": 14447.36, + "probability": 0.972 + }, + { + "start": 14448.08, + "end": 14452.0, + "probability": 0.9192 + }, + { + "start": 14452.24, + "end": 14454.28, + "probability": 0.9847 + }, + { + "start": 14454.42, + "end": 14459.46, + "probability": 0.9919 + }, + { + "start": 14460.68, + "end": 14463.5, + "probability": 0.9938 + }, + { + "start": 14464.82, + "end": 14465.68, + "probability": 0.9819 + }, + { + "start": 14466.08, + "end": 14467.5, + "probability": 0.8382 + }, + { + "start": 14467.56, + "end": 14469.13, + "probability": 0.9041 + }, + { + "start": 14469.42, + "end": 14471.96, + "probability": 0.0316 + }, + { + "start": 14471.96, + "end": 14471.96, + "probability": 0.5442 + }, + { + "start": 14471.96, + "end": 14474.12, + "probability": 0.7778 + }, + { + "start": 14474.76, + "end": 14474.76, + "probability": 0.3127 + }, + { + "start": 14474.76, + "end": 14475.68, + "probability": 0.9907 + }, + { + "start": 14476.22, + "end": 14479.78, + "probability": 0.9966 + }, + { + "start": 14480.8, + "end": 14482.02, + "probability": 0.8582 + }, + { + "start": 14483.74, + "end": 14484.82, + "probability": 0.7284 + }, + { + "start": 14485.08, + "end": 14485.87, + "probability": 0.7189 + }, + { + "start": 14486.3, + "end": 14487.98, + "probability": 0.9287 + }, + { + "start": 14488.86, + "end": 14489.84, + "probability": 0.4637 + }, + { + "start": 14490.38, + "end": 14493.02, + "probability": 0.9096 + }, + { + "start": 14493.1, + "end": 14494.86, + "probability": 0.8845 + }, + { + "start": 14495.32, + "end": 14496.7, + "probability": 0.9377 + }, + { + "start": 14497.54, + "end": 14500.22, + "probability": 0.9689 + }, + { + "start": 14500.28, + "end": 14502.56, + "probability": 0.7447 + }, + { + "start": 14503.64, + "end": 14504.64, + "probability": 0.9706 + }, + { + "start": 14505.56, + "end": 14511.0, + "probability": 0.8115 + }, + { + "start": 14512.22, + "end": 14514.82, + "probability": 0.9273 + }, + { + "start": 14515.76, + "end": 14521.46, + "probability": 0.9374 + }, + { + "start": 14521.64, + "end": 14524.34, + "probability": 0.9949 + }, + { + "start": 14525.26, + "end": 14526.5, + "probability": 0.8331 + }, + { + "start": 14527.18, + "end": 14528.38, + "probability": 0.7925 + }, + { + "start": 14529.08, + "end": 14529.54, + "probability": 0.2834 + }, + { + "start": 14529.86, + "end": 14530.32, + "probability": 0.4071 + }, + { + "start": 14530.86, + "end": 14534.08, + "probability": 0.6751 + }, + { + "start": 14534.76, + "end": 14538.8, + "probability": 0.9666 + }, + { + "start": 14539.24, + "end": 14540.36, + "probability": 0.7187 + }, + { + "start": 14540.42, + "end": 14541.28, + "probability": 0.3098 + }, + { + "start": 14541.28, + "end": 14541.28, + "probability": 0.0578 + }, + { + "start": 14541.28, + "end": 14541.28, + "probability": 0.0534 + }, + { + "start": 14541.28, + "end": 14544.96, + "probability": 0.887 + }, + { + "start": 14545.08, + "end": 14550.3, + "probability": 0.7757 + }, + { + "start": 14550.44, + "end": 14554.16, + "probability": 0.924 + }, + { + "start": 14554.72, + "end": 14556.06, + "probability": 0.9175 + }, + { + "start": 14556.42, + "end": 14559.86, + "probability": 0.9896 + }, + { + "start": 14560.22, + "end": 14561.18, + "probability": 0.6287 + }, + { + "start": 14561.46, + "end": 14561.68, + "probability": 0.8826 + }, + { + "start": 14562.68, + "end": 14563.46, + "probability": 0.3998 + }, + { + "start": 14563.7, + "end": 14566.24, + "probability": 0.617 + }, + { + "start": 14566.62, + "end": 14567.44, + "probability": 0.2373 + }, + { + "start": 14567.44, + "end": 14571.42, + "probability": 0.8784 + }, + { + "start": 14571.58, + "end": 14573.1, + "probability": 0.4769 + }, + { + "start": 14574.08, + "end": 14575.72, + "probability": 0.9434 + }, + { + "start": 14575.92, + "end": 14576.65, + "probability": 0.964 + }, + { + "start": 14577.14, + "end": 14579.32, + "probability": 0.8491 + }, + { + "start": 14584.54, + "end": 14587.36, + "probability": 0.525 + }, + { + "start": 14589.06, + "end": 14592.34, + "probability": 0.9392 + }, + { + "start": 14593.08, + "end": 14594.38, + "probability": 0.8446 + }, + { + "start": 14595.22, + "end": 14598.32, + "probability": 0.9504 + }, + { + "start": 14599.28, + "end": 14601.78, + "probability": 0.96 + }, + { + "start": 14602.32, + "end": 14605.1, + "probability": 0.8765 + }, + { + "start": 14605.7, + "end": 14606.96, + "probability": 0.9563 + }, + { + "start": 14608.26, + "end": 14609.04, + "probability": 0.9275 + }, + { + "start": 14609.9, + "end": 14613.98, + "probability": 0.9262 + }, + { + "start": 14614.58, + "end": 14621.36, + "probability": 0.9893 + }, + { + "start": 14622.64, + "end": 14624.18, + "probability": 0.8597 + }, + { + "start": 14624.94, + "end": 14627.82, + "probability": 0.9771 + }, + { + "start": 14628.42, + "end": 14629.46, + "probability": 0.9481 + }, + { + "start": 14629.62, + "end": 14634.12, + "probability": 0.9712 + }, + { + "start": 14634.68, + "end": 14636.32, + "probability": 0.5817 + }, + { + "start": 14636.42, + "end": 14636.84, + "probability": 0.9641 + }, + { + "start": 14637.84, + "end": 14640.07, + "probability": 0.9258 + }, + { + "start": 14641.08, + "end": 14643.22, + "probability": 0.9841 + }, + { + "start": 14643.24, + "end": 14648.98, + "probability": 0.9886 + }, + { + "start": 14649.64, + "end": 14653.72, + "probability": 0.7095 + }, + { + "start": 14654.28, + "end": 14656.14, + "probability": 0.7355 + }, + { + "start": 14656.52, + "end": 14658.04, + "probability": 0.9673 + }, + { + "start": 14658.66, + "end": 14661.58, + "probability": 0.9671 + }, + { + "start": 14662.24, + "end": 14665.94, + "probability": 0.9679 + }, + { + "start": 14666.46, + "end": 14669.54, + "probability": 0.8177 + }, + { + "start": 14670.12, + "end": 14671.4, + "probability": 0.9044 + }, + { + "start": 14671.98, + "end": 14674.68, + "probability": 0.915 + }, + { + "start": 14675.2, + "end": 14676.72, + "probability": 0.9531 + }, + { + "start": 14677.32, + "end": 14679.06, + "probability": 0.9711 + }, + { + "start": 14689.8, + "end": 14691.12, + "probability": 0.3048 + }, + { + "start": 14691.12, + "end": 14691.12, + "probability": 0.0938 + }, + { + "start": 14691.12, + "end": 14691.22, + "probability": 0.5214 + }, + { + "start": 14691.58, + "end": 14692.8, + "probability": 0.6078 + }, + { + "start": 14692.86, + "end": 14697.92, + "probability": 0.9384 + }, + { + "start": 14697.98, + "end": 14699.3, + "probability": 0.7054 + }, + { + "start": 14699.54, + "end": 14699.66, + "probability": 0.8247 + }, + { + "start": 14700.34, + "end": 14701.7, + "probability": 0.7957 + }, + { + "start": 14702.36, + "end": 14705.78, + "probability": 0.9302 + }, + { + "start": 14706.16, + "end": 14708.48, + "probability": 0.8747 + }, + { + "start": 14709.04, + "end": 14712.36, + "probability": 0.9717 + }, + { + "start": 14712.78, + "end": 14714.36, + "probability": 0.9922 + }, + { + "start": 14715.2, + "end": 14718.68, + "probability": 0.9854 + }, + { + "start": 14719.28, + "end": 14721.82, + "probability": 0.9754 + }, + { + "start": 14722.14, + "end": 14722.96, + "probability": 0.7373 + }, + { + "start": 14723.02, + "end": 14724.2, + "probability": 0.979 + }, + { + "start": 14724.54, + "end": 14725.88, + "probability": 0.7879 + }, + { + "start": 14726.14, + "end": 14728.96, + "probability": 0.9361 + }, + { + "start": 14729.72, + "end": 14731.48, + "probability": 0.784 + }, + { + "start": 14733.12, + "end": 14733.5, + "probability": 0.9186 + }, + { + "start": 14733.72, + "end": 14735.9, + "probability": 0.9703 + }, + { + "start": 14735.96, + "end": 14738.96, + "probability": 0.9932 + }, + { + "start": 14739.08, + "end": 14740.82, + "probability": 0.9859 + }, + { + "start": 14741.42, + "end": 14742.38, + "probability": 0.9185 + }, + { + "start": 14743.2, + "end": 14744.96, + "probability": 0.7854 + }, + { + "start": 14746.32, + "end": 14746.96, + "probability": 0.6983 + }, + { + "start": 14747.08, + "end": 14750.12, + "probability": 0.9907 + }, + { + "start": 14750.12, + "end": 14753.14, + "probability": 0.9461 + }, + { + "start": 14753.54, + "end": 14757.32, + "probability": 0.8701 + }, + { + "start": 14759.38, + "end": 14761.64, + "probability": 0.9734 + }, + { + "start": 14761.8, + "end": 14764.16, + "probability": 0.7007 + }, + { + "start": 14764.82, + "end": 14766.96, + "probability": 0.9735 + }, + { + "start": 14767.82, + "end": 14772.04, + "probability": 0.8065 + }, + { + "start": 14772.68, + "end": 14774.8, + "probability": 0.9519 + }, + { + "start": 14775.78, + "end": 14778.14, + "probability": 0.9948 + }, + { + "start": 14778.62, + "end": 14779.84, + "probability": 0.9604 + }, + { + "start": 14780.02, + "end": 14784.08, + "probability": 0.9907 + }, + { + "start": 14784.18, + "end": 14785.4, + "probability": 0.8818 + }, + { + "start": 14785.94, + "end": 14788.46, + "probability": 0.9902 + }, + { + "start": 14789.24, + "end": 14790.1, + "probability": 0.7128 + }, + { + "start": 14790.63, + "end": 14793.76, + "probability": 0.5012 + }, + { + "start": 14793.76, + "end": 14793.76, + "probability": 0.2608 + }, + { + "start": 14793.76, + "end": 14795.14, + "probability": 0.5275 + }, + { + "start": 14795.66, + "end": 14798.28, + "probability": 0.7585 + }, + { + "start": 14805.28, + "end": 14806.24, + "probability": 0.8516 + }, + { + "start": 14807.68, + "end": 14810.66, + "probability": 0.8792 + }, + { + "start": 14813.02, + "end": 14813.94, + "probability": 0.9515 + }, + { + "start": 14815.48, + "end": 14818.5, + "probability": 0.9129 + }, + { + "start": 14819.76, + "end": 14821.36, + "probability": 0.9633 + }, + { + "start": 14822.52, + "end": 14822.92, + "probability": 0.9473 + }, + { + "start": 14825.7, + "end": 14827.38, + "probability": 0.8878 + }, + { + "start": 14828.64, + "end": 14832.54, + "probability": 0.9781 + }, + { + "start": 14834.38, + "end": 14835.94, + "probability": 0.8336 + }, + { + "start": 14837.56, + "end": 14839.44, + "probability": 0.9912 + }, + { + "start": 14840.82, + "end": 14842.04, + "probability": 0.8955 + }, + { + "start": 14845.3, + "end": 14846.88, + "probability": 0.656 + }, + { + "start": 14847.18, + "end": 14848.56, + "probability": 0.7529 + }, + { + "start": 14848.56, + "end": 14849.22, + "probability": 0.8201 + }, + { + "start": 14850.74, + "end": 14853.6, + "probability": 0.8155 + }, + { + "start": 14854.96, + "end": 14856.52, + "probability": 0.7379 + }, + { + "start": 14858.04, + "end": 14859.28, + "probability": 0.7595 + }, + { + "start": 14860.36, + "end": 14861.12, + "probability": 0.98 + }, + { + "start": 14862.2, + "end": 14864.68, + "probability": 0.8183 + }, + { + "start": 14865.8, + "end": 14866.46, + "probability": 0.9459 + }, + { + "start": 14867.12, + "end": 14868.08, + "probability": 0.9825 + }, + { + "start": 14869.5, + "end": 14870.52, + "probability": 0.9082 + }, + { + "start": 14871.3, + "end": 14872.34, + "probability": 0.7388 + }, + { + "start": 14873.44, + "end": 14878.4, + "probability": 0.9847 + }, + { + "start": 14879.08, + "end": 14879.64, + "probability": 0.67 + }, + { + "start": 14880.76, + "end": 14882.65, + "probability": 0.8719 + }, + { + "start": 14883.02, + "end": 14883.32, + "probability": 0.739 + }, + { + "start": 14884.52, + "end": 14887.48, + "probability": 0.9929 + }, + { + "start": 14888.28, + "end": 14890.16, + "probability": 0.9963 + }, + { + "start": 14890.96, + "end": 14892.36, + "probability": 0.9824 + }, + { + "start": 14893.12, + "end": 14893.52, + "probability": 0.8709 + }, + { + "start": 14894.84, + "end": 14895.98, + "probability": 0.8848 + }, + { + "start": 14896.46, + "end": 14897.44, + "probability": 0.8813 + }, + { + "start": 14897.86, + "end": 14898.26, + "probability": 0.535 + }, + { + "start": 14898.38, + "end": 14899.08, + "probability": 0.9619 + }, + { + "start": 14900.48, + "end": 14903.52, + "probability": 0.9871 + }, + { + "start": 14903.88, + "end": 14904.9, + "probability": 0.8336 + }, + { + "start": 14905.0, + "end": 14905.56, + "probability": 0.4643 + }, + { + "start": 14906.24, + "end": 14906.88, + "probability": 0.8091 + }, + { + "start": 14908.28, + "end": 14909.24, + "probability": 0.9867 + }, + { + "start": 14910.06, + "end": 14911.16, + "probability": 0.9004 + }, + { + "start": 14912.12, + "end": 14914.44, + "probability": 0.9951 + }, + { + "start": 14916.06, + "end": 14921.28, + "probability": 0.9919 + }, + { + "start": 14921.38, + "end": 14924.3, + "probability": 0.8083 + }, + { + "start": 14925.26, + "end": 14926.1, + "probability": 0.6493 + }, + { + "start": 14927.42, + "end": 14929.0, + "probability": 0.993 + }, + { + "start": 14930.06, + "end": 14933.92, + "probability": 0.9949 + }, + { + "start": 14933.92, + "end": 14936.88, + "probability": 0.9659 + }, + { + "start": 14938.72, + "end": 14940.96, + "probability": 0.9758 + }, + { + "start": 14941.92, + "end": 14942.74, + "probability": 0.7447 + }, + { + "start": 14944.41, + "end": 14947.36, + "probability": 0.4165 + }, + { + "start": 14947.52, + "end": 14949.16, + "probability": 0.2014 + }, + { + "start": 14949.26, + "end": 14949.9, + "probability": 0.7213 + }, + { + "start": 14950.56, + "end": 14952.54, + "probability": 0.6371 + }, + { + "start": 14953.88, + "end": 14955.12, + "probability": 0.7165 + }, + { + "start": 14955.66, + "end": 14958.54, + "probability": 0.8925 + }, + { + "start": 14959.5, + "end": 14960.98, + "probability": 0.9497 + }, + { + "start": 14961.6, + "end": 14964.78, + "probability": 0.7991 + }, + { + "start": 14966.1, + "end": 14966.66, + "probability": 0.834 + }, + { + "start": 14966.76, + "end": 14970.16, + "probability": 0.9072 + }, + { + "start": 14971.36, + "end": 14971.62, + "probability": 0.0317 + }, + { + "start": 14971.62, + "end": 14975.22, + "probability": 0.9726 + }, + { + "start": 14975.7, + "end": 14978.14, + "probability": 0.7617 + }, + { + "start": 14978.36, + "end": 14979.34, + "probability": 0.5224 + }, + { + "start": 14979.42, + "end": 14979.96, + "probability": 0.7998 + }, + { + "start": 14980.8, + "end": 14983.72, + "probability": 0.8842 + }, + { + "start": 14984.62, + "end": 14987.12, + "probability": 0.9434 + }, + { + "start": 14987.76, + "end": 14988.22, + "probability": 0.7952 + }, + { + "start": 14988.88, + "end": 14990.06, + "probability": 0.9891 + }, + { + "start": 14990.72, + "end": 14991.84, + "probability": 0.7361 + }, + { + "start": 14993.04, + "end": 14994.6, + "probability": 0.9258 + }, + { + "start": 14995.44, + "end": 14997.78, + "probability": 0.9951 + }, + { + "start": 14998.88, + "end": 15001.98, + "probability": 0.9292 + }, + { + "start": 15002.56, + "end": 15004.42, + "probability": 0.7988 + }, + { + "start": 15005.56, + "end": 15008.88, + "probability": 0.9817 + }, + { + "start": 15008.88, + "end": 15011.68, + "probability": 0.9983 + }, + { + "start": 15012.6, + "end": 15013.82, + "probability": 0.9346 + }, + { + "start": 15014.72, + "end": 15016.18, + "probability": 0.9324 + }, + { + "start": 15016.84, + "end": 15019.66, + "probability": 0.9316 + }, + { + "start": 15020.66, + "end": 15023.54, + "probability": 0.8813 + }, + { + "start": 15024.36, + "end": 15027.06, + "probability": 0.9839 + }, + { + "start": 15027.84, + "end": 15028.5, + "probability": 0.9348 + }, + { + "start": 15028.66, + "end": 15030.38, + "probability": 0.9604 + }, + { + "start": 15030.78, + "end": 15031.5, + "probability": 0.7956 + }, + { + "start": 15032.12, + "end": 15033.64, + "probability": 0.9034 + }, + { + "start": 15034.38, + "end": 15035.94, + "probability": 0.8243 + }, + { + "start": 15036.7, + "end": 15038.38, + "probability": 0.75 + }, + { + "start": 15038.8, + "end": 15041.7, + "probability": 0.8286 + }, + { + "start": 15042.28, + "end": 15045.6, + "probability": 0.8266 + }, + { + "start": 15046.2, + "end": 15050.24, + "probability": 0.9763 + }, + { + "start": 15050.52, + "end": 15052.24, + "probability": 0.6299 + }, + { + "start": 15052.46, + "end": 15052.72, + "probability": 0.7121 + }, + { + "start": 15053.36, + "end": 15053.78, + "probability": 0.5094 + }, + { + "start": 15053.88, + "end": 15055.98, + "probability": 0.9294 + }, + { + "start": 15056.2, + "end": 15058.62, + "probability": 0.9403 + }, + { + "start": 15065.94, + "end": 15067.56, + "probability": 0.873 + }, + { + "start": 15071.92, + "end": 15072.94, + "probability": 0.7075 + }, + { + "start": 15073.46, + "end": 15074.68, + "probability": 0.9089 + }, + { + "start": 15075.14, + "end": 15077.1, + "probability": 0.9943 + }, + { + "start": 15078.02, + "end": 15079.08, + "probability": 0.9703 + }, + { + "start": 15079.44, + "end": 15081.33, + "probability": 0.9271 + }, + { + "start": 15081.72, + "end": 15082.32, + "probability": 0.8877 + }, + { + "start": 15082.36, + "end": 15083.12, + "probability": 0.9012 + }, + { + "start": 15083.8, + "end": 15084.3, + "probability": 0.8694 + }, + { + "start": 15085.02, + "end": 15086.56, + "probability": 0.866 + }, + { + "start": 15086.82, + "end": 15088.22, + "probability": 0.9624 + }, + { + "start": 15088.42, + "end": 15091.02, + "probability": 0.149 + }, + { + "start": 15091.34, + "end": 15092.4, + "probability": 0.6162 + }, + { + "start": 15092.44, + "end": 15093.76, + "probability": 0.8309 + }, + { + "start": 15093.86, + "end": 15097.32, + "probability": 0.9497 + }, + { + "start": 15099.04, + "end": 15101.84, + "probability": 0.5369 + }, + { + "start": 15103.2, + "end": 15103.96, + "probability": 0.8011 + }, + { + "start": 15105.16, + "end": 15106.68, + "probability": 0.6277 + }, + { + "start": 15107.02, + "end": 15110.78, + "probability": 0.9633 + }, + { + "start": 15111.88, + "end": 15116.26, + "probability": 0.8997 + }, + { + "start": 15117.24, + "end": 15118.06, + "probability": 0.782 + }, + { + "start": 15118.14, + "end": 15119.75, + "probability": 0.9422 + }, + { + "start": 15120.04, + "end": 15120.6, + "probability": 0.9533 + }, + { + "start": 15120.66, + "end": 15121.2, + "probability": 0.9512 + }, + { + "start": 15121.44, + "end": 15121.92, + "probability": 0.813 + }, + { + "start": 15122.24, + "end": 15123.94, + "probability": 0.9036 + }, + { + "start": 15124.6, + "end": 15128.14, + "probability": 0.9731 + }, + { + "start": 15129.0, + "end": 15133.06, + "probability": 0.755 + }, + { + "start": 15133.06, + "end": 15133.06, + "probability": 0.0785 + }, + { + "start": 15133.06, + "end": 15135.44, + "probability": 0.6408 + }, + { + "start": 15136.2, + "end": 15137.2, + "probability": 0.6456 + }, + { + "start": 15137.46, + "end": 15138.64, + "probability": 0.5668 + }, + { + "start": 15139.2, + "end": 15139.56, + "probability": 0.661 + }, + { + "start": 15139.68, + "end": 15140.6, + "probability": 0.9747 + }, + { + "start": 15140.72, + "end": 15141.24, + "probability": 0.9773 + }, + { + "start": 15141.4, + "end": 15143.25, + "probability": 0.9395 + }, + { + "start": 15144.28, + "end": 15145.92, + "probability": 0.7767 + }, + { + "start": 15147.52, + "end": 15149.26, + "probability": 0.9429 + }, + { + "start": 15149.88, + "end": 15150.62, + "probability": 0.6118 + }, + { + "start": 15151.58, + "end": 15153.84, + "probability": 0.9966 + }, + { + "start": 15154.32, + "end": 15155.7, + "probability": 0.8918 + }, + { + "start": 15156.58, + "end": 15157.7, + "probability": 0.8339 + }, + { + "start": 15159.4, + "end": 15162.9, + "probability": 0.9583 + }, + { + "start": 15163.36, + "end": 15163.96, + "probability": 0.4278 + }, + { + "start": 15163.96, + "end": 15165.38, + "probability": 0.832 + }, + { + "start": 15166.04, + "end": 15167.28, + "probability": 0.6714 + }, + { + "start": 15168.18, + "end": 15169.54, + "probability": 0.6991 + }, + { + "start": 15169.7, + "end": 15170.04, + "probability": 0.474 + }, + { + "start": 15170.18, + "end": 15171.26, + "probability": 0.898 + }, + { + "start": 15171.5, + "end": 15173.8, + "probability": 0.9916 + }, + { + "start": 15174.3, + "end": 15177.36, + "probability": 0.7482 + }, + { + "start": 15177.88, + "end": 15182.72, + "probability": 0.9026 + }, + { + "start": 15182.9, + "end": 15184.02, + "probability": 0.9888 + }, + { + "start": 15184.18, + "end": 15186.12, + "probability": 0.7256 + }, + { + "start": 15186.52, + "end": 15187.26, + "probability": 0.8888 + }, + { + "start": 15188.0, + "end": 15189.09, + "probability": 0.9883 + }, + { + "start": 15190.56, + "end": 15192.28, + "probability": 0.7437 + }, + { + "start": 15192.44, + "end": 15193.9, + "probability": 0.9771 + }, + { + "start": 15194.5, + "end": 15196.14, + "probability": 0.7506 + }, + { + "start": 15196.92, + "end": 15198.76, + "probability": 0.9028 + }, + { + "start": 15198.92, + "end": 15200.5, + "probability": 0.9788 + }, + { + "start": 15201.2, + "end": 15203.34, + "probability": 0.9879 + }, + { + "start": 15204.16, + "end": 15205.87, + "probability": 0.9807 + }, + { + "start": 15206.6, + "end": 15208.56, + "probability": 0.97 + }, + { + "start": 15209.9, + "end": 15211.76, + "probability": 0.9492 + }, + { + "start": 15212.42, + "end": 15213.42, + "probability": 0.8656 + }, + { + "start": 15214.4, + "end": 15215.4, + "probability": 0.9246 + }, + { + "start": 15216.36, + "end": 15217.18, + "probability": 0.7761 + }, + { + "start": 15217.24, + "end": 15218.52, + "probability": 0.7616 + }, + { + "start": 15218.54, + "end": 15219.82, + "probability": 0.9302 + }, + { + "start": 15220.46, + "end": 15222.62, + "probability": 0.9862 + }, + { + "start": 15222.7, + "end": 15224.06, + "probability": 0.968 + }, + { + "start": 15224.14, + "end": 15225.8, + "probability": 0.9045 + }, + { + "start": 15226.7, + "end": 15229.9, + "probability": 0.9698 + }, + { + "start": 15231.2, + "end": 15231.92, + "probability": 0.927 + }, + { + "start": 15232.02, + "end": 15233.28, + "probability": 0.9406 + }, + { + "start": 15234.68, + "end": 15238.08, + "probability": 0.8266 + }, + { + "start": 15239.98, + "end": 15242.9, + "probability": 0.8967 + }, + { + "start": 15243.42, + "end": 15245.1, + "probability": 0.8854 + }, + { + "start": 15245.74, + "end": 15247.22, + "probability": 0.9647 + }, + { + "start": 15247.52, + "end": 15249.48, + "probability": 0.0971 + }, + { + "start": 15249.94, + "end": 15250.62, + "probability": 0.4918 + }, + { + "start": 15251.62, + "end": 15252.76, + "probability": 0.9299 + }, + { + "start": 15253.5, + "end": 15254.12, + "probability": 0.6184 + }, + { + "start": 15254.52, + "end": 15257.48, + "probability": 0.4858 + }, + { + "start": 15257.72, + "end": 15258.64, + "probability": 0.8005 + }, + { + "start": 15260.18, + "end": 15261.26, + "probability": 0.8958 + }, + { + "start": 15261.34, + "end": 15261.6, + "probability": 0.8857 + }, + { + "start": 15261.74, + "end": 15262.9, + "probability": 0.8965 + }, + { + "start": 15262.96, + "end": 15265.38, + "probability": 0.986 + }, + { + "start": 15265.98, + "end": 15267.42, + "probability": 0.9526 + }, + { + "start": 15267.5, + "end": 15270.16, + "probability": 0.7552 + }, + { + "start": 15270.24, + "end": 15271.82, + "probability": 0.827 + }, + { + "start": 15271.88, + "end": 15273.06, + "probability": 0.9772 + }, + { + "start": 15274.67, + "end": 15277.38, + "probability": 0.7474 + }, + { + "start": 15277.52, + "end": 15278.08, + "probability": 0.2672 + }, + { + "start": 15278.1, + "end": 15278.66, + "probability": 0.7795 + }, + { + "start": 15278.7, + "end": 15280.3, + "probability": 0.6384 + }, + { + "start": 15280.38, + "end": 15281.76, + "probability": 0.8403 + }, + { + "start": 15281.9, + "end": 15282.27, + "probability": 0.9071 + }, + { + "start": 15283.1, + "end": 15286.1, + "probability": 0.9488 + }, + { + "start": 15287.34, + "end": 15290.12, + "probability": 0.9636 + }, + { + "start": 15291.02, + "end": 15293.1, + "probability": 0.7673 + }, + { + "start": 15296.13, + "end": 15297.18, + "probability": 0.1167 + }, + { + "start": 15297.18, + "end": 15298.79, + "probability": 0.7052 + }, + { + "start": 15299.22, + "end": 15301.14, + "probability": 0.9889 + }, + { + "start": 15304.06, + "end": 15306.42, + "probability": 0.7455 + }, + { + "start": 15307.02, + "end": 15309.61, + "probability": 0.9906 + }, + { + "start": 15310.6, + "end": 15311.82, + "probability": 0.6716 + }, + { + "start": 15311.96, + "end": 15313.54, + "probability": 0.4437 + }, + { + "start": 15314.96, + "end": 15315.66, + "probability": 0.9503 + }, + { + "start": 15315.78, + "end": 15317.14, + "probability": 0.9536 + }, + { + "start": 15318.64, + "end": 15320.82, + "probability": 0.985 + }, + { + "start": 15322.74, + "end": 15326.36, + "probability": 0.996 + }, + { + "start": 15326.98, + "end": 15328.22, + "probability": 0.7001 + }, + { + "start": 15328.36, + "end": 15329.76, + "probability": 0.8619 + }, + { + "start": 15330.26, + "end": 15330.72, + "probability": 0.7267 + }, + { + "start": 15330.8, + "end": 15332.28, + "probability": 0.9729 + }, + { + "start": 15333.04, + "end": 15336.12, + "probability": 0.9839 + }, + { + "start": 15336.58, + "end": 15338.9, + "probability": 0.9561 + }, + { + "start": 15340.46, + "end": 15341.3, + "probability": 0.7487 + }, + { + "start": 15342.04, + "end": 15345.54, + "probability": 0.9375 + }, + { + "start": 15345.6, + "end": 15346.44, + "probability": 0.5501 + }, + { + "start": 15346.46, + "end": 15347.02, + "probability": 0.552 + }, + { + "start": 15347.38, + "end": 15349.14, + "probability": 0.9941 + }, + { + "start": 15349.34, + "end": 15350.69, + "probability": 0.7536 + }, + { + "start": 15351.66, + "end": 15353.71, + "probability": 0.9819 + }, + { + "start": 15353.94, + "end": 15355.98, + "probability": 0.979 + }, + { + "start": 15358.08, + "end": 15358.44, + "probability": 0.2729 + }, + { + "start": 15358.92, + "end": 15361.04, + "probability": 0.8885 + }, + { + "start": 15364.03, + "end": 15366.28, + "probability": 0.6792 + }, + { + "start": 15367.06, + "end": 15368.96, + "probability": 0.3822 + }, + { + "start": 15374.2, + "end": 15374.7, + "probability": 0.3922 + }, + { + "start": 15375.28, + "end": 15376.92, + "probability": 0.787 + }, + { + "start": 15378.72, + "end": 15381.8, + "probability": 0.8502 + }, + { + "start": 15383.58, + "end": 15384.48, + "probability": 0.7185 + }, + { + "start": 15385.28, + "end": 15387.82, + "probability": 0.7601 + }, + { + "start": 15389.62, + "end": 15390.46, + "probability": 0.7969 + }, + { + "start": 15393.88, + "end": 15395.92, + "probability": 0.7975 + }, + { + "start": 15398.42, + "end": 15400.94, + "probability": 0.9865 + }, + { + "start": 15402.58, + "end": 15404.1, + "probability": 0.1785 + }, + { + "start": 15404.1, + "end": 15406.5, + "probability": 0.9118 + }, + { + "start": 15407.26, + "end": 15411.1, + "probability": 0.9718 + }, + { + "start": 15411.8, + "end": 15413.58, + "probability": 0.7631 + }, + { + "start": 15414.16, + "end": 15417.12, + "probability": 0.9704 + }, + { + "start": 15417.32, + "end": 15418.48, + "probability": 0.8408 + }, + { + "start": 15418.62, + "end": 15420.9, + "probability": 0.9752 + }, + { + "start": 15421.6, + "end": 15424.34, + "probability": 0.9713 + }, + { + "start": 15425.36, + "end": 15426.82, + "probability": 0.9868 + }, + { + "start": 15427.3, + "end": 15428.76, + "probability": 0.9492 + }, + { + "start": 15428.94, + "end": 15429.74, + "probability": 0.7791 + }, + { + "start": 15429.82, + "end": 15431.38, + "probability": 0.9658 + }, + { + "start": 15432.38, + "end": 15435.4, + "probability": 0.9529 + }, + { + "start": 15435.5, + "end": 15438.88, + "probability": 0.9277 + }, + { + "start": 15439.66, + "end": 15442.84, + "probability": 0.9523 + }, + { + "start": 15444.28, + "end": 15446.94, + "probability": 0.9438 + }, + { + "start": 15447.48, + "end": 15448.04, + "probability": 0.8521 + }, + { + "start": 15448.7, + "end": 15449.46, + "probability": 0.8326 + }, + { + "start": 15450.0, + "end": 15450.76, + "probability": 0.8989 + }, + { + "start": 15450.88, + "end": 15452.0, + "probability": 0.3489 + }, + { + "start": 15452.72, + "end": 15453.32, + "probability": 0.8194 + }, + { + "start": 15453.46, + "end": 15456.1, + "probability": 0.874 + }, + { + "start": 15456.5, + "end": 15458.26, + "probability": 0.8878 + }, + { + "start": 15458.58, + "end": 15459.98, + "probability": 0.9917 + }, + { + "start": 15461.08, + "end": 15462.0, + "probability": 0.2999 + }, + { + "start": 15463.56, + "end": 15465.12, + "probability": 0.4009 + }, + { + "start": 15465.12, + "end": 15466.88, + "probability": 0.6026 + }, + { + "start": 15467.02, + "end": 15467.6, + "probability": 0.0571 + }, + { + "start": 15469.46, + "end": 15471.14, + "probability": 0.9524 + }, + { + "start": 15471.24, + "end": 15472.16, + "probability": 0.7629 + }, + { + "start": 15472.16, + "end": 15473.26, + "probability": 0.598 + }, + { + "start": 15473.56, + "end": 15477.16, + "probability": 0.6036 + }, + { + "start": 15477.88, + "end": 15479.46, + "probability": 0.783 + }, + { + "start": 15480.02, + "end": 15482.12, + "probability": 0.7535 + }, + { + "start": 15482.82, + "end": 15483.82, + "probability": 0.8733 + }, + { + "start": 15483.9, + "end": 15484.9, + "probability": 0.4642 + }, + { + "start": 15484.92, + "end": 15486.34, + "probability": 0.9815 + }, + { + "start": 15486.72, + "end": 15487.74, + "probability": 0.9355 + }, + { + "start": 15487.92, + "end": 15488.58, + "probability": 0.9403 + }, + { + "start": 15489.11, + "end": 15489.55, + "probability": 0.1117 + }, + { + "start": 15491.28, + "end": 15494.36, + "probability": 0.6851 + }, + { + "start": 15494.54, + "end": 15494.6, + "probability": 0.5524 + }, + { + "start": 15494.6, + "end": 15495.14, + "probability": 0.1819 + }, + { + "start": 15495.44, + "end": 15496.06, + "probability": 0.5503 + }, + { + "start": 15496.31, + "end": 15498.82, + "probability": 0.9319 + }, + { + "start": 15499.02, + "end": 15501.14, + "probability": 0.9063 + }, + { + "start": 15501.8, + "end": 15503.13, + "probability": 0.9209 + }, + { + "start": 15503.72, + "end": 15505.68, + "probability": 0.2897 + }, + { + "start": 15505.68, + "end": 15506.5, + "probability": 0.0989 + }, + { + "start": 15507.3, + "end": 15512.16, + "probability": 0.6935 + }, + { + "start": 15512.84, + "end": 15514.24, + "probability": 0.9683 + }, + { + "start": 15514.88, + "end": 15516.16, + "probability": 0.8079 + }, + { + "start": 15516.22, + "end": 15517.1, + "probability": 0.9254 + }, + { + "start": 15517.2, + "end": 15520.28, + "probability": 0.6992 + }, + { + "start": 15520.34, + "end": 15521.56, + "probability": 0.9646 + }, + { + "start": 15522.12, + "end": 15523.92, + "probability": 0.8412 + }, + { + "start": 15524.0, + "end": 15524.9, + "probability": 0.7597 + }, + { + "start": 15525.28, + "end": 15527.54, + "probability": 0.3084 + }, + { + "start": 15527.62, + "end": 15530.4, + "probability": 0.5093 + }, + { + "start": 15530.56, + "end": 15531.8, + "probability": 0.2771 + }, + { + "start": 15532.36, + "end": 15533.08, + "probability": 0.417 + }, + { + "start": 15533.08, + "end": 15533.16, + "probability": 0.2618 + }, + { + "start": 15533.28, + "end": 15533.6, + "probability": 0.6859 + }, + { + "start": 15533.72, + "end": 15536.4, + "probability": 0.911 + }, + { + "start": 15536.54, + "end": 15538.18, + "probability": 0.6893 + }, + { + "start": 15538.6, + "end": 15539.16, + "probability": 0.3935 + }, + { + "start": 15539.36, + "end": 15543.3, + "probability": 0.5674 + }, + { + "start": 15543.46, + "end": 15544.26, + "probability": 0.6371 + }, + { + "start": 15545.74, + "end": 15547.54, + "probability": 0.2188 + }, + { + "start": 15547.54, + "end": 15548.04, + "probability": 0.4683 + }, + { + "start": 15548.16, + "end": 15550.4, + "probability": 0.8103 + }, + { + "start": 15550.54, + "end": 15553.2, + "probability": 0.8929 + }, + { + "start": 15553.48, + "end": 15554.08, + "probability": 0.5157 + }, + { + "start": 15554.82, + "end": 15557.34, + "probability": 0.5935 + }, + { + "start": 15558.14, + "end": 15560.2, + "probability": 0.9907 + }, + { + "start": 15560.58, + "end": 15561.92, + "probability": 0.8691 + }, + { + "start": 15563.12, + "end": 15564.5, + "probability": 0.6722 + }, + { + "start": 15564.56, + "end": 15565.46, + "probability": 0.91 + }, + { + "start": 15565.54, + "end": 15567.14, + "probability": 0.9113 + }, + { + "start": 15567.22, + "end": 15567.36, + "probability": 0.696 + }, + { + "start": 15567.44, + "end": 15567.9, + "probability": 0.7063 + }, + { + "start": 15568.78, + "end": 15569.9, + "probability": 0.7441 + }, + { + "start": 15570.54, + "end": 15571.0, + "probability": 0.2612 + }, + { + "start": 15571.12, + "end": 15574.06, + "probability": 0.7906 + }, + { + "start": 15575.0, + "end": 15576.54, + "probability": 0.2736 + }, + { + "start": 15577.22, + "end": 15578.8, + "probability": 0.4197 + }, + { + "start": 15578.86, + "end": 15579.86, + "probability": 0.8532 + }, + { + "start": 15582.02, + "end": 15582.78, + "probability": 0.6621 + }, + { + "start": 15582.92, + "end": 15584.1, + "probability": 0.369 + }, + { + "start": 15584.22, + "end": 15587.0, + "probability": 0.7777 + }, + { + "start": 15587.12, + "end": 15588.14, + "probability": 0.7829 + }, + { + "start": 15588.22, + "end": 15589.84, + "probability": 0.8232 + }, + { + "start": 15589.84, + "end": 15591.42, + "probability": 0.8369 + }, + { + "start": 15591.8, + "end": 15594.5, + "probability": 0.47 + }, + { + "start": 15594.76, + "end": 15595.48, + "probability": 0.9154 + }, + { + "start": 15596.22, + "end": 15596.22, + "probability": 0.0809 + }, + { + "start": 15596.22, + "end": 15597.0, + "probability": 0.4122 + }, + { + "start": 15597.08, + "end": 15598.1, + "probability": 0.5294 + }, + { + "start": 15598.98, + "end": 15600.24, + "probability": 0.4214 + }, + { + "start": 15600.46, + "end": 15601.02, + "probability": 0.0079 + }, + { + "start": 15601.08, + "end": 15602.54, + "probability": 0.5704 + }, + { + "start": 15603.42, + "end": 15603.42, + "probability": 0.1922 + }, + { + "start": 15603.42, + "end": 15608.14, + "probability": 0.9715 + }, + { + "start": 15608.14, + "end": 15611.96, + "probability": 0.9516 + }, + { + "start": 15612.36, + "end": 15616.2, + "probability": 0.6768 + }, + { + "start": 15616.5, + "end": 15617.85, + "probability": 0.9922 + }, + { + "start": 15618.58, + "end": 15619.54, + "probability": 0.8257 + }, + { + "start": 15620.0, + "end": 15621.61, + "probability": 0.8859 + }, + { + "start": 15621.98, + "end": 15623.44, + "probability": 0.8808 + }, + { + "start": 15623.66, + "end": 15624.82, + "probability": 0.1397 + }, + { + "start": 15624.86, + "end": 15625.08, + "probability": 0.3791 + }, + { + "start": 15625.22, + "end": 15626.64, + "probability": 0.8816 + }, + { + "start": 15627.34, + "end": 15628.28, + "probability": 0.8616 + }, + { + "start": 15628.34, + "end": 15629.06, + "probability": 0.9177 + }, + { + "start": 15629.3, + "end": 15631.96, + "probability": 0.7098 + }, + { + "start": 15632.06, + "end": 15633.12, + "probability": 0.9063 + }, + { + "start": 15633.2, + "end": 15635.2, + "probability": 0.786 + }, + { + "start": 15635.64, + "end": 15637.16, + "probability": 0.2704 + }, + { + "start": 15637.54, + "end": 15637.76, + "probability": 0.1715 + }, + { + "start": 15637.76, + "end": 15637.84, + "probability": 0.3648 + }, + { + "start": 15638.44, + "end": 15640.02, + "probability": 0.4146 + }, + { + "start": 15640.02, + "end": 15640.8, + "probability": 0.3324 + }, + { + "start": 15640.91, + "end": 15642.42, + "probability": 0.1808 + }, + { + "start": 15642.46, + "end": 15645.26, + "probability": 0.7726 + }, + { + "start": 15646.54, + "end": 15646.78, + "probability": 0.0439 + }, + { + "start": 15646.78, + "end": 15648.42, + "probability": 0.7867 + }, + { + "start": 15648.52, + "end": 15652.11, + "probability": 0.8851 + }, + { + "start": 15653.18, + "end": 15653.8, + "probability": 0.7595 + }, + { + "start": 15653.92, + "end": 15654.88, + "probability": 0.9137 + }, + { + "start": 15655.74, + "end": 15655.8, + "probability": 0.0071 + }, + { + "start": 15656.24, + "end": 15657.88, + "probability": 0.2983 + }, + { + "start": 15657.88, + "end": 15659.43, + "probability": 0.8137 + }, + { + "start": 15660.86, + "end": 15662.84, + "probability": 0.2186 + }, + { + "start": 15662.86, + "end": 15662.86, + "probability": 0.1041 + }, + { + "start": 15662.86, + "end": 15664.0, + "probability": 0.665 + }, + { + "start": 15665.26, + "end": 15666.44, + "probability": 0.6962 + }, + { + "start": 15666.52, + "end": 15668.58, + "probability": 0.937 + }, + { + "start": 15668.8, + "end": 15669.06, + "probability": 0.605 + }, + { + "start": 15669.28, + "end": 15670.94, + "probability": 0.8015 + }, + { + "start": 15671.31, + "end": 15671.38, + "probability": 0.1178 + }, + { + "start": 15671.38, + "end": 15674.6, + "probability": 0.785 + }, + { + "start": 15675.3, + "end": 15678.44, + "probability": 0.7823 + }, + { + "start": 15678.76, + "end": 15680.3, + "probability": 0.9609 + }, + { + "start": 15680.4, + "end": 15680.96, + "probability": 0.8681 + }, + { + "start": 15681.02, + "end": 15681.74, + "probability": 0.9158 + }, + { + "start": 15682.2, + "end": 15684.24, + "probability": 0.8039 + }, + { + "start": 15684.24, + "end": 15687.1, + "probability": 0.9902 + }, + { + "start": 15687.58, + "end": 15688.74, + "probability": 0.8175 + }, + { + "start": 15689.3, + "end": 15691.34, + "probability": 0.9968 + }, + { + "start": 15691.52, + "end": 15694.7, + "probability": 0.9604 + }, + { + "start": 15695.0, + "end": 15695.98, + "probability": 0.4852 + }, + { + "start": 15696.74, + "end": 15697.6, + "probability": 0.864 + }, + { + "start": 15699.02, + "end": 15699.8, + "probability": 0.7243 + }, + { + "start": 15699.94, + "end": 15701.32, + "probability": 0.6829 + }, + { + "start": 15701.52, + "end": 15702.54, + "probability": 0.9953 + }, + { + "start": 15703.08, + "end": 15704.08, + "probability": 0.6909 + }, + { + "start": 15704.48, + "end": 15705.94, + "probability": 0.8029 + }, + { + "start": 15707.0, + "end": 15707.92, + "probability": 0.8893 + }, + { + "start": 15708.02, + "end": 15710.24, + "probability": 0.7798 + }, + { + "start": 15710.36, + "end": 15710.9, + "probability": 0.9436 + }, + { + "start": 15711.18, + "end": 15712.72, + "probability": 0.9247 + }, + { + "start": 15714.0, + "end": 15714.64, + "probability": 0.0487 + }, + { + "start": 15714.72, + "end": 15715.5, + "probability": 0.4798 + }, + { + "start": 15715.82, + "end": 15717.7, + "probability": 0.6473 + }, + { + "start": 15717.86, + "end": 15720.03, + "probability": 0.9702 + }, + { + "start": 15720.14, + "end": 15721.96, + "probability": 0.7155 + }, + { + "start": 15722.18, + "end": 15724.72, + "probability": 0.9798 + }, + { + "start": 15725.2, + "end": 15725.81, + "probability": 0.9543 + }, + { + "start": 15726.46, + "end": 15727.2, + "probability": 0.8748 + }, + { + "start": 15727.22, + "end": 15729.24, + "probability": 0.7208 + }, + { + "start": 15729.36, + "end": 15731.14, + "probability": 0.6643 + }, + { + "start": 15731.22, + "end": 15732.17, + "probability": 0.5112 + }, + { + "start": 15732.4, + "end": 15732.96, + "probability": 0.4413 + }, + { + "start": 15733.58, + "end": 15734.8, + "probability": 0.5084 + }, + { + "start": 15734.92, + "end": 15736.82, + "probability": 0.9072 + }, + { + "start": 15737.68, + "end": 15739.3, + "probability": 0.9758 + }, + { + "start": 15739.36, + "end": 15740.54, + "probability": 0.634 + }, + { + "start": 15740.84, + "end": 15741.72, + "probability": 0.6066 + }, + { + "start": 15742.06, + "end": 15742.9, + "probability": 0.5625 + }, + { + "start": 15743.42, + "end": 15745.12, + "probability": 0.9503 + }, + { + "start": 15745.6, + "end": 15746.22, + "probability": 0.7687 + }, + { + "start": 15747.7, + "end": 15749.08, + "probability": 0.8569 + }, + { + "start": 15749.86, + "end": 15753.1, + "probability": 0.8779 + }, + { + "start": 15763.72, + "end": 15764.48, + "probability": 0.7449 + }, + { + "start": 15764.62, + "end": 15765.28, + "probability": 0.6026 + }, + { + "start": 15765.46, + "end": 15766.51, + "probability": 0.7924 + }, + { + "start": 15766.92, + "end": 15767.04, + "probability": 0.2973 + }, + { + "start": 15768.02, + "end": 15768.86, + "probability": 0.9722 + }, + { + "start": 15769.26, + "end": 15769.74, + "probability": 0.3967 + }, + { + "start": 15769.96, + "end": 15771.28, + "probability": 0.7611 + }, + { + "start": 15772.36, + "end": 15775.94, + "probability": 0.7707 + }, + { + "start": 15776.32, + "end": 15782.24, + "probability": 0.9968 + }, + { + "start": 15784.18, + "end": 15787.36, + "probability": 0.999 + }, + { + "start": 15788.38, + "end": 15788.98, + "probability": 0.9888 + }, + { + "start": 15790.64, + "end": 15792.1, + "probability": 0.8631 + }, + { + "start": 15794.65, + "end": 15796.84, + "probability": 0.8358 + }, + { + "start": 15798.38, + "end": 15800.44, + "probability": 0.9937 + }, + { + "start": 15800.52, + "end": 15803.78, + "probability": 0.9587 + }, + { + "start": 15804.6, + "end": 15807.58, + "probability": 0.9913 + }, + { + "start": 15808.92, + "end": 15812.12, + "probability": 0.9883 + }, + { + "start": 15812.64, + "end": 15813.72, + "probability": 0.999 + }, + { + "start": 15816.66, + "end": 15818.2, + "probability": 0.9968 + }, + { + "start": 15819.02, + "end": 15820.88, + "probability": 0.998 + }, + { + "start": 15821.74, + "end": 15823.71, + "probability": 0.9942 + }, + { + "start": 15824.26, + "end": 15825.24, + "probability": 0.8073 + }, + { + "start": 15826.72, + "end": 15828.58, + "probability": 0.9932 + }, + { + "start": 15828.66, + "end": 15829.54, + "probability": 0.9827 + }, + { + "start": 15831.58, + "end": 15834.98, + "probability": 0.9263 + }, + { + "start": 15836.66, + "end": 15839.22, + "probability": 0.9312 + }, + { + "start": 15841.6, + "end": 15843.52, + "probability": 0.9456 + }, + { + "start": 15843.96, + "end": 15847.6, + "probability": 0.9457 + }, + { + "start": 15849.42, + "end": 15850.72, + "probability": 0.8658 + }, + { + "start": 15852.1, + "end": 15852.76, + "probability": 0.962 + }, + { + "start": 15853.84, + "end": 15854.8, + "probability": 0.9617 + }, + { + "start": 15858.28, + "end": 15860.96, + "probability": 0.7645 + }, + { + "start": 15862.7, + "end": 15864.14, + "probability": 0.9266 + }, + { + "start": 15866.54, + "end": 15867.14, + "probability": 0.3499 + }, + { + "start": 15867.7, + "end": 15869.18, + "probability": 0.9899 + }, + { + "start": 15870.76, + "end": 15871.62, + "probability": 0.7353 + }, + { + "start": 15873.08, + "end": 15875.76, + "probability": 0.9193 + }, + { + "start": 15877.7, + "end": 15879.64, + "probability": 0.9902 + }, + { + "start": 15879.72, + "end": 15881.2, + "probability": 0.7655 + }, + { + "start": 15881.32, + "end": 15884.54, + "probability": 0.993 + }, + { + "start": 15884.54, + "end": 15887.48, + "probability": 0.9783 + }, + { + "start": 15890.06, + "end": 15891.19, + "probability": 0.9097 + }, + { + "start": 15893.04, + "end": 15893.9, + "probability": 0.7472 + }, + { + "start": 15894.5, + "end": 15895.4, + "probability": 0.9905 + }, + { + "start": 15896.34, + "end": 15899.26, + "probability": 0.9956 + }, + { + "start": 15899.7, + "end": 15901.16, + "probability": 0.7289 + }, + { + "start": 15901.58, + "end": 15901.76, + "probability": 0.0456 + }, + { + "start": 15901.98, + "end": 15907.2, + "probability": 0.9031 + }, + { + "start": 15909.24, + "end": 15910.58, + "probability": 0.6363 + }, + { + "start": 15910.7, + "end": 15911.99, + "probability": 0.9497 + }, + { + "start": 15916.5, + "end": 15916.5, + "probability": 0.2331 + }, + { + "start": 15916.5, + "end": 15916.88, + "probability": 0.5315 + }, + { + "start": 15918.12, + "end": 15921.6, + "probability": 0.7676 + }, + { + "start": 15922.84, + "end": 15923.68, + "probability": 0.9761 + }, + { + "start": 15923.74, + "end": 15924.71, + "probability": 0.9333 + }, + { + "start": 15925.46, + "end": 15928.32, + "probability": 0.9856 + }, + { + "start": 15928.86, + "end": 15930.44, + "probability": 0.9351 + }, + { + "start": 15931.06, + "end": 15932.0, + "probability": 0.902 + }, + { + "start": 15934.14, + "end": 15936.2, + "probability": 0.8779 + }, + { + "start": 15937.3, + "end": 15937.52, + "probability": 0.1836 + }, + { + "start": 15937.72, + "end": 15938.74, + "probability": 0.6862 + }, + { + "start": 15939.64, + "end": 15939.98, + "probability": 0.8016 + }, + { + "start": 15940.78, + "end": 15941.4, + "probability": 0.814 + }, + { + "start": 15942.02, + "end": 15944.06, + "probability": 0.9004 + }, + { + "start": 15944.86, + "end": 15946.87, + "probability": 0.9857 + }, + { + "start": 15947.64, + "end": 15949.3, + "probability": 0.9911 + }, + { + "start": 15949.68, + "end": 15950.64, + "probability": 0.9673 + }, + { + "start": 15950.82, + "end": 15953.4, + "probability": 0.8983 + }, + { + "start": 15954.3, + "end": 15955.1, + "probability": 0.6794 + }, + { + "start": 15956.32, + "end": 15957.06, + "probability": 0.5734 + }, + { + "start": 15957.9, + "end": 15958.66, + "probability": 0.3653 + }, + { + "start": 15959.28, + "end": 15960.06, + "probability": 0.7387 + }, + { + "start": 15960.22, + "end": 15960.62, + "probability": 0.2019 + }, + { + "start": 15960.68, + "end": 15961.96, + "probability": 0.7538 + }, + { + "start": 15962.3, + "end": 15964.9, + "probability": 0.6011 + }, + { + "start": 15965.34, + "end": 15966.32, + "probability": 0.7871 + }, + { + "start": 15966.64, + "end": 15967.06, + "probability": 0.8353 + }, + { + "start": 15968.48, + "end": 15969.22, + "probability": 0.0452 + }, + { + "start": 15969.22, + "end": 15969.22, + "probability": 0.3462 + }, + { + "start": 15969.48, + "end": 15971.88, + "probability": 0.9144 + }, + { + "start": 15972.04, + "end": 15973.96, + "probability": 0.5236 + }, + { + "start": 15974.2, + "end": 15977.12, + "probability": 0.9115 + }, + { + "start": 15979.36, + "end": 15979.4, + "probability": 0.0609 + }, + { + "start": 15979.4, + "end": 15983.56, + "probability": 0.2118 + }, + { + "start": 15995.52, + "end": 15998.16, + "probability": 0.7562 + }, + { + "start": 16000.04, + "end": 16001.44, + "probability": 0.9987 + }, + { + "start": 16002.82, + "end": 16003.38, + "probability": 0.9791 + }, + { + "start": 16004.74, + "end": 16005.19, + "probability": 0.8149 + }, + { + "start": 16006.46, + "end": 16007.0, + "probability": 0.9754 + }, + { + "start": 16008.3, + "end": 16009.7, + "probability": 0.9956 + }, + { + "start": 16010.38, + "end": 16012.66, + "probability": 0.9781 + }, + { + "start": 16012.74, + "end": 16016.74, + "probability": 0.9839 + }, + { + "start": 16017.66, + "end": 16018.92, + "probability": 0.8552 + }, + { + "start": 16020.14, + "end": 16021.82, + "probability": 0.9053 + }, + { + "start": 16022.46, + "end": 16025.3, + "probability": 0.9849 + }, + { + "start": 16025.94, + "end": 16027.38, + "probability": 0.8868 + }, + { + "start": 16027.96, + "end": 16028.66, + "probability": 0.837 + }, + { + "start": 16029.5, + "end": 16030.18, + "probability": 0.9556 + }, + { + "start": 16030.42, + "end": 16031.52, + "probability": 0.7344 + }, + { + "start": 16031.94, + "end": 16032.82, + "probability": 0.9741 + }, + { + "start": 16032.96, + "end": 16035.14, + "probability": 0.4607 + }, + { + "start": 16035.64, + "end": 16036.18, + "probability": 0.7321 + }, + { + "start": 16036.5, + "end": 16038.36, + "probability": 0.9706 + }, + { + "start": 16039.96, + "end": 16042.64, + "probability": 0.9917 + }, + { + "start": 16043.24, + "end": 16046.06, + "probability": 0.9868 + }, + { + "start": 16047.32, + "end": 16048.18, + "probability": 0.7883 + }, + { + "start": 16049.86, + "end": 16052.68, + "probability": 0.9852 + }, + { + "start": 16053.96, + "end": 16055.3, + "probability": 0.9137 + }, + { + "start": 16055.76, + "end": 16056.7, + "probability": 0.8971 + }, + { + "start": 16057.2, + "end": 16058.7, + "probability": 0.954 + }, + { + "start": 16059.32, + "end": 16060.8, + "probability": 0.9924 + }, + { + "start": 16061.46, + "end": 16062.98, + "probability": 0.8832 + }, + { + "start": 16064.1, + "end": 16065.62, + "probability": 0.8729 + }, + { + "start": 16066.02, + "end": 16067.58, + "probability": 0.0091 + }, + { + "start": 16067.58, + "end": 16068.1, + "probability": 0.1359 + }, + { + "start": 16068.88, + "end": 16069.66, + "probability": 0.851 + }, + { + "start": 16070.68, + "end": 16071.61, + "probability": 0.1967 + }, + { + "start": 16072.98, + "end": 16074.5, + "probability": 0.5921 + }, + { + "start": 16076.58, + "end": 16077.98, + "probability": 0.9152 + }, + { + "start": 16079.48, + "end": 16079.58, + "probability": 0.3367 + }, + { + "start": 16079.78, + "end": 16081.42, + "probability": 0.994 + }, + { + "start": 16081.84, + "end": 16083.14, + "probability": 0.8436 + }, + { + "start": 16083.16, + "end": 16083.82, + "probability": 0.9578 + }, + { + "start": 16083.86, + "end": 16084.1, + "probability": 0.9859 + }, + { + "start": 16084.84, + "end": 16086.4, + "probability": 0.8441 + }, + { + "start": 16087.38, + "end": 16088.28, + "probability": 0.9551 + }, + { + "start": 16088.44, + "end": 16088.78, + "probability": 0.9253 + }, + { + "start": 16088.96, + "end": 16092.64, + "probability": 0.9312 + }, + { + "start": 16093.5, + "end": 16094.3, + "probability": 0.6458 + }, + { + "start": 16095.46, + "end": 16097.5, + "probability": 0.9205 + }, + { + "start": 16097.78, + "end": 16106.1, + "probability": 0.9169 + }, + { + "start": 16106.72, + "end": 16107.78, + "probability": 0.4074 + }, + { + "start": 16110.0, + "end": 16114.1, + "probability": 0.9218 + }, + { + "start": 16115.52, + "end": 16116.56, + "probability": 0.8625 + }, + { + "start": 16118.87, + "end": 16120.37, + "probability": 0.1388 + }, + { + "start": 16121.4, + "end": 16124.34, + "probability": 0.9564 + }, + { + "start": 16125.7, + "end": 16127.04, + "probability": 0.969 + }, + { + "start": 16127.9, + "end": 16129.42, + "probability": 0.9762 + }, + { + "start": 16129.94, + "end": 16131.68, + "probability": 0.9785 + }, + { + "start": 16132.38, + "end": 16134.02, + "probability": 0.791 + }, + { + "start": 16134.88, + "end": 16135.74, + "probability": 0.9437 + }, + { + "start": 16137.2, + "end": 16139.54, + "probability": 0.9906 + }, + { + "start": 16139.96, + "end": 16141.74, + "probability": 0.9673 + }, + { + "start": 16142.7, + "end": 16144.51, + "probability": 0.0734 + }, + { + "start": 16144.8, + "end": 16145.98, + "probability": 0.5576 + }, + { + "start": 16147.06, + "end": 16149.32, + "probability": 0.9577 + }, + { + "start": 16150.8, + "end": 16152.06, + "probability": 0.989 + }, + { + "start": 16152.54, + "end": 16155.96, + "probability": 0.9863 + }, + { + "start": 16156.38, + "end": 16157.42, + "probability": 0.9114 + }, + { + "start": 16157.86, + "end": 16158.76, + "probability": 0.8509 + }, + { + "start": 16159.76, + "end": 16163.38, + "probability": 0.897 + }, + { + "start": 16165.1, + "end": 16168.04, + "probability": 0.8773 + }, + { + "start": 16168.74, + "end": 16170.34, + "probability": 0.9915 + }, + { + "start": 16170.72, + "end": 16173.82, + "probability": 0.9298 + }, + { + "start": 16174.12, + "end": 16175.44, + "probability": 0.8521 + }, + { + "start": 16176.08, + "end": 16176.8, + "probability": 0.9556 + }, + { + "start": 16177.34, + "end": 16181.3, + "probability": 0.9976 + }, + { + "start": 16181.92, + "end": 16184.0, + "probability": 0.713 + }, + { + "start": 16184.0, + "end": 16186.56, + "probability": 0.9462 + }, + { + "start": 16187.14, + "end": 16189.32, + "probability": 0.976 + }, + { + "start": 16190.12, + "end": 16192.48, + "probability": 0.9481 + }, + { + "start": 16193.24, + "end": 16196.16, + "probability": 0.998 + }, + { + "start": 16196.64, + "end": 16197.3, + "probability": 0.9521 + }, + { + "start": 16198.12, + "end": 16199.28, + "probability": 0.5974 + }, + { + "start": 16200.26, + "end": 16204.08, + "probability": 0.3547 + }, + { + "start": 16204.08, + "end": 16205.1, + "probability": 0.6198 + }, + { + "start": 16205.28, + "end": 16205.4, + "probability": 0.7652 + }, + { + "start": 16205.5, + "end": 16206.0, + "probability": 0.2807 + }, + { + "start": 16207.08, + "end": 16209.9, + "probability": 0.9817 + }, + { + "start": 16212.24, + "end": 16215.78, + "probability": 0.9111 + }, + { + "start": 16216.78, + "end": 16219.04, + "probability": 0.9742 + }, + { + "start": 16219.6, + "end": 16220.32, + "probability": 0.9811 + }, + { + "start": 16220.72, + "end": 16221.36, + "probability": 0.7625 + }, + { + "start": 16221.86, + "end": 16223.72, + "probability": 0.9867 + }, + { + "start": 16224.08, + "end": 16224.5, + "probability": 0.9863 + }, + { + "start": 16225.2, + "end": 16228.54, + "probability": 0.9796 + }, + { + "start": 16229.76, + "end": 16236.26, + "probability": 0.992 + }, + { + "start": 16236.28, + "end": 16236.94, + "probability": 0.8086 + }, + { + "start": 16237.48, + "end": 16240.48, + "probability": 0.795 + }, + { + "start": 16241.2, + "end": 16243.22, + "probability": 0.8461 + }, + { + "start": 16243.74, + "end": 16244.9, + "probability": 0.9531 + }, + { + "start": 16245.46, + "end": 16246.16, + "probability": 0.9856 + }, + { + "start": 16246.52, + "end": 16246.78, + "probability": 0.7582 + }, + { + "start": 16247.36, + "end": 16249.48, + "probability": 0.7285 + }, + { + "start": 16249.56, + "end": 16249.96, + "probability": 0.4324 + }, + { + "start": 16249.98, + "end": 16251.52, + "probability": 0.6868 + }, + { + "start": 16259.2, + "end": 16260.84, + "probability": 0.6036 + }, + { + "start": 16260.92, + "end": 16261.28, + "probability": 0.5207 + }, + { + "start": 16261.32, + "end": 16262.44, + "probability": 0.8045 + }, + { + "start": 16262.9, + "end": 16267.12, + "probability": 0.9751 + }, + { + "start": 16268.38, + "end": 16269.6, + "probability": 0.533 + }, + { + "start": 16270.7, + "end": 16271.58, + "probability": 0.9571 + }, + { + "start": 16272.9, + "end": 16273.54, + "probability": 0.6235 + }, + { + "start": 16273.6, + "end": 16276.9, + "probability": 0.8977 + }, + { + "start": 16278.08, + "end": 16279.76, + "probability": 0.8167 + }, + { + "start": 16281.28, + "end": 16282.2, + "probability": 0.7397 + }, + { + "start": 16283.4, + "end": 16286.42, + "probability": 0.8584 + }, + { + "start": 16288.72, + "end": 16297.18, + "probability": 0.986 + }, + { + "start": 16298.84, + "end": 16300.9, + "probability": 0.8684 + }, + { + "start": 16301.6, + "end": 16304.48, + "probability": 0.8467 + }, + { + "start": 16305.08, + "end": 16307.38, + "probability": 0.8362 + }, + { + "start": 16308.08, + "end": 16309.98, + "probability": 0.759 + }, + { + "start": 16310.54, + "end": 16312.72, + "probability": 0.881 + }, + { + "start": 16313.16, + "end": 16314.16, + "probability": 0.8037 + }, + { + "start": 16314.48, + "end": 16319.0, + "probability": 0.9766 + }, + { + "start": 16319.82, + "end": 16320.58, + "probability": 0.614 + }, + { + "start": 16321.54, + "end": 16321.74, + "probability": 0.7775 + }, + { + "start": 16323.1, + "end": 16323.66, + "probability": 0.8389 + }, + { + "start": 16324.76, + "end": 16326.68, + "probability": 0.9497 + }, + { + "start": 16327.6, + "end": 16328.12, + "probability": 0.8774 + }, + { + "start": 16329.52, + "end": 16330.78, + "probability": 0.9727 + }, + { + "start": 16330.84, + "end": 16331.52, + "probability": 0.8623 + }, + { + "start": 16331.56, + "end": 16335.7, + "probability": 0.9867 + }, + { + "start": 16335.78, + "end": 16336.28, + "probability": 0.9392 + }, + { + "start": 16336.48, + "end": 16337.88, + "probability": 0.5017 + }, + { + "start": 16339.22, + "end": 16341.92, + "probability": 0.8 + }, + { + "start": 16342.9, + "end": 16346.96, + "probability": 0.744 + }, + { + "start": 16347.2, + "end": 16347.2, + "probability": 0.7212 + }, + { + "start": 16348.24, + "end": 16352.04, + "probability": 0.6179 + }, + { + "start": 16352.06, + "end": 16352.4, + "probability": 0.9092 + }, + { + "start": 16353.08, + "end": 16353.7, + "probability": 0.9053 + }, + { + "start": 16354.3, + "end": 16355.0, + "probability": 0.4375 + }, + { + "start": 16355.3, + "end": 16355.92, + "probability": 0.466 + }, + { + "start": 16357.44, + "end": 16362.68, + "probability": 0.9692 + }, + { + "start": 16363.61, + "end": 16366.16, + "probability": 0.7565 + }, + { + "start": 16369.1, + "end": 16369.5, + "probability": 0.694 + }, + { + "start": 16370.28, + "end": 16375.52, + "probability": 0.8972 + }, + { + "start": 16375.52, + "end": 16379.28, + "probability": 0.9757 + }, + { + "start": 16380.12, + "end": 16381.28, + "probability": 0.9791 + }, + { + "start": 16381.9, + "end": 16383.78, + "probability": 0.9858 + }, + { + "start": 16385.14, + "end": 16385.35, + "probability": 0.4337 + }, + { + "start": 16386.18, + "end": 16387.82, + "probability": 0.8838 + }, + { + "start": 16388.7, + "end": 16389.7, + "probability": 0.8533 + }, + { + "start": 16390.3, + "end": 16396.16, + "probability": 0.8701 + }, + { + "start": 16397.16, + "end": 16399.14, + "probability": 0.9969 + }, + { + "start": 16399.66, + "end": 16400.2, + "probability": 0.9697 + }, + { + "start": 16401.76, + "end": 16407.62, + "probability": 0.9963 + }, + { + "start": 16407.7, + "end": 16410.54, + "probability": 0.8464 + }, + { + "start": 16412.56, + "end": 16413.5, + "probability": 0.8195 + }, + { + "start": 16414.58, + "end": 16415.04, + "probability": 0.3996 + }, + { + "start": 16416.12, + "end": 16418.27, + "probability": 0.7092 + }, + { + "start": 16419.28, + "end": 16420.24, + "probability": 0.9912 + }, + { + "start": 16420.86, + "end": 16421.6, + "probability": 0.7563 + }, + { + "start": 16422.36, + "end": 16422.68, + "probability": 0.9283 + }, + { + "start": 16423.6, + "end": 16425.44, + "probability": 0.7087 + }, + { + "start": 16425.54, + "end": 16429.9, + "probability": 0.6675 + }, + { + "start": 16430.85, + "end": 16435.72, + "probability": 0.7708 + }, + { + "start": 16436.22, + "end": 16436.9, + "probability": 0.7664 + }, + { + "start": 16437.46, + "end": 16438.78, + "probability": 0.8618 + }, + { + "start": 16441.11, + "end": 16443.96, + "probability": 0.1664 + }, + { + "start": 16445.32, + "end": 16447.0, + "probability": 0.6667 + }, + { + "start": 16447.46, + "end": 16449.3, + "probability": 0.57 + }, + { + "start": 16449.72, + "end": 16452.76, + "probability": 0.7224 + }, + { + "start": 16453.2, + "end": 16454.92, + "probability": 0.9802 + }, + { + "start": 16455.48, + "end": 16458.04, + "probability": 0.9771 + }, + { + "start": 16458.42, + "end": 16460.7, + "probability": 0.9697 + }, + { + "start": 16461.4, + "end": 16462.48, + "probability": 0.9903 + }, + { + "start": 16463.08, + "end": 16463.98, + "probability": 0.8093 + }, + { + "start": 16465.5, + "end": 16466.92, + "probability": 0.5985 + }, + { + "start": 16467.26, + "end": 16468.64, + "probability": 0.6915 + }, + { + "start": 16468.7, + "end": 16469.76, + "probability": 0.5759 + }, + { + "start": 16469.8, + "end": 16470.6, + "probability": 0.7561 + }, + { + "start": 16470.68, + "end": 16471.02, + "probability": 0.4031 + }, + { + "start": 16471.04, + "end": 16471.82, + "probability": 0.9074 + }, + { + "start": 16472.0, + "end": 16472.3, + "probability": 0.4883 + }, + { + "start": 16472.96, + "end": 16473.12, + "probability": 0.5447 + }, + { + "start": 16475.56, + "end": 16480.18, + "probability": 0.7593 + }, + { + "start": 16487.24, + "end": 16495.46, + "probability": 0.8909 + }, + { + "start": 16503.28, + "end": 16503.28, + "probability": 0.0124 + }, + { + "start": 16503.28, + "end": 16503.28, + "probability": 0.0952 + }, + { + "start": 16503.28, + "end": 16503.88, + "probability": 0.6272 + }, + { + "start": 16504.42, + "end": 16505.2, + "probability": 0.8019 + }, + { + "start": 16505.36, + "end": 16506.62, + "probability": 0.925 + }, + { + "start": 16506.74, + "end": 16507.88, + "probability": 0.7644 + }, + { + "start": 16508.48, + "end": 16510.44, + "probability": 0.9023 + }, + { + "start": 16511.34, + "end": 16512.06, + "probability": 0.709 + }, + { + "start": 16512.22, + "end": 16512.24, + "probability": 0.0963 + }, + { + "start": 16512.24, + "end": 16512.42, + "probability": 0.359 + }, + { + "start": 16512.56, + "end": 16513.42, + "probability": 0.9661 + }, + { + "start": 16513.86, + "end": 16515.5, + "probability": 0.9956 + }, + { + "start": 16515.6, + "end": 16516.98, + "probability": 0.9604 + }, + { + "start": 16517.72, + "end": 16520.14, + "probability": 0.8571 + }, + { + "start": 16520.72, + "end": 16524.16, + "probability": 0.7602 + }, + { + "start": 16524.8, + "end": 16525.14, + "probability": 0.2291 + }, + { + "start": 16525.36, + "end": 16525.66, + "probability": 0.2312 + }, + { + "start": 16526.3, + "end": 16527.6, + "probability": 0.9713 + }, + { + "start": 16528.36, + "end": 16531.08, + "probability": 0.8545 + }, + { + "start": 16531.68, + "end": 16533.94, + "probability": 0.9492 + }, + { + "start": 16534.14, + "end": 16535.62, + "probability": 0.8595 + }, + { + "start": 16535.88, + "end": 16538.52, + "probability": 0.7126 + }, + { + "start": 16540.0, + "end": 16541.1, + "probability": 0.6987 + }, + { + "start": 16542.96, + "end": 16544.96, + "probability": 0.8677 + }, + { + "start": 16545.62, + "end": 16548.72, + "probability": 0.8562 + }, + { + "start": 16549.12, + "end": 16549.98, + "probability": 0.9443 + }, + { + "start": 16550.1, + "end": 16550.54, + "probability": 0.6881 + }, + { + "start": 16551.32, + "end": 16552.48, + "probability": 0.9818 + }, + { + "start": 16553.3, + "end": 16554.06, + "probability": 0.8905 + }, + { + "start": 16554.6, + "end": 16555.28, + "probability": 0.8283 + }, + { + "start": 16555.92, + "end": 16558.18, + "probability": 0.9519 + }, + { + "start": 16558.64, + "end": 16559.76, + "probability": 0.9338 + }, + { + "start": 16559.82, + "end": 16560.9, + "probability": 0.9559 + }, + { + "start": 16561.26, + "end": 16561.88, + "probability": 0.8358 + }, + { + "start": 16562.46, + "end": 16562.8, + "probability": 0.89 + }, + { + "start": 16563.54, + "end": 16566.4, + "probability": 0.9724 + }, + { + "start": 16567.02, + "end": 16567.94, + "probability": 0.9009 + }, + { + "start": 16568.38, + "end": 16570.62, + "probability": 0.7539 + }, + { + "start": 16571.3, + "end": 16573.36, + "probability": 0.9939 + }, + { + "start": 16573.96, + "end": 16575.32, + "probability": 0.8173 + }, + { + "start": 16575.8, + "end": 16576.52, + "probability": 0.7562 + }, + { + "start": 16577.02, + "end": 16579.44, + "probability": 0.9808 + }, + { + "start": 16580.1, + "end": 16583.3, + "probability": 0.803 + }, + { + "start": 16584.02, + "end": 16584.5, + "probability": 0.7114 + }, + { + "start": 16585.12, + "end": 16585.12, + "probability": 0.0545 + }, + { + "start": 16585.12, + "end": 16588.94, + "probability": 0.8667 + }, + { + "start": 16589.74, + "end": 16590.54, + "probability": 0.5683 + }, + { + "start": 16591.12, + "end": 16593.24, + "probability": 0.8506 + }, + { + "start": 16593.42, + "end": 16594.7, + "probability": 0.8014 + }, + { + "start": 16595.22, + "end": 16596.65, + "probability": 0.9976 + }, + { + "start": 16597.32, + "end": 16598.54, + "probability": 0.7077 + }, + { + "start": 16599.16, + "end": 16600.36, + "probability": 0.6133 + }, + { + "start": 16601.14, + "end": 16601.9, + "probability": 0.4958 + }, + { + "start": 16602.52, + "end": 16603.68, + "probability": 0.8221 + }, + { + "start": 16603.76, + "end": 16604.86, + "probability": 0.8069 + }, + { + "start": 16605.34, + "end": 16605.58, + "probability": 0.5227 + }, + { + "start": 16605.58, + "end": 16606.42, + "probability": 0.7815 + }, + { + "start": 16606.66, + "end": 16607.82, + "probability": 0.6909 + }, + { + "start": 16608.32, + "end": 16610.64, + "probability": 0.8146 + }, + { + "start": 16611.26, + "end": 16612.22, + "probability": 0.99 + }, + { + "start": 16612.86, + "end": 16614.04, + "probability": 0.994 + }, + { + "start": 16614.64, + "end": 16616.5, + "probability": 0.8496 + }, + { + "start": 16617.2, + "end": 16618.82, + "probability": 0.9803 + }, + { + "start": 16619.26, + "end": 16620.18, + "probability": 0.7868 + }, + { + "start": 16620.28, + "end": 16621.28, + "probability": 0.7991 + }, + { + "start": 16621.58, + "end": 16621.74, + "probability": 0.2656 + }, + { + "start": 16621.9, + "end": 16622.94, + "probability": 0.6807 + }, + { + "start": 16623.34, + "end": 16624.32, + "probability": 0.9667 + }, + { + "start": 16624.64, + "end": 16625.52, + "probability": 0.3128 + }, + { + "start": 16626.64, + "end": 16630.56, + "probability": 0.9621 + }, + { + "start": 16631.3, + "end": 16631.8, + "probability": 0.6705 + }, + { + "start": 16631.8, + "end": 16633.7, + "probability": 0.9119 + }, + { + "start": 16634.18, + "end": 16636.12, + "probability": 0.9897 + }, + { + "start": 16636.68, + "end": 16637.94, + "probability": 0.8957 + }, + { + "start": 16638.8, + "end": 16639.96, + "probability": 0.8623 + }, + { + "start": 16640.52, + "end": 16642.19, + "probability": 0.9037 + }, + { + "start": 16642.58, + "end": 16642.92, + "probability": 0.5555 + }, + { + "start": 16643.64, + "end": 16649.9, + "probability": 0.9829 + }, + { + "start": 16651.04, + "end": 16653.44, + "probability": 0.9824 + }, + { + "start": 16653.98, + "end": 16655.64, + "probability": 0.9713 + }, + { + "start": 16656.72, + "end": 16658.22, + "probability": 0.7261 + }, + { + "start": 16658.78, + "end": 16658.98, + "probability": 0.4595 + }, + { + "start": 16659.08, + "end": 16660.44, + "probability": 0.8934 + }, + { + "start": 16660.88, + "end": 16661.28, + "probability": 0.8527 + }, + { + "start": 16661.38, + "end": 16661.75, + "probability": 0.6528 + }, + { + "start": 16662.28, + "end": 16665.5, + "probability": 0.9279 + }, + { + "start": 16665.96, + "end": 16669.56, + "probability": 0.8884 + }, + { + "start": 16670.06, + "end": 16673.66, + "probability": 0.9751 + }, + { + "start": 16673.82, + "end": 16674.12, + "probability": 0.2315 + }, + { + "start": 16674.12, + "end": 16674.73, + "probability": 0.6786 + }, + { + "start": 16675.76, + "end": 16678.29, + "probability": 0.9382 + }, + { + "start": 16678.8, + "end": 16680.11, + "probability": 0.7831 + }, + { + "start": 16680.54, + "end": 16682.22, + "probability": 0.9897 + }, + { + "start": 16682.7, + "end": 16683.35, + "probability": 0.9041 + }, + { + "start": 16683.68, + "end": 16684.28, + "probability": 0.8889 + }, + { + "start": 16685.3, + "end": 16686.17, + "probability": 0.8215 + }, + { + "start": 16686.64, + "end": 16688.37, + "probability": 0.8923 + }, + { + "start": 16688.96, + "end": 16690.78, + "probability": 0.9834 + }, + { + "start": 16691.22, + "end": 16693.74, + "probability": 0.9445 + }, + { + "start": 16694.3, + "end": 16696.66, + "probability": 0.8717 + }, + { + "start": 16697.48, + "end": 16697.64, + "probability": 0.0637 + }, + { + "start": 16698.48, + "end": 16698.98, + "probability": 0.0895 + }, + { + "start": 16699.1, + "end": 16700.42, + "probability": 0.6234 + }, + { + "start": 16700.5, + "end": 16702.7, + "probability": 0.7368 + }, + { + "start": 16703.48, + "end": 16704.88, + "probability": 0.9399 + }, + { + "start": 16714.74, + "end": 16716.88, + "probability": 0.7401 + }, + { + "start": 16718.54, + "end": 16720.64, + "probability": 0.9125 + }, + { + "start": 16721.58, + "end": 16723.36, + "probability": 0.9146 + }, + { + "start": 16724.12, + "end": 16727.46, + "probability": 0.9323 + }, + { + "start": 16728.56, + "end": 16732.9, + "probability": 0.4926 + }, + { + "start": 16733.2, + "end": 16734.57, + "probability": 0.9722 + }, + { + "start": 16734.76, + "end": 16735.3, + "probability": 0.6188 + }, + { + "start": 16735.52, + "end": 16738.3, + "probability": 0.9868 + }, + { + "start": 16738.8, + "end": 16740.48, + "probability": 0.9792 + }, + { + "start": 16740.66, + "end": 16741.8, + "probability": 0.9928 + }, + { + "start": 16742.38, + "end": 16744.3, + "probability": 0.9956 + }, + { + "start": 16744.94, + "end": 16746.98, + "probability": 0.6866 + }, + { + "start": 16747.24, + "end": 16747.84, + "probability": 0.3623 + }, + { + "start": 16748.24, + "end": 16751.92, + "probability": 0.9896 + }, + { + "start": 16751.94, + "end": 16755.46, + "probability": 0.9539 + }, + { + "start": 16756.76, + "end": 16761.46, + "probability": 0.9888 + }, + { + "start": 16761.46, + "end": 16764.64, + "probability": 0.9873 + }, + { + "start": 16766.12, + "end": 16767.24, + "probability": 0.7747 + }, + { + "start": 16767.44, + "end": 16768.58, + "probability": 0.948 + }, + { + "start": 16769.56, + "end": 16771.38, + "probability": 0.8406 + }, + { + "start": 16771.7, + "end": 16772.6, + "probability": 0.9139 + }, + { + "start": 16772.94, + "end": 16776.06, + "probability": 0.9553 + }, + { + "start": 16776.58, + "end": 16781.02, + "probability": 0.9275 + }, + { + "start": 16781.14, + "end": 16783.24, + "probability": 0.9815 + }, + { + "start": 16786.1, + "end": 16787.0, + "probability": 0.0069 + }, + { + "start": 16787.0, + "end": 16787.14, + "probability": 0.0721 + }, + { + "start": 16787.68, + "end": 16788.42, + "probability": 0.0808 + }, + { + "start": 16788.76, + "end": 16789.46, + "probability": 0.4615 + }, + { + "start": 16789.94, + "end": 16790.7, + "probability": 0.8065 + }, + { + "start": 16790.88, + "end": 16792.1, + "probability": 0.9713 + }, + { + "start": 16792.18, + "end": 16793.23, + "probability": 0.8018 + }, + { + "start": 16793.46, + "end": 16798.66, + "probability": 0.9768 + }, + { + "start": 16799.2, + "end": 16800.62, + "probability": 0.9993 + }, + { + "start": 16801.34, + "end": 16802.44, + "probability": 0.8481 + }, + { + "start": 16803.26, + "end": 16807.58, + "probability": 0.9284 + }, + { + "start": 16807.9, + "end": 16808.5, + "probability": 0.7107 + }, + { + "start": 16809.28, + "end": 16811.7, + "probability": 0.9779 + }, + { + "start": 16813.12, + "end": 16814.42, + "probability": 0.9824 + }, + { + "start": 16815.12, + "end": 16816.44, + "probability": 0.7268 + }, + { + "start": 16817.44, + "end": 16817.54, + "probability": 0.0482 + }, + { + "start": 16817.54, + "end": 16821.86, + "probability": 0.8453 + }, + { + "start": 16822.44, + "end": 16827.06, + "probability": 0.9512 + }, + { + "start": 16827.06, + "end": 16829.26, + "probability": 0.9909 + }, + { + "start": 16830.04, + "end": 16831.76, + "probability": 0.8098 + }, + { + "start": 16831.8, + "end": 16837.84, + "probability": 0.9019 + }, + { + "start": 16838.18, + "end": 16838.78, + "probability": 0.8707 + }, + { + "start": 16839.52, + "end": 16842.3, + "probability": 0.9211 + }, + { + "start": 16842.68, + "end": 16843.99, + "probability": 0.7516 + }, + { + "start": 16845.06, + "end": 16846.48, + "probability": 0.0444 + }, + { + "start": 16846.5, + "end": 16850.26, + "probability": 0.9463 + }, + { + "start": 16850.94, + "end": 16852.56, + "probability": 0.73 + }, + { + "start": 16853.42, + "end": 16854.64, + "probability": 0.9753 + }, + { + "start": 16855.1, + "end": 16858.22, + "probability": 0.9522 + }, + { + "start": 16859.46, + "end": 16862.18, + "probability": 0.9927 + }, + { + "start": 16862.74, + "end": 16863.34, + "probability": 0.9534 + }, + { + "start": 16865.92, + "end": 16869.54, + "probability": 0.9951 + }, + { + "start": 16870.26, + "end": 16874.66, + "probability": 0.9854 + }, + { + "start": 16875.8, + "end": 16877.21, + "probability": 0.9896 + }, + { + "start": 16877.8, + "end": 16879.12, + "probability": 0.9162 + }, + { + "start": 16879.58, + "end": 16881.02, + "probability": 0.8838 + }, + { + "start": 16881.64, + "end": 16886.46, + "probability": 0.997 + }, + { + "start": 16887.06, + "end": 16889.94, + "probability": 0.9897 + }, + { + "start": 16890.44, + "end": 16893.86, + "probability": 0.9965 + }, + { + "start": 16894.48, + "end": 16894.74, + "probability": 0.5414 + }, + { + "start": 16895.08, + "end": 16896.88, + "probability": 0.931 + }, + { + "start": 16897.14, + "end": 16897.66, + "probability": 0.317 + }, + { + "start": 16898.06, + "end": 16902.32, + "probability": 0.9667 + }, + { + "start": 16902.68, + "end": 16906.5, + "probability": 0.9881 + }, + { + "start": 16906.5, + "end": 16909.48, + "probability": 0.907 + }, + { + "start": 16909.84, + "end": 16911.5, + "probability": 0.8762 + }, + { + "start": 16912.2, + "end": 16912.28, + "probability": 0.1517 + }, + { + "start": 16912.6, + "end": 16916.96, + "probability": 0.9128 + }, + { + "start": 16916.96, + "end": 16920.4, + "probability": 0.9049 + }, + { + "start": 16920.9, + "end": 16921.9, + "probability": 0.6691 + }, + { + "start": 16922.6, + "end": 16922.6, + "probability": 0.3055 + }, + { + "start": 16922.6, + "end": 16922.6, + "probability": 0.3076 + }, + { + "start": 16922.6, + "end": 16923.98, + "probability": 0.5907 + }, + { + "start": 16925.01, + "end": 16928.14, + "probability": 0.9365 + }, + { + "start": 16930.04, + "end": 16930.38, + "probability": 0.5933 + }, + { + "start": 16935.23, + "end": 16936.9, + "probability": 0.7896 + }, + { + "start": 16936.9, + "end": 16939.3, + "probability": 0.9001 + }, + { + "start": 16941.04, + "end": 16942.02, + "probability": 0.833 + }, + { + "start": 16942.62, + "end": 16943.6, + "probability": 0.7513 + }, + { + "start": 16944.46, + "end": 16946.2, + "probability": 0.9919 + }, + { + "start": 16947.38, + "end": 16948.84, + "probability": 0.9691 + }, + { + "start": 16949.96, + "end": 16951.06, + "probability": 0.8168 + }, + { + "start": 16951.9, + "end": 16954.84, + "probability": 0.7844 + }, + { + "start": 16956.14, + "end": 16956.56, + "probability": 0.7638 + }, + { + "start": 16957.56, + "end": 16960.38, + "probability": 0.9916 + }, + { + "start": 16961.1, + "end": 16963.84, + "probability": 0.9953 + }, + { + "start": 16965.5, + "end": 16965.5, + "probability": 0.0123 + }, + { + "start": 16965.5, + "end": 16967.17, + "probability": 0.6248 + }, + { + "start": 16968.3, + "end": 16969.68, + "probability": 0.9696 + }, + { + "start": 16971.14, + "end": 16971.92, + "probability": 0.6621 + }, + { + "start": 16973.56, + "end": 16974.06, + "probability": 0.2128 + }, + { + "start": 16974.28, + "end": 16974.78, + "probability": 0.3837 + }, + { + "start": 16976.32, + "end": 16977.72, + "probability": 0.5132 + }, + { + "start": 16977.72, + "end": 16978.36, + "probability": 0.8287 + }, + { + "start": 16980.84, + "end": 16983.36, + "probability": 0.8411 + }, + { + "start": 16985.96, + "end": 16988.0, + "probability": 0.9096 + }, + { + "start": 16988.94, + "end": 16990.24, + "probability": 0.8414 + }, + { + "start": 16991.62, + "end": 16992.76, + "probability": 0.7121 + }, + { + "start": 16993.58, + "end": 16994.66, + "probability": 0.841 + }, + { + "start": 16995.44, + "end": 16996.4, + "probability": 0.0651 + }, + { + "start": 16996.5, + "end": 17004.3, + "probability": 0.8 + }, + { + "start": 17005.64, + "end": 17006.94, + "probability": 0.5381 + }, + { + "start": 17007.8, + "end": 17008.28, + "probability": 0.7836 + }, + { + "start": 17009.16, + "end": 17013.48, + "probability": 0.5591 + }, + { + "start": 17013.48, + "end": 17014.56, + "probability": 0.414 + }, + { + "start": 17015.44, + "end": 17018.08, + "probability": 0.6502 + }, + { + "start": 17018.6, + "end": 17019.17, + "probability": 0.8609 + }, + { + "start": 17020.9, + "end": 17023.04, + "probability": 0.951 + }, + { + "start": 17023.62, + "end": 17025.1, + "probability": 0.9512 + }, + { + "start": 17027.28, + "end": 17028.5, + "probability": 0.5911 + }, + { + "start": 17029.72, + "end": 17032.28, + "probability": 0.9956 + }, + { + "start": 17033.32, + "end": 17038.26, + "probability": 0.968 + }, + { + "start": 17039.1, + "end": 17044.52, + "probability": 0.9914 + }, + { + "start": 17044.88, + "end": 17046.22, + "probability": 0.839 + }, + { + "start": 17047.1, + "end": 17054.16, + "probability": 0.9988 + }, + { + "start": 17054.78, + "end": 17056.22, + "probability": 0.8219 + }, + { + "start": 17057.78, + "end": 17061.68, + "probability": 0.9911 + }, + { + "start": 17062.92, + "end": 17067.22, + "probability": 0.9967 + }, + { + "start": 17067.78, + "end": 17069.0, + "probability": 0.9937 + }, + { + "start": 17069.52, + "end": 17072.66, + "probability": 0.8004 + }, + { + "start": 17077.12, + "end": 17077.97, + "probability": 0.7071 + }, + { + "start": 17079.14, + "end": 17084.82, + "probability": 0.9944 + }, + { + "start": 17086.28, + "end": 17093.82, + "probability": 0.988 + }, + { + "start": 17094.8, + "end": 17096.38, + "probability": 0.9808 + }, + { + "start": 17097.02, + "end": 17100.8, + "probability": 0.9603 + }, + { + "start": 17101.18, + "end": 17102.54, + "probability": 0.8482 + }, + { + "start": 17103.42, + "end": 17104.32, + "probability": 0.9419 + }, + { + "start": 17104.4, + "end": 17106.47, + "probability": 0.9512 + }, + { + "start": 17106.78, + "end": 17107.76, + "probability": 0.7859 + }, + { + "start": 17108.1, + "end": 17108.66, + "probability": 0.8399 + }, + { + "start": 17109.46, + "end": 17115.2, + "probability": 0.9708 + }, + { + "start": 17116.02, + "end": 17117.3, + "probability": 0.8192 + }, + { + "start": 17118.52, + "end": 17118.94, + "probability": 0.6477 + }, + { + "start": 17119.78, + "end": 17120.36, + "probability": 0.7416 + }, + { + "start": 17121.28, + "end": 17121.95, + "probability": 0.9023 + }, + { + "start": 17123.4, + "end": 17126.52, + "probability": 0.9177 + }, + { + "start": 17127.72, + "end": 17130.24, + "probability": 0.7797 + }, + { + "start": 17131.06, + "end": 17132.68, + "probability": 0.669 + }, + { + "start": 17133.08, + "end": 17137.96, + "probability": 0.7797 + }, + { + "start": 17138.98, + "end": 17141.39, + "probability": 0.8589 + }, + { + "start": 17142.02, + "end": 17146.46, + "probability": 0.9985 + }, + { + "start": 17147.78, + "end": 17149.26, + "probability": 0.8457 + }, + { + "start": 17150.42, + "end": 17152.42, + "probability": 0.9599 + }, + { + "start": 17153.52, + "end": 17154.14, + "probability": 0.9159 + }, + { + "start": 17154.62, + "end": 17154.88, + "probability": 0.8118 + }, + { + "start": 17156.36, + "end": 17157.5, + "probability": 0.9001 + }, + { + "start": 17159.24, + "end": 17164.98, + "probability": 0.8226 + }, + { + "start": 17167.28, + "end": 17170.6, + "probability": 0.9329 + }, + { + "start": 17170.7, + "end": 17172.6, + "probability": 0.8209 + }, + { + "start": 17182.0, + "end": 17183.58, + "probability": 0.5706 + }, + { + "start": 17185.0, + "end": 17185.4, + "probability": 0.5785 + }, + { + "start": 17185.4, + "end": 17186.04, + "probability": 0.4421 + }, + { + "start": 17186.08, + "end": 17189.24, + "probability": 0.8831 + }, + { + "start": 17190.16, + "end": 17195.02, + "probability": 0.9749 + }, + { + "start": 17196.32, + "end": 17198.96, + "probability": 0.9922 + }, + { + "start": 17199.14, + "end": 17200.1, + "probability": 0.6122 + }, + { + "start": 17200.72, + "end": 17202.26, + "probability": 0.9845 + }, + { + "start": 17203.38, + "end": 17204.92, + "probability": 0.7559 + }, + { + "start": 17205.1, + "end": 17207.38, + "probability": 0.9651 + }, + { + "start": 17207.46, + "end": 17208.16, + "probability": 0.7957 + }, + { + "start": 17208.64, + "end": 17211.36, + "probability": 0.9979 + }, + { + "start": 17211.92, + "end": 17215.44, + "probability": 0.9932 + }, + { + "start": 17216.16, + "end": 17219.8, + "probability": 0.9657 + }, + { + "start": 17220.48, + "end": 17221.21, + "probability": 0.7512 + }, + { + "start": 17226.16, + "end": 17226.72, + "probability": 0.3769 + }, + { + "start": 17227.3, + "end": 17228.14, + "probability": 0.7477 + }, + { + "start": 17228.2, + "end": 17230.5, + "probability": 0.9668 + }, + { + "start": 17230.68, + "end": 17231.4, + "probability": 0.8345 + }, + { + "start": 17231.72, + "end": 17231.94, + "probability": 0.5117 + }, + { + "start": 17232.08, + "end": 17236.4, + "probability": 0.9808 + }, + { + "start": 17236.46, + "end": 17237.82, + "probability": 0.9249 + }, + { + "start": 17238.3, + "end": 17239.38, + "probability": 0.9839 + }, + { + "start": 17239.52, + "end": 17240.96, + "probability": 0.9814 + }, + { + "start": 17241.74, + "end": 17242.68, + "probability": 0.0148 + }, + { + "start": 17242.68, + "end": 17243.6, + "probability": 0.5628 + }, + { + "start": 17243.66, + "end": 17246.38, + "probability": 0.9175 + }, + { + "start": 17246.98, + "end": 17246.98, + "probability": 0.0701 + }, + { + "start": 17246.98, + "end": 17249.02, + "probability": 0.9196 + }, + { + "start": 17249.62, + "end": 17255.02, + "probability": 0.9766 + }, + { + "start": 17255.16, + "end": 17259.3, + "probability": 0.9966 + }, + { + "start": 17259.5, + "end": 17261.6, + "probability": 0.9875 + }, + { + "start": 17261.98, + "end": 17263.04, + "probability": 0.8081 + }, + { + "start": 17263.22, + "end": 17266.2, + "probability": 0.9637 + }, + { + "start": 17266.74, + "end": 17269.82, + "probability": 0.9153 + }, + { + "start": 17270.26, + "end": 17273.9, + "probability": 0.9437 + }, + { + "start": 17274.14, + "end": 17275.22, + "probability": 0.7827 + }, + { + "start": 17276.78, + "end": 17277.92, + "probability": 0.2141 + }, + { + "start": 17277.92, + "end": 17278.14, + "probability": 0.4782 + }, + { + "start": 17278.38, + "end": 17279.18, + "probability": 0.5798 + }, + { + "start": 17279.28, + "end": 17281.36, + "probability": 0.8626 + }, + { + "start": 17281.78, + "end": 17284.54, + "probability": 0.953 + }, + { + "start": 17284.74, + "end": 17285.84, + "probability": 0.9496 + }, + { + "start": 17286.24, + "end": 17290.98, + "probability": 0.8183 + }, + { + "start": 17290.98, + "end": 17290.98, + "probability": 0.0219 + }, + { + "start": 17290.98, + "end": 17290.98, + "probability": 0.0156 + }, + { + "start": 17290.98, + "end": 17292.78, + "probability": 0.8924 + }, + { + "start": 17293.4, + "end": 17296.0, + "probability": 0.036 + }, + { + "start": 17296.52, + "end": 17296.52, + "probability": 0.0256 + }, + { + "start": 17297.18, + "end": 17299.92, + "probability": 0.98 + }, + { + "start": 17300.0, + "end": 17301.06, + "probability": 0.7633 + }, + { + "start": 17301.9, + "end": 17302.18, + "probability": 0.1162 + }, + { + "start": 17302.72, + "end": 17304.2, + "probability": 0.0822 + }, + { + "start": 17304.54, + "end": 17305.68, + "probability": 0.5338 + }, + { + "start": 17306.26, + "end": 17310.56, + "probability": 0.9897 + }, + { + "start": 17311.1, + "end": 17312.46, + "probability": 0.9963 + }, + { + "start": 17312.86, + "end": 17318.28, + "probability": 0.9985 + }, + { + "start": 17318.46, + "end": 17322.62, + "probability": 0.8393 + }, + { + "start": 17322.62, + "end": 17326.24, + "probability": 0.9767 + }, + { + "start": 17326.5, + "end": 17327.66, + "probability": 0.7517 + }, + { + "start": 17328.46, + "end": 17328.96, + "probability": 0.7744 + }, + { + "start": 17329.04, + "end": 17331.72, + "probability": 0.9735 + }, + { + "start": 17331.8, + "end": 17332.78, + "probability": 0.7558 + }, + { + "start": 17333.34, + "end": 17337.18, + "probability": 0.9179 + }, + { + "start": 17337.26, + "end": 17339.36, + "probability": 0.9413 + }, + { + "start": 17339.56, + "end": 17342.54, + "probability": 0.9316 + }, + { + "start": 17343.12, + "end": 17343.85, + "probability": 0.9132 + }, + { + "start": 17344.08, + "end": 17344.43, + "probability": 0.7677 + }, + { + "start": 17344.62, + "end": 17345.28, + "probability": 0.9629 + }, + { + "start": 17345.46, + "end": 17347.2, + "probability": 0.9941 + }, + { + "start": 17347.8, + "end": 17350.28, + "probability": 0.8667 + }, + { + "start": 17350.28, + "end": 17354.18, + "probability": 0.9619 + }, + { + "start": 17354.32, + "end": 17358.3, + "probability": 0.9526 + }, + { + "start": 17358.48, + "end": 17361.5, + "probability": 0.974 + }, + { + "start": 17361.68, + "end": 17362.8, + "probability": 0.8862 + }, + { + "start": 17363.28, + "end": 17366.58, + "probability": 0.9891 + }, + { + "start": 17367.2, + "end": 17369.58, + "probability": 0.7572 + }, + { + "start": 17370.36, + "end": 17372.64, + "probability": 0.9883 + }, + { + "start": 17372.72, + "end": 17374.26, + "probability": 0.9924 + }, + { + "start": 17375.32, + "end": 17377.18, + "probability": 0.9723 + }, + { + "start": 17377.22, + "end": 17380.36, + "probability": 0.9752 + }, + { + "start": 17380.82, + "end": 17381.62, + "probability": 0.9587 + }, + { + "start": 17382.26, + "end": 17383.03, + "probability": 0.9977 + }, + { + "start": 17384.22, + "end": 17384.9, + "probability": 0.5067 + }, + { + "start": 17384.96, + "end": 17388.8, + "probability": 0.9128 + }, + { + "start": 17388.96, + "end": 17389.42, + "probability": 0.1353 + }, + { + "start": 17389.42, + "end": 17391.68, + "probability": 0.6488 + }, + { + "start": 17392.0, + "end": 17394.46, + "probability": 0.8919 + }, + { + "start": 17395.32, + "end": 17397.04, + "probability": 0.4486 + }, + { + "start": 17397.4, + "end": 17400.24, + "probability": 0.3825 + }, + { + "start": 17400.24, + "end": 17400.24, + "probability": 0.5106 + }, + { + "start": 17400.24, + "end": 17403.76, + "probability": 0.8681 + }, + { + "start": 17404.7, + "end": 17407.3, + "probability": 0.9932 + }, + { + "start": 17408.24, + "end": 17408.48, + "probability": 0.6438 + }, + { + "start": 17410.12, + "end": 17410.54, + "probability": 0.4061 + }, + { + "start": 17421.94, + "end": 17424.76, + "probability": 0.72 + }, + { + "start": 17429.46, + "end": 17432.66, + "probability": 0.9676 + }, + { + "start": 17433.92, + "end": 17434.48, + "probability": 0.8642 + }, + { + "start": 17436.38, + "end": 17441.16, + "probability": 0.9924 + }, + { + "start": 17441.34, + "end": 17442.14, + "probability": 0.8824 + }, + { + "start": 17442.82, + "end": 17443.88, + "probability": 0.0186 + }, + { + "start": 17445.52, + "end": 17447.24, + "probability": 0.5858 + }, + { + "start": 17447.6, + "end": 17449.19, + "probability": 0.7453 + }, + { + "start": 17450.3, + "end": 17451.5, + "probability": 0.9796 + }, + { + "start": 17452.74, + "end": 17457.38, + "probability": 0.8978 + }, + { + "start": 17457.42, + "end": 17458.46, + "probability": 0.9211 + }, + { + "start": 17458.62, + "end": 17459.12, + "probability": 0.8618 + }, + { + "start": 17461.0, + "end": 17466.6, + "probability": 0.9856 + }, + { + "start": 17467.5, + "end": 17471.16, + "probability": 0.9463 + }, + { + "start": 17471.32, + "end": 17472.64, + "probability": 0.7495 + }, + { + "start": 17472.86, + "end": 17476.48, + "probability": 0.9761 + }, + { + "start": 17478.62, + "end": 17480.94, + "probability": 0.998 + }, + { + "start": 17481.84, + "end": 17484.04, + "probability": 0.8757 + }, + { + "start": 17485.4, + "end": 17488.2, + "probability": 0.9814 + }, + { + "start": 17488.2, + "end": 17491.7, + "probability": 0.9961 + }, + { + "start": 17491.9, + "end": 17493.36, + "probability": 0.8457 + }, + { + "start": 17494.0, + "end": 17496.31, + "probability": 0.9868 + }, + { + "start": 17498.12, + "end": 17499.42, + "probability": 0.829 + }, + { + "start": 17500.82, + "end": 17502.94, + "probability": 0.7686 + }, + { + "start": 17503.9, + "end": 17506.94, + "probability": 0.9756 + }, + { + "start": 17507.92, + "end": 17509.64, + "probability": 0.9975 + }, + { + "start": 17509.74, + "end": 17511.18, + "probability": 0.7604 + }, + { + "start": 17512.18, + "end": 17516.28, + "probability": 0.6711 + }, + { + "start": 17517.66, + "end": 17518.54, + "probability": 0.8066 + }, + { + "start": 17518.76, + "end": 17520.24, + "probability": 0.9982 + }, + { + "start": 17520.3, + "end": 17520.99, + "probability": 0.9446 + }, + { + "start": 17522.8, + "end": 17526.84, + "probability": 0.9668 + }, + { + "start": 17526.88, + "end": 17530.28, + "probability": 0.9971 + }, + { + "start": 17531.1, + "end": 17531.48, + "probability": 0.4615 + }, + { + "start": 17531.6, + "end": 17532.3, + "probability": 0.9966 + }, + { + "start": 17532.4, + "end": 17536.12, + "probability": 0.8946 + }, + { + "start": 17536.12, + "end": 17539.3, + "probability": 0.9659 + }, + { + "start": 17539.36, + "end": 17541.72, + "probability": 0.9871 + }, + { + "start": 17542.24, + "end": 17547.36, + "probability": 0.6763 + }, + { + "start": 17549.16, + "end": 17553.6, + "probability": 0.9917 + }, + { + "start": 17554.7, + "end": 17555.86, + "probability": 0.864 + }, + { + "start": 17557.36, + "end": 17562.74, + "probability": 0.9453 + }, + { + "start": 17563.98, + "end": 17566.94, + "probability": 0.9919 + }, + { + "start": 17568.82, + "end": 17572.34, + "probability": 0.9206 + }, + { + "start": 17572.42, + "end": 17576.0, + "probability": 0.9342 + }, + { + "start": 17577.46, + "end": 17581.02, + "probability": 0.8314 + }, + { + "start": 17581.94, + "end": 17584.56, + "probability": 0.9988 + }, + { + "start": 17586.14, + "end": 17590.32, + "probability": 0.9938 + }, + { + "start": 17591.42, + "end": 17594.74, + "probability": 0.864 + }, + { + "start": 17594.94, + "end": 17599.06, + "probability": 0.9896 + }, + { + "start": 17600.42, + "end": 17601.84, + "probability": 0.8713 + }, + { + "start": 17603.54, + "end": 17603.94, + "probability": 0.6786 + }, + { + "start": 17604.04, + "end": 17606.44, + "probability": 0.9875 + }, + { + "start": 17606.44, + "end": 17610.34, + "probability": 0.9952 + }, + { + "start": 17611.02, + "end": 17611.53, + "probability": 0.9125 + }, + { + "start": 17613.42, + "end": 17616.2, + "probability": 0.9897 + }, + { + "start": 17617.84, + "end": 17619.68, + "probability": 0.9867 + }, + { + "start": 17620.94, + "end": 17625.84, + "probability": 0.9193 + }, + { + "start": 17627.52, + "end": 17630.84, + "probability": 0.9648 + }, + { + "start": 17630.96, + "end": 17631.72, + "probability": 0.7389 + }, + { + "start": 17633.1, + "end": 17634.9, + "probability": 0.9917 + }, + { + "start": 17635.0, + "end": 17636.9, + "probability": 0.9744 + }, + { + "start": 17637.78, + "end": 17639.9, + "probability": 0.984 + }, + { + "start": 17641.32, + "end": 17643.58, + "probability": 0.5033 + }, + { + "start": 17644.62, + "end": 17646.78, + "probability": 0.8296 + }, + { + "start": 17647.54, + "end": 17650.11, + "probability": 0.9241 + }, + { + "start": 17651.44, + "end": 17652.2, + "probability": 0.6816 + }, + { + "start": 17653.66, + "end": 17656.12, + "probability": 0.9912 + }, + { + "start": 17656.12, + "end": 17659.38, + "probability": 0.9839 + }, + { + "start": 17660.4, + "end": 17662.46, + "probability": 0.8773 + }, + { + "start": 17664.12, + "end": 17666.9, + "probability": 0.9853 + }, + { + "start": 17667.92, + "end": 17673.64, + "probability": 0.6367 + }, + { + "start": 17674.68, + "end": 17676.7, + "probability": 0.6748 + }, + { + "start": 17677.81, + "end": 17679.12, + "probability": 0.6683 + }, + { + "start": 17680.76, + "end": 17682.74, + "probability": 0.9901 + }, + { + "start": 17683.9, + "end": 17685.88, + "probability": 0.8149 + }, + { + "start": 17687.34, + "end": 17690.04, + "probability": 0.8252 + }, + { + "start": 17691.16, + "end": 17696.06, + "probability": 0.9774 + }, + { + "start": 17696.06, + "end": 17700.26, + "probability": 0.7945 + }, + { + "start": 17700.78, + "end": 17702.36, + "probability": 0.9982 + }, + { + "start": 17703.46, + "end": 17707.94, + "probability": 0.9995 + }, + { + "start": 17708.88, + "end": 17711.14, + "probability": 0.9719 + }, + { + "start": 17711.6, + "end": 17713.73, + "probability": 0.967 + }, + { + "start": 17715.3, + "end": 17719.26, + "probability": 0.9563 + }, + { + "start": 17720.62, + "end": 17721.74, + "probability": 0.9985 + }, + { + "start": 17722.62, + "end": 17725.18, + "probability": 0.9884 + }, + { + "start": 17726.92, + "end": 17729.2, + "probability": 0.9265 + }, + { + "start": 17729.74, + "end": 17730.42, + "probability": 0.7866 + }, + { + "start": 17731.06, + "end": 17732.74, + "probability": 0.777 + }, + { + "start": 17733.86, + "end": 17734.7, + "probability": 0.6649 + }, + { + "start": 17734.8, + "end": 17736.42, + "probability": 0.935 + }, + { + "start": 17736.62, + "end": 17738.24, + "probability": 0.7716 + }, + { + "start": 17739.28, + "end": 17743.9, + "probability": 0.9941 + }, + { + "start": 17743.9, + "end": 17746.58, + "probability": 0.9919 + }, + { + "start": 17747.12, + "end": 17748.54, + "probability": 0.6823 + }, + { + "start": 17749.54, + "end": 17750.92, + "probability": 0.9888 + }, + { + "start": 17752.96, + "end": 17754.06, + "probability": 0.6226 + }, + { + "start": 17754.22, + "end": 17756.08, + "probability": 0.9559 + }, + { + "start": 17756.38, + "end": 17757.82, + "probability": 0.7319 + }, + { + "start": 17758.38, + "end": 17762.1, + "probability": 0.9492 + }, + { + "start": 17762.12, + "end": 17762.66, + "probability": 0.9087 + }, + { + "start": 17762.98, + "end": 17763.44, + "probability": 0.504 + }, + { + "start": 17763.8, + "end": 17767.52, + "probability": 0.9766 + }, + { + "start": 17768.62, + "end": 17769.36, + "probability": 0.6591 + }, + { + "start": 17770.14, + "end": 17774.16, + "probability": 0.8169 + }, + { + "start": 17774.16, + "end": 17777.26, + "probability": 0.8031 + }, + { + "start": 17778.28, + "end": 17781.12, + "probability": 0.9607 + }, + { + "start": 17782.62, + "end": 17786.78, + "probability": 0.9858 + }, + { + "start": 17787.78, + "end": 17793.74, + "probability": 0.9938 + }, + { + "start": 17793.94, + "end": 17796.46, + "probability": 0.8865 + }, + { + "start": 17797.56, + "end": 17800.22, + "probability": 0.8894 + }, + { + "start": 17801.62, + "end": 17805.88, + "probability": 0.9839 + }, + { + "start": 17806.24, + "end": 17807.3, + "probability": 0.9839 + }, + { + "start": 17809.32, + "end": 17815.12, + "probability": 0.9086 + }, + { + "start": 17815.12, + "end": 17821.62, + "probability": 0.9941 + }, + { + "start": 17823.04, + "end": 17825.82, + "probability": 0.9899 + }, + { + "start": 17825.82, + "end": 17829.42, + "probability": 0.7544 + }, + { + "start": 17830.44, + "end": 17832.9, + "probability": 0.9902 + }, + { + "start": 17833.22, + "end": 17838.06, + "probability": 0.7941 + }, + { + "start": 17839.16, + "end": 17839.93, + "probability": 0.5984 + }, + { + "start": 17840.56, + "end": 17844.04, + "probability": 0.9015 + }, + { + "start": 17844.8, + "end": 17848.06, + "probability": 0.9703 + }, + { + "start": 17848.86, + "end": 17849.72, + "probability": 0.8947 + }, + { + "start": 17850.36, + "end": 17851.88, + "probability": 0.939 + }, + { + "start": 17852.72, + "end": 17853.9, + "probability": 0.5628 + }, + { + "start": 17855.12, + "end": 17858.0, + "probability": 0.9781 + }, + { + "start": 17858.78, + "end": 17861.34, + "probability": 0.9568 + }, + { + "start": 17862.32, + "end": 17866.1, + "probability": 0.967 + }, + { + "start": 17866.58, + "end": 17867.26, + "probability": 0.6809 + }, + { + "start": 17867.36, + "end": 17870.32, + "probability": 0.9158 + }, + { + "start": 17871.1, + "end": 17872.94, + "probability": 0.9732 + }, + { + "start": 17873.92, + "end": 17880.36, + "probability": 0.9974 + }, + { + "start": 17880.56, + "end": 17881.76, + "probability": 0.8973 + }, + { + "start": 17882.16, + "end": 17883.48, + "probability": 0.7615 + }, + { + "start": 17883.5, + "end": 17886.38, + "probability": 0.7656 + }, + { + "start": 17887.0, + "end": 17888.28, + "probability": 0.0428 + }, + { + "start": 17888.28, + "end": 17891.18, + "probability": 0.745 + }, + { + "start": 17891.74, + "end": 17892.24, + "probability": 0.4818 + }, + { + "start": 17892.56, + "end": 17893.36, + "probability": 0.4704 + }, + { + "start": 17893.36, + "end": 17893.36, + "probability": 0.6762 + }, + { + "start": 17893.36, + "end": 17894.08, + "probability": 0.0991 + }, + { + "start": 17894.24, + "end": 17895.46, + "probability": 0.2744 + }, + { + "start": 17895.46, + "end": 17896.96, + "probability": 0.4043 + }, + { + "start": 17897.0, + "end": 17898.32, + "probability": 0.7537 + }, + { + "start": 17898.54, + "end": 17901.42, + "probability": 0.3371 + }, + { + "start": 17901.42, + "end": 17902.34, + "probability": 0.1904 + }, + { + "start": 17902.42, + "end": 17903.56, + "probability": 0.8893 + }, + { + "start": 17903.66, + "end": 17904.78, + "probability": 0.7652 + }, + { + "start": 17904.86, + "end": 17907.3, + "probability": 0.7219 + }, + { + "start": 17907.9, + "end": 17909.24, + "probability": 0.4852 + }, + { + "start": 17909.76, + "end": 17911.08, + "probability": 0.5798 + }, + { + "start": 17911.56, + "end": 17913.88, + "probability": 0.7517 + }, + { + "start": 17913.88, + "end": 17915.56, + "probability": 0.7864 + }, + { + "start": 17915.64, + "end": 17915.72, + "probability": 0.2549 + }, + { + "start": 17915.72, + "end": 17915.72, + "probability": 0.0617 + }, + { + "start": 17915.72, + "end": 17916.18, + "probability": 0.453 + }, + { + "start": 17916.34, + "end": 17916.34, + "probability": 0.5331 + }, + { + "start": 17916.42, + "end": 17916.82, + "probability": 0.0259 + }, + { + "start": 17916.82, + "end": 17919.9, + "probability": 0.5232 + }, + { + "start": 17920.36, + "end": 17921.32, + "probability": 0.6258 + }, + { + "start": 17921.34, + "end": 17923.18, + "probability": 0.3958 + }, + { + "start": 17923.36, + "end": 17925.3, + "probability": 0.9238 + }, + { + "start": 17925.8, + "end": 17926.34, + "probability": 0.8784 + }, + { + "start": 17926.86, + "end": 17930.22, + "probability": 0.9875 + }, + { + "start": 17930.78, + "end": 17932.4, + "probability": 0.7251 + }, + { + "start": 17933.54, + "end": 17933.88, + "probability": 0.1753 + }, + { + "start": 17934.06, + "end": 17935.98, + "probability": 0.8961 + }, + { + "start": 17936.06, + "end": 17936.74, + "probability": 0.9348 + }, + { + "start": 17937.32, + "end": 17938.44, + "probability": 0.9419 + }, + { + "start": 17938.7, + "end": 17941.18, + "probability": 0.9211 + }, + { + "start": 17941.92, + "end": 17943.83, + "probability": 0.9908 + }, + { + "start": 17944.52, + "end": 17947.14, + "probability": 0.9961 + }, + { + "start": 17950.52, + "end": 17950.88, + "probability": 0.0521 + }, + { + "start": 17951.28, + "end": 17951.4, + "probability": 0.1118 + }, + { + "start": 17951.4, + "end": 17953.31, + "probability": 0.6507 + }, + { + "start": 17953.78, + "end": 17957.48, + "probability": 0.9307 + }, + { + "start": 17957.54, + "end": 17958.06, + "probability": 0.7575 + }, + { + "start": 17958.8, + "end": 17962.08, + "probability": 0.7048 + }, + { + "start": 17962.68, + "end": 17964.88, + "probability": 0.6858 + }, + { + "start": 17965.0, + "end": 17967.48, + "probability": 0.8989 + }, + { + "start": 17968.02, + "end": 17971.6, + "probability": 0.9641 + }, + { + "start": 17971.68, + "end": 17973.82, + "probability": 0.9044 + }, + { + "start": 17974.2, + "end": 17975.02, + "probability": 0.7189 + }, + { + "start": 17975.14, + "end": 17981.92, + "probability": 0.9824 + }, + { + "start": 17981.92, + "end": 17985.38, + "probability": 0.9712 + }, + { + "start": 17985.74, + "end": 17989.56, + "probability": 0.9895 + }, + { + "start": 17989.66, + "end": 17990.66, + "probability": 0.7137 + }, + { + "start": 17991.64, + "end": 17992.7, + "probability": 0.5913 + }, + { + "start": 17993.3, + "end": 17993.7, + "probability": 0.9031 + }, + { + "start": 17993.92, + "end": 17996.7, + "probability": 0.6451 + }, + { + "start": 17996.8, + "end": 17998.02, + "probability": 0.9727 + }, + { + "start": 17998.72, + "end": 17999.66, + "probability": 0.9919 + }, + { + "start": 18000.48, + "end": 18002.22, + "probability": 0.9534 + }, + { + "start": 18002.38, + "end": 18003.16, + "probability": 0.2537 + }, + { + "start": 18003.36, + "end": 18007.4, + "probability": 0.435 + }, + { + "start": 18007.4, + "end": 18007.58, + "probability": 0.3449 + }, + { + "start": 18007.58, + "end": 18007.64, + "probability": 0.1968 + }, + { + "start": 18007.64, + "end": 18008.4, + "probability": 0.4832 + }, + { + "start": 18009.96, + "end": 18012.82, + "probability": 0.5628 + }, + { + "start": 18013.02, + "end": 18015.1, + "probability": 0.9854 + }, + { + "start": 18015.7, + "end": 18017.92, + "probability": 0.5915 + }, + { + "start": 18018.14, + "end": 18018.4, + "probability": 0.0798 + }, + { + "start": 18018.4, + "end": 18020.14, + "probability": 0.9034 + }, + { + "start": 18021.34, + "end": 18022.9, + "probability": 0.803 + }, + { + "start": 18022.9, + "end": 18024.04, + "probability": 0.3664 + }, + { + "start": 18024.14, + "end": 18024.52, + "probability": 0.0367 + }, + { + "start": 18024.52, + "end": 18024.52, + "probability": 0.1433 + }, + { + "start": 18024.64, + "end": 18025.48, + "probability": 0.6402 + }, + { + "start": 18025.86, + "end": 18027.04, + "probability": 0.7461 + }, + { + "start": 18027.04, + "end": 18028.56, + "probability": 0.5218 + }, + { + "start": 18028.64, + "end": 18031.36, + "probability": 0.9682 + }, + { + "start": 18031.76, + "end": 18033.9, + "probability": 0.959 + }, + { + "start": 18033.92, + "end": 18034.88, + "probability": 0.5949 + }, + { + "start": 18036.4, + "end": 18037.16, + "probability": 0.054 + }, + { + "start": 18037.28, + "end": 18037.6, + "probability": 0.4306 + }, + { + "start": 18038.16, + "end": 18040.84, + "probability": 0.8065 + }, + { + "start": 18043.18, + "end": 18043.8, + "probability": 0.3881 + }, + { + "start": 18043.88, + "end": 18043.88, + "probability": 0.123 + }, + { + "start": 18044.08, + "end": 18044.44, + "probability": 0.2138 + }, + { + "start": 18044.44, + "end": 18044.66, + "probability": 0.1575 + }, + { + "start": 18044.66, + "end": 18044.66, + "probability": 0.5381 + }, + { + "start": 18044.66, + "end": 18044.84, + "probability": 0.2788 + }, + { + "start": 18045.16, + "end": 18046.4, + "probability": 0.4538 + }, + { + "start": 18047.2, + "end": 18048.74, + "probability": 0.7985 + }, + { + "start": 18049.64, + "end": 18052.9, + "probability": 0.4112 + }, + { + "start": 18053.22, + "end": 18057.44, + "probability": 0.7044 + }, + { + "start": 18058.08, + "end": 18058.3, + "probability": 0.4528 + }, + { + "start": 18058.72, + "end": 18059.66, + "probability": 0.6009 + }, + { + "start": 18059.9, + "end": 18061.02, + "probability": 0.0862 + }, + { + "start": 18063.02, + "end": 18063.64, + "probability": 0.0639 + }, + { + "start": 18063.64, + "end": 18063.7, + "probability": 0.0792 + }, + { + "start": 18063.7, + "end": 18065.18, + "probability": 0.5627 + }, + { + "start": 18065.28, + "end": 18069.42, + "probability": 0.9941 + }, + { + "start": 18069.68, + "end": 18076.82, + "probability": 0.9469 + }, + { + "start": 18077.4, + "end": 18079.02, + "probability": 0.5151 + }, + { + "start": 18079.02, + "end": 18081.68, + "probability": 0.6935 + }, + { + "start": 18082.1, + "end": 18082.42, + "probability": 0.786 + }, + { + "start": 18082.46, + "end": 18082.46, + "probability": 0.0207 + }, + { + "start": 18082.46, + "end": 18083.14, + "probability": 0.9113 + }, + { + "start": 18083.3, + "end": 18083.62, + "probability": 0.7789 + }, + { + "start": 18083.72, + "end": 18086.76, + "probability": 0.6354 + }, + { + "start": 18087.42, + "end": 18088.78, + "probability": 0.8721 + }, + { + "start": 18089.32, + "end": 18091.42, + "probability": 0.6769 + }, + { + "start": 18091.82, + "end": 18092.33, + "probability": 0.5144 + }, + { + "start": 18092.58, + "end": 18096.68, + "probability": 0.8613 + }, + { + "start": 18096.96, + "end": 18099.5, + "probability": 0.9971 + }, + { + "start": 18100.6, + "end": 18105.41, + "probability": 0.6982 + }, + { + "start": 18106.58, + "end": 18107.44, + "probability": 0.2252 + }, + { + "start": 18107.64, + "end": 18107.84, + "probability": 0.47 + }, + { + "start": 18107.84, + "end": 18107.84, + "probability": 0.092 + }, + { + "start": 18107.84, + "end": 18107.84, + "probability": 0.2365 + }, + { + "start": 18107.84, + "end": 18109.14, + "probability": 0.99 + }, + { + "start": 18109.6, + "end": 18113.28, + "probability": 0.423 + }, + { + "start": 18113.74, + "end": 18114.8, + "probability": 0.6195 + }, + { + "start": 18114.86, + "end": 18117.44, + "probability": 0.9048 + }, + { + "start": 18117.74, + "end": 18118.7, + "probability": 0.9367 + }, + { + "start": 18118.72, + "end": 18120.2, + "probability": 0.9265 + }, + { + "start": 18120.66, + "end": 18122.56, + "probability": 0.9543 + }, + { + "start": 18123.42, + "end": 18124.56, + "probability": 0.9829 + }, + { + "start": 18125.9, + "end": 18128.1, + "probability": 0.7518 + }, + { + "start": 18130.24, + "end": 18132.4, + "probability": 0.9798 + }, + { + "start": 18133.46, + "end": 18136.78, + "probability": 0.9655 + }, + { + "start": 18136.86, + "end": 18138.9, + "probability": 0.8214 + }, + { + "start": 18139.42, + "end": 18139.8, + "probability": 0.4472 + }, + { + "start": 18139.88, + "end": 18144.4, + "probability": 0.941 + }, + { + "start": 18144.94, + "end": 18145.68, + "probability": 0.7755 + }, + { + "start": 18145.68, + "end": 18147.72, + "probability": 0.9509 + }, + { + "start": 18148.28, + "end": 18151.2, + "probability": 0.7142 + }, + { + "start": 18151.34, + "end": 18153.78, + "probability": 0.671 + }, + { + "start": 18153.84, + "end": 18153.86, + "probability": 0.2654 + }, + { + "start": 18153.86, + "end": 18154.02, + "probability": 0.4375 + }, + { + "start": 18154.1, + "end": 18154.82, + "probability": 0.6307 + }, + { + "start": 18154.82, + "end": 18155.18, + "probability": 0.2541 + }, + { + "start": 18155.26, + "end": 18158.94, + "probability": 0.8047 + }, + { + "start": 18158.94, + "end": 18158.94, + "probability": 0.4696 + }, + { + "start": 18158.94, + "end": 18159.72, + "probability": 0.7685 + }, + { + "start": 18159.82, + "end": 18160.5, + "probability": 0.6996 + }, + { + "start": 18160.5, + "end": 18160.86, + "probability": 0.554 + }, + { + "start": 18160.9, + "end": 18164.62, + "probability": 0.8984 + }, + { + "start": 18164.68, + "end": 18165.22, + "probability": 0.8157 + }, + { + "start": 18165.22, + "end": 18165.32, + "probability": 0.8021 + }, + { + "start": 18165.34, + "end": 18165.36, + "probability": 0.7861 + }, + { + "start": 18165.48, + "end": 18165.76, + "probability": 0.4403 + }, + { + "start": 18165.88, + "end": 18166.46, + "probability": 0.6452 + }, + { + "start": 18166.5, + "end": 18166.92, + "probability": 0.6935 + }, + { + "start": 18166.94, + "end": 18168.24, + "probability": 0.9473 + }, + { + "start": 18168.64, + "end": 18169.38, + "probability": 0.7306 + }, + { + "start": 18169.46, + "end": 18169.46, + "probability": 0.5892 + }, + { + "start": 18169.46, + "end": 18169.46, + "probability": 0.6152 + }, + { + "start": 18169.46, + "end": 18172.96, + "probability": 0.4097 + }, + { + "start": 18173.06, + "end": 18174.94, + "probability": 0.9925 + }, + { + "start": 18174.96, + "end": 18176.18, + "probability": 0.6483 + }, + { + "start": 18176.54, + "end": 18177.68, + "probability": 0.0185 + }, + { + "start": 18177.68, + "end": 18178.08, + "probability": 0.4164 + }, + { + "start": 18179.64, + "end": 18181.26, + "probability": 0.762 + }, + { + "start": 18181.68, + "end": 18186.2, + "probability": 0.8214 + }, + { + "start": 18186.9, + "end": 18189.9, + "probability": 0.9053 + }, + { + "start": 18190.68, + "end": 18192.5, + "probability": 0.7803 + }, + { + "start": 18192.6, + "end": 18196.8, + "probability": 0.9543 + }, + { + "start": 18197.1, + "end": 18199.46, + "probability": 0.5605 + }, + { + "start": 18199.52, + "end": 18200.04, + "probability": 0.8888 + }, + { + "start": 18201.48, + "end": 18203.24, + "probability": 0.9396 + }, + { + "start": 18204.1, + "end": 18204.6, + "probability": 0.4473 + }, + { + "start": 18205.28, + "end": 18207.04, + "probability": 0.7791 + }, + { + "start": 18207.5, + "end": 18210.78, + "probability": 0.9457 + }, + { + "start": 18211.2, + "end": 18212.7, + "probability": 0.9824 + }, + { + "start": 18213.72, + "end": 18214.68, + "probability": 0.8382 + }, + { + "start": 18215.84, + "end": 18218.38, + "probability": 0.9662 + }, + { + "start": 18218.92, + "end": 18219.84, + "probability": 0.7468 + }, + { + "start": 18219.96, + "end": 18220.84, + "probability": 0.8525 + }, + { + "start": 18221.2, + "end": 18223.39, + "probability": 0.9941 + }, + { + "start": 18224.34, + "end": 18224.62, + "probability": 0.9176 + }, + { + "start": 18226.04, + "end": 18229.24, + "probability": 0.9462 + }, + { + "start": 18230.24, + "end": 18233.8, + "probability": 0.9058 + }, + { + "start": 18234.14, + "end": 18235.0, + "probability": 0.3006 + }, + { + "start": 18235.24, + "end": 18239.74, + "probability": 0.7706 + }, + { + "start": 18240.58, + "end": 18241.34, + "probability": 0.6319 + }, + { + "start": 18241.54, + "end": 18242.92, + "probability": 0.01 + }, + { + "start": 18245.33, + "end": 18247.25, + "probability": 0.1834 + }, + { + "start": 18247.62, + "end": 18248.52, + "probability": 0.6065 + }, + { + "start": 18249.1, + "end": 18250.34, + "probability": 0.5512 + }, + { + "start": 18252.22, + "end": 18253.7, + "probability": 0.7936 + }, + { + "start": 18254.84, + "end": 18258.22, + "probability": 0.99 + }, + { + "start": 18259.56, + "end": 18264.02, + "probability": 0.9299 + }, + { + "start": 18264.02, + "end": 18268.84, + "probability": 0.9937 + }, + { + "start": 18279.08, + "end": 18279.74, + "probability": 0.0399 + }, + { + "start": 18279.74, + "end": 18279.74, + "probability": 0.0922 + }, + { + "start": 18279.74, + "end": 18279.74, + "probability": 0.0387 + }, + { + "start": 18279.74, + "end": 18283.66, + "probability": 0.6918 + }, + { + "start": 18284.22, + "end": 18285.14, + "probability": 0.8731 + }, + { + "start": 18285.7, + "end": 18286.62, + "probability": 0.7414 + }, + { + "start": 18287.3, + "end": 18292.71, + "probability": 0.9587 + }, + { + "start": 18293.74, + "end": 18298.1, + "probability": 0.9112 + }, + { + "start": 18298.48, + "end": 18299.68, + "probability": 0.9357 + }, + { + "start": 18299.92, + "end": 18300.96, + "probability": 0.8289 + }, + { + "start": 18301.34, + "end": 18302.1, + "probability": 0.6611 + }, + { + "start": 18302.18, + "end": 18303.39, + "probability": 0.7363 + }, + { + "start": 18304.16, + "end": 18306.32, + "probability": 0.6595 + }, + { + "start": 18306.32, + "end": 18309.6, + "probability": 0.9761 + }, + { + "start": 18309.9, + "end": 18313.36, + "probability": 0.9364 + }, + { + "start": 18314.1, + "end": 18314.26, + "probability": 0.6828 + }, + { + "start": 18314.4, + "end": 18315.68, + "probability": 0.9793 + }, + { + "start": 18315.76, + "end": 18316.7, + "probability": 0.8664 + }, + { + "start": 18317.12, + "end": 18318.34, + "probability": 0.8896 + }, + { + "start": 18318.88, + "end": 18321.3, + "probability": 0.9572 + }, + { + "start": 18321.9, + "end": 18323.44, + "probability": 0.9627 + }, + { + "start": 18323.66, + "end": 18324.48, + "probability": 0.9375 + }, + { + "start": 18324.94, + "end": 18326.78, + "probability": 0.9879 + }, + { + "start": 18327.28, + "end": 18329.78, + "probability": 0.7317 + }, + { + "start": 18330.42, + "end": 18333.74, + "probability": 0.9578 + }, + { + "start": 18334.48, + "end": 18335.62, + "probability": 0.6207 + }, + { + "start": 18336.58, + "end": 18338.86, + "probability": 0.8176 + }, + { + "start": 18339.22, + "end": 18343.94, + "probability": 0.9848 + }, + { + "start": 18345.6, + "end": 18346.84, + "probability": 0.1383 + }, + { + "start": 18347.14, + "end": 18347.6, + "probability": 0.3118 + }, + { + "start": 18348.74, + "end": 18349.82, + "probability": 0.7807 + }, + { + "start": 18350.74, + "end": 18354.22, + "probability": 0.6746 + }, + { + "start": 18354.22, + "end": 18354.82, + "probability": 0.6164 + }, + { + "start": 18355.06, + "end": 18355.56, + "probability": 0.7751 + }, + { + "start": 18356.04, + "end": 18359.68, + "probability": 0.9411 + }, + { + "start": 18360.42, + "end": 18364.92, + "probability": 0.8938 + }, + { + "start": 18364.92, + "end": 18368.34, + "probability": 0.9706 + }, + { + "start": 18368.66, + "end": 18369.56, + "probability": 0.7983 + }, + { + "start": 18370.44, + "end": 18371.43, + "probability": 0.9761 + }, + { + "start": 18372.16, + "end": 18372.7, + "probability": 0.7901 + }, + { + "start": 18373.76, + "end": 18377.34, + "probability": 0.9919 + }, + { + "start": 18377.4, + "end": 18377.76, + "probability": 0.2566 + }, + { + "start": 18377.8, + "end": 18378.1, + "probability": 0.3908 + }, + { + "start": 18378.32, + "end": 18380.88, + "probability": 0.9056 + }, + { + "start": 18381.12, + "end": 18383.7, + "probability": 0.8777 + }, + { + "start": 18384.2, + "end": 18387.08, + "probability": 0.9851 + }, + { + "start": 18387.54, + "end": 18390.68, + "probability": 0.9076 + }, + { + "start": 18391.98, + "end": 18392.36, + "probability": 0.0545 + }, + { + "start": 18392.36, + "end": 18393.4, + "probability": 0.6681 + }, + { + "start": 18394.02, + "end": 18394.42, + "probability": 0.2153 + }, + { + "start": 18394.56, + "end": 18399.0, + "probability": 0.0407 + }, + { + "start": 18399.06, + "end": 18399.94, + "probability": 0.5592 + }, + { + "start": 18400.96, + "end": 18401.21, + "probability": 0.4082 + }, + { + "start": 18401.66, + "end": 18402.38, + "probability": 0.4144 + }, + { + "start": 18402.42, + "end": 18403.44, + "probability": 0.5272 + }, + { + "start": 18403.88, + "end": 18404.18, + "probability": 0.7839 + }, + { + "start": 18404.4, + "end": 18405.56, + "probability": 0.8185 + }, + { + "start": 18405.86, + "end": 18407.32, + "probability": 0.521 + }, + { + "start": 18407.32, + "end": 18408.1, + "probability": 0.4326 + }, + { + "start": 18408.18, + "end": 18408.4, + "probability": 0.5119 + }, + { + "start": 18408.42, + "end": 18410.76, + "probability": 0.6055 + }, + { + "start": 18412.04, + "end": 18415.82, + "probability": 0.9927 + }, + { + "start": 18416.2, + "end": 18418.58, + "probability": 0.4227 + }, + { + "start": 18418.58, + "end": 18419.26, + "probability": 0.7535 + }, + { + "start": 18419.26, + "end": 18419.68, + "probability": 0.8553 + }, + { + "start": 18420.04, + "end": 18420.66, + "probability": 0.6662 + }, + { + "start": 18421.06, + "end": 18423.02, + "probability": 0.9517 + }, + { + "start": 18423.14, + "end": 18423.76, + "probability": 0.8459 + }, + { + "start": 18423.82, + "end": 18428.18, + "probability": 0.8516 + }, + { + "start": 18428.94, + "end": 18432.7, + "probability": 0.9736 + }, + { + "start": 18433.5, + "end": 18434.22, + "probability": 0.5598 + }, + { + "start": 18434.88, + "end": 18438.4, + "probability": 0.7318 + }, + { + "start": 18438.46, + "end": 18440.02, + "probability": 0.6028 + }, + { + "start": 18440.08, + "end": 18442.7, + "probability": 0.8868 + }, + { + "start": 18442.98, + "end": 18447.68, + "probability": 0.9543 + }, + { + "start": 18447.78, + "end": 18452.12, + "probability": 0.8677 + }, + { + "start": 18453.0, + "end": 18453.44, + "probability": 0.3912 + }, + { + "start": 18454.56, + "end": 18459.0, + "probability": 0.88 + }, + { + "start": 18459.26, + "end": 18460.24, + "probability": 0.2674 + }, + { + "start": 18460.36, + "end": 18462.06, + "probability": 0.8804 + }, + { + "start": 18462.84, + "end": 18463.5, + "probability": 0.8171 + }, + { + "start": 18464.06, + "end": 18464.88, + "probability": 0.8361 + }, + { + "start": 18465.4, + "end": 18465.98, + "probability": 0.7623 + }, + { + "start": 18466.26, + "end": 18466.92, + "probability": 0.7225 + }, + { + "start": 18467.3, + "end": 18467.86, + "probability": 0.7405 + }, + { + "start": 18467.94, + "end": 18468.68, + "probability": 0.5892 + }, + { + "start": 18474.66, + "end": 18485.36, + "probability": 0.0654 + }, + { + "start": 18487.86, + "end": 18488.78, + "probability": 0.0645 + }, + { + "start": 18490.84, + "end": 18492.8, + "probability": 0.1066 + }, + { + "start": 18497.18, + "end": 18502.0, + "probability": 0.4333 + }, + { + "start": 18503.08, + "end": 18504.02, + "probability": 0.0986 + }, + { + "start": 18504.68, + "end": 18504.96, + "probability": 0.0403 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18553.0, + "end": 18553.0, + "probability": 0.0 + }, + { + "start": 18556.32, + "end": 18559.18, + "probability": 0.75 + }, + { + "start": 18560.2, + "end": 18561.88, + "probability": 0.5733 + }, + { + "start": 18561.88, + "end": 18562.58, + "probability": 0.035 + }, + { + "start": 18563.32, + "end": 18563.52, + "probability": 0.5732 + }, + { + "start": 18563.64, + "end": 18563.76, + "probability": 0.1872 + }, + { + "start": 18564.02, + "end": 18566.92, + "probability": 0.8642 + }, + { + "start": 18567.18, + "end": 18568.92, + "probability": 0.9989 + }, + { + "start": 18569.22, + "end": 18572.02, + "probability": 0.9867 + }, + { + "start": 18572.58, + "end": 18574.1, + "probability": 0.6945 + }, + { + "start": 18574.42, + "end": 18577.96, + "probability": 0.9352 + }, + { + "start": 18578.2, + "end": 18578.7, + "probability": 0.723 + }, + { + "start": 18579.46, + "end": 18582.2, + "probability": 0.8904 + }, + { + "start": 18585.12, + "end": 18586.78, + "probability": 0.9649 + }, + { + "start": 18587.24, + "end": 18590.62, + "probability": 0.8322 + }, + { + "start": 18590.62, + "end": 18594.7, + "probability": 0.8042 + }, + { + "start": 18595.72, + "end": 18598.68, + "probability": 0.947 + }, + { + "start": 18599.26, + "end": 18600.06, + "probability": 0.7028 + }, + { + "start": 18600.62, + "end": 18602.54, + "probability": 0.312 + }, + { + "start": 18603.42, + "end": 18603.92, + "probability": 0.0095 + }, + { + "start": 18604.8, + "end": 18606.18, + "probability": 0.6068 + }, + { + "start": 18606.64, + "end": 18606.94, + "probability": 0.6763 + }, + { + "start": 18608.12, + "end": 18608.12, + "probability": 0.6295 + }, + { + "start": 18610.26, + "end": 18612.16, + "probability": 0.3572 + }, + { + "start": 18612.38, + "end": 18613.2, + "probability": 0.8067 + }, + { + "start": 18616.66, + "end": 18620.02, + "probability": 0.94 + }, + { + "start": 18620.6, + "end": 18622.32, + "probability": 0.9894 + }, + { + "start": 18623.72, + "end": 18625.26, + "probability": 0.9238 + }, + { + "start": 18626.04, + "end": 18627.72, + "probability": 0.8693 + }, + { + "start": 18628.06, + "end": 18629.62, + "probability": 0.9148 + }, + { + "start": 18630.64, + "end": 18632.96, + "probability": 0.4968 + }, + { + "start": 18633.08, + "end": 18634.94, + "probability": 0.8565 + }, + { + "start": 18635.98, + "end": 18639.94, + "probability": 0.4099 + }, + { + "start": 18640.68, + "end": 18642.78, + "probability": 0.7317 + }, + { + "start": 18643.3, + "end": 18643.58, + "probability": 0.3962 + }, + { + "start": 18643.66, + "end": 18644.49, + "probability": 0.7942 + }, + { + "start": 18645.54, + "end": 18646.99, + "probability": 0.696 + }, + { + "start": 18647.68, + "end": 18649.72, + "probability": 0.613 + }, + { + "start": 18649.92, + "end": 18652.26, + "probability": 0.9413 + }, + { + "start": 18653.63, + "end": 18655.83, + "probability": 0.3267 + }, + { + "start": 18658.2, + "end": 18660.66, + "probability": 0.1447 + }, + { + "start": 18661.4, + "end": 18661.4, + "probability": 0.0026 + }, + { + "start": 18661.4, + "end": 18661.48, + "probability": 0.0276 + }, + { + "start": 18661.48, + "end": 18662.6, + "probability": 0.1196 + }, + { + "start": 18662.6, + "end": 18662.6, + "probability": 0.3481 + }, + { + "start": 18662.72, + "end": 18665.76, + "probability": 0.8192 + }, + { + "start": 18665.76, + "end": 18665.94, + "probability": 0.8642 + }, + { + "start": 18666.62, + "end": 18668.52, + "probability": 0.856 + }, + { + "start": 18668.86, + "end": 18670.46, + "probability": 0.9172 + }, + { + "start": 18670.62, + "end": 18672.86, + "probability": 0.9658 + }, + { + "start": 18672.92, + "end": 18673.5, + "probability": 0.5833 + }, + { + "start": 18673.62, + "end": 18674.66, + "probability": 0.868 + }, + { + "start": 18675.34, + "end": 18675.86, + "probability": 0.907 + }, + { + "start": 18675.92, + "end": 18677.12, + "probability": 0.9862 + }, + { + "start": 18677.24, + "end": 18678.5, + "probability": 0.6586 + }, + { + "start": 18679.52, + "end": 18681.08, + "probability": 0.8597 + }, + { + "start": 18681.74, + "end": 18682.56, + "probability": 0.9707 + }, + { + "start": 18683.72, + "end": 18684.88, + "probability": 0.715 + }, + { + "start": 18686.34, + "end": 18693.48, + "probability": 0.9674 + }, + { + "start": 18694.72, + "end": 18698.48, + "probability": 0.9936 + }, + { + "start": 18699.24, + "end": 18700.02, + "probability": 0.7684 + }, + { + "start": 18700.08, + "end": 18705.38, + "probability": 0.9952 + }, + { + "start": 18706.54, + "end": 18713.01, + "probability": 0.9714 + }, + { + "start": 18714.64, + "end": 18715.72, + "probability": 0.8945 + }, + { + "start": 18716.06, + "end": 18719.84, + "probability": 0.9958 + }, + { + "start": 18720.5, + "end": 18722.18, + "probability": 0.9851 + }, + { + "start": 18723.62, + "end": 18727.24, + "probability": 0.9917 + }, + { + "start": 18727.66, + "end": 18727.98, + "probability": 0.0753 + }, + { + "start": 18729.68, + "end": 18730.28, + "probability": 0.8735 + }, + { + "start": 18731.54, + "end": 18732.95, + "probability": 0.9292 + }, + { + "start": 18735.72, + "end": 18736.06, + "probability": 0.0497 + }, + { + "start": 18736.06, + "end": 18736.08, + "probability": 0.0413 + }, + { + "start": 18736.08, + "end": 18738.72, + "probability": 0.8254 + }, + { + "start": 18739.28, + "end": 18740.08, + "probability": 0.07 + }, + { + "start": 18740.08, + "end": 18742.64, + "probability": 0.8624 + }, + { + "start": 18742.86, + "end": 18743.38, + "probability": 0.824 + }, + { + "start": 18743.58, + "end": 18744.98, + "probability": 0.9021 + }, + { + "start": 18745.32, + "end": 18747.22, + "probability": 0.3825 + }, + { + "start": 18747.7, + "end": 18750.16, + "probability": 0.808 + }, + { + "start": 18750.58, + "end": 18750.82, + "probability": 0.0661 + }, + { + "start": 18750.82, + "end": 18754.82, + "probability": 0.9696 + }, + { + "start": 18755.34, + "end": 18757.78, + "probability": 0.664 + }, + { + "start": 18759.22, + "end": 18760.04, + "probability": 0.1141 + }, + { + "start": 18760.04, + "end": 18760.98, + "probability": 0.3657 + }, + { + "start": 18761.4, + "end": 18763.36, + "probability": 0.8804 + }, + { + "start": 18764.08, + "end": 18767.88, + "probability": 0.9119 + }, + { + "start": 18768.22, + "end": 18769.32, + "probability": 0.8979 + }, + { + "start": 18769.38, + "end": 18770.01, + "probability": 0.7539 + }, + { + "start": 18770.58, + "end": 18772.7, + "probability": 0.9645 + }, + { + "start": 18774.96, + "end": 18777.14, + "probability": 0.8873 + }, + { + "start": 18778.36, + "end": 18779.76, + "probability": 0.9339 + }, + { + "start": 18781.46, + "end": 18782.5, + "probability": 0.9853 + }, + { + "start": 18782.98, + "end": 18782.98, + "probability": 0.1431 + }, + { + "start": 18782.98, + "end": 18785.4, + "probability": 0.7916 + }, + { + "start": 18785.56, + "end": 18786.68, + "probability": 0.5635 + }, + { + "start": 18787.32, + "end": 18789.04, + "probability": 0.8247 + }, + { + "start": 18789.48, + "end": 18793.64, + "probability": 0.9739 + }, + { + "start": 18794.02, + "end": 18796.56, + "probability": 0.969 + }, + { + "start": 18797.28, + "end": 18799.62, + "probability": 0.4939 + }, + { + "start": 18800.52, + "end": 18801.51, + "probability": 0.9036 + }, + { + "start": 18803.16, + "end": 18805.2, + "probability": 0.9527 + }, + { + "start": 18805.36, + "end": 18808.62, + "probability": 0.8977 + }, + { + "start": 18809.18, + "end": 18812.46, + "probability": 0.9831 + }, + { + "start": 18813.04, + "end": 18816.5, + "probability": 0.7714 + }, + { + "start": 18817.18, + "end": 18818.02, + "probability": 0.9782 + }, + { + "start": 18819.09, + "end": 18820.98, + "probability": 0.981 + }, + { + "start": 18822.38, + "end": 18825.84, + "probability": 0.6793 + }, + { + "start": 18826.72, + "end": 18828.54, + "probability": 0.8177 + }, + { + "start": 18828.6, + "end": 18830.02, + "probability": 0.9588 + }, + { + "start": 18830.66, + "end": 18831.28, + "probability": 0.6562 + }, + { + "start": 18832.18, + "end": 18834.84, + "probability": 0.982 + }, + { + "start": 18835.72, + "end": 18836.98, + "probability": 0.2085 + }, + { + "start": 18836.98, + "end": 18838.58, + "probability": 0.8522 + }, + { + "start": 18839.54, + "end": 18841.3, + "probability": 0.9556 + }, + { + "start": 18842.22, + "end": 18842.52, + "probability": 0.388 + }, + { + "start": 18842.58, + "end": 18843.02, + "probability": 0.9446 + }, + { + "start": 18843.12, + "end": 18846.3, + "probability": 0.9213 + }, + { + "start": 18846.5, + "end": 18848.98, + "probability": 0.6086 + }, + { + "start": 18849.06, + "end": 18849.06, + "probability": 0.4372 + }, + { + "start": 18849.06, + "end": 18849.46, + "probability": 0.4132 + }, + { + "start": 18849.6, + "end": 18854.3, + "probability": 0.9922 + }, + { + "start": 18856.14, + "end": 18856.54, + "probability": 0.844 + }, + { + "start": 18857.12, + "end": 18860.58, + "probability": 0.6662 + }, + { + "start": 18860.58, + "end": 18863.74, + "probability": 0.9598 + }, + { + "start": 18864.5, + "end": 18865.03, + "probability": 0.9547 + }, + { + "start": 18867.72, + "end": 18869.82, + "probability": 0.9945 + }, + { + "start": 18871.2, + "end": 18872.56, + "probability": 0.7482 + }, + { + "start": 18872.74, + "end": 18873.72, + "probability": 0.8256 + }, + { + "start": 18873.84, + "end": 18875.14, + "probability": 0.9192 + }, + { + "start": 18876.6, + "end": 18878.62, + "probability": 0.9114 + }, + { + "start": 18879.06, + "end": 18880.68, + "probability": 0.7072 + }, + { + "start": 18880.82, + "end": 18881.66, + "probability": 0.9158 + }, + { + "start": 18882.58, + "end": 18884.8, + "probability": 0.7987 + }, + { + "start": 18886.06, + "end": 18889.28, + "probability": 0.7507 + }, + { + "start": 18890.66, + "end": 18893.8, + "probability": 0.47 + }, + { + "start": 18894.38, + "end": 18896.3, + "probability": 0.9887 + }, + { + "start": 18896.32, + "end": 18898.0, + "probability": 0.8489 + }, + { + "start": 18898.16, + "end": 18898.98, + "probability": 0.9438 + }, + { + "start": 18899.32, + "end": 18900.1, + "probability": 0.766 + }, + { + "start": 18900.2, + "end": 18900.44, + "probability": 0.8893 + }, + { + "start": 18903.08, + "end": 18905.66, + "probability": 0.9968 + }, + { + "start": 18907.32, + "end": 18915.26, + "probability": 0.8504 + }, + { + "start": 18918.04, + "end": 18918.48, + "probability": 0.5554 + }, + { + "start": 18918.7, + "end": 18920.91, + "probability": 0.8949 + }, + { + "start": 18921.34, + "end": 18922.74, + "probability": 0.8789 + }, + { + "start": 18923.54, + "end": 18926.18, + "probability": 0.9855 + }, + { + "start": 18926.38, + "end": 18931.14, + "probability": 0.9874 + }, + { + "start": 18932.24, + "end": 18937.62, + "probability": 0.9863 + }, + { + "start": 18937.82, + "end": 18938.78, + "probability": 0.5995 + }, + { + "start": 18938.8, + "end": 18939.86, + "probability": 0.8113 + }, + { + "start": 18940.02, + "end": 18942.18, + "probability": 0.9703 + }, + { + "start": 18942.6, + "end": 18943.84, + "probability": 0.9883 + }, + { + "start": 18945.16, + "end": 18946.24, + "probability": 0.7353 + }, + { + "start": 18946.54, + "end": 18950.08, + "probability": 0.8533 + }, + { + "start": 18950.14, + "end": 18951.22, + "probability": 0.6755 + }, + { + "start": 18953.52, + "end": 18955.36, + "probability": 0.366 + }, + { + "start": 18958.88, + "end": 18960.14, + "probability": 0.4029 + }, + { + "start": 18960.46, + "end": 18965.02, + "probability": 0.8029 + }, + { + "start": 18965.4, + "end": 18967.56, + "probability": 0.8241 + }, + { + "start": 18968.39, + "end": 18971.04, + "probability": 0.9929 + }, + { + "start": 18971.3, + "end": 18972.96, + "probability": 0.9648 + }, + { + "start": 18973.36, + "end": 18973.95, + "probability": 0.5021 + }, + { + "start": 18974.24, + "end": 18975.44, + "probability": 0.8026 + }, + { + "start": 18975.52, + "end": 18977.42, + "probability": 0.5353 + }, + { + "start": 18977.5, + "end": 18980.12, + "probability": 0.9692 + }, + { + "start": 18981.06, + "end": 18983.52, + "probability": 0.9525 + }, + { + "start": 18984.1, + "end": 18986.4, + "probability": 0.6097 + }, + { + "start": 18986.4, + "end": 18990.44, + "probability": 0.9383 + }, + { + "start": 18990.56, + "end": 18992.46, + "probability": 0.6731 + }, + { + "start": 18993.08, + "end": 18993.96, + "probability": 0.9087 + }, + { + "start": 18994.08, + "end": 18997.84, + "probability": 0.9387 + }, + { + "start": 18997.84, + "end": 19001.98, + "probability": 0.8479 + }, + { + "start": 19002.3, + "end": 19002.76, + "probability": 0.6381 + }, + { + "start": 19003.26, + "end": 19003.86, + "probability": 0.8263 + }, + { + "start": 19004.38, + "end": 19008.24, + "probability": 0.6426 + }, + { + "start": 19009.04, + "end": 19011.42, + "probability": 0.941 + }, + { + "start": 19012.58, + "end": 19013.12, + "probability": 0.8222 + }, + { + "start": 19013.3, + "end": 19014.72, + "probability": 0.9941 + }, + { + "start": 19015.04, + "end": 19017.54, + "probability": 0.8899 + }, + { + "start": 19019.28, + "end": 19021.88, + "probability": 0.9961 + }, + { + "start": 19022.12, + "end": 19022.66, + "probability": 0.8302 + }, + { + "start": 19023.34, + "end": 19023.94, + "probability": 0.5034 + }, + { + "start": 19026.5, + "end": 19027.26, + "probability": 0.5293 + }, + { + "start": 19027.94, + "end": 19030.5, + "probability": 0.3322 + }, + { + "start": 19031.75, + "end": 19033.82, + "probability": 0.9885 + }, + { + "start": 19034.6, + "end": 19035.42, + "probability": 0.6621 + }, + { + "start": 19036.9, + "end": 19039.34, + "probability": 0.7363 + }, + { + "start": 19039.6, + "end": 19041.82, + "probability": 0.8499 + }, + { + "start": 19042.14, + "end": 19042.6, + "probability": 0.4326 + }, + { + "start": 19042.66, + "end": 19043.92, + "probability": 0.8802 + }, + { + "start": 19044.42, + "end": 19046.16, + "probability": 0.9105 + }, + { + "start": 19046.3, + "end": 19047.16, + "probability": 0.783 + }, + { + "start": 19047.26, + "end": 19050.37, + "probability": 0.8334 + }, + { + "start": 19051.52, + "end": 19054.86, + "probability": 0.5038 + }, + { + "start": 19055.12, + "end": 19057.04, + "probability": 0.9617 + }, + { + "start": 19057.38, + "end": 19059.24, + "probability": 0.7527 + }, + { + "start": 19059.62, + "end": 19060.32, + "probability": 0.6781 + }, + { + "start": 19061.0, + "end": 19062.36, + "probability": 0.7387 + }, + { + "start": 19062.54, + "end": 19064.24, + "probability": 0.779 + }, + { + "start": 19064.32, + "end": 19065.92, + "probability": 0.9805 + }, + { + "start": 19066.24, + "end": 19068.28, + "probability": 0.9856 + }, + { + "start": 19069.08, + "end": 19070.04, + "probability": 0.7565 + }, + { + "start": 19070.78, + "end": 19074.1, + "probability": 0.8708 + }, + { + "start": 19074.7, + "end": 19076.98, + "probability": 0.9293 + }, + { + "start": 19079.02, + "end": 19079.16, + "probability": 0.6199 + }, + { + "start": 19079.44, + "end": 19081.08, + "probability": 0.5125 + }, + { + "start": 19081.12, + "end": 19081.14, + "probability": 0.6643 + }, + { + "start": 19081.14, + "end": 19082.66, + "probability": 0.6781 + }, + { + "start": 19082.78, + "end": 19084.5, + "probability": 0.9874 + }, + { + "start": 19084.64, + "end": 19087.97, + "probability": 0.3308 + }, + { + "start": 19088.78, + "end": 19090.4, + "probability": 0.1184 + }, + { + "start": 19090.42, + "end": 19091.87, + "probability": 0.9174 + }, + { + "start": 19092.2, + "end": 19093.86, + "probability": 0.8662 + }, + { + "start": 19093.98, + "end": 19096.9, + "probability": 0.9354 + }, + { + "start": 19097.22, + "end": 19098.94, + "probability": 0.9585 + }, + { + "start": 19099.0, + "end": 19100.94, + "probability": 0.7896 + }, + { + "start": 19101.8, + "end": 19107.12, + "probability": 0.9953 + }, + { + "start": 19107.64, + "end": 19113.2, + "probability": 0.9956 + }, + { + "start": 19113.56, + "end": 19119.76, + "probability": 0.9904 + }, + { + "start": 19119.88, + "end": 19123.32, + "probability": 0.9873 + }, + { + "start": 19123.42, + "end": 19125.3, + "probability": 0.9871 + }, + { + "start": 19125.92, + "end": 19127.54, + "probability": 0.9084 + }, + { + "start": 19128.14, + "end": 19135.76, + "probability": 0.9764 + }, + { + "start": 19135.78, + "end": 19136.5, + "probability": 0.7172 + }, + { + "start": 19136.62, + "end": 19137.74, + "probability": 0.7482 + }, + { + "start": 19138.76, + "end": 19143.92, + "probability": 0.9956 + }, + { + "start": 19144.52, + "end": 19148.7, + "probability": 0.9941 + }, + { + "start": 19148.7, + "end": 19153.56, + "probability": 0.9771 + }, + { + "start": 19153.66, + "end": 19154.78, + "probability": 0.9145 + }, + { + "start": 19155.04, + "end": 19155.64, + "probability": 0.5951 + }, + { + "start": 19156.7, + "end": 19157.82, + "probability": 0.9417 + }, + { + "start": 19160.03, + "end": 19162.32, + "probability": 0.9963 + }, + { + "start": 19162.38, + "end": 19164.24, + "probability": 0.9189 + }, + { + "start": 19164.96, + "end": 19168.82, + "probability": 0.9855 + }, + { + "start": 19169.4, + "end": 19171.0, + "probability": 0.9293 + }, + { + "start": 19171.32, + "end": 19172.34, + "probability": 0.965 + }, + { + "start": 19172.48, + "end": 19173.18, + "probability": 0.4223 + }, + { + "start": 19173.22, + "end": 19173.48, + "probability": 0.5398 + }, + { + "start": 19173.54, + "end": 19174.08, + "probability": 0.7926 + }, + { + "start": 19174.84, + "end": 19179.1, + "probability": 0.9502 + }, + { + "start": 19179.64, + "end": 19181.06, + "probability": 0.9822 + }, + { + "start": 19182.68, + "end": 19184.46, + "probability": 0.9976 + }, + { + "start": 19185.3, + "end": 19187.02, + "probability": 0.9819 + }, + { + "start": 19187.42, + "end": 19188.38, + "probability": 0.7105 + }, + { + "start": 19188.44, + "end": 19190.44, + "probability": 0.6558 + }, + { + "start": 19190.56, + "end": 19193.02, + "probability": 0.9902 + }, + { + "start": 19193.1, + "end": 19193.96, + "probability": 0.9681 + }, + { + "start": 19194.8, + "end": 19195.78, + "probability": 0.7485 + }, + { + "start": 19196.38, + "end": 19199.82, + "probability": 0.9927 + }, + { + "start": 19211.84, + "end": 19212.62, + "probability": 0.1031 + }, + { + "start": 19212.62, + "end": 19212.62, + "probability": 0.3691 + }, + { + "start": 19212.62, + "end": 19212.62, + "probability": 0.1747 + }, + { + "start": 19212.62, + "end": 19212.62, + "probability": 0.0417 + }, + { + "start": 19212.62, + "end": 19214.81, + "probability": 0.6617 + }, + { + "start": 19215.38, + "end": 19218.2, + "probability": 0.9852 + }, + { + "start": 19219.06, + "end": 19219.92, + "probability": 0.8104 + }, + { + "start": 19220.86, + "end": 19225.1, + "probability": 0.9927 + }, + { + "start": 19225.62, + "end": 19226.1, + "probability": 0.7582 + }, + { + "start": 19226.38, + "end": 19230.02, + "probability": 0.9133 + }, + { + "start": 19230.06, + "end": 19230.54, + "probability": 0.8096 + }, + { + "start": 19230.58, + "end": 19230.74, + "probability": 0.5902 + }, + { + "start": 19230.86, + "end": 19232.5, + "probability": 0.995 + }, + { + "start": 19232.64, + "end": 19233.0, + "probability": 0.9578 + }, + { + "start": 19234.74, + "end": 19239.94, + "probability": 0.8354 + }, + { + "start": 19239.94, + "end": 19239.98, + "probability": 0.0112 + }, + { + "start": 19239.98, + "end": 19240.6, + "probability": 0.2553 + }, + { + "start": 19240.68, + "end": 19241.26, + "probability": 0.4643 + }, + { + "start": 19241.38, + "end": 19243.52, + "probability": 0.1073 + }, + { + "start": 19244.88, + "end": 19244.88, + "probability": 0.6536 + }, + { + "start": 19244.88, + "end": 19250.02, + "probability": 0.9938 + }, + { + "start": 19250.34, + "end": 19252.16, + "probability": 0.4941 + }, + { + "start": 19252.38, + "end": 19253.18, + "probability": 0.913 + }, + { + "start": 19253.62, + "end": 19256.82, + "probability": 0.8984 + }, + { + "start": 19256.82, + "end": 19259.64, + "probability": 0.9046 + }, + { + "start": 19260.1, + "end": 19261.54, + "probability": 0.8398 + }, + { + "start": 19261.98, + "end": 19264.06, + "probability": 0.8196 + }, + { + "start": 19264.6, + "end": 19265.72, + "probability": 0.3495 + }, + { + "start": 19266.66, + "end": 19269.18, + "probability": 0.7795 + }, + { + "start": 19270.21, + "end": 19274.68, + "probability": 0.8825 + }, + { + "start": 19275.1, + "end": 19279.44, + "probability": 0.9375 + }, + { + "start": 19279.44, + "end": 19284.74, + "probability": 0.9542 + }, + { + "start": 19284.96, + "end": 19286.66, + "probability": 0.8477 + }, + { + "start": 19287.06, + "end": 19295.26, + "probability": 0.9467 + }, + { + "start": 19295.76, + "end": 19302.56, + "probability": 0.9923 + }, + { + "start": 19302.74, + "end": 19303.12, + "probability": 0.9328 + }, + { + "start": 19303.3, + "end": 19303.6, + "probability": 0.5871 + }, + { + "start": 19303.7, + "end": 19309.76, + "probability": 0.9564 + }, + { + "start": 19309.9, + "end": 19310.68, + "probability": 0.9323 + }, + { + "start": 19311.02, + "end": 19315.76, + "probability": 0.9391 + }, + { + "start": 19316.24, + "end": 19318.78, + "probability": 0.9948 + }, + { + "start": 19319.62, + "end": 19320.2, + "probability": 0.4395 + }, + { + "start": 19320.36, + "end": 19322.7, + "probability": 0.9922 + }, + { + "start": 19323.34, + "end": 19325.88, + "probability": 0.9802 + }, + { + "start": 19326.4, + "end": 19329.9, + "probability": 0.8376 + }, + { + "start": 19330.48, + "end": 19330.76, + "probability": 0.414 + }, + { + "start": 19330.86, + "end": 19333.38, + "probability": 0.9911 + }, + { + "start": 19333.72, + "end": 19337.3, + "probability": 0.8823 + }, + { + "start": 19337.68, + "end": 19340.1, + "probability": 0.9823 + }, + { + "start": 19340.64, + "end": 19345.98, + "probability": 0.8177 + }, + { + "start": 19346.32, + "end": 19348.2, + "probability": 0.9371 + }, + { + "start": 19348.7, + "end": 19349.18, + "probability": 0.6133 + }, + { + "start": 19349.46, + "end": 19352.9, + "probability": 0.8955 + }, + { + "start": 19353.04, + "end": 19353.32, + "probability": 0.6893 + }, + { + "start": 19353.32, + "end": 19353.7, + "probability": 0.468 + }, + { + "start": 19354.26, + "end": 19354.68, + "probability": 0.7428 + }, + { + "start": 19354.72, + "end": 19356.14, + "probability": 0.8185 + }, + { + "start": 19356.22, + "end": 19358.24, + "probability": 0.7616 + }, + { + "start": 19358.7, + "end": 19361.24, + "probability": 0.9911 + }, + { + "start": 19361.28, + "end": 19362.68, + "probability": 0.9237 + }, + { + "start": 19363.54, + "end": 19365.92, + "probability": 0.7758 + }, + { + "start": 19366.46, + "end": 19367.6, + "probability": 0.9618 + }, + { + "start": 19367.7, + "end": 19369.28, + "probability": 0.9884 + }, + { + "start": 19369.76, + "end": 19372.58, + "probability": 0.9685 + }, + { + "start": 19373.66, + "end": 19376.04, + "probability": 0.6138 + }, + { + "start": 19376.06, + "end": 19377.46, + "probability": 0.7144 + }, + { + "start": 19378.18, + "end": 19380.96, + "probability": 0.9357 + }, + { + "start": 19381.66, + "end": 19385.22, + "probability": 0.9918 + }, + { + "start": 19386.06, + "end": 19387.8, + "probability": 0.9932 + }, + { + "start": 19388.88, + "end": 19389.8, + "probability": 0.2023 + }, + { + "start": 19390.66, + "end": 19390.66, + "probability": 0.2903 + }, + { + "start": 19390.66, + "end": 19390.76, + "probability": 0.3636 + }, + { + "start": 19392.4, + "end": 19393.18, + "probability": 0.6618 + }, + { + "start": 19393.62, + "end": 19394.02, + "probability": 0.6159 + }, + { + "start": 19394.44, + "end": 19398.04, + "probability": 0.3124 + }, + { + "start": 19398.44, + "end": 19398.46, + "probability": 0.5167 + }, + { + "start": 19398.46, + "end": 19399.36, + "probability": 0.7151 + }, + { + "start": 19399.5, + "end": 19404.5, + "probability": 0.9891 + }, + { + "start": 19404.62, + "end": 19406.16, + "probability": 0.998 + }, + { + "start": 19406.82, + "end": 19408.2, + "probability": 0.9946 + }, + { + "start": 19408.72, + "end": 19412.6, + "probability": 0.744 + }, + { + "start": 19412.84, + "end": 19418.42, + "probability": 0.9239 + }, + { + "start": 19419.76, + "end": 19423.22, + "probability": 0.9915 + }, + { + "start": 19423.22, + "end": 19427.86, + "probability": 0.9946 + }, + { + "start": 19429.28, + "end": 19431.24, + "probability": 0.8389 + }, + { + "start": 19431.86, + "end": 19434.12, + "probability": 0.9565 + }, + { + "start": 19434.72, + "end": 19438.04, + "probability": 0.904 + }, + { + "start": 19438.2, + "end": 19441.14, + "probability": 0.9859 + }, + { + "start": 19443.05, + "end": 19448.14, + "probability": 0.9508 + }, + { + "start": 19448.66, + "end": 19453.02, + "probability": 0.9902 + }, + { + "start": 19454.12, + "end": 19456.08, + "probability": 0.5042 + }, + { + "start": 19456.36, + "end": 19457.2, + "probability": 0.9175 + }, + { + "start": 19458.1, + "end": 19459.98, + "probability": 0.9556 + }, + { + "start": 19460.9, + "end": 19463.54, + "probability": 0.9819 + }, + { + "start": 19464.02, + "end": 19467.24, + "probability": 0.9922 + }, + { + "start": 19467.86, + "end": 19469.74, + "probability": 0.9745 + }, + { + "start": 19470.32, + "end": 19473.0, + "probability": 0.9937 + }, + { + "start": 19473.12, + "end": 19475.32, + "probability": 0.9979 + }, + { + "start": 19475.7, + "end": 19476.22, + "probability": 0.9634 + }, + { + "start": 19476.32, + "end": 19478.56, + "probability": 0.9673 + }, + { + "start": 19479.4, + "end": 19481.68, + "probability": 0.9919 + }, + { + "start": 19482.32, + "end": 19488.74, + "probability": 0.9539 + }, + { + "start": 19489.6, + "end": 19494.68, + "probability": 0.9521 + }, + { + "start": 19495.04, + "end": 19496.58, + "probability": 0.9961 + }, + { + "start": 19496.92, + "end": 19498.92, + "probability": 0.9775 + }, + { + "start": 19499.68, + "end": 19501.18, + "probability": 0.5842 + }, + { + "start": 19501.72, + "end": 19502.5, + "probability": 0.7026 + }, + { + "start": 19503.08, + "end": 19505.84, + "probability": 0.8676 + }, + { + "start": 19506.44, + "end": 19508.36, + "probability": 0.9051 + }, + { + "start": 19508.94, + "end": 19509.94, + "probability": 0.8875 + }, + { + "start": 19510.38, + "end": 19511.32, + "probability": 0.9064 + }, + { + "start": 19511.36, + "end": 19512.84, + "probability": 0.8863 + }, + { + "start": 19513.18, + "end": 19514.6, + "probability": 0.7296 + }, + { + "start": 19514.66, + "end": 19517.02, + "probability": 0.9932 + }, + { + "start": 19517.58, + "end": 19519.34, + "probability": 0.809 + }, + { + "start": 19519.7, + "end": 19523.28, + "probability": 0.9872 + }, + { + "start": 19524.36, + "end": 19524.82, + "probability": 0.9368 + }, + { + "start": 19524.94, + "end": 19529.94, + "probability": 0.9766 + }, + { + "start": 19530.1, + "end": 19530.94, + "probability": 0.725 + }, + { + "start": 19531.38, + "end": 19534.44, + "probability": 0.9624 + }, + { + "start": 19534.82, + "end": 19536.88, + "probability": 0.9898 + }, + { + "start": 19537.24, + "end": 19538.74, + "probability": 0.9868 + }, + { + "start": 19538.9, + "end": 19540.94, + "probability": 0.9904 + }, + { + "start": 19541.64, + "end": 19543.9, + "probability": 0.9585 + }, + { + "start": 19544.1, + "end": 19544.92, + "probability": 0.7994 + }, + { + "start": 19545.6, + "end": 19547.7, + "probability": 0.9232 + }, + { + "start": 19547.8, + "end": 19549.06, + "probability": 0.799 + }, + { + "start": 19549.84, + "end": 19550.6, + "probability": 0.7214 + }, + { + "start": 19550.6, + "end": 19551.72, + "probability": 0.9609 + }, + { + "start": 19552.4, + "end": 19556.02, + "probability": 0.9383 + }, + { + "start": 19556.14, + "end": 19559.52, + "probability": 0.9974 + }, + { + "start": 19559.74, + "end": 19562.58, + "probability": 0.9561 + }, + { + "start": 19563.26, + "end": 19565.88, + "probability": 0.9752 + }, + { + "start": 19566.58, + "end": 19568.64, + "probability": 0.6534 + }, + { + "start": 19569.14, + "end": 19570.46, + "probability": 0.9755 + }, + { + "start": 19570.64, + "end": 19572.04, + "probability": 0.7227 + }, + { + "start": 19572.14, + "end": 19572.96, + "probability": 0.7253 + }, + { + "start": 19573.38, + "end": 19574.56, + "probability": 0.7078 + }, + { + "start": 19575.14, + "end": 19576.66, + "probability": 0.9881 + }, + { + "start": 19576.72, + "end": 19577.82, + "probability": 0.8635 + }, + { + "start": 19577.9, + "end": 19578.64, + "probability": 0.7356 + }, + { + "start": 19578.98, + "end": 19581.32, + "probability": 0.9882 + }, + { + "start": 19581.5, + "end": 19583.96, + "probability": 0.2915 + }, + { + "start": 19583.96, + "end": 19584.9, + "probability": 0.5607 + }, + { + "start": 19585.08, + "end": 19586.42, + "probability": 0.8564 + }, + { + "start": 19586.98, + "end": 19590.82, + "probability": 0.9704 + }, + { + "start": 19591.44, + "end": 19593.62, + "probability": 0.8604 + }, + { + "start": 19594.0, + "end": 19596.72, + "probability": 0.9334 + }, + { + "start": 19597.1, + "end": 19599.3, + "probability": 0.9287 + }, + { + "start": 19599.3, + "end": 19601.68, + "probability": 0.9982 + }, + { + "start": 19602.3, + "end": 19603.04, + "probability": 0.9655 + }, + { + "start": 19603.36, + "end": 19604.62, + "probability": 0.9987 + }, + { + "start": 19605.18, + "end": 19607.62, + "probability": 0.9936 + }, + { + "start": 19608.34, + "end": 19610.28, + "probability": 0.9008 + }, + { + "start": 19610.32, + "end": 19614.88, + "probability": 0.855 + }, + { + "start": 19615.5, + "end": 19615.98, + "probability": 0.8787 + }, + { + "start": 19616.04, + "end": 19621.46, + "probability": 0.9849 + }, + { + "start": 19621.76, + "end": 19622.86, + "probability": 0.8789 + }, + { + "start": 19623.14, + "end": 19626.06, + "probability": 0.993 + }, + { + "start": 19626.52, + "end": 19626.6, + "probability": 0.2891 + }, + { + "start": 19626.82, + "end": 19631.62, + "probability": 0.8561 + }, + { + "start": 19632.04, + "end": 19632.34, + "probability": 0.6913 + }, + { + "start": 19632.46, + "end": 19633.92, + "probability": 0.968 + }, + { + "start": 19634.26, + "end": 19635.98, + "probability": 0.9393 + }, + { + "start": 19636.66, + "end": 19637.96, + "probability": 0.8176 + }, + { + "start": 19638.82, + "end": 19640.76, + "probability": 0.7642 + }, + { + "start": 19641.24, + "end": 19642.32, + "probability": 0.782 + }, + { + "start": 19642.44, + "end": 19643.46, + "probability": 0.9491 + }, + { + "start": 19643.8, + "end": 19644.3, + "probability": 0.9524 + }, + { + "start": 19644.94, + "end": 19647.7, + "probability": 0.8707 + }, + { + "start": 19648.36, + "end": 19649.46, + "probability": 0.5347 + }, + { + "start": 19650.02, + "end": 19651.38, + "probability": 0.8879 + }, + { + "start": 19651.9, + "end": 19653.32, + "probability": 0.9254 + }, + { + "start": 19653.88, + "end": 19656.18, + "probability": 0.7927 + }, + { + "start": 19656.58, + "end": 19658.26, + "probability": 0.9601 + }, + { + "start": 19658.38, + "end": 19660.34, + "probability": 0.9832 + }, + { + "start": 19660.68, + "end": 19662.08, + "probability": 0.9553 + }, + { + "start": 19662.4, + "end": 19667.18, + "probability": 0.9182 + }, + { + "start": 19667.64, + "end": 19668.96, + "probability": 0.8418 + }, + { + "start": 19669.46, + "end": 19670.08, + "probability": 0.8411 + }, + { + "start": 19670.12, + "end": 19671.64, + "probability": 0.9616 + }, + { + "start": 19672.46, + "end": 19672.95, + "probability": 0.8765 + }, + { + "start": 19673.92, + "end": 19676.48, + "probability": 0.9616 + }, + { + "start": 19677.04, + "end": 19679.42, + "probability": 0.8006 + }, + { + "start": 19680.46, + "end": 19682.18, + "probability": 0.6905 + }, + { + "start": 19682.86, + "end": 19684.92, + "probability": 0.9708 + }, + { + "start": 19685.46, + "end": 19689.02, + "probability": 0.8734 + }, + { + "start": 19689.6, + "end": 19691.26, + "probability": 0.9739 + }, + { + "start": 19691.8, + "end": 19693.11, + "probability": 0.7775 + }, + { + "start": 19693.8, + "end": 19695.06, + "probability": 0.9969 + }, + { + "start": 19696.32, + "end": 19697.9, + "probability": 0.9835 + }, + { + "start": 19698.12, + "end": 19700.17, + "probability": 0.9161 + }, + { + "start": 19700.94, + "end": 19702.32, + "probability": 0.9492 + }, + { + "start": 19702.36, + "end": 19706.56, + "probability": 0.9976 + }, + { + "start": 19707.38, + "end": 19708.9, + "probability": 0.7866 + }, + { + "start": 19709.06, + "end": 19709.54, + "probability": 0.9652 + }, + { + "start": 19709.8, + "end": 19710.18, + "probability": 0.491 + }, + { + "start": 19710.22, + "end": 19712.42, + "probability": 0.9688 + }, + { + "start": 19712.94, + "end": 19716.96, + "probability": 0.8696 + }, + { + "start": 19717.44, + "end": 19720.16, + "probability": 0.957 + }, + { + "start": 19720.92, + "end": 19721.74, + "probability": 0.5827 + }, + { + "start": 19722.3, + "end": 19723.84, + "probability": 0.9412 + }, + { + "start": 19724.62, + "end": 19727.88, + "probability": 0.8369 + }, + { + "start": 19728.36, + "end": 19730.1, + "probability": 0.9664 + }, + { + "start": 19730.7, + "end": 19732.68, + "probability": 0.6874 + }, + { + "start": 19733.18, + "end": 19735.7, + "probability": 0.6376 + }, + { + "start": 19735.7, + "end": 19736.48, + "probability": 0.8874 + }, + { + "start": 19736.64, + "end": 19737.7, + "probability": 0.6639 + }, + { + "start": 19738.12, + "end": 19740.34, + "probability": 0.6149 + }, + { + "start": 19740.86, + "end": 19741.56, + "probability": 0.9592 + }, + { + "start": 19742.04, + "end": 19742.36, + "probability": 0.0352 + }, + { + "start": 19742.42, + "end": 19743.0, + "probability": 0.5154 + }, + { + "start": 19743.06, + "end": 19743.28, + "probability": 0.5466 + }, + { + "start": 19743.28, + "end": 19744.46, + "probability": 0.8194 + }, + { + "start": 19744.8, + "end": 19745.04, + "probability": 0.9764 + }, + { + "start": 19745.14, + "end": 19745.84, + "probability": 0.8348 + }, + { + "start": 19746.24, + "end": 19748.0, + "probability": 0.7046 + }, + { + "start": 19748.04, + "end": 19748.56, + "probability": 0.2483 + }, + { + "start": 19748.6, + "end": 19748.92, + "probability": 0.6814 + }, + { + "start": 19748.96, + "end": 19752.28, + "probability": 0.8587 + }, + { + "start": 19752.3, + "end": 19752.4, + "probability": 0.4318 + }, + { + "start": 19752.56, + "end": 19754.96, + "probability": 0.6058 + }, + { + "start": 19755.8, + "end": 19755.84, + "probability": 0.0517 + }, + { + "start": 19755.84, + "end": 19756.4, + "probability": 0.3376 + }, + { + "start": 19756.66, + "end": 19758.04, + "probability": 0.8867 + }, + { + "start": 19758.9, + "end": 19760.86, + "probability": 0.937 + }, + { + "start": 19761.02, + "end": 19761.02, + "probability": 0.3001 + }, + { + "start": 19761.16, + "end": 19762.28, + "probability": 0.8666 + }, + { + "start": 19762.32, + "end": 19764.94, + "probability": 0.8447 + }, + { + "start": 19765.3, + "end": 19765.98, + "probability": 0.7532 + }, + { + "start": 19767.92, + "end": 19768.56, + "probability": 0.4971 + }, + { + "start": 19768.9, + "end": 19769.24, + "probability": 0.4823 + }, + { + "start": 19769.24, + "end": 19769.24, + "probability": 0.0814 + }, + { + "start": 19769.24, + "end": 19772.84, + "probability": 0.8017 + }, + { + "start": 19773.56, + "end": 19774.98, + "probability": 0.8426 + }, + { + "start": 19775.58, + "end": 19777.14, + "probability": 0.9509 + }, + { + "start": 19777.78, + "end": 19780.1, + "probability": 0.9295 + }, + { + "start": 19780.2, + "end": 19780.92, + "probability": 0.3168 + }, + { + "start": 19781.06, + "end": 19782.0, + "probability": 0.5457 + }, + { + "start": 19782.26, + "end": 19782.82, + "probability": 0.9519 + }, + { + "start": 19783.02, + "end": 19783.28, + "probability": 0.2623 + }, + { + "start": 19783.28, + "end": 19783.28, + "probability": 0.2555 + }, + { + "start": 19783.28, + "end": 19783.56, + "probability": 0.6692 + }, + { + "start": 19783.78, + "end": 19785.2, + "probability": 0.9592 + }, + { + "start": 19785.68, + "end": 19789.22, + "probability": 0.6841 + }, + { + "start": 19789.64, + "end": 19791.32, + "probability": 0.4438 + }, + { + "start": 19792.38, + "end": 19794.34, + "probability": 0.7944 + }, + { + "start": 19795.64, + "end": 19799.68, + "probability": 0.9596 + }, + { + "start": 19800.46, + "end": 19804.14, + "probability": 0.9858 + }, + { + "start": 19804.74, + "end": 19807.12, + "probability": 0.9932 + }, + { + "start": 19807.7, + "end": 19808.88, + "probability": 0.7257 + }, + { + "start": 19809.38, + "end": 19812.48, + "probability": 0.7121 + }, + { + "start": 19813.08, + "end": 19814.72, + "probability": 0.2692 + }, + { + "start": 19817.38, + "end": 19824.66, + "probability": 0.6828 + }, + { + "start": 19825.54, + "end": 19826.38, + "probability": 0.9956 + }, + { + "start": 19827.06, + "end": 19827.98, + "probability": 0.4764 + }, + { + "start": 19828.88, + "end": 19830.98, + "probability": 0.7855 + }, + { + "start": 19832.52, + "end": 19833.16, + "probability": 0.9924 + }, + { + "start": 19834.2, + "end": 19835.35, + "probability": 0.7313 + }, + { + "start": 19836.22, + "end": 19838.06, + "probability": 0.828 + }, + { + "start": 19839.52, + "end": 19841.84, + "probability": 0.8802 + }, + { + "start": 19842.92, + "end": 19843.18, + "probability": 0.7049 + }, + { + "start": 19844.62, + "end": 19844.86, + "probability": 0.5575 + }, + { + "start": 19845.62, + "end": 19847.18, + "probability": 0.8487 + }, + { + "start": 19848.34, + "end": 19850.28, + "probability": 0.921 + }, + { + "start": 19852.94, + "end": 19854.78, + "probability": 0.8665 + }, + { + "start": 19856.64, + "end": 19858.42, + "probability": 0.9339 + }, + { + "start": 19859.34, + "end": 19861.3, + "probability": 0.9863 + }, + { + "start": 19862.2, + "end": 19864.16, + "probability": 0.9913 + }, + { + "start": 19864.9, + "end": 19866.7, + "probability": 0.9904 + }, + { + "start": 19867.46, + "end": 19869.04, + "probability": 0.9871 + }, + { + "start": 19870.04, + "end": 19870.34, + "probability": 0.7308 + }, + { + "start": 19871.12, + "end": 19871.98, + "probability": 0.8121 + }, + { + "start": 19872.66, + "end": 19874.16, + "probability": 0.8669 + }, + { + "start": 19875.52, + "end": 19877.68, + "probability": 0.7794 + }, + { + "start": 19878.74, + "end": 19879.24, + "probability": 0.9373 + }, + { + "start": 19880.54, + "end": 19881.18, + "probability": 0.9788 + }, + { + "start": 19882.12, + "end": 19883.84, + "probability": 0.9827 + }, + { + "start": 19884.94, + "end": 19885.38, + "probability": 0.9961 + }, + { + "start": 19886.22, + "end": 19887.12, + "probability": 0.649 + }, + { + "start": 19888.16, + "end": 19890.44, + "probability": 0.9205 + }, + { + "start": 19894.0, + "end": 19896.6, + "probability": 0.5458 + }, + { + "start": 19897.54, + "end": 19897.84, + "probability": 0.512 + }, + { + "start": 19900.54, + "end": 19901.28, + "probability": 0.6314 + }, + { + "start": 19902.36, + "end": 19904.28, + "probability": 0.8669 + }, + { + "start": 19905.02, + "end": 19907.02, + "probability": 0.875 + }, + { + "start": 19910.88, + "end": 19911.2, + "probability": 0.8163 + }, + { + "start": 19912.68, + "end": 19913.72, + "probability": 0.7313 + }, + { + "start": 19914.46, + "end": 19914.98, + "probability": 0.945 + }, + { + "start": 19915.82, + "end": 19917.02, + "probability": 0.8451 + }, + { + "start": 19917.68, + "end": 19920.42, + "probability": 0.9173 + }, + { + "start": 19921.36, + "end": 19921.86, + "probability": 0.9727 + }, + { + "start": 19922.92, + "end": 19923.92, + "probability": 0.9514 + }, + { + "start": 19924.84, + "end": 19925.24, + "probability": 0.987 + }, + { + "start": 19926.1, + "end": 19926.84, + "probability": 0.8392 + }, + { + "start": 19927.7, + "end": 19928.12, + "probability": 0.9574 + }, + { + "start": 19928.84, + "end": 19929.78, + "probability": 0.9182 + }, + { + "start": 19930.84, + "end": 19933.3, + "probability": 0.9924 + }, + { + "start": 19934.2, + "end": 19934.46, + "probability": 0.7225 + }, + { + "start": 19935.78, + "end": 19936.68, + "probability": 0.658 + }, + { + "start": 19937.48, + "end": 19941.84, + "probability": 0.5966 + }, + { + "start": 19942.68, + "end": 19943.44, + "probability": 0.6882 + }, + { + "start": 19944.66, + "end": 19945.34, + "probability": 0.2562 + }, + { + "start": 19945.34, + "end": 19945.9, + "probability": 0.1718 + }, + { + "start": 19947.88, + "end": 19949.98, + "probability": 0.7487 + }, + { + "start": 19950.52, + "end": 19950.96, + "probability": 0.9735 + }, + { + "start": 19953.12, + "end": 19954.14, + "probability": 0.7906 + }, + { + "start": 19954.9, + "end": 19955.3, + "probability": 0.9504 + }, + { + "start": 19956.16, + "end": 19957.16, + "probability": 0.6329 + }, + { + "start": 19957.96, + "end": 19960.5, + "probability": 0.7828 + }, + { + "start": 19962.18, + "end": 19963.3, + "probability": 0.7808 + }, + { + "start": 19966.28, + "end": 19967.48, + "probability": 0.6598 + }, + { + "start": 19968.98, + "end": 19971.78, + "probability": 0.8772 + }, + { + "start": 19973.56, + "end": 19973.98, + "probability": 0.6624 + }, + { + "start": 19974.7, + "end": 19975.38, + "probability": 0.8526 + }, + { + "start": 19976.34, + "end": 19978.18, + "probability": 0.978 + }, + { + "start": 19978.88, + "end": 19980.88, + "probability": 0.9631 + }, + { + "start": 19981.6, + "end": 19982.5, + "probability": 0.9734 + }, + { + "start": 19983.06, + "end": 19983.98, + "probability": 0.6429 + }, + { + "start": 19984.9, + "end": 19985.4, + "probability": 0.9487 + }, + { + "start": 19987.0, + "end": 19991.18, + "probability": 0.8598 + }, + { + "start": 19991.78, + "end": 19994.26, + "probability": 0.6577 + }, + { + "start": 19994.96, + "end": 19999.18, + "probability": 0.9029 + }, + { + "start": 20000.12, + "end": 20002.2, + "probability": 0.7873 + }, + { + "start": 20003.16, + "end": 20003.46, + "probability": 0.8338 + }, + { + "start": 20004.22, + "end": 20005.4, + "probability": 0.935 + }, + { + "start": 20006.46, + "end": 20008.74, + "probability": 0.7701 + }, + { + "start": 20009.54, + "end": 20011.82, + "probability": 0.8335 + }, + { + "start": 20012.72, + "end": 20015.62, + "probability": 0.9377 + }, + { + "start": 20016.74, + "end": 20017.84, + "probability": 0.9569 + }, + { + "start": 20018.76, + "end": 20019.1, + "probability": 0.6448 + }, + { + "start": 20020.52, + "end": 20022.96, + "probability": 0.7572 + }, + { + "start": 20024.08, + "end": 20026.34, + "probability": 0.8262 + }, + { + "start": 20026.8, + "end": 20030.1, + "probability": 0.8779 + }, + { + "start": 20030.1, + "end": 20033.04, + "probability": 0.881 + }, + { + "start": 20033.92, + "end": 20034.44, + "probability": 0.9749 + }, + { + "start": 20035.28, + "end": 20036.36, + "probability": 0.3865 + }, + { + "start": 20037.12, + "end": 20037.92, + "probability": 0.9795 + }, + { + "start": 20038.94, + "end": 20040.04, + "probability": 0.6684 + }, + { + "start": 20040.9, + "end": 20043.54, + "probability": 0.6899 + }, + { + "start": 20044.62, + "end": 20046.7, + "probability": 0.8004 + }, + { + "start": 20047.62, + "end": 20048.0, + "probability": 0.9891 + }, + { + "start": 20048.72, + "end": 20049.9, + "probability": 0.6246 + }, + { + "start": 20050.48, + "end": 20052.88, + "probability": 0.6579 + }, + { + "start": 20054.84, + "end": 20057.42, + "probability": 0.743 + }, + { + "start": 20058.06, + "end": 20060.2, + "probability": 0.8408 + }, + { + "start": 20061.48, + "end": 20063.28, + "probability": 0.8408 + }, + { + "start": 20063.8, + "end": 20065.32, + "probability": 0.9546 + }, + { + "start": 20066.16, + "end": 20067.84, + "probability": 0.8592 + }, + { + "start": 20068.74, + "end": 20069.78, + "probability": 0.9775 + }, + { + "start": 20070.32, + "end": 20071.02, + "probability": 0.6841 + }, + { + "start": 20071.58, + "end": 20076.65, + "probability": 0.9099 + }, + { + "start": 20079.0, + "end": 20079.68, + "probability": 0.891 + }, + { + "start": 20080.5, + "end": 20082.84, + "probability": 0.8367 + }, + { + "start": 20083.74, + "end": 20085.58, + "probability": 0.9727 + }, + { + "start": 20086.26, + "end": 20088.14, + "probability": 0.9893 + }, + { + "start": 20088.92, + "end": 20091.16, + "probability": 0.8375 + }, + { + "start": 20091.68, + "end": 20092.18, + "probability": 0.99 + }, + { + "start": 20093.98, + "end": 20095.14, + "probability": 0.4528 + }, + { + "start": 20096.38, + "end": 20097.72, + "probability": 0.6401 + }, + { + "start": 20098.28, + "end": 20099.54, + "probability": 0.9512 + }, + { + "start": 20100.64, + "end": 20101.0, + "probability": 0.9709 + }, + { + "start": 20101.94, + "end": 20102.8, + "probability": 0.9285 + }, + { + "start": 20105.7, + "end": 20107.56, + "probability": 0.6984 + }, + { + "start": 20108.48, + "end": 20112.16, + "probability": 0.7605 + }, + { + "start": 20112.94, + "end": 20115.3, + "probability": 0.7822 + }, + { + "start": 20116.3, + "end": 20118.72, + "probability": 0.9854 + }, + { + "start": 20119.42, + "end": 20121.16, + "probability": 0.9924 + }, + { + "start": 20121.92, + "end": 20124.04, + "probability": 0.8167 + }, + { + "start": 20124.88, + "end": 20126.68, + "probability": 0.9648 + }, + { + "start": 20128.84, + "end": 20132.74, + "probability": 0.9145 + }, + { + "start": 20133.83, + "end": 20136.78, + "probability": 0.9745 + }, + { + "start": 20137.36, + "end": 20139.52, + "probability": 0.7575 + }, + { + "start": 20140.4, + "end": 20142.12, + "probability": 0.7964 + }, + { + "start": 20143.86, + "end": 20146.14, + "probability": 0.823 + }, + { + "start": 20147.5, + "end": 20148.68, + "probability": 0.6561 + }, + { + "start": 20150.12, + "end": 20155.74, + "probability": 0.9714 + }, + { + "start": 20156.78, + "end": 20157.2, + "probability": 0.9736 + }, + { + "start": 20159.42, + "end": 20160.5, + "probability": 0.8464 + }, + { + "start": 20161.24, + "end": 20161.54, + "probability": 0.803 + }, + { + "start": 20162.5, + "end": 20163.34, + "probability": 0.7651 + }, + { + "start": 20163.98, + "end": 20166.18, + "probability": 0.8576 + }, + { + "start": 20167.08, + "end": 20168.3, + "probability": 0.9924 + }, + { + "start": 20169.06, + "end": 20170.3, + "probability": 0.7342 + }, + { + "start": 20171.54, + "end": 20174.64, + "probability": 0.6724 + }, + { + "start": 20175.2, + "end": 20177.18, + "probability": 0.9369 + }, + { + "start": 20177.86, + "end": 20183.3, + "probability": 0.9545 + }, + { + "start": 20184.52, + "end": 20188.7, + "probability": 0.5201 + }, + { + "start": 20189.0, + "end": 20191.64, + "probability": 0.6218 + }, + { + "start": 20192.27, + "end": 20194.88, + "probability": 0.7212 + }, + { + "start": 20195.96, + "end": 20196.26, + "probability": 0.9854 + }, + { + "start": 20196.98, + "end": 20197.64, + "probability": 0.8751 + }, + { + "start": 20198.7, + "end": 20200.08, + "probability": 0.7778 + }, + { + "start": 20200.96, + "end": 20205.84, + "probability": 0.979 + }, + { + "start": 20206.1, + "end": 20209.86, + "probability": 0.0207 + }, + { + "start": 20209.86, + "end": 20210.54, + "probability": 0.1339 + }, + { + "start": 20211.44, + "end": 20214.08, + "probability": 0.6724 + }, + { + "start": 20216.62, + "end": 20216.88, + "probability": 0.4816 + }, + { + "start": 20217.48, + "end": 20218.26, + "probability": 0.5949 + }, + { + "start": 20219.62, + "end": 20221.96, + "probability": 0.8361 + }, + { + "start": 20223.16, + "end": 20226.46, + "probability": 0.9178 + }, + { + "start": 20227.24, + "end": 20227.82, + "probability": 0.9006 + }, + { + "start": 20228.38, + "end": 20229.78, + "probability": 0.5522 + }, + { + "start": 20233.32, + "end": 20233.68, + "probability": 0.6918 + }, + { + "start": 20236.06, + "end": 20236.9, + "probability": 0.483 + }, + { + "start": 20237.64, + "end": 20241.06, + "probability": 0.7381 + }, + { + "start": 20242.48, + "end": 20244.44, + "probability": 0.6154 + }, + { + "start": 20245.12, + "end": 20247.5, + "probability": 0.8372 + }, + { + "start": 20248.36, + "end": 20248.68, + "probability": 0.9375 + }, + { + "start": 20252.38, + "end": 20253.24, + "probability": 0.5345 + }, + { + "start": 20254.99, + "end": 20257.22, + "probability": 0.8257 + }, + { + "start": 20257.52, + "end": 20258.98, + "probability": 0.7459 + }, + { + "start": 20259.52, + "end": 20261.88, + "probability": 0.9346 + }, + { + "start": 20263.2, + "end": 20264.22, + "probability": 0.1907 + }, + { + "start": 20265.02, + "end": 20267.58, + "probability": 0.976 + }, + { + "start": 20267.72, + "end": 20268.46, + "probability": 0.9642 + }, + { + "start": 20271.08, + "end": 20273.28, + "probability": 0.2083 + }, + { + "start": 20273.38, + "end": 20274.92, + "probability": 0.6002 + }, + { + "start": 20276.0, + "end": 20278.9, + "probability": 0.8433 + }, + { + "start": 20278.94, + "end": 20281.58, + "probability": 0.9429 + }, + { + "start": 20281.78, + "end": 20284.08, + "probability": 0.9254 + }, + { + "start": 20284.6, + "end": 20286.5, + "probability": 0.9866 + }, + { + "start": 20288.82, + "end": 20295.24, + "probability": 0.7446 + }, + { + "start": 20295.92, + "end": 20298.02, + "probability": 0.9534 + }, + { + "start": 20298.24, + "end": 20300.82, + "probability": 0.913 + }, + { + "start": 20300.84, + "end": 20303.32, + "probability": 0.7214 + }, + { + "start": 20303.36, + "end": 20305.52, + "probability": 0.8841 + }, + { + "start": 20306.14, + "end": 20307.98, + "probability": 0.8613 + }, + { + "start": 20308.7, + "end": 20310.38, + "probability": 0.6246 + }, + { + "start": 20310.6, + "end": 20313.8, + "probability": 0.9269 + }, + { + "start": 20314.2, + "end": 20318.18, + "probability": 0.5511 + }, + { + "start": 20318.48, + "end": 20321.16, + "probability": 0.8101 + }, + { + "start": 20321.2, + "end": 20322.48, + "probability": 0.9214 + }, + { + "start": 20323.94, + "end": 20324.92, + "probability": 0.5233 + }, + { + "start": 20325.8, + "end": 20328.62, + "probability": 0.8577 + }, + { + "start": 20331.12, + "end": 20332.52, + "probability": 0.7195 + }, + { + "start": 20336.88, + "end": 20340.38, + "probability": 0.6367 + }, + { + "start": 20341.22, + "end": 20343.1, + "probability": 0.836 + }, + { + "start": 20343.68, + "end": 20347.2, + "probability": 0.9714 + }, + { + "start": 20348.18, + "end": 20349.82, + "probability": 0.9501 + }, + { + "start": 20350.76, + "end": 20351.96, + "probability": 0.9812 + }, + { + "start": 20352.62, + "end": 20354.94, + "probability": 0.7297 + }, + { + "start": 20355.2, + "end": 20357.5, + "probability": 0.8016 + }, + { + "start": 20357.52, + "end": 20359.76, + "probability": 0.8301 + }, + { + "start": 20359.8, + "end": 20361.9, + "probability": 0.8737 + }, + { + "start": 20362.64, + "end": 20364.82, + "probability": 0.9273 + }, + { + "start": 20364.82, + "end": 20366.78, + "probability": 0.9101 + }, + { + "start": 20367.08, + "end": 20369.68, + "probability": 0.9258 + }, + { + "start": 20369.7, + "end": 20370.98, + "probability": 0.9675 + }, + { + "start": 20372.12, + "end": 20372.84, + "probability": 0.5957 + }, + { + "start": 20373.74, + "end": 20379.28, + "probability": 0.9819 + }, + { + "start": 20379.28, + "end": 20383.46, + "probability": 0.9902 + }, + { + "start": 20383.48, + "end": 20384.16, + "probability": 0.5389 + }, + { + "start": 20384.52, + "end": 20385.67, + "probability": 0.9907 + }, + { + "start": 20386.64, + "end": 20386.9, + "probability": 0.4412 + }, + { + "start": 20387.16, + "end": 20388.98, + "probability": 0.9726 + }, + { + "start": 20399.18, + "end": 20401.14, + "probability": 0.6409 + }, + { + "start": 20403.34, + "end": 20406.94, + "probability": 0.7334 + }, + { + "start": 20407.38, + "end": 20411.5, + "probability": 0.9025 + }, + { + "start": 20414.32, + "end": 20415.9, + "probability": 0.0575 + }, + { + "start": 20435.08, + "end": 20436.2, + "probability": 0.3643 + }, + { + "start": 20436.38, + "end": 20439.76, + "probability": 0.8493 + }, + { + "start": 20445.44, + "end": 20447.51, + "probability": 0.7501 + }, + { + "start": 20448.28, + "end": 20449.6, + "probability": 0.6598 + }, + { + "start": 20450.24, + "end": 20454.52, + "probability": 0.9888 + }, + { + "start": 20454.52, + "end": 20457.54, + "probability": 0.9944 + }, + { + "start": 20457.66, + "end": 20458.84, + "probability": 0.8975 + }, + { + "start": 20459.04, + "end": 20459.14, + "probability": 0.3865 + }, + { + "start": 20459.24, + "end": 20460.0, + "probability": 0.8027 + }, + { + "start": 20460.3, + "end": 20460.46, + "probability": 0.791 + }, + { + "start": 20461.6, + "end": 20462.5, + "probability": 0.6594 + }, + { + "start": 20462.92, + "end": 20465.0, + "probability": 0.9097 + }, + { + "start": 20465.34, + "end": 20465.68, + "probability": 0.7244 + }, + { + "start": 20466.66, + "end": 20470.18, + "probability": 0.75 + }, + { + "start": 20470.5, + "end": 20470.6, + "probability": 0.7295 + }, + { + "start": 20471.18, + "end": 20471.44, + "probability": 0.8694 + }, + { + "start": 20472.78, + "end": 20474.78, + "probability": 0.6835 + }, + { + "start": 20475.14, + "end": 20475.74, + "probability": 0.89 + }, + { + "start": 20476.48, + "end": 20478.72, + "probability": 0.9874 + }, + { + "start": 20479.76, + "end": 20482.04, + "probability": 0.735 + }, + { + "start": 20482.1, + "end": 20482.64, + "probability": 0.3948 + }, + { + "start": 20482.64, + "end": 20482.78, + "probability": 0.2501 + }, + { + "start": 20482.8, + "end": 20484.9, + "probability": 0.8713 + }, + { + "start": 20485.62, + "end": 20486.82, + "probability": 0.8289 + }, + { + "start": 20487.28, + "end": 20488.2, + "probability": 0.5688 + }, + { + "start": 20488.52, + "end": 20490.08, + "probability": 0.9526 + }, + { + "start": 20490.9, + "end": 20490.9, + "probability": 0.3066 + }, + { + "start": 20490.9, + "end": 20491.42, + "probability": 0.7075 + }, + { + "start": 20491.56, + "end": 20491.8, + "probability": 0.4062 + }, + { + "start": 20491.82, + "end": 20493.08, + "probability": 0.1867 + }, + { + "start": 20493.2, + "end": 20494.54, + "probability": 0.414 + }, + { + "start": 20495.82, + "end": 20496.4, + "probability": 0.3856 + }, + { + "start": 20496.64, + "end": 20499.1, + "probability": 0.8709 + }, + { + "start": 20500.65, + "end": 20503.46, + "probability": 0.8672 + }, + { + "start": 20503.84, + "end": 20507.14, + "probability": 0.8139 + }, + { + "start": 20507.14, + "end": 20509.74, + "probability": 0.8847 + }, + { + "start": 20510.32, + "end": 20510.84, + "probability": 0.3414 + }, + { + "start": 20511.1, + "end": 20512.28, + "probability": 0.7098 + }, + { + "start": 20512.78, + "end": 20513.2, + "probability": 0.7764 + }, + { + "start": 20513.2, + "end": 20514.34, + "probability": 0.8137 + }, + { + "start": 20514.76, + "end": 20515.86, + "probability": 0.7584 + }, + { + "start": 20516.0, + "end": 20517.94, + "probability": 0.989 + }, + { + "start": 20518.44, + "end": 20518.86, + "probability": 0.5646 + }, + { + "start": 20519.08, + "end": 20520.64, + "probability": 0.9938 + }, + { + "start": 20521.6, + "end": 20525.8, + "probability": 0.8024 + }, + { + "start": 20526.44, + "end": 20526.66, + "probability": 0.3315 + }, + { + "start": 20526.66, + "end": 20527.76, + "probability": 0.788 + }, + { + "start": 20528.52, + "end": 20528.52, + "probability": 0.6577 + }, + { + "start": 20528.52, + "end": 20529.18, + "probability": 0.5106 + }, + { + "start": 20529.34, + "end": 20531.38, + "probability": 0.8789 + }, + { + "start": 20531.44, + "end": 20532.32, + "probability": 0.6263 + }, + { + "start": 20532.68, + "end": 20534.18, + "probability": 0.8293 + }, + { + "start": 20534.56, + "end": 20535.36, + "probability": 0.4986 + }, + { + "start": 20535.42, + "end": 20535.56, + "probability": 0.3144 + }, + { + "start": 20535.64, + "end": 20536.7, + "probability": 0.7107 + }, + { + "start": 20536.88, + "end": 20536.98, + "probability": 0.4148 + }, + { + "start": 20536.98, + "end": 20537.82, + "probability": 0.7668 + }, + { + "start": 20538.18, + "end": 20538.8, + "probability": 0.9702 + }, + { + "start": 20538.86, + "end": 20540.46, + "probability": 0.8748 + }, + { + "start": 20540.58, + "end": 20542.64, + "probability": 0.9543 + }, + { + "start": 20542.64, + "end": 20542.85, + "probability": 0.0202 + }, + { + "start": 20543.44, + "end": 20544.1, + "probability": 0.7455 + }, + { + "start": 20544.18, + "end": 20546.22, + "probability": 0.9373 + }, + { + "start": 20546.52, + "end": 20547.67, + "probability": 0.9917 + }, + { + "start": 20547.88, + "end": 20549.36, + "probability": 0.4996 + }, + { + "start": 20549.48, + "end": 20550.02, + "probability": 0.5401 + }, + { + "start": 20550.76, + "end": 20554.56, + "probability": 0.7621 + }, + { + "start": 20554.7, + "end": 20555.58, + "probability": 0.7917 + }, + { + "start": 20556.04, + "end": 20556.78, + "probability": 0.6485 + }, + { + "start": 20556.86, + "end": 20558.18, + "probability": 0.9887 + }, + { + "start": 20558.38, + "end": 20558.8, + "probability": 0.6823 + }, + { + "start": 20559.24, + "end": 20560.24, + "probability": 0.4964 + }, + { + "start": 20561.44, + "end": 20564.22, + "probability": 0.8147 + }, + { + "start": 20564.32, + "end": 20569.6, + "probability": 0.501 + }, + { + "start": 20570.78, + "end": 20572.78, + "probability": 0.8717 + }, + { + "start": 20572.92, + "end": 20580.08, + "probability": 0.9681 + }, + { + "start": 20580.78, + "end": 20581.3, + "probability": 0.532 + }, + { + "start": 20581.4, + "end": 20582.6, + "probability": 0.617 + }, + { + "start": 20582.9, + "end": 20585.4, + "probability": 0.6709 + }, + { + "start": 20585.84, + "end": 20587.62, + "probability": 0.6226 + }, + { + "start": 20588.94, + "end": 20591.5, + "probability": 0.9935 + }, + { + "start": 20597.32, + "end": 20605.81, + "probability": 0.9485 + }, + { + "start": 20607.84, + "end": 20608.4, + "probability": 0.2224 + }, + { + "start": 20609.1, + "end": 20610.34, + "probability": 0.4261 + }, + { + "start": 20610.36, + "end": 20610.94, + "probability": 0.7873 + }, + { + "start": 20611.02, + "end": 20611.91, + "probability": 0.7108 + }, + { + "start": 20612.18, + "end": 20613.86, + "probability": 0.6171 + }, + { + "start": 20618.0, + "end": 20623.06, + "probability": 0.7486 + }, + { + "start": 20623.1, + "end": 20625.82, + "probability": 0.9949 + }, + { + "start": 20626.84, + "end": 20633.34, + "probability": 0.9966 + }, + { + "start": 20633.34, + "end": 20638.86, + "probability": 0.7335 + }, + { + "start": 20638.92, + "end": 20641.6, + "probability": 0.6843 + }, + { + "start": 20641.7, + "end": 20642.24, + "probability": 0.8159 + }, + { + "start": 20642.8, + "end": 20643.75, + "probability": 0.9854 + }, + { + "start": 20644.08, + "end": 20645.29, + "probability": 0.7034 + }, + { + "start": 20647.04, + "end": 20647.88, + "probability": 0.3843 + }, + { + "start": 20648.4, + "end": 20650.68, + "probability": 0.9526 + }, + { + "start": 20651.34, + "end": 20655.64, + "probability": 0.9858 + }, + { + "start": 20655.86, + "end": 20659.08, + "probability": 0.7568 + }, + { + "start": 20659.36, + "end": 20660.15, + "probability": 0.7089 + }, + { + "start": 20660.42, + "end": 20665.76, + "probability": 0.9581 + }, + { + "start": 20665.98, + "end": 20666.59, + "probability": 0.6726 + }, + { + "start": 20666.86, + "end": 20668.92, + "probability": 0.7146 + }, + { + "start": 20669.6, + "end": 20674.3, + "probability": 0.9788 + }, + { + "start": 20674.42, + "end": 20677.2, + "probability": 0.9956 + }, + { + "start": 20677.62, + "end": 20678.62, + "probability": 0.9938 + }, + { + "start": 20679.84, + "end": 20681.22, + "probability": 0.9299 + }, + { + "start": 20681.62, + "end": 20682.7, + "probability": 0.7574 + }, + { + "start": 20683.1, + "end": 20684.88, + "probability": 0.9943 + }, + { + "start": 20685.04, + "end": 20686.48, + "probability": 0.7366 + }, + { + "start": 20686.64, + "end": 20688.08, + "probability": 0.9282 + }, + { + "start": 20688.14, + "end": 20690.4, + "probability": 0.5856 + }, + { + "start": 20690.86, + "end": 20693.46, + "probability": 0.9956 + }, + { + "start": 20693.8, + "end": 20696.26, + "probability": 0.9863 + }, + { + "start": 20696.36, + "end": 20698.14, + "probability": 0.867 + }, + { + "start": 20698.48, + "end": 20699.22, + "probability": 0.6807 + }, + { + "start": 20699.24, + "end": 20699.74, + "probability": 0.7229 + }, + { + "start": 20699.76, + "end": 20700.42, + "probability": 0.9229 + }, + { + "start": 20700.74, + "end": 20701.28, + "probability": 0.5413 + }, + { + "start": 20701.38, + "end": 20705.4, + "probability": 0.936 + }, + { + "start": 20705.48, + "end": 20705.72, + "probability": 0.723 + }, + { + "start": 20706.51, + "end": 20710.88, + "probability": 0.9064 + }, + { + "start": 20710.9, + "end": 20712.78, + "probability": 0.673 + }, + { + "start": 20712.8, + "end": 20713.8, + "probability": 0.8679 + }, + { + "start": 20714.02, + "end": 20714.6, + "probability": 0.9797 + }, + { + "start": 20714.84, + "end": 20715.58, + "probability": 0.8335 + }, + { + "start": 20715.68, + "end": 20718.78, + "probability": 0.8905 + }, + { + "start": 20735.58, + "end": 20738.12, + "probability": 0.7004 + }, + { + "start": 20738.26, + "end": 20740.58, + "probability": 0.943 + }, + { + "start": 20741.52, + "end": 20743.66, + "probability": 0.7031 + }, + { + "start": 20744.92, + "end": 20745.04, + "probability": 0.6862 + }, + { + "start": 20745.12, + "end": 20748.5, + "probability": 0.977 + }, + { + "start": 20749.16, + "end": 20752.04, + "probability": 0.7178 + }, + { + "start": 20752.1, + "end": 20753.4, + "probability": 0.4635 + }, + { + "start": 20754.0, + "end": 20756.74, + "probability": 0.8464 + }, + { + "start": 20757.38, + "end": 20758.36, + "probability": 0.98 + }, + { + "start": 20760.82, + "end": 20765.52, + "probability": 0.7365 + }, + { + "start": 20765.56, + "end": 20766.02, + "probability": 0.0125 + }, + { + "start": 20766.44, + "end": 20770.4, + "probability": 0.2897 + }, + { + "start": 20770.74, + "end": 20773.01, + "probability": 0.4932 + }, + { + "start": 20773.3, + "end": 20773.94, + "probability": 0.1441 + }, + { + "start": 20773.94, + "end": 20775.26, + "probability": 0.7298 + }, + { + "start": 20777.14, + "end": 20779.52, + "probability": 0.7179 + }, + { + "start": 20779.86, + "end": 20782.3, + "probability": 0.2208 + }, + { + "start": 20784.84, + "end": 20785.22, + "probability": 0.2391 + }, + { + "start": 20785.22, + "end": 20785.86, + "probability": 0.7812 + }, + { + "start": 20785.88, + "end": 20786.23, + "probability": 0.4272 + }, + { + "start": 20786.62, + "end": 20786.98, + "probability": 0.2489 + }, + { + "start": 20787.06, + "end": 20788.22, + "probability": 0.6053 + }, + { + "start": 20789.08, + "end": 20793.36, + "probability": 0.7537 + }, + { + "start": 20794.23, + "end": 20801.16, + "probability": 0.9797 + }, + { + "start": 20801.28, + "end": 20804.14, + "probability": 0.959 + }, + { + "start": 20804.74, + "end": 20806.24, + "probability": 0.2889 + }, + { + "start": 20806.4, + "end": 20808.96, + "probability": 0.9663 + }, + { + "start": 20809.18, + "end": 20811.36, + "probability": 0.794 + }, + { + "start": 20812.28, + "end": 20813.08, + "probability": 0.9351 + }, + { + "start": 20815.7, + "end": 20816.29, + "probability": 0.0861 + }, + { + "start": 20817.26, + "end": 20818.08, + "probability": 0.058 + }, + { + "start": 20818.08, + "end": 20819.9, + "probability": 0.149 + }, + { + "start": 20831.44, + "end": 20831.44, + "probability": 0.0861 + }, + { + "start": 20831.44, + "end": 20835.62, + "probability": 0.6698 + }, + { + "start": 20835.72, + "end": 20839.8, + "probability": 0.8667 + }, + { + "start": 20839.8, + "end": 20842.48, + "probability": 0.7772 + }, + { + "start": 20844.25, + "end": 20845.34, + "probability": 0.6392 + }, + { + "start": 20845.74, + "end": 20845.86, + "probability": 0.4231 + }, + { + "start": 20845.88, + "end": 20849.5, + "probability": 0.9858 + }, + { + "start": 20853.22, + "end": 20853.76, + "probability": 0.7177 + }, + { + "start": 20854.36, + "end": 20859.62, + "probability": 0.8708 + }, + { + "start": 20860.7, + "end": 20862.52, + "probability": 0.9959 + }, + { + "start": 20865.04, + "end": 20865.5, + "probability": 0.5189 + }, + { + "start": 20902.88, + "end": 20902.88, + "probability": 0.0 + }, + { + "start": 20902.88, + "end": 20902.88, + "probability": 0.0 + } + ], + "segments_count": 7464, + "words_count": 35668, + "avg_words_per_segment": 4.7787, + "avg_segment_duration": 2.0257, + "avg_words_per_minute": 102.3821, + "plenum_id": "16517", + "duration": 20902.88, + "title": null, + "plenum_date": "2011-11-14" +} \ No newline at end of file